)]:¥8 Universal Database for z/0S

Version 8

XML Extender
Administration and Programming

SC18-7431-00

m Universal Database for z/0S

Version 8

XML Extender
Administration and Programming

SC18-7431-00

Note
FBefore using this information and the product it supports, please read the general information under[‘Notices” on page 321|

First Edition (March 2004)

This edition applies to Version 8 of IBM DB2 Universal Database for z/OS (DB2 UDB for z/OS), 5625-DB2, and to
any subsequent releases until otherwise indicated in new editions. Make sure you are using the correct edition for
the level of the product.

Specific changes are indicated by a vertical bar to the left of a change. A vertical bar to the left of a figure caption
indicates that the figure has changed. Editorial changes that have no technical significance are not noted.

© Copyright International Business Machines Corporation 1999, 2004. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this guide . - iX
Who should use this guide . iX
How to get a current version of this gwde iX
How to use this guide. iX
Highlighting conventions . . X
How to read syntax diagrams . . X
Accessibility . . Xii
Part 1. Introduction . 1
Chapter 1. Introduction . . 3
Introduction to XML Extender . . 3
XML Documents . . . 3
How XML data is handled in DBZ . 4
Features of XML Extender . .5
XML Extender tutorial lessons . .7
Prerequisites . .7
Scenario for the Iessons . .7
Lesson: Storing an XML document in an XML column . . 8
Lesson: Composing an XML document . . 20
Part 2. Administration . 35
Chapter 2. Administration . 37
Administration tools for XML Extender . 37
Preparing to administer XML Extender . . .37
Migrating XML Extender from Version 7 to VerS|on 8 . . 37
XML Extender administration planning . 38
Setting up the administration wizard . . 39
Access and storage methods . 40
When to use the XML column method .4
When to use the XML collection method . 42
Planning for XML columns. . 42
XML data types for the XML columns . . 42
Elements and attributes to index for XML columns . . 43
The DAD file for XML columns . . 43
Planning for XML collections . . 43
Validation 44
The DAD file for XML coIIectlons . 44
Mapping schemes for XML collections . . 46
Decomposition table size requirements for RDB node mappmg . . 51
Validating XML documents automatically . 52
Enabling servers for XML . . 53
Creating an XML table . . 53
Storing a DTD in the repository table . 54
Enabling XML columns . . . 55
Planning side tables . . 58
Indexing side tables . . . 60
Composing XML documents by usmg SQL mappmg . . 60
Composing XML collections by using RDB_node mapping . . 63
Decomposing an XML collection by using RDB_node mapping . . 65

© Copyright IBM Corp. 1999, 2004

Part 3. Programming. 00011

Chapter 3. XML columns. .73
Managing data in XML columns. . . . Y <
XML columns as a storage and access method Y £<
Defining and enabling an XML column74
Using indexes for XML columndata75
Storing XML data e e e6
Default casting functions for storlng XML data B 44
Storage UDFs for storing XMLdata77
Method for retrieving an XML document.78
Retrieving an entire XML document79
Retrieving element contents and attribute values from XML documents .. .80
Updating XML data . . . e < 724
Updating an entire XML document Coe Y - 72
Updating specific elements and attributes of an XML document83
Methods for searching XML documents.83
Searching the XML document by structure.84
Using the DB2 UDB Text Extender for structural text searches of XML
documents86
Deleting XML documents88
Limitations when invoking functions from Java Database (JDBC)88
Chapter 4. Managing data in XML collections91
XML collections as a storage and access method91
Managing data in XML collections . . . N © 124
Preparing to compose XML documents from DBZ data N © 4
Decomposing XML documents into DB2 UDB data.97
Enabling an XML collection for decompositon97
Decomposition table size limits . . . T 0}
Updating, deleting, and retrieving data in XML coIIect|ons R 0}
Updating data in an XML collection . . . e [0
Deleting an XML document from an XML coIIectlon . e108
Retrieving XML documents from an XML collection 103
Searching XML collections103
Composing XML documents usmg search cntena . e108
Searching for decomposed XML data 104
Mapping schemes for XML collections. 105
Requirements for using SQL mapping107
Requirements for RDB_Node mapping. 109
Stylesheets for an XML collection.12
Location paths. 0. 12
Location path syntax .13
Enabling XML collections. .14
Disabling XML collections .16
Chapter 5. XML schemas . . . e A 1]
Advantages of using XML schemas mstead of DTDs T R 1)
UDTs and UDF names for XML Extender.19
XML schema complexType element. . . . T P2(0]
Data types, elements and attributes in schemas e P23
Simple data types in XML schemas.121
Elements in XML schemas121
Attributes in XML schemas12
Examples of an XML schema . . . e e e o122
XML document instance using the schema I P2

iV XML Extender Administration and Programming

XML document instance usinga DTD 128

Part4. Reference.125
Chapter 6. The dxxadm administration command 127
dxxadm command overview. . . T 24
Syntax of the dxxadm admrnlstratlon command e o
Subcommands of the administration command. 127

enable_server option of the dxxadm command. 127
disable_server option of the dxxadm command 129
enable_column option of the dxxadm command 130
disable_column option of the dxxadm command 131
enable_collection option of the dxxadm command 132
disable_collection option.132
Chapter 7. XML Extender user-definedtypes 185
Chapter 8. XML Extender user-defined functions. 137
Types of XML Extender user-defined functions. 137
Storage functions138
Storage functions in XML Extender overview 138
XMLCLOBFromFile() function 138
XMLFileFromCLOB() function 138
XMLFileFromVarchar() functon139
XMLVarcharFromFile() functon140
Retrieval functions . . . e A
Retrieval functions in XML Extender e Y
Content(): retrieve from XMLFILE toa CLOB 142
Content(): retrieve from XMLVARCHAR to an external server f|Ie143
Content(): retrieval from XMLCLOB to an external server file 145
Extraction functions. . . e
Extracting functions in XML Extender T 16
extractinteger() and extractintegers() 146
extractSmallint() and extractSmallints(). 147
extractDouble() and extractDoubles() 148
extractReal() and extractReals() 149
extractChar() and extractChars() 151
extractVarchar() and extractvVarchars(). 152
extractCLOB() and extractCLOBs() 153
extractDate() and extractDates() 1565
extractTime() and extractTimes() 156
extractTimestamp() and extractTimestamps() 157
Update functions in XML Extender 158
Purpose .158
Syntax .. .158
Parameters. .158
Returntype. .159
Example.159
Usage. . . . T F1¢)
Validation funct|ons A X
SVALIDATE() function. .164
DVALIDATE() functon. .164
Chapter 9. Document access definition (DAD) files 167
Creating a DAD file for XML columns 167
DAD files for XML collections169

Contents V

SQL composition.

RDB node composition

Composition from rows that have nuII values
DTD for the DAD file . .
Dynamically overriding values in the DAD f|Ie .
Dad Checker . . . :
Using the DAD checker .o

Checks performed by the DAD checker

Attribute and element naming conflict .

Chapter 10. XML Extender stored procedures .
XML Extender stored procedures. .
XML Extender administration stored procedures .
dxxEnableDB() stored procedure .

dxxDisableDB() stored procedure.
dxxEnableColumn() stored procedure .
dxxDisableColumn() stored procedure .
dxxEnableCollection() stored procedure
dxxDisableCollection() stored procedure .

XML Extender composition stored procedures . .
Calling XML Extender composition stored procedures .
Increasing the CLOB limit for stored procedures .

Stored Procedures that return CLOBS .
dxxGenXML() stored procedure .
dxxRetrieveXML() stored procedure.
dxxGenXMLClob stored procedure .
dxxRetrieveXMLClob stored procedure
XML Extenders decomposition stored procedures
dxxShredXML() stored procedure.
dxxInsertXML() stored procedure.

Chapter 11. MQSeries stored procedures and functions .

XML Extender stored procedures and functions for MQSeries .

MQPublishXML function .
MQReadXML function . .
MQReadAIIXML function .
MQReadXMLCLOB function
MQReadAIlIXMLCLOB function
MQReceiveXML function. .
MQReceiveAlIXML function . .
MQRCcVAIIXMLCLOB function .
MQReceiveXMLCLOB function
MQSENDXML function .
MQSENDXMLFILE function. .
MQSendXMLFILECLOB function . .
Types of stored procedures for message queues .
dxxmqGen() stored procedure .
dxxmgGenCLOB stored procedure .
dxxmqRetrieve stored procedure .
dxxmqRetrieve CLOB stored procedure
dxxmqShred stored procedure.
dxxmqShredAll stored procedure .
dxxmqgShredCLOB stored procedure
dxxmqgShredAlICLOB stored procedure
dxxmgqlnsert stored procedure .
dxxmgqlnsertCLOB stored procedure

XML Extender Administration and Programming

171
171
. 172
. 173
177
. 183
. 184
. 186
. 193

. 195
. 195
. 195
. 196
. 196
. 197
. 198
. 199
. 200
. 200
. 201
. 202
. 202
. 202
. 207
. 210
. 212
. 215
. 215
. 218

. 221
. 221
. 221
. 223
. 225
. 227
. 228
. 230
. 232
. 234
. 235
. 236
. 238
. 239
. 240
. 243
. 245
. 247
. 249
. 251
. 253
. 254
. 255
. 256
. 258

dxxmglnsertAll stored procedure .
dxxmqlnsertAlICLOB stored procedure.

Chapter 12. Extensible stylesheet language transformation (XSLT).
Creating an HTML document using an XSLT stylesheet .
XSLTransformToClob() stored procedure .

XSLTransformToFile() stored procedure

Chapter 13. XML Extender administration support tables
DTD reference table . . . e e e
XML usage table (XML_ USAGE)

Chapter 14. Troubleshooting. .

Troubleshooting XML_Extender .

Starting the trace for XML Extender .

Stopping the trace .

XML Extender UDF return codes

XML Extenders stored procedure return codes

SQLSTATE codes and associated message numbers for XML Extender
XML Extender messages.

Appendix A. Samples

XML DTD sample

XML document sample: getstart me

Document access definition files .
Sample DAD file: XML column.
Sample DAD file: XML collection: SQL mapplng
Sample DAD file: XML: RDB_node mapping

Appendix B. Code page considerations

Terminology for XML code pages. . .

DB2 and XML Extender code page assumptlons .
Assumptions for importing an XML document .
Assumptions for exporting an XML document .

Encoding declaration considerations for XML Extender .

Legal encoding declarations

Consistent encodings and encoding declaratlons
Consistent encodings in USS .

Declaring an encoding.

Conversion scenarios . .

Recommendations for preventlng |nconS|stent XML documents.

Line ending considerations .

Processing XML documents with the Imebrk ut|||ty

Appendix C. XML Extender limits .

Glossary
XML Extender glossary

Notices .
Trademarks.

Index .

Contacting IBM .
Product information .

Contents

. 260
. 261

. 265
. 265
. 266
. 267

. 269
. 269
. 269

. 271
. 271
. 271
. 272
. 273
. 273
. 274
. 278

. 293
. 293
. 293
. 294
. 294
. 296
. 297

. 301
. 301
. 301
. 302
. 303
. 303
. 303
. 304
. 306
. 307
. 307
. 308
. 309
. 309

. 311

. 315
. 315

. 321
. 323

. 325

. 335
. 335

Vii

viii XML Extender Administration and Programming

About this guide

This section contains the following information:
* [‘Who should use this guide’]

+ [‘How to use this guide’]

« [‘Highlighting conventions” on page x|

Who should use this guide

This guide is intended for the following people:

+ Those who work with XML data in DB2® applications and who are familiar with
XML concepts. Readers of this document should have a general understanding
of XML and DB2 UDB for z/OS™. To learn more about XML, see the following
Web site:

http://www.w3.org/XML
To learn more about DB2, see the following Web site:
http://www.ibm.com/software/data/db2/library

* DB2 database administrators who are familiar with DB2 UDB administration
concepts, tools, and techniques.

» DB2 application programmers who are familiar with SQL and with one or more
programming languages that can be used for DB2 UDB applications.

How to get a current version of this guide

You can get the latest version of this book at the XML Extender Web site:

http://www.ibm.com/software/data/db2/extenders/xmlext/library.html

How to use this guide

This guide is structured as follows:

Part 1. Introduction
This part provides an overview of the XML Extender and how you can use it
in your business applications. It contains a getting-started scenario that
helps you get up and running.

Part 2. Administration
This part describes how to prepare and maintain a DB2 UDB database for
XML data. Read this part if you need to administer a DB2 UDB database
that contains XML data.

Part 3. Programming
This part describes how to manage your XML data. Read this part if you
need to access and manipulate XML data in a DB2 UDB application
program.

Part 4. Reference
This part describes how to use the XML Extender administration
commands, user-defined types, user-defined functions, and stored
procedures. It also lists the messages and codes that the XML Extender
issues. Read this part if you are familiar with the XML Extender concepts

© Copyright IBM Corp. 1999, 2004 ix

and tasks, but you need information about a user-defined type (UDT),
user-defined function (UDF), command, message, metadata tables, control
tables, or code.

Part 5. Appendixes
The appendixes describe the DTD for the document access definition,
samples for the examples and getting started scenario, and other IBM®
XML products.

Highlighting conventions
This books uses the following conventions:

Bold text indicates:
*« Commands
* Field names
¢ Menu names
¢ Push buttons

Italic text indicates
» Variable parameters that are to be replaced with a value
* Emphasized words
» First use of a glossary term

Uppercase letters indicate:
» Data types
¢ Column names
* Table names

Example text indicates:
* System messages
* Values that you type
* Coding examples
» Directory names
» File names

How to read syntax diagrams

Throughout this book, the syntax of commands and SQL statements is described
using syntax diagrams.

Read the syntax diagrams as follows:

* Read the syntax diagrams from left to right, from top to bottom, following the path
of the line.

The »—— symbol indicates the beginning of a statement.

The — symbol indicates that the statement syntax is continued on the next
line.

The »— symbol indicates that a statement is continued from the previous line.
The —>< symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the »—
symbol and end with the — symbol.

* Required items appear on the horizontal line (the main path).

X XML Extender Administration and Programming

A\
A

»>—required_item

Optional items appear below the main path.

»>—required item |_ <
optional_1i terr»J

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

optional_ite
»>—required_item |_ m—l »<

If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

»>—required i tem—Erequi red _choicel ><
requi red_choice.?—|

If choosing one of the items is optional, the entire stack appears below the main
path.

A\
A

»>—required_item

—optional_choicel—
—optional_choice2—

If one of the items is the default, it appears above the main path and the
remaining choices are shown below.

default_choice
»>—required item |_ _| <
i:optiona Z_choice:‘
optional_choice

An arrow returning to the left, above the main line, indicates that an item that can
be repeated.

»—required_item——repeatable_item ><

If the repeat arrow contains punctuation, you must separate repeated items with
the specified punctuation.

s

A\
A

»>—required_item——repeatable_item

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

About this guide Xi

— Keywords appear in uppercase (for example, FROM). In the XML Extender,
keywords can be used in any case. Terms that are not keywords appear in
lowercase letters (for example, column-name). They represent user-supplied
names or values.

— If punctuation marks, parentheses, arithmetic operators, or other such
symbols are shown, you must enter them as part of the syntax.

Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products. The major accessibility features
in z/OS products, including DB2 UDB for z/OS, enable users to:

» Use assistive technologies such as screen reader and screen magnifier software
» Operate specific or equivalent features by using only a keyboard
» Customize display attributes such as color, contrast, and font size

Assistive technology products, such as screen readers, function with the DB2 UDB
for zZ/OS user interfaces. Consult the documentation for the assistive technology
products for specific information when you use assistive technology to access these
interfaces.

Online documentation for Version 8 of DB2 UDB for z/OS is available in the DB2
Information Center, which is an accessible format when used with assistive
technologies such as screen reader or screen magnifier software. The DB2
Information Center for z/OS solutions is available at the following Web site:
http://publib.boulder.ibm.com/infocenter/db2zhelp.

Xii XML Extender Administration and Programming

Part 1. Introduction

This part provides an overview of the XML Extender and how you can use it in your
business applications.

© Copyright IBM Corp. 1999, 2004 1

2 XML Extender Administration and Programming

Chapter 1. Introduction

Introduction to XML Extender

DB2’s XML Extender provides the ability to store and access XML documents, to
generate XML documents from existing relational data, and to insert rows into
relational tables from XML documents. XML Extender provides new data types,
functions, and stored procedures to manage your XML data in DB2 UDB).

The XML Extender is available for the following operating systems:
* Windows® NT

* Windows 2000

« AIX®

+ Solaris Operating Environment

e Linux

* 0OS/390 and z/0OS

* iSeries

Related concepts:

* XML Documents” on page 3|

» [‘Features of XML Extender” on page 5

« [“Lesson: Storing an XML document in an XML column” on page §|
+ [‘Lesson: Composing an XML document” on page 20|

 [“XML Extender tutorial lessons” on page 7]

XML Documents

Because companies tend to share data between different applications, companies
are continually faced with the problem of replicating, transforming, exporting, or
saving their data in formats that can be imported into other applications. Many of
these transforming processes tend to drop some of the data, or they at least require
that users go through the tedious process of ensuring that the data remains
consistent. This manual checking consumes both time and money.

One of the ways to address this problem is for application developers to write Open
Database Connectivity (ODBC) applications, a standard application programming
interface (API) for accessing data in both relational and non-relational database
management systems. These applications save the data in a database
management system. From there, the data can be manipulated and presented in
the form in which it is needed for another application. Database applications must
be written to convert the data into a form that an application requires. Applications
change quickly and quickly become obsolete. Applications that convert data to
HTML provide presentation solutions, but the data presented cannot be practically
used for other purposes. A method that separates the data from its presentation is
needed to provide a practical form of interchange between applications.

XML—eXtensible Markup Language—addresses this problem. XML is extensible
because the language is a meta-language that allows you to create your own
language based on the needs of your enterprise. You use XML to capture not only
the data for your particular application, but also the data structure. Although it is not

© Copyright IBM Corp. 1999, 2004 3

the only data interchange format, XML has emerged as the accepted standard. By
adhering to this standard, applications can share data without first transforming it
using proprietary formats.

Because XML is now the accepted standard for data interchange, many applications
are emerging that will be able to take advantage of it.

Suppose that you are using a particular project management application and you
want to share some of its data with your calendar application. Your project
management application could export tasks in XML, which could then be imported
as-is into your calendar application. In today’s interconnected world, application
providers have strong incentives to make an XML interchange format a basic
feature of their applications.

How XML data is handled in DB2

Although XML solves many problems by providing a standard format for data
interchange, some challenges remain. When building an enterprise data application,
you must answer questions such as:

* How often do | want to replicate the data?
* What kind of information must be shared between applications?
* How can | quickly search for the information | need?

* How can | make a particular action, such as a new entry being added, trigger an
automatic data interchange between all of my applications?

These kinds of issues can be addressed only by a database management system.
By incorporating the XML information and meta-information directly in the database,
you can more efficiently obtain the XML results that your other applications need.
With the XML Extender, you can take advantage of the power of DB2® in many
XML applications.

With the content of your structured XML documents in a DB2 UDB database, you
can combine structured XML information with traditional relational data. Based on
the application, you can choose whether to store entire XML documents in DB2 in
user-defined types provided for XML data (XML data types), or you can map the
XML content as base data types in relational tables. For XML data types, XML
Extender adds the power to search rich data types of XML element or attribute
values, in addition to the structural text search that the 0S/390® Text Extender
provides.

XML Extender provides two methods of storing and access for XML data in DB2:
XML column method

Stores entire XML documents as column data or externally as a file, and
extracts the required XML element or attribute value and stores it in side
tables, indexed subtables for high-speed searching. By storing the
documents as column data, you can:

» Perform fast search on XML elements or attributes that have been
extracted and stored in side tables as SQL basic data types and indexed.

» Update the content of an XML element or the value of an XML attribute.
» Extract XML elements or attributes dynamically using SQL queries.

» Validate XML documents when they are inserted and updated.

» Perform structural-text search with the Text Extender.

4 XML Extender Administration and Programming

XML collection method
Composes and decomposes contents of XML documents with one or more
relational tables.

Features of XML Extender

XML Extender provides the following features to help you manage and exploit XML
data with DB2:

» Administration tools to help you manage the integration of XML data in relational
tables

» Storage and access methods for XML data within the database

» A data type definition (DTD) repository for you to store DTDs used to validate
XML data

* A mapping file called the Document Access Definition (DAD), which is used to
map XML documents to relational data

» Location paths to specify the location of an element or attribute within an XML
document.

Administration tools: The XML Extender administration tools help you enable your
database and table columns for XML, and map XML data to DB2® relational
structures.

XML Extender provides a command line tool, an administration wizard, and
programming interfaces for administration tasks.

+ The dxxadm command can be run from UNIX® System Services (USS).
* JCL based on samples provided in the SDXXJCL data set

* The XML Extender administration stored procedures allow you to invoke
administration commands from a program.

Storage and access methods: XML Extender provides two storage and access
methods for integrating XML documents with DB2 data structures: XML column and
XML collection. These methods have very different uses, but can be used in the
same application.

XML column method
This method helps you store intact XML documents in DB2. The XML
column method works well for archiving documents. The documents are
inserted into columns enabled for XML and can be updated, retrieved, and
searched. Element and attribute data can be mapped to DB2 UDB tables
(side tables), which can be indexed for fast search.

XML collection method
This method helps you map XML document structures to DB2 UDB tables
so that you can either compose XML documents from existing DB2 UDB
data, or decompose XML documents, storing the untagged data in DB2
UDB tables. This method is good for data interchange applications,
particularly when the contents of XML documents are frequently updated.

DTDs:The XML Extender also allows you to store DTDs, the set of declarations for
XML elements and attributes. When a database server is enabled for XML, a DTD
repository table (DTD_REF) is created. Each row of this table represents a DTD
with additional metadata information. Users can access this table to insert their own
DTDs. The DTDs are used for validating the structure of XML documents.

Chapter 1. Introduction 5

DAD files: You specify how structured XML documents are to be processed by
XML Extender using a document access definition (DAD) file. The DAD file is an
XML document that maps the XML document structure to a DB2 UDB table. You
use a DAD file when storing XML documents in a column, or when composing or
decomposing XML data. The DAD file specifies whether you are storing documents
using the XML column method, or defining an XML collection for composition or
decomposition.

Location paths: A location path specifies the location of an element or attribute
within an XML document. The XML Extender uses the location path to navigate the
structure of the XML document and locate elements and attributes.

For example, a location path of /Order/Part/Shipment/ShipDate points to the
shipDate element, that is a child of the Shipment, Part, and Order elements, as
shown in the following example:
<Order>
<Part>
<Shipment>

<ShipDate>
+.o..

shows an example of a location path and its relationship to the structure of
the XML document.

Order

t [Far]

(Amerlcan Mo@ (parts@am.c@

| | | | |
| Key| |Quantity| | ExtendedPrice | | Tax | Shipment
[I I I

(black) (68) (36) (3485016) (002)

[ShipDate | [ShipMode |
Location path: “/Order/Part/Shipment/ShipDate” -+ -ooveieinnis C 1998-08-19) (Boat)

Figure 1. Storing documents as structured XML documents in a DB2 UDB table column

The location path is used in the following situations:

XML columns

» Used to identify the elements and attributes to be extracted or updated
when using the XML Extender user-defined functions.

» Also used to map the content of an XML element or attribute to a side
table.

XML collections
Used to override values in the DAD file from a stored procedure.

6 XML Extender Administration and Programming

To specify the location path, XML Extender uses a subset of the XML Path
Language (XPath), the language for addressing parts of an XML document.

For more information about Xpath, see the following Web page:
http://www.w3.0org/TR/xpath

Related concepts:

* "How XML data is handled in DB2” on page 4|

+ [“Lesson: Storing an XML document in an XML column” on page 8|
* |‘Lesson: Composing an XML document” on page 20|

* XML Extender tutorial lessons” on page 7|

XML Extender tutorial lessons

Prerequisites

This tutorial shows you how to get started using XML Extender to access and
modify XML data for your applications. Three lessons are provided:

» Storing an XML document in an XML column

» Composing an XML document

* Cleaning up the database

By following the tutorial lessons, you can set up a database using provided sample

data, map SQL data to an XML document, store XML documents in the database,
and then search and extract data from the XML documents.

In the administration lessons, you use the odb2 command for UNIX® System
Services (USS) with XML Extender administration commands. In XML data
management lessons, you use XML Extender UDFs and stored procedures. Most of
the examples in the rest of the book draw on the sample data that is used in this
chapter.

To complete the lessons in this tutorial, you must have the following prerequisites
installed:

+ DB2 for z/OS™ Version 8

* XML Toolkit for z/OS Version 1.4

* USS set up

* odb2 command line or the DXXGPREP JCL job

In addition, the DB2 UDB database server must have been enabled by the DB2
UDB administrator.

Scenario for the lessons

In these lessons, you work for ACME Auto Direct, a company that distributes cars
and trucks to automotive dealerships. You have two tasks. First you will set up a
system in which orders can be archived in the SALES_DB database for querying by
the sales department. Next, you extract information in an existing purchase order
database, SALES_DB.

Methods to run the lessons:
Two methods for running the scripts and commands are provided.

Chapter 1. Introduction 7

e Use the odb2 command line to run SQL statements.
From USS prompt type:
odb2

A command prompt is displayed, from which you can enter SQL commands.
* You can submit batch jobs that will issue equivalent steps.

Related concepts:

« [“Administration tools for XML Extender” on page 37|

* XML Extender administration planning” on page 38|

* |‘Lesson: Storing an XML document in an XML column” on page 8|
+ |“‘Lesson: Composing an XML document” on page 20|

Lesson: Storing an XML document in an XML column

The XML Extender provides a method of storing and accessing whole XML
documents in the database. The XML column method enables you to store the
document using the XML file types, index the column in side tables, and then query
or search the XML document. This storage method is particularly useful for archival
applications in which documents are not frequently updated.

This lesson shows you how to use the XML column storage and access method.
The scenario:

You have the task of archiving the sales data for the service department. The sales
data that you need to work with is stored in XML documents that use the same
DTD.

The service department provided a recommended structure for the XML documents
and specified which element data will be queried most frequently. The service
department wants the XML documents stored in the SALES_TAB table in the
SALES_DB database and wants to be able to search them quickly. The
SALES_TAB table will contain two columns with data about each sale, and a third
column will contain the XML document. This column is called ORDER.

To store this XML document in the SALES_TAB table, you will:

1. Determine the XML Extender user-defined types (UDTs) in which to store the
XML document, as well as which XML elements and attributes will be frequently
queried.

2. Set up the SALES_DB database for XML.

3. Create the SALES_TAB table, and enable the ORDER column so that you can
store the intact document in DB2.

4. Insert a DTD for the XML document for validation.

5. Store the document as an XMLVARCHAR data type.
When you enable the column, you will define side tables to be indexed for the

structural search of the document in a document access definition (DAD) file, an
XML document that specifies the structure of the side tables.

The SALES_TAB table is described in [Table 1 on page 9 The XML column to be
enabled for XML, ORDER, is shown in italics.

8 XML Extender Administration and Programming

Table 1. SALES_TAB table

Column name Data type

INVOICE_NUM CHAR(6) NOT NULL PRIMARY KEY
SALES_PERSON VARCHAR(20)

ORDER XMLVARCHAR

The scripts and samples:

For this tutorial, you use a set of scripts and JCL samples to set up your
environment and perform the steps in the lessons. These scripts are in the
dxx_installlsamples/db2xml/cmd directory (where dxx_install is the directory where
you installed the XML Extender files). The JCL is in library SDXXJCL.

These scripts are:

getstart_db.cmd
Creates the database and populates four tables.

getstart_prep.cmd
Binds the database server with the XML Extender stored procedures and
the DB2® CLI and enables the database server for XML Extender.

getstart_insertDTD.cmd
Inserts the DTD used to validate the XML document in the XML column.

getstart_createTabCol.cmd
Creates an application table that will have an XML-enabled column.

getstart_alterTabCol.cmd
Alters the application table by adding the column that will be enabled for
XML.

getstart_enableCol.cmd
Enables the XML column.

getstart_createlndex.cmd
Creates indexes on the side tables for the XML column.

getstart_insertXML.cmd
Inserts the XML document into the XML column.

getstart_queryCol.cmd
Runs a select statement on the application table and returns the XML
document.

getstart_stp.cmd
Runs the stored procedure to compose the XML collection.

getstart_exportXML.cmd
Exports the XML document from the database for use in an application.

getstart_clean.cmd
Cleans up the tutorial environment.

[Table 2 on page 10| lists the USS and JCL samples that are provided to complete
the tasks in the lesson, as well as the suggested role in the organization that might
have the correct authority to run the samples. Each task is completed either by an
administrator or application developer.

Chapter 1. Introduction 9

Table 2. Scripts provided for the XML column lessons

Role USS command files Description JCL
member
name

administrator getstart_db.cmd Creates and dxxgdb

populates the
database and tables
used for the lesson

administrator getstart_prep.cmd Binds and enables dxxgprep
the database server

application developer | getstart_insertDTD.cmd Inserts the dtd dxxgidtd
getstart.dtd into the
dtd_ref table

administrator getstart_createTabCol.cmd Creates SALES_TAB | dxxgctco
for XML column

administrator getstart_alterTabCol.cmd Adds the ORDER dxxgatco
column to
SALES_TAB

administrator getstart_enableCol.cmd Enables the ORDER | dxxgecol
column as an XML
column

administrator getstart_createlndex.cmd Create indexes on dxxgcrin
side tables

application developer | getstart_insertXML.cmd Inserts an XML dxxgixml

document into the
SALES_TAB XML
column

application developer | getstart_queryCol.cmd Queries the XML dxxgcqol
document held in the
sales_tab XML
column through the
side tables

application developer | getstart_stp.cmd Runs the stored dxxgstp
procedure to
compose the XML
collection

application developer | getstart_exportXML.cmd Exports the XML dxxexml
document from the
database for use in
an application

administrator getstart_clean.cmd Cleans up the dxxgclen
environment

These samples are provided for your use in your applications.
Planning how to store the document:

Before you use the XML Extender to store your documents, you need to:
* Understand the XML document structure.
* Determine the XML user-defined type in which you will store the XML document.

* Determine the XML elements and attributes that the service department will
frequently search, so that the content of these can be stored in side tables and
indexed to improve performance.

10 XML Extender Administration and Programming

The following sections will explain how to make these decisions.
The XML document structure:

The XML document structure for this lesson takes information for a specific order
that is structured by the order key as the top level, then customer, part, and
shipping information on the next level.

This lesson provides the sample DTD for you to understand and validate the XML
document structure.

Determining the XML data type for the XML column:

The XML Extender provides XML user defined types that you can use to define a
column to hold XML documents. These data types are:

XMLVARCHAR
Used for documents smaller than 3 kilobytes stored in DB2. The maximum
size of XMLVARCHAR documents can be redefined to as large as 32672
kilobytes.

XMLCLOB
Used for documents larger than 3 kilobytes stored in DB2. The maximum
document size is 2 gigabytes.

XMLFILE
Used for documents stored outside DB2.

In this lesson, you will store a small document in DB2, so you will use the
XMLVARCHAR data type.

Determining elements and attributes to be searched:

When you understand the XML document structure and the needs of the
application, you can determine which elements and attributes will be searched or
extracted most frequently, or those that will be the most expensive to query. The
service department will frequently query the order key, customer name, price, and
shipping date of an order, and they will need quick performance for these searches.
This information is contained in elements and attributes of the XML document
structure. [Table 3 describes the location paths of each element and attribute.

Table 3. Elements and attributes to be searched

Data Location Path

order key /Order/@key

customer name /Order/Customer/Name

price /Order/Part/ExtendedPrice
shipping date /Order/Part/Shipment/ShipDate

Mapping the XML document to the side tables:

To map your XML documents to a side table, you must create a DAD file for the
XML column. The DAD file is used to store the XML document in DB2. It also maps
the XML element and attribute contents to DB2 UDB side tables used for indexing,
which improves search performance.

Chapter 1. Introduction 11

After identifying the elements and attributes to be searched, you determine how
they should be organized in the side tables, how many tables to use, and which
columns are in what table. Organize the side tables by putting similar information in
the same table. The document structure is also determined by whether the location
path of any elements can be repeated more than once in the document. For
example, in the document, the part element can be repeated multiple times, and
therefore, the price and date elements can occur multiple times. Elements that can
occur multiple times must each be in their own side tables.

You must also determine what DB2 UDB base types the element or attribute values
should use, which is determined by the format of the data.

* If the data is text, use VARCHAR.

 |f the data is an integer, use INTEGER.

 If the data is a date, and you want to do range searches, use DATE.
In this tutorial, the elements and attributes are mapped to either

ORDER_SIDE_TAB, PART_SIDE_TAB or, SHIP_SIDE_TAB. The tables below show
which table each element or attribute is mapped to.

ORDER_SIDE_TAB

Column name Data type Location path Multiple
occurring?

ORDER_KEY INTEGER /Order/@key No

CUSTOMER VARCHAR(16) /Order/Customer/Name No

PART_SIDE_TAB

Column name Data type Location path Multiple
occurring?
PRICE DECIMAL(10,2) /Order/Part/ExtendedPrice Yes

SHIP_SIDE_TAB

Column name Data type Location path Multiple
occurring?
DATE DATE /Order/Part/Shipment/ShipDate Yes

Creating the SALES_DB database:
In this task, you create a sample database and enable the database for XML.

To create the database:
1. Ensure that the database server was enabled by the DB2 UDB administrator.

2. Change to the dxx_install/samples/db2xml/cmd directory, where
dxx_install is the directory where you installed the XML Extender files.
The sample files contain references to files that use absolute path names.
Check the sample files and change these values for your directory paths.

3. Run the getstart_db command:
From the odb2 command line: Enter the following command:
getstart_db.cmd
TSO: Submit the dxxgdb JCL job.

12 XML Extender Administration and Programming

Enabling the server:

To store XML information in the database, you need to enable it for the XML
Extender. When you enable a database for XML, XML Extender:

» Creates user-defined types (UDTs), user-defined functions (UDFs), and stored
procedures

» Creates and populates control tables with the necessary metadata that the XML
Extender requires

* Creates the DB2XML schema and assigns the necessary privileges
To enable the database for XML:
Use one of the following methods to enable the database.

Run the following script:
getstart _prep.cmd

This script runs the dxxadm command option that enables the database:
dxxadm enable_server -a subsystem-name wim environment wim-name

Enabling the XML column and storing the document:

In this lesson, you will enable a column for XML Extender and store an XML
document in the column. For these tasks, you will:

1. Store the DTD in the DTD repository
Create a DAD file for the XML column
Create the SALES_TAB table

Add the column of XML type

Enable the XML column

View the column and side tables

Index the side tables for structural search.
Store the XML document

© N o oA~ DN

Storing the DTD in the DTD repository:

You can use a DTD to validate XML data in an XML column. The XML Extender
creates a table in the XML-enabled database, called DTD_REF. The table is known
as the DTD repository and is available for you to store DTDs. When you validate
XML documents, you must store the DTD in this repository. The DTD for this lesson
is in

dxx_install/samples/db2xml/dtd/getstart.dtd

where dxx_install is the directory where you installed DB2 XML Extender.

Command line:
» Enter the following SQL INSERT command, all on the same DB2 command line:

INSERT into DB2XML.DTD_REF values
('dxx_install/samples/db2xml/dtd/getstart.dtd,
DB2XML.XMLC1obFromFile
('dxx_install/samples/db2xml/dtd/getstart.dtd),
0, 'userl', 'userl', 'userl')

* Run the following command file to insert the DTD:
getstart_insertDTD.cmd

Chapter 1. Introduction 13

TSO: Submit the dxxgidtd JCL job.
Creating a DAD file for the XML column:

This section explains how you create a DAD file for the XML column. In the DAD
file, you specify that the access and storage method you are using is XML column.
In the DAD file you define the tables and columns for indexing.

In the following steps, elements in the DAD are referred to as fags and the
elements of your XML document structure are referred to as elements. A sample of
a DAD file similar to the one you will create is in
dxx_install/samples/db2xml/dad/getstart_xcolumn.dad . It has some minor
differences from the file generated in the following steps. If you use it for the lesson,
the file paths might be different than for your environment; the <validation> value is
set to NO, rather than YES.

To create a DAD file for use with XML column:
1. Open a text editor and name the file getstart_xcolumn.dad
All the tags used in the DAD file are case sensitive.
2. Create the DAD header, with the XML and the DOCTYPE declarations.

<?xml version="1.0"7>
<IDOCTYPE DAD SYSTEM "/dxx_install/samples/DB2XML/dtd/dad.dtd ">

The DAD file is an XML document and requires XML declarations.

3. Insert start and end (<DAD> and</DAD>) tags for the document. All other tags
are located inside these tags.

4. Insert start and end (<DTDID> and</DTDID>) tags with a DTD ID to specify a
DTD if the document will be validated:

<dtdid>dxx_install/samples/db2xml/dtd/getstart.dtd</dtdid>

Verify that this string matches the value used as the first parameter value when
you insert the DTD in the DTD repository table. For example, the path that you
use for the DTDID might be different from the string mentioned you inserted in

the DTD reference table if you are working on a different machine drive.

5. Insert start and end (<validation> and </validation>) tags and a keyword YES or
NO to indicate whether you want XML Extender to validate the XML document
structure using the DTD that you inserted into the DTD reference table. For
example:

<validation>YES</validation>

The value of <validation> can be in mixed case.

6. Insert start and end (<Xcolumn> and</Xcolumn>) tags to specify that the
storage method is XML column.

7. Create side tables. For each side table that you want to create:

a. Insert start and end (<table> and </table>) tags for each side table that is to
be generated, and specify the name of the side table in double quotation
marks using the "name=" attribute as shown here:

<Xcolumn>

<table name="order_side_tab">
</table>

<table name="part_side_tab">
</table>

<table name="ship_side_tab">
</table>

</Xcolumn>

14 XML Extender Administration and Programming

b. Inside the table tags, insert a <column> tag for each column that you want
the side table to contain. Each column has four attributes: name, type, path,
and multi_occurrence.

Example:

<table name="person_names">
<column name ="fname"
type="varchar(50)"
path="/person/firstName"
multi_occurrence="N0"/>
<column name ="Iname"
type="varchar(50)"
path="/person/TastName"
multi_occurrence="N0"/>
</table>

Where:
name Specifies the name of the column that is created in the side table.

type Indicates the data type in the side table for each indexed element or
attribute.

path Specifies the location path in the XML document for each element or

attribute to be indexed.

multi_occurrence
Indicates whether the element or attribute referred to by the path
attribute can occur more than once in the XML document. The
possible values for multi_occurrence are YES or NO. If the value is
NO, then you can mention more than one column tag in the side
table. If the value is YES, you can mention only one column in the
side table.

<Xcolumn>
<table name="order_side_tab">
<column name="order_key"
type="integer"
path="/0rder/@key"
multi_occurrence="N0"/>
<column name="customer"
type="varchar(50)"
path="/0Order/Customer/Name"
multi_occurrence="NO0"/>
</table>
<table name="part_side_tab">
<column name="price"
type="decimal (10,2)"
path="/0Order/Part/ExtendedPrice"
multi_occurrence="YES"/>
</table>
<table name="ship_side_tab">
<column name="date"
type="DATE"
path="/0rder/Part/Shipment/ShipDate"
multi_occurrence="YES"/>
</table>
</Xcolumn>

Ensure that you have the necessary end tags:

* Aclosing </Xcolumn> tag after the last </table> tag
* Aclosing </DAD> tag after the </Xcolumn> tag
Save the file with the following name:
getstart_xcolumn.dad

Chapter 1. Introduction 15

You can compare the file that you just created with the sample file,
dxx_install/samples/db2xml/dad/getstart xcolumn.dad . This file is a working
copy of the DAD file required to enable the XML column and create the side tables.
The sample files contain references to files that use absolute path names. Check
the sample files and change these values for your directory paths.

Creating the SALES_TAB table:

In this section you create the SALES_TAB table. Initially, it has two columns with
the sale information for the order.

To create the table:
Enter the following CREATE TABLE statement using one of the following methods:

Command line:
» Enter the following DB2 UDB commands:

DB2 CREATE TABLE SALES_TAB(INVOICE_NUM CHAR(6)
NOT NULL PRIMARY KEY,
SALES_PERSON VARCHAR(20))

* Run the following command file to create the table:
getstart_createTabCol.cmd

TSO: Submit the dxxgctco JCL job.
Adding the column of XML type:

Add a new column to the SALES_TAB table. This column will contain the intact
XML document that you generated earlier and must be of an XML UDT. The XML
Extender provides multiple data types. In this lesson, you will store the document as
XMLVARCHAR.

To add the column of XML type:
Run the SQL ALTER TABLE statement using one of the following three methods:

Command line:
» Enter the following SQL statement:
DB2 ALTER TABLE SALES_TAB ADD \ORDER\ DB2XML.XMLVARCHAR
* Run the following command file to alter the table:
getstart_alterTabCol.cmd

TSO: Submit the dxxgatco JCL job.
Enabling the XML column:

After you create the column of XML type, you enable it for XML Extender. When
you enable the column, XML Extender reads the DAD file and creates the side
tables. Before enabling the column, you must:

» Determine whether you want to create a default view of the XML column, which
contains the XML document joined with the side-table columns. You can specify
the default view when querying the XML document. In this lesson, you will
specify a view with the -v parameter.

16 XML Extender Administration and Programming

» Determine whether you want to specify a primary key as the ROOT ID, the
column name of the primary key in the application table and a unique identifier
that associates all side tables with the application table. If you do not specify a
primary key, XML Extender adds the DXXROOT_ID column to the application
table, and to the side tables.

The ROOT_ID column is used as key to tie the application and side tables
together, which allows the XML Extender to automatically update the side tables
if the XML document is updated. In this lesson, you will specify the name of the
primary key in the command (INVOICE_NUM) with the -r parameter. The XML
Extender will then use the specified column as the ROOT_ID and add the
column to the side tables.

» Determine whether you want to specify a table space or use the default table
space. In this lesson, you will use the default table space.

To enable the column for XML:

Run the dxxadm enable_column command, using one of the following three
methods:

Command line:
» Enter the following command:

dxxadm enable_column -a V81A SALES_TAB ORDER getstart_xcolumn.dad
-v SALES_ORDER_VIEW -r INVOICE_NUM

* Run the following command file to enable the column:
getstartenableCol.cmd

TSO: Submit the dxxgecol JCL job.

The XML Extender creates the side tables with the INVOICE_NUM column and
creates the default view.

Important: Do not modify the side tables in any way. Updates to the side tables
should only be made through updates to the XML document itself. The XML
Extender will automatically update the side tables when you update the XML
document in the XML column.

Viewing the column and side tables:

When you enabled the XML column, you created a view of the XML column and
side tables. You can use this view when working with the XML column.

To view the XML column and side-table columns:

Enter the following SQL SELECT statement from the command line:
odb2 SELECT * FROM SALES_ORDER_VIEW

The view shows the columns in the side tables, as specified in the
getstart_xcolumn.dad file.

Indexing side tables for structural search:

Creating indexes on side tables allows you to do fast structural searches of the
XML document. In this section, you create indexes on key columns in the side
tables that were created when you enabled the XML column, ORDER. The service
department has specified which columns their employees are likely to query most

Chapter 1. Introduction 17

often. describes these columns that you will index.

Table 4. Side-table columns to be indexed

Column Side table
ORDER_KEY ORDER_SIDE_TAB
CUSTOMER ORDER_SIDE_TAB
PRICE PART_SIDE_TAB
DATE SHIP_SIDE_TAB

To index the side tables:

Run the following CREATE INDEX SQL commands using one of the following three
methods:

Command line:
* Enter the following commands:

DB2 CREATE INDEX KEY_IDX
ON ORDER_SIDE_TAB(ORDER_KEY)

DB2 CREATE INDEX CUSTOMER_IDX
ON ORDER_SIDE_TAB(CUSTOMER)

DB2 CREATE INDEX PRICE_IDX
ON PART_SIDE_TAB(PRICE)

DB2 CREATE INDEX DATE_IDX
ON SHIP_SIDE_TAB(DATE)

* Run the following command file to create the indexes:
getstart_createlndex.cmd

TSO: Submit the dxxgcrin JCL job.
Storing the XML document:

Now that you enabled a column that can contain the XML document and indexed
the side tables, you can store the document using the functions that the XML
Extender provides. When storing data in an XML column, you either use default
casting functions or XML Extender UDFs. Because you will be storing an object of
the base type VARCHAR in a column of the XML UDT XMLVARCHAR, you will use
the default casting function.

To store the XML document:

1. Open the XML document dxx_install/samples/db2xm1/xml1/getstart.xml
Ensure that the file path in the DOCTYPE matches the DTD ID specified in the
DAD and when inserting the DTD in the DTD repository. You can verify they
match by querying the DB2XML.DTD_REF table and by checking the DTDID
element in the DAD file. If you are using a different drive and directory structure
than the default, you need to change the path in the DOCTYPE declaration to
match your directory structure.

2. Run the SQL INSERT command, using one of the following methods:
Command line:
* Enter the following SQL INSERT command:

18 XML Extender Administration and Programming

DB2 INSERT INTO SALES TAB (INVOICE_NUM, SALES_PERSON, ORDER) VALUES
('123456', 'Sriram Srinivasan', DB2XML.XMLVarcharFromFile
('dxx_install/samples/db2xml1/

/xml/getstart.xml '))

* Run the following command file to store the document:

getstart_insertXML.cmd
TSO: Submit the dxxgixml JCL job.

Verify that the tables have been updated. Run the following SELECT statements for
the tables from the command line.

SELECT * FROM SALES_TAB

SELECT * FROM PART_SIDE_TAB
SELECT * FROM ORDER_SIDE_TAB
SELECT * FROM SHIP_SIDE_TAB

Querying the XML document:

You can search the XML document with a direct query against the side tables. In
this step, you will search for all orders that have a price over 2500.00.

To query the side tables:

Run the SQL SELECT statement, using one of the following methods:
* Run QueryCol.sql

Command line: Either:
» Enter the following SQL SELECT statement:

DB2 "SELECT DISTINCT SALES_PERSON FROM SALES_TAB S,
PART_SIDE_TAB P WHERE PRICE > 2500.00
AND S.INVOICE_NUM=P.INVOICE_NUM"

* Run the following command file to search the document:
getstart_queryCol.cmd
¢ TSO: Submit the dxxgcqol JCL job.

The result set should show the names of the salespeople who sold an item that had
a price greater than 2500.00.

You have completed the getting started tutorial for storing XML documents in DB2
UDB tables. For Example:

SALES_PERSON

Sriram Srinivasan

Related concepts:

* |“Introduction to XML Extender” on pagﬁl

* [“Lesson: Composing an XML document” on page 20|
+ XML Extender tutorial lessons” on page 7|

Chapter 1. Introduction 19

Lesson: Composing an XML document

This lesson teaches you how to compose an XML document from existing DB2®

data.

The scenario:

You have the task of taking information in an existing purchase order database,
SALES_DB, and extracting requested information from it to be stored in XML
documents. The service department will then use these XML documents when
working with customer requests and complaints. The service department has
requested specific data to be included and has provided a recommended structure

for the XML documents.

Using existing data, you will compose an XML document, getstart.xml, from data

in these tables.

To compose an XML document, you will plan and create a DAD file that maps
columns from the related tables to an XML document structure that provides a
purchase order record. Because this document is composed from multiple tables,
you will create an XML collection and associate these tables with an XML structure
and a DTD. You use this DTD to define the structure of the XML document. You can
also use it to validate the composed XML document in your applications.

The existing database data for the XML document is described in the following
tables. The column names with an asterisk are columns that the service department
has requested in the XML document structure.

ORDER_TAB

Column name Data type
ORDER_KEY * INTEGER
CUSTOMER VARCHAR(16)
CUSTOMER_NAME * VARCHAR(16)
CUSTOMER_EMAIL * VARCHAR(16)
PART_TAB

Column name Data type
PART_KEY * INTEGER
COLOR * CHAR(6)
QUANTITY * INTEGER
PRICE * DECIMAL(10,2)
TAX * REAL
ORDER_KEY INTEGER
SHIP_TAB

Column name Data type
DATE * DATE

MODE * CHAR(6)

20 XML Extender Administration and Programming

Column name Data type

COMMENT VARCHAR(128)
PART_KEY INTEGER
Planning:

Before you use the XML Extender to compose your documents, you need to
determine the structure of the XML document and how it corresponds to the
structure of your database data. This section provides an overview of the XML
document structure that the service department requested, and the DTD that you
will use to define the structure of the XML document. This section also shows how
this document maps to the columns that contain the data used to populate the
documents.

Determining the document structure:

The XML document structure takes information for a specific order from multiple
tables and creates an XML document for the order. These tables each contain
related information about the order and can be joined on their key columns. The
service department wants a document that is structured by the order number as the
top level, and then customer, part, and shipping information. The service
department wants the document structure to be intuitive and flexible, with elements
that describe the data rather than the structure of the document. (For example, the
customer’s name should be in an element called “customer,” rather than a
paragraph.)

After you design the document structure, you create a DTD to describe the
structure of the XML document. This lesson provides an XML document and a DTD
for you. Using the rules of the DTD, and the hierarchical structure of the XML
document, you can create a hierarchical map of your data, as shown in
-pae 22,

Chapter 1. Introduction 21

DTD

<?xml encoding="ibm-1047"?>
<IELEMENT Order (Customer, Part+)>
<IATTLIST Order key CDATA #REQUIRED>
<IELEMENT Customer (Name, Email)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Email (#PCDATA)>

<IELEMENT key (#PCDATA)>

<IELEMENT Quantity (#PCDATA)>
<IELEMENT ExtendedPrice (#PCDATA)>
<IELEMENT Tax (#PCDATA)>

<IATTLIST Part color CDATA #REQUIRED>
<IELEMENT Shipment (ShipDate, ShipMode)>
<IELEMENT ShipDate (#PCDATA)>
<IELEMENT ShipMode (#PCDATA)>

<IELEMENT Part (key,Quantity,ExtendedPrice, Tax, Shipment+)>

Raw data

<?xml version="1.0"?>
<IDOCTYPE Order SYSTEM
"dxx_install samples/dtd/getstart.dtd">
<Order key="1">
<Customer>
<Name>American Motors</Name>
<Email>parts @am.com</Email>
</Customer>
<Part color="black ">
<key>68</key>
<Quantity>36</Quantity>
<ExtendedPrice>34850.16</ExtendedPrice>
<Tax>6.000000e-02</Tax>

</Part>
</Order>

<>

(e |

(American Moto@ (parts@am.com)

Part

|
| [ExtendedPrice | |

Tax |

|
| Key| [Quantity
I [

(black) (e8) (36)

(34,850.16) (o.loz)

[shipDate | [ShipMode]|

[
((1998-08-19) (_Boat)

Q:Attribute

l:l:Element

C):Value

Figure 2. The hierarchical structure of the DTD and XML document

Mapping the XML document and database relationship:

After you design the structure and create the DTD, you need to show how the
structure of the document relates to the DB2 UDB tables that you will use to
populate the elements and attributes. You can map the hierarchical structure to
specific columns in the relational tables, as shown in [Figure 3 on page 23.

22 XML Extender Administration and Programming

element_node
Order

!
v v

attribute_node element_node element_node
Key Customer Part
order_key ¢
element_node element_node
Name Email

text_node text_node
customer_name| customer_email

attribute_node element_node element_node
Color Quantity Tax
color text_node
element_node element_node tax | |element_node
Key ExtendedPrice Shipment

text_node

_text_node

!
element_node| |element_node
ShipDate ShipMode

—text_node

I:I Names of columns in DB2 tables

Figure 3. XML document mapped to relational table columns

This figure uses nodes to show elements, attributes, and text within the XML
document structure. These nodes are used in the DAD file and are explained more
fully in later steps.

Use this relationship description to create DAD files that define the relationship
between the relational data and the XML document structure.

To create the XML collection DAD file, you need to understand how the XML
document corresponds to the database structure, as described in [Figure 3 so that
you can describe from what tables and columns the XML document structure
derives data for elements and attributes. You will use this information to create the
DAD file for the XML collection.

The scripts and samples:

This lesson provides a set of scripts for you to use to set up your environment.
These scripts are in the dxx_install/samples/db2xml/xml directory (where
dxx_install is the directory in USS where the sample DTD, DAD, and XML

files are located).

The scripts are:

Chapter 1. Introduction 23

lists the USS and JCL samples that are provided to complete the getting
started tasks.

Table 5. List of the XML collection lesson samples

Role Description USS command files JCL file

administrator Creates and Getstart_db.cmd dxxgdb
populates the tables
used for the lesson

administrator Binds and enables | Getstart_prep.cmd dxxgprep
the database

administrator Run a stored Getstart_stp.cmd dxxgstp
procedure to
compose an XML

document

administrator Exports a generated | Getstart_export.cmd dxxgexml
XML document from
DB2

administrator Cleanup the Getstart_clean.cmd dxxgclen

environment

Important: If you completed the XML column lesson and did not clean up your
environment, you might be able to skip this step. Check to see if you have a
SALES_DB database.

To create the database:
1. Ensure that the database server was enabled by the DB2 administrator.

2. Change to the dxx_install/samples/db2xm1/xm1 directory, where dxx_install
is the directory in USS where the sample DTD, DAD, and XML files are
Tocated. The sample files contain references to files that use absolute path
names. Check the sample files and change these values for your directory
paths.

3. Run the create database command file, using one of the following methods:
odb2 command line: Enter the following command:
getstart_db.cmd

TSO: Submit the dxxgdb JCL job.

To store XML information in the database, you need to enable it for the XML
Extender. When you enable a database for XML, the XML Extender:

» Creates the user-defined types (UDTs), user-defined functions (UDFs), and
stored procedures.

» Creates and populates control tables with the necessary metadata that the XML
Extender requires.

Important: If you completed the XML column lesson and did not clean up your
environment, you might be able skip this step.

To enable the database for XML, use one of the following methods:

Creating the DAD file for the XML collection:

24 XML Extender Administration and Programming

Because the data already exists in multiple tables, you will create an XML
collection, which associates the tables with the XML document. You define the
collection by creating a DAD file.

In this section, you create the mapping scheme in the DAD file that specifies the
relationship between the tables and the structure of the XML document.

In the following steps, elements in the DAD are referred to as fags and the
elements of your XML document structure are referred to as elements. A sample of
a DAD file similar to the one you will create is in
dxx_install/samples/db2xm1/dad/getstart_xcollection.dad.

It has some minor differences from the file generated in the following steps. If you
use it for the lesson, note that the file paths might be different than in your
environment and you might need to update the sample file.

To create the DAD file for composing an XML document:

1. From the dxx_install/samples/db2xm1/xm1 directory, open a text editor and
create a file called getstart_xcollection.dad.

2. Create the DAD header, using the following text:

<?xml version="1.0"7>
<IDOCTYPE DAD SYSTEM "dxx_install/samples/db2xm1/dtd/dad.dtd">

Change dxx_install to the directory where DB2 XML Extender was installed.
3. Insert the <DAD></DAD> tags. All other tags are located inside these tags.

4. Specify <validation> </validation> tags to indicate whether the XML Extender
validates the XML document structure when you insert a DTD into the DTD
repository table. This lesson does not require a DTD and the value is NO.

<validation>NO</validation>

The value of the <validation> tags can be mixed case.

5. Use the <Xcollection></Xcollection> tags to define the access and storage
method as XML collection. The access and storage methods define that the
XML data is stored in a collection of DB2 UDB tables.

<Xcollection>
</Xcollection>

6. After the <Xcollection> tag, provide an SQL statement to specify the tables and
columns used for the XML collection. This method is called SQL mapping and
is one of two ways to map relational data to the XML document structure.
Enter the following statement:

<Xcollection
<SQL_stmt>
SELECT o.order_key, customer_name, customer_email, p.part_key, color,
quantity, price, tax, ship_id, date, mode from order_tab o, part_tab p,
table (select substr(char(timestamp(db2xml.generate unique())),16)
as ship_id, date, mode, part_key from ship_tab) s
WHERE o.order_key = 1 and
p.price > 20000 and
p.order_key = o.order_key and
s.part_key = p.part_key
ORDER BY order_key, part_key, ship_id
</SQL_stmt>
</Xcollection>

This SQL statement uses the following guidelines when using SQL mapping.
See [Figure 3 on page 23| for the document structure.

Chapter 1. Introduction 25

» Columns are specified in top-down order, by the hierarchy of the XML
document structure. For example, the columns for the order and customer
elements are first, those for the part element are second, and those for the
shipment are third.

* The columns for a repeating section, or nonrepeating section, of the
template that requires data from the database are grouped together. Each
group has an object ID column: ORDER_KEY, PART_KEY, and SHIP_ID.

» The object ID column is the first column in each group. For example,
O.ORDER_KEY precedes the columns related to the key attribute and
p.PART_KEY precedes the columns for the Part element.

* The SHIP_TAB table does not have a single key conditional column, and
therefore, the generate_unique user-defined function is used to generate the
SHIP_ID column.

* The object ID columns are then listed in top-down order in an ORDER BY
statement. The columns in ORDER BY are not qualified by any schema and
table name, and they match the column names in the SELECT clause.

7. Add the following prolog information to be used in the composed XML
document:

<prolog>?xml version="1.0"?</prolog>

This exact text is required for all DAD files.

8. Add the <doctype></doctype> tags to be used in the XML document you are
composing. The <doctype> tag contains the path to the DTD stored on the
client.
<doctype>!DOCTYPE Order SYSTEM
"dxx_install/samples/db2xm1/dtd/getstart.dtd"</doctype>

9. Define the root element of the XML document using the
<root_node></root_node> tags. Inside the root_node, specify the elements and
attributes that make up the XML document.

10. Map the XML document structure to the DB2 UDB relational table structure
using the following three types of nodes:

element_node
Specifies the element in the XML document. Element_nodes can have
child element_nodes.

attribute_node
Specifies the attribute of an element in the XML document.

text_node
Specifies the text content of the element and the column data in a
relational table for bottom-level element_nodes.

[Figure 3 on page 23|shows the hierarchical structure of the XML document
and the DB2 UDB table columns, and indicates what kinds of nodes are used.
The shaded boxes indicate the DB2 UDB table column names from which the
data will be extracted to compose the XML document.

To add each type of node, one type at a time:
a. Define an <element_node> tag for each element in the XML document.

<root_node>
<element_node name="Order">
<element_node name="Customer">
<element_node name="Name">
</element_node>
<element_node name="Email">
</element_node>
</element_node>

26 XML Extender Administration and Programming

<element_node name="Part">
<element_node name="key">
</element_node>
<element_node name="Quantity">
</element_node>
<element_node name="ExtendedPrice">
</element_node>
<element_node name="Tax">
</element_node>
<element_node name="Shipment" multi_occurrence="YES">
<element_node name="ShipDate">
</element_node>
<element_node name="ShipMode">
</element_node>
</element_node> <!-- end Shipment -->
</element_node> <!-- end Part -->
</element _node> <!-- end Order -->
</root_node>

The <Shipment> child element has an attribute of multi_occurrence=YES.
This attribute is used for elements without an attribute, that are repeated in
the document. The <Part> element does not use the multi-occurrence
attribute because it has an attribute of color, which makes it unique.

Define an <attribute_node> tag for each attribute in your XML document.
These attributes are nested in the appropriate element_node. The added
attribute_nodes are highlighted in bold:

<root_node>
<element_node name="Order">
<attribute_node name="key">
</attribute_node>
<element_node name="Customer">
<element_node name="Name">
</element_node>
<element_node names"Email">
</element_node>
</element_node>
<element_node name="Part">
<attribute_node name="color">
</attribute_node>
<element_node name="key">
</element_node>
<element_node name="Quantity">
</element_node>

</element_node> <!-- end Part -->
</element _node> <!-- end Order -->
</root_node>

For each bottom-level element_node, define <text_node> tags to indicate
that the XML element contains character data to be extracted from DB2
UDB when the document is composed.

<root_node>
<element_node name="Order">
<attribute_node name="key">
</attribute_node>
<element_node name="Customer">
<element_node name="Name">
<text_node>
</text_node>
</element_node>
<element_node name="Email">
<text_node>
</text_node>

Chapter 1. Introduction 27

28

</element_node>
</element_node>
<element_node name="Part'">
<attribute_node name="color">
</attribute_node>
<element_node name="key">
<text_node>
</text_node>
</element_node>
<element_node name="Quantity">
<text_node>
</text_node>
</element_node>
<element_node name="ExtendedPrice">
<text_node>
</text_node>
</element_node>
<element_node name="Tax">
<text_node>
</text_node>
</element_node>
<element_node name="Shipment" multi_occurrence="YES">
<element_node name="ShipDate">
<text_node>
</text_node>
</element_node>
<element_node name="ShipMode">
<text_node>
</text_node>
</element_node>
</element_node> <!-- end Shipment -->
</element_node> <!-- end Part -->
</element_node> <!-- end Order -->
</root_node>

For each bottom-level element_node, define a <column/> tag. These tags
specify from which column to extract data when composing the XML
document and are typically inside the <attribute_node> or the <text_node>
tags. The columns defined in the <column/> tag must be in the
<SQL_stmt> SELECT clause.

<root_node>
<element_node name="Order">
<attribute_node name="key">
<column name="order_key"/>
</attribute_node>
<element_node name="Customer">
<element_node name="Name">
<text_node>
<column name="customer_name"/>
</text_node>
</element_node>
<element_node name="Email">
<text_node>
<column name="customer_email"/>
</text_node>
</element_node>
</element_node>
<element_node name="Part">
<attribute_node name="color">
<column name="color"/>
</attribute_node>
<element_node name="key">
<text_node>
<column name="part_key"/>
</text_node>
<element_node name="Quantity">

XML Extender Administration and Programming

<text_node>
<column name="quantity"/>
</text_node>
</element_node>
<element_node name="ExtendedPrice">
<text_node>
<column name="price"/>
</text_node>
</element_node>
<element_node name="Tax">
<text_node>
<column name="tax"/>
</text_node>
</element_node>
<element_node name="Shipment" multi_occurrence="YES">
<element_node name="ShipDate">
<text_node>
<column name="date"/>
</text_node>
</element_node>
<element_node name="ShipMode">
<text_node>
<column name="mode" />
</text_node>
</element_node>
</element_node> <!-- end Shipment -->
</element_node> <!-- end Part -->
</element_node> <!-- end Order -->
</root_node>

11. Ensure that you have the necessary end tags:
* An ending </root_node> tag after the last </element_node> tag
* An ending </Xcollection> tag after the </root_node> tag
* An ending </DAD> tag after the </Xcollection> tag

12. Save the file as getstart_xcollection.dad.

You can compare the file that you created with the sample file
dxx_install/samples/db2xm1/dad/getstart_xcollection.dad . This file is a working
copy of the DAD file required to compose the XML document. The sample file
contains location paths and file path names that might need to be changed to
match your environment to be run successfully.

In your application, if you will use an XML collection frequently to compose
documents, you can define a collection name by enabling the collection. Enabling
the collection registers it in the XML_USAGE table and helps improve performance
when you specify the collection name (rather than the DAD file name) when running
stored procedures. In these lessons, you do not enable the collection.

Composing the XML document:

In this step, you use the dxxGenXML() stored procedure to compose the XML
document specified by the DAD file. This stored procedure returns the document as
an XMLVARCHAR UDT.

To compose the XML document:

1. Use one of the following methods to call the dxxGenXML stored procedure:
Command line: Enter the following command:
getstart_stp.cmd
TSO: Submit the dxxgstp JCL job.

Chapter 1. Introduction 29

The stored procedure composes the XML document and stores it in the
RESULT_TAB table.

You can see samples of stored procedures that can be used in this step in the
following files:

* dxx_install/samples/db2xm1/c/tests2x.sqc shows how to call the stored
procedure using embedded SQL and generates the tests2x executable file,
which is used by the getstart_stp.cmd.

* dxx_install/samples/db2xm1/c1i/sq12xml.c dxxsamples/c1i/sql2xml.cshows
how to call the stored procedure using the CLI.

2. Export the XML document from the table to a file using one of the following
methods to call the XML Extender retrieval function, Content():

Command line:
* Enter the following commands:

DB2 SELECT DB2XML.Content (DB2XML.xmlVarchar(doc),
"dxx_install/samplesdb2xml/cmd/xml1/getstart.xml
') FROM RESULT_TAB

* Run the following command file to export the file:

getstart_exportXML.cmd
TSO: Submit the DXXGEXML JCL job.

Tip: This step teaches you how to generate one or more composed XML
documents using DB2 UDB stored procedure’s result set feature. Using a result set
allows you to fetch multiple rows to generate more than one document. When you
generate each document, you can export it to a file. This method is the simplest
way to demonstrate using result sets. For more efficient ways of fetching data, see
the CLI examples in dxx_install/samples/db2xm1/c11.

Transforming an XML document into an HTML file:

To show the data from the XML document in a browser, you must transform the
XML document into an HTML file by using a stylesheet and the XSLTransformToFile
function.

Use the following steps to transform to an HTML file:
1. Generate a stylesheet:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmins:xs1="http://www.w3.0rg/1999/XSL/Transform">

<xsl:template match="/">
<htm1>
<head/>
<body>

</body>
</html>
</xsl:template>
</xsl:stylesheet>

2. For each element, create a tag using the following format:
<xsl:for-each select="xxxxxx">

This tag will be used for transforming instructions. Create a tag for each
element of the hierarchy of the XML document. For example:

30 XML Extender Administration and Programming

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmins:xs1="http://www.w3.0rg/1999/XSL/Transform">

<xsl:template match="/">
<html>
<head/>
<body>

<xs1:for-each select="0Order">

<xs1:for-each select="Customer">
<xs1:for-each select="Name | Email">
</xs1:for-each>
</xs1:for-each>
<xsl:for-each select="Part">
<xsl:for-each select="key | Quantity | ExtendedPrice | Tax">
</xs1:for-each>

<xs1:for-each select="Shipment">
<xs1:for-each select="ShipDate | ShipMode">
</xs1:for-each>
</xs1:for-each>
</xs1:for-each>
</xs1:for-each>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

To format the HTML file, use a list that shows the hierarchy of the XML
elements to make the data more readable. Create some additional text

elements to describe the data. For example, your stylesheet file might look like

this:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmins:xs1="http://www.w3.0rg/1999/XSL/Transform">

<xsl:template match="/">
<html>
<head/>
<body>

<0l style="list-style:decimal outside">
<xs1:for-each select="Order">
<1i> Orderkey : <xsl:value-of-select="@key"/

<xsl:for-each select="Customer">
Customer

<xs1:for-each select="Name | Email">
<xs1:value-of select="name()"/>
<xsl:text> : </xsl:text>
<xs1:value-of select="."/>
<xsl:text>, </xsl:text>
</xs1:for-each>
</xs1:for-each>

<ol type="A">
<xsl:for-each select="Part">
Parts

Color : <xsl:value-of select="@color"/>
<xsl:text>, </xsl:text>

<xsl:for-each select="key | Quantity | ExtendedPrice | Tax">
<xs1:value-of select="name()"/>
<xsl:text> : </xsl:text>

Chapter 1. Introduction

31

32

<xsl:value-of select="."/>
<xsl:text>, </xsl:text>
</xs1:for-each>

<ol type="a">
<xsl:for-each select="Shipment">
<1i>Shipment

<xs1:for-each select="ShipDate | ShipMode">
<xs1:value-of select="name()"/>
<xsl:text> : </xsl:text>
<xsl:value-of select="."/>
<xsl:text>, </xsl:text>
</xs1:for-each>
</1i>
</xs1:for-each>

</1i>
</xs1:for-each>

</1i>
</xs1:for-each>

</body>
</html>
</xsl:template>
</xsl:stylesheet>

4. Use Xpath to edit the <xsl:value-of select="xxx"> tags with data from the XML
document.

The element tags are <xsl:value-of select”.”>, where the period (".") is used to
get data from normal elements.

The attribute tags are <xsl:value-of select="@attributname”> , where the
ampersand (@) that is added by the attribute name will extract the value of the
attribute. You can use the <xsl:value-of select="name()"> to get the name of the
XML tag.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmins:xs1="http://www.w3.0rg/1999/XSL/Transform">

<xsl:template match="/">
<html>
<head/>
<body>

<ol style="list-style:decimal outside">
<xs1:for-each select="Order">
<1i> Orderkey : <xsl:value-of-select="@key"/

<xsl:for-each select="Customer">
Customer

<xs1:for-each select="Name | Email">
<xs1:value-of select="name()"/>
<xsl:text> : </xsl:text>
<xsl:value-of select="."/>
<xsl:text>, </xsl:text>
</xs1:for-each>
</xs1:for-each>

<ol type="A">
<xsl:for-each select="Part">
Parts

Color : <xsl:value-of select="@color"/>
<xsl:text>, </xsl:text>

XML Extender Administration and Programming

<xs1:for-each select="key | Quantity | ExtendedPrice | Tax">
<xs1:value-of select="name()"/>
<xsl:text> : </xsl:text>
<xsl:value-of select="."/>
<xsl:text>, </xsl:text>
</xs1:for-each>

<ol type="a">
<xs1:for-each select="Shipment">
<1i>Shipment

<xs1:for-each select="ShipDate | ShipMode">
<xsl:value-of select="name()"/>
<xsl:text> : </xsl:text>
<xsl:value-of select="."/>
<xsl:text>, </xsl:text>
</xs1:for-each>
</1i>
</xs1:for-each>

</1i>
</xs1:for-each>
</o1>
</1i>
</xs1:for-each>

</body>
</html>
</xs1:template>
</xsl:stylesheet>

5. Save the stylesheet.
6. Create the HTML file in one of the following ways:
* Use the XSLTransformToFile:

SELECT XSLTransformToFile(CAST(doc AS CLOB(4k)),
"dxx_install\samples\xslt\getstart.xs1',
"dxx_install\samples\html\getstart.html")
FROM RESULT_TAB

* Use the following command:
Getstart_xsl1t.cmd

The output file can be written only to a file system that is accessible to the DB2
UDB server.

Cleaning up the tutorial environment:

If you want to clean up the lesson environment, you can run one of the provided
scripts or enter the commands from the command line to:

e Disable the XML column, ORDER.
» Drop tables created in the lessons.
* Delete the DTD from the DTD repository table.

They do not disable or drop the SALES_DB database; the database is still available
for use with XML Extender. You might receive error messages if you have not
completed both lessons in this chapter. You can ignore these errors.

To clean up the tutorial environment:

Run the cleanup command file, using one of the following methods:
+ Command line: Enter the following command:

Chapter 1. Introduction 33

getstart_clean.cmd
TSO: Submit the dxxgclen JCL job.

» |If you want to disable the server, you can run the following XML Extender
command from the command line:

dxxadm disable_server -a V81A

This command drops the administration control tables DTD_REF and
XML_USAGE, and removes the user-defined types and functions provided by
XML Extender.

Related concepts:

+ [‘Introduction to XML Extender” on page 3

» |‘Lesson: Storing an XML document in an XML column” on page 8|
« XML Extender tutorial lessons” on page 7|

34 XML Extender Administration and Programming

Part 2. Administration

This part describes how to perform administration tasks for the XML Extender.

© Copyright IBM Corp. 1999, 2004

35

36 XML Extender Administration and Programming

Chapter 2. Administration

Administration tools for XML Extender

The XML Extender administration tools help you enable your database and table
columns for XML, and map XML data to DB2® relational structures. The XML
Extender provides the following command line tool and programming interfaces for
administration tasks that you can use.

XML Extender provides a command line tool and programming interfaces for
administration tasks.

+ The dxxadm command can be run from UNIX® System Services (USS) or from
the TSO command line.

» JCL based on samples provided in the SDXXJCL data set

XML Extender also provides the following tools to complete administration tasks:
» The XML Extender administration wizard provides a graphical user interface for
administration tasks.

* The XML Extender administration stored procedures allow you to invoke
administration commands from a program.

Preparing to administer XML Extender

To run XML Extender, you need to install the following software.

Required software: The XML Extender requires DB2® Universal Database for zZOS
Version 8.

Optional software:

* For structural text search, the DB2 Universal Database Text Extender Version 8,
which is available with DB2 Universal Database Version 8

* For XML Extender administration wizard:
— DB2 Universal Database Java Database Connectivity (JDBC)
— JDK 1.1.7 or JRE 1.1.1, which is available with the DB2 UDB Control Center
— JFC 1.1 with Swing 1.1, which is available with the DB2 UDB Control Center

Before you install XML Extender, you must complete following tasks:
* View the set up instructions.
» Create a database for XML access.

To perform administration tasks using XML Extender, you must have DB2ADM
authority.

Migrating XML Extender from Version 7 to Version 8

If you use XML Extender Version 7, you must migrate each serverthat is enabled for
XML Extender before you use an existing XML-enabled database with XML
Extender Version 8.

The migration program executes various steps depending on the base level of XML
Extender that you have. Steps that the migration program might execute are:

© Copyright IBM Corp. 1999, 2004 37

* Create XMLDBCLOB user-defined types (UDTs) and user-defined functions
(UDFs) for use with Unicode and DBCS databases

e Create new user-defined functions for Schema and DTD validation and XSLT
function.

» Create new stored procedures (dxxGenXMLCLOB and dxxRetrieveXMLCLOB)
that return CLOBs.

» Drop and re-create the user-defined functions UDFs that allow you to use the
parallel capability for the scalar UDFs.

When calling stored procedures, use a period (.) instead of an explanation point (!)
in the procedure name. For example, use db2xml.dxxEnableColumn instead of
db2xmildxxEnableColumn.

Procedure:

To migrate an XML enabled server and XML enabled columns:

1. Install DB2 UDB XML Extender Version 8.1.

2. Re-bind the XML Extender packages by running DXXRBIND.

3. Update the UDFs and stored procedures by running DXXMIGRA.

To manually migrate columns enabled for XML extender:

1. Retrieve the DAD file that is used to enable a column from the
DB2XML.XML_USAGE table before you disable any columns.

XML Extender administration planning

The XML Extender provides several methods for administration: XML Extender
administration command and XML Extender stored procedures. You can also use
the XML Extender administration wizard, if you have XML Extender installed on a
client workstation.

* The administration command, dxxadm, provides subcommands for the various
administration tasks.

« Administration tasks can be executed by calling stored procedures for
administration from a program.

* The XML Extender administration wizard guides you through the administration
tasks. You can use it from a client workstation to perform these tasks.

When you plan an application that uses XML documents, you first decide whether
you will:

» Compose XML documents from data in the database.

+ Store existing XML documents. If you will store XML documents, you must also
decide if you want them to be stored as intact XML documents in a column or
decomposed into regular DB2® data.

After you make this decision, you can then decide:

* Whether to validate your XML documents

* Whether to index XML column data for fast search and retrieval

* How to map the structure of the XML document to DB2 UDB relational tables

38 XML Extender Administration and Programming

Setting up the administration wizard

The XML Extender administration tasks consist of enabling your database columns
for XML and mapping XML data to DB2 UDB relational structures. You can use the
XML Extender wizard to complete these administration tasks. This chapter explains
how you can set up and invoke the administration wizard. You can invoke the
wizard either through the Windows Start menu or from a command line prompt.

Prerequisites:

Before you set up the wizard, you must install and configure the administration
wizard as explained in the README file for your operating system. You must
include the required class files in your CLASSPATH environment variable.

With the exception of the line breaks, ensure that the CLASSPATH environment
variable looks similar to the following example:

.;C:\java\db2java.zip;C:\java\runtime.zip;C:\java\sqlj.zip;
C:\dxx_installtools\dxxadmin.jar;C:\dxx_install\bin\dxxadmin.cmd;
C:\dxx_installtools\html\dxxahelp*.htm;C:\java\jdk\lib\classes.zip;
C:\java\swingall.jar

Where dxx_install is the install directory.
Procedure:

To set up the XML Extender Administration wizard:

1. Invoke the wizard using the JDK. You can use either the Java Development Kit

or the Java Runtime Environment (JRE).
* To use the JRE, enter:

jre -classpath classpath com.ibm.dxx.admin.Admin
* To use the JDK, enter:

java -classpath classpath com.ibm.dxx.admin.Admin
Where classpath specifies the %CLASSPATH% environment variable that
specifies where the administration wizard class files are located. When using
this option, your system CLASSPATH variable must point to the

dxx_install/tools directory, which contains the following files: dxxadmin. jar,
xml4j.jar, and db2java.zip. For example:

java -classpath %CLASSPATH% com.ibm.dxx.admin.Admin

classpath can also specify an override of the %CLASSPATH% environment
variable with pointers to files in the dxx_install/dxxadmin directory, from which
you are running the XML Extender administration wizard. For example:

java -classpath dxxadmin.jar;xml4j.jar;db2java.zip com.ibm.dxx.admin.Admin
url=jdbc:db2:mydb2 userid=db2xml password=db2xml
driver=COM.ibm.db2.jdbc.app.DB2Driver

2. From the Logon window, log on to the database that you want to use to work
with XML data.

3. In the Address field, type the fully-qualified JDBC URL to the data source to
which you are connecting. The address has the following syntax:

jdbc:db2:database_name

Where database_name is the database to which you are connecting and storing
XML documents.

Chapter 2. Administration 39

For example:
jdbc:db2:sales_db

4. In the User ID and Password fields, type or verify the DB2 UDB user ID and
password for the database to which you are connecting.

5. In the JDBC Driver field, verify the JDBC driver name for the specified address
using the following values:

COM.ibm.db2.jdbc.app.DB2DRIVER
6. Click Finish. Invoke the wizard and advance to the LaunchPad window.

After you complete this procedure you can invoke the wizard in the LaunchPad
window. With the wizard, you can perform the following functions:

* Enable a server.

* Add a DTD to the DTD repository.
* Work with XML columns.

* Work with XML collections.

Access and storage methods

The XML Extender provides two access and storage methods to use DB2® as an
XML repository: XML column and XML collection. You need to decide which of
these methods best matches your application’s needs for accessing and
manipulating XML data.

XML column
Stores and retrieves entire XML documents as DB2 UDB column data. The
XML data is represented by an XML column.

XML collection
Decomposes XML documents into a collection of relational tables or
composes XML documents from a collection of relational tables.

The nature of your application determines which access and storage method is
most suitable, and how to structure your XML data.

You use the DAD file to associate XML data with DB2 UDB tables through these
two access and storage methods. [Figure 4 on page 41|shows how the DAD
specifies the access and storage methods.

40 XML Extender Administration and Programming

XML document

<?2xmli?> Il

<IDOCTYPE...>

DAD

<Xcolumn>

DB2

<Order key="1">

</Order>

XML document

<?xml?> :

» <table>

<column>
<column>
<column>

</table>
</Xcolumn>

DAD

<Xc:ollection> Il

<IDOCTYPE...>~

p <table>

Y

<column>
_ </table>

<Order key="1">

<

<

<table>
> <column> ¢ >

</table>
</Xcollection>

A

</Order>

Figure 4. The DAD file maps the XML document structure to a DB2 UDB relational data
structure and specifies the access and storage method.

The DAD file defines the location of key files like the DTD, and specifies how the
XML document structure relates to your DB2 UDB data. Most important, it defines
the access and storage method that you use in your application.

Related concepts:

“When to use the XML column method” on page 41|

“When to use the XML collection method” on page 42|

Related reference:
» |“Storage functions in XML Extender overview” on page 13§

When to use the XML column method

Use XML columns in any of the following situations:

The XML documents already exist or come from an external source and you
prefer to store the documents in the native XML format. You want to store them
in DB2® for integrity, archival, and auditing purposes.

The XML documents are read frequently, but not updated.

You want to use file name data types to store the XML documents (external to
DB2 UDB) in the local or remote file system and use DB2 UDB for management
and search operations.

You need to perform range searches based on the values of XML elements or
attributes, and you know what elements or attributes will frequently be used in
the search arguments.

The documents have elements with large text blocks and you want to use the
DB2 UDB Text Extender for structural text search while keeping the entire
documents intact.

Chapter 2. Administration 41

When to use the XML collection method

Use XML collections in any of the following situations:

You have data in your existing relational tables and you want to compose XML
documents based on a certain DTD.

You have XML documents that need to be stored with collections of data that
map well to relational tables.

You want to create different views of your relational data using different mapping
schemes.

You have XML documents that come from other data sources. You care about
the data but not the tags, and want to store pure data in your database and you
want the flexibility to decide whether to store the data in existing tables or in new
tables.

Planning for XML columns

Before you begin working with the XML Extender to store your documents, you
need to understand the structure of the XML document so that you can determine
how to index elements and attributes in the document. When planning how to index
the document, you need to determine:

The XML user-defined type in which you will store the XML document

The XML elements and attributes that your application will frequently search, so
that their content can be stored in side tables and indexed to improve
performance

Whether to validate XML documents in the column with a DTD
The structure of the side tables and how they will be indexed

XML data types for the XML columns

The XML Extender provides XML user defined types that you use to define a
column to hold XML documents. These data types are described in|Table 6.

Table 6. The XML Extender UDTs

User-defined type column Source data type Usage description

XMLVARCHAR VARCHAR(varchar_len) Stores an entire XML

document as a VARCHAR
data type within DB2. Used
for small documents that are
stored in DB2.

XMLCLOB CLOB(clob_len) Stores an entire XML

document as a CLOB data
type within DB2. Used for
large documents that are
stored in DB2.

XMLFILE VARCHAR(512) Stores the file name of an

XML document in DB2, and
stores the XML document in a
file local to the DB2® server.
Used for documents that are
stored outside DB2.

42 XML Extender Administration and Programming

Elements and attributes to index for XML columns

When you understand the XML document structure and the needs of your
application, you can determine which elements and attributes will be searched or
extracted most frequently, or those that will be the most expensive to query. The
DAD file for an XML column can map the location paths of each element and
attribute to relational tables (side tables) that contain these objects. The side tables
are then indexed.

For example, shows an example of types of data and location paths of
elements and attributes from the Getting Started scenario for XML columns. The
data was specified as information to be frequently searched and the location paths
point to elements and attributes that contain the data. The DAD file can map these
location paths to side tables.

Table 7. Elements and attributes to be searched

Data Location path

order key /Order/@key

customer /Order/Customer/Name

price /Order/Part/ExtendedPrice
shipping date /Order/Part/Shipment/ShipDate

The DAD file for XML columns

For XML columns, the DAD file primarily specifies how documents that are stored in
an XML column are to be indexed. The DAD file specifies a DTD to use for
validating documents that are inserted into the XML column. The DAD file has a
data type of CLOB. This file can be up to 100 KB.

The DAD file for XML columns provides a map of any XML data that is to be stored
in side tables for indexing.

To specify the XML column access and storage method, you use the <Xcolumn>
tag in the DAD file. The <Xcolumn> tag specifies that the XML data is to be stored
and retrieved as entire XML documents in DB2 UDB columns that are enabled for
XML data.

An XML-enabled column is of the XML Extender's UDT. Applications can include the
column in any user table. You access the XML column data mainly through SQL
statements and the XML Extender’'s UDFs.

Related concepts:
+ [‘Planning side tables” on page 58|

Planning for XML collections

When planning for XML collections, you have different considerations for composing
documents from DB2® data, decomposing XML document into DB2 data, or both.
The following sections address planning issues for XML collections, and address
composition and decomposition considerations.

Chapter 2. Administration 43

Validation

After you choose an access and storage method, you can determine whether to
validate your data. You validate XML data using a DTD or a schema. Using a DTD
or schema to validate ensures that the XML document is valid.

To validate using a DTD, you might need to have a DTD in the XML Extender
repository.

Important: Make the decision whether to validate XML data before you insert XML
data into DB2. The XML Extender does not validate data that is already inserted
into DB2.

Considerations:
* You can use only one DTD for composition.
* You can use multiple schemas for composition.

 If you do not choose to validate a document, the DTD specified by the XML
document is not processed. It is important that DTDs be processed to resolve
entities and attribute defaults even when processing document fragments that
cannot be validated.

The DAD file for XML collections

For XML collections, the DAD file maps the structure of the XML document to the
DB2 UDB tables from which you compose the document, or where you decompose
the document.

For example, if you have an element called <Tax> in your XML document, you
might need to map <Tax> to a column called TAX. You define the relationship
between the XML data and the relational data in the DAD.

You specify the DAD file name when you enable a collection, or when you use the
DAD file in XML collection stored procedures. If you choose to validate XML
documents with a DTD, the DAD file can be associated with that DTD. When used
as the input parameter of the XML Extender stored procedures, the DAD file has a
data type of CLOB. This file can be up to 100 KB.

To specify the XML collection access and storage method, you use the tag in the
DAD file. The <Xcollection> tag specifies that the XML data is either to be
decomposed from XML documents into a collection of relational tables, or to be
composed into XML documents from a collection of relational tables.

An XML collection is a virtual name for a set of relational tables that contains XML
data. Applications can enable an XML collection of any user tables. These user
tables can be existing tables of legacy business data or tables that the XML
Extender recently created.

The DAD file defines the XML document tree structure, using the following kinds of
nodes:

root_node
Specifies the root element of the document.

element_node
Identifies an element, which can be the root element or a child element.

text_node
Represents the CDATA text of an element.

44 XML Extender Administration and Programming

attribute_node
Represents an attribute of an element.

shows a fragment of the mapping that is used in a DAD file. The nodes
map the XML document content to table columns in a relational table.

<?xml version="1.0"?>
<IDOCTYPE DAD SYSTEM "dxx_install/samples/db2xml/dtd/dad.dtd">
<DAD>

<Xcollection>
<SQL_stmt>

</SQL_stmt>
<prolog>?xml version="1.0"?</prolog>
<doctype>!DOCTYPE Order SYSTEM "dxx_install/samples/db2xm1/dtd/
getstart.dtd"</doctype><root node>
<element_node name="Order"> --> Identifies the element <Order>
<attribute_node name="key"> --> Identifies the attribute "key"
<column name="order_key"/> --> Defines the name of the column,
"order_key", to which the element
and attribute are mapped
</attribute_node>
<element_node name="Customer"> --> Identifies a child element of
<Order> as <Customer>

<text_node> --> Specifies the CDATA text for
the element<Customer>
<column name="customer"> --> Defines the name of the column,

"customer", to which the child
element is mapped
</text_node>
</element_node>

</element_node>

<root_node>
</Xcollection>
</DAD>

Figure 5. Node definitions in a DAD file for an XML collection

In the above figure, the first two columns in the SQL statement have elements and

attributes mapped to them.

The XML Extender also supports processing instructions for stylesheets, using the

<stylesheet> element. The <stylesheet> element must be inside the root node of
the DAD file, with the doctype and prolog defined for the XML document. For
example:

<Xcollection>

<prolog>...</prolog>
<doctype>...</doctype>
<stylesheet>?xml-stylesheet type="text/css"

href="order.css"?</stylesheet>
<root_node>...</root_node>

</Xcollection>

Chapter 2. Administration

45

You can use the Websphere Studio Application Developer to create and update the
DAD file. The <stylesheet> element is not currently supported by the XML Extender

Administration wizard.

Mapping schemes for XML collections

If you are using an XML collection, you must select a mapping scheme that defines
how XML data is represented in a relational database. Because XML collections
must match a hierarchical structure that is used in XML documents with a relational
structure, you should understand how the two structures compare. shows
how the hierarchical structure can be mapped to relational table columns.

element_node
Order

v

attribute_node
Key

order_key

v

element_node
Customer

v

| !

v

element_node
Part

element_node

element_node

Name Email

text_node text_node

customer_name |

customer_email

attribute_node
Color

color

I:I Names of columns in DB2 tables

element_node

text_node

Quantity

element_node
Tax

text_node

A

element_node
ExtendedPrice

element_node
Shipment

1

tax

element_node
ShipDate

element_node
ShipMode

—text_node

Figure 6. XML document structure mapped to relational table columns

The XML Extender uses the mapping scheme when composing or decomposing
XML documents that are located in multiple relational tables. The XML Extender
provides a wizard that assists you with creating the DAD file. However, before you
create the DAD file, you must consider how your XML data is mapped to the XML

collection.

Types of mapping schemes
The mapping scheme is specified in the <Xcollection> element in the DAD file. The
XML Extender provides two types of mapping schemes: SQL mapping and

relational database (RDB_node) mapping.

46 XML Extender Administration and Programming

SQL mapping
Allows direct mapping from relational data to XML documents through a
single SQL statement. SQL mapping is used for composition; it is not used
for decomposition. SQL mapping is defined with the SQL_stmt element in
the DAD file. The content of the SQL_stmt element is a valid SQL
statement. The SQL_stmt element maps the columns in the SELECT clause
to XML elements or attributes that are used in the XML document. The
column names in the SQL statement’s SELECT clause are used to define
the value of an attribute_node or the content of text_node. The FROM
clause defines the tables containing the data; the WHERE clause specifies
the join and search condition.

The SQL mapping gives DB2 UDB for z/Os users the power to map the
data using SQL. When using SQL mapping, you must be able to join all
tables in one SELECT statement to form a query. If one SQL statement is
not sufficient, consider using RDB_node mapping. To tie all tables together,
the primary key and foreign key relationship is recommended among these
tables.

RDB_node mapping
Defines the location of the content of an XML element or the value of an
XML attribute so that the XML Extender can determine where to store or
retrieve the XML data.

This method uses the XML Extender-provided RDB_node, which contains
one or more node definitions for tables, optional columns, and optional
conditions. The tables and columns are used to define how the XML data is
to be stored in the database. The condition specifies the criteria for
selecting XML data or the way to join the XML collection tables.

To define a mapping scheme, you create a DAD with an <Xcollection> element.
[Figure 7 on page 48|shows a fragment of a sample DAD file with an XML collection
SQL mapping that composes a set of XML documents from data in three relational
tables.

Chapter 2. Administration 47

<?xml version="1.0"?>
<IDOCTYPE DAD SYSTEM "dxx_install/samples/db2xm1/dtd/dad.dtd">
<DAD>
<dtdid>dxx_install/samples/db2xm1/dtd/dad/
getstart.dtd</dtdid>
<validation>YES</validation>
<Xcollection>
<SQL_stmt>
SELECT o.order_key, customer, p.part_key, quantity, price, tax, date,
ship_id, mode, comment
FROM order_tab o, part_tab p,
table(select
db2xm1.generate_unique()
as ship_id, date, node, from ship_tab) shipid
WHERE p.price > 2500.00 and s.date > "1996-06-01" AND
p.order_key = o.order_key and s.part_key = p.part_key
</SQL_stmt>
<prolog>?xml version="1.0"?</prolog>
<doctype>!DOCTYPE DAD SYSTEM "dxx_install
/samples/db2xml1/dtd/getstart.dtd"</doctype>
<root_node>
<element_node name="Order">
<attribute_node name="key">
<column_name="order_key"/>
</attribute_node>
<element_node name="Customer">
<text_node>
<column name="customer"/>
</text_node>
<element_node>

</element_node><!-end Part->
</element_node><!-end Order->
</root_node>
</Xcollection>
</DAD>

Figure 7. SQL mapping scheme

The XML Extender provides several stored procedures that manage data in an XML
collection. These stored procedures support both types of mapping, but require that
the DAD file follow the rules that are described in r‘Mapping scheme requirements.’1

Mapping scheme requirements
The following sections describe requirements for each type of the XML collection
mapping schemes.

Mapping scheme requirements for SQL mapping

In this mapping scheme, you must specify the SQL_stmt element in the
DAD <Xcollection> element. The SQL_stmt should contain a single SQL
statement that can join multiple relational tables with the query predicate. In
addition, the following clauses are required:

 SELECT clause

— Ensure that the name of the column is unique. If two tables have the
same column name, use the AS keyword to create an alias name for
one of them.

— Group the columns of the same table together, and use the logical
hierarchical level of the relational tables. This means group the tables
according to the level of importance according to how the tables map

48 XML Extender Administration and Programming

to the hierarchical structure of your XML document. In the SELECT
clause, the columns of the higher-level tables should proceed the
columns of lower-level tables. The following example demonstrates
the hierarchical relationship among tables:

SELECT o.order_key, customer, p.part_key, quantity, price, tax,
ship_id, date, mode

In this example, order_key and customer from table ORDER_TAB
have the highest relational level because they are higher on the
hierarchical tree of the XML document. The ship_id, date, and mode
from table SHIP_TAB are at the lowest relational level.

— Use a single-column candidate key to begin each level. If such a key
is not available in a table, the query must generate one for that table
using a table expression and the user-defined function,
generate_unique(). In the above example, the o.order_key is the
primary key for ORDER_TAB, and the part_key is the primary key of
PART_TAB. They appear at the beginning of their own group of
columns that are to be selected. Because the SHIP_TAB table does
not have a primary key, one must be generated, in this case, ship_id.
This primary key is listed as the first column for the SHIP_TAB table
group. Use the FROM clause to generate the primary key column, as
shown in the following example.

* FROM clause

— Use a table expression and the user-defined function,
generate_unique(), to generate a single key for tables that do not
have a primary single key. For example:

FROM order_tab as o, part_tab as p,
table(select db2xml.generate_unique() as
ship_id, date, mode from ship_tab) as s

In this example, a single column candidate key is generated with the
function, generate_unique() and given an alias named ship_id.

— Use an alias name when needed to make a column distinct. For
example, you could use o for ORDER_TAB, p for PART_TAB, and s
for SHIP_TAB.

« WHERE clause
— Specify a primary and foreign key relationship as the join condition
that ties tables in the collection together. For example:

WHERE p.price > 2500.00 AND s.date > "2003-06-01" AND
p.order_key = o.order_key AND s.part_key = p.part_key

— Specify any other search condition in the predicate. Any valid
predicate can be used.
 ORDER BY clause
— Define the ORDER BY clause at the end of the SQL_stmt element.
— Ensure that the column names match the column names in the
SELECT clause.

— Specify the column names or identifiers that uniquely identify entities
in the entity-relationship design of the database. An identifier can be
generated using a table expression and the function generate_unique,
or a user-defined function (UDF).

— Maintain the top-down order of the hierarchy of the entities. The
column specified in the ORDER BY clause must be the first column

Chapter 2. Administration 49

listed for each entity. Keeping the order ensures that the XML
documents to be generated do not contain incorrect duplicates.

— Do not qualify the columns in ORDER BY by any schema or table
name.

Although the SQL_stmt element has the preceding requirements, it is
powerful because you can specify any predicate in your WHERE clause if
the expression in the predicate uses the columns in the tables.

Mapping scheme requirements for RDB_node mapping

When using this mapping method, do not use the element SQL_stmt in the
<Xcollection> element of the DAD file. Instead, use the RDB_node element
as a child of the top element_node and of each attribute_node and
text_node.

There are no ordering restrictions on predicates of the root node condition.
* RDB_node for the top element_node

The top element_node in the DAD file represents the root element of the
XML document. Specify an RDB_node for the top element_node based
on these requirements:

— Line ending characters are allowed in condition statements.

— Condition elements can reference a column name an unlimited
number of times.

— Specify all tables that are associated with the XML documents. For
example, the following mapping specifies three tables in the
RDB_node of the element_node <Order>, which is the top
element_node:
<element_node name="Order">

<RDB_node>
<table name="order_tab"/>
<table name="part_tab"/>
<table name="ship_tab"/>
<condition>
order_tab.order_key = part_tab.order_key AND
part_tab.part_key = ship_tab.part_key
</condition>
</RDB_node>

The condition element can be empty or missing if there is only one
table in the collection.

— If you are decomposing, or are enabling the XML collection specified
by the DAD file, specify a primary key for each table. The primary key
can consist of a single column or multiple columns, called a
composite key. The primary key is specified by adding an attribute key
to the table element of the RDB_node. When a composite key is
supplied, the key attribute is specified by the names of key columns
separated by a space. For example:

<table name="part_tab" key="part_key price"/>

The information specified for decomposition is ignored when
composing a document.

— Use the orderBy attribute to recompose XML documents that contain
elements or attributes with multiple occurrences back to their original
structure. This attribute allows you to specify the name of a column

50 XML Extender Administration and Programming

that will be the key used to preserve the order of the document. The
orderBy attribute is part of the table element in the DAD file, and it is
an optional attribute.

 RDB_node for each attribute_node and text_node

You need to specify an RDB_node for each attribute_node and
text_node, that tells the stored procedure from which table, which
column, and under which query condition to get the data. You must
specify the table and column values; the condition value is optional.

— Specify the name of the table that contains the column data. The
table name must be included in the RDB_node of the top
element_node. In this example, for text_node of element <Price>, the
table is specified as PART_TAB.
<element_node name="Price">

<text_node>
<RDB_node>
<table name="part_tab"/>
<column name="price"/>
<condition>
price > 2500.00
</condition>
</RDB_node>
</text_node>
</element_node>

— Specify the name of the column that contains the data for the element

text. In the previous example, the column is specified as PRICE.

— Specify a condition if you want XML documents to be generated using
the query condition. Allowable syntax for <condition> is as follows:

- columnname
- operator
- literal

In the example above, the condition is specified as price > 2500.00.
Only the data that meets the condition is in the generated XML
documents. The condition must be a valid WHERE clause.

— If you are decomposing a document, or are enabling the XML
collection specified by the DAD file, specify the column type for each
attribute_node and text_node. This ensures the correct data type for
each column when new tables are created when an XML collection is
enabled. Column types are specified by adding the attribute type to
the column element. For example:

<column name="order key" type="integer"/>

The information specified for decomposition is ignored when
composing a document.

With the RDB_node mapping approach, you don’t need to supply SQL
statements. However, putting complex query conditions in the RDB_node
element can be more difficult.

Decomposition table size requirements for RDB node mapping

Decomposition uses RDB_node mapping to specify how an XML document is
decomposed into DB2 UDB tables by extracting the element and attribute values
into table rows. The values from each XML document are stored in one or more
DB2 tables. Each table can have a maximum of 10240 rows decomposed from

Chapter 2. Administraton 51

each document. For example, if an XML document is decomposed into five tables,
each of the five tables can have up to 10240 rows for that particular document.

Using multiple-occurring elements (elements with location paths that can occur
more than once in the XML structure) affects the number of rows inserted for each
document. For example, a document that contains an element <Part> that occurs
20 times, might be decomposed as 20 rows in a table. When using multiple
occurring elements, consider that a maximum of 10240 rows can be decomposed
into one table from a single document.

Related concepts:
“DAD files for XML collections” on page 169

Related tasks:
“Storing a DTD in the repository table” on page 54|

Validating XML documents automatically

After you choose an access and storage method, either XML column or XML
collection, you can determine whether to validate the XML documents. You can also
validate XML documents that are composed from XML collections.

You can have your XML data validated automatically by specifying YES for
validation in the DAD file. To have a document validated when it is stored into DB2,
you must specify a DTD within the <dtdid> element or in the <!DOCTYPE>
specification in the original document. To have a document validated when it is
composed from an XML collection in DB2, you must specify a DTD within the
<dtdid> element or within the <doctype> element in the DAD file.

The following factors should be taken into consideration when you decide whether
to validate your documents.

* The DTD ID or schema is useful only if you decide to validate the XML
document.

To validate the DAD with a schema, insert the schema tags that associate the
DAD file with the schema file. For example:

<schemabindings>
<nonamespacelocation location="path/schema_name.xsd"/>
</schemabindings>

* You do not need a DTD to store or archive XML documents.

* You must decide whether to validate before inserting XML data into DB2. The
XML Extender does not validate data that has already been inserted into DB2.

* |t might be necessary to process the DTD to set entity values and attribute
defaults regardless of whether you choose to validate.

» If you specify NO for validation in the DAD, then the DTD specified by the XML
document is not processed.

» Validating your XML data has a performance impact.

52 XML Extender Administration and Programming

Enabling servers for XML

Before you can store or retrieve XML documents from DB2 UDB with XML
Extender, you must enable the server for XML. The XML Extender enables the
server that you are connected to.

When you enable a server for XML, the XML Extender does these tasks:

» Creates all the user-defined types (UDTs), user-defined functions (UDFs), and
stored procedures for XML Extender

» Creates and populates control tables with the necessary metadata that the XML
Extender requires

» Creates the DB2XML schema in user-defined table spaces and assigns the
necessary privileges

The fully qualified name of an XML function is db2xml.function-name, where
db2xml is an identifier that provides a logical grouping for SQL objects. You can
use the fully qualified name anywhere that you refer to a UDF or a UDT. You can
also omit the schema name when you refer to a UDF or a UDT; in this case, DB2
UDB uses the function path to determine the function or data type.

Procedure:

You can enable a server with the administration wizard or from a command line. To
do this task from the command line, type dxxadm from the command line and
specify the server that is to be enabled.

The following example enables an existing server.
dxxadm enable_server -a V81A wim environment wlmenvl security DB2

To enable a server using the administration wizard, complete the following tasks:

1. Start the administration wizard and click Enable Server from the Launchpad
window.

If a server is already enabled, the Disable Server button appears. If the server
is disabled, the Enable Server button appears.

When the server is enabled, you return to the LaunchPad window.
After you enable a server, you can use the XML Extender UDTs, UDFs, and SPs.

Related concepts:
* [‘Migrating XML Extender from Version 7 to Version 8” on page 37|

Creating an XML table

This task is part of the larger task of defining and enabling an XML column.

An XML table is used to store intact XML documents. To store whole documents in
your database with DB2 UDB XML Extender, you must create a table so that it
contains a column with an XML user-defined type (UDT). DB2 UDB XML Extender
provides you with three user-defined types to store your XML documents as column
data. These UDTs are: XMLVARCHAR, XMLCLOB, and XMLFILE. When a table
contains a column of XML type, you can then enable the table for XML.

Chapter 2. Administration 53

You can create a new table to add a column of XML type using the administration
wizard or the command line.

Procedure:
To create a table with a column of XML type using the command line:
Open the DB2 UDB command prompt and type a Create Table statement.

For example, in a sales application, you might want to store an XML-formatted
line-item order in a column called ORDER of a table called SALES_TAB. This table
also has the columns INVOICE_NUM and SALES_PERSON. Because it is a small
order, you store the sales order using the XMLVARCHAR type. The primary key is
INVOICE_NUM. The following CREATE TABLE statement creates a table with a
column of XML type:

CREATE TABLE sales_tab(
invoice_num char(6) NOT NULL PRIMARY KEY,
sales_person varchar(20),
order XMLVarchar) ;

After you have created a table, the next step is to enable the column for XML data.

Related concepts:
+ [‘Planning side tables” on page 58|
+ [Chapter 13, “XML Extender administration support tables,” on page 269

Storing a DTD in the repository table

You can use a DTD to validate XML data in an XML column or in an XML collection.
DTDs can be stored in the DTD repository table, a DB2 UDB table called
DTD_REF. The DTD_REF table has a schema name of DB2XML. Each DTD in the
DTD_REF table has a unique ID. The XML Extender creates the DTD_REF table
when you enable a database for XML. You can insert the DTD from the command
line or by using the administration wizard.

Procedure:

To insert the DTD using the administration wizard:

1. Start the administration wizard and click Import a DTD from the Launchpad
window to import an existing DTD file into the DTD repository for the current
database. The Import a DTD window opens.

2. Specify the DTD file name in the DTD file name field.

3. Type the DTD ID in the DTD ID field.

The DTD ID is an identifier for the DTD. It can also be the path that specifys the
location of the DTD on the local system. The DTD ID must match the value that
is specified in the DAD file for the <DTDID> element.

4. Optional: Type the name of the author of the DTD in the Author field.

5. Click Finish to insert the DTD into the DTD repository table,
DB2XML.DTD_REF, and return to the Launchpad window.

To insert a DTD from the command line, issue a SQL INSERT statement from
[Table 8 on page 55| For example:

54 XML Extender Administration and Programming

DB2 INSERT into DB2XML.DTD_REF values('dxx_install
/samples/db2xml/dtd/getstart.dtd',
DB2XML.XMLClobFromFile('dxx_install/dxxsamples/dtd/getstart.dtd’,
0, 'userl', 'userl', 'userl');

Table 8. The column definitions for the DTD repository table

Column name Data type Description

DTDID VARCHAR(128) ID of the DTD.

CONTENT XMLCLOB Content of the DTD.

USAGE_COUNT INTEGER Number of XML columns and XML collections
in the database that use this DTD to define a
DAD.

AUTHOR VARCHAR(128) Author of the DTD, optional information for
the user to input.

CREATOR VARCHAR(128) User ID that does the first insertion.

UPDATOR VARCHAR(128) User ID that does the last update.

ROW_ID ROWID Identifier for the row.

Enabling XML columns

To store an XML document in a DB2 UDB database, you must enable for XML the
column that will contain the document. Enabling a column prepares it for indexing
so that it can be searched quickly. You can enable a column by using the XML

Extender Administration wizard or the command line. The column must be of XML

type.

When XML Extender enables an XML column, it performs the following operations:
* Reads the DAD file to:
— Check for the existence of the DTD in the DTD_REF table, if the DTDID was
specified.
— Create side tables on the XML column for indexing purpose.
— Prepare the column to contain XML data.

» Optionally creates a default view of the XML table and side tables. The default
view displays the application table and the side tables.

» Specifies a ROOT ID column, if one is not specified.

After you enable the XML column, you can:

» Create indexes on the side tables.

* Insert XML documents in the XML column.

* Query, update, or search the XML documents in the XML column.

You can enable XML columns using the Administration wizard or from a DB2
command line.

Procedure (using the administration wizard):

To enable XML columns using the administration wizard:
1. Set up and start the Administration wizard.

2. Click Work with XML Columns from the Launchpad window to view the tasks
related to the XML Extender columns. The Select a Task window opens.

Chapter 2. Administration 55

3. Click Enable a Column and then Next.

4. Specify the table and column.
» Select the table that contains the XML column from the Table name field.
» Select the column to enable from the Column name field.

5. Specify the DAD path and file name in the DAD file name field. For example:
dxx_install/samples/dad/getstart.dad

6. Optional: Type the name of an existing table space in the Table space field.

The default table space contains side tables that XML Extender created. If you
specify a table space, the side tables are created in the specified table space. If
you do not specify a table space, the side tables are created in the default table
space.

7. Optional: Type the name of the default view in the Default view field.

If specified, the default view is automatically created when the column is
enabled. The default view joins the XML table and all of the related side tables.

8. Recommended: Type the column name of the primary key for the table in the
Root ID field.

XML Extender uses the value of Root ID as a unique identifier to associate all
side tables with the application table. The XML Extender adds the
DXXROOT_ID column to the application table and generates an identifier.

9. Click Finish to enable the XML column, create the side tables, and return to the
Launchpad window.

« If the column is successfully enabled, you receive the message: column is
enabled.

 If the column is not successfully enabled, an error message is displayed,
along with prompts for you to correct the values of the entry fields until the
column is successfully enabled.
Procedure (using the command line):

To enable an XML column using the command line, use the DXXADM
enable_column command.

Syntax:

»>—dxxadm—enabTle_column—-a—subsystem_name—tbName—colName—DAD_file

|—-t—tabZespaceJ |—-v—default_viewJ |—-r—root_idJ

Parameters:

subsystem_name
The name of the DB2 UDB subsystem.

tbName
The name of the table that contains the column to be enabled.

colName
The name of the XML column that is being enabled.

DAD_file
The name of the file that contains the document access definition (DAD).

56 XML Extender Administration and Programming

tablespace

A previously created tablespace that contains side tables that XML Extender
created. If not specified, the default tablespace is used.

default_view

Optional. The name of the default view that XML Extender created to join
an application table and all of the related side tables.

root_id
Optional, but recommended. The column name of the primary key in the
application table and a unique identifier that associates all side tables with
the application table. Known as ROOT_ID. XML Extender uses the value of
ROOT_ID as a unique identifier to associate all side tables with the
application table. If the ROOT ID is not specified, XML Extender adds the
DXXROOT_ID column to the application table and generates an identifier.

Restriction: If the application table has a column name of DXXROOT_ID,
you must specify the root_id parameter; otherwise, an error occurs.

Example:

dxxadm enable_column -a SUBSYS1 SALES_TAB ORDER getstart.dad
-v SALODVW -r INVOICE_NUMBER

In this example, the ORDER column is enabled in the SALES_TAB table . The DAD

file is getstart.dad, the default view is sales_order_view, and the ROOT ID is
INVOICE_NUMBER.

Using this example, the SALES_TAB table has the following columns:

Column name Data type
INVOICE_NUM CHAR(6)
SALES_PERSON VARCHAR(20)
ORDER XMLVARCHAR

The following side tables are created based on the DAD specification:

ORDER_SIDE_TAB:

Column name Data type Path expression
ORDER_KEY INTEGER /Order/@key
CUSTOMER VARCHAR(50) /Order
/Customer
/Name
INVOICE_NUM CHAR(6) N/A

PART_SIDE_TAB:

Column name Data type Path expression
PART_KEY INTEGER /Order/Part/@key
PRICE DOUBLE /Order/Part
/ExtendedPrice
INVOICE_NUM CHAR (6) N/A

Chapter 2. Administration 57

SHIP_SIDE_TAB:

Column name Data type Path expression

DATE DATE /Order/Part/
Shipment/ShipDate

INVOICE_NUM CHAR (6) N/A

All of the side tables have the column INVOICE_NUM of the same type, because
the ROOT ID is specified by the primary key INVOICE_NUM in the application
table. After the column is enabled, the value of the INVOICE_NUM column is
inserted in side tables when a row is inserted in the main table. If you specify a
default view when enabling the XML column ORDER, then XML Extender creates a
default view, sales_order_view. The view joins the above tables using the following
statement:
CREATE VIEW sales_order view(invoice num, sales_person, order,
order_key, customer, part_key, price, date)
AS
SELECT sales_tab.invoice_num, sales_tab.sales_person, sales_tab.order,
order_side_tab.order_key, order_side_tab.customer,
part_side_tab.part_key, part_side_tab.price,
ship_tab.date
FROM sales_tab, order_side_tab, part_side_tab, ship_side_tab
WHERE sales_tab.invoice_num = order_side_tab.invoice_num
AND sales_tab.invoice_num = part_side_tab.invoice_num
AND sales_tab.invoice_num = ship_side_tab.invoice_num

If you specify the table space when you enabled, the side tables are created in the
specified table space. If the table space is not specified, the side tables are created
in the default table space.

Planning side tables

Side tables are DB2® tables used to extract the content of an XML document that
will be searched frequently. The XML column is associated with side tables that
hold the contents of the XML document. When the XML document is updated in the
application table, the values in the side tables are automatically updated.

[Figure 8 on page 59|shows an XML column with side tables.

58 XML Extender Administration and Programming

XML document
<?xml?> Il

<IDOCTYPE...>

<Order key="1">

</Order>
Side XML
tables CLOB
XML column

with side tables

Figure 8. An XML column whose content is mapped in side tables. There is an XML file in
the column that is associated with side tables that hold the contents of the XML document.

Multiple occurrence:

When elements and attributes occur multiple times in side tables, consider the

following issues in your planning:

* For elements or attributes in an XML document that have multiple occurrences,
you must create a separate side table for each XML element or attribute with
multiple occurrences, due to the complex structure of XML documents. This
means that elements or attributes have location paths that occur multiple times
and must be mapped to a table with only one column. You cannot have any other
columns in the table.

* When a document has multiple occurring location paths, XML Extender adds a
column named DXX_SEQNO with a type of INTEGER in each side table to track
the order of elements that occur more than once. With DXX_SEQNO, you can
retrieve a list of the elements in the same order as the original XML document by
specifying ORDER BY DXX_SEQNO in an SQL query.

Default views and query performance:

When you enable an XML column, you can specify a default, read-only view that
joins the application table with the side tables using a unique ID, called the ROOT
ID. With the default view, you can search XML documents by querying the side
tables. For example, if you have the application table SALES_TAB, and the side
tables ORDER_TAB, PART_TAB and SHIP_TAB, your query might look as follows:

SELECT sales_person FROM sales_order_view
WHERE price > 2500.00

The SQL statement returns the names of salespeople in the SALES_TAB who have
orders stored in the column ORDER, and where the PRICE column is greater than
2500.00.

The advantage of querying the default view is that it provides a virtual single view of
the application table and side tables. However, the more side tables that are
created, the more expensive the query. Therefore, creating the default view is
recommended only when the total number of side-table columns is small.
Applications can create their own views that join the important side table columns.

Chapter 2. Administration 59

Indexing side tables

This task is part of the larger task of defining and enabling an XML column.

Side tables contain the XML data in the columns that you specified when you
created the DAD file. After you enable an XML column and create side tables, you
can index the side tables. Indexing these tables helps you improve the performance
of the queries against the XML documents.

Procedure:

To create an index for your side tables from a DB2 UDB command line, use the
DB2 CREATE INDEX SQL statement.

from the DB2 UDB command line.

The following example creates indexes on four side tables using the DB2 command
prompt.

DB2 CREATE INDEX KEY IDX
ON ORDER_SIDE_TAB(ORDER_KEY)

DB2 CREATE INDEX CUSTOMER_IDX
ON ORDER_SIDE_TAB(CUSTOMER)

DB2 CREATE INDEX PRICE_IDX
ON PART_SIDE_TAB(PRICE)

DB2 CREATE INDEX DATE_IDX
ON SHIP_SIDE_TAB(DATE)

Composing XML documents by using SQL mapping

You can compose XML documents using SQL mapping either from the command
line or by using the administration wizard.

You should use SQL mapping if you are composing an XML document and you
want to use an SQL statement to define the table and columns that you will derive
the data in the XML document. You can use SQL mapping only for composing XML
documents. You create a DAD file to compose the XML document with SQL
mapping.

Prerequisites:

Before you compose your documents, you must first map the relationship between
your DB2 UDB tables and the XML document. This step includes mapping the
hierarchy of the XML document and specifying how the data in the document maps
to a DB2 UDB table.

Procedure:

To compose XML documents from the command line, complete the following steps:
1. Create a new document in a text editor and type the following syntax:
<?XML version="1.0"?>
2. Insert the <DAD> </DAD> tags.
The DAD element will contain all the other elements.
3. Insert the tags used for validating the DAD with a DTD or schema.

60 XML Extender Administration and Programming

» To validate the composed XML document with a DTD, insert the DTDID tags
that associate the DAD file with the XML document DTD. For example:

<dtdid>path/dtd_name.dtd>

» To validate the composed XML document with a schema, insert the schema
tags that associate the DAD file with the schema file. For example:
<schemabindings>

<nonamespacelocation location="path/schema_name.xsd"/>
</schemabindings>

The dtd or schema is useful only if you decide to validate the XML document.
Use the validation tag to indicate whether DB2 UDB XML Extender validates
the XML document:

* If you want to validate the XML document, then type:
<validation>YES</validation>

* If you do not want to validate the XML document type:
<validation>NO</validation>

Type <XCollection> </XCollection> tags to specify that you are using XML
collections as the access and storage method for your XML data.

Inside the <Xcollection> </Xcollection> tags, insert the <SQL_stmt>
</SQL_stmt> tags to specify the SQL statement that will map the relational
data to the XML documents. This statement is used to query data from DB2
UDB tables. The following example shows a sample SQL query:
<SQL_stmt>
SELECT o.order_key, customer_name, customer_email, p.part_key, color,
quantity, price, tax, ship_id, date, mode from order_tab o, part tab p,
table (select substr(char(timestamp(generate_unique())),16)
as ship_id, date, mode, part_key from ship_tab) s
WHERE o.order_key = 1 and
p.price > 20000 and
p.order_key = o.order_key and
s.part_key = p.part_key
ORDER BY order_key, part key, ship_id
</SQL_stmt>

The example SQL statement for mapping the relational data to the XML
document has the following syntax:

» Columns are specified in top-down order by the hierarchy of the XML
document structure.

* The columns for an entity are grouped together.

* The object ID column is the first column in each group.

* The Order_tab table does not have a single key column, and therefore, the
generate_unique DB2 UDB built-in function is used to generate the ship_id
column.

e The object ID column is then listed in a top-down order in an ORDER BY
statement. The column in ORDER BY should not be qualified by any
schema. and the column names must match the column names in the
SELECT clause.

Add the following prolog information to be used in the composed XML

document:

<prolog>?xml version="1.0"?</prolog>

Type the <doctype> </doctype> tag. This tag contains the path to the DTD

against which the composed document will be validated. For example:

<doctype>! DOCTYPE Order SYSTEM "dxx_install
/samples/db2xm1/dtd/getstart.dtd"</doctype>

Chapter 2. Administration 61

8. Specify the root element and the elements and attributes that make up the
XML document:

a. Add the <root></root_node> tag to define the root element. All the
elements and attributes that make up the XML document are specified
within the root_node.

b. Use the <element_node>, <attribute_node>, and <text_node> tags to map
the elements and attributes in the XML document to element and attribute
nodes that correspond to DB2 UDB data.

<element_node> tag
Specifies the elements in the XML document. Set the name
attribute of the element_node tag to the name of the element. Each
element_node can have child element_nodes.

<attribute_node> tag
Specifies the attributes of an element in the XML document. The
attributes are nested in their element node. Set the name attribute
of the attribute_node tag to the name of the attribute.

<text_node> tag
Specifies the text content of the element and the column data in a
relational table for bottom-level element_nodes. For each
bottom-level element, specify <text_node> tags that indicate that
the element contains character data to be extracted from DB2
when the document is composed. For each bottom-level
element_node, use a <column> tag to specify from which column
to extract data when the XML document is composed. Column tags
are typically inside the <attribute_node> or the <text_node> tags.
All column names defined must be in the <SQL_stmt> SELECT
clause at the beginning of the DAD file.

9. Ensure that the ending tags are in the appropriate places:
a. Ensure that an ending </root_node> tag is after the last </element_node>
tag.
b. Ensure that an ending </Xcollection> tag is after the </root_node> tag.
c. Ensure that an ending </DAD> tag is after the </Xcollection> tag.
10. Save the file as file.dad. Where file is the name of your file.

The following Windows example shows a complete DAD:

<?xml version'"1.0">
<IDOCTYPE DAD SYSTEM "C:\dxx_xml\test\dtd\dad.dtd'>
<DAD>
<validation>NO</validation>
<Xcollection>
<SQL_stmt> select o.order_key, customer_name, customer_email,
p.part_key, color, qty, price, tax, ship_id, date, mode from order_tab o,
part_tab p, (select db2xml.generate_unique() as
ship_id, date, mode, part key from ship_tab) s where
o.order_key = 1 and p.price . 20000 and p.order_key
= o.order_key and s.part_key =p.part_key ORDER BY order_key,
part_key, ship_id</SQL_stmt>
<prolog>?XML version="1.0"<?/prolog>
<doctype>!DOCTYPE ORDER SYSTEM "C:\dxx_install\samples\db2xmi\dtd/Order.dtd"
</doctype>
<root_node>
<element_node name="Order">
<attribute_node name="key">
<column name="order key"/>
</attribute_node>
<element _node name="Customer">

62 XML Extender Administration and Programming

<element_node name="NAME">
<text_node><column name="customer_name"/></text_node>
</element_node>
</element_node>
<element_node name="Part">
<attribute_node name="color">
<column name="color"/>
</attribute_node>
<element_node name="key">
<text_node><column name="part_key"/></text node>
</element_node>
<element_node name ="Quantity">
<text_node><column name="qty"/></text_node>
</element_node>
<element_node name="ExtendedPrice">
<text_node><column name="price"/></text_node>
</element_node>
<element_node name="Tax'">
<text_node><column name="tax"/></text_node>
</element_node>
<element_node name="Shipment" multi_occurrence="YES">
<element_node name=shipDate">
<text_node><column name="date"/><text_node>
<element_node>
<element_node name="ShipMode">
<text_node><column name="mode"/></text_node>
</element_node>
</element_node>
</element_node>
</element_node>
</root_node>
</Xcollection>

</DAD>

Composing XML collections by using RDB_node mapping

RDB_node mapping uses the <RDB_node> tags to specify DB2 UDB tables,

columns, and conditions for an element or attribute node. Use this method if you

want to compose XML documents by using an XML-like structure. The
<RDB_node> uses the following elements:

table Defines the table that corresponds to the element.
column Defines the column that contains the corresponding element.
condition Optionally specifies a condition on the column.

The child elements that are used in the RDB_node element depend on the context
of the node and use the following rules:

If the node type is: The following RDB child elements are used:
Table Column Condition’
Root element Yes No Yes
Attribute Yes Yes Optiona
Text Yes Yes Optiona

" Required with multiple tables

You can use the administration wizard or a command line to compose XML
documents by using RDB_node mapping.

Chapter 2. Administration

63

Restrictions:

If you compose your XML collections using RDB_node mapping, all statements of a
given element must map to columns in the same table.

Procedure:

To compose an XML document from the command line using RDB_node mapping:
1. Open a text editor and create a DAD header by typing the following syntax:

<?xml version="1.0"?>
<!DOCTYPE DAD SYSTEM "path/dad.dtd">

Where path/dad.dtd is the path and file name of the DTD for the DAD.
2. Insert the<DAD></DAD> tags. This element will contain all the other elements.
3. Insert the tags used for validating the DAD with a DTD or schema.

» To validate the DAD with a DTD, insert the DTDID tags that associate the
DAD file with the XML document DTD. For example:

<dtdid>path/dtd_name.dtdid>

» To validate the DAD with a schema, insert the schema tags that associate the
DAD file with the schema file. For example:

<schemabindings>
<nonamespacelocation location="path/schema_name.xsd"/>
</schemabindings>

The dtdid or schema is useful only if you decide to validate the XML document.
Use the validation tag to indicate whether DB2 UDB XML Extender validates the
XML document:

* If you want to validate the XML document, then type:
<validation>YES</validation>
* If you do not want to validate the XML document type:
<validation>NO</validation>
4. Insert the <XCollection> </XCollection> tags to specify that you are using
XML collections as the access and storage method for your XML data.
5. Add the following prolog information:
<prolog>?xml version="1.0"?</prolog>
6. Add the <doctype> </doctype> tags. For example:

<doctype>! DOCTYPE Order SYSTEM "dxx_install
/samples/db2xm1/dtd/getstart.dtd"</doctype>

7. Insert the <root_node> </root_node> tags. Inside the root_node tags, specify
the elements and attributes that make up the XML document.

8. Inside the <root_node> tag, map the elements and attributes in the XML
document to element and attribute nodes that correspond to DB2 UDB data.
Use the RDB_node element for the element_node, text_node, and
attribute_node. These nodes provide a path from the XML data to the DB2 UDB
data. To map the elements and attributes in your XML document:

a. Specify an RDB_node for the top element_node. This element specifies all
the tables that are associated with the XML document. To specify an
RDB_node for the top element_node, insert <RDB_node> tags after the
root_node tag.

» Specify an RDB_node for the attribute_node.
» Specify an RDB_node for the text_node.

64 XML Extender Administration and Programming

b. Define a table node for each table that contains data to be included in the
XML document. For example, if you have three tables (ORDER_TAB,
PART_TAB, and SHIP_TAB) that have column data to be in the document,
create a table node for each. For example:
<RDB_node>
<table name="ORDER_TAB">
<table name="PART_TAB">
<table name="SHIP_TAB">
</RDB_node>

If you are decomposing an XML document using the DAD file, you must
specify a primary key for each table. The primary key can consist of a single
column or multiple columns, called a composite key. The primary key is
specified by adding an attribute key to the table element of the RDB_node.
You must also specify a primary key for each table if you are going to
enable a collection. The example below shows how you specify a key
column for each table specified in the element_node.

<RDB_node>

<table name="ORDER TAB" key="order key">

<table name="PART_TAB" key="part_key">

<table name="SHIP_TAB" key="ship_key">

</RDB_node>

Related concepts:

+ [‘Mapping schemes for XML collections” on page 105

+ [‘Location paths” on page 112

+ [‘DAD files for XML collections” on page 169

+ [‘Requirements for RDB_Node mapping” on page 109

+ [*XML Extender composition stored procedures” on page 200

Related tasks:

+ [‘Decomposing an XML collection by using RDB_node mapping” on page 65|
+ [‘Managing data in XML collections” on page 92|

« [‘Updating, deleting, and retrieving data in XML collections” on page 101|

Decomposing an XML collection by using RDB_node mapping

Use RDB_node mapping to decompose XML documents. This method uses the
<RDB_node> to specify DB2 UDB tables, columns, and conditions for an element
or attribute node. The <RDB_node> uses the following elements:

table Defines the table that corresponds to the element.
column Defines the column that contains the corresponding element.
condition Optionally specifies a condition on the column.

The child elements that are used in the <RDB_node> depend on the context of the
node and use the following rules:

If the node type is: | RDB child element is used:

Table Column Condition’
Root element Yes No Yes
Attribute Yes Yes optiona

Chapter 2. Administration 65

If the node type is: | RDB child element is used:

Table Column Condition’

Text Yes Yes optional

(1) Required with multiple tables

Procedure using a command line::

To decompose XML documents using a command line:

1. Create a file in any text editor. Create a DAD header by typing the following
syntax:

<?xml version="1.0"?7>
<!DOCTYPE DAD SYSTEM "path/dad.dtd">

Where path/dad.dtd is the path and file name of the DTD for the DAD.
2. Insert the <DAD> </DAD> tags.
3. Insert the tags used for validating the DAD with a DTD or schema.

» To validate the DAD with a DTD, insert the DTDID tags that associate the
DAD file with the XML document DTD. For example:

<dtdid>path/dtd_name.dtd>

» To validate the DAD with a schema, insert the schema tags that associate the
DAD file with the schema file. For example:

<schemabindings>
<nonamespacelocation location="path/schema_name.xsd"/>
</schemabindings>

The dtdid or schema is useful only if you decide to validate the XML document.
Use the validation tag to indicate whether DB2 UDB XML Extender validates the
XML document:

* If you want to validate the XML document, then type:
<validation>YES</validation>

* If you do not want to validate the XML document type:
<validation>NO</validation>

4. Insert <XCollection> </XCollection> tags to specify that you are using XML
collections as the access and storage method for your XML data.

5. Add the following prolog information:
<prolog>?xml version="1.0"?</prolog>
6. Add the <doctype></doctype> tags. For example:

<doctype>! DOCTYPE Order SYSTEM "dxx_install
/samples/db2xml1/dtd/getstart.dtd"</doctype>

If you need to specify an encoding value for internationalization, add the
ENCODING attribute and value.

7. Define the root_node using the <root_node> </root_node> tags.

8. Inside the root_node, map the elements and attributes in the XML document to
element nodes and attribute nodes that correspond to DB2 UDB data. These
nodes provide a path from the XML data to the DB2 UDB data.

a. Define a top level, root element_node. This element_node contains:
» Table nodes with a join condition to specify the collection.
+ Child elements
* Attributes

66 XML Extender Administration and Programming

To specify the table nodes and condition:

1)

2)

Create an RDB_node element. For example:

<RDB_node>
</RDB_node>

Define a table_node for each table that contains data to be included in
the XML document. For example, if you have three tables,
ORDER_TAB, PART_TAB, and SHIP_TAB, that have column data to be
in the document, create a table node for each. For example:

<RDB_node>
<table name="ORDER_TAB">
<table name="PART_TAB">
<table name="SHIP_TAB">
</RDB_node>

Define a join condition for the tables in the collection. The syntax is:

table_name.table_column = table_name.table_column AND
table_name.table _column = table_name.table _column ...

For example:

<RDB_node>
<table name="ORDER_TAB">
<table name="PART_TAB">
<table name="SHIP_TAB">
<condition>
order_tab.order_key = part_tab.order_key AND
part_tab.part_key = ship_tab.part_key
</condition>
</RDB_node>
Specify a primary key for each table. The primary key consists of a
single column or multiple columns, called a composite key. To specify
the primary key, add an attribute key to the table element of the
RDB_node. The following example defines a primary key for each of the
tables in the RDB_node of the root element_node Order:
<element_node name="Order">
<RDB_node>
<table name="order_tab" key="order_key"/>
<table name="part_tab" key="part_key price"/>
<table name="ship_tab" key="date mode"/>
<condition>
order_tab.order_key = part_tab.order_key AND
part_tab.part_key = ship_tab.part_key
</condition>
<RDB_node>
The key attribute is required for decomposition and enabling a collection
because the DAD file used must support both composition and
decomposition.

Define an <element_node> tag for each element in your XML document that
maps to a column in a DB2 UDB table. For example:

<element_node name="name">
</element_node>

An element node can have one of the following types of elements:

text_node To specify that the element has content to a DB2 UDB table

It does not have child elements.

attribute_node

To specify an attribute.

child elements

Children of the element_node.

Chapter 2. Administration 67

The text_node contains an RDB_node to map content to a DB2 UDB table
and column name.

RDB_nodes are used for bottom-level elements that have content to map to
a DB2 UDB table. An RDB_node has the following child elements:

table Defines the table that corresponds to the element.
column Defines the column that contains the corresponding element
condition Optionally specifies a condition on the column.

For example, you might have an XML element <Tax> for which you want to
store the untagged content in a column called TAX:

XML document:
<Tax>0.02</Tax>

In this case, you want the value 0.02 to be stored in the column TAX.

In the DAD file, you specify an <RDB_node> tag to map the XML element to
the DB2 UDB table and column.

DAD file:

<element_node name="Tax">
<text_node>
<RDB_node>
<table name="part_tab"/>
<column name="tax"/>
</RDB_node>
</text_node>
</element_node>

The <RDB_node> tag specifies that the value of the Tax element is a text
value, the data is stored in the PART_TAB table in the TAX column.

c. Define an <attribute_node> tag for each attribute in your XML document that
maps to a column in a DB2 UDB table. For example:

<attribute_node name="key">

</attribute_node>

The attribute_node has an RDB_node to map the attribute value to a DB2
UDB table and column. An RDB_node has the following child elements:

table Defines the table that corresponds to the element.
column Defines the column that contains the corresponding element
condition Optionally specifies a condition on the column.

For example, you might have an attribute key for an Order element. The
value of key needs to be stored in a column PART_KEY.

XML document:
<Order key="1">

In the DAD file, create an attribute_node for key and indicate the table
where the value of 1 is to be stored.

DAD file:

<attribute_node name="key">
<RDB_node>
<table name="part_tab">
<column name="part_key"/>
<RDB_node>
</attribute_node>

68 XML Extender Administration and Programming

9. Specify the column type for the RDB_node for each attribute_node and
text_node. This ensures the correct data type for each column where the
untagged data will be stored. To specify the column types, add the attribute type
to the column element. The following example defines the column type as an
INTEGER:
<attribute_node name="key">

<RDB_node>
<table name="order_tab"/>
<column name="order_key" type="integer"/>
</RDB_node>
</attribute_node>

10. Ensure that the ending tags are in the appropriate places:
a. Ensure that an ending </root_node> tag is after the last </element_node>
tag.
Ensure that an ending </Xcollection> tag is after the </root_node> tag.
Ensure that an ending </DAD> tag is after the </Xcollection> tag.

Related concepts:
+ ["XML Extenders decomposition stored procedures” on page 215|

Related tasks:
+ [“Decomposing XML documents into DB2 UDB data” on page 97|
+ [‘Calling XML Extender composition stored procedures” on page 201|

Chapter 2. Administration 69

70 XML Extender Administration and Programming

Part 3. Programming

This part describes programming techniques for managing your XML data.

© Copyright IBM Corp. 1999, 2004

71

72 XML Extender Administration and Programming

Chapter 3. XML columns

This chapter describes how to manage data in XML columns using DB2.

Managing data in XML columns

When you use XML columns to store data, you store an entire XML document in its
native format as column data in DB2. This access and storage method allows you
to keep the XML document intact, while giving you the ability to index and search
the document, retrieve data from the document, and update the document.

After you enable a database for XML, the following user-defined types (UDTs),
provided by XML Extender, are available for your use:

XMLCLOB
Use this UDT for XML document content that is stored as a character large
object (CLOB) in DB2.

XMLVARCHAR
Use this UDT for XML document content that is stored as a VARCHAR in
DB2.

XMLFILE
Use this UDT for an XML document that is stored in a file on a local file
system.

You can create or alter application tables to have columns of XML UDT data type.
These tables are known as XML tables.

After you enable a column in a table for XML, you can create the XML column and
perform the following management tasks:

» Store XML documents in DB2

* Retrieve XML data or documents from DB2
* Update XML documents

* Delete XML data or documents

To perform all of these tasks, use the user-defined functions (UDFs) provided by
XML Extender. Use default casting functions to store XML documents in DB2.
Default casting functions cast the SQL base type to the XML Extender user-defined
types and convert instances of a data type (origin) into instances of a different data

type (target).

Related concepts:
+ XML columns as a storage and access method” on page 73|
« [‘Using indexes for XML column data” on page 75|

XML columns as a storage and access method

There will be times when you want to store and maintain the document structure as
it currently is. XML contains all the necessary information to create a set of
documents.

© Copyright IBM Corp. 1999, 2004 73

For example, if you are a news publishing company that serves articles over the
Web, you might want to maintain an archive of published articles. In such a
scenario, XML Extender lets you store your complete or partial XML articles in a
column of a DB2® table, which is the XML column, as shown in

DB2 XML document

T <?xml?> _\

<IDOCTYPE...>

<Order key="1">

&/ </Order>

XML CLOB

Figure 9. Storing structured XML documents in a DB2 UDB table column

The XML column storage and access method allows you to manage your XML
documents using DB2. You can store XML documents in a column of XML type and
you can query the contents of the document to find a specific element or attribute.
You can associate and store a DTD in DB2 UDB for one or more documents.
Additionally, you can map element and attribute content to DB2 UDB tables, called
side tables. These side tables can be indexed for improved query performance, but
are not indexed automatically. The column that is used to store the document is
called an XML column. It specifies that the column is used for the XML column
storage and access method.

In the document access definition (DAD) file you enter <Xcolumn> and </Xcolumn>
tags to denote that the storage and access method that you will use is XML column.
The DAD will then map the XML element and attribute content to be stored in side
tables.

Before you begin working with XML Extender to store your documents, you need to
understand the structure of the XML document so that you can determine how to
index elements and attributes in the document. When planning how to index the
document, you need to determine:

* The XML user-defined type in which you will store the XML document

* The XML elements and attributes that your application will frequently search, so
that their content can be stored in side tables and indexed to improve
performance

* Whether or not you want to validate XML documents in the column with a DTD

Defining and enabling an XML column

You use XML columns to store and access entire XML documents in the database.
This storage method allows you to store documents using the XML file types, index
the columns in side tables, and query or search XML documents.

74 XML Extender Administration and Programming

Use XML columns when you want to store entire XML documents into a DB2 table
column if the document is not going to be frequently updated or if you want to store
intact XML documents.

If you want to map XML document structures to DB2 UDB tables so that you can
compose XML documents from existing DB2 UDB data or decompose XML
documents into DB2 data, then you should use XML collections instead of XML
columns.

Procedure:

To define and enable an XML column from the command line :
1. Create a document access definition (DAD) file.
2. Create a table in which the XML documents are stored.

3. Enable the column for XML data. If the DAD specifies validation, then insert the
column into dtd_ref table.

4. Index the side tables.

The XML column is created as an XML user data type. After these tasks are
complete, you will be able to store XML documents in the column. These
documents can then be updated, searched, and extracted.

Related concepts:

+ XML columns as a storage and access method” on page 73|

+ [‘Using indexes for XML column data” on page 75|

+ [“Validating XML documents automatically” on page 52|

+ [‘Lesson: Storing an XML document in an XML column” on page §|

Related tasks:

+ [‘Creating a DAD file for XML columns” on page 167|
« [‘Creating an XML table” on page 53]

[‘Enabling XML columns” on page 55|

[‘Indexing side tables” on page 60|

[‘Managing data in XML columns” on page 73|

Using indexes for XML column data

An important planning decision when using XML columns, is whether to index the
side tables for XML column documents. This decision should be made based on
how often you need to access the data and how critical performance is during
structural searches.

When using XML columns, which contain entire XML documents, you can create
side tables to contain columns of XML element or attribute values, then create
indexes on these columns. You must determine the elements and attributes for
which you need to create the index.

XML column indexing allows frequently queried data of general data types (such as
integer, decimal, or date) to be indexed using the native DB2® index support from
the database engine. The XML Extender extracts the values of XML elements or
attributes from XML documents and stores them in the side tables, allowing you to

Chapter 3. XML columns 75

create indexes on these side tables. You can specify each column of a side table
with a location path that identifies an XML element or attribute and an SQL data

type.

The XML Extender automatically populates the side table when you store XML
documents in the XML column.

For fast search, create indexes on these columns using the DB2 UDB B-tree
indexing technology. See the DB2 UDB documentation for more information on
B-tree indexing.

You must keep the following considerations in mind when creating an index:

* For elements or attributes in an XML document that have multiple occurrences,
you must create a separate side table for each XML element or attribute with
multiple occurrences due to the complex structure of XML documents.

* You can create multiple indexes on an XML column.

* You can associate side tables with the application table using the ROOT ID, the
column name of the primary key in the application table and a unique identifier
that associates all side tables with the application table. You can decide whether
you want the primary key of the application table to be the ROOT ID, although it
cannot be the composite key. This method is recommended.

If the single primary key does not exist in the application table, or for some
reason you don’t want to use it, XML Extender alters the application table to add
a column DXXROOT_ID, which stores a unique ID that is created at the insertion
time. All side tables have a DXXROOT_ID column with the unique ID. If the
primary key is used as the ROOT ID, all side tables have a column with the
same name and type as the primary key column in the application table, and the
values of the primary keys are stored.

 If you enable an XML column for the DB2 UDB Text Extender, you can also use
the Text Extender’s structural-text feature. The Text Extender has "section
search” support, which extends the capability of a conventional full-text search by
allowing search words to be matched within a specific document context that is
specified by location paths. The structural-text index can be used with XML
Extender’s indexing on general SQL data types.

Storing XML data

Using XML Extender, you can insert intact XML documents into an XML column. If
you define side tables, XML Extender automatically updates these tables. When you
store an XML document directly, XML Extender stores the base type as an XML

type.

Prerequisites:
* Ensure that you created or updated the DAD file.
* Determine what data type to use when you store the document.

+ Choose a method (casting functions or UDFs) for storing the data in the DB2®
table.

Specify an SQL INSERT statement that specifies the XML table and column to
contain the XML document.

The XML Extender provides two methods for storing XML documents: default
casting functions and storage UDFs.

76 XML Extender Administration and Programming

shows when to use each method.
Table 9. The XML Extender storage functions

If the DB2 Store in DB2 UDB as ...
UDB base
type is ... XMLVARCHAR XMLCLOB XMLDBCLOB XMLFILE
VARCHAR XMLVARCHAR() N/A N/A XMLFile
FromVarchar()
CLOB N/A XMLCLOBY) XMLDB XMLFile
CLOB, FromCLOB()
casting
function
FILE XMLVarcha XMLCLOB XMLDB XMLFILE
rFromFile() FromFile() CLOBFrom
File, UDF

Default casting functions for storing XML data

For each UDT, a default casting function exists to cast the SQL base type to the
UDT. You can use the casting functions provided by XML Extender in your VALUES
clause to insert data.[Table 10| shows the provided casting functions:

Table 10. The XML Extender default casting functions

Casting function Return type Description
XMLVARCHAR(VARCHAR) XMLVARCHAR Input from memory buffer of
VARCHAR
XMLCLOB(CLOB) XMLCLOB Input from memory buffer of
CLOB or a CLOB locator
XMLFILE(VARCHAR) XMLFILE Store only the file name

For example, the following statement inserts a cast VARCHAR type into the
XMLVARCHAR type:

INSERT INTO sales_tab
VALUES('123456', 'Sriram Srinivasan', DB2XML.XMLVarchar(:xml_buff))

Storage UDFs for storing XML data

For each XML Extender UDT, a storage UDF exists to import data into DB2 from a
resource other than its base type. For example, if you want to import an XML file
document to DB2 UDB as an XMLCLOB data type, you can use the function
XMLCLOBFromFile().

able 11|shows the storage functions provided by the XML Extender.
Table 11. The XML Extender storage UDFs

Storage user-defined
function Return type Description

XMLVarcharFromFile() XMLVARCHAR Reads an XML document
from a file on the server and
returns the value of the
XMLVARCHAR data type.
Optional: Specify the
encoding of the file.

Chapter 3. XML columns 77

Table 11. The XML Extender storage UDFs (continued)

Storage user-defined
function Return type Description

XMLCLOBFromFile() XMLCLOB Reads an XML document
from a file on the server and
returns the value of the
XMLCLOB data type.
Optional: Specify the
encoding of the file.

XMLFileFromVarchar() XMLFILE Reads an XML document
from memory as VARCHAR
data, writes the document to
an external file, and returns
the value of the XMLFILE
data type, which is the file
name. Optional: Specify the
encoding of the external file.

XMLFileFromCLOB() XMLFILE Reads an XML document
from memory as CLOB data
or as a CLOB locator, writes
the document to an external
file, and returns the value of
the XMLFILE data type,
which is the file name.
Optional: Specify the
encoding of the external file.

For example, using the XMLCLOBFromFile() function, the following statement
stores a record in an XML table as an XMLCLOB:
EXEC SQL INSERT INTO sales_tab(ID, NAME, ORDER)

VALUES('1234', 'MyName',
XMLCLOBFromFile('dxx_install/samples/db2xml/xml/getstart.xml"'))

The example imports the XML document from the file named
dxx_install/samples/db2xml1/xml/getstart.xml into the column ORDER in the
table SALES_TAB.

Method for retrieving an XML document

Using XML Extender , you can retrieve either an entire document or the contents of
elements and attributes. When you retrieve an XML column directly, the XML
Extender returns the UDT as the column type. For details about retrieving data, see
the following sections:

+ [‘Retrieving an entire XML document” on page 79

+ [‘Retrieving element contents and attribute values from XML documents” on pagel
8

The XML Extender provides two methods for retrieving data: default casting
functions and the Content() overloaded UDF. [Table 12 on page 79| shows when to
use each method.

78 XML Extender Administration and Programming

Table 12. The XML Extender retrieval functions

When the XML |Retrieve from DB2 UDB as ...

type is ... VARCHAR CLOB DBCLOB FILE
XMLVARCHAR |VARCHAR N/A N/A Content() UDF
XMLCLOB N/A XMLCLOB N/A Content() UDF
XMLFILE N/A Content() UDF | N/A FILE

Retrieving an entire XML document
Procedure:

To retrieve an entire XML document:

1. Ensure that you stored the XML document in an XML table and determine what
data you want to retrieve.

2. Choose a method (casting functions or UDFs) for retrieving the data in the DB2
UDB table.

3. If you are using the overloaded Content() UDF, determine the data type of the
data that is being retrieved, and which data type is to be exported.

4. The XML column from which the element or attribute is to be extracted must be
defined as either an XMLVARCHAR, XMLCLOB as LOCATOR, or XMLFILE
data type.

Specify an SQL query that specifies the XML table and column from which to
retrieve the XML document.

Default casting functions for retrieving XML data

The default casting function provided by DB2 UDB for UDTs converts an XML UDT
to an SQL base type, and then operates on it. In your SELECT statement, you can
use the casting functions that are provided by XML Extender to retrieve data.
shows the provided casting functions.

Table 13. The XML Extender default cast functions

Casting used in SELECT

clause Return type Description
varchar(XMLVARCHAR) VARCHAR XML document in VARCHAR
clob(XMLCLOB) CLOB XML document in CLOB
varchar(XMLFile) VARCHAR XML file name in VARCHAR

For example, the following statement retrieves the XMLVARCHAR and stores it in
memory as a VARCHAR data type:

EXEC SQL SELECT DB2XML.XMLVarchar(order) from SALES TAB

Using the Content() UDF for retrieving XML data

Use the Content() UDF to retrieve the document content from external storage to
memory, or export the document from internal storage to an external file, which is a
file that is external to DB2 UDB on the DB2 UDB server.

For example, you might have your XML document stored as an XMLFILE data type.

If you want to operate on it in memory, you can use the Content() UDF, which can
take an XMLFILE data type as input and return a CLOB.

Chapter 3. XML columns 79

The Content() UDF performs two different retrieval functions, depending on the
specified data type. It can:

* Retrieve a document from external storage and put it in memory.

You can use Content() UDF to retrieve the XML document to a memory buffer or
a CLOB Jocator (a host variable with a value that represents a single LOB value
in the database server) when the document is stored as the external file.

Use the following function syntax, where xmlobj is the XML column being
queried:

XMLFILE to CLOB:
Content (xmlobj XMLFile)
» Retrieve a document from internal storage and export it to an external file.

You can use the Content() UDF to retrieve an XML document that is stored
inside DB2 UDB as an XMLCLOB data type and export it to a file on the
database server file system. The Content() UDF returns the name of the file as a
VARCHAR data type.

Use the following function syntax:
XML type to external file:

Content (xmlobj XML type, filename varchar(512), targetencoding varchar(100))
Where:

xmlobj |s the name of the XML column from which the XML content is to be
retrieved. xmlobj can be of type XMLVARCHAR or XMLCLOB.

filename
Is the name of the external file in which the XML data is to be stored.

targetencoding
Optional: Specifies the encoding of the output file.

In the example below, a small C program segment with embedded SQL statements
(SQL statements coded within an application program) shows how an XML
document is retrieved from a file to memory. This example assumes that the data
type of the ORDER column is XMLFILE.
EXEC SQL BEGIN DECLARE SECTION;
SQL TYPE IS CLOB_LOCATOR xml_buff;
EXEC SQL END DECLARE SECTION;
EXEC SQL CONNECT TO SALES DB;
EXEC SQL DECLARE c1 CURSOR FOR
SELECT Content(order) from sales_tab
EXEC SQL OPEN cl;
do {
EXEC SQL FETCH cl INTO :xml_buff;
if (SQLCODE != 0) {
break;}
else { /* do whatever you need to do with the XML doc in buffer =/}

}
EXEC SQL CLOSE cl;
EXEC SQL CONNECT RESET;

Retrieving element contents and attribute values from XML documents

You can retrieve (extract) the content of an element or the value of an attribute from
one or more XML documents (single document or collection document search). The
XML Extender provides user-defined extracting functions that you can specify in the
SQL SELECT clause for each of the SQL data types.

Retrieving element content and attribute values is useful when developing your
applications, because you can access XML data as relational data. For example,

80 XML Extender Administration and Programming

you might have 1000 XML documents that are stored in the ORDER column in the
SALES_TAB table. To retrieve the names of all customers who have ordered items
over $2500, use the following SQL statement with the extracting UDF in the
SELECT clause:

SELECT extractVarchar(Order, '/Order/Customer/Name') from sales_order view
WHERE price > 2500.00

In this example, the extracting UDF retrieves the content of the <customer> element
from the ORDER column and stores it as a VARCHAR data type. The location path
is /0rder/Customer/Name. Additionally, the number of returned values is reduced by
using a WHERE clause, which specifies that only the contents of the <customer>
element with a sub-element <ExtendedPrice> that has a value greater than
2500.00.

[Table 14 on page 82|shows the UDFs that you can use to extract element content
and attribute values, using the following syntax as either table or scalar functions.

Syntax:
extractretrieved datatype(xmlobj, path)
retrieved_datatype

The data type that is returned from the extracting function; it can be one of
the following types:

* INTEGER

* SMALLINT
+ DOUBLE

* REAL

« CHAR

* VARCHAR
+ CLOB

+ DATE

+ TIME

+ TIMESTAMP

xmlobj The name of the XML column from which the element or attribute is to be

extracted. This column must be defined as one of the following XML
user-defined types:

* XMLVARCHAR
*+ XMLCLOB as LOCATOR
* XMLFILE

path The location path of the element or attribute in the XML document (such as
/Order/Customer/Name).

Restriction: Extracting UDFs can support location paths that have predicates with
attributes, but not elements. For example, the following predicate is supported:

'/Order/Part[@color="black "]/ExtendedPrice'

The following predicate is not supported:
'/Order/Part/Shipment/[Shipdate < "11/25/00"]"

Chapter 3. XML columns 81

shows the extracting functions, both in scalar and table format.
Table 14. The XML Extender extracting functions

Scalar function Table function Returned column Return type

name (table

function)
extractinteger() extractintegers() returnedinteger INTEGER
extractSmallint() extractSmallints() returnedSmallint SMALLINT
extractDouble() extractDoubles() returnedDouble DOUBLE
extractReal() extractReals() returnedReal REAL
extractChar() extractChars() returnedChar CHAR
extractVarchar() extractVarchars() returnedVarchar VARCHAR
extractCLOB() extractCLOBs() returnedCLOB CLOB
extractDate() extractDates() returnedDate DATE
extractTime() extractTimes() returnedTime TIME
extractTimestamp() extractTimestamps() | returnedTimestamp TIMESTAMP

Scalar function example: In the following example, one value is inserted with the
attribute key value of 1. The value is extracted as an integer and automatically
converted to a DECIMAL type.

CREATE TABLE tl(key decimal(3,2));

INSERT into t1 values

SELECT * from table(DB2XML.extractInteger(DB2XML.XMLFile
('c:\dxx_install\samples\db2xml\xml\getstart.xm1'), '/Order/@key="1"]1"));

SELECT * from tl;

Updating XML data

With XML Extender, you can update the entire XML document by replacing the XML
column data, or you can update the values of specified elements or attributes.

Procedure

To update XML data:

1. The XML document must be stored in an XML table.
2. You must know what data you want to retrieve.

3. You must choose a method for updating the data in the DB2 UDB table (casting
functions or UDFs).

4. Specify an SQL query that specifies the XML table and column to update.

Updating an entire XML document

You can update an XML document by using a default casting function, or by using a
storage UDF.

Updating with a default casting function

For each user-defined type (UDT), a default casting function exists to cast the SQL
base type to the UDT. You can use the XML Extender-provided casting functions to
update the XML document.

82 XML Extender Administration and Programming

For example, the following statement updates the XMLVARCHAR type from the cast
VARCHAR type, assuming that xm1_buf is a host variable that is defined as a
VARCHAR type.

UPDATE sales_tab SET=DB2XML.XMLVarchar(:xml_buff)

Updating XML documents with a storage UDF

For each of the XML Extender UDTs, a storage UDF exists to import data into DB2
UDB from a resource other than its base type. You can use a storage UDF to
update the entire XML document by replacing it.

The following example updates the XML object from the file named
dxx_install/samples/db2xml1/xml/getstart.xml to the ORDER column in the
SALES_TAB table.

UPDATE sales_tab

set order = XMLVarcharFromFile('dxx_install/samples/db2xm1
/xml/getstart.xml) WHERE sales_person = 'MyName'

Updating specific elements and attributes of an XML document
Use the Update UDF to make specific changes, rather than updating the entire
document. When you use this UDF, you specify the location path of the element or
attribute whose value will be replaced. You do not need to edit the XML document;
XML Extender makes the change for you.

Syntax:
Update(xmlobj, path, value)

The syntax has the following components:

xmlobj The name of the XML column for which the value of the element or attribute
is to be updated.

path The location path of the element or attribute that is to be updated.

value The new value that is to be updated.

For example, the following statement replaces the value of the <Customer> element
with IBM:
UPDATE sales_tab

set order = Update(order, '/Order/Customer/Name', 'IBM')
WHERE sales_person = 'Sriram Srinivasan'

Multiple occurrence: When you specify a location path in the Update UDF, the
content of every element or attribute with a matching path is updated with the
supplied value. If a location path occurs in a document more than once, the Update
UDF replaces all of the existing values with the value provided in the value
parameter.

Methods for searching XML documents

Searching XML data is similar to retrieving XML data: both techniques retrieve data
for further manipulation but they search by using the content of the WHERE clause
as the criteria for retrieval.

The XML Extender provides several methods for searching XML documents that are
stored in an XML column. You can:

Chapter 3. XML columns 83

e Search document structure and return results based on element content or
attribute values.

» Search a view of the XML column and its side tables.
» Search the side tables directly for better performance.
» Search using extracting UDFs with WHERE clauses.

« Use the DB2® Text Extender to search column data within the structural content
for a text string.

With XML Extender you can use indexes to quickly search columns in side tables.
These columns contain XML element content or attribute values that are extracted
from XML documents. By specifying the data type of an element or attribute, you
can search on an SQL data type or do range searches. For example, in the
purchase order example, you could search for all orders that have an extended
price of over 2500.00.

Additionally, you can use the Text Extender to do structural text search or full text
search. For example, you might have a column called RESUME that contains
resumes in XML format. If you want to find the names of all applicants who have
Java™ skills, you could use the DB2 UDB Text Extender to search on the XML
documents for all resumes where the <skill> element contains the character string
“JAVA”.

The following sections describe search methods:
+ [“Searching the XML document by structure”|

+ [‘Using the DB2 UDB Text Extender for structural text searches of XML]
documents” on page 86|

Searching the XML document by structure

Using XML Extender search features, you can search XML data in a column based
on the document structure (the elements and attributes in the document).

Procedures:

To search the data, you can:

» Directly query the side tables.
* Use a joined view.

* Use extracting UDFs.

These search methods are described in the following examples are based on the
following scenario. The SALES_TAB table has an XML column named ORDER.
This column has three side tables, ORDER_SIDE_TAB, PART_SIDE_TAB, and
SHIP_SIDE_TAB. A default view, sales_order_view, was specified when the
ORDER column was enabled. This view joins these tables using the following
CREATE VIEW statement:

CREATE VIEW sales_order_view(invoice_num, sales_person, order,
order_key, customer, part_key, price, date)
AS
SELECT sales_tab.invoice_num, sales_tab.sales_person, sales_tab.order,
order_side_tab.order_key, order_side_tab.customer,
part_side_tab.part_key, ship_side_tab.date
FROM sales_tab, order side tab, part_side _tab, ship_side tab
WHERE sales_tab.invoice_num = order_side_tab.invoice_num
AND sales_tab.invoice_num = part_side_tab.invoice_num
AND sales_tab.invoice_num = ship_side_tab.invoice_num

84 XML Extender Administration and Programming

Example: searching with direct query on side tables
Direct query with subquery search provides the best performance for a structural
search when the side tables are indexed.

Procedure:
You can use a query or subquery to search side tables correctly.

For example, the following statement uses a query and subquery to directly search
a side table:
SELECT sales_person from sales_tab

WHERE invoice num in

(SELECT invoice_num from part_side_tab
WHERE price > 2500.00)

In this example, invoice_num is the primary key in the SALES_TAB table.

Example: searching from a joined view

The XML Extender can create a default view that joins the application table and the
side tables using a unique ID. You can use this default view, or any view that joins
an application table and side tables, to search column data and query the side
tables. This method provides a single virtual view of the application table and its
side tables. However, the more side tables that are created, the longer the query
takes to run.

Tip: You can use the root ID, or DXXROOT_ID (created by XML Extender), to join
the tables when you create your own view.

For example, the following statement searches the view named
SALES_ORDER_VIEW and returns the values from the SALES_PERSON column
where the line item orders have a price greater than 2500.00.

SELECT sales_person from sales_order_view
WHERE price > 2500.00

Example: searching with extracting UDFs

You can also use XML Extender’s extracting UDFs to search on elements and
attributes, when you did not create indexes or side tables for the application table.
Using the extracting UDFs to scan the XML data is expensive and should only be
used with WHERE clauses that restrict the number of XML documents that are
included in the search.

The following statement searches with an extracting XML Extender UDF:

SELECT sales_person from sales_tab
WHERE extractVarchar(order, '/Order/Customer/Name")
like '%IBM%'
AND invoice_num > 100

In this example, the extracting UDF extracts </Order/Customer/Name> elements
that contain the substring IBM.

Example: searching on elements or attributes with multiple
occurrence

When you search on elements or attributes that have multiple occurrence, use the
DISTINCT clause to prevent duplicate values.

The following statement searches with the DISTINCT clause:

Chapter 3. XML columns 85

SELECT sales_person from sales_tab
WHERE invoice_num in
(SELECT DISTINCT invoice _num from part_side tab
WHERE price > 2500.00)

In this example, the DAD file specifies that /Order/Part/Price has multiple
occurrence and creates a side table, PART_SIDE_TAB, for it. The PART_SIDE_TAB
table might have more than one row with the same invoice_num. Using DISTINCT
returns only unique values.

Using the DB2 UDB Text Extender for structural text searches of XML

documents

If DB2 UDB Text Extender is installed, you can use it to perform a structural text
search.

Procedure:

To use the DB2 UDB Text Extender:

1. Decide whether you want to use structural text search or full text search.
2. Enable an XML column for the DB2 UDB Text Extender.

3. Create a query to perform the search.

To learn how to use the DB2 UDB Text Extender search, see DB2 Universal
Database Extenders: Text Extender Administration and Programming, Version 7.

Using structural text searches and full text searches

When searching the XML document structure, XML Extender searches elements
that are converted to general data types, but it does not search text. You can use
the Text Extender for structural text search or full text search on a column that is
enabled for XML. The DB2 UDB Text Extender supports XML document search in
DB2 UDB Version 6.1 or later. Text Extender is available on AIX, Windows®
operating systems, iSeries’", and the Solaris Operating Environment.

Structural text search
Searches text strings that are based on the tree structure of the XML
document. For example, in a document structure of /Order/Customer/Name,
you can use a structural text search to find the character string "IBM” within
the <Customer> sub-element. However, the document might also have the
string "IBM" in a <Comment> sub-element or as part of the name of a
product. A structural text search looks for the string only in the element that
is specified. In this example, only the documents that have "IBM” in the
</Order/Customer/Name> sub-element are found; any document that has
"IBM" in other elements but not in the </Order/Customer/Name>
sub-element is not returned.

Full text search
Searches text strings anywhere in the document structure, without regard to
elements or attributes. Using the previous example, all documents that
contain the string "IBM” would be returned, regardless of where the string
occurs.

Enabling an XML column for the DB2 UDB Text Extender

In an XML-enabled server, you enable the DB2 UDB Text Extender to search the

content of an XML-enabled column.

1. See the install.txt file on the DB2 UDB Extenders™ CD for information on
installing the Text Extender.

86 XML Extender Administration and Programming

2. Run the txstart command:

+ On UNIX® operating systems, enter the command from the instance owner’s
command prompt.

¢ On Windows NT, enter the command from the command window where
DB2INSTANCE is specified.

3. Enable the database for the DB2 UDB Text Extender.
From the db2tx command prompt, type:
enable server for db2text

4. Enable the columns in the XML table for the DB2 UDB Text Extender, and
define the data types of the XML document, the language, code pages, and
other information about the column.
* For the VARCHAR column XVARCHAR, type:

db2tx enable text column order xvarchar function

db2xml.varchartovarchar handle varcharhandle ccsid 1252

Tanguage us_english format xml indextype precise
indexproperty sections_enabled

documentmodel (Order) updateindex update

* For the CLOB column XCLOB, type:

db2tx enable text column order xclob
function db2xml.clob handle clobhandle ccsid 1252
Tanguage us_english indextype precise updateindex update

5. Check the status of the index.
* For the XVARCHAR column, type:
get index status order handle varcharhandle
* For the XCLOB column, type:
get index status order handle clobhandle
6. Define the XML document model in a document model initialization file called
desmodel.ini. This file is located in the /db2tx/txins000 directory on UNIX and
in the /instance/db2tx/txins000 directory on Windows NT. For example, for the
textmodel.ini:
;1ist of document models

[MODELS]
modelname=0rder

; an 'Order' document model definition
; left side = section name identifier
; right side = section name tag

[Order]

Order = /Order

Order/Customer/Name = /Order/Customer/Name
Order/Customer/Email = /Order/Customer/Email
Order/Part/Shipment/ShipMode = /Order/Part/Shipment/ShipMode

Searching for text using the DB2 UDB Net Search Extender

To search for text using the DB2 UDB Net Search Extender, you create a query that
specifies the element or attribute for which you want to search. The DB2 UDB Net
Search Extender then uses the query to search the element content or attribute
values.

For example enter the following statements in a DB2 UDB command window to use
the DB2 UDB Net Search Extender to search the text of an XML document:

Chapter 3. XML columns 87

select xvarchar from order where db2tx.contains(varcharhandle,
'model Order section(Order/Customer/Name) "Motors"')=1

select xclob from order where db2tx.contains(clobhandle,
'model Order section(Order/Customer/Name) "Motors"')=1

The Net Search Extender Contains() UDF searches that search the text of an XML
document.

This example does not contain all of the steps that are required to use the DB2
UDB Net Search Extender to search column data. To learn about the Net Search
Extender search concepts and capability, see DB2 Universal Database Extenders
for z/OS: Net Search Extender Administration and Programming.

Deleting XML documents

Use the SQL DELETE statement to delete the row containing an XML document
from an XML column. You can specify a WHERE clause to delete specific
documents.

For example, the following statement deletes all documents that have a value for
<ExtendedPrice> greater than 2500.00:

DELETE from sales_tab
WHERE invoice_num in
(SELECT invoice_num from part_side_tab
WHERE price > 2500.00)

The corresponding rows in the side tables are automatically deleted.

Related concepts:
* ['XML columns as a storage and access method” on page 73|

Related tasks:
« [‘Managing data in XML columns” on page 73|

Limitations when invoking functions from Java Database (JDBC)

When using parameter markers in functions, a JDBC restriction requires that the
parameter marker for the function must be cast to the data type of the column into
which the returned data will be inserted. The function selection logic does not know
what data type the argument might turn out to be, and it cannot resolve the
reference.

For example, JDBC cannot resolve the following code:
DB2XML.XMLdefault_casting_function(length)

You can use the CAST specification to provide a type for the parameter marker,
such as VARCHAR, and then the function selection logic can proceed:

DB2XML.XMLdefault_casting_function(CAST(? AS cast_type(length))

Example 1: In the following example, the parameter marker is cast as VARCHAR.
The parameter being passed is an XML document, which is cast as
VARCHAR(1000) and inserted into the column ORDER.

String query = "insert into sales_tab(invoice_num, sales_person, order) values
(?,?,DB2XML.XMLVarchar(cast (? as varchar(1000))))";

88 XML Extender Administration and Programming

Example 2: In the following example, the parameter marker is cast as VARCHAR.

The parameter being passed is a file name and its contents are converted to
VARCHAR and inserted into the column ORDER.

String query = "insert into sales_tab(invoice_num, sales_person, order) values
(?,7,DB2XML.XMLVarcharfromFILE(cast (? as varchar(1000))))";

Chapter 3. XML columns

89

90 XML Extender Administration and Programming

Chapter 4. Managing data in XML collections

XML collections as a storage and access method

Relational data is either decomposed from incoming XML documents or used to
compose outgoing XML documents. Decomposed data is the untagged content of
an XML document stored in one or more database tables. Or, XML documents are
composed from existing data in one or more database tables. If your data is to be
shared with other applications, you might want to be able to compose and
decompose incoming and outgoing XML documents and manage the data as
necessary to take advantage of the relational capabilities of DB2. This type of XML
document storage is called XML collection.

An example of an XML collection is shown in [Figure 10|

XML document
""""""""""""""" <?xml?> :

i <IDOCTYPE...>

| """"" l::::::ﬂ:‘.“ <Order key="1 ||>

</Order>

Collection
Figure 10. Storing documents as untagged data in DB2 UDB tables

The XML collection is defined in a DAD file, which specifies how elements and
attributes are mapped to one or more relational tables. The collection is a set of
columns, associated with a DAD file, that contain the data in a particular XML
document or set of XML documents. You can define a collection name by enabling
it, and then refer to it by name when issuing a stored procedure to compose or
decompose XML documents. It is called an enabled XML collection. The collection
is given a name so that it is easily run with stored procedures that compose and
decompose the XML documents.

When you define a collection in the DAD file, you use one of two types of mapping
schemes, SQL mapping or RDB_node mapping that define the tables, columns, and
conditions used to associate XML data with DB2 UDB tables. SQL mapping uses
SQL SELECT statements to define the DB2 UDB tables and conditions used for the
collection. RDB_node mapping uses an XPath-based relational database node, or
RDB_node, which has child elements.

Stored procedures are provided to compose or decompose XML documents. Stored

procedure names are qualified by DB2XML, which is the schema name of XML
Extender.

© Copyright IBM Corp. 1999, 2004 91

Managing data in XML collections

An XML collection is a set of relational tables that contain data that is mapped to
XML documents. This access and storage method lets you compose an XML
document from existing data, decompose an XML document, and use XML as an
interchange method.

The relational tables that make up the collection can be new tables, or existing
tables that have data that is to be used with XML Extender to compose XML
documents for your applications. Column data in these tables does not contain XML
tags; it contains the content and values that are associated with elements and
attributes, respectively. You use stored procedures to store, retrieve, update,
search, and delete XML collection data.

You can increase the CLOB sizes for the results of the stored procedures.

Preparing to compose XML documents from DB2 data

Composition is the generation of a set of XML documents from relational data in an
XML collection. You can compose XML documents using stored procedures. To use
these stored procedures, create a document access definition (DAD) file. A DAD file
specifies the mapping between the XML document and the DB2 table structure. The
stored procedures use the DAD file to compose the XML document.

Procedure::

Before you begin composing XML documents:

1. Map the structure of the XML document to the relational tables that contain the
contents of the element and attribute values.

2. Select a mapping method: SQL mapping or RDB_node mapping.
3. Prepare the DAD file.

The XML Extender provides four stored procedures, dxxGenXML(),
dxxGenXMLCLOB(), dxxRetrieveXML(), and dxxRetrieveXMLCLOB to compose
XML documents. The frequency with which you plan to update the XML document
is a key factor in selecting the stored procedure that you will use.

Composing XML documents that will be updated occasionally

If your document will be updated only occasionally, use the dxxGenXML stored
procedure to compose the document. You do not have to enable a collection to use
this stored procedure. The stored procedure uses a DAD file instead.

The dxxGenXML stored procedure constructs XML documents using data that is
stored in XML collection tables, which are specified by the <Xcollection> element in
the DAD file. This stored procedure inserts each XML document as a row into a
result table. You can also open a cursor on the result table and fetch the result set.
The result table must be created by the application and always has at least one
column of VARCHAR, CLOB, XMLVARCHAR, or XMLCLOB type.

If the value of the validation element in the DAD is YES, the application must also
create a validation column of type INTEGER in the result table. You can specify any
name for the validate column as long as its data type is integer. The default column
value for a column with a data type of integer is 0. You do not have to set the
value. XML Extender will set the value to 1 if the document is valid, otherwise it is
0.

92 XML Extender Administration and Programming

The stored procedure dxxGenXML also allows you to specify the maximum number
of rows that are to be generated in the result table. This shortens processing time.

The stored procedure returns the actual number of rows in the table and any return
codes and messages.

The corresponding stored procedure for decomposition is dxxShredXML; it also

takes the DAD as the input parameter and does not require that the XML collection
be enabled.

Procedure:

To compose an XML collection using the dxxGenXML stored procedure, embed a

stored procedure call in your application using the following stored procedure

declaration:

dxxGenXML (CLOB (100K) DAD, /* input */
char(32) resultTabName, /* input */
char(30) result_column, /* input */
char(30) valid_column, /* input */
integer overrideType, /* input */
varchar(1024) override, /* input =/
integer maxRows , /* input =/
integer numRows , /* output x/
Tong returnCode, /* output =/
varchar(1024) returnMsg) /* output =/

Example: The following example composes an XML document:

#include "dxx.h"
#include "dxxrc.h"

EXEC SQL INCLUDE SQLCA;

EXEC SQL

SQL TYPE is CLOB(100K) dad;

EXEC SQL

char
char
char
char
short
short
short
long
char
short
short
short
short
short
short
short
short
short
short

EXEC SQL END DECLARE SECTION;

FILE
long

BEGIN DECLARE SECTION;

/* DAD */

DECLARE :dad VARIABLE CCSID 1047;

/* specifies the CCSID for DAD when running from USS =/

/* to

ensure that DB2 UDB converts the =/

/* code page correctly*/

result_tab[32]; /%
result_colname[32]; /*
valid_colname[32]; /=

override[2]; /*
overrideType; /*
max_row; /%
num_row; /%
returnCode; /*
returnMsg[1024] ; /*

dad_ind;
rtab_ind;
rcol_ind;

vcol _ind;
ovtype_ind;
ov_ind;
maxrow_ind;
numrow_ind;
returnCode_ind;
returnMsg ind;

*xfile_handle;
file_Tength=0;

/* create table */
EXEC SQL CREATE TABLE xml_order _tab (xmlorder XMLVarchar);

name of the result table */

name of the result column =/

name of the valid column, will set to NULL */
override, will set to NULL*/

defined in dxx.h =/

maximum number of rows */

actual number of rows */

return error code */

error message text */

Chapter 4. Managing data in XML collections

93

/* initialize the DAD CLOB object. =/
file_handle = fopen("/dxx/samples/dad
/getstart _xcollection.dad", "r");
if (file_handle != NULL) {
file_length = fread ((void *) &dad.data,
1, FILE_SIZE, file_handle);
if (file_length == 0) {
printf ("Error reading dad file
/dxx/samples/dad
/getstart_xcollection.dad\n");
rc = -1;
goto exit;
} else
dad.length = file_length;
1

else {

printf("Error opening dad file \n",);

rc = -1;

goto exit;
1
/* initialize host variable and indicators */
strcpy(result_tab,"xml_order_tab");
strcpy(result_colname, "xmlorder")
valid_colname = '\0';
override[0] = '\0';
overrideType = NO_OVERRIDE;
max_row = 500;
num_row = 0;
returnCode = 0;
msg_txt[0] = '\0';
dad_ind = 0;
rtab_ind = 0;
rcol_ind
vcol_ind =
ov_ind = -1;
ovtype_ind
maxrow_ind = 0;
numrow_ind = -1;
returnCode_ind = -1;
returnMsg_ind = -1;

nonon
[N}

— e

we

(<=}
we

/* Call the store procedure */

EXEC SQL CALL "DB2XML.dxxGenXML"
(:dad:dad_ind;
:result_tab:rtab_ind,
:result_colname:rcol_ind,
:valid_colname:vcol_ind,
:overrideType:ovtype_ind,:override:ov_ind,
:max_row:maxrow_ind, :num_row:numrow_ind,
:returnCode:returnCode_ind, :returnMsg:returnMsg_ind);

if (SQLCODE < 0) {
EXEC SQL ROLLBACK;
else
EXEC SQL COMMIT;
1

exit:
return rc;

After the stored procedure is called, the result table contains 250 rows because the
SQL query specified in the DAD file generated 250 XML documents.

94 XML Extender Administration and Programming

Composing XML documents that will be updated frequently
If your document will be updated frequently, use the dxxRetrieveXML stored

procedure to compose the document. Because the same tasks are repeated,
improved performance is important.

The dxxRetrieveXML stored procedure works in the same way as the dxxGenXML
stored procedure, except that it takes the name of an enabled XML collection
instead of a DAD file. When an XML collection is enabled, a DAD file is stored in
the XML_USAGE table. Therefore, XML Extender retrieves the DAD file and uses it
to compose the document in the same way as the dxxGenXML stored procedure.

The dxxRetrieveXML stored procedure allows the same DAD file to be used for
both composition and decomposition.

The corresponding stored procedure for decomposition is dxxInsertXML; it also
takes the name of an enabled XML collection.

Procedure:

To compose an XML collection using the dxxRetrieve XML stored procedure, embed
a stored procedure call in your application using the following stored procedure
declaration:

dxxRetrieveXML(char(32) collectionName, /* input */
char(32) resultTabName, /* input */

char(30) result_column, /* input */
char(30) valid_column, /* input */
integer overrideType, /* input */
varchar(1024) override, /* input =/
integer maxRows , /* input */
integer numRows, /* output =/
Tong returnCode, /* output */
varchar(1024) returnMsg) /* output =/

Example: The following example is of a call to dxxRetrieveXML(). It assumes that a
result table is created with the name of XML_ORDER_TAB and that the table has
one column of XMLVARCHAR type.

#include "dxx.h"
#include "dxxrc.h"

EXEC SQL INCLUDE SQLCA;

EXEC SQL BEGIN DECLARE SECTION;

char collectionName[32]; /* name of an XML collection */

char result_tab[32]; /* name of the result table =/

char result_colname[32]; /* name of the result column */

char valid_colname[32]; /* name of the valid column, will set to NULL*/

char override[2]; /* override, will set to NULL*/
short overrideType; /* defined in dxx.h =/

short max_row; /* maximum number of rows =/
short num_row; /* actual number of rows =/
Tong returnCode; /* return error code x/

char returnMsg[1024]; /* error message text */

short collectionName_ind;
short rtab_ind;

short rcol_ind;

short vcol_ind;

short ovtype_ind;

short ov_ind;

short maxrow_ind;

short numrow_ind;

short returnCode_ind;
short returnMsg_ind;

Chapter 4. Managing data in XML collections 95

EXEC SQL END DECLARE SECTION;

/* create table */
EXEC SQL CREATE TABLE xml_order_tab (xmlorder XMLVarchar);

/* initial host variable and indicators =/
strcpy(collection, "sales_ord");
strcpy(result_tab,"xml_order tab");

strcpy (result_col,"xmlorder");
valid_colname[0] = '\0';

override[0] = '\0';

overrideType = NO_OVERRIDE;

max_row = 500;

num_row = 0

returnCode = 0;
msg_txt[0] = '\0';
collectionName_ind = 0;
rtab_ind = 0;

rcol_ind = 0;

vcol_ind = -1;

ov_ind = -1;

ovtype_ind = 0;
maxrow_ind = 0;
numrow_ind = -1;

returnCode_ind = -1;
returnMsg_ind = -1;

/* Call the store procedure */
EXEC SQL CALL "DB2XML.DXXRETRIEVE" (:collectionName:collectionName_ind,

:result_tab:rtab_ind,

:result _colname:rcol_ind,

:valid_colname:vcol_ind,

:overrideType:ovtype_ind,:override:ov_ind,

:max_row:maxrow_ind, :num_row:numrow_ind,

:returnCode:returnCode_ind,
:returnMsg:returnMsg_ind);

if (SQLCODE < 0) {

}

EXEC SQL ROLLBACK;

else

EXEC SQL COMMIT;

Related concepts:

[*XML collections as a storage and access method” on page 91|
[‘Mapping schemes for XML collections” on page 105
[‘Location paths” on page 112

[‘DAD files for XML collections” on page 169

|“XML Extender composition stored procedures” on page 200|

Related tasks:

“Composing XML collections by using RDB_node mapping” on page 63|
“Stylesheets for an XML collection” on page 112|

“Decomposing an XML collection by using RDB_node mapping” on page 65|
“Updating, deleting, and retrieving data in XML collections” on page 101|
“Searching XML collections” on page 103|

96 XML Extender Administration and Programming

Decomposing XML documents into DB2 UDB data

To decompose an XML document is to break down the data inside of an XML
document and store it in relational tables. The XML Extender provides stored
procedures to decompose XML data from source XML documents into relational
tables. To use these stored procedures, you must create a DAD file, which specifies
the mapping between the XML document and DB2 UDB table structure. The stored
procedures use the DAD file to decompose the XML document.

Enabling an XML collection for decomposition

In most cases, you need to enable an XML collection before using the stored
procedures. Cases where you must enable the collections are:

* When decomposing XML documents into new tables, an XML collection must be
enabled because all tables in the XML collection are created by the XML
Extender when the collection is enabled.

* When keeping the sequence of elements and attributes that have multiple
occurrence is important. The XML Extender preserves only the sequence order of
elements or attributes of multiple occurrence for tables that are created when a
collection is enabled. When XML documents are decomposed into existing
relational tables, the sequence order is not guaranteed to be preserved.

See the section about the dxxadm administration command for information about
the enable_collection option.

If you want to pass the DAD file when the tables already exist in your database,
you do not need to enable an XML collection.

Before you decompose an XML document into DB2 UDB data:

1. Map the structure of the XML document to the relational tables that contain the
contents of the elements and attributes values.

2. Prepare the DAD file, using RDB_node mapping.
3. Optional: Enable the XML collection.

Procedure::

Use one of the two stored procedures provided by DB2 UDB XML Extender to
decompose XML documents, dxxShredXML() or dxxInsertXML.

dxxShredXML()
This stored procedure is used for applications that do occasional updates or
for applications that do not want the overhead of administering the XML
data. The stored procedure dxxShredXML() does not required an enabled
collection; it uses a DAD file instead.

The stored procedure dxxShredXML() takes two input parameters, a DAD
file and the XML document that is to be decomposed; it returns two output
parameters: a return code and a return message. It inserts data from an
XML document into an XML collection according to the <Xcollection>
specification in the input DAD file. The dxxShredXML() stored procedure
then decomposes the XML document, and inserts untagged XML data into
the tables specified in the DAD file. The tables that are used in the
<Xcollection> of the DAD file are assumed to exist, and the columns are
assumed to meet the data types specified in the DAD mapping. If this is not
true, an error message is returned.

Chapter 4. Managing data in XML collections 97

The corresponding stored procedure for composition is dxxGenXML(); it
also takes the DAD as the input parameter and does not require that the
XML collection be enabled.

To decompose an XML collection with dxxShredXML()

Embed a stored procedure call in your application using the following stored
procedure declaration:

dxxShredXML (CLOB(100K) DAD, /* input =/
CLOB(1M) xmlobj, /* input */
long returnCode, /* output x/

varchar(1024) returnMsg) /* output =/

Example: The following example is a call to dxxShredXML():

#include "dxx.h"
#include "dxxrc.h"

EXEC SQL INCLUDE SQLCA;

EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE is CLOB(100K) dad; /* DAD */

EXEC SQL DECLARE :dad VARIABLE CCSID 1047;
/* specifies the CCSID for DAD when running */
/* from USS to ensure that DB2 UDB converts the */
/* code page correctly */

SQL TYPE is CLOB(100K) xmlDoc; /* input xml document =*/

EXEC SQL DECLARE :xmlDoc VARIABLE CCSID 1047;
/* specifies the CCSID for DAD when running */
/* from USS to ensure that DB2 UDB converts the x/
/* code page correctly */

Tong returnCode; /* return error code */

char returnMsg[1024] ; /* error message text x/

short dad_ind;

short xmlDoc_ind;

short returnCode_ind;

short returnMsg_ind;

EXEC SQL END DECLARE SECTION;

FILE =file_handle;
long file_length=0;

/* initialize the DAD CLOB object. */
file_handle = fopen("/dxx/samples
/dad/getstart_xcollection.dad", "r");
if (file_handle != NULL) {
file_length = fread ((void *) &dad.data, 1, FILE_SIZE,
file_handle);
if (file_length == 0) {
printf ("Error reading dad file getstart xcollection.dad\n");
rc = -1;
goto exit;
} else
dad.length = file_length;
1

else {
printf("Error opening dad file \n");
rc = -1;
goto exit;

}

/* Initialize the XML CLOB object. =*/
file_handle = fopen("/dxx/samples
/xml/getstart_xcollection.xml", "r");
if (file_handle != NULL) {
file_length = fread ((void *) &xmlDoc.data, 1,
FILE SIZE, file_handle);
if (file_length == 0) {

98 XML Extender Administration and Programming

printf ("Error reading xml file
getstart_xcollection.xml \n");
rc = -1;
goto exit;
} else
xmlDoc.length = file_length;
1

else {
printf("Error opening xml file \n");
rc = -1;
goto exit;

}

/* initialize host variable and indicators */
returnCode = 0;
msg_txt[0] = '\0';
dad_ind = 0;
xmlDoc_ind = 0;
returnCode_ind = -1;
returnMsg_ind = -1;

/* Call the store procedure */

EXEC SQL CALL "DB2XML.DXXSHRED" (:dad:dad_ind;
:xmlDoc:xmlDoc_ind,
:returnCode:returnCode_ind,
:returnMsg:returnMsg_ind);

if (SQLCODE < 0) {
EXEC SQL ROLLBACK;
else
EXEC SQL COMMIT;
}

exit:
return rc;

dxxInsertXML()

This stored procedure is used for applications that make regular updates.
The stored procedure dxxInsertXML() works the same as dxxShredXML(),
except that dxxInsertXML() takes an enabled XML collection as its first input
parameter.

The stored procedure dxxInsertXML() inserts data from an XML document
into an enabled XML collection, which is associated with a DAD file. The
DAD file contains specifications for the collection tables and the mapping.
The collection tables are checked or created according to the specifications
in the <Xcollection>. The stored procedure dxxInsertXML() then
decomposes the XML document according to the mapping, and it inserts
untagged XML data into the tables of the named XML collection.

The corresponding stored procedure for composition is dxxRetrieveXML(); it
also takes the name of an enabled XML collection.

Procedure:
To decompose an XML collection: dxxInsertXML():

Embed a stored procedure call in your application using the following stored
procedure declaration:

dxxInsertXML(char(collectionName
32) collectionName, /* input =/

CLOB(1M) xmlobj, /* input */
Tong returnCode, /* output x/
varchar(1024) returnMsg) /* output =/

Chapter 4. Managing data in XML collections 99

Example: The following is an example of a call to dxxInsertXML():

#include "dxx.h"
#include "dxxrc.h"

EXEC SQL INCLUDE SQLCA;

EXEC SQL BEGIN DECLARE SECTION;

char collectionName[32]; /* name of an XML collection */
SQL TYPE is CLOB(100K) xmlDoc; /* input xml document =*/
Tong returnCode; /* return error code x/
char returnMsg[1024] ; /* error message text */
short collectionName_ind;

short xmlDoc_ind;

short returnCode_ind;

short returnMsg_ind;

EXEC SQL END DECLARE SECTION;

FILE *file_handle;
long file_Tength=0;

/* initialize the DAD CLOB object. */
file_handle = fopen("/dxx_install/samples/db2xm1/dad
/getstart_xcollection.dad", "r");

if (file_handle != NULL) {
file_length = fread ((void *) &dad.data, 1, FILE_SIZE,

file_handle);

if (file_length == 0) {
printf ("Error reading dad file getstart xcollection.dad\n");
rc = -1;
goto exit;

} else
dad.length = file_length;

}

else {
printf("Error opening dad file \n");
rc = -1;
goto exit;

}

/* initialize host variable and indicators */
strcpy(collectionName, "sales_ord");
returnCode = 0;

msg_txt[0] = '\0';

collectionName_ind = 0;

xmlDoc_ind = 03

returnCode_ind = -1;

returnMsg_ind = -1;

/* Call the store procedure */
EXEC SQL CALL "db2xml.DXXINSERTXML"
(:collection_name:collection_name_ind,
:xmlDoc:xmlDoc_ind,
:returnCode:returnCode_ind,
:returnMsg:returnMsg_ind);

if (SQLCODE < 0) {
EXEC SQL ROLLBACK;
else
EXEC SQL COMMIT;
1

exit:
return rc;

100 XML Extender Administration and Programming

Decomposition table size limits

Decomposition uses RDB_node mapping to specify how an XML document is
decomposed into DB2 UDB tables by extracting the element and attribute values
and storing them in table rows. The values from each XML document are stored in
one or more DB2 UDB tables. Each table can have a maximum of 10240 rows
decomposed from each document.

For example, if an XML document is decomposed into five tables, each of the five
tables can have up to 10240 rows for that particular document. If the table has rows
for multiple documents, it can have up to 1024 rows for each document.

Using multiple-occurring elements (elements with location paths that can occur
more than once in the XML structure) affects the number of rows . For example, a
document that contains an element <Part> that occurs 20 times, might be
decomposed as 20 rows in a table. When using multiple occurring elements,
consider that a maximum of 1024 rows can be decomposed into one table from a
single document.

Related concepts:
+ [*XML Extenders decomposition stored procedures” on page 215|

Related tasks:
+ [‘Decomposing an XML collection by using RDB_node mapping” on page 65|
+ [“Calling XML Extender composition stored procedures” on page 201|

Related reference:
+ [‘dxxInsertXML() stored procedure” on page 218|
+ [‘dxxShredXML() stored procedure” on page 215

Updating, deleting, and retrieving data in XML collections

You can update, delete, search, and retrieve XML collections. However, the purpose
of using an XML collection is to store or retrieve untagged, pure data in database
tables. The data in existing database tables has nothing to do with any incoming
XML documents; update, delete, and search operations consist of normal SQL
access to these tables.

The XML Extender provides the ability to perform operations on the data from an
XML collection view. You can UPDATE and DELETE SQL statements to modify the
data that is used for composing XML documents, and therefore, update the XML
collection. Performing SQL operations on the collection tables affects the generated
documents.

Restrictions:

» To update a document, do not delete a row containing the primary key of the
table, which is the foreign key row of the other collection tables. When the
primary key and foreign key row is deleted, the document is deleted.

» To replace or delete elements and attribute values, you can delete and insert
rows in lower-level tables without deleting the document.

» To delete a document, delete the row that composes the top element_node
specified in the DAD.

Chapter 4. Managing data in XML collections 101

Updating data in an XML collection

The XML Extender allows you to update untagged data that is stored in XML
collection tables. By updating XML collection table values, you are updating the text
of an XML element, or the value of an XML attribute. Updates can also delete an
instance of data from multiple-occurring elements or attributes.

From an SQL point of view, changing the value of the element or attribute is an
update operation, and deleting an instance of an element or attribute is a delete
operation. From an XML point of view, if the element text or attribute value of the
root element_node exists, the XML document still exists and is, therefore, an update
operation. SQL operations on collection tables affect documents that will be
generated from the tables.

Requirements: When you update data in an XML collection, observe the following
rules:

» Specify the primary-foreign key relationship among the collection tables when the
existing tables have this relationship. If they do not, ensure that there are
columns that can be joined.

* Include the join condition that is specified in the DAD file:
— For SQL mapping, include the join condition in the <SQL_stmt> element.

— For RDB_node mapping, include the join condition in the top <condition>
element of the root element node.

Updating element and attribute values

In an XML collection, element text and attribute values are all mapped to columns in
database tables. Regardless of whether the column data previously exists or is
decomposed from incoming XML documents, you replace the data using the normal
SQL update technique.

To update an element or attribute value, specify a WHERE clause in the SQL
UPDATE statement that contains the join condition that is specified in the DAD file.

Example:

UPDATE SHIP_TAB
set MODE = 'BOAT'
WHERE MODE='AIR' AND PART_KEY in
(SELECT PART_KEY from PART_TAB WHERE ORDER_KEY=68)

The <ShipMode> element value is updated from AIR to BOAT in the SHIP_TAB
table, where the key is 68.

Deleting element and attribute instances

To update composed XML documents by eliminating multiple-occurring elements or
attributes, delete a row containing the field value that corresponds to the element or
attribute value, using the WHERE clause. If you do not delete the row that contains
the values for the top element_node, deleting element values is considered an
update of the XML document.

For example, in the following DELETE statement, you are deleting a <shipment>
element by specifying a unique value of one of its sub-elements.

DELETE from SHIP_TAB
WHERE DATE='1999-04-12'

Specifying a DATE value deletes the row that matches this value. The composed
document originally contained two <shipment> elements, but now contains one.

102 XML Extender Administration and Programming

Deleting an XML document from an XML collection

You can delete an XML document that is composed from a collection. This means
that if you have an XML collection that composes multiple XML documents, you can
delete one of these composed documents. Performing SQL operations on the
collection tables affects the generated documents.

Procedure:

To delete the document, delete a row in the table that composes the top
element_node that is specified in the DAD file. This table contains the primary key
for the top-level collection table and the foreign key for the lower-level tables.
Deleting the document with this method works only if the primary-key and
foreign-key constraints are fully specified in the SQL and if the relationship of the
tables shown in the DAD match those constraints exactly.

Example:

The following DELETE statement specifies the value of the primary key column.

DELETE from order_tab
WHERE order_key=1

ORDER_KEY is the primary key in the table ORDER_TAB, which is the top-level
table as specified in the DAD. Deleting this row deletes one XML document that is
generated during composition. Therefore, from the XML point of view, one XML
document is deleted from the XML collection.

Retrieving XML documents from an XML collection

Retrieving XML documents from an XML collection is similar to composing
documents from the collection.

DAD file consideration: When you decompose XML documents in an XML
collection, you can lose the order of multiple-occurring elements and attribute
values, unless you specify the order in the DAD file. To preserve this order, you
should use the RDB_node mapping scheme. This mapping scheme allows you to
specify an orderBy attribute for the table containing the root element in its
RDB_node.

Searching XML collections

This section describes searching an XML collection in terms of generating XML
documents using search criteria, and searching for decomposed XML data.

Composing XML documents using search criteria
This task is the same as composition using a condition.

Procedure:

You can specify the search criteria using the following search criteria:
» Specify the condition in the text_node and attribute_node of the DAD file

» Specify the overwrite parameter when using the dxxGenXML() and
dxxRetrieveXML() stored procedures.

Chapter 4. Managing data in XML collections 103

For example, if you enabled an XML collection, sales_ord, using the DAD file,
order.dad, but you now want to override the price using form data derived from
the Web, you can override the value of the <SQL_stmt> DAD element, as
follows:

EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION;

EXEC SQL END DECLARE SECTION;
float price_value;

/* create table */
EXEC SQL CREATE TABLE xml_order_tab (xmlorder XMLVarchar);

/* initialize host variable and indicators =/
strcpy(collection,"sales_ord");
strcpy(result_tab,"xml_order_tab");
overrideType = SQL_OVERRIDE;

max_row = 20;

num_row = 0;

returnCode
msg_txt[0] = '\0';
override_ind = 0;
overrideType_ind = 0;
rtab_ind = 0;
maxrow_ind = 0;
numrow_ind = -1;
returnCode_ind = -1;
returnMsg_ind = -1;

1]
(<]
ws

/* get the price_value from some place, such as form data */
price_value = 1000.00 /* for examplex/

/* specify the overwrite */
sprintf(overwrite,
"SELECT o.order_key, customer, p.part_key, quantity, price,
tax, ship_id, date, mode
FROM order_tab o, part_tab p,
table
(select db2xml.generate_unique()
as ship_id, date, mode from ship_tab) s
WHERE p.price > %d and s.date >'1996-06-01"' AND
p.order_key = o.order_key and s.part_key = p.part_key",
price_value);

/* Call the store procedure */

EXEC SQL CALL db2xml.dxxRetrieve(:collection:collection_ind,
:result_tab:rtab_ind,
:overrideType:overrideType_ind, :overwrite:overwrite_ind,
:max_row:maxrow_ind, :num_row:numrow_ind,
:returnCode:returnCode_ind,:returnMsg:returnMsg_ind);

The condition of price > 2500.00 in order.dad is overridden by price > ?, where ?
is based on the input variable price_value.

Searching for decomposed XML data

You can use normal SQL query operations to search collection tables. You can join
collection tables, or use subqueries, and then do a structural-text search on text
columns. Apply the results of the structural search to retrieve or generate the
specified XML document.

104 XML Extender Administration and Programming

Mapping schemes for XML collections

If you are using an XML collection, you must select a mapping scheme, which
specifies how XML data is represented in a relational database. Because XML
collections must match the hierarchical structure of XML documents with a relational
structure for relational databases, you should understand how the two structures
compare. shows how the hierarchical structure can be mapped to

relational table columns.

element_node
Order

v
v

element_node
Customer

: '
element_node
Email

v

element_node
Part

attribute_node
Key

order_key

|

element_node
Name

text_node

text_node

customer_name |

customer_email

element_node
Quantity

text_node

attribute_node
Color

color

element_node
Tax

text_node

A

element_node
Key

quantity

I:I Names of columns in DB2 tables

Figure 11. XML document structured mapped

The XML Extender uses a mapping sche
documents that are located in multiple re

element_node
Shipment

.

element_node
ShipMode

text_node

element_node
ExtendedPrice

price

element_node
ShipDate

text_node

to relational table columns

me when composing or decomposing XML
lational tables. The XML Extender provides

a wizard that assists you in creating the DAD file. However, before you create the

DAD file, you must think about how your
collection.

Types of mapping schemes:

XML data is mapped to the XML

Use <Xcollection> to specify the mapping scheme in the DAD file. The XML

Extender provides two types of mapping
Database (RDB_node) mapping.

schemes: SQL mapping and Relational

Chapter 4. Managing data in XML collections 105

SQL mapping
This method allows direct mapping from relational data to XML documents
through a single SQL statement. SQL mapping is used for composition only.
The content of the <SQL_stmt> element must be a valid SQL statement.
The <SQL_stmt> element specifies columns in the SELECT clause that are
mapped to XML elements or attributes later in the DAD. When defined for
composing XML documents, the column names in the SELECT clause of
the SQL statement are used to associate the value of an attribute_node or
a content of text_node with columns that have the same name_attribute.
The FROM clause defines the tables containing the data; the WHERE
clause specifies the join and search condition.

SQL mapping gives DB2® users the power to map the data using SQL.
When using SQL mapping, you must be able to join all tables in one
SELECT statement to form a query. If one SQL statement is not sufficient,
consider using RDB_node mapping. To tie all tables together, the primary
key and foreign key relationship is recommended among these tables.

RDB_node mapping
Defines the location of the content of an XML element or the value of an
XML attribute so that XML Extender can determine where to store or
retrieve the XML data.

This method uses XML Extender-provided RDB_node, which contains one
or more node definitions for tables, optional columns, and optional
conditions. The <table> and <column> elements in the DAD define how the
XML data is to be stored in the database. The condition specifies the
criteria for selecting XML data or the way to join the XML collection tables.

To define a mapping scheme, you must create a DAD file with an <Xcollection>
element. [Figure 12 on page 107| shows a fragment of a sample DAD file with SQL
mapping for an XML collection, which composes a set of XML documents from data
in three relational tables.

106 XML Extender Administration and Programming

<?xml version="1.0"?>
<IDOCTYPE DAD SYSTEM "dxx_install/samples/db2xm1/dtd/dad.dtd">
<DAD>
<dtdid>dxx_install/samples/dad/getstart.dtd</dtdid>
<validation>YES</validation>
<XcolTlection>
<SQL_stmt>
SELECT o.order_key, customer, p.part_key, quantity, price, tax, date,
ship_id, mode, comment
FROM order_tab o, part_tab p,
table(select db2xml.generate_unique()
as ship_id, date, mode, from ship_tab)
WHERE p.price > 2500.00 and s.date > "1996-06-01" AND
p.order_key = o.order_key and s.part_key = p.part_key
</SQL_stmt>
<prolog>?xml version="1.0"?</prolog>
<doctype>!DOCTYPE DAD SYSTEM
"dxx_install/samples/db2xml/dtd/getstart.dtd
"</doctype>
<root_node>
<element_node name="Order">
<attribute_node name="key">
<column name="order_key"/>
</attribute_node>
<element_node name="Customer">
<text_node>
<column name="customer"/>
</text_node>
<element_node>

</element_node><!-end Part->
</element_node><!-end Order->
</root_node>
</Xcollection>
</DAD>

Figure 12. SQL mapping scheme

The XML Extender provides several stored procedures that manage data in an XML
collection. These stored procedures support both types of mapping.

Related concepts:

“DAD files for XML collections” on page 169

+ |‘Requirements for using SQL mapping” on page 107]
* [“Requirements for RDB_Node mapping” on page 109|

Related tasks:

« [“Composing XML documents by using SQL mapping” on page 60|

+ [“Composing XML collections by using RDB_node mapping” on page 63|

« [“Decomposing an XML collection by using RDB_node mapping” on page 65|

Requirements for using SQL mapping

Requirements when using SQL mapping

Chapter 4. Managing data in XML collections 107

In this mapping scheme, you must specify the <SQL_stmt> element inside
the DAD <Xcollection> element. The <SQL_stmt> must contain a single
SQL statement that can join multiple relational tables with the query
predicate. In addition, the following clauses are required:

* SELECT clause

— Ensure that the name of the column is unique. If two tables have the
same column name, use the AS keyword to create an alias name for
one of them.

— Group columns of the same table together and order the tables
according to the tree level as they map to the hierarchical structure of
your XML document. The first column in each column grouping is an
object ID. In the SELECT clause, the columns of the higher-level
tables must precede the columns of lower-level tables. The following
example demonstrates the hierarchical relationship among tables:

SELECT o.order_key, customer, p.part_key, quantity, price, tax,
ship_id, date, mode

In this example, the order_key and customer columns from the
ORDER_TAB table have the highest relational level because they are
higher on the hierarchical tree of the XML document. The ship_id,
date, and mode columns from the SHIP_TAB table are at the lowest
relational level.

— Use a single-column candidate key to begin each level. If such a key
is not available in a table, the query should generate one for that table
using a table expression and the generate_unique()user-defined
function. In the above example, the o.order_key is the primary key for
ORDER_TAB, and the part_key is the primary key of PART_TAB.
They appear at the beginning of their own group of columns that are
to be selected. The ship_id is generated as a primary key because
the SHIP_TAB table does not have a primary key. ship_id is listed as
the first column for the SHIP_TAB table group. Use the FROM clause
to generate the primary key column, as shown in the following
example.

« FROM clause

— Use a table expression and the generate_unique()user-defined
function to generate a single key for tables that do not have a primary
single key. For example:

FROM order tab as o, part tab as p,
table(select

db2xml.generate_unique() as
ship_id, date, mode, part key from ship_tab) as s

In this example, a single column candidate key is generated with the
generate_unique() function and given an alias named ship_id.
— Use an alias name when it is necessary to make a column distinct.
For example, you could use o for columns in the ORDER_TAB table,
p for columns in the PART_TAB table, and s for columns in the
SHIP_TAB table.
« WHERE clause

— Specify a primary and foreign key relationship as the join condition
that ties tables in the collection together. For example:

WHERE p.price > 2500.00 AND s.date > "1996-06-01" AND
p.order_key = o.order_key AND s.part_key = p.part_key

108 XML Extender Administration and Programming

— Specify any other search condition in the predicate. Any valid

predicate can be used.
+ ORDER BY clause

— Define the ORDER BY clause at the end of the SQL_stmt. Ensure
that there is nothing after the column names such as ASC or DESC.

— Ensure that the column names match the column names in the
SELECT clause.

— List all object ID’s in the same relative order as they appear in the
SELECT clause.

— An identifier can be generated using a table expression and the
generate_unique() function or a user defined function.

— Maintain the top-down order of the hierarchy of the entities. The first
column specified in the ORDER BY clause must be the first column
listed for each entity. Keeping the order ensures that the XML
documents to be generated do not contain incorrect duplicates.

— Do not qualify the columns in the ORDER BY clause with a schema
or table name.

The <SQL_stmt> element is powerful because you can specify any
predicate in your WHERE clause, as long as the expression in the
predicate uses the columns in the tables.

Related reference:
+ |Appendix A, “Samples,” on page 293

Requirements for RDB_Node mapping

When using RDB_Node as your mapping method, do not use the
<SQL_stmt>element in the <Xcollection> element of the DAD file. Instead, use the
RDB_node element as a child of the top element_node and of each attribute_node
and text_node.

* RDB_node for the top element_node

The top element_node in the DAD file represents the root element of the XML
document. Specify an RDB_node for the top element_node as follows:

— Specify all tables that are associated with the XML collection. For example,
the following mapping specifies three tables in the <RDB_node> of
the<Order> element node, which is the top element node:
<element_node name="Order">

<RDB_node>
<table name="order_tab"/>
<table name="part_tab"/>
<table name="ship_tab"/>
<condition>
order_tab.order_key = part_tab.order_key AND
part_tab.part_key = ship_tab.part_key
</condition>
</RDB_node>

The condition element can be empty or missing if there is only one table in
the collection.

— Condition elements can reference a column name an unlimited number of
times.

Chapter 4. Managing data in XML collections 109

— If you are decomposing, or enabling, the XML collection specified by the DAD
file, you must specify a primary key for each table. The primary key can
consist of a single column or multiple columns, called a composite key.
Specify the primary key by adding an attribute key to the table element of the
RDB_node. When you supply a composite key, the key attribute will be
specified by the names of key columns separated by a space. For example:

<table name="part_tab" key="part_key price"/>

The information specified for decomposition is ignored if the same DAD is
used for composition.

— Use the orderBy attribute to recompose XML documents containing elements
or attributes with multiple occurrence back to their original structure. This
attribute allows you to specify the name of a column that will be the key used
to preserve the order of the document. The orderBy attribute is part of the
table element in the DAD file, and it is an optional attribute.

Spell out the table name and the column name in the <table>tag.
* RDB_node for each attribute_node and text_node

The XML Extender needs to know from where in the database to retrieve the
data. XML Extender also needs to know where in the database to put the content
from an XML document. You must specify an RDB_node for each attribute node
and text node. You must also specify the table and column names; the condition
value is optional.

1. Specify the name of the table containing the column data. The table name
must be included in the RDB_node of the top element_node. In this example,
for text_node of element <Price>, the table is specified as PART_TAB.
<element_node name="Price">

<text_node>
<RDB_node>
<table name="part_tab"/>
<column name="price"/>
<condition>
price > 2500.00
</condition>
</RDB_node>
</text_node>
</element_node>

2. Specify the name of the column that contains the data for the element text. In

the previous example, the column is specified as PRICE.

3. Specify a query condition if you want XML documents to be generated using
that condition. Only the data meeting the condition is in the generated XML
documents. The condition must be a valid WHERE clause. In the example
above, the condition is specified as price > 2500.00, so only rows where the
price is over 2500 will be included in the XML documents.

4. If you are decomposing a document, or enabling the XML collection specified
by the DAD file, you must specify the column type for each attribute node
and text node. By specifying the column type for each attribute node and text
node, you ensure that he correct data type for each column when new tables
are created during the enabling of an XML collection. Column types are
specified by adding the attribute type to the column element. For example:

<column name="order_key" type="integer"/>

The column type specified when decomposing a document is ignored for
composition.

* Maintain the top-down order of the hierarchy of the entities. Ensure that the
element nodes are nested properly so that XML Extender understands the

110 XML Extender Administration and Programming

relationship between the elements when composing or decomposing documents.
For example, the following DAD file does not nest Shipment inside of Part:

<element _node name="Part'">
;éiement_node name="ExtendedPrice">
</e1eméﬁ£_node>

</element_ﬁéée> <l-- end of element Part -->

<element_node name="Shipment" multi_occurrence="YES">
<element_node name="ShipDate">

</element_node>
<element_node name="ShipMode">

</element_node>

</element_node> <!-- end of element Shipment-->

This DAD file produces an XML documents in which the Part and Shipment
elements are siblings.

<Part color="black ">
<key>68</key>
<Quantity>36</Quantity>
<ExtendedPrice>34850.16</ExtendedPrice>
<Tax>6.000000e-2</Tax>

</Part>

<Shipment>
<ShipDate>1998-08-19</ShipDate>
<ShipMode>BOAT </ShipMode>
</Shipment>

The following code shows the shipment element nested inside the Part element
in the DAD file.

<element_node name="Part">
<element_node name="ExtendedPrice">
</element_node>

<element_node name="Shipment" multi_occurrence="YES">
<element_node name="ShipDate">

</element_node>
<element_node name="ShipMode">

</element_node>

</element_node> <!-- end of element Shipment-->
</element_node> <!-- end of element Part -->

Nesting the shipment element inside the part element produces an XML file with
Shipment as a child element of the Part element:

<Part color="black ">
<key>68</key>
<Quantity>36</Quantity>
<ExtendedPrice>34850.16</ExtendedPrice>
<Tax>6.000000e-2</Tax>
<Shipment>
<ShipDate>1998-08-19</ShipDate>
<ShipMode>BOAT </ShipMode>
</Shipment>
</Part>

Chapter 4. Managing data in XML collections 111

There are no ordering restrictions on predicates of the root node condition.

With the RDB_node mapping approach, you don’t need to supply SQL statements.
However, putting complex query conditions in the RDB_node element can be more
difficult.

For a subtree of the DAD with element_nodes and attribute_nodes that map to the
same table, the following is true:

« Attribute nodes do not have to be the first children of the lowest common
ancestor of the element nodes that map to the same table.

» Attribute nodes can appear anywhere in the subtree, as long as they are not
involved in a join condition.

Restrictions: The limit for the number of tables allowed in a RDB_node mapping
DAD is 30. The number of columns allowed per table is 500. The number of times
each table or column can be specified in the join predicates of the condition
statement is unlimited

Stylesheets for an XML collection

When composing documents, XML Extender also supports processing instructions
for stylesheets, using the <stylesheet> element. The processing instructions must

be inside the <Xcollection> root element, located with the <doctype> and <prolog>
defined for the XML document structure. For example:

<?xml version="1.0"?>

<IDOCTYPE DAD SYSTEM "c:\dtd\dad.dtd">

<DAD>

<SQL_stmt>

</SQL_stmt>
<Xcollection>

<prolog>...</prolog>

<doctype>...</doctype>

<stylesheet>?xml-stylesheet type="text/css" href="order.css"?</stylesheet>
<root_node>...</root_node>

</Xcollection>

</DAD>

Location paths

A location path defines the location of an XML element or attribute within the
structure of the XML document. The XML Extender uses the location path for the
following purposes:

* To locate the elements and attributes to be extracted when using extraction
UDFs such as dxxRetrieveXML.

+ To specify the mapping between an XML element or attribute and a DB2® column
when defining the indexing scheme in the DAD for XML columns

» For structural text search, using the Text Extender
» To override the XML collection DAD file values in a stored procedure.

112 XML Extender Administration and Programming

Figure 13|shows an example of a location path and its relationship to the structure
of the XML document.

Order

(1)

(Amerlcan Motors) Cparts@am.com)

| | | | |

@ | Key| [Quantity| |[ExtendedPrice | | Tax | [Shipment
| | I

(a6) (3485016) (002)

|ShipDate | |ShipMode|
Location path: “/Order/Part/Shipment/ShipDate” -+ - oovvieeinis C 1998-08-19) C Boat)

Figure 13. Storing documents as structured XML documents in a DB2 UDB table column

Related reference:
+ [‘Location path syntax” on page 113|

Location path syntax

XML Extender uses the location path to navigate the XML document structure. The
following list describes the location path syntax that is supported by the XML
Extender. A single slash (/) path indicates that the context is the whole document.

1./ Represents the XML root element. This the element that contains all the
other elements in the document.

2. /tagt
Represents the element fag? under the root element.

3. /tagi/tag2/..../tagn
Represents an element with the name tagn as the child of the descending
chain from root, tag1, tag2, through tagn-1.

4. /ftagn
Represents any element with the name tagn, where double slashes (//)
denote zero or more arbitrary tags.

5. /tag1//tagn
Represents any element with the name tagn, a descendent of an element
with the name tag1 under root, where double slashes (//) denote zero or
more arbitrary tags.

6. /tag1/tag2/@attr1
Represents the attribute attr? of an element with the name tag2, which is a
child of element tag? under root.

7. fagi/tag2[@attr1="5"]
Represents an element with the name tag2 whose attribute attr1 has the
value 5. Thetag2 is a child of the tag7element under root.

Chapter 4. Managing data in XML collections 113

8. /tagl/tag2[@attr1="5"}/.../tagn
Represents an element with the name tagn, which is a child of the
descending chain from root, tag1, tag2, through fagn-1, where the attribute
attr1 of tag2 has the value 5.

Simple location path

Simple location path is a type of location path used in the XML column DAD
file. A simple location path is represented as a sequence of element-type
names that are connected by a single slash (/). The values of each attribute
are enclosed within square brackets following the element type.
summarizes the syntax for simple location path.

Table 15. Simple location path syntax

Subject Location path Description
XML element /Mlag1/tag2/..../tagn-1/tagn An element content identified by
the element named fagn and its
parents
XML attribute /Mtag_1/tag_2/..../tag_n- An attribute namedattr1 of the
1/tag_n/@attr1 element identified by tagn and its
parents

Location path usage

The syntax of the location path is dependent on the context in which you
are accessing the location of an element or attribute. Because the XML
Extender uses one-to-one mapping between an element or attribute, and a
DB2 column, it restricts the syntax rules for the DAD file and functions.
describes in which contexts the syntax options are used.

Table 16. The XML Extender’s restrictions using location path

Use of the location path Location path supported

Value of path attribute in the XML column 3, 6 (simple location path described in
DAD mapping for side tables Table 15)

Extracting UDFs 1-8'
Update UDF 1-8"
Text Extender’s search UDF 3 — Exception: the root mark is specified

without the slash. For example:
tagl/tag2/..../tagn

' The extracting and updating UDFs support location paths that have predicates with
attributes, but not elements.

Related concepts:
“Location paths” on page 112

Enabling XML collections

Enabling an XML collection parses the DAD file to identify the tables and columns
related to the XML document, and records control information in the XML_USAGE
table. Enabling an XML collection is optional for:

» Decomposing an XML document and storing the data in new DB2 UDB tables
» Composing an XML document from existing data in multiple DB2 UDB tables

114 XML Extender Administration and Programming

If the same DAD file is used for composing and decomposing, you can enable the
collection for both composition and decomposition.

You can enable an XML collection with the XML Extender Administration wizard,
with the dxxadm command with the enable_collection option, or with the XML
Extender stored procedure dxxEnableCollection().

Using the Administration wizard:

To enable an XML collection using the wizard:
1. Set up and start the Administration wizard.

2. Click Work with XML Collections from the Launchpad window. The Select a
Task window opens.

3. Click Enable a Collection and then Next. The Enable a Collection window
opens.

4. Select the name of the collection that you want to enable in the Collection
name field.

5. Specify the DAD file name in the DAD file name field.

6. Optional: Type the name of a previously created table space in the Table space
field.

The table space will contain new DB2 UDB tables generated for decomposition.
7. Click Finish to enable the collection and return to the Launchpad window.

 If the collection is successfully enabled, an Enabled collection is
successful message is displayed.

 If the collection is not successfully enabled, an error message is displayed.
Repeat the steps above until the collection is successfully enabled.

Enabling collections using the dxxadm command:

To enable an XML collection, enter the dxxadm command from a DB2 UDB
command line:

Syntax:

v

»>—enable_collection—-a—subsystem_name—collection—DAD file

l——t—tab l espace—|

Parameters:

-a subsystem_name
The name of the DB2 UDB subsystem.

collection
The name of the XML collection. This value is used as a parameter for the
XML collection stored procedures.

DAD_file
The name of the file that contains the document access definition (DAD).

tablespace
An existing table space that contains new DB2 UDB tables that were
generated for decomposition. If not specified, the default table space is
used.

Chapter 4. Managing data in XML collections 115

Example: The following example enables a collection called sales_ord using the
command line. The DAD file uses SQL mapping.

dxxadm enable _collection -a SUBSYS1 ORDRPSC SALES ORD

'"dxx/samples/dad/getstart_xcollection.dad'

After you enable the XML collection, you can compose or decompose XML
documents using the XML Extender stored procedures.

Related concepts:

“XML collections as a storage and access method” on page 91|

Related tasks:
. |“Disab|ing XML collections” on page 116|

“Managing data in XML collections” on page 92|

Disabling XML collections

Disabling an XML collection removes the record in the XML_USAGE table that
identifies tables and columns as part of a collection. It does not drop any data
tables. You disable a collection when you want to update the DAD and need to
re-enable a collection, or when you want to drop a collection.

You can disable an XML collection with the XML Extender Administration wizard,
with the dxxadm command with the disable_collection option, or with the XML
Extender stored procedure dxxDisableCollection().

Procedure:

To disable an XML collection using the Administration wizard:

1.
2.

Start the Administration wizard.

Click Work with XML Collections from the Launchpad window to view the XML
Extender collection related tasks. The Select a Task window opens.

Click Disable an XML Collection and then Next to disable an XML collection.
The Disable a Collection window opens.

Type the name of the collection that you want to disable in the Collection name
field.

Click Finish to disable the collection and return to the Launchpad window.

» If the collection is successfully disabled, Disabled collection is successful
message is displayed.

« If the collection is not successfully disabled, an error box is displayed. Repeat
the steps above until the collection is successfully disabled.

To disable an XML collection from the command line, enter the dxxadm command.

Syntax:

»>—dxxadm—disable_collection—-a—subsystem _name—collection

v
A

Parameters:

- a subsystem_name

The name of the DB2 subsystem.

116 XML Extender Administration and Programming

collection

The name of the XML collection. This value is used as a parameter for the
XML collection stored procedures.

Example:
dxxadm disable_collection -a SUBSYS1 SALES_ORD

Related concepts:

“XML collections as a storage and access method” on page 91|

“XML Extender administration stored procedures” on page 195|

Related tasks:

“Managing data in XML collections” on page 92|

Chapter 4. Managing data in XML collections 117

118 XML Extender Administration and Programming

Chapter 5. XML schemas

The XML schema can be used in place of a DTD to define the specifications for the
content of XML documents. The XML schema uses XML format or SML syntax to
define the elements and attribute names of an XML document, and defines the type
of content that the elements and attributes are allowed to contain.

Advantages of using XML schemas instead of DTDs

DTDs are easier to code and validate than an XML schema. However, the
advantages to using an XML schema are shown in the following list:

* XML schemas are valid XML documents that can be processed by tools such as
the XSD Editor in WebSphere® Studio Application Developer, XML Spy, or XML
Authority.

+ XML schemas are more powerful than DTDs. Everything that can be defined by
the DTD can also be defined by schemas, but not vice versa.

» XML schemas support a set of data types, similar to the ones used in most
common programming languages, and provide the ability to create additional
types. You can constrain the document content to the appropriate type. For
example, you can replicate the properties of fields found in DB2.

« XML schemas support regular expressions to set constraints on character data,
which is not possible if you use a DTD.

* XML schemas provide better support for XML namespaces, which enable you to
validate documents that use multiple namespaces, and to reuse constructs from
schemas already defined in different namespaces.

* XML schemas provide better support for modularity and reuse with include and
import elements.

« XML schemas support inheritance for element, attribute, and data type
definitions.

Related tasks:
+ [‘Data types, elements and attributes in schemas” on page 121|

Related reference:
+ [‘Examples of an XML schema” on page 122

UDTs and UDF names for XML Extender

The full name of a DB2® function is schema-name.function-name, where
schema-name is an identifier that provides a logical grouping for a set of SQL
objects. The schema name for XML Extender UDFs and UDTs is DB2XML. In the
documentation, references are made only to the function name.

You can specify UDTs and UDFs without the schema name if you add the schema
name to the function path. The function path is an ordered list of schema names.
DB2 UDB uses the order of schema names in the list to resolve references to
functions and UDTs. You can specify the function path by specifying the SQL
statement SET CURRENT FUNCTION PATH. This statement sets the function path
in the CURRENT FUNCTION PATH special register.

© Copyright IBM Corp. 1999, 2004 119

Recommendation: Add the DB2XML schema name to the function path. By adding
this schema name, you can enter XML Extender UDF and UDT names without
having to qualify them with DB2XML. The following example shows how to add the
DB2XML schema to the function path:

SET CURRENT FUNCTION PATH = DB2XML, CURRENT FUNCTION PATH

Restriction: Do not add DB2XML as the first schema in the function path if you log
on with a user ID of DB2XML. DB2XML is automatically set as the first schema
when you log on as DB2XML. If you add DB2XML as the first schema in the
function path, you will receive an error condition because the function path will start
with two DB2XML schemas.

XML schema complexType element

The XML schema element complexType is used to define an element type that can
consist of sub-elements. For example, the following tags show the projection of an
address in an XML document:

<bi11To country="US">
<name>Dan Jones</name>
<street>My Street</street>
<city>My Town</city>
<state>CA</state>
<z1p>99999</zip>

</bil1To>

The structure of this element can be defined in the XML schema as follows:

1 <xsd:element name="bi11To" type="USAddress"/>
2 < xsd:complexType name="USAddress">
3 <xsd:sequence>
4 < xsd:element name="name" type="xsd:string"/>
5 < xsd:element name="street" type="xsd:string"/>
6 < xsd:element name="city" type="xsd:string"/>
7 < xsd:element name="state" type="xsd:string"/>
8 < xsd:element name="zip" type="xsd:decimal"/>
9 </xsd:sequence>
10 < xsd:attribute name="country"
type="xsd:NMTOKEN" use="fixed"
value="US"/>
12</xsd:complexType>

In the above example, it is assumed that the xsd prefix has been bound to the XML
schema namespace. Lines 2 through 5 define the complexType USAddress as a
sequence of five elements and one attribute. The order of the elements is
determined by the order in which they appear in the sequence tag.

The inner elements are from data type xsd:string or xsd:decimal. Both are
predefined simple data types.

Alternatively, you can use the all tag or the choice tag instead of the sequence tag.
With the all tag, all sub-elements must appear, but do not need to appear in any
particular order. With the choice tag, exactly one of the sub-elements must appear
in the XML document

You can also use a user-defined data type to define other elements.

120 XML Extender Administration and Programming

Data types, elements and attributes in schemas

Simple data types in XML schemas

XML schemas provide a set of simple built-in data types. You can derive other data
types from them by applying constraints.

In Example 1, the range of base type xsd:positivelnteger is limited to 0 to 100.

Example 1
< xsd:element name="quantity">
< xsd:simpleType>
< xsd:restriction base="xsd:positiveInteger">
< xsd:maxExclusive value="100"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

In Example 2, the base type xsd:string is limited by a regular expression.

Example 2
<xsd:simpleType name="SKU">
< xsd:restriction base="xsd:string">
< xsd:pattern value="\d{3}-[A-Z]{2}"/>
</xsd:restriction>
</xsd:simpleType>

Example 3 shows an enumerated type based on the string built-in type.

Example 3
<xsd:simpleType name="SchoolClass">

< xsd:restriction base="xsd:string">
xsd:enumeration value="WI"/>
xsd:enumeration value="MI"/>
xsd:enumeration value="II"/>
xsd:enumeration value="DI"/>

< xsd:enumeration value="AI"/>
</xsd:restriction>
</xsd:simpleType>

AN AN A

Elements in XML schemas

To declare an element in an XML schema you must indicate the name and type as
an attribute of the element element. For example:

<xsd:element name="street" type="xsd:string"/>

Additionally, you can use the attributes minOccurs and maxOccurs to determine the
maximum or minimum number of times that the element must appear in the XML
document. The default value of minOccurs and maxOccurs is 1.

Attributes in XML schemas
Attribute declarations appear at the end of an element definition. For example:

<xsd:complexType name="PurchaseOrderType">
< xsd:sequence>
< xsd:element name="bil1To" type="USAddress"/>
< xsd:sequence>
< xsd:attribute name="orderDate" type="xsd:date"/>
</xsd:complexType>

Related concepts:
+ [‘Advantages of using XML schemas instead of DTDs” on page 119

Chapter 5. XML schemas 121

Related tasks:
« [Validation functions” on page 163

Related reference:
. |“Examples of an XML schema” on page 122|
“XML schema complexType element” on page 120|

Examples of an XML schema

It is a good strategy to write XML schemas by first designing the data structure of
your XML document using a UML tool. After you design the structure, you can map
the structure into your schema document. The following example shows an XML
schema.

1 <?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs='http://www.w3.0rg/2001/XMLSchema'>

2

3

4 <xs:element name="personnel">

5 <xs:complexType>

6 <xs:sequence>

7 <xs:element ref="person" minOccurs='1"' maxOccurs="'unbounded'/>
8 </xs:sequence>

9 </xs:complexType>

10 </xs:element>

12 <xs:element name="person'">
13 <xs:complexType>

14 <xs:sequence>

15 <xs:element ref="name"/>

16 <xs:element ref="email" minOccurs='0"' maxOccurs='4"'/>
17 </xs:sequence>

18 <xs:attribute name="id" type="xs:ID" use='required'/>

19 </xs:complexType>
20 </xs:element>

22 <xs:element name="name">
23 <xs:complexType>

24 <xs:sequence>
25 <xs:element ref="family"/>
26 <xs:element ref="given"/>

27 </xs:sequence>
28 </xs:complexType>
29 </xs:element>

31 <xs:element name="family" type='xs:string'/>
32 <xs:element name="given" type='xs:string'/>
33 <xs:element name="email" type='xs:string'/>
34 </xs:schema>

The first two lines declare that this XML schema is XML 1.0 compatible and
Unicode 8 decoded, and specify use of the XML schema standard namespace,
which enables access to basic XML schema data types and structures.

Lines 4 to 10 define the personnel as a complexType that consists of a sequence of
1 to n persons. The complexType is then defined in lines 12 to 20. It consists of the
complexType element name and the element email. The email element is optional
(minOcccurs ='0’), and can appear up to four times (maxOccurs = '4’). The greater
the number of occurrences of an element, the longer it will take to validate the
schema. In contrast, in a DTD you can choose only 0, 1, or unlimited appearances
of an element.

122 XML Extender Administration and Programming

Lines 22 to 29 define the name type that is used for the person type. The name
type consists of a sequence of a family and a given element.

Lines 31 to 33 define the single elements family, given, and e-mail, which contain
type strings that have been declared.

XML document instance using the schema

The following example is an XML document that is an instance of the
personalnr.xsd schema.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <personnel xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="'personsnr.xsd'>

<person id="Big.Boss" >
<name><family>Boss</family><given>Big</given></name>
<email>chief@foo.com</email>

</person>

OooONOOL P~ W

10 <person id="one.worker">
11 <name><family>Worker</family><given>One</given></name>

12 <email>one@foo.com</email>
13 </person>
14

15 <person id="two.worker">

16 <name><family>Worker</family><given>Two</given></name>
17 <email>two@foo.com</email>

18 </person>

19 </personnel>

XML document instance using a DTD

This example shows how this XML schema would be realized as a DTD.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <!ELEMENT email (#PCDATA)>

3 <IELEMENT family (#PCDATA)>

4 <IELEMENT given (#PCDATA)>

5 <!ELEMENT name (family, given)>

6 <!ELEMENT person (name, email=)>

7
8

<IATTLIST person
9 id ID #REQUIRED>
10 <!ELEMENT personnel (person+)>

Using a DTD you can set the maximum occurrence of email to only 1 or unlimited
occurrences.

Using this DTD, the XML document instance would be the same as shown in the
top example, except line 2 would be changed to:

<IDOCTYPE personnel SYSTEM "personsnr.dtd">

Related concepts:
“Advantages of using XML schemas instead of DTDs” on page 119|

Related tasks:

» |[“Data types, elements and attributes in schemas” on page 121|
» [“Validation functions” on page 163|

Related reference:
+ XML schema complexType element” on page 120|

Chapter 5. XML schemas 123

124 XML Extender Administration and Programming

Part 4. Reference

This part provides syntax information for the XML Extender administration
command, user-defined data types (UDTs), user-defined functions (UDFs), and
stored procedures. Message text is also provided for problem determination
activities.

© Copyright IBM Corp. 1999, 2004 125

126 XML Extender Administration and Programming

Chapter 6. The dxxadm administration command

dxxadm command overview

You perform the following XML Extender administration tasks by calling dxxadm

using various subcommands:

Related concepts:

« [‘Administration tools for XML Extender” on page 37

 ["XML Extender administration planning” on page 38|

Syntax of the dxxadm administration command

»»— dxxadm—’ —-a—subsystem name

Parameters:

Table 17. dxxadm parameters

Parameter

enable_server—parameters
disable_server
enable_column—parameters
disable_column—parameters
enable_collection—parameters—
disable_collection—parameters—

Description

subsystem name

The name of the DB2 UDB subsystem to which
the application attaches.

enable_server

Enables XML Extender features for a server.

disable_server

Disables XML Extender features for a server.

enable_column

Enables an XML column so that it can contain the
XML Extender UDTs.

disable_column

Disables the XML-enabled column.

enable_collection

Enables an XML collection according to the
specified DAD.

enable_collection

Disables an XML-enabled collection.

Subcommands of the administration command

The following dxxadm subcommands are available to system programmers:

* enable_column
* enable_collection
* enable_server

» disable_column
» disable_collection
» disable_server

enable_server option of the dxxadm command

Purpose:

© Copyright IBM Corp. 1999, 2004

127

Enables XML Extender features for a server. When the server is enabled, the XML
Extender creates the following objects:

* The XML Extender user-defined types (UDTs).
* The XML Extender user-defined functions (UDFs).
* The XML Extender stored procedures

* The XML Extender DTD repository table, DTD_REF, which stores DTDs and
information about each DTD.

* The XML Extender usage table, XML_USAGE, which stores common information
for each column that is enabled for XML and for each collection.

Syntax:
»>—dxxadm—enable_server—-a—subsystem_name |_ _| >
security—security_level
»—WLM environment—IWLM_namel |_ J ><
, WLM_name?2:
Parameters:

Table 18. enable_server parameters

Parameter Description
subsystem_name The name of the DB2 subsystem.
security_level Determines the user ID that is authorized to

access external resources when running
stored procedures. Choices are DB2, USER,
DEFINER. DB2 UDB is the default.

WLM name The names of the WLM environments. At
least one name is required. If one is
specified, the name is for all stored
procedures and UDFs. If two are specified,
the first name is for the stored procedures,
the second name is for the UDFs.

The following table describes the tablespaces that will be created while enabling the
server:

Table 19. enable_server tablespaces

Tablespace Description

DXXDTDRF The tablespace name in which the DTD_REF
table is stored.

DXXXMLUS The tablespace name in which the
XML_USAGE table is stored.

DXXDTDL1 The tablespace name in which the CLOB
column CONTENT of the DTD_REF table is
stored.

DXXDTDL2 The tablespace name in which the CLOB
column DAD of the XML_USAGE table is
stored.

You can create any or all of the above tablespaces before enabling the server. If
you do not create the tablespaces before enabling the server, the following
commands will be executed to create the tablespaces when the enable_server
command is run:

128 XML Extender Administration and Programming

CREATE TABLESPACE DXXDTDRF USING STOGROUP SYSDEFLT
PRIQTY 288 SECQTY 48 IN DB2XML

CREATE TABLESPACE DXXXMLUS USING STOGROUP SYSDEFLT
PRIQTY 288 SECQTY 48 IN DBZ2XML

CREATE LOB TABLESPACE DXXDTDL1 LOG NO USING STOGROUP SYSDEFLT
PRIQTY 1920 SECQTY 480 IN DB2XML

CREATE LOB TABLESPACE DXXDTDLZ LOG NO USING STOGROUP SYSDEFLT
PRIQTY 1920 SECQTY 480 IN DB2XML

Examples:

The following example enables the database server for XML Extender using the
SUBSY1 subsystem and the WML environment ENVIR233:

dxxadm 'enable_server -a SUBSYS1 wlm environment envir233'

Related reference:
+ [‘dxxadm command overview” on page 127

disable_server option of the dxxadm command
Purpose:

Disables XML Extender features for a database server, called “disabling a
database”. When the database server is disabled, it can no longer be used by the
XML Extender. When the XML Extender disables the database server, it drops the
following objects:

* The XML Extender user-defined types (UDTs).
* The XML Extender user-defined functions (UDFs).

* The XML Extender DTD repository table, DTD_REF, which stores DTDs and
information about each DTD.

* The XML Extender usage table, XML_USAGE, which stores common information
for each column that is enabled for XML and for each collection.

Important: You must disable all XML columns before attempting to disable a
database server. The XML Extender cannot disable a database server that contains
columns or collections that are enabled for XML.

Syntax:

»»—disable_server—-a—subsystem_name ><

Parameters:

Table 20. disable_server parameters

Parameter Description
-a subsystem_name The name of the DB2 UDB subsystem.
Examples:

The following example disables the database server:
dxxadm disable_server -a SUBSYS1

Related concepts:
 ["XML Extender administration stored procedures” on page 195|

Chapter 6. The dxxadm administration command 129

Related reference:
« [‘How to read syntax diagrams” on page X

enable_column option of the dxxadm command
Purpose:

Connects to a database server and enables an XML column so that it can contain
the XML Extender UDTs. When enabling a column, the XML Extender completes
the following tasks:

* Determines whether the XML table has a primary key; if not, the XML Extender
alters the XML table and adds a column called DXXROOT_ID.

» Creates side tables that are specified in the DAD file with a column containing a
unique identifier for each row in the XML table. This column is either the root ID
that the user specified or the DXXROOT_ID that was named by the XML
Extender.

» Creates a default view for the XML table and its side tables, optionally using a
name you specify.

Syntax:

»>—dxxadm—enabTle_column—-a—subsystem_name—tab_name—column_name—DAD file——»>

\

|——t—t‘ablespace—| |——v—defauli.‘_view—| l——r‘—root_id—l |——1—login—|

\4
\4
A

l—- p—password—|

Parameters:

Table 21. enable_column parameters

Parameter Description

-a subsystem_name The name of the DB2 UDB subsystem.

tab_name The name of the table in which the XML
column resides.

column_name The name of the XML column.

DAD _file The name of the DAD file that maps the XML

document to the XML column and side tables.

-t tablespace The table space that contains the side tables
associated with the XML column. If not
specified, the default table space is used.

-v default_view The name of the default view that joins the
XML column and side tables.

-r root_id The name of the primary key in the XML
column table that is to be used as the root_id
for side tables. The root_id is optional.

- login The user ID, used to connect to the
database. If not specified, the current user ID
is used.

-p password The password used to connect to the

database. If not specified, the current
password is used.

130 XML Extender Administration and Programming

Examples:
The following example enables an XML column.
dxxadm enable_column -a SUBSYS1 SALES_TAB ORDER getstart.dad -v SALODVW -r INVOICE_NUMBER

disable_column option of the dxxadm command

Purpose:

Connects to a database and disables the XML-enabled column. When the column
is disabled, it can no longer contain XML data types. When an XML-enabled column
is disabled, the following actions are performed:

* The XML column usage entry is deleted from the XML_USAGE table.
* The USAGE_COUNT is decremented in the DTD_REF table.

« All triggers that are associated with this column are dropped.

» All side tables that are associated with this column are dropped.

Important: You must disable an XML column before dropping an XML table. If an
XML table is dropped but its XML column is not disabled, the XML Extender keeps
both the side tables it created and the XML column entry in the XML_USAGE table.
Syntax:

»>—dxxadm—disable_column—-a—subsystem_name—tab_name—column_name———— >

»<
L |

l—-]—login—| l—-p—password—|

Parameters:

Table 22. disable_column parameters

Parameter Description

-a subsystem_name The name of the DB2 UDB subsystem.

tab_name The name of the table in which the XML
column resides.

column_name The name of the XML column.

- login The user ID used to connect to the database.

If not specified, the current user ID is used.

-p password The password used to connect to the
database. If not specified, the current
password is used.

Examples:
The following example disables an XML-enabled column.

dxxadm disable_column -a SUBSYS1 SALES TAB ORDER

Related concepts:
+ XML columns as a storage and access method” on page 73|
XML Extender administration stored procedures” on page 195|

Related tasks:
« [“Calling XML Extender composition stored procedures” on page 201|

Chapter 6. The dxxadm administration command 131

Related reference:
« [‘How to read syntax diagrams” on page X

enable_collection option of the dxxadm command
Purpose:

Connects to a database server and enables an XML collection according to the
specified DAD. When enabling a collection, the XML Extender does the following
tasks:

* Creates an XML collection usage entry in the XML_USAGE table.

» For RDB_node mapping, creates collection tables specified in the DAD if the
tables do not exist in the database.

Syntax:

»>—enable_collection—-a—subsystem_name—collection_name—DAD file >

v
A

|—-t—t‘ab l espace—|

Parameters:

Table 23. enable_collection parameters

Parameter Description
-a subsystem_name The name of the DB2 UDB subsystem.
-t tablespace The name of the table space associated with

the collection. If not specified, the default
table space is used.

collection_name The name of the XML collection.

DAD file The name of the DAD file that maps the XML
document to the relational tables in the
collection.

Example::

The following example enables an XML collection named SALES_ORD with the
GETSTART_XCOLLECTION.DAD:

dxxadm enable_collection -a SUBSYS1 using ORDRPSC SALES_ORD
'ORDPRJ.WORK.DAD (GETSTART_XCOLLECTION) '

Related reference:
+ [‘dxxadm command overview” on page 127|

disable_collection option
Purpose:

Disables an XML-enabled collection. The collection name can no longer be used in
the composition (dxxRetrieveXML) and decomposition (dxxInsertXML) stored
procedures. When an XML collection is disabled, the associated collection entry is
deleted from the XML_USAGE table. Note that disabling the collection does not
drop the collection tables that are created when you use the enable_collection
option.

132 XML Extender Administration and Programming

Syntax:

»>—dxxadm—disable_collection—-a—subsystem_name—collection_name——————>»<

Parameters:

Table 24. disable_collection parameters

Parameter Description

-a subsystem_name The name of the DB2 UDB subsystem.
collection_name The name of the XML collection.
Examples:

The following example disables an XML collection named SALES_ORD.
dxxadm disable_collection -a SUBSYS1 SALES_ORD

Chapter 6. The dxxadm administration command 133

134 XML Extender Administration and Programming

Chapter 7. XML Extender user-defined types

User-defined types (UDTs) are data types created by a DB2® application or tool.
The XML Extender creates the following user-defined types for use with XML
columns:

* XMLVARCHAR
+ XMLCLOB
* XMLFILE

The data types are used to define the column in the application table that will be
used to store the XML document. You can also store XML documents as files on
the file system, by specifying a file name.

All XML Extender’s user-defined types have the qualifier DB2XML, which is the
schema name of the DB2 UDB XML Extender user-defined types. For example:

db2xm1.XMLVarchar

The XML Extender creates UDTs for storing and retrieving XML documents.
describes the UDTs.

Table 25. The XML Extender UDTs

User-defined type column | Source data type Usage description

XMLVARCHAR VARCHAR(varchar_len) Stores an entire XML
document as VARCHAR
inside DB2.

XMLCLOB CLOB(clob_len) Stores an entire XML

document as a character
large object (CLOB) inside
DB2.

XMLFILE VARCHAR(512) Specifies the file name of the
local file server. If XMLFILE is
specified for the XML column,
then the XML Extender stores
the XML document in an
external server file. The Text
Extender cannot be enabled
with XMLFILE. You must
ensure integrity between the
file content, DB2, and the
side table created for
indexing.

Where varchar_len and clob_len are specific to the operating system.
For XML Extender on DB2 UDB, varchar_len = 3K and clob_len = 2G.

To change the size of an XMLVARCHAR or XMLCLOB UDT, create the UDT before
you enable the database for XML Extender.

Procedure:

To change the size of an XMLVARCHAR or XMLCLOB UDT of an enabled
database:

© Copyright IBM Corp. 1999, 2004 135

Back up all data in the XML Extender-enabled database.

Drop all XML collection tables or XML column side tables.
Disable the database with the dxxadm disable_servercommand.
Create the XMLVARCHAR or XMLCLOB user-defined type.
Enable the database with the dxxadm enable_servercommand.
Re-create and reload the tables.

ook wn =

These UDTs are used only to specify the types of application columns; they do not
apply to the side tables that the XML Extender creates.

Related concepts:

. |“XML columns as a storage and access method” on page 73|

* XML collections as a storage and access method” on page 91|
* |“Preparing to administer XML Extender” on page 37|

+ [‘Mapping schemes for XML collections” on page 105

136 XML Extender Administration and Programming

Chapter 8. XML Extender user-defined functions

A user—defined function (UDF) is a function that is defined to the database
management system and can be referenced in SQL statements. This chapter
describes user-defined functions that are used by DB2 UDB XML Extender.

Types of XML Extender user-defined functions

The XML Extender provides functions for storing, retrieving, searching, and updating
XML documents, and for extracting XML elements or attributes. You use XML
user-defined functions (UDFs) for XML columns, but not for XML collections.

All the UDFs have the schema name DB2XML.

The types of XML Extender functions are described in the following list:

storage functions
Storage functions insert intact XML documents in XML-enabled columns as
XML data types.

retrieval functions
Retrieval functions retrieve XML documents from XML columns in a DB2®
database.

extracting functions
Extracting functions extract and convert the element content or attribute
value from an XML document to the data type that is specified by the
function name. The XML Extender provides a set of extracting functions for
various SQL data types.

update function
The Update function modifies an entire XML document or specified element
content or attribute values and returns a copy of an XML document with an
updated value, which is specified by the location path.

generate_unique function
The generate_unique function returns a unique key.

Validation functions
Validation functions validate XML documents against either an XML schema
or a DTD.

The XML user-defined functions allow you to perform searches on general SQL
data types. Additionally, you can use the DB2 UDB Text Extender for 0S/390® with
XML Extender to perform structural and full text searches on text in XML
documents. This search capability can be used, for example, to improve the
usability of a Web site that publishes large amounts of readable text, such as
newspaper articles or Electronic Data Interchange (EDI) applications, which have
frequently searchable elements or attributes.

Restriction: When using parameter markers in UDFs, a Java'" database (JDBC)

restriction requires that the parameter marker for the UDF must be cast to the data
type of the column into which the returned data will be inserted.

© Copyright IBM Corp. 1999, 2004 137

Storage functions

Storage functions in XML Extender overview
Use storage functions to insert XML documents into a DB2 UDB database. You can
use the default casting functions of a UDT directly in INSERT or SELECT

statements. Additionally, XML Extender provides UDFs to take XML documents from
sources other than the UDT base data type and convert them to the specified UDT.

XMLCLOBFromFile() function

Purpose:

Reads an XML document from a server file and returns the document as an
XMLCLOB type.

Syntax:

»>—XMLCLOBFromFile—(—fileName—, B] >
src_encoding—)

Parameters:

Table 26. XMLCLOBFromFile parameter

Parameter Data type Description

fileName VARCHAR(512) The fully qualified server file
name.

src_encoding VARCHAR(100) The encoding of the source
file.

Results:

XMLCLOB as LOCATOR

Example:

The following example reads an XML document from a file on a server and inserts it
into an XML column as an XMLCLOB type. The encoding of the server file is
explicitly specified as iso-8859-1.

EXEC SQL INSERT INTO sales_tab(ID, NAME, ORDER)
VALUES('1234', 'Sriram Srinivasan',
XMLCLOBFromFile('dxx_install/samples/db2xml
/xml/getstart.xml
', 'is0-8859-1"))

where dxx_install is the directory where XML Extender is installed.

The column ORDER in the SALES_TAB table is defined as an XMLCLOB type.

XMLFileFromCLOB() function

Purpose:

Reads an XML document as CLOB locator, writes it to an external server file, and
returns the file name and path as an XMLFILE type.

Syntax:

138 XML Extender Administration and Programming

»>—XMLFileFromCLOB— (—buffer—,—fileName—,

I—targei,‘encoding—)—I

Parameters:

Table 27. XMLFileFromCLOB() parameters

Parameters Data type Description

buffer CLOB as LOCATOR The buffer containing the
XML document.

fileName VARCHAR(512) The fully qualified server file
name.

targetencoding VARCHAR(100) The encoding of the output
file.

Results:

XMLFILE

Example:

The following example reads an XML document as CLOB locator (a host variable
with a value that represents a single LOB value in the database server), writes it to
an external server file, and inserts the file name and path as an XMLFILE type in
an XML column. The function will encode the output file in ibm-808.

EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS CLOB_LOCATOR xml_buff;
EXEC SQL END DECLARE SECTION;

EXEC SQL INSERT INTO sales_tab(ID, NAME, ORDER)
VALUES('1234', 'Sriram Srinivasan',
XMLFileFromCLOB(:xm1_buf, 'dxx_install/samples/db2xm]
/xml/getstart.xml', 'ibm-808"))

where dxx_install is the directory where XML Extender is installed.

The column ORDER in the SALES_TAB table is defined as an XMLFILE type. If
you have an XML document in your buffer, you can store it in a server file.

XMLFileFromVarchar() function

Purpose:

Reads an XML document from memory as VARCHAR, writes it to an external
server file, and returns the file name and path as an XMLFILE type.

Syntax:

»»—XMLFileFromVarchar—(—buffer—,—fileName—, |_ _|) E——
targetencoding

Parameters:

Table 28. XMLFileFromVarchar parameters

Parameter Data type Description

buffer VARCHAR(3K) The buffer containing the

XML document.

Chapter 8. XML Extender user-defined functions 139

Table 28. XMLFileFromVarchar parameters (continued)

Parameter Data type Description

fileName VARCHAR(512) The fully qualified server file
name.

targetencoding VARCHAR(100) The encoding of the output
file.

Results:

XMLFILE

Example:

The following examples reads an XML document from memory as VARCHAR,
writes it to an external server file, and inserts the file name and path as an
XMLFILE type in an XML column. The function will encode the output file in
is0-8859-1.

EXEC SQL BEGIN DECLARE SECTION;

struct { short len; char data[3000]; } xml_buff;
EXEC SQL END DECLARE SECTION;

EXEC SQL INSERT INTO sales_tab(ID, NAME, ORDER)
VALUES('1234', 'Sriram Srinivasan',

XMLFileFromVarchar(:xml_buf, 'dxx_install/samples/db2xml
/xml/getstart.xml', 'is0-8859-1"'))

where dxx_install is the directory where XML Extender is installed.

The column ORDER in the SALES_TAB table is defined as an XMLFILE type.

XMLVarcharFromFile() function

Purpose:

Reads an XML document from a server file and returns the document as an
XMLVARCHAR type.

Syntax:

v
A

»>—XMLVarcharFromFile—(—fileName—, |_ _|
src_encoding—)

Parameters:

Table 29. XMLVarcharFromFile parameter

Parameter Data type Description

fileName VARCHAR(512) The fully qualified server file
name.

src_encoding VARCHAR(100) The encoding of the source
file.

Results:

XMLVARCHAR

Example:

140 XML Extender Administration and Programming

The following example reads an XML document from a server file and inserts it into
an XML column as an XMLVARCHAR type. The encoding of the server file is
explicitly specified as ibm-808.
EXEC SQL INSERT INTO sales_tab(ID, NAME, ORDER)
VALUES('1234', 'Sriram Srinivasan',
XMLVarcharFromFile('dxx_install/samples/db2xml
/xml/getstart.xml', 'ibm-808'))

where dxx_install is the directory where XML Extender is installed.

In this example, a record is inserted into the SALES_TAB table. The function
XMLVarcharFromFile() imports the XML document from a file that is explicitly
specified to be encoded in ibm-808 into DB2 UDB and stores it as a
XMLVARCHAR.

Retrieval functions

Retrieval functions in XML Extender

The XML Extender provides an overloaded function Content(), which is used for

retrieval. This overloaded function refers to a set of retrieval functions that have the
same name, but behave differently based on where the data is being retrieved. You
can also use the default casting functions to convert an XML UDT to the base data

type.

The Content() functions provide the following types of retrieval:
* Retrieval from external storage at the server to a host variable at the client.

You can use Content() to retrieve an XML document to a memory buffer when it
is stored as an external server file. You can use Content(): retrieve from
XMLFILE to a CLOB for this purpose.

* Retrieval from internal storage to an external server file

You can also use Content() to retrieve an XML document that is stored inside
DB2 UDB and store it to a server file on the DB2 UDB server’s file system. The
following Content() functions are used to store information on external server
files:

— Content(): retrieve from XMLVARCHAR to an external server file
— Content(): retrieval from XMLCLOB to an external server file

The following user-defined functions have a new parameter that specifies the
encoding of the source or output file. The value of this parameter is any code page
name that is recognized by ICU.

db2xm1.XMLVarcharFromFile(filename varchar(512), src_encoding varchar(100))
returns XMLVarchar

db2xm1.XMLCLOBFromFile(filename varchar(512), src_encoding varchar(100))
returns XMLCLOB AS LOCATOR

db2xm1.XMLFileFromVarchar(doc varchar(3000), targetfilename varchar(512),
targetencoding varchar(100))
returns XMLFile

db2xm1.XMLFileFromCLOB(doc CLOB(2G) as LOCATOR, targetfilename varchar(512),
targetencoding varchar(100))
returns XMLFile

db2xm1.Content (doc XMLVarchar, targetfilename varchar(512),

Chapter 8. XML Extender user-defined functions 141

targetencoding varchar(100))
returns varchar(512)

db2xm1.Content (doc XMLCLOB as LOCATOR, targetfilename varchar(512),
targetencoding varchar(100))
returns varchar(512)

Examples:

To import the contents of a file /home/collins/xml/entail.xml into a varchar buffer
and to specify that the source file is encoded in iso-8859-1:

db2xm1.XMLVarcharFromFile('/home/collins/xml/entail.xml"', 'iso-8859-1")

The file is imported into a varchar and converted from iso0-8859-1 to the database
code page.

To export a varchar buffer into a file /home/raskolnikov/xml/confession.xml and to
specify that the output file should be encoded in ibm-808:

db2xm1.Content ('<sequence><thought>I did it!</thought></sequence>',

' /home/raskolInikov/xml/confession.xml', 'ibm-808"')

The contents of the buffer are exported to a file and converted from the database
code page to ibm-808. The encoding declaration of the XML file is then updated
appropriately.

The examples in the following section assume you are using the DB2 UDB

command shell, in which you do not need to type “DB2” at the beginning of each
command.

Content(): retrieve from XMLFILE to a CLOB

Purpose:
Retrieves data from a server file and stores it in a CLOB LOCATOR.

Syntax:

»»—Content— (—xmlobj—) ><

Parameters:

Table 30. XMLFILE to a CLOB parameter

Parameter Data type Description
xmlobj XMLFILE The XML document.
Results:

CLOB (clob_len) as LOCATOR
clob_len for DB2 UDB is 2G.
Example:

The following example retrieves data from a server file and stores it in a CLOB
locator.

142 XML Extender Administration and Programming

char subsystem[20] ;
long retcode = 0, reason = 0;
extern "0S" { int DSNALI(char * functn, ...); }

extern "0S" short DSNTIAR(struct sqlca *sqlca,
error_struct *error_message,
Tong *data_len);

EXEC SQL BEGIN DECLARE SECTION;
SQL TYPE IS CLOB_LOCATOR xml_buff;
EXEC SQL END DECLARE SECTION;

/* Attach to subsystem */

rc = DSNALI("OPEN ", subsystem, "PLANNAME",
&retcode, &reason);

if (retcode != 0)

{
/* print error message */
goto exit;

}

EXEC SQL DECLARE c1 CURSOR FOR

SELECT Content(order) from sales_tab
WHERE sales_person = 'Sriram Srinivasan'

EXEC SQL OPEN cl;

do {
EXEC SQL FETCH cl INTO :xml_buff;
if (SQLCODE != 0) {
break;
}
else {
/* do with the XML doc in buffer =/
}
1

EXEC SQL CLOSE cl;

/* Detach from sybsystem =*/
DSNALI("CLOSE ", "SYNC", &retcode, &reason);
if (retcode !'=0) {
/* print error message */
}

The column ORDER in the SALES_TAB table is of an XMLFILE type, so the
Content() UDF retrieves data from a server file and stores it in a CLOB locator.

Related tasks:
“Updating, deleting, and retrieving data in XML collections” on page 101|

Content(): retrieve from XMLVARCHAR to an external server file

Purpose:

Retrieves the XML content that is stored as an XMLVARCHAR type and stores it in
an external server file.

Syntax:

Chapter 8. XML Extender user-defined functions 143

v
A

»»—Content— (—xmlobj—,—filename—, L_ _J
targetencoding—)

Important: If a file with the specified name already exists, the content function
overrides its content.

Parameters:

Table 31. XMLVarchar to external server file parameters

Parameter Data type Description

xmlobj XMLVARCHAR The XML document.

filename VARCHAR(512) The fully qualified server file
name.

targetencoding VARCHAR(100) The encoding of the output
file.

Results:

VARCHAR(512)

Example:

The following example retrieves the XML content that is stored as XMLVARCHAR
type and stores it in an external file located on the server. The UDF encodes the file
in 'ibm-808’.

CREATE table appl (id int NOT NULL, order DB2XML.XMLVarchar);

INSERT into appl values (1, '<?xml version="1.0"?>
<IDOCTYPE SYSTEM "dxx_install/samples/db2xml/dtd/getstart.dtd"->

<Order key="1">
<Customer>
<Name>American Motors</Name>
<Email>parts@am.com</Email>
</Customer>
<Part color="black">
<key>68</key>
<Quantity>36</Quantity>
<ExtendedPrice>34850.16</ExtendedPrice>
<Tax>6.000000e-02</Tax>
<Shipment>
<ShipDate>1998-08-19</ShipDate>
<ShipMode>AIR </ShipMode>
</Shipment>
<Shipment>
<ShipDate>1998-08-19</ShipDate>
<ShipMode>BOAT </ShipMode>
</Shipment>
</Part>
</0rder>"');

SELECT DB2XML.Content(order, 'dxx_install/samples/dad/getstart_column.dad'

, 'ibm-808')
from appl where ID=1;

Related tasks:
* [‘Method for retrieving an XML document” on page 78|

144 XML Extender Administration and Programming

Related reference:
« [‘Retrieval functions in XML Extender’ on page 141|

Content(): retrieval from XMLCLOB to an external server file

Purpose:

Retrieves the XML content that is stored as an XMLCLOB type and stores it in an
external server file.

Syntax:

A\
A

»»—Content—(—xmlobj—,—filename—,

|-—t‘ar‘ge1.‘encoding——)—-|
Important: If a file with the specified name already exists, the content function
overrides its content.

Parameters:

Table 32. XMLCLOB to external server file parameters

Parameter Data type Description

xmlobj XMLCLOB as LOCATOR The XML document.

filename VARCHAR(512) The fully qualified server file
name.

targetencoding VARCHAR(100) The encoding of the output
file.

Results:

VARCHAR(512)

Example:

The following example retrieves the XML content that is stored as an XMLCLOB
type and stores it in an external file located on the server. The UDF encodes the file
in 'ibm-808’.

CREATE table appl (id int NOT NULL, order DB2XML.XMLCLOB not logged);

INSERT into appl values (1, '<?xml version="1.0"?>
<!IDOCTYPE SYSTEM "dxx_install/samples/db2xml/dtd/getstart.dtd"
-
<Order key="1">
<Customer>
<Name>American Motors</Name>
<Email>parts@am.com</Email>
</Customer>
<Part color="black">
<key>68</key>
<Quantity>36</Quantity>
<ExtendedPrice>34850.16</ExtendedPrice>
<Tax>6.000000e-02</Tax>
<Shipment>
<ShipDate>1998-08-19</ShipDate>
<ShipMode>AIR </ShipMode>
</Shipment>

Chapter 8. XML Extender user-defined functions 145

<Shipment>
<ShipDate>1998-08-19</ShipDate>
<ShipMode>BOAT </ShipMode>
</Shipment>
</Part>
</Order>"');

SELECT DB2XML.Content (order,
'"dxx_install/samples/db2xml/xml/getstart.xml", 'ibm-808")
from appl where ID=1;

Extraction functions

Extracting functions in XML Extender

The extracting functions extract the element content or attribute value from an XML
document and return the requested SQL data types. The XML Extender provides a
set of extracting functions for various SQL data types. The extracting functions take
two input parameters. The first parameter is the XML Extender UDT, which can be

one of the XML UDTs. The second parameter is the location path that specifies the
XML element or attribute. Each extracting function returns the value or content that
is specified by the location path.

Because some element or attribute values have multiple occurrence, the extracting

functions return either a scalar or a table value; the former is called a scalar
function, the latter is called a table function.

extractinteger() and extractintegers()

Purpose:

Extracts the element content or attribute value from an XML document and returns
the data as INTEGER type.

Syntax:

Scalar function:

»»—extractInteger—(—xmlobj—,—path—) >

Table function:

»»—extractIntegers—(—xmlobj—,—path—) ><

Parameters:

Table 33. extractinteger and extractintegers function parameters

Parameter Data type Description
xmlobj XMLVARCHAR, The column name.
XMLFILE, or
XMLCLOB
path VARCHAR The location path of the
element or attribute.

Returned type:
INTEGER

146 XML Extender Administration and Programming

Return codes:
returnedinteger
Examples:

Scalar function example:

In the following example, one value is returned when the attribute value of key =
"1". The value is extracted as an INTEGER.
CREATE TABLE tl(key INT);
INSERT INTO tl1 values (
DB2XML.extractInteger (DB2XML.XMLFile("'/samples/db2xm1
/xml/getstart.xml
Y,
'/Order/Part[@color="black "]/key'));
SELECT * from tl;

Table function example:

In the following example, each order key for the sales orders is extracted as
INTEGER. The examples assume that you are using the DB2 UDB command shell,
in which you do not need to type “DB2” at the beginning of each command.

SELECT =

FROM TABLE(
DB2XML.extractIntegers(DB2XML.XMLFile('/samples/db2xml/xml/getstart.xm1"),

'/Order/Part/key')) AS X;

Related concepts:
+ [‘UDTs and UDF names for XML Extender” on page 119
+ [‘Types of XML Extender user-defined functions” on page 137

Related reference:
+ [‘Extracting functions in XML Extender” on page 146

extractSmallint() and extractSmallints()
Purpose:

Extracts the element content or attribute value from an XML document and returns
the data as SMALLINT type.

Syntax:

Scalar function:

v
A

»»—extractSmallint—(—xmlobj—,—path—)

Table function:

A\
A

»»—extractSmallints—(—xmlobj—,—path—)

Parameters:

Chapter 8. XML Extender user-defined functions 147

Table 34. extractSmallint and extractSmallints function parameters

Parameter Data type Description
xmlobj XMLVARCHAR, The column name.
XMLFILE, or
XMLCLOB
path VARCHAR The location path of the
element or attribute.

Returned type:
SMALLINT
Return codes:
returnedSmallint

Examples:
Scalar function example:

In the following example, the value of key in all sales orders is extracted as
SMALLINT. The examples assume that you are using the DB2 UDB command
shell, in which you do not need to type “DB2” at the beginning of each command.
CREATE TABLE t1(key INT);
INSERT INTO t1 values (
DB2XML.extractSmallint (db2xml.xml1file('dxx_install
/samples/db2xml1/xml/getstart.xml'),
'/Order/Part[@color="black "]/key'));
SELECT * from tl;

Table function example:

In the following example, the value of key in all sales orders is extracted as
SMALLINT. The examples assume that you are using the DB2 UDB command
shell, in which you do not need to type “DB2” at the beginning of each command.
SELECT =
FROM TABLE(
DB2XML.extractSmallints(DB2XML.XMLFile('dxx_install
/samples/db2xm1/xm1/getstart.xml"),
'/Order/Part/key')) AS X;

Related concepts:

+ [‘Using indexes for XML column data” on page 75|

+ [‘UDTs and UDF names for XML Extender” on page 119

+ [“Types of XML Extender user-defined functions” on page 137

Related reference:
+ [“Extracting functions in XML Extender” on page 146
+ ["XML Extenders stored procedure return codes” on page 273|

extractDouble() and extractDoubles()
Purpose:

Extracts the element content or attribute value from an XML document and returns
the data as DOUBLE type.

Syntax:

148 XML Extender Administration and Programming

Scalar function:

A\
A

»»—extractDouble—(—xmlobj—,—path—)

Table function:

»»—extractDoubles—(—xmlobj—,—path—) »<

Parameters:

Table 35. extractDouble and extractDoubles function parameters

Parameter Data type Description
xmlobj XMLVARCHAR, The column name.
XMLFILE, or
XMLCLOB
path VARCHAR The location path of the
element or attribute.

Returned Type:
DOUBLE
Return Codes:
returnedDouble
Examples: Scalar function example:
The following example automatically converts the price in an order from a DOUBLE
type to a DECIMAL. The examples assume that you are using the DB2 command
shell, in which you do not need to type “DB2” at the beginning of each command.
CREATE TABLE t1(price DECIMAL(9,2));
INSERT INTO t1 values (
DB2XML.extractDouble (DB2XML.xm1file('dxx_install
/samples/db2xml1/xml/getstart.xml"'),

'/Order/Part[@color="black "]/ExtendedPrice'));
SELECT * from tl;

Table function example:

In the following example, the value of ExtendedPrice in each part of the sales order
is extracted as DOUBLE. The examples assume that you are using the DB2 UDB
command shell, in which you do not need to type DB2 UDB at the beginning of
each command.
SELECT CAST(RETURNEDDOUBLE AS DOUBLE)
FROM TABLE(
DB2XML.extractDoubles (DB2XML.XMLFile('dxx_install

/samples/db2xml1/xml/getstart.xml"'),
'/Order/Part/ExtendedPrice')) AS X;

Related concepts:
+ [‘UDTs and UDF names for XML Extender” on page 119

Related reference:
+ [‘Extracting functions in XML Extender” on page 146

extractReal() and extractReals()

Purpose:

Chapter 8. XML Extender user-defined functions 149

Extracts the element content or attribute value from an XML document and returns

the data as REAL type.
Syntax:

Scalar function:

»»—extractReal—(—xmlobj—,—path—)

Table function:

»»—extractReals—(—xmlobj—,—path—)

Parameters:

Table 36. extractReal and extractReals function parameters

v
A

Parameter Data type Description
xmlobj XMLVARCHAR, The column name.
XMLFILE, or
XMLCLOB
path VARCHAR The location path of the
element or attribute.

Returned type:

REAL

Return codes:
returnedReal

Examples:

Scalar function example:

In the following example, the value of ExtendedPrice is extracted as a REAL. The

examples assume that you are using the DB2 UDB command shell, in which you do
not need to type “DB2” at the beginning of each command.

CREATE TABLE t1(price DECIMAL(9,2));

INSERT INTO t1 values (
DB2XML.extractReal (DB2XML.xm1file('dxx_install
/samples/db2xml1/xml/getstart.xml"'),
'/Order/Part[@color="black"]/ExtendedPrice'));

SELECT * from tl;

Table function example:

In the following example, the value of ExtendedPrice is extracted as a REAL. The

examples assume that you are using the DB2 UDB command shell, in which you do
not need to type “DB2” at the beginning of each command.

SELECT CAST(RETURNEDREAL AS REAL)

FROM TABLE(
DB2XML.extractReals(DB2XML.XMLFile('dxx_install
/samples/db2xm1/xm1/getstart.xml"),
'/Order/Part/ExtendedPrice')) AS X;

Related concepts:

+ [‘UDTs and UDF names for XML Extender” on page 119

+ [Types of XML Extender user-defined functions” on page 137

Related reference:

150 XML Extender Administration and Programming

« [‘Extracting functions in XML Extender” on page 146
* [*XML Extender UDF return codes” on page 273

extractChar() and extractChars()

Purpose:

Extracts the element content or attribute value from an XML document and returns
the data as CHAR type.

Syntax:

Scalar function:

»»—extractChar—(—xmlobj—,—path—) >«

Table function:

»»—extractChars—(—xmlobj—,—path—) ><

Parameters:

Table 37. extractChar and extractChars function parameters

Parameter Data type Description
xmlobj XMLVARCHAR, The column name.
XMLFILE, or
XMLCLOB
path VARCHAR The location path of the
element or attribute.

Returned type:

CHAR

Return codes:
returnedChar

Examples:

Scalar function example:

In the following example, the value of Name is extracted as CHAR. The examples
assume that you are using the DB2 UDB command shell, in which you do not need
to type “DB2” at the beginning of each command.
CREATE TABLE t1(name char(30));
INSERT INTO t1 values (
DB2XML.extractChar(DB2XML.xm1file('dxx_install
/samples/db2xml1/xml/getstart.xml'),
'/Order/Customer/Name'));
SELECT * from tl;

Table function example:
In the following example, the value of Color is extracted as CHAR. The examples

assume that you are using the DB2 UDB command shell, in which you do not need
to type “DB2” at the beginning of each command.

Chapter 8. XML Extender user-defined functions 151

SELECT =*
FROM TABLE(
DB2XML.extractChars (DB2XML.XMLFile('dxx_install
/samples/db2xm1/xm1/getstart.xml"'),
'/Order/Part/@color')) AS X;

Related reference:
“Extracting functions in XML Extender” on page 146|
. |“How to read syntax diagrams” on page)4

extractVarchar() and extractVarchars()
Purpose:

Extracts the element content or attribute value from an XML document and returns
the data as VARCHAR type.

Syntax:

Scalar function:

v
A

»»—extractVarchar—(—xmlobj—,—path—)

Table function:

»»—extractVarchars—(—xmlobj—,—path—) ><

Parameters:

Table 38. extractVarchar and extractVarchars function parameters

Parameter Data type Description
xmlobj XMLVARCHAR, The column name.
XMLFILE, or
XMLCLOB
path VARCHAR The location path of the
element or attribute.

Returned type:
VARCHAR(4K)

Return codes:
returnedVarchar
Examples:

Scalar function example:

In a database with more than 1000 XML documents that are stored in the column
ORDER in the SALES_TAB table, you might want to find all the customers who
have ordered items that have an ExtendedPrice greater than 2500.00. The following
SQL statement uses the extracting UDF in the SELECT clause:

SELECT extractVarchar(Order, '/Order/Customer/Name') from sales_order view
WHERE price > 2500.00

The examples assume that you are using the DB2 UDB command shell, in which
you do not need to type “DB2” at the beginning of each command. The UDF
extractVarchar() takes the column ORDER as the input and the location path
/Order/Customer/Name as the select identifier. The UDF returns the names of the

152 XML Extender Administration and Programming

customers. With the WHERE clause, the extracting function evaluates only those
orders with an ExtendedPrice greater than 2500.00.

Table function example:

In a database with more than 1000 XML documents that are stored in the column
ORDER in the SALES_TAB table, you might want to find all the customers who
have ordered items that have an ExtendedPrice greater than 2500.00. The following
SQL statement uses the extracting UDF in the SELECT clause:

SELECT extractVarchar(Order, '/Order/Customer/Name') from sales_order_view
WHERE price > 2500.00

The examples assume that you are using the DB2 UDB command shell, in which
you do not need to type “DB2” at the beginning of each command. The UDF
extractVarchar() takes the column ORDER as the input and the location path
/Order/Customer/Name as the select identifier. The UDF returns the names of the
customers. With the WHERE clause, the extracting function evaluates only those
orders with an ExtendedPrice greater than 2500.00.

Scalar function example:

In the following example, the value of Name is extracted as VARCHAR. The
examples assume that you are using the DB2 UDB command shell, in which you do
not need to type “DB2” at the beginning of each command.
CREATE TABLE tl(name varchar(30));
INSERT INTO t1 values (
DB2XML.extractVarchar(DB2XML.xm1file('dxx_install
/samples/db2xml1/xml/getstart.xml'),
'/0Order/Customer/Name')) ;
SELECT * from tl;

Table function example:

In the following example, the value of Color is extracted as VARCHAR. The
examples assume that you are using the DB2 UDB command shell, in which you do
not need to type “DB2” at the beginning of each command.
SELECT=*
FROM TABLE (
DB2XML.extractVarchars (DB2XML.XMLFile('dxx_install

/samples/xml/getstart.xml"'),
'/Order/Part/@color')) AS X;

Related concepts:
+ |['UDTs and UDF names for XML Extender” on page 119
“Types of XML Extender user-defined functions” on page 137|

Related reference:
“Extracting functions in XML Extender” on page 146|
“XML Extender UDF return codes” on page 273|

extractCLOB() and extractCLOBSs()

Purpose:

Extracts a fragment of XML documents, with element and attribute markup and
content of elements and attributes, including sub-elements. This function differs

Chapter 8. XML Extender user-defined functions 153

from the other extract functions, which return only the content of elements and
attributes. The extractClob(s) functions are used to extract document fragments,
whereas extractVarchar(s) and extractChar(s) are used to extract simple values.
Syntax:

Scalar function:

»»—extractCLOB— (—xmlobj—,—path—) ><

Table function:

v
A

»»—extractCLOBs—(—xmlobj—,—path—)

Parameters:

Table 39. extractCLOB and extractCLOBs function parameters

Parameter Data type Description
xmlobj XMLVARCHAR, The column name.
XMLFILE, or
XMLCLOB
path VARCHAR The location path of the
element or attribute.

Returned type:
CLOB(10K)

Return codes:
returnedCLOB

Examples:

Scalar function example:

In this example, all name element content and tags are extracted from a purchase
order. The examples assume that you are using the DB2 UDB command shell, in
which you do not need to type “DB2” at the beginning of each command.
CREATE TABLE tl(name DB2XML.xmlclob);
INSERT INTO t1 values (
DB2XML.extractClob(DB2XML.xm1file('dxx_install
/samples/db2xml1/xml/getstart.xml'),
'/Order/Customer/Name'));
SELECT * from tl;

Table function example:

In this example, all of the color attributes are extracted from a purchase order. The

examples assume that you are using the DB2 UDB command shell, in which you do

not need to type “DB2” at the beginning of each command.

SELECT =
FROM TABLE (
DB2XML.extractCLOBs (DB2XML.XMLFile('dxx_install
/samples/db2xml1/xml/getstart.xml'),
'/Order/Part/@color')) AS X;

Related concepts:
« [‘Types of XML Extender user-defined functions” on page 137

Related reference:

154 XML Extender Administration and Programming

« [‘Extracting functions in XML Extender” on page 146

extractDate() and extractDates()

Purpose:

Extracts the element content or attribute value from an XML document and returns
the data as DATE type. The date must be in the format: YYYY-MM-DD.

Syntax:
Scalar function:

»»—extractDate—(—xmlobj—,—path—) ><

Table function:

v
A

»>—extractDates—(—xmlobj—,—path—)

Parameters:

Table 40. extractDate and extractDates function parameters

Parameter Data type Description
xmlobj XMLVARCHAR, The column name.
XMLFILE, or
XMLCLOB
path VARCHAR The location path of the
element or attribute.

Returned type:

DATE

Return codes:
returnedDate

Examples:

Scalar function example:

In the following example, the value of ShipDate is extracted as DATE. The
examples assume that you are using the DB2 UDB command shell, in which you do
not need to type “DB2” at the beginning of each command.
CREATE TABLE tl(shipdate DATE);
INSERT INTO tl1 values (
DB2XML.extractDate (DB2XML.xm1file('dxx_install
/samples/db2xml1/xml/getstart.xml"'),
'/Order/Part[@color="red "]/Shipment/ShipDate'));
SELECT * from tl;

Table function example:

In the following example, the value of ShipDate is extracted as DATE.

SELECT =*
FROM TABLE (
DB2XML.extractDates (DB2XML.XMLFile('dxx_install
/samples/db2xml1/xml/getstart.xml"),
'/Order/Part[@color="black "]/Shipment/ShipDate')) AS X;

Related concepts:

Chapter 8. XML Extender user-defined functions 155

« [“Types of XML Extender user-defined functions” on page 137

Related reference:
* |‘Extracting functions in XML Extender” on page 146|
* XML Extender UDF return codes” on page 27_3|

extractTime() and extractTimes()
Purpose:

Extracts the element content or attribute value from an XML document and returns
the data as TIME type.

Syntax:

Scalar function:

v
A

»»—extractTime—(—xmlobj—,—path—)

Table function:

»»—extractTimes—(—xmlobj—,—path—) ><

Parameters:

Table 41. extractTime and extractTimes function parameters

Parameter Data type Description
xmlobj XMLVARCHAR, The column name.
XMLFILE, or
XMLCLOB
path VARCHAR The location path of the
element or attribute.

Returned type:

TIME

Return codes:

returnedTime

Examples:

The examples assume that you are using the DB2 UDB command shell, in which
you do not need to type “DB2” at the beginning of each command.

Scalar function example:

CREATE TABLE tl(testtime TIME);
INSERT INTO t1 values (
DB2XML.extractTime (DB2XML.XMLCLOB (
'<stuff><data>11.12.13</data></stuff>'), '//data'));
SELECT * from tl;

Table function example:

select =
from table(
DB2XML.extractTimes (DB2XML.XMLCLOB (
'<stuff><data>01.02.03</data><data>11.12.13</data></stuff>"),
'//data')) as x;

Related concepts:

156 XML Extender Administration and Programming

« [‘UDTs and UDF names for XML Extender” on page 119
* [‘Types of XML Extender user-defined functions” on page 137

Related reference:
« [“Extracting functions in XML Extender” on page 146|

extractTimestamp() and extractTimestamps()
Purpose:

Extracts the element content or attribute value from an XML document and returns
the data as TIMESTAMP type.

Syntax:

Scalar function:

A\
A

»»—extractTimestamp— (—xmlobj—,—path—)

Table function:

»»—extractTimestamps— (—xmlobj—,—path—) ><

Parameters:

Table 42. extractTimestamp and extractTimestamps function parameters

Parameter Data type Description
xmlobj XMLVARCHAR, The column name.
XMLFILE, or
XMLCLOB
path VARCHAR The location path of the
element or attribute.

Returned type:

TIMESTAMP

Return codes:

returnedTimestamp

Examples:

The examples assume that you are using the DB2 UDB command shell, in which
you do not need to type “DB2” at the beginning of each command.

Scalar function example:

CREATE TABLE tl(testtimestamp TIMESTAMP);
INSERT INTO t1 values (

DB2XML.extractTimestamp (DB2XML.XMLCLOB (
'<stuff><data>2003-11-11-11.12.13.888888</data></stuff>"),
'//data'));

SELECT * from tl;

Table function example:

select * from

table(DB2XML.extractTimestamps (DB2XML.XMLC1ob (
'<stuff><data>2003-11-11-11.12.13.888888
</data><data>2003-12-22-11.12.13.888888</data></stuff>"'),
'//data')) as x;

Chapter 8. XML Extender user-defined functions 157

XML Extender will automatically normalize timestamps extracted from XML
documents to comply with the DB2 timestamp format if needed. Timestamps are
normalized to the yyyy-mm-dd-hh.mm.ss.nnnnnn format or the yyyy-mm-dd-hh
mm.ss.nnnnnn format. For example:

2003-1-11-11.12.13

will be normalized to:

2003-01-11-11.12.13.000000

Related concepts:

+ [‘UDTs and UDF names for XML Extender” on page 119
* |“Types of XML Extender user-defined functions” on page 137|

Related reference:

* |‘Extracting functions in XML Extender” on page 146|

« [*XML Extender UDF return codes” on page 273

Update functions in XML Extender

Purpose

Syntax

Parameters

The Update() function updates a specified element or attribute value in one or more
XML documents stored in the XML column. You can also use the default casting

functions to convert an SQL base type to the XML UDT.

Takes the column name of an XML UDT, a location path, and a string of the update
value and returns an XML UDT that is the same as the first input parameter. With
the Update() function, you can specify the element or attribute that is to be updated.

»»—Update—(—xmlobj—,—path—,—value—)

Table 43. The UDF Update parameters

Parameter Data type Description
xmlobj XMLVARCHAR, XMLCLOB The column name.
as LOCATOR
path VARCHAR The location path of the
element or attribute.
value VARCHAR The update string.

Restriction: The Update
function does not have an
option to disable output
escaping; the output of an
extractClob (which is a

tagged fragment) cannot be

inserted using this function.
Use textual values only.

158 XML Extender Administration and Programming

Return type

Example

Usage

Restriction: Note that the Update UDF supports location paths that have
predicates with attributes, but not elements. For example, the following predicate is
supported:

'/Order/Part[@color="black "]/ExtendedPrice'

The following predicate is not supported:
'/Order/Part/Shipment/[Shipdate < "11/25/00"]"

Data type Return type
XMLVARCHAR XMLVARCHAR
XMLCLOB as LOCATOR XMLCLOB

The following example updates the purchase order handled by the salesperson
Sriram Srinivasan.
UPDATE sales_tab

set order = db2xml.update(order, '/Order/Customer/Name', 'IBM')
WHERE sales_person = 'Sriram Srinivasan'

In this example, the content of /Order/Customer/Name is updated to IBM.

When you use the Update function to change a value in one or more XML
documents, it replaces the XML documents within the XML column. Based on
output from the XML parser, some parts of the original document are preserved,
while others are lost or changed. The following sections describe how the document
is processed and provide examples of how the documents look before and after
updates.

How the Update() function processes the XML document

When the Update() function replaces XML documents, it must reconstruct the
document based on the XML parser output. [Table 44 on page 160| describes how
the parts of the document are handled, with examples.

Chapter 8. XML Extender user-defined functions 159

Table 44. Update function rules

Item or node | XML document code example
type

Status after update

XML
declaration

<?xml version='1.0"
encoding="utf-8'
standalone='yes' >

The XML declaration is
preserved:

¢ Version information is
preserved.

» Encoding declaration is
preserved and appears when
specified in the original
document.

» Standalone declaration is
preserved and appears when
specified in the original
document.

» After update, single quotation
marks are used to delineate
values.

DOCTYPE Declaration

<!DOCTYPE books SYSTEM
"http://dtds.org/books.dtd" >
<!DOCTYPE books PUBLIC
"Tocal.books.dtd" "http://dtds.org/books.dtd" >
<IDOCTYPE books>
-Any of
<IDOCTYPE books
(S ExternallD) ?
[internal-dtd-subset] >
-Such as
<IDOCTYPE books
[<'ENTITY mydog "Spot">] >?
[internal-dtd-subset] >

The document type declaration
is preserved:

* Root element name is
supported.

* Public and system
ExternallDs are preserved
and appear when specified
in the original document.

e Internal DTD subset is not
preserved. Entities are
replaced; defaults for
attributes are processed and
appear in the output
documents.

« After the update, double
quotation marks are used to
delineate public and system
URI values.

e The current XML4c parser
does not report an XML
declaration that does not
contain an ExternallD or
internal DTD subset. After
the update, the DOCTYPE
declaration would be missing
in this case.

Processing

> <?xml-stylesheet
Instructions

title="compact"
href="datatypesl.xs1"
type="text/xs1"?>

Processing instructions are
preserved.

Comments <l-- comment -->

Comments inside the root
element are preserved.

Comments outside the root
element are discarded.

160 XML Extender Administration and Programming

Table 44. Update function rules (continued)

Item or node
type

XML document code example

Status after update

Elements

<books>
content
</books>

Elements are preserved.

Attributes

id='1' date="01/02/2003"

Attributes of elements are
preserved.

» After update, double
quotation marks are used to
delineate values.

» Data within attributes is lost.
» Entities are replaced.

Text Nodes

This chapter is about
my dog &mydog;.

Text nodes (element content)
are preserved.

« Data within text nodes is
lost.

» Entities are replaced.

Multiple occurrence
When a location path is provided in the Update() UDF, the content of every element
or attribute with a matching path is updated with the supplied value. This means
that if a document has multiple occurring location paths, the Update() function
replaces the existing values with the value provided in the value parameter.

You can specify a predicate in the path parameter to provide distinct locations paths
to prevent unintentional updates. The Update() UDF supports location paths that

have predicates with attributes, but not elements.

Examples

The following examples show instances of an XML document before and after an

update.

Table 45. XML documents before and after an update

Example 1:

Before:

Chapter 8. XML Extender user-defined functions 161

Table 45. XML documents before and after an update (continued)

<?xml version='1.0' encoding='utf-8' standalone="yes"?>

<IDOCTYPE book PUBLIC "public.dtd" "system.dtd">
<?pitarget optionl='valuel' option2='value2'?>
<!-- comment -->
<book>
<chapter id="1" date='07/01/1997'>
<l-- first section -->
<section>This is a section in Chapter
One.</section>
</chapter>
<chapter id="2" date="01/02/1997">
<section>This is a section in Chapter
Two.</section>
<footnote>A footnote in Chapter Two is
here.</footnote>
</chapter>
<price date="12/22/1998" time="11.12.13"
timestamp="1998-12-22-11.12.13.888888">
38.281</price>
</book>

After:

<?xml version='1.0"' encoding='utf-8' standalone='yes'?>
<IDOCTYPE book PUBLIC "public.dtd" "system.dtd">
<?pitarget optionl='valuel' option2='value2'?>
<book>
<chapter id="1" date="07/01/2003">
<!-- first section -->
<section>This is a section in Chapter
One.</section>
</chapter>
<chapter id="2" date="01/02/2003">
<section>This is a section in Chapter
Two.</section>
<footnote>A footnote in Chapter Two
is here.</footnote>
</chapter>
<price date="12/22/2003" time="11.12.13"
timestamp="2003-12-22-11.12.13.888888">
60.02</price>
</book>

Example 2:

Before:

<?xml version='1.0' 7>
<IDOCTYPE book>

<l-- comment -->

<book>

</book>

After:

162 XML Extender Administration and Programming

» Contains white
space in the
XML declaration

» Specifies a
processing
instruction

¢ Contains a
comment
outside of the
root node

» Specifies
PUBLIC
ExternallD

¢ Contains a
comment inside
of root note

* White space
inside of markup
is eliminated

* Processing
instruction is
preserved

« Comment
outside of the
root node is not
preserved

* PUBLIC
ExternallD is
preserved

¢ Comment inside
of root node is
preserved

» Changed value
is the value of
the <price>
element

Contains
DOCTYPE
declaration without
an ExternallD or
an internal DTD
subset. Not
supported.

Table 45. XML documents before and after an update (continued)

<?xml version='1.0'7?> DOCTYPE

<book> declaration is not
reported by the

</book> XML parser and

not preserved.

Example 3:
Before:
<?xml version='1.0" 7> » Contains white
<IDOCTYPE book [<!ENTITY myDog "Spot">]> space in markup
<!l-- comment --> e
<book> S?e0|f|:esl,3 o
<chapter id="1" date='07/01/1997"'> interna
<l-- first section --> subset
<section>This is a section in Chapter » Specifies entity
One about my dog &;myDog;.</section> in text node
</chapter>
</book>
After:
<?xml version='1.0'?> * White space in
<IDOCTYPE book> markup is
<book> eliminated

<chapter id="1" date="07/01/1997">
<l-- first section -->
<section>This is a section in Chapter

e Internal DTD
subset is not

One about my dog Spot.</section> preserved
- * Entity in text
</chapter> node is resolved

</l;<;£>k> and replaced

Validation functions

DB2 XML Extender offers two user defined functions (UDFs) that validate XML
documents against either an XML schema or a DTD.

An element in an XML document is valid according to a given schema if the
associated element type rules are satisfied. If all elements are valid, the whole
document is valid. With a DTD, however, there is no way to require a specific root
element. The validation functions return 1 if the document is valid or they return O
and write an error message in the trace file if the document is invalid. The functions
are:

db2xml.svalidate:
Validates an XML document instance against the specified schema.

db2xml.dvalidate:
Validates an XML document instance against the specified DTD.

Chapter 8. XML Extender user-defined functions 163

SVALIDATE() function

This function validates an XML document against a specified schema (or the one
named in the XML document) and returns 1 if the document is valid or O if not. This
function assumes that an XML document and a schema exist on the file system or
as a CLOB in DB2.

Before you run the SVALIDATE function, ensure that XML Extender is enabled with
your server by running the following command:

dxxadm enable_server -a subsystem-name wlm environment wim-namel

If the XML document fails the validation, an error message is written to the XML
Extender trace file. Enable the trace before executing the DVALIDATE command.
See [‘Starting the trace for XML Extender” on page 271|for information on enabling
the trace.

Syntax

»>—SVALIDATE—(—xmlobj)

v
A

l—,—schemadoc—|

Parameters
Table 46. The SVALIDATE parameters
Parameter Data type Description
xmlobj VARCHAR(256) File path of the XML
document to be verified.
CLOB(2G) XML column that contains the
document to be verified.
schemadoc VARCHAR(256) File path of the schema
document.
CLOB(2G) XML column that contains the
schem