
DB2® Universal Database for z/OS

XML

Extender

Administration

and

Programming

Version

8

SC18-7431-00

���

DB2® Universal Database for z/OS

XML

Extender

Administration

and

Programming

Version

8

SC18-7431-00

���

Note

Before

using

this

information

and

the

product

it

supports,

please

read

the

general

information

under

“Notices”

on

page

321.

First

Edition

(March

2004)

This

edition

applies

to

Version

8

of

IBM

DB2

Universal

Database

for

z/OS

(DB2

UDB

for

z/OS),

5625-DB2,

and

to

any

subsequent

releases

until

otherwise

indicated

in

new

editions.

Make

sure

you

are

using

the

correct

edition

for

the

level

of

the

product.

Specific

changes

are

indicated

by

a

vertical

bar

to

the

left

of

a

change.

A

vertical

bar

to

the

left

of

a

figure

caption

indicates

that

the

figure

has

changed.

Editorial

changes

that

have

no

technical

significance

are

not

noted.

©

Copyright

International

Business

Machines

Corporation

1999,

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

About

this

guide

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

Who

should

use

this

guide

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

How

to

get

a

current

version

of

this

guide

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

How

to

use

this

guide

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

Highlighting

conventions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. x

How

to

read

syntax

diagrams

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. x

Accessibility

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xii

Part

1.

Introduction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Chapter

1.

Introduction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Introduction

to

XML

Extender

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

XML

Documents

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

How

XML

data

is

handled

in

DB2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

Features

of

XML

Extender

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 5

XML

Extender

tutorial

lessons

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 7

Prerequisites

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 7

Scenario

for

the

lessons

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 7

Lesson:

Storing

an

XML

document

in

an

XML

column

.

.

.

.

.

.

.

.

.

.

. 8

Lesson:

Composing

an

XML

document

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

Part

2.

Administration

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Chapter

2.

Administration

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 37

Administration

tools

for

XML

Extender

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 37

Preparing

to

administer

XML

Extender

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 37

Migrating

XML

Extender

from

Version

7

to

Version

8

.

.

.

.

.

.

.

.

.

.

. 37

XML

Extender

administration

planning

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 38

Setting

up

the

administration

wizard

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 39

Access

and

storage

methods

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 40

When

to

use

the

XML

column

method

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 41

When

to

use

the

XML

collection

method

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 42

Planning

for

XML

columns

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 42

XML

data

types

for

the

XML

columns

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 42

Elements

and

attributes

to

index

for

XML

columns

.

.

.

.

.

.

.

.

.

.

. 43

The

DAD

file

for

XML

columns

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 43

Planning

for

XML

collections

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 43

Validation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 44

The

DAD

file

for

XML

collections

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 44

Mapping

schemes

for

XML

collections

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 46

Decomposition

table

size

requirements

for

RDB

node

mapping

.

.

.

.

.

. 51

Validating

XML

documents

automatically

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 52

Enabling

servers

for

XML

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

Creating

an

XML

table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

Storing

a

DTD

in

the

repository

table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 54

Enabling

XML

columns

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 55

Planning

side

tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 58

Indexing

side

tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 60

Composing

XML

documents

by

using

SQL

mapping

.

.

.

.

.

.

.

.

.

.

. 60

Composing

XML

collections

by

using

RDB_node

mapping

.

.

.

.

.

.

.

.

. 63

Decomposing

an

XML

collection

by

using

RDB_node

mapping

.

.

.

.

.

.

. 65

©

Copyright

IBM

Corp.

1999,

2004

iii

Part

3.

Programming

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 71

Chapter

3.

XML

columns

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

Managing

data

in

XML

columns

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

XML

columns

as

a

storage

and

access

method

.

.

.

.

.

.

.

.

.

.

.

.

. 73

Defining

and

enabling

an

XML

column

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 74

Using

indexes

for

XML

column

data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 75

Storing

XML

data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 76

Default

casting

functions

for

storing

XML

data

.

.

.

.

.

.

.

.

.

.

.

. 77

Storage

UDFs

for

storing

XML

data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 77

Method

for

retrieving

an

XML

document

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 78

Retrieving

an

entire

XML

document

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

Retrieving

element

contents

and

attribute

values

from

XML

documents

.

.

. 80

Updating

XML

data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 82

Updating

an

entire

XML

document

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 82

Updating

specific

elements

and

attributes

of

an

XML

document

.

.

.

.

.

. 83

Methods

for

searching

XML

documents

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 83

Searching

the

XML

document

by

structure

.

.

.

.

.

.

.

.

.

.

.

.

.

. 84

Using

the

DB2

UDB

Text

Extender

for

structural

text

searches

of

XML

documents

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 86

Deleting

XML

documents

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 88

Limitations

when

invoking

functions

from

Java

Database

(JDBC)

.

.

.

.

.

. 88

Chapter

4.

Managing

data

in

XML

collections

.

.

.

.

.

.

.

.

.

.

.

. 91

XML

collections

as

a

storage

and

access

method

.

.

.

.

.

.

.

.

.

.

.

. 91

Managing

data

in

XML

collections

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 92

Preparing

to

compose

XML

documents

from

DB2

data

.

.

.

.

.

.

.

.

. 92

Decomposing

XML

documents

into

DB2

UDB

data

.

.

.

.

.

.

.

.

.

.

.

. 97

Enabling

an

XML

collection

for

decomposition

.

.

.

.

.

.

.

.

.

.

.

. 97

Decomposition

table

size

limits

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 101

Updating,

deleting,

and

retrieving

data

in

XML

collections

.

.

.

.

.

.

.

.

. 101

Updating

data

in

an

XML

collection

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 102

Deleting

an

XML

document

from

an

XML

collection

.

.

.

.

.

.

.

.

.

. 103

Retrieving

XML

documents

from

an

XML

collection

.

.

.

.

.

.

.

.

.

. 103

Searching

XML

collections

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 103

Composing

XML

documents

using

search

criteria

.

.

.

.

.

.

.

.

.

.

. 103

Searching

for

decomposed

XML

data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 104

Mapping

schemes

for

XML

collections

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 105

Requirements

for

using

SQL

mapping

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 107

Requirements

for

RDB_Node

mapping

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 109

Stylesheets

for

an

XML

collection

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 112

Location

paths

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 112

Location

path

syntax

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 113

Enabling

XML

collections

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 114

Disabling

XML

collections

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 116

Chapter

5.

XML

schemas

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 119

Advantages

of

using

XML

schemas

instead

of

DTDs

.

.

.

.

.

.

.

.

.

. 119

UDTs

and

UDF

names

for

XML

Extender

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 119

XML

schema

complexType

element

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 120

Data

types,

elements

and

attributes

in

schemas

.

.

.

.

.

.

.

.

.

.

.

. 121

Simple

data

types

in

XML

schemas

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 121

Elements

in

XML

schemas

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 121

Attributes

in

XML

schemas

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 121

Examples

of

an

XML

schema

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 122

XML

document

instance

using

the

schema

.

.

.

.

.

.

.

.

.

.

.

.

. 123

iv

XML

Extender

Administration

and

Programming

XML

document

instance

using

a

DTD

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 123

Part

4.

Reference

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 125

Chapter

6.

The

dxxadm

administration

command

.

.

.

.

.

.

.

.

.

. 127

dxxadm

command

overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 127

Syntax

of

the

dxxadm

administration

command

.

.

.

.

.

.

.

.

.

.

.

. 127

Subcommands

of

the

administration

command

.

.

.

.

.

.

.

.

.

.

.

.

. 127

enable_server

option

of

the

dxxadm

command

.

.

.

.

.

.

.

.

.

.

.

. 127

disable_server

option

of

the

dxxadm

command

.

.

.

.

.

.

.

.

.

.

. 129

enable_column

option

of

the

dxxadm

command

.

.

.

.

.

.

.

.

.

.

. 130

disable_column

option

of

the

dxxadm

command

.

.

.

.

.

.

.

.

.

.

. 131

enable_collection

option

of

the

dxxadm

command

.

.

.

.

.

.

.

.

.

. 132

disable_collection

option

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 132

Chapter

7.

XML

Extender

user-defined

types

.

.

.

.

.

.

.

.

.

.

.

. 135

Chapter

8.

XML

Extender

user-defined

functions

.

.

.

.

.

.

.

.

.

.

. 137

Types

of

XML

Extender

user-defined

functions

.

.

.

.

.

.

.

.

.

.

.

.

. 137

Storage

functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 138

Storage

functions

in

XML

Extender

overview

.

.

.

.

.

.

.

.

.

.

.

. 138

XMLCLOBFromFile()

function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 138

XMLFileFromCLOB()

function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 138

XMLFileFromVarchar()

function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 139

XMLVarcharFromFile()

function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 140

Retrieval

functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 141

Retrieval

functions

in

XML

Extender

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 141

Content():

retrieve

from

XMLFILE

to

a

CLOB

.

.

.

.

.

.

.

.

.

.

.

. 142

Content():

retrieve

from

XMLVARCHAR

to

an

external

server

file

.

.

.

.

. 143

Content():

retrieval

from

XMLCLOB

to

an

external

server

file

.

.

.

.

.

. 145

Extraction

functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 146

Extracting

functions

in

XML

Extender

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 146

extractInteger()

and

extractIntegers()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 146

extractSmallint()

and

extractSmallints()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 147

extractDouble()

and

extractDoubles()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 148

extractReal()

and

extractReals()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 149

extractChar()

and

extractChars()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 151

extractVarchar()

and

extractVarchars()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 152

extractCLOB()

and

extractCLOBs()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 153

extractDate()

and

extractDates()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 155

extractTime()

and

extractTimes()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 156

extractTimestamp()

and

extractTimestamps()

.

.

.

.

.

.

.

.

.

.

.

. 157

Update

functions

in

XML

Extender

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 158

Purpose

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 158

Syntax

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 158

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 158

Return

type

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 159

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 159

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 159

Validation

functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 163

SVALIDATE()

function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 164

DVALIDATE()

function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 164

Chapter

9.

Document

access

definition

(DAD)

files

.

.

.

.

.

.

.

.

.

. 167

Creating

a

DAD

file

for

XML

columns

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 167

DAD

files

for

XML

collections

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 169

Contents

v

SQL

composition

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 171

RDB

node

composition

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 171

Composition

from

rows

that

have

null

values

.

.

.

.

.

.

.

.

.

.

.

. 172

DTD

for

the

DAD

file

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 173

Dynamically

overriding

values

in

the

DAD

file

.

.

.

.

.

.

.

.

.

.

.

.

. 177

Dad

Checker

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 183

Using

the

DAD

checker

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 184

Checks

performed

by

the

DAD

checker

.

.

.

.

.

.

.

.

.

.

.

.

.

. 186

Attribute

and

element

naming

conflict

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 193

Chapter

10.

XML

Extender

stored

procedures

.

.

.

.

.

.

.

.

.

.

.

. 195

XML

Extender

stored

procedures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 195

XML

Extender

administration

stored

procedures

.

.

.

.

.

.

.

.

.

.

.

. 195

dxxEnableDB()

stored

procedure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 196

dxxDisableDB()

stored

procedure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 196

dxxEnableColumn()

stored

procedure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 197

dxxDisableColumn()

stored

procedure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 198

dxxEnableCollection()

stored

procedure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 199

dxxDisableCollection()

stored

procedure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 200

XML

Extender

composition

stored

procedures

.

.

.

.

.

.

.

.

.

.

.

.

. 200

Calling

XML

Extender

composition

stored

procedures

.

.

.

.

.

.

.

.

.

. 201

Increasing

the

CLOB

limit

for

stored

procedures

.

.

.

.

.

.

.

.

.

.

. 202

Stored

Procedures

that

return

CLOBS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 202

dxxGenXML()

stored

procedure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 202

dxxRetrieveXML()

stored

procedure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 207

dxxGenXMLClob

stored

procedure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 210

dxxRetrieveXMLClob

stored

procedure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 212

XML

Extenders

decomposition

stored

procedures

.

.

.

.

.

.

.

.

.

.

.

. 215

dxxShredXML()

stored

procedure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 215

dxxInsertXML()

stored

procedure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 218

Chapter

11.

MQSeries

stored

procedures

and

functions

.

.

.

.

.

.

.

. 221

XML

Extender

stored

procedures

and

functions

for

MQSeries

.

.

.

.

.

.

. 221

MQPublishXML

function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 221

MQReadXML

function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 223

MQReadAllXML

function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 225

MQReadXMLCLOB

function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 227

MQReadAllXMLCLOB

function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 228

MQReceiveXML

function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 230

MQReceiveAllXML

function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 232

MQRcvAllXMLCLOB

function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 234

MQReceiveXMLCLOB

function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 235

MQSENDXML

function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 236

MQSENDXMLFILE

function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 238

MQSendXMLFILECLOB

function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 239

Types

of

stored

procedures

for

message

queues

.

.

.

.

.

.

.

.

.

.

.

. 240

dxxmqGen()

stored

procedure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 243

dxxmqGenCLOB

stored

procedure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 245

dxxmqRetrieve

stored

procedure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 247

dxxmqRetrieveCLOB

stored

procedure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 249

dxxmqShred

stored

procedure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 251

dxxmqShredAll

stored

procedure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 253

dxxmqShredCLOB

stored

procedure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 254

dxxmqShredAllCLOB

stored

procedure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 255

dxxmqInsert

stored

procedure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 256

dxxmqInsertCLOB

stored

procedure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 258

vi

XML

Extender

Administration

and

Programming

dxxmqInsertAll

stored

procedure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 260

dxxmqInsertAllCLOB

stored

procedure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 261

Chapter

12.

Extensible

stylesheet

language

transformation

(XSLT)

.

.

.

. 265

Creating

an

HTML

document

using

an

XSLT

stylesheet

.

.

.

.

.

.

.

.

. 265

XSLTransformToClob()

stored

procedure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 266

XSLTransformToFile()

stored

procedure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 267

Chapter

13.

XML

Extender

administration

support

tables

.

.

.

.

.

.

. 269

DTD

reference

table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 269

XML

usage

table

(XML_USAGE)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 269

Chapter

14.

Troubleshooting

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 271

Troubleshooting

XML_Extender

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 271

Starting

the

trace

for

XML

Extender

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 271

Stopping

the

trace

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 272

XML

Extender

UDF

return

codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 273

XML

Extenders

stored

procedure

return

codes

.

.

.

.

.

.

.

.

.

.

.

.

. 273

SQLSTATE

codes

and

associated

message

numbers

for

XML

Extender

.

.

. 274

XML

Extender

messages

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 278

Appendix

A.

Samples

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 293

XML

DTD

sample

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 293

XML

document

sample:

getstart.xml

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 293

Document

access

definition

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 294

Sample

DAD

file:

XML

column

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 294

Sample

DAD

file:

XML

collection:

SQL

mapping

.

.

.

.

.

.

.

.

.

.

. 296

Sample

DAD

file:

XML:

RDB_node

mapping

.

.

.

.

.

.

.

.

.

.

.

. 297

Appendix

B.

Code

page

considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

. 301

Terminology

for

XML

code

pages

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 301

DB2

and

XML

Extender

code

page

assumptions

.

.

.

.

.

.

.

.

.

.

.

. 301

Assumptions

for

importing

an

XML

document

.

.

.

.

.

.

.

.

.

.

.

. 302

Assumptions

for

exporting

an

XML

document

.

.

.

.

.

.

.

.

.

.

.

. 303

Encoding

declaration

considerations

for

XML

Extender

.

.

.

.

.

.

.

.

.

. 303

Legal

encoding

declarations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 303

Consistent

encodings

and

encoding

declarations

.

.

.

.

.

.

.

.

.

.

. 304

Consistent

encodings

in

USS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 306

Declaring

an

encoding

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 307

Conversion

scenarios

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 307

Recommendations

for

preventing

inconsistent

XML

documents

.

.

.

.

.

.

. 308

Line

ending

considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 309

Processing

XML

documents

with

the

linebrk

utility

.

.

.

.

.

.

.

.

.

. 309

Appendix

C.

XML

Extender

limits

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 311

Glossary

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 315

XML

Extender

glossary

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 315

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 321

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 323

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 325

Contacting

IBM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 335

Product

information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 335

Contents

vii

viii

XML

Extender

Administration

and

Programming

About

this

guide

This

section

contains

the

following

information:

v

“Who

should

use

this

guide”

v

“How

to

use

this

guide”

v

“Highlighting

conventions”

on

page

x

Who

should

use

this

guide

This

guide

is

intended

for

the

following

people:

v

Those

who

work

with

XML

data

in

DB2®

applications

and

who

are

familiar

with

XML

concepts.

Readers

of

this

document

should

have

a

general

understanding

of

XML

and

DB2

UDB

for

z/OS™.

To

learn

more

about

XML,

see

the

following

Web

site:

http://www.w3.org/XML

To

learn

more

about

DB2,

see

the

following

Web

site:

http://www.ibm.com/software/data/db2/library

v

DB2

database

administrators

who

are

familiar

with

DB2

UDB

administration

concepts,

tools,

and

techniques.

v

DB2

application

programmers

who

are

familiar

with

SQL

and

with

one

or

more

programming

languages

that

can

be

used

for

DB2

UDB

applications.

How

to

get

a

current

version

of

this

guide

You

can

get

the

latest

version

of

this

book

at

the

XML

Extender

Web

site:

http://www.ibm.com/software/data/db2/extenders/xmlext/library.html

How

to

use

this

guide

This

guide

is

structured

as

follows:

Part

1.

Introduction

This

part

provides

an

overview

of

the

XML

Extender

and

how

you

can

use

it

in

your

business

applications.

It

contains

a

getting-started

scenario

that

helps

you

get

up

and

running.

Part

2.

Administration

This

part

describes

how

to

prepare

and

maintain

a

DB2

UDB

database

for

XML

data.

Read

this

part

if

you

need

to

administer

a

DB2

UDB

database

that

contains

XML

data.

Part

3.

Programming

This

part

describes

how

to

manage

your

XML

data.

Read

this

part

if

you

need

to

access

and

manipulate

XML

data

in

a

DB2

UDB

application

program.

Part

4.

Reference

This

part

describes

how

to

use

the

XML

Extender

administration

commands,

user-defined

types,

user-defined

functions,

and

stored

procedures.

It

also

lists

the

messages

and

codes

that

the

XML

Extender

issues.

Read

this

part

if

you

are

familiar

with

the

XML

Extender

concepts

©

Copyright

IBM

Corp.

1999,

2004

ix

and

tasks,

but

you

need

information

about

a

user-defined

type

(UDT),

user-defined

function

(UDF),

command,

message,

metadata

tables,

control

tables,

or

code.

Part

5.

Appendixes

The

appendixes

describe

the

DTD

for

the

document

access

definition,

samples

for

the

examples

and

getting

started

scenario,

and

other

IBM®

XML

products.

Highlighting

conventions

This

books

uses

the

following

conventions:

Bold

text

indicates:

v

Commands

v

Field

names

v

Menu

names

v

Push

buttons

Italic

text

indicates

v

Variable

parameters

that

are

to

be

replaced

with

a

value

v

Emphasized

words

v

First

use

of

a

glossary

term

Uppercase

letters

indicate:

v

Data

types

v

Column

names

v

Table

names

Example

text

indicates:

v

System

messages

v

Values

that

you

type

v

Coding

examples

v

Directory

names

v

File

names

How

to

read

syntax

diagrams

Throughout

this

book,

the

syntax

of

commands

and

SQL

statements

is

described

using

syntax

diagrams.

Read

the

syntax

diagrams

as

follows:

v

Read

the

syntax

diagrams

from

left

to

right,

from

top

to

bottom,

following

the

path

of

the

line.

The

��───

symbol

indicates

the

beginning

of

a

statement.

The

───�

symbol

indicates

that

the

statement

syntax

is

continued

on

the

next

line.

The

�───

symbol

indicates

that

a

statement

is

continued

from

the

previous

line.

The

───��

symbol

indicates

the

end

of

a

statement.

Diagrams

of

syntactical

units

other

than

complete

statements

start

with

the

�───

symbol

and

end

with

the

───�

symbol.

v

Required

items

appear

on

the

horizontal

line

(the

main

path).

x

XML

Extender

Administration

and

Programming

��

required_item

��

v

Optional

items

appear

below

the

main

path.

��

required_item

optional_item

��

If

an

optional

item

appears

above

the

main

path,

that

item

has

no

effect

on

the

execution

of

the

statement

and

is

used

only

for

readability.

��

optional_item

required_item

��

v

If

you

can

choose

from

two

or

more

items,

they

appear

vertically,

in

a

stack.

If

you

must

choose

one

of

the

items,

one

item

of

the

stack

appears

on

the

main

path.

��

required_item

required_choice1

required_choice2

��

If

choosing

one

of

the

items

is

optional,

the

entire

stack

appears

below

the

main

path.

��

required_item

optional_choice1

optional_choice2

��

If

one

of

the

items

is

the

default,

it

appears

above

the

main

path

and

the

remaining

choices

are

shown

below.

��

required_item

default_choice

optional_choice

optional_choice

��

v

An

arrow

returning

to

the

left,

above

the

main

line,

indicates

that

an

item

that

can

be

repeated.

��

required_item

�

repeatable_item

��

v

If

the

repeat

arrow

contains

punctuation,

you

must

separate

repeated

items

with

the

specified

punctuation.

��

required_item

�

,

repeatable_item

��

v

A

repeat

arrow

above

a

stack

indicates

that

you

can

repeat

the

items

in

the

stack.

About

this

guide

xi

–

Keywords

appear

in

uppercase

(for

example,

FROM).

In

the

XML

Extender,

keywords

can

be

used

in

any

case.

Terms

that

are

not

keywords

appear

in

lowercase

letters

(for

example,

column-name).

They

represent

user-supplied

names

or

values.

–

If

punctuation

marks,

parentheses,

arithmetic

operators,

or

other

such

symbols

are

shown,

you

must

enter

them

as

part

of

the

syntax.

Accessibility

Accessibility

features

help

a

user

who

has

a

physical

disability,

such

as

restricted

mobility

or

limited

vision,

to

use

software

products.

The

major

accessibility

features

in

z/OS

products,

including

DB2

UDB

for

z/OS,

enable

users

to:

v

Use

assistive

technologies

such

as

screen

reader

and

screen

magnifier

software

v

Operate

specific

or

equivalent

features

by

using

only

a

keyboard

v

Customize

display

attributes

such

as

color,

contrast,

and

font

size

Assistive

technology

products,

such

as

screen

readers,

function

with

the

DB2

UDB

for

z/OS

user

interfaces.

Consult

the

documentation

for

the

assistive

technology

products

for

specific

information

when

you

use

assistive

technology

to

access

these

interfaces.

Online

documentation

for

Version

8

of

DB2

UDB

for

z/OS

is

available

in

the

DB2

Information

Center,

which

is

an

accessible

format

when

used

with

assistive

technologies

such

as

screen

reader

or

screen

magnifier

software.

The

DB2

Information

Center

for

z/OS

solutions

is

available

at

the

following

Web

site:

http://publib.boulder.ibm.com/infocenter/db2zhelp.

xii

XML

Extender

Administration

and

Programming

Part

1.

Introduction

This

part

provides

an

overview

of

the

XML

Extender

and

how

you

can

use

it

in

your

business

applications.

©

Copyright

IBM

Corp.

1999,

2004

1

2

XML

Extender

Administration

and

Programming

Chapter

1.

Introduction

Introduction

to

XML

Extender

DB2’s

XML

Extender

provides

the

ability

to

store

and

access

XML

documents,

to

generate

XML

documents

from

existing

relational

data,

and

to

insert

rows

into

relational

tables

from

XML

documents.

XML

Extender

provides

new

data

types,

functions,

and

stored

procedures

to

manage

your

XML

data

in

DB2

UDB

).

The

XML

Extender

is

available

for

the

following

operating

systems:

v

Windows®

NT

v

Windows

2000

v

AIX®

v

Solaris

Operating

Environment

v

Linux

v

OS/390

and

z/OS

v

iSeries

Related

concepts:

v

“XML

Documents”

on

page

3

v

“Features

of

XML

Extender”

on

page

5

v

“Lesson:

Storing

an

XML

document

in

an

XML

column”

on

page

8

v

“Lesson:

Composing

an

XML

document”

on

page

20

v

“XML

Extender

tutorial

lessons”

on

page

7

XML

Documents

Because

companies

tend

to

share

data

between

different

applications,

companies

are

continually

faced

with

the

problem

of

replicating,

transforming,

exporting,

or

saving

their

data

in

formats

that

can

be

imported

into

other

applications.

Many

of

these

transforming

processes

tend

to

drop

some

of

the

data,

or

they

at

least

require

that

users

go

through

the

tedious

process

of

ensuring

that

the

data

remains

consistent.

This

manual

checking

consumes

both

time

and

money.

One

of

the

ways

to

address

this

problem

is

for

application

developers

to

write

Open

Database

Connectivity

(ODBC)

applications,

a

standard

application

programming

interface

(API)

for

accessing

data

in

both

relational

and

non-relational

database

management

systems.

These

applications

save

the

data

in

a

database

management

system.

From

there,

the

data

can

be

manipulated

and

presented

in

the

form

in

which

it

is

needed

for

another

application.

Database

applications

must

be

written

to

convert

the

data

into

a

form

that

an

application

requires.

Applications

change

quickly

and

quickly

become

obsolete.

Applications

that

convert

data

to

HTML

provide

presentation

solutions,

but

the

data

presented

cannot

be

practically

used

for

other

purposes.

A

method

that

separates

the

data

from

its

presentation

is

needed

to

provide

a

practical

form

of

interchange

between

applications.

XML—eXtensible

Markup

Language—addresses

this

problem.

XML

is

extensible

because

the

language

is

a

meta-language

that

allows

you

to

create

your

own

language

based

on

the

needs

of

your

enterprise.

You

use

XML

to

capture

not

only

the

data

for

your

particular

application,

but

also

the

data

structure.

Although

it

is

not

©

Copyright

IBM

Corp.

1999,

2004

3

|

the

only

data

interchange

format,

XML

has

emerged

as

the

accepted

standard.

By

adhering

to

this

standard,

applications

can

share

data

without

first

transforming

it

using

proprietary

formats.

Because

XML

is

now

the

accepted

standard

for

data

interchange,

many

applications

are

emerging

that

will

be

able

to

take

advantage

of

it.

Suppose

that

you

are

using

a

particular

project

management

application

and

you

want

to

share

some

of

its

data

with

your

calendar

application.

Your

project

management

application

could

export

tasks

in

XML,

which

could

then

be

imported

as-is

into

your

calendar

application.

In

today’s

interconnected

world,

application

providers

have

strong

incentives

to

make

an

XML

interchange

format

a

basic

feature

of

their

applications.

How

XML

data

is

handled

in

DB2

Although

XML

solves

many

problems

by

providing

a

standard

format

for

data

interchange,

some

challenges

remain.

When

building

an

enterprise

data

application,

you

must

answer

questions

such

as:

v

How

often

do

I

want

to

replicate

the

data?

v

What

kind

of

information

must

be

shared

between

applications?

v

How

can

I

quickly

search

for

the

information

I

need?

v

How

can

I

make

a

particular

action,

such

as

a

new

entry

being

added,

trigger

an

automatic

data

interchange

between

all

of

my

applications?

These

kinds

of

issues

can

be

addressed

only

by

a

database

management

system.

By

incorporating

the

XML

information

and

meta-information

directly

in

the

database,

you

can

more

efficiently

obtain

the

XML

results

that

your

other

applications

need.

With

the

XML

Extender,

you

can

take

advantage

of

the

power

of

DB2®

in

many

XML

applications.

With

the

content

of

your

structured

XML

documents

in

a

DB2

UDB

database,

you

can

combine

structured

XML

information

with

traditional

relational

data.

Based

on

the

application,

you

can

choose

whether

to

store

entire

XML

documents

in

DB2

in

user-defined

types

provided

for

XML

data

(XML

data

types),

or

you

can

map

the

XML

content

as

base

data

types

in

relational

tables.

For

XML

data

types,

XML

Extender

adds

the

power

to

search

rich

data

types

of

XML

element

or

attribute

values,

in

addition

to

the

structural

text

search

that

the

OS/390®

Text

Extender

provides.

XML

Extender

provides

two

methods

of

storing

and

access

for

XML

data

in

DB2:

XML

column

method

Stores

entire

XML

documents

as

column

data

or

externally

as

a

file,

and

extracts

the

required

XML

element

or

attribute

value

and

stores

it

in

side

tables,

indexed

subtables

for

high-speed

searching.

By

storing

the

documents

as

column

data,

you

can:

v

Perform

fast

search

on

XML

elements

or

attributes

that

have

been

extracted

and

stored

in

side

tables

as

SQL

basic

data

types

and

indexed.

v

Update

the

content

of

an

XML

element

or

the

value

of

an

XML

attribute.

v

Extract

XML

elements

or

attributes

dynamically

using

SQL

queries.

v

Validate

XML

documents

when

they

are

inserted

and

updated.

v

Perform

structural-text

search

with

the

Text

Extender.

4

XML

Extender

Administration

and

Programming

XML

collection

method

Composes

and

decomposes

contents

of

XML

documents

with

one

or

more

relational

tables.

Features

of

XML

Extender

XML

Extender

provides

the

following

features

to

help

you

manage

and

exploit

XML

data

with

DB2:

v

Administration

tools

to

help

you

manage

the

integration

of

XML

data

in

relational

tables

v

Storage

and

access

methods

for

XML

data

within

the

database

v

A

data

type

definition

(DTD)

repository

for

you

to

store

DTDs

used

to

validate

XML

data

v

A

mapping

file

called

the

Document

Access

Definition

(DAD),

which

is

used

to

map

XML

documents

to

relational

data

v

Location

paths

to

specify

the

location

of

an

element

or

attribute

within

an

XML

document.

Administration

tools:

The

XML

Extender

administration

tools

help

you

enable

your

database

and

table

columns

for

XML,

and

map

XML

data

to

DB2®

relational

structures.

XML

Extender

provides

a

command

line

tool,

an

administration

wizard,

and

programming

interfaces

for

administration

tasks.

v

The

dxxadm

command

can

be

run

from

UNIX®

System

Services

(USS).

v

JCL

based

on

samples

provided

in

the

SDXXJCL

data

set

v

The

XML

Extender

administration

stored

procedures

allow

you

to

invoke

administration

commands

from

a

program.

Storage

and

access

methods:

XML

Extender

provides

two

storage

and

access

methods

for

integrating

XML

documents

with

DB2

data

structures:

XML

column

and

XML

collection.

These

methods

have

very

different

uses,

but

can

be

used

in

the

same

application.

XML

column

method

This

method

helps

you

store

intact

XML

documents

in

DB2.

The

XML

column

method

works

well

for

archiving

documents.

The

documents

are

inserted

into

columns

enabled

for

XML

and

can

be

updated,

retrieved,

and

searched.

Element

and

attribute

data

can

be

mapped

to

DB2

UDB

tables

(side

tables),

which

can

be

indexed

for

fast

search.

XML

collection

method

This

method

helps

you

map

XML

document

structures

to

DB2

UDB

tables

so

that

you

can

either

compose

XML

documents

from

existing

DB2

UDB

data,

or

decompose

XML

documents,

storing

the

untagged

data

in

DB2

UDB

tables.

This

method

is

good

for

data

interchange

applications,

particularly

when

the

contents

of

XML

documents

are

frequently

updated.

DTDs:The

XML

Extender

also

allows

you

to

store

DTDs,

the

set

of

declarations

for

XML

elements

and

attributes.

When

a

database

server

is

enabled

for

XML,

a

DTD

repository

table

(DTD_REF)

is

created.

Each

row

of

this

table

represents

a

DTD

with

additional

metadata

information.

Users

can

access

this

table

to

insert

their

own

DTDs.

The

DTDs

are

used

for

validating

the

structure

of

XML

documents.

Chapter

1.

Introduction

5

DAD

files:

You

specify

how

structured

XML

documents

are

to

be

processed

by

XML

Extender

using

a

document

access

definition

(DAD)

file.

The

DAD

file

is

an

XML

document

that

maps

the

XML

document

structure

to

a

DB2

UDB

table.

You

use

a

DAD

file

when

storing

XML

documents

in

a

column,

or

when

composing

or

decomposing

XML

data.

The

DAD

file

specifies

whether

you

are

storing

documents

using

the

XML

column

method,

or

defining

an

XML

collection

for

composition

or

decomposition.

Location

paths:

A

location

path

specifies

the

location

of

an

element

or

attribute

within

an

XML

document.

The

XML

Extender

uses

the

location

path

to

navigate

the

structure

of

the

XML

document

and

locate

elements

and

attributes.

For

example,

a

location

path

of

/Order/Part/Shipment/ShipDate

points

to

the

shipDate

element,

that

is

a

child

of

the

Shipment,

Part,

and

Order

elements,

as

shown

in

the

following

example:

<Order>

<Part>

<Shipment>

<ShipDate>

+...

Figure

1

shows

an

example

of

a

location

path

and

its

relationship

to

the

structure

of

the

XML

document.

The

location

path

is

used

in

the

following

situations:

XML

columns

v

Used

to

identify

the

elements

and

attributes

to

be

extracted

or

updated

when

using

the

XML

Extender

user-defined

functions.

v

Also

used

to

map

the

content

of

an

XML

element

or

attribute

to

a

side

table.

XML

collections

Used

to

override

values

in

the

DAD

file

from

a

stored

procedure.

Location path: “/Order/Part/Shipment/ShipDate”

ShipDate

American Motors

1998-08-19 Boat

68

Order

Tax

Name Email

ExtendedPriceQuantity

34,850.1636black

1

0.02

ShipMode

Shipment

Part

Key

Key

Color

Customer

parts@am.com

Figure

1.

Storing

documents

as

structured

XML

documents

in

a

DB2

UDB

table

column

6

XML

Extender

Administration

and

Programming

To

specify

the

location

path,

XML

Extender

uses

a

subset

of

the

XML

Path

Language

(XPath),

the

language

for

addressing

parts

of

an

XML

document.

For

more

information

about

Xpath,

see

the

following

Web

page:

http://www.w3.org/TR/xpath

Related

concepts:

v

“How

XML

data

is

handled

in

DB2”

on

page

4

v

“Lesson:

Storing

an

XML

document

in

an

XML

column”

on

page

8

v

“Lesson:

Composing

an

XML

document”

on

page

20

v

“XML

Extender

tutorial

lessons”

on

page

7

XML

Extender

tutorial

lessons

This

tutorial

shows

you

how

to

get

started

using

XML

Extender

to

access

and

modify

XML

data

for

your

applications.

Three

lessons

are

provided:

v

Storing

an

XML

document

in

an

XML

column

v

Composing

an

XML

document

v

Cleaning

up

the

database

By

following

the

tutorial

lessons,

you

can

set

up

a

database

using

provided

sample

data,

map

SQL

data

to

an

XML

document,

store

XML

documents

in

the

database,

and

then

search

and

extract

data

from

the

XML

documents.

In

the

administration

lessons,

you

use

the

odb2

command

for

UNIX®

System

Services

(USS)

with

XML

Extender

administration

commands.

In

XML

data

management

lessons,

you

use

XML

Extender

UDFs

and

stored

procedures.

Most

of

the

examples

in

the

rest

of

the

book

draw

on

the

sample

data

that

is

used

in

this

chapter.

Prerequisites

To

complete

the

lessons

in

this

tutorial,

you

must

have

the

following

prerequisites

installed:

v

DB2

for

z/OS™

Version

8

v

XML

Toolkit

for

z/OS

Version

1.4

v

USS

set

up

v

odb2

command

line

or

the

DXXGPREP

JCL

job

In

addition,

the

DB2

UDB

database

server

must

have

been

enabled

by

the

DB2

UDB

administrator.

Scenario

for

the

lessons

In

these

lessons,

you

work

for

ACME

Auto

Direct,

a

company

that

distributes

cars

and

trucks

to

automotive

dealerships.

You

have

two

tasks.

First

you

will

set

up

a

system

in

which

orders

can

be

archived

in

the

SALES_DB

database

for

querying

by

the

sales

department.

Next,

you

extract

information

in

an

existing

purchase

order

database,

SALES_DB.

Methods

to

run

the

lessons:

Two

methods

for

running

the

scripts

and

commands

are

provided.

Chapter

1.

Introduction

7

v

Use

the

odb2

command

line

to

run

SQL

statements.

From

USS

prompt

type:

odb2

A

command

prompt

is

displayed,

from

which

you

can

enter

SQL

commands.

v

You

can

submit

batch

jobs

that

will

issue

equivalent

steps.

Related

concepts:

v

“Administration

tools

for

XML

Extender”

on

page

37

v

“XML

Extender

administration

planning”

on

page

38

v

“Lesson:

Storing

an

XML

document

in

an

XML

column”

on

page

8

v

“Lesson:

Composing

an

XML

document”

on

page

20

Lesson:

Storing

an

XML

document

in

an

XML

column

The

XML

Extender

provides

a

method

of

storing

and

accessing

whole

XML

documents

in

the

database.

The

XML

column

method

enables

you

to

store

the

document

using

the

XML

file

types,

index

the

column

in

side

tables,

and

then

query

or

search

the

XML

document.

This

storage

method

is

particularly

useful

for

archival

applications

in

which

documents

are

not

frequently

updated.

This

lesson

shows

you

how

to

use

the

XML

column

storage

and

access

method.

The

scenario:

You

have

the

task

of

archiving

the

sales

data

for

the

service

department.

The

sales

data

that

you

need

to

work

with

is

stored

in

XML

documents

that

use

the

same

DTD.

The

service

department

provided

a

recommended

structure

for

the

XML

documents

and

specified

which

element

data

will

be

queried

most

frequently.

The

service

department

wants

the

XML

documents

stored

in

the

SALES_TAB

table

in

the

SALES_DB

database

and

wants

to

be

able

to

search

them

quickly.

The

SALES_TAB

table

will

contain

two

columns

with

data

about

each

sale,

and

a

third

column

will

contain

the

XML

document.

This

column

is

called

ORDER.

To

store

this

XML

document

in

the

SALES_TAB

table,

you

will:

1.

Determine

the

XML

Extender

user-defined

types

(UDTs)

in

which

to

store

the

XML

document,

as

well

as

which

XML

elements

and

attributes

will

be

frequently

queried.

2.

Set

up

the

SALES_DB

database

for

XML.

3.

Create

the

SALES_TAB

table,

and

enable

the

ORDER

column

so

that

you

can

store

the

intact

document

in

DB2.

4.

Insert

a

DTD

for

the

XML

document

for

validation.

5.

Store

the

document

as

an

XMLVARCHAR

data

type.

When

you

enable

the

column,

you

will

define

side

tables

to

be

indexed

for

the

structural

search

of

the

document

in

a

document

access

definition

(DAD)

file,

an

XML

document

that

specifies

the

structure

of

the

side

tables.

The

SALES_TAB

table

is

described

in

Table

1

on

page

9.

The

XML

column

to

be

enabled

for

XML,

ORDER,

is

shown

in

italics.

8

XML

Extender

Administration

and

Programming

Table

1.

SALES_TAB

table

Column

name

Data

type

INVOICE_NUM

CHAR(6)

NOT

NULL

PRIMARY

KEY

SALES_PERSON

VARCHAR(20)

ORDER

XMLVARCHAR

The

scripts

and

samples:

For

this

tutorial,

you

use

a

set

of

scripts

and

JCL

samples

to

set

up

your

environment

and

perform

the

steps

in

the

lessons.

These

scripts

are

in

the

dxx_install/samples/db2xml/cmd

directory

(where

dxx_install

is

the

directory

where

you

installed

the

XML

Extender

files).

The

JCL

is

in

library

SDXXJCL.

These

scripts

are:

getstart_db.cmd

Creates

the

database

and

populates

four

tables.

getstart_prep.cmd

Binds

the

database

server

with

the

XML

Extender

stored

procedures

and

the

DB2®

CLI

and

enables

the

database

server

for

XML

Extender.

getstart_insertDTD.cmd

Inserts

the

DTD

used

to

validate

the

XML

document

in

the

XML

column.

getstart_createTabCol.cmd

Creates

an

application

table

that

will

have

an

XML-enabled

column.

getstart_alterTabCol.cmd

Alters

the

application

table

by

adding

the

column

that

will

be

enabled

for

XML.

getstart_enableCol.cmd

Enables

the

XML

column.

getstart_createIndex.cmd

Creates

indexes

on

the

side

tables

for

the

XML

column.

getstart_insertXML.cmd

Inserts

the

XML

document

into

the

XML

column.

getstart_queryCol.cmd

Runs

a

select

statement

on

the

application

table

and

returns

the

XML

document.

getstart_stp.cmd

Runs

the

stored

procedure

to

compose

the

XML

collection.

getstart_exportXML.cmd

Exports

the

XML

document

from

the

database

for

use

in

an

application.

getstart_clean.cmd

Cleans

up

the

tutorial

environment.

Table

2

on

page

10

lists

the

USS

and

JCL

samples

that

are

provided

to

complete

the

tasks

in

the

lesson,

as

well

as

the

suggested

role

in

the

organization

that

might

have

the

correct

authority

to

run

the

samples.

Each

task

is

completed

either

by

an

administrator

or

application

developer.

Chapter

1.

Introduction

9

Table

2.

Scripts

provided

for

the

XML

column

lessons

Role

USS

command

files

Description

JCL

member

name

administrator

getstart_db.cmd

Creates

and

populates

the

database

and

tables

used

for

the

lesson

dxxgdb

administrator

getstart_prep.cmd

Binds

and

enables

the

database

server

dxxgprep

application

developer

getstart_insertDTD.cmd

Inserts

the

dtd

getstart.dtd

into

the

dtd_ref

table

dxxgidtd

administrator

getstart_createTabCol.cmd

Creates

SALES_TAB

for

XML

column

dxxgctco

administrator

getstart_alterTabCol.cmd

Adds

the

ORDER

column

to

SALES_TAB

dxxgatco

administrator

getstart_enableCol.cmd

Enables

the

ORDER

column

as

an

XML

column

dxxgecol

administrator

getstart_createIndex.cmd

Create

indexes

on

side

tables

dxxgcrin

application

developer

getstart_insertXML.cmd

Inserts

an

XML

document

into

the

SALES_TAB

XML

column

dxxgixml

application

developer

getstart_queryCol.cmd

Queries

the

XML

document

held

in

the

sales_tab

XML

column

through

the

side

tables

dxxgcqol

application

developer

getstart_stp.cmd

Runs

the

stored

procedure

to

compose

the

XML

collection

dxxgstp

application

developer

getstart_exportXML.cmd

Exports

the

XML

document

from

the

database

for

use

in

an

application

dxxexml

administrator

getstart_clean.cmd

Cleans

up

the

environment

dxxgclen

These

samples

are

provided

for

your

use

in

your

applications.

Planning

how

to

store

the

document:

Before

you

use

the

XML

Extender

to

store

your

documents,

you

need

to:

v

Understand

the

XML

document

structure.

v

Determine

the

XML

user-defined

type

in

which

you

will

store

the

XML

document.

v

Determine

the

XML

elements

and

attributes

that

the

service

department

will

frequently

search,

so

that

the

content

of

these

can

be

stored

in

side

tables

and

indexed

to

improve

performance.

10

XML

Extender

Administration

and

Programming

The

following

sections

will

explain

how

to

make

these

decisions.

The

XML

document

structure:

The

XML

document

structure

for

this

lesson

takes

information

for

a

specific

order

that

is

structured

by

the

order

key

as

the

top

level,

then

customer,

part,

and

shipping

information

on

the

next

level.

This

lesson

provides

the

sample

DTD

for

you

to

understand

and

validate

the

XML

document

structure.

Determining

the

XML

data

type

for

the

XML

column:

The

XML

Extender

provides

XML

user

defined

types

that

you

can

use

to

define

a

column

to

hold

XML

documents.

These

data

types

are:

XMLVARCHAR

Used

for

documents

smaller

than

3

kilobytes

stored

in

DB2.

The

maximum

size

of

XMLVARCHAR

documents

can

be

redefined

to

as

large

as

32672

kilobytes.

XMLCLOB

Used

for

documents

larger

than

3

kilobytes

stored

in

DB2.

The

maximum

document

size

is

2

gigabytes.

XMLFILE

Used

for

documents

stored

outside

DB2.

In

this

lesson,

you

will

store

a

small

document

in

DB2,

so

you

will

use

the

XMLVARCHAR

data

type.

Determining

elements

and

attributes

to

be

searched:

When

you

understand

the

XML

document

structure

and

the

needs

of

the

application,

you

can

determine

which

elements

and

attributes

will

be

searched

or

extracted

most

frequently,

or

those

that

will

be

the

most

expensive

to

query.

The

service

department

will

frequently

query

the

order

key,

customer

name,

price,

and

shipping

date

of

an

order,

and

they

will

need

quick

performance

for

these

searches.

This

information

is

contained

in

elements

and

attributes

of

the

XML

document

structure.

Table

3

describes

the

location

paths

of

each

element

and

attribute.

Table

3.

Elements

and

attributes

to

be

searched

Data

Location

Path

order

key

/Order/@key

customer

name

/Order/Customer/Name

price

/Order/Part/ExtendedPrice

shipping

date

/Order/Part/Shipment/ShipDate

Mapping

the

XML

document

to

the

side

tables:

To

map

your

XML

documents

to

a

side

table,

you

must

create

a

DAD

file

for

the

XML

column.

The

DAD

file

is

used

to

store

the

XML

document

in

DB2.

It

also

maps

the

XML

element

and

attribute

contents

to

DB2

UDB

side

tables

used

for

indexing,

which

improves

search

performance.

Chapter

1.

Introduction

11

After

identifying

the

elements

and

attributes

to

be

searched,

you

determine

how

they

should

be

organized

in

the

side

tables,

how

many

tables

to

use,

and

which

columns

are

in

what

table.

Organize

the

side

tables

by

putting

similar

information

in

the

same

table.

The

document

structure

is

also

determined

by

whether

the

location

path

of

any

elements

can

be

repeated

more

than

once

in

the

document.

For

example,

in

the

document,

the

part

element

can

be

repeated

multiple

times,

and

therefore,

the

price

and

date

elements

can

occur

multiple

times.

Elements

that

can

occur

multiple

times

must

each

be

in

their

own

side

tables.

You

must

also

determine

what

DB2

UDB

base

types

the

element

or

attribute

values

should

use,

which

is

determined

by

the

format

of

the

data.

v

If

the

data

is

text,

use

VARCHAR.

v

If

the

data

is

an

integer,

use

INTEGER.

v

If

the

data

is

a

date,

and

you

want

to

do

range

searches,

use

DATE.

In

this

tutorial,

the

elements

and

attributes

are

mapped

to

either

ORDER_SIDE_TAB,

PART_SIDE_TAB

or,

SHIP_SIDE_TAB.

The

tables

below

show

which

table

each

element

or

attribute

is

mapped

to.

ORDER_SIDE_TAB

Column

name

Data

type

Location

path

Multiple

occurring?

ORDER_KEY

INTEGER

/Order/@key

No

CUSTOMER

VARCHAR(16)

/Order/Customer/Name

No

PART_SIDE_TAB

Column

name

Data

type

Location

path

Multiple

occurring?

PRICE

DECIMAL(10,2)

/Order/Part/ExtendedPrice

Yes

SHIP_SIDE_TAB

Column

name

Data

type

Location

path

Multiple

occurring?

DATE

DATE

/Order/Part/Shipment/ShipDate

Yes

Creating

the

SALES_DB

database:

In

this

task,

you

create

a

sample

database

and

enable

the

database

for

XML.

To

create

the

database:

1.

Ensure

that

the

database

server

was

enabled

by

the

DB2

UDB

administrator.

2.

Change

to

the

dxx_install/samples/db2xml/cmd

directory,

where

dxx_install

is

the

directory

where

you

installed

the

XML

Extender

files.

The

sample

files

contain

references

to

files

that

use

absolute

path

names.

Check

the

sample

files

and

change

these

values

for

your

directory

paths.

3.

Run

the

getstart_db

command:

From

the

odb2

command

line:

Enter

the

following

command:

getstart_db.cmd

TSO:

Submit

the

dxxgdb

JCL

job.

12

XML

Extender

Administration

and

Programming

Enabling

the

server:

To

store

XML

information

in

the

database,

you

need

to

enable

it

for

the

XML

Extender.

When

you

enable

a

database

for

XML,

XML

Extender:

v

Creates

user-defined

types

(UDTs),

user-defined

functions

(UDFs),

and

stored

procedures

v

Creates

and

populates

control

tables

with

the

necessary

metadata

that

the

XML

Extender

requires

v

Creates

the

DB2XML

schema

and

assigns

the

necessary

privileges

To

enable

the

database

for

XML:

Use

one

of

the

following

methods

to

enable

the

database.

Run

the

following

script:

getstart_prep.cmd

This

script

runs

the

dxxadm

command

option

that

enables

the

database:

dxxadm

enable_server

-a

subsystem-name

wlm

environment

wlm-name

Enabling

the

XML

column

and

storing

the

document:

In

this

lesson,

you

will

enable

a

column

for

XML

Extender

and

store

an

XML

document

in

the

column.

For

these

tasks,

you

will:

1.

Store

the

DTD

in

the

DTD

repository

2.

Create

a

DAD

file

for

the

XML

column

3.

Create

the

SALES_TAB

table

4.

Add

the

column

of

XML

type

5.

Enable

the

XML

column

6.

View

the

column

and

side

tables

7.

Index

the

side

tables

for

structural

search.

8.

Store

the

XML

document

Storing

the

DTD

in

the

DTD

repository:

You

can

use

a

DTD

to

validate

XML

data

in

an

XML

column.

The

XML

Extender

creates

a

table

in

the

XML-enabled

database,

called

DTD_REF.

The

table

is

known

as

the

DTD

repository

and

is

available

for

you

to

store

DTDs.

When

you

validate

XML

documents,

you

must

store

the

DTD

in

this

repository.

The

DTD

for

this

lesson

is

in

dxx_install/samples/db2xml/dtd/getstart.dtd

where

dxx_install

is

the

directory

where

you

installed

DB2

XML

Extender.

Command

line:

v

Enter

the

following

SQL

INSERT

command,

all

on

the

same

DB2

command

line:

INSERT

into

DB2XML.DTD_REF

values

(’dxx_install/samples/db2xml/dtd/getstart.dtd,

DB2XML.XMLClobFromFile

(’dxx_install/samples/db2xml/dtd/getstart.dtd),

0,

’user1’,

’user1’,

’user1’)

v

Run

the

following

command

file

to

insert

the

DTD:

getstart_insertDTD.cmd

Chapter

1.

Introduction

13

TSO:

Submit

the

dxxgidtd

JCL

job.

Creating

a

DAD

file

for

the

XML

column:

This

section

explains

how

you

create

a

DAD

file

for

the

XML

column.

In

the

DAD

file,

you

specify

that

the

access

and

storage

method

you

are

using

is

XML

column.

In

the

DAD

file

you

define

the

tables

and

columns

for

indexing.

In

the

following

steps,

elements

in

the

DAD

are

referred

to

as

tags

and

the

elements

of

your

XML

document

structure

are

referred

to

as

elements.

A

sample

of

a

DAD

file

similar

to

the

one

you

will

create

is

in

dxx_install/samples/db2xml/dad/getstart_xcolumn.dad

.

It

has

some

minor

differences

from

the

file

generated

in

the

following

steps.

If

you

use

it

for

the

lesson,

the

file

paths

might

be

different

than

for

your

environment;

the

<validation>

value

is

set

to

NO,

rather

than

YES.

To

create

a

DAD

file

for

use

with

XML

column:

1.

Open

a

text

editor

and

name

the

file

getstart_xcolumn.dad

All

the

tags

used

in

the

DAD

file

are

case

sensitive.

2.

Create

the

DAD

header,

with

the

XML

and

the

DOCTYPE

declarations.

<?xml

version="1.0"?>

<!DOCTYPE

DAD

SYSTEM

"/dxx_install/samples/DB2XML/dtd/dad.dtd

">

The

DAD

file

is

an

XML

document

and

requires

XML

declarations.

3.

Insert

start

and

end

(<DAD>

and</DAD>)

tags

for

the

document.

All

other

tags

are

located

inside

these

tags.

4.

Insert

start

and

end

(<DTDID>

and</DTDID>)

tags

with

a

DTD

ID

to

specify

a

DTD

if

the

document

will

be

validated:

<dtdid>dxx_install/samples/db2xml/dtd/getstart.dtd</dtdid>

Verify

that

this

string

matches

the

value

used

as

the

first

parameter

value

when

you

insert

the

DTD

in

the

DTD

repository

table.

For

example,

the

path

that

you

use

for

the

DTDID

might

be

different

from

the

string

mentioned

you

inserted

in

the

DTD

reference

table

if

you

are

working

on

a

different

machine

drive.

5.

Insert

start

and

end

(<validation>

and

</validation>)

tags

and

a

keyword

YES

or

NO

to

indicate

whether

you

want

XML

Extender

to

validate

the

XML

document

structure

using

the

DTD

that

you

inserted

into

the

DTD

reference

table.

For

example:

<validation>YES</validation>

The

value

of

<validation>

can

be

in

mixed

case.

6.

Insert

start

and

end

(<Xcolumn>

and</Xcolumn>)

tags

to

specify

that

the

storage

method

is

XML

column.

7.

Create

side

tables.

For

each

side

table

that

you

want

to

create:

a.

Insert

start

and

end

(<table>

and

</table>)

tags

for

each

side

table

that

is

to

be

generated,

and

specify

the

name

of

the

side

table

in

double

quotation

marks

using

the

″name=″

attribute

as

shown

here:

<Xcolumn>

<table

name="order_side_tab">

</table>

<table

name="part_side_tab">

</table>

<table

name="ship_side_tab">

</table>

</Xcolumn>

14

XML

Extender

Administration

and

Programming

b.

Inside

the

table

tags,

insert

a

<column>

tag

for

each

column

that

you

want

the

side

table

to

contain.

Each

column

has

four

attributes:

name,

type,

path,

and

multi_occurrence.

Example:

<table

name="person_names">

<column

name

="fname"

type="varchar(50)"

path="/person/firstName"

multi_occurrence="NO"/>

<column

name

="lname"

type="varchar(50)"

path="/person/lastName"

multi_occurrence="NO"/>

</table>

Where:

name

Specifies

the

name

of

the

column

that

is

created

in

the

side

table.

type

Indicates

the

data

type

in

the

side

table

for

each

indexed

element

or

attribute.

path

Specifies

the

location

path

in

the

XML

document

for

each

element

or

attribute

to

be

indexed.

multi_occurrence

Indicates

whether

the

element

or

attribute

referred

to

by

the

path

attribute

can

occur

more

than

once

in

the

XML

document.

The

possible

values

for

multi_occurrence

are

YES

or

NO.

If

the

value

is

NO,

then

you

can

mention

more

than

one

column

tag

in

the

side

table.

If

the

value

is

YES,

you

can

mention

only

one

column

in

the

side

table.
<Xcolumn>

<table

name="order_side_tab">

<column

name="order_key"

type="integer"

path="/Order/@key"

multi_occurrence="NO"/>

<column

name="customer"

type="varchar(50)"

path="/Order/Customer/Name"

multi_occurrence="NO"/>

</table>

<table

name="part_side_tab">

<column

name="price"

type="decimal(10,2)"

path="/Order/Part/ExtendedPrice"

multi_occurrence="YES"/>

</table>

<table

name="ship_side_tab">

<column

name="date"

type="DATE"

path="/Order/Part/Shipment/ShipDate"

multi_occurrence="YES"/>

</table>

</Xcolumn>

8.

Ensure

that

you

have

the

necessary

end

tags:

v

A

closing

</Xcolumn>

tag

after

the

last

</table>

tag

v

A

closing

</DAD>

tag

after

the

</Xcolumn>

tag

9.

Save

the

file

with

the

following

name:

getstart_xcolumn.dad

Chapter

1.

Introduction

15

You

can

compare

the

file

that

you

just

created

with

the

sample

file,

dxx_install/samples/db2xml/dad/getstart_xcolumn.dad

.

This

file

is

a

working

copy

of

the

DAD

file

required

to

enable

the

XML

column

and

create

the

side

tables.

The

sample

files

contain

references

to

files

that

use

absolute

path

names.

Check

the

sample

files

and

change

these

values

for

your

directory

paths.

Creating

the

SALES_TAB

table:

In

this

section

you

create

the

SALES_TAB

table.

Initially,

it

has

two

columns

with

the

sale

information

for

the

order.

To

create

the

table:

Enter

the

following

CREATE

TABLE

statement

using

one

of

the

following

methods:

Command

line:

v

Enter

the

following

DB2

UDB

commands:

DB2

CREATE

TABLE

SALES_TAB(INVOICE_NUM

CHAR(6)

NOT

NULL

PRIMARY

KEY,

SALES_PERSON

VARCHAR(20))

v

Run

the

following

command

file

to

create

the

table:

getstart_createTabCol.cmd

TSO:

Submit

the

dxxgctco

JCL

job.

Adding

the

column

of

XML

type:

Add

a

new

column

to

the

SALES_TAB

table.

This

column

will

contain

the

intact

XML

document

that

you

generated

earlier

and

must

be

of

an

XML

UDT.

The

XML

Extender

provides

multiple

data

types.

In

this

lesson,

you

will

store

the

document

as

XMLVARCHAR.

To

add

the

column

of

XML

type:

Run

the

SQL

ALTER

TABLE

statement

using

one

of

the

following

three

methods:

Command

line:

v

Enter

the

following

SQL

statement:

DB2

ALTER

TABLE

SALES_TAB

ADD

\ORDER\

DB2XML.XMLVARCHAR

v

Run

the

following

command

file

to

alter

the

table:

getstart_alterTabCol.cmd

TSO:

Submit

the

dxxgatco

JCL

job.

Enabling

the

XML

column:

After

you

create

the

column

of

XML

type,

you

enable

it

for

XML

Extender.

When

you

enable

the

column,

XML

Extender

reads

the

DAD

file

and

creates

the

side

tables.

Before

enabling

the

column,

you

must:

v

Determine

whether

you

want

to

create

a

default

view

of

the

XML

column,

which

contains

the

XML

document

joined

with

the

side-table

columns.

You

can

specify

the

default

view

when

querying

the

XML

document.

In

this

lesson,

you

will

specify

a

view

with

the

-v

parameter.

16

XML

Extender

Administration

and

Programming

v

Determine

whether

you

want

to

specify

a

primary

key

as

the

ROOT

ID,

the

column

name

of

the

primary

key

in

the

application

table

and

a

unique

identifier

that

associates

all

side

tables

with

the

application

table.

If

you

do

not

specify

a

primary

key,

XML

Extender

adds

the

DXXROOT_ID

column

to

the

application

table,

and

to

the

side

tables.

The

ROOT_ID

column

is

used

as

key

to

tie

the

application

and

side

tables

together,

which

allows

the

XML

Extender

to

automatically

update

the

side

tables

if

the

XML

document

is

updated.

In

this

lesson,

you

will

specify

the

name

of

the

primary

key

in

the

command

(INVOICE_NUM)

with

the

-r

parameter.

The

XML

Extender

will

then

use

the

specified

column

as

the

ROOT_ID

and

add

the

column

to

the

side

tables.

v

Determine

whether

you

want

to

specify

a

table

space

or

use

the

default

table

space.

In

this

lesson,

you

will

use

the

default

table

space.

To

enable

the

column

for

XML:

Run

the

dxxadm

enable_column

command,

using

one

of

the

following

three

methods:

Command

line:

v

Enter

the

following

command:

dxxadm

enable_column

-a

V81A

SALES_TAB

ORDER

getstart_xcolumn.dad

-v

SALES_ORDER_VIEW

-r

INVOICE_NUM

v

Run

the

following

command

file

to

enable

the

column:

getstartenableCol.cmd

TSO:

Submit

the

dxxgecol

JCL

job.

The

XML

Extender

creates

the

side

tables

with

the

INVOICE_NUM

column

and

creates

the

default

view.

Important:

Do

not

modify

the

side

tables

in

any

way.

Updates

to

the

side

tables

should

only

be

made

through

updates

to

the

XML

document

itself.

The

XML

Extender

will

automatically

update

the

side

tables

when

you

update

the

XML

document

in

the

XML

column.

Viewing

the

column

and

side

tables:

When

you

enabled

the

XML

column,

you

created

a

view

of

the

XML

column

and

side

tables.

You

can

use

this

view

when

working

with

the

XML

column.

To

view

the

XML

column

and

side-table

columns:

Enter

the

following

SQL

SELECT

statement

from

the

command

line:

odb2

SELECT

*

FROM

SALES_ORDER_VIEW

The

view

shows

the

columns

in

the

side

tables,

as

specified

in

the

getstart_xcolumn.dad

file.

Indexing

side

tables

for

structural

search:

Creating

indexes

on

side

tables

allows

you

to

do

fast

structural

searches

of

the

XML

document.

In

this

section,

you

create

indexes

on

key

columns

in

the

side

tables

that

were

created

when

you

enabled

the

XML

column,

ORDER.

The

service

department

has

specified

which

columns

their

employees

are

likely

to

query

most

Chapter

1.

Introduction

17

often.

Table

4

describes

these

columns

that

you

will

index.

Table

4.

Side-table

columns

to

be

indexed

Column

Side

table

ORDER_KEY

ORDER_SIDE_TAB

CUSTOMER

ORDER_SIDE_TAB

PRICE

PART_SIDE_TAB

DATE

SHIP_SIDE_TAB

To

index

the

side

tables:

Run

the

following

CREATE

INDEX

SQL

commands

using

one

of

the

following

three

methods:

Command

line:

v

Enter

the

following

commands:

DB2

CREATE

INDEX

KEY_IDX

ON

ORDER_SIDE_TAB(ORDER_KEY)

DB2

CREATE

INDEX

CUSTOMER_IDX

ON

ORDER_SIDE_TAB(CUSTOMER)

DB2

CREATE

INDEX

PRICE_IDX

ON

PART_SIDE_TAB(PRICE)

DB2

CREATE

INDEX

DATE_IDX

ON

SHIP_SIDE_TAB(DATE)

v

Run

the

following

command

file

to

create

the

indexes:

getstart_createIndex.cmd

TSO:

Submit

the

dxxgcrin

JCL

job.

Storing

the

XML

document:

Now

that

you

enabled

a

column

that

can

contain

the

XML

document

and

indexed

the

side

tables,

you

can

store

the

document

using

the

functions

that

the

XML

Extender

provides.

When

storing

data

in

an

XML

column,

you

either

use

default

casting

functions

or

XML

Extender

UDFs.

Because

you

will

be

storing

an

object

of

the

base

type

VARCHAR

in

a

column

of

the

XML

UDT

XMLVARCHAR,

you

will

use

the

default

casting

function.

To

store

the

XML

document:

1.

Open

the

XML

document

dxx_install/samples/db2xml/xml/getstart.xml

Ensure

that

the

file

path

in

the

DOCTYPE

matches

the

DTD

ID

specified

in

the

DAD

and

when

inserting

the

DTD

in

the

DTD

repository.

You

can

verify

they

match

by

querying

the

DB2XML.DTD_REF

table

and

by

checking

the

DTDID

element

in

the

DAD

file.

If

you

are

using

a

different

drive

and

directory

structure

than

the

default,

you

need

to

change

the

path

in

the

DOCTYPE

declaration

to

match

your

directory

structure.

2.

Run

the

SQL

INSERT

command,

using

one

of

the

following

methods:

Command

line:

v

Enter

the

following

SQL

INSERT

command:

18

XML

Extender

Administration

and

Programming

DB2

INSERT

INTO

SALES_TAB

(INVOICE_NUM,

SALES_PERSON,

ORDER)

VALUES

(’123456’,

’Sriram

Srinivasan’,

DB2XML.XMLVarcharFromFile

(’dxx_install/samples/db2xml/

/xml/getstart.xml

’))

v

Run

the

following

command

file

to

store

the

document:

getstart_insertXML.cmd

TSO:

Submit

the

dxxgixml

JCL

job.

Verify

that

the

tables

have

been

updated.

Run

the

following

SELECT

statements

for

the

tables

from

the

command

line.

SELECT

*

FROM

SALES_TAB

SELECT

*

FROM

PART_SIDE_TAB

SELECT

*

FROM

ORDER_SIDE_TAB

SELECT

*

FROM

SHIP_SIDE_TAB

Querying

the

XML

document:

You

can

search

the

XML

document

with

a

direct

query

against

the

side

tables.

In

this

step,

you

will

search

for

all

orders

that

have

a

price

over

2500.00.

To

query

the

side

tables:

Run

the

SQL

SELECT

statement,

using

one

of

the

following

methods:

v

Run

QueryCol.sql

Command

line:

Either:

v

Enter

the

following

SQL

SELECT

statement:

DB2

"SELECT

DISTINCT

SALES_PERSON

FROM

SALES_TAB

S,

PART_SIDE_TAB

P

WHERE

PRICE

>

2500.00

AND

S.INVOICE_NUM=P.INVOICE_NUM"

v

Run

the

following

command

file

to

search

the

document:

getstart_queryCol.cmd

v

TSO:

Submit

the

dxxgcqol

JCL

job.

The

result

set

should

show

the

names

of

the

salespeople

who

sold

an

item

that

had

a

price

greater

than

2500.00.

You

have

completed

the

getting

started

tutorial

for

storing

XML

documents

in

DB2

UDB

tables.

For

Example:

SALES_PERSON

Sriram

Srinivasan

Related

concepts:

v

“Introduction

to

XML

Extender”

on

page

3

v

“Lesson:

Composing

an

XML

document”

on

page

20

v

“XML

Extender

tutorial

lessons”

on

page

7

Chapter

1.

Introduction

19

Lesson:

Composing

an

XML

document

This

lesson

teaches

you

how

to

compose

an

XML

document

from

existing

DB2®

data.

The

scenario:

You

have

the

task

of

taking

information

in

an

existing

purchase

order

database,

SALES_DB,

and

extracting

requested

information

from

it

to

be

stored

in

XML

documents.

The

service

department

will

then

use

these

XML

documents

when

working

with

customer

requests

and

complaints.

The

service

department

has

requested

specific

data

to

be

included

and

has

provided

a

recommended

structure

for

the

XML

documents.

Using

existing

data,

you

will

compose

an

XML

document,

getstart.xml,

from

data

in

these

tables.

To

compose

an

XML

document,

you

will

plan

and

create

a

DAD

file

that

maps

columns

from

the

related

tables

to

an

XML

document

structure

that

provides

a

purchase

order

record.

Because

this

document

is

composed

from

multiple

tables,

you

will

create

an

XML

collection

and

associate

these

tables

with

an

XML

structure

and

a

DTD.

You

use

this

DTD

to

define

the

structure

of

the

XML

document.

You

can

also

use

it

to

validate

the

composed

XML

document

in

your

applications.

The

existing

database

data

for

the

XML

document

is

described

in

the

following

tables.

The

column

names

with

an

asterisk

are

columns

that

the

service

department

has

requested

in

the

XML

document

structure.

ORDER_TAB

Column

name

Data

type

ORDER_KEY

*

INTEGER

CUSTOMER

VARCHAR(16)

CUSTOMER_NAME

*

VARCHAR(16)

CUSTOMER_EMAIL

*

VARCHAR(16)

PART_TAB

Column

name

Data

type

PART_KEY

*

INTEGER

COLOR

*

CHAR(6)

QUANTITY

*

INTEGER

PRICE

*

DECIMAL(10,2)

TAX

*

REAL

ORDER_KEY

INTEGER

SHIP_TAB

Column

name

Data

type

DATE

*

DATE

MODE

*

CHAR(6)

20

XML

Extender

Administration

and

Programming

Column

name

Data

type

COMMENT

VARCHAR(128)

PART_KEY

INTEGER

Planning:

Before

you

use

the

XML

Extender

to

compose

your

documents,

you

need

to

determine

the

structure

of

the

XML

document

and

how

it

corresponds

to

the

structure

of

your

database

data.

This

section

provides

an

overview

of

the

XML

document

structure

that

the

service

department

requested,

and

the

DTD

that

you

will

use

to

define

the

structure

of

the

XML

document.

This

section

also

shows

how

this

document

maps

to

the

columns

that

contain

the

data

used

to

populate

the

documents.

Determining

the

document

structure:

The

XML

document

structure

takes

information

for

a

specific

order

from

multiple

tables

and

creates

an

XML

document

for

the

order.

These

tables

each

contain

related

information

about

the

order

and

can

be

joined

on

their

key

columns.

The

service

department

wants

a

document

that

is

structured

by

the

order

number

as

the

top

level,

and

then

customer,

part,

and

shipping

information.

The

service

department

wants

the

document

structure

to

be

intuitive

and

flexible,

with

elements

that

describe

the

data

rather

than

the

structure

of

the

document.

(For

example,

the

customer’s

name

should

be

in

an

element

called

“customer,”

rather

than

a

paragraph.)

After

you

design

the

document

structure,

you

create

a

DTD

to

describe

the

structure

of

the

XML

document.

This

lesson

provides

an

XML

document

and

a

DTD

for

you.

Using

the

rules

of

the

DTD,

and

the

hierarchical

structure

of

the

XML

document,

you

can

create

a

hierarchical

map

of

your

data,

as

shown

in

Figure

2

on

page

22.

Chapter

1.

Introduction

21

Mapping

the

XML

document

and

database

relationship:

After

you

design

the

structure

and

create

the

DTD,

you

need

to

show

how

the

structure

of

the

document

relates

to

the

DB2

UDB

tables

that

you

will

use

to

populate

the

elements

and

attributes.

You

can

map

the

hierarchical

structure

to

specific

columns

in

the

relational

tables,

as

shown

in

Figure

3

on

page

23.

ShipDate

+

American Motors

1998-08-19 Boat

68

=Attribute =Element =Value

<?xml encoding= ?>
<!ELEMENT Order (Customer, Part+)>
<!ATTLIST Order key CDATA #REQUIRED>
<!ELEMENT Customer (Name, Email)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Email (#PCDATA)>
<!ELEMENT Part (key,Quantity,ExtendedPrice,Tax, Shipment+)>
<!ELEMENT key (#PCDATA)>
<!ELEMENT Quantity (#PCDATA)>
<!ELEMENT ExtendedPrice (#PCDATA)>
<!ELEMENT Tax (#PCDATA)>
<!ATTLIST Part color CDATA #REQUIRED>
<!ELEMENT Shipment (ShipDate, ShipMode)>
<!ELEMENT ShipDate (#PCDATA)>
<!ELEMENT ShipMode (#PCDATA)>

"ibm-1047" <?xml version="1.0"?>
<!DOCTYPE Order SYSTEM

<Order key="1">
<Customer>

<Name>American Motors</Name>
<Email>parts@am.com</Email>

</Customer>
<Part color="black ">

<key>68</key>
<Quantity>36</Quantity>
<ExtendedPrice>34850.16</ExtendedPrice>
<Tax>6.000000e-02</Tax>

</Part>
</Order>

>" samples/dtd/getstart.dtd"dxx_install

…

DTD Raw data

Order

Tax

Name Email

ExtendedPriceQuantity

34,850.1636black

1

0.02
ShipMode

Shipment

Part

Key

Key

Color

Customer

parts@am.com

Figure

2.

The

hierarchical

structure

of

the

DTD

and

XML

document

22

XML

Extender

Administration

and

Programming

This

figure

uses

nodes

to

show

elements,

attributes,

and

text

within

the

XML

document

structure.

These

nodes

are

used

in

the

DAD

file

and

are

explained

more

fully

in

later

steps.

Use

this

relationship

description

to

create

DAD

files

that

define

the

relationship

between

the

relational

data

and

the

XML

document

structure.

To

create

the

XML

collection

DAD

file,

you

need

to

understand

how

the

XML

document

corresponds

to

the

database

structure,

as

described

in

Figure

3,

so

that

you

can

describe

from

what

tables

and

columns

the

XML

document

structure

derives

data

for

elements

and

attributes.

You

will

use

this

information

to

create

the

DAD

file

for

the

XML

collection.

The

scripts

and

samples:

This

lesson

provides

a

set

of

scripts

for

you

to

use

to

set

up

your

environment.

These

scripts

are

in

the

dxx_install/samples/db2xml/xml

directory

(where

dxx_install

is

the

directory

in

USS

where

the

sample

DTD,

DAD,

and

XML

files

are

located).

The

scripts

are:

root_node

attribute_node
Color

text_node

text_node

text_node text_node

text_node

price

date mode

attribute_node
Key

tax

element_node
Order

element_node
Part

element_node
ExtendedPrice

element_node
Tax

element_node
Key

element_node
Shipment

element_node
ShipDate

element_node
ShipMode

text_node text_node
customer_name customer_email

element_node
Customer

element_node
Name

element_node
Email

part_key

color

order_key

Names of columns in DB2 tables

text_node

element_node
Quantity

quantity

Figure

3.

XML

document

mapped

to

relational

table

columns

Chapter

1.

Introduction

23

Table

5

lists

the

USS

and

JCL

samples

that

are

provided

to

complete

the

getting

started

tasks.

Table

5.

List

of

the

XML

collection

lesson

samples

Role

Description

USS

command

files

JCL

file

administrator

Creates

and

populates

the

tables

used

for

the

lesson

Getstart_db.cmd

dxxgdb

administrator

Binds

and

enables

the

database

Getstart_prep.cmd

dxxgprep

administrator

Run

a

stored

procedure

to

compose

an

XML

document

Getstart_stp.cmd

dxxgstp

administrator

Exports

a

generated

XML

document

from

DB2

Getstart_export.cmd

dxxgexml

administrator

Cleanup

the

environment

Getstart_clean.cmd

dxxgclen

Important:

If

you

completed

the

XML

column

lesson

and

did

not

clean

up

your

environment,

you

might

be

able

to

skip

this

step.

Check

to

see

if

you

have

a

SALES_DB

database.

To

create

the

database:

1.

Ensure

that

the

database

server

was

enabled

by

the

DB2

administrator.

2.

Change

to

the

dxx_install/samples/db2xml/xml

directory,

where

dxx_install

is

the

directory

in

USS

where

the

sample

DTD,

DAD,

and

XML

files

are

located.

The

sample

files

contain

references

to

files

that

use

absolute

path

names.

Check

the

sample

files

and

change

these

values

for

your

directory

paths.

3.

Run

the

create

database

command

file,

using

one

of

the

following

methods:

odb2

command

line:

Enter

the

following

command:

getstart_db.cmd

TSO:

Submit

the

dxxgdb

JCL

job.

To

store

XML

information

in

the

database,

you

need

to

enable

it

for

the

XML

Extender.

When

you

enable

a

database

for

XML,

the

XML

Extender:

v

Creates

the

user-defined

types

(UDTs),

user-defined

functions

(UDFs),

and

stored

procedures.

v

Creates

and

populates

control

tables

with

the

necessary

metadata

that

the

XML

Extender

requires.

Important:

If

you

completed

the

XML

column

lesson

and

did

not

clean

up

your

environment,

you

might

be

able

skip

this

step.

To

enable

the

database

for

XML,

use

one

of

the

following

methods:

Creating

the

DAD

file

for

the

XML

collection:

24

XML

Extender

Administration

and

Programming

Because

the

data

already

exists

in

multiple

tables,

you

will

create

an

XML

collection,

which

associates

the

tables

with

the

XML

document.

You

define

the

collection

by

creating

a

DAD

file.

In

this

section,

you

create

the

mapping

scheme

in

the

DAD

file

that

specifies

the

relationship

between

the

tables

and

the

structure

of

the

XML

document.

In

the

following

steps,

elements

in

the

DAD

are

referred

to

as

tags

and

the

elements

of

your

XML

document

structure

are

referred

to

as

elements.

A

sample

of

a

DAD

file

similar

to

the

one

you

will

create

is

in

dxx_install/samples/db2xml/dad/getstart_xcollection.dad.

It

has

some

minor

differences

from

the

file

generated

in

the

following

steps.

If

you

use

it

for

the

lesson,

note

that

the

file

paths

might

be

different

than

in

your

environment

and

you

might

need

to

update

the

sample

file.

To

create

the

DAD

file

for

composing

an

XML

document:

1.

From

the

dxx_install/samples/db2xml/xml

directory,

open

a

text

editor

and

create

a

file

called

getstart_xcollection.dad.

2.

Create

the

DAD

header,

using

the

following

text:

<?xml

version="1.0"?>

<!DOCTYPE

DAD

SYSTEM

"dxx_install/samples/db2xml/dtd/dad.dtd">

Change

dxx_install

to

the

directory

where

DB2

XML

Extender

was

installed.

3.

Insert

the

<DAD></DAD>

tags.

All

other

tags

are

located

inside

these

tags.

4.

Specify

<validation>

</validation>

tags

to

indicate

whether

the

XML

Extender

validates

the

XML

document

structure

when

you

insert

a

DTD

into

the

DTD

repository

table.

This

lesson

does

not

require

a

DTD

and

the

value

is

NO.

<validation>NO</validation>

The

value

of

the

<validation>

tags

can

be

mixed

case.

5.

Use

the

<Xcollection></Xcollection>

tags

to

define

the

access

and

storage

method

as

XML

collection.

The

access

and

storage

methods

define

that

the

XML

data

is

stored

in

a

collection

of

DB2

UDB

tables.

<Xcollection>

</Xcollection>

6.

After

the

<Xcollection>

tag,

provide

an

SQL

statement

to

specify

the

tables

and

columns

used

for

the

XML

collection.

This

method

is

called

SQL

mapping

and

is

one

of

two

ways

to

map

relational

data

to

the

XML

document

structure.

Enter

the

following

statement:

<Xcollection

<SQL_stmt>

SELECT

o.order_key,

customer_name,

customer_email,

p.part_key,

color,

quantity,

price,

tax,

ship_id,

date,

mode

from

order_tab

o,

part_tab

p,

table

(select

substr(char(timestamp(db2xml.generate_unique())),16)

as

ship_id,

date,

mode,

part_key

from

ship_tab)

s

WHERE

o.order_key

=

1

and

p.price

>

20000

and

p.order_key

=

o.order_key

and

s.part_key

=

p.part_key

ORDER

BY

order_key,

part_key,

ship_id

</SQL_stmt>

</Xcollection>

This

SQL

statement

uses

the

following

guidelines

when

using

SQL

mapping.

See

Figure

3

on

page

23

for

the

document

structure.

Chapter

1.

Introduction

25

v

Columns

are

specified

in

top-down

order,

by

the

hierarchy

of

the

XML

document

structure.

For

example,

the

columns

for

the

order

and

customer

elements

are

first,

those

for

the

part

element

are

second,

and

those

for

the

shipment

are

third.

v

The

columns

for

a

repeating

section,

or

nonrepeating

section,

of

the

template

that

requires

data

from

the

database

are

grouped

together.

Each

group

has

an

object

ID

column:

ORDER_KEY,

PART_KEY,

and

SHIP_ID.

v

The

object

ID

column

is

the

first

column

in

each

group.

For

example,

O.ORDER_KEY

precedes

the

columns

related

to

the

key

attribute

and

p.PART_KEY

precedes

the

columns

for

the

Part

element.

v

The

SHIP_TAB

table

does

not

have

a

single

key

conditional

column,

and

therefore,

the

generate_unique

user-defined

function

is

used

to

generate

the

SHIP_ID

column.

v

The

object

ID

columns

are

then

listed

in

top-down

order

in

an

ORDER

BY

statement.

The

columns

in

ORDER

BY

are

not

qualified

by

any

schema

and

table

name,

and

they

match

the

column

names

in

the

SELECT

clause.

7.

Add

the

following

prolog

information

to

be

used

in

the

composed

XML

document:

<prolog>?xml

version="1.0"?</prolog>

This

exact

text

is

required

for

all

DAD

files.

8.

Add

the

<doctype></doctype>

tags

to

be

used

in

the

XML

document

you

are

composing.

The

<doctype>

tag

contains

the

path

to

the

DTD

stored

on

the

client.

<doctype>!DOCTYPE

Order

SYSTEM

"dxx_install/samples/db2xml/dtd/getstart.dtd"</doctype>

9.

Define

the

root

element

of

the

XML

document

using

the

<root_node></root_node>

tags.

Inside

the

root_node,

specify

the

elements

and

attributes

that

make

up

the

XML

document.

10.

Map

the

XML

document

structure

to

the

DB2

UDB

relational

table

structure

using

the

following

three

types

of

nodes:

element_node

Specifies

the

element

in

the

XML

document.

Element_nodes

can

have

child

element_nodes.

attribute_node

Specifies

the

attribute

of

an

element

in

the

XML

document.

text_node

Specifies

the

text

content

of

the

element

and

the

column

data

in

a

relational

table

for

bottom-level

element_nodes.

Figure

3

on

page

23

shows

the

hierarchical

structure

of

the

XML

document

and

the

DB2

UDB

table

columns,

and

indicates

what

kinds

of

nodes

are

used.

The

shaded

boxes

indicate

the

DB2

UDB

table

column

names

from

which

the

data

will

be

extracted

to

compose

the

XML

document.

To

add

each

type

of

node,

one

type

at

a

time:

a.

Define

an

<element_node>

tag

for

each

element

in

the

XML

document.

<root_node>

<element_node

name="Order">

<element_node

name="Customer">

<element_node

name="Name">

</element_node>

<element_node

name="Email">

</element_node>

</element_node>

26

XML

Extender

Administration

and

Programming

<element_node

name="Part">

<element_node

name="key">

</element_node>

<element_node

name="Quantity">

</element_node>

<element_node

name="ExtendedPrice">

</element_node>

<element_node

name="Tax">

</element_node>

<element_node

name="Shipment"

multi_occurrence="YES">

<element_node

name="ShipDate">

</element_node>

<element_node

name="ShipMode">

</element_node>

</element_node>

<!--

end

Shipment

-->

</element_node>

<!--

end

Part

-->

</element_node>

<!--

end

Order

-->

</root_node>

The

<Shipment>

child

element

has

an

attribute

of

multi_occurrence=YES.

This

attribute

is

used

for

elements

without

an

attribute,

that

are

repeated

in

the

document.

The

<Part>

element

does

not

use

the

multi-occurrence

attribute

because

it

has

an

attribute

of

color,

which

makes

it

unique.

b.

Define

an

<attribute_node>

tag

for

each

attribute

in

your

XML

document.

These

attributes

are

nested

in

the

appropriate

element_node.

The

added

attribute_nodes

are

highlighted

in

bold:

<root_node>

<element_node

name="Order">

<attribute_node

name="key">

</attribute_node>

<element_node

name="Customer">

<element_node

name="Name">

</element_node>

<element_node

names"Email">

</element_node>

</element_node>

<element_node

name="Part">

<attribute_node

name="color">

</attribute_node>

<element_node

name="key">

</element_node>

<element_node

name="Quantity">

</element_node>

...

</element_node>

<!--

end

Part

-->

</element_node>

<!--

end

Order

-->

</root_node>

c.

For

each

bottom-level

element_node,

define

<text_node>

tags

to

indicate

that

the

XML

element

contains

character

data

to

be

extracted

from

DB2

UDB

when

the

document

is

composed.

<root_node>

<element_node

name="Order">

<attribute_node

name="key">

</attribute_node>

<element_node

name="Customer">

<element_node

name="Name">

<text_node>

</text_node>

</element_node>

<element_node

name="Email">

<text_node>

</text_node>

Chapter

1.

Introduction

27

</element_node>

</element_node>

<element_node

name="Part">

<attribute_node

name="color">

</attribute_node>

<element_node

name="key">

<text_node>

</text_node>

</element_node>

<element_node

name="Quantity">

<text_node>

</text_node>

</element_node>

<element_node

name="ExtendedPrice">

<text_node>

</text_node>

</element_node>

<element_node

name="Tax">

<text_node>

</text_node>

</element_node>

<element_node

name="Shipment"

multi_occurrence="YES">

<element_node

name="ShipDate">

<text_node>

</text_node>

</element_node>

<element_node

name="ShipMode">

<text_node>

</text_node>

</element_node>

</element_node>

<!--

end

Shipment

-->

</element_node>

<!--

end

Part

-->

</element_node>

<!--

end

Order

-->

</root_node>

d.

For

each

bottom-level

element_node,

define

a

<column/>

tag.

These

tags

specify

from

which

column

to

extract

data

when

composing

the

XML

document

and

are

typically

inside

the

<attribute_node>

or

the

<text_node>

tags.

The

columns

defined

in

the

<column/>

tag

must

be

in

the

<SQL_stmt>

SELECT

clause.

<root_node>

<element_node

name="Order">

<attribute_node

name="key">

<column

name="order_key"/>

</attribute_node>

<element_node

name="Customer">

<element_node

name="Name">

<text_node>

<column

name="customer_name"/>

</text_node>

</element_node>

<element_node

name="Email">

<text_node>

<column

name="customer_email"/>

</text_node>

</element_node>

</element_node>

<element_node

name="Part">

<attribute_node

name="color">

<column

name="color"/>

</attribute_node>

<element_node

name="key">

<text_node>

<column

name="part_key"/>

</text_node>

<element_node

name="Quantity">

28

XML

Extender

Administration

and

Programming

<text_node>

<column

name="quantity"/>

</text_node>

</element_node>

<element_node

name="ExtendedPrice">

<text_node>

<column

name="price"/>

</text_node>

</element_node>

<element_node

name="Tax">

<text_node>

<column

name="tax"/>

</text_node>

</element_node>

<element_node

name="Shipment"

multi_occurrence="YES">

<element_node

name="ShipDate">

<text_node>

<column

name="date"/>

</text_node>

</element_node>

<element_node

name="ShipMode">

<text_node>

<column

name="mode"/>

</text_node>

</element_node>

</element_node>

<!--

end

Shipment

-->

</element_node>

<!--

end

Part

-->

</element_node>

<!--

end

Order

-->

</root_node>

11.

Ensure

that

you

have

the

necessary

end

tags:

v

An

ending

</root_node>

tag

after

the

last

</element_node>

tag

v

An

ending

</Xcollection>

tag

after

the

</root_node>

tag

v

An

ending

</DAD>

tag

after

the

</Xcollection>

tag

12.

Save

the

file

as

getstart_xcollection.dad.

You

can

compare

the

file

that

you

created

with

the

sample

file

dxx_install/samples/db2xml/dad/getstart_xcollection.dad

.

This

file

is

a

working

copy

of

the

DAD

file

required

to

compose

the

XML

document.

The

sample

file

contains

location

paths

and

file

path

names

that

might

need

to

be

changed

to

match

your

environment

to

be

run

successfully.

In

your

application,

if

you

will

use

an

XML

collection

frequently

to

compose

documents,

you

can

define

a

collection

name

by

enabling

the

collection.

Enabling

the

collection

registers

it

in

the

XML_USAGE

table

and

helps

improve

performance

when

you

specify

the

collection

name

(rather

than

the

DAD

file

name)

when

running

stored

procedures.

In

these

lessons,

you

do

not

enable

the

collection.

Composing

the

XML

document:

In

this

step,

you

use

the

dxxGenXML()

stored

procedure

to

compose

the

XML

document

specified

by

the

DAD

file.

This

stored

procedure

returns

the

document

as

an

XMLVARCHAR

UDT.

To

compose

the

XML

document:

1.

Use

one

of

the

following

methods

to

call

the

dxxGenXML

stored

procedure:

Command

line:

Enter

the

following

command:

getstart_stp.cmd

TSO:

Submit

the

dxxgstp

JCL

job.

Chapter

1.

Introduction

29

The

stored

procedure

composes

the

XML

document

and

stores

it

in

the

RESULT_TAB

table.

You

can

see

samples

of

stored

procedures

that

can

be

used

in

this

step

in

the

following

files:

v

dxx_install/samples/db2xml/c/tests2x.sqc

shows

how

to

call

the

stored

procedure

using

embedded

SQL

and

generates

the

tests2x

executable

file,

which

is

used

by

the

getstart_stp.cmd.

v

dxx_install/samples/db2xml/cli/sql2xml.c

dxxsamples/cli/sql2xml.cshows

how

to

call

the

stored

procedure

using

the

CLI.

2.

Export

the

XML

document

from

the

table

to

a

file

using

one

of

the

following

methods

to

call

the

XML

Extender

retrieval

function,

Content():

Command

line:

v

Enter

the

following

commands:

DB2

SELECT

DB2XML.Content(DB2XML.xmlVarchar(doc),

’dxx_install/samplesdb2xml/cmd/xml/getstart.xml

’)

FROM

RESULT_TAB

v

Run

the

following

command

file

to

export

the

file:

getstart_exportXML.cmd

TSO:

Submit

the

DXXGEXML

JCL

job.

Tip:

This

step

teaches

you

how

to

generate

one

or

more

composed

XML

documents

using

DB2

UDB

stored

procedure’s

result

set

feature.

Using

a

result

set

allows

you

to

fetch

multiple

rows

to

generate

more

than

one

document.

When

you

generate

each

document,

you

can

export

it

to

a

file.

This

method

is

the

simplest

way

to

demonstrate

using

result

sets.

For

more

efficient

ways

of

fetching

data,

see

the

CLI

examples

in

dxx_install/samples/db2xml/cli.

Transforming

an

XML

document

into

an

HTML

file:

To

show

the

data

from

the

XML

document

in

a

browser,

you

must

transform

the

XML

document

into

an

HTML

file

by

using

a

stylesheet

and

the

XSLTransformToFile

function.

Use

the

following

steps

to

transform

to

an

HTML

file:

1.

Generate

a

stylesheet:

<?xml

version="1.0"

encoding="UTF-8"?>

<xsl:stylesheet

version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template

match="/">

<html>

<head/>

<body>

...

</body>

</html>

</xsl:template>

</xsl:stylesheet>

2.

For

each

element,

create

a

tag

using

the

following

format:

<xsl:for-each

select="xxxxxx">

This

tag

will

be

used

for

transforming

instructions.

Create

a

tag

for

each

element

of

the

hierarchy

of

the

XML

document.

For

example:

30

XML

Extender

Administration

and

Programming

<?xml

version="1.0"

encoding="UTF-8"?>

<xsl:stylesheet

version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template

match="/">

<html>

<head/>

<body>

<xsl:for-each

select="Order">

<xsl:for-each

select="Customer">

<xsl:for-each

select="Name

|

Email">

</xsl:for-each>

</xsl:for-each>

<xsl:for-each

select="Part">

<xsl:for-each

select="key

|

Quantity

|

ExtendedPrice

|

Tax">

</xsl:for-each>

<xsl:for-each

select="Shipment">

<xsl:for-each

select="ShipDate

|

ShipMode">

</xsl:for-each>

</xsl:for-each>

</xsl:for-each>

</xsl:for-each>

</body>

</html>

</xsl:template>

</xsl:stylesheet>

3.

To

format

the

HTML

file,

use

a

list

that

shows

the

hierarchy

of

the

XML

elements

to

make

the

data

more

readable.

Create

some

additional

text

elements

to

describe

the

data.

For

example,

your

stylesheet

file

might

look

like

this:

<?xml

version="1.0"

encoding="UTF-8"?>

<xsl:stylesheet

version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template

match="/">

<html>

<head/>

<body>

<ol

style="list-style:decimal

outside">

<xsl:for-each

select="Order">

Orderkey

:

<xsl:value-of-select="@key"/

<xsl:for-each

select="Customer">

Customer

<xsl:for-each

select="Name

|

Email">

<xsl:value-of

select="name()"/>

<xsl:text>

:

</xsl:text>

<xsl:value-of

select="."/>

<xsl:text>,

</xsl:text>

</xsl:for-each>

</xsl:for-each>

<ol

type="A">

<xsl:for-each

select="Part">

Parts

Color

:

<xsl:value-of

select="@color"/>

<xsl:text>,

</xsl:text>

<xsl:for-each

select="key

|

Quantity

|

ExtendedPrice

|

Tax">

<xsl:value-of

select="name()"/>

<xsl:text>

:

</xsl:text>

Chapter

1.

Introduction

31

<xsl:value-of

select="."/>

<xsl:text>,

</xsl:text>

</xsl:for-each>

<ol

type="a">

<xsl:for-each

select="Shipment">

Shipment

<xsl:for-each

select="ShipDate

|

ShipMode">

<xsl:value-of

select="name()"/>

<xsl:text>

:

</xsl:text>

<xsl:value-of

select="."/>

<xsl:text>,

</xsl:text>

</xsl:for-each>

</xsl:for-each>

</xsl:for-each>

</xsl:for-each>

</body>

</html>

</xsl:template>

</xsl:stylesheet>

4.

Use

Xpath

to

edit

the

<xsl:value-of

select=″xxx″>

tags

with

data

from

the

XML

document.

The

element

tags

are

<xsl:value-of

select″.″>,

where

the

period

(″.″)

is

used

to

get

data

from

normal

elements.

The

attribute

tags

are

<xsl:value-of

select=″@attributname″>

,

where

the

ampersand

(@

)

that

is

added

by

the

attribute

name

will

extract

the

value

of

the

attribute.

You

can

use

the

<xsl:value-of

select=″name()″>

to

get

the

name

of

the

XML

tag.

<?xml

version="1.0"

encoding="UTF-8"?>

<xsl:stylesheet

version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template

match="/">

<html>

<head/>

<body>

<ol

style="list-style:decimal

outside">

<xsl:for-each

select="Order">

Orderkey

:

<xsl:value-of-select="@key"/

<xsl:for-each

select="Customer">

Customer

<xsl:for-each

select="Name

|

Email">

<xsl:value-of

select="name()"/>

<xsl:text>

:

</xsl:text>

<xsl:value-of

select="."/>

<xsl:text>,

</xsl:text>

</xsl:for-each>

</xsl:for-each>

<ol

type="A">

<xsl:for-each

select="Part">

Parts

Color

:

<xsl:value-of

select="@color"/>

<xsl:text>,

</xsl:text>

32

XML

Extender

Administration

and

Programming

<xsl:for-each

select="key

|

Quantity

|

ExtendedPrice

|

Tax">

<xsl:value-of

select="name()"/>

<xsl:text>

:

</xsl:text>

<xsl:value-of

select="."/>

<xsl:text>,

</xsl:text>

</xsl:for-each>

<ol

type="a">

<xsl:for-each

select="Shipment">

Shipment

<xsl:for-each

select="ShipDate

|

ShipMode">

<xsl:value-of

select="name()"/>

<xsl:text>

:

</xsl:text>

<xsl:value-of

select="."/>

<xsl:text>,

</xsl:text>

</xsl:for-each>

</xsl:for-each>

</xsl:for-each>

</xsl:for-each>

</body>

</html>

</xsl:template>

</xsl:stylesheet>

5.

Save

the

stylesheet.

6.

Create

the

HTML

file

in

one

of

the

following

ways:

v

Use

the

XSLTransformToFile:

SELECT

XSLTransformToFile(

CAST(doc

AS

CLOB(4k)),

’dxx_install\samples\xslt\getstart.xsl’,

’dxx_install\samples\html\getstart.html’)

FROM

RESULT_TAB

v

Use

the

following

command:

Getstart_xslt.cmd

The

output

file

can

be

written

only

to

a

file

system

that

is

accessible

to

the

DB2

UDB

server.

Cleaning

up

the

tutorial

environment:

If

you

want

to

clean

up

the

lesson

environment,

you

can

run

one

of

the

provided

scripts

or

enter

the

commands

from

the

command

line

to:

v

Disable

the

XML

column,

ORDER.

v

Drop

tables

created

in

the

lessons.

v

Delete

the

DTD

from

the

DTD

repository

table.

They

do

not

disable

or

drop

the

SALES_DB

database;

the

database

is

still

available

for

use

with

XML

Extender.

You

might

receive

error

messages

if

you

have

not

completed

both

lessons

in

this

chapter.

You

can

ignore

these

errors.

To

clean

up

the

tutorial

environment:

Run

the

cleanup

command

file,

using

one

of

the

following

methods:

v

Command

line:

Enter

the

following

command:

Chapter

1.

Introduction

33

getstart_clean.cmd

TSO:

Submit

the

dxxgclen

JCL

job.

v

If

you

want

to

disable

the

server,

you

can

run

the

following

XML

Extender

command

from

the

command

line:

dxxadm

disable_server

-a

V81A

This

command

drops

the

administration

control

tables

DTD_REF

and

XML_USAGE,

and

removes

the

user-defined

types

and

functions

provided

by

XML

Extender.

Related

concepts:

v

“Introduction

to

XML

Extender”

on

page

3

v

“Lesson:

Storing

an

XML

document

in

an

XML

column”

on

page

8

v

“XML

Extender

tutorial

lessons”

on

page

7

34

XML

Extender

Administration

and

Programming

Part

2.

Administration

This

part

describes

how

to

perform

administration

tasks

for

the

XML

Extender.

©

Copyright

IBM

Corp.

1999,

2004

35

36

XML

Extender

Administration

and

Programming

Chapter

2.

Administration

Administration

tools

for

XML

Extender

The

XML

Extender

administration

tools

help

you

enable

your

database

and

table

columns

for

XML,

and

map

XML

data

to

DB2®

relational

structures.

The

XML

Extender

provides

the

following

command

line

tool

and

programming

interfaces

for

administration

tasks

that

you

can

use.

XML

Extender

provides

a

command

line

tool

and

programming

interfaces

for

administration

tasks.

v

The

dxxadm

command

can

be

run

from

UNIX®

System

Services

(USS)

or

from

the

TSO

command

line.

v

JCL

based

on

samples

provided

in

the

SDXXJCL

data

set

XML

Extender

also

provides

the

following

tools

to

complete

administration

tasks:

v

The

XML

Extender

administration

wizard

provides

a

graphical

user

interface

for

administration

tasks.

v

The

XML

Extender

administration

stored

procedures

allow

you

to

invoke

administration

commands

from

a

program.

Preparing

to

administer

XML

Extender

To

run

XML

Extender,

you

need

to

install

the

following

software.

Required

software:

The

XML

Extender

requires

DB2®

Universal

Database

for

z/OS

Version

8.

Optional

software:

v

For

structural

text

search,

the

DB2

Universal

Database

Text

Extender

Version

8,

which

is

available

with

DB2

Universal

Database

Version

8

v

For

XML

Extender

administration

wizard:

–

DB2

Universal

Database

Java

Database

Connectivity

(JDBC)

–

JDK

1.1.7

or

JRE

1.1.1,

which

is

available

with

the

DB2

UDB

Control

Center

–

JFC

1.1

with

Swing

1.1,

which

is

available

with

the

DB2

UDB

Control

Center

Before

you

install

XML

Extender,

you

must

complete

following

tasks:

v

View

the

set

up

instructions.

v

Create

a

database

for

XML

access.

To

perform

administration

tasks

using

XML

Extender,

you

must

have

DB2ADM

authority.

Migrating

XML

Extender

from

Version

7

to

Version

8

If

you

use

XML

Extender

Version

7,

you

must

migrate

each

serverthat

is

enabled

for

XML

Extender

before

you

use

an

existing

XML-enabled

database

with

XML

Extender

Version

8.

The

migration

program

executes

various

steps

depending

on

the

base

level

of

XML

Extender

that

you

have.

Steps

that

the

migration

program

might

execute

are:

©

Copyright

IBM

Corp.

1999,

2004

37

v

Create

XMLDBCLOB

user-defined

types

(UDTs)

and

user-defined

functions

(UDFs)

for

use

with

Unicode

and

DBCS

databases

v

Create

new

user-defined

functions

for

Schema

and

DTD

validation

and

XSLT

function.

v

Create

new

stored

procedures

(dxxGenXMLCLOB

and

dxxRetrieveXMLCLOB)

that

return

CLOBs.

v

Drop

and

re-create

the

user-defined

functions

UDFs

that

allow

you

to

use

the

parallel

capability

for

the

scalar

UDFs.

When

calling

stored

procedures,

use

a

period

(.)

instead

of

an

explanation

point

(!)

in

the

procedure

name.

For

example,

use

db2xml.dxxEnableColumn

instead

of

db2xml!dxxEnableColumn.

Procedure:

To

migrate

an

XML

enabled

server

and

XML

enabled

columns:

1.

Install

DB2

UDB

XML

Extender

Version

8.1.

2.

Re-bind

the

XML

Extender

packages

by

running

DXXRBIND.

3.

Update

the

UDFs

and

stored

procedures

by

running

DXXMIGRA.

To

manually

migrate

columns

enabled

for

XML

extender:

1.

Retrieve

the

DAD

file

that

is

used

to

enable

a

column

from

the

DB2XML.XML_USAGE

table

before

you

disable

any

columns.

XML

Extender

administration

planning

The

XML

Extender

provides

several

methods

for

administration:

XML

Extender

administration

command

and

XML

Extender

stored

procedures.

You

can

also

use

the

XML

Extender

administration

wizard,

if

you

have

XML

Extender

installed

on

a

client

workstation.

v

The

administration

command,

dxxadm,

provides

subcommands

for

the

various

administration

tasks.

v

Administration

tasks

can

be

executed

by

calling

stored

procedures

for

administration

from

a

program.

v

The

XML

Extender

administration

wizard

guides

you

through

the

administration

tasks.

You

can

use

it

from

a

client

workstation

to

perform

these

tasks.

When

you

plan

an

application

that

uses

XML

documents,

you

first

decide

whether

you

will:

v

Compose

XML

documents

from

data

in

the

database.

v

Store

existing

XML

documents.

If

you

will

store

XML

documents,

you

must

also

decide

if

you

want

them

to

be

stored

as

intact

XML

documents

in

a

column

or

decomposed

into

regular

DB2®

data.

After

you

make

this

decision,

you

can

then

decide:

v

Whether

to

validate

your

XML

documents

v

Whether

to

index

XML

column

data

for

fast

search

and

retrieval

v

How

to

map

the

structure

of

the

XML

document

to

DB2

UDB

relational

tables

38

XML

Extender

Administration

and

Programming

Setting

up

the

administration

wizard

The

XML

Extender

administration

tasks

consist

of

enabling

your

database

columns

for

XML

and

mapping

XML

data

to

DB2

UDB

relational

structures.

You

can

use

the

XML

Extender

wizard

to

complete

these

administration

tasks.

This

chapter

explains

how

you

can

set

up

and

invoke

the

administration

wizard.

You

can

invoke

the

wizard

either

through

the

Windows

Start

menu

or

from

a

command

line

prompt.

Prerequisites:

Before

you

set

up

the

wizard,

you

must

install

and

configure

the

administration

wizard

as

explained

in

the

README

file

for

your

operating

system.

You

must

include

the

required

class

files

in

your

CLASSPATH

environment

variable.

With

the

exception

of

the

line

breaks,

ensure

that

the

CLASSPATH

environment

variable

looks

similar

to

the

following

example:

.;C:\java\db2java.zip;C:\java\runtime.zip;C:\java\sqlj.zip;

C:\dxx_installtools\dxxadmin.jar;C:\dxx_install\bin\dxxadmin.cmd;

C:\dxx_installtools\html\dxxahelp*.htm;C:\java\jdk\lib\classes.zip;

C:\java\swingall.jar

Where

dxx_install

is

the

install

directory.

Procedure:

To

set

up

the

XML

Extender

Administration

wizard:

1.

Invoke

the

wizard

using

the

JDK.

You

can

use

either

the

Java

Development

Kit

or

the

Java

Runtime

Environment

(JRE).

v

To

use

the

JRE,

enter:

jre

-classpath

classpath

com.ibm.dxx.admin.Admin

v

To

use

the

JDK,

enter:

java

-classpath

classpath

com.ibm.dxx.admin.Admin

Where

classpath

specifies

the

%CLASSPATH%

environment

variable

that

specifies

where

the

administration

wizard

class

files

are

located.

When

using

this

option,

your

system

CLASSPATH

variable

must

point

to

the

dxx_install/tools

directory,

which

contains

the

following

files:

dxxadmin.jar,

xml4j.jar,

and

db2java.zip.

For

example:

java

-classpath

%CLASSPATH%

com.ibm.dxx.admin.Admin

classpath

can

also

specify

an

override

of

the

%CLASSPATH%

environment

variable

with

pointers

to

files

in

the

dxx_install/dxxadmin

directory,

from

which

you

are

running

the

XML

Extender

administration

wizard.

For

example:

java

-classpath

dxxadmin.jar;xml4j.jar;db2java.zip

com.ibm.dxx.admin.Admin

url=jdbc:db2:mydb2

userid=db2xml

password=db2xml

driver=COM.ibm.db2.jdbc.app.DB2Driver

2.

From

the

Logon

window,

log

on

to

the

database

that

you

want

to

use

to

work

with

XML

data.

3.

In

the

Address

field,

type

the

fully-qualified

JDBC

URL

to

the

data

source

to

which

you

are

connecting.

The

address

has

the

following

syntax:

jdbc:db2:database_name

Where

database_name

is

the

database

to

which

you

are

connecting

and

storing

XML

documents.

Chapter

2.

Administration

39

For

example:

jdbc:db2:sales_db

4.

In

the

User

ID

and

Password

fields,

type

or

verify

the

DB2

UDB

user

ID

and

password

for

the

database

to

which

you

are

connecting.

5.

In

the

JDBC

Driver

field,

verify

the

JDBC

driver

name

for

the

specified

address

using

the

following

values:

COM.ibm.db2.jdbc.app.DB2DRIVER

6.

Click

Finish.

Invoke

the

wizard

and

advance

to

the

LaunchPad

window.

After

you

complete

this

procedure

you

can

invoke

the

wizard

in

the

LaunchPad

window.

With

the

wizard,

you

can

perform

the

following

functions:

v

Enable

a

server.

v

Add

a

DTD

to

the

DTD

repository.

v

Work

with

XML

columns.

v

Work

with

XML

collections.

Access

and

storage

methods

The

XML

Extender

provides

two

access

and

storage

methods

to

use

DB2®

as

an

XML

repository:

XML

column

and

XML

collection.

You

need

to

decide

which

of

these

methods

best

matches

your

application’s

needs

for

accessing

and

manipulating

XML

data.

XML

column

Stores

and

retrieves

entire

XML

documents

as

DB2

UDB

column

data.

The

XML

data

is

represented

by

an

XML

column.

XML

collection

Decomposes

XML

documents

into

a

collection

of

relational

tables

or

composes

XML

documents

from

a

collection

of

relational

tables.

The

nature

of

your

application

determines

which

access

and

storage

method

is

most

suitable,

and

how

to

structure

your

XML

data.

You

use

the

DAD

file

to

associate

XML

data

with

DB2

UDB

tables

through

these

two

access

and

storage

methods.

Figure

4

on

page

41

shows

how

the

DAD

specifies

the

access

and

storage

methods.

40

XML

Extender

Administration

and

Programming

The

DAD

file

defines

the

location

of

key

files

like

the

DTD,

and

specifies

how

the

XML

document

structure

relates

to

your

DB2

UDB

data.

Most

important,

it

defines

the

access

and

storage

method

that

you

use

in

your

application.

Related

concepts:

v

“When

to

use

the

XML

column

method”

on

page

41

v

“When

to

use

the

XML

collection

method”

on

page

42

Related

reference:

v

“Storage

functions

in

XML

Extender

overview”

on

page

138

When

to

use

the

XML

column

method

Use

XML

columns

in

any

of

the

following

situations:

v

The

XML

documents

already

exist

or

come

from

an

external

source

and

you

prefer

to

store

the

documents

in

the

native

XML

format.

You

want

to

store

them

in

DB2®

for

integrity,

archival,

and

auditing

purposes.

v

The

XML

documents

are

read

frequently,

but

not

updated.

v

You

want

to

use

file

name

data

types

to

store

the

XML

documents

(external

to

DB2

UDB)

in

the

local

or

remote

file

system

and

use

DB2

UDB

for

management

and

search

operations.

v

You

need

to

perform

range

searches

based

on

the

values

of

XML

elements

or

attributes,

and

you

know

what

elements

or

attributes

will

frequently

be

used

in

the

search

arguments.

v

The

documents

have

elements

with

large

text

blocks

and

you

want

to

use

the

DB2

UDB

Text

Extender

for

structural

text

search

while

keeping

the

entire

documents

intact.

<?xml?>
<!DOCTYPE…>

<Order key="1">

<?xml?>
<!DOCTYPE…>

<Order key="1">

…
…

…
…

…
…

</Order>

</Order>

XML document

XML document

DB2

DB2

DAD

DAD

<Xcolumn>
<table>
<column>
<column>
<column>

</table>
</Xcolumn>

<Xcollection>
<table>
<column>

</table>

<table>
<column>

</table>
</Xcollection>

Figure

4.

The

DAD

file

maps

the

XML

document

structure

to

a

DB2

UDB

relational

data

structure

and

specifies

the

access

and

storage

method.

Chapter

2.

Administration

41

When

to

use

the

XML

collection

method

Use

XML

collections

in

any

of

the

following

situations:

v

You

have

data

in

your

existing

relational

tables

and

you

want

to

compose

XML

documents

based

on

a

certain

DTD.

v

You

have

XML

documents

that

need

to

be

stored

with

collections

of

data

that

map

well

to

relational

tables.

v

You

want

to

create

different

views

of

your

relational

data

using

different

mapping

schemes.

v

You

have

XML

documents

that

come

from

other

data

sources.

You

care

about

the

data

but

not

the

tags,

and

want

to

store

pure

data

in

your

database

and

you

want

the

flexibility

to

decide

whether

to

store

the

data

in

existing

tables

or

in

new

tables.

Planning

for

XML

columns

Before

you

begin

working

with

the

XML

Extender

to

store

your

documents,

you

need

to

understand

the

structure

of

the

XML

document

so

that

you

can

determine

how

to

index

elements

and

attributes

in

the

document.

When

planning

how

to

index

the

document,

you

need

to

determine:

v

The

XML

user-defined

type

in

which

you

will

store

the

XML

document

v

The

XML

elements

and

attributes

that

your

application

will

frequently

search,

so

that

their

content

can

be

stored

in

side

tables

and

indexed

to

improve

performance

v

Whether

to

validate

XML

documents

in

the

column

with

a

DTD

v

The

structure

of

the

side

tables

and

how

they

will

be

indexed

XML

data

types

for

the

XML

columns

The

XML

Extender

provides

XML

user

defined

types

that

you

use

to

define

a

column

to

hold

XML

documents.

These

data

types

are

described

in

Table

6.

Table

6.

The

XML

Extender

UDTs

User-defined

type

column

Source

data

type

Usage

description

XMLVARCHAR

VARCHAR(varchar_len)

Stores

an

entire

XML

document

as

a

VARCHAR

data

type

within

DB2.

Used

for

small

documents

that

are

stored

in

DB2.

XMLCLOB

CLOB(clob_len)

Stores

an

entire

XML

document

as

a

CLOB

data

type

within

DB2.

Used

for

large

documents

that

are

stored

in

DB2.

XMLFILE

VARCHAR(512)

Stores

the

file

name

of

an

XML

document

in

DB2,

and

stores

the

XML

document

in

a

file

local

to

the

DB2®

server.

Used

for

documents

that

are

stored

outside

DB2.

42

XML

Extender

Administration

and

Programming

||

|||

|||
|
|
|
|

|||
|
|
|
|

|||
|
|
|
|
|
|

Elements

and

attributes

to

index

for

XML

columns

When

you

understand

the

XML

document

structure

and

the

needs

of

your

application,

you

can

determine

which

elements

and

attributes

will

be

searched

or

extracted

most

frequently,

or

those

that

will

be

the

most

expensive

to

query.

The

DAD

file

for

an

XML

column

can

map

the

location

paths

of

each

element

and

attribute

to

relational

tables

(side

tables)

that

contain

these

objects.

The

side

tables

are

then

indexed.

For

example,

Table

7

shows

an

example

of

types

of

data

and

location

paths

of

elements

and

attributes

from

the

Getting

Started

scenario

for

XML

columns.

The

data

was

specified

as

information

to

be

frequently

searched

and

the

location

paths

point

to

elements

and

attributes

that

contain

the

data.

The

DAD

file

can

map

these

location

paths

to

side

tables.

Table

7.

Elements

and

attributes

to

be

searched

Data

Location

path

order

key

/Order/@key

customer

/Order/Customer/Name

price

/Order/Part/ExtendedPrice

shipping

date

/Order/Part/Shipment/ShipDate

The

DAD

file

for

XML

columns

For

XML

columns,

the

DAD

file

primarily

specifies

how

documents

that

are

stored

in

an

XML

column

are

to

be

indexed.

The

DAD

file

specifies

a

DTD

to

use

for

validating

documents

that

are

inserted

into

the

XML

column.

The

DAD

file

has

a

data

type

of

CLOB.

This

file

can

be

up

to

100

KB.

The

DAD

file

for

XML

columns

provides

a

map

of

any

XML

data

that

is

to

be

stored

in

side

tables

for

indexing.

To

specify

the

XML

column

access

and

storage

method,

you

use

the

<Xcolumn>

tag

in

the

DAD

file.

The

<Xcolumn>

tag

specifies

that

the

XML

data

is

to

be

stored

and

retrieved

as

entire

XML

documents

in

DB2

UDB

columns

that

are

enabled

for

XML

data.

An

XML-enabled

column

is

of

the

XML

Extender’s

UDT.

Applications

can

include

the

column

in

any

user

table.

You

access

the

XML

column

data

mainly

through

SQL

statements

and

the

XML

Extender’s

UDFs.

Related

concepts:

v

“Planning

side

tables”

on

page

58

Planning

for

XML

collections

When

planning

for

XML

collections,

you

have

different

considerations

for

composing

documents

from

DB2®

data,

decomposing

XML

document

into

DB2

data,

or

both.

The

following

sections

address

planning

issues

for

XML

collections,

and

address

composition

and

decomposition

considerations.

Chapter

2.

Administration

43

Validation

After

you

choose

an

access

and

storage

method,

you

can

determine

whether

to

validate

your

data.

You

validate

XML

data

using

a

DTD

or

a

schema.

Using

a

DTD

or

schema

to

validate

ensures

that

the

XML

document

is

valid.

To

validate

using

a

DTD,

you

might

need

to

have

a

DTD

in

the

XML

Extender

repository.

Important:

Make

the

decision

whether

to

validate

XML

data

before

you

insert

XML

data

into

DB2.

The

XML

Extender

does

not

validate

data

that

is

already

inserted

into

DB2.

Considerations:

v

You

can

use

only

one

DTD

for

composition.

v

You

can

use

multiple

schemas

for

composition.

v

If

you

do

not

choose

to

validate

a

document,

the

DTD

specified

by

the

XML

document

is

not

processed.

It

is

important

that

DTDs

be

processed

to

resolve

entities

and

attribute

defaults

even

when

processing

document

fragments

that

cannot

be

validated.

The

DAD

file

for

XML

collections

For

XML

collections,

the

DAD

file

maps

the

structure

of

the

XML

document

to

the

DB2

UDB

tables

from

which

you

compose

the

document,

or

where

you

decompose

the

document.

For

example,

if

you

have

an

element

called

<Tax>

in

your

XML

document,

you

might

need

to

map

<Tax>

to

a

column

called

TAX.

You

define

the

relationship

between

the

XML

data

and

the

relational

data

in

the

DAD.

You

specify

the

DAD

file

name

when

you

enable

a

collection,

or

when

you

use

the

DAD

file

in

XML

collection

stored

procedures.

If

you

choose

to

validate

XML

documents

with

a

DTD,

the

DAD

file

can

be

associated

with

that

DTD.

When

used

as

the

input

parameter

of

the

XML

Extender

stored

procedures,

the

DAD

file

has

a

data

type

of

CLOB.

This

file

can

be

up

to

100

KB.

To

specify

the

XML

collection

access

and

storage

method,

you

use

the

tag

in

the

DAD

file.

The

<Xcollection>

tag

specifies

that

the

XML

data

is

either

to

be

decomposed

from

XML

documents

into

a

collection

of

relational

tables,

or

to

be

composed

into

XML

documents

from

a

collection

of

relational

tables.

An

XML

collection

is

a

virtual

name

for

a

set

of

relational

tables

that

contains

XML

data.

Applications

can

enable

an

XML

collection

of

any

user

tables.

These

user

tables

can

be

existing

tables

of

legacy

business

data

or

tables

that

the

XML

Extender

recently

created.

The

DAD

file

defines

the

XML

document

tree

structure,

using

the

following

kinds

of

nodes:

root_node

Specifies

the

root

element

of

the

document.

element_node

Identifies

an

element,

which

can

be

the

root

element

or

a

child

element.

text_node

Represents

the

CDATA

text

of

an

element.

44

XML

Extender

Administration

and

Programming

|
|
|

|

attribute_node

Represents

an

attribute

of

an

element.

Figure

5

shows

a

fragment

of

the

mapping

that

is

used

in

a

DAD

file.

The

nodes

map

the

XML

document

content

to

table

columns

in

a

relational

table.

In

the

above

figure,

the

first

two

columns

in

the

SQL

statement

have

elements

and

attributes

mapped

to

them.

The

XML

Extender

also

supports

processing

instructions

for

stylesheets,

using

the

<stylesheet>

element.

The

<stylesheet>

element

must

be

inside

the

root

node

of

the

DAD

file,

with

the

doctype

and

prolog

defined

for

the

XML

document.

For

example:

<Xcollection>

...

<prolog>...</prolog>

<doctype>...</doctype>

<stylesheet>?xml-stylesheet

type="text/css"

href="order.css"?</stylesheet>

<root_node>...</root_node>

...

</Xcollection>

<?xml

version="1.0"?>

<!DOCTYPE

DAD

SYSTEM

"dxx_install/samples/db2xml/dtd/dad.dtd">

<DAD>

...

<Xcollection>

<SQL_stmt>

...

</SQL_stmt>

<prolog>?xml

version="1.0"?</prolog>

<doctype>!DOCTYPE

Order

SYSTEM

"dxx_install/samples/db2xml/dtd/

getstart.dtd"</doctype><root_node>

<element_node

name="Order">

-->

Identifies

the

element

<Order>

<attribute_node

name="key">

-->

Identifies

the

attribute

"key"

<column

name="order_key"/>

-->

Defines

the

name

of

the

column,

"order_key",

to

which

the

element

and

attribute

are

mapped

</attribute_node>

<element_node

name="Customer">

-->

Identifies

a

child

element

of

<Order>

as

<Customer>

<text_node>

-->

Specifies

the

CDATA

text

for

the

element<Customer>

<column

name="customer">

-->

Defines

the

name

of

the

column,

"customer",

to

which

the

child

element

is

mapped

</text_node>

</element_node>

...

</element_node>

...

<root_node>

</Xcollection>

</DAD>

Figure

5.

Node

definitions

in

a

DAD

file

for

an

XML

collection

Chapter

2.

Administration

45

You

can

use

the

Websphere

Studio

Application

Developer

to

create

and

update

the

DAD

file.

The

<stylesheet>

element

is

not

currently

supported

by

the

XML

Extender

Administration

wizard.

Mapping

schemes

for

XML

collections

If

you

are

using

an

XML

collection,

you

must

select

a

mapping

scheme

that

defines

how

XML

data

is

represented

in

a

relational

database.

Because

XML

collections

must

match

a

hierarchical

structure

that

is

used

in

XML

documents

with

a

relational

structure,

you

should

understand

how

the

two

structures

compare.

Figure

6

shows

how

the

hierarchical

structure

can

be

mapped

to

relational

table

columns.

The

XML

Extender

uses

the

mapping

scheme

when

composing

or

decomposing

XML

documents

that

are

located

in

multiple

relational

tables.

The

XML

Extender

provides

a

wizard

that

assists

you

with

creating

the

DAD

file.

However,

before

you

create

the

DAD

file,

you

must

consider

how

your

XML

data

is

mapped

to

the

XML

collection.

Types

of

mapping

schemes

The

mapping

scheme

is

specified

in

the

<Xcollection>

element

in

the

DAD

file.

The

XML

Extender

provides

two

types

of

mapping

schemes:

SQL

mapping

and

relational

database

(RDB_node)

mapping.

root_node

attribute_node
Color

text_node

text_node

text_node text_node

text_node

price

date mode

attribute_node
Key

tax

element_node
Order

element_node
Part

element_node
ExtendedPrice

element_node
Tax

element_node
Key

element_node
Shipment

element_node
ShipDate

element_node
ShipMode

text_node text_node
customer_name customer_email

element_node
Customer

element_node
Name

element_node
Email

part_key

color

order_key

Names of columns in DB2 tables

text_node

element_node
Quantity

quantity

Figure

6.

XML

document

structure

mapped

to

relational

table

columns

46

XML

Extender

Administration

and

Programming

SQL

mapping

Allows

direct

mapping

from

relational

data

to

XML

documents

through

a

single

SQL

statement.

SQL

mapping

is

used

for

composition;

it

is

not

used

for

decomposition.

SQL

mapping

is

defined

with

the

SQL_stmt

element

in

the

DAD

file.

The

content

of

the

SQL_stmt

element

is

a

valid

SQL

statement.

The

SQL_stmt

element

maps

the

columns

in

the

SELECT

clause

to

XML

elements

or

attributes

that

are

used

in

the

XML

document.

The

column

names

in

the

SQL

statement’s

SELECT

clause

are

used

to

define

the

value

of

an

attribute_node

or

the

content

of

text_node.

The

FROM

clause

defines

the

tables

containing

the

data;

the

WHERE

clause

specifies

the

join

and

search

condition.

The

SQL

mapping

gives

DB2

UDB

for

z/Os

users

the

power

to

map

the

data

using

SQL.

When

using

SQL

mapping,

you

must

be

able

to

join

all

tables

in

one

SELECT

statement

to

form

a

query.

If

one

SQL

statement

is

not

sufficient,

consider

using

RDB_node

mapping.

To

tie

all

tables

together,

the

primary

key

and

foreign

key

relationship

is

recommended

among

these

tables.

RDB_node

mapping

Defines

the

location

of

the

content

of

an

XML

element

or

the

value

of

an

XML

attribute

so

that

the

XML

Extender

can

determine

where

to

store

or

retrieve

the

XML

data.

This

method

uses

the

XML

Extender-provided

RDB_node,

which

contains

one

or

more

node

definitions

for

tables,

optional

columns,

and

optional

conditions.

The

tables

and

columns

are

used

to

define

how

the

XML

data

is

to

be

stored

in

the

database.

The

condition

specifies

the

criteria

for

selecting

XML

data

or

the

way

to

join

the

XML

collection

tables.

To

define

a

mapping

scheme,

you

create

a

DAD

with

an

<Xcollection>

element.

Figure

7

on

page

48

shows

a

fragment

of

a

sample

DAD

file

with

an

XML

collection

SQL

mapping

that

composes

a

set

of

XML

documents

from

data

in

three

relational

tables.

Chapter

2.

Administration

47

The

XML

Extender

provides

several

stored

procedures

that

manage

data

in

an

XML

collection.

These

stored

procedures

support

both

types

of

mapping,

but

require

that

the

DAD

file

follow

the

rules

that

are

described

in

“Mapping

scheme

requirements.”

Mapping

scheme

requirements

The

following

sections

describe

requirements

for

each

type

of

the

XML

collection

mapping

schemes.

Mapping

scheme

requirements

for

SQL

mapping

In

this

mapping

scheme,

you

must

specify

the

SQL_stmt

element

in

the

DAD

<Xcollection>

element.

The

SQL_stmt

should

contain

a

single

SQL

statement

that

can

join

multiple

relational

tables

with

the

query

predicate.

In

addition,

the

following

clauses

are

required:

v

SELECT

clause

–

Ensure

that

the

name

of

the

column

is

unique.

If

two

tables

have

the

same

column

name,

use

the

AS

keyword

to

create

an

alias

name

for

one

of

them.

–

Group

the

columns

of

the

same

table

together,

and

use

the

logical

hierarchical

level

of

the

relational

tables.

This

means

group

the

tables

according

to

the

level

of

importance

according

to

how

the

tables

map

<?xml

version="1.0"?>

<!DOCTYPE

DAD

SYSTEM

"dxx_install/samples/db2xml/dtd/dad.dtd">

<DAD>

<dtdid>dxx_install/samples/db2xml/dtd/dad/

getstart.dtd</dtdid>

<validation>YES</validation>

<Xcollection>

<SQL_stmt>

SELECT

o.order_key,

customer,

p.part_key,

quantity,

price,

tax,

date,

ship_id,

mode,

comment

FROM

order_tab

o,

part_tab

p,

table(select

db2xml.generate_unique()

as

ship_id,

date,

node,

from

ship_tab)

shipid

WHERE

p.price

>

2500.00

and

s.date

>

"1996-06-01"

AND

p.order_key

=

o.order_key

and

s.part_key

=

p.part_key

</SQL_stmt>

<prolog>?xml

version="1.0"?</prolog>

<doctype>!DOCTYPE

DAD

SYSTEM

"dxx_install

/samples/db2xml/dtd/getstart.dtd"</doctype>

<root_node>

<element_node

name="Order">

<attribute_node

name="key">

<column_name="order_key"/>

</attribute_node>

<element_node

name="Customer">

<text_node>

<column

name="customer"/>

</text_node>

<element_node>

...

</element_node><!-end

Part->

</element_node><!-end

Order->

</root_node>

</Xcollection>

</DAD>

Figure

7.

SQL

mapping

scheme

48

XML

Extender

Administration

and

Programming

to

the

hierarchical

structure

of

your

XML

document.

In

the

SELECT

clause,

the

columns

of

the

higher-level

tables

should

proceed

the

columns

of

lower-level

tables.

The

following

example

demonstrates

the

hierarchical

relationship

among

tables:

SELECT

o.order_key,

customer,

p.part_key,

quantity,

price,

tax,

ship_id,

date,

mode

In

this

example,

order_key

and

customer

from

table

ORDER_TAB

have

the

highest

relational

level

because

they

are

higher

on

the

hierarchical

tree

of

the

XML

document.

The

ship_id,

date,

and

mode

from

table

SHIP_TAB

are

at

the

lowest

relational

level.

–

Use

a

single-column

candidate

key

to

begin

each

level.

If

such

a

key

is

not

available

in

a

table,

the

query

must

generate

one

for

that

table

using

a

table

expression

and

the

user-defined

function,

generate_unique().

In

the

above

example,

the

o.order_key

is

the

primary

key

for

ORDER_TAB,

and

the

part_key

is

the

primary

key

of

PART_TAB.

They

appear

at

the

beginning

of

their

own

group

of

columns

that

are

to

be

selected.

Because

the

SHIP_TAB

table

does

not

have

a

primary

key,

one

must

be

generated,

in

this

case,

ship_id.

This

primary

key

is

listed

as

the

first

column

for

the

SHIP_TAB

table

group.

Use

the

FROM

clause

to

generate

the

primary

key

column,

as

shown

in

the

following

example.

v

FROM

clause

–

Use

a

table

expression

and

the

user-defined

function,

generate_unique(),

to

generate

a

single

key

for

tables

that

do

not

have

a

primary

single

key.

For

example:

FROM

order_tab

as

o,

part_tab

as

p,

table(select

db2xml.generate_unique()

as

ship_id,

date,

mode

from

ship_tab)

as

s

In

this

example,

a

single

column

candidate

key

is

generated

with

the

function,

generate_unique()

and

given

an

alias

named

ship_id.

–

Use

an

alias

name

when

needed

to

make

a

column

distinct.

For

example,

you

could

use

o

for

ORDER_TAB,

p

for

PART_TAB,

and

s

for

SHIP_TAB.

v

WHERE

clause

–

Specify

a

primary

and

foreign

key

relationship

as

the

join

condition

that

ties

tables

in

the

collection

together.

For

example:

WHERE

p.price

>

2500.00

AND

s.date

>

"2003-06-01"

AND

p.order_key

=

o.order_key

AND

s.part_key

=

p.part_key

–

Specify

any

other

search

condition

in

the

predicate.

Any

valid

predicate

can

be

used.

v

ORDER

BY

clause

–

Define

the

ORDER

BY

clause

at

the

end

of

the

SQL_stmt

element.

–

Ensure

that

the

column

names

match

the

column

names

in

the

SELECT

clause.

–

Specify

the

column

names

or

identifiers

that

uniquely

identify

entities

in

the

entity-relationship

design

of

the

database.

An

identifier

can

be

generated

using

a

table

expression

and

the

function

generate_unique,

or

a

user-defined

function

(UDF).

–

Maintain

the

top-down

order

of

the

hierarchy

of

the

entities.

The

column

specified

in

the

ORDER

BY

clause

must

be

the

first

column

Chapter

2.

Administration

49

listed

for

each

entity.

Keeping

the

order

ensures

that

the

XML

documents

to

be

generated

do

not

contain

incorrect

duplicates.

–

Do

not

qualify

the

columns

in

ORDER

BY

by

any

schema

or

table

name.

Although

the

SQL_stmt

element

has

the

preceding

requirements,

it

is

powerful

because

you

can

specify

any

predicate

in

your

WHERE

clause

if

the

expression

in

the

predicate

uses

the

columns

in

the

tables.

Mapping

scheme

requirements

for

RDB_node

mapping

When

using

this

mapping

method,

do

not

use

the

element

SQL_stmt

in

the

<Xcollection>

element

of

the

DAD

file.

Instead,

use

the

RDB_node

element

as

a

child

of

the

top

element_node

and

of

each

attribute_node

and

text_node.

There

are

no

ordering

restrictions

on

predicates

of

the

root

node

condition.

v

RDB_node

for

the

top

element_node

The

top

element_node

in

the

DAD

file

represents

the

root

element

of

the

XML

document.

Specify

an

RDB_node

for

the

top

element_node

based

on

these

requirements:

–

Line

ending

characters

are

allowed

in

condition

statements.

–

Condition

elements

can

reference

a

column

name

an

unlimited

number

of

times.

–

Specify

all

tables

that

are

associated

with

the

XML

documents.

For

example,

the

following

mapping

specifies

three

tables

in

the

RDB_node

of

the

element_node

<Order>,

which

is

the

top

element_node:

<element_node

name="Order">

<RDB_node>

<table

name="order_tab"/>

<table

name="part_tab"/>

<table

name="ship_tab"/>

<condition>

order_tab.order_key

=

part_tab.order_key

AND

part_tab.part_key

=

ship_tab.part_key

</condition>

</RDB_node>

The

condition

element

can

be

empty

or

missing

if

there

is

only

one

table

in

the

collection.

–

If

you

are

decomposing,

or

are

enabling

the

XML

collection

specified

by

the

DAD

file,

specify

a

primary

key

for

each

table.

The

primary

key

can

consist

of

a

single

column

or

multiple

columns,

called

a

composite

key.

The

primary

key

is

specified

by

adding

an

attribute

key

to

the

table

element

of

the

RDB_node.

When

a

composite

key

is

supplied,

the

key

attribute

is

specified

by

the

names

of

key

columns

separated

by

a

space.

For

example:

<table

name="part_tab"

key="part_key

price"/>

The

information

specified

for

decomposition

is

ignored

when

composing

a

document.

–

Use

the

orderBy

attribute

to

recompose

XML

documents

that

contain

elements

or

attributes

with

multiple

occurrences

back

to

their

original

structure.

This

attribute

allows

you

to

specify

the

name

of

a

column

50

XML

Extender

Administration

and

Programming

that

will

be

the

key

used

to

preserve

the

order

of

the

document.

The

orderBy

attribute

is

part

of

the

table

element

in

the

DAD

file,

and

it

is

an

optional

attribute.

v

RDB_node

for

each

attribute_node

and

text_node

You

need

to

specify

an

RDB_node

for

each

attribute_node

and

text_node,

that

tells

the

stored

procedure

from

which

table,

which

column,

and

under

which

query

condition

to

get

the

data.

You

must

specify

the

table

and

column

values;

the

condition

value

is

optional.

–

Specify

the

name

of

the

table

that

contains

the

column

data.

The

table

name

must

be

included

in

the

RDB_node

of

the

top

element_node.

In

this

example,

for

text_node

of

element

<Price>,

the

table

is

specified

as

PART_TAB.

<element_node

name="Price">

<text_node>

<RDB_node>

<table

name="part_tab"/>

<column

name="price"/>

<condition>

price

>

2500.00

</condition>

</RDB_node>

</text_node>

</element_node>

–

Specify

the

name

of

the

column

that

contains

the

data

for

the

element

text.

In

the

previous

example,

the

column

is

specified

as

PRICE.

–

Specify

a

condition

if

you

want

XML

documents

to

be

generated

using

the

query

condition.

Allowable

syntax

for

<condition>

is

as

follows:

-

columnname

-

operator

-

literal

In

the

example

above,

the

condition

is

specified

as

price

>

2500.00.

Only

the

data

that

meets

the

condition

is

in

the

generated

XML

documents.

The

condition

must

be

a

valid

WHERE

clause.

–

If

you

are

decomposing

a

document,

or

are

enabling

the

XML

collection

specified

by

the

DAD

file,

specify

the

column

type

for

each

attribute_node

and

text_node.

This

ensures

the

correct

data

type

for

each

column

when

new

tables

are

created

when

an

XML

collection

is

enabled.

Column

types

are

specified

by

adding

the

attribute

type

to

the

column

element.

For

example:

<column

name="order_key"

type="integer"/>

The

information

specified

for

decomposition

is

ignored

when

composing

a

document.

With

the

RDB_node

mapping

approach,

you

don’t

need

to

supply

SQL

statements.

However,

putting

complex

query

conditions

in

the

RDB_node

element

can

be

more

difficult.

Decomposition

table

size

requirements

for

RDB

node

mapping

Decomposition

uses

RDB_node

mapping

to

specify

how

an

XML

document

is

decomposed

into

DB2

UDB

tables

by

extracting

the

element

and

attribute

values

into

table

rows.

The

values

from

each

XML

document

are

stored

in

one

or

more

DB2

tables.

Each

table

can

have

a

maximum

of

10240

rows

decomposed

from

Chapter

2.

Administration

51

each

document.

For

example,

if

an

XML

document

is

decomposed

into

five

tables,

each

of

the

five

tables

can

have

up

to

10240

rows

for

that

particular

document.

Using

multiple-occurring

elements

(elements

with

location

paths

that

can

occur

more

than

once

in

the

XML

structure)

affects

the

number

of

rows

inserted

for

each

document.

For

example,

a

document

that

contains

an

element

<Part>

that

occurs

20

times,

might

be

decomposed

as

20

rows

in

a

table.

When

using

multiple

occurring

elements,

consider

that

a

maximum

of

10240

rows

can

be

decomposed

into

one

table

from

a

single

document.

Related

concepts:

v

“DAD

files

for

XML

collections”

on

page

169

Related

tasks:

v

“Storing

a

DTD

in

the

repository

table”

on

page

54

Validating

XML

documents

automatically

After

you

choose

an

access

and

storage

method,

either

XML

column

or

XML

collection,

you

can

determine

whether

to

validate

the

XML

documents.

You

can

also

validate

XML

documents

that

are

composed

from

XML

collections.

You

can

have

your

XML

data

validated

automatically

by

specifying

YES

for

validation

in

the

DAD

file.

To

have

a

document

validated

when

it

is

stored

into

DB2,

you

must

specify

a

DTD

within

the

<dtdid>

element

or

in

the

<!DOCTYPE>

specification

in

the

original

document.

To

have

a

document

validated

when

it

is

composed

from

an

XML

collection

in

DB2,

you

must

specify

a

DTD

within

the

<dtdid>

element

or

within

the

<doctype>

element

in

the

DAD

file.

The

following

factors

should

be

taken

into

consideration

when

you

decide

whether

to

validate

your

documents.

v

The

DTD

ID

or

schema

is

useful

only

if

you

decide

to

validate

the

XML

document.

To

validate

the

DAD

with

a

schema,

insert

the

schema

tags

that

associate

the

DAD

file

with

the

schema

file.

For

example:

<schemabindings>

<nonamespacelocation

location="path/schema_name.xsd"/>

</schemabindings>

v

You

do

not

need

a

DTD

to

store

or

archive

XML

documents.

v

You

must

decide

whether

to

validate

before

inserting

XML

data

into

DB2.

The

XML

Extender

does

not

validate

data

that

has

already

been

inserted

into

DB2.

v

It

might

be

necessary

to

process

the

DTD

to

set

entity

values

and

attribute

defaults

regardless

of

whether

you

choose

to

validate.

v

If

you

specify

NO

for

validation

in

the

DAD,

then

the

DTD

specified

by

the

XML

document

is

not

processed.

v

Validating

your

XML

data

has

a

performance

impact.

52

XML

Extender

Administration

and

Programming

Enabling

servers

for

XML

Before

you

can

store

or

retrieve

XML

documents

from

DB2

UDB

with

XML

Extender,

you

must

enable

the

server

for

XML.

The

XML

Extender

enables

the

server

that

you

are

connected

to.

When

you

enable

a

server

for

XML,

the

XML

Extender

does

these

tasks:

v

Creates

all

the

user-defined

types

(UDTs),

user-defined

functions

(UDFs),

and

stored

procedures

for

XML

Extender

v

Creates

and

populates

control

tables

with

the

necessary

metadata

that

the

XML

Extender

requires

v

Creates

the

DB2XML

schema

in

user-defined

table

spaces

and

assigns

the

necessary

privileges

The

fully

qualified

name

of

an

XML

function

is

db2xml.function-name,

where

db2xml

is

an

identifier

that

provides

a

logical

grouping

for

SQL

objects.

You

can

use

the

fully

qualified

name

anywhere

that

you

refer

to

a

UDF

or

a

UDT.

You

can

also

omit

the

schema

name

when

you

refer

to

a

UDF

or

a

UDT;

in

this

case,

DB2

UDB

uses

the

function

path

to

determine

the

function

or

data

type.

Procedure:

You

can

enable

a

server

with

the

administration

wizard

or

from

a

command

line.

To

do

this

task

from

the

command

line,

type

dxxadm

from

the

command

line

and

specify

the

server

that

is

to

be

enabled.

The

following

example

enables

an

existing

server.

dxxadm

enable_server

-a

V81A

wlm

environment

wlmenv1

security

DB2

To

enable

a

server

using

the

administration

wizard,

complete

the

following

tasks:

1.

Start

the

administration

wizard

and

click

Enable

Server

from

the

Launchpad

window.

If

a

server

is

already

enabled,

the

Disable

Server

button

appears.

If

the

server

is

disabled,

the

Enable

Server

button

appears.

When

the

server

is

enabled,

you

return

to

the

LaunchPad

window.

After

you

enable

a

server,

you

can

use

the

XML

Extender

UDTs,

UDFs,

and

SPs.

Related

concepts:

v

“Migrating

XML

Extender

from

Version

7

to

Version

8”

on

page

37

Creating

an

XML

table

This

task

is

part

of

the

larger

task

of

defining

and

enabling

an

XML

column.

An

XML

table

is

used

to

store

intact

XML

documents.

To

store

whole

documents

in

your

database

with

DB2

UDB

XML

Extender,

you

must

create

a

table

so

that

it

contains

a

column

with

an

XML

user-defined

type

(UDT).

DB2

UDB

XML

Extender

provides

you

with

three

user-defined

types

to

store

your

XML

documents

as

column

data.

These

UDTs

are:

XMLVARCHAR,

XMLCLOB,

and

XMLFILE.

When

a

table

contains

a

column

of

XML

type,

you

can

then

enable

the

table

for

XML.

Chapter

2.

Administration

53

You

can

create

a

new

table

to

add

a

column

of

XML

type

using

the

administration

wizard

or

the

command

line.

Procedure:

To

create

a

table

with

a

column

of

XML

type

using

the

command

line:

Open

the

DB2

UDB

command

prompt

and

type

a

Create

Table

statement.

For

example,

in

a

sales

application,

you

might

want

to

store

an

XML-formatted

line-item

order

in

a

column

called

ORDER

of

a

table

called

SALES_TAB.

This

table

also

has

the

columns

INVOICE_NUM

and

SALES_PERSON.

Because

it

is

a

small

order,

you

store

the

sales

order

using

the

XMLVARCHAR

type.

The

primary

key

is

INVOICE_NUM.

The

following

CREATE

TABLE

statement

creates

a

table

with

a

column

of

XML

type:

CREATE

TABLE

sales_tab(

invoice_num

char(6)

NOT

NULL

PRIMARY

KEY,

sales_person

varchar(20),

order

XMLVarchar);

After

you

have

created

a

table,

the

next

step

is

to

enable

the

column

for

XML

data.

Related

concepts:

v

“Planning

side

tables”

on

page

58

v

Chapter

13,

“XML

Extender

administration

support

tables,”

on

page

269

Storing

a

DTD

in

the

repository

table

You

can

use

a

DTD

to

validate

XML

data

in

an

XML

column

or

in

an

XML

collection.

DTDs

can

be

stored

in

the

DTD

repository

table,

a

DB2

UDB

table

called

DTD_REF.

The

DTD_REF

table

has

a

schema

name

of

DB2XML.

Each

DTD

in

the

DTD_REF

table

has

a

unique

ID.

The

XML

Extender

creates

the

DTD_REF

table

when

you

enable

a

database

for

XML.

You

can

insert

the

DTD

from

the

command

line

or

by

using

the

administration

wizard.

Procedure:

To

insert

the

DTD

using

the

administration

wizard:

1.

Start

the

administration

wizard

and

click

Import

a

DTD

from

the

Launchpad

window

to

import

an

existing

DTD

file

into

the

DTD

repository

for

the

current

database.

The

Import

a

DTD

window

opens.

2.

Specify

the

DTD

file

name

in

the

DTD

file

name

field.

3.

Type

the

DTD

ID

in

the

DTD

ID

field.

The

DTD

ID

is

an

identifier

for

the

DTD.

It

can

also

be

the

path

that

specifys

the

location

of

the

DTD

on

the

local

system.

The

DTD

ID

must

match

the

value

that

is

specified

in

the

DAD

file

for

the

<DTDID>

element.

4.

Optional:

Type

the

name

of

the

author

of

the

DTD

in

the

Author

field.

5.

Click

Finish

to

insert

the

DTD

into

the

DTD

repository

table,

DB2XML.DTD_REF,

and

return

to

the

Launchpad

window.

To

insert

a

DTD

from

the

command

line,

issue

a

SQL

INSERT

statement

from

Table

8

on

page

55.

For

example:

54

XML

Extender

Administration

and

Programming

DB2

INSERT

into

DB2XML.DTD_REF

values(’dxx_install

/samples/db2xml/dtd/getstart.dtd’,

DB2XML.XMLClobFromFile(’dxx_install/dxxsamples/dtd/getstart.dtd’,

0,

’user1’,

’user1’,

’user1’);

Table

8.

The

column

definitions

for

the

DTD

repository

table

Column

name

Data

type

Description

DTDID

VARCHAR(128)

ID

of

the

DTD.

CONTENT

XMLCLOB

Content

of

the

DTD.

USAGE_COUNT

INTEGER

Number

of

XML

columns

and

XML

collections

in

the

database

that

use

this

DTD

to

define

a

DAD.

AUTHOR

VARCHAR(128)

Author

of

the

DTD,

optional

information

for

the

user

to

input.

CREATOR

VARCHAR(128)

User

ID

that

does

the

first

insertion.

UPDATOR

VARCHAR(128)

User

ID

that

does

the

last

update.

ROW_ID

ROWID

Identifier

for

the

row.

Enabling

XML

columns

To

store

an

XML

document

in

a

DB2

UDB

database,

you

must

enable

for

XML

the

column

that

will

contain

the

document.

Enabling

a

column

prepares

it

for

indexing

so

that

it

can

be

searched

quickly.

You

can

enable

a

column

by

using

the

XML

Extender

Administration

wizard

or

the

command

line.

The

column

must

be

of

XML

type.

When

XML

Extender

enables

an

XML

column,

it

performs

the

following

operations:

v

Reads

the

DAD

file

to:

–

Check

for

the

existence

of

the

DTD

in

the

DTD_REF

table,

if

the

DTDID

was

specified.

–

Create

side

tables

on

the

XML

column

for

indexing

purpose.

–

Prepare

the

column

to

contain

XML

data.

v

Optionally

creates

a

default

view

of

the

XML

table

and

side

tables.

The

default

view

displays

the

application

table

and

the

side

tables.

v

Specifies

a

ROOT

ID

column,

if

one

is

not

specified.

After

you

enable

the

XML

column,

you

can:

v

Create

indexes

on

the

side

tables.

v

Insert

XML

documents

in

the

XML

column.

v

Query,

update,

or

search

the

XML

documents

in

the

XML

column.

You

can

enable

XML

columns

using

the

Administration

wizard

or

from

a

DB2

command

line.

Procedure

(using

the

administration

wizard):

To

enable

XML

columns

using

the

administration

wizard:

1.

Set

up

and

start

the

Administration

wizard.

2.

Click

Work

with

XML

Columns

from

the

Launchpad

window

to

view

the

tasks

related

to

the

XML

Extender

columns.

The

Select

a

Task

window

opens.

Chapter

2.

Administration

55

3.

Click

Enable

a

Column

and

then

Next.

4.

Specify

the

table

and

column.

v

Select

the

table

that

contains

the

XML

column

from

the

Table

name

field.

v

Select

the

column

to

enable

from

the

Column

name

field.

5.

Specify

the

DAD

path

and

file

name

in

the

DAD

file

name

field.

For

example:

dxx_install/samples/dad/getstart.dad

6.

Optional:

Type

the

name

of

an

existing

table

space

in

the

Table

space

field.

The

default

table

space

contains

side

tables

that

XML

Extender

created.

If

you

specify

a

table

space,

the

side

tables

are

created

in

the

specified

table

space.

If

you

do

not

specify

a

table

space,

the

side

tables

are

created

in

the

default

table

space.

7.

Optional:

Type

the

name

of

the

default

view

in

the

Default

view

field.

If

specified,

the

default

view

is

automatically

created

when

the

column

is

enabled.

The

default

view

joins

the

XML

table

and

all

of

the

related

side

tables.

8.

Recommended:

Type

the

column

name

of

the

primary

key

for

the

table

in

the

Root

ID

field.

XML

Extender

uses

the

value

of

Root

ID

as

a

unique

identifier

to

associate

all

side

tables

with

the

application

table.

The

XML

Extender

adds

the

DXXROOT_ID

column

to

the

application

table

and

generates

an

identifier.

9.

Click

Finish

to

enable

the

XML

column,

create

the

side

tables,

and

return

to

the

Launchpad

window.

v

If

the

column

is

successfully

enabled,

you

receive

the

message:

column

is

enabled.

v

If

the

column

is

not

successfully

enabled,

an

error

message

is

displayed,

along

with

prompts

for

you

to

correct

the

values

of

the

entry

fields

until

the

column

is

successfully

enabled.

Procedure

(using

the

command

line):

To

enable

an

XML

column

using

the

command

line,

use

the

DXXADM

enable_column

command.

Syntax:

��

dxxadm

enable_column

-a

subsystem_name

tbName

colName

DAD_file

�

�

-t

tablespace

-v

default_view

-r

root_id

��

Parameters:

subsystem_name

The

name

of

the

DB2

UDB

subsystem.

tbName

The

name

of

the

table

that

contains

the

column

to

be

enabled.

colName

The

name

of

the

XML

column

that

is

being

enabled.

DAD_file

The

name

of

the

file

that

contains

the

document

access

definition

(DAD).

56

XML

Extender

Administration

and

Programming

tablespace

A

previously

created

tablespace

that

contains

side

tables

that

XML

Extender

created.

If

not

specified,

the

default

tablespace

is

used.

default_view

Optional.

The

name

of

the

default

view

that

XML

Extender

created

to

join

an

application

table

and

all

of

the

related

side

tables.

root_id

Optional,

but

recommended.

The

column

name

of

the

primary

key

in

the

application

table

and

a

unique

identifier

that

associates

all

side

tables

with

the

application

table.

Known

as

ROOT_ID.

XML

Extender

uses

the

value

of

ROOT_ID

as

a

unique

identifier

to

associate

all

side

tables

with

the

application

table.

If

the

ROOT

ID

is

not

specified,

XML

Extender

adds

the

DXXROOT_ID

column

to

the

application

table

and

generates

an

identifier.

Restriction:

If

the

application

table

has

a

column

name

of

DXXROOT_ID,

you

must

specify

the

root_id

parameter;

otherwise,

an

error

occurs.

Example:

dxxadm

enable_column

-a

SUBSYS1

SALES_TAB

ORDER

getstart.dad

-v

SALODVW

-r

INVOICE_NUMBER

In

this

example,

the

ORDER

column

is

enabled

in

the

SALES_TAB

table

.

The

DAD

file

is

getstart.dad,

the

default

view

is

sales_order_view,

and

the

ROOT

ID

is

INVOICE_NUMBER.

Using

this

example,

the

SALES_TAB

table

has

the

following

columns:

Column

name

Data

type

INVOICE_NUM

CHAR(6)

SALES_PERSON

VARCHAR(20)

ORDER

XMLVARCHAR

The

following

side

tables

are

created

based

on

the

DAD

specification:

ORDER_SIDE_TAB:

Column

name

Data

type

Path

expression

ORDER_KEY

INTEGER

/Order/@key

CUSTOMER

VARCHAR(50)

/Order

/Customer

/Name

INVOICE_NUM

CHAR(6)

N/A

PART_SIDE_TAB:

Column

name

Data

type

Path

expression

PART_KEY

INTEGER

/Order/Part/@key

PRICE

DOUBLE

/Order/Part

/ExtendedPrice

INVOICE_NUM

CHAR

(6)

N/A

Chapter

2.

Administration

57

SHIP_SIDE_TAB:

Column

name

Data

type

Path

expression

DATE

DATE

/Order/Part/

Shipment/ShipDate

INVOICE_NUM

CHAR

(6)

N/A

All

of

the

side

tables

have

the

column

INVOICE_NUM

of

the

same

type,

because

the

ROOT

ID

is

specified

by

the

primary

key

INVOICE_NUM

in

the

application

table.

After

the

column

is

enabled,

the

value

of

the

INVOICE_NUM

column

is

inserted

in

side

tables

when

a

row

is

inserted

in

the

main

table.

If

you

specify

a

default

view

when

enabling

the

XML

column

ORDER,

then

XML

Extender

creates

a

default

view,

sales_order_view.

The

view

joins

the

above

tables

using

the

following

statement:

CREATE

VIEW

sales_order_view(invoice_num,

sales_person,

order,

order_key,

customer,

part_key,

price,

date)

AS

SELECT

sales_tab.invoice_num,

sales_tab.sales_person,

sales_tab.order,

order_side_tab.order_key,

order_side_tab.customer,

part_side_tab.part_key,

part_side_tab.price,

ship_tab.date

FROM

sales_tab,

order_side_tab,

part_side_tab,

ship_side_tab

WHERE

sales_tab.invoice_num

=

order_side_tab.invoice_num

AND

sales_tab.invoice_num

=

part_side_tab.invoice_num

AND

sales_tab.invoice_num

=

ship_side_tab.invoice_num

If

you

specify

the

table

space

when

you

enabled,

the

side

tables

are

created

in

the

specified

table

space.

If

the

table

space

is

not

specified,

the

side

tables

are

created

in

the

default

table

space.

Planning

side

tables

Side

tables

are

DB2®

tables

used

to

extract

the

content

of

an

XML

document

that

will

be

searched

frequently.

The

XML

column

is

associated

with

side

tables

that

hold

the

contents

of

the

XML

document.

When

the

XML

document

is

updated

in

the

application

table,

the

values

in

the

side

tables

are

automatically

updated.

Figure

8

on

page

59

shows

an

XML

column

with

side

tables.

58

XML

Extender

Administration

and

Programming

Multiple

occurrence:

When

elements

and

attributes

occur

multiple

times

in

side

tables,

consider

the

following

issues

in

your

planning:

v

For

elements

or

attributes

in

an

XML

document

that

have

multiple

occurrences,

you

must

create

a

separate

side

table

for

each

XML

element

or

attribute

with

multiple

occurrences,

due

to

the

complex

structure

of

XML

documents.

This

means

that

elements

or

attributes

have

location

paths

that

occur

multiple

times

and

must

be

mapped

to

a

table

with

only

one

column.

You

cannot

have

any

other

columns

in

the

table.

v

When

a

document

has

multiple

occurring

location

paths,

XML

Extender

adds

a

column

named

DXX_SEQNO

with

a

type

of

INTEGER

in

each

side

table

to

track

the

order

of

elements

that

occur

more

than

once.

With

DXX_SEQNO,

you

can

retrieve

a

list

of

the

elements

in

the

same

order

as

the

original

XML

document

by

specifying

ORDER

BY

DXX_SEQNO

in

an

SQL

query.

Default

views

and

query

performance:

When

you

enable

an

XML

column,

you

can

specify

a

default,

read-only

view

that

joins

the

application

table

with

the

side

tables

using

a

unique

ID,

called

the

ROOT

ID.

With

the

default

view,

you

can

search

XML

documents

by

querying

the

side

tables.

For

example,

if

you

have

the

application

table

SALES_TAB,

and

the

side

tables

ORDER_TAB,

PART_TAB

and

SHIP_TAB,

your

query

might

look

as

follows:

SELECT

sales_person

FROM

sales_order_view

WHERE

price

>

2500.00

The

SQL

statement

returns

the

names

of

salespeople

in

the

SALES_TAB

who

have

orders

stored

in

the

column

ORDER,

and

where

the

PRICE

column

is

greater

than

2500.00.

The

advantage

of

querying

the

default

view

is

that

it

provides

a

virtual

single

view

of

the

application

table

and

side

tables.

However,

the

more

side

tables

that

are

created,

the

more

expensive

the

query.

Therefore,

creating

the

default

view

is

recommended

only

when

the

total

number

of

side-table

columns

is

small.

Applications

can

create

their

own

views

that

join

the

important

side

table

columns.

<?xml?>
<!DOCTYPE…>

<Order key="1">

…

</Order>

XML document

Side
tables

DB2

XML column
with side tables

XML
CLOB

Figure

8.

An

XML

column

whose

content

is

mapped

in

side

tables.

There

is

an

XML

file

in

the

column

that

is

associated

with

side

tables

that

hold

the

contents

of

the

XML

document.

Chapter

2.

Administration

59

Indexing

side

tables

This

task

is

part

of

the

larger

task

of

defining

and

enabling

an

XML

column.

Side

tables

contain

the

XML

data

in

the

columns

that

you

specified

when

you

created

the

DAD

file.

After

you

enable

an

XML

column

and

create

side

tables,

you

can

index

the

side

tables.

Indexing

these

tables

helps

you

improve

the

performance

of

the

queries

against

the

XML

documents.

Procedure:

To

create

an

index

for

your

side

tables

from

a

DB2

UDB

command

line,

use

the

DB2

CREATE

INDEX

SQL

statement.

from

the

DB2

UDB

command

line.

The

following

example

creates

indexes

on

four

side

tables

using

the

DB2

command

prompt.

DB2

CREATE

INDEX

KEY_IDX

ON

ORDER_SIDE_TAB(ORDER_KEY)

DB2

CREATE

INDEX

CUSTOMER_IDX

ON

ORDER_SIDE_TAB(CUSTOMER)

DB2

CREATE

INDEX

PRICE_IDX

ON

PART_SIDE_TAB(PRICE)

DB2

CREATE

INDEX

DATE_IDX

ON

SHIP_SIDE_TAB(DATE)

Composing

XML

documents

by

using

SQL

mapping

You

can

compose

XML

documents

using

SQL

mapping

either

from

the

command

line

or

by

using

the

administration

wizard.

You

should

use

SQL

mapping

if

you

are

composing

an

XML

document

and

you

want

to

use

an

SQL

statement

to

define

the

table

and

columns

that

you

will

derive

the

data

in

the

XML

document.

You

can

use

SQL

mapping

only

for

composing

XML

documents.

You

create

a

DAD

file

to

compose

the

XML

document

with

SQL

mapping.

Prerequisites:

Before

you

compose

your

documents,

you

must

first

map

the

relationship

between

your

DB2

UDB

tables

and

the

XML

document.

This

step

includes

mapping

the

hierarchy

of

the

XML

document

and

specifying

how

the

data

in

the

document

maps

to

a

DB2

UDB

table.

Procedure:

To

compose

XML

documents

from

the

command

line,

complete

the

following

steps:

1.

Create

a

new

document

in

a

text

editor

and

type

the

following

syntax:

<?XML

version="1.0"?>

2.

Insert

the

<DAD>

</DAD>

tags.

The

DAD

element

will

contain

all

the

other

elements.

3.

Insert

the

tags

used

for

validating

the

DAD

with

a

DTD

or

schema.

60

XML

Extender

Administration

and

Programming

|

v

To

validate

the

composed

XML

document

with

a

DTD,

insert

the

DTDID

tags

that

associate

the

DAD

file

with

the

XML

document

DTD.

For

example:

<dtdid>path/dtd_name.dtd>

v

To

validate

the

composed

XML

document

with

a

schema,

insert

the

schema

tags

that

associate

the

DAD

file

with

the

schema

file.

For

example:

<schemabindings>

<nonamespacelocation

location="path/schema_name.xsd"/>

</schemabindings>

The

dtd

or

schema

is

useful

only

if

you

decide

to

validate

the

XML

document.

Use

the

validation

tag

to

indicate

whether

DB2

UDB

XML

Extender

validates

the

XML

document:

v

If

you

want

to

validate

the

XML

document,

then

type:

<validation>YES</validation>

v

If

you

do

not

want

to

validate

the

XML

document

type:

<validation>NO</validation>

4.

Type

<XCollection>

</XCollection>

tags

to

specify

that

you

are

using

XML

collections

as

the

access

and

storage

method

for

your

XML

data.

5.

Inside

the

<Xcollection>

</Xcollection>

tags,

insert

the

<SQL_stmt>

</SQL_stmt>

tags

to

specify

the

SQL

statement

that

will

map

the

relational

data

to

the

XML

documents.

This

statement

is

used

to

query

data

from

DB2

UDB

tables.

The

following

example

shows

a

sample

SQL

query:

<SQL_stmt>

SELECT

o.order_key,

customer_name,

customer_email,

p.part_key,

color,

quantity,

price,

tax,

ship_id,

date,

mode

from

order_tab

o,

part_tab

p,

table

(select

substr(char(timestamp(generate_unique())),16)

as

ship_id,

date,

mode,

part_key

from

ship_tab)

s

WHERE

o.order_key

=

1

and

p.price

>

20000

and

p.order_key

=

o.order_key

and

s.part_key

=

p.part_key

ORDER

BY

order_key,

part_key,

ship_id

</SQL_stmt>

The

example

SQL

statement

for

mapping

the

relational

data

to

the

XML

document

has

the

following

syntax:

v

Columns

are

specified

in

top-down

order

by

the

hierarchy

of

the

XML

document

structure.

v

The

columns

for

an

entity

are

grouped

together.

v

The

object

ID

column

is

the

first

column

in

each

group.

v

The

Order_tab

table

does

not

have

a

single

key

column,

and

therefore,

the

generate_unique

DB2

UDB

built-in

function

is

used

to

generate

the

ship_id

column.

v

The

object

ID

column

is

then

listed

in

a

top-down

order

in

an

ORDER

BY

statement.

The

column

in

ORDER

BY

should

not

be

qualified

by

any

schema.

and

the

column

names

must

match

the

column

names

in

the

SELECT

clause.

6.

Add

the

following

prolog

information

to

be

used

in

the

composed

XML

document:

<prolog>?xml

version="1.0"?</prolog>

7.

Type

the

<doctype>

</doctype>

tag.

This

tag

contains

the

path

to

the

DTD

against

which

the

composed

document

will

be

validated.

For

example:

<doctype>!

DOCTYPE

Order

SYSTEM

"dxx_install

/samples/db2xml/dtd/getstart.dtd"</doctype>

Chapter

2.

Administration

61

|
|

|

|
|

|
|
|

|
|
|

|

|

|

|

8.

Specify

the

root

element

and

the

elements

and

attributes

that

make

up

the

XML

document:

a.

Add

the

<root></root_node>

tag

to

define

the

root

element.

All

the

elements

and

attributes

that

make

up

the

XML

document

are

specified

within

the

root_node.

b.

Use

the

<element_node>,

<attribute_node>,

and

<text_node>

tags

to

map

the

elements

and

attributes

in

the

XML

document

to

element

and

attribute

nodes

that

correspond

to

DB2

UDB

data.

<element_node>

tag

Specifies

the

elements

in

the

XML

document.

Set

the

name

attribute

of

the

element_node

tag

to

the

name

of

the

element.

Each

element_node

can

have

child

element_nodes.

<attribute_node>

tag

Specifies

the

attributes

of

an

element

in

the

XML

document.

The

attributes

are

nested

in

their

element

node.

Set

the

name

attribute

of

the

attribute_node

tag

to

the

name

of

the

attribute.

<text_node>

tag

Specifies

the

text

content

of

the

element

and

the

column

data

in

a

relational

table

for

bottom-level

element_nodes.

For

each

bottom-level

element,

specify

<text_node>

tags

that

indicate

that

the

element

contains

character

data

to

be

extracted

from

DB2

when

the

document

is

composed.

For

each

bottom-level

element_node,

use

a

<column>

tag

to

specify

from

which

column

to

extract

data

when

the

XML

document

is

composed.

Column

tags

are

typically

inside

the

<attribute_node>

or

the

<text_node>

tags.

All

column

names

defined

must

be

in

the

<SQL_stmt>

SELECT

clause

at

the

beginning

of

the

DAD

file.

9.

Ensure

that

the

ending

tags

are

in

the

appropriate

places:

a.

Ensure

that

an

ending

</root_node>

tag

is

after

the

last

</element_node>

tag.

b.

Ensure

that

an

ending

</Xcollection>

tag

is

after

the

</root_node>

tag.

c.

Ensure

that

an

ending

</DAD>

tag

is

after

the

</Xcollection>

tag.

10.

Save

the

file

as

file.dad.

Where

file

is

the

name

of

your

file.

The

following

Windows

example

shows

a

complete

DAD:

<?xml

version’"1.0">

<!DOCTYPE

DAD

SYSTEM

"C:\dxx_xml\test\dtd\dad.dtd’>

<DAD>

<validation>NO</validation>

<Xcollection>

<SQL_stmt>

select

o.order_key,

customer_name,

customer_email,

p.part_key,

color,

qty,

price,

tax,

ship_id,

date,

mode

from

order_tab

o,

part_tab

p,

(select

db2xml.generate_unique()

as

ship_id,

date,

mode,

part_key

from

ship_tab)

s

where

o.order_key

=

1

and

p.price

.

20000

and

p.order_key

=

o.order_key

and

s.part_key

=p.part_key

ORDER

BY

order_key,

part_key,

ship_id</SQL_stmt>

<prolog>?XML

version="1.0"<?/prolog>

<doctype>!DOCTYPE

ORDER

SYSTEM

"C:\dxx_install\samples\db2xml\dtd/Order.dtd"

</doctype>

<root_node>

<element_node

name="Order">

<attribute_node

name="key">

<column

name="order_key"/>

</attribute_node>

<element_node

name="Customer">

62

XML

Extender

Administration

and

Programming

<element_node

name="NAME">

<text_node><column

name="customer_name"/></text_node>

</element_node>

</element_node>

<element_node

name="Part">

<attribute_node

name="color">

<column

name="color"/>

</attribute_node>

<element_node

name="key">

<text_node><column

name="part_key"/></text_node>

</element_node>

<element_node

name

="Quantity">

<text_node><column

name="qty"/></text_node>

</element_node>

<element_node

name="ExtendedPrice">

<text_node><column

name="price"/></text_node>

</element_node>

<element_node

name="Tax">

<text_node><column

name="tax"/></text_node>

</element_node>

<element_node

name="Shipment"

multi_occurrence="YES">

<element_node

name=shipDate">

<text_node><column

name="date"/><text_node>

<element_node>

<element_node

name="ShipMode">

<text_node><column

name="mode"/></text_node>

</element_node>

</element_node>

</element_node>

</element_node>

</root_node>

</Xcollection>

</DAD>

Composing

XML

collections

by

using

RDB_node

mapping

RDB_node

mapping

uses

the

<RDB_node>

tags

to

specify

DB2

UDB

tables,

columns,

and

conditions

for

an

element

or

attribute

node.

Use

this

method

if

you

want

to

compose

XML

documents

by

using

an

XML-like

structure.

The

<RDB_node>

uses

the

following

elements:

table

Defines

the

table

that

corresponds

to

the

element.

column

Defines

the

column

that

contains

the

corresponding

element.

condition

Optionally

specifies

a

condition

on

the

column.

The

child

elements

that

are

used

in

the

RDB_node

element

depend

on

the

context

of

the

node

and

use

the

following

rules:

If

the

node

type

is:

The

following

RDB

child

elements

are

used:

Table

Column

Condition1

Root

element

Yes

No

Yes

Attribute

Yes

Yes

Optional

Text

Yes

Yes

Optional

1

Required

with

multiple

tables

You

can

use

the

administration

wizard

or

a

command

line

to

compose

XML

documents

by

using

RDB_node

mapping.

Chapter

2.

Administration

63

Restrictions:

If

you

compose

your

XML

collections

using

RDB_node

mapping,

all

statements

of

a

given

element

must

map

to

columns

in

the

same

table.

Procedure:

To

compose

an

XML

document

from

the

command

line

using

RDB_node

mapping:

1.

Open

a

text

editor

and

create

a

DAD

header

by

typing

the

following

syntax:

<?xml

version="1.0"?>

<!DOCTYPE

DAD

SYSTEM

"path/dad.dtd">

Where

path/dad.dtd

is

the

path

and

file

name

of

the

DTD

for

the

DAD.

2.

Insert

the<DAD></DAD>

tags.

This

element

will

contain

all

the

other

elements.

3.

Insert

the

tags

used

for

validating

the

DAD

with

a

DTD

or

schema.

v

To

validate

the

DAD

with

a

DTD,

insert

the

DTDID

tags

that

associate

the

DAD

file

with

the

XML

document

DTD.

For

example:

<dtdid>path/dtd_name.dtdid>

v

To

validate

the

DAD

with

a

schema,

insert

the

schema

tags

that

associate

the

DAD

file

with

the

schema

file.

For

example:

<schemabindings>

<nonamespacelocation

location="path/schema_name.xsd"/>

</schemabindings>

The

dtdid

or

schema

is

useful

only

if

you

decide

to

validate

the

XML

document.

Use

the

validation

tag

to

indicate

whether

DB2

UDB

XML

Extender

validates

the

XML

document:

v

If

you

want

to

validate

the

XML

document,

then

type:

<validation>YES</validation>

v

If

you

do

not

want

to

validate

the

XML

document

type:

<validation>NO</validation>

4.

Insert

the

<XCollection>

</XCollection>

tags

to

specify

that

you

are

using

XML

collections

as

the

access

and

storage

method

for

your

XML

data.

5.

Add

the

following

prolog

information:

<prolog>?xml

version="1.0"?</prolog>

6.

Add

the

<doctype>

</doctype>

tags.

For

example:

<doctype>!

DOCTYPE

Order

SYSTEM

"dxx_install

/samples/db2xml/dtd/getstart.dtd"</doctype>

7.

Insert

the

<root_node>

</root_node>

tags.

Inside

the

root_node

tags,

specify

the

elements

and

attributes

that

make

up

the

XML

document.

8.

Inside

the

<root_node>

tag,

map

the

elements

and

attributes

in

the

XML

document

to

element

and

attribute

nodes

that

correspond

to

DB2

UDB

data.

Use

the

RDB_node

element

for

the

element_node,

text_node,

and

attribute_node.

These

nodes

provide

a

path

from

the

XML

data

to

the

DB2

UDB

data.

To

map

the

elements

and

attributes

in

your

XML

document:

a.

Specify

an

RDB_node

for

the

top

element_node.

This

element

specifies

all

the

tables

that

are

associated

with

the

XML

document.

To

specify

an

RDB_node

for

the

top

element_node,

insert

<RDB_node>

tags

after

the

root_node

tag.

v

Specify

an

RDB_node

for

the

attribute_node.

v

Specify

an

RDB_node

for

the

text_node.

64

XML

Extender

Administration

and

Programming

|

|
|

|

|
|

|
|
|

|
|
|

|

|

|

|

b.

Define

a

table

node

for

each

table

that

contains

data

to

be

included

in

the

XML

document.

For

example,

if

you

have

three

tables

(ORDER_TAB,

PART_TAB,

and

SHIP_TAB)

that

have

column

data

to

be

in

the

document,

create

a

table

node

for

each.

For

example:

<RDB_node>

<table

name="ORDER_TAB">

<table

name="PART_TAB">

<table

name="SHIP_TAB">

</RDB_node>

If

you

are

decomposing

an

XML

document

using

the

DAD

file,

you

must

specify

a

primary

key

for

each

table.

The

primary

key

can

consist

of

a

single

column

or

multiple

columns,

called

a

composite

key.

The

primary

key

is

specified

by

adding

an

attribute

key

to

the

table

element

of

the

RDB_node.

You

must

also

specify

a

primary

key

for

each

table

if

you

are

going

to

enable

a

collection.

The

example

below

shows

how

you

specify

a

key

column

for

each

table

specified

in

the

element_node.

<RDB_node>

<table

name="ORDER_TAB"

key="order_key">

<table

name="PART_TAB"

key="part_key">

<table

name="SHIP_TAB"

key="ship_key">

</RDB_node>

Related

concepts:

v

“Mapping

schemes

for

XML

collections”

on

page

105

v

“Location

paths”

on

page

112

v

“DAD

files

for

XML

collections”

on

page

169

v

“Requirements

for

RDB_Node

mapping”

on

page

109

v

“XML

Extender

composition

stored

procedures”

on

page

200

Related

tasks:

v

“Decomposing

an

XML

collection

by

using

RDB_node

mapping”

on

page

65

v

“Managing

data

in

XML

collections”

on

page

92

v

“Updating,

deleting,

and

retrieving

data

in

XML

collections”

on

page

101

Decomposing

an

XML

collection

by

using

RDB_node

mapping

Use

RDB_node

mapping

to

decompose

XML

documents.

This

method

uses

the

<RDB_node>

to

specify

DB2

UDB

tables,

columns,

and

conditions

for

an

element

or

attribute

node.

The

<RDB_node>

uses

the

following

elements:

table

Defines

the

table

that

corresponds

to

the

element.

column

Defines

the

column

that

contains

the

corresponding

element.

condition

Optionally

specifies

a

condition

on

the

column.

The

child

elements

that

are

used

in

the

<RDB_node>

depend

on

the

context

of

the

node

and

use

the

following

rules:

If

the

node

type

is:

RDB

child

element

is

used:

Table

Column

Condition1

Root

element

Yes

No

Yes

Attribute

Yes

Yes

optional

Chapter

2.

Administration

65

If

the

node

type

is:

RDB

child

element

is

used:

Table

Column

Condition1

Text

Yes

Yes

optional

(1)

Required

with

multiple

tables

Procedure

using

a

command

line::

To

decompose

XML

documents

using

a

command

line:

1.

Create

a

file

in

any

text

editor.

Create

a

DAD

header

by

typing

the

following

syntax:

<?xml

version="1.0"?>

<!DOCTYPE

DAD

SYSTEM

"path/dad.dtd">

Where

path/dad.dtd

is

the

path

and

file

name

of

the

DTD

for

the

DAD.

2.

Insert

the

<DAD>

</DAD>

tags.

3.

Insert

the

tags

used

for

validating

the

DAD

with

a

DTD

or

schema.

v

To

validate

the

DAD

with

a

DTD,

insert

the

DTDID

tags

that

associate

the

DAD

file

with

the

XML

document

DTD.

For

example:

<dtdid>path/dtd_name.dtd>

v

To

validate

the

DAD

with

a

schema,

insert

the

schema

tags

that

associate

the

DAD

file

with

the

schema

file.

For

example:

<schemabindings>

<nonamespacelocation

location="path/schema_name.xsd"/>

</schemabindings>

The

dtdid

or

schema

is

useful

only

if

you

decide

to

validate

the

XML

document.

Use

the

validation

tag

to

indicate

whether

DB2

UDB

XML

Extender

validates

the

XML

document:

v

If

you

want

to

validate

the

XML

document,

then

type:

<validation>YES</validation>

v

If

you

do

not

want

to

validate

the

XML

document

type:

<validation>NO</validation>

4.

Insert

<XCollection>

</XCollection>

tags

to

specify

that

you

are

using

XML

collections

as

the

access

and

storage

method

for

your

XML

data.

5.

Add

the

following

prolog

information:

<prolog>?xml

version="1.0"?</prolog>

6.

Add

the

<doctype></doctype>

tags.

For

example:

<doctype>!

DOCTYPE

Order

SYSTEM

"dxx_install

/samples/db2xml/dtd/getstart.dtd"</doctype>

If

you

need

to

specify

an

encoding

value

for

internationalization,

add

the

ENCODING

attribute

and

value.

7.

Define

the

root_node

using

the

<root_node>

</root_node>

tags.

8.

Inside

the

root_node,

map

the

elements

and

attributes

in

the

XML

document

to

element

nodes

and

attribute

nodes

that

correspond

to

DB2

UDB

data.

These

nodes

provide

a

path

from

the

XML

data

to

the

DB2

UDB

data.

a.

Define

a

top

level,

root

element_node.

This

element_node

contains:

v

Table

nodes

with

a

join

condition

to

specify

the

collection.

v

Child

elements

v

Attributes

66

XML

Extender

Administration

and

Programming

|

|
|

|

|
|

|
|
|

|
|
|

|

|

|

|

To

specify

the

table

nodes

and

condition:

1)

Create

an

RDB_node

element.

For

example:

<RDB_node>

</RDB_node>

2)

Define

a

table_node

for

each

table

that

contains

data

to

be

included

in

the

XML

document.

For

example,

if

you

have

three

tables,

ORDER_TAB,

PART_TAB,

and

SHIP_TAB,

that

have

column

data

to

be

in

the

document,

create

a

table

node

for

each.

For

example:

<RDB_node>

<table

name="ORDER_TAB">

<table

name="PART_TAB">

<table

name="SHIP_TAB">

</RDB_node>

3)

Define

a

join

condition

for

the

tables

in

the

collection.

The

syntax

is:

table_name.table_column

=

table_name.table_column

AND

table_name.table_column

=

table_name.table_column

...

For

example:

<RDB_node>

<table

name="ORDER_TAB">

<table

name="PART_TAB">

<table

name="SHIP_TAB">

<condition>

order_tab.order_key

=

part_tab.order_key

AND

part_tab.part_key

=

ship_tab.part_key

</condition>

</RDB_node>

4)

Specify

a

primary

key

for

each

table.

The

primary

key

consists

of

a

single

column

or

multiple

columns,

called

a

composite

key.

To

specify

the

primary

key,

add

an

attribute

key

to

the

table

element

of

the

RDB_node.

The

following

example

defines

a

primary

key

for

each

of

the

tables

in

the

RDB_node

of

the

root

element_node

Order:

<element_node

name="Order">

<RDB_node>

<table

name="order_tab"

key="order_key"/>

<table

name="part_tab"

key="part_key

price"/>

<table

name="ship_tab"

key="date

mode"/>

<condition>

order_tab.order_key

=

part_tab.order_key

AND

part_tab.part_key

=

ship_tab.part_key

</condition>

<RDB_node>

The

key

attribute

is

required

for

decomposition

and

enabling

a

collection

because

the

DAD

file

used

must

support

both

composition

and

decomposition.

b.

Define

an

<element_node>

tag

for

each

element

in

your

XML

document

that

maps

to

a

column

in

a

DB2

UDB

table.

For

example:

<element_node

name="name">

</element_node>

An

element

node

can

have

one

of

the

following

types

of

elements:

text_node

To

specify

that

the

element

has

content

to

a

DB2

UDB

table

It

does

not

have

child

elements.

attribute_node

To

specify

an

attribute.

child

elements

Children

of

the

element_node.

Chapter

2.

Administration

67

The

text_node

contains

an

RDB_node

to

map

content

to

a

DB2

UDB

table

and

column

name.

RDB_nodes

are

used

for

bottom-level

elements

that

have

content

to

map

to

a

DB2

UDB

table.

An

RDB_node

has

the

following

child

elements:

table

Defines

the

table

that

corresponds

to

the

element.

column

Defines

the

column

that

contains

the

corresponding

element

.

condition

Optionally

specifies

a

condition

on

the

column.

For

example,

you

might

have

an

XML

element

<Tax>

for

which

you

want

to

store

the

untagged

content

in

a

column

called

TAX:

XML

document:

<Tax>0.02</Tax>

In

this

case,

you

want

the

value

0.02

to

be

stored

in

the

column

TAX.

In

the

DAD

file,

you

specify

an

<RDB_node>

tag

to

map

the

XML

element

to

the

DB2

UDB

table

and

column.

DAD

file:

<element_node

name="Tax">

<text_node>

<RDB_node>

<table

name="part_tab"/>

<column

name="tax"/>

</RDB_node>

</text_node>

</element_node>

The

<RDB_node>

tag

specifies

that

the

value

of

the

Tax

element

is

a

text

value,

the

data

is

stored

in

the

PART_TAB

table

in

the

TAX

column.

c.

Define

an

<attribute_node>

tag

for

each

attribute

in

your

XML

document

that

maps

to

a

column

in

a

DB2

UDB

table.

For

example:

<attribute_node

name="key">

</attribute_node>

The

attribute_node

has

an

RDB_node

to

map

the

attribute

value

to

a

DB2

UDB

table

and

column.

An

RDB_node

has

the

following

child

elements:

table

Defines

the

table

that

corresponds

to

the

element.

column

Defines

the

column

that

contains

the

corresponding

element

.

condition

Optionally

specifies

a

condition

on

the

column.

For

example,

you

might

have

an

attribute

key

for

an

Order

element.

The

value

of

key

needs

to

be

stored

in

a

column

PART_KEY.

XML

document:

<Order

key="1">

In

the

DAD

file,

create

an

attribute_node

for

key

and

indicate

the

table

where

the

value

of

1

is

to

be

stored.

DAD

file:

<attribute_node

name="key">

<RDB_node>

<table

name="part_tab">

<column

name="part_key"/>

<RDB_node>

</attribute_node>

68

XML

Extender

Administration

and

Programming

9.

Specify

the

column

type

for

the

RDB_node

for

each

attribute_node

and

text_node.

This

ensures

the

correct

data

type

for

each

column

where

the

untagged

data

will

be

stored.

To

specify

the

column

types,

add

the

attribute

type

to

the

column

element.

The

following

example

defines

the

column

type

as

an

INTEGER:

<attribute_node

name="key">

<RDB_node>

<table

name="order_tab"/>

<column

name="order_key"

type="integer"/>

</RDB_node>

</attribute_node>

10.

Ensure

that

the

ending

tags

are

in

the

appropriate

places:

a.

Ensure

that

an

ending

</root_node>

tag

is

after

the

last

</element_node>

tag.

b.

Ensure

that

an

ending

</Xcollection>

tag

is

after

the

</root_node>

tag.

c.

Ensure

that

an

ending

</DAD>

tag

is

after

the

</Xcollection>

tag.

Related

concepts:

v

“XML

Extenders

decomposition

stored

procedures”

on

page

215

Related

tasks:

v

“Decomposing

XML

documents

into

DB2

UDB

data”

on

page

97

v

“Calling

XML

Extender

composition

stored

procedures”

on

page

201

Chapter

2.

Administration

69

70

XML

Extender

Administration

and

Programming

Part

3.

Programming

This

part

describes

programming

techniques

for

managing

your

XML

data.

©

Copyright

IBM

Corp.

1999,

2004

71

72

XML

Extender

Administration

and

Programming

Chapter

3.

XML

columns

This

chapter

describes

how

to

manage

data

in

XML

columns

using

DB2.

Managing

data

in

XML

columns

When

you

use

XML

columns

to

store

data,

you

store

an

entire

XML

document

in

its

native

format

as

column

data

in

DB2.

This

access

and

storage

method

allows

you

to

keep

the

XML

document

intact,

while

giving

you

the

ability

to

index

and

search

the

document,

retrieve

data

from

the

document,

and

update

the

document.

After

you

enable

a

database

for

XML,

the

following

user-defined

types

(UDTs),

provided

by

XML

Extender,

are

available

for

your

use:

XMLCLOB

Use

this

UDT

for

XML

document

content

that

is

stored

as

a

character

large

object

(CLOB)

in

DB2.

XMLVARCHAR

Use

this

UDT

for

XML

document

content

that

is

stored

as

a

VARCHAR

in

DB2.

XMLFILE

Use

this

UDT

for

an

XML

document

that

is

stored

in

a

file

on

a

local

file

system.

You

can

create

or

alter

application

tables

to

have

columns

of

XML

UDT

data

type.

These

tables

are

known

as

XML

tables.

After

you

enable

a

column

in

a

table

for

XML,

you

can

create

the

XML

column

and

perform

the

following

management

tasks:

v

Store

XML

documents

in

DB2

v

Retrieve

XML

data

or

documents

from

DB2

v

Update

XML

documents

v

Delete

XML

data

or

documents

To

perform

all

of

these

tasks,

use

the

user-defined

functions

(UDFs)

provided

by

XML

Extender.

Use

default

casting

functions

to

store

XML

documents

in

DB2.

Default

casting

functions

cast

the

SQL

base

type

to

the

XML

Extender

user-defined

types

and

convert

instances

of

a

data

type

(origin)

into

instances

of

a

different

data

type

(target).

Related

concepts:

v

“XML

columns

as

a

storage

and

access

method”

on

page

73

v

“Using

indexes

for

XML

column

data”

on

page

75

XML

columns

as

a

storage

and

access

method

There

will

be

times

when

you

want

to

store

and

maintain

the

document

structure

as

it

currently

is.

XML

contains

all

the

necessary

information

to

create

a

set

of

documents.

©

Copyright

IBM

Corp.

1999,

2004

73

For

example,

if

you

are

a

news

publishing

company

that

serves

articles

over

the

Web,

you

might

want

to

maintain

an

archive

of

published

articles.

In

such

a

scenario,

XML

Extender

lets

you

store

your

complete

or

partial

XML

articles

in

a

column

of

a

DB2®

table,

which

is

the

XML

column,

as

shown

in

Figure

9.

The

XML

column

storage

and

access

method

allows

you

to

manage

your

XML

documents

using

DB2.

You

can

store

XML

documents

in

a

column

of

XML

type

and

you

can

query

the

contents

of

the

document

to

find

a

specific

element

or

attribute.

You

can

associate

and

store

a

DTD

in

DB2

UDB

for

one

or

more

documents.

Additionally,

you

can

map

element

and

attribute

content

to

DB2

UDB

tables,

called

side

tables.

These

side

tables

can

be

indexed

for

improved

query

performance,

but

are

not

indexed

automatically.

The

column

that

is

used

to

store

the

document

is

called

an

XML

column.

It

specifies

that

the

column

is

used

for

the

XML

column

storage

and

access

method.

In

the

document

access

definition

(DAD)

file

you

enter

<Xcolumn>

and

</Xcolumn>

tags

to

denote

that

the

storage

and

access

method

that

you

will

use

is

XML

column.

The

DAD

will

then

map

the

XML

element

and

attribute

content

to

be

stored

in

side

tables.

Before

you

begin

working

with

XML

Extender

to

store

your

documents,

you

need

to

understand

the

structure

of

the

XML

document

so

that

you

can

determine

how

to

index

elements

and

attributes

in

the

document.

When

planning

how

to

index

the

document,

you

need

to

determine:

v

The

XML

user-defined

type

in

which

you

will

store

the

XML

document

v

The

XML

elements

and

attributes

that

your

application

will

frequently

search,

so

that

their

content

can

be

stored

in

side

tables

and

indexed

to

improve

performance

v

Whether

or

not

you

want

to

validate

XML

documents

in

the

column

with

a

DTD

Defining

and

enabling

an

XML

column

You

use

XML

columns

to

store

and

access

entire

XML

documents

in

the

database.

This

storage

method

allows

you

to

store

documents

using

the

XML

file

types,

index

the

columns

in

side

tables,

and

query

or

search

XML

documents.

<?xml?>
<!DOCTYPE…>

<Order key="1">

…

</Order>

DB2 XML document

XML CLOB

Figure

9.

Storing

structured

XML

documents

in

a

DB2

UDB

table

column

74

XML

Extender

Administration

and

Programming

Use

XML

columns

when

you

want

to

store

entire

XML

documents

into

a

DB2

table

column

if

the

document

is

not

going

to

be

frequently

updated

or

if

you

want

to

store

intact

XML

documents.

If

you

want

to

map

XML

document

structures

to

DB2

UDB

tables

so

that

you

can

compose

XML

documents

from

existing

DB2

UDB

data

or

decompose

XML

documents

into

DB2

data,

then

you

should

use

XML

collections

instead

of

XML

columns.

Procedure:

To

define

and

enable

an

XML

column

from

the

command

line

:

1.

Create

a

document

access

definition

(DAD)

file.

2.

Create

a

table

in

which

the

XML

documents

are

stored.

3.

Enable

the

column

for

XML

data.

If

the

DAD

specifies

validation,

then

insert

the

column

into

dtd_ref

table.

4.

Index

the

side

tables.

The

XML

column

is

created

as

an

XML

user

data

type.

After

these

tasks

are

complete,

you

will

be

able

to

store

XML

documents

in

the

column.

These

documents

can

then

be

updated,

searched,

and

extracted.

Related

concepts:

v

“XML

columns

as

a

storage

and

access

method”

on

page

73

v

“Using

indexes

for

XML

column

data”

on

page

75

v

“Validating

XML

documents

automatically”

on

page

52

v

“Lesson:

Storing

an

XML

document

in

an

XML

column”

on

page

8

Related

tasks:

v

“Creating

a

DAD

file

for

XML

columns”

on

page

167

v

“Creating

an

XML

table”

on

page

53

v

“Enabling

XML

columns”

on

page

55

v

“Indexing

side

tables”

on

page

60

v

“Managing

data

in

XML

columns”

on

page

73

Using

indexes

for

XML

column

data

An

important

planning

decision

when

using

XML

columns,

is

whether

to

index

the

side

tables

for

XML

column

documents.

This

decision

should

be

made

based

on

how

often

you

need

to

access

the

data

and

how

critical

performance

is

during

structural

searches.

When

using

XML

columns,

which

contain

entire

XML

documents,

you

can

create

side

tables

to

contain

columns

of

XML

element

or

attribute

values,

then

create

indexes

on

these

columns.

You

must

determine

the

elements

and

attributes

for

which

you

need

to

create

the

index.

XML

column

indexing

allows

frequently

queried

data

of

general

data

types

(such

as

integer,

decimal,

or

date)

to

be

indexed

using

the

native

DB2®

index

support

from

the

database

engine.

The

XML

Extender

extracts

the

values

of

XML

elements

or

attributes

from

XML

documents

and

stores

them

in

the

side

tables,

allowing

you

to

Chapter

3.

XML

columns

75

create

indexes

on

these

side

tables.

You

can

specify

each

column

of

a

side

table

with

a

location

path

that

identifies

an

XML

element

or

attribute

and

an

SQL

data

type.

The

XML

Extender

automatically

populates

the

side

table

when

you

store

XML

documents

in

the

XML

column.

For

fast

search,

create

indexes

on

these

columns

using

the

DB2

UDB

B-tree

indexing

technology.

See

the

DB2

UDB

documentation

for

more

information

on

B-tree

indexing.

You

must

keep

the

following

considerations

in

mind

when

creating

an

index:

v

For

elements

or

attributes

in

an

XML

document

that

have

multiple

occurrences,

you

must

create

a

separate

side

table

for

each

XML

element

or

attribute

with

multiple

occurrences

due

to

the

complex

structure

of

XML

documents.

v

You

can

create

multiple

indexes

on

an

XML

column.

v

You

can

associate

side

tables

with

the

application

table

using

the

ROOT

ID,

the

column

name

of

the

primary

key

in

the

application

table

and

a

unique

identifier

that

associates

all

side

tables

with

the

application

table.

You

can

decide

whether

you

want

the

primary

key

of

the

application

table

to

be

the

ROOT

ID,

although

it

cannot

be

the

composite

key.

This

method

is

recommended.

If

the

single

primary

key

does

not

exist

in

the

application

table,

or

for

some

reason

you

don’t

want

to

use

it,

XML

Extender

alters

the

application

table

to

add

a

column

DXXROOT_ID,

which

stores

a

unique

ID

that

is

created

at

the

insertion

time.

All

side

tables

have

a

DXXROOT_ID

column

with

the

unique

ID.

If

the

primary

key

is

used

as

the

ROOT

ID,

all

side

tables

have

a

column

with

the

same

name

and

type

as

the

primary

key

column

in

the

application

table,

and

the

values

of

the

primary

keys

are

stored.

v

If

you

enable

an

XML

column

for

the

DB2

UDB

Text

Extender,

you

can

also

use

the

Text

Extender’s

structural-text

feature.

The

Text

Extender

has

″section

search″

support,

which

extends

the

capability

of

a

conventional

full-text

search

by

allowing

search

words

to

be

matched

within

a

specific

document

context

that

is

specified

by

location

paths.

The

structural-text

index

can

be

used

with

XML

Extender’s

indexing

on

general

SQL

data

types.

Storing

XML

data

Using

XML

Extender,

you

can

insert

intact

XML

documents

into

an

XML

column.

If

you

define

side

tables,

XML

Extender

automatically

updates

these

tables.

When

you

store

an

XML

document

directly,

XML

Extender

stores

the

base

type

as

an

XML

type.

Prerequisites:

v

Ensure

that

you

created

or

updated

the

DAD

file.

v

Determine

what

data

type

to

use

when

you

store

the

document.

v

Choose

a

method

(casting

functions

or

UDFs)

for

storing

the

data

in

the

DB2®

table.

Specify

an

SQL

INSERT

statement

that

specifies

the

XML

table

and

column

to

contain

the

XML

document.

The

XML

Extender

provides

two

methods

for

storing

XML

documents:

default

casting

functions

and

storage

UDFs.

76

XML

Extender

Administration

and

Programming

Table

9

shows

when

to

use

each

method.

Table

9.

The

XML

Extender

storage

functions

If

the

DB2

UDB

base

type

is

...

Store

in

DB2

UDB

as

...

XMLVARCHAR

XMLCLOB

XMLDBCLOB

XMLFILE

VARCHAR

XMLVARCHAR()

N/A

N/A

XMLFile

FromVarchar()

CLOB

N/A

XMLCLOB()

XMLDB

CLOB,

casting

function

XMLFile

FromCLOB()

FILE

XMLVarcha

rFromFile()

XMLCLOB

FromFile()

XMLDB

CLOBFrom

File,

UDF

XMLFILE

Default

casting

functions

for

storing

XML

data

For

each

UDT,

a

default

casting

function

exists

to

cast

the

SQL

base

type

to

the

UDT.

You

can

use

the

casting

functions

provided

by

XML

Extender

in

your

VALUES

clause

to

insert

data.

Table

10

shows

the

provided

casting

functions:

Table

10.

The

XML

Extender

default

casting

functions

Casting

function

Return

type

Description

XMLVARCHAR(VARCHAR)

XMLVARCHAR

Input

from

memory

buffer

of

VARCHAR

XMLCLOB(CLOB)

XMLCLOB

Input

from

memory

buffer

of

CLOB

or

a

CLOB

locator

XMLFILE(VARCHAR)

XMLFILE

Store

only

the

file

name

For

example,

the

following

statement

inserts

a

cast

VARCHAR

type

into

the

XMLVARCHAR

type:

INSERT

INTO

sales_tab

VALUES(’123456’,

’Sriram

Srinivasan’,

DB2XML.XMLVarchar(:xml_buff))

Storage

UDFs

for

storing

XML

data

For

each

XML

Extender

UDT,

a

storage

UDF

exists

to

import

data

into

DB2

from

a

resource

other

than

its

base

type.

For

example,

if

you

want

to

import

an

XML

file

document

to

DB2

UDB

as

an

XMLCLOB

data

type,

you

can

use

the

function

XMLCLOBFromFile().

Table

11

shows

the

storage

functions

provided

by

the

XML

Extender.

Table

11.

The

XML

Extender

storage

UDFs

Storage

user-defined

function

Return

type

Description

XMLVarcharFromFile()

XMLVARCHAR

Reads

an

XML

document

from

a

file

on

the

server

and

returns

the

value

of

the

XMLVARCHAR

data

type.

Optional:

Specify

the

encoding

of

the

file.

Chapter

3.

XML

columns

77

||

|
|||

|||
|
|
|
|
|

Table

11.

The

XML

Extender

storage

UDFs

(continued)

Storage

user-defined

function

Return

type

Description

XMLCLOBFromFile()

XMLCLOB

Reads

an

XML

document

from

a

file

on

the

server

and

returns

the

value

of

the

XMLCLOB

data

type.

Optional:

Specify

the

encoding

of

the

file.

XMLFileFromVarchar()

XMLFILE

Reads

an

XML

document

from

memory

as

VARCHAR

data,

writes

the

document

to

an

external

file,

and

returns

the

value

of

the

XMLFILE

data

type,

which

is

the

file

name.

Optional:

Specify

the

encoding

of

the

external

file.

XMLFileFromCLOB()

XMLFILE

Reads

an

XML

document

from

memory

as

CLOB

data

or

as

a

CLOB

locator,

writes

the

document

to

an

external

file,

and

returns

the

value

of

the

XMLFILE

data

type,

which

is

the

file

name.

Optional:

Specify

the

encoding

of

the

external

file.

For

example,

using

the

XMLCLOBFromFile()

function,

the

following

statement

stores

a

record

in

an

XML

table

as

an

XMLCLOB:

EXEC

SQL

INSERT

INTO

sales_tab(ID,

NAME,

ORDER)

VALUES(’1234’,

’MyName’,

XMLCLOBFromFile(’dxx_install/samples/db2xml/xml/getstart.xml’))

The

example

imports

the

XML

document

from

the

file

named

dxx_install/samples/db2xml/xml/getstart.xml

into

the

column

ORDER

in

the

table

SALES_TAB.

Method

for

retrieving

an

XML

document

Using

XML

Extender

,

you

can

retrieve

either

an

entire

document

or

the

contents

of

elements

and

attributes.

When

you

retrieve

an

XML

column

directly,

the

XML

Extender

returns

the

UDT

as

the

column

type.

For

details

about

retrieving

data,

see

the

following

sections:

v

“Retrieving

an

entire

XML

document”

on

page

79

v

“Retrieving

element

contents

and

attribute

values

from

XML

documents”

on

page

80

The

XML

Extender

provides

two

methods

for

retrieving

data:

default

casting

functions

and

the

Content()

overloaded

UDF.

Table

12

on

page

79

shows

when

to

use

each

method.

78

XML

Extender

Administration

and

Programming

|

|
|||

|||
|
|
|
|
|

|||
|
|
|
|
|
|
|

|||
|
|
|
|
|
|
|
|
|

Table

12.

The

XML

Extender

retrieval

functions

When

the

XML

type

is

...

Retrieve

from

DB2

UDB

as

...

VARCHAR

CLOB

DBCLOB

FILE

XMLVARCHAR

VARCHAR

N/A

N/A

Content()

UDF

XMLCLOB

N/A

XMLCLOB

N/A

Content()

UDF

XMLFILE

N/A

Content()

UDF

N/A

FILE

Retrieving

an

entire

XML

document

Procedure:

To

retrieve

an

entire

XML

document:

1.

Ensure

that

you

stored

the

XML

document

in

an

XML

table

and

determine

what

data

you

want

to

retrieve.

2.

Choose

a

method

(casting

functions

or

UDFs)

for

retrieving

the

data

in

the

DB2

UDB

table.

3.

If

you

are

using

the

overloaded

Content()

UDF,

determine

the

data

type

of

the

data

that

is

being

retrieved,

and

which

data

type

is

to

be

exported.

4.

The

XML

column

from

which

the

element

or

attribute

is

to

be

extracted

must

be

defined

as

either

an

XMLVARCHAR,

XMLCLOB

as

LOCATOR,

or

XMLFILE

data

type.

Specify

an

SQL

query

that

specifies

the

XML

table

and

column

from

which

to

retrieve

the

XML

document.

Default

casting

functions

for

retrieving

XML

data

The

default

casting

function

provided

by

DB2

UDB

for

UDTs

converts

an

XML

UDT

to

an

SQL

base

type,

and

then

operates

on

it.

In

your

SELECT

statement,

you

can

use

the

casting

functions

that

are

provided

by

XML

Extender

to

retrieve

data.

Table

13

shows

the

provided

casting

functions.

Table

13.

The

XML

Extender

default

cast

functions

Casting

used

in

SELECT

clause

Return

type

Description

varchar(XMLVARCHAR)

VARCHAR

XML

document

in

VARCHAR

clob(XMLCLOB)

CLOB

XML

document

in

CLOB

varchar(XMLFile)

VARCHAR

XML

file

name

in

VARCHAR

For

example,

the

following

statement

retrieves

the

XMLVARCHAR

and

stores

it

in

memory

as

a

VARCHAR

data

type:

EXEC

SQL

SELECT

DB2XML.XMLVarchar(order)

from

SALES_TAB

Using

the

Content()

UDF

for

retrieving

XML

data

Use

the

Content()

UDF

to

retrieve

the

document

content

from

external

storage

to

memory,

or

export

the

document

from

internal

storage

to

an

external

file,

which

is

a

file

that

is

external

to

DB2

UDB

on

the

DB2

UDB

server.

For

example,

you

might

have

your

XML

document

stored

as

an

XMLFILE

data

type.

If

you

want

to

operate

on

it

in

memory,

you

can

use

the

Content()

UDF,

which

can

take

an

XMLFILE

data

type

as

input

and

return

a

CLOB.

Chapter

3.

XML

columns

79

The

Content()

UDF

performs

two

different

retrieval

functions,

depending

on

the

specified

data

type.

It

can:

v

Retrieve

a

document

from

external

storage

and

put

it

in

memory.

You

can

use

Content()

UDF

to

retrieve

the

XML

document

to

a

memory

buffer

or

a

CLOB

locator

(a

host

variable

with

a

value

that

represents

a

single

LOB

value

in

the

database

server)

when

the

document

is

stored

as

the

external

file.

Use

the

following

function

syntax,

where

xmlobj

is

the

XML

column

being

queried:

XMLFILE

to

CLOB:

Content(xmlobj

XMLFile)

v

Retrieve

a

document

from

internal

storage

and

export

it

to

an

external

file.

You

can

use

the

Content()

UDF

to

retrieve

an

XML

document

that

is

stored

inside

DB2

UDB

as

an

XMLCLOB

data

type

and

export

it

to

a

file

on

the

database

server

file

system.

The

Content()

UDF

returns

the

name

of

the

file

as

a

VARCHAR

data

type.

Use

the

following

function

syntax:

XML

type

to

external

file:

Content(xmlobj

XML

type,

filename

varchar(512),

targetencoding

varchar(100))

Where:

xmlobj

Is

the

name

of

the

XML

column

from

which

the

XML

content

is

to

be

retrieved.

xmlobj

can

be

of

type

XMLVARCHAR

or

XMLCLOB.

filename

Is

the

name

of

the

external

file

in

which

the

XML

data

is

to

be

stored.

targetencoding

Optional:

Specifies

the

encoding

of

the

output

file.

In

the

example

below,

a

small

C

program

segment

with

embedded

SQL

statements

(SQL

statements

coded

within

an

application

program)

shows

how

an

XML

document

is

retrieved

from

a

file

to

memory.

This

example

assumes

that

the

data

type

of

the

ORDER

column

is

XMLFILE.

EXEC

SQL

BEGIN

DECLARE

SECTION;

SQL

TYPE

IS

CLOB_LOCATOR

xml_buff;

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

CONNECT

TO

SALES_DB;

EXEC

SQL

DECLARE

c1

CURSOR

FOR

SELECT

Content(order)

from

sales_tab

EXEC

SQL

OPEN

c1;

do

{

EXEC

SQL

FETCH

c1

INTO

:xml_buff;

if

(SQLCODE

!=

0)

{

break;}

else

{

/*

do

whatever

you

need

to

do

with

the

XML

doc

in

buffer

*/}

}

EXEC

SQL

CLOSE

c1;

EXEC

SQL

CONNECT

RESET;

Retrieving

element

contents

and

attribute

values

from

XML

documents

You

can

retrieve

(extract)

the

content

of

an

element

or

the

value

of

an

attribute

from

one

or

more

XML

documents

(single

document

or

collection

document

search).

The

XML

Extender

provides

user-defined

extracting

functions

that

you

can

specify

in

the

SQL

SELECT

clause

for

each

of

the

SQL

data

types.

Retrieving

element

content

and

attribute

values

is

useful

when

developing

your

applications,

because

you

can

access

XML

data

as

relational

data.

For

example,

80

XML

Extender

Administration

and

Programming

|

|
|

you

might

have

1000

XML

documents

that

are

stored

in

the

ORDER

column

in

the

SALES_TAB

table.

To

retrieve

the

names

of

all

customers

who

have

ordered

items

over

$2500,

use

the

following

SQL

statement

with

the

extracting

UDF

in

the

SELECT

clause:

SELECT

extractVarchar(Order,

’/Order/Customer/Name’)

from

sales_order_view

WHERE

price

>

2500.00

In

this

example,

the

extracting

UDF

retrieves

the

content

of

the

<customer>

element

from

the

ORDER

column

and

stores

it

as

a

VARCHAR

data

type.

The

location

path

is

/Order/Customer/Name.

Additionally,

the

number

of

returned

values

is

reduced

by

using

a

WHERE

clause,

which

specifies

that

only

the

contents

of

the

<customer>

element

with

a

sub-element

<ExtendedPrice>

that

has

a

value

greater

than

2500.00.

Table

14

on

page

82

shows

the

UDFs

that

you

can

use

to

extract

element

content

and

attribute

values,

using

the

following

syntax

as

either

table

or

scalar

functions.

Syntax:

extractretrieved_datatype(xmlobj,

path)

retrieved_datatype

The

data

type

that

is

returned

from

the

extracting

function;

it

can

be

one

of

the

following

types:

v

INTEGER

v

SMALLINT

v

DOUBLE

v

REAL

v

CHAR

v

VARCHAR

v

CLOB

v

DATE

v

TIME

v

TIMESTAMP

xmlobj

The

name

of

the

XML

column

from

which

the

element

or

attribute

is

to

be

extracted.

This

column

must

be

defined

as

one

of

the

following

XML

user-defined

types:

v

XMLVARCHAR

v

XMLCLOB

as

LOCATOR

v

XMLFILE

path

The

location

path

of

the

element

or

attribute

in

the

XML

document

(such

as

/Order/Customer/Name).

Restriction:

Extracting

UDFs

can

support

location

paths

that

have

predicates

with

attributes,

but

not

elements.

For

example,

the

following

predicate

is

supported:

’/Order/Part[@color="black

"]/ExtendedPrice’

The

following

predicate

is

not

supported:

’/Order/Part/Shipment/[Shipdate

<

"11/25/00"]’

Chapter

3.

XML

columns

81

Table

14

shows

the

extracting

functions,

both

in

scalar

and

table

format.

Table

14.

The

XML

Extender

extracting

functions

Scalar

function

Table

function

Returned

column

name

(table

function)

Return

type

extractInteger()

extractIntegers()

returnedInteger

INTEGER

extractSmallint()

extractSmallints()

returnedSmallint

SMALLINT

extractDouble()

extractDoubles()

returnedDouble

DOUBLE

extractReal()

extractReals()

returnedReal

REAL

extractChar()

extractChars()

returnedChar

CHAR

extractVarchar()

extractVarchars()

returnedVarchar

VARCHAR

extractCLOB()

extractCLOBs()

returnedCLOB

CLOB

extractDate()

extractDates()

returnedDate

DATE

extractTime()

extractTimes()

returnedTime

TIME

extractTimestamp()

extractTimestamps()

returnedTimestamp

TIMESTAMP

Scalar

function

example:

In

the

following

example,

one

value

is

inserted

with

the

attribute

key

value

of

1.

The

value

is

extracted

as

an

integer

and

automatically

converted

to

a

DECIMAL

type.

CREATE

TABLE

t1(key

decimal(3,2));

INSERT

into

t1

values

SELECT

*

from

table(DB2XML.extractInteger(DB2XML.XMLFile

(’c:\dxx_install\samples\db2xml\xml\getstart.xml’),

’/Order/@key="1"]’));

SELECT

*

from

t1;

Updating

XML

data

With

XML

Extender,

you

can

update

the

entire

XML

document

by

replacing

the

XML

column

data,

or

you

can

update

the

values

of

specified

elements

or

attributes.

Procedure

To

update

XML

data:

1.

The

XML

document

must

be

stored

in

an

XML

table.

2.

You

must

know

what

data

you

want

to

retrieve.

3.

You

must

choose

a

method

for

updating

the

data

in

the

DB2

UDB

table

(casting

functions

or

UDFs).

4.

Specify

an

SQL

query

that

specifies

the

XML

table

and

column

to

update.

Updating

an

entire

XML

document

You

can

update

an

XML

document

by

using

a

default

casting

function,

or

by

using

a

storage

UDF.

Updating

with

a

default

casting

function

For

each

user-defined

type

(UDT),

a

default

casting

function

exists

to

cast

the

SQL

base

type

to

the

UDT.

You

can

use

the

XML

Extender-provided

casting

functions

to

update

the

XML

document.

82

XML

Extender

Administration

and

Programming

For

example,

the

following

statement

updates

the

XMLVARCHAR

type

from

the

cast

VARCHAR

type,

assuming

that

xml_buf

is

a

host

variable

that

is

defined

as

a

VARCHAR

type.

UPDATE

sales_tab

SET=DB2XML.XMLVarchar(:xml_buff)

Updating

XML

documents

with

a

storage

UDF

For

each

of

the

XML

Extender

UDTs,

a

storage

UDF

exists

to

import

data

into

DB2

UDB

from

a

resource

other

than

its

base

type.

You

can

use

a

storage

UDF

to

update

the

entire

XML

document

by

replacing

it.

The

following

example

updates

the

XML

object

from

the

file

named

dxx_install/samples/db2xml/xml/getstart.xml

to

the

ORDER

column

in

the

SALES_TAB

table.

UPDATE

sales_tab

set

order

=

XMLVarcharFromFile(’dxx_install/samples/db2xml

/xml/getstart.xml)

WHERE

sales_person

=

’MyName’

Updating

specific

elements

and

attributes

of

an

XML

document

Use

the

Update

UDF

to

make

specific

changes,

rather

than

updating

the

entire

document.

When

you

use

this

UDF,

you

specify

the

location

path

of

the

element

or

attribute

whose

value

will

be

replaced.

You

do

not

need

to

edit

the

XML

document;

XML

Extender

makes

the

change

for

you.

Syntax:

Update(xmlobj,

path,

value)

The

syntax

has

the

following

components:

xmlobj

The

name

of

the

XML

column

for

which

the

value

of

the

element

or

attribute

is

to

be

updated.

path

The

location

path

of

the

element

or

attribute

that

is

to

be

updated.

value

The

new

value

that

is

to

be

updated.

For

example,

the

following

statement

replaces

the

value

of

the

<Customer>

element

with

IBM:

UPDATE

sales_tab

set

order

=

Update(order,

’/Order/Customer/Name’,

’IBM’)

WHERE

sales_person

=

’Sriram

Srinivasan’

Multiple

occurrence:

When

you

specify

a

location

path

in

the

Update

UDF,

the

content

of

every

element

or

attribute

with

a

matching

path

is

updated

with

the

supplied

value.

If

a

location

path

occurs

in

a

document

more

than

once,

the

Update

UDF

replaces

all

of

the

existing

values

with

the

value

provided

in

the

value

parameter.

Methods

for

searching

XML

documents

Searching

XML

data

is

similar

to

retrieving

XML

data:

both

techniques

retrieve

data

for

further

manipulation

but

they

search

by

using

the

content

of

the

WHERE

clause

as

the

criteria

for

retrieval.

The

XML

Extender

provides

several

methods

for

searching

XML

documents

that

are

stored

in

an

XML

column.

You

can:

Chapter

3.

XML

columns

83

v

Search

document

structure

and

return

results

based

on

element

content

or

attribute

values.

v

Search

a

view

of

the

XML

column

and

its

side

tables.

v

Search

the

side

tables

directly

for

better

performance.

v

Search

using

extracting

UDFs

with

WHERE

clauses.

v

Use

the

DB2®

Text

Extender

to

search

column

data

within

the

structural

content

for

a

text

string.

With

XML

Extender

you

can

use

indexes

to

quickly

search

columns

in

side

tables.

These

columns

contain

XML

element

content

or

attribute

values

that

are

extracted

from

XML

documents.

By

specifying

the

data

type

of

an

element

or

attribute,

you

can

search

on

an

SQL

data

type

or

do

range

searches.

For

example,

in

the

purchase

order

example,

you

could

search

for

all

orders

that

have

an

extended

price

of

over

2500.00.

Additionally,

you

can

use

the

Text

Extender

to

do

structural

text

search

or

full

text

search.

For

example,

you

might

have

a

column

called

RESUME

that

contains

resumes

in

XML

format.

If

you

want

to

find

the

names

of

all

applicants

who

have

Java™

skills,

you

could

use

the

DB2

UDB

Text

Extender

to

search

on

the

XML

documents

for

all

resumes

where

the

<skill>

element

contains

the

character

string

“JAVA”.

The

following

sections

describe

search

methods:

v

“Searching

the

XML

document

by

structure”

v

“Using

the

DB2

UDB

Text

Extender

for

structural

text

searches

of

XML

documents”

on

page

86

Searching

the

XML

document

by

structure

Using

XML

Extender

search

features,

you

can

search

XML

data

in

a

column

based

on

the

document

structure

(the

elements

and

attributes

in

the

document).

Procedures:

To

search

the

data,

you

can:

v

Directly

query

the

side

tables.

v

Use

a

joined

view.

v

Use

extracting

UDFs.

These

search

methods

are

described

in

the

following

examples

are

based

on

the

following

scenario.

The

SALES_TAB

table

has

an

XML

column

named

ORDER.

This

column

has

three

side

tables,

ORDER_SIDE_TAB,

PART_SIDE_TAB,

and

SHIP_SIDE_TAB.

A

default

view,

sales_order_view,

was

specified

when

the

ORDER

column

was

enabled.

This

view

joins

these

tables

using

the

following

CREATE

VIEW

statement:

CREATE

VIEW

sales_order_view(invoice_num,

sales_person,

order,

order_key,

customer,

part_key,

price,

date)

AS

SELECT

sales_tab.invoice_num,

sales_tab.sales_person,

sales_tab.order,

order_side_tab.order_key,

order_side_tab.customer,

part_side_tab.part_key,

ship_side_tab.date

FROM

sales_tab,

order_side_tab,

part_side_tab,

ship_side_tab

WHERE

sales_tab.invoice_num

=

order_side_tab.invoice_num

AND

sales_tab.invoice_num

=

part_side_tab.invoice_num

AND

sales_tab.invoice_num

=

ship_side_tab.invoice_num

84

XML

Extender

Administration

and

Programming

Example:

searching

with

direct

query

on

side

tables

Direct

query

with

subquery

search

provides

the

best

performance

for

a

structural

search

when

the

side

tables

are

indexed.

Procedure:

You

can

use

a

query

or

subquery

to

search

side

tables

correctly.

For

example,

the

following

statement

uses

a

query

and

subquery

to

directly

search

a

side

table:

SELECT

sales_person

from

sales_tab

WHERE

invoice_num

in

(SELECT

invoice_num

from

part_side_tab

WHERE

price

>

2500.00)

In

this

example,

invoice_num

is

the

primary

key

in

the

SALES_TAB

table.

Example:

searching

from

a

joined

view

The

XML

Extender

can

create

a

default

view

that

joins

the

application

table

and

the

side

tables

using

a

unique

ID.

You

can

use

this

default

view,

or

any

view

that

joins

an

application

table

and

side

tables,

to

search

column

data

and

query

the

side

tables.

This

method

provides

a

single

virtual

view

of

the

application

table

and

its

side

tables.

However,

the

more

side

tables

that

are

created,

the

longer

the

query

takes

to

run.

Tip:

You

can

use

the

root

ID,

or

DXXROOT_ID

(created

by

XML

Extender),

to

join

the

tables

when

you

create

your

own

view.

For

example,

the

following

statement

searches

the

view

named

SALES_ORDER_VIEW

and

returns

the

values

from

the

SALES_PERSON

column

where

the

line

item

orders

have

a

price

greater

than

2500.00.

SELECT

sales_person

from

sales_order_view

WHERE

price

>

2500.00

Example:

searching

with

extracting

UDFs

You

can

also

use

XML

Extender’s

extracting

UDFs

to

search

on

elements

and

attributes,

when

you

did

not

create

indexes

or

side

tables

for

the

application

table.

Using

the

extracting

UDFs

to

scan

the

XML

data

is

expensive

and

should

only

be

used

with

WHERE

clauses

that

restrict

the

number

of

XML

documents

that

are

included

in

the

search.

The

following

statement

searches

with

an

extracting

XML

Extender

UDF:

SELECT

sales_person

from

sales_tab

WHERE

extractVarchar(order,

’/Order/Customer/Name’)

like

’%IBM%’

AND

invoice_num

>

100

In

this

example,

the

extracting

UDF

extracts

</Order/Customer/Name>

elements

that

contain

the

substring

IBM.

Example:

searching

on

elements

or

attributes

with

multiple

occurrence

When

you

search

on

elements

or

attributes

that

have

multiple

occurrence,

use

the

DISTINCT

clause

to

prevent

duplicate

values.

The

following

statement

searches

with

the

DISTINCT

clause:

Chapter

3.

XML

columns

85

SELECT

sales_person

from

sales_tab

WHERE

invoice_num

in

(SELECT

DISTINCT

invoice_num

from

part_side_tab

WHERE

price

>

2500.00

)

In

this

example,

the

DAD

file

specifies

that

/Order/Part/Price

has

multiple

occurrence

and

creates

a

side

table,

PART_SIDE_TAB,

for

it.

The

PART_SIDE_TAB

table

might

have

more

than

one

row

with

the

same

invoice_num.

Using

DISTINCT

returns

only

unique

values.

Using

the

DB2

UDB

Text

Extender

for

structural

text

searches

of

XML

documents

If

DB2

UDB

Text

Extender

is

installed,

you

can

use

it

to

perform

a

structural

text

search.

Procedure:

To

use

the

DB2

UDB

Text

Extender:

1.

Decide

whether

you

want

to

use

structural

text

search

or

full

text

search.

2.

Enable

an

XML

column

for

the

DB2

UDB

Text

Extender.

3.

Create

a

query

to

perform

the

search.

To

learn

how

to

use

the

DB2

UDB

Text

Extender

search,

see

DB2

Universal

Database

Extenders:

Text

Extender

Administration

and

Programming,

Version

7.

Using

structural

text

searches

and

full

text

searches

When

searching

the

XML

document

structure,

XML

Extender

searches

elements

that

are

converted

to

general

data

types,

but

it

does

not

search

text.

You

can

use

the

Text

Extender

for

structural

text

search

or

full

text

search

on

a

column

that

is

enabled

for

XML.

The

DB2

UDB

Text

Extender

supports

XML

document

search

in

DB2

UDB

Version

6.1

or

later.

Text

Extender

is

available

on

AIX,

Windows®

operating

systems,

iSeries™,

and

the

Solaris

Operating

Environment.

Structural

text

search

Searches

text

strings

that

are

based

on

the

tree

structure

of

the

XML

document.

For

example,

in

a

document

structure

of

/Order/Customer/Name,

you

can

use

a

structural

text

search

to

find

the

character

string

″IBM″

within

the

<Customer>

sub-element.

However,

the

document

might

also

have

the

string

″IBM″

in

a

<Comment>

sub-element

or

as

part

of

the

name

of

a

product.

A

structural

text

search

looks

for

the

string

only

in

the

element

that

is

specified.

In

this

example,

only

the

documents

that

have

″IBM″

in

the

</Order/Customer/Name>

sub-element

are

found;

any

document

that

has

″IBM″

in

other

elements

but

not

in

the

</Order/Customer/Name>

sub-element

is

not

returned.

Full

text

search

Searches

text

strings

anywhere

in

the

document

structure,

without

regard

to

elements

or

attributes.

Using

the

previous

example,

all

documents

that

contain

the

string

″IBM″

would

be

returned,

regardless

of

where

the

string

occurs.

Enabling

an

XML

column

for

the

DB2

UDB

Text

Extender

In

an

XML-enabled

server,

you

enable

the

DB2

UDB

Text

Extender

to

search

the

content

of

an

XML-enabled

column.

1.

See

the

install.txt

file

on

the

DB2

UDB

Extenders™

CD

for

information

on

installing

the

Text

Extender.

86

XML

Extender

Administration

and

Programming

2.

Run

the

txstart

command:

v

On

UNIX®

operating

systems,

enter

the

command

from

the

instance

owner’s

command

prompt.

v

On

Windows

NT,

enter

the

command

from

the

command

window

where

DB2INSTANCE

is

specified.

3.

Enable

the

database

for

the

DB2

UDB

Text

Extender.

From

the

db2tx

command

prompt,

type:

enable

server

for

db2text

4.

Enable

the

columns

in

the

XML

table

for

the

DB2

UDB

Text

Extender,

and

define

the

data

types

of

the

XML

document,

the

language,

code

pages,

and

other

information

about

the

column.

v

For

the

VARCHAR

column

XVARCHAR,

type:

db2tx

enable

text

column

order

xvarchar

function

db2xml.varchartovarchar

handle

varcharhandle

ccsid

1252

language

us_english

format

xml

indextype

precise

indexproperty

sections_enabled

documentmodel

(Order)

updateindex

update

v

For

the

CLOB

column

XCLOB,

type:

db2tx

enable

text

column

order

xclob

function

db2xml.clob

handle

clobhandle

ccsid

1252

language

us_english

indextype

precise

updateindex

update

5.

Check

the

status

of

the

index.

v

For

the

XVARCHAR

column,

type:

get

index

status

order

handle

varcharhandle

v

For

the

XCLOB

column,

type:

get

index

status

order

handle

clobhandle

6.

Define

the

XML

document

model

in

a

document

model

initialization

file

called

desmodel.ini.

This

file

is

located

in

the

/db2tx/txins000

directory

on

UNIX

and

in

the

/instance/db2tx/txins000

directory

on

Windows

NT.

For

example,

for

the

textmodel.ini:

;list

of

document

models

[MODELS]

modelname=Order

;

an

’Order’

document

model

definition

;

left

side

=

section

name

identifier

;

right

side

=

section

name

tag

[Order]

Order

=

/Order

Order/Customer/Name

=

/Order/Customer/Name

Order/Customer/Email

=

/Order/Customer/Email

Order/Part/Shipment/ShipMode

=

/Order/Part/Shipment/ShipMode

Searching

for

text

using

the

DB2

UDB

Net

Search

Extender

To

search

for

text

using

the

DB2

UDB

Net

Search

Extender,

you

create

a

query

that

specifies

the

element

or

attribute

for

which

you

want

to

search.

The

DB2

UDB

Net

Search

Extender

then

uses

the

query

to

search

the

element

content

or

attribute

values.

For

example

enter

the

following

statements

in

a

DB2

UDB

command

window

to

use

the

DB2

UDB

Net

Search

Extender

to

search

the

text

of

an

XML

document:

Chapter

3.

XML

columns

87

select

xvarchar

from

order

where

db2tx.contains(varcharhandle,

’model

Order

section(Order/Customer/Name)

"Motors"’)=1

select

xclob

from

order

where

db2tx.contains(clobhandle,

’model

Order

section(Order/Customer/Name)

"Motors"’)=1

The

Net

Search

Extender

Contains()

UDF

searches

that

search

the

text

of

an

XML

document.

This

example

does

not

contain

all

of

the

steps

that

are

required

to

use

the

DB2

UDB

Net

Search

Extender

to

search

column

data.

To

learn

about

the

Net

Search

Extender

search

concepts

and

capability,

see

DB2

Universal

Database

Extenders

for

z/OS:

Net

Search

Extender

Administration

and

Programming.

Deleting

XML

documents

Use

the

SQL

DELETE

statement

to

delete

the

row

containing

an

XML

document

from

an

XML

column.

You

can

specify

a

WHERE

clause

to

delete

specific

documents.

For

example,

the

following

statement

deletes

all

documents

that

have

a

value

for

<ExtendedPrice>

greater

than

2500.00:

DELETE

from

sales_tab

WHERE

invoice_num

in

(SELECT

invoice_num

from

part_side_tab

WHERE

price

>

2500.00)

The

corresponding

rows

in

the

side

tables

are

automatically

deleted.

Related

concepts:

v

“XML

columns

as

a

storage

and

access

method”

on

page

73

Related

tasks:

v

“Managing

data

in

XML

columns”

on

page

73

Limitations

when

invoking

functions

from

Java

Database

(JDBC)

When

using

parameter

markers

in

functions,

a

JDBC

restriction

requires

that

the

parameter

marker

for

the

function

must

be

cast

to

the

data

type

of

the

column

into

which

the

returned

data

will

be

inserted.

The

function

selection

logic

does

not

know

what

data

type

the

argument

might

turn

out

to

be,

and

it

cannot

resolve

the

reference.

For

example,

JDBC

cannot

resolve

the

following

code:

DB2XML.XMLdefault_casting_function(length)

You

can

use

the

CAST

specification

to

provide

a

type

for

the

parameter

marker,

such

as

VARCHAR,

and

then

the

function

selection

logic

can

proceed:

DB2XML.XMLdefault_casting_function(CAST(?

AS

cast_type(length))

Example

1:

In

the

following

example,

the

parameter

marker

is

cast

as

VARCHAR.

The

parameter

being

passed

is

an

XML

document,

which

is

cast

as

VARCHAR(1000)

and

inserted

into

the

column

ORDER.

String

query

=

"insert

into

sales_tab(invoice_num,

sales_person,

order)

values

(?,?,DB2XML.XMLVarchar(cast

(?

as

varchar(1000))))";

88

XML

Extender

Administration

and

Programming

Example

2:

In

the

following

example,

the

parameter

marker

is

cast

as

VARCHAR.

The

parameter

being

passed

is

a

file

name

and

its

contents

are

converted

to

VARCHAR

and

inserted

into

the

column

ORDER.

String

query

=

"insert

into

sales_tab(invoice_num,

sales_person,

order)

values

(?,?,DB2XML.XMLVarcharfromFILE(cast

(?

as

varchar(1000))))";

Chapter

3.

XML

columns

89

90

XML

Extender

Administration

and

Programming

Chapter

4.

Managing

data

in

XML

collections

XML

collections

as

a

storage

and

access

method

Relational

data

is

either

decomposed

from

incoming

XML

documents

or

used

to

compose

outgoing

XML

documents.

Decomposed

data

is

the

untagged

content

of

an

XML

document

stored

in

one

or

more

database

tables.

Or,

XML

documents

are

composed

from

existing

data

in

one

or

more

database

tables.

If

your

data

is

to

be

shared

with

other

applications,

you

might

want

to

be

able

to

compose

and

decompose

incoming

and

outgoing

XML

documents

and

manage

the

data

as

necessary

to

take

advantage

of

the

relational

capabilities

of

DB2.

This

type

of

XML

document

storage

is

called

XML

collection.

An

example

of

an

XML

collection

is

shown

in

Figure

10.

The

XML

collection

is

defined

in

a

DAD

file,

which

specifies

how

elements

and

attributes

are

mapped

to

one

or

more

relational

tables.

The

collection

is

a

set

of

columns,

associated

with

a

DAD

file,

that

contain

the

data

in

a

particular

XML

document

or

set

of

XML

documents.

You

can

define

a

collection

name

by

enabling

it,

and

then

refer

to

it

by

name

when

issuing

a

stored

procedure

to

compose

or

decompose

XML

documents.

It

is

called

an

enabled

XML

collection.

The

collection

is

given

a

name

so

that

it

is

easily

run

with

stored

procedures

that

compose

and

decompose

the

XML

documents.

When

you

define

a

collection

in

the

DAD

file,

you

use

one

of

two

types

of

mapping

schemes,

SQL

mapping

or

RDB_node

mapping

that

define

the

tables,

columns,

and

conditions

used

to

associate

XML

data

with

DB2

UDB

tables.

SQL

mapping

uses

SQL

SELECT

statements

to

define

the

DB2

UDB

tables

and

conditions

used

for

the

collection.

RDB_node

mapping

uses

an

XPath-based

relational

database

node,

or

RDB_node,

which

has

child

elements.

Stored

procedures

are

provided

to

compose

or

decompose

XML

documents.

Stored

procedure

names

are

qualified

by

DB2XML,

which

is

the

schema

name

of

XML

Extender.

DB2

Collection

<?xml?>
<!DOCTYPE…>

<Order key="1">
…

</Order>

XML document

Figure

10.

Storing

documents

as

untagged

data

in

DB2

UDB

tables

©

Copyright

IBM

Corp.

1999,

2004

91

Managing

data

in

XML

collections

An

XML

collection

is

a

set

of

relational

tables

that

contain

data

that

is

mapped

to

XML

documents.

This

access

and

storage

method

lets

you

compose

an

XML

document

from

existing

data,

decompose

an

XML

document,

and

use

XML

as

an

interchange

method.

The

relational

tables

that

make

up

the

collection

can

be

new

tables,

or

existing

tables

that

have

data

that

is

to

be

used

with

XML

Extender

to

compose

XML

documents

for

your

applications.

Column

data

in

these

tables

does

not

contain

XML

tags;

it

contains

the

content

and

values

that

are

associated

with

elements

and

attributes,

respectively.

You

use

stored

procedures

to

store,

retrieve,

update,

search,

and

delete

XML

collection

data.

You

can

increase

the

CLOB

sizes

for

the

results

of

the

stored

procedures.

Preparing

to

compose

XML

documents

from

DB2

data

Composition

is

the

generation

of

a

set

of

XML

documents

from

relational

data

in

an

XML

collection.

You

can

compose

XML

documents

using

stored

procedures.

To

use

these

stored

procedures,

create

a

document

access

definition

(DAD)

file.

A

DAD

file

specifies

the

mapping

between

the

XML

document

and

the

DB2

table

structure.

The

stored

procedures

use

the

DAD

file

to

compose

the

XML

document.

Procedure::

Before

you

begin

composing

XML

documents:

1.

Map

the

structure

of

the

XML

document

to

the

relational

tables

that

contain

the

contents

of

the

element

and

attribute

values.

2.

Select

a

mapping

method:

SQL

mapping

or

RDB_node

mapping.

3.

Prepare

the

DAD

file.

The

XML

Extender

provides

four

stored

procedures,

dxxGenXML(),

dxxGenXMLCLOB(),

dxxRetrieveXML(),

and

dxxRetrieveXMLCLOB

to

compose

XML

documents.

The

frequency

with

which

you

plan

to

update

the

XML

document

is

a

key

factor

in

selecting

the

stored

procedure

that

you

will

use.

Composing

XML

documents

that

will

be

updated

occasionally

If

your

document

will

be

updated

only

occasionally,

use

the

dxxGenXML

stored

procedure

to

compose

the

document.

You

do

not

have

to

enable

a

collection

to

use

this

stored

procedure.

The

stored

procedure

uses

a

DAD

file

instead.

The

dxxGenXML

stored

procedure

constructs

XML

documents

using

data

that

is

stored

in

XML

collection

tables,

which

are

specified

by

the

<Xcollection>

element

in

the

DAD

file.

This

stored

procedure

inserts

each

XML

document

as

a

row

into

a

result

table.

You

can

also

open

a

cursor

on

the

result

table

and

fetch

the

result

set.

The

result

table

must

be

created

by

the

application

and

always

has

at

least

one

column

of

VARCHAR,

CLOB,

XMLVARCHAR,

or

XMLCLOB

type.

If

the

value

of

the

validation

element

in

the

DAD

is

YES,

the

application

must

also

create

a

validation

column

of

type

INTEGER

in

the

result

table.

You

can

specify

any

name

for

the

validate

column

as

long

as

its

data

type

is

integer.

The

default

column

value

for

a

column

with

a

data

type

of

integer

is

0.

You

do

not

have

to

set

the

value.

XML

Extender

will

set

the

value

to

1

if

the

document

is

valid,

otherwise

it

is

0.

92

XML

Extender

Administration

and

Programming

The

stored

procedure

dxxGenXML

also

allows

you

to

specify

the

maximum

number

of

rows

that

are

to

be

generated

in

the

result

table.

This

shortens

processing

time.

The

stored

procedure

returns

the

actual

number

of

rows

in

the

table

and

any

return

codes

and

messages.

The

corresponding

stored

procedure

for

decomposition

is

dxxShredXML;

it

also

takes

the

DAD

as

the

input

parameter

and

does

not

require

that

the

XML

collection

be

enabled.

Procedure:

To

compose

an

XML

collection

using

the

dxxGenXML

stored

procedure,

embed

a

stored

procedure

call

in

your

application

using

the

following

stored

procedure

declaration:

dxxGenXML(CLOB(100K)

DAD,

/*

input

*/

char(

32)

resultTabName,

/*

input

*/

char(30)

result_column,

/*

input

*/

char(30)

valid_column,

/*

input

*/

integer

overrideType,

/*

input

*/

varchar(1024)

override,

/*

input

*/

integer

maxRows,

/*

input

*/

integer

numRows,

/*

output

*/

long

returnCode,

/*

output

*/

varchar(1024)

returnMsg)

/*

output

*/

Example:

The

following

example

composes

an

XML

document:

#include

"dxx.h"

#include

"dxxrc.h"

EXEC

SQL

INCLUDE

SQLCA;

EXEC

SQL

BEGIN

DECLARE

SECTION;

SQL

TYPE

is

CLOB(100K)

dad;

/*

DAD

*/

EXEC

SQL

DECLARE

:dad

VARIABLE

CCSID

1047;

/*

specifies

the

CCSID

for

DAD

when

running

from

USS

*/

/*

to

ensure

that

DB2

UDB

converts

the

*/

/*

code

page

correctly*/

char

result_tab[32];

/*

name

of

the

result

table

*/

char

result_colname[32];

/*

name

of

the

result

column

*/

char

valid_colname[32];

/*

name

of

the

valid

column,

will

set

to

NULL

*/

char

override[2];

/*

override,

will

set

to

NULL*/

short

overrideType;

/*

defined

in

dxx.h

*/

short

max_row;

/*

maximum

number

of

rows

*/

short

num_row;

/*

actual

number

of

rows

*/

long

returnCode;

/*

return

error

code

*/

char

returnMsg[1024];

/*

error

message

text

*/

short

dad_ind;

short

rtab_ind;

short

rcol_ind;

short

vcol_ind;

short

ovtype_ind;

short

ov_ind;

short

maxrow_ind;

short

numrow_ind;

short

returnCode_ind;

short

returnMsg_ind;

EXEC

SQL

END

DECLARE

SECTION;

FILE

*file_handle;

long

file_length=0;

/*

create

table

*/

EXEC

SQL

CREATE

TABLE

xml_order_tab

(xmlorder

XMLVarchar);

Chapter

4.

Managing

data

in

XML

collections

93

/*

initialize

the

DAD

CLOB

object.

*/

file_handle

=

fopen("/dxx/samples/dad

/getstart_xcollection.dad",

"r");

if

(

file_handle

!=

NULL

)

{

file_length

=

fread

((void

*)

&dad.data,

1,

FILE_SIZE,

file_handle);

if

(file_length

==

0)

{

printf

("Error

reading

dad

file

/dxx/samples/dad

/getstart_xcollection.dad\n");

rc

=

-1;

goto

exit;

}

else

dad.length

=

file_length;

}

else

{

printf("Error

opening

dad

file

\n",

);

rc

=

-1;

goto

exit;

}

/*

initialize

host

variable

and

indicators

*/

strcpy(result_tab,"xml_order_tab");

strcpy(result_colname,

"xmlorder")

valid_colname

=

’\0’;

override[0]

=

’\0’;

overrideType

=

NO_OVERRIDE;

max_row

=

500;

num_row

=

0;

returnCode

=

0;

msg_txt[0]

=

’\0’;

dad_ind

=

0;

rtab_ind

=

0;

rcol_ind

=

0;

vcol_ind

=

-1;

ov_ind

=

-1;

ovtype_ind

=

0;

maxrow_ind

=

0;

numrow_ind

=

-1;

returnCode_ind

=

-1;

returnMsg_ind

=

-1;

/*

Call

the

store

procedure

*/

EXEC

SQL

CALL

"DB2XML.dxxGenXML"

(:dad:dad_ind;

:result_tab:rtab_ind,

:result_colname:rcol_ind,

:valid_colname:vcol_ind,

:overrideType:ovtype_ind,:override:ov_ind,

:max_row:maxrow_ind,:num_row:numrow_ind,

:returnCode:returnCode_ind,:returnMsg:returnMsg_ind);

if

(SQLCODE

<

0)

{

EXEC

SQL

ROLLBACK;

else

EXEC

SQL

COMMIT;

}

exit:

return

rc;

After

the

stored

procedure

is

called,

the

result

table

contains

250

rows

because

the

SQL

query

specified

in

the

DAD

file

generated

250

XML

documents.

94

XML

Extender

Administration

and

Programming

|

Composing

XML

documents

that

will

be

updated

frequently

If

your

document

will

be

updated

frequently,

use

the

dxxRetrieveXML

stored

procedure

to

compose

the

document.

Because

the

same

tasks

are

repeated,

improved

performance

is

important.

The

dxxRetrieveXML

stored

procedure

works

in

the

same

way

as

the

dxxGenXML

stored

procedure,

except

that

it

takes

the

name

of

an

enabled

XML

collection

instead

of

a

DAD

file.

When

an

XML

collection

is

enabled,

a

DAD

file

is

stored

in

the

XML_USAGE

table.

Therefore,

XML

Extender

retrieves

the

DAD

file

and

uses

it

to

compose

the

document

in

the

same

way

as

the

dxxGenXML

stored

procedure.

The

dxxRetrieveXML

stored

procedure

allows

the

same

DAD

file

to

be

used

for

both

composition

and

decomposition.

The

corresponding

stored

procedure

for

decomposition

is

dxxInsertXML;

it

also

takes

the

name

of

an

enabled

XML

collection.

Procedure:

To

compose

an

XML

collection

using

the

dxxRetrieveXML

stored

procedure,

embed

a

stored

procedure

call

in

your

application

using

the

following

stored

procedure

declaration:

dxxRetrieveXML(char(32)

collectionName,

/*

input

*/

char(32)

resultTabName,

/*

input

*/

char(30)

result_column,

/*

input

*/

char(30)

valid_column,

/*

input

*/

integer

overrideType,

/*

input

*/

varchar(1024)

override,

/*

input

*/

integer

maxRows,

/*

input

*/

integer

numRows,

/*

output

*/

long

returnCode,

/*

output

*/

varchar(1024)

returnMsg)

/*

output

*/

Example:

The

following

example

is

of

a

call

to

dxxRetrieveXML().

It

assumes

that

a

result

table

is

created

with

the

name

of

XML_ORDER_TAB

and

that

the

table

has

one

column

of

XMLVARCHAR

type.

#include

"dxx.h"

#include

"dxxrc.h"

EXEC

SQL

INCLUDE

SQLCA;

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

collectionName[32];

/*

name

of

an

XML

collection

*/

char

result_tab[32];

/*

name

of

the

result

table

*/

char

result_colname[32];

/*

name

of

the

result

column

*/

char

valid_colname[32];

/*

name

of

the

valid

column,

will

set

to

NULL*/

char

override[2];

/*

override,

will

set

to

NULL*/

short

overrideType;

/*

defined

in

dxx.h

*/

short

max_row;

/*

maximum

number

of

rows

*/

short

num_row;

/*

actual

number

of

rows

*/

long

returnCode;

/*

return

error

code

*/

char

returnMsg[1024];

/*

error

message

text

*/

short

collectionName_ind;

short

rtab_ind;

short

rcol_ind;

short

vcol_ind;

short

ovtype_ind;

short

ov_ind;

short

maxrow_ind;

short

numrow_ind;

short

returnCode_ind;

short

returnMsg_ind;

Chapter

4.

Managing

data

in

XML

collections

95

EXEC

SQL

END

DECLARE

SECTION;

/*

create

table

*/

EXEC

SQL

CREATE

TABLE

xml_order_tab

(xmlorder

XMLVarchar);

/*

initial

host

variable

and

indicators

*/

strcpy(collection,

"sales_ord");

strcpy(result_tab,"xml_order_tab");

strcpy(result_col,"xmlorder");

valid_colname[0]

=

’\0’;

override[0]

=

’\0’;

overrideType

=

NO_OVERRIDE;

max_row

=

500;

num_row

=

0;

returnCode

=

0;

msg_txt[0]

=

’\0’;

collectionName_ind

=

0;

rtab_ind

=

0;

rcol_ind

=

0;

vcol_ind

=

-1;

ov_ind

=

-1;

ovtype_ind

=

0;

maxrow_ind

=

0;

numrow_ind

=

-1;

returnCode_ind

=

-1;

returnMsg_ind

=

-1;

/*

Call

the

store

procedure

*/

EXEC

SQL

CALL

"DB2XML.DXXRETRIEVE"

(:collectionName:collectionName_ind,

:result_tab:rtab_ind,

:result_colname:rcol_ind,

:valid_colname:vcol_ind,

:overrideType:ovtype_ind,:override:ov_ind,

:max_row:maxrow_ind,:num_row:numrow_ind,

:returnCode:returnCode_ind,

:returnMsg:returnMsg_ind);

if

(SQLCODE

<

0)

{

EXEC

SQL

ROLLBACK;

else

EXEC

SQL

COMMIT;

}

Related

concepts:

v

“XML

collections

as

a

storage

and

access

method”

on

page

91

v

“Mapping

schemes

for

XML

collections”

on

page

105

v

“Location

paths”

on

page

112

v

“DAD

files

for

XML

collections”

on

page

169

v

“XML

Extender

composition

stored

procedures”

on

page

200

Related

tasks:

v

“Composing

XML

collections

by

using

RDB_node

mapping”

on

page

63

v

“Stylesheets

for

an

XML

collection”

on

page

112

v

“Decomposing

an

XML

collection

by

using

RDB_node

mapping”

on

page

65

v

“Updating,

deleting,

and

retrieving

data

in

XML

collections”

on

page

101

v

“Searching

XML

collections”

on

page

103

96

XML

Extender

Administration

and

Programming

Decomposing

XML

documents

into

DB2

UDB

data

To

decompose

an

XML

document

is

to

break

down

the

data

inside

of

an

XML

document

and

store

it

in

relational

tables.

The

XML

Extender

provides

stored

procedures

to

decompose

XML

data

from

source

XML

documents

into

relational

tables.

To

use

these

stored

procedures,

you

must

create

a

DAD

file,

which

specifies

the

mapping

between

the

XML

document

and

DB2

UDB

table

structure.

The

stored

procedures

use

the

DAD

file

to

decompose

the

XML

document.

Enabling

an

XML

collection

for

decomposition

In

most

cases,

you

need

to

enable

an

XML

collection

before

using

the

stored

procedures.

Cases

where

you

must

enable

the

collections

are:

v

When

decomposing

XML

documents

into

new

tables,

an

XML

collection

must

be

enabled

because

all

tables

in

the

XML

collection

are

created

by

the

XML

Extender

when

the

collection

is

enabled.

v

When

keeping

the

sequence

of

elements

and

attributes

that

have

multiple

occurrence

is

important.

The

XML

Extender

preserves

only

the

sequence

order

of

elements

or

attributes

of

multiple

occurrence

for

tables

that

are

created

when

a

collection

is

enabled.

When

XML

documents

are

decomposed

into

existing

relational

tables,

the

sequence

order

is

not

guaranteed

to

be

preserved.

See

the

section

about

the

dxxadm

administration

command

for

information

about

the

enable_collection

option.

If

you

want

to

pass

the

DAD

file

when

the

tables

already

exist

in

your

database,

you

do

not

need

to

enable

an

XML

collection.

Before

you

decompose

an

XML

document

into

DB2

UDB

data:

1.

Map

the

structure

of

the

XML

document

to

the

relational

tables

that

contain

the

contents

of

the

elements

and

attributes

values.

2.

Prepare

the

DAD

file,

using

RDB_node

mapping.

3.

Optional:

Enable

the

XML

collection.

Procedure::

Use

one

of

the

two

stored

procedures

provided

by

DB2

UDB

XML

Extender

to

decompose

XML

documents,

dxxShredXML()

or

dxxInsertXML.

dxxShredXML()

This

stored

procedure

is

used

for

applications

that

do

occasional

updates

or

for

applications

that

do

not

want

the

overhead

of

administering

the

XML

data.

The

stored

procedure

dxxShredXML()

does

not

required

an

enabled

collection;

it

uses

a

DAD

file

instead.

The

stored

procedure

dxxShredXML()

takes

two

input

parameters,

a

DAD

file

and

the

XML

document

that

is

to

be

decomposed;

it

returns

two

output

parameters:

a

return

code

and

a

return

message.

It

inserts

data

from

an

XML

document

into

an

XML

collection

according

to

the

<Xcollection>

specification

in

the

input

DAD

file.

The

dxxShredXML()

stored

procedure

then

decomposes

the

XML

document,

and

inserts

untagged

XML

data

into

the

tables

specified

in

the

DAD

file.

The

tables

that

are

used

in

the

<Xcollection>

of

the

DAD

file

are

assumed

to

exist,

and

the

columns

are

assumed

to

meet

the

data

types

specified

in

the

DAD

mapping.

If

this

is

not

true,

an

error

message

is

returned.

Chapter

4.

Managing

data

in

XML

collections

97

The

corresponding

stored

procedure

for

composition

is

dxxGenXML();

it

also

takes

the

DAD

as

the

input

parameter

and

does

not

require

that

the

XML

collection

be

enabled.

To

decompose

an

XML

collection

with

dxxShredXML()

Embed

a

stored

procedure

call

in

your

application

using

the

following

stored

procedure

declaration:

dxxShredXML(CLOB(100K)

DAD,

/*

input

*/

CLOB(1M)

xmlobj,

/*

input

*/

long

returnCode,

/*

output

*/

varchar(1024)

returnMsg)

/*

output

*/

Example:

The

following

example

is

a

call

to

dxxShredXML():

#include

"dxx.h"

#include

"dxxrc.h"

EXEC

SQL

INCLUDE

SQLCA;

EXEC

SQL

BEGIN

DECLARE

SECTION;

SQL

TYPE

is

CLOB(100K)

dad;

/*

DAD

*/

EXEC

SQL

DECLARE

:dad

VARIABLE

CCSID

1047;

/*

specifies

the

CCSID

for

DAD

when

running

*/

/*

from

USS

to

ensure

that

DB2

UDB

converts

the

*/

/*

code

page

correctly

*/

SQL

TYPE

is

CLOB(100K)

xmlDoc;

/*

input

xml

document

*/

EXEC

SQL

DECLARE

:xmlDoc

VARIABLE

CCSID

1047;

/*

specifies

the

CCSID

for

DAD

when

running

*/

/*

from

USS

to

ensure

that

DB2

UDB

converts

the

*/

/*

code

page

correctly

*/

long

returnCode;

/*

return

error

code

*/

char

returnMsg[1024];

/*

error

message

text

*/

short

dad_ind;

short

xmlDoc_ind;

short

returnCode_ind;

short

returnMsg_ind;

EXEC

SQL

END

DECLARE

SECTION;

FILE

*file_handle;

long

file_length=0;

/*

initialize

the

DAD

CLOB

object.

*/

file_handle

=

fopen(

"/dxx/samples

/dad/getstart_xcollection.dad",

"r"

);

if

(

file_handle

!=

NULL

)

{

file_length

=

fread

((void

*)

&dad.data,

1,

FILE_SIZE,

file_handle);

if

(file_length

==

0)

{

printf

("Error

reading

dad

file

getstart_xcollection.dad\n");

rc

=

-1;

goto

exit;

}

else

dad.length

=

file_length;

}

else

{

printf("Error

opening

dad

file

\n");

rc

=

-1;

goto

exit;

}

/*

Initialize

the

XML

CLOB

object.

*/

file_handle

=

fopen(

"/dxx/samples

/xml/getstart_xcollection.xml",

"r"

);

if

(

file_handle

!=

NULL

)

{

file_length

=

fread

((void

*)

&xmlDoc.data,

1,

FILE_SIZE,

file_handle);

if

(file_length

==

0)

{

98

XML

Extender

Administration

and

Programming

printf

("Error

reading

xml

file

getstart_xcollection.xml

\n");

rc

=

-1;

goto

exit;

}

else

xmlDoc.length

=

file_length;

}

else

{

printf("Error

opening

xml

file

\n");

rc

=

-1;

goto

exit;

}

/*

initialize

host

variable

and

indicators

*/

returnCode

=

0;

msg_txt[0]

=

’\0’;

dad_ind

=

0;

xmlDoc_ind

=

0;

returnCode_ind

=

-1;

returnMsg_ind

=

-1;

/*

Call

the

store

procedure

*/

EXEC

SQL

CALL

"DB2XML.DXXSHRED"

(:dad:dad_ind;

:xmlDoc:xmlDoc_ind,

:returnCode:returnCode_ind,

:returnMsg:returnMsg_ind);

if

(SQLCODE

<

0)

{

EXEC

SQL

ROLLBACK;

else

EXEC

SQL

COMMIT;

}

exit:

return

rc;

dxxInsertXML()

This

stored

procedure

is

used

for

applications

that

make

regular

updates.

The

stored

procedure

dxxInsertXML()

works

the

same

as

dxxShredXML(),

except

that

dxxInsertXML()

takes

an

enabled

XML

collection

as

its

first

input

parameter.

The

stored

procedure

dxxInsertXML()

inserts

data

from

an

XML

document

into

an

enabled

XML

collection,

which

is

associated

with

a

DAD

file.

The

DAD

file

contains

specifications

for

the

collection

tables

and

the

mapping.

The

collection

tables

are

checked

or

created

according

to

the

specifications

in

the

<Xcollection>.

The

stored

procedure

dxxInsertXML()

then

decomposes

the

XML

document

according

to

the

mapping,

and

it

inserts

untagged

XML

data

into

the

tables

of

the

named

XML

collection.

The

corresponding

stored

procedure

for

composition

is

dxxRetrieveXML();

it

also

takes

the

name

of

an

enabled

XML

collection.

Procedure:

To

decompose

an

XML

collection:

dxxInsertXML():

Embed

a

stored

procedure

call

in

your

application

using

the

following

stored

procedure

declaration:

dxxInsertXML(char(collectionName

32)

collectionName,

/*

input

*/

CLOB(1M)

xmlobj,

/*

input

*/

long

returnCode,

/*

output

*/

varchar(1024)

returnMsg)

/*

output

*/

Chapter

4.

Managing

data

in

XML

collections

99

Example:

The

following

is

an

example

of

a

call

to

dxxInsertXML():

#include

"dxx.h"

#include

"dxxrc.h"

EXEC

SQL

INCLUDE

SQLCA;

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

collectionName[32];

/*

name

of

an

XML

collection

*/

SQL

TYPE

is

CLOB(100K)

xmlDoc;

/*

input

xml

document

*/

long

returnCode;

/*

return

error

code

*/

char

returnMsg[1024];

/*

error

message

text

*/

short

collectionName_ind;

short

xmlDoc_ind;

short

returnCode_ind;

short

returnMsg_ind;

EXEC

SQL

END

DECLARE

SECTION;

FILE

*file_handle;

long

file_length=0;

/*

initialize

the

DAD

CLOB

object.

*/

file_handle

=

fopen(

"/dxx_install/samples/db2xml/dad

/getstart_xcollection.dad",

"r"

);

if

(

file_handle

!=

NULL

)

{

file_length

=

fread

((void

*)

&dad.data,

1,

FILE_SIZE,

file_handle);

if

(file_length

==

0)

{

printf

("Error

reading

dad

file

getstart_xcollection.dad\n");

rc

=

-1;

goto

exit;

}

else

dad.length

=

file_length;

}

else

{

printf("Error

opening

dad

file

\n");

rc

=

-1;

goto

exit;

}

/*

initialize

host

variable

and

indicators

*/

strcpy(collectionName,

"sales_ord");

returnCode

=

0;

msg_txt[0]

=

’\0’;

collectionName_ind

=

0;

xmlDoc_ind

=

0;

returnCode_ind

=

-1;

returnMsg_ind

=

-1;

/*

Call

the

store

procedure

*/

EXEC

SQL

CALL

"db2xml.DXXINSERTXML"

(:collection_name:collection_name_ind,

:xmlDoc:xmlDoc_ind,

:returnCode:returnCode_ind,

:returnMsg:returnMsg_ind);

if

(SQLCODE

<

0)

{

EXEC

SQL

ROLLBACK;

else

EXEC

SQL

COMMIT;

}

exit:

return

rc;

100

XML

Extender

Administration

and

Programming

|

Decomposition

table

size

limits

Decomposition

uses

RDB_node

mapping

to

specify

how

an

XML

document

is

decomposed

into

DB2

UDB

tables

by

extracting

the

element

and

attribute

values

and

storing

them

in

table

rows.

The

values

from

each

XML

document

are

stored

in

one

or

more

DB2

UDB

tables.

Each

table

can

have

a

maximum

of

10240

rows

decomposed

from

each

document.

For

example,

if

an

XML

document

is

decomposed

into

five

tables,

each

of

the

five

tables

can

have

up

to

10240

rows

for

that

particular

document.

If

the

table

has

rows

for

multiple

documents,

it

can

have

up

to

1024

rows

for

each

document.

Using

multiple-occurring

elements

(elements

with

location

paths

that

can

occur

more

than

once

in

the

XML

structure)

affects

the

number

of

rows

.

For

example,

a

document

that

contains

an

element

<Part>

that

occurs

20

times,

might

be

decomposed

as

20

rows

in

a

table.

When

using

multiple

occurring

elements,

consider

that

a

maximum

of

1024

rows

can

be

decomposed

into

one

table

from

a

single

document.

Related

concepts:

v

“XML

Extenders

decomposition

stored

procedures”

on

page

215

Related

tasks:

v

“Decomposing

an

XML

collection

by

using

RDB_node

mapping”

on

page

65

v

“Calling

XML

Extender

composition

stored

procedures”

on

page

201

Related

reference:

v

“dxxInsertXML()

stored

procedure”

on

page

218

v

“dxxShredXML()

stored

procedure”

on

page

215

Updating,

deleting,

and

retrieving

data

in

XML

collections

You

can

update,

delete,

search,

and

retrieve

XML

collections.

However,

the

purpose

of

using

an

XML

collection

is

to

store

or

retrieve

untagged,

pure

data

in

database

tables.

The

data

in

existing

database

tables

has

nothing

to

do

with

any

incoming

XML

documents;

update,

delete,

and

search

operations

consist

of

normal

SQL

access

to

these

tables.

The

XML

Extender

provides

the

ability

to

perform

operations

on

the

data

from

an

XML

collection

view.

You

can

UPDATE

and

DELETE

SQL

statements

to

modify

the

data

that

is

used

for

composing

XML

documents,

and

therefore,

update

the

XML

collection.

Performing

SQL

operations

on

the

collection

tables

affects

the

generated

documents.

Restrictions:

v

To

update

a

document,

do

not

delete

a

row

containing

the

primary

key

of

the

table,

which

is

the

foreign

key

row

of

the

other

collection

tables.

When

the

primary

key

and

foreign

key

row

is

deleted,

the

document

is

deleted.

v

To

replace

or

delete

elements

and

attribute

values,

you

can

delete

and

insert

rows

in

lower-level

tables

without

deleting

the

document.

v

To

delete

a

document,

delete

the

row

that

composes

the

top

element_node

specified

in

the

DAD.

Chapter

4.

Managing

data

in

XML

collections

101

Updating

data

in

an

XML

collection

The

XML

Extender

allows

you

to

update

untagged

data

that

is

stored

in

XML

collection

tables.

By

updating

XML

collection

table

values,

you

are

updating

the

text

of

an

XML

element,

or

the

value

of

an

XML

attribute.

Updates

can

also

delete

an

instance

of

data

from

multiple-occurring

elements

or

attributes.

From

an

SQL

point

of

view,

changing

the

value

of

the

element

or

attribute

is

an

update

operation,

and

deleting

an

instance

of

an

element

or

attribute

is

a

delete

operation.

From

an

XML

point

of

view,

if

the

element

text

or

attribute

value

of

the

root

element_node

exists,

the

XML

document

still

exists

and

is,

therefore,

an

update

operation.

SQL

operations

on

collection

tables

affect

documents

that

will

be

generated

from

the

tables.

Requirements:

When

you

update

data

in

an

XML

collection,

observe

the

following

rules:

v

Specify

the

primary-foreign

key

relationship

among

the

collection

tables

when

the

existing

tables

have

this

relationship.

If

they

do

not,

ensure

that

there

are

columns

that

can

be

joined.

v

Include

the

join

condition

that

is

specified

in

the

DAD

file:

–

For

SQL

mapping,

include

the

join

condition

in

the

<SQL_stmt>

element.

–

For

RDB_node

mapping,

include

the

join

condition

in

the

top

<condition>

element

of

the

root

element

node.

Updating

element

and

attribute

values

In

an

XML

collection,

element

text

and

attribute

values

are

all

mapped

to

columns

in

database

tables.

Regardless

of

whether

the

column

data

previously

exists

or

is

decomposed

from

incoming

XML

documents,

you

replace

the

data

using

the

normal

SQL

update

technique.

To

update

an

element

or

attribute

value,

specify

a

WHERE

clause

in

the

SQL

UPDATE

statement

that

contains

the

join

condition

that

is

specified

in

the

DAD

file.

Example:

UPDATE

SHIP_TAB

set

MODE

=

’BOAT’

WHERE

MODE=’AIR’

AND

PART_KEY

in

(SELECT

PART_KEY

from

PART_TAB

WHERE

ORDER_KEY=68)

The

<ShipMode>

element

value

is

updated

from

AIR

to

BOAT

in

the

SHIP_TAB

table,

where

the

key

is

68.

Deleting

element

and

attribute

instances

To

update

composed

XML

documents

by

eliminating

multiple-occurring

elements

or

attributes,

delete

a

row

containing

the

field

value

that

corresponds

to

the

element

or

attribute

value,

using

the

WHERE

clause.

If

you

do

not

delete

the

row

that

contains

the

values

for

the

top

element_node,

deleting

element

values

is

considered

an

update

of

the

XML

document.

For

example,

in

the

following

DELETE

statement,

you

are

deleting

a

<shipment>

element

by

specifying

a

unique

value

of

one

of

its

sub-elements.

DELETE

from

SHIP_TAB

WHERE

DATE=’1999-04-12’

Specifying

a

DATE

value

deletes

the

row

that

matches

this

value.

The

composed

document

originally

contained

two

<shipment>

elements,

but

now

contains

one.

102

XML

Extender

Administration

and

Programming

Deleting

an

XML

document

from

an

XML

collection

You

can

delete

an

XML

document

that

is

composed

from

a

collection.

This

means

that

if

you

have

an

XML

collection

that

composes

multiple

XML

documents,

you

can

delete

one

of

these

composed

documents.

Performing

SQL

operations

on

the

collection

tables

affects

the

generated

documents.

Procedure:

To

delete

the

document,

delete

a

row

in

the

table

that

composes

the

top

element_node

that

is

specified

in

the

DAD

file.

This

table

contains

the

primary

key

for

the

top-level

collection

table

and

the

foreign

key

for

the

lower-level

tables.

Deleting

the

document

with

this

method

works

only

if

the

primary-key

and

foreign-key

constraints

are

fully

specified

in

the

SQL

and

if

the

relationship

of

the

tables

shown

in

the

DAD

match

those

constraints

exactly.

Example:

The

following

DELETE

statement

specifies

the

value

of

the

primary

key

column.

DELETE

from

order_tab

WHERE

order_key=1

ORDER_KEY

is

the

primary

key

in

the

table

ORDER_TAB,

which

is

the

top-level

table

as

specified

in

the

DAD.

Deleting

this

row

deletes

one

XML

document

that

is

generated

during

composition.

Therefore,

from

the

XML

point

of

view,

one

XML

document

is

deleted

from

the

XML

collection.

Retrieving

XML

documents

from

an

XML

collection

Retrieving

XML

documents

from

an

XML

collection

is

similar

to

composing

documents

from

the

collection.

DAD

file

consideration:

When

you

decompose

XML

documents

in

an

XML

collection,

you

can

lose

the

order

of

multiple-occurring

elements

and

attribute

values,

unless

you

specify

the

order

in

the

DAD

file.

To

preserve

this

order,

you

should

use

the

RDB_node

mapping

scheme.

This

mapping

scheme

allows

you

to

specify

an

orderBy

attribute

for

the

table

containing

the

root

element

in

its

RDB_node.

Searching

XML

collections

This

section

describes

searching

an

XML

collection

in

terms

of

generating

XML

documents

using

search

criteria,

and

searching

for

decomposed

XML

data.

Composing

XML

documents

using

search

criteria

This

task

is

the

same

as

composition

using

a

condition.

Procedure:

You

can

specify

the

search

criteria

using

the

following

search

criteria:

v

Specify

the

condition

in

the

text_node

and

attribute_node

of

the

DAD

file

v

Specify

the

overwrite

parameter

when

using

the

dxxGenXML()

and

dxxRetrieveXML()

stored

procedures.

Chapter

4.

Managing

data

in

XML

collections

103

For

example,

if

you

enabled

an

XML

collection,

sales_ord,

using

the

DAD

file,

order.dad,

but

you

now

want

to

override

the

price

using

form

data

derived

from

the

Web,

you

can

override

the

value

of

the

<SQL_stmt>

DAD

element,

as

follows:

EXEC

SQL

INCLUDE

SQLCA;

EXEC

SQL

BEGIN

DECLARE

SECTION;

...

EXEC

SQL

END

DECLARE

SECTION;

float

price_value;

/*

create

table

*/

EXEC

SQL

CREATE

TABLE

xml_order_tab

(xmlorder

XMLVarchar);

/*

initialize

host

variable

and

indicators

*/

strcpy(collection,"sales_ord");

strcpy(result_tab,"xml_order_tab");

overrideType

=

SQL_OVERRIDE;

max_row

=

20;

num_row

=

0;

returnCode

=

0;

msg_txt[0]

=

’\0’;

override_ind

=

0;

overrideType_ind

=

0;

rtab_ind

=

0;

maxrow_ind

=

0;

numrow_ind

=

-1;

returnCode_ind

=

-1;

returnMsg_ind

=

-1;

/*

get

the

price_value

from

some

place,

such

as

form

data

*/

price_value

=

1000.00

/*

for

example*/

/*

specify

the

overwrite

*/

sprintf(overwrite,

"SELECT

o.order_key,

customer,

p.part_key,

quantity,

price,

tax,

ship_id,

date,

mode

FROM

order_tab

o,

part_tab

p,

table

(select

db2xml.generate_unique()

as

ship_id,

date,

mode

from

ship_tab)

s

WHERE

p.price

>

%d

and

s.date

>’1996-06-01’

AND

p.order_key

=

o.order_key

and

s.part_key

=

p.part_key",

price_value);

/*

Call

the

store

procedure

*/

EXEC

SQL

CALL

db2xml.dxxRetrieve(:collection:collection_ind,

:result_tab:rtab_ind,

:overrideType:overrideType_ind,:overwrite:overwrite_ind,

:max_row:maxrow_ind,:num_row:numrow_ind,

:returnCode:returnCode_ind,:returnMsg:returnMsg_ind);

The

condition

of

price

>

2500.00

in

order.dad

is

overridden

by

price

>

?,

where

?

is

based

on

the

input

variable

price_value.

Searching

for

decomposed

XML

data

You

can

use

normal

SQL

query

operations

to

search

collection

tables.

You

can

join

collection

tables,

or

use

subqueries,

and

then

do

a

structural-text

search

on

text

columns.

Apply

the

results

of

the

structural

search

to

retrieve

or

generate

the

specified

XML

document.

104

XML

Extender

Administration

and

Programming

|

Mapping

schemes

for

XML

collections

If

you

are

using

an

XML

collection,

you

must

select

a

mapping

scheme,

which

specifies

how

XML

data

is

represented

in

a

relational

database.

Because

XML

collections

must

match

the

hierarchical

structure

of

XML

documents

with

a

relational

structure

for

relational

databases,

you

should

understand

how

the

two

structures

compare.

Figure

11

shows

how

the

hierarchical

structure

can

be

mapped

to

relational

table

columns.

The

XML

Extender

uses

a

mapping

scheme

when

composing

or

decomposing

XML

documents

that

are

located

in

multiple

relational

tables.

The

XML

Extender

provides

a

wizard

that

assists

you

in

creating

the

DAD

file.

However,

before

you

create

the

DAD

file,

you

must

think

about

how

your

XML

data

is

mapped

to

the

XML

collection.

Types

of

mapping

schemes:

Use

<Xcollection>

to

specify

the

mapping

scheme

in

the

DAD

file.

The

XML

Extender

provides

two

types

of

mapping

schemes:

SQL

mapping

and

Relational

Database

(RDB_node)

mapping.

root_node

attribute_node
Color

text_node

text_node

text_node text_node

text_node

price

date mode

attribute_node
Key

tax

element_node
Order

element_node
Part

element_node
ExtendedPrice

element_node
Tax

element_node
Key

element_node
Shipment

element_node
ShipDate

element_node
ShipMode

text_node text_node
customer_name customer_email

element_node
Customer

element_node
Name

element_node
Email

part_key

color

order_key

Names of columns in DB2 tables

text_node

element_node
Quantity

quantity

Figure

11.

XML

document

structured

mapped

to

relational

table

columns

Chapter

4.

Managing

data

in

XML

collections

105

SQL

mapping

This

method

allows

direct

mapping

from

relational

data

to

XML

documents

through

a

single

SQL

statement.

SQL

mapping

is

used

for

composition

only.

The

content

of

the

<SQL_stmt>

element

must

be

a

valid

SQL

statement.

The

<SQL_stmt>

element

specifies

columns

in

the

SELECT

clause

that

are

mapped

to

XML

elements

or

attributes

later

in

the

DAD.

When

defined

for

composing

XML

documents,

the

column

names

in

the

SELECT

clause

of

the

SQL

statement

are

used

to

associate

the

value

of

an

attribute_node

or

a

content

of

text_node

with

columns

that

have

the

same

name_attribute.

The

FROM

clause

defines

the

tables

containing

the

data;

the

WHERE

clause

specifies

the

join

and

search

condition.

SQL

mapping

gives

DB2®

users

the

power

to

map

the

data

using

SQL.

When

using

SQL

mapping,

you

must

be

able

to

join

all

tables

in

one

SELECT

statement

to

form

a

query.

If

one

SQL

statement

is

not

sufficient,

consider

using

RDB_node

mapping.

To

tie

all

tables

together,

the

primary

key

and

foreign

key

relationship

is

recommended

among

these

tables.

RDB_node

mapping

Defines

the

location

of

the

content

of

an

XML

element

or

the

value

of

an

XML

attribute

so

that

XML

Extender

can

determine

where

to

store

or

retrieve

the

XML

data.

This

method

uses

XML

Extender-provided

RDB_node,

which

contains

one

or

more

node

definitions

for

tables,

optional

columns,

and

optional

conditions.

The

<table>

and

<column>

elements

in

the

DAD

define

how

the

XML

data

is

to

be

stored

in

the

database.

The

condition

specifies

the

criteria

for

selecting

XML

data

or

the

way

to

join

the

XML

collection

tables.

To

define

a

mapping

scheme,

you

must

create

a

DAD

file

with

an

<Xcollection>

element.

Figure

12

on

page

107

shows

a

fragment

of

a

sample

DAD

file

with

SQL

mapping

for

an

XML

collection,

which

composes

a

set

of

XML

documents

from

data

in

three

relational

tables.

106

XML

Extender

Administration

and

Programming

The

XML

Extender

provides

several

stored

procedures

that

manage

data

in

an

XML

collection.

These

stored

procedures

support

both

types

of

mapping.

Related

concepts:

v

“DAD

files

for

XML

collections”

on

page

169

v

“Requirements

for

using

SQL

mapping”

on

page

107

v

“Requirements

for

RDB_Node

mapping”

on

page

109

Related

tasks:

v

“Composing

XML

documents

by

using

SQL

mapping”

on

page

60

v

“Composing

XML

collections

by

using

RDB_node

mapping”

on

page

63

v

“Decomposing

an

XML

collection

by

using

RDB_node

mapping”

on

page

65

Requirements

for

using

SQL

mapping

Requirements

when

using

SQL

mapping

<?xml

version="1.0"?>

<!DOCTYPE

DAD

SYSTEM

"dxx_install/samples/db2xml/dtd/dad.dtd">

<DAD>

<dtdid>dxx_install/samples/dad/getstart.dtd</dtdid>

<validation>YES</validation>

<Xcollection>

<SQL_stmt>

SELECT

o.order_key,

customer,

p.part_key,

quantity,

price,

tax,

date,

ship_id,

mode,

comment

FROM

order_tab

o,

part_tab

p,

table(select

db2xml.generate_unique()

as

ship_id,

date,

mode,

from

ship_tab)

WHERE

p.price

>

2500.00

and

s.date

>

"1996-06-01"

AND

p.order_key

=

o.order_key

and

s.part_key

=

p.part_key

</SQL_stmt>

<prolog>?xml

version="1.0"?</prolog>

<doctype>!DOCTYPE

DAD

SYSTEM

"dxx_install/samples/db2xml/dtd/getstart.dtd

"</doctype>

<root_node>

<element_node

name="Order">

<attribute_node

name="key">

<column

name="order_key"/>

</attribute_node>

<element_node

name="Customer">

<text_node>

<column

name="customer"/>

</text_node>

<element_node>

...

</element_node><!-end

Part->

</element_node><!-end

Order->

</root_node>

</Xcollection>

</DAD>

Figure

12.

SQL

mapping

scheme

Chapter

4.

Managing

data

in

XML

collections

107

In

this

mapping

scheme,

you

must

specify

the

<SQL_stmt>

element

inside

the

DAD

<Xcollection>

element.

The

<SQL_stmt>

must

contain

a

single

SQL

statement

that

can

join

multiple

relational

tables

with

the

query

predicate.

In

addition,

the

following

clauses

are

required:

v

SELECT

clause

–

Ensure

that

the

name

of

the

column

is

unique.

If

two

tables

have

the

same

column

name,

use

the

AS

keyword

to

create

an

alias

name

for

one

of

them.

–

Group

columns

of

the

same

table

together

and

order

the

tables

according

to

the

tree

level

as

they

map

to

the

hierarchical

structure

of

your

XML

document.

The

first

column

in

each

column

grouping

is

an

object

ID.

In

the

SELECT

clause,

the

columns

of

the

higher-level

tables

must

precede

the

columns

of

lower-level

tables.

The

following

example

demonstrates

the

hierarchical

relationship

among

tables:

SELECT

o.order_key,

customer,

p.part_key,

quantity,

price,

tax,

ship_id,

date,

mode

In

this

example,

the

order_key

and

customer

columns

from

the

ORDER_TAB

table

have

the

highest

relational

level

because

they

are

higher

on

the

hierarchical

tree

of

the

XML

document.

The

ship_id,

date,

and

mode

columns

from

the

SHIP_TAB

table

are

at

the

lowest

relational

level.

–

Use

a

single-column

candidate

key

to

begin

each

level.

If

such

a

key

is

not

available

in

a

table,

the

query

should

generate

one

for

that

table

using

a

table

expression

and

the

generate_unique()user-defined

function.

In

the

above

example,

the

o.order_key

is

the

primary

key

for

ORDER_TAB,

and

the

part_key

is

the

primary

key

of

PART_TAB.

They

appear

at

the

beginning

of

their

own

group

of

columns

that

are

to

be

selected.

The

ship_id

is

generated

as

a

primary

key

because

the

SHIP_TAB

table

does

not

have

a

primary

key.

ship_id

is

listed

as

the

first

column

for

the

SHIP_TAB

table

group.

Use

the

FROM

clause

to

generate

the

primary

key

column,

as

shown

in

the

following

example.

v

FROM

clause

–

Use

a

table

expression

and

the

generate_unique()user-defined

function

to

generate

a

single

key

for

tables

that

do

not

have

a

primary

single

key.

For

example:

FROM

order_tab

as

o,

part_tab

as

p,

table(select

db2xml.generate_unique()

as

ship_id,

date,

mode,

part

key

from

ship_tab)

as

s

In

this

example,

a

single

column

candidate

key

is

generated

with

the

generate_unique()

function

and

given

an

alias

named

ship_id.

–

Use

an

alias

name

when

it

is

necessary

to

make

a

column

distinct.

For

example,

you

could

use

o

for

columns

in

the

ORDER_TAB

table,

p

for

columns

in

the

PART_TAB

table,

and

s

for

columns

in

the

SHIP_TAB

table.

v

WHERE

clause

–

Specify

a

primary

and

foreign

key

relationship

as

the

join

condition

that

ties

tables

in

the

collection

together.

For

example:

WHERE

p.price

>

2500.00

AND

s.date

>

"1996-06-01"

AND

p.order_key

=

o.order_key

AND

s.part_key

=

p.part_key

108

XML

Extender

Administration

and

Programming

–

Specify

any

other

search

condition

in

the

predicate.

Any

valid

predicate

can

be

used.

v

ORDER

BY

clause

–

Define

the

ORDER

BY

clause

at

the

end

of

the

SQL_stmt.

Ensure

that

there

is

nothing

after

the

column

names

such

as

ASC

or

DESC.

–

Ensure

that

the

column

names

match

the

column

names

in

the

SELECT

clause.

–

List

all

object

ID’s

in

the

same

relative

order

as

they

appear

in

the

SELECT

clause.

–

An

identifier

can

be

generated

using

a

table

expression

and

the

generate_unique()

function

or

a

user

defined

function.

–

Maintain

the

top-down

order

of

the

hierarchy

of

the

entities.

The

first

column

specified

in

the

ORDER

BY

clause

must

be

the

first

column

listed

for

each

entity.

Keeping

the

order

ensures

that

the

XML

documents

to

be

generated

do

not

contain

incorrect

duplicates.

–

Do

not

qualify

the

columns

in

the

ORDER

BY

clause

with

a

schema

or

table

name.

The

<SQL_stmt>

element

is

powerful

because

you

can

specify

any

predicate

in

your

WHERE

clause,

as

long

as

the

expression

in

the

predicate

uses

the

columns

in

the

tables.

Related

reference:

v

Appendix

A,

“Samples,”

on

page

293

Requirements

for

RDB_Node

mapping

When

using

RDB_Node

as

your

mapping

method,

do

not

use

the

<SQL_stmt>element

in

the

<Xcollection>

element

of

the

DAD

file.

Instead,

use

the

RDB_node

element

as

a

child

of

the

top

element_node

and

of

each

attribute_node

and

text_node.

v

RDB_node

for

the

top

element_node

The

top

element_node

in

the

DAD

file

represents

the

root

element

of

the

XML

document.

Specify

an

RDB_node

for

the

top

element_node

as

follows:

–

Specify

all

tables

that

are

associated

with

the

XML

collection.

For

example,

the

following

mapping

specifies

three

tables

in

the

<RDB_node>

of

the<Order>

element

node,

which

is

the

top

element

node:

<element_node

name="Order">

<RDB_node>

<table

name="order_tab"/>

<table

name="part_tab"/>

<table

name="ship_tab"/>

<condition>

order_tab.order_key

=

part_tab.order_key

AND

part_tab.part_key

=

ship_tab.part_key

</condition>

</RDB_node>

The

condition

element

can

be

empty

or

missing

if

there

is

only

one

table

in

the

collection.

–

Condition

elements

can

reference

a

column

name

an

unlimited

number

of

times.

Chapter

4.

Managing

data

in

XML

collections

109

–

If

you

are

decomposing,

or

enabling,

the

XML

collection

specified

by

the

DAD

file,

you

must

specify

a

primary

key

for

each

table.

The

primary

key

can

consist

of

a

single

column

or

multiple

columns,

called

a

composite

key.

Specify

the

primary

key

by

adding

an

attribute

key

to

the

table

element

of

the

RDB_node.

When

you

supply

a

composite

key,

the

key

attribute

will

be

specified

by

the

names

of

key

columns

separated

by

a

space.

For

example:

<table

name="part_tab"

key="part_key

price"/>

The

information

specified

for

decomposition

is

ignored

if

the

same

DAD

is

used

for

composition.

–

Use

the

orderBy

attribute

to

recompose

XML

documents

containing

elements

or

attributes

with

multiple

occurrence

back

to

their

original

structure.

This

attribute

allows

you

to

specify

the

name

of

a

column

that

will

be

the

key

used

to

preserve

the

order

of

the

document.

The

orderBy

attribute

is

part

of

the

table

element

in

the

DAD

file,

and

it

is

an

optional

attribute.

Spell

out

the

table

name

and

the

column

name

in

the

<table>tag.

v

RDB_node

for

each

attribute_node

and

text_node

The

XML

Extender

needs

to

know

from

where

in

the

database

to

retrieve

the

data.

XML

Extender

also

needs

to

know

where

in

the

database

to

put

the

content

from

an

XML

document.

You

must

specify

an

RDB_node

for

each

attribute

node

and

text

node.

You

must

also

specify

the

table

and

column

names;

the

condition

value

is

optional.

1.

Specify

the

name

of

the

table

containing

the

column

data.

The

table

name

must

be

included

in

the

RDB_node

of

the

top

element_node.

In

this

example,

for

text_node

of

element

<Price>,

the

table

is

specified

as

PART_TAB.

<element_node

name="Price">

<text_node>

<RDB_node>

<table

name="part_tab"/>

<column

name="price"/>

<condition>

price

>

2500.00

</condition>

</RDB_node>

</text_node>

</element_node>

2.

Specify

the

name

of

the

column

that

contains

the

data

for

the

element

text.

In

the

previous

example,

the

column

is

specified

as

PRICE.

3.

Specify

a

query

condition

if

you

want

XML

documents

to

be

generated

using

that

condition.

Only

the

data

meeting

the

condition

is

in

the

generated

XML

documents.

The

condition

must

be

a

valid

WHERE

clause.

In

the

example

above,

the

condition

is

specified

as

price

>

2500.00,

so

only

rows

where

the

price

is

over

2500

will

be

included

in

the

XML

documents.

4.

If

you

are

decomposing

a

document,

or

enabling

the

XML

collection

specified

by

the

DAD

file,

you

must

specify

the

column

type

for

each

attribute

node

and

text

node.

By

specifying

the

column

type

for

each

attribute

node

and

text

node,

you

ensure

that

he

correct

data

type

for

each

column

when

new

tables

are

created

during

the

enabling

of

an

XML

collection.

Column

types

are

specified

by

adding

the

attribute

type

to

the

column

element.

For

example:

<column

name="order_key"

type="integer"/>

The

column

type

specified

when

decomposing

a

document

is

ignored

for

composition.

v

Maintain

the

top-down

order

of

the

hierarchy

of

the

entities.

Ensure

that

the

element

nodes

are

nested

properly

so

that

XML

Extender

understands

the

110

XML

Extender

Administration

and

Programming

relationship

between

the

elements

when

composing

or

decomposing

documents.

For

example,

the

following

DAD

file

does

not

nest

Shipment

inside

of

Part:

<element_node

name="Part">

...

<element_node

name="ExtendedPrice">

...

</element_node>

...

</element_node>

<!--

end

of

element

Part

-->

<element_node

name="Shipment"

multi_occurrence="YES">

<element_node

name="ShipDate">

...

</element_node>

<element_node

name="ShipMode">

...

</element_node>

</element_node>

<!--

end

of

element

Shipment-->

This

DAD

file

produces

an

XML

documents

in

which

the

Part

and

Shipment

elements

are

siblings.

<Part

color="black

">

<key>68</key>

<Quantity>36</Quantity>

<ExtendedPrice>34850.16</ExtendedPrice>

<Tax>6.000000e-2</Tax>

</Part>

<Shipment>

<ShipDate>1998-08-19</ShipDate>

<ShipMode>BOAT

</ShipMode>

</Shipment>

The

following

code

shows

the

shipment

element

nested

inside

the

Part

element

in

the

DAD

file.

<element_node

name="Part">

...

<element_node

name="ExtendedPrice">

...

</element_node>

...

<element_node

name="Shipment"

multi_occurrence="YES">

<element_node

name="ShipDate">

...

</element_node>

<element_node

name="ShipMode">

...

</element_node>

</element_node>

<!--

end

of

element

Shipment-->

</element_node>

<!--

end

of

element

Part

-->

Nesting

the

shipment

element

inside

the

part

element

produces

an

XML

file

with

Shipment

as

a

child

element

of

the

Part

element:

<Part

color="black

">

<key>68</key>

<Quantity>36</Quantity>

<ExtendedPrice>34850.16</ExtendedPrice>

<Tax>6.000000e-2</Tax>

<Shipment>

<ShipDate>1998-08-19</ShipDate>

<ShipMode>BOAT

</ShipMode>

</Shipment>

</Part>

Chapter

4.

Managing

data

in

XML

collections

111

There

are

no

ordering

restrictions

on

predicates

of

the

root

node

condition.

With

the

RDB_node

mapping

approach,

you

don’t

need

to

supply

SQL

statements.

However,

putting

complex

query

conditions

in

the

RDB_node

element

can

be

more

difficult.

For

a

subtree

of

the

DAD

with

element_nodes

and

attribute_nodes

that

map

to

the

same

table,

the

following

is

true:

v

Attribute

nodes

do

not

have

to

be

the

first

children

of

the

lowest

common

ancestor

of

the

element

nodes

that

map

to

the

same

table.

v

Attribute

nodes

can

appear

anywhere

in

the

subtree,

as

long

as

they

are

not

involved

in

a

join

condition.

Restrictions:

The

limit

for

the

number

of

tables

allowed

in

a

RDB_node

mapping

DAD

is

30.

The

number

of

columns

allowed

per

table

is

500.

The

number

of

times

each

table

or

column

can

be

specified

in

the

join

predicates

of

the

condition

statement

is

unlimited

Stylesheets

for

an

XML

collection

When

composing

documents,

XML

Extender

also

supports

processing

instructions

for

stylesheets,

using

the

<stylesheet>

element.

The

processing

instructions

must

be

inside

the

<Xcollection>

root

element,

located

with

the

<doctype>

and

<prolog>

defined

for

the

XML

document

structure.

For

example:

<?xml

version="1.0"?>

<!DOCTYPE

DAD

SYSTEM

"c:\dtd\dad.dtd">

<DAD>

<SQL_stmt>

...

</SQL_stmt>

<Xcollection>

...

<prolog>...</prolog>

<doctype>...</doctype>

<stylesheet>?xml-stylesheet

type="text/css"

href="order.css"?</stylesheet>

<root_node>...</root_node>

...

</Xcollection>

...

</DAD>

Location

paths

A

location

path

defines

the

location

of

an

XML

element

or

attribute

within

the

structure

of

the

XML

document.

The

XML

Extender

uses

the

location

path

for

the

following

purposes:

v

To

locate

the

elements

and

attributes

to

be

extracted

when

using

extraction

UDFs

such

as

dxxRetrieveXML.

v

To

specify

the

mapping

between

an

XML

element

or

attribute

and

a

DB2®

column

when

defining

the

indexing

scheme

in

the

DAD

for

XML

columns

v

For

structural

text

search,

using

the

Text

Extender

v

To

override

the

XML

collection

DAD

file

values

in

a

stored

procedure.

112

XML

Extender

Administration

and

Programming

Figure

13

shows

an

example

of

a

location

path

and

its

relationship

to

the

structure

of

the

XML

document.

Related

reference:

v

“Location

path

syntax”

on

page

113

Location

path

syntax

XML

Extender

uses

the

location

path

to

navigate

the

XML

document

structure.

The

following

list

describes

the

location

path

syntax

that

is

supported

by

the

XML

Extender.

A

single

slash

(/)

path

indicates

that

the

context

is

the

whole

document.

1.

/

Represents

the

XML

root

element.

This

the

element

that

contains

all

the

other

elements

in

the

document.

2.

/tag1

Represents

the

element

tag1

under

the

root

element.

3.

/tag1/tag2/..../tagn

Represents

an

element

with

the

name

tagn

as

the

child

of

the

descending

chain

from

root,

tag1,

tag2,

through

tagn-1.

4.

//tagn

Represents

any

element

with

the

name

tagn,

where

double

slashes

(//)

denote

zero

or

more

arbitrary

tags.

5.

/tag1//tagn

Represents

any

element

with

the

name

tagn,

a

descendent

of

an

element

with

the

name

tag1

under

root,

where

double

slashes

(//)

denote

zero

or

more

arbitrary

tags.

6.

/tag1/tag2/@attr1

Represents

the

attribute

attr1

of

an

element

with

the

name

tag2,

which

is

a

child

of

element

tag1

under

root.

7.

/tag1/tag2[@attr1=″5″]

Represents

an

element

with

the

name

tag2

whose

attribute

attr1

has

the

value

5.

Thetag2

is

a

child

of

the

tag1element

under

root.

Location path: “/Order/Part/Shipment/ShipDate”

ShipDate

American Motors

1998-08-19 Boat

68

Order

Tax

Name Email

ExtendedPriceQuantity

34,850.1636black

1

0.02

ShipMode

Shipment

Part

Key

Key

Color

Customer

parts@am.com

Figure

13.

Storing

documents

as

structured

XML

documents

in

a

DB2

UDB

table

column

Chapter

4.

Managing

data

in

XML

collections

113

8.

/tag1/tag2[@attr1=″5″]/.../tagn

Represents

an

element

with

the

name

tagn,

which

is

a

child

of

the

descending

chain

from

root,

tag1,

tag2,

through

tagn-1,

where

the

attribute

attr1

of

tag2

has

the

value

5.

Simple

location

path

Simple

location

path

is

a

type

of

location

path

used

in

the

XML

column

DAD

file.

A

simple

location

path

is

represented

as

a

sequence

of

element-type

names

that

are

connected

by

a

single

slash

(/).

The

values

of

each

attribute

are

enclosed

within

square

brackets

following

the

element

type.

Table

15

summarizes

the

syntax

for

simple

location

path.

Table

15.

Simple

location

path

syntax

Subject

Location

path

Description

XML

element

/tag1/tag2/..../tagn-1/tagn

An

element

content

identified

by

the

element

named

tagn

and

its

parents

XML

attribute

/tag_1/tag_2/..../tag_n-
1/tag_n/@attr1

An

attribute

namedattr1

of

the

element

identified

by

tagn

and

its

parents

Location

path

usage

The

syntax

of

the

location

path

is

dependent

on

the

context

in

which

you

are

accessing

the

location

of

an

element

or

attribute.

Because

the

XML

Extender

uses

one-to-one

mapping

between

an

element

or

attribute,

and

a

DB2

column,

it

restricts

the

syntax

rules

for

the

DAD

file

and

functions.

Table

16

describes

in

which

contexts

the

syntax

options

are

used.

Table

16.

The

XML

Extender’s

restrictions

using

location

path

Use

of

the

location

path

Location

path

supported

Value

of

path

attribute

in

the

XML

column

DAD

mapping

for

side

tables

3,

6

(simple

location

path

described

in

Table

15)

Extracting

UDFs

1-81

Update

UDF

1-81

Text

Extender’s

search

UDF

3

–

Exception:

the

root

mark

is

specified

without

the

slash.

For

example:

tag1/tag2/..../tagn

1

The

extracting

and

updating

UDFs

support

location

paths

that

have

predicates

with

attributes,

but

not

elements.

Related

concepts:

v

“Location

paths”

on

page

112

Enabling

XML

collections

Enabling

an

XML

collection

parses

the

DAD

file

to

identify

the

tables

and

columns

related

to

the

XML

document,

and

records

control

information

in

the

XML_USAGE

table.

Enabling

an

XML

collection

is

optional

for:

v

Decomposing

an

XML

document

and

storing

the

data

in

new

DB2

UDB

tables

v

Composing

an

XML

document

from

existing

data

in

multiple

DB2

UDB

tables

114

XML

Extender

Administration

and

Programming

If

the

same

DAD

file

is

used

for

composing

and

decomposing,

you

can

enable

the

collection

for

both

composition

and

decomposition.

You

can

enable

an

XML

collection

with

the

XML

Extender

Administration

wizard,

with

the

dxxadm

command

with

the

enable_collection

option,

or

with

the

XML

Extender

stored

procedure

dxxEnableCollection().

Using

the

Administration

wizard:

To

enable

an

XML

collection

using

the

wizard:

1.

Set

up

and

start

the

Administration

wizard.

2.

Click

Work

with

XML

Collections

from

the

Launchpad

window.

The

Select

a

Task

window

opens.

3.

Click

Enable

a

Collection

and

then

Next.

The

Enable

a

Collection

window

opens.

4.

Select

the

name

of

the

collection

that

you

want

to

enable

in

the

Collection

name

field.

5.

Specify

the

DAD

file

name

in

the

DAD

file

name

field.

6.

Optional:

Type

the

name

of

a

previously

created

table

space

in

the

Table

space

field.

The

table

space

will

contain

new

DB2

UDB

tables

generated

for

decomposition.

7.

Click

Finish

to

enable

the

collection

and

return

to

the

Launchpad

window.

v

If

the

collection

is

successfully

enabled,

an

Enabled

collection

is

successful

message

is

displayed.

v

If

the

collection

is

not

successfully

enabled,

an

error

message

is

displayed.

Repeat

the

steps

above

until

the

collection

is

successfully

enabled.

Enabling

collections

using

the

dxxadm

command:

To

enable

an

XML

collection,

enter

the

dxxadm

command

from

a

DB2

UDB

command

line:

Syntax:

��

enable_collection

-a

subsystem_name

collection

DAD_file

�

�

-t

tablespace

��

Parameters:

-a

subsystem_name

The

name

of

the

DB2

UDB

subsystem.

collection

The

name

of

the

XML

collection.

This

value

is

used

as

a

parameter

for

the

XML

collection

stored

procedures.

DAD_file

The

name

of

the

file

that

contains

the

document

access

definition

(DAD).

tablespace

An

existing

table

space

that

contains

new

DB2

UDB

tables

that

were

generated

for

decomposition.

If

not

specified,

the

default

table

space

is

used.

Chapter

4.

Managing

data

in

XML

collections

115

Example:

The

following

example

enables

a

collection

called

sales_ord

using

the

command

line.

The

DAD

file

uses

SQL

mapping.

dxxadm

enable_collection

-a

SUBSYS1

ORDRPSC

SALES_ORD

’dxx/samples/dad/getstart_xcollection.dad’

After

you

enable

the

XML

collection,

you

can

compose

or

decompose

XML

documents

using

the

XML

Extender

stored

procedures.

Related

concepts:

v

“XML

collections

as

a

storage

and

access

method”

on

page

91

Related

tasks:

v

“Disabling

XML

collections”

on

page

116

v

“Managing

data

in

XML

collections”

on

page

92

Disabling

XML

collections

Disabling

an

XML

collection

removes

the

record

in

the

XML_USAGE

table

that

identifies

tables

and

columns

as

part

of

a

collection.

It

does

not

drop

any

data

tables.

You

disable

a

collection

when

you

want

to

update

the

DAD

and

need

to

re-enable

a

collection,

or

when

you

want

to

drop

a

collection.

You

can

disable

an

XML

collection

with

the

XML

Extender

Administration

wizard,

with

the

dxxadm

command

with

the

disable_collection

option,

or

with

the

XML

Extender

stored

procedure

dxxDisableCollection().

Procedure:

To

disable

an

XML

collection

using

the

Administration

wizard:

1.

Start

the

Administration

wizard.

2.

Click

Work

with

XML

Collections

from

the

Launchpad

window

to

view

the

XML

Extender

collection

related

tasks.

The

Select

a

Task

window

opens.

3.

Click

Disable

an

XML

Collection

and

then

Next

to

disable

an

XML

collection.

The

Disable

a

Collection

window

opens.

4.

Type

the

name

of

the

collection

that

you

want

to

disable

in

the

Collection

name

field.

5.

Click

Finish

to

disable

the

collection

and

return

to

the

Launchpad

window.

v

If

the

collection

is

successfully

disabled,

Disabled

collection

is

successful

message

is

displayed.

v

If

the

collection

is

not

successfully

disabled,

an

error

box

is

displayed.

Repeat

the

steps

above

until

the

collection

is

successfully

disabled.

To

disable

an

XML

collection

from

the

command

line,

enter

the

dxxadm

command.

Syntax:

��

dxxadm

disable_collection

-a

subsystem_name

collection

��

Parameters:

-

a

subsystem_name

The

name

of

the

DB2

subsystem.

116

XML

Extender

Administration

and

Programming

collection

The

name

of

the

XML

collection.

This

value

is

used

as

a

parameter

for

the

XML

collection

stored

procedures.

Example:

dxxadm

disable_collection

-a

SUBSYS1

SALES_ORD

Related

concepts:

v

“XML

collections

as

a

storage

and

access

method”

on

page

91

v

“XML

Extender

administration

stored

procedures”

on

page

195

Related

tasks:

v

“Managing

data

in

XML

collections”

on

page

92

Chapter

4.

Managing

data

in

XML

collections

117

118

XML

Extender

Administration

and

Programming

Chapter

5.

XML

schemas

The

XML

schema

can

be

used

in

place

of

a

DTD

to

define

the

specifications

for

the

content

of

XML

documents.

The

XML

schema

uses

XML

format

or

SML

syntax

to

define

the

elements

and

attribute

names

of

an

XML

document,

and

defines

the

type

of

content

that

the

elements

and

attributes

are

allowed

to

contain.

Advantages

of

using

XML

schemas

instead

of

DTDs

DTDs

are

easier

to

code

and

validate

than

an

XML

schema.

However,

the

advantages

to

using

an

XML

schema

are

shown

in

the

following

list:

v

XML

schemas

are

valid

XML

documents

that

can

be

processed

by

tools

such

as

the

XSD

Editor

in

WebSphere®

Studio

Application

Developer,

XML

Spy,

or

XML

Authority.

v

XML

schemas

are

more

powerful

than

DTDs.

Everything

that

can

be

defined

by

the

DTD

can

also

be

defined

by

schemas,

but

not

vice

versa.

v

XML

schemas

support

a

set

of

data

types,

similar

to

the

ones

used

in

most

common

programming

languages,

and

provide

the

ability

to

create

additional

types.

You

can

constrain

the

document

content

to

the

appropriate

type.

For

example,

you

can

replicate

the

properties

of

fields

found

in

DB2.

v

XML

schemas

support

regular

expressions

to

set

constraints

on

character

data,

which

is

not

possible

if

you

use

a

DTD.

v

XML

schemas

provide

better

support

for

XML

namespaces,

which

enable

you

to

validate

documents

that

use

multiple

namespaces,

and

to

reuse

constructs

from

schemas

already

defined

in

different

namespaces.

v

XML

schemas

provide

better

support

for

modularity

and

reuse

with

include

and

import

elements.

v

XML

schemas

support

inheritance

for

element,

attribute,

and

data

type

definitions.

Related

tasks:

v

“Data

types,

elements

and

attributes

in

schemas”

on

page

121

Related

reference:

v

“Examples

of

an

XML

schema”

on

page

122

UDTs

and

UDF

names

for

XML

Extender

The

full

name

of

a

DB2®

function

is

schema-name.function-name,

where

schema-name

is

an

identifier

that

provides

a

logical

grouping

for

a

set

of

SQL

objects.

The

schema

name

for

XML

Extender

UDFs

and

UDTs

is

DB2XML.

In

the

documentation,

references

are

made

only

to

the

function

name.

You

can

specify

UDTs

and

UDFs

without

the

schema

name

if

you

add

the

schema

name

to

the

function

path.

The

function

path

is

an

ordered

list

of

schema

names.

DB2

UDB

uses

the

order

of

schema

names

in

the

list

to

resolve

references

to

functions

and

UDTs.

You

can

specify

the

function

path

by

specifying

the

SQL

statement

SET

CURRENT

FUNCTION

PATH.

This

statement

sets

the

function

path

in

the

CURRENT

FUNCTION

PATH

special

register.

©

Copyright

IBM

Corp.

1999,

2004

119

Recommendation:

Add

the

DB2XML

schema

name

to

the

function

path.

By

adding

this

schema

name,

you

can

enter

XML

Extender

UDF

and

UDT

names

without

having

to

qualify

them

with

DB2XML.

The

following

example

shows

how

to

add

the

DB2XML

schema

to

the

function

path:

SET

CURRENT

FUNCTION

PATH

=

DB2XML,

CURRENT

FUNCTION

PATH

Restriction:

Do

not

add

DB2XML

as

the

first

schema

in

the

function

path

if

you

log

on

with

a

user

ID

of

DB2XML.

DB2XML

is

automatically

set

as

the

first

schema

when

you

log

on

as

DB2XML.

If

you

add

DB2XML

as

the

first

schema

in

the

function

path,

you

will

receive

an

error

condition

because

the

function

path

will

start

with

two

DB2XML

schemas.

XML

schema

complexType

element

The

XML

schema

element

complexType

is

used

to

define

an

element

type

that

can

consist

of

sub-elements.

For

example,

the

following

tags

show

the

projection

of

an

address

in

an

XML

document:

<billTo

country="US">

<name>Dan

Jones</name>

<street>My

Street</street>

<city>My

Town</city>

<state>CA</state>

<zip>99999</zip>

</billTo>

The

structure

of

this

element

can

be

defined

in

the

XML

schema

as

follows:

1

<xsd:element

name="billTo"

type="USAddress"/>

2

<

xsd:complexType

name="USAddress">

3

<xsd:sequence>

4

<

xsd:element

name="name"

type="xsd:string"/>

5

<

xsd:element

name="street"

type="xsd:string"/>

6

<

xsd:element

name="city"

type="xsd:string"/>

7

<

xsd:element

name="state"

type="xsd:string"/>

8

<

xsd:element

name="zip"

type="xsd:decimal"/>

9

</xsd:sequence>

10

<

xsd:attribute

name="country"

type="xsd:NMTOKEN"

use="fixed"

value="US"/>

12</xsd:complexType>

In

the

above

example,

it

is

assumed

that

the

xsd

prefix

has

been

bound

to

the

XML

schema

namespace.

Lines

2

through

5

define

the

complexType

USAddress

as

a

sequence

of

five

elements

and

one

attribute.

The

order

of

the

elements

is

determined

by

the

order

in

which

they

appear

in

the

sequence

tag.

The

inner

elements

are

from

data

type

xsd:string

or

xsd:decimal.

Both

are

predefined

simple

data

types.

Alternatively,

you

can

use

the

all

tag

or

the

choice

tag

instead

of

the

sequence

tag.

With

the

all

tag,

all

sub-elements

must

appear,

but

do

not

need

to

appear

in

any

particular

order.

With

the

choice

tag,

exactly

one

of

the

sub-elements

must

appear

in

the

XML

document

You

can

also

use

a

user-defined

data

type

to

define

other

elements.

120

XML

Extender

Administration

and

Programming

Data

types,

elements

and

attributes

in

schemas

Simple

data

types

in

XML

schemas

XML

schemas

provide

a

set

of

simple

built-in

data

types.

You

can

derive

other

data

types

from

them

by

applying

constraints.

In

Example

1,

the

range

of

base

type

xsd:positiveInteger

is

limited

to

0

to

100.

Example

1

<

xsd:element

name="quantity">

<

xsd:simpleType>

<

xsd:restriction

base="xsd:positiveInteger">

<

xsd:maxExclusive

value="100"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

In

Example

2,

the

base

type

xsd:string

is

limited

by

a

regular

expression.

Example

2

<xsd:simpleType

name="SKU">

<

xsd:restriction

base="xsd:string">

<

xsd:pattern

value="\d{3}-[A-Z]{2}"/>

</xsd:restriction>

</xsd:simpleType>

Example

3

shows

an

enumerated

type

based

on

the

string

built-in

type.

Example

3

<xsd:simpleType

name="SchoolClass">

<

xsd:restriction

base="xsd:string">

<

xsd:enumeration

value="WI"/>

<

xsd:enumeration

value="MI"/>

<

xsd:enumeration

value="II"/>

<

xsd:enumeration

value="DI"/>

<

xsd:enumeration

value="AI"/>

</xsd:restriction>

</xsd:simpleType>

Elements

in

XML

schemas

To

declare

an

element

in

an

XML

schema

you

must

indicate

the

name

and

type

as

an

attribute

of

the

element

element.

For

example:

<xsd:element

name="street"

type="xsd:string"/>

Additionally,

you

can

use

the

attributes

minOccurs

and

maxOccurs

to

determine

the

maximum

or

minimum

number

of

times

that

the

element

must

appear

in

the

XML

document.

The

default

value

of

minOccurs

and

maxOccurs

is

1.

Attributes

in

XML

schemas

Attribute

declarations

appear

at

the

end

of

an

element

definition.

For

example:

<xsd:complexType

name="PurchaseOrderType">

<

xsd:sequence>

<

xsd:element

name="billTo"

type="USAddress"/>

<

xsd:sequence>

<

xsd:attribute

name="orderDate"

type="xsd:date"/>

</xsd:complexType>

Related

concepts:

v

“Advantages

of

using

XML

schemas

instead

of

DTDs”

on

page

119

Chapter

5.

XML

schemas

121

|
|
|
|
|
|

Related

tasks:

v

“Validation

functions”

on

page

163

Related

reference:

v

“Examples

of

an

XML

schema”

on

page

122

v

“XML

schema

complexType

element”

on

page

120

Examples

of

an

XML

schema

It

is

a

good

strategy

to

write

XML

schemas

by

first

designing

the

data

structure

of

your

XML

document

using

a

UML

tool.

After

you

design

the

structure,

you

can

map

the

structure

into

your

schema

document.

The

following

example

shows

an

XML

schema.

1

<?xml

version="1.0"

encoding="UTF-8"?>

2

<xs:schema

xmlns:xs=’http://www.w3.org/2001/XMLSchema’>

3

4

<xs:element

name="personnel">

5

<xs:complexType>

6

<xs:sequence>

7

<xs:element

ref="person"

minOccurs=’1’

maxOccurs=’unbounded’/>

8

</xs:sequence>

9

</xs:complexType>

10

</xs:element>

11

12

<xs:element

name="person">

13

<xs:complexType>

14

<xs:sequence>

15

<xs:element

ref="name"/>

16

<xs:element

ref="email"

minOccurs=’0’

maxOccurs=’4’/>

17

</xs:sequence>

18

<xs:attribute

name="id"

type="xs:ID"

use=’required’/>

19

</xs:complexType>

20

</xs:element>

21

22

<xs:element

name="name">

23

<xs:complexType>

24

<xs:sequence>

25

<xs:element

ref="family"/>

26

<xs:element

ref="given"/>

27

</xs:sequence>

28

</xs:complexType>

29

</xs:element>

30

31

<xs:element

name="family"

type=’xs:string’/>

32

<xs:element

name="given"

type=’xs:string’/>

33

<xs:element

name="email"

type=’xs:string’/>

34

</xs:schema>

The

first

two

lines

declare

that

this

XML

schema

is

XML

1.0

compatible

and

Unicode

8

decoded,

and

specify

use

of

the

XML

schema

standard

namespace,

which

enables

access

to

basic

XML

schema

data

types

and

structures.

Lines

4

to

10

define

the

personnel

as

a

complexType

that

consists

of

a

sequence

of

1

to

n

persons.

The

complexType

is

then

defined

in

lines

12

to

20.

It

consists

of

the

complexType

element

name

and

the

element

email.

The

email

element

is

optional

(minOcccurs

=

’0’),

and

can

appear

up

to

four

times

(maxOccurs

=

’4’).

The

greater

the

number

of

occurrences

of

an

element,

the

longer

it

will

take

to

validate

the

schema.

In

contrast,

in

a

DTD

you

can

choose

only

0,

1,

or

unlimited

appearances

of

an

element.

122

XML

Extender

Administration

and

Programming

Lines

22

to

29

define

the

name

type

that

is

used

for

the

person

type.

The

name

type

consists

of

a

sequence

of

a

family

and

a

given

element.

Lines

31

to

33

define

the

single

elements

family,

given,

and

e-mail,

which

contain

type

strings

that

have

been

declared.

XML

document

instance

using

the

schema

The

following

example

is

an

XML

document

that

is

an

instance

of

the

personalnr.xsd

schema.

1

<?xml

version="1.0"

encoding="UTF-8"?>

2

<personnel

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

3

xsi:noNamespaceSchemaLocation=’personsnr.xsd’>

4

5

<person

id="Big.Boss"

>

6

<name><family>Boss</family><given>Big</given></name>

7

<email>chief@foo.com</email>

8

</person>

9

10

<person

id="one.worker">

11

<name><family>Worker</family><given>One</given></name>

12

<email>one@foo.com</email>

13

</person>

14

15

<person

id="two.worker">

16

<name><family>Worker</family><given>Two</given></name>

17

<email>two@foo.com</email>

18

</person>

19

</personnel>

XML

document

instance

using

a

DTD

This

example

shows

how

this

XML

schema

would

be

realized

as

a

DTD.

1

<?xml

version="1.0"

encoding="UTF-8"?>

2

<!ELEMENT

email

(#PCDATA)>

3

<!ELEMENT

family

(#PCDATA)>

4

<!ELEMENT

given

(#PCDATA)>

5

<!ELEMENT

name

(family,

given)>

6

<!ELEMENT

person

(name,

email*)>

7

8

<!ATTLIST

person

9

id

ID

#REQUIRED>

10

<!ELEMENT

personnel

(person+)>

Using

a

DTD

you

can

set

the

maximum

occurrence

of

email

to

only

1

or

unlimited

occurrences.

Using

this

DTD,

the

XML

document

instance

would

be

the

same

as

shown

in

the

top

example,

except

line

2

would

be

changed

to:

<!DOCTYPE

personnel

SYSTEM

"personsnr.dtd">

Related

concepts:

v

“Advantages

of

using

XML

schemas

instead

of

DTDs”

on

page

119

Related

tasks:

v

“Data

types,

elements

and

attributes

in

schemas”

on

page

121

v

“Validation

functions”

on

page

163

Related

reference:

v

“XML

schema

complexType

element”

on

page

120

Chapter

5.

XML

schemas

123

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

124

XML

Extender

Administration

and

Programming

Part

4.

Reference

This

part

provides

syntax

information

for

the

XML

Extender

administration

command,

user-defined

data

types

(UDTs),

user-defined

functions

(UDFs),

and

stored

procedures.

Message

text

is

also

provided

for

problem

determination

activities.

©

Copyright

IBM

Corp.

1999,

2004

125

126

XML

Extender

Administration

and

Programming

Chapter

6.

The

dxxadm

administration

command

dxxadm

command

overview

You

perform

the

following

XML

Extender

administration

tasks

by

calling

dxxadm

using

various

subcommands:

Related

concepts:

v

“Administration

tools

for

XML

Extender”

on

page

37

v

“XML

Extender

administration

planning”

on

page

38

Syntax

of

the

dxxadm

administration

command

��

dxxadm

’

-a

subsystem

name

enable_server

parameters

disable_server

enable_column

parameters

disable_column

parameters

enable_collection

parameters

disable_collection

parameters

’

��

Parameters:

Table

17.

dxxadm

parameters

Parameter

Description

subsystem

name

The

name

of

the

DB2

UDB

subsystem

to

which

the

application

attaches.

enable_server

Enables

XML

Extender

features

for

a

server.

disable_server

Disables

XML

Extender

features

for

a

server.

enable_column

Enables

an

XML

column

so

that

it

can

contain

the

XML

Extender

UDTs.

disable_column

Disables

the

XML-enabled

column.

enable_collection

Enables

an

XML

collection

according

to

the

specified

DAD.

enable_collection

Disables

an

XML-enabled

collection.

Subcommands

of

the

administration

command

The

following

dxxadm

subcommands

are

available

to

system

programmers:

v

enable_column

v

enable_collection

v

enable_server

v

disable_column

v

disable_collection

v

disable_server

enable_server

option

of

the

dxxadm

command

Purpose:

©

Copyright

IBM

Corp.

1999,

2004

127

Enables

XML

Extender

features

for

a

server.

When

the

server

is

enabled,

the

XML

Extender

creates

the

following

objects:

v

The

XML

Extender

user-defined

types

(UDTs).

v

The

XML

Extender

user-defined

functions

(UDFs).

v

The

XML

Extender

stored

procedures

v

The

XML

Extender

DTD

repository

table,

DTD_REF,

which

stores

DTDs

and

information

about

each

DTD.

v

The

XML

Extender

usage

table,

XML_USAGE,

which

stores

common

information

for

each

column

that

is

enabled

for

XML

and

for

each

collection.

Syntax:

��

dxxadm

enable_server

-a

subsystem_name

security

security_level

�

�

WLM

environment

WLM_name1

,

WLM_name2

��

Parameters:

Table

18.

enable_server

parameters

Parameter

Description

subsystem_name

The

name

of

the

DB2

subsystem.

security_level

Determines

the

user

ID

that

is

authorized

to

access

external

resources

when

running

stored

procedures.

Choices

are

DB2,

USER,

DEFINER.

DB2

UDB

is

the

default.

WLM

name

The

names

of

the

WLM

environments.

At

least

one

name

is

required.

If

one

is

specified,

the

name

is

for

all

stored

procedures

and

UDFs.

If

two

are

specified,

the

first

name

is

for

the

stored

procedures,

the

second

name

is

for

the

UDFs.

The

following

table

describes

the

tablespaces

that

will

be

created

while

enabling

the

server:

Table

19.

enable_server

tablespaces

Tablespace

Description

DXXDTDRF

The

tablespace

name

in

which

the

DTD_REF

table

is

stored.

DXXXMLUS

The

tablespace

name

in

which

the

XML_USAGE

table

is

stored.

DXXDTDL1

The

tablespace

name

in

which

the

CLOB

column

CONTENT

of

the

DTD_REF

table

is

stored.

DXXDTDL2

The

tablespace

name

in

which

the

CLOB

column

DAD

of

the

XML_USAGE

table

is

stored.

You

can

create

any

or

all

of

the

above

tablespaces

before

enabling

the

server.

If

you

do

not

create

the

tablespaces

before

enabling

the

server,

the

following

commands

will

be

executed

to

create

the

tablespaces

when

the

enable_server

command

is

run:

128

XML

Extender

Administration

and

Programming

CREATE

TABLESPACE

DXXDTDRF

USING

STOGROUP

SYSDEFLT

PRIQTY

288

SECQTY

48

IN

DB2XML

CREATE

TABLESPACE

DXXXMLUS

USING

STOGROUP

SYSDEFLT

PRIQTY

288

SECQTY

48

IN

DB2XML

CREATE

LOB

TABLESPACE

DXXDTDL1

LOG

NO

USING

STOGROUP

SYSDEFLT

PRIQTY

1920

SECQTY

480

IN

DB2XML

CREATE

LOB

TABLESPACE

DXXDTDL2

LOG

NO

USING

STOGROUP

SYSDEFLT

PRIQTY

1920

SECQTY

480

IN

DB2XML

Examples:

The

following

example

enables

the

database

server

for

XML

Extender

using

the

SUBSY1

subsystem

and

the

WML

environment

ENVIR233:

dxxadm

’enable_server

-a

SUBSYS1

wlm

environment

envir233’

Related

reference:

v

“dxxadm

command

overview”

on

page

127

disable_server

option

of

the

dxxadm

command

Purpose:

Disables

XML

Extender

features

for

a

database

server,

called

“disabling

a

database”.

When

the

database

server

is

disabled,

it

can

no

longer

be

used

by

the

XML

Extender.

When

the

XML

Extender

disables

the

database

server,

it

drops

the

following

objects:

v

The

XML

Extender

user-defined

types

(UDTs).

v

The

XML

Extender

user-defined

functions

(UDFs).

v

The

XML

Extender

DTD

repository

table,

DTD_REF,

which

stores

DTDs

and

information

about

each

DTD.

v

The

XML

Extender

usage

table,

XML_USAGE,

which

stores

common

information

for

each

column

that

is

enabled

for

XML

and

for

each

collection.

Important:

You

must

disable

all

XML

columns

before

attempting

to

disable

a

database

server.

The

XML

Extender

cannot

disable

a

database

server

that

contains

columns

or

collections

that

are

enabled

for

XML.

Syntax:

��

disable_server

-a

subsystem_name

��

Parameters:

Table

20.

disable_server

parameters

Parameter

Description

-a

subsystem_name

The

name

of

the

DB2

UDB

subsystem.

Examples:

The

following

example

disables

the

database

server:

dxxadm

disable_server

-a

SUBSYS1

Related

concepts:

v

“XML

Extender

administration

stored

procedures”

on

page

195

Chapter

6.

The

dxxadm

administration

command

129

Related

reference:

v

“How

to

read

syntax

diagrams”

on

page

x

enable_column

option

of

the

dxxadm

command

Purpose:

Connects

to

a

database

server

and

enables

an

XML

column

so

that

it

can

contain

the

XML

Extender

UDTs.

When

enabling

a

column,

the

XML

Extender

completes

the

following

tasks:

v

Determines

whether

the

XML

table

has

a

primary

key;

if

not,

the

XML

Extender

alters

the

XML

table

and

adds

a

column

called

DXXROOT_ID.

v

Creates

side

tables

that

are

specified

in

the

DAD

file

with

a

column

containing

a

unique

identifier

for

each

row

in

the

XML

table.

This

column

is

either

the

root

ID

that

the

user

specified

or

the

DXXROOT_ID

that

was

named

by

the

XML

Extender.

v

Creates

a

default

view

for

the

XML

table

and

its

side

tables,

optionally

using

a

name

you

specify.

Syntax:

��

dxxadm

enable_column

-a

subsystem_name

tab_name

column_name

DAD_file

�

�

-t

tablespace

-v

default_view

-r

root_id

-l

login

�

�

-p

password

��

Parameters:

Table

21.

enable_column

parameters

Parameter

Description

-a

subsystem_name

The

name

of

the

DB2

UDB

subsystem.

tab_name

The

name

of

the

table

in

which

the

XML

column

resides.

column_name

The

name

of

the

XML

column.

DAD_file

The

name

of

the

DAD

file

that

maps

the

XML

document

to

the

XML

column

and

side

tables.

-t

tablespace

The

table

space

that

contains

the

side

tables

associated

with

the

XML

column.

If

not

specified,

the

default

table

space

is

used.

-v

default_view

The

name

of

the

default

view

that

joins

the

XML

column

and

side

tables.

-r

root_id

The

name

of

the

primary

key

in

the

XML

column

table

that

is

to

be

used

as

the

root_id

for

side

tables.

The

root_id

is

optional.

-l

login

The

user

ID,

used

to

connect

to

the

database.

If

not

specified,

the

current

user

ID

is

used.

-p

password

The

password

used

to

connect

to

the

database.

If

not

specified,

the

current

password

is

used.

130

XML

Extender

Administration

and

Programming

Examples:

The

following

example

enables

an

XML

column.

dxxadm

enable_column

-a

SUBSYS1

SALES_TAB

ORDER

getstart.dad

-v

SALODVW

-r

INVOICE_NUMBER

disable_column

option

of

the

dxxadm

command

Purpose:

Connects

to

a

database

and

disables

the

XML-enabled

column.

When

the

column

is

disabled,

it

can

no

longer

contain

XML

data

types.

When

an

XML-enabled

column

is

disabled,

the

following

actions

are

performed:

v

The

XML

column

usage

entry

is

deleted

from

the

XML_USAGE

table.

v

The

USAGE_COUNT

is

decremented

in

the

DTD_REF

table.

v

All

triggers

that

are

associated

with

this

column

are

dropped.

v

All

side

tables

that

are

associated

with

this

column

are

dropped.

Important:

You

must

disable

an

XML

column

before

dropping

an

XML

table.

If

an

XML

table

is

dropped

but

its

XML

column

is

not

disabled,

the

XML

Extender

keeps

both

the

side

tables

it

created

and

the

XML

column

entry

in

the

XML_USAGE

table.

Syntax:

��

dxxadm

disable_column

-a

subsystem_name

tab_name

column_name

�

�

-l

login

-p

password

��

Parameters:

Table

22.

disable_column

parameters

Parameter

Description

-a

subsystem_name

The

name

of

the

DB2

UDB

subsystem.

tab_name

The

name

of

the

table

in

which

the

XML

column

resides.

column_name

The

name

of

the

XML

column.

-l

login

The

user

ID

used

to

connect

to

the

database.

If

not

specified,

the

current

user

ID

is

used.

-p

password

The

password

used

to

connect

to

the

database.

If

not

specified,

the

current

password

is

used.

Examples:

The

following

example

disables

an

XML-enabled

column.

dxxadm

disable_column

-a

SUBSYS1

SALES_TAB

ORDER

Related

concepts:

v

“XML

columns

as

a

storage

and

access

method”

on

page

73

v

“XML

Extender

administration

stored

procedures”

on

page

195

Related

tasks:

v

“Calling

XML

Extender

composition

stored

procedures”

on

page

201

Chapter

6.

The

dxxadm

administration

command

131

Related

reference:

v

“How

to

read

syntax

diagrams”

on

page

x

enable_collection

option

of

the

dxxadm

command

Purpose:

Connects

to

a

database

server

and

enables

an

XML

collection

according

to

the

specified

DAD.

When

enabling

a

collection,

the

XML

Extender

does

the

following

tasks:

v

Creates

an

XML

collection

usage

entry

in

the

XML_USAGE

table.

v

For

RDB_node

mapping,

creates

collection

tables

specified

in

the

DAD

if

the

tables

do

not

exist

in

the

database.

Syntax:

��

enable_collection

-a

subsystem_name

collection_name

DAD_file

�

�

-t

tablespace

��

Parameters:

Table

23.

enable_collection

parameters

Parameter

Description

-a

subsystem_name

The

name

of

the

DB2

UDB

subsystem.

-t

tablespace

The

name

of

the

table

space

associated

with

the

collection.

If

not

specified,

the

default

table

space

is

used.

collection_name

The

name

of

the

XML

collection.

DAD_file

The

name

of

the

DAD

file

that

maps

the

XML

document

to

the

relational

tables

in

the

collection.

Example::

The

following

example

enables

an

XML

collection

named

SALES_ORD

with

the

GETSTART_XCOLLECTION.DAD:

dxxadm

enable_collection

-a

SUBSYS1

using

ORDRPSC

SALES_ORD

’ORDPRJ.WORK.DAD(GETSTART_XCOLLECTION)’

Related

reference:

v

“dxxadm

command

overview”

on

page

127

disable_collection

option

Purpose:

Disables

an

XML-enabled

collection.

The

collection

name

can

no

longer

be

used

in

the

composition

(dxxRetrieveXML)

and

decomposition

(dxxInsertXML)

stored

procedures.

When

an

XML

collection

is

disabled,

the

associated

collection

entry

is

deleted

from

the

XML_USAGE

table.

Note

that

disabling

the

collection

does

not

drop

the

collection

tables

that

are

created

when

you

use

the

enable_collection

option.

132

XML

Extender

Administration

and

Programming

Syntax:

��

dxxadm

disable_collection

-a

subsystem_name

collection_name

��

Parameters:

Table

24.

disable_collection

parameters

Parameter

Description

-a

subsystem_name

The

name

of

the

DB2

UDB

subsystem.

collection_name

The

name

of

the

XML

collection.

Examples:

The

following

example

disables

an

XML

collection

named

SALES_ORD.

dxxadm

disable_collection

-a

SUBSYS1

SALES_ORD

Chapter

6.

The

dxxadm

administration

command

133

134

XML

Extender

Administration

and

Programming

Chapter

7.

XML

Extender

user-defined

types

User-defined

types

(UDTs)

are

data

types

created

by

a

DB2®

application

or

tool.

The

XML

Extender

creates

the

following

user-defined

types

for

use

with

XML

columns:

v

XMLVARCHAR

v

XMLCLOB

v

XMLFILE

The

data

types

are

used

to

define

the

column

in

the

application

table

that

will

be

used

to

store

the

XML

document.

You

can

also

store

XML

documents

as

files

on

the

file

system,

by

specifying

a

file

name.

All

XML

Extender’s

user-defined

types

have

the

qualifier

DB2XML,

which

is

the

schema

name

of

the

DB2

UDB

XML

Extender

user-defined

types.

For

example:

db2xml.XMLVarchar

The

XML

Extender

creates

UDTs

for

storing

and

retrieving

XML

documents.

Table

25

describes

the

UDTs.

Table

25.

The

XML

Extender

UDTs

User-defined

type

column

Source

data

type

Usage

description

XMLVARCHAR

VARCHAR(varchar_len)

Stores

an

entire

XML

document

as

VARCHAR

inside

DB2.

XMLCLOB

CLOB(clob_len)

Stores

an

entire

XML

document

as

a

character

large

object

(CLOB)

inside

DB2.

XMLFILE

VARCHAR(512)

Specifies

the

file

name

of

the

local

file

server.

If

XMLFILE

is

specified

for

the

XML

column,

then

the

XML

Extender

stores

the

XML

document

in

an

external

server

file.

The

Text

Extender

cannot

be

enabled

with

XMLFILE.

You

must

ensure

integrity

between

the

file

content,

DB2,

and

the

side

table

created

for

indexing.

Where

varchar_len

and

clob_len

are

specific

to

the

operating

system.

For

XML

Extender

on

DB2

UDB,

varchar_len

=

3K

and

clob_len

=

2G.

To

change

the

size

of

an

XMLVARCHAR

or

XMLCLOB

UDT,

create

the

UDT

before

you

enable

the

database

for

XML

Extender.

Procedure:

To

change

the

size

of

an

XMLVARCHAR

or

XMLCLOB

UDT

of

an

enabled

database:

©

Copyright

IBM

Corp.

1999,

2004

135

|
|

|
|

1.

Back

up

all

data

in

the

XML

Extender-enabled

database.

2.

Drop

all

XML

collection

tables

or

XML

column

side

tables.

3.

Disable

the

database

with

the

dxxadm

disable_servercommand.

4.

Create

the

XMLVARCHAR

or

XMLCLOB

user-defined

type.

5.

Enable

the

database

with

the

dxxadm

enable_servercommand.

6.

Re-create

and

reload

the

tables.

These

UDTs

are

used

only

to

specify

the

types

of

application

columns;

they

do

not

apply

to

the

side

tables

that

the

XML

Extender

creates.

Related

concepts:

v

“XML

columns

as

a

storage

and

access

method”

on

page

73

v

“XML

collections

as

a

storage

and

access

method”

on

page

91

v

“Preparing

to

administer

XML

Extender”

on

page

37

v

“Mapping

schemes

for

XML

collections”

on

page

105

136

XML

Extender

Administration

and

Programming

|

|

|

|

|

|

Chapter

8.

XML

Extender

user-defined

functions

A

user–defined

function

(UDF)

is

a

function

that

is

defined

to

the

database

management

system

and

can

be

referenced

in

SQL

statements.

This

chapter

describes

user-defined

functions

that

are

used

by

DB2

UDB

XML

Extender.

Types

of

XML

Extender

user-defined

functions

The

XML

Extender

provides

functions

for

storing,

retrieving,

searching,

and

updating

XML

documents,

and

for

extracting

XML

elements

or

attributes.

You

use

XML

user-defined

functions

(UDFs)

for

XML

columns,

but

not

for

XML

collections.

All

the

UDFs

have

the

schema

name

DB2XML.

The

types

of

XML

Extender

functions

are

described

in

the

following

list:

storage

functions

Storage

functions

insert

intact

XML

documents

in

XML-enabled

columns

as

XML

data

types.

retrieval

functions

Retrieval

functions

retrieve

XML

documents

from

XML

columns

in

a

DB2®

database.

extracting

functions

Extracting

functions

extract

and

convert

the

element

content

or

attribute

value

from

an

XML

document

to

the

data

type

that

is

specified

by

the

function

name.

The

XML

Extender

provides

a

set

of

extracting

functions

for

various

SQL

data

types.

update

function

The

Update

function

modifies

an

entire

XML

document

or

specified

element

content

or

attribute

values

and

returns

a

copy

of

an

XML

document

with

an

updated

value,

which

is

specified

by

the

location

path.

generate_unique

function

The

generate_unique

function

returns

a

unique

key.

Validation

functions

Validation

functions

validate

XML

documents

against

either

an

XML

schema

or

a

DTD.

The

XML

user-defined

functions

allow

you

to

perform

searches

on

general

SQL

data

types.

Additionally,

you

can

use

the

DB2

UDB

Text

Extender

for

OS/390®

with

XML

Extender

to

perform

structural

and

full

text

searches

on

text

in

XML

documents.

This

search

capability

can

be

used,

for

example,

to

improve

the

usability

of

a

Web

site

that

publishes

large

amounts

of

readable

text,

such

as

newspaper

articles

or

Electronic

Data

Interchange

(EDI)

applications,

which

have

frequently

searchable

elements

or

attributes.

Restriction:

When

using

parameter

markers

in

UDFs,

a

Java™

database

(JDBC)

restriction

requires

that

the

parameter

marker

for

the

UDF

must

be

cast

to

the

data

type

of

the

column

into

which

the

returned

data

will

be

inserted.

©

Copyright

IBM

Corp.

1999,

2004

137

Storage

functions

Storage

functions

in

XML

Extender

overview

Use

storage

functions

to

insert

XML

documents

into

a

DB2

UDB

database.

You

can

use

the

default

casting

functions

of

a

UDT

directly

in

INSERT

or

SELECT

statements.

Additionally,

XML

Extender

provides

UDFs

to

take

XML

documents

from

sources

other

than

the

UDT

base

data

type

and

convert

them

to

the

specified

UDT.

XMLCLOBFromFile()

function

Purpose:

Reads

an

XML

document

from

a

server

file

and

returns

the

document

as

an

XMLCLOB

type.

Syntax:

��

XMLCLOBFromFile

(

fileName

,

src_encoding

)

��

Parameters:

Table

26.

XMLCLOBFromFile

parameter

Parameter

Data

type

Description

fileName

VARCHAR(512)

The

fully

qualified

server

file

name.

src_encoding

VARCHAR(100)

The

encoding

of

the

source

file.

Results:

XMLCLOB

as

LOCATOR

Example:

The

following

example

reads

an

XML

document

from

a

file

on

a

server

and

inserts

it

into

an

XML

column

as

an

XMLCLOB

type.

The

encoding

of

the

server

file

is

explicitly

specified

as

iso-8859-1.

EXEC

SQL

INSERT

INTO

sales_tab(ID,

NAME,

ORDER)

VALUES(’1234’,

’Sriram

Srinivasan’,

XMLCLOBFromFile(’dxx_install/samples/db2xml

/xml/getstart.xml

’,

’iso-8859-1’))

where

dxx_install

is

the

directory

where

XML

Extender

is

installed.

The

column

ORDER

in

the

SALES_TAB

table

is

defined

as

an

XMLCLOB

type.

XMLFileFromCLOB()

function

Purpose:

Reads

an

XML

document

as

CLOB

locator,

writes

it

to

an

external

server

file,

and

returns

the

file

name

and

path

as

an

XMLFILE

type.

Syntax:

138

XML

Extender

Administration

and

Programming

|

|
|

|

|||||||||||||||||||||

|
|

||

|||

|||
|

|||
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|

|

|
|

|

��

XMLFileFromCLOB

(

buffer

,

fileName

,

targetencoding

)

��

Parameters:

Table

27.

XMLFileFromCLOB()

parameters

Parameters

Data

type

Description

buffer

CLOB

as

LOCATOR

The

buffer

containing

the

XML

document.

fileName

VARCHAR(512)

The

fully

qualified

server

file

name.

targetencoding

VARCHAR(100)

The

encoding

of

the

output

file.

Results:

XMLFILE

Example:

The

following

example

reads

an

XML

document

as

CLOB

locator

(a

host

variable

with

a

value

that

represents

a

single

LOB

value

in

the

database

server),

writes

it

to

an

external

server

file,

and

inserts

the

file

name

and

path

as

an

XMLFILE

type

in

an

XML

column.

The

function

will

encode

the

output

file

in

ibm-808.

EXEC

SQL

BEGIN

DECLARE

SECTION;

SQL

TYPE

IS

CLOB_LOCATOR

xml_buff;

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

INSERT

INTO

sales_tab(ID,

NAME,

ORDER)

VALUES(’1234’,

’Sriram

Srinivasan’,

XMLFileFromCLOB(:xml_buf,

’dxx_install/samples/db2xml

/xml/getstart.xml’,

’ibm-808’))

where

dxx_install

is

the

directory

where

XML

Extender

is

installed.

The

column

ORDER

in

the

SALES_TAB

table

is

defined

as

an

XMLFILE

type.

If

you

have

an

XML

document

in

your

buffer,

you

can

store

it

in

a

server

file.

XMLFileFromVarchar()

function

Purpose:

Reads

an

XML

document

from

memory

as

VARCHAR,

writes

it

to

an

external

server

file,

and

returns

the

file

name

and

path

as

an

XMLFILE

type.

Syntax:

��

XMLFileFromVarchar

(

buffer

,

fileName

,

)

targetencoding

��

Parameters:

Table

28.

XMLFileFromVarchar

parameters

Parameter

Data

type

Description

buffer

VARCHAR(3K)

The

buffer

containing

the

XML

document.

Chapter

8.

XML

Extender

user-defined

functions

139

|||||||||||||||||||||||||

|
|

||

|||

|||
|

|||
|

|||
|
|
|

|

|

|
|
|
|

|
|
|
|
|
|
|
|

|

|
|

|

|
|

|

||||||||||||||||||||||||

|
|

||

|||

|||
|

Table

28.

XMLFileFromVarchar

parameters

(continued)

Parameter

Data

type

Description

fileName

VARCHAR(512)

The

fully

qualified

server

file

name.

targetencoding

VARCHAR(100)

The

encoding

of

the

output

file.

Results:

XMLFILE

Example:

The

following

examples

reads

an

XML

document

from

memory

as

VARCHAR,

writes

it

to

an

external

server

file,

and

inserts

the

file

name

and

path

as

an

XMLFILE

type

in

an

XML

column.

The

function

will

encode

the

output

file

in

iso-8859-1.

EXEC

SQL

BEGIN

DECLARE

SECTION;

struct

{

short

len;

char

data[3000];

}

xml_buff;

EXEC

SQL

END

DECLARE

SECTION;

EXEC

SQL

INSERT

INTO

sales_tab(ID,

NAME,

ORDER)

VALUES(’1234’,

’Sriram

Srinivasan’,

XMLFileFromVarchar(:xml_buf,

’dxx_install/samples/db2xml

/xml/getstart.xml’,

’iso-8859-1’))

where

dxx_install

is

the

directory

where

XML

Extender

is

installed.

The

column

ORDER

in

the

SALES_TAB

table

is

defined

as

an

XMLFILE

type.

XMLVarcharFromFile()

function

Purpose:

Reads

an

XML

document

from

a

server

file

and

returns

the

document

as

an

XMLVARCHAR

type.

Syntax:

��

XMLVarcharFromFile

(

fileName

,

src_encoding

)

��

Parameters:

Table

29.

XMLVarcharFromFile

parameter

Parameter

Data

type

Description

fileName

VARCHAR(512)

The

fully

qualified

server

file

name.

src_encoding

VARCHAR(100)

The

encoding

of

the

source

file.

Results:

XMLVARCHAR

Example:

140

XML

Extender

Administration

and

Programming

|

|||

|||
|

|||
|
|
|

|

|

|
|
|
|

|
|
|
|
|
|
|
|

|

|

|

|
|

|

|||||||||||||||||||||

|
|

||

|||

|||
|

|||
|
|
|

|

|

The

following

example

reads

an

XML

document

from

a

server

file

and

inserts

it

into

an

XML

column

as

an

XMLVARCHAR

type.

The

encoding

of

the

server

file

is

explicitly

specified

as

ibm-808.

EXEC

SQL

INSERT

INTO

sales_tab(ID,

NAME,

ORDER)

VALUES(’1234’,

’Sriram

Srinivasan’,

XMLVarcharFromFile(’dxx_install/samples/db2xml

/xml/getstart.xml’,

’ibm-808’))

where

dxx_install

is

the

directory

where

XML

Extender

is

installed.

In

this

example,

a

record

is

inserted

into

the

SALES_TAB

table.

The

function

XMLVarcharFromFile()

imports

the

XML

document

from

a

file

that

is

explicitly

specified

to

be

encoded

in

ibm-808

into

DB2

UDB

and

stores

it

as

a

XMLVARCHAR.

Retrieval

functions

Retrieval

functions

in

XML

Extender

The

XML

Extender

provides

an

overloaded

function

Content(),

which

is

used

for

retrieval.

This

overloaded

function

refers

to

a

set

of

retrieval

functions

that

have

the

same

name,

but

behave

differently

based

on

where

the

data

is

being

retrieved.

You

can

also

use

the

default

casting

functions

to

convert

an

XML

UDT

to

the

base

data

type.

The

Content()

functions

provide

the

following

types

of

retrieval:

v

Retrieval

from

external

storage

at

the

server

to

a

host

variable

at

the

client.

You

can

use

Content()

to

retrieve

an

XML

document

to

a

memory

buffer

when

it

is

stored

as

an

external

server

file.

You

can

use

Content():

retrieve

from

XMLFILE

to

a

CLOB

for

this

purpose.

v

Retrieval

from

internal

storage

to

an

external

server

file

You

can

also

use

Content()

to

retrieve

an

XML

document

that

is

stored

inside

DB2

UDB

and

store

it

to

a

server

file

on

the

DB2

UDB

server’s

file

system.

The

following

Content()

functions

are

used

to

store

information

on

external

server

files:

–

Content():

retrieve

from

XMLVARCHAR

to

an

external

server

file

–

Content():

retrieval

from

XMLCLOB

to

an

external

server

file

The

following

user-defined

functions

have

a

new

parameter

that

specifies

the

encoding

of

the

source

or

output

file.

The

value

of

this

parameter

is

any

code

page

name

that

is

recognized

by

ICU.

db2xml.XMLVarcharFromFile(filename

varchar(512),

src_encoding

varchar(100))

returns

XMLVarchar

db2xml.XMLCLOBFromFile(filename

varchar(512),

src_encoding

varchar(100))

returns

XMLCLOB

AS

LOCATOR

db2xml.XMLFileFromVarchar(doc

varchar(3000),

targetfilename

varchar(512),

targetencoding

varchar(100))

returns

XMLFile

db2xml.XMLFileFromCLOB(doc

CLOB(2G)

as

LOCATOR,

targetfilename

varchar(512),

targetencoding

varchar(100))

returns

XMLFile

db2xml.Content(doc

XMLVarchar,

targetfilename

varchar(512),

Chapter

8.

XML

Extender

user-defined

functions

141

|
|
|

|
|
|
|

|

|
|
|
|

targetencoding

varchar(100))

returns

varchar(512)

db2xml.Content(doc

XMLCLOB

as

LOCATOR,

targetfilename

varchar(512),

targetencoding

varchar(100))

returns

varchar(512)

Examples:

To

import

the

contents

of

a

file

/home/collins/xml/entail.xml

into

a

varchar

buffer

and

to

specify

that

the

source

file

is

encoded

in

iso-8859-1:

db2xml.XMLVarcharFromFile(’/home/collins/xml/entail.xml’,

’iso-8859-1’)

The

file

is

imported

into

a

varchar

and

converted

from

iso-8859-1

to

the

database

code

page.

To

export

a

varchar

buffer

into

a

file

/home/raskolnikov/xml/confession.xml

and

to

specify

that

the

output

file

should

be

encoded

in

ibm-808:

db2xml.Content(’<sequence><thought>I

did

it!</thought></sequence>’,

’/home/raskolnikov/xml/confession.xml’,

’ibm-808’)

The

contents

of

the

buffer

are

exported

to

a

file

and

converted

from

the

database

code

page

to

ibm-808.

The

encoding

declaration

of

the

XML

file

is

then

updated

appropriately.

The

examples

in

the

following

section

assume

you

are

using

the

DB2

UDB

command

shell,

in

which

you

do

not

need

to

type

“DB2”

at

the

beginning

of

each

command.

Content():

retrieve

from

XMLFILE

to

a

CLOB

Purpose:

Retrieves

data

from

a

server

file

and

stores

it

in

a

CLOB

LOCATOR.

Syntax:

��

Content

(

xmlobj

)

��

Parameters:

Table

30.

XMLFILE

to

a

CLOB

parameter

Parameter

Data

type

Description

xmlobj

XMLFILE

The

XML

document.

Results:

CLOB

(clob_len)

as

LOCATOR

clob_len

for

DB2

UDB

is

2G.

Example:

The

following

example

retrieves

data

from

a

server

file

and

stores

it

in

a

CLOB

locator.

142

XML

Extender

Administration

and

Programming

char

subsystem[20];

long

retcode

=

0,

reason

=

0;

extern

"OS"

{

int

DSNALI(char

*

functn,

...);

}

extern

"OS"

short

DSNTIAR(struct

sqlca

*sqlca,

error_struct

*error_message,

long

*data_len);

EXEC

SQL

BEGIN

DECLARE

SECTION;

SQL

TYPE

IS

CLOB_LOCATOR

xml_buff;

EXEC

SQL

END

DECLARE

SECTION;

/*

Attach

to

subsystem

*/

rc

=

DSNALI("OPEN

",

subsystem,

"PLANNAME",

&retcode,

&reason);

if

(

retcode

!=

0

)

{

/*

print

error

message

*/

goto

exit;

}

EXEC

SQL

DECLARE

cl

CURSOR

FOR

SELECT

Content(order)

from

sales_tab

WHERE

sales_person

=

’Sriram

Srinivasan’

EXEC

SQL

OPEN

c1;

do

{

EXEC

SQL

FETCH

c1

INTO

:xml_buff;

if

(SQLCODE

!=

0)

{

break;

}

else

{

/*

do

with

the

XML

doc

in

buffer

*/

}

}

EXEC

SQL

CLOSE

c1;

/*

Detach

from

sybsystem

*/

DSNALI("CLOSE

",

"SYNC",

&retcode,

&reason);

if

(

retcode

!=

0

)

{

/*

print

error

message

*/

}

The

column

ORDER

in

the

SALES_TAB

table

is

of

an

XMLFILE

type,

so

the

Content()

UDF

retrieves

data

from

a

server

file

and

stores

it

in

a

CLOB

locator.

Related

tasks:

v

“Updating,

deleting,

and

retrieving

data

in

XML

collections”

on

page

101

Content():

retrieve

from

XMLVARCHAR

to

an

external

server

file

Purpose:

Retrieves

the

XML

content

that

is

stored

as

an

XMLVARCHAR

type

and

stores

it

in

an

external

server

file.

Syntax:

Chapter

8.

XML

Extender

user-defined

functions

143

|

|
|

|

|

��

Content

(

xmlobj

,

filename

,

targetencoding

)

��

Important:

If

a

file

with

the

specified

name

already

exists,

the

content

function

overrides

its

content.

Parameters:

Table

31.

XMLVarchar

to

external

server

file

parameters

Parameter

Data

type

Description

xmlobj

XMLVARCHAR

The

XML

document.

filename

VARCHAR(512)

The

fully

qualified

server

file

name.

targetencoding

VARCHAR(100)

The

encoding

of

the

output

file.

Results:

VARCHAR(512)

Example:

The

following

example

retrieves

the

XML

content

that

is

stored

as

XMLVARCHAR

type

and

stores

it

in

an

external

file

located

on

the

server.

The

UDF

encodes

the

file

in

’ibm-808’.

CREATE

table

app1

(id

int

NOT

NULL,

order

DB2XML.XMLVarchar);

INSERT

into

app1

values

(1,

’<?xml

version="1.0"?>

<!DOCTYPE

SYSTEM

"dxx_install/samples/db2xml/dtd/getstart.dtd"->

<Order

key="1">

<Customer>

<Name>American

Motors</Name>

<Email>parts@am.com</Email>

</Customer>

<Part

color="black">

<key>68</key>

<Quantity>36</Quantity>

<ExtendedPrice>34850.16</ExtendedPrice>

<Tax>6.000000e-02</Tax>

<Shipment>

<ShipDate>1998-08-19</ShipDate>

<ShipMode>AIR

</ShipMode>

</Shipment>

<Shipment>

<ShipDate>1998-08-19</ShipDate>

<ShipMode>BOAT

</ShipMode>

</Shipment>

</Part>

</Order>’);

SELECT

DB2XML.Content(order,

’dxx_install/samples/dad/getstart_column.dad’

,

’ibm-808’)

from

app1

where

ID=1;

Related

tasks:

v

“Method

for

retrieving

an

XML

document”

on

page

78

144

XML

Extender

Administration

and

Programming

|||||||||||||||||||||||||

|

|
|

|

||

|||

|||

|||
|

|||
|
|

|

|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

Related

reference:

v

“Retrieval

functions

in

XML

Extender”

on

page

141

Content():

retrieval

from

XMLCLOB

to

an

external

server

file

Purpose:

Retrieves

the

XML

content

that

is

stored

as

an

XMLCLOB

type

and

stores

it

in

an

external

server

file.

Syntax:

��

Content

(

xmlobj

,

filename

,

targetencoding

)

��

Important:

If

a

file

with

the

specified

name

already

exists,

the

content

function

overrides

its

content.

Parameters:

Table

32.

XMLCLOB

to

external

server

file

parameters

Parameter

Data

type

Description

xmlobj

XMLCLOB

as

LOCATOR

The

XML

document.

filename

VARCHAR(512)

The

fully

qualified

server

file

name.

targetencoding

VARCHAR(100)

The

encoding

of

the

output

file.

Results:

VARCHAR(512)

Example:

The

following

example

retrieves

the

XML

content

that

is

stored

as

an

XMLCLOB

type

and

stores

it

in

an

external

file

located

on

the

server.

The

UDF

encodes

the

file

in

’ibm-808’.

CREATE

table

app1

(id

int

NOT

NULL,

order

DB2XML.XMLCLOB

not

logged);

INSERT

into

app1

values

(1,

’<?xml

version="1.0"?>

<!DOCTYPE

SYSTEM

"dxx_install/samples/db2xml/dtd/getstart.dtd"

->

<Order

key="1">

<Customer>

<Name>American

Motors</Name>

<Email>parts@am.com</Email>

</Customer>

<Part

color="black">

<key>68</key>

<Quantity>36</Quantity>

<ExtendedPrice>34850.16</ExtendedPrice>

<Tax>6.000000e-02</Tax>

<Shipment>

<ShipDate>1998-08-19</ShipDate>

<ShipMode>AIR

</ShipMode>

</Shipment>

Chapter

8.

XML

Extender

user-defined

functions

145

|

|

|

|
|

|

|||||||||||||||||||||||||

|

|
|

|

||

|||

|||

|||
|

|||
|
|

|

|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

<Shipment>

<ShipDate>1998-08-19</ShipDate>

<ShipMode>BOAT

</ShipMode>

</Shipment>

</Part>

</Order>’);

SELECT

DB2XML.Content(order,

’dxx_install/samples/db2xml/xml/getstart.xml’,

’ibm-808’)

from

app1

where

ID=1;

Extraction

functions

Extracting

functions

in

XML

Extender

The

extracting

functions

extract

the

element

content

or

attribute

value

from

an

XML

document

and

return

the

requested

SQL

data

types.

The

XML

Extender

provides

a

set

of

extracting

functions

for

various

SQL

data

types.

The

extracting

functions

take

two

input

parameters.

The

first

parameter

is

the

XML

Extender

UDT,

which

can

be

one

of

the

XML

UDTs.

The

second

parameter

is

the

location

path

that

specifies

the

XML

element

or

attribute.

Each

extracting

function

returns

the

value

or

content

that

is

specified

by

the

location

path.

Because

some

element

or

attribute

values

have

multiple

occurrence,

the

extracting

functions

return

either

a

scalar

or

a

table

value;

the

former

is

called

a

scalar

function,

the

latter

is

called

a

table

function.

extractInteger()

and

extractIntegers()

Purpose:

Extracts

the

element

content

or

attribute

value

from

an

XML

document

and

returns

the

data

as

INTEGER

type.

Syntax:

Scalar

function:

��

extractInteger

(

xmlobj

,

path

)

��

Table

function:

��

extractIntegers

(

xmlobj

,

path

)

��

Parameters:

Table

33.

extractInteger

and

extractIntegers

function

parameters

Parameter

Data

type

Description

xmlobj

XMLVARCHAR,

XMLFILE,

or

XMLCLOB

The

column

name.

path

VARCHAR

The

location

path

of

the

element

or

attribute.

Returned

type:

INTEGER

146

XML

Extender

Administration

and

Programming

|
|
|
|
|
|
|
|
|
|

|

Return

codes:

returnedInteger

Examples:

Scalar

function

example:

In

the

following

example,

one

value

is

returned

when

the

attribute

value

of

key

=

″1″.

The

value

is

extracted

as

an

INTEGER.

CREATE

TABLE

t1(key

INT);

INSERT

INTO

t1

values

(

DB2XML.extractInteger(DB2XML.XMLFile(’/samples/db2xml

/xml/getstart.xml

’),

’/Order/Part[@color="black

"]/key’));

SELECT

*

from

t1;

Table

function

example:

In

the

following

example,

each

order

key

for

the

sales

orders

is

extracted

as

INTEGER.

The

examples

assume

that

you

are

using

the

DB2

UDB

command

shell,

in

which

you

do

not

need

to

type

“DB2”

at

the

beginning

of

each

command.

SELECT

*

FROM

TABLE(

DB2XML.extractIntegers(DB2XML.XMLFile(’/samples/db2xml/xml/getstart.xml’),

’/Order/Part/key’))

AS

X;

Related

concepts:

v

“UDTs

and

UDF

names

for

XML

Extender”

on

page

119

v

“Types

of

XML

Extender

user-defined

functions”

on

page

137

Related

reference:

v

“Extracting

functions

in

XML

Extender”

on

page

146

extractSmallint()

and

extractSmallints()

Purpose:

Extracts

the

element

content

or

attribute

value

from

an

XML

document

and

returns

the

data

as

SMALLINT

type.

Syntax:

Scalar

function:

��

extractSmallint

(

xmlobj

,

path

)

��

Table

function:

��

extractSmallints

(

xmlobj

,

path

)

��

Parameters:

Chapter

8.

XML

Extender

user-defined

functions

147

Table

34.

extractSmallint

and

extractSmallints

function

parameters

Parameter

Data

type

Description

xmlobj

XMLVARCHAR,

XMLFILE,

or

XMLCLOB

The

column

name.

path

VARCHAR

The

location

path

of

the

element

or

attribute.

Returned

type:

SMALLINT

Return

codes:

returnedSmallint

Examples:

Scalar

function

example:

In

the

following

example,

the

value

of

key

in

all

sales

orders

is

extracted

as

SMALLINT.

The

examples

assume

that

you

are

using

the

DB2

UDB

command

shell,

in

which

you

do

not

need

to

type

“DB2”

at

the

beginning

of

each

command.

CREATE

TABLE

t1(key

INT);

INSERT

INTO

t1

values

(

DB2XML.extractSmallint(db2xml.xmlfile(’dxx_install

/samples/db2xml/xml/getstart.xml’),

’/Order/Part[@color="black

"]/key’));

SELECT

*

from

t1;

Table

function

example:

In

the

following

example,

the

value

of

key

in

all

sales

orders

is

extracted

as

SMALLINT.

The

examples

assume

that

you

are

using

the

DB2

UDB

command

shell,

in

which

you

do

not

need

to

type

“DB2”

at

the

beginning

of

each

command.

SELECT

*

FROM

TABLE(

DB2XML.extractSmallints(DB2XML.XMLFile(’dxx_install

/samples/db2xml/xml/getstart.xml’),

’/Order/Part/key’))

AS

X;

Related

concepts:

v

“Using

indexes

for

XML

column

data”

on

page

75

v

“UDTs

and

UDF

names

for

XML

Extender”

on

page

119

v

“Types

of

XML

Extender

user-defined

functions”

on

page

137

Related

reference:

v

“Extracting

functions

in

XML

Extender”

on

page

146

v

“XML

Extenders

stored

procedure

return

codes”

on

page

273

extractDouble()

and

extractDoubles()

Purpose:

Extracts

the

element

content

or

attribute

value

from

an

XML

document

and

returns

the

data

as

DOUBLE

type.

Syntax:

148

XML

Extender

Administration

and

Programming

|
|
|
|
|
|

Scalar

function:

��

extractDouble

(

xmlobj

,

path

)

��

Table

function:

��

extractDoubles

(

xmlobj

,

path

)

��

Parameters:

Table

35.

extractDouble

and

extractDoubles

function

parameters

Parameter

Data

type

Description

xmlobj

XMLVARCHAR,

XMLFILE,

or

XMLCLOB

The

column

name.

path

VARCHAR

The

location

path

of

the

element

or

attribute.

Returned

Type:

DOUBLE

Return

Codes:

returnedDouble

Examples:

Scalar

function

example:

The

following

example

automatically

converts

the

price

in

an

order

from

a

DOUBLE

type

to

a

DECIMAL.

The

examples

assume

that

you

are

using

the

DB2

command

shell,

in

which

you

do

not

need

to

type

“DB2”

at

the

beginning

of

each

command.

CREATE

TABLE

t1(price

DECIMAL(9,2));

INSERT

INTO

t1

values

(

DB2XML.extractDouble(DB2XML.xmlfile(’dxx_install

/samples/db2xml/xml/getstart.xml’),

’/Order/Part[@color="black

"]/ExtendedPrice’));

SELECT

*

from

t1;

Table

function

example:

In

the

following

example,

the

value

of

ExtendedPrice

in

each

part

of

the

sales

order

is

extracted

as

DOUBLE.

The

examples

assume

that

you

are

using

the

DB2

UDB

command

shell,

in

which

you

do

not

need

to

type

DB2

UDB

at

the

beginning

of

each

command.

SELECT

CAST(RETURNEDDOUBLE

AS

DOUBLE)

FROM

TABLE(

DB2XML.extractDoubles(DB2XML.XMLFile(’dxx_install

/samples/db2xml/xml/getstart.xml’),

’/Order/Part/ExtendedPrice’))

AS

X;

Related

concepts:

v

“UDTs

and

UDF

names

for

XML

Extender”

on

page

119

Related

reference:

v

“Extracting

functions

in

XML

Extender”

on

page

146

extractReal()

and

extractReals()

Purpose:

Chapter

8.

XML

Extender

user-defined

functions

149

Extracts

the

element

content

or

attribute

value

from

an

XML

document

and

returns

the

data

as

REAL

type.

Syntax:

Scalar

function:

��

extractReal

(

xmlobj

,

path

)

��

Table

function:

��

extractReals

(

xmlobj

,

path

)

��

Parameters:

Table

36.

extractReal

and

extractReals

function

parameters

Parameter

Data

type

Description

xmlobj

XMLVARCHAR,

XMLFILE,

or

XMLCLOB

The

column

name.

path

VARCHAR

The

location

path

of

the

element

or

attribute.

Returned

type:

REAL

Return

codes:

returnedReal

Examples:

Scalar

function

example:

In

the

following

example,

the

value

of

ExtendedPrice

is

extracted

as

a

REAL.

The

examples

assume

that

you

are

using

the

DB2

UDB

command

shell,

in

which

you

do

not

need

to

type

“DB2”

at

the

beginning

of

each

command.

CREATE

TABLE

t1(price

DECIMAL(9,2));

INSERT

INTO

t1

values

(

DB2XML.extractReal(DB2XML.xmlfile(’dxx_install

/samples/db2xml/xml/getstart.xml’),

’/Order/Part[@color="black"]/ExtendedPrice’));

SELECT

*

from

t1;

Table

function

example:

In

the

following

example,

the

value

of

ExtendedPrice

is

extracted

as

a

REAL.

The

examples

assume

that

you

are

using

the

DB2

UDB

command

shell,

in

which

you

do

not

need

to

type

“DB2”

at

the

beginning

of

each

command.

SELECT

CAST(RETURNEDREAL

AS

REAL)

FROM

TABLE(

DB2XML.extractReals(DB2XML.XMLFile(’dxx_install

/samples/db2xml/xml/getstart.xml’),

’/Order/Part/ExtendedPrice’))

AS

X;

Related

concepts:

v

“UDTs

and

UDF

names

for

XML

Extender”

on

page

119

v

“Types

of

XML

Extender

user-defined

functions”

on

page

137

Related

reference:

150

XML

Extender

Administration

and

Programming

v

“Extracting

functions

in

XML

Extender”

on

page

146

v

“XML

Extender

UDF

return

codes”

on

page

273

extractChar()

and

extractChars()

Purpose:

Extracts

the

element

content

or

attribute

value

from

an

XML

document

and

returns

the

data

as

CHAR

type.

Syntax:

Scalar

function:

��

extractChar

(

xmlobj

,

path

)

��

Table

function:

��

extractChars

(

xmlobj

,

path

)

��

Parameters:

Table

37.

extractChar

and

extractChars

function

parameters

Parameter

Data

type

Description

xmlobj

XMLVARCHAR,

XMLFILE,

or

XMLCLOB

The

column

name.

path

VARCHAR

The

location

path

of

the

element

or

attribute.

Returned

type:

CHAR

Return

codes:

returnedChar

Examples:

Scalar

function

example:

In

the

following

example,

the

value

of

Name

is

extracted

as

CHAR.

The

examples

assume

that

you

are

using

the

DB2

UDB

command

shell,

in

which

you

do

not

need

to

type

“DB2”

at

the

beginning

of

each

command.

CREATE

TABLE

t1(name

char(30));

INSERT

INTO

t1

values

(

DB2XML.extractChar(DB2XML.xmlfile(’dxx_install

/samples/db2xml/xml/getstart.xml’),

’/Order/Customer/Name’));

SELECT

*

from

t1;

Table

function

example:

In

the

following

example,

the

value

of

Color

is

extracted

as

CHAR.

The

examples

assume

that

you

are

using

the

DB2

UDB

command

shell,

in

which

you

do

not

need

to

type

“DB2”

at

the

beginning

of

each

command.

Chapter

8.

XML

Extender

user-defined

functions

151

SELECT

*

FROM

TABLE(

DB2XML.extractChars(DB2XML.XMLFile(’dxx_install

/samples/db2xml/xml/getstart.xml’),

’/Order/Part/@color’))

AS

X;

Related

reference:

v

“Extracting

functions

in

XML

Extender”

on

page

146

v

“How

to

read

syntax

diagrams”

on

page

x

extractVarchar()

and

extractVarchars()

Purpose:

Extracts

the

element

content

or

attribute

value

from

an

XML

document

and

returns

the

data

as

VARCHAR

type.

Syntax:

Scalar

function:

��

extractVarchar

(

xmlobj

,

path

)

��

Table

function:

��

extractVarchars

(

xmlobj

,

path

)

��

Parameters:

Table

38.

extractVarchar

and

extractVarchars

function

parameters

Parameter

Data

type

Description

xmlobj

XMLVARCHAR,

XMLFILE,

or

XMLCLOB

The

column

name.

path

VARCHAR

The

location

path

of

the

element

or

attribute.

Returned

type:

VARCHAR(4K)

Return

codes:

returnedVarchar

Examples:

Scalar

function

example:

In

a

database

with

more

than

1000

XML

documents

that

are

stored

in

the

column

ORDER

in

the

SALES_TAB

table,

you

might

want

to

find

all

the

customers

who

have

ordered

items

that

have

an

ExtendedPrice

greater

than

2500.00.

The

following

SQL

statement

uses

the

extracting

UDF

in

the

SELECT

clause:

SELECT

extractVarchar(Order,

’/Order/Customer/Name’)

from

sales_order_view

WHERE

price

>

2500.00

The

examples

assume

that

you

are

using

the

DB2

UDB

command

shell,

in

which

you

do

not

need

to

type

“DB2”

at

the

beginning

of

each

command.

The

UDF

extractVarchar()

takes

the

column

ORDER

as

the

input

and

the

location

path

/Order/Customer/Name

as

the

select

identifier.

The

UDF

returns

the

names

of

the

152

XML

Extender

Administration

and

Programming

customers.

With

the

WHERE

clause,

the

extracting

function

evaluates

only

those

orders

with

an

ExtendedPrice

greater

than

2500.00.

Table

function

example:

In

a

database

with

more

than

1000

XML

documents

that

are

stored

in

the

column

ORDER

in

the

SALES_TAB

table,

you

might

want

to

find

all

the

customers

who

have

ordered

items

that

have

an

ExtendedPrice

greater

than

2500.00.

The

following

SQL

statement

uses

the

extracting

UDF

in

the

SELECT

clause:

SELECT

extractVarchar(Order,

’/Order/Customer/Name’)

from

sales_order_view

WHERE

price

>

2500.00

The

examples

assume

that

you

are

using

the

DB2

UDB

command

shell,

in

which

you

do

not

need

to

type

“DB2”

at

the

beginning

of

each

command.

The

UDF

extractVarchar()

takes

the

column

ORDER

as

the

input

and

the

location

path

/Order/Customer/Name

as

the

select

identifier.

The

UDF

returns

the

names

of

the

customers.

With

the

WHERE

clause,

the

extracting

function

evaluates

only

those

orders

with

an

ExtendedPrice

greater

than

2500.00.

Scalar

function

example:

In

the

following

example,

the

value

of

Name

is

extracted

as

VARCHAR.

The

examples

assume

that

you

are

using

the

DB2

UDB

command

shell,

in

which

you

do

not

need

to

type

“DB2”

at

the

beginning

of

each

command.

CREATE

TABLE

t1(name

varchar(30));

INSERT

INTO

t1

values

(

DB2XML.extractVarchar(DB2XML.xmlfile(’dxx_install

/samples/db2xml/xml/getstart.xml’),

’/Order/Customer/Name’));

SELECT

*

from

t1;

Table

function

example:

In

the

following

example,

the

value

of

Color

is

extracted

as

VARCHAR.

The

examples

assume

that

you

are

using

the

DB2

UDB

command

shell,

in

which

you

do

not

need

to

type

“DB2”

at

the

beginning

of

each

command.

SELECT*

FROM

TABLE(

DB2XML.extractVarchars(DB2XML.XMLFile(’dxx_install

/samples/xml/getstart.xml’),

’/Order/Part/@color’))

AS

X;

Related

concepts:

v

“UDTs

and

UDF

names

for

XML

Extender”

on

page

119

v

“Types

of

XML

Extender

user-defined

functions”

on

page

137

Related

reference:

v

“Extracting

functions

in

XML

Extender”

on

page

146

v

“XML

Extender

UDF

return

codes”

on

page

273

extractCLOB()

and

extractCLOBs()

Purpose:

Extracts

a

fragment

of

XML

documents,

with

element

and

attribute

markup

and

content

of

elements

and

attributes,

including

sub-elements.

This

function

differs

Chapter

8.

XML

Extender

user-defined

functions

153

from

the

other

extract

functions,

which

return

only

the

content

of

elements

and

attributes.

The

extractClob(s)

functions

are

used

to

extract

document

fragments,

whereas

extractVarchar(s)

and

extractChar(s)

are

used

to

extract

simple

values.

Syntax:

Scalar

function:

��

extractCLOB

(

xmlobj

,

path

)

��

Table

function:

��

extractCLOBs

(

xmlobj

,

path

)

��

Parameters:

Table

39.

extractCLOB

and

extractCLOBs

function

parameters

Parameter

Data

type

Description

xmlobj

XMLVARCHAR,

XMLFILE,

or

XMLCLOB

The

column

name.

path

VARCHAR

The

location

path

of

the

element

or

attribute.

Returned

type:

CLOB(10K)

Return

codes:

returnedCLOB

Examples:

Scalar

function

example:

In

this

example,

all

name

element

content

and

tags

are

extracted

from

a

purchase

order.

The

examples

assume

that

you

are

using

the

DB2

UDB

command

shell,

in

which

you

do

not

need

to

type

“DB2”

at

the

beginning

of

each

command.

CREATE

TABLE

t1(name

DB2XML.xmlclob);

INSERT

INTO

t1

values

(

DB2XML.extractClob(DB2XML.xmlfile(’dxx_install

/samples/db2xml/xml/getstart.xml’),

’/Order/Customer/Name’));

SELECT

*

from

t1;

Table

function

example:

In

this

example,

all

of

the

color

attributes

are

extracted

from

a

purchase

order.

The

examples

assume

that

you

are

using

the

DB2

UDB

command

shell,

in

which

you

do

not

need

to

type

“DB2”

at

the

beginning

of

each

command.

SELECT

*

FROM

TABLE(

DB2XML.extractCLOBs(DB2XML.XMLFile(’dxx_install

/samples/db2xml/xml/getstart.xml’),

’/Order/Part/@color’))

AS

X;

Related

concepts:

v

“Types

of

XML

Extender

user-defined

functions”

on

page

137

Related

reference:

154

XML

Extender

Administration

and

Programming

v

“Extracting

functions

in

XML

Extender”

on

page

146

extractDate()

and

extractDates()

Purpose:

Extracts

the

element

content

or

attribute

value

from

an

XML

document

and

returns

the

data

as

DATE

type.

The

date

must

be

in

the

format:

YYYY-MM-DD.

Syntax:

Scalar

function:

��

extractDate

(

xmlobj

,

path

)

��

Table

function:

��

extractDates

(

xmlobj

,

path

)

��

Parameters:

Table

40.

extractDate

and

extractDates

function

parameters

Parameter

Data

type

Description

xmlobj

XMLVARCHAR,

XMLFILE,

or

XMLCLOB

The

column

name.

path

VARCHAR

The

location

path

of

the

element

or

attribute.

Returned

type:

DATE

Return

codes:

returnedDate

Examples:

Scalar

function

example:

In

the

following

example,

the

value

of

ShipDate

is

extracted

as

DATE.

The

examples

assume

that

you

are

using

the

DB2

UDB

command

shell,

in

which

you

do

not

need

to

type

“DB2”

at

the

beginning

of

each

command.

CREATE

TABLE

t1(shipdate

DATE);

INSERT

INTO

t1

values

(

DB2XML.extractDate(DB2XML.xmlfile(’dxx_install

/samples/db2xml/xml/getstart.xml’),

’/Order/Part[@color="red

"]/Shipment/ShipDate’));

SELECT

*

from

t1;

Table

function

example:

In

the

following

example,

the

value

of

ShipDate

is

extracted

as

DATE.

SELECT

*

FROM

TABLE(

DB2XML.extractDates(DB2XML.XMLFile(’dxx_install

/samples/db2xml/xml/getstart.xml’),

’/Order/Part[@color="black

"]/Shipment/ShipDate’))

AS

X;

Related

concepts:

Chapter

8.

XML

Extender

user-defined

functions

155

v

“Types

of

XML

Extender

user-defined

functions”

on

page

137

Related

reference:

v

“Extracting

functions

in

XML

Extender”

on

page

146

v

“XML

Extender

UDF

return

codes”

on

page

273

extractTime()

and

extractTimes()

Purpose:

Extracts

the

element

content

or

attribute

value

from

an

XML

document

and

returns

the

data

as

TIME

type.

Syntax:

Scalar

function:

��

extractTime

(

xmlobj

,

path

)

��

Table

function:

��

extractTimes

(

xmlobj

,

path

)

��

Parameters:

Table

41.

extractTime

and

extractTimes

function

parameters

Parameter

Data

type

Description

xmlobj

XMLVARCHAR,

XMLFILE,

or

XMLCLOB

The

column

name.

path

VARCHAR

The

location

path

of

the

element

or

attribute.

Returned

type:

TIME

Return

codes:

returnedTime

Examples:

The

examples

assume

that

you

are

using

the

DB2

UDB

command

shell,

in

which

you

do

not

need

to

type

“DB2”

at

the

beginning

of

each

command.

Scalar

function

example:

CREATE

TABLE

t1(testtime

TIME);

INSERT

INTO

t1

values

(

DB2XML.extractTime(DB2XML.XMLCLOB(

’<stuff><data>11.12.13</data></stuff>’),

’//data’));

SELECT

*

from

t1;

Table

function

example:

select

*

from

table(

DB2XML.extractTimes(DB2XML.XMLCLOB(

’<stuff><data>01.02.03</data><data>11.12.13</data></stuff>’),

’//data’))

as

x;

Related

concepts:

156

XML

Extender

Administration

and

Programming

v

“UDTs

and

UDF

names

for

XML

Extender”

on

page

119

v

“Types

of

XML

Extender

user-defined

functions”

on

page

137

Related

reference:

v

“Extracting

functions

in

XML

Extender”

on

page

146

extractTimestamp()

and

extractTimestamps()

Purpose:

Extracts

the

element

content

or

attribute

value

from

an

XML

document

and

returns

the

data

as

TIMESTAMP

type.

Syntax:

Scalar

function:

��

extractTimestamp

(

xmlobj

,

path

)

��

Table

function:

��

extractTimestamps

(

xmlobj

,

path

)

��

Parameters:

Table

42.

extractTimestamp

and

extractTimestamps

function

parameters

Parameter

Data

type

Description

xmlobj

XMLVARCHAR,

XMLFILE,

or

XMLCLOB

The

column

name.

path

VARCHAR

The

location

path

of

the

element

or

attribute.

Returned

type:

TIMESTAMP

Return

codes:

returnedTimestamp

Examples:

The

examples

assume

that

you

are

using

the

DB2

UDB

command

shell,

in

which

you

do

not

need

to

type

“DB2”

at

the

beginning

of

each

command.

Scalar

function

example:

CREATE

TABLE

t1(testtimestamp

TIMESTAMP);

INSERT

INTO

t1

values

(

DB2XML.extractTimestamp(DB2XML.XMLCLOB(

’<stuff><data>2003-11-11-11.12.13.888888</data></stuff>’),

’//data’));

SELECT

*

from

t1;

Table

function

example:

select

*

from

table(DB2XML.extractTimestamps(DB2XML.XMLClob(

’<stuff><data>2003-11-11-11.12.13.888888

</data><data>2003-12-22-11.12.13.888888</data></stuff>’),

’//data’))

as

x;

Chapter

8.

XML

Extender

user-defined

functions

157

XML

Extender

will

automatically

normalize

timestamps

extracted

from

XML

documents

to

comply

with

the

DB2

timestamp

format

if

needed.

Timestamps

are

normalized

to

the

yyyy-mm-dd-hh.mm.ss.nnnnnn

format

or

the

yyyy-mm-dd-hh

mm.ss.nnnnnn

format.

For

example:

2003-1-11-11.12.13

will

be

normalized

to:

2003-01-11-11.12.13.000000

Related

concepts:

v

“UDTs

and

UDF

names

for

XML

Extender”

on

page

119

v

“Types

of

XML

Extender

user-defined

functions”

on

page

137

Related

reference:

v

“Extracting

functions

in

XML

Extender”

on

page

146

v

“XML

Extender

UDF

return

codes”

on

page

273

Update

functions

in

XML

Extender

The

Update()

function

updates

a

specified

element

or

attribute

value

in

one

or

more

XML

documents

stored

in

the

XML

column.

You

can

also

use

the

default

casting

functions

to

convert

an

SQL

base

type

to

the

XML

UDT.

Purpose

Takes

the

column

name

of

an

XML

UDT,

a

location

path,

and

a

string

of

the

update

value

and

returns

an

XML

UDT

that

is

the

same

as

the

first

input

parameter.

With

the

Update()

function,

you

can

specify

the

element

or

attribute

that

is

to

be

updated.

Syntax

��

Update

(

xmlobj

,

path

,

value

)

��

Parameters

Table

43.

The

UDF

Update

parameters

Parameter

Data

type

Description

xmlobj

XMLVARCHAR,

XMLCLOB

as

LOCATOR

The

column

name.

path

VARCHAR

The

location

path

of

the

element

or

attribute.

value

VARCHAR

The

update

string.

Restriction:

The

Update

function

does

not

have

an

option

to

disable

output

escaping;

the

output

of

an

extractClob

(which

is

a

tagged

fragment)

cannot

be

inserted

using

this

function.

Use

textual

values

only.

158

XML

Extender

Administration

and

Programming

|
|
|
|

|

|

|

Restriction:

Note

that

the

Update

UDF

supports

location

paths

that

have

predicates

with

attributes,

but

not

elements.

For

example,

the

following

predicate

is

supported:

’/Order/Part[@color="black

"]/ExtendedPrice’

The

following

predicate

is

not

supported:

’/Order/Part/Shipment/[Shipdate

<

"11/25/00"]’

Return

type

Data

type

Return

type

XMLVARCHAR

XMLVARCHAR

XMLCLOB

as

LOCATOR

XMLCLOB

Example

The

following

example

updates

the

purchase

order

handled

by

the

salesperson

Sriram

Srinivasan.

UPDATE

sales_tab

set

order

=

db2xml.update(order,

’/Order/Customer/Name’,

’IBM’)

WHERE

sales_person

=

’Sriram

Srinivasan’

In

this

example,

the

content

of

/Order/Customer/Name

is

updated

to

IBM.

Usage

When

you

use

the

Update

function

to

change

a

value

in

one

or

more

XML

documents,

it

replaces

the

XML

documents

within

the

XML

column.

Based

on

output

from

the

XML

parser,

some

parts

of

the

original

document

are

preserved,

while

others

are

lost

or

changed.

The

following

sections

describe

how

the

document

is

processed

and

provide

examples

of

how

the

documents

look

before

and

after

updates.

How

the

Update()

function

processes

the

XML

document

When

the

Update()

function

replaces

XML

documents,

it

must

reconstruct

the

document

based

on

the

XML

parser

output.

Table

44

on

page

160

describes

how

the

parts

of

the

document

are

handled,

with

examples.

Chapter

8.

XML

Extender

user-defined

functions

159

Table

44.

Update

function

rules

Item

or

node

type

XML

document

code

example

Status

after

update

XML

declaration

<?xml

version=’1.0’

encoding=’utf-8’

standalone=’yes’

>

The

XML

declaration

is

preserved:

v

Version

information

is

preserved.

v

Encoding

declaration

is

preserved

and

appears

when

specified

in

the

original

document.

v

Standalone

declaration

is

preserved

and

appears

when

specified

in

the

original

document.

v

After

update,

single

quotation

marks

are

used

to

delineate

values.

DOCTYPE

Declaration

The

document

type

declaration

is

preserved:

v

Root

element

name

is

supported.

v

Public

and

system

ExternalIDs

are

preserved

and

appear

when

specified

in

the

original

document.

v

Internal

DTD

subset

is

not

preserved.

Entities

are

replaced;

defaults

for

attributes

are

processed

and

appear

in

the

output

documents.

v

After

the

update,

double

quotation

marks

are

used

to

delineate

public

and

system

URI

values.

v

The

current

XML4c

parser

does

not

report

an

XML

declaration

that

does

not

contain

an

ExternalID

or

internal

DTD

subset.

After

the

update,

the

DOCTYPE

declaration

would

be

missing

in

this

case.

<!DOCTYPE

books

SYSTEM

"http://dtds.org/books.dtd"

>

<!DOCTYPE

books

PUBLIC

"local.books.dtd"

"http://dtds.org/books.dtd"

>

<!DOCTYPE

books>

-Any

of

<!DOCTYPE

books

(

S

ExternalID

)

?

[

internal-dtd-subset

]

>

-Such

as

<!DOCTYPE

books

[

<!ENTITY

mydog

"Spot">

]

>?

[

internal-dtd-subset

]

>

Processing

Instructions

<?xml-stylesheet

title="compact"

href="datatypes1.xsl"

type="text/xsl"?>

Processing

instructions

are

preserved.

Comments

<!--

comment

-->

Comments

inside

the

root

element

are

preserved.

Comments

outside

the

root

element

are

discarded.

160

XML

Extender

Administration

and

Programming

Table

44.

Update

function

rules

(continued)

Item

or

node

type

XML

document

code

example

Status

after

update

Elements

<books>

content

</books>

Elements

are

preserved.

Attributes

id=’1’

date="01/02/2003"

Attributes

of

elements

are

preserved.

v

After

update,

double

quotation

marks

are

used

to

delineate

values.

v

Data

within

attributes

is

lost.

v

Entities

are

replaced.

Text

Nodes

This

chapter

is

about

my

dog

&mydog;.

Text

nodes

(element

content)

are

preserved.

v

Data

within

text

nodes

is

lost.

v

Entities

are

replaced.

Multiple

occurrence

When

a

location

path

is

provided

in

the

Update()

UDF,

the

content

of

every

element

or

attribute

with

a

matching

path

is

updated

with

the

supplied

value.

This

means

that

if

a

document

has

multiple

occurring

location

paths,

the

Update()

function

replaces

the

existing

values

with

the

value

provided

in

the

value

parameter.

You

can

specify

a

predicate

in

the

path

parameter

to

provide

distinct

locations

paths

to

prevent

unintentional

updates.

The

Update()

UDF

supports

location

paths

that

have

predicates

with

attributes,

but

not

elements.

Examples

The

following

examples

show

instances

of

an

XML

document

before

and

after

an

update.

Table

45.

XML

documents

before

and

after

an

update

Example

1:

Before:

Chapter

8.

XML

Extender

user-defined

functions

161

Table

45.

XML

documents

before

and

after

an

update

(continued)

<?xml

version=’1.0’

encoding=’utf-8’

standalone="yes"?>

<!DOCTYPE

book

PUBLIC

"public.dtd"

"system.dtd">

<?pitarget

option1=’value1’

option2=’value2’?>

<!--

comment

-->

<book>

<chapter

id="1"

date=’07/01/1997’>

<!--

first

section

-->

<section>This

is

a

section

in

Chapter

One.</section>

</chapter>

<chapter

id="2"

date="01/02/1997">

<section>This

is

a

section

in

Chapter

Two.</section>

<footnote>A

footnote

in

Chapter

Two

is

here.</footnote>

</chapter>

<price

date="12/22/1998"

time="11.12.13"

timestamp="1998-12-22-11.12.13.888888">

38.281</price>

</book>

v

Contains

white

space

in

the

XML

declaration

v

Specifies

a

processing

instruction

v

Contains

a

comment

outside

of

the

root

node

v

Specifies

PUBLIC

ExternalID

v

Contains

a

comment

inside

of

root

note

After:

<?xml

version=’1.0’

encoding=’utf-8’

standalone=’yes’?>

<!DOCTYPE

book

PUBLIC

"public.dtd"

"system.dtd">

<?pitarget

option1=’value1’

option2=’value2’?>

<book>

<chapter

id="1"

date="07/01/2003">

<!--

first

section

-->

<section>This

is

a

section

in

Chapter

One.</section>

</chapter>

<chapter

id="2"

date="01/02/2003">

<section>This

is

a

section

in

Chapter

Two.</section>

<footnote>A

footnote

in

Chapter

Two

is

here.</footnote>

</chapter>

<price

date="12/22/2003"

time="11.12.13"

timestamp="2003-12-22-11.12.13.888888">

60.02</price>

</book>

v

White

space

inside

of

markup

is

eliminated

v

Processing

instruction

is

preserved

v

Comment

outside

of

the

root

node

is

not

preserved

v

PUBLIC

ExternalID

is

preserved

v

Comment

inside

of

root

node

is

preserved

v

Changed

value

is

the

value

of

the

<price>

element

Example

2:

Before:

<?xml

version=’1.0’

?>

<!DOCTYPE

book>

<!--

comment

-->

<book>

...

</book>

Contains

DOCTYPE

declaration

without

an

ExternalID

or

an

internal

DTD

subset.

Not

supported.

After:

162

XML

Extender

Administration

and

Programming

Table

45.

XML

documents

before

and

after

an

update

(continued)

<?xml

version=’1.0’?>

<book>

...

</book>

DOCTYPE

declaration

is

not

reported

by

the

XML

parser

and

not

preserved.

Example

3:

Before:

<?xml

version=’1.0’

?>

<!DOCTYPE

book

[

<!ENTITY

myDog

"Spot">

]>

<!--

comment

-->

<book>

<chapter

id="1"

date=’07/01/1997’>

<!--

first

section

-->

<section>This

is

a

section

in

Chapter

One

about

my

dog

&;myDog;.</section>

...

</chapter>

...

</book>

v

Contains

white

space

in

markup

v

Specifies

internal

DTD

subset

v

Specifies

entity

in

text

node

After:

<?xml

version=’1.0’?>

<!DOCTYPE

book>

<book>

<chapter

id="1"

date="07/01/1997">

<!--

first

section

-->

<section>This

is

a

section

in

Chapter

One

about

my

dog

Spot.</section>

...

</chapter>

...

</book>

v

White

space

in

markup

is

eliminated

v

Internal

DTD

subset

is

not

preserved

v

Entity

in

text

node

is

resolved

and

replaced

Validation

functions

DB2

XML

Extender

offers

two

user

defined

functions

(UDFs)

that

validate

XML

documents

against

either

an

XML

schema

or

a

DTD.

An

element

in

an

XML

document

is

valid

according

to

a

given

schema

if

the

associated

element

type

rules

are

satisfied.

If

all

elements

are

valid,

the

whole

document

is

valid.

With

a

DTD,

however,

there

is

no

way

to

require

a

specific

root

element.

The

validation

functions

return

1

if

the

document

is

valid

or

they

return

0

and

write

an

error

message

in

the

trace

file

if

the

document

is

invalid.

The

functions

are:

db2xml.svalidate:

Validates

an

XML

document

instance

against

the

specified

schema.

db2xml.dvalidate:

Validates

an

XML

document

instance

against

the

specified

DTD.

Chapter

8.

XML

Extender

user-defined

functions

163

SVALIDATE()

function

This

function

validates

an

XML

document

against

a

specified

schema

(or

the

one

named

in

the

XML

document)

and

returns

1

if

the

document

is

valid

or

0

if

not.

This

function

assumes

that

an

XML

document

and

a

schema

exist

on

the

file

system

or

as

a

CLOB

in

DB2.

Before

you

run

the

SVALIDATE

function,

ensure

that

XML

Extender

is

enabled

with

your

server

by

running

the

following

command:

dxxadm

enable_server

-a

subsystem-name

wlm

environment

wlm-name1

If

the

XML

document

fails

the

validation,

an

error

message

is

written

to

the

XML

Extender

trace

file.

Enable

the

trace

before

executing

the

DVALIDATE

command.

See

“Starting

the

trace

for

XML

Extender”

on

page

271

for

information

on

enabling

the

trace.

Syntax

��

SVALIDATE

(

xmlobj

)

,

schemadoc

��

Parameters

Table

46.

The

SVALIDATE

parameters

Parameter

Data

type

Description

xmlobj

VARCHAR(256)

File

path

of

the

XML

document

to

be

verified.

CLOB(2G)

XML

column

that

contains

the

document

to

be

verified.

schemadoc

VARCHAR(256)

File

path

of

the

schema

document.

CLOB(2G)

XML

column

that

contains

the

schema.

Examples

Example

1:

This

example

validates

an

XML

document

using

the

specified

schema,

and

both

the

document

and

schema

are

stored

in

DB2

UDB

tables.

db2

select

db2xml.svalidate(doc,schema)

from

equiplogs

where

id=1

DVALIDATE()

function

This

function

validates

an

XML

document

against

a

specified

DTD

(or

the

one

named

in

the

XML

document)

and

returns

1

if

the

document

is

valid

or

0

if

not.

This

function

assumes

that

an

XML

document

and

a

DTD

exist

on

the

file

system

or

as

a

CLOB

in

DB2.

Before

you

can

execute

the

DVALIDATE

function,

ensure

that

XML

Extender

is

enabled

with

your

server.

If

the

XML

document

fails

the

validation,

an

error

message

is

written

to

the

XML

Extender

trace

file.

Enable

the

trace

before

executing

the

SVALIDATE

command.

See

“Starting

the

trace

for

XML

Extender”

on

page

271

for

information

on

enabling

the

trace.

164

XML

Extender

Administration

and

Programming

Syntax

��

DVALIDATE

(

xmlobj

)

,

dtddoc

��

Parameters

Table

47.

The

DVALIDATE

parameters

Parameter

Data

type

Description

xmlobj

VARCHAR(256)

File

path

of

the

XML

document

to

be

verified.

CLOB(2G)

XML

column

that

contains

the

document

to

be

verified.

dtddoc

VARCHAR(256)

File

path

of

the

DTD

document.

CLOB(2G)

XML

column

that

contains

the

DTD,

which

is

either

from

the

DTD_REF

table

or

from

a

regular

table.

Related

reference:

v

“Starting

the

trace

for

XML

Extender”

on

page

271

Chapter

8.

XML

Extender

user-defined

functions

165

166

XML

Extender

Administration

and

Programming

Chapter

9.

Document

access

definition

(DAD)

files

Creating

a

DAD

file

for

XML

columns

This

task

is

part

of

the

larger

task

of

defining

and

enabling

an

XML

column.

See

the

XML

Extender

Web

site

at

www.ibm.com/software/data/db2/extenders/xmlext/downloads.html

for

the

most

recent

information

about

DAD

files.

To

access

your

XML

data

and

enable

columns

for

XML

data

in

an

XML

table,

you

need

to

define

a

document

access

definition

(DAD)

file.

This

file

defines

the

attributes

and

key

elements

of

your

data

that

need

to

be

searched

within

the

column.

For

XML

columns,

the

DAD

file

primarily

specifies

how

documents

stored

within

it

are

to

be

indexed.

The

DAD

file

also

specifies

a

DTD

or

schema

to

use

for

validating

documents

that

are

inserted

into

the

XML

column.

DAD

files

are

stored

as

a

CLOB

data

type,

and

their

size

limit

is

100

KB.

Prerequisites:

Before

you

create

the

DAD

file,

you

need

to:

v

Decide

which

elements

or

attributes

you

expect

to

use

often

in

your

search.

The

elements

or

attributes

that

you

specify

are

extracted

into

the

side

tables

for

fast

searches

by

the

XML

Extender.

v

Define

the

location

path

to

represent

each

element

or

attribute

indexed

in

a

side

table.

You

must

also

specify

the

type

of

data

that

you

want

the

element

or

attribute

to

be

converted

to.

Procedure:

To

create

a

DAD

file:

1.

Create

a

new

document

in

a

text

editor

and

type

the

following

syntax:

<?XML

version="1.0"?>

<!DOCTYPE

DAD

SYSTEM

<"path/dtd/dad.dtd">.

″path/dtd/dad.dtd

″

is

the

path

and

file

name

of

the

DTD

for

the

DAD

file.

A

DTD

is

provided

in

dxx_install\samples\db2xml\dtd

2.

Insert

DAD

tags

after

the

lines

from

step

1.

<DAD>

</DAD>

This

element

will

contain

all

the

other

elements.

3.

Specify

validation

for

the

document

and

the

column:

v

If

you

want

to

validate

your

entire

XML

document

against

a

DTD

or

schema

before

it

is

inserted

into

the

database:

–

Insert

the

appropriate

tag

to

specify

how

you

want

to

validate

the

document:

<dtdid>path/dtd_name.dtd</dtdid>

–

Insert

the

following

tag

to

validate

the

document

using

a

schema:

<schemabindings>

<nonamespacelocation

location="path/schema_name.xsd"/>

</schemabindings>

©

Copyright

IBM

Corp.

1999,

2004

167

|

|
|

|
|

|

|

|
|
|

–

Validate

the

column

by

inserting

the

following

tag:

<validation>YES</validation>

v

If

you

don’t

want

to

validate

the

document,

use

the

following

tag:

<validation>NO</validation>

4.

Insert

<Xcolumn>

</Xcolumn>

tags

to

specify

that

you

are

using

XML

columns

as

the

access

and

storage

method

for

your

XML

data.

5.

Specify

side

tables.

For

each

side

table

that

you

want

to

create:

a.

Specify

a

<table></table>

tag.

For

example:

<table

name="person_names">

</table>

b.

Inside

the

table

tags,

insert

a

<column>

tag

for

each

column

that

you

want

the

side

table

to

contain.

Each

column

has

four

attributes:

name,

type,

path

and,

multi_occurrence.

Example:

<table

name="person_names">>

<column

name

="fname"

type="varchar(50)"

path="/person/firstName"

multi_occurrence="NO"/>

<column

name

="lname"

type="varchar(50)"

path="/person/lastName"

multi_occurrence="NO"/>

</table>

Where:

name

Specifies

the

name

of

the

column

that

is

created

in

the

side

table.

type

Indicates

the

SQL

data

type

in

the

side

table

for

each

indexed

element

or

attribute

path

Specifies

the

location

path

in

the

XML

document

for

each

element

or

attribute

to

be

indexed

multi_occurrence

Indicates

whether

the

element

or

attribute

referred

to

by

the

path

attribute

can

occur

more

than

once

in

the

XML

document.

The

possible

values

for

multi_occurrence

are

YES

or

NO.

If

the

value

is

NO,

then

multiple

columns

can

be

specified

per

table.

If

the

value

is

YES,

you

can

specify

only

one

column

in

the

side

table.

6.

Save

your

file

with

a

DAD

extension.

The

following

example

shows

a

complete

DAD

file:

<?xml

version="1.0"?>

<!DOCTYPE

DAD

SYSTEM

"c:\dxx_installsamples\db2xml\dtd\dad.dtd">

<DAD>

<dtid>C:\SG246130\code\person.dtd</dtdid>

<validation>YES</validation>

<Xcolumn>

<table

name="person_names">

<column

name="fname"

type="varchar(50)"

path="/person/firstName"

multi_occurrence="NO"/>

<column

name="lname"

type="varchar(50)"

path="/person/lastName"

multi_occurrence="NO"/>

168

XML

Extender

Administration

and

Programming

|

|

</table>

<table

name="person_phone_number">

<column

name="pnumber"

type="varchar(20)"

path="/person/phone/number"

multi_occurrence="YES"/>

</table>

<table

name="person_phone_number">

<column

name="pnumber"

type="varchar(20)"

path="/person/phone/number"

multi_occurrence="YES"/>

</table>

<table

name="pesron_phone_type">

<column

name="ptype"

type="varchar(20)"

path="/person/phone/type"

multi_occurrence="YES"/>

</table>

<Xcolumn>

</DAD>

Now

that

you

created

a

DAD

file,

the

next

step

to

defining

and

enabling

an

XML

column

is

to

create

the

table

in

which

your

XML

documents

will

be

stored.

Related

concepts:

v

“XML

collections

as

a

storage

and

access

method”

on

page

91

v

“DAD

files

for

XML

collections”

on

page

169

v

“Dad

Checker”

on

page

183

Related

tasks:

v

“Using

the

DAD

checker”

on

page

184

DAD

files

for

XML

collections

For

XML

collections,

the

DAD

file

maps

the

structure

of

the

XML

document

to

the

DB2®

tables

from

which

you

compose

the

document.

You

can

also

decompose

documents

to

the

DB2

UDB

tables

using

the

DAD

file.

For

example,

if

you

have

an

element

called

<Tax>

in

your

XML

document,

you

need

to

map

<Tax>

to

a

column

called

TAX.

You

use

the

DAD

file

to

define

the

relationship

between

the

XML

data

and

the

relational

data.

You

must

specify

the

DAD

file

either

while

enabling

a

collection,

or

when

you

are

using

the

DAD

file

in

stored

procedures

for

XML

collections.

The

DAD

is

an

XML-formatted

document,

residing

at

the

client.

If

you

choose

to

validate

XML

documents

with

a

DTD,

the

DAD

file

can

be

associated

with

that

DTD.

When

used

as

the

input

parameter

of

the

XML

Extender

stored

procedures,

the

DAD

file

has

a

data

type

of

CLOB.

This

file

can

be

up

to

100

KB.

To

specify

the

XML

collection

access

and

storage

method,

use

the

<Xcollection>

tag

in

your

DAD

file.

<Xcollection>

Specifies

that

the

XML

data

is

either

to

be

decomposed

from

XML

documents

into

a

collection

of

relational

tables,

or

to

be

composed

into

XML

documents

from

a

collection

of

relational

tables.

Chapter

9.

Document

access

definition

(DAD)

files

169

An

XML

collection

is

a

set

of

relational

tables

that

contains

XML

data.

Applications

can

enable

an

XML

collection

of

any

user

tables.

These

user

tables

can

be

tables

of

existing

business

data

or

tables

that

XML

Extender

recently

created.

The

DAD

file

defines

the

XML

document

tree

structure,

using

the

following

kinds

of

nodes:

root_node

Specifies

the

root

element

of

the

document.

element_node

Identifies

an

element,

which

can

be

the

root

element

or

a

child

element.

text_node

Represents

the

CDATA

text

of

an

element.

attribute_node

Represents

an

attribute

of

an

element.

Figure

14

shows

a

fragment

of

the

mapping

that

is

used

in

a

DAD

file.

The

nodes

map

the

XML

document

content

to

table

columns

in

a

relational

table.

In

this

example,

the

first

two

columns

have

elements

and

attributes

mapped

to

them.

<?xml

version="1.0"?>

<!DOCTYPE

DAD

SYSTEM

""c:\dxx\samples\db2xml\dtd\dad.dtd">

<DAD>

...

<Xcollection>

<SQL_stmt>

...

</SQL_stmt>

<prolog>?xml

version="1.0"?</prolog>

<doctype>!DOCTYPE

Order

SYSTEM

""c:\dxx\samples\db2xml\dtd\getstart.dtd""</doctype>

<root_node>

<element_node

name="Order">

-->

Identifies

the

element

<Order>

<attribute_node

name="key">

-->

Identifies

the

attribute

"key"

<column

name="order_key"/>

-->

Defines

the

name

of

the

column,

"order_key",

to

which

the

element

and

attribute

are

mapped

</attribute_node>

<element_node

name="Customer">

-->

Identifies

a

child

element

of

<Order>

as

<Customer>

<text_node>

-->

Specifies

the

CDATA

text

for

the

element

<Customer>

<column

name="customer">

-->

Defines

the

name

of

the

column,

"customer",

to

which

the

child

element

is

mapped

</text_node>

</element_node>

...

</element_node>

...

</root_node>

</Xcollection>

</DAD>

Figure

14.

Node

definitions

for

the

XML

document

as

mapped

to

the

XML

collection

table

170

XML

Extender

Administration

and

Programming

The

XML

Extender

also

supports

processing

instructions

for

stylesheets,

using

the

<stylesheet>

element.

It

must

be

inside

the

root

node

of

the

DAD

file,

with

the

doctype

and

prolog

defined

for

the

XML

document.

For

example:

<Xcollection>

...

<prolog>...</prolog>

<doctype>...</doctype>

<stylesheet>?xml-stylesheet

type="text/css"

href="order.css"?</stylesheet>

<root_node>...</root_node>

...

</Xcollection>

Use

any

text

editor

to

create

and

update

a

DAD

file.

Related

concepts:

v

“Mapping

schemes

for

XML

collections”

on

page

105

SQL

composition

You

can

compose

XML

documents

using

columns

with

the

same

name.

Selected

columns

with

the

same

name,

even

if

from

diverse

tables,

must

be

identified

by

a

unique

alias

so

that

every

variable

in

the

select

clause

of

the

SQL

statement

is

different.

The

following

example

shows

how

you

would

give

unique

aliases

to

columns

that

have

the

same

names.

<SQL_stmt>select

o.order_key

as

oorder_key,

key

customer_name,

customer_email,

p.part_key

p.order_key

as

porder_key,

color,

qty,

price,

tax,

ship_id,

date,

mode

from

order_tab

o.part_tab

p

order

by

order_key,

part_key</SQL_stmt>

You

can

also

compose

XML

documents

using

columns

with

generated

random

values.

If

an

SQL

statement

in

a

DAD

file

has

a

random

value,

you

must

give

the

random

value

function

an

alias

to

use

it

in

the

ORDER

BY

clause.

This

requirement

is

necessary

because

the

value

is

not

associated

with

any

column

in

a

given

table.

See

the

alias

for

generate_unique

at

the

end

of

the

ORDER

BY

clause

in

the

following

example.

<SQL_stmt>select

o.order_key,

customer_name,customer_email,

p.part_key,color,qty,price,tax,ship_id,

date,

mode

from

order_tab

o,part_tab

p,

table(select

substr(char(timestamp(generate_unique())),16)

as

ship_id,

date,

mode,

part_key

from

ship_tab)

s

where

o.order_key=1

and

p.price>2000

and

o.order_key=o.order_key

and

s.part_key

order

by

order_key,

part_key,ship_id</SQL_stmt>

RDB

node

composition

The

following

restrictions

apply

to

RDB

node

composition:

v

The

condition

associated

with

any

non-root_node

RDB

node

DAD

file

must

compare

against

a

literal.

v

Each

equality

in

the

condition

associated

with

a

top-level

RDB_node

specifies

the

join

relationship

between

columns

of

two

tables

and

is

applied

separately

from

the

other

equalities.

That

is,

all

the

predicates

connected

by

AND

do

not

apply

simultaneously

for

a

single

join

condition;

they

simulate

an

outer

join

when

the

Chapter

9.

Document

access

definition

(DAD)

files

171

document

is

composed.

The

parent-child

relationship

between

each

pair

of

tables

is

determined

by

their

relative

nesting

in

the

DAD

file.

For

example:
<condition>order_tab.order_key=part_tab.order_key

AND

part_tab.part_key=ship_tab.part_key</condition>

Composition

from

rows

that

have

null

values

You

can

use

columns

that

have

null

values

to

compose

XML

documents.

The

following

example

illustrates

how

you

can

generate

an

XML

document

form

a

table

MyTable

which

has

a

row

containing

a

null

value

in

column

Col

1.

The

DAD

used

in

the

example

is

nullcol.dad.

<?xml

version="1.0"?>

<!DOCTYPE

DAD

SYSTEM

"c:\dxx\dtd\dad.dtd">

<DAD>

<validation>NO

validation>NO>

<Xcollection>

<SQL_stmt>SELECT

1

as

X,

Col1

FROM

MyTable

order

by

X,

Col1<\SQL_stmt>

<prolog>?xml

version="1.0"?prolog>?xml

version="1.0"?>

<doctype>!DOCTYPE

Order

SYSTEM

"e:\t3xml\x.dtd">

<root_node>

<element_node

name="MyColumn">

<element_node

name="Column1"

multi_occurrence="YES">

<text_node>

<column

name="Col1"/>

</text_node>

</element_node>

</element_node>

</roott_node>

</Xcollection>

</DAD>

MyTable

|

Col

1

|

|__________|

|

1

|

|__________|

|

3

|

|__________|

|

—

|

|__________|

Run

tests2x

mydb

nullcol.dad

result_tab

or

use

dxxGenXML

to

produce

the

following

document:

Note

that

the

third

Column1

element

represents

a

null

value.

<?xml

version="1.0"?>

<!DOCTYPE

Order

SYSTEM

"e:\t3xml\x.dtd">

<MyColumn>

<Column1>1</Column1>

<Column1>3</Column1>

<Column1></Column1>

</MyColumn>

v

The

condition

associated

with

any

non-root_node

RDB

node

DAD

file

must

compare

against

a

literal.

v

The

condition

associated

with

any

lower

level

RDB

node

in

the

DAD

must

compare

against

a

literal.

v

The

condition

associated

with

a

root_node

describes

the

relationship

between

the

tables

involved

in

the

RDB

node

composition.

An

example

is

a

primary

foreign

key

relationship.

172

XML

Extender

Administration

and

Programming

v

Each

equality

in

the

condition

associated

with

a

top-level

RDB_node

specifies

the

join

relationship

between

columns

of

two

tables

and

is

applied

separately

from

the

other

equalities.

That

is,

all

the

predicates

connected

by

AND

do

not

apply

simultaneously

for

a

single

join

condition,

they

simulate

an

outer

join

when

the

document

is

composed.

The

parent-child

relationship

between

each

pair

of

tables

is

determined

by

their

relative

nesting

in

the

DAD

file.

For

example:
<condition>order_tab.order_key=part_tab.order_key

AND

part_tab.part_key=ship_tab.part_key</condition>

DTD

for

the

DAD

file

This

topic

describes

the

document

type

declarations

(DTD)

for

the

document

access

definition

(DAD)

file.

The

DAD

file

itself

is

a

tree-structured

XML

document

and

requires

a

DTD.

The

DTD

file

name

is

dad.dtd.

The

following

example

shows

the

DTD

for

the

DAD

file.

<?xml

encoding="US-ASCII"?>

<!ELEMENT

DAD

((schemabindings

|

dtdid)?,

validation,

(Xcolumn

|

Xcollection))>

<!ELEMENT

dtdid

(#PCDATA)>

<!ELEMENT

schemabindings

(nonamespacelocation)>

<!ELEMENT

nonamespacelocation

(empty)>

<!ATTLIST

nonamespacelocation

location

CDATA

#REQUIRED>

<!ELEMENT

validation

(#PCDATA)>

<!ELEMENT

Xcolumn

(table+)>

<!ELEMENT

table

(column+)>

<!ATTLIST

table

name

CDATA

#REQUIRED

key

CDATA

#IMPLIED

orderBy

CDATA

#IMPLIED>

<!ELEMENT

column

EMPTY>

<!ATTLIST

column

name

CDATA

#REQUIRED

type

CDATA

#IMPLIED

path

CDATA

#IMPLIED

multi_occurrence

CDATA

#IMPLIED>

<!ELEMENT

Xcollection

(SQL_stmt?,

prolog,

doctype,

root_node)>

<!ELEMENT

SQL_stmt

(#PCDATA)>

<!ELEMENT

prolog

(#PCDATA)>

<!ELEMENT

doctype

(#PCDATA

|

RDB_node)*>

<!ELEMENT

root_node

(element_node)>

<!ELEMENT

element_node

(RDB_node*,

attribute_node*,

text_node?,

element_node*,

namespace_node*,

process_instruction_node*,

comment_node*)>

<!ATTLIST

element_node

name

CDATA

#REQUIRED

ID

CDATA

#IMPLIED

multi_occurrence

CDATA

"NO"

BASE_URI

CDATA

#IMPLIED>

<!ELEMENT

attribute_node

(column

|

RDB_node)>

<!ATTLIST

attribute_node

name

CDATA

#REQUIRED>

<!ELEMENT

text_node

(column

|

RDB_node)>

<!ELEMENT

RDB_node

(table+,

column?,

condition?)>

<!ELEMENT

condition

(#PCDATA)>

<!ELEMENT

comment_node

(#PCDATA)>

<!ELEMENT

process_instruction_node

(#PCDATA)>

The

DAD

file

has

four

major

elements:

Chapter

9.

Document

access

definition

(DAD)

files

173

|
|

|
|
|

v

DTDID

v

validation

v

Xcolumn

v

Xcollection

Xcolumn

and

Xcollection

have

child

element

and

attributes

that

aid

in

the

mapping

of

XML

data

to

relational

tables

in

DB2.

The

following

list

describes

the

major

elements

and

their

child

elements

and

attributes.

Syntax

examples

are

taken

from

the

previous

example.

DTDID

element

DTDs

that

are

provided

to

XML

Extender

are

stored

in

the

DTD_REF

table.

Each

DTD

is

identified

by

a

unique

ID

that

is

provided

in

the

DTDID

tag

of

the

DAD

file.

The

DTDID

points

to

the

DTD

that

validates

the

XML

documents,

or

guides

the

mapping

between

XML

collection

tables

and

XML

documents.

For

XML

collections,

this

element

is

required

only

for

validating

input

and

output

XML

documents.

For

XML

columns,

this

element

is

needed

only

to

validate

input

XML

documents.

The

DTDID

must

be

the

same

as

the

SYSTEM

ID

specified

in

the

doctype

of

the

XML

documents.

Syntax:

<!ELEMENT

dtdid

(#PCDATA)>

validation

element

Indicates

whether

the

XML

document

is

to

be

validated

with

the

DTD

for

the

DAD.

If

YES

is

specified,

then

the

DTDID

must

also

be

specified.

Syntax:

<!ELEMENT

validation(#PCDATA)>

Xcolumn

element

Defines

the

indexing

scheme

for

an

XML

column.

It

is

composed

of

zero

or

more

tables.

Syntax:

<!ELEMENT

Xcolumn

(table*)>Xcolumn

has

one

child

element,

table.

table

element

Defines

one

or

more

relational

tables

created

for

indexing

elements

or

attributes

of

documents

stored

in

an

XML

column.

Syntax:

<!ELEMENT

table

(column+)>

<!ATTLIST

table

name

CDATA

#REQUIRED

key

CDATA

#IMPLIED

orderBy

CDATA

#IMPLIED>

The

table

element

has

one

mandatory

and

two

implied

attributes:

name

attribute

Specifies

the

name

of

the

side

table.

key

attribute

The

primary

single

key

of

the

table.

orderBy

attribute

The

names

of

the

columns

that

determine

the

sequence

order

of

multiple-occurring

element

text

or

attribute

values

when

generating

XML

documents.

The

table

element

has

one

child

element:

174

XML

Extender

Administration

and

Programming

column

element

Maps

an

attribute

of

a

CDATA

node

from

the

input

XML

document

to

a

column

in

the

table.

Syntax:

<!ATTLIST

column

name

CDATA

#REQUIRED

type

CDATA

#IMPLIED

path

CDATA

#IMPLIED

multi_occurrence

CDATA

#IMPLIED>

The

column

element

has

the

following

attributes:

name

attribute

Specifies

the

name

of

the

column.

It

is

the

alias

name

of

the

location

path

that

identifies

an

element

or

attribute.

type

attribute

Defines

the

data

type

of

the

column.

It

can

be

any

SQL

data

type.

path

attribute

Shows

the

location

path

of

an

XML

element

or

attribute

and

must

be

the

simple

location

path

as

specified

in

Table

3.1.a.

multi_occurrence

attribute

Specifies

whether

this

element

or

attribute

can

occur

more

than

once

in

an

XML

document.

Values

can

be

YES

or

NO.

Xcollection

Defines

the

mapping

between

XML

documents

and

an

XML

collection

of

relational

tables.

Syntax:

<!ELEMENT

Xcollection(SQL_stmt?,

prolog,

doctype,

root_node)>

Xcollection

has

the

following

child

elements:

SQL_stmt

Specifies

the

SQL

statement

that

XML

Extender

uses

to

define

the

collection.

Specifically,

the

statement

selects

XML

data

from

the

XML

collection

tables,

and

uses

the

data

to

generate

the

XML

documents

in

the

collection.

The

value

of

this

element

must

be

a

valid

SQL

statement.

It

is

only

used

for

composition,

and

only

a

single

SQL_stmt

is

allowed.

Syntax:

<!ELEMENT

SQL_stmt

#PCDATA

>

prolog

The

text

for

the

XML

prolog.

The

same

prolog

is

supplied

to

all

documents

in

the

entire

collection.

The

value

of

prolog

is

fixed.

Syntax:

<!ELEMENT

prolog

#PCDATA>

doctype

Defines

the

text

for

the

XML

document

type

definition.

Syntax:

<!ELEMENT

doctype

(#PCDATA

|

RDB_node)*>

doctype

is

used

to

specify

the

DOCTYPE

of

the

resulting

document.

Define

an

explicit

value.

This

value

is

supplied

to

all

documents

in

the

entire

collection.

Chapter

9.

Document

access

definition

(DAD)

files

175

doctype

has

one

child

element:

root_node

Defines

the

virtual

root

node.

root_node

must

have

one

required

child

element,

element_node,

which

can

be

used

only

once.

The

element_node

under

the

root_node

is

actually

the

root_node

of

the

XML

document.

Syntax:

<!ELEMENT

root_node(element_node)>

RDB_node

Defines

the

DB2

UDB

table

where

the

content

of

an

XML

element

or

value

of

an

XML

attribute

is

to

be

stored

or

from

where

it

will

be

retrieved.

rdb_node

is

a

child

element

of

element_node,

text_node,

and

attribute_node

and

has

the

following

child

elements:

table

Specifies

the

table

in

which

the

element

or

attribute

content

is

stored.

column

Specifies

the

column

in

which

the

element

or

attribute

content

is

stored.

condition

Specifies

a

condition

for

the

column.

Optional.

element_node

Represents

an

XML

element.

It

must

be

defined

in

the

DAD

specified

for

the

collection.

For

the

RDB_node

mapping,

the

root

element_node

must

have

an

RDB_node

to

specify

all

tables

containing

XML

data

for

itself

and

all

of

its

child

nodes.

It

can

have

zero

or

more

attribute_nodes

and

child

element_nodes,

as

well

as

zero

or

one

text_node.

For

elements

other

than

the

root

element

no

RDB_node

is

needed.

Syntax:

An

element_node

is

defined

by

the

following

child

elements:

RDB_node

(Optional)

Specifies

tables,

column,

and

conditions

for

XML

data.

The

RDB_node

for

an

element

needs

to

be

defined

only

for

the

RDB_node

mapping.

In

this

case,

one

or

more

tables

must

be

specified.

The

column

is

not

needed

because

the

element

content

is

specified

by

its

text_node.

The

condition

is

optional,

depending

on

the

DTD

and

query

condition.

child

nodes

Optional:

An

element_node

can

also

have

the

following

child

nodes:

element_node

Represents

child

elements

of

the

current

XML

element.

attribute_node

Represents

attributes

of

the

current

XML

element.

text_node

Represents

the

CDATA

text

of

the

current

XML

element.

176

XML

Extender

Administration

and

Programming

attribute_node

Represents

an

XML

attribute.

It

is

the

node

that

defines

the

mapping

between

an

XML

attribute

and

the

column

data

in

a

relational

table.

Syntax:

The

attribute_node

must

have

definitions

for

a

name

attribute,

and

either

a

column

or

a

RDB_node

child

element.

attribute_node

has

the

following

attribute:

name

The

name

of

the

attribute.

attribute_node

has

the

following

child

elements:

column

Used

for

the

SQL

mapping.

The

column

must

be

specified

in

the

SELECT

clause

of

SQL_stmt.

RDB_node

Used

for

the

RDB_node

mapping.

The

node

defines

the

mapping

between

this

attribute

and

the

column

data

in

the

relational

table

The

table

and

column

must

be

specified.

The

condition

is

optional.

text_node

Represents

the

text

content

of

an

XML

element.

It

is

the

node

that

defines

the

mapping

between

an

XML

element

content

and

the

column

data

in

a

relational

table.

Syntax:

It

must

be

defined

by

a

column

or

an

RDB_node

child

element:

column

Needed

for

the

SQL

mapping.

In

this

case,

the

column

must

be

in

the

SELECT

clause

of

SQL_stmt.

RDB_node

Needed

for

the

RDB_node

mapping.

The

node

defines

the

mapping

between

this

text

content

and

the

column

data

in

the

relational

table.

The

table

and

column

must

be

specified.

The

condition

is

optional.

Related

concepts:

v

“DAD

files

for

XML

collections”

on

page

169

Related

tasks:

v

“Dynamically

overriding

values

in

the

DAD

file”

on

page

177

Dynamically

overriding

values

in

the

DAD

file

Procedure:

For

dynamic

queries

you

can

use

two

optional

parameters

to

override

conditions

in

the

DAD

file:

override

and

overrideType.

Based

on

the

input

from

overrideType,

the

application

can

override

the

<SQL_stmt>

tag

values

for

SQL

mapping

or

the

conditions

in

RDB_nodes

for

RDB_node

mapping

in

the

DAD.

These

parameters

have

the

following

values

and

rules:

Chapter

9.

Document

access

definition

(DAD)

files

177

overrideType

This

parameter

is

a

required

input

parameter

(IN)

that

flags

the

type

of

the

override

parameter.

The

overrideType

parameter

has

the

following

values:

NO_OVERRIDE

Specifies

not

to

override

a

condition

in

the

DAD

file.

SQL_OVERRIDE

Specifies

to

override

a

condition

in

the

DAD

file

with

an

SQL

statement.

XML_OVERRIDE

Specifies

to

override

a

condition

in

the

DAD

file

with

an

XPath-based

condition.

override

This

parameter

is

an

optional

input

parameter

(IN)

that

specifies

the

override

condition

for

the

DAD

file.

The

syntax

of

the

input

value

corresponds

to

the

value

specified

on

the

overrideType

parameter:

v

If

you

specify

NO_OVERRIDE,

the

input

value

is

a

NULL

string.

v

If

you

specify

SQL_OVERRIDE,

the

input

value

is

a

valid

SQL

statement.

If

you

use

SQL_OVERRIDE

as

an

SQL

statement,

you

must

use

the

SQL

mapping

scheme

in

the

DAD

file.

The

input

SQL

statement

overrides

the

SQL

statement

specified

by

the

<SQL_stmt>

element

in

the

DAD

file.

v

If

you

specify

XML_OVERRIDE,

the

input

value

is

a

string

that

contains

one

or

more

expressions.

If

you

use

XML_OVERRIDE

and

an

expression,

you

must

use

the

RDB_node

mapping

scheme

in

the

DAD

file.

The

input

XML

expression

overrides

the

RDB_node

condition

specified

in

the

DAD

file.

The

expression

uses

the

following

syntax:

��

�

AND

simple

location

path

=

value

>

<

<>

>=

<=

LIKE

��

This

syntax

has

the

following

components:

simple

location

path

Specifies

a

simple

location

path,

using

syntax

defined

by

XPath..

operators

The

SQL

operators

shown

in

the

syntax

diagram

can

have

a

space

to

separate

the

operator

from

the

other

parts

of

the

expression.

Spaces

around

the

operators

are

optional.

Spaces

are

mandatory

around

the

LIKE

operator.

value

A

numeric

value

or

a

string

enclosed

in

single

quotation

marks.

AND

And

is

treated

as

a

logical

operator

on

the

same

location

path.

If

a

simple

location

path

is

specified

more

than

once

in

the

override

string,

then

all

the

predicates

for

that

simple

location

path

are

applied

simultaneously.

178

XML

Extender

Administration

and

Programming

If

you

specify

XML_OVERRIDE,

the

condition

for

the

RDB_node

in

the

text_node

or

attribute_node

that

matches

the

simple

location

path

is

overridden

by

the

specified

expression.

XML_OVERRIDE

is

not

completely

XPath

compliant.

The

simple

location

path

is

used

only

to

identify

the

element

or

attribute

that

is

mapped

to

a

column.

The

following

examples

use

SQL_OVERRIDE

and

XML_OVERRIDE

to

show

dynamic

override.

Example

1:

A

stored

procedure

using

SQL_OVERRIDE.

In

this

example,

the

<xcollection>

element

in

the

DAD

file

must

have

an

<SQL_stmt>

element.

The

override

parameter

overrides

the

value

of

<SQL_stmt>,

by

changing

the

price

to

be

greater

than

50.00,

and

the

date

to

be

greater

than

1998-12-01.

#include

"dxx.h"

#include

"dxxrc.h"

EXEC

SQL

INCLUDE

SQLCA;

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

collectionName[32];

/*

name

of

an

XML

collection

*/

char

result_tab[32];

/*

name

of

the

result

table

*/

char

result_colname[32];

/*

name

of

the

result

column

*/

char

valid_colname[32];

/*

name

of

the

valid

column,

will

set

to

NULL*/

char

override[512];

/*

override

*/

short

overrideType;

/*

defined

in

dxx.h

*/

short

max_row;

/*

maximum

number

of

rows

*/

short

num_row;

/*

actual

number

of

rows

*/

long

returnCode;

/*

return

error

code

*/

char

returnMsg[1024];

/*

error

message

text

*/

short

collectionName_ind;

short

rtab_ind;

short

rcol_ind;

short

vcol_ind;

short

ovtype_ind;

short

ov_ind;

short

maxrow_ind;+

short

numrow_ind;

short

returnCode_ind;

short

returnMsg_ind;

EXEC

SQL

END

DECLARE

SECTION;

float

price_value;

/*

create

table

*/

EXEC

SQL

CREATE

TABLE

xml_order_tab

(xmlorder

XMLVarchar);

/*

initial

host

variable

and

indicators

*/

strcpy(collection,

"sales_ord");

strcpy(result_tab,"xml_order_tab");

strcpy(result_col,"xmlorder");

valid_colname[0]

=

’\0’;

/*

get

the

price_value

from

some

place,

such

as

from

data

*/

price_value

=

1000.00

/*

for

example

*/

/*

specify

the

override

*/

sprintf(override,

"

SELECT

o.order_key,

customer,

p.part_key,

quatity,

price,

tax,

ship_id,

date,

mode

FROM

order_tab

o,

part_tab

p,

table(select

db2xml.generate_unique()

as

ship_id,

date,

mode

from

ship_tab)

s

WHERE

p.price

>

%d

and

s.date

>’1996-06_01’

AND

p.order_key

=

o.order_key

and

s.part_key

=

p.part_key",

price_value);

Chapter

9.

Document

access

definition

(DAD)

files

179

overrideType

=

SQL_OVERRIDE;

max_row

=

0;

num_row

=

0;

returnCode

=

0;

msg_txt[0]

=

’\0’;

collectionName_ind

=

0;

rtab_ind

=

0;

rcol_ind

=

0;

vcol_ind

=

-1;

ov_ind

=

0;

ovtype_ind

=

0;

maxrow_ind

=

0;

numrow_ind

=

-1;

returnCode_ind

=

-1;

returnMsg_ind

=

-1;

/*

Call

the

store

procedure

*/

EXEC

SQL

CALL

"DB2XML.DXXRETRIEVEXML"

(:collectionName:collectionName_ind,

:result_tab:rtab_ind,

:result_colname:rcol_ind,

:valid_colname:vcol_ind,

:overrideType:ovtype_ind,:override:ov_ind,

:max_row:maxrow_ind,:num_row:numrow_ind,

:returnCode:returnCode_ind,

:returnMsg:returnMsg_ind);

if

(SQLCODE

<

0)

{

EXEC

SQL

ROLLBACK;

else

EXEC

SQL

COMMIT;

}

Example

2:

A

stored

procedure

using

XML_OVERRIDE.

In

this

example,

the

<collection>

element

in

the

DAD

file

has

an

RDB_node

for

the

root

element_node.

The

override

value

is

XML-content

based.

The

XML

Extender

converts

the

simple

location

path

to

the

mapped

DB2

UDB

column.

#include

"dxx.h"

#include

"dxxrc.h"

EXEC

SQL

INCLUDE

SQLCA;

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

collectionName[32];

/*

name

of

an

XML

collection

*/

char

result_tab[32];

/*

name

of

the

result

table

*/

char

result_colname[32];

/*

name

of

the

result

column

*/

char

valid_colname[32];

/*

name

of

the

valid

column,

will

set

to

NULL*/

char

override[256];

/*

override,

SQL_stmt*/

short

overrideType;

/*

defined

in

dxx.h

*/

short

max_row;

/*

maximum

number

of

rows

*/

short

num_row;

/*

actual

number

of

rows

*/

long

returnCode;

/*

return

error

code

*/

char

returnMsg[1024];

/*

error

message

text

*/

short

collectionName_ind;

short

rtab_ind;

short

rcol_ind;

short

vcol_ind;

short

ovtype_ind;

short

ov_ind;

short

maxrow_ind;

short

numrow_ind;

short

returnCode_ind;

short

returnMsg_ind;

EXEC

SQL

END

DECLARE

SECTION;

/*

create

table

*/

EXEC

SQL

CREATE

TABLE

xml_order_tab

(xmlorder

XMLVarchar);

180

XML

Extender

Administration

and

Programming

/*

initial

host

variable

and

indicators

*/

strcpy(collection,

"sales_ord");

strcpy(result_tab,"xml_order_tab");

strcpy(result_col,"xmlorder");

valid_colname[0]

=

’\0’;

sprintf(override,"%s

%s",

"/Order/Part

Price

>

50.00

AND

",

"/Order/Part/Shipment/ShipDate

>

’1998-12-01’");

overrideType

=

XML_OVERRIDE;

max_row

=

500;

num_row

=

0;

returnCode

=

0;

msg_txt[0]

=

’\0’;

collectionName_ind

=

0;

rtab_ind

=

0;

rcol_ind

=

0;

vcol_ind

=

-1;

ov_ind

=

0;

ovtype_ind

=

0;

maxrow_ind

=

0;

numrow_ind

=

-1;

returnCode_ind

=

-1;

returnMsg_ind

=

-1;

/*

Call

the

store

procedure

*/

EXEC

SQL

CALL

"DB2XML.DXXRETRIEVE"

(:collectionName:collectionName_ind,

:result_tab:rtab_ind,

:result_colname:rcol_ind,

:valid_colname:vcol_ind,

:overrideType:ovtype_ind,:override:ov_ind,

:max_row:maxrow_ind,:num_row:numrow_ind,

:returnCode:returnCode_ind,:returnMsg:returnMsg_ind);

if

(SQLCODE

<

0)

{

EXEC

SQL

ROLLBACK;

else

EXEC

SQL

COMMIT;

}

Multiple

Overrides

XML

Extender

supports

multiple

overrides

on

the

same

path.

All

overrides

specified

to

the

RDB

node

will

be

accepted.

You

can

specify

multiple

XML

overrides

on

the

same

location

path

to

refine

set

conditions

in

your

search.

In

the

following

example,

an

XML

document

is

composed

from

the

two

tables

using

the

test.dad

file.

Table

48.

Department

Table

Department

Number

Department

Name

10

Engineering

20

Operations

30

Marketing

Table

49.

Employee

Table

Employee

Number

Department

Number

Salary

123

10

$98,000.00

456

10

$87,000.00

Chapter

9.

Document

access

definition

(DAD)

files

181

Table

49.

Employee

Table

(continued)

Employee

Number

Department

Number

Salary

111

20

$65,000.00

222

20

$71,000.00

333

20

$66,000.00

500

30

$55,000.00

The

DAD

file

test.dad

illustrated

below

contains

a

condition

comparing

the

variable

deptno

with

the

value

10.

To

expand

the

search

to

greater

than

10

and

less

than

30,

you

must

override

this

condition.

You

must

set

the

override

parameter

when

calling

dXXGenXML

as

follows:

/ABC.com/Department>10

AND

/ABC.com/Department<30

<?xml

version="1.0"?>

<!DOCTYPE

DAD

SYSTEM

"C:\dxx_xml\test\dtd\dad.dtd">

<DAD>

<dtdid>E:\dtd\lineItem.dtd</dtdid>

<validation>NO</validation>

<Xcollection>

<porlog>?xmol

version="1.0"?</prolog>

<doctype>!DOCTYPE

Order

SYSTEM

"C:\dxx_xml\test\dtd\LineItem.dtd"</doctype>

<root_node>

<element_node

name="ABC.com">

<TDB_node>

<table

name="dept"

key="deptno"/>

<table

name="empl"

key="emplno"/>

<condition>dept

deptno=empl.deptno</condition>

</RDB_node>

<element_node

name="Department"

multi_occurrence="YES">

<text_node>

<RDB_node>

<table

name="dept"/>

<column

name="deptno">

<condition>deptno=10</condition><RDB_node></RDB_node><text_node></text_node>

<element_node

name="Employees"

multi_occurrence="YES">

<text_node>

<RDB_node>

<table

name="dept"><column

name="deptnot"><condition>deptno=10</condition>

</table></RDB_node></text_node>

<element_node

name="Employees"

multi_occurence="YES">

<element_node

name="EmployeeNo">

<text_node>

<RDB_node>

<table

name="empl"><column

name="emplno"><condition>emplno<500</condition>

</table></RDB_node></text_node></element_node>

<element_node

name="Salary">

<text_node>

<RDB_node>

<table

name="empl"><column

name="salary"><condition>salary>5000.00</condition>

</table></RDB_node></text_node></element_node></element_node></element_node>

182

XML

Extender

Administration

and

Programming

To

compose

an

XML

document

without

an

override,

enter

tests2x

mydb

test.dad

result_tab

or

you

can

invoke

dxxGenXML

without

setting

an

override.

This

will

generate

a

document

similar

to

this:

<?xml

version="1.0">

<!DOCTYPE

Order

SYSTEM

"C:\dxx_xml\test\dtd\LineItem.dtd">

<ABC.com>

<Department>10

<Employees>

<EmployeeNo>123</EmployeeNO>

<Salary>98,000.00</Salary>

</Employees>

<Employees>

<EmployeeNo>456</EmployeeNo>

<Salary>87,000.00</Salary>

</Employees>

</Department>

</ABC.COM>

To

override

the

DAD

file

you

can

invoke

dxxGenXML

as

mentioned

above,

or

you

can

run

the

test2x

program

with

the

specified

conditions:

tests2x

mydb

test.dad

result_tab

-o

2

″/ABC.com/Department>10

AND

/ABC.com/Department<30″

<?xml

version="1.0">

<!DOCTYPE

Order

SYSTEM

"C:\dxx_xml\test\dtd\LineItem.dtd">

<ABC.com>

<Department>20

<Employees>

<EmployeeNo>111</EmployeeNo>

<Salary>65,000.00</Salary>

</Employees>

<EmployeeNo>222</EmployeeNo>

<Salary>71,000.00</Salary>

</Employees>

<Employees>

<EmployeeNo>333</EmployeeNo>

<Salary>66,000.00</Salary>

</Employees>

</Department>

</ABC.com>

Related

concepts:

v

“DAD

files

for

XML

collections”

on

page

169

v

“Dad

Checker”

on

page

183

Related

tasks:

v

“Creating

a

DAD

file

for

XML

columns”

on

page

167

v

“Using

the

DAD

checker”

on

page

184

Related

reference:

v

“DTD

for

the

DAD

file”

on

page

173

Dad

Checker

The

DAD

checker

can

be

used

to

verify

the

validity

of

DAD

files

that

use

the

XML

collection

storage

method.

In

each

DAD

file

a

mapping

scheme

that

specifies

the

relationship

between

the

tables

and

the

structure

of

the

XML

document

is

specified.

Chapter

9.

Document

access

definition

(DAD)

files

183

Much

like

document

type

descriptions

(DTDs)

are

used

to

validate

the

syntax

of

XML

documents,

the

DAD

checker

is

used

to

ensure

that

a

DAD

file

is

semantically

correct.

This

validation

can

take

place

without

connecting

to

a

database.

Use

of

the

DAD

checker

can

help

minimize

the

number

of

errors

that

occur

when

submitting

the

file

to

the

XML

Extender

for

processing.

The

DAD

checker

is

a

Java™

application

that

is

called

from

the

command

line.

When

invoked,

it

produces

a

set

of

two

output

files

that

contain

errors,

warnings,

and

success

indicators.

The

two

files

are

equivalent;

one

is

a

plain

text

file

that

you

use

to

check

for

errors

or

warnings;

the

other

is

an

XML

file,

errorsOutput.xml,

which

communicates

the

results

of

the

DAD

checker

application

to

other

applications.

The

name

of

the

output

text

file

is

user-defined.

If

no

name

is

specified,

the

standard

output

is

used.

Related

concepts:

v

“DAD

files

for

XML

collections”

on

page

169

Related

tasks:

v

“Dynamically

overriding

values

in

the

DAD

file”

on

page

177

v

“Creating

a

DAD

file

for

XML

columns”

on

page

167

v

“Using

the

DAD

checker”

on

page

184

Using

the

DAD

checker

Prerequisites:

You

must

have

a

JRE

or

JDK

Version

1.3.1

or

later

installed

on

your

system.

Procedure:

To

use

the

DAD

checker:

1.

Download

the

DADChecker.zip

file,

and

extract

all

files

into

a

directory

of

your

choice.

2.

From

a

command

line

change

to

the

/bin

subdirectory

in

the

directory

where

you

installed

the

DAD

checker.

3.

Set

the

classpath

by

running

the

setCP.bat

file,

located

in

the

/bin

directory.

4.

Run

the

following

command:

java

dadchecker.Check_dad_xml

[-dad

|

-xml]

[-all][-tag

tagname]

[-out

outputFile]

fileToCheck

Where:

-dad

indicates

that

the

file

that

is

to

be

checked

is

a

DAD

file.

This

is

the

default

option.

-xml

indicates

that

the

file

that

is

to

be

checked

is

an

XML

document

rather

than

a

DAD

file.

For

large

XML

documents,

the

Java

Virtual

Machine

might

run

out

of

memory,

which

produces

a

java.lang.

OutOfMemoryError

exception.

In

such

cases,

the

-Xmx

option

can

be

used

to

allocate

more

memory

to

the

Java

Virtual

Machine.

See

the

JDK

documentation

for

details.

-all

indicates

that

the

output

will

show

all

occurrences

of

tags

that

are

in

error.

184

XML

Extender

Administration

and

Programming

-tag

indicates

that

only

the

duplicate

tags

whose

name

attribute

values

are

tagname

are

displayed.

For

XML

documents,

only

the

duplicate

tags

whose

name

are

tagname

are

displayed.

-out

outputFile

specifies

the

output

text

file

name.

If

omitted,

the

standard

output

is

used.

A

second

output

file,

errorsOutput.xml

is

also

created

in

the

same

directory

as

the

DAD

file.

This

file

is

always

generated

and

contains

in

XML

form

the

same

information

as

the

output

text

file

except

the

parser

warnings

and

errors.

To

display

command-line

options,

type

java

dadchecker.Check_dad_xml

help.

To

display

version

information,

type

java

dadchecker.Check_dad_xml

version.

Sample

files

for

Dad

Checker:

The

following

sample

files

can

be

found

in

the

samples

directory:

bad_dad.dad

sample

DAD

file

that

demonstrates

all

possible

semantic

errors.

bad_dad.chk

output

text

file

that

is

generated

by

the

DAD

checker

for

bad_dad.dad.

bad_dad.chk

output

text

file

that

is

generated

by

the

DAD

checker

for

bad_dad.dad.

errorsOutput.xml

output

XML

file

that

is

generated

by

the

DAD

checker

for

bad_dad.dad.

dup.xsl

XSL

stylesheet

used

for

transforming

the

errorsOutput.xml

file

into

an

HTML

file

that

shows

only

the

duplicate

tags.

dups.html

generated

HTML

file

that

shows

only

the

duplicate

tags

contained

in

bad_dad.dad.

Errors

and

warnings

in

the

output

text

file:

Errors

and

warnings

are

indicated

by

tag

occurrence.

Two

tags

are

considered

as

occurrences

of

the

same

tag

if:

v

Their

name

attributes

have

the

same

value.

v

They

have

the

same

number

of

ancestors.

v

The

name

attributes

of

their

corresponding

ancestor

tags

have

the

same

value.

Occurrences

of

the

same

tag

could

potentially

have

different

children

tags.

Tag

occurrences

that

do

not

conform

to

the

DAD

semantic

rules

are

indicated

in

the

output

text

file

in

the

following

way:

v

All

ancestor

tags

and

their

attributes

are

displayed

in

sequence.

v

The

tag

that

is

in

error

is

displayed,

preceded

by

a

number

indicating

its

depth

in

the

XML

tree.

The

tag

name

is

followed

by

a

list

of

line

numbers

where

all

occurrences

of

the

tag

appear

in

the

DAD

file.

You

can

display

each

error

occurrence

separately

by

using

the

-all

command

line

option.

Chapter

9.

Document

access

definition

(DAD)

files

185

v

The

direct

children

tags

of

the

first

tag

occurrence

are

displayed.

For

those

children

tags

that

specify

a

data

mapping,

the

data

mapping

tags

are

also

displayed.

You

can

use

the

-all

command

line

option

to

display

each

error

occurrence

separately.

Sample

of

an

error

report

for

DAD

Checker:

In

this

example,

the

element_node

tag

whose

name

attribute

has

the

value

″Password″

is

in

error.

There

are

two

occurrences

of

this

tag

in

the

DAD

file,

one

on

line

49,

and

one

on

line

75.

The

tag

in

error

can

be

isolated

from

the

list

of

ancestor

and

children

tags

by

locating

the

tag’s

depth

indicator

(in

this

example

4).

The

list

of

ancestor

and

children

tags

help

establish

the

context

in

which

the

error

occurred.

<DAD>

<Xcollection>

<root_node>

<element_node

name="Advertiser"

multi_occurrence="YES">

4

<element_node

name="Password">

line(s):

49

75

<element_node

name="Pswd1">

<element_node

name="Pswd2">

If

you

had

used

the

all

option,

the

output

text

file

would

look

like

this:

<DAD>

<Xcollection>

<root_node>

<element_node

name="Advertiser"

multi_occurrence="YES">

4

<element_node

name="Password">

line:

49

<element_node

name="Pswd1">

<element_node

name="Pswd2">

<DAD>

<Xcollection>

<root_node>

<element_node

name="Advertiser"

multi_occurrence="YES">

4

<element_node

name="Password">

line:

75

<element_node

name="Pswd1">

<element_node

name="Pswd3">

In

this

example,

two

occurrences

have

identical

ancestors

and

name

attribute

values,

but

different

children

elements.

Checks

performed

by

the

DAD

checker

When

you

invoke

the

DAD

checker

you

receive

the

following

message:

Checking

DAD

document:

file_path

where

file_path

is

the

path

to

the

DAD

file

being

validated.

The

DAD

checker

performs

the

following

validation

checks:

1.

Well-formedness

checking

and

DTD

validation.

2.

Duplicate

<attribute_node>

and

leaf

<element_node>

detection

(RDB_node

mapping).

3.

Missing

type

attribute

detection.

4.

Missing

table

declaration

detection.

5.

Missing

<text_node>

or

<attribute_node>

detection.

6.

<attribute_node>

and

<element_node>

mapping

order

check.

7.

Data

mapping

consistency

check

for

tags

with

identical

name

attribute

values.

186

XML

Extender

Administration

and

Programming

8.

Multi_occurrence

attribute

value

checking

for

parent

<element_node>

with

mapped

children

(RDB_node

mapping).

9.

Attribute

and

element

potential

naming

conflict

check

(XML

documents).

These

validation

checks

are

described

in

the

following

sections.

Well-formedness

and

DTD

validation

DAD

files

must

be

validated

against

the

DAD

DTD,

which

is

located

in

″c:\dxx_installsamples\db2xml\dtd\dad.dtd″

If

the

DAD

file

is

not

well-formed

or

if

the

DTD

cannot

be

found,

a

fatal

error

occurs

that

causes

the

DAD

checker

to

terminate,

and

is

indicated

in

the

output

text

file.

For

example:

org.xml.sax.SAXException:

Stopping

after

fatal

error,

line

1,

col

22.

The

XML

declaration

must

end

with

"?>".

Validation

errors

and

warnings

are

also

reported

in

the

output

text

file,

but

do

not

cause

the

DAD

checker

to

terminate.

The

following

example

is

a

fragment

of

an

output

text

file

showing

two

possible

validation

errors

that

can

be

encountered

while

parsing

the

DAD

file:

**

The

document

is

not

valid

against

the

DTD,

line

5,

col

15.

Element

type

"XCollection"

must

be

declared

**

The

document

is

not

valid

against

the

DTD,

line

578,

col

21.

The

content

of

element

type

"text_node"

must

match

"(column|RDB_node)".

Duplicate

<attribute_node>

and

leaf

<element_node>

detection

(RDB_node

mapping)

This

check

is

relevant

only

to

DAD

files

that

use

RDB_node

mapping.

Two

elements

are

considered

to

be

duplicates

if

two

or

more

<attribute_node>

or

<element_node>

tags

have

the

same

value

in

their

name

attribute

and

they

have

the

same

ancestor.

Two

or

more

tags

are

considered

to

have

the

same

ancestors

if

the

name

attributes

of

their

corresponding

ancestor

tags

have

the

same

value.

A

leaf

<element_node>

is

an

element_node

that

is

used

to

map

a

tag

that

has

no

children

in

the

XML

document

tree.

Therefore,

leaf

<element_node>

tags

must

have

one

text

node

tag

as

one

of

their

direct

children.

No

other

<element_node>

tags

can

have

text

node

tags

as

direct

children.

This

conflict

might

arise

either

between

two

or

more

leaf

<element_node>

tags,

between

two

or

more

<attribute_node>

tags,

or

between

leaf

<element_node>

tags

and

<attribute_node>

tags.

Examples:

Example

1:

Leaf

<element_node>

conflict:

<element_node

name

=

"A1">

<element_node

name

=

"B">

<element_node

name

=

"C">

<text_node

....

<element_node

name

=

"A2">

<element_node

name

=

"B">

Chapter

9.

Document

access

definition

(DAD)

files

187

<element_node

name

=

"C">

<text_node>

....

</element_node>

In

this

example,

<element_node

name

=

″C″>

is

duplicated,

because

it

is

mapped

through

two

different

paths:

\A1\B\C

and

\A2\B\C.

Note

that

<element_node

name=″B″>

is

not

considered

to

be

duplicated,

because

it

is

a

non-leaf

<element_node>.

Example

2:

This

example

shows

an

<attribute

node>

conflict.

<element_node

name

=

"A1">

<attribute_node

name

=

"B">

....

<element_node

name

=

"A2">

<attribute_node

name

=

"B">

/element_node>

....

<

In

this

example,

<attribute_node

name

=

″B″>

is

duplicated,

because

it

is

mapped

through

two

different

paths:

\A1\B

and

\A2\B.

Example

3:

This

example

shows

a

leaf

<element_node>

and

<attribute_node>

conflict.

<element_node

name

=

"A">

<element_node

name

=

"B">

<text_node>

....

</element_node>

</element_node>

....

<attribute_node

name

=

"B">

....

<attribute_node

name

=

"A">

....

In

this

example,

<element_node

name

=

″B″>

conflicts

with

<attribute_node

name

=

″B″>.

Note

that

<element_node

name

=

″A″>

and

<attribute_node

name

=

″A″>

do

not

conflict,

because

<element_node

name

=

″A″>

is

not

a

leaf

<element_node>.

If

conflicts

occur,

the

XML

document

DTD

must

be

revised

to

eliminate

the

conflicts.

The

XML

document

and

the

DAD

file

also

need

to

be

revised

to

reflect

the

DTD

changes.

Example

4:

7

duplicate

naming

conflicts

were

found

A

total

of

16

tags

are

in

error

(cumulate

occurrences

of

these

tags:

20)

The

following

tags

are

duplicates:

<DAD>

<Xcollection>

<root_node>

<element_node

name="Advertiser"

multi_occurrence="YES">

4

<element_node

name="Country">

line(s):

127

135

<text_node>

<RDB_node>

<table

name="advertiser">

188

XML

Extender

Administration

and

Programming

<column

type="VARCHAR(63)"

name="country">

<DAD>

<Xcollection>

<root_node>

<element_node

name="Advertiser"

multi_occurrence="YES">

<element_node

name="Campaign"

multi_occurrence="YES">

<element_node

name="Target"

multi_occurrence="YES">

<element_node

name="Location"

multi_occurrence="YES">

7

<element_node

name="Country">

line(s):

460

<text_node>

<RDB_node>

<table

name="target_location">

<column

type="VARCHAR(63)"

name="country">

--

Tags

that

are

in

error

are

grouped

by

naming

conflict.

The

groups

are

separated

by

lines,

and

the

tags

are

separated

by

short

lines.

You

can

also

display

all

the

error

occurrences

by

using

the

all

command

line

option.

If

there

are

no

duplicates

in

the

DAD

file,

the

following

message

is

written

in

the

output

text

file:

No

duplicated

tags

were

found.

Missing

type

attribute

detection

When

using

a

DAD

file

to

enable

a

collection

or

for

decomposition,

the

type

attribute

must

be

specified

for

each

<column>

tag.

For

example:

<column

name="email"

type="varchar(20)">

The

enable_collection

command

uses

the

column

type

specifications

to

create

the

tables

in

the

collection

if

the

tables

do

not

exist.

If

the

tables

do

exist,

the

type

specified

in

the

DAD

must

match

the

actual

column

type

in

the

database.

Example:

The

following

example

is

a

fragment

of

an

output

text

file

showing

<column>

tags

that

do

not

have

the

type

attribute:

If

this

DAD

is

to

be

used

for

decomposition

or

for

enabling

a

collection,

the

type

attributes

are

missing

for

the

following

<column>

tag(s):

<DAD>

<Xcollection>

<root_node>

<element_node

name="Advertiser"

multi_occurrence="YES">

<element_node

name="Address">

<text_node>

<RDB_node>

7

<column

name="address">

line:

86

If

no

type

attributes

are

missing,

the

following

message

is

written

in

the

output

text

file:

No

type

attributes

are

missing

for

<column>

tags.

Missing

table

declaration

detection

The

first

<RDB_node>

tag

in

the

DAD

file

must

enclose

the

table

declaration,

including

all

<table>

tags

which

declare

the

relational

tables

that

are

used

for

data

mapping.

This

tag

must

be

enclosed

in

the

first

<element_node>

tag.

All

subsequent

<RDB_node>

tags

must

be

enclosed

in

a

<text_node>

tag.

Chapter

9.

Document

access

definition

(DAD)

files

189

An

error

is

also

added

to

the

output

file

if

the

first

encountered

<RDB_node>

tag

contains

a

<column>

tag.

This

error

indicates

either

that

the

table

declaration

is

missing,

or

that

the

table

declaration

wrongly

contains

a

<column>

tag.

Missing

<text_node>

or

<attribute_node>

detection

Each

<RDB_node>

tag

other

than

the

first

one,

which

is

used

for

the

table

declaration,

must

be

enclosed

in

an

<attribute_node>

or

a

<text_node>

tag.

Examples:

Example

1:

<element_node

name

="amount">

<text_node>

<RDB_node>

<table

name="fakebank.payments"/>

<column

name="amount"

type="decimal(8,2)"/>

</RDB_node>

</element_node>

Example

2:

The

following

example

is

a

fragment

of

an

output

text

file

showing

a

missing

<text_node>

or

<attribute_node>

tag:

<DAD>

<Xcollection>

<root_node>

<element_node

name="Advertiser"

multi_occurrence="YES">

<element_node

name="PostalCode">

5

<RDB_node>

line:

107

<table

name="advertiser">

<column

type="VARCHAR(10)"

name="postal_code">

Check

for

<attribute_node>

and

<element_node>

mapping

order

This

check

is

required

for

FixPak

3

and

earlier.

The

<attribute_node>

tags

need

to

be

mapped

to

a

table

before

any

<element_node>

tags

are

mapped

to

the

table.

Example:

The

following

example

shows

tags

that

need

to

be

mapped

to

a

table.

<element_node

name="payment-request"

multi_occurrence="YES">

<element_node

name="payment-request-id">

<text_node>

<RDB_node>

<table

name="fakebank.payments"/>

<column

name="statement_id"

type="varchar(30)"/>

....

<element_node

name="bank-customer-info">

<element_node

name="account">

<attribute_node

name="type">

<text_node>

<RDB_node>

<table

name="fakebank.payments"/>

<column

name="payor_account"

type="char(6)"/

In

this

example,

<attribute_node

name=″type″>

is

mapped

to

the

same

table

(fakebank.payments)

as

<element_node

name

=

″payment-request-id″>.

The

mapping

of

the

<attribute_node>

must

precede

the

mapping

of

the

<element_node>.

190

XML

Extender

Administration

and

Programming

Data

mapping

consistency

check

for

tags

with

identical

name

attribute

values

Within

the

DAD

file,

all

<element_node>

tags

and

all

<attribute_node>

tags

that

are

mapped

and,

identified

by

distinct

name

attribute

values

should

be

mapped

only

once.

If

two

or

more

occurrences

of

an

<element_node>

tag

or

<attribute_node>

tag

are

mapped

to

different

columns,

their

name

attributes

should

be

assigned

different

values.

Example:

Example

1:

In

this

example,

the

second

occurrence

of

the

<element_node

name=″type″>

tag

has

a

different

mapping

than

the

first

occurrence.

Duplicate

<attribute_node>

and

duplicate

leaf

<element_node>

tags

are

not

displayed

as

a

result

of

this

check.

<element_node

name="bank-customer-info">

<element_node

name="account">

<element_node

name="type">

<text_node>

<RDB_node>

<table

name="fakebank.payments"/>

<column

name="payor_account"

type="char(20)

</RDB_node>

</text_node>

</element_node>

<element_node>

<element_node>

<element_node

name="bank-customer-info">

<element_node

name="account">

<element_node

name="type">

<text_node>

<RDB_node>

<table

name="fakebank.payments"/>

<column

name="payto_account"

type="char(20)"/>

</RDB_node>

</text_node>

</element_node>

</element_node>

<element_node>

You

can

fix

this

error

by

creating

a

new

element

to

use

with

the

second

mapping.

You

also

need

to

change

the

DTD,

the

XML

document,

and

the

DAD

file.

Example

2:

This

example

is

a

fragment

of

an

output

text

file

that

indicates

<element_node>

tags

that

have

the

same

names

and

ancestors,

but

not

the

same

mappings.

<DAD>

<Xcollection>

<root_node>

<element_node

name="Advertiser"

multi_occurrence="YES">

4

<element_node

name="PostalCode">

line(s):

127

<text_node>

<RDB_node>

<table

name="advertiser">

<column

type="VARCHAR(10)"

name="postal_code">

<DAD>

<Xcollection>

<root_node>

<element_node

name="Advertiser"

multi_occurrence="YES">

4

<element_node

name="PostalCode">

line(s):

135

143

<text_node>

Chapter

9.

Document

access

definition

(DAD)

files

191

<RDB_node>

<table

name="advertiser">

<column

type="VARCHAR(10)"

name="postal_code2">

In

this

example,

one

occurrence

of

the

<element_node

name=″PostalCode″>

on

line

127

is

mapped

to

the

’postal_code’

column,

and

two

other

occurrences

of

the

same

tag,

on

lines

135

and

143,

are

mapped

to

the

’postal_code2’

column.

Multi_occurrence

attribute

value

checking

for

parent

<element_node>

with

mapped

children

This

check

is

relevant

only

to

DAD

files

that

use

RDB-node

mapping.

The

default

value

for

the

multi_occurrence

attribute

is

NO.

The

multi_occurrence

attribute

should

be

assigned

the

value

YES

for

each

<element_node>

tag

that

has

as

direct

children

an

<attribute_node>

tag

or

two

or

more

<element_node>

tags

meeting

one

or

two

of

the

following

criteria:

v

The

<element_node>

is

mapped

(

it

has

a

<text_node>

as

its

direct

child).

v

The

<element_node>

has

at

least

one

<attribute_node>

as

a

direct

child.

Example:

Example

1:

In

the

following

example,

payment-request-id

and

amount

are

mapped

to

a

DB2

UDB

table.

Sender

has

an

<attribute_node>

as

a

direct

child.

Payment-request-id,

amount

and

sender

are

all

direct

children

of

payment-request:

<element_node

name="payment-request"

multi_occurrence="YES">

<element_node

name="payment-request-id">

<text_node>

<RDB_node>

<table

name="fakebank.payments"/>

<column

name="statement_id"

type="varchar(30)"/>

</RDB_node>

</text_node>

</element_node>

<element_node

name

="amount">

<text_node>

<RDB_node>

<table

name="fakebank.payments"/>

<column

name="amount"

type="decimal(8,2)"/>

</RDB_node>

</text_node>

</element_node>

<element_node

name

="sender">

<attribute_node

name

="ID">

<RDB_node>

<table

name="fakebank.payments"/>

<column

name="sender_ID"

type="decimal(8,2)"/>

</RDB_node>

</attribute_node>

</element_node>

</element_node>

The

DAD

checker

indicates

all

<element_node>

tags

whose

multi_occurrence

attributes

are

set

to

NO.

Example

2:

The

following

example

is

a

fragment

of

an

output

text

file

suggesting

<element_node>

tags

whose

multi_occurrence

attributes

should

be

set

to

YES.

<DAD>

<Xcollection>

<root_node>

192

XML

Extender

Administration

and

Programming

<element_node

name="Advertiser"

multi_occurrence="YES">

4

<element_node

name="Password">

line(s):

49

75

<element_node

name="Pswd1">

<element_node

name="Pswd2">

Attribute

and

element

naming

conflict

In

XML

documents,

elements

with

the

same

name

can

appear

in

different

contexts,

such

as

having

different

ancestor

elements.

Attributes

and

elements

can

have

identical

names.

The

DAD

checker

can

be

used

to

check

XML

documents

for

naming

conflicts.

If

more

than

one

of

the

conflicting

elements

or

attributes

needs

to

be

mapped,

then

naming

changes

should

be

made

to

the

document

and

the

DTD.

It

is

best

to

check

the

XML

document

before

the

DAD

file

is

created.

The

DAD

checker

does

not

validate

the

XML

document

against

its

DTD.

Example:

The

following

example

is

a

fragment

of

an

XML

document

where

naming

conflicts

occur:

<A1>

<C>

....

<A2>

<C>

....

<D

C="attValue">

.....

If

the

<C>

element

and

the

C

attribute

are

to

be

mapped,

then

the

resulting

DAD

file

would

have

the

following

duplicate

conflicts:

<element_node

name

=

"A1">

<element_node

name

=

"B">

<element_node

name

=

"C">

<text_node>

.....

<element_node

name

=

"A2">

<element_node

name

=

"B">

<element_node

name

=

"C">

<text_node>

....

<element_node

name

=

"D">

<attribute_node

name

=

"C">

....

</element_node>

The

two

<element_node

name

=

″C″>

tags

and

the

<attribute_node

name

=

″C″>

tag

are

duplicates

in

the

DAD.

Chapter

9.

Document

access

definition

(DAD)

files

193

194

XML

Extender

Administration

and

Programming

Chapter

10.

XML

Extender

stored

procedures

XML

Extender

stored

procedures

The

XML

Extender

provides

stored

procedures

for

administration

and

management

of

XML

columns

and

collections.

These

stored

procedures

can

be

called

from

the

DB2

client.

The

client

interface

can

be

embedded

in

SQL,

ODBC,

or

JDBC.

See

the

section

on

stored

procedures

in

the

DB2

UDB

for

OS/390

Administration

Guide

for

details

about

how

to

call

stored

procedures.

The

stored

procedures

use

the

schema

DB2XML,

which

is

the

schema

name

of

the

XML

Extender.

The

XML

Extender

provides

three

types

of

stored

procedures:

Administration

stored

procedures

assist

users

in

completing

administrative

tasks

Composition

stored

procedures

generate

XML

documents

using

data

in

existing

database

tables

Decomposition

stored

procedures

break

down

or

shred

incoming

XML

documents

and

store

data

in

new

or

existing

database

tables

Ensure

that

you

include

the

XML

Extender

external

header

files

in

the

program

that

calls

stored

procedures.

The

header

files

are

located

in

the

″$dxx_install$\dxx\samples\db2xml\include″

directory,

where

$dxx_install$

is

the

directory

where

you

installed

DB2

XML

Extender.

The

header

files

are:

dxx.h

The

XML

Extender

defined

constant

and

data

types

dxxrc.h

The

XML

Extender

return

code

The

syntax

for

including

these

header

files

is:

#include

"dxx.h"

#include

"dxxrc.h"

Make

sure

that

the

path

of

the

include

files

is

specified

in

your

makefile

with

the

compilation

option.

XML

Extender

administration

stored

procedures

These

stored

procedures

are

used

for

administration

tasks,

such

as

enabling

or

disabling

an

XML

column

or

collection.

They

are

called

by

the

XML

Extender

administration

wizard

and

the

administration

command

dxxadm.

v

dxxEnableDB()

v

dxxDisableDB()

v

dxxEnableColumn()

v

dxxDisableColumn()

v

dxxEnableCollection()

v

dxxDisableCollection()

©

Copyright

IBM

Corp.

1999,

2004

195

dxxEnableDB()

stored

procedure

Purpose:

Enables

the

database

server.

When

the

database

server

is

enabled,

the

XML

Extender

creates

the

following

objects:

v

The

XML

Extender

user-defined

types

(UDTs)

v

The

XML

Extender

user-defined

functions

(UDFs)

v

The

XML

Extender

stored

procedures

v

The

XML

Extender

DTD

repository

table,

DTD_REF,

which

stores

DTDs

and

information

about

each

DTD.

v

The

XML

Extender

usage

table,

XML_USAGE,

which

stores

common

information

for

each

column

that

is

enabled

for

XML

and

for

each

collection.

Syntax:

dxxEnableDB(long

varchar

(64)

wlmNames

/*

input

*/

varchar

(18)

extSecurity

/*

input

*/

returnCode,

/*

output

*/

varchar(1024)

returnMsg)

/*

output

*/

Parameters:

Table

50.

dxxEnableSRV()

parameters

Parameter

Description

IN/OUT

parameter

returnCode

The

return

code

from

the

stored

procedure.

OUT

returnMsg

The

message

text

that

is

returned

in

case

of

error.

OUT

wlmNames

The

names

of

the

WLM

environments.

IN

extSecurity

The

external

security

option;

values

can

be

DB2

UDB

(default),

USER,

or

DEFINER

IN

Related

concepts:

v

“XML

Extender

administration

stored

procedures”

on

page

195

v

Chapter

13,

“XML

Extender

administration

support

tables,”

on

page

269

Related

tasks:

v

“Calling

XML

Extender

composition

stored

procedures”

on

page

201

dxxDisableDB()

stored

procedure

Purpose:

Disables

the

database

server.

When

the

XML

Extender

disables

the

database

server,

it

drops

the

following

objects:

v

The

XML

Extender

user-defined

types

(UDTs).

v

The

XML

Extender

user-defined

functions

(UDFs).

v

The

XML

Extender

DTD

repository

table,

DTD_REF,

which

stores

DTDs

and

information

about

each

DTD.

196

XML

Extender

Administration

and

Programming

v

The

XML

Extender

usage

table,

XML_USAGE,

which

stores

common

information

for

each

column

that

is

enabled

for

XML

and

for

each

collection.

Important:

You

must

disable

all

XML

columns

before

attempting

to

disable

a

database

server.

The

XML

Extender

cannot

disable

a

database

server

that

contains

tables

with

columns

or

collections

that

are

enabled

for

XML.

Syntax:

dxxDisableDB(

long

returnCode,

/*

output

*/

varchar(1024)

returnMsg)

/*

output

*/

Parameters:

Table

51.

dxxDisableDB()

parameters

Parameter

Description

IN/OUT

parameter

returnCode

The

return

code

from

the

stored

procedure.

OUT

returnMsg

The

message

text

that

is

returned

in

case

of

error.

OUT

Related

concepts:

v

“XML

Extender

administration

stored

procedures”

on

page

195

v

Chapter

13,

“XML

Extender

administration

support

tables,”

on

page

269

Related

tasks:

v

“Calling

XML

Extender

composition

stored

procedures”

on

page

201

Related

reference:

v

“How

to

read

syntax

diagrams”

on

page

x

dxxEnableColumn()

stored

procedure

Purpose:

Enables

an

XML

column.

When

enabling

a

column,

the

XML

Extender

completes

the

following

tasks:

v

Determines

whether

the

XML

table

has

a

primary

key;

if

not,

the

XML

Extender

alters

the

XML

table

and

adds

a

column

called

DXXROOT_ID.

v

Creates

side

tables

that

are

specified

in

the

DAD

file

with

a

column

containing

a

unique

identifier

for

each

row

in

the

XML

table.

This

column

is

either

the

root_id

that

is

specified

by

the

user,

or

it

is

the

DXXROOT_ID

that

was

named

by

the

XML

Extender.

v

Creates

a

default

view

for

the

XML

table

and

its

side

tables,

optionally

using

a

name

you

specify.

Syntax:

DB2XML.dxxEnableColumn(char(tbName)

tbName,

/*

input

*/

char(colName)

colName,

/*

input

*/

CLOB(100K)

DAD,

/*

input

*/

char(tablespace)

tablespace,

/*

input

*/

char(defaultView)

defaultView,

/*

input

*/

Chapter

10.

XML

Extender

stored

procedures

197

char(rootID)

rootID,

/*

input

*/

long

returnCode,

/*

output

*/

varchar(1024)

returnMsg)

/*

output

*/

Parameters:

Table

52.

dxxEnableColumn()

parameters

Parameter

Description

IN/OUT

parameter

tbName

The

name

of

the

table

containing

the

XML

column.

IN

colName

The

name

of

the

XML

column.

IN

DAD

A

CLOB

containing

the

DAD

file.

IN

tablespace

The

table

space

that

contains

the

side

tables

other

than

the

default

table

space.

If

not

specified,

the

default

table

space

is

used.

IN

defaultView

The

name

of

the

default

view

joining

the

application

table

and

side

tables.

IN

rootID

The

name

of

the

single

primary

key

in

the

application

table

that

is

to

be

used

as

the

root

ID

for

the

side

table.

IN

returnCode

The

return

code

from

the

stored

procedure.

OUT

returnMsg

The

message

text

that

is

returned

in

case

of

error.

OUT

Related

concepts:

v

“XML

columns

as

a

storage

and

access

method”

on

page

73

v

“XML

Extender

administration

stored

procedures”

on

page

195

Related

tasks:

v

“Calling

XML

Extender

composition

stored

procedures”

on

page

201

Related

reference:

v

“How

to

read

syntax

diagrams”

on

page

x

v

Appendix

C,

“XML

Extender

limits,”

on

page

311

dxxDisableColumn()

stored

procedure

Purpose:

Disables

the

XML-enabled

column.

When

an

XML

column

is

disabled,

it

can

no

longer

contain

XML

data

types.

Syntax:

DB2XML.dxxDisableColumn(char(tbName)

tbName,

/*

input

*/

char(colName)

colName,

/*

input

*/

long

returnCode,

/*

output

*/

varchar(1024)

returnMsg)

/*

output

*/

198

XML

Extender

Administration

and

Programming

Parameters:

Table

53.

dxxDisableColumn()

parameters

Parameter

Description

IN/OUT

parameter

tbName

The

name

of

the

table

containing

the

XML

column.

IN

colName

The

name

of

the

XML

column.

IN

returnCode

The

return

code

from

the

stored

procedure.

OUT

returnMsg

The

message

text

that

is

returned

in

case

of

error.

OUT

Related

reference:

v

Appendix

C,

“XML

Extender

limits,”

on

page

311

dxxEnableCollection()

stored

procedure

Purpose:

Enables

an

XML

collection

that

is

associated

with

an

application

table.

Syntax:

dxxEnableCollection(char()

dbName,

/*

input

*/

char(colName)

colName,

/*

input

*/

CLOB(100K)

DAD,

/*

input

*/

char(tablespace)

tablespace,

/*

input

*/

long

returnCode,

/*

output

*/

varchar(1024)

returnMsg)

/*

output

*/

Parameters:

Table

54.

dxxEnableCollection()

parameters

Parameter

Description

IN/OUT

parameter

dbName

The

database

name.

IN

colName

The

name

of

the

XML

collection.

IN

DAD

A

CLOB

containing

the

DAD

file.

IN

tablespace

The

table

space

that

contains

the

side

tables

other

than

the

default

table

space.

If

not

specified,

the

default

table

space

is

used.

IN

returnCode

The

return

code

from

the

stored

procedure.

OUT

returnMsg

The

message

text

that

is

returned

in

case

of

error.

OUT

Related

concepts:

v

“XML

collections

as

a

storage

and

access

method”

on

page

91

v

“XML

Extender

administration

stored

procedures”

on

page

195

Related

tasks:

v

“Calling

XML

Extender

composition

stored

procedures”

on

page

201

Chapter

10.

XML

Extender

stored

procedures

199

Related

reference:

v

“How

to

read

syntax

diagrams”

on

page

x

v

Appendix

C,

“XML

Extender

limits,”

on

page

311

dxxDisableCollection()

stored

procedure

Purpose:

Disables

an

XML-enabled

collection,

removing

markers

that

identify

tables

and

columns

as

part

of

a

collection.

Syntax:

dxxDisableCollection(char(dbName)

dbName,

/*

input

*/

char(colName)

colName,

/*

input

*/

long

returnCode,

/*

output

*/

varchar(1024)

returnMsg)

/*

output

*/

Parameters:

Table

55.

dxxDisableCollection()

parameters

Parameter

Description

IN/OUT

parameter

dbName

The

database

name.

IN

colName

The

name

of

the

XML

collection.

IN

returnCode

The

return

code

from

the

stored

procedure.

OUT

returnMsg

The

message

text

that

is

returned

in

case

of

error.

OUT

Related

reference:

v

Appendix

C,

“XML

Extender

limits,”

on

page

311

XML

Extender

composition

stored

procedures

The

composition

stored

procedures

dxxGenXML(),

dxxRetrieveXML(),

dxxGenXMLCLOB(),

and

dxxRetrieveXMLCLOB()

are

used

to

generate

XML

documents

using

data

in

existing

database

tables.

The

dxxGenXML()

stored

procedure

takes

a

DAD

file

as

input;

it

does

not

require

an

enabled

XML

collection.

The

dxxRetrieveXML()

stored

procedure

takes

an

enabled

XML

collection

name

as

input.

The

following

performance

enhancements

have

been

made

for

composition

stored

procedures.

v

On

iSeries

and

zSeries

operating

systems,

the

length

of

the

override

parameter

has

been

increased

to

16KB.

v

The

requirement

for

an

intermediate

result

table

has

been

removed.

v

By

using

these

stored

procedures:

–

You

reduce

the

instruction

path

length

because

there

is

no

need

to

create

result

tables.

–

You

simplify

your

programming.

v

Use

the

stored

procedures

that

require

an

intermediate

result

table

if

you

want

to

produce

more

than

one

document.

200

XML

Extender

Administration

and

Programming

v

The

user-defined

functions

for

XML

column

have

been

enhanced

for

performance

v

The

DB2

UDB

XML

Extender

user-defined

functions

will

now

keep

small

(512KB)

XML

documents

in

memory

while

processing

them.

This

reduces

input/output

activity

and

the

contention

for

the

disk

that

is

used

for

temporary

files.

v

The

definition

of

the

DB2

UDB

XML

Extender

scalar

(non-table)

user-defined

functions

has

been

changed

so

that

they

can

run

in

parallel.

This

change

provides

significant

performance

improvements

in

the

execution

of

queries

that

refer

to

the

user-defined

functions

more

than

once.

You

must

run

the

migration

script

program

to

get

the

parallel

capability

for

the

scalar

UDFs.

If

you

already

have

columns

enabled

using

the

scalar

UDFs,

you

must

disable

all

your

columns,

run

the

migration

script

and

then

re-enable

the

columns.

Calling

XML

Extender

composition

stored

procedures

You

can

use

XML

Extender

in

different

operating

systems

from

a

single

client

application,

by

writing

the

stored

procedure

names

in

both

uppercase

and

lowercase.

To

call

the

stored

procedures

in

this

way,

use

the

result_colname

and

valid_colname

versions

of

the

composition

stored

procedures.

Using

this

method

gives

you

the

following

benefits:

v

You

can

use

these

stored

procedures

in

all

DB2

Universal

Database

environments

because

you

can

include

many

columns

in

the

result

table.

The

versions

of

the

stored

procedures

that

do

not

support

result_colname

and

valid_colname

require

exactly

one

column

in

the

result

table.

v

You

can

use

a

declared

temporary

table

as

your

result

table.

Your

temporary

table

is

identified

by

a

schema

that

is

set

to

″session″.

Declared

temporary

tables

enable

you

to

support

multi-user

client

environments.

Use

uppercase

when

you

call

the

DB2

XML

Extender

stored

procedures

to

access

the

stored

procedures

consistently

across

platforms.

Prerequisites:

Run

the

DXXGPREP

JCL

job

before

working

with

stored

procedures

to

initialize

XML

Extender.

Procedure:

Call

XML

Extender

using

the

following

syntax:

CALL

DB2XML.function_entry_point

Where:

function_entry_point

Specifies

the

name

of

the

function.

In

the

CALL

statement,

the

arguments

that

are

passed

to

the

stored

procedure

must

be

host

variables,

not

constants

or

expressions.

The

host

variables

can

have

null

indicators.

See

samples

for

calling

stored

procedures

in

the

dxx_install/samples/db2xml/c

and

dxx_install/samples/db2xml/cli

directories.

In

the

dxx_install/samples/db2xml/c

directory,

SQX

code

files

are

provided

to

call

XML

collection

stored

procedures

using

embedded

SQL.

In

the

dxx_install/samples/db2xml/cli

directory,

the

sample

files

show

how

to

call

stored

procedures

using

the

Call

Level

Interface

(CLI).

Chapter

10.

XML

Extender

stored

procedures

201

Increasing

the

CLOB

limit

for

stored

procedures

The

default

limit

for

CLOB

parameters

when

passed

to

a

stored

procedure

is

1

MB.

You

can

increase

the

limit.

Procedure:

To

increase

the

CLOB

limit:

1.

Drop

each

stored

procedure.

For

example:

db2

"drop

procedure

DB2XML.dxxShredXML

restrict"

2.

Create

a

new

procedure

with

the

increased

CLOB

limit.

For

example:

db2

"create

procedure

DB2XML!dxxShredXML(in

dadBuf

clob(100K),

in

XMLObj

clob(10M),

out

returnCode

integer,

out

returnMsg

varchar(1024)

)

external

name

’DB2XML.dxxShredXML_STP’

language

C

parameter

style

SQL

not

deterministic

fenced

null

call"

Stored

Procedures

that

return

CLOBS

If

you

have

CLOB

files

that

are

larger

than

1

MB,

XML

Extender

provides

a

command

file

to

redefine

the

stored

procedure

parameter.

Download

the

crtgexc.zip

from

the

DB2

XML

Extender

Web

site.

This

ZIP

file

contains

the

following

programs:

crtgenxc.zox.jci

and

crtgenxc.zos.cmd

For

use

with

XML

Extender

for

OS/390

V7,

APAR

PQ58249

and

later.

To

specify

the

CLOB

length:

Open

the

file

in

an

editor

and

modify

the

resultDoc

parameter

shown

in

the

following

example:

out

resultDoc

clob(clob_size),

If

more

than

one

document

is

generated,

the

stored

procedure

returns

the

first

document.

Size

recommendation:

The

size

limit

of

the

resultDoc

parameter

depends

on

your

system

setup.

Be

aware

that

the

amount

specified

in

this

parameter

is

the

amount

allocated

by

JDBC,

regardless

of

the

size

of

the

document.

The

size

should

accommodate

your

largest

XML

files,

but

should

not

exceed

1.5

gigabytes.

To

run

the

command

file,

modify

the

JCL

or

CMD

file

contents.

Submit

the

JCL

or

run

the

CMD

from

the

USS.

dxxGenXML()

stored

procedure

Purpose:

Constructs

XML

documents

using

data

that

is

stored

in

the

XML

collection

tables

that

are

specified

by

the

<Xcollection>

in

the

DAD

file

and

inserts

each

XML

document

as

a

row

into

the

result

table.

You

can

also

open

a

cursor

on

the

result

table

and

fetch

the

result

set.

202

XML

Extender

Administration

and

Programming

|
|
|
|
|
|
|
|
|
|
|

To

provide

flexibility,

dxxGenXML()

also

lets

the

user

specify

the

maximum

number

of

rows

to

be

generated

in

the

result

table.

This

decreases

the

amount

of

time

the

application

must

wait

for

the

results

during

any

trial

process.

The

stored

procedure

returns

the

number

of

actual

rows

in

the

table

and

any

error

information,

including

error

codes

and

error

messages.

To

support

dynamic

query,

dxxGenXML()

takes

an

input

parameter,

override.

Based

on

the

input

overrideType,

the

application

can

override

the

SQL_stmt

for

SQL

mapping

or

the

conditions

in

RDB_node

for

RDB_node

mapping

in

the

DAD

file.

The

input

parameter

overrideType

is

used

to

clarify

the

type

of

the

override.

Syntax:

dxxGenXML(CLOB(100K)

DAD,

/*

input

*/

char(resultTabName32)

resultTabName,

/*

input

*/

char

resultColName,

char

resultValidCol

/*

input

*/

char(30)

valid_column,

/*

input

*/

integer

overrideType

/*

input

*/

varchar(1024)

override,

/*

input

*/

integer

maxRows,

/*

input

*/

integer

numRows,

/*

output

*/

long

returnCode,

/*

output

*/

varchar(1024)

returnMsg)

/*

output

*/

Where

the

varchar_value

is

32672

for

Windows

and

UNIX,

and

16366

for

iSeries

and

z/OS.

Parameters:

Table

56.

dxxGenXML()

parameters

Parameter

Description

IN/OUT

parameter

DAD

A

CLOB

containing

the

DAD

file.

IN

resultTabName

The

name

of

the

result

table,

which

should

exist

before

the

call.

The

table

contains

only

one

column

of

either

XMLVARCHAR

or

XMLCLOB

type.

IN

result_column

The

name

of

the

column

in

the

result

table

in

which

the

composed

XML

documents

are

stored.

IN

valid_column

The

name

of

the

column

that

indicates

whether

the

XML

document

is

valid

when

it

is

validated

against

a

document

type

definition

(DTD).

IN

overrideType

A

flag

to

indicate

the

type

of

the

following

override

parameter:

v

NO_OVERRIDE:

No

override.

v

SQL_OVERRIDE:

Override

by

an

SQL_stmt.

v

XML_OVERRIDE:

Override

by

an

XPath-based

condition.

IN

Chapter

10.

XML

Extender

stored

procedures

203

Table

56.

dxxGenXML()

parameters

(continued)

Parameter

Description

IN/OUT

parameter

override

Overrides

the

condition

in

the

DAD

file.

The

input

value

is

based

on

the

overrideType.

v

NO_OVERRIDE:

A

NULL

string.

v

SQL_OVERRIDE:

A

valid

SQL

statement.

Using

this

overrideType

requires

that

SQL

mapping

is

used

in

the

DAD

file.

The

input

SQL

statement

overrides

the

SQL_stmt

in

the

DAD

file.

v

XML_OVERRIDE:

A

string

that

contains

one

or

more

expressions

in

double

quotation

marks

separated

by

″AND″.

Using

this

overrideType

requires

that

RDB_node

mapping

is

used

in

the

DAD

file.

IN

resultDoc

A

CLOB

that

contains

the

composed

XML

document.

OUT

valid

valid

is

set

as

follows:

v

If

VALIDATION=YES

then

valid=1

for

successful

validation

or

valid=0

for

unsuccessful

validation.

v

If

VALIDATION=NO

then

valid=NULL.

OUT

maxRows

The

maximum

number

of

rows

in

the

result

table.

IN

numRows

The

actual

number

generated

rows

in

the

result

table.

OUT

returnCode

The

return

code

from

the

stored

procedure.

OUT

returnMsg

The

message

text

that

is

returned

in

case

of

error.

OUT

Examples:

The

following

example

fragment

assumes

that

a

result

table

is

created

with

the

name

of

XML_ORDER_TAB,

and

that

the

table

has

one

column

of

XMLVARCHAR

type.

A

complete,

working

sample

is

located

in

DXXSAMPLES/QCSRC(GENX).

#include

"dxx.h"

#include

"dxxrc.h"

EXEC

SQL

INCLUDE

SQLCA;

EXEC

SQL

BEGIN

DECLARE

SECTION;

SQL

TYPE

is

CLOB(100K)

dad;

/*

DAD

*/

SQL

TYPE

is

CLOB_FILE

dadFile;

/*

dad

file

*/

char

result_tab[32];

/*

name

of

the

result

table

*/

char

verride[2];

/*

override,

will

set

to

NULL*/

short

overrideType;

/*

defined

in

dxx.h

*/

short

max_row;

/*

maximum

number

of

rows

*/

short

num_row;

/*

actual

number

of

rows

*/

long

returnCode;

/*

return

error

code

*/

char

returnMsg[1024];

/*

error

message

text

*/

short

dad_ind;

short

rtab_ind;

short

ovtype_ind;

short

ov_inde;

short

maxrow_ind;

204

XML

Extender

Administration

and

Programming

short

numrow_ind;

short

returnCode_ind;

short

returnMsg_ind;

EXEC

SQL

END

DECLARE

SECTION;

/*

create

table

*/

EXEC

SQL

CREATE

TABLE

xml_order_tab

(xmlorder

XMLVarchar);

/*

read

data

from

a

file

to

a

CLOB

*/

strcpy(dadfile.name,"dxxinstall/dad/litem3.dad");

dadfile.name_length

=

strlen("dxxinstall/dad/litem3.dad");

dadfile.file_options

=

SQL_FILE_READ;

EXEC

SQL

VALUES

(:dadfile)

INTO

:dad;

strcpy(result_tab,"xml_order_tab");

override[0]

=

’\0’;

overrideType

=

NO_OVERRIDE;

max_row

=

500;

num_row

=

0;

returnCode

=

0;

msg_txt[0]

=

’\0’;

collection_ind

=

0;

dad_ind

=

0;

rtab_ind

=

0;

ov_ind

=

-1;

ovtype_ind

=

0;

maxrow_ind

=

0;

numrow_ind

=

-1;

returnCode_ind

=

-1;

returnMsg_ind

=

-1;

/*

Call

the

stored

procedure

*/

EXEC

SQL

CALL

dxxGenXML(:dad:dad_ind;

:result_tab:rtab_ind,

:overrideType:ovtype_ind,:override:ov_ind,

:max_row:maxrow_ind,:num_row:numrow_ind,

:returnCode:returnCode_ind,:returnMsg:returnMsg_ind);

#include

"dxx.h"

#include

"dxxrc.h"

EXEC

SQL

INCLUDE

SQLCA;

EXEC

SQL

BEGIN

DECLARE

SECTION;

SQL

TYPE

is

CLOB(100K)

dad;

/*

DAD

*/

EXEC

SQL

DECLARE

:dad

VARIABLE

CCSID

1047;

/*

specifies

the

CCSID

for

DAD

when

running

from

USS

*/

/*

to

ensure

that

DB2

UDB

converts

*/

/*

the

code

page

correctly

*/

char

result_tab[32];

/*

name

of

the

result

table

*/

char

result_colname[32];

/*

name

of

the

result

column

*/

char

valid_colname[32];

/*

name

of

the

valid

column,

will

set

to

NULL

*/

char

override[2];

/*

override,

will

set

to

NULL*/

short

overrideType;

/*

defined

in

dxx.h

*/

short

max_row;

/*

maximum

number

of

rows

*/

short

num_row;

/*

actual

number

of

rows

*/

long

returnCode;

/*

return

error

code

*/

char

returnMsg[1024];

/*

error

message

text

*/

short

dad_ind;

short

rtab_ind;

short

rcol_ind;

short

vcol_ind;

short

ovtype_ind;

short

ov_ind;

short

maxrow_ind;

short

numrow_ind;

short

returnCode_ind;

short

returnMsg_ind;

EXEC

SQL

END

DECLARE

SECTION;

Chapter

10.

XML

Extender

stored

procedures

205

FILE

*file_handle;

long

file_length=0;

/*

create

table

*/

EXEC

SQL

CREATE

TABLE

xml_order_tab

(xmlorder

XMLVarchar);

/*

initialize

the

DAD

CLOB

object.

*/

file_handle

=

fopen(

"/dxx/samples/dad/getstart_xcollection.dad",

"r"

);

if

(

file_handle

!=

NULL

)

{

file_length

=

fread

((void

*)

&dad.data

,

1,

FILE_SIZE,

file_handle);

if

(file_length

==

0)

{

printf

("Error

reading

dad

file

/dxx/samples/dad/getstart_xcollection.dad\n");

rc

=

-1;

goto

exit;

}

else

dad.length

=

file_length;

}

else

{

printf("Error

opening

dad

file

\n",

);

rc

=

-1;

goto

exit;

}

/*

initialize

host

variable

and

indicators

*/

strcpy(result_tab,"xml_order_tab");

strcpy(result_colname,

"xmlorder")

valid_colname

=

’\0’;

override[0]

=

’\0’;

overrideType

=

NO_OVERRIDE;

max_row

=

500;

num_row

=

0;

returnCode

=

0;

msg_txt[0]

=

’\0’;

dad_ind

=

0;

rtab_ind

=

0;

rcol_ind

=

0;

vcol_ind

=

-1;

ov_ind

=

-1;

ovtype_ind

=

0;

maxrow_ind

=

0;

numrow_ind

=

-1;

returnCode_ind

=

-1;

returnMsg_ind

=

-1;

/*

Call

the

store

procedure

*/

EXEC

SQL

CALL

"DB2XML.DXXGENXML"

(:dad:dad_ind;

:result_tab:rtab_ind,

:result_colname:rcol_ind,

:valid_colname:vcol_ind,

:overrideType:ovtype_ind,:override:ov_ind,

:max_row:maxrow_ind,:num_row:numrow_ind,

:returnCode:returnCode_ind,

:returnMsg:returnMsg_ind);

if

(SQLCODE

<

0)

{

EXEC

SQL

ROLLBACK;

else

EXEC

SQL

COMMIT;

}

exit:

return

rc;

Related

concepts:

v

“XML

Extender

composition

stored

procedures”

on

page

200

206

XML

Extender

Administration

and

Programming

Related

tasks:

v

“Composing

XML

documents

by

using

SQL

mapping”

on

page

60

v

“Composing

XML

collections

by

using

RDB_node

mapping”

on

page

63

v

“Calling

XML

Extender

composition

stored

procedures”

on

page

201

Related

reference:

v

“How

to

read

syntax

diagrams”

on

page

x

dxxRetrieveXML()

stored

procedure

Purpose:

The

stored

procedure

dxxRetrieveXML()

serves

as

a

means

for

retrieving

decomposed

XML

documents.

As

input,

dxxRetrieveXML()

takes

a

buffer

containing

the

DAD

file,

the

name

of

the

created

result

table,

and

the

maximum

number

of

rows

to

be

returned.

It

returns

a

result

set

of

the

result

table,

the

actual

number

of

rows

in

the

result

set,

an

error

code,

and

message

text.

To

support

dynamic

query,

dxxRetrieveXML()

takes

an

input

parameter,

override.

Based

on

the

input

overrideType,

the

application

can

override

the

SQL_stmt

for

SQL

mapping

or

the

conditions

in

RDB_node

for

RDB_node

mapping

in

the

DAD

file.

The

input

parameter

overrideType

is

used

to

clarify

the

type

of

the

override.

The

requirements

of

the

DAD

file

for

dxxRetrieveXML()

are

the

same

as

the

requirements

for

dxxGenXML().

The

only

difference

is

that

the

DAD

is

not

an

input

parameter

for

dxxRetrieveXML(),

but

it

is

the

name

of

an

enabled

XML

collection.

Syntax:

dxxRetrieveXML(char(collectionName32)

collectionName,

/*

input

*/

char(resultTabName32)

resultTabName,

/*

input

*/

char

resultColName,

char

resultValidCol

/*

input

*/

integer

overrideType,

/*

input

*/

varchar_value

override,

/*

input

*/

integer

maxRows,

/*

input

*/

integer

numRows,

/*

output

*/

long

returnCode,

/*

output

*/

varchar(1024)

returnMsg)

/*

output

*/

Where

varchar_value

is

32672

for

Windows

and

UNIX

and

16366

for

iSeries

and

z/OS.

Parameters:

Table

57.

dxxRetrieveXML()

parameters

Parameter

Description

IN/OUT

parameter

collectionName

The

name

of

an

enabled

XML

collection.

IN

resultTabName

The

name

of

the

result

table,

which

should

exist

before

the

call.

The

table

contains

only

one

column

of

either

XMLVARCHAR

or

XMLCLOB

type.

IN

result_column

The

name

of

the

column

in

the

result

table

in

which

the

composed

XML

documents

are

stored.

IN

Chapter

10.

XML

Extender

stored

procedures

207

Table

57.

dxxRetrieveXML()

parameters

(continued)

Parameter

Description

IN/OUT

parameter

valid_column

The

name

of

the

column

that

indicates

whether

the

XML

document

is

valid

when

it

is

validated

against

a

document

type

definition

(DTD).

IN

overrideType

A

flag

to

indicate

the

type

of

the

following

override

parameter:

v

NO_OVERRIDE:

No

override.

v

SQL_OVERRIDE:

Override

by

an

SQL_stmt.

v

XML_OVERRIDE:

Override

by

an

XPath-based

condition.

IN

override

Overrides

the

condition

in

the

DAD

file.

The

input

value

is

based

on

the

overrideType.

v

NO_OVERRIDE:

A

NULL

string.

v

SQL_OVERRIDE:

A

valid

SQL

statement.

Using

this

overrideType

requires

that

SQL

mapping

is

used

in

the

DAD

file.

The

input

SQL

statement

overrides

the

SQL_stmt

in

the

DAD

file.

v

XML_OVERRIDE:

A

string

that

contains

one

or

more

expressions

in

double

quotation

marks,

separated

by

″AND″.

Using

this

overrideType

requires

that

RDB_node

mapping

is

used

in

the

DAD

file.

IN

maxRows

The

maximum

number

of

rows

in

the

result

table.

IN

numRows

The

actual

number

of

generated

rows

in

the

result

table.

OUT

returnCode

The

return

code

from

the

stored

procedure.

OUT

returnMsg

The

message

text

that

is

returned

in

case

of

error.

OUT

Examples:

The

following

fragment

is

an

example

of

a

call

to

dxxRetrieveXML().

In

this

example,

a

result

table

is

created

with

the

name

of

XML_ORDER_TAB,

and

it

has

one

column

of

XMLVARCHAR

type.

A

complete,

working

sample

is

located

in

dxx_install\samples\db2xml\qcsrc(rtrx).

#include

"dxx.h"

#include

"dxxrc.h"

EXEC

SQL

INCLUDE

SQLCA;

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

collection[32];

/*

dad

buffer

*/

char

result_tab[32];

/*

name

of

the

result

table

*/

char

override[2];

/*

override,

will

set

to

NULL*/

short

overrideType;

/*

defined

in

dxx.h

*/

short

max_row;

/*

maximum

number

of

rows

*/

short

num_row;

/*

actual

number

of

rows

*/

long

returnCode;

/*

return

error

code

*/

208

XML

Extender

Administration

and

Programming

char

returnMsg[1024];

/*

error

message

text

*/

short

dadbuf_ind;

short

rtab_ind;

short

ovtype_ind;

short

ov_inde;

short

maxrow_ind;

short

numrow_ind;

short

returnCode_ind;

short

returnMsg_ind;

EXEC

SQL

END

DECLARE

SECTION;

/*

create

table

*/

EXEC

SQL

CREATE

TABLE

xml_order_tab

(xmlorder

XMLVarchar);

/*

initialize

host

variable

and

indicators

*/

strcpy(collection,"sales_ord");

strcpy(result_tab,"xml_order_tab");

override[0]

=

’\0’;

overrideType

=

NO_OVERRIDE;

max_row

=

500;

num_row

=

0;

returnCode

=

0;

msg_txt[0]

=

’\0’;

collection_ind

=

0;

rtab_ind

=

0;

ov_ind

=

-1;

ovtype_ind

=

0;

maxrow_ind

=

0;

numrow_ind

=

-1;

returnCode_ind

=

-1;

returnMsg_ind

=

-1;

/*

Call

the

store

procedure

*/

EXEC

SQL

CALL

dxxRetrieve(:collection:collection_ind;

:result_tab:rtab_ind,

:overrideType:ovtype_ind,:override:ov_ind,

:max_row:maxrow_ind,:num_row:numrow_ind,

:returnCode:returnCode_ind,:returnMsg:returnMsg_ind);

#include

"dxx.h"

#include

"dxxrc.h"

EXEC

SQL

INCLUDE

SQLCA;

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

collectionName[32];

/*

name

of

an

XML

collection

*/

char

result_tab[32];

/*

name

of

the

result

table

*/

char

result_colname[32];

/*

name

of

the

result

column

*/

char

valid_colname[32];

/*

name

of

the

valid

column,

will

set

to

NULL*/

char

override[2];

/*

override,

will

set

to

NULL*/

short

overrideType;

/*

defined

in

dxx.h

*/

short

max_row;

/*

maximum

number

of

rows

*/

short

num_row;

/*

actual

number

of

rows

*/

long

returnCode;

/*

return

error

code

*/

char

returnMsg[1024];

/*

error

message

text

*/

short

collectionName_ind;

short

rtab_ind;

short

rcol_ind;

short

vcol_ind;

short

ovtype_ind;

short

ov_ind;

short

maxrow_ind;

short

numrow_ind;

short

returnCode_ind;

short

returnMsg_ind;

EXEC

SQL

END

DECLARE

SECTION;

/*

create

table

*/

Chapter

10.

XML

Extender

stored

procedures

209

EXEC

SQL

CREATE

TABLE

xml_order_tab

(xmlorder

XMLVarchar);

/*

initial

host

variable

and

indicators

*/

strcpy(collection,

"sales_ord");

strcpy(result_tab,"xml_order_tab");

strcpy(result_col,"xmlorder");

valid_colname[0]

=

’\0’;

override[0]

=

’\0’;

overrideType

=

NO_OVERRIDE;

max_row

=

500;

num_row

=

0;

returnCode

=

0;

msg_txt[0]

=

’\0’;

collectionName_ind

=

0;

rtab_ind

=

0;

rcol_ind

=

0;

vcol_ind

=

-1;

ov_ind

=

-1;

ovtype_ind

=

0;

maxrow_ind

=

0;

numrow_ind

=

-1;

returnCode_ind

=

-1;

returnMsg_ind

=

-1;

/*

Call

the

store

procedure

*/

EXEC

SQL

CALL

"DB2XML.DXXRETRIEVE"

(:collectionName:collectionName_ind,

:result_tab:rtab_ind,

:result_colname:rcol_ind,

:valid_colname:vcol_ind,

:overrideType:ovtype_ind,:override:ov_ind,

:max_row:maxrow_ind,:num_row:numrow_ind,

:returnCode:returnCode_ind,:returnMsg:returnMsg_ind);

if

(SQLCODE

<

0)

{

EXEC

SQL

ROLLBACK;

else

EXEC

SQL

COMMIT;

}

Related

concepts:

v

“XML

Extender

composition

stored

procedures”

on

page

200

Related

tasks:

v

“Composing

XML

documents

by

using

SQL

mapping”

on

page

60

v

“Composing

XML

collections

by

using

RDB_node

mapping”

on

page

63

v

“Calling

XML

Extender

composition

stored

procedures”

on

page

201

Related

reference:

v

“How

to

read

syntax

diagrams”

on

page

x

v

Appendix

C,

“XML

Extender

limits,”

on

page

311

dxxGenXMLClob

stored

procedure

Purpose:

As

input,

dxxGenXMLClob

takes

a

buffer

containing

the

DAD.

It

constructs

XML

documents

using

data

that

is

stored

in

the

XML

collection

tables

that

are

specified

by

the

<Xcollection>

in

the

DAD

and

returns

the

first

and

typically

the

only

XML

document

generated

into

the

resultDoc

CLOB.

210

XML

Extender

Administration

and

Programming

Syntax:

dxxGenXMLClob(CLOB(100k)

DAD

/*input*/

integer

overrideType,

/*input*/

varchar(varchar_value)

override,

/*input*/

CLOB(1M)

resultDoc,

/*output*/

integer

valid,

/*output*/

integer

numDocs,

/*output*/

long

returnCode,

/*output*/

varchar(1024)

returnMsg),

/*output*/

Where

varchar_value

is

32672

for

Windows

and

UNIX

and

16366

for

iSeries

and

z/OS.

Parameters:

Table

58.

dxxGenXMLClob

parameters

Parameter

Description

IN/OUT

parameter

DAD

A

CLOB

containing

the

DAD

file.

IN

overrideType

A

flag

to

indicate

the

type

of

override

parameter:

NO_OVERRIDE

No

override.

SQL_OVERRIDE

Override

by

an

SQL_stmt

XML_OVERRIDE

Override

by

an

XPath-based

condition.

IN

override

Overrides

the

condition

in

the

DAD

file.

The

input

value

is

based

on

the

overrideType.

NO_OVERRIDE

A

NULL

string.

SQL_OVERRIDE

A

valid

SQL

statement.

Using

this

overrideType

requires

that

SQL

mapping

be

used

in

the

DAD

file.

The

input

SQL

statement

overrides

the

SQL_stmt

in

the

DAD

file.

XML_OVERRIDE

A

string

that

contains

one

or

more

expressions

in

double

quotation

marks

separated

by

the

word

and.

Using

this

overrideType

requires

that

RDB_node

mapping

be

used

in

the

DAD

file

IN

resultDoc

A

CLOB

that

contains

the

composed

XML

document.

OUT

valid

valid

is

set

as

follows:

v

If

VALIDATION=YES

then

valid=1

for

successful

validation

or

valid=0

for

unsuccessful

validation.

v

If

VALIDATION=NO

then

valid=NULL.

OUT

numDocs

The

number

of

XML

documents

that

would

be

generated

from

the

input

data.

Note:

Currently

only

the

first

document

is

returned.

OUT

returnCode

The

return

code

from

the

stored

procedure.

OUT

Chapter

10.

XML

Extender

stored

procedures

211

Table

58.

dxxGenXMLClob

parameters

(continued)

Parameter

Description

IN/OUT

parameter

returnMsg

The

message

text

that

is

returned

in

case

of

error.

OUT

The

CLOB

parameter

size

is

1

MB.

If

you

have

CLOB

files

that

are

larger

than

1

MB,

XML

Extender

provides

a

command

file

to

redefine

the

stored

procedure

parameter.

Download

the

crtgenxc.zip

file

from

the

DB2

UDB

XML

Extender

Web

site.

This

ZIP

file

contains

the

following

programs:

crtgenxc.db2

For

use

on

XML

Extender

V7.2

FixPak

5

and

later

for

UNIX

and

Windows.

crtgenxc.iseries

For

use

with

XML

Extender

for

iSeries

crtgenxc.zox.jci

and

crtgenxc.zos.cmd

For

use

with

XML

Extender

for

OS/390

V7,

APAR

PQ58249

and

later.

To

specify

the

CLOB

length:

Open

the

file

in

an

editor

and

modify

the

resultDoc

parameter,

shown

in

the

following

example.

out

resultDoc

clob(clob_size),

Size

recommendation:

The

size

limit

of

the

resultDoc

parameter

depends

on

your

system

setup,

but

be

aware

that

the

amount

specified

in

this

parameter

is

the

amount

allocated

by

JDBC,

regardless

of

the

size

of

the

document.

The

size

should

accommodate

your

largest

XML

files,

but

should

not

exceed

1.5

gigabytes.

Related

concepts:

v

“XML

Extender

composition

stored

procedures”

on

page

200

Related

tasks:

v

“Composing

XML

documents

by

using

SQL

mapping”

on

page

60

v

“Composing

XML

collections

by

using

RDB_node

mapping”

on

page

63

v

“Calling

XML

Extender

composition

stored

procedures”

on

page

201

Related

reference:

v

“How

to

read

syntax

diagrams”

on

page

x

v

Appendix

C,

“XML

Extender

limits,”

on

page

311

dxxRetrieveXMLClob

stored

procedure

Purpose:

The

dxxRetrieveXMLClob

stored

procedure

enables

document

composition

from

relational

data.

The

requirements

for

using

dxxRetrieveXMLClob

are

the

same

as

the

requirements

for

dxxGenXMLClob.

The

only

difference

is

that

the

DAD

is

not

an

input

parameter

for

dxxRetrieveXMLClob,

but

it

is

the

name

of

an

enabled

XML

collection.

Syntax:

212

XML

Extender

Administration

and

Programming

dxxRetrieveXMLClob(varchar(collectionName)

collelctionName

/*input*/

integer

overrideType,

/*input*/

varchar(varchar_value)

override,

/*input*/

CLOB(1M)

resultDoc,

/*output*/

integer

valid,

/*output*/

integer

numDocs,

/*output*/

long

returnCode,

/*output*/

varchar(1024)

returnMsg),

/*output*/

Parameters:

Table

59.

dxxRetrieveXMLClob

parameters

Parameter

Description

IN/OUT

parameter

collectionName

The

name

of

an

enabled

XML

collection.

IN

overrideType

A

flag

to

indicate

the

type

of

override

parameter:

NO_OVERRIDE

No

override.

SQL_OVERRIDE

Override

by

an

SQL_stmt

XML_OVERRIDE

Override

by

an

XPath-based

condition.

IN

override

Overrides

the

condition

in

the

DAD

file.

The

input

value

is

based

on

the

overrideType.

NO_OVERRIDE

A

NULL

string.

SQL_OVERRIDE

A

valid

SQL

statement.

Using

this

overrideType

requires

that

SQL

mapping

be

used

in

the

DAD

file.

The

input

SQL

statement

overrides

the

SQL_stmt

in

the

DAD

file.

XML_OVERRIDE

A

string

that

contains

one

or

more

expressions

in

double

quotation

marks

separated

by

the

word

and.

Using

this

overrideType

requires

that

RDB_node

mapping

be

used

in

the

DAD

file

IN

resultDoc

The

maximum

number

of

rows

in

the

result

table.

IN

valid

valid

is

set

as

follows:

v

If

VALIDATION=YES

then

valid=1

for

successful

validation

or

valid=0

for

unsuccessful

validation.

v

If

VALIDATION=NO

then

valid=NULL.

OUT

Chapter

10.

XML

Extender

stored

procedures

213

Table

59.

dxxRetrieveXMLClob

parameters

(continued)

Parameter

Description

IN/OUT

parameter

numDocs

The

number

of

XML

documents

that

would

be

generated

from

the

input

data.

NOTE:

currently

only

the

first

document

is

returned.

OUT

returnCode

The

return

code

from

the

stored

procedure.

OUT

returnMsg

The

message

text

that

is

returned

in

case

of

error.

OUT

The

CLOB

parameter

size

is

1

MB.

If

you

have

CLOB

files

that

are

larger

than

1

MB,

XML

Extender

provides

a

command

file

to

redefine

the

stored

procedure

parameter.

Download

the

crtgenxc.zip

file

from

the

DB2

UDB

XML

Extender

Web

site.

This

ZIP

file

contains

the

following

programs:

crtgenxc.db2

For

use

on

XML

Extender

V7.2

Fixpak

5

and

later

for

UNIX

and

Windows.

crtgenxc.iseries

For

use

with

XML

Extender

for

iSeries

crtgenxc.zox.jci

and

crtgenxc.zos.cmd

For

use

with

XML

Extender

for

OS/390

V7,

APAR

PQ58249

and

later.

To

specify

the

CLOB

length:

Open

the

file

in

an

editor

and

modify

the

resultDoc

parameter,

shown

in

the

following

example.

out

resultDoc

clob(clob_size),

Size

recommendation:

The

size

limit

of

the

resultDoc

parameter

depends

on

your

system

setup,

but

be

aware

that

the

amount

specified

in

this

parameter

is

the

amount

allocated

by

JDBC,

regardless

of

the

size

of

the

document.

The

size

should

accommodate

your

largest

XML

files,

but

should

not

exceed

1.5

gigabytes.

Related

concepts:

v

“XML

Extender

composition

stored

procedures”

on

page

200

Related

tasks:

v

“Composing

XML

documents

by

using

SQL

mapping”

on

page

60

v

“Composing

XML

collections

by

using

RDB_node

mapping”

on

page

63

v

“Calling

XML

Extender

composition

stored

procedures”

on

page

201

Related

reference:

v

“How

to

read

syntax

diagrams”

on

page

x

v

Appendix

C,

“XML

Extender

limits,”

on

page

311

214

XML

Extender

Administration

and

Programming

XML

Extenders

decomposition

stored

procedures

The

decomposition

stored

procedures

dxxInsertXML()

and

dxxShredXML()

are

used

to

break

down

or

shred

incoming

XML

documents

and

to

store

data

in

new

or

existing

database

tables.

The

dxxInsertXML()

stored

procedure

takes

an

enabled

XML

collection

name

as

input.

The

dxxShredXML()

stored

procedure

takes

a

DAD

file

as

input;

it

does

not

require

an

enabled

XML

collection.

dxxShredXML()

stored

procedure

Purpose:

Decomposes

XML

documents,

based

on

a

DAD

file

mapping,

storing

the

content

of

the

XML

elements

and

attributes

in

specified

DB2

UDB

tables.

In

order

for

dxxShredXML()

to

work,

all

tables

specified

in

the

DAD

file

must

exist,

and

all

columns

and

their

data

types

that

are

specified

in

the

DAD

must

be

consistent

with

the

existing

tables.

The

stored

procedure

requires

that

the

columns

specified

in

the

join

condition,

in

the

DAD,

correspond

to

primary-

foreign

key

relationships

in

the

existing

tables.

The

join

condition

columns

that

are

specified

in

the

RDB_node

of

the

root

element_node

must

exist

in

the

tables.

The

stored

procedure

fragment

in

this

section

is

a

sample

for

explanation

purposes.

Syntax:

dxxShredXML(CLOB(100K)

DAD,

/*

input

*/

CLOB(1M)

xmlobj,

/*

input

*/

long

returnCode,

/*

output

*/

varchar(1024)

returnMsg)

/*

output

*/

Parameters:

Table

60.

dxxShredXML()

parameters

Parameter

Description

IN/OUT

parameter

DAD

A

CLOB

containing

the

DAD

file.

IN

xmlobj

An

XML

document

object

in

XMLCLOB

type.

IN

returnCode

The

return

code

from

the

stored

procedure.

OUT

returnMsg

The

message

text

that

is

returned

in

case

of

error.

OUT

Examples:

The

following

fragment

is

an

example

of

a

call

to

dxxShredXML().

#include

"dxx.h"

#include

"dxxrc.h"

EXEC

SQL

INCLUDE

SQLCA;

EXEC

SQL

BEGIN

DECLARE

SECTION;

SQL

TYPE

is

CLOB

dad;

/*

DAD*/

SQL

TYPE

is

CLOB_FILE

dadFile;

/*

DAD

file*/

SQL

TYPE

is

CLOB

xmlDoc;

/*

input

XML

document

*/

SQL

TYPE

is

CLOB_FILE

xmlFile;

/*

input

XMLfile

*/

Chapter

10.

XML

Extender

stored

procedures

215

long

returnCode;

/*

error

code

*/

char

returnMsg[1024];

/*

error

message

text

*/

short

dad_ind;

short

xmlDoc_ind;

short

returnCode_ind;

short

returnMsg_ind;

EXEC

SQL

END

DECLARE

SECTION;

/*

initialize

host

variable

and

indicators

*/

strcpy(dadFile.name,"dxx_install

/samples/db2xml/dad/getstart_xcollection.dad

");

dadFile.name_length=strlen("dxx_install

/samples/db2xml/dad/getstart_xcollection.dad

");

dadFile.file_option=SQL_FILE_READ;

strcpy(xmlFile.name,"dxx_install

/samples/db2xml/xml/getstart.xml");

xmlFile.name_length=strlen("dxx_install

/samples/db2xml/xml/getstart.xml")");

xmlFile.file_option=SQL_FILE_READ;

SQL

EXEC

VALUES

(:dadFile)

INTO

:dad;

SQL

EXEC

VALUES

(:xmlFile)

INTO

:xmlDoc;

returnCode

=

0;

returnMsg[0]

=

’\0’;

dad_ind

=

0;

xmlDoc_ind

=

0;

returnCode_ind

=

-1;

returnMsg_ind

=

-1;

/*

Call

the

store

procedure

*/

EXEC

SQL

CALL

DB2XML.dxxShredXML(:dad:dad_ind;

:xmlDoc:xmlDoc_ind,

:returnCode:returnCode_ind,

:returnMsg:returnMsg_ind);

#include

"dxx.h"

#include

"dxxrc.h"

EXEC

SQL

INCLUDE

SQLCA;

EXEC

SQL

BEGIN

DECLARE

SECTION;

SQL

TYPE

is

CLOB(100K)

dad;

/*

DAD

*/

EXEC

SQL

DECLARE

:dad

VARIABLE

CCSID

1047;

/*

specifies

the

CCSID

for

DAD

when

*/

/*

running

from

USS

*/

/*

to

ensure

that

DB2

UDB

*/

/*

converts

the

code

page

correctly

*/

SQL

TYPE

is

CLOB(100K)

xmlDoc;

/*

input

xml

document

*/

EXEC

SQL

DECLARE

:xmlDoc

VARIABLE

CCSID

1047;

/*

specifies

the

CCSID

for

DAD

*/

/*

when

running

from

USS

to

ensure

*/

/*

that

DB2

UDB

converts

the

*/

/*

code

page

correctly

*/

long

returnCode;

/*

return

error

code

*/

char

returnMsg[1024];

/*

error

message

text

*/

short

dad_ind;

short

xmlDoc_ind;

short

returnCode_ind;

short

returnMsg_ind;

EXEC

SQL

END

DECLARE

SECTION;

FILE

*file_handle;

long

file_length=0;

/*

initialize

the

DAD

CLOB

object.

*/

file_handle

=

fopen(

"/dxxsamples/dad/getstart_xcollection.dad",

"r"

);

if

(

file_handle

!=

NULL

)

{

file_length

=

fread

((void

*)

&dad.data

216

XML

Extender

Administration

and

Programming

,

1,

FILE_SIZE,

file_handle);

if

(file_length

==

0)

{

printf

("Error

reading

dad

file

getstart_xcollection.dad\n");

rc

=

-1;

goto

exit;

}

else

dad.length

=

file_length;

}

else

{

printf("Error

opening

dad

file

\n");

rc

=

-1;

goto

exit;

}

/*

Initialize

the

XML

CLOB

object.

*/

file_handle

=

fopen(

"/dxxsamples/xml/getstart_xcollection.xml",

"r"

);

if

(

file_handle

!=

NULL

)

{

file_length

=

fread

((void

*)

&xmlDoc.data

,

1,

FILE_SIZE,

file_handle);

if

(file_length

==

0)

{

printf

("Error

reading

xml

file

getstart_xcollection.xml

\n");

rc

=

-1;

goto

exit;

}

else

xmlDoc.length

=

file_length;

}

else

{

printf("Error

opening

xml

file

\n");

rc

=

-1;

goto

exit;

}

/*

initialize

host

variable

and

indicators

*/

returnCode

=

0;

msg_txt[0]

=

’\0’;

dad_ind

=

0;

xmlDoc_ind

=

0;

returnCode_ind

=

-1;

returnMsg_ind

=

-1;

/*

Call

the

store

procedure

*/

EXEC

SQL

CALL

"DB2XML.DXXSHRED"

(:dad:dad_ind;

:xmlDoc:xmlDoc_ind,

:returnCode:returnCode_ind,

:returnMsg:returnMsg_ind);

if

(SQLCODE

<

0)

{

EXEC

SQL

ROLLBACK;

else

EXEC

SQL

COMMIT;

}

exit:

return

rc;

Related

concepts:

v

“XML

Extenders

decomposition

stored

procedures”

on

page

215

Related

tasks:

v

“Decomposing

an

XML

collection

by

using

RDB_node

mapping”

on

page

65

v

“Decomposing

XML

documents

into

DB2

UDB

data”

on

page

97

v

“Calling

XML

Extender

composition

stored

procedures”

on

page

201

Chapter

10.

XML

Extender

stored

procedures

217

Related

reference:

v

“How

to

read

syntax

diagrams”

on

page

x

v

Appendix

C,

“XML

Extender

limits,”

on

page

311

dxxInsertXML()

stored

procedure

Purpose:

Takes

two

input

parameters,

the

name

of

an

enabled

XML

collection

and

the

XML

document

that

are

to

be

decomposed,

and

returns

two

output

parameters,

a

return

code

and

a

return

message.

Syntax:

dxxInsertXML(char(32)

collectionName,

/*input*/

CLOB(1M)

xmlobj,

/*

input

*/

long

returnCode,

/*

output

*/

varchar(1024)

returnMsg)

/*

output

*/

Parameters:

Table

61.

dxxInsertXML()

parameters

Parameter

Description

IN/OUT

parameter

collectionName

The

name

of

an

enabled

XML

collection.

IN

xmlobj

An

XML

document

object

in

CLOB

type.

IN

returnCode

The

return

code

from

the

stored

procedure.

OUT

returnMsg

The

message

text

that

is

returned

in

case

of

error.

OUT

Examples:

In

the

following

fragment

example,

the

dxxInsertXML()

call

decomposes

the

input

XML

document

dxx_install/xml/order1.xml

and

inserts

data

into

the

SALES_ORDER

collection

tables

according

to

the

mapping

that

is

specified

in

the

DAD

file

with

which

it

was

enabled

with.

.

#include

"dxx.h"

#include

"dxxrc.h"

EXEC

SQL

INCLUDE

SQLCA;

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

collection[64];

/*

name

of

an

XML

collection

*/

SQL

TYPE

is

CLOB_FILE

xmlDoc;

/*

input

XML

document

*/

long

returnCode;

/*

error

code

*/

char

returnMsg[1024];

/*

error

message

text

*/

short

collection_ind;

short

xmlDoc_ind;

short

returnCode_ind;

short

returnMsg_ind;

EXEC

SQL

END

DECLARE

SECTION;

/*

initialize

host

variable

and

indicators

*/

strcpy(collection,"sales_ord")

strcpy(xmlobj.name,"dxx_install/samples

db2xml/xml/getstart.xml");

218

XML

Extender

Administration

and

Programming

xmlobj.name_length=strlen("dxx_install/samples

db2xml/xml/getstart.xml");

xmlobj.file_option=SQL_FILE_READ;

returnCode

=

0;

returnMsg[0]

=

’\0’;

collection_ind

=

0;

xmlobj_ind

=

0;

returnCode_ind

=

-1;

returnMsg_ind

=

-1;

/*

Call

the

store

procedure

*/

EXEC

SQL

CALL

DB2XML.dxxInsertXML(:collection:collection_ind;

:xmlobj:xmlobj_ind,

:returnCode:returnCode_ind,:returnMsg:returnMsg_ind);

#include

"dxx.h"

#include

"dxxrc.h"

EXEC

SQL

INCLUDE

SQLCA;

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

collectionName[32];

/*

name

of

an

XML

collection

*/

SQL

TYPE

is

CLOB(100K)

xmlDoc;

/*

input

xml

document

*/

long

returnCode;

/*

return

error

code

*/

char

returnMsg[1024];

/*

error

message

text

*/

short

collectionName_ind;

short

xmlDoc_ind;

short

returnCode_ind;

short

returnMsg_ind;

EXEC

SQL

END

DECLARE

SECTION;

FILE

*file_handle;

long

file_length=0;

/*

initialize

the

DAD

CLOB

object.

*/

file_handle

=

fopen(

"/dxxsamples/dad/getstart_xcollection.dad",

"r"

);

if

(

file_handle

!=

NULL

)

{

file_length

=

fread

((void

*)

,

&dad.data;

1,

FILE_SIZE,

file_handle);

if

(file_length

==

0)

{

printf

("Error

reading

dad

file

getstart_xcollection.dad\n");

rc

=

-1;

goto

exit;

}

else

dad.length

=

file_length;

}

else

{

printf("Error

opening

dad

file

\n");

rc

=

-1;

goto

exit;

}

/*

initialize

host

variable

and

indicators

*/

strcpy(collectionName,

"sales_ord");

returnCode

=

0;

msg_txt[0]

=

’\0’;

collectionName_ind

=

0;

xmlDoc_ind

=

0;

returnCode_ind

=

-1;

returnMsg_ind

=

-1;

/*

Call

the

store

procedure

*/

EXEC

SQL

CALL

"DB2XML.DXXINSERTXML"

(:collection_name:collection_name_ind,

:xmlDoc:xmlDoc_ind,

:returnCode:returnCode_ind,

:returnMsg:returnMsg_ind);

if

(SQLCODE

<

0)

{

EXEC

SQL

ROLLBACK;

Chapter

10.

XML

Extender

stored

procedures

219

else

EXEC

SQL

COMMIT;

}

exit:

return

rc;

Related

concepts:

v

“XML

Extenders

decomposition

stored

procedures”

on

page

215

Related

tasks:

v

“Decomposing

an

XML

collection

by

using

RDB_node

mapping”

on

page

65

v

“Decomposing

XML

documents

into

DB2

UDB

data”

on

page

97

v

“Calling

XML

Extender

composition

stored

procedures”

on

page

201

Related

reference:

v

“How

to

read

syntax

diagrams”

on

page

x

v

Appendix

C,

“XML

Extender

limits,”

on

page

311

220

XML

Extender

Administration

and

Programming

Chapter

11.

MQSeries

stored

procedures

and

functions

XML

Extender

stored

procedures

and

functions

for

MQSeries

XML

Extender

provides

two

methods

of

storing

and

accessing

XML

data.

Using

the

XML

column

method,

you

can

store

XML

documents

in

a

DB2®

table

while

querying,

updating,

and

retrieving

the

documents

contents.

The

MQ

XML

user-defined

functions

enable

you

to

query

XML

documents

and

then

publish

the

results

to

a

message

queue.

Additionally,

you

can

use

the

XML

collection

method

to

store

the

untagged

contents

of

an

XML

document

in

one

or

multiple

tables

or

compose

XML

documents

from

multiple

tables.

Using

the

MQ

XML

stored

procedures,

you

can

retrieve

an

XML

document

from

a

message

queue,

decompose

it

into

untagged

data,

and

store

the

data

in

DB2

UDB

tables.You

can

also

compose

an

XML

document

from

DB2

data

and

send

the

document

to

an

MQSeries®

message

queue.

MQSeries

supports

three

messaging

models

to

distribute

XML

data

and

documents:

datagrams

Messages

are

sent

to

a

single

destination

with

no

reply

expected.

publish/subscribe

One

or

more

publishers

send

a

message

to

a

publication

service

which

distributes

the

message

to

interested

subscribers.

request/reply

Messages

are

sent

to

a

single

destination

and

the

sender

expects

to

receive

a

response.

MQSeries

can

be

used

in

numerous

ways.

Simple

datagrams

are

exchanged

to

coordinate

multiple

applications,

to

exchange

information,

request

services,

and

to

provide

notification

of

interesting

events.

Publish/subscribe

is

most

often

used

to

disseminate

real-time

information

in

a

timely

manner.

The

request/reply

style

is

generally

used

as

a

simple

form

of

pseudo-synchronous

remote

procedure

call.

More

complex

models

can

also

be

constructed

by

combining

these

basic

styles.

The

fundamental

messaging

techniques

described

here

are

used

in

a

wide

variety

of

ways.

Because

MQSeries

is

available

across

a

very

wide

range

of

operating

systems

it

provides

an

important

mechanism

to

link

disparate

applications

from

similar

or

dissimilar

environments.

To

use

MQXML

functions

and

stored

procedures,

ensure

that

you

have

the

following

software

installed.

v

DB2

Universal

Database™

Version

7.2

or

later

v

DB2

MQSeries

Functions

Version

7.2

(Available

as

an

optional

installation

feature

of

DB2

Universal

Database

Version

7.2.

Installation

information

is

available

in

the

DB2

Universal

Database

Version

7.2

Release

Notes.)

v

MQSeries

Publish/Subscribe

or

MQSeries

Integrator

when

using

publishing

functions.

MQPublishXML

function

Purpose:

©

Copyright

IBM

Corp.

1999,

2004

221

The

MQPublishXML

function

publishes

XMLVARCHAR

and

XMLCLOB

data

to

MQSeries.

This

function

requires

the

installation

of

either

MQSeries

Publish/Subscribe

or

MQSeries

Integrator.

See

the

following

Web

site

for

more

information:

http://www.software.ibm.com/MQSeries

The

MQPublishXML

function

publishes

the

XML

data

contained

in

msg-data

to

the

MQSeries

publisher

specified

by

publisher-service

using

the

quality

of

publish

policy

publish-policy.

The

topic

of

the

message

is

optionally

specified

by

topic.

An

optional

user

defined

message

correlation

identifier

can

be

specified

by

correl-id.

The

function

returns

a

1

if

successful.

Syntax:

��

MQPublishXML

(

msg-data

,

)

publisher-service

topic

publisher-service

,

publish-policy

��

Parameters:

Table

62.

MQPublishXML

parameters

Parameter

Data

type

Description

publisher-service

VARCHAR(48)

A

string

containing

the

logical

MQSeries

destination

to

which

the

message

is

to

be

sent.

When

specified,

the

publisher-service

refers

to

a

publisher

Service

Point

defined

in

the

AMT.XML

repository

file.

If

the

publisher-service

is

not

specified,

then

the

DB2.DEFAULT.PUBLISHER

will

be

used.

The

maximum

size

of

publisher-service

is

48

bytes.

publish-policy

VARCHAR(48)

A

string

containing

the

MQSeries

AMI

publish

policy

to

be

used

in

handling

this

message.

If

specified,

the

publish-policy

refers

to

a

policy

which

is

defined

in

the

AMT.XML

repository

file.

The

publish

policy

also

defines

a

set

of

quality

of

publish

options

that

should

be

applied

to

the

messaging

operation

options.

These

options

include

message

priority

and

message

persistence

the

service-policy

is

not

specified,

then

the

default

DB2.DEFAULT.POLICY

will

be

used.

The

maximum

size

of

service-policy

is

48

bytes.

For

more

information,

see

the

MQSeries

Application

Messaging

Interface.

222

XML

Extender

Administration

and

Programming

Table

62.

MQPublishXML

parameters

(continued)

Parameter

Data

type

Description

msg-data

XMLVARCHAR

or

XMLCLOB

An

XMLVARCHAR

or

XMLCLOB

expression

containing

the

data

to

be

sent

via

MQSeries.

topic

VARCHAR(40)

A

string

containing

the

topic

that

the

message

is

to

be

published

under.

If

no

topic

is

specified,

none

will

be

associated

with

the

message.

The

maximum

size

of

topic

is

40

bytes.

Multiple

topics

can

be

listed

within

a

topic

string

by

separating

each

topic

by

″:″.

Return

Codes:

If

successful,

the

MQPublishXML

functions

return

a

1.

A

value

of

0

is

returned

if

the

function

is

unsuccessful.

Related

concepts:

v

“XML

Extender

stored

procedures

and

functions

for

MQSeries”

on

page

221

Related

reference:

v

“How

to

read

syntax

diagrams”

on

page

x

MQReadXML

function

Purpose:

The

MQREADXML

function

returns

XMLVARCHAR

data

from

the

MQSeries

location

that

is

specified

by

the

receive-service.

It

uses

the

quality

of

receive-policy.

The

MQREADXML

function

does

not

remove

messages

from

the

queue

associated

with

receive-service

Syntax:

��

MQREADXML

(

)

receive-service

receive-service

,

receive-policy

��

Parameters:

Chapter

11.

MQSeries

stored

procedures

and

functions

223

Table

63.

MQReadXML

parameters

Parameter

Data

type

Description

receive-service

VARCHAR(48)

A

string

containing

the

logical

MQSeries

destination

from

which

the

message

is

to

be

received.

If

the

receive-service

is

specified,

it

refers

to

a

service

point

defined

in

the

AMT.XML

repository

file.

If

receive-service

is

not

specified,

then

the

DB2.DEFAULT.SERVICE

is

used.

The

maximum

size

of

receive-service

is

48

bytes

receive-policy

VARCHAR(48)

A

string

containing

the

MQSeries

AMI

service

policy

used

in

the

handling

of

a

message.

When

the

receive-policy

is

specified,

it

refers

to

a

policy

defined

in

the

AMT.XML

repository

file.

A

receive

policy

defines

a

set

of

quality

of

receive

options

that

are

applied

to

the

messaging

operation.

These

options

include

message

priority

and

message

persistence.

If

the

receive-policy

is

not

specified,

then

the

default

DB2.DEFAULT.POLICY

will

be

used.

The

maximum

size

of

receive-policy

is

48

bytes.

Results:

When

a

message

in

the

queue

has

been

read

successfully,

MQREADXML

returns

a

db2xml.xmlvarchar.

A

NULL

is

returned

if

no

messages

are

available.

Examples:

Example

1:

This

example

reads

the

message

at

the

head

of

the

queue

that

is

specified

by

the

default

service

DB2.DEFAULT.SERVICE.

It

uses

the

default

policy

DB2.DEFAULT.POLICY

to

read

the

message.

values

DB2XML.MQREADXML()

This

example

returns

the

contents

of

the

message

as

an

XMLVARCHAR.

If

no

messages

are

available

a

NULL

is

returned.

Example

2:

This

example

reads

the

message

at

the

head

of

the

queue

specified

by

the

service

MYSERVICE

using

the

default

policy

DB2.DEFAULT.POLICY.

values

DB2XML.MQREADXML(’MYSERVICE’)

In

the

example,

the

contents

of

the

message

are

returned

as

XMLVARCHAR.

If

no

messages

are

available

the

a

NULL

is

returned.

Example

3:

This

example

reads

the

message

at

the

head

of

the

queue

specified

by

the

service

MYSERVICE

using

the

policy

MYPOLICY.

values

DB2XML.MQREADXML(’MYSERVICE’,’MYPOLICY’)

224

XML

Extender

Administration

and

Programming

The

contents

of

the

message

are

returned

as

XMLVARCHAR

if

successful.

If

no

messages

are

available

a

NULL

is

returned.

Related

concepts:

v

“XML

Extender

stored

procedures

and

functions

for

MQSeries”

on

page

221

Related

reference:

v

“How

to

read

syntax

diagrams”

on

page

x

MQReadAllXML

function

Purpose:

The

MQReadAllXML

function

returns

a

table

containing

the

messages

and

message

metadata

from

the

MQSeries

location

specified

by

receive-service

using

the

quality

of

service-policy.

Performing

this

operation

does

not

remove

the

messages

from

the

queue

associated

with

receive-service.

If

num-rows

is

specified,

then

a

maximum

of

num-rows

messages

will

be

returned.

If

num-rows

is

not

specified

then

all

the

available

messages

are

returned.

Syntax:

��

MQREADALLXML

(

)

receive-service

num-rows

receive-service

,

service-policy

��

Parameters:

Table

64.

MQReadAllXML

parameters

Parameter

Data

type

Description

receive-service

VARCHAR(48)

A

string

containing

the

logical

MQSeries

destination

from

which

the

message

is

to

be

read.

If

specified,

the

receive-service

must

refer

to

a

service

point

defined

in

the

AMT.XML

repository

file.

However,

if

receive-service

is

not

specified,

then

the

DB2.DEFAULT.SERVICE

will

be

used.

The

maximum

size

of

receive-service

is

48

bytes.

service-policy

VARCHAR(48)

A

string

containing

the

MQSeries

AMI

Service

Policy

used

in

the

handling

of

this

message.

When

the

service-policy

is

specified,

it

refers

to

a

Policy

defined

in

the

AMT.XML

repository

file.

The

maximum

size

of

receive-service

is

48

bytes.

For

additional

information,

refer

to

the

MQSeries

Application

Messaging

Interface

manual.

Chapter

11.

MQSeries

stored

procedures

and

functions

225

Table

64.

MQReadAllXML

parameters

(continued)

Parameter

Data

type

Description

num-rows

INTEGER

A

positive

integer

containing

the

maximum

number

of

messages

to

be

returned

by

the

function.

Results:

The

MQReadAllXML

function

returns

a

table

containing

messages

and

message

metadata

as

described

below.

Table

65.

Result

set

table

Column

Name

Data

Type

Description

MSG

XMLVARCHAR

The

contents

of

the

MQSeries

message.

The

maximum

length

is

4K

bytes.

CORRELID

VARCHAR(24)

A

correlation

ID

that

can

be

used

to

relate

to

messages.

TOPIC

VARCHAR(40)

The

topic

the

message

was

published

with,

if

available.

QNAME

VARCHAR(48)

The

queue

name

the

message

was

received

at

MSGID

VARCHAR(24)

The

MQSeries

assigned

unique

identifier

for

a

message.

MSGFORMAT

VARCHAR(8)

The

format

of

the

message

as

defined

by

MQSeries.

Typical

strings

have

a

format

of

MQSTR.

Examples:

Example

1:

All

the

messages

from

the

queue

that

are

specified

by

the

default

service

DB2.DEFAULT.SERVICE

are

read

using

the

default

policy

DB2.DEFAULT.POLICY.

The

messages

and

all

the

metadata

are

returned

in

a

table

format.

select

*

from

table

(DB2XML.MQREADALLXML())

t

Example

2:

All

messages

that

are

specified

by

the

service

MYSERVICE

by

using

the

default

policy

DB2.DEFAULT.POLICY.

Only

the

msg

and

correlid

columns

are

returned.

The

message

queue

is

in

a

table

format,

wherein

you

can

select

the

fields

that

you

want.

select

t.MSG,

t.CORRELID

from

table

(DB2XML.MQREADALLXML(’MYSERVICE’))

t

Example

3:

The

queue

that

is

specified

by

the

default

service

DB2.DEFAULT.SERVICE

is

read

using

the

default

policy

DB2.DEFAULT.POLICY..

Only

messages

with

a

CORRELID

of

’1234’

are

returned.

Up

to

10

messages

are

read

and

returned.

All

columns

are

returned.

select

*

from

table

(DB2XML.MQREADALLXML())

t

where

t.CORRELID

=

’1234’

Example

4:

The

messages

that

are

specified

by

the

default

service

DB2.DEFAULT.SERVICE

are

read

using

the

default

policy

DB2.DEFAULT.POLICY

.

All

columns

are

returned.

select

*

from

table

(DB2XML.MQREADALLXML(10))

t

226

XML

Extender

Administration

and

Programming

Related

concepts:

v

“XML

Extender

stored

procedures

and

functions

for

MQSeries”

on

page

221

Related

reference:

v

“How

to

read

syntax

diagrams”

on

page

x

MQReadXMLCLOB

function

Purpose:

The

MQREADXMLCLOB

function

returns

XMLCLOB

data

from

the

MQSeries

location

specified

by

receive-service

using

the

quality

of

service

policy

receive-policy.

Performing

this

operation

does

not

remove

the

message

from

the

queue

associated

with

the

receive-service.

The

message

at

the

head

of

the

queue

will

be

returned.

The

return

value

is

an

XMLCLOB

containing

the

messages.

If

no

messages

are

available

to

be

returned

a

NULL

will

be

returned.

Syntax:

��

MQReadXMLCLOB

(

)

receive-service

receive-service

,

receive-policy

��

Parameters:

Table

66.

MQReadXMLCLOB

parameters

Parameter

Data

type

Description

receive-service

VARCHAR(48)

A

string

containing

the

logical

MQSeries

destination

from

which

the

message

is

to

be

received.

If

specified,

the

receive-service

refers

to

a

Service

Point

defined

in

the

AMT.XML

repository

file.

If

receive-service

is

not

specified,

then

the

DB2.DEFAULT.SERVICE

will

be

used.

The

maximum

size

of

receive-service

is

48

bytes

Chapter

11.

MQSeries

stored

procedures

and

functions

227

Table

66.

MQReadXMLCLOB

parameters

(continued)

Parameter

Data

type

Description

receive-policy

VARCHAR(48)

A

string

containing

the

MQSeries

AMI

Service

Policy

used

in

the

handling

of

this

message.

When

the

receive-policy

is

specified,

it

refers

to

a

Policy

defined

in

the

AMT.XML

repository

file.

A

Service

Policy

defines

a

set

of

quality

of

service

options

that

are

applied

to

the

messaging

operation.

These

options

include

message

priority

and

message

persistence.

If

the

receive-policy

is

not

specified,

then

the

default

DB2.DEFAULT.POLICY

will

be

used.

The

maximum

size

of

receive-service

is

48

bytes.

Results:

When

a

message

in

the

queue

has

been

read

successfully,

MQREADXMLCLOB

returns

a

db2xml.xmlclob.

A

NULL

is

returned

if

no

messages

are

available.

MQReadAllXMLCLOB

function

Purpose:

The

MQReadAllXMLCLOB

function

returns

a

table

containing

the

messages

and

message

metadata

from

the

MQSeries

location

specified

by

receive-service

using

the

quality

of

service

policy

receive-service.

Performing

this

operation

does

not

remove

the

messages

from

the

queue

associated

with

receive-service.

If

num-rows

is

specified,

then

a

maximum

of

num-rows

messages

will

be

returned.

If

num-rows

is

not

specified

then

all

available

messages

will

be

returned.

Syntax:

��

MQReadAllXMLCLOB

(

)

receive-service

num-rows

receive-service

,

service-policy

��

Parameters:

228

XML

Extender

Administration

and

Programming

Table

67.

MQReadAllXMLCLOB

parameters

Parameter

Data

type

Description

receive-service

VARCHAR(48)

A

string

containing

the

logical

MQSeries

destination

from

which

the

message

is

to

be

read.

If

specified,

the

receive-service

must

refer

to

a

Service

Point

defined

in

the

AMT.XML

repository

file.

However,

if

receive-service

is

not

specified,

then

the

DB2.DEFAULT.SERVICE

will

be

used.

The

maximum

size

of

receive-service

is

48

bytes.

service-policy

VARCHAR(48)

A

string

containing

the

MQSeries

AMI

service

policy

used

in

the

handling

of

this

message.

When

the

service-policy

is

specified,

it

refers

to

a

policy

defined

in

the

AMT.XML

repository

file.

The

maximum

size

of

service-policy

is

48

bytes.

num-rows

INTEGER

A

positive

integer

containing

the

maximum

number

of

messages

to

be

returned

by

the

function.

Results:

The

MQReadAllXMLCLOB

function

returns

a

table

containing

messages

and

message

metadata

as

described

below.

Table

68.

MQReadAllXMLCLOB

Result

set

table

Column

Name

Data

Type

Description

MSG

XMLCLOB

The

contents

of

the

MQSeries

message,

up

to

1MB

in

length.

CORRELID

VARCHAR(24)

A

correlation

ID

that

can

be

used

to

relate

messages.

TOPIC

VARCHAR(40)

The

topic

the

message

was

published

with,

if

available.

QNAME

VARCHAR(48)

The

queue

name

the

message

was

received

at

MSGID

VARCHAR(24)

The

MQSeries

assigned

unique

identifier

for

this

message

MSGFORMAT

VARCHAR(8)

The

format

of

the

message

as

defined

by

MQSeries.

Typical

strings

have

a

format

of

MQSTR.

Chapter

11.

MQSeries

stored

procedures

and

functions

229

Example

1:

All

the

messages

from

the

queue

that

are

specified

by

the

default

service

DB2.DEFAULT.SERVICE

are

read

using

the

default

policy

DB2.DEFAULT.POLICY.

The

messages

and

all

the

metadata

are

returned

in

a

table

format.

select

*

from

table

(DB2XML.MQREADALLXMLCLOB())

t

Example

2:

Messages

from

the

head

of

the

queue

are

specified

by

the

service

MYSERVICE

by

using

the

default

policy

DB2.DEFAULT.POLICY.

Only

the

msg

and

correlid

columns

are

returned.

select

t.MSG,

t.CORRELID

from

table

(DB2XML.MQREADALLXMLCLOB(’MYSERVICE’))

t

Example

3:

The

head

of

the

queue

that

is

specified

by

the

default

service

DB2.DEFAULT.SERVICE

is

read

using

the

default

policy

DB2.DEFAULT.POLICY

.

Only

messages

with

a

CORRELID

of

’1234’

are

returned.

All

columns

are

returned.

select

*

from

table

(DB2XML.MQREADALLXMLCLOB())

t

where

t.CORRELID

=

’1234’

Example

4:

The

first

10

messages

from

the

head

of

the

queue

that

are

specified

by

the

default

service

DB2.DEFAULT.SERVICE

are

read

using

the

default

policy

DB2.DEFAULT.POLICY.

All

columns

are

returned.

select

*

from

table

(DB2XML.MQREADALLXMLCLOB(10))

t

Related

concepts:

v

“XML

Extender

stored

procedures

and

functions

for

MQSeries”

on

page

221

Related

reference:

v

“How

to

read

syntax

diagrams”

on

page

x

MQReceiveXML

function

Purpose:

The

MQReceiveXML

removes

one

message

associated

with

receive-service

from

the

queue.

The

function

returns

XMLVARCHAR

data

from

the

MQSeries

location

specified

by

the

receive-service

function

which

uses

the

quality

of

receive-service.

Syntax:

��

MQReceiveXML

(

)

receive-service

receive-service

,

service-policy

receive-service

,

service-policy

correl-id

��

Parameters:

230

XML

Extender

Administration

and

Programming

Table

69.

MQReceiveXML

parameters

Parameter

Data

type

Description

receive-service

VARCHAR(48)

A

string

containing

the

logical

MQSeries

destination

from

which

the

message

is

to

be

received.

If

specified,

receive-service

refers

to

a

service

point

defined

in

the

AMT.XML

repository

file.

If

receive-service

is

not

specified,

then

the

DB2.DEFAULT.SERVICE

will

be

used.

The

maximum

size

of

receive-service

is

48

bytes.

service-policy

VARCHAR(48)

A

string

containing

the

MQSeries

AMI

service

policy

to

be

used

in

the

handling

of

this

message.

If

specified,

the

service-policy

must

refer

to

a

policy

defined

in

the

AMT.XML

repository

file.

If

the

service-policy

is

not

specified,

then

the

default

DB2.DEFAULT.POLICY

will

be

used.

The

maximum

size

of

service-policy

is

48

bytes.

correl-id

VARCHAR(24)

A

string

containing

an

optional

correlation

identifier

to

be

associated

with

this

message.

The

correl-id

is

often

specified

in

request/reply

to

scenarios

to

associate

requests

with

replies.

If

it

is

not

outlined,

no

correlation

ID

will

be

specified.

The

maximum

size

of

correl-id

is

24

bytes.

Results:

MQReceiveXML

functions

return

a

db2xml.XMLVARCHAR

if

the

messages

are

received

from

the

queue

successfully.

The

maximum

message

size

is

4000

bytes.

A

NULL

is

returned

if

no

messages

are

available.

If

the

correl-id

is

specified

then

the

first

message

with

a

matching

correlation

identifier

will

be

returned.

If

correl-id

is

not

specified

then

the

message

at

the

head

of

the

queue

will

be

returned.

The

message

is

removed

from

the

queue.

Examples:

Example

1:

This

example

receives

the

message

that

is

at

the

head

of

the

queue

and

is

specified

by

the

default

service

DB2.DEFAULT.SERVICE

using

the

default

policy

DB2.DEFAULT.POLICY.

values

db2xml.MQRECEIVEXML()

If

successful

this

example

returns

the

contents

of

a

message

as

an

XMLVARCHAR.

If

no

messages

are

available

a

NULL

is

returned.

Related

concepts:

v

“XML

Extender

stored

procedures

and

functions

for

MQSeries”

on

page

221

Chapter

11.

MQSeries

stored

procedures

and

functions

231

Related

reference:

v

“How

to

read

syntax

diagrams”

on

page

x

MQReceiveAllXML

function

Purpose:

The

MQReceiveAllXML

removes

messages

associated

with

receive-service

from

the

queue.

If

the

correl-id

is

specified

then

only

those

messages

with

a

matching

correlation

identifier

will

be

returned.

If

correl-id

is

not

specified

then

the

message

at

the

head

of

the

queue

will

be

returned.

If

num-rows

are

specified,

then

a

maximum

of

num-rows

messages

will

be

returned.

If

it

is

not

specified

then

all

available

messages

will

be

returned.

Syntax:

��

MQReceiveALLXML

(

)

receive-service

num-rows

receive-service

,

receive-policy

receive-service

,

receive-policy

correl-id

��

Parameters:

Table

70.

MQReceiveAllXML

parameters

Parameter

Data

type

Description

receive-service

VARCHAR(48)

A

string

containing

the

logical

MQSeries

destination

to

which

the

message

is

to

be

sent.

When

specified,

the

send-service

refers

to

a

Service

Point

defined

in

the

ATM.XML

repository

file.

If

send-service

is

not

specified,

then

the

DB2.DEFAULT.SERVICE

will

be

used.

The

maximum

size

of

send-service

is

48

bytes.

receive-policy

VARCHAR(48)

A

string

containing

the

MQSeries

AMI

service

policy

to

be

used

in

the

handling

of

this

message.

If

specified,

the

receive-policy

must

refer

to

a

policy

defined

in

the

AMT.XML

repository

file.

If

the

receive-policy

is

not

specified,

then

the

default

DB2.DEFAULT.POLICY

will

be

used.

The

maximum

size

of

receive-policy

is

48

bytes.

232

XML

Extender

Administration

and

Programming

Table

70.

MQReceiveAllXML

parameters

(continued)

Parameter

Data

type

Description

correl-id

VARCHAR(24)

A

string

containing

an

optional

correlation

identifier

to

be

associated

with

this

message.

The

correl-id

is

often

specified

in

request/reply

scenarios

to

associate

requests

with

replies.

If

it

is

not

outlined

no

correlation

id

will

be

specified.

The

maximum

size

of

correl-id

is

24

bytes.

num-rows

INTEGER

A

positive

integer

that

contains

the

maximum

number

of

messages

returned

by

the

function.

Results:

When

a

table

of

messages

is

successfully

received

from

the

queue,

MQRECEIVEXML

returns

a

db2xml.xmlvarchar.

A

NULL

is

returned

when

no

messages

are

available.

The

messages

are

returned

as

a

table

of

messages

with

meta-data.

Column

Name

Data

type

Description

MSG

XMLVARCHAR

The

contents

of

the

MQSeries

message.

CORRELID

VARCHAR(24)

A

correlation

ID

that

can

be

used

to

relate

messages.

TOPIC

VARCHAR(40)

The

topic

the

message

was

published

with,

if

available.

QNAME

VARCHAR(48)

The

queue

name

the

message

was

received

at.

MSGID

CHAR(24)

The

MQSeries

assigned

unique

identifier

for

this

message

MSGFORMAT

VARCHAR(8)

The

format

of

the

message

as

defined

by

MQSeries.

Typical

strings

have

a

format

of

MQSTR.

Examples:

Example

1:

All

messages

received

from

the

queue

are

specified

by

the

default

service

(DB2.DEFAULT.SERVICE)

using

the

default

policy

(DB2.DEFAULT.POLICY).

The

messages

and

all

the

metadata

are

returned

as

a

table.

select

*

from

table

(MQRECEIVEALLXML())

t

Example

2:

All

the

messages

are

received

from

the

head

of

the

queue

and

are

specified

by

the

service

MYSERVICE

using

the

default

policy

(DB2.DEFAULT.POLICY).

Only

the

MSG

and

CORRELID

columns

are

returned.

The

messages

are

in

table

format,

wherein

you

can

select

the

fields

that

you

want.

select

t.MSG,

t.CORRELID

from

table

(MQRECEIVEALLXML(’MYSERVICE’))

t

Chapter

11.

MQSeries

stored

procedures

and

functions

233

Example

3:

All

the

messages

received

from

the

head

of

the

queue

are

specified

by

the

service

MYSERVICE

using

the

policy

MYPOLICY

that

match

the

id

’1234’.

Only

the

MSG

and

CORRELID

columns

are

returned.

select

t.MSG,

t.CORRELID

from

table

(MQRECEIVEALLXML(’MYSERVICE’,’MYPOLICY’,’1234’))

t

Example

4:

The

first

10

messages

are

received

from

the

head

of

the

queue

and

specified

by

the

default

service

(DB2.DEFAULT.SERVICE)

using

the

default

policy

(DB2.DEFAULT.POLICY)

.

All

columns

are

returned.

select

*

from

table

(MQRECEIVEALLXML(10))

t

MQRcvAllXMLCLOB

function

Purpose:

The

MQRcvAllXMLCLOB

removes

the

messages

from

the

queue

associated

with

receive-service.

If

the

correl-id

is

specified

then

only

those

messages

with

a

matching

correlation

identifier

will

be

returned.

If

correl-id

is

not

specified

then

all

messages

will

be

returned.

If

num-rows

is

specified,

then

a

maximum

of

num-rows

messages

will

be

returned

as

XMLCLOB.

If

it

is

not

specified

then

all

available

messages

will

be

returned.

Syntax:

��

MQRcvAllXMLCLOB

(

)

receive-service

num-rows

receive-service

,

receive-policy

receive-service

,

receive-policy

correl-id

��

Parameters:

Table

71.

MQRcvAllXMLCLOB

parameters

Parameter

Data

type

Description

receive-service

VARCHAR(48)

A

string

containing

the

logical

MQSeries

destination

from

which

the

message

is

to

be

received.

If

specified,

the

receive-service

refers

to

a

Service

Point

defined

in

the

AMT.XML

repository

file.

If

receive-service

is

not

specified,

then

the

DB2.DEFAULT.SERVICE

will

be

used.

The

maximum

size

of

receive-service

is

48

bytes.

receive-policy

VARCHAR(48)

A

string

containing

the

MQSeries

AMI

service

policy

to

be

used

in

the

handling

of

this

message.

If

specified,

the

receive-policy

must

refer

to

a

policy

defined

in

the

AMT.XML

repository

file.

If

the

receive-policy

is

not

specified,

then

the

default

DB2.DEFAULT.POLICY

will

be

used.

The

maximum

size

of

receive-policy

is

48

bytes.

234

XML

Extender

Administration

and

Programming

Table

71.

MQRcvAllXMLCLOB

parameters

(continued)

Parameter

Data

type

Description

correl-id

VARCHAR(24)

A

string

containing

an

optional

correlation

identifier

to

be

associated

with

this

message.

The

correl-id

is

often

specified

in

request/reply

scenarios

to

associate

requests

with

replies.

If

it

is

not

outlined

no

correlation

id

will

be

specified.

The

maximum

size

of

correl-id

is

24

bytes.

num-rows

INTEGER

A

positive

integer

that

contains

the

maximum

number

of

messages

returned

by

the

function.

Results:

When

a

message

is

successfully

received

from

the

queue,

MQRcvAllXMLCLOB

returns

an

XMLCLOB.

A

NULL

is

returned

when

no

messages

are

available.

The

messages

are

returned

in

a

table

as

described

below

Table

72.

MQRcvAllXML

result

set

table

Column

Name

Data

type

Description

MSG

XMLCLOB

The

contents

of

the

MQSeries

message.

CORRELID

VARCHAR(24)

A

correlation

ID

that

can

be

used

to

relate

messages.

TOPIC

VARCHAR(40)

If

the

topic

the

message

was

published

with,

if

available.

QNAME

VARCHAR(48)

The

queue

name

the

message

was

received

at.

MSGID

CHAR(24)

The

MQSeries

assigned

unique

identifier

for

this

message

MSGFORMAT

VARCHAR(8)

The

format

of

the

message

as

defined

by

MQSeries.

Typical

strings

have

a

format

of

MQSTR.

MQReceiveXMLCLOB

function

Purpose:

The

MQReceiveXMLCLOB

removes

messages

associated

with

receive-service

from

the

queue.

The

function

returns

XMLVARCHAR

data

from

the

MQSeries

location

specified

by

the

service-policy

function

which

uses

the

quality

of

receive-service.

Syntax:

Chapter

11.

MQSeries

stored

procedures

and

functions

235

��

MQReceiveXMLCLOB

(

)

receive-service

receive-service

,

service-policy

receive-service

,

service-policy

correl-id

��

Parameters:

Table

73.

MQReceiveXMLCLOB

parameters

Parameter

Data

type

Description

receive-service

VARCHAR(48)

A

string

containing

the

logical

MQSeries

destination

from

which

the

message

is

to

be

received.

When

the

receive-service

is

specified,

it

refers

to

a

Service

Point

defined

in

the

AMT.XML

repository

file.

However,

if

receive-service

is

not

specified,

then

the

DB2.DEFAULT.SERVICE

will

be

used.

The

maximum

size

of

receive-service

is

48

bytes.

service-policy

VARCHAR(48)

A

string

containing

the

MQSeries

AMI

Service

Policy

to

be

used

in

handling

of

this

message.

If

specified,

the

receive-service

must

refer

to

a

Policy

defined

in

the

AMT.XML

repository

file.

If

service-policy

is

not

specified,

then

the

default

DB2.DEFAULT.POLICY

will

be

used.

The

maximum

size

of

service-policy

is

48

bytes.

correl-id

VARCHAR(24)

A

string

containing

an

optional

correlation

identifier

to

be

associated

with

this

message.

The

correl-id

is

often

specified

in

request/reply

to

scenarios

to

associate

requests

with

replies.

If

it

is

not

outlined,

no

correlation

ID

will

be

specified.

The

maximum

size

of

correl-id

is

24

bytes.

Results:

MQReceiveXMLCLOB

functions

return

a

db2xml.XMLCLOB

if

messages

are

received

from

the

queue

successfully.

A

NULL

is

returned

if

no

messages

are

available.

If

the

correl-id

is

specified

then

the

first

message

with

a

matching

correlation

identifier

will

be

returned.

However,

if

the

correl-id

is

not

specified

then

the

message

at

the

head

of

the

queue

will

be

returned.

MQSENDXML

function

Purpose:

236

XML

Extender

Administration

and

Programming

The

MQSENDXML

function

sends

the

data

contained

in

msg-data

to

the

MQSeries

location

specified

by

send-service

using

the

send-policy.

An

optional

user-defined

message

correlation

identifier

can

also

be

specified

by

correl-id.

The

function

returns

a

1

if

successful.

Syntax:

��

MQSENDXML

(

msg-data

,

)

send-service

correl-id

send-service

,

send-policy

��

Parameters:

Table

74.

MQSendXML

parameters

Parameter

Data

type

Description

msg-data

XMLVARCHAR

or

XMLCLOB

An

expression

containing

the

data

to

be

sent

via

MQSeries.

send-service

VARCHAR(48)

A

string

containing

the

logical

MQSeries

destination

to

which

the

message

is

to

be

sent.

When

the

send-service

is

listed,

it

refers

to

a

Service

Point

defined

in

the

AMT.XML

repository

file.

The

DB2.DEFAULT.SERVICE

is

used

when

the

send-service

is

not

specified.

The

maximum

size

of

send-service

is

48

bytes.

send-policy

VARCHAR(48)

A

string

containing

the

MQSeries

AMI

Service

Policy

used

to

handle

the

message.

When

specified,

the

send-policy

refers

to

a

policy

defined

in

the

AMT.XML

repository

file.

If

the

send-policy

is

not

specified,

then

the

default

DB2.DEFAULT.POLICY

will

be

used.

The

maximum

size

of

send-policy

is

48

bytes.

correl-id

VARCHAR(24)

A

string

containing

an

optional

correlation

identifier

associated

with

the

message.

The

correl-id

is

often

specified

in

request/reply

scenarios

to

associate

requests

with

replies.

If

it

is

not

specified,

no

correlation

id

will

be

shown.

The

maximum

size

of

correl-id

is

24

bytes.

Results:

A

successful

message

results

in

a

value

of

1.

A

message

containing

msg-data

will

be

sent

to

the

location

specified

by

send-service

using

the

policy

defined

by

send-policy.

Chapter

11.

MQSeries

stored

procedures

and

functions

237

MQSENDXMLFILE

function

Purpose:

The

MQSENDXMLFILE

function

sends

the

data

contained

in

xml_file

to

the

MQSeries

location

specified

by

send-service

using

the

quality

of

service

policy.

An

optional

user

defined

message

correlation

identifier

can

be

specified

by

correl-id.

The

function

returns

a

’1’

if

successful.

Syntax:

��

MQSENDXMLFILE

(

xml_file

,

)

send-service

correl-id

send-service

,

send-policy

��

Parameters:

Table

75.

MQSENDXMLFILE

parameter

Parameter

Data

type

Description

xml_file

XMLCLOB

An

XML

file

name

with

a

maximum

size

of

80

bytes.

The

file

contains

the

data

to

be

sent

via

MQSeries.

send-service

VARCHAR(48)

A

string

containing

the

logical

MQSeries

destination

to

which

the

message

is

to

be

sent.

When

specified,

the

send-service

refers

to

a

Service

Point

defined

in

the

AMT.XML

repository

file.

If

send-service

is

not

specified,

then

the

DB2.DEFAULT.SERVICE

will

be

used.

The

maximum

size

of

send-service

is

48

bytes.

send-policy

VARCHAR(48)

A

string

containing

the

MQSeries

AMI

service

to

be

used

in

handling

of

this

message.

If

specified,

the

send-policy

refers

to

a

Policy

defined

in

the

AMT.XML

repository

file.

If

send-policy

is

not

specified,

then

the

default

DB2.DEFAULT.POLICY

will

be

used.

The

maximum

size

of

send-policy

is

48

bytes

238

XML

Extender

Administration

and

Programming

Table

75.

MQSENDXMLFILE

parameter

(continued)

Parameter

Data

type

Description

correl-id

VARCHAR(24)

A

string

containing

an

optional

correlation

identifier

to

be

associated

with

this

message.

The

correl-id

is

often

specified

in

request/reply

scenarios

to

associate

requests

with

replies.

If

not

specified,

no

correlation

id

will

be

listed.

The

maximum

size

of

correl-id

is

24

bytes.

Results:

If

the

function

is

successful,

it

results

in

a

’1’.

The

side

effect

of

successfully

executing

this

function

is

that

a

message

containing

msg-data

will

be

sent

to

the

location

specified

by

send-service

using

the

policy

defined

by

send-policy.

Examples:

Example

1:

XML

documents

contained

in

file

″c:\xml\test1.xml″

are

sent

to

the

default

service

(DB2.DEFAULT.SERVICE)

using

the

default

policy

(DB2.DEFAULT.POLICY)

with

no

correlation

identifier.

Values

MQSENDXMLFILE(’c:\xml\test1.xml’);

This

example

returns

the

value

’1’

if

successful

Example

2:

XML

documents

contained

in

file

c:\xml\test2.xml

are

sent

to

the

service

MYSERVICE

using

policy

MYPOLICY

with

no

correlation

identifier.

Values

MQSENDXMLFILE(’MYSERVICE’,

’MYPOLICY’,

’c:\xml\test2.xml’);

This

example

returns

the

value

’1’

if

successful

Example

3:

XML

documents

contained

in

file

″c:\xml\test3.xml″are

sent

to

the

service

MYSERVICE

using

policy

MYPOLICY

with

correlation

identifier

″Test3″.

Values

MQSENDXML(’MYSERVICE’,’MYPOLICY’,

’c:\xml\test3.xml’,

’Test3’);

This

example

returns

the

value

’1’

if

successful.

Example

4:

XML

documents

contained

in

file

″c:\xml\test4.xml″

are

sent

to

the

service

MYSERVICE

using

the

default

policy

(DB2.DEFAULT.POLICY)

and

no

correlation

identifier.

Values

MQSENDXMLFILE(’MYSERVICE’,

’c:\xml\test4.xml’);

This

example

returns

the

value

’1’

if

successful.

MQSendXMLFILECLOB

function

Purpose:

The

MQSendXMLFILECLOB

function

sends

the

data

contained

in

xml_file

to

the

MQSeries

location

specified

by

send-service

using

the

quality

of

send-policy.

The

data

type

that

is

sent

is

XMLCLOB.

An

optional

user

defined

message

correlation

identifier

can

be

specified

by

correl-id.

The

function

returns

a

1

if

successful.

Syntax:

Chapter

11.

MQSeries

stored

procedures

and

functions

239

��

MQSendXMLFILECLOB

(

xml_file

,

)

send-service

correl-id

send-service

,

send-policy

��

Parameters:

Table

76.

MQSENDXMLFILE

parameter

Parameter

Data

type

Description

xml_file

XMLCLOB

An

XML

file

name

with

a

maximum

size

of

80

bytes.

The

file

contains

the

data

to

be

sent

via

MQSeries.

send-service

VARCHAR(48)

A

string

containing

the

logical

MQSeries

destination

to

which

the

message

is

to

be

sent.

When

specified,

the

send-service

refers

to

a

Service

Point

defined

in

the

AMT.XML

repository

file.

If

send-service

is

not

specified,

then

the

DB2.DEFAULT.SERVICE

will

be

used.

The

maximum

size

of

send-service

is

48

bytes

send-policy

VARCHAR(48)

A

string

containing

the

MQSeries

AMI

service

to

be

used

in

handling

of

this

message.

If

specified,

the

send-policy

refers

to

a

Policy

defined

in

the

AMT.XML

repository

file.

If

send-policy

is

not

specified,

then

the

default

DB2.DEFAULT.POLICY

will

be

used.

The

maximum

size

of

send-policy

is

48

bytes

correl-id

VARCHAR(24)

A

string

containing

an

optional

correlation

identifier

to

be

associated

with

this

message.

The

correl-id

is

often

specified

in

request/reply

scenarios

to

associate

requests

with

replies.

If

not

specified,

no

correlation

id

will

be

listed.

The

maximum

size

of

correl-id

is

24

bytes.

Results:

If

the

function

is

successful,

it

results

in

a

’1’.

The

side

effect

of

successfully

executing

this

function

is

that

a

message

containing

msg-data

will

be

sent

to

the

location

specified

by

send-service

using

the

policy

defined

by

send-policy.

Types

of

stored

procedures

for

message

queues

Composition

stored

procedures:

240

XML

Extender

Administration

and

Programming

Use

the

composition

stored

procedures,

dxxmqGen(),

dxxmqGenCLOB(),

dxxmqRetrieve(),

and

dxxmqRetrieveCLOB()

to

generate

XML

documents

using

data

in

existing

database

tables,

and

to

send

the

generated

XML

documents

to

a

message

queue.

The

dxxmqGen()

and

dxxmqGenCLOB()

stored

procedures

use

a

DAD

file

as

input.

They

do

not

require

enabled

XML

collections.

The

dxxmqRetrieve

and

dxxmqRetrieveCLOB

stored

procedures

use

collection

names

as

input.

Decomposition

stored

procedures:

The

decomposition

stored

procedures

dxxmqInsert(),

dxxmqInsertAll(),

dxxInsertCLOB(),

dxxmqShred(),

dxxmqShredCLOB,

and

dxxmqShredAll()

are

used

to

break

down

or

shred

incoming

XML

documents

from

a

message

queue,

and

to

store

the

data

in

new

or

existing

database

tables.

The

dxxmqInsert(),

dxxmqInsertAll(),

dxxmqInsertAllCLOB(),

and

dxxInsertCLOB()

stored

procedures

use

an

enabled

XML

collection

name

as

input.

The

dxxmqShred(),

dxxmqShredAll(),

dxxmqShredCLOB,

and

dxxmqShredAllCLOB

stored

procedures

use

a

DAD

file

as

input.

They

do

not

require

an

enabled

XML

collection.

The

table

below

summarizes

the

different

stored

procedures

and

explains

their

functions.

Table

77.

The

MQSeries

XML

stored

procedures

Function

Purpose

dxxmqGen

Invoke

the

dxxmqGen

stored

procedure

to

compose

XML

documents,

using

a

DAD

file

as

a

input

parameter.

The

resulting

document

type

is

XMLVARCHAR(4000).

dxxmqGenCLOB

Constructs

an

XML

document

from

data

that

is

stored

in

the

XML

collection

tables

specified

in

the

DAD

file,

and

sends

the

XML

document

to

an

MQ

message

queue.

The

resulting

document

type

is

XMLCLOB(1M).

dxxmqRetrieve

Invoke

the

dxxmqRetrieve

stored

procedure

to

compose

XML

documents,

using

a

collection

name

as

a

input

parameter.

The

resulting

document

type

is

XMLVARCHAR(4000).

dxxmqRetrieveCLOB

Invoke

the

dxxmqRetrieve

stored

procedure

to

compose

XML

documents,

using

a

collection

name

as

a

input

parameter.

The

resulting

document

type

is

XMLCLOB(1M).

dxxmqShred

Invoke

the

dxxmqShred

stored

procedure

to

decompose

an

XML

document

using

a

DAD

file

as

an

input

parameter.

The

resulting

document

type

is

XMLVARCHAR(4000).

dxxmqShredAll

Invoke

the

dxxmqShredAll

stored

procedure

to

decompose

multiple

XML

documents

using

a

DAD

file

as

an

input

parameter.

The

resulting

document

type

is

XMLVARCHAR(4000).

Chapter

11.

MQSeries

stored

procedures

and

functions

241

Table

77.

The

MQSeries

XML

stored

procedures

(continued)

Function

Purpose

dxxmqShredCLOB

Decomposes

an

incoming

XML

document

from

a

message

queue,

based

on

a

DAD

file

mapping,

and

stores

the

content

of

the

XML

elements

and

attributes

in

specified

DB2

UDB

tables.

The

resulting

document

type

is

XMLCLOB(1M).

dxxmqShredAllCLOB

Decomposes

an

incoming

XML

document

from

a

message

queue,

based

on

a

DAD

file

mapping,

and

stores

the

content

of

the

XML

elements

and

attributes

in

specified

DB2

UDB

tables.

The

resulting

document

type

is

XMLCLOB(1M).

dxxmqInsert

Invoke

the

dxxmqInsert

stored

procedure

to

decompose

an

XML

document

using

a

collection

name

as

an

input

parameter.

The

resulting

document

type

is

XMLVARCHAR(4000).

dxxmqInsertAll

Invoke

the

dxxmqInsertAll

stored

procedure

to

decompose

multiple

XML

documents

using

a

collection

name

as

an

input

parameter.

The

resulting

document

type

is

XMLVARCHAR(4000).

dxxmqInsertCLOB

Breaks

down

or

shreds

an

incoming

XML

document

from

a

message

queue,

and

stores

the

data

in

new

or

existing

database

tables.

The

resulting

document

type

is

XMLCLOB(1M).

dxxmqInsertAllCLOB

Breaks

down

or

shreds

all

incoming

XML

documents

from

a

message

queue,

and

stores

the

data

in

new

or

existing

database

tables.

The

dxxmqInsertAllCLOB

stored

procedure

uses

a

collection

name,

rather

than

a

DAD

file

name,

to

determine

how

to

store

the

data.

The

resulting

document

type

is

XMLCLOB(1M).

Related

reference:

v

“dxxmqGenCLOB

stored

procedure”

on

page

245

v

“dxxmqRetrieve

stored

procedure”

on

page

247

v

“dxxmqRetrieveCLOB

stored

procedure”

on

page

249

v

“dxxmqShred

stored

procedure”

on

page

251

v

“dxxmqShredAll

stored

procedure”

on

page

253

v

“dxxmqShredCLOB

stored

procedure”

on

page

254

v

“dxxmqInsert

stored

procedure”

on

page

256

v

“dxxmqInsertAll

stored

procedure”

on

page

260

v

“dxxmqInsertCLOB

stored

procedure”

on

page

258

v

“dxxmqGen()

stored

procedure”

on

page

243

v

“dxxmqShredAllCLOB

stored

procedure”

on

page

255

v

“dxxmqInsertAllCLOB

stored

procedure”

on

page

261

242

XML

Extender

Administration

and

Programming

dxxmqGen()

stored

procedure

Purpose:

Constructs

an

XML

document

from

data

that

is

stored

in

the

XML

collection

tables

specified

in

the

DAD

file,

and

sends

the

XML

document

to

a

MQ

message

queue.

The

stored

procedure

returns

a

string

to

indicate

the

status

of

the

stored

procedure.

To

support

dynamic

query,

dxxmqGen()

takes

an

input

parameter,

override.

Based

on

the

input

overrideType,

the

application

can

override

the

SQL_stmt

for

SQL

mapping

or

the

conditions

in

RDB_node

for

RDB_node

mapping

in

the

DAD

file.

The

input

parameter

overrideType

is

used

to

clarify

the

type

of

the

override.

Syntax:

dxxmqGen(varchar(48)

serviceName,

/*input*/

varchar(48)

policyName,

/*input*/

varchar(80)

dadFileName,

/*input*/

integer

overrideType,

/*input*/

varchar(1024)

override,

/*input*/

integer

maxRows,

/*input*/

integer

numRows,

/*output*/

char(20)

status)

/*output*/

Parameters:

Table

78.

dxxmqGen()

parameters

Parameter

Description

IN/OUT

parameter

serviceName

A

string

containing

the

logical

MQSeries

destination

to

which

the

message

is

to

be

sent.

When

the

serviceName

is

listed,

it

refers

to

a

service

point

defined

in

the

AMT.XML

repository

file.

The

DB2.DEFAULT.SERIVCE

is

used

when

the

serviceName

is

not

specified.

The

maximum

size

of

serviceName

is

48

bytes.

IN

policyName

A

string

containing

the

MQSeries

AMI

Service

Policy

used

to

handle

messages.

When

specified,

the

policyName

refers

to

a

policy

defined

in

the

AMT.XML

repository

file.

If

the

policyName

is

not

specified,

then

the

default

DB2.DEFAULT.POLICY

will

be

used.

The

maximum

size

of

policyName

is

48

bytes.

IN

dadFileName

The

name

of

the

DAD

file.

IN

overrideType

A

flag

to

indicate

the

type

of

the

following

override

parameter:

v

NO_OVERRIDE:

No

override.

v

SQL_OVERRIDE:

Override

by

an

SQL_stmt.

v

XML_OVERRIDE:

Override

by

an

XPath-based

condition.

IN

Chapter

11.

MQSeries

stored

procedures

and

functions

243

Table

78.

dxxmqGen()

parameters

(continued)

Parameter

Description

IN/OUT

parameter

override

Overrides

the

condition

in

the

DAD

file.

The

input

value

is

based

on

the

overrideType.

v

NO_OVERRIDE:

A

NULL

string.

v

SQL_OVERRIDE:

A

valid

SQL

statement.

Using

this

overrideType

requires

that

SQL

mapping

is

used

in

the

DAD

file.

The

input

SQL

statement

overrides

the

SQL_stmt

in

the

DAD

file.

v

XML_OVERRIDE:

A

string

that

contains

one

or

more

expressions

in

double

quotation

marks

separated

by

″AND″.

Using

this

overrideType

requires

that

RDB_node

mapping

is

used

in

the

DAD

file.

IN

maxRows

The

maximum

number

of

messages

generated

in

the

message

queue.

IN

numRows

The

actual

number

of

generated

rows

in

the

message

queue.

OUT

status

The

text

and

codes

returned

that

specify

whether

or

not

the

stored

procedure

ran

successfully,

any

error

codes

that

are

generated,

and

the

number

of

XML

documents

which

are

received

or

sent

to

the

message

queue.

OUT

Examples:

The

following

example

fragment

generates

an

XML

document

and

sends

it

to

the

queue.

It

assumes

that

a

MQ/AMI

service,

myService,

and

a

policy,

myPolicy,

have

been

defined

in

the

repository

file.

This

file

stores

repository

definitions

in

XML

format.

#include

"dxx.h"

#include

"dxxrc.h"

EXEC

SQL

INCLUDE

SQLCA;

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

serviceName[48];

/*

name

of

the

MQ/AMI

service*/

char

policyName[48];

/*

name

of

the

MQ/AMI

policy*/

char

dadFileName[80];

/*

name

of

the

DAD

file

*/

char

override[2];

/*

override,

will

set

to

NULL*/

short

overrideType;

/*

defined

in

dxx.h

*/

short

max_row;

/*

maximum

number

of

rows

*/

short

num_row;

/*

actual

number

of

rows

*/

char

status[20]

/*

status

code

or

message

*/

short

ovtype_ind;

short

ov_ind;

short

maxrow_ind;

short

numrow_ind;

short

dadFileName_ind;

short

serviceName_ind;

short

policyName_ind;

short

status_ind;

EXEC

SQL

END

DECLARE

SECTION;

strcpy(dadFileName,"c:\dxx\dad\litem3.dad");

strcpy(serviceName,"myService");

strcpy(policyName,"myPolicy");

244

XML

Extender

Administration

and

Programming

override[0]

=

’\0’;

overrideType

=

NO_OVERRIDE;

max_row

=

500;

num_row

=

0;

status[0]

=

’\0’;

dadFileName_ind

=

0;

serviceName_ind

=

0;

policyName_ind

=

0;

maxrow_ind

=

0;

numrow_ind

=

-1;

ovtype_ind=0;

ov_ind=-1;

status_ind

=

-1;

/*

Call

the

store

procedure

*/

EXEC

SQL

CALL

dxxmqGen(:serviceName:serviceName_ind,

:policyName:policyName_ind,

:dadFileName:dadFileName_ind,

:overrideType:ovtype_ind,

:override:ov_ind,

:max_row:maxrow_ind,

:num_row:numrow_ind,

:status:status_ind);

Related

concepts:

v

“XML

Extender

stored

procedures

and

functions

for

MQSeries”

on

page

221

Related

tasks:

v

“Calling

XML

Extender

composition

stored

procedures”

on

page

201

Related

reference:

v

“How

to

read

syntax

diagrams”

on

page

x

v

Appendix

C,

“XML

Extender

limits,”

on

page

311

dxxmqGenCLOB

stored

procedure

Purpose:

Constructs

an

XML

document

from

data

that

is

stored

in

the

XML

collection

tables

specified

in

the

DAD

file,

and

sends

the

XML

document

to

a

MQ

message

queue.

The

document

type

is

XMLCLOB.

The

stored

procedure

returns

a

string

to

indicate

the

status

of

the

stored

procedure.

This

stored

procedure

is

not

supported

for

the

Enterprise

Server

Edition

(ESE).

To

support

dynamic

query,

dxxmqGenCLOB

takes

an

input

parameter,

override.

Based

on

the

input

overrideType,

the

application

can

override

the

SQL_stmt

for

SQL

mapping

or

the

conditions

in

RDB_node

for

RDB_node

mapping

in

the

DAD

file.

The

input

parameter

overrideType

is

used

to

clarify

the

type

of

the

override.

Syntax:

dxxmqGenCLOB(varchar(48)

serviceName,

/*input*/

varchar(48)

policyName,

/*input*/

varchar(80)

dadFileName,

/*input*/

integer

overrideType,

/*input*/

varchar(1024)

override,

/*input*/

integer

maxRows,

/*input*/

integer

numRows,

/*output*/

char(20)

status)

/*output*/

Chapter

11.

MQSeries

stored

procedures

and

functions

245

Parameters:

Table

79.

dxxmqGenCLOB

parameters

Parameter

Description

IN/OUT

parameter

serviceName

A

string

containing

the

logical

MQSeries

destination

to

which

the

message

is

to

be

sent.

When

the

serviceName

is

listed,

it

refers

to

a

service

point

defined

in

the

AMT.XML

repository

file.

The

DB2.DEFAULT.SERIVCE

is

used

when

the

serviceName

is

not

specified.

The

maximum

size

of

serviceName

is

48

bytes.

IN

policyName

A

string

containing

the

MQSeries

AMI

Service

Policy

used

to

handle

messages.

When

specified,

the

policyName

refers

to

a

policy

defined

in

the

AMT.XML

repository

file.

If

the

policyName

is

not

specified,

then

the

default

DB2.DEFAULT.POLICY

will

be

used.

The

maximum

size

of

policyName

is

48

bytes.

IN

dadFileName

The

name

of

the

DAD

file.

IN

overrideType

A

flag

to

indicate

the

type

of

the

following

override

parameter:

v

NO_OVERRIDE:

No

override.

v

SQL_OVERRIDE:

Override

by

an

SQL_stmt.

v

XML_OVERRIDE:

Override

by

an

XPath-based

condition.

IN

override

Overrides

the

condition

in

the

DAD

file.

The

input

value

is

based

on

the

overrideType.

v

NO_OVERRIDE:

A

NULL

string.

v

SQL_OVERRIDE:

A

valid

SQL

statement.

Using

this

overrideType

requires

that

SQL

mapping

is

used

in

the

DAD

file.

The

input

SQL

statement

overrides

the

SQL_stmt

in

the

DAD

file.

v

XML_OVERRIDE:

A

string

that

contains

one

or

more

expressions

in

double

quotation

marks

separated

by

″AND″.

Using

this

overrideType

requires

that

RDB_node

mapping

is

used

in

the

DAD

file.

IN

maxRows

The

maximum

number

of

messages

generated

in

the

message

queue.

IN

numRows

The

actual

number

of

generated

rows

in

the

message

queue.

OUT

status

The

text

and

codes

returned

that

specify

whether

or

not

the

stored

procedure

ran

successfully,

any

error

codes

that

are

generated,

and

the

number

of

XML

documents

which

are

received

or

sent

to

the

message

queue.

OUT

246

XML

Extender

Administration

and

Programming

Related

concepts:

v

“XML

Extender

stored

procedures

and

functions

for

MQSeries”

on

page

221

Related

reference:

v

“How

to

read

syntax

diagrams”

on

page

x

v

Appendix

C,

“XML

Extender

limits,”

on

page

311

dxxmqRetrieve

stored

procedure

Purpose:

The

stored

procedure

dxxmqRetrieve()

serves

as

a

means

for

retrieving

decomposed

XML

documents.

As

input,

dxxmqRetrieve()

takes

a

buffer

containing

the

enabled

XML

collection

name,

the

MQ/AMI

service

and

policy

names.

It

sends

the

composed

XML

document

to

a

MQ

Queue;

it

returns

the

number

of

rows

sent

to

the

queue

and

a

status

message.

The

dxxmqRetrieve

stored

procedure

enables

the

same

DAD

file

to

be

used

for

both

composition

and

decomposition.

To

support

dynamic

query,

dxxmqRetrieve()

takes

an

input

parameter,

override.

Based

on

the

input

overrideType,

the

application

can

override

the

SQL_stmt

for

SQL

mapping

or

the

conditions

in

RDB_node

for

RDB_node

mapping

in

the

DAD

file.

The

input

parameter

overrideType

is

used

to

clarify

the

type

of

the

override.

The

requirements

of

the

DAD

file

for

dxxmqRetrieve()

are

the

same

as

the

requirements

for

dxxmqGen().

The

only

difference

is

that

the

DAD

is

not

an

input

parameter

for

dxxmqRetrieve();

the

required

parameter

is

instead

the

name

of

an

enabled

XML

collection.

Syntax:

dxxmqRetrieve(varchar(48)

serviceName,

/*input*/

varchar(48)

policyName,

/*input*/

varchar(80)

collectionName,

/*input*/

integer

overrideType,

/*input*/

varchar(1024)

override,

/*input*/

integer

maxrows,

/*input*/

integer

numrows,

/*output*/

char(20)

status)

/*output*/

Parameters:

Table

80.

dxxmqRetrieve()

parameters

Parameter

Description

IN/OUT

parameter

serviceName

A

string

containing

the

logical

MQSeries

destination

to

which

the

message

is

to

be

sent.

When

the

serviceName

is

listed,

it

refers

to

a

Service

Point

defined

in

the

AMT.XML

repository

file.

The

DB2.DEFAULT.SERVICE

is

used

when

the

serviceName

is

not

specified.

The

maximum

size

of

serviceName

is

48

bytes.

IN

Chapter

11.

MQSeries

stored

procedures

and

functions

247

Table

80.

dxxmqRetrieve()

parameters

(continued)

Parameter

Description

IN/OUT

parameter

policyName

A

string

containing

the

MQSeries

AMI

Service

Policy

used

to

handle

messages.

When

specified,

the

policyName

refers

to

a

policy

defined

in

the

AMT.XML

repository

file.

If

the

policyName

is

not

specified,

then

the

default

DB2.DEFAULT.POLICY

will

be

used.

The

maximum

size

of

policyName

is

48

bytes.

IN

collectionName

The

name

of

an

enabled

collection.

IN

overrideType

A

flag

to

indicate

the

type

of

the

following

override

parameter:

v

NO_OVERRIDE:

No

override.

v

SQL_OVERRIDE:

Override

by

an

SQL_stmt.

v

XML_OVERRIDE:

Override

by

an

XPath-based

condition.

IN

override

Overrides

the

condition

in

the

DAD

file.

The

input

value

is

based

on

the

overrideType.

v

NO_OVERRIDE:

A

NULL

string.

v

SQL_OVERRIDE:

A

valid

SQL

statement.

Using

this

overrideType

requires

that

SQL

mapping

is

used

in

the

DAD

file.

The

input

SQL

statement

overrides

the

SQL_stmt

in

the

DAD

file.

v

XML_OVERRIDE:

A

string

that

contains

one

or

more

expressions

in

double

quotation

marks

separated

by

″AND″.

The

maximum

length

is

1024

bytes.

The

overrideType

string

requires

that

RDB_node

mapping

is

used

in

the

DAD

file.

IN

maxRows

The

maximum

number

of

rows

in

the

result

table.

IN

numRows

The

actual

number

generated

rows

in

the

result

table.

OUT

status

The

text

and

codes

returned

that

specify

whether

or

not

the

stored

procedure

ran

successfully,

any

error

codes

that

are

generated,

and

the

number

of

XML

documents

which

are

received

or

sent

to

the

message

queue.

OUT

Examples:

The

following

fragment

is

an

example

of

a

call

to

dxxmqRetrieve().

#include

"dxx.h"

#include

"dxxrc.h"

EXEC

SQL

INCLUDE

SQLCA;

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

serviceName[48];

/*

name

of

the

MQ/AMI

service*/

char

policyName[48];

/*

name

of

the

MQ/AMI

policy*/

char

collection[32];

/*

name

of

the

XML

collection

*/

248

XML

Extender

Administration

and

Programming

char

override[2];

/*

override,

will

set

to

NULL*/

short

overrideType;

/*

defined

in

dxx.h

*/

short

max_row;

/*

maximum

number

of

rows

*/

short

num_row;

/*

actual

number

of

rows

*/

char

status[20];

/*

status

code

or

message

*/

short

ovtype_ind;

short

ov_ind;

short

maxrow_ind;

short

numrow_ind;

short

collection_ind;

short

serviceName_ind;

short

policyName_ind;

short

status_ind;

EXEC

SQL

END

DECLARE

SECTION;

/*

initialize

host

variable

and

indicators

*/

strcpy(collection,"sales_ord");

strcpy(serviceName,"myService");

strcpy(policyName,"myPolicy");

override[0]

=

’\0’;

overrideType

=

NO_OVERRIDE;

max_row

=

500;

num_row

=

0;

status[0]

=

’\0’;

serviceName_ind

=

0;

policyName_ind

=

0;

collection_ind

=

0;

maxrow_ind

=

0;

numrow_ind

=

-1;

ovtype_ind=0;

ov_ind=-1;

status_ind

=

-1;

/*

Call

the

store

procedure

*/

EXEC

SQL

CALL

dxxmqRetrieve(:serviceName:serviceName_ind,

:policyName:policyName_ind,

:collection:collection_ind,

:overrideType:ovtype_ind,

:override:ov_ind,

:max_row:maxrow_ind,

:num_row:numrow_ind,

:status:status_ind);

Related

concepts:

v

“XML

Extender

stored

procedures

and

functions

for

MQSeries”

on

page

221

Related

reference:

v

“How

to

read

syntax

diagrams”

on

page

x

v

Appendix

C,

“XML

Extender

limits,”

on

page

311

dxxmqRetrieveCLOB

stored

procedure

Purpose:

The

stored

procedure

dxxmqRetrieveCLOB

serves

as

a

means

for

retrieving

decomposed

XML

documents.

As

input,

dxxmqRetrieveCLOB

takes

a

buffer

containing

the

enabled

XML

collection

name,

the

MQ/AMI

service

and

policy

names.

It

sends

the

composed

XML

document

to

a

MQ

Queue;

and

it

returns

the

number

of

rows

sent

to

the

queue

and

a

status

message.The

dxxmqRetrieveCLOB

Chapter

11.

MQSeries

stored

procedures

and

functions

249

stored

procedure

enables

the

same

DAD

file

to

be

used

for

both

composition

and

decomposition.

This

stored

procedure

is

not

supported

for

Enterprise

Server

Edition

(ESE).

To

support

dynamic

query,

dxxmqRetrieveCLOB

takes

an

input

parameter,

override.

Based

on

the

input

overrideType,

the

application

can

override

the

SQL_stmt

for

SQL

mapping

or

the

conditions

in

RDB_node

for

RDB_node

mapping

in

the

DAD

file.

The

input

parameter

overrideType

is

used

to

clarify

the

type

of

the

override.

The

requirements

of

the

DAD

file

for

dxxmqRetrieveCLOB

are

the

same

as

the

requirements

for

dxxmqGenCLOB.

The

only

difference

is

that

the

DAD

is

not

an

input

parameter

for

dxxmqRetrieveCLOB;

the

required

parameter

is

instead

the

name

of

an

enabled

XML

collection.

Syntax:

dxxmqRetrieveCLOB(varchar(48)

serviceName,

/*input*/

varchar(48)

policyName,

/*input*/

varchar(80)

collectionName,

/*input*/

integer

overrideType,

/*input*/

varchar(1024)

override,

/*input*/

integer

maxrows,

/*input*/

integer

numrows,

/*output*/

char(20)

status)

/*output*/

Parameters:

Table

81.

dxxmqRetrieveCLOB

parameters

Parameter

Description

IN/OUT

parameter

serviceName

A

string

containing

the

logical

MQSeries

destination

to

which

the

message

is

to

be

sent.

When

the

serviceName

is

listed,

it

refers

to

a

Service

Point

defined

in

the

AMT.XML

repository

file.

The

DB2.DEFAULT.SERVICE

is

used

when

the

serviceName

is

not

specified.

The

maximum

size

of

serviceName

is

48

bytes.

IN

policyName

A

string

containing

the

MQSeries

AMI

Service

Policy

used

to

handle

messages.

When

specified,

the

policyName

refers

to

a

policy

defined

in

the

AMT.XML

repository

file.

If

the

policyName

is

not

specified,

then

the

default

DB2.DEFAULT.POLICY

will

be

used.

The

maximum

size

of

policyName

is

48

bytes.

IN

collectionName

The

name

of

an

enabled

collection.

IN

overrideType

A

flag

to

indicate

the

type

of

the

following

override

parameter:

v

NO_OVERRIDE:

No

override.

v

SQL_OVERRIDE:

Override

by

an

SQL_stmt.

v

XML_OVERRIDE:

Override

by

an

XPath-based

condition.

IN

250

XML

Extender

Administration

and

Programming

Table

81.

dxxmqRetrieveCLOB

parameters

(continued)

Parameter

Description

IN/OUT

parameter

override

Overrides

the

condition

in

the

DAD

file.

The

input

value

is

based

on

the

overrideType.

v

NO_OVERRIDE:

A

NULL

string.

v

SQL_OVERRIDE:

A

valid

SQL

statement.

Using

this

overrideType

requires

that

SQL

mapping

is

used

in

the

DAD

file.

The

input

SQL

statement

overrides

the

SQL_stmt

in

the

DAD

file.

v

XML_OVERRIDE:

A

string

that

contains

one

or

more

expressions

in

double

quotation

marks

separated

by

″AND″.

The

maximum

size

is

1024

bytes.

The

overrideType

string

requires

that

RDB_node

mapping

is

used

in

the

DAD

file.

IN

maxRows

The

maximum

number

of

rows

in

the

result

table.

IN

numRows

The

actual

number

generated

rows

in

the

result

table.

OUT

status

The

text

and

codes

returned

that

specify

whether

or

not

the

stored

procedure

ran

successfully,

any

error

codes

that

are

generated,

and

the

number

of

XML

documents

which

are

received

or

sent

to

the

message

queue.

OUT

Related

concepts:

v

“XML

Extender

stored

procedures

and

functions

for

MQSeries”

on

page

221

Related

reference:

v

“How

to

read

syntax

diagrams”

on

page

x

v

Appendix

C,

“XML

Extender

limits,”

on

page

311

dxxmqShred

stored

procedure

Purpose:

Decomposes

an

incoming

XML

document

from

a

message

queue,

based

on

a

DAD

file

mapping,

and

stores

the

content

of

the

XML

elements

and

attributes

in

specified

DB2

UDB

tables.

In

order

for

dxxmqShred()

to

work,

all

tables

specified

in

the

DAD

file

must

exist,

and

all

columns

and

their

data

types

that

are

specified

in

the

DAD

must

be

consistent

with

the

existing

tables.

The

stored

procedure

requires

that

the

columns

specified

in

the

join

condition,

in

the

DAD,

correspond

to

primary-

foreign

key

relationships

in

the

existing

tables.

The

join

condition

columns

that

are

specified

in

the

RDB_node

of

the

root

element_node

must

exist

in

the

tables.

Syntax:

Chapter

11.

MQSeries

stored

procedures

and

functions

251

dxxmqShred(varchar(48)

serviceName,

/*

input

*/

varchar(48)

policyName,

/*

input

*/

varchar(80)

dadFileName,

/*

input

*/

varchar(10)

status)

/*

output

*/

Parameters:

Table

82.

dxxmqShred()

parameters

Parameter

Description

IN/OUT

parameter

serviceName

A

string

containing

the

logical

MQSeries

destination

to

which

the

message

is

to

be

sent.

When

the

serviceName

is

listed,

it

refers

to

a

Service

Point

defined

in

the

AMT.XML

repository

file.

The

DB2.DEFAULT.SERVICE

is

used

when

the

serviceName

is

not

specified.

The

maximum

size

of

serviceName

is

48

bytes.

IN

policyName

A

string

containing

the

MQSeries

AMI

Service

Policy

used

to

handle

messages.

When

specified,

the

policyName

refers

to

a

policy

defined

in

the

AMT.XML

repository

file.

If

the

policyName

is

not

specified,

then

the

default

DB2.DEFAULT.POLICY

will

be

used.

The

maximum

size

of

policyName

is

48

bytes.

IN

dadFileName

The

name

of

the

DAD

file.

The

maximum

size

is

80

bytes.

IN

status

The

text

and

codes

returned

that

specify

whether

or

not

the

stored

procedure

ran

successfully,

any

error

codes

that

are

generated,

and

the

number

of

XML

documents

which

are

received

or

sent

to

the

message

queue.

OUT

Examples:

The

following

fragment

is

an

example

of

a

call

to

dxxmqShred().

#include

"dxx.h"

#include

"dxxrc.h"

EXEC

SQL

INCLUDE

SQLCA;

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

serviceName[48];

/*

name

of

the

MQ/AMI

service

*/

char

policyName[48];

/*

name

of

the

MQ/AMI

policy

*/

char

dadFileName[80];

/*

name

of

the

DAD

file

*/

char

status[20];

/*

status

code

or

message

*/

short

serviceName_ind;

short

policyName_ind;

short

dadFileName_ind;

short

status_ind;

EXEC

SQL

END

DECLARE

SECTION;

/*

initialize

host

variable

and

indicators

*/

strcpy(dadFileName,"e:/dxx/samples/dad/getstart_xcollection.dad");

strcpy(serviceName,

"myService");

strcpy(policyName,

"myPolicy");

status[0]=’\0’;

serviceName_ind=0;

252

XML

Extender

Administration

and

Programming

policyName_ind=0;

dadFileName_ind=0;

status_ind=-1;

/*

Call

the

store

procedure

*/

EXEC

SQL

CALL

dxxmqShred(:serviceName:serviceName_ind,

:policyName:policyName_ind,

:dadFileName:dadFileName_ind,

:status:status_ind);

Related

reference:

v

Appendix

C,

“XML

Extender

limits,”

on

page

311

dxxmqShredAll

stored

procedure

Purpose:

Decomposes

all

incoming

XML

documents

from

a

message

queue,

based

on

a

DAD

file

mapping.

The

contents

of

the

XML

elements

and

attributes

are

stored

in

specified

DB2

UDB

tables.

In

order

for

dxxmqShredAll()

to

work,

all

tables

specified

in

the

DAD

file

must

exist,

and

all

columns

and

their

data

types

that

are

specified

in

the

DAD

must

be

consistent

with

the

existing

tables.

The

stored

procedure

requires

that

the

columns

specified

in

the

join

condition,

in

the

DAD,

correspond

to

primary-foreign

key

relationships

in

the

existing

tables.

The

join

condition

columns

that

are

specified

in

the

RDB_node

of

the

root

element_node

must

exist

in

the

tables.

Syntax:

dxxmqShredAll(varchar(48)

serviceName,

/*

input

*/

varchar(48)

policyName,

/*

input

*/

varchar(80)

dadFileName,

/*

input

*/

varchar(20)

status)

/*

output

*/

Parameters:

Table

83.

dxxmqShredAll()

parameters

Parameter

Description

IN/OUT

parameter

serviceName

A

string

containing

the

logical

MQSeries

destination

to

which

the

message

is

to

be

sent.

When

the

serviceName

is

listed,

it

refers

to

a

Service

Point

defined

in

the

AMT.XML

repository

file.

The

DB2.DEFAULT.SERVICE

is

used

when

the

serviceName

is

not

specified.

The

maximum

size

of

serviceName

is

48

bytes.

IN

policyName

A

string

containing

the

MQSeries

AMI

Service

Policy

used

to

handle

messages.

When

specified,

the

policyName

refers

to

a

policy

defined

in

the

AMT.XML

repository

file.

If

the

policyName

is

not

specified,

then

the

default

DB2.DEFAULT.POLICY

will

be

used.

The

maximum

size

of

policyName

is

48

bytes.

IN

dadFileName

The

name

of

the

DAD

file.

The

maximum

size

is

80

bytes.

IN

Chapter

11.

MQSeries

stored

procedures

and

functions

253

Table

83.

dxxmqShredAll()

parameters

(continued)

Parameter

Description

IN/OUT

parameter

status

The

text

and

codes

returned

that

specify

whether

or

not

the

stored

procedure

ran

successfully,

any

error

codes

that

are

generated,

and

the

number

of

XML

documents

which

are

received

or

sent

to

the

message

queue.

OUT

Examples:

The

following

fragment

is

an

example

of

a

call

to

dxxmqShredAll().

#include

"dxx.h"

#include

"dxxrc.h"

EXEC

SQL

INCLUDE

SQLCA;

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

serviceName[48];

/*

name

of

the

MQ/AMI

service

*/

char

policyName[48];

/*

name

of

the

MQ/AMI

policy

*/

char

dadFileName[80];

/*

name

of

the

DAD

file

*/

char

status[20];

/*

status

code

or

message

*/

short

serviceName_ind;

short

policyName_ind;

short

dadFileName_ind;

short

status_ind;

EXEC

SQL

END

DECLARE

SECTION;

/*

initialize

host

variable

and

indicators

*/

strcpy(dadFileName,"e:/dxx/samples/dad/getstart_xcollection.dad");

strcpy(serviceName,

"myService");

strcpy(policyName,

"myPolicy");

status[0]=\0;

serviceName_ind=0;

policyName_ind=0;

dadFileName_ind=0;

status_ind=-1;

/*

Call

the

store

procedure

*/

EXEC

SQL

CALL

dxxmqShredAll(:serviceName:serviceName_ind,

:policyName:policyName_ind,

:dadFileName:dadFileName_ind,

:status:status_ind);

Related

concepts:

v

“XML

Extender

stored

procedures

and

functions

for

MQSeries”

on

page

221

Related

reference:

v

“How

to

read

syntax

diagrams”

on

page

x

v

Appendix

C,

“XML

Extender

limits,”

on

page

311

dxxmqShredCLOB

stored

procedure

Purpose:

Decomposes

an

incoming

XML

document

from

a

message

queue,

based

on

a

DAD

file

mapping,

and

stores

the

content

of

the

XML

elements

and

attributes

in

specified

DB2

UDB

tables.

The

incoming

document

type

is

XMLCLOB.

254

XML

Extender

Administration

and

Programming

For

dxxmqShredCLOB,

all

tables

specified

in

the

DAD

file

must

exist,

and

all

columns

and

data

types

that

are

specified

in

the

DAD

must

be

consistent

with

the

existing

tables.

This

stored

procedure

requires

that

the

columns

specified

in

the

join

condition

of

the

DAD,

correspond

to

primary-foreign

key

relationships

in

the

existing

tables.

The

joint

condition

columns

that

are

specified

in

the

RDB_node

of

the

root

element_node

must

exist

in

the

tables.

Syntax:

dxxmqShredCLOB(varchar(48)

serviceName,

/*

input

*/

varchar(48)

policyName,

/*

input

*/

varchar(80)

dadFileName,

/*

input

*/

varchar(10)

status)

/*

output

*/

Parameters:

Table

84.

dxxmqShredCLOB

parameters

Parameter

Description

IN/OUT

parameter

serviceName

A

string

containing

the

logical

MQSeries

destination

to

which

the

message

is

to

be

sent.

When

the

serviceName

is

listed,

it

refers

to

a

Service

Point

defined

in

the

AMT.XML

repository

file.

The

DB2.DEFAULT.SERVICE

is

used

when

the

serviceName

is

not

specified.

The

maximum

size

of

serviceName

is

48

bytes.

IN

policyName

A

string

containing

the

MQSeries

AMI

Service

Policy

used

to

handle

messages.

When

specified,

the

policyName

refers

to

a

policy

defined

in

the

AMT.XML

repository

file.

If

the

policyName

is

not

specified,

then

the

default

DB2.DEFAULT.POLICY

will

be

used.

The

maximum

size

of

policyName

is

48

bytes.

IN

dadFileName

The

name

of

the

DAD

file.

The

maximum

size

in

80

bytes.

IN

status

The

text

and

codes

returned

that

specify

whether

or

not

the

stored

procedure

ran

successfully,

any

error

codes

that

are

generated,

and

the

number

of

XML

documents

which

are

received

or

sent

to

the

message

queue.

OUT

Related

concepts:

v

“XML

Extender

stored

procedures

and

functions

for

MQSeries”

on

page

221

Related

reference:

v

“How

to

read

syntax

diagrams”

on

page

x

v

Appendix

C,

“XML

Extender

limits,”

on

page

311

dxxmqShredAllCLOB

stored

procedure

Purpose:

Chapter

11.

MQSeries

stored

procedures

and

functions

255

Decomposes

an

incoming

XML

document

from

a

message

queue,

based

on

a

DAD

file

mapping,

and

stores

the

content

of

the

XML

elements

and

attributes

in

specified

DB2

UDB

tables.

For

dxxmqShredAllCLOB,

all

tables

specified

in

the

DAD

file

must

exist,

and

all

columns

and

data

types

that

are

specified

in

the

DAD

must

be

consistent

with

the

existing

tables.

This

stored

procedure

requires

that

the

columns

specified

in

the

join

condition

of

the

DAD,

correspond

to

primary-foreign

key

relationships

in

the

existing

tables.

The

joint

condition

columns

that

are

specified

in

the

RDB_node

of

the

root

element_node

must

exist

in

the

tables.

Syntax:

dxxmqShredCLOB(varchar(48)

serviceName,

/*

input

*/

varchar(48)

policyName,

/*

input

*/

varchar(80)

dadFileName,

/*

input

*/

varchar(10)

status)

/*

output

*/

Parameters:

Table

85.

dxxmqShredAllCLOB

parameters

Parameter

Description

IN/OUT

Parameter

serviceName

A

string

containing

the

logical

MQSeries

destination

to

which

the

message

is

to

be

sent.

When

the

serviceName

is

listed,

it

refers

to

a

Service

Point

defined

in

the

AMT.XML

repository

file.

The

DB2.DEFAULT.SERVICE

is

used

when

the

serviceName

is

not

specified.

The

maximum

size

of

serviceName

is

48

bytes.

IN

policyName

A

string

containing

the

MQSeries

AMI

Service

Policy

used

to

handle

messages.

When

specified,

the

policyName

refers

to

a

policy

defined

in

the

AMT.XML

repository

file.

If

the

policyName

is

not

specified,

then

the

default

DB2.DEFAULT.POLICY

will

be

used.

The

maximum

size

of

policyName

is

48

bytes.

IN

dadFileName

The

name

of

the

DAD

file.

The

maximum

size

is

80

bytes.

IN

status

The

text

and

codes

returned

that

specify

whether

or

not

the

stored

procedure

ran

successfully,

any

error

codes

that

are

generated,

and

the

number

of

XML

documents

which

are

received

or

sent

to

the

message

queue.

OUT

Related

reference:

v

Appendix

C,

“XML

Extender

limits,”

on

page

311

dxxmqInsert

stored

procedure

Purpose:

256

XML

Extender

Administration

and

Programming

Breaks

down

or

shreds

an

incoming

XML

document

from

a

message

queue,

and

stores

the

data

in

new

or

existing

database

tables.

dxxmqInsert

uses

a

collection

name,

rather

than

a

DAD

file

name,

to

determine

how

to

store

the

data.

Syntax:

dxxmqInsert(varchar(48)

serviceName,

/*

input

*/

varchar(48)

policyName,

/*

input

*/

varchar(80)

collectionName,

/*

input

*/

varchar(20)

status)

/*

output

*/

Parameters:

Table

86.

dxxmqInsert()

parameters

Parameter

Description

IN/OUT

parameter

serviceName

A

string

containing

the

logical

MQSeries

destination

to

which

the

message

is

to

be

sent.

When

the

serviceName

is

listed,

it

refers

to

a

Service

Point

defined

in

the

AMT.XML

repository

file.

The

DB2.DEFAULT.SERVICE

is

used

when

the

serviceName

is

not

specified.

The

maximum

size

of

serviceName

is

48

bytes.

IN

policyName

A

string

containing

the

MQSeries

AMI

Service

Policy

used

to

handle

messages.

When

specified,

the

policyName

refers

to

a

policy

defined

in

the

AMT.XML

repository

file.

If

the

policyName

is

not

specified,

then

the

default

DB2.DEFAULT.POLICY

will

be

used.

The

maximum

size

of

policyName

is

48

bytes.

IN

collectionName

The

name

of

an

enabled

XML

collection.

The

maximum

size

is

80

bytes.

IN

status

The

text

and

codes

returned

that

specify

whether

or

not

the

stored

procedure

ran

successfully,

any

error

codes

that

are

generated,

and

the

number

of

XML

documents

which

are

received

or

sent

to

the

message

queue.

OUT

Examples:

In

the

following

fragment

example,

the

dxxmqInsert()

call

retrieves

the

input

XML

document

order1.xml

from

a

message

queue

defined

by

serviceName,

decomposes

the

document,

and

inserts

data

into

the

SALES_ORDER

collection

tables

according

to

the

mapping

that

is

specified

in

the

DAD

file

with

which

it

was

enabled.

#include

"dxx.h"

#include

"dxxrc.h"

EXEC

SQL

INCLUDE

SQLCA;

EXEC

SQL

BEGIN

DECLARE

SECTION;

Chapter

11.

MQSeries

stored

procedures

and

functions

257

char

serviceName[48];

char

policyName[48];

char

collection[80];

/*

name

of

an

XML

collection

*/

char

status[10];

short

serviceName_ind;

short

policyName_ind;

short

collection_ind;

short

status_ind;

EXEC

SQL

END

DECLARE

SECTION;

/*

initialize

host

variable

and

indicators

*/

strcpy(serviceName,

"myService");

strcpy(policyName,

"myPolicy");

strcpy(collection,"sales_ord")

status[0]=\0;

serviceName_ind

=

0;

policyName_ind

=

0;

collection_ind

=

0;

status_ind

=

-1;

/*

Call

the

store

procedure

*/

EXEC

SQL

CALL

dxxmqInsert(:serviceName:serviceName_ind,

:policyName:policyName_ind,

:collection:collection_ind,

:status:status_ind);

Related

concepts:

v

“XML

Extender

stored

procedures

and

functions

for

MQSeries”

on

page

221

Related

reference:

v

“How

to

read

syntax

diagrams”

on

page

x

v

Appendix

C,

“XML

Extender

limits,”

on

page

311

dxxmqInsertCLOB

stored

procedure

Purpose:

Breaks

down

or

shreds

an

incoming

XML

document

from

a

message

queue,

and

stores

the

data

in

new

or

existing

database

tables.

dxxmqInsertCLOB

uses

a

collection

name,

rather

than

a

DAD

file

name,

to

determine

how

to

store

the

data.

The

incoming

document

type

is

XMLCLOB

Syntax:

dxxmqInsertCLOB(varchar(48)

serviceName,

/*

input

*/

varchar(48)

policyName,

/*

input

*/

varchar(80)

collectionName,

/*

input

*/

varchar(20)

status)

/*

output

*/

258

XML

Extender

Administration

and

Programming

Parameters:

Table

87.

dxxmqInsertCLOB()

parameters

Parameter

Description

IN/OUT

parameter

serviceName

A

string

containing

the

logical

MQSeries

destination

to

which

the

message

is

to

be

sent.

When

the

serviceName

is

listed,

it

refers

to

a

Service

Point

defined

in

the

AMT.XML

repository

file.

The

DB2.DEFAULT.SERVICE

is

used

when

the

serviceName

is

not

specified.

The

maximum

size

of

serviceName

is

48

bytes.

IN

policyName

A

string

containing

the

MQSeries

AMI

Service

Policy

used

to

handle

messages.

When

specified,

the

policyName

refers

to

a

policy

defined

in

the

AMT.XML

repository

file.

If

the

policyName

is

not

specified,

then

the

default

DB2.DEFAULT.POLICY

will

be

used.

The

maximum

size

of

policyName

is

48

bytes.

IN

collectionName

The

name

of

an

enabled

XML

collection.

IN

status

The

text

and

codes

returned

that

specify

whether

or

not

the

stored

procedure

ran

successfully,

any

error

codes

that

are

generated,

and

the

number

of

XML

documents

which

are

received

or

sent

to

the

message

queue.

OUT

Examples:

In

the

following

fragment

example,

the

dxxmqInsertCLOB()

call

retrieves

the

input

XML

document

order1.xml

from

a

message

queue

defined

by

serviceName,

decomposes

the

document,

and

inserts

data

into

the

SALES_ORDER

collection

tables

according

to

the

mapping

that

is

specified

in

the

DAD

file

with

which

it

was

enabled.

#include

"dxx.h"

#include

"dxxrc.h"

EXEC

SQL

INCLUDE

SQLCA;

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

serviceName[48];

char

policyName[48];

char

collection[48];

/*

name

of

an

XML

collection

*/

char

status[10];

short

serviceName_ind;

short

policyName_ind;

short

collection_ind;

short

status_ind;

EXEC

SQL

END

DECLARE

SECTION;

/*

initialize

host

variable

and

indicators

*/

strcpy(serviceName,

"myService");

Chapter

11.

MQSeries

stored

procedures

and

functions

259

strcpy(policyName,

"myPolicy");

strcpy(collection,"sales_ord")

status[0]

=

\0;

serviceName_ind

=

0;

policyName_ind

=

0;

collection_ind

=

0;

status_ind

=

-1;

/*

Call

the

store

procedure

*/

EXEC

SQL

CALL

dxxmqInsertCLOB(:serviceName:serviceName_ind;

:policyName:policyName_ind,

:collection:collection_ind,

:status:status_ind);

Related

reference:

v

Appendix

C,

“XML

Extender

limits,”

on

page

311

dxxmqInsertAll

stored

procedure

Purpose:

Breaks

down

or

shreds

all

incoming

XML

documents

from

a

message

queue,

and

stores

the

data

in

new

or

existing

database

tables.

dxxmqInsertAll

uses

a

collection

name,

rather

than

a

DAD

file

name,

to

determine

how

to

store

the

data.

Syntax:

dxxmqInsertAll(varchar(48)

serviceName,

/*

input

*/

varchar(48)

policyName,

/*

input

*/

varchar(48)

collectionName,

/*

input

*/

varchar(20)

status)

/*

output

*/

Parameters:

Table

88.

dxxmqInsertAll()

parameters

Parameter

Description

IN/OUT

parameter

serviceName

A

string

containing

the

logical

MQSeries

destination

to

which

the

message

is

to

be

sent.

When

the

serviceName

is

listed,

it

refers

to

a

Service

Point

defined

in

the

AMT.XML

repository

file.

The

DB2.DEFAULT.SERVICE

is

used

when

the

serviceName

is

not

specified.

The

maximum

size

of

serviceName

is

48

bytes.

IN

policyName

A

string

containing

the

MQSeries

AMI

Service

Policy

used

to

handle

messages.

When

specified,

the

policyName

refers

to

a

policy

defined

in

the

AMT.XML

repository

file.

If

the

policyName

is

not

specified,

then

the

default

DB2.DEFAULT.POLICY

will

be

used.

The

maximum

size

of

policyName

is

48

bytes.

IN

collectionName

The

name

of

an

enabled

XML

collection.

The

maximum

size

is

80

bytes.

IN

260

XML

Extender

Administration

and

Programming

Table

88.

dxxmqInsertAll()

parameters

(continued)

Parameter

Description

IN/OUT

parameter

status

The

text

and

codes

returned

that

specify

whether

or

not

the

stored

procedure

ran

successfully,

any

error

codes

that

are

generated,

and

the

number

of

XML

documents

which

are

received

or

sent

to

the

message

queue.

OUT

Examples:

In

the

following

fragment

example,

the

dxxmqInsertAll

call

retrieves

all

input

XML

documents

from

a

message

queue

defined

by

serviceName,

decomposes

the

documents,

and

inserts

data

into

the

SALES_ORDER

collection

tables

according

to

the

mapping

that

is

specified

in

the

DAD

file

with

which

it

was

enabled.

#include

"dxx.h"

#include

"dxxrc.h"

EXEC

SQL

INCLUDE

SQLCA;

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

serviceName[48];

char

policyName[48];

char

collection[80];

/*

name

of

an

XML

collection

*/

char

status[10];

short

serviceName_ind;

short

policyName_ind;

short

collection_ind;

short

status_ind;

EXEC

SQL

END

DECLARE

SECTION;

/*

initialize

host

variable

and

indicators

*/

strcpy(serviceName,

"myService");

strcpy(policyName,

"myPolicy");

strcpy(collection,"sales_ord");

status[0]=’\0’;

serviceName_ind

=

0;

policyName_ind

=

0;

collection_ind

=

0;

status_ind

=

-1;

/*

Call

the

store

procedure

*/

EXEC

SQL

CALL

dxxmqInsertAll(:serviceName:serviceName_ind,

:policyName:policyName_ind,

:collection:collection_ind,

:status:status_ind);

Related

concepts:

v

“XML

Extender

stored

procedures

and

functions

for

MQSeries”

on

page

221

Related

reference:

v

“How

to

read

syntax

diagrams”

on

page

x

v

Appendix

C,

“XML

Extender

limits,”

on

page

311

dxxmqInsertAllCLOB

stored

procedure

Purpose:

Chapter

11.

MQSeries

stored

procedures

and

functions

261

Breaks

down

or

shreds

all

incoming

XML

documents

from

a

message

queue,

and

stores

the

data

in

new

or

existing

database

tables.

The

dxxmqInsertAllCLOB

stored

procedure

uses

a

collection

name,

rather

than

a

DAD

file

name,

to

determine

how

to

store

the

data.

Syntax:

dxxmqInsertAllCLOB(varchar(48)

serviceName,

/*

input

*/

varchar(48)

policyName,

/*

input

*/

varchar(48)

collectionName,

/*

input

*/

varchar(20)

status)

/*

output

*/

Parameters:

Table

89.

dxxmqInsertAllCLOB()

parameters

Parameter

Description

IN/OUT

parameter

serviceName

A

string

containing

the

logical

MQSeries

destination

to

which

the

message

is

to

be

sent.

When

the

serviceName

is

listed,

it

refers

to

a

Service

Point

defined

in

the

AMT.XML

repository

file.

The

DB2.DEFAULT.SERVICE

is

used

when

the

serviceName

is

not

specified.

The

maximum

size

of

serviceName

is

48

bytes.

IN

policyName

A

string

containing

the

MQSeries

AMI

Service

Policy

used

to

handle

messages.

When

specified,

the

policyName

refers

to

a

policy

defined

in

the

AMT.XML

repository

file.

If

the

policyName

is

not

specified,

then

the

default

DB2.DEFAULT.POLICY

will

be

used.

The

maximum

size

of

policyName

is

48

bytes.

IN

collectionName

The

name

of

an

enabled

XML

collection.

IN

status

The

text

and

codes

returned

that

specify

whether

or

not

the

stored

procedure

ran

successfully,

any

error

codes

that

are

generated,

and

the

number

of

XML

documents

which

are

received

or

sent

to

the

message

queue.

OUT

Examples:

In

the

following

fragment

example,

the

dxxmqInsertAllCLOB

call

retrieves

all

input

XML

documents

from

a

message

queue

defined

by

serviceName,

decomposes

the

documents,

and

inserts

data

into

the

SALES_ORDER

collection

tables

according

to

the

mapping

that

is

specified

in

the

DAD

file

with

which

it

was

enabled.

#include

"dxx.h"

#include

"dxxrc.h"

EXEC

SQL

INCLUDE

SQLCA;

EXEC

SQL

BEGIN

DECLARE

SECTION;

char

serviceName[48];

262

XML

Extender

Administration

and

Programming

char

policyName[48];

char

collection[48];

/*

name

of

an

XML

collection

*/

char

status[10];

short

serviceName_ind;

short

policyName_ind;

short

collection_ind;

short

status_ind;

EXEC

SQL

END

DECLARE

SECTION;

/*

initialize

host

variable

and

indicators

*/

strcpy(serviceName,

"myService");

strcpy(policyName,

"myPolicy");

strcpy(collection,"sales_ord")

status[0]

=

’\0’;

serviceName_ind

=

0;

policyName_ind

=

0;

collection_ind

=

0;

status_ind

=

-1;

/*

Call

the

store

procedure

*/

EXEC

SQL

CALL

dxxmqInsertAllCLOB(:serviceName:serviceName_ind;

:policyName:policyName_ind,

:collection:collection_ind,

:status:status_ind);

Related

reference:

v

Appendix

C,

“XML

Extender

limits,”

on

page

311

Chapter

11.

MQSeries

stored

procedures

and

functions

263

264

XML

Extender

Administration

and

Programming

Chapter

12.

Extensible

stylesheet

language

transformation

(XSLT)

Creating

an

HTML

document

using

an

XSLT

stylesheet

The

Extensible

stylesheet

language

transformation(XSLT)

consists

of

a

series

of

markups

that

can

be

used

to

apply

formatting

rules

to

each

of

the

elements

inside

an

XML

document.

XSL

works

by

applying

various

style

rules

to

the

contents

of

an

XML

document

based

on

the

elements

that

it

encounters.

By

design,

XSLT

stylesheets

are

regular

XML

documents.

Originally

created

for

page

layout,

XSLT

is

now

used

in

a

variety

of

ways.

For

example,

it

can

be

used

as

a

general-purpose

translation

tool,

a

system

for

reorganizing

document

content,

or

a

way

to

generate

multiple

results

such

as

HTML,

WAP,

and

SVG

from

a

single

source.

XSLT

is

a

critical

bridge

between

XML

processing

and

more

familiar

languages

such

as

HTML.XSLT,

and

allows

you

to

transform

an

XML

structure

into

other

data

types

by

removing

or

replacing

the

XML

tags.

It

also

allows

you

to

change

the

order

of

the

information,

extract

some

special

information,

or

sort

the

information.

Prerequisites:

To

create

an

HTML

document

using

a

stylesheet,

you

need

to

complete

the

following

tasks:

1.

Create

an

XML

file

in

the

result

table.

2.

Create

a

stylesheet.

You

can

create

your

HTML

file

by

using

XSLTransformToFile

or

XSLTransformToClob.

This

output

file

can

be

written

either

on

the

DB2

UDB

server

or

from

the

command

line

in

a

text

editor.

Procedure:

To

create

your

HTML

file

on

the

DB2

UDB

server,

type

the

following

syntax:

SELECT

XSLTransformToFile(

CAST(doc

AS

CLOB(4k)),

’$dxx_install$\samples\db2xml\xslt\getstart.xsl’,

0,

’$dxx_install$\samples\db2xml\html\getstart.html’)

FROM

RESULT_TAB

where

$dxx_install$

is

the

directory

where

you

installed

DB2

XML

Extender.

To

create

your

HTML

file

from

the

command

line,

open

any

text

editor

and

type

the

following

command:

getstart_xslt.cmd

Related

reference:

v

“XSLTransformToClob()

stored

procedure”

on

page

266

v

“XSLTransformToFile()

stored

procedure”

on

page

267

©

Copyright

IBM

Corp.

1999,

2004

265

XSLTransformToClob()

stored

procedure

Purpose:

XSLTransformToClob()

reads

an

XML

document

as

CLOB

locator

and

a

stylesheet

as

CLOB

or

from

a

file,

and

returns

the

document

as

CLOB.

Syntax:

��

XSLTransformToClob

(

xmlobj

,

stylesheet

,

validate

)

,

param

��

Parameters:

Parameter

Data

type

Description

xmlobj

CLOB

The

XML

document

stylesheet

CLOB,

VARCHAR

The

style

sheet

The

location

and

name

of

the

stylesheet

input

file

param

CLOB

VARCHAR

The

XML

parameter

document.

The

location

and

name

of

the

XML

parameter

fil.

validate

INTEGER

Enable

(1)

or

disable

(0)

validation

of

the

xmlobj

Results:

The

XSLTransformToClob()

returns

a

data

of

CLOB

type

if

successful.

Examples:

The

following

examples

create

a

sample

table

and

store

the

two

input

files

in

the

database:

getstart.xml

and

getstart.xsl.

The

database

must

be

enabled

for

XML

Extender.

CREATE

TABLE

xslt_tab(xmlobj

CLOB(4k),

stylesheet

CLOB(4k))

INSERT

INTO

xslt_tab(xmlobj,

stylesheet)

VALUES(

DB2XML.XMLCLOBFromFile(’c:\dxx_installsamples\db2xml\xml\getstart.xml

’),

DB2XML.XMLCLOBFromFile(’c:\dxx_installsamples\db2xml\xslt\getstart.xsl

’))

Example

1:

The

following

example

transforms

an

XML

document

into

a

HTML

document

using

the

table

created:

SELECT

XSLTransformToClob(xmlobj,

stylesheet)

FROM

xslt_tab

Example

2:

This

example

transforms

an

XML

document

into

an

HTML

document

using

a

stylesheet

file

SELECT

XSLTransformToClob(

xmlobj,

c:\dxx_installsamples\db2xml\xslt\getstart.xsl

’)

FROM

xslt_tab

Example

3:

In

this

example

the

output

is

changed

by

additional

parameters.

The

XML

parameter

document

must

define

the

namespace.

The

parameters

must

be

wrapped

in

the

<param>

element.

The

corresponding

value

also

can

be

specified

in

a

value

attribute,

or

in

the

content

of

the

<param>

element.

266

XML

Extender

Administration

and

Programming

c:\dxx_install\samples\db2xml\xml\getstart_xslt_param.xml:

<?xml

version="1.0"?>

<params

xmlns="http://www.ibm.com.XSLtransformParameters">

<param

name="noShipments"

value="true"/>

<param

name="headline">The

customers...</param>

</params>

SELECT

XSLTranfsormToClob(

xmlobj,

stylesheet,

param,

1)

FROM

xslt_tab

XSLTransformToFile()

stored

procedure

Purpose:

Reads

an

XML

document

as

a

CLOB

and

a

style

sheet

as

a

CLOB

or

from

a

file.

The

XSLTransformToFile()

user-defined

function(UDF)

then

writes

the

results

from

the

style

sheet

and

XML

document

into

a

file.

When

a

directory

and

a

file

extension

are

given

as

parameters,

the

UDF

will

create

a

file

with

a

unique

filename

in

this

directory.

Syntax:

��

XSLTransformToFile

(

xmlobj

,

stylesheet

,

,

param

validate

,

�

�

filename

)

,

dir

,

suffix

��

Parameters:

Table

90.

XSLTransformDir()

parameter

descriptions

Parameter

Data

type

Description

xmlobj

CLOB

The

XML

document

stylesheet

CLOB

VARCHAR

The

style

sheet

The

location

and

name

of

the

stylesheet

input

file

param

VARCHAR

VARCH

The

XML

parameter

document

The

location

and

name

of

the

XML

parameter

file

validate

INTEGER

Enable

(1)

or

disable

(0)

validation

of

the

xmlobj

filename

VARCHAR

The

name

of

the

output

file

dir

VARCHAR

The

directory

of

the

output

file

suffix

VARCHAR

The

suffix

of

the

output

file

Results:

The

XSLTransformToFile()

returns

a

VARCHAR

for

the

written

file

name.

Examples:

The

following

example

creates

a

sample

table

and

stores

two

files

in

the

getstart.xml

and

getstart.xsl

tables.

To

create

the

sample

table,

the

DB2

UDB

database

must

be

enabled

for

XML

Extender.

Chapter

12.

Extensible

stylesheet

language

transformation

(XSLT)

267

CREATE

TABLE

xslt_tab(xmlobj

CLOB(4k),

stylesheet

CLOB(4k))

INSERT

INTO

xslt_tab(xmlobj,

stylesheet)

VALUES(

DB2XML.XMLCLOBFromFile(’$dxx_install$\samples\db2xml\xml\getstart.xml

’),

DB2XML.XMLCLOBFromFile(’$dxx_install$\samples\db2xml\xslt\getstart.xsl

’))

where

$dxx_install$

is

the

directory

where

you

installed

DB2

XML

Extender.

Example

1:

This

example

transforms

the

XML

document

into

an

HTML

document

and

writes

the

created

document

to

the

specified

file:

SELECT

XSLTransformFile(

xmlobj,

stylesheet,

’$dxx_install$samples\db2xml\html\getstart.html

FROM

xslt_tab

where

$dxx_install$

is

the

directory

where

you

installed

DB2

XML

Extender.

Example

2:

This

example

writes

an

HTML

document

to

a

file

using

a

stylesheet

file.

Validation

is

enabled

but

the

result

is

the

same.

This

feature

is

necessary

to

include

default

values

from

an

XML

schema

in

the

transformation

process.

No

parameters

are

specified.

The

file

name

is

generated

by

the

UDF.

SELECT

XSLTransformToFile(

xmlobj,

’/$dxx_install$\samples/db2xml/xslt/getstart.xsl’,

’/$dxx_install$\samples/db2xml/html/getstart.html’)

FROM

xslt_tab

where

$dxx_install$

is

the

directory

where

you

installed

DB2

XML

Extender.

Example

3:

In

this

example

the

output

is

changed

by

additional

parameters.

The

XML

parameter

document

must

define

the

namespace.

The

parameters

must

be

wrapped

in

the

<param>

element.

The

corresponding

value

also

can

be

specified

in

a

value

attribute,

or

in

the

content

of

the

<param>

element.

$dxx_install$\samples\db2xml\xml\getstart_xslt_param.xml:’,

’html’)

<?xml

version="1.0"?>

<params

xmlns="http://www.ibm.com.XSLtransformParameters">

<param

name="noShipments"

value="true"/>

<param

name="headline">The

customers...</param>

</params>

where

$dxx_install$

is

the

directory

where

you

installed

DB2

XML

Extender.

Example

4:

This

example

writes

an

HTML

document

into

a

file

using

a

stylesheet

file

and

stores

the

file

name

for

each

row

in

an

additional

column

in

the

table.

UPDATE

TABLE

xslt_tab

ADD

COLUMN

filename

VARCHAR(512)

UPDATE

TABLE

xslt_tab

SET

filename

=

XSLTransformToFile(xmlobj,stylesheet,

param,

1,

’$dxx_install$samples\db2xml\html

’,

’html’)

FROM

xslt_tab

where

$dxx_install$

is

the

directory

where

you

installed

DB2

XML

Extender.

268

XML

Extender

Administration

and

Programming

Chapter

13.

XML

Extender

administration

support

tables

When

a

database

is

enabled,

a

DTD

repository

table

(DTD_REF)

and

an

XML_USAGE

table

are

created.

The

DTD_REF

table

contains

information

about

all

of

the

DTDs.

The

XML_USAGE

table

stores

common

information

for

each

XML-enabled

column.

Each

is

created

with

specific

PUBLIC

privileges.

DTD

reference

table

The

XML

Extender

also

serves

as

an

XML

DTD

repository.

When

a

database

is

XML-enabled,

a

DTD

repository

table,

DTD_REF,

is

created.

Each

row

of

this

table

represents

a

DTD

with

additional

metadata

information.

You

can

access

this

table,

and

insert

your

own

DTDs.

The

DTDs

in

the

DTD_REF

table

are

used

to

validate

XML

documents

and

to

help

applications

to

define

a

DAD

file.

It

has

the

schema

name

of

DB2XML.

A

DTD_REF

table

can

have

the

columns

shown

in

Table

91.

Table

91.

DTD_REF

table

Column

name

Data

type

Description

DTDID

VARCHAR(128)

The

primary

key

(unique

and

not

NULL).

It

is

used

to

identify

the

DTD.

When

the

DTD

is

specified

in

the

DAD

file,

the

DAD

file

must

adhere

to

the

schema

that

is

defined

by

the

DTD.

CONTENT

XMLCLOB

The

content

of

the

DTD.

ROW_ID

ROWID

An

identifier

of

the

row.

USAGE_COUNT

INTEGER

The

number

of

XML

columns

and

XML

collections

in

the

database

that

use

the

DTD

to

define

their

DAD

files.

AUTHOR

VARCHAR(128)

The

author

of

the

DTD.

This

information

is

optional.

CREATOR

VARCHAR(128)

The

user

ID

that

does

the

first

insertion.

This

column

is

optional.

UPDATOR

VARCHAR(128)

The

user

ID

that

does

the

last

update.

This

column

is

optional.

A

DTD

can

be

modified

by

the

application

only

when

the

USAGE_COUNT

is

zero.

Privileges

granted

to

PUBLIC

Privileges

of

INSERT,

UPDATE,

DELETE,

and

SELECT

are

granted

for

PUBLIC.

XML

usage

table

(XML_USAGE)

The

XML_USAGE

table

stores

common

information

for

each

XML-enabled

column.

The

XML_USAGE

table’s

schema

name

is

DB2XML,

and

its

primary

key

is

(table_name,

col_name).

Only

read

privileges

of

this

table

are

granted

to

PUBLIC.

An

XML_USAGE

table

is

created

at

the

time

the

database

is

enabled.

The

columns

in

the

XML_USAGE

table

are

shown

in

Table

92

on

page

270.

©

Copyright

IBM

Corp.

1999,

2004

269

Table

92.

XML_USAGE

table

Column

name

Description

table_schema

For

an

XML

column,

the

schema

name

of

the

user

table

that

contains

an

XML

column.

For

an

XML

collection,

a

value

of

DXX_COLL

as

the

default

schema

name.

table_name

For

an

XML

column,

the

name

of

the

user

table

that

contains

an

XML

column.

For

an

XML

collection,

a

value

DXX_COLLECTION,

which

identifies

the

entity

as

a

collection.

col_name

The

name

of

the

XML

column

or

XML

collection.

It

is

part

of

the

composite

key

along

with

the

table_name.

DTDID

A

string

associating

a

DTD

inserted

into

DTD_REF

with

a

DTD

specified

in

a

DAD

file;

this

value

must

match

the

value

of

the

DTDID

element

in

the

DAD.

This

column

is

a

foreign

key.

DAD

The

content

of

the

DAD

file

that

is

associated

with

the

XML

column

or

XML

collection.

access_mode

Specifies

which

access

mode

is

used:

1

for

XML

collection,

0

for

XML

column

default_view

Stores

the

default

view

name

if

there

is

one.

trigger_suffix

Not

NULL.

For

unique

trigger

names.

validation

1

for

yes,

0

for

no

row_id

An

identifier

of

the

row.

Do

not

add,

modify,

or

delete

entries

from

the

XML_USAGE

table;

it

is

for

XML

Extender

internal

use

only.

Privileges

granted

to

PUBLIC

For

XML_USAGE,

the

privilege

of

SELECT

is

granted

for

PUBLIC.

INSERT,

DELETE,

and

UPDATE

are

granted

to

DB2XML.

270

XML

Extender

Administration

and

Programming

Chapter

14.

Troubleshooting

Troubleshooting

XML_Extender

All

embedded

SQL

statements

in

your

program

and

DB2

UDB

command

line

interface

(CLI)

calls

in

your

program,

including

those

that

invoke

the

DB2

UDB

XML

Extender

user-defined

functions

(UDFs),

generate

codes

that

indicate

whether

the

embedded

SQL

statement

or

DB2

UDB

CLI

call

ran

successfully.

Your

program

can

retrieve

information

that

supplements

these

codes

including

SQLSTATE

information

and

error

messages.

You

can

use

this

diagnostic

information

to

isolate

and

fix

problems

in

your

program.

Occasionally

the

source

of

a

problem

cannot

be

easily

diagnosed.

In

these

cases,

you

might

need

to

provide

information

to

IBM

Software

Support

to

isolate

and

fix

the

problem.

The

XML

Extender

includes

a

trace

facility

that

records

XML

Extender

activity.

The

trace

information

can

be

valuable

input

to

IBM

Software

Support.

You

should

use

the

trace

facility

only

under

instruction

from

IBM

Software

Support.

This

chapter

describes

the

trace

facility,

and

error

codes

and

messages.

Related

reference:

v

“SQLSTATE

codes

and

associated

message

numbers

for

XML

Extender”

on

page

274

v

“XML

Extender

messages”

on

page

278

v

“Stopping

the

trace”

on

page

272

v

“Starting

the

trace

for

XML

Extender”

on

page

271

Starting

the

trace

for

XML

Extender

Purpose:

Records

the

XML

Extender

server

activity.

To

start

the

trace,

apply

the

on

option

to

dxxtrc,

along

with

the

name

of

an

existing

directory

to

contain

the

trace

file.

When

the

trace

is

turned

on,

the

file,

dxxDB2.trc,

is

placed

in

the

specified

directory.

The

trace

file

is

not

limited

in

size.

Syntax:

Starting

the

trace

from

the

USS

command

line:

��

dxxtrc

on

trace_directory

��

Starting

the

trace

from

TSO:

call

’dxx.load(dxxtrc)’

’on

"trace_directory"’

asis

Starting

the

trace

from

JCL:

//STEP

EXEC

PGM=DXXTRC,

//

PARM=’on

"trace_directory"’

©

Copyright

IBM

Corp.

1999,

2004

271

Parameters:

Table

93.

Trace

parameters

Parameter

Description

trace_directory

Name

of

an

existing

USS

path

and

directory

where

the

dxxdb2.trc

is

placed.

Required,

no

default.

Examples:

The

following

example

demonstrates

starting

the

trace

for

an

instance

db2inst1.

The

trace

file,

dxxdb2inst1.trc,

is

placed

in

the

/home/db2inst1/dxx_install/log

directory.

dxxtrc

on

/home/db2inst1/dxx_install/log

The

following

examples

show

starting

the

trace,

with

file,

dxxdb2.trc,

in

the

/u/user1/dxx/trace

directory.

From

USS:

dxxtrc

on

/u/user1/trace

From

TSO:

call

’dxx.load(dxxtrc)’

’on

"/u/user1/dxx/trace"’

asis

From

JCL:

//STEP

EXEC

PGM=DXXTRC,

//

PARM=’on

"/u/user1/dxx/trace"’

Stopping

the

trace

Purpose:

Turns

the

trace

off.

Trace

information

is

no

longer

logged.

Recommendation:

Because

running

the

trace

log

file

size

is

not

limited

and

can

impact

performance,

turn

trace

off

in

a

production

environment.

Syntax:

Stopping

the

trace

from

the

USS

command

line:

��

dxxtrc

off

��

Stopping

the

trace

from

TSO:

call

’dxx.load(dxxtrc)’

’off’

asis

Stopping

the

trace

from

JCL:

//STEP

EXEC

PGM=DXXTRC,

//

PARM=’off’

Examples:

This

example

shows

that

the

trace

facility

is

turned

off.

dxxtrc

off

The

following

examples

demonstrate

stopping

the

trace.

272

XML

Extender

Administration

and

Programming

From

USS:

dxxtrc

off

From

TSO:

call

’dxx.load(dxxtrc)’

’off’

asis

From

JCL:

//STEP

EXEC

PGM=DXXTRC,

//

PARM=’off’

XML

Extender

UDF

return

codes

Embedded

SQL

statements

return

codes

in

the

SQLCODE,

SQLWARN,

and

SQLSTATE

fields

of

the

SQLCA

structure.

This

structure

is

defined

in

an

SQLCA

INCLUDE

file.

(For

more

information

about

the

SQLCA

structure

and

SQLCA

INCLUDE

file,

see

the

DB2

Application

Development

GuideDB2

Application

Programming

and

SQL

Guide.)

DB2

CLI

calls

return

SQLCODE

and

SQLSTATE

values

that

you

can

retrieve

using

the

SQLError

function.

(For

more

information

about

retrieving

error

information

with

the

SQLError

function,

see

the

ODBC

Guide

and

Reference.)

An

SQLCODE

value

of

0

means

that

the

statement

ran

successfully

(with

possible

warning

conditions).

A

positive

SQLCODE

value

means

that

the

statement

ran

successfully

but

with

a

warning.

(Embedded

SQL

statements

return

information

about

the

warning

that

is

associated

with

0

or

positive

SQLCODE

values

in

the

SQLWARN

field.)

A

negative

SQLCODE

value

means

that

an

error

occurred.

DB2

associates

a

message

with

each

SQLCODE

value.

If

an

XML

Extender

UDF

encounters

a

warning

or

error

condition,

it

passes

associated

information

to

DB2

UDB

for

inclusion

in

the

SQLCODE

message.

Embedded

SQL

statements

and

DB2

UDB

CLI

calls

that

invoke

the

DB2

XML

Extender

UDFs

might

return

SQLCODE

messages

and

SQLSTATE

values

that

are

unique

to

these

UDFs,

but

DB2

UDB

returns

these

values

in

the

same

way

that

it

does

for

other

embedded

SQL

statements

or

other

DB2

UDB

CLI

calls.

Thus,

the

way

that

you

access

these

values

is

the

same

as

for

embedded

SQL

statements

or

DB2

UDB

CLI

calls

that

do

not

start

the

DB2

UDB

XML

Extender

UDFs.

XML

Extenders

stored

procedure

return

codes

The

XML

Extender

provides

return

codes

to

help

resolve

problems

with

stored

procedures.

When

you

receive

a

return

code

from

a

stored

procedure,

check

the

following

file,

which

matches

the

return

code

with

an

XML

Extender

error

message

number

and

the

symbolic

constant.

dxx_install/include/dxxrc.h

Related

reference:

v

“SQLSTATE

codes

and

associated

message

numbers

for

XML

Extender”

on

page

274

Chapter

14.

Troubleshooting

273

SQLSTATE

codes

and

associated

message

numbers

for

XML

Extender

Table

94.

SQLSTATE

codes

and

associated

message

numbers

SQLSTATE

Message

Number

Description

00000

DXXnnnnI

No

error

occurred.

01HX0

DXXD003W

The

element

or

attribute

specified

in

the

path

expression

is

missing

from

the

XML

document.

38X00

DXXC000E

The

XML

Extender

is

unable

to

open

the

specified

file.

38X01

DXXA072E

XML

Extender

tried

to

automatically

bind

the

database

before

enabling

it,

but

could

not

find

the

bind

files.

DXXC001E

The

XML

Extender

could

not

find

the

file

specified.

38X02

DXXC002E

The

XML

Extender

is

unable

to

read

data

from

the

specified

file.

38X03

DXXC003E

The

XML

Extender

is

unable

to

write

data

to

the

file.

DXXC011E

The

XML

Extender

is

unable

to

write

data

to

the

trace

control

file.

38X04

DXXC004E

The

XML

Extender

was

unable

to

operate

the

specified

locator.

38X05

DXXC005E

The

file

size

is

greater

than

the

XMLVarchar

size,

and

the

XML

Extender

is

unable

to

import

all

the

data

from

the

file.

38X06

DXXC006E

The

file

size

is

greater

than

the

size

of

the

XMLCLOB,

and

the

XML

Extender

is

unable

to

import

all

the

data

from

the

file.

38X07

DXXC007E

The

number

of

bytes

in

the

LOB

locator

does

not

equal

the

file

size.

38X08

DXXD001E

A

scalar

extraction

function

used

a

location

path

that

occurs

multiple

times.

A

scalar

function

can

use

only

a

location

path

that

does

not

have

multiple

occurrence.

38X09

DXXD002E

The

path

expression

is

syntactically

incorrect.

38X10

DXXG002E

The

XML

Extender

was

unable

to

allocate

memory

from

the

operating

system.

38X11

DXXA009E

This

stored

procedure

is

for

an

XML

column

only.

38X12

DXXA010E

While

attempting

to

enable

the

column,

the

XML

Extender

could

not

find

the

DTD

ID,

which

is

the

identifier

specified

for

the

DTD

in

the

document

access

definition

(DAD)

file.

274

XML

Extender

Administration

and

Programming

Table

94.

SQLSTATE

codes

and

associated

message

numbers

(continued)

SQLSTATE

Message

Number

Description

DXXQ060E

The

XML

Extender

could

not

find

the

SCHEMA

ID

while

attempting

to

enable

the

column.

The

SCHEMA

ID

corresponds

to

the

value

of

the

location

attribute

of

the

nonamespacelocation

tag

which

is

inside

the

schemabindings

tag

in

the

DAD

file.

38X14

DXXD000E

There

was

an

attempt

to

store

an

invalid

document

into

a

table.

Validation

failed.

38X15

DXXA056E

The

validation

element

in

the

document

access

definition

(DAD)

file

is

wrong

or

missing.

DXXA057E

The

name

attribute

of

a

side

table

in

the

document

access

definition

(DAD)

file

is

wrong

or

missing.

DXXA058E

The

name

attribute

of

a

column

in

the

document

access

definition

(DAD)

file

is

wrong

or

missing.

DXXA059E

The

type

attribute

of

a

column

in

the

document

access

definition

(DAD)

file

is

wrong

or

missing.

DXXA060E

The

path

attribute

of

a

column

in

the

document

access

definition

(DAD)

file

is

wrong

or

missing.

DXXA061E

The

multi_occurrence

attribute

of

a

column

in

the

document

access

definition

(DAD)

file

is

wrong

or

missing.

DXXQ000E

A

mandatory

element

is

missing

from

the

document

access

definition

(DAD)

file.

DXXQ056E

The

specified

element/attribute

cannot

be

mapped

to

a

column

that

is

specified

as

part

of

a

foreign

key.

Data

values

for

foreign

keys

are

determined

by

that

of

the

primary

keys;

a

mapping

of

the

specified

element/attribute

in

the

XML

document

to

a

table

and

column

is

not

necessary.

DXXQ057E

The

schemabindings

and

DTD

ID

tags

cannot

exist

together

in

the

DAD

file.

DXXQ058E

The

nonamespacelocation

tag

inside

the

schemabindings

tag

is

missing

in

the

DAD

file.

DXXQ059E

The

doctype

tag

cannot

be

located

inside

the

XCollection

tag

in

the

DAD

for

schema

validation.

Chapter

14.

Troubleshooting

275

Table

94.

SQLSTATE

codes

and

associated

message

numbers

(continued)

SQLSTATE

Message

Number

Description

DXXQ062E

This

error

condition

is

usually

caused

by

a

missing

multi_occurrence

=

YES

specification

on

the

parent

element_node

of

the

given

element

or

attribute.

DXXQ063E

The

value

of

the

multi_occurrence

attribute

on

the

specified

element_node

in

the

document

access

definition

(DAD)

file

is

wrong

or

missing.

The

value

must

be

’yes’

or

’no’,

case

insensitive.

DXXQ064E

A

key

column

specified

in

the

join

condition

was

not

mapped

to

any

element

or

attribute

node.

38X16

DXXG004E

A

null

value

for

a

required

parameter

was

passed

to

an

XML

stored

procedure.

38X17

DXXQ001E

The

SQL

statement

in

the

document

access

definition

(DAD)

file

or

the

statement

that

overrides

it

is

not

valid.

A

SELECT

statement

is

required

for

generating

XML

documents.

38X18

DXXG001E

XML

Extender

encountered

an

internal

error.

DXXG006E

XML

Extender

encountered

an

internal

error

while

using

CLI.

38X19

DXXQ002E

The

system

is

running

out

of

space

in

memory

or

disk.

There

is

no

space

to

contain

the

resulting

XML

documents.

38X20

DXXQ003W

The

user-defined

SQL

query

generates

more

XML

documents

than

the

specified

maximum.

Only

the

specified

number

of

documents

are

returned.

38X21

DXXQ004E

The

specified

column

is

not

one

of

the

columns

in

the

result

of

the

SQL

query.

38X22

DXXQ005E

The

mapping

of

the

SQL

query

to

XML

is

incorrect.

38X23

DXXQ006E

An

attribute_node

element

in

the

document

access

definition

(DAD)

file

does

not

have

a

name

attribute.

38X24

DXXQ007E

The

attribute_node

element

in

the

document

access

definition

(DAD)

does

not

have

a

column

element

or

RDB_node.

276

XML

Extender

Administration

and

Programming

Table

94.

SQLSTATE

codes

and

associated

message

numbers

(continued)

SQLSTATE

Message

Number

Description

38X25

DXXQ008E

A

text_node

element

in

the

document

access

definition

(DAD)

file

does

not

have

a

column

element.

38X26

DXXQ009E

The

specified

result

table

could

not

be

found

in

the

system

catalog.

38X27

DXXQ010E

DXXQ040E

The

RDB_node

of

the

attribute_node

or

text_node

must

have

a

table.

DXXQ011E

The

RDB_node

of

the

attribute_node

or

text_node

must

have

a

column.

DXXQ017E

An

XML

document

generated

by

the

XML

Extender

is

too

large

to

fit

into

the

column

of

the

result

table.

DXXQ040E

The

specified

element

name

in

document

access

definition

(DAD)

file

is

wrong.

38X28

DXXQ012E

XML

Extender

could

not

find

the

expected

element

while

processing

the

DAD.

DXXQ016E

All

tables

must

be

defined

in

the

RDB_node

of

the

top

element

in

the

document

access

definition

(DAD)

file.

Sub-element

tables

must

match

the

tables

defined

in

the

top

element.

The

table

name

in

this

RDB_node

is

not

in

the

top

element.

38X29

DXXQ013E

The

element

table

or

column

must

have

a

name

in

the

document

access

definition

(DAD)

file.

DXXQ015E

The

condition

in

the

condition

element

in

the

document

access

definition

(DAD)

file

has

an

invalid

format.

DXXQ061E

The

format

of

the

string

representation

is

invalid.

If

the

string

is

a

date,

time,

or

timestamp

value,

the

syntax

does

not

conform

to

its

data

type.

38X30

DXXQ014E

An

element_node

element

in

the

document

access

definition

(DAD)

file

does

not

have

a

name

attribute.

DXXQ018E

The

ORDER

BY

clause

is

missing

from

the

SQL

statement

in

a

document

access

definition

(DAD)

file

that

maps

SQL

to

XML.

38X31

DXXQ019E

The

objids

element

does

not

have

a

column

element

in

the

document

access

definition

(DAD)

file

that

maps

SQL

to

XML.

Chapter

14.

Troubleshooting

277

Table

94.

SQLSTATE

codes

and

associated

message

numbers

(continued)

SQLSTATE

Message

Number

Description

38x33

DXXG005E

This

parameter

is

not

supported

in

this

release.

It

will

be

supported

in

the

future

release.

38x34

DXXG000E

An

invalid

file

name

was

specified.

38X36

DXXA073E

The

database

was

not

bound

when

you

tried

to

enable

it.

38X37

DXXG007E

The

server

operating

system

locale

is

inconsistent

with

the

DB2

UDB

code

page.

38X38

DXXG008E

The

server

operating

system

locale

can

not

be

found

in

the

code

page

table.

38X41

DXXQ048E

The

stylesheet

processor

returned

an

internal

error.

The

XML

document

or

the

stylesheet

might

not

be

vaild.

38X42

DXXQ049E

The

specified

output

file

already

exists

in

this

directory.

38X43

DXXQ050E

The

UDF

was

unable

to

create

a

unique

file

name

for

the

output

document

in

the

specified

directory

because

it

does

not

have

access.

All

file

names

that

can

be

generated

are

in

use

or

directory

might

not

exist.

38X44

DXXQ051E

One

or

more

input

or

output

parameters

have

no

valid

value.

38X45

DXXQ055E

ICU

error

encountered

during

conversion

operation.

XML

Extender

messages

DXXA000I

Enabling

column

<column_name>.

Please

Wait.

Explanation:

This

is

an

informational

message.

User

Response:

No

action

required.

DXXA001S

An

unexpected

error

occurred

in

build

<build_ID>,

file

<file_name>,

and

line

<line_number>.

Explanation:

An

unexpected

error

occurred.

User

Response:

If

this

error

persists,

contact

your

Software

Service

Provider.

When

reporting

the

error,

be

sure

to

include

all

the

message

text,

the

trace

file,

and

an

explanation

of

how

to

reproduce

the

problem.

DXXA002I

Connecting

to

database

<database>.

Explanation:

This

is

an

informational

message.

User

Response:

No

action

required.

DXXA003E

Cannot

connect

to

database

<database>.

Explanation:

The

database

specified

might

not

exist

or

could

be

corrupted.

User

Response:

1.

Ensure

the

database

is

specified

correctly.

2.

Ensure

the

database

exists

and

is

accessible.

3.

Determine

if

the

database

is

corrupted.

If

it

is,

ask

your

database

administrator

to

recover

it

from

a

backup.

278

XML

Extender

Administration

and

Programming

DXXA004E

Cannot

enable

database

<database>.

Explanation:

The

database

might

already

be

enabled

or

might

be

corrupted.

User

Response:

1.

Determine

if

the

database

is

enabled.

2.

Determine

if

the

database

is

corrupted.

If

it

is,

ask

your

database

administrator

to

recover

it

from

a

backup.

DXXA005I

Enabling

database

<database>.

Please

wait.

Explanation:

This

is

an

informational

message.

User

Response:

No

action

required.

DXXA006I

The

database

<database>

was

enabled

successfully.

Explanation:

This

is

an

informational

message.

User

Response:

No

action

required.

DXXA007E

Cannot

disable

database

<database>.

Explanation:

The

database

cannot

be

disabled

by

XML

Extender

if

it

contains

any

XML

columns

or

collections.

User

Response:

Backup

any

important

data,

disable

any

XML

columns

or

collections,

and

update

or

drop

any

tables

until

there

are

no

XML

data

types

left

in

the

database.

DXXA008I

Disabling

column

<column_name>.

Please

Wait.

Explanation:

This

is

an

information

message.

User

Response:

No

action

required.

DXXA009E

Xcolumn

tag

is

not

specified

in

the

DAD

file.

Explanation:

This

stored

procedure

is

for

XML

Column

only.

User

Response:

Ensure

the

Xcolumn

tag

is

specified

correctly

in

the

DAD

file.

DXXA010E

Attempt

to

find

DTD

ID

<dtdid>

failed.

Explanation:

While

attempting

to

enable

the

column,

the

XML

Extender

could

not

find

the

DTD

ID,

which

is

the

identifier

specified

for

the

DTD

in

the

document

access

definition

(DAD)

file.

User

Response:

Ensure

the

correct

value

for

the

DTD

ID

is

specified

in

the

DAD

file.

DXXA011E

Inserting

a

record

into

DB2XML.XML_USAGE

table

failed.

Explanation:

While

attempting

to

enable

the

column,

the

XML

Extender

could

not

insert

a

record

into

the

DB2XML.XML_USAGE

table.

User

Response:

Ensure

the

DB2XML.XML_USAGE

table

exists

and

that

a

record

by

the

same

name

does

not

already

exist

in

the

table.

DXXA012E

Attempt

to

update

DB2XML.DTD_REF

table

failed.

Explanation:

While

attempting

to

enable

the

column,

the

XML

Extender

could

not

update

the

DB2XML.DTD_REF

table.

User

Response:

Ensure

the

DB2XML.DTD_REF

table

exists.

Determine

whether

the

table

is

corrupted

or

if

the

administration

user

ID

has

the

correct

authority

to

update

the

table.

DXXA013E

Attempt

to

alter

table

<table_name>

failed.

Explanation:

While

attempting

to

enable

the

column,

the

XML

Extender

could

not

alter

the

specified

table.

User

Response:

Check

the

privileges

required

to

alter

the

table.

DXXA014E

The

specified

root

ID

column:

<root_id>

is

not

a

single

primary

key

of

table

<table_name>.

Explanation:

The

root

ID

specified

is

either

not

a

key,

or

it

is

not

a

single

key

of

table

table_name.

User

Response:

Ensure

the

specified

root

ID

is

the

single

primary

key

of

the

table.

DXXA015E

The

column

DXXROOT_ID

already

exists

in

table

<table_name>.

Explanation:

The

column

DXXROOT_ID

exists,

but

was

not

created

by

XML

Extender.

User

Response:

Specify

a

primary

column

for

the

root

ID

option

when

enabling

a

column,

using

a

different

different

column

name.

DXXA016E

The

input

table

<table_name>

does

not

exist.

Explanation:

The

XML

Extender

was

unable

to

find

the

specified

table

in

the

system

catalog.

User

Response:

Ensure

that

the

table

exists

in

the

database,

and

is

specified

correctly.

Chapter

14.

Troubleshooting

279

DXXA017E

The

input

column

<column_name>

does

not

exist

in

the

specified

table

<table_name>.

Explanation:

The

XML

Extender

was

unable

to

find

the

column

in

the

system

catalog.

User

Response:

Ensure

the

column

exists

in

a

user

table.

DXXA018E

The

specified

column

is

not

enabled

for

XML

data.

Explanation:

While

attempting

to

disable

the

column,

XML

Extender

could

not

find

the

column

in

the

DB2XML.XML_USAGE

table,

indicating

that

the

column

is

not

enabled.

If

the

column

is

not

XML-enabled,

you

do

not

need

to

disable

it.

User

Response:

No

action

required.

DXXA019E

A

input

parameter

required

to

enable

the

column

is

null.

Explanation:

A

required

input

parameter

for

the

enable_column()

stored

procedure

is

null.

User

Response:

Check

all

the

input

parameters

for

the

enable_column()

stored

procedure.

DXXA020E

Columns

cannot

be

found

in

the

table

<table_name>.

Explanation:

While

attempting

to

create

the

default

view,

the

XML

Extender

could

not

find

columns

in

the

specified

table.

User

Response:

Ensure

the

column

and

table

name

are

specified

correctly.

DXXA021E

Cannot

create

the

default

view

<default_view>.

Explanation:

While

attempting

to

enable

a

column,

the

XML

Extender

could

not

create

the

specified

view.

User

Response:

Ensure

that

the

default

view

name

is

unique.

If

a

view

with

the

name

already

exists,

specify

a

unique

name

for

the

default

view.

DXXA022I

Column

<column_name>

enabled.

Explanation:

This

is

an

informational

message.

User

Response:

No

response

required.

DXXA023E

Cannot

find

the

DAD

file.

Explanation:

While

attempting

to

disable

a

column,

the

XML

Extender

was

unable

to

find

the

document

access

definition

(DAD)

file.

User

Response:

Ensure

you

specified

the

correct

database

name,

table

name,

or

column

name.

DXXA024E

The

XML

Extender

encountered

an

internal

error

while

accessing

the

system

catalog

tables.

Explanation:

The

XML

Extender

was

unable

to

access

system

catalog

table.

User

Response:

Ensure

the

database

is

in

a

stable

state.

DXXA025E

Cannot

drop

the

default

view

<default_view>.

Explanation:

While

attempting

to

disable

a

column,

the

XML

Extender

could

not

drop

the

default

view.

User

Response:

Ensure

the

administration

user

ID

for

XML

Extender

has

the

privileges

necessary

to

drop

the

default

view.

DXXA026E

Unable

to

drop

the

side

table

<side_table>.

Explanation:

While

attempting

to

disable

a

column,

the

XML

Extender

was

unable

to

drop

the

specified

table.

User

Response:

Ensure

that

the

administrator

user

ID

for

XML

Extender

has

the

privileges

necessary

to

drop

the

table.

DXXA027E

Could

not

disable

the

column.

Explanation:

XML

Extender

could

not

disable

a

column

because

an

internal

trigger

failed.

Possible

causes:

v

The

system

is

out

of

memory.

v

A

trigger

with

this

name

does

not

exist.

User

Response:

Use

the

trace

facility

to

create

a

trace

file

and

try

to

correct

the

problem.

If

the

problem

persists,

contact

your

Software

Service

Provider

and

provide

the

trace

file.

DXXA028E

Could

not

disable

the

column.

Explanation:

XML

Extender

could

not

disable

a

column

because

an

internal

trigger

failed.

Possible

causes:

v

The

system

is

out

of

memory.

v

A

trigger

with

this

name

does

not

exist.

User

Response:

Use

the

trace

facility

to

create

a

trace

file

and

try

to

correct

the

problem.

If

the

problem

persists,

contact

your

Software

Service

Provider

and

provide

the

trace

file.

280

XML

Extender

Administration

and

Programming

DXXA029E

Could

not

disable

the

column.

Explanation:

XML

Extender

could

not

disable

a

column

because

an

internal

trigger

failed.

Possible

causes:

v

The

system

is

out

of

memory.

v

A

trigger

with

this

name

does

not

exist.

User

Response:

Use

the

trace

facility

to

create

a

trace

file

and

try

to

correct

the

problem.

If

the

problem

persists,

contact

your

Software

Service

Provider

and

provide

the

trace

file.

DXXA030E

Could

not

disable

the

column.

Explanation:

XML

Extender

could

not

disable

a

column

because

an

internal

trigger

failed.

Possible

causes:

v

The

system

is

out

of

memory.

v

A

trigger

with

this

name

does

not

exist.

User

Response:

Use

the

trace

facility

to

create

a

trace

file

and

try

to

correct

the

problem.

If

the

problem

persists,

contact

your

Software

Service

Provider

and

provide

the

trace

file.

DXXA031E

Unable

to

reset

the

DXXROOT_ID

column

value

in

the

application

table

to

NULL.

Explanation:

While

attempting

to

disable

a

column,

the

XML

Extender

was

unable

to

set

the

value

of

DXXROOT_ID

in

the

application

table

to

NULL.

User

Response:

Ensure

that

the

administrator

user

ID

for

XML

Extender

has

the

privileges

necessary

to

alter

the

application

table.

DXXA032E

Decrement

of

USAGE_COUNT

in

DB2XML.XML_USAGE

table

failed.

Explanation:

While

attempting

to

disable

the

column,

the

XML

Extender

was

unable

to

reduce

the

value

of

the

USAGE_COUNT

column

by

one.

User

Response:

Ensure

that

the

DB2XML.XML_USAGE

table

exists

and

that

the

administrator

user

ID

for

XML

Extender

has

the

necessary

privileges

to

update

the

table.

DXXA033E

Attempt

to

delete

a

row

from

the

DB2XML.XML_USAGE

table

failed.

Explanation:

While

attempting

to

disable

a

column,

the

XML

Extender

was

unable

to

delete

its

associate

row

in

the

DB2XML.XML_USAGE

table.

User

Response:

Ensure

that

the

DB2XML.XML_USAGE

table

exists

and

that

the

administration

user

ID

for

XML

Extender

has

the

privileges

necessary

to

update

this

table.

DXXA034I

XML

Extender

has

successfully

disabled

column

<column_name>.

Explanation:

This

is

an

informational

message

User

Response:

No

action

required.

DXXA035I

XML

Extender

is

disabling

database

<database>.

Please

wait.

Explanation:

This

is

an

informational

message.

User

Response:

No

action

is

required.

DXXA036I

XML

Extender

has

successfully

disabled

database

<database>.

Explanation:

This

is

an

informational

message.

User

Response:

No

action

is

required.

DXXA037E

The

specified

table

space

name

is

longer

than

18

characters.

Explanation:

The

table

space

name

cannot

be

longer

than

18

alphanumeric

characters.

User

Response:

Specify

a

name

less

than

18

characters.

DXXA038E

The

specified

default

view

name

is

longer

than

18

characters.

Explanation:

The

default

view

name

cannot

be

longer

than

18

alphanumeric

characters.

User

Response:

Specify

a

name

less

than

18

characters.

DXXA039E

The

specified

ROOT_ID

name

is

longer

than

18

characters.

Explanation:

The

ROOT_ID

name

cannot

be

longer

than

18

alphanumeric

characters.

User

Response:

Specify

a

name

less

than

18

characters.

DXXA046E

Unable

to

create

the

side

table

<side_table>.

Explanation:

While

attempting

to

enable

a

column,

the

XML

Extender

was

unable

to

create

the

specified

side

table.

User

Response:

Ensure

that

the

administrator

user

ID

for

XML

Extender

has

the

privileges

necessary

to

create

the

side

table.

Chapter

14.

Troubleshooting

281

DXXA047E

Could

not

enable

the

column.

Explanation:

XML

Extender

could

not

enable

a

column

because

an

internal

trigger

failed.

Possible

causes:

v

The

DAD

file

has

incorrect

syntax.

v

The

system

is

out

of

memory.

v

Another

trigger

exists

with

the

same

name.

User

Response:

Use

the

trace

facility

to

create

a

trace

file

and

try

to

correct

the

problem.

If

the

problem

persists,

contact

your

Software

Service

Provider

and

provide

the

trace

file.

DXXA048E

Could

not

enable

the

column.

Explanation:

XML

Extender

could

not

enable

a

column

because

an

internal

trigger

failed.

Possible

causes:

v

The

DAD

file

has

incorrect

syntax.

v

The

system

is

out

of

memory.

v

Another

trigger

exists

with

the

same

name.

User

Response:

Use

the

trace

facility

to

create

a

trace

file

and

try

to

correct

the

problem.

If

the

problem

persists,

contact

your

Software

Service

Provider

and

provide

the

trace

file.

DXXA049E

Could

not

enable

the

column.

Explanation:

XML

Extender

could

not

enable

a

column

because

an

internal

trigger

failed.

Possible

causes:

v

The

DAD

file

has

incorrect

syntax.

v

The

system

is

out

of

memory.

v

Another

trigger

exists

with

the

same

name.

User

Response:

Use

the

trace

facility

to

create

a

trace

file

and

try

to

correct

the

problem.

If

the

problem

persists,

contact

your

Software

Service

Provider

and

provide

the

trace

file.

DXXA050E

Could

not

enable

the

column.

Explanation:

XML

Extender

could

not

enable

a

column

because

an

internal

trigger

failed.

Possible

causes:

v

The

DAD

file

has

incorrect

syntax.

v

The

system

is

out

of

memory.

v

Another

trigger

exists

with

the

same

name.

User

Response:

Use

the

trace

facility

to

create

a

trace

file

and

try

to

correct

the

problem.

If

the

problem

persists,

contact

your

Software

Service

Provider

and

provide

the

trace

file.

DXXA051E

Could

not

disable

the

column.

Explanation:

XML

Extender

could

not

disable

a

column

because

an

internal

trigger

failed.

Possible

causes:

v

The

system

is

out

of

memory.

v

A

trigger

with

this

name

does

not

exist.

User

Response:

Use

the

trace

facility

to

create

a

trace

file

and

try

to

correct

the

problem.

If

the

problem

persists,

contact

your

Software

Service

Provider

and

provide

the

trace

file.

DXXA052E

Could

not

disable

the

column.

Explanation:

XML

Extender

could

not

disable

a

column

because

an

internal

trigger

failed.

Possible

causes:

v

The

DAD

file

has

incorrect

syntax.

v

The

system

is

out

of

memory.

v

Another

trigger

exists

with

the

same

name.

User

Response:

Use

the

trace

facility

to

create

a

trace

file

and

try

to

correct

the

problem.

If

the

problem

persists,

contact

your

Software

Service

Provider

and

provide

the

trace

file.

DXXA053E

Could

not

enable

the

column.

Explanation:

XML

Extender

could

not

enable

a

column

because

an

internal

trigger

failed.

Possible

causes:

v

The

DAD

file

has

incorrect

syntax.

v

The

system

is

out

of

memory.

v

Another

trigger

exists

with

the

same

name.

User

Response:

Use

the

trace

facility

to

create

a

trace

file

and

try

to

correct

the

problem.

If

the

problem

persists,

contact

your

Software

Service

Provider

and

provide

the

trace

file.

DXXA054E

Could

not

enable

the

column.

Explanation:

XML

Extender

could

not

enable

a

column

because

an

internal

trigger

failed.

Possible

causes:

v

The

DAD

file

has

incorrect

syntax.

v

The

system

is

out

of

memory.

v

Another

trigger

exists

with

the

same

name.

User

Response:

Use

the

trace

facility

to

create

a

trace

file

and

try

to

correct

the

problem.

If

the

problem

persists,

contact

your

Software

Service

Provider

and

provide

the

trace

file.

282

XML

Extender

Administration

and

Programming

DXXA056E

The

validation

value

<validation_value>

in

the

DAD

file

is

invalid.

Explanation:

The

validation

element

in

document

access

definition

(DAD)

file

is

wrong

or

missing.

User

Response:

Ensure

that

the

validation

element

is

specified

correctly

in

the

DAD

file.

DXXA057E

A

side

table

name

<side_table_name>

in

DAD

is

invalid.

Explanation:

The

name

attribute

of

a

side

table

in

the

document

access

definition

(DAD)

file

is

wrong

or

missing.

User

Response:

Ensure

that

the

name

attribute

of

a

side

table

is

specified

correctly

in

the

DAD

file.

DXXA058E

A

column

name

<column_name>

in

the

DAD

file

is

invalid.

Explanation:

The

name

attribute

of

a

column

in

the

document

access

definition

(DAD)

file

is

wrong

or

missing.

User

Response:

Ensure

that

the

name

attribute

of

a

column

is

specified

correctly

in

the

DAD

file.

DXXA059E

The

type

<column_type>

of

column

<column_name>

in

the

DAD

file

is

invalid.

Explanation:

The

type

attribute

of

a

column

in

the

document

access

definition

(DAD)

file

is

wrong

or

missing.

User

Response:

Ensure

that

the

type

attribute

of

a

column

is

specified

correctly

in

the

DAD

file.

DXXA060E

The

path

attribute

<location_path>

of

<column_name>

in

the

DAD

file

is

invalid.

Explanation:

The

path

attribute

of

a

column

in

the

document

access

definition

(DAD)

file

is

wrong

or

missing.

User

Response:

Ensure

that

the

path

attribute

of

a

column

is

specified

correctly

in

the

DAD

file.

DXXA061E

The

multi_occurrence

attribute

<multi_occurrence>

of

<column_name>

in

the

DAD

file

is

invalid.

Explanation:

The

multi_occurrence

attribute

of

a

column

in

the

document

access

definition

(DAD)

file

is

wrong

or

missing.

User

Response:

Ensure

that

the

multi_occurrence

attribute

of

a

column

is

specified

correctly

in

the

DAD

file.

DXXA062E

Unable

to

retrieve

the

column

number

for

<column_name>

in

table

<table_name>.

Explanation:

XML

Extender

could

not

retrieve

the

column

number

for

column_name

in

table

table_name

from

the

system

catalog.

User

Response:

Make

sure

the

application

table

is

well

defined.

DXXA063I

Enabling

collection

<collection_name>.

Please

Wait.

Explanation:

This

is

an

information

message.

User

Response:

No

action

required.

DXXA064I

Disabling

collection

<collection_name>.

Please

Wait.

Explanation:

This

is

an

information

message.

User

Response:

No

action

required.

DXXA065E

Calling

stored

procedure

<procedure_name>

failed.

Explanation:

Check

the

shared

library

db2xml

and

see

if

the

permission

is

correct.

User

Response:

Make

sure

the

client

has

permission

to

run

the

stored

procedure.

DXXA066I

XML

Extender

has

successfully

disabled

collection

<collection_name>.

Explanation:

This

is

an

informational

message.

User

Response:

No

response

required.

DXXA067I

XML

Extender

has

successfully

enabled

collection

<collection_name>.

Explanation:

This

is

an

informational

message.

User

Response:

No

response

required.

DXXA068I

XML

Extender

has

successfully

turned

the

trace

on.

Explanation:

This

is

an

informational

message.

User

Response:

No

response

required.

DXXA069I

XML

Extender

has

successfully

turned

the

trace

off.

Explanation:

This

is

an

informational

message.

User

Response:

No

response

required.

Chapter

14.

Troubleshooting

283

DXXA070W

The

database

has

already

been

enabled.

Explanation:

The

enable

database

command

was

executed

on

the

enabled

database

User

Response:

No

action

is

required.

DXXA071W

The

database

has

already

been

disabled.

Explanation:

The

disable

database

command

was

executed

on

the

disabled

database

User

Response:

No

action

is

required.

DXXA072E

XML

Extender

couldn’t

find

the

bind

files.

Bind

the

database

before

enabling

it.

Explanation:

XML

Extender

tried

to

automatically

bind

the

database

before

enabling

it,

but

could

not

find

the

bind

files

User

Response:

Bind

the

database

before

enabling

it.

DXXA073E

The

database

is

not

bound.

Please

bind

the

database

before

enabling

it.

Explanation:

The

database

was

not

bound

when

user

tried

to

enable

it.

User

Response:

Bind

the

database

before

enabling

it.

DXXA074E

Wrong

parameter

type.

The

stored

procedure

expects

a

STRING

parameter.

Explanation:

The

stored

procedure

expects

a

STRING

parameter.

User

Response:

Declare

the

input

parameter

to

be

STRING

type.

DXXA075E

Wrong

parameter

type.

The

input

parameter

should

be

a

LONG

type.

Explanation:

The

stored

procedure

expects

the

input

parameter

to

be

a

LONG

type.

User

Response:

Declare

the

input

parameter

to

be

a

LONG

type.

DXXA076E

XML

Extender

trace

instance

ID

invalid.

Explanation:

Cannot

start

trace

with

the

instance

ID

provided.

User

Response:

Ensure

that

the

instance

ID

is

a

valid

iSeries

user

ID.

DXXA077E

The

license

key

is

not

valid.

See

the

server

error

log

for

more

detail.

Explanation:

The

software

license

has

expired

or

does

not

exist.

User

Response:

Contact

your

service

provider

to

obtain

a

new

software

license.

DXXC000E

Unable

to

open

the

specified

file.

Explanation:

The

XML

Extender

is

unable

to

open

the

specified

file.

User

Response:

Ensure

that

the

application

user

ID

has

read

and

write

permission

for

the

file.

DXXC001E

The

specified

file

is

not

found.

Explanation:

The

XML

Extender

could

not

find

the

file

specified.

User

Response:

Ensure

that

the

file

exists

and

the

path

is

specified

correctly.

DXXC002E

Unable

to

read

file.

Explanation:

The

XML

Extender

is

unable

to

read

data

from

the

specified

file.

User

Response:

Ensure

that

the

application

user

ID

has

read

permission

for

the

file.

DXXC003E

Unable

to

write

to

the

specified

file.

Explanation:

The

XML

Extender

is

unable

to

write

data

to

the

file.

User

Response:

Ensure

that

the

application

user

ID

has

write

permission

for

the

file

or

that

the

file

system

has

sufficient

space.

DXXC004E

Unable

to

operate

the

LOB

Locator:

rc=<locator_rc>.

Explanation:

The

XML

Extender

was

unable

to

operate

the

specified

locator.

User

Response:

Ensure

the

LOB

Locator

is

set

correctly.

DXXC005E

Input

file

size

is

greater

than

XMLVarchar

size.

Explanation:

The

file

size

is

greater

than

the

XMLVarchar

size

and

the

XML

Extender

is

unable

to

import

all

the

data

from

the

file.

User

Response:

Use

the

XMLCLOB

column

type.

284

XML

Extender

Administration

and

Programming

DXXC006E

The

input

file

exceeds

the

DB2

UDB

LOB

limit.

Explanation:

The

file

size

is

greater

than

the

size

of

the

XMLCLOB

and

the

XML

Extender

is

unable

to

import

all

the

data

from

the

file.

User

Response:

Decompose

the

file

into

smaller

objects

or

use

an

XML

collection.

DXXC007E

Unable

to

retrieve

data

from

the

file

to

the

LOB

Locator.

Explanation:

The

number

of

bytes

in

the

LOB

Locator

does

not

equal

the

file

size.

User

Response:

Ensure

the

LOB

Locator

is

set

correctly.

DXXC008E

Can

not

remove

the

file

<file_name>.

Explanation:

The

file

has

a

sharing

access

violation

or

is

still

open.

User

Response:

Close

the

file

or

stop

any

processes

that

are

holding

the

file.

You

might

have

to

stop

and

restart

DB2.

DXXC009E

Unable

to

create

file

to

<directory>

directory.

Explanation:

The

XML

Extender

is

unable

to

create

a

file

in

directory

directory.

User

Response:

Ensure

that

the

directory

exists,

that

the

application

user

ID

has

write

permission

for

the

directory,

and

that

the

file

system

has

sufficient

space

for

the

file.

DXXC010E

Error

while

writing

to

file

<file_name>.

Explanation:

There

was

an

error

while

writing

to

the

file

file_name.

User

Response:

Ensure

that

the

file

system

has

sufficient

space

for

the

file.

DXXC011E

Unable

to

write

to

the

trace

control

file.

Explanation:

The

XML

Extender

is

unable

to

write

data

to

the

trace

control

file.

User

Response:

Ensure

that

the

application

user

ID

has

write

permission

for

the

file

or

that

the

file

system

has

sufficient

space.

DXXC012E

Cannot

create

temporary

file.

Explanation:

Cannot

create

file

in

system

temp

directory.

User

Response:

Ensure

that

the

application

user

ID

has

write

permission

for

the

file

system

temp

directory

or

that

the

file

system

has

sufficient

space

for

the

file.

DXXC013E

The

results

of

the

extract

UDF

exceed

the

size

limit

for

the

UDF

return

type.

Explanation:

The

data

returned

by

an

extract

UDF

must

fit

into

the

size

limit

of

the

return

type

of

the

UDF,

as

defined

in

the

DB2

UDB

XML

Extenders

Administration

and

Programming

guide.

For

example,

the

results

of

extractVarchar

must

be

no

more

than

4000

bytes

(including

the

terminating

NULL).

User

Response:

Use

an

extract

UDF

that

has

a

larger

size

limit

for

the

return

type:

254

bytes

for

extractChar(),

4

KB

for

extractVarchar(),

and

2

GB

for

extractClob().

DXXD000E

An

invalid

XML

document

is

rejected.

Explanation:

There

was

an

attempt

to

store

an

invalid

document

into

a

table.

Validation

has

failed.

User

Response:

Check

the

document

with

its

DTD

using

an

editor

that

can

view

invisible

invalid

characters.

To

suppress

this

error,

turn

off

validation

in

the

DAD

file.

DXXD001E

<location_path>

occurs

multiple

times.

Explanation:

A

scalar

extraction

function

used

a

location

path

that

occurs

multiple

times.

A

scalar

function

can

only

use

a

location

path

that

does

not

have

multiple

occurrences.

User

Response:

Use

a

table

function

(add

an

’s’

to

the

end

of

the

scalar

function

name).

DXXD002E

A

syntax

error

occurred

near

position

<position>

in

the

search

path.

Explanation:

The

path

expression

is

syntactically

incorrect.

User

Response:

Correct

the

search

path

argument

of

the

query.

Refer

to

the

documentation

for

the

syntax

of

path

expressions.

DXXD003W

Path

not

found.

Null

is

returned.

Explanation:

The

element

or

attribute

specified

in

the

path

expression

is

missing

from

the

XML

document.

User

Response:

Verify

that

the

specified

path

is

correct.

DXXG000E

The

file

name

<file_name>

is

invalid.

Explanation:

An

invalid

file

name

was

specified.

User

Response:

Specify

a

correct

file

name

and

try

again.

Chapter

14.

Troubleshooting

285

DXXG001E

An

internal

error

occurred

in

build

<build_ID>,

file

<file_name>,

and

line

<line_number>.

Explanation:

XML

Extender

encountered

an

internal

error.

User

Response:

Contact

your

Software

Service

Provider.

When

reporting

the

error,

be

sure

to

include

all

the

messages,

the

trace

file

and

how

to

reproduce

the

error.

DXXG002E

The

system

is

out

of

memory.

Explanation:

The

XML

Extender

was

unable

to

allocate

memory

from

the

operating

system.

User

Response:

Close

some

applications

and

try

again.

If

the

problem

persists,

refer

to

your

operating

system

documentation

for

assistance.

Some

operating

systems

might

require

that

you

reboot

the

system

to

correct

the

problem.

DXXG004E

Invalid

null

parameter.

Explanation:

A

null

value

for

a

required

parameter

was

passed

to

an

XML

stored

procedure.

User

Response:

Check

all

required

parameters

in

the

argument

list

for

the

stored

procedure

call.

DXXG005E

Parameter

not

supported.

Explanation:

This

parameter

is

not

supported

in

this

release,

will

be

supported

in

the

future

release.

User

Response:

Set

this

parameter

to

NULL.

DXXG006E

Internal

Error

CLISTATE=<clistate>,

RC=<cli_rc>,

build

<build_ID>,

file

<file_name>,

line

<line_number>

CLIMSG=<CLI_msg>.

Explanation:

XML

Extender

encountered

an

internal

error

while

using

CLI.

User

Response:

Contact

your

Software

Service

Provider.

Potentially

this

error

can

be

caused

by

incorrect

user

input.

When

reporting

the

error,

be

sure

to

include

all

output

messages,

trace

log,

and

how

to

reproduce

the

problem.

Where

possible,

send

any

DADs,

XML

documents,

and

table

definitions

which

apply.

DXXG007E

Locale

<locale>

is

inconsistent

with

DB2

UDB

code

page

<code_page>.

Explanation:

The

server

operating

system

locale

is

inconsistent

with

DB2

UDB

code

page.

User

Response:

Correct

the

server

operating

system

locale

and

restart

DB2.

DXXG008E

Locale

<locale>

is

not

supported.

Explanation:

The

server

operating

system

locale

can

not

be

found

in

the

code

page

table.

User

Response:

Correct

the

server

operating

system

locale

and

restart

DB2.

DXXG017E

The

limit

for

XML_Extender_constant

has

been

exceeded

in

build

build_ID,

file

file_name,

and

line

line_number.

Explanation:

Check

the

XML

Extender

Administration

and

Programming

Guide

to

see

whether

your

application

has

exceeded

a

value

in

the

limits

table.

If

no

limit

has

been

exceeded,

contact

your

Software

Service

Provider.

When

reporting

the

error,

include

all

output

messages,

trace

files,

and

information

on

how

to

reproduce

the

problem

such

as

input

DADs,

XML

documents,

and

table

definitions.

User

Response:

Correct

the

server

operating

system

locale

and

restart

DB2.

DXXM001W

A

DB2

UDB

error

occurred.

Explanation:

DB2

encountered

the

specified

error.

User

Response:

See

any

accompanying

messages

for

futher

explanation

and

refer

to

DB2

UDB

messages

and

codes

documentation

for

your

operating

system.

DXXQ000E

<Element>

is

missing

from

the

DAD

file.

Explanation:

A

mandatory

element

is

missing

from

the

document

access

definition

(DAD)

file.

User

Response:

Add

the

missing

element

to

the

DAD

file.

DXXQ001E

Invalid

SQL

statement

for

XML

generation.

Explanation:

The

SQL

statement

in

the

document

access

definition

(DAD)

or

the

one

that

overrides

it

is

not

valid.

A

SELECT

statement

is

required

for

generating

XML

documents.

User

Response:

Correct

the

SQL

statement.

DXXQ002E

Cannot

generate

storage

space

to

hold

XML

documents.

Explanation:

The

system

is

running

out

of

space

in

memory

or

disk.

There

is

no

space

to

contain

the

resulting

XML

documents.

User

Response:

Limit

the

number

of

documents

to

be

generated.

Reduce

the

size

of

each

documents

by

removing

some

unnecessary

element

and

attribute

nodes

from

the

document

access

definition

(DAD)

file.

286

XML

Extender

Administration

and

Programming

DXXQ003W

Result

exceeds

maximum.

Explanation:

The

user-defined

SQL

query

generates

more

XML

documents

than

the

specified

maximum.

Only

the

specified

number

of

documents

are

returned.

User

Response:

No

action

is

required.

If

all

documents

are

needed,

specify

zero

as

the

maximum

number

of

documents.

DXXQ004E

The

column

<column_name>

is

not

in

the

result

of

the

query.

Explanation:

The

specified

column

is

not

one

of

the

columns

in

the

result

of

the

SQL

query.

User

Response:

Change

the

specified

column

name

in

the

document

access

definition

(DAD)

file

to

make

it

one

of

the

columns

in

the

result

of

the

SQL

query.

Alternatively,

change

the

SQL

query

so

that

it

has

the

specified

column

in

its

result.

DXXQ005E

Wrong

relational

mapping.

The

element

<element_name>

is

at

a

lower

level

than

its

child

column

<column_name>.

Explanation:

The

mapping

of

the

SQL

query

to

XML

is

incorrect.

User

Response:

Make

sure

that

the

columns

in

the

result

of

the

SQL

query

are

in

a

top-down

order

of

the

relational

hierarchy.

Also

make

sure

that

there

is

a

single-column

candidate

key

to

begin

each

level.

If

such

a

key

is

not

available

in

a

table,

the

query

should

generate

one

for

that

table

using

a

table

expression

and

the

DB2

UDB

built-in

function

generate_unique().

DXXQ006E

An

attribute_node

element

has

no

name.

Explanation:

An

attribute_node

element

in

the

document

access

definition

(DAD)

file

does

not

have

a

name

attribute.

User

Response:

Ensure

that

every

attribute_node

has

a

name

in

the

DAD

file.

DXXQ007E

The

attribute_node

<attribute_name>

has

no

column

element

or

RDB_node.

Explanation:

The

attribute_node

element

in

the

document

access

definition

(DAD)

does

not

have

a

column

element

or

RDB_node.

User

Response:

Ensure

that

every

attribute_node

has

a

column

element

or

RDB_node

in

the

DAD.

DXXQ008E

A

text_node

element

has

no

column

element.

Explanation:

A

text_node

element

in

the

document

access

definition

(DAD)

file

does

not

have

a

column

element.

User

Response:

Ensure

that

every

text_node

has

a

column

element

in

the

DAD.

DXXQ009E

Result

table

<table_name>

does

not

exist.

Explanation:

The

specified

result

table

could

not

be

found

in

the

system

catalog.

User

Response:

Create

the

result

table

before

calling

the

stored

procedure.

DXXQ010E

RDB_node

of

<node_name>

does

not

have

a

table

in

the

DAD

file.

Explanation:

The

RDB_node

of

the

attribute_node

or

text_node

must

have

a

table.

User

Response:

Specify

the

table

of

RDB_node

for

attribute_node

or

text_node

in

the

document

access

definition

(DAD)

file.

DXXQ011E

RDB_node

element

of

<node_name>

does

not

have

a

column

in

the

DAD

file.

Explanation:

The

RDB_node

of

the

attribute_node

or

text_node

must

have

a

column.

User

Response:

Specify

the

column

of

RDB_node

for

attribute_node

or

text_node

in

the

document

access

definition

(DAD)

file.

DXXQ012E

Errors

occurred

in

DAD.

Explanation:

XML

Extender

could

not

find

the

expected

element

while

processing

the

DAD.

User

Response:

Check

that

the

DAD

is

a

valid

XML

document

and

contains

all

the

elements

required

by

the

DAD

DTD.

Consult

the

XML

Extender

publication

for

the

DAD

DTD.

DXXQ013E

The

table

or

column

element

does

not

have

a

name

in

the

DAD

file.

Explanation:

The

element

table

or

column

must

have

a

name

in

the

document

access

definition

(DAD)

file.

User

Response:

Specify

the

name

of

table

or

column

element

in

the

DAD.

DXXQ014E

An

element_node

element

has

no

name.

Explanation:

An

element_node

element

in

the

document

access

definition

(DAD)

file

does

not

have

a

name

attribute.

User

Response:

Ensure

that

every

element_node

element

has

a

name

in

the

DAD

file.

Chapter

14.

Troubleshooting

287

DXXQ015E

The

condition

format

is

invalid.

Explanation:

The

condition

in

the

condition

element

in

the

document

access

definition

(DAD)

has

an

invalid

format.

User

Response:

Ensure

that

the

format

of

the

condition

is

valid.

DXXQ016E

The

table

name

in

this

RDB_node

is

not

defined

in

the

top

element

of

the

DAD

file.

Explanation:

All

tables

must

be

defined

in

the

RDB_node

of

the

top

element

in

the

document

access

definition

(DAD)

file.

Sub-element

tables

must

match

the

tables

defined

in

the

top

element.

The

table

name

in

this

RDB_node

is

not

in

the

top

element.

User

Response:

Ensure

that

the

table

of

the

RDB

node

is

defined

in

the

top

element

of

the

DAD

file.

DXXQ017E

The

column

in

the

result

table

<table_name>

is

too

small.

Explanation:

An

XML

document

generated

by

the

XML

Extender

is

too

large

to

fit

into

the

column

of

the

result

table.

User

Response:

Drop

the

result

table.

Create

another

result

table

with

a

bigger

column.

Rerun

the

stored

procedure.

DXXQ018E

The

ORDER

BY

clause

is

missing

from

the

SQL

statement.

Explanation:

The

ORDER

BY

clause

is

missing

from

the

SQL

statement

in

a

document

access

definition

(DAD)

file

that

maps

SQL

to

XML.

User

Response:

Edit

the

DAD

file.

Add

an

ORDER

BY

clause

that

contains

the

entity-identifying

columns.

DXXQ019E

The

element

objids

has

no

column

element

in

the

DAD

file.

Explanation:

The

objids

element

does

not

have

a

column

element

in

the

document

access

definition

(DAD)

file

that

maps

SQL

to

XML.

User

Response:

Edit

the

DAD

file.

Add

the

key

columns

as

sub-elements

of

the

element

objids.

DXXQ020I

XML

successfully

generated.

Explanation:

The

requested

XML

documents

have

been

successfully

generated

from

the

database.

User

Response:

No

action

is

required.

DXXQ021E

Table

<table_name>

does

not

have

column

<column_name>.

Explanation:

The

table

does

not

have

the

specified

column

in

the

database.

User

Response:

Specify

another

column

name

in

DAD

or

add

the

specified

column

into

the

table

database.

DXXQ022E

Column

<column_name>

of

<table_name>

should

have

type

<type_name>.

Explanation:

The

type

of

the

column

is

wrong.

User

Response:

Correct

the

type

of

the

column

in

the

document

access

definition

(DAD).

DXXQ023E

Column

<column_name>

of

<table_name>

cannot

be

longer

than

<length>.

Explanation:

The

length

defined

for

the

column

in

the

DAD

is

too

long.

User

Response:

Correct

the

column

length

in

the

document

access

definition

(DAD).

DXXQ024E

Can

not

create

table

<table_name>.

Explanation:

The

specified

table

can

not

be

created.

User

Response:

Ensure

that

the

user

ID

creating

the

table

has

the

necessary

authority

to

create

a

table

in

the

database.

DXXQ025I

XML

decomposed

successfully.

Explanation:

An

XML

document

has

been

decomposed

and

stored

in

a

collection

successfully.

User

Response:

No

action

is

required.

DXXQ026E

XML

data

<xml_name>

is

too

large

to

fit

in

column

<column_name>.

Explanation:

The

specified

piece

of

data

from

an

XML

document

is

too

large

to

fit

into

the

specified

column.

User

Response:

Increase

the

length

of

the

column

using

the

ALTER

TABLE

statement

or

reduce

the

size

of

the

data

by

editing

the

XML

document.

DXXQ028E

Cannot

find

the

collection

<collection_name>

in

the

XML_USAGE

table.

Explanation:

A

record

for

the

collection

cannot

be

found

in

the

XML_USAGE

table.

User

Response:

Verify

that

you

have

enabled

the

collection.

288

XML

Extender

Administration

and

Programming

DXXQ029E

Cannot

find

the

DAD

in

XML_USAGE

table

for

the

collection

<collection_name>.

Explanation:

A

DAD

record

for

the

collection

cannot

be

found

in

the

XML_USAGE

table.

User

Response:

Ensure

that

you

have

enabled

the

collection

correctly.

DXXQ030E

Wrong

XML

override

syntax.

Explanation:

The

XML_override

value

is

specified

incorrectly

in

the

stored

procedure.

User

Response:

Ensure

that

the

syntax

of

XML_override

is

correct.

DXXQ031E

Table

name

cannot

be

longer

than

maximum

length

allowed

by

DB2.

Explanation:

The

table

name

specified

by

the

condition

element

in

the

DAD

is

too

long.

User

Response:

Correct

the

length

of

the

table

name

in

document

access

definition

(DAD).

DXXQ032E

Column

name

cannot

be

longer

than

maximum

length

allowed

by

DB2.

Explanation:

The

column

name

specified

by

the

condition

element

in

the

DAD

is

too

long.

User

Response:

Correct

the

length

of

the

column

name

in

the

document

access

definition

(DAD).

DXXQ033E

Invalid

identifier

starting

at

<identifier>

Explanation:

The

string

is

not

a

valid

DB2

UDB

SQL

identifier.

User

Response:

Correct

the

string

in

the

DAD

to

conform

to

the

rules

for

DB2

UDB

SQL

identifiers.

DXXQ034E

Invalid

condition

element

in

top

RDB_node

of

DAD:

<condition>

Explanation:

The

condition

element

must

be

a

valid

WHERE

clause

consisting

of

join

conditions

connected

by

the

conjunction

AND.

User

Response:

See

the

XML

Extender

documentation

for

the

correct

syntax

of

the

join

condition

in

a

DAD.

DXXQ035E

Invalid

join

condition

in

top

RDB_node

of

DAD:

<condition>

Explanation:

Column

names

in

the

condition

element

of

the

top

RDB_node

must

be

qualified

with

the

table

name

if

the

DAD

specifies

multiple

tables.

User

Response:

See

the

XML

Extender

documentation

for

the

correct

syntax

of

the

join

condition

in

a

DAD.

DXXQ036E

A

Schema

name

specified

under

a

DAD

condition

tag

is

longer

than

allowed.

Explanation:

An

error

was

detected

while

parsing

text

under

a

condition

tag

within

the

DAD.

The

condition

text

contains

an

id

qualified

by

a

schema

name

that

is

too

long.

User

Response:

Correct

the

text

of

the

condition

tags

in

document

access

definition

(DAD).

DXXQ037E

Cannot

generate

<element>

with

multiple

occurrences.

Explanation:

The

element

node

and

its

descendents

have

no

mapping

to

database,

but

its

multi_occurrence

equals

YES.

User

Response:

Correct

the

DAD

by

either

setting

the

multi_occurrence

to

NO

or

create

a

RDB_node

in

one

of

its

descendents.

DXXQ038E

The

SQL

statement

is

too

long:

SQL_statement

Explanation:

The

SQL

statement

specified

in

the

<SQL_stmt>

element

of

DAD

exceeds

the

allowed

number

of

bytes.

User

Response:

Reduce

the

length

of

the

SQL

statement

to

less

than

or

equal

to

32765

bytes

for

Windows

and

UNIX,

or

16380

bytes

for

OS/390

and

iSeries.

DXXQ039E

Too

many

columns

specified

for

a

table

in

the

DAD

file.

Explanation:

A

DAD

file

used

for

decomposition

or

RDB

composition

can

have

a

maximum

of

100

text_node

and

attribute_node

elements

that

specify

unique

columns

within

the

same

table.

User

Response:

Reduce

the

total

number

of

text_node

and

attribute_node

elements

that

refer

to

unique

columns

within

the

same

table

100

or

less.

DXXQ040E

The

element

name

<element_name>

in

the

DAD

file

is

invalid.

Explanation:

The

specified

element

name

in

the

document

access

definition

(DAD)

file

is

wrong.

User

Response:

Ensure

that

the

element

name

is

typed

correctly

in

the

DAD

file.

See

the

DTD

for

the

DAD

file.

Chapter

14.

Troubleshooting

289

DXXQ041W

XML

document

successfully

generated.

One

or

more

override

paths

specified

is

invalid

and

ignored.

Explanation:

Specify

only

one

override

path.

User

Response:

Ensure

that

the

element

name

is

typed

correctly

in

the

DAD

file.

See

the

DTD

for

the

DAD

file.

DXXQ043E

Attribute

<attr_name>

not

found

under

element

<elem_name>.

Explanation:

The

attribute

<attr_name>

was

not

present

in

element

<elem_name>

or

one

of

its

child

elements.

User

Response:

Ensure

the

attribute

appears

in

the

XML

document

everywhere

that

the

DAD

requires

it.

DXXQ044E

Element

<elem_name>

does

not

have

an

ancestor

element<ancestor>.

Explanation:

According

to

the

DAD,

<ancestor>

is

an

ancestor

element

of

<elem_name>

.

In

the

XML

document,

one

or

more

element

<elem_name>

does

not

have

such

an

ancestor.

User

Response:

Ensure

that

the

nesting

of

elements

in

the

XML

document

conforms

to

what

is

specified

in

the

corresponding

DAD.

DXXQ045E

Subtree

under

element

<elem_name>

contains

multiple

attributes

named<attrib_name>.

Explanation:

A

subtree

under

<elem_name>

in

the

XML

document

contains

multiple

instances

of

attribute<attrib_name>

,

which

according

to

the

DAD,

is

to

be

decomposed

into

the

same

row.

Elements

or

attributes

that

are

to

be

decomposed

must

have

unique

names.

User

Response:

Ensure

that

the

element

or

attribute

in

the

subtree

has

a

unique

name.

DXXQ046W

The

DTD

ID

was

not

found

in

the

DAD.

Explanation:

In

the

DAD,

VALIDATION

is

set

to

YES,

but

the

DTDID

element

is

not

specified.

No

validation

check

is

performed.

User

Response:

No

action

is

required.

If

validation

is

needed,

specify

the

DTDID

element

in

the

DAD

file.

DXXQ047E

Parser

error

on

line

<mv>

linenumber</mv>

column

colnumber:

msg

Explanation:

The

parser

could

not

parse

the

document

because

of

the

reported

error.

User

Response:

Correct

the

error

in

the

document,

consulting

the

XML

specifications

if

necessary.

DXXQ048E

Internal

error

-

see

trace

file.

Explanation:

The

stylesheet

processor

returned

an

internal

error.

The

XML

document

or

the

stylesheet

might

not

vaild.

User

Response:

Ensure

the

XML

document

and

the

stylesheet

are

valid.

DXXQ049E

The

output

file

already

exists.

Explanation:

The

specified

output

file

already

exists

in

this

directory.

User

Response:

Change

the

output

path

or

file

name

for

the

output

document

to

a

unique

name

or

delete

the

existing

file.

DXXQ050E

Unable

to

create

a

unique

file

name.

Explanation:

The

UDF

was

unable

to

create

a

unique

file

name

for

the

output

document

in

the

specified

directory

because

it

does

not

have

access,

all

file

names

that

can

be

generated

are

in

use

or

directory

might

not

exist.

User

Response:

Ensure

that

the

UDF

has

access

to

the

specified

directory,

change

to

a

directory

with

available

file

names.

DXXQ051E

No

input

or

output

data.

Explanation:

One

or

more

input

or

output

parameters

have

no

valid

value.

User

Response:

Check

the

statement

to

see

if

required

parameters

are

missing.

DXXQ052E

An

error

occurred

while

accessing

the

DB2XML.XML_USAGE

table.

Explanation:

Either

the

database

has

not

been

enabled

or

the

table

DB2XML.XML_USAGE

has

been

dropped.

User

Response:

Ensure

that

the

database

has

been

enabled

and

the

table

DB2XML.XML_USAGE

is

accessible.

DXXQ053E

An

SQL

statement

failed

:

msg

Explanation:

An

SQL

statement

generated

during

XML

Extender

processing

failed

to

execute.DB2XML.XML_USAGE

has

been

dropped.

User

Response:

Examine

the

trace

for

more

details.

If

you

cannot

correct

the

error

condition,

contact

your

softwaresService

provider.

When

reporting

the

error,

be

sure

to

include

all

the

messages,

the

trace

file

and

how

to

reproduce

the

error.

290

XML

Extender

Administration

and

Programming

DXXQ054E

Invalid

input

parameter:

param

Explanation:

The

specified

input

parameter

to

a

stored

procedure

or

UDF

is

invalid.

User

Response:

Check

the

signature

of

the

relevant

stored

procedure

or

UDF,

and

ensure

the

actual

input

parameter

is

correct.

DXXQ055E

ICU

error:

uerror

Explanation:

ICU

error

encountered

during

conversion

operation.

User

Response:

Report

the

error

to

your

software

service

provider.

Include

trace

file,

error

message,

and

instructions

to

reproduce

the

error.

DXXQ056E

Element/attribute

xmlname

cannot

be

mapped

to

the

column

designated

as

part

of

the

foreign

key

(column

column

in

table

table).

Explanation:

The

specified

element/attribute

cannot

be

mapped

to

a

column

that

is

specified

as

part

of

a

foreign

key.

Data

values

for

foreign

keys

are

determined

by

that

of

the

primary

keys;

a

mapping

of

the

specified

element/attribute

in

the

xml

document

to

a

table

and

column

is

not

necessary.

User

Response:

Remove

the

RDB_node

mapping

to

the

specified

column

and

table

in

the

DAD.

DXXQ057E

The

schemabindings

and

dtdid

tags

cannot

exist

together

in

the

DAD

file.

Explanation:

The

schemabindings

and

dtdid

tags

cannot

exist

together

in

the

DAD

file.

User

Response:

Check

that

either

the

schemabindings

tag

or

the

dtdid

tag

exists

in

the

DAD

file,

but

not

both.

DXXQ058E

The

nonamespacelocation

tag

inside

the

schemabindings

tag

is

missing

in

the

DAD

file.

Explanation:

The

nonamespacelocation

tag

inside

the

schemabindings

tag

is

missing

in

the

DAD

file.

User

Response:

Add

the

nonamespacelocation

tag

to

the

schemabindings

tag.

DXXQ059E

The

doctype

tag

cannot

be

located

inside

the

XCollection

tag

in

the

DAD

for

schema

validation.

Explanation:

The

doctype

tag

cannot

be

located

inside

the

XCollection

tag

in

the

DAD

for

schema

validation.

User

Response:

Remove

the

doctype

tag

inside

the

Xcollection

tag

for

schema

validation.

DXXQ060E

Attempt

to

find

SCHEMA

ID

schemaid

failed.

Explanation:

The

XML

Extender

could

not

find

the

SCHEMA

ID

while

attempting

to

enable

the

column.

The

SCHEMA

ID

corresponds

to

the

value

of

the

location

attribute

of

the

nonamespacelocation

tag

which

is

inside

the

schemabindings

tag

in

the

DAD

file.

User

Response:

Check

that

the

correct

value

for

the

SCHEMA

ID

is

specified

in

the

DAD

file.

DXXQ061E

The

format

of

the

string

is

invalid.

Explanation:

The

format

of

the

string

representation

is

invalid.

If

the

string

is

a

date,

time,

or

timestamp

value,

the

syntax

does

not

conform

to

its

data

type.

User

Response:

Check

that

the

format

of

the

date,

time,

or

timestamp

value

conforms

to

the

format

for

its

data

type.

DXXQ062E

No

rows

of

result

set

for

table

are

left

to

produce

a

XML

value

for

element.

Explanation:

This

error

condition

is

usually

caused

by

a

missing

multi_occurrence

=

YES

specification

on

the

parent

element_node

of

the

given

element

or

attribute.

User

Response:

Check

the

DAD

that

the

value

of

multi_occurrence

on

the

parent

element_node

correctly

reflects

the

multiplicity

of

child

element_nodes.

DXXQ063E

The

multi_occurrence

attribute

value

on

elementname

in

the

DAD

file

is

invalid.

Explanation:

The

value

of

the

multi_occurrence

attribute

on

the

specified

element_node

in

the

document

access

definition

(DAD)

file

is

wrong

or

missing.

The

value

must

be

’yes’

or

’no’,

case

insensitive.

User

Response:

Ensure

that

the

multi_occurrence

attribute

is

specified

correctly

in

the

DAD

file.

DXXQ064E

Column

column

not

found

in

foreign

table

table.

Explanation:

A

key

column

specified

in

the

join

condition

was

not

mapped

to

any

element

or

attribute

node.

User

Response:

Check

to

make

sure

the

join

condition

specified

in

the

DAD

file

is

correct,

and

all

key

columns

are

mapped

to

element

or

attribute

nodes.

DXXQ065I

All

triggers

relating

to

XML

enabled

columns

have

been

successfully

regenerated.

Explanation:

This

is

an

informational

message

only.

User

Response:

No

action

required.

Chapter

14.

Troubleshooting

291

DXXQ066E

The

primary

key

for

table

tablename

does

not

exist.

Explanation:

XML

Extender

could

not

determine

the

primary

key

for

table

tablename.

Check

that

the

primary

key

for

the

table

was

not

dropped

after

the

column

was

enabled

for

XML.

User

Response:

Alter

the

table

to

add

the

primary

key

specified

as

the

ROOT

ID

when

the

column

was

enabled

for

XML.

DXXQ067E

Attempt

to

action

failed.

Explanation:

While

attempting

to

action,

a

SQL

error

occurred.

User

Response:

Contact

your

Software

Service

Provider.

When

reporting

the

error,

be

sure

to

include

the

XML

Extender

trace

file.

DXXQ068E

Cannot

set

current

SQLID

to

[userid].

SQLCODE

=

[sqlcode].

Explanation:

While

attempting

to

set

current

sqlid

to

a

secondary

authorization

id,

a

SQL

error

occurred.

User

Response:

Check

that

you

are

specifying

a

valid

secondary

authorization

id

and

that

you

have

authorization

for

the

id.

292

XML

Extender

Administration

and

Programming

Appendix

A.

Samples

This

appendix

shows

the

sample

objects

that

are

used

with

examples

in

this

book.

v

“XML

DTD

sample”

v

“XML

document

sample:

getstart.xml”

v

“Document

access

definition

files”

on

page

294

–

“Sample

DAD

file:

XML

column”

on

page

294

–

“Sample

DAD

file:

XML

collection:

SQL

mapping”

on

page

296

–

“Sample

DAD

file:

XML:

RDB_node

mapping”

on

page

297

XML

DTD

sample

The

following

DTD

is

used

for

the

getstart.xml

document

that

is

referenced

throughout

this

book.

XML

document

sample:

getstart.xml

The

following

XML

document,

getstart.xml,

is

the

sample

XML

document

that

is

used

in

examples

throughout

this

book.

It

contains

XML

tags

to

form

a

purchase

order.

<!xml

encoding="US-ASCII"?>

<!ELEMENT

Order

(Customer,

Part+)>

<!ATTLIST

Order

key

CDATA

#REQUIRED>

<!ELEMENT

Customer

(Name,

Email)>

<!ELEMENT

Name

(#PCDATA)>

<!ELEMENT

Email

(#PCDATA)>

<!ELEMENT

Part

(key,

Quantity,

ExtendedPrice,

Tax,

Shipment+)>

<!ELEMENT

key

(#PCDATA)>

<!ELEMENT

Quantity

(#PCDATA)>

<!ELEMENT

ExtendedPrice

(#PCDATA)>

<!ELEMENT

Tax

(#PCDATA)>

<!ATTLIST

Part

color

CDATA

#REQUIRED>

<!ELEMENT

Shipment

(ShipDate,

ShipMode)>

<!ELEMENT

ShipDate

(#PCDATA)>

<!ELEMENT

ShipMode

(#PCDATA)>

Figure

15.

Sample

XML

DTD:

getstart.dtd

©

Copyright

IBM

Corp.

1999,

2004

293

Document

access

definition

files

The

following

sections

contain

document

access

definition

(DAD)

files

that

map

XML

data

to

DB2

UDB

relational

tables,

using

either

XML

column

or

XML

collection

access

modes.

v

“Sample

DAD

file:

XML

column”

v

“Sample

DAD

file:

XML

collection:

SQL

mapping”

on

page

296

shows

a

DAD

file

for

an

XML

collection

using

SQL

mapping.

v

“Sample

DAD

file:

XML:

RDB_node

mapping”

on

page

297

show

a

DAD

for

an

XML

collection

that

uses

RDB_node

mapping.

Sample

DAD

file:

XML

column

This

DAD

file

contains

the

mapping

for

an

XML

column,

and

it

definines

the

table,

side

tables,

and

columns

that

are

to

contain

the

XML

data.

<?xml

version="1.0"?>

<!DOCTYPE

Order

SYSTEM

"dxx_install/samples/db2xml/dtd/getstart.dtd">

<Order

key="1">

<Customer>

<Name>American

Motors</Name>

<Email>parts@am.com</Email>

</Customer>

<Part

color="black

">

<key>68</key>

<Quantity>36</Quantity>

<ExtendedPrice>34850.16</ExtendedPrice>

<Tax>6.000000e-02</Tax>

<Shipment>

<ShipDate>1998-08-19</ShipDate>

<ShipMode>BOAT

</ShipMode>

</Shipment>

<Shipment>

<ShipDate>1998-08-19</ShipDate>

<ShipMode>AIR

</ShipMode>

</Shipment>

</Part>

<Part

color="red

">

<key>128</key>

<Quantity>28</Quantity>

<ExtendedPrice>38000.00</ExtendedPrice>

<Tax>7.000000e-02</Tax>

<Shipment>

<ShipDate>1998-12-30</ShipDate>

<ShipMode>TRUCK

</ShipMode>

</Shipment>

</Part>

</Order>

Figure

16.

Sample

XML

document:

getstart.xml

294

XML

Extender

Administration

and

Programming

<?xml

version="1.0"?>

<!DOCTYPE

Order

SYSTEM

"dxx_install/samples/db2xml/dtd/dad.dtd">

<DAD>

<dtdid>

"dxx_install/samples/db2xml/dtd/getstart.dtd"

</dtdid>

<validation>YES</validation>

<Xcolumn>

<table

name="order_side_tab">

<column

name="order_key"

type="integer"

path="/Order/@key"

multi_occurrence="NO"/>

<column

name="customer"

type="varchar(50)"

path="/Order/Customer/Name"

multi_occurrence="NO"/>

</table>

<table

name="part_side_tab">

<column

name="price"

type="decimal(10,2)"

path="/Order/Part/ExtendedPrice"

multi_occurrence="YES"/>

</table>

<table

name="ship_side_tab">

<column

name="date"

type="DATE"

path="/Order/Part/Shipment/ShipDate"

multi_occurrence="YES"/>

</table>

</Xcolumn>

</DAD>

Figure

17.

Sample

DAD

file

for

an

XML

column:

getstart_xcolumn.dad

Appendix

A.

Samples

295

Sample

DAD

file:

XML

collection:

SQL

mapping

This

DAD

file

contains

an

SQL

statement

that

specifies

the

DB2

UDB

tables,

columns,

and

conditions

that

are

to

contain

the

XML

data.

<?xml

version="1.0"?>

<!DOCTYPE

DAD

SYSTEM

"dxx_install/samples/db2xml/dtd/dad.dtd">

<DAD>

<validation>NO</validation>

<Xcollection>

<SQL_stmt>SELECT

o.order_key,

customer_name,

customer_email,

p.part_key,

color,

quantity,

price,

tax,

ship_id,

date,

mode

from

order_tab

o,

part_tab

p,

table(select

db2xml.generate_unique()

as

ship_id,

date,

mode,

part_key

from

ship_tab)

s

p.price

>

20000

and

p.order_key

=

o.order_key

and

s.part_key

=

p.part_key

ORDER

BY

order_key,

part_key,

ship_id</SQL_stmt>

<prolog>?xml

version="1.0"?</prolog>

<doctype>!DOCTYPE

Order

SYSTEM

"dxx_install/samples/db2xml/dtd/getstart.dtd

"</doctype>

Figure

18.

Sample

DAD

file

for

an

XML

collection

using

SQL

mapping:

order_sql.dad

(Part

1

of

2)

296

XML

Extender

Administration

and

Programming

Sample

DAD

file:

XML:

RDB_node

mapping

This

DAD

file

uses

<RDB_node>

elements

to

define

the

DB2

UDB

tables,

columns,

and

conditions

that

are

to

contain

XML

data.

<?xml

version="1.0"?>

<!DOCTYPE

DAD

SYSTEM

"SQLLIB/samples/db2xml/dtd/dad.dtd>

<DAD>

<dtdid>E:\dtd\lineItem.dtd</dtdid>

<validation>YES</validation>

<Xcollection>

<prolog>?xml

version="1.0"?</prolog>

<doctype>!DOCTYPE

Order

SYSTEM

"SQLLIB/samples/db2xml/dtd/getstart.dtd"</doctype>

<root_node>

<element_node

name="Order">

<RDB_node>

<table

name="order_tab"/>

<root_node>

<element_node

name="Order">

<attribute_node

name="key">

<column

name="order_key"/>

</attribute_node>

<element_node

name="Customer">

<element_node

name="Name">

<text_node><column

name="customer_name"/></text_node>

</element_node>

<element_node

name="Email">

<text_node><column

name="customer_email"/></text_node>

</element_node>

</element_node>

<element_node

name="Part">

<attribute_node

name="color">

<column

name="color"/>

</attribute_node>

<element_node

name="key">

<text_node><column

name="part_key"/></text_node>

</element_node>

<element_node

name="Quantity">

<text_node><column

name="quantity"/></text_node>

</element_node>

<element_node

name="ExtendedPrice">

<text_node><column

name="price"/></text_node>

</element_node>

<element_node

name="Tax">

<text_node><column

name="tax"/></text_node>

</element_node>

<element_node

name="Shipment"

multi_occurrence="YES">

<element_node

name="ShipDate">

<text_node><column

name="date"/></text_node>

</element_node>

<element_node

name="ShipMode">

<text_node><column

name="mode"/></text_node>

</element_node>

</element_node>

</element_node>

</element_node>

</root_node>

</Xcollection>

</DAD>

Figure

18.

Sample

DAD

file

for

an

XML

collection

using

SQL

mapping:

order_sql.dad

(Part

2

of

2)

Appendix

A.

Samples

297

<table

name="part_tab"/>

<table

name="ship_tab"/>

<condition>order_tab.order_key=part_tab.order_key

AND

part_tab.part_key=ship_tab.part_key

</condition>

</RDB_node>

<attribute_node

name="Key">

<RDB_node>

<table

name="order_tab"/>

<column

name="order_key"/>

</RDB_node>

</attribute_node>

<element_node

name="Customer">

<element_node

name="Name">

<text_node>

<RDB_node>

<table

name="order_tab"/>

<column

name="customer_name"/>

</RDB_node>

</text_node>

</element_node>

<element_node

name="Email">

<text_node>

<RDB_node>

<table

name="order_tab"/>

<column

name="customer_email"/>

</RDB_node>

</text_node>

</element_node>

</element_node>

<element_node

name="Part">

<attribute_node

name="Key">

<RDB_node>

<table

name="part_tab"/>

<column

name="part_key"/>

</RDB_node>

</attribute_node>

<element_node

name="ExtendedPrice">

<text_node>

<RDB_node>

<table

name="part_tab"/>

<column

name="price"/>

<condition>price

>

2500.00</condition>

</RDB_node>

</text_node>

</element_node>

<element_node

name="Tax">

<text_node>

<RDB_node>

<table

name="part_tab"/>

<column

name="tax"/>

</RDB_node>

</text_node>

</element_node>

<element_node

name="Quantity">

<text_node>

<RDB_node>

<table

name="part_tab"/>

<column

name="qty"/>

</RDB_node>

</text_node>

</element_node>

<element_node

name="Shipment"

multi_occurrence="YES">

<element_node

name="ShipDate">

<text_node>

<RDB_node>

298

XML

Extender

Administration

and

Programming

<table

name="ship_tab"/>

<column

name="date"/>

<condition>date

>

’1966-01-01’</condition>

</RDB_node>

</text_node>

</element_node>

<element_node

name="ShipMode">

<text_node>

<RDB_node>

<table

name="ship_tab"/>

<column

name="mode"/>

</RDB_node>

</text_node>

</element_node>

<element_node

name="Comment">

<text_node>

<RDB_node>

<table

name="ship_tab"/>

<column

name="comment"/>

</RDB_node>

</text_node>

</element_node>

</element_node>

<!--

end

of

element

Shipment-->

</element_node>

<!--

end

of

element

Part

-->

</element_node>

<!--

end

of

element

Order

-->

</root_node>

</Xcollection>

</DAD>

Appendix

A.

Samples

299

300

XML

Extender

Administration

and

Programming

Appendix

B.

Code

page

considerations

XML

documents

and

other

related

files

must

be

encoded

properly

for

each

client

or

server

that

accesses

the

files.

The

XML

Extender

makes

some

assumptions

when

processing

a

file,

you

need

to

understand

how

it

handles

code

page

conversions.

The

primary

considerations

are:

v

Ensuring

that

the

actual

code

page

of

the

client

retrieving

an

XML

document

from

DB2

UDB

matches

the

encoding

of

the

document.

v

Ensuring

that,

when

the

document

is

processed

by

an

XML

parser,

the

encoding

declaration

of

the

XML

document

is

also

consistent

with

the

document’s

actual

encoding.

v

Determining

how

parsers

and

other

tools

handle

line

endings

and

determining

how

to

present

files

so

that

they

are

processed.

The

following

topics

describe

the

issues

for

these

considerations,

how

you

can

prepare

for

possible

problems,

and

how

the

XML

Extender

and

DB2

UDB

support

code

pages

when

documents

are

passed

from

client

to

server,

and

to

the

database.

Terminology

for

XML

code

pages

The

following

terms

are

used

in

the

topics

about

XML

code

pages:

document

encoding

The

code

page

of

an

XML

document.

document

encoding

declaration

The

name

of

the

code

page

specified

in

the

XML

declaration.

For

example,

the

following

encoding

declaration

specifies

ibm-1047:

<?xml

version="1.0"

encoding="ibm-1047"?>

consistent

document

A

document

in

which

the

code

page

matches

the

encoding

declaration.

inconsistent

document

A

document

in

which

the

code

page

does

not

match

the

encoding

declaration.

client

code

page

The

application

code

page.

The

default

client

code

page

is

the

value

of

the

operating

system

locale

on

a

Windows

or

UNIX

client.

server

code

page,

or

server

operating

system

locale

code

page

The

operating

system

locale

of

the

HFS

file

system

on

USS,

that

is

in

the

same

OS/390

system

as

the

XML-enabled

database.

The

XML

Extender

uses

the

nl_langinfo

environment

option

to

determine

the

value

of

the

server

code

page.

database

code

page

The

encoding

of

the

stored

data,

determined

at

database

create

time.

This

value

defaults

to

the

server

operating

system

locale.

DB2

and

XML

Extender

code

page

assumptions

When

DB2

UDB

sends

or

receives

an

XML

document,

it

does

not

check

the

encoding

declaration.

Rather,

it

checks

the

code

page

for

the

client

to

see

if

it

matches

the

database

code

page.

If

they

are

different,

DB2

UDB

converts

the

data

in

the

XML

document

to

match

the

code

page

of:

©

Copyright

IBM

Corp.

1999,

2004

301

v

The

database,

when

importing

the

document,

or

a

document

fragment,

into

a

database

table.

v

The

database,

when

decomposing

a

document

into

one

or

more

database

tables.

v

The

client,

when

exporting

the

document

from

the

database

and

presenting

the

document

to

the

client.

v

The

server,

when

processing

a

file

with

a

UDF

that

returns

data

in

a

file

on

the

server’s

file

system.

Assumptions

for

importing

an

XML

document

When

an

XML

document

is

imported

into

the

database,

it

is

generally

imported

as

an

XML

document

to

be

stored

in

an

XML

column,

or

for

decomposition

for

an

XML

collection,

where

the

element

and

attribute

contents

will

be

saved

as

DB2

UDB

data.

When

a

document

is

imported,

DB2

UDB

converts

the

document

encoding

to

that

of

the

database.

DB2

UDB

assumes

that

the

document

is

in

the

code

page

specified

in

the

“Source

code

page”

column

in

the

table

below.

Table

95

summarizes

the

conversions

that

DB2

UDB

makes

when

importing

an

XML

document.

Table

95.

Using

UDFs

and

stored

procedures

when

the

XML

file

is

imported

into

the

database

Task

This

is

the

source

code

page

for

conversion

This

is

the

target

code

page

for

conversion

Comments

Inserting

DTD

file

into

DTD_REF

table

Client

code

page

Database

code

page

Enabling

a

column

or

enabling

a

collection

with

stored

procedures,

or

using

administration

commands

that

import

DAD

files

Client

code

page

(the

code

page

used

to

bind

DXXADMIN

during

installation),

when

enabling

in

USS.

Database

code

page

Using

user-defined

functions:

v

XMLVarchar

FromFile()

v

XMLCLOB

FromFile()

v

Content():

retrieve

from

XMLFILE

to

a

CLOB

Server

code

page

Database

code

page

The

database

code

page

is

converted

to

the

client

code

page

when

the

data

is

presented

to

the

client

Using

stored

procedures

for

decomposition

Client

code

page

Database

code

page

v

Document

to

be

decomposed

is

assumed

to

be

in

client

code

page.

Data

from

decomposition

is

stored

in

tables

in

database

code

page

v

Use

the

CCSID

option

for

DAD

and

XML

files

when

the

calling

application

runs

in

USS.

302

XML

Extender

Administration

and

Programming

Assumptions

for

exporting

an

XML

document

When

an

XML

document

is

exported

from

the

database,

it

is

exported

based

on

a

client

request

to

present

one

of

the

following

objects:

v

An

XML

document

from

an

XML

column

v

The

query

results

of

XML

documents

in

an

XML

column

v

A

composed

XML

document

from

an

XML

collection

When

a

document

is

exported,

DB2

UDB

converts

the

document

encoding

to

that

of

the

client

or

server,

depending

on

where

the

request

originated

and

where

the

data

is

to

be

presented.

Table

96

summarizes

the

conversions

that

DB2

UDB

makes

when

exporting

an

XML

document.

Table

96.

Using

UDFs

and

stored

procedures

when

the

XML

file

is

exported

from

the

database

Task

DB2

converts

the

...

Comments

Using

user-defined

functions:

v

XMLFileFromVarchar()

v

XMLFileFromCLOB()

v

Content():

retrieve

from

XMLVARCHAR

to

an

external

server

file

Database

code

page

to

the

server

code

page

Composing

XML

documents

with

a

stored

procedure

that

are

stored

in

a

result

table,

which

can

be

queried

and

exported.

Database

code

page

to

the

client

code

page

when

the

result

set

is

presented

to

the

client

v

When

composing

documents,

XML

Extender

copies

the

encoding

declaration

specified

by

the

tag

in

the

DAD,

to

the

newly

created

document.

It

should

match

the

client

code

page

when

presented.

v

Use

the

CCSID

option

for

DAD

files

when

the

calling

application

runs

in

USS.

Encoding

declaration

considerations

for

XML

Extender

The

encoding

declaration

specifies

the

code

page

of

the

XML

document’s

encoding

and

appears

on

the

XML

declaration

statement.

When

using

XML

Extender,

it

is

important

to

ensure

that

the

encoding

of

the

document

matches

the

code

page

of

the

client

or

the

server,

depending

on

where

the

file

is

located.

Legal

encoding

declarations

You

can

use

any

encoding

declaration

in

XML

documents,

within

some

guidelines.

In

this

section,

these

guidelines

are

defined,

along

with

the

supported

encoding

declarations.

If

you

use

the

encodings

listed

in

Table

97

on

page

304,

your

application

can

be

ported

between

IBM

operating

systems.

If

you

use

other

encodings,

your

data

is

less

likely

to

be

portable.

For

all

operating

systems,

the

following

encoding

declarations

are

supported.

The

following

list

describes

the

meaning

of

each

column:

v

Encoding

specifies

the

encoding

string

to

be

used

in

the

XML

declaration.

Appendix

B.

Code

page

considerations

303

v

Category

shows

the

operating

system

on

which

DB2

UDB

supports

the

given

code

page.

v

Code

page

shows

the

IBM-defined

code

page

associated

with

the

given

encoding

Table

97.

Encoding

declarations

supported

by

XML

Extender

Category

Encoding

Code

page

Unicode

UTF-8

1208

UTF-16

1200

EBCDIC

ibm-037

37

ibm-273

273

ibm-277

277

ibm-278

278

ibm-280

280

ibm-284

284

ibm-297

297

ibm-500

500

ibm-1047

1047

ibm-1140

1140

ASCII

iso-8859-1

819

ibm-1252

1252

iso-8859-2

912

iso-8859-5

915

iso-8859-6

1089

iso-8859-7

813

iso-8859-8

916

iso-8859-9

920

The

encoding

string

must

be

compatible

with

the

code

page

of

the

document’s

destination.

If

a

document

is

being

returned

from

a

server

to

a

client,

then

its

encoding

string

must

be

compatible

with

the

client’s

code

page.

See

“Consistent

encodings

and

encoding

declarations”

for

the

consequences

of

incompatible

encodings.

See

the

following

Web

address

for

a

list

of

code

pages

supported

by

the

XML

parser

used

by

XML

Extender:

http://www.ibm.com/software/data/db2/extenders/xmlext/moreinfo/encoding.html

Consistent

encodings

and

encoding

declarations

When

an

XML

document

is

processed

or

exchanged

with

another

system,

it

is

important

that

the

encoding

declaration

corresponds

to

the

actual

encoding

of

the

document.

Ensuring

that

the

encoding

of

a

document

is

consistent

with

the

client

is

important

because

XML

tools,

like

parsers,

generate

an

error

for

an

entity

that

includes

an

encoding

declaration

other

than

that

named

in

the

declaration.

Figure

19

on

page

305

shows

that

clients

have

consistent

code

pages

with

the

document

encoding

and

declared

encoding.

304

XML

Extender

Administration

and

Programming

The

consequences

of

having

different

code

pages

are

the

following

possible

situations:

v

A

conversion

in

which

data

is

lost

might

occur,

particularly

if

the

source

code

page

is

Unicode

and

the

target

code

page

is

not

Unicode.

Unicode

contains

the

full

set

of

characters.

If

a

file

is

converted

from

UTF-8

to

a

code

page

that

does

not

support

all

the

characters

used

in

the

document,

then

data

might

be

lost

during

the

conversion.

v

The

declared

encoding

of

the

XML

document

might

no

longer

be

consistent

with

the

actual

document

encoding,

if

the

document

is

retrieved

by

a

client

with

a

different

code

page

than

the

declared

encoding

of

the

document.

Figure

20

on

page

306

shows

an

environment

in

which

the

code

pages

of

the

clients

are

inconsistent.

Figure

19.

Clients

have

matching

code

pages

Appendix

B.

Code

page

considerations

305

Client

2

receives

the

document

in

EUC,

but

the

document

will

have

an

encoding

declaration

of

ibm-1252.

Consistent

encodings

in

USS

When

running

applications

in

USS,

there

are

two

considerations:

v

When

you

enable

an

XML

column

or

collection,

and

specify

a

DAD

file

that

is

stored

in

HFS,

bind

the

DXXADM

package

with

the

ENCODING

option

and

specify

the

actual

code

page

of

the

DAD

file.

The

bind

step

for

DXXADM

is

included

in

the

DXXGPREP

JCL

job.

For

example,

if

the

DAD

file

has

a

code

page

of

1047,

specify

this

value

on

the

ENCODING

option:

BIND

PACKAGE

(DB2XML)

MEMBER(DXXADM)

ENCODING(1047);

v

When

DAD

files

stored

in

HFS

are

used

in

a

calling

application,

declare

a

host

variable

in

the

calling

program

with

the

coded

character

set

identifier

(CCSID)

of

the

actual

code

page

of

the

DAD

file.

If

the

file

is

created

in

HFS,

the

code

page

is

that

of

HFS.

If

the

file

has

been

imported

into

HFS

in

binary

mode,

the

code

page

might

be

different.

This

declaration

ensures

that

DB2

UDB

converts

the

DAD

code

page,

to

the

database

code

page.

For

example,

if

a

DAD

file

is

in

1047,

use

the

following

variable

declaration:

EXEC

SQL

DECLARE

:dadobj

VARIABLE

CCSID

1047;

v

When

XML

files

stored

in

HFS

are

used

in

a

calling

application

for

decomposition,

declare

a

host

variable

in

the

calling

program

with

the

CCSID

of

the

actual

code

page

of

the

XML

file.

If

the

file

is

created

in

HFS,

the

code

page

is

that

of

HFS.

If

the

file

has

been

imported

into

HFS

in

binary

mode,

the

code

page

might

be

different.

This

declaration

ensures

that

DB2

UDB

converts

the

XML

file

code

page,

to

the

database

code

page.

For

example,

if

a

DAD

file

is

in

1047,

use

the

following

variable

declaration:

EXEC

SQL

DECLARE

:xmlobj

VARIABLE

CCSID

1047;

Figure

20.

Clients

have

mismatching

code

pages

306

XML

Extender

Administration

and

Programming

Declaring

an

encoding

The

default

value

of

the

encoding

declaration

is

UTF-8,

and

the

absence

of

an

encoding

declaration

means

the

document

is

in

UTF-8.

To

declare

an

encoding

value:

In

the

XML

document

declaration

specify

the

encoding

declaration

with

the

name

of

the

code

page

of

the

client.

For

example:

<?xml

version="1.0"

encoding="ibm-1047"

?>

Conversion

scenarios

The

XML

Extender

processes

XML

documents

when:

v

Storing

and

retrieving

XML

column

data,

using

the

XML

column

storage

and

access

method

v

Composing

and

decomposing

XML

documents

Documents

undergo

code

page

conversion

when

passed

from

a

client

or

server,

to

a

database.

Inconsistencies

or

damage

of

XML

documents

is

most

likely

to

occur

during

conversions

from

code

pages

of

the

client,

server,

and

database.

When

choosing

the

encoding

declaration

of

the

document,

as

well

as

planning

what

clients

and

servers

can

import

or

export

documents

from

the

database,

consider

the

conversions

described

in

the

above

tables,

and

the

scenarios

described

below.

The

following

scenarios

describe

common

conversion

scenarios

that

can

occur:

Scenario

1:

This

scenario

is

a

configuration

with

consistent

encodings,

no

DB2

UDB

conversion,

and

a

document

imported

from

the

server.

The

document

encoding

declaration

is

ibm-1047,

the

server

is

ibm-1047,

and

the

database

is

ibm-1047.

DB2

UDB

does

not

need

to

convert

the

document

because

the

server

code

page

and

database

code

page

are

identical.

The

encoding

and

declaration

are

consistent.

1.

The

document

is

imported

into

DB2

UDB

using

the

XMLClobfromFile

UDF.

2.

The

document

is

extracted

to

the

server.

Scenario

2:

This

scenario

is

a

configuration

with

consistent

encodings,

DB2

UDB

conversion,

and

a

document

imported

from

server

and

exported

to

client.

The

document

encoding

and

declaration

is

ibm-1047

the

client

and

server

code

pages

are

ibm-1047,

and

the

database

code

pages

are

ibm-500.

1.

The

document

is

imported

into

DB2

UDB

using

XMLClobfromfile

UDF

from

the

server.

DB2

converts

the

document

from

ibm-1047

and

stores

it

in

ibm-500.

The

encoding

declaration

and

encoding

are

inconsistent

in

the

database.

2.

A

client

using

ibm-1047

requests

the

document

for

presentation

at

the

Web

browser.

DB2

UDB

converts

the

document

to

ibm-1047,

the

client’s

code

page.

The

document

encoding

and

the

declaration

are

now

consistent

at

the

client.

Scenario

3:

This

scenario

is

a

configuration

with

inconsistent

encodings,

DB2

UDB

conversion,

a

document

imported

from

the

server

and

exported

to

a

client.

The

document

encoding

declaration

is

for

the

incoming

document.

The

server

code

page

is

ibm-1047

and

the

client

and

database

are

ibm-500.

1.

The

document

is

imported

into

the

database

using

a

storage

UDF.

DB2

UDB

converts

the

document

to

ibm-500

from

ibm-1047.

The

encoding

and

declaration

are

inconsistent.

Appendix

B.

Code

page

considerations

307

2.

A

client

with

a

ibm-500

code

page

requests

the

document

for

presentation

at

a

Web

browser.

DB2

does

not

convert

because

the

client

and

the

database

code

pages

are

the

same.

The

document

encoding

and

declaration

are

inconsistent

because

the

declaration

is

ibm-1047

and

the

encoding

is

ibm-500.

The

document

cannot

be

processed

by

an

XML

parser

or

other

XML

processing

tools.

Recommendations

for

preventing

inconsistent

XML

documents

The

above

sections

have

discussed

how

an

XML

document

can

have

an

inconsistent

encoding,

that

is,

the

encoding

declaration

conflicts

with

the

document’s

encoding.

Inconsistent

encodings

can

cause

the

loss

of

data

and

or

unusable

XML

documents.

Use

one

of

the

following

recommendations

for

ensuring

that

the

XML

document

encoding

is

consistent

with

the

client

code

page,

before

handing

the

document

to

an

XML

processor,

such

as

a

parser:

v

When

exporting

a

document

from

the

database

using

the

XML

Extender

UDFs,

try

one

of

the

following

techniques

(assuming

XML

Extender

has

exported

the

file,

in

the

server

code

page,

to

the

file

system

on

the

server):

–

Convert

the

document

to

the

declared

encoding

code

page

–

Override

the

declared

encoding,

if

the

tool

has

an

override

facility

–

Manually

change

the

encoding

declaration

of

the

exported

document

to

the

document’s

actual

encoding

(that

is,

the

server

code

page)

v

When

exporting

a

document

from

the

database

using

the

XML

Extender

stored

procedures,

try

one

of

the

following

techniques

(assuming

the

client

is

querying

the

result

table,

in

which

the

composed

document

is

stored):

–

Convert

the

document

to

the

declared

encoding

code

page

–

Override

the

declared

encoding,

if

the

tool

has

an

override

facility

–

Before

running

the

stored

procedure,

have

the

client

set

the

CCSID

variable

to

force

the

client

code

page

to

a

code

page

that

is

compatible

with

the

encoding

declaration

of

the

XML

document.

–

Manually

change

the

encoding

declaration

of

the

exported

document

to

the

document’s

actual

encoding

(that

is,

the

client

code

page)

Limitation

when

using

Unicode

and

a

Windows

NT

client:

On

Windows

NT,

the

operating

system

locale

cannot

be

set

to

UTF-8.

Use

the

following

guidelines

when

importing

or

exporting

documents:

v

When

importing

files

and

DTDs

encoded

in

UTF-8,

set

the

client

code

page

to

UTF-8,

using:

db2set

DB2CODEPAGE=1208

Use

this

technique

when:

–

Inserting

a

DTD

into

the

DB2XML.DTD_REF

table

–

Enabling

a

column

or

collection

–

Decomposing

stored

procedures

v

When

using

the

Content()

or

XMLFromFile

UDFs

to

import

XML

documents,

documents

must

be

encoded

in

the

code

page

of

the

server’s

operating

system

locale,

which

cannot

be

UTF-8.

v

When

exporting

an

XML

file

from

the

database,

set

the

client

code

page

with

the

following

command

to

have

DB2

UDB

encode

the

resulting

data

in

UTF-8:

db2set

DB2CODEPAGE=1208

308

XML

Extender

Administration

and

Programming

Use

this

technique

when:

–

Querying

the

result

table

after

composition

–

Extracting

data

from

an

XML

column

using

the

extract

UDFs

v

When

using

the

Content()

or

XMLxxxfromFile

UDFs

to

export

XML

documents

to

files

on

the

server

file

system,

resulting

documents

are

encoded

in

the

code

page

of

the

server’s

operating

system

locale,

which

cannot

be

UTF-8.

Line

ending

considerations

When

storing

XML

and

DAD

files,

consider

that

the

file

can

be

treated

inconsistently

by

editors

and

parsers

because

DB2

UDB

for

OS/390

and

z/OS

stores

files

with

the

NL

as

the

line

ending.

Many

tools

do

not

recognize

the

NL

line

endings.

DB2

uses

the

NL

line

ending

because:

v

DB2

uses

Character

Data

Representation

Architecture

(CDRA)

as

the

basis

for

data

conversions

across

systems

through

Distributed

Relational

Database

Architecture

(DRDA).

v

DB2

files

are

routinely

accessed

across

operating

systems

For

example,

SQL

procedures

source

code,

held

in

the

DB2

UDB

catalog,

is

stored

with

[LF]

as

its

line

ending.

In

general

files

or

documents

can

contain

the

following

line

endings:

[CR],

[CRLF],

or

[LF],

as

well

as

[NL],

as

in

the

following

example:

This

is

line

1

of

a

UNIX

document

[LF]

....

This

is

line

1

of

an

Apple

Macintosh

document

[CR]

....

This

is

line

1

of

a

DOS/Windows

document

[CR][LF]

....

This

is

line

1

of

an

OS/390

and

z/OS

USS

file

[NL].....

Most

workstation

tools

recognize

[LF],

[CR],

and

[CR][LF],

but

not

[NL],

which

is

used

by

OS/390

and

z/OS.

Different

line

endings

can

appear

together

in

one

document.

Processing

XML

documents

with

the

linebrk

utility

Use

the

linebrk

utility

to

convert

[NL]

line

endings

[LF}

line

endings,

or

the

reverse.

Download

the

utility

from

the

DB2

UDB

XML

Extender

Web

site:

http://www.ibm.com/software/data/db2/extenders/xmlext/downloads.html

Syntax:

��

linebrk

input_file_name

output_file_name

-nl

-f

-v

��

Where:

input_file_name

Specifies

the

name

of

the

file

to

be

processed.

output_file_name

Specifies

the

name

of

the

resulting

file.

-nl

Specifies

that

the

file

is

to

be

converted

from

LF

to

NL.

-f

Specifies

that

the

file

is

to

be

converted

from

NL

to

LF.

-v

Specifies

the

verbose

option,

which

provides

information

as

the

command

processes

the

file.

Appendix

B.

Code

page

considerations

309

310

XML

Extender

Administration

and

Programming

Appendix

C.

XML

Extender

limits

This

topic

describes

the

limits

for:

v

XML

Extender

objects

v

Values

returned

by

user-defined

functions

v

Stored

procedures

parameters

v

Administration

support

table

columns

v

Composition

and

decomposition

The

following

table

describes

the

limits

for

XML

Extender

objects.

Table

98.

Limits

for

XML

Extender

objects

Object

Limit

Maximum

number

of

rows

in

a

table

in

a

decomposition

XML

collection

10240

rows

from

each

decomposed

XML

document

Maximum

bytes

in

XML

file

path

name

specified

as

a

parameter

value

512

bytes

Length

of

the

sql_stmt

element

in

a

DAD

file

for

SQL

composition

Windows

and

UNIX

operating

systems:

32,765

bytes.

OS/390

and

iSeries

operating

systems:

16,380

bytes.

Maximum

number

of

columns

for

one

table

that

are

specified

for

one

table

in

the

DAD

file

for

RDB_node

decomposition

500

columns

(columns

for

a

table)

are

specified

by

text_node

and

attribute_node

elements

in

a

DAD

file.

The

following

table

describes

the

limits

values

returned

by

XML

Extender

user-defined

functions.

Table

99.

Limits

for

user-defined

function

value

User-defined

functions

returned

values

Limit

Maximum

bytes

returned

by

an

extractCHAR

UDF

254

bytes

Maximum

bytes

returned

by

an

extractCLOB

UDF

2

gigabytes

Maximum

bytes

returned

by

an

extractVARCHAR

UDF

4

kilobytes

The

following

table

describes

the

limits

for

parameters

of

XML

Extender

stored

procedures.

Table

100.

Limits

for

stored

procedure

parameters

Stored

procedure

parameters

Limit

Maximum

size

of

an

XML

document

CLOB1

1

MB

Maximum

size

of

a

Document

Access

Definition

(DAD)

CLOB1

100

KB

Maximum

size

of

collectionName

30

bytes

Maximum

size

of

colName

30

bytes

Maximum

size

of

dbName

8

bytes

©

Copyright

IBM

Corp.

1999,

2004

311

Table

100.

Limits

for

stored

procedure

parameters

(continued)

Stored

procedure

parameters

Limit

Maximum

size

of

defaultView

128

bytes

Maximum

size

of

rootID

30

bytes

Maximum

size

of

resultTabName

18

bytes

Maximum

size

of

tablespace

8

bytes

Maximum

size

of

tbName2

18

bytes

Maximum

size

of

resultColumn

30

bytes

Maximum

size

of

validColumn

30

bytes

Maximum

size

of

varchar_value

16366

bytes

Notes:

1.

This

size

can

be

changed

for

dxxGenXMLClob

and

dxxRetrieveXMLCLOB.

2.

If

the

value

of

the

tbName

parameter

is

qualified

by

a

schema

name,

the

entire

name

(including

the

separator

character)

must

be

no

longer

than

128

bytes.

The

following

table

describes

the

limits

for

the

DB2XML.DTD_REF

table.

Table

101.

XML

Extender

limits

DB2XML.DTD_REF

table

columns

Limit

Size

of

AUTHOR

column

128

bytes

Size

of

CREATOR

column

128

bytes

Size

of

UPDATOR

column

128

bytes

Size

of

DTDID

column

128

bytes

Size

of

CLOB

column

100

KB

Names

can

undergo

expansion

when

DB2

UDB

converts

them

from

the

client

code

page

to

the

database

code

page.

A

name

might

fit

within

the

size

limit

at

the

client,

but

exceed

the

limit

when

the

stored

procedure

gets

the

converted

name.

The

following

table

describes

limits

for

composition

and

decomposition.

Table

102.

Limits

for

XML

Extender

composition

and

decomposition

Object

Limit

Maximum

number

of

rows

inserted

into

a

table

in

a

decomposition

XML

collection

10240

rows

from

each

decomposed

XML

document

Maximum

length

of

the

name

attribute

in

elements_node

or

attribute_node

within

a

DAD

63

bytes

Maximum

bytes

in

XMLFile

path

name

specified

as

a

parameter

value

512

bytes

DB2DXX_MIN_TMPFILE_SIZE

environment

variable:

XML

Extender

places

large

documents

in

temporary

files

to

avoid

using

too

much

memory

during

processing.

On

systems

with

large

amounts

of

physical

memory,

it

is

possible

to

avoid

moving

documents

to

temporary

files,

reducing

the

amount

of

Input/Output

activity.

The

environment

variable

DB2DXX_MIN_TMPFILE_SIZE

312

XML

Extender

Administration

and

Programming

instructs

XML

Extender

to

use

memory

buffers,

rather

than

temporary

files,

for

processing

documents

smaller

than

the

specified

value.

The

variable

is

applicable

only

on

the

server,

not

on

a

client.

If

multiple

physical

nodes

participate

in

a

multi-node

partition,

the

variable

may

be

set

differently

on

each

node,

accurately

reflecting

the

amount

of

memory

installed

on

each

machine.

If

the

environment

variable

is

not

set,

documents

larger

than

128KB

will

automatically

be

placed

into

temporary

files

during

processing,

while

documents

smaller

than

128K

will

be

processed

in

memory.

Appendix

C.

XML

Extender

limits

313

314

XML

Extender

Administration

and

Programming

Glossary

XML

Extender

glossary

absolute

location

path.

The

full

path

name

of

an

object.

The

absolute

path

name

begins

at

the

highest

level,

or

″root″

element,

which

is

identified

by

the

forward

slash

(/)

or

back

slash

(\)

character.

access

and

storage

method.

Associates

XML

documents

to

a

DB2

UDB

database

through

two

major

access

and

storage

methods:

XML

columns

and

XML

collections.

See

also

XML

column

and

XML

collection.

access

function.

A

user-provided

function

that

converts

the

data

type

of

text

stored

in

a

column

to

a

type

that

can

be

processed

by

Text

Extender.

administration.

The

task

of

preparing

text

documents

for

searching,

maintaining

indexes,

and

getting

status

information.

administrative

support

table.

One

of

the

tables

that

are

used

by

a

DB2

UDB

extender

to

process

user

requests

on

image,

audio,

and

video

objects.

Some

administrative

support

tables

identify

user

tables

and

columns

that

are

enabled

for

an

extender.

Other

administrative

support

tables

contain

attribute

information

about

objects

in

enabled

columns.

Also

called

a

metadata

table.

administrative

support

tables.

A

tables

used

by

a

DB2

UDB

extender

to

process

user

requests

on

XML

objects.

Some

administrative

support

tables

identify

user

tables

and

columns

that

are

enabled

for

an

extender.

Other

administrative

support

tables

contain

attribute

information

about

objects

in

enabled

columns.

Synonymous

with

metadata

table.

analyze.

To

calculate

numeric

values

for

the

features

of

an

image

and

add

the

values

to

a

QBIC

catalog.

API.

See

application

programming

interface.

application

programming

interface

(API).

(1)

A

functional

interface

supplied

by

the

operating

system

or

by

a

separately

orderable

licensed

program.

An

API

allows

an

application

program

that

is

written

in

a

high-level

language

to

use

specific

data

or

functions

of

the

operating

system

or

the

licensed

programs.

(2)

In

DB2,

a

function

within

the

interface,

for

example,

the

get

error

message

API.

(3)

The

DB2

UDB

extenders

provide

APIs

for

requesting

user-defined

functions,

administrative

operations,

display

operations,

and

video

scene

change

detection.and

display

operations.The

DB2

text

extender

provides

APIs

for

requesting

user-defined

functions,

administrative

operations,

and

information

retrieval

services.In

DB2,

a

function

within

the

interface.

For

example,

the

get

error

message

API.

attribute.

See

XML

attribute.

attribute_node.

A

representation

of

an

attribute

of

an

element.

binary

large

object

(BLOB).

A

binary

string

whose

length

can

be

up

to

2

GB.

Image,

audio,

and

video

objects

are

stored

in

a

DB2

database

as

BLOBs.

Boolean

search.

A

search

in

which

one

or

more

search

terms

are

combined

using

Boolean

operators.

bound

search.

A

search

in

Korean

documents

that

respects

word

boundaries.

browse.

To

view

text

displayed

on

a

computer

monitor.

browser.

A

Text

Extender

function

that

enables

you

to

display

text

on

a

computer

monitor.See

Web

browser.

B-tree

indexing.

The

native

index

scheme

provided

by

the

DB2

UDB

engine.

It

builds

index

entries

in

the

B-tree

structure.

Supports

DB2

base

data

types.

cast

function.

A

function

that

is

used

to

convert

instances

of

a

(source)

data

type

into

instances

of

a

different

(target)

data

type.

In

general,

a

cast

function

has

the

name

of

the

target

data

type.

It

has

one

single

argument

whose

type

is

the

source

data

type;

its

return

type

is

the

target

data

type.

catalog

view.

A

view

of

a

system

table

created

by

Text

Extender

for

administration

purposes.

A

catalog

view

contains

information

about

the

tables

and

columns

that

have

been

enabled

for

use

by

Text

Extender.

CCSID.

Coded

Character

Set

Identifier.

character

large

object

(CLOB).

A

character

string

of

single-byte

characters,

where

the

string

can

be

up

to

2

GB.

CLOBs

have

an

associated

code

page.

Text

objects

that

contain

single-byte

characters

are

stored

in

a

DB2

UDB

database

as

CLOBs.

CLOB.

Character

large

object.

code

page.

An

assignment

of

graphic

characters

and

control

function

meanings

to

all

code

points.

For

example,

assignment

of

characters

and

meanings

to

256

code

points

for

an

8-bit

code.

column

data.

The

data

stored

inside

of

a

DB2

UDB

column.

The

type

of

data

can

be

any

data

type

supported

by

DB2.

command

line

processor.

A

program

called

DB2TX

that:

©

Copyright

IBM

Corp.

1999,

2004

315

Allows

you

to

enter

Text

Extender

commands

Processes

the

commands

Displays

the

result.

compose.

To

generate

XML

documents

from

relational

data

in

an

XML

collection.

condition.

A

specification

of

either

the

criteria

for

selecting

XML

data

or

the

way

to

join

the

XML

collection

tables.

DAD.

See

Document

access

definition.

data

interchange.

The

sharing

of

data

between

applications.

XML

supports

data

interchange

without

needing

to

go

through

the

process

of

first

transforming

data

from

a

proprietary

format.

data

source.

A

local

or

remote

relational

or

nonrelational

data

manager

that

is

capable

of

supporting

data

access

via

an

ODBC

driver

that

supports

the

ODBC

APIs.

data

stream.

Information

returned

by

an

API

function,

comprising

text

(at

least

one

paragraph)

containing

the

term

searched

for,

and

information

for

highlighting

the

found

term

in

that

text.

data

type.

An

attribute

of

columns

and

literals.

database

partition.

A

part

of

the

database

that

consists

of

its

own

user

data,

indexes,

configuration

files,

and

transaction

logs.

Sometimes

called

a

node

or

database

node.

database

partition

server.

Manages

a

database

partition.

A

database

partition

server

is

composed

of

a

database

manager

and

the

collection

of

data

and

system

resources

that

it

manages.

Typically,

one

database

partition

server

is

assigned

to

each

machine.

DBCLOB.

Double-byte

character

large

object.

DBCS.

Double-byte

character

support.

decompose.

Separates

XML

documents

into

a

collection

of

relational

tables

in

an

XML

collection.

default

casting

function.

Casts

the

SQL

base

type

to

a

UDT.

default

view.

A

representation

of

data

in

which

an

XML

table

and

all

of

its

related

side

tables

are

joined.

disable.

To

restore

a

database,

a

text

table,

or

a

text

column,

to

its

condition

before

it

was

enabled

for

XML

Extender

by

removing

the

items

created

during

the

enabling

process.

distinct

type.

See

user-defined

type.

document.

See

text

document.

Document

Access

Definition

(DAD).

Used

to

define

the

indexing

scheme

for

an

XML

column

or

mapping

scheme

of

an

XML

collection.

It

can

be

used

to

enable

an

XML

Extender

column

of

an

XML

collection,

which

is

XML

formatted.

Document

type

definition

(DTD).

A

set

of

declarations

for

XML

elements

and

attributes.

The

DTD

defines

what

elements

are

used

in

the

XML

document,

in

what

order

they

can

be

used,

and

which

elements

can

contain

other

elements.

You

can

associate

a

DTD

with

a

document

access

definition

(DAD)

file

to

validate

XML

documents.

double-byte

character

large

object

(DBCLOB).

A

character

string

of

double-byte

characters,

or

a

combination

of

single-byte

and

double-byte

characters,

where

the

string

can

be

up

to

2

GB.

DBCLOBs

have

an

associated

code

page.

Text

objects

that

include

double-byte

characters

are

stored

in

a

DB2

UDB

database

as

DBCLOBs.

DTD.

(1)

.

(2)

See

Document

type

definition.

DTD

reference

table

(DTD_REF

table).

A

table

that

contains

DTDs,

which

are

used

to

validate

XML

documents

and

to

help

applications

to

define

a

DAD.

Users

can

insert

their

own

DTDs

into

the

DTD_REF

table.

This

table

is

created

when

a

database

is

enabled

for

XML.

DTD_REF

table.

DTD

reference

table.

DTD

repository.

A

DB2

UDB

table,

called

DTD_REF,

where

each

row

of

the

table

represents

a

DTD

with

additional

metadata

information.

EDI.

Electronic

Data

Interchange.

Electronic

Data

Interchange

(EDI).

A

standard

for

electronic

data

interchange

for

business-to-business

(B2B)

applications.

element.

See

XML

element.

element_node.

A

representation

of

an

element.

An

element_node

can

be

the

root

element

or

a

child

element.

embedded

SQL.

SQL

statements

coded

within

an

application

program.

See

static

SQL.

enable.

To

prepare

a

database,

a

text

table,

or

a

text

column,

for

use

by

XML

Extender.

escape

character.

A

character

indicating

that

the

subsequent

character

is

not

to

be

interpreted

as

a

masking

character.

expand.

The

action

of

adding

to

a

search

term

additional

terms

derived

from

a

thesaurus.

Extensible

Stylesheet

language

(XSL).

A

language

used

to

express

stylesheets.

XSL

consists

of

two

parts:

316

XML

Extender

Administration

and

Programming

a

language

for

transforming

XML

documents,

and

an

XML

vocabulary

for

specifying

formatting

semantics.

Extensible

Stylesheet

Language

Transformation

(XSLT).

A

language

used

to

transform

XML

documents

into

other

XML

documents.

XSLT

is

designed

for

use

as

part

of

XSL,

which

is

a

stylesheet

language

for

XML.

external

file.

A

text

document

in

the

form

of

a

file

stored

in

the

operating

system’s

file

system,

rather

than

in

the

form

of

a

cell

in

a

table

under

the

control

of

DB2.

A

file

that

exists

in

a

file

system

external

to

DB2.

file

reference

variable.

A

programming

variable

that

is

useful

for

moving

a

LOB

to

and

from

a

file

on

a

client

workstation.

foreign

key.

A

key

that

is

part

of

the

definition

of

a

referential

constraint

and

that

consists

of

one

or

more

columns

of

a

dependent

table.

function.

See

access

function.

gigabyte

(GB).

One

billion

(10⁹)

bytes.

When

referring

to

memory

capacity,

1

073

741

824

bytes.

host

variable.

A

variable

in

an

application

program

that

can

be

referred

to

in

embedded

SQL

statements.

Host

variables

are

the

primary

mechanism

for

transmitting

data

between

a

database

and

application

program

work

areas.

image.

An

electronic

representation

of

a

picture.

index.

To

extract

significant

terms

from

text,

and

store

them

in

a

text

index.A

set

of

pointers

that

are

logically

ordered

by

the

values

of

a

key.

Indexes

provide

quick

access

to

data

and

can

enforce

uniqueness

on

the

rows

in

the

table.

Java

Database

Connectivity

(JDBC).

An

application

programming

interface

(API)

that

has

the

same

characteristics

as

Open

Database

Connectivity

(ODBC)

but

is

specifically

designed

for

use

by

Java

database

applications.

Also,

for

databases

that

do

not

have

a

JDBC

driver,

JDBC

includes

a

JDBC

to

ODBC

bridge,

which

is

a

mechanism

for

converting

JDBC

to

ODBC;

JDBC

presents

the

JDBC

API

to

Java

database

applications

and

converts

this

to

ODBC.

JDBC

was

developed

by

Sun

Microsystems,

Inc.

and

various

partners

and

vendors.

JDBC.

Java

Database

Connectivity.

join.

A

relational

operation

that

allows

for

retrieval

of

data

from

two

or

more

tables

based

on

matching

column

values.

joined

view.

A

DB2

UDB

view

created

by

the

″CREATE

VIEW″

statement

which

join

one

more

tables

together.

kilobyte

(KB).

One

thousand

(10³)

bytes.

When

referring

to

memory

capacity,

1024

bytes.

large

object

(LOB).

A

sequence

of

bytes,

where

the

length

can

be

up

to

2

GB.

A

LOB

can

be

of

three

types:

binary

large

object

(BLOB),

character

large

object

(CLOB),

or

double-byte

character

large

object

(DBCLOB).

linguistic

index.

A

text

index

containing

terms

that

have

been

reduced

to

their

base

form

by

linguistic

processing.

“Mice”,

for

example,

would

be

indexed

as

“mouse”.

See

also

precise

index,

Ngram

index,

and

dual

index.

LOB.

Large

object.

LOB

locator.

A

small

(4-byte)

value

stored

in

a

host

variable

that

can

be

used

in

a

program

to

refer

to

a

much

larger

LOB

in

a

DB2

UDB

database.

Using

a

LOB

locator,

a

user

can

manipulate

the

LOB

as

if

it

was

stored

in

a

regular

host

variable,

and

without

the

need

to

transport

the

LOB

between

the

application

on

the

client

machine

and

the

database

server.

local

file

system.

A

file

system

that

exists

in

DB2

location

path.

Location

path

is

a

sequence

of

XML

tags

that

identify

an

XML

element

or

attribute.

The

location

path

identifies

the

structure

of

the

XML

document,

indicating

the

context

for

the

element

or

attribute.

A

single

slash

(/)

path

indicates

that

the

context

is

the

whole

document.

The

location

path

is

used

in

the

extracting

UDFs

to

identify

the

elements

and

attributes

to

be

extracted.

The

location

path

is

also

used

in

the

DAD

file

to

specify

the

mapping

between

an

XML

element,

or

attribute,

and

a

DB2

UDB

column

when

defining

the

indexing

scheme

for

XML

column.

Additionally,

the

location

path

is

used

by

the

Text

Extender

for

structural-text

search.

locator.

A

pointer

which

can

be

used

to

locate

an

object.

In

DB2,

the

large

object

block

(LOB)

locator

is

the

data

type

which

locates

LOBs.

mapping

scheme.

A

definition

of

how

XML

data

is

represented

in

a

relational

database.

The

mapping

scheme

is

specified

in

the

DAD.

The

XML

Extender

provides

two

types

of

mapping

schemes:

SQL

mapping

and

relational

database

node

(RDB_node)

mapping.

megabyte

(MB).

One

million

(10⁶)

bytes.

When

referring

to

memory

capacity,

1

048

576

bytes.

metadata

table.

See

administrative

support

table.

multiple

occurrence.

An

indication

of

whether

a

column

element

or

attribute

can

be

used

more

than

once

in

a

document.

Multiple

occurrence

is

specified

in

the

DAD.

object.

In

object-oriented

programming,

an

abstraction

consisting

of

data

and

the

operations

associated

with

that

data.

ODBC.

Open

Database

Connectivity.

Glossary

317

Open

Database

Connectivity.

A

standard

application

programming

interface

(API)

for

accessing

data

in

both

relational

and

nonrelational

database

management

systems.

Using

this

API,

database

applications

can

access

data

stored

in

database

management

systems

on

a

variety

of

computers

even

if

each

database

management

system

uses

a

different

data

storage

format

and

programming

interface.

ODBC

is

based

on

the

call

level

interface

(CLI)

specification

of

the

X/Open

SQL

Access

Group

and

was

developed

by

Digital

Equipment

Corporation

(DEC),

Lotus,

Microsoft,

and

Sybase.

Contrast

with

Java

Database

Connectivity.

overloaded

function.

A

function

name

for

which

multiple

function

instances

exist.

path

expression.

See

location

path.

predicate.

An

element

of

a

search

condition

that

expresses

or

implies

a

comparison

operation.

primary

key.

A

unique

key

that

is

part

of

the

definition

of

a

table.

A

primary

key

is

the

default

parent

key

of

a

referential

constraint

definition.

procedure.

See

stored

procedure.

QBIC

catalog.

A

repository

that

holds

data

about

the

visual

features

of

images.

query

object.

An

object

that

specifies

the

features,

feature,

values,

and

feature

weights

for

a

QBIC

query.

The

object

can

be

named

and

saved

for

subsequent

use

in

a

QBIC

query.

Contrast

with

query

string

RDB_node.

Relational

database

node.

RDB_node

mapping.

The

location

of

the

content

of

an

XML

element,

or

the

value

of

an

XML

attribute,

which

are

defined

by

the

RDB_node.

The

XML

Extender

uses

this

mapping

to

determine

where

to

store

or

retrieve

the

XML

data.

relational

database

node

(RDB_node).

A

node

that

contains

one

or

more

element

definitions

for

tables,

optional

columns,

and

optional

conditions.

The

tables

and

columns

are

used

to

define

how

the

XML

data

is

stored

in

the

database.

The

condition

specifies

either

the

criteria

for

selecting

XML

data

or

the

way

to

join

the

XML

collection

tables.

result

set.

A

set

of

rows

returned

by

a

stored

procedure.

result

table.

A

table

which

contains

rows

as

the

result

of

an

SQL

query

or

an

execution

of

a

stored

procedure.

root

element.

The

top

element

of

an

XML

document.

root

ID.

A

unique

identifier

that

associates

all

side

tables

with

the

application

table.

SBCS.

Single-byte

character

support.

scalar

function.

An

SQL

operation

that

produces

a

single

value

from

another

value

and

is

expressed

as

a

function

name,

followed

by

a

list

of

arguments

enclosed

in

parentheses.

schema.

A

collection

of

database

objects

such

as

tables,

views,

indexes,

or

triggers.

It

provides

a

logical

classification

of

database

objects.

search

argument.

The

conditions

specified

when

making

a

search,

consisting

of

one

or

several

search

terms,

and

search

parameters.

section

search.

Provides

the

text

search

within

a

section

which

can

be

defined

by

the

application.

To

support

the

structural

text

search,

a

section

can

be

defined

by

the

Xpath’s

abbreviated

location

path.

shot

catalog.

A

database

table

or

file

that

is

used

to

store

data

about

shots,

such

as

the

starting

and

ending

frame

number

for

a

shot,

in

a

video

clip.

A

user

can

access

a

view

of

the

table

through

an

SQL

query,

or

access

the

data

in

the

file.

side

table.

Additional

tables

created

by

the

XML

Extender

to

improve

performance

when

searching

elements

or

attributes

in

an

XML

column.

simple

location

path.

A

sequence

of

element

type

names

connected

by

a

single

slash

(/).

SQL

mapping.

A

definition

of

the

relationship

of

the

content

of

an

XML

element

or

value

of

an

XML

attribute

with

relational

data,

using

one

or

more

SQL

statements

and

the

XSLT

data

model.

The

XML

Extender

uses

the

definition

to

determine

where

to

store

or

retrieve

the

XML

data.

SQL

mapping

is

defined

with

the

SQL_stmt

element

in

the

DAD.

static

SQL.

SQL

statements

that

are

embedded

within

a

program,

and

are

prepared

during

the

program

preparation

process

before

the

program

is

executed.

After

being

prepared,

a

static

SQL

statement

does

not

change,

although

values

of

host

variables

specified

by

the

statement

might

change.

stored

procedure.

A

block

of

procedural

constructs

and

embedded

SQL

statements

that

is

stored

in

a

database

and

can

be

called

by

name.

Stored

procedures

allow

an

application

program

to

be

run

in

two

parts.

One

part

runs

on

the

client

and

the

other

part

runs

on

the

server.

This

allows

one

call

to

produce

several

accesses

to

the

database.

structural

text

index.

To

index

text

keys

based

on

the

tree

structure

of

the

XML

document,

using

the

DB2

UDB

Text

Extender.

subquery.

A

full

SELECT

statement

that

is

used

within

a

search

condition

of

an

SQL

statement.

table

space.

An

abstraction

of

a

collection

of

containers

into

which

database

objects

are

stored.

A

318

XML

Extender

Administration

and

Programming

table

space

provides

a

level

of

indirection

between

a

database

and

the

tables

stored

within

the

database.

A

table

space:

v

Has

space

on

media

storage

devices

assigned

to

it.

v

Has

tables

created

within

it.

These

tables

will

consume

space

in

the

containers

that

belong

to

the

table

space.

The

data,

index,

long

field,

and

LOB

portions

of

a

table

can

be

stored

in

the

same

table

space,

or

can

be

individually

broken

out

into

separate

table

spaces.

terabyte.

A

trillion

(1012)

bytes.

Ten

to

the

twelfth

power

bytes.

When

referring

to

memory

capacity,

1

099

511

627

776

bytes.

text_node.

A

representation

of

the

CDATA

text

of

an

element.

text

table.

A

DB2

UDB

table

containing

text

columns.

top

element_node.

A

representation

of

the

root

element

of

the

XML

document

in

the

DAD.

tracing.

The

action

of

storing

information

in

a

file

that

can

later

be

used

in

finding

the

cause

of

an

error.

trigger.

The

definition

of

a

set

of

actions

to

be

taken

when

a

table

is

changed.

Triggers

can

be

used

to

perform

actions

such

as

validating

input

data,

automatically

generating

a

value

for

a

newly

inserted

row,

reading

from

other

tables

for

cross-referencing

purposes,

or

writing

to

other

tables

for

auditing

purposes.

Triggers

are

often

used

for

integrity

checking

or

to

enforce

business

rules.

trigger.

A

mechanism

that

automatically

adds

information

about

documents

that

need

to

be

indexed

to

a

log

table

whenever

a

document

is

added,

changed,

or

deleted

from

a

text

column.

UDF.

See

user-defined

function.

UDT.

See

user-defined

type.

uniform

resource

locator

(URL).

An

address

that

names

an

HTTP

server

and

optionally

a

directory

and

file

name,

for

example:

http://www.ibm.com/software

/data/db2/extenders.

UNION.

An

SQL

operation

that

combines

the

results

of

two

select

statements.

UNION

is

often

used

to

merge

lists

of

values

that

are

obtained

from

several

tables.

URL.

Uniform

resource

locator.

user-defined

distinct

type

(UDT).

A

data

type

created

by

a

user

of

DB2,

in

contrast

to

a

data

type

provided

by

DB2

UDB

such

as

LONG

VARCHAR.

user-defined

function

(UDF).

A

function

that

is

defined

by

a

user

to

DB2.

Once

defined,

the

function

can

be

used

in

SQL

queries.

and

video

objects.

For

example,

UDFs

can

be

created

to

get

the

compression

format

of

a

video

or

return

the

sampling

rate

of

an

audio.

This

provides

a

way

of

defining

the

behavior

of

objects

of

a

particular

type.

user-defined

function

(UDF).

An

SQL

function

created

by

a

user

of

DB2,

in

contrast

to

an

SQL

function

provided

by

DB2.

Text

Extender

provides

search

functions,

such

as

CONTAINS,

in

the

form

of

UDFs.

user-defined

type

(UDT).

A

data

type

that

is

defined

by

a

user

to

DB2.

UDTs

are

used

to

differentiate

one

LOB

from

another.

For

example,

one

UDT

can

be

created

for

image

objects

and

another

for

audio

objects.

Though

stored

as

BLOBs,

the

image

and

audio

objects

are

treated

as

types

distinct

from

BLOBs

and

distinct

from

each

other.

user-defined

function

(UDF).

A

function

that

is

defined

to

the

database

management

system

and

can

be

referenced

thereafter

in

SQL

queries.

It

can

be

one

of

the

following

functions:

v

An

external

function,

in

which

the

body

of

the

function

is

written

in

a

programming

language

whose

arguments

are

scalar

values,

and

a

scalar

result

is

produced

for

each

invocation.

v

A

sourced

function,

implemented

by

another

built-in

or

user-defined

function

that

is

already

known

to

the

DBMS.

This

function

can

be

either

a

scalar

function

or

column

(aggregating)

function,

and

returns

a

single

value

from

a

set

of

values

(for

example,

MAX

or

AVG).

user-defined

type

(UDT).

A

data

type

that

is

not

native

to

the

database

manager

and

was

created

by

a

user.

See

distinct

type.

user

table.

A

table

that

is

created

for

and

used

by

an

application.

validation.

The

process

of

using

a

DTD

to

ensure

that

the

XML

document

is

valid

and

to

allow

structured

searches

on

XML

data.

The

DTD

is

stored

in

the

DTD

repository.

valid

document.

An

XML

document

that

has

an

associated

DTD.

To

be

valid,

the

XML

document

cannot

violate

the

syntactic

rules

specified

in

its

DTD.

video.

Pertaining

to

the

portion

of

recorded

information

that

can

be

seen.

video

clip.

A

section

of

filmed

or

videotaped

material.

video

index.

A

file

that

the

Video

Extender

uses

to

find

a

specific

shot

or

frame

in

a

video

clip.

Web

browser.

A

client

program

that

initiates

requests

to

a

Web

server

and

displays

the

information

that

the

server

returns.

Glossary

319

well-formed

document.

An

XML

document

that

does

not

contain

a

DTD.

Although

in

the

XML

specification,

a

document

with

a

valid

DTD

must

also

be

well-formed.

wildcard

character.

See

masking

character.

WLM.

Work

Load

Manager

XML.

eXtensible

Markup

Language.

XML

attribute.

Any

attribute

specified

by

the

ATTLIST

under

the

XML

element

in

the

DTD.

The

XML

Extender

uses

the

location

path

to

identify

an

attribute.

XML

collection.

A

collection

of

relation

tables

which

presents

the

data

to

compose

XML

documents,

or

to

be

decomposed

from

XML

documents.

XML

column.

A

column

in

the

application

table

that

has

been

enabled

for

the

XML

Extender

UDTs.

XML

element.

Any

XML

tag

or

ELEMENT

as

specified

in

the

XML

DTD.

The

XML

Extender

uses

the

location

path

to

identify

an

element.

XML

object.

Equivalent

to

an

XML

document.

XML

Path

Language.

A

language

for

addressing

parts

of

an

XML

document.

XML

Path

Language

is

designed

to

be

used

by

XSLT.

Every

location

path

can

be

expressed

using

the

syntax

defined

for

XPath.

XML

table.

An

application

table

which

includes

one

or

more

XML

Extender

columns.

XML

tag.

Any

valid

XML

markup

language

tag,

mainly

the

XML

element.

The

terms

tag

and

element

are

used

interchangeably.

XML

UDF.

A

DB2

UDB

user-defined

function

provided

by

the

XML

Extender.

XML

UDT.

A

DB2

UDB

user-defined

type

provided

by

the

XML

Extender.

XPath.

A

language

for

addressing

parts

of

an

XML

document.

XPath

data

model.

The

tree

structure

used

to

model

and

navigate

an

XML

document

using

nodes.

XSL.

XML

Stylesheet

Language.

XSLT.

XML

Stylesheet

Language

Transformation.

320

XML

Extender

Administration

and

Programming

Notices

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

all

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country/region

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country/region

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY,

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions;

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product,

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

IBM

Corp.

1999,

2004

321

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

that

has

been

exchanged,

should

contact:

IBM

Corporation

J46A/G4

555

Bailey

Avenue

San

Jose,

CA

95141-1003

U.S.A.

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems,

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurements

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements,

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility,

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

This

information

may

contain

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious,

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

may

contain

sample

application

programs,

in

source

language,

which

illustrate

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

322

XML

Extender

Administration

and

Programming

Trademarks

The

following

terms

are

trademarks

of

International

Business

Machines

Corporation

in

the

United

States,

other

countries,

or

both,

and

have

been

used

in

at

least

one

of

the

documents

in

the

DB2

UDB

documentation

library.

ACF/VTAM

AISPO

AIX

AIXwindows

AnyNet

APPN

AS/400

BookManager

C

Set++

C/370

CICS

Database

2

DataHub

DataJoiner

DataPropagator

DataRefresher

DB2

DB2

Connect

DB2

Extenders

DB2

OLAP

Server

DB2

Query

Patroller

DB2

Universal

Database

Distributed

Relational

Database

Architecture

DRDA

eServer

Extended

Services

FFST

First

Failure

Support

Technology

IBM

IMS

IMS/ESA

iSeries

LAN

Distance

MVS

MVS/ESA

MVS/XA

Net.Data

NetView

OS/390

OS/400

PowerPC

pSeries

QBIC

QMF

RACF

RISC

System/6000

RS/6000

S/370

SP

SQL/400

SQL/DS

System/370

System/390

SystemView

Tivoli

VisualAge

VM/ESA

VSE/ESA

VTAM

WebExplorer

WebSphere

WIN-OS/2

z/OS

zSeries

The

following

terms

are

trademarks

or

registered

trademarks

of

other

companies

and

have

been

used

in

at

least

one

of

the

documents

in

the

DB2

UDB

documentation

library:

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

Intel

and

Pentium

are

trademarks

of

Intel

Corporation

in

the

United

States,

other

countries,

or

both.

Java

and

all

Java-based

trademarks

are

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Other

company,

product,

or

service

names

may

be

trademarks

or

service

marks

of

others.

Notices

323

324

XML

Extender

Administration

and

Programming

Index

A
access

and

storage

method
choosing

an

40

planning

40

XML

collections

43,

44,

169

XML

columns

43,

44,

169

access

method
choosing

an

40

introduction

5

planning

an

40

XML

collections

91

XML

column

73

adding
nodes

65

administration
dxxadm

command

127

support

tables
DTD_REF

269

XML_USAGE

269

tools

38

administration

stored

procedures
dxxDisableCollection()

200

dxxDisableColumn()

198

dxxDisableSRV()

196

dxxEnableCollection()

199

dxxEnableColumn()

197

dxxEnableSRV()

196

administration

wizard
Enable

a

Column

window

55

logging

in

39

specifying

address

39

specifying

JDBC

driver

39

specifying

user

ID

and

password

39

administrative

support

tables
DTD_REF

269

XML_USAGE

269

attribute_node

45,

51,

109,

169

B
B-tree

indexing

75

binding
stored

procedures

201

C
casting

function
retrieval

78,

141

storage

76,

138

update

82,

158

CCSID

(coded

character

set

identifier)
declare

in

USS

92,

97,

301

client

code

page

301

code

pages
client

301

configuring

locale

settings

301

consistent

encoding

in

USS

301

code

pages

(continued)
consistent

encodings

and

declarations

301

conversion
scenarios

301

data

loss

301

database

301

DB2

assumptions

301

DB2CODEPAGE

registry

variable

301

declaring

an

encoding

301

document

encoding

consistency

301

encoding

declaration

301

exporting

documents

301

importing

documents

301

legal

encoding

declarations

301

line

endings

301

preventing

inconsistent

documents

301

server

301

supported

encoding

declarations

301

terminology

301

UDFs

and

stored

procedures

301

Windows

NT

UTF-8

limitation

301

XML

Extender

assumptions

301

column

data
available

UDTs

42

column

type,

for

decomposition

51

column

types
decomposition

109

command

options
disable_column

131

complexType

element

120

composing

XML

documents

20

composite

key
for

decomposition

50

XML

collections

50

composite

keys
for

decomposition

109

XML

collections

109

composition
dxxGenXML()

92

dxxRetrieveXML()

92

overriding

the

DAD

file

177

stored

procedures
dxxGenXML()

20,

202,

210

dxxmqGen()

243

dxxmqRetrieve()

247

dxxRetrieveXML()

207,

212

XML

collection

92

conditions
optional

50

RDB_node

mapping

50,

109

SQL

mapping

47,

49,

105,

107

consistent

documents

301

Content()

function
for

retrieval

78

retrieval

functions

using

141

XMLFile

to

a

CLOB

141

conversions
code

pages

301

©

Copyright

IBM

Corp.

1999,

2004

325

creating
nodes

65

XML

tables

53

D
DAD

node

definitions
RDB_node

50

DAD

(Document

Access

Definition)
checker

description

183

using

184

file
attribute_node

169

bind

step

for

USS

encodings

301

CCSIDs

in

USS

92,

97,

301

creating

for

XML

collections

63

declaring

the

encoding

301

DTD

for

the

173

editing

for

XML

collections

63

element_node

109,

169

examples

293

for

XML

columns

167,

169

introduction

5

node

definitions

169

overriding

177

RDB_node

109

root

element_node

109

root_node

169

samples

293

size

limit

169,

311

text_node

169

DAD

file
attribute_node

45

element_node

44,

50

for

XML

columns

43,

44

node

definitions
attribute_node

44

element_node

44

root_node

44

text_node

44

planning

for

the

43,

44

XML

collections

43

XML

column

43

RDB_node

50

root

element_node

50

root_node

44

size

limit

43,

44

text_node

44

data

loss,

inconsistent

encodings

301

database
relational

46

databases
code

page

301

enabling

for

XML

53

relational

105

DB2CODEPAGE
registry

variable

301

DB2XML

269

DTD_REF

table

schema

269

DB2XML

(continued)
schema

for

stored

procedures

91

schema

for

UDFs

and

UDTs

119

XML_USAGE

table

schema

269

decomposing

an

XML

collection
collection

table

limit

311

composite

key

109

DB2

table

sizes

97

dxxInsertXML()

97

dxxShredXML()

97

of

XML

collections

97

specifying

the

column

type

for

109

specifying

the

orderBy

attribute

109

specifying

the

primary

key

for

109

stored

procedures
dxxInsertXML()

218

dxxmqInsert()

256

dxxmqInsertAll

260

dxxmqInsertAllCLOB()

261

dxxmqInsertCLOB()

258

dxxmqShred()

251

dxxmqShredAll()

253

dxxShredXML()

215

using

RDB_node

mapping

65

decomposition
composite

key

50

DB2

table

sizes

51

specifying

the

column

type

for

51

specifying

the

orderBy

attribute

51

specifying

the

primary

key

for

50

deleting
nodes

65

XML

collections

101

disable_collection

subcommand

132

disable_column

command

131

disable_server

subcommand

129

disabling
administration

command

127

disable_collection

subcommand

132

disable_column

command

131

disable_server

subcommand

129

stored

procedure

198,

200

XML

collections

116

stored

procedure

200

XML

columns
stored

procedure

198

document

encoding

declaration

301

document

type

definition

54

DTD
availability

4

for

getting

started

lessons

20

for

the

DAD

173

planning

20

publication

4

repository
DTD_REF

5,

269

storing

in

54

using

multiple

44,

52

DTD_REF

table

54

column

limits

311

inserting

a

DTD

54

326

XML

Extender

Administration

and

Programming

DTD_REF

table

(continued)
schema

269

DTDID

269

DVALIDATE

163

DXX_SEQNO

for

multiple

occurrence

58

dxxadm

command
disable_collection

subcommand

132

disable_column

command

131

disable_server

subcommand

129

enable_collection

subcommand

132

enable_column

subcommand

130

enable_server

subcommand

127

introduction

to

127

syntax

127

dxxDisableCollection()

stored

procedure

200

dxxDisableColumn()

stored

procedure

198

dxxDisableSRV()

stored

procedure

196

dxxEnableCollection()

stored

procedure

199

dxxEnableColumn()

stored

procedure

197

dxxEnableSRV()

stored

procedure

196

dxxGenXML()

20

dxxGenXML()

stored

procedure

92,

202,

210

dxxInsertXML()

stored

procedure

97,

218

dxxmqGen()

stored

procedure

243

dxxmqInsert()

stored

procedure

256

dxxmqInsertAll()

stored

procedure

260

dxxmqInsertAllCLOB()

stored

procedure

261

dxxmqInsertCLOB()

stored

procedure

258

dxxmqRetrieve()

stored

procedure

247

dxxmqShred()

stored

procedure

251

dxxRetrieveXML()

stored

procedure

92,

207,

212

DXXROOT_ID

75

dxxShredXML()

stored

procedure

97,

215

dxxtrc

command

271,

272

dynamically

overriding

the

DAD

file,

composition

177

E
element_node

44,

51,

109,

169

Enable

a

Column

window

55

enable_db

keyword
creating

XML_USAGE

table

269

enable_server

keyword

127

enabling
XML

collections

114

encoding
CCSID

declarations

in

USS

92,

97,

301

XML

documents

301

environment

variables
CLASSPATH

39

existing

DB2

data

91

Extensible

Markup

Language

(XML)
in

XML

documents

3

extractChar()

function

151

extractChars()

function

151

extractCLOB()

function

153

extractCLOBs()

function

153

extractDate()

function

155

extractDates()

function

155

extractDouble()

function

148

extractDoubles()

function

148

extracting

functions
description

137

extractChar()

151

extractChars()

151

extractCLOB()

153

extractCLOBs()

153

extractDate()

155

extractDates()

155

extractDouble()

148

extractDoubles()

148

extractReal()

149

extractReals()

149

extractSmallint()

147

extractSmallints()

147

extractTime()

156

extractTimes()

156

extractTimestamp()

157

extractTimestamps()

157

extractVarchar()

152

extractVarchars()

152

introduction

to

146

table

of

78

extractReal()

function

149

extractReals()

function

149

extractSmallint()

function

147

extractSmallints()

function

147

extractTime()

function

156

extractTimes()

function

156

extractTimestamp()

function

157

extractTimestamps()

function

157

extractVarchar()

function

152

extractVarchars()

function

152

F
FROM

clause

49

SQL

mapping

107

function

path
adding

DB2XML

schema

119

functions
casting

76,

78,

82

Content():

from

XMLFILE

to

CLOB

141

extractChar()

151

extractChars()

151

extractCLOB()

153

extractCLOBs()

153

extractDate()

155

extractDates()

155

extractDouble()

148

extractDoubles()

148

extracting

146

extractReal()

149

extractReals()

149

extractSmallint()

147

extractSmallints()

147

extractTime()

156

extractTimes()

156

extractTimestamp()

157

extractTimestamps()

157

extractVarchar()

152

extractVarchars()

152

Index

327

functions

(continued)
generate_unique

137

limitations

when

invoking

from

JDBC

88

limits

311

MQReadAllXML

225

MQReadAllXMLCLOB

228

MQReadXML

223

MQReadXMLCLOB

227

MQReceiveAllXML

232

MQReceiveXML

230

MQReceiveXMLCLOB

235

MQSENDXML

236

MQSENDXMLFILE

238

MQSendXMLFILECLOB

239

retrieval
description

137

from

external

storage

to

memory

pointer

141

from

internal

storage

to

external

server

file

141

introduction

141

XML

data

78

storage

76,

137,

138

update

82,

137,

158

XML

columns

137

XMLCLOBFromFile()

138

XMLFile

to

a

CLOB

141

XMLFileFromCLOB()

138

XMLFileFromVarchar()

138,

139

XMLVarcharFromFile()

138,

140

H
highlighting

conventions

ix

I
importing

DTD

54

include

files
for

stored

procedures

201

inconsistent
document

301

indexing

75

side

tables

60,

75

structural-text

75

XML

columns

75

XML

documents

75

Information

Center,

including

this

book

in

ix

installing
the

37

J
Java

database

connectivity

(JDBC)
limitations

when

invoking

UDFs

88

JDBC

(Java

database

connectivity)
limitations

when

invoking

UDFs

88

JDBC

address,

for

wizard

39

JDBC

driver,

for

wizard

39

join

conditions
RDB_node

mapping

50,

109

SQL

mapping

49,

107

L
limits

stored

procedure

parameters

92,

269

XML

Extender

311

line
endings,

code

page

considerations

301

locales
settings

301

location

path
introduction

112

syntax

113

XPath

5

XSL

5

logging
in,

for

wizard

39

M
maintaining

document

structure

73

management
retrieving

column

data

78

searching

XML

documents

83

updating

column

data

82

mapping

scheme
determining

RDB_node

mapping

47,

105

determining

SQL

mapping

47,

105

figure

of

DAD

for

the

40,

41

for

XML

collections

40,

41

for

XML

columns

40,

41

FROM

clause

49,

107

introduction

91

ORDER

BY

clause

49,

107

RDB_node

mapping

requirements

50,

109

requirements

48

SELECT

clause

48,

107

SQL

mapping

requirements

48,

107

SQL

mapping

scheme

48,

105

SQL_stmt

46,

105

WHERE

clause

49,

107

migrating
XML

Extender

to

Version

8

37

MQPublishXML

function

221

MQRcvAllXML

function

234

MQReadAllXML

function

225

MQReadAllXMLCLOB

function

228

MQReadXML

function

223

MQReadXMLCLOB

function

227

MQReceiveAllXML

function

232

MQReceiveXML

function

230

MQReceiveXMLCLOB

function

235

MQSENDXML

function

236

MQSENDXMLFILE

function

238

MQSendXMLFILECLOB

function

239

multiple

DTDs
XML

collections

44

XML

columns

52

multiple

occurrence
affecting

table

size

51,

97

deleting

elements

and

attributes

101

DXX_SEQNO

58

328

XML

Extender

Administration

and

Programming

multiple

occurrence

(continued)
one

column

per

side

table

58

order

of

elements

and

attributes

97

orderBy

attribute

50,

109

preserving

the

order

of

elements

and

attributes

101

recomposing

documents

with

50,

109

searching

elements

and

attributes

83

updating

collections

101

updating

elements

and

attributes

82,

101,

158

updating

XML

documents

82,

158

multiple-occurrence

attribute

20

N
nodes

add

new

65

attribute_node

45,

169

creating

65

DAD

file

configuration

20,

60,

63,

65

deleting

65

element_node

44,

169

RDB_node

50,

109

removing

65

root_node

44,

169

text_node

44,

169

O
operating

systems
supported

by

DB2

3

Operations

Navigator
starting

the

trace

271

stopping

the

trace

272

ORDER

BY

clause

49

SQL

mapping

107

orderBy

attribute
for

decomposition

51,

109

for

multiple

occurrence

50,

109

XML

collections

51,

109

overloaded

function
Content()

141

overrideType
No

override

177

SQL

override

177

XML

override

177

overriding
DAD

file

177

P
parameter

markers

in

functions

88

performance
indexing

side

tables

75

searching

XML

documents

75

stopping

the

trace

272

planning
a

mapping

scheme

46

access

methods

40

choosing

to

validate

XML

data

44

DAD

169

determining

column

UDT

42

planning

(continued)
DTD

20

for

the

DAD

43,

44

for

XML

collections

44

for

XML

columns

42,

43

how

to

search

XML

column

data

43

indexing

XML

columns

75

mapping

schemes

105

mapping

XML

document

and

database

20

side

tables

58

storage

methods

40

the

XML

collections

mapping

scheme

46

validating

with

multiple

DTDs

44,

52

XML

collections

169

XML

collections

mapping

scheme

105

primary

key

for

decomposition

50

primary

keys
decomposition

109

side

tables

75

problem

determination

271

processing

instructions

45,

112,

169

R
RDB_node

mapping

109

composite

key

for

decomposition

50

conditions

50

decomposition

requirements

50

determining

for

XML

collections

47

requirements

50

specifying

column

type

for

decomposition

51

registry

variables
DB2CODEPAGE

301

removing
nodes

65

repository,

DTD

54

retrieval

functions
Content()

141

description

of

137

from

external

storage

to

memory

pointer

141

from

internal

storage

to

external

server

file

141

introduction

to

141

XMLFile

to

a

CLOB

141

retrieving

data
attribute

values

78

return

codes
stored

procedures

273

UDF

273

ROOT

ID
indexing

considerations

75

specifying

55

root_node

44,

169

S
samples

creating
XML

20

document

access

definition

(DAD)

files

293

getstart.xml

sample

XML

document

293

Index

329

schema

names
for

stored

procedures

91

schemas
attributes

121

DB2XML

53,

119

declaring

data

types

in

121

declaring

elements

in

121

DTD_REF

table

54,

269

validating

using

52

XML_USAGE

table

269

searching
XML

documents
by

structure

83

using

DB2

Text

Extender

83

SELECT

clause

48,

107

server

code

page

301

side

tables
indexing

60,

75

planning

58

searching

83

specifying

ROOT

ID

55

updating

82

size

limits
stored

procedures

92,

269

XML

Extender

311

software

requirements
XML

Extender

37

SQL

mapping

60

creating

a

DAD

file

20

determining

for

XML

collections

47,

105

FROM

clause

49

ORDER

BY

clause

49

requirements

48,

107

SELECT

clause

48

SQL

mapping

scheme

48

WHERE

clause

49

SQL

override

177

SQL_stmt
FROM

clause

49,

107

ORDER_BY

clause

49,

107

SELECT

clause

48,

107

WHERE

clause

49,

107

starting
XML

Extender

37

storage
functions

description

137

introduction

138

storage

UDF

table

76

XMLCLOBFromFile()

138

XMLFileFromCLOB()

138

XMLFileFromVarchar()

138,

139

XMLVarcharFromFile()

138,

140

methods
choosing

40

introduction

5

planning

40

XML

collections

91

XML

column

73

storage

UDFs

76,

82

stored

procedures
administration

dxxDisableCollection()

200

dxxDisableColumn()

198

dxxDisableSRV()

196

dxxEnableCollection()

199

dxxEnableColumn()

197

dxxEnableSRV()

196

XML

Extender,

list

195

binding

201

calling
XML

Extender

201

code

page

considerations

301

composition
dxxGenXML()

202,

210

dxxmqGen()

243

dxxmqRetrieve()

247

dxxRetrieveXML()

207,

212

XML

Extenders

200

decomposition
dxxInsertXML()

218

dxxmqInsert()

256

dxxmqInsertAll

260

dxxmqInsertAllCLOB()

261

dxxmqInsertCLOB()

258

dxxmqShred()

251

dxxmqShredAll()

253

dxxShredXML()

215

XML

Extenders

215

dxxDisableCollection()

200

dxxDisableColumn()

198

dxxDisableSRV()

196

dxxEnableCollection()

199

dxxEnableColumn()

197

dxxEnableSRV()

196

dxxGenXML()

20,

92,

202,

210

dxxInsertXML()

97,

218

dxxmqGen()

243

dxxmqInsert()

256

dxxmqInsertAll()

260

dxxmqInsertAllCLOB()

261

dxxmqInsertCLOB()

258

dxxmqRetrieve()

247

dxxmqShred()

251

dxxRetrieveXML()

92,

207,

212

dxxShredXML()

97,

215

include

files

201

initializing
DXXGPREP

201

return

codes

273

XML

Extender

195

storing

the

DTD

54

storing

XML

data

76

structure
DTD

20

hierarchical

20

mapping

20

relational

tables

20

XML

document

20

stylesheets

45,

112,

169

SVALIDATE

163

330

XML

Extender

Administration

and

Programming

syntax
disable_collection

subcommand

132

disable_column

command

131

disable_server

subcommand

129

dxxadm

127

enable_collection

subcommand

132

enable_column

subcommand

130

enable_server

subcommand

127

extractChar()

function

151

extractChars()

function

151

extractCLOB()

function

153

extractCLOBs()

function

153

extractDate()

function

155

extractDates()

function

155

extractDouble()

function

148

extractDoubles()

function

148

extractInteger()

function

146

extractIntegers()

function

146

extractReal()

function

149

extractReals()

function

149

extractSmallint()

function

147

extractSmallints()

function

147

extractTime()

function

156

extractTimes()

function

156

extractTimestamp()

function

157

extractTimestamps()

function

157

extractVarchar()

function

152

extractVarchars()

function

152

how

to

read

x

location

path

113

Update()

function

158

XMLCLOBFromFile()

function

138

XMLFile

to

a

CLOB

Content()

function

141

XMLFileFromCLOB()

function

138

XMLFileFromVarchar()

function

138,

139

XMLVarcharFromFile()

function

140

T
tables

97

tables

sizes,

for

decomposition

51

text_node

44,

51,

109,

169

traces
starting

271

stopping

272

transfer

of

documents

between

client

and

server,

considerations

301

transforming

XML

to

HTML
XSLTransformToCLOB

266

XSLTransformToFile

267

troubleshooting
stored

procedure

return

codes

273

strategies

271

UDF

return

codes

273

U
UDFs

(user-defined

functions)
code

page

considerations

301

DVALIDATE()

163

extractChar()

151

UDFs

(user-defined

functions)

(continued)
extractChars()

151

extractCLOB()

153

extractCLOBs()

153

extractDate()

155

extractDates()

155

extractDouble()

148

extractDoubles()

148

extracting

functions

146

extractReal()

149

extractReals()

149

extractSmallint()

147

extractSmallints()

147

extractTime()

156

extractTimes()

156

extractTimestamp()

157

extractTimestamps()

157

extractVarchar()

152

extractVarchars()

152

for

XML

columns

137

from

external

storage

to

memory

pointer

141

from

internal

storage

to

external

server

file

141

retrieval

functions

141

return

codes

273

searching

with

83

storage

82

SVALIDATE()

163

Update()

82,

158

XMLCLOBFromFile()

138

XMLFile

to

a

CLOB

141

XMLFileFromCLOB()

138

XMLFileFromVarchar()

138,

139

XMLVarcharFromFile()

138,

140

UDTs
summary

table

of

42

XMLCLOB

42

XMLFILE

42

XMLVARCHAR

42

Update()

function
document

replacement

behavior

158

introduction

158

XML

82,

137

updates
side

tables

82

XML

collection

101

XML

column

data
attributes

82

description

82

entire

document

82

multiple

occurrence

158

specific

elements

82

XML

document

replacement

by

Update()

UDF

158

user

IDs
Administration

wizard

39

user-defined

functions

(UDFs)
for

XML

columns

137

searching

with

83

Update()

82,

158

user-defined

types

(UDTs)
for

XML

columns

73

XML

135

Index

331

user-defined

types

(UDTs)

(continued)
XMLCLOB

73

XMLFILE

73

XMLVARCHAR

73

V
validate

XML

data
considerations

44

deciding

to

44

DTD

requirements

44

validating
performance

impact

44

using

schemas

52

XML

DTDs

54

W
WHERE

clause

49

requirements

for

SQL

mapping

107

Windows
UTF-8

limitation,

code

pages
Windows

NT

301

X
XML

data,

storing

76

override

177

repository

40

tables,

creating

53

XML

collections
composition

92

creating

the

DAD

(command

line)

63

DAD

file,

planning

for

43

decomposing

using

RDB_node

mapping

65

decomposition

97

definition

5

determining

a

mapping

scheme

105

determining

a

mapping

scheme

for

46

disabling

116

DTD

for

validation

54

editing

the

DAD

(command

line)

63

enabling

114

introduction

91

mapping

scheme

46

mapping

schemes

47,

105

RDB_node

mapping

47,

105

scenarios

42

SQL

mapping

47,

105

storage

and

access

methods

5,

91

validation

54

when

to

use

42

XML

columns
creating

a

DAD

file

for

167

DAD

file,

planning

for

43

defining

and

enabling

74

definition

5

determining

column

UDT

42

elements

and

attributes

to

be

searched

43

enabling

55

XML

columns

(continued)
figure

of

side

tables

58

indexing

75

introduction

73

location

path

112

maintaining

document

structure

73

planning

42

retrieving

data
attribute

values

78

element

contents

78

entire

document

78

retrieving

XML

data

78

sample

DAD

file

293

scenarios

41

storage

and

access

methods

5,

73

the

DAD

for

43

UDFs

137

updating

XML

data
attributes

82

entire

document

82

specific

elements

82

when

to

use

41

with

side

tables

75

XML

documents
B-tree

indexing

75

code

page

assumptions

301

code

page

consistency

301

code

page

conversion,

exporting

301

code

page

conversion,

importing

301

composing

20,

92

decomposition

97

deleting

88

encoding

declarations

301

indexing

75

introduction

3

legal

encoding

declarations

301

mapping

to

tables

20

searching
direct

query

on

side

tables

83

document

structure

83

from

a

joined

view

83

multiple

occurrence

83

structural

text

83

with

extracting

UDFs

83

stored

in

DB2

3

supported

encoding

declarations

301

XML

DTD

repository
description

5

DTD

Reference

Table

(DTD_REF)

5

XML

Extender
available

operating

systems

3

functions

137

introduction

3

stored

procedures

195

XML

Path

Language

5

XML

schemas
advantages

119

example

122

validating

163

XML

Toolkit

for

OS/390

and

z/OS

7

XML_USAGE

table

269

332

XML

Extender

Administration

and

Programming

XMLClobFromFile()

function

138

XMLFile

to

a

CLOB

function

141

XMLFileFromCLOB()

function

138

XMLFileFromVarchar()

function

138,

139

XMLVarcharFromFile()

function

138,

140

XPath

5

XSLT

47,

105

using

20

XSLTransformTOClob()

266

XSLTransformToFile

267

Index

333

334

XML

Extender

Administration

and

Programming

Contacting

IBM

In

the

United

States,

call

one

of

the

following

numbers

to

contact

IBM:

v

1-800-IBM-SERV

(1-800-426-7378)

for

customer

service

v

1-888-426-4343

to

learn

about

available

service

options

v

1-800-IBM-4YOU

(426-4968)

for

DB2

marketing

and

sales

In

Canada,

call

one

of

the

following

numbers

to

contact

IBM:

v

1-800-IBM-SERV

(1-800-426-7378)

for

customer

service

v

1-800-465-9600

to

learn

about

available

service

options

v

1-800-IBM-4YOU

(1-800-426-4968)

for

DB2

marketing

and

sales

To

locate

an

IBM

office

in

your

country

or

region,

check

IBM’s

Directory

of

Worldwide

Contacts

on

the

web

at

www.ibm.com/planetwide

Product

information

Information

regarding

DB2

Universal

Database

products

is

available

by

telephone

or

by

the

World

Wide

Web

at

www.ibm.com/software/data/db2/udb

This

site

contains

the

latest

information

on

the

technical

library,

ordering

books,

client

downloads,

newsgroups,

FixPaks,

news,

and

links

to

web

resources.

If

you

live

in

the

U.S.A.,

then

you

can

call

one

of

the

following

numbers:

v

1-800-IBM-CALL

(1-800-426-2255)

to

order

products

or

to

obtain

general

information.

v

1-800-879-2755

to

order

publications.

For

information

on

how

to

contact

IBM

outside

of

the

United

States,

go

to

the

IBM

Worldwide

page

at

www.ibm.com/planetwide

©

Copyright

IBM

Corp.

1999,

2004

335

http://www.ibm.com/planetwide
http://www.ibm.com/planetwide

336

XML

Extender

Administration

and

Programming

����

Program

Number:

5625–DB2

Printed

in

USA

SC18-7431-00

Sp
in
e

in
fo
rm
at
io
n:

 IB
M

DB
2

Un
iv

er
sa

l D
at

ab
as

e
fo

r z
/O

S

Ve
rs

io
n

8

XM
L

Ex
te

nd
er

Ad
m

in
is

tra
tio

n

an
d

Pr
og

ra
m

m
in

g

�
�

�

	Contents
	About this guide
	Who should use this guide
	How to get a current version of this guide
	How to use this guide
	Highlighting conventions
	How to read syntax diagrams
	Accessibility

	Part 1. Introduction
	Chapter 1. Introduction
	Introduction to XML Extender
	XML Documents
	How XML data is handled in DB2
	Features of XML Extender
	XML Extender tutorial lessons
	Prerequisites
	Scenario for the lessons

	Lesson: Storing an XML document in an XML column
	Lesson: Composing an XML document

	Part 2. Administration
	Chapter 2. Administration
	Administration tools for XML Extender
	Preparing to administer XML Extender
	Migrating XML Extender from Version 7 to Version 8
	XML Extender administration planning
	Setting up the administration wizard
	Access and storage methods
	When to use the XML column method
	When to use the XML collection method
	Planning for XML columns
	XML data types for the XML columns
	Elements and attributes to index for XML columns
	The DAD file for XML columns

	Planning for XML collections
	Validation
	The DAD file for XML collections
	Mapping schemes for XML collections
	Types of mapping schemes
	Mapping scheme requirements

	Decomposition table size requirements for RDB node mapping

	Validating XML documents automatically
	Enabling servers for XML
	Creating an XML table
	Storing a DTD in the repository table
	Enabling XML columns
	Planning side tables
	Indexing side tables
	Composing XML documents by using SQL mapping
	Composing XML collections by using RDB_node mapping
	Decomposing an XML collection by using RDB_node mapping

	Part 3. Programming
	Chapter 3. XML columns
	Managing data in XML columns
	XML columns as a storage and access method
	Defining and enabling an XML column
	Using indexes for XML column data
	Storing XML data
	Default casting functions for storing XML data
	Storage UDFs for storing XML data

	Method for retrieving an XML document
	Retrieving an entire XML document
	Default casting functions for retrieving XML data
	Using the Content() UDF for retrieving XML data

	Retrieving element contents and attribute values from XML documents

	Updating XML data
	Updating an entire XML document
	Updating with a default casting function
	Updating XML documents with a storage UDF

	Updating specific elements and attributes of an XML document

	Methods for searching XML documents
	Searching the XML document by structure
	Example: searching with direct query on side tables
	Example: searching from a joined view
	Example: searching with extracting UDFs
	Example: searching on elements or attributes with multiple occurrence

	Using the DB2 UDB Text Extender for structural text searches of XML documents
	Using structural text searches and full text searches
	Enabling an XML column for the DB2 UDB Text Extender
	Searching for text using the DB2 UDB Net Search Extender

	Deleting XML documents
	Limitations when invoking functions from Java Database (JDBC)

	Chapter 4. Managing data in XML collections
	XML collections as a storage and access method
	Managing data in XML collections
	Preparing to compose XML documents from DB2 data
	Composing XML documents that will be updated occasionally
	Composing XML documents that will be updated frequently

	Decomposing XML documents into DB2 UDB data
	Enabling an XML collection for decomposition
	Decomposition table size limits

	Updating, deleting, and retrieving data in XML collections
	Updating data in an XML collection
	Updating element and attribute values
	Deleting element and attribute instances

	Deleting an XML document from an XML collection
	Retrieving XML documents from an XML collection

	Searching XML collections
	Composing XML documents using search criteria
	Searching for decomposed XML data

	Mapping schemes for XML collections
	Requirements for using SQL mapping
	Requirements for RDB_Node mapping
	Stylesheets for an XML collection
	Location paths
	Location path syntax
	Enabling XML collections
	Disabling XML collections

	Chapter 5. XML schemas
	Advantages of using XML schemas instead of DTDs
	UDTs and UDF names for XML Extender
	XML schema complexType element
	Data types, elements and attributes in schemas
	Simple data types in XML schemas
	Elements in XML schemas
	Attributes in XML schemas

	Examples of an XML schema
	XML document instance using the schema
	XML document instance using a DTD

	Part 4. Reference
	Chapter 6. The dxxadm administration command
	dxxadm command overview
	Syntax of the dxxadm administration command
	Subcommands of the administration command
	enable_server option of the dxxadm command
	disable_server option of the dxxadm command
	enable_column option of the dxxadm command
	disable_column option of the dxxadm command
	enable_collection option of the dxxadm command
	disable_collection option

	Chapter 7. XML Extender user-defined types
	Chapter 8. XML Extender user-defined functions
	Types of XML Extender user-defined functions
	Storage functions
	Storage functions in XML Extender overview
	XMLCLOBFromFile() function
	XMLFileFromCLOB() function
	XMLFileFromVarchar() function
	XMLVarcharFromFile() function

	Retrieval functions
	Retrieval functions in XML Extender
	Content(): retrieve from XMLFILE to a CLOB
	Content(): retrieve from XMLVARCHAR to an external server file
	Content(): retrieval from XMLCLOB to an external server file

	Extraction functions
	Extracting functions in XML Extender
	extractInteger() and extractIntegers()
	extractSmallint() and extractSmallints()
	extractDouble() and extractDoubles()
	extractReal() and extractReals()
	extractChar() and extractChars()
	extractVarchar() and extractVarchars()
	extractCLOB() and extractCLOBs()
	extractDate() and extractDates()
	extractTime() and extractTimes()
	extractTimestamp() and extractTimestamps()

	Update functions in XML Extender
	Purpose
	Syntax
	Parameters
	Return type
	Example
	Usage
	How the Update() function processes the XML document
	Multiple occurrence
	Examples

	Validation functions
	SVALIDATE() function
	Syntax
	Parameters
	Examples

	DVALIDATE() function
	Syntax
	Parameters

	Chapter 9. Document access definition (DAD) files
	Creating a DAD file for XML columns
	DAD files for XML collections
	SQL composition
	RDB node composition
	Composition from rows that have null values

	DTD for the DAD file
	Dynamically overriding values in the DAD file
	Dad Checker
	Using the DAD checker
	Checks performed by the DAD checker
	Well-formedness and DTD validation
	Duplicate <attribute_node> and leaf <element_node> detection (RDB_node mapping)
	Missing type attribute detection
	Missing table declaration detection
	Missing <text_node> or <attribute_node> detection
	Check for <attribute_node> and <element_node> mapping order
	Data mapping consistency check for tags with identical name attribute values
	Multi_occurrence attribute value checking for parent <element_node> with mapped children

	Attribute and element naming conflict

	Chapter 10. XML Extender stored procedures
	XML Extender stored procedures
	XML Extender administration stored procedures
	dxxEnableDB() stored procedure
	dxxDisableDB() stored procedure
	dxxEnableColumn() stored procedure
	dxxDisableColumn() stored procedure
	dxxEnableCollection() stored procedure
	dxxDisableCollection() stored procedure
	XML Extender composition stored procedures
	Calling XML Extender composition stored procedures
	Increasing the CLOB limit for stored procedures
	Stored Procedures that return CLOBS

	dxxGenXML() stored procedure
	dxxRetrieveXML() stored procedure
	dxxGenXMLClob stored procedure
	dxxRetrieveXMLClob stored procedure
	XML Extenders decomposition stored procedures
	dxxShredXML() stored procedure
	dxxInsertXML() stored procedure

	Chapter 11. MQSeries stored procedures and functions
	XML Extender stored procedures and functions for MQSeries
	MQPublishXML function
	MQReadXML function
	MQReadAllXML function
	MQReadXMLCLOB function
	MQReadAllXMLCLOB function
	MQReceiveXML function
	MQReceiveAllXML function
	MQRcvAllXMLCLOB function
	MQReceiveXMLCLOB function
	MQSENDXML function
	MQSENDXMLFILE function
	MQSendXMLFILECLOB function
	Types of stored procedures for message queues
	dxxmqGen() stored procedure
	dxxmqGenCLOB stored procedure
	dxxmqRetrieve stored procedure
	dxxmqRetrieveCLOB stored procedure
	dxxmqShred stored procedure
	dxxmqShredAll stored procedure
	dxxmqShredCLOB stored procedure
	dxxmqShredAllCLOB stored procedure
	dxxmqInsert stored procedure
	dxxmqInsertCLOB stored procedure
	dxxmqInsertAll stored procedure
	dxxmqInsertAllCLOB stored procedure

	Chapter 12. Extensible stylesheet language transformation (XSLT)
	Creating an HTML document using an XSLT stylesheet
	XSLTransformToClob() stored procedure
	XSLTransformToFile() stored procedure

	Chapter 13. XML Extender administration support tables
	DTD reference table
	XML usage table (XML_USAGE)

	Chapter 14. Troubleshooting
	Troubleshooting XML_Extender
	Starting the trace for XML Extender
	Stopping the trace
	XML Extender UDF return codes
	XML Extenders stored procedure return codes
	SQLSTATE codes and associated message numbers for XML Extender
	XML Extender messages

	Appendix A. Samples
	XML DTD sample
	XML document sample: getstart.xml
	Document access definition files
	Sample DAD file: XML column
	Sample DAD file: XML collection: SQL mapping
	Sample DAD file: XML: RDB_node mapping

	Appendix B. Code page considerations
	Terminology for XML code pages
	DB2 and XML Extender code page assumptions
	Assumptions for importing an XML document
	Assumptions for exporting an XML document

	Encoding declaration considerations for XML Extender
	Legal encoding declarations
	Consistent encodings and encoding declarations
	Consistent encodings in USS
	Declaring an encoding

	Conversion scenarios
	Recommendations for preventing inconsistent XML documents
	Line ending considerations
	Processing XML documents with the linebrk utility

	Appendix C. XML Extender limits
	Glossary
	XML Extender glossary

	Notices
	Trademarks

	Index
	Contacting IBM
	Product information

