

GDPS/PPRC User Experiences

Ragnar Botnen

rabo01@handelsbanken.se

SHB overview

- Swedish bank
- About 10.000 employees
- About 600 branches in Sweden, Norway, Denmark, Finland, and UK
- Represented in Europe, Far East Asia, USA

Background

Background

Disadvantages with old method

- RPO Recovery Point Objective
 - Up to 24 hours of lost data
- RTO Recovery Time Objective
 - 48 over 100 hours recovery
- Difficult testing and maintenance

Goals

- RPO = 0
 - No data loss
- RTO < 12 hours</p>

Background

- Started 1995
 - Two datacenters
 - Mirrored data
 - Only production data mirrored
 - Separate production data from test data
 - Automation and Operation
 - Both sites operated from one place
 - Recovery procedures
 - Failure detection and alert
 - Maintenance procedures
 - Planned maintenance
 - GDPS

GDPS

- Geographically Dispersed Parallel Sysplex
 - Set of disaster recovery and continuous availability solutions
 - Supports IBM's PPRC and XRC architectures
 - Failure recovery from a single point of control
 - Capability to manage your remote copy configuration and storage subsystem
 - Automation of Sysplex operational tasks
 - z/OS and Open System data
 - Open architecture
 - Application Independent

GDPS

Prerequisites(GDPS/PPRC)

- z/OS R4(e) or higher
 - Not as guest under z/VM
- Netview
 - The Enterprise or Procedural level of Tivoli NetView for OS/390 V1.4 (or higher)
 - The Enterprise or Procedural level of Tivoli NetView for z/OS V5.1 (or higher)
- REXX Runtime Library
- System Automation
 - System Automation for OS/390 V2.2 or higher
 - Tivoli System Automation for z/OS V2.3 or higher
 - Tivoli System Automation for z/OS V3.1 or higher
- The following hardware must exist in *both* sites:
 - CPCs
 - Sysplex Timers
 - Disk subsystems
 - HMCs
- All disk subsystems that will be managed by GDPS must support the PPRC Freeze function. This function is also known as the CGroup Freeze/RUN architecture.

GDPS-Terminology

PPRC

- Metro Mirror (Synchronous PPRC)
- Global Mirror (Asynchronous PPRC)
- Metro/Global Copy (Asynchronous Cascading PPRC)
- Global Copy (PPRC Extended Distance)
- XRC
 - –z/OS Global Mirror (XRC)
 - –Metro/Global Mirror for zSeries (XRC and Synchronous PPRC)
- FLASHCOPY
- GDPS Controlling system
 - Recovery control residing in Site2

GDPS-Terminology

PPRC Freeze

- Secondary DASD consistency
- Freeze Trigger (mirroring problem)
- Freeze and Stop
 - Freeze secondary DASD and stop all systems after freeze trigger
- Freeze and Go
 - Freeze secondary DASD and go all systems after freeze trigger

HYPERSWAP

- Transparent swap of primary DASD between sites
- Swap trigger (primary DASD problem)

FAILOVER/FAILBACK

Keep PPRC-Status after hyperswap

Implementation

- GDPS used in production since October 1997 for:
 - Planned shutdowns and IPL:S
 - Software maintenance
 - Planned site switches
 - Hardware maintenance
 - Managing PPRC-environment
 - New DASD
 - Sysplex Resource Management
 - Managing Couple Datasets
 - Managing Coupling Facilities
 - Disaster tests
 - Twice every year

Milestones

- Started on HDS7700E 4Q 1998
 - 500MB mirrored
- Mirroring of all applicable data 2Q 2000
 - Not system data(SYSRES, PAGE, SPOOL etc)
- HDS 9960 2Q 2002
- BCP Internal Interface replaced AOM 3Q 2002
- Hyperswap support 2Q 2004
 - <u>ALL</u> data mirrored
- CBU Capacity Backup 4Q 2004

Milestones

- MFA Message Flood Automation 2Q 2005
- HDS USP/Tagmastore 4Q 2005
 - Support for Failover/failback
- CF HINT GDPS 3.3 1Q 2006
 - Coupling Facility site awareness
- Full Parallel Sysplex with Data Sharing 2Q 2006
- xDR GDPS Multiplatform Resiliency for zSeries 4Q 2006
 - Hyperswap support for z/VM and Linux for zSeries

Justification

- RTO < 2 hours</p>
- RPO=0
- D/R tests much simpler and 100% successful
- Cost justified in 3 years
- No other solution known to us!

SHB IT Operations hardware

- Two centers
- 2 x 2094-705
 - 5 CP, 1 zAAP, 1 zIIP, 1 IFL, 2 ICF, 48GB real
 - 5 CP, 1 zAAP, 1 IFL, 2 ICF, 64GB real
- 16TB Hitachi USP DASD in each site
 - PPRC mirrored across 5km
 - 3 separated Single Mode Fiber Connections
 - FICON attached, fibre channel used for mirroring
- 2 STK silos in primary site, 1 in secondary
- About 12.000 tapes
 - 110TB in primary site

SHB IT Operations z/OS

- 2 Sysplexes, 5-way for production, 3-way for sysprog test
 - Sysprog test environment with dedicated SSID:s, CHPID:s and PPRC-links
- CF-duplexing used between sites for appropriate structures
- z/OS 1.8, IMS V9, DB2 V8, MQ 5.3.1, WAS 6
- GDPS/PPRC 3.3
- I/O 11.000/second at peak time. Approx 25-30% writes
- 200 IMS-trans/seconds at peak time
- 130 JAVA-servlets/seconds at peak time

SHB IT Operations z/OS

- Internet bank runs on WAS 6 in z/OS
 - One ND Cell with 7 App servers
 - Presentation layer only no business logic (yet)
 - Sysplex load sharing across two images on separate sites
- Swedish branch office presentation layer also on WAS 6
 - One ND Cell with 4 App servers per z/OS image
 - Sysplex load sharing across two images on separate sites
- Business logic runs in IMS + DB2
 - IMS/DB2 shared across two z/OS images on separate sites
- Batch load shared across two z/OS images on separate sites
- TCP/IP shared across two+ z/OS images on separate sites

SHB IT Operations z/VM

- z/VM 5.1 One LPAR for production and one for sysprog test(xDR)
 - Production environment with dedicated SSID:s and PPRC-links
 - xDR test environment with dedicated SSID:s, CHPID:s and PPRC-links
- z/VM
 - Financial applications
 - Moved to secondary site if primary CPU goes down
- Approx 20 Linux images runs as guests under z/VM
 - File and print serving
 - New workload
 - Tivoli Workload Scheduler
 - Tivoli Framework
 - Tivoli Gateway
 - ...and more
 - Dedicated Linux image for xDR proxy SuSE sles 9

GDPS Test environment

- Simulated DASD failure at primary site(Unplanned Hyperswap)
 - V OFFLINE,xxxx,FORCE of mirrored DASD or
 - V PATH(xxxx,yy),OFF and then pulling last channel for mirrored DASD
- Simulated DASD and system failure at primary site(Unplanned Hyperswap)
 - V OFFLINE,xxxx,FORCE of mirrored DASD or
 - V PATH(xxxx,yy),OFF and then pulling last channel for mirrored DASD
 - System reset from outside GDPS(HMC)
- Simulated link failure(Freeze and Stop)
 - CSUSPEND outside of GDPS
 - Policy used at SHB "SWAP,STOP"
- Testing after all major software and hardware upgrades

GDPS Disaster Recovery Verification

- Same failure simulation methods as in testplex
 - Verification done twice every year
 - All verification done in real production environment
 - Simulated DASD failure without impact for end-users
 - Simulated link failure stops all applications big impact!
 - Application owners participate
 - Verification coordinated with other platforms

Future

- OPEN LUN for iSeries?
- Metro/Global Copy (Asynchronous Cascading PPRC)?
 - 3 Site solution
- 2 GDPS controlling systems?
- OPEN LUN for other platforms?
- I/O Timing triggers?

Questions?