
IBM WEBSPHERE PORTAL MEET THE LAB 2015.

Meet the Lab
June 17th – 18th 2015
IBM Lab Böblingen

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

June 17th 2014 Client Side Programming – Dr. Carsten Leue

Please Note
• IBM’s statements regarding its plans, directions, and intent are subject to change or withdrawal without notice at IBM’s

sole discretion.
• Information regarding potential future products is intended to outline our general product direction and it should not be

relied on in making a purchasing decision.
• The information mentioned regarding potential future products is not a commitment, promise, or legal obligation to

deliver any material, code or functionality. Information about potential future products may not be incorporated into any
contract. The development, release, and timing of any future features or functionality described for our products
remains at our sole discretion

• Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment.
The actual throughput or performance that any user will experience will vary depending upon many factors, including
considerations such as the amount of multiprogramming in the user’s job stream, the I/O configuration, the storage
configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve
results similar to those stated here.

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

New Aspects of the Portlet Programming Model:

Client Side and The Cloud

Dr. Carsten Leue

Portal Architect

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

Agenda

• Introduction

• Client Side Portlet Programming
– Upcoming Technologies

– How to get the best synergy between Portlets and Scripting

• Portlet Deployments in the Cloud
– Use cases and topologies

– How it all fits together

• Target Audience
– Developers, Application Designers, Architects

June 17th 2015 Client Side Programming – Dr. Carsten Leue

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

Motivation

• UI Technologies change rapidly – and
so do Customer expectations

– Bootstrap, Angular-JS, Polymer, …

– How can applications make use of these
new techniques while still collaborating with
existing assets?

– How to combine application using different
client side technologies?

– Is the Portlet Programming Model flexible
enough to cope with today’s challenges?

• The “Cloud” offers new deployment
opportunities

– Extended reuse by Software-as-a-Service
offerings

– How can this be combined with existing
assets?

– How can cloud based services be used while
still maintaining sensitive data on Premise?

June 17th 2015 Client Side Programming – Dr. Carsten Leue

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

Programming Model Patterns

Focus on Client Side Portlet
Programming

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

Componentization

• Portlets are the primitive UI building
blocks of Choice

– JSR 286 defines Java API

– UI technology is a choice of the developer
(JSP, JSF, …)

– Run locally (Java) or remotely (WSRP)

• Applications are built by combining
portlets on pages

– Same components - different layouts

– Coordination of state between components
by container

June 17th 2015 Client Side Programming – Dr. Carsten Leue

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

Coordination

• Portlets communicate with the
runtime and with each other

– Independent of UI frameworks

– Mediated by the portlet container

• Key concept: state handling
– Private render parameters

– Public render parameters

– Portlet Eventing

June 17th 2015 Client Side Programming – Dr. Carsten Leue

Public Render Parameter
Selected message is only context“,
no server side state changes.

Event
Sending a mail is an
“action” on the backend

Event
Nothing to
“share”, the
target just gets
“primed“ with
data.

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

Coordination - Discussion
• State coordination uses the URL to

maintain state
 state changes require changes to the URL
 full page refreshes

• AJAX support in portlets is limited to
fetching data

– No AJAX based state change supported in
JSR 286

• This limitation makes it difficult to
interface with cool client side libraries

– Angular JS

– Polymer

– CSS3 Transitions

– …

June 17th 2015 Client Side Programming – Dr. Carsten Leue

link link

click

request

render render

request

Typical Request Flow
Each state change is communicated
via a separate request.

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

Stateful AJAX Support – JSR 362
• State handling concept remains

identical to JSR 286
– Based on Private and Public Render Parameters

• State changes without full page
refreshes

– Client side JavaScript Library “PortletHub”
maintains and coordinates state

– Portlets participate by registering JS call-backs

• Actions and Events remain server side
– No page refresh required

– Business logic remains encapsulated on the
server

• Asynchronous Markup refreshes
– built on top of the existing resource serving

• Sample Implementation for
WebSphere Portal

– Full support for back and forward button

– Bookmarkable URLs

– Works also via WSRP!

• Limitations
– Requires A+ Promises, so no IE support,

unless polyfilled

June 17th 2015 Client Side Programming – Dr. Carsten Leue

Prototype
exists

Publish as
sample
code

Finalize
JSR 362

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

Sample Application – Smooth Updates

June 17th 2014 Client Side Programming – Dr. Carsten Leue

Public Render Parameters
Portlets share state via the well
known public render parameter
concept

Animation
• Graph represents statistics

for the currently selected
mail.

• Data fetched asynchronously
via resource serving

• No full page refresh involved,
chart updates smoothly

Animation
Person list scrolls its items
smoothly into view

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

Portlet Hub – Easy-to-Use but Powerful
• Bootstrap

– A Portlet registers a call-back to a global Portlet Hub
library instance

– Inline or via an onLoad handler

• Initialization
– The Portlet Hub notifies the portlet and passes an API

stub when the initialization is complete

• State Changes
– State changes are propagated from the Hub to the

portlet (public and private state)

– The portlet pushes state changes back to the Hub

• Actions and Events
– Actions and events are executed on the server,

asynchronously

– Resulting state changes are communicated via state
change events

June 17th 2015 Client Side Programming – Dr. Carsten Leue

Portlet (JS) Portlet (JS)

R
eg

is
te

r



In

it
ia

liz
at

io
n

R
eg

is
te

r



In

it
ia

liz
at

io
n


St

at
e


Global State

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

Portlet Hub – Bootstrap

June 17th 2015 Client Side Programming – Dr. Carsten Leue

<%@ page session="false" buffer="none"%>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>
<%@ taglib prefix="portlet" uri="http://java.sun.com/portlet_2_0"%>

<portlet:defineObjects/>
<c:set var="ns" value="${renderResponse.namespace}"/>
<div id="${ns}root" data-ns="${ns}">
...

</div>

<script type="text/javascript">
my_library_init(${ns}root);
</script>

Portlet JSP

function my_library_init(aRoot) {

/**
* Callback invoked if the initialization of the
* portlet hub is complete
*/
function xInit(hubAPI) {
// ...
}

/**
* Place the register callback
*/
return portlet.register(aRoot.dataset.ns).then(xInit);
};

Portlet (JS)

Registration
Use the namespace to identify the
portlet instance.
All asynchronous operations are based
on A+ Promises (ES6).

Portlet Hub API
The hub passes an instance-scoped API
call-back to the initialization method.

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

Portlet Hub – Initialization

June 17th 2015 Client Side Programming – Dr. Carsten Leue

function xInit(hubAPI) {

/**
* The current state document
*/
var xState;

/**
* Callback function invoked by the portlet hub whenever state changes.
*/
function xOnStateChange(aType, aState) {
// remember the state
xState = aState;

// update the UI accordingly
}

/**
* Callback of the portlet hub that notifies the controller about
* modifications to its state
*/
hubAPI.addEventListener("portlet.onStateChange", xOnStateChange);
}

State Call-back Registration
Register a call-back to receive notifications
about new state.
The call-back is scoped to the instance.

Portlet (JS)

State Call-back Handler
Called whenever state changes.
• After the page load, to initialize the

portlet
• After a portlet changes its private or

public render parameters
• After the public render parameter

context changes for any other reason

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

Portlet Hub – State Changes

June 17th 2015 Client Side Programming – Dr. Carsten Leue

/**
* Callback function invoked by the portlet
* hub whenever state changes.
*/
function xOnStateChange(aType, aState) {
// remember the state
xState = aState;

/**
* Fetch the markup update. Note that the
* resource URL will automatically contain
* the current state
*/
hubAPI.createResourceURL({}, "cacheLevelPortlet")
.then(xhrGet)
.then(xUpdate);

}

State Change Trigger
In an onClick handler:
• Clone current state
• Update the clone to reflect the new state
• Communicate this state change

State Call-back Handler
• Receives new state and updates the required portions of the

UI.
• Typical use case: use REST service to fetch UI fragments via

serveResource

/**
* Event handler associated with our link
*/
function xOnClick(aEvent) {
var e = aEvent || xWindow.event;

// change the state
var newState = xState.clone();
newState.parameters.key = ["new value"];
/**
* Communicate the new state to the hub,
* this will cause a callback
* to the state-change-callback
*/
hubAPI.setPortletState(newState);
// indicate that we handled the click
e.preventDefault();

}

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

Portlet Hub – Actions and Events

• Actions and Events are per definition
„unsafe“ operations

– Meant to execute business logic and update
server side state

– Consequently there is no way to receive an
action or event on the client

• Client-side Events
– Meant to capture user-interaction events

(e.g. keyboard, mouse)

– Not comparable to JSR 286 events

– Portlet can subscribe to any DOM handler,
not special Portlet Hub support required

– Coordination across portlets via
„onStateChanged“ events

/**
* Triggers an action by sending a form to the
* portlet
*/

function xOnAction(aForm) {
// sends the content of the form as an action
portletHub.action(aForm);
}

Action Trigger
• Portlet triggers an action as an asynchronous call
• No other actions can be triggered in parallel
• The Portlet Hub will invoke the action phase on the server,

including JSR 286 event distribution
• After the action, all client side portlets receive their state

changes. State change required!

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

Why this Hybrid Client-Server Approach?

• Goal: Leverage the Good Parts of
JavaScript, avoid the Bloat

• Minimize the required Script footprint
– At a minimum, only DOM update logic has to be

implemented in JavaScript

– The generation of updated markup fragments
can be kept on the server (via serveResource)

– No need to replicate the numerous portal
features as a JavaScript API

• All portal APIs are available in the server side part and can
be funnelled through serveResource

• Separation of Concerns
– JavaScript adds dynamic aspects to the UI

– Business logic is best kept on the server

• Information Disclosure
– JavaScript code is visible to every end-user

via the browser

– Implementing important business logic on
the server makes sure not to disclose
undesired details

• First-Page Experience
– State is available also at page refresh time

– The Portlet can implement its initial view
based on this state

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

Why use Portlets instead of Full Page Apps?

• It looks tempting to implement my
application as a monolithic
JavaScript application

– Component reuse at build time possible

– Why the extra complexity to use portlets?

• Life cycle and Maintenance
– Even if started at the same time, pieces of

the project tend to have different life cycles

– Portlets allow each component to be
developed at its own pace

• UI framework of Choice
– UI frameworks tend to change over time

– With portlets, each application piece can
use different frameworks and still work
together (e.g. if some parts cannot be
updated in time)

• Proper separation of Concerns
– JavaScript based UIs require backend

support in form of REST services

– Portlets allow to provide REST services (via
serveResource) and UI as a consistent piece
of work

– REST services can be tailored and optimized
to the needs of the client side layer

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

Key Concept: Resource Serving

• JSR 286 introduces ResourceURLs to support Web 2.0 use-cases in a portlet
– Resource URLs trigger the invocation of the serveResource method of the portlet

– A portlet can produce markup fragments or data within the portal context
• Markup fragments can contain URLs

• Access to navigational state, portlet mode, window state, session, preferences …

– Resource requests support different types of caching:
• FULL: no access to the navigational state of the portlet, only to session and preferences

• PORTLET: access to the navigational state of the portlet, but NOT to the state of the portal

• PAGE: full access to all information

• When to use
– See next slides for use-cases

• When NOT to use
– For static resources shipped with the portlet, use

response.encodeURL(request.getContextPath() + resourcePath)

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

Resource Serving and Portlet Hub

• Context sensitive REST entry
– Runs in the portlet context

– Access to public and private render
parameters and preferences

– Can produce markup or any other mime-
type

• Ideal mechanism to provision client
side markup updates

– Either via rendered markup fragments

– Or via a context sensitive data feed,
converted into markup on the client

– Complex logic can reside on the server

• Fully cacheable
– Scope and lifetime can be set

programmatically

• Works via WSRP!

• New with Portlet Hub
– Resource URLs can be computed on the

client side

June 17th 2015 Client Side Programming – Dr. Carsten Leue

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

Resource Serving and REST Services
• Resource serving

– Portlet specific data entry
– Typically produces data that is tailored to the

needs of the script layer
– Not meant to be shared across portlets

• Reuse by delegating to the server side
service stack

– “serveResource” augments the request with
portlet specific aspects (parameters and
preferences) and delegates to the stateless
service layer

– The result is transformed to meet the needs of
the client side script layer

• WebSphere Portal’s Resolver
Framework is a good fit for the server
side service stack

June 17th 2015 Client Side Programming – Dr. Carsten Leue

Portlet

serveResource

Resolver Framework

cache

DataSources

serveResource

Portlet

Resolver Framework
Framework for the
registration and execution of
server side REST services.

Cache
Validation based cache for
REST services for optimum
performance

DataSources
Implementation of REST
services, with strong
support for XML, JSON,
text, etc

stateful

stateless

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

Pulling-in JavaScript Libraries
• Client side portlets often require additional

libraries or CSS
– Angular JS
– JQuery
– …

• New since 8.5 CF03: Resource Aggregation for
Portlets

– Portlets declare their module dependencies in the
portlet deployment descriptor

– At page aggregation time, the system combines all
required resources, automatically

• Key advantages
– Optimization of the number of request required to load

the dependencies
– Portlets are self contained and no longer depend on the

page admin to set the correct profile
– Makes the overall system simpler to use and efficient

• Per Theme setting
– Enable portlet level preferences via Theme Metadata

June 17th 2015 Client Side Programming – Dr. Carsten Leue

<portlet-preferences>
<!-- indicate that we depend on Angular -->
<preference>

<name>capability.2.id</name>
<value>angular</value>
<read-only>true</read-only>

</preference>
<preference>

<name>capability.2.minValue</name>
<value>1.3</value>
<read-only>true</read-only>

</preference>
<!-- indicate that we depend on the portlet hub -->
<preference>

<name>capability.3.id</name>
<value>portlethub</value>
<read-only>true</read-only>

</preference>
<preference>

<name>capability.3.minValue</name>
<value>0.1</value>
<read-only>true</read-only>

</preference>
<!-- if unavailable we'd fail than fall back -->
<preference>

<name>capabilities.selfManaged</name>
<value>false</value>
<read-only>true</read-only>

</preference>
</portlet-preferences>

portlet.xml

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

Pulling-in JavaScript Libraries – Tips and Tricks

• Manage the client side resources of
the Portlet as a Module

– Supports both CSS and JS

– The portlet module can declare
dependencies on other modules

– All script code for the page and all portlets
gets aggregated together automatically

• Code Version vs. Portlet Namespace
– Script code should be authored as a client

side module with a unique identifier

– Each portlet might need to get its own
instance of the library in its own namespace

– The Library should be stateless, the instance
can be stateful

June 17th 2015 Client Side Programming – Dr. Carsten Leue

<extension
point="com.ibm.portal.resourceaggregator.module"
id="com_ibm_cleue_mail_graph_angular_module" >
<module id="com_ibm_cleue_mail_graph_angular_module">

<capability id="com_ibm_cleue_mail_graph_angular"
value="0.1"/>

<prereq id="com_ibm_cleue_mail_module" />
<prereq id="portlethub" />
<prereq id="googleloader" />
<prereq id="angular" />
<prereq id="wp_client_ext" />

<contribution type="head" >
<sub-contribution type="js">
<uri value="res:{war:context-

root}/resources/com/ibm/wps/cleue/mail/angular/graph/sc
ript/script.js" />

</sub-contribution>
<sub-contribution type="css">
<uri value="res:{war:context-

root}/resources/com/ibm/wps/cleue/mail/angular/graph/st
yles/styles.css" />

</sub-contribution>
</contribution>

</module>
</extension>

plugin.xml

Portlet Module
• Defines its own capability, so multiple

portlets load a resource only once
• Dependencies on prerequisites are

resolved automatically

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

Pulling-in JavaScript Libraries – Tips and Tricks

June 17th 2015 Client Side Programming – Dr. Carsten Leue

/**
* Generate a closure for the library
*/
(function() {

/**
* Stateless functions come here
*/
function xStateless() {
alert("hello");

}
/**
* Stateful instances scoped to a portlet come here
*/
function xCreate(aRoot) {

var xCounter;

function xStateful() {
xCounter++;

}
// register the API methods to the portlet
instance
aRoot.increment = xStateful;
aRoot.alert= xStateless;

}
/**
* Register the global entry into the library
*/
window.myAPIv1 = xCreate;

}());

Instance Scope
Variable scoped to the
portlet instance

Portlet (JS)

<%-- root element of the portlet --%>
<div id="${ns}_root">

<%-- anchor used API attached to the root element --%>
inc

</div>

<%-- bootstrap the library with the
scope of the portlet--%>

<script type="javascript">
myAPIv1(${ns}_root);
</script>

Bootstrapping
For convenience make use of the
Named access on the Window object
feature of HTML

Portlet JSP

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

Playing with Friends – Angular JS

• Portlet Programming means
flexibility

– Each portlet has the free choice of UI
framework

– Portlet API (PortletHub) used to share
context across heterogeneous components

• Showcase: Angular JS based portlet

June 17th 2015 Client Side Programming – Dr. Carsten Leue

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

Angular JS and Portlet Hub: Tips and Tricks

June 17th 2015 Client Side Programming – Dr. Carsten Leue

/**
* Callback invoked if the initialization of the
* portlet hub is complete
*/
function xInit(hubAPI) {

/**
* Assemble our angular application
*/
var xNamespace = aRoot.dataset.ns,
xNgApp = angular.module(xNamespace + "Module", []);

xNgApp.controller(xNamespace + "Controller", ["$scope",
"$http", function(aScope, aHttpService) {
// do something sensible

}]);

/**
* Bootstrap the angular portlet
*/
angular.bootstrap(aRoot, [xNamespace + "Module"]);
}

Namespace
There might be more than one
Angular application on the
page, so use proper
namespacing.

Bootstrap
Bootstrap the application as
soon as the PortletHub is
ready

Scope
Limit the scope of the Angular
application to the root node
of the portlet

Portlet (JS)

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

Angular JS and Portlet Hub: Tips and Tricks

June 17th 2015 Client Side Programming – Dr. Carsten Leue

<%-- This is the main application part. The business logic is
encapsulated
in the controller. Note the use of the namespace to allow for
multiple instances of this portlet on the page. %>
<div ng-controller="${ns}Controller as list">

<!-- list of folders -->
<div ng-hide="list.showMails">

<!-- iterate over each folder -->
<tr ng-repeat="folder in list.items.div.default">

{{folder.name}}

</tr>

</div>
</div>

Namespace
Controller has to be
namespaced. From there on,
we just use short aliases.

Portlet Markup

Markup
The markup looks just like standard
Angular JS markup. The only portlet
specific part is the controller
namespace.

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

Angular JS and Portlet Hub: Tips and Tricks

June 17th 2015 Client Side Programming – Dr. Carsten Leue

function xOnStateChange(aType, aState) {

// decode the state
var params = xState.parameters;

// load some data
aPortletInit.createResourceUrl({},
_CACHE_LEVEL_PORTLET).then(aHttpService.get).then(function(xhr)
{

// update the mails
xThis.items = xhr.data.mails;

// notify angular about these changes
aScope.$apply();

});

}

Synchronize State Updates
• Whenever the state of the

portlet changes, update
the JS state of the Angular
JS model.

• Notify Angular about the
changes via $apply()

Portlet Script

Data Updates
• Fetch updates to the data

via serveResource
• Convenient access to XHR

via $http service of
AngularJS.

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

Interaction with System Level Context
• WebSphere Portal manages system level

state
– Page Selection, Label expansions, …

– Edit Mode, Info Mode, …

– Locale

• Traditionally this state is manipulated from
Theme Components

– E.g. via urlGeneration tag

– Dynamic Spot JSPs …

• New in 8.5: System level state is also
represented as Public Render Parameters

– Portlets can subscribe the system state by declaring
public parameters in their deployment descriptor

– State can be both read and written

– Support for Client Side interactions and WSRP

June 17th 2015 Client Side Programming – Dr. Carsten Leue

Edit-Mode
On/Off

Selection
ID of the currently selected
portal page.

Info-Mode
On/Off

Locale
Locale override of the
display locale.

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

Use case - Themeless Pages
• Represent traditional theme level

components as portlets
– E.g. page navigation portlet

• The theme does not contribute markup
• Layout templates contain prefilled

content spots
• Advantages:

– All components on a page share the same
programming model: Portlets

– Each component on the page can be coded
independently as local, remote or client side

• Disadvantage:
– Each page has its own instance of the theme

level portlet

June 17th 2015 Client Side Programming – Dr. Carsten Leue

Portlets
Each aspect of the page is
represented by a portlet.

Navigation
The navigation portlet realizes
the page transitions via public
render parameters

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

Script Portlet and Portlet Hub
• The IBM Script Portlet

– Enables a script developer to create portlets for
IBM WebSphere Portal with JavaScript, CSS, and
HTML.

– Content stored in WCM, no J2EE deployment
required

• Synergy with the Portlet Hub
– Script Portlet can make use of the Portlet Hub to

work with private and public render parameters

– React to updates of public render parameters

• Limitations
– Fixed set of public render parameters as defined

by the WCM Rendering Portlet

– No access to “serveResource”, yet. Can work
with globally defined REST services, though

June 17th 2015 Client Side Programming – Dr. Carsten Leue

<div class="mail-faces-script lotusui30 hidden"
id="[Plugin:ScriptPortletNamespace]root"
data-ns="[Plugin:ScriptPortletNamespace]"
data-content-
handler="[Plugin:ScriptPortletNamespace]ContentHandler">
…
</div>

Namespacing
Use a WCM rendering plugin
to express the namespace.

<!-- base URL for the contenthandler -->
<a
href='[Plugin:RenderURL copyCurrentParams="false"

uriMode="download" uri="" escape="xml"]'
style="display: none“
id="[Plugin:ScriptPortletNamespace]ContentHandler">

REST Services
Access to the base URL to REST services in
WebSphere Portal (Resolver Framework).
Notice uri=""

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

Programming Model Patterns

Focus on Cloud Patterns

June 17th 2015 Client Side Programming – Dr. Carsten
Leue

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

Abstraction Level

June 17th 2015 Client Side Programming – Dr. Carsten Leue

Applications

Data

Runtime

Middleware

O/S

Virtualization

Servers

Storage

Network

Applications

Data

Runtime

Middleware

O/S

Virtualization

Servers

Storage

Network

Applications

Data

Runtime

Middleware

O/S

Virtualization

Servers

Storage

Network

Applications

Data

Runtime

Middleware

O/S

Virtualization

Servers

Storage

Network

Yo
u

 m
an

ag
e

Yo
u

 m
an

ag
e

Yo
u

 m
an

ag
e

O
th

er
m

an
agesO

th
er

m
an

ages

O
th

er m
an

ages

On-Premises IaaS PaaS SaaS

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

Cloud Infrastructure
Abstraction Level (simplicity)
• IaaS: abstraction level = server/storage (ready to install)
• PaaS: abstraction level = OS platform/middleware (ready to build)
• SaaS: abstraction level = application (ready to consume)

Cloud Topology (complexity)
• Private Cloud: Operated by and restricted to a single enterprise.

– Isolation: use of dedicated resources

• Public Cloud: Operated by a service provider who grants access to a large audience of
unrelated enterprises

– Isolation: shared resources

• Hybrid Cloud: Mix of private and public cloud as well on-premises services (in any kind of
abstraction level)

– Let‘s face it: This sounds like the most realistic situation for most of us

June 17th 2015 Client Side Programming – Dr. Carsten Leue

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

Application Development in the Cloud

• Composed of Services
– Data based backend services

– Services come together on the Glass or on the Server

• Developed in multiple Programming Languages
– Web: JavaScript, Ruby, Java, PHP

– Mobile: iOS, Android, SDK

• Integrate with existing systems
– Data is often located in multiple places (public, private, traditional data center)

– Existing systems may not scale at the same the level of cloud applications

• Access to administrative tasks is restricted and limited

June 17th 2014 Client Side Programming – Dr. Carsten Leue

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

Data Consumption in an on-Premise Portal

• Traditional Approach
– Implement UI components as Portlets

– All data is fetched by the server side portlets
logic from backend services

– Server controls access to services that run
on Premise or in the Cloud

June 17th 2014 Client Side Programming – Dr. Carsten Leue

on-Premise Portal

Aggregation

Cloud Services
REST based

REST
Service

Service

on-Premise Services

REST, …

Portlet

Portlet

AJAX Proxy

Legacy Service
REST based (or EJB or …)
Data resides on Premise

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

Data Consumption in an on-Premise Portal

• Client Centric
Approach

– Portlet Hub based UI,
e.g. on top of Bootstrap
and Angular JS

– Data access via
serveResource, acting as
a proxy

June 17th 2014 Client Side Programming – Dr. Carsten Leue

on-Premise Portal

Portlet

Cloud Services
REST based

REST
Service

Service

on-Premise Services

REST, …
Portlet

AJAX Proxy

Legacy Service
REST based (or EJB or …)
Data resides on Premise

Browser

Portlet Script

Portlet Script

REST

REST

markup

serveResource

serveResource

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

UI Components in The Cloud
• Consume markup

services from the cloud
– On Premise portal used as

an aggregation platform
and for access control

– Business logic completely
offloaded to the cloud via
WSRP

• Data security
– Data in portlet preferences

is persisted on the
consumer (however sent
to the cloud)

– Extra data may be stored in
the cloud by the remote
portlet

June 17th 2014 Client Side Programming – Dr. Carsten Leue

on-Premise Portal

Portlet

Cloud Services
REST based

REST
Service

Browser

Portlet Script

serveResource

Portlet Script

REST

REST

markup

AJAX Proxy

Portlet Proxy

serveResource

WSRP
Portlet

REST

markup

REST
Portlet Preferences
Preferences are stored
on the consumer side

Extra Data
Optionally the remote
portlet can store extra
data in the cloud

WSRP Producer

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

UI Components in The Cloud

• Remote Portlets
consume on-Premise
data on the glass

– REST service framework
provides access to on-
Premise services

– Script accesses these
services to mash-up on-
Premise data into the
remote markup

– No problems with Same-
Origin-Policy as both the
script as well as the data
are served by the on-
Premise Portal

June 17th 2014 Client Side Programming – Dr. Carsten Leue

on-Premise Portal

Portlet

Cloud Services
REST based

REST
Service

Browser

Portlet Script

Portlet Proxy

serveResource

serveResource

Portlet
Script

REST

markup

AJAX Proxy

WSRP
Portlet

REST

markup

REST

WSRP Producer

REST

Service

on-Premise Services

REST
entry

REST Framework
Extensible access point
to REST services in
WebSphere Portal

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

WSRP Services in The Cloud

• WSRP Producer on Liberty
– Full support of the JSR 286 compliant

portlets on WAS Liberty

– Fast development cycle thanks to the ultra
slim Liberty runtime

• Support for Bluemix
– Since March 2015 support for the Liberty

Profile on Bluemix

– Set the following JVM property on the WSRP
Consumer

June 17th 2014 Client Side Programming – Dr. Carsten Leue

Available on the IBM Solutions Catalogue

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

Portal Server in The Cloud
• Portal runs in the Cloud

(e.g. DX on Cloud)
– Single tenant as PaaS Offering
– Data stored in the cloud,

however managed by the
Customer

• Integration with sensitive
data via backend services

– Services are exposed via a
REST interface

– Portlets running in the Cloud
consume the services and
render data

• Challenges
– On Premise services have to

be accessible from the Cloud
(probably need Gateway into
the Intranet)

June 17th 2014 Client Side Programming – Dr. Carsten Leue

Cloud Portal (Single Tenant)

Portlet

On Premise Services
Selectively exposed via REST

REST

Browser

Portlet Script

Portlet Proxy

serveResource

serveResource

Portlet
Script

REST

markup

WSRP
Portlet

REST

markup

REST

REST

Service

WSRP Producer

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

Portal Server in The Cloud
• Portal runs in the Cloud (e.g. DX

on Cloud)
– Single tenant as PaaS Offering
– Data stored in the cloud, however

managed by the Customer

• Integration with sensitive data
on the Glass

– Javascript calls to REST services
that are hosted on-Premise

– Data is not accessed directly by
code running in the cloud

– No risk of caching sensitive date in
the cloud

• Challenges
– Single-Sign-On
– Same-Origin-Policy

• Advantages
– If the browser runs in the Intranet,

no public Gateway to the services
required

June 17th 2014 Client Side Programming – Dr. Carsten Leue

Cloud Portal (Single Tenant)

Portlet

Cloud Services
REST based

REST
Service

Browser

Portlet Script

Portlet Proxy

serveResource

serveResource

Portlet
Script

REST

markup

WSRP
Portlet

REST

markup

REST

REST

WSRP Producer

REST
Service On Premise Services

Selectively exposed via REST

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

Multi Tenancy and WSRP

June 17th 2014 Client Side Programming – Dr. Carsten Leue

WSRP Consumer

Portlet Proxy

serveResource

WSRP
Portlet

Another WSRP Consumer

Portlet Proxy

serveResource

Security Token (SAML)
• User repository
• Transport level

security
Per Tenant

Identity Provider Another Identity
Provider

Trust
Between each IDP and
the Producer

LT
PA

 


SA

M
L

LT
PA

 


SA

M
L

WSRP Producer

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

Summary

• The approach to build a Web Application from coordinated components is an
important use case

– Both for modern client side and cloud based applications

• The Portlet Programming Model provides a suitable abstraction level for this
kind of applications

• JSR 362 makes the Portlet Programming Model ready for rich client side
applications

June 17th 2014 Client Side Programming – Dr. Carsten Leue

Ask for the Portlet Hub on
your Evaluation Sheets, if
you are interested!

IBM WEBSPHERE PORTAL MEET THE LAB 2015.

June 5th 2014 URLs in WebSphere Portal – Dr. Carsten Leue

Questions

