IBM DB2 Information Integrator

Data Source Configuration Guide

Version 8.2

<|ll

IBM DB2 Information Integrator

Data Source Configuration Guide

Version 8.2

<|ll

Before using this information and the product it supports, be sure to read the general information under ['Notices” on page 651]

This document contains proprietary information of IBM. It is provided under a license agreement and copyright law
protects it. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative:

* To order publications online, go to the IBM Publications Center atwww.ibm.com/shop/publications/order]

 To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at
[www.ibm.com /planetwide|

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1998, 2004. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide

Contents

About this book . . Xi
Who should read this book . . . xi
Conventions and terminology used in thls book . xi
How to read the syntax diagrams . . xii
Part 1. Concepts and Planning -1
Chapter 1. Overview of a federated
system . . 3
Federated systems .3
The federated server. .4
What is a data source? . .4
Supported data sources. .5
The federated database . .7
The federated database system catalog .7
The SQL Compiler .o .8
The query optimizer. .8
Compensation . . .9
Pass-through sessions . . 10
Wrappers and wrapper modules .1
Default wrapper names . 12
Server definitions and server optlons .13
User mappings . .14
Nicknames and data source ob]ects . 14
Valid data source objects . .15
Nickname column options 16
Data type mappings 17
Function mappings . 17
Index specifications. . 18
How you interact with a federated system . . 18
DB2 command line processor (CLP) . .19
DB2 Command Center. . 19
DB2 Control Center. .19
Application programs . . 20
DB2 family tools. . 20
Web services providers . 20
Chapter 2. Planning for federated data
source configuration. .21
Federated object naming rules . . .21
Preserving case-sensitive values in a federated
system . .22
Update data source statlstlcs .23
Choose the correct wrapper . .24
Methods of accessing Excel data .25
Plan the user mappings . 28
Plan the data type mappings .29
Plan the function mappings 30
Checklist for planning your federated system
configuration . . 31
Checklist: Federated ob]ect nammg rules .31
Checklist: Preserving case-sensitive values . .31
Checklist: Data source statistics. . 31
Checklist: Data type mappings . .32

© Copyright IBM Corp. 1998, 2004

Checklist: User mappings.32
Checklist: Wrappers32

Part 2. Federated server and
database35

Chapter 3. Checking the setup of the

federated server. 37
Checking the setup of the federated server. . . .37
Confirming the link-edit of the wrapper hbrary files
(UNIX). 37
Confirming the 1mk-ed1t of the wrapper hbrary
files (UNIX)37
Checking the wrapper llbrary f11es (UNIX) . .38
Wrapper library files 39
Checking the link-edit message f11es (UNIX) .. 40
Manually linking the wrapper libraries to the
data source client software . . B 3 |
Checking the FEDERATED parameter I

Chapter 4. Creating a federated

database. 45
Federated database natlonal language cons1derat10ns 45
Collating sequences in a federated system 46
Setting the federated database collating sequence. . 47
Unicode support for federated systems48
Creating a federated database51

Part 3. Datasources. 53

Chapter 5. Overview of configuring
access todatasources55

Fast track to configuring your data sources. . . .55
Adding data sources to a federated server using the
DB2 UDB Control Center.56
Configuring multiple federated servers to access
data sources 4
Setting the data source env1ronmer1t Varlables . .58
Setting the data source environment variables . . 58
Restrictions for the db2dj.ini file59
Applying environment variables in a
multi-partition instance configuration. 60
Registering wrappers for a data source61
Registering server definitions for a data source . . 61
Registering user mappings for a data source . . . 63
Registering nicknames for a data source. 63
Registering nicknames for a data source. . . . 63
Creating a nickname on a nickname65
Specifying nickname columns for a nonrelational
data source . . I 2}
Optional Conflguratlon steps R
iii

Chapter 6. Configuring access to

BioRS data sources . e67
What is BioRS? . . . B < V4
Adding BioRS to a federated server . . . 68

Adding BioRS data sources to a federated server 68
Registering the custom functions for the BioRS

wrapper . . T
Custom function table BioRS wrapper70
Registering the BioRS wrapper71
BioRS wrapper library files72
Registering the server definition for a BloRS data
source72
Registering user mapplngs for BroRS data
sources73
Registering nrcknames for BloRS data sources . . 74
CREATE NICKNAME statement - Examples for
BioRS wrapper75

Queries and custom funct1ons for B10RS data

sources T77
Custom functrons and BroRS querres .o T77
Equijoin predicates for the BioRS wrapper . . .79
The BioRS AllText element81
BioRS wrapper - Example queries81

Optimizing BioRS wrapper performance. 86
Guidelines for optimizing BioRS wrapper
performance . . . L.86
BioRS statistical 1nformat10n . . 87

Determining BioRS databank cardrnahty statrstrcs 88
Updating BioRS nickname cardinality statistics =~ 88

Updating BioRS column cardinality statistics . . 89
Updating BioRS _ID_ column cardinality . . . 90
Messages for the BioRS wrapper91

Chapter 7. Configuring access to

BLAST data sources. - .. .95
What is BLAST?. 0%
Adding BLAST to a federated server98

Adding BLAST data sources to a federated server 98
Verifying that the correct version of the blastall
executable and matrix files are installed 99

Configuring the BLAST daemon 100
BLAST daemon configuration file - examples 103
Starting the BLAST daemon . . 103
db2blast_daemon command - syntax and
examples . . . 104
Registering the BLAST wrapper . . 105
BLAST wrapper library files . 106
Registering the server for a BLAST data source 106
Registering nicknames for BLAST data sources 107
Setting up TurboBlast to work with the BLAST
wrapper . . . o . 113
Constructing BLAST SQL quer1es . 114
BLAST data source — Example queries . . 115
Optimization tips for the BLAST wrapper . . 116
Messages for the BLAST wrapper . 116
Chapter 8. Configuring access to
business application data sources . . 119
The WebSphere Business Integration wrapper . 119
Business object definitions . .o . 121

iV Data Source Configuration Guide

Configuring the WebSphere Business Integration

Adapters . 122
Adding business appl1cat10ns to a federated server 125
Adding business application data sources to a
federated system . . 125
Registering the WebSphere Busrness Integratlon
wrapper . . 126
WebSphere Busmess Integrat1on wrapper l1brary
files . 127
Registering the server def1n1t1on for busmess
application data sources . . 127
Registering nicknames for busmess appllcat10n
data sources. . . 129
Query restrictions for wrappers for busmess
applications and Web services . . . 151
Business application data sources — example
queries . 155
Chapter 9. Configuring access to DB2
family data sources. . 157
Adding DB2 family data sources to a federated
server . . . 157
Adding DB2 famrly data sources to a federated
server . . 157
Cataloging a node entry in the federated node
directory . . 158
Cataloging the remote database in the federated
system database directory . . 159
Registering the DB2 wrapper . . 160
DB2 wrapper library files . . 160
Registering the server definitions for a DBZ data
source . . . 161
CREATE SERVER statement Examples for DBZ
wrapper . .. 162
Creating the user mapplng for a DBZ data
source . . . 163
CREATE USER MAPPING statement Examples
for DB2 wrapper . . . le4
Testing the connection to the DBZ data source
server . . 165
Registering n1cknames for DB2 tables and views 166
CREATE NICKNAME statement - Examples for
DB2 wrapper166
Chapter 10. Configuring access to
Documentum data sources . 169
What is Documentum? . . . 169
Adding Documentum to a federated server 171
Adding Documentum data sources to a
federated server 171
Making the Documentum Cl1ent lrbrary ava1lable
to the wrapper . . 172

Setting the Documentum enV1ronment variables 172

Registering the Documentum wrapper . . 174
Documentum wrapper library files . . 174
Registering the server for Documentum data
sources . . 175
Registering user mapprngs for Documentum
data sources. . 176

Registering nicknames for Documentum data

sources 176
Queries and custom funct1ons for Documentum
data sources. . . oL 182
Registering the custom functlons for the
Documentum wrapper o182
Documentum data source — Example quer1es 187
Access control for the Documentum wrapper 188
Messages for the Documentum wrapper 188

Chapter 11. Configuring access to
Entrez datasources 193

What is Entrez? 193

Adding Entrez to a federated server. 194
Adding Entrez data sources to a federated
server 194
Registering the custom functlons for the Entrez
wrapper . . . A)
Custom function table Entrez wrapper .. . 195
Registering the Entrez wrapper 196
Entrez wrapper library files 197

Registering the server for an Entrez data source 197
Registering nicknames for Entrez data sources 199
Queries and custom functions for Entrez data
sourceso...20
Custom funct10ns and Entrez querles 201
Relational predicates for the Entrez wrapper 202
Invalid WHERE clauses for the Entrez wrapper 203

Schema data element simplification 203
Entrez data source - Example queries 204
PubMed schema tables205
Nucleotide schema tables209
Messages for the Entrez wrapper.213

Chapter 12. Configuring access to
Excel datasources. 217

What is Excel? . . . o217
Adding Excel to a federated server 218
Adding Excel data sources to a federated server 218
Registering the Excel wrapper.219
Excel wrapper library files 220
Registering the server for an Excel data source 220
Registering nicknames for Excel data sources 221
Excel data source — Example queries 221
Excel data source — Sample scenario. 222
File access control model for the Excel wrapper 224
Messages for the Excel wrapper224

Chapter 13. Configuring access to
Extended Search data sources. . . . 229

What is Extended Search?229
Extended Search data sources230
How the Extended Search wrapper works .. 230

Extended Search nicknames232

Extended Search vertical tables 233

Adding Extended Search to a federated server . . 235
Adding Extended Search data sources to a
federated server 235
Registering the Extended Search wrapper .. 236
Extended Search wrapper library files 236

Registering the server for Extended Search data

sources . . . 237
Registering user mappmgs for Extended Search
data sources. . . . 238
Registering mcknames for Extended Search data
sources 0239
Registering the custom functlons for the
Extended Search wrapper240
Querying Extended Search data sources . . . 240
Extended Search wrapper - Query gurdelmes 240
Extended Search wrapper - Example queries 242
Extended Search wrapper - Generalized query
language 244
Messages for the Extended Search wrapper ... 246

Chapter 14. Configuring access to
HMMER data sources. 251

What is HMMER?.251
Adding HMMER to a federated server 254
Adding HMMER data sources to a federated
server 254
Verifying the version of the HMMER program
executable - . . 255
Configuring the HMMER daemon .. . 255
HMMER daemon configuration file - examples 258
Starting the HMMER daemon. 259
db2hmmer_daemon command - syntax and
examples. 260
Registering the HMMER wrapper 262
HMMER wrapper library files. 262
Registering the server definition for a HMMER
data source 263
CREATE SERVER statement examples for
HMMER wrapper 263
Registering nicknames for HMMER data sources 265
Fixed columns for HMMER nicknames. . . . 265
CREATE NICKNAME statement - Example for
HMMER wrapper 269
HMMER data source — complete example . . 270
Construct new HMMER queries with samples . . 271
Messages for the HMMER wrapper273

Chapter 15. Configuring access to
Informix data sources. 275

Adding Informix to a federated server 275
Adding Informix data sources to federated
servers 275
Setting up and testmg the Informlx cl1ent
configuration file 276
Setting the Informix enV1ronment Varlables . 277
Registering the Informix wrapper 280
Informix wrapper library files.281
Registering the server definitions for an
Informix data source 282
CREATE SERVER statement - Examples for
Informix wrapper 283
Creating the user mapping for an Informlx data
source. . . . 284
CREATE USER MAPPING statement Examples
for Informix wrapper.285

Contents V

Testing the connection to the Informix server 286

Registering nicknames for Informix tables,

views, and synonyms . 286

CREATE NICKNAME statement Examples for

Informix wrapper . . 287
Tuning and troubleshooting the confrguratron to
Informix data sources . 288

Improving performance by sett1ng the FOLD ID

and FOLD_PW server options.288
Chapter 16. Configuring access to
Microsoft SQL Server data sources. . 291

Adding Microsoft SQL Server to a federated server 291
Adding Microsoft SQL Server data sources to a

federated server . . 291
Preparing the federated server to access
Microsoft SQL Server data sources . 292
Setting the Microsoft SQL Server env1ronment
variables . . . 293
Registering the Mrcrosoft SQL Server wrapper 295
Microsoft SQL Server wrapper library files . 296
Registering the server definitions for a Microsoft
SQL Server data source . . . 297
CREATE SERVER statement - Examples for
Microsoft SQL Server wrapper . 298
Creating a user mapping for a M1crosoft SQL
Server data source. . . 299
CREATE USER MAPPING statement Examples
for Microsoft SQL Server wrapper . ..300
Testing the connection to the Microsoft SQL
Server remote server . . 301
Registering nicknames for Mrcrosoft SQL Server
tables and views . 302
CREATE NICKNAME statement Examples for
Microsoft SQL Server wrapper . 303
Tuning and troubleshooting the confrguratron to
Microsoft SQL Server data sources . 303
Obtaining ODBC traces . . 303
Chapter 17. Configuring access to
ODBC data sources. . . 305
Adding ODBC to a federated system . 305
Adding ODBC data sources to a federated
server . . 305
Preparing the federated server to access data
sources through ODBC . . 306
Registering the ODBC wrapper . 307
ODBC wrapper library files . . 308
CREATE WRAPPER statement - Examples for
ODBC wrapper. . 309
Registering the server def1n1t1ons for an ODBC
data source . . 309
CREATE SERVER statement Examples of
ODBC wrapper. . . 310
Creating a user mapplng for an ODBC data
source . . . 311
CREATE USER MAPPING statement Examples
for ODBC wrapper . 312
Testing the connection to the ODBC data source
server . . 313

Vi Data Source Configuration Guide

Registering nicknames for ODBC data source

tables and views . 314
CREATE NICKNAME statement Examples for
ODBC wrapper. . . . 315
Accessing Excel data using the ODBC wrapper . . 316
Alter the default data type mappings . 318
ALTER SERVER statement - Examples for
ODBC wrapper to access Excel data . . 318
Tuning and troubleshooting the configuration to
ODBC data sources . . 319
Obtaining ODBC traces . . 319
Chapter 18. Configuring access to
OLE DB data sources. . 321

Adding OLE DB data sources to a federated server 321

Registering the OLE DB wrapper. . 322
OLE DB wrapper library files . . 323
Registering the server definitions for an OLE DB
data source . . 323
CREATE SERVER statement Examples for OLE
DB wrapper . . . 324
Creating a user mapp1ng for an OLE DB data
source . . . 324
CREATE USER MAPPING statement Examples
for OLE DB wrapper . o . . 325
Chapter 19. Configuring access to
Oracle data sources . 327
Adding Oracle to a federated system . 327
Adding Oracle data sources to a federated
server . . . 327
Setting the Oracle env1ronment Var1ables . . 328
Setting up and testing the Oracle client
configuration file . . . 331
Registering the Oracle wrapper . 332
Oracle wrapper library files . 333
Registering the server definitions for an Oracle
data source . . 334
CREATE SERVER statement Examples for
Oracle wrapper. . 334
Creating the user mappmgs for an Oracle data
source . . . 335
CREATE USER MAPPING statement Examples
for Oracle wrapper . . 336
Testing the connection to the Oracle server . 337
Registering nicknames for Oracle tables and
views . . 338
CREATE NICKNAME statement Examples for
Oracle wrapper. . 339
Tuning and troubleshootmg the Conflguratlon to
Oracle data sources . 339
Connectivity problems . 339
Chapter 20. Configuring access to
Sybase data sources . . 341
Adding Sybase to a federated system . 341
Adding Sybase data sources to a federated
server . . . 341
Setting the Sybase env1ronment Varlables . . 342

Setting up and testing the Sybase client

configuration file . . . 344
Registering the Sybase wrapper . . 345
Sybase wrapper library files . 346
Registering the server definitions for a Sybase
data source . . . 347
CREATE SERVER statement - Examples for
Sybase wrapper . 348
Creating a user mappmg for a Sybase data
source . . . 349
CREATE USER MAPPING statement Examples
for Sybase wrapper . . 350
Testing the connection to the Sybase server . 351
Registering nicknames for Sybase tables and
views . . 352
CREATE NICKNAME statement Examples for
Sybase wrapper . 353
Tuning and troubleshootmg the conf1gurat10n to
Sybase data sources . . . 353
Resolving the sp helpmdex error. . 353
Chapter 21. Configuring access to
Table-structured file data sources . 355
What are table-structured files? . 355
Attributes of table-structured files . 355
Sorted files . . 355
Unsorted files . 356
How DB2 Information Integrator works w1th
table-structured files . . 356
Adding table-structured files to a federated system 357
Adding table-structured file data sources to a
federated server . 357
Registering the table- structured flle wrapper 358
Table-structured files wrapper library files. . 358
Registering the server for table-structured files 359
Registering nicknames for table-structured files 359
CREATE NICKNAME statement - Examples for
table-structured file wrapper . . 360
File access control model for the table-structured
file wrapper . . . 361
Optimization tips and cons1derat10ns for the
table-structured file wrapper . 361
Messages for the table-structured file wrapper . 362
Chapter 22. Configuring access to
Teradata data sources . 365
Adding Teradata to a federated system. . 365
Adding Teradata data sources to a federated
server . . . 365
Testing the connectlon to the Teradata server 366
Verifying that the Teradata library is enabled for
run-time linking (AIX) . 367
Setting the Teradata environment Varlables . 368
Registering the Teradata wrapper. . 370
Teradata wrapper library files . . . 371
Registering the server definitions for a Teradata
data source . . 371
CREATE SERVER statement Examples for
Teradata wrapper . e . 373

Creating the user mapping for a Teradata data
source . .

CREATE USER MAPPING statement Examples
for Teradata wrapper .

Testing the connection from the federated server

. 373

. 374

to the Teradata server . . 375
Teradata nicknames on federated servers . . 376
Registering nicknames for Teradata tables and
views . . . 377
CREATE NICKNAME statement Examples for
Teradata wrapper . . 377
Tuning and troubleshooting the Conf1gurat10n to
Teradata data sources. . . 378
UPDATE or DELETE operat1on errors on
nicknames . . 378
Tuning and disabling Teradata access loggmg 378
Enabling run-time linking for libcliv2.so (AIX) 378
Chapter 23. Configuring access to
Web services data sources . 381
The Web services wrapper and the Web services
description language document . 381
Adding Web services to a federated system . 387
Adding Web services data sources to a
federated server . . 387
Registering the Web services wrapper . . 388
Web services wrapper library files . 388
Registering the server definition for Web
services data sources . .. 389
Registering nicknames for Web services data
sources . . 390
Query restrictions for wrappers for busmess
applications and Web services . . . 404
Web services data sources — example queries . . 408
Web services wrapper security. .41
Messages for the Web services wrapper. .41
Chapter 24. Configuring access to
XML data sources . 415
What is XML? . . . 415
Adding XML to a federated system . . 418
Adding XML to a federated system . . 418
Registering the XML wrapper . . 419
XML wrapper library files . . . 419
Registering the server for an XML data source 420
Registering nicknames for XML data sources 422

Creating federated views for nonroot nicknames

(XML wrapper). . . . 430

Optimization tips for the XML cost model

facility. . . 430
XML data source - Example quer1es . 432
Messages for the XML wrapper . 433
Part 4. User-defined functions. . . 441
Chapter 25. Life sciences user-defined
functions - . 443
Life sciences user-defined funct1ons - overview . . 443

Life sciences user-defined functions - overview 443

Contents Vil

Life sciences user-defined function library files
Life sciences user-defined functions by
functional category
Registering life sciences user- defmed functlons
Disabling the life sciences user-defined functions

Back translation user-defined functions.
Back translation user-defined functions -
overview .
LSPepZAmbNuC user-defmed functlon
LSPep2AmbNuc user-defined function -
example . .
LSPep2 AmbNuc user-defmed functlon error
messages . . .
LSPep2ProbNuc user—defmed functlon .
LSPep2ProbNuc user-defined function - example
LSPep2ProbNuc user-defined function - error
messages . .

Defline parsing user—defmed functlons .
Defline parsing user-defined functions -
overview . . .
LSDeflineParse user—defmed functlons .
LSDeflineParse user-defined function —
examples . .

Generalized pattern matchmg user- defmed

functions . .
LSPatternMatch user—defmed funct1on .
LSPatternMatch user-defined function —
example .
LSPrositePattern user—defmed functlon
LSPrositePattern user-defined function -
example . S
Regular expression support.

GeneWise user-defined functions .
Linking to GeneWise . .
LSGeneWise user-defined functlon .
LSGeneWise user-defined function — example

Motifs user-defined functions .
LSBarCode user-defined function. .
LSBarCode user-defined function — example
LSMultiMatch user-defined function.
LSMultiMatch user-defined function - example
LSMultiMatch3 user-defined function .
LSMultiMatch3 user-defined function — example

Reverse user-defined functions
LSRevComp user-defined function .
LSRevComp user-defined function—example
LSRevNuc user-defined function . .
LSRevNuc user-defined function - example
LSRevPep user-defined function . .
LSRevPep user-defined function - example

Translate . .
LSNuc2Pep user—defmed functlon .
LSNuc2Pep user-defined function — example
LSTransAllFrames user-defined function
LSTransAllFrames user-defined function -
example .

Codon frequency table format

Codon frequency table - example.

Translation table format .

Translation table - example .

viil Data Source Configuration Guide

443

. 444

445
446

. 447

. 447
. 448

. 449

. 450
. 451

451

. 452
. 453

. 453
. 454

. 456

. 459
. 459

. 460
. 462

. 462
. 463
. 463
. 463
. 464

465

. 466
. 466

466

. 468

468
. 469
470

. 471
. 471

472

. 473
. 473
. 474
. 474
. 475
. 475

476

. 477

. 477
. 478
. 479
. 480
. 480

Chapter 26. KEGG user-defined

functions . . 483
KEGG user-defined functlons - overview . . 483
KEGG user-defined functions by functional
category . . 483
Function arguments for the KEGG user- defmed
functions . . 485
Registering the KEGG user—defmed functlons . 486
Pathway database functions . 487
GenesByPathwyS user-defined functlon . 488
GenesByPathwyT user-defined function . 488
CompoundsByPathwyS user-defined function 489
CompoundsByPathwyT user-defined function 490
EnzymesByPathwyS user-defined function . 491
EnzymesByPathwyT user-defined function . 491
PathwysByGenesS user-defined function . 492
PathwysByGenesT user-defined function . . 493
PathwysByCompndsS user-defined function . . 493
PathwysByCompndsT user-defined function . . 494
PathwysByEnzymesS user-defined function . 495
PathwysByEnzymesT user-defined function . . 496
Sequence Similarity Database functions. . 497
Columns that are returned from SSDB database
queries (table functions) . . 497
AlINbrsByGeneS user-defined functlon . 498
AlINbrsByGeneT user-defined function. . 499
BstBstNbrsByGeneS user-defined function . . 500
BstBstNbrsByGeneT user-defined function. . 501
BestNbrsByGeneS user-defined function . 502
BestNbrsByGeneT user-defined function . 503
RevBestNbrsByGeneS user-defined function . . 504
RevBestNbrsByGeneT user-defined function . . 505
ParalogsByGeneS user-defined function . 506
ParalogsByGeneT user-defined function . 507
BestHmlgsByGenesS user-defined function . 508
BestHmlgsByGenesT user-defined function . . 509
BstBstHmlgByGenesS user-defined function . . 509
BstBstHmlgByGenesT user-defined function . . 510
ScoreBetweenGenesS user-defined function . 511
DefinitionsByGeneS user-defined function . . 511
GenesByMotifsT user-defined function . . 512
Disabling the KEGG user-defined functions . 513
Part 5. Reference. 515
Chapter 27. Data types supported for
nonrelational data sources . 517
Data types supported for nonrelational data
sources . . 517
Data types supported by the BIORS wrapper 517
Data types supported by the BLAST wrapper 517
Data types supported by the Documentum
wrapper . . 518
Data types supported by the Entrez wrapper 518
Data types supported by the Excel wrapper . . 518
Data types supported by the Extended Search
wrapper 519
Data types supported by the HMMER wrapper 519
Data types supported by the table-structured
file wrapper . . . 519

Data types supported by the Web services

wrapper 520
Data types supported by the WebSphere
Business Integration wrapper 520
Data types supported by the XML wrapper . 521
Chapter 28. Altering nicknames . 523
Altering a nickname . . . 523
Restrictions on altering nicknames . 524
Altering nickname column names . 526
Altering nickname options . . . 527
Altering nickname column options . . . 528
Altering a local type for a data source object . . 530
Altering a local type for a data source object —
examples . . 531
Chapter 29. DDL command reference 535
BioRS DDL reference information. . 535
CREATE SERVER statement options - BloRS
wrapper . . 535
CREATE USER MAPPING statement optrons -
BioRS wrapper . . . 536
CREATE NICKNAME statement syntax BroRS
wrapper53
BLAST DDL reference 1nformat10n . 538
CREATE SERVER statement arguments - BLAST
wrapper538
CREATE NICKNAME statement syntax -
BLAST wrapper . . . 539
Documentum DDL reference 1nformat10n . . 540
CREATE SERVER statement arguments and
options - Documentum wrapper . . . 540
CREATE USER MAPPING statement optrons -
Documentum wrapper .o ... 541
CREATE NICKNAME statement syntax -
Documentum wrapper . . 541
Excel DDL reference information . . 544
CREATE SERVER statement arguments - Excel
wrapper . . 544
CREATE NICKNAME statement syntax Excel
wrapper54
Extended Search DDL reference 1nf0rmat10n . . 546
CREATE WRAPPER statement syntax -
Extended Search wrapper . . 546
CREATE SERVER statement syntax Extended
Search wrapper. . . 547
CREATE USER MAPPING statement syntax -
Extended Search wrapper 548
CREATE NICKNAME statement syntax -
Extended Search wrapper . . 548
CREATE FUNCTION statement syntax -
Extended Search wrapper . . 551
Entrez DDL reference information . 552
CREATE SERVER statement arguments - Entrez
wrapper 552
CREATE NICKNAME statement optrons -
Entrez wrapper. . 552
Table-structured files DDL reference 1nf0rmat10n 552
CREATE NICKNAME statement syntax -
Table-structured file wrapper . . 5562

XML DDL reference information . . . 557
CREATE NICKNAME statement syntax XML
wrapper . Lo557

Appendix A. Views in the global

catalog table containing federated

information . 563

Appendix B. Wrapper optlons for

federated systems . 567

Appendix C. Valid server types in SQL

statements . 569

BioRS wrapper . . 569

BLAST wrapper . 569

CTLIB wrapper. . 570

Documentum wrapper . 570

DRDA wrapper. . 570

Entrez wrapper. . 571

Excel wrapper . . 571

Extended Search wrapper . 571

HMMER wrapper . . 571

Informix wrapper . . 571

MSSQLODBC3 wrapper . . 572

NET8 wrapper . . 572

ODBC wrapper. . 572

OLE DB wrapper . . . 572

Table-structured files wrapper . 572

Teradata wrapper . . 572

Web services wrapper . . . 573

WebSphere Business Integration wrapper . . 573

XML wrapper . . 573

Appendix D. Server options for

federated systems . 575

Appendix E. User mapping optlons for

federated systems . 591

Appendix F. Nickname options for

federated systems . 593

Appendix G. Nickname column

options for federated systems . . 603

Appendix H. Default forward data type

mappings 61

DB2 for z/OS and OS/ 390 data sources . 611

DB2 for iSeries data sources . 612

DB2 Server for VM and VSE data sources . . . 613

DB2 for Linux, UNIX, and Windows data sources 614

Informix data sources . 616

Microsoft SQL Server data sources . 617

ODBC data sources . . 620

Oracle NET8 data sources . . 621

Sybase data sources . 622

Teradata data sources. . 623

Contents 1X

Appendix I. Default reverse data type

mappings 627
DB2 for z/0OS and OS/ 390 data sources 628
DB2 for iSeries data sources 629
DB2 for VM and VSE data sources 630
DB2 for Linux, UNIX, and Windows data sources 631
Informix data sources 632
Microsoft SQL Server data sources 633
Oracle NET8 data sources634
Sybase data sources635
Teradata data sources.636

Appendix J. Function mapping
options for federated systems 637

DB2 Information Integrator
documentation. 639
Accessing DB2 Information Integrator

documentation 639
Documentation about rephcatlon functlon on z / OS 641
Documentation about event publishing function for

DB2 Universal Database on z/OS 642
Documentation about event publishing function for
IMS and VSAM on z/OS 642

Documentation about event publishing and
replication function on Linux, UNIX, and Windows 643

X Data Source Configuration Guide

Documentation about federated function on z/OS 644
Documentation about federated function on Linux,

UNIX, and Windows 644
Documentation about enterprlse search functlon on

Linux, UNIX, and Windows 0646
Release notes and installation requlrements .. . 646

Accessibility.649

Keyboard input and navigation 649
Keyboard input.649
Keyboard navigation.649
Keyboard focus.649

Accessible display.649
Font settings.649
Non-dependence on color650

Compatibility with assistive technolog1es650

Accessible documentation 650

Notices.651
Trademarks653

Index.655

ContactinglBM 665

Product information665
Comments on the documentatlon.665

About this book

This book describes how to configure a federated system to access data sources.
This book contains:

* An introduction to federated system concepts, components, and capabilities.
* Recommendations for planning the configuration of the data sources.

* Instructions for registering the objects required for the federated server and
database to access data sources.

* Extensive reference information specific for each data source including: server
setup information, environment variable requirements, data type mappings, and
options you can set to customize and tune the data source configuration.

Locating technical changes
Technical changes to the text are indicated by a vertical line to the left of
the change.

Who should read this book

This book is intended for system administrators, database administrators, security
administrators, and system operators who need to set up and configure a federated
system. Use this book to manage a federated system to access data from relational
and nonrelational data sources. This book can also be used by programmers and
other users who require an understanding of the configuration and use of a
federated system. This book assumes that you are familiar with DB2. You should
be familiar with standard database terminology, and have experience with database
design and database administration. This book assumes that you are familiar with
your own applications and the data sources that you want access.

Conventions and terminology used in this book

Federated terminology:

The glossary in this book defines the terms that are used when discussing
federated systems.

DB2 Commands:

This book assumes that DB2 commands are entered in the DB2 Command Line
Processor (CLP) or the DB2 Command Center GUI, unless otherwise specified.
When a DB2 command is mentioned in the text, only the command and its
parameters are listed. The command will not be proceeded by DB2.

DB2 Control Center:

The documentation indicates when tasks can be performed by using the DB2
Control Center and includes the steps to perform these tasks in this
documentation.

Highlighting Conventions:

This book uses these highlighting conventions:

© Copyright IBM Corp. 1998, 2004 xi

Boldface type
Indicates commands and graphical user interface controls (such as names
of fields, names of push buttons, and menu choices). Boldface type is used
to designate notes, restrictions, prerequisites, and recommendations.

Monospace type
Indicates text that you type, file names, and code examples. Monospace
type is also used for SQL statement or DB2 command parameter names.

Italic type
Indicates SQL statement or DB2 command parameter values that you
replace with an appropriate value. SQL statement or DB2 command
examples use italic type for sample parameter values. Italic type is used to
emphasize words, to identify new terms, and to indicate document titles.

UPPERCASE TYPE
Indicates the names of DB2 commands and SQL statements, and their
keywords. Uppercase is also used for data type names, options, and
acronyms.

How to read the syntax diagrams

xii

Throughout this book, syntax is described using the structure defined as follows:

Read the syntax diagrams from left to right and top to bottom, following the path
of the line.

The »—— symbol indicates the beginning of a statement.

The — symbol indicates that the statement syntax is continued on the next line.
The »— symbol indicates that a statement is continued from the previous line.
The —>< symbol indicates the end of a statement.

Required items appear on the horizontal line (the main path).

»»>—STATEMENT—required item ><

Optional items appear below the main path.

l—optional itemJ

»>—STATEMENT

v
A

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

optional item
i i

»>—STATEMENT

v
A

If you can choose from two or more items, they appear in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

Data Source Configuration Guide

A\
A

»—STATEMENT—Erequired choicel
required choiceZ—|

If choosing none of the items is an option, the entire stack appears below the main
path.

»>—STATEMENT ><
i:optional choicel:‘
optional choiceZ

If one of the items is the default, it will appear above the main path and the
remaining choices will be shown below.

default choice
»>—STATEMENT |_ _|
i:optional choice:‘

optional choice

A\
A

An arrow returning to the left, above the main line, indicates an item that can be
repeated. In this case, repeated items must be separated by one or more blanks.

»»—STATEMENT——repeatable item ><

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

»»—STATEMENT——repeatable item ><

A repeat arrow above a stack indicates that you can make more than one choice
from the stacked items or repeat a single choice.

Keywords appear in uppercase (for example, FROM). They must be spelled exactly
as shown. Variables appear in lowercase (for example, column-name). They
represent user-supplied names or values in the syntax.

If punctuation marks, parentheses, arithmetic operators, or other such symbols are
shown, you must enter them as part of the syntax.

Sometimes a single variable represents a set of several parameters. For example, in
the following diagram, the variable parameter-block can be replaced by any of the
interpretations of the diagram that is headed parameter-block:

»—STATEMENT—| parameter-block i ><

About this book Xiii

parameter-block:

parameterl |
par'amet‘er'2—|:par'ame15:2r'3:|J
parameter4

Adjacent segments occurring between “large bullets” (@) may be specified in any
sequence.

»>—STATEMENT—item] —@—item2—@—item3—@—item4

v
A

The above diagram shows that item2 and item3 may be specified in either order.
Both of the following are valid:

STATEMENT iteml item2 item3 itemd
STATEMENT iteml item3 item2 itemd

Xiv Data Source Configuration Guide

Part 1. Concepts and Planning

© Copyright IBM Corp. 1998, 2004

2 Data Source Configuration Guide

Chapter 1. Overview of a federated system

The following sections provide an overview of a federated system.

Federated systems

A DB2® federated system is a special type of distributed database management
system (DBMS). A federated system consists of a DB2 instance that operates as a
federated server, a database that acts as the federated database, one or more data
sources, and clients (users and applications) that access the database and data
sources. With a federated system, you can send distributed requests to multiple
data sources within a single SQL statement. For example, you can join data that is
located in a DB2 Universal Database " table, an Oracle table, and an XML tagged
file in a single SQL statement. The following figure shows the components of a
federated system and a sample of the data sources you can access.

DB2
Universal
Database

VSAM

IMS

Software AG
Adabas

CA-Datacom

CA-IDMS

—
_ > DB2 family
[] _—
~ —
— Sybase
-
— g Integrated SQL view S—
DB2 Information Integrat Informix
2, — nformation Integrator
(5 | | Information 8 SQL, SQL/XML ~
— Casie || Microsoft [o]
[+ [_Federation Wrappers and functions Sahiserve
= |
— —
| || Oracle
S ./
—
1 Teradata
—_—
po—

DIE[*

Biological Text
data and

algorithms

(Web, e-mail...

= B .onscv

Excel WebSphere IBM
MQ

Extended

)

Figure 1. The components of a federated system

The power of a DB2 federated system is in its ability to:

* Join data from local tables and remote data sources, as if all the data is stored

locally in the federated database

» Update data in relational data sources, as if the data is stored in the federated

database

© Copyright IBM Corp. 1998, 2004

* Replicate data to and from relational data sources

* Take advantage of the data source processing strengths, by sending requests to
the data sources for processing

* Compensate for SQL limitations at the data source by processing parts of a
distributed request at the federated server

The federated server

The DB2® server in a federated system is referred to as the federated server. Any
number of DB2 instances can be configured to function as federated servers. You
can use existing DB2 instances as your federated servers, or you can create new
ones specifically for the federated system.

The DB2 instance that manages the federated system is called a server because it
responds to requests from end users and client applications. The federated server
often sends parts of the requests it receives to the data sources for processing. A
pushdown operation is an operation that is processed remotely. The DB2 instance
that manages the federated system is referred to as the federated server, even though
it acts as a client when it pushes down requests to the data sources.

Like any other application server, the federated server is a database manager
instance. Application processes connect and submit requests to the database within
the federated server. However, two main features distinguish it from other
application servers:

* A federated server is configured to receive requests that might be partially or
entirely intended for data sources. The federated server distributes these
requests to the data sources.

* Like other application servers, a federated server uses DRDA® communication
protocols (over TCP/IP) to communicate with DB2 family instances. However,
unlike other application servers, a federated server uses the native client of the
data source to access the data source. For example, a federated server uses the
Sybase Open Client to access Sybase data sources and an Microsoft® SQL Server
ODBC Driver to access Microsoft SQL Server data sources.

Related concepts:

* |"What is a data source?” on page 4

What is a data source?

In a federated system, a data source can be a relational DBMS instance (such as
Oracle or Sybase) or a nonrelational data source (such as BLAST search algorithm
or an XML tagged file). Through some data sources you can access other data
sources. For example, through the Extended Search data source you can access
data sources such as Lotus® Notes databases, Microsoft® Access, Microsoft Index
Server, Web search engines, and Lightweight Directory Access Protocol (LDAP)
directories.

The method, or protocol, used to access a data source depends on the type of data
source. For example, DRDA® is used to access DB2® for z/OS™ and 0S/390® data
sources and the Documentum Client API/Library is used to access Documentum
data sources.

4 Data Source Configuration Guide

Data sources are semi-autonomous. For example, the federated server can send
queries to Oracle data sources at the same time that Oracle applications can access
these data sources. A DB2 federated system does not monopolize or restrict access
to the other data sources, beyond integrity and locking constraints.

Related concepts:

“The federated database” on page 7|

Related reference:

“Supported data sources” on page 5|

| Supported data sources

There are many data sources that you can access using a federated system. The
following table lists the supported data sources:

Table 1. Supported data source versions and access methods.

Data source

Supported versions Access method

DB2 Universal Database ™

for Linux, UNIX, and
Windows®

72,81,82

DRDA®

DB2 Universal Database
for z/OS™ and OS/390®

6.1, 7.1 with the
following APARs

applied:

PQ62695
PQ55393
PQ56616
PQ54605
PQ46183
PQ62139

8.1

DRDA

DB2 Universal Database
for iSeries"”

5.1

DRDA

with the following

APARs applied:
— SE06003
— SE06872
— 1113348

with the following

PTFs applied:
- 5105990
S105991

5.2 with PTF SI0735
applied.

DB2 Server for VM and
VSE

7.1 (or later) with fixes DRDA
for APARs for schema

functions applied.

Informix"

7.31,8.32,84,93,94

Informix Client SDK V2.7 (or
later)

Chapter 1. Overview of a federated system 5

Table 1. Supported data source versions and access methods. (continued)

Data source

Supported versions

Access method

ODBC 3.x ODBC driver for the data
source, such as Redbrick
ODBC Diriver to access
Redbrick.

OLE DB 27,28 OLE DB 2.0 (or later)

Oracle 8.0.6,8.1.6,8.1.7,9.0, 9.1, Oracle net client or NET8

9.2, 9, 10g

client software

Microsoft SQL Server

7.0, 2000 SP3 and later

service packs on that
release

On Windows, the Microsoft
SQL Server Client ODBC 3.0
(or later) driver.

On UNIX, the DataDirect
Technologies (formerly
MERANT) Connect ODBC
3.7 (or later) driver.

Sybase 11.9.2, 12.x Sybase Open Client ctlib
interface

Teradata V2R3, V2R4, V2R5 Teradata Call-Level Interface,
Version 2 (CLIv2) Release
04.06 (or later)

BLAST 2.2.3 and later 2.2 BLAST daemon (supplied

fixpacks supported with the wrapper)

BioRS v5.0.14 None

Documentum 3.x, 4.x Documentum Client
library /APL3.1.7a (or later)

Entrez (PubMed and 1.0 None

GenBank data sources)

HMMER 2.2g,2.3 HMMER daemon (supplied
with the wrapper)

IBM Lotus Extended 4.0.1,4.0.2 Extended Search Client

Search

Library (supplied with the
wrapper)

Microsoft Excel

97, 2000, 2002, 2003

Excel 97, 2000, 2002, or 2003
installed on the federated
server

PeopleSoft 8.x IBM WebSphere Business
Integration Adapter for
PeopleSoft v2.3.1, 2.4

SAP 3.x, 4.x IBM WebSphere Business
Integration Adapter for
mySAP.com v2.3.1, 2.4

Siebel 7,7.5,2000 IBM WebSphere Business
Integration Adapter for
Siebel eBusiness Applications
v2.3.1,24

Table-structured files None

User-defined functions for Supported

KEGG

User-defined functions for Supported

Life Sciences

6 Data Source Configuration Guide

Table 1. Supported data source versions and access methods. (continued)

Data source Supported versions Access method

Web services SOAP 1.0., 1.1, WSDL HTTP
1.0, 1.1 specifications

XML 1.0 specification None

Related concepts:

* [“What is a data source?” on page 4|

The federated database

To end users and client applications, data sources appear as a single collective
database in DB2®. Users and applications interface with the federated database
managed by the federated server. The federated database contains a system
catalog. The federated database system catalog contains entries that identify data
sources and their characteristics. The federated server consults the information
stored in the federated database system catalog and the data source wrapper to
determine the best plan for processing SQL statements.

The federated system processes SQL statements as if the data sources were
ordinary relational tables or views within the federated database. As a result:

* The federated system can join relational data with data in nonrelational formats.
This is true even when the data sources use different SQL dialects, or do not
support SQL at all.

* The characteristics of the federated database take precedence when there are
differences between the characteristics of the federated database and the
characteristics of the data sources:

— Suppose the code page used by the federated server is different than the code
page used by the data source. Character data from the data source is
converted based on the code page used by the federated database, when that
data is returned to a federated user.

— Suppose the collating sequence used by the federated server is different than
the collating sequence used by the data source. Any sort operations on
character data are performed at the federated server instead of at the data
source.

Related concepts:
+ |[“The SQL Compiler” on page §|
+ |“The federated database system catalog” on page 7|

The federated database system catalog

The federated database system catalog contains information about the objects in
the federated database and information about objects at the data sources. The
catalog in a federated database is called the global catalog because it contains
information about the entire federated system. DB2® query optimizer uses the
information in the global catalog and the data source wrapper to plan the best way
to process SQL statements. The information stored in the global catalog includes
remote and local information, such as column names, column data types, column
default values, and index information.

Chapter 1. Overview of a federated system 7

Remote catalog information is the information or name used by the data source.
Local catalog information is the information or name used by the federated
database. For example, suppose a remote table includes a column with the name of
EMPNO. The global catalog would store the remote column name as EMPNO.
Unless you designate a different name, the local column name will be stored as
EMPNO. You can change the local column name to Employee_Number. Users
submitting queries which include this column will use Employee_Number in their
queries instead of EMPNO. You use the ALTER NICKNAME statement to change
the local name of the data source columns.

For relational data sources, the information stored in the global catalog includes
both remote and local information.

For nonrelational data sources, the information stored in the global catalog varies
from data source to data source.

To see the data source table information that is stored in the global catalog, query
the SYSCAT.TABLES, SYSCAT.TABOPTIONS, SYSCAT.INDEXES,
SYSCAT.COLUMNS, and SYSCAT.COLOPTIONS catalog views in the federated
database.

The global catalog also includes other information about the data sources. For
example, the global catalog includes information that the federated server uses to
connect to the data source and map the federated user authorizations to the data
source user authorizations. The global catalog contains attributes about the data
source that you explicitly set, such as server options.

Related concepts:
+ |[“The SQL Compiler” on page §|

Related reference:

* |Appendix A, “Views in the global catalog table containing federated|
information,” on page 563

The SQL Compiler

To obtain data from data sources, users and applications submit queries in DB2®
SQL to the federated database. When a query is submitted, the DB2 SQL Compiler
consults information in the global catalog and the data source wrapper to help it
process the query. This includes information about connecting to the data source,
server attributes, mappings, index information, and processing statistics.

Related concepts:

+ [“Wrappers and wrapper modules” on page 11|

* |“The query optimizer” on page §

The query optimizer

As part of the SQL Compiler process, the query optimizer analyzes a query. The
Compiler develops alternative strategies, called access plans, for processing the
query. Access plans might call for the query to be:

* Processed by the data sources
* Processed by the federated server

8 Data Source Configuration Guide

* Processed partly by the data sources and partly by the federated server

DB2® UDB evaluates the access plans primarily on the basis of information about
the data source capabilities and the data. The wrapper and the global catalog
contain this information. DB2 UDB decomposes the query into segments that are
called query fragments. Typically it is more efficient to pushdown a query fragment
to a data source, if the data source can process the fragment. However, the query
optimizer takes into account other factors such as:

e The amount of data that needs to be processed

¢ The processing speed of the data source

¢ The amount of data that the fragment will return
¢ The communication bandwidth

* Whether there is a usable materialized query table on the federated server that
represents the same query result

The query optimizer generates local and remote access plans for processing a
query fragment, based on resource cost. DB2 UDB then chooses the plan it believes
will process the query with the least resource cost.

If any of the fragments are to be processed by data sources, DB2 UDB submits
these fragments to the data sources. After the data sources process the fragments,
the results are retrieved and returned to DB2 UDB. If DB2 UDB performed any
part of the processing, it combines its results with the results retrieved from the
data source. DB2 UDB then returns all results to the client.

Related concepts:
+ |“The SQL Compiler” on page 8|
* [“Compensation” on page 9

* “Tuning query processing” in the Federated Systems Guide

Compensation

The DB2® federated server does not push down a query fragment if the data
source cannot process it, or if the federated server can process it faster than the
data source can process it. For example, suppose that the SQL dialect of a data
source does not support a CUBE grouping in the GROUP BY clause. A query that
contains a CUBE grouping and references a table in that data source is submitted
to the federated server. DB2 Information Integrator does not pushdown the CUBE
grouping to the data source, but processes the CUBE itself. The ability by DB2
Information Integrator to process SQL that is not supported by a data source is
called compensation.

The federated server compensates for lack of functionality at the data source in
two ways:

* It can ask the data source to use one or more operations that are equivalent to
the DB2 function stated in the query. Suppose a data source does not support
the cotangent (COT(x)) function, but supports the tangent (TAN(x)) function.
DB2 Information Integrator can ask the data source to perform the calculation
(1/TAN(x)), which is equivalent to the cotangent (COT(x)) function.

* It can return the set of data to the federated server, and perform the function
locally.

Chapter 1. Overview of a federated system 9

For relational data sources, each type of RDBMS supports a subset of the
international SQL standard. In addition, some types of RDBMSs support SQL
constructs that exceed this standard. An SQL dialect, is the totality of SQL that a
type of RDBMS supports. If an SQL construct is found in the DB2 SQL dialect, but
not in the relational data source dialect, the federated server can implement this
construct on behalf of the data source.

DB2 Information Integrator can compensate for differences in SQL dialects. An
example of this ability is the common-table-expression clause. DB2 SQL includes
the clause common-table-expression. In this clause, a name can be specified by
which all FROM clauses in a fullselect can reference a result set. The federated
server will process a common-table-expression for a data source, even though the
SQL dialect used by the data source does not include common-table-expression.

With compensation, the federated server can support the full DB2 SQL dialect for
queries of data sources. Even data sources with weak SQL support or no SQL
support will benefit from compensation. You must use the DB2 SQL dialect with a
federated system, except in a pass-through session.

Related concepts:

+ |“Pass-through sessions” on page 10|

Pass-through sessions

You can submit SQL statements directly to data sources by using a special mode
called pass-through. You submit SQL statements in the SQL dialect used by the data
source. Use a pass-through session when you want to perform an operation that is
not possible with the DB2® SQL/API. For example, use a pass-through session to
create a procedure, create an index, or perform queries in the native dialect of the
data source.

Currently, the data sources that support pass-through, support pass-through using
SQL. In the future, it is possible that data sources will support pass-though using a
data source language other than SQL.

Similarly, you can use a pass-through session to perform actions that are not
supported by SQL, such as certain administrative tasks. However, you cannot use a
pass-through session to perform all administrative tasks. For example, you can
create or drop tables at the data source, but you cannot start or stop the remote
database.

You can use both static and dynamic SQL in a pass-through session.

The federated server provides the following SQL statements to manage
pass-through sessions:

SET PASSTHRU
Opens a pass-through session. When you issue another SET PASSTHRU
statement to start a new pass-through session, the current pass-through
session is terminated.

SET PASSTHRU RESET
Terminates the current pass-through session.

GRANT (Server Privileges)
Grants a user, group, list of authorization IDs, or PUBLIC the authority to
initiate pass-through sessions to a specific data source.

10 Data Source Configuration Guide

REVOKE (Server Privileges)
Revokes the authority to initiate pass-through sessions.

The following restrictions apply to pass-through sessions:

* You must use the SQL dialect or language commands of the data source — you
cannot use the DB2 SQL dialect. As a result, you do not query a nickname, but
the data source objects directly.

¢ When performing UPDATE or DELETE operations in a pass-through session,
you cannot use the WHERE CURRENT OF CURSOR condition.

* LOBs are not supported in pass-through sessions.

Related concepts:

» [“Wrappers and wrapper modules” on page 11|

* “Querying data sources directly with pass-through” in the Federated Systems
Guide

Wrappers and wrapper modules

Wrappers are mechanisms by which the federated server interacts with data
sources. The federated server uses routines stored in a library called a wrapper
module to implement a wrapper. These routines allow the federated server to
perform operations such as connecting to a data source and retrieving data from it
iteratively. Typically, the DB2® federated instance owner uses the CREATE
WRAPPER statement to register a wrapper in the federated database. You can
register a wrapper as fenced or trusted using the DB2_FENCED wrapper option.

You create one wrapper for each type of data source that you want to access. For
example, suppose that you want to access three DB2 for z/OS™ database tables,
one DB2 for iSeries" table, two Informix® tables, and one Informix view. You need
to create one wrapper for the DB2 data source objects and one wrapper for the
Informix data source objects. Once these wrappers are registered in the federated
database, you can use these wrappers to access other objects from those data
sources. For example, you can use the DRDA® wrapper with all DB2 family data
source objects—DB2 for Linux, UNIX®, and Windows®, DB2 for z/0OS and
0S/390®, DB2 for iSeries, and DB2 Server for VM and VSE.

You use the server definitions and nicknames to identify the specifics (name,
location, and so forth) of each data source object.

A wrapper performs many tasks. Some of these tasks are:

* It connects to the data source. The wrapper uses the standard connection API of
the data source.

* It submits queries to the data source.
— For data sources that support SQL, the query is submitted in SQL.

— For data sources that do not support SQL, the query is translated into the
native query language of the source or into a series of source API calls.

* It receives results sets from the data source. The wrapper uses the data source
standard APIs for receiving results set.

* It responds to federated server queries about the default data type mappings for
a data source. The wrapper contains the default type mappings that are used
when nicknames are created for a data source object. For relational wrappers,
data type mappings that you create override the default data type mappings.
User-defined data type mappings are stored in the global catalog.

Chapter 1. Overview of a federated system 11

* It responds to federated server queries about the default function mappings for
a data source. The wrapper contains information that the federated server needs
to determine if DB2 functions are mapped to functions of the data source, and
how the functions are mapped. This information is used by the SQL Compiler to
determine if the data source is able to perform the query operations. For
relational wrappers, function mappings that you create override the default
function type mappings. User-defined function mappings are stored in the global
catalog.

Wrapper options are used to configure the wrapper or to define how DB2
Information Integrator uses the wrapper.

Related tasks:

* “Trusted and fenced mode process environments” in the IBM DB2 Information
Integrator Wrapper Developer’s Guide

“Registering wrappers for a data source” on page 61

Related reference:
* “CREATE WRAPPER statement” in the SQL Reference, Volume 2
+ |Appendix B, “Wrapper options for federated systems,” on page 567

| Default wrapper names

There are wrappers for each supported data source. Some wrappers have default
wrapper names. When you use the default name to create the wrapper, the
federated server automatically picks up the data source library associated with the
wrapper.

Table 2. Default wrapper names for each data source.

Data source Default wrapper names

DB2 Universal Database™ for Linux, UNIX ~ DRDA
and Windows®

DB2 Universal Database for z/OS and DRDA
0S/390®

DB2 Universal Database for iSeries DRDA

DB2 Server for VM and VSE DRDA
Informix INFORMIX
Microsoft® SQL Server MSSQLODBC3
ODBC ODBC

OLE DB OLEDB
Oracle NETS8
Sybase CTLIB
Teradata TERADATA
BLAST None

BioRS None
Documentum None
Entrez None
Extended Search None

12 Data Source Configuration Guide

Table 2. Default wrapper names for each data source. (continued)

Data source Default wrapper names
HMMER None
Microsoft Excel None
Table-structured files None
Web Services None
WebSphere Business Integration None
XML None

Related concepts:

* [“Wrappers and wrapper modules” on page 11|

Server definitions and server options

After wrappers are created for the data sources, the federated instance owner
defines the data sources to the federated database. The instance owner supplies a
name to identify the data source, and other information that pertains to the data
source. This information includes:

¢ The type and version of the data source
* The database name for the data source (RDBMS only)

* Metadata that is specific to the data source

For example, a DB2® family data source can have multiple databases. The
definition must specify which database the federated server can connect to. In
contrast, an Oracle data source has one database, and the federated server can
connect to the database without knowing its name. The database name is not
included in the federated server definition of an Oracle data source.

The name and other information that the instance owner supplies to the federated
server are collectively called a server definition. Data sources answer requests for
data and are servers in their own right.

The CREATE SERVER and ALTER SERVER statements are used to create and
modify a server definition.

Some of the information within a server definition is stored as server options. When
you create server definitions, it is important to understand the options that you
can specify about the server. Some server options configure the wrapper and some
affect the way DB2 Information Integrator uses the wrapper.

Server options can be set to persist over successive connections to the data source,
or set for the duration of a single connection.

Related tasks:
* [“Registering server definitions for a data source” on page 61|

Related reference:

e “ALTER SERVER statement” in the SQL Reference, Volume 2

* “CREATE SERVER statement” in the SQL Reference, Volume 2

* |Appendix D, “Server options for federated systems,” on page 575

Chapter 1. Overview of a federated system 13

User mappings

When a federated server needs to pushdown a request to a data source, the server
must first establish a connection to the data source.

For most data sources, the federated server does this by using a valid user ID and
password to that data source. When a user ID and password is required to connect
to a data source, you can define an association between the federated server
authorization ID and the data source user ID and password. This association can
be created for each user ID that will be using the federated system to send
distributed requests. This association is called a user mapping.

In some cases, you do not need to create a user mapping if the user ID and
password you use to connect to the federated database are the same as those you
use to access the remote data source.

Related tasks:
+ |“Registering user mappings for a data source” on page 63|

Related reference:

* “ALTER USER MAPPING statement” in the SQL Reference, Volume 2

* “CREATE USER MAPPING statement” in the SQL Reference, Volume 2

+ |Appendix E, “User mapping options for federated systems,” on page 591|

Nicknames and data source objects

After you create the server definitions and user mappings, the federated instance
owner creates the nicknames. A nickname is an identifier that is used to reference
the object located at the data sources that you want to access. The objects that
nicknames identify are referred to as data source objects.

Nicknames are not alternative names for data source objects in the same way that
aliases are alternative names. They are pointers by which the federated server
references these objects. Nicknames are typically defined with the CREATE
NICKNAME statement along with specific nickname column options and
nickname options.

When an end user or a client application submits a distributed request to the
federated server, the request does not need to specify the data sources. Instead, the
request references the data source objects by their nicknames. The nicknames are
mapped to specific objects at the data source. These mappings eliminate the need
to qualify the nicknames by data source names. The location of the data source
objects is transparent to the end user or the client application.

Suppose that you define the nickname DEPT to represent an Informix® database
table called NFX1.PERSON. The statement SELECT * FROM DEPT is allowed from
the federated server. However, the statement SELECT * FROM NFX1.PERSON is
not allowed from the federated server (except in a pass-through session) unless
there is a local table on the federated server named NFX1.PERSON.

When you create a nickname for a data source object, metadata about the object is
added to the global catalog. The query optimizer uses this metadata, and the
information in the wrapper, to facilitate access to the data source object. For
example, if the nickname is for a table that has an index, the global catalog

14 Data Source Configuration Guide

contains information about the index. The wrapper contains the mappings between
the DB2® data types and the data source data types.

Currently, you cannot execute some DB2 UDB utility operations on nicknames.
You cannot use the Cross Loader utility to cross load into a nickname.

Related concepts:

* |[“Nickname column options” on page 16|

Related tasks:
» |"Registering nicknames for a data source” on page 63|

Related reference:

e “ALTER NICKNAME statement” in the SQL Reference, Volume 2

¢ “CREATE NICKNAME statement” in the SQL Reference, Volume 2

« |Appendix G, “Nickname column options for federated systems,” on page 603

+ |Appendix F, “Nickname options for federated systems,” on page 593

[“Valid data source objects” on page 15|

| Valid data source objects

Nicknames identify objects at the data source that you want to access. The
following table lists the types of objects that you can create a nickname for in a
federated system.

Table 3. Valid data source objects

Data source Valid objects

DB2 for Linux, UNIX, and Windows Nicknames, materialized query tables, tables,
views

DB2 for z/0OS and OS/390 Tables, views

DB2 for iSeries Tables, views

DB2 for VM and VSE Tables, views

Informix Tables, views, synonyms

Microsoft SQL Server Tables, views

ODBC Tables, views

Oracle Tables, views, synonyms

Sybase Tables, views

Teradata Tables, views

BLAST FASTA files indexed for BLAST search
algorithms

BioRS BioRS databanks

Documentum Objects and registered tables in a
Documentum Docbase

Entrez Entrez databases

Extended Search

Files from data sources such as Lotus Notes
databases, Microsoft Access, Microsoft Index
Server, Web search engines, and LDAP
directories.

Chapter 1. Overview of a federated system 15

Table 3. Valid data source objects (continued)

Data source Valid objects

HMMER HMM database files (libraries of Hierarchical
Markov Models, such as PFAM), that can be
searched by HMMER’s hmmpfam or
hmmsearch programs.

Microsoft Excel xls files (only the first sheet in the workbook
is accessed)

Table-structured files Text files that meet a specific format.

Websphere Business Integration adapters Websphere Business Integration business

objects that map to BAPIs in SAP, business
components in Siebel, and component
interfaces in PeopleSoft

Web Services Operations in a Web services description
language file

XML-tagged files Sets of items in an XML document

Related concepts:

* [“Nicknames and data source objects” on page 14|

* |"Nickname column options” on page 16|

Nickname column options

You can supply the global catalog with additional metadata information about the
nicknamed object. This metadata describes values in certain columns of the data
source object. You assign this metadata to parameters that are called nickname
column options. The nickname column options tell the wrapper to handle the data
in a column differently than it normally would handle it. The SQL Complier and
query optimizer use the metadata to develop better plans for accessing the data.

Nickname column options are used to provide other information to the wrapper as
well. For example for XML data sources, a nickname column option is used to tell

the wrapper the XPath expression to use when the wrapper parses the column out
of the XML document.

With federation, the DB2® server treats the data source object that a nickname
references as if it is a local DB2 table. As a result, you can set nickname column
options for any data source object that you create a nickname for. Some nickname
column options are designed for specific types of data sources and can be applied
only to those data sources.

Suppose that a data source has a collating sequence that differs from the federated
database collating sequence. The federated server typically would not sort any
columns containing character data at the data source. It would return the data to
the federated database and perform the sort locally. However, suppose that the
column is a character data type (CHAR or VARCHAR) and contains only numeric
characters ('0’,’1",...,’9’). You can indicate this by assigning a value of 'Y’ to the
NUMERIC_STRING nickname column option. This gives the DB2 query optimizer
the option of performing the sort at the data source. If the sort is performed
remotely, you can avoid the overhead of porting the data to the federated server
and performing the sort locally.

16 Data Source Configuration Guide

You can define nickname column options for relational nicknames using the
ALTER NICKNAME statement. You can define nickname column options for
nonrelational nicknames using the CREATE NICKNAME and ALTER NICKNAME
statements.

Related concepts:

“Data type mappings” on page 17]

Related tasks:
¢ “Working with nicknames” in the Federated Systems Guide

Related reference:

Appendix G, “Nickname column options for federated systems,” on page 603

Data type mappings

The data types at the data source must map to corresponding DB2® data types so
that the federated server can retrieve data from data sources. Some examples of
default data type mappings are:

¢ The Oracle type FLOAT maps to the DB2 type DOUBLE
* The Oracle type DATE maps to the DB2 type TIMESTAMP
e The DB2 for z/0S™ type DATE maps to the DB2 type DATE

For most data sources, the default type mappings are in the wrappers. The default
type mappings for DB2 data sources are in the DRDA® wrapper. The default type
mappings for Informix® are in the INFORMIX wrapper, and so forth.

For some nonrelational data sources, you must specify data type information in the
CREATE NICKNAME statement. The corresponding DB2 for Linux, UNIX®, and
Windows® data types must be specified for each column of the data source object
when the nickname is created. Each column must be mapped to a particular field
or column in the data source object.

For relational data sources, you can override the default data type mappings. For
example, by default the Informix INTEGER data type maps to the DB2 INTEGER
data type. You could override the default mappings and map Informix’s INTEGER
data type to DB2 DECIMAL(10,0) data type.

You should create new type mappings or modify the default type mappings before
you create nicknames. Otherwise nicknames created before the type mapping
changes will not reflect the new mappings.

Related concepts:
* “Data type mappings in a federated system” in the Federated Systems Guide

Function mappings

For the federated server to recognize a data source function, the function must be
mapped to an existing counterpart function in DB2® for Linux, UNIX® and
Windows®. DB2 Information Integrator supplies default mappings between
existing built-in data source functions and built-in DB2 counterpart functions. For
most data sources, the default function mappings are in the wrappers. The default

Chapter 1. Overview of a federated system 17

function mappings to DB2 for z/OS™ and 0S/390® functions are in the DRDA®
wrapper. The default function mappings to Sybase functions are in the CTLIB
wrapper, and so forth.

For relational data sources, you can create a function mapping when you want to
use a data source function that the federated server does not recognize. The
mapping that you create is between the data source function and a DB2
counterpart function at the federated database. Function mappings are typically
used when a new built-in function or a new user-defined function become
available at the data source. Function mappings are also used when a DB2
counterpart function does not exist. In this case, you must also create a function
template.

Related concepts:
¢ “Function mappings in a federated system” in the Federated Systems Guide

“Index specifications” on page 18|

Index specifications

When you create a nickname for a data source table, information about any
indexes that the data source table has is added to the global catalog. The query
optimizer uses this information to expedite the processing of distributed requests.
The catalog information about a data source index is a set of metadata, and is
called an index specification. A federated server does not create an index
specification when you create a nickname for:

e A table that has no indexes

* A view, which typically does not have any index information stored in the
remote catalog

* A data source object that does not have a remote catalog from which the
federated server can obtain the index information

Suppose that a table acquires a new index, in addition to the ones it had when the
nickname was created. Because index information is supplied to the global catalog
at the time the nickname is created, the federated server is unaware of the new
index. Similarly, when a nickname is created for a view, the federated server is
unaware of the underlying table (and its indexes) from which the view was
generated. In these circumstances, you can supply the necessary index information
to the global catalog. You can create an index specification for tables that have no
indexes. The index specification tells the query optimizer which column or
columns in the table to search on to find data quickly.

Related concepts:
* “Index specifications in a federated system” in the Federated Systems Guide

How you interact with a federated system

Because the federated database is a DB2® Universal Database, you can interact
with a federated system using any one of these methods:

* The DB2 command line processor (CLP)
* The DB2 Command Center GUI

* The DB2 Control Center GUI

* Application programs

18 Data Source Configuration Guide

* DB2 family tools
* Web services providers

The steps in the federated documentation provide the commands and SQL
statements that can be entered in the DB2 command line processor or the DB2
Command Center GUIL The documentation indicates when tasks can be performed
through the DB2 Control Center GUI. Since the DB2 Control Center GUI is
intuitive, the steps to perform these tasks through the DB2 Control Center are not
included in this documentation.

DB2 command line processor (CLP)

You can perform most of the tasks necessary to setup, configure, tune, and
maintain the federated system through the DB2 command line processor. In some
cases you must use either the DB2 command line processor or the DB2 Command
Center. For example:

* Create, alter, or drop user-defined data type mappings

* Create, alter, or drop user-defined function mappings

DB2 Command Center

Through the DB2 Command Center, you can create and run distributed requests
without having to manually type out lengthy SQL statements. Use the DB2
Command Center when you are tuning the performance of the federated system.
The DB2 Command Center is a convenient way to use the DB2 Explain
functionality to look at the access plans for distributed requests. The DB2
Command Center can also be used to work with the SQL Assistant tool.

DB2 Control Center

The DB2 Control Center GUI allows you to perform most of the tasks necessary to
setup, configure, and modify the federated system. The DB2 Control Center uses
panels—dialog boxes and wizards—to guide you through a task. These panels
contain interactive help when your mouse hovers over a control such as a list box
or command button. Additionally, each panel has a help button that provides
information about the panel task, and links to related concepts and reference
information.

You can either use a wizard to create the federated objects, or you can create each
object individually.

Use the DB2 Control Center to configure access to Web services, WebSphere®
Business Integration, and XML data sources. The features built into the DB2
Control Center simplify the steps that are required for you to configure the
federated server to access these data sources.

The DB2 Control Center GUI is the easiest way to perform the essential data
source configuration tasks:

* Create the wrappers and set the wrapper options

* Specify the environment variables for your data source
* Create the server definitions and set the server options
¢ Create the user mappings and set the user options

¢ Create the nicknames and set the nickname options or column options

Chapter 1. Overview of a federated system 19

After you configure the federated server to access your data sources, you can use
the DB2 Control Center to:

* Modify the data source configuration

* Monitor the status of the nicknames and servers
* Maintain current statistics for your nicknames

* Create and modify cache tables

* Specify informational constraints on nicknames

* Create remote tables through DB2 Information Integrator using transparent DDL

Application programs

Applications do not require any special coding to work with federated data.
Applications access the system just like any other DB2 client application.
Applications interface with the federated database that is within the federated
server. To obtain data from data sources, applications submit queries in DB2 SQL
to the federated database. DB2 Information Integrator then distributes the queries
to the appropriate data sources, collects the requested data, and returns this data to
the applications. However, since DB2 Information Integrator interacts with the data
sources through nicknames, you need to be aware of:

* The SQL restrictions you have when working with nicknames

* How to perform operations on nicknamed objects

DB2 family tools

You can also interact with a federated database using host and midrange tools
such as:

« DB2 SPUFI on DB2 for z/0S™ and 0S/390®
+ Interactive SQL (STRSQL) on DB2 for iSeries™"

Web services providers

You can also interact with a federated database through web services providers
using the Web Services wrapper.

Related concepts:

* |“The Web services wrapper and the Web services description language]
document” on page 381|

Related tasks:
« |”Adding Web services data sources to a federated server” on page 387

20 Data Source Configuration Guide

Chapter 2. Planning for federated data source configuration

The following sections provide information you can use to help you plan your
federated system.

Federated object naming rules

As with other DB2 objects, there are rules for naming federated database objects.

Federated database objects include:
* Function mappings

* Index specifications

* Nicknames

* Servers

* Type mappings

¢ User mappings

* Wrappers

Federated object names must begin with one of the following;:
* A letter, including a valid accented letter (such as O)

* A multibyte character, except a multibyte space (for multibyte environments)

Federated object names cannot begin with a number or with the underscore
character.

Federated object names can also include the following characters:
* A through Z
* 0 through 9

* @, #, %, and _ (underscore)
Federated object names cannot exceed 128 bytes.

Options (such as server options and nickname options) and option settings are
limited to 255 bytes.

Names without quotation marks are converted to uppercase.

Related concepts:

¢ “Naming rules in an NLS environment” in the Administration Guide:
Implementation

* “Naming rules in a Unicode environment” in the Administration Guide:
Implementation

Related reference:

“Checklist for planning your federated system configuration” on page 31|

“Preserving case-sensitive values in a federated system” on page 22|

© Copyright IBM Corp. 1998, 2004 21

Preserving case-sensitive values in a federated system

In a federated system you occasionally need to specify values that are
case-sensitive at the data source, such as user IDs and passwords. To ensure that
the case is correct when these values are passed to the data source, follow these
guidelines:

* Specify the values in the required case and enclose them in the proper quotation
marks. Double quotation marks are optional for object names, such as the name
of a wrapper or nickname. Single quotation marks are required for option
values, such as the REMOTE_AUTHID and REMOTE_PASSWORD user
mapping options.

* For user IDs and passwords, you can set the FOLD_ID and FOLD_PW server
options to automatically convert the values to the proper case. With this option,
you do not have to remember the required case for each data source. You can
type the values in any case and they will be converted automatically.

From a UNIX operating system command prompt:

If you enclose a case-sensitive value in quotation marks at the federated server
operating system command prompt, you must ensure that the quotation marks are
parsed correctly:

* If the SQL statement contains double quotation marks, but does not contain
single quotation marks, you enclose the entire statement in single quotation
marks. For example, if you want to issue this SQL statement:

CREATE NICKNAME my_nick FOR my_server."owner"."my_table"
You enter the following text at the UNIX command prompt
DB2 'CREATE NICKNAME my_nick FOR my_server."owner"."my table"'

* If the SQL statement contains single quotation marks, but does not contain
double quotation marks, you enclose the entire statement in double quotation
marks. For example, if you want to issue this SQL statement:

CREATE USER MAPPING FOR USER SERVER my_server
OPTIONS (REMOTE_AUTHID 'my_id', REMOTE_PASSWORD 'my_password')

You enter the following text at the UNIX command prompt

DB2 "CREATE USER MAPPING FOR USER SERVER my_server
OPTIONS (REMOTE_AUTHID 'my_id', REMOTE_PASSWORD 'my_password')"

* If the SQL statement contains both single and double quotation marks:
— Enclose the entire statement in double quotation marks

— Precede the values that require double quotation marks with a backslash

For example, to issue this SQL statement:

CREATE USER MAPPING FOR "local id" SERVER my_server
OPTIONS (REMOTE_AUTHID 'my_id', REMOTE_PASSWORD 'my_password')

You enter the following text at the UNIX command prompt:

DB2 "CREATE USER MAPPING FOR \"local_id\" SERVER my_server
OPTIONS (REMOTE_AUTHID 'my_id', REMOTE_PASSWORD 'my password')"

The above examples assume you are entering SQL statements from the UNIX
command prompt and are passing the statement to the DB2 command, without the
-f option. If you enter the SQL statements from a file using the DB2 command with
the -f option, then you should enter the statements as show in the first occurrence
of each example.

From a Windows operating system command prompt:

22 Data Source Configuration Guide

To preserve case-sensitive values on Windows, precede each double quotation
mark with a backward slash. For example, you want to create the nickname NICK1
for the Microsoft SQL Server table weekly salary. The table resides in the NORBASE
database. The local schema is my_schema.

At the Windows command prompt on your federated server, you type:

DB2 CREATE NICKNAME nickl
FOR norbase.\"my_schema\".\"weekly salary\"

From the DB2 CLP or from an application program:

When you specify a value from the DB2 command line prompt (CLP) or in an
application program, you can preserve case-sensitive values by enclosing the
values in the proper quotation marks.

For example, you want to create a user mapping for the user ID Tocal_id. The
remote user ID my_id and the remote password is my_password. You want all three
of these values to be preserved in lowercase. At the DB2 command prompt you
type:
CREATE USER MAPPING FOR "local_id" SERVER my_server

OPTIONS (REMOTE_AUTHID 'my_id', REMOTE_PASSWORD 'my_password')

Related reference:

* |Appendix D, “Server options for federated systems,” on page 575

* |Appendix E, “User mapping options for federated systems,” on page 591

+ |“Checklist for planning your federated system configuration” on page 31|

Update data source statistics

If you plan to access a relational data source, you should update the statistics at
the remote data source before you configure the federated server to access the data
source. By ensuring that the remote data source has current statistics, you can
improve query performance.

The federated server relies on the data source statistics that are stored in the
federated database to optimize query processing. These statistics are gathered
when you create a nickname for a data source object. The federated database
verifies the presence of the object at the data source, and then attempts to gather
existing statistical data for the data source. Information useful to the query
optimizer is read from the data source catalogs and added to the system catalog in
the federated database. Because some or all of the catalog information from the
data source might be used by the query optimizer, it is recommended that you
update statistics at the data source before you create a nickname. Use the
command at the data source that is equivalent to the DB2 RUNSTATS command to
update the data source statistics.

The federated database retrieves that statistical information for a data source object
when you create a nickname for the object. If the data source updates its catalog
statistics for an object after your create the nickname, the changes in the statistical
information are not propagated to the system catalog in the federated database. To
make sure that the system catalog in the federated database reflects the current
statistics for the remote data source object, you must request that the federated
server update the statistics.

Chapter 2. Planning for federated data source configuration 23

Action: Identify the data source objects that you want to access. These are objects
that you will create nicknames for. Determine which of the data sources that these
objects are part of allow you to update statistics. List those data sources in the data
source statistics table in the planning checklist.

Related concepts:
* “Nickname statistics update facility - overview” in the Federated Systems Guide

Related reference:

“Checklist for planning your federated system configuration” on page 31|

Choose the correct wrapper

For most data sources there is only one wrapper that you can use to access the
data source. However, for some data sources you have a choice as to which
wrapper you use to access the data in the data source.

You can access data sources that support the ODBC API either by using the
wrappers that are designed for those data sources or by using the ODBC wrapper.
Examples of these data sources include Oracle, Microsoft Excel, Microsoft SQL
Server. Typically, query performance is better when you use the wrappers that are
specifically designed for these data sources.

Use the ODBC wrapper to access any data source that has an ODBC driver but is
not supported by specific data source wrappers that are included with DB2
Information Integrator. For example, use the ODBC wrapper to access RedBrick
data sources.

DB2 for Linux, UNIX, and Windows data sources
Do not use the ODBC wrapper to access DB2 Universal Database for
Linux, UNIX, and Windows data sources. Using the ODBC wrapper to
access DB2 Universal Database for Linux, UNIX, and Windows data
sources is not supported. Use the DRDA wrapper to access DB2 Universal
Database for Linux, UNIX, and Windows data sources.

Excel data sources
Depending on your needs, you can use the ODBC wrapper to access Excel
data instead of using the Excel wrapper.

Informix data sources
Do not use the ODBC wrapper to access Informix data sources. Using the
ODBC wrapper to access Informix data sources is not supported. To access
Informix data sources, use the Informix wrapper.

Action: Identify the wrappers that you will create for your federated system in the
wrapper table in the planning checklist.

Related concepts:

* [“Methods of accessing Excel data” on page 25|

Related tasks:
* |[“Adding Excel data sources to a federated server” on page 218|

. "’Adding ODBC data sources to a federated server” on page 305

Related reference:

24 Data Source Configuration Guide

* |“Checklist for planning your federated system configuration” on page 31|

| Methods of accessing Excel data

You can access data in Microsoft® Excel worksheets by using either the Excel
wrapper or the ODBC wrapper.

To query Excel data, both wrappers require a DB2® federated server that can open
and read the worksheets in the Excel workbook. Therefore, the Excel workbook
must be on the same computer as the federated server or on a network accessible
drive.

If you use the Excel wrapper, the Excel application must be installed on the
federated server.

If you use the ODBC wrapper, the Excel ODBC driver must be on the federated
server. This driver is installed automatically with Microsoft Windows®. The Excel
application does not need to be installed on the federated server.

Each wrapper imposes some requirements on the location and layout of the data in
the Excel workbooks. With the Excel wrapper, only the data in the first worksheet
in the workbook can be accessed. With the ODBC wrapper, you can access data
from any worksheet in the workbook.

The following examples show the worksheet layout requirements for these two
wrappers.

Example of a worksheet that contains rows of labels and a formula:
This example shows a worksheet that contains several rows of labels at the top of

the worksheet, blank rows, and a formula in row 13. To access the data in the
worksheet, you must identify the range of cells that you want to access.

Chapter 2. Planning for federated data source configuration 25

A B C D
1 Compound Analysis
2
3 Compound Name Weight Molecular Count Tested?
4 compound_A 1.23 367 tested
5 compound_G 210
6 compound_F 0.000425536 174 tested
7 compound_Y 1.000256 tested
8 compound_Q 1024
9 compound_B 33.5362
10 compound_S 0.96723 67 tested
11 compound_O 1.2 tested
12
13 Total Compounds Tested 5

Figure 2. A worksheet that contains several rows of labels and a formula

If you use the Excel wrapper

You specify the range of cells in the CREATE NICKNAME statement by
using the RANGE option. Include only the data in the range that you
specify. Do not include any column labels in the range. Cells that contain
formulas, such as SUM, return the result of the formula and not the
formula. Unless you want the formula results returned, do not include the

cells that contain formulas in the range. In this example, the range of cells
that you include in the RANGE option is A4:D11.

If you use the ODBC wrapper

You must create a name for the range of cells to explicitly designate the
location of the data within the worksheet. Excel refers to this range of cells
as a named range. The Excel ODBC driver recognizes only one row of
labels, the first row in the range. No blank rows are allowed between the
labels and the data. The named range must include only one row of
column labels. You specify the named range in the CREATE NICKNAME
statement. You must include one row of column labels in the range that
you name. If you do not include one row of column labels in the named
range, the first row of data is treated as column labels. Cells that contain
formulas, such as SUM, return the result of the formula and not the
formula. Unless you want the formula results returned, do not include the
cells that contain formulas in the range. In this example, the range of cells
that you name is A3:D11.

Example of a worksheet that contains one row of labels:

This example shows a worksheet that contains only one row of column labels at
the top of the worksheet. The layout does not include extra rows with labels, blank
rows, or cells with formulas.

26 Data Source Configuration Guide

A B C D

1 Compound Name Weight Molecular Count Tested?
2 compound_A 1.23 367 tested
3 compound_G 210

4 compound_F 0.000425536 174 tested
5 compound_Y 1.000256 tested
6 compound_Q 1024

7 compound_B 33.5362

8 compound_S 0.96723 67 tested
9 compound_O 1.2 tested
10

11

Figure 3. A worksheet that contains one row of column labels in row 1

If you use the Excel wrapper

You must specify the range of cells in the CREATE NICKNAME statement
by using the RANGE option. The range cannot include the column labels
in row 1. The range of cells that you would specify is A2:D9.

If you use the ODBC wrapper

You can access this data without creating a named range. You specify the
worksheet name in the CREATE NICKNAME statement. The wrapper

reads the first nonblank row as labels and uses the information as column
names for the nickname. Subsequent rows are read as data.

Example of a worksheet that contains only data:

This example shows a worksheet that contains only data. There are no rows of
column labels, no blank rows, and no cells with formulas.

Chapter 2. Planning for federated data source configuration

27

A B D

1 compound_A 1.23 367 tested
2 compound_G 210

3 compound_F 0.000425536 174 | tested
4 compound_Y 1.000256 tested
5 compound_Q 1024

6 compound_B 33.5362

7 compound_S 0.96723 67 | tested
8 compound_O 1.2 tested
9

10

Figure 4. A worksheet that contains only data

If you use the Excel wrapper
If the data is in the first worksheet in the workbook, the wrapper will
access the data without using the RANGE option. If the data is in another
worksheet in the workbook, you must specify the RANGE option in the
CREATE NICKNAME statement.

If you use the ODBC wrapper
When you use the ODBC wrapper to access Excel data, the wrapper is
limited by what the Excel ODBC driver supports. The Excel ODBC driver
requires a specific format for the worksheet. The driver assumes that the
first nonblank row contains the column labels. If the first nonblank row
contains data, the data in that row is treated as the column labels for the
remaining data. If the worksheet does not contain a row of column labels,
the first row is used as the labels and not as data. In effect, you lose the
first row of data. You can overcome this requirement by modifying your
worksheet. Insert a new row before the data and add labels for each
column of data, so that it looks like the example that contains one row of
labels.

Related tasks:
+ [“Adding Excel data sources to a federated server” on page 218§|

“Accessing Excel data using the ODBC wrapper” on page 316]

Plan the user mappings

When a federated server needs to pushdown a request to a data source, the server
must first establish a connection to the data source. For some data sources, the
federated server establishes a connection by using a valid user ID and password to
that data source. For these data sources, you must define an association between
the federated server user ID and password and the data source user ID and
password. This association must be created for each user ID that will be using the
federated system to send distributed requests. This association is called a user

mapping.

28 Data Source Configuration Guide

You can use the DB2 Control Center to create a user mapping for a group of users
that will access a data source with the same user ID and password.

Action: Identify the user IDs that require a user mapping between the federated
server and the data source. List the federated server user IDs and corresponding

data source user IDs in the user mapping table in the planning checklist.

Related reference:

+ |“Checklist for planning your federated system configuration” on page 31|

Plan the data type mappings

Data source data types are referred to as remote data types, and federated database
data types are referred to as local data types.

For some data sources, the wrappers contain the default mappings between the
data source data types and federated database data types. When you create a
nickname for a data source object, information about the columns is stored in the
federated database system catalog. The data types for the columns comes from the
default forward data type mappings.

For other data sources, you must specify the column information and the data type
when you create the nickname. Some of the nonrelational wrappers create all of
the columns required to access a data source. These are called fixed columns. With
other nonrelational data sources you can specify some or all of the data types for
the columns.

Your applications might require data type mappings that are different than the
default mappings. For the wrappers that allow you to specify data type mappings,
you can override the default mappings to:

* Change a type mapping for all data source objects located on a specific server

¢ Change a type mapping for a specific data source object

* Change a type mapping for a specific data source type

* Change a type mapping for a specific data source type and version

Use the CREATE TYPE MAPPING statement to define new data type mappings.
Mappings you create are stored in the federated database global catalog
SYSCAT.TYPEMAPPINGS view.

Change a data type mapping before you create nicknames for the data source
objects. When you create a nickname for a data source object, the federated server
populates the global catalog with information about the table. This information
includes the nickname, the data source table name, the column names and the data
types that are defined for each table column.

Only nicknames created after a mapping is changed reflect the new type mapping.
Nicknames created before the mapping is changed will use the default data type

mapping.

If you create the data type mappings after you create the nicknames, you will have
to alter each nickname to reflect the new mapping or drop and create the
nicknames again.

Chapter 2. Planning for federated data source configuration 29

Note: If a data source table contain columns that are distinct or user-defined data
types, you have two choices:

* You can create the type mapping in the federated database before you create a
nickname for that data source table. By creating the type mappings before you
create the nickname, the federated server will know what data type to map
these columns to. If the mappings for these distinct or user-defined data types
are not created before you issue the CREATE NICKNAME statement, you will
receive an error.

* If the columns in the data source table meet either of the following conditions:

— The columns are user-defined data types that are based on system or built-in
data types

— The columns have attributes that are not supported for data type mappings
You can create a view at the data source in which the columns are associated

with or cast to the underlying built-in data type. Then create a nickname for the
view instead of for the table.

Action: Identify the data type mappings that you want to define new mappings
for. List the data sources and the type mappings you want to create in the data

type mappings table in the planning checklist.

Related concepts:
* “Data type mappings in a federated system” in the Federated Systems Guide

Related reference:

+ |“Checklist for planning your federated system configuration” on page 31|

* |“Data types supported for nonrelational data sources” on page 517

Plan the function mappings

DB2 for UNIX and Windows supplies default function mappings between existing
built-in data source functions and built-in DB2 functions. For most data sources,
the default function mappings are in the wrappers. For some nonrelational data
sources, you cannot alter the default function mappings.

To use a data source function that the federated server does not recognize, you
must create a function mapping. The mapping you create is between the data
source function and a counterpart function at the federated database. Function
mappings are typically used when a new built-in function or a new user-defined
function becomes available at the data source.

Function mappings are also used when a DB2 counterpart function does not exist.
In this situation, before you create the function mapping you will have to create a
function template in the federated database.

Action: Determine if you need to create function mappings for your data sources.
List the function mappings needed in the function mappings table in the planning
checklist.

Related concepts:

* [“Function mappings” on page 17]

30 Data Source Configuration Guide

Checklist for planning your federated system configuration

You can make the federated system configuration easier by following this planning
checklist. This checklist guides you in ways to optimize the federated system
configuration.

Checklist: Federated object naming rules
Are you familiar with the naming rules for federated objects?

See the related links at the end of this topic to locate information about the
federated object naming rules.

Checklist: Preserving case-sensitive values

Do you intend to set the FOLD_ID and FOLD_PW server options to preserve case
for user ID and password values sent to the data sources? Use the following table
to identify which server definitions you will apply these options to.

Table 4. Planning checklist: FOLD_ID and FOLD_PW server options to set for the federated

system

Data source What name will you | What setting will What setting will
specify for the server | you specify for the |you specify for the
in the server FOLD_ID server FOLD_PW server
definition for this option? option?

data source?

Checklist: Data source statistics

In the following table, list the data sources that will be part of your federated
system. Indicate the data sources that you will update the statistics for before you
configure the federated server to access the data source. DB2 UDB for Linux,
UNIX, and Windows is listed in this table as an example.

Table 5. Planning checklist: Data sources statistics to update for the federated system

Data source Does this data Will you update Name of the utility
source maintain statistics for this that the data source
catalog information? |data source? (Y/N) uses to update
(Y/N) statistics

DB2 for Linux, Y Y RUNSTATS

UNIX, and Windows

Chapter 2. Planning for federated data source configuration 31

Checklist: Data type mappings

In the following table, identify the data source data types and the corresponding
federated server data types that you need to create a mapping for.

Table 6. Planning checklist: Data type mappings to create for the federated system

Data source What name Data source data type Federated server data
will you type

specify for the
server in the
server
definition for
this data
source?

Checklist: User mappings

In the following table, identify the federated server user IDs and corresponding
user IDs for each data source that will be part of the federated system.

Table 7. Planning checklist: User mappings to create for the federated system

Data source Data source Data source
User name DB2 for Linux, User ID User ID User ID
UNIX, and Windows
user ID

Checklist: Wrappers

In the following table, identify the wrappers that you will create.

Table 8. Planning checklist: Wrappers to create for the federated system

Data source Default wrapper Name that you
name will give the
wrapper
BioRS none
BLAST none

32 Data Source Configuration Guide

Table 8. Planning checklist: Wrappers to create for the federated system (continued)

Data source

Default wrapper
name

Name that you
will give the
wrapper

Business applications

(WebSphere Business Integration wrapper)

none

Windows®

DB2 Universal Database for z/OS and OS/390®
DB2 Universal Database for iSeries

DB2 Server for VM and VSE

DB2 Universal Database™ for Linux, UNIX, and | DRDA

Documentum none

Entrez none

Excel none
Extended Search none
HMMER none
Informix INFORMIX
Microsoft® SQL Server MSSQLODBC3
Oracle NET8
ODBC none

OLE DB OLEDB
Sybase CTLIB
Table-structured files none
Teradata TERADATA
Web services none

XML none

Related concepts:

» |“Fast track to configuring your data sources” on page 55|

* [“Methods of accessing Excel data” on page 25|

Related tasks:

» |[“Checking the setup of the federated server” on page 37|

» |“Creating a federated database” on page 51|

Related reference:

+ |“Federated database national language considerations” on page 45

+ |[“Federated object naming rules” on page 21|

+ |“Preserving case-sensitive values in a federated system” on page 22|

[“Update data source statistics” on page 23

[“Plan the data type mappings” on page 29|

[“Plan the function mappings” on page 30|

[“Plan the user mappings” on page 28|

[“Choose the correct wrapper” on page 24|

Chapter 2. Planning for federated data source configuration

33

34 Data Source Configuration Guide

Part 2. Federated server and database

© Copyright IBM Corp. 1998, 2004

35

36 Data Source Configuration Guide

Chapter 3. Checking the setup of the federated server

| Checking the setup of the federated server

I You can avoid potential configuration problems by checking key settings on the
I federated server.

| Procedure:

To check the setup of the federated server:

software (UNIX)

[

I ¢ Confirm the link-edit of the wrapper library files to the data source client
I

[* Check that the FEDERATED parameter is set to YES

I After you check the setup of the federated server, you must create a federated
I database.

Related tasks:

+ |[“Confirming the link-edit of the wrapper library files (UNIX)” on page 37|
* [“Checking the FEDERATED parameter” on page 42|

+ |“Creating a federated database” on page 51|

Confirming the link-edit of the wrapper library files (UNIX)
| Confirming the link-edit of the wrapper library files (UNIX)

I Confirming the link-edit of the wrapper library files is part of the larger task of
I checking the setup of the federated server.

I On UNIX federated servers, some wrappers must be link-edited with the data

[source client software for the data source. The link-edit step is attempted when

[you install DB2 Information Integrator. The link-edit step creates a wrapper library
[for each data source that the federated server will communicate with.

I This task applies to only the following data sources:
| e Informix

| * Microsoft SQL Server

I * Oracle

I * Sybase

I * Teradata

I Before you configure the federated server and database to access data sources, you
I should confirm that the link-edit of the wrapper library files was successful.

[Prerequisites:
I A federated server that is properly setup to access your data sources. This includes
I the installation and configuration of any required software, such as the data source

| client software.

© Copyright IBM Corp. 1998, 2004 37

Procedure:

Determine the status of the link-edit of the wrapper library files:

* If the link-edit was successful, the wrapper library file appears in the directory
where DB2 Information Integrator is installed.

* If the link-edit failed, check the error message file in the directory where DB2
Information Integrator is installed.

¢ If the link-edit was not performed, neither the library file nor the message file
appears in the directory where DB2 Information Integrator is installed. You will
have to manually run the link script.

Related tasks:

» |“Checking the wrapper library files (UNIX)” on page 38|

» |“Checking the link-edit message files (UNIX)” on page 40|

* |“Manually linking the wrapper libraries to the data source client software” onl

[page 41|

« |“Adding data sources to a federated server using the DB2 UDB Control Center”

on page 56|

Checking the wrapper library files (UNIX)

Checking the wrapper library files is part of the larger task of confirming the
link-edit between the wrapper libraries and the data source client software.

The wrapper library files are required so that you can access the data sources. For
some data sources, the library files are added to the federated server when you
install DB2 Information Integrator. For other data sources a link-edit script must be
run to create the library files.

This task applies to only the following data sources:
¢ Informix

e Microsoft SQL Server

* Oracle

* Sybase

* Teradata

Procedure:

To check if the wrapper library files are on your federated server:

1. Check for the library files in the directory path for the wrapper library. You
must confirm that a library files exists on the federated server for each data
source that you want to access.

2. If the library files are not in the directory, you must manually link the wrapper
libraries to the data source client software.

Related tasks:

* [“Checking the setup of the federated server” on page 37|

» |“Checking the link-edit message files (UNIX)” on page 40|

* |“Manually linking the wrapper libraries to the data source client software” onl

[page 41|

38 Data Source Configuration Guide

Related reference:

* [“Wrapper library files” on page 39|

« |"Life sciences user-defined function library files” on page 443

Wrapper library files

The wrapper library files are required so that you can access the data sources. For
some data sources, the library files are added to the federated server when you
install DB2 Information Integrator. For other data sources a link-edit script must be
run to create the library files.

The wrapper library files are required when you register the wrapper for the data
source.

You should verify that the wrapper library files are on your federated server. There
should be a set wrapper library files for each of the data sources that you want to
access.

If the wrapper library files are not on the federated server, you must manually run
the link-edit script to create the library files.

Related tasks:
+ |“Checking the wrapper library files (UNIX)” on page 38|

* |“Manually linking the wrapper libraries to the data source client software” on

[page 41|

Related reference:

 |“BLAST wrapper library files” on page 106|

* |“BioRS wrapper library files” on page 72|

+ |"DB2 wrapper library files” on page 16(|

* |"Documentum wrapper library files” on page 174|

* |“Entrez wrapper library files” on page 197

* |"Excel wrapper library files” on page 220)|

* [“Extended Search wrapper library files” on page 236|

* ["HMMER wrapper library files” on page 262|

* |"Informix wrapper library files” on page 28]

* [“Microsoft SQL Server wrapper library files” on page 296|

« |"ODBC wrapper library files” on page 308

+ |“OLE DB wrapper library files” on page 323|

» |“Oracle wrapper library files” on page 333)|

+ |“Sybase wrapper library files” on page 346|

+ [“Teradata wrapper library files” on page 371

» |“Table-structured files wrapper library files” on page 358|

+ [“WebSphere Business Integration wrapper library files” on page 127

» |“Web services wrapper library files” on page 388

* |"XML wrapper library files” on page 419

Chapter 3. Checking the setup of the federated server 39

Checking the link-edit message files (UNIX)

Checking the link-edit message files is part of the larger task of confirming the
link-edit between the wrapper libraries and data source client software.

If the link-edit fails, errors are listed in the message file in the library directory. The
existence of an message file does not mean that the link-edit failed. There is a
message file in the library directory even if the link-edit is successful.

You must open the message file to determine if the link-edit failed.

This task is required for only the following data sources:
* Informix

e Microsoft SQL Server

* Oracle

e Sybase

* Teradata

Procedure:

To determine if the link-edit failed, open the link-edit message files. The link-edit
message files are in the directory where DB2 is installed, in the 1ib or 1i1b64
subdirectory. The names of the link-edit message files are listed in the following
table.

Table 9. Link-edit message file names by data source

Data source Message file names
Informix djxlinkInformix.out
Microsoft SQL Server djxlinkMssql.out
Oracle djxlinkOracle.out
Sybase djxlinkSybase.out
Teradata djxlinkTeradata.out

There are several reasons why the link might fail when you setup the federated
server:

* If the data source client software is not installed before the link-edit is
attempted, then the link-edit will fail. For example, if you do not install the
Informix client software before you install the DB2 server software, the link-edit
will fail. Likewise, if you do not install the Sybase Open Client software before
you install DB2 Information Integrator, the link-edit will fail. In these situations,
you will have to perform the link manually.

* Verify that the version of the data source client software is supported. If the
version of the data source client software that you have installed is not
supported, the link-edit will fail. You will have to install a client version that is
supported and then perform the link manually.

Related tasks:
+ |[“Confirming the link-edit of the wrapper library files (UNIX)” on page 37|

« [“Checking the wrapper library files (UNIX)” on page 38|

* [“Manually linking the wrapper libraries to the data source client software” on|

[page 41|

40 Data Source Configuration Guide

Manually linking the wrapper libraries to the data source client
software

Manually linking the wrapper libraries to the data source client software is part of
the larger task of checking the setup of the federated server.

If the library files are not in the directory path, you must manually link the
wrapper libraries.

This task applies only to the following data sources:
e Informix

* Microsoft SQL Server

* Oracle

* Sybase

¢ Teradata

Prerequisites:
You need root authorization to run the link scripts.

For the djxlinkxxx scripts to issue their messages in your language, there must be
at least one DB2 instance. If an instance does not exist, the scripts will still work.
However, you will receive error messages. Each error message begins with
db2djxmsg: Error retrieving message number. This error message is followed by a
message in English. For example:
db2djxmsg: Error retrieving message number 9004

(return code -2029059891 from sqlogmsg).
Begin processing for wrapper: INFORMIX
INFORMIXDIR = /wsdb/v82/bldsupp/AIX/informix2.81
db2djxmsg: Error retrieving message number 9015

(return code -2029059891 from sqlogmsg).
Library libdb2informixF.a was built successfully.
db2djxmsg: Error retrieving message number 9006

(return code -2029059891 from sqlogmsg).
End processing for wrapper: INFORMIX

Procedure:

To link the wrapper libraries to the data source client software quickly:

1. Install and configure the client software on the DB2 federated server (if
necessary).

2. Use the product CDs to perform the link:

* For Informix data sources, run the DB2 server installation again and specify
the Typical installation option.

* For Microsoft SQL Server, Oracle, Sybase, and Teradata data sources run the
DB2 Information Integrator installation again. From the launchpad, click
Install Products and follow the instructions in the wizard.

3. After the link is performed, check the permissions on the wrapper libraries.
Make sure that the libraries can be read and executed by the DB2 instance
owners.

Alternatively, you can run the link-edit scripts from the UNIX command prompt.
1. Open a UNIX command prompt.
2. Run the link-edit script for each data source that you want to access.

Chapter 3. Checking the setup of the federated server 41

The following table lists the names of link-edit script for each data source.

Table 10. Link scripts by data source

Data source Link script name
Informix djxlinkInformix
Microsoft SQL Server djxlinkMssql
Oracle djxlinkOracle
Sybase djxlinkSybase
Teradata djxlinkTeradata

For example, if you are setting up the federated server to access Informix data
sources, run the djx1inkInformix script from the UNIX command prompt:

djxTinkInformix

3. Issue the db2iupdt command on each DB2 instance to enable federated access
to the data sources.

4. After the link is performed, check the permissions on the wrapper libraries.
Make sure that the libraries can be read and executed by the DB2 instance
owners.

Attention: There is another script, the djx1ink script, that attempts to create a
wrapper library for every data source that is supported by DB2 Information
Integrator. If you run djx1ink script and have the client software for only some of
the data sources installed, you will receive an error message for each of the data
sources that you do not have installed.

Related tasks:

* “Installing DB2 Information Integrator (Windows)” in the IBM DB2 Information
Integrator Installation Guide for Linux, UNIX, and Windows

* “Installing DB2 Information Integrator (UNIX)” in the IBM DB2 Information
Integrator Installation Guide for Linux, UNIX, and Windows

* [“Checking the setup of the federated server” on page 37|
. "’Checking the FEDERATED parameter” on page 42

* |“Checking the link-edit message files (UNIX)” on page 40|

Checking the FEDERATED parameter

Checking the FEDERATED parameter is part of the larger task of checking the
setup of the federated server.

Before you add data sources to the federated server and database, you should
check the FEDERATED parameter setting.

The FEDERATED parameter must be set to YES to enable the federated server to
access to the data sources.

Prerequisites:

* DB2 Information Integrator must be installed on a server that will act as the
federated server

Procedure:

42 Data Source Configuration Guide

To check the FEDERATED parameter setting:

1.

Issue the following DB2 command to display all of the parameters and their
current settings:

GET DATABASE MANAGER CONFIGURATION

Check the CONCENTRATOR parameter setting. The CONCENTRATOR
parameter and the FEDERATED parameter cannot be configured to YES at the

same time. If the CONCENTRATOR parameter is set to YES, change the setting
to NO. Issue the following DB2 command to change the setting:

UPDATE DATABASE MANAGER CONFIGURATION USING CONCENTRATOR NO
Check the FEDERATED parameter setting. If the FEDERATED parameter is set

to NO, change the setting to YES. Issue the following DB2 command to change
the setting:

UPDATE DATABASE MANAGER CONFIGURATION USING FEDERATED YES

Related concepts:

¢ “DB2 Information Integrator installation process - overview” in the IBM DB2

Information Integrator Installation Guide for Linux, UNIX, and Windows

Related tasks:
* [“Checking the setup of the federated server” on page 37]

Chapter 3. Checking the setup of the federated server 43

44 Data Source Configuration Guide

Chapter 4. Creating a federated database

Before you can configure the federated server to access your data sources, you
must create a database that is used as the federated database.

| Federated database national language considerations

For many relational data sources, the wrapper performs the following tasks when
the wrapper connects to the data source:

1. Determines the codepage and territory of the federated database.
2. Maps the codepage and territory to a data source client locale name.

3. Depending on the data source, sets an environment variable or calls a data
source API to tell the data source what the client locale is.

4. The data source then converts character data between the codepage of the
remote database and the codepage of the federated database.

[

|

I

I

[

|

I

[

I For example, if the federated database uses codepage 819, territory US. The

| equivalent Oracle client locale is American_America. WESISO8859P1. The

I wrapper will set the NLS_LANG variable to the Oracle client locale value.

I When data is sent from the Oracle database to the wrapper, the Oracle database
[converts the data from codeset American_America. WESISO8859P1 to codepage
| 819. When data is sent from the Oracle database to the wrapper, the Oracle

[server or client converts the data from the codepage of the Oracle database to

I codepage 819. When data is sent from the wrapper to the Oracle database, the
I Oracle server or client converts the data from codepage 819 to the codepage of
I the Oracle database.

I For relational data sources that do not perform codepage conversion, some of the
[wrappers perform the conversion.

| Defining the federated database to use the same codeset, territory, and collating

I sequence as your data source can improve performance. If you define the federated
I database to use the same codeset, territory, and collating sequence as your data

I source, then the codepage conversion is not necessary. Using the same national

I language settings can improve performance when you transfer large amounts of

I character data.

I To specify the codeset and territory on the federated database, you use the USING
[CODESET and TERRITORY parameters on the CREATE DATABASE statement.

I Related concepts:

I « [“Unicode support for federated systems” on page 48|

I + [“Collating sequences in a federated system” on page 46|

I Related tasks:
I » |“Creating a federated database” on page 51|

I » [“Setting the federated database collating sequence” on page 47

© Copyright IBM Corp. 1998, 2004 45

Collating sequences in a federated system

When the federated server receives a query, the DB2® SQL Compiler consults
information in the global catalog and the data source wrapper to help it process
the query. As part of the SQL Compiler process, the query optimizer analyzes a
query. The Compiler develops alternative strategies, called access plans, for
processing the query. The access plans might call for the query to be:

* Processed by the data sources
* Processed by the federated server
* Processed partly by the data sources and partly by the federated server

Performing character sorts and comparisons at the data source usually improves
performance.

If the query requires character sorting or comparisons, the SQL Compiler uses
collating sequence information to determine which access plan to use.

By default, the federated database collating sequence is case-sensitive. However
some of the federated data sources use collating sequences that are case-insensitive.
If the collating sequences of the federated database and the data source are
different, the query results might differ. If the operation is a character sort, the
same data is returned but the order of the results will be different. If the operation
is a character comparison, the results returned might be different.

Where the sorting or comparison is processed depends on several factors:

* If the federated database collating sequence is the same as the data source
collating sequence, the character sort or comparison can take place at the data
source. The query optimizer can decide which is the most efficient way to
complete the query, a local operation or a remote operation. It is assumed that
all types of character comparisons and sorts by the data source would yield the
same results as if those actions were performed by the federated database.

¢ If the federated database collating sequence is different than the data source
collating sequence, but the data source collating sequence is case-sensitive, the
character sort or comparison will take place at the federated database. It is
assumed that the data source will yield the same results on character data for
WHERE-=, DISTINCT, and GROUP BY operations. But other operations, such as
ORDER BY and WHERE with a greater than or less than predicate, will yield
different results on character data.

¢ If the federated database collating sequence is different than the data source
collating sequence, but the data source collating sequence is case-insensitive, the
character sort or comparison will take place at the federated database. It is
assumed that the data source will count uppercase and lowercase letters as
equivalent and will include them both in a result, regardless of whether
uppercase or lowercase was specified in the requested operation. WHERE=,
WHERE with a greater than or less than predicate, ORDER BY, DISTINCT, and
GROUP BY operations will not be pushed down to the data source.

For example, a case-insensitive data source assigns the same weights to the
characters "S” and "s". A case-insensitive data source with an English code page
considers the words STEWART, SteWArT, and stewart to be equal. However
when a case-sensitive collating sequence is used, different weights are assigned to
the characters. Depending on the sensitivity of the collating sequence, the result set
of a character sort or comparison will be different.

46 Data Source Configuration Guide

When the collating sequences of the federated database and the data source differ,
the federated server retrieves the data and the character sorts and comparisons are
performed locally. The reason for performing these tasks locally is that DB2 users
expect to see the query results ordered according to the collating sequence defined
for the federated server. By ordering the data locally, DB2 users are guaranteed
that the result sets will be consistent. Retrieving data for local sorts and
comparisons usually decreases performance.

If you need to see the character data ordered in the data source collating sequence,
you can submit your query in a pass-through session.

To determine if a data source and the federated database have the same collating
sequence, consider the following factors:

Code page
The code page scheme, such as ASCII and EBCDIC, that is used by the
federated server and the data source impacts the results.

National language support (NLS)
The collating sequence is related to the language supported on a server.
Compare the DB2 NLS information for your operating system to the data
source NLS information.

Data source characteristics
Some data sources are created using case-insensitive collating sequences,
which can yield different results from DB2 in order-dependent operations.

Customization
Some data sources provide multiple options for collating sequences or
allow the collating sequence to be customized.

There are several options that you have for setting the collating sequence, you can:
* Set the collating sequence when you create the federated database

* Set the COLLATING_SEQUENCE option when you create the server definition
for a data source. This option is available only for relational data sources.

Related concepts:

* |[“Unicode support for federated systems” on page 48|

Related tasks:
+ |"Creating a federated database” on page 51|

* |“Setting the federated database collating sequence” on page 47|

Related reference:

“Federated database national language considerations” on page 45|

Setting the federated database collating sequence

Administrators can create federated databases with a particular collating sequence
that matches a data source collating sequence.

You set the federated database collating sequence as part of the CREATE
DATABASE APIL Through this API, you can specify one of the following
sequences:

* An identity sequence

Chapter 4. Creating a federated database 47

* A system sequence (the sequence used by the operating system that supports the
database)

* A customized sequence (a predefined sequence that DB2 UDB supplies or that
you define yourself)

Procedure:

To specify the collating sequence of the federated database, you use the COLLATE
USING parameter on the CREATE DATABASE statement.

For relational data sources, if the federated database and the data source use the
same collating sequence, you should set the COLLATING_SEQUENCE server
option to "Y’. Setting the COLLATING_SEQUENCE server option to 'Y’ tells the
federated server that the collating sequences of the federated database and the data
source match. You set the COLLATING_SEQUENCE server option when you
create the server definitions for the relational data sources.

The relational data sources that support the COLLATING_SEQUENCE server
option are:

e DB2 family

e Informix

* Microsoft SQL Server
* ODBC

« OLE DB

* Oracle

* Sybase

* Teradata

Related concepts:

* [“Unicode support for federated systems” on page 48|

+ |“Collating sequences in a federated system” on page 46|

Related tasks:
* |"Creating a federated database” on page 51|

Related reference:

* |“Federated database national language considerations” on page 45|

Unicode support for federated systems

Relational and nonrelational wrappers and user-defined functions can run on a
Unicode database (UTF-8 database). The Unicode database provides federated
server environments that are platform independent. The Unicode database can
manipulate data that is stored in various code pages on different data sources.

The wrappers and user-defined functions that support Unicode are:

* Relational wrappers
- DRDA®
— Informix
— MS SQL Server
- ODBC
- OLE DB

®

48 Data Source Configuration Guide

— Oracle
— Sybase
— Teradata

* Nonrelational wrappers and user-defined functions
— BioRS wrapper
— BLASTwrapper
- Documentum wrapper
- Entrez wrapper
— Excel wrapper
- HMMER wrapper
- IBM® Lotus® Extended Search wrapper
- KEGG user-defined functions
— MQ user-defined functions
— Table-structured file wrapper
— Web services user-defined functions
— Web services wrapper
— WebSphere® Business Integration wrapper
- XML wrapper

In [Figure 5 on page 50|a company has branch offices in different countries. Each
branch office stores customer data with its own databases in their own code page.
The Microsoft® SQL Server database stores data in code page A. The Oracle
database stores data in code page B. Code page A and code page B are in different
territories. To integrate the data from the different territories, the company can set
the federated database’s code page to Unicode. The company can then join the
tables to see the total number of purchase orders, regardless of territory.

Chapter 4. Creating a federated database 49

Table A in code page A

Customer ID Customer name | Product ID | Product name | Purchase
Code order
page 1 Customer A 1002 Product B 100
A 2 Customer B 1002 Product B 1000
3 Customer C 1003 Product C 200
MS SQL Server Table B in code page B
Customer ID Customer name | Product ID | Product name | Purchase
Code order
page 11 Customer D 1001 Product A 50
B 12 Customer E 1002 Product B 600
13 Customer F 1003 Product C 1000
Oracle
DB2 Information Integrator
- - v
Nickname A in code page A
Customer ID Customer name | Product ID | Product name | Purchase
order
1 Customer A 1002 Product B 100
UTF-8 2 Customer B 1002 Product B 1000
3 Customer C 1003 Product C 200
Nickname B in code page B \ 4
Customer ID Customer name | Product ID | Product name | Purchase
order
11 Customer D 1001 Product A 50
12 Customer E 1002 Product B 600
13 Customer F 1003 Product C 1000

v
View A (contains both code pages)

Customer ID Customer name | Product ID | Product name Plérchase
order

1 Customer A 1002 Product B 100

2 Customer B 1002 Product B 1000

3 Customer C 1003 Product C 200

11 Customer D 1001 Product A 50

12 Customer E 1002 Product B 600

13 Customer F 1003 Product C 1000

Figure 5. Unicode example

Related tasks:

* “Specifying the client code page for Unicode support of Microsoft SQL Server
and ODBC data sources” in the Federated Systems Guide

* “Specifying the file code page for Unicode support of table-structured file data
sources” in the Federated Systems Guide

Related reference:

* “Unicode default forward data type mappings - NET8 wrapper” in the Federated

Systems Guide

* “Supported Unicode code pages for the MSSQL and ODBC wrapper
CODEPAGE option” in the Federated Systems Guide

* “Unicode default reverse data type mappings - NET8 wrapper” in the Federated

Systems Guide

* “Unicode default forward data type mappings - Sybase wrapper” in the

Federated Systems Guide

* “Unicode default reverse data type mappings - Sybase wrapper” in the Federated

Systems Guide

50 Data Source Configuration Guide

* “Unicode default forward data type mappings - ODBC wrapper” in the Federated
Systems Guide

¢ “Unicode default reverse data type mappings - ODBC wrapper” in the Federated
Systems Guide

* “Unicode default forward data type mappings - Microsoft SQL Server wrapper”
in the Federated Systems Guide

* “Unicode default reverse data type mappings - Microsoft SQL Server wrapper”
in the Federated Systems Guide

* “Specifying the file code page for Unicode support of table-structured file data
sources - example” in the Federated Systems Guide

Creating a federated database

After you set up the federated server, the DB2 instance owner must create a DB2
database on the federated server instance that will act as the federated database.

Recommendation: If the remote data sources that you need to connect to are using
different or incompatible codepages, define the federated database as a Unicode
database. To define the federated database as a Unicode database, specify USING
CODESET UTF-8 on the CREATE DATABASE statement.

This step must be completed before you can configure the federated server to
access your data sources.

Prerequisites:
¢ SYSADM or SYSCTRL authority to create a DB2 database.

* DB2 Information Integrator must be installed on a server that will act as the
federated server

* Determine if you want to specify a collating sequence when you create the
federated database

Procedure:

You can create the federated database from the DB2 Control Center or the DB2
command line.

To do this task from the DB2 Control Center:

1. Right-click on the Databases folder and click Create —>Database Using Wizard.
The Create Database Wizard opens.

2. Complete the steps in the wizard.

To do this task from the DB2 command line, issue the CREATE DATABASE
command. For example:

CREATE DATABASE federated

This command:

* Initializes a new database

* Creates the three initial table spaces
* Creates the system tables

* Allocates the recovery log

Chapter 4. Creating a federated database 51

If your DB2 instance uses a multiple partition configuration, the CREATE
DATABASE command affects all of the partitions that are listed in the
db2nodes.cfg file. The database partition from which this command is issued
becomes the catalog partition for the new database.

Related concepts:

* “DB2 Information Integrator installation process - overview” in the IBM DB2
Information Integrator Installation Guide for Linux, UNIX, and Windows

“Fast track to configuring your data sources” on page 55|

Related tasks:

“Setting the federated database collating sequence” on page 47|

52 Data Source Configuration Guide

Part 3. Data sources

© Copyright IBM Corp. 1998, 2004

53

54 Data Source Configuration Guide

Chapter 5. Overview of configuring access to data sources

The following sections provide a concise guide to configuring a federated server
and database to access your data sources:

* They contain information about the basic steps needed to quickly perform the

configuration steps.

* They outline several optional steps, if you need them, to fine-tune the data

source configuration.

There are individual configuration chapters for each data source.

| Fast track to configuring your data sources

You can accomplish most of the steps required to configure access to a data source
through the DB2® Control Center. Use the DB2 Command Center for the steps that
require a command line. Toggle between these graphical user interfaces to quickly

configure access to a data source.

I Before you configure access to a data source, make sure that the federated server

I has been set up properly.

I The steps to configure the federated server to access a data source are similar,
I regardless of the data source. The basic steps and recommended interface are:

| Table 11. The recommended interface and configuration steps

| Configuration step

Recommended interface

Notes

1. Prepare the federated
server for the data source.

Client Configuration
Assistant

Required for only some data
sources. This step might
require you to install
software, configure a file, or
check a setting.

2. Set the required
environment variables.

DB2 Control Center

Environment variables are
required for:

* Documentum

¢ Informix®

* Microsoft® SQL Server
* Oracle

¢ Sybase

* Teradata

| 2. Register the wrappers.

The Federated Objects wizard
in the DB2 Control Center.

A wrapper is required for
each data source that you
want to access.

| 3. Register the server
| definitions.
|
|

The Federated Objects wizard
in the DB2 Control Center.

Server definitions are
associated with a wrapper
and used when you register
nicknames.

© Copyright IBM Corp. 1998, 2004

55

Table 11. The recommended interface and configuration steps (continued)

Configuration step Recommended interface Notes

4. Create the user mappings. The Federated Objects wizard Required for only some data
in the DB2 Control Center. sources.

If you attempt to retrieve the
remote password associated
with a user mapping from
the SYSCAT.USEROPTIONS
catalog view, the remote
password value is displayed

encrypted.
5. Test the connection to the =~ DB2 Command Center Required for only some data
data source server. sources.
6. Create the nicknames. The Federated Objects wizard A nickname is required for

in the DB2 Control Center. each data source object that
you want to access.

Related concepts:

« |"Optional configuration steps” on page 66|

Related tasks:

+ |“Adding data sources to a federated server using the DB2 UDB Control Center”]|
on page 56|

* [“Registering wrappers for a data source” on page 61|

+ [“Registering server definitions for a data source” on page 61

* |"Registering user mappings for a data source” on page 63|

* |“Registering nicknames for a data source” on page 63

. "’Setting the data source environment variables” on page 58|

* [“Checking the setup of the federated server” on page 37|

Adding data sources to a federated server using the DB2 UDB Control
Center

To configure the federated server to access data sources, you must provide the
federated server with information about the data sources and objects that you want
to access.

Procedure:

The DB2 Control Center includes a wizard to guide you through the steps required
to configure the federated server. To start the wizard, right-click the Federated
Database Objects folder and click Create Federated Objects.

The steps that are required to configure the federated server are different for each
data source.

You can configure multiple federated servers to access data sources by using the
Action Output window.

Related tasks:

56 Data Source Configuration Guide

+ |"Configuring multiple federated servers to access data sources” on page 57|

+ |”Adding table-structured file data sources to a federated server” on page 357

[“Adding Documentum data sources to a federated server” on page 171

* |“Adding Excel data sources to a federated server” on page 218]

* |“Adding BLAST data sources to a federated server” on page 98|

+ [“Adding Entrez data sources to a federated server” on page 194

» |“Adding Teradata data sources to a federated server” on page 365|

+ [“Adding BioRS data sources to a federated server” on page 68|

+ [“Adding DB2 family data sources to a federated server” on page 157

+ |“Adding Extended Search data sources to a federated server” on page 235|
+ [“Adding HMMER data sources to a federated server” on page 254|

» |“Adding Informix data sources to federated servers” on page 275

» [“Adding Microsoft SQL Server data sources to a federated server” on page 291|
[“Adding ODBC data sources to a federated server” on page 305
+ |“Adding OLE DB data sources to a federated server” on page 321

« |“Adding Oracle data sources to a federated server” on page 327

+ |“Adding Sybase data sources to a federated server” on page 341

+ [“Adding business application data sources to a federated system” on page 125|

+ [“Adding Web services data sources to a federated server” on page 387

Configuring multiple federated servers to access data sources

A federated system can consist of multiple federated servers. Instead of
configuring each federated server separately, you can save time by using the DB2
Control Center to configure the federated servers. When you configure the first
server, the Action Output window captures the DDL statements that are issued
when you create the federated objects. You can reuse or modify these statements,
and apply the statements to quickly configure additional federated servers.

The Action Output window remains active for the current session. If you close the
Action Output window, the DDL statements for the current session continue to be
stored in the Action Output window. However, if you close the DB2 Control
Center all of the DLL statements from the current session are removed from the
Action Output window.

Prerequisites:

¢ DB2 Information Integrator installed on a server that will act as the federated
server

e A federated database must exist on the federated server
Procedure:

To configure multiple federated servers to access data sources:

1. Using the DB2 Control Center, configure the first federated server for the data
sources that you want to access. This captures each DDL statement.

2. Display the Action Output page in the Action Output window.

If you closed the Action Output window, right-click the Federated Database
Objects folder and click Show Actions to open the Action Output window.

Chapter 5. Overview of configuring access to data sources 57

3. Delete any DDL statements that you do not want to use on the other federated

servers. To delete a statement, right-click the statement and click Remove. For
example, you might want to delete any statements that display Failed in the
status column on the Action Output page.

Copy that statements that you want to use on the other federated servers to the
Command Editor page:

a. Select the statements that you want to copy. To select multiple statements,
use the Ctrl key.

b. Right-click on the selected statements and click Copy to Command Editor.
The Command Editor page opens.

Change any DDL statements in the Command Editor page that you want to
use on the other federated servers. For example, you might want to change any
statement that specifies a local schema.

You must change the user mappings to specify the passwords. When the DDL
for the CREATE USER MAPPING statements is captured in the Action Output
window, the passwords are masked by asterisks. You must replace the asterisks
with the proper passwords.

6. Issue the DDL statements on the next federated server.

Related concepts:

“DB2 Information Integrator installation process - overview” in the IBM DB2
Information Integrator Installation Guide for Linux, UNIX, and Windows

* [“Fast track to configuring your data sources” on page 55|

Related tasks:
* |“Creating a federated database” on page 51

Setting the data source environment variables

Setting the data source environment variables

When you install DB2 Information Integrator, the installation process attempts to
set the environment variables that are required by some of the data sources. The
installation process might not be able to set the environment variables if, for
example, you do not have the client software installed on the federated server
before you install DB2 Information Integrator.

When you follow the steps to add a data source to a federated server, you can
check the environment variables and set them (if necessary).

If you use the DB2 Control Center to add data sources to the federated server,
the requirements for the environment variables are automatically checked. You
can set the environment variables when you create or alter a wrapper.

If you use the DB2 command line to add data sources to the federated server,
you must set the environment variables manually.

Setting the environment variables is required for the following data sources:

Documentum
Informix

Microsoft SQL Server
Oracle

Sybase

58 Data Source Configuration Guide

* Teradata

Prerequisites:

This task should be performed by the system administrator.
Restrictions:

See the topic: Restrictions for the db2dj.ini file

Procedure:

The steps to check the environment variables are different for each data source.

Related concepts:

“Fast track to configuring your data sources” on page 55|

Related tasks:

+ |“Setting the Documentum environment variables” on page 172|

+ [“Registering wrappers for a data source” on page 61|

* [“Setting the Informix environment variables” on page 277

[“Setting the Microsoft SQL Server environment variables” on page 293

* |“Setting the Oracle environment variables” on page 328

[“Setting the Sybase environment variables” on page 342

[“Setting the Teradata environment variables” on page 368|

Related reference:

+ |“Restrictions for the db2dj.ini file” on page 59|

Restrictions for the db2dj.ini file

The following restrictions apply to the db2dj.ini file:
* Entries must use the format evname=value

evname is the name of the environment variable and value is its value.
* The environment variable name has a maximum length of 255 bytes.
¢ The environment variable value has a maximum length of 765 bytes.

* The maximum length of any line in the file is 1021 bytes. Data beyond that
length is ignored.

Related tasks:

“Setting the Documentum environment variables” on page 172|

* |“Setting the data source environment variables” on page 58|

* [“Setting the Informix environment variables” on page 277|

* |“Setting the Microsoft SQL Server environment variables” on page 293

* [“Setting the Oracle environment variables” on page 328

» |“Setting the Sybase environment variables” on page 342|

* [“Setting the Teradata environment variables” on page 368

Chapter 5. Overview of configuring access to data sources

59

Applying environment variables in a multi-partition instance
configuration

If your federated server instance has a multi-partition configuration, you must
apply the data source environment variables to all partitions.

This step is necessary only if your federated server has a multiple-partition
instance configuration.

The db2dj.ini file contains the data source environment variables. This file was
added to the federated server when you installed DB2 Information Integrator.

You must add a copy of the same db2dj.ini file to all of the partitions in your
multiple-partition instance configuration. The default name of the file is db2dj.ini
file. On UNIX federated servers, the default path for the db2dj.ini file is
INSTHOME/sq11ib/cfg, where INSTHOME is the home directory of the instance owner.
On Windows federated servers, the default path to the file is x:\SQLLIB\cfg, where
x:\SQLLIB is the drive and directory specified in the DB2PATH registry variable or
environment variable.

The default path and file name for the db2dj.ini file can be overridden by the
DB2_DJ_INI registry variable.

You can apply the DB2_DJ_INI registry variable to all of the partitions or a subset
of the partitions.

Procedure:

To apply the DB2_DJ_INI registry variable to the appropriate partitions on your
federated server, use the db2set command. The db2set command displays, sets, or
removes DB2 profile variables.

The syntax of the db2set command that you use dependents on your database
system structure.

* To apply the DB2_D]J_INI registry variable to all database partitions within this
instance, issue this command

db2set -g DB2_DJ_INI=$HOME/sql1ib/cfg/my db2dj.ini

* To apply the DB2_D]J_INI registry variable to only the current partition, issue
this command:

db2set DB2_DJ_INI=$HOME/sq11ib/cfg/my_db2dj.ini

* To apply the DB2_DJ_INI registry variable to a specific partition, issue this
command:

db2set -i INSTANCEX 3 DB2_DJ INI=$HOME/sql1ib/cfg/partition3.ini

INSTANCEX
The name of the instance.

3 The partition number as listed in the db2nodes.cfg file.
partition3.ini

The modified and renamed version of the db2dj.ini file.

Attention: When you set the DB2_DJ_INI registry variable, you must set it to an
absolute path. If the FEDERATED parameter is set to YES and the DB2_DJ_INI
registry variable is set to a relative path, the DB2 Universal Database engine will
not start.

60 Data Source Configuration Guide

Related tasks:

* |“Setting the data source environment variables” on page 58

| Registering wrappers for a data source

You register one wrapper for each type of data source that you want to access. To
access three DB2 for z/OS database tables, one DB2 for iSeries table, and two
BLAST search types, you need to create two wrappers. You need to register one
wrapper for the DB2 databases and one wrapper for the BLAST search types.

After the wrappers are registered in the federated database, you can use these
wrappers to access other objects from those data sources. For example, you can use
the DRDA wrapper to access data sources from all of the DB2 family data source
objects, including DB2 for Linux, UNIX, and Windows, DB2 for z/OS and OS/390,
DB2 for iSeries, and DB2 Server for VM and VSE.

Procedure:

You can register a wrapper from the DB2 Control Center or the DB2 command
line:

* To do this task from the DB2 Control Center, use the Federated Objects wizard
or right-click the Federated Objects folder and click Create Wrapper.

* To do this task from the DB2 command line, use the CREATE WRAPPER
statement.

Related tasks:
* [“Registering the table-structured file wrapper” on page 358]

+ |“Registering the Documentum wrapper” on page 174

+ |“Registering the Excel wrapper” on page 219

¢ [“Registering the BLAST wrapper” on page 105

+ |“Registering the XML wrapper” on page 419

* |"Registering the Entrez wrapper” on page 196|

* |“Registering the Teradata wrapper” on page 370

* |“Registering the BioRS wrapper” on page 71
g g

* [“Registering the DB2 wrapper” on page 160|

« |"Registering the Extended Search wrapper” on page 236|

* |"Registering the HMMER wrapper” on page 262

* [“Registering the Informix wrapper” on page 280)|

* |“Registering the Microsoft SQL Server wrapper” on page 295|

* |“Registering the ODBC wrapper” on page 307

* |“Registering the OLE DB wrapper” on page 322|

* |“Registering the Oracle wrapper” on page 332

* |“Registering the Sybase wrapper” on page 34

* |"Registering the WebSphere Business Integration wrapper” on page 126|

» [“Registering the Web services wrapper” on page 388|

Registering server definitions for a data source

The purpose of a server definition varies from data source to data source.

Chapter 5. Overview of configuring access to data sources 61

A server definition for relational data sources usually represents a remote database,
database partition, or node. For nonrelational data sources, some server definitions
map to a search type and daemon, to a web site, or to a web server. For other
nonrelational data sources, a server definition is created only because it is required
by federation.

Every data source object that you create a nickname for must be associated with a
specific server definition.

For some data sources, you must specify a node when you register a server
definition. The concept of a node varies from data source to data source. For
relational data sources, a node reflects a server instance of the data source.

Procedure:

You can register a server definition from the DB2 Control Center or the DB2
command line:

* To do this task from the DB2 Control Center, use the Federated Objects wizard
or right-click the Server Definitions folder and click Create.

e To do this task from the DB2 command line, use the CREATE SERVER
statement.

Related tasks:
* [“Registering the server for table-structured files” on page 359

* |“Registering the server for Documentum data sources” on page 175

* [“Registering the server for an Excel data source” on page 220

+ |“Registering the server for a BLAST data source” on page 106|

* |“Registering the server for an XML data source” on page 420|

* |“Registering the server for an Entrez data source” on page 197

+ |“Registering the server definitions for a Teradata data source” on page 371

* |“Registering the server definition for a BioRS data source” on page 72|

* [“Registering the server definitions for a DB2 data source” on page 161

* |"Registering the server for Extended Search data sources” on page 237|

* [“Registering the server definition for a HMMER data source” on page 263

* [“Registering the server definitions for an Informix data source” on page 282|

* [“Registering the server definitions for a Microsoft SQL Server data source” on|

[page 29Z|

« |"Registering the server definitions for an ODBC data source” on page 309|

+ [“Registering the server definitions for an OLE DB data source” on page 323|

* |“Registering the server definitions for an Oracle data source” on page 334|

* |“Registering the server definitions for a Sybase data source” on page 347

+ [“Registering the server definition for business application data sources” on page|

127

* |“Registering the server definition for Web services data sources” on page 389

62 Data Source Configuration Guide

| Registering user mappings for a data source

For same data sources, you must define an association between the federated
server authorization ID and the data source user ID and password. You create a
user mapping for each user ID that uses the federated system to send distributed
requests.

Procedure:

You can create a user mapping from the DB2 Control Center or the DB2 command
line:

* To do this task from the DB2 Control Center, use the Federated Objects wizard
or right-click the User Mappings folder and click Create.

e To do this task from the DB2 command line, use the CREATE USER MAPPING
statement.

Related tasks:
+ |“Registering user mappings for Documentum data sources” on page 176

+ |“Creating the user mapping for a Teradata data source” on page 373

* [“Registering user mappings for BioRS data sources” on page 73|

+ |“Creating the user mapping for a DB2 data source” on page 163

* [“Registering user mappings for Extended Search data sources” on page 238|

+ |“Creating the user mapping for an Informix data source” on page 284|

+ |“Creating a user mapping for a Microsoft SQL Server data source” on page 299

* |“Creating a user mapping for an ODBC data source” on page 311

* |“Creating a user mapping for an OLE DB data source” on page 324|

* |“Creating the user mappings for an Oracle data source” on page 335

« |“Creating a user mapping for a Sybase data source” on page 349|

Registering nicknames for a data source

Registering nicknames for a data source

The task of registering a nickname is typically the most involved of the
configuration tasks. The steps and requirements for registering a nickname are
different for each data source.

Recommendation: Use the DB2 Control Center to register nicknames. For most
data sources, you can use the Discover tool in the DB2 Control Center. The
Discover tool helps you to quickly identify data source objects that you might
want to register nicknames for.

You must register a nickname for each data source object that you want to access.

Data source objects can be relational or nonrelational:

* Examples of relational data source objects are database tables, views, and
synonyms (Informix and Oracle only)

* Examples of nonrelational data source objects are BLAST-able databases, objects
and registered tables in a Documentum Docbase, Microsoft Excel files (.xls),
table-structured files (.txt), and XML tagged files

Chapter 5. Overview of configuring access to data sources 63

Tables and views that reside in the federated database are local objects. You do not
register nicknames for these objects. You use the actual object name in your
queries.

Data source objects are:
+ Tables and views in another DB2® database instance on the federated server.
¢ Tables and views in a DB2 instance on another server.

* Data source objects that reside in another data source, such as: Oracle, Sybase,
Documentum, and ODBC.

You must register nicknames for these objects. Data source objects are sometimes
referred to as remote objects.

When you submit a distributed request to the federated server, the request
references a data source object by its nickname. Nicknames are mapped to specific
object names at the data source. The mappings eliminate the need to qualify the
nicknames by data source names. The location of the data source objects are
transparent to the client application or end user. Nicknames are not alternative
names for data source objects. They are pointers by which the federated server
references these objects.

For example, if you define the nickname DEPT to represent an Informix database
table called NFX1.PERSON.DEPT, the statement SELECT * FROM DEPT is allowed
from the federated server. However, the statement, SELECT * FROM
NFX1.PERSON.DEPT is not allowed.

When you register a nickname, metadata information about that nickname is
stored in the federated database system catalog. For a relational data source object,
catalog data from the remote server is retrieved and stored in the federated
database system catalog. For nonrelational data sources, the way that the data
source information is stored in the federated database system catalog varies from
data source to data source. The information might be retrieved from the remote
server, or you might have to include this information in the CREATE NICKNAME
statement.

The SQL Compiler uses this metadata information to facilitate access to the data
source object. For example, when a nickname is registered for a table with an
index, the metadata information related to the index is stored in the federated
database system catalog. The SQL Compiler uses the index metadata information,
such as the name of each column in the index key, when you query the nickname.

Procedure:

You can register a nickname from the DB2 Control Center or the DB2 command
line:

* To do this task from the DB2 Control Center, use the Federated Objects wizard
or right-click the Nicknames folder and click Create. Use the Discover tool to
identify the objects that you want to create nicknames for.

e To do this task from the DB2 command line, use the CREATE NICKNAME
statement.

You can define more than one nickname for the same data source object.

Related tasks:

64 Data Source Configuration Guide

* |"Registering nicknames for table-structured files” on page 359

* |“Registering nicknames for Documentum data sources” on page 176|

* |“Registering nicknames for Excel data sources” on page 221|

¢ |“Registering nicknames for BLAST data sources” on page 107]

* |“Registering nicknames for XML data sources” on page 424|

+ |“Registering nicknames for Entrez data sources” on page 199

* |“Registering nicknames for Teradata tables and views” on page 377

+ |“Registering nicknames for BioRS data sources” on page 74

* [“Registering nicknames for DB2 tables and views” on page 166

* |“Registering nicknames for Extended Search data sources” on page 239

* [“Registering nicknames for HMMER data sources” on page 265

* |“Registering nicknames for Informix tables, views, and synonyms” on page 286|

* ['Registering nicknames for Microsoft SQL Server tables and views” on page 302

+ [“Registering nicknames for ODBC data source tables and views” on page 314

+ |“Registering nicknames for Oracle tables and views” on page 33§

* [“Registering nicknames for Sybase tables and views” on page 352

+ |“Registering nicknames for business application data sources” on page 129|

+ |[“Registering nicknames for Web services data sources” on page 390

Related reference:

+ |“Federated object naming rules” on page 21|

Creating a nickname on a nickname
Occasionally, you might need to create a nickname on a nickname.
Procedure:

Suppose that you have a federated server using AIX® and a federated server using
Windows. You want to access an Excel spreadsheet from both federated servers.
However, the Excel wrapper is only supported on federated servers that use
Windows. To access the Excel spreadsheet from the AIX federated server, use these
steps:

On the Windows federated server, install DB2 Information Integrator.
Configure the Windows federated server to access Excel data sources.

On the Windows federated server, create a nickname for the Excel spreadsheet.
On the AIX federated server, install DB2 Information Integrator.

Configure the AIX federated server to access DB2 family data sources.

ook wn =

On the AIX federated server, create a nickname for the Excel nickname on the
Windows federated server.

Specifying nickname columns for a nonrelational data source

For some nonrelational data sources, you must define a list of columns when you
register a nickname. Each column that you specify is mapped to a particular field,
column, or element in the data source object.

Chapter 5. Overview of configuring access to data sources 65

The wrapper for some nonrelational data sources requires a set of fixed input and
output columns. The fixed columns are automatically defined when you register
the nickname and are added to the federate database system catalog.

Procedure:

To define a list of columns when you register a nickname, you specify the column
name and data type. You might also specify an option on the nickname column.

Related tasks:

“Registering nicknames for a data source” on page 63|

Optional configuration steps

There are several optional steps that you might need to take when you configure
the federated server to access data sources.

Index specifications:

Define an index specification for objects that did not have an index. For example,
you would create an index specification when a table acquires a new index or if
the data source object (such as a view) typically does not have and index.

Data type mappings:

You can specify alternative data type mappings for only relational data sources.
Specify alternative data type mappings, instead of using the default data type
mappings. You can specify a mapping that is used only for a specific data source
object, such as a specific table within a database.

Function mappings:

You can specify function mappings for only relational data sources.

Define alternative function mappings, instead of using the default function
mappings. This is especially useful when you want to force DB2® to use a

user-defined function at the data source.

Related concepts:

* “Data type mappings in a federated system” in the Federated Systems Guide
* “Function mappings in a federated system” in the Federated Systems Guide

* “Index specifications in a federated system” in the Federated Systems Guide

“Fast track to configuring your data sources” on page 55|

66 Data Source Configuration Guide

Chapter 6. Configuring access to BioRS data sources

This chapter explains how to configure your federated server to access data that is
stored in BioRS data sources. You can configure access to BioRS data sources by
using the DB2 Control Center or by issuing SQL statements.

This chapter:

* Explains what BioRS is

¢ Lists the tasks that you need to perform

* Contains examples of the SQL statements that you need

e Lists the error messages associated with the BioRS wrapper

What is BioRS?

BioRS is a query and retrieval system that is developed by Biomax Informatics.
You can use BioRS to retrieve information from multiple data sources, including
flat files and relational databases. You usually download public data, such as
SwissProt and GenBank, as flat files into your BioRS system. BioRS can integrate
public data sources and proprietary data sources (for example, private databases
that are maintained by your organization) into a common environment.

After a data source is integrated into the BioRS system, it is referred to as a
databank. The elements that are contained in each databank entry are collectively
referred to as a schema. Elements of a databank that are indexed can be used in the
BIORS.CONTAINS, BIORS.CONTAINS_GE, and BIORS.CONTAINS_LE functions.
The BioRS functions are specified in the WHERE clause of the SELECT statement.
Elements that are not indexed can be referenced in the SELECT list and in other
predicates in the WHERE clause. Elements that are not indexed are processed by
the federated server.

You can establish relationships between entries in databanks, so that you can link
databanks together in the BioRS system.

BioRS databanks can have a parent-child relationship (databanks can be nested). In
such a relationship, the child databank contains a Reference data type element
called PARENT. The PARENT element refers to the _ID_ element of the parent
databank. Other than the presence of this predefined PARENT element, nested
databanks contain the same data as unnested databanks.

BioRS provides a Web-based interface that enables users to run queries on the data
in BioRS databanks. The BioRS wrapper uses the same application programming
interfaces (APIs) as the BioRS Web-based interface to run queries.

© Copyright IBM Corp. 1998, 2004 67

DB2 client Federated database BioRS server

U

GenBank data source
DB2
SQL Universal _—
‘—[g Database %
Federated ~——

BioRS databanks:

i

Relational b BioRS SwissProt data source
results wrapper
table BioRS

search engine

~

- Other public data sources
- Your proprietary data
sources

Figure 6. How the BioRS wrapper works

From the client, users or applications submit a query using SQL statements. Then,
the query is sent to your federated system where the BioRS wrapper is installed.
Depending on how the query is constructed, both the federated servers and your
BioRS server might be used to process the query. The BioRS server can be on a
different computer from the federated system. Authentication information must be
provided by the federated system to the BioRS server for each query. This
information can be either a user ID and password combination, or an
unauthenticated indication (usually a guest account).

The BioRS wrapper works with BioRS Version 5.0.14.

For detailed information about the BioRS product, see the Biomax Web site at:
Ihttp: // www.biomax.coml

Related tasks:
+ |“Adding BioRS data sources to a federated server” on page 68|

Related reference:

* |“BioRS wrapper - Example queries” on page 81|

Adding BioRS to a federated server

Adding BioRS data sources to a federated server

To configure the federated server to access BioRS data sources, you must provide
the federated server with information about the data sources and objects that you
want to access.

You can configure the federated server to access BioRS data sources by using the

DB2 Control Center or the DB2 command line. The DB2 Control Center includes a
wizard to guide you through the steps required to configure the federated server.

68 Data Source Configuration Guide

http://www.biomax.com

Prerequisites:

* DB2 Information Integrator must be installed on a server that will act as the
federated server

* A federated database must exist on the federated server
Procedure:

To add BioRS data sources to a federated server:
1. Register custom functions for the BioRS wrapper.
2. Register the BioRS wrapper.

w

Register the BioRS server definition.

B

Optional: Create user mappings.

o

Register nicknames for BioRS databanks.

Related concepts:

* “DB2 Information Integrator installation process - overview” in the IBM DB2
Information Integrator Installation Guide for Linux, UNIX, and Windows

» [“Fast track to configuring your data sources” on page 55|

Related tasks:
+ |“Creating a federated database” on page 51|

+ |“Registering the custom functions for the BioRS wrapper” on page 69|

* [“Registering the BioRS wrapper” on page 71|

* [“Registering the server definition for a BioRS data source” on page 72|

+ |“Registering user mappings for BioRS data sources” on page 73|

* [“Registering nicknames for BioRS data sources” on page 74

+ |“Checking the setup of the federated server” on page 37

Related reference:

e “Supported operating systems for DB2 Information Integrator (32-bit)” in the
IBM DB2 Information Integrator Installation Guide for Linux, UNIX, and Windows

* “Supported operating systems for DB2 Information Integrator (64-bit)” in the
IBM DB2 Information Integrator Installation Guide for Linux, UNIX, and Windows

Registering the custom functions for the BioRS wrapper

Registering custom functions for the BioRS wrapper is part of the larger task of
adding BioRS data sources to a federated server.

The custom functions for the BioRS wrapper are:
e biors.contains

* biors.contains_le

* biors.contains_ge

e biors.search_term

Prerequisites:

* All of the custom functions for the BioRS wrapper must be registered with the
schema name biors.

* You must register each custom function once for each federated database where
the BioRS wrapper is installed.

Chapter 6. Configuring access to BioRS data sources

Procedure:

To register custom functions, issue the CREATE FUNCTION statement with the AS
TEMPLATE DETERMINISTIC NO EXTERNAL ACTION keywords.

The fully qualified name of each function is biors.function_name.

The following example registers one version of the CONTAINS function:

CREATE FUNCTION biors.contains (varchar(), varchar())
RETURNS INTEGER AS TEMPLATE
DETERMINISTIC NO EXTERNAL ACTION;

To register the custom functions, use the sample file
create_function_mappings.ddl. The sample file is in the
sqllib/samples/1ifesci/biors directory. The sample files contains definitions for
each of the custom function. You can run this DDL file to register the custom
functions on each federated database where the BioRS wrapper is installed.

The next task in this sequence of tasks is registering the BioRS wrapper.

Related tasks:
+ |“Registering the BioRS wrapper” on page 71|

Related reference:

e “CREATE FUNCTION (Sourced or Template) statement” in the SQL Reference,
Volume 2

+ |“Custom functions and BioRS queries” on page 77|

* |“BioRS wrapper - Example queries” on page 81

+ |“Custom function table - BioRS wrapper” on page 70

Custom function table - BioRS wrapper

You use the CREATE FUNCTION statement to register the BioRS custom functions.

The following table lists the four BioRS custom functions with examples of the
data types that you can specify when you register the functions.

The first data type that is specified in the function is the indexed column. The
second data type that is specified in the function is the search term.

Table 12. Custom functions for the BioRS wrapper

Function Description

biors.contains (varchar(), varchar()) Searches an indexed column for values
biors.contains (varchar(), char()) that are equal (according to the BioRS

biors.contains (varchar(), date) query semantics) to the value that you
biors.contains (varchar(), timestamp) specify. The first argument must be a

reference to the indexed column and
the second argument is the value that
you specify.

70 Data Source Configuration Guide

Table 12. Custom functions for the BioRS wrapper (continued)

Function

Description

biors.contains_LE (varchar(), varchar())
biors.contains_LE (varchar(), smallint)
biors.contains_LE (varchar(), bigint)
biors.contains_LE (varchar(), decimal)
biors.contains_LE (varchar(), double)
biors.contains_LE (varchar(), real)

Searches an indexed column for values
that are less than or equal (according
to the BioRS query semantics) to the
value that you specify. The first
argument must be a reference to the
indexed column and the second
argument is the value that you specify.

biors.contains_GE (char(), char())
biors.contains_GE (char(), date)
biors.contains_GE (char(), timestamp)
biors.contains_GE (char(), integer)
biors.contains_GE (char(), smallint)
biors.contains_GE (clob(), date)

Searches an indexed column for values
that are greater than or equal
(according to the BioRS query
semantics) to the value that you
specify. The first argument must be a
reference to the indexed column and
the second argument is the value that
you specify.

biors.search_term (varchar(), varchar())
biors.search_term (varchar(), char())
biors.search_term (char(), varchar())
biors.search_term (char(), char())

Passes a BioRS search term to the
BioRS search engine.

Related tasks:

+ [“Registering the custom functions for the BioRS wrapper” on page 69|

Registering the BioRS wrapper

Registering the BioRS wrapper is part of the larger task of adding BioRS data

sources to a federated server.

You must register a wrapper to access BioRS data sources. Wrappers are used by
federated servers to communicate with and retrieve data from data sources.
Wrappers are implemented as a set of library files.

Procedure:

To register a wrapper, issue the CREATE WRAPPER statement with the name of
the wrapper and the name of the wrapper library file.

For example, to register a wrapper with the name biors_wrapper on the federated
server that uses the AIX operating system, issue the following statement:

CREATE WRAPPER biors_wrapper LIBRARY 'libdb2Isbiors.a’';

The name of the wrapper library file that you specify depends on the operating
system of the federated server. See the list of BioRS wrapper library files for the
correct name to specify in the CREATE WRAPPER statement.

The next task in this sequence of tasks is registering the server definitions for the

BiorRS wrapper.

Related reference:

* |"BioRS wrapper library files” on page 72|

* “CREATE WRAPPER statement” in the SQL Reference, Volume 2

Chapter 6. Configuring access to BioRS data sources 71

BioRS wrapper library files

The following table lists the directory paths and library file names for the BioRS
wrapper.

When you install DB2 Information Integrator, 3 library files are added to the
directory path listed in the table. For example, if the federated server is running on
AIX, the wrapper library files added to the directory path are 1ibdb21sbiors.a,
1ibdb2T1sbiorsF.a, and 1ibdb2TsbiorsU.a.

When you register a wrapper, specify only the library file name that is listed in the
table.

Table 13. BioRS wrapper library locations and file names

Operating system Directory path Wrapper library file
AIX /usr/opt/db2_08_01/lib/ libdb2lsbiors.a
Linux /opt/IBM/db2/V8.1/lib libdb2lsbiors.so
Solaris /opt/IBM/db2/V8.1/lib libdb2lsbiors.so
Windows %DB2PATH%\bin db2lsbiors.dll

%DB2PATH% is the environment variable that is used to specify the directory path
where DB2 Information Integrator is installed on Windows. The default Windows
directory path is C:\Program Files\IBM\SQLLIB.

Related reference:

“Wrapper library files” on page 39

Registering the server definition for a BioRS data source

Registering the server definition for a BioRS data source is part of the larger task
of adding BioRS to a federated system. After you register the wrapper, you must
register a corresponding server definition.

Procedure:

To register the BioRS server definition in the federated database, issue the CREATE
SERVER statement.

For example:
CREATE SERVER brs_server WRAPPER wrap_biors OPTIONS(NODE 'biors_server2.com');

The next task in this sequence of tasks is registering user mappings for BioRS data
sources.

Related tasks:
* |“Registering nicknames for BioRS data sources” on page 74

Related reference:
+ |"CREATE SERVER statement options - BioRS wrapper” on page 535|

72 Data Source Configuration Guide

Registering user mappings for BioRS data sources

Registering user mappings is part of the larger task of adding BioRS to a federated
system.

You might not need to create user mappings, depending on the account access
method or methods that are used in your BioRS system.

* If your BioRS server is configured for guest access for all user accounts, you do
not need to create user mappings in DB2 Information Integrator.

* If your BioRS server is configured to authenticate user accounts with IDs and
passwords, you must create user mappings in your federated database for the
accounts that must use the BioRS wrapper.

* If your BioRS server is configured to use a mixture of guest and authenticated
user accounts, you must create user mappings for the authenticated user
accounts in your federated database for the accounts that must use the BioRS
wrapper.

User mappings provide a way to authenticate the access of users or applications
that query a BioRS data source with the BioRS wrapper. If a user or application
submits an SQL query to a registered BioRS nickname, and no user mappings are
defined for that user or application, the BioRS wrapper uses a default user ID and
password in an attempt to retrieve data from the remote BioRS server. If a
databank that is being queried requires authentication, an error message might be
returned.

To ensure that the correct user ID and password get passed to the BioRS server,
create user mappings in your federated database for users who are authorized to
search BioRS data sources. When you create a user mapping, the password is
stored in an encrypted format in a federated database system catalog table.

Procedure:
To register BioRS user mappings, use the CREATE USER MAPPING statement.

For example, the following CREATE USER MAPPING statement maps user
Charlie to user Charlene on the Biors_Serverl server.

CREATE USER MAPPING FOR Charlie SERVER Biors_Serverl
OPTIONS(REMOTE_AUTHID 'Charlene', REMOTE_PASSWORD 'Charlene_pw');

You can also define your own user mapping. In the following example, USER is a
keyword that identifies the current user, not a username of USER.

CREATE USER MAPPING FOR USER SERVER Biors_Serverl
OPTIONS(REMOTE_AUTHID 'Yudong', REMOTE_PASSWORD 'Yudong_pw')

The next task in this sequence of tasks is registering nicknames for the BioRS data
sources.

Related tasks:

“Registering nicknames for BioRS data sources” on page 74

Related reference:
* “CREATE USER MAPPING statement” in the SQL Reference, Volume 2
« |“CREATE USER MAPPING statement options - BioRS wrapper” on page 536

Chapter 6. Configuring access to BioRS data sources 73

Registering nicknames for BioRS data sources

Registering nicknames for BioRS data sources is part of the larger task of adding
BioRS to a federated server.

After you register a server definition, you must register a nickname for each BioRS
data source that you want to access. When you refer to a BioRS data source in a
query, you use the nickname.

After a data source has been integrated into the BioRS system, it is referred to as a
databank in BioRS. Databanks in BioRS equate to nicknames in a federated system.

Prerequisites:

* If a BioRS databank name does not conform to the syntax required by the
CREATE NICKNAME statement, you must use the REMOTE_OBJECT nickname
option when you register the nickname.

* If a BioRS element name does not conform to the syntax required by the
CREATE NICKNAME statement, you must use the ELEMENT_NAME column
option when you register the nickname.

Restrictions:

Do not use the BioRS AllText element as the first column for a nickname. You can
use the BioRS AllText element in any other column position (for example, as the
second column or as the third column).

Procedure:
To register a BioRS nickname, use the CREATE NICKNAME statement.

When you create a BioRS nickname, you define a list of nickname columns. The
specified nickname columns must correspond to elements of a specific BioRS
databank format. BioRS defines five possible data types for elements: Text,
Number, Date, Author, and Reference. The BioRS data types can be mapped only
to the DB2 data types CHAR, CLOB, or VARCHAR.

The simplest way to register a nickname for a BioRS databank is to give the
nickname the same name as the BioRS databank. For example:
CREATE NICKNAME SwissProt
(ID VARCHAR(32) OPTIONS (ELEMENT NAME ' ID '),
ALLTEXT VARCHAR(128),
ENTRYDATE VARCHAR (64))
FOR SERVER brs_server;

The BioRS databank SwissProt is the name of the nickname.

Using this simple CREATE NICKNAME syntax limits you to one family of
nicknames for each DB2 schema. For example, you have two databanks that have a
parent-child relationship. The databanks are SWISSPROT and SPFEAT. These
databanks form a family. If you use the default syntax for the CREATE
NICKNAME statement, you will have one nickname (SWISSPROT) for the
SWISSPROT databank and one nickname (SPFEAT) for the SPFEAT databank. To
have more than one nickname for SWISSPROT in the schema, you must use the
REMOTE_OBJECT option.

74 Data Source Configuration Guide

The REMOTE_OBJECT nickname option specifies the name of the BioRS databank
that is associated with the nickname. The name that you specify in the
REMOTE_OBJECT option determines the schema and the BioRS databank for the
nickname. The REMOTE_OBJECT option also specifies the relationship of the
nickname to other nicknames.

The following example shows the same set of nickname characteristics as the
previous example, but changes the nickname name, and uses the
REMOTE_OBJECT option to specify the BioRS databank for which the nickname is
being defined:
CREATE NICKNAME NewSP

(ID VARCHAR(32) OPTIONS (ELEMENT_NAME '_ID '),

ALLTEXT VARCHAR(128),

ENTRYDATE VARCHAR (64))
FOR SERVER brs_server

OPTIONS (REMOTE_OBJECT 'SwissProt');

Repeat this step for each BioRS databank that you want to create a nickname for.
There are no further steps in this sequence of tasks.

Related concepts:

+ |“BioRS statistical information” on page 87|

Related tasks:
+ [“Updating BioRS nickname cardinality statistics” on page 88|

* |“Specifying nickname columns for a nonrelational data source” on page 65|

Related reference:

* |“The BioRS AllText element” on page 81|

+ |“"CREATE NICKNAME statement - Examples for BioRS wrapper” on page 75
* [“'CREATE NICKNAME statement syntax - BioRS wrapper” on page 536

CREATE NICKNAME statement - Examples for BioRS wrapper

This topic provides examples that show you how to use the CREATE NICKNAME
statement to register nicknames for the BioRS wrapper.

Example 1:

The following example shows how to create a nickname for a remote BioRS
databank that does not conform to DB2 Information Integrator syntax:
CREATE NICKNAME SwissFT

(ID VARCHAR(32) OPTIONS (ELEMENT NAME ' ID '),

ALLTEXT VARCHAR (128),

ENTRYDATE VARCHAR (64),

FtLength VARCHAR (16),

FOR SERVER biorsl
OPTIONS (REMOTE_OBJECT 'SwissProt.Features');

The name of this nickname is SwissFT. The table columns are ID, ALLTEXT,
ENTRYDATE, and FtLength. The ELEMENT_NAME column option is specified for
the ID column. You must specify the ELEMENT_NAME option when the name of
a BioRS element does not conform to valid DB2 federated syntax for column
names. In this example, the BioRS element _ID_ conforms to DB2 federated syntax,
but _ID_ is a potentially confusing name for DB2 Information Integrator users. The

Chapter 6. Configuring access to BioRS data sources 75

name ID is simple and easy to understand. In general, use the ELEMENT_NAME
option under the following circumstances:

* When a BioRS element name does not conform to valid DB2 federated syntax

* When the case sensitivity of a BioRS element name does not conform to your
established DB2 federated system standards

* When the name of a BioRS element might not be obvious to DB2 Information
Integrator users

Additionally, the REMOTE_OBJECT option is used to specify the name of the
BioRS databank to which the nickname equates. You must specify the
REMOTE_OBJECT option when the name of a BioRS databank does not conform
to valid DB2 federated syntax. In this example, the databank name
"SwissProt.Features” does not conform to valid DB2 federated syntax. In general,
use the REMOTE_OBJECT option under the following circumstances:

* When the case sensitivity of BioRS databank names does not conform to your
established DB2 federated system standards

* When the BioRS databank name does not conform to valid DB2 federated syntax

* When the name of a BioRS databank might not be obvious to DB2 Information
Integrator users

Example 2:

The following example shows how to create a nickname for a table that uses a
BioRS databank that is linked to another BioRS databank:
CREATE NICKNAME SwissFT2
(ID VARCHAR(32) OPTIONS (ELEMENT NAME ' ID '),
ALLTEXT VARCHAR (1200),
FtKey VARCHAR (32),
FtLength VARCHAR (64),
FtDescription VARCHAR (128),
Parent VARCHAR (32) OPTIONS (REFERENCED OBJECT 'SwissProt'))
FOR SERVER biorsl
OPTIONS (REMOTE_OBJECT 'SwissProt.Features');

The name of this nickname is SwissFT2. The table columns are ID, ALLTEXT,
FtKey, FtLength, FtDescription, and Parent. The ELEMENT_NAME column option
is specified for the ID column. The REMOTE_OBJECT option is used to specify the
name of the BioRS databank to which the nickname corresponds.

Additionally, the Parent column uses the REFERENCED_OBJECT option. You must
specify this option for columns that correspond to BioRS Reference data type
elements. The REFERENCED_OBJECT option specifies the name of the BioRS
databank to which the column refers. In this case, the Parent element refers to the
BioRS SwissProt databank.

Related tasks:

“Registering nicknames for BioRS data sources” on page 74

Related reference:
“CREATE NICKNAME statement syntax - BioRS wrapper” on page 536

76 Data Source Configuration Guide

Queries and custom functions for BioRS data sources

Custom functions and BioRS queries

The federated environment uses two query engines. For the BioRS wrapper, these
query engines are DB2 Universal Database and BioRS. You can specify that
predicates get pushed down to the BioRS engine by using the four BioRS custom
functions, which are:

* BIORS.CONTAINS

* BIORS.CONTAINS_LE

* BIORS.CONTAINS_GE
* BIORS.SEARCH_TERM

These four custom functions are registered in the BioRS schema. You must use the
BioRS schema to refer to the functions.

The custom functions BIORS.CONTAINS, BIORS.CONTAINS_LE and
BIORS.CONTAINS_GE require a search term column argument and a query text
argument. The following example shows a BIORS.CONTAINS statement:

BIORS.CONTAINS (<search term column>,<query term>)

The value of the search term column argument must refer to an indexed BioRS
column. The use of a non-indexed column produces the error message SQL30090N
("Operation invalid for application execution environment”).

The value of the query term argument can be only a literal, a host variable, or a
column reference. You cannot use arithmetic or string concatenation. Also, the
value of the query term argument cannot be NULL, even if the search term column
that is used is defined as allowing null values.

The case of the query term argument does not matter.

The valid data types and formats of the query term argument depend on the BioRS
data type of the search term column that is used. BioRS defines five possible data
types: Text, Author, Date, Number, and Reference. The BioRS data types and the
valid function query terms for each data type are listed in .

Table 14. BioRS data types and valid custom function query terms

Data type of Valid query term Format

search term

column

Text VARCHAR() or CHAR() BioRS text term, including wildcards.
Author VARCHAR() or CHAR() BioRS author reference in the form

non

"<last>, <init>". "<last>" is the
author’s last name. "<init>" is the
author’s initials, without periods.
White space between the comma and
initials is accepted.

Alternatively, <last> can be specified
alone, without the comma or initials.

Date VARCHAR(), CHAR(), DATE, or If a character string, DB2 format date,
TIMESTAMP yyyy/mm/dd.

Chapter 6. Configuring access to BioRS data sources 77

Table 14. BioRS data types and valid custom function query terms (continued)

Data type of Valid query term Format

search term

column

Number VARCHAR() or CHARY(), DB2 format numbers.

INTEGER, SMALLINT, BIGINT
REAL, DOUBLE, DECIMAL

Reference VARCHAR() or CHAR() BioRS text term.

All other combinations of BioRS data type search term columns and query term
arguments produce the error message SQL30090N ("Operation invalid for
application execution environment”). You can use only the combinations shown in
[Table 14 on page 77}

The query term argument for Text, Author, and Reference data type search term
columns must match a BioRS query language pattern. In BioRS, query term
arguments can consist of alphanumeric strings and wildcards. The
BIORS.CONTAINS function supports two wildcards: ? (question mark) and *
(asterisk).

The ? wildcard matches a single character. For example, the predicate
BioRS.CONTAINS (description, 'bacteri?')=1 matches the term bacteria but not
the term bacterial.

The * wildcard character matches zero or more characters. For example, the
predicate BioRS.CONTAINS (description, 'bacterix')=1 matches the terms bacteri,
bacteria, and bacterial.

For detailed information about BioRS query language patterns, see your BioRS
documentation.

The BIORS.CONTAINS function can be specified for all BioRS column types.

The BIORS.CONTAINS_GE and BIORS.CONTAINS_LE custom functions only can
be specified for columns whose underlying BioRS data type is Number or Date.
The BIORS.CONTAINS_GE function selects rows where the column contains a
value that is greater than or equal to the value that is represented by the query
term argument. The BIORS.CONTAINS_LE function selects rows where the column
contains a value that is less than or equal to the value that is represented by the
query term argument.

The BIORS.CONTAINS, BIORS.CONTAINS_GE, and BIORS.CONTAINS_LE
functions return an integer result. When any of the three CONTAINS functions are
used in a predicate, the return value must be compared to the value 1 using the =
or <> operators. For example:

SELECT * FROM s.MySP WHERE BIORS.CONTAINS (s.Al11Text, 'muscus') = 1;

An expression of the form NOT (BioRS.Contains (col,value) = 1) is equivalent to
BioRS.CONTAINS (col,value) <> 1.

You can run queries that might not otherwise be possible by issuing the
BIORS.SEARCH_TERM function. You can use this function to specify a search term
using the BioRS format. The BIORS.SEARCH_TERM function requires two
arguments. The first argument is a reference to the _ID_ column of the nickname

78 Data Source Configuration Guide

to which the term is to be applied. The second argument is a character string that
contains the term without a databank name.

The following example selects all columns for entries in the MyEMBL databank
where the SeqLength element contains a value greater than or equal to 100.

SELECT * FROM MyEMBL s WHERE
BIORS.SEARCH_TERM (s.ID, '[SeqLength GREATER number:100;]') = 1

The following example selects the MolWeight column from the Swiss nickname
where the value of the MolWeight element is greater than or equal to 100368.

SELECT s.molweight FROM Swiss s WHERE
BIORS.SEARCH_TERM (s.ID, '[MolWeight GREATER number:100368;]') = 1;

Related concepts:
e “Pushdown analysis” in the Federated Systems Guide

“Guidelines for optimizing BioRS wrapper performance” on page 86

« |“Equijoin predicates for the BioRS wrapper” on page 79|

Related tasks:
+ |“Registering the custom functions for the BioRS wrapper” on page 69|

Related reference:

* |“BioRS wrapper - Example queries” on page 81|

* [“Custom function table - BioRS wrapper” on page 70|

Equijoin predicates for the BioRS wrapper

You must specify predicates for the BioRS engine when you use the BioRS custom
functions, with one exception. The exception is when you perform equijoin
operations during a query. A join operation involves retrieving data from two or
more tables based on matching column values. An equijoin is a join operation in
which the join condition has the form expression = expression. For BioRS queries,
equijoin terms must contain the _ID_ element of one databank and a Reference
type element of another databank.

Example:

This example shows sample nickname definitions and an equijoin query that uses
the sample nicknames.

You want to query two BioRS databanks, SwissProt and SwissProt.features. The
SwissProt.features databank is a child of the SwissProt databank, and contains an
element called Parent. The Parent element contains references to entries that are
identified by the _ID_ element of SwissProt. You register two nickname definitions
for the two databanks.

Nickname definition 1:
CREATE NICKNAME tc600sprot (

ID VARCHAR (32) OPTIONS (ELEMENT_NAME '_ID_'),
All1Text VARCHAR (128),
EntryDate VARCHAR (128),
Update VARCHAR (128),

Description VARCHAR (1200),
Crossreference VARCHAR (32),
Authors VARCHAR (256),

Chapter 6. Configuring access to BioRS data sources 79

Journal VARCHAR (256),
JournalIssue VARCHAR (64) OPTIONS (IS_INDEXED 'N'),
PublicationYear VARCHAR (1024),

Gene VARCHAR (20) OPTIONS (IS_INDEXED 'Y'),
Remarks VARCHAR (1200),
RemarkType CHAR (20),
CatalyticActivity VARCHAR (20),
CoFactor VARCHAR (64),
Disease VARCHAR (128),
Function VARCHAR (128),
Pathway VARCHAR (128),
Similarity VARCHAR (128),
Complex VARCHAR (64),
FtKey VARCHAR (32),
FtDescription VARCHAR (128),
FtLength VARCHAR (256),
MoTWeight VARCHAR (64),
ProteinLen VARCHAR (32) OPTIONS (ELEMENT_NAME 'Protein_length'),
Sequence CLOB,

AccNumber VARCHAR (32),
Taxonomy VARCHAR (128),
Organelle VARCHAR (128),
Organism VARCHAR (128),
Keywords VARCHAR (1200),

Localization VARCHAR (128),
FtKey count VARCHAR (32)) FOR SERVER biors_server_600
OPTIONS (REMOTE_OBJECT 'SwissProt');

Nickname definition 2:

CREATE NICKNAME tc600feat (
ID VARCHAR (32) OPTIONS (ELEMENT NAME ' ID '),
Al1Text VARCHAR (1200),
FtKey VARCHAR (32),
FtlLength VARCHAR (64),
FtDescription VARCHAR (128),
Parent VARCHAR (32) OPTIONS (REFERENCED OBJECT 'SwissProt'))
FOR SERVER biors_server 600 OPTIONS (REMOTE_OBJECT 'SwissProt.features');

The following query references both of these nicknames in an equijoin:

SELECT s.ID, f.ID, f.FtKey FROM tc600sprot s, tc600feat f
WHERE BioRS.CONTAINS (s.Al11Text, 'anopheles') =1
AND BioRS.CONTAINS (s.PublicationYear, 1997) 1

AND BioRS.CONTAINS (f.FtKey, 'signal') =1

AND f.Parent = s.ID;

In the previous query, two predicates are applied to the tc600sprot nickname
(SwissProt databank). These two predicates filter the rows that contain the term
anopheles and have a publication year of 1997. One predicate is applied to the
tc600feat nickname (SwissProt.features databank), which filters those rows whose
FtKey element contains the term signal. The two nicknames are joined using the
term f.Parent = s.ID.

The final result set contains only the rows that meet these criteria, and where the
features entries reference a matching entry in the SwissProt databank.

Related concepts:

“Guidelines for optimizing BioRS wrapper performance” on page 86

Related reference:

+ [“Custom functions and BioRS queries” on page 77}

« |“BioRS wrapper - Example queries” on page 81|

80 Data Source Configuration Guide

The BioRS AllText element

Every databank in the BioRS system contains an element called AllText. The
AllText element is an indexed element that BioRS automatically creates for all
databanks.

By using the AllText element, you can search on all of the text in an entry, not just
on specific indexed elements. For example, searching on the term muscus can
return entries where the word muscus appears in the title, abstract, description, or
organism.

To use the AllText element in a DB2 Information Integrator query, you must map
the AllText element to a nickname column. You map the AllText element to a
nickname column when you specify columns in the CREATE NICKNAME
statement. A nickname column that is mapped to the AllText element returns a
NULL value in SELECT statements. When you specify a column as an AllText
element, the column must not be the first column declared in a CREATE
NICKNAME statement.

After the AllText element is properly mapped to a nickname column, you can use
that nickname column in a CONTAINS custom function invocation.

Related tasks:
* [“Registering nicknames for BioRS data sources” on page 74

Related reference:

* |“BioRS wrapper - Example queries” on page 81|

BioRS wrapper - Example queries

This topic provides several sample queries that use the nicknames swiss and
swissft.

The nickname swiss was registered with the following CREATE NICKNAME

JournalIssue

VARCHAR (15),

PublicationYear CLOB (15),
PublicationTitle CLOB (15),
Gene CLOB (15),
Remarks CLOB (15),
RemarkType VARCHAR (15),
CatalyticActivity VARCHAR (15),
CoFactor VARCHAR (15),
Disease VARCHAR (15),
Function CLOB (15),
Pathway VARCHAR (15),
Similarity CLOB (15),
Complex VARCHAR (15),
FtKey VARCHAR (15),

statement:
CREATE NICKNAME swiss
(
1D CHAR (30) OPTIONS (ELEMENT_NAME ' ID '),
EntryDate VARCHAR (15),
Update CLOB (15),
Description CLOB (15),
Crossreference CLOB (15),
Authors CLOB (15),
Journal VARCHAR (15),

Chapter 6. Configuring access to BioRS data sources

81

FtDescription CLOB (15),
FtLength VARCHAR (15),
MoTWeight CHAR (15),
Protein_Length VARCHAR (15),
Sequence CLOB (15),
AccNumber VARCHAR (15),
Taxonomy CLOB (15),
Organelle VARCHAR (15),
Organism VARCHAR (15),
Keywords VARCHAR (15),

Localization
FtKey_count
All1Text

VARCHAR (15),
VARCHAR (15),
CLOB (15)

FOR SERVER biors_server
OPTIONS (REMOTE_OBJECT 'swissprot');

The nickname swissft was registered with the following CREATE NICKNAME
statement:

CREATE NICKNAME swissft

(

1D VARCHAR (30) OPTIONS (ELEMENT NAME ' ID '),

FtKey VARCHAR (15),

FtLength VARCHAR (15),

FtDescription VARCHAR (15),

Parent VARCHAR (30) OPTIONS (REFERENCED_OBJECT 'swissprot'),
All1Text CLOB (15)

)

FOR SERVER biors_server
OPTIONS (REMOTE_OBJECT 'swissprot.features');

The queries and results in [Table 15|illustrate how you can structure your queries to
optimize the workload between the federated system and the BioRS server.

Table 15. Samples of different queries that produce identical results

Query Result

select s.id from Swiss s where biors. CONTAINS(s.id, D
"100K_RAT’) = 1 fetch first 3 rows only ..
100K_RAT

1 record(s) selected.

select s.id from Swiss s where s.id LIKE "%100K_RAT%" 1p
fetch first 3 rowsonly L ______
100K_RAT

1 record(s) selected.

Both of the queries in produce the same results. However, the first query
will run much faster than the second query. The first query uses the
BIORS.CONTAINS function to specify the input predicate. As a result, BioRS
selects the data in the swissprot databank, then passes the selected data to DB2
Information Integrator. In the second query, the LIKE input predicate is specified
directly on the Swiss nickname. As a result, BioRS transfers the entire swissprot
databank to DB2 Information Integrator. After the databank contents are
transferred, DB2 Information Integrator then selects the data.

The queries and results in [Table 16 on page 83 show the use of wildcard characters
in the BIORS.CONTAINS function. All of the query results in [Table 16 on page 83|
are identical, even though different wildcard characters are used.

82 Data Source Configuration Guide

Table 16. Sample queries that use wildcards in the BIORS.CONTAINS function

Query

Result

select s.crossreference from Swiss s where

CROSSREFERENCE

biors. CONTAINS(s.crossreference, ' MEDLINE’) = 1 fetch ~ ______________

first 3 rows only

NCBI_TaxID=1011
NCBI_TaxID=5875
NCBI_TaxID=4081

3 record(s) selected.

select s.crossreference from Swiss s where

CROSSREFERENCE

biors. CONTAINS(s.crossreference, "?ED?IN?’) = 1 fetch first . ________

3 rows only

NCBI_TaxID=1011
NCBI_TaxID=5875
NCBI_TaxID=4081

3 record(s) selected.

select s.crossreference from Swiss s where

CROSSREFERENCE

biors. CONTAINS(s.crossreference, "*D*N*) = 1 fetch first 3 . _________

rows only

NCBI_TaxID=1011
NCBI_TaxID=5875
NCBI_TaxID=4081

3 record(s) selected

The queries and results in [Iable 17|show how you can access information in BioRS
Author data type elements with the BIORS.CONTAINS function.

The syntax of all of the queries in [Table 17]is nearly identical. The only difference
is the presence or absence of the first initial in the query term, and the amount of

space between the first name and the last initial.

Table 17. Sample queries that access BioRS Author data type columns

Query

Result

select s.authors from Swiss s where
biors. CONTAINS(s.authors, "Mueller’) = 1 fetch first 3
rows only

AUTHORS

Mueller D. Rehb
Mayer K.F.X. Sc
Zemmour J. Litt

3 record(s) selected.

select s.authors from Swiss s where
biors. CONTAINS(s.authors, "Mueller,D’) = 1 fetch
first 3 rows only

AUTHORS

0 record(s) selected.

select s.authors from Swiss s where
biors. CONTAINS(s.authors, ‘Mueller ,D’) = 1 fetch
first 3 rows only

AUTHORS

0 record(s) selected.

select s.authors from Swiss s where
biors. CONTAINS(s.authors, "Mueller, D’) = 1 fetch
first 3 rows only

AUTHORS

Mueller D. Rehb
Zou P.J. Borovo
Davies J.D. Mue

3 record(s) selected.

Chapter 6. Configuring access to BioRS data sources

83

The queries and results in [Table 18|illustrate how you can access information in
BioRS Date type elements with the BIORS.CONTAINS function.

When a BioRS Date type field contains a sequence of dates, the results can contain
extra information, as shown in the second example of BioRS Numeric
data type elements (Date and Number) can contain multiple values. Therefore, the
results of queries run on BioRS Date or Number elements can also contain multiple
values. Multiple values are always separated by spaces.

Table 18. Sample queries that access BioRS Date data type columns

Query Result

select e.entrydate from embl e where ENTRYDATE

biors. CONTAINS(e.entrydate, date("11/01/1997")) =1 o ______

fetch first 3 rows only 01-NOV-1997
01-NOV-1997
01-NOV-1997

3 record(s) selected.

select g.update from gen g where UPDATE
biors. CONTAINS(g.update, date('11/01/1997")) = 1 fetch ______________
first 3 rows only 01-NOV-1997 11-

01-NOV-1997 12-
01-NOV-1997 06-

3 record(s) selected.

The queries and results in [Table 19|show how you can use the
BIORS.CONTAINS_LE and the BIORS.CONTAINS_GE functions.

Table 19. Sample queries that use the BIORS.CONTAINS_LE and BIORS.CONTAINS_GE

functions
Query Result
select s.molweight from Swiss s where MOLWEIGHT
biors. CONTAINS_LE(s.molweight, 100368) = 1 fetch first _______________
3 rows only 100368
10576
8523
3 record(s) selected.
select s.molweight from Swiss s where MOLWEIGHT
biors. CONTAINS_GE(s.molweight, 100368) = 1 fetch first _______________
3 rows only 100368
103625
132801
3 record(s) selected.
select s.journalissue from Swiss s where JOURNALISSUE
biors. CONTAINS_GE(s.journalissue, 172) = 1 fetch first 3 _______________
rows only 172 21
242
196

3 record(s) selected.

The queries and results in [Table 20 on page 85 show how you can use the
BIORS.SEARCH_TERM function to specify a search term using the BioRS format.

84 Data Source Configuration Guide

Table 20. Sample queries that use the BIORS.SEARCH_TERM function

Query

Result

select s.publicationyear from Swiss s where
biors.SEARCH_TERM (s.id, ‘[PublicationYear EQ
number:1997;]")=1 fetch first 10 rows only

PUBLICATIONYEAR

2000
1991 1997
1997
1998
1995 1997
1999

1994 1995
1992 1997

record(s) selected.

select s.molweight from Swiss s where
biors. SEARCH_TERM (s.id, '[MolWeight EQ
number:100368;]") = 1 fetch first 10 rows only

MOLWEIGHT

100368
100368

2 record(s) selected.

select s.molweight from Swiss s where
biors.SEARCH_TERM (s.id, '[MolWeight GREATER
number:100368;]") = 1 fetch first 10 rows only

MOLWEIGHT

100368
103625
132801
194328
130277
287022
289130
135502
112715
112599

10

record(s) selected.

The following query shows how to use relational predicates to form an equijoin

between two databanks that have a parent-child relationship:

select s.id, f.id, f.parent from Swiss s, Swissft
where (f.parent = s.id) fetch first 10 rows only

The query results are as follows:

f

100K_RAT
100K_RAT
100K_RAT
100K_RAT
100K_RAT
100K_RAT
100K_RAT
100K_RAT
100K_RAT

ID ID PARENT

100K_RAT 100K_RAT.1 swissprot:
100K_RAT 100K_RAT.2 swissprot:
100K_RAT 100K_RAT.3 swissprot:
100K_RAT 100K _RAT.4 swissprot:
100K_RAT 100K_RAT.5 swissprot:
100K_RAT 100K_RAT.6 swissprot:
100K_RAT 100K_RAT.7 swissprot:
100K_RAT 100K_RAT.8 swissprot:
100K_RAT 100K_RAT.9 swissprot:
104K_THEPA 104K_THEPA.1 swissprot:

10 record(s) selected.

Chapter 6. Configuring access to BioRS data sources

104K_THEPA

85

In the previous query results, the 100K_RAT record is a parent to nine child
records (100K_RAT.1 through 100K_RAT.9).

Related concepts:

“Guidelines for optimizing BioRS wrapper performance” on page 86

“Equijoin predicates for the BioRS wrapper” on page 79|

Related reference:

“Custom functions and BioRS queries” on page 77]

“CREATE NICKNAME statement - Examples for BioRS wrapper” on page 75

“CREATE NICKNAME statement syntax - BioRS wrapper” on page 536

Optimizing BioRS wrapper performance

Guidelines for optimizing BioRS wrapper performance

This topic provides guidelines on how to optimize the performance of queries
when you use the BioRS wrapper.

Minimize the amount of data that is transferred between search engines.

The federated environment uses two query engines. For the BioRS
wrapper, these query engines are DB2® Universal Database and BioRS. The
DB2 engine processes predicates (relational operators, such as =,
BETWEEN, LIKE, and <>) specified on nickname columns. The BioRS
engine processes predicates specified using four custom functions for the
BioRS wrapper.

To minimize the amount of data that is transferred between the two search
engines, structure your queries so that data processing gets pushed down
to the BioRS system whenever possible.

If you need to perform join operations in a query, take advantage of any
parent-child relationships that already exist in BioRS databanks and
perform equijoin operations whenever possible. Equijoin operations are
processed in BioRS, which also minimizes the amount of data transferred
between the DB2 and BioRS query engines.

Attention: Do not interrupt DB2 Information Integrator queries to BioRS
(for example, using Ctrl-D or Ctrl-Z in the command line processor, or
stopping an application program). Interrupting a query leaves "dead”
processes running on the BioRS server. These "dead” processes will rapidly
degrade both BioRS and DB2 Information Integrator system performance.
If enough of these "dead” processes are running, unexpected errors can
occur during DB2 Information Integrator query processing. For example, a
valid query might return 0 rows, when rows are expected. In extreme
situations, BioRS, DB2 Information Integrator, or both products can stop or
abnormally end.

Maintain BioRS statistical information in the federated environment.

In a federated system, the federated database relies on catalog statistics for
nicknamed objects to optimize query processing. Maintaining current
statistics about the BioRS data sources is essential to optimize the
performance of the BioRS wrapper. If the statistical data or structural
characteristics for a remote object on which a nickname is defined have
changed, you must update the corresponding nickname column cardinality
statistics in your federated system.

86 Data Source Configuration Guide

To optimize BioRS wrapper performance, perform these updates in DB2
Information Integrator at regular intervals.

Related concepts:
¢ “Tuning query processing” in the Federated Systems Guide

“Equijoin predicates for the BioRS wrapper” on page 79|

+ |“BioRS statistical information” on page 87|

Related reference:

“Custom functions and BioRS queries” on page 77|

“BioRS wrapper - Example queries” on page 81|

BioRS statistical information

In a federated system, the federated database relies on catalog statistics for objects
with nicknames to optimize query processing. These statistics are retrieved from
BioRS data sources when you create a nickname using the CREATE NICKNAME
statement. The federated database verifies the presence of the object at the data
source, and then attempts to gather existing data source statistical data.
Information is read from the data source catalogs and put into the DB2® federated
database system catalog on the federated server.

For BioRS data sources, critical statistical information includes:

* The cardinality of a nickname. For BioRS data sources, nickname cardinality is
equivalent to the number of entries in the corresponding BioRS databank.

* The cardinality of the column that corresponds to the BioRS _ID_ element. The
cardinality of this column must match the cardinality of the nickname in which
the column is referenced.

* The cardinality of all columns that the BioRS wrapper might need to use.

You must maintain current statistics about the BioRS data sources to optimize the
performance of the BioRS wrapper. If the statistical data or structural
characteristics for a remote object on which a nickname is defined change, you
must update the corresponding cardinality statistics in your federated system. The
cardinality statistics are stored in the SYSSTAT.TABLES catalog view and in the
SYSSTAT.COLUMNS catalog view.

You perform the following tasks to maintain BioRS cardinality statistics in your
federated system:

1. Determine the cardinality statistics of the required nickname, if necessary.

2. Update the appropriate the cardinality statistics in the required catalog view or
catalog views.

Related concepts:
¢ “Tuning query processing” in the Federated Systems Guide

Related tasks:
» |“Determining BioRS databank cardinality statistics” on page 8§|

« |"Updating BioRS nickname cardinality statistics” on page 88|

G

* [“Updating BioRS column cardinality statistics” on page 89|

. "’Updating BioRS _ID_ column cardinality” on page 96'

Chapter 6. Configuring access to BioRS data sources 87

Determining BioRS databank cardinality statistics

You must determine BioRS databank cardinality statistics before you can update
nickname statistics or update the cardinality of the column that corresponds to the
BioRS _ID_ element.

Procedure:

To determine cardinality statistics for a specific databank in BioRS, use the BioRS
utility program admin_find or www_find.cgi. Specify the -c (cardinality) option.
For more information about these two BioRS utility programs, see your BioRS

documentation.

Related concepts:

* |[“BioRS statistical information” on page 87|

Related tasks:
+ |“Updating BioRS nickname cardinality statistics” on page 88|

+ [“Updating BioRS column cardinality statistics” on page 89|

* [“Updating BioRS _ID_ column cardinality” on page 90|

Updating BioRS nickname cardinality statistics

You must update BioRS nickname cardinality statistics when the contents of a
BioRS databank for which you create a nickname change significantly. Maintaining
correct cardinality statistics for nicknames enables the optimizer and the BioRS
wrapper to choose the best performing data access plan.

To update BioRS nickname cardinality statistics, you modify the SYSSTAT.TABLES
catalog view with the correct cardinality number.

Prerequisites:

You must determine the cardinality number of the BioRS databank that
corresponds to the nickname whose statistics you want to update.

Procedure:

Issue an UPDATE statement using the following syntax:

UPDATE sysstat.tables SET card=cardinality
WHERE tabschema=nickname-schema
AND tabname=nickname-name;

* cardinality is the BioRS databank cardinality number that corresponds to the
nickname whose statistics you want to update.

e nickname-schema is the name of the schema that is associated with the nickname
whose statistics you want to update.

* nickname-name is the name of the nickname whose statistics you want to update.

Related concepts:

“BioRS statistical information” on page 87|

Related tasks:
* [“Determining BioRS databank cardinality statistics” on page 8§

88 Data Source Configuration Guide

* |"Updating BioRS column cardinality statistics” on page 89|

* [“Updating BioRS _ID_ column cardinality” on page 90|

Updating BioRS column cardinality statistics

To update BioRS column cardinality statistics in your federated system, you must
modify the SYSSTAT.COLUMNS catalog view.

Maintaining correct cardinality statistics for BioRS columns enables the optimizer
and the BioRS wrapper to choose the best performing data access plan during
query processing.

You can optionally update BioRS column cardinality statistics as part of the larger
task of adding BioRS to a federated system. You can also update BioRS column
cardinality statistics when you want to improve query performance for BioRS data
sources.

Restrictions:

Do not use this procedure to update the cardinality statistics for columns that
correspond to the BioRS _ID_ element. You must use a different procedure to
update the cardinality statistics for columns that correspond to the BioRS _ID_
element.

Procedure:

To update BioRS column cardinality statistics, issue an UPDATE statement using
the following syntax:
UPDATE sysstat.columns SET colcard=(SELECT COUNT(DISTINCT column-name)
FROM nickname-schema.nickname-name)
WHERE
tabschema=nickname-schema
AND tabname=nickname-name
AND colname=column-name;
* column-name is the name of the column whose cardinality statistics you want to
update.

* nickname-schema is the name of the schema that is associated with the nickname
where the specified column is used.

* nickname-name is the name of the nickname where the specified column is used.

The query might take several minutes to run, because all entries for the databank
that is specified in the nickname must be retrieved.

If a column can contain multiple values (for example, the PublicationYear element
of the SwissProt database format), the calculation becomes too complex to use an
SQL query. For such columns, you must manually calculate the cardinality value,
and then update the SYSSTAT.COLUMNS catalog view. To calculate the cardinality
value, divide the number of distinct values in the column by the average number
of values per row. The calculated cardinality value cannot be greater than the
cardinality of the table.

Example:

Suppose you have a nickname with three rows. The values of the PublicationYear
column for these three rows are:

Chapter 6. Configuring access to BioRS data sources 89

e 1997 1992 1985
* 1997 1992 1982
* 1992 1991 1990 1976 1974 1971

There are nine distinct values, and the average number of values in a row is four.
The cardinality for this PublicationYear column is 9/4, or 3 (2.25 rounded to the
next highest integer). Now that you have the cardinality calculation, you can
update the SYSSTAT.COLUMNS catalog view using the following UPDATE
statement:
UPDATE sysstat.columns SET colcard=3
WHERE

tabschema=nickname-schema

AND tabname=nickname-name
AND colname=column-name

+ 3 is the column cardinality value.

* nickname-schema is the name of the schema that is associated with the underlying
nickname where the specified column is used.

* nickname-name is the name of the underlying nickname where the specified
column is used.

* column-name is the name of the column whose cardinality statistics you want to
update.

Related concepts:

+ |“BioRS statistical information” on page 87|

Related tasks:
+ [“Updating BioRS nickname cardinality statistics” on page 88|

* [“Updating BioRS _ID_ column cardinality” on page 90|

Updating BioRS _ID_ column cardinality

Maintaining correct cardinality statistics for the column that maps to the BioRS
ID element enables the optimizer and the BioRS wrapper to choose the best
performing data access plan.

To update the cardinality number of the column that maps to the BioRS _ID_
element, you must modify the SYSSTAT.COLUMNS catalog view.

Prerequisites:

You must determine the cardinality number of the BioRS databank that
corresponds to the nickname in which the column is referenced. The cardinality
number of the column that maps to the BioRS _ID_ element must match the
cardinality of the nickname in which the column is referenced.

Procedure:

To update BioRS _ID_ column cardinality statistics, issue an UPDATE statement
using the following syntax:

UPDATE sysstat.columns SET colcard=<cardinality)
WHERE
tabschema=nickname-schema
AND tabname=nickname-name
AND colname IN (SELECT colname FROM syscat.coloptions
WHERE

90 Data Source Configuration Guide

tabschema=nickname-name
AND tabname=nickname-name

AND option="ELEMENT_NAME';

AND setting='_ID ')

* cardinality is the BioRS databank cardinality number that corresponds to the
nickname of the column.

* nickname-schema is the name of the schema that is associated with the nickname
of the column.

e nickname-name is the name of the nickname in which the column is used.

Related concepts:

* [“BioRS statistical information” on page 87|

Related tasks:

* [“Determining BioRS databank cardinality statistics” on page 89|

* [“Updating BioRS nickname cardinality statistics” on page@'

* [“Updating BioRS column cardinality statistics” on page 89

Messages for the BioRS wrapper

This topic explains the messages that you might receive when you work with the
wrapper for BioRS.

Table 21. Messages issued by the wrapper for BioRS

Error Code

Message

Explanation

SQL0604N

The length, precision or scale
attribute for a column, distinct
type, structured type, attribute of a
structured type, function or type
mapping <data-item> is not valid.

The data type for a nickname column is
not compatible with the BioRS type of the
underlying databank element. Check the
data type of the column in the CREATE
NICKNAME statement.

SQLO901IN

The SQL statement failed because
of a non-severe system error.
Subsequent SQL statements can be
processed. (Reason "Error creating
wrapper object.”)

An error occurred when you created a
new wrapper object. Contact IBM
Software Support.

SQLO901IN

The SQL statement failed because
of a non-severe system error.
Subsequent SQL statements can be
processed. (Reason "BioRS
<trace-point>/<code>.")

This is an internal error. Contact IBM
Software Support.

SQLO901IN

The SQL statement failed because
of a non-severe system error.
Subsequent SQL statements can be
processed. (Reason "Memory
allocation failed: <trace-point>.")

An error occurred when memory was
allocated. Ensure that sufficient memory
is available to the federated server host
and submit the query again. If the
problem persists, contact IBM Software
Support.

SQLO901IN

The SQL statement failed because
of a non-severe system error.
Subsequent SQL statements can be
processed. (Reason
"sqlno_crule_save_plans[100]:rc(-
214272209) Empty plan list.”)

The optimizer program and the BioRS
wrapper could not agree on a plan to run
the query. Simplify the query and run it
again.

Chapter 6. Configuring access to BioRS data sources

91

Table 21. Messages issued by the wrapper for BioRS (continued)

Error Code

Message

Explanation

SQLO401IN

The data types of the operands for

the operation =" are not
compatible.

The query is not valid because the
expression on the right side in a custom
function predicate must be an integer
value.

SQL1822N

"

Unexpected error code " received
from data source "BioRS wrapper.”
Associated text and tokens are
"Databank not found.”

The BioRS databank referenced in a
CREATE NICKNAME statement was not
found on the BioRS server. Check the
CREATE NICKNAME statement and
ensure that the name of the referenced
databank is correct.

SQL1822N

"

Unexpected error code " received
from data source "BioRS wrapper.”
Associated text and tokens are
"Connection timed out.”

The BioRS server failed to respond to a
communications request within the
period specified by the TIMEOUT option.

SQL1822N

Unexpected error code
"<trace_point>" received from data
source "BioRS wrapper.”
Associated text and tokens are
"Error reading from server.”

A communications error occurred while
reading data from the BioRS server. The
value of the <trace_point> error code
might provide more information about
the error.

SQL1822N

Unexpected error code
"<trace_point>" received from data
source "BioRS wrapper.”
Associated text and tokens are
"Host not found.”

The BioRS server host that is identified in
the HOST server option was not found.
Check the CREATE SERVER statement
and ensure that the HOST server option
value is correct.

SQL1822N

Unexpected error code
"<trace_point>" received from data
source "BioRS wrapper.”
Associated text and tokens are
"Unable to connect to server.”

The wrapper was unable to connect to the
server that is identified by the HOST
server option. The value of the
<trace_point> error code might provide
more information about the error.

SQL1822N

Unexpected error code
"<trace_point>" received from data
source "BioRS wrapper.”
Associated text and tokens are
"Unable to create TCPIP socket.”

The wrapper could not create a TCPIP
socket. The value of the <trace_point>
error code might provide more
information about the error code.

SQL1822N

Unexpected error code
"<trace_point>" received from data
source "BioRS wrapper.”
Associated text and tokens are
"Error sending to server.”

The wrapper could not to send a request
to the BioRS server. The value of the
<trace_point> error code might provide
more information about the error.

SQL30090N

Operation invalid for application
execution environment. Reason
code = "Cannot change
case-sensitivty of server.”

You cannot change the value of the
CASE_SENSITIVE server option with
SQL statements. To change the value of
this option, you must drop the server.
Then, you must create the server again
using the CREATE SERVER statement,
and specify the correct value for the
CASE_SENSITIVE option.

SQL30090N

Operation invalid for application
execution environment. Reason
code = "Multiple joins between
two nicknames.”

The query is not valid because only one
join predicate is allowed between any two
nicknames.

92 Data Source Configuration Guide

Table 21. Messages issued by the wrapper for BioRS (continued)

Error Code Message Explanation

SQL30090N Operation invalid for application =~ The query is not valid because the
execution environment. Reason expression on the right side in a custom
code = "Right side of function function predicate must be a constant.
predicate must be constant.”

SQL30090N Operation invalid for application =~ The query is not valid because the first
execution environment. Reason argument of a custom function must
code = "Arg 1 of custom function reference a column of a BioRS nickname.
not a column.”

SQL30090N Operation invalid for application =~ The query is not valid. The column
execution environment. Reason referenced in the first argument of a
code = "Arg 1 of CONTAINS BIORS.CONTAINS,
function not indexed.” BIORS.CONTAINS_LE, or

BIORS.CONTAINS_GE function must be
an indexed column.

SQL30090N Operation invalid for application = The query is not valid. The column
execution environment. Reason referenced in the first argument of a
code = "Bad type for argl of BIORS.CONTAINS,
<function-name> function.” BIORS.CONTAINS_LE, or

BIORS.CONTAINS_GE function is not of
the correct data type.

SQL30090N Operation invalid for application =~ The query is not valid. The column
execution environment. Reason referenced in the first argument of a
code = "Arg 1 of SEARCH_TERM SEARCH_TERM function does not map a
not _ID_ column.” BioRS _ID_ element.

SQL30090N Operation invalid for application =~ A column or host variable value that was
execution environment. Reason referenced in the second argument of a
code = "Bind parameter cannot be BIORS.CONTAINS function was NULL.
NULL.” The BioRS wrapper cannot process null

values.

SQL30090N Operation invalid for application A value was submitted to the wrapper in
execution environment. Reason a literal, column, or host variable, which
code = "Cannot convert value to could not be converted to a valid BioRS
BioRS literal.” literal.

SQL30090N Operation invalid for application =~ You cannot change the server version
execution environment. Reason with the ALTER SERVER statement. To
code = "Cannot change server change the server version, you must drop
version.” the server. Then, you must create the

server again with the correct version
using the CREATE SERVER statement.

SQL30090N Operation invalid for application = The query is not valid. The column
execution environment. Reason referenced in the second argument of a
code = "Bad type for arg2 of BIORS.CONTAINS,
<function-name> function.” BIORS.CONTAINS_LE, or

BIORS.CONTAINS_GE function is not of
the correct data type.

SQL30090N Operation invalid for application =~ No column declarations were specified on

execution environment. Reason
code = "Nickname has no
columns.”

the CREATE NICKNAME statement.
Column declarations are required to
create nicknames.

Related concepts:

e “Introduction to messages” in the Message Reference Volume 1

Chapter 6. Configuring access to BioRS data sources 93

Related reference:
* “SQLSTATE messages” in the Message Reference Volume 2

94 Data Source Configuration Guide

Chapter 7. Configuring access to BLAST data sources

This chapter explains how to configure your federated server to access data that is
stored in BLAST data sources. You can configure access to BLAST data sources by
using the DB2 Control Center or by issuing SQL statements.

This chapter:

* Explains what BLAST is

¢ Lists the tasks that you need to perform

* Contains examples of the SQL statements that you need

e Lists the error messages associated with the BLAST wrapper

What is BLAST?

BLAST (Basic Local Alignment Search Tool) is a utility that is maintained by the
National Center for Biotechnology Information (NCBI). BLAST is used to scan a
nucleotide or amino acid sequence database for "hits." A BLAST hit contains one or
more high-scoring segment pairs (HSPs). A HSP is a pair of sequence fragments,
whose alignment is locally maximal, and whose similarity score exceeds some
threshold value. NCBI provides an executable, blastall, that is used to perform
BLAST searches on BLAST-able data sources, such as GenBank and SWISS-PROT.

The BLAST wrapper supports all five types of BLAST searches: BLASTn, BLASTp,
BLASTX, tBLASTn, and tBLASTx. These are described in [Table 22

Table 22. BLAST search types supported by the BLAST wrapper

BLAST search type Description

BLASTn A type of BLAST search in which a nucleotide sequence is
compared with the contents of a nucleotide sequence database to
find sequences with regions homologous to regions of the original
sequence.

BLASTp A type of BLAST search in which an amino acid sequence is
compared with the contents of an amino acid sequence database to
find sequences with regions homologous to regions of the original
sequence.

BLASTx A type of BLAST search in which a nucleotide sequence is
compared with the contents of an amino acid sequence database to
find sequences with regions homologous to regions of the original
sequence. The query sequence is translated in all six reading
frames, and each of the resulting sequences is used to search the
sequence database.

tBLASTn A type of BLAST search in which an amino acid sequence is
compared with the contents of a nucleotide sequence database to
find sequences with regions homologous to regions of the original
sequence. The sequences in the sequence database are translated in
all six reading frames, and the resulting sequences are searched for
regions homologous to regions of the query sequence.

© Copyright IBM Corp. 1998, 2004 95

Table 22. BLAST search types supported by the BLAST wrapper (continued)

BLAST search type Description

tBLASTx A type of BLAST search in which a nucleotide sequence is
compared with the contents of a nucleotide sequence database to
find sequences with regions homologous to regions of the original
sequence. In a tBLASTx search, both the query sequence and the
sequence database are translated in all six reading frames, and the
resulting sequences are compared to discover homologous regions.

shows how BLAST works with your federated system.

DB2 Client Federated database BLAST server
: Daemon
configuration
! file
SQL with 3
parameter-passing ‘
predictions DB2 Universal BLAST
Database > PR
federated 1
database ! I I
Results with 3 3 3 o —
esults wi ' ! | —]
fixed columns ‘ ! ‘ =].Ig blastall and
and user-defined = : BLAST ' matrix files
definition line BLAST = —1 BLAST
Wrapper, BLAST
! ! D D BLAST-able
: ' SWISS GenBank X data sources
| | -PROT

Figure 7. How the BLAST wrapper works

On the client side, users or applications submit SQL statements with
BLAST-specific parameter-passing predicates that map to standard BLAST options.
The SQL statements with the input predicates are sent to your DB2® Universal
Database federated database system with the BLAST wrapper installed.

The BLAST wrapper transforms the query into a format understandable by the
BLAST application and sends the transformed query to your BLAST server. This
server can be a separate machine from the machine with the federated system. A
special daemon program runs on your BLAST server. This daemon, using
information from a daemon configuration file, receives the query request from the
federated system and sends it to the BLAST application. The BLAST application
then runs against a BLAST-able data source in the usual manner.

The results are returned to BLAST and then to the daemon. The daemon returns
the retrieved data to the BLAST wrapper. The wrapper transforms the data into a
relational table format, and returns this table to you or application. The returned
data contains two parts:

96 Data Source Configuration Guide

e A series of standard, fixed columns familiar to BLAST users, and
* User-configured definition line information.

The following example illustrates how relational information is extracted from
BLAST-able data sources. Data moves from raw fasta file format to a BLAST-able
data set to a relational table that can be joined with other data sources in your
federated system.

is a sample fasta file containing four definition line and nucleotide
sequence records.

>7:4986 PMON5744
GTTCTTCCCAGTGCCCAAGTCCATTCTGACATCAATGAAGAAGGTAAAATCCCTGCGTGATCCCTCTGCC
AAGATGTCGAAATCAGACCCGGATAAACTAGCTGCTGTCAGAATAACAGACAGCCCGGAGGAGATCGTGC
AGAAGTTCCGCAAGGCTGTGACGGACTTCACCTCGGAGGTCACCTACGACCCGGCCAGGCGAGGAGGCGT
GTCCAACTTGGTGGCCATCCACGCGGCAGTGACCGGACTCCCGGTGGAGGAGGTGGTCCGCCGAAGTGCT
GGCATCAACACCGCTGGCTACAAGTTGGTGGTGGCGGAGGCTGTGATTGAGAGATTTGCACCAATTAAGA
GTGAAATTGAAAAACTGAAGAGGAACAAGGACCACCTAGAGAAGGTTTTACAAGTTGGGTCGGCAAAAGC
CAAAGAATTAGCATATCCCGTGTGCCAGGAGGTGAAGAAATTGGTGGGGTTTCTATAGGCAGTCTCACCT
AGTCCCAGAAAATGTTTTTTATCTTGTGGTCTGCTTGCACACTCAGTCTAATAAAGGCAGCTTTCCTAAG
ACGCCAACAATTCCAGTTTGGGGATGCTTAGTTTACT

>8:9747 PMON5699
AAGAAGTTCTTGTTAGAACTTTCCACCTCCGGCTTCCCCTCCACCTCTCTTACTGTCCCAACCTTCTGAG
ACGCTTTTTCTCCTCCCGAGGATTTATCTCTTTCTCTCTCTCTCTCTCTCTCTCTTTTTTTTTTTCCCCT
TTTCCCCCCCCGAGGCTGGTTTTGCTTTGGGGAGGGGGGGTTTTTTAAAGGGGCCGGGGGGGCCCCCTTT
CTCCCCCCTAATGGGGTTAATTAATAATGGGGGGGGGGGTTTTTTTTTTTTAAACCCCTATTTGGTCCGG
CCCGGGGATTTCCCCCCCCCCCCCCTTGCCCGGTTCCGGGGCCCGGAGGAGGGGGGGAAAAGGGCGGGAA
CCTTTGGTAGTTTCCCCTCGGAAAAAAATTTTTCGGGGGGGAAAACCTCCCT

>13:6512 PMON5498
GATAAGAGGCAGAATAGAAGACTGGACTACTTCTCTCCTAAAAACACATTTAAAACTAAGCCTGAGCAAT
CTCCACCCAAATGGACCGGAAACCTTAAAAAAGAATCCTACTCCTGAAGAAAAAGAGGAGGACACATCAA
GAGGTAGAAGGGGCGATTTCATGATATAAACAACCCCATACCTCCAGAGTGGGAAGCTCCACAGACTGAA
AACTAACTGGTTCACAGAAACTCACCTACAGGAGTGAGCCCCACATCAAACCCTCGAATGTGGGGATCTG
GCACTGGTAGAAAGAGCCCCTGGAGCATCTGGCATTGAAGGCCAGTGGGGCTTGTGTGCAGGAGATCCAC
AGGACTAGGGGAAACGGAGACCCCCATTCTTAAAAGGTGCACACAGACTTTTACGTGCACTGGGTCCCAG
TGCAAAGCAAAGTCTCCATAGGAATCTGGGTCAAACCTGACTGCAGTTCTTGGAGGACCTCCTGGGAAAG
CAAGGGTGAATGTGGCTTCTTGTGGGGAAAGGACATTGGAAGCAAAGCTCTTGGGAATATTCATCAGTGT
GC

>15:8924 PMON5426
GGAGAAACTGACTCCTGAGCAGCTGCAATTCATGCGGCAGGTGCAGCTCGCCCAGTGGCAGAAGACGCTG
CCACAGCGGCGGACCCGGAACATCGTGACCGGCCTGGGCATCGGGGCGCTGGTGTTGGCAATTTGTATCC
GTTTGGACTGTAGACTCAGGGAGACCGCATTTAGGGGAACAGGAAGGGCAGCAGGGGCGTGTAGGAGGGC
AGTGTGGGGGTGGTAGAAGGAGCCCGAGATATGAAAACCTTGGCTCCTTTTAACTCTGAATCAAGCGTTT
GGTGTACCTTACGTTGTCATTTTAAAGGTGTATTTTAGTATAATTGATTAATGATTACGGAGTCGGGTGA
GGGCTCCCAGGAGCAGACGGCAGAAGATCGAATTTGGGAGGATGATCAGCAGCGGTGGTTGAGCAAGTGT
GGGAAAAGGGAATGCGCACATTCCACGTGGTTTCCTGAACCCACCTCCCCAGATGGTTACACCTTCTACT
CGGTGTCCCAGGAGCGTTTCTTGGATGAGCTGGAGGATGAGGCCAAAGCTGCTC

Figure 8. Sample fasta file, nucleo1

The standard formatdb application transforms the fasta file to a BLAST-able data
set. The data is now ready for querying by SQL through a federated system with
the BLAST wrapper installed and registered.

The following query, sent by you or an application at the client end, is transformed
by the BLAST wrapper. It then runs against the BLAST-able data set.

Chapter 7. Configuring access to BLAST data sources 97

SELECT Unique_ID, Experiment_Number, Organism_Number, HSP_Info, Score
FROM nucleol

WHERE BlastSeq = 'ACATTCTTATAGAGTATTGCTACTCCTCCAGGATAGAGTCATCTCT
GGTCTCCAGAGCCACCGCTGGCTACAAGTTGGTGGTGGCGGAGGCTGTGATTGAGAGATTTG
CACCAATACAGAAACTCACCTACAGGAGTGAGCGGGTGGTAGAAGGAGCCCGAGATATGAAA
ACCTTGTTTCAAGACCCCATTGTCACCGGGG' 5

The results of the query are transformed by the BLAST wrapper into a relational
table format shown in|Table 2

Table 23. BLAST returns results in relational table form when integrated into your federated
system

Unique ID Experiment Organism HSP_INFO SCORE
number number
PMON5744 4986 7 Identities = 57/201 +1.13487000000000E+002

(28%), Positives =
57/201 (28%), Gaps =
0/201 (0%)

PMONb5426 8924 15 Identities = 35/201 +6.98754000000000E+001
(17%), Positives =
35/201 (17%), Gaps =
0/201 (0%)

PMON5498 6512 13 Identities = 26/201 +5.20342000000000E+001
(13%), Positives =
26/201 (13%), Gaps =
0/201 (0%)

The data is in a fully relational form and can be joined with data from other data
sources used by your laboratory. Combining the results of several data sources can
lead to insights not readily or efficiently discovered prior to the implementation of
your federated system.

Related tasks:
“Adding BLAST data sources to a federated server” on page 98|

Adding BLAST to a federated server

Adding BLAST data sources to a federated server

To configure the federated server to access BLAST data sources, you must provide
the federated server with information about the data sources and objects that you
want to access.

You can configure the federated server to access BLAST data sources by using the
DB2 Control Center or the DB2 command line. The DB2 Control Center includes a
wizard to guide you through the steps required to configure the federated server.

Prerequisites:

* DB2 Information Integrator must be installed on a server that will act as the
federated server

e A federated database must exist on the federated server

Procedure:

98 Data Source Configuration Guide

To add BLAST data sources to a federated server:

1. Verify that the correct version of the blastall executable and matrix files are
installed.

Configure the BLAST daemon.
Start the BLAST daemon.
Register the wrapper.

Register the server definition.

I N

Register nicknames for BLAST searches.

Related concepts:

¢ “DB2 Information Integrator installation process - overview” in the IBM DB2
Information Integrator Installation Guide for Linux, UNIX, and Windows

“Fast track to configuring your data sources” on page 55|

Related tasks:
« |“Creating a federated database” on page 51|

+ |“Verifying that the correct version of the blastall executable and matrix files ar¢
installed” on page 99|

+ [“Configuring the BLAST daemon” on page 100|
+ |“Starting the BLAST daemon” on page 103
+ |“Registering the BLAST wrapper” on page 105

* [“Registering the server for a BLAST data source” on page 106

* [“Registering nicknames for BLAST data sources” on page 107

+ |“Checking the setup of the federated server” on page 37

Related reference:

* “Supported operating systems for DB2 Information Integrator (32-bit)” in the
IBM DB2 Information Integrator Installation Guide for Linux, UNIX, and Windows

* “Supported operating systems for DB2 Information Integrator (64-bit)” in the
IBM DB?2 Information Integrator Installation Guide for Linux, UNIX, and Windows

Verifying that the correct version of the blastall executable
and matrix files are installed

Verifying that the correct version of the blastall executable and matrix files are
installed is part of the larger task of adding BLAST to a federated system.

Prerequisites:

Verify that you have the latest version of the blastall executable and BLOSUMS62,
BLOSUMS80, PAM30, and PAM70 matrix files installed on your BLAST server
machine. If you do not have the latest version of the blastall executable, you must
install the binary files and the matrix files. The matrix files must be in the same
directory as the blastall executable.

Procedure:

To check the version level of your blastall executable and matrix files:

1. Run a BLAST search from the command line and note the version number
located in the output file.

Chapter 7. Configuring access to BLAST data sources 99

2. Check this product’s Web site for versions of BLAST that have been tested with
this wrapper to ensure you have a supported version.

The next task in this sequence of tasks is configuring the BLAST daemon.

Related tasks:

“Configuring the BLAST daemon” on page 100}

Configuring the BLAST daemon

Configuring the BLAST daemon is part of the larger task of adding BLAST to a
federated system.

The BLAST wrapper requires a BLAST daemon. The BLAST daemon must be
running on a server that you can access through TCP/IP from your federated
system. This can be the same server that operates as the federated server, or a
separate BLAST server.

The daemon runs separately from the wrapper and the federated database. The
daemon listens for BLAST job requests from the wrapper.

Prerequisites:

The BLAST daemon must have:

* Execute access to the blastall binary file so that it can run BLAST searches.
* Write access to a directory in which it can write temporary files.

* Read access to at least one BLAST-able data source on which BLAST searches

can be run. The blastall executable must have read access to both the data file
and the BLAST index files generated by the formatdb program.

Restrictions:

The BLAST daemon might not run properly if the executable file or the database
paths contain spaces. For example, you should not install the BLAST executable
file in C:\Program Files on Windows servers.

Procedure:

To configure the BLAST daemon:

1. Ensure that the BLAST daemon executable files are on the proper server.
During the installation of DB2 Information Integrator, the daemon executable
files are installed in a directory on the federated server:

On UNIX
The daemon executable file is db2blast_daemon. This file is installed in
the $DB2PATH/bin directory.

On Windows
The daemon executable files are db2blast_daemon.exe and
db2blast_daemon_svc.exe. These files are installed in the $DB2PATH%\bin
directory.

If you use a separate BLAST server computer, you must copy the daemon

executable files from the directory on the federated server to a directory on the

100 Data Source Configuration Guide

BLAST server computer. The daemon executable files can run in any directory
on the BLAST server computer that does not contain spaces in the names in the
directory path.

. Ensure that the BLAST daemon configuration file is on the proper server.

During the installation of DB2 Information Integrator, a sample daemon
configuration file, BLAST_DAEMON.config, is installed in a directory on the
federated server:

On UNIX
The daemon configuration file is installed in the $DB2PATH/bin directory.
$DB2PATH is the directory in which DB2 Information Integrator is
installed.

On Windows
The daemon configuration file is installed in the $DB2PATH%\bin

directory. %DB2PATH% is the directory in which DB2 Information
Integrator is installed, usually C:\SQLLIB\bin.

By default, the daemon expects to find the configuration file in the working
directory from which the daemon is started. You can copy the configuration file
to another location. If you use a BLAST server computer, you must copy the
daemon configuration file from the directory on the federated server to a
directory on the BLAST server computer. You can copy the daemon
configuration file to any directory on the BLAST server computer that the
daemon can access.

. Edit the daemon configuration file to work with your data source. You can also

rename the configuration file.

* The first line in the configuration file must be an equal sign. If the equal sign
is missing, the daemon will not start. An error message will indicate that the
DAEMON_PORT was not specified.

* The last line in the configuration file must end with a new line. The sample
configuration file that is provided with DB2 Information Integrator ends with
a new line. When you edit the file, you must ensure that the last line in the
file ends with a new line. If the last line does not end with a new line, you
will receive an error message when you attempt to run your first BLAST
query using the data source listed on the last line.

* Specify the following options in the configuration file. For options that
require paths, you can specify relative paths. Relative paths are relative to
the directory from which the daemon process was started.

DAEMON_PORT
This is the network port on which the daemon listens for BLAST job
requests submitted by the wrapper.

MAX_PENDING_REQUESTS
This is the maximum number of BLAST job requests that can be
blocking on the daemon at any one time. This number does not
represent the number of BLAST jobs that are running concurrently, only
the number of job requests that can block at one time. It is
recommended that you set this to a number greater than five. The
BLAST daemon does not restrict the number of BLAST jobs that can
run concurrently.

DAEMON_LOGFILE_DIR
This is the directory in which the daemon creates its log file. This file
contains useful status and error information generated by the BLAST
daemon.

Chapter 7. Configuring access to BLAST data sources 101

Q_SEQ_DIR_PATH
This is the directory in which a temporary query sequence data file is
created by the daemon. This temporary file is cleaned up once the
BLAST job completes.

BLAST_OUT_DIR_PATH
This is the directory in which the daemon creates the temporary file to
store the BLAST output data. Data is read from this file and passed
back to the wrapper through the network connection. After the data is
passed to the wrapper, the daemon cleans up the temporary file

BLASTALL_PATH
This is the fully-qualified name of the BLAST executable file on the
computer that is running the daemon.

database specification entry
Specifies the location of a BLAST-able data source. Make note of the
database data_source_name that you specify in the configuration file. For
the daemon to function properly, you must specify the database
data_source_name when you create the nickname for the data source.
The name is case-sensitive. The database data_source_name is specified
in the DATASOURCE option of the CREATE NICKNAME statement.

The configuration file must contain at least one database specification
entry in the following form:
data_source_name = path to BLAST-able_data_source
On UNIX
For example, to specify the GenBank BLAST-able data source
you would add the following line to the daemon configuration
file:
genbank=/dsk/1/nucl_data/genbank
On Windows
For example, to specify the GenBank BLAST-able data source
you would add the following line to the daemon configuration
file:
c:\vnr_data\genbank_nonestl.fasta
The path indicated in a database specification entry must contain the
three index files.
* For nucleotide data sources, the index files have these extensions:
— .nhr
— .nin
- .nsq
e For amino acid data sources, the index files have these extensions:
- .phr
- .pin
- .psq
The database specification entry must indicate the name of the file that
contains the original Fasta-formatted data. The three index files must

have the same root name as the file containing the original
Fasta-formatted data.

The next task in this sequence of tasks is starting the BLAST daemon.

102 Data Source Configuration Guide

Related tasks:
* |“Starting the BLAST daemon” on page 103|

Related reference:

+ |“BLAST daemon configuration file - examples” on page 103

BLAST daemon configuration file - examples
The following examples show the contents of a sample configuration file.
Example — BLAST daemon configuration file (UNIX):

This example shows the required options and the BLAST-able data source
specifications for GenBank and SWISS-PROT.

DAEMON_PORT=4007
MAX_PENDING_REQUESTS=10

DAEMON_LOGFILE DIR=./
Q_SEQ_DIR_PATH=./

BLAST OUT_DIR_PATH=./
BLASTALL_PATH=./blastall
genbank=/dsk/1/nucl_data/genbank
swissprot=/dsk/1/prot_data/swissprot

Example — BLAST daemon configuration file (Windows):

This example shows the required options and the BLAST-able data source
specifications for GenBank and SWISS-PROT.

DAEMON_PORT=4007

MAX_PENDING_REQUESTS=10
DAEMON_LOGFILE_DIR=.\

Q_SEQ_DIR_PATH=.\

BLAST OUT_DIR_PATH=.\
BLASTALL_PATH=.\blastall.exe
genbank=c:\vnr_data\genbank_nonestl.fasta
swissprot=c:\vnr_data\swissprot

Related tasks:
* |”Adding BLAST data sources to a federated server” on page 98|

* [“Configuring the BLAST daemon” on page 100|
« |“Starting the BLAST daemon” on page 103

Starting the BLAST daemon

Starting the BLAST daemon is part of the larger task of adding BLAST to a
federated system. Before you can access BLAST data sources, you must start the
BLAST daemon.

Prerequisites:

Before you start the BLAST daemon, you must have write access to all paths listed
under the DAEMON_LOGFILE_DIR, BLAST OUT_DIR_PATH, and Q_SEQ_DIR_PATH entries in

the configuration file.

Procedure:

Chapter 7. Configuring access to BLAST data sources 103

To start the BLAST daemon on a UNIX server computer:
1. Open the directory where the daemon executable file is located.
2. Issue the db2bTast_daemon command:

 If you did not change the name of the daemon configuration file and the
configuration file is in the same directory as the daemon executable file, type
the following command at the command line:

db2blast_daemon

* If you changed the name of the daemon configuration file or if the daemon
configuration file is not in the same directory as the daemon executable file,
you must use the -c option on the wrapper daemon command to point the
daemon executable to the new name or location.

For example, the following command causes the wrapper daemon to look for
the daemon configuration information in a file called BLAST_D.config in the
subdirectory cfg.

db2blast_daemon -c cfg/BLAST_D.config
The executable file starts a new process in which the BLAST daemon runs.

To start the BLAST daemon on a Windows server computer:
1. Open the directory where the daemon executable file is located.

2. Issue the db2blast_daemon command with the parameters that you need. For
example, to install the daemon service with debugging turned on:

db2blast_daemon -a install -d 2
db2blast_daemon -a start

The next task in this sequence of tasks is registering the BLAST wrapper.

Related tasks:
* [“Registering the BLAST wrapper” on page 105

db2blast_daemon command - syntax and examples

The db2bTast_daemon command can be used on UNIX and Windows servers. Some
of the arguments listed in the syntax can be used only on Windows servers.

The syntax for the db2blast_daemon command is:

db2blast_daemon -a action -c config _file -d debug_level
-u user_id -p password

-a action

Performs the specified activity. Valid actions are status, install, start, stop,
and remove.

You can specify this argument only on Windows servers.

-c config_file
Instructs the daemon service to use the specified configuration file. If you
do not specify the configuration file, the daemon searches for the
BLAST_DAEMON.configfile in the directory where the daemon executable files
are installed. You can use this option with the install and start actions.

You can specify this argument on UNIX and Windows servers.

104 Data Source Configuration Guide

-d debug_level
Sets the daemon service debug level to the specified value. The valid
values are 1, 2, or 3. You can use this option with the install and start
actions.

You can specify this argument on UNIX and Windows servers.

-u user_id
Sets the daemon service to run under the specified user ID. You can use
this option with the install action.

You can specify this argument only on Windows servers.

-p password
Specifies the password for the specified user ID. The password is valid and
required only when you specify the -u option. If the -p option is not
specified when you set the -u option, the program prompts you for the
password. You can use this option with the install action.

You can specify this argument only on Windows servers.

The options that are specified with the start action affect only the current run of
the daemon, and override the values that are specified with the install action.

Examples:

The following examples show daemon actions. These examples assume that the
BLAST_DAEMON. config file is in the same directory as db2blast_daemon.exe.

* To check the status of the daemon:
db2blast_daemon -a status
 To install the daemon service with debugging turned on:
db2blast_daemon -a install -d 2
* To start the daemon:
db2blast_daemon -a start
* To stop the daemon:
db2blast_daemon -a stop
* To remove the daemon service:

db2blast_daemon -a remove

Related tasks:
* |“Starting the BLAST daemon” on page 103|

Registering the BLAST wrapper

Registering the BLAST wrapper is part of the larger task of adding BLAST data
sources to a federated server.

You must register a wrapper to access BLAST data sources. Wrappers are used by
federated servers to communicate with and retrieve data from data sources.
Wrappers are implemented as a set of library files.

Procedure:

To register a wrapper, issue the CREATE WRAPPER statement with the name of
the wrapper and the name of the wrapper library file.

Chapter 7. Configuring access to BLAST data sources 105

For example, to register a wrapper with the name blast_wrapper on the federated
server that uses the AIX operating system, issue the following statement:

CREATE WRAPPER blast wrapper LIBRARY 'lTibdb2lsblast.a';

The name of the wrapper library file that you specify depends on the operating
system of the federated server. See the list of BLAST wrapper library files for the
correct name to specify in the CREATE WRAPPER statement.

The next task in this sequence of tasks is registering the server definition for the
BLAST wrapper.

Related reference:

“BLAST wrapper library files” on page 106|
e “CREATE WRAPPER statement” in the SQL Reference, Volume 2

BLAST wrapper library files

The following table lists the directory paths and library file names for the BLAST
wrapper.

When you install DB2 Information Integrator, 3 library files are added to the
directory path listed in the table. For example, if the federated server is running on
AIX, the wrapper library files added to the directory path are 1ibdb21sblast.a,
1ibdb21sblastF.a, and Tibdb21sbTastU.a.

When you register a wrapper, specify only the library file name that is listed in the
table.

Table 24. BLAST wrapper library locations and file names

Operating system Directory path Wrapper library file
AIX /usr/opt/db2_08_01/lib/ libdb2lsblast.a

Linux /opt/IBM/db2/V8.1/lib libdb2lsblast.so
Solaris /opt/IBM/db2/V8.1/lib libdb2lsblast.so
Windows %DB2PATH%\bin db2lsblast.dll

%DB2PATH% is the environment variable that is used to specify the directory path
where DB2 Information Integrator is installed on Windows. The default Windows
directory path is C:\Program Files\IBM\SQLLIB.

Related tasks:
+ |“Registering the BLAST wrapper” on page 105

Registering the server for a BLAST data source

Registering the server for a BLAST data source is part of the larger task of adding
BLAST to a federated system. After the wrapper is registered, you must register a
corresponding server.

Procedure:

To register the BLAST server to the federated system, use the CREATE SERVER
statement.

106 Data Source Configuration Guide

For each machine on which the BLAST executable and daemon are installed in
your environment, you must register one server for each type of BLAST search you
want to run using that instance of the BLAST executable and daemon.

For example, to register a server called blast_serverl for the my_blast wrapper
created using the CREATE WRAPPER statement that will be used for BLASTn
searches, submit the following statement:
CREATE SERVER blast_serverl
TYPE blastn
VERSION 2.1.2
WRAPPER my_blast
OPTIONS (NODE 'big_rs.company.com', DAEMON_PORT '4007')

The next task in this sequence of tasks is registering nicknames for BLAST data
sources.

Related tasks:

+ [“Registering nicknames for BLAST data sources” on page 107]

Related reference:

e “ALTER SERVER statement” in the SQL Reference, Volume 2

* “CREATE SERVER statement” in the SQL Reference, Volume 2

+ |“CREATE SERVER statement arguments - BLAST wrapper” on page 538

Registering nicknames for BLAST data sources
Registering nicknames for BLAST data sources

Registering nicknames for BLAST data sources is part of the larger task of adding
BLAST to a federated system.

After you register a server, you must register a corresponding nickname.
Nicknames are used when you refer to a BLAST data source in a query.

Procedure:

To register a BLAST nickname, use the CREATE NICKNAME statement.

Since each type of BLAST search is handled by a separate server, you must define
a separate nickname for each type of BLAST search that you want to run on a

given BLAST-able data source.

When you create the nickname you specify column information for the definition
line portion of the data source. All other columns are fixed.

There are no further tasks in this sequence of tasks.

Related concepts:

“Definition line parsing” on page 108

Related tasks:

“Adding BLAST data sources to a federated server” on page 98|

“Specifying nickname columns for a nonrelational data source” on page 65|

Related reference:

Chapter 7. Configuring access to BLAST data sources 107

 |"CREATE NICKNAME statement syntax - BLAST wrapper” on page 539
* |[“CREATE NICKNAME statement - Examples for BLAST wrapper” on page 112|
* |"Fixed columns for BLAST nicknames” on page 108|

Definition line parsing

The definition line is like a key for each sequence in the BLAST-able data source
and is returned as part of each BLAST hit. The definition line is also called the
defline.

The value that is returned and parsed by the BLAST wrapper for a definition line
will not always be identical to the definition line in the original FASTA file. For
example, if there is data in the Accession Number field of a BLAST hit, the
definition line that is returned contains the Accession Number data followed by
the Definition field data. The wrapper then parses the data that is returned.

Recommendation: To determine how the wrapper will return and parse the
definition line, create a nickname with a single definition line column. Then run a
query to see the format that is returned by the wrapper of the definition line for
your particular data source.

To include the definition line information in your results table, you must specify
the definition line columns in the CREATE NICKNAME statement. Each column
that you specify must include the INDEX option and the DELIMITER option. You
can omit the DELIMITER option on the last column that you specify, if you want
the last column to contain the remainder of the definition line information.

Valid data types for the definition line columns are CLOB, DOUBLE, FLOAT,
INTEGER, and VARCHAR.

Related concepts:

* |“Defline parsing user-defined functions - overview” on page 453

Related tasks:
* [“Registering nicknames for BLAST data sources” on page 107

Related reference:

 |"CREATE NICKNAME statement syntax - BLAST wrapper” on page 539

* |[“CREATE NICKNAME statement - Examples for BLAST wrapper” on page 112|
* |"Fixed columns for BLAST nicknames” on page 108|

Fixed columns for BLAST nicknames

When you issue the CREATE NICKNAME statement for a BLAST data source, a
set of fixed columns are automatically created with the nickname.

The fixed columns are part of the definition for the nickname and are created in
the federated database system catalog. You can reference the fixed columns in SQL
queries. There are two types of fixed columns, input fixed columns and output
fixed columns.

Fixed input columns for BLAST nicknames: The fixed input columns are

specified in the WHERE clause. Input columns are used as parameter-passing
predicates in SQL queries. They pass standard BLAST switches to BLAST. BLAST

108 Data Source Configuration Guide

then runs on the specified data source using these switches. Fixed input columns
can also be referenced in the query SELECT list and are returned as part of the
results table.

The following table lists the fixed columns that you can use in the WHERE clause.

Table 25. Fixed input columns for BLAST nicknames

Name Data type Operators Description

BlastSeq VARCHAR = Passes the query sequence to the
(32000) or CLOB BLAST wrapper.

E_Value DOUBLE < Both an input and an output

parameter. As an input parameter,
this column indicates to the BLAST
wrapper the upper limit of expect
values that should be returned from
blastall.

QueryStrands INTEGER = Specifies which strands should be
compared when performing a
BLASTn search. A value of 1
indicates that the top strand should
be used, 2 indicates the bottom
strand, and 3 indicates that both
strands should be compared.

GapAlign CHAR(1) = Indicates to the wrapper whether
gapped alignments are permitted in
the BLAST output.

Matrix VARCHAR(50) = Determines which substitution
matrix is used by blastall to
determine the degree of similarity
between pairings of amino acids.
Only those BLAST search types that
compare amino acids to amino
acids use this predicate.

NMisMatchPenalty INTEGER = Specifies the value that blastall
deducts from the score of an
alignment if one of the pairs of
nucleotides in the homologous
region does not match. Only those
BLAST search types that compare
nucleotides to nucleotides use this
predicate.

NMatchReward INTEGER = Specifies the value that blastall
adds to the score of an alignment
for each of the pairs of nucleotides
in the homologous region that do
match. Only those BLAST search
types that compare nucleotides to
nucleotides use this predicate.

FilterSequence CHAR(1) = Indicates to blastall whether to
perform filtering to remove
biologically uninteresting segments
from the query sequence. If the
search type is BLASTn, the filter
used is DUST. Otherwise, filtering
is performed by SEG.

Chapter 7. Configuring access to BLAST data sources 109

Table 25. Fixed input columns for BLAST nicknames (continued)

Name Data type Operators Description

NumberOfAlignments INTEGER = Specifies how many HSP
alignments to include in the BLAST
output.

GapCost INTEGER = Specifies the value that blastall

deducts from the score of an
alignment if a gap must be
introduced in either the query
sequence or the hit sequence to
allow the length of the alignment to
STOW.

ExtendedGapCost INTEGER = Specifies the value that blastall
deducts from the score of an
alignment if a gap that was already
introduced in either the query
sequence or the hit sequence must
be extended by one nucleotide or
amino acid to allow the length of
the alignment to grow.

WordSize INTEGER = Indicates to blastall the length of
the initial hits that blastall initially
searches in the database.

ThresholdEx INTEGER = Indicates the score threshold below
which BLAST does not attempt to
extend a hit any further.

You can override the default data type for a column when you create a nickname.
For example, some columns can return a large amount of data, such as the
HSP_H_Seq and HSP_Midline columns. To return the first 50 bytes of a column,
you can define the column with the data type VARCHAR(50). Only the first 50
bytes will be copied into the output column.

BLAST search types and switches for fixed input columns: The supported
BLAST search types and switches for each fixed input column are listed in the
following table.

Table 26. BLAST search types and switches supported by the input fixed columns

Name BLAST search types BLAST Required Default
switch
BlastSeq n, p, x, tn, tx -1 Yes N/A
E_Value n, p, X, tn, tx -e No 10
QueryStrands n S No 3
GapAlign n, p, X, tn, tx -g No T
Matrix P, % tn, tx -n No BLOSUMS62
NMisMatchPenalty n -q No -3
NMatchReward n - No 1
FilterSequence n, p, x, tn, tx -F No T
NumberOfAlignments n, p, X, tn, tx -b No 250
GapCost n, p, X, tn, tx -G No 11
ExtendedGapCost n, p, x, tn, tx -E No 1

110 Data Source Configuration Guide

Table 26. BLAST search types and switches supported by the input fixed

columns (continued)

Name BLAST search types BLAST Required Default
switch

WordSize (for Blastn, a n, p, x, tn, tx -W No 11 -BLASTn

value less than 7 is

invalid) 3 -BLASTp

ThresholdEx n, p, x, tn, tx —f No 0

Fixed output columns for BLAST nicknames: The following table lists the fixed
columns that you can use in the WHERE clause.

Table 27. Fixed output columns for BLAST nicknames

Name

Data type

Description

Score

DOUBLE

The computed score for an HSP as
reported in the BLAST results.

E_value

DOUBLE

Both an input and an output
parameter. As an output parameter,
this column provides the computed
score for an HSP as reported in the
BLAST results.

Length

INTEGER

The length of the hit sequence as
reported in the BLAST results.

HIT_NUM

INTEGER

The hit number as reported in the
BLAST results, starting with 1.

HSP_NUM

INTEGER

The HSP number as reported in the
BLAST results, starting with 1.

HSP_Info

VARCHAR(100)

The information string for the given
HSP, as reported by BLAST. This
string contains information about the
number of nucleotides or amino acids
that matched between the query
sequence and the hit sequence.

HSP_ALIGNMENT_LENGTH

INTEGER

The length of the HSP alignment.

HSP_IDENTITY

INTEGER

The percent identity of the alignment
defined as the number of identities
divided by the alignment length.

HSP_GAPS

INTEGER

The percent gaps in the alignment
defined as the number of gaps
divided by the alignment length.

HSP_POSITIVE

INTEGER

The percent positives of the alignment
defined as the number of positives
divided by the alignment length.

HSP_QUERY_FRAME

INTEGER

The reading frame of the alignment in
the query sequence.

Only available for blastx, tblastn, and
tblastx type servers.

HSP_HIT_FRAME

INTEGER

The reading frame of the alignment in
the hit sequence.

Only available for blastx, tblastn, and
tblastx type servers.

Chapter 7. Configuring access to BLAST data sources 111

Table 27. Fixed output columns for BLAST nicknames (continued)

Name Data type

Description

HSP_Q_Start INTEGER

The numeric position of the first
homologous nucleotide or amino acid
on the query sequence.

HSP_Q_End INTEGER

The numeric position of the last
homologous nucleotide or amino acid
on the query sequence.

HSP_Q_Seq VARCHAR(32000)

The segment of the query sequence
beginning at HSP_Q_Start and ending
at HSP_Q_End.

You can override the default data type
for this column and specify CLOB,
with a maximum length of 5
megabytes.

HSP_H_Start INTEGER

The numeric position of the first
homologous nucleotide or amino acid
on the hit sequence.

HSP_H_End INTEGER

The numeric position of the last
homologous nucleotide or amino acid
on the hit sequence.

HSP_H_Seq VARCHAR(32000)

The segment of the hit sequence
beginning at HSP_H_Start and ending
at HSP_H_End.

You can override the default data type
for this column and specify CLOB,
with a maximum length of 5
megabytes.

HSP_Midline VARCHAR(32000)

The string output by BLAST that
indicates the degree of homology
between the amino acids or
nucleotides at each position in the
homologous regions of the query and
hit sequences.

You can override the default data type
for this column and specify CLOB,
with a maximum length of 5
megabytes.

Related concepts:

* [“Definition line parsing” on page 108|

Related tasks:

* [“Registering nicknames for BLAST data sources” on page 107]

Related reference:

+ |"CREATE NICKNAME statement syntax - BLAST wrapper” on page 539

 |"CREATE NICKNAME statement - Examples for BLAST wrapper” on page 112

CREATE NICKNAME statement - Examples for BLAST wrapper

The following CREATE NICKNAME statement defines the nickname genbank.

112 Data Source Configuration Guide

It assumes the definition field in a BLAST result contains the following
information:

>276342 15:8924 PMON5426

where:
276342 The accession field of the BLAST result.

15:8924 PMON5426
The definition field in a BLAST result containing an organism number
followed by an experiment number and then a unique identifier.

With this information, the following nickname is created:

CREATE NICKNAME genbank (
acc_num integer OPTIONS(INDEX '1', DELIMITER ' '),
org_num integer OPTIONS(INDEX '2', DELIMITER ':'),
exp_num integer OPTIONS(INDEX '3', DELIMITER ' '),
u_id varchar(10) OPTIONS(INDEX '4'))
FOR SERVER blast_serverl
OPTIONS (DATASOURCE 'genbank', TIMEOUT '300');

The column acc_num would contain 276342, the column org_num would contain 15,
the column exp_num would contain 8924, and the column u_id would contain
PMON5426.

After you submit the CREATE NICKNAME statement, you can use the nickname
genbank to query your federated system. You can also join the genbank nickname
with other nicknames and tables in your federated system.

Related tasks:
* [“Registering nicknames for BLAST data sources” on page 107

Related reference:

* “ALTER NICKNAME statement” in the SQL Reference, Volume 2

* “CREATE NICKNAME statement” in the SQL Reference, Volume 2

+ |"CREATE NICKNAME statement syntax - BLAST wrapper” on page 539

Setting up TurboBlast to work with the BLAST wrapper

Restrictions:

TurboBlast does not support certain blastall command options. For example, the
gapped alignment option -g F is not supported. If you specify F for the value of
the GapAlign’s column in your BLAST nickname, TurboBlast generates an error.
For a complete list of unsupported options, refer to the TurboBlast 2.0 User Guide.

Procedure:

To set up TurboBlast to work with the BLAST wrapper:

1. Install and configure the BLAST wrapper. Run a query on a blastable database
to test your setup.

2. The BLAST wrapper and TurboBlast support AIX, Linux, Solaris and Windows
operating systems. However, the BLAST daemon is not available on Windows
operating systems. The daemon will work with TurboBlast on Windows
operating systems when the BLAST daemon is available on those operating
systems.

Chapter 7. Configuring access to BLAST data sources 113

3. Install and configure TurboBlast according to the TurboBlast 2.0 Installation and
Reference Guide. You can install and set up the TurboBlast system in various
ways. To allow the BLAST wrapper to work with TurboBlast, you need to
install and set up the TurboBlast Client on the computer on which you have
your BLAST daemon. The BLAST daemon can invoke the thlastall command.

4. Be sure to test the TurboBlast system after you have installed and configured
TurboBlast. Follow the instructions in the TurboBlast 2.0 Installation and Reference
Guide.

5. Change your BLAST_DAEMON.config file as follows:

a. Specify the BLASTALL_PATH parameter as the complete path of thlastall.
For example: BLASTALL_PATH=/home/blasttst/turboblast/TBlast-
2.1/tblastall

b. Specify the blastable database specification entry as the blastable database
name that you used to upload your blastable database to TurboBlast. The
database names are shown when you enter the Tistdatabase -1 command
under TurboBlast. This TurboBlast database name should be used instead of
the path to the blastable data source. For example: genbank=<the genbank
database name in TurboBlast>

6. Restart the BLAST daemon. The BLAST daemon invokes tblastall instead of
blastall to do search work on the blastable databases.

7. The log files related to thlastall are written to the DAEMON_LOGFILE_DIR
specified in your BLAST_DEAMON.config file. Also check the STDERR.Tog and
STDOUT. 1og produced by the BLAST daemon in the same directory.

Related tasks:
+ |“Adding BLAST data sources to a federated server” on page 98|

+ |“Configuring the BLAST daemon” on page 100|

Constructing BLAST SQL queries

Predicates on input columns are used to pass standard BLAST switches to the
blastall executable. Predicates on the output columns are processed by the
federated server.

Restrictions:

To be valid, every query passed to the BLAST wrapper must contain at least the
BlastSeq input predicate. All other predicates are optional.

Procedure:

To construct a BLAST query, use the input predicates in the WHERE clause of your
SQL statement.

The following example shows three input predicates: BlastSeq, GapCost, and
NMisMatchPenalty.

Select * from blast b where
BlastSeq = 'GTCCAGCC...' AND
GapCost = -10 AND
NMisMatchPenalty = -4;

Related tasks:

+ |“Registering nicknames for BLAST data sources” on page 107]

114 Data Source Configuration Guide

Related reference:

* |[“BLAST data source — Example queries” on page 115

BLAST data source — Example queries

Several sample BLAST queries are provided to illustrate how queries are
constructed for BLAST data sources.

To run queries, use the examples as a guide.

In these queries, the name used for each nickname indicates the type of BLAST
search and the data source. This is done so that the registration statements do not
need to be listed with each sample query. Also, some of the queries make use of
other hypothetical data sources so that these examples can illustrate the behavior
of the wrapper when joined with other data sources.

Query 1

select =

from blastn_genbank

where BlastSeq =
'caacccctccagccgagttgtcaatggcgaggaagetgttccccac'

When this SQL statement is executed, the wrapper will perform a BLASTn search
of GenBank using the indicated sequence. The wrapper will return all of the
available columns, including both the input parameter columns and the BLAST
result columns.

Query 2

select =

from blastn_genbank

where BlastSeq =
'caacccctccageccgagttgtcaatggcgaggaagetgttcecccac!
and GapCost = 8 and NmisMatchPenalty = -4;

When this SQL statement is executed, the wrapper will perform a BLASTn search
of GenBank using the indicated sequence. In addition, the wrapper will pass the
two indicated parameters to the daemon, and they will be passed to the blastall
command line. The wrapper will return all of the available columns, including
both the input parameter columns and the BLAST result columns.

Query 3

select blp.*

from blastp_swissprot blp, protein_db prdb
where prdb.keyword = 'malic enzyme'

and blp.BlastSeq = prdb.sequence;

When this SQL statement is executed, the wrapper will perform zero or more
BLASTp searches of SWISS-PROT, depending on the number of sequences returned
from a hypothetical protein sequence database. This statement will be broken into
two separate queries by DB2, and one BLASTp search will be run for each row that
is returned from the hypothetical protein database. The wrapper will return all of
the available columns, including both the input parameter columns and the BLAST
result columns.

Query 4

Chapter 7. Configuring access to BLAST data sources 115

select Score, E_Value, HSP_Info, HSP_Q Seq, HSP_H_Seq, HSP_Midline
from blastx_swissprot

where BlastSeq = 'gagttgtcaatggcgagg'

and GapCost = 8;

When this SQL statement is executed, the wrapper will perform a BLASTx search
of SWISS-PROT using the indicated sequence. In this case, blastall will translate the
input sequence in all six reading frames and perform the homology search using
each of the six newly created protein sequences. The HSPs in the results will
contain amino acid-amino acid alignments, rather than nucleotide-nucleotide
alignments. The supplied parameter will be passed to the daemon and then to
blastall via the command line. The wrapper will return only those columns that are
specifically requested in the query.

Query 5
select tbl1x.Score, tbIx.E_Value, tb1x.HSP_Info tb1x.HSP_Q_Seq,
HSP_H_Seq, HSP_Midline
from tblastx_genbank tb1x, gen_exp_database gedb
where tbIx.BlastSeq = gedb.sequence
and gedb.organism = 'interesting organism'
and GapCost = 8
and FilterSequence = 'F';

When this SQL statement is executed, the wrapper will perform zero or more
tBLASTx searches of GenBank, depending on the number of sequences returned
from a hypothetical gene expression database. The statement will be broken into
two separate queries by DB2, and one tBLASTx search will be run for each row
that is returned from the hypothetical gene expression database. In this case,
blastall will translate the input sequence and all of the sequences in GenBank in all
six reading frames and perform the homology search using each of the six newly
created query protein sequences and all of the newly created database protein
sequences. The HSPs in the results will contain amino acid-amino acid alignments,
rather than nucleotide-nucleotide alignments. The supplied parameters will be
passed to the daemon and then to blastall via the command line. The wrapper will
return only those columns that are specifically requested in the query.

Related reference:

* [“Documentum data source — Example queries” on page 187|

* |“Excel data source — Example queries” on page 221|

Optimization tips for the BLAST wrapper

To improve network communication performance, the federated server and the
BLAST server should be on separate hardware. The BLAST daemon should reside
on the BLAST server.

Related tasks:

“Configuring the BLAST daemon” on page 100|

Messages for the BLAST wrapper

This section lists and describes messages that you might encounter when working
with the wrapper for BLAST.

116 Data Source Configuration Guide

Table 28. Messages issued by the wrapper for BLAST

Error Code = Message Explanation

SQL0901IN The SQL statement failed The SQL query submitted to DB2 could not
because of a non-severe system be processed by the wrapper. Correct the
error. Subsequent SQL syntax and resubmit.
statements can be processed.

(Reason
"sqlno_crule_save_plans [100]:rc
(—2144272209) Empty plan list
detect".)

SQL1816N Wrapper "BLAST_WRAPPER" The CREATE SERVER statement used an
cannot be used to access the invalid TYPE. The type must be one of the
"type" of data source ("<server supported BLAST types.
type>" "") that you are trying to
define to the federated
database.

SQL1817N The CREATE SERVER The CREATE SERVER statement did not
statement does not identify the specify the version.

"version" of data source that
you want defined to the
federated database.

SQL1822N Unexpected error code The blast wrapper was not able to connect
"Unspecified Error" received to the daemon. The daemon might not be
from data source "Blast running. It might be misconfigured. The
Wrapper". Associated text and ~ machine that it is running on might be
tokens are "Unable to connect unreachable.
to daemon".

SQL1822N Unexpected error code No results were received from the daemon
"Unspecified Error" received before the timeout as specified on the
from data source "Blast CREATE NICKNAME statement elapsed.
Wrapper". Associated text and Increase the timeout or check to see if there
tokens are "Blast daemon is a problem with the daemon.
timeout expired".

SQL1822N Unexpected error code The daemon stopped communicating or the
"Unspecified Error" received results returned were not properly
from data source "Blast formatted.

Wrapper". Associated text and
tokens are "Blast Daemon
Failed".

SQL1822N Unexpected error code The blast wrapper received an error code
"Unspecified Error" received from the daemon that it doesn’t recognize.
from data source "Blast The daemon version might not be
Wrapper". Associated text and compatible with the wrapper version.
tokens are "Unknown error
from the blast daemon".

SQL1822N Unexpected error code An ALTER NICKNAME statement was
"Unspecified Error" received issued trying to rename one of the columns.
from data source "Blast Renaming a column is not allowed.
Wrapper". Associated text and
tokens are "Column rename not
allowed".

SQL1822N Unexpected error code The Xerces parser is in an invalid state or

"Unspecified Error" received
from data source "Blast
Wrapper". Associated text and
tokens are "XML parser error".

has thrown an exception.

Chapter 7. Configuring access to BLAST data sources

117

Table 28. Messages issued by the wrapper for BLAST (continued)

Error Code Message Explanation

SQL1823N No data type mapping exists The data type specified is not supported by
for data type "<data type this column.
name>" from server "<server
name>".

SQL1881IN "DEFAULT" is not a valid The DEFAULT option was used on a
"COLUMN" option for column that does not support it. Output
"<column-name>" only columns and definition line columns

do not have default values.

SQL1882N The "COLUMN" option The value specified for the DEFAULT
"DEFAULT" cannot be set to option is of an incompatible type for the
"<option-value>" for column or is incorrectly formatted.

"<column-name>".

Related concepts:
* “Introduction to messages” in the Message Reference Volume 1

Related reference:
* “SQLSTATE messages” in the Message Reference Volume 2

118 Data Source Configuration Guide

Chapter 8. Configuring access to business application data
sources

This section explains how to add business application data sources to your
federated system by using the Webspshere Business Integration wrapper.

The WebSphere Business Integration wrapper

The WebSphere® Business Integration wrapper is a read-only wrapper, and uses

the WebSphere Business Integration Adapters to access business applications. See
the IBM DB2 Information Integrator Federated Systems Guide for a list of supported

adapters and applications.

The WebSphere Business Integration wrapper provides an SQL interface to
business applications, such as those produced by SAP, Siebel, and PeopleSoft. By
using the WebSphere Business Integration wrapper, you can use the federated
systems functions to join business data from business applications with data on
other federated data sources. The WebSphere Business Integration wrapper extracts
business object definitions into a hierarchy of nicknames.

© Copyright IBM Corp. 1998, 2004 119

U
o]
o
O
)
(%)
o
=

SAP

i

—

i

»
>

1

Adapter

Adapter

Adapter

.

I

I

WebSphere MQ

Request,
Response, >
d Fault
and raut queues WebSphere Business Integration wrapper Federated
[data sources
)
N
—»| Oracle
DB2 UDB DB2 UDB
federated federated
server database
»[Table-
~— v structured
files
I saL BioRS

DB2 UDB
client

Relational
results table
or view

Figure 9. WebSphere Business Integration wrapper in the DB2® Universal Database
environment

shows the relationship between the WebSphere Business Integration
wrapper and the adapters in the DB2 Universal Database” environment. The

following steps describe the process for accessing business application data in a
federated system:

1. A user sends a query to the federated server to access a nickname that maps to
a data source such as a Siebel application.

2. The wrapper transforms the query into a business object.
3. The wrapper places the business object on a WebSphere MQ message queue.

4. The WebSphere Business Integration adapter for the particular application reads
the business object, which is the request, from the message queue.

5. The WebSphere Business Integration adapter works with the business
application to prepare a response business object.

6. The WebSphere Business Integration adapter puts the response business object
on the message queue.

7. The wrapper reads the response business object from the response queue.

120 Data Source Configuration Guide

8. The wrapper extracts the response business object into a result set based on the
relational schema that is defined with the nickname definition.

Related concepts:

“Business object definitions” on page 121]

Related tasks:

“Adding business application data sources to a federated system” on page 125|

* |“Registering the WebSphere Business Integration wrapper” on page 126|

» [“Configuring the WebSphere Business Integration Adapters” on page 122

“Registering nicknames for business application data sources” on page 129|

Related reference:

“Business application data sources — example queries” on page 155|

« |“CREATE NICKNAME statement — examples for the WebSphere Business|
Integration wrapper” on page 138

Business object definitions

A business object definition is a template from which the WebSphere® Business
Integration Adapter creates an instance of a business object. A business object
definition represents a business application data entity.

A business object is an instance of a business object definition and can be either a
flat or hierarchical structure. A flat business object contains only simple attributes.
A hierarchical business object contains one or more complex attributes. A
repository of business object definitions exists within each WebSphere Business
Integration Adapter for the particular application that is supported.

The following example shows a flat business object:

Customer
Gomez
Juanita
Apt 2C
123 Main Street
Big City
California
91234
888
1111111

The following example shows a hierarchical business object with some complex
attributes:

Contact (Parent)

1D

Customer ID

Date

Text

Authorization

Line items (there are 0 or more Line item elements)
(Child elements)
Business object 1
Business object 2
Business object 3

Chapter 8. Configuring access to business application data sources 121

Business object definitions must be generated by using the Object Discovery Agent
tool that is packaged with each WebSphere Business Integration Adapter. The
Object Discovery Agent tool generates an XML schema definition file for a business
object definition. The Object Discovery Agent tool might generate multiple schema
files if the business object that is being defined has a hierarchical structure.

The XML schema definition is a file with file type .xsd in a directory that is
specified in the WebSphere Business Integration configuration. You must generate
the business object definition before you create the nicknames for the WebSphere
Business Integration wrapper. For more information about the family of WebSphere
Business Integration Adapters, see:

[www.ibm.com /websphere/integration /wbiadapters|

To create nicknames, you use the xsd file that the Object Discovery Agent tool
creates. Nicknames provide a relational schema representation of the business
object definition. The WebSphere Business Integration wrapper maps a hierarchical
business object into a hierarchy of relational nicknames. For example, each child
business object of cardinality 'n' is mapped to a separate nickname that is linked to
the nickname of the parent business object with a foreign key constraint.

The WebSphere Business Integration business objects that are accessible to IBM®
DB2® Information Integrator map to the specific application entities in the
following table:

Table 29. Business objects and the related application entities

Business objects Application entities
Siebel Business Component
PeopleSoft Component Interface
SAP BAPI

Related concepts:

“The WebSphere Business Integration wrapper” on page 119

Related tasks:
« |“Adding business application data sources to a federated system” on page 125|

+ |[“Configuring the WebSphere Business Integration Adapters” on page 122

Related reference:

+ [“Business application data sources — example queries” on page 155|

Configuring the WebSphere Business Integration Adapters

For each business application that you want to access with SQL statements by
using the federated wrapper functions, you must install and configure a
WebSphere Business Integration Adapter. Each adapter maps to a federated server
definition.

Prerequisites:

 See the IBM DB2 Information Integrator Federated Systems Guide for a list of the
adapters that are supported.

* See the [BM WebSphere Business Integration Information Center| for installation
information for each adapter.

122 Data Source Configuration Guide

http://www.ibm.com/websphere/integration/wbiadapters/
http://publib.boulder.ibm.com/infocenter/wbihelp/index.jsp

See the [WebSphere Business Integration Adapterd documentation for help with a
specific business application.

Install all of the most current fix packs for the particular adapter that you want
to use. You can get the pertinent support information for the Adapters from the
[WebSphere Business Integration Adapters Supporf site.

* See the WebSphere MQ System Administration Guide for information about
configuring the message queues.

* See the installation information in the [BM WebSphere Business Integration|
[Information Center] for information about the adapters and the configuration
properties.

Procedure:

To configure a WebSphere Business Integration Adapter:

1. Configure the Object Discovery Agent tool and the Business Object Designer
tool, and build the business object definitions.

When you configure the business object definitions in the Business Object
Designer tool, specify the following verb values depending on the business
application:

Table 30. Verb values that are used with business applications

Business application Verb

SAP Retrieve
PeopleSoft Retrieve

Siebel RetrieveByContent

For more information about how to configure and use an Object Discovery
Agent tool, see the documentation for the adapter that you are configuring.

2. Use the Connector Configurator tool from the WebSphere Business Integration
Adapter interface to define a configuration file that contains the following
information:

* The business objects that the adapter supports.
* The configuration properties for the adapter. There are standard
configuration properties and application-specific configuration properties.

Standard configuration properties
You must customize some property values to use the adapter with
IBM DB2 Information Integrator. Some specific properties to
configure are included in the following list:

— Specify the value of the integration broker as WMQI.

— Specify the location of the metadata repository that is owned by
the adapter. The XML schema definition files, which contain the
business object definitions, are saved in this location.

— Specify the type of delivery transport as WMQI-MQ.

— Specify the name of the queue manager that manages the queues
that are used by the adapter.

— Specify the names of the eight queues that are required to run the
adapter.

Application-specific configuration properties
These properties specify values for a particular application-specific
component. The values that you provide help to establish a session

Chapter 8. Configuring access to business application data sources 123

http://www.ibm.com/websphere/integration/wbiadapters/apps/
http://www.ibm.com/software/integration/wbiadapters/support/
http://publib.boulder.ibm.com/infocenter/wbihelp/index.jsp
http://publib.boulder.ibm.com/infocenter/wbihelp/index.jsp

N

Siebel adapter

with the application. The properties also direct the processing
behavior for the application-specific components.

. Define the three WebSphere MQ message queues that the wrapper requires:

request_queue, response_queue, fault_queue.

WebSphere MQ is the messaging and transport layer between the adapter and
the wrappers.

request_queue
Delivers request messages from DB2 Information Integrator to the
adapter.

response_queue
Delivers response messages from the adapter to DB2 Information
Integrator.

fault_queue
Delivers fault messages from the adapter to DB2 Information Integrator.
The adapter places a message on this queue when it is unable to place
the message on the reply-to queue.

These queues are static queues that are used to exchange messages, including
data objects and error messages, between the adapter and the wrapper.

)

<Request queue <Request queue @ .
g g8

= 22 DB2 UDB

Response queu> 9 Response queu> o, federated

@ 82| server

e} Q_E
(] (X))
Fault queue = Fault queue B2
;E

Figure 10. The topology of the WebSphere message queues that transport information between the Siebel business
applications and the DB2 federated server

4. Define the five additional message queues that are required by the adapter:

* AdminInQueue

* AdminOutQueue

* SynchronousRequestQueue
* SynchronousResponseQueue
* DeliveryQueue

The WebSphere Business Integration adapters require five additional queues
that are used when the adapter is used with a WMQI broker instead of DB2
Information Integrator. You must create and configure these additional message
queues so that the adapter can be started.

. Define the WebSphere MQ user authorization by using either of the following

methods:
* Define the DB2 instance owner ID as part of the MQManager group.

124 Data Source Configuration Guide

¢ Ensure that the MQManager administrator sets the MCAUSER value while
creating the ServerConnection channel. The value of MCAUSER must be a
user ID that is part of the MQManager group or the Administrator group.

Related concepts:

+ |“Business object definitions” on page 121|

+ |“The WebSphere Business Integration wrapper” on page 119

Related tasks:
+ |“Adding business application data sources to a federated system” on page 125|

* [“Registering the WebSphere Business Integration wrapper” on page 126|

Related reference:

» |“CREATE NICKNAME statement — examples for the WebSphere Business|
Integration wrapper” on page 13§

Adding business applications to a federated server

Adding business application data sources to a federated
system

To configure the federated server to access business application data sources, you
must provide the federated server with information about the data sources and
objects that you want to access.

You can configure the federated server to access business application data sources
by using the DB2 Control Center or the DB2 command line. The DB2 Control
Center includes a wizard to guide you through the steps that are required to
configure the federated server.

Prerequisites:

¢ DB2 Information Integrator must be installed on a server that will act as the
federated server.

e A federated database that uses a 32 bit DB2 UDB instance must exist on the
federated server.

Procedure:

To add business application data sources to a federated system:
1. Register the WebSphere Business Integration wrapper.

2. Register the server definition.

3. Register nicknames for business application data sources.

4.

Optional: Create federated views for the WebSphere Business Integration
nicknames.

Related concepts:

* “DB2 Information Integrator installation process - overview” in the IBM DB2
Information Integrator Installation Guide for Linux, UNIX, and Windows

“Fast track to configuring your data sources” on page 55|

+ [“Business object definitions” on page 121

+ |“The WebSphere Business Integration wrapper” on page 119

Chapter 8. Configuring access to business application data sources 125

Related tasks:

* “Editing the Oracle genclntsh script and creating the libcntsh file after you
install DB2 Information Integrator (HP-UX, Linux, Solaris)” in the IBM DB2
Information Integrator Installation Guide for Linux, UNIX, and Windows

* |“Registering the WebSphere Business Integration wrapper” on page 126|

+ |“Registering the server definition for business application data sources” on page|

127

+ [“Registering nicknames for business application data sources” on page 129|

» |“Creating federated views for business application nicknames” on page 137]

* [“Checking the setup of the federated server” on page 37|

» |“Creating a federated database” on page 51|

* [“Registering the WebSphere Business Integration wrapper” on page 126|

» |“Registering the server definition for business application data sources” on page|

127

+ |“Creating federated views for business application nicknames” on page 137]

« |[“Configuring the WebSphere Business Integration Adapters” on page 122

+ |“Registering nicknames for business application data sources” on page 129

Related reference:

* “Supported operating systems for DB2 Information Integrator (32-bit)” in the
IBM DB2 Information Integrator Installation Guide for Linux, UNIX, and Windows

Registering the WebSphere Business Integration wrapper

Registering the WebSphere Business Integration wrapper is part of the larger task
of adding business application data sources to a federated server.

You must register a wrapper to access business application data sources. Wrappers
are used by federated servers to communicate with and retrieve data from data
sources. Wrappers are implemented as a set of library files. You can register the
wrapper by using the DB2 Control Center or the DB2 command line. The DB2
Control Center includes a wizard to guide you through the steps that are required
to register the wrapper.

Prerequisites:

1. Install and configure the appropriate adapter.

2. Install and configure WebSphere MQ Version 5.3 (CSD level 5).
3. Create the WebSphere MQ message queues.
4

. If the WebSphere MQ manager is not installed on the same system as DB2
Information Integrator, install the WebSphere MQ Version 5.3 (CSD level 5)
client on the same system on which you installed a DB2 Information Integrator
server instance.

Procedure:

To register a wrapper, issue the CREATE WRAPPER statement with the name of
the wrapper and the name of the wrapper library file.

For example, to register a wrapper with the name whi_wrapper on the federated
server that uses the Windows operating system, issue the following statement:

CREATE WRAPPER wbi_wrapper LIBRARY 'dbZwbi.dll';

126 Data Source Configuration Guide

The name of the wrapper library file that you specify depends on the operating
system of the federated server. See the list of WebSphere Business Integration
wrapper library files for the correct name to specify in the CREATE WRAPPER
statement.

The next task in this sequence of tasks is registering the server definitions for the
WebSphere Business Integration wrapper.

Related concepts:

“The WebSphere Business Integration wrapper” on page 119

Related tasks:
+ [“Adding business application data sources to a federated system” on page 125|

Related reference:

« |“WebSphere Business Integration wrapper library files” on page 127

+ |“WebSphere Business Integration wrapper library files” on page 127

WebSphere Business Integration wrapper library files

The following table lists the directory paths and library file names for the
WebSphere Business Integration wrapper.

When you install DB2 Information Integrator, 3 library files are added to the
directory path listed in the table. For example, if the federated server is running on
AIX, the wrapper library files added to the directory path are 1ibdb2wbi.a,
1ibdb2wbiF.a, and 1ibdb2wbil.a.

When you register a wrapper, specify only the library file name that is listed in the
table.

Table 31. WebSphere Business Integration wrapper library locations and file names

Operating system Directory path Wrapper library file
AIX /usr/opt/db2_08_01/lib/ libdb2whbi.a
Windows %DB2PATH%\bin db2wbi.dll

%DB2PATH% is the environment variable that is used to specify the directory path
where DB2 Information Integrator is installed on Windows. The default Windows
directory path is C:\Program Files\IBM\SQLLIB.

Related tasks:
* [“Registering the WebSphere Business Integration wrapper” on page 126

Registering the server definition for business application data
sources

Registering the server definition for a business object data source is part of the
larger task of adding a business object application to a federated system.

After you register the wrapper, you must register a corresponding server.

Restrictions:

Chapter 8. Configuring access to business application data sources 127

You can specify the option MQ_SVRCONN_CHANNELNAME only if you specify
the option MQ_CONN_NAME. You cannot drop the option MQ_CONN_NAME
until you drop option MQ_SVRCONN_CHANNELNAME. If MQ_CONN_NAME
is not specified, the federated system uses the value of the MQSERVER
environment variable. Set the MQSERVER environment variable in the db2dj.ini
file. If you edit the db2dj.ini file, you must stop DB2 Universal Database and then
restart it.

Procedure:

To register the server definition for a business application to the federated system,
issue the CREATE SERVER statement.

For example, to register a server definition for the Siebel business applications:

CREATE SERVER siebel_server

VERSION 2.4

WRAPPER wbi_wrapper

OPTIONS (App_Type 'siebel’,
Request_Queue 'myqueue3’,
Response_Queue 'myqueue4’,
Fault_Queue 'myqueue5',
MQ_Manager 'mymq'
MQ_REPONSE_TIMEOUT '55000',
MQ_CONN_NAME '9.30.76.151(1420) ",
MQ_SVRCONN_CHANNELNAME 'SYSTEM.DEF.SVRCONN'

)

In the example, the business application is a Siebel application, which is identified
with the APP_TYPE option. The valid values are SIEBEL, PSOFT, and SAP. The
VERSION option represents the version of the WebSphere Business Integration
Adapters that you are using. Valid values are 2.3 and 2.4. The server options must
include the queue definitions as described in the topic Configuring the WebSphere
Business Integration Adapters. The default value for MQ_RESPONSE_TIMEOUT is
set to 50000 milliseconds. A value of —1 specifies that there is no timeout limit.

The next task in this sequence of tasks is registering the nicknames for business
application data sources.

Related concepts:

* |"The WebSphere Business Integration wrapper” on page 119

Related tasks:
« |"Configuring the WebSphere Business Integration Adapters” on page 122

+ |“Adding business application data sources to a federated system” on page 125|

* |“Registering the WebSphere Business Integration wrapper” on page 126

* [“Registering nicknames for business application data sources” on page 129

Related reference:

+ |Appendix D, “Server options for federated systems,” on page 575

* ["CREATE NICKNAME statement — examples for the WebSphere Business|
Integration wrapper” on page 13§

128 Data Source Configuration Guide

Registering nicknames for business application data sources
Registering nicknames for business application data sources

Registering nicknames for business application data sources is part of the larger
task of adding business applications to a federated system.

You can register the nickname by using the DB2 Control Center or the DB2
command line. The DB2 Control Center includes a wizard to guide you through
the steps that are required to register the nickname.

You must create nicknames that correspond to the structural hierarchy of your
business object definition. Parent nicknames contain at least one child nickname.
Child nicknames correspond to the elements that contain a cardinality greater than
1 that are nested within the element for the parent nickname.

Procedure:

To register nicknames for business application data sources from the DB2
command line, issue a CREATE NICKNAME statement.

For example, to register a nickname for a Siebel business object definition that is
called sieb_ssa_Contact_Contact, issue the following statement:

CREATE NICKNAME sieb_ssa Contact_Contact NN(
Id VARCHAR(15) OPTIONS(XPATH './nsl:Id/text()",
TEMPLATE '<nsl:Id>&column</nsl:Id>"'),
FirstName VARCHAR(50) OPTIONS(XPATH './nsl:FirstName/text()',
TEMPLATE '<nsl:FirstName>&column</nsl:FirstName>'),
LastName VARCHAR(50) OPTIONS(XPATH './nsl:LastName/text()',
TEMPLATE '<nsl:LastName>&column</nsl:LastName>'),
AccountId VARCHAR(255) OPTIONS(XPATH './nsl:AccountId/text()"'),
PrimaryAccountName VARCHAR(100)

OPTIONS (XPATH './nsl:PrimaryAccountName/text()"'),
PrimaryPostalCode VARCHAR(30)

OPTIONS (XPATH './nsl:PrimaryPostalCode/text()"'),
PrimaryStreetAddress VARCHAR(200)

OPTIONS(XPATH './nsl:PrimaryStreetAddress/text()'),
SalesRep VARCHAR(255) OPTIONS(XPATH './nsl:SalesRep/text()'),
State VARCHAR(255) OPTIONS(XPATH './nsl:State/text()'))

FOR SERVER siebel_server
OPTIONS(XPATH '//nsl:sieb_ssa_Contact Contact',
TEMPLATE '<nsl:sieb_ssa_Contact_Contact>
&Id[1,1] &FirstName[0,1] &LastName[0,1]
</nsl:sieb_ssa_Contact_Contact>',
BUSOBJ_NAME 'sieb_ssa Contact Contact',
NAMESPACES 'nsl1="http://www.ibm.com/websphere/
crossworlds/2002/B0Schema/
sieb_ssa_Contact_Contact"');

The BUSOB]_NAME nickname option is the name of the XML schema definition
(XSD) file that represents the business object definition.

Required step: flagging required input column in the XSD files

The WebSphere Business Integration Adapters can return only a single business
object instance in response to a retrieve request. If a retrieve request in the form of
an input business object to the adapter identifies more than a single business object
in the application, the adapter returns only the first business object. The wrapper
issues an error that indicates it could not retrieve the full result set.

Chapter 8. Configuring access to business application data sources 129

To ensure that only a single business object is identified in response to a retrieve
request, sufficient predicates must be provided to the adapter in the request
business object. The wrapper must send all of the input predicates that are
necessary for the identification of a single business object. Therefore, the columns
must be identified in the nickname definitions by using the correct template
references. The following steps describe the actions you must perform to identify
the correct required input columns before using the DB2 Control Center to
generate nickname definitions:

1. Identify the columns in the SAP, Siebel, or PeopleSoft application repository
that represent a unique key for the application entity being mapped.

SAP

Siebel

You can use the SAP Business Object Repository to identify the
required input parameters for the BAPI that is being mapped to a
WebSphere Business Integration business object definition by the
WebSphere Business Integration Object Discovery Agent tool.

Use one of the following approaches:

* The Siebel application has a unique identifier column associated with
each Business Component and generates hexadecimal values for this
column for each instance of the Business Component. This identifier
column exists at the highest level of the Business Component
hierarchy and is already flagged by the isKey="true" specification (in
the appSpecificInfo section of the xml annotation) for the element in
the generated xsd file.

* You can use Siebel tools to identify the database columns that
represent a composite unique key for the Business Component that is
being mapped. These columns must all be at the highest or root level
of the business object hierarchy.

PeopleSoft

Use the Application Designer tool to identify the getKey columns in the
Component Interface for the highest level of the hierarchy that is being
mapped to a WebSphere Business Integration business object definition.

2. Edit the XSD files that are generated for the business object definition by the
WebSphere Business Integration Object Discovery Agent tool to flag the
required input columns. The guidelines for flagging the columns are located in
topic The TEMPLATE option at the nickname and column levels.

3. Generate the nickname DDL for the business object definition from the DB2
Control Center.

To register nicknames for business application data sources from the DB2 Control

Center:

1. Expand the Federated Database Objects folder.

o ok wN

Expand the wrapper folder for which you want to register nicknames.
Expand the Server Definitions folder.

Expand the server folder for which you want to register nicknames.
Right click the Nicknames folder and select Create.

In the Create Nicknames window, click Discover to define search criteria to

help you select objects at the data source.

7. Specify the XML schema definition file that contains the definition of the
business objects that you want DB2 Information Integrator users to access.

8. Click OK to create the nickname according to the selected XML schema
definition file.

130 Data Source Configuration Guide

The DB2 Control Center extracts the schema file into multiple create nickname
DDL statements, with the appropriate parent-child relationship definitions. The
nicknames that are created represent the business object hierarchy that is
defined in the XML schema definition file.

Optional: The next task in this sequence of tasks is creating federated views for the
business application nicknames.

Related concepts:
+ [“The TEMPLATE option at the nickname and column levels” on page 131|
» [“Business object definitions” on page 121|

» |“The WebSphere Business Integration wrapper” on page 119
* [“The TEMPLATE option at the nickname and column levels” on page 131|
* |"Nicknames and XPATH expressions” on page 136|

Related tasks:

* [“Specifying nickname columns for a nonrelational data source” on page 65|

+ [“Adding business application data sources to a federated system” on page 125|

+ |“Registering the WebSphere Business Integration wrapper” on page 126|

+ |“Creating federated views for business application nicknames” on page 137

Related reference:

+ |“Business application data sources — example queries” on page 155|

+ |“CREATE NICKNAME statement — examples for the WebSphere Business|
Integration wrapper” on page 138

* |“Query restrictions for wrappers for business applications and Web services” on|

page 151]

The TEMPLATE option at the nickname and column levels

This topic applies to the WebSphere® Business Integration wrapper and the Web
services wrapper.

The WebSphere® Business Integration wrapper and the Web services wrapper build
XML documents that are required by the WebSphere Business Integration Adapter
and the Web services environment. The wrappers need the nickname level and the
column level template fragments, which is the TEMPLATE option on the CREATE
NICKNAME statement, at the time that the nickname is created. The wrappers use
this information during the query planning and the query execution phases.

Web services wrapper

For the Web services wrapper, the required and optional attributes vary according
to the definitions in the WSDL document and how a column is derived. A column
can be derived from either an element or an attribute of an element.

e If the column is derived from an element, then the minOccurs value determines
if a column is optional.

¢ If the value of minOccurs equals 0, then the column is optional.
* If the value of minOccurs equals 1, then the column is required.

e If the column is derived from an attribute of an element, then the value of use
on the attribute determines if a column is optional.

* If an attribute contains the value use=optional, then the column is optional.

Chapter 8. Configuring access to business application data sources 131

 If an attribute contains the value use=required, then the column is required.

The following example is an attribute in a schema definition that is associated with
a column:
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="tns:ZooName"/>
<xsd:element ref="tns:Count"/>
<xsd:element ref="tns:LastModified"/>
<xsd:element maxOccurs="unbounded" minOccurs="0" ref="tns:Zookeeper"/>
</xsd:sequence>
<xsd:attribute name="id" type="xsd:string" use="optional"/>
</xsd:complexType>

WebSphere Business Integration wrapper

For the WebSphere Business Integration wrapper, the required and optional
columns vary according to the application and the associated adapter. You need to
identify the required and optional input columns by specifying the appropriate
template option values for those columns. Before you use the DB2® Control Center
to create the nicknames, you must modify the XML schema definition file to flag
the required and optional input columns.

SAP BAPI
The IBM® DB2 Control Center determines the required and optional input
columns based on the value of specific flags in the XML schema definition
(XSD) files that represent the business object definition

In the annotation section of an element at any level of the business object
hierarchy (parent or child business objects), an I prefix in the
appSpecificInfo value indicates an import parameter for the SAP BAPI to
which the business object definition maps. An E prefix indicates an export
parameter for the SAP BAPL. Some elements can be both import and
export parameters for a BAPIL. The following example shows an element
which is both an import and an export parameter:

<bx:appSpecificInfo>ICOMPANYCODE: ECOMPANYCODE</bx:appSpecificInfo>

The prefixes are generated automatically by the WebSphere Business
Integration Object Discovery Agent tool based on information that is
extracted from the SAP business object repository.

If an element that represents an import parameter (an I prefix in the
appSpecificInfo value) is specified with the attribute minOccurs=1, the DB2
Control Center identifies the element as a required input parameter and
flags the elements as a required input column in the nickname definition.
The WebSphere Business Integration Object Discovery Agent tool does not
automatically set the value of minOccurs to 1 for the required input
parameters of the SAP BAPIL. You must reference the SAP Business Object
Repository to determine all the required input parameters for the BAPI
that you want to access. Then, you must edit the corresponding elements
in the XML schema file by manually setting the attribute to minOccurs=1. If
the minOccurs attribute value for an input parameter remains as the default
value of 0, then the DB2 Control Center specifies the column as an optional
input column in the nickname hierarchy that is generated.

The following example shows an optional input column:

132 Data Source Configuration Guide

<xsd:element name="Company_code" minOccurs="0">
<xsd:annotation>
<xsd:appinfo>
<bx:boAttribute>
<bx:appSpecificInfo>ICOMPANYCODE:</bx:appSpecificInfo>
<bx:attributeInfo isForeignKey="false" isKey="true" />
</bx:boAttribute>
</xsd:appinfo>
</xsd:annotation>
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="4" />
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

The following example shows a required input column:

<xsd:element name="Company_id" minOccurs="1">
<xsd:annotation>
<xsd:appinfo>
<bx:boAttribute>
<bx:appSpecificInfo>ICOMPANYID:</bx:appSpecificInfo>
<bx:attributeInfo isForeignKey="true" isKey="true" />
</bx:boAttribute>
</xsd:appinfo>
</xsd:annotation>
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="4" />
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

The required and optional input columns for SAP business applications are
designated by the syntax shown in the following table:

Table 32. Flagging schema for SAP input column information

Flags used in SAP XSD files Required input Column reference in
column nickname template
Any element anywhere in the hierarchy Yes &columnname[1,1]

with the prefix = " and minOccurs=1

Any element anywhere in the hierarchy No &columnname[0,1]
with the prefix = " and minOccurs=0

Siebel and PeopleSoft

The DB2 Control Center determines the required and optional input
columns based on the existence and the value of the isRequired flag in the
attributelnfo section of the annotation for the element. If there is no
isRequired flag, then the column is not an input column. The WebSphere
Business Integration Object Discovery Agent tool does not automatically
generate these flags in the XSD file. You must identify the required and
optional input columns, and flag them appropriately in the XSD file before
you use the DB2 Control Center to generate the nickname DDL.

The following example shows the flags for a required input column and
optional input columns in the XSD file for a Siebel or PeopleSoft business
object definition.

Chapter 8. Configuring access to business application data sources 133

<xsd:element name="sieb_ssa_Contact_Contact">
<xsd:annotation>
<xsd:appinfo>
<bx:boDefinition version="1.0.0">
<bx:appSpecificInfo>0N=Contact;CN=Contact</bx:appSpecificInfo>
</bx:boDefinition>
</xsd:appinfo>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Id" minOccurs="0">
<xsd:annotation>
<xsd:appinfo>
<bx:boAttribute>
<bx:appSpecificInfo>FN=Id</bx:appSpecificInfo>
<bx:attributeInfo isForeignKey="false"
isKey="true" isRequired="true" />
</bx:boAttribute>
</xsd:appinfo>
</xsd:annotation>

</xsd:element>

Figure 11. Portion of a Siebel business object definition (Part 1 of 2)

<xsd:element name="FirstName" minOccurs="1">
<xsd:annotation>
<xsd:appinfo>
<bx:boAttribute>
<bx:appSpecificInfo>FN=First Name</bx:appSpecificInfo>
<bx:attributeInfo isForeignKey="false" isKey="false"
isRequired="false" />
</bx:boAttribute>
</xsd:appinfo>
</xsd:annotation>
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="50" />
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="LastName" minOccurs="1">
<xsd:annotation>
<xsd:appinfo>
<bx:boAttribute>
<bx:appSpecificInfo>FN=Last Name</bx:appSpecificInfo>
<bx:attributeInfo isForeignKey="false" isKey="false"
isRequired="false" />
</bx:boAttribute>
</xsd:appinfo>
</xsd:annotation>

Figure 11. Portion of a Siebel business object definition (Part 2 of 2)

The required and optional input columns for Siebel and PeopleSoft
business applications are designated by the syntax shown in the following

134 Data Source Configuration Guide

table:

Table 33. Flagging schema for Siebel and PeopleSoft input column information

Flags used in Siebel and Required input column Column reference in nickname
PeopleSoft XSD files template

isRequired="true" Yes &columnname[1,1]
isRequired="false" No &columnnamel0,1]

The following example shows the DDL that the DB2 Control Center creates based
on the XSD file that is shown in the figure labeled Portion of a Siebel business object
definition. The XSD file in that figure included a value of false for the isRequired

attribute.

CREATE NICKNAME sieb_ssa_Contact_Contact_ NN(

Id VARCHAR(15) OPTIONS(XPATH './nsl:Id/text()',
TEMPLATE '<nsl:Id>&column</nsl:Id>'),
FirstName VARCHAR(50) OPTIONS(XPATH './nsl:FirstName/text()",
TEMPLATE '<nsl:FirstName>&column</nsl:FirstName>'),
LastName VARCHAR(50) OPTIONS(XPATH './nsl:LastName/text()',
TEMPLATE '<nsl:LastName>&column</nsl:LastName>'),
AccountId VARCHAR(255) OPTIONS(XPATH './nsl:AccountId/text()"'),
PrimaryAccountName VARCHAR(100)
OPTIONS (XPATH './nsl:PrimaryAccountName/text()"'),
PrimaryPostalCode VARCHAR(30)
OPTIONS (XPATH './nsl:PrimaryPostalCode/text()"'),
PrimaryStreetAddress VARCHAR(200)
OPTIONS (XPATH './nsl:PrimaryStreetAddress/text()'),
SalesRep VARCHAR(255) OPTIONS(XPATH './nsl:SalesRep/text()'),
State VARCHAR(255) OPTIONS(XPATH './nsl:State/text()"'))
FOR SERVER siebel_server
OPTIONS(XPATH '//nsl:sieb_ssa_Contact_Contact',
TEMPLATE '<nsl:sieb_ssa Contact Contact>
&Id[1,1] &FirstName[0,1] &LastName[0,1]
</nsl:sieb_ssa Contact Contact>',
BUSOBJ_NAME 'sieb_ssa_Contact_Contact',
NAMESPACES 'ns1="http://www.ibm.com/websphere/
crossworlds/2002/B0Schema/sieb_ssa_Contact_Contact"');

Related concepts:

[“The WebSphere Business Integration wrapper” on page 119

“The Web services wrapper and the Web services description languagel
document” on page 381|

Related tasks:
* [“Adding business application data sources to a federated system” on page 125|

[“Adding Web services data sources to a federated server” on page 387

[“Registering nicknames for Web services data sources” on page 390

Related reference:

[“Business application data sources — example queries” on page 155|

“CREATE NICKNAME statement — examples for the WebSphere Business|
Integration wrapper” on page 138

“CREATE NICKNAME statement — examples for the Web services wrapper” on|

[page 398|

[“Messages for the Web services wrapper” on page 411

[“Web services data sources — example queries” on page 408|

Chapter 8. Configuring access to business application data sources

135

* |"Query restrictions for wrappers for business applications and Web services” on|

[page 151|

Nicknames and XPATH expressions

This topic applies to the WebSphere® Business Integration wrapper and the Web
services wrapper.

Nicknames correspond to the tree structure of your XML document data. Parent
nicknames and child nicknames correspond to the root structure and nested
elements of the data tree structure. These parent and child nicknames are
connected by primary and foreign keys that are specified with the CREATE
NICKNAME statement.

Each nickname is defined by XPath expressions that represent output values. The
WebSphere Business Integration wrapper and the Web services wrapper use XPath
expressions to establish a correspondence between the data in an XML document
and the rows in a relational table. These XPath expressions identify the values in
the XML document and determine how these values correspond to the columns of
each row. The WebSphere Business Integration wrapper and the Web services
wrapper read the XML document data only. The wrappers do not update the data.
The XPATH option contains the information to find the SOAP messages through
the SOAP envelope and SOAP body tags. The getQuote message is contained in
the SOAP envelope and body elements.

The NICKNAME option XPATH expression points to repeating tags that are in the
output element. The XPath expression determines how many or which rows will
be in the nickname. The column option XPATH expression is relative to the
NICKNAME XPATH expression. The column option XPATH identifies the values
in a row. A NICKNAME option XPATH in a child nickname is relative to a
NICKNAME option XPATH expression in a parent nickname.

When you create a nickname, you choose options that specify the association
between the nickname and the XML document. Nicknames created for WebSphere
Business Integration wrappers are associated with an XML schema definition (XSD)
document. Nicknames that are created for Web services wrappers are associated
with a Web services description language (WSDL) document.

Related concepts:

* |"What is XML?” on page 415

* |"The Web services wrapper and the Web services description language|
document” on page 381|

* |“Data associations between nicknames and XML documents” on page 422|

Related tasks:
* [“Adding XML to a federated system” on page 41§
* |"Registering nicknames for XML data sources” on page 424|

* |“Creating federated views for nonroot nicknames (XML wrapper)” on page 430

+ [“Adding business application data sources to a federated system” on page 125|

* [“Registering nicknames for business application data sources” on page 129

* [“Adding Web services data sources to a federated server” on page 387

* [“Registering nicknames for Web services data sources” on page 390)|

Related reference:

136 Data Source Configuration Guide

* |“Business application data sources — example queries” on page 155|

+ |"CREATE NICKNAME statement — examples for the WebSphere Business|
Integration wrapper” on page 13§

* |"CREATE NICKNAME statement — examples for the Web services wrapper” on|

page 398

* |“Web services data sources — example queries” on page 408|

* |“Query restrictions for wrappers for business applications and Web services” on|

[page 151|

[“CREATE NICKNAME statement - Examples for XML wrapper” on page 425|

Creating federated views for business application nicknames

Creating federated views for business application nicknames is part of the larger
task of adding business applications to a federated system.

You can define federated views over the hierarchy of nicknames that describe a
business object hierarchy. Defining federated views ensures that the queries that
join pieces of the business application nickname hierarchy run properly.

Procedure:

To create federated views for business application nicknames:

1. Define a view for each business application nickname as a join of all the
nicknames on the path to the parent nickname.

2. In the WHERE clause of the view, define the PRIMARY_KEY and
FOREIGN_KEY columns as the join predicates.

3. In the SELECT list of the view, include all of the columns of the business
application nickname except the column that is designated with the
FOREIGN_KEY nickname column option. Do not include the columns in the
SELECT list that are designated as PRIMARY_KEY in the parent nicknames
along the hierarchy

4. Include the required input columns for the hierarchy in the select list. These
columns might belong to some other nickname in the hierarchy.

The following example shows a view that is based on nicknames that are
generated from a business object. The WHERE clause contains the primary and
foreign keys that are defined in a CREATE NICKNAME statement.
CREATE VIEW viewl (
customer, bankkey, bankact, customerno)
AS (SELECT b.customer, b.bank_key, b.bank acct,
a.customerno
FROM sap_bapi_customer_getdetail2_NN a,
sap_bapi_customer_getdetail2_sap_customerbankdetail NN b
WHERE a.NN__ PKEY=b.NN__FKEY);

Queries that use view viewl must include predicate values for the required
column, such as in the following example:

SELECT * FROM viewl
WHERE customerno="'1234567890";

There are no further tasks in this sequence of tasks.

Related tasks:
+ |[“Adding business application data sources to a federated system” on page 125

Chapter 8. Configuring access to business application data sources 137

Related reference:

* |“Business application data sources — example queries” on page 155|

CREATE NICKNAME statement — examples for the WebSphere
Business Integration wrapper

Example 1: Flat business object

[Figure 12 on page 139|is a portion of an xsd file that represents a WebSphere
Business Integration business object definition for a Siebel Business Component.
The business object definition hierarchy consists of a single level, which contains
only the root business object. The DB2 Control Center creates a single relational
nickname to represent this business object definition.

In the xsd file, the ID element is flagged as a required input column by adding the
isRequired="true" flag in the annotation section for the element. The FirstName
and LastName columns are designated as optional input columns by adding the
isRequired="false" flag.

138 Data Source Configuration Guide

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<xsd:schema elementFormDefault="qualified"
targetNamesp