
83

Chapter 4

Designing objects
and relationships

• Logical database design
with entity-relationship model 84

• Logical database design
with Unified Modeling Language 99

• Physical database design 101
• For more information 106
• Practice exam questions 108
• Answers to practice exam questions 110

When you design any sort of database, you need to answer many different questions.
The same is true when you are designing a DB2 database. How will you organize
your data? How will you create relationships between tables? How should you
define the columns in your tables? What kind of table space should you use?

To design a database, you perform two general tasks. The first task is logical data
modeling, and the second task is physical data modeling. In logical data modeling,
you design a model of the data without paying attention to specific functions and
capabilities of the DBMS that will store the data. In fact, you could even build a log-
ical data model without knowing which DBMS you will use. Next comes the task of
physical data modeling. This is when you move closer to a physical implementation.
The primary purpose of the physical design stage is to optimize performance while
ensuring the integrity of the data.

This chapter begins with an introduction to the task of logical data modeling. The
logical data modeling section focuses on the entity-relationship model and provides
an overview of the Unified Modeling Language (UML). The chapter ends with the
task of physical database design.

After completing the logical and physical design of your database, you implement
the design. You can read about this task in “Chapter 7. Implementing your database
design.”

Logical database design with entity-relationship
model

Before you implement a database, you should plan or design it so that it satisfies all
requirements. This section introduces the first task of designing a database—logical
design.

4 • Designing objects and relationships

84

Exam topics that this chapter covers

Working with DB2 UDB objects:
• Ability to demonstrate use of DB2 UDB data types
• Knowledge to identify characteristics of a table, view, or index

Modeling your data

Designing and implementing a successful database, one that satisfies the needs of
an organization, requires a logical data model. Logical data modeling is the process
of documenting the comprehensive business information requirements in an accu-
rate and consistent format. Analysts who do data modeling define the data items and
the business rules that affect those data items. The process of data modeling
acknowledges that business data is a vital asset that the organization needs to under-
stand and carefully manage. This section contains information that was adapted
from Handbook of Relational Database Design.

Consider the following business facts that a manufacturing company needs to rep-
resent in its data model:

• Customers purchase products.
• Products consist of parts.
• Suppliers manufacture parts.
• Warehouses store parts.
• Transportation vehicles move the parts from suppliers to warehouses and

then to manufacturers.

These are all business facts that a manufacturing company’s logical data model
needs to include. Many people inside and outside the company rely on information
that is based on these facts. Many reports include data about these facts.

Any business, not just manufacturing companies, can benefit from the task of data
modeling. Database systems that supply information to decision makers, customers,
suppliers, and others are more successful if their foundation is a sound data model.

An overview of the data modeling process
You might wonder how people build data models. Data analysts can perform the
task of data modeling in a variety of ways. (This process assumes that a data analyst
is performing the steps, but some companies assign this task to other people in the
organization.) Many data analysts follow these steps:

1. Build critical user views.

Analysts begin building a logical data model by carefully examining a single
business activity or function. They develop a user view, which is the model or
representation of critical information that the business activity requires. (In a
later stage, the analyst combines each individual user view with all the other
user views into a consolidated logical data model.) This initial stage of the data
modeling process is highly interactive. Because data analysts cannot fully

Logical database design with entity-relationship model

85

understand all areas of the business that they are modeling, they work closely
with the actual users. Working together, analysts and users define the major
entities (significant objects of interest) and determine the general relation-
ships between these entities.

2. Add keys to user views.

Next, analysts add key detailed information items and the most important
business rules. Key business rules affect insert, update, and delete operations
on the data.
Example: A business rule might require that each customer entity have at
least one unique identifier. Any attempt to insert or update a customer identi-
fier that matches another customer identifier is not valid. In a data model, a
unique identifier is called a primary key, which you read about in “Primary
keys” on page 50.

3. Add detail to user views and validate them.

After the analysts work with users to define the key entities and relationships,
they add other descriptive details that are less vital. They also associate these
descriptive details, called attributes, to the entities.
Example: A customer entity probably has an associated phone number. The
phone number is a nonkey attribute of the customer entity.
Analysts also validate all the user views that they have developed. To validate
the views, analysts use the normalization process (which you can read about
later in this chapter) and process models. Process models document the details
of how the business will use the data. You can read more about process mod-
els and data models in other books on those subjects.

4. Determine additional business rules that affect attributes.

Next, analysts clarify the data-driven business rules. Data-driven business
rules are constraints on particular data values, which you read about in
“Referential integrity and referential constraints” on page 54. These con-
straints need to be true, regardless of any particular processing requirements.
Analysts define these constraints during the data design stage, rather than dur-
ing application design. The advantage to defining data-driven business rules is
that programmers of many applications don’t need to write code to enforce
these business rules.
Example: Assume that a business rule requires that a customer entity have a
phone number, an address, or both. If this rule doesn’t apply to the data itself,
programmers must develop, test, and maintain applications that verify the
existence of one of these attributes.

4 • Designing objects and relationships

86

Data-driven business requirements have a direct relationship with the data,
thereby relieving programmers from extra work.

5. Integrate user views.

In this last phase of data modeling, analysts combine into a consolidated logi-
cal data model the different user views that they have built. If other data mod-
els already exist in the organization, the analysts integrate the new data model
with the existing ones. At this stage, analysts also strive to make their data
model flexible so that it can support the current business environment and
possible future changes.
Example: Assume that a retail company operates in a single country and that
business plans include expansion to other countries. Armed with knowledge of
these plans, analysts can build the model so that it is flexible enough to sup-
port expansion into other countries.

Recommendations for logical data modeling
To build sound data models, analysts follow a well-planned methodology, which
includes these tasks:

• Work interactively with the users as much as possible.
• Use diagrams to represent as much of the logical data model as possible.
• Build a data dictionary to supplement the logical data model diagrams. (A

data dictionary is a repository of information about an organization’s
application programs, databases, logical data models, users, and
authorizations. A data dictionary can be manual or automated.)

Data modeling: Some practical examples
“An overview of the data modeling process” on page 85 summarizes the key activi-
ties in data modeling. This section shows how you might perform these activities in
real life.

You begin by defining your entities, the significant objects of interest. Entities are
the things about which you want to store information. For example, you might want
to define an entity, called EMPLOYEE, for employees because you need to store
information about everyone who works for your organization. You might also define
an entity, called DEPARTMENT, for departments.

Next, you define primary keys for your entities. A primary key is a unique identifi-
er for an entity. In the case of the EMPLOYEE entity, you probably need to store
lots of information. However, most of this information (such as gender, birth date,
address, and hire date) would not be a good choice for the primary key. In this case,
you could choose a unique employee ID or number (EMPLOYEE_NUMBER) as

Logical database design with entity-relationship model

87

the primary key. In the case of the DEPARTMENT entity, you could use a unique
department number (DEPARTMENT_NUMBER) as the primary key.

After you have decided on the entities and their primary keys, you can define the
relationships that exist between the entities. The relationships are based on the pri-
mary keys. If you have an entity for EMPLOYEE and another entity for DEPART-
MENT, the relationship that exists is that employees are assigned to departments.
You can read more about this topic in the next section.

After defining the entities, their primary keys, and their relationships, you can
define additional attributes for the entities. In the case of the EMPLOYEE entity,
you might define the following additional attributes:

• Birth date
• Hire date
• Home address
• Office phone number
• Gender
• Resume

You can read more about defining attributes later in this chapter.

Finally, you normalize the data, a task that is outlined in “Normalizing your entities
to avoid redundancy” on page 94.

Defining entities for different types of relationships

In a relational database, you can express several types of relationships. Consider the
possible relationships between employees and departments. If a given employee
can work in only one department, this relationship is one-to-one for employees. One
department usually has many employees; this relationship is one-to-many for
departments. Relationships can be one-to-many, many-to-one, one-to-one, or many-
to-many.

The type of a given relationship can vary, depending on the specific environment. If
employees of a company belong to several departments, the relationship between
employees and departments is many-to-many.

You need to define separate entities for different types of relationships. When mod-
eling relationships, you can use diagram conventions to depict relationships by using
different styles of lines to connect the entities.

4 • Designing objects and relationships

88

One-to-one relationships
When you are doing logical database design, one-to-one relationships are bidirec-
tional relationships, which means that they are single-valued in both directions. For
example, an employee has a single resume; each resume belongs to only one per-
son. Figure 4.1 illustrates that a one-to-one relationship exists between the two enti-
ties. In this case, the relationship reflects the rules that an employee can have only
one resume and that a resume can belong to only one employee.

One-to-many and many-to-one relationships
A one-to-many relationship occurs when one entity has a multivalued relationship
with another entity. In Figure 4.2, you see that a one-to-many relationship exists
between the two entities—employee and department. This figure reinforces the
business rules that a department can have many employees, but that each individ-
ual employee can work for only one department.

Many-to-many relationships
A many-to-many relationship is a relationship that is multivalued in both directions.
Figure 4.3 illustrates this kind of relationship. An employee can work on more than
one project, and a project can have more than one employee assigned. If you look

Logical database design with entity-relationship model

89

Employee Resume
A resume is owned

by an employee

An employee
has a resume

Figure 4.1
Assigning one-to-one facts to an entity

Employee Department
One department can

have many employees

Many employees work
for one department

Figure 4.2
Assigning many-to-one facts to an entity

at this book’s example tables (in “Appendix A. Example tables in this book”), you can
find answers for the following questions:

• What does Wing Lee work on?
• Who works on project number OP2012?

Both questions yield multiple answers. Wing Lee works on project numbers
OP2011 and OP2012. The employees who work on project number OP2012 are
Ramlal Mehta and Wing Lee.

Applying business rules to relationships
Whether a given relationship is one-to-one, one-to-many, many-to-one, or many-to-
many, your relationships need to make good business sense. Therefore, database
designers and data analysts can be more effective when they have a good under-
standing of the business. If they understand the data, the applications, and the busi-
ness rules, they can succeed in building a sound database design.

When you define relationships, you have a big influence on how smoothly your busi-
ness runs. If you don’t do a good job at this task, your database and associated appli-
cations are likely to have many problems, some of which may not manifest them-
selves for years.

Defining attributes for the entities

When you define attributes for the entities, you generally work with the data
administrator (DA) to decide on names, data types, and appropriate values for the
attributes.

Naming attributes
Most organizations have naming conventions. In addition to following these con-
ventions, DAs also base attribute definitions on class words. A class word is a single
word that indicates the nature of the data that the attribute represents.

Example: The class word NUMBER indicates an attribute that identifies the num-
ber of an entity. Attribute names that identify the numbers of entities should there-

4 • Designing objects and relationships

90

Employee Projects
Projects are worked on

by many employees

Employees work on
many projects

Figure 4.3
Assigning many-to-many facts to an entity

fore include the class word of NUMBER. Some examples are EMPLOYEE_NUM-
BER, PROJECT_NUMBER, and DEPARTMENT_NUMBER.

When an organization does not have well-defined guidelines for attribute names,
the DAs try to determine how the database designers have historically named attrib-
utes. Problems occur when multiple individuals are inventing their own naming
schemes without consulting one another.

Choosing data types for attributes
In addition to choosing a name for each attribute, you must specify a data type. Most
organizations have well-defined guidelines for using the different data types. Here is
an overview of the main data types that you can use for the attributes of your entities.

String

Data that contains a combination of letters, numbers, and special characters.
Some of the string data types are listed below:

• CHARACTER: Fixed-length character strings. The common short
name for this data type is CHAR.

• VARCHAR: Varying-length character strings.
• CLOB: Varying-length character strings, typically used when a

character string might exceed the limits of the VARCHAR data type.
• GRAPHIC: Fixed-length graphic strings that contain double-byte

characters.
• VARGRAPHIC: Varying-length graphic strings that contain double-

byte characters.
• DBCLOB: Varying-length strings of double-byte characters.
• BLOB: Varying-length binary strings.

Numeric

Data that contains digits. The numeric data types are listed below:

• SMALLINT: for small integers.
• INTEGER: for large integers.
• DECIMAL(p,s) or NUMERIC(p,s), where p is precision and s is scale:

for packed decimal numbers with precision p and scale s. Precision is
the total number of digits and scale is the number of digits to the right
of the decimal point.

• REAL, for single-precision floating-point numbers.
• DOUBLE, for double-precision floating-point numbers.

Logical database design with entity-relationship model

91

Datetime

Data values that represent dates, times, or timestamps. The datetime data
types are listed below:

• DATE: Dates with a three-part value that represents a year, month,
and day.

• TIME: Times with a three-part value that represents a time of day in
hours, minutes, and seconds.

• TIMESTAMP: Timestamps with a seven-part value that represents a
date and time by year, month, day, hour, minute, second, and
microsecond.

Examples: You might use the following data types for attributes of the EMPLOY-
EE entity:

• EMPLOYEE_NUMBER: CHAR(6)
• EMPLOYEE_LAST_NAME: VARCHAR(15)
• EMPLOYEE_HIRE_DATE: DATE
• EMPLOYEE_SALARY_AMOUNT: DECIMAL(9,2)

The data types that you choose are business definitions of the data type. During
physical database design you might need to change data type definitions or use a
subset of these data types. The database or the host language might not support all
of these definitions, or you might make a different choice for performance reasons.

For example, you might need to represent monetary amounts, but DB2 and many
host languages do not have a data type MONEY. In the United States, a natural
choice for the SQL data type in this situation is DECMAL(10,2) to represent dol-
lars. But you might also consider the INTEGER data type for fast, efficient perfor-
mance.

“Determining column attributes” on page 223 provides additional details about
selecting data types when you define columns.

Deciding what values are appropriate for attributes
When you design a database, you need to decide what values are acceptable for the
various attributes of an entity. For example, you would not want to allow numeric
data in an attribute for a person’s name. The data types that you choose limit the val-
ues that apply to a given attribute, but you can also use other mechanisms. These
other mechanisms are domains, null values, and default values.

Domain
A domain describes the conditions that an attribute value must meet to be a valid
value. Sometimes the domain identifies a range of valid values. By defining the

4 • Designing objects and relationships

92

domain for a particular attribute, you apply business rules to ensure that the data
will make sense.

Examples:

• A domain might state that a phone number attribute must be a 10-digit value
that contains only numbers. You would not want the phone number to be
incomplete, nor would you want it to contain alphabetic or special characters
and thereby be invalid. You could choose to use either a numeric data type
or a character data type. However, the domain states the business rule that
the value must be a 10-digit value that consists of numbers.

• A domain might state that a month attribute must be a 2-digit value from 01
to 12. Again, you could choose to use datetime, character, or numeric data
types for this value, but the domain demands that the value must be in the
range of 01 through 12. In this case, incorporating the month into a datetime
data type is probably the best choice. This decision should be reviewed again
during physical database design.

Null values
When you are designing attributes for your entities, you will sometimes find that an
attribute does not have a value for every instance of the entity. For example, you
might want an attribute for a person’s middle name, but you can’t require a value
because some people have no middle name. For these occasions, you can define the
attribute so that it can contain null values.

A null value is a special indicator that represents the absence of a value. The value
can be absent because it is unknown, not yet supplied, or nonexistent. The DBMS
treats the null value as an actual value, not as a zero value, a blank, or an empty
string.

Just as some attributes should be allowed to contain null values, other attributes
should not contain null values.

Example: For the EMPLOYEE entity, you might not want to allow the attribute
EMPLOYEE_LAST_NAME to contain a null value.

You can read more about null values in “Chapter 7. Implementing your database
design.”

Default values
In some cases, you may not want a given attribute to contain a null value, but you
don’t want to require that the user or program always provide a value. In this case,
a default value might be appropriate.

Logical database design with entity-relationship model

93

A default value is a value that applies to an attribute if no other valid value is avail-
able.

Example: Assume that you don’t want the EMPLOYEE_HIRE_DATE attribute to
contain null values and that you don’t want to require users to provide this data. If
data about new employees is generally added to the database on the employee’s first
day of employment, you could define a default value of the current date.

You can read more about default values in “Chapter 7. Implementing your database
design.”

Normalizing your entities to avoid redundancy

After you define entities and decide on attributes for the entities, you normalize
entities to avoid redundancy. An entity is normalized if it meets a set of constraints
for a particular normal form, which this section describes. Normalization helps you
avoid redundancies and inconsistencies in your data. This section summarizes rules
for first, second, third, and fourth normal forms of entities, and it describes reasons
why you should or shouldn’t follow these rules.

The rules for normal form are cumulative. In other words, for an entity to satisfy the
rules of second normal form, it also must satisfy the rules of first normal form. An
entity that satisfies the rules of fourth normal form also satisfies the rules of first,
second, and third normal form.

In this section, you will see many references to the word instance. In the context of
logical data modeling, an instance is one particular occurrence. An instance of an
entity is a set of data values for all of the attributes that correspond to that entity.

Example: Figure 4.4 shows one instance of the EMPLOYEE entity.

4 • Designing objects and relationships

94

EMPLOYEE

000010 CHRISTINE HAAS A00 1975-01-01 PRES 18 52750.00 4220.00

EMPLOYEE
_NUMBER

EMPLOYEE
_FIRST
_NAME

EMPLOYEE
_LAST
_NAME

DEPARTMENT
_NUMBER

EMPLOYEE
_HIRE
_DATE

JOB
_NAME

EMPLOYEE
_YEARLY
_SALARY
_AMOUNT

COMMISSION
_AMOUNT

EDUCATION
_LEVEL

Figure 4.4
One instance of an entity

First normal form
A relational entity satisfies the requirement of first normal form if every instance of
an entity contains only one value, never multiple repeating attributes. Repeating
attributes, often called a repeating group, are different attributes that are inherent-
ly the same. In an entity that satisfies the requirement of first normal form, each
attribute is independent and unique in its meaning and its name.

Example: Assume that an entity contains the following attributes:

EMPLOYEE_NUMBER
JANUARY_SALARY_AMOUNT
FEBRUARY_SALARY_AMOUNT
MARCH_SALARY_AMOUNT

This situation violates the requirement of first normal form, because
JANUARY_SALARY_AMOUNT, FEBRUARY_SALARY_AMOUNT, and
MARCH_SALARY_AMOUNT are essentially the same attribute, EMPLOY-
EE_MONTHLY_SALARY_AMOUNT.

Second normal form
An entity is in second normal form if each attribute that is not in the primary key
provides a fact that depends on the entire key. (For a quick refresher on keys, see
“Keys” on page 49.)

A violation of the second normal form occurs when a nonprimary key attribute is a
fact about a subset of a composite key.

Example: An inventory entity records quantities of specific parts that are stored at
particular warehouses. Figure 4.5 shows the attributes of the inventory entity.

Here, the primary key consists of the PART and the WAREHOUSE attributes
together. Because the attribute WAREHOUSE_ADDRESS depends only on the
value of WAREHOUSE, the entity violates the rule for second normal form. This
design causes several problems:

• Each instance for a part that this warehouse stores repeats the address of the
warehouse.

Logical database design with entity-relationship model

95

Figure 4.5
A primary key that violates second normal form

• If the address of the warehouse changes, every instance referring to a part
that is stored in that warehouse must be updated.

• Because of the redundancy, the data might become inconsistent. Different
instances could show different addresses for the same warehouse.

• If at any time the warehouse has no stored parts, the address of the
warehouse might not exist in any instances in the entity.

To satisfy second normal form, the information in Figure 4.5 would be in two enti-
ties, as Figure 4.6 shows.

Third normal form
An entity is in third normal form if each nonprimary key attribute provides a fact
that is independent of other nonkey attributes and depends only on the key.

4 • Designing objects and relationships

96

PART WAREHOUSE QUANTITY WAREHOUSE_ADDRESSWAREHOUSE

KeyKey

Figure 4.6
Two entities that satisfy second normal form

Employee_Department table after update
Key

DAVID000200 BROWN D11 INSTALLATION MGMT

JENNIFER000220 LUTZ D11 MANUFACTURING SYSTEMS

EMPLOYEE
_NUMBER

EMPLOYEE
_FIRST
_NAME

EMPLOYEE
_LAST
_NAME

DEPARTMENT
_NUMBER

DEPARTMENT
_NAME

RAMAL000320 MEHTA E21 SOFTWARE SUPPORT

Employee_Department table before update
Key

DAVID000200 BROWN D11 MANUFACTURING SYSTEMS

JENNIFER000220 LUTZ D11 MANUFACTURING SYSTEMS

EMPLOYEE
_NUMBER

EMPLOYEE
_FIRST
_NAME

EMPLOYEE
_LAST
_NAME

DEPARTMENT
_NUMBER

DEPARTMENT
_NAME

RAMAL000320 MEHTA E21 SOFTWARE SUPPORT

Figure 4.7
The update of an unnormalized entity. Information in the entity has become inconsistent.

A violation of the third normal form occurs when a nonprimary attribute is a fact
about another nonkey attribute.

Example: The first entity in Figure 4.7 contains the attributes
EMPLOYEE_NUMBER and DEPARTMENT_NUMBER. Suppose that a pro-
gram or user adds an attribute, DEPARTMENT_NAME, to the entity. The new
attribute depends on DEPARTMENT_NUMBER, whereas the primary key is on
the EMPLOYEE_NUMBER attribute. The entity now violates third normal form.

Changing the DEPARTMENT_NAME value based on the update of a single
employee, David Brown, does not change the DEPARTMENT_NAME value for
other employees in that department. The updated version of the entity in Figure 4.7
illustrates the resulting inconsistency. Additionally, updating the DEPART-
MENT_NAME in this table does not update it in any other table that might con-
tain a DEPARTMENT_NAME column.

You can normalize the entity by modifying the EMPLOYEE_DEPARTMENT enti-
ty and creating two new entities: EMPLOYEE and DEPARTMENT. Figure 4.8
shows the new entities. The DEPARTMENT entity contains attributes for

Logical database design with entity-relationship model

97

000200 DAVID BROWN

000329 RAMLAL MEHTA

000220 JENNIFER LUTZ

Key

D11 MANUFACTURING SYSTEMS

E21 SOFTWARE SUPPORT

Key

D11 000200

D11 000220

E21 000329

Key

Employee table

Department table

Employee_Department table

DEPARTMENT_NUMBER DEPARTMENT_NAME

EMPLOYEE_NUMBER EMPLOYEE_FIRST_NAME EMPLOYEE_LAST_NAME

DEPARTMENT_NUMBER EMPLOYEE_NUMBER

Figure 4.8
Normalized entities: EMPLOYEE, DEPARTMENT, and EMPLOYEE_DEPARTMENT

DEPARTMENT_NUMBER and DEPARTMENT_NAME. Now, an update such
as changing a department name is much easier. You need to make the update only
to the DEPARTMENT entity.

Fourth normal form
An entity is in fourth normal form if no instance contains two or more independent,
multivalued facts about an entity.

Example: Consider the EMPLOYEE entity. Each instance of EMPLOYEE could
have both SKILL_CODE and LANGUAGE_CODE. An employee can have sever-
al skills and know several languages. Two relationships exist, one between employ-
ees and skills, and one between employees and languages. An entity is not in fourth
normal form if it represents both relationships, as Figure 4.9 shows.

Instead, you can avoid this violation by creating two entities that represent both
relationships, as Figure 4.10 shows.

If, however, the facts are interdependent (that is, the employee applies certain lan-
guages only to certain skills), you should not split the entity.

You can put any data into fourth normal form. A good rule to follow when doing log-
ical database design is to arrange all the data in entities that are in fourth normal
form. Then decide whether the result gives you an acceptable level of performance.
If the performance is not acceptable, denormalizing your design is a good approach
to improving performance. You can read about this next step in “Denormalizing
tables to improve performance” on page 102.

4 • Designing objects and relationships

98

E M P I D S K I L L _ C O D E L A N G UAG E _ C O D E S K I L L _ P R O F I C I E N C Y L A N G UAG E _ P R O F I C I E N C Y

Key

Figure 4.9
An entity that violates fourth normal form

EMPI D SK I LL_CODE S K ILL_PROFIC IENCY EM PID LANGUAGE_CO DE LANGUAGE_PROFIC IENCY

Key Key

Figure 4.10
Entities that are in fourth normal form

Logical database design
with Unified Modeling Language

This chapter describes the entity-relationship model of database design. Another
model that you can use is Unified Modeling Language (UML). The Object
Management Group is a consortium that created the UML standard. This section
provides a brief overview of UML.

UML modeling is based on object-oriented programming principals. The basic dif-
ference between the entity-relationship model and the UML model is that, instead
of designing entities as this chapter illustrates, you model objects. UML defines a
standard set of modeling diagrams for all stages of developing a software system.
Conceptually, UML diagrams are like the blueprints for the design of a software
development project.

Some examples of UML diagrams are listed below:

• Class: Identifies high-level entities, known as classes. A class describes a set
of objects that have the same attributes. A class diagram shows the
relationships between classes.

• Use case: Presents a high-level view of a system from the user’s perspective.
A use case diagram defines the interactions between users and applications
or between applications. These diagrams graphically depict system behavior.
You can work with use-case diagrams to capture system requirements, learn
how the system works, and specify system behavior.

• Activity: Models the workflow of a business process, typically by defining
rules for the sequence of activities in the process. For example, an
accounting company can use activity diagrams to model financial
transactions.

• Interaction: Shows the required sequence of interactions between objects.
Interaction diagrams can include sequence diagrams and collaboration
diagrams.
- Sequence diagrams show object interactions in a time-based sequence

that establishes the roles of objects and helps determine class
responsibilities and interfaces.

- Collaboration diagrams show associations between objects that define the
sequence of messages that implement an operation or a transaction.

• Component: Shows the dependency relationships between components,
such as main programs and subprograms.

Many available tools from the WebSphere and Rational® product families ease
the task of creating a UML model. Developers can graphically represent the

Logical database design with Unified Modeling Language

99

architecture of a database and how it interacts with applications using the follow-
ing UML modeling tools:

• WebSphere Business Integration Workbench, which provides a UML
modeler for creating standard UML diagrams.

• A WebSphere Studio Application Developer plug-in for modeling Java and
Web services applications and for mapping the UML model to the entity-
relationship model.

• Rational Rose® Data Modeler, which provides a modeling environment that
connects database designers using entity-relationship modeling with
developers of OO applications.

• Rational Rapid Developer, an end-to-end modeler and code generator that
provides an environment for rapid design, integration, construction, and
deployment of Web, wireless, and portal-based business applications.

Similarities exist between components of the entity-relationship model and UML
diagrams. For example, the class structure corresponds closely to the entity struc-
ture.

Using the Rational Rose Data Modeler, developers use a specific type of diagram
for each type of development model:

• Business models—Use case diagram, activity diagram, sequence diagram
• Logical data models or application models—Class diagram
• Physical data models—Data model diagram

The logical data model provides an overall view of the captured business require-
ments as they pertain to data entities. The data model diagram graphically repre-
sents the physical data model. The physical data model applies the logical data
model’s captured requirements to specific DBMS languages. Physical data models
also capture the lower-level detail of a DBMS database.

Database designers can customize the data model diagram from other UML dia-
grams, which allows them to work with concepts and terminology, such as columns,
tables, and relationships, with which they are already familiar. Developers can also
transform a logical data model into a physical data model.

Because the data model diagram includes diagrams for modeling an entire system,
it allows database designers, application developers, and other development team
members to share and track business requirements throughout development. For
example, database designers can capture information, such as constraints, triggers,
and indexes, directly on the UML diagram. Developers can also transfer between

4 • Designing objects and relationships

100

object and data models and use basic transformation types such as many-to-many
relationships.

Physical database design

After completing the logical design of your database, you now move to the physical
design. The purpose of building a physical design of your database is to optimize
performance while ensuring data integrity by avoiding unnecessary data redundan-
cies. During physical design, you transform the entities into tables, the instances
into rows, and the attributes into columns. You and your colleagues must decide on
many factors that affect the physical design, some of which are listed below.

• How to translate entities into physical tables
• What attributes to use for columns of the physical tables
• Which columns of the tables to define as keys
• What indexes to define on the tables
• What views to define on the tables
• How to denormalize the tables
• How to resolve many-to-many relationships

Physical design is the time when you abbreviate the names that you chose during
logical design. For example, you can abbreviate the column name that identifies
employees, EMPLOYEE_NUMBER, to EMPNO. In previous versions of DB2,
you needed to abbreviate column and table names to fit the physical constraint of
an 18-byte limit. In Version 8, this task is less restrictive with the increase to a 30-
byte maximum.

The task of building the physical design is a job that truly never ends. You need to
continually monitor the performance and data integrity characteristics of the data-
base as time passes. Many factors necessitate periodic refinements to the physical
design.

DB2 lets you change many of the key attributes of your design with ALTER SQL
statements. For example, assume that you design a partitioned table so that it will
store 36 months’ worth of data. Later you discover that you need to extend that
design to hold 84 months’ worth of data. You can add or rotate partitions for the cur-
rent 36 months to accommodate the new design.

The remainder of this chapter includes some valuable information that can help you
as you build and refine your database’s physical design. However, this task general-
ly requires more experience with DB2 than most readers of this book are likely to
have.

Physical database design

101

Denormalizing tables to improve performance

“Normalizing your entities to avoid redundancy” on page 94 describes normalization
only from the viewpoint of logical database design. This viewpoint is appropriate
because the rules of normalization do not consider performance.

During physical design, analysts transform the entities into tables and the attribut-
es into columns. Consider again the example in “Second normal form” on page 95.
The warehouse address column first appears as part of a table that contains infor-
mation about parts and warehouses. To further normalize the design of the table,
analysts remove the warehouse address column from that table. Analysts also define
the column as part of a table that contains information only about warehouses.

Normalizing tables is generally the recommended approach. What if applications
require information about both parts and warehouses, including the addresses of
warehouses? The premise of the normalization rules is that SQL statements can
retrieve the information by joining the two tables. The problem is that, in some
cases, performance problems can occur as a result of normalization. For example,
some user queries might view data that is in two or more related tables; the result
is too many joins. As the number of tables increases, the access costs can increase,
depending on the size of the tables, the available indexes, and so on. For example,
if indexes are not available, the join of many large tables might take too much time.
You might need to denormalize your tables. Denormalization is the intentional
duplication of columns in multiple tables, and it increases data redundancy.

Example: Consider the design in which both tables have a column that contains the
addresses of warehouses. If this design makes join operations unnecessary, it could
be a worthwhile redundancy. Addresses of warehouses do not change often, and if
one does change, you can use SQL to update all instances fairly easily.

Tip: Do not automatically assume that all joins take too much time. If you join nor-
malized tables, you do not need to keep the same data values synchronized in mul-
tiple tables. In many cases, joins are the most efficient access method, despite the
overhead they require. For example, some applications achieve 44-way joins in sub-
second response time.

When you are building your physical design, you and your colleagues need to decide
whether to denormalize the data. Specifically, you need to decide whether to com-
bine tables or parts of tables that are frequently accessed by joins that have high-
performance requirements. This is a complex decision about which this book can-
not give specific advice. To make the decision, you need to assess the performance
requirements, different methods of accessing the data, and the costs of denormaliz-
ing the data. You need to consider the tradeoff: is duplication, in several tables, of
often-requested columns less expensive than the time for performing joins?

4 • Designing objects and relationships

102

Recommendations:

• Do not denormalize tables unless you have a good understanding of the data
and the business transactions that access the data. Consult with application
developers before denormalizing tables to improve the performance of users’
queries.

• When you decide whether to denormalize a table, consider all programs that
regularly access the table, both for reading and for updating. If programs
frequently update a table, denormalizing the table affects performance of
update programs because updates apply to multiple tables rather than to one
table.

In Figure 4.11, information about parts, warehouses, and warehouse addresses
appears in two tables, both in normal form.

Figure 4.12 illustrates the denormalized table.

Resolving many-to-many relationships is a particularly important activity because
doing so helps maintain clarity and integrity in your physical database design. To
resolve many-to-many relationships, you introduce associative tables, which are
intermediate tables that you use to tie, or associate, two tables to each other.

Example: Employees work on many projects. Projects have many employees. In
the logical database design, you show this relationship as a many-to-many relation-
ship between project and employee. To resolve this relationship, you create a new
associative table, EMPLOYEE_PROJECT. For each combination of employee and
project, the EMPLOYEE_PROJECT table contains a corresponding row. The pri-
mary key for the table would consist of the employee number (EMPNO) and the
project number (PROJNO).

Physical database design

103

Figure 4.11
Two tables that satisfy second normal form

Figure 4.12
Denormalized table

Another decision that you must make relates to the use of repeating groups, which
you read about in “First normal form” on page 95.

Example: Assume that a heavily used transaction requires the number of wires that
are sold by month in a given year. Performance factors might justify changing a table
so that it violates the rule of first normal form by storing repeating groups. In this
case, the repeating group would be: MONTH, WIRE. The table would contain a
row for the number of sold wires for each month (January wires, February wires,
March wires, and so on).

Recommendation: If you decide to denormalize your data, document your denor-
malization thoroughly. Describe, in detail, the logic behind the denormalization and
the steps that you took. Then, if your organization ever needs to normalize the data
in the future, an accurate record is available for those who must do the work.

Using views to customize what data a user sees

Some users might find that no single table contains all the data they need; rather,
the data might be scattered among several tables. Furthermore, one table might
contain more data than users want to see or more than you want to authorize them
to see. For those situations, you can create views. A view offers an alternative way
of describing data that exists in one or more tables.

You might want to use views for a variety of reasons:

• To limit access to certain kinds of data
You can create a view that contains only selected columns and rows from one
or more tables. Users with the appropriate authorization on the view see
only the information that you specify in the view definition.
Example: You can define a view on the EMP table to show all columns
except SALARY and COMM (commission). You can grant access to this view
to people who are not managers because you probably don’t want them to
have access to salary and commission information.

• To combine data from multiple tables
You can create a view that uses UNION or UNION ALL operators to
logically combine smaller tables, and then query the view as if it were one
large table.
Example: Assume that three tables contain data for a period of one month.
You can create a view that is the UNION ALL of three fullselects, one for
each month of the first quarter of 2004. At the end of the third month, you
can view comprehensive quarterly data.

4 • Designing objects and relationships

104

You can create a view any time after the underlying tables exist. The owner of a set
of tables implicitly has the authority to create a view on them. A user with adminis-
trative authority at the system or database level can create a view for any owner on
any set of tables. If they have the necessary authority, other users can also create
views on a table that they didn’t create. You can read more about authorization in
“Authorizing users to access data” on page 328.

“Defining a view that combines information from several tables” on page 266 has
more information about creating views.

Determining what columns to index

If you are involved in the physical design of a database, you will be working with
other designers to determine what columns you should index. You will use process
models that describe how different applications are going to be accessing the data.
This information is important when you decide on indexing strategies to ensure ade-
quate performance.

The main purposes of an index are as follows:

• To optimize data access. In many cases, access to data is faster with an
index than without an index. If the DBMS uses an index to find a row in a
table, the scan can be faster than when the DBMS scans an entire table.

• To ensure uniqueness. A table with a unique index cannot have two rows
with the same values in the column or columns that form the index key.
Example: If payroll applications use employee numbers, no two employees
can have the same employee number.

• To enable clustering. A clustering index keeps table rows in a specified
sequence, to minimize page access for a set of rows. When a table space is
partitioned, a special type of clustering occurs; rows are clustered within
each partition.
Example: If the partition is on the month and the clustering index is on the
name, the rows will be clustered on the name within the month.

In general, users of the table are unaware that an index is in use. DB2 decides
whether to use the index to access the table.

You can read more about indexes in “Defining indexes” on page 254.

Physical database design

105

For more information

Table 4.1 lists additional information sources about topics that this chapter intro-
duces.

Table 4.1 More information about topics in Chapter 4

Introduced
in section
that begins

For more information about... on page... See...

Logical and physical relational 85 • Handbook of Relational Database
data modeling theory Design by Candace C. Fleming and
and techniques Barbara von Halle

• Data Modeling Essentials: Analysis,
Design, and Innovation by Graeme C.
Simsion

• The Data Modeling Handbook: A
Best-Practice Approach to Building
Quality Data Models by Michael
Reingruber and William Gregory

• Introduction to Information
Engineering: From Strategic Planning
to Information Systems by Clive
Finkelstein

• DB2 for z/OS and OS/390
Development for Performance Volume
I, DB2 for z/OS and OS/390
Development for Performance Volume
II by Gabrielle Wiorkowski

• DB2 Developer’s Guide by Craig
Mullins

• DB2 High Performance Design and
Tuning by Susan Lawson, Richard
Yevich, and Warwick Ford

• DB2 Universal Database for Linux,
UNIX, and Windows Administration
Guide: Planning

4 • Designing objects and relationships

106

Process modeling 85 • The Capability Maturity Model:
Guidelines for Improving the
Software Process by Software
Engineering Institute, Carnegie
Mellon University

• Managing the Software Process by
Watts S. Humphrey

UML modeling 99 Database Design for Smarties: Using
UML for Data Modeling by Robert
Muller

For more information

107

Table 4.1 More information about topics in Chapter 4 (Continued)

Introduced
in section
that begins

For more information about... on page... See...

Practice exam questions

The following practice exam questions test your knowledge of material that this
chapter covers.

1. Which statement about domains is false?

A. By defining a domain for a particular attribute, you apply business rules
to ensure that the data will make sense.

B. A domain describes the conditions that an attribute value must meet to
be a valid value.

C. A domain can identify a range of valid values.
D. None of the above; all statements are true.

2. Which numeric data type is defined correctly?

A. REAL data consists of single-precision floating-point numbers that are
greater than 21.

B. DOUBLE data is two-digit data in double-precision floating point
numeric format.

C. SMALLINT data is an integer less than 22.
D. INTEGER data is for large integers.

3. Which two statements about null values are true?

A. Depending on user-defined settings, the DBMS can treat a null value as
a zero value, a blank, or an empty string.

B. A null value is a special indicator that represents the absence of a value.
C. A null value is equivalent to a blank.
D. For an attribute that does not need to have a valid value at all times, use

a null value.
E. A null value is equivalent to a zero value.

4. Which statement is false?

A. If a DBMS uses an index to find a row in a table, the performance is
always better than when the DBMS scans the entire table.

B. A table with a unique index can never have two rows with the same
values in the columns that form the index key.

C. A clustering index keeps table rows in a specified sequence, which
always minimizes page access for a set of rows.

D. All of the above.

4 • Designing objects and relationships

108

Practice exam questions

109

5. Which statement about designing indexes is false?

A. During physical database design, you decide what indexes to define on
what columns of a table.

B. You can use process models to determine how different applications and
users will be accessing data.

C. Users of a table with an index are generally aware that an index exists on
the table.

D. Decisions about indexes are important because of the performance
implications they present.

6. Which statement does not explain a purpose of an index?

A. An index can be used to optimize data access.
B. An index can be used to ensure uniqueness.
C. An index can be used to enable clustering.
D. None of the above; all statements are correct.

Answers to practice exam questions

1. Answer: D.
2. Answer: D. The other definitions are incorrect. REAL data consists of

single-precision floating-point numbers, which can be less than, equal to,
or greater than 21. DOUBLE data consists of double-precision floating-
point numbers. SMALLINT data consists of small integers, but they need
not be less than 22.

3. Answer: B and D. The statements in the other options are false. Option
A is false because no user-defined settings control how DB2 treats null
values. Option C is false because a null value is not equivalent to a blank.
Option E is false because a null value is not equivalent to a zero value.

4. Answer: A. The statements in the other options are true. Option A is
false because using an index might improve performance, but in some
cases a scan of the entire table actually results in better performance than
when an index is used.

5. Answer: C. The statements in the other options are true. Option C is
false because many users of tables are unaware of the presence or absence
of particular indexes on those tables.

6. Answer: D. The statements in options A, B, and C do explain the
purpose of an index.

4 • Designing objects and relationships

110

215

Chapter 7

Implementing
your database design

• Defining tables 217
• Defining columns and rows in a table 223
• Defining a table space 240
• Defining indexes 254
• Defining views 265
• Defining large objects 268
• Defining databases 271
• Defining relationships with referential constraints 272
• Defining other business rules 277
• For more information 281
• Practice exam questions 284
• Answers to practice exam questions 287

Earlier in this book, you read about different DB2 structures. In “Chapter 4.
Designing objects and relationships,” you read about the task of building the logical
and physical designs of your database. That task encompasses these key concepts:

• A table is a physical representation of an entity.
• A column is a physical representation of an entity’s attribute.
• A row is a physical representation of an instance of an entity.
• A primary key is a unique identifier for an instance of an entity.

After building a logical design and physical design of your relational database and
collecting the processing requirements, you can move to the implementation stage.
In general, implementing your physical design involves defining the various objects
and enforcing the constraints on the data relationships.

The objects in a relational database are organized into sets called schemas. A schema
provides a logical classification of objects in the database. The schema name is used
as the qualifier of SQL objects such as tables, views, indexes, and triggers.

This chapter explains the task of implementing your database design in a way that
most new users will understand. When you actually perform the task, you might per-
form the steps in a different order.

You define, or create, objects by executing SQL statements. This chapter summa-
rizes some of the naming conventions for the various objects that you can create.
Also in this chapter, you will see examples of the basic SQL statements and keywords

7 • Implementing your database design

216

Exam topics that this chapter covers

Accessing DB2 UDB data:
• Ability to create basic DB2 UDB objects

Working with DB2 UDB objects:
• Ability to demonstrate usage of DB2 UDB data types
• Given a situation, ability to create a table
• Knowledge to identify when referential constraints should be used
• Knowledge to identify methods of data validation
• Knowledge to identify characteristics of a table, view, or index

that you can use to create objects in a DB2 database. (This chapter does not docu-
ment the complete SQL syntax.)

To illustrate how to create various objects, this chapter refers to the example tables,
which you can see in “Appendix A. Example tables in this book.”

Tip: When you create DB2 objects (such as tables, databases, views, and indexes),
you can precede the object name with a qualifier to distinguish it from objects that
other people create. (For example, MYDB.TSPACE1 is a different table space than
DSNDB04.TSPACE1.) When you use a qualifier, avoid using SYS as the first three
characters. If you do not specify a qualifier, DB2 assigns a qualifier for the object.

Defining tables

Designing tables that many applications will use is a critical task. Table design can
be difficult because you can represent the same information in many different ways.
“Chapter 4. Designing objects and relationships” covers some of the issues that you
need to consider when you make decisions about table design.

You create tables by using the SQL CREATE TABLE statement. At some point
after you create and start using your tables, you might need to make changes to
them. The ALTER TABLE statement lets you add and change columns, add or drop
a primary key or foreign key, add or drop table check constraints, or add and change
partitions. Carefully consider design changes to avoid or reduce the disruption to
your applications.

If you have DBADM (database administration) authority, you probably want to con-
trol the creation of DB2 databases and table spaces. These objects can have a big
impact on the performance, storage, and security of the entire relational database.
In most cases, you also want to retain the responsibility for creating tables. After
designing the relational database, you can create the necessary tables for application
programs. You can then pass the authorization for their use to the application devel-
opers, either directly or indirectly, by using views.

However, if you want to, you can grant the authority for creating tables to those who
are responsible for implementing the application. For example, you probably want
to authorize certain application programmers to create tables if they need tempo-
rary tables for testing purposes.

Some users in your organization might want to use DB2 with minimum assistance
or control. You can define a separate storage group and database for these users and
authorize them to create whatever data objects they need, such as tables. You can
read more about authorization in “Authorizing users to access data” on page 328.

Defining tables

217

Types of tables

In DB2, you store user data in tables. DB2 supports the following types of tables:

Base table

The most common type of table in DB2. You create a base table with the SQL
CREATE TABLE statement. The DB2 catalog table, SYSIBM.SYSTABLES,
stores the description of the base table. The table (both its description and its
data) is persistent. All programs and users that refer to this type of table refer
to the same description of the table and to the same instance of the table.

Result table

A table that contains a set of rows that DB2 selects or generates, directly or
indirectly, from one or more base tables.

Created temporary table

A table that you define with the SQL CREATE GLOBAL TEMPORARY
TABLE statement. The DB2 catalog table, SYSIBM.SYSTABLES, stores the
description of the created temporary table. The description of the table is per-
sistent and sharable. However, each individual application process that refers
to a created temporary table has its own distinct instance of the table. That is,
if application process A and application process B both use a created tempo-
rary table named TEMPTAB:

• Each application process uses the same table description.
• Neither application process has access to or knowledge of the rows in

the other’s instance of TEMPTAB.

Declared temporary table

A table that you define with the SQL DECLARE GLOBAL TEMPORARY
TABLE statement. The DB2 catalog does not store a description of the declared
temporary table. Therefore, neither the description nor the instance of the table
is persistent. Multiple application processes can refer to the same declared tem-
porary table by name, but they do not actually share the same description or
instance of the table. For example, assume that application process A defines
a declared temporary table named TEMP1 with 15 columns. Application
process B defines a declared temporary table named TEMP1 with 5 columns.
Each application process uses its own description of TEMP1; neither applica-
tion process has access to or knowledge of rows in the other’s instance of
TEMP1.

7 • Implementing your database design

218

Materialized query table

A table that you define with the SQL CREATE TABLE statement. Several
DB2 catalog tables, including SYSIBM.SYSTABLES and SYSIBM.SYSVIEWS,
store the description of the materialized query table and information about its
dependency on a table, view, or function.
The attributes that define a materialized query table tell DB2 whether the
table is:

• System-maintained or user-maintained.
• Refreshable: All materialized tables can be updated with the

REFRESH TABLE statement. Only user-maintained materialized
query tables can also be updated with the LOAD utility and the
UPDATE, INSERT, and DELETE SQL statements.

• Enabled for query optimization: You can enable or disable the use of a
materialized query table in automatic query rewrite (which you can
read about in “Defining a materialized query table” on page 222).

Auxiliary table

A special kind of table that holds only large object data. You can read more
about auxiliary tables in “Defining large objects” on page 268.

Base tables, temporary tables, and materialized query tables differ in many ways
that this book does not describe.

Table definitions

The table name is an identifier of up to 128 characters. You can qualify the table
name with an SQL identifier, which is a schema. Remember that most organiza-
tions have naming conventions to ensure that objects are named in a consistent
manner. When you define a table that is based directly on an entity, these factors
also apply to the table names.

You can create base tables, temporary tables, auxiliary tables, or materialized query
tables. You can read about creating auxiliary tables in “Defining large objects” on
page 268. You can read about creating materialized query tables in “Defining a
materialized query table” on page 222.

Defining a base table
To create a base table that you have designed, use the CREATE TABLE statement.
When you create a table, DB2 records a definition of the table in the DB2 catalog.

Defining tables

219

Creating a table does not store the application data. You can put data into the table
by using several methods, such as the LOAD utility or the INSERT statement.

Example: The following CREATE TABLE statement creates the EMP table,
which is in a database named MYDB and in a table space named MYTS:

CREATE TABLE EMP
(EMPNO CHAR(6) NOT NULL,
FIRSTNME VARCHAR(12) NOT NULL,
LASTNAME VARCHAR(15) NOT NULL,
DEPT CHAR(3) ,
HIREDATE DATE ,
JOB CHAR(8) ,
EDL SMALLINT ,
SALARY DECIMAL(9,2) ,
COMM DECIMAL(9,2) ,
PRIMARY KEY (EMPNO))

IN MYDB.MYTS;

The preceding CREATE TABLE statement shows the definition of multiple
columns. You will learn about column definition in more detail in “Defining
columns and rows in a table” on page 223.

Defining a temporary table
Temporary tables are especially useful when you need to do both of the following
activities:

• Sort or query intermediate result tables that contain large numbers of rows
• Identify a small subset of rows to store permanently

You can use temporary tables to sort large volumes of data and to query that data.
Then, when you have identified the smaller number of rows that you want to store
permanently, you can store them in a base table. The two types of temporary tables
in DB2 are the created temporary table and the declared temporary table. The fol-
lowing sections describe how to define each type.

Defining a created temporary table
Sometimes you need a permanent, sharable description of a table but need to store
data only for the life of an application process. In this case, you can define and use
a created temporary table. DB2 does not log operations that it performs on created
temporary tables, so SQL statements that use them can execute more efficiently.
Each application process has its own instance of the created temporary table.

7 • Implementing your database design

220

Example: The following statement defines a created temporary table, TEMP-
PROD:

CREATE GLOBAL TEMPORARY TABLE TEMPPROD
(SERIALNO CHAR(8) NOT NULL,
DESCRIPTION VARCHAR(60) NOT NULL,
MFGCOSTAMT DECIMAL(8,2) ,
MFGDEPTNO CHAR(3) ,
MARKUPPCT SMALLINT ,
SALESDEPTNO CHAR(3) ,
CURDATE DATE NOT NULL);

Defining a declared temporary table
Sometimes you need to store data for the life of an application process, but you
don’t need a permanent, sharable description of the table. In this case, you can
define and use a declared temporary table.

Unlike other DB2 DECLARE statements, DECLARE GLOBAL TEMPORARY
TABLE is an executable statement that you can embed in an application program
or issue interactively. You can also dynamically prepare the statement.

When a program in an application process issues a DECLARE GLOBAL TEM-
PORARY TABLE statement, DB2 creates an empty instance of the table. You can
populate the declared temporary table by using INSERT statements, modify the
table by using searched or positioned UPDATE or DELETE statements, and query
the table by using SELECT statements. You can also create indexes on the declared
temporary table. The definition of the declared temporary table exists as long as the
application process runs.

Example: The following statement defines a declared temporary table,
TEMP_EMP. (This example assumes that you have already created the TEMP data-
base and corresponding table space for the temporary table.)

DECLARE GLOBAL TEMPORARY TABLE SESSION.TEMP_EMP
(EMPNO CHAR(6) NOT NULL,
SALARY DECIMAL(9,2) ,
COMM DECIMAL(9,2));

All names of declared temporary tables must have SESSION as a qualifier.

At the end of an application process that uses a declared temporary table, DB2
deletes the rows of the table and implicitly drops the description of the table.

Defining tables

221

Defining a materialized query table
Materialized query tables improve the performance of complex queries that operate
on very large amounts of data. Using a materialized query table, DB2 pre-computes
the results of data that is derived from one or more tables. When you submit a query,
DB2 can use the results stored in a materialized query table rather than compute the
results from the underlying source tables on which the materialized query table is
defined. If the rewritten query is less costly, DB2 chooses to optimize the query by
using the rewritten query, a process called automatic query rewrite.

To take advantage of automatic query rewrite, you must define, populate, and peri-
odically refresh the materialized query table. You use the CREATE TABLE state-
ment to create a new table as a materialized query table.

Example: The following CREATE TABLE statement defines a materialized query
table named TRANSCNT. TRANSCNT summarizes the number of transactions in
table TRANS by account, location, and year:

CREATE TABLE TRANSCNT (ACCTID, LOCID, YEAR, CNT) AS
(SELECT ACCOUNTID, LOCATIONID, YEAR, COUNT(*)

FROM TRANS
GROUP BY ACCOUNTID, LOCATIONID, YEAR)
DATA INITIALLY DEFERRED
REFRESH DEFERRED
MAINTAINED BY SYSTEM
ENABLE QUERY OPTIMIZATION;

The fullselect, together with the DATA INITIALLY DEFERRED clause and the
REFRESH DEFERRED clause, defines the table as a materialized query table.

Defining a table with table-controlled partitioning
Before Version 8, when you defined a partitioning index on a table in a partitioned
table space, you specified the partitioning key and the limit key values in the PART
clause of the CREATE INDEX statement. This type of partitioning is known as index-
controlled partitioning. Because the index is created separately from the associated
table, you cannot insert data into the table until the partitioning index is created.

Version 8 introduces a new method, called table-controlled partitioning, for defin-
ing table partitions. You can use table-controlled partitioning instead of index-con-
trolled partitioning. However, DB2 supports both methods in Version 8.

With table-controlled partitioning, you identify column values that delimit partition
boundaries with the PARTITION BY clause and the PARTITION ENDING AT
clause of the CREATE TABLE statement. When you use this type of partitioning,
an index is not required for partitioning.

7 • Implementing your database design

222

Example: Assume that you need to create a large transaction table that includes the
date of the transaction in a column named POSTED. You want to keep the trans-
actions for each month in a separate partition. To create the table, use the following
statement:

CREATE TABLE TRANS
(ACCTID ...,
STATE ...,
POSTED ...,
... , ...)
PARTITION BY (POSTED)
(PARTITION 1 ENDING AT (‘01/31/2003’),
PARTITION 2 ENDING AT (‘02/28/2003’),
...
PARTITION 13 ENDING AT (‘01/31/2004’));

Defining columns and rows in a table

After logical and physical database design is complete, you implement the definitions
that were created during physical design. This section describes how to implement:

• Columns. See “Determining column attributes”
• Data types. See “Choosing a data type for the column” on page 224
• Null and default values. See “Using null and default values” on page 233
• Check constraints. See “Enforcing validity of column values with check

constraints” on page 237

Throughout the implementation phase of database design, refer to the complete
descriptions of SQL statement syntax and usage for each SQL statement that you
work with.

Determining column attributes

A column contains values that have the same data type. If you are familiar with the
concepts of records and fields, you can think of a value as a field in a record. A value
is the smallest unit of data that you can manipulate with SQL. For example, in the
EMP table, the EMPNO column identifies all employees by a unique employee
number. The HIREDATE column contains the hire dates for all employees. You
cannot overlap columns.

Defining columns and rows in a table

223

In Version 8, online schema enhancements provide flexibility that lets you change a
column definition. Carefully consider the decisions that you make about column
definitions. After you implement the design of your tables, you can change a column
definition with minimal disruption of applications.

The two basic components of the column definition are the name and the data type.

Generally, the database administrator (DBA) is involved in determining the names
of attributes (or columns) during the physical database design phase. To make the
right choices for column names, DBAs follow the guidelines that the organization’s
data administrators have developed.

Sometimes columns need to be added to the database after the design is complete.
In this case, DB2 rules for making column names unique must be followed. Column
names must be unique within a table, but you can use the same column name in dif-
ferent tables. Try to choose a meaningful name to describe the data in a column to
make your naming scheme intuitive. The maximum length of a column name is 30
bytes.

Choosing a data type for the column

“Choosing data types for attributes” on page 91 explains the need to determine what
data type to use for each attribute. Every column in every DB2 table has a data type.
The data type influences the range of values that the column can have and the set
of operators and functions that apply to it. You specify the data type of each column
at the time you create the table.

In Version 8, you can also change the data type of a table column. The new data type
definition is applied to all data in the associated table when the table is reorganized.

Some data types have parameters that further define the operators and functions
that apply to the column. DB2 supports both IBM-supplied data types and user-
defined data types. The data types that IBM supplies are sometimes called built-in
data types. This section describes implementation of the following built-in data
types:

• “String data types” on page 225
• “Numeric data types” on page 227
• “Date, time, and timestamp data types” on page 229
• “Large object data types” on page 230
• “ROWID data type” on page 231

7 • Implementing your database design

224

In DB2 UDB for z/OS, user-defined data types are called distinct types. You can
read more about distinct types in “Defining and using distinct types” on page 232.

String data types
DB2 supports several types of string data. Character strings contain text and can be
either a fixed length or a varying length. Graphic strings contain graphic data, which
can also be either a fixed length or a varying length. The third type of string data is
binary large object (BLOB) strings, which you use for varying-length columns that
contain strings of binary bytes. You will read more about BLOB data types in
“Defining large objects” on page 268.

Table 7.1 describes the different string data types and indicates the range for the
length of each string data type.

Table 7.1 String data types

Data type Denotes a column of...

CHARACTER(n) Fixed-length character strings with a length of n bytes. n must be
greater than 0 and not greater than 255. The default length is 1.

VARCHAR(n) Varying-length character strings with a maximum length of n bytes.
n must be greater than 0 and less than a number that depends on
the page size of the table space.

CLOB(n) Varying-length character strings with a maximum of n characters. n
cannot exceed 2,147,483,647. The default length is 1.

GRAPHIC(n) Fixed-length graphic strings containing n double-byte characters. n
must be greater than 0 and less than 128. The default length is 1.

VARGRAPHIC(n) Varying-length graphic strings. The maximum length, n, must be
greater than 0 and less than a number that depends on the page size
of the table space.

DBCLOB(n) Varying-length string of double-byte characters with a maximum of n
double-byte characters. n cannot exceed 1,073,741,824. The default
length is 1.

BLOB(n) Varying-length binary string with a length of n bytes. n cannot
exceed 2,147,483,647. The default length is 1.

In most cases, the content of the data that a column will store dictates the data type
that you choose.

Example: The DEPT table has a column, DEPTNAME. The data type of the
DEPTNAME column is VARCHAR(36). Because department names normally vary
considerably in length, the choice of a varying-length data type seems appropriate.

Defining columns and rows in a table

225

If you choose a data type of CHAR(36), for example, the result is a lot of wasted,
unused space. DB2 would assign all department names, regardless of length, the
same amount of space (36 bytes). A data type of CHAR(6) for the employee num-
ber (EMPNO) is a reasonable choice because all values are fixed-length values (6
bytes).

Choosing the encoding scheme
Within a string, all the characters are represented by a common encoding repre-
sentation. You can encode strings in Unicode, ASCII, or EBCDIC.

Multinational companies that engage in international trade often store data from
more than one country in the same table. Some countries use different coded char-
acter set identifiers. DB2 UDB for z/OS supports the Unicode encoding scheme,
which represents many different geographies and languages. (Unicode UTF-8 is for
mixed-character data, and UCS2 or UTF-16 is for graphic data.) If you need to per-
form character conversion on Unicode data, the conversion is more likely to pre-
serve all of your information.

In some cases, you might need to convert characters to a different encoding repre-
sentation. The process of conversion is known as character conversion. Most users
do not need a knowledge of character conversion. When character conversion does
occur, it does so automatically and a successful conversion is invisible to the appli-
cation and users.

Choosing CHAR or VARCHAR
Using VARCHAR saves disk space, but it incurs a 2-byte overhead cost for each
value. Using VARCHAR also requires additional processing for varying-length rows.
Therefore, using CHAR is preferable to using VARCHAR unless the space that you
save with VARCHAR is significant. The savings are not significant if the maximum
column length is small or if the lengths of the values do not have a significant vari-
ation.

Recommendations:

• Generally, do not define a column as VARCHAR(n) or CLOB(n) unless n is
at least 18 characters.

• Place VARCHAR and CLOB columns after the fixed-length columns of the
table for better performance.

7 • Implementing your database design

226

Using string subtypes
If an application that accesses your table uses a different encoding scheme than your
DBMS uses, the following string subtypes can be important:

BIT

Does not represent characters.

SBCS

Represents single-byte characters.

MIXED

Represents single-byte characters and multibyte characters.

String subtypes apply only to CHAR, VARCHAR, and CLOB data types.

Choosing graphic or mixed data
When columns contain double-byte character set (DBCS) characters, you can define
them as either graphic data or mixed data.

Graphic data can be either GRAPHIC, VARGRAPHIC, or DBCLOB. Using VAR-
GRAPHIC saves disk space, but it incurs a 2-byte overhead cost for each value.
Using VARGRAPHIC also requires additional processing for varying-length rows.
Therefore, using GRAPHIC data is preferable to using VARGRAPHIC unless the
space that you save by using VARGRAPHIC is significant. The savings are not sig-
nificant if the maximum column length is small or if the lengths of the values do not
vary significantly.

Recommendation: Generally, do not define a column as VARGRAPHIC(n) unless
n is at least 18 double-byte characters (which is a length of 36 bytes).

Mixed-data character string columns can contain both single-byte character set
(SBCS) and DBCS characters. You can specify the mixed-data character string
columns as CHAR, VARCHAR, or CLOB with MIXED DATA.

Recommendation: If all of the characters are DBCS characters, use the graphic
data types. (Kanji is an example of a language that requires DBCS characters.) For
SBCS characters, use mixed data to save 1 byte for every single-byte character in the
column.

Numeric data types
For numeric data, use numeric columns rather than string columns. Numeric
columns require less space than string columns, and DB2 verifies that the data has
the assigned type.

Defining columns and rows in a table

227

Example: Assume that DB2 is calculating a range between two numbers. If the val-
ues have a string data type, DB2 assumes that the values can include all combina-
tions of alphanumeric characters. In contrast, if the values have a numeric data type,
DB2 can calculate a range between the two values more efficiently.

Table 7.2 describes the numeric data types.

Table 7.2 Numeric data types

Data type Denotes a column of...

SMALLINT Small integers. A small integer is an IBM System/390 2-byte binary
integer of 16 bits; the range is –32,768 to +32,767.

INTEGER or INT Large integers. A large integer is an IBM System/390 fullword
binary integer of 32 bits; the range is –2,147,483,648 to
+2,147,483,647.

DECIMAL IBM System/390 packed-decimal numbers with an implicit decimal
or NUMERIC point. The position of the decimal point is determined by the

precision and the scale of the number. The scale, which is the
number of digits in the fractional part of the number, cannot be
negative or greater than the precision. The maximum precision is 31
digits.

All values of a decimal column have the same precision and scale.
The range of a decimal variable or the numbers in a decimal column
is –n to +n, where n is the largest positive number that can be
represented with the applicable precision and scale. The maximum
range is 1 – 10**31 to 10**31 – 1.

REAL A single-precision floating-point number is an IBM System/390 short
floating-point number of 32 bits. The range of single precision
floating-point numbers is approximately –7.2E+75 to 7.2E+75.

DOUBLE A double-precision floating-point number is an IBM System/390
long floating-point number of 64 bits. The range of double precision
floating-point numbers is approximately –7.2E+75 to 7.2E+75.

Note: zSeries and z/Architecture use the S/390® format and support IEEE floating point.

For integer values, SMALLINT or INTEGER (depending on the range of the val-
ues) is generally preferable to DECIMAL.

You can define an exact numeric column as an identity column. An identity column
has an attribute that enables DB2 to automatically generate a unique numeric value

7 • Implementing your database design

228

for each row that is inserted into the table. Identity columns are ideally suited to the
task of generating unique primary-key values. Applications that use identity
columns might be able to avoid concurrency and performance problems that some-
times occur when applications implement their own unique counters. You can read
more about concurrency and performance in “Improving performance for multiple
users: Locking and concurrency” on page 301.

Date, time, and timestamp data types
Although you might consider storing dates and times as numeric values, instead you
can take advantage of the datetime data types: DATE, TIME, and TIMESTAMP.

Table 7.3 describes the data types for dates, times, and timestamps.

Table 7.3 Date, time, and timestamp data types

Data type Denotes a column of...

DATE Dates. A date is a three-part value representing a year, month, and
day in the range of 0001-01-01 to 9999-12-31.

TIME Times. A time is a three-part value representing a time of day in
hours, minutes, and seconds, in the range of 00.00.00 to 24.00.00.

TIMESTAMP Timestamps. A timestamp is a seven-part value representing a date
and time by year, month, day, hour, minute, second, and
microsecond, in the range of 0001-01-01-00.00.00.000000 to 9999-
12-31-24.00.00.000000.

DB2 stores values of datetime data types in a special internal format. When you load
or retrieve data, DB2 can convert it to or from any of the formats in Table 7.4.

Table 7.4. Date and time format options

Format name Abbreviation Typical date Typical time

International Standards ISO 2003-12-25 13.30.05
Organization

IBM USA standard USA 12/25/2003 1:30 PM

IBM European standard EUR 25.12.2003 13.30.05

Japanese Industrial Standard JIS 2003-12-25 13:30:05
Christian Era

Defining columns and rows in a table

229

Example: The following query displays the dates on which all employees were
hired, in IBM USA standard form, regardless of the local default:

SELECT EMPNO, CHAR(HIREDATE, USA) FROM EMP;

When you use datetime data types, you can take advantage of DB2 built-in func-
tions that operate specifically on datetime values and you can specify calculations for
datetime values.

Example: Assume that a manufacturing company has an objective to ship all cus-
tomer orders within five days. You define the SHIPDATE and ORDERDATE
columns as DATE data types. The company can use datetime data types and the
DAYS built-in function to compare the shipment date to the order date. Here is how
the company might code the function to generate a list of orders that have exceed-
ed the five-day shipment objective:

DAYS(SHIPDATE) — DAYS(ORDERDATE) > 5

As a result, programmers don’t need to develop, test, and maintain application code
to perform complex datetime arithmetic that needs to allow for the number of days
in each month.

You can use the following sample user-defined functions (which come with DB2) to
modify the way dates and times are displayed.

• ALTDATE returns the current date in a user-specified format or converts a
user-specified date from one format to another.

• ALTTIME returns the current time in a user-specified format or converts a
user-specified time from one format to another.

At installation time, you also have the option of supplying an exit routine to make
conversions to and from any local standard.

When loading date or time values from an outside source, DB2 accepts any format
that Table 7.4 lists. DB2 converts valid input values to the internal format. For
retrieval, a default format is determined when installing DB2. You can override that
default by using a precompiler option for all statements in a program or by using the
scalar function CHAR for a particular SQL statement and specifying the desired
format.

“Preparing an application program to run” on page 182 has information about the
precompiler.

Large object data types
The VARCHAR and VARGRAPHIC data types have a storage limit of 32 KB. Although
this limit might be sufficient for small- to medium-size text data, applications often

7 • Implementing your database design

230

need to store large text documents. They might also need to store a wide variety of
additional data types such as audio, video, drawings, mixed text and graphics, and
images.

If the size of the data is greater than 32 KB, use the corresponding LOB data type.
Storing such data as LOB data rather than as VARCHAR FOR BIT DATA provides
advantages, even if the entire row fits on a page.

DB2 provides three LOB data types to store these data objects as strings of up to 2
GB in size:

• Character large objects (CLOBs)
Use CLOB to store SBCS or mixed data, such as documents that are written
with a single character set. Use this data type if your data is larger (or may
grow larger) than VARCHAR permits.

• Double-byte character large objects (DBCLOBs)
Use DBCLOB to store large amounts of DBCS data, such as documents that
are written with a DBCS character set.

• Binary large objects (BLOBs)
Use BLOB to store large amounts of noncharacter data, such as pictures, or
voice and mixed media.

If your data does not fit entirely within a data page, you can define one or more
columns as LOB columns. An advantage to using LOBs is that you can create user-
defined functions that are allowed only on LOB data types. “Large object table
spaces” on page 248 has more information about the advantages of using LOBs.

ROWID data type
You use the ROWID data type to uniquely and permanently identify rows in a DB2
subsystem. DB2 can generate a value for the column when a row is added, depend-
ing on the option that you choose (GENERATED ALWAYS or GENERATED BY
DEFAULT) when you define the column. You can use a ROWID column in a table
for several reasons.

• You can define a ROWID column to include LOB data in a table; you can
read about large objects in “Defining large objects” on page 268.

• You can use the ROWID column as a partitioning key for partitioned table
spaces; you can read about partitioned table spaces in “Defining partitioned
table spaces” on page 246.

• You can use direct-row access so that DB2 accesses a row directly through
the ROWID column. If an application selects a row from a table that
contains a ROWID column, the row ID value implicitly contains the location

Defining columns and rows in a table

231

of the row. If you use that row ID value in the search condition of
subsequent SELECT statements, DB2 might be able to navigate directly to
the row.

Comparing data types
DB2 compares values of different types and lengths. A comparison occurs when
both values are numeric, both values are character strings, or both values are graph-
ic strings. Comparisons can also occur between character and graphic data or
between character and datetime data if the character data is a valid character rep-
resentation of a datetime value. Different types of string or numeric comparisons
might have an impact on performance.

Defining and using distinct types
A distinct type is a user-defined data type that is based on existing built-in DB2 data
types. That is, they are internally the same as built-in data types, but DB2 treats
them as a separate and incompatible type for semantic purposes. Defining your own
distinct types ensures that only functions that are explicitly defined on a distinct type
can be applied to its instances.

Example: You might define a US_DOLLAR distinct type that is based on the DB2
DECIMAL data type to identify decimal values that represent United States dol-
lars. The US_DOLLAR distinct type does not automatically acquire the functions
and operators of its source type, DECIMAL.

Although you can have different distinct types based on the same built-in data types,
distinct types have the property of strong typing. With this property, you cannot
directly compare instances of a distinct type with anything other than another
instance of that same type. Strong typing prevents semantically incorrect operations
(such as explicit addition of two different currencies) without first undergoing a con-
version process. You define which types of operations can occur for instances of a
distinct type.

If your company wants to track sales in many countries, you must convert the cur-
rency for each country in which you have sales.

Example: You can define a distinct type for each country. For example, to create
US_DOLLAR types and CANADIAN_DOLLAR types, you can use the following
CREATE DISTINCT TYPE statements:

CREATE DISTINCT TYPE US_DOLLAR AS DECIMAL (9,2);
CREATE DISTINCT TYPE CANADIAN_DOLLAR AS DECIMAL (9,2);

7 • Implementing your database design

232

Example: After you define distinct types, you can use them in your CREATE
TABLE statements:

CREATE TABLE US_SALES
(PRODUCT_ITEM_NO INTEGER,
MONTH INTEGER,
YEAR INTEGER,
TOTAL_AMOUNT US_DOLLAR);

CREATE TABLE CANADIAN_SALES
(PRODUCT_ITEM_NO INTEGER,
MONTH INTEGER,
YEAR INTEGER,
TOTAL_AMOUNT CANADIAN_DOLLAR);

User-defined functions support the manipulation of distinct types. You can read
about defining user-defined functions in “Defining user-defined functions” on
page 278.

Using null and default values

As you create table columns, you will discover that the content of some columns
cannot always be specified; users and applications must be allowed to not supply a
value. This section explains the use of null values and default values and provides
some tips on when to choose each type of value.

Null values
Some columns cannot have a meaningful value in every row. DB2 uses a special
value indicator, the null value, to stand for an unknown or missing value. “Null val-
ues” on page 93 introduces the concept of a null value, which is an actual value and
not a zero value, a blank, or an empty string. It is a special value that DB2 interprets
to mean that no data is present.

If you do not specify otherwise, the default is that any column can contain null val-
ues. Users can create rows in the table without providing a value for the column.

The NOT NULL clause disallows null values in the column. Primary keys must be
defined as NOT NULL.

Defining columns and rows in a table

233

Example: The table definition for the DEPT table specifies when you can use a
null value. Notice that you can use nulls for the MGRNO column only:

CREATE TABLE DEPT
(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
MGRNO CHAR(6) ,
ADMRDEPT CHAR(3) NOT NULL,
PRIMARY KEY (DEPTNO))

IN MYDB.MYTS;

Before you decide whether to allow nulls for unknown values in a particular column,
you should be aware of how nulls affect results of a query:

• Nulls in application programs
Nulls do not satisfy any condition in an SQL statement other than the special
IS NULL predicate. DB2 sorts null values differently than nonnull values.
Null values do not behave like other values. For example, if you ask DB2
whether a null value is larger than a given known value, the answer is
UNKNOWN. If you then ask DB2 whether a null value is smaller than the
same known value, the answer is still UNKNOWN.
If getting UNKNOWN is unacceptable for a particular column, you could
define a default value instead. Programmers are familiar with the way default
values behave.

• Nulls in a join operation
Nulls need special handling in join operations. If you perform a join
operation on a column that can contain null values, consider using an outer
join. (You read about joins in “Joining data from more than one table” on
page 152.)

Default values
DB2 defines some default values, and you define others (by using the DEFAULT
clause in the CREATE TABLE or ALTER TABLE statement).

• If the column is defined as NOT NULL WITH DEFAULT or if you do not
specify NOT NULL, DB2 stores a default value for a column whenever an
insert or load does not provide a value for that column.

• If the column is defined as NOT NULL, DB2 does not supply a default
value.

7 • Implementing your database design

234

DB2-defined defaults
DB2 generates a default value for ROWID columns. DB2 also determines default
values for columns that users define with NOT NULL WITH DEFAULT, but for
which no specific value is specified. See Table 7.5.

Table 7.5 DB2-defined default values for data types

For columns of... Data types Default

Numbers SMALLINT, INTEGER, 0
DECIMAL, NUMERIC,
REAL, DOUBLE, or FLOAT

Fixed-length strings CHAR or GRAPHIC Blanks

Varying-length strings VARCHAR, CLOB, Empty string
VARGRAPHIC, DBCLOB,
or BLOB

Dates DATE CURRENT DATE

Times TIME CURRENT TIME

Timestamps TIMESTAMP CURRENT TIMESTAMP

ROWIDs ROWID DB2-generated

User-defined defaults
You can specify a particular default, such as:

DEFAULT ‘N/A’

When you choose a default value, you must be able to assign it to the data type of
the column. For example, all string constants are VARCHAR. You can use a VAR-
CHAR string constant as the default for a CHAR column even though the type isn’t
an exact match. However, you could not specify a default value of ‘N/A’ for a column
with a numeric data type.

In the next example, the columns are defined as CHAR (fixed length). The special
registers (USER and CURRENT SQLID) that are referenced are varying length
starting in Version 8. This example is valid.

Example: If you want a record of each user who inserts any row of a table, define
the table with two additional columns:

PRIMARY_ID CHAR(8) WITH DEFAULT USER,
SQL_ID CHAR(8) WITH DEFAULT CURRENT SQLID,

Defining columns and rows in a table

235

You can then create a view that omits those columns and allows users to update the
view instead of the base table. DB2 then adds, by default, the primary authorization
ID and the SQLID of the process. You can read about authorization in “Authorizing
users to access data” on page 328.

When you add columns to an existing table, you must define them as nullable or as
not null with default. Assume that you add a column to an existing table and specify
not null with default. If DB2 reads from the table before you add data to the column,
the column values that you retrieve are the default values. With few exceptions, the
default values for retrieval are the same as the default values for insert.

Default for ROWID
DB2 always generates the default values for ROWID columns.

Comparing null values and default values
In some situations, using a null value is easier and better than using a default value.

Example: Suppose that you want to find out the average salary for all employees in
a department. The salary column does not always need to contain a meaningful value,
so you can choose between the following options:

• Allowing null values for the SALARY column
• Using a nonnull default value (such as, 0)

By allowing null values, you can formulate the query easily, and DB2 provides the
average of all known or recorded salaries. The calculation does not include the rows
that contain null values. In the second case, you probably get a misleading answer
unless you know the nonnull default value for unknown salaries and formulate your
query accordingly.

Figure 7.1 shows two scenarios. The table in the figure excludes salary data for
employee number 200440 because the company just hired this employee and has
not yet determined the salary. The calculation of the average salary for department
E21 varies, depending on whether you use null values or nonnull default values.

• The left side of the figure assumes that you use null values. In this case, the
calculation of average salary for department E21 includes only the three
employees (000320, 000330, and 200340) for whom salary data is available.

• The right side of the figure assumes that you use a nonnull default value of
zero (0). In this case, the calculation of average salary for department E21
includes all four employees, although valid salary information is available for
only three employees. As you can see, only the use of a null value results in
an accurate average salary for department E21.

7 • Implementing your database design

236

Enforcing validity of column values with check constraints

“Check constraints” on page 57 explains that a check constraint is a rule that speci-
fies the values that are allowed in one or more columns of every row of a table. You
can use check constraints to ensure that only values from the domain for the column
or attribute are allowed. As a result of using check constraints, programmers don’t
need to develop, test, and maintain application code that performs these checks.

You can choose to define check constraints by using the SQL CREATE TABLE
statement or ALTER TABLE statement. For example, you might want to ensure
that each value in the SALARY column of the EMP table contains more than a cer-
tain minimum amount.

DB2 enforces a check constraint by applying the relevant search condition to each
row that is inserted, updated, or loaded. An error occurs if the result of the search
condition is false for any row.

Defining columns and rows in a table

237

Figure 7.1
When nulls are preferable to default values

SELECT DEPT, AVG(SALARY)
FROM EMP
GROUP BY DEPT;

With null value With default value of 0

DEPT
====
.
.
.
E21

DEPT
====.
.
.
E21

AVG(SALARY)
===========

.

.

.

AVG(SALARY)
===========

.

.

.
17290.00

EMPNO DEPT SALARY

000320 E21 19950.00

000330 E21 25370.00

200340 E21 23840.00

200440 E21 --------

EMPNO DEPT SALARY

000320 E21 19950.00

000330 E21 25370.00

200340 E21 23840.00

200440 E21 0.00

23053.33
(Average of
nonnull salaries)

Inserting rows into tables with check constraints
When you use the INSERT statement to add a row to a table, DB2 automatically
enforces all check constraints for that table. If the data violates any check constraint
that is defined on that table, DB2 does not insert the row.

Example: Assume that the NEWEMP table has the following two check constraints:

• Employees cannot receive a commission that is greater than their salary.
• Department numbers must be between ‘001’ and ‘100,’ inclusive.

Consider this INSERT statement, which adds an employee who has a salary of
$65,000 and a commission of $6,000:

INSERT INTO NEWEMP
(EMPNO, FIRSTNME, LASTNAME, DEPT, JOB, SALARY, COMM)
VALUES (‘100125’, ‘MARY’, ‘SMITH’,’055’, ‘SLS’,
65000.00, 6000.00);

The INSERT statement in this example succeeds because it satisfies both constraints.

Example: Consider this INSERT statement:

INSERT INTO NEWEMP
(EMPNO, FIRSTNME, LASTNAME, DEPT, JOB, SALARY, COMM)
VALUES (‘120026’, ‘JOHN’, ‘SMITH’,’055’, ‘DES’,
5000.00, 55000.00);

The INSERT statement in this example fails because the $55,000 commission is
higher than the $5,000 salary. This INSERT statement violates a check constraint
on NEWEMP.

“Loading the tables” on page 277 provides more information about loading data into
tables on which you have defined check constraints.

Updating tables with check constraints
DB2 automatically enforces all check constraints for a table when you use the
UPDATE statement to change a row in the table. If the intended update violates
any check constraint that is defined on that table, DB2 does not update the row.

Example: Consider this UPDATE statement:

UPDATE NEWEMP
SET DEPT = ‘011’
WHERE FIRSTNME = ‘MARY’ AND LASTNAME= ‘SMITH’;

7 • Implementing your database design

238

This update succeeds because it satisfies the constraints that are defined on the
NEWEMP table.

Example: Consider this UPDATE statement:

UPDATE NEWEMP
SET DEPT = ‘166’
WHERE FIRSTNME = ‘MARY’ AND LASTNAME= ‘SMITH’;

This update fails because the value of DEPT is ‘166,’ which violates the check con-
straint on NEWEMP that DEPT values must be between ‘001’ and ‘100.’

Designing rows

An important consideration in the design of a table is the record size. In DB2, a
record is the storage representation of a row. DB2 stores records within pages that
are 4 KB, 8 KB, 16 KB, or 32 KB in size. Generally, you cannot create a table with
a maximum record size that is greater than the page size. No other absolute limit
exists, but you risk wasting storage space if you ignore record size in favor of imple-
mentinga good theoretical design.

If the record length is larger than the page size, consider using a large object (LOB)
data type (described in “Large object data types” on page 230).

Record length—fixed or varying
Ina table whose columns all have fixed-length data types, all rows (and therefore all
records) are the same size. Otherwise, the size of records can vary.

Fixed-length records are generally preferable to varying-length records because DB2
processing is most efficient for fixed-length records. A fixed-length record never needs
to move from the page on which it is first stored. Updates to varying-length records,
however, can cause the record length to grow so that it no longer fits on the original
page. In that case, the record moves to another page. Each time that a record is
accessed, an additional page reference occurs. Therefore, use varying-length columns
only when necessary.

Record lengths and pages
The sum of the lengths of all the columns is the record length. The length of data
that is physically stored in the table is the record length plus DB2 overhead for each
row and each page.

If row sizes are very small, use the 4-KB page size. Use the default of 4-KB page
sizes when access to your data is random and typically requires only a few rows from
each page.

Defining columns and rows in a table

239

Some situations require larger page sizes. DB2 provides three larger page sizes of 8
KB, 16 KB, and 32 KB to allow for longer records. For example, when the size of
individual rows is greater than 4 KB, you must use a larger page size. In general, you
can improve performance by using pages for record lengths that best suit your
needs.

Designs that waste space
Space is wasted in a table space that contains only records that are slightly longer
than half a page because a page can hold only one record. If you can reduce the
record length to just under half a page, you need only half as many pages. Similar
considerations apply to records that are just over a third of a page, a quarter of a
page, and so on.

Defining a table space

This section provides more detailed information about three different types of table
spaces—segmented, partitioned, and LOB. Each type of table space has its own
advantages and disadvantages. This information will help you choose the table space
that best suits your needs. This section also summarizes the process of defining table
spaces.

DB2 divides table spaces into equal-sized units, called pages, which are written to
or read from disk in one operation. You can specify page sizes for the data; the
default page size is 4 KB.

Recommendation: Use partitioned table spaces for all table spaces that are
referred to in queries that can take advantage of query parallelism. Use segmented
table spaces for other queries. The explanations of the different table space types
will help you decide.

General naming guidelines for table spaces

A table space name is an identifier of up to eight characters, which you can qualify
with a database name. The default database name is database DSNDB04. The fol-
lowing table space name is typical:

Object Name
Table space MYDB.MYTS

7 • Implementing your database design

240

Coding guidelines for defining table spaces

DB2 stores the names and attributes of all table spaces in the SYSIBM.SYSTA-
BLESPACE catalog table, regardless of whether you define the table spaces explic-
itly or implicitly.

Recommendation: For large tables, use a partitioned table space. For small tables,
use a segmented table space.

Defining a table space explicitly
Use the CREATE TABLESPACE statement to create a table space explicitly. This
statement allows you to specify the attributes of the table space. The following list
introduces some of the clauses of the CREATE TABLESPACE statement that you
will read about in this section.

LOB

Indicates that the table space is to be a large object (LOB) table space.

DSSIZE

Indicates the maximum size, in GB, for each partition or, for LOB table
spaces, each data set.

FREEPAGE integer

Specifies how often DB2 should leave a page of free space when the table
space or partition is loaded or reorganized. You specify that DB2 should set
aside one free page for every integer number of pages. Using free pages can
improve performance for applications that perform high-volume inserts or
that update variable-length columns.

PCTFREE integer

Indicates the percentage (integer) of each page that DB2 should leave as free
space when the table is loaded or reorganized. Specifying PCTFREE can
improve performance for applications that perform high-volume inserts or
that update variable-length columns.

COMPRESS

Specifies that data is to be compressed. You can compress data in a table space
and thereby store more data on each data page. “Compressing data” on page
297 has information about data compression.

Defining a table space

241

BUFFERPOOL bpname

Identifies the buffer pool that this table space is to use and determines the
page size of the table space. The buffer pool is a portion of memory in which
DB2 temporarily stores data for retrieval. You can read about the effect of
buffer pool size on performance in “Caching data: The role of buffer pools” on
page 294.

LOCKSIZE

Specifies the size of locks that DB2 is to use within the table space. DB2 uses
locks to protect data integrity. Use of locks results in some overhead process-
ing costs, so choose the lock size carefully. You can read about locking in
“Improving performance for multiple users: Locking and concurrency” on
page 301.

You can create segmented, partitioned, and LOB table spaces.

This section provides an overview of how to implement segmented and partitioned
table spaces. “Defining large objects” on page 268 has information about LOB table
spaces.

A segmented table space can hold one or more tables. Segmented table spaces hold
a maximum of 64 GB of data. They might use one or more VSAM data sets. A table
space can be larger if either of the following conditions is true:

• The table space is a partitioned table spaces that you create with the
DSSIZE option.

• The table space is a LOB table space.

Table space pages are either 4 KB, 8 KB, 16 KB, or 32 KB in size. As a general rule,
each DB2 database should have no more than 50 to 100 table spaces. Following
this guideline helps minimize maintenance, increase concurrency, and decrease log
volume.

Defining a table space implicitly
For small tables, you implicitly create a segmented table space when you use the
CREATE TABLE statement to create a table and do not specify an existing table
space name. When this occurs, DB2 performs the following tasks:

• Generates a table space for you
• Derives a table space name from the name of your table
• Uses default values for space allocation and other table space attributes

One or more tables are created for segmented table spaces.

7 • Implementing your database design

242

For large tables, you need to explicitly create a partitioned table space or a LOB
table space before you create a table. One table is created for partitioned and LOB
table spaces. If your CREATE TABLE statement does not specify a database name,
DB2 uses the default database, DSNDB04, and the default DB2 storage group,
SYSDEFLT.

You also need to explicitly create a table space when you define a declared tempo-
rary table. (You read about declared temporary tables in “Types of tables” on page
218.)

Segmented table spaces

A segmented table space is ideal for storing more than one table, especially rela-
tively small tables. The pages hold segments, and each segment holds records from
only one table.

Each segment contains the same number of pages, which must be a multiple of 4
(from 4 to 64). Each table uses only as many segments as it needs.

To search all the rows for one table, you don’t need to scan the entire table space.
Instead, you can scan only the segments that contain that table. Figure 7.2 shows a
possible organization of segments in a segmented table space.

When you use the INSERT statement or the LOAD utility to insert records into a
table, records from the same table are stored in different segments. You can reor-
ganize the table space to move segments of the same table together. You can read
more about reorganization and other techniques that influence performance of your
DB2 subsystem in “Chapter 8. Managing DB2 performance.”

Defining a table space

243

Segment
1

Table A

Segment
2

Table B

Segment
3

Table C

Segment
4

Table A

Segment
5

Table B

. . .

Figure 7.2
A possible organization of segments in a segmented table space

Coding the definition of a segmented table space
A segmented table space consists of segments that hold the records of one table. You
define a segmented table space by using the CREATE TABLESPACE statement
with a SEGSIZE clause. If you use this clause, the value that you specify represents
the number of pages in each segment. The value must be a multiple of 4 (from 4 to
64). The choice of the value depends on the size of the tables that you store. Table
7.6 summarizes the recommendations for SEGSIZE.

Table 7.6 Recommendations for SEGSIZE

Number of pages SEGSIZE recommendation

≤ 28 4 to 28

> 28 < 128 pages 32

≥ 128 pages 64

Another clause of the CREATE TABLESPACE statement is LOCKSIZE TABLE.
This clause is valid only for tables that are in segmented table spaces. DB2, there-
fore, can acquire locks that lock a single table, rather than the entire table space.
You can read about locking in “Improving performance for multiple users: Locking
and concurrency” on page 301.

If you want to leave pages of free space in a segmented table space, you must have
at least one free page in each segment. Specify the FREEPAGE clause with a value
that is less than the SEGSIZE value.

Example: If you use FREEPAGE 30 with SEGSIZE 20, DB2 interprets the value
of FREEPAGE as 19, and you get one free page in each segment.

You can read more about free space in “Using free space in data and index storage”
on page 298.

If you are creating a segmented table space for use by declared temporary tables,
you cannot specify the FREEPAGE or LOCKSIZE clause.

Characteristics of segmented table spaces
Segmented table spaces share the following characteristics:

• When DB2 scans all the rows for one table, only the segments that are
assigned to that table need to be scanned. DB2 doesn’t need to scan the
entire table space. Pages of empty segments do not need to be fetched.

• When DB2 locks a table, the lock does not interfere with access to segments
of other tables. (You can read more about locking in “Improving
performance for multiple users: Locking and concurrency” on page 301.)

7 • Implementing your database design

244

• When DB2 drops a table, its segments become available for reuse
immediately after the drop is committed without waiting for an intervening
REORG utility job. (You can read more about this utility in “Determining
when to reorganize data” on page 298.)

• When all rows of a table are deleted, all segments except the first segment
become available for reuse immediately after the delete is committed. No
intervening REORG utility job is necessary.

• A mass delete, which is the deletion of all rows of a table, operates much
more quickly and produces much less log information. In some cases, you
must delete each individual row.

• If the table space contains only one table, segmenting it means that the
COPY utility does not copy pages that are empty. The pages can be empty as
a result of a dropped table or a mass delete.

• Some DB2 utilities, such as LOAD with the REPLACE option, RECOVER,
and COPY, operate on only a table space or a partition, not on individual
segments. Therefore, for a segmented table space, you must run these
utilities on the entire table space. For a large table space, you might notice
availability problems.

• Maintaining the space map creates some additional overhead.

Creating fewer table spaces by storing several tables in one table space can help you
avoid reaching the maximum number of concurrently open data sets. Each table
space requires at least one data set. A maximum number of concurrently open data
sets is determined during installation. Using fewer table spaces means less time
spent allocating and deallocating data sets.

Partitioned table spaces

You use a partitioned table space to store a single table. DB2 divides the table space
into partitions. The partitions are based on the boundary values defined for specific
columns. Utilities and SQL statements can run concurrently on each partition.

In Figure 7.3, each partition contains one part of a table.

Defining a table space

245

Partition 1
Key range A-L

Partition 2
Key range M-Z

Figure 7.3
Pages in a partitioned table space

Defining partitioned table spaces
In a partitioned table space, you can think of each partition as a unit of storage. You
use the PARTITION clause of the CREATE TABLESPACE statement to define a
partitioned table space. For each partition that you specify in the CREATE TABLE-
SPACE statement, DB2 creates a separate data set. You assign the number of par-
titions (from 1 to 4096), and you can assign partitions independently to different
storage groups.

The maximum number of partitions in a table space depends on the data set size
(DSSIZE parameter) and the page size. The size of the table space depends on the
data set size and on how many partitions are in the table space.

Characteristics of partitioned table spaces
Partitioned table spaces share the following characteristics:

• You can plan for growth. When you define a partitioned table space, DB2
usually distributes the data evenly across the partitions. Over time, the
distribution of the data might become uneven as inserts and deletes occur.
You can rebalance data among the partitions by redefining partition
boundaries with no impact to availability. You can also add a partition to the
table and to each partitioned index on the table; the new partition becomes
available immediately.

• You can spread a large table over several DB2 storage groups or data sets.
Not all the partitions of the table need to use the same storage group.

• Partitioned table spaces let a utility job work on part of the data while
allowing other applications to concurrently access data on other partitions.
In that way, several concurrent utility jobs can, for example, load all
partitions of a table space concurrently. Because you can work on part of
your data, some of your operations on the data may require less time.

• You can break mass update, delete, or insert operations into separate jobs,
each of which works on a different partition. Breaking the job into several
smaller jobs that run concurrently can reduce the elapsed time for the
whole task.
If your table space uses nonpartitioned indexes, you might need to modify
the size of data sets in the indexes to avoid I/O contention among
concurrently running jobs. Use the PIECESIZE parameter of the CREATE
INDEX or the ALTER INDEX statement to modify the sizes of the index
data sets.

• You can put frequently accessed data on faster devices. Evaluate whether
table partitioning or index partitioning can separate more frequently

7 • Implementing your database design

246

accessed data from the remainder of the table. You can put the frequently
accessed data in a partition of its own. You can also use a different device
type. You can read more about table and index partitioning later in this
chapter.

• You can take advantage of parallelism for certain read-only queries. When
DB2 determines that processing will be extensive, it can begin parallel
processing of more than one partition at a time. Parallel processing (for read-
only queries) is most efficient when you spread the partitions over different
disk volumes and allow each I/O stream to operate on a separate channel.
You can take advantage of query parallelism. Use the Parallel Sysplex data
sharing technology to process a single read-only query across many DB2
subsystems in a data sharing group. You can optimize Parallel Sysplex query
processing by placing each DB2 subsystem on a separate central processor
complex. You can read more about Parallel Sysplex processing in “Chapter
12. Data sharing with your DB2 data”.

• Partitioned table space scans are sometimes less efficient than table space
scans of segmented table spaces.

• DB2 opens more data sets when you access data in a partitioned table space
than when you access data in other types of table spaces.

• Nonpartitioned indexes and data-partitioned secondary indexes are
sometimes a disadvantage for partitioned tables spaces. You can read more
about these types of indexes later in this chapter.

EA-enabled table spaces and index spaces
You can enable partitioned table spaces for extended addressability (EA), a function
of DFSMS. The term for table spaces and index spaces that are enabled for extend-
ed addressability is EA-enabled. You must use EA-enabled table spaces or index
spaces if you specify a maximum partition size (DSSIZE) that is larger than 4 GB in
the CREATE TABLESPACE statement.

Both EA-enabled and non-EA-enabled partitioned table spaces can have only one
table and up to 4096 partitions. Table 7.7 summarizes the differences.

Table 7.7 Differences between EA-enabled and non-EA-enabled table spaces

EA-enabled table spaces Non-EA-enabled table spaces

Holds up to 4096 partitions of 64 GB Holds up to 4096 partitions of 4 GB

Created with any valid value of DSSIZE DSSIZE cannot exceed 4 GB

Data sets are managed by SMS Data sets are managed by VSAM or SMS

Requires setup No additional setup

Defining a table space

247

You can read more about this topic in “Assignment of table spaces to physical storage”
on page 249.

Large object table spaces

LOB table spaces (also known as auxiliary table spaces) are necessary for holding
large object data, such as graphics, video, or very large text strings. If your data does
not fit entirely within a data page, you can define one or more columns as LOB
columns.

LOB objects can do more than store large object data. You can also define LOB
columns for infrequently accessed data; the result is faster table space scans on the
remaining data in the base table. The table space scan is faster because potentially
fewer pages are accessed.

A LOB table space always has a direct relationship with the table space that contains
the logical LOB column values. The table space that contains the table with the
LOB columns is, in this context, the base table space. LOB data is logically associ-
ated with the base table, but it is physically stored in an auxiliary table that resides
in a LOB table space. Only one auxiliary table can exist in a large object table space.
A LOB value can span several pages. However, only one LOB value is stored per
page.

You must have a LOB table space for each LOB column that exists in a table. For
example, if your table has LOB columns for both resumes and photographs, you
need one LOB table space (and one auxiliary table) for each of those columns. If the
base table space is a partitioned table space, you need one LOB table space for each
LOB in each partition.

If the base table space is not a partitioned table space, each LOB table space is asso-
ciated with one column of LOBs in a base table. If the base table space is a parti-
tioned table space, each column of LOBs in each partition is associated with a LOB
table space.

In a partitioned table space, you can store more LOB data in each column because
each partition must have a LOB table space. Table 7.8 shows the approximate
amount of data that you can store in one column for the different types of table
spaces.

You can read more about the process of defining LOB table spaces in “Defining
large objects” on page 268.

7 • Implementing your database design

248

Table 7.8 Approximate maximum size of LOB data in a column

Maximum (approximate) LOB
Table space type data in each column

Segmented 16 TB

Partitioned, with NUMPARTS up to 64 1000 TB

Partitioned with DSSIZE, NUMPARTS up to 254 4000 TB

Partitioned with DSSIZE, NUMPARTS up to 4096 64000 TB

Recommendation: Consider defining long string columns as LOB columns when
a row does not fit in a 32-KB page. Use the following guidelines to determine if a
LOB column is a good choice:

• Defining a long string column as a LOB column might be better if the
following factors are true:
- Table space scans are normally run on the table.
- The long string column is not referenced often.
- Removing the long string column from the base table will considerably

increase the performance of table space scans.
• LOBs are physically stored in another table space. Therefore, performance

for inserting, updating, and retrieving long strings might be better for non-
LOB strings than for LOB strings.

Assignment of table spaces to physical storage

You can store table spaces and index spaces in user-managed storage, in DB2-man-
aged storage groups, or in SMS-managed storage. (A storage group is a set of disk
volumes.) See the “IBM Storage Management Subsystem” sidebar for more infor-
mation.

If you don’t use SMS, you need to name the DB2 storage groups when you create
table spaces or index spaces. DB2 will allocate space for these objects from the
named storage group. You can assign different partitions of the same table space to
different storage groups.

Recommendation: Use products in the IBM Storage Management Subsystem
(SMS) family, such as Data Facility SMS (DFSMS), to manage some or all of your
data sets. Organizations that use SMS to manage DB2 data sets can define storage
groups with the VOLUMES(*) clause. As a result, SMS assigns a volume to the
table spaces and index spaces in that storage group.

Defining a table space

249

Figure 7.4 shows how storage groups work together with the various DB2 data
structures.

To create a DB2 storage group, use the SQL statement CREATE STOGROUP.
This statement provides a list of volumes that DB2 can use.

After you define a storage group, DB2 stores information about it in the DB2 cata-
log. The catalog table SYSIBM.SYSSTOGROUP has a row for each storage group,
and SYSIBM.SYSVOLUMES has a row for each volume in the group.

The process of installing DB2 includes the definition of a default storage group,
SYSDEFLT. If you have authorization, you can define tables, indexes, table spaces,
and databases. DB2 uses SYSDEFLT to allocate the necessary auxiliary storage.
DB2 stores information about SYSDEFLT and all other storage groups in the cata-
log tables SYSIBM.SYSSTOGROUP and SYSIBM.SYSVOLUMES.

7 • Implementing your database design

250

IBM Storage Management Subsystem

IBM offers the Storage Management Subsystem (SMS) family of products. A
key product in the SMS family is the Data Facility Storage Management
Subsystem (DFSMS). DFSMS can automatically manage all the data sets that
DB2 uses and requires. If you use DFSMS to manage your data sets, the
result is a reduced workload for DB2 database administrators and storage
administrators.

You can experience the following benefits by using DFSMS:
• Simplified data set allocation
• Improved allocation control
• Improved performance management
• Automated disk space management
• Improved management of data availability
• Simplified data movement

DB2 database administrators can use DFSMS to achieve all their objec-
tives for data set placement and design. To successfully use DFSMS, DB2
database administrators and storage administrators need to work together
to ensure that the needs of both groups are satisfied.

Recommendation: Use storage groups whenever you can, either explicitly or implic-
itly, by using the default storage group. In some cases, organizations need to maintain
closer control over the physical storage of tables and indexes. These organizations
choose to manage their own user-defined data sets rather than to use storage groups.
Because this process is complex, this book does not describe the details.

Defining a table space

251

Figure 7.4
Hierarchy of DB2 structures

Database A

Database B

Table space 1 (segmented)

Table space 2
(partitioned)

Part 2

Part 4

Part 3

Partitioning
index Part 1

Index
on Table

A1

Index
on Table

A2

Index space Index space

Index space

Table A1 Table A2

Table B1
Part 1

Part 2

Part 3

Part 4

Storage group G1

Storage group G2

Volume 3

Volume 2
Volume 3

Volume 2

Volume 1
(Disk)

Volume 1
(Disk)

Example: Consider the following CREATE STOGROUP statement:

CREATE STOGROUP MYSTOGRP
VOLUMES (*)
VCAT ALIASICF;

This statement creates storage group MYSTOGRP. The * on the VOLUMES clause
indicates that SMS is to manage your storage group. The VCAT clause identifies
ALIASICF as the name or alias of the catalog of the integrated catalog facility that
the storage group is to use. The catalog of the integrated catalog facility stores
entries for all data sets that DB2 creates on behalf of a storage group.

A few examples of table space definitions

You have read about different types of table spaces. This section provides two exam-
ples of table space definitions, which use the following clauses:

IN

Identifies the database in which DB2 should create the table space.

USING STOGROUP

Indicates that you want DB2 to define and manage the data sets for this table
space. If you specify the DEFINE NO clause, you can defer allocation of data
sets until data is inserted or loaded into a table in the table space.

PRIQTY integer

Specifies the minimum primary space allocation for a DB2-managed data set.
This parameter applies only to table spaces that are using storage groups. The
integer represents the number of kilobytes.

SECQTY integer

Specifies the minimum secondary space allocation for a DB2-managed data
set. This parameter applies only to table spaces that are using storage groups.
The integer represents the number of kilobytes.

7 • Implementing your database design

252

Example definition for a segmented table space
The following CREATE TABLESPACE statement creates a segmented table space
with 32 pages in each segment:

CREATE TABLESPACE MYTS
IN MYDB
USING STOGROUP MYSTOGRP
PRIQTY 30720
SECQTY 10240

SEGSIZE 32
LOCKSIZE TABLE
BUFFERPOOL BP0
CLOSE NO;

Example definition for an EA-enabled partitioned table space
The following CREATE TABLESPACE statement creates an EA-enabled table
space, SALESHX. Assume that a large query application uses this table space to
record historical sales data for marketing statistics. The first USING clause estab-
lishes the MYSTOGRP storage group and space allocations for all partitions:

CREATE TABLESPACE SALESHX
IN MYDB
USING STOGROUP MYSTOGRP
PRIQTY 4000
SECQTY 130
ERASE NO

DSSIZE 16G
NUMPARTS 48
(PARTITION 46
COMPRESS YES,
PARTITION 47
COMPRESS YES,
PARTITION 48
COMPRESS YES)

LOCKSIZE PAGE
BUFFERPOOL BP1
CLOSE NO;

Defining a table space

253

Defining indexes

You read about the main purposes of an index in “Determining what columns to
index” on page 105. Indexes provide efficient access to data. When you create a
table that contains a primary key, you must create a unique index for that table on
the primary key. DB2 marks the table as unavailable until the explicit creation of the
required indexes.

You can also choose to use indexes because of access requirements.

Be aware that using indexes involves a tradeoff. A greater number of indexes can
simultaneously improve the performance of a particular transaction’s access and
require additional processing for inserting, updating, and deleting index keys.

After you create an index, DB2 maintains the index, but you can perform necessary
maintenance, such as reorganizing it or recovering it, as necessary.

Index keys

All index keys do not need to be unique. For example, an index on the SALARY col-
umn of the EMP table allows duplicates because several employees can earn the
same salary.

The usefulness of an index depends on its key. Columns that you use frequently in
performing selection, join, grouping, and ordering operations are good key candi-
dates.

A table can have more than one index, and an index key can use one or more
columns. An index key is a column or an ordered collection of columns on which you
define an index. A composite key is a key that is built on 2 to 64 columns.

Recommendation: In general, the more selective an index is, the more efficient it
is. An efficient index contains multiple columns, is ordered in the same sequence
as the SQL statement, and is used often in SQL statements.

The following list identifies some things you should remember when you are defin-
ing index keys.

• Column updates require index updates.
• Define as few indexes as possible on a column that is updated frequently

because every change must be reflected in each index.
• A composite key might be more useful than a key on a single column when

the comparison is for equality. A single multicolumn index is more efficient
when the comparison is for equality and the initial columns are available.

7 • Implementing your database design

254

However, for more general comparisons, such as A > value AND B > value,
multiple indexes might be more efficient.

• Indexes are important tools for improving performance.
You can read about the use of indexes during access path selection in “Query
and application performance analysis” on page 312.

Example: The following example creates a unique index the EMPPROJACT table.
A composite key is defined on two columns, PROJNO and STDATE.

CREATE UNIQUE INDEX XPROJAC1
ON EMPPROJACT

(PROJNO ASC,
STDATE ASC)...

This composite key is useful when you need to find project information by start
date. Consider a SELECT statement that has the following WHERE clause:

WHERE PROJNO=’MA2100’ AND STDATE=’2004-01-01’

This SELECT statement can execute more efficiently than if separate indexes are
defined on PROJNO and on STDATE.

General index attributes

You typically determine which type of index you need to define after you define a
table space. An index can have many different attributes. Index attributes fall into
two broad categories: general attributes that apply to indexes on all tables and spe-
cific attributes that apply to indexes on partitioned tables only. Table 7.9 summa-
rizes these categories.

Table 7.9 Index attributes

Table or table space type Index attribute

Any • Unique or nonunique (See “Unique indexes” on page
256 and “Nonunique indexes” on page 257.)

• Clustering or nonclustering (See “Clustering indexes”
on page 257.)

• Padded or not padded (See “Not padded or padded
indexes” on page 259.)

Partitioned • Partitioning (See “Partitioning indexes” on page 260.)

• Secondary (See “Secondary indexes” on page 262.)

Defining indexes

255

This section explains the types of indexes that apply to all tables. Indexes that apply
to partitioned tables only are covered separately.

Unique indexes
DB2 uses a unique index to ensure that data values are unique.

Example: A good candidate for a unique index is the EMPNO column of the EMP
table. Figure 7.5 shows a small set of rows from the EMP table and illustrates the
unique index on EMPNO.

DB2 uses this index to prevent the insertion of a row to the EMP table if its
EMPNO value matches that of an existing row. The figure illustrates the relation-
ship between each EMPNO value in the index and the corresponding page number
and row. DB2 uses the index to locate the row for employee 000030, for example,
in row 3 of page 1.

If you do not want duplicate values in the key column, create a unique index by
using the UNIQUE clause of the CREATE INDEX statement.

Example: The DEPT table does not allow duplicate department IDs. Creating a
unique index, as the following example shows, prevents duplicate values.

CREATE UNIQUE INDEX MYINDEX
ON DEPT (DEPTNO);

The index name is MYINDEX, and the indexed column is DEPTNO.

7 • Implementing your database design

256

EMPNO Page Row EMPNO

1 200140 NATZ

2 2 000320 RAMLAL

3 000200 BROWN

1 200340 ALONZO

3 2 000140 NICHOLLS

3 000060 STERN

1 000220 LUTZ

000030 1 2 000330 LEE

000060 3 000030 KWAN

000140

000200

000220

000330

200140

000320

200340

LASTNAME JOB DEPT

Index on
EMP table EMP table

DES

FLD

MGR

ANL

FLD

DES

FLD

SLS

MGR

D11

E21

C01

C01

E21

D11

E21

C01

D11

Figure 7.5
A unique index on the EMPNO column

If a table has a primary key (as the DEPT table has), its entries must be unique. You
must enforce this uniqueness by defining a unique index on the primary key
columns, with the index columns in the same order as the primary key columns.

Before you create a unique index on a table that already contains data, ensure that
no pair of rows has the same key value. If DB2 finds a duplicate value in a set of key
columns for a unique index, DB2 issues an error message and does not create the
index.

Nonunique indexes
You can use nonunique indexes to improve the performance of data access when the
values of the columns in the index are not necessarily unique.

Recommendation: Do not create nonunique indexes on very small tables, because
scans of the tables are more efficient than using indexes.

To create nonunique indexes, use the SQL CREATE INDEX statement. For
nonunique indexes, DB2 allows users and programs to enter duplicate values in a
key column.

Example: Assume that more than one employee is named David Brown. Consider
an index defined on the FIRSTNME and LASTNAME columns of the EMP table.

CREATE INDEX EMPNAME
ON EMP (FIRSTNME, LASTNAME);

This index is an example of a nonunique index that can contain duplicate entries.

Clustering indexes
You can define a clustering index on a partitioned table space or on a segmented
table space. On a partitioned table space, a clustering index can be a partitioning
index or a secondary index.

When a table has a clustering index, an INSERT statement inserts the records as
nearly as possible in the order of their index values. Clustered inserts can provide
significant performance advantages in some operations, particularly those that
involve many records, such as grouping, ordering, and comparisons other than
equal. Although a table can have several indexes, only one can be a clustering index.

If you don’t define a clustering index for a table, DB2 recognizes the first index that
is created on the table as the implicit clustering index when it orders data rows.

Defining indexes

257

Recommendations:

• Always define a clustering index. Otherwise, DB2 might not choose the key
that you would prefer for the index.

• Define the sequence of a clustering index to support high-volume processing
of data.

The CLUSTER clause of the CREATE INDEX or ALTER INDEX statement
defines a clustering index.

Example: Assume that you often need to gather employee information by depart-
ment. In the EMP table, you can create a clustering index on the DEPTNO column.

CREATE INDEX DEPT_IX
ON EMP
(DEPTNO ASC)
CLUSTER;

As a result, all rows for the same department will probably be close together. DB2
can generally access all the rows for that department in a single read. (Using a clus-
tering index does not guarantee that all rows for the same department are stored on
the same page. The actual storage of rows depends on the size of the rows, the num-
ber of rows, and the amount of available freespace. Likewise, some pages may con-
tain rows for more than one department.)

Figure 7.6 shows a clustering index on the DEPT column of the EMP table; only a
subset of the rows is shown.

If a clustering index is not defined, DB2 uses the first index created on the table to
order the data rows. The result might be similar to the distribution of rows in Fig-
ure 7.5.

Suppose that you subsequently create a clustering index on the same table. In this
case, DB2 identifies it as the clustering index but does not rearrange the data that
is already in the table. The organization of the data remains as it was with the orig-
inal nonclustering index that you created. However, when the REORG utility reor-
ganizes the table space, DB2 clusters the data according to the sequence of the new
clustering index. Therefore, if you know that you want a clustering index, you should
define the clustering index before you load the table. If that is not possible, you
must define the index and then reorganize the table. If you create or drop and re-
create a clustering index after loading the table, those changes take effect after a
subsequent reorganization.

7 • Implementing your database design

258

Not padded or padded indexes
The NOT PADDED and PADDED options of the CREATE INDEX and ALTER
INDEX statements specify how varying-length string columns are stored in an
index. You can choose not to pad varying-length string columns in the index to their
maximum length (the default), or you can choose to pad them.

Recommendation: Use the NOT PADDED option to implement index-only
access if your application typically accesses varying-length columns.

Partitioned table index attributes

Before Version 8, when you created a table in a partitioned table space, you defined
a partitioning index and one or more secondary indexes. The partitioning index was
also the clustering index, and the only partitioned index. Nonpartitioning indexes,
referred to as secondary indexes, were not partitioned.

In Version 8, you can define the partitioning scheme of the table by using the PAR-
TITION BY clause of the CREATE TABLE statement “Defining a table with table-
controlled partitioning” on page 222 describes this method.

Version 8 introduces new features for indexes on partitioned tables:

Defining indexes

259

Index on
EMP table EMP table

DEPT Page Row DEPT EMPNO LASTNAME JOB
1 C01 000030 KWAN MGR

1 2 C01 000140 NICHOLLS SLS
3 C01 200140 NATZ ANL

1 D11 000060 STERN
2 2 D11 000200 BROWN

3 D11 000220 LUTZ

1 E21 000330 LEE FLD
3 2 E21 000320 RAMLAL FLD

3 E21 200340 ALONZO FLD

C01
D11
E21

MGR
DES
DES

Figure 7.6
A clustering index on the EMP table

• Indexes that are defined on a partitioned table are classified according to
their logical attributes and physical attributes.
- The logical attribute of an index on a partitioned table pertains to whether

or not the index can be seen as a logically partitioning index.
- The physical attribute of an index on a partitioned table pertains to

whether or not the index is physically partitioned.
• A partitioning index can be partitioned or nonpartitioned.
• Any index can be a clustering index.

You can define only one clustering on a table.

Figure 7.7 illustrates the difference between a partitioned and a nonpartitioned index.

Based on logical index attributes, indexes on a partitioned table can be divided into
two categories:

• Partitioning indexes, described in “Partitioning indexes”
• Secondary indexes, described in “Secondary indexes” on page 262

Partitioning indexes
A partitioning index is an index that defines the partitioning scheme of a table space
according to the PARTITION clause for each partition in the CREATE INDEX
statement.

7 • Implementing your database design

260

Figure 7.7
Comparison of
partitioned and
nonpartitioned index

Partitioned TablePartitioned Index Nonpartitioned Index

P4

P2

P3

407
408
430
415

510
512
530
561

310
321
323
351

The columns that you specify for the partitioning index are the key columns. The
PARTITION clause for each partition defines ranges of values for the key columns.
These ranges partition the table space and the corresponding partitioning index space.

Example: Partitioning index: Assume that a table contains state area codes and you
need to create a partitioning index to sequence the area codes across partitions. You
can use the following SQL statements to create the table and the partitioning index:

CREATE TABLE AREA_CODES
(AREACODE_NO INTEGER NOT NULL,
STATE CHAR (2) NOT NULL,
…
PARTITION BY (AREACODE_NO ASC)
…

CREATE INDEX AREACODE_IX1 ON AREA_CODES (AREACODE_NO)
CLUSTER (…
PARTITION 2 ENDING AT (400),
PARTITION 3 ENDING AT (500),
PARTITION 4 ENDING AT (600)),
…);

Figure 7.8 illustrates the partitioning index on the AREA_CODES table.

Defining indexes

261

310
321
323
351

407
408
430
415

510
512
530
561

310 CA
321 FL
323 CA
351 MA

407 FL
408 CA
430 TX
415 CA

510 CA
512 TX
530 CA
561 FL

AREA_CODES TAREA abl_CODES Tabl_CODES T eAREACODE_IX1

P4

P2

P3

Figure 7.8
Partitioning index on the AREA_CODES table

Secondary indexes
An index that is not a partitioning index is a secondary index. The two types of sec-
ondary indexes are data-partitioned secondary indexes and nonpartitioned sec-
ondary indexes.

Data-partitioned secondary indexes

A data-partitioned secondary index (DPSI) is a nonpartitioning index that is
physically partitioned according to the partitioning scheme of the table. Char-
acteristics of DPSIs include:

• A DPSI has as many partitions as the number of partitions in the table
space.

• Each DPSI partition contains keys for the rows of the corresponding
table space partition only. For example, if the table space has three
partitions, the keys in the DPSI partition 1 reference only the rows in
table space partition 1; the keys in the DPSI partition 2 reference only
the rows in table space partition 2, and so on.

You define a DPSI with the PARTITIONED keyword. If the left-most
columns of the index that you specify with the PARTITIONED keyword coin-
cide with the partitioning columns, DB2 does not create the index as a DPSI.

Nonpartitioned secondary indexes

A nonpartitioned secondary index (NPSI) is a nonpartitioning index that is
nonpartitioned. A NPSI has one index space that contains keys for the rows of
all partitions of the table space.

Example: Data-partitioned secondary index and nonpartitioned secondary
index: This example creates a data-partitioned secondary index (DPSIIX2) and a
nonpartitioned secondary index (NPSIIX3) on the AREA_CODES table. You can
use the following SQL statements to create these secondary indexes:

CREATE INDEX DPSIIX2 ON AREA_CODES (STATE) PARTITIONED;
CREATE INDEX NPSIIX3 ON AREA_CODES (STATE);

Figure 7.9 illustrates what the data-partitioned secondary index and nonpartitioned
secondary index indexes on the AREA_CODES table look like.

Data-partitioned secondary indexes provide advantages over nonpartitioned sec-
ondary indexes for utility processing. For example, utilities such as COPY,
REBUILD INDEX, and RECOVER INDEX can operate on physical partitions
rather than logical partitions because the keys for a given data partition reside in a
single data-partitioned secondary index DPSI partition. This can provide greater
availability.

7 • Implementing your database design

262

Data-partitioned secondary indexes can also provide performance advantages for
queries that meet the following criteria:

• The query has predicates on DPSI columns.
• The query contains additional predicates on the partitioning columns of the

table that limit the query to a subset of the partitions in the table.

Example: Consider the following SELECT statement:

SELECT STATE FROM AREA_CODES
WHERE AREACODE_NO <= 300 AND STATE = ‘CA’;

This query makes efficient use of the data-partitioned secondary index. The num-
ber of key values that need to be searched is limited to the key values of the quali-
fying partitions. In the case of a nonpartitioned secondary index, the query search-
es all of the key values.

Defining indexes

263

P4

P2

P3

AREA_CODES TableDPSIIX2 NPSIX3

CA

FL

MA

TX

CA
FL
MA

CA
FL
TX

CA
FL
TX

310CA
321FL
323CA
351MA

407FL
408CA
430TX
415CA

510CA
512TX
530CA
561FL

Figure 7.9
Data-partitioned secondary index and nonpartitioned secondary index on
AREA_CODES table

Guidelines for defining indexes

This section provides additional coding guidelines and considerations for working
with indexes.

Naming the index
The name for an index is an identifier of up to 128 characters. You can qualify this
name with an identifier, or schema, of up to 128 characters. The following example
shows an index name:

Object Name
Index MYINDEX

The index space name is an eight-character name, which must be unique among
names of all index spaces and table spaces in the database.

Sequencing index entries
The sequence of the index entries can be in ascending order or descending order.
The ASC and DESC keywords of the CREATE INDEX statement indicate ascend-
ing and descending order. ASC is the default.

Using indexes on tables with large objects
You can use indexes on tables with LOBs the same way you use them on other
tables, but consider the following factors:

• A LOB column cannot be a column in an index.
• An auxiliary table can have only one index. (An auxiliary table, which you

create by using the SQL CREATE AUXILIARY TABLE statement, holds
the data for a column that a base table defines. You can read more about
auxiliary tables in “Defining large objects” on page 268.)

• Indexes on auxiliary tables are different than indexes on base tables.

Creating an index
If the table that you are indexing is empty, DB2 creates the index. However, DB2
does not actually create index entries until the table is loaded or rows are inserted.
If the table is not empty, you can choose to have DB2 build the index when the
CREATE INDEX statement is executed. Alternatively, you can defer the index
build until later. Optimally, you should create the indexes on a table before loading
the table. However, if your table already has data, choosing the DEFER option is
preferred; you can build the index later by using the REBUILD INDEX utility.

7 • Implementing your database design

264

Copying an index
If your index is fairly large and needs the benefit of high availability, consider copy-
ing it for faster recovery. Specify the COPY YES clause on a CREATE INDEX or
ALTER INDEX statement to allow the indexes to be copied. DB2 can then track
the ranges of log records to apply during recovery, after the image copy of the index
is restored. (The alternative to copying the index is to use the REBUILD INDEX
utility, which might increase the amount of time that the index is unavailable to
applications.)

Deferring the allocation of index space data sets
When you execute a CREATE INDEX statement with the USING STOGROUP
clause, DB2 generally defines the necessary VSAM data sets for the index space. In
some cases, however, you might want to define an index without immediately allo-
cating the data sets for the index space.

Example: You might be installing a software program that requires creation of
many indexes, but your company might not need some of those indexes. You might
prefer not to allocate data sets for indexes that you will not be using.

To defer the physical allocation of DB2-managed data sets, use the DEFINE NO
clause of the CREATE INDEX statement. When you specify the DEFINE NO
clause, DB2 defines the index but defers the allocation of data sets. The DB2 cata-
log table contains a record of the created index and an indication that the data sets
are not yet allocated. DB2 allocates the data sets for the index space as needed when
rows are inserted into the table on which the index is defined.

Defining views

When you design your database, you might need to give users access to only certain
pieces of data. You can give users access by designing and using views. “Using views
to customize what data a user sees” on page 104 explains the issues to consider when
you design views. This section provides examples of defining views on one or more
tables and the effects of modifying view information.

Coding the view definitions

The name for a view is an identifier of up to 128 characters. The following example
shows a view name:

Object Name
View MYVIEW

Use the CREATE VIEW statement to define and name a view. Unless you specifi-
cally list different column names after the view name, the column names of the view

Defining views

265

are the same as those of the underlying table. (An example of this is in “Defining a
view that combines information from several tables.”) When creating different col-
umn names for your view, remember the naming conventions that you established
when designing the relational database.

As the examples in this section illustrate, a SELECT statement describes the infor-
mation in the view. The SELECT statement can name other views and tables, and
it can use the WHERE, GROUP BY, and HAVING clauses. It cannot use the
ORDER BY clause or name a host variable.

Defining a view on a single table
Example: Assume that you want to create a view on the DEPT table. Of the four
columns in the table, the view needs only three: DEPTNO, DEPTNAME, and
MGRNO. The order of the columns that you specify in the SELECT clause is the
order in which they appear in the view:

CREATE VIEW MYVIEW AS
SELECT DEPTNO,DEPTNAME,MGRNO
FROM DEPT;

In this example, no column list follows the view name, MYVIEW. Therefore, the
columns of the view have the same names as those of the DEPT table on which it
is based. You can execute the following SELECT statement to see the view contents:

SELECT * FROM MYVIEW;

The result table looks like this:

DEPTNO DEPTNAME MGRNO
====== ===================== ======
A00 CHAIRMANS OFFICE 000010
B01 PLANNING 000020
C01 INFORMATION CENTER 000030
D11 MANUFACTURING SYSTEMS 000060
E21 SOFTWARE SUPPORT ------

Defining a view that combines information from several tables
You can create a view that contains a union of more than one table. “Merging lists of
values: UNION” on page 150 describes how to create a union in an SQL operation.

As “Joining data from more than one table” on page 152 explains, DB2 provides two
types of joins—an outer join and an inner join. An outer join includes rows in which
the values in the join columns don’t match, and rows in which the values match. An
inner join includes only rows in which matching values in the join columns are
returned.

7 • Implementing your database design

266

Example: The following example is an inner join of columns from the DEPT and
EMP tables. The WHERE clause limits the view to just those columns in which the
MGRNO in the DEPT table matches the EMPNO in the EMP table:

CREATE VIEW MYVIEW AS
SELECT DEPTNO, MGRNO, LASTNAME, ADMRDEPT
FROM DEPT, EMP
WHERE EMP.EMPNO = DEPT.MGRNO;

The result of executing this CREATE VIEW statement is an inner join view of two
tables, which is shown below:

DEPTNO MGRNO LASTNAME ADMRDEPT
====== ====== ======== ========
A00 000010 HAAS A00
B01 000020 THOMPSON A00
C01 000030 KWAN A00
D11 000060 STERN D11

Example: Suppose that you want to create the view in the preceding example, but
you want to include only those departments that report to department A00. Sup-
pose also that you prefer to use a different set of column names. Use the following
CREATE VIEW statement:

CREATE VIEW MYVIEWA00
(DEPARTMENT, MANAGER, EMPLOYEE_NAME, REPORT_TO_NAME)
AS
SELECT DEPTNO, MGRNO, LASTNAME, ADMRDEPT
FROM EMP, DEPT
WHERE EMP.EMPNO = DEPT.MGRNO
AND ADMRDEPT = ‘A00’;

You can execute the following SELECT statement to see the view contents:

SELECT * FROM MYVIEWA00;

When you execute this SELECT statement, the result is a view of a subset of the
same data, but with different column names, as follows:

DEPARTMENT MANAGER EMPLOYEE_NAME REPORT_TO_NAME
========== ======= ============= ==============
A00 000010 HAAS A00
B01 000020 THOMPSON A00
C01 000030 KWAN A00

Defining views

267

Inserting and updating data through views

If you define a view on a single table, you can refer to the name of a view in an
INSERT, UPDATE, or DELETE statement. This section explains how DB2 makes
an insert or update to the base table.

To ensure that the insert or update conforms to the view definition, specify the
WITH CHECK OPTION clause. The following example illustrates some undesir-
able results of omitting that check.

Example: Suppose that you define a view, V1, as follows:

CREATE VIEW V1 AS
SELECT * FROM EMP
WHERE DEPT LIKE ‘D%’;

A user with the SELECT privilege on view V1 can see the information from the
EMP table for employees in departments whose IDs begin with D. The EMP table
has only one department (D11) with an ID that satisfies the condition.

Assume that a user has the INSERT privilege on view V1. A user with both
SELECT and INSERT privileges can insert a row for department E01, perhaps
erroneously, but cannot select the row that was just inserted.

The following example shows an alternative way to define view V1.

Example: You can avoid the situation in which a value that does not match the view
definition is inserted into the base table. To do this, instead define view V1 to
include the WITH CHECK OPTION clause:

CREATE VIEW V1 AS SELECT * FROM EMP
WHERE DEPT LIKE ‘D%’ WITH CHECK OPTION;

With the new definition, any insert or update to view V1 must satisfy the predicate
that is contained in the WHERE clause: DEPT LIKE ‘D%’. The check can be valu-
able, but it also carries a processing cost; each potential insert or update must be
checked against the view definition. Therefore, you must weigh the advantage of
protecting data integrity against the disadvantage of performance degradation.

Defining large objects

Defining large objects to DB2 is different than defining other types of data and
objects. This section explains the basic steps that you can take to define LOB data
to DB2 and to create large objects.

7 • Implementing your database design

268

These are the basic steps for defining LOBs and moving the data into DB2:

1. Define a column of the appropriate LOB type.
When you create a table with a LOB column or alter a table to add a LOB
column, defining a ROWID column is optional. If you do not define a
ROWID column, DB2 defines a hidden ROWID column for you. Define
only one ROWID column, even if multiple LOB columns are in the table.
The LOB column holds information about the LOB, not the LOB data itself.
The table that contains the LOB information is called the base table. (This is
a special kind of base table, different than the one that “Types of tables” on
page 218 describes.) DB2 uses the ROWID column to locate LOB data. You
can define the LOB column and the ROWID column in a CREATE TABLE
or ALTER TABLE statement. If you are adding a LOB column and a
ROWID column to an existing table, you must use two ALTER TABLE
statements. If you add the ROWID after you add the LOB column, the table
has two ROWIDs: a hidden one and the one that you created. DB2 ensures
that the values of the two ROWIDs are always the same.

2. Create a table space and table to hold the LOB data.
For LOB data, the table space is called a LOB table space, and a table is
called an auxiliary table. If your base table is nonpartitioned, you must create
one LOB table space and one auxiliary table for each LOB column. If your
base table is partitioned, you must create one LOB table space and one
auxiliary table for each LOB column in each partition. For example, you
must create three LOB table spaces and three auxiliary tables for each LOB
column if your base table has three partitions. Create these objects by using
the CREATE LOB TABLESPACE and CREATE AUXILIARY TABLE
statements.

3. Create an index on the auxiliary table.
Each auxiliary table must have exactly one index in which each index entry
refers to a LOB. Use the CREATE INDEX statement for this task.

4. Put the LOB data into DB2.
If the total length of a LOB column and the base table row is less than 32
KB, you can use the LOAD utility to put the data in DB2. Otherwise, you
must use INSERT or UPDATE statements. Even though the data resides in
the auxiliary table, the LOAD utility statement or INSERT statement
specifies the base table. Using INSERT can be difficult because your
application needs enough storage to hold the entire value that goes into the
LOB column.

Defining large objects

269

Example: Assume that you need to define a LOB table space and an auxiliary table
to hold employee resumes. You also need to define an index on the auxiliary table.
You must define the LOB table space in the same database as the associated base
table. Assume that EMP_PHOTO_RESUME is a base table. This base table has a
LOB column named EMP_RESUME. You can use statements like this to define
the LOB table space, the auxiliary table space, and the index:

CREATE LOB TABLESPACE RESUMETS
IN MYDB
LOG NO;
COMMIT;
CREATE AUXILIARY TABLE EMP_RESUME_TAB
IN MYDB.RESUMETS
STORES EMP_PHOTO_RESUME
COLUMN EMP_RESUME;
CREATE UNIQUE INDEX XEMP_RESUME
ON EMP_RESUME_TAB;
COMMIT;

You can use the LOG clause to specify whether changes to a LOB column in the
table space are to be logged. The LOG NO clause in the preceding CREATE LOB
TABLESPACE statement indicates that changes to the RESUMETS table space
are not to be logged.

You can use the DB2 UDB Extenders tools with large object data. See the “DB2
UDB Extenders” sidebar.

7 • Implementing your database design

270

DB2 UDB Extenders

You can use the DB2 UDB Extenders feature of DB2 UDB for z/OS to store
and manipulate image, audio, video, and text objects. The extenders auto-
matically capture and maintain object information and provide a rich body of
APIs.

The DB2 UDB Extenders that support large objects comprise a separate
Image Extender, Audio Extender, Video Extender, and Text Extender.
Each extender defines a distinct type and a set of user-defined functions
for use with objects of its distinct type. The extenders automatically cap-
ture and maintain a variety of attribute information about each object that
you store.

Defining databases

When you define a DB2 database, you name an eventual collection of tables and
associated indexes, as well as the table spaces in which they are to reside. When you
decide whether to define a new database for a new set of objects or use an existing
database, consider the following factors:

• You can start and stop an entire database as a unit. You can display the status
of all objects in the database by using a single command that names only the
database. Therefore, place a set of related tables into the same database.
(The same database holds all indexes on those tables.)

• If you want to improve concurrency and memory use, keep the number of
tables in a single database relatively small (maximum of 20 tables). For
example, with fewer tables, DB2 performs a reorganization in a shorter
length of time.

• Having separate databases allows data definitions to run concurrently and
uses less space for control blocks as well.

To create a database, use the CREATE DATABASE statement. A name for a data-
base is an unqualified identifier of up to eight characters. A DB2 database name
must not be the same as the name of any other DB2 database.

The following example shows a valid database name:

Object Name
Database MYDB

Example: This CREATE DATABASE statement creates the database MYDB:

CREATE DATABASE MYDB
STOGROUP MYSTOGRP
BUFFERPOOL BP8K4
INDEXBP BP4;

The STOGROUP, BUFFERPOOL, and INDEXBP clauses that this example shows
establish default values. You can override these values on the definitions of the table
space or index space.

You do not need to define a database to use DB2; for development and testing, you
can use the default database, DSNDB04. This means that you can define tables and
indexes without specifically defining a database. The catalog table SYSIBM.SYS-
DATABASE describes the default database and all other databases.

Recommendation: Do not use the default database for production work.

Defining databases

271

Defining relationships
with referential constraints

“Referential integrity and referential constraints” on page 54 introduces referential
integrity. Referential integrity is a condition in which all intended references from
data in one table column to data in another table column are valid. By using refer-
ential constraints, you can define relationships between entities that you define in
DB2.

Organizations that choose to enforce referential constraints have at least one thing
in common. They need to ensure that values in one column of a table are valid with
respect to other data values in the database.

Examples:

• A manufacturing company wants to ensure that each part in a PARTS table
identifies a product number that equals a valid product number in the
PRODUCTS table. (“Appendix A. Example tables in this book” shows the
example PARTS and PRODUCTS tables.)

• A company wants to ensure that each value of DEPT in the EMP table
equals a valid DEPTNO value in the DEPT table.

If the DBMS did not support referential integrity, then programmers would need
to write and maintain application code that validates the relationship between the
columns, and some programs might not enforce business rules, even though they
should.

This programming task can be complex because of the need to make sure that only
valid values are inserted or updated in the columns. When the DBMS supports ref-
erential integrity, as DB2 does, programmers avoid some complex programming
tasks and can be more productive in their other work.

This section provides guidelines for establishing a referential structure when you
create objects.

How DB2 enforces referential constraints

You define referential constraints between a foreign key and its parent key. Before
you start to define the referential relationships and constraints, you should under-
stand what DB2 does to maintain referential integrity. You should understand the
rules that DB2 follows when users attempt to modify information in columns that
are involved in referential constraints.

7 • Implementing your database design

272

To maintain referential integrity, DB2 enforces referential constraints in response
to any of the following events:

• An insert to a dependent table
• An update to a parent table or dependent table
• A delete from a parent table
• Running the CHECK DATA utility or the LOAD utility on a dependent

table with the ENFORCE CONSTRAINTS option

When you define the constraints, you have the following choices:

CASCADE

DB2 propagates the action to the dependents of the parent table.

NO ACTION

An error occurs, and DB2 takes no action.

RESTRICT

An error occurs, and DB2 takes no action.

SET NULL

DB2 places a null value in each nullable column of the foreign key that is in
each dependent of the parent table.

DB2 does not enforce referential constraints in a predefined order. However, the
order in which DB2 enforces constraints can affect the result of the operation.
Therefore, you should be aware of the restrictions on the definition of delete rules
and on the use of certain statements. The restrictions relate to the following SQL
statements: CREATE TABLE, ALTER TABLE, INSERT, UPDATE, and
DELETE.

You read about another type of constraint, an informational referential constraint, in
“Referential integrity and referential constraints” on page 54. You can use the NOT
ENFORCED option of the referential constraint definition in a CREATE TABLE
or ALTER TABLE statement to define an informational referential constraint. You
should use this type of referential constraint only when an application process veri-
fies the data in a referential integrity relationship.

Defining relationships with referential constraints

273

Insert rules
The following insert rules for referential integrity apply to parent and dependent
tables:

• For parent tables: You can insert a row at any time into a parent table
without taking any action in the dependent table. For example, you can
create a new department in the DEPT table without making any change to
the EMP table. If you are inserting rows into a parent table that is involved
in a referential constraint, the following restrictions apply:
- A unique index must exist on the parent key.
- You cannot enter duplicate values for the parent key.
- You cannot insert a null value for any column of the parent key.

• For dependent tables: You cannot insert a row into a dependent table
unless a row in the parent table has a parent key value that equals the
foreign key value that you want to insert. You can insert a foreign key with a
null value into a dependent table (if the referential constraint allows this),
but no logical connection exists if you do so. If you insert rows into a
dependent table, the following restrictions apply:
- Each nonnull value that you insert into a foreign key column must be

equal to some value in the parent key.
- If any field in the foreign key is null, the entire foreign key is null.
- If you drop the index that enforces the parent key of the parent table, you

cannot insert rows into either the parent table or the dependent table.

Example: Your company doesn’t want to have a row in the PARTS table unless the
PROD# column value in that row matches a valid PROD# in the PRODUCTS
table. The PRODUCTS table has a primary key on PROD#. The PARTS table has
a foreign key on PROD#. The constraint definition specifies a RESTRICT con-
straint. Every inserted row of the PARTS table must have a PROD# that matches a
PROD# in the PRODUCTS table.

Update rules
The following update rules for referential integrity apply to parent and dependent
tables:

• For parent tables: You cannot change a parent key column of a row that
has a dependent row. If you do, the dependent row no longer satisfies the
referential constraint, so DB2 prohibits the operation.

• For dependent tables: You cannot change the value of a foreign key
column in a dependent table unless the new value exists in the parent key of
the parent table.

7 • Implementing your database design

274

Example: When an employee transfers from one department to another, the
department number for that employee must change. The new value must be the
number of an existing department, or it must be null. You should not be able to
assign an employee to a department that does not exist. However, in the event of a
company reorganization, employees might temporarily not report to a valid depart-
ment. In this case, a null value would be a possibility.

If an update to a table with a referential constraint fails, DB2 rolls back all changes
that were made during the update.

Delete rules
The following delete rules for referential integrity apply to parent and dependent
tables:

• For parent tables: For any particular relationship, DB2 enforces delete
rules according to the choices that you specify when you define the
referential constraint. See “How DB2 enforces referential constraints” on
page 272 for descriptions of the choices that you have.

• For dependent tables: At any time, you can delete rows from a dependent
table without taking any action on the parent table.

Example: Consider the parent table in the department-employee relationship.
Suppose that you delete the row for department C01 from the DEPT table. That
deletion should affect the information in the EMP table about Sally Kwan, Heather
Nicholls, and Kim Natz, who work in department C01.

Example: Consider the dependent in the department-employee relationship.
Assume that an employee retires and that a program deletes the row for that
employee from the EMP table. The DEPT table is not affected.

To delete a row from a table that has a parent key and dependent tables, you must
obey the delete rules for that table. To succeed, the DELETE must satisfy all delete
rules of all affected relationships. The DELETE fails if it violates any referential
constraint.

Building a referential structure

When you build a referential structure, you need to create a set of tables and index-
es in the correct order. “Defining entities for different types of relationships” on
page 88 explains the different kinds of relationships. During logical design, you

Defining relationships with referential constraints

275

express one-to-one relationships and one-to-many relationships as if the relation-
ships are bidirectional. For example:

• An employee has a resume, and a resume belongs to an employee (one-to-
one relationship).

• A department has many employees, and each employee reports to a
department (one-to-many relationship).

During physical design, you restate the relationship so that it is unidirectional; one
entity becomes an implied parent of the other. In this case, the employee is the par-
ent of the resume, and the department is the parent of the assigned employees.

During logical design, you express many-to-many relationships as if the relation-
ships are both bidirectional and multivalued. During physical design, database
designers resolve many-to-many relationships by using an associative table
(described in “Denormalizing tables to improve performance” on page 102). The
relationship between employees and projects is a good example of how referential
integrity is built. This is a many-to-many relationship because employees work on
more than one project and a project can have more than one employee assigned.

Example: To resolve the many-to-many relationship between employees (in the
EMP table) and projects (in the PROJ table), designers create a new associative
table, EMP_PROJ, during physical design. EMP and PROJ are both parent tables
to the child table, EMP_PROJ.

When you establish referential constraints, you must create parent tables with their
primary keys and corresponding indexes before you can define any corresponding
foreign keys on dependent tables.

Defining the tables in the referential structure

You can use the following procedure as a model to create a referential structure.
This procedure uses the DEPT and EMP tables.

You can create table spaces in any order. However, you need to create the table
spaces before you perform the following steps.

1. Create the DEPT table and define its primary key on the DEPTNO column.
The PRIMARY KEY clause of the CREATE TABLE statement defines the
primary key.

7 • Implementing your database design

276

Example:

CREATE TABLE DEPT...
PRIMARY KEY (DEPTNO);

2. Create the primary index for the DEPT table.
Example:

CREATE UNIQUE INDEX DEPT
ON DEPT (DEPTNO);

3. Create the EMP table and define its primary key as EMPNO and its foreign
key as DEPT. The FOREIGN KEY clause of the CREATE TABLE
statement defines the foreign key.
Example:

CREATE TABLE EMP...
PRIMARY KEY (EMPNO)
FOREIGN KEY (DEPT)
REFERENCES DEPT (DEPTNO)
ON DELETE SET NULL;

4. Alter the DEPT table to add the definition of its foreign key, DEPT.
Example:

ALTER TABLE DEPT
FOREIGN KEY (DEPTNO)
REFERENCES EMP (DEPT)
ON DELETE RESTRICT;

Loading the tables

Before you load tables that are involved in a referential constraint or check con-
straint, you need to create exception tables. An exception table contains the rows
found by the CHECK DATA utility that violate referential constraints or check con-
straints.

Defining other business rules

DB2 provides two additional mechanisms that you can use to enforce your business
rules—triggers and user-defined functions.

Defining other business rules

277

Defining triggers

You read about triggers in “Triggers” on page 57.

Triggers automatically execute a set of SQL statements whenever a specified event
occurs. These statements validate and edit database changes, read and modify the
database, and invoke functions that perform operations inside and outside the data-
base. A trigger is a powerful mechanism. You can use triggers to define and enforce
business rules that involve different states of the data.

Example: Assume that the majority of your organization’s salary increases are less
than or equal to 10 percent. Assume also that you need to receive notification of any
attempts to increase a value in the salary column by more than that amount. To
enforce this requirement, DB2 compares the value of a salary before a salary
increase to the value that would exist after a salary increase. You can use a trigger in
this case. Whenever a program updates the salary column, DB2 activates the trig-
ger. In the triggered action, you can specify that DB2 is to perform the following
actions:

• Update the value in the salary column with a valid value, rather than
preventing the update altogether.

• Notify an administrator of the attempt to make an invalid update.

As a result of using a trigger, the notified administrator can decide whether to over-
ride the original salary increase and allow a larger-than-normal salary increase.

Recommendation: For rules that involve only one condition of the data, consider
using referential constraints and check constraints rather than triggers.

Triggers also move the application logic that is required to enforce business rules
into the database, which can result in faster application development and easier
maintenance. In the previous example, which limits salary increases, the logic is in
the database, rather than in an application. DB2 checks the validity of the changes
that any application makes to the salary column. In addition, if the logic ever
changes (for example, to allow 12 percent increases), you don’t need to change the
application programs.

Triggers are optional. You define triggers by using the CREATE TRIGGER state-
ment.

Defining user-defined functions

You read about user-defined functions in “Using user-defined functions” on page
135.

7 • Implementing your database design

278

User-defined functions can be sourced, external, or SQL functions. Sourced means
that they are based on existing functions. External means that users develop them.
SQL means that the function is defined to the database by only SQL statements.

External user-defined functions can return a single value or a table of values.

• External functions that return a single value are called user-defined scalar
functions.

• External functions that return a table are called user-defined table functions.

User-defined functions, like built-in functions or operators, support the manipula-
tion of distinct types. “Defining and using distinct types” on page 232 introduces
distinct types.

The following two examples demonstrate how to define and use both a user-defined
function and a distinct type.

Example: Suppose that you define a table called EUROEMP. One column of this
table, EUROSAL, has a distinct type of EURO, which is based on DECIMAL(9,2).
You cannot use the built-in AVG function to find the average value of EUROSAL
because AVG operates on built-in data types only. You can, however, define an AVG
function that is sourced on the built-in AVG function and accepts arguments of type
EURO:

CREATE FUNCTION AVG(EURO)
RETURNS EURO
SOURCE SYSIBM.AVG(DECIMAL);

Example: You can then use this function to find the average value of the
EUROSAL column:

SELECT AVG(EUROSAL) FROM EUROEMP;

The next two examples demonstrate how to define and use an external user-defined
function.

Example: Suppose that you define and write a function, called REVERSE, to
reverse the characters in a string. The definition looks like this:

CREATE FUNCTION REVERSE(CHAR)
RETURNS CHAR
EXTERNAL NAME ‘REVERSE’
PARAMETER STYLE DB2SQL
LANGUAGE C;

Defining other business rules

279

Example: You can then use the REVERSE function in an SQL statement wherever
you would use any built-in function that accepts a character argument. For example:

SELECT REVERSE(:CHARSTR)
FROM SYSDUMMY1;

Although you cannot write user-defined aggregate functions, you can define sourced
user-defined aggregate functions that are based on built-in aggregate functions. This
capability is useful in cases where you want to refer to an existing user-defined func-
tion by another name or to pass in a distinct type.

The next two examples demonstrate how to define and use a user-defined table
function.

Example: You can define and write a user-defined table function that users can
invoke in the FROM clause of a SELECT statement. For example, suppose that you
define and write a function called BOOKS. This function returns a table of infor-
mation about books on a given subject. The definition looks like this:

CREATE FUNCTION BOOKS (VARCHAR(40))
RETURNS TABLE (TITLE_NAME VARCHAR(25),

AUTHOR_NAME VARCHAR(25),
PUBLISHER_NAME VARCHAR(25),
ISBNNO VARCHAR(20),
PRICE_AMT DECIMAL(5,2),
CHAP1_TXT CLOB(50K))

LANGUAGE COBOL
PARAMETER STYLE DB2SQL
EXTERNAL NAME BOOKS;

Example: You can then include the BOOKS function in the FROM clause of a
SELECT statement to retrieve the book information. For example:

SELECT B.TITLE_NAME, B.AUTHOR_NAME, B.PUBLISHER_NAME,
B.ISBNNO
FROM TABLE(BOOKS(‘Computers’)) AS B
WHERE B.TITLE_NAME LIKE ‘%COBOL%’;

7 • Implementing your database design

280

For more information

Table 7.10 lists additional information sources about topics that this chapter intro-
duces.

Table 7.10 More information about topics in Chapter 7

Introduced
in section
that begins

For more information about... on page... See...

Check constraints 237 Volume 1 of DB2 Application
Programming and SQL Guide

CREATE SQL statements for 217 Volume 2 of DB2 SQL Reference
defining objects: Databases,
indexes, storage groups,
tables, table spaces, views

Data sets 246 • Volume 1 of DB2 Administration
Guide

• z/OS DFSMS: Using Data Sets

DB2 catalog tables 218 Volume 2 of DB2 SQL Reference

DB2 data types 224 Volume 1 of DB2 SQL Reference

DB2 Extenders 268 • DB2 Image, Audio, and Video
Extender Administration and
Programming

• DB2 Net Search Extender
Administration and Programming

• DB2 Text Extender Administration
and Programming

• www.ibm.com/software/data/
db2/extenders

DB2 utilities 244 DB2 Utility Guide and Reference

Distinct types 232 Volume 1 of DB2 SQL Reference

EA-enabled table spaces 247 Volume 1 of DB2 Administration Guide

ENFORCE CONSTRAINTS 272 DB2 Utility Guide and Reference
option on DB2 utilities

For more information

281

IBM Storage Management 249 Storage Management with DB2 for
Subsystem (SMS) OS/390 (viewable at

www.redbooks.ibm.com)

Index space data sets, deferring 265 Volume 2 of DB2 SQL Reference
allocation of

Informational referential 272 Volume 1 of DB2 Application
constraints Programming and SQL Guide

Joining tables 266 Volume 1 of DB2 SQL Reference

Large objects 268 Large Objects with DB2 for z/OS and
OS/390 (viewable at
www.redbooks.ibm.com)

Loading tables that are involved 277 DB2 Utility Guide and Reference
in referential relationships

Materialized query tables 222 Volume 1 of DB2 Administration Guide

Naming conventions 216 Volume 1 of DB2 SQL Reference

Partitioned table spaces 245 Volume 2 of DB2 SQL Reference

Referential integrity and 272 • Volume 1 of DB2 Application
constraints Programming and SQL Guide

• Volume 1 of DB2 SQL Reference

Referential integrity, 272 Volume 2 of DB2 SQL Reference
restrictions on SQL statements
related to

Referential structures, defining 276 Volume 2 of DB2 SQL Reference

Relational concepts as 216 • A Complete Guide to DB2 Universal
implemented in other DB2 Database by Don Chamberlin
products • DB2 Universal Database for iSeries

Database Programming
• DB2 Universal Database for Linux,

UNIX, and Windows Administration
Guide: Implementation

• DB2 for VSE & VM Database
Administration

7 • Implementing your database design

282

Table 7.10 More information about topics in Chapter 7 (Continued)

Introduced
in section
that begins

For more information about... on page... See...

Rows, conditions for deleting 244 • Volume 2 of DB2 Administration
Guide

• Volume 2 of DB2 SQL Reference

Segment size 243 Volume 2 of DB2 Administration Guide

Storage groups, managing 249 Volume 1 of DB2 Administration Guide

Tables, differences among 218 Volume 1 of DB2 Administration Guide

Triggers, defining 278 Volume 1 of DB2 Application
Programming and SQL Guide

Unicode in DB2 226 Volume 1 of DB2 SQL Reference

User-defined default values, 235 Volume 1 of DB2 SQL Reference
restrictions

User-defined functions, defining 278 Volume 1 of DB2 Application
Programming and SQL Guide

User-defined functions, samples 229 Volume 1 of DB2 Application
that come with DB2 Programming and SQL Guide

VSAM 265 DFSMS/MVS: Access Method Services
for the Integrated Catalog

For more information

283

Table 7.10 More information about topics in Chapter 7 (Continued)

Introduced
in section
that begins

For more information about... on page... See...

Practice exam questions

The following practice exam questions test your knowledge of material that this
chapter covers.

1. Which statement is false?

A. You can put data into a table that you create by using the DB2 LOAD
utility or SQL INSERT statement.

B. When you define a base table, you define all the columns of the table.
C. When you create a base table, DB2 records the table’s definition in the

DB2 directory.
D. Creating a table does not store the application data.

2. Which statement is valid?

A. CREATE TABLE EMP
(EMPNO CHAR(6) NOT NULL,
FIRSTNME VAR CHAR(12) NOT NULL,
LASTNAME VAR CHAR(15) NOT NULL,
PRIMARY KEY (EMPNO)

IN MYDB.MYTS;

B. CREATE TABLE EMP
(EMPNO CHAR(6) NOT NULL,
FIRSTNME VAR CHAR(12) NOT NULL,
LASTNAME VAR CHAR(15) NOT NULL,
PRIMARY KEY (EMPNO))

IN MYDB.MYTS

C. CREATE TABLE EMP
(EMPNO CHAR(6) NOT NULL,
FIRSTNME VARCHAR(12) NOT NULL,
LASTNAME VARCHAR(15) NOT NULL,
PRIMARY KEY (EMPNO))

IN MYDB.MYTS;

D. CREATE TABLE NAME EMP
(EMPNO CHAR(6) NOT NULL,
FIRSTNME VARCHAR(12) NOT NULL,
LASTNAME VARCHAR(15) NOT NULL,
PRIMARY KEY (EMPNO))

IN MYDB.MYTS;

7 • Implementing your database design

284

3. For a column that will hold the last names of people, what data type
would work best?

A. CHAR
B. VARCHAR
C. DBCLOB
D. ROWID

4. If a check constraint specifies that a part cost cannot exceed the cost
of the product that contains it, which statement results in a violation
of the check constraint?

A. INSERT INTO PRODPART
(PARTNUM, PRODNUM, PARTCOST, PRODCOST)
VALUES (‘1256’, ‘F1109’, ‘42.99’, ‘45.99’);

B. INSERT INTO PRODPART
(PARTNUM, PRODNUM, PARTCOST, PRODCOST)
VALUES (‘1256’, ‘F1109’, ‘45.99’, ‘42.99’);

C. INSERT INTO PRODPART
(PARTNUM, PRODNUM, PARTCOST, PRODCOST)
VALUES (‘1256’, ‘F1109’, ‘4.29’, ‘45.99’);

D. INSERT INTO PRODPART
(PARTNUM, PRODNUM, PARTCOST, PRODCOST)
VALUES (‘1256’, ‘F1109’, ‘45.99’, ‘459.99’);

5. Which scenario is not well suited for referential integrity?

A. A manufacturing company wants to make sure that each part in a PARTS
table identifies a product number that equals a valid product number in
the PRODUCTS table.

B. A company wants to ensure that each value of DEPT in the EMP table
equals a valid DEPTNO value in the DEPT table.

C. A payroll manager wants to make sure that no user or application
program can increase the value of the SALARY column by more than
10%.

D. A human resources manager wants to ensure that every value of
MGRNAME in the DEPT table equals a valid EMPNO value in the
EMP table.

Practice exam questions

285

6. Which statement is false?

A. Indexes provide efficient access to data.
B. When you create a table that contains a primary key, you must create a

unique index for that table on the primary key.
C. Each index that you define on a table must include the column or

columns that comprise the primary key.
D. After you create the index, DB2 maintains it.

7. Which statement is false?

A. If you attempt to create an index on a table that has no data, DB2 does
not create the index.

B. You can choose to have DB2 build an index when the CREATE INDEX
statement is executed.

C. You can choose to have DB2 defer the building of the index until later.
D. Optimally, you should create the indexes on a table before loading the

table.

7 • Implementing your database design

286

Answers to practice exam questions

1. Answer: C. The statements in the other options are true. Option C is
false because DB2 records the definition of a base table in the DB2
catalog, not in the DB2 directory.

2. Answer: C. Option A is not valid because it is missing a closing
parenthesis after (EMPNO). Both option A and option B are not valid
because VARCHAR is spelled incorrectly as VAR CHAR. Option D is not
valid because the CREATE TABLE syntax includes “NAME,” which is
not a valid keyword.

3. Answer: B. VARCHAR is the best data type of people’s last names
because they are character data of varying lengths.

4. Answer: B. Option B is the only INSERT statement that has a part cost
($45.99) that exceeds the product cost ($42.99).

5. Answer: C. Options A, B, and D all identify scenarios for which
referential integrity is a good solution. The scenario in option C could use
a trigger to enforce this business rule.

6. Answer: C. The statements in the other options are true. Option C is
false because DB2 does not require that each index in a table must
include the columns that comprise the primary key. Many indexes do not
contain the primary key columns.

7. Answer: A. Options B, C, and D are true. Option A is false because in
this case, DB2 creates the index but does not create actual index entries
until the table is loaded or rows are inserted into the table.

Answers to practice exam questions

287

	Chapter4
	Logical database design �wit...
	Logical database design �wit...
	Physical database design
	For more information
	Practice exam questions
	Answers to practice exam que...

	Chapter7
	Defining tables
	Defining columns and rows in...
	Defining a table space
	Defining indexes
	Defining views
	Defining large objects
	Defining databases
	Defining relationships with ...
	Defining other business rules
	For more information
	Practice exam questions
	Answers to practice exam que...

