
IBM

DB2

Information

Integrator

Data

Source

Configuration

Guide

Version

8.2

���

IBM

DB2

Information

Integrator

Data

Source

Configuration

Guide

Version

8.2

���

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

under

“Notices”

on

page

651.

This

document

contains

proprietary

information

of

IBM.

It

is

provided

under

a

license

agreement

and

copyright

law

protects

it.

The

information

contained

in

this

publication

does

not

include

any

product

warranties,

and

any

statements

provided

in

this

manual

should

not

be

interpreted

as

such.

You

can

order

IBM

publications

online

or

through

your

local

IBM

representative:

v

To

order

publications

online,

go

to

the

IBM

Publications

Center

at

www.ibm.com/shop/publications/order

v

To

find

your

local

IBM

representative,

go

to

the

IBM

Directory

of

Worldwide

Contacts

at

www.ibm.com/planetwide

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

1998,

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide

Contents

About

this

book

.

.

.

.

.

.

.

.

.

.

. xi

Who

should

read

this

book

.

.

.

.

.

.

.

.

. xi

Conventions

and

terminology

used

in

this

book

.

. xi

How

to

read

the

syntax

diagrams

.

.

.

.

.

.

. xii

Part

1.

Concepts

and

Planning

.

.

. 1

Chapter

1.

Overview

of

a

federated

system

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Federated

systems

.

.

.

.

.

.

.

.

.

.

.

. 3

The

federated

server

.

.

.

.

.

.

.

.

.

.

.

. 4

What

is

a

data

source?

.

.

.

.

.

.

.

.

.

.

. 4

Supported

data

sources

.

.

.

.

.

.

.

.

.

.

. 5

The

federated

database

.

.

.

.

.

.

.

.

.

.

. 7

The

federated

database

system

catalog

.

.

.

.

.

. 7

The

SQL

Compiler

.

.

.

.

.

.

.

.

.

.

.

. 8

The

query

optimizer

.

.

.

.

.

.

.

.

.

.

.

. 8

Compensation

.

.

.

.

.

.

.

.

.

.

.

.

.

. 9

Pass-through

sessions

.

.

.

.

.

.

.

.

.

.

. 10

Wrappers

and

wrapper

modules

.

.

.

.

.

.

. 11

Default

wrapper

names

.

.

.

.

.

.

.

.

.

. 12

Server

definitions

and

server

options

.

.

.

.

.

. 13

User

mappings

.

.

.

.

.

.

.

.

.

.

.

.

. 14

Nicknames

and

data

source

objects

.

.

.

.

.

. 14

Valid

data

source

objects

.

.

.

.

.

.

.

.

.

. 15

Nickname

column

options

.

.

.

.

.

.

.

.

. 16

Data

type

mappings

.

.

.

.

.

.

.

.

.

.

. 17

Function

mappings

.

.

.

.

.

.

.

.

.

.

.

. 17

Index

specifications

.

.

.

.

.

.

.

.

.

.

.

. 18

How

you

interact

with

a

federated

system

.

.

.

. 18

DB2

command

line

processor

(CLP)

.

.

.

.

. 19

DB2

Command

Center

.

.

.

.

.

.

.

.

.

. 19

DB2

Control

Center

.

.

.

.

.

.

.

.

.

.

. 19

Application

programs

.

.

.

.

.

.

.

.

.

. 20

DB2

family

tools

.

.

.

.

.

.

.

.

.

.

.

. 20

Web

services

providers

.

.

.

.

.

.

.

.

. 20

Chapter

2.

Planning

for

federated

data

source

configuration

.

.

.

.

.

.

.

.

. 21

Federated

object

naming

rules

.

.

.

.

.

.

.

. 21

Preserving

case-sensitive

values

in

a

federated

system

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 22

Update

data

source

statistics

.

.

.

.

.

.

.

.

. 23

Choose

the

correct

wrapper

.

.

.

.

.

.

.

.

. 24

Methods

of

accessing

Excel

data

.

.

.

.

.

.

. 25

Plan

the

user

mappings

.

.

.

.

.

.

.

.

.

. 28

Plan

the

data

type

mappings

.

.

.

.

.

.

.

. 29

Plan

the

function

mappings

.

.

.

.

.

.

.

.

. 30

Checklist

for

planning

your

federated

system

configuration

.

.

.

.

.

.

.

.

.

.

.

.

.

. 31

Checklist:

Federated

object

naming

rules

.

.

. 31

Checklist:

Preserving

case-sensitive

values

.

.

. 31

Checklist:

Data

source

statistics

.

.

.

.

.

.

. 31

Checklist:

Data

type

mappings

.

.

.

.

.

.

. 32

Checklist:

User

mappings

.

.

.

.

.

.

.

.

. 32

Checklist:

Wrappers

.

.

.

.

.

.

.

.

.

. 32

Part

2.

Federated

server

and

database

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Chapter

3.

Checking

the

setup

of

the

federated

server

.

.

.

.

.

.

.

.

.

.

. 37

Checking

the

setup

of

the

federated

server

.

.

.

. 37

Confirming

the

link-edit

of

the

wrapper

library

files

(UNIX)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 37

Confirming

the

link-edit

of

the

wrapper

library

files

(UNIX)

.

.

.

.

.

.

.

.

.

.

.

.

. 37

Checking

the

wrapper

library

files

(UNIX)

.

.

. 38

Wrapper

library

files

.

.

.

.

.

.

.

.

.

. 39

Checking

the

link-edit

message

files

(UNIX)

.

. 40

Manually

linking

the

wrapper

libraries

to

the

data

source

client

software

.

.

.

.

.

.

.

. 41

Checking

the

FEDERATED

parameter

.

.

.

.

. 42

Chapter

4.

Creating

a

federated

database

.

.

.

.

.

.

.

.

.

.

.

.

.

. 45

Federated

database

national

language

considerations

45

Collating

sequences

in

a

federated

system

.

.

.

. 46

Setting

the

federated

database

collating

sequence

.

. 47

Unicode

support

for

federated

systems

.

.

.

.

. 48

Creating

a

federated

database

.

.

.

.

.

.

.

. 51

Part

3.

Data

sources

.

.

.

.

.

.

.

. 53

Chapter

5.

Overview

of

configuring

access

to

data

sources

.

.

.

.

.

.

. 55

Fast

track

to

configuring

your

data

sources

.

.

.

. 55

Adding

data

sources

to

a

federated

server

using

the

DB2

UDB

Control

Center

.

.

.

.

.

.

.

.

.

. 56

Configuring

multiple

federated

servers

to

access

data

sources

.

.

.

.

.

.

.

.

.

.

.

.

.

. 57

Setting

the

data

source

environment

variables

.

.

. 58

Setting

the

data

source

environment

variables

.

. 58

Restrictions

for

the

db2dj.ini

file

.

.

.

.

.

. 59

Applying

environment

variables

in

a

multi-partition

instance

configuration

.

.

.

.

. 60

Registering

wrappers

for

a

data

source

.

.

.

.

. 61

Registering

server

definitions

for

a

data

source

.

. 61

Registering

user

mappings

for

a

data

source

.

.

. 63

Registering

nicknames

for

a

data

source

.

.

.

.

. 63

Registering

nicknames

for

a

data

source

.

.

.

. 63

Creating

a

nickname

on

a

nickname

.

.

.

.

. 65

Specifying

nickname

columns

for

a

nonrelational

data

source

.

.

.

.

.

.

.

.

.

.

.

.

. 65

Optional

configuration

steps

.

.

.

.

.

.

.

.

. 66

©

Copyright

IBM

Corp.

1998,

2004

iii

||

||

||

||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Chapter

6.

Configuring

access

to

BioRS

data

sources

.

.

.

.

.

.

.

.

. 67

What

is

BioRS?

.

.

.

.

.

.

.

.

.

.

.

.

. 67

Adding

BioRS

to

a

federated

server

.

.

.

.

.

. 68

Adding

BioRS

data

sources

to

a

federated

server

68

Registering

the

custom

functions

for

the

BioRS

wrapper

.

.

.

.

.

.

.

.

.

.

.

.

.

. 69

Custom

function

table

-

BioRS

wrapper

.

.

.

. 70

Registering

the

BioRS

wrapper

.

.

.

.

.

.

. 71

BioRS

wrapper

library

files

.

.

.

.

.

.

.

. 72

Registering

the

server

definition

for

a

BioRS

data

source

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 72

Registering

user

mappings

for

BioRS

data

sources

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

Registering

nicknames

for

BioRS

data

sources

.

. 74

CREATE

NICKNAME

statement

-

Examples

for

BioRS

wrapper

.

.

.

.

.

.

.

.

.

.

.

. 75

Queries

and

custom

functions

for

BioRS

data

sources

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 77

Custom

functions

and

BioRS

queries

.

.

.

.

. 77

Equijoin

predicates

for

the

BioRS

wrapper

.

.

. 79

The

BioRS

AllText

element

.

.

.

.

.

.

.

. 81

BioRS

wrapper

-

Example

queries

.

.

.

.

.

. 81

Optimizing

BioRS

wrapper

performance

.

.

.

.

. 86

Guidelines

for

optimizing

BioRS

wrapper

performance

.

.

.

.

.

.

.

.

.

.

.

.

. 86

BioRS

statistical

information

.

.

.

.

.

.

.

. 87

Determining

BioRS

databank

cardinality

statistics

88

Updating

BioRS

nickname

cardinality

statistics

88

Updating

BioRS

column

cardinality

statistics

.

. 89

Updating

BioRS

ID

column

cardinality

.

.

. 90

Messages

for

the

BioRS

wrapper

.

.

.

.

.

.

. 91

Chapter

7.

Configuring

access

to

BLAST

data

sources

.

.

.

.

.

.

.

.

. 95

What

is

BLAST?

.

.

.

.

.

.

.

.

.

.

.

.

. 95

Adding

BLAST

to

a

federated

server

.

.

.

.

.

. 98

Adding

BLAST

data

sources

to

a

federated

server

98

Verifying

that

the

correct

version

of

the

blastall

executable

and

matrix

files

are

installed

.

.

.

. 99

Configuring

the

BLAST

daemon

.

.

.

.

.

. 100

BLAST

daemon

configuration

file

-

examples

103

Starting

the

BLAST

daemon

.

.

.

.

.

.

. 103

db2blast_daemon

command

-

syntax

and

examples

.

.

.

.

.

.

.

.

.

.

.

.

.

. 104

Registering

the

BLAST

wrapper

.

.

.

.

.

. 105

BLAST

wrapper

library

files

.

.

.

.

.

.

. 106

Registering

the

server

for

a

BLAST

data

source

106

Registering

nicknames

for

BLAST

data

sources

107

Setting

up

TurboBlast

to

work

with

the

BLAST

wrapper

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 113

Constructing

BLAST

SQL

queries

.

.

.

.

.

.

. 114

BLAST

data

source

–

Example

queries

.

.

.

.

. 115

Optimization

tips

for

the

BLAST

wrapper

.

.

.

. 116

Messages

for

the

BLAST

wrapper

.

.

.

.

.

. 116

Chapter

8.

Configuring

access

to

business

application

data

sources

.

. 119

The

WebSphere

Business

Integration

wrapper

.

. 119

Business

object

definitions

.

.

.

.

.

.

.

.

. 121

Configuring

the

WebSphere

Business

Integration

Adapters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 122

Adding

business

applications

to

a

federated

server

125

Adding

business

application

data

sources

to

a

federated

system

.

.

.

.

.

.

.

.

.

.

. 125

Registering

the

WebSphere

Business

Integration

wrapper

.

.

.

.

.

.

.

.

.

.

.

.

.

. 126

WebSphere

Business

Integration

wrapper

library

files

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 127

Registering

the

server

definition

for

business

application

data

sources

.

.

.

.

.

.

.

.

. 127

Registering

nicknames

for

business

application

data

sources

.

.

.

.

.

.

.

.

.

.

.

.

. 129

Query

restrictions

for

wrappers

for

business

applications

and

Web

services

.

.

.

.

.

.

.

. 151

Business

application

data

sources

–

example

queries

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 155

Chapter

9.

Configuring

access

to

DB2

family

data

sources

.

.

.

.

.

.

.

.

. 157

Adding

DB2

family

data

sources

to

a

federated

server

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 157

Adding

DB2

family

data

sources

to

a

federated

server

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 157

Cataloging

a

node

entry

in

the

federated

node

directory

.

.

.

.

.

.

.

.

.

.

.

.

.

. 158

Cataloging

the

remote

database

in

the

federated

system

database

directory

.

.

.

.

.

.

.

. 159

Registering

the

DB2

wrapper

.

.

.

.

.

.

. 160

DB2

wrapper

library

files

.

.

.

.

.

.

.

. 160

Registering

the

server

definitions

for

a

DB2

data

source

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 161

CREATE

SERVER

statement

-

Examples

for

DB2

wrapper

.

.

.

.

.

.

.

.

.

.

.

.

.

. 162

Creating

the

user

mapping

for

a

DB2

data

source

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 163

CREATE

USER

MAPPING

statement

-

Examples

for

DB2

wrapper

.

.

.

.

.

.

.

.

.

.

. 164

Testing

the

connection

to

the

DB2

data

source

server

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 165

Registering

nicknames

for

DB2

tables

and

views

166

CREATE

NICKNAME

statement

-

Examples

for

DB2

wrapper

.

.

.

.

.

.

.

.

.

.

.

. 166

Chapter

10.

Configuring

access

to

Documentum

data

sources

.

.

.

.

. 169

What

is

Documentum?

.

.

.

.

.

.

.

.

.

. 169

Adding

Documentum

to

a

federated

server

.

.

. 171

Adding

Documentum

data

sources

to

a

federated

server

.

.

.

.

.

.

.

.

.

.

. 171

Making

the

Documentum

client

library

available

to

the

wrapper

.

.

.

.

.

.

.

.

.

.

.

. 172

Setting

the

Documentum

environment

variables

172

Registering

the

Documentum

wrapper

.

.

.

. 174

Documentum

wrapper

library

files

.

.

.

.

. 174

Registering

the

server

for

Documentum

data

sources

.

.

.

.

.

.

.

.

.

.

.

.

.

. 175

Registering

user

mappings

for

Documentum

data

sources

.

.

.

.

.

.

.

.

.

.

.

.

. 176

iv

Data

Source

Configuration

Guide

|
||
||
||
||
|
||
||
||
||
|
||
|
||
||
|
||
|
||
||
||
||
||
||
|
||
||
||
||
||
||
||

||

|
||
||
||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Registering

nicknames

for

Documentum

data

sources

.

.

.

.

.

.

.

.

.

.

.

.

.

. 176

Queries

and

custom

functions

for

Documentum

data

sources

.

.

.

.

.

.

.

.

.

.

.

.

.

. 182

Registering

the

custom

functions

for

the

Documentum

wrapper

.

.

.

.

.

.

.

.

. 182

Documentum

data

source

–

Example

queries

187

Access

control

for

the

Documentum

wrapper

188

Messages

for

the

Documentum

wrapper

.

.

.

. 188

Chapter

11.

Configuring

access

to

Entrez

data

sources

.

.

.

.

.

.

.

. 193

What

is

Entrez?

.

.

.

.

.

.

.

.

.

.

.

. 193

Adding

Entrez

to

a

federated

server

.

.

.

.

.

. 194

Adding

Entrez

data

sources

to

a

federated

server

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 194

Registering

the

custom

functions

for

the

Entrez

wrapper

.

.

.

.

.

.

.

.

.

.

.

.

.

. 195

Custom

function

table

-

Entrez

wrapper

.

.

. 195

Registering

the

Entrez

wrapper

.

.

.

.

.

. 196

Entrez

wrapper

library

files

.

.

.

.

.

.

. 197

Registering

the

server

for

an

Entrez

data

source

197

Registering

nicknames

for

Entrez

data

sources

199

Queries

and

custom

functions

for

Entrez

data

sources

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 201

Custom

functions

and

Entrez

queries

.

.

.

. 201

Relational

predicates

for

the

Entrez

wrapper

202

Invalid

WHERE

clauses

for

the

Entrez

wrapper

203

Schema

data

element

simplification

.

.

.

.

. 203

Entrez

data

source

-

Example

queries

.

.

.

. 204

PubMed

schema

tables

.

.

.

.

.

.

.

.

. 205

Nucleotide

schema

tables

.

.

.

.

.

.

.

. 209

Messages

for

the

Entrez

wrapper

.

.

.

.

.

.

. 213

Chapter

12.

Configuring

access

to

Excel

data

sources

.

.

.

.

.

.

.

.

. 217

What

is

Excel?

.

.

.

.

.

.

.

.

.

.

.

.

. 217

Adding

Excel

to

a

federated

server

.

.

.

.

.

. 218

Adding

Excel

data

sources

to

a

federated

server

218

Registering

the

Excel

wrapper

.

.

.

.

.

.

. 219

Excel

wrapper

library

files

.

.

.

.

.

.

.

. 220

Registering

the

server

for

an

Excel

data

source

220

Registering

nicknames

for

Excel

data

sources

221

Excel

data

source

–

Example

queries

.

.

.

.

. 221

Excel

data

source

–

Sample

scenario

.

.

.

.

.

. 222

File

access

control

model

for

the

Excel

wrapper

224

Messages

for

the

Excel

wrapper

.

.

.

.

.

.

. 224

Chapter

13.

Configuring

access

to

Extended

Search

data

sources

.

.

.

. 229

What

is

Extended

Search?

.

.

.

.

.

.

.

.

. 229

Extended

Search

data

sources

.

.

.

.

.

.

. 230

How

the

Extended

Search

wrapper

works

.

.

. 230

Extended

Search

nicknames

.

.

.

.

.

.

.

. 232

Extended

Search

vertical

tables

.

.

.

.

.

.

. 233

Adding

Extended

Search

to

a

federated

server

.

. 235

Adding

Extended

Search

data

sources

to

a

federated

server

.

.

.

.

.

.

.

.

.

.

. 235

Registering

the

Extended

Search

wrapper

.

.

. 236

Extended

Search

wrapper

library

files

.

.

.

. 236

Registering

the

server

for

Extended

Search

data

sources

.

.

.

.

.

.

.

.

.

.

.

.

.

. 237

Registering

user

mappings

for

Extended

Search

data

sources

.

.

.

.

.

.

.

.

.

.

.

.

. 238

Registering

nicknames

for

Extended

Search

data

sources

.

.

.

.

.

.

.

.

.

.

.

.

.

. 239

Registering

the

custom

functions

for

the

Extended

Search

wrapper

.

.

.

.

.

.

.

. 240

Querying

Extended

Search

data

sources

.

.

.

. 240

Extended

Search

wrapper

-

Query

guidelines

240

Extended

Search

wrapper

-

Example

queries

242

Extended

Search

wrapper

-

Generalized

query

language

.

.

.

.

.

.

.

.

.

.

.

.

.

. 244

Messages

for

the

Extended

Search

wrapper

.

.

. 246

Chapter

14.

Configuring

access

to

HMMER

data

sources

.

.

.

.

.

.

.

. 251

What

is

HMMER?

.

.

.

.

.

.

.

.

.

.

.

. 251

Adding

HMMER

to

a

federated

server

.

.

.

.

. 254

Adding

HMMER

data

sources

to

a

federated

server

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 254

Verifying

the

version

of

the

HMMER

program

executable

.

.

.

.

.

.

.

.

.

.

.

.

. 255

Configuring

the

HMMER

daemon

.

.

.

.

. 255

HMMER

daemon

configuration

file

-

examples

258

Starting

the

HMMER

daemon

.

.

.

.

.

.

. 259

db2hmmer_daemon

command

-

syntax

and

examples

.

.

.

.

.

.

.

.

.

.

.

.

.

. 260

Registering

the

HMMER

wrapper

.

.

.

.

. 262

HMMER

wrapper

library

files

.

.

.

.

.

.

. 262

Registering

the

server

definition

for

a

HMMER

data

source

.

.

.

.

.

.

.

.

.

.

.

.

. 263

CREATE

SERVER

statement

-

examples

for

HMMER

wrapper

.

.

.

.

.

.

.

.

.

.

. 263

Registering

nicknames

for

HMMER

data

sources

265

Fixed

columns

for

HMMER

nicknames

.

.

.

. 265

CREATE

NICKNAME

statement

-

Example

for

HMMER

wrapper

.

.

.

.

.

.

.

.

.

.

. 269

HMMER

data

source

–

complete

example

.

.

. 270

Construct

new

HMMER

queries

with

samples

.

. 271

Messages

for

the

HMMER

wrapper

.

.

.

.

.

. 273

Chapter

15.

Configuring

access

to

Informix

data

sources

.

.

.

.

.

.

.

. 275

Adding

Informix

to

a

federated

server

.

.

.

.

. 275

Adding

Informix

data

sources

to

federated

servers

.

.

.

.

.

.

.

.

.

.

.

.

.

. 275

Setting

up

and

testing

the

Informix

client

configuration

file

.

.

.

.

.

.

.

.

.

.

. 276

Setting

the

Informix

environment

variables

.

. 277

Registering

the

Informix

wrapper

.

.

.

.

. 280

Informix

wrapper

library

files

.

.

.

.

.

.

. 281

Registering

the

server

definitions

for

an

Informix

data

source

.

.

.

.

.

.

.

.

.

. 282

CREATE

SERVER

statement

-

Examples

for

Informix

wrapper

.

.

.

.

.

.

.

.

.

.

. 283

Creating

the

user

mapping

for

an

Informix

data

source

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 284

CREATE

USER

MAPPING

statement

-

Examples

for

Informix

wrapper

.

.

.

.

.

.

.

.

.

. 285

Contents

v

||

||

||

|

|

|

|

|

|

|

Testing

the

connection

to

the

Informix

server

286

Registering

nicknames

for

Informix

tables,

views,

and

synonyms

.

.

.

.

.

.

.

.

. 286

CREATE

NICKNAME

statement

-

Examples

for

Informix

wrapper

.

.

.

.

.

.

.

.

.

.

. 287

Tuning

and

troubleshooting

the

configuration

to

Informix

data

sources

.

.

.

.

.

.

.

.

.

. 288

Improving

performance

by

setting

the

FOLD_ID

and

FOLD_PW

server

options

.

.

.

.

.

.

. 288

Chapter

16.

Configuring

access

to

Microsoft

SQL

Server

data

sources

.

. 291

Adding

Microsoft

SQL

Server

to

a

federated

server

291

Adding

Microsoft

SQL

Server

data

sources

to

a

federated

server

.

.

.

.

.

.

.

.

.

.

. 291

Preparing

the

federated

server

to

access

Microsoft

SQL

Server

data

sources

.

.

.

.

. 292

Setting

the

Microsoft

SQL

Server

environment

variables

.

.

.

.

.

.

.

.

.

.

.

.

.

. 293

Registering

the

Microsoft

SQL

Server

wrapper

295

Microsoft

SQL

Server

wrapper

library

files

.

. 296

Registering

the

server

definitions

for

a

Microsoft

SQL

Server

data

source

.

.

.

.

.

.

.

.

. 297

CREATE

SERVER

statement

-

Examples

for

Microsoft

SQL

Server

wrapper

.

.

.

.

.

. 298

Creating

a

user

mapping

for

a

Microsoft

SQL

Server

data

source

.

.

.

.

.

.

.

.

.

.

. 299

CREATE

USER

MAPPING

statement

-

Examples

for

Microsoft

SQL

Server

wrapper

.

.

.

.

. 300

Testing

the

connection

to

the

Microsoft

SQL

Server

remote

server

.

.

.

.

.

.

.

.

.

. 301

Registering

nicknames

for

Microsoft

SQL

Server

tables

and

views

.

.

.

.

.

.

.

.

.

.

. 302

CREATE

NICKNAME

statement

-

Examples

for

Microsoft

SQL

Server

wrapper

.

.

.

.

.

. 303

Tuning

and

troubleshooting

the

configuration

to

Microsoft

SQL

Server

data

sources

.

.

.

.

.

. 303

Obtaining

ODBC

traces

.

.

.

.

.

.

.

.

. 303

Chapter

17.

Configuring

access

to

ODBC

data

sources

.

.

.

.

.

.

.

.

. 305

Adding

ODBC

to

a

federated

system

.

.

.

.

. 305

Adding

ODBC

data

sources

to

a

federated

server

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 305

Preparing

the

federated

server

to

access

data

sources

through

ODBC

.

.

.

.

.

.

.

.

. 306

Registering

the

ODBC

wrapper

.

.

.

.

.

. 307

ODBC

wrapper

library

files

.

.

.

.

.

.

. 308

CREATE

WRAPPER

statement

-

Examples

for

ODBC

wrapper

.

.

.

.

.

.

.

.

.

.

.

. 309

Registering

the

server

definitions

for

an

ODBC

data

source

.

.

.

.

.

.

.

.

.

.

.

.

. 309

CREATE

SERVER

statement

-

Examples

of

ODBC

wrapper

.

.

.

.

.

.

.

.

.

.

.

. 310

Creating

a

user

mapping

for

an

ODBC

data

source

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 311

CREATE

USER

MAPPING

statement

-

Examples

for

ODBC

wrapper

.

.

.

.

.

.

.

.

.

. 312

Testing

the

connection

to

the

ODBC

data

source

server

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 313

Registering

nicknames

for

ODBC

data

source

tables

and

views

.

.

.

.

.

.

.

.

.

.

. 314

CREATE

NICKNAME

statement

-

Examples

for

ODBC

wrapper

.

.

.

.

.

.

.

.

.

.

.

. 315

Accessing

Excel

data

using

the

ODBC

wrapper

.

. 316

Alter

the

default

data

type

mappings

.

.

.

. 318

ALTER

SERVER

statement

-

Examples

for

ODBC

wrapper

to

access

Excel

data

.

.

.

.

. 318

Tuning

and

troubleshooting

the

configuration

to

ODBC

data

sources

.

.

.

.

.

.

.

.

.

.

. 319

Obtaining

ODBC

traces

.

.

.

.

.

.

.

.

. 319

Chapter

18.

Configuring

access

to

OLE

DB

data

sources

.

.

.

.

.

.

.

. 321

Adding

OLE

DB

data

sources

to

a

federated

server

321

Registering

the

OLE

DB

wrapper

.

.

.

.

.

.

. 322

OLE

DB

wrapper

library

files

.

.

.

.

.

.

.

. 323

Registering

the

server

definitions

for

an

OLE

DB

data

source

.

.

.

.

.

.

.

.

.

.

.

.

.

. 323

CREATE

SERVER

statement

-

Examples

for

OLE

DB

wrapper

.

.

.

.

.

.

.

.

.

.

.

.

.

. 324

Creating

a

user

mapping

for

an

OLE

DB

data

source

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 324

CREATE

USER

MAPPING

statement

-

Examples

for

OLE

DB

wrapper

.

.

.

.

.

.

.

.

.

.

. 325

Chapter

19.

Configuring

access

to

Oracle

data

sources

.

.

.

.

.

.

.

. 327

Adding

Oracle

to

a

federated

system

.

.

.

.

. 327

Adding

Oracle

data

sources

to

a

federated

server

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 327

Setting

the

Oracle

environment

variables

.

.

. 328

Setting

up

and

testing

the

Oracle

client

configuration

file

.

.

.

.

.

.

.

.

.

.

. 331

Registering

the

Oracle

wrapper

.

.

.

.

.

. 332

Oracle

wrapper

library

files

.

.

.

.

.

.

. 333

Registering

the

server

definitions

for

an

Oracle

data

source

.

.

.

.

.

.

.

.

.

.

.

.

. 334

CREATE

SERVER

statement

-

Examples

for

Oracle

wrapper

.

.

.

.

.

.

.

.

.

.

.

. 334

Creating

the

user

mappings

for

an

Oracle

data

source

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 335

CREATE

USER

MAPPING

statement

-

Examples

for

Oracle

wrapper

.

.

.

.

.

.

.

.

.

. 336

Testing

the

connection

to

the

Oracle

server

.

. 337

Registering

nicknames

for

Oracle

tables

and

views

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 338

CREATE

NICKNAME

statement

-

Examples

for

Oracle

wrapper

.

.

.

.

.

.

.

.

.

.

.

. 339

Tuning

and

troubleshooting

the

configuration

to

Oracle

data

sources

.

.

.

.

.

.

.

.

.

.

. 339

Connectivity

problems

.

.

.

.

.

.

.

.

. 339

Chapter

20.

Configuring

access

to

Sybase

data

sources

.

.

.

.

.

.

.

. 341

Adding

Sybase

to

a

federated

system

.

.

.

.

. 341

Adding

Sybase

data

sources

to

a

federated

server

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 341

Setting

the

Sybase

environment

variables

.

.

. 342

vi

Data

Source

Configuration

Guide

||

||

|

|

|

|

|

|

|

|

|

|

|

Setting

up

and

testing

the

Sybase

client

configuration

file

.

.

.

.

.

.

.

.

.

.

. 344

Registering

the

Sybase

wrapper

.

.

.

.

.

. 345

Sybase

wrapper

library

files

.

.

.

.

.

.

. 346

Registering

the

server

definitions

for

a

Sybase

data

source

.

.

.

.

.

.

.

.

.

.

.

.

. 347

CREATE

SERVER

statement

-

Examples

for

Sybase

wrapper

.

.

.

.

.

.

.

.

.

.

. 348

Creating

a

user

mapping

for

a

Sybase

data

source

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 349

CREATE

USER

MAPPING

statement

-

Examples

for

Sybase

wrapper

.

.

.

.

.

.

.

.

.

. 350

Testing

the

connection

to

the

Sybase

server

.

. 351

Registering

nicknames

for

Sybase

tables

and

views

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 352

CREATE

NICKNAME

statement

-

Examples

for

Sybase

wrapper

.

.

.

.

.

.

.

.

.

.

. 353

Tuning

and

troubleshooting

the

configuration

to

Sybase

data

sources

.

.

.

.

.

.

.

.

.

.

. 353

Resolving

the

sp_helpindex

error

.

.

.

.

.

. 353

Chapter

21.

Configuring

access

to

Table-structured

file

data

sources

.

. 355

What

are

table-structured

files?

.

.

.

.

.

.

. 355

Attributes

of

table-structured

files

.

.

.

.

.

. 355

Sorted

files

.

.

.

.

.

.

.

.

.

.

.

.

. 355

Unsorted

files

.

.

.

.

.

.

.

.

.

.

.

. 356

How

DB2

Information

Integrator

works

with

table-structured

files

.

.

.

.

.

.

.

.

.

.

. 356

Adding

table-structured

files

to

a

federated

system

357

Adding

table-structured

file

data

sources

to

a

federated

server

.

.

.

.

.

.

.

.

.

.

. 357

Registering

the

table-structured

file

wrapper

358

Table-structured

files

wrapper

library

files

.

.

. 358

Registering

the

server

for

table-structured

files

359

Registering

nicknames

for

table-structured

files

359

CREATE

NICKNAME

statement

-

Examples

for

table-structured

file

wrapper

.

.

.

.

.

.

. 360

File

access

control

model

for

the

table-structured

file

wrapper

.

.

.

.

.

.

.

.

.

.

.

.

.

. 361

Optimization

tips

and

considerations

for

the

table-structured

file

wrapper

.

.

.

.

.

.

.

. 361

Messages

for

the

table-structured

file

wrapper

.

. 362

Chapter

22.

Configuring

access

to

Teradata

data

sources

.

.

.

.

.

.

. 365

Adding

Teradata

to

a

federated

system

.

.

.

.

. 365

Adding

Teradata

data

sources

to

a

federated

server

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 365

Testing

the

connection

to

the

Teradata

server

366

Verifying

that

the

Teradata

library

is

enabled

for

run-time

linking

(AIX)

.

.

.

.

.

.

.

.

. 367

Setting

the

Teradata

environment

variables

.

. 368

Registering

the

Teradata

wrapper

.

.

.

.

.

. 370

Teradata

wrapper

library

files

.

.

.

.

.

.

. 371

Registering

the

server

definitions

for

a

Teradata

data

source

.

.

.

.

.

.

.

.

.

.

.

.

. 371

CREATE

SERVER

statement

-

Examples

for

Teradata

wrapper

.

.

.

.

.

.

.

.

.

.

. 373

Creating

the

user

mapping

for

a

Teradata

data

source

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 373

CREATE

USER

MAPPING

statement

-

Examples

for

Teradata

wrapper

.

.

.

.

.

.

.

.

.

. 374

Testing

the

connection

from

the

federated

server

to

the

Teradata

server

.

.

.

.

.

.

.

.

. 375

Teradata

nicknames

on

federated

servers

.

.

. 376

Registering

nicknames

for

Teradata

tables

and

views

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 377

CREATE

NICKNAME

statement

-

Examples

for

Teradata

wrapper

.

.

.

.

.

.

.

.

.

.

. 377

Tuning

and

troubleshooting

the

configuration

to

Teradata

data

sources

.

.

.

.

.

.

.

.

.

.

. 378

UPDATE

or

DELETE

operation

errors

on

nicknames

.

.

.

.

.

.

.

.

.

.

.

.

. 378

Tuning

and

disabling

Teradata

access

logging

378

Enabling

run-time

linking

for

libcliv2.so

(AIX)

378

Chapter

23.

Configuring

access

to

Web

services

data

sources

.

.

.

.

. 381

The

Web

services

wrapper

and

the

Web

services

description

language

document

.

.

.

.

.

.

. 381

Adding

Web

services

to

a

federated

system

.

.

. 387

Adding

Web

services

data

sources

to

a

federated

server

.

.

.

.

.

.

.

.

.

.

. 387

Registering

the

Web

services

wrapper

.

.

.

. 388

Web

services

wrapper

library

files

.

.

.

.

. 388

Registering

the

server

definition

for

Web

services

data

sources

.

.

.

.

.

.

.

.

.

. 389

Registering

nicknames

for

Web

services

data

sources

.

.

.

.

.

.

.

.

.

.

.

.

.

. 390

Query

restrictions

for

wrappers

for

business

applications

and

Web

services

.

.

.

.

.

.

.

. 404

Web

services

data

sources

–

example

queries

.

.

. 408

Web

services

wrapper

security

.

.

.

.

.

.

.

. 411

Messages

for

the

Web

services

wrapper

.

.

.

.

. 411

Chapter

24.

Configuring

access

to

XML

data

sources

.

.

.

.

.

.

.

.

. 415

What

is

XML?

.

.

.

.

.

.

.

.

.

.

.

.

. 415

Adding

XML

to

a

federated

system

.

.

.

.

.

. 418

Adding

XML

to

a

federated

system

.

.

.

.

. 418

Registering

the

XML

wrapper

.

.

.

.

.

.

. 419

XML

wrapper

library

files

.

.

.

.

.

.

.

. 419

Registering

the

server

for

an

XML

data

source

420

Registering

nicknames

for

XML

data

sources

422

Creating

federated

views

for

nonroot

nicknames

(XML

wrapper)

.

.

.

.

.

.

.

.

.

.

.

. 430

Optimization

tips

for

the

XML

cost

model

facility

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 430

XML

data

source

-

Example

queries

.

.

.

.

.

. 432

Messages

for

the

XML

wrapper

.

.

.

.

.

.

. 433

Part

4.

User-defined

functions

.

.

. 441

Chapter

25.

Life

sciences

user-defined

functions

.

.

.

.

.

.

.

.

.

.

.

.

. 443

Life

sciences

user-defined

functions

-

overview

.

. 443

Life

sciences

user-defined

functions

-

overview

443

Contents

vii

||

||

||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Life

sciences

user-defined

function

library

files

443

Life

sciences

user-defined

functions

by

functional

category

.

.

.

.

.

.

.

.

.

. 444

Registering

life

sciences

user-defined

functions

445

Disabling

the

life

sciences

user-defined

functions

446

Back

translation

user-defined

functions

.

.

.

.

. 447

Back

translation

user-defined

functions

-

overview

.

.

.

.

.

.

.

.

.

.

.

.

.

. 447

LSPep2AmbNuc

user-defined

function

.

.

.

. 448

LSPep2AmbNuc

user-defined

function

-

example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 449

LSPep2AmbNuc

user-defined

function

-

error

messages

.

.

.

.

.

.

.

.

.

.

.

.

.

. 450

LSPep2ProbNuc

user-defined

function

.

.

.

. 451

LSPep2ProbNuc

user-defined

function

-

example

451

LSPep2ProbNuc

user-defined

function

-

error

messages

.

.

.

.

.

.

.

.

.

.

.

.

.

. 452

Defline

parsing

user-defined

functions

.

.

.

.

. 453

Defline

parsing

user-defined

functions

-

overview

.

.

.

.

.

.

.

.

.

.

.

.

.

. 453

LSDeflineParse

user-defined

functions

.

.

.

. 454

LSDeflineParse

user-defined

function

—

examples

.

.

.

.

.

.

.

.

.

.

.

.

.

. 456

Generalized

pattern

matching

user-defined

functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 459

LSPatternMatch

user-defined

function

.

.

.

. 459

LSPatternMatch

user-defined

function

–

example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 460

LSPrositePattern

user-defined

function

.

.

.

. 462

LSPrositePattern

user-defined

function

-

example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 462

Regular

expression

support

.

.

.

.

.

.

.

. 463

GeneWise

user-defined

functions

.

.

.

.

.

.

. 463

Linking

to

GeneWise

.

.

.

.

.

.

.

.

.

. 463

LSGeneWise

user-defined

function

.

.

.

.

. 464

LSGeneWise

user-defined

function

–

example

465

Motifs

user-defined

functions

.

.

.

.

.

.

.

. 466

LSBarCode

user-defined

function

.

.

.

.

.

. 466

LSBarCode

user-defined

function

—

example

466

LSMultiMatch

user-defined

function

.

.

.

.

. 468

LSMultiMatch

user-defined

function

-

example

468

LSMultiMatch3

user-defined

function

.

.

.

. 469

LSMultiMatch3

user-defined

function

–

example

470

Reverse

user-defined

functions

.

.

.

.

.

.

. 471

LSRevComp

user-defined

function

.

.

.

.

. 471

LSRevComp

user-defined

function—example

472

LSRevNuc

user-defined

function

.

.

.

.

.

. 473

LSRevNuc

user-defined

function

-

example

.

. 473

LSRevPep

user-defined

function

.

.

.

.

.

. 474

LSRevPep

user-defined

function

-

example

.

. 474

Translate

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 475

LSNuc2Pep

user-defined

function

.

.

.

.

. 475

LSNuc2Pep

user-defined

function

–

example

476

LSTransAllFrames

user-defined

function

.

.

. 477

LSTransAllFrames

user-defined

function

-

example

.

.

.

.

.

.

.

.

.

.

.

.

.

. 477

Codon

frequency

table

format

.

.

.

.

.

.

.

. 478

Codon

frequency

table

-

example

.

.

.

.

.

.

. 479

Translation

table

format

.

.

.

.

.

.

.

.

.

. 480

Translation

table

-

example

.

.

.

.

.

.

.

.

. 480

Chapter

26.

KEGG

user-defined

functions

.

.

.

.

.

.

.

.

.

.

.

.

. 483

KEGG

user-defined

functions

-

overview

.

.

.

. 483

KEGG

user-defined

functions

by

functional

category

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 483

Function

arguments

for

the

KEGG

user-defined

functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 485

Registering

the

KEGG

user-defined

functions

.

.

. 486

Pathway

database

functions

.

.

.

.

.

.

.

. 487

GenesByPathwyS

user-defined

function

.

.

. 488

GenesByPathwyT

user-defined

function

.

.

. 488

CompoundsByPathwyS

user-defined

function

489

CompoundsByPathwyT

user-defined

function

490

EnzymesByPathwyS

user-defined

function

.

. 491

EnzymesByPathwyT

user-defined

function

.

. 491

PathwysByGenesS

user-defined

function

.

.

. 492

PathwysByGenesT

user-defined

function

.

.

. 493

PathwysByCompndsS

user-defined

function

.

. 493

PathwysByCompndsT

user-defined

function

.

. 494

PathwysByEnzymesS

user-defined

function

.

. 495

PathwysByEnzymesT

user-defined

function

.

. 496

Sequence

Similarity

Database

functions

.

.

.

.

. 497

Columns

that

are

returned

from

SSDB

database

queries

(table

functions)

.

.

.

.

.

.

.

.

. 497

AllNbrsByGeneS

user-defined

function

.

.

.

. 498

AllNbrsByGeneT

user-defined

function

.

.

.

. 499

BstBstNbrsByGeneS

user-defined

function

.

.

. 500

BstBstNbrsByGeneT

user-defined

function

.

.

. 501

BestNbrsByGeneS

user-defined

function

.

.

. 502

BestNbrsByGeneT

user-defined

function

.

.

. 503

RevBestNbrsByGeneS

user-defined

function

.

. 504

RevBestNbrsByGeneT

user-defined

function

.

. 505

ParalogsByGeneS

user-defined

function

.

.

. 506

ParalogsByGeneT

user-defined

function

.

.

. 507

BestHmlgsByGenesS

user-defined

function

.

. 508

BestHmlgsByGenesT

user-defined

function

.

. 509

BstBstHmlgByGenesS

user-defined

function

.

. 509

BstBstHmlgByGenesT

user-defined

function

.

. 510

ScoreBetweenGenesS

user-defined

function

.

. 511

DefinitionsByGeneS

user-defined

function

.

.

. 511

GenesByMotifsT

user-defined

function

.

.

.

. 512

Disabling

the

KEGG

user-defined

functions

.

.

. 513

Part

5.

Reference

.

.

.

.

.

.

.

.

. 515

Chapter

27.

Data

types

supported

for

nonrelational

data

sources

.

.

.

.

. 517

Data

types

supported

for

nonrelational

data

sources

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 517

Data

types

supported

by

the

BioRS

wrapper

517

Data

types

supported

by

the

BLAST

wrapper

517

Data

types

supported

by

the

Documentum

wrapper

.

.

.

.

.

.

.

.

.

.

.

.

.

. 518

Data

types

supported

by

the

Entrez

wrapper

518

Data

types

supported

by

the

Excel

wrapper

.

. 518

Data

types

supported

by

the

Extended

Search

wrapper

.

.

.

.

.

.

.

.

.

.

.

.

.

. 519

Data

types

supported

by

the

HMMER

wrapper

519

Data

types

supported

by

the

table-structured

file

wrapper

.

.

.

.

.

.

.

.

.

.

.

.

. 519

viii

Data

Source

Configuration

Guide

|
||

|
||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Data

types

supported

by

the

Web

services

wrapper

.

.

.

.

.

.

.

.

.

.

.

.

.

. 520

Data

types

supported

by

the

WebSphere

Business

Integration

wrapper

.

.

.

.

.

.

. 520

Data

types

supported

by

the

XML

wrapper

.

. 521

Chapter

28.

Altering

nicknames

.

.

. 523

Altering

a

nickname

.

.

.

.

.

.

.

.

.

.

. 523

Restrictions

on

altering

nicknames

.

.

.

.

.

. 524

Altering

nickname

column

names

.

.

.

.

.

. 526

Altering

nickname

options

.

.

.

.

.

.

.

.

. 527

Altering

nickname

column

options

.

.

.

.

.

. 528

Altering

a

local

type

for

a

data

source

object

.

.

. 530

Altering

a

local

type

for

a

data

source

object

–

examples

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 531

Chapter

29.

DDL

command

reference

535

BioRS

DDL

reference

information

.

.

.

.

.

.

. 535

CREATE

SERVER

statement

options

-

BioRS

wrapper

.

.

.

.

.

.

.

.

.

.

.

.

.

. 535

CREATE

USER

MAPPING

statement

options

-

BioRS

wrapper

.

.

.

.

.

.

.

.

.

.

.

. 536

CREATE

NICKNAME

statement

syntax

-

BioRS

wrapper

.

.

.

.

.

.

.

.

.

.

.

.

.

. 536

BLAST

DDL

reference

information

.

.

.

.

.

. 538

CREATE

SERVER

statement

arguments

-

BLAST

wrapper

.

.

.

.

.

.

.

.

.

.

.

.

.

. 538

CREATE

NICKNAME

statement

syntax

-

BLAST

wrapper

.

.

.

.

.

.

.

.

.

.

. 539

Documentum

DDL

reference

information

.

.

.

. 540

CREATE

SERVER

statement

arguments

and

options

-

Documentum

wrapper

.

.

.

.

.

. 540

CREATE

USER

MAPPING

statement

options

-

Documentum

wrapper

.

.

.

.

.

.

.

.

. 541

CREATE

NICKNAME

statement

syntax

-

Documentum

wrapper

.

.

.

.

.

.

.

.

. 541

Excel

DDL

reference

information

.

.

.

.

.

.

. 544

CREATE

SERVER

statement

arguments

-

Excel

wrapper

.

.

.

.

.

.

.

.

.

.

.

.

.

. 544

CREATE

NICKNAME

statement

syntax

-

Excel

wrapper

.

.

.

.

.

.

.

.

.

.

.

.

.

. 544

Extended

Search

DDL

reference

information

.

.

. 546

CREATE

WRAPPER

statement

syntax

-

Extended

Search

wrapper

.

.

.

.

.

.

.

. 546

CREATE

SERVER

statement

syntax

-

Extended

Search

wrapper

.

.

.

.

.

.

.

.

.

.

.

. 547

CREATE

USER

MAPPING

statement

syntax

-

Extended

Search

wrapper

.

.

.

.

.

.

.

. 548

CREATE

NICKNAME

statement

syntax

-

Extended

Search

wrapper

.

.

.

.

.

.

.

. 548

CREATE

FUNCTION

statement

syntax

-

Extended

Search

wrapper

.

.

.

.

.

.

.

. 551

Entrez

DDL

reference

information

.

.

.

.

.

. 552

CREATE

SERVER

statement

arguments

-

Entrez

wrapper

.

.

.

.

.

.

.

.

.

.

.

.

.

. 552

CREATE

NICKNAME

statement

options

-

Entrez

wrapper

.

.

.

.

.

.

.

.

.

.

.

. 552

Table-structured

files

DDL

reference

information

552

CREATE

NICKNAME

statement

syntax

-

Table-structured

file

wrapper

.

.

.

.

.

.

. 552

XML

DDL

reference

information

.

.

.

.

.

.

. 557

CREATE

NICKNAME

statement

syntax

-

XML

wrapper

.

.

.

.

.

.

.

.

.

.

.

.

.

. 557

Appendix

A.

Views

in

the

global

catalog

table

containing

federated

information

.

.

.

.

.

.

.

.

.

.

.

. 563

Appendix

B.

Wrapper

options

for

federated

systems

.

.

.

.

.

.

.

.

. 567

Appendix

C.

Valid

server

types

in

SQL

statements

.

.

.

.

.

.

.

.

.

.

.

. 569

BioRS

wrapper

.

.

.

.

.

.

.

.

.

.

.

.

. 569

BLAST

wrapper

.

.

.

.

.

.

.

.

.

.

.

. 569

CTLIB

wrapper

.

.

.

.

.

.

.

.

.

.

.

.

. 570

Documentum

wrapper

.

.

.

.

.

.

.

.

.

. 570

DRDA

wrapper

.

.

.

.

.

.

.

.

.

.

.

.

. 570

Entrez

wrapper

.

.

.

.

.

.

.

.

.

.

.

.

. 571

Excel

wrapper

.

.

.

.

.

.

.

.

.

.

.

.

. 571

Extended

Search

wrapper

.

.

.

.

.

.

.

.

. 571

HMMER

wrapper

.

.

.

.

.

.

.

.

.

.

.

. 571

Informix

wrapper

.

.

.

.

.

.

.

.

.

.

.

. 571

MSSQLODBC3

wrapper

.

.

.

.

.

.

.

.

.

. 572

NET8

wrapper

.

.

.

.

.

.

.

.

.

.

.

.

. 572

ODBC

wrapper

.

.

.

.

.

.

.

.

.

.

.

.

. 572

OLE

DB

wrapper

.

.

.

.

.

.

.

.

.

.

.

. 572

Table-structured

files

wrapper

.

.

.

.

.

.

.

. 572

Teradata

wrapper

.

.

.

.

.

.

.

.

.

.

.

. 572

Web

services

wrapper

.

.

.

.

.

.

.

.

.

. 573

WebSphere

Business

Integration

wrapper

.

.

.

. 573

XML

wrapper

.

.

.

.

.

.

.

.

.

.

.

.

. 573

Appendix

D.

Server

options

for

federated

systems

.

.

.

.

.

.

.

.

. 575

Appendix

E.

User

mapping

options

for

federated

systems

.

.

.

.

.

.

.

.

. 591

Appendix

F.

Nickname

options

for

federated

systems

.

.

.

.

.

.

.

.

. 593

Appendix

G.

Nickname

column

options

for

federated

systems

.

.

.

. 603

Appendix

H.

Default

forward

data

type

mappings

.

.

.

.

.

.

.

.

.

.

.

.

. 611

DB2

for

z/OS

and

OS/390

data

sources

.

.

.

. 611

DB2

for

iSeries

data

sources

.

.

.

.

.

.

.

. 612

DB2

Server

for

VM

and

VSE

data

sources

.

.

.

. 613

DB2

for

Linux,

UNIX,

and

Windows

data

sources

614

Informix

data

sources

.

.

.

.

.

.

.

.

.

. 616

Microsoft

SQL

Server

data

sources

.

.

.

.

.

. 617

ODBC

data

sources

.

.

.

.

.

.

.

.

.

.

. 620

Oracle

NET8

data

sources

.

.

.

.

.

.

.

.

. 621

Sybase

data

sources

.

.

.

.

.

.

.

.

.

.

. 622

Teradata

data

sources

.

.

.

.

.

.

.

.

.

.

. 623

Contents

ix

|
||
|
||
||

||

||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Appendix

I.

Default

reverse

data

type

mappings

.

.

.

.

.

.

.

.

.

.

.

.

. 627

DB2

for

z/OS

and

OS/390

data

sources

.

.

.

. 628

DB2

for

iSeries

data

sources

.

.

.

.

.

.

.

. 629

DB2

for

VM

and

VSE

data

sources

.

.

.

.

.

. 630

DB2

for

Linux,

UNIX,

and

Windows

data

sources

631

Informix

data

sources

.

.

.

.

.

.

.

.

.

. 632

Microsoft

SQL

Server

data

sources

.

.

.

.

.

. 633

Oracle

NET8

data

sources

.

.

.

.

.

.

.

.

. 634

Sybase

data

sources

.

.

.

.

.

.

.

.

.

.

. 635

Teradata

data

sources

.

.

.

.

.

.

.

.

.

.

. 636

Appendix

J.

Function

mapping

options

for

federated

systems

.

.

.

. 637

DB2

Information

Integrator

documentation

.

.

.

.

.

.

.

.

.

.

. 639

Accessing

DB2

Information

Integrator

documentation

.

.

.

.

.

.

.

.

.

.

.

.

. 639

Documentation

about

replication

function

on

z/OS

641

Documentation

about

event

publishing

function

for

DB2

Universal

Database

on

z/OS

.

.

.

.

.

. 642

Documentation

about

event

publishing

function

for

IMS

and

VSAM

on

z/OS

.

.

.

.

.

.

.

.

. 642

Documentation

about

event

publishing

and

replication

function

on

Linux,

UNIX,

and

Windows

643

Documentation

about

federated

function

on

z/OS

644

Documentation

about

federated

function

on

Linux,

UNIX,

and

Windows

.

.

.

.

.

.

.

.

.

.

. 644

Documentation

about

enterprise

search

function

on

Linux,

UNIX,

and

Windows

.

.

.

.

.

.

.

. 646

Release

notes

and

installation

requirements

.

.

. 646

Accessibility

.

.

.

.

.

.

.

.

.

.

.

. 649

Keyboard

input

and

navigation

.

.

.

.

.

.

. 649

Keyboard

input

.

.

.

.

.

.

.

.

.

.

.

. 649

Keyboard

navigation

.

.

.

.

.

.

.

.

.

. 649

Keyboard

focus

.

.

.

.

.

.

.

.

.

.

.

. 649

Accessible

display

.

.

.

.

.

.

.

.

.

.

.

. 649

Font

settings

.

.

.

.

.

.

.

.

.

.

.

.

. 649

Non-dependence

on

color

.

.

.

.

.

.

.

. 650

Compatibility

with

assistive

technologies

.

.

.

. 650

Accessible

documentation

.

.

.

.

.

.

.

.

. 650

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

. 651

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

. 653

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 655

Contacting

IBM

.

.

.

.

.

.

.

.

.

. 665

Product

information

.

.

.

.

.

.

.

.

.

.

. 665

Comments

on

the

documentation

.

.

.

.

.

.

. 665

x

Data

Source

Configuration

Guide

||

||
||

|

|

About

this

book

This

book

describes

how

to

configure

a

federated

system

to

access

data

sources.

This

book

contains:

v

An

introduction

to

federated

system

concepts,

components,

and

capabilities.

v

Recommendations

for

planning

the

configuration

of

the

data

sources.

v

Instructions

for

registering

the

objects

required

for

the

federated

server

and

database

to

access

data

sources.

v

Extensive

reference

information

specific

for

each

data

source

including:

server

setup

information,

environment

variable

requirements,

data

type

mappings,

and

options

you

can

set

to

customize

and

tune

the

data

source

configuration.

Locating

technical

changes

Technical

changes

to

the

text

are

indicated

by

a

vertical

line

to

the

left

of

the

change.

Who

should

read

this

book

This

book

is

intended

for

system

administrators,

database

administrators,

security

administrators,

and

system

operators

who

need

to

set

up

and

configure

a

federated

system.

Use

this

book

to

manage

a

federated

system

to

access

data

from

relational

and

nonrelational

data

sources.

This

book

can

also

be

used

by

programmers

and

other

users

who

require

an

understanding

of

the

configuration

and

use

of

a

federated

system.

This

book

assumes

that

you

are

familiar

with

DB2.

You

should

be

familiar

with

standard

database

terminology,

and

have

experience

with

database

design

and

database

administration.

This

book

assumes

that

you

are

familiar

with

your

own

applications

and

the

data

sources

that

you

want

access.

Conventions

and

terminology

used

in

this

book

Federated

terminology:

The

glossary

in

this

book

defines

the

terms

that

are

used

when

discussing

federated

systems.

DB2

Commands:

This

book

assumes

that

DB2

commands

are

entered

in

the

DB2

Command

Line

Processor

(CLP)

or

the

DB2

Command

Center

GUI,

unless

otherwise

specified.

When

a

DB2

command

is

mentioned

in

the

text,

only

the

command

and

its

parameters

are

listed.

The

command

will

not

be

proceeded

by

DB2.

DB2

Control

Center:

The

documentation

indicates

when

tasks

can

be

performed

by

using

the

DB2

Control

Center

and

includes

the

steps

to

perform

these

tasks

in

this

documentation.

Highlighting

Conventions:

This

book

uses

these

highlighting

conventions:

©

Copyright

IBM

Corp.

1998,

2004

xi

Boldface

type

Indicates

commands

and

graphical

user

interface

controls

(such

as

names

of

fields,

names

of

push

buttons,

and

menu

choices).

Boldface

type

is

used

to

designate

notes,

restrictions,

prerequisites,

and

recommendations.

Monospace

type

Indicates

text

that

you

type,

file

names,

and

code

examples.

Monospace

type

is

also

used

for

SQL

statement

or

DB2

command

parameter

names.

Italic

type

Indicates

SQL

statement

or

DB2

command

parameter

values

that

you

replace

with

an

appropriate

value.

SQL

statement

or

DB2

command

examples

use

italic

type

for

sample

parameter

values.

Italic

type

is

used

to

emphasize

words,

to

identify

new

terms,

and

to

indicate

document

titles.

UPPERCASE

TYPE

Indicates

the

names

of

DB2

commands

and

SQL

statements,

and

their

keywords.

Uppercase

is

also

used

for

data

type

names,

options,

and

acronyms.

How

to

read

the

syntax

diagrams

Throughout

this

book,

syntax

is

described

using

the

structure

defined

as

follows:

Read

the

syntax

diagrams

from

left

to

right

and

top

to

bottom,

following

the

path

of

the

line.

The

��───

symbol

indicates

the

beginning

of

a

statement.

The

───�

symbol

indicates

that

the

statement

syntax

is

continued

on

the

next

line.

The

�───

symbol

indicates

that

a

statement

is

continued

from

the

previous

line.

The

──��

symbol

indicates

the

end

of

a

statement.

Required

items

appear

on

the

horizontal

line

(the

main

path).

��

STATEMENT

required

item

��

Optional

items

appear

below

the

main

path.

��

STATEMENT

optional

item

��

If

an

optional

item

appears

above

the

main

path,

that

item

has

no

effect

on

the

execution

of

the

statement

and

is

used

only

for

readability.

��

STATEMENT

optional

item

��

If

you

can

choose

from

two

or

more

items,

they

appear

in

a

stack.

If

you

must

choose

one

of

the

items,

one

item

of

the

stack

appears

on

the

main

path.

xii

Data

Source

Configuration

Guide

��

STATEMENT

required

choice1

required

choice2

��

If

choosing

none

of

the

items

is

an

option,

the

entire

stack

appears

below

the

main

path.

��

STATEMENT

optional

choice1

optional

choice2

��

If

one

of

the

items

is

the

default,

it

will

appear

above

the

main

path

and

the

remaining

choices

will

be

shown

below.

��

STATEMENT

default

choice

optional

choice

optional

choice

��

An

arrow

returning

to

the

left,

above

the

main

line,

indicates

an

item

that

can

be

repeated.

In

this

case,

repeated

items

must

be

separated

by

one

or

more

blanks.

��

STATEMENT

�

repeatable

item

��

If

the

repeat

arrow

contains

a

comma,

you

must

separate

repeated

items

with

a

comma.

��

STATEMENT

�

,

repeatable

item

��

A

repeat

arrow

above

a

stack

indicates

that

you

can

make

more

than

one

choice

from

the

stacked

items

or

repeat

a

single

choice.

Keywords

appear

in

uppercase

(for

example,

FROM).

They

must

be

spelled

exactly

as

shown.

Variables

appear

in

lowercase

(for

example,

column-name).

They

represent

user-supplied

names

or

values

in

the

syntax.

If

punctuation

marks,

parentheses,

arithmetic

operators,

or

other

such

symbols

are

shown,

you

must

enter

them

as

part

of

the

syntax.

Sometimes

a

single

variable

represents

a

set

of

several

parameters.

For

example,

in

the

following

diagram,

the

variable

parameter-block

can

be

replaced

by

any

of

the

interpretations

of

the

diagram

that

is

headed

parameter-block:

��

STATEMENT

parameter-block

��

About

this

book

xiii

parameter-block:

parameter1

parameter2

parameter3

parameter4

Adjacent

segments

occurring

between

“large

bullets”

(*)

may

be

specified

in

any

sequence.

��

STATEMENT

item1

*

item2

*

item3

*

item4

��

The

above

diagram

shows

that

item2

and

item3

may

be

specified

in

either

order.

Both

of

the

following

are

valid:

STATEMENT

item1

item2

item3

item4

STATEMENT

item1

item3

item2

item4

xiv

Data

Source

Configuration

Guide

Part

1.

Concepts

and

Planning

©

Copyright

IBM

Corp.

1998,

2004

1

2

Data

Source

Configuration

Guide

Chapter

1.

Overview

of

a

federated

system

The

following

sections

provide

an

overview

of

a

federated

system.

Federated

systems

A

DB2®

federated

system

is

a

special

type

of

distributed

database

management

system

(DBMS).

A

federated

system

consists

of

a

DB2

instance

that

operates

as

a

federated

server,

a

database

that

acts

as

the

federated

database,

one

or

more

data

sources,

and

clients

(users

and

applications)

that

access

the

database

and

data

sources.

With

a

federated

system,

you

can

send

distributed

requests

to

multiple

data

sources

within

a

single

SQL

statement.

For

example,

you

can

join

data

that

is

located

in

a

DB2

Universal

Database™

table,

an

Oracle

table,

and

an

XML

tagged

file

in

a

single

SQL

statement.

The

following

figure

shows

the

components

of

a

federated

system

and

a

sample

of

the

data

sources

you

can

access.

The

power

of

a

DB2

federated

system

is

in

its

ability

to:

v

Join

data

from

local

tables

and

remote

data

sources,

as

if

all

the

data

is

stored

locally

in

the

federated

database

v

Update

data

in

relational

data

sources,

as

if

the

data

is

stored

in

the

federated

database

XML

VSAM

IMS

Software AG
Adabas

CA-IDMS

CA-Datacom

Integrated SQL view

DB2
Information
Integrator

Classic
Federation

DB2 Information Integrator

SQL, SQL/XML

Federation server

Wrappers and functions

O
D
B
C

Biological
data and

algorithms

Text XML Excel WebSphere
MQ

IBM Extended
Search

(Web, e-mail...)

Sybase

DB2 family

Informix

Microsoft
SQL Server

Teradata

Oracle

ODBC

DB2
Universal
Database

Figure

1.

The

components

of

a

federated

system

©

Copyright

IBM

Corp.

1998,

2004

3

|

|
|
|

|
|

|
|

|
|

v

Replicate

data

to

and

from

relational

data

sources

v

Take

advantage

of

the

data

source

processing

strengths,

by

sending

requests

to

the

data

sources

for

processing

v

Compensate

for

SQL

limitations

at

the

data

source

by

processing

parts

of

a

distributed

request

at

the

federated

server

The

federated

server

The

DB2®

server

in

a

federated

system

is

referred

to

as

the

federated

server.

Any

number

of

DB2

instances

can

be

configured

to

function

as

federated

servers.

You

can

use

existing

DB2

instances

as

your

federated

servers,

or

you

can

create

new

ones

specifically

for

the

federated

system.

The

DB2

instance

that

manages

the

federated

system

is

called

a

server

because

it

responds

to

requests

from

end

users

and

client

applications.

The

federated

server

often

sends

parts

of

the

requests

it

receives

to

the

data

sources

for

processing.

A

pushdown

operation

is

an

operation

that

is

processed

remotely.

The

DB2

instance

that

manages

the

federated

system

is

referred

to

as

the

federated

server,

even

though

it

acts

as

a

client

when

it

pushes

down

requests

to

the

data

sources.

Like

any

other

application

server,

the

federated

server

is

a

database

manager

instance.

Application

processes

connect

and

submit

requests

to

the

database

within

the

federated

server.

However,

two

main

features

distinguish

it

from

other

application

servers:

v

A

federated

server

is

configured

to

receive

requests

that

might

be

partially

or

entirely

intended

for

data

sources.

The

federated

server

distributes

these

requests

to

the

data

sources.

v

Like

other

application

servers,

a

federated

server

uses

DRDA®

communication

protocols

(over

TCP/IP)

to

communicate

with

DB2

family

instances.

However,

unlike

other

application

servers,

a

federated

server

uses

the

native

client

of

the

data

source

to

access

the

data

source.

For

example,

a

federated

server

uses

the

Sybase

Open

Client

to

access

Sybase

data

sources

and

an

Microsoft®

SQL

Server

ODBC

Driver

to

access

Microsoft

SQL

Server

data

sources.

Related

concepts:

v

“What

is

a

data

source?”

on

page

4

What

is

a

data

source?

In

a

federated

system,

a

data

source

can

be

a

relational

DBMS

instance

(such

as

Oracle

or

Sybase)

or

a

nonrelational

data

source

(such

as

BLAST

search

algorithm

or

an

XML

tagged

file).

Through

some

data

sources

you

can

access

other

data

sources.

For

example,

through

the

Extended

Search

data

source

you

can

access

data

sources

such

as

Lotus®

Notes

databases,

Microsoft®

Access,

Microsoft

Index

Server,

Web

search

engines,

and

Lightweight

Directory

Access

Protocol

(LDAP)

directories.

The

method,

or

protocol,

used

to

access

a

data

source

depends

on

the

type

of

data

source.

For

example,

DRDA®

is

used

to

access

DB2®

for

z/OS™

and

OS/390®

data

sources

and

the

Documentum

Client

API/Library

is

used

to

access

Documentum

data

sources.

4

Data

Source

Configuration

Guide

|

|
|
|
|
|
|
|

Data

sources

are

semi-autonomous.

For

example,

the

federated

server

can

send

queries

to

Oracle

data

sources

at

the

same

time

that

Oracle

applications

can

access

these

data

sources.

A

DB2

federated

system

does

not

monopolize

or

restrict

access

to

the

other

data

sources,

beyond

integrity

and

locking

constraints.

Related

concepts:

v

“The

federated

database”

on

page

7

Related

reference:

v

“Supported

data

sources”

on

page

5

Supported

data

sources

There

are

many

data

sources

that

you

can

access

using

a

federated

system.

The

following

table

lists

the

supported

data

sources:

Table

1.

Supported

data

source

versions

and

access

methods.

Data

source

Supported

versions

Access

method

DB2

Universal

Database™

for

Linux,

UNIX,

and

Windows®

7.2,

8.1,

8.2

DRDA®

DB2

Universal

Database

for

z/OS™

and

OS/390®

6.1,

7.1

with

the

following

APARs

applied:

v

PQ62695

v

PQ55393

v

PQ56616

v

PQ54605

v

PQ46183

v

PQ62139

8.1

DRDA

DB2

Universal

Database

for

iSeries™

5.1

v

with

the

following

APARs

applied:

–

SE06003

–

SE06872

–

II13348

v

with

the

following

PTFs

applied:

–

SI05990

SI05991

5.2

with

PTF

SI0735

applied.

DRDA

DB2

Server

for

VM

and

VSE

7.1

(or

later)

with

fixes

for

APARs

for

schema

functions

applied.

DRDA

Informix™

7.31,

8.32,

8.4,

9.3,

9.4

Informix

Client

SDK

V2.7

(or

later)

Chapter

1.

Overview

of

a

federated

system

5

|

|
|

||

|||||

|
|
|

||||

|
|
||
|
|

|

|

|

|

|

|

|

||

|
|
||

|
|

|

|

|

|
|

|

|

|
|

||

|
|
||
|
|

||

|||||
|

Table

1.

Supported

data

source

versions

and

access

methods.

(continued)

Data

source

Supported

versions

Access

method

ODBC

3.x

ODBC

driver

for

the

data

source,

such

as

Redbrick

ODBC

Driver

to

access

Redbrick.

OLE

DB

2.7,

2.8

OLE

DB

2.0

(or

later)

Oracle

8.0.6,

8.1.6,

8.1.7,

9.0,

9.1,

9.2,

9i,

10g

Oracle

net

client

or

NET8

client

software

Microsoft

SQL

Server

7.0,

2000

SP3

and

later

service

packs

on

that

release

On

Windows,

the

Microsoft

SQL

Server

Client

ODBC

3.0

(or

later)

driver.

On

UNIX,

the

DataDirect

Technologies

(formerly

MERANT)

Connect

ODBC

3.7

(or

later)

driver.

Sybase

11.9.2,

12.x

Sybase

Open

Client

ctlib

interface

Teradata

V2R3,

V2R4,

V2R5

Teradata

Call-Level

Interface,

Version

2

(CLIv2)

Release

04.06

(or

later)

BLAST

2.2.3

and

later

2.2

fixpacks

supported

BLAST

daemon

(supplied

with

the

wrapper)

BioRS

v5.0.14

None

Documentum

3.x,

4.x

Documentum

Client

library/APL3.1.7a

(or

later)

Entrez

(PubMed

and

GenBank

data

sources)

1.0

None

HMMER

2.2g,

2.3

HMMER

daemon

(supplied

with

the

wrapper)

IBM

Lotus

Extended

Search

4.0.1,

4.0.2

Extended

Search

Client

Library

(supplied

with

the

wrapper)

Microsoft

Excel

97,

2000,

2002,

2003

Excel

97,

2000,

2002,

or

2003

installed

on

the

federated

server

PeopleSoft

8.x

IBM

WebSphere

Business

Integration

Adapter

for

PeopleSoft

v2.3.1,

2.4

SAP

3.x,

4.x

IBM

WebSphere

Business

Integration

Adapter

for

mySAP.com

v2.3.1,

2.4

Siebel

7,

7.5,

2000

IBM

WebSphere

Business

Integration

Adapter

for

Siebel

eBusiness

Applications

v2.3.1,

2.4

Table-structured

files

None

User-defined

functions

for

KEGG

Supported

User-defined

functions

for

Life

Sciences

Supported

6

Data

Source

Configuration

Guide

|

|||||

|||||
|
|
|

|||||

|||
|
||
|

|||
|
|

||
|
|

|
|
|
|

|||||
|

|||||
|
|

|||
|
||
|

|||||

|||||
|

|
|
||||

|||||
|

|
|
||||
|
|

|||||
|
|

|||||
|
|

|||||
|
|

|||||
|
|
|

|||||

|
|
||||

|
|
||||

Table

1.

Supported

data

source

versions

and

access

methods.

(continued)

Data

source

Supported

versions

Access

method

Web

services

SOAP

1.0.,

1.1,

WSDL

1.0,

1.1

specifications

HTTP

XML

1.0

specification

None

Related

concepts:

v

“What

is

a

data

source?”

on

page

4

The

federated

database

To

end

users

and

client

applications,

data

sources

appear

as

a

single

collective

database

in

DB2®.

Users

and

applications

interface

with

the

federated

database

managed

by

the

federated

server.

The

federated

database

contains

a

system

catalog.

The

federated

database

system

catalog

contains

entries

that

identify

data

sources

and

their

characteristics.

The

federated

server

consults

the

information

stored

in

the

federated

database

system

catalog

and

the

data

source

wrapper

to

determine

the

best

plan

for

processing

SQL

statements.

The

federated

system

processes

SQL

statements

as

if

the

data

sources

were

ordinary

relational

tables

or

views

within

the

federated

database.

As

a

result:

v

The

federated

system

can

join

relational

data

with

data

in

nonrelational

formats.

This

is

true

even

when

the

data

sources

use

different

SQL

dialects,

or

do

not

support

SQL

at

all.

v

The

characteristics

of

the

federated

database

take

precedence

when

there

are

differences

between

the

characteristics

of

the

federated

database

and

the

characteristics

of

the

data

sources:

–

Suppose

the

code

page

used

by

the

federated

server

is

different

than

the

code

page

used

by

the

data

source.

Character

data

from

the

data

source

is

converted

based

on

the

code

page

used

by

the

federated

database,

when

that

data

is

returned

to

a

federated

user.

–

Suppose

the

collating

sequence

used

by

the

federated

server

is

different

than

the

collating

sequence

used

by

the

data

source.

Any

sort

operations

on

character

data

are

performed

at

the

federated

server

instead

of

at

the

data

source.

Related

concepts:

v

“The

SQL

Compiler”

on

page

8

v

“The

federated

database

system

catalog”

on

page

7

The

federated

database

system

catalog

The

federated

database

system

catalog

contains

information

about

the

objects

in

the

federated

database

and

information

about

objects

at

the

data

sources.

The

catalog

in

a

federated

database

is

called

the

global

catalog

because

it

contains

information

about

the

entire

federated

system.

DB2®

query

optimizer

uses

the

information

in

the

global

catalog

and

the

data

source

wrapper

to

plan

the

best

way

to

process

SQL

statements.

The

information

stored

in

the

global

catalog

includes

remote

and

local

information,

such

as

column

names,

column

data

types,

column

default

values,

and

index

information.

Chapter

1.

Overview

of

a

federated

system

7

|

|||||

|||
|
||

|||||
|

|

|

|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|

|

|

|
|

|
|
|
|
|
|
|
|

Remote

catalog

information

is

the

information

or

name

used

by

the

data

source.

Local

catalog

information

is

the

information

or

name

used

by

the

federated

database.

For

example,

suppose

a

remote

table

includes

a

column

with

the

name

of

EMPNO.

The

global

catalog

would

store

the

remote

column

name

as

EMPNO.

Unless

you

designate

a

different

name,

the

local

column

name

will

be

stored

as

EMPNO.

You

can

change

the

local

column

name

to

Employee_Number.

Users

submitting

queries

which

include

this

column

will

use

Employee_Number

in

their

queries

instead

of

EMPNO.

You

use

the

ALTER

NICKNAME

statement

to

change

the

local

name

of

the

data

source

columns.

For

relational

data

sources,

the

information

stored

in

the

global

catalog

includes

both

remote

and

local

information.

For

nonrelational

data

sources,

the

information

stored

in

the

global

catalog

varies

from

data

source

to

data

source.

To

see

the

data

source

table

information

that

is

stored

in

the

global

catalog,

query

the

SYSCAT.TABLES,

SYSCAT.TABOPTIONS,

SYSCAT.INDEXES,

SYSCAT.COLUMNS,

and

SYSCAT.COLOPTIONS

catalog

views

in

the

federated

database.

The

global

catalog

also

includes

other

information

about

the

data

sources.

For

example,

the

global

catalog

includes

information

that

the

federated

server

uses

to

connect

to

the

data

source

and

map

the

federated

user

authorizations

to

the

data

source

user

authorizations.

The

global

catalog

contains

attributes

about

the

data

source

that

you

explicitly

set,

such

as

server

options.

Related

concepts:

v

“The

SQL

Compiler”

on

page

8

Related

reference:

v

Appendix

A,

“Views

in

the

global

catalog

table

containing

federated

information,”

on

page

563

The

SQL

Compiler

To

obtain

data

from

data

sources,

users

and

applications

submit

queries

in

DB2®

SQL

to

the

federated

database.

When

a

query

is

submitted,

the

DB2

SQL

Compiler

consults

information

in

the

global

catalog

and

the

data

source

wrapper

to

help

it

process

the

query.

This

includes

information

about

connecting

to

the

data

source,

server

attributes,

mappings,

index

information,

and

processing

statistics.

Related

concepts:

v

“Wrappers

and

wrapper

modules”

on

page

11

v

“The

query

optimizer”

on

page

8

The

query

optimizer

As

part

of

the

SQL

Compiler

process,

the

query

optimizer

analyzes

a

query.

The

Compiler

develops

alternative

strategies,

called

access

plans,

for

processing

the

query.

Access

plans

might

call

for

the

query

to

be:

v

Processed

by

the

data

sources

v

Processed

by

the

federated

server

8

Data

Source

Configuration

Guide

|
|
|
|
|
|
|
|
|

|
|
|
|

v

Processed

partly

by

the

data

sources

and

partly

by

the

federated

server

DB2®

UDB

evaluates

the

access

plans

primarily

on

the

basis

of

information

about

the

data

source

capabilities

and

the

data.

The

wrapper

and

the

global

catalog

contain

this

information.

DB2

UDB

decomposes

the

query

into

segments

that

are

called

query

fragments.

Typically

it

is

more

efficient

to

pushdown

a

query

fragment

to

a

data

source,

if

the

data

source

can

process

the

fragment.

However,

the

query

optimizer

takes

into

account

other

factors

such

as:

v

The

amount

of

data

that

needs

to

be

processed

v

The

processing

speed

of

the

data

source

v

The

amount

of

data

that

the

fragment

will

return

v

The

communication

bandwidth

v

Whether

there

is

a

usable

materialized

query

table

on

the

federated

server

that

represents

the

same

query

result

The

query

optimizer

generates

local

and

remote

access

plans

for

processing

a

query

fragment,

based

on

resource

cost.

DB2

UDB

then

chooses

the

plan

it

believes

will

process

the

query

with

the

least

resource

cost.

If

any

of

the

fragments

are

to

be

processed

by

data

sources,

DB2

UDB

submits

these

fragments

to

the

data

sources.

After

the

data

sources

process

the

fragments,

the

results

are

retrieved

and

returned

to

DB2

UDB.

If

DB2

UDB

performed

any

part

of

the

processing,

it

combines

its

results

with

the

results

retrieved

from

the

data

source.

DB2

UDB

then

returns

all

results

to

the

client.

Related

concepts:

v

“The

SQL

Compiler”

on

page

8

v

“Compensation”

on

page

9

v

“Tuning

query

processing”

in

the

Federated

Systems

Guide

Compensation

The

DB2®

federated

server

does

not

push

down

a

query

fragment

if

the

data

source

cannot

process

it,

or

if

the

federated

server

can

process

it

faster

than

the

data

source

can

process

it.

For

example,

suppose

that

the

SQL

dialect

of

a

data

source

does

not

support

a

CUBE

grouping

in

the

GROUP

BY

clause.

A

query

that

contains

a

CUBE

grouping

and

references

a

table

in

that

data

source

is

submitted

to

the

federated

server.

DB2

Information

Integrator

does

not

pushdown

the

CUBE

grouping

to

the

data

source,

but

processes

the

CUBE

itself.

The

ability

by

DB2

Information

Integrator

to

process

SQL

that

is

not

supported

by

a

data

source

is

called

compensation.

The

federated

server

compensates

for

lack

of

functionality

at

the

data

source

in

two

ways:

v

It

can

ask

the

data

source

to

use

one

or

more

operations

that

are

equivalent

to

the

DB2

function

stated

in

the

query.

Suppose

a

data

source

does

not

support

the

cotangent

(COT(x))

function,

but

supports

the

tangent

(TAN(x))

function.

DB2

Information

Integrator

can

ask

the

data

source

to

perform

the

calculation

(1/TAN(x)),

which

is

equivalent

to

the

cotangent

(COT(x))

function.

v

It

can

return

the

set

of

data

to

the

federated

server,

and

perform

the

function

locally.

Chapter

1.

Overview

of

a

federated

system

9

|
|

For

relational

data

sources,

each

type

of

RDBMS

supports

a

subset

of

the

international

SQL

standard.

In

addition,

some

types

of

RDBMSs

support

SQL

constructs

that

exceed

this

standard.

An

SQL

dialect,

is

the

totality

of

SQL

that

a

type

of

RDBMS

supports.

If

an

SQL

construct

is

found

in

the

DB2

SQL

dialect,

but

not

in

the

relational

data

source

dialect,

the

federated

server

can

implement

this

construct

on

behalf

of

the

data

source.

DB2

Information

Integrator

can

compensate

for

differences

in

SQL

dialects.

An

example

of

this

ability

is

the

common-table-expression

clause.

DB2

SQL

includes

the

clause

common-table-expression.

In

this

clause,

a

name

can

be

specified

by

which

all

FROM

clauses

in

a

fullselect

can

reference

a

result

set.

The

federated

server

will

process

a

common-table-expression

for

a

data

source,

even

though

the

SQL

dialect

used

by

the

data

source

does

not

include

common-table-expression.

With

compensation,

the

federated

server

can

support

the

full

DB2

SQL

dialect

for

queries

of

data

sources.

Even

data

sources

with

weak

SQL

support

or

no

SQL

support

will

benefit

from

compensation.

You

must

use

the

DB2

SQL

dialect

with

a

federated

system,

except

in

a

pass-through

session.

Related

concepts:

v

“Pass-through

sessions”

on

page

10

Pass-through

sessions

You

can

submit

SQL

statements

directly

to

data

sources

by

using

a

special

mode

called

pass-through.

You

submit

SQL

statements

in

the

SQL

dialect

used

by

the

data

source.

Use

a

pass-through

session

when

you

want

to

perform

an

operation

that

is

not

possible

with

the

DB2®

SQL/API.

For

example,

use

a

pass-through

session

to

create

a

procedure,

create

an

index,

or

perform

queries

in

the

native

dialect

of

the

data

source.

Currently,

the

data

sources

that

support

pass-through,

support

pass-through

using

SQL.

In

the

future,

it

is

possible

that

data

sources

will

support

pass-though

using

a

data

source

language

other

than

SQL.

Similarly,

you

can

use

a

pass-through

session

to

perform

actions

that

are

not

supported

by

SQL,

such

as

certain

administrative

tasks.

However,

you

cannot

use

a

pass-through

session

to

perform

all

administrative

tasks.

For

example,

you

can

create

or

drop

tables

at

the

data

source,

but

you

cannot

start

or

stop

the

remote

database.

You

can

use

both

static

and

dynamic

SQL

in

a

pass-through

session.

The

federated

server

provides

the

following

SQL

statements

to

manage

pass-through

sessions:

SET

PASSTHRU

Opens

a

pass-through

session.

When

you

issue

another

SET

PASSTHRU

statement

to

start

a

new

pass-through

session,

the

current

pass-through

session

is

terminated.

SET

PASSTHRU

RESET

Terminates

the

current

pass-through

session.

GRANT

(Server

Privileges)

Grants

a

user,

group,

list

of

authorization

IDs,

or

PUBLIC

the

authority

to

initiate

pass-through

sessions

to

a

specific

data

source.

10

Data

Source

Configuration

Guide

|
|
|
|
|
|

REVOKE

(Server

Privileges)

Revokes

the

authority

to

initiate

pass-through

sessions.

The

following

restrictions

apply

to

pass-through

sessions:

v

You

must

use

the

SQL

dialect

or

language

commands

of

the

data

source

—

you

cannot

use

the

DB2

SQL

dialect.

As

a

result,

you

do

not

query

a

nickname,

but

the

data

source

objects

directly.

v

When

performing

UPDATE

or

DELETE

operations

in

a

pass-through

session,

you

cannot

use

the

WHERE

CURRENT

OF

CURSOR

condition.

v

LOBs

are

not

supported

in

pass-through

sessions.

Related

concepts:

v

“Wrappers

and

wrapper

modules”

on

page

11

v

“Querying

data

sources

directly

with

pass-through”

in

the

Federated

Systems

Guide

Wrappers

and

wrapper

modules

Wrappers

are

mechanisms

by

which

the

federated

server

interacts

with

data

sources.

The

federated

server

uses

routines

stored

in

a

library

called

a

wrapper

module

to

implement

a

wrapper.

These

routines

allow

the

federated

server

to

perform

operations

such

as

connecting

to

a

data

source

and

retrieving

data

from

it

iteratively.

Typically,

the

DB2®

federated

instance

owner

uses

the

CREATE

WRAPPER

statement

to

register

a

wrapper

in

the

federated

database.

You

can

register

a

wrapper

as

fenced

or

trusted

using

the

DB2_FENCED

wrapper

option.

You

create

one

wrapper

for

each

type

of

data

source

that

you

want

to

access.

For

example,

suppose

that

you

want

to

access

three

DB2

for

z/OS™

database

tables,

one

DB2

for

iSeries™

table,

two

Informix®

tables,

and

one

Informix

view.

You

need

to

create

one

wrapper

for

the

DB2

data

source

objects

and

one

wrapper

for

the

Informix

data

source

objects.

Once

these

wrappers

are

registered

in

the

federated

database,

you

can

use

these

wrappers

to

access

other

objects

from

those

data

sources.

For

example,

you

can

use

the

DRDA®

wrapper

with

all

DB2

family

data

source

objects—DB2

for

Linux,

UNIX®,

and

Windows®,

DB2

for

z/OS

and

OS/390®,

DB2

for

iSeries,

and

DB2

Server

for

VM

and

VSE.

You

use

the

server

definitions

and

nicknames

to

identify

the

specifics

(name,

location,

and

so

forth)

of

each

data

source

object.

A

wrapper

performs

many

tasks.

Some

of

these

tasks

are:

v

It

connects

to

the

data

source.

The

wrapper

uses

the

standard

connection

API

of

the

data

source.

v

It

submits

queries

to

the

data

source.

–

For

data

sources

that

support

SQL,

the

query

is

submitted

in

SQL.

–

For

data

sources

that

do

not

support

SQL,

the

query

is

translated

into

the

native

query

language

of

the

source

or

into

a

series

of

source

API

calls.
v

It

receives

results

sets

from

the

data

source.

The

wrapper

uses

the

data

source

standard

APIs

for

receiving

results

set.

v

It

responds

to

federated

server

queries

about

the

default

data

type

mappings

for

a

data

source.

The

wrapper

contains

the

default

type

mappings

that

are

used

when

nicknames

are

created

for

a

data

source

object.

For

relational

wrappers,

data

type

mappings

that

you

create

override

the

default

data

type

mappings.

User-defined

data

type

mappings

are

stored

in

the

global

catalog.

Chapter

1.

Overview

of

a

federated

system

11

|

|
|
|
|
|
|
|

v

It

responds

to

federated

server

queries

about

the

default

function

mappings

for

a

data

source.

The

wrapper

contains

information

that

the

federated

server

needs

to

determine

if

DB2

functions

are

mapped

to

functions

of

the

data

source,

and

how

the

functions

are

mapped.

This

information

is

used

by

the

SQL

Compiler

to

determine

if

the

data

source

is

able

to

perform

the

query

operations.

For

relational

wrappers,

function

mappings

that

you

create

override

the

default

function

type

mappings.

User-defined

function

mappings

are

stored

in

the

global

catalog.

Wrapper

options

are

used

to

configure

the

wrapper

or

to

define

how

DB2

Information

Integrator

uses

the

wrapper.

Related

tasks:

v

“Trusted

and

fenced

mode

process

environments”

in

the

IBM

DB2

Information

Integrator

Wrapper

Developer’s

Guide

v

“Registering

wrappers

for

a

data

source”

on

page

61

Related

reference:

v

“CREATE

WRAPPER

statement”

in

the

SQL

Reference,

Volume

2

v

Appendix

B,

“Wrapper

options

for

federated

systems,”

on

page

567

Default

wrapper

names

There

are

wrappers

for

each

supported

data

source.

Some

wrappers

have

default

wrapper

names.

When

you

use

the

default

name

to

create

the

wrapper,

the

federated

server

automatically

picks

up

the

data

source

library

associated

with

the

wrapper.

Table

2.

Default

wrapper

names

for

each

data

source.

Data

source

Default

wrapper

names

DB2

Universal

Database™

for

Linux,

UNIX

and

Windows®

DRDA

DB2

Universal

Database

for

z/OS

and

OS/390®

DRDA

DB2

Universal

Database

for

iSeries

DRDA

DB2

Server

for

VM

and

VSE

DRDA

Informix

INFORMIX

Microsoft®

SQL

Server

MSSQLODBC3

ODBC

ODBC

OLE

DB

OLEDB

Oracle

NET8

Sybase

CTLIB

Teradata

TERADATA

BLAST

None

BioRS

None

Documentum

None

Entrez

None

Extended

Search

None

12

Data

Source

Configuration

Guide

|
|

|

|
|
|
|

||

||

|
|
|

|
|
|

||

||

||

||

||

||

||

||

||

||

||

||

||

||

Table

2.

Default

wrapper

names

for

each

data

source.

(continued)

Data

source

Default

wrapper

names

HMMER

None

Microsoft

Excel

None

Table-structured

files

None

Web

Services

None

WebSphere

Business

Integration

None

XML

None

Related

concepts:

v

“Wrappers

and

wrapper

modules”

on

page

11

Server

definitions

and

server

options

After

wrappers

are

created

for

the

data

sources,

the

federated

instance

owner

defines

the

data

sources

to

the

federated

database.

The

instance

owner

supplies

a

name

to

identify

the

data

source,

and

other

information

that

pertains

to

the

data

source.

This

information

includes:

v

The

type

and

version

of

the

data

source

v

The

database

name

for

the

data

source

(RDBMS

only)

v

Metadata

that

is

specific

to

the

data

source

For

example,

a

DB2®

family

data

source

can

have

multiple

databases.

The

definition

must

specify

which

database

the

federated

server

can

connect

to.

In

contrast,

an

Oracle

data

source

has

one

database,

and

the

federated

server

can

connect

to

the

database

without

knowing

its

name.

The

database

name

is

not

included

in

the

federated

server

definition

of

an

Oracle

data

source.

The

name

and

other

information

that

the

instance

owner

supplies

to

the

federated

server

are

collectively

called

a

server

definition.

Data

sources

answer

requests

for

data

and

are

servers

in

their

own

right.

The

CREATE

SERVER

and

ALTER

SERVER

statements

are

used

to

create

and

modify

a

server

definition.

Some

of

the

information

within

a

server

definition

is

stored

as

server

options.

When

you

create

server

definitions,

it

is

important

to

understand

the

options

that

you

can

specify

about

the

server.

Some

server

options

configure

the

wrapper

and

some

affect

the

way

DB2

Information

Integrator

uses

the

wrapper.

Server

options

can

be

set

to

persist

over

successive

connections

to

the

data

source,

or

set

for

the

duration

of

a

single

connection.

Related

tasks:

v

“Registering

server

definitions

for

a

data

source”

on

page

61

Related

reference:

v

“ALTER

SERVER

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

SERVER

statement”

in

the

SQL

Reference,

Volume

2

v

Appendix

D,

“Server

options

for

federated

systems,”

on

page

575

Chapter

1.

Overview

of

a

federated

system

13

|

||

||

||

||

||

||

||
|

|

|

|
|

User

mappings

When

a

federated

server

needs

to

pushdown

a

request

to

a

data

source,

the

server

must

first

establish

a

connection

to

the

data

source.

For

most

data

sources,

the

federated

server

does

this

by

using

a

valid

user

ID

and

password

to

that

data

source.

When

a

user

ID

and

password

is

required

to

connect

to

a

data

source,

you

can

define

an

association

between

the

federated

server

authorization

ID

and

the

data

source

user

ID

and

password.

This

association

can

be

created

for

each

user

ID

that

will

be

using

the

federated

system

to

send

distributed

requests.

This

association

is

called

a

user

mapping.

In

some

cases,

you

do

not

need

to

create

a

user

mapping

if

the

user

ID

and

password

you

use

to

connect

to

the

federated

database

are

the

same

as

those

you

use

to

access

the

remote

data

source.

Related

tasks:

v

“Registering

user

mappings

for

a

data

source”

on

page

63

Related

reference:

v

“ALTER

USER

MAPPING

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

USER

MAPPING

statement”

in

the

SQL

Reference,

Volume

2

v

Appendix

E,

“User

mapping

options

for

federated

systems,”

on

page

591

Nicknames

and

data

source

objects

After

you

create

the

server

definitions

and

user

mappings,

the

federated

instance

owner

creates

the

nicknames.

A

nickname

is

an

identifier

that

is

used

to

reference

the

object

located

at

the

data

sources

that

you

want

to

access.

The

objects

that

nicknames

identify

are

referred

to

as

data

source

objects.

Nicknames

are

not

alternative

names

for

data

source

objects

in

the

same

way

that

aliases

are

alternative

names.

They

are

pointers

by

which

the

federated

server

references

these

objects.

Nicknames

are

typically

defined

with

the

CREATE

NICKNAME

statement

along

with

specific

nickname

column

options

and

nickname

options.

When

an

end

user

or

a

client

application

submits

a

distributed

request

to

the

federated

server,

the

request

does

not

need

to

specify

the

data

sources.

Instead,

the

request

references

the

data

source

objects

by

their

nicknames.

The

nicknames

are

mapped

to

specific

objects

at

the

data

source.

These

mappings

eliminate

the

need

to

qualify

the

nicknames

by

data

source

names.

The

location

of

the

data

source

objects

is

transparent

to

the

end

user

or

the

client

application.

Suppose

that

you

define

the

nickname

DEPT

to

represent

an

Informix®

database

table

called

NFX1.PERSON.

The

statement

SELECT

*

FROM

DEPT

is

allowed

from

the

federated

server.

However,

the

statement

SELECT

*

FROM

NFX1.PERSON

is

not

allowed

from

the

federated

server

(except

in

a

pass-through

session)

unless

there

is

a

local

table

on

the

federated

server

named

NFX1.PERSON.

When

you

create

a

nickname

for

a

data

source

object,

metadata

about

the

object

is

added

to

the

global

catalog.

The

query

optimizer

uses

this

metadata,

and

the

information

in

the

wrapper,

to

facilitate

access

to

the

data

source

object.

For

example,

if

the

nickname

is

for

a

table

that

has

an

index,

the

global

catalog

14

Data

Source

Configuration

Guide

|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

contains

information

about

the

index.

The

wrapper

contains

the

mappings

between

the

DB2®

data

types

and

the

data

source

data

types.

Currently,

you

cannot

execute

some

DB2

UDB

utility

operations

on

nicknames.

You

cannot

use

the

Cross

Loader

utility

to

cross

load

into

a

nickname.

Related

concepts:

v

“Nickname

column

options”

on

page

16

Related

tasks:

v

“Registering

nicknames

for

a

data

source”

on

page

63

Related

reference:

v

“ALTER

NICKNAME

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

NICKNAME

statement”

in

the

SQL

Reference,

Volume

2

v

Appendix

G,

“Nickname

column

options

for

federated

systems,”

on

page

603

v

Appendix

F,

“Nickname

options

for

federated

systems,”

on

page

593

v

“Valid

data

source

objects”

on

page

15

Valid

data

source

objects

Nicknames

identify

objects

at

the

data

source

that

you

want

to

access.

The

following

table

lists

the

types

of

objects

that

you

can

create

a

nickname

for

in

a

federated

system.

Table

3.

Valid

data

source

objects

Data

source

Valid

objects

DB2

for

Linux,

UNIX,

and

Windows

Nicknames,

materialized

query

tables,

tables,

views

DB2

for

z/OS

and

OS/390

Tables,

views

DB2

for

iSeries

Tables,

views

DB2

for

VM

and

VSE

Tables,

views

Informix

Tables,

views,

synonyms

Microsoft

SQL

Server

Tables,

views

ODBC

Tables,

views

Oracle

Tables,

views,

synonyms

Sybase

Tables,

views

Teradata

Tables,

views

BLAST

FASTA

files

indexed

for

BLAST

search

algorithms

BioRS

BioRS

databanks

Documentum

Objects

and

registered

tables

in

a

Documentum

Docbase

Entrez

Entrez

databases

Extended

Search

Files

from

data

sources

such

as

Lotus

Notes

databases,

Microsoft

Access,

Microsoft

Index

Server,

Web

search

engines,

and

LDAP

directories.

Chapter

1.

Overview

of

a

federated

system

15

|

|

|

|
|
|

||

||

||
|

||

||

||

||

||

||

||

||

||

||
|

||

||
|

||

||
|
|
|

Table

3.

Valid

data

source

objects

(continued)

Data

source

Valid

objects

HMMER

HMM

database

files

(libraries

of

Hierarchical

Markov

Models,

such

as

PFAM),

that

can

be

searched

by

HMMER’s

hmmpfam

or

hmmsearch

programs.

Microsoft

Excel

.xls

files

(only

the

first

sheet

in

the

workbook

is

accessed)

Table-structured

files

Text

files

that

meet

a

specific

format.

Websphere

Business

Integration

adapters

Websphere

Business

Integration

business

objects

that

map

to

BAPIs

in

SAP,

business

components

in

Siebel,

and

component

interfaces

in

PeopleSoft

Web

Services

Operations

in

a

Web

services

description

language

file

XML-tagged

files

Sets

of

items

in

an

XML

document

Related

concepts:

v

“Nicknames

and

data

source

objects”

on

page

14

v

“Nickname

column

options”

on

page

16

Nickname

column

options

You

can

supply

the

global

catalog

with

additional

metadata

information

about

the

nicknamed

object.

This

metadata

describes

values

in

certain

columns

of

the

data

source

object.

You

assign

this

metadata

to

parameters

that

are

called

nickname

column

options.

The

nickname

column

options

tell

the

wrapper

to

handle

the

data

in

a

column

differently

than

it

normally

would

handle

it.

The

SQL

Complier

and

query

optimizer

use

the

metadata

to

develop

better

plans

for

accessing

the

data.

Nickname

column

options

are

used

to

provide

other

information

to

the

wrapper

as

well.

For

example

for

XML

data

sources,

a

nickname

column

option

is

used

to

tell

the

wrapper

the

XPath

expression

to

use

when

the

wrapper

parses

the

column

out

of

the

XML

document.

With

federation,

the

DB2®

server

treats

the

data

source

object

that

a

nickname

references

as

if

it

is

a

local

DB2

table.

As

a

result,

you

can

set

nickname

column

options

for

any

data

source

object

that

you

create

a

nickname

for.

Some

nickname

column

options

are

designed

for

specific

types

of

data

sources

and

can

be

applied

only

to

those

data

sources.

Suppose

that

a

data

source

has

a

collating

sequence

that

differs

from

the

federated

database

collating

sequence.

The

federated

server

typically

would

not

sort

any

columns

containing

character

data

at

the

data

source.

It

would

return

the

data

to

the

federated

database

and

perform

the

sort

locally.

However,

suppose

that

the

column

is

a

character

data

type

(CHAR

or

VARCHAR)

and

contains

only

numeric

characters

(’0’,’1’,...,’9’).

You

can

indicate

this

by

assigning

a

value

of

’Y’

to

the

NUMERIC_STRING

nickname

column

option.

This

gives

the

DB2

query

optimizer

the

option

of

performing

the

sort

at

the

data

source.

If

the

sort

is

performed

remotely,

you

can

avoid

the

overhead

of

porting

the

data

to

the

federated

server

and

performing

the

sort

locally.

16

Data

Source

Configuration

Guide

|

||

||
|
|
|

||
|

||

||
|
|
|

||
|

||
|

|

|

|

You

can

define

nickname

column

options

for

relational

nicknames

using

the

ALTER

NICKNAME

statement.

You

can

define

nickname

column

options

for

nonrelational

nicknames

using

the

CREATE

NICKNAME

and

ALTER

NICKNAME

statements.

Related

concepts:

v

“Data

type

mappings”

on

page

17

Related

tasks:

v

“Working

with

nicknames”

in

the

Federated

Systems

Guide

Related

reference:

v

Appendix

G,

“Nickname

column

options

for

federated

systems,”

on

page

603

Data

type

mappings

The

data

types

at

the

data

source

must

map

to

corresponding

DB2®

data

types

so

that

the

federated

server

can

retrieve

data

from

data

sources.

Some

examples

of

default

data

type

mappings

are:

v

The

Oracle

type

FLOAT

maps

to

the

DB2

type

DOUBLE

v

The

Oracle

type

DATE

maps

to

the

DB2

type

TIMESTAMP

v

The

DB2

for

z/OS™

type

DATE

maps

to

the

DB2

type

DATE

For

most

data

sources,

the

default

type

mappings

are

in

the

wrappers.

The

default

type

mappings

for

DB2

data

sources

are

in

the

DRDA®

wrapper.

The

default

type

mappings

for

Informix®

are

in

the

INFORMIX

wrapper,

and

so

forth.

For

some

nonrelational

data

sources,

you

must

specify

data

type

information

in

the

CREATE

NICKNAME

statement.

The

corresponding

DB2

for

Linux,

UNIX®,

and

Windows®

data

types

must

be

specified

for

each

column

of

the

data

source

object

when

the

nickname

is

created.

Each

column

must

be

mapped

to

a

particular

field

or

column

in

the

data

source

object.

For

relational

data

sources,

you

can

override

the

default

data

type

mappings.

For

example,

by

default

the

Informix

INTEGER

data

type

maps

to

the

DB2

INTEGER

data

type.

You

could

override

the

default

mappings

and

map

Informix’s

INTEGER

data

type

to

DB2

DECIMAL(10,0)

data

type.

You

should

create

new

type

mappings

or

modify

the

default

type

mappings

before

you

create

nicknames.

Otherwise

nicknames

created

before

the

type

mapping

changes

will

not

reflect

the

new

mappings.

Related

concepts:

v

“Data

type

mappings

in

a

federated

system”

in

the

Federated

Systems

Guide

Function

mappings

For

the

federated

server

to

recognize

a

data

source

function,

the

function

must

be

mapped

to

an

existing

counterpart

function

in

DB2®

for

Linux,

UNIX®

and

Windows®.

DB2

Information

Integrator

supplies

default

mappings

between

existing

built-in

data

source

functions

and

built-in

DB2

counterpart

functions.

For

most

data

sources,

the

default

function

mappings

are

in

the

wrappers.

The

default

Chapter

1.

Overview

of

a

federated

system

17

|
|
|
|

|
|
|

function

mappings

to

DB2

for

z/OS™

and

OS/390®

functions

are

in

the

DRDA®

wrapper.

The

default

function

mappings

to

Sybase

functions

are

in

the

CTLIB

wrapper,

and

so

forth.

For

relational

data

sources,

you

can

create

a

function

mapping

when

you

want

to

use

a

data

source

function

that

the

federated

server

does

not

recognize.

The

mapping

that

you

create

is

between

the

data

source

function

and

a

DB2

counterpart

function

at

the

federated

database.

Function

mappings

are

typically

used

when

a

new

built-in

function

or

a

new

user-defined

function

become

available

at

the

data

source.

Function

mappings

are

also

used

when

a

DB2

counterpart

function

does

not

exist.

In

this

case,

you

must

also

create

a

function

template.

Related

concepts:

v

“Function

mappings

in

a

federated

system”

in

the

Federated

Systems

Guide

v

“Index

specifications”

on

page

18

Index

specifications

When

you

create

a

nickname

for

a

data

source

table,

information

about

any

indexes

that

the

data

source

table

has

is

added

to

the

global

catalog.

The

query

optimizer

uses

this

information

to

expedite

the

processing

of

distributed

requests.

The

catalog

information

about

a

data

source

index

is

a

set

of

metadata,

and

is

called

an

index

specification.

A

federated

server

does

not

create

an

index

specification

when

you

create

a

nickname

for:

v

A

table

that

has

no

indexes

v

A

view,

which

typically

does

not

have

any

index

information

stored

in

the

remote

catalog

v

A

data

source

object

that

does

not

have

a

remote

catalog

from

which

the

federated

server

can

obtain

the

index

information

Suppose

that

a

table

acquires

a

new

index,

in

addition

to

the

ones

it

had

when

the

nickname

was

created.

Because

index

information

is

supplied

to

the

global

catalog

at

the

time

the

nickname

is

created,

the

federated

server

is

unaware

of

the

new

index.

Similarly,

when

a

nickname

is

created

for

a

view,

the

federated

server

is

unaware

of

the

underlying

table

(and

its

indexes)

from

which

the

view

was

generated.

In

these

circumstances,

you

can

supply

the

necessary

index

information

to

the

global

catalog.

You

can

create

an

index

specification

for

tables

that

have

no

indexes.

The

index

specification

tells

the

query

optimizer

which

column

or

columns

in

the

table

to

search

on

to

find

data

quickly.

Related

concepts:

v

“Index

specifications

in

a

federated

system”

in

the

Federated

Systems

Guide

How

you

interact

with

a

federated

system

Because

the

federated

database

is

a

DB2®

Universal

Database,

you

can

interact

with

a

federated

system

using

any

one

of

these

methods:

v

The

DB2

command

line

processor

(CLP)

v

The

DB2

Command

Center

GUI

v

The

DB2

Control

Center

GUI

v

Application

programs

18

Data

Source

Configuration

Guide

|
|
|
|
|
|
|
|

v

DB2

family

tools

v

Web

services

providers

The

steps

in

the

federated

documentation

provide

the

commands

and

SQL

statements

that

can

be

entered

in

the

DB2

command

line

processor

or

the

DB2

Command

Center

GUI.

The

documentation

indicates

when

tasks

can

be

performed

through

the

DB2

Control

Center

GUI.

Since

the

DB2

Control

Center

GUI

is

intuitive,

the

steps

to

perform

these

tasks

through

the

DB2

Control

Center

are

not

included

in

this

documentation.

DB2

command

line

processor

(CLP)

You

can

perform

most

of

the

tasks

necessary

to

setup,

configure,

tune,

and

maintain

the

federated

system

through

the

DB2

command

line

processor.

In

some

cases

you

must

use

either

the

DB2

command

line

processor

or

the

DB2

Command

Center.

For

example:

v

Create,

alter,

or

drop

user-defined

data

type

mappings

v

Create,

alter,

or

drop

user-defined

function

mappings

DB2

Command

Center

Through

the

DB2

Command

Center,

you

can

create

and

run

distributed

requests

without

having

to

manually

type

out

lengthy

SQL

statements.

Use

the

DB2

Command

Center

when

you

are

tuning

the

performance

of

the

federated

system.

The

DB2

Command

Center

is

a

convenient

way

to

use

the

DB2

Explain

functionality

to

look

at

the

access

plans

for

distributed

requests.

The

DB2

Command

Center

can

also

be

used

to

work

with

the

SQL

Assistant

tool.

DB2

Control

Center

The

DB2

Control

Center

GUI

allows

you

to

perform

most

of

the

tasks

necessary

to

setup,

configure,

and

modify

the

federated

system.

The

DB2

Control

Center

uses

panels—dialog

boxes

and

wizards—to

guide

you

through

a

task.

These

panels

contain

interactive

help

when

your

mouse

hovers

over

a

control

such

as

a

list

box

or

command

button.

Additionally,

each

panel

has

a

help

button

that

provides

information

about

the

panel

task,

and

links

to

related

concepts

and

reference

information.

You

can

either

use

a

wizard

to

create

the

federated

objects,

or

you

can

create

each

object

individually.

Use

the

DB2

Control

Center

to

configure

access

to

Web

services,

WebSphere®

Business

Integration,

and

XML

data

sources.

The

features

built

into

the

DB2

Control

Center

simplify

the

steps

that

are

required

for

you

to

configure

the

federated

server

to

access

these

data

sources.

The

DB2

Control

Center

GUI

is

the

easiest

way

to

perform

the

essential

data

source

configuration

tasks:

v

Create

the

wrappers

and

set

the

wrapper

options

v

Specify

the

environment

variables

for

your

data

source

v

Create

the

server

definitions

and

set

the

server

options

v

Create

the

user

mappings

and

set

the

user

options

v

Create

the

nicknames

and

set

the

nickname

options

or

column

options

Chapter

1.

Overview

of

a

federated

system

19

|

|
|
|
|
|
|

|
|
|
|

|
|

|

|

After

you

configure

the

federated

server

to

access

your

data

sources,

you

can

use

the

DB2

Control

Center

to:

v

Modify

the

data

source

configuration

v

Monitor

the

status

of

the

nicknames

and

servers

v

Maintain

current

statistics

for

your

nicknames

v

Create

and

modify

cache

tables

v

Specify

informational

constraints

on

nicknames

v

Create

remote

tables

through

DB2

Information

Integrator

using

transparent

DDL

Application

programs

Applications

do

not

require

any

special

coding

to

work

with

federated

data.

Applications

access

the

system

just

like

any

other

DB2

client

application.

Applications

interface

with

the

federated

database

that

is

within

the

federated

server.

To

obtain

data

from

data

sources,

applications

submit

queries

in

DB2

SQL

to

the

federated

database.

DB2

Information

Integrator

then

distributes

the

queries

to

the

appropriate

data

sources,

collects

the

requested

data,

and

returns

this

data

to

the

applications.

However,

since

DB2

Information

Integrator

interacts

with

the

data

sources

through

nicknames,

you

need

to

be

aware

of:

v

The

SQL

restrictions

you

have

when

working

with

nicknames

v

How

to

perform

operations

on

nicknamed

objects

DB2

family

tools

You

can

also

interact

with

a

federated

database

using

host

and

midrange

tools

such

as:

v

DB2

SPUFI

on

DB2

for

z/OS™

and

OS/390®

v

Interactive

SQL

(STRSQL)

on

DB2

for

iSeries™

Web

services

providers

You

can

also

interact

with

a

federated

database

through

web

services

providers

using

the

Web

Services

wrapper.

Related

concepts:

v

“The

Web

services

wrapper

and

the

Web

services

description

language

document”

on

page

381

Related

tasks:

v

“Adding

Web

services

data

sources

to

a

federated

server”

on

page

387

20

Data

Source

Configuration

Guide

|

|

|

|

|

Chapter

2.

Planning

for

federated

data

source

configuration

The

following

sections

provide

information

you

can

use

to

help

you

plan

your

federated

system.

Federated

object

naming

rules

As

with

other

DB2

objects,

there

are

rules

for

naming

federated

database

objects.

Federated

database

objects

include:

v

Function

mappings

v

Index

specifications

v

Nicknames

v

Servers

v

Type

mappings

v

User

mappings

v

Wrappers

Federated

object

names

must

begin

with

one

of

the

following:

v

A

letter,

including

a

valid

accented

letter

(such

as

Ö)

v

A

multibyte

character,

except

a

multibyte

space

(for

multibyte

environments)

Federated

object

names

cannot

begin

with

a

number

or

with

the

underscore

character.

Federated

object

names

can

also

include

the

following

characters:

v

A

through

Z

v

0

through

9

v

@,

#,

$,

and

_

(underscore)

Federated

object

names

cannot

exceed

128

bytes.

Options

(such

as

server

options

and

nickname

options)

and

option

settings

are

limited

to

255

bytes.

Names

without

quotation

marks

are

converted

to

uppercase.

Related

concepts:

v

“Naming

rules

in

an

NLS

environment”

in

the

Administration

Guide:

Implementation

v

“Naming

rules

in

a

Unicode

environment”

in

the

Administration

Guide:

Implementation

Related

reference:

v

“Checklist

for

planning

your

federated

system

configuration”

on

page

31

v

“Preserving

case-sensitive

values

in

a

federated

system”

on

page

22

©

Copyright

IBM

Corp.

1998,

2004

21

Preserving

case-sensitive

values

in

a

federated

system

In

a

federated

system

you

occasionally

need

to

specify

values

that

are

case-sensitive

at

the

data

source,

such

as

user

IDs

and

passwords.

To

ensure

that

the

case

is

correct

when

these

values

are

passed

to

the

data

source,

follow

these

guidelines:

v

Specify

the

values

in

the

required

case

and

enclose

them

in

the

proper

quotation

marks.

Double

quotation

marks

are

optional

for

object

names,

such

as

the

name

of

a

wrapper

or

nickname.

Single

quotation

marks

are

required

for

option

values,

such

as

the

REMOTE_AUTHID

and

REMOTE_PASSWORD

user

mapping

options.

v

For

user

IDs

and

passwords,

you

can

set

the

FOLD_ID

and

FOLD_PW

server

options

to

automatically

convert

the

values

to

the

proper

case.

With

this

option,

you

do

not

have

to

remember

the

required

case

for

each

data

source.

You

can

type

the

values

in

any

case

and

they

will

be

converted

automatically.

From

a

UNIX

operating

system

command

prompt:

If

you

enclose

a

case-sensitive

value

in

quotation

marks

at

the

federated

server

operating

system

command

prompt,

you

must

ensure

that

the

quotation

marks

are

parsed

correctly:

v

If

the

SQL

statement

contains

double

quotation

marks,

but

does

not

contain

single

quotation

marks,

you

enclose

the

entire

statement

in

single

quotation

marks.

For

example,

if

you

want

to

issue

this

SQL

statement:

CREATE

NICKNAME

my_nick

FOR

my_server."owner"."my_table"

You

enter

the

following

text

at

the

UNIX

command

prompt

DB2

’CREATE

NICKNAME

my_nick

FOR

my_server."owner"."my_table"’

v

If

the

SQL

statement

contains

single

quotation

marks,

but

does

not

contain

double

quotation

marks,

you

enclose

the

entire

statement

in

double

quotation

marks.

For

example,

if

you

want

to

issue

this

SQL

statement:

CREATE

USER

MAPPING

FOR

USER

SERVER

my_server

OPTIONS(REMOTE_AUTHID

’my_id’,

REMOTE_PASSWORD

’my_password’)

You

enter

the

following

text

at

the

UNIX

command

prompt

DB2

"CREATE

USER

MAPPING

FOR

USER

SERVER

my_server

OPTIONS(REMOTE_AUTHID

’my_id’,

REMOTE_PASSWORD

’my_password’)"

v

If

the

SQL

statement

contains

both

single

and

double

quotation

marks:

–

Enclose

the

entire

statement

in

double

quotation

marks

–

Precede

the

values

that

require

double

quotation

marks

with

a

backslash

For

example,

to

issue

this

SQL

statement:

CREATE

USER

MAPPING

FOR

"local_id"

SERVER

my_server

OPTIONS(REMOTE_AUTHID

’my_id’,

REMOTE_PASSWORD

’my_password’)

You

enter

the

following

text

at

the

UNIX

command

prompt:

DB2

"CREATE

USER

MAPPING

FOR

\"local_id\"

SERVER

my_server

OPTIONS(REMOTE_AUTHID

’my_id’,

REMOTE_PASSWORD

’my_password’)"

The

above

examples

assume

you

are

entering

SQL

statements

from

the

UNIX

command

prompt

and

are

passing

the

statement

to

the

DB2

command,

without

the

-f

option.

If

you

enter

the

SQL

statements

from

a

file

using

the

DB2

command

with

the

-f

option,

then

you

should

enter

the

statements

as

show

in

the

first

occurrence

of

each

example.

From

a

Windows

operating

system

command

prompt:

22

Data

Source

Configuration

Guide

To

preserve

case-sensitive

values

on

Windows,

precede

each

double

quotation

mark

with

a

backward

slash.

For

example,

you

want

to

create

the

nickname

NICK1

for

the

Microsoft

SQL

Server

table

weekly_salary.

The

table

resides

in

the

NORBASE

database.

The

local

schema

is

my_schema.

At

the

Windows

command

prompt

on

your

federated

server,

you

type:

DB2

CREATE

NICKNAME

nick1

FOR

norbase.\"my_schema\".\"weekly_salary\"

From

the

DB2

CLP

or

from

an

application

program:

When

you

specify

a

value

from

the

DB2

command

line

prompt

(CLP)

or

in

an

application

program,

you

can

preserve

case-sensitive

values

by

enclosing

the

values

in

the

proper

quotation

marks.

For

example,

you

want

to

create

a

user

mapping

for

the

user

ID

local_id.

The

remote

user

ID

my_id

and

the

remote

password

is

my_password.

You

want

all

three

of

these

values

to

be

preserved

in

lowercase.

At

the

DB2

command

prompt

you

type:

CREATE

USER

MAPPING

FOR

"local_id"

SERVER

my_server

OPTIONS(REMOTE_AUTHID

’my_id’,

REMOTE_PASSWORD

’my_password’)

Related

reference:

v

Appendix

D,

“Server

options

for

federated

systems,”

on

page

575

v

Appendix

E,

“User

mapping

options

for

federated

systems,”

on

page

591

v

“Checklist

for

planning

your

federated

system

configuration”

on

page

31

Update

data

source

statistics

If

you

plan

to

access

a

relational

data

source,

you

should

update

the

statistics

at

the

remote

data

source

before

you

configure

the

federated

server

to

access

the

data

source.

By

ensuring

that

the

remote

data

source

has

current

statistics,

you

can

improve

query

performance.

The

federated

server

relies

on

the

data

source

statistics

that

are

stored

in

the

federated

database

to

optimize

query

processing.

These

statistics

are

gathered

when

you

create

a

nickname

for

a

data

source

object.

The

federated

database

verifies

the

presence

of

the

object

at

the

data

source,

and

then

attempts

to

gather

existing

statistical

data

for

the

data

source.

Information

useful

to

the

query

optimizer

is

read

from

the

data

source

catalogs

and

added

to

the

system

catalog

in

the

federated

database.

Because

some

or

all

of

the

catalog

information

from

the

data

source

might

be

used

by

the

query

optimizer,

it

is

recommended

that

you

update

statistics

at

the

data

source

before

you

create

a

nickname.

Use

the

command

at

the

data

source

that

is

equivalent

to

the

DB2

RUNSTATS

command

to

update

the

data

source

statistics.

The

federated

database

retrieves

that

statistical

information

for

a

data

source

object

when

you

create

a

nickname

for

the

object.

If

the

data

source

updates

its

catalog

statistics

for

an

object

after

your

create

the

nickname,

the

changes

in

the

statistical

information

are

not

propagated

to

the

system

catalog

in

the

federated

database.

To

make

sure

that

the

system

catalog

in

the

federated

database

reflects

the

current

statistics

for

the

remote

data

source

object,

you

must

request

that

the

federated

server

update

the

statistics.

Chapter

2.

Planning

for

federated

data

source

configuration

23

|
|

|
|
|
|

|
|
|
|
|
|
|

Action:

Identify

the

data

source

objects

that

you

want

to

access.

These

are

objects

that

you

will

create

nicknames

for.

Determine

which

of

the

data

sources

that

these

objects

are

part

of

allow

you

to

update

statistics.

List

those

data

sources

in

the

data

source

statistics

table

in

the

planning

checklist.

Related

concepts:

v

“Nickname

statistics

update

facility

-

overview”

in

the

Federated

Systems

Guide

Related

reference:

v

“Checklist

for

planning

your

federated

system

configuration”

on

page

31

Choose

the

correct

wrapper

For

most

data

sources

there

is

only

one

wrapper

that

you

can

use

to

access

the

data

source.

However,

for

some

data

sources

you

have

a

choice

as

to

which

wrapper

you

use

to

access

the

data

in

the

data

source.

You

can

access

data

sources

that

support

the

ODBC

API

either

by

using

the

wrappers

that

are

designed

for

those

data

sources

or

by

using

the

ODBC

wrapper.

Examples

of

these

data

sources

include

Oracle,

Microsoft

Excel,

Microsoft

SQL

Server.

Typically,

query

performance

is

better

when

you

use

the

wrappers

that

are

specifically

designed

for

these

data

sources.

Use

the

ODBC

wrapper

to

access

any

data

source

that

has

an

ODBC

driver

but

is

not

supported

by

specific

data

source

wrappers

that

are

included

with

DB2

Information

Integrator.

For

example,

use

the

ODBC

wrapper

to

access

RedBrick

data

sources.

DB2

for

Linux,

UNIX,

and

Windows

data

sources

Do

not

use

the

ODBC

wrapper

to

access

DB2

Universal

Database

for

Linux,

UNIX,

and

Windows

data

sources.

Using

the

ODBC

wrapper

to

access

DB2

Universal

Database

for

Linux,

UNIX,

and

Windows

data

sources

is

not

supported.

Use

the

DRDA

wrapper

to

access

DB2

Universal

Database

for

Linux,

UNIX,

and

Windows

data

sources.

Excel

data

sources

Depending

on

your

needs,

you

can

use

the

ODBC

wrapper

to

access

Excel

data

instead

of

using

the

Excel

wrapper.

Informix

data

sources

Do

not

use

the

ODBC

wrapper

to

access

Informix

data

sources.

Using

the

ODBC

wrapper

to

access

Informix

data

sources

is

not

supported.

To

access

Informix

data

sources,

use

the

Informix

wrapper.

Action:

Identify

the

wrappers

that

you

will

create

for

your

federated

system

in

the

wrapper

table

in

the

planning

checklist.

Related

concepts:

v

“Methods

of

accessing

Excel

data”

on

page

25

Related

tasks:

v

“Adding

Excel

data

sources

to

a

federated

server”

on

page

218

v

“Adding

ODBC

data

sources

to

a

federated

server”

on

page

305

Related

reference:

24

Data

Source

Configuration

Guide

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|

v

“Checklist

for

planning

your

federated

system

configuration”

on

page

31

Methods

of

accessing

Excel

data

You

can

access

data

in

Microsoft®

Excel

worksheets

by

using

either

the

Excel

wrapper

or

the

ODBC

wrapper.

To

query

Excel

data,

both

wrappers

require

a

DB2®

federated

server

that

can

open

and

read

the

worksheets

in

the

Excel

workbook.

Therefore,

the

Excel

workbook

must

be

on

the

same

computer

as

the

federated

server

or

on

a

network

accessible

drive.

If

you

use

the

Excel

wrapper,

the

Excel

application

must

be

installed

on

the

federated

server.

If

you

use

the

ODBC

wrapper,

the

Excel

ODBC

driver

must

be

on

the

federated

server.

This

driver

is

installed

automatically

with

Microsoft

Windows®.

The

Excel

application

does

not

need

to

be

installed

on

the

federated

server.

Each

wrapper

imposes

some

requirements

on

the

location

and

layout

of

the

data

in

the

Excel

workbooks.

With

the

Excel

wrapper,

only

the

data

in

the

first

worksheet

in

the

workbook

can

be

accessed.

With

the

ODBC

wrapper,

you

can

access

data

from

any

worksheet

in

the

workbook.

The

following

examples

show

the

worksheet

layout

requirements

for

these

two

wrappers.

Example

of

a

worksheet

that

contains

rows

of

labels

and

a

formula:

This

example

shows

a

worksheet

that

contains

several

rows

of

labels

at

the

top

of

the

worksheet,

blank

rows,

and

a

formula

in

row

13.

To

access

the

data

in

the

worksheet,

you

must

identify

the

range

of

cells

that

you

want

to

access.

Chapter

2.

Planning

for

federated

data

source

configuration

25

|

|
|

|
|
|
|

|
|

|
|
|

|
|
|
|

|
|

|

|
|
|

|

If

you

use

the

Excel

wrapper

You

specify

the

range

of

cells

in

the

CREATE

NICKNAME

statement

by

using

the

RANGE

option.

Include

only

the

data

in

the

range

that

you

specify.

Do

not

include

any

column

labels

in

the

range.

Cells

that

contain

formulas,

such

as

SUM,

return

the

result

of

the

formula

and

not

the

formula.

Unless

you

want

the

formula

results

returned,

do

not

include

the

cells

that

contain

formulas

in

the

range.

In

this

example,

the

range

of

cells

that

you

include

in

the

RANGE

option

is

A4:D11.

If

you

use

the

ODBC

wrapper

You

must

create

a

name

for

the

range

of

cells

to

explicitly

designate

the

location

of

the

data

within

the

worksheet.

Excel

refers

to

this

range

of

cells

as

a

named

range.

The

Excel

ODBC

driver

recognizes

only

one

row

of

labels,

the

first

row

in

the

range.

No

blank

rows

are

allowed

between

the

labels

and

the

data.

The

named

range

must

include

only

one

row

of

column

labels.

You

specify

the

named

range

in

the

CREATE

NICKNAME

statement.

You

must

include

one

row

of

column

labels

in

the

range

that

you

name.

If

you

do

not

include

one

row

of

column

labels

in

the

named

range,

the

first

row

of

data

is

treated

as

column

labels.

Cells

that

contain

formulas,

such

as

SUM,

return

the

result

of

the

formula

and

not

the

formula.

Unless

you

want

the

formula

results

returned,

do

not

include

the

cells

that

contain

formulas

in

the

range.

In

this

example,

the

range

of

cells

that

you

name

is

A3:D11.

Example

of

a

worksheet

that

contains

one

row

of

labels:

This

example

shows

a

worksheet

that

contains

only

one

row

of

column

labels

at

the

top

of

the

worksheet.

The

layout

does

not

include

extra

rows

with

labels,

blank

rows,

or

cells

with

formulas.

Figure

2.

A

worksheet

that

contains

several

rows

of

labels

and

a

formula

26

Data

Source

Configuration

Guide

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

If

you

use

the

Excel

wrapper

You

must

specify

the

range

of

cells

in

the

CREATE

NICKNAME

statement

by

using

the

RANGE

option.

The

range

cannot

include

the

column

labels

in

row

1.

The

range

of

cells

that

you

would

specify

is

A2:D9.

If

you

use

the

ODBC

wrapper

You

can

access

this

data

without

creating

a

named

range.

You

specify

the

worksheet

name

in

the

CREATE

NICKNAME

statement.

The

wrapper

reads

the

first

nonblank

row

as

labels

and

uses

the

information

as

column

names

for

the

nickname.

Subsequent

rows

are

read

as

data.

Example

of

a

worksheet

that

contains

only

data:

This

example

shows

a

worksheet

that

contains

only

data.

There

are

no

rows

of

column

labels,

no

blank

rows,

and

no

cells

with

formulas.

Figure

3.

A

worksheet

that

contains

one

row

of

column

labels

in

row

1

Chapter

2.

Planning

for

federated

data

source

configuration

27

|

|
|
|
|

|
|
|
|
|

|

|
|

|

If

you

use

the

Excel

wrapper

If

the

data

is

in

the

first

worksheet

in

the

workbook,

the

wrapper

will

access

the

data

without

using

the

RANGE

option.

If

the

data

is

in

another

worksheet

in

the

workbook,

you

must

specify

the

RANGE

option

in

the

CREATE

NICKNAME

statement.

If

you

use

the

ODBC

wrapper

When

you

use

the

ODBC

wrapper

to

access

Excel

data,

the

wrapper

is

limited

by

what

the

Excel

ODBC

driver

supports.

The

Excel

ODBC

driver

requires

a

specific

format

for

the

worksheet.

The

driver

assumes

that

the

first

nonblank

row

contains

the

column

labels.

If

the

first

nonblank

row

contains

data,

the

data

in

that

row

is

treated

as

the

column

labels

for

the

remaining

data.

If

the

worksheet

does

not

contain

a

row

of

column

labels,

the

first

row

is

used

as

the

labels

and

not

as

data.

In

effect,

you

lose

the

first

row

of

data.

You

can

overcome

this

requirement

by

modifying

your

worksheet.

Insert

a

new

row

before

the

data

and

add

labels

for

each

column

of

data,

so

that

it

looks

like

the

example

that

contains

one

row

of

labels.

Related

tasks:

v

“Adding

Excel

data

sources

to

a

federated

server”

on

page

218

v

“Accessing

Excel

data

using

the

ODBC

wrapper”

on

page

316

Plan

the

user

mappings

When

a

federated

server

needs

to

pushdown

a

request

to

a

data

source,

the

server

must

first

establish

a

connection

to

the

data

source.

For

some

data

sources,

the

federated

server

establishes

a

connection

by

using

a

valid

user

ID

and

password

to

that

data

source.

For

these

data

sources,

you

must

define

an

association

between

the

federated

server

user

ID

and

password

and

the

data

source

user

ID

and

password.

This

association

must

be

created

for

each

user

ID

that

will

be

using

the

federated

system

to

send

distributed

requests.

This

association

is

called

a

user

mapping.

Figure

4.

A

worksheet

that

contains

only

data

28

Data

Source

Configuration

Guide

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

You

can

use

the

DB2

Control

Center

to

create

a

user

mapping

for

a

group

of

users

that

will

access

a

data

source

with

the

same

user

ID

and

password.

Action:

Identify

the

user

IDs

that

require

a

user

mapping

between

the

federated

server

and

the

data

source.

List

the

federated

server

user

IDs

and

corresponding

data

source

user

IDs

in

the

user

mapping

table

in

the

planning

checklist.

Related

reference:

v

“Checklist

for

planning

your

federated

system

configuration”

on

page

31

Plan

the

data

type

mappings

Data

source

data

types

are

referred

to

as

remote

data

types,

and

federated

database

data

types

are

referred

to

as

local

data

types.

For

some

data

sources,

the

wrappers

contain

the

default

mappings

between

the

data

source

data

types

and

federated

database

data

types.

When

you

create

a

nickname

for

a

data

source

object,

information

about

the

columns

is

stored

in

the

federated

database

system

catalog.

The

data

types

for

the

columns

comes

from

the

default

forward

data

type

mappings.

For

other

data

sources,

you

must

specify

the

column

information

and

the

data

type

when

you

create

the

nickname.

Some

of

the

nonrelational

wrappers

create

all

of

the

columns

required

to

access

a

data

source.

These

are

called

fixed

columns.

With

other

nonrelational

data

sources

you

can

specify

some

or

all

of

the

data

types

for

the

columns.

Your

applications

might

require

data

type

mappings

that

are

different

than

the

default

mappings.

For

the

wrappers

that

allow

you

to

specify

data

type

mappings,

you

can

override

the

default

mappings

to:

v

Change

a

type

mapping

for

all

data

source

objects

located

on

a

specific

server

v

Change

a

type

mapping

for

a

specific

data

source

object

v

Change

a

type

mapping

for

a

specific

data

source

type

v

Change

a

type

mapping

for

a

specific

data

source

type

and

version

Use

the

CREATE

TYPE

MAPPING

statement

to

define

new

data

type

mappings.

Mappings

you

create

are

stored

in

the

federated

database

global

catalog

SYSCAT.TYPEMAPPINGS

view.

Change

a

data

type

mapping

before

you

create

nicknames

for

the

data

source

objects.

When

you

create

a

nickname

for

a

data

source

object,

the

federated

server

populates

the

global

catalog

with

information

about

the

table.

This

information

includes

the

nickname,

the

data

source

table

name,

the

column

names

and

the

data

types

that

are

defined

for

each

table

column.

Only

nicknames

created

after

a

mapping

is

changed

reflect

the

new

type

mapping.

Nicknames

created

before

the

mapping

is

changed

will

use

the

default

data

type

mapping.

If

you

create

the

data

type

mappings

after

you

create

the

nicknames,

you

will

have

to

alter

each

nickname

to

reflect

the

new

mapping

or

drop

and

create

the

nicknames

again.

Chapter

2.

Planning

for

federated

data

source

configuration

29

Note:

If

a

data

source

table

contain

columns

that

are

distinct

or

user-defined

data

types,

you

have

two

choices:

v

You

can

create

the

type

mapping

in

the

federated

database

before

you

create

a

nickname

for

that

data

source

table.

By

creating

the

type

mappings

before

you

create

the

nickname,

the

federated

server

will

know

what

data

type

to

map

these

columns

to.

If

the

mappings

for

these

distinct

or

user-defined

data

types

are

not

created

before

you

issue

the

CREATE

NICKNAME

statement,

you

will

receive

an

error.

v

If

the

columns

in

the

data

source

table

meet

either

of

the

following

conditions:

–

The

columns

are

user-defined

data

types

that

are

based

on

system

or

built-in

data

types

–

The

columns

have

attributes

that

are

not

supported

for

data

type

mappings

You

can

create

a

view

at

the

data

source

in

which

the

columns

are

associated

with

or

cast

to

the

underlying

built-in

data

type.

Then

create

a

nickname

for

the

view

instead

of

for

the

table.

Action:

Identify

the

data

type

mappings

that

you

want

to

define

new

mappings

for.

List

the

data

sources

and

the

type

mappings

you

want

to

create

in

the

data

type

mappings

table

in

the

planning

checklist.

Related

concepts:

v

“Data

type

mappings

in

a

federated

system”

in

the

Federated

Systems

Guide

Related

reference:

v

“Checklist

for

planning

your

federated

system

configuration”

on

page

31

v

“Data

types

supported

for

nonrelational

data

sources”

on

page

517

Plan

the

function

mappings

DB2

for

UNIX

and

Windows

supplies

default

function

mappings

between

existing

built-in

data

source

functions

and

built-in

DB2

functions.

For

most

data

sources,

the

default

function

mappings

are

in

the

wrappers.

For

some

nonrelational

data

sources,

you

cannot

alter

the

default

function

mappings.

To

use

a

data

source

function

that

the

federated

server

does

not

recognize,

you

must

create

a

function

mapping.

The

mapping

you

create

is

between

the

data

source

function

and

a

counterpart

function

at

the

federated

database.

Function

mappings

are

typically

used

when

a

new

built-in

function

or

a

new

user-defined

function

becomes

available

at

the

data

source.

Function

mappings

are

also

used

when

a

DB2

counterpart

function

does

not

exist.

In

this

situation,

before

you

create

the

function

mapping

you

will

have

to

create

a

function

template

in

the

federated

database.

Action:

Determine

if

you

need

to

create

function

mappings

for

your

data

sources.

List

the

function

mappings

needed

in

the

function

mappings

table

in

the

planning

checklist.

Related

concepts:

v

“Function

mappings”

on

page

17

30

Data

Source

Configuration

Guide

Checklist

for

planning

your

federated

system

configuration

You

can

make

the

federated

system

configuration

easier

by

following

this

planning

checklist.

This

checklist

guides

you

in

ways

to

optimize

the

federated

system

configuration.

Checklist:

Federated

object

naming

rules

Are

you

familiar

with

the

naming

rules

for

federated

objects?

See

the

related

links

at

the

end

of

this

topic

to

locate

information

about

the

federated

object

naming

rules.

Checklist:

Preserving

case-sensitive

values

Do

you

intend

to

set

the

FOLD_ID

and

FOLD_PW

server

options

to

preserve

case

for

user

ID

and

password

values

sent

to

the

data

sources?

Use

the

following

table

to

identify

which

server

definitions

you

will

apply

these

options

to.

Table

4.

Planning

checklist:

FOLD_ID

and

FOLD_PW

server

options

to

set

for

the

federated

system

Data

source

What

name

will

you

specify

for

the

server

in

the

server

definition

for

this

data

source?

What

setting

will

you

specify

for

the

FOLD_ID

server

option?

What

setting

will

you

specify

for

the

FOLD_PW

server

option?

Checklist:

Data

source

statistics

In

the

following

table,

list

the

data

sources

that

will

be

part

of

your

federated

system.

Indicate

the

data

sources

that

you

will

update

the

statistics

for

before

you

configure

the

federated

server

to

access

the

data

source.

DB2

UDB

for

Linux,

UNIX,

and

Windows

is

listed

in

this

table

as

an

example.

Table

5.

Planning

checklist:

Data

sources

statistics

to

update

for

the

federated

system

Data

source

Does

this

data

source

maintain

catalog

information?

(Y/N)

Will

you

update

statistics

for

this

data

source?

(Y/N)

Name

of

the

utility

that

the

data

source

uses

to

update

statistics

DB2

for

Linux,

UNIX,

and

Windows

Y

Y

RUNSTATS

Chapter

2.

Planning

for

federated

data

source

configuration

31

|
|
|
|

Checklist:

Data

type

mappings

In

the

following

table,

identify

the

data

source

data

types

and

the

corresponding

federated

server

data

types

that

you

need

to

create

a

mapping

for.

Table

6.

Planning

checklist:

Data

type

mappings

to

create

for

the

federated

system

Data

source

What

name

will

you

specify

for

the

server

in

the

server

definition

for

this

data

source?

Data

source

data

type

Federated

server

data

type

Checklist:

User

mappings

In

the

following

table,

identify

the

federated

server

user

IDs

and

corresponding

user

IDs

for

each

data

source

that

will

be

part

of

the

federated

system.

Table

7.

Planning

checklist:

User

mappings

to

create

for

the

federated

system

Data

source

Data

source

Data

source

User

name

DB2

for

Linux,

UNIX,

and

Windows

user

ID

User

ID

User

ID

User

ID

Checklist:

Wrappers

In

the

following

table,

identify

the

wrappers

that

you

will

create.

Table

8.

Planning

checklist:

Wrappers

to

create

for

the

federated

system

Data

source

Default

wrapper

name

Name

that

you

will

give

the

wrapper

BioRS

none

BLAST

none

32

Data

Source

Configuration

Guide

Table

8.

Planning

checklist:

Wrappers

to

create

for

the

federated

system

(continued)

Data

source

Default

wrapper

name

Name

that

you

will

give

the

wrapper

Business

applications

(WebSphere

Business

Integration

wrapper)

none

DB2

Universal

Database™

for

Linux,

UNIX,

and

Windows®

DB2

Universal

Database

for

z/OS

and

OS/390®

DB2

Universal

Database

for

iSeries

DB2

Server

for

VM

and

VSE

DRDA

Documentum

none

Entrez

none

Excel

none

Extended

Search

none

HMMER

none

Informix

INFORMIX

Microsoft®

SQL

Server

MSSQLODBC3

Oracle

NET8

ODBC

none

OLE

DB

OLEDB

Sybase

CTLIB

Table-structured

files

none

Teradata

TERADATA

Web

services

none

XML

none

Related

concepts:

v

“Fast

track

to

configuring

your

data

sources”

on

page

55

v

“Methods

of

accessing

Excel

data”

on

page

25

Related

tasks:

v

“Checking

the

setup

of

the

federated

server”

on

page

37

v

“Creating

a

federated

database”

on

page

51

Related

reference:

v

“Federated

database

national

language

considerations”

on

page

45

v

“Federated

object

naming

rules”

on

page

21

v

“Preserving

case-sensitive

values

in

a

federated

system”

on

page

22

v

“Update

data

source

statistics”

on

page

23

v

“Plan

the

data

type

mappings”

on

page

29

v

“Plan

the

function

mappings”

on

page

30

v

“Plan

the

user

mappings”

on

page

28

v

“Choose

the

correct

wrapper”

on

page

24

Chapter

2.

Planning

for

federated

data

source

configuration

33

34

Data

Source

Configuration

Guide

Part

2.

Federated

server

and

database

©

Copyright

IBM

Corp.

1998,

2004

35

36

Data

Source

Configuration

Guide

Chapter

3.

Checking

the

setup

of

the

federated

server

Checking

the

setup

of

the

federated

server

You

can

avoid

potential

configuration

problems

by

checking

key

settings

on

the

federated

server.

Procedure:

To

check

the

setup

of

the

federated

server:

v

Confirm

the

link-edit

of

the

wrapper

library

files

to

the

data

source

client

software

(UNIX)

v

Check

that

the

FEDERATED

parameter

is

set

to

YES

After

you

check

the

setup

of

the

federated

server,

you

must

create

a

federated

database.

Related

tasks:

v

“Confirming

the

link-edit

of

the

wrapper

library

files

(UNIX)”

on

page

37

v

“Checking

the

FEDERATED

parameter”

on

page

42

v

“Creating

a

federated

database”

on

page

51

Confirming

the

link-edit

of

the

wrapper

library

files

(UNIX)

Confirming

the

link-edit

of

the

wrapper

library

files

(UNIX)

Confirming

the

link-edit

of

the

wrapper

library

files

is

part

of

the

larger

task

of

checking

the

setup

of

the

federated

server.

On

UNIX

federated

servers,

some

wrappers

must

be

link-edited

with

the

data

source

client

software

for

the

data

source.

The

link-edit

step

is

attempted

when

you

install

DB2

Information

Integrator.

The

link-edit

step

creates

a

wrapper

library

for

each

data

source

that

the

federated

server

will

communicate

with.

This

task

applies

to

only

the

following

data

sources:

v

Informix

v

Microsoft

SQL

Server

v

Oracle

v

Sybase

v

Teradata

Before

you

configure

the

federated

server

and

database

to

access

data

sources,

you

should

confirm

that

the

link-edit

of

the

wrapper

library

files

was

successful.

Prerequisites:

A

federated

server

that

is

properly

setup

to

access

your

data

sources.

This

includes

the

installation

and

configuration

of

any

required

software,

such

as

the

data

source

client

software.

©

Copyright

IBM

Corp.

1998,

2004

37

|

|
|

|

|

|
|

|

|
|

|

|

|

|

|

|
|

|
|
|
|

|

|

|

|

|

|

|
|

|

|
|
|

Procedure:

Determine

the

status

of

the

link-edit

of

the

wrapper

library

files:

v

If

the

link-edit

was

successful,

the

wrapper

library

file

appears

in

the

directory

where

DB2

Information

Integrator

is

installed.

v

If

the

link-edit

failed,

check

the

error

message

file

in

the

directory

where

DB2

Information

Integrator

is

installed.

v

If

the

link-edit

was

not

performed,

neither

the

library

file

nor

the

message

file

appears

in

the

directory

where

DB2

Information

Integrator

is

installed.

You

will

have

to

manually

run

the

link

script.

Related

tasks:

v

“Checking

the

wrapper

library

files

(UNIX)”

on

page

38

v

“Checking

the

link-edit

message

files

(UNIX)”

on

page

40

v

“Manually

linking

the

wrapper

libraries

to

the

data

source

client

software”

on

page

41

v

“Adding

data

sources

to

a

federated

server

using

the

DB2

UDB

Control

Center”

on

page

56

Checking

the

wrapper

library

files

(UNIX)

Checking

the

wrapper

library

files

is

part

of

the

larger

task

of

confirming

the

link-edit

between

the

wrapper

libraries

and

the

data

source

client

software.

The

wrapper

library

files

are

required

so

that

you

can

access

the

data

sources.

For

some

data

sources,

the

library

files

are

added

to

the

federated

server

when

you

install

DB2

Information

Integrator.

For

other

data

sources

a

link-edit

script

must

be

run

to

create

the

library

files.

This

task

applies

to

only

the

following

data

sources:

v

Informix

v

Microsoft

SQL

Server

v

Oracle

v

Sybase

v

Teradata

Procedure:

To

check

if

the

wrapper

library

files

are

on

your

federated

server:

1.

Check

for

the

library

files

in

the

directory

path

for

the

wrapper

library.

You

must

confirm

that

a

library

files

exists

on

the

federated

server

for

each

data

source

that

you

want

to

access.

2.

If

the

library

files

are

not

in

the

directory,

you

must

manually

link

the

wrapper

libraries

to

the

data

source

client

software.

Related

tasks:

v

“Checking

the

setup

of

the

federated

server”

on

page

37

v

“Checking

the

link-edit

message

files

(UNIX)”

on

page

40

v

“Manually

linking

the

wrapper

libraries

to

the

data

source

client

software”

on

page

41

38

Data

Source

Configuration

Guide

|

|

|
|

|
|

|
|
|

|

|

|

|
|

|
|

Related

reference:

v

“Wrapper

library

files”

on

page

39

v

“Life

sciences

user-defined

function

library

files”

on

page

443

Wrapper

library

files

The

wrapper

library

files

are

required

so

that

you

can

access

the

data

sources.

For

some

data

sources,

the

library

files

are

added

to

the

federated

server

when

you

install

DB2

Information

Integrator.

For

other

data

sources

a

link-edit

script

must

be

run

to

create

the

library

files.

The

wrapper

library

files

are

required

when

you

register

the

wrapper

for

the

data

source.

You

should

verify

that

the

wrapper

library

files

are

on

your

federated

server.

There

should

be

a

set

wrapper

library

files

for

each

of

the

data

sources

that

you

want

to

access.

If

the

wrapper

library

files

are

not

on

the

federated

server,

you

must

manually

run

the

link-edit

script

to

create

the

library

files.

Related

tasks:

v

“Checking

the

wrapper

library

files

(UNIX)”

on

page

38

v

“Manually

linking

the

wrapper

libraries

to

the

data

source

client

software”

on

page

41

Related

reference:

v

“BLAST

wrapper

library

files”

on

page

106

v

“BioRS

wrapper

library

files”

on

page

72

v

“DB2

wrapper

library

files”

on

page

160

v

“Documentum

wrapper

library

files”

on

page

174

v

“Entrez

wrapper

library

files”

on

page

197

v

“Excel

wrapper

library

files”

on

page

220

v

“Extended

Search

wrapper

library

files”

on

page

236

v

“HMMER

wrapper

library

files”

on

page

262

v

“Informix

wrapper

library

files”

on

page

281

v

“Microsoft

SQL

Server

wrapper

library

files”

on

page

296

v

“ODBC

wrapper

library

files”

on

page

308

v

“OLE

DB

wrapper

library

files”

on

page

323

v

“Oracle

wrapper

library

files”

on

page

333

v

“Sybase

wrapper

library

files”

on

page

346

v

“Teradata

wrapper

library

files”

on

page

371

v

“Table-structured

files

wrapper

library

files”

on

page

358

v

“WebSphere

Business

Integration

wrapper

library

files”

on

page

127

v

“Web

services

wrapper

library

files”

on

page

388

v

“XML

wrapper

library

files”

on

page

419

Chapter

3.

Checking

the

setup

of

the

federated

server

39

Checking

the

link-edit

message

files

(UNIX)

Checking

the

link-edit

message

files

is

part

of

the

larger

task

of

confirming

the

link-edit

between

the

wrapper

libraries

and

data

source

client

software.

If

the

link-edit

fails,

errors

are

listed

in

the

message

file

in

the

library

directory.

The

existence

of

an

message

file

does

not

mean

that

the

link-edit

failed.

There

is

a

message

file

in

the

library

directory

even

if

the

link-edit

is

successful.

You

must

open

the

message

file

to

determine

if

the

link-edit

failed.

This

task

is

required

for

only

the

following

data

sources:

v

Informix

v

Microsoft

SQL

Server

v

Oracle

v

Sybase

v

Teradata

Procedure:

To

determine

if

the

link-edit

failed,

open

the

link-edit

message

files.

The

link-edit

message

files

are

in

the

directory

where

DB2

is

installed,

in

the

lib

or

lib64

subdirectory.

The

names

of

the

link-edit

message

files

are

listed

in

the

following

table.

Table

9.

Link-edit

message

file

names

by

data

source

Data

source

Message

file

names

Informix

djxlinkInformix.out

Microsoft

SQL

Server

djxlinkMssql.out

Oracle

djxlinkOracle.out

Sybase

djxlinkSybase.out

Teradata

djxlinkTeradata.out

There

are

several

reasons

why

the

link

might

fail

when

you

setup

the

federated

server:

v

If

the

data

source

client

software

is

not

installed

before

the

link-edit

is

attempted,

then

the

link-edit

will

fail.

For

example,

if

you

do

not

install

the

Informix

client

software

before

you

install

the

DB2

server

software,

the

link-edit

will

fail.

Likewise,

if

you

do

not

install

the

Sybase

Open

Client

software

before

you

install

DB2

Information

Integrator,

the

link-edit

will

fail.

In

these

situations,

you

will

have

to

perform

the

link

manually.

v

Verify

that

the

version

of

the

data

source

client

software

is

supported.

If

the

version

of

the

data

source

client

software

that

you

have

installed

is

not

supported,

the

link-edit

will

fail.

You

will

have

to

install

a

client

version

that

is

supported

and

then

perform

the

link

manually.

Related

tasks:

v

“Confirming

the

link-edit

of

the

wrapper

library

files

(UNIX)”

on

page

37

v

“Checking

the

wrapper

library

files

(UNIX)”

on

page

38

v

“Manually

linking

the

wrapper

libraries

to

the

data

source

client

software”

on

page

41

40

Data

Source

Configuration

Guide

|

|
|

|
|
|

|

|

|

|

|

|

|

|

|
|
|
|

||

||

||

||

||

||

||
|

|
|

|
|
|
|
|
|

|
|
|
|

|

|

|

|
|

Manually

linking

the

wrapper

libraries

to

the

data

source

client

software

Manually

linking

the

wrapper

libraries

to

the

data

source

client

software

is

part

of

the

larger

task

of

checking

the

setup

of

the

federated

server.

If

the

library

files

are

not

in

the

directory

path,

you

must

manually

link

the

wrapper

libraries.

This

task

applies

only

to

the

following

data

sources:

v

Informix

v

Microsoft

SQL

Server

v

Oracle

v

Sybase

v

Teradata

Prerequisites:

You

need

root

authorization

to

run

the

link

scripts.

For

the

djxlinkxxx

scripts

to

issue

their

messages

in

your

language,

there

must

be

at

least

one

DB2

instance.

If

an

instance

does

not

exist,

the

scripts

will

still

work.

However,

you

will

receive

error

messages.

Each

error

message

begins

with

db2djxmsg:

Error

retrieving

message

number.

This

error

message

is

followed

by

a

message

in

English.

For

example:

db2djxmsg:

Error

retrieving

message

number

9004

(return

code

-2029059891

from

sqlogmsg).

Begin

processing

for

wrapper:

INFORMIX

INFORMIXDIR

=

/wsdb/v82/bldsupp/AIX/informix2.81

db2djxmsg:

Error

retrieving

message

number

9015

(return

code

-2029059891

from

sqlogmsg).

Library

libdb2informixF.a

was

built

successfully.

db2djxmsg:

Error

retrieving

message

number

9006

(return

code

-2029059891

from

sqlogmsg).

End

processing

for

wrapper:

INFORMIX

Procedure:

To

link

the

wrapper

libraries

to

the

data

source

client

software

quickly:

1.

Install

and

configure

the

client

software

on

the

DB2

federated

server

(if

necessary).

2.

Use

the

product

CDs

to

perform

the

link:

v

For

Informix

data

sources,

run

the

DB2

server

installation

again

and

specify

the

Typical

installation

option.

v

For

Microsoft

SQL

Server,

Oracle,

Sybase,

and

Teradata

data

sources

run

the

DB2

Information

Integrator

installation

again.

From

the

launchpad,

click

Install

Products

and

follow

the

instructions

in

the

wizard.
3.

After

the

link

is

performed,

check

the

permissions

on

the

wrapper

libraries.

Make

sure

that

the

libraries

can

be

read

and

executed

by

the

DB2

instance

owners.

Alternatively,

you

can

run

the

link-edit

scripts

from

the

UNIX

command

prompt.

1.

Open

a

UNIX

command

prompt.

2.

Run

the

link-edit

script

for

each

data

source

that

you

want

to

access.

Chapter

3.

Checking

the

setup

of

the

federated

server

41

|

|

|
|

|
|

|

|

|

|

|

|

|

|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|

|
|

|

|
|

|
|
|

|
|
|

|

|

|

The

following

table

lists

the

names

of

link-edit

script

for

each

data

source.

Table

10.

Link

scripts

by

data

source

Data

source

Link

script

name

Informix

djxlinkInformix

Microsoft

SQL

Server

djxlinkMssql

Oracle

djxlinkOracle

Sybase

djxlinkSybase

Teradata

djxlinkTeradata

For

example,

if

you

are

setting

up

the

federated

server

to

access

Informix

data

sources,

run

the

djxlinkInformix

script

from

the

UNIX

command

prompt:

djxlinkInformix

3.

Issue

the

db2iupdt

command

on

each

DB2

instance

to

enable

federated

access

to

the

data

sources.

4.

After

the

link

is

performed,

check

the

permissions

on

the

wrapper

libraries.

Make

sure

that

the

libraries

can

be

read

and

executed

by

the

DB2

instance

owners.

Attention:

There

is

another

script,

the

djxlink

script,

that

attempts

to

create

a

wrapper

library

for

every

data

source

that

is

supported

by

DB2

Information

Integrator.

If

you

run

djxlink

script

and

have

the

client

software

for

only

some

of

the

data

sources

installed,

you

will

receive

an

error

message

for

each

of

the

data

sources

that

you

do

not

have

installed.

Related

tasks:

v

“Installing

DB2

Information

Integrator

(Windows)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Installing

DB2

Information

Integrator

(UNIX)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Checking

the

setup

of

the

federated

server”

on

page

37

v

“Checking

the

FEDERATED

parameter”

on

page

42

v

“Checking

the

link-edit

message

files

(UNIX)”

on

page

40

Checking

the

FEDERATED

parameter

Checking

the

FEDERATED

parameter

is

part

of

the

larger

task

of

checking

the

setup

of

the

federated

server.

Before

you

add

data

sources

to

the

federated

server

and

database,

you

should

check

the

FEDERATED

parameter

setting.

The

FEDERATED

parameter

must

be

set

to

YES

to

enable

the

federated

server

to

access

to

the

data

sources.

Prerequisites:

v

DB2

Information

Integrator

must

be

installed

on

a

server

that

will

act

as

the

federated

server

Procedure:

42

Data

Source

Configuration

Guide

|

||

||

||

||

||

||

||
|

|
|

|

|
|

|
|
|

|
|
|
|
|

|

|
|

|
|

|

|

|

To

check

the

FEDERATED

parameter

setting:

1.

Issue

the

following

DB2

command

to

display

all

of

the

parameters

and

their

current

settings:

GET

DATABASE

MANAGER

CONFIGURATION

2.

Check

the

CONCENTRATOR

parameter

setting.

The

CONCENTRATOR

parameter

and

the

FEDERATED

parameter

cannot

be

configured

to

YES

at

the

same

time.

If

the

CONCENTRATOR

parameter

is

set

to

YES,

change

the

setting

to

NO.

Issue

the

following

DB2

command

to

change

the

setting:

UPDATE

DATABASE

MANAGER

CONFIGURATION

USING

CONCENTRATOR

NO

3.

Check

the

FEDERATED

parameter

setting.

If

the

FEDERATED

parameter

is

set

to

NO,

change

the

setting

to

YES.

Issue

the

following

DB2

command

to

change

the

setting:

UPDATE

DATABASE

MANAGER

CONFIGURATION

USING

FEDERATED

YES

Related

concepts:

v

“DB2

Information

Integrator

installation

process

-

overview”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

Related

tasks:

v

“Checking

the

setup

of

the

federated

server”

on

page

37

Chapter

3.

Checking

the

setup

of

the

federated

server

43

44

Data

Source

Configuration

Guide

Chapter

4.

Creating

a

federated

database

Before

you

can

configure

the

federated

server

to

access

your

data

sources,

you

must

create

a

database

that

is

used

as

the

federated

database.

Federated

database

national

language

considerations

For

many

relational

data

sources,

the

wrapper

performs

the

following

tasks

when

the

wrapper

connects

to

the

data

source:

1.

Determines

the

codepage

and

territory

of

the

federated

database.

2.

Maps

the

codepage

and

territory

to

a

data

source

client

locale

name.

3.

Depending

on

the

data

source,

sets

an

environment

variable

or

calls

a

data

source

API

to

tell

the

data

source

what

the

client

locale

is.

4.

The

data

source

then

converts

character

data

between

the

codepage

of

the

remote

database

and

the

codepage

of

the

federated

database.

For

example,

if

the

federated

database

uses

codepage

819,

territory

US.

The

equivalent

Oracle

client

locale

is

American_America.WE8ISO8859P1.

The

wrapper

will

set

the

NLS_LANG

variable

to

the

Oracle

client

locale

value.

When

data

is

sent

from

the

Oracle

database

to

the

wrapper,

the

Oracle

database

converts

the

data

from

codeset

American_America.WE8ISO8859P1

to

codepage

819.

When

data

is

sent

from

the

Oracle

database

to

the

wrapper,

the

Oracle

server

or

client

converts

the

data

from

the

codepage

of

the

Oracle

database

to

codepage

819.

When

data

is

sent

from

the

wrapper

to

the

Oracle

database,

the

Oracle

server

or

client

converts

the

data

from

codepage

819

to

the

codepage

of

the

Oracle

database.

For

relational

data

sources

that

do

not

perform

codepage

conversion,

some

of

the

wrappers

perform

the

conversion.

Defining

the

federated

database

to

use

the

same

codeset,

territory,

and

collating

sequence

as

your

data

source

can

improve

performance.

If

you

define

the

federated

database

to

use

the

same

codeset,

territory,

and

collating

sequence

as

your

data

source,

then

the

codepage

conversion

is

not

necessary.

Using

the

same

national

language

settings

can

improve

performance

when

you

transfer

large

amounts

of

character

data.

To

specify

the

codeset

and

territory

on

the

federated

database,

you

use

the

USING

CODESET

and

TERRITORY

parameters

on

the

CREATE

DATABASE

statement.

Related

concepts:

v

“Unicode

support

for

federated

systems”

on

page

48

v

“Collating

sequences

in

a

federated

system”

on

page

46

Related

tasks:

v

“Creating

a

federated

database”

on

page

51

v

“Setting

the

federated

database

collating

sequence”

on

page

47

©

Copyright

IBM

Corp.

1998,

2004

45

|

|
|

|

|

|
|

|
|

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|

|

|

|

|

|

|

Collating

sequences

in

a

federated

system

When

the

federated

server

receives

a

query,

the

DB2®

SQL

Compiler

consults

information

in

the

global

catalog

and

the

data

source

wrapper

to

help

it

process

the

query.

As

part

of

the

SQL

Compiler

process,

the

query

optimizer

analyzes

a

query.

The

Compiler

develops

alternative

strategies,

called

access

plans,

for

processing

the

query.

The

access

plans

might

call

for

the

query

to

be:

v

Processed

by

the

data

sources

v

Processed

by

the

federated

server

v

Processed

partly

by

the

data

sources

and

partly

by

the

federated

server

Performing

character

sorts

and

comparisons

at

the

data

source

usually

improves

performance.

If

the

query

requires

character

sorting

or

comparisons,

the

SQL

Compiler

uses

collating

sequence

information

to

determine

which

access

plan

to

use.

By

default,

the

federated

database

collating

sequence

is

case-sensitive.

However

some

of

the

federated

data

sources

use

collating

sequences

that

are

case-insensitive.

If

the

collating

sequences

of

the

federated

database

and

the

data

source

are

different,

the

query

results

might

differ.

If

the

operation

is

a

character

sort,

the

same

data

is

returned

but

the

order

of

the

results

will

be

different.

If

the

operation

is

a

character

comparison,

the

results

returned

might

be

different.

Where

the

sorting

or

comparison

is

processed

depends

on

several

factors:

v

If

the

federated

database

collating

sequence

is

the

same

as

the

data

source

collating

sequence,

the

character

sort

or

comparison

can

take

place

at

the

data

source.

The

query

optimizer

can

decide

which

is

the

most

efficient

way

to

complete

the

query,

a

local

operation

or

a

remote

operation.

It

is

assumed

that

all

types

of

character

comparisons

and

sorts

by

the

data

source

would

yield

the

same

results

as

if

those

actions

were

performed

by

the

federated

database.

v

If

the

federated

database

collating

sequence

is

different

than

the

data

source

collating

sequence,

but

the

data

source

collating

sequence

is

case-sensitive,

the

character

sort

or

comparison

will

take

place

at

the

federated

database.

It

is

assumed

that

the

data

source

will

yield

the

same

results

on

character

data

for

WHERE=,

DISTINCT,

and

GROUP

BY

operations.

But

other

operations,

such

as

ORDER

BY

and

WHERE

with

a

greater

than

or

less

than

predicate,

will

yield

different

results

on

character

data.

v

If

the

federated

database

collating

sequence

is

different

than

the

data

source

collating

sequence,

but

the

data

source

collating

sequence

is

case-insensitive,

the

character

sort

or

comparison

will

take

place

at

the

federated

database.

It

is

assumed

that

the

data

source

will

count

uppercase

and

lowercase

letters

as

equivalent

and

will

include

them

both

in

a

result,

regardless

of

whether

uppercase

or

lowercase

was

specified

in

the

requested

operation.

WHERE=,

WHERE

with

a

greater

than

or

less

than

predicate,

ORDER

BY,

DISTINCT,

and

GROUP

BY

operations

will

not

be

pushed

down

to

the

data

source.

For

example,

a

case-insensitive

data

source

assigns

the

same

weights

to

the

characters

″S″

and

″s″.

A

case-insensitive

data

source

with

an

English

code

page

considers

the

words

STEWART,

SteWArT,

and

stewart

to

be

equal.

However

when

a

case-sensitive

collating

sequence

is

used,

different

weights

are

assigned

to

the

characters.

Depending

on

the

sensitivity

of

the

collating

sequence,

the

result

set

of

a

character

sort

or

comparison

will

be

different.

46

Data

Source

Configuration

Guide

|

|
|
|
|
|

|

|

|

|
|

|
|

|
|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

When

the

collating

sequences

of

the

federated

database

and

the

data

source

differ,

the

federated

server

retrieves

the

data

and

the

character

sorts

and

comparisons

are

performed

locally.

The

reason

for

performing

these

tasks

locally

is

that

DB2

users

expect

to

see

the

query

results

ordered

according

to

the

collating

sequence

defined

for

the

federated

server.

By

ordering

the

data

locally,

DB2

users

are

guaranteed

that

the

result

sets

will

be

consistent.

Retrieving

data

for

local

sorts

and

comparisons

usually

decreases

performance.

If

you

need

to

see

the

character

data

ordered

in

the

data

source

collating

sequence,

you

can

submit

your

query

in

a

pass-through

session.

To

determine

if

a

data

source

and

the

federated

database

have

the

same

collating

sequence,

consider

the

following

factors:

Code

page

The

code

page

scheme,

such

as

ASCII

and

EBCDIC,

that

is

used

by

the

federated

server

and

the

data

source

impacts

the

results.

National

language

support

(NLS)

The

collating

sequence

is

related

to

the

language

supported

on

a

server.

Compare

the

DB2

NLS

information

for

your

operating

system

to

the

data

source

NLS

information.

Data

source

characteristics

Some

data

sources

are

created

using

case-insensitive

collating

sequences,

which

can

yield

different

results

from

DB2

in

order-dependent

operations.

Customization

Some

data

sources

provide

multiple

options

for

collating

sequences

or

allow

the

collating

sequence

to

be

customized.

There

are

several

options

that

you

have

for

setting

the

collating

sequence,

you

can:

v

Set

the

collating

sequence

when

you

create

the

federated

database

v

Set

the

COLLATING_SEQUENCE

option

when

you

create

the

server

definition

for

a

data

source.

This

option

is

available

only

for

relational

data

sources.

Related

concepts:

v

“Unicode

support

for

federated

systems”

on

page

48

Related

tasks:

v

“Creating

a

federated

database”

on

page

51

v

“Setting

the

federated

database

collating

sequence”

on

page

47

Related

reference:

v

“Federated

database

national

language

considerations”

on

page

45

Setting

the

federated

database

collating

sequence

Administrators

can

create

federated

databases

with

a

particular

collating

sequence

that

matches

a

data

source

collating

sequence.

You

set

the

federated

database

collating

sequence

as

part

of

the

CREATE

DATABASE

API.

Through

this

API,

you

can

specify

one

of

the

following

sequences:

v

An

identity

sequence

Chapter

4.

Creating

a

federated

database

47

|
|
|
|
|
|
|

|
|

|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|

|

|
|

|

|

|

|

|

|

|

|

|
|

|
|
|

|

v

A

system

sequence

(the

sequence

used

by

the

operating

system

that

supports

the

database)

v

A

customized

sequence

(a

predefined

sequence

that

DB2

UDB

supplies

or

that

you

define

yourself)

Procedure:

To

specify

the

collating

sequence

of

the

federated

database,

you

use

the

COLLATE

USING

parameter

on

the

CREATE

DATABASE

statement.

For

relational

data

sources,

if

the

federated

database

and

the

data

source

use

the

same

collating

sequence,

you

should

set

the

COLLATING_SEQUENCE

server

option

to

’Y’.

Setting

the

COLLATING_SEQUENCE

server

option

to

’Y’

tells

the

federated

server

that

the

collating

sequences

of

the

federated

database

and

the

data

source

match.

You

set

the

COLLATING_SEQUENCE

server

option

when

you

create

the

server

definitions

for

the

relational

data

sources.

The

relational

data

sources

that

support

the

COLLATING_SEQUENCE

server

option

are:

v

DB2

family

v

Informix

v

Microsoft

SQL

Server

v

ODBC

v

OLE

DB

v

Oracle

v

Sybase

v

Teradata

Related

concepts:

v

“Unicode

support

for

federated

systems”

on

page

48

v

“Collating

sequences

in

a

federated

system”

on

page

46

Related

tasks:

v

“Creating

a

federated

database”

on

page

51

Related

reference:

v

“Federated

database

national

language

considerations”

on

page

45

Unicode

support

for

federated

systems

Relational

and

nonrelational

wrappers

and

user-defined

functions

can

run

on

a

Unicode

database

(UTF-8

database).

The

Unicode

database

provides

federated

server

environments

that

are

platform

independent.

The

Unicode

database

can

manipulate

data

that

is

stored

in

various

code

pages

on

different

data

sources.

The

wrappers

and

user-defined

functions

that

support

Unicode

are:

v

Relational

wrappers

–

DRDA®

–

Informix®

–

MS

SQL

Server

–

ODBC

–

OLE

DB

48

Data

Source

Configuration

Guide

|
|

|
|

|

|
|

|
|
|
|
|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|

|

|
|
|
|
|
|

–

Oracle

–

Sybase

–

Teradata
v

Nonrelational

wrappers

and

user-defined

functions

–

BioRS

wrapper

–

BLASTwrapper

–

Documentum

wrapper

–

Entrez

wrapper

–

Excel

wrapper

–

HMMER

wrapper

–

IBM®

Lotus®

Extended

Search

wrapper

–

KEGG

user-defined

functions

–

MQ

user-defined

functions

–

Table-structured

file

wrapper

–

Web

services

user-defined

functions

–

Web

services

wrapper

–

WebSphere®

Business

Integration

wrapper

–

XML

wrapper

In

Figure

5

on

page

50

a

company

has

branch

offices

in

different

countries.

Each

branch

office

stores

customer

data

with

its

own

databases

in

their

own

code

page.

The

Microsoft®

SQL

Server

database

stores

data

in

code

page

A.

The

Oracle

database

stores

data

in

code

page

B.

Code

page

A

and

code

page

B

are

in

different

territories.

To

integrate

the

data

from

the

different

territories,

the

company

can

set

the

federated

database’s

code

page

to

Unicode.

The

company

can

then

join

the

tables

to

see

the

total

number

of

purchase

orders,

regardless

of

territory.

Chapter

4.

Creating

a

federated

database

49

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

Related

tasks:

v

“Specifying

the

client

code

page

for

Unicode

support

of

Microsoft

SQL

Server

and

ODBC

data

sources”

in

the

Federated

Systems

Guide

v

“Specifying

the

file

code

page

for

Unicode

support

of

table-structured

file

data

sources”

in

the

Federated

Systems

Guide

Related

reference:

v

“Unicode

default

forward

data

type

mappings

-

NET8

wrapper”

in

the

Federated

Systems

Guide

v

“Supported

Unicode

code

pages

for

the

MSSQL

and

ODBC

wrapper

CODEPAGE

option”

in

the

Federated

Systems

Guide

v

“Unicode

default

reverse

data

type

mappings

-

NET8

wrapper”

in

the

Federated

Systems

Guide

v

“Unicode

default

forward

data

type

mappings

-

Sybase

wrapper”

in

the

Federated

Systems

Guide

v

“Unicode

default

reverse

data

type

mappings

-

Sybase

wrapper”

in

the

Federated

Systems

Guide

Wrapper

Nickname A in code page A

Customer A
Customer B
Customer C

Customer name Product ID Product name Purchase
order

1002
1002
1003

Product B
Product B
Product C

100
1000
200

1
2
3

Customer ID

Nickname B in code page B

Customer D
Customer E
Customer F

Customer name Product ID Product name Purchase
order

11
12
13

Customer ID

Customer A
Customer B
Customer C
Customer D
Customer E
Customer F

Customer name Product ID Product name Purchase
order

1002
1002
1003
1001
1002
1003

Product B
Product B
Product C
Product A
Product B
Product C

100
1000
200
50
600
1000

1
2
3
11
12
13

View A (contains both code pages)

Code
page

B

Code
page

A

UTF-8

Customer A
Customer B
Customer C

1
2
3

1002
1002
1003

DB2 Information Integrator

Oracle

MS SQL Server
Customer ID

11
12
13

Customer ID

11
12
13

Product B
Product B
Product C

100
1000
200

Customer D
Customer E
Customer F

Customer name Product ID Product name

1001
1002
1003

Product A
Product B
Product C

Table B in code page B

Customer ID

Table A in code page A

Purchase
order

50
600
1000

Customer name Product IDCustomer ID Product name Purchase
order

1001
1002
1003

Product A
Product B
Product C

50
600
1000

Figure

5.

Unicode

example

50

Data

Source

Configuration

Guide

|

|
|

|
|

|

|
|

|
|

|
|

|
|

|
|

v

“Unicode

default

forward

data

type

mappings

-

ODBC

wrapper”

in

the

Federated

Systems

Guide

v

“Unicode

default

reverse

data

type

mappings

-

ODBC

wrapper”

in

the

Federated

Systems

Guide

v

“Unicode

default

forward

data

type

mappings

-

Microsoft

SQL

Server

wrapper”

in

the

Federated

Systems

Guide

v

“Unicode

default

reverse

data

type

mappings

-

Microsoft

SQL

Server

wrapper”

in

the

Federated

Systems

Guide

v

“Specifying

the

file

code

page

for

Unicode

support

of

table-structured

file

data

sources

-

example”

in

the

Federated

Systems

Guide

Creating

a

federated

database

After

you

set

up

the

federated

server,

the

DB2

instance

owner

must

create

a

DB2

database

on

the

federated

server

instance

that

will

act

as

the

federated

database.

Recommendation:

If

the

remote

data

sources

that

you

need

to

connect

to

are

using

different

or

incompatible

codepages,

define

the

federated

database

as

a

Unicode

database.

To

define

the

federated

database

as

a

Unicode

database,

specify

USING

CODESET

UTF-8

on

the

CREATE

DATABASE

statement.

This

step

must

be

completed

before

you

can

configure

the

federated

server

to

access

your

data

sources.

Prerequisites:

v

SYSADM

or

SYSCTRL

authority

to

create

a

DB2

database.

v

DB2

Information

Integrator

must

be

installed

on

a

server

that

will

act

as

the

federated

server

v

Determine

if

you

want

to

specify

a

collating

sequence

when

you

create

the

federated

database

Procedure:

You

can

create

the

federated

database

from

the

DB2

Control

Center

or

the

DB2

command

line.

To

do

this

task

from

the

DB2

Control

Center:

1.

Right-click

on

the

Databases

folder

and

click

Create

–>Database

Using

Wizard.

The

Create

Database

Wizard

opens.

2.

Complete

the

steps

in

the

wizard.

To

do

this

task

from

the

DB2

command

line,

issue

the

CREATE

DATABASE

command.

For

example:

CREATE

DATABASE

federated

This

command:

v

Initializes

a

new

database

v

Creates

the

three

initial

table

spaces

v

Creates

the

system

tables

v

Allocates

the

recovery

log

Chapter

4.

Creating

a

federated

database

51

|
|

|
|

|
|

|
|

|
|

|

|
|

|
|
|
|

|
|

|

|

|
|

|
|

|

|
|

|

|
|

|

|
|

|

|

|

|

|

|

If

your

DB2

instance

uses

a

multiple

partition

configuration,

the

CREATE

DATABASE

command

affects

all

of

the

partitions

that

are

listed

in

the

db2nodes.cfg

file.

The

database

partition

from

which

this

command

is

issued

becomes

the

catalog

partition

for

the

new

database.

Related

concepts:

v

“DB2

Information

Integrator

installation

process

-

overview”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Fast

track

to

configuring

your

data

sources”

on

page

55

Related

tasks:

v

“Setting

the

federated

database

collating

sequence”

on

page

47

52

Data

Source

Configuration

Guide

|
|
|
|

|

|
|

|

|

|

Part

3.

Data

sources

©

Copyright

IBM

Corp.

1998,

2004

53

54

Data

Source

Configuration

Guide

Chapter

5.

Overview

of

configuring

access

to

data

sources

The

following

sections

provide

a

concise

guide

to

configuring

a

federated

server

and

database

to

access

your

data

sources:

v

They

contain

information

about

the

basic

steps

needed

to

quickly

perform

the

configuration

steps.

v

They

outline

several

optional

steps,

if

you

need

them,

to

fine-tune

the

data

source

configuration.

There

are

individual

configuration

chapters

for

each

data

source.

Fast

track

to

configuring

your

data

sources

You

can

accomplish

most

of

the

steps

required

to

configure

access

to

a

data

source

through

the

DB2®

Control

Center.

Use

the

DB2

Command

Center

for

the

steps

that

require

a

command

line.

Toggle

between

these

graphical

user

interfaces

to

quickly

configure

access

to

a

data

source.

Before

you

configure

access

to

a

data

source,

make

sure

that

the

federated

server

has

been

set

up

properly.

The

steps

to

configure

the

federated

server

to

access

a

data

source

are

similar,

regardless

of

the

data

source.

The

basic

steps

and

recommended

interface

are:

Table

11.

The

recommended

interface

and

configuration

steps

Configuration

step

Recommended

interface

Notes

1.

Prepare

the

federated

server

for

the

data

source.

Client

Configuration

Assistant

Required

for

only

some

data

sources.

This

step

might

require

you

to

install

software,

configure

a

file,

or

check

a

setting.

2.

Set

the

required

environment

variables.

DB2

Control

Center

Environment

variables

are

required

for:

v

Documentum

v

Informix®

v

Microsoft®

SQL

Server

v

Oracle

v

Sybase

v

Teradata

2.

Register

the

wrappers.

The

Federated

Objects

wizard

in

the

DB2

Control

Center.

A

wrapper

is

required

for

each

data

source

that

you

want

to

access.

3.

Register

the

server

definitions.

The

Federated

Objects

wizard

in

the

DB2

Control

Center.

Server

definitions

are

associated

with

a

wrapper

and

used

when

you

register

nicknames.

©

Copyright

IBM

Corp.

1998,

2004

55

|

|
|
|
|

|
|

|
|

||

|||

|
|
|
|
|
|
|
|
|

|
|
||
|

|

|

|

|

|

|

||
|
|
|
|

|
|
|
|
|
|
|
|

Table

11.

The

recommended

interface

and

configuration

steps

(continued)

Configuration

step

Recommended

interface

Notes

4.

Create

the

user

mappings.

The

Federated

Objects

wizard

in

the

DB2

Control

Center.

Required

for

only

some

data

sources.

If

you

attempt

to

retrieve

the

remote

password

associated

with

a

user

mapping

from

the

SYSCAT.USEROPTIONS

catalog

view,

the

remote

password

value

is

displayed

encrypted.

5.

Test

the

connection

to

the

data

source

server.

DB2

Command

Center

Required

for

only

some

data

sources.

6.

Create

the

nicknames.

The

Federated

Objects

wizard

in

the

DB2

Control

Center.

A

nickname

is

required

for

each

data

source

object

that

you

want

to

access.

Related

concepts:

v

“Optional

configuration

steps”

on

page

66

Related

tasks:

v

“Adding

data

sources

to

a

federated

server

using

the

DB2

UDB

Control

Center”

on

page

56

v

“Registering

wrappers

for

a

data

source”

on

page

61

v

“Registering

server

definitions

for

a

data

source”

on

page

61

v

“Registering

user

mappings

for

a

data

source”

on

page

63

v

“Registering

nicknames

for

a

data

source”

on

page

63

v

“Setting

the

data

source

environment

variables”

on

page

58

v

“Checking

the

setup

of

the

federated

server”

on

page

37

Adding

data

sources

to

a

federated

server

using

the

DB2

UDB

Control

Center

To

configure

the

federated

server

to

access

data

sources,

you

must

provide

the

federated

server

with

information

about

the

data

sources

and

objects

that

you

want

to

access.

Procedure:

The

DB2

Control

Center

includes

a

wizard

to

guide

you

through

the

steps

required

to

configure

the

federated

server.

To

start

the

wizard,

right-click

the

Federated

Database

Objects

folder

and

click

Create

Federated

Objects.

The

steps

that

are

required

to

configure

the

federated

server

are

different

for

each

data

source.

You

can

configure

multiple

federated

servers

to

access

data

sources

by

using

the

Action

Output

window.

Related

tasks:

56

Data

Source

Configuration

Guide

|

|||

||
|
|
|

|
|
|
|
|
|
|

|
|
||
|

||
|
|
|
|
|

|

|

|

|
|

|

|

|

|

|

|

|

|

|
|
|

|

|
|
|

|
|

|
|

|

v

“Configuring

multiple

federated

servers

to

access

data

sources”

on

page

57

v

“Adding

table-structured

file

data

sources

to

a

federated

server”

on

page

357

v

“Adding

Documentum

data

sources

to

a

federated

server”

on

page

171

v

“Adding

Excel

data

sources

to

a

federated

server”

on

page

218

v

“Adding

BLAST

data

sources

to

a

federated

server”

on

page

98

v

“Adding

Entrez

data

sources

to

a

federated

server”

on

page

194

v

“Adding

Teradata

data

sources

to

a

federated

server”

on

page

365

v

“Adding

BioRS

data

sources

to

a

federated

server”

on

page

68

v

“Adding

DB2

family

data

sources

to

a

federated

server”

on

page

157

v

“Adding

Extended

Search

data

sources

to

a

federated

server”

on

page

235

v

“Adding

HMMER

data

sources

to

a

federated

server”

on

page

254

v

“Adding

Informix

data

sources

to

federated

servers”

on

page

275

v

“Adding

Microsoft

SQL

Server

data

sources

to

a

federated

server”

on

page

291

v

“Adding

ODBC

data

sources

to

a

federated

server”

on

page

305

v

“Adding

OLE

DB

data

sources

to

a

federated

server”

on

page

321

v

“Adding

Oracle

data

sources

to

a

federated

server”

on

page

327

v

“Adding

Sybase

data

sources

to

a

federated

server”

on

page

341

v

“Adding

business

application

data

sources

to

a

federated

system”

on

page

125

v

“Adding

Web

services

data

sources

to

a

federated

server”

on

page

387

Configuring

multiple

federated

servers

to

access

data

sources

A

federated

system

can

consist

of

multiple

federated

servers.

Instead

of

configuring

each

federated

server

separately,

you

can

save

time

by

using

the

DB2

Control

Center

to

configure

the

federated

servers.

When

you

configure

the

first

server,

the

Action

Output

window

captures

the

DDL

statements

that

are

issued

when

you

create

the

federated

objects.

You

can

reuse

or

modify

these

statements,

and

apply

the

statements

to

quickly

configure

additional

federated

servers.

The

Action

Output

window

remains

active

for

the

current

session.

If

you

close

the

Action

Output

window,

the

DDL

statements

for

the

current

session

continue

to

be

stored

in

the

Action

Output

window.

However,

if

you

close

the

DB2

Control

Center

all

of

the

DLL

statements

from

the

current

session

are

removed

from

the

Action

Output

window.

Prerequisites:

v

DB2

Information

Integrator

installed

on

a

server

that

will

act

as

the

federated

server

v

A

federated

database

must

exist

on

the

federated

server

Procedure:

To

configure

multiple

federated

servers

to

access

data

sources:

1.

Using

the

DB2

Control

Center,

configure

the

first

federated

server

for

the

data

sources

that

you

want

to

access.

This

captures

each

DDL

statement.

2.

Display

the

Action

Output

page

in

the

Action

Output

window.

If

you

closed

the

Action

Output

window,

right-click

the

Federated

Database

Objects

folder

and

click

Show

Actions

to

open

the

Action

Output

window.

Chapter

5.

Overview

of

configuring

access

to

data

sources

57

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

3.

Delete

any

DDL

statements

that

you

do

not

want

to

use

on

the

other

federated

servers.

To

delete

a

statement,

right-click

the

statement

and

click

Remove.

For

example,

you

might

want

to

delete

any

statements

that

display

Failed

in

the

status

column

on

the

Action

Output

page.

4.

Copy

that

statements

that

you

want

to

use

on

the

other

federated

servers

to

the

Command

Editor

page:

a.

Select

the

statements

that

you

want

to

copy.

To

select

multiple

statements,

use

the

Ctrl

key.

b.

Right-click

on

the

selected

statements

and

click

Copy

to

Command

Editor.

The

Command

Editor

page

opens.
5.

Change

any

DDL

statements

in

the

Command

Editor

page

that

you

want

to

use

on

the

other

federated

servers.

For

example,

you

might

want

to

change

any

statement

that

specifies

a

local

schema.

You

must

change

the

user

mappings

to

specify

the

passwords.

When

the

DDL

for

the

CREATE

USER

MAPPING

statements

is

captured

in

the

Action

Output

window,

the

passwords

are

masked

by

asterisks.

You

must

replace

the

asterisks

with

the

proper

passwords.

6.

Issue

the

DDL

statements

on

the

next

federated

server.

Related

concepts:

v

“DB2

Information

Integrator

installation

process

-

overview”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Fast

track

to

configuring

your

data

sources”

on

page

55

Related

tasks:

v

“Creating

a

federated

database”

on

page

51

Setting

the

data

source

environment

variables

Setting

the

data

source

environment

variables

When

you

install

DB2

Information

Integrator,

the

installation

process

attempts

to

set

the

environment

variables

that

are

required

by

some

of

the

data

sources.

The

installation

process

might

not

be

able

to

set

the

environment

variables

if,

for

example,

you

do

not

have

the

client

software

installed

on

the

federated

server

before

you

install

DB2

Information

Integrator.

When

you

follow

the

steps

to

add

a

data

source

to

a

federated

server,

you

can

check

the

environment

variables

and

set

them

(if

necessary).

v

If

you

use

the

DB2

Control

Center

to

add

data

sources

to

the

federated

server,

the

requirements

for

the

environment

variables

are

automatically

checked.

You

can

set

the

environment

variables

when

you

create

or

alter

a

wrapper.

v

If

you

use

the

DB2

command

line

to

add

data

sources

to

the

federated

server,

you

must

set

the

environment

variables

manually.

Setting

the

environment

variables

is

required

for

the

following

data

sources:

v

Documentum

v

Informix

v

Microsoft

SQL

Server

v

Oracle

v

Sybase

58

Data

Source

Configuration

Guide

|

|
|
|
|
|

|
|

|
|
|

|
|

|

|

|

|

|

|

v

Teradata

Prerequisites:

This

task

should

be

performed

by

the

system

administrator.

Restrictions:

See

the

topic:

Restrictions

for

the

db2dj.ini

file

Procedure:

The

steps

to

check

the

environment

variables

are

different

for

each

data

source.

Related

concepts:

v

“Fast

track

to

configuring

your

data

sources”

on

page

55

Related

tasks:

v

“Setting

the

Documentum

environment

variables”

on

page

172

v

“Registering

wrappers

for

a

data

source”

on

page

61

v

“Setting

the

Informix

environment

variables”

on

page

277

v

“Setting

the

Microsoft

SQL

Server

environment

variables”

on

page

293

v

“Setting

the

Oracle

environment

variables”

on

page

328

v

“Setting

the

Sybase

environment

variables”

on

page

342

v

“Setting

the

Teradata

environment

variables”

on

page

368

Related

reference:

v

“Restrictions

for

the

db2dj.ini

file”

on

page

59

Restrictions

for

the

db2dj.ini

file

The

following

restrictions

apply

to

the

db2dj.ini

file:

v

Entries

must

use

the

format

evname=value

evname

is

the

name

of

the

environment

variable

and

value

is

its

value.

v

The

environment

variable

name

has

a

maximum

length

of

255

bytes.

v

The

environment

variable

value

has

a

maximum

length

of

765

bytes.

v

The

maximum

length

of

any

line

in

the

file

is

1021

bytes.

Data

beyond

that

length

is

ignored.

Related

tasks:

v

“Setting

the

Documentum

environment

variables”

on

page

172

v

“Setting

the

data

source

environment

variables”

on

page

58

v

“Setting

the

Informix

environment

variables”

on

page

277

v

“Setting

the

Microsoft

SQL

Server

environment

variables”

on

page

293

v

“Setting

the

Oracle

environment

variables”

on

page

328

v

“Setting

the

Sybase

environment

variables”

on

page

342

v

“Setting

the

Teradata

environment

variables”

on

page

368

Chapter

5.

Overview

of

configuring

access

to

data

sources

59

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

Applying

environment

variables

in

a

multi-partition

instance

configuration

If

your

federated

server

instance

has

a

multi-partition

configuration,

you

must

apply

the

data

source

environment

variables

to

all

partitions.

This

step

is

necessary

only

if

your

federated

server

has

a

multiple-partition

instance

configuration.

The

db2dj.ini

file

contains

the

data

source

environment

variables.

This

file

was

added

to

the

federated

server

when

you

installed

DB2

Information

Integrator.

You

must

add

a

copy

of

the

same

db2dj.ini

file

to

all

of

the

partitions

in

your

multiple-partition

instance

configuration.

The

default

name

of

the

file

is

db2dj.ini

file.

On

UNIX

federated

servers,

the

default

path

for

the

db2dj.ini

file

is

INSTHOME/sqllib/cfg,

where

INSTHOME

is

the

home

directory

of

the

instance

owner.

On

Windows

federated

servers,

the

default

path

to

the

file

is

x:\SQLLIB\cfg,

where

x:\SQLLIB

is

the

drive

and

directory

specified

in

the

DB2PATH

registry

variable

or

environment

variable.

The

default

path

and

file

name

for

the

db2dj.ini

file

can

be

overridden

by

the

DB2_DJ_INI

registry

variable.

You

can

apply

the

DB2_DJ_INI

registry

variable

to

all

of

the

partitions

or

a

subset

of

the

partitions.

Procedure:

To

apply

the

DB2_DJ_INI

registry

variable

to

the

appropriate

partitions

on

your

federated

server,

use

the

db2set

command.

The

db2set

command

displays,

sets,

or

removes

DB2

profile

variables.

The

syntax

of

the

db2set

command

that

you

use

dependents

on

your

database

system

structure.

v

To

apply

the

DB2_DJ_INI

registry

variable

to

all

database

partitions

within

this

instance,

issue

this

command

db2set

-g

DB2_DJ_INI=$HOME/sqllib/cfg/my_db2dj.ini

v

To

apply

the

DB2_DJ_INI

registry

variable

to

only

the

current

partition,

issue

this

command:

db2set

DB2_DJ_INI=$HOME/sqllib/cfg/my_db2dj.ini

v

To

apply

the

DB2_DJ_INI

registry

variable

to

a

specific

partition,

issue

this

command:

db2set

-i

INSTANCEX

3

DB2_DJ_INI=$HOME/sqllib/cfg/partition3.ini

INSTANCEX

The

name

of

the

instance.

3

The

partition

number

as

listed

in

the

db2nodes.cfg

file.

partition3.ini

The

modified

and

renamed

version

of

the

db2dj.ini

file.

Attention:

When

you

set

the

DB2_DJ_INI

registry

variable,

you

must

set

it

to

an

absolute

path.

If

the

FEDERATED

parameter

is

set

to

YES

and

the

DB2_DJ_INI

registry

variable

is

set

to

a

relative

path,

the

DB2

Universal

Database

engine

will

not

start.

60

Data

Source

Configuration

Guide

|
|
|
|
|
|
|

|
|

|

|

|

|
|
|
|

Related

tasks:

v

“Setting

the

data

source

environment

variables”

on

page

58

Registering

wrappers

for

a

data

source

You

register

one

wrapper

for

each

type

of

data

source

that

you

want

to

access.

To

access

three

DB2

for

z/OS

database

tables,

one

DB2

for

iSeries

table,

and

two

BLAST

search

types,

you

need

to

create

two

wrappers.

You

need

to

register

one

wrapper

for

the

DB2

databases

and

one

wrapper

for

the

BLAST

search

types.

After

the

wrappers

are

registered

in

the

federated

database,

you

can

use

these

wrappers

to

access

other

objects

from

those

data

sources.

For

example,

you

can

use

the

DRDA

wrapper

to

access

data

sources

from

all

of

the

DB2

family

data

source

objects,

including

DB2

for

Linux,

UNIX,

and

Windows,

DB2

for

z/OS

and

OS/390,

DB2

for

iSeries,

and

DB2

Server

for

VM

and

VSE.

Procedure:

You

can

register

a

wrapper

from

the

DB2

Control

Center

or

the

DB2

command

line:

v

To

do

this

task

from

the

DB2

Control

Center,

use

the

Federated

Objects

wizard

or

right-click

the

Federated

Objects

folder

and

click

Create

Wrapper.

v

To

do

this

task

from

the

DB2

command

line,

use

the

CREATE

WRAPPER

statement.

Related

tasks:

v

“Registering

the

table-structured

file

wrapper”

on

page

358

v

“Registering

the

Documentum

wrapper”

on

page

174

v

“Registering

the

Excel

wrapper”

on

page

219

v

“Registering

the

BLAST

wrapper”

on

page

105

v

“Registering

the

XML

wrapper”

on

page

419

v

“Registering

the

Entrez

wrapper”

on

page

196

v

“Registering

the

Teradata

wrapper”

on

page

370

v

“Registering

the

BioRS

wrapper”

on

page

71

v

“Registering

the

DB2

wrapper”

on

page

160

v

“Registering

the

Extended

Search

wrapper”

on

page

236

v

“Registering

the

HMMER

wrapper”

on

page

262

v

“Registering

the

Informix

wrapper”

on

page

280

v

“Registering

the

Microsoft

SQL

Server

wrapper”

on

page

295

v

“Registering

the

ODBC

wrapper”

on

page

307

v

“Registering

the

OLE

DB

wrapper”

on

page

322

v

“Registering

the

Oracle

wrapper”

on

page

332

v

“Registering

the

Sybase

wrapper”

on

page

345

v

“Registering

the

WebSphere

Business

Integration

wrapper”

on

page

126

v

“Registering

the

Web

services

wrapper”

on

page

388

Registering

server

definitions

for

a

data

source

The

purpose

of

a

server

definition

varies

from

data

source

to

data

source.

Chapter

5.

Overview

of

configuring

access

to

data

sources

61

|

|
|
|
|

|
|
|
|
|

|

|
|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

A

server

definition

for

relational

data

sources

usually

represents

a

remote

database,

database

partition,

or

node.

For

nonrelational

data

sources,

some

server

definitions

map

to

a

search

type

and

daemon,

to

a

web

site,

or

to

a

web

server.

For

other

nonrelational

data

sources,

a

server

definition

is

created

only

because

it

is

required

by

federation.

Every

data

source

object

that

you

create

a

nickname

for

must

be

associated

with

a

specific

server

definition.

For

some

data

sources,

you

must

specify

a

node

when

you

register

a

server

definition.

The

concept

of

a

node

varies

from

data

source

to

data

source.

For

relational

data

sources,

a

node

reflects

a

server

instance

of

the

data

source.

Procedure:

You

can

register

a

server

definition

from

the

DB2

Control

Center

or

the

DB2

command

line:

v

To

do

this

task

from

the

DB2

Control

Center,

use

the

Federated

Objects

wizard

or

right-click

the

Server

Definitions

folder

and

click

Create.

v

To

do

this

task

from

the

DB2

command

line,

use

the

CREATE

SERVER

statement.

Related

tasks:

v

“Registering

the

server

for

table-structured

files”

on

page

359

v

“Registering

the

server

for

Documentum

data

sources”

on

page

175

v

“Registering

the

server

for

an

Excel

data

source”

on

page

220

v

“Registering

the

server

for

a

BLAST

data

source”

on

page

106

v

“Registering

the

server

for

an

XML

data

source”

on

page

420

v

“Registering

the

server

for

an

Entrez

data

source”

on

page

197

v

“Registering

the

server

definitions

for

a

Teradata

data

source”

on

page

371

v

“Registering

the

server

definition

for

a

BioRS

data

source”

on

page

72

v

“Registering

the

server

definitions

for

a

DB2

data

source”

on

page

161

v

“Registering

the

server

for

Extended

Search

data

sources”

on

page

237

v

“Registering

the

server

definition

for

a

HMMER

data

source”

on

page

263

v

“Registering

the

server

definitions

for

an

Informix

data

source”

on

page

282

v

“Registering

the

server

definitions

for

a

Microsoft

SQL

Server

data

source”

on

page

297

v

“Registering

the

server

definitions

for

an

ODBC

data

source”

on

page

309

v

“Registering

the

server

definitions

for

an

OLE

DB

data

source”

on

page

323

v

“Registering

the

server

definitions

for

an

Oracle

data

source”

on

page

334

v

“Registering

the

server

definitions

for

a

Sybase

data

source”

on

page

347

v

“Registering

the

server

definition

for

business

application

data

sources”

on

page

127

v

“Registering

the

server

definition

for

Web

services

data

sources”

on

page

389

62

Data

Source

Configuration

Guide

|
|
|
|
|

|
|

|
|
|

|

|
|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|
|

|

Registering

user

mappings

for

a

data

source

For

same

data

sources,

you

must

define

an

association

between

the

federated

server

authorization

ID

and

the

data

source

user

ID

and

password.

You

create

a

user

mapping

for

each

user

ID

that

uses

the

federated

system

to

send

distributed

requests.

Procedure:

You

can

create

a

user

mapping

from

the

DB2

Control

Center

or

the

DB2

command

line:

v

To

do

this

task

from

the

DB2

Control

Center,

use

the

Federated

Objects

wizard

or

right-click

the

User

Mappings

folder

and

click

Create.

v

To

do

this

task

from

the

DB2

command

line,

use

the

CREATE

USER

MAPPING

statement.

Related

tasks:

v

“Registering

user

mappings

for

Documentum

data

sources”

on

page

176

v

“Creating

the

user

mapping

for

a

Teradata

data

source”

on

page

373

v

“Registering

user

mappings

for

BioRS

data

sources”

on

page

73

v

“Creating

the

user

mapping

for

a

DB2

data

source”

on

page

163

v

“Registering

user

mappings

for

Extended

Search

data

sources”

on

page

238

v

“Creating

the

user

mapping

for

an

Informix

data

source”

on

page

284

v

“Creating

a

user

mapping

for

a

Microsoft

SQL

Server

data

source”

on

page

299

v

“Creating

a

user

mapping

for

an

ODBC

data

source”

on

page

311

v

“Creating

a

user

mapping

for

an

OLE

DB

data

source”

on

page

324

v

“Creating

the

user

mappings

for

an

Oracle

data

source”

on

page

335

v

“Creating

a

user

mapping

for

a

Sybase

data

source”

on

page

349

Registering

nicknames

for

a

data

source

Registering

nicknames

for

a

data

source

The

task

of

registering

a

nickname

is

typically

the

most

involved

of

the

configuration

tasks.

The

steps

and

requirements

for

registering

a

nickname

are

different

for

each

data

source.

Recommendation:

Use

the

DB2

Control

Center

to

register

nicknames.

For

most

data

sources,

you

can

use

the

Discover

tool

in

the

DB2

Control

Center.

The

Discover

tool

helps

you

to

quickly

identify

data

source

objects

that

you

might

want

to

register

nicknames

for.

You

must

register

a

nickname

for

each

data

source

object

that

you

want

to

access.

Data

source

objects

can

be

relational

or

nonrelational:

v

Examples

of

relational

data

source

objects

are

database

tables,

views,

and

synonyms

(Informix

and

Oracle

only)

v

Examples

of

nonrelational

data

source

objects

are

BLAST-able

databases,

objects

and

registered

tables

in

a

Documentum

Docbase,

Microsoft

Excel

files

(.xls),

table-structured

files

(.txt),

and

XML

tagged

files

Chapter

5.

Overview

of

configuring

access

to

data

sources

63

|

|
|
|
|

|

|
|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|

|
|
|
|

|

|

|
|

|
|
|

Tables

and

views

that

reside

in

the

federated

database

are

local

objects.

You

do

not

register

nicknames

for

these

objects.

You

use

the

actual

object

name

in

your

queries.

Data

source

objects

are:

v

Tables

and

views

in

another

DB2®

database

instance

on

the

federated

server.

v

Tables

and

views

in

a

DB2

instance

on

another

server.

v

Data

source

objects

that

reside

in

another

data

source,

such

as:

Oracle,

Sybase,

Documentum,

and

ODBC.

You

must

register

nicknames

for

these

objects.

Data

source

objects

are

sometimes

referred

to

as

remote

objects.

When

you

submit

a

distributed

request

to

the

federated

server,

the

request

references

a

data

source

object

by

its

nickname.

Nicknames

are

mapped

to

specific

object

names

at

the

data

source.

The

mappings

eliminate

the

need

to

qualify

the

nicknames

by

data

source

names.

The

location

of

the

data

source

objects

are

transparent

to

the

client

application

or

end

user.

Nicknames

are

not

alternative

names

for

data

source

objects.

They

are

pointers

by

which

the

federated

server

references

these

objects.

For

example,

if

you

define

the

nickname

DEPT

to

represent

an

Informix

database

table

called

NFX1.PERSON.DEPT,

the

statement

SELECT

*

FROM

DEPT

is

allowed

from

the

federated

server.

However,

the

statement,

SELECT

*

FROM

NFX1.PERSON.DEPT

is

not

allowed.

When

you

register

a

nickname,

metadata

information

about

that

nickname

is

stored

in

the

federated

database

system

catalog.

For

a

relational

data

source

object,

catalog

data

from

the

remote

server

is

retrieved

and

stored

in

the

federated

database

system

catalog.

For

nonrelational

data

sources,

the

way

that

the

data

source

information

is

stored

in

the

federated

database

system

catalog

varies

from

data

source

to

data

source.

The

information

might

be

retrieved

from

the

remote

server,

or

you

might

have

to

include

this

information

in

the

CREATE

NICKNAME

statement.

The

SQL

Compiler

uses

this

metadata

information

to

facilitate

access

to

the

data

source

object.

For

example,

when

a

nickname

is

registered

for

a

table

with

an

index,

the

metadata

information

related

to

the

index

is

stored

in

the

federated

database

system

catalog.

The

SQL

Compiler

uses

the

index

metadata

information,

such

as

the

name

of

each

column

in

the

index

key,

when

you

query

the

nickname.

Procedure:

You

can

register

a

nickname

from

the

DB2

Control

Center

or

the

DB2

command

line:

v

To

do

this

task

from

the

DB2

Control

Center,

use

the

Federated

Objects

wizard

or

right-click

the

Nicknames

folder

and

click

Create.

Use

the

Discover

tool

to

identify

the

objects

that

you

want

to

create

nicknames

for.

v

To

do

this

task

from

the

DB2

command

line,

use

the

CREATE

NICKNAME

statement.

You

can

define

more

than

one

nickname

for

the

same

data

source

object.

Related

tasks:

64

Data

Source

Configuration

Guide

|
|
|

|

|

|

|
|

|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|

|
|
|

|
|

|

|

v

“Registering

nicknames

for

table-structured

files”

on

page

359

v

“Registering

nicknames

for

Documentum

data

sources”

on

page

176

v

“Registering

nicknames

for

Excel

data

sources”

on

page

221

v

“Registering

nicknames

for

BLAST

data

sources”

on

page

107

v

“Registering

nicknames

for

XML

data

sources”

on

page

424

v

“Registering

nicknames

for

Entrez

data

sources”

on

page

199

v

“Registering

nicknames

for

Teradata

tables

and

views”

on

page

377

v

“Registering

nicknames

for

BioRS

data

sources”

on

page

74

v

“Registering

nicknames

for

DB2

tables

and

views”

on

page

166

v

“Registering

nicknames

for

Extended

Search

data

sources”

on

page

239

v

“Registering

nicknames

for

HMMER

data

sources”

on

page

265

v

“Registering

nicknames

for

Informix

tables,

views,

and

synonyms”

on

page

286

v

“Registering

nicknames

for

Microsoft

SQL

Server

tables

and

views”

on

page

302

v

“Registering

nicknames

for

ODBC

data

source

tables

and

views”

on

page

314

v

“Registering

nicknames

for

Oracle

tables

and

views”

on

page

338

v

“Registering

nicknames

for

Sybase

tables

and

views”

on

page

352

v

“Registering

nicknames

for

business

application

data

sources”

on

page

129

v

“Registering

nicknames

for

Web

services

data

sources”

on

page

390

Related

reference:

v

“Federated

object

naming

rules”

on

page

21

Creating

a

nickname

on

a

nickname

Occasionally,

you

might

need

to

create

a

nickname

on

a

nickname.

Procedure:

Suppose

that

you

have

a

federated

server

using

AIX®

and

a

federated

server

using

Windows.

You

want

to

access

an

Excel

spreadsheet

from

both

federated

servers.

However,

the

Excel

wrapper

is

only

supported

on

federated

servers

that

use

Windows.

To

access

the

Excel

spreadsheet

from

the

AIX

federated

server,

use

these

steps:

1.

On

the

Windows

federated

server,

install

DB2

Information

Integrator.

2.

Configure

the

Windows

federated

server

to

access

Excel

data

sources.

3.

On

the

Windows

federated

server,

create

a

nickname

for

the

Excel

spreadsheet.

4.

On

the

AIX

federated

server,

install

DB2

Information

Integrator.

5.

Configure

the

AIX

federated

server

to

access

DB2

family

data

sources.

6.

On

the

AIX

federated

server,

create

a

nickname

for

the

Excel

nickname

on

the

Windows

federated

server.

Specifying

nickname

columns

for

a

nonrelational

data

source

For

some

nonrelational

data

sources,

you

must

define

a

list

of

columns

when

you

register

a

nickname.

Each

column

that

you

specify

is

mapped

to

a

particular

field,

column,

or

element

in

the

data

source

object.

Chapter

5.

Overview

of

configuring

access

to

data

sources

65

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|

The

wrapper

for

some

nonrelational

data

sources

requires

a

set

of

fixed

input

and

output

columns.

The

fixed

columns

are

automatically

defined

when

you

register

the

nickname

and

are

added

to

the

federate

database

system

catalog.

Procedure:

To

define

a

list

of

columns

when

you

register

a

nickname,

you

specify

the

column

name

and

data

type.

You

might

also

specify

an

option

on

the

nickname

column.

Related

tasks:

v

“Registering

nicknames

for

a

data

source”

on

page

63

Optional

configuration

steps

There

are

several

optional

steps

that

you

might

need

to

take

when

you

configure

the

federated

server

to

access

data

sources.

Index

specifications:

Define

an

index

specification

for

objects

that

did

not

have

an

index.

For

example,

you

would

create

an

index

specification

when

a

table

acquires

a

new

index

or

if

the

data

source

object

(such

as

a

view)

typically

does

not

have

and

index.

Data

type

mappings:

You

can

specify

alternative

data

type

mappings

for

only

relational

data

sources.

Specify

alternative

data

type

mappings,

instead

of

using

the

default

data

type

mappings.

You

can

specify

a

mapping

that

is

used

only

for

a

specific

data

source

object,

such

as

a

specific

table

within

a

database.

Function

mappings:

You

can

specify

function

mappings

for

only

relational

data

sources.

Define

alternative

function

mappings,

instead

of

using

the

default

function

mappings.

This

is

especially

useful

when

you

want

to

force

DB2®

to

use

a

user-defined

function

at

the

data

source.

Related

concepts:

v

“Data

type

mappings

in

a

federated

system”

in

the

Federated

Systems

Guide

v

“Function

mappings

in

a

federated

system”

in

the

Federated

Systems

Guide

v

“Index

specifications

in

a

federated

system”

in

the

Federated

Systems

Guide

v

“Fast

track

to

configuring

your

data

sources”

on

page

55

66

Data

Source

Configuration

Guide

|
|
|

|

|
|

|

|

Chapter

6.

Configuring

access

to

BioRS

data

sources

This

chapter

explains

how

to

configure

your

federated

server

to

access

data

that

is

stored

in

BioRS

data

sources.

You

can

configure

access

to

BioRS

data

sources

by

using

the

DB2

Control

Center

or

by

issuing

SQL

statements.

This

chapter:

v

Explains

what

BioRS

is

v

Lists

the

tasks

that

you

need

to

perform

v

Contains

examples

of

the

SQL

statements

that

you

need

v

Lists

the

error

messages

associated

with

the

BioRS

wrapper

What

is

BioRS?

BioRS

is

a

query

and

retrieval

system

that

is

developed

by

Biomax

Informatics.

You

can

use

BioRS

to

retrieve

information

from

multiple

data

sources,

including

flat

files

and

relational

databases.

You

usually

download

public

data,

such

as

SwissProt

and

GenBank,

as

flat

files

into

your

BioRS

system.

BioRS

can

integrate

public

data

sources

and

proprietary

data

sources

(for

example,

private

databases

that

are

maintained

by

your

organization)

into

a

common

environment.

After

a

data

source

is

integrated

into

the

BioRS

system,

it

is

referred

to

as

a

databank.

The

elements

that

are

contained

in

each

databank

entry

are

collectively

referred

to

as

a

schema.

Elements

of

a

databank

that

are

indexed

can

be

used

in

the

BIORS.CONTAINS,

BIORS.CONTAINS_GE,

and

BIORS.CONTAINS_LE

functions.

The

BioRS

functions

are

specified

in

the

WHERE

clause

of

the

SELECT

statement.

Elements

that

are

not

indexed

can

be

referenced

in

the

SELECT

list

and

in

other

predicates

in

the

WHERE

clause.

Elements

that

are

not

indexed

are

processed

by

the

federated

server.

You

can

establish

relationships

between

entries

in

databanks,

so

that

you

can

link

databanks

together

in

the

BioRS

system.

BioRS

databanks

can

have

a

parent-child

relationship

(databanks

can

be

nested).

In

such

a

relationship,

the

child

databank

contains

a

Reference

data

type

element

called

PARENT.

The

PARENT

element

refers

to

the

ID

element

of

the

parent

databank.

Other

than

the

presence

of

this

predefined

PARENT

element,

nested

databanks

contain

the

same

data

as

unnested

databanks.

BioRS

provides

a

Web-based

interface

that

enables

users

to

run

queries

on

the

data

in

BioRS

databanks.

The

BioRS

wrapper

uses

the

same

application

programming

interfaces

(APIs)

as

the

BioRS

Web-based

interface

to

run

queries.

©

Copyright

IBM

Corp.

1998,

2004

67

|

|

|
|
|

|

|

|

|

|

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|

From

the

client,

users

or

applications

submit

a

query

using

SQL

statements.

Then,

the

query

is

sent

to

your

federated

system

where

the

BioRS

wrapper

is

installed.

Depending

on

how

the

query

is

constructed,

both

the

federated

servers

and

your

BioRS

server

might

be

used

to

process

the

query.

The

BioRS

server

can

be

on

a

different

computer

from

the

federated

system.

Authentication

information

must

be

provided

by

the

federated

system

to

the

BioRS

server

for

each

query.

This

information

can

be

either

a

user

ID

and

password

combination,

or

an

unauthenticated

indication

(usually

a

guest

account).

The

BioRS

wrapper

works

with

BioRS

Version

5.0.14.

For

detailed

information

about

the

BioRS

product,

see

the

Biomax

Web

site

at:

http://www.biomax.com.

Related

tasks:

v

“Adding

BioRS

data

sources

to

a

federated

server”

on

page

68

Related

reference:

v

“BioRS

wrapper

-

Example

queries”

on

page

81

Adding

BioRS

to

a

federated

server

Adding

BioRS

data

sources

to

a

federated

server

To

configure

the

federated

server

to

access

BioRS

data

sources,

you

must

provide

the

federated

server

with

information

about

the

data

sources

and

objects

that

you

want

to

access.

You

can

configure

the

federated

server

to

access

BioRS

data

sources

by

using

the

DB2

Control

Center

or

the

DB2

command

line.

The

DB2

Control

Center

includes

a

wizard

to

guide

you

through

the

steps

required

to

configure

the

federated

server.

Figure

6.

How

the

BioRS

wrapper

works

68

Data

Source

Configuration

Guide

|
|
|
|
|
|
|
|

|

|
|

|

|

|

|

|
|

|

|
|
|

|
|
|

http://www.biomax.com

Prerequisites:

v

DB2

Information

Integrator

must

be

installed

on

a

server

that

will

act

as

the

federated

server

v

A

federated

database

must

exist

on

the

federated

server

Procedure:

To

add

BioRS

data

sources

to

a

federated

server:

1.

Register

custom

functions

for

the

BioRS

wrapper.

2.

Register

the

BioRS

wrapper.

3.

Register

the

BioRS

server

definition.

4.

Optional:

Create

user

mappings.

5.

Register

nicknames

for

BioRS

databanks.

Related

concepts:

v

“DB2

Information

Integrator

installation

process

-

overview”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Fast

track

to

configuring

your

data

sources”

on

page

55

Related

tasks:

v

“Creating

a

federated

database”

on

page

51

v

“Registering

the

custom

functions

for

the

BioRS

wrapper”

on

page

69

v

“Registering

the

BioRS

wrapper”

on

page

71

v

“Registering

the

server

definition

for

a

BioRS

data

source”

on

page

72

v

“Registering

user

mappings

for

BioRS

data

sources”

on

page

73

v

“Registering

nicknames

for

BioRS

data

sources”

on

page

74

v

“Checking

the

setup

of

the

federated

server”

on

page

37

Related

reference:

v

“Supported

operating

systems

for

DB2

Information

Integrator

(32-bit)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Supported

operating

systems

for

DB2

Information

Integrator

(64-bit)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

Registering

the

custom

functions

for

the

BioRS

wrapper

Registering

custom

functions

for

the

BioRS

wrapper

is

part

of

the

larger

task

of

adding

BioRS

data

sources

to

a

federated

server.

The

custom

functions

for

the

BioRS

wrapper

are:

v

biors.contains

v

biors.contains_le

v

biors.contains_ge

v

biors.search_term

Prerequisites:

v

All

of

the

custom

functions

for

the

BioRS

wrapper

must

be

registered

with

the

schema

name

biors.

v

You

must

register

each

custom

function

once

for

each

federated

database

where

the

BioRS

wrapper

is

installed.

Chapter

6.

Configuring

access

to

BioRS

data

sources

69

|

|
|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|
|

|
|

|

|
|

|

|

|

|

|

|

|
|

|
|

Procedure:

To

register

custom

functions,

issue

the

CREATE

FUNCTION

statement

with

the

AS

TEMPLATE

DETERMINISTIC

NO

EXTERNAL

ACTION

keywords.

The

fully

qualified

name

of

each

function

is

biors.function_name.

The

following

example

registers

one

version

of

the

CONTAINS

function:

CREATE

FUNCTION

biors.contains

(varchar(),

varchar())

RETURNS

INTEGER

AS

TEMPLATE

DETERMINISTIC

NO

EXTERNAL

ACTION;

To

register

the

custom

functions,

use

the

sample

file

create_function_mappings.ddl.

The

sample

file

is

in

the

sqllib/samples/lifesci/biors

directory.

The

sample

files

contains

definitions

for

each

of

the

custom

function.

You

can

run

this

DDL

file

to

register

the

custom

functions

on

each

federated

database

where

the

BioRS

wrapper

is

installed.

The

next

task

in

this

sequence

of

tasks

is

registering

the

BioRS

wrapper.

Related

tasks:

v

“Registering

the

BioRS

wrapper”

on

page

71

Related

reference:

v

“CREATE

FUNCTION

(Sourced

or

Template)

statement”

in

the

SQL

Reference,

Volume

2

v

“Custom

functions

and

BioRS

queries”

on

page

77

v

“BioRS

wrapper

-

Example

queries”

on

page

81

v

“Custom

function

table

-

BioRS

wrapper”

on

page

70

Custom

function

table

-

BioRS

wrapper

You

use

the

CREATE

FUNCTION

statement

to

register

the

BioRS

custom

functions.

The

following

table

lists

the

four

BioRS

custom

functions

with

examples

of

the

data

types

that

you

can

specify

when

you

register

the

functions.

The

first

data

type

that

is

specified

in

the

function

is

the

indexed

column.

The

second

data

type

that

is

specified

in

the

function

is

the

search

term.

Table

12.

Custom

functions

for

the

BioRS

wrapper

Function

Description

biors.contains

(varchar(),

varchar())

biors.contains

(varchar(),

char())

biors.contains

(varchar(),

date)

biors.contains

(varchar(),

timestamp)

Searches

an

indexed

column

for

values

that

are

equal

(according

to

the

BioRS

query

semantics)

to

the

value

that

you

specify.

The

first

argument

must

be

a

reference

to

the

indexed

column

and

the

second

argument

is

the

value

that

you

specify.

70

Data

Source

Configuration

Guide

|

|
|

|

|

|
|
|

|
|
|
|
|

|

|

|

|

|
|

|

|

|

|

|

|
|

|
|

||

||

|
|
|
|

|
|
|
|
|
|
|

Table

12.

Custom

functions

for

the

BioRS

wrapper

(continued)

Function

Description

biors.contains_LE

(varchar(),

varchar())

biors.contains_LE

(varchar(),

smallint)

biors.contains_LE

(varchar(),

bigint)

biors.contains_LE

(varchar(),

decimal)

biors.contains_LE

(varchar(),

double)

biors.contains_LE

(varchar(),

real)

Searches

an

indexed

column

for

values

that

are

less

than

or

equal

(according

to

the

BioRS

query

semantics)

to

the

value

that

you

specify.

The

first

argument

must

be

a

reference

to

the

indexed

column

and

the

second

argument

is

the

value

that

you

specify.

biors.contains_GE

(char(),

char())

biors.contains_GE

(char(),

date)

biors.contains_GE

(char(),

timestamp)

biors.contains_GE

(char(),

integer)

biors.contains_GE

(char(),

smallint)

biors.contains_GE

(clob(),

date)

Searches

an

indexed

column

for

values

that

are

greater

than

or

equal

(according

to

the

BioRS

query

semantics)

to

the

value

that

you

specify.

The

first

argument

must

be

a

reference

to

the

indexed

column

and

the

second

argument

is

the

value

that

you

specify.

biors.search_term

(varchar(),

varchar())

biors.search_term

(varchar(),

char())

biors.search_term

(char(),

varchar())

biors.search_term

(char(),

char())

Passes

a

BioRS

search

term

to

the

BioRS

search

engine.

Related

tasks:

v

“Registering

the

custom

functions

for

the

BioRS

wrapper”

on

page

69

Registering

the

BioRS

wrapper

Registering

the

BioRS

wrapper

is

part

of

the

larger

task

of

adding

BioRS

data

sources

to

a

federated

server.

You

must

register

a

wrapper

to

access

BioRS

data

sources.

Wrappers

are

used

by

federated

servers

to

communicate

with

and

retrieve

data

from

data

sources.

Wrappers

are

implemented

as

a

set

of

library

files.

Procedure:

To

register

a

wrapper,

issue

the

CREATE

WRAPPER

statement

with

the

name

of

the

wrapper

and

the

name

of

the

wrapper

library

file.

For

example,

to

register

a

wrapper

with

the

name

biors_wrapper

on

the

federated

server

that

uses

the

AIX

operating

system,

issue

the

following

statement:

CREATE

WRAPPER

biors_wrapper

LIBRARY

’libdb2lsbiors.a’;

The

name

of

the

wrapper

library

file

that

you

specify

depends

on

the

operating

system

of

the

federated

server.

See

the

list

of

BioRS

wrapper

library

files

for

the

correct

name

to

specify

in

the

CREATE

WRAPPER

statement.

The

next

task

in

this

sequence

of

tasks

is

registering

the

server

definitions

for

the

BiorRS

wrapper.

Related

reference:

v

“BioRS

wrapper

library

files”

on

page

72

v

“CREATE

WRAPPER

statement”

in

the

SQL

Reference,

Volume

2

Chapter

6.

Configuring

access

to

BioRS

data

sources

71

|

||

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|

|

|

|

|

|
|

|
|
|

|

|
|

|
|

|

|
|
|

|
|

|

|

|

BioRS

wrapper

library

files

The

following

table

lists

the

directory

paths

and

library

file

names

for

the

BioRS

wrapper.

When

you

install

DB2

Information

Integrator,

3

library

files

are

added

to

the

directory

path

listed

in

the

table.

For

example,

if

the

federated

server

is

running

on

AIX,

the

wrapper

library

files

added

to

the

directory

path

are

libdb2lsbiors.a,

libdb2lsbiorsF.a,

and

libdb2lsbiorsU.a.

When

you

register

a

wrapper,

specify

only

the

library

file

name

that

is

listed

in

the

table.

Table

13.

BioRS

wrapper

library

locations

and

file

names

Operating

system

Directory

path

Wrapper

library

file

AIX

/usr/opt/db2_08_01/lib/

libdb2lsbiors.a

Linux

/opt/IBM/db2/V8.1/lib

libdb2lsbiors.so

Solaris

/opt/IBM/db2/V8.1/lib

libdb2lsbiors.so

Windows

%DB2PATH%\bin

db2lsbiors.dll

%DB2PATH%

is

the

environment

variable

that

is

used

to

specify

the

directory

path

where

DB2

Information

Integrator

is

installed

on

Windows.

The

default

Windows

directory

path

is

C:\Program

Files\IBM\SQLLIB.

Related

reference:

v

“Wrapper

library

files”

on

page

39

Registering

the

server

definition

for

a

BioRS

data

source

Registering

the

server

definition

for

a

BioRS

data

source

is

part

of

the

larger

task

of

adding

BioRS

to

a

federated

system.

After

you

register

the

wrapper,

you

must

register

a

corresponding

server

definition.

Procedure:

To

register

the

BioRS

server

definition

in

the

federated

database,

issue

the

CREATE

SERVER

statement.

For

example:

CREATE

SERVER

brs_server

WRAPPER

wrap_biors

OPTIONS(NODE

’biors_server2.com’);

The

next

task

in

this

sequence

of

tasks

is

registering

user

mappings

for

BioRS

data

sources.

Related

tasks:

v

“Registering

nicknames

for

BioRS

data

sources”

on

page

74

Related

reference:

v

“CREATE

SERVER

statement

options

-

BioRS

wrapper”

on

page

535

72

Data

Source

Configuration

Guide

|

|
|

|
|
|
|

|
|

||

|||

|||

|||

|||

|||
|

|
|
|

|

|

|

|
|
|

|

|
|

|

|

|
|

|

|

|

|

Registering

user

mappings

for

BioRS

data

sources

Registering

user

mappings

is

part

of

the

larger

task

of

adding

BioRS

to

a

federated

system.

You

might

not

need

to

create

user

mappings,

depending

on

the

account

access

method

or

methods

that

are

used

in

your

BioRS

system.

v

If

your

BioRS

server

is

configured

for

guest

access

for

all

user

accounts,

you

do

not

need

to

create

user

mappings

in

DB2

Information

Integrator.

v

If

your

BioRS

server

is

configured

to

authenticate

user

accounts

with

IDs

and

passwords,

you

must

create

user

mappings

in

your

federated

database

for

the

accounts

that

must

use

the

BioRS

wrapper.

v

If

your

BioRS

server

is

configured

to

use

a

mixture

of

guest

and

authenticated

user

accounts,

you

must

create

user

mappings

for

the

authenticated

user

accounts

in

your

federated

database

for

the

accounts

that

must

use

the

BioRS

wrapper.

User

mappings

provide

a

way

to

authenticate

the

access

of

users

or

applications

that

query

a

BioRS

data

source

with

the

BioRS

wrapper.

If

a

user

or

application

submits

an

SQL

query

to

a

registered

BioRS

nickname,

and

no

user

mappings

are

defined

for

that

user

or

application,

the

BioRS

wrapper

uses

a

default

user

ID

and

password

in

an

attempt

to

retrieve

data

from

the

remote

BioRS

server.

If

a

databank

that

is

being

queried

requires

authentication,

an

error

message

might

be

returned.

To

ensure

that

the

correct

user

ID

and

password

get

passed

to

the

BioRS

server,

create

user

mappings

in

your

federated

database

for

users

who

are

authorized

to

search

BioRS

data

sources.

When

you

create

a

user

mapping,

the

password

is

stored

in

an

encrypted

format

in

a

federated

database

system

catalog

table.

Procedure:

To

register

BioRS

user

mappings,

use

the

CREATE

USER

MAPPING

statement.

For

example,

the

following

CREATE

USER

MAPPING

statement

maps

user

Charlie

to

user

Charlene

on

the

Biors_Server1

server.

CREATE

USER

MAPPING

FOR

Charlie

SERVER

Biors_Server1

OPTIONS(REMOTE_AUTHID

’Charlene’,

REMOTE_PASSWORD

’Charlene_pw’);

You

can

also

define

your

own

user

mapping.

In

the

following

example,

USER

is

a

keyword

that

identifies

the

current

user,

not

a

username

of

USER.

CREATE

USER

MAPPING

FOR

USER

SERVER

Biors_Server1

OPTIONS(REMOTE_AUTHID

’Yudong’,

REMOTE_PASSWORD

’Yudong_pw’)

The

next

task

in

this

sequence

of

tasks

is

registering

nicknames

for

the

BioRS

data

sources.

Related

tasks:

v

“Registering

nicknames

for

BioRS

data

sources”

on

page

74

Related

reference:

v

“CREATE

USER

MAPPING

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

USER

MAPPING

statement

options

-

BioRS

wrapper”

on

page

536

Chapter

6.

Configuring

access

to

BioRS

data

sources

73

|

|
|

|
|

|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|

|

|
|

|
|

|
|

|
|

|
|

|

|

|

|

|

Registering

nicknames

for

BioRS

data

sources

Registering

nicknames

for

BioRS

data

sources

is

part

of

the

larger

task

of

adding

BioRS

to

a

federated

server.

After

you

register

a

server

definition,

you

must

register

a

nickname

for

each

BioRS

data

source

that

you

want

to

access.

When

you

refer

to

a

BioRS

data

source

in

a

query,

you

use

the

nickname.

After

a

data

source

has

been

integrated

into

the

BioRS

system,

it

is

referred

to

as

a

databank

in

BioRS.

Databanks

in

BioRS

equate

to

nicknames

in

a

federated

system.

Prerequisites:

v

If

a

BioRS

databank

name

does

not

conform

to

the

syntax

required

by

the

CREATE

NICKNAME

statement,

you

must

use

the

REMOTE_OBJECT

nickname

option

when

you

register

the

nickname.

v

If

a

BioRS

element

name

does

not

conform

to

the

syntax

required

by

the

CREATE

NICKNAME

statement,

you

must

use

the

ELEMENT_NAME

column

option

when

you

register

the

nickname.

Restrictions:

Do

not

use

the

BioRS

AllText

element

as

the

first

column

for

a

nickname.

You

can

use

the

BioRS

AllText

element

in

any

other

column

position

(for

example,

as

the

second

column

or

as

the

third

column).

Procedure:

To

register

a

BioRS

nickname,

use

the

CREATE

NICKNAME

statement.

When

you

create

a

BioRS

nickname,

you

define

a

list

of

nickname

columns.

The

specified

nickname

columns

must

correspond

to

elements

of

a

specific

BioRS

databank

format.

BioRS

defines

five

possible

data

types

for

elements:

Text,

Number,

Date,

Author,

and

Reference.

The

BioRS

data

types

can

be

mapped

only

to

the

DB2

data

types

CHAR,

CLOB,

or

VARCHAR.

The

simplest

way

to

register

a

nickname

for

a

BioRS

databank

is

to

give

the

nickname

the

same

name

as

the

BioRS

databank.

For

example:

CREATE

NICKNAME

SwissProt

(ID

VARCHAR(32)

OPTIONS

(ELEMENT_NAME

’_ID_’),

ALLTEXT

VARCHAR(128),

ENTRYDATE

VARCHAR

(64))

FOR

SERVER

brs_server;

The

BioRS

databank

SwissProt

is

the

name

of

the

nickname.

Using

this

simple

CREATE

NICKNAME

syntax

limits

you

to

one

family

of

nicknames

for

each

DB2

schema.

For

example,

you

have

two

databanks

that

have

a

parent-child

relationship.

The

databanks

are

SWISSPROT

and

SPFEAT.

These

databanks

form

a

family.

If

you

use

the

default

syntax

for

the

CREATE

NICKNAME

statement,

you

will

have

one

nickname

(SWISSPROT)

for

the

SWISSPROT

databank

and

one

nickname

(SPFEAT)

for

the

SPFEAT

databank.

To

have

more

than

one

nickname

for

SWISSPROT

in

the

schema,

you

must

use

the

REMOTE_OBJECT

option.

74

Data

Source

Configuration

Guide

|

|
|

|
|
|

|
|

|

|
|
|

|
|
|

|

|
|
|

|

|

|
|
|
|
|

|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|

The

REMOTE_OBJECT

nickname

option

specifies

the

name

of

the

BioRS

databank

that

is

associated

with

the

nickname.

The

name

that

you

specify

in

the

REMOTE_OBJECT

option

determines

the

schema

and

the

BioRS

databank

for

the

nickname.

The

REMOTE_OBJECT

option

also

specifies

the

relationship

of

the

nickname

to

other

nicknames.

The

following

example

shows

the

same

set

of

nickname

characteristics

as

the

previous

example,

but

changes

the

nickname

name,

and

uses

the

REMOTE_OBJECT

option

to

specify

the

BioRS

databank

for

which

the

nickname

is

being

defined:

CREATE

NICKNAME

NewSP

(ID

VARCHAR(32)

OPTIONS

(ELEMENT_NAME

’_ID_’),

ALLTEXT

VARCHAR(128),

ENTRYDATE

VARCHAR

(64))

FOR

SERVER

brs_server

OPTIONS

(REMOTE_OBJECT

’SwissProt’);

Repeat

this

step

for

each

BioRS

databank

that

you

want

to

create

a

nickname

for.

There

are

no

further

steps

in

this

sequence

of

tasks.

Related

concepts:

v

“BioRS

statistical

information”

on

page

87

Related

tasks:

v

“Updating

BioRS

nickname

cardinality

statistics”

on

page

88

v

“Specifying

nickname

columns

for

a

nonrelational

data

source”

on

page

65

Related

reference:

v

“The

BioRS

AllText

element”

on

page

81

v

“CREATE

NICKNAME

statement

-

Examples

for

BioRS

wrapper”

on

page

75

v

“CREATE

NICKNAME

statement

syntax

-

BioRS

wrapper”

on

page

536

CREATE

NICKNAME

statement

-

Examples

for

BioRS

wrapper

This

topic

provides

examples

that

show

you

how

to

use

the

CREATE

NICKNAME

statement

to

register

nicknames

for

the

BioRS

wrapper.

Example

1:

The

following

example

shows

how

to

create

a

nickname

for

a

remote

BioRS

databank

that

does

not

conform

to

DB2

Information

Integrator

syntax:

CREATE

NICKNAME

SwissFT

(ID

VARCHAR(32)

OPTIONS

(ELEMENT_NAME

’_ID_’),

ALLTEXT

VARCHAR

(128),

ENTRYDATE

VARCHAR

(64),

FtLength

VARCHAR

(16),

FOR

SERVER

biors1

OPTIONS

(REMOTE_OBJECT

’SwissProt.Features’);

The

name

of

this

nickname

is

SwissFT.

The

table

columns

are

ID,

ALLTEXT,

ENTRYDATE,

and

FtLength.

The

ELEMENT_NAME

column

option

is

specified

for

the

ID

column.

You

must

specify

the

ELEMENT_NAME

option

when

the

name

of

a

BioRS

element

does

not

conform

to

valid

DB2

federated

syntax

for

column

names.

In

this

example,

the

BioRS

element

ID

conforms

to

DB2

federated

syntax,

but

ID

is

a

potentially

confusing

name

for

DB2

Information

Integrator

users.

The

Chapter

6.

Configuring

access

to

BioRS

data

sources

75

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

name

ID

is

simple

and

easy

to

understand.

In

general,

use

the

ELEMENT_NAME

option

under

the

following

circumstances:

v

When

a

BioRS

element

name

does

not

conform

to

valid

DB2

federated

syntax

v

When

the

case

sensitivity

of

a

BioRS

element

name

does

not

conform

to

your

established

DB2

federated

system

standards

v

When

the

name

of

a

BioRS

element

might

not

be

obvious

to

DB2

Information

Integrator

users

Additionally,

the

REMOTE_OBJECT

option

is

used

to

specify

the

name

of

the

BioRS

databank

to

which

the

nickname

equates.

You

must

specify

the

REMOTE_OBJECT

option

when

the

name

of

a

BioRS

databank

does

not

conform

to

valid

DB2

federated

syntax.

In

this

example,

the

databank

name

″SwissProt.Features″

does

not

conform

to

valid

DB2

federated

syntax.

In

general,

use

the

REMOTE_OBJECT

option

under

the

following

circumstances:

v

When

the

case

sensitivity

of

BioRS

databank

names

does

not

conform

to

your

established

DB2

federated

system

standards

v

When

the

BioRS

databank

name

does

not

conform

to

valid

DB2

federated

syntax

v

When

the

name

of

a

BioRS

databank

might

not

be

obvious

to

DB2

Information

Integrator

users

Example

2:

The

following

example

shows

how

to

create

a

nickname

for

a

table

that

uses

a

BioRS

databank

that

is

linked

to

another

BioRS

databank:

CREATE

NICKNAME

SwissFT2

(ID

VARCHAR(32)

OPTIONS

(ELEMENT_NAME

’_ID_’),

ALLTEXT

VARCHAR

(1200),

FtKey

VARCHAR

(32),

FtLength

VARCHAR

(64),

FtDescription

VARCHAR

(128),

Parent

VARCHAR

(32)

OPTIONS

(REFERENCED_OBJECT

’SwissProt’))

FOR

SERVER

biors1

OPTIONS

(REMOTE_OBJECT

’SwissProt.Features’);

The

name

of

this

nickname

is

SwissFT2.

The

table

columns

are

ID,

ALLTEXT,

FtKey,

FtLength,

FtDescription,

and

Parent.

The

ELEMENT_NAME

column

option

is

specified

for

the

ID

column.

The

REMOTE_OBJECT

option

is

used

to

specify

the

name

of

the

BioRS

databank

to

which

the

nickname

corresponds.

Additionally,

the

Parent

column

uses

the

REFERENCED_OBJECT

option.

You

must

specify

this

option

for

columns

that

correspond

to

BioRS

Reference

data

type

elements.

The

REFERENCED_OBJECT

option

specifies

the

name

of

the

BioRS

databank

to

which

the

column

refers.

In

this

case,

the

Parent

element

refers

to

the

BioRS

SwissProt

databank.

Related

tasks:

v

“Registering

nicknames

for

BioRS

data

sources”

on

page

74

Related

reference:

v

“CREATE

NICKNAME

statement

syntax

-

BioRS

wrapper”

on

page

536

76

Data

Source

Configuration

Guide

|
|

|

|
|

|
|

|
|
|
|
|
|

|
|

|

|
|

|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|

|

|

|

Queries

and

custom

functions

for

BioRS

data

sources

Custom

functions

and

BioRS

queries

The

federated

environment

uses

two

query

engines.

For

the

BioRS

wrapper,

these

query

engines

are

DB2

Universal

Database

and

BioRS.

You

can

specify

that

predicates

get

pushed

down

to

the

BioRS

engine

by

using

the

four

BioRS

custom

functions,

which

are:

v

BIORS.CONTAINS

v

BIORS.CONTAINS_LE

v

BIORS.CONTAINS_GE

v

BIORS.SEARCH_TERM

These

four

custom

functions

are

registered

in

the

BioRS

schema.

You

must

use

the

BioRS

schema

to

refer

to

the

functions.

The

custom

functions

BIORS.CONTAINS,

BIORS.CONTAINS_LE

and

BIORS.CONTAINS_GE

require

a

search

term

column

argument

and

a

query

text

argument.

The

following

example

shows

a

BIORS.CONTAINS

statement:

BIORS.CONTAINS

(<search

term

column>,<query

term>)

The

value

of

the

search

term

column

argument

must

refer

to

an

indexed

BioRS

column.

The

use

of

a

non-indexed

column

produces

the

error

message

SQL30090N

(″Operation

invalid

for

application

execution

environment″).

The

value

of

the

query

term

argument

can

be

only

a

literal,

a

host

variable,

or

a

column

reference.

You

cannot

use

arithmetic

or

string

concatenation.

Also,

the

value

of

the

query

term

argument

cannot

be

NULL,

even

if

the

search

term

column

that

is

used

is

defined

as

allowing

null

values.

The

case

of

the

query

term

argument

does

not

matter.

The

valid

data

types

and

formats

of

the

query

term

argument

depend

on

the

BioRS

data

type

of

the

search

term

column

that

is

used.

BioRS

defines

five

possible

data

types:

Text,

Author,

Date,

Number,

and

Reference.

The

BioRS

data

types

and

the

valid

function

query

terms

for

each

data

type

are

listed

in

Table

14.

Table

14.

BioRS

data

types

and

valid

custom

function

query

terms

Data

type

of

search

term

column

Valid

query

term

Format

Text

VARCHAR()

or

CHAR()

BioRS

text

term,

including

wildcards.

Author

VARCHAR()

or

CHAR()

BioRS

author

reference

in

the

form

″<last>,

<init>″.

″<last>″

is

the

author’s

last

name.

″<init>″

is

the

author’s

initials,

without

periods.

White

space

between

the

comma

and

initials

is

accepted.

Alternatively,

<last>

can

be

specified

alone,

without

the

comma

or

initials.

Date

VARCHAR(),

CHAR(),

DATE,

or

TIMESTAMP

If

a

character

string,

DB2

format

date,

yyyy/mm/dd.

Chapter

6.

Configuring

access

to

BioRS

data

sources

77

|
|

|

|
|
|
|

|

|

|

|

|
|

|
|
|

|

|
|
|

|
|
|
|

|

|
|
|
|

||

|
|
|

||

|||

|||
|
|
|
|
|

|
|

||
|
|
|

Table

14.

BioRS

data

types

and

valid

custom

function

query

terms

(continued)

Data

type

of

search

term

column

Valid

query

term

Format

Number

VARCHAR()

or

CHAR(),

INTEGER,

SMALLINT,

BIGINT

REAL,

DOUBLE,

DECIMAL

DB2

format

numbers.

Reference

VARCHAR()

or

CHAR()

BioRS

text

term.

All

other

combinations

of

BioRS

data

type

search

term

columns

and

query

term

arguments

produce

the

error

message

SQL30090N

(″Operation

invalid

for

application

execution

environment″).

You

can

use

only

the

combinations

shown

in

Table

14

on

page

77.

The

query

term

argument

for

Text,

Author,

and

Reference

data

type

search

term

columns

must

match

a

BioRS

query

language

pattern.

In

BioRS,

query

term

arguments

can

consist

of

alphanumeric

strings

and

wildcards.

The

BIORS.CONTAINS

function

supports

two

wildcards:

?

(question

mark)

and

*

(asterisk).

The

?

wildcard

matches

a

single

character.

For

example,

the

predicate

BioRS.CONTAINS

(description,

’bacteri?’)=1

matches

the

term

bacteria

but

not

the

term

bacterial.

The

*

wildcard

character

matches

zero

or

more

characters.

For

example,

the

predicate

BioRS.CONTAINS

(description,

’bacteri*’)=1

matches

the

terms

bacteri,

bacteria,

and

bacterial.

For

detailed

information

about

BioRS

query

language

patterns,

see

your

BioRS

documentation.

The

BIORS.CONTAINS

function

can

be

specified

for

all

BioRS

column

types.

The

BIORS.CONTAINS_GE

and

BIORS.CONTAINS_LE

custom

functions

only

can

be

specified

for

columns

whose

underlying

BioRS

data

type

is

Number

or

Date.

The

BIORS.CONTAINS_GE

function

selects

rows

where

the

column

contains

a

value

that

is

greater

than

or

equal

to

the

value

that

is

represented

by

the

query

term

argument.

The

BIORS.CONTAINS_LE

function

selects

rows

where

the

column

contains

a

value

that

is

less

than

or

equal

to

the

value

that

is

represented

by

the

query

term

argument.

The

BIORS.CONTAINS,

BIORS.CONTAINS_GE,

and

BIORS.CONTAINS_LE

functions

return

an

integer

result.

When

any

of

the

three

CONTAINS

functions

are

used

in

a

predicate,

the

return

value

must

be

compared

to

the

value

1

using

the

=

or

<>

operators.

For

example:

SELECT

*

FROM

s.MySP

WHERE

BIORS.CONTAINS

(s.AllText,

’muscus’)

=

1;

An

expression

of

the

form

NOT

(BioRS.Contains

(col,value)

=

1)

is

equivalent

to

BioRS.CONTAINS

(col,value)

<>

1.

You

can

run

queries

that

might

not

otherwise

be

possible

by

issuing

the

BIORS.SEARCH_TERM

function.

You

can

use

this

function

to

specify

a

search

term

using

the

BioRS

format.

The

BIORS.SEARCH_TERM

function

requires

two

arguments.

The

first

argument

is

a

reference

to

the

ID

column

of

the

nickname

78

Data

Source

Configuration

Guide

|

|
|
|

||

||
|
|

|

|||
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|

|
|

|

|
|
|
|
|
|
|

|
|
|
|

|

|
|

|
|
|
|

to

which

the

term

is

to

be

applied.

The

second

argument

is

a

character

string

that

contains

the

term

without

a

databank

name.

The

following

example

selects

all

columns

for

entries

in

the

MyEMBL

databank

where

the

SeqLength

element

contains

a

value

greater

than

or

equal

to

100.

SELECT

*

FROM

MyEMBL

s

WHERE

BIORS.SEARCH_TERM

(s.ID,

’[SeqLength

GREATER

number:100;]’)

=

1;

The

following

example

selects

the

MolWeight

column

from

the

Swiss

nickname

where

the

value

of

the

MolWeight

element

is

greater

than

or

equal

to

100368.

SELECT

s.molweight

FROM

Swiss

s

WHERE

BIORS.SEARCH_TERM

(s.ID,

’[MolWeight

GREATER

number:100368;]’)

=

1;

Related

concepts:

v

“Pushdown

analysis”

in

the

Federated

Systems

Guide

v

“Guidelines

for

optimizing

BioRS

wrapper

performance”

on

page

86

v

“Equijoin

predicates

for

the

BioRS

wrapper”

on

page

79

Related

tasks:

v

“Registering

the

custom

functions

for

the

BioRS

wrapper”

on

page

69

Related

reference:

v

“BioRS

wrapper

-

Example

queries”

on

page

81

v

“Custom

function

table

-

BioRS

wrapper”

on

page

70

Equijoin

predicates

for

the

BioRS

wrapper

You

must

specify

predicates

for

the

BioRS

engine

when

you

use

the

BioRS

custom

functions,

with

one

exception.

The

exception

is

when

you

perform

equijoin

operations

during

a

query.

A

join

operation

involves

retrieving

data

from

two

or

more

tables

based

on

matching

column

values.

An

equijoin

is

a

join

operation

in

which

the

join

condition

has

the

form

expression

=

expression.

For

BioRS

queries,

equijoin

terms

must

contain

the

ID

element

of

one

databank

and

a

Reference

type

element

of

another

databank.

Example:

This

example

shows

sample

nickname

definitions

and

an

equijoin

query

that

uses

the

sample

nicknames.

You

want

to

query

two

BioRS

databanks,

SwissProt

and

SwissProt.features.

The

SwissProt.features

databank

is

a

child

of

the

SwissProt

databank,

and

contains

an

element

called

Parent.

The

Parent

element

contains

references

to

entries

that

are

identified

by

the

ID

element

of

SwissProt.

You

register

two

nickname

definitions

for

the

two

databanks.

Nickname

definition

1:

CREATE

NICKNAME

tc600sprot

(

ID

VARCHAR

(32)

OPTIONS

(ELEMENT_NAME

’_ID_’),

AllText

VARCHAR

(128),

EntryDate

VARCHAR

(128),

Update

VARCHAR

(128),

Description

VARCHAR

(1200),

Crossreference

VARCHAR

(32),

Authors

VARCHAR

(256),

Chapter

6.

Configuring

access

to

BioRS

data

sources

79

|
|

|
|

|
|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|
|
|

|

|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|

Journal

VARCHAR

(256),

JournalIssue

VARCHAR

(64)

OPTIONS

(IS_INDEXED

’N’),

PublicationYear

VARCHAR

(1024),

Gene

VARCHAR

(20)

OPTIONS

(IS_INDEXED

’Y’),

Remarks

VARCHAR

(1200),

RemarkType

CHAR

(20),

CatalyticActivity

VARCHAR

(20),

CoFactor

VARCHAR

(64),

Disease

VARCHAR

(128),

Function

VARCHAR

(128),

Pathway

VARCHAR

(128),

Similarity

VARCHAR

(128),

Complex

VARCHAR

(64),

FtKey

VARCHAR

(32),

FtDescription

VARCHAR

(128),

FtLength

VARCHAR

(256),

MolWeight

VARCHAR

(64),

ProteinLen

VARCHAR

(32)

OPTIONS

(ELEMENT_NAME

’Protein_length’),

Sequence

CLOB,

AccNumber

VARCHAR

(32),

Taxonomy

VARCHAR

(128),

Organelle

VARCHAR

(128),

Organism

VARCHAR

(128),

Keywords

VARCHAR

(1200),

Localization

VARCHAR

(128),

FtKey_count

VARCHAR

(32))

FOR

SERVER

biors_server_600

OPTIONS

(REMOTE_OBJECT

’SwissProt’);

Nickname

definition

2:

CREATE

NICKNAME

tc600feat

(

ID

VARCHAR

(32)

OPTIONS

(ELEMENT_NAME

’_ID_’),

AllText

VARCHAR

(1200),

FtKey

VARCHAR

(32),

FtLength

VARCHAR

(64),

FtDescription

VARCHAR

(128),

Parent

VARCHAR

(32)

OPTIONS

(REFERENCED_OBJECT

’SwissProt’))

FOR

SERVER

biors_server_600

OPTIONS

(REMOTE_OBJECT

’SwissProt.features’);

The

following

query

references

both

of

these

nicknames

in

an

equijoin:

SELECT

s.ID,

f.ID,

f.FtKey

FROM

tc600sprot

s,

tc600feat

f

WHERE

BioRS.CONTAINS

(s.AllText,

’anopheles’)

=

1

AND

BioRS.CONTAINS

(s.PublicationYear,

1997)

=

1

AND

BioRS.CONTAINS

(f.FtKey,

’signal’)

=

1

AND

f.Parent

=

s.ID;

In

the

previous

query,

two

predicates

are

applied

to

the

tc600sprot

nickname

(SwissProt

databank).

These

two

predicates

filter

the

rows

that

contain

the

term

anopheles

and

have

a

publication

year

of

1997.

One

predicate

is

applied

to

the

tc600feat

nickname

(SwissProt.features

databank),

which

filters

those

rows

whose

FtKey

element

contains

the

term

signal.

The

two

nicknames

are

joined

using

the

term

f.Parent

=

s.ID.

The

final

result

set

contains

only

the

rows

that

meet

these

criteria,

and

where

the

features

entries

reference

a

matching

entry

in

the

SwissProt

databank.

Related

concepts:

v

“Guidelines

for

optimizing

BioRS

wrapper

performance”

on

page

86

Related

reference:

v

“Custom

functions

and

BioRS

queries”

on

page

77

v

“BioRS

wrapper

-

Example

queries”

on

page

81

80

Data

Source

Configuration

Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|

|
|

|

|

|

|

|

The

BioRS

AllText

element

Every

databank

in

the

BioRS

system

contains

an

element

called

AllText.

The

AllText

element

is

an

indexed

element

that

BioRS

automatically

creates

for

all

databanks.

By

using

the

AllText

element,

you

can

search

on

all

of

the

text

in

an

entry,

not

just

on

specific

indexed

elements.

For

example,

searching

on

the

term

muscus

can

return

entries

where

the

word

muscus

appears

in

the

title,

abstract,

description,

or

organism.

To

use

the

AllText

element

in

a

DB2

Information

Integrator

query,

you

must

map

the

AllText

element

to

a

nickname

column.

You

map

the

AllText

element

to

a

nickname

column

when

you

specify

columns

in

the

CREATE

NICKNAME

statement.

A

nickname

column

that

is

mapped

to

the

AllText

element

returns

a

NULL

value

in

SELECT

statements.

When

you

specify

a

column

as

an

AllText

element,

the

column

must

not

be

the

first

column

declared

in

a

CREATE

NICKNAME

statement.

After

the

AllText

element

is

properly

mapped

to

a

nickname

column,

you

can

use

that

nickname

column

in

a

CONTAINS

custom

function

invocation.

Related

tasks:

v

“Registering

nicknames

for

BioRS

data

sources”

on

page

74

Related

reference:

v

“BioRS

wrapper

-

Example

queries”

on

page

81

BioRS

wrapper

-

Example

queries

This

topic

provides

several

sample

queries

that

use

the

nicknames

swiss

and

swissft.

The

nickname

swiss

was

registered

with

the

following

CREATE

NICKNAME

statement:

CREATE

NICKNAME

swiss

(

ID

CHAR

(30)

OPTIONS

(ELEMENT_NAME

’_ID_’),

EntryDate

VARCHAR

(15),

Update

CLOB

(15),

Description

CLOB

(15),

Crossreference

CLOB

(15),

Authors

CLOB

(15),

Journal

VARCHAR

(15),

JournalIssue

VARCHAR

(15),

PublicationYear

CLOB

(15),

PublicationTitle

CLOB

(15),

Gene

CLOB

(15),

Remarks

CLOB

(15),

RemarkType

VARCHAR

(15),

CatalyticActivity

VARCHAR

(15),

CoFactor

VARCHAR

(15),

Disease

VARCHAR

(15),

Function

CLOB

(15),

Pathway

VARCHAR

(15),

Similarity

CLOB

(15),

Complex

VARCHAR

(15),

FtKey

VARCHAR

(15),

Chapter

6.

Configuring

access

to

BioRS

data

sources

81

|

|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|

|

|

|

|

|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

FtDescription

CLOB

(15),

FtLength

VARCHAR

(15),

MolWeight

CHAR

(15),

Protein_Length

VARCHAR

(15),

Sequence

CLOB

(15),

AccNumber

VARCHAR

(15),

Taxonomy

CLOB

(15),

Organelle

VARCHAR

(15),

Organism

VARCHAR

(15),

Keywords

VARCHAR

(15),

Localization

VARCHAR

(15),

FtKey_count

VARCHAR

(15),

AllText

CLOB

(15)

)

FOR

SERVER

biors_server

OPTIONS

(REMOTE_OBJECT

’swissprot’);

The

nickname

swissft

was

registered

with

the

following

CREATE

NICKNAME

statement:

CREATE

NICKNAME

swissft

(

ID

VARCHAR

(30)

OPTIONS

(ELEMENT_NAME

’_ID_’),

FtKey

VARCHAR

(15),

FtLength

VARCHAR

(15),

FtDescription

VARCHAR

(15),

Parent

VARCHAR

(30)

OPTIONS

(REFERENCED_OBJECT

’swissprot’),

AllText

CLOB

(15)

)

FOR

SERVER

biors_server

OPTIONS

(REMOTE_OBJECT

’swissprot.features’);

The

queries

and

results

in

Table

15

illustrate

how

you

can

structure

your

queries

to

optimize

the

workload

between

the

federated

system

and

the

BioRS

server.

Table

15.

Samples

of

different

queries

that

produce

identical

results

Query

Result

select

s.id

from

Swiss

s

where

biors.CONTAINS(s.id,

’100K_RAT’)

=

1

fetch

first

3

rows

only

ID

100K_RAT

1

record(s)

selected.

select

s.id

from

Swiss

s

where

s.id

LIKE

’%100K_RAT%’

fetch

first

3

rows

only

ID

100K_RAT

1

record(s)

selected.

Both

of

the

queries

in

Table

15

produce

the

same

results.

However,

the

first

query

will

run

much

faster

than

the

second

query.

The

first

query

uses

the

BIORS.CONTAINS

function

to

specify

the

input

predicate.

As

a

result,

BioRS

selects

the

data

in

the

swissprot

databank,

then

passes

the

selected

data

to

DB2

Information

Integrator.

In

the

second

query,

the

LIKE

input

predicate

is

specified

directly

on

the

Swiss

nickname.

As

a

result,

BioRS

transfers

the

entire

swissprot

databank

to

DB2

Information

Integrator.

After

the

databank

contents

are

transferred,

DB2

Information

Integrator

then

selects

the

data.

The

queries

and

results

in

Table

16

on

page

83

show

the

use

of

wildcard

characters

in

the

BIORS.CONTAINS

function.

All

of

the

query

results

in

Table

16

on

page

83

are

identical,

even

though

different

wildcard

characters

are

used.

82

Data

Source

Configuration

Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

|
|

||

||

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

Table

16.

Sample

queries

that

use

wildcards

in

the

BIORS.CONTAINS

function

Query

Result

select

s.crossreference

from

Swiss

s

where

biors.CONTAINS(s.crossreference,

’MEDLINE’)

=

1

fetch

first

3

rows

only

CROSSREFERENCE

NCBI_TaxID=1011

NCBI_TaxID=5875

NCBI_TaxID=4081

3

record(s)

selected.

select

s.crossreference

from

Swiss

s

where

biors.CONTAINS(s.crossreference,

’?ED?IN?’)

=

1

fetch

first

3

rows

only

CROSSREFERENCE

NCBI_TaxID=1011

NCBI_TaxID=5875

NCBI_TaxID=4081

3

record(s)

selected.

select

s.crossreference

from

Swiss

s

where

biors.CONTAINS(s.crossreference,

’*D*N*’)

=

1

fetch

first

3

rows

only

CROSSREFERENCE

NCBI_TaxID=1011

NCBI_TaxID=5875

NCBI_TaxID=4081

3

record(s)

selected

The

queries

and

results

in

Table

17

show

how

you

can

access

information

in

BioRS

Author

data

type

elements

with

the

BIORS.CONTAINS

function.

The

syntax

of

all

of

the

queries

in

Table

17

is

nearly

identical.

The

only

difference

is

the

presence

or

absence

of

the

first

initial

in

the

query

term,

and

the

amount

of

space

between

the

first

name

and

the

last

initial.

Table

17.

Sample

queries

that

access

BioRS

Author

data

type

columns

Query

Result

select

s.authors

from

Swiss

s

where

biors.CONTAINS(s.authors,

’Mueller’)

=

1

fetch

first

3

rows

only

AUTHORS

Mueller

D.

Rehb

Mayer

K.F.X.

Sc

Zemmour

J.

Litt

3

record(s)

selected.

select

s.authors

from

Swiss

s

where

biors.CONTAINS(s.authors,

’Mueller,D’)

=

1

fetch

first

3

rows

only

AUTHORS

0

record(s)

selected.

select

s.authors

from

Swiss

s

where

biors.CONTAINS(s.authors,

’Mueller

,D’)

=

1

fetch

first

3

rows

only

AUTHORS

0

record(s)

selected.

select

s.authors

from

Swiss

s

where

biors.CONTAINS(s.authors,

’Mueller,

D’)

=

1

fetch

first

3

rows

only

AUTHORS

Mueller

D.

Rehb

Zou

P.J.

Borovo

Davies

J.D.

Mue

3

record(s)

selected.

Chapter

6.

Configuring

access

to

BioRS

data

sources

83

||

||

|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|

||

||

|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

The

queries

and

results

in

Table

18

illustrate

how

you

can

access

information

in

BioRS

Date

type

elements

with

the

BIORS.CONTAINS

function.

When

a

BioRS

Date

type

field

contains

a

sequence

of

dates,

the

results

can

contain

extra

information,

as

shown

in

the

second

example

of

Table

18.

BioRS

Numeric

data

type

elements

(Date

and

Number)

can

contain

multiple

values.

Therefore,

the

results

of

queries

run

on

BioRS

Date

or

Number

elements

can

also

contain

multiple

values.

Multiple

values

are

always

separated

by

spaces.

Table

18.

Sample

queries

that

access

BioRS

Date

data

type

columns

Query

Result

select

e.entrydate

from

embl

e

where

biors.CONTAINS(e.entrydate,

date(’11/01/1997’)

)

=

1

fetch

first

3

rows

only

ENTRYDATE

01-NOV-1997

01-NOV-1997

01-NOV-1997

3

record(s)

selected.

select

g.update

from

gen

g

where

biors.CONTAINS(g.update,

date(’11/01/1997’)

)

=

1

fetch

first

3

rows

only

UPDATE

01-NOV-1997

11-

01-NOV-1997

12-

01-NOV-1997

06-

3

record(s)

selected.

The

queries

and

results

in

Table

19

show

how

you

can

use

the

BIORS.CONTAINS_LE

and

the

BIORS.CONTAINS_GE

functions.

Table

19.

Sample

queries

that

use

the

BIORS.CONTAINS_LE

and

BIORS.CONTAINS_GE

functions

Query

Result

select

s.molweight

from

Swiss

s

where

biors.CONTAINS_LE(s.molweight,

100368)

=

1

fetch

first

3

rows

only

MOLWEIGHT

100368

10576

8523

3

record(s)

selected.

select

s.molweight

from

Swiss

s

where

biors.CONTAINS_GE(s.molweight,

100368)

=

1

fetch

first

3

rows

only

MOLWEIGHT

100368

103625

132801

3

record(s)

selected.

select

s.journalissue

from

Swiss

s

where

biors.CONTAINS_GE(s.journalissue,

172)

=

1

fetch

first

3

rows

only

JOURNALISSUE

172

21

242

196

3

record(s)

selected.

The

queries

and

results

in

Table

20

on

page

85

show

how

you

can

use

the

BIORS.SEARCH_TERM

function

to

specify

a

search

term

using

the

BioRS

format.

84

Data

Source

Configuration

Guide

|
|

|
|
|
|
|

||

||

|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|

||
|

||

|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|

Table

20.

Sample

queries

that

use

the

BIORS.SEARCH_TERM

function

Query

Result

select

s.publicationyear

from

Swiss

s

where

biors.SEARCH_TERM

(s.id,

’[PublicationYear

EQ

number:1997;]’)=1

fetch

first

10

rows

only

PUBLICATIONYEAR

1997

1997

2000

1988

1991

1997

1994

1997

1997

1998

1994

1995

1997

1997

1999

1997

1994

1994

1995

1993

1992

1997

10

record(s)

selected.

select

s.molweight

from

Swiss

s

where

biors.SEARCH_TERM

(s.id,

’[MolWeight

EQ

number:100368;]’)

=

1

fetch

first

10

rows

only

MOLWEIGHT

100368

100368

2

record(s)

selected.

select

s.molweight

from

Swiss

s

where

biors.SEARCH_TERM

(s.id,

’[MolWeight

GREATER

number:100368;]’)

=

1

fetch

first

10

rows

only

MOLWEIGHT

100368

103625

132801

194328

130277

287022

289130

135502

112715

112599

10

record(s)

selected.

The

following

query

shows

how

to

use

relational

predicates

to

form

an

equijoin

between

two

databanks

that

have

a

parent-child

relationship:

select

s.id,

f.id,

f.parent

from

Swiss

s,

Swissft

f

where

(f.parent

=

s.id)

fetch

first

10

rows

only

The

query

results

are

as

follows:

ID

ID

PARENT

100K_RAT

100K_RAT.1

swissprot:100K_RAT

100K_RAT

100K_RAT.2

swissprot:100K_RAT

100K_RAT

100K_RAT.3

swissprot:100K_RAT

100K_RAT

100K_RAT.4

swissprot:100K_RAT

100K_RAT

100K_RAT.5

swissprot:100K_RAT

100K_RAT

100K_RAT.6

swissprot:100K_RAT

100K_RAT

100K_RAT.7

swissprot:100K_RAT

100K_RAT

100K_RAT.8

swissprot:100K_RAT

100K_RAT

100K_RAT.9

swissprot:100K_RAT

104K_THEPA

104K_THEPA.1

swissprot:104K_THEPA

10

record(s)

selected.

Chapter

6.

Configuring

access

to

BioRS

data

sources

85

||

||

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

In

the

previous

query

results,

the

100K_RAT

record

is

a

parent

to

nine

child

records

(100K_RAT.1

through

100K_RAT.9).

Related

concepts:

v

“Guidelines

for

optimizing

BioRS

wrapper

performance”

on

page

86

v

“Equijoin

predicates

for

the

BioRS

wrapper”

on

page

79

Related

reference:

v

“Custom

functions

and

BioRS

queries”

on

page

77

v

“CREATE

NICKNAME

statement

-

Examples

for

BioRS

wrapper”

on

page

75

v

“CREATE

NICKNAME

statement

syntax

-

BioRS

wrapper”

on

page

536

Optimizing

BioRS

wrapper

performance

Guidelines

for

optimizing

BioRS

wrapper

performance

This

topic

provides

guidelines

on

how

to

optimize

the

performance

of

queries

when

you

use

the

BioRS

wrapper.

Minimize

the

amount

of

data

that

is

transferred

between

search

engines.

The

federated

environment

uses

two

query

engines.

For

the

BioRS

wrapper,

these

query

engines

are

DB2®

Universal

Database

and

BioRS.

The

DB2

engine

processes

predicates

(relational

operators,

such

as

=,

BETWEEN,

LIKE,

and

<>)

specified

on

nickname

columns.

The

BioRS

engine

processes

predicates

specified

using

four

custom

functions

for

the

BioRS

wrapper.

To

minimize

the

amount

of

data

that

is

transferred

between

the

two

search

engines,

structure

your

queries

so

that

data

processing

gets

pushed

down

to

the

BioRS

system

whenever

possible.

If

you

need

to

perform

join

operations

in

a

query,

take

advantage

of

any

parent-child

relationships

that

already

exist

in

BioRS

databanks

and

perform

equijoin

operations

whenever

possible.

Equijoin

operations

are

processed

in

BioRS,

which

also

minimizes

the

amount

of

data

transferred

between

the

DB2

and

BioRS

query

engines.

Attention:

Do

not

interrupt

DB2

Information

Integrator

queries

to

BioRS

(for

example,

using

Ctrl-D

or

Ctrl-Z

in

the

command

line

processor,

or

stopping

an

application

program).

Interrupting

a

query

leaves

″dead″

processes

running

on

the

BioRS

server.

These

″dead″

processes

will

rapidly

degrade

both

BioRS

and

DB2

Information

Integrator

system

performance.

If

enough

of

these

″dead″

processes

are

running,

unexpected

errors

can

occur

during

DB2

Information

Integrator

query

processing.

For

example,

a

valid

query

might

return

0

rows,

when

rows

are

expected.

In

extreme

situations,

BioRS,

DB2

Information

Integrator,

or

both

products

can

stop

or

abnormally

end.

Maintain

BioRS

statistical

information

in

the

federated

environment.

In

a

federated

system,

the

federated

database

relies

on

catalog

statistics

for

nicknamed

objects

to

optimize

query

processing.

Maintaining

current

statistics

about

the

BioRS

data

sources

is

essential

to

optimize

the

performance

of

the

BioRS

wrapper.

If

the

statistical

data

or

structural

characteristics

for

a

remote

object

on

which

a

nickname

is

defined

have

changed,

you

must

update

the

corresponding

nickname

column

cardinality

statistics

in

your

federated

system.

86

Data

Source

Configuration

Guide

|
|

|

|

|

|

|

|

|

|
|

|

|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

To

optimize

BioRS

wrapper

performance,

perform

these

updates

in

DB2

Information

Integrator

at

regular

intervals.

Related

concepts:

v

“Tuning

query

processing”

in

the

Federated

Systems

Guide

v

“Equijoin

predicates

for

the

BioRS

wrapper”

on

page

79

v

“BioRS

statistical

information”

on

page

87

Related

reference:

v

“Custom

functions

and

BioRS

queries”

on

page

77

v

“BioRS

wrapper

-

Example

queries”

on

page

81

BioRS

statistical

information

In

a

federated

system,

the

federated

database

relies

on

catalog

statistics

for

objects

with

nicknames

to

optimize

query

processing.

These

statistics

are

retrieved

from

BioRS

data

sources

when

you

create

a

nickname

using

the

CREATE

NICKNAME

statement.

The

federated

database

verifies

the

presence

of

the

object

at

the

data

source,

and

then

attempts

to

gather

existing

data

source

statistical

data.

Information

is

read

from

the

data

source

catalogs

and

put

into

the

DB2®

federated

database

system

catalog

on

the

federated

server.

For

BioRS

data

sources,

critical

statistical

information

includes:

v

The

cardinality

of

a

nickname.

For

BioRS

data

sources,

nickname

cardinality

is

equivalent

to

the

number

of

entries

in

the

corresponding

BioRS

databank.

v

The

cardinality

of

the

column

that

corresponds

to

the

BioRS

ID

element.

The

cardinality

of

this

column

must

match

the

cardinality

of

the

nickname

in

which

the

column

is

referenced.

v

The

cardinality

of

all

columns

that

the

BioRS

wrapper

might

need

to

use.

You

must

maintain

current

statistics

about

the

BioRS

data

sources

to

optimize

the

performance

of

the

BioRS

wrapper.

If

the

statistical

data

or

structural

characteristics

for

a

remote

object

on

which

a

nickname

is

defined

change,

you

must

update

the

corresponding

cardinality

statistics

in

your

federated

system.

The

cardinality

statistics

are

stored

in

the

SYSSTAT.TABLES

catalog

view

and

in

the

SYSSTAT.COLUMNS

catalog

view.

You

perform

the

following

tasks

to

maintain

BioRS

cardinality

statistics

in

your

federated

system:

1.

Determine

the

cardinality

statistics

of

the

required

nickname,

if

necessary.

2.

Update

the

appropriate

the

cardinality

statistics

in

the

required

catalog

view

or

catalog

views.

Related

concepts:

v

“Tuning

query

processing”

in

the

Federated

Systems

Guide

Related

tasks:

v

“Determining

BioRS

databank

cardinality

statistics”

on

page

88

v

“Updating

BioRS

nickname

cardinality

statistics”

on

page

88

v

“Updating

BioRS

column

cardinality

statistics”

on

page

89

v

“Updating

BioRS

ID

column

cardinality”

on

page

90

Chapter

6.

Configuring

access

to

BioRS

data

sources

87

|
|

|

|

|

|

|

|

|

|

|
|
|
|
|
|
|

|

|
|

|
|
|

|

|
|
|
|
|
|

|
|

|

|
|

|

|

|

|

|

|

|

Determining

BioRS

databank

cardinality

statistics

You

must

determine

BioRS

databank

cardinality

statistics

before

you

can

update

nickname

statistics

or

update

the

cardinality

of

the

column

that

corresponds

to

the

BioRS

ID

element.

Procedure:

To

determine

cardinality

statistics

for

a

specific

databank

in

BioRS,

use

the

BioRS

utility

program

admin_find

or

www_find.cgi.

Specify

the

-c

(cardinality)

option.

For

more

information

about

these

two

BioRS

utility

programs,

see

your

BioRS

documentation.

Related

concepts:

v

“BioRS

statistical

information”

on

page

87

Related

tasks:

v

“Updating

BioRS

nickname

cardinality

statistics”

on

page

88

v

“Updating

BioRS

column

cardinality

statistics”

on

page

89

v

“Updating

BioRS

ID

column

cardinality”

on

page

90

Updating

BioRS

nickname

cardinality

statistics

You

must

update

BioRS

nickname

cardinality

statistics

when

the

contents

of

a

BioRS

databank

for

which

you

create

a

nickname

change

significantly.

Maintaining

correct

cardinality

statistics

for

nicknames

enables

the

optimizer

and

the

BioRS

wrapper

to

choose

the

best

performing

data

access

plan.

To

update

BioRS

nickname

cardinality

statistics,

you

modify

the

SYSSTAT.TABLES

catalog

view

with

the

correct

cardinality

number.

Prerequisites:

You

must

determine

the

cardinality

number

of

the

BioRS

databank

that

corresponds

to

the

nickname

whose

statistics

you

want

to

update.

Procedure:

Issue

an

UPDATE

statement

using

the

following

syntax:

UPDATE

sysstat.tables

SET

card=cardinality

WHERE

tabschema=nickname-schema

AND

tabname=nickname-name;

v

cardinality

is

the

BioRS

databank

cardinality

number

that

corresponds

to

the

nickname

whose

statistics

you

want

to

update.

v

nickname-schema

is

the

name

of

the

schema

that

is

associated

with

the

nickname

whose

statistics

you

want

to

update.

v

nickname-name

is

the

name

of

the

nickname

whose

statistics

you

want

to

update.

Related

concepts:

v

“BioRS

statistical

information”

on

page

87

Related

tasks:

v

“Determining

BioRS

databank

cardinality

statistics”

on

page

88

88

Data

Source

Configuration

Guide

|

|
|
|

|

|
|
|
|

|

|

|

|

|

|

|

|
|
|
|

|
|

|

|
|

|

|

|
|
|

|
|

|
|

|

|

|

|

|

v

“Updating

BioRS

column

cardinality

statistics”

on

page

89

v

“Updating

BioRS

ID

column

cardinality”

on

page

90

Updating

BioRS

column

cardinality

statistics

To

update

BioRS

column

cardinality

statistics

in

your

federated

system,

you

must

modify

the

SYSSTAT.COLUMNS

catalog

view.

Maintaining

correct

cardinality

statistics

for

BioRS

columns

enables

the

optimizer

and

the

BioRS

wrapper

to

choose

the

best

performing

data

access

plan

during

query

processing.

You

can

optionally

update

BioRS

column

cardinality

statistics

as

part

of

the

larger

task

of

adding

BioRS

to

a

federated

system.

You

can

also

update

BioRS

column

cardinality

statistics

when

you

want

to

improve

query

performance

for

BioRS

data

sources.

Restrictions:

Do

not

use

this

procedure

to

update

the

cardinality

statistics

for

columns

that

correspond

to

the

BioRS

ID

element.

You

must

use

a

different

procedure

to

update

the

cardinality

statistics

for

columns

that

correspond

to

the

BioRS

ID

element.

Procedure:

To

update

BioRS

column

cardinality

statistics,

issue

an

UPDATE

statement

using

the

following

syntax:

UPDATE

sysstat.columns

SET

colcard=(SELECT

COUNT(DISTINCT

column-name)

FROM

nickname-schema.nickname-name)

WHERE

tabschema=nickname-schema

AND

tabname=nickname-name

AND

colname=column-name;

v

column-name

is

the

name

of

the

column

whose

cardinality

statistics

you

want

to

update.

v

nickname-schema

is

the

name

of

the

schema

that

is

associated

with

the

nickname

where

the

specified

column

is

used.

v

nickname-name

is

the

name

of

the

nickname

where

the

specified

column

is

used.

The

query

might

take

several

minutes

to

run,

because

all

entries

for

the

databank

that

is

specified

in

the

nickname

must

be

retrieved.

If

a

column

can

contain

multiple

values

(for

example,

the

PublicationYear

element

of

the

SwissProt

database

format),

the

calculation

becomes

too

complex

to

use

an

SQL

query.

For

such

columns,

you

must

manually

calculate

the

cardinality

value,

and

then

update

the

SYSSTAT.COLUMNS

catalog

view.

To

calculate

the

cardinality

value,

divide

the

number

of

distinct

values

in

the

column

by

the

average

number

of

values

per

row.

The

calculated

cardinality

value

cannot

be

greater

than

the

cardinality

of

the

table.

Example:

Suppose

you

have

a

nickname

with

three

rows.

The

values

of

the

PublicationYear

column

for

these

three

rows

are:

Chapter

6.

Configuring

access

to

BioRS

data

sources

89

|

|

|

|
|

|
|
|

|
|
|
|

|

|
|
|
|

|

|
|

|
|
|
|
|
|

|
|

|
|

|

|
|

|
|
|
|
|
|
|

|

|
|

v

1997

1992

1985

v

1997

1992

1982

v

1992

1991

1990

1976

1974

1971

There

are

nine

distinct

values,

and

the

average

number

of

values

in

a

row

is

four.

The

cardinality

for

this

PublicationYear

column

is

9/4,

or

3

(2.25

rounded

to

the

next

highest

integer).

Now

that

you

have

the

cardinality

calculation,

you

can

update

the

SYSSTAT.COLUMNS

catalog

view

using

the

following

UPDATE

statement:

UPDATE

sysstat.columns

SET

colcard=3

WHERE

tabschema=nickname-schema

AND

tabname=nickname-name

AND

colname=column-name

v

3

is

the

column

cardinality

value.

v

nickname-schema

is

the

name

of

the

schema

that

is

associated

with

the

underlying

nickname

where

the

specified

column

is

used.

v

nickname-name

is

the

name

of

the

underlying

nickname

where

the

specified

column

is

used.

v

column-name

is

the

name

of

the

column

whose

cardinality

statistics

you

want

to

update.

Related

concepts:

v

“BioRS

statistical

information”

on

page

87

Related

tasks:

v

“Updating

BioRS

nickname

cardinality

statistics”

on

page

88

v

“Updating

BioRS

ID

column

cardinality”

on

page

90

Updating

BioRS

ID

column

cardinality

Maintaining

correct

cardinality

statistics

for

the

column

that

maps

to

the

BioRS

ID

element

enables

the

optimizer

and

the

BioRS

wrapper

to

choose

the

best

performing

data

access

plan.

To

update

the

cardinality

number

of

the

column

that

maps

to

the

BioRS

ID

element,

you

must

modify

the

SYSSTAT.COLUMNS

catalog

view.

Prerequisites:

You

must

determine

the

cardinality

number

of

the

BioRS

databank

that

corresponds

to

the

nickname

in

which

the

column

is

referenced.

The

cardinality

number

of

the

column

that

maps

to

the

BioRS

ID

element

must

match

the

cardinality

of

the

nickname

in

which

the

column

is

referenced.

Procedure:

To

update

BioRS

ID

column

cardinality

statistics,

issue

an

UPDATE

statement

using

the

following

syntax:

UPDATE

sysstat.columns

SET

colcard=<cardinality)

WHERE

tabschema=nickname-schema

AND

tabname=nickname-name

AND

colname

IN

(SELECT

colname

FROM

syscat.coloptions

WHERE

90

Data

Source

Configuration

Guide

|

|

|

|
|
|
|
|

|
|
|
|
|

|

|
|

|
|

|
|

|

|

|

|

|

|

|
|
|

|
|

|

|
|
|
|

|

|
|

|
|
|
|
|
|

tabschema=nickname-name

AND

tabname=nickname-name

AND

option=’ELEMENT_NAME’;

AND

setting=’_ID_’)

v

cardinality

is

the

BioRS

databank

cardinality

number

that

corresponds

to

the

nickname

of

the

column.

v

nickname-schema

is

the

name

of

the

schema

that

is

associated

with

the

nickname

of

the

column.

v

nickname-name

is

the

name

of

the

nickname

in

which

the

column

is

used.

Related

concepts:

v

“BioRS

statistical

information”

on

page

87

Related

tasks:

v

“Determining

BioRS

databank

cardinality

statistics”

on

page

88

v

“Updating

BioRS

nickname

cardinality

statistics”

on

page

88

v

“Updating

BioRS

column

cardinality

statistics”

on

page

89

Messages

for

the

BioRS

wrapper

This

topic

explains

the

messages

that

you

might

receive

when

you

work

with

the

wrapper

for

BioRS.

Table

21.

Messages

issued

by

the

wrapper

for

BioRS

Error

Code

Message

Explanation

SQL0604N

The

length,

precision

or

scale

attribute

for

a

column,

distinct

type,

structured

type,

attribute

of

a

structured

type,

function

or

type

mapping

<data-item>

is

not

valid.

The

data

type

for

a

nickname

column

is

not

compatible

with

the

BioRS

type

of

the

underlying

databank

element.

Check

the

data

type

of

the

column

in

the

CREATE

NICKNAME

statement.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

″Error

creating

wrapper

object.″)

An

error

occurred

when

you

created

a

new

wrapper

object.

Contact

IBM

Software

Support.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

″BioRS

<trace-point>/<code>.″)

This

is

an

internal

error.

Contact

IBM

Software

Support.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

″Memory

allocation

failed:

<trace-point>.″)

An

error

occurred

when

memory

was

allocated.

Ensure

that

sufficient

memory

is

available

to

the

federated

server

host

and

submit

the

query

again.

If

the

problem

persists,

contact

IBM

Software

Support.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

″sqlno_crule_save_plans[100]:rc(-
214272209)

Empty

plan

list.″)

The

optimizer

program

and

the

BioRS

wrapper

could

not

agree

on

a

plan

to

run

the

query.

Simplify

the

query

and

run

it

again.

Chapter

6.

Configuring

access

to

BioRS

data

sources

91

|
|
|
|

|
|

|
|

|

|

|

|

|

|

|

|
|

|
|

||

|||

||
|
|
|
|

|
|
|
|
|

||
|
|
|
|

|
|
|

||
|
|
|
|

|
|

||
|
|
|
|

|
|
|
|
|
|

||
|
|
|
|
|

|
|
|
|

Table

21.

Messages

issued

by

the

wrapper

for

BioRS

(continued)

Error

Code

Message

Explanation

SQL0401N

The

data

types

of

the

operands

for

the

operation

″=″

are

not

compatible.

The

query

is

not

valid

because

the

expression

on

the

right

side

in

a

custom

function

predicate

must

be

an

integer

value.

SQL1822N

Unexpected

error

code

″″

received

from

data

source

″BioRS

wrapper.″

Associated

text

and

tokens

are

″Databank

not

found.″

The

BioRS

databank

referenced

in

a

CREATE

NICKNAME

statement

was

not

found

on

the

BioRS

server.

Check

the

CREATE

NICKNAME

statement

and

ensure

that

the

name

of

the

referenced

databank

is

correct.

SQL1822N

Unexpected

error

code

″″

received

from

data

source

″BioRS

wrapper.″

Associated

text

and

tokens

are

″Connection

timed

out.″

The

BioRS

server

failed

to

respond

to

a

communications

request

within

the

period

specified

by

the

TIMEOUT

option.

SQL1822N

Unexpected

error

code

″<trace_point>″

received

from

data

source

″BioRS

wrapper.″

Associated

text

and

tokens

are

″Error

reading

from

server.″

A

communications

error

occurred

while

reading

data

from

the

BioRS

server.

The

value

of

the

<trace_point>

error

code

might

provide

more

information

about

the

error.

SQL1822N

Unexpected

error

code

″<trace_point>″

received

from

data

source

″BioRS

wrapper.″

Associated

text

and

tokens

are

″Host

not

found.″

The

BioRS

server

host

that

is

identified

in

the

HOST

server

option

was

not

found.

Check

the

CREATE

SERVER

statement

and

ensure

that

the

HOST

server

option

value

is

correct.

SQL1822N

Unexpected

error

code

″<trace_point>″

received

from

data

source

″BioRS

wrapper.″

Associated

text

and

tokens

are

″Unable

to

connect

to

server.″

The

wrapper

was

unable

to

connect

to

the

server

that

is

identified

by

the

HOST

server

option.

The

value

of

the

<trace_point>

error

code

might

provide

more

information

about

the

error.

SQL1822N

Unexpected

error

code

″<trace_point>″

received

from

data

source

″BioRS

wrapper.″

Associated

text

and

tokens

are

″Unable

to

create

TCPIP

socket.″

The

wrapper

could

not

create

a

TCPIP

socket.

The

value

of

the

<trace_point>

error

code

might

provide

more

information

about

the

error

code.

SQL1822N

Unexpected

error

code

″<trace_point>″

received

from

data

source

″BioRS

wrapper.″

Associated

text

and

tokens

are

″Error

sending

to

server.″

The

wrapper

could

not

to

send

a

request

to

the

BioRS

server.

The

value

of

the

<trace_point>

error

code

might

provide

more

information

about

the

error.

SQL30090N

Operation

invalid

for

application

execution

environment.

Reason

code

=

″Cannot

change

case-sensitivty

of

server.″

You

cannot

change

the

value

of

the

CASE_SENSITIVE

server

option

with

SQL

statements.

To

change

the

value

of

this

option,

you

must

drop

the

server.

Then,

you

must

create

the

server

again

using

the

CREATE

SERVER

statement,

and

specify

the

correct

value

for

the

CASE_SENSITIVE

option.

SQL30090N

Operation

invalid

for

application

execution

environment.

Reason

code

=

″Multiple

joins

between

two

nicknames.″

The

query

is

not

valid

because

only

one

join

predicate

is

allowed

between

any

two

nicknames.

92

Data

Source

Configuration

Guide

|

|||

||
|
|

|
|
|
|

||
|
|
|

|
|
|
|
|
|

||
|
|
|

|
|
|

||
|
|
|
|

|
|
|
|
|

||
|
|
|
|

|
|
|
|
|

||
|
|
|
|

|
|
|
|
|

||
|
|
|
|

|
|
|
|

||
|
|
|
|

|
|
|
|

||
|
|
|

|
|
|
|
|
|
|
|

||
|
|
|

|
|
|

Table

21.

Messages

issued

by

the

wrapper

for

BioRS

(continued)

Error

Code

Message

Explanation

SQL30090N

Operation

invalid

for

application

execution

environment.

Reason

code

=

″Right

side

of

function

predicate

must

be

constant.″

The

query

is

not

valid

because

the

expression

on

the

right

side

in

a

custom

function

predicate

must

be

a

constant.

SQL30090N

Operation

invalid

for

application

execution

environment.

Reason

code

=

″Arg

1

of

custom

function

not

a

column.″

The

query

is

not

valid

because

the

first

argument

of

a

custom

function

must

reference

a

column

of

a

BioRS

nickname.

SQL30090N

Operation

invalid

for

application

execution

environment.

Reason

code

=

″Arg

1

of

CONTAINS

function

not

indexed.″

The

query

is

not

valid.

The

column

referenced

in

the

first

argument

of

a

BIORS.CONTAINS,

BIORS.CONTAINS_LE,

or

BIORS.CONTAINS_GE

function

must

be

an

indexed

column.

SQL30090N

Operation

invalid

for

application

execution

environment.

Reason

code

=

″Bad

type

for

arg1

of

<function-name>

function.″

The

query

is

not

valid.

The

column

referenced

in

the

first

argument

of

a

BIORS.CONTAINS,

BIORS.CONTAINS_LE,

or

BIORS.CONTAINS_GE

function

is

not

of

the

correct

data

type.

SQL30090N

Operation

invalid

for

application

execution

environment.

Reason

code

=

″Arg

1

of

SEARCH_TERM

not

ID

column.″

The

query

is

not

valid.

The

column

referenced

in

the

first

argument

of

a

SEARCH_TERM

function

does

not

map

a

BioRS

ID

element.

SQL30090N

Operation

invalid

for

application

execution

environment.

Reason

code

=

″Bind

parameter

cannot

be

NULL.″

A

column

or

host

variable

value

that

was

referenced

in

the

second

argument

of

a

BIORS.CONTAINS

function

was

NULL.

The

BioRS

wrapper

cannot

process

null

values.

SQL30090N

Operation

invalid

for

application

execution

environment.

Reason

code

=

″Cannot

convert

value

to

BioRS

literal.″

A

value

was

submitted

to

the

wrapper

in

a

literal,

column,

or

host

variable,

which

could

not

be

converted

to

a

valid

BioRS

literal.

SQL30090N

Operation

invalid

for

application

execution

environment.

Reason

code

=

″Cannot

change

server

version.″

You

cannot

change

the

server

version

with

the

ALTER

SERVER

statement.

To

change

the

server

version,

you

must

drop

the

server.

Then,

you

must

create

the

server

again

with

the

correct

version

using

the

CREATE

SERVER

statement.

SQL30090N

Operation

invalid

for

application

execution

environment.

Reason

code

=

″Bad

type

for

arg2

of

<function-name>

function.″

The

query

is

not

valid.

The

column

referenced

in

the

second

argument

of

a

BIORS.CONTAINS,

BIORS.CONTAINS_LE,

or

BIORS.CONTAINS_GE

function

is

not

of

the

correct

data

type.

SQL30090N

Operation

invalid

for

application

execution

environment.

Reason

code

=

″Nickname

has

no

columns.″

No

column

declarations

were

specified

on

the

CREATE

NICKNAME

statement.

Column

declarations

are

required

to

create

nicknames.

Related

concepts:

v

“Introduction

to

messages”

in

the

Message

Reference

Volume

1

Chapter

6.

Configuring

access

to

BioRS

data

sources

93

|

|||

||
|
|
|

|
|
|

||
|
|
|

|
|
|

||
|
|
|

|
|
|
|
|
|

||
|
|
|

|
|
|
|
|
|

||
|
|
|

|
|
|
|

||
|
|
|

|
|
|
|
|

||
|
|
|

|
|
|
|

||
|
|
|

|
|
|
|
|
|

||
|
|
|

|
|
|
|
|
|

||
|
|
|

|
|
|
|
|

|

|

Related

reference:

v

“SQLSTATE

messages”

in

the

Message

Reference

Volume

2

94

Data

Source

Configuration

Guide

|

|

Chapter

7.

Configuring

access

to

BLAST

data

sources

This

chapter

explains

how

to

configure

your

federated

server

to

access

data

that

is

stored

in

BLAST

data

sources.

You

can

configure

access

to

BLAST

data

sources

by

using

the

DB2

Control

Center

or

by

issuing

SQL

statements.

This

chapter:

v

Explains

what

BLAST

is

v

Lists

the

tasks

that

you

need

to

perform

v

Contains

examples

of

the

SQL

statements

that

you

need

v

Lists

the

error

messages

associated

with

the

BLAST

wrapper

What

is

BLAST?

BLAST

(Basic

Local

Alignment

Search

Tool)

is

a

utility

that

is

maintained

by

the

National

Center

for

Biotechnology

Information

(NCBI).

BLAST

is

used

to

scan

a

nucleotide

or

amino

acid

sequence

database

for

"hits."

A

BLAST

hit

contains

one

or

more

high-scoring

segment

pairs

(HSPs).

A

HSP

is

a

pair

of

sequence

fragments,

whose

alignment

is

locally

maximal,

and

whose

similarity

score

exceeds

some

threshold

value.

NCBI

provides

an

executable,

blastall,

that

is

used

to

perform

BLAST

searches

on

BLAST-able

data

sources,

such

as

GenBank

and

SWISS-PROT.

The

BLAST

wrapper

supports

all

five

types

of

BLAST

searches:

BLASTn,

BLASTp,

BLASTx,

tBLASTn,

and

tBLASTx.

These

are

described

in

Table

22.

Table

22.

BLAST

search

types

supported

by

the

BLAST

wrapper

BLAST

search

type

Description

BLASTn

A

type

of

BLAST

search

in

which

a

nucleotide

sequence

is

compared

with

the

contents

of

a

nucleotide

sequence

database

to

find

sequences

with

regions

homologous

to

regions

of

the

original

sequence.

BLASTp

A

type

of

BLAST

search

in

which

an

amino

acid

sequence

is

compared

with

the

contents

of

an

amino

acid

sequence

database

to

find

sequences

with

regions

homologous

to

regions

of

the

original

sequence.

BLASTx

A

type

of

BLAST

search

in

which

a

nucleotide

sequence

is

compared

with

the

contents

of

an

amino

acid

sequence

database

to

find

sequences

with

regions

homologous

to

regions

of

the

original

sequence.

The

query

sequence

is

translated

in

all

six

reading

frames,

and

each

of

the

resulting

sequences

is

used

to

search

the

sequence

database.

tBLASTn

A

type

of

BLAST

search

in

which

an

amino

acid

sequence

is

compared

with

the

contents

of

a

nucleotide

sequence

database

to

find

sequences

with

regions

homologous

to

regions

of

the

original

sequence.

The

sequences

in

the

sequence

database

are

translated

in

all

six

reading

frames,

and

the

resulting

sequences

are

searched

for

regions

homologous

to

regions

of

the

query

sequence.

©

Copyright

IBM

Corp.

1998,

2004

95

Table

22.

BLAST

search

types

supported

by

the

BLAST

wrapper

(continued)

BLAST

search

type

Description

tBLASTx

A

type

of

BLAST

search

in

which

a

nucleotide

sequence

is

compared

with

the

contents

of

a

nucleotide

sequence

database

to

find

sequences

with

regions

homologous

to

regions

of

the

original

sequence.

In

a

tBLASTx

search,

both

the

query

sequence

and

the

sequence

database

are

translated

in

all

six

reading

frames,

and

the

resulting

sequences

are

compared

to

discover

homologous

regions.

Figure

7

shows

how

BLAST

works

with

your

federated

system.

On

the

client

side,

users

or

applications

submit

SQL

statements

with

BLAST-specific

parameter-passing

predicates

that

map

to

standard

BLAST

options.

The

SQL

statements

with

the

input

predicates

are

sent

to

your

DB2®

Universal

Database

federated

database

system

with

the

BLAST

wrapper

installed.

The

BLAST

wrapper

transforms

the

query

into

a

format

understandable

by

the

BLAST

application

and

sends

the

transformed

query

to

your

BLAST

server.

This

server

can

be

a

separate

machine

from

the

machine

with

the

federated

system.

A

special

daemon

program

runs

on

your

BLAST

server.

This

daemon,

using

information

from

a

daemon

configuration

file,

receives

the

query

request

from

the

federated

system

and

sends

it

to

the

BLAST

application.

The

BLAST

application

then

runs

against

a

BLAST-able

data

source

in

the

usual

manner.

The

results

are

returned

to

BLAST

and

then

to

the

daemon.

The

daemon

returns

the

retrieved

data

to

the

BLAST

wrapper.

The

wrapper

transforms

the

data

into

a

relational

table

format,

and

returns

this

table

to

you

or

application.

The

returned

data

contains

two

parts:

DB2 Universal
Database
federated
database

DB2 Client Federated database

BLAST
Wrapper

Results with
fixed columns
and user-defined
definition line

Daemon
configuration
file

SWISS
-PROT

GenBank X

BLAST server

SQL with
parameter-passing
predictions

BLAST
Daemon

blastall and
matrix files

BLAST-able
data sources

BLAST

BLAST

BLAST

Figure

7.

How

the

BLAST

wrapper

works

96

Data

Source

Configuration

Guide

v

A

series

of

standard,

fixed

columns

familiar

to

BLAST

users,

and

v

User-configured

definition

line

information.

The

following

example

illustrates

how

relational

information

is

extracted

from

BLAST-able

data

sources.

Data

moves

from

raw

fasta

file

format

to

a

BLAST-able

data

set

to

a

relational

table

that

can

be

joined

with

other

data

sources

in

your

federated

system.

Figure

8

is

a

sample

fasta

file

containing

four

definition

line

and

nucleotide

sequence

records.

The

standard

formatdb

application

transforms

the

fasta

file

to

a

BLAST-able

data

set.

The

data

is

now

ready

for

querying

by

SQL

through

a

federated

system

with

the

BLAST

wrapper

installed

and

registered.

The

following

query,

sent

by

you

or

an

application

at

the

client

end,

is

transformed

by

the

BLAST

wrapper.

It

then

runs

against

the

BLAST-able

data

set.

>7:4986

PMON5744

GTTCTTCCCAGTGCCCAAGTCCATTCTGACATCAATGAAGAAGGTAAAATCCCTGCGTGATCCCTCTGCC

AAGATGTCGAAATCAGACCCGGATAAACTAGCTGCTGTCAGAATAACAGACAGCCCGGAGGAGATCGTGC

AGAAGTTCCGCAAGGCTGTGACGGACTTCACCTCGGAGGTCACCTACGACCCGGCCAGGCGAGGAGGCGT

GTCCAACTTGGTGGCCATCCACGCGGCAGTGACCGGACTCCCGGTGGAGGAGGTGGTCCGCCGAAGTGCT

GGCATCAACACCGCTGGCTACAAGTTGGTGGTGGCGGAGGCTGTGATTGAGAGATTTGCACCAATTAAGA

GTGAAATTGAAAAACTGAAGAGGAACAAGGACCACCTAGAGAAGGTTTTACAAGTTGGGTCGGCAAAAGC

CAAAGAATTAGCATATCCCGTGTGCCAGGAGGTGAAGAAATTGGTGGGGTTTCTATAGGCAGTCTCACCT

AGTCCCAGAAAATGTTTTTTATCTTGTGGTCTGCTTGCACACTCAGTCTAATAAAGGCAGCTTTCCTAAG

ACGCCAACAATTCCAGTTTGGGGATGCTTAGTTTACT

>8:9747

PMON5699

AAGAAGTTCTTGTTAGAACTTTCCACCTCCGGCTTCCCCTCCACCTCTCTTACTGTCCCAACCTTCTGAG

ACGCTTTTTCTCCTCCCGAGGATTTATCTCTTTCTCTCTCTCTCTCTCTCTCTCTTTTTTTTTTTCCCCT

TTTCCCCCCCCGAGGCTGGTTTTGCTTTGGGGAGGGGGGGTTTTTTAAAGGGGCCGGGGGGGCCCCCTTT

CTCCCCCCTAATGGGGTTAATTAATAATGGGGGGGGGGGTTTTTTTTTTTTAAACCCCTATTTGGTCCGG

CCCGGGGATTTCCCCCCCCCCCCCCTTGCCCGGTTCCGGGGCCCGGAGGAGGGGGGGAAAAGGGCGGGAA

CCTTTGGTAGTTTCCCCTCGGAAAAAAATTTTTCGGGGGGGAAAACCTCCCT

>13:6512

PMON5498

GATAAGAGGCAGAATAGAAGACTGGACTACTTCTCTCCTAAAAACACATTTAAAACTAAGCCTGAGCAAT

CTCCACCCAAATGGACCGGAAACCTTAAAAAAGAATCCTACTCCTGAAGAAAAAGAGGAGGACACATCAA

GAGGTAGAAGGGGCGATTTCATGATATAAACAACCCCATACCTCCAGAGTGGGAAGCTCCACAGACTGAA

AACTAACTGGTTCACAGAAACTCACCTACAGGAGTGAGCCCCACATCAAACCCTCGAATGTGGGGATCTG

GCACTGGTAGAAAGAGCCCCTGGAGCATCTGGCATTGAAGGCCAGTGGGGCTTGTGTGCAGGAGATCCAC

AGGACTAGGGGAAACGGAGACCCCCATTCTTAAAAGGTGCACACAGACTTTTACGTGCACTGGGTCCCAG

TGCAAAGCAAAGTCTCCATAGGAATCTGGGTCAAACCTGACTGCAGTTCTTGGAGGACCTCCTGGGAAAG

CAAGGGTGAATGTGGCTTCTTGTGGGGAAAGGACATTGGAAGCAAAGCTCTTGGGAATATTCATCAGTGT

GC

>15:8924

PMON5426

GGAGAAACTGACTCCTGAGCAGCTGCAATTCATGCGGCAGGTGCAGCTCGCCCAGTGGCAGAAGACGCTG

CCACAGCGGCGGACCCGGAACATCGTGACCGGCCTGGGCATCGGGGCGCTGGTGTTGGCAATTTGTATCC

GTTTGGACTGTAGACTCAGGGAGACCGCATTTAGGGGAACAGGAAGGGCAGCAGGGGCGTGTAGGAGGGC

AGTGTGGGGGTGGTAGAAGGAGCCCGAGATATGAAAACCTTGGCTCCTTTTAACTCTGAATCAAGCGTTT

GGTGTACCTTACGTTGTCATTTTAAAGGTGTATTTTAGTATAATTGATTAATGATTACGGAGTCGGGTGA

GGGCTCCCAGGAGCAGACGGCAGAAGATCGAATTTGGGAGGATGATCAGCAGCGGTGGTTGAGCAAGTGT

GGGAAAAGGGAATGCGCACATTCCACGTGGTTTCCTGAACCCACCTCCCCAGATGGTTACACCTTCTACT

CGGTGTCCCAGGAGCGTTTCTTGGATGAGCTGGAGGATGAGGCCAAAGCTGCTC

Figure

8.

Sample

fasta

file,

nucleo1

Chapter

7.

Configuring

access

to

BLAST

data

sources

97

SELECT

Unique_ID,

Experiment_Number,

Organism_Number,

HSP_Info,

Score

FROM

nucleo1

WHERE

BlastSeq

=

’ACATTCTTATAGAGTATTGCTACTCCTCCAGGATAGAGTCATCTCT

GGTCTCCAGAGCCACCGCTGGCTACAAGTTGGTGGTGGCGGAGGCTGTGATTGAGAGATTTG

CACCAATACAGAAACTCACCTACAGGAGTGAGCGGGTGGTAGAAGGAGCCCGAGATATGAAA

ACCTTGTTTCAAGACCCCATTGTCACCGGGG’;

The

results

of

the

query

are

transformed

by

the

BLAST

wrapper

into

a

relational

table

format

shown

in

Table

23.

Table

23.

BLAST

returns

results

in

relational

table

form

when

integrated

into

your

federated

system

Unique

ID

Experiment

number

Organism

number

HSP_INFO

SCORE

PMON5744

4986

7

Identities

=

57/201

(28%),

Positives

=

57/201

(28%),

Gaps

=

0/201

(0%)

+1.13487000000000E+002

PMON5426

8924

15

Identities

=

35/201

(17%),

Positives

=

35/201

(17%),

Gaps

=

0/201

(0%)

+6.98754000000000E+001

PMON5498

6512

13

Identities

=

26/201

(13%),

Positives

=

26/201

(13%),

Gaps

=

0/201

(0%)

+5.20342000000000E+001

The

data

is

in

a

fully

relational

form

and

can

be

joined

with

data

from

other

data

sources

used

by

your

laboratory.

Combining

the

results

of

several

data

sources

can

lead

to

insights

not

readily

or

efficiently

discovered

prior

to

the

implementation

of

your

federated

system.

Related

tasks:

v

“Adding

BLAST

data

sources

to

a

federated

server”

on

page

98

Adding

BLAST

to

a

federated

server

Adding

BLAST

data

sources

to

a

federated

server

To

configure

the

federated

server

to

access

BLAST

data

sources,

you

must

provide

the

federated

server

with

information

about

the

data

sources

and

objects

that

you

want

to

access.

You

can

configure

the

federated

server

to

access

BLAST

data

sources

by

using

the

DB2

Control

Center

or

the

DB2

command

line.

The

DB2

Control

Center

includes

a

wizard

to

guide

you

through

the

steps

required

to

configure

the

federated

server.

Prerequisites:

v

DB2

Information

Integrator

must

be

installed

on

a

server

that

will

act

as

the

federated

server

v

A

federated

database

must

exist

on

the

federated

server

Procedure:

98

Data

Source

Configuration

Guide

|
|
|

To

add

BLAST

data

sources

to

a

federated

server:

1.

Verify

that

the

correct

version

of

the

blastall

executable

and

matrix

files

are

installed.

2.

Configure

the

BLAST

daemon.

3.

Start

the

BLAST

daemon.

4.

Register

the

wrapper.

5.

Register

the

server

definition.

6.

Register

nicknames

for

BLAST

searches.

Related

concepts:

v

“DB2

Information

Integrator

installation

process

-

overview”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Fast

track

to

configuring

your

data

sources”

on

page

55

Related

tasks:

v

“Creating

a

federated

database”

on

page

51

v

“Verifying

that

the

correct

version

of

the

blastall

executable

and

matrix

files

are

installed”

on

page

99

v

“Configuring

the

BLAST

daemon”

on

page

100

v

“Starting

the

BLAST

daemon”

on

page

103

v

“Registering

the

BLAST

wrapper”

on

page

105

v

“Registering

the

server

for

a

BLAST

data

source”

on

page

106

v

“Registering

nicknames

for

BLAST

data

sources”

on

page

107

v

“Checking

the

setup

of

the

federated

server”

on

page

37

Related

reference:

v

“Supported

operating

systems

for

DB2

Information

Integrator

(32-bit)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Supported

operating

systems

for

DB2

Information

Integrator

(64-bit)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

Verifying

that

the

correct

version

of

the

blastall

executable

and

matrix

files

are

installed

Verifying

that

the

correct

version

of

the

blastall

executable

and

matrix

files

are

installed

is

part

of

the

larger

task

of

adding

BLAST

to

a

federated

system.

Prerequisites:

Verify

that

you

have

the

latest

version

of

the

blastall

executable

and

BLOSUM62,

BLOSUM80,

PAM30,

and

PAM70

matrix

files

installed

on

your

BLAST

server

machine.

If

you

do

not

have

the

latest

version

of

the

blastall

executable,

you

must

install

the

binary

files

and

the

matrix

files.

The

matrix

files

must

be

in

the

same

directory

as

the

blastall

executable.

Procedure:

To

check

the

version

level

of

your

blastall

executable

and

matrix

files:

1.

Run

a

BLAST

search

from

the

command

line

and

note

the

version

number

located

in

the

output

file.

Chapter

7.

Configuring

access

to

BLAST

data

sources

99

2.

Check

this

product’s

Web

site

for

versions

of

BLAST

that

have

been

tested

with

this

wrapper

to

ensure

you

have

a

supported

version.

The

next

task

in

this

sequence

of

tasks

is

configuring

the

BLAST

daemon.

Related

tasks:

v

“Configuring

the

BLAST

daemon”

on

page

100

Configuring

the

BLAST

daemon

Configuring

the

BLAST

daemon

is

part

of

the

larger

task

of

adding

BLAST

to

a

federated

system.

The

BLAST

wrapper

requires

a

BLAST

daemon.

The

BLAST

daemon

must

be

running

on

a

server

that

you

can

access

through

TCP/IP

from

your

federated

system.

This

can

be

the

same

server

that

operates

as

the

federated

server,

or

a

separate

BLAST

server.

The

daemon

runs

separately

from

the

wrapper

and

the

federated

database.

The

daemon

listens

for

BLAST

job

requests

from

the

wrapper.

Prerequisites:

The

BLAST

daemon

must

have:

v

Execute

access

to

the

blastall

binary

file

so

that

it

can

run

BLAST

searches.

v

Write

access

to

a

directory

in

which

it

can

write

temporary

files.

v

Read

access

to

at

least

one

BLAST-able

data

source

on

which

BLAST

searches

can

be

run.

The

blastall

executable

must

have

read

access

to

both

the

data

file

and

the

BLAST

index

files

generated

by

the

formatdb

program.

Restrictions:

The

BLAST

daemon

might

not

run

properly

if

the

executable

file

or

the

database

paths

contain

spaces.

For

example,

you

should

not

install

the

BLAST

executable

file

in

C:\Program

Files

on

Windows

servers.

Procedure:

To

configure

the

BLAST

daemon:

1.

Ensure

that

the

BLAST

daemon

executable

files

are

on

the

proper

server.

During

the

installation

of

DB2

Information

Integrator,

the

daemon

executable

files

are

installed

in

a

directory

on

the

federated

server:

On

UNIX

The

daemon

executable

file

is

db2blast_daemon.

This

file

is

installed

in

the

$DB2PATH/bin

directory.

On

Windows

The

daemon

executable

files

are

db2blast_daemon.exe

and

db2blast_daemon_svc.exe.

These

files

are

installed

in

the

%DB2PATH%\bin

directory.
If

you

use

a

separate

BLAST

server

computer,

you

must

copy

the

daemon

executable

files

from

the

directory

on

the

federated

server

to

a

directory

on

the

100

Data

Source

Configuration

Guide

|
|
|
|

|

|
|
|

|
|
|
|

BLAST

server

computer.

The

daemon

executable

files

can

run

in

any

directory

on

the

BLAST

server

computer

that

does

not

contain

spaces

in

the

names

in

the

directory

path.

2.

Ensure

that

the

BLAST

daemon

configuration

file

is

on

the

proper

server.

During

the

installation

of

DB2

Information

Integrator,

a

sample

daemon

configuration

file,

BLAST_DAEMON.config,

is

installed

in

a

directory

on

the

federated

server:

On

UNIX

The

daemon

configuration

file

is

installed

in

the

$DB2PATH/bin

directory.

$DB2PATH

is

the

directory

in

which

DB2

Information

Integrator

is

installed.

On

Windows

The

daemon

configuration

file

is

installed

in

the

%DB2PATH%\bin

directory.

%DB2PATH%

is

the

directory

in

which

DB2

Information

Integrator

is

installed,

usually

C:\SQLLIB\bin.
By

default,

the

daemon

expects

to

find

the

configuration

file

in

the

working

directory

from

which

the

daemon

is

started.

You

can

copy

the

configuration

file

to

another

location.

If

you

use

a

BLAST

server

computer,

you

must

copy

the

daemon

configuration

file

from

the

directory

on

the

federated

server

to

a

directory

on

the

BLAST

server

computer.

You

can

copy

the

daemon

configuration

file

to

any

directory

on

the

BLAST

server

computer

that

the

daemon

can

access.

3.

Edit

the

daemon

configuration

file

to

work

with

your

data

source.

You

can

also

rename

the

configuration

file.

v

The

first

line

in

the

configuration

file

must

be

an

equal

sign.

If

the

equal

sign

is

missing,

the

daemon

will

not

start.

An

error

message

will

indicate

that

the

DAEMON_PORT

was

not

specified.

v

The

last

line

in

the

configuration

file

must

end

with

a

new

line.

The

sample

configuration

file

that

is

provided

with

DB2

Information

Integrator

ends

with

a

new

line.

When

you

edit

the

file,

you

must

ensure

that

the

last

line

in

the

file

ends

with

a

new

line.

If

the

last

line

does

not

end

with

a

new

line,

you

will

receive

an

error

message

when

you

attempt

to

run

your

first

BLAST

query

using

the

data

source

listed

on

the

last

line.

v

Specify

the

following

options

in

the

configuration

file.

For

options

that

require

paths,

you

can

specify

relative

paths.

Relative

paths

are

relative

to

the

directory

from

which

the

daemon

process

was

started.

DAEMON_PORT

This

is

the

network

port

on

which

the

daemon

listens

for

BLAST

job

requests

submitted

by

the

wrapper.

MAX_PENDING_REQUESTS

This

is

the

maximum

number

of

BLAST

job

requests

that

can

be

blocking

on

the

daemon

at

any

one

time.

This

number

does

not

represent

the

number

of

BLAST

jobs

that

are

running

concurrently,

only

the

number

of

job

requests

that

can

block

at

one

time.

It

is

recommended

that

you

set

this

to

a

number

greater

than

five.

The

BLAST

daemon

does

not

restrict

the

number

of

BLAST

jobs

that

can

run

concurrently.

DAEMON_LOGFILE_DIR

This

is

the

directory

in

which

the

daemon

creates

its

log

file.

This

file

contains

useful

status

and

error

information

generated

by

the

BLAST

daemon.

Chapter

7.

Configuring

access

to

BLAST

data

sources

101

|
|
|
|

Q_SEQ_DIR_PATH

This

is

the

directory

in

which

a

temporary

query

sequence

data

file

is

created

by

the

daemon.

This

temporary

file

is

cleaned

up

once

the

BLAST

job

completes.

BLAST_OUT_DIR_PATH

This

is

the

directory

in

which

the

daemon

creates

the

temporary

file

to

store

the

BLAST

output

data.

Data

is

read

from

this

file

and

passed

back

to

the

wrapper

through

the

network

connection.

After

the

data

is

passed

to

the

wrapper,

the

daemon

cleans

up

the

temporary

file

BLASTALL_PATH

This

is

the

fully-qualified

name

of

the

BLAST

executable

file

on

the

computer

that

is

running

the

daemon.

database

specification

entry

Specifies

the

location

of

a

BLAST-able

data

source.

Make

note

of

the

database

data_source_name

that

you

specify

in

the

configuration

file.

For

the

daemon

to

function

properly,

you

must

specify

the

database

data_source_name

when

you

create

the

nickname

for

the

data

source.

The

name

is

case-sensitive.

The

database

data_source_name

is

specified

in

the

DATASOURCE

option

of

the

CREATE

NICKNAME

statement.

The

configuration

file

must

contain

at

least

one

database

specification

entry

in

the

following

form:

data_source_name

=

path

to

BLAST-able_data_source

On

UNIX

For

example,

to

specify

the

GenBank

BLAST-able

data

source

you

would

add

the

following

line

to

the

daemon

configuration

file:

genbank=/dsk/1/nucl_data/genbank

On

Windows

For

example,

to

specify

the

GenBank

BLAST-able

data

source

you

would

add

the

following

line

to

the

daemon

configuration

file:

c:\vnr_data\genbank_nonest1.fasta

The

path

indicated

in

a

database

specification

entry

must

contain

the

three

index

files.

v

For

nucleotide

data

sources,

the

index

files

have

these

extensions:

–

.nhr

–

.nin

–

.nsq
v

For

amino

acid

data

sources,

the

index

files

have

these

extensions:

–

.phr

–

.pin

–

.psq

The

database

specification

entry

must

indicate

the

name

of

the

file

that

contains

the

original

Fasta-formatted

data.

The

three

index

files

must

have

the

same

root

name

as

the

file

containing

the

original

Fasta-formatted

data.

The

next

task

in

this

sequence

of

tasks

is

starting

the

BLAST

daemon.

102

Data

Source

Configuration

Guide

Related

tasks:

v

“Starting

the

BLAST

daemon”

on

page

103

Related

reference:

v

“BLAST

daemon

configuration

file

-

examples”

on

page

103

BLAST

daemon

configuration

file

-

examples

The

following

examples

show

the

contents

of

a

sample

configuration

file.

Example

–

BLAST

daemon

configuration

file

(UNIX):

This

example

shows

the

required

options

and

the

BLAST-able

data

source

specifications

for

GenBank

and

SWISS-PROT.

=

DAEMON_PORT=4007

MAX_PENDING_REQUESTS=10

DAEMON_LOGFILE_DIR=./

Q_SEQ_DIR_PATH=./

BLAST_OUT_DIR_PATH=./

BLASTALL_PATH=./blastall

genbank=/dsk/1/nucl_data/genbank

swissprot=/dsk/1/prot_data/swissprot

Example

–

BLAST

daemon

configuration

file

(Windows):

This

example

shows

the

required

options

and

the

BLAST-able

data

source

specifications

for

GenBank

and

SWISS-PROT.

=

DAEMON_PORT=4007

MAX_PENDING_REQUESTS=10

DAEMON_LOGFILE_DIR=.\

Q_SEQ_DIR_PATH=.\

BLAST_OUT_DIR_PATH=.\

BLASTALL_PATH=.\blastall.exe

genbank=c:\vnr_data\genbank_nonest1.fasta

swissprot=c:\vnr_data\swissprot

Related

tasks:

v

“Adding

BLAST

data

sources

to

a

federated

server”

on

page

98

v

“Configuring

the

BLAST

daemon”

on

page

100

v

“Starting

the

BLAST

daemon”

on

page

103

Starting

the

BLAST

daemon

Starting

the

BLAST

daemon

is

part

of

the

larger

task

of

adding

BLAST

to

a

federated

system.

Before

you

can

access

BLAST

data

sources,

you

must

start

the

BLAST

daemon.

Prerequisites:

Before

you

start

the

BLAST

daemon,

you

must

have

write

access

to

all

paths

listed

under

the

DAEMON_LOGFILE_DIR,

BLAST_OUT_DIR_PATH,

and

Q_SEQ_DIR_PATH

entries

in

the

configuration

file.

Procedure:

Chapter

7.

Configuring

access

to

BLAST

data

sources

103

|

|
|

|
|
|
|
|
|
|
|
|

|

To

start

the

BLAST

daemon

on

a

UNIX

server

computer:

1.

Open

the

directory

where

the

daemon

executable

file

is

located.

2.

Issue

the

db2blast_daemon

command:

v

If

you

did

not

change

the

name

of

the

daemon

configuration

file

and

the

configuration

file

is

in

the

same

directory

as

the

daemon

executable

file,

type

the

following

command

at

the

command

line:

db2blast_daemon

v

If

you

changed

the

name

of

the

daemon

configuration

file

or

if

the

daemon

configuration

file

is

not

in

the

same

directory

as

the

daemon

executable

file,

you

must

use

the

-c

option

on

the

wrapper

daemon

command

to

point

the

daemon

executable

to

the

new

name

or

location.

For

example,

the

following

command

causes

the

wrapper

daemon

to

look

for

the

daemon

configuration

information

in

a

file

called

BLAST_D.config

in

the

subdirectory

cfg.

db2blast_daemon

-c

cfg/BLAST_D.config

The

executable

file

starts

a

new

process

in

which

the

BLAST

daemon

runs.

To

start

the

BLAST

daemon

on

a

Windows

server

computer:

1.

Open

the

directory

where

the

daemon

executable

file

is

located.

2.

Issue

the

db2blast_daemon

command

with

the

parameters

that

you

need.

For

example,

to

install

the

daemon

service

with

debugging

turned

on:

db2blast_daemon

-a

install

-d

2

db2blast_daemon

-a

start

The

next

task

in

this

sequence

of

tasks

is

registering

the

BLAST

wrapper.

Related

tasks:

v

“Registering

the

BLAST

wrapper”

on

page

105

db2blast_daemon

command

-

syntax

and

examples

The

db2blast_daemon

command

can

be

used

on

UNIX

and

Windows

servers.

Some

of

the

arguments

listed

in

the

syntax

can

be

used

only

on

Windows

servers.

The

syntax

for

the

db2blast_daemon

command

is:

db2blast_daemon

-a

action

-c

config_file

-d

debug_level

-u

user_id

-p

password

-a

action

Performs

the

specified

activity.

Valid

actions

are

status,

install,

start,

stop,

and

remove.

You

can

specify

this

argument

only

on

Windows

servers.

-c

config_file

Instructs

the

daemon

service

to

use

the

specified

configuration

file.

If

you

do

not

specify

the

configuration

file,

the

daemon

searches

for

the

BLAST_DAEMON.configfile

in

the

directory

where

the

daemon

executable

files

are

installed.

You

can

use

this

option

with

the

install

and

start

actions.

You

can

specify

this

argument

on

UNIX

and

Windows

servers.

104

Data

Source

Configuration

Guide

|
|

|

|

-d

debug_level

Sets

the

daemon

service

debug

level

to

the

specified

value.

The

valid

values

are

1,

2,

or

3.

You

can

use

this

option

with

the

install

and

start

actions.

You

can

specify

this

argument

on

UNIX

and

Windows

servers.

-u

user_id

Sets

the

daemon

service

to

run

under

the

specified

user

ID.

You

can

use

this

option

with

the

install

action.

You

can

specify

this

argument

only

on

Windows

servers.

-p

password

Specifies

the

password

for

the

specified

user

ID.

The

password

is

valid

and

required

only

when

you

specify

the

-u

option.

If

the

-p

option

is

not

specified

when

you

set

the

-u

option,

the

program

prompts

you

for

the

password.

You

can

use

this

option

with

the

install

action.

You

can

specify

this

argument

only

on

Windows

servers.

The

options

that

are

specified

with

the

start

action

affect

only

the

current

run

of

the

daemon,

and

override

the

values

that

are

specified

with

the

install

action.

Examples:

The

following

examples

show

daemon

actions.

These

examples

assume

that

the

BLAST_DAEMON.config

file

is

in

the

same

directory

as

db2blast_daemon.exe.

v

To

check

the

status

of

the

daemon:

db2blast_daemon

-a

status

v

To

install

the

daemon

service

with

debugging

turned

on:

db2blast_daemon

-a

install

-d

2

v

To

start

the

daemon:

db2blast_daemon

-a

start

v

To

stop

the

daemon:

db2blast_daemon

-a

stop

v

To

remove

the

daemon

service:

db2blast_daemon

-a

remove

Related

tasks:

v

“Starting

the

BLAST

daemon”

on

page

103

Registering

the

BLAST

wrapper

Registering

the

BLAST

wrapper

is

part

of

the

larger

task

of

adding

BLAST

data

sources

to

a

federated

server.

You

must

register

a

wrapper

to

access

BLAST

data

sources.

Wrappers

are

used

by

federated

servers

to

communicate

with

and

retrieve

data

from

data

sources.

Wrappers

are

implemented

as

a

set

of

library

files.

Procedure:

To

register

a

wrapper,

issue

the

CREATE

WRAPPER

statement

with

the

name

of

the

wrapper

and

the

name

of

the

wrapper

library

file.

Chapter

7.

Configuring

access

to

BLAST

data

sources

105

|

|

|

For

example,

to

register

a

wrapper

with

the

name

blast_wrapper

on

the

federated

server

that

uses

the

AIX

operating

system,

issue

the

following

statement:

CREATE

WRAPPER

blast_wrapper

LIBRARY

’libdb2lsblast.a’;

The

name

of

the

wrapper

library

file

that

you

specify

depends

on

the

operating

system

of

the

federated

server.

See

the

list

of

BLAST

wrapper

library

files

for

the

correct

name

to

specify

in

the

CREATE

WRAPPER

statement.

The

next

task

in

this

sequence

of

tasks

is

registering

the

server

definition

for

the

BLAST

wrapper.

Related

reference:

v

“BLAST

wrapper

library

files”

on

page

106

v

“CREATE

WRAPPER

statement”

in

the

SQL

Reference,

Volume

2

BLAST

wrapper

library

files

The

following

table

lists

the

directory

paths

and

library

file

names

for

the

BLAST

wrapper.

When

you

install

DB2

Information

Integrator,

3

library

files

are

added

to

the

directory

path

listed

in

the

table.

For

example,

if

the

federated

server

is

running

on

AIX,

the

wrapper

library

files

added

to

the

directory

path

are

libdb2lsblast.a,

libdb2lsblastF.a,

and

libdb2lsblastU.a.

When

you

register

a

wrapper,

specify

only

the

library

file

name

that

is

listed

in

the

table.

Table

24.

BLAST

wrapper

library

locations

and

file

names

Operating

system

Directory

path

Wrapper

library

file

AIX

/usr/opt/db2_08_01/lib/

libdb2lsblast.a

Linux

/opt/IBM/db2/V8.1/lib

libdb2lsblast.so

Solaris

/opt/IBM/db2/V8.1/lib

libdb2lsblast.so

Windows

%DB2PATH%\bin

db2lsblast.dll

%DB2PATH%

is

the

environment

variable

that

is

used

to

specify

the

directory

path

where

DB2

Information

Integrator

is

installed

on

Windows.

The

default

Windows

directory

path

is

C:\Program

Files\IBM\SQLLIB.

Related

tasks:

v

“Registering

the

BLAST

wrapper”

on

page

105

Registering

the

server

for

a

BLAST

data

source

Registering

the

server

for

a

BLAST

data

source

is

part

of

the

larger

task

of

adding

BLAST

to

a

federated

system.

After

the

wrapper

is

registered,

you

must

register

a

corresponding

server.

Procedure:

To

register

the

BLAST

server

to

the

federated

system,

use

the

CREATE

SERVER

statement.

106

Data

Source

Configuration

Guide

|

|
|

|
|
|
|

|
|

||

|||

|||

|||

|||

|||
|

|
|
|

|

|

For

each

machine

on

which

the

BLAST

executable

and

daemon

are

installed

in

your

environment,

you

must

register

one

server

for

each

type

of

BLAST

search

you

want

to

run

using

that

instance

of

the

BLAST

executable

and

daemon.

For

example,

to

register

a

server

called

blast_server1

for

the

my_blast

wrapper

created

using

the

CREATE

WRAPPER

statement

that

will

be

used

for

BLASTn

searches,

submit

the

following

statement:

CREATE

SERVER

blast_server1

TYPE

blastn

VERSION

2.1.2

WRAPPER

my_blast

OPTIONS

(NODE

’big_rs.company.com’,

DAEMON_PORT

’4007’)

The

next

task

in

this

sequence

of

tasks

is

registering

nicknames

for

BLAST

data

sources.

Related

tasks:

v

“Registering

nicknames

for

BLAST

data

sources”

on

page

107

Related

reference:

v

“ALTER

SERVER

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

SERVER

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

SERVER

statement

arguments

-

BLAST

wrapper”

on

page

538

Registering

nicknames

for

BLAST

data

sources

Registering

nicknames

for

BLAST

data

sources

Registering

nicknames

for

BLAST

data

sources

is

part

of

the

larger

task

of

adding

BLAST

to

a

federated

system.

After

you

register

a

server,

you

must

register

a

corresponding

nickname.

Nicknames

are

used

when

you

refer

to

a

BLAST

data

source

in

a

query.

Procedure:

To

register

a

BLAST

nickname,

use

the

CREATE

NICKNAME

statement.

Since

each

type

of

BLAST

search

is

handled

by

a

separate

server,

you

must

define

a

separate

nickname

for

each

type

of

BLAST

search

that

you

want

to

run

on

a

given

BLAST-able

data

source.

When

you

create

the

nickname

you

specify

column

information

for

the

definition

line

portion

of

the

data

source.

All

other

columns

are

fixed.

There

are

no

further

tasks

in

this

sequence

of

tasks.

Related

concepts:

v

“Definition

line

parsing”

on

page

108

Related

tasks:

v

“Adding

BLAST

data

sources

to

a

federated

server”

on

page

98

v

“Specifying

nickname

columns

for

a

nonrelational

data

source”

on

page

65

Related

reference:

Chapter

7.

Configuring

access

to

BLAST

data

sources

107

v

“CREATE

NICKNAME

statement

syntax

-

BLAST

wrapper”

on

page

539

v

“CREATE

NICKNAME

statement

-

Examples

for

BLAST

wrapper”

on

page

112

v

“Fixed

columns

for

BLAST

nicknames”

on

page

108

Definition

line

parsing

The

definition

line

is

like

a

key

for

each

sequence

in

the

BLAST-able

data

source

and

is

returned

as

part

of

each

BLAST

hit.

The

definition

line

is

also

called

the

defline.

The

value

that

is

returned

and

parsed

by

the

BLAST

wrapper

for

a

definition

line

will

not

always

be

identical

to

the

definition

line

in

the

original

FASTA

file.

For

example,

if

there

is

data

in

the

Accession

Number

field

of

a

BLAST

hit,

the

definition

line

that

is

returned

contains

the

Accession

Number

data

followed

by

the

Definition

field

data.

The

wrapper

then

parses

the

data

that

is

returned.

Recommendation:

To

determine

how

the

wrapper

will

return

and

parse

the

definition

line,

create

a

nickname

with

a

single

definition

line

column.

Then

run

a

query

to

see

the

format

that

is

returned

by

the

wrapper

of

the

definition

line

for

your

particular

data

source.

To

include

the

definition

line

information

in

your

results

table,

you

must

specify

the

definition

line

columns

in

the

CREATE

NICKNAME

statement.

Each

column

that

you

specify

must

include

the

INDEX

option

and

the

DELIMITER

option.

You

can

omit

the

DELIMITER

option

on

the

last

column

that

you

specify,

if

you

want

the

last

column

to

contain

the

remainder

of

the

definition

line

information.

Valid

data

types

for

the

definition

line

columns

are

CLOB,

DOUBLE,

FLOAT,

INTEGER,

and

VARCHAR.

Related

concepts:

v

“Defline

parsing

user-defined

functions

-

overview”

on

page

453

Related

tasks:

v

“Registering

nicknames

for

BLAST

data

sources”

on

page

107

Related

reference:

v

“CREATE

NICKNAME

statement

syntax

-

BLAST

wrapper”

on

page

539

v

“CREATE

NICKNAME

statement

-

Examples

for

BLAST

wrapper”

on

page

112

v

“Fixed

columns

for

BLAST

nicknames”

on

page

108

Fixed

columns

for

BLAST

nicknames

When

you

issue

the

CREATE

NICKNAME

statement

for

a

BLAST

data

source,

a

set

of

fixed

columns

are

automatically

created

with

the

nickname.

The

fixed

columns

are

part

of

the

definition

for

the

nickname

and

are

created

in

the

federated

database

system

catalog.

You

can

reference

the

fixed

columns

in

SQL

queries.

There

are

two

types

of

fixed

columns,

input

fixed

columns

and

output

fixed

columns.

Fixed

input

columns

for

BLAST

nicknames:

The

fixed

input

columns

are

specified

in

the

WHERE

clause.

Input

columns

are

used

as

parameter-passing

predicates

in

SQL

queries.

They

pass

standard

BLAST

switches

to

BLAST.

BLAST

108

Data

Source

Configuration

Guide

|
|

then

runs

on

the

specified

data

source

using

these

switches.

Fixed

input

columns

can

also

be

referenced

in

the

query

SELECT

list

and

are

returned

as

part

of

the

results

table.

The

following

table

lists

the

fixed

columns

that

you

can

use

in

the

WHERE

clause.

Table

25.

Fixed

input

columns

for

BLAST

nicknames

Name

Data

type

Operators

Description

BlastSeq

VARCHAR

(32000)

or

CLOB

=

Passes

the

query

sequence

to

the

BLAST

wrapper.

E_Value

DOUBLE

<

Both

an

input

and

an

output

parameter.

As

an

input

parameter,

this

column

indicates

to

the

BLAST

wrapper

the

upper

limit

of

expect

values

that

should

be

returned

from

blastall.

QueryStrands

INTEGER

=

Specifies

which

strands

should

be

compared

when

performing

a

BLASTn

search.

A

value

of

1

indicates

that

the

top

strand

should

be

used,

2

indicates

the

bottom

strand,

and

3

indicates

that

both

strands

should

be

compared.

GapAlign

CHAR(1)

=

Indicates

to

the

wrapper

whether

gapped

alignments

are

permitted

in

the

BLAST

output.

Matrix

VARCHAR(50)

=

Determines

which

substitution

matrix

is

used

by

blastall

to

determine

the

degree

of

similarity

between

pairings

of

amino

acids.

Only

those

BLAST

search

types

that

compare

amino

acids

to

amino

acids

use

this

predicate.

NMisMatchPenalty

INTEGER

=

Specifies

the

value

that

blastall

deducts

from

the

score

of

an

alignment

if

one

of

the

pairs

of

nucleotides

in

the

homologous

region

does

not

match.

Only

those

BLAST

search

types

that

compare

nucleotides

to

nucleotides

use

this

predicate.

NMatchReward

INTEGER

=

Specifies

the

value

that

blastall

adds

to

the

score

of

an

alignment

for

each

of

the

pairs

of

nucleotides

in

the

homologous

region

that

do

match.

Only

those

BLAST

search

types

that

compare

nucleotides

to

nucleotides

use

this

predicate.

FilterSequence

CHAR(1)

=

Indicates

to

blastall

whether

to

perform

filtering

to

remove

biologically

uninteresting

segments

from

the

query

sequence.

If

the

search

type

is

BLASTn,

the

filter

used

is

DUST.

Otherwise,

filtering

is

performed

by

SEG.

Chapter

7.

Configuring

access

to

BLAST

data

sources

109

Table

25.

Fixed

input

columns

for

BLAST

nicknames

(continued)

Name

Data

type

Operators

Description

NumberOfAlignments

INTEGER

=

Specifies

how

many

HSP

alignments

to

include

in

the

BLAST

output.

GapCost

INTEGER

=

Specifies

the

value

that

blastall

deducts

from

the

score

of

an

alignment

if

a

gap

must

be

introduced

in

either

the

query

sequence

or

the

hit

sequence

to

allow

the

length

of

the

alignment

to

grow.

ExtendedGapCost

INTEGER

=

Specifies

the

value

that

blastall

deducts

from

the

score

of

an

alignment

if

a

gap

that

was

already

introduced

in

either

the

query

sequence

or

the

hit

sequence

must

be

extended

by

one

nucleotide

or

amino

acid

to

allow

the

length

of

the

alignment

to

grow.

WordSize

INTEGER

=

Indicates

to

blastall

the

length

of

the

initial

hits

that

blastall

initially

searches

in

the

database.

ThresholdEx

INTEGER

=

Indicates

the

score

threshold

below

which

BLAST

does

not

attempt

to

extend

a

hit

any

further.

You

can

override

the

default

data

type

for

a

column

when

you

create

a

nickname.

For

example,

some

columns

can

return

a

large

amount

of

data,

such

as

the

HSP_H_Seq

and

HSP_Midline

columns.

To

return

the

first

50

bytes

of

a

column,

you

can

define

the

column

with

the

data

type

VARCHAR(50).

Only

the

first

50

bytes

will

be

copied

into

the

output

column.

BLAST

search

types

and

switches

for

fixed

input

columns:

The

supported

BLAST

search

types

and

switches

for

each

fixed

input

column

are

listed

in

the

following

table.

Table

26.

BLAST

search

types

and

switches

supported

by

the

input

fixed

columns

Name

BLAST

search

types

BLAST

switch

Required

Default

BlastSeq

n,

p,

x,

tn,

tx

–l

Yes

N/A

E_Value

n,

p,

x,

tn,

tx

–e

No

10

QueryStrands

n

S

No

3

GapAlign

n,

p,

x,

tn,

tx

–g

No

T

Matrix

p,

x,

tn,

tx

–n

No

BLOSUM62

NMisMatchPenalty

n

–q

No

–3

NMatchReward

n

–r

No

1

FilterSequence

n,

p,

x,

tn,

tx

–F

No

T

NumberOfAlignments

n,

p,

x,

tn,

tx

–b

No

250

GapCost

n,

p,

x,

tn,

tx

–G

No

11

ExtendedGapCost

n,

p,

x,

tn,

tx

–E

No

1

110

Data

Source

Configuration

Guide

|
|
|
|
|

Table

26.

BLAST

search

types

and

switches

supported

by

the

input

fixed

columns

(continued)

Name

BLAST

search

types

BLAST

switch

Required

Default

WordSize

(for

Blastn,

a

value

less

than

7

is

invalid)

n,

p,

x,

tn,

tx

–W

No

11

–BLASTn

3

–BLASTp

ThresholdEx

n,

p,

x,

tn,

tx

–f

No

0

Fixed

output

columns

for

BLAST

nicknames:

The

following

table

lists

the

fixed

columns

that

you

can

use

in

the

WHERE

clause.

Table

27.

Fixed

output

columns

for

BLAST

nicknames

Name

Data

type

Description

Score

DOUBLE

The

computed

score

for

an

HSP

as

reported

in

the

BLAST

results.

E_value

DOUBLE

Both

an

input

and

an

output

parameter.

As

an

output

parameter,

this

column

provides

the

computed

score

for

an

HSP

as

reported

in

the

BLAST

results.

Length

INTEGER

The

length

of

the

hit

sequence

as

reported

in

the

BLAST

results.

HIT_NUM

INTEGER

The

hit

number

as

reported

in

the

BLAST

results,

starting

with

1.

HSP_NUM

INTEGER

The

HSP

number

as

reported

in

the

BLAST

results,

starting

with

1.

HSP_Info

VARCHAR(100)

The

information

string

for

the

given

HSP,

as

reported

by

BLAST.

This

string

contains

information

about

the

number

of

nucleotides

or

amino

acids

that

matched

between

the

query

sequence

and

the

hit

sequence.

HSP_ALIGNMENT_LENGTH

INTEGER

The

length

of

the

HSP

alignment.

HSP_IDENTITY

INTEGER

The

percent

identity

of

the

alignment

defined

as

the

number

of

identities

divided

by

the

alignment

length.

HSP_GAPS

INTEGER

The

percent

gaps

in

the

alignment

defined

as

the

number

of

gaps

divided

by

the

alignment

length.

HSP_POSITIVE

INTEGER

The

percent

positives

of

the

alignment

defined

as

the

number

of

positives

divided

by

the

alignment

length.

HSP_QUERY_FRAME

INTEGER

The

reading

frame

of

the

alignment

in

the

query

sequence.

Only

available

for

blastx,

tblastn,

and

tblastx

type

servers.

HSP_HIT_FRAME

INTEGER

The

reading

frame

of

the

alignment

in

the

hit

sequence.

Only

available

for

blastx,

tblastn,

and

tblastx

type

servers.

Chapter

7.

Configuring

access

to

BLAST

data

sources

111

Table

27.

Fixed

output

columns

for

BLAST

nicknames

(continued)

Name

Data

type

Description

HSP_Q_Start

INTEGER

The

numeric

position

of

the

first

homologous

nucleotide

or

amino

acid

on

the

query

sequence.

HSP_Q_End

INTEGER

The

numeric

position

of

the

last

homologous

nucleotide

or

amino

acid

on

the

query

sequence.

HSP_Q_Seq

VARCHAR(32000)

The

segment

of

the

query

sequence

beginning

at

HSP_Q_Start

and

ending

at

HSP_Q_End.

You

can

override

the

default

data

type

for

this

column

and

specify

CLOB,

with

a

maximum

length

of

5

megabytes.

HSP_H_Start

INTEGER

The

numeric

position

of

the

first

homologous

nucleotide

or

amino

acid

on

the

hit

sequence.

HSP_H_End

INTEGER

The

numeric

position

of

the

last

homologous

nucleotide

or

amino

acid

on

the

hit

sequence.

HSP_H_Seq

VARCHAR(32000)

The

segment

of

the

hit

sequence

beginning

at

HSP_H_Start

and

ending

at

HSP_H_End.

You

can

override

the

default

data

type

for

this

column

and

specify

CLOB,

with

a

maximum

length

of

5

megabytes.

HSP_Midline

VARCHAR(32000)

The

string

output

by

BLAST

that

indicates

the

degree

of

homology

between

the

amino

acids

or

nucleotides

at

each

position

in

the

homologous

regions

of

the

query

and

hit

sequences.

You

can

override

the

default

data

type

for

this

column

and

specify

CLOB,

with

a

maximum

length

of

5

megabytes.

Related

concepts:

v

“Definition

line

parsing”

on

page

108

Related

tasks:

v

“Registering

nicknames

for

BLAST

data

sources”

on

page

107

Related

reference:

v

“CREATE

NICKNAME

statement

syntax

-

BLAST

wrapper”

on

page

539

v

“CREATE

NICKNAME

statement

-

Examples

for

BLAST

wrapper”

on

page

112

CREATE

NICKNAME

statement

-

Examples

for

BLAST

wrapper

The

following

CREATE

NICKNAME

statement

defines

the

nickname

genbank.

112

Data

Source

Configuration

Guide

|
|
|
|

|
|
|
|

|
|
|
|

It

assumes

the

definition

field

in

a

BLAST

result

contains

the

following

information:

>276342

15:8924

PMON5426

where:

276342

The

accession

field

of

the

BLAST

result.

15:8924

PMON5426

The

definition

field

in

a

BLAST

result

containing

an

organism

number

followed

by

an

experiment

number

and

then

a

unique

identifier.

With

this

information,

the

following

nickname

is

created:

CREATE

NICKNAME

genbank

(

acc_num

integer

OPTIONS(INDEX

’1’,

DELIMITER

’

’),

org_num

integer

OPTIONS(INDEX

’2’,

DELIMITER

’:’),

exp_num

integer

OPTIONS(INDEX

’3’,

DELIMITER

’

’),

u_id

varchar(10)

OPTIONS(INDEX

’4’))

FOR

SERVER

blast_server1

OPTIONS(DATASOURCE

’genbank’,

TIMEOUT

’300’);

The

column

acc_num

would

contain

276342,

the

column

org_num

would

contain

15,

the

column

exp_num

would

contain

8924,

and

the

column

u_id

would

contain

PMON5426.

After

you

submit

the

CREATE

NICKNAME

statement,

you

can

use

the

nickname

genbank

to

query

your

federated

system.

You

can

also

join

the

genbank

nickname

with

other

nicknames

and

tables

in

your

federated

system.

Related

tasks:

v

“Registering

nicknames

for

BLAST

data

sources”

on

page

107

Related

reference:

v

“ALTER

NICKNAME

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

NICKNAME

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

NICKNAME

statement

syntax

-

BLAST

wrapper”

on

page

539

Setting

up

TurboBlast

to

work

with

the

BLAST

wrapper

Restrictions:

TurboBlast

does

not

support

certain

blastall

command

options.

For

example,

the

gapped

alignment

option

-g

F

is

not

supported.

If

you

specify

F

for

the

value

of

the

GapAlign’s

column

in

your

BLAST

nickname,

TurboBlast

generates

an

error.

For

a

complete

list

of

unsupported

options,

refer

to

the

TurboBlast

2.0

User

Guide.

Procedure:

To

set

up

TurboBlast

to

work

with

the

BLAST

wrapper:

1.

Install

and

configure

the

BLAST

wrapper.

Run

a

query

on

a

blastable

database

to

test

your

setup.

2.

The

BLAST

wrapper

and

TurboBlast

support

AIX,

Linux,

Solaris

and

Windows

operating

systems.

However,

the

BLAST

daemon

is

not

available

on

Windows

operating

systems.

The

daemon

will

work

with

TurboBlast

on

Windows

operating

systems

when

the

BLAST

daemon

is

available

on

those

operating

systems.

Chapter

7.

Configuring

access

to

BLAST

data

sources

113

3.

Install

and

configure

TurboBlast

according

to

the

TurboBlast

2.0

Installation

and

Reference

Guide.

You

can

install

and

set

up

the

TurboBlast

system

in

various

ways.

To

allow

the

BLAST

wrapper

to

work

with

TurboBlast,

you

need

to

install

and

set

up

the

TurboBlast

Client

on

the

computer

on

which

you

have

your

BLAST

daemon.

The

BLAST

daemon

can

invoke

the

tblastall

command.

4.

Be

sure

to

test

the

TurboBlast

system

after

you

have

installed

and

configured

TurboBlast.

Follow

the

instructions

in

the

TurboBlast

2.0

Installation

and

Reference

Guide.

5.

Change

your

BLAST_DAEMON.config

file

as

follows:

a.

Specify

the

BLASTALL_PATH

parameter

as

the

complete

path

of

tblastall.

For

example:

BLASTALL_PATH=/home/blasttst/turboblast/TBlast-
2.1/tblastall

b.

Specify

the

blastable

database

specification

entry

as

the

blastable

database

name

that

you

used

to

upload

your

blastable

database

to

TurboBlast.

The

database

names

are

shown

when

you

enter

the

listdatabase

-l

command

under

TurboBlast.

This

TurboBlast

database

name

should

be

used

instead

of

the

path

to

the

blastable

data

source.

For

example:

genbank=<the

genbank

database

name

in

TurboBlast>

6.

Restart

the

BLAST

daemon.

The

BLAST

daemon

invokes

tblastall

instead

of

blastall

to

do

search

work

on

the

blastable

databases.

7.

The

log

files

related

to

tblastall

are

written

to

the

DAEMON_LOGFILE_DIR

specified

in

your

BLAST_DEAMON.config

file.

Also

check

the

STDERR.log

and

STDOUT.log

produced

by

the

BLAST

daemon

in

the

same

directory.

Related

tasks:

v

“Adding

BLAST

data

sources

to

a

federated

server”

on

page

98

v

“Configuring

the

BLAST

daemon”

on

page

100

Constructing

BLAST

SQL

queries

Predicates

on

input

columns

are

used

to

pass

standard

BLAST

switches

to

the

blastall

executable.

Predicates

on

the

output

columns

are

processed

by

the

federated

server.

Restrictions:

To

be

valid,

every

query

passed

to

the

BLAST

wrapper

must

contain

at

least

the

BlastSeq

input

predicate.

All

other

predicates

are

optional.

Procedure:

To

construct

a

BLAST

query,

use

the

input

predicates

in

the

WHERE

clause

of

your

SQL

statement.

The

following

example

shows

three

input

predicates:

BlastSeq,

GapCost,

and

NMisMatchPenalty.

Select

*

from

blast

b

where

BlastSeq

=

’GTCCAGCC...’

AND

GapCost

=

-10

AND

NMisMatchPenalty

=

-4;

Related

tasks:

v

“Registering

nicknames

for

BLAST

data

sources”

on

page

107

114

Data

Source

Configuration

Guide

Related

reference:

v

“BLAST

data

source

–

Example

queries”

on

page

115

BLAST

data

source

–

Example

queries

Several

sample

BLAST

queries

are

provided

to

illustrate

how

queries

are

constructed

for

BLAST

data

sources.

To

run

queries,

use

the

examples

as

a

guide.

In

these

queries,

the

name

used

for

each

nickname

indicates

the

type

of

BLAST

search

and

the

data

source.

This

is

done

so

that

the

registration

statements

do

not

need

to

be

listed

with

each

sample

query.

Also,

some

of

the

queries

make

use

of

other

hypothetical

data

sources

so

that

these

examples

can

illustrate

the

behavior

of

the

wrapper

when

joined

with

other

data

sources.

Query

1

select

*

from

blastn_genbank

where

BlastSeq

=

’caacccctccagccgagttgtcaatggcgaggaagctgttccccac’;

When

this

SQL

statement

is

executed,

the

wrapper

will

perform

a

BLASTn

search

of

GenBank

using

the

indicated

sequence.

The

wrapper

will

return

all

of

the

available

columns,

including

both

the

input

parameter

columns

and

the

BLAST

result

columns.

Query

2

select

*

from

blastn_genbank

where

BlastSeq

=

’caacccctccagccgagttgtcaatggcgaggaagctgttccccac’

and

GapCost

=

8

and

NmisMatchPenalty

=

-4;

When

this

SQL

statement

is

executed,

the

wrapper

will

perform

a

BLASTn

search

of

GenBank

using

the

indicated

sequence.

In

addition,

the

wrapper

will

pass

the

two

indicated

parameters

to

the

daemon,

and

they

will

be

passed

to

the

blastall

command

line.

The

wrapper

will

return

all

of

the

available

columns,

including

both

the

input

parameter

columns

and

the

BLAST

result

columns.

Query

3

select

blp.*

from

blastp_swissprot

blp,

protein_db

prdb

where

prdb.keyword

=

’malic

enzyme’

and

blp.BlastSeq

=

prdb.sequence;

When

this

SQL

statement

is

executed,

the

wrapper

will

perform

zero

or

more

BLASTp

searches

of

SWISS-PROT,

depending

on

the

number

of

sequences

returned

from

a

hypothetical

protein

sequence

database.

This

statement

will

be

broken

into

two

separate

queries

by

DB2,

and

one

BLASTp

search

will

be

run

for

each

row

that

is

returned

from

the

hypothetical

protein

database.

The

wrapper

will

return

all

of

the

available

columns,

including

both

the

input

parameter

columns

and

the

BLAST

result

columns.

Query

4

Chapter

7.

Configuring

access

to

BLAST

data

sources

115

select

Score,

E_Value,

HSP_Info,

HSP_Q_Seq,

HSP_H_Seq,

HSP_Midline

from

blastx_swissprot

where

BlastSeq

=

’gagttgtcaatggcgagg’

and

GapCost

=

8;

When

this

SQL

statement

is

executed,

the

wrapper

will

perform

a

BLASTx

search

of

SWISS-PROT

using

the

indicated

sequence.

In

this

case,

blastall

will

translate

the

input

sequence

in

all

six

reading

frames

and

perform

the

homology

search

using

each

of

the

six

newly

created

protein

sequences.

The

HSPs

in

the

results

will

contain

amino

acid-amino

acid

alignments,

rather

than

nucleotide-nucleotide

alignments.

The

supplied

parameter

will

be

passed

to

the

daemon

and

then

to

blastall

via

the

command

line.

The

wrapper

will

return

only

those

columns

that

are

specifically

requested

in

the

query.

Query

5

select

tblx.Score,

tblx.E_Value,

tblx.HSP_Info

tblx.HSP_Q_Seq,

HSP_H_Seq,

HSP_Midline

from

tblastx_genbank

tblx,

gen_exp_database

gedb

where

tblx.BlastSeq

=

gedb.sequence

and

gedb.organism

=

’interesting

organism’

and

GapCost

=

8

and

FilterSequence

=

’F’;

When

this

SQL

statement

is

executed,

the

wrapper

will

perform

zero

or

more

tBLASTx

searches

of

GenBank,

depending

on

the

number

of

sequences

returned

from

a

hypothetical

gene

expression

database.

The

statement

will

be

broken

into

two

separate

queries

by

DB2,

and

one

tBLASTx

search

will

be

run

for

each

row

that

is

returned

from

the

hypothetical

gene

expression

database.

In

this

case,

blastall

will

translate

the

input

sequence

and

all

of

the

sequences

in

GenBank

in

all

six

reading

frames

and

perform

the

homology

search

using

each

of

the

six

newly

created

query

protein

sequences

and

all

of

the

newly

created

database

protein

sequences.

The

HSPs

in

the

results

will

contain

amino

acid-amino

acid

alignments,

rather

than

nucleotide-nucleotide

alignments.

The

supplied

parameters

will

be

passed

to

the

daemon

and

then

to

blastall

via

the

command

line.

The

wrapper

will

return

only

those

columns

that

are

specifically

requested

in

the

query.

Related

reference:

v

“Documentum

data

source

–

Example

queries”

on

page

187

v

“Excel

data

source

–

Example

queries”

on

page

221

Optimization

tips

for

the

BLAST

wrapper

To

improve

network

communication

performance,

the

federated

server

and

the

BLAST

server

should

be

on

separate

hardware.

The

BLAST

daemon

should

reside

on

the

BLAST

server.

Related

tasks:

v

“Configuring

the

BLAST

daemon”

on

page

100

Messages

for

the

BLAST

wrapper

This

section

lists

and

describes

messages

that

you

might

encounter

when

working

with

the

wrapper

for

BLAST.

116

Data

Source

Configuration

Guide

|
|
|

Table

28.

Messages

issued

by

the

wrapper

for

BLAST

Error

Code

Message

Explanation

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"sqlno_crule_save_plans

[100]:rc

(–2144272209)

Empty

plan

list

detect".)

The

SQL

query

submitted

to

DB2

could

not

be

processed

by

the

wrapper.

Correct

the

syntax

and

resubmit.

SQL1816N

Wrapper

"BLAST_WRAPPER"

cannot

be

used

to

access

the

"type"

of

data

source

("<server

type>"

"")

that

you

are

trying

to

define

to

the

federated

database.

The

CREATE

SERVER

statement

used

an

invalid

TYPE.

The

type

must

be

one

of

the

supported

BLAST

types.

SQL1817N

The

CREATE

SERVER

statement

does

not

identify

the

"version"

of

data

source

that

you

want

defined

to

the

federated

database.

The

CREATE

SERVER

statement

did

not

specify

the

version.

SQL1822N

Unexpected

error

code

"Unspecified

Error"

received

from

data

source

"Blast

Wrapper".

Associated

text

and

tokens

are

"Unable

to

connect

to

daemon".

The

blast

wrapper

was

not

able

to

connect

to

the

daemon.

The

daemon

might

not

be

running.

It

might

be

misconfigured.

The

machine

that

it

is

running

on

might

be

unreachable.

SQL1822N

Unexpected

error

code

"Unspecified

Error"

received

from

data

source

"Blast

Wrapper".

Associated

text

and

tokens

are

"Blast

daemon

timeout

expired".

No

results

were

received

from

the

daemon

before

the

timeout

as

specified

on

the

CREATE

NICKNAME

statement

elapsed.

Increase

the

timeout

or

check

to

see

if

there

is

a

problem

with

the

daemon.

SQL1822N

Unexpected

error

code

"Unspecified

Error"

received

from

data

source

"Blast

Wrapper".

Associated

text

and

tokens

are

"Blast

Daemon

Failed".

The

daemon

stopped

communicating

or

the

results

returned

were

not

properly

formatted.

SQL1822N

Unexpected

error

code

"Unspecified

Error"

received

from

data

source

"Blast

Wrapper".

Associated

text

and

tokens

are

"Unknown

error

from

the

blast

daemon".

The

blast

wrapper

received

an

error

code

from

the

daemon

that

it

doesn’t

recognize.

The

daemon

version

might

not

be

compatible

with

the

wrapper

version.

SQL1822N

Unexpected

error

code

"Unspecified

Error"

received

from

data

source

"Blast

Wrapper".

Associated

text

and

tokens

are

"Column

rename

not

allowed".

An

ALTER

NICKNAME

statement

was

issued

trying

to

rename

one

of

the

columns.

Renaming

a

column

is

not

allowed.

SQL1822N

Unexpected

error

code

"Unspecified

Error"

received

from

data

source

"Blast

Wrapper".

Associated

text

and

tokens

are

"XML

parser

error".

The

Xerces

parser

is

in

an

invalid

state

or

has

thrown

an

exception.

Chapter

7.

Configuring

access

to

BLAST

data

sources

117

Table

28.

Messages

issued

by

the

wrapper

for

BLAST

(continued)

Error

Code

Message

Explanation

SQL1823N

No

data

type

mapping

exists

for

data

type

"<data

type

name>"

from

server

"<server

name>".

The

data

type

specified

is

not

supported

by

this

column.

SQL1881N

"DEFAULT"

is

not

a

valid

"COLUMN"

option

for

"<column-name>"

The

DEFAULT

option

was

used

on

a

column

that

does

not

support

it.

Output

only

columns

and

definition

line

columns

do

not

have

default

values.

SQL1882N

The

"COLUMN"

option

"DEFAULT"

cannot

be

set

to

"<option-value>"

for

"<column-name>".

The

value

specified

for

the

DEFAULT

option

is

of

an

incompatible

type

for

the

column

or

is

incorrectly

formatted.

Related

concepts:

v

“Introduction

to

messages”

in

the

Message

Reference

Volume

1

Related

reference:

v

“SQLSTATE

messages”

in

the

Message

Reference

Volume

2

118

Data

Source

Configuration

Guide

Chapter

8.

Configuring

access

to

business

application

data

sources

This

section

explains

how

to

add

business

application

data

sources

to

your

federated

system

by

using

the

Webspshere

Business

Integration

wrapper.

The

WebSphere

Business

Integration

wrapper

The

WebSphere®

Business

Integration

wrapper

is

a

read-only

wrapper,

and

uses

the

WebSphere

Business

Integration

Adapters

to

access

business

applications.

See

the

IBM

DB2

Information

Integrator

Federated

Systems

Guide

for

a

list

of

supported

adapters

and

applications.

The

WebSphere

Business

Integration

wrapper

provides

an

SQL

interface

to

business

applications,

such

as

those

produced

by

SAP,

Siebel,

and

PeopleSoft.

By

using

the

WebSphere

Business

Integration

wrapper,

you

can

use

the

federated

systems

functions

to

join

business

data

from

business

applications

with

data

on

other

federated

data

sources.

The

WebSphere

Business

Integration

wrapper

extracts

business

object

definitions

into

a

hierarchy

of

nicknames.

©

Copyright

IBM

Corp.

1998,

2004

119

|

|

|

|
|

|
|

|
|
|
|

|
|
|
|
|
|

|

Figure

9

shows

the

relationship

between

the

WebSphere

Business

Integration

wrapper

and

the

adapters

in

the

DB2

Universal

Database™

environment.

The

following

steps

describe

the

process

for

accessing

business

application

data

in

a

federated

system:

1.

A

user

sends

a

query

to

the

federated

server

to

access

a

nickname

that

maps

to

a

data

source

such

as

a

Siebel

application.

2.

The

wrapper

transforms

the

query

into

a

business

object.

3.

The

wrapper

places

the

business

object

on

a

WebSphere

MQ

message

queue.

4.

The

WebSphere

Business

Integration

adapter

for

the

particular

application

reads

the

business

object,

which

is

the

request,

from

the

message

queue.

5.

The

WebSphere

Business

Integration

adapter

works

with

the

business

application

to

prepare

a

response

business

object.

6.

The

WebSphere

Business

Integration

adapter

puts

the

response

business

object

on

the

message

queue.

7.

The

wrapper

reads

the

response

business

object

from

the

response

queue.

DB2 UDB
client

SQL

DB2 UDB
federated
database

Request,
Response,
and Fault queues

Relational
results table
or view

Adapter

WebSphere Business Integration wrapper

Oracle

Adapter Adapter

WebSphere MQ

PeopleSoft SAP

DB2 UDB
federated
server

Siebel

BioRS

Table-
structured

files

Federated
data sources

Figure

9.

WebSphere

Business

Integration

wrapper

in

the

DB2®

Universal

Database

environment

120

Data

Source

Configuration

Guide

|
|
|
|

|
|

|

|

|
|

|
|

|
|

|

8.

The

wrapper

extracts

the

response

business

object

into

a

result

set

based

on

the

relational

schema

that

is

defined

with

the

nickname

definition.

Related

concepts:

v

“Business

object

definitions”

on

page

121

Related

tasks:

v

“Adding

business

application

data

sources

to

a

federated

system”

on

page

125

v

“Registering

the

WebSphere

Business

Integration

wrapper”

on

page

126

v

“Configuring

the

WebSphere

Business

Integration

Adapters”

on

page

122

v

“Registering

nicknames

for

business

application

data

sources”

on

page

129

Related

reference:

v

“Business

application

data

sources

–

example

queries”

on

page

155

v

“CREATE

NICKNAME

statement

–

examples

for

the

WebSphere

Business

Integration

wrapper”

on

page

138

Business

object

definitions

A

business

object

definition

is

a

template

from

which

the

WebSphere®

Business

Integration

Adapter

creates

an

instance

of

a

business

object.

A

business

object

definition

represents

a

business

application

data

entity.

A

business

object

is

an

instance

of

a

business

object

definition

and

can

be

either

a

flat

or

hierarchical

structure.

A

flat

business

object

contains

only

simple

attributes.

A

hierarchical

business

object

contains

one

or

more

complex

attributes.

A

repository

of

business

object

definitions

exists

within

each

WebSphere

Business

Integration

Adapter

for

the

particular

application

that

is

supported.

The

following

example

shows

a

flat

business

object:

Customer

Gomez

Juanita

Apt

2C

123

Main

Street

Big

City

California

91234

888

1111111

The

following

example

shows

a

hierarchical

business

object

with

some

complex

attributes:

Contact

(Parent)

ID

Customer

ID

Date

Text

Authorization

Line

items

(there

are

0

or

more

Line

item

elements)

(Child

elements)

Business

object

1

Business

object

2

Business

object

3

Chapter

8.

Configuring

access

to

business

application

data

sources

121

|
|

|

|

|

|

|

|

|

|

|

|
|

|
|

|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

Business

object

definitions

must

be

generated

by

using

the

Object

Discovery

Agent

tool

that

is

packaged

with

each

WebSphere

Business

Integration

Adapter.

The

Object

Discovery

Agent

tool

generates

an

XML

schema

definition

file

for

a

business

object

definition.

The

Object

Discovery

Agent

tool

might

generate

multiple

schema

files

if

the

business

object

that

is

being

defined

has

a

hierarchical

structure.

The

XML

schema

definition

is

a

file

with

file

type

.xsd

in

a

directory

that

is

specified

in

the

WebSphere

Business

Integration

configuration.

You

must

generate

the

business

object

definition

before

you

create

the

nicknames

for

the

WebSphere

Business

Integration

wrapper.

For

more

information

about

the

family

of

WebSphere

Business

Integration

Adapters,

see:

www.ibm.com/websphere/integration/wbiadapters.

To

create

nicknames,

you

use

the

xsd

file

that

the

Object

Discovery

Agent

tool

creates.

Nicknames

provide

a

relational

schema

representation

of

the

business

object

definition.

The

WebSphere

Business

Integration

wrapper

maps

a

hierarchical

business

object

into

a

hierarchy

of

relational

nicknames.

For

example,

each

child

business

object

of

cardinality

'n'

is

mapped

to

a

separate

nickname

that

is

linked

to

the

nickname

of

the

parent

business

object

with

a

foreign

key

constraint.

The

WebSphere

Business

Integration

business

objects

that

are

accessible

to

IBM®

DB2®

Information

Integrator

map

to

the

specific

application

entities

in

the

following

table:

Table

29.

Business

objects

and

the

related

application

entities

Business

objects

Application

entities

Siebel

Business

Component

PeopleSoft

Component

Interface

SAP

BAPI

Related

concepts:

v

“The

WebSphere

Business

Integration

wrapper”

on

page

119

Related

tasks:

v

“Adding

business

application

data

sources

to

a

federated

system”

on

page

125

v

“Configuring

the

WebSphere

Business

Integration

Adapters”

on

page

122

Related

reference:

v

“Business

application

data

sources

–

example

queries”

on

page

155

Configuring

the

WebSphere

Business

Integration

Adapters

For

each

business

application

that

you

want

to

access

with

SQL

statements

by

using

the

federated

wrapper

functions,

you

must

install

and

configure

a

WebSphere

Business

Integration

Adapter.

Each

adapter

maps

to

a

federated

server

definition.

Prerequisites:

v

See

the

IBM

DB2

Information

Integrator

Federated

Systems

Guide

for

a

list

of

the

adapters

that

are

supported.

v

See

the

IBM

WebSphere

Business

Integration

Information

Center

for

installation

information

for

each

adapter.

122

Data

Source

Configuration

Guide

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

||

||

||

||

||
|

|

|

|

|

|

|

|

|
|

|
|
|
|

|

|
|

|
|

http://www.ibm.com/websphere/integration/wbiadapters/
http://publib.boulder.ibm.com/infocenter/wbihelp/index.jsp

v

See

the

WebSphere

Business

Integration

Adapters

documentation

for

help

with

a

specific

business

application.

v

Install

all

of

the

most

current

fix

packs

for

the

particular

adapter

that

you

want

to

use.

You

can

get

the

pertinent

support

information

for

the

Adapters

from

the

WebSphere

Business

Integration

Adapters

Support

site.

v

See

the

WebSphere

MQ

System

Administration

Guide

for

information

about

configuring

the

message

queues.

v

See

the

installation

information

in

the

IBM

WebSphere

Business

Integration

Information

Center

for

information

about

the

adapters

and

the

configuration

properties.

Procedure:

To

configure

a

WebSphere

Business

Integration

Adapter:

1.

Configure

the

Object

Discovery

Agent

tool

and

the

Business

Object

Designer

tool,

and

build

the

business

object

definitions.

When

you

configure

the

business

object

definitions

in

the

Business

Object

Designer

tool,

specify

the

following

verb

values

depending

on

the

business

application:

Table

30.

Verb

values

that

are

used

with

business

applications

Business

application

Verb

SAP

Retrieve

PeopleSoft

Retrieve

Siebel

RetrieveByContent

For

more

information

about

how

to

configure

and

use

an

Object

Discovery

Agent

tool,

see

the

documentation

for

the

adapter

that

you

are

configuring.

2.

Use

the

Connector

Configurator

tool

from

the

WebSphere

Business

Integration

Adapter

interface

to

define

a

configuration

file

that

contains

the

following

information:

v

The

business

objects

that

the

adapter

supports.

v

The

configuration

properties

for

the

adapter.

There

are

standard

configuration

properties

and

application-specific

configuration

properties.

Standard

configuration

properties

You

must

customize

some

property

values

to

use

the

adapter

with

IBM

DB2

Information

Integrator.

Some

specific

properties

to

configure

are

included

in

the

following

list:

–

Specify

the

value

of

the

integration

broker

as

WMQI.

–

Specify

the

location

of

the

metadata

repository

that

is

owned

by

the

adapter.

The

XML

schema

definition

files,

which

contain

the

business

object

definitions,

are

saved

in

this

location.

–

Specify

the

type

of

delivery

transport

as

WMQI-MQ.

–

Specify

the

name

of

the

queue

manager

that

manages

the

queues

that

are

used

by

the

adapter.

–

Specify

the

names

of

the

eight

queues

that

are

required

to

run

the

adapter.

Application-specific

configuration

properties

These

properties

specify

values

for

a

particular

application-specific

component.

The

values

that

you

provide

help

to

establish

a

session

Chapter

8.

Configuring

access

to

business

application

data

sources

123

|
|

|
|
|

|
|

|
|
|

|

|

|
|

|
|
|

||

||

||

||

||
|

|
|

|
|
|

|

|
|

|
|
|
|

|

|
|
|

|

|
|

|
|

|
|
|

http://www.ibm.com/websphere/integration/wbiadapters/apps/
http://www.ibm.com/software/integration/wbiadapters/support/
http://publib.boulder.ibm.com/infocenter/wbihelp/index.jsp
http://publib.boulder.ibm.com/infocenter/wbihelp/index.jsp

with

the

application.

The

properties

also

direct

the

processing

behavior

for

the

application-specific

components.
3.

Define

the

three

WebSphere

MQ

message

queues

that

the

wrapper

requires:

request_queue,

response_queue,

fault_queue.

WebSphere

MQ

is

the

messaging

and

transport

layer

between

the

adapter

and

the

wrappers.

request_queue

Delivers

request

messages

from

DB2

Information

Integrator

to

the

adapter.

response_queue

Delivers

response

messages

from

the

adapter

to

DB2

Information

Integrator.

fault_queue

Delivers

fault

messages

from

the

adapter

to

DB2

Information

Integrator.

The

adapter

places

a

message

on

this

queue

when

it

is

unable

to

place

the

message

on

the

reply-to

queue.
These

queues

are

static

queues

that

are

used

to

exchange

messages,

including

data

objects

and

error

messages,

between

the

adapter

and

the

wrapper.

4.

Define

the

five

additional

message

queues

that

are

required

by

the

adapter:

v

AdminInQueue

v

AdminOutQueue

v

SynchronousRequestQueue

v

SynchronousResponseQueue

v

DeliveryQueue

The

WebSphere

Business

Integration

adapters

require

five

additional

queues

that

are

used

when

the

adapter

is

used

with

a

WMQI

broker

instead

of

DB2

Information

Integrator.

You

must

create

and

configure

these

additional

message

queues

so

that

the

adapter

can

be

started.

5.

Define

the

WebSphere

MQ

user

authorization

by

using

either

of

the

following

methods:

v

Define

the

DB2

instance

owner

ID

as

part

of

the

MQManager

group.

DB2 UDB
federated

server

W
eb

S
ph

er
e

M
Q

Fault queue

Response queue

Request queue

S
ie

be
l a

da
pt

er

Fault queue

Siebel

Request queue

W
eb

S
ph

er
e

B
us

in
es

s
In

te
gr

at
io

n
 w

ra
pp

er

Response queue

Figure

10.

The

topology

of

the

WebSphere

message

queues

that

transport

information

between

the

Siebel

business

applications

and

the

DB2

federated

server

124

Data

Source

Configuration

Guide

|
|

|
|

|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

|

|

|

|

|

|

|
|
|
|

|
|

|

v

Ensure

that

the

MQManager

administrator

sets

the

MCAUSER

value

while

creating

the

ServerConnection

channel.

The

value

of

MCAUSER

must

be

a

user

ID

that

is

part

of

the

MQManager

group

or

the

Administrator

group.

Related

concepts:

v

“Business

object

definitions”

on

page

121

v

“The

WebSphere

Business

Integration

wrapper”

on

page

119

Related

tasks:

v

“Adding

business

application

data

sources

to

a

federated

system”

on

page

125

v

“Registering

the

WebSphere

Business

Integration

wrapper”

on

page

126

Related

reference:

v

“CREATE

NICKNAME

statement

–

examples

for

the

WebSphere

Business

Integration

wrapper”

on

page

138

Adding

business

applications

to

a

federated

server

Adding

business

application

data

sources

to

a

federated

system

To

configure

the

federated

server

to

access

business

application

data

sources,

you

must

provide

the

federated

server

with

information

about

the

data

sources

and

objects

that

you

want

to

access.

You

can

configure

the

federated

server

to

access

business

application

data

sources

by

using

the

DB2

Control

Center

or

the

DB2

command

line.

The

DB2

Control

Center

includes

a

wizard

to

guide

you

through

the

steps

that

are

required

to

configure

the

federated

server.

Prerequisites:

v

DB2

Information

Integrator

must

be

installed

on

a

server

that

will

act

as

the

federated

server.

v

A

federated

database

that

uses

a

32

bit

DB2

UDB

instance

must

exist

on

the

federated

server.

Procedure:

To

add

business

application

data

sources

to

a

federated

system:

1.

Register

the

WebSphere

Business

Integration

wrapper.

2.

Register

the

server

definition.

3.

Register

nicknames

for

business

application

data

sources.

4.

Optional:

Create

federated

views

for

the

WebSphere

Business

Integration

nicknames.

Related

concepts:

v

“DB2

Information

Integrator

installation

process

-

overview”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Fast

track

to

configuring

your

data

sources”

on

page

55

v

“Business

object

definitions”

on

page

121

v

“The

WebSphere

Business

Integration

wrapper”

on

page

119

Chapter

8.

Configuring

access

to

business

application

data

sources

125

|
|
|

|

|

|

|

|

|

|

|
|

|
|

|

|

|
|
|

|
|
|
|

|

|
|

|
|

|

|

|

|

|

|
|

|

|
|

|

|

|

Related

tasks:

v

“Editing

the

Oracle

genclntsh

script

and

creating

the

libclntsh

file

after

you

install

DB2

Information

Integrator

(HP-UX,

Linux,

Solaris)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Registering

the

WebSphere

Business

Integration

wrapper”

on

page

126

v

“Registering

the

server

definition

for

business

application

data

sources”

on

page

127

v

“Registering

nicknames

for

business

application

data

sources”

on

page

129

v

“Creating

federated

views

for

business

application

nicknames”

on

page

137

v

“Checking

the

setup

of

the

federated

server”

on

page

37

v

“Creating

a

federated

database”

on

page

51

v

“Registering

the

WebSphere

Business

Integration

wrapper”

on

page

126

v

“Registering

the

server

definition

for

business

application

data

sources”

on

page

127

v

“Creating

federated

views

for

business

application

nicknames”

on

page

137

v

“Configuring

the

WebSphere

Business

Integration

Adapters”

on

page

122

v

“Registering

nicknames

for

business

application

data

sources”

on

page

129

Related

reference:

v

“Supported

operating

systems

for

DB2

Information

Integrator

(32-bit)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

Registering

the

WebSphere

Business

Integration

wrapper

Registering

the

WebSphere

Business

Integration

wrapper

is

part

of

the

larger

task

of

adding

business

application

data

sources

to

a

federated

server.

You

must

register

a

wrapper

to

access

business

application

data

sources.

Wrappers

are

used

by

federated

servers

to

communicate

with

and

retrieve

data

from

data

sources.

Wrappers

are

implemented

as

a

set

of

library

files.

You

can

register

the

wrapper

by

using

the

DB2

Control

Center

or

the

DB2

command

line.

The

DB2

Control

Center

includes

a

wizard

to

guide

you

through

the

steps

that

are

required

to

register

the

wrapper.

Prerequisites:

1.

Install

and

configure

the

appropriate

adapter.

2.

Install

and

configure

WebSphere

MQ

Version

5.3

(CSD

level

5).

3.

Create

the

WebSphere

MQ

message

queues.

4.

If

the

WebSphere

MQ

manager

is

not

installed

on

the

same

system

as

DB2

Information

Integrator,

install

the

WebSphere

MQ

Version

5.3

(CSD

level

5)

client

on

the

same

system

on

which

you

installed

a

DB2

Information

Integrator

server

instance.

Procedure:

To

register

a

wrapper,

issue

the

CREATE

WRAPPER

statement

with

the

name

of

the

wrapper

and

the

name

of

the

wrapper

library

file.

For

example,

to

register

a

wrapper

with

the

name

wbi_wrapper

on

the

federated

server

that

uses

the

Windows

operating

system,

issue

the

following

statement:

CREATE

WRAPPER

wbi_wrapper

LIBRARY

'db2wbi.dll';

126

Data

Source

Configuration

Guide

|

|
|
|

|

|
|

|

|

|

|

|

|
|

|

|

|

|

|
|

|

|
|

|
|
|
|
|
|

|

|

|

|

|
|
|
|

|

|
|

|
|

|

The

name

of

the

wrapper

library

file

that

you

specify

depends

on

the

operating

system

of

the

federated

server.

See

the

list

of

WebSphere

Business

Integration

wrapper

library

files

for

the

correct

name

to

specify

in

the

CREATE

WRAPPER

statement.

The

next

task

in

this

sequence

of

tasks

is

registering

the

server

definitions

for

the

WebSphere

Business

Integration

wrapper.

Related

concepts:

v

“The

WebSphere

Business

Integration

wrapper”

on

page

119

Related

tasks:

v

“Adding

business

application

data

sources

to

a

federated

system”

on

page

125

Related

reference:

v

“WebSphere

Business

Integration

wrapper

library

files”

on

page

127

v

“WebSphere

Business

Integration

wrapper

library

files”

on

page

127

WebSphere

Business

Integration

wrapper

library

files

The

following

table

lists

the

directory

paths

and

library

file

names

for

the

WebSphere

Business

Integration

wrapper.

When

you

install

DB2

Information

Integrator,

3

library

files

are

added

to

the

directory

path

listed

in

the

table.

For

example,

if

the

federated

server

is

running

on

AIX,

the

wrapper

library

files

added

to

the

directory

path

are

libdb2wbi.a,

libdb2wbiF.a,

and

libdb2wbiU.a.

When

you

register

a

wrapper,

specify

only

the

library

file

name

that

is

listed

in

the

table.

Table

31.

WebSphere

Business

Integration

wrapper

library

locations

and

file

names

Operating

system

Directory

path

Wrapper

library

file

AIX

/usr/opt/db2_08_01/lib/

libdb2wbi.a

Windows

%DB2PATH%\bin

db2wbi.dll

%DB2PATH%

is

the

environment

variable

that

is

used

to

specify

the

directory

path

where

DB2

Information

Integrator

is

installed

on

Windows.

The

default

Windows

directory

path

is

C:\Program

Files\IBM\SQLLIB.

Related

tasks:

v

“Registering

the

WebSphere

Business

Integration

wrapper”

on

page

126

Registering

the

server

definition

for

business

application

data

sources

Registering

the

server

definition

for

a

business

object

data

source

is

part

of

the

larger

task

of

adding

a

business

object

application

to

a

federated

system.

After

you

register

the

wrapper,

you

must

register

a

corresponding

server.

Restrictions:

Chapter

8.

Configuring

access

to

business

application

data

sources

127

|
|
|
|

|
|

|

|

|

|

|

|

|

|

|
|

|
|
|
|

|
|

||

|||

|||

|||
|

|
|
|

|

|

|

|

|
|

|

|

You

can

specify

the

option

MQ_SVRCONN_CHANNELNAME

only

if

you

specify

the

option

MQ_CONN_NAME.

You

cannot

drop

the

option

MQ_CONN_NAME

until

you

drop

option

MQ_SVRCONN_CHANNELNAME.

If

MQ_CONN_NAME

is

not

specified,

the

federated

system

uses

the

value

of

the

MQSERVER

environment

variable.

Set

the

MQSERVER

environment

variable

in

the

db2dj.ini

file.

If

you

edit

the

db2dj.ini

file,

you

must

stop

DB2

Universal

Database

and

then

restart

it.

Procedure:

To

register

the

server

definition

for

a

business

application

to

the

federated

system,

issue

the

CREATE

SERVER

statement.

For

example,

to

register

a

server

definition

for

the

Siebel

business

applications:

CREATE

SERVER

siebel_server

VERSION

2.4

WRAPPER

wbi_wrapper

OPTIONS

(

App_Type

’siebel’,

Request_Queue

'myqueue3',

Response_Queue

'myqueue4',

Fault_Queue

'myqueue5',

MQ_Manager

'mymq'

MQ_REPONSE_TIMEOUT

'55000',

MQ_CONN_NAME

'9.30.76.151(1420)',

MQ_SVRCONN_CHANNELNAME

'SYSTEM.DEF.SVRCONN'

)

In

the

example,

the

business

application

is

a

Siebel

application,

which

is

identified

with

the

APP_TYPE

option.

The

valid

values

are

SIEBEL,

PSOFT,

and

SAP.

The

VERSION

option

represents

the

version

of

the

WebSphere

Business

Integration

Adapters

that

you

are

using.

Valid

values

are

2.3

and

2.4.

The

server

options

must

include

the

queue

definitions

as

described

in

the

topic

Configuring

the

WebSphere

Business

Integration

Adapters.

The

default

value

for

MQ_RESPONSE_TIMEOUT

is

set

to

50000

milliseconds.

A

value

of

−1

specifies

that

there

is

no

timeout

limit.

The

next

task

in

this

sequence

of

tasks

is

registering

the

nicknames

for

business

application

data

sources.

Related

concepts:

v

“The

WebSphere

Business

Integration

wrapper”

on

page

119

Related

tasks:

v

“Configuring

the

WebSphere

Business

Integration

Adapters”

on

page

122

v

“Adding

business

application

data

sources

to

a

federated

system”

on

page

125

v

“Registering

the

WebSphere

Business

Integration

wrapper”

on

page

126

v

“Registering

nicknames

for

business

application

data

sources”

on

page

129

Related

reference:

v

Appendix

D,

“Server

options

for

federated

systems,”

on

page

575

v

“CREATE

NICKNAME

statement

–

examples

for

the

WebSphere

Business

Integration

wrapper”

on

page

138

128

Data

Source

Configuration

Guide

|
|
|
|
|
|
|

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|

|

|

|

|

|

|

|

|

|
|

Registering

nicknames

for

business

application

data

sources

Registering

nicknames

for

business

application

data

sources

Registering

nicknames

for

business

application

data

sources

is

part

of

the

larger

task

of

adding

business

applications

to

a

federated

system.

You

can

register

the

nickname

by

using

the

DB2

Control

Center

or

the

DB2

command

line.

The

DB2

Control

Center

includes

a

wizard

to

guide

you

through

the

steps

that

are

required

to

register

the

nickname.

You

must

create

nicknames

that

correspond

to

the

structural

hierarchy

of

your

business

object

definition.

Parent

nicknames

contain

at

least

one

child

nickname.

Child

nicknames

correspond

to

the

elements

that

contain

a

cardinality

greater

than

1

that

are

nested

within

the

element

for

the

parent

nickname.

Procedure:

To

register

nicknames

for

business

application

data

sources

from

the

DB2

command

line,

issue

a

CREATE

NICKNAME

statement.

For

example,

to

register

a

nickname

for

a

Siebel

business

object

definition

that

is

called

sieb_ssa_Contact_Contact,

issue

the

following

statement:

CREATE

NICKNAME

sieb_ssa_Contact_Contact_NN(

Id

VARCHAR(15)

OPTIONS(XPATH

’./ns1:Id/text()’,

TEMPLATE

’<ns1:Id>&column</ns1:Id>’),

FirstName

VARCHAR(50)

OPTIONS(XPATH

’./ns1:FirstName/text()’,

TEMPLATE

’<ns1:FirstName>&column</ns1:FirstName>’),

LastName

VARCHAR(50)

OPTIONS(XPATH

’./ns1:LastName/text()’,

TEMPLATE

’<ns1:LastName>&column</ns1:LastName>’),

AccountId

VARCHAR(255)

OPTIONS(XPATH

’./ns1:AccountId/text()’),

PrimaryAccountName

VARCHAR(100)

OPTIONS(XPATH

’./ns1:PrimaryAccountName/text()’),

PrimaryPostalCode

VARCHAR(30)

OPTIONS(XPATH

’./ns1:PrimaryPostalCode/text()’),

PrimaryStreetAddress

VARCHAR(200)

OPTIONS(XPATH

’./ns1:PrimaryStreetAddress/text()’),

SalesRep

VARCHAR(255)

OPTIONS(XPATH

’./ns1:SalesRep/text()’),

State

VARCHAR(255)

OPTIONS(XPATH

’./ns1:State/text()’))

FOR

SERVER

siebel_server

OPTIONS(XPATH

’//ns1:sieb_ssa_Contact_Contact’,

TEMPLATE

’<ns1:sieb_ssa_Contact_Contact>

&Id[1,1]

&FirstName[0,1]

&LastName[0,1]

</ns1:sieb_ssa_Contact_Contact>’,

BUSOBJ_NAME

’sieb_ssa_Contact_Contact’,

NAMESPACES

’ns1="http://www.ibm.com/websphere/

crossworlds/2002/BOSchema/

sieb_ssa_Contact_Contact"’);

The

BUSOBJ_NAME

nickname

option

is

the

name

of

the

XML

schema

definition

(XSD)

file

that

represents

the

business

object

definition.

Required

step:

flagging

required

input

column

in

the

XSD

files

The

WebSphere

Business

Integration

Adapters

can

return

only

a

single

business

object

instance

in

response

to

a

retrieve

request.

If

a

retrieve

request

in

the

form

of

an

input

business

object

to

the

adapter

identifies

more

than

a

single

business

object

in

the

application,

the

adapter

returns

only

the

first

business

object.

The

wrapper

issues

an

error

that

indicates

it

could

not

retrieve

the

full

result

set.

Chapter

8.

Configuring

access

to

business

application

data

sources

129

|

|

|
|

|
|
|

|
|
|
|

|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|
|
|
|
|

To

ensure

that

only

a

single

business

object

is

identified

in

response

to

a

retrieve

request,

sufficient

predicates

must

be

provided

to

the

adapter

in

the

request

business

object.

The

wrapper

must

send

all

of

the

input

predicates

that

are

necessary

for

the

identification

of

a

single

business

object.

Therefore,

the

columns

must

be

identified

in

the

nickname

definitions

by

using

the

correct

template

references.

The

following

steps

describe

the

actions

you

must

perform

to

identify

the

correct

required

input

columns

before

using

the

DB2

Control

Center

to

generate

nickname

definitions:

1.

Identify

the

columns

in

the

SAP,

Siebel,

or

PeopleSoft

application

repository

that

represent

a

unique

key

for

the

application

entity

being

mapped.

SAP

You

can

use

the

SAP

Business

Object

Repository

to

identify

the

required

input

parameters

for

the

BAPI

that

is

being

mapped

to

a

WebSphere

Business

Integration

business

object

definition

by

the

WebSphere

Business

Integration

Object

Discovery

Agent

tool.

Siebel

Use

one

of

the

following

approaches:

v

The

Siebel

application

has

a

unique

identifier

column

associated

with

each

Business

Component

and

generates

hexadecimal

values

for

this

column

for

each

instance

of

the

Business

Component.

This

identifier

column

exists

at

the

highest

level

of

the

Business

Component

hierarchy

and

is

already

flagged

by

the

isKey="true"

specification

(in

the

appSpecificInfo

section

of

the

xml

annotation)

for

the

element

in

the

generated

xsd

file.

v

You

can

use

Siebel

tools

to

identify

the

database

columns

that

represent

a

composite

unique

key

for

the

Business

Component

that

is

being

mapped.

These

columns

must

all

be

at

the

highest

or

root

level

of

the

business

object

hierarchy.

PeopleSoft

Use

the

Application

Designer

tool

to

identify

the

getKey

columns

in

the

Component

Interface

for

the

highest

level

of

the

hierarchy

that

is

being

mapped

to

a

WebSphere

Business

Integration

business

object

definition.
2.

Edit

the

XSD

files

that

are

generated

for

the

business

object

definition

by

the

WebSphere

Business

Integration

Object

Discovery

Agent

tool

to

flag

the

required

input

columns.

The

guidelines

for

flagging

the

columns

are

located

in

topic

The

TEMPLATE

option

at

the

nickname

and

column

levels.

3.

Generate

the

nickname

DDL

for

the

business

object

definition

from

the

DB2

Control

Center.

To

register

nicknames

for

business

application

data

sources

from

the

DB2

Control

Center:

1.

Expand

the

Federated

Database

Objects

folder.

2.

Expand

the

wrapper

folder

for

which

you

want

to

register

nicknames.

3.

Expand

the

Server

Definitions

folder.

4.

Expand

the

server

folder

for

which

you

want

to

register

nicknames.

5.

Right

click

the

Nicknames

folder

and

select

Create.

6.

In

the

Create

Nicknames

window,

click

Discover

to

define

search

criteria

to

help

you

select

objects

at

the

data

source.

7.

Specify

the

XML

schema

definition

file

that

contains

the

definition

of

the

business

objects

that

you

want

DB2

Information

Integrator

users

to

access.

8.

Click

OK

to

create

the

nickname

according

to

the

selected

XML

schema

definition

file.

130

Data

Source

Configuration

Guide

|
|
|
|
|
|
|
|

|
|

||
|
|
|

||

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|

|

|

|

|

|

|
|

|
|

|
|

The

DB2

Control

Center

extracts

the

schema

file

into

multiple

create

nickname

DDL

statements,

with

the

appropriate

parent-child

relationship

definitions.

The

nicknames

that

are

created

represent

the

business

object

hierarchy

that

is

defined

in

the

XML

schema

definition

file.

Optional:

The

next

task

in

this

sequence

of

tasks

is

creating

federated

views

for

the

business

application

nicknames.

Related

concepts:

v

“The

TEMPLATE

option

at

the

nickname

and

column

levels”

on

page

131

v

“Business

object

definitions”

on

page

121

v

“The

WebSphere

Business

Integration

wrapper”

on

page

119

v

“The

TEMPLATE

option

at

the

nickname

and

column

levels”

on

page

131

v

“Nicknames

and

XPATH

expressions”

on

page

136

Related

tasks:

v

“Specifying

nickname

columns

for

a

nonrelational

data

source”

on

page

65

v

“Adding

business

application

data

sources

to

a

federated

system”

on

page

125

v

“Registering

the

WebSphere

Business

Integration

wrapper”

on

page

126

v

“Creating

federated

views

for

business

application

nicknames”

on

page

137

Related

reference:

v

“Business

application

data

sources

–

example

queries”

on

page

155

v

“CREATE

NICKNAME

statement

–

examples

for

the

WebSphere

Business

Integration

wrapper”

on

page

138

v

“Query

restrictions

for

wrappers

for

business

applications

and

Web

services”

on

page

151

The

TEMPLATE

option

at

the

nickname

and

column

levels

This

topic

applies

to

the

WebSphere®

Business

Integration

wrapper

and

the

Web

services

wrapper.

The

WebSphere®

Business

Integration

wrapper

and

the

Web

services

wrapper

build

XML

documents

that

are

required

by

the

WebSphere

Business

Integration

Adapter

and

the

Web

services

environment.

The

wrappers

need

the

nickname

level

and

the

column

level

template

fragments,

which

is

the

TEMPLATE

option

on

the

CREATE

NICKNAME

statement,

at

the

time

that

the

nickname

is

created.

The

wrappers

use

this

information

during

the

query

planning

and

the

query

execution

phases.

Web

services

wrapper

For

the

Web

services

wrapper,

the

required

and

optional

attributes

vary

according

to

the

definitions

in

the

WSDL

document

and

how

a

column

is

derived.

A

column

can

be

derived

from

either

an

element

or

an

attribute

of

an

element.

v

If

the

column

is

derived

from

an

element,

then

the

minOccurs

value

determines

if

a

column

is

optional.

v

If

the

value

of

minOccurs

equals

0,

then

the

column

is

optional.

v

If

the

value

of

minOccurs

equals

1,

then

the

column

is

required.

v

If

the

column

is

derived

from

an

attribute

of

an

element,

then

the

value

of

use

on

the

attribute

determines

if

a

column

is

optional.

v

If

an

attribute

contains

the

value

use=optional,

then

the

column

is

optional.

Chapter

8.

Configuring

access

to

business

application

data

sources

131

|
|
|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|
|

|

|
|

|
|
|
|
|
|

|

|
|
|

|
|

|

|

|
|

|

v

If

an

attribute

contains

the

value

use=required,

then

the

column

is

required.

The

following

example

is

an

attribute

in

a

schema

definition

that

is

associated

with

a

column:

<xsd:complexType>

<xsd:sequence>

<xsd:element

ref="tns:ZooName"/>

<xsd:element

ref="tns:Count"/>

<xsd:element

ref="tns:LastModified"/>

<xsd:element

maxOccurs="unbounded"

minOccurs="0"

ref="tns:Zookeeper"/>

</xsd:sequence>

<xsd:attribute

name="id"

type="xsd:string"

use="optional"/>

</xsd:complexType>

WebSphere

Business

Integration

wrapper

For

the

WebSphere

Business

Integration

wrapper,

the

required

and

optional

columns

vary

according

to

the

application

and

the

associated

adapter.

You

need

to

identify

the

required

and

optional

input

columns

by

specifying

the

appropriate

template

option

values

for

those

columns.

Before

you

use

the

DB2®

Control

Center

to

create

the

nicknames,

you

must

modify

the

XML

schema

definition

file

to

flag

the

required

and

optional

input

columns.

SAP

BAPI

The

IBM®

DB2

Control

Center

determines

the

required

and

optional

input

columns

based

on

the

value

of

specific

flags

in

the

XML

schema

definition

(XSD)

files

that

represent

the

business

object

definition

In

the

annotation

section

of

an

element

at

any

level

of

the

business

object

hierarchy

(parent

or

child

business

objects),

an

I

prefix

in

the

appSpecificInfo

value

indicates

an

import

parameter

for

the

SAP

BAPI

to

which

the

business

object

definition

maps.

An

E

prefix

indicates

an

export

parameter

for

the

SAP

BAPI.

Some

elements

can

be

both

import

and

export

parameters

for

a

BAPI.

The

following

example

shows

an

element

which

is

both

an

import

and

an

export

parameter:

<bx:appSpecificInfo>ICOMPANYCODE:ECOMPANYCODE</bx:appSpecificInfo>

The

prefixes

are

generated

automatically

by

the

WebSphere

Business

Integration

Object

Discovery

Agent

tool

based

on

information

that

is

extracted

from

the

SAP

business

object

repository.

If

an

element

that

represents

an

import

parameter

(an

I

prefix

in

the

appSpecificInfo

value)

is

specified

with

the

attribute

minOccurs=1,

the

DB2

Control

Center

identifies

the

element

as

a

required

input

parameter

and

flags

the

elements

as

a

required

input

column

in

the

nickname

definition.

The

WebSphere

Business

Integration

Object

Discovery

Agent

tool

does

not

automatically

set

the

value

of

minOccurs

to

1

for

the

required

input

parameters

of

the

SAP

BAPI.

You

must

reference

the

SAP

Business

Object

Repository

to

determine

all

the

required

input

parameters

for

the

BAPI

that

you

want

to

access.

Then,

you

must

edit

the

corresponding

elements

in

the

XML

schema

file

by

manually

setting

the

attribute

to

minOccurs=1.

If

the

minOccurs

attribute

value

for

an

input

parameter

remains

as

the

default

value

of

0,

then

the

DB2

Control

Center

specifies

the

column

as

an

optional

input

column

in

the

nickname

hierarchy

that

is

generated.

The

following

example

shows

an

optional

input

column:

132

Data

Source

Configuration

Guide

|

|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

<xsd:element

name="Company_code"

minOccurs="0">

<xsd:annotation>

<xsd:appinfo>

<bx:boAttribute>

<bx:appSpecificInfo>ICOMPANYCODE:</bx:appSpecificInfo>

<bx:attributeInfo

isForeignKey="false"

isKey="true"

/>

</bx:boAttribute>

</xsd:appinfo>

</xsd:annotation>

<xsd:simpleType>

<xsd:restriction

base="xsd:string">

<xsd:maxLength

value="4"

/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

The

following

example

shows

a

required

input

column:

<xsd:element

name="Company_id"

minOccurs="1">

<xsd:annotation>

<xsd:appinfo>

<bx:boAttribute>

<bx:appSpecificInfo>ICOMPANYID:</bx:appSpecificInfo>

<bx:attributeInfo

isForeignKey="true"

isKey="true"

/>

</bx:boAttribute>

</xsd:appinfo>

</xsd:annotation>

<xsd:simpleType>

<xsd:restriction

base="xsd:string">

<xsd:maxLength

value="4"

/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

The

required

and

optional

input

columns

for

SAP

business

applications

are

designated

by

the

syntax

shown

in

the

following

table:

Table

32.

Flagging

schema

for

SAP

input

column

information

Flags

used

in

SAP

XSD

files

Required

input

column

Column

reference

in

nickname

template

Any

element

anywhere

in

the

hierarchy

with

the

prefix

=

’I’

and

minOccurs=1

Yes

&columnname[1,1]

Any

element

anywhere

in

the

hierarchy

with

the

prefix

=

’I’

and

minOccurs=0

No

&columnname[0,1]

Siebel

and

PeopleSoft

The

DB2

Control

Center

determines

the

required

and

optional

input

columns

based

on

the

existence

and

the

value

of

the

isRequired

flag

in

the

attributeInfo

section

of

the

annotation

for

the

element.

If

there

is

no

isRequired

flag,

then

the

column

is

not

an

input

column.

The

WebSphere

Business

Integration

Object

Discovery

Agent

tool

does

not

automatically

generate

these

flags

in

the

XSD

file.

You

must

identify

the

required

and

optional

input

columns,

and

flag

them

appropriately

in

the

XSD

file

before

you

use

the

DB2

Control

Center

to

generate

the

nickname

DDL.

The

following

example

shows

the

flags

for

a

required

input

column

and

optional

input

columns

in

the

XSD

file

for

a

Siebel

or

PeopleSoft

business

object

definition.

Chapter

8.

Configuring

access

to

business

application

data

sources

133

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

||

||
|
|
|

|
|
||

|
|
||

|

|

|
|
|
|
|
|
|
|

|
|
|
|

The

required

and

optional

input

columns

for

Siebel

and

PeopleSoft

business

applications

are

designated

by

the

syntax

shown

in

the

following

<xsd:element

name="sieb_ssa_Contact_Contact">

<xsd:annotation>

<xsd:appinfo>

<bx:boDefinition

version="1.0.0">

<bx:appSpecificInfo>ON=Contact;CN=Contact</bx:appSpecificInfo>

</bx:boDefinition>

</xsd:appinfo>

</xsd:annotation>

<xsd:complexType>

<xsd:sequence>

<xsd:element

name="Id"

minOccurs="0">

<xsd:annotation>

<xsd:appinfo>

<bx:boAttribute>

<bx:appSpecificInfo>FN=Id</bx:appSpecificInfo>

<bx:attributeInfo

isForeignKey="false"

isKey="true"

isRequired="true"

/>

</bx:boAttribute>

</xsd:appinfo>

</xsd:annotation>

...

</xsd:element>

...

Figure

11.

Portion

of

a

Siebel

business

object

definition

(Part

1

of

2)

...

<xsd:element

name="FirstName"

minOccurs="1">

<xsd:annotation>

<xsd:appinfo>

<bx:boAttribute>

<bx:appSpecificInfo>FN=First

Name</bx:appSpecificInfo>

<bx:attributeInfo

isForeignKey="false"

isKey="false"

isRequired="false"

/>

</bx:boAttribute>

</xsd:appinfo>

</xsd:annotation>

<xsd:simpleType>

<xsd:restriction

base="xsd:string">

<xsd:maxLength

value="50"

/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element

name="LastName"

minOccurs="1">

<xsd:annotation>

<xsd:appinfo>

<bx:boAttribute>

<bx:appSpecificInfo>FN=Last

Name</bx:appSpecificInfo>

<bx:attributeInfo

isForeignKey="false"

isKey="false"

isRequired="false"

/>

</bx:boAttribute>

</xsd:appinfo>

</xsd:annotation>

...

Figure

11.

Portion

of

a

Siebel

business

object

definition

(Part

2

of

2)

134

Data

Source

Configuration

Guide

|

|
|

table:

Table

33.

Flagging

schema

for

Siebel

and

PeopleSoft

input

column

information

Flags

used

in

Siebel

and

PeopleSoft

XSD

files

Required

input

column

Column

reference

in

nickname

template

isRequired="true"

Yes

&columnname[1,1]

isRequired="false"

No

&columnname[0,1]

The

following

example

shows

the

DDL

that

the

DB2

Control

Center

creates

based

on

the

XSD

file

that

is

shown

in

the

figure

labeled

Portion

of

a

Siebel

business

object

definition.

The

XSD

file

in

that

figure

included

a

value

of

false

for

the

isRequired

attribute.

CREATE

NICKNAME

sieb_ssa_Contact_Contact_NN(

Id

VARCHAR(15)

OPTIONS(XPATH

’./ns1:Id/text()’,

TEMPLATE

’<ns1:Id>&column</ns1:Id>’),

FirstName

VARCHAR(50)

OPTIONS(XPATH

’./ns1:FirstName/text()’,

TEMPLATE

’<ns1:FirstName>&column</ns1:FirstName>’),

LastName

VARCHAR(50)

OPTIONS(XPATH

’./ns1:LastName/text()’,

TEMPLATE

’<ns1:LastName>&column</ns1:LastName>’),

AccountId

VARCHAR(255)

OPTIONS(XPATH

’./ns1:AccountId/text()’),

PrimaryAccountName

VARCHAR(100)

OPTIONS(XPATH

’./ns1:PrimaryAccountName/text()’),

PrimaryPostalCode

VARCHAR(30)

OPTIONS(XPATH

’./ns1:PrimaryPostalCode/text()’),

PrimaryStreetAddress

VARCHAR(200)

OPTIONS(XPATH

’./ns1:PrimaryStreetAddress/text()’),

SalesRep

VARCHAR(255)

OPTIONS(XPATH

’./ns1:SalesRep/text()’),

State

VARCHAR(255)

OPTIONS(XPATH

’./ns1:State/text()’))

FOR

SERVER

siebel_server

OPTIONS(XPATH

’//ns1:sieb_ssa_Contact_Contact’,

TEMPLATE

’<ns1:sieb_ssa_Contact_Contact>

&Id[1,1]

&FirstName[0,1]

&LastName[0,1]

</ns1:sieb_ssa_Contact_Contact>’,

BUSOBJ_NAME

’sieb_ssa_Contact_Contact’,

NAMESPACES

’ns1="http://www.ibm.com/websphere/

crossworlds/2002/BOSchema/sieb_ssa_Contact_Contact"’);

Related

concepts:

v

“The

WebSphere

Business

Integration

wrapper”

on

page

119

v

“The

Web

services

wrapper

and

the

Web

services

description

language

document”

on

page

381

Related

tasks:

v

“Adding

business

application

data

sources

to

a

federated

system”

on

page

125

v

“Adding

Web

services

data

sources

to

a

federated

server”

on

page

387

v

“Registering

nicknames

for

Web

services

data

sources”

on

page

390

Related

reference:

v

“Business

application

data

sources

–

example

queries”

on

page

155

v

“CREATE

NICKNAME

statement

–

examples

for

the

WebSphere

Business

Integration

wrapper”

on

page

138

v

“CREATE

NICKNAME

statement

–

examples

for

the

Web

services

wrapper”

on

page

398

v

“Messages

for

the

Web

services

wrapper”

on

page

411

v

“Web

services

data

sources

–

example

queries”

on

page

408

Chapter

8.

Configuring

access

to

business

application

data

sources

135

|

||

|
|
||
|

|||

|||
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

|

|

|

|

|

|

|
|

|
|

|

|

v

“Query

restrictions

for

wrappers

for

business

applications

and

Web

services”

on

page

151

Nicknames

and

XPATH

expressions

This

topic

applies

to

the

WebSphere®

Business

Integration

wrapper

and

the

Web

services

wrapper.

Nicknames

correspond

to

the

tree

structure

of

your

XML

document

data.

Parent

nicknames

and

child

nicknames

correspond

to

the

root

structure

and

nested

elements

of

the

data

tree

structure.

These

parent

and

child

nicknames

are

connected

by

primary

and

foreign

keys

that

are

specified

with

the

CREATE

NICKNAME

statement.

Each

nickname

is

defined

by

XPath

expressions

that

represent

output

values.

The

WebSphere

Business

Integration

wrapper

and

the

Web

services

wrapper

use

XPath

expressions

to

establish

a

correspondence

between

the

data

in

an

XML

document

and

the

rows

in

a

relational

table.

These

XPath

expressions

identify

the

values

in

the

XML

document

and

determine

how

these

values

correspond

to

the

columns

of

each

row.

The

WebSphere

Business

Integration

wrapper

and

the

Web

services

wrapper

read

the

XML

document

data

only.

The

wrappers

do

not

update

the

data.

The

XPATH

option

contains

the

information

to

find

the

SOAP

messages

through

the

SOAP

envelope

and

SOAP

body

tags.

The

getQuote

message

is

contained

in

the

SOAP

envelope

and

body

elements.

The

NICKNAME

option

XPATH

expression

points

to

repeating

tags

that

are

in

the

output

element.

The

XPath

expression

determines

how

many

or

which

rows

will

be

in

the

nickname.

The

column

option

XPATH

expression

is

relative

to

the

NICKNAME

XPATH

expression.

The

column

option

XPATH

identifies

the

values

in

a

row.

A

NICKNAME

option

XPATH

in

a

child

nickname

is

relative

to

a

NICKNAME

option

XPATH

expression

in

a

parent

nickname.

When

you

create

a

nickname,

you

choose

options

that

specify

the

association

between

the

nickname

and

the

XML

document.

Nicknames

created

for

WebSphere

Business

Integration

wrappers

are

associated

with

an

XML

schema

definition

(XSD)

document.

Nicknames

that

are

created

for

Web

services

wrappers

are

associated

with

a

Web

services

description

language

(WSDL)

document.

Related

concepts:

v

“What

is

XML?”

on

page

415

v

“The

Web

services

wrapper

and

the

Web

services

description

language

document”

on

page

381

v

“Data

associations

between

nicknames

and

XML

documents”

on

page

422

Related

tasks:

v

“Adding

XML

to

a

federated

system”

on

page

418

v

“Registering

nicknames

for

XML

data

sources”

on

page

424

v

“Creating

federated

views

for

nonroot

nicknames

(XML

wrapper)”

on

page

430

v

“Adding

business

application

data

sources

to

a

federated

system”

on

page

125

v

“Registering

nicknames

for

business

application

data

sources”

on

page

129

v

“Adding

Web

services

data

sources

to

a

federated

server”

on

page

387

v

“Registering

nicknames

for

Web

services

data

sources”

on

page

390

Related

reference:

136

Data

Source

Configuration

Guide

|
|

|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

v

“Business

application

data

sources

–

example

queries”

on

page

155

v

“CREATE

NICKNAME

statement

–

examples

for

the

WebSphere

Business

Integration

wrapper”

on

page

138

v

“CREATE

NICKNAME

statement

–

examples

for

the

Web

services

wrapper”

on

page

398

v

“Web

services

data

sources

–

example

queries”

on

page

408

v

“Query

restrictions

for

wrappers

for

business

applications

and

Web

services”

on

page

151

v

“CREATE

NICKNAME

statement

-

Examples

for

XML

wrapper”

on

page

425

Creating

federated

views

for

business

application

nicknames

Creating

federated

views

for

business

application

nicknames

is

part

of

the

larger

task

of

adding

business

applications

to

a

federated

system.

You

can

define

federated

views

over

the

hierarchy

of

nicknames

that

describe

a

business

object

hierarchy.

Defining

federated

views

ensures

that

the

queries

that

join

pieces

of

the

business

application

nickname

hierarchy

run

properly.

Procedure:

To

create

federated

views

for

business

application

nicknames:

1.

Define

a

view

for

each

business

application

nickname

as

a

join

of

all

the

nicknames

on

the

path

to

the

parent

nickname.

2.

In

the

WHERE

clause

of

the

view,

define

the

PRIMARY_KEY

and

FOREIGN_KEY

columns

as

the

join

predicates.

3.

In

the

SELECT

list

of

the

view,

include

all

of

the

columns

of

the

business

application

nickname

except

the

column

that

is

designated

with

the

FOREIGN_KEY

nickname

column

option.

Do

not

include

the

columns

in

the

SELECT

list

that

are

designated

as

PRIMARY_KEY

in

the

parent

nicknames

along

the

hierarchy

4.

Include

the

required

input

columns

for

the

hierarchy

in

the

select

list.

These

columns

might

belong

to

some

other

nickname

in

the

hierarchy.

The

following

example

shows

a

view

that

is

based

on

nicknames

that

are

generated

from

a

business

object.

The

WHERE

clause

contains

the

primary

and

foreign

keys

that

are

defined

in

a

CREATE

NICKNAME

statement.

CREATE

VIEW

view1

(

customer,

bankkey,

bankact,

customerno

)

AS

(SELECT

b.customer,

b.bank_key,

b.bank_acct,

a.customerno

FROM

sap_bapi_customer_getdetail2_NN

a,

sap_bapi_customer_getdetail2_sap_customerbankdetail_NN

b

WHERE

a.NN__PKEY=b.NN__FKEY);

Queries

that

use

view

view1

must

include

predicate

values

for

the

required

column,

such

as

in

the

following

example:

SELECT

*

FROM

view1

WHERE

customerno=’1234567890’;

There

are

no

further

tasks

in

this

sequence

of

tasks.

Related

tasks:

v

“Adding

business

application

data

sources

to

a

federated

system”

on

page

125

Chapter

8.

Configuring

access

to

business

application

data

sources

137

|

|
|

|
|

|

|
|

|

|

|
|

|
|
|

|

|

|
|

|
|

|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|

|
|

|
|

|

|

|

Related

reference:

v

“Business

application

data

sources

–

example

queries”

on

page

155

CREATE

NICKNAME

statement

–

examples

for

the

WebSphere

Business

Integration

wrapper

Example

1:

Flat

business

object

Figure

12

on

page

139

is

a

portion

of

an

xsd

file

that

represents

a

WebSphere

Business

Integration

business

object

definition

for

a

Siebel

Business

Component.

The

business

object

definition

hierarchy

consists

of

a

single

level,

which

contains

only

the

root

business

object.

The

DB2

Control

Center

creates

a

single

relational

nickname

to

represent

this

business

object

definition.

In

the

xsd

file,

the

ID

element

is

flagged

as

a

required

input

column

by

adding

the

isRequired="true"

flag

in

the

annotation

section

for

the

element.

The

FirstName

and

LastName

columns

are

designated

as

optional

input

columns

by

adding

the

isRequired="false"

flag.

138

Data

Source

Configuration

Guide

|

|

|
|

|

|
|
|
|
|

|
|
|
|
|

<?xml

version="1.0"

encoding="utf-8"

standalone="no"?>

<xsd:schema

elementFormDefault="qualified"

targetNamespace="http://www.ibm.com/websphere/

crossworlds/2002/BOSchema/sieb_ssa_Contact_Contact"

...

<xsd:element

name="sieb_ssa_Contact_Contact">

<xsd:annotation>

<xsd:appinfo>

<bx:boDefinition

version="1.0.0">

<bx:appSpecificInfo>ON=Contact;CN=Contact</bx:appSpecificInfo>

</bx:boDefinition>

</xsd:appinfo>

</xsd:annotation>

<xsd:complexType>

<xsd:sequence>

<xsd:element

name="Id"

minOccurs="0">

<xsd:annotation>

<xsd:appinfo>

<bx:boAttribute>

<bx:appSpecificInfo>FN=Id</bx:appSpecificInfo>

<bx:attributeInfo

isForeignKey="false"

isKey="true"

isRequired="true"

/>

</bx:boAttribute>

</xsd:appinfo>

</xsd:annotation>

...

</xsd:simpleType>

</xsd:element>

<xsd:element

name="FirstName"

minOccurs="1">

<xsd:annotation>

...

<bx:appSpecificInfo>FN=First

Name</bx:appSpecificInfo>

<bx:attributeInfo

isForeignKey="false"

isKey="false"

isRequired="false"

/>

...

</xsd:annotation>

...

</xsd:element>

<xsd:element

name="LastName"

minOccurs="1">

<xsd:annotation>

...

<bx:appSpecificInfo>FN=Last

Name</bx:appSpecificInfo>

<bx:attributeInfo

isForeignKey="false"

isKey="false"

isRequired="false"

/>

...

</xsd:annotation>

...

</xsd:element>

Figure

12.

XML

schema

file

for

a

flat

business

object

(Part

1

of

2)

Chapter

8.

Configuring

access

to

business

application

data

sources

139

|

<xsd:element

name="AccountId"

minOccurs="0">

<xsd:annotation>

...

<bx:appSpecificInfo>FN=Account

Id</bx:appSpecificInfo>

<bx:attributeInfo

isForeignKey="false"

isKey="false"

/>

...

</xsd:annotation>

...

</xsd:element>

<xsd:element

name="PrimaryAccountName"

minOccurs="0">

<xsd:annotation>

...

<bx:appSpecificInfo>FN=Primary

Account

Name</bx:appSpecificInfo>

<bx:attributeInfo

isForeignKey="false"

isKey="false"

/>

...

</xsd:annotation>

...

</xsd:element>

<xsd:element

name="PrimaryPostalCode"

minOccurs="0">

<xsd:annotation>

...

<bx:appSpecificInfo>FN=Primary

Postal

Code</bx:appSpecificInfo>

<bx:attributeInfo

isForeignKey="false"

isKey="false"

/>

...

</xsd:annotation>

</xsd:element>

<xsd:element

name="PrimaryStreetAddress"

minOccurs="0">

<xsd:annotation>

...

<bx:appSpecificInfo>FN=Primary

Street

Address</bx:appSpecificInfo>

<bx:attributeInfo

isForeignKey="false"

isKey="false"

/>

...

</xsd:annotation>

...

</xsd:element>

<xsd:element

name="SalesRep"

minOccurs="0">

<xsd:annotation>

...

<bx:boAttribute>

<bx:appSpecificInfo>FN=Sales

Rep</bx:appSpecificInfo>

<bx:attributeInfo

isForeignKey="false"

isKey="false"

/>

...

</xsd:annotation>

...

</xsd:element>

<xsd:element

name="State"

minOccurs="0">

<xsd:annotation>

...

<bx:boAttribute>

<bx:appSpecificInfo>FN=State</bx:appSpecificInfo>

<bx:attributeInfo

isForeignKey="false"

isKey="false"

/>

...

</xsd:annotation>

...

</xsd:element>

<xsd:element

name="ObjectEventId"

type="xsd:string"

minOccurs="0"

/>

</xsd:sequence>

...

</xsd:schema>

Figure

12.

XML

schema

file

for

a

flat

business

object

(Part

2

of

2)

140

Data

Source

Configuration

Guide

DB2

Control

Center

generates

the

following

CREATE

NICKNAME

statement

from

the

XSD

file

that

is

shown

in

Figure

12

on

page

139.

A

TEMPLATE

option

value

is

specified

for

each

input

column.

The

column

option

templates

are

associated

with

the

nickname

option

template.

The

input

columns

are

also

referenced

in

the

nickname

level

TEMPLATE

option

value.

The

nickname

option

template

provides

the

structure

for

the

input

business

object.

The

value

of

the

minOccurs

attribute

for

each

of

the

input

column

references

in

the

nickname

template

value

determines

whether

the

input

column

is

a

required

or

optional

column.

The

reference

for

the

ID

column

is

specified

as

&Id[1,1].

The

references

for

the

FirstName

and

LastName

columns

are

specified

as

&FirstName

[0,1]

and

&LastName

[0,1].

All

output

columns

include

an

XPATH

column

option

value.

The

nickname

is

for

a

flat

business

object

that

does

not

contain

any

children

(elements

of

cardinality

'n'):

CREATE

NICKNAME

sieb_ssa_Contact_Contact_NN(

Id

VARCHAR(15)

OPTIONS(XPATH

’./ns1:Id/text()’,

TEMPLATE

’<ns1:Id>&column</ns1:Id>’),

FirstName

VARCHAR(50)

OPTIONS(XPATH

’./ns1:FirstName/text()’,

TEMPLATE

’<ns1:FirstName>&column</ns1:FirstName>’),

LastName

VARCHAR(50)

OPTIONS(XPATH

’./ns1:LastName/text()’,

TEMPLATE

’<ns1:LastName>&column</ns1:LastName>’),

AccountId

VARCHAR(255)

OPTIONS(XPATH

’./ns1:AccountId/text()’),

PrimaryAccountName

VARCHAR(100)

OPTIONS(XPATH

’./ns1:PrimaryAccountName/text()’),

PrimaryPostalCode

VARCHAR(30)

OPTIONS(XPATH

’./ns1:PrimaryPostalCode/text()’),

PrimaryStreetAddress

VARCHAR(200)

OPTIONS(XPATH

’./ns1:PrimaryStreetAddress/text()’),

SalesRep

VARCHAR(255)

OPTIONS(XPATH

’./ns1:SalesRep/text()’),

State

VARCHAR(255)

OPTIONS(XPATH

’./ns1:State/text()’))

FOR

SERVER

siebel_server

OPTIONS(XPATH

’//ns1:sieb_ssa_Contact_Contact’,

TEMPLATE

’<ns1:sieb_ssa_Contact_Contact>

&Id[1,1]

&FirstName[0,1]

&LastName[0,1]

</ns1:sieb_ssa_Contact_Contact>’,

BUSOBJ_NAME

’sieb_ssa_Contact_Contact’,

NAMESPACES

’ns1="http://www.ibm.com/websphere/

crossworlds/2002/BOSchema/sieb_ssa_Contact_Contact"’);

Example

2:

Hierarchical

business

object

In

this

example,

the

business

object

definition

consists

of

a

two

level

hierarchy

comprised

of

the

root

business

object

and

two

child

business

objects,

or

three

xsd

files.

Only

two

nicknames

are

generated

to

represent

the

business

object

definition

hierarchy.

The

sap_customeraddress

child

business

object

has

a

cardinality

of

1,

which

is

indicated

by

the

absence

of

a

maxOccurs

attribute

specification

in

the

element

definition.

All

of

the

columns

of

sap_customeraddress

are

included

in

the

root

nickname,

sap_bapi_customer_getdetail2_NN.

The

sap_customerbankdetail

child

business

object

has

a

cardinality

of

n,

which

is

indicated

by

the

maxOccurs=″unbounded″

specification

in

the

element

definition.

It

is

mapped

to

a

separate

child

nickname,

sap_bapi_customer_getdetail2_sap_customerbankdetail_NN.

The

child

nickname

is

associated

with

the

root

nickname

by

a

special

primary

key-foreign

key

relationship.

Chapter

8.

Configuring

access

to

business

application

data

sources

141

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

...

<xsd:element

name="sap_bapi_customer_getdetail2">

<xsd:annotation>

<xsd:appinfo>

<bx:boDefinition

version="3.0.0"

/>

</xsd:appinfo>

</xsd:annotation>

...

<xsd:element

name="COMPANYCODE"

minOccurs="0">

<xsd:annotation>

<xsd:appinfo>

<bx:boAttribute>

<bx:appSpecificInfo>ICOMPANYCODE:</bx:appSpecificInfo>

<bx:attributeInfo

isForeignKey="false"

isKey="true"

/>

</bx:boAttribute>

</xsd:appinfo>

</xsd:annotation>

...

</xsd:element>

<xsd:element

name="CUSTOMERNO"

minOccurs="1">

<xsd:annotation>

<xsd:appinfo>

<bx:boAttribute>

<bx:appSpecificInfo>ICUSTOMERNO:</bx:appSpecificInfo>

<bx:attributeInfo

isForeignKey="false"

isKey="false"

/>

</bx:boAttribute>

</xsd:appinfo>

</xsd:annotation>

...

</xsd:element>

Figure

13.

SAP

hierarchical

business

object:

customer_getdetail2

(Part

1

of

2)

142

Data

Source

Configuration

Guide

|

<xsd:element

name="sap_customeraddress"

minOccurs="0">

<xsd:annotation>

<xsd:appinfo>

<bx:boAttribute>

<bx:appSpecificInfo>:ECUSTOMERADDRESS</bx:appSpecificInfo>

<bx:attributeInfo

isForeignKey="false"

isKey="false"

/>

<bx:childObjectInfo

relationship="Containment"

version="3.0.0"

/>

</bx:boAttribute>

</xsd:appinfo>

</xsd:annotation>

...

<xsd:element

ref="sap_customeraddress:sap_customeraddress"

/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element

name="sap_customerbankdetail"

minOccurs="0">

<xsd:annotation>

<xsd:appinfo>

<bx:boAttribute>

<bx:appSpecificInfo>

ICUSTOMERBANKDETAIL:ECUSTOMERBANKDETAIL

</bx:appSpecificInfo>

<bx:attributeInfo

isForeignKey="false"

isKey="false"

/>

<bx:childObjectInfo

relationship="Containment"

version="3.0.0"

/>

</bx:boAttribute>

</xsd:appinfo>

</xsd:annotation>

<xsd:complexType>

<xsd:sequence>

<xsd:element

ref="sap_customerbankdetail:sap_customerbankdetail"

maxOccurs="unbounded"

/>

</xsd:sequence>

<xsd:attribute

name="size"

type="xsd:positiveInteger"

default="1"

/>

</xsd:complexType>

</xsd:element>

<xsd:element

name="ObjectEventId"

type="xsd:string"

minOccurs="0"

/>

</xsd:sequence>

...

<xsd:annotation>

<xsd:appinfo>

<bx:boVerb>

<bx:appSpecificInfo>

bapi.client.Bapi_customer_getdetail2

</bx:appSpecificInfo>

</bx:boVerb>

</xsd:appinfo>

</xsd:annotation>

</xsd:enumeration>

<xsd:enumeration

value="Update"

/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

</xsd:complexType>

</xsd:element>

...

Figure

13.

SAP

hierarchical

business

object:

customer_getdetail2

(Part

2

of

2)

Chapter

8.

Configuring

access

to

business

application

data

sources

143

|

<xsd:element

name="sap_customeraddress">

<xsd:annotation>

<xsd:appinfo>

<bx:boDefinition

version="3.0.0">

<bx:appSpecificInfo>:ECUSTOMERADDRESS</bx:appSpecificInfo>

</bx:boDefinition>

</xsd:appinfo>

</xsd:annotation>

<xsd:complexType>

<xsd:sequence>

<xsd:element

name="CUSTOMER"

minOccurs="0">

<xsd:annotation>

<xsd:appinfo>

<bx:boAttribute>

<bx:appSpecificInfo>:ECUSTOMER</bx:appSpecificInfo>

<bx:attributeInfo

isForeignKey="false"

isKey="true"

/>

</bx:boAttribute>

</xsd:appinfo>

</xsd:annotation>

...

</xsd:element>

<xsd:element

name="NAME"

minOccurs="0">

<xsd:annotation>

<xsd:appinfo>

<bx:boAttribute>

<bx:appSpecificInfo>:ENAME</bx:appSpecificInfo>

<bx:attributeInfo

isForeignKey="false"

isKey="false"

/>

</bx:boAttribute>

</xsd:appinfo>

</xsd:annotation>

...

</xsd:element>

<xsd:element

name="CITY"

minOccurs="0">

<xsd:annotation>

<xsd:appinfo>

<bx:boAttribute>

<bx:appSpecificInfo>:ECITY</bx:appSpecificInfo>

<bx:attributeInfo

isForeignKey="false"

isKey="false"

/>

</bx:boAttribute>

</xsd:appinfo>

</xsd:annotation>

...

</xsd:element>

Figure

14.

SAP

hierarchical

business

object:

customer_address

(Part

1

of

2)

144

Data

Source

Configuration

Guide

|

<xsd:element

name="POSTL_CODE"

minOccurs="0">

<xsd:annotation>

<xsd:appinfo>

<bx:boAttribute>

<bx:appSpecificInfo>:EPOSTL_CODE</bx:appSpecificInfo>

<bx:attributeInfo

isForeignKey="false"

isKey="false"

/>

</bx:boAttribute>

</xsd:appinfo>

</xsd:annotation>

...

</xsd:element>

<xsd:element

name="STREET"

minOccurs="0">

<xsd:annotation>

<xsd:appinfo>

<bx:boAttribute>

<bx:appSpecificInfo>:ESTREET</bx:appSpecificInfo>

<bx:attributeInfo

isForeignKey="false"

isKey="false"

/>

</bx:boAttribute>

</xsd:appinfo>

</xsd:annotation>

...

</xsd:element>

<xsd:element

name="REGION"

minOccurs="0">

<xsd:annotation>

<xsd:appinfo>

<bx:boAttribute>

<bx:appSpecificInfo>:EREGION</bx:appSpecificInfo>

<bx:attributeInfo

isForeignKey="false"

isKey="false"

/>

</bx:boAttribute>

</xsd:appinfo>

</xsd:annotation>

...

</xsd:element>

</xsd:sequence>

...

Figure

14.

SAP

hierarchical

business

object:

customer_address

(Part

2

of

2)

Chapter

8.

Configuring

access

to

business

application

data

sources

145

|

...

<xsd:element

name=

"sap_customerbankdetail

">

<xsd:annotation>

<xsd:appinfo>

<bx:boDefinition

version=

"3.0.0

">

<bx:appSpecificInfo>

ICUSTOMERBANKDETAIL:ECUSTOMERBANKDETAIL

</bx:appSpecificInfo>

</bx:boDefinition>

</xsd:appinfo>

</xsd:annotation>

<xsd:complexType>

<xsd:sequence>

<xsd:element

name=

"CUSTOMER

"

minOccurs=

"0

">

<xsd:annotation>

<xsd:appinfo>

<bx:boAttribute>

<bx:appSpecificInfo>ICUSTOMER:ECUSTOMER</bx:appSpecificInfo>

<bx:attributeInfo

isForeignKey=

"false

"

isKey=

"true

"

/>

</bx:boAttribute>

</xsd:appinfo>

</xsd:annotation>

...

</xsd:element>

Figure

15.

SAP

hierarchical

business

object:

bank_detail

(Part

1

of

2)

146

Data

Source

Configuration

Guide

|

DB2

Control

Center

generates

two

nicknames

from

the

three

SAP

XSD

files,

as

shown

in

Figure

16

on

page

148

and

Figure

17

on

page

149.

Column

customerno

is

marked

as

a

required

input

column

in

the

nickname

level

template

of

the

sap_bapi_customer_getdetail2_NN

nickname

because

of

the

XSD

file

specifications

for

the

customerno

element.

Customerno

is

flagged

with

an

I

prefix

and

a

minOccurs=1

attribute

value.

<xsd:element

name=

"BANK_KEY

"

minOccurs=

"0

">

<xsd:annotation>

<xsd:appinfo>

<bx:boAttribute>

<bx:appSpecificInfo>IBANK_KEY:EBANK_KEY</bx:appSpecificInfo>

<bx:attributeInfo

isForeignKey=

"false

"

isKey=

"false

"

/>

</bx:boAttribute>

</xsd:appinfo>

</xsd:annotation>

...

</xsd:element>

<xsd:element

name=

"BANK_ACCT

"

minOccurs=

"0

">

<xsd:annotation>

<xsd:appinfo>

<bx:boAttribute>

<bx:appSpecificInfo>IBANK_ACCT:EBANK_ACCT</bx:appSpecificInfo>

<bx:attributeInfo

isForeignKey=

"false

"

isKey=

"false

"

/>

</bx:boAttribute>

</xsd:appinfo>

</xsd:annotation>

...

</xsd:element>

<xsd:element

name=

"CTRL_KEY

"

minOccurs=

"0

">

<xsd:annotation>

<xsd:appinfo>

<bx:boAttribute>

<bx:appSpecificInfo>ICTRL_KEY:ECTRL_KEY</bx:appSpecificInfo>

<bx:attributeInfo

isForeignKey=

"false

"

isKey=

"false

"

/>

</bx:boAttribute>

</xsd:appinfo>

</xsd:annotation>

...

</xsd:element>

<xsd:element

name=

"BANK_REF

"

minOccurs=

"0

">

<xsd:annotation>

<xsd:appinfo>

<bx:boAttribute>

<bx:appSpecificInfo>IBANK_REF:EBANK_REF</bx:appSpecificInfo>

<bx:attributeInfo

isForeignKey=

"false

"

isKey=

"false

"

/>

</bx:boAttribute>

</xsd:appinfo>

</xsd:annotation>

...

</xsd:element>

...

Figure

15.

SAP

hierarchical

business

object:

bank_detail

(Part

2

of

2)

Chapter

8.

Configuring

access

to

business

application

data

sources

147

|
|
|
|
|
|
|

CREATE

NICKNAME

sap_bapi_customer_getdetail2_NN(

CUSTOMER

VARCHAR(10)

OPTIONS(XPATH

’./ns3:sap_customeraddress/

ns1:sap_customeraddress/ns1:CUSTOMER/text()’),

NAME

VARCHAR(35)

OPTIONS(XPATH

’./ns3:sap_customeraddress/

ns1:sap_customeraddress/ns1:NAME/text()’),

CITY

VARCHAR(35)

OPTIONS(XPATH

’./ns3:sap_customeraddress/

ns1:sap_customeraddress/ns1:CITY/text()’),

POSTL_CODE

VARCHAR(10)

OPTIONS(XPATH

’./ns3:sap_customeraddress/

ns1:sap_customeraddress/ns1:POSTL_CODE/text()’),

STREET

VARCHAR(35)

OPTIONS(XPATH

’./ns3:sap_customeraddress/

ns1:sap_customeraddress/ns1:STREET/text()’),

REGION

VARCHAR(3)

OPTIONS(XPATH

’./ns3:sap_customeraddress/

ns1:sap_customeraddress/ns1:REGION/text()’),

NN__PKEY

VARCHAR(16)

FOR

BIT

DATA

NOT

NULL

OPTIONS(PRIMARY_KEY

’YES’),

COMPANYCODE

VARCHAR(4)

OPTIONS(XPATH

’./ns3:COMPANYCODE/text()’,

TEMPLATE

’<ns3:COMPANYCODE>&column</ns3:COMPANYCODE>’),

CUSTOMERNO

VARCHAR(10)

OPTIONS(XPATH

’./ns3:CUSTOMERNO/text()’,

TEMPLATE

’<ns3:CUSTOMERNO>&column</ns3:CUSTOMERNO>’),

ObjectEventId

VARCHAR(48)

OPTIONS(XPATH

’./ns3:ObjectEventId/text()’))

FOR

SERVER

sap_server

OPTIONS(XPATH

’//ns3:sap_bapi_customer_getdetail2’,

TEMPLATE

’<ns3:sap_bapi_customer_getdetail2>

&sap_bapi_customer_getdetail2_sap_customerbankdetail_NN[0,1]

&COMPANYCODE[0,1]

&CUSTOMERNO[1,1]

</ns3:sap_bapi_customer_getdetail2>’,

BUSOBJ_NAME

’sap_bapi_customer_getdetail2’,

NAMESPACES

’ns1="http://www.ibm.com/websphere/

crossworlds/2002/BOSchema/sap_customeraddress",

ns2="http://www.ibm.com/websphere/

crossworlds/2002/BOSchema/sap_customerbankdetail",

ns3="http://www.ibm.com/websphere/

crossworlds/2002/BOSchema/sap_bapi_customer_getdetail2"’);

Figure

16.

getdetail2

nickname

148

Data

Source

Configuration

Guide

|

Example

3:

Primary

and

foreign

keys

The

PRIMARY_KEY

and

FOREIGN_KEY

columns

are

used

to

define

relationships

between

the

parent

and

child

nicknames.

Each

parent

nickname

must

have

a

primary

key

column

option.

You

define

the

children

of

a

parent

nickname

with

the

foreign

key

column

option

that

references

the

primary

key

column

of

a

parent

nickname.

A

nickname

can

have

multiple

children,

but

a

nickname

can

have

only

one

parent.

Primary

and

foreign

key

values

for

the

WebSphere

Business

Integration

wrapper

are

only

valid

and

unique

within

a

single

query.

A

primary

and

foreign

key

cannot

be

used

to

retrieve

a

row

with

a

second

query.

The

values

cannot

persist

into

another

table,

because

the

uniqueness

of

the

value

is

not

guaranteed

if

that

table

is

populated

with

multiple

queries.

The

following

CREATE

NICKNAME

statements

are

derived

from

the

XML

schema

definition

files

that

are

shown

in

Figure

13

on

page

142,

Figure

14

on

page

144,

and

Figure

15

on

page

146.

The

foreign

key,

nn_fkey,

uniquely

associates

the

child

nickname,

sap_bapi_customer_getdetail2_sap_customerbankdetail_nn,

with

the

parent

nickname

sap_bapi_customer_getdetail2_nn.

The

parent

nickname

also

uses

a

reference

to

the

child

nickname

in

the

nickname

options

template

structure.

CREATE

NICKNAME

sap_bapi_customer_getdetail2_NN(

CUSTOMER

VARCHAR(10)

OPTIONS(XPATH

’./ns3:sap_customeraddress/

ns1:sap_customeraddress/ns1:CUSTOMER/text()’),

NAME

VARCHAR(35)

CREATE

NICKNAME

sap_bapi_customer_getdetail2_sap_customerbankdetail_NN(

CUSTOMER

VARCHAR(10)

OPTIONS(XPATH

’./ns2:CUSTOMER/text()’,

TEMPLATE

’<ns2:CUSTOMER>&column</ns2:CUSTOMER>’),

BANK_KEY

VARCHAR(15)

OPTIONS(XPATH

’./ns2:BANK_KEY/text()’,

TEMPLATE

’<ns2:BANK_KEY>&column</ns2:BANK_KEY>’),

BANK_ACCT

VARCHAR(18)

OPTIONS(XPATH

’./ns2:BANK_ACCT/text()’,

TEMPLATE

’<ns2:BANK_ACCT>&column</ns2:BANK_ACCT>’),

CTRL_KEY

VARCHAR(2)

OPTIONS(XPATH

’./ns2:CTRL_KEY/text()’,

TEMPLATE

’<ns2:CTRL_KEY>&column</ns2:CTRL_KEY>’),

BANK_REF

VARCHAR(20)

OPTIONS(XPATH

’./ns2:BANK_REF/text()’,

TEMPLATE

’<ns2:BANK_REF>&column</ns2:BANK_REF>’),

NN__FKEY

VARCHAR(16)

FOR

BIT

DATA

NOT

NULL

OPTIONS(FOREIGN_KEY

’SAP_BAPI_CUSTOMER_GETDETAIL2_NN’))

FOR

SERVER

sap_server

OPTIONS(XPATH

’./ns3:sap_customerbankdetail/ns2:sap_customerbankdetail’,

TEMPLATE

’<ns3:sap_customerbankdetail>

<ns2:sap_customerbankdetail>

&CUSTOMER[0,1]

&BANK_KEY[0,1]

&BANK_ACCT[0,1]

&CTRL_KEY[0,1]

&BANK_REF[0,1]

</ns2:sap_customerbankdetail>

</ns3:sap_customerbankdetail>’,

NAMESPACES

’ns1="http://www.ibm.com/websphere/

crossworlds/2002/BOSchema/sap_customeraddress",

ns2="http://www.ibm.com/websphere/

crossworlds/2002/BOSchema/sap_customerbankdetail",

ns3="http://www.ibm.com/websphere/

crossworlds/2002/BOSchema/sap_bapi_customer_getdetail2"’);

Figure

17.

Customer

bank

detail

nickname

Chapter

8.

Configuring

access

to

business

application

data

sources

149

|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

OPTIONS(XPATH

’./ns3:sap_customeraddress/

ns1:sap_customeraddress/ns1:NAME/text()’),

...

NN__PKEY

VARCHAR(16)

FOR

BIT

DATA

NOT

NULL

OPTIONS(PRIMARY_KEY

’YES’),

...

TEMPLATE

’<ns3:sap_bapi_customer_getdetail2>

&sap_bapi_customer_getdetail2_sap_customerbankdetail_NN[0,1]

&COMPANYCODE[0,1]

&CUSTOMERNO[1,1]

</ns3:sap_bapi_customer_getdetail2>’,

...

CREATE

NICKNAME

sap_bapi_customer_getdetail2_sap_customerbankdetail_NN(

CUSTOMER

VARCHAR(10)

OPTIONS(XPATH

’./ns2:CUSTOMER/text()’,

TEMPLATE

’<ns2:CUSTOMER>&column</ns2:CUSTOMER>’),

BANK_KEY

VARCHAR(15)

OPTIONS(XPATH

’./ns2:BANK_KEY/text()’,

TEMPLATE

’<ns2:BANK_KEY>&column</ns2:BANK_KEY>’),

BANK_ACCT

VARCHAR(18)

OPTIONS(XPATH

’./ns2:BANK_ACCT/text()’,

TEMPLATE

’<ns2:BANK_ACCT>&column</ns2:BANK_ACCT>’),

CTRL_KEY

VARCHAR(2)

OPTIONS(XPATH

’./ns2:CTRL_KEY/text()’,

TEMPLATE

’<ns2:CTRL_KEY>&column</ns2:CTRL_KEY>’),

BANK_REF

VARCHAR(20)

OPTIONS(XPATH

’./ns2:BANK_REF/text()’,

TEMPLATE

’<ns2:BANK_REF>&column</ns2:BANK_REF>’),

NN__FKEY

VARCHAR(16)

FOR

BIT

DATA

NOT

NULL

OPTIONS(FOREIGN_KEY

’SAP_BAPI_CUSTOMER_GETDETAIL2_NN’))

FOR

SERVER

sap_server

OPTIONS(XPATH

’./ns3:sap_customerbankdetail/ns2:sap_customerbankdetail’,

TEMPLATE

’<ns3:sap_customerbankdetail>

<ns2:sap_customerbankdetail>

&CUSTOMER[0,1]

&BANK_KEY[0,1]

&BANK_ACCT[0,1]

&CTRL_KEY[0,1]

&BANK_REF[0,1]

</ns2:sap_customerbankdetail>

</ns3:sap_customerbankdetail>’,

...

Example

4:

Using

namespaces

to

resolve

XPath

expression

prefixes

The

NAMESPACES

option

is

a

comma

separated

list

of

name-value

pairs.

It

resolves

the

prefixes

that

are

used

in

XPath

expressions

with

the

namespace

URIs

that

are

defined

in

the

XML

schemas.

These

XPath

expressions

are

applied

on

the

business

objects

(the

XML

document)

that

are

returned

from

WebSphere

Business

Integration

Adapter.

The

following

example

includes

namespace

prefixes

and

the

definitions

of

those

prefixes:

CREATE

NICKNAME

sap_customer

(

sap_customeraddress_CUSTOMER

VARCHAR(10)

OPTIONS(XPATH

’./ns5:sap_customeraddress/

ns2:sap_customeraddress/ns2:CUSTOMER/text()’),

sap_customeraddress_NAME

VARCHAR(35)

OPTIONS(XPATH

’./ns5:sap_customeraddress/

ns2:sap_customeraddress/ns2:NAME/text()’),

...

sap_bapi_customer_getdet1_PKEY

VARCHAR(16)

FOR

BIT

DATA

NOT

NULL

OPTIONS(PRIMARY_KEY

’YES’),

COMPANYCODE

VARCHAR(4)

OPTIONS(XPATH

’./ns5:COMPANYCODE/text()’,

TEMPLATE

’<ns5:COMPANYCODE>&column</ns5:COMPANYCODE>’),

150

Data

Source

Configuration

Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

CUSTOMERNO

VARCHAR(10)

OPTIONS(XPATH

’./ns5:CUSTOMERNO/text()’,

TEMPLATE

’<ns5:CUSTOMERNO>&column</ns5:CUSTOMERNO>’),

ObjectEventId

VARCHAR(48)

OPTIONS(XPATH

’./ns5:ObjectEventId/text()’)

)

FOR

SERVER

SAP_SOURCE

OPTIONS

(

XPATH

’//ns5:sap_bapi_customer_getdetail2’,

TEMPLATE

’<ns5:sap_bapi_customer_getdetail2>

&customerbankdetail_NN[0,1]

&COMPANYCODE[0,1]

&CUSTOMERNO[1,1]

</ns5:sap_bapi_customer_getdetail2>’,

BUSOBJ_NAME

’sap_bapi_customer_getdetail2’,

NAMESPACES

’

ns2="http://www.ibm.com/websphere/

crossworlds/2002/BOSchema/sap_customeraddress",

...

ns5="http://www.ibm.com/websphere/

crossworlds/2002/BOSchema/sap_bapi_customer_getdetail2",

ns6="http://www.ibm.com/websphere/

crossworlds/2002/BOSchema/sap_return"’

);

Related

concepts:

v

“The

WebSphere

Business

Integration

wrapper”

on

page

119

Related

tasks:

v

“Adding

business

application

data

sources

to

a

federated

system”

on

page

125

v

“Registering

nicknames

for

business

application

data

sources”

on

page

129

Related

reference:

v

“Business

application

data

sources

–

example

queries”

on

page

155

v

“Query

restrictions

for

wrappers

for

business

applications

and

Web

services”

on

page

151

Query

restrictions

for

wrappers

for

business

applications

and

Web

services

Equal

predicates

The

only

valid

predicates

on

input

columns

are

equal

predicates.

For

output

columns,

any

predicate

is

valid.

The

following

example

returns

an

error

with

a

message

that

indicates

that

the

predicate

is

not

supported

on

that

column.

In

this

example,

the

column

zipcode

is

an

input

column:

SELECT

return

FROM

gettemp

WHERE

zipcode<’95141’

The

following

example

shows

a

valid

query

using

an

equal

predicate

on

the

input

columns.

The

customers

nickname

is

joined

with

a

local

DB2

UDB

table

that

contains

customer

IDs.

The

query

contains

an

additional

predicate

on

the

Sales

column,

which

is

an

output

only

column.

Chapter

8.

Configuring

access

to

business

application

data

sources

151

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

|

|

|

|
|

|
|

|

|

|
|

|
|
|

|

|
|
|
|

SELECT

a.name,

a.address

FROM

customers

a,

local_table

b

WHERE

a.customer_id=b.custid

AND

a.Sales

>

300000;

Predicates

for

required

input

columns

You

must

provide

equality

predicate

values

for

all

required

input

columns

in

your

SQL

queries

for

the

nickname

hierarchy

that

you

reference.

The

wrapper

returns

an

SQLCODE

901

for

all

queries

that

violate

this

restriction.

IN

or

OR

predicates

For

WebSphere

Business

Integration

wrappers

and

Web

services

wrappers,

no

IN

or

OR

predicates

are

allowed

for

input

columns.

The

following

examples

show

invalid

queries.

The

customers

nickname

has

one

required

input

column,

customer_id:

SELECT

*

FROM

customers

WHERE

customer_id

IN

(12345,

67890,

11223);

SELECT

*

FROM

customers

WHERE

customer_id

IN

(SELECT

custid

FROM

local_table);

)

However,

for

the

WebSphere

Business

Integration

wrappers,

you

can

use

IN

list

predicates

with

required

input

columns

if

you

define

a

unique

index

with

the

SPECIFICATION

ONLY

parameter

for

the

required

input

columns:

CREATE

UNIQUE

INDEX

myuindex

ON

customers(customer_id)

SPECIFICATION

ONLY;

Joins

on

optional

input

columns

The

following

example

demonstrates

a

restriction

on

joining

optional

input

columns.

You

cannot

join

optional

input

columns

from

a

local

table

or

nickname.

If

the

WSDL

generates

an

input

nickname

column

as

optional

and

you

need

to

use

that

column

in

a

join,

then

you

must

edit

the

DDL

to

change

the

column

to

a

required

input

column.

In

this

example,

a

Web

service

wrapper

nickname

named

order

is

created

with

shipping_method

as

an

optional

input

column.

The

following

statement

is

a

valid

query

because

it

uses

a

literal

in

the

predicate:

SELECT

*

FROM

order

WHERE

part="hammer"

AND

shipping_method="FEDEX";

However,

if

you

include

a

local

table

named

orderparts,

which

defines

parts

and

shipping

methods,

in

the

query,

and

the

table

contains

a

column

named

shipping_method

that

is

optional,

the

statement

is

invalid:

SELECT

*

FROM

order

o,

orderparts

op

WHERE

o.part="hammer"

AND

o.shipping_method=op.shipping_method

For

a

WebSphere

Business

Integration

wrapper,

predicates

on

optional

input

columns

of

a

nickname

might

be

pushed

down

to

the

WebSphere

Business

Integration

Adapter.

DB2

UDB

can

decide

to

apply

those

predicates

locally

on

the

rows

fetched

from

the

application

data

source.

To

ensure

that

predicates

for

a

given

input

column

always

get

pushed

down

to

the

adapter,

declare

the

input

152

Data

Source

Configuration

Guide

|
|
|
|
|

|

|
|
|

|

|
|

|
|

|
|
|
|

|
|
|

|

|

|
|
|
|
|

|
|
|

|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

column

as

a

required

input

column.

Every

query

on

the

nickname

hierarchy

must

include

predicate

values

for

the

required

input

columns.

To

ensure

valid

results,

joined

input

columns

must

be

required

columns

for

Web

Services

wrappers.

Outer

joins

Outer

joins

between

nicknames

using

the

primary

key

from

a

parent

nickname

and

the

foreign

key

from

child

nickname

columns

are

not

supported.

When

a

parent

element

in

an

XML

document

contains

no

child

elements,

and

if

you

use

an

inner

join

between

the

parent

nickname

and

the

child

nickname,

then

no

rows

are

returned

for

that

element.

For

example,

for

a

given

customer,

if

there

is

no

bankdetail

information

in

the

SAP

system,

then

no

rows

are

returned

for

the

sap_bapi_customer_getdetail2_sap_customerbankdetail_NN

nickname

for

the

particular

customer.

The

following

CREATE

NICKNAME

statements

define

the

columns

that

are

used

in

the

example

query:

CREATE

NICKNAME

sap_bapi_customer_getdetail2_NN(

...

NAME

VARCHAR(35)

OPTIONS(XPATH

’./ns3:sap_customeraddress/

ns1:sap_customeraddress/ns1:NAME/text()’),

...

NN__PKEY

VARCHAR(16)

OPTIONS(PRIMARY_KEY

’YES’),

COMPANYCODE

VARCHAR(4)

OPTIONS(XPATH

’./ns3:COMPANYCODE/text()’,

TEMPLATE

’<ns3:COMPANYCODE>&column</ns3:COMPANYCODE>’),

CUSTOMERNO

VARCHAR(10)

OPTIONS(XPATH

’./ns3:CUSTOMERNO/text()’,

TEMPLATE

’<ns3:CUSTOMERNO>&column</ns3:CUSTOMERNO>’),

...

FOR

SERVER

sap_server

OPTIONS(XPATH

’//ns3:sap_bapi_customer_getdetail2’,

TEMPLATE

’<ns3:sap_bapi_customer_getdetail2>

&sap_bapi_customer_getdetail2_sap_customerbankdetail_NN[0,1]

&COMPANYCODE[0,1]

&CUSTOMERNO[1,1]

</ns3:sap_bapi_customer_getdetail2>’,

...

Figure

18.

Excerpt

from

getdetail2

nickname

Chapter

8.

Configuring

access

to

business

application

data

sources

153

|
|

|
|

|

|
|

|
|
|
|
|
|

|
|
||

In

the

following

example,

the

query

returns

no

rows

because

there

is

an

inner

join

condition

between

the

two

nicknames:

SELECT

a.name,

b.bank_key

FROM

sap_bapi_customer_getdetail2_NN

a,

sap_bapi_customer_getdetail2_sap_customerbankdetail_NN

b

WHERE

a.customerno='1234567890'

AND

a.NN__PKEY=b.NN__FKEY;

If

a

WebSphere

Business

Integration

wrapper

or

a

Web

services

wrapper

nickname

definition

contains

required

input

columns,

then

a

left

outer

join

between

this

nickname

and

any

other

local

DB2

UDB

table

or

other

nicknames

is

not

supported.

Related

concepts:

v

“The

TEMPLATE

option

at

the

nickname

and

column

levels”

on

page

131

Related

tasks:

v

“Adding

business

application

data

sources

to

a

federated

system”

on

page

125

v

“Adding

Web

services

data

sources

to

a

federated

server”

on

page

387

Related

reference:

v

“Business

application

data

sources

–

example

queries”

on

page

155

v

“CREATE

NICKNAME

statement

–

examples

for

the

WebSphere

Business

Integration

wrapper”

on

page

138

v

“CREATE

NICKNAME

statement

–

examples

for

the

Web

services

wrapper”

on

page

398

v

“Web

services

data

sources

–

example

queries”

on

page

408

CREATE

NICKNAME

sap_bapi_customer_getdetail2_sap_customerbankdetail_NN(

CUSTOMER

VARCHAR(10)

OPTIONS(XPATH

’./ns2:CUSTOMER/text()’,

TEMPLATE

’<ns2:CUSTOMER>&column</ns2:CUSTOMER>’),

BANK_KEY

VARCHAR(15)

OPTIONS(XPATH

’./ns2:BANK_KEY/text()’,

TEMPLATE

’<ns2:BANK_KEY>&column</ns2:BANK_KEY>’),

BANK_ACCT

VARCHAR(18)

OPTIONS(XPATH

’./ns2:BANK_ACCT/text()’,

TEMPLATE

’<ns2:BANK_ACCT>&column</ns2:BANK_ACCT>’),

CTRL_KEY

VARCHAR(2)

OPTIONS(XPATH

’./ns2:CTRL_KEY/text()’,

TEMPLATE

’<ns2:CTRL_KEY>&column</ns2:CTRL_KEY>’),

BANK_REF

VARCHAR(20)

OPTIONS(XPATH

’./ns2:BANK_REF/text()’,

TEMPLATE

’<ns2:BANK_REF>&column</ns2:BANK_REF>’),

NN__FKEY

VARCHAR(16)

OPTIONS(FOREIGN_KEY

’SAP_BAPI_CUSTOMER_GETDETAIL2_NN’))

FOR

SERVER

sap_server

OPTIONS(XPATH

’./ns3:sap_customerbankdetail/ns2:sap_customerbankdetail’,

TEMPLATE

’<ns3:sap_customerbankdetail>

<ns2:sap_customerbankdetail>

&CUSTOMER[0,1]

&BANK_KEY[0,1]

&BANK_ACCT[0,1]

&CTRL_KEY[0,1]

&BANK_REF[0,1]

</ns2:sap_customerbankdetail>

</ns3:sap_customerbankdetail>’,

...

Figure

19.

Excerpt

from

customer

bank

detail

nickname

154

Data

Source

Configuration

Guide

|
|

|
|
|
|
|

|
|
|

|

|

|

|

|

|

|

|
|

|
|

|

Business

application

data

sources

–

example

queries

Example

1:

Joining

parent

and

child

nicknames

If

a

select

statement

contains

child

nickname

columns,

then

you

must

specify

a

join

predicate

with

the

parent

nickname.

The

join

conditions

are

necessary

to

maintain

the

parent-child

relationships

along

the

nickname

hierarchy.

Specify

the

primary

and

foreign

key

join

conditions

for

each

parent-child

nickname

pair

in

the

hierarchy

by

including

the

hierarchy

association

from

the

child

nickname

that

is

referenced

to

the

parent

nickname

for

the

hierarchy.

The

following

queries

are

invalid

because

they

do

not

contain

all

of

the

elements

that

are

necessary

to

maintain

the

nickname

hierarchy:

SELECT

*

FROM

<child_nickname>;

SELECT

b.col1

FROM

<parent_nickname>

a,<child_nickname>

b

WHERE

a.required_column=<value>;

The

following

is

an

example

of

a

valid

query

that

maintains

the

nickname

hierarchy:

SELECT

b.col1,

a.cola

FROM

<parent_nickname>

a,<child_nickname>

b

WHERE

a.primary_key_column=b.foreign_key_column

AND

a.required_column=<value>;

In

the

following

example,

all

of

the

required

parent

and

child

input

columns

are

included

in

the

predicates

in

the

WHERE

clause.

The

WHERE

clause

includes

join

predicates

that

specify

an

equality

between

the

parent

primary

key

column

and

a

child

foreign

key

column

:

SELECT

a.customer,

a.name,

b.bank_key,

b.bank_acct

FROM

sap_bapi_customer_getdetail2_NN

a,

sap_bapi_customer_getdetail2_sap_customerbankdetail_NN

b

WHERE

a.nn_pkey=b.nn_fkey

AND

a.customer

=

’ABC’

Example

2:

Views

You

can

create

two

types

of

views:

v

A

view

that

is

derived

from

columns

in

a

child

nickname

so

that

you

can

issue

queries

directly

on

the

child

nickname

without

including

the

parent-child

join

conditions

in

the

queries.

CREATE

VIEW

view1

(

customer,

bankkey,

bankact,

customerno

)

AS

(SELECT

b.customer,

b.bank_key,

b.bank_acct,

a.customerno

FROM

sap_bapi_customer_getdetail2_NN

a,

sap_bapi_customer_getdetail2_sap_customerbankdetail_NN

b

WHERE

a.NN__PKEY=b.NN__FKEY);

The

view

definition

includes

the

required

input

column,

customerno,

for

the

nickname

hierarchy.

Queries

that

use

view

view1

must

include

predicate

values

for

the

required

column,

such

as

in

the

following

example:

SELECT

*

FROM

view1

WHERE

customerno='1234567890';

v

A

global

view

that

includes

all

columns

of

the

child

and

parent

nicknames

except

for

the

primary

and

foreign

key

columns.

Chapter

8.

Configuring

access

to

business

application

data

sources

155

|
|

|

|
|
|
|
|
|

|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|

|

|
|
|

|
|
|
|
|
|
|

|
|
|

|
|

|
|

Example

3:

Required

input

columns

Queries

must

include

predicate

values

for

all

required

input

columns.

Required

input

columns

are

those

columns

with

TEMPLATE

column

options

definitions

and

a

reference

value

of

[1,1]

in

the

nickname

TEMPLATE

option

value.

The

wrapper

returns

an

error

for

any

query

that

does

not

include

the

required

input

columns

in

the

predicates.

The

following

example

shows

an

invalid

query.

The

customers

nickname

contains

a

required

input

column

customer_id.

SELECT

*

FROM

customers;

The

following

example

shows

a

valid

query.

SELECT

*

FROM

customers

WHERE

customer_id

=

123;

The

following

example

shows

a

local

table

in

DB2

UDB

that

contains

customer

IDs

in

the

custid

column

of

table

local_table.

This

example

is

an

inner

join

between

the

WebSphere

Business

Integration

nickname

and

the

local

table.

SELECT

a.name,

a.address

FROM

customers

a,

local_table

b

WHERE

a.customer_id=b.custid;

Related

concepts:

v

“The

WebSphere

Business

Integration

wrapper”

on

page

119

Related

tasks:

v

“Adding

business

application

data

sources

to

a

federated

system”

on

page

125

v

“Registering

nicknames

for

business

application

data

sources”

on

page

129

Related

reference:

v

“CREATE

NICKNAME

statement

–

examples

for

the

WebSphere

Business

Integration

wrapper”

on

page

138

v

“Query

restrictions

for

wrappers

for

business

applications

and

Web

services”

on

page

151

156

Data

Source

Configuration

Guide

|

|
|
|
|
|

|
|

|

|

|

|
|
|

|
|
|

|

|

|

|

|

|

|
|

|
|

Chapter

9.

Configuring

access

to

DB2

family

data

sources

This

chapter

explains

how

to

configure

your

federated

server

to

access

data

that

is

stored

in

DB2

family

databases.

These

databases

include:

v

DB2

UDB

for

Linux,

UNIX,

and

Windows

v

DB2

UDB

for

z/OS

and

OS/390

v

DB2

UDB

for

iSeries

v

DB2

Server

for

VM

and

VSE

This

chapter

explains

how

to

configure

your

federated

server

to

access

data

that

is

stored

in

DB2

family

data

sources.

You

can

configure

access

to

DB2

family

data

sources

by

using

the

DB2

Control

Center

or

by

issuing

SQL

statements.

This

chapter

lists

the

tasks

that

you

need

to

perform

when

you

configure

the

federated

server,

contains

examples

of

the

SQL

statements

that

you

need,

and

provides

tuning

and

troubleshooting

information

for

configuring

the

federated

server.

Adding

DB2

family

data

sources

to

a

federated

server

Adding

DB2

family

data

sources

to

a

federated

server

To

configure

the

federated

server

to

access

DB2

family

data

sources,

you

must

provide

the

federated

server

with

information

about

the

data

sources

and

objects

that

you

want

to

access.

You

can

configure

the

federated

server

to

access

DB2

family

data

sources

by

using

the

DB2

Control

Center

or

the

DB2

command

line.

The

DB2

Control

Center

includes

a

wizard

to

guide

you

through

the

steps

required

to

configure

the

federated

server.

Prerequisites:

v

A

DB2

server

that

is

configured

for

federation.

v

A

federated

database

must

exist

on

the

federated

server

Restriction:

You

cannot

create

a

nickname

for

a

DB2

data

source

alias

if

you

are

accessing

data

that

is

stored

in

DB2

for

Linux,

UNIX

and

Windows,

Version

8.1.

Procedure:

To

add

DB2

data

sources

to

a

federated

server:

1.

Catalog

the

node.

2.

Catalog

the

remote

database.

3.

Register

the

wrapper.

4.

Register

the

server

definition.

5.

Create

the

user

mappings.

6.

Test

the

connection

to

the

DB2

server.

©

Copyright

IBM

Corp.

1998,

2004

157

|
|
|
|

|

|

7.

Register

nicknames

for

DB2

tables

and

views.

Related

concepts:

v

“Fast

track

to

configuring

your

data

sources”

on

page

55

Related

tasks:

v

“Checking

the

FEDERATED

parameter”

on

page

42

v

“Creating

a

federated

database”

on

page

51

v

“Cataloging

a

node

entry

in

the

federated

node

directory”

on

page

158

v

“Cataloging

the

remote

database

in

the

federated

system

database

directory”

on

page

159

v

“Registering

the

DB2

wrapper”

on

page

160

v

“Registering

the

server

definitions

for

a

DB2

data

source”

on

page

161

v

“Creating

the

user

mapping

for

a

DB2

data

source”

on

page

163

v

“Testing

the

connection

to

the

DB2

data

source

server”

on

page

165

v

“Registering

nicknames

for

DB2

tables

and

views”

on

page

166

v

“Checking

the

setup

of

the

federated

server”

on

page

37

Related

reference:

v

“Supported

operating

systems

for

DB2

Information

Integrator

(32-bit)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Supported

operating

systems

for

DB2

Information

Integrator

(64-bit)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

Cataloging

a

node

entry

in

the

federated

node

directory

Cataloging

a

node

entry

in

the

federated

node

directory

is

part

of

the

larger

task

of

adding

DB2

family

data

sources

to

federated

servers.

To

point

to

the

location

of

the

DB2

data

source,

catalog

an

entry

in

the

node

directory

of

the

federated

server.

The

federated

server

uses

this

entry

to

determine

the

proper

access

method

to

connect

to

a

DB2

data

source.

Procedure:

To

catalog

a

node

entry

in

the

federated

node

directory:

1.

Determine

the

communication

protocol

that

you

will

be

using.

2.

Issue

the

appropriate

command

to

catalog

the

node

entry.

v

If

your

communication

protocol

is

Transmission

Control

Protocol/Internet

Protocol

(TCP/IP),

issue

the

CATALOG

TCPIP

NODE

command.

For

example:

CATALOG

TCPIP

NODE

DB2NODE

REMOTE

SYSTEM42

SERVER

DB2TCP42

The

DB2NODE

value

is

the

name

that

you

assign

to

the

node

that

you

are

cataloging.

REMOTE

SYSTEM42

is

the

host

name

of

the

system

where

the

data

source

resides.

SERVER

DB2TCP42

is

the

service

name

or

primary

port

number

of

the

server

database

manager

instance.

If

a

service

name

is

used,

it

is

case

sensitive.

v

If

your

communication

protocol

is

SNA,

issue

the

CATALOG

APPC

NODE

command.

For

example:

158

Data

Source

Configuration

Guide

CATALOG

APPC

NODE

DB2NODE

REMOTE

DB2CPIC

SECURITY

PROGRAM

The

DB2NODE

value

is

the

name

that

you

assign

to

the

node

that

you

are

cataloging.

REMOTE

DB2CPIC

is

the

SNA

partner

logical

unit

(LU)

name

of

the

remote

partner

node.

SECURITY

PROGRAM

specifies

that

both

a

user

name

and

a

password

are

to

be

included

in

the

allocation

request

that

is

sent

to

the

partner

LU.

The

next

task

in

this

sequence

of

tasks

is

cataloging

the

remote

database

in

the

federated

system

database

directory.

Related

tasks:

v

“Cataloging

the

remote

database

in

the

federated

system

database

directory”

on

page

159

Cataloging

the

remote

database

in

the

federated

system

database

directory

Cataloging

the

remote

database

in

the

federated

system

database

directory

is

part

of

the

larger

task

of

adding

DB2

family

data

sources

to

federated

servers.

You

specify

which

DB2

data

source

database

that

the

federated

server

connects

to

by

cataloging

the

remote

database

in

the

federated

server

system

database

directory,

Procedure:

To

catalog

the

remote

database

in

the

federated

server

system

database

directory:

1.

Use

the

Client

Configuration

Assistant

(CCA).

For

federated

servers

on

UNIX,

you

can

alternatively

use

the

CATALOG

DATABASE

command.

For

example:

CATALOG

DATABASE

DB2DB390

AS

CLIENTS390

AT

NODE

DB2NODE

AUTHENTICATION

DCS

The

value

DB2DB390

is

the

name

of

the

remote

database

that

you

are

cataloging

in

the

federated

server

system

database

directory.

AS

CLIENTS390

is

the

alias

for

the

database

being

cataloged.

If

you

do

not

specify

an

alias,

the

database

manager

uses

the

database

name

(for

example

DB2DB390)

as

the

alias.

AT

NODE

DB2NODE

is

the

name

of

the

node

that

you

specified

when

cataloging

the

node

entry

in

the

node

directory.

AUTHENTICATION

SERVER

specifies

that

authentication

takes

place

on

the

DB2

data

source

node.

2.

If

the

name

of

the

remote

database

is

more

than

eight

characters,

you

must

create

a

DCS

directory

entry

by

issuing

the

CATALOG

DCS

DATABASE

command.

For

example:

CATALOG

DCS

DATABASE

SALES400

AS

SALES_DB2DB400

The

value

SALES400

is

the

alias

of

the

remote

database

to

catalog.

This

name

should

match

the

name

of

an

entry

in

the

federated

server

system

database

directory

that

is

associated

with

the

remote

node.

It

is

the

same

name

you

entered

in

the

CATALOG

DATABASE

command.

AS

SALES_DB2DB400

is

the

name

of

the

target

host

database

that

you

want

to

catalog.

The

next

task

in

this

sequence

of

tasks

is

registering

the

DB2

wrapper.

Related

tasks:

Chapter

9.

Configuring

access

to

DB2

family

data

sources

159

|

v

“Cataloging

a

node

entry

in

the

federated

node

directory”

on

page

158

v

“Registering

the

DB2

wrapper”

on

page

160

Registering

the

DB2

wrapper

Registering

the

DB2

wrapper

is

part

of

the

larger

task

of

adding

DB2

family

data

sources

to

a

federated

server.

You

must

register

a

wrapper

to

access

DB2

family

data

sources.

Wrappers

are

used

by

federated

servers

to

communicate

with

and

retrieve

data

from

data

sources.

Wrappers

are

implemented

as

a

set

of

library

files.

Procedure:

To

register

a

wrapper,

issue

the

CREATE

WRAPPER

statement

and

specify

the

default

name

for

the

wrapper.

For

example:

CREATE

WRAPPER

DRDA

Recommendation:

Use

the

default

wrapper

name

called

DRDA.

When

you

register

the

wrapper

by

using

the

default

name,

the

federated

server

automatically

takes

the

default

library

name

that

is

associated

with

that

wrapper

name.

If

the

wrapper

name

conflicts

with

an

existing

wrapper

name

in

the

federated

database,

you

can

substitute

the

default

wrapper

name

with

a

name

you

choose.

If

you

use

a

name

that

is

different

from

the

default

name,

you

must

include

the

LIBRARY

parameter

in

the

CREATE

WRAPPER

statement.

For

example,

to

register

a

wrapper

with

the

name

db2_wrapper

on

the

federated

server

that

uses

the

AIX

operating

system,

issue

the

following

statement:

CREATE

WRAPPER

db2_wrapper

LIBRARY

’libdb2drda.a’

The

name

of

the

wrapper

library

file

that

you

specify

depends

on

the

operating

system

of

the

federated

server.

See

the

list

of

DB2

wrapper

library

files

for

the

correct

name

to

specify

in

the

CREATE

WRAPPER

statement.

The

next

task

in

this

sequence

of

tasks

is

registering

the

server

definitions

for

the

DB2

wrapper.

Related

tasks:

v

“Registering

the

server

definitions

for

a

DB2

data

source”

on

page

161

Related

reference:

v

“DB2

wrapper

library

files”

on

page

160

v

“CREATE

WRAPPER

statement”

in

the

SQL

Reference,

Volume

2

DB2

wrapper

library

files

The

following

table

lists

the

directory

paths

and

library

file

names

for

the

DB2

wrapper.

160

Data

Source

Configuration

Guide

|

|
|

When

you

install

DB2

Information

Integrator,

3

library

files

are

added

to

the

directory

path

listed

in

the

table.

For

example,

if

the

federated

server

is

running

on

AIX,

the

wrapper

library

files

added

to

the

directory

path

are

libdb2drda.a,

libdb2drdaF.a,

and

libdb2drdaU.a.

When

you

register

a

wrapper,

specify

only

the

library

file

name

that

is

listed

in

the

table.

Table

34.

DB2

wrapper

library

locations

and

file

names

Operating

system

Directory

path

Wrapper

library

file

AIX

/usr/opt/db2_08_01/lib/

libdb2drda.a

HP-UX

/opt/IBM/db2/V8.1/lib

libdb2drda.sl

Linux

/opt/IBM/db2/V8.1/lib

libdb2drda.so

Solaris

/opt/IBM/db2/V8.1/lib

libdb2drda.so

Windows

%DB2PATH%\bin

db2drda.dll

%DB2PATH%

is

the

environment

variable

that

is

used

to

specify

the

directory

path

where

DB2

Information

Integrator

is

installed

on

Windows.

The

default

Windows

directory

path

is

C:\Program

Files\IBM\SQLLIB.

Related

tasks:

v

“Registering

the

DB2

wrapper”

on

page

160

Registering

the

server

definitions

for

a

DB2

data

source

Registering

the

server

definitions

for

a

DB2

data

source

is

part

of

the

larger

task

of

adding

DB2

family

data

sources

to

federated

servers.

In

the

federated

database,

you

must

define

each

DB2

server

that

you

want

to

access.

When

you

register

the

server

definition,

the

federated

server

connects

to

the

DB2

server

and

binds

packages

to

the

database.

Because

the

information

for

authorization

and

password

are

not

stored

in

the

federated

global

catalog,

you

must

include

them

in

the

server

definition.

Procedure:

To

register

a

server

definition

for

a

DB2

data

source,

issue

the

CREATE

SERVER

statement.

For

example:

CREATE

SERVER

server_name

TYPE

DB2/ZOS

VERSION

6

WRAPPER

DRDA

AUTHORIZATION

"name1"

PASSWORD

"passwd1"

OPTIONS

(DBNAME

’db_name’)

The

name

that

you

assign

to

a

server

must

be

unique.

Duplicate

server

names

are

not

allowed.

The

VERSION

option

that

you

specify

is

the

version

of

the

DB2

database

server

that

you

want

to

access.

The

name

of

the

WRAPPER

parameter

must

be

the

name

that

you

specified

in

the

CREATE

WRAPPER

statement.

Chapter

9.

Configuring

access

to

DB2

family

data

sources

161

|
|
|
|

|
|

||

|||

|||

|||

|||

|||

|||
|

|
|
|

|

|

Although

the

database

name

is

specified

as

an

option

in

the

CREATE

SERVER

statement,

it

is

required

for

DB2

data

sources.

When

you

issue

the

CREATE

SERVER

statement,

the

federated

server

will

test

the

connection

to

the

DB2

data

source

server.

After

you

register

the

server

definition,

you

can

add

or

drop

server

options

by

issuing

the

ALTER

SERVER

statement.

The

next

task

in

this

sequence

of

tasks

is

creating

the

user

mapping

for

a

DB2

data

source.

Related

tasks:

v

“Adding

DB2

family

data

sources

to

a

federated

server”

on

page

157

v

“Creating

the

user

mapping

for

a

DB2

data

source”

on

page

163

Related

reference:

v

“CREATE

SERVER

statement”

in

the

SQL

Reference,

Volume

2

v

“Supported

data

sources”

on

page

5

v

“CREATE

SERVER

statement

-

Examples

for

DB2

wrapper”

on

page

162

CREATE

SERVER

statement

-

Examples

for

DB2

wrapper

This

topic

provides

examples

that

show

you

how

to

use

the

CREATE

SERVER

statement

to

register

servers

for

wrappers

on

DB2

family

data

sources.

This

topic

includes

a

complete

example,

which

shows

how

to

create

a

server

with

all

required

parameters,

and

an

example

with

additional

server

options.

Complete

example:

The

following

example

shows

you

how

to

create

a

server

definition

for

a

DB2

wrapper

by

using

the

CREATE

SERVER

statement:

CREATE

SERVER

DB2SERVER

TYPE

DB2/ZOS

VERSION

6

WRAPPER

DRDA

AUTHORIZATION

"spalten"

PASSWORD

"db2guru"

OPTIONS

(DBNAME

’CLIENTS390’)

DB2SERVER

A

name

that

you

assign

to

the

DB2

database

server.

This

name

must

be

unique.

Duplicate

server

names

are

not

allowed.

TYPE

DB2/ZOS

Specifies

the

type

of

data

source

server

to

which

you

are

configuring

access.

VERSION

6

The

version

of

the

DB2

database

server

that

you

want

to

access.

WRAPPER

DRDA

The

name

that

you

specified

in

the

CREATE

WRAPPER

statement.

AUTHORIZATION

″spalten″

The

authorization

ID

at

the

data

source.

This

ID

must

have

BINDADD

authority

at

the

data

source.

This

value

is

case

sensitive.

PASSWORD

″db2guru″

The

password

that

is

associated

with

the

authorization

ID

at

the

data

source.

This

value

is

case

sensitive.

162

Data

Source

Configuration

Guide

DBNAME

’CLIENTS390’

The

alias

for

the

DB2

database

that

you

want

to

access.

You

defined

this

alias

when

you

cataloged

the

database

using

the

CATALOG

DATABASE

command.

This

value

is

case

sensitive.

This

database

name

is

required

for

DB2

data

sources.

Server

option

example:

When

you

register

the

server

definition,

you

can

specify

additional

server

options

in

the

CREATE

SERVER

statement.

These

options

include

general

server

options

and

DB2

data

source-specific

server

options.

The

following

example

shows

a

server

definition

with

the

CPU_RATIO

option.

CREATE

SERVER

DB2SERVER

TYPE

DB2/ZOS

VERSION

6

WRAPPER

DRDA

AUTHORIZATION

"spalten"

PASSWORD

"db2guru"

OPTIONS

(DBNAME

’CLIENTS390’,

CPU_RATIO

’0.001’)

If

you

set

the

CPU_RATIO

option

to

’0.001’,

this

indicates

the

CPU

at

the

remote

data

source

1000

times

more

available

capacity

than

the

federated

server.

Related

tasks:

v

“Registering

the

server

definitions

for

a

DB2

data

source”

on

page

161

Related

reference:

v

“CREATE

SERVER

statement”

in

the

SQL

Reference,

Volume

2

v

Appendix

C,

“Valid

server

types

in

SQL

statements,”

on

page

569

Creating

the

user

mapping

for

a

DB2

data

source

Creating

the

user

mapping

for

a

DB2

data

source

is

part

of

the

larger

task

of

adding

DB2

family

data

sources

to

federated

servers.

When

you

attempt

to

access

a

DB2

server,

the

federated

server

establishes

a

connection

to

the

data

source

using

a

user

ID

and

password

that

are

valid

for

that

data

source.

You

must

define

an

association

(a

user

mapping)

between

the

federated

server

user

ID

and

password

and

the

corresponding

data

source

user

ID

and

password.

Create

a

user

mapping

for

each

user

ID

that

will

access

the

federated

system

to

send

distributed

requests.

Procedure:

To

map

the

local

user

ID

to

the

DB2

server

user

ID

and

password,

issue

a

CREATE

USER

MAPPING

statement.

For

example:

CREATE

USER

MAPPING

FOR

USERID

SERVER

DB2SERVER

OPTIONS

(REMOTE_AUTHID

’remote_id’,

REMOTE_PASSWORD

’remote_password’)

The

REMOTE_AUTHID

is

the

connect

authorization

ID,

not

the

bind

authorization

ID.

The

next

task

in

this

sequence

of

tasks

is

testing

the

connection

to

the

DB2

data

source

server.

Related

tasks:

Chapter

9.

Configuring

access

to

DB2

family

data

sources

163

|

|
|

v

“Testing

the

connection

to

the

DB2

data

source

server”

on

page

165

Related

reference:

v

“CREATE

USER

MAPPING

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

USER

MAPPING

statement

-

Examples

for

DB2

wrapper”

on

page

164

CREATE

USER

MAPPING

statement

-

Examples

for

DB2

wrapper

This

topic

provides

examples

that

show

you

how

to

use

the

CREATE

USER

MAPPING

statement

to

map

a

local

user

ID

to

the

DB2

server

user

ID

and

password.

This

topic

includes

a

complete

example

with

all

required

parameters

and

an

example

that

shows

you

how

to

use

the

DB2

special

register

USER

with

the

CREATE

USER

MAPPING

statement.

Complete

example:

The

following

example

shows

how

to

map

a

local

user

ID

to

the

DB2

server

user

ID:

CREATE

USER

MAPPING

FOR

DB2USER

SERVER

DB2SERVER

OPTIONS

(REMOTE_AUTHID

’db2admin’,

REMOTE_PASSWORD

’day2night’)

DB2USER

Specifies

the

local

user

ID

that

you

are

mapping

to

a

user

ID

that

is

defined

at

a

DB2

family

data

source

server.

SERVER

DB2SERVER

Specifies

the

name

of

the

DB2

family

data

source

server

that

you

defined

in

the

CREATE

SERVER

statement.

REMOTE_AUTHID

’db2admin’

Specifies

the

connect

authorization

user

ID

at

the

DB2

family

data

source

server

to

which

you

are

mapping

DB2USER.

Use

single

quotation

marks

to

preserve

the

case

of

this

value

unless

you

set

the

FOLD_ID

server

option

to

’U’

or

’L’

in

the

CREATE

SERVER

statement.

REMOTE_PASSWORD

’day2night’

Specifies

the

password

that

is

associated

with

’db2admin’.

Use

single

quotation

marks

to

preserve

the

case

of

this

value

unless

you

set

the

FOLD_PW

server

option

to

’U’

or

’L’

in

the

CREATE

SERVER

statement.

Special

register

example:

The

following

is

an

example

of

the

CREATE

USER

MAPPING

statement

which

includes

the

special

register

USER:

CREATE

USER

MAPPING

FOR

USER

SERVER

DB2SERVER

OPTIONS

(REMOTE_AUTHID

’db2admin’,

REMOTE_PASSWORD

’day2night’)

You

can

use

the

DB2

special

register

USER

to

map

the

authorization

ID

of

the

person

issuing

the

CREATE

USER

MAPPING

statement

to

the

data

source

authorization

ID

specified

in

the

REMOTE_AUTHID

user

option.

Related

tasks:

v

“Creating

the

user

mapping

for

a

DB2

data

source”

on

page

163

Related

reference:

164

Data

Source

Configuration

Guide

v

“CREATE

USER

MAPPING

statement”

in

the

SQL

Reference,

Volume

2

Testing

the

connection

to

the

DB2

data

source

server

Testing

the

connection

to

the

DB2

data

source

server

is

part

of

the

larger

task

of

adding

DB2

family

data

sources

to

federated

servers.

You

can

test

the

connection

to

the

DB2

server

by

using

the

server

definition

and

user

mappings

that

you

defined.

Procedure:

To

test

the

connection:

1.

Open

a

pass-through

session

to

issue

an

SQL

SELECT

statement

on

the

DB2

system

tables.

For

example:

v

On

DB2

for

z/OS

and

OS/390:

SET

PASSTHRU

server_name

SELECT

count(*)

FROM

sysibm.systables

SET

PASSTHRU

RESET

v

On

DB2

for

iSeries:

SET

PASSTHRU

remote_server_name

SELECT

count(*)

FROM

qsys2.systables

SET

PASSTHRU

RESET

If

the

SQL

SELECT

statement

returns

a

count,

your

server

definition

and

your

user

mapping

are

set

up

properly.

2.

If

the

SQL

SELECT

statement

returns

an

error,

you

might

need

to:

v

Check

the

remote

server

to

make

sure

that

it

is

started.

v

Check

the

listener

on

the

remote

server

to

make

sure

that

it

is

configured

for

incoming

connections.

v

Check

your

user

mapping

to

make

sure

that

the

settings

for

the

REMOTE_AUTHID

and

REMOTE_PASSWORD

options

are

valid

for

connections

to

the

DB2

server.

v

Check

the

DB2

catalog

entries

for

the

node

and

database.

v

Check

the

settings

of

your

DB2

federated

variables

to

verify

that

you

can

access

the

remote

DB2

server.

These

variables

include

the

system

environment

variables,

the

db2dj.ini

variables,

and

the

DB2

Profile

Registry

(db2set)

DB2COMM

variable.

v

Check

your

server

definition.

If

necessary,

drop

the

server

definition,

and

create

it

again.

v

Check

your

user

mapping.

If

necessary,

alter

the

user

mapping,

or

create

another

user

mapping.

The

next

task

in

this

sequence

of

tasks

is

registering

nicknames

for

DB2

tables

and

views.

Related

tasks:

v

“Registering

nicknames

for

DB2

tables

and

views”

on

page

166

v

“Setting

the

data

source

environment

variables”

on

page

58

Related

reference:

v

“ALTER

USER

MAPPING

statement”

in

the

SQL

Reference,

Volume

2

Chapter

9.

Configuring

access

to

DB2

family

data

sources

165

Registering

nicknames

for

DB2

tables

and

views

Registering

nicknames

for

DB2

tables

and

views

is

part

of

the

larger

task

of

adding

DB2

family

data

sources

to

a

federated

server.

The

federated

database

relies

on

catalog

statistics

for

nicknamed

objects

to

optimize

query

processing.

These

statistics

are

gathered

when

you

register

a

nickname

for

a

data

source

object

using

the

CREATE

NICKNAME

statement.

The

federated

database

verifies

the

presence

of

the

object

at

the

data

source,

and

then

attempts

to

gather

existing

data

source

statistical

data.

Information

useful

to

the

optimizer

is

read

from

the

data

source

catalogs

and

put

into

the

global

catalog

on

the

federated

server.

Because

some

or

all

of

the

data

source

catalog

information

might

be

used

by

the

optimizer,

it

is

advisable

to

update

statistics

(using

the

data

source

command

equivalent

to

the

RUNSTATS

command)

at

the

data

source

before

you

register

a

nickname.

Use

the

CREATE

NICKNAME

statement

to

register

a

nickname

for

a

view

or

table

that

is

located

at

your

DB2

family

data

source.

Use

these

nicknames,

instead

of

the

names

of

the

data

source

objects,

when

you

query

the

DB2

family

data

source.

Restrictions:

You

cannot

create

a

nickname

on

a

DB2

alias.

Procedure:

To

register

a

nickname,

issue

the

CREATE

NICKNAME

statement.

For

example:

CREATE

NICKNAME

DB2NICKNAME

FOR

DB2SERVER.remote_schema.remote_table

Nicknames

can

be

up

to

128

characters

in

length.

Repeat

this

step

for

each

DB2

table

or

view

for

which

you

want

to

register

a

nickname.

When

you

register

the

nickname,

the

federated

server

will

use

the

connection

to

query

the

data

source

catalog.

This

query

tests

your

connection

to

the

data

source

by

using

the

nickname.

If

the

connection

does

not

work,

you

will

receive

an

error

message.

Related

reference:

v

“RUNSTATS

Command”

in

the

Command

Reference

v

“CREATE

NICKNAME

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

NICKNAME

statement

-

Examples

for

DB2

wrapper”

on

page

166

CREATE

NICKNAME

statement

-

Examples

for

DB2

wrapper

This

topic

provides

an

example

that

shows

you

how

to

use

the

CREATE

NICKNAME

statement

to

register

a

nickname

for

a

DB2

table

or

view

that

you

want

to

access.

The

following

example

shows

a

CREATE

NICKNAME

statement:

CREATE

NICKNAME

DB2SALES

FOR

DB2SERVER.SALESDATA.EUROPE

166

Data

Source

Configuration

Guide

|

DB2SALES

A

unique

nickname

that

is

used

to

identify

the

DB2

table

or

view.

Note:

The

nickname

is

a

two-part

name

that

includes

the

schema

and

the

nickname.

If

you

omit

the

schema

when

you

register

the

nickname,

the

schema

of

the

nickname

will

be

the

authorization

ID

of

the

user

creating

the

nickname.

DB2SERVER.SALESDATA.EUROPE

A

three-part

identifier

for

the

remote

object:

v

DB2SERVER

is

the

name

that

you

assigned

to

the

DB2

database

server

in

the

CREATE

SERVER

statement.

v

SALESDATA

is

the

name

of

the

remote

schema

to

which

the

table

or

view

belongs.

This

value

is

case

sensitive.

v

EUROPE

is

the

name

of

the

remote

table

or

view

that

you

want

to

access.

Related

tasks:

v

“Altering

a

nickname”

on

page

523

v

“Registering

nicknames

for

DB2

tables

and

views”

on

page

166

Related

reference:

v

“CREATE

NICKNAME

statement”

in

the

SQL

Reference,

Volume

2

Chapter

9.

Configuring

access

to

DB2

family

data

sources

167

168

Data

Source

Configuration

Guide

Chapter

10.

Configuring

access

to

Documentum

data

sources

This

chapter

explains

how

to

configure

your

federated

server

to

access

data

that

is

stored

in

Documentum

data

sources.

You

can

configure

access

to

Documentum

data

sources

by

using

the

DB2

Control

Center

or

by

issuing

SQL

statements.

This

chapter:

v

Explains

what

Documentum

is

v

Lists

the

tasks

that

you

need

to

perform

v

Contains

examples

of

the

SQL

statements

that

you

need

v

Lists

the

error

messages

associated

with

the

Documentum

wrapper

What

is

Documentum?

Documentum

is

document

management

software

that

provides

management

of

document

content

and

attributes

such

as

check-in,

check-out,

workflow,

and

version

management.

The

Documentum

product

is

a

three-tier,

client-server

system

built

on

top

of

a

relational

database.

A

Docbase

is

a

Documentum

repository

that

stores

document

content,

attributes,

relationships,

versions,

renditions,

formats,

workflow,

and

security.

Documentum

Query

Language

(DQL),

an

extended

SQL

dialect,

is

used

to

query

Documentum

data.

A

Docbase

is

the

equivalent

of

an

Oracle

instance

or

a

DB2®

database

plus

document

content

files.

The

metadata

is

stored

in

the

underlying

relational

database

management

system

(RDBMS),

and

the

content

is

stored

as

binary

large

objects

(BLOBs)

in

the

database

or

as

files

stored

within

the

file-system

of

the

server

system.

For

more

information

on

Documentum,

refer

to

the

Documentum

manuals.

The

wrapper

for

Documentum

allows

you

to

add

a

Documentum

data

source

to

a

DB2

federated

system.

By

adding

the

Documentum

data

source

to

a

federated

system,

you

can

use

SQL

statements

to

access

and

query

objects

and

registered

tables

in

a

Documentum

Docbase.

You

can

then

integrate

this

data

with

other

data

sources

in

your

federated

system

without

having

to

move

the

data

out

of

the

native

data

source.

The

Documentum

wrapper

uses

a

client

library

to

interface

with

the

Documentum

server.

The

Documentum

wrapper

provides

access

to

two

versions

of

the

Documentum

server:

EDMS

98

(also

referred

to

as

version

3)

and

4i.

Figure

20

on

page

170

illustrates

how

the

Documentum

wrapper

works.

©

Copyright

IBM

Corp.

1998,

2004

169

After

the

Documentum

wrapper

is

registered,

you

can

map

Documentum

Docbase

objects

and

registered

tables

as

relational

tables.

This

is

done

by

mapping

Docbase

attributes

to

column

names

in

a

DB2

relational

table.

For

example,

Table

35

lists

a

subset

of

attributes

for

the

Documentum

Docbase

default

document

type,

dm_document,

along

with

the

associated

data.

You

have

determined

that

this

attribute

subset

is

important

to

you,

and

you

would

like

to

connect

these

attributes

into

your

federated

database

system.

You

named

this

subset

of

data

DrugAB_data.

Table

35.

DrugAB_data

Title

Subject

Authors

Keywords

The

effect

of

drug

A

on

rabbits

Drug

A

Curran,

L.

rabbits,

drug

A

Toxicity

results

for

drug

A

Drug

A

Abelite,

P.,

McMurtrey,

K.

toxicity,

drug

A

Drug

B

interactions

Drug

B

DeNiro,

R.,

Stone,

S.

interactions,

drug

B

Chemical

structure

of

drug

B

Drug

B

Boyslim,

F.

structure,

drug

B

After

you

register

the

Documentum

wrapper,

the

data

can

be

queried

using

SQL

statements.

The

following

query

displays

the

titles

and

authors

whose

subject

is

Drug

A.

The

result

table

is

shown

in

Table

36.

SELECT

title,

authors

FROM

drugAB_data

WHERE

subject

=

’Drug

A’

Table

36.

Query

results

Title

Authors

The

effect

of

drug

A

on

rabbits

Curran,

L.

Toxicity

results

for

drug

A

Abelite,

P.,

McMurtrey,

K.

Application
F E V G B O W Hile dit iew o ookmarks ptions indow elp

DB2 Client Federated database

DB2 Universal
Database
federated
database

SQL

Relational
results
table

Documentum
wrapper

D
ocum

entum
C

lient A
P

I/Library

Documentum
Docbase

server

Documentum
Docbase

Figure

20.

How

the

Documentum

wrapper

works

170

Data

Source

Configuration

Guide

Related

tasks:

v

“Adding

Documentum

data

sources

to

a

federated

server”

on

page

171

Adding

Documentum

to

a

federated

server

Adding

Documentum

data

sources

to

a

federated

server

To

configure

the

federated

server

to

access

Documentum

data

sources,

you

must

provide

the

federated

server

with

information

about

the

data

sources

and

objects

that

you

want

to

access.

You

can

configure

the

federated

server

to

access

Documentum

data

sources

by

using

the

DB2

Control

Center

or

the

DB2

command

line.

The

DB2

Control

Center

includes

a

wizard

to

guide

you

through

the

steps

required

to

configure

the

federated

server.

Prerequisites:

v

DB2

Information

Integrator

must

be

installed

on

a

server

that

will

act

as

the

federated

server

v

A

federated

database

must

exist

on

the

federated

server

Procedure:

To

add

Documentum

data

sources

to

a

federated

server:

1.

Making

the

Documentum

client

library

available

to

the

wrapper.

2.

Set

the

Documentum

environment

variables

3.

Register

the

wrapper.

4.

Register

the

server

definition.

5.

Create

the

user

mappings.

6.

Register

nicknames

for

Documentum

Docbase

objects

and

registered

tables.

7.

Register

custom

functions

for

the

Documentum

wrapper.

Related

concepts:

v

“DB2

Information

Integrator

installation

process

-

overview”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Fast

track

to

configuring

your

data

sources”

on

page

55

Related

tasks:

v

“Creating

a

federated

database”

on

page

51

v

“Making

the

Documentum

client

library

available

to

the

wrapper”

on

page

172

v

“Setting

the

Documentum

environment

variables”

on

page

172

v

“Registering

the

Documentum

wrapper”

on

page

174

v

“Registering

the

server

for

Documentum

data

sources”

on

page

175

v

“Registering

user

mappings

for

Documentum

data

sources”

on

page

176

v

“Registering

nicknames

for

Documentum

data

sources”

on

page

176

v

“Registering

the

custom

functions

for

the

Documentum

wrapper”

on

page

182

v

“Checking

the

setup

of

the

federated

server”

on

page

37

Related

reference:

Chapter

10.

Configuring

access

to

Documentum

data

sources

171

|
|
|
|

v

“Supported

operating

systems

for

DB2

Information

Integrator

(32-bit)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Supported

operating

systems

for

DB2

Information

Integrator

(64-bit)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

Making

the

Documentum

client

library

available

to

the

wrapper

Making

the

Documentum

client

library

available

to

the

wrapper

is

part

of

the

larger

task

of

adding

Documentum

to

a

federated

system.

The

client

library

must

be

made

available

to

the

wrapper

for

the

wrapper

to

function

correctly.

Prerequisites:

The

Documentum

wrapper

uses

Version

3.1.7a

of

the

client

library.

If

you

are

using

Documentum

4i

,

you

will

need

to

acquire

the

older

version

of

the

client

library

from

Documentum

(if

it

is

not

already

installed).

Procedure:

To

make

the

Documentum

client

library

available

to

the

wrapper,

create

a

symbolic

link

or

copy

the

client

library

into

the

appropriate

directory

on

the

federated

server.

The

following

table

lists

the

directory

that

you

should

copy

the

library

into.

Table

37.

Client

library

and

copy

to

directory

by

operating

system

Federate

server

operating

system

Client

library

Copy

to

directory

AIX

libdmcl.a

sqllib/lib

Solaris

libdmcl.so

sqllib/lib

Windows

dmcl32.dll

x:\sqllib\bin

The

next

task

in

this

sequence

of

tasks

is

setting

the

Documentum

wrapper

environment

variables.

Related

tasks:

v

“Setting

the

Documentum

environment

variables”

on

page

172

Setting

the

Documentum

environment

variables

Setting

the

Documentum

environment

variables

is

part

of

the

larger

task

of

adding

Documentum

to

a

federated

server.

Access

to

Documentum

Docbases

is

controlled

through

the

Documentum

client

file

dmcl.ini.

The

federated

database

instance

must

have

its

environment

variables

set

to

the

Documentum

client

file

dmcl.ini

to

gain

access

to

a

Documentum

Docbase.

The

valid

environment

variables

for

Documentum

are:

v

DOCUMENTUM

v

DMCL_CONFIG

172

Data

Source

Configuration

Guide

|
|

|

|

|

Prerequisites:

A

federated

server

that

is

properly

set

up

to

access

your

data

sources.

This

includes

the

installation

and

configuration

of

any

required

software,

such

as

the

data

source

client

software.

Restrictions:

See

the

topic:

Restrictions

for

the

db2dj.ini

file

Procedure:

To

set

the

environment

variables:

1.

Edit

the

db2dj.ini

file,

and

set

either

the

DOCUMENTUM

or

DMCL_CONFIG

environment

variable.

v

On

federated

servers

that

run

AIX

and

Solaris,

the

db2dj.ini

file

is

located

in

$HOME/sqllib/cfg

v

On

federated

servers

that

run

Windows,

the

db2dj.ini

file

is

in

x:\sqllib\cfg

where

x:

represents

the

drive

on

which

the

sqllib

directory

is

located

The

following

examples

shows

the

syntax

for

these

variables

on

UNIX

operating

systems:

DOCUMENTUM=path

or

DMCL_CONFIG=path/dmcl.ini

where

path

is

the

fully

qualified

directory

that

contains

the

dmcl.ini

file

that

you

want

to

use.

Refer

to

the

documentation

that

comes

with

Documentum

for

more

information

about

path

for

the

dmcl.ini

file.

If

both

of

these

variables

are

set

in

the

db2dj.ini

file,

the

value

for

the

DMCL_CONFIG

variable

is

used.

If

you

do

not

set

either

of

these

variables

in

the

db2dj.ini

file,

an

error

is

returned.

2.

Ensure

that

the

name

of

a

docbroker,

to

which

all

accessible

Docbases

for

the

DB2

instance

report,

is

specified

in

the

dmcl.ini

file

as

shown

in

Figure

21.

3.

To

ensure

that

the

environment

variables

are

set

on

the

federated

server,

recycle

the

DB2

instance.

Issue

the

following

commands

to

recycle

the

DB2

instance:

db2stop

db2start

##################

DOCUMENTUM

CLIENT

CONFIGURATION

FILE

######################

#

#

Copyright

Documentum

1994.

#

Version

3.1

of

the

Documentum

Server.

#

#

A

generated

client

init

file

for

the

Documentum

Server.

#

#

The

only

REQUIRED

information

in

this

file

is

the

#

[DOCBROKER_PRIMARY]

section

and

an

entry

for

host.

#

The

host

value

should

be

the

name

of

host

on

which

#

your

network

wide

DocBroker

is

running

[DOCBROKER_PRIMARY]

host

=

server16.comp2.big.com

Figure

21.

Sample

dmcl.ini

file

with

docbroker

name

specified

Chapter

10.

Configuring

access

to

Documentum

data

sources

173

|
|
|

|
|
|

The

next

task

in

this

sequence

of

tasks

is

registering

the

Documentum

wrapper.

Related

tasks:

v

“Registering

the

Documentum

wrapper”

on

page

174

Related

reference:

v

“Restrictions

for

the

db2dj.ini

file”

on

page

59

Registering

the

Documentum

wrapper

Registering

the

Documentum

wrapper

is

part

of

the

larger

task

of

adding

Documentum

data

sources

to

a

federated

server.

You

must

register

a

wrapper

to

access

Documentum

data

sources.

Wrappers

are

used

by

federated

servers

to

communicate

with

and

retrieve

data

from

data

sources.

Wrappers

are

implemented

as

a

set

of

library

files.

Procedure:

To

register

a

wrapper,

issue

the

CREATE

WRAPPER

statement

with

the

name

of

the

wrapper

and

the

name

of

the

wrapper

library

file.

For

example,

to

register

a

wrapper

with

the

name

dctm_wrapper

on

the

federated

server

that

uses

the

AIX

operating

system,

issue

the

following

statement:

CREATE

WRAPPER

dctm_wrapper

LIBRARY

’libdb2lsdctm.a’;

The

name

of

the

wrapper

library

file

that

you

specify

depends

on

the

operating

system

of

the

federated

server.

See

the

list

of

Documentum

wrapper

library

files

for

the

correct

name

to

specify

in

the

CREATE

WRAPPER

statement.

The

next

task

in

this

sequence

of

tasks

is

registering

the

server

definition

for

Documentum

data

sources.

Related

reference:

v

“Documentum

wrapper

library

files”

on

page

174

v

“CREATE

WRAPPER

statement”

in

the

SQL

Reference,

Volume

2

Documentum

wrapper

library

files

The

following

table

lists

the

directory

paths

and

library

file

names

for

the

Documentum

wrapper.

When

you

install

DB2

Information

Integrator,

3

library

files

are

added

to

the

directory

path

listed

in

the

table.

For

example,

if

the

federated

server

is

running

on

AIX,

the

wrapper

library

files

added

to

the

directory

path

are

libdb2lsdctm.a,

libdb2lsdctmF.a,

and

libdb2lsdctmU.a.

When

you

register

a

wrapper,

specify

only

the

library

file

name

that

is

listed

in

the

table.

Table

38.

Documentum

wrapper

library

locations

and

file

names

Operating

system

Directory

path

Wrapper

library

file

AIX

/usr/opt/db2_08_01/lib/

libdb2lsdctm.a

174

Data

Source

Configuration

Guide

|

|
|

|
|
|
|

|
|

||

|||

|||

Table

38.

Documentum

wrapper

library

locations

and

file

names

(continued)

Operating

system

Directory

path

Wrapper

library

file

Solaris

/opt/IBM/db2/V8.1/lib

libdb2lsdctm.so

Windows

%DB2PATH%\bin

db2lsdctm.dll

%DB2PATH%

is

the

environment

variable

that

is

used

to

specify

the

directory

path

where

DB2

Information

Integrator

is

installed

on

Windows.

The

default

Windows

directory

path

is

C:\Program

Files\IBM\SQLLIB.

Related

tasks:

v

“Registering

the

Documentum

wrapper”

on

page

174

Registering

the

server

for

Documentum

data

sources

Registering

the

server

definition

for

Documentum

data

sources

is

part

of

the

larger

task

of

adding

Documentum

to

a

federated

system.

Restrictions:

All

servers

running

on

the

same

instance

of

DB2

must

share

the

same

configuration

parameters

in

the

Documentum

dmcl.ini

file.

Procedure:

You

can

register

a

server

definition

from

the

DB2

Control

Center

or

the

DB2

command

line:

v

To

do

this

task

from

the

DB2

Control

Center,

use

the

Federated

Objects

wizard

or

right-click

the

Server

Definitions

folder

and

click

Create.

The

Discover

tool

retrieves

the

node

names

for

the

Documentum

servers.

You

must

specify

the

information

for

the

RDBMS_TYPE

and

OS_TYPE

server

options

to

register

the

server

definition.

v

To

do

this

task

from

the

DB2

command

line,

use

the

CREATE

SERVER

statement.

For

example,

to

register

the

server

definition

Dctm_Server1

for

a

Documentum

server

that

contains

a

Docbase

that

runs

on

AIX

and

uses

Oracle

to

store

data,

use

this

statement:

CREATE

SERVER

Dctm_Server1

TYPE

DCTM

VERSION

3

WRAPPER

Dctm_Wrapper

OPTIONS(

NODE

’Dctm_Docbase’,

OS_TYPE

’AIX’,

RDBMS_TYPE

’ORACLE’);

The

next

task

in

this

sequence

of

tasks

is

creating

the

user

mappings.

Related

tasks:

v

“Registering

user

mappings

for

Documentum

data

sources”

on

page

176

Related

reference:

v

“CREATE

SERVER

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

SERVER

statement

arguments

and

options

-

Documentum

wrapper”

on

page

540

Chapter

10.

Configuring

access

to

Documentum

data

sources

175

|

|||

|||

|||
|

|
|
|

|

|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

Registering

user

mappings

for

Documentum

data

sources

Creating

user

mappings

for

Documentum

data

sources

is

part

of

the

larger

task

of

adding

Documentum

to

a

federated

server.

When

you

attempt

to

access

a

Documentum

data

source,

the

federated

server

establishes

a

connection

to

the

data

source

using

a

user

ID

and

password

that

are

valid

for

that

data

source.

You

must

define

an

association

(a

user

mapping)

between

the

federated

server

user

ID

and

password

and

the

corresponding

data

source

user

ID

and

password.

Create

a

user

mapping

for

each

user

ID

that

will

access

the

federated

system

to

send

distributed

requests.

Procedure:

To

create

a

user

mapping,

use

the

CREATE

USER

MAPPING

statement.

For

example,

the

following

CREATE

USER

MAPPING

statement

maps

user

Chuck

to

user

Charles

on

the

Dctm_Server1

server.

CREATE

USER

MAPPING

FOR

Chuck

SERVER

Dctm_Server1

OPTIONS(REMOTE_AUTHID

’Charles’,

REMOTE_PASSWORD

’Charles_pw’);

You

can

use

the

DB2

special

register

USER

to

map

the

authorization

ID

of

the

person

issuing

the

CREATE

USER

MAPPING

statement

to

the

data

source

authorization

ID

specified

in

the

REMOTE_AUTHID

user

option.

For

example:

CREATE

USER

MAPPING

FOR

USER

SERVER

Dctm_Server1

OPTIONS(REMOTE_AUTHID

’Lisa’,

REMOTE_PASSWORD

’Lisa_pw’);

The

next

task

in

this

sequence

of

tasks

is

registering

nicknames

for

Documentum

data

sources.

Related

tasks:

v

“Registering

nicknames

for

Documentum

data

sources”

on

page

176

Related

reference:

v

“CREATE

USER

MAPPING

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

USER

MAPPING

statement

options

-

Documentum

wrapper”

on

page

541

Registering

nicknames

for

Documentum

data

sources

Registering

nicknames

for

Documentum

data

sources

Registering

nicknames

for

Documentum

data

sources

is

part

of

the

larger

task

of

adding

Documentum

to

a

federated

server.

After

you

create

the

user

mappings,

you

must

register

nicknames.

For

each

Documentum

server

that

you

define,

register

nicknames

for

each

Documentum

Docbase

object

type

or

registered

table

that

you

want

to

access.

You

use

these

nicknames,

instead

of

the

names

of

the

Docbase,

when

you

query

the

Documentum

data

sources.

Procedure:

To

register

nicknames,

use

the

CREATE

NICKNAME

statement.

176

Data

Source

Configuration

Guide

As

part

of

the

CREATE

NICKNAME

statement,

you

can

define

pseudo

columns.

If

you

do

not

define

the

pseudo

columns,

the

wrapper

will

create

them

The

next

task

in

this

sequence

of

tasks

is

registering

custom

functions

for

Documentum

data

sources.

Related

tasks:

v

“Registering

the

custom

functions

for

the

Documentum

wrapper”

on

page

182

v

“Setting

up

TurboBlast

to

work

with

the

BLAST

wrapper”

on

page

113

Related

reference:

v

“Pseudo

columns”

on

page

177

v

“CREATE

NICKNAME

statement

syntax

-

Documentum

wrapper”

on

page

541

v

“CREATE

NICKNAME

statement

-

Example

for

Documentum

wrapper”

on

page

180

Pseudo

columns

The

CREATE

NICKNAME

statement

that

you

use

with

Documentum

defines

6

pseudo

columns.

These

columns

are

used

to

access

object

content

and

other

information.

The

pseudo-columns

and

their

definitions

are

listed

in

Table

39.

Table

39.

Pseudo

column

names

and

definitions.

Pseudo

column

name

Definition

GET_FILE

VARCHAR

(nnn)

1

GET_FILE_DEL

VARCHAR

(nnn)

1

GET_RENDITION

VARCHAR

(nnn)

1

GET_RENDITION_DEL

VARCHAR

(nnn)

1

HITS

INTEGER

SCORE

DOUBLE

Note:

1.

The

length

of

VARCHAR

is

determined

by

the

maximum

path

length

of

the

federated

server

operating

system.

On

UNIX

federated

servers,

this

length

is

1024.

On

Windows

federated

servers,

this

length

is

260.

Chapter

10.

Configuring

access

to

Documentum

data

sources

177

||

||

||

||

||

||

||

||

|

|
|
|
|

Table

40

lists

pseudo

columns

for

SELECT

clauses.

Table

40.

Pseudo

columns

for

SELECT

clauses

Pseudo

column

name

Description

GET_FILE

Retrieves

the

content

file

for

the

current

row

in

addition

to

the

column

values.

The

extension

for

the

content

file

is

its

Documentum

format

name.

If

a

file

of

the

same

name

exists,

it

will

be

overwritten.

GET_FILE

attempts

to

get

the

object’s

base

format.

Its

value

in

the

row

is

the

fully

qualified

file

name

of

the

file

or

the

string

″no_content.″

For

example:

SELECT

object_name,

get_file

FROM

...

The

content

file

is

placed

in

the

server

directory

that

is

specified

by

the

Server’s

CONTENT_DIR

option.

It

is

also

placed

in

a

subdirectory

named

with

your

DB2

local

name.

The

subdirectory

will

be

created

if

it

doesn’t

exist.

It’s

extension

will

be

its

DOS

extension

defined

in

the

Docbase

for

the

document’s

format

type.

For

example,

″.doc″,

for

MS

Word

documents.

GET_FILE_DEL

This

function

is

the

same

as

GET_FILE

except

GET_FILE_DEL

first

deletes

the

file

retrieved

for

the

previous

row,

if

any,

in

that

query.

Its

value

in

the

row

is

the

fully

qualified

file

name

of

the

file

or

the

string

″no_content.″

GET_RENDITION

Retrieves

the

content

file

of

that

rendition,

a

copy

of

the

original

document

in

a

different

format,

for

the

current

row

in

addition

to

the

column

values.

The

extension

for

the

content

file

is

its

Documentum

format

name.

If

a

file

of

the

same

name

exists,

it

will

be

overwritten.

To

specify

the

rendition

format,

a

predicate

of

the

form

DCTM.RENDITION_FORMAT(<format)

=

1

must

be

specified

in

the

WHERE

clause.

For

example:

SELECT

object_name,

get_rendition

FROM

...

WHERE

DCTM.RENDITION_FORMAT(’pdf’)=1

GET_RENDITION

attempts

to

get

the

named

rendition

of

the

object.

Its

value

in

the

row

is

the

fully

qualified

file

name

of

the

file

or

the

string

″no_content.″

The

content

file

is

placed

in

the

server

directory

that

is

specified

by

the

Server’s

CONTENT_DIR

option.

It

is

also

placed

in

a

subdirectory

named

with

your

DB2

local

name.

The

subdirectory

will

be

created

if

it

doesn’t

exist.

It’s

extension

will

be

its

DOS

extension

defined

in

the

Docbase

for

the

document’s

format

type.

For

example,

″.doc″,

for

MS

Word

documents.

178

Data

Source

Configuration

Guide

Table

40.

Pseudo

columns

for

SELECT

clauses

(continued)

Pseudo

column

name

Description

GET_RENDITION_DEL

This

function

is

the

same

as

GET_RENDITION

except

GET_RENDITION_DEL

first

deletes

the

file

retrieved

for

the

previous

row,

if

any,

in

that

query.

Its

value

in

the

row

is

the

fully

qualified

file

name

of

the

file

or

the

string

″no_content.″

Table

41

lists

pseudo

columns

for

SELECT

clauses

in

queries

that

contain

search

clauses.

Table

41.

Pseudo

columns

for

SELECT

clauses

in

queries

that

contain

search

clauses

Pseudo

column

name

Description

HITS

Contains

an

integer

number

that

represents

the

number

of

places

in

the

document

in

which

the

search

criteria

was

matched.

For

example:

SELECT

r_object_id,

object_name,

hits

FROM

std_doc

WHERE

DCTM.SEARCH_WORDS

(’’’workflow’’

OR

’’flowchart’’’)=1

For

each

document

returned,

the

number

of

occurrences

of

the

words

″workflow″

and

″flowchart″

within

the

document’s

content

are

summed

and

returned

as

the

HITS

value.

The

HITS

pseudo

column

is

appropriate

when

the

documents

have

only

one

content

file.

This

is

the

typical

case.

This

pseudo

column

can

be

used

in

a

WHERE

clause

qualification

for

a

SELECT

statement.

However,

it

must

also

be

specified

in

the

SELECT

clause.

SCORE

Contains

a

document’s

relevance

ranking.

Use

this

pseudo

column

in

conjunction

with

the

Documentum’s

ACCRUE

concept

operator.

Both

return

a

number

that

indicates

how

many

of

the

specified

words

were

found

in

each

returned

document.

For

example:

SELECT

object_name,

score

FROM

std_doc

WHERE

DCTM.SEARCH_TOPIC(’<ACCRUE>("document","management","workflow")’)=1

AND

SCORE

>=75

The

statement

returns

all

documents

that

have

either

two

or

three

of

the

specified

words

in

their

content.

If

a

document

has

only

one

of

the

words,

it

is

assigned

a

score

of

50

and

therefore

fails

the

WHERE

clause

criteria

and

is

not

returned.

If

two

of

the

three

words

are

found,

a

document

is

assigned

a

score

of

75.

If

all

three

words

are

found,

the

document’s

score

is

88.

The

SCORE

pseudo

column

is

used

for

documents

that

have

one

content

file.

This

is

the

typical

case.

SCORE

can

be

in

a

SELECT

clause

only

if

the

WHERE

contains

a

SEARCH_WORDS()

or

SEARCH_TOPIC()

function.

In

a

WHERE

clause,

it

is

used

in

conjunction

with

the

ACCRUE

concept

operator.

For

information

on

the

ACCRUE

concept

operator,

see

the

Documentum

documentation.

Chapter

10.

Configuring

access

to

Documentum

data

sources

179

Related

tasks:

v

“Registering

nicknames

for

Documentum

data

sources”

on

page

176

v

“Registering

the

custom

functions

for

the

Documentum

wrapper”

on

page

182

CREATE

NICKNAME

statement

-

Example

for

Documentum

wrapper

The

following

CREATE

NICKNAME

statement

defines

the

nickname

std_doc.

Std_doc

is

associated

with

a

Documentum

Docbase

with

an

object

type

of

dm_document.

Table

42

maps

the

Documentum

attributes

and

data

types

to

DB2

relational

column

names

and

data

types

that

are

then

used

to

construct

the

CREATE

NICKNAME

statement.

Table

42.

Mapping

of

Documentum

attributes

to

DB2

columns

for

the

std_doc

nickname

Documentum

attribute

name

Documentum

data

type

DB2

column

name

DB2

data

type

Repeats?

Nullable?

object_name

string(255)

object_name

varchar

No

No

r_object_id

ID

object_id

char(16)

No

No

r_object_type

string(32)

object_type

varchar

No

No

title

string(255)

title

varchar

No

No

subject

string(128)

subject

varchar

No

No

authors

string(32)

author

varchar

Yes

Yes

keywords

string(32)

keyword

varchar

Yes

Yes

r_creation_date

time

creation_date

timestamp

No

Yes

r_modify_date

time

modified_date

timestamp

No

Yes

a_status

string(16)

status

varchar

No

No

a_content_type

string(32)

content_type

varchar

No

No

r_content_size

double

content_size

integer

No

No

owner_name

string(32)

owner_name

varchar

No

Yes

Table

43

describes

each

Documentum

attribute

used

in

the

nickname.

Table

43.

Description

of

Documentum

attributes

for

the

std_doc

nickname

Documentum

attribute

name

Description

object_name

The

user-defined

name

of

the

object.

r_object_id

The

unique

object

identifier

for

this

object,

set

at

creation

time.

r_object_type

The

object’s

type,

set

when

the

object

is

created.

title

The

user-defined

title

of

the

object.

subject

The

user-defined

subject

of

the

object.

authors

The

user-defined

list

of

the

authors

for

the

object.

keywords

The

list

of

user-defined

keywords

for

the

object.

r_creation_date

The

date

and

time

that

the

object

was

created.

r_modify_date

The

date

and

time

that

the

object

was

last

modified.

a_status

Set

by

server

when

a

router

task

is

forwarded.

The

value

is

taken

from

the

values

assigned

to

attached_task_status

in

the

router

object.

a_content_type

The

file

format

of

the

object’s

content.

180

Data

Source

Configuration

Guide

Table

43.

Description

of

Documentum

attributes

for

the

std_doc

nickname

(continued)

Documentum

attribute

name

Description

r_content_size

The

number

of

bytes

in

the

content.

For

multi-page

documents,

this

attribute

records

the

size

of

the

first

content

associated

with

the

document.

owner_name

The

name

of

the

object’s

owner

(the

user

who

created

the

object).

Table

42

on

page

180

translates

into

the

following

CREATE

NICKNAME

statement.

CREATE

NICKNAME

std_doc

(

object_name

varchar(255)

not

null,

object_id

char(16)

not

null

OPTIONS(REMOTE_NAME

’r_object_id’),

object_type

varchar(32)

not

null

OPTIONS(REMOTE_NAME

’r_object_type’),

title

varchar(255)

not

null,

subject

varchar(128)

not

null,

author

varchar(32)

OPTIONS(REMOTE_NAME

’authors’,

IS_REPEATING

’Y’),

keyword

varchar(32)

OPTIONS(REMOTE_NAME

’keywords’,

IS_REPEATING

’Y’),

creation_date

timestamp

OPTIONS(REMOTE_NAME

’r_creation_date’),

modifed_date

timestamp

OPTIONS(REMOTE_NAME

’r_modify_date’),

status

varchar(16)

not

null

OPTIONS(REMOTE_NAME

’a_status’),

content_type

varchar(32)

not

null

OPTIONS(REMOTE_NAME

’a_content_type’),

content_size

integer

not

null

OPTIONS(REMOTE_NAME

’r_content_size’),

owner_name

varchar(32))

FOR

SERVER

Dctm_Server2

OPTIONS

(REMOTE_OBJECT

’dm_document’,

IS_REG_TABLE

’N’)

After

you

submit

the

CREATE

NICKNAME

statement,

you

can

use

the

nickname

std_doc

to

query

your

federated

system.

You

can

also

join

the

std_doc

nickname

with

other

nicknames

and

tables

in

the

federated

system.

In

the

catalog,

the

number

of

columns

for

this

nickname

is

6

more

than

what

is

being

specified

in

the

CREATE

NICKNAME

statement

due

to

the

pseudo

columns.

You

can

use

the

CreateNicknameFile

utility

to

automatically

map

Documentum

types

to

DB2

types

and

to

create

an

initial

CREATE

NICKNAME

statement.

Related

tasks:

v

“Registering

nicknames

for

Documentum

data

sources”

on

page

176

Related

reference:

v

“CREATE

NICKNAME

statement

syntax

-

Documentum

wrapper”

on

page

541

Dual

defining

repeating

attributes

(Documentum

wrapper)

To

maximize

the

query

capabilities

of

the

wrapper,

each

attribute

must

be

defined

as

its

true

equivalent

DB2

data

type.

That

is,

Documentum

integers

must

be

defined

as

DB2

integers

and

so

forth.

However,

these

definitions

prevent

the

return

of

multiple

values

for

non-VARCHAR

repeating

attributes.

For

such

columns,

only

the

last

value

is

returned.

This

restriction

exists

because,

whenever

possible,

the

wrapper

returns

only

one

row

of

results

per

Docbase

object.

This

restriction

is

an

issue

only

when

repeating

attributes

are

selected.

However,

you

can

define

a

second

column

for

the

same

remote

repeating

attribute

but

with

a

data

type

of

VARCHAR.

Chapter

10.

Configuring

access

to

Documentum

data

sources

181

This

column

name

would

be

used

in

the

SELECT

list

to

return

all

values

as

a

delimiter-separated

list

of

all

its

values.

(Each

column’s

DELIMITER

option

specifies

the

delimiter

to

be

used.)

You

should

standardize

the

local

names

of

the

multi-value

columns.

You

can

standardize

the

local

names

of

each

multi-value

column

by

adding

a

prefix

of

"m_"

to

the

local

name

of

the

column

that

is

defined

as

its

true

data

type.

For

example,

suppose

you

have

a

nickname

column

of

a

Documentum

repeating

attribute

called

approval_dates

defined

with

the

data

type

TIMESTAMP.

You

can

create

a

second

nickname

column

called

m_approval_dates

and

define

it

as

a

VARCHAR

data

type.

You

can

then

use

m_approval_dates

in

a

SELECT

list

to

return

all

approval

dates

in

a

delimiter-separated

list.

You

do

not

need

to

use

dual

definitions

for

repeating

attributes

whose

true

data

type

is

VARCHAR.

Related

tasks:

v

“Registering

nicknames

for

Documentum

data

sources”

on

page

176

v

“Altering

a

nickname”

on

page

523

Queries

and

custom

functions

for

Documentum

data

sources

Registering

the

custom

functions

for

the

Documentum

wrapper

Registering

custom

functions

for

Documentum

data

sources

is

part

of

the

larger

task

of

adding

Documentum

to

a

federated

system.

You

must

use

the

CREATE

FUNCTION

statement

to

register

several

custom

functions.

You

can

use

these

functions

to

access

some

of

the

unique

capabilities

of

Documentum,

such

as

full-text

searching

and

retrieving

document

content

within

queries.

Custom

functions

for

predicates

are

listed

in

Table

44

on

page

183.

References

to

the

TOPIC

function

are

to

Documentum

function

provided

as

part

of

its

third-party

full-text

indexing

system

from

Verity,

Inc

Restrictions:

Because

DB2

does

not

support

the

Boolean

type,

most

of

the

custom

functions

(except

for

USER)

used

in

the

WHERE

clause

must

do

a

check

for

"=1"

because

these

functions

are

defined

to

return

an

integer.

For

example,

"...

WHERE

DCTM.ANY_EQ(authors,’Dave

Winters’)=1"

Procedure:

To

register

custom

functions,

use

the

CREATE

FUNCTION

statement.

All

custom

functions

must

be

registered

with

the

schema

name

DCTM.

The

fully-qualified

name

of

each

function

is

DCTM.function_name.

The

following

example

registers

the

ANY_EQ

custom

function.

182

Data

Source

Configuration

Guide

CREATE

FUNCTION

DCTM.ANY_EQ

(CHAR(),

CHAR())

RETURNS

INTEGER

AS

TEMPLATE

DETERMINISTIC

NO

EXTERNAL

ACTION

You

must

register

each

custom

function

one

time

for

each

federated

database

that

has

the

Documentum

wrapper

installed.

To

assist

you

in

registering

custom

functions,

the

sample

file,

create_function_mappings.ddl,

is

provided

in

the

sqllib/samples/lifesci/dctm

directory.

This

file

contains

definitions

for

each

custom

function.

You

can

run

this

DDL

file

to

register

the

custom

functions

for

each

federated

database

that

has

the

Documentum

wrapper

installed.

Custom

function

string

argument

rules

All

arguments

passed

as

strings

must

adhere

to

the

following

rules:

v

Each

string

is

enclosed

in

single

quotes.

v

Single

quotes

within

strings

are

expressed

by

two

single

quotes.

Using

custom

functions

in

queries

The

following

examples

illustrate

the

use

of

the

custom

functions

in

queries.

To

display

the

object

name

and

author

from

the

std_doc

nickname

for

documents

that

have

one

or

more

authors

named

’Dave

Winters’:

SELECT

object_name,authors

FROM

std_doc

WHERE

DCTM.ANY_EQ(authors,’Dave

Winters’)=1

To

display

the

object

name

and

author

from

the

std_doc

nickname

for

documents

that

have

one

or

more

authors

named

’Dave

Winters’

or

’Jon

Doe’:

SELECT

object_name,authors

FROM

std_doc

WHERE

DCTM.ANY_IN(authors,’Dave

Winters’,’Jon

Doe’)=1

To

display

the

object

name

and

r_object_id,

and

to

retrieve

the

content

file,

from

the

std_doc

nickname

for

documents

containing

strings

like

’Dave

Win%’

in

the

authors

column:

SELECT

object_name,

r_object_id,

get_file

FROM

std_doc

WHERE

DCTM.ANY_LIKE(authors,’Dave

Win%’)=1

Custom

function

table

Table

44

lists

the

custom

functions

for

predicates.

Table

44.

Custom

functions

for

predicates

Function

name

Description

ANY_EQ(arg1,

arg2)

Tests

a

repeating

attribute

for

any

value

equal

to

the

specified

value.

Takes

two

required

arguments:

arg1

Specifies

the

name

of

a

column

that

represents

a

repeating

attribute.

arg2

Specifies

the

value

to

be

compared.

For

example:

...

WHERE

DCTM.ANY_EQ(authors,’Dave

Winters’)=1

Chapter

10.

Configuring

access

to

Documentum

data

sources

183

Table

44.

Custom

functions

for

predicates

(continued)

Function

name

Description

ANY_NE(arg1,

arg2)

Tests

a

repeating

attribute

for

any

value

not

equal

to

the

specified

value.

Takes

two

required

arguments:

arg1

Specifies

the

name

of

a

column

that

represents

a

repeating

attribute.

arg2

Specifies

the

value

to

be

compared.

For

example:

...

WHERE

DCTM.ANY_NE(authors,’Dave

Winters’)=1

ANY_LT(arg1,

arg2)

Tests

a

repeating

attribute

for

any

value

less

than

the

specified

value.

Takes

two

required

arguments:

arg1

Specifies

the

name

of

a

column

that

represents

a

repeating

attribute.

arg2

Specifies

the

value

to

be

compared.

For

example:

...

WHERE

DCTM.ANY_LT(num_approvers,4)=1

ANY_GT(arg1,

arg2)

Tests

a

repeating

attribute

for

any

value

greater

than

the

specified

value.

Takes

two

required

arguments:

arg1

Specifies

the

name

of

a

column

that

represents

a

repeating

attribute.

arg2

Specifies

the

value

to

be

compared.

For

example:

...

WHERE

DCTM.ANY_GT(num_approvers,3)=1

ANY_LE(arg1,

arg2)

Tests

a

repeating

attribute

for

any

value

less

than

or

equal

to

the

specified

value.

Takes

two

required

arguments:

arg1

Specifies

the

name

of

a

column

that

represents

a

repeating

attribute.

arg2

Specifies

the

value

to

be

compared.

For

example:

...

WHERE

DCTM.ANY_LE(num_approvers,2)=1

ANY_GE(arg1,

arg2)

Tests

a

repeating

attribute

for

any

value

greater

than

or

equal

to

the

specified

value.

Takes

two

required

arguments:

arg1

Specifies

the

name

of

a

column

that

represents

a

repeating

attribute.

arg2

Specifies

the

value

to

be

compared.

For

example:

...

WHERE

DCTM.ANY_GE(num_approvers,1)=1

184

Data

Source

Configuration

Guide

Table

44.

Custom

functions

for

predicates

(continued)

Function

name

Description

ANY_IN(arg1,

arg2

–

arg11)

Tests

a

repeating

attribute

for

any

of

ten

values

in

a

specified

list

of

values.

Takes

3–11

arguments

of

the

same

data

type:

arg1

Specifies

the

name

of

a

column

that

represents

a

repeating

attribute.

arg2–arg11

Specifies

a

comma-separated

list

of

values

to

be

compared.

For

example:

...

WHERE

DCTM.ANY_IN(authors,’Crick’,’Watson’)=1

The

maximum

number

of

values

in

an

ANY_IN

custom

function

for

repeating

attributes

is

10

for

a

single

statement.

Multiple

statements

can

be

OR’d.

ANY_LIKE(arg1,

arg2)

Tests

a

repeating

attribute

for

any

value

like

the

specified

value.

Takes

two

required

arguments:

arg1

Specifies

the

name

of

a

column

that

represents

a

repeating

attribute.

arg2

Specifies

the

pattern

being

compared

with

sub-strings

in

single

quotes.

For

example:

...

WHERE

DCTM.ANY_LIKE(authors,’Dave

Win%’)=1

OR

DCTM.ANY_LIKE(keywords,’%_%’)=1

The

escape

clause

is

not

supported

in

ANY_LIKE()

predicates.

ANY_NOT_LIKE(arg1,

arg2)

Tests

a

repeating

attribute

for

any

value

not

like

the

specified

value.

Takes

two

required

arguments:

arg1

Specifies

the

name

of

a

column

that

represents

a

repeating

attribute.

arg2

Specifies

the

pattern

being

compared

with

sub-strings

in

single

quotes.

For

example:

...

WHERE

DCTM.ANY_NOT_LIKE(authors,’Dave

Win%’)=1

OR

DCTM.ANY_NOT_LIKE(keywords,’%_%’)=1

The

escape

clause

is

not

supported

in

ANY_NOT_LIKE()

predicates.

ANY_NULL(arg)

Tests

a

repeating

attribute

for

IS

NULL.

Takes

one

required

argument

that

is

the

name

of

the

repeating

attribute

or

single-valued

DATE

or

TIMESTAMP

attribute.

For

example:

...

WHERE

DCTM.ANY_NULL(authors)=1

ANY_NOT_NULL(arg)

Tests

a

repeating

attribute

for

IS

NOT

NULL.

Takes

one

required

argument

that

is

the

name

of

the

repeating

attribute.

For

example:

...

WHERE

DCTM.ANY_NOT_NULL(authors)=1

Chapter

10.

Configuring

access

to

Documentum

data

sources

185

Table

44.

Custom

functions

for

predicates

(continued)

Function

name

Description

ANY_SAME_INDEX(arg1

–

arg10)

Tests

repeating

attributes

for

values

at

the

same

index

of

each

attribute.

Takes

two

to

ten

of

the

other

ANY_xx()

functions.

The

following

example

checks

whether

a

document

has

at

least

one

author

named

Ken

who

is

not

affiliated

with

UCD.

...

WHERE

DCTM.ANY_SAME_INDEX(

ANY_EQ(author_name,’Ken’),

DCTM.ANY_NE(author_affiliation,’UCD’))=1

The

maximum

number

of

tests

for

values

at

the

same

index

of

repeating

attributes

is

10.

The

tests

must

be

AND

tests

that

are

evaluated

left

to

right.

CABINET(arg)

and

CABINET_TREE(arg)

Takes

one

required

argument

that

is

the

fully-qualified

name

of

a

Docbase

cabinet.

For

example:

...

WHERE

DCTM.CABINET(’/Tools’)=1

...

WHERE

DCTM.CABINET_TREE(’/MyDocs’)=1

Use

multiple

instances

of

CABINET

and

CABINET_TREE

to

specify

multiple

cabinets.

For

example:

...

WHERE

DCTM.CABINET(’/Tools’)=1

OR

DCTM.CABINET_TREE(’/Parts’)=1

FOLDER(arg)

and

FOLDER_TREE(arg)

Takes

one

required

argument

that

is

the

fully-qualified

name

of

a

Docbase

folder

or

cabinet.

For

example:

...

DCTM.FOLDER(’/Tools/Drills’)=1

...

DCTM.FOLDER_TREE(’/MyDocs/WhitePapers’)=1

Use

multiple

instances

of

FOLDER

and

FOLDER_TREE

to

specify

multiple

folders.

For

example:

...

DCTM.FOLDER(’/Tools/Drills’)=1

OR

DCTM.FOLDER_TREE(’/Animals/Horses’)=1

RENDITION_FORMAT

(format)

Works

with

the

GET_RENDITION

and

GET_RENDITION_DEL

pseudo

columns

to

establish

the

format

of

the

rendition

to

be

retrieved.

Takes

a

single

character

string

argument

specifying

the

format.

The

following

example

retrieves

a

document

in

PDF

format:

SELECT

get_rendition

FROM

....

WHERE

DCTM.RENDITION_FORMAT(’pdf’)=1

USER(1)

Compares

a

value

to

the

Documentum

author

ID

of

the

current

user.

Due

to

a

limitation

of

DB2,

the

custom

function

USER

is

defined

with

an

integer

argument

that

is

not

used.

For

example:

...

WHERE

approver

=

DCTM.USER(1)

To

make

the

Documentum

author

ID

correspond

to

the

DB2

author

ID,

use

the

CREATE

USER

MAPPING

statement.

186

Data

Source

Configuration

Guide

Table

44.

Custom

functions

for

predicates

(continued)

Function

name

Description

SEARCH_WORDS(arg)

Takes

one

required

string

argument

that

is

a

list

of

individual

words

enclosed

in

single

quotes,

separated

by

AND,

OR,

or

NOT,

and

using

parentheses

to

control

precedence.

Words

cannot

contain

white

space

and

must

be

enclosed

in

single

quotes.

For

example:

...

DCTM.SEARCH_WORDS(’’’yeast’’

AND

(’’bread’’

OR

’’cake’’)

AND

NOT

’’wedding’’’

)=1

SEARCH_TOPIC(arg)

Takes

one

required

string

argument

which

is

a

Verity

TOPIC

query

statement

that

is

to

be

passed

to

Documentum

and

Verity

verbatim.

For

example:

...

WHERE

DCTM.SEARCH_TOPIC(’"quick"’)=1

There

are

no

further

tasks

in

this

sequence

of

tasks.

Related

reference:

v

“CREATE

FUNCTION

(Sourced

or

Template)

statement”

in

the

SQL

Reference,

Volume

2

Documentum

data

source

–

Example

queries

After

you

register

the

wrapper,

you

can

run

SQL

queries

on

the

Documentum

data

source.

This

section

provides

several

example

queries.

To

run

queries,

you

use

the

nickname

and

the

defined

nickname

columns

in

your

SQL

statements

in

the

same

manner

as

you

would

use

a

regular

table

name

and

table

columns.

Connection

limitations:

For

each

connection

to

a

DB2

database

made

by

a

DB2

application,

the

Documentum

wrapper

can

support

a

maximum

of

10

simultaneous

Documentum

sessions,

and

each

such

session

can

simultaneously

manage

up

to

10

Documentum

queries.

A

single

DB2

application

can

have

several

queries

in

progress

simultaneously;

the

lifetime

of

a

query

begins

when

it

is

submitted

to

DB2

and

ends

when

the

corresponding

cursor

over

the

result

set

is

closed.

At

any

given

time,

across

the

entire

set

of

queries

in

progress

at

that

time,

no

more

than

10

nicknames

from

one

Documentum

server

can

be

referenced.

Nicknames

mentioned

in

more

than

one

query,

or

referenced

multiple

times

in

a

single

query,

must

be

counted

once

for

each

time

they

appear.

The

LIKE

predicate:

The

Documentum

server

and

DB2

process

the

LIKE

predicate

differently.

When

a

LIKE

predicate

is

pushed

down

to

the

Documentum

server,

the

Documentum

semantics

apply.

In

the

following

example

when

column

c1

contains

a

zero-length

string,

the

predicate

will

be

true

for

Documentum

and

false

for

DB2.

Chapter

10.

Configuring

access

to

Documentum

data

sources

187

c1

LIKE

’%’

Example

queries:

The

following

query

displays

all

of

the

Docbase

documents

for

documents

named

’Test

Document’:

SELECT

object_name

FROM

std_doc

WHERE

object_name=’Test

Document’;

The

following

query

uses

the

custom

function

ANY_EQ

to

display

all

the

documents

where

one

of

the

authors

is

’Joe

Doe’.

SELECT

object_name

FROM

std_doc

WHERE

DCTM.ANY_EQ(author,’Joe

Doe’)=1

The

following

query

uses

the

FOLDER_TREE

function

and

the

SEARCH_WORDS

function

to

find

all

documents

in

the

Approved

cabinet

that

contain

the

text

"protein".

SELECT

object_name

FROM

std_doc

WHERE

DCTM.FOLDER_TREE(’/Approved’)=1

AND

DCTM.SEARCH_WORDS(’protein’)=1

The

following

query

uses

the

GET_FILE

pseudo

column

and

the

FOLDER_TREE

and

ANY_IN

custom

functions

to

retrieve

the

name

of

the

files,

on

the

DB2

server,

into

which

the

content

has

been

placed

for

all

documents

in

the

Approved

cabinet

that

have

any

of

the

authors

listed.

SELECT

object_name,

object_id,

get_file

FROM

std_doc

WHERE

DCTM.FOLDER_TREE(’/Approved’)=1

AND

DCTM.ANY_IN(author,

’Mary

Black’,

’Joe

Carson’,

’Peter

Miller’)=1

Related

tasks:

v

“Registering

the

custom

functions

for

the

Documentum

wrapper”

on

page

182

Related

reference:

v

“Dual

defining

repeating

attributes

(Documentum

wrapper)”

on

page

181

v

“Access

control

for

the

Documentum

wrapper”

on

page

188

Access

control

for

the

Documentum

wrapper

Queries

are

subject

to

your

permissions

in

the

Docbase.

Only

those

documents

to

which

you

have

at

least

read

access

are

included

in

query

results.

Related

reference:

v

“File

access

control

model

for

the

table-structured

file

wrapper”

on

page

361

v

“File

access

control

model

for

the

Excel

wrapper”

on

page

224

Messages

for

the

Documentum

wrapper

This

section

lists

and

describes

messages

you

might

encounter

while

working

with

the

wrapper

for

Documentum.

188

Data

Source

Configuration

Guide

Table

45.

Messages

issued

by

the

wrapper

for

Documentum

Error

Code

Message

Explanation

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"sqlno_crule_save_plans

[100]:rc

(-2144272209)

Empty

plan

list

detect".)

The

SQL

query

submitted

to

DB2

could

not

be

processed

by

the

wrapper.

Correct

the

syntax

and

resubmit.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"dmAPI

exec

failed:

[DM_QUERY_E_BAD_QUAL]

error:

"The

attribute

qualifier,

A0,

for

attribute

<column_name>,

is

not

a

valid

qualifier."".)

An

incorrect

Documentum

type

or

registered

table

was

entered

for

the

REMOTE_OBJECT

nickname

option.

Change

the

nickname

to

use

the

correct

Documentum

object

type

or

registered

table.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"Invalid

null

column

specified".)

Internal

programming

error.

Contact

IBM

Software

Support.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"Nickname

specification

is

empty".)

Internal

programming

error.

Contact

IBM

Software

Support.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"The

Output

object

is

empty

or

incomplete".)

Internal

programming

error.

Contact

IBM

Software

Support.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"Unexpected

number

of

columns

requested".)

Internal

programming

error.

Contact

IBM

Software

Support.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"No

column

information

found".)

Internal

programming

error.

Contact

IBM

Software

Support.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"Unsupported

column

type

requested".)

Internal

programming

error.

Contact

IBM

Software

Support.

Chapter

10.

Configuring

access

to

Documentum

data

sources

189

Table

45.

Messages

issued

by

the

wrapper

for

Documentum

(continued)

Error

Code

Message

Explanation

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"Incorrect

Column

definition".)

Internal

programming

error.

Contact

IBM

Software

Support.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"Inconsistent

type;

DB2

request

!=

nickname

type".)

Internal

programming

error.

Contact

IBM

Software

Support.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"Output

parameter

is

not

NULL".)

Internal

programming

error.

Contact

IBM

Software

Support.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"Query

output

variable

is

not

NULL".)

Internal

programming

error.

Contact

IBM

Software

Support.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"Invalid

timestamp

length".)

Internal

programming

error.

Contact

IBM

Software

Support.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"Inconsistent

number

of

columns".)

Internal

programming

error.

Contact

IBM

Software

Support.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"Could

not

access

data

when

converting

values".)

Internal

programming

error.

Contact

IBM

Software

Support.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"Failed

to

initialize

the

DMCL

client".)

The

Documentum

client

cannot

initialize.

Contact

your

system

administrator.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"Get_User

returned

NULL".)

Internal

programming

error.

Contact

IBM

Software

Support.

190

Data

Source

Configuration

Guide

Table

45.

Messages

issued

by

the

wrapper

for

Documentum

(continued)

Error

Code

Message

Explanation

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"Get_Local_User

returned

NULL".)

Internal

programming

error.

Contact

IBM

Software

Support.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"Begin

Transaction

failed".)

Documentum

reported

that

begintrans

failed.

Contact

your

system

administrator.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"Input

parameter

was

not

NULL".)

Internal

programming

error.

Contact

IBM

Software

Support.

SQL901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"Dctm

functions

must

be

like

DCTM.function(...)

=1".)

You

did

not

use

=1

as

the

RHS

of

the

predicate

for

a

Dctm

function.

Correct

the

syntax

and

run

the

query

again.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"Invalid

column

number

requested".)

Internal

programming

error.

Contact

IBM

Software

Support.

SQL1881N

"DELIMITER"

is

not

a

valid

"COLUMN"

option

for

"<column-name>"

The

DELIMITER

option

was

specified

for

column

<column-name>,

but

the

IS_REPEATING

option

was

not

specified.

SQL1882N

The

"SERVER"

option

"RDBMS_TYPE"

cannot

be

set

to

"<option-value>"

for

"<server-name>".

The

value

specified

for

the

RDBMS_TYPE

server

option

is

invalid.

It

must

be

one

of

the

following:

DB2,

INFORMIX,

ORACLE,

SQLSERVER

or

SYBASE.

SQL1882N

The

"SERVER"

option

"TRANSACTIONS"

cannot

be

set

to

"<option-value>"

for

"<server-name>".

The

value

specified

for

the

TRANSACTIONS

server

option

is

invalid.

It

must

be

one

of

the

following:

NONE,

QUERY,

PASSTHRU

or

ALL.

SQL1882N

The

"NICKNAME"

option

"IS_REG_TABLE"

cannot

be

set

to

"<option-value>"

for

"<nickname>".

The

value

specified

for

the

IS_REG_TABLE

nickname

option

is

invalid.

It

must

be

one

of

the

following:

’Y’

or

’N’.

SQL1882N

The

"NICKNAME"

option

"ALL_VERSIONS"

cannot

be

set

to

"<option-value>"

for

"<nickname>".

The

value

specified

for

the

ALL_VERSIONS

nickname

option

is

invalid.

It

must

be

one

of

the

following:

’Y’

or

’N’.

SQL1882N

The

"SERVER"

option

"OS_TYPE"

cannot

be

set

to

"<option-value>"

for

"<server-name>"

The

value

specified

for

the

OS_TYPE

server

option

is

invalid.

It

must

be:

AIX,

HPUX,

SOLARIS

or

WINDOWS.

Chapter

10.

Configuring

access

to

Documentum

data

sources

191

Table

45.

Messages

issued

by

the

wrapper

for

Documentum

(continued)

Error

Code

Message

Explanation

SQL1882N

The

"NICKNAME"

option

"FOLDERS"

cannot

be

set

to

"<option-value>"

for

"<nickname>"

The

value

specified

for

the

FOLDERS

nickname

option

is

invalid.

It

cannot

be

specified

for

a

table

where

IS_REG_TABLE

is

’Y’.

SQL1882N

The

"NICKNAME"

option

"VERSIONS"

cannot

be

set

to

"<option-value>"

for

"<nickname>"

The

value

specified

for

the

VERSIONS

nickname

option

is

invalid.

It

must

be

one

of

the

following:

’Y’

or

’N’.

The

VERSIONS

option

cannot

be

set

to

’Y’

for

a

table

where

the

IS_REG_TABLE

option

is

set

to

’Y’.

SQL30090N

Operation

invalid

for

application

execution

environment.

Reason

code

=

"Invalid

column

name,

IS_REG_TABLE,

or

IS_REPEATING

specified

in

nickname"

Check

the

nickname

statement

for

the

correct

specification

of

the

IS_REG_TABLE,

IS_REPEATING,

REMOTE_NAME

options,

and

column

names.

SQL30090N

Operation

invalid

for

application

execution

environment.

Reason

code

=

"Failed

to

open

log

file

for

debugging"

The

log

file

used

for

troubleshooting

is

not

accessible.

Contact

your

system

administrator.

SQL30090N

Operation

invalid

for

application

execution

environment.

Reason

code

=

"Only

one

search

condition

may

be

specified"

Only

one

custom

search

function

can

be

specified

per

query.

SQL30090N

Operation

invalid

for

application

execution

environment.

Reason

code

=

"Failed

to

create

content

directory"

Make

sure

the

destination

directory

is

writable

by

the

DB2

agent.

SQL30090N

Operation

invalid

for

application

execution

environment.

Reason

code

=

"Failed

to

change

permissions

on

content

file"

Make

sure

the

target

content

directory

is

writable

by

the

DB2

agent.

SQL5182N

A

required

environment

variable,

"DMCL_CONFIG",

has

not

been

set.

Neither

the

DOCUMENTUM

nor

DMCL_CONFIG

environment

variable

was

set.

Set

them

in

the

db2dj.ini

file.

Related

concepts:

v

“Introduction

to

messages”

in

the

Message

Reference

Volume

1

Related

reference:

v

“SQLSTATE

messages”

in

the

Message

Reference

Volume

2

192

Data

Source

Configuration

Guide

Chapter

11.

Configuring

access

to

Entrez

data

sources

This

chapter

explains

how

to

configure

your

federated

server

to

access

data

that

is

stored

in

Entrez

data

sources.

You

can

configure

access

to

Entrez

data

sources

by

using

the

DB2

Control

Center

or

by

issuing

SQL

statements.

This

chapter:

v

Explains

what

Entrez

is

v

Lists

the

tasks

that

you

need

to

perform

v

Contains

examples

of

the

SQL

statements

that

you

need

v

Lists

the

error

messages

associated

with

the

Entrez

wrapper

What

is

Entrez?

Entrez

is

a

query

and

retrieval

system

developed

by

the

National

Center

for

Biotechnology

Information

(NCBI).

You

can

use

Entrez

to

access

several

linked

databases

hosted

by

the

NCBI.

These

databases

include:

v

PubMed

(biomedical

literature)

v

Nucleotide

(a

sequence

database

also

called

GenBank)

v

OMIM

(Online

Mendelian

Inheritance

in

Man

from

John

Hopkins

University)

v

Genome

(complete

genome

assemblies)

You

can

access

all

of

the

Entrez

databases

through

a

uniform

set

of

Web-based

tools.

The

Entrez

wrapper

uses

these

tools

to

federate

the

Entrez

databases

into

the

DB2®

environment.

Although

the

Entrez

interface

supports

many

databases,

the

Entrez

wrapper

supports

only

PubMed

and

Nucleotide.

Many

elements

of

the

Entrez

wrapper

are

common

to

all

of

the

databases.

These

elements

include:

PubMed
database

Nucleotide
database

Entrez
application

DB2
Universal
Database
federated
database

Federated database

SQL

Relational
results
table

W
ra

pp
er

Entrez
wrapper

National Center for
Biotechnology Information

server

Figure

22.

How

the

Entrez

wrapper

works

©

Copyright

IBM

Corp.

1998,

2004

193

v

Connectivity

with

NCBI

through

the

Web

and

the

Entrez

ESearch

and

EFetch

utilities

v

Mapping

of

hierarchical

XML

data

into

relational

tables

v

Joins

between

related

tables

through

the

XML

wrapper

technology

Related

tasks:

v

“Adding

Entrez

data

sources

to

a

federated

server”

on

page

194

Adding

Entrez

to

a

federated

server

Adding

Entrez

data

sources

to

a

federated

server

To

configure

the

federated

server

to

access

Entrez

data

sources,

you

must

provide

the

federated

server

with

information

about

the

data

sources

and

objects

that

you

want

to

access.

You

can

configure

the

federated

server

to

access

Entrez

data

sources

by

using

the

DB2

Control

Center

or

the

DB2

command

line.

The

DB2

Control

Center

includes

a

wizard

to

guide

you

through

the

steps

required

to

configure

the

federated

server.

The

Entrez

wrapper

can

access

PubMed

and

Nucleotide

data

sources

in

networks

that

use

firewalls

with

proxies.

The

proxies

that

are

supported

are:

HTTP,

SOCKS4,

and

SOCKS5.

Prerequisites:

v

DB2

Information

Integrator

must

be

installed

on

a

server

that

will

act

as

the

federated

server

v

A

federated

database

must

exist

on

the

federated

server

Procedure:

To

add

Entrez

data

sources

to

a

federated

server:

1.

Register

custom

functions

for

the

Entrez

wrapper.

2.

Register

the

wrapper.

3.

Register

the

server

definition.

4.

Register

nicknames

for

Entrez

databases.

Related

concepts:

v

“DB2

Information

Integrator

installation

process

-

overview”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

Related

tasks:

v

“Creating

a

federated

database”

on

page

51

v

“Registering

the

custom

functions

for

the

Entrez

wrapper”

on

page

195

Related

reference:

v

“Supported

operating

systems

for

DB2

Information

Integrator

(32-bit)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Supported

operating

systems

for

DB2

Information

Integrator

(64-bit)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

194

Data

Source

Configuration

Guide

|
|
|

Registering

the

custom

functions

for

the

Entrez

wrapper

Registering

custom

functions

for

the

Entrez

wrapper

is

part

of

the

larger

task

of

adding

Entrez

to

a

federated

system.

After

the

custom

functions

are

registered,

you

must

register

the

wrapper.

Restrictions:

v

All

of

the

custom

functions

for

the

Entrez

wrapper

must

be

registered

with

the

schema

name

entrez.

v

You

must

register

each

custom

function

once

for

each

DB2

database

that

has

the

Entrez

wrapper

installed.

Procedure:

To

register

custom

functions,

issue

the

CREATE

FUNCTION

statement

with

the

AS

TEMPLATE

DETERMINISTIC

NO

EXTERNAL

ACTION

keywords.

The

fully

qualified

name

of

each

function

is

entrez.function_name.

The

following

example

registers

one

version

of

the

CONTAINS

function:

CREATE

FUNCTION

entrez.contains

(varchar(),

varchar())

RETURNS

INTEGER

AS

TEMPLATE

DETERMINISTIC

NO

EXTERNAL

ACTION;

To

register

the

custom

functions,

use

the

sample

file

create_function_mappings.ddl.

The

sample

file

is

in

the

path

where

DB2

Information

Integrator

is

installed,

under

the

samples/lifesci/entrez

directory.

The

sample

file

contains

definitions

for

each

of

the

custom

function.

You

can

run

this

DDL

file

to

register

the

custom

functions

on

each

federated

database

that

has

the

Entrez

wrapper

installed.

The

next

task

in

this

sequence

of

tasks

is

registering

the

Entrez

wrapper.

Related

reference:

v

“CREATE

FUNCTION

(Sourced

or

Template)

statement”

in

the

SQL

Reference,

Volume

2

v

“Custom

functions

and

Entrez

queries”

on

page

201

v

“Custom

function

table

-

Entrez

wrapper”

on

page

195

Custom

function

table

-

Entrez

wrapper

You

use

the

CREATE

FUNCTION

statement

to

register

the

Entrez

custom

functions.

The

following

table

list

the

Entrez

custom

functions

and

the

data

types

of

the

arguments

that

you

specify

when

you

register

the

functions.

The

first

argument

specified

in

the

function

is

for

the

column

name

of

a

tagged

column.

The

second

argument

specified

in

the

function

is

the

search

term.

Chapter

11.

Configuring

access

to

Entrez

data

sources

195

|
|

|
|
|
|

Table

46.

Custom

functions

for

the

Entrez

wrapper

Function

Description

entrez.contains

(varchar(),

varchar())

entrez.contains

(integer,

varchar())

entrez.contains

(smallint,

varchar())

entrez.contains

(real,

varchar())

entrez.contains

(double,

varchar())

entrez.contains

(date,

varchar())

entrez.contains

(time,

varchar())

entrez.contains

(char(),

varchar())

entrez.contains

(timestamp(),

varchar())

Searches

a

tagged

column

using

the

term

that

you

specify.

entrez.search_term

(char(),

varchar())

Passes

an

Entrez

search

term

directly

to

the

Entrez

search

engine.

To

register

the

custom

functions,

use

the

sample

file

create_function_mappings.ddl.

The

sample

file

is

installed

in

the

samples/lifesci/entrez

directory.

Related

tasks:

v

“Registering

the

custom

functions

for

the

Entrez

wrapper”

on

page

195

Related

reference:

v

“Custom

functions

and

Entrez

queries”

on

page

201

Registering

the

Entrez

wrapper

Registering

the

Entrez

wrapper

is

part

of

the

larger

task

of

adding

Entrez

data

sources

to

a

federated

server.

You

must

register

a

wrapper

to

access

Entrez

data

sources.

Wrappers

are

used

by

federated

servers

to

communicate

with

and

retrieve

data

from

data

sources.

Wrappers

are

implemented

as

a

set

of

library

files.

Procedure:

To

register

a

wrapper,

issue

the

CREATE

WRAPPER

statement

with

the

name

of

the

wrapper

and

the

name

of

the

wrapper

library

file.

For

example,

to

register

a

wrapper

with

the

name

entrez_wrapper

on

the

federated

server

that

uses

the

AIX

operating

system,

issue

the

following

statement:

CREATE

WRAPPER

entrez_wrapper

LIBRARY

’libdb2lsentrez.a’

OPTIONS(EMAIL

’jeff@someplace.com’);

You

must

specify

an

e-mail

address

when

you

register

an

Entrez

wrapper.

This

e-mail

address

is

included

with

all

queries

and

allows

NCBI

to

contact

you

if

there

are

problems,

such

as

too

many

queries

overloading

the

NCBI

servers.

The

name

of

the

wrapper

library

file

that

you

specify

depends

on

the

operating

system

of

the

federated

server.

See

the

list

of

Entrez

wrapper

library

files

for

the

correct

name

to

specify

in

the

CREATE

WRAPPER

statement.

The

next

task

in

this

sequence

of

tasks

is

registering

the

server

definition

for

Entrez

data

sources.

196

Data

Source

Configuration

Guide

Related

reference:

v

“Entrez

wrapper

library

files”

on

page

197

v

“CREATE

WRAPPER

statement”

in

the

SQL

Reference,

Volume

2

Entrez

wrapper

library

files

The

following

table

lists

the

directory

paths

and

library

file

names

for

the

Entrez

wrapper.

When

you

install

DB2

Information

Integrator,

3

library

files

are

added

to

the

directory

path

listed

in

the

table.

For

example,

if

the

federated

server

is

running

on

AIX,

the

wrapper

library

files

added

to

the

directory

path

are

libdb2lsentrez.a,

libdb2lsentrezF.a,

and

libdb2lsentrezU.a.

When

you

register

a

wrapper,

specify

only

the

library

file

name

that

is

listed

in

the

table.

Table

47.

Entrez

wrapper

library

locations

and

file

names

Operating

system

Directory

path

Wrapper

library

file

AIX

/usr/opt/db2_08_01/lib/

libdb2lsentrez.a

Linux

/opt/IBM/db2/V8.1/lib

libdb2lsentrez.so

Solaris

/opt/IBM/db2/V8.1/lib

libdb2lsentrez.so

Windows

%DB2PATH%\bin

db2lsentrez.dll

%DB2PATH%

is

the

environment

variable

that

is

used

to

specify

the

directory

path

where

DB2

Information

Integrator

is

installed

on

Windows.

The

default

Windows

directory

path

is

C:\Program

Files\IBM\SQLLIB.

Related

tasks:

v

“Registering

the

Entrez

wrapper”

on

page

196

Registering

the

server

for

an

Entrez

data

source

Registering

the

server

definition

for

an

Entrez

data

source

is

part

of

the

larger

task

of

adding

Entrez

to

a

federated

server.

After

you

register

the

wrapper,

you

must

register

a

corresponding

server

definition

The

database,

PubMed

or

Nucleotide,

that

is

represented

by

a

particular

data

source

is

identified

by

the

server

type

value,

as

expressed

on

the

CREATE

SERVER

statement.

This

server

type

value

controls

the

structure

of

any

nicknames

that

are

created.

Procedure:

To

register

the

Entrez

server

to

the

federated

system,

issue

a

CREATE

SERVER

statement.

For

example,

to

register

a

server

named

pubmed_server1

for

the

entrez_wrapper

wrapper,

issue

the

following

statement:

Chapter

11.

Configuring

access

to

Entrez

data

sources

197

|

|
|

|
|
|
|

|
|

||

|||

|||

|||

|||

|||
|

|
|
|

|

|

CREATE

SERVER

pubmed_server1

TYPE

PUBMED

VERSION

1.0

WRAPPER

entrez_wrapper;

Additionally,

to

register

a

server

named

nucleotid_server1

for

the

entrez_wrapper

wrapper,

issue

the

following

statement:

CREATE

SERVER

nucleotid_server1

TYPE

NUCLEOTIDE

VERSION

1.0

WRAPPER

entrez_wrapper;

Limiting

the

number

of

rows

that

are

retrieved

for

Entrez

queries

The

MAX_ROWS

server

option

can

be

used

to

limit

the

number

of

rows

that

are

returned

for

a

query

that

uses

the

Entrez

wrapper.

Unlike

the

FETCH

FIRST

N

ROWS

ONLY

clause

of

an

SQL

statement,

which

limits

the

number

of

rows

that

are

returned

to

a

user

or

an

application,

the

MAX_ROWS

server

option

enables

you

to

limit

the

number

of

rows

that

can

be

retrieved

from

the

NCBI

Web

site.

The

MAX_ROWS

option

value

is

always

used

as

an

upper

(maximum)

limit

to

the

number

of

rows

that

a

query

can

retrieve.

If

a

query

attempts

to

retrieve

more

rows

than

what

is

specified

in

the

MAX_ROWS

option,

the

result

set

is

truncated,

and

a

warning

message

is

issued.

You

can

set

the

MAX_ROWS

server

option

when

a

server

is

created,

or

you

can

use

the

ALTER

SERVER

statement

to

change

the

option

value.

The

MAX_ROWS

server

option

is

not

required.

If

you

do

not

set

the

option,

a

default

value

is

used.

The

specific

default

value

that

is

used

depends

on

your

operating

system.

For

Microsoft

Windows

operating

systems,

the

default

value

is

2000

rows.

For

UNIX-based

operating

systems,

the

default

value

is

5000

rows.

You

can

specify

only

positive

numbers

and

0

(zero).

When

you

set

the

option

to

be

0

(zero),

you

enable

queries

to

retrieve

an

unlimited

number

of

rows

from

the

NCBI

Web

site.

However,

setting

the

MAX_ROWS

server

option

to

0

(zero)

or

to

a

very

high

number

can

possibly

impact

your

query

performance.

Accessing

Entrez

through

a

proxy

server

To

access

Entrez

data

sources

through

a

proxy

server,

you

must

specify

options

when

you

create

the

server

definition.

The

options

that

you

specify

depend

on

the

type

of

proxy

server

that

you

want

to

access.

Example

of

registering

a

server

definition

for

an

HTTP

proxy

server:

To

register

a

server

definition

and

specify

an

HTTP

proxy

server,

use

the

following

statement:

CREATE

SERVER

pubmed_server_h

TYPE

PUBMED

VERSION

1.0

WRAPPER

entrez_wrapper

OPTIONS

(PROXY_TYPE

’HTTP’,

PROXY_SERVER_NAME

’proxy_h’,

PROXY_SERVER_PORT

’8080’);

Example

of

registering

a

server

definition

for

a

SOCKS4

proxy

server:

198

Data

Source

Configuration

Guide

|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|

|
|
|
|

|

|
|

|
|
|
|
|
|

|

To

register

a

server

definition

and

specify

a

SOCKS4

proxy

server,

use

the

following

statement:

CREATE

SERVER

pubmed_server_s4

TYPE

PUBMED

VERSION

1.0

WRAPPER

entrez_wrapper

OPTIONS

(PROXY_TYPE

’SOCKS4’,

PROXY_SERVER_NAME

’proxy_4’,

PROXY_SERVER_PORT

’1080’);

Example

of

registering

a

server

definition

for

a

SOCKS5

proxy

server

without

authentication

information:

To

register

a

server

definition

and

specify

a

SOCKS5

proxy

server

without

authentication

information,

use

the

following

statement:

CREATE

SERVER

pubmed_server_s5

TYPE

PUBMED

VERSION

1.0

WRAPPER

entrez_wrapper

OPTIONS

(PROXY_TYPE

’SOCKS5’,

PROXY_SERVER_NAME

’proxy_5’,

PROXY_SERVER_PORT

’1081’);

Example

of

registering

a

server

definition

for

a

SOCKS5

proxy

server

with

authentication

information:

To

register

a

server

definition

and

specify

a

SOCKS5

proxy

server

with

authentication

information,

use

the

following

statement:

CREATE

SERVER

pubmed_server_s5a

TYPE

PUBMED

VERSION

1.0

WRAPPER

entrez_wrapper

OPTIONS

(PROXY_TYPE

’SOCKS5’,

PROXY_SERVER_NAME

’proxy_5’,

PROXY_SERVER_PORT

’1081’,

PROXY_AUTHID

’Khalid’,

PROXY_PASSWORD

’aaa’,

);

The

next

task

in

this

sequence

of

tasks

is

registering

nicknames

for

Entrez

data

sources.

Related

tasks:

v

“Registering

nicknames

for

Entrez

data

sources”

on

page

199

Related

reference:

v

“CREATE

SERVER

statement

arguments

-

Entrez

wrapper”

on

page

552

Registering

nicknames

for

Entrez

data

sources

Registering

nicknames

for

Entrez

data

sources

is

part

of

the

larger

task

of

adding

Entrez

to

a

federated

system.

Restrictions:

The

schema

for

each

Entrez

database

is

fixed

by

the

wrapper

and

cannot

be

changed

or

amended.

For

each

database,

there

is

a

fixed

set

of

tables

with

a

fixed

list

of

columns

for

each

table.

The

tables

in

a

database

have

a

hierarchical

relationship.

One

table,

which

is

the

parent

of

all

of

the

other

tables

in

the

database,

is

called

the

root

(parent)

table.

All

of

the

other

tables

in

the

database

have

a

parent-child

relationship

that

leads

back

to

the

root

table.

Chapter

11.

Configuring

access

to

Entrez

data

sources

199

|
|

|
|
|
|
|
|

|
|

|
|

|
|
|
|
|
|

|
|

|
|

|
|
|
|
|
|
|

|

Procedure:

To

register

nicknames

for

Entrez

data

sources,

issue

a

CREATE

NICKNAME

statement.

Because

the

list

of

columns

for

the

nicknames

is

fixed

and

is

supplied

by

the

wrapper,

the

basic

syntax

to

create

Nucleotide

nicknames

is

simple.

For

example:

CREATE

NICKNAME

GBSeq

FOR

SERVER

nuc1;

CREATE

NICKNAME

GBFeatures

FOR

SERVER

nuc1;

CREATE

NICKNAME

GBIntervals

FOR

SERVER

nuc1;

CREATE

NICKNAME

GBQualifiers

FOR

SERVER

nuc1;

CREATE

NICKNAME

GBReference

FOR

SERVER

nuc1;

Here

is

an

example

of

the

basic

syntax

to

create

PubMed

nicknames:

CREATE

NICKNAME

pmarticles

FOR

SERVER

pubmed_server;

CREATE

NICKNAME

PMACCESSION

FOR

SERVER

pubmed_server;

CREATE

NICKNAME

PMCHEMICAL

FOR

SERVER

pubmed_server;

CREATE

NICKNAME

PMMESH

FOR

SERVER

pubmed_server;

CREATE

NICKNAME

PMCOMMENTS

FOR

SERVER

pubmed_server;

CREATE

NICKNAME

PMARTICLEID

FOR

SERVER

pubmed_server;

The

name

of

the

nickname

is

the

name

of

the

underlying

table.

Use

of

this

syntax

limits

you

to

one

family

of

nicknames

for

each

DB2

schema.

You

can

use

other

names

by

using

the

nickname

options

REMOTE_OBJECT

and

PARENT.

For

a

root

nickname,

only

REMOTE_OBJECT

is

required.

For

any

other

nickname,

both

REMOTE_OBJECT

and

PARENT

must

be

provided.

The

following

example

shows

the

same

set

of

Nucleotide

nicknames

using

the

renaming

capability:

CREATE

NICKNAME

NewSeq

FOR

SERVER

nuc1

OPTIONS

(REMOTE_OBJECT

’GBSEQ’);

CREATE

NICKNAME

NewFeatures

FOR

SERVER

nuc1

OPTIONS

(REMOTE_OBJECT

’GBFEATURES’,

PARENT

’NEWSEQ’);

CREATE

NICKNAME

NewIntervals

FOR

SERVER

nuc1

OPTIONS

(REMOTE_OBJECT

’GBINTERVALS’,

PARENT

’NEWFEATURES’);

CREATE

NICKNAME

NewQualifiers

FOR

SERVER

nuc1

OPTIONS

(REMOTE_OBJECT

’GBQUALIFIERS’,

PARENT

’NEWFEATURES’);

CREATE

NICKNAME

NewReference

FOR

SERVER

nuc1

OPTIONS

(REMOTE_OBJECT

’GBREFERENCE’,

PARENT

’NEWSEQ’);

This

example

shows

the

same

set

of

PubMed

nicknames

using

the

renaming

capability:

CREATE

NICKNAME

newpmarticles

FOR

SERVER

pubmed_server

OPTIONS

(REMOTE_OBJECT

’PMARTICLES’);

CREATE

NICKNAME

NEWPMACCESSION

FOR

SERVER

pubmed_server

OPTIONS

(REMOTE_OBJECT

’PMACCESSION’,

PARENT

’NEWPMARTICLES’);

CREATE

NICKNAME

NEWPMCHEMICAL

FOR

SERVER

pubmed_server

OPTIONS

(REMOTE_OBJECT

’PMCHEMICAL’

,

PARENT

’NEWPMARTICLES’);

CREATE

NICKNAME

NEWPMMESH

FOR

SERVER

pubmed_server

OPTIONS

(REMOTE_OBJECT

’PMMESH’

,

PARENT

’NEWPMARTICLES’);

CREATE

NICKNAME

NEWPMCOMMENTS

FOR

SERVER

pubmed_server

OPTIONS

(REMOTE_OBJECT

’PMCOMMENTS’

,

PARENT

’NEWPMARTICLES’);

CREATE

NICKNAME

NEWPMARTICLEID

FOR

SERVER

pubmed_server

OPTIONS

(REMOTE_OBJECT

’PMARTICLEID’

,

PARENT

’NEWPMARTICLES’);

The

next

task

in

this

sequence

of

tasks

is

to

register

custom

functions

for

Entrez

data

sources.

Related

tasks:

v

“Adding

Entrez

data

sources

to

a

federated

server”

on

page

194

200

Data

Source

Configuration

Guide

v

“Registering

the

custom

functions

for

the

Entrez

wrapper”

on

page

195

v

“Specifying

nickname

columns

for

a

nonrelational

data

source”

on

page

65

Related

reference:

v

“CREATE

NICKNAME

statement”

in

the

SQL

Reference,

Volume

2

v

“PubMed

schema

tables”

on

page

205

v

“Nucleotide

schema

tables”

on

page

209

Queries

and

custom

functions

for

Entrez

data

sources

Custom

functions

and

Entrez

queries

The

federated

environment

uses

two

query

engines.

For

the

Entrez

wrapper,

these

query

engines

are

DB2

and

Entrez.

With

one

exception,

you

specify

all

predicates

for

the

Entrez

engine

through

custom

functions.

For

the

DB2

engine,

you

specify

all

predicates

through

the

relational

operators.

The

main

custom

function

is

ENTREZ.CONTAINS.

The

CONTAINS

function

requires

a

search

term

column

argument

and

a

query

text

argument.

The

following

example

shows

an

ENTREZ.CONTAINS

statement:

ENTREZ.CONTAINS

(search_term_column,

query_text)

A

tag

in

the

Q

column

of

the

schema

tables

identifies

a

search

term.

The

query

text

must

be

in

the

modified

Entrez

query

syntax.

This

syntax

consists

of

search

terms

separated

by

Boolean

operators

(OR,

AND,

and

NOT)

and

grouped

by

using

parentheses.

The

syntax

of

the

CONTAINS

query

text

argument

differs

from

the

standard

Entrez

query

syntax

in

that

search

term

qualifiers,

such

as

[pd],

are

not

allowed.

The

custom

functions

are

registered

in

the

Entrez

schema,

which

must

be

used

to

refer

to

the

functions.

When

the

custom

functions

are

used,

their

return

value

must

be

compared

to

the

value

1

in

an

equality

predicate.

In

some

situations,

DB2

and

Entrez

predicates

might

be

mixed

in

such

a

way

that

they

cannot

be

processed.

These

cases

generate

the

error

message

SQL0142N

(″SQL

statement

not

supported″).

For

example,

in

the

following

query,

you

cannot

separate

the

parts

of

the

predicate

that

are

processed

by

the

wrapper

(the

ENTREZ.CONTAINS

invocations)

and

the

parts

that

must

be

processed

by

DB2

(the

relational

predicate

on

BaseCountA).

WHERE

ENTREZ.CONTAINS

(Organism,

’drosophila’)

=

1

OR

(BaseCountA

>

10

AND

ENTREZ.CONTAINS

(Keywords,

’glop’)

=

1)

Some

search

fields

do

not

have

corresponding

columns

in

the

Entrez

schema.

For

example,

in

the

nucleotide

database,

the

term

[ALL]

searches

all

searchable

fields,

while

[WORD]

searches

all

of

the

free

text

associated

with

a

record.

Pseudo-columns

are

provided

for

these

search

terms.

If

a

pseudo-column

is

referenced

in

a

select

list,

a

value

of

NULL

is

returned.

You

can

run

queries

that

might

not

otherwise

be

possible

by

issuing

the

ENTREZ.SEARCH_TERM

master

function.

If

you

specify

the

ENTREZ.SEARCH_TERM

master

function,

it

must

be

the

only

custom

function

in

a

query.

For

each

query,

there

can

be

only

one

ENTREZ.SEARCH_TERM

master

Chapter

11.

Configuring

access

to

Entrez

data

sources

201

function

per

Entrez

nickname.

Also,

SEARCH_TERM

and

CONTAINS

functions

cannot

be

mixed

for

the

same

nickname

in

the

same

query.

The

first

argument,

column

specification,

must

be

the

primary

key

column

for

the

parent

nickname.

The

second

argument,

query

text,

is

an

Entrez-format

search

term

that

includes

search

field

qualifiers.

This

text

is

passed

unmodified,

except

for

URI

escapes

as

required

by

the

URI

syntax,

to

Entrez.

The

following

example

shows

a

query

with

a

WHERE

clause

on

a

PubMed

nickname:

WHERE

ENTREZ.CONTAINS

(authors,

’kaufmann

OR

ito

AND

NOT

rakesh’)

AND

(ENTREZ.CONTAINS

(title,

’drosophila’)

OR

ENTREZ.CONTAINS(alltext,

’drosophila

OR

"fruit

fly"’))

In

this

example,

the

individual

predicates

are

authors,

title,

and

all

text.

The

individual

predicates

are

modified

so

that

the

qualifier

is

added

after

each

search

term

.

Then,

the

terms

are

grouped

with

parentheses

to

enforce

the

DB2

Boolean

operator

precedence.

Because

of

these

modifications,

the

authors

predicate

becomes:

((kaufmann[auth]

OR

ito[auth])

AND

(NOT

(rakesh[auth])))

The

title

predicate

becomes:

(drosophila[titl])

And

the

all

text

predicate

becomes:

(drosophila[all]

OR

"fruit

fly"[all])

When

the

individual

predicates

are

combined,

parentheses

are

used

to

maintain

DB2

Boolean

operator

precedence.

Excluding

text

transformations

that

are

necessary

to

express

the

string

as

part

of

a

URI,

the

final

search

term

string

submitted

to

Entrez

is:

((kaufman[auth]

OR

ito[auth])

AND

(NOT

(rakesh[auth)))

AND

((drosophila[titl])

OR

(drosophila[all]

OR

"fruit

fly"[all])

Related

reference:

v

“Custom

function

table

-

Entrez

wrapper”

on

page

195

Relational

predicates

for

the

Entrez

wrapper

The

Entrez

wrapper

supports

relational

predicates,

such

as

=,

BETWEEN,

LIKE,

and

<>,

on

nickname

columns.

However,

the

Entrez

search

engine

processes

only

a

few

of

these

relational

predicates.

Relational

predicates

that

are

not

processed

by

the

Entrez

search

engine

are

processed

by

DB2®.

The

Entrez

search

engine

processes

equality

(=)

and

IN

predicates

on

certain

ID

columns

for

each

schema.

These

predicates

allow

the

Entrez

wrapper

to

bypass

the

search

phase

and

execute

the

fetch

phase

directly.

Examples

of

valid

predicates

are:

WHERE

pmid

=

’1234567’

WHERE

medlineid

IN

(’1234567’,

’9191919’)

Columns

that

can

be

used

in

this

kind

of

predicate

are

identified

by

the

F

column

of

the

schema

tables.

The

value

of

this

option

must

be

Y.

202

Data

Source

Configuration

Guide

Related

concepts:

v

“Invalid

WHERE

clauses

for

the

Entrez

wrapper”

on

page

203

Related

tasks:

v

“Entrez

data

source

-

Example

queries”

on

page

204

v

“Registering

the

custom

functions

for

the

Entrez

wrapper”

on

page

195

Invalid

WHERE

clauses

for

the

Entrez

wrapper

The

Entrez

wrapper

rejects

any

query

that

will

result

in

an

unqualified

scan

of

the

NCBI

database.

A

valid

WHERE

clause

must

contain

either

an

equality

(or

IN)

predicate

on

the

primary

ID

for

the

schema,

or

a

custom

function.

Queries

that

do

not

meet

these

criteria

are

rejected

with

error

code

SQL0142N

or

SQL30090N.

Related

concepts:

v

“Relational

predicates

for

the

Entrez

wrapper”

on

page

202

Related

tasks:

v

“Entrez

data

source

-

Example

queries”

on

page

204

v

“Registering

the

custom

functions

for

the

Entrez

wrapper”

on

page

195

Schema

data

element

simplification

Several

data

elements

are

converted

to

a

canonical

form

when

they

are

presented

through

the

SQL

schema.

These

data

elements

include

item

lists,

names,

and

dates.

Item

lists

Unless

otherwise

noted,

lists

of

items

that

are

denormalized

into

a

single

column

have

individual

items

separated

by

a

semicolon

and

a

single

space.

For

example,

if

an

entry

contains

the

keywords

dnaA

gene,

dnaN

gene,

and

orf187,

the

corresponding

Keywords

column

will

contain

the

value

dnaA

gene;

dnaN

gene;

orf187.

Names

Names

in

the

NCBI

schemas

consist

of

a

required

last

name

and

one

of

several

optional

elements.

Some

of

these

optional

elements

can

occur

together

and

others

are

exclusive

of

each

other.

To

create

a

canonical

form

of

a

name,

assign

a

precedence

to

these

elements.

In

order

from

highest

to

lowest,

these

elements

are:

v

Forename

v

First

or

middle

name

v

Initials

You

can

present

names

with

or

without

affiliations.

Without

an

affiliation,

a

name

is

formatted

as

<last

name>,

<first>,

where

<first>

is

one

of

the

optional

elements.

If

the

<first>

element

is

not

found,

then

the

comma

is

not

used.

An

affiliation

can

be

added

in

the

form

(<affiliation>).

Separate

names

in

denormalized

lists

with

a

semicolon

and

a

space.

An

example

of

the

correct

way

to

separate

names

is:

Parker,

M.

J.;

Ranjan,

K.

A.

Chapter

11.

Configuring

access

to

Entrez

data

sources

203

Dates

Dates,

especially

publication

dates,

come

in

a

wide

variety

of

formats

in

the

NCBI

schemas.

To

accommodate

these

formats

and

allow

for

date

comparisons

and

date

arithmetic

where

possible,

dates

in

the

SQL

schema

are

represented

in

two

forms.

First,

a

date

can

be

a

character

string.

Second,

a

date

can

be

a

column

of

type

DATE.

If

only

a

month

is

present

in

a

date

value

without

reference

to

a

day,

the

first

day

of

the

month

is

the

default

day.

If

a

season

is

present

rather

than

a

month,

or

a

month

and

day,

the

first

day

of

the

season

is

used.

Related

tasks:

v

“Registering

nicknames

for

Entrez

data

sources”

on

page

199

Related

reference:

v

“Custom

functions

and

Entrez

queries”

on

page

201

Entrez

data

source

-

Example

queries

This

topic

provides

some

sample

queries

to

run

on

Entrez

data

sources.

Procedure:

To

run

queries,

use

the

following

examples

as

a

guide.

On

PubMed

nicknames:

The

following

shows

a

query

with

a

single

fetch

key

on

a

PubMed

nickname:

select

PMID,

ArticleTitle

FROM

pmarticles

WHERE

pmid

=

’12345’;

The

following

shows

a

query

with

mixed

fetch

keys

on

a

PubMed

nickname:

select

PMID,

ArticleTitle

FROM

pmarticles

WHERE

pmid

=

’12345’

OR

MedlineID

=

’12346’;

The

following

shows

a

query

with

a

CONTAINS

function

on

a

PubMed

nickname:

select

PMID,

ArticleTitle

FROM

pmarticles

WHERE

entrez.contains

(ArticleTitle,

’granulation’)

=

1

AND

entrez.contains

(PubDate,

’1992’)

=

1;

The

following

shows

a

query

that

searches

for

the

specified

AuthorList

and

LanguageList

on

a

PubMed

nickname:

select

PMID,

ArticleTitle

FROM

pmarticles

WHERE

entrez.contains

(AuthorList,

’Albarrak’)

=

1

AND

entrez.contains

(LanguageList,

’eng’)=1;

The

following

shows

a

query

with

a

complex

predicate

on

a

PubMed

nickname:

select

PMID,

ArticleTitle

FROM

pmarticles

WHERE

entrez.contains

(PublicationTypeList,

’Journal

Article’)

=

1

AND

entrez.contains

(MedlineTA,

’sun’)=1

OR

entrez.contains

(PersonalNameSubjectList,

’shine’)=1;

On

Nucleotide

nicknames:

The

following

shows

a

query

with

multiple

fetch

keys

on

a

Nucleotide

nickname:

select

PrimaryAccession,

LocusName,

SeqLength

from

gbseq

WHERE

PrimaryAccession

in

(’NM_000890’,

’NC_003106’);

204

Data

Source

Configuration

Guide

The

following

shows

a

query

that

searches

all

of

the

searchable

fields

on

a

Nucleotide

nickname:

select

PrimaryAccession,

substr(Definition,1,300),

GI

from

gbseq

WHERE

entrez.contains(AllText,

’abcde’)=1;

The

following

shows

a

query

that

searches

all

of

the

free

text

on

a

Nucleotide

nickname:

select

*

from

gbseq

WHERE

entrez.contains(FreeText,

’abcde’)=1;

The

following

shows

a

query

that

searches

for

a

definition

on

a

Nucleotide

nickname:

select

PrimaryAccession,

substr(Definition,1,300),

version,

GI

from

gbseq

WHERE

entrez.contains(Definition,

’Sulfolobus

tokodaii

AND

complete

genome’)

=

1;

The

following

shows

a

query

that

searches

for

a

keyword

on

a

Nucleotide

nickname:

select

PrimaryAccession,

substr(KeywordList,1,200),

Segment

from

gbseq

WHERE

entrez.contains(KeywordList,

’nkcc1

gene’)

=

1;

Related

concepts:

v

“Relational

predicates

for

the

Entrez

wrapper”

on

page

202

v

“Invalid

WHERE

clauses

for

the

Entrez

wrapper”

on

page

203

Related

tasks:

v

“Registering

the

custom

functions

for

the

Entrez

wrapper”

on

page

195

PubMed

schema

tables

The

PubMed

schema

defines

the

appearance

of

data

from

a

PubMed

type

server.

The

schema

consists

of

several

related

nicknames:

v

PMArticles

v

PMAccession

v

PMChemical

v

PMMeSHHeading

v

PMComments

v

PMArticleID

The

following

tables

list

information

about

the

columns

in

each

nickname.

The

Tags

column

contains

the

valid

search

tags

for

the

column.

For

a

list

of

valid

search

tags,

see

the

following

web

site

and

locate

the

link

to

Search

Field

Descriptions

and

Tags:

www.ncbi.nlm.nih.gov/entrez/query/static/help/pmhelp.html

You

can

override

the

default

data

type

for

a

column

when

you

create

a

nickname.

The

Entrez

wrapper

supports

the

CLOB

data

type,

up

to

5

megabytes

in

length.

You

can

override

the

default

length

for

a

column

when

you

create

a

nickname.

For

example,

some

columns

can

return

a

large

amount

of

data,

such

as

the

Abstract

column

in

the

PMArticles

nickname.

The

default

length

for

this

column

is

VARCHAR(32000).

To

return

the

first

100

bytes

of

the

column,

you

can

define

the

column

with

the

data

type

VARCHAR(100).

Only

the

first

100

bytes

will

be

returned.

Chapter

11.

Configuring

access

to

Entrez

data

sources

205

|
|

|

|

|

|

|

|

|
|
|
|

|

|
|

|
|
|
|
|
|

PMArticles

nickname:

The

columns

in

the

PMArticles

nickname

are

described

in

the

following

table.

The

F

column

indicates

columns

that

are

designated

fetch

keys.

Using

the

fetch

keys

might

expedite

query

processing.

Table

48.

PubMed

PMArticles

nickname

Column

name

Data

type

Description

Tags

Fetch

key

PMID

VARCHAR(10)

NOT

NULL

Primary

key

column

used

to

join

the

PMArticles

nickname

with

child

nicknames

UID

Yes

MedlineID

VARCHAR(10)

Medline

ID

UID

Yes

Owner

VARCHAR(8)

NOT

NULL

Owner

of

the

publication

entry;

values

are

defined

by

NCBI

and

might

be

NLM,

NASA,

PIP,

KIE,

HSR,

HMD,

SIS,

NOTNLM.

If

not

present,

then

the

default

is

NLM.

none

No

Status

VARCHAR(32)

NOT

NULL

Publication

status

as

defined

by

NCBI.

Values

might

include:

In-Process,

Completed,

Out-of-scope,

PubMed-not_MEDLINE.

none

No

DateCreated

DATE

NOT

NULL

Date

that

the

publication

entry

was

created.

none

No

DateCompleted

DATE

Date

that

the

publication

entry

was

completed.

none

No

DateRevised

DATE

Date

that

the

publication

entry

was

revised.

none

No

ArticleTitle

VARCHAR(250)

NOT

NULL

The

title

of

the

article.

TI

No

Pagination

VARCHAR(32)

The

full

pagination

of

the

article.

none

No

Abstract

VARCHAR(32000)

The

abstract

for

the

article.

TIAB

No

Affiliation

VARCHAR(250)

Affiliation

and

address

of

first

author

AD

No

AuthorList

VARCHAR(3200)

List

of

authors;

canonized

AU

No

LanguageList

VARCHAR(250)

NOT

NULL

Semicolon-separated

list

LA

No

PublicationTypeList

VARCHAR(250)

NOT

NULL

Semicolon-separated

list

PT

No

VernacularTitle

VARCHAR(250)

The

vernacular

title

for

the

article.

none

No

DateOfElectronic

Publication

VARCHAR(32)

The

NCBI

schema

specifies

no

structure

for

this

column

none

No

Country

VARCHAR(128)

The

country

or

region

of

publication

that

is

cited

in

the

journal.

none

No

206

Data

Source

Configuration

Guide

|
|
|

Table

48.

PubMed

PMArticles

nickname

(continued)

Column

name

Data

type

Description

Tags

Fetch

key

MedlineTA

VARCHAR(250)

NOT

NULL

The

Medline

title

abbreviation.

TA

No

NlmUniqueId

VARCHAR(32)

Contains

MedlineCode

if

NlmUniqueID

is

not

present

none

No

GeneSymbolList

VARCHAR(250)

Semicolon-separated

list;

not

used

since

1996

none

No

NumberOfReferences

INTEGER

The

number

of

bibliographic

references

for

the

review

article.

none

No

PersonalNameSubjectList

VARCHAR(250)

Canonized

as

semicolon-separated

list

of

names

PS

No

KeywordList

VARCHAR(3200)

Semicolon-separated

list

none

No

SpaceFlightMissionList

VARCHAR(250)

Semicolon-separated

list

none

No

InvestigatorList

VARCHAR(250)

Canonized

as

semicolon-separated

list

of

names

none

No

PublicationStatus

VARCHAR(32)

The

status

of

the

publication.

none

No

ProviderID

VARCHAR(32)

The

publication

provider

ID.

none

No

CitationSubsetList

VARCHAR(250)

Semicolon-separated

list

SB

No

AllFields

VARCHAR(1)

Pseudo-column;

always

returns

NULL

ALL

No

TextWords

VARCHAR(1)

Pseudo-column;

always

returns

NULL

TW

No

PubDate

DATE

Includes

journal

and

book

publication

date

+

medline

date

DP

No

PubDateString

VARCHAR(32)

Includes

journal

and

book

publication

date

+

medline

date

DP

No

Title

VARCHAR(250)

Book

or

journal

title

TA

No

Journal_ISSN

CHAR(9)

The

ISSN

for

the

journal.

TA

No

Journal_Volume

VARCHAR(10)

The

volume

of

the

journal.

VI

No

Journal_Issue

VARCHAR(10)

The

issue

of

the

journal.

IP

No

Journal_Coden

VARCHAR(32)

The

code

number

(coden)

of

the

journal.

none

No

Journal_ISOAbbreviation

VARCHAR(32)

The

ISO

abbreviation

for

the

journal.

none

No

Book_Publisher

VARCHAR(128)

The

publisher

the

book.

none

No

Book_Authors

VARCHAR(250)

Canonized

as

other

author

lists

none

No

Book_CollectionTitle

VARCHAR(128)

The

collection

title

of

the

book.

none

No

Chapter

11.

Configuring

access

to

Entrez

data

sources

207

Table

48.

PubMed

PMArticles

nickname

(continued)

Column

name

Data

type

Description

Tags

Fetch

key

Book_Volume

VARCHAR(10)

The

volume

of

the

book.

none

No

PMAccession

nickname:

The

columns

in

the

PMAccession

nickname

are

described

in

the

following

table.

Table

49.

PubMed

PMAccession

nickname

Column

name

Data

type

Description

Tags

PMID

VARCHAR(10)

NOT

NULL

The

key

that

is

used

to

join

a

PMAccession

child

nickname

with

its

parent

nickname.

none

DataBankName

VARCHAR(250)

NOT

NULL

The

name

of

the

data

bank.

SI

Accession

VARCHAR(32)

NOT

NULL

The

accession

number.

SI

PMChemical

nickname:

The

columns

in

the

PMChemical

nickname

are

described

in

the

following

table.

Table

50.

PubMed

PMChemical

nickname

Column

name

Data

type

Description

Tags

PMID

VARCHAR(10)

NOT

NULL

The

key

that

is

used

to

join

a

PMChemical

child

nickname

with

its

parent

nickname.

none

NameOfSubstance

VARCHAR(128)

NOT

NULL

The

name

of

the

substance.

NM

RegistryNumber

VARCHAR(32)

NOT

NULL

Might

be

CAS

or

other

registry

number

RN

CASRegistry

CHAR

Y

or

N

none

PMMeSHHeading

nickname:

The

columns

in

the

PMMeSHHeading

nickname

are

described

in

the

following

table.

Table

51.

PubMed

PMMeSHHeading

nickname

Column

name

Data

type

Description

Tags

PMID

VARCHAR(10)

NOT

NULL

The

key

that

is

used

to

join

a

PMMeSHHeading

child

nickname

with

its

parent

nickname.

ID

DescriptorOrName

VARCHAR(128)

NOT

NULL

The

name

or

descriptor

of

the

MeSH.

MH1

DescriptorIsMajor

CHAR

NOT

NULL

Y

if

descriptor

is

major

none

QualifierOrSubhead

VARCHAR(128)

The

qualifier

or

subheading

of

the

MeSH

.

SH

QSIsMajor

CHAR

Y

if

qualifier

or

subhead

is

major

none

208

Data

Source

Configuration

Guide

Table

51.

PubMed

PMMeSHHeading

nickname

(continued)

Column

name

Data

type

Description

Tags

Notes:

1.

If

the

predicate

″DescriptorIsMajor

=

Y″

is

included

in

the

query,

then

the

search

term

is

MAJR.

PMComments

nickname:

The

columns

in

the

PMComments

nickname

are

described

in

the

following

table.

Table

52.

PubMed

PMComments

nickname

Column

name

Data

type

Description

Tags

PMID

VARCHAR(10)

NOT

NULL

The

key

that

is

used

to

join

a

PMComments

child

nickname

with

its

parent

nickname.

none

RefSource

VARCHAR(128)

NOT

NULL

The

source

of

the

reference.

none

Type

VARCHAR(32)

NOT

NULL

CommentOn,

CommentIn,

ErratumIn,

ErratumFor,

RepublishedFrom,

RepublishedIn,

RetractionOf,

RetractionIn,

UpdateIn,

UpdateOf,

SummaryForPatents,

OriginalReportIn

none

Note

VARCHAR(3200)

Notes

none

PMArticleID

nickname:

The

columns

in

the

PMArticleID

nickname

are

described

in

the

following

table.

Table

53.

PubMed

PMArticleID

nickname

Column

name

Data

type

Description

Tags

PMID

VARCHAR(10)

NOT

NULL

The

key

that

is

used

to

join

a

PMArticleID

child

nickname

with

its

parent

nickname.

none

ArticleID

VARCHAR(32)

NOT

NULL

The

ID

of

the

article.

none

IdType

VARCHAR(8)

NOT

NULL

doi,

pii,

pmcpid,

pmpid,

sici,

pubmed,

medline,

pmcid

none

Related

reference:

v

“Schema

data

element

simplification”

on

page

203

v

“Custom

functions

and

Entrez

queries”

on

page

201

v

“Nucleotide

schema

tables”

on

page

209

Nucleotide

schema

tables

The

Nucleotide

schema

defines

the

appearance

of

data

from

a

Nucleotide

type

server.

The

schema

consists

of

several

related

nicknames:

v

GBSeq

v

GBReference

Chapter

11.

Configuring

access

to

Entrez

data

sources

209

|
|

|

|

v

GBFeatures

v

GBIntervals

v

GBQualifiers

The

following

tables

list

information

about

the

columns

in

the

nickname.

The

Qualifier

column

contains

the

valid

search

qualifiers

for

the

column.

For

a

list

of

valid

search

tags,

see

the

following

web

site

and

locate

the

link

to

Search

Field

Descriptions

and

Qualifiers:

www.ncbi.nlm.nih.gov/entrez/query/static/help/Summary_Matrices.html

You

can

override

the

default

data

type

for

a

column

when

you

create

a

nickname.

For

example,

the

default

data

type

for

the

Sequence

column

in

the

GBSeq

nickname

VARCHAR(32000).

You

can

change

this

data

type

to

CLOB(1

MB).

The

Entrez

wrapper

supports

the

CLOB

data

type,

up

to

5

megabytes

in

length.

GBSeq:

The

columns

in

the

GBSeq

nickname

are

described

in

the

following

table.

The

F

column

indicates

columns

that

are

designated

fetch

keys.

Using

the

fetch

keys

might

expedite

query

processing.

Table

54.

Nucleotide

GBSeq

nickname

Column

name

Data

type

Description

Qualifier

Fetch

key

PrimaryAccession

VARCHAR(16)

NOT

NULL

Primary

accession

number

PACC

Yes

SequenceKey

VARCHAR(32)

NOT

NULL

The

primary

key

column

used

to

join

the

GBSeq

nickname

with

child

nicknames.

No

LocusName

VARCHAR(16)

NOT

NULL

The

name

of

the

locus.

ACCN

No

SeqLength

INTEGER

NOT

NULL

The

length

of

the

sequence.

SLEN

No

Strandedness

VARCHAR(32)

not-set,

single-stranded,

double-stranded,

mixed-stranded

none

No

MoleculeType

VARCHAR(16)

nucleic-acid,

dna,

rna,

trna,

rrna,

mrna,

urna,

snrna,

snorna,

peptide

PROP

No

Topology

VARCHAR(16)

linear,

circular

none

No

Division

CHAR(3)

NOT

NULL

The

GenBank

division.

PROP

No

UpdateDate

DATE

NOT

NULL

The

date

of

the

most

recent

update.

MDAT

No

CreateDate

DATE

NOT

NULL

The

date

that

the

record

was

created.

none

No

Definition

VARCHAR(7000)

NOT

NULL

The

definition

line

of

the

sequence.

TITL

No

Version

INTEGER

The

version

ID

of

the

sequence.

none

No

210

Data

Source

Configuration

Guide

|

|

|

|
|
|
|

|
|
|

Table

54.

Nucleotide

GBSeq

nickname

(continued)

Column

name

Data

type

Description

Qualifier

Fetch

key

GI

VARCHAR(16)

The

GenInfo

(GI)

sequence

ID.

none

No

KeywordList

VARCHAR(7000)

Semicolon

separated

list

KYWD

No

Segment

VARCHAR(250)

The

segment.

none

No

Source

VARCHAR(200)

NOT

NULL

The

source.

ORGN

No

Organism

VARCHAR(7000)

NOT

NULL

The

organism.

ORGN

No

Taxonomy

VARCHAR(7000)

NOT

NULL

The

taxonomy.

none

No

Comment

VARCHAR(7000)

Comments

none

No

Primary

VARCHAR(7000)

The

primary.

none

No

SourceDB

VARCHAR(250)

The

source

database.

none

No

Sequence

VARCHAR(32000)

The

sequence.

none

No

AllText

VARCHAR(1)

Pseudo-column,

always

returns

NULL

ALL

No

FreeText

VARCHAR(1)

Pseudo-column,

always

returns

NULL

WORD

No

GBReference:

The

columns

in

the

GBReference

nickname

are

described

in

the

following

table.

Table

55.

Nucleotide

GBReference

nickname

Column

name

Data

type

Description

Qualifier

SequenceKey

VARCHAR(32)

NOT

NULL

The

key

that

is

used

to

join

a

GBReference

child

nickname

with

its

parent

nickname.

none

ReferenceNum

INTEGER

NOT

NULL

Parsed

from

GBReference_reference

none

RangeLow

INTEGER

NOT

NULL

Low

base

for

reference

(parsed

from

GBReference_reference)

none

RangeHigh

INTEGER

NOT

NULL

High

base

for

reference

(parsed

from

GBReference_reference)

none

Authors

VARCHAR(3200)

Semicolon-separated

list

of

names

in

GenBank

form

AUTH

Consortium

VARCHAR(250)

The

consortium.

none

Title

VARCHAR(250)

The

GenBank

reference

title.

WORD

Journal_Title

VARCHAR(250)

NOT

NULL

The

title

of

the

journal.

JOUR

MedlineID

INTEGER

The

Medline

ID

none

PubMedID

INTEGER

The

PubMed

ID

none

Remarks

VARCHAR(3200)

Remarks

none

Chapter

11.

Configuring

access

to

Entrez

data

sources

211

|||||

GBFeatures:

The

columns

in

the

GBFeatures

nickname

are

described

in

the

following

table.

Table

56.

Nucleotide

GBFeatures

nickname

Column

name

Data

type

Description

Qualifier

SequenceKey

VARCHAR(32)

NOT

NULL

The

key

that

is

used

to

join

a

GBFeatures

child

nickname

with

its

parent

nickname.

none

FeatureJoinKey

VARCHAR(32)

NOT

NULL

The

primary

key

column

used

to

join

the

GBFeatures

nickname

with

child

nicknames.

none

FeatureKey

VARCHAR(20)

NOT

NULL

FKEY

FeatureLocation

VARCHAR(200)

NOT

NULL

none

GBIntervals:

The

columns

in

the

GBIntervals

nickname

are

described

in

the

following

table.

Table

57.

Nucleotide

GBIntervals

nickname

Column

Name

Data

type

Description

Qualifier

FeatureJoinKey

VARCHAR(32)

NOT

NULL

The

key

that

is

used

to

join

a

GBIntervals

child

nickname

with

its

parent

nickname.

none

IntervalFrom

INTEGER

none

IntervalTo

INTEGER

none

IntervalPoint

INTEGER

none

IntervalAccession

VARCHAR(32)

NOT

NULL

none

GBQualifiers:

The

columns

in

the

GBQualifiers

nickname

are

described

in

the

following

table.

Table

58.

Nucleotide

GBQualifiers

nickname

Column

name

Data

type

Description

Qualifier

FeatureJoinKey

VARCHAR(32)

NOT

NULL

The

key

that

is

used

to

join

a

GBQualifiers

child

nickname

with

its

parent

nickname.

none

QualifierName

VARCHAR(50)

Name

of

the

qualifier

none

QualifierValue

VARCHAR(32000)

Value

of

the

qualifier

none

Related

reference:

v

“Schema

data

element

simplification”

on

page

203

v

“PubMed

schema

tables”

on

page

205

v

“Custom

functions

and

Entrez

queries”

on

page

201

212

Data

Source

Configuration

Guide

Messages

for

the

Entrez

wrapper

This

topic

describes

messages

that

you

might

encounter

when

working

with

the

wrapper

for

Entrez.

For

messages

that

are

not

documented

in

this

table,

the

Message

Reference:

Volume

1,

or

the

Message

Reference:

Volume

2,

contact

IBM

Software

support.

Table

59.

Messages

issued

by

the

wrapper

for

Entrez

Error

Code

Message

Explanation

SQL0142N

The

SQL

statement

is

not

supported.

An

invalid

query

type

was

passed

to

the

wrapper.

Check

to

see

if

the

issued

SQL

statement

is

supported

by

this

wrapper.

SQL0204N

"<name>"

is

an

undefined

name.

The

specified

name

is

not

valid.

Check

the

CREATE

NICKNAME

statement.

SQL0405N

The

numeric

literal

"<literal>"

is

not

valid

because

its

value

is

out

of

range.

A

column

in

the

retrieved

XML

data

or

a

predicate

in

an

SQL

statement

contains

a

value

that

is

out

of

the

possible

range

for

that

data

type.

Check

the

data

type

for

this

column

and

the

column

in

the

data

source,

or

redefine

the

column

to

a

more

appropriate

type.

SQL0408N

A

value

is

not

compatible

with

the

data

type

of

its

assignment

target.

Target

name

is

"<target_name>".

A

column

in

the

XML

data

contains

characters

that

are

not

valid

for

that

data

type.

Check

the

data

type

for

this

column

and

the

column

in

the

data

source,

or

redefine

the

column

to

a

more

appropriate

type.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"Cannot

find

database

prototype.")

This

is

an

internal

error.

Contact

IBM

Software

support.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"No

data

to

unpack.")

This

is

an

internal

error.

Contact

IBM

Software

support.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"Error

creating

wrapper

object.")

This

is

an

internal

error.

Contact

IBM

Software

support.

Chapter

11.

Configuring

access

to

Entrez

data

sources

213

Table

59.

Messages

issued

by

the

wrapper

for

Entrez

(continued)

Error

Code

Message

Explanation

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"Bad

expression

type.")

This

is

an

internal

error.

Contact

IBM

Software

support.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"Cannot

find

nickname.")

This

is

an

internal

error.

Contact

IBM

Software

support.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"Memory

allocation

error.")

There

is

not

sufficient

memory

to

process

the

allocation

request

inside

of

the

wrapper.

SQL1816N

Wrapper

"<wrapper_name>"

cannot

be

used

to

access

the

"version"

of

data

source

("<server_type>",

"<server_version>")

that

you

are

trying

to

define

to

the

federated

server.

A

value

in

the

VERSION

clause

of

the

CREATE

SERVER

statement

is

not

valid.

SQL1816N

Wrapper

"<wrapper_name>"

cannot

be

used

to

access

the

"type"

of

data

source

("<server_type>",

"<server_version>")

that

you

are

trying

to

define

to

the

federated

server.

A

value

in

the

TYPE

clause

of

the

CREATE

SERVER

statement

is

not

valid.

SQL1817N

The

CREATE

SERVER

statement

does

not

identify

the

"type"

of

the

data

source

that

you

want

to

define

to

the

federated

database.

The

TYPE

clause

of

the

CREATE

SERVER

statement

is

required

but

was

not

specified.

SQL1822N

Unexpected

error

code

"900"

received

from

data

source

"Entrez

Wrapper."

Associated

text

and

tokens

are

"Parent

nickname

not

defined."

This

is

an

internal

error.

Contact

IBM

Software

support.

SQL1823N

No

data

type

mapping

exists

for

data

type

"<data_type>"

from

server

"<server_name>."

This

is

an

internal

error.

Contact

IBM

Software

support.

SQL1881N

"<option_name>"

is

not

a

valid

"<option_type>"

for

"<option_name>."

The

specified

option

is

not

a

valid

option.

Check

the

CREATE

NICKNAME

statement.

SQL1882N

The

"<option_type>"

option

"<option_name>"

cannot

be

set

to

"<option_value>"

for

"<option_name>."

The

specified

value

is

not

valid

for

this

option.

Check

the

CREATE

NICKNAME

statement.

214

Data

Source

Configuration

Guide

Table

59.

Messages

issued

by

the

wrapper

for

Entrez

(continued)

Error

Code

Message

Explanation

SQL1883N

"<option_name>"

is

a

required

"<option_type>"

option

for

"<option_name>."

The

specified

option

is

required

for

the

object

but

was

not

specified.

Check

the

CREATE

NICKNAME

statement.

SQL1884N

You

specified

"FOREIGN_KEY"

(a

"COLUMN"

option)

more

than

once.

This

is

an

internal

error.

Contact

IBM

Software

support.

SQL1884N

You

specified

"PRIMARY_KEY"

(a

"COLUMN"

option)

more

than

once.

This

is

an

internal

error.

Contact

IBM

Software

support.

SQL30090N

Operation

invalid

for

application

execution

environment.

Reason

code

=

"Cannot

change

server

version".

The

version

of

a

server

cannot

be

changed

by

issuing

the

ALTER

SERVER

statement.

A

new

server

must

be

created

with

the

new

version.

SQL30090N

Operation

invalid

for

application

execution

environment.

Reason

code

=

"Invalid

PARENT

nickname".

The

referenced

nickname

in

a

PARENT

nickname

option

is

not

valid

for

the

current

nickname.

SQL30090N

Operation

invalid

for

application

execution

environment.

Reason

code

=

"Invalid

column

name".

A

specified

column

name

in

the

CREATE

NICKNAME

statement

does

not

match

any

of

the

possible

columns

for

the

nickname.

SQL30090N

Operation

invalid

for

application

execution

environment.

Reason

code

=

"Cannot

AND

fetch

keys".

Multiple

references

to

a

fetch

key,

such

as

the

PMID

column

of

the

PMArticles

nickname,

were

made

in

a

conjunction.

For

example,

"PMID

=

12346

AND

PMID

=

12348".

Fetch

key

predicates

can

be

associated

only

using

OR.

SQL30090N

Operation

invalid

for

application

execution

environment.

Reason

code

=

"Mixed

SEARCH_TERM

and

CONTAINS

functions".

The

SEARCH_TERM

and

CONTAINS

functions

cannot

be

mixed

in

a

query.

Only

one

SEARCH_TERM

function

is

allowed

per

query.

SQL30090N

Operation

invalid

for

application

execution

environment.

Reason

code

=

"Invalid

first

argument

in

function".

The

first

argument

to

a

SEARCH_TERM

or

CONTAINS

function

was

not

valid.

This

argument

must

be

a

reference

to

a

column.

Chapter

11.

Configuring

access

to

Entrez

data

sources

215

Table

59.

Messages

issued

by

the

wrapper

for

Entrez

(continued)

Error

Code

Message

Explanation

SQL30090N

Operation

invalid

for

application

execution

environment.

Reason

code

=

"Invalid

second

argument

in

function".

The

second

argument

to

a

SEARCH_TERM

or

CONTAINS

function

was

not

valid.

This

argument

must

be

a

string

literal,

a

host

variable,

or

a

column

reference.

SQL30090N

Operation

invalid

for

application

execution

environment.

Reason

code

=

"Untagged

column

in

CONTAINS

function".

The

first

argument

to

the

CONTAINS

function

was

not

valid.

This

argument

must

be

a

reference

to

a

tagged

column.

SQL30090N

Operation

invalid

for

application

execution

environment.

Reason

code

=

"Invalid

function".

This

is

an

internal

error.

Contact

IBM

Software

support.

Related

concepts:

v

“Introduction

to

messages”

in

the

Message

Reference

Volume

1

Related

reference:

v

“SQLSTATE

messages”

in

the

Message

Reference

Volume

2

216

Data

Source

Configuration

Guide

Chapter

12.

Configuring

access

to

Excel

data

sources

This

chapter

explains

how

to

configure

your

federated

server

to

access

data

that

is

stored

in

Excel

data

sources.

You

can

configure

access

to

Excel

data

sources

by

using

the

DB2

Control

Center

or

by

issuing

SQL

statements.

This

chapter:

v

Explains

what

Excel

is

v

Lists

the

tasks

that

you

need

to

perform

v

Contains

examples

of

the

SQL

statements

that

you

need

v

Lists

the

error

messages

associated

with

the

Excel

wrapper

What

is

Excel?

An

Excel

spreadsheet

or

workbook

is

a

file

created

using

the

Microsoft®

Excel

application

and

has

a

file

extension

of

xls.

DB2®

Information

Integrator

supports

spreadsheets

from

Excel

97,

Excel

2000,

and

Excel

2002.

Figure

23

illustrates

how

the

Excel

wrapper

connects

your

spreadsheets

to

your

federated

system.

The

Excel

wrapper

uses

the

CREATE

NICKNAME

statement

to

map

the

columns

in

your

Excel

spreadsheet

to

columns

in

your

DB2

UDB

federated

system.

Table

60

shows

sample

spreadsheet

data

that

is

stored

in

a

file

called

Compound_Master.xls.

Table

60.

Sample

spreadsheet

for

Compound_Master.xls

A

B

C

D

1

COMPOUND_NAME

WEIGHT

MOL_COUNT

WAS_TESTED

2

compound_A

1.23

367

tested

3

compound_G

210

4

compound_F

0.000425536

174

tested

5

compound_Y

1.00256

tested

6

compound_Q

1024

Application
F E V G B O W Hile dit iew o ookmarks ptions indow elp

DB2 Client Federated database

DB2 Universal
Database
federated
database

SQL

Relational
results
table

Excel wrapper

Excel spreadsheet

Molecular data.xls

B
C
N

atomic
number

atomic
weight

5

6

7

10.8

12.0

14.0

element

Figure

23.

How

the

Excel

wrapper

works

©

Copyright

IBM

Corp.

1998,

2004

217

|
|
|
|

Table

60.

Sample

spreadsheet

for

Compound_Master.xls

(continued)

A

B

C

D

7

compound_B

33.5362

8

compound_S

0.96723

67

tested

9

compound_O

1.2

tested

This

information

is

usually

not

available

to

you

through

standard

SQL

commands.

When

the

Excel

wrapper

is

installed

and

registered,

you

can

access

this

information

as

if

it

were

a

standard

relational

data

source.

For

example,

if

you

wanted

to

know

all

the

compound

data

where

the

molecular

count

is

greater

than

100,

you

would

run

the

following

SQL

query:

SELECT

*

FROM

compound_master

WHERE

mol_count

>

100

The

results

of

the

query

are

shown

in

Table

61.

Table

61.

Query

results

COMPOUND_NAME

WEIGHT

MOL_COUNT

WAS_TESTED

compound_A

1.23

367

tested

compound_G

210

compound_F

0.000425536

174

tested

compound_Q

1024

Related

concepts:

v

“Methods

of

accessing

Excel

data”

on

page

25

Related

tasks:

v

“Adding

Excel

data

sources

to

a

federated

server”

on

page

218

Adding

Excel

to

a

federated

server

Adding

Excel

data

sources

to

a

federated

server

To

configure

the

federated

server

to

access

Excel

data

sources,

you

must

provide

the

federated

server

with

information

about

the

data

sources

and

objects

that

you

want

to

access.

You

can

configure

the

federated

server

to

access

Excel

data

sources

by

using

the

DB2

Control

Center

or

the

DB2

command

line.

The

DB2

Control

Center

includes

a

wizard

to

guide

you

through

the

steps

required

to

configure

the

federated

server.

Prerequisites:

v

DB2

Information

Integrator

must

be

installed

on

a

server

that

will

act

as

the

federated

server

v

A

federated

database

must

exist

on

the

federated

server

v

Excel

worksheets

that

are

structured

properly

so

that

the

wrapper

can

access

the

data

Procedure:

218

Data

Source

Configuration

Guide

|
|
|

To

add

the

Excel

data

sources

to

a

federated

server:

1.

Register

the

wrapper.

2.

Register

the

server

definition.

3.

Register

nicknames

for

the

Excel

worksheets.

Related

concepts:

v

“DB2

Information

Integrator

installation

process

-

overview”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Methods

of

accessing

Excel

data”

on

page

25

v

“What

is

Excel?”

on

page

217

v

“Fast

track

to

configuring

your

data

sources”

on

page

55

Related

tasks:

v

“Creating

a

federated

database”

on

page

51

v

“Registering

the

Excel

wrapper”

on

page

219

v

“Registering

the

server

for

an

Excel

data

source”

on

page

220

v

“Registering

nicknames

for

Excel

data

sources”

on

page

221

v

“Checking

the

setup

of

the

federated

server”

on

page

37

Related

reference:

v

“Supported

operating

systems

for

DB2

Information

Integrator

(32-bit)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Supported

operating

systems

for

DB2

Information

Integrator

(64-bit)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Choose

the

correct

wrapper”

on

page

24

Registering

the

Excel

wrapper

Registering

the

Excel

wrapper

is

part

of

the

larger

task

of

adding

Excel

data

sources

to

a

federated

server.

You

must

register

a

wrapper

to

access

Excel

data

sources.

Wrappers

are

used

by

federated

servers

to

communicate

with

and

retrieve

data

from

data

sources.

Wrappers

are

implemented

as

a

set

of

library

files.

Restrictions:

v

The

Excel

wrapper

is

available

only

for

Microsoft

Windows

operating

systems

that

support

DB2

Universal

Database

Enterprise

Server

Edition.

v

The

Excel

application

must

be

installed

on

the

server

where

DB2

Information

Integrator

is

installed

before

the

Excel

wrapper

can

be

used.

v

Pass-through

sessions

are

not

allowed.

Procedure:

To

register

a

wrapper,

issue

the

CREATE

WRAPPER

statement

with

the

name

of

the

wrapper

and

the

name

of

the

wrapper

library

file.

For

example,

to

register

a

wrapper

with

the

name

excel_wrapper,

issue

the

following

statement:

CREATE

WRAPPER

excel_wrapper

LIBRARY

’db2lsxls.dll’;

Chapter

12.

Configuring

access

to

Excel

data

sources

219

|
|

|

You

must

specify

the

wrapper

library

file

db2lsxls.dll

in

the

CREATE

WRAPPER

statement.

The

next

task

in

this

sequence

of

tasks

is

registering

the

server

definition

for

the

Excel

wrapper.

Related

tasks:

v

“Registering

the

server

for

an

Excel

data

source”

on

page

220

Related

reference:

v

“CREATE

WRAPPER

statement”

in

the

SQL

Reference,

Volume

2

Excel

wrapper

library

files

The

following

table

lists

the

directory

paths

and

library

file

names

for

the

Excel

wrapper.

When

you

install

DB2

Information

Integrator,

this

library

file

is

added

to

the

directory

path

listed

in

the

table.

When

you

register

a

wrapper,

specify

only

the

library

file

name

that

is

listed

in

the

table.

Table

62.

Excel

wrapper

library

location

and

file

name

Operating

system

Directory

path

Wrapper

library

file

Windows

%DB2PATH%\bin

db2lsxls.dll

%DB2PATH%

is

the

environment

variable

that

is

used

to

specify

the

directory

path

where

DB2

Information

Integrator

is

installed

on

Windows.

The

default

Windows

directory

path

is

C:\Program

Files\IBM\SQLLIB.

Related

tasks:

v

“Registering

the

Excel

wrapper”

on

page

219

Registering

the

server

for

an

Excel

data

source

Registering

the

server

for

an

Excel

data

source

is

part

of

the

larger

task

of

adding

Excel

to

a

federated

system.

After

the

wrapper

is

registered,

you

must

register

a

corresponding

server.

For

Excel,

a

server

definition

is

created

because

the

hierarchy

of

federated

objects

requires

that

data

source

files

(identified

by

nicknames)

are

associated

with

a

specific

server

object.

Procedure:

To

register

the

Excel

server

to

the

federated

system,

use

the

CREATE

SERVER

statement.

Suppose

that

you

want

to

create

a

server

object

called

biochem_lab

for

a

workbook

that

contains

biochemical

data.

The

server

object

must

be

associated

with

the

Excel

wrapper

that

you

registered

using

the

CREATE

WRAPPER

statement.

The

CREATE

SERVER

statement

to

register

this

server

object

is:

220

Data

Source

Configuration

Guide

|

|
|

|
|

|
|

||

|||

|||
|

|
|
|

|

|

|
|
|

|
|
|
|

CREATE

SERVER

biochem_lab

WRAPPER

Excel_2000_Wrapper;

The

next

task

in

this

sequence

of

tasks

is

registering

nicknames

for

Excel

data

sources.

Related

tasks:

v

“Registering

nicknames

for

Excel

data

sources”

on

page

221

Related

reference:

v

“CREATE

SERVER

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

SERVER

statement

arguments

-

Excel

wrapper”

on

page

544

Registering

nicknames

for

Excel

data

sources

Registering

nicknames

for

Excel

data

sources

is

part

of

the

larger

task

of

adding

Excel

to

a

federated

system.

After

you

register

a

server,

you

must

register

a

corresponding

nickname.

Nicknames

are

used

when

you

refer

to

an

Excel

data

source

in

a

query.

Procedure:

To

map

the

Excel

data

source

to

relational

tables,

create

a

nickname

using

the

CREATE

NICKNAME

statement.

The

statement

in

the

following

example

creates

the

Compounds

nickname

from

the

Excel

spreadsheet

file

named

CompoundMaster.xls.

The

file

contains

three

columns

of

data

that

are

being

defined

to

the

federated

system

as

Compound_ID,

CompoundName,

and

MolWeight.

CREATE

NICKNAME

Compounds

(

Compound_ID

INTEGER,

CompoundName

VARCHAR(50),

MolWeight

FLOAT)

FOR

SERVER

biochem_lab

OPTIONS

(FILE_PATH

’C:\My

Documents\CompoundMaster.xls’,

RANGE

’B2:D5’);

There

are

no

further

tasks

in

this

sequence

of

tasks.

Related

tasks:

v

“Adding

Excel

data

sources

to

a

federated

server”

on

page

218

v

“Specifying

nickname

columns

for

a

nonrelational

data

source”

on

page

65

Related

reference:

v

“Excel

data

source

–

Example

queries”

on

page

221

v

“CREATE

NICKNAME

statement

syntax

-

Excel

wrapper”

on

page

544

Excel

data

source

–

Example

queries

This

topic

lists

several

sample

Excel

spreadsheet

queries

using

the

example

nickname

Compounds.

To

run

queries,

you

use

the

nickname

and

the

defined

nickname

columns

in

your

SQL

statements

in

the

same

manner

as

you

would

use

a

regular

table

name

and

table

columns.

Chapter

12.

Configuring

access

to

Excel

data

sources

221

|

The

following

query

displays

all

compound_ID’s

where

the

molecular

weight

is

greater

than

2000:

SELECT

compound_ID

FROM

Compounds

WHERE

MolWeight

>

200;

The

following

query

displays

all

records

where

the

compound

name

or

molecular

weight

is

null:

SELECT

*

FROM

Compounds

WHERE

CompoundName

IS

NULL

OR

MolWeight

IS

NULL;

The

following

query

displays

all

records

where

the

compound

name

contains

the

string

ase

and

the

molecular

weight

is

greater

than

or

equal

to

300:

SELECT

*

FROM

Compounds

WHERE

CompoundName

LIKE

’%ase%

AND

MolWeight

>=300;

Related

reference:

v

“Documentum

data

source

–

Example

queries”

on

page

187

v

“Excel

data

source

–

Sample

scenario”

on

page

222

Excel

data

source

–

Sample

scenario

This

section

demonstrates

a

sample

implementation

of

the

Excel_2000

wrapper

accessing

an

Excel

2000

worksheet

located

in

the

C:\Data

directory.

The

scenario

registers

the

wrapper,

registers

a

server

and

registers

one

nickname,

that

will

be

used

to

access

the

worksheet.

The

statements

shown

in

the

scenario

are

entered

using

the

DB2

command

line.

After

the

wrapper

is

registered,

you

can

run

queries

on

the

worksheet.

The

scenario

starts

with

a

compound

worksheet,

called

Compund_Master.xls,

with

4

columns

and

9

rows.

The

fully-qualified

path

name

to

the

file

is

C:\Data\Compound_Master.xls.

The

contents

are

show

in

Table

63.

Table

63.

Sample

worksheet

Compound_Master.xls

A

B

C

D

1

COMPOUND_NAME

WEIGHT

MOL_COUNT

WAS_TESTED

2

compound_A

1.23

367

tested

3

compound_G

210

4

compound_F

0.000425536

174

tested

5

compound_Y

1.00256

tested

6

compound_Q

1024

7

compound_B

33.5362

8

compound_S

0.96723

67

tested

9

compound_O

1.2

tested

Procedure:

To

access

an

Excel

2000

worksheet

using

the

Excel

wrapper:

222

Data

Source

Configuration

Guide

1.

Register

the

Excel_2000

wrapper:

db2

=>

CREATE

WRAPPER

Excel_2000

LIBRARY

’db2lsxls.dll’

2.

Register

the

server:

db2

=>

CREATE

SERVER

biochem_lab

WRAPPER

Excel_2000

3.

Register

a

nickname

that

refers

to

the

Excel

worksheet:

db2

=>

CREATE

NICKNAME

Compound_Master

(compound_name

VARCHAR(40),

weight

FLOAT,

mol_count

INTEGER,

was_tested

VARCHAR(20))

FOR

biochem_lab

OPTIONS

(

FILE_PATH

’C:\Data\Compound_Master.xls’)

The

registration

process

is

complete.

The

Excel

data

source

is

now

part

of

the

federated

system,

and

can

be

used

in

SQL

queries.

The

following

examples

show

sample

SQL

queries

and

results

obtained

using

the

Excel

data

source.

v

Sample

SQL

query:

"Give

me

all

the

compound

data

where

mol_count

is

greater

than

100."

SELECT

*

FROM

compound_master

WHERE

mol_count

>

100

Result:

All

fields

for

rows

2,

3,

4,

6,

and

8.

v

Sample

SQL

query:

"Give

me

the

compound_name

and

mol_count

for

all

compounds

where

the

mol_count

has

not

yet

been

determined."

SELECT

compound_name,

mol_count

FROM

compound_master

WHERE

mol_count

IS

NULL

Result:

Fields

compound_name

and

mol_count

of

rows

5,

7,

and

10

from

the

worksheet.

v

Sample

SQL

query:

"Count

the

number

of

compounds

that

have

not

been

tested

and

the

weight

is

greater

than

1."

SELECT

count(*)

FROM

compound_master

WHERE

was_tested

IS

NULL

AND

weight

>

1

Result:

The

record

count

of

1

which

represents

the

single

row

7

from

the

worksheet

that

meets

the

criteria.

v

Sample

SQL

query:

"Give

me

the

compound_name

and

mol_count

for

all

compounds

where

the

mol_count

has

been

determined

and

is

less

than

the

average

mol_count."

SELECT

compound_name,

mol_count

FROM

compound_master

WHERE

mol_count

IS

NOT

NULL

AND

mol_count

<

(SELECT

AVG(mol_count)

FROM

compound_master

WHERE

mol_count

IS

NOT

NULL

AND

was_tested

IS

NOT

NULL)

The

sub-query

returns

the

average

368

to

the

main

query

which

then

returns

Table

64:

Table

64.

Query

results

COMPOUND_NAME

MOL_COUNT

compound_A

367

compound_G

210

compound_F

174

compound_S

67

Related

tasks:

v

“Adding

Excel

data

sources

to

a

federated

server”

on

page

218

Chapter

12.

Configuring

access

to

Excel

data

sources

223

Related

reference:

v

“Excel

data

source

–

Example

queries”

on

page

221

File

access

control

model

for

the

Excel

wrapper

The

database

management

system

accesses

Excel

files

with

the

authority

of

the

LOG

ON

AS

property

of

the

DB2

database

service.

This

setting

can

be

viewed

in

the

LOG

ON

properties

page

for

the

DB2

instance.

The

properties

page

is

accessed

through

the

Windows

NT

Services

control

panel.

Related

reference:

v

“File

access

control

model

for

the

table-structured

file

wrapper”

on

page

361

v

“Access

control

for

the

Documentum

wrapper”

on

page

188

Messages

for

the

Excel

wrapper

This

section

lists

and

describes

messages

you

might

encounter

while

working

with

the

wrapper

for

Excel.

Table

65.

Messages

issued

by

the

wrapper

for

Excel

Error

Code

Message

Explanation

SQL1817N

The

CREATE

SERVER

statement

does

not

identify

the

"VERSION"

of

data

source

that

you

want

defined

to

the

federated

database.

The

VERSION

parameter

was

not

specified

during

the

CREATE

SERVER

statement.

Correct

the

SQL

statement

and

run

it

again.

SQL1822N

Unexpected

error

code

"-1000.<internal

program

code>"

received

from

data

source

"Excel

Wrapper".

Associated

text

and

tokens

are

"Memory

allocation

error"

Contact

IBM

Software

Support.

SQL1822N

Unexpected

error

code

"-1001.<internal

program

code>"

received

from

data

source

"Excel

Wrapper".

Associated

text

and

tokens

are

"Unknown

option".

The

option

specified

in

the

DDL

statement

is

not

supported.

Correct

the

SQL

statement

and

run

it

again.

SQL1822N

Unexpected

error

code

"-1002.<internal

program

code>"

received

from

data

source

"Excel

Wrapper".

Associated

text

and

tokens

are

"Creation

of

DELTA

object

failed".

An

internal

program

error

has

occurred.

Contact

IBM

Software

Support.

SQL1822N

Unexpected

error

code

"-1100.<internal

program

code>"

received

from

data

source

"Excel

Wrapper".

Associated

text

and

tokens

are

"Wrapper

options

are

not

supported"

Wrapper

OPTIONS

are

not

supported

by

this

wrapper.

Correct

the

SQL

statement

and

run

it

again.

SQL1822N

Unexpected

error

code

"-1200.<internal

program

code>"

received

from

data

source

"Excel

Wrapper".

Associated

text

and

tokens

are

"<option>

is

an

unsupported

Server

option".

The

specified

option

is

not

supported

by

this

wrapper.

Correct

the

SQL

statement

and

run

it

again.

224

Data

Source

Configuration

Guide

Table

65.

Messages

issued

by

the

wrapper

for

Excel

(continued)

Error

Code

Message

Explanation

SQL1822N

Unexpected

error

code

"-1201.<internal

program

code>"

received

from

data

source

"Excel

Wrapper".

Associated

text

and

tokens

are

"Error

obtaining

server

name"

An

internal

program

error

has

occurred.

Contact

IBM

Software

Support.

SQL1822N

Unexpected

error

code

"-1209.

<internal

program

code>"

received

from

data

source

"Excel

Wrapper".

Associated

text

and

tokens

are

"Error

converting

VARCHAR

data"

An

internal

program

error

has

occurred.

Contact

IBM

Software

Support.

SQL1822N

Unexpected

error

code

"-1211.<internal

program

code>"

received

from

data

source

"Excel

Wrapper".

Associated

text

and

tokens

are

"Error

converting

INTEGER

data"

An

internal

program

error

has

occurred.

Contact

IBM

Software

Support.

SQL1822N

Unexpected

error

code

"-1212.<internal

program

code>"

received

from

data

source

"Excel

Wrapper".

Associated

text

and

tokens

are

"Error

converting

FLOAT

data"

An

internal

program

error

has

occurred.

Contact

IBM

Software

Support.

SQL1822N

Unexpected

error

code

"-1400.<internal

program

code>"

received

from

data

source

"Excel

Wrapper".

Associated

text

and

tokens

are

"<option>

is

an

unsupported

User

option"

The

specified

option

is

not

supported

by

this

wrapper.

Correct

the

SQL

statement

and

run

it

again.

SQL1822N

Unexpected

error

code

"-1401.<internal

program

code>"

received

from

data

source

"Excel

Wrapper".

Associated

text

and

tokens

are

"Creation

of

USER

Delta

object

failed"

An

internal

program

error

has

occurred.

Contact

IBM

Software

Support.

SQL1822N

Unexpected

error

code

"-1500.<internal

program

code>"

received

from

data

source

"Excel

Wrapper".

Associated

text

and

tokens

are

"<option>

is

an

unsupported

Nickname

option"

The

specified

option

is

not

supported

by

this

wrapper.

Correct

the

SQL

statement

and

run

it

again.

SQL1822N

Unexpected

error

code

"-1501.<internal

program

code>"

received

from

data

source

"Excel

Wrapper".

Associated

text

and

tokens

are

"Required

option

PATH

not

specified"

The

PATH

option

is

required

to

register

the

NICKNAME.

Correct

the

SQL

statement

and

run

it

again.

SQL1822N

Unexpected

error

code

"-1502.<internal

program

code>"

received

from

data

source

"Excel

Wrapper".

Associated

text

and

tokens

are

"Creation

of

NICKNAME

Delta

object

failed"

An

internal

program

error

has

occurred.

Contact

IBM

Software

Support.

Chapter

12.

Configuring

access

to

Excel

data

sources

225

Table

65.

Messages

issued

by

the

wrapper

for

Excel

(continued)

Error

Code

Message

Explanation

SQL1822N

Unexpected

error

code

"-1503.<internal

program

code>"

received

from

data

source

"Excel

Wrapper".

Associated

text

and

tokens

are

"Error

obtaining

Nickname

column

type"

An

internal

program

error

has

occurred.

Contact

IBM

Software

Support.

SQL1822N

Unexpected

error

code

"-1504.<internal

program

code>"

received

from

data

source

"Excel

Wrapper".

Associated

text

and

tokens

are

"Error

obtaining

Nickname

column

type

name"

An

internal

program

error

has

occurred.

Contact

IBM

Software

Support.

SQL1822N

Unexpected

error

code

"-1505.<internal

program

code>"

received

from

data

source

"Excel

Wrapper".

Associated

text

and

tokens

are

received

from

data

source

"Excel

Wrapper".

The

specified

<data

type>

is

not

supported

by

this

wrapper.

Correct

the

SQL

statement

and

run

it

again.

SQL1822N

Unexpected

error

code

"-1506.<internal

program

code>"

received

from

data

source

"Excel

Wrapper".

Associated

text

and

tokens

are

"Error

obtaining

Nickname

column

info"

An

internal

program

error

has

occurred.

Contact

IBM

Software

Support.

SQL1822N

Unexpected

error

code

"-1507.<internal

program

code>"

received

from

data

source

"Excel

Wrapper".

Associated

text

and

tokens

are

"<option>

option

cannot

be

dropped"

The

specified

option

cannot

be

dropped

because

it

is

a

required

option.

SQL1822N

Unexpected

error

code

"-1508.VANI"

received

from

data

source

"Excel

Wrapper".

Associated

text

and

tokens

are

"Column

names

cannot

be

altered"

The

altering

of

column

names

is

not

permitted

by

the

Excel

wrapper.

SQL1822N

Unexpected

error

code.

"-1509.VCTS"

received

from

data

source

"Excel

Wrapper".

Associated

text

and

tokens

are

"No

column

info

found".

The

column

information

is

not

found.

SQL1822N

Unexpected

error

code

"-1701.<internal

program

code>"

received

from

data

source

"Excel

Wrapper".

Associated

text

and

tokens

are

"Error

parsing

SQL"

An

internal

program

error

has

occurred.

Contact

IBM

Software

Support.

SQL1822N

Unexpected

error

code

"-1702.<internal

program

code>"

received

from

data

source

"Excel

Wrapper".

Associated

text

and

tokens

are

"Error

accessing

NICKNAME

object"

An

internal

program

error

has

occurred.

Contact

IBM

Software

Support.

226

Data

Source

Configuration

Guide

Table

65.

Messages

issued

by

the

wrapper

for

Excel

(continued)

Error

Code

Message

Explanation

SQL1822N

Unexpected

error

code

"-1703.<internal

program

code>"

received

from

data

source

"Excel

Wrapper".

Associated

text

and

tokens

are

"Error

building

data

storage

area"

An

internal

program

error

has

occurred.

Contact

IBM

Software

Support.

SQL1822N

Unexpected

error

code

"-1704.<internal

program

code>"

received

from

data

source

"Excel

Wrapper".

Associated

text

and

tokens

are

"Error

linking

SQL

to

Nickname

Data"

An

internal

program

error

has

occurred.

Contact

IBM

Software

Support.

SQL1822N

Unexpected

error

code

"-1705.<internal

program

code>"

received

from

data

source

"Excel

Wrapper".

Associated

text

and

tokens

are

"Excel

application

startup

failed"

The

startup

of

the

Excel

application

failed.

Confirm

that

Excel

is

installed

on

the

system

and

has

been

registered

with

the

correct

version

of

the

wrapper.

Check

the

LOG

ON

AS

property

for

the

DB2

instance

in

the

Windows

NT

Services

control

panel.

The

Excel

application

will

be

accessed

using

this

authority.

Confirm

that

this

user

has

appropriate

rights

or

change

this

property

to

an

authorized

account,

then

restart

DB2

and

run

the

SQL

query

again.

SQL1822N

Unexpected

error

code

"-1706.<internal

program

code>"

received

from

data

source

"Excel

Wrapper".

Associated

text

and

tokens

are

"Error

opening

source

spreadsheet"

A

problem

occurred

while

opening

the

spreadsheet

referenced

by

the

nickname

in

the

SQL

query.

Ensure

that

the

file

exists

in

the

PATH

specified

during

the

CREATE

NICKNAME

statement

during

registration.

SQL1822N

Unexpected

error

code

"-1707.<internal

program

code>"

received

from

data

source

"Excel

Wrapper".

Associated

text

and

tokens

are

"Error

accessing

DL

output

storage

area"

An

internal

program

error

occurred.

Contact

IBM

Software

Support.

SQL1822N

Unexpected

error

code

"-1708.<internal

program

code>"

received

from

data

source

"Excel

Wrapper".

Associated

text

and

tokens

are

"Excel

application

end

failed"

An

internal

program

error

occurred.

If

this

error

persists

after

repeated

queries,

contact

IBM

Software

Support.

SQL1822N

Unexpected

error

code

"-1711.<internal

program

code>"

received

from

data

source

"Excel

Wrapper".

Associated

text

and

tokens

are

"Error

during

fetch,

possible

data/col

type

mismatch"

The

data

fetched

during

the

SQL

query

was

of

a

different

data

type

than

the

data

type

specified

during

the

registration

of

the

nickname.

Correct

the

data

in

the

source

spreadsheet

or

correct

the

registered

data

type

in

the

nickname.

If

this

does

not

correct

the

problem,

contact

IBM

Software

Support.

Chapter

12.

Configuring

access

to

Excel

data

sources

227

Table

65.

Messages

issued

by

the

wrapper

for

Excel

(continued)

Error

Code

Message

Explanation

SQL1822N

Unexpected

error

code

"-1900.<internal

program

code>"

received

from

data

source

"Excel

Wrapper".

Associated

text

and

tokens

are

"Memory

allocation

error"

An

internal

program

error

has

occurred.

Contact

IBM

Software

Support.

Related

concepts:

v

“Introduction

to

messages”

in

the

Message

Reference

Volume

1

Related

reference:

v

“SQLSTATE

messages”

in

the

Message

Reference

Volume

2

228

Data

Source

Configuration

Guide

Chapter

13.

Configuring

access

to

Extended

Search

data

sources

This

chapter

explains

how

to

configure

your

federated

server

to

access

data

that

is

stored

in

IBM

Lotus

Extended

Search

data

sources.

You

can

configure

access

to

Extended

Search

data

sources

by

using

the

DB2

Control

Center

or

by

issuing

SQL

statements.

This

chapter:

v

Explains

what

Extended

Search

is

v

Lists

the

tasks

that

you

need

to

perform

v

Contains

examples

of

the

SQL

statements

that

you

need

v

Lists

the

error

messages

associated

with

the

Extended

Search

wrapper

What

is

Extended

Search?

The

Extended

Search

product

is

a

multi-tiered

client/server

system

that

provides

extensive

search

and

retrieval

capabilities.

With

Extended

Search,

you

can

enter

a

single

request

and

search

potentially

thousands

of

data

repositories

and

the

Internet

at

the

same

time.

These

repositories,

which

can

be

of

varied

content

and

structure,

might

be

geographically

dispersed

throughout

the

world.

Extended

Search

supports

distributed,

heterogeneous

searching

of

structured

and

unstructured

data

through

a

single

point

of

access.

It

leverages

your

current

data

management

investment

and

completely

handles

the

logistics

required

to

access

many

diverse

sources

simultaneously.

Extended

Search

uses

its

generalized

query

language

(GQL)

as

a

common

search

syntax

and

internally

translates

each

search

request

into

the

native

search

languages

of

the

data

sources

that

you

want

to

search.

It

also

uses

methods

that

are

native

to

those

sources

to

find

and

retrieve

information

without

regard

for

where

a

source

is

located.

See

the

Extended

Search

product

documentation

for

information

about

installing

an

Extended

Search

server,

configuring

the

search

domain,

and

using

GQL.

The

following

documents

are

available

on

the

Resources

page

of

the

IBM®

Lotus®

Extended

Search

Web

site:

http://www.lotus.com/products/des.nsf/wdocuments/resources

Extended

Search

General

Information

Describes

the

components

in

an

Extended

Search

system

and

how

they

interact

with

each

other

and

the

backend

data

systems.

Extended

Search

Installation

Defines

the

system

prerequisites

and

provides

instructions

for

installing

the

product

and

verifying

the

installation

process.

Extended

Search

Administration

Provides

instructions

for

adding

data

sources

to

the

search

domain,

configuring

searchable

fields,

and

using

sample

search

applications

to

query

Extended

Search

sources.

©

Copyright

IBM

Corp.

1998,

2004

229

http://www.lotus.com/products/des.nsf/wdocuments/resources/

Extended

Search

Programming

Discusses

the

application

development

tools

that

you

can

use

to

extend

search

support

to

data

sources

that

are

not

supported

in

the

default

configuration

of

the

product.

Includes

a

description

of

the

Extended

Search

generalized

query

language.

Extended

Search

data

sources

With

Extended

Search,

you

can

search

the

following

types

of

data

sources:

v

Many

popular

Web

search

sites

and

news

sites.

If

you

need

to

search

your

intranet’s

search

site,

or

other

internal

or

external

search

sites,

you

can

easily

add

support

for

doing

so.

v

Mail

systems,

such

as

those

that

you

manage

with

Lotus

Notes®

and

Microsoft®

Exchange

Server.

v

Document

management

systems,

such

as

DB2®

Information

Integrator

for

Content

databases.

v

Relational

databases,

such

as

IBM

DB2,

Oracle,

Microsoft

SQL

Server,

Microsoft

Access,

and

other

databases

that

comply

with

Open

Database

Connectivity

(ODBC)

standards.

v

Full

text

indexes,

such

as

those

that

you

create

with

IBM

WebSphere®

Portal,

Domino™

Domain

Index,

Microsoft

Index

Server,

and

Microsoft

Site

Server.

v

Lotus

repositories,

including

Notes

databases,

Domino.Doc®

libraries

and

cabinets,

Lotus

QuickPlace

places,

and

Lotus

Discovery

Server™

knowledge

maps

(K-maps).

v

Instant

messaging

systems,

such

as

Lotus

Sametime®.

This

feature

enables

you

to

direct

queries

to

knowledgeable

persons,

not

just

searchable

data

repositories.

v

Lightweight

Directory

Access

Protocol

(LDAP)

directories,

such

as

those

that

you

manage

with

IBM

SecureWay®,

Domino

LDAP

Server,

and

Exchange

LDAP

Server.

v

File

systems.

You

can

search

text

files

that

are

stored

locally

or

on

network

drives.

You

cannot

search

compressed

or

encrypted

files.

With

the

Extended

Search

C++

and

Java™

application

programming

interfaces

(APIs),

you

can

extend

support

to

other

types

of

sources,

such

as

proprietary

databases

that

are

not

mentioned

here.

How

the

Extended

Search

wrapper

works

In

a

structured

relational

database

model,

columns

are

named

and

represented

in

a

consistent

format.

This

feature

allows

you

to

perform

precise

computational

operations

and

join

data

from

different

tables

by

comparing

specific

column

values.

You

can

also

do

other

types

of

analysis,

such

as

listing

objects

in

one

table

that

are

missing

from

another

table.

In

contrast,

unstructured

data

is

often

stored

in

a

free

text

form.

Typically,

there

is

little

or

no

metadata

that

enables

you

to

query

for

information

by

column

name.

A

search

of

unstructured

data

depends

more

on

finding

data

that

matches

user-specified

keywords

than

on

computational

criteria.

The

Extended

Search

wrapper

combines

these

two

search

techniques.

With

the

wrapper,

you

can

use

structured

query

language

to

search

unstructured

content

in

an

Extended

Search

domain.

You

can

then

perform

analytical

or

relational

operations

on

the

search

results.

230

Data

Source

Configuration

Guide

You

issue

queries

by

entering

SQL

statements

that

refer

to

a

special

purpose

DB2

table

(a

nickname

table).

Extended

Search

performs

the

search

according

to

the

SQL

criteria

and

populates

the

nickname

table

with

the

result

data.

Because

the

search

results

persist

in

a

table,

the

data

is

available

for

operations

with

other

database

tables,

including

other

nickname

tables.

When

you

submit

a

search

request

with

the

wrapper,

you

can

retrieve

data

from

any

Extended

Search

source

that

is

mapped

to

a

nickname

table.

You

can

integrate

this

data

with

other

data

sources

in

your

federated

system

without

moving

the

data

out

of

the

native

data

source.

Search

results

appear

as

a

single

result

set

regardless

of

how

many

sources

provide

responses

to

the

query.

The

following

figure

shows

how

the

Extended

Search

wrapper

connects

the

diverse

data

sources

in

an

Extended

Search

domain

to

a

federated

database

system.

The

wrapper

accesses

and

retrieves

data

from

one

or

more

remote

Extended

Search

servers.

If

the

wrapper

contacts

an

Extended

Search

server

that

is

connected

to

other

Extended

Search

servers,

search

results

can

be

returned

from

multiple

servers.

Related

tasks:

v

“Adding

Extended

Search

data

sources

to

a

federated

server”

on

page

235

Federated database

Wrapper

Web sites

DB2 UDB
federated database

SQL

LOTUS Notes
Database
Lotus Notes
databases

File systems

Instant messaging

Extended SearchDB2 client

Extended
Search
wrapper

LOTUS Notes
Database
LDAP
directories

Relational
databases

Indexed
databases

Figure

24.

How

the

Extended

Search

wrapper

works

Chapter

13.

Configuring

access

to

Extended

Search

data

sources

231

Extended

Search

nicknames

In

the

Extended

Search

data

model,

one

or

more

fields

constitute

a

document.

A

collection

of

documents

constitutes

a

data

source.

You

can

combine

any

number

of

data

sources

into

a

category,

which

enables

you

to

search

them

and

administer

them

as

a

group.

To

ensure

that

users

access

only

the

data

sources

for

which

they

have

a

need,

a

category

must

belong

to

at

least

one

application.

Think

of

applications

as

a

way

of

grouping

users

for

purposes

of

controlling

access

and

search

capabilities.

For

example,

a

personnel

application

might

include

the

same

data

sources

as

a

financial

application,

but

the

users

of

each

application

would

not

necessarily

need

access

to

the

same

fields

in

those

data

sources.

When

you

register

nicknames,

you

identify

the

applications,

categories,

data

sources,

and

data

source

fields

that

you

want

to

search.

These

entities

must

exist

in

the

Extended

Search

configuration

database.

To

search

an

Extended

Search

data

source

with

the

Extended

Search

wrapper,

you

must

create

a

nickname

for

the

source.

The

contents

of

the

nickname

table

reflect

the

state

of

the

Extended

Search

configuration

database

at

the

time

that

you

register

the

nickname.

If

an

Extended

Search

administrator

updates

the

configuration

(for

example,

by

adding

or

deleting

sources

or

fields),

those

changes

are

not

reflected

in

the

nickname

table.

If

a

nickname

table

refers

to

changed

data,

and

you

want

to

stay

current

with

the

Extended

Search

configuration

database,

you

must

alter

the

nickname

or

drop

it

and

create

a

new

nickname.

If

you

do

not

alter

or

recreate

the

nickname,

you

might

receive

errors

and

reports

of

zero

results

when

you

attempt

to

search

items

that

no

longer

exist

in

the

Extended

Search

domain.

Although

a

single

nickname

table

can

contain

information

about

all

the

sources

that

are

configured

in

Extended

Search,

creating

several

nickname

tables

might

be

more

useful.

To

use

the

full

power

of

DB2®,

create

a

separate

nickname

for

each

type

of

data

source

that

you

plan

to

search

with

the

Extended

Search

wrapper.

For

example,

you

might

have

one

nickname

for

Web

sources,

one

for

Notes

databases,

one

for

file

systems,

and

so

on.

By

having

separate

nickname

tables,

you

are

better

able

to

perform

joins

on

the

data

that

is

returned

to

the

wrapper,

relate

diverse

sources

based

on

field

values,

and

integrate

the

result

data

with

other

data

in

your

federated

system.

Related

concepts:

v

“Extended

Search

vertical

tables”

on

page

233

Related

tasks:

v

“Registering

nicknames

for

Extended

Search

data

sources”

on

page

239

Related

reference:

v

“Extended

Search

wrapper

-

Example

queries”

on

page

242

v

“CREATE

NICKNAME

statement

syntax

-

Extended

Search

wrapper”

on

page

548

232

Data

Source

Configuration

Guide

Extended

Search

vertical

tables

An

Extended

Search

application

can

consist

of

many

categories

which,

in

turn,

can

contain

many

data

sources.

Because

each

data

source

uses

its

own

conventions

for

field

names,

an

intersection

of

fields

might

result

in

an

empty

set.

When

you

map

data

source

fields

to

user-defined

columns

in

nickname

tables,

and

present

search

results

as

a

horizontal

table,

the

table

might

contain

an

unmanageable

number

of

columns.

If

many

rows

contain

only

a

few

columns

with

data,

the

table

will

appear

sparsely

populated.

For

example:

Column_1

Column_2

Column_3

Value_11

Value_22

Value_31

Value_33

Within

Extended

Search,

you

can

control

the

presentation

of

results

by

defining

mapped

fields.

Mapped

fields

provide

a

way

for

you

to

combine

content

that

has

a

common

purpose

but

that

is

named

differently

in

different

sources.

For

example,

you

might

create

a

mapped

field

named

EmployeeNumber

to

represent

result

data

from

fields

that

are

named

EmpNum,

EmpNo,

and

EmpID

in

various

sources.

Without

this

mapping

feature,

you

would

need

to

define

a

nickname

column

for

each

unique

field

name

as

opposed

to

a

single

column

for

the

mapped

field.

Mapping

fields

is

useful

when

you

know

the

names

of

the

fields

that

you

need

to

relate.

Some

applications,

however,

need

to

relate

a

large

number

of

fields

from

many

data

sources.

The

relationships

between

the

fields,

particularly

for

unstructured

data,

might

not

be

known

ahead

of

time.

Thus,

it

becomes

difficult

to

define

and

structure

meaningful

nickname

tables.

To

support

this

type

of

application,

the

Extended

Search

wrapper

allows

you

to

create

a

vertical

nickname

table.

When

you

create

a

nickname

table

for

Extended

Search,

you

can

enable

the

VERTICAL_TABLE

option.

This

option

returns

all

the

fields

that

are

configured

to

be

returnable

in

a

data

source,

as

defined

in

the

Extended

Search

configuration

database.

Use

this

option

when

you

are

not

sure

which

columns

will

be

relevant

in

your

search

or

which

columns

will

be

relevant

when

you

perform

post-processing

queries

or

joins

on

the

result

sets.

Each

row

in

the

vertical

table

contains

information

about

a

field

that

was

returned

in

the

result

set.

For

each

row,

Extended

Search

returns

the

name

of

the

source

that

the

field

came

from,

the

field

name,

its

value,

and

its

data

type

(date,

integer,

and

so

on).

Unlike

results

that

are

scattered

across

columns

in

a

horizontal

table,

the

vertical

table

is

densely

populated

and

contains

many

rows

of

data.

For

example:

Field_Name

Field_Value

Field_Datatype

Column_1

Value_11

VARCHAR

Column_2

Value_22

DATE

Column_1

Value_31

VARCHAR

Column_3

Value_33

VARCHAR

You

can

perform

SQL

operations

on

this

data

when

you

query

the

table,

and

you

can

query

all

column

labels.

For

example:

Chapter

13.

Configuring

access

to

Extended

Search

data

sources

233

Field_Value

LIKE

’%IBM%’

Because

the

VERTICAL_TABLE

option

returns

information

about

all

returnable

fields

in

a

data

source,

you

might

not

need

to

query

specific

user-defined

columns.

If

you

enable

this

option

and

then

issue

a

SELECT

statement

to

search

user-defined

columns,

you

might

receive

duplicate

information

in

the

search

results.

However,

if

you

define

user-defined

columns,

you

can

use

those

columns

in

joins

with

other

tables

in

your

federated

system.

The

following

two

tables

summarizes

the

system-provided

columns

that

Extended

Search

returns

for

each

row

in

a

vertical

nickname

table.

The

wrapper

always

returns

the

following

three

fixed

columns

for

each

nickname.

Column

Name

Data

Type

Description

DOC_ID

VARCHAR(512)

The

document

identifier,

unique

to

each

item

in

a

set

of

search

results.

DOC_RANK

INTEGER

The

relevance

ranking

of

the

document.

CLIENT_LOCALE

VARCHAR(5)

The

client

locale

of

the

search

request.

If

the

SQL

query

does

not

provide

the

client

locale,

the

query

will

use

enUS

as

the

default

client

locale.

The

wrapper

creates

the

following

fixed

columns

only

if

the

VERTICAL_TABLE

option

is

enabled.

Column

Name

Data

Type

Description

DATASOURCE_NAME

VARCHAR(128)

The

name

of

the

data

source

that

produced

the

search

result.

FIELD_NAME

VARCHAR(128)

The

name

of

a

field

that

was

returned

in

the

search

result.

FIELD_VALUE

VARCHAR(4096)

The

value

of

a

field

that

was

returned

in

a

result

set.

If

the

field

value

is

longer

than

the

maximum

length

of

the

nickname

column

(the

VARCHAR

value),

the

field

value

is

truncated.

The

token

ES_TRUNCATE

at

the

end

of

the

column

indicates

that

the

value

is

incomplete.

FIELD_DATATYPE

SMALLINT

An

integer

value

that

represents

the

actual

data

type

of

the

field

value:

384

DATE

448

VARCHAR

496

INTEGER

A

vertical

table,

which

stores

result

data

as

VARCHAR

values,

can

be

difficult

to

query.

For

more

precise

searching,

create

mapped

fields

in

the

Extended

Search

configuration

database

and

then

define

them

in

the

nickname

table.

With

mapped

fields,

you

can

create

a

concise

horizontal

table

of

search

results.

You

also

optimize

your

ability

to

perform

relational

operations

on

the

results

and

combine

them

in

queries

that

involve

other

tables

in

your

federated

database

system.

234

Data

Source

Configuration

Guide

For

information

about

defining

mapped

fields

in

Extended

Search,

see

Extended

Search

Administration,

which

is

available

on

the

Resources

page

of

the

IBM®

Lotus®

Extended

Search

Web

site:

http://www.lotus.com/products/des.nsf/wdocuments/resources

Related

concepts:

v

“Extended

Search

nicknames”

on

page

232

Related

tasks:

v

“Registering

nicknames

for

Extended

Search

data

sources”

on

page

239

Related

reference:

v

“Extended

Search

wrapper

-

Example

queries”

on

page

242

v

“CREATE

NICKNAME

statement

syntax

-

Extended

Search

wrapper”

on

page

548

Adding

Extended

Search

to

a

federated

server

Adding

Extended

Search

data

sources

to

a

federated

server

To

configure

the

federated

server

to

access

Extended

Search

data

sources,

you

must

provide

the

federated

server

with

information

about

the

data

sources

and

objects

that

you

want

to

access.

You

can

configure

the

federated

server

to

access

Extended

Search

data

sources

by

using

the

DB2

Control

Center

or

the

DB2

command

line.

The

DB2

Control

Center

includes

a

wizard

to

guide

you

through

the

steps

required

to

configure

the

federated

server.

Prerequisites:

v

DB2

Information

Integrator

must

be

installed

on

a

server

that

will

act

as

the

federated

server

v

A

federated

database

must

exist

on

the

federated

server

v

Before

you

use

the

Extended

Search

wrapper,

ensure

that

the

sources

that

you

plan

to

search

are

configured

in

the

Extended

Search

configuration

database.

Submit

a

few

queries

through

the

Extended

Search

client

to

verify

your

ability

to

search

the

sources

before

you

attempt

to

search

the

sources

with

the

Extended

Search

wrapper.

Procedure:

To

add

Extended

Search

data

sources

to

a

federated

server:

1.

Register

the

wrapper.

2.

Register

the

server

definition.

3.

Optional:

Create

the

user

mappings.

4.

Register

nicknames

for

the

Extended

Search

data

sources.

5.

Optional:

Register

custom

function

for

the

Extended

Search

wrapper.

Related

concepts:

v

“DB2

Information

Integrator

installation

process

-

overview”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

Chapter

13.

Configuring

access

to

Extended

Search

data

sources

235

|
|
|
|

http://www.lotus.com/products/des.nsf/wdocuments/resources/

Related

tasks:

v

“Creating

a

federated

database”

on

page

51

v

“Registering

the

Extended

Search

wrapper”

on

page

236

v

“Registering

the

server

for

Extended

Search

data

sources”

on

page

237

v

“Registering

nicknames

for

Extended

Search

data

sources”

on

page

239

v

“Registering

user

mappings

for

Extended

Search

data

sources”

on

page

238

v

“Registering

the

custom

functions

for

the

Extended

Search

wrapper”

on

page

240

Related

reference:

v

“Supported

operating

systems

for

DB2

Information

Integrator

(32-bit)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Supported

operating

systems

for

DB2

Information

Integrator

(64-bit)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

Registering

the

Extended

Search

wrapper

Registering

the

Extended

Search

wrapper

is

part

of

the

larger

task

of

adding

Extended

Search

data

sources

to

a

federated

server.

You

must

register

a

wrapper

to

access

Extended

Search

data

sources.

Wrappers

are

used

by

federated

servers

to

communicate

with

and

retrieve

data

from

data

sources.

Wrappers

are

implemented

as

a

set

of

library

files.

Procedure:

To

register

a

wrapper,

issue

the

CREATE

WRAPPER

statement

with

the

name

of

the

wrapper

and

the

name

of

the

wrapper

library

file.

For

example,

to

register

a

wrapper

with

the

name

NotesDBwrapper

on

the

federated

server

that

uses

the

Windows

operating

system,

issue

the

following

statement:

CREATE

WRAPPER

NotesDBwrapper

LIBRARY

’db2uies.dll’

The

name

of

the

wrapper

library

file

that

you

specify

depends

on

the

operating

system

of

the

federated

server.

See

the

list

of

Extended

Search

wrapper

library

files

for

the

correct

name

to

specify

in

the

CREATE

WRAPPER

statement.

The

next

task

in

this

sequence

of

tasks

is

registering

the

server

definitions

for

Extended

Search

wrapper.

Related

tasks:

v

“Registering

the

server

for

Extended

Search

data

sources”

on

page

237

Related

reference:

v

“Extended

Search

wrapper

library

files”

on

page

236

v

“CREATE

WRAPPER

statement

syntax

-

Extended

Search

wrapper”

on

page

546

Extended

Search

wrapper

library

files

The

following

table

lists

the

directory

paths

and

library

file

names

for

the

Extended

Search

wrapper.

236

Data

Source

Configuration

Guide

|

|
|

When

you

install

DB2

Information

Integrator,

3

library

files

are

added

to

the

directory

path

listed

in

the

table.

For

example,

if

the

federated

server

is

running

on

AIX,

the

wrapper

library

files

added

to

the

directory

path

are

libdb2uies.a,

libdb2uiesF.a,

and

libdb2uiesU.a.

When

you

register

a

wrapper,

specify

only

the

library

file

name

that

is

listed

in

the

table.

Table

66.

Extended

Search

wrapper

library

locations

and

file

names

Operating

system

Directory

path

Wrapper

library

file

AIX

/usr/opt/db2_08_01/lib/

libdb2uies.a

Linux

/opt/IBM/db2/V8.1/lib

libdb2uies.so

Solaris

/opt/IBM/db2/V8.1/lib

libdb2uies.so

Windows

%DB2PATH%\bin

db2uies.dll

%DB2PATH%

is

the

environment

variable

that

is

used

to

specify

the

directory

path

where

DB2

Information

Integrator

is

installed

on

Windows.

The

default

Windows

directory

path

is

C:\Program

Files\IBM\SQLLIB.

Related

tasks:

v

“Registering

the

Extended

Search

wrapper”

on

page

236

Registering

the

server

for

Extended

Search

data

sources

This

task

is

part

of

the

main

task

for

adding

Extended

Search

data

sources

to

a

federated

system.

After

you

register

a

wrapper,

you

must

create

a

corresponding

server

definition

to

identify

the

remote

Extended

Search

server

that

you

are

integrating

with

your

federated

system.

This

definition

enables

the

wrapper

to

connect

to

the

Extended

Search

server.

Procedure:

To

register

the

Extended

Search

server,

issue

a

CREATE

SERVER

statement

from

the

DB2

Command

Line

Processor.

For

example,

to

register

a

server

named

es1

for

a

wrapper

named

myESwrapper,

issue

the

following

statement.

The

Extended

Search

server

uses

the

default

port

value.

CREATE

SERVER

es1

WRAPPER

myESwrapper

OPTIONS

(ES_HOST

’my.server.com’)

To

create

this

same

server,

enable

tracing

for

all

message

levels

(critical,

noncritical,

warning,

and

information),

and

write

the

trace

messages

to

a

file

named

es1wrapper.log

in

the

wrapper

directory,

issue

the

following

statement:

CREATE

SERVER

es1

WRAPPER

myESwrapper

OPTIONS

(ES_HOST

’my.server.com’,

ES_TRACING

’ON’,

ES_TRACELEVEL

’CNWI’,

ESTRACEFILENAME

’/wrapper/es1wrapper.log’)

The

next

task

in

this

sequence

of

tasks

is

registering

nicknames

for

Extended

Search

data

sources.

Related

tasks:

v

“Registering

nicknames

for

Extended

Search

data

sources”

on

page

239

Chapter

13.

Configuring

access

to

Extended

Search

data

sources

237

|
|
|
|

|
|

||

|||

|||

|||

|||

|||
|

|
|
|

|

|

Related

reference:

v

“CREATE

SERVER

statement

syntax

-

Extended

Search

wrapper”

on

page

547

Registering

user

mappings

for

Extended

Search

data

sources

This

task

is

an

optional

step

in

the

main

task

for

adding

Extended

Search

data

sources

to

a

federated

system.

User

mappings

provide

a

way

to

authenticate

the

access

of

users

who

query

an

Extended

Search

source

with

the

Extended

Search

wrapper.

If

a

user

submits

an

SQL

query

to

a

registered

Extended

Search

nickname,

and

no

user

mappings

are

defined

for

that

user,

the

Extended

Search

wrapper

will

use

a

default

user

ID

and

password

in

an

attempt

to

retrieve

data

from

the

remote

Extended

Search

server.

If

a

data

source

that

is

being

queried

requires

authentication,

an

empty

result

set

might

be

returned.

To

ensure

that

the

correct

user

ID

and

password

get

passed

to

the

Extended

Search

server,

create

user

mappings

in

your

federated

system

for

users

who

are

authorized

to

search

Extended

Search

sources.

When

you

create

a

user

mapping,

the

password

is

stored

in

an

encrypted

format

in

a

DB2

catalog

table.

The

password

remains

in

a

secure

format

as

it

is

passed

from

DB2

through

Extended

Search

to

the

sources

that

are

being

searched.

Security

settings

in

the

Extended

Search

configuration

database

determine

whether

the

user

ID

and

password

are

authorized

to

access

the

sources

that

are

being

searched

and

whether

any

additional

mapping

of

the

user

ID

will

be

performed.

Procedure:

To

register

Extended

Search

user

mappings,

issue

a

CREATE

USER

MAPPING

statement

from

the

DB2

Command

Line

Processor.

The

statement

must

identify

the

DB2

user

ID

that

needs

to

be

mapped,

the

Extended

Search

server

that

hosts

the

target

data

sources,

and

the

user

ID

and

password

that

enable

the

user

to

access

those

data

sources.

For

example,

the

following

statement

registers

the

user1

user

ID

so

that

it

can

use

the

es1

Extended

Search

server

to

search

remote

databases.

CREATE

USER

MAPPING

FOR

user1

SERVER

es1

OPTIONS

(REMOTE_AUTHID

’ESUserId’,

REMOTE_PASSWORD

’abc123def’)

The

next

task

in

this

sequence

of

tasks

is

registering

the

Extended

Search

custom

function

template.

Related

tasks:

v

“Registering

the

custom

functions

for

the

Extended

Search

wrapper”

on

page

240

Related

reference:

v

“CREATE

USER

MAPPING

statement

syntax

-

Extended

Search

wrapper”

on

page

548

238

Data

Source

Configuration

Guide

Registering

nicknames

for

Extended

Search

data

sources

This

task

is

part

of

the

main

task

for

adding

Extended

Search

data

sources

to

a

federated

system.

After

you

register

a

server,

you

must

register

at

least

one

nickname.

A

nickname

table

is

a

virtual

DB2

table

that

identifies

one

or

more

searchable

sources

in

an

Extended

Search

domain.

When

you

submit

a

query,

you

specify

the

nickname

for

the

sources

that

you

want

to

search.

Prerequisites:

Make

sure

that

the

Extended

Search

server

for

which

you

are

creating

nicknames

is

running.

When

you

create

a

nickname,

the

system

verifies

that

information

about

the

sources

and

fields

that

you

plan

to

search

exists

in

the

Extended

Search

configuration

database.

Procedure:

To

register

an

Extended

Search

nickname,

issue

a

CREATE

NICKNAME

statement

from

the

DB2

Command

Line

Processor.

For

example,

issue

the

following

statement

to

create

a

nickname

table

for

searching

all

data

sources

that

belong

to

the

Web

category

in

the

Demo

application

that

is

hosted

by

the

es1

Extended

Search

server.

Return

the

WebTitle

and

WebDescription

fields

and

use

the

default

search

processing

options.

CREATE

NICKNAME

allweb

(WebTitle

VARCHAR(255),

WebDescription

VARCHAR(1000))

FOR

SERVER

es1

OPTIONS(APPLICATIONID

’Demo’,

CATEGORY

’Web’)

Issue

the

following

statement

to

create

a

nickname

table

for

searching

several

data

sources

in

the

Science

application.

Present

the

search

results

as

a

vertical

list

of

column

names,

set

the

timeout

value

to

60

seconds,

allow

each

source

to

return

up

to

100

result

documents,

expand

the

size

of

the

result

set

to

1000

entries,

and

sort

the

results

by

author

name.

CREATE

NICKNAME

stars

(Title

VARCHAR(80),

Author

VARCHAR(40),

Abstract

VARCHAR(200))

FOR

SERVER

es1

OPTIONS

(APPLICATIONID

’Science’,

DATASOURCES

’Astronomy;NASA

Library;Astrophysics’,

VERTICAL_TABLE

’yes’,

TIMEOUT

’60’,

MAXHITS

’100’,

TOTALMAXHITS

’1000’,

SORTFIELD

’Author’)

The

next

task

in

this

sequence

of

tasks

is

registering

user

mappings

for

the

Extended

Search

wrapper.

Related

concepts:

v

“Extended

Search

nicknames”

on

page

232

v

“Extended

Search

vertical

tables”

on

page

233

Related

tasks:

v

“Adding

Extended

Search

data

sources

to

a

federated

server”

on

page

235

v

“Registering

user

mappings

for

Extended

Search

data

sources”

on

page

238

v

“Specifying

nickname

columns

for

a

nonrelational

data

source”

on

page

65

Related

reference:

v

“Extended

Search

wrapper

-

Example

queries”

on

page

242

v

“CREATE

NICKNAME

statement

syntax

-

Extended

Search

wrapper”

on

page

548

Chapter

13.

Configuring

access

to

Extended

Search

data

sources

239

Registering

the

custom

functions

for

the

Extended

Search

wrapper

This

task

is

an

optional

step

in

the

main

task

for

adding

Extended

Search

data

sources

to

a

federated

system.

Custom

functions

contain

no

executable

code.

After

you

register

a

function,

you

can

refer

to

it

in

queries

to

alter

default

search

behavior.

The

custom

function

for

the

Extended

Search

wrapper

enables

you

to

specify

precise

search

expressions

and

search

content

that

is

not

defined

as

a

column

in

the

nickname

table.

Restrictions:

v

You

can

call

the

Extended

Search

function

only

with

a

WHERE

clause.

v

The

WHERE

clause

must

contain

at

least

one

predicate

that

serves

as

a

search

predicate,

either

the

Extended

Search

function

or

a

predicate

of

type

″column-name

operator

constant.″

v

The

Extended

Search

function

is

a

scalar

function

template.

It

must

use

the

EQUAL

(=)

operator

and

the

comparison

value

must

be

one

(1).

v

The

first

parameter

in

the

Extended

Search

function

serves

as

an

anchor

value

for

identifying

the

nickname

to

which

the

function

should

be

applied,

such

as

the

document’s

rank

(DOC_RANK)

in

the

search

results.

You

must

specify

an

INTEGER

field

for

this

parameter.

This

parameter,

which

does

not

get

evaluated,

is

particularly

important

if

the

SQL

query

contains

more

than

one

nickname

or

a

combination

of

nicknames

and

tables.

For

example:

SELECT

*

FROM

es_nickname1,

es_nickname2

WHERE

eswrapper.es_search(es_nickname1.DOC_RANK,

’"IBM"’)

=

1

AND

eswrapper.es_search(es_nickname2.DOC_RANK,

’"IBM"’)

=

1

Procedure:

To

register

the

Extended

Search

custom

function,

issue

the

following

CREATE

FUNCTION

statement:

CREATE

FUNCTION

eswrapper.es_search(integer,

varchar(1024))

RETURNS

INTEGER

AS

TEMPLATE

DETERMINISTIC

NO

EXTERNAL

ACTION;

Related

reference:

v

“Extended

Search

wrapper

-

Example

queries”

on

page

242

v

“Extended

Search

wrapper

-

Generalized

query

language”

on

page

244

v

“CREATE

FUNCTION

statement

syntax

-

Extended

Search

wrapper”

on

page

551

v

“Extended

Search

wrapper

-

Query

guidelines”

on

page

240

Querying

Extended

Search

data

sources

Extended

Search

wrapper

-

Query

guidelines

The

Extended

Search

wrapper

expects

queries

to

be

in

a

specific

format

and

does

not

support

queries

that

do

not

meet

precise

language

criteria.

This

topic

provides

guidelines

for

creating

queries

and

gives

examples

of

correct

and

incorrect

query

syntax.

Querying

Web

sources

in

multiple

languages

240

Data

Source

Configuration

Guide

|
|
|

The

third-party

software

that

Extended

Search

uses

to

link

to

Web

sources

supports

languages

that

use

the

ISO–8859–1

code

page

(such

as

English,

French,

German,

Portuguese,

and

Swedish).

Therefore,

when

you

search

Web

sources,

you

cannot

search

double-byte

character

set

languages

such

as

Korean,

bi-directional

languages

such

as

Hebrew,

or

other

non-ISO–8859–1

languages.

The

parser

that

processes

search

results

fails

when

it

detects

what

it

regards

as

illegal

character

codes.

Specifying

the

CLIENT_LOCALE

value

If

you

include

the

CLIENT_LOCALE

column

in

a

WHERE

clause

to

set

the

value

of

the

client

locale,

you

must

use

an

AND

predicate

to

specify

the

search

criteria.

You

cannot

use

an

OR

predicate

with

the

CLIENT_LOCALE

column.

Examples

—

correct

syntax

The

following

examples

show

the

correct

way

to

include

the

CLIENT_LOCALE

column

in

a

WHERE

clause:

WHERE

CLIENT_LOCALE

=

’enUS’

AND

ESWRAPPER.ES_SEARCH(DOC_RANK,

’"IBM"’)=1

WHERE

ESWRAPPER.ES_SEARCH(DOC_RANK,

’"IBM"’)=1

AND

CLIENT_LOCALE

=

’enUS’

Examples

—

incorrect

syntax

The

following

examples

are

incorrect

because

they

attempt

to

use

an

OR

predicate

with

the

CLIENT_LOCALE

column:

WHERE

CLIENT_LOCALE

=

’enUS’

OR

ESWRAPPER.ES_SEARCH(DOC_RANK,

’"IBM"’)=1

WHERE

ESWRAPPER.ES_SEARCH(DOC_RANK,

’"IBM"’)=1

OR

CLIENT_LOCALE

=

’enUS’

Specifying

predicates

on

Extended

Search

fixed

columns

An

SQL

statement

that

contains

an

Extended

Search

nickname

must

specify

a

predicate

for

the

nickname

in

the

WHERE

clause.

However,

a

predicate

on

an

Extended

Search

fixed

column

does

not

count

as

a

predicate.

Examples

—

incorrect

syntax

The

following

example

shows

a

query

that

is

incorrect

because

it

does

not

contain

a

predicate:

SELECT

*

FROM

ES_NICKNAME

The

following

example

shows

a

query

that

is

incorrect

because

the

only

predicate

is

on

a

fixed

column:

SELECT

*

FROM

ES_NICKNAME

WHERE

DOC_RANK

<

20

Specifying

unbound

predicates

A

predicate

on

a

user-defined

column

will

be

handled

by

the

Extended

Search

wrapper

only

if

the

predicate

value

is

a

constant.

If

the

predicate

value

is

unbound,

the

predicate

will

be

handled

by

the

DB2

engine.

If

an

unbound

predicate

is

the

only

predicate

in

an

SQL

statement,

an

error

will

result.

An

Extended

Search

nickname

requires

a

predicate

that

can

be

handled

by

the

Extended

Search

wrapper.

Chapter

13.

Configuring

access

to

Extended

Search

data

sources

241

Examples

—

correct

syntax

The

WHERE

statement

in

the

following

example

shows

a

predicate

that

will

be

handled

by

the

Extended

Search

wrapper:

SELECT

*

FROM

ES_NICKNAME

WHERE

Author

=

’Ernest

Hemingway’

Examples

—

incorrect

syntax

The

WHERE

statement

in

the

following

example

shows

a

predicate

that

will

be

handled

by

DB2:

SELECT

*

FROM

ES_NICKNAME_1,

ES_NICKNAME_2

WHERE

ES_NICKNAME_1.Author

=

ES_NICKNAME_2.Author

Joining

queries

with

an

OR

predicate

The

Extended

Search

wrapper

cannot

search

different

nickname

tables,

or

nickname

tables

and

database

tables,

that

are

joined

by

a

simple

OR

predicate.

You

can

use

an

OR

predicate

only

within

the

same

nickname.

Examples

—

incorrect

syntax

SELECT

*

FROM

ES_Nickname

as

N1,

TABLE

as

T1

WHERE

N1.Column1

=

’abc’

OR

T1.Column1

=

’abc’

SELECT

*

FROM

ES_Nickname_1

as

N1,

ES_Nickname_2

as

N2

WHERE

N1.USerdefCol

=

’abc’

OR

N2.USerdefCol

=

’cdf’

SELECT

*

FROM

ES_Nickname_1

as

N1,

ES_Nickname_2

as

N2

WHERE

ESWRAPPER.ES_SEARCH(N1.DOC_RANK,

’"IBM"’)=1

OR

ESWRAPPER.ES_SEARCH(N2.DOC_RANK,

’"LOTUS"’)=1

Related

tasks:

v

“Registering

the

custom

functions

for

the

Extended

Search

wrapper”

on

page

240

Related

reference:

v

“Extended

Search

wrapper

-

Example

queries”

on

page

242

v

“Extended

Search

wrapper

-

Generalized

query

language”

on

page

244

Extended

Search

wrapper

-

Example

queries

To

run

queries

with

the

Extended

Search

wrapper,

you

specify

a

registered

nickname

and

nickname

columns

in

your

SQL

statements

the

same

way

that

you

specify

a

typical

DB2

table

name

and

table

columns.

In

this

sample

search

scenario,

a

hospital

team

needs

to

search

and

compare

the

latest

medical

research.

To

search

a

wide

variety

of

sources,

the

hospital

uses

an

Extended

Search

server.

The

Extended

Search

domain

includes

an

application

named

MedResearch

and

several

categories

that

are

configured

to

search

document-based

databases,

mail

servers,

and

the

Web.

242

Data

Source

Configuration

Guide

In

addition

to

searching,

the

team

needs

to

compare

the

results

from

various

searches.

For

example,

they

need

to

identify

people

who

published

articles

within

a

certain

time

frame,

recently

purchased

herbs

and

vitamins,

discussed

alternative

medicine

with

colleagues

through

e-mail,

and

applied

to

renew

a

medical

license.

The

Extended

Search

wrapper,

with

its

ability

to

integrate

unstructured

Extended

Search

data

into

DB2

for

structured

retrieval,

provides

the

solution.

The

hospital

team

decides

to

create

the

following

three

nicknames,

one

for

searching

document

repositories,

one

for

searching

e-mail

systems,

and

one

for

searching

specific

Web

sources.

The

Owner

and

Date

fields

are

defined

as

mapped

fields

in

the

Extended

Search

configuration

database,

which

enables

you

to

use

them

in

joins

regardless

of

how

the

fields

are

named

in

the

native

data

sources.

Document

nickname:

CREATE

NICKNAME

MedDocs

(

Owner

VARCHAR(80),

Date

DATE,

Title

VARCHAR(80),

Abstract

VARCHAR(200)

)

FOR

SERVER

esServer

OPTIONS

(

APPLICATIONID

’MedResearch’,

CATEGORY

’AMA

Library;Medical

Records;Pharmacy’,

VERTICAL_TABLE

’YES’,

TIMEOUT

’60’,

MAXHITS

’100’,

TOTALMAXHITS

’1000’

)

E-mail

nickname:

CREATE

NICKNAME

MedMail

(

Owner

VARCHAR(80),

To

VARCHAR(80),

Date

DATE,

Subject

VARCHAR(80)

)

FOR

SERVER

esServer

OPTIONS

(

APPLICATIONID

’MedResearch’,

CATEGORY

’Exchange

Server;Lotus

Notes’,

VERTICAL_TABLE

’YES’,

)

TIMEOUT

’60’,

MAXHITS

’100’,

TOTALMAXHITS

’1000’

)

Web

nickname:

CREATE

NICKNAME

MedWeb

(

WebTitle

VARCHAR(255),

WebDescription

VARCHAR(1000)

)

FOR

SERVER

esServer

OPTIONS

(

APPLICATIONID

’MedResearch’,

DATASOURCES

’Google!;Alta

Vista;CNN’,

TOTALMAXHITS

’500’

)

The

following

query

searches

for

documents

that

contain

the

phrase

Artificial

Liver

in

the

title

and

the

abbreviation

MARS

in

the

document

content.

The

result

set

should

exclude

any

documents

that

were

published

before

the

year

2001.

SELECT

OWNER,

DOC_CONTENT

FROM

MedDocs

WHERE

ESWRAPPER.ES_Search(DOC_RANK,

’(

(

TOKEN:EXACT

"MARS")

AND

(

("TITLE"

IN

"Artificial

Liver")

AND

("DATE"

>=

"01/01/2001")

)

)

’)

=

1

The

following

query

searches

for

e-mail

that

was

written

during

the

past

few

months

that

discussed

alternative

medicine:

SELECT

*

FROM

MedMail

WHERE

ESWRAPPER.ES_Search(DOC_RANK,

’(

("SUBJECT"

IN

"alternative

medicine")

AND

("DATE"

BETWEENI

"03/01/2002"

AND

"09/30/2002")

)

’)

=

1

Chapter

13.

Configuring

access

to

Extended

Search

data

sources

243

The

following

query

searches

Web

sources

that

refer

to

complementary

and

alternative

medicine

(CAM)

therapy

and

its

acceptance

by

the

American

public:

SELECT

WebTitle,

WebDescription

FROM

MedWeb

WHERE

ESWRAPPER.ES_Search(DOC_RANK,

’(

TOKEN:EXACT

"CAM

therapy"

)

AND

(

TOKEN:FUZZY

"United

States"

)

’

)

=

1

The

following

query

searches

for

recently

licensed

doctors

who

purchased

large

quantities

of

herbs

or

vitamins

from

the

hospital

pharmacy.

The

query

then

matches

up

the

names

of

those

doctors

with

persons

who

wrote

e-mail

about

alternative

medicine.

SELECT

N2.OWNER,

N2.DATE

FROM

MedDocs

as

N1,

MedMail

as

N2

WHERE

ESWRAPPER.ES_SEARCH(N1.DOC_RANK,

’

(

("LICENSE_DATE"

>=

"01/01/2002")

AND

(

(

(

"PRODUCT"

=

"HERB")

OR

("PRODUCT"

=

"VITAMIN")

)

AND

("QUANTITY"

>

"1000")

)

)

’

)

=

1

AND

ESWRAPPER.ES_SEARCH(N2.DOC_RANK,

’

("SUBJECT"

IN

"alternative

medicine")

’)

=

1

AND

N1.OWNER

=

N2.OWNER

Related

concepts:

v

“Extended

Search

nicknames”

on

page

232

v

“Extended

Search

vertical

tables”

on

page

233

Related

tasks:

v

“Registering

nicknames

for

Extended

Search

data

sources”

on

page

239

v

“Registering

the

custom

functions

for

the

Extended

Search

wrapper”

on

page

240

Related

reference:

v

“Extended

Search

wrapper

-

Generalized

query

language”

on

page

244

v

“CREATE

FUNCTION

statement

syntax

-

Extended

Search

wrapper”

on

page

551

v

“CREATE

NICKNAME

statement

syntax

-

Extended

Search

wrapper”

on

page

548

v

“Extended

Search

wrapper

-

Query

guidelines”

on

page

240

Extended

Search

wrapper

-

Generalized

query

language

Queries

that

you

pass

to

an

Extended

Search

server

through

the

Extended

Search

wrapper

can

contain

search

expressions

in

generalized

query

language

(GQL),

the

query

language

of

Extended

Search.

For

example,

assume

a

user

wants

to

find

all

employees

whose

names

start

with

JO

in

a

relational

database

that

contains

a

table

with

employee

information.

You

might

issue

the

following

query

in

GQL:

(LIKE

"EMPLOYEE_NAME"

"JO")

You

might

issue

the

same

query

in

SQL

as

follows:

SELECT

*

FROM

EMP.TABLE

WHERE

EMPLOYEE_NAME

LIKE

JO%

244

Data

Source

Configuration

Guide

Like

SQL,

the

wrapper

supports

infix

notation,

a

syntax

that

requires

operators

to

be

between

the

field

name

and

a

comparison

value.

The

native

Extended

Search

GQL

grammar

uses

prefix

notation,

a

syntax

that

requires

operators

to

precede

the

fields

and

values

that

you

want

to

evaluate.

Compare

the

following

query

expressions

that

search

for

documents

that

contain

the

word

IBM

in

the

TITLE

field:

Infix

GQL

("TITLE"

IN

"IBM")

Prefix

GQL

(IN

"TITLE"

"IBM")

When

you

submit

a

query

with

the

Extended

Search

wrapper,

the

API

converts

the

infix

SQL

statements

to

prefix

GQL

for

processing

by

Extended

Search.

The

following

syntax

description

shows

the

Backus-Naur

Form

specification

for

the

Extended

Search

grammar

that

you

can

use

in

queries.

expr:

pattern_expr

|

bool_expr

|

field_expr

|

prox_expr

pattern_expr:

STRING

|

token_expr

token_expr:

(

TOKEN

[:CASE]

[:STEM]

[:EXACT]

[:WEIGHT

"x"]

[:WILD]

[:FUZZY]

STRING

)

bool_expr:

(expr_list

bool_operator

[:WEIGHT

"x"]

expr

)

bool_text_expr:

(text_expr_list

bool_operator

[:WEIGHT

"x"]

text_expr

)

text_expr:

pattern_expr

|

bool_text_expr

|

prox_expr

text_expr_list:

text_expr

|

text_expr_list

text_expr

expr_list:

expr

|

expr_list

expr

field_expr:

(

field_name

operator_1

[:WEIGHT

"x"]

text_expr

)

|

(

field_name

operator_2

[:WEIGHT

"x"]

value

)

|

(

field_name

operator_3

[:WEIGHT

"x"]

value_1

AND

value_2

)

|

(

field_name

operator_4

value

)

prox_expr:

(

prox_op

[:COUNT

"x"][:ORDER][:MATH

"y"][:WEIGHT

"x"]

expr_list

expr

)

prox_op:

DOCUMENT

|

PARAGRAPH

|

SENTENCE

|

WORD

|

CHARACTER

operator1:

START

|

END

|

IN

|

=

Chapter

13.

Configuring

access

to

Extended

Search

data

sources

245

operator_2:

=

|

>

|

>=

|

<

|

<=

|

EQ

|

GT

|

GTE

|

LT

|

LTE

operator_3:

BETWEENI

|

BETWEENE

|

LIKE

bool_operator:

AND

|

OR

|

NOT

For

complete

information

about

the

GQL

grammar,

see

Extended

Search

Programming,

which

is

available

on

the

Resources

page

of

the

IBM

Lotus

Extended

Search

Web

site:

http://www.lotus.com/products/des.nsf/wdocuments/resources

Related

tasks:

v

“Registering

the

custom

functions

for

the

Extended

Search

wrapper”

on

page

240

Related

reference:

v

“Extended

Search

wrapper

-

Example

queries”

on

page

242

v

“CREATE

FUNCTION

statement

syntax

-

Extended

Search

wrapper”

on

page

551

v

“Extended

Search

wrapper

-

Query

guidelines”

on

page

240

Messages

for

the

Extended

Search

wrapper

This

topic

describes

messages

that

you

might

encounter

while

you

work

with

the

Extended

Search

wrapper.

Table

67.

Messages

issued

by

the

wrapper

for

Extended

Search

Error

Code

Message

Explanation

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason:

INTERNAL

Extended

Search

WRAPPER

ERROR

-

RC:

xxx.)

Record

the

reason

code

(a

number

from

901

to

999)

and

contact

IBM

Software

Support.

246

Data

Source

Configuration

Guide

http://www.lotus.com/products/des.nsf/wdocuments/resources/

Table

67.

Messages

issued

by

the

wrapper

for

Extended

Search

(continued)

Error

Code

Message

Explanation

SQL0973N

Not

enough

storage

is

available

in

the

Application

heap

to

process

the

statement.

The

Extended

Search

wrapper

was

not

able

to

allocate

memory

in

the

Application

heap.

To

resolve

the

problem,

increase

the

Application

heap

size

and

try

the

statement

again.

For

example:

db2

update

db

cfg

for

db-name

using

heap-name

heap-size

If

the

error

continues

after

you

increase

this

value,

contact

IBM

Software

Support.

SQL1822N

Unexpected

error

code

″<error_code>″

received

from

data

source

″Extended

Search

wrapper″.

Associated

text

and

tokens

are

″<tokens>″.

The

remote

Extended

Search

server

returned

an

error

while

processing

a

search

request.

The

error

also

returned

a

token

that

indicates

what

caused

the

error

on

the

remote

server.

If

tracing

is

enabled

for

the

Extended

Search

server,

review

the

trace

log

file

for

diagnostic

help.

SQL1823N

No

data

type

mapping

exists

for

data

type

″<data_type>″

from

server

″<server_name>″.

A

column

in

a

CREATE

NICKNAME

statement

or

ALTER

NICKNAME

statement

uses

a

data

type

that

is

not

supported

by

the

Extended

Search

system.

This

error

can

also

occur

during

query

processing.

To

solve

the

problem

if

it

occurs

while

the

query

is

being

processed,

drop

the

nickname

table

and

create

a

new

nickname.

SQL1825N

This

SQL

statement

cannot

be

handled

in

a

federated

environment.

The

current

SQL

statement

cannot

be

handled

by

the

Extended

Search

wrapper.

To

solve

the

problem,

see

the

Extended

Search

wrapper

documentation,

change

the

SQL

statement

as

needed,

and

submit

the

request

again.

SQL1833N

Connection

to

remote

Extended

Search

server

″<host_name>″

on

port

″<port_number>″

could

not

be

established

or

was

terminated.

The

Extended

Search

wrapper

tried

to

connect

to

the

remote

Extended

Search

server

at

the

specified

port

but

the

connection

could

not

be

established

or

was

terminated

by

the

remote

server.

Verify

the

host

name

and

port

number

of

the

remote

Extended

Search

server,

make

sure

that

the

Extended

Search

server

is

running,

and

try

again.

SQL1834N

User-defined

column

″<column_name>″

is

identical

to

a

fixed

column

for

wrapper

″<wrapper_name>″

but

uses

a

different

data

type.

A

CREATE

NICKNAME

statement

or

ALTER

NICKNAME

statement

contains

a

user-defined

column

that

has

the

same

name

as

a

fixed

column

for

the

specified

Extended

Search

wrapper

but

uses

a

different

data

type.

You

do

not

need

to

specify

fixed

columns

in

the

column

definition

of

a

CREATE

NICKNAME

statement.

If

you

do,

make

sure

that

the

fixed

column

name,

data

type,

and

data

type

length

match

the

fixed

column

definition.

You

cannot

ALTER

a

fixed

column

name

or

data

type.

Chapter

13.

Configuring

access

to

Extended

Search

data

sources

247

Table

67.

Messages

issued

by

the

wrapper

for

Extended

Search

(continued)

Error

Code

Message

Explanation

SQL1835N

Extended

Search

object

″<object_name>″

of

type

″<object_type>″

could

not

be

found

on

the

remote

Extended

Search

server

″<host_name>″.

The

specified

Extended

Search

object

could

not

be

found

on

the

specified

remote

Extended

Search

server.

Verify

that

the

object

name

is

defined

on

this

Extended

Search

server

and

that

it

is

of

the

specified

object

type.

Also

verify

that

the

spelling

of

this

object

is

correct.

SQL1836N

No

column

mapping

exists

between

user-defined

column

″<column_name>″

and

a

field

name

on

the

remote

Extended

Search

server

″<host_name>″.

None

of

the

data

sources

that

are

included

in

a

DATASOURCE

or

CATEGORY

option

contain

a

field

name

the

matches

the

specified

user-defined

column

name.

Verify

that

the

column

name

is

a

field

in

at

least

one

of

the

data

sources

in

the

DATASOURCE

option,

or

in

at

least

one

of

the

data

sources

that

belongs

to

a

category

in

CATEGORY

option,

and

submit

the

statement

again.

SQL1837N

The

required

option

″<option_name>″

of

type

″<object_type>″

on

wrapper

″<wrapper_name>″

cannot

be

dropped.

You

cannot

drop

a

required

option.

Change

the

ALTER

statement

to

use

SET

instead

of

DROP.

Correct

the

search

statement

and

submit

the

request

again.

Consult

the

DB2

SQL

Reference

for

information

about

creating

valid

SQL

search

statements.

If

the

search

statement

includes

the

ES_SEARCH

function,

consult

the

Extended

Search

wrapper

documentation

for

information

about

using

Extended

Search

generalized

query

language

(GQL).

SQL1838N

The

search

statement

″<option_name>″

is

not

a

valid

Extended

Search

query.

The

Extended

Search

wrapper

tried

to

process

the

specified

search

statement

but

the

query

failed

because

the

statement

does

not

use

proper

query

syntax.

Consult

the

DB2

SQL

Reference

for

information

about

creating

valid

SQL

search

statements.

If

the

search

statement

includes

the

ES_SEARCH

function,

consult

the

Extended

Search

wrapper

documentation

for

information

about

using

Extended

Search

generalized

query

language

(GQL).

SQL1839N

One

or

more

search

parameters

are

not

valid.

The

Extended

Search

wrapper

tried

to

use

the

specified

search

parameters,

but

they

are

not

valid

for

Extended

Search.

Consult

the

Extended

Search

wrapper

documentation,

correct

the

invalid

parameters,

and

submit

the

request

again.

SQL1881N

″<option_name>″

is

not

a

valid

″<option_type>″

option

for

″<object_name>″.

The

specified

option

is

not

valid

for

the

specified

object

(wrapper,

server,

nickname,

column,

or

user

mapping).

See

the

Extended

Search

wrapper

documentation,

remove

or

change

the

invalid

option,

and

submit

the

statement

again.

SQL1882N

The

″<option_type>″

option

″<option_name>″

cannot

be

set

to

″<option_value>″

for

″<object_name>″.

The

specified

option

value

is

not

valid

for

the

specified

object

(wrapper,

server,

nickname,

column,

or

user

mapping).

See

the

Extended

Search

wrapper

documentation,

change

the

invalid

option

value,

and

submit

the

statement

again.

248

Data

Source

Configuration

Guide

Table

67.

Messages

issued

by

the

wrapper

for

Extended

Search

(continued)

Error

Code

Message

Explanation

SQL1883N

″<option_name>″

is

a

required

″<option_type>″

option

for

″<object_name>″.

A

required

option

for

the

Extended

Search

wrapper

was

missing

from

the

statement

to

create,

alter,

or

initialize

the

specified

object

(wrapper,

server,

nickname

or

user

mapping).

See

the

Extended

Search

wrapper

documentation,

add

the

required

option,

and

submit

the

statement

again.

For

more

information

about

messages,

see

the

DB2

Message

Reference.

You

might

also

want

to

consult

the

Extended

Search

product

messages

in

Extended

Search

Administration.

If

you

receive

errors

about

improper

GQL

query

syntax,

see

Extended

Search

Programming.

The

Extended

Search

documents

are

available

on

the

Resources

page

of

the

IBM

Lotus

Extended

Search

Web

site:

http://www.lotus.com/products/des.nsf/wdocuments/resources

Related

concepts:

v

“Introduction

to

messages”

in

the

Message

Reference

Volume

1

Related

reference:

v

“SQLSTATE

messages”

in

the

Message

Reference

Volume

2

v

“sql0900”

in

the

Message

Reference

Volume

2

v

“sql1800”

in

the

Message

Reference

Volume

2

Chapter

13.

Configuring

access

to

Extended

Search

data

sources

249

http://www.lotus.com/products/des.nsf/wdocuments/resources/

250

Data

Source

Configuration

Guide

Chapter

14.

Configuring

access

to

HMMER

data

sources

This

chapter

explains

how

to

configure

your

federated

server

to

access

data

that

is

stored

in

HMMER

data

sources.

You

can

configure

access

to

HMMER

data

sources

by

using

the

DB2

Control

Center

or

by

issuing

SQL

statements.

This

chapter:

v

Explains

what

HMMER

is

v

Lists

the

tasks

that

you

need

to

perform

v

Contains

examples

of

the

SQL

statements

that

you

need

v

Lists

the

error

messages

associated

with

the

HMMER

wrapper

What

is

HMMER?

HMMER

is

a

application

package

that

you

can

use

to

search

gene

sequence

databases

that

use

statistical

models

or

profile

hidden

Markov

models

(HMMs).

You

can

download

the

HMMER

application

package

at

no

charge

from

http://hmmer.wustl.edu/.

You

can

install

the

HMMER

application

package

on

a

separate

HMMER

server

or

on

the

federated

server.

An

HMM

is

a

statistical

model

of

the

primary

structure

consensus

of

a

gene

sequence

family.

An

HMM

is

based

upon

probability

models.

You

can

train

an

HMM

to

recognize

patterns

from

unaligned

gene

sequences

if

a

trusted

alignment

is

not

yet

known.

You

need

less

skill

and

manual

intervention

to

train

and

use

a

successful

HMM

than

to

carefully

construct

a

profile.

You

can

use

a

trained

HMM

to

access

libraries

of

hundreds

of

profile

HMMs

and

apply

them

on

a

very

large

scale

to

whole

genome

or

Expressed

Sequence

Tag

(EST)

analyses.

PFAM

(Protein

Families

Database

of

Alignments

and

HMMs)

is

a

database

of

protein

domain

models.

The

HMMER

application

package

is

tightly

tied

to

the

construction

and

use

of

the

PFAM

database.

The

HMMER

application

package

contains

the

9

programs,

but

only

two

of

these

programs

are

supported

by

the

DB2®

Information

Integrator,

the

hmmpfam

and

the

hmmsearch

programs.

Table

68.

The

HMMER

programs

supported

by

the

HMMER

wrapper

HMMER

program

Description

hmmpfam

Uses

a

specific

gene

sequence

to

search

an

HMM

database

and

determine

the

family

that

the

test

gene

sequence

might

belong

to.

Calculates

how

well

each

model

matches

a

specified

sequence

and

a

database

of

models.

The

match

is

expressed

in

terms

of

statistical

significance.

hmmsearch

Uses

a

specific

HMM

profile

to

search

a

sequence

database

for

significantly

similar

sequence

matches.

Users

or

applications

issue

SQL

query

statements

with

HMMER-specific

predicates

to

the

federated

server.

The

predicates

in

these

statements

map

to

command-line

options

in

the

hmmpfam

or

hmmsearch

programs.

©

Copyright

IBM

Corp.

1998,

2004

251

|
|
|

http://hmmer.wustl.edu/

The

HMMER

wrapper

transforms

the

query

statements

into

a

format

that

the

HMMER

application

package

can

interpret

and

starts

the

hmmpfam

program

or

the

hmmsearch

program

to

run

the

query.

A

special

daemon

program

runs

on

the

server

where

the

HMMER

application

package

is

installed.

This

daemon

receives

the

query

request

from

the

federated

server

and

sends

it

to

the

HMMER

application

package.

The

HMMER

application

package

runs

the

query

on

a

profile

database,

such

as

PFAM.

Figure

25

shows

how

HMMER

works

with

your

federated

system.

The

daemon

returns

the

results

to

the

HMMER

wrapper.

The

wrapper

transforms

the

data

into

a

relational

table,

and

returns

this

table

to

the

user

or

application.

The

following

example

shows

how

information

is

extracted

from

profile

databases,

which

are

constructed

by

HMMER

programs,

and

displayed

as

a

relational

table.

The

HMMER

User’s

Guide

http://hmmer.wustl.edu/

provides

examples

of

creating

profile

databases

and

a

HMMER

tutorial.

Figure

26

on

page

253

shows

a

sample

query

that

uses

the

7LES_DROME

gene

sequence.

You

specify

sequences

in

the

WHERE

clause

of

the

query.

db2runpfam.ksh

DB2
Federated
server

SQL
query

Result
table

W
ra

pp
er

HMMER
wrapper

db2hmmer_daemon
hmmpfam
or hmmsearch
command

db2h2x

HMMER
to XML
converter

Temp
XML file

Output
report

Data source

Figure

25.

How

the

HMMER

wrapper

works

252

Data

Source

Configuration

Guide

http://hmmer.wustl.edu/

The

HMMER

wrapper

transforms

the

results

from

the

query

into

the

relational

table

shown

in

Table

69.

Table

69.

The

HMMER

results

are

transformed

into

a

relational

table

Model

ModelScore

DomainNumber

DomainScore

pkinase

+3.04100000000000E+002

1

+3.04100000000000E+002

fn3

+1.76300000000000E+002

1

+4.90000000000000E+001

fn3

+1.76300000000000E+002

2

+1.36000000000000E+001

fn3

+1.76300000000000E+002

3

+1.62000000000000E+001

fn3

+1.76300000000000E+002

4

+6.35000000000000E+001

fn3

+1.76300000000000E+002

5

+1.46000000000000E+001

fn3

+1.76300000000000E+002

6

+1.94000000000000E+001

rrm

-4.45000000000000E+001

1

-4.45000000000000E+001

SELECT

Model,

ModelScore,

DomainNumber,

DomainScore

FROM

myhmms

WHERE

HmmQSeq

=

’MTMFWQQNVDHQSDEQDKQAKGAAPTKRLNISFNVKIAVNVNTKMTTTH

INQQAPGTSSSSSNSQNASPSKIVVRQQSSSFDLRQQLARLGRQLASGQDGHGGISTILIINLLLL

ILLSICCDVCRSHNYTVHQSPEPVSKDQMRLLRPKLDSDVVEKVAIWHKHAAAAPPSIVEGIAISS

RPQSTMAHHPDDRDRDRDPSEEQHGVDERMVLERVTRDCVQRCIVEEDLFLDEFGIQCEKADNGEK

CYKTRCTKGCAQWYRALKELESCQEACLSLQFYPYDMPCIGACEMAQRDYWHLQRLAISHLVERTQ

PQLERAPRADGQSTPLTIRWAMHFPEHYLASRPFNIQYQFVDHHGEELDLEQEDQDASGETGSSAW

FNLADYDCDEYYMCEILEALIPYTQYRFRFELPFGENRDEVLYSPATPAYQTPPEGAPISAPVIEH

LMGLDDSHLAVHWHPGRFTNGPIEGYRLRLSSSEGNATSEQLVPAGRGSYIFSQLQAGTNYTLALS

MINKQGEGPVAKGFVQTHSARNEKPAKDLTESVLLVGRRAVMWQSLEPAGENSMIYQSQEELADIA

WSKREQQLWLLNVHGELRSLKFESGQMVSPAQQLKLDLGNISSGRWVPRRLSFDWLHHRLYFAMES

PERNQSSFQIISTDLLGESAQKVGESFDLPVEQLEVDALNGWIFWRNEESLWRQDLHGRMIHRLLR

IRQPGWFLVQPQHFIIHLMLPQEGKFLEISYDGGFKHPLPLPPPSNGAGNGPASSHWQSFALLGRS

LLLPDSGQLILVEQQGQAASPSASWPLKNLPDCWAVILLVPESQPLTSAGGKPHSLKALLGAQAAK

ISWKEPERNPYQSADAARSWSYELEVLDVASQSAFSIRNIRGPIFGLQRLQPDNLYQLRVRAINVD

GEPGEWTEPLAARTWPLGPHRLRWASRQGSVIHTNELGEGLEVQQEQLERLPGPMTMVNESVGYYV

TGDGLLHCINLVHSQWGCPISEPLQHVGSVTYDWRGGRVYWTDLARNCVVRMDPWSGSRELLPVFE

ANFLALDPRQGHLYYATSSQLSRHGSTPDEAVTYYRVNGLEGSIASFVLDTQQDQLFWLVKGSGAL

RLYRAPLTAGGDSLQMIQQIKGVFQAVPDSLQLLRPLGALLWLERSGRRARLVRLAAPLDVMELPT

PDQASPASALQLLDPQPLPPRDEGVIPMTVLPDSVRLDDGHWDDFHVRWQPSTSGGNHSVSYRLLL

EFGQRLQTLDLSTPFARLTQLPQAQLQLKISITPRTAWRSGDTTRVQLTTPPVAPSQPRRLRVFVE

RLATALQEANVSAVLRWDAPEQGQEAPMQALEYHISCWVGSELHEELRLNQSALEARVEHLQPDQT

YHFQVEARVAATGAAAGAASHALHVAPEVQAVPRVLYANAEFIGELDLDTRNRRRLVHTASPVEHL

VGIEGEQRLLWVNEHVELLTHVPGSAPAKLARMRAEVLALAVDWIQRIVYWAELDATAPQAAIIYR

LDLCNFEGKILQGERVWSTPRGRLLKDLVALPQAQSLIWLEYEQGSPRNGSLRGRNLTDGSELEWA

TVQPLIRLHAGSLEPGSETLNLVDNQGKLCVYDVARQLCTASALRAQLNLLGEDSIAGQLAQDSGY

LYAVKNWSIRAYGRRRQQLEYTVELEPEEVRLLQAHNYQAYPPKNCLLLPSSGGSLLKATDCEEQR

CLLNLPMITASEDCPLPIPGVRYQLNLTLARGPGSEEHDHGVEPLGQWLLGAGESLNLTDLLPFTR

YRVSGILSSFYQKKLALPTLVLAPLELLTASATPSPPRNFSVRVLSPRELEVSWLPPEQLRSESVY

YTLHWQQELDGENVQDRREWEAHERRLETAGTHRLTGIKPGSGYSLWVQAHATPTKSNSSERLHVR

SFAELPELQLLELGPYSLSLTWAGTPDPLGSLQLECRSSAEQLRRNVAGNHTKMVVEPLQPRTRYQ

CRLLLGYAATPGAPLYHGTAEVYETLGDAPSQPGKPQLEHIAEEVFRVTWTAARGNGAPIALYNLE

ALQARSDIRRRRRRRRRNSGGSLEQLPWAEEPVVVEDQWLDFCNTTELSCIVKSLHSSRLLLFRVR

ARSLEHGWGPYSEESERVAEPFVSPEKRGSLVLAIIAPAAIVSSCVLALVLVRKVQKRRLRAKKLL

QQSRPSIWSNLSTLQTQQQLMAVRNRAFSTTLSDADIALLPQINWSQLKLLRFLGSGAFGEVYEGQ

LKTEDSEEPQRVAIKSLRKGASEFAELLQEAQLMSNFKHENIVRLVGICFDTESISLIMEHMEAGD

LLSYLRAARATSTQEPQPTAGLSLSELLAMCIDVANGCSYLEDMHFVHRDLACRNCLVTESTGSTD

RRRTVKIGDFGLARDIYKSDYYRKEGEGLLPVRWMSPESLVDGLFTTQSDVWAFGVLCWEILTLGQ

QPYAARNNFEVLAHVKEGGRLQQPPMCTEKLYSLLLLCWRTDPWERPSFRRCYNTLHAISTDLRRT

QMASATADTVVSCSRPEFKVRFDGQPLEEHREHNERPEDENLTLREVPLKDKQLYANEGVSRL’

Figure

26.

Sample

query

run

on

7LES_DROME

data

Chapter

14.

Configuring

access

to

HMMER

data

sources

253

The

data

is

now

in

a

relational

format

and

can

be

joined

with

data

from

other

data

sources.

Related

tasks:

v

“Adding

HMMER

data

sources

to

a

federated

server”

on

page

254

Adding

HMMER

to

a

federated

server

Adding

HMMER

data

sources

to

a

federated

server

To

configure

the

federated

server

to

access

HMMER

data

sources,

you

must

provide

the

federated

server

with

information

about

the

data

sources

and

objects

that

you

want

to

access.

You

can

configure

the

federated

server

to

access

HMMER

data

sources

by

using

the

DB2

Control

Center

or

the

DB2

command

line.

The

DB2

Control

Center

includes

a

wizard

to

guide

you

through

the

steps

required

to

configure

the

federated

server.

Prerequisites:

v

DB2

Information

Integrator

must

be

installed

on

a

server

that

will

act

as

the

federated

server

v

A

federated

database

must

exist

on

the

federated

server

Procedure:

To

add

HMMER

data

sources

to

a

federated

server:

1.

Verify

that

the

correct

version

of

the

HMMER

program

executable

files

are

installed.

2.

Configure

the

HMMER

daemon.

3.

Start

the

HMMER

daemon.

4.

Register

the

wrapper.

5.

Register

the

server

definitions.

6.

Register

the

nicknames.

Related

concepts:

v

“DB2

Information

Integrator

installation

process

-

overview”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“What

is

HMMER?”

on

page

251

Related

tasks:

v

“Creating

a

federated

database”

on

page

51

v

“Verifying

the

version

of

the

HMMER

program

executable”

on

page

255

v

“Configuring

the

HMMER

daemon”

on

page

255

v

“Registering

the

HMMER

wrapper”

on

page

262

v

“Registering

the

server

definition

for

a

HMMER

data

source”

on

page

263

v

“Registering

nicknames

for

HMMER

data

sources”

on

page

265

v

“Checking

the

setup

of

the

federated

server”

on

page

37

Related

reference:

254

Data

Source

Configuration

Guide

|
|
|
|

v

“Supported

operating

systems

for

DB2

Information

Integrator

(32-bit)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Supported

operating

systems

for

DB2

Information

Integrator

(64-bit)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“HMMER

data

source

–

complete

example”

on

page

270

Verifying

the

version

of

the

HMMER

program

executable

Verifying

that

the

required

version

of

the

HMMER

program

executable

is

installed

is

part

of

the

larger

task

of

adding

HMMER

data

sources

to

a

federated

server.

You

must

have

a

supported

version

of

the

hmmpfam

and

hmmsearch

executable

files

installed

on

the

server

where

the

HMMER

application

program

is

installed.

The

HMMER

application

program

can

be

installed

on

the

federated

server

or

a

separate

HMMER

server.

Procedure:

To

check

the

version

level

of

the

executable

file:

1.

Issue

a

command

that

returns

the

version

number:

v

For

the

hmmpfam

program,

the

command

is:

hmmpfam

-h

v

For

the

hmmsearch

program,

the

command

is:

hmmsearch

-h

2.

In

the

output

file,

check

the

version

of

the

executable

files.

You

must

have

HMMER

version

2.2g

(or

later).

3.

If

you

do

not

have

the

correct

version,

download

the

files

from

http://hmmer.wustl.edu/.

The

next

task

in

this

sequence

of

tasks

is

configuring

the

HMMER

daemon.

Related

tasks:

v

“Configuring

the

HMMER

daemon”

on

page

255

Configuring

the

HMMER

daemon

Configuring

the

HMMER

daemon

is

part

of

the

larger

task

of

adding

HMMER

to

a

federated

server.

The

HMMER

wrapper

requires

a

HMMER

daemon.

The

HMMER

daemon

must

be

running

on

a

server

that

you

can

access

through

TCP/IP

from

your

DB2

Universal

Database

federated

system.

This

can

be

the

same

server

that

operates

as

the

federated

server,

or

a

separate

HMMER

server.

The

daemon

runs

separately

from

the

wrapper

and

DB2

Universal

Database.

The

daemon

listens

for

HMMER

job

requests

from

the

wrapper.

Prerequisites:

The

HMMER

daemon

must

have:

v

Execute

access

to

the

hmmpfam

and

hmmsearch

executable

files

so

that

it

can

run

HMMER

searches.

Chapter

14.

Configuring

access

to

HMMER

data

sources

255

|
|
|
|

|

|

|
|

|
|
|
|

|
|

http://hmmer.wustl.edu/

v

Write

access

to

a

directory

in

which

it

can

write

temporary

files.

v

Read

access

to

at

least

one

profile

database

on

which

you

can

run

HMMER

searches.

Restrictions:

The

HMMER

daemon

might

not

run

properly

if

the

executable

file

or

the

database

path

contains

spaces.

For

example,

you

should

not

install

the

HMMER

executable

file

in

C:\Program

Files

on

Windows

servers.

Procedure:

To

configure

the

HMMER

daemon:

1.

Ensure

that

the

HMMER

daemon

executable

files

are

on

the

proper

server.

During

the

installation

of

DB2

Information

Integrator,

the

daemon

executable

files

are

installed

in

a

directory

on

the

federated

server:

On

UNIX

The

daemon

executable

files

are

installed

in

the

$DB2PATH/bin

directory.

On

Windows

The

daemon

executable

files

are

installed

in

the

%DB2PATH%\bin

directory.
If

you

use

a

separate

HMMER

server,

you

must

copy

the

daemon

executable

files

from

the

directory

on

the

federated

server

to

a

directory

on

the

HMMER

server.

The

daemon

executable

files

can

run

in

any

directory

on

the

HMMER

server

that

does

not

contain

spaces

in

the

names

in

the

directory

path.

2.

Ensure

that

the

configuration

file

and

other

required

files

are

on

the

server

where

HMMER

is

installed.

Some

of

the

required

files

are

installed

with

DB2

Information

Integrator

in

a

directory

on

the

federated

server.

You

must

provide

the

other

required

files.

On

UNIX

The

files

that

must

be

on

the

server

where

HMMER

is

installed

are:

v

The

daemon

executable

file,

%DB2PATH%/bin/db2hmmer_daemon

v

The

HMMER

daemon

configuration

file,

%DB2PATH%/samples/lifesci/HMMER_DAEMON.config

v

The

conversion

utility,

%DB2PATH%/bin/db2h2x

v

The

shell

script,

%DB2PATH%/bin/db2runpfam.ksh

v

The

HMMER

executable

files

(not

supplied

by

IBM),

hmmpfam

and

hmmsearch

v

The

HMMER

database

files

(not

supplied

by

IBM)

%DB2PATH%

is

the

path

where

DB2

Information

Integrator

is

installed.

On

Windows

The

files

that

must

be

on

the

server

where

HMMER

is

installed

are:

v

The

daemon

executable

files,

%DB2PATH%\bin\db2hmmer_daemon.exe

and

%DB2PATH%\bin\db2hmmer_daemon_svc.exe

v

The

HMMER

daemon

configuration

file,

%DB2PATH%\samples\lifesci\HMMER_DAEMON.config

v

The

conversion

utility,

%DB2PATH%\bin\db2h2x.exe

v

The

HMMER

executable

files

(not

supplied

by

IBM),

hmmpfam.exe

and

hmmsearch.exe

v

The

HMMER

database

files

(not

supplied

by

IBM)

256

Data

Source

Configuration

Guide

|

|
|
|

|
|
|

|
|

|

|
|

|

|

|
|

|

|

|
|

|
|

|
|

|

|
|

|

%DB2PATH%

is

the

path

where

DB2

Information

Integrator

is

installed.
By

default,

the

daemon

expects

to

find

the

configuration

file

in

the

working

directory

from

which

the

daemon

is

started.

You

can

copy

the

configuration

file

to

another

location.

If

you

use

a

HMMER

server,

you

must

copy

the

daemon

configuration

file

from

the

directory

on

the

federated

server

to

a

directory

on

the

HMMER

server.

You

can

copy

the

daemon

configuration

file

to

any

directory

on

the

HMMER

server

that

the

daemon

can

access.

3.

On

UNIX,

ensure

that

the

HMMER

daemon

executable

file,

conversion

utility,

and

the

shell

script

are

executable.

To

make

the

files

executable,

run

the

following

command:

chmod

a+x

db2hmmer_daemon

db2h2x

db2runpfam.ksh

4.

Edit

the

daemon

configuration

file

to

work

with

your

data

source.

You

can

also

rename

the

configuration

file.

v

The

first

line

in

the

configuration

file

must

be

an

equal

sign.

If

the

equal

sign

is

missing,

the

daemon

will

not

start.

An

error

message

will

indicate

that

the

DAEMON_PORT

was

not

specified.

v

The

last

line

in

the

configuration

file

must

end

with

a

new

line.

The

sample

configuration

file

that

is

provided

with

DB2

Information

Integrator

ends

with

a

new

line.

When

you

edit

the

file,

you

must

ensure

that

the

last

line

in

the

file

ends

in

a

new

line.

If

the

last

line

does

not

end

with

a

new

line,

you

will

receive

an

error

message

when

you

attempt

to

run

your

first

HMMER

query

using

the

data

source

listed

on

the

last

line.

v

Specify

the

following

options

in

the

configuration

file.

For

options

that

require

paths,

you

can

specify

relative

paths.

Relative

paths

are

relative

to

the

directory

from

which

the

daemon

process

was

started.

DAEMON_PORT

This

is

the

network

port

on

which

the

daemon

listens

for

HMMER

job

requests

submitted

by

the

wrapper.

MAX_PENDING_REQUESTS

This

is

the

maximum

number

of

HMMER

job

requests

that

can

be

blocking

on

the

daemon

at

any

one

time.

This

number

does

not

represent

the

number

of

HMMER

jobs

that

run

concurrently,

only

the

number

of

job

requests

that

can

block

at

one

time.

It

is

recommended

that

you

set

this

to

a

number

greater

than

five.

The

HMMER

daemon

does

not

restrict

the

number

of

HMMER

jobs

that

can

run

concurrently.

DAEMON_LOGFILE_DIR

This

is

the

directory

in

which

the

daemon

creates

its

log

file.

This

file

contains

useful

status

and

error

information

generated

by

the

HMMER

daemon.

Q_SEQ_DIR_PATH

This

is

the

directory

in

which

a

temporary

query

sequence

data

file

is

created

by

the

daemon.

This

temporary

file

is

cleaned

up

once

the

HMMER

job

completes.

HMMER_OUT_DIR_PATH

This

is

the

directory

in

which

the

daemon

creates

the

temporary

file

to

store

the

HMMER

output

data.

Data

is

read

from

this

file

and

passed

back

to

the

wrapper

through

the

network

connection.

After

the

data

is

passed

to

the

wrapper,

the

daemon

cleans

up

the

temporary

file.

Chapter

14.

Configuring

access

to

HMMER

data

sources

257

|

|
|
|
|
|
|

|
|
|

|

RUNPFAM_PATH

This

is

the

fully-qualified

name

of

the

db2runpfam.ksh

shell

script

provided

with

DB2

Information

Integrator.

This

option

is

ignored

if

it

is

specified

on

Windows.

HMMERPFAM_PATH

This

is

the

fully-qualified

name

of

the

HMMER

executable

file

on

the

computer

that

is

running

the

daemon.

On

UNIX,

the

name

of

the

file

is

hmmpfam.

On

Windows,

the

name

of

the

file

is

hmmpfam.exe.

HMMSEARCH_PATH

This

is

the

fully-qualified

name

of

the

HMMER

executable

file

on

the

computer

that

is

running

the

daemon.

On

UNIX,

the

name

of

the

file

is

hmmsearch.

On

Windows,

the

name

of

the

file

is

hmmsearch.exe.

H2X_PATH

This

is

the

fully-qualified

name

of

the

conversion

program

(HMMER

to

XML)

provided

with

the

daemon.

On

UNIX,

the

name

of

the

program

is

db2h2x.

On

Windows,

the

name

of

the

program

is

db2h2x.exe.

database

specification

entry

Specifies

the

location

of

a

profile

database

or

sequence

file.

Make

note

of

the

database

data_source_name

that

you

specify

in

the

configuration

file.

For

the

daemon

to

function

properly,

you

must

specify

the

database

data_source_name

when

you

create

the

nickname

for

the

data

source.

The

name

is

case-sensitive.

The

database

data_source_name

is

specified

in:

v

The

DATASOURCE

option

of

the

CREATE

NICKNAME

statement

(for

hmmpfam)

v

The

MODEL

predicate

of

the

CREATE

NICKNAME

statement

(for

hmmsearch)

The

configuration

file

must

contain

at

least

one

database

specification

entry

in

the

following

form:

data_source_name=fully_qualified_name_of_profile_or_sequence_database

On

UNIX

For

example,

to

specify

the

MYHMMS

profile

database

you

would

add

the

following

line

to

the

daemon

configuration

file

:

myhmms=/home/user_ID/myhmms

On

Windows

For

example,

to

specify

MYHMMS

profile

database

you

would

add

the

following

line

to

the

daemon

configuration

file:

myhmms=c:\hmmer\tutorial\myhmms

The

next

task

in

this

sequence

of

tasks

is

starting

the

HMMER

daemon.

Related

tasks:

v

“Starting

the

HMMER

daemon”

on

page

259

Related

reference:

v

“HMMER

daemon

configuration

file

-

examples”

on

page

258

HMMER

daemon

configuration

file

-

examples

The

following

examples

show

the

contents

of

a

sample

configuration

file

for

PFAM

and

SEARCH.

258

Data

Source

Configuration

Guide

|
|
|

|
|
|
|
|
|

|
|

|
|

|
|

|

|
|
|

|

|
|
|

|

|

Example

–

HMMER_DAEMON.config

file

for

UNIX:

This

example

shows

the

required

options

and

profile

database

specification

for

UNIX.

=

DAEMON_PORT=4098

MAX_PENDING_REQUESTS=10

DAEMON_LOGFILE_DIR=./

Q_SEQ_DIR_PATH=./

HMMER_OUT_DIR_PATH=./

RUNPFAM_PATH=./db2runpfam.ksh

HMMPFAM_PATH=/home/user_id/hmmer/bin/hmmpfam

HMMSEARCH_PATH=/home/user_id/hmmer/bin/hmmsearch

H2X_PATH=/home/user_id/sqllib/bin/db2h2x

myhmms=/home/user_id/hmmer/tutorial/myhmms

globin=/home/user_id/hmmer/tutorial/globin.hmm

pfamls=/home/user_id/hmmer/pfam/Pfam_ls

Example

–

HMMER_DAEMON.config

file

for

Windows:

This

example

shows

the

required

options

and

profile

database

specification

for

Windows.

=

DAEMON_PORT=4098

MAX_PENDING_REQUESTS=10

DAEMON_LOGFILE_DIR=.\

Q_SEQ_DIR_PATH=.\

HMMER_OUT_DIR_PATH=.\

HMMPFAM_PATH=c:\hmmer\bin\hmmpfam.exe

HMMSEARCH_PATH=c:\hmmer\bin\hmmsearch.exe

H2X_PATH=.\db2h2x.exe

myhmms=c:\hmmer\tutorial\myhmms

globin=c:\hmmer\tutorial\globin.hmm

pfamseq=c:\hmmer\pfam\pfamseq

Related

tasks:

v

“Configuring

the

HMMER

daemon”

on

page

255

Starting

the

HMMER

daemon

Starting

the

HMMER

daemon

is

part

of

the

larger

task

of

adding

HMMER

data

sources

to

a

federated

server.

Before

you

can

access

HMMER

data

sources,

you

must

start

the

HMMER

daemon.

Prerequisites:

Before

you

start

the

HMMER

daemon,

you

must

have

write

access

to

all

paths

listed

under

the

DAEMON_LOGFILE_DIR,

HMMER_OUT_DIR_PATH,

and

Q_SEQ_DIR_PATH

entries

in

the

configuration

file.

Procedure:

To

start

the

HMMER

daemon

on

a

UNIX

server:

1.

Open

the

directory

where

the

daemon

executable

file

is

located.

2.

Issue

the

db2hmmer_daemon

command:

v

If

you

did

not

change

the

name

of

the

daemon

configuration

file

and

the

configuration

file

is

in

the

same

directory

as

the

daemon

executable

file,

type

the

following

command

at

the

command

line:

Chapter

14.

Configuring

access

to

HMMER

data

sources

259

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

db2hmmer_daemon

v

If

you

changed

the

name

of

the

daemon

configuration

file

or

if

the

daemon

configuration

file

is

not

in

the

same

directory

as

the

daemon

executable

file,

you

must

use

the

-c

option

on

the

wrapper

daemon

command

to

point

the

daemon

executable

to

the

new

name

or

location.

For

example,

the

following

command

causes

the

wrapper

daemon

to

look

for

the

daemon

configuration

information

in

a

file

called

HMMER_D.config

in

the

subdirectory

cfg.

db2hmmer_daemon

-c

cfg/HMMER_D.config

The

executable

file

starts

a

new

process

in

which

the

HMMER

daemon

runs.

To

stop

the

daemon

on

a

UNIX

server:

1.

List

the

process

ID

of

the

db2hmmer_daemon

by

using

the

following

UNIX

command:

ps

-ef

|

grep

db2hmmer

2.

Use

the

process

ID

to

stop

the

daemon.

Use

this

command:

kill

nnnn

where

nnnn

is

the

process

ID

of

the

db2hmmer_daemon.

To

start

the

HMMER

daemon

on

a

Windows

server:

1.

Open

the

directory

where

the

daemon

executable

file

is

located.

2.

Issue

the

db2hmmer_daemon

command

with

the

parameters

that

you

need.

For

example,

to

install

the

daemon

service

with

debugging

turned

on

and

start

the

daemon

issue

these

commands:

db2hmmer_daemon

-a

install

-d

2

db2hmmer_daemon

-a

start

To

stop

the

daemon,

use

the

following

Windows

command:

db2hmmer_daemon

-a

stop

The

next

task

in

this

sequence

of

tasks

is

registering

the

HMMER

wrapper.

Related

tasks:

v

“Configuring

the

HMMER

daemon”

on

page

255

v

“Registering

the

HMMER

wrapper”

on

page

262

v

“Adding

HMMER

data

sources

to

a

federated

server”

on

page

254

Related

reference:

v

“db2hmmer_daemon

command

-

syntax

and

examples”

on

page

260

db2hmmer_daemon

command

-

syntax

and

examples

The

db2hmmer_daemon

command

can

be

used

on

UNIX

and

Windows

servers.

Some

of

the

arguments

listed

in

the

syntax

can

be

used

only

on

Windows

servers.

The

syntax

for

the

db2hmmer_daemon

command

is:

db2hmmer_daemon

-a

action

-c

config_file

-d

debug_level

-u

user_id

-p

password

-a

action

Performs

the

specified

activity.

Valid

actions

are

status,

install,

start,

stop,

and

remove.

260

Data

Source

Configuration

Guide

|

|
|

|

|

|

|

|

|

|
|

You

can

specify

this

argument

only

on

Windows

servers.

-c

config_file

Instructs

the

daemon

service

to

use

the

specified

configuration

file

instead

of

the

default

configuration

file.

If

you

do

not

specify

the

configuration

file,

the

daemon

searches

for

the

HMMER_DAEMON.config

file

in

the

directory

where

the

daemon

executable

files

are

installed.

You

can

use

this

option

with

the

install

and

start

actions.

You

can

specify

this

argument

on

UNIX

and

Windows

servers.

-d

debug_level

Sets

the

daemon

service

debug

level

to

the

specified

value.

The

valid

values

are

1,

2,

or

3.

You

can

use

this

option

with

the

install

and

start

actions.

You

can

specify

this

argument

on

UNIX

and

Windows

servers.

-u

user_id

Sets

the

service

to

run

under

the

specified

user

ID.

You

can

use

this

option

with

the

install

action.

You

can

specify

this

argument

only

on

Windows

servers.

-p

password

Specifies

the

password

for

the

specified

user

ID.

The

password

is

valid

and

required

only

when

you

specify

the

-u

option.

If

the

-p

option

is

not

specified

when

you

set

the

-u

option,

the

program

prompts

you

for

the

password.

You

can

use

this

option

with

the

install

action.

You

can

specify

this

argument

only

on

Windows

servers.

The

options

that

are

specified

with

the

start

action

affect

only

the

current

run

of

the

daemon,

and

override

the

values

that

are

specified

with

the

install

action.

Examples:

The

following

examples

show

daemon

actions

on

Windows.

These

examples

assume

that

the

HMMER_DAEMON.config

file

is

in

the

same

directory

as

db2hmmer_daemon.exe.

v

To

check

the

status

of

the

daemon:

db2hmmer_daemon

-a

status

v

To

install

the

daemon

service

with

debugging

turned

on:

db2hmmer_daemon

-a

install

-d

2

v

To

start

the

daemon:

db2hmmer_daemon

-a

start

v

To

stop

the

daemon:

db2hmmer_daemon

-a

stop

v

To

remove

or

uninstall

the

daemon

service:

db2hmmer_daemon

-a

remove

Related

tasks:

v

“Starting

the

HMMER

daemon”

on

page

259

Chapter

14.

Configuring

access

to

HMMER

data

sources

261

|

|

|

|

|

Registering

the

HMMER

wrapper

Registering

the

HMMER

wrapper

is

part

of

the

larger

task

of

adding

HMMER

data

sources

to

a

federated

server.

You

must

register

a

wrapper

to

access

HMMER

data

sources.

Wrappers

are

used

by

federated

servers

to

communicate

with

and

retrieve

data

from

data

sources.

Wrappers

are

implemented

as

a

set

of

library

files.

Procedure:

To

register

a

wrapper,

issue

the

CREATE

WRAPPER

statement

with

the

name

of

the

wrapper

and

the

name

of

the

wrapper

library

file.

For

example,

to

register

a

wrapper

with

the

name

hmmer_wrapper

on

the

federated

server

that

uses

the

AIX

operating

system,

issue

the

following

statement:

CREATE

WRAPPER

hmmer_wrapper

LIBRARY

’libdb2lshmmer.a’;

The

name

of

the

wrapper

library

file

that

you

specify

depends

on

the

operating

system

of

the

federated

server.

See

the

list

of

HMMER

wrapper

library

files

for

the

correct

name

to

specify

in

the

CREATE

WRAPPER

statement.

The

next

task

in

this

sequence

of

tasks

is

registering

the

server

definitions

for

the

HMMER

wrapper.

Related

tasks:

v

“Registering

the

server

definition

for

a

HMMER

data

source”

on

page

263

Related

reference:

v

“HMMER

wrapper

library

files”

on

page

262

v

“CREATE

WRAPPER

statement”

in

the

SQL

Reference,

Volume

2

HMMER

wrapper

library

files

The

following

table

lists

the

directory

paths

and

library

file

names

for

the

HMMER

wrapper.

When

you

install

DB2

Information

Integrator,

3

library

files

are

added

to

the

directory

path

listed

in

the

table.

For

example,

if

the

federated

server

is

running

on

AIX,

the

wrapper

library

files

added

to

the

directory

path

are

libdb2lshmmer.a,

libdb2lshmmerF.a,

and

libdb2lshmmerU.a.

When

you

register

a

wrapper,

specify

only

the

library

file

name

that

is

listed

in

the

table.

Table

70.

HMMER

wrapper

library

locations

and

file

names

Operating

system

Directory

path

Wrapper

library

file

AIX

/usr/opt/db2_08_01/lib/

libdb2lshmmer.a

Linux

/opt/IBM/db2/V8.1/lib

libdb2lshmmer.so

Solaris

/opt/IBM/db2/V8.1/lib

libdb2lshmmer.so

Windows

%DB2PATH%\bin

db2lshmmer.dll

262

Data

Source

Configuration

Guide

|

|
|

|
|
|
|

|
|

||

|||

|||

|||

|||

|||
|

%DB2PATH%

is

the

environment

variable

that

is

used

to

specify

the

directory

path

where

DB2

Information

Integrator

is

installed

on

Windows.

The

default

Windows

directory

path

is

C:\Program

Files\IBM\SQLLIB.

Related

tasks:

v

“Registering

the

HMMER

wrapper”

on

page

262

Registering

the

server

definition

for

a

HMMER

data

source

Registering

server

definitions

for

HMMER

data

sources

is

part

of

the

larger

task

of

adding

HMMER

data

source

to

a

federated

server.

After

you

register

the

wrapper,

you

must

register

a

corresponding

server

definition.

Procedure:

To

register

the

HMMER

server

definition,

issue

the

CREATE

SERVER

statement.

For

example:

CREATE

SERVER

server_name

TYPE

HMMER_search_type

VERSION

version

WRAPPER

wrapper_name

OPTIONS

(NODE

’node_name’,

DAEMON_PORT

’port_number’)

You

must

register

a

definition

for

each

server

that

you

want

to

run

a

HMMER

search

on.

The

next

task

in

this

sequence

of

tasks

is

registering

nicknames

for

HMMER

data

sources.

Related

tasks:

v

“Registering

nicknames

for

HMMER

data

sources”

on

page

265

Related

reference:

v

Appendix

D,

“Server

options

for

federated

systems,”

on

page

575

v

“CREATE

SERVER

statement

-

examples

for

HMMER

wrapper”

on

page

263

CREATE

SERVER

statement

-

examples

for

HMMER

wrapper

This

topic

provides

an

example

that

shows

you

how

to

use

the

CREATE

SERVER

statement

to

register

server

definitions

for

the

HMMER

wrapper.

To

register

the

server

definition

hmmpfam_server

for

searches

that

use

the

hmmpfam

program,

issue

the

following

statement:

CREATE

SERVER

hmmpfam_server

TYPE

pfam

VERSION

2.2

WRAPPER

hmmer_wrapper

OPTIONS

(NODE

’someserver.someschool.edu’,

DAEMON_PORT

’4098’)

hmmpfam_server

A

name

that

you

assign

to

the

HMMER

server

definition.

This

name

must

be

unique.

Chapter

14.

Configuring

access

to

HMMER

data

sources

263

|
|
|

|

|

|
|

|

|
|

|
|

|
|
|
|
|

|
|
|

TYPE

pfam

The

type

of

search

that

the

server

definition

supports.

The

types

that

you

can

specify

are

PFAM

(for

hmmpfam)

or

SEARCH

(for

hmmsearch).

VERSION

2.2

The

version

of

the

hmmpfam

or

hmmsearch

executable

file

that

you

are

using.

The

supported

versions

are

HMMER

2.2g

(or

later).

WRAPPER

hmmer_wrapper

The

name

that

you

specified

in

the

CREATE

WRAPPER

statement.

NODE

’someserver.someschool.edu’

The

host

name

or

the

IP

address

of

the

server

on

which

the

HMMER

daemon

process

runs.

Although

the

node

name

is

specified

as

an

option

in

the

CREATE

SERVER

statement,

it

is

required

for

HMMER

data

sources.

DAEMON_PORT

’4098’

The

port

number

on

which

the

daemon

listens

for

HMMER

job

requests.

The

port

number

must

be

the

same

number

specified

in

the

DAEMON_PORT

option

of

the

daemon

configuration

file.

The

default

is

4098.

Additional

server

options:

When

you

create

the

server

definition,

you

can

specify

additional

server

options

in

the

CREATE

SERVER

statement.

PROCESSORS

The

number

of

processors

that

the

HMMER

program

uses.

This

option

is

equivalent

to

the

--cpu

option

of

the

hmmpfam

and

hmmsearch

commands.

Example:

PROCESSORS

’2’.

HMMPFAM_OPTIONS

Use

this

server

option

to

pass

options

to

the

hmmpfam

command

that

cannot

be

specified

in

a

predicate.

For

example:

HMMPFAM_OPTIONS

’--null2

--pvm’.

In

this

example,

hmmpfam

will

always

run

with

the

two

additional

options

--null2

and

--pvm

whenever

a

query

is

run

against

this

server.

The

HMMPFAM_OPTIONS

option

is

only

valid

with

servers

specified

as

type

PFAM.

HMMSEARCH_OPTIONS

Use

this

server

option

to

pass

options

to

the

hmmsearch

command

that

cannot

be

specified

in

a

predicate.

For

example:

HMMSEARCH_OPTIONS

’--null2

--pvm’.

In

this

example,

hmmsearch

will

always

run

with

the

two

additional

options

--null2

and

--pvm

whenever

a

query

is

run

against

this

server.

The

HMMSEARCH_OPTIONS

option

is

only

valid

with

servers

specified

as

type

SEARCH.

Related

tasks:

v

“Registering

the

server

definition

for

a

HMMER

data

source”

on

page

263

Related

reference:

v

“CREATE

SERVER

statement”

in

the

SQL

Reference,

Volume

2

v

Appendix

D,

“Server

options

for

federated

systems,”

on

page

575

264

Data

Source

Configuration

Guide

|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|
|
|

|

|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|

|

|

|

Registering

nicknames

for

HMMER

data

sources

Registering

nicknames

for

HMMER

data

sources

is

part

of

the

larger

task

of

adding

HMMER

data

source

to

a

federated

server.

After

you

register

a

server

definition,

you

must

register

a

corresponding

nickname.

When

you

refer

to

a

HMMER

data

source

in

a

query,

you

use

nicknames.

Procedure:

To

register

a

HMMER

nickname,

issue

the

CREATE

NICKNAME

statement.

For

example:

CREATE

NICKNAME

nickname

FOR

SERVER

server_name

OPTIONS(DATASOURCE

’data_source’)

You

must

define

a

separate

nickname

for

each

profile

database

that

you

want

to

query.

The

data_source

name

must

match

an

existing

data_source_name

in

the

HMMER_DAEMON.config

file

on

the

HMMER

server.

When

you

create

a

nickname

for

a

HMMER

database,

a

set

of

input

and

output

fixed

columns

for

the

profile

database

are

registered

in

the

federated

database

system

catalog.

There

are

no

further

tasks

in

this

sequence

of

tasks.

Related

tasks:

v

“Specifying

nickname

columns

for

a

nonrelational

data

source”

on

page

65

v

“Configuring

the

HMMER

daemon”

on

page

255

v

“Construct

new

HMMER

queries

with

samples”

on

page

271

v

“Adding

HMMER

data

sources

to

a

federated

server”

on

page

254

Related

reference:

v

“Fixed

columns

for

HMMER

nicknames”

on

page

265

v

“HMMER

data

source

–

complete

example”

on

page

270

v

“CREATE

NICKNAME

statement

-

Example

for

HMMER

wrapper”

on

page

269

v

“Fixed

columns

for

HMMER

nicknames”

on

page

265

Fixed

columns

for

HMMER

nicknames

When

you

issue

the

CREATE

NICKNAME

statement

for

a

HMMER

data

source,

a

set

of

fixed

input

column

and

fixed

output

columns

are

automatically

created

with

the

nickname.

If

you

want

to

change

the

default

data

type

that

is

assigned

to

a

fixed

column,

you

can

specify

the

column

name

and

data

type

in

the

CREATE

NICKNAME

statement.

For

example,

to

limit

the

AlignmentConsensus

column

output

to

no

more

than

the

first

100

characters,

you

issue

the

following

statement:

CREATE

NICKNAME

nucleo1

(AlignmentConsensus

VARCHAR(100))

FOR

SERVER

searchtest

OPTIONS(DATASOURCE

’nucleo1’,

TIMEOUT

’1’);

You

can

reference

the

fixed

columns

in

SQL

queries

as

part

of

the

nickname

definition.

There

are

two

types

of

fixed

columns,

input

and

output.

Chapter

14.

Configuring

access

to

HMMER

data

sources

265

|
|
|

|
|
|
|
|
|

|
|
|

Fixed

input

columns

for

HMMER

nicknames

The

fixed

input

columns

are

specified

in

the

WHERE

clause.

Input

columns

are

used

as

parameter-passing

predicates

in

SQL

queries.

They

pass

standard

HMMER

switches

to

either

hmmpfam

or

hmmsearch.

HMMER

then

runs

on

the

specified

data

source

using

these

switches.

Fixed

input

columns

can

also

be

referenced

in

the

query

SELECT

list

and

are

returned

as

part

of

the

results

table.

Input

fixed

columns

for

servers

of

type

PFAM:

The

following

table

lists

the

fixed

columns

that

you

can

use

in

the

WHERE

clause.

Table

71.

Fixed

input

columns

for

servers

of

type

PFAM

Name

Data

type

Description

Operator

Switches

Returned

Value

HmmQSeq

varchar

(32000)

Input

gene

sequence

that

is

used

to

search

=

Same

as

the

input

value

that

you

specify.

This

column

is

required.

ModelEValue

double

Estimated

e-value

<

-E

n

See

output.

ModelScore

double

Raw

score

>

-T

n

See

output.

DBSize

integer

Calculate

e-values

as

if

the

database

had

’n’

gene

sequences

=

-Z

n

Same

as

the

input

value

that

you

specify.

Uses

hmmpfam

default

if

not

specified.

CutMode

char(2)

Cutoff

mode;

can

be

ga,

tc

or

nc

(case

sensitive)

=

--cut_ga

--cut_tc

--cut_nc

Same

as

the

input

value

that

you

specify.

NULL

if

not

specified.

DomainScore

double

Domain

score

>

--domT

n

See

output.

DomainEValue

double

Domain

e-value

<

--domE

n

See

output.

ForwardAlgorithm

char

Use

Forward

algorithm

rather

than

Viterbi;

value

can

be

’Y’

or

’N’

=

--forward

Same

as

the

input

value

that

you

specify.

’N’

is

the

default.

Input

fixed

columns

for

servers

of

type

SEARCH:

266

Data

Source

Configuration

Guide

|

The

following

table

lists

the

fixed

columns

that

you

can

use

in

the

WHERE

clause.

Table

72.

Fixed

input

columns

for

servers

of

type

SEARCH

Name

Data

type

Description

Operator

Options

Returned

Value

Model

varchar

(32000)

Name

of

the

HMM

profile

file

used

in

the

search.

The

name

must

be

one

of

the

data

source

names

listed

in

the

database

specification

entry

in

the

HMMER_DAEMON.config

file.

=

Same

as

the

input

value

that

you

specify.

This

column

is

required.

SequenceEValue

double

Estimated

e-value

<

-E

n

See

output.

SequenceScore

double

Raw

score

>

-T

n

See

output.

DBSize

integer

Calculate

e-values

as

if

the

database

had

’n’

gene

sequences

=

-Z

n

Same

as

the

input

value

that

you

specify.

Uses

hmmpfam

default

if

not

specified.

CutMode

char(2)

Cutoff

mode;

can

be

ga,

tc

or

nc

(case

sensitive)

=

--cut_ga

--cut_tc

--cut_nc

Same

as

the

input

value

that

you

specify.

NULL

if

not

specified.

DomainScore

double

Domain

score

>

--domT

n

See

output.

DomainEValue

double

Domain

e-value

<

--domE

n

See

output.

ForwardAlgorithm

char

Use

Forward

algorithm

rather

than

Viterbi;

value

can

be

’Y’

or

’N’

=

--forward

Same

as

the

input

value

that

you

specify.

’N’

is

the

default.

Fixed

output

columns

for

HMMER

nicknames

You

can

specify

any

of

the

fixed

output

columns

in

the

SELECT

list.

You

can

also

specify

fixed

output

columns

in

the

WHERE

clause

(as

predicates).

Fixed

output

columns

for

PFAM:

The

following

table

lists

the

fixed

columns

that

are

returned

as

output

for

PFAM.

Table

73.

Fixed

output

columns

for

PFAM

Name

Data

type

Description

Model

varchar(32)

Name

of

model.

ModelDescription

varchar(64)

Text

description

of

model.

Chapter

14.

Configuring

access

to

HMMER

data

sources

267

|

||

||||||
|

||
|
|
|
|
|
|
|
|
|
|
|

|||
|
|
|
|
|
|

||||||

||||||

|||
|
|

|||
|
|
|
|
|
|
|
|

|||
|
|

||
|
|

|
|
|
|
|
|
|

||||||

||||||

|||
|
|
|

|||
|
|
|
|
|
|

|

Table

73.

Fixed

output

columns

for

PFAM

(continued)

Name

Data

type

Description

ModelScore

double

Raw

score

(″bit

score″).

ModelEValue

double

Estimated

e-value.

ModelHits

integer

Number

of

domains

hit

within

the

model.

DomainNumber

integer

Specific

domain

(within

one

model).

SequenceFrom

integer

Starting

point

of

gene

sequence.

SequenceFromGlobal

char

’Y’

if

the

alignment

starts

at

the

beginning

of

the

gene

sequence.

HmmFrom

integer

Starting

point

of

consensus

model.

HmmFromGlobal

char

’Y’

if

the

alignment

starts

at

the

beginning

of

the

consensus

model.

HmmTo

integer

Ending

point

in

consensus

model.

HmmToGlobal

char

’Y’

if

the

alignment

ends

at

the

end

of

the

consensus

model.

DomainScore

double

Raw

score

(″bit

score″)

for

the

isolated

domain.

DomainEValue

double

Expected

value

for

the

isolated

domain.

AlignmentConsensus

varchar(32000)

The

HMM

consensus.

The

amino

acid

shown

for

the

consensus

is

the

highest

probability

amino

acid

at

that

position

according

to

the

HMM,

not

necessarily

the

highest

scoring

amino

acid.

AlignmentExactMatch

varchar(32000)

Matches

the

highest

probability

residue

in

the

HMM.

AlignmentSubSequence

varchar(32000)

Shows

the

gene

sequence

itself.

Fixed

output

columns

for

SEARCH:

The

following

table

lists

the

fixed

columns

that

are

returned

as

output

for

SEARCH.

Table

74.

Fixed

output

columns

for

SEARCH

Name

Data

type

Description

Sequence

varchar(32)

The

sequence

identifier.

SequenceDescription

varchar(64)

Text

description

of

the

sequence.

SequenceScore

double

Raw

score

(″bit

score″).

SequenceEValue

double

Estimated

e-value.

SequenceHits

integer

Number

of

domains

hit

within

the

sequence.

DomainNumber

integer

Specific

domain

(within

one

sequence).

SequenceFrom

integer

Starting

point

of

gene

sequence.

SequenceFromGlobal

char

’Y’

if

the

alignment

starts

at

the

beginning

of

the

gene

sequence.

HmmFrom

integer

Starting

point

of

consensus

model.

HmmFromGlobal

char

’Y’

if

the

alignment

starts

at

the

beginning

of

the

consensus

model.

268

Data

Source

Configuration

Guide

|

|
|

||

|||

|||

|||

|||

|||

|||
|

|||

|||

|||
|

|||

|||
|

Table

74.

Fixed

output

columns

for

SEARCH

(continued)

Name

Data

type

Description

HmmTo

integer

Ending

point

in

consensus

model.

HmmToGlobal

char

’Y’

if

the

alignment

ends

at

the

end

of

the

consensus

model.

DomainScore

double

Raw

score

(″bit

score″)

for

the

isolated

domain.

DomainEValue

double

Expected

value

for

the

isolated

domain.

AlignmentConsensus

varchar(32000)

The

HMM

consensus.

The

amino

acid

shown

for

the

consensus

is

the

highest

probability

amino

acid

at

that

position

according

to

the

HMM,

not

necessarily

the

highest

scoring

amino

acid.

AlignmentExactMatch

varchar(32000)

Matches

the

highest

probability

residue

in

the

HMM.

AlignmentSubSequence

varchar(32000)

Shows

the

gene

sequence

itself.

Related

tasks:

v

“Registering

nicknames

for

HMMER

data

sources”

on

page

265

Related

reference:

v

“HMMER

data

source

–

complete

example”

on

page

270

v

“CREATE

NICKNAME

statement

-

Example

for

HMMER

wrapper”

on

page

269

CREATE

NICKNAME

statement

-

Example

for

HMMER

wrapper

This

topic

provides

an

example

that

shows

you

how

to

use

the

CREATE

NICKNAME

statement

to

register

a

nickname

for

HMMER

data

sources.

To

register

the

nickname

hmmpfam_nickname

that

uses

the

server

definition

hmmpfam_server,

you

issue

the

following

statement:

CREATE

NICKNAME

hmmpfam_nickname

FOR

SERVER

hmmpfam_server

OPTIONS(DATASOURCE

’myhmms’,TIMEOUT

’30’)

hmmpfam_nickname

A

name

that

you

assign

to

the

nickname.

This

name

must

be

unique.

SERVER

hmmpfam_server

The

name

of

the

server

definition

that

you

want

this

nickname

to

be

associated

with.

DATASOURCE

’myhmms’

The

name

of

the

database

that

you

will

run

HMMER

searches

on.

This

database

must

be

listed

in

the

HMMER

daemon

configuration

file.

Although

the

data

source

is

specified

as

an

option

in

the

CREATE

NICKNAME

statement,

it

is

required

for

HMMER

data

sources.

TIMEOUT

’30’

The

maximum

time,

in

minutes,

that

the

wrapper

waits

for

results

from

the

daemon.

The

default

is

60

minutes.

Related

tasks:

Chapter

14.

Configuring

access

to

HMMER

data

sources

269

|

|||

|||

|||
|

|||
|

|||

|||
|
|
|
|

|||
|

|||
|

|

|
|

|
|
|

|
|
|

|
|

|
|
|

v

“Registering

nicknames

for

HMMER

data

sources”

on

page

265

Related

reference:

v

Appendix

F,

“Nickname

options

for

federated

systems,”

on

page

593

HMMER

data

source

–

complete

example

This

topic

provides

an

example

of

all

the

SQL

statements

that

you

need

to

issue

to

add

HMMER

data

sources

to

a

federated

server.

This

example

also

shows

a

query

that

is

run

using

the

nickname

created

in

the

SQL

statements.

SQL

statements

for

HMMER

data

sources

must

contain

special

input

predicates

that

are

used

to

pass

standard

HMMER

options

to

the

program

executable

file.

To

be

valid,

every

query

passed

to

the

HMMER

wrapper

must

contain

at

least

the

HmmQSeq

input

predicate

(for

TYPE

PFAM)

or

model

predicate

(for

TYPE

SEARCH).

All

other

predicates

are

optional.

To

construct

a

HMMER

query

against

a

nickname,

specify

input

columns

in

the

WHERE

clause

and

output

columns

in

the

SELECT

list.

Example

for

the

hmmpfam

program:

This

example

creates

a

wrapper,

server

definition,

and

nickname

on

an

AIX

federated

server

for

the

hmmpfam

program.

This

is

example

also

runs

a

query

that

uses

a

string

literal

for

the

search

sequence.

CREATE

WRAPPER

hmmer_wrapper

LIBRARY

’libdb2lshmmer.a’;

CREATE

SERVER

hmmpfam_server

TYPE

pfam

VERSION

2.2

WRAPPER

hmmer_wrapper

OPTIONS(NODE

’HMMERserv.MyCompany.com’);

CREATE

NICKNAME

hmmpfam_nickname

FOR

SERVER

hmmpfam_server

OPTIONS(DATASOURCE

’myhmms’,

TIMEOUT

’1’);

--

Run

the

7LES_DROME

gene

sequence

on

the

hmmpfam_nickname

SELECT

Model,

substr(ModelDescription,1,50)

as

ModelDescription,

ModelScore,

ModelEValue,

ModelHits,

DomainNumber,

SequenceFrom,

SequenceTo,

SequenceFromGlobal,

SequenceToGlobal,

HmmFrom,

HmmTo,

HmmFromGlobal,

HmmToGlobal,

DomainScore,

DomainEValue,

length(HmmQSeq)

as

"length(HmmQSeq)",

length(AlignmentConsensus)

as

"length(AConsensus)",

length(AlignmentMatch)

as

"length(AMatch)",

length(AlignmentSubSeq)

as

"length(ASubSeq)",

substr(HmmQSeq,1,64)

as

HmmQSeq,

substr(AlignmentConsensus,1,64)

as

AlignmentConsensus,

substr(AlignmentMatch,

1,64)

as

AlignmentMatch,

substr(AlignmentSubSeq,

1,64)

as

AlignmentSubSeq

FROM

hmmpfam_nickname

WHERE

HmmQSeq

=

’MTMFWQQNVDHQSDEQDKQAKGAAPTKRLNISFNVKIAVNVNTKMTTTHINQQAPGTSS...’;

Example

for

the

hmmsearch

program:

This

example

creates

a

wrapper,

server

definition,

and

nickname

on

a

Windows

federated

server

for

the

hmmsearch

program.

270

Data

Source

Configuration

Guide

|
|
|
|
|

|

|
|

CREATE

WRAPPER

hmmer_wrapper

LIBRARY

’db2lshmmer.dll’

OPTIONS(DB2_FENCED

’Y’);

CREATE

SERVER

hmmsearch_serv

TYPE

search

VERSION

2.2

WRAPPER

hmmer_wrapper

OPTIONS(NODE

’localhost’);

CREATE

NICKNAME

artemia

FOR

SERVER

hmmsearch_server

OPTIONS(DATASOURCE

’artemia’,

TIMEOUT

’1’);

SELECT

Model,

Sequence,

substr(SequenceDescription,1,50)

as

SequenceDescription,

SequenceScore,

SequenceEValue,

SequenceHits,

DomainNumber,

SequenceFrom,

SequenceTo,

SequenceFromGlobal,

SequenceToGlobal,

HmmFrom,

HmmTo,

HmmFromGlobal,

HmmToGlobal,

DomainScore,

DomainEValue,

length(AlignmentConsensus)

as

"length(AConsensus)",

length(AlignmentMatch)

as

"length(AMatch)",

length(AlignmentSubSeq)

as

"length(ASubSeq)",

substr(AlignmentConsensus,1,200)

as

AlignmentConsensus,

substr(AlignmentMatch,

1,200)

as

AlignmentMatch,

substr(AlignmentSubSeq,

1,200)

as

AlignmentSubSeq

FROM

artemia

WHERE

Model

=

’globin’

and

DomainScore

>

50;

Related

tasks:

v

“Registering

nicknames

for

HMMER

data

sources”

on

page

265

v

“Construct

new

HMMER

queries

with

samples”

on

page

271

v

“Adding

HMMER

data

sources

to

a

federated

server”

on

page

254

Construct

new

HMMER

queries

with

samples

The

following

sample

HMMER

queries

show

how

to

construct

queries

for

HMMER

data

sources.

Procedure:

To

run

queries,

use

the

following

examples

as

a

guide.

In

these

queries,

the

nickname

is

a

name

that

describes

the

type

of

HMMER

search

and

the

data

source.

Some

examples

also

show

how

to

use

the

HMMER

wrapper

with

other

data

sources.

Query

1.

SELECT

Model,

ModelScore,

ModelEValue,

DomainNumber,

DomainScore,

DomainEvalue

FROM

hmmpfam_nickname

WHERE

HmmQSeq

=

’MTMFWQQNVDHQSDEQDKQAKGAAPTKRLNISFNVKIAVNVNTKMTTTHINQ...’

When

this

SQL

statement

runs,

the

wrapper

uses

the

indicated

sequence

and

the

HMM

database

defined

by

the

nickname

to

run

the

hmmpfam

program.

The

wrapper

returns

the

columns

that

are

listed

in

the

SELECT

statement.

Query

2.

SELECT

Model,

ModelScore,

ModelEValue

FROM

hmmpfam_nickname

WHERE

HmmQSeq

=

’MTMFWQQNVDHQSDEQDKQAKGAAPTKRLNISFNVKIAVNVNTKMTTTHINQ...’

AND

ModelScore

>

0

Chapter

14.

Configuring

access

to

HMMER

data

sources

271

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

When

this

SQL

statement

runs,

the

wrapper

performs

an

hmmpfam

search

of

hmmpfam_nickname

that

uses

the

indicated

gene

sequence.

In

addition,

the

wrapper

passes

the

-T

0

option

to

the

hmmpfam

command.

This

option

is

from

the

list

of

fixed

columns

for

HMMER

nicknames.

The

wrapper

returns

the

three

columns

that

are

listed

after

SELECT.

Query

3.

SELECT

Model,

DomainNumber,

DomainScore,

DomainEValue

FROM

hmmpfam_nickname

WHERE

HmmQSeq

=

’MTMFWQQNVDHQSDEQDKQAKGAAPTKRLNISFNVKIAVNVNTKMTTTHINQ...’

AND

ModelEValue

<

1

ORDER

BY

DomainScore

DESC

When

this

SQL

statement

runs,

the

wrapper

performs

an

hmmpfam

search

of

hmmpfam_nickname

that

uses

the

indicated

gene

sequence.

In

addition,

the

wrapper

passes

the

-E

1

option

to

the

hmmpfam

command.

This

option

is

from

the

list

of

fixed

columns

for

HMMER

nicknames.

The

wrapper

returns

the

four

columns

that

are

listed

after

SELECT

and

sorts

the

result

from

highest

to

lowest

by

the

DomainScore.

Query

4.

CREATE

WRAPPER

hmmer_wrapper

LIBRARY

’db2lshmmer.dll’;

CREATE

SERVER

hmmsearch_server

TYPE

search

VERSION

2.2

WRAPPER

hmmer_wrapper

OPTIONS(NODE

’HMMERserv.MyCompany.com’);

CREATE

NICKNAME

artemia_nickname

FOR

SERVER

hmmsearch_server

OPTIONS(DATASOURCE

’artemia’,

TIMEOUT

’1’);

SELECT

Model,

Sequence,

substr(SequenceDescription,1,50)

as

SequenceDescription,

SequenceScore,

SequenceEValue,

SequenceHits,

DomainNumber,

SequenceFrom,

SequenceTo,

SequenceFromGlobal,

SequenceToGlobal,

HmmFrom,

HmmTo,

HmmFromGlobal,

HmmToGlobal,

DomainScore,

DomainEValue,

length(AlignmentConsensus)

as

"length(AConsensus)",

length(AlignmentMatch)

as

"length(AMatch)",

length(AlignmentSubSeq)

as

"length(ASubSeq)",

substr(AlignmentConsensus,1,200)

as

AlignmentConsensus,

substr(AlignmentMatch,

1,200)

as

AlignmentMatch,

substr(AlignmentSubSeq,

1,200)

as

AlignmentSubSeq

FROM

artemia_nickname

WHERE

Model

=

’globin’

and

DomainScore

>

50;

When

this

SQL

statement

runs,

the

wrapper

runs

hmmsearch

against

the

sequence

file

artemia,

using

the

HMM

specified

by

globin.

The

rows

with

a

DomainScore

greater

than

50

are

returned,

because

the

wrapper

passes

the

--domT

50

option

to

the

hmmsearch

command.

The

wrapper

returns

the

columns

specified

after

SELECT.

Column

values

that

are

longer

than

200

characters

are

truncated.

Only

the

first

200

characters

in

these

columns

are

returned.

Related

tasks:

v

“Adding

HMMER

data

sources

to

a

federated

server”

on

page

254

Related

reference:

v

“Fixed

columns

for

HMMER

nicknames”

on

page

265

272

Data

Source

Configuration

Guide

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

v

“HMMER

data

source

–

complete

example”

on

page

270

v

“Messages

for

the

HMMER

wrapper”

on

page

273

Messages

for

the

HMMER

wrapper

For

the

HMMER

wrapper

to

work,

you

must

specify

a

query

that

contains

a

predicate

on

the

HmmQSeq

column.

When

you

query

a

fragment

that

lacks

a

predicate

on

the

HmmQSeq

column,

you

get

an

error.

This

section

lists

and

describes

messages

that

you

might

encounter

when

you

work

with

the

HMMER

wrapper.

Table

75.

HMMER

wrapper

messages

Error

Code

Message

Explanation

SQL0142N

The

SQL

statement

is

not

supported.

The

SQL

query

submitted

to

DB2

could

not

be

processed

by

the

wrapper.

Add

the

required

predicate

and

resubmit.

Verify

that

the

operator

used

in

a

predicate

is

valid

for

that

column.

See

the

fixed

columns

for

HMMER

nicknames.

SQL1822N

Unexpected

error

code

″Unspecified

Error″

received

from

data

source

″Hmmer

wrapper″.

Associated

text

and

tokens

are

″Unable

to

resolve

NODE

host

name″.

The

TCP/IP

NODE

name

specified

in

CREATE

SERVER

is

invalid.

SQL1822N

Unexpected

error

code

″Unspecified

Error″

received

from

data

source

″Hmmer

wrapper″.

Associated

text

and

tokens

are

″Unable

to

connect

to

daemon″.

Either

the

hmmer_daemon

program

is

not

currently

running

on

the

target

node,

or

the

DAEMON_PORT

specified

in

the

CREATE

SERVER

command

does

not

match

the

DAEMON_PORT

value

specified

in

daemon

configuration

file

HMMER_DAEMON.config.

SQL1822N

Unexpected

error

code

″Unspecified

Error″

received

from

data

source

″Hmmer

wrapper″.

Associated

text

and

tokens

are

″Unknown

error

from

the

hmmer

daemon″.

The

DATASOURCE

name

specified

in

the

CREATE

NICKNAME

statement

cannot

match

any

of

the

profile

database

names

listed

in

the

daemon

configuration

file

HMMER_DAEMON.config.

SQL1822N

Unexpected

error

code

″Unspecified

Error″

received

from

data

source

″Hmmer

wrapper″.

Associated

text

and

tokens

are

″FATAL:

No

such

option

″--cut_TC″.

The

CutMode

predicate

must

be

specified

in

lowercase.

Example:

WHERE

CutMode

=

’tc’

Related

concepts:

v

“Introduction

to

messages”

in

the

Message

Reference

Volume

1

Related

reference:

v

“SQLSTATE

messages”

in

the

Message

Reference

Volume

2

Chapter

14.

Configuring

access

to

HMMER

data

sources

273

274

Data

Source

Configuration

Guide

Chapter

15.

Configuring

access

to

Informix

data

sources

This

chapter

explains

how

to

configure

your

federated

server

to

access

data

that

is

stored

in

Informix

data

sources.

You

can

configure

access

to

Informix

data

sources

by

using

the

DB2

Control

Center

or

by

issuing

SQL

statements.

This

chapter

lists

the

tasks

that

you

need

to

perform

when

you

configure

the

federated

server,

contains

examples

of

the

SQL

statements

that

you

need,

and

provides

tuning

and

troubleshooting

information

for

configuring

the

federated

server.

Adding

Informix

to

a

federated

server

Adding

Informix

data

sources

to

federated

servers

To

configure

the

federated

server

to

access

Informix

data

sources,

you

must

provide

the

federated

server

with

information

about

the

data

sources

and

objects

that

you

want

to

access.

You

can

configure

the

federated

server

to

access

Informix

data

sources

by

using

the

DB2

Control

Center

or

the

DB2

command

line.

The

DB2

Control

Center

includes

a

wizard

to

guide

you

through

the

steps

required

to

configure

the

federated

server.

Prerequisites:

v

A

DB2

server

that

is

configured

for

federation.

v

A

federated

database

must

exist

on

the

federated

server

v

The

Informix

Client

SDK

software

installed

and

configured

on

the

federated

server.

v

On

AIX

federated

servers,

the

AIX

Base

Application

Development

Math

Library.

You

can

determine

if

the

Library

is

installed

by

issuing

the

AIX

command

lslpp

-l

bos.adt.libm.

Procedure:

To

add

Informix

data

sources

to

a

federated

server:

1.

Set

up

and

test

the

Informix

client

configuration

file.

2.

Set

the

Informix

environment

variables.

3.

Register

the

wrapper.

4.

Register

the

server

definition.

5.

Create

the

user

mappings.

6.

Test

the

connection

to

the

Informix

server.

7.

Register

nicknames

for

Informix

tables,

views,

and

synonyms.

Related

concepts:

v

“Fast

track

to

configuring

your

data

sources”

on

page

55

Related

tasks:

v

“Checking

the

FEDERATED

parameter”

on

page

42

©

Copyright

IBM

Corp.

1998,

2004

275

|
|
|

v

“Creating

a

federated

database”

on

page

51

v

“Setting

up

and

testing

the

Informix

client

configuration

file”

on

page

276

v

“Registering

the

Informix

wrapper”

on

page

280

v

“Registering

the

server

definitions

for

an

Informix

data

source”

on

page

282

v

“Creating

the

user

mapping

for

an

Informix

data

source”

on

page

284

v

“Testing

the

connection

to

the

Informix

server”

on

page

286

v

“Registering

nicknames

for

Informix

tables,

views,

and

synonyms”

on

page

286

v

“Tuning

and

troubleshooting

the

configuration

to

Informix

data

sources”

on

page

288

v

“Setting

the

Informix

environment

variables”

on

page

277

v

“Checking

the

setup

of

the

federated

server”

on

page

37

Related

reference:

v

“Supported

operating

systems

for

DB2

Information

Integrator

(32-bit)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Supported

operating

systems

for

DB2

Information

Integrator

(64-bit)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

Setting

up

and

testing

the

Informix

client

configuration

file

Setting

up

and

testing

the

Informix

client

configuration

file

is

part

of

the

larger

task

of

adding

Informix

data

sources

to

federated

servers.

The

client

configuration

file

is

used

to

connect

to

Informix,

using

the

client

libraries

that

are

installed

on

the

federated

server.

This

file

specifies

the

location

of

each

Informix

database

server

and

type

of

connection

(protocol)

for

the

database

server.

The

default

location

of

the

client

configuration

file

depends

on

the

operating

system

that

is

used

by

the

federated

server.

v

On

UNIX

operating

systems,

the

default

location

and

name

of

the

file

is

$INFORMIXDIR/etc/sqlhosts.

The

sqlhosts

file

is

installed

with

the

Informix

client

SDK.

v

On

Windows

operating

systems,

the

default

location

of

the

sqlhosts

registry

is

the

local

computer.

The

format

of

sqlhosts

is

described

in

the

Administrator’s

Guide

for

Informix

Dynamic

Server.

Procedure:

To

set

up

and

test

the

Informix

client

configuration

file:

1.

Configure

the

Informix

Client

SDK.

v

On

UNIX,

you

can

configure

the

Informix

Client

SDK

by

editing

the

sqlhosts

file.

You

can

also

copy

the

sqlhosts

file

from

another

system

that

has

Informix

Connect

or

Informix

Client

SDK

installed.

v

On

Windows,

you

can

configure

the

Informix

Client

SDK

with

the

Informix

Setnet32

utility.

The

Setnet32

utility

sets

up

the

sqlhosts

registry.
2.

Verify

the

location

of

the

sqlhosts

file

or

registry.

v

On

UNIX

operating

systems,

the

sqlhosts

file

is

located

in

the

$INFORMIXDIR/etc/

directory.

276

Data

Source

Configuration

Guide

v

On

Windows

operating

systems,

the

sqlhosts

information

is

kept

in

the

following

key

in

the

Windows

registry:

HKEY_LOCAL_MACHINE\SOFTWARE\INFORMIX\SQLHOSTS

3.

If

the

sqlhosts

file

or

registry

is

not

in

the

default

location,

set

the

environment

variable

INFORMIXSQLHOSTS.

v

On

UNIX

operating

systems,

set

the

environment

variable

INFORMIXSQLHOSTS

to

the

fully-qualified

name

of

the

sqlhosts

file.

v

On

Windows

operating

systems,

set

the

environment

variable

INFORMIXSQLHOSTS

to

the

name

of

the

Windows

computer

that

stores

the

registry.
4.

Test

the

connection

to

ensure

that

the

client

software

is

able

to

connect

to

the

Informix

server.

If

the

Informix

dbaccess

tool

is

on

the

federated

server,

use

this

tool

to

test

the

connection.

Otherwise,

run

the

Informix

demo

program

to

test

the

client

setup.

The

next

task

in

this

sequence

of

tasks

is

setting

the

Informix

environment

variables.

Related

tasks:

v

“Registering

the

Informix

wrapper”

on

page

280

v

“Tuning

and

troubleshooting

the

configuration

to

Informix

data

sources”

on

page

288

Setting

the

Informix

environment

variables

Setting

the

Informix

environment

variables

is

part

of

the

larger

task

of

adding

Informix

to

a

federated

server.

When

you

install

DB2

Information

Integrator,

the

installation

process

attempts

to

set

the

Informix

environment

variables

in

the

db2dj.ini

file.

The

environment

variables

will

not

be

set

in

the

db2dj.ini

file

if

you:

v

Install

the

Informix

client

software

after

the

DB2

federated

server

is

set

up.

v

Have

not

installed

the

Informix

client

software.

The

valid

environment

variables

for

Informix

are:

v

INFORMIXDIR

v

INFORMIXSERVER

v

INFORMIXSQLHOSTS

(optional)

v

CLIENT_LOCALE

(optional)

v

DB_LOCALE

(optional)

v

DBNLS

(optional)

The

optional

environment

variables

must

be

set

manually.

Prerequisites:

A

federated

server

that

is

properly

set

up

to

access

your

data

sources.

This

includes

the

installation

and

configuration

of

any

required

software,

such

as

the

data

source

client

software.

Restrictions:

Chapter

15.

Configuring

access

to

Informix

data

sources

277

|
|

|
|

|

|

|

|

|

|

|

|

|

|

See

the

topic:

Restrictions

for

the

db2dj.ini

file

Procedure:

To

set

the

required

environment

variables

automatically:

1.

Install

and

configure

the

client

software

on

the

DB2

federated

server

(if

necessary).

2.

Set

the

required

environment

variables.

You

can

set

the

environment

variables

automatically

by

running

the

DB2

server

installation

again

and

specify

the

Typical

installation

option.

To

manually

set

the

environment

variables:

1.

Edit

the

db2dj.ini

file.

v

On

federated

servers

running

Windows,

this

file

is

located

in

the

%DB2PATH%\cfg

directory.

v

On

federated

servers

running

UNIX,

this

file

is

located

in

the

sqllib/cfg

directory.

The

db2dj.ini

file

contains

configuration

information

about

the

Informix

client

software

installed

on

your

federated

server.

If

the

file

does

not

exist,

you

can

create

a

new

file

with

the

name

db2dj.ini

using

any

text

editor.

In

the

db2dj.ini

file

you

must

specify

the

fully

qualified

path

for

the

variables,

otherwise

you

will

encounter

errors.

2.

Set

the

following

environment

variables

as

necessary:

INFORMIXDIR

Set

the

INFORMIXDIR

environment

variable

to

the

directory

path

where

the

Informix

Client

SDK

software

is

installed.

For

example:

On

federated

servers

running

Windows,

set

the

path

to:

INFORMIXDIR=C:\informix\csdk

On

federated

servers

running

UNIX,

set

the

path

to:

INFORMIXDIR=/informix/csdk

INFORMIXSERVER

This

variable

identifies

the

name

of

the

default

Informix

server.

This

setting

must

be

a

valid

entry

in

the

sqlhosts

file

(UNIX)

or

the

SQLHOSTS

registry

key

(Windows).

To

get

a

value

for

INFORMIXSERVER,

read

the

sqlhosts

file.

Select

one

of

the

dbservername

values.

The

dbservername

is

the

first

value

in

each

entry

in

the

sqlhosts.

For

example:

INFORMIXSERVER=inf93

Requirement:

Although

the

Informix

wrapper

does

not

use

the

value

of

this

variable,

the

Informix

client

requires

that

this

variable

be

set.

The

wrapper

uses

the

value

of

the

NODE

server

option,

which

specifies

the

Informix

database

server

that

you

want

to

access.

INFORMIXSQLHOSTS

If

you

are

using

the

default

path

for

the

Informix

sqlhosts

file,

you

do

not

need

to

set

this

variable.

However,

if

you

are

using

some

other

path

for

the

Informix

sqlhosts

file,

then

you

need

to

set

this

variable

to

the

full

path

name

where

the

Informix

sqlhosts

file

resides.

278

Data

Source

Configuration

Guide

v

On

federated

servers

running

UNIX,

the

default

path

is

$INFORMIXDIR/etc.

v

On

federated

servers

running

Windows,

if

the

SQLHOSTS

registry

key

does

not

reside

on

the

local

computer,

then

the

INFORMIXSQLHOSTS

is

the

name

of

the

Windows

computer

that

stores

the

registry.

A

UNIX

example

of

setting

this

variable

to

another

path

is:

INFORMIXSQLHOSTS=/informix/csdk/etc/my_sqlhosts

3.

To

ensure

that

the

environment

variables

are

set

on

the

federated

server,

recycle

the

DB2

instance.

Issue

the

following

commands

to

recycle

the

DB2

instance:

db2stop

db2start

Setting

up

Informix

code

page

conversion:

For

Informix

code

page

conversion,

you

can

set

the

following

optional

environment

variables:

v

CLIENT_LOCALE

v

DB_LOCALE

v

DBNLS

Each

time

that

the

Informix

wrapper

connects

to

an

Informix

data

source,

the

wrapper

determines

which

code

page

value

to

use

for

that

connection.

If

the

Informix

environment

variable

CLIENT_LOCALE

is

set

in

the

db2dj.ini

file

on

the

federated

server,

then

the

wrapper

uses

the

value

in

the

db2dj.ini

file.

You

can

obtain

the

list

of

valid

Informix

locales

by

issuing

the

glfiles

command

on

the

Informix

server.

Refer

to

the

Informix

Guide

to

GLS

Functionality

for

more

information

about

code

page

conversions.

The

Informix

code

page

environment

variables

are:

CLIENT_LOCALE

Set

the

CLIENT_LOCALE

environment

variable

to

the

Informix

locale

that

you

want

to

use.

If

CLIENT_LOCALE

is

not

set,

the

wrapper

determines

the

code

page

and

territory

of

the

federated

database.

The

wrapper

sets

the

CLIENT_LOCALE

variable

to

the

closest

matching

Informix

locale.

If

there

is

no

matching

Informix

locale,

the

wrapper

sets

the

CLIENT_LOCALE

variable

to

the

en_us.8859-1

locale

for

UNIX

systems

and

to

the

en_us.CP1252

locale

for

Windows

systems.

You

can

see

a

list

of

locale

names

by

using

the

Informix

glfiles

command.

CLIENT_LOCALE=Informix_client_locale_value

DB_LOCALE

Set

this

environment

variable

if

the

Informix

database

uses

a

different

code

page

than

your

client

locale,

and

you

want

Informix

to

perform

conversions

between

the

two

code

pages.

Set

Informix

environment

variable

DB_LOCALE

to

the

name

of

the

Informix

database

locale,

for

example:

DB_LOCALE=Informix_db_locale_value

DBNLS

To

have

Informix

verify

that

the

DB_LOCALE

setting

matches

the

actual

locale

of

the

Informix

database,

set

this

Informix

environment

variable

to

1.

Chapter

15.

Configuring

access

to

Informix

data

sources

279

|

|
|

|

|

|

|
|
|
|

|
|
|

|

|

|
|
|
|
|
|
|
|

|

|

|
|
|
|
|

|

|

|
|

DBNLS=1

Code

page

environment

variables-example:

Suppose

that

the

Informix

database

uses

a

different

code

page

than

your

client

locale

and

you

want

Informix

to

perform

conversions

between

the

two

code

pages.

You

need

to

set

Informix

environment

variable

DB_LOCALE

to

the

name

of

the

Informix

database

locale.

You

set

this

variable

in

the

db2dj.ini

file

on

the

federated

server.

If

you

want

Informix

to

verify

that

the

DB_LOCALE

setting

matches

the

actual

locale

of

the

Informix

database,

then

you

need

to

set

the

Informix

environment

variable

DBNLS

to

1.

You

set

this

variable

in

the

db2dj.ini

file

on

the

federated

server.

If

you

access

a

data

source

that

contains

data

that

uses

the

Chinese

code

page

GB

18030,

your

federated

database

must

use

the

UTF-8

code

page.

The

Informix

wrapper

sets

Informix

environment

variables

to:

CLIENT_LOCALE=zh_cn.UTF8

GL_USEGLU=1

You

must

add

the

following

setting

to

your

db2dj.ini

file

so

that

the

Informix

client

correctly

translates

the

GB

18030

data

to

Unicode:

DB_LOCALE=zh_cn.GB18030-2000

The

next

task

in

this

sequence

of

tasks

is

registering

the

Informix

wrapper.

Related

tasks:

v

“Registering

nicknames

for

Informix

tables,

views,

and

synonyms”

on

page

286

Related

reference:

v

“Restrictions

for

the

db2dj.ini

file”

on

page

59

v

“Restrictions

for

the

db2dj.ini

file”

on

page

59

Registering

the

Informix

wrapper

Registering

the

Informix

wrapper

is

part

of

the

larger

task

of

adding

Informix

data

sources

to

a

federated

server.

You

must

register

a

wrapper

to

access

Informix

data

sources.

Wrappers

are

used

by

federated

servers

to

communicate

with

and

retrieve

data

from

data

sources.

Wrappers

are

implemented

as

a

set

of

library

files.

Procedure:

To

register

a

wrapper,

issue

the

CREATE

WRAPPER

statement

and

specify

the

default

name

for

the

wrapper.

For

example:

CREATE

WRAPPER

INFORMIX

Recommendation:

Use

the

default

wrapper

name

called

INFORMIX.

When

you

register

the

wrapper

using

the

default

name,

the

federated

server

automatically

takes

the

default

library

name

that

is

associated

with

that

wrapper

name.

280

Data

Source

Configuration

Guide

|

|

|
|
|

|
|

|
|

|

|

If

the

wrapper

name

conflicts

with

an

existing

wrapper

name

in

the

federated

database,

you

can

substitute

the

default

wrapper

name

with

a

name

that

you

choose.

If

you

use

a

name

that

is

different

from

one

of

the

default

names,

you

must

include

the

LIBRARY

parameter

in

the

CREATE

WRAPPER

statement.

For

example,

to

register

a

wrapper

with

the

name

inf_wrapper

on

the

federated

server

that

uses

the

AIX

operating

system,

issue

the

following

statement:

CREATE

WRAPPER

inf_wrapper

LIBRARY

’libdb2informix.a’

The

name

of

the

wrapper

library

file

that

you

specify

depends

on

the

operating

system

of

the

federated

server.

See

the

list

of

Informix

wrapper

library

files

for

the

correct

name

to

specify

in

the

CREATE

WRAPPER

statement.

The

next

task

in

this

sequence

of

tasks

is

registering

the

server

definitions

for

the

Informix

wrapper.

Related

tasks:

v

“Registering

the

server

definitions

for

an

Informix

data

source”

on

page

282

Related

reference:

v

“Informix

wrapper

library

files”

on

page

281

v

“CREATE

WRAPPER

statement”

in

the

SQL

Reference,

Volume

2

Informix

wrapper

library

files

The

following

table

lists

the

directory

paths

and

library

file

names

for

the

Informix

wrapper.

When

you

install

DB2

Information

Integrator,

3

library

files

are

added

to

the

directory

path

listed

in

the

table.

For

example,

if

the

federated

server

is

running

on

AIX,

the

wrapper

library

files

added

to

the

directory

path

are

libdb2informix.a,

libdb2informixF.a,

and

libdb2informixU.a.

When

you

register

a

wrapper,

specify

only

the

library

file

name

that

is

listed

in

the

table.

Table

76.

Informix

wrapper

library

locations

and

file

names

Operating

system

Directory

path

Library

file

name

AIX

/usr/opt/db2_08_01/lib/

libdb2informix.a

HP-UX

/opt/IBM/db2/V8.1/lib

libdb2informix.sl

Linux

/opt/IBM/db2/V8.1/lib

libdb2informix.so

Solaris

/opt/IBM/db2/V8.1/lib

libdb2informix.so

Windows

%DB2PATH%\bin

db2informix.dll

%DB2PATH%

is

the

environment

variable

that

is

used

to

specify

the

directory

path

where

DB2

Information

Integrator

is

installed

on

Windows.

The

default

Windows

directory

path

is

C:\Program

Files\IBM\SQLLIB.

Related

tasks:

v

“Registering

the

Informix

wrapper”

on

page

280

Chapter

15.

Configuring

access

to

Informix

data

sources

281

|

|
|

|
|
|
|

|
|

||

|||

|||

|||

|||

|||

|||
|

|
|
|

|

|

Registering

the

server

definitions

for

an

Informix

data

source

Registering

the

server

definitions

for

an

Informix

data

source

is

part

of

the

larger

task

of

adding

Informix

data

sources

to

federated

servers.

In

the

federated

database,

you

must

define

each

Informix

server

that

you

want

to

access.

Procedure:

You

can

register

a

server

definition

from

the

DB2

Control

Center

or

the

DB2

command

line:

v

To

do

this

task

from

the

DB2

Control

Center,

use

the

Federated

Objects

wizard

or

right-click

the

Server

Definitions

folder

and

click

Create.

The

Discover

tool

retrieves

the

node

names

for

the

Informix

servers.

You

must

specify

the

information

for

the

DBNAME

server

option

to

register

the

server

definition.

v

To

do

this

task

from

the

DB2

command

line,

use

the

CREATE

SERVER

statement:

1.

Locate

the

node

name

in

the

Informix

sqlhosts

file

or

registry.

Sample

sqlhosts

file:

inf724

onsoctcp

anaconda

inmx724

inf731

onsoctcp

boa

ifmx731

inf92

onsoctcp

python

ifmx92

The

first

value

in

each

line

is

the

node_name,

such

as

inf724.

The

second

value

in

each

line

is

the

nettype,

or

type

of

connection.

In

this

example

onsoctcp

indicates

this

is

a

TCP/IP

connection.

The

third

value

in

each

line

is

the

host

name,

such

as

anaconda,

boa,

and

python.

The

fourth

value

in

each

line

is

the

service

name,

such

as

inmx724.

The

service

name

field

depends

on

the

nettype

listed

in

the

second

value.

Although

the

node_name

is

specified

as

an

option

in

the

CREATE

SERVER

SQL

statement,

it

is

required

for

Informix

data

sources.

For

more

information

about

the

format

of

this

file

and

the

meaning

of

these

fields,

see

the

Informix

manual

Administrators

Guide

for

Informix

Dynamic

Server.

2.

Issue

the

CREATE

SERVER

statement.

For

example:

CREATE

SERVER

server_name

TYPE

informix

VERSION

9

WRAPPER

INFORMIX

OPTIONS

(NODE

’node_name’,

DBNAME

’db_name’);

After

the

server

definition

is

registered,

use

the

ALTER

SERVER

statement

to

add

or

drop

server

options.

The

next

task

in

this

sequence

of

tasks

is

creating

the

user

mappings

for

an

Informix

data

source.

Related

tasks:

v

“Creating

the

user

mapping

for

an

Informix

data

source”

on

page

284

Related

reference:

v

“CREATE

SERVER

statement”

in

the

SQL

Reference,

Volume

2

282

Data

Source

Configuration

Guide

|
|

|
|
|
|

|
|
|

|
|

v

Appendix

D,

“Server

options

for

federated

systems,”

on

page

575

v

“CREATE

SERVER

statement

-

Examples

for

Informix

wrapper”

on

page

283

CREATE

SERVER

statement

-

Examples

for

Informix

wrapper

This

topic

provides

several

examples

that

show

you

how

to

use

the

CREATE

SERVER

statement

to

register

server

definitions

for

the

Informix

wrapper.

This

topic

includes

a

complete

example,

which

shows

how

to

register

a

server

definition

with

the

required

parameters,

and

an

example

with

additional

server

options.

Complete

example:

The

following

example

shows

you

how

to

register

a

server

definition

for

an

Informix

wrapper

by

using

the

CREATE

SERVER

statement:

CREATE

SERVER

asia

TYPE

informix

VERSION

9

WRAPPER

INFORMIX

OPTIONS

(NODE

’abc’,

DBNAME

’sales’,

IUD_APP_SVPT_ENFORCE

’N’)

asia

A

name

you

assign

to

the

Informix

database

server.

This

name

must

be

unique.

Duplicate

server

names

are

not

allowed.

TYPE

informix

Specifies

the

type

of

data

source

server

to

which

you

are

configuring

access.

For

the

Informix

wrapper,

the

server

type

must

be

informix.

VERSION

9

The

Informix

database

server

version

that

you

want

to

access.

The

supported

Informix

versions

are

7,

8,

and

9.

WRAPPER

INFORMIX

The

name

you

specified

in

the

CREATE

WRAPPER

statement.

NODE

’abc’

The

name

of

the

node

where

Informix

database

server

resides.

Obtain

the

node

name

from

the

sqlhosts

file.

This

value

is

case

sensitive.

Although

the

node

name

is

specified

as

an

option

in

the

CREATE

SERVER

statement,

it

is

required

for

Informix

data

sources.

DBNAME

’sales’

The

name

of

the

Informix

database

that

you

want

to

access.

This

value

is

case

sensitive.

Although

the

database

name

is

specified

as

an

option

in

the

CREATE

SERVER

statement,

it

is

required

for

Informix

data

sources.

IUD_APP_SVPT_ENFORCE

’N’

Specifies

whether

the

DB2

federated

system

should

enforce

detecting

or

building

of

application

savepoint

statements.

Informix

does

not

support

application

savepoint

statements.

When

set

to

’N’,

the

federated

server

will

not

roll

back

transactions

when

an

error

is

encountered.

Your

application

must

handle

the

error

recovery.

The

IUD_APP_SVPT_ENFORCE

server

option

must

be

set

to

’N’

to

enable

replication

to

or

from

Informix

data

sources.

Server

options

example:

When

you

create

the

server

definition,

you

can

specify

additional

server

options

in

the

CREATE

SERVER

statement.

The

server

options

can

be

general

server

options

and

Informix-specific

server

options.

Chapter

15.

Configuring

access

to

Informix

data

sources

283

The

following

example

shows

an

Informix

server

definition

with

additional

server

options:

CREATE

SERVER

asia

TYPE

informix

VERSION

9

WRAPPER

INFORMIX

OPTIONS

(NODE

’abc’,

DBNAME

’sales’,

FOLD_ID

’N’,

FOLD_PW

’N’)

When

the

federated

server

connects

to

a

data

source,

the

federated

server

tries

to

connect

using

all

possible

combinations

of

uppercase

and

lowercase

for

the

user

ID

and

password,

as

well

as

the

current

case.

The

federated

server

might

make

up

to

nine

connect

attempts

before

successfully

connecting

to

the

data

source

server.

These

attempts

can

slow

down

connect

times

and

might

result

in

the

user

ID

being

locked

out.

You

can

prevent

lock

outs

by

specifying

values

for

the

FOLD_ID

and

FOLD_PW

server

options.

For

example,

you

can

set

the

FOLD_ID

and

FOLD_PW

server

options

to

’N’

(do

not

fold

the

user

ID

or

password).

If

you

establish

these

settings,

then

you

must

specify

the

user

ID

and

password

in

the

correct

case.

The

advantage

to

setting

these

options

to

’N’

is

that

when

an

invalid

user

ID

or

password

is

specified,

the

wrapper

will

not

keep

trying

the

various

uppercase

and

lowercase

combinations.

These

two

server

options

can

reduce

the

chance

of

exceeding

the

maximum

number

of

failed

login

attempts

and

the

ID

getting

locked

out.

Related

tasks:

v

“Registering

the

server

definitions

for

an

Informix

data

source”

on

page

282

Related

reference:

v

“CREATE

SERVER

statement”

in

the

SQL

Reference,

Volume

2

Creating

the

user

mapping

for

an

Informix

data

source

Creating

the

user

mapping

for

an

Informix

data

source

is

part

of

the

larger

task

of

adding

Informix

data

sources

to

federated

servers.

When

you

attempt

to

access

an

Informix

server,

the

federated

server

establishes

a

connection

to

the

data

source

using

a

user

ID

and

password

that

are

valid

for

that

data

source.

You

must

define

an

association

(a

user

mapping)

between

each

federated

server

user

ID

and

password

and

the

corresponding

data

source

user

ID

and

password.

Create

a

user

mapping

for

each

user

ID

that

will

access

the

federated

system

to

send

distributed

requests

to

the

Informix

data

source.

Procedure:

To

map

a

local

user

ID

to

the

Informix

server

user

ID

and

password,

issue

a

CREATE

USER

MAPPING

statement.

For

example:

CREATE

USER

MAPPING

FOR

USERID

SERVER

INFORMIXSERVER

OPTIONS

(REMOTE_AUTHID

’remote_id’,

REMOTE_PASSWORD

’remote_password’)

The

next

task

in

this

sequence

of

tasks

is

testing

the

connection

to

the

Informix

server.

Related

tasks:

v

“Testing

the

connection

to

the

Informix

server”

on

page

286

Related

reference:

284

Data

Source

Configuration

Guide

v

“CREATE

USER

MAPPING

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

USER

MAPPING

statement

-

Examples

for

Informix

wrapper”

on

page

285

CREATE

USER

MAPPING

statement

-

Examples

for

Informix

wrapper

This

topic

provides

examples

that

show

you

how

to

use

the

CREATE

USER

MAPPING

statement

to

map

a

federated

server

user

ID

to

an

Informix

server

user

ID

and

password.

This

topic

includes

a

complete

example

with

required

parameters

and

an

example

that

shows

you

how

to

use

the

DB2

special

register

USER

with

the

CREATE

USER

MAPPING

statement.

Complete

example:

The

following

example

shows

how

to

map

a

federated

server

user

ID

(VINCENT)

to

an

Informix

server

user

ID

and

password

(’vinnie’

and

’close2call’):

CREATE

USER

MAPPING

FOR

VINCENT

SERVER

asia

OPTIONS

(REMOTE_AUTHID

’vinnie’,

REMOTE_PASSWORD

’close2call’)

VINCENT

Specifies

the

local

user

ID

that

you

are

mapping

to

a

user

ID

that

is

defined

at

an

Informix

server.

SERVER

asia

Specifies

the

name

of

the

Informix

server

that

you

registered

in

the

CREATE

SERVER

statement.

REMOTE_AUTHID

’vinnie’

Specifies

the

user

ID

at

the

Informix

database

server

to

which

you

are

mapping

VINCENT.

Use

single

quotation

marks

to

preserve

the

case

of

this

value

unless

you

set

the

FOLD_ID

server

option

to

’U’

or

’L’

in

the

CREATE

SERVER

statement.

REMOTE_PASSWORD

’close2call’

Specifies

the

password

associated

with

’vinnie’.

Use

single

quotation

marks

to

preserve

the

case

of

this

value

unless

you

set

the

FOLD_PW

server

option

to

’U’

or

’L’

in

the

CREATE

SERVER

statement.

Special

register

example:

The

following

example

shows

a

CREATE

USER

MAPPING

statement

that

includes

the

special

register

USER:

CREATE

USER

MAPPING

FOR

USER

SERVER

asia

OPTIONS

(REMOTE_AUTHID

’vinnie’,

REMOTE_PASSWORD

’close2call’)

You

can

use

the

DB2

special

register

USER

to

map

the

authorization

ID

of

the

person

who

is

issuing

the

CREATE

USER

MAPPING

statement

to

the

data

source

authorization

ID

that

is

specified

in

the

REMOTE_AUTHID

user

option.

Related

tasks:

v

“Creating

the

user

mapping

for

an

Informix

data

source”

on

page

284

Related

reference:

v

“CREATE

USER

MAPPING

statement”

in

the

SQL

Reference,

Volume

2

Chapter

15.

Configuring

access

to

Informix

data

sources

285

Testing

the

connection

to

the

Informix

server

Testing

the

connection

to

the

Informix

server

is

part

of

the

larger

task

of

adding

Informix

data

sources

to

federated

servers.

You

can

test

the

connection

to

the

Informix

server

by

using

the

server

definition

and

user

mappings

that

you

defined.

Procedure:

To

test

the

connection:

1.

Open

a

pass-through

session

to

issue

an

SQL

SELECT

statement

on

the

Informix

system

tables.

For

example:

SET

PASSTHRU

server_name

SELECT

count(*)

FROM

informix.systables

SET

PASSTHRU

RESET

If

the

SQL

SELECT

statement

returns

a

count,

your

server

definition

and

your

user

mapping

are

set

up

properly.

2.

If

the

SQL

SELECT

statement

returns

an

error,

you

might

need

to:

v

Check

the

Informix

server

to

make

sure

that

it

is

configured

for

incoming

connections.

v

Check

your

user

mapping

to

make

sure

that

the

settings

for

the

REMOTE_AUTHID

and

REMOTE_PASSWORD

options

are

valid

for

the

connections

to

the

Informix

server.

Alter

the

user

mapping,

or

create

another

user

mapping

as

necessary.

v

Check

the

Informix

Client

SDK

software

on

the

DB2

federated

server

to

make

sure

that

it

is

installed

and

configured

correctly

to

connect

to

the

Informix

server.

v

Check

the

settings

of

your

DB2

federated

variables

to

verify

that

they

are

correct

for

the

Informix

server.

These

variables

include

the

system

environment

variables,

the

db2dj.ini

variables,

and

the

DB2

Profile

Registry

(db2set)

variable.

v

Check

your

server

definition.

If

necessary,

drop

it

and

create

it

again.

The

next

task

in

this

sequence

of

tasks

is

registering

nicknames

for

Informix

tables,

views,

and

synonyms.

Related

tasks:

v

“Adding

Informix

data

sources

to

federated

servers”

on

page

275

v

“Registering

nicknames

for

Informix

tables,

views,

and

synonyms”

on

page

286

v

“Setting

the

Informix

environment

variables”

on

page

277

Related

reference:

v

“ALTER

USER

MAPPING

statement”

in

the

SQL

Reference,

Volume

2

Registering

nicknames

for

Informix

tables,

views,

and

synonyms

Registering

nicknames

for

Informix

tables,

views,

and

synonyms

is

part

of

the

larger

task

of

adding

Informix

data

sources

to

federated

servers.

286

Data

Source

Configuration

Guide

For

each

Informix

server

that

you

define,

register

a

nickname

for

each

table,

view,

or

synonym

that

you

want

to

access.

Use

these

nicknames,

instead

of

the

names

of

the

data

source

objects,

when

you

query

the

Informix

servers.

The

federated

database

relies

on

catalog

statistics

for

nicknamed

objects

to

optimize

query

processing.

These

statistics

are

gathered

when

you

register

a

nickname

for

a

data

source

object

by

using

the

CREATE

NICKNAME

statement.

The

federated

database

verifies

the

presence

of

the

object

at

the

data

source,

and

then

attempts

to

gather

existing

data

source

statistical

data.

Information

that

is

useful

to

the

optimizer

is

read

from

the

data

source

catalogs

and

placed

into

the

global

catalog

on

the

federated

server.

Because

some

or

all

of

the

data

source

catalog

information

might

be

used

by

the

optimizer,

update

statistics

(using

the

data

source

command

that

is

equivalent

to

the

DB2

RUNSTATS

command)

at

the

data

source

before

you

register

a

nickname.

Procedure:

To

register

a

nickname,

issue

the

CREATE

NICKNAME

statement.

For

example:

CREATE

NICKNAME

informix_name

FOR

INFOSERVER."remote_schema"."remote.table"

Nicknames

can

be

up

to

128

characters

in

length.

Repeat

this

step

for

each

Informix

table,

view,

or

synonym

for

which

you

want

to

create

a

nickname.

When

you

create

the

nickname,

DB2

will

use

the

connection

to

query

the

data

source

catalog.

This

query

tests

your

connection

to

the

data

source

by

using

the

nickname.

If

the

connection

does

not

work,

you

will

receive

an

error

message.

Related

reference:

v

“RUNSTATS

Command”

in

the

Command

Reference

v

“CREATE

NICKNAME

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

NICKNAME

statement

-

Examples

for

Informix

wrapper”

on

page

287

CREATE

NICKNAME

statement

-

Examples

for

Informix

wrapper

This

topic

provides

an

example

that

shows

you

how

to

use

the

CREATE

NICKNAME

statement

to

register

a

nickname

for

an

Informix

table,

view,

or

synonym

that

you

want

to

access.

This

example

shows

how

to

specify

a

remote

object

for

the

Informix

server

under

which

the

nickname

is

assigned:

CREATE

NICKNAME

JPSALES

FOR

asia."salesdata"."japan"

JPSALES

A

unique

nickname

used

to

identify

the

Informix

table,

view,

or

synonym.

Note:

the

nickname

is

a

two-part

name—the

schema

and

the

nickname.

If

you

omit

the

schema

when

you

register

the

nickname,

the

schema

of

the

nickname

will

be

the

authorization

ID

of

the

user

who

is

registering

the

nickname.

Chapter

15.

Configuring

access

to

Informix

data

sources

287

asia.″salesdata″.″japan″

A

three-part

identifier

for

the

remote

object.

v

asia

is

the

name

that

you

assigned

to

the

Informix

database

server

in

the

CREATE

SERVER

statement.

v

salesdata

is

the

name

of

the

remote

schema

to

which

the

table,

view,

or

synonym

belongs.

v

japan

is

the

name

of

the

remote

table,

view,

or

synonym

that

you

want

to

access.

The

federated

server

folds

the

names

of

the

Informix

schemas

and

tables

to

uppercase

unless

you

enclose

the

names

in

quotation

marks.

Related

tasks:

v

“Registering

nicknames

for

Informix

tables,

views,

and

synonyms”

on

page

286

Related

reference:

v

“CREATE

NICKNAME

statement”

in

the

SQL

Reference,

Volume

2

Tuning

and

troubleshooting

the

configuration

to

Informix

data

sources

After

you

set

up

the

configuration

to

Informix

data

sources,

you

might

want

to

modify

the

configuration

to

improve

performance.

Improving

performance

by

setting

the

FOLD_ID

and

FOLD_PW

server

options

When

the

federated

server

connects

to

a

data

source,

the

server

tries

to

connect

using

all

possible

combinations

of

uppercase

and

lowercase

for

the

user

ID

and

password.

The

server

might

make

up

to

nine

connect

attempts

before

successfully

connecting

to

the

data

source

server.

These

attempts

can

slow

down

connect

times

and

might

result

in

the

user

ID

getting

locked

out.

Procedure:

To

improve

performance,

specify

values

for

the

FOLD_ID

and

FOLD_PW

server

options

by

using

the

ALTER

SERVER

OPTION

statement.

v

If

all

your

Informix

user

IDs

and

passwords

are

in

lowercase,

setting

the

FOLD_ID

and

FOLD_PW

server

options

with

the

value

’L’

can

improve

your

connect

time.

For

example:

ALTER

SERVER

TYPE

INFORMIX

OPTIONS

(ADD

FOLD_ID

’L’);

ALTER

SERVER

TYPE

INFORMIX

OPTIONS

(ADD

FOLD_PW

’L’);

v

The

federated

server

attempts

each

combination

of

uppercase

and

lowercase

values

for

the

user

ID

and

password.

You

can

reduce

the

chance

of

the

maximum

number

of

failed

login

attempts

being

exceeded

by

setting

these

options

to

’N’

(do

not

fold

the

user

ID

and

the

password).

If

you

establish

these

settings,

then

you

need

to

always

specify

the

user

ID

and

password

in

the

correct

case.

If

an

invalid

user

ID

and

password

are

specified,

the

wrapper

will

not

keep

trying

the

various

combinations.

For

example:

ALTER

SERVER

TYPE

INFORMIX

OPTIONS

(ADD

FOLD_ID

’N’);

ALTER

SERVER

TYPE

INFORMIX

OPTIONS

(ADD

FOLD_PW

’N’);

288

Data

Source

Configuration

Guide

Related

tasks:

v

“Adding

Informix

data

sources

to

federated

servers”

on

page

275

Related

reference:

v

“db2set

-

DB2

Profile

Registry

Command”

in

the

Command

Reference

v

“ALTER

SERVER

statement”

in

the

SQL

Reference,

Volume

2

Chapter

15.

Configuring

access

to

Informix

data

sources

289

290

Data

Source

Configuration

Guide

Chapter

16.

Configuring

access

to

Microsoft

SQL

Server

data

sources

This

chapter

explains

how

to

configure

your

federated

server

to

access

data

that

is

stored

in

Microsoft

SQL

Server

data

sources.

You

can

configure

access

to

Microsoft

SQL

Server

data

sources

by

using

the

DB2

Control

Center

or

by

issuing

SQL

statements.

This

chapter

lists

the

tasks

that

you

need

to

perform

when

you

configure

the

federated

server,

contains

examples

of

the

SQL

statements

that

you

need,

and

provides

tuning

and

troubleshooting

information

for

configuring

the

federated

server.

Adding

Microsoft

SQL

Server

to

a

federated

server

Adding

Microsoft

SQL

Server

data

sources

to

a

federated

server

To

configure

the

federated

server

to

access

Microsoft

SQL

Server

data

sources,

you

must

provide

the

federated

server

with

information

about

the

data

sources

and

objects

that

you

want

to

access.

You

can

configure

the

federated

server

to

access

Microsoft

SQL

Server

data

sources

by

using

the

DB2

Control

Center

or

the

DB2

command

line.

The

DB2

Control

Center

includes

a

wizard

to

guide

you

through

the

steps

required

to

configure

the

federated

server.

Prerequisites:

v

DB2

Information

Integrator

must

be

installed

on

a

server

that

will

act

as

the

federated

server

v

A

federated

database

must

exist

on

the

federated

server

v

The

ODBC

driver

must

be

installed

and

configured

on

the

federated

server.

The

supported

drivers

are

Microsoft

ODBC

driver

(Windows)

and

DataDirect

Technologies

Connect

for

ODBC

driver

(UNIX).

Procedure:

To

add

Microsoft

SQL

Server

data

sources

to

a

federated

server:

1.

Prepare

the

federated

server

and

federated

database.

v

On

Windows,

confirm

that

the

ODBC

System

DSN

is

properly

set

up,

and

test

the

connection

to

the

Microsoft

SQL

Server

remote

server.

v

On

UNIX

systems,

update

or

create

an

odbc.ini

file,

and

test

the

connection

to

the

Microsoft

SQL

Server

remote

server.
2.

Set

the

environment

variables

for

the

Microsoft

SQL

Server

wrapper.

3.

Register

the

wrapper.

4.

Register

the

server

definition.

5.

Create

the

user

mappings.

6.

Test

the

connection

to

the

Microsoft

SQL

Server

remote

server.

©

Copyright

IBM

Corp.

1998,

2004

291

|
|
|
|

|
|
|

7.

Register

nicknames

for

Microsoft

SQL

Server

tables

and

views.

Related

concepts:

v

“DB2

Information

Integrator

installation

process

-

overview”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Fast

track

to

configuring

your

data

sources”

on

page

55

Related

tasks:

v

“Creating

a

federated

database”

on

page

51

v

“Preparing

the

federated

server

to

access

Microsoft

SQL

Server

data

sources”

on

page

292

v

“Registering

the

Microsoft

SQL

Server

wrapper”

on

page

295

v

“Registering

the

server

definitions

for

a

Microsoft

SQL

Server

data

source”

on

page

297

v

“Creating

a

user

mapping

for

a

Microsoft

SQL

Server

data

source”

on

page

299

v

“Testing

the

connection

to

the

Microsoft

SQL

Server

remote

server”

on

page

301

v

“Registering

nicknames

for

Microsoft

SQL

Server

tables

and

views”

on

page

302

v

“Tuning

and

troubleshooting

the

configuration

to

Microsoft

SQL

Server

data

sources”

on

page

303

v

“Checking

the

setup

of

the

federated

server”

on

page

37

Related

reference:

v

“Supported

operating

systems

for

DB2

Information

Integrator

(32-bit)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Supported

operating

systems

for

DB2

Information

Integrator

(64-bit)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

Preparing

the

federated

server

to

access

Microsoft

SQL

Server

data

sources

Preparing

the

federated

server

and

database

to

access

Microsoft

SQL

Server

data

sources

is

part

of

the

larger

task

of

adding

Microsoft

SQL

Server

data

sources

to

federated

servers.

The

steps

to

prepare

the

federated

server

to

access

Microsoft

SQL

Server

data

sources

depends

on

the

operating

system

that

is

running

on

your

federated

server.

Procedure:

To

prepare

the

federated

server:

On

Windows:

1.

Verify

that

the

ODBC

System

DSN

is

set

to

connect

to

the

Microsoft

SQL

Server

data

source

by

checking

this

setting

in

the

Control

Panel.

Locate

the

existing

entry

for

the

Microsoft

SQL

Server

remote

server

or

create

a

new

entry.

The

entry

is

the

value

that

you

will

use

for

the

NODE

server

option

when

you

register

the

server

in

the

federated

database.

2.

From

the

ODBC

Data

Source

Administrator

window,

select

Configure

to

test

the

connection

from

the

ODBC

Systems

DSN

to

the

Microsoft

SQL

Server

data

source.

Alternatively,

you

can

test

the

connection

by

using

the

Microsoft

SQL

Server

query

tool.

292

Data

Source

Configuration

Guide

On

UNIX:

1.

Verify

that

the

odbc.ini

file

is

updated

(or

if

necessary

created)

on

the

federated

server.

Recommendation:

Place

the

odbc.ini

file

or

a

copy

of

this

file

in

the

home

directory

of

the

DB2

instance

owner.

2.

Verify

that

the

path

to

the

odbc.ini

is

in

the

ODBCINI

environment

variable.

From

an

operating

system

command

prompt,

issue

the

following

command:

export

ODBCINI=$HOME/.odbc.ini

3.

Create

the

appropriate

symbolic

links:

v

On

HP-UX,

you

need

to

create

the

following

symbolic

link:

ln

-s

$DJX_ODBC_LIBRARY_PATH/libodbcinst.sl

/usr/exe/libodbcinst.sl

If

you

are

using

the

DataDirect

Technologies

Connect

for

ODBC

4.2

driver,

you

must

also

create

the

following

symbolic

link:

ln

-s

$DJX_ODBC_LIBRARY_PATH/libivicu19.sl

/ivicu/exe/libivicu19.sl

v

On

Linux,

you

need

to

create

the

following

symbolic

links:

ln

-s

$DJX_ODBC_LIBRARY_PATH/../locale

/usr/local/locale

ln

-s

$DJX_ODBC_LIBRARY_PATH/libodbcinst.so

/usr/lib/libodbcinst.so

If

you

are

using

the

DataDirect

Technologies

Connect

for

ODBC

4.2

driver,

you

must

also

create

the

following

symbolic

link:

ln

-s

$DJX_ODBC_LIBRARY_PATH/libivicu19.so

/usr/lib/libivicu19.so

v

On

Solaris,

you

need

to

create

the

following

symbolic

link:

ln

-s

$DJX_ODBC_LIBRARY_PATH/../locale

$HOME/sqllib/locale

$HOME

is

the

home

directory

of

the

DB2

instance

owner.
4.

Test

the

connection

from

the

federated

server

to

the

Microsoft

SQL

server

data

source

by

using

the

DataDirect

Connect

ODBC

demoodbc

tool.

a.

Run

the

/opt/odbc/odbc.sh

script.

This

script

sets

up

several

operating

system

specific

environment

variables.

b.

Test

the

connection

to

the

Microsoft

SQL

server

data

source

by

using

the

DataDirect

Connect

ODBC

demoodbc

tool.

The

demoodbc

tool

is

located

in

the

/demo

subdirectory

of

the

Connect

ODBC

libraries.

The

next

task

in

this

sequence

of

tasks

is

setting

the

Microsoft

SQL

Server

environment

variables.

Related

tasks:

v

“Registering

the

Microsoft

SQL

Server

wrapper”

on

page

295

Setting

the

Microsoft

SQL

Server

environment

variables

Setting

the

Microsoft

SQL

Server

environment

variables

is

part

of

the

larger

task

of

adding

Microsoft

SQL

Server

to

a

federated

server.

When

you

install

DB2

Information

Integrator,

the

installation

process

attempts

to

set

the

Microsoft

SQL

Server

environment

variables

in

the

db2dj.ini

file.

The

environment

variables

will

not

be

set

in

the

db2dj.ini

file

if

you

install

the

Microsoft

SQL

Server

ODBC

driver

after

you

install

DB2

Information

Integrator.

The

valid

environment

variables

for

Microsoft

SQL

Server

are:

v

DJX_ODBC_LIBRARY_PATH

v

ODBCINI

Chapter

16.

Configuring

access

to

Microsoft

SQL

Server

data

sources

293

|

|

|

|
|

|

|

|
|

|
|

|

|

|

|

|
|

|
|
|

|
|

|
|

|
|

v

LD_LIBRARY_PATH

(Solaris

only)

v

SHLIB_PATH

(HP-UX

only)

v

DB2LIBPATH

v

DB2ENVLIST

If

your

federated

server

runs

HP-UX

and

you

have

a

multi-partition

instance

configuration,

you

must

export

the

SHLIB_PATH

values

in

the

userprofile.

Prerequisites:

A

federated

server

that

is

properly

set

up

to

access

your

data

sources.

This

includes

the

installation

and

configuration

of

any

required

software,

such

as

the

data

source

client

software.

Restrictions:

See

the

topic:

Restrictions

for

the

db2dj.ini

file

Procedure:

To

set

the

Microsoft

SQL

Server

ODBC

driver

environment

variables

automatically:

1.

Install

the

Microsoft

SQL

Server

ODBC

driver

on

the

DB2

federated

server,

if

it

is

not

already

installed.

2.

Set

the

required

environment

variables.

You

can

set

the

environment

variables

automatically

by

running

the

DB2

Information

Integrator

installation

again.

From

the

launchpad,

click

Install

Products

and

follow

the

instructions

in

the

wizard.

To

manually

set

the

Microsoft

SQL

Server

ODBC

driver

environment

variables:

1.

Edit

the

db2dj.ini

file.

v

On

federated

servers

running

Windows,

this

file

is

located

in

the

sqllib\cfg

directory.

v

On

federated

servers

running

UNIX,

this

file

is

located

in

the

sqllib/cfg

directory.

The

db2dj.ini

file

contains

configuration

information

about

the

Microsoft

SQL

Server

ODBC

driver

installed

on

your

federated

server.

If

the

file

does

not

exist,

you

can

create

a

new

file

with

the

name

db2dj.ini

name

using

any

text

editor.

In

the

db2dj.ini

file

you

must

specify

the

fully

qualified

path

for

the

variables,

otherwise

you

will

encounter

errors.

2.

Set

the

following

environment

variables

(as

necessary):

DJX_ODBC_LIBRARY_PATH

Set

the

directory

path

to

the

ODBC

library

files.

For

example:

DJX_ODBC_LIBRARY_PATH=ODBC_driver_directory/lib

ODBC_driver_directory

is

the

directory

path

where

the

ODBC

driver

is

installed.

ODBCINI

Set

the

ODBCINI

environment

variable

to

the

directory

path

where

your

ODBC

configuration

file

(odbc.ini)

is

located.

Do

not

set

the

ODBCINI

environment

variable

as

a

system

variable.

For

example:

ODBCINI=/home/db2inst1/.odbc.ini

294

Data

Source

Configuration

Guide

|

|

|
|

|
|
|

|

LD_LIBRARY_PATH

On

Solaris,

set

the

directory

path

to

the

ODBC

library

files.

For

example:

LD_LIBRARY_PATH=ODBC_driver_directory/lib

SHLIB_PATH

On

HP-UX,

set

the

directory

path

to

the

ODBC

library

files.

For

example:

SHLIB_PATH=ODBC_driver_directory/lib

3.

To

access

to

Microsoft

SQL

Server,

you

need

to

set

the

directory

path

to

the

ODBC

library

files

in

the

lib

subdirectory.

For

example:

db2set

DB2LIBPATH=ODBC_driver_directory/lib

4.

To

use

the

Connect

ODBC

driver

to

access

Microsoft

SQL

Server

data

sources,

set

DB2ENVLIST

with

a

value

of

LIBPATH.

For

example:

db2set

DB2ENVLIST=LIBPATH

LIBPATH

is

the

directory

path

where

the

ODBC

driver

is

installed.

5.

To

ensure

that

the

environment

variables

are

set

on

the

federated

server,

recycle

the

DB2

instance.

Issue

the

following

commands

to

recycle

the

DB2

instance:

db2stop

db2start

On

HP-UX

multi-partition

instance

configurations:

1.

Create

a

userprofile,

if

one

does

not

already

exist.

The

userprofile

is

located

in

the

$HOME/sqllib/

directory.

2.

Add

the

SHLIB_PATH

to

the

userprofile.

The

value

for

the

SHLIB_PATH

is

the

directory

path

where

the

ODBC

driver

is

installed.

For

example,

issue

the

following

command:

export

SHLIB_PATH=$SHLIB_PATH:/home/DataDirectODBC/lib

The

next

task

in

this

sequence

of

tasks

is

registering

the

Microsoft

SQL

Server

wrapper.

Related

tasks:

v

“Registering

nicknames

for

Microsoft

SQL

Server

tables

and

views”

on

page

302

Related

reference:

v

“Restrictions

for

the

db2dj.ini

file”

on

page

59

v

“Restrictions

for

the

db2dj.ini

file”

on

page

59

Registering

the

Microsoft

SQL

Server

wrapper

Registering

the

Microsoft

SQL

Server

wrapper

is

part

of

the

larger

task

of

adding

Microsoft

SQL

Server

data

sources

to

a

federated

server.

You

must

register

a

wrapper

to

access

Microsoft

SQL

Server

data

sources.

Wrappers

are

used

by

federated

servers

to

communicate

with

and

retrieve

data

from

data

sources.

Wrappers

are

implemented

as

a

set

of

library

files.

Procedure:

To

register

a

wrapper,

issue

the

CREATE

WRAPPER

statement.

Chapter

16.

Configuring

access

to

Microsoft

SQL

Server

data

sources

295

|

|
|

|
|
|

|

For

example:

CREATE

WRAPPER

MSSQLODBC3

Recommendation:

Use

the

default

wrapper

name

called

MSSQLODBC3.

When

you

register

the

wrapper

by

using

the

default

name,

the

federated

server

automatically

takes

the

default

library

name

that

is

associated

with

that

wrapper

name.

If

the

wrapper

name

conflicts

with

an

existing

wrapper

name

in

the

federated

database,

you

can

substitute

the

default

wrapper

name

with

a

name

you

choose.

If

you

use

a

name

that

is

different

from

the

default

name,

you

must

include

the

LIBRARY

parameter

in

the

CREATE

WRAPPER

statement.

For

example,

to

register

a

wrapper

with

the

name

sqlserver_wrapper

on

the

federated

server

that

uses

the

AIX

operating

system,

issue

the

following

statement:

CREATE

WRAPPER

sqlserver_wrapper

LIBRARY

’libdb2mssql3.a’

The

name

of

the

wrapper

library

file

that

you

specify

depends

on

the

operating

system

of

the

federated

server.

See

the

list

of

Microsoft

SQL

Server

wrapper

library

files

for

the

correct

name

to

specify

in

the

CREATE

WRAPPER

statement.

The

next

task

in

this

sequence

of

tasks

is

registering

the

server

definitions

for

the

Microsoft

SQL

Server

wrapper.

Related

tasks:

v

“Registering

the

server

definitions

for

a

Microsoft

SQL

Server

data

source”

on

page

297

Related

reference:

v

“Microsoft

SQL

Server

wrapper

library

files”

on

page

296

v

“CREATE

WRAPPER

statement”

in

the

SQL

Reference,

Volume

2

Microsoft

SQL

Server

wrapper

library

files

The

following

table

lists

the

directory

paths

and

library

file

names

for

the

Microsoft

SQL

Server

wrapper.

When

you

install

DB2

Information

Integrator,

3

library

files

are

added

to

the

directory

path

listed

in

the

table.

For

example,

if

the

federated

server

is

running

on

AIX,

the

wrapper

library

files

added

to

the

directory

path

are

libdb2mssql3.a,

libdb2mssql3F.a,

and

libdb2mssql3U.a.

When

you

register

a

wrapper,

specify

only

the

library

file

name

that

is

listed

in

the

table.

Table

77.

Microsoft

SQL

Server

client

library

locations

and

file

names

Operating

system

Directory

path

Wrapper

library

file

AIX

/usr/opt/db2_08_01/lib/

libdb2mssql3.a

HP-UX

/opt/IBM/db2/V8.1/lib

libdb2mssql3.sl

Linux

/opt/IBM/db2/V8.1/lib

libdb2mssql3.so

Solaris

/opt/IBM/db2/V8.1/lib

libdb2mssql3.so

Windows

%DB2PATH%\bin

db2mssql3.dll

296

Data

Source

Configuration

Guide

|

|
|

|
|
|
|

|
|

||

|||

|||

|||

|||

|||

|||
|

%DB2PATH%

is

the

environment

variable

that

is

used

to

specify

the

directory

path

where

DB2

Information

Integrator

is

installed

on

Windows.

The

default

Windows

directory

path

is

C:\Program

Files\IBM\SQLLIB.

Related

tasks:

v

“Registering

the

Microsoft

SQL

Server

wrapper”

on

page

295

Registering

the

server

definitions

for

a

Microsoft

SQL

Server

data

source

Registering

the

server

definitions

for

a

Microsoft

SQL

Server

data

source

is

part

of

the

larger

task

of

adding

Microsoft

SQL

Server

data

sources

to

federated

servers.

In

the

federated

database,

you

must

define

each

Microsoft

SQL

Server

remote

server

that

you

want

to

access.

You

must

first

locate

the

node

name

of

the

Microsoft

SQL

Server

remote

server,

and

then

use

this

node

name

when

you

register

the

server

definition

by

issuing

the

CREATE

SERVER

statement.

Procedure:

To

register

a

server

definition

for

a

Microsoft

SQL

Server

data

source:

1.

Locate

the

node

name.

v

If

your

federated

server

is

using

Windows,

the

NODE

is

the

System

DSN

name

that

you

specified

for

the

Microsoft

SQL

Server

remote

server

that

you

are

accessing.

v

If

your

federated

server

is

using

UNIX,

the

NODE

is

defined

in

the

.odbc.ini

file.

The

following

is

an

example

of

a

.odbc.ini

file

on

AIX.

Example

.odbc.ini

file

on

AIX:

rawilson=MS

SQL

Server

7.0

medusa=MS

SQL

Server

7.0

[rawilson]

Driver=/opt/odbc/lib/ivmsss16.so

Description=MS

SQL

Server

Driver

for

AIX

Address=9.112.30.39,1433

[medusa]

Driver=/opt/odbc/lib/ivmsss16.so

Description=MS

SQL

Server

Driver

for

AIX

Address=9.112.98.123,1433

At

the

top

of

the

.odbc.ini

file,

there

is

a

section

labeled

[ODBC

Data

Sources]

which

lists

the

nodes.

Each

of

the

nodes

has

a

section

[node_name]

that

describes

each

node.

Although

the

node

name

is

specified

as

an

option

in

the

CREATE

SERVER

statement,

it

is

required

for

Microsoft

SQL

Server

data

sources.

2.

Issue

the

CREATE

SERVER

statement.

For

example:

CREATE

SERVER

server_name

TYPE

MSSQLSERVER

VERSION

7.0

WRAPPER

mssqlodb3

OPTIONS

(NODE

’sqlnode’,

DBNAME

’mssdb’);

After

the

server

definition

is

created,

use

the

ALTER

SERVER

statement

to

add

or

drop

server

options.

Chapter

16.

Configuring

access

to

Microsoft

SQL

Server

data

sources

297

|
|
|

|

|

The

next

task

in

this

sequence

of

tasks

is

creating

a

user

mapping

for

a

Microsoft

SQL

Server

data

source.

Related

tasks:

v

“Creating

a

user

mapping

for

a

Microsoft

SQL

Server

data

source”

on

page

299

Related

reference:

v

“ALTER

SERVER

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

SERVER

statement”

in

the

SQL

Reference,

Volume

2

v

Appendix

D,

“Server

options

for

federated

systems,”

on

page

575

v

“CREATE

SERVER

statement

-

Examples

for

Microsoft

SQL

Server

wrapper”

on

page

298

CREATE

SERVER

statement

-

Examples

for

Microsoft

SQL

Server

wrapper

This

topic

provides

examples

that

show

you

how

to

use

the

CREATE

SERVER

statement

to

register

servers

for

the

Microsoft

SQL

Server

wrapper.

This

topic

includes

a

complete

example,

which

shows

how

to

register

a

server

with

required

parameters,

and

an

example

with

additional

server

options.

Complete

example:

The

following

example

shows

you

how

to

register

a

server

definition

for

a

Microsoft

SQL

Server

wrapper

by

issuing

the

CREATE

SERVER

statement:

CREATE

SERVER

sqlserver

TYPE

MSSQLSERVER

VERSION

7.0

WRAPPER

mssqlodbc3

OPTIONS

(NODE

’sqlnode’,

DBNAME

’africa’);

sqlserver

A

name

that

you

assign

to

the

Microsoft

SQL

Server

remote

server.

This

name

must

be

unique.

Duplicate

server

names

are

not

allowed.

TYPE

MSSQLSERVER

The

type

of

data

source

to

which

you

are

configuring

access.

The

TYPE

parameter

for

the

Microsoft

SQL

Server

wrappers

must

be

MSSQLSERVER.

VERSION

7.0

The

version

of

Microsoft

SQL

Server

database

server

software

that

you

want

to

access.

Supported

versions

are

6.5,

7.0,

and

2000.

WRAPPER

mssqlodbc3

The

wrapper

name

that

you

specified

in

the

CREATE

WRAPPER

statement.

NODE

’sqlnode’

On

Windows,

the

System

DSN

name

for

the

Microsoft

SQL

Server

remote

server

that

you

are

accessing.

On

UNIX,

the

node

that

is

defined

in

the

.odbc.ini

file.

This

value

is

case

sensitive.

Although

the

name

of

the

node

is

specified

as

an

option

in

the

CREATE

SERVER

statement,

it

is

required

for

Microsoft

SQL

Server

data

sources.

DBNAME

’africa’

The

name

of

the

database

that

you

want

to

access.

This

value

is

case

sensitive.

298

Data

Source

Configuration

Guide

|
|
|

|
|

Although

the

name

of

the

database

is

specified

as

an

option

in

the

CREATE

SERVER

statement,

it

is

required

for

Microsoft

SQL

Server

data

sources.

Server

option

examples:

When

you

register

the

server,

you

can

specify

additional

server

options

in

the

CREATE

SERVER

statement.

These

server

options

include

general

server

options

and

Microsoft

SQL

Server-specific

server

options.

The

following

example

shows

how

to

use

the

COLLATING_SEQUENCE

server

option:

CREATE

SERVER

sqlserver

TYPE

MSSQLSERVER

VERSION

7.0

WRAPPER

mssqlodbc3

OPTIONS

(NODE

’sqlnode’,

DBNAME

’africa’,

COLLATING_SEQUENCE

’I’);

The

COLLATING_SEQUENCE

server

option

specifies

whether

the

data

source

uses

the

same

collating

sequence

as

the

federated

server.

On

a

Microsoft

SQL

Server

database

server

that

is

running

Windows

NT

or

Windows

2000,

the

default

collating

sequence

is

case

insensitive

(for

example,

’STEWART’

and

’StewART’

are

considered

equal).

To

guarantee

correct

results

from

the

federated

server,

set

the

COLLATING_SEQUENCE

server

option

to

’I’.

This

setting

indicates

that

the

Microsoft

SQL

Server

data

source

is

case

insensitive.

The

federated

server

does

not

push

down

queries

if

the

results

that

are

returned

from

the

data

sources

will

be

different

from

the

results

that

are

returned

when

processing

the

query

at

the

federated

server.

When

you

set

the

COLLATING_SEQUENCE

server

option

to

’I’,

the

federated

server

does

not

push

down

queries

with

string

data

or

expressions

and

that

include

the

following

clauses,

predicates,

or

functions:

v

GROUP

BY

clauses

v

DISTINCT

clauses

v

Basic

predicates,

such

as

equal

to

(=)

v

Aggregate

functions,

such

as

MIN

or

MAX

Related

tasks:

v

“Registering

the

server

definitions

for

a

Microsoft

SQL

Server

data

source”

on

page

297

Related

reference:

v

“CREATE

SERVER

statement”

in

the

SQL

Reference,

Volume

2

Creating

a

user

mapping

for

a

Microsoft

SQL

Server

data

source

Creating

a

user

mapping

for

a

Microsoft

SQL

Server

data

source

is

part

of

the

larger

task

of

adding

Microsoft

SQL

Server

data

sources

to

federated

servers.

When

you

attempt

to

access

a

Microsoft

SQL

Server

data

source,

the

federated

server

establishes

a

connection

to

the

data

source

using

a

user

ID

and

password

that

are

valid

for

that

data

source.

You

must

define

an

association

(a

user

mapping)

between

each

federated

server

user

ID

and

password

and

the

Chapter

16.

Configuring

access

to

Microsoft

SQL

Server

data

sources

299

corresponding

data

source

user

ID

and

password.

Create

a

user

mapping

for

each

user

ID

that

will

access

the

federated

system

to

send

distributed

requests.

Procedure:

To

map

a

local

user

ID

to

the

Microsoft

SQL

Server

remote

server

user

ID

and

password,

issue

a

CREATE

USER

MAPPING

statement.

For

example:

CREATE

USER

MAPPING

FOR

userid

SERVER

sqlserver

OPTIONS

(REMOTE_AUTHID

’remote_id’,

REMOTE_PASSWORD

’remote_password’)

The

next

task

in

this

sequence

of

tasks

is

testing

the

connection

to

the

Microsoft

SQL

Server

remote

server.

Related

tasks:

v

“Testing

the

connection

to

the

Microsoft

SQL

Server

remote

server”

on

page

301

Related

reference:

v

“CREATE

USER

MAPPING

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

USER

MAPPING

statement

-

Examples

for

Microsoft

SQL

Server

wrapper”

on

page

300

CREATE

USER

MAPPING

statement

-

Examples

for

Microsoft

SQL

Server

wrapper

This

topic

provides

examples

that

show

you

how

to

use

the

CREATE

USER

MAPPING

statement

to

map

a

federated

server

user

ID

to

a

Microsoft

SQL

Server

remote

server

user

ID

and

password.

This

topic

includes

a

complete

example

with

required

parameters

and

an

example

that

shows

you

how

to

use

the

DB2

special

register

USER

with

the

CREATE

USER

MAPPING

statement.

Complete

example:

The

following

example

shows

how

to

map

a

federated

server

user

ID

to

a

Microsoft

SQL

Server

remote

server

user

ID

and

password:

CREATE

USER

MAPPING

FOR

elizabeth

SERVER

sqlserver

OPTIONS

(REMOTE_AUTHID

’liz’,

REMOTE_PASSWORD

’abc123’)

elizabeth

Specifies

the

local

user

ID

that

you

are

mapping

to

a

user

ID

that

is

defined

at

the

Microsoft

SQL

Server

remote

server.

SERVER

sqlserver

Specifies

the

name

of

the

Microsoft

SQL

Server

remote

server

that

you

defined

in

the

CREATE

SERVER

statement.

REMOTE_AUTHID

’liz’

Specifies

the

user

ID

at

the

Microsoft

SQL

Server

remote

server

to

which

you

are

mapping

elizabeth.

Use

single

quotation

marks

to

preserve

the

case

of

this

value

unless

you

set

the

FOLD_ID

server

option

to

’U’

or

’L’

in

the

CREATE

SERVER

statement.

REMOTE_PASSWORD

’abc123’

Specifies

the

password

that

is

associated

with

’liz’.

Use

single

quotation

marks

to

preserve

the

case

of

this

value

unless

you

set

the

FOLD_PW

server

option

to

’U’

or

’L’

in

the

CREATE

SERVER

statement.

300

Data

Source

Configuration

Guide

Special

register

example:

The

following

example

shows

a

CREATE

USER

MAPPING

statement

that

includes

the

special

register

USER:

CREATE

USER

MAPPING

FOR

USER

SERVER

sqlserver

OPTIONS

(REMOTE_AUTHID

’liz’,

REMOTE_PASSWORD

’abc123’)

You

can

use

the

DB2

special

register

USER

to

map

the

authorization

ID

of

the

person

who

is

issuing

the

CREATE

USER

MAPPING

statement

to

the

data

source

authorization

ID

that

is

specified

in

the

REMOTE_AUTHID

user

option.

Related

tasks:

v

“Creating

a

user

mapping

for

a

Microsoft

SQL

Server

data

source”

on

page

299

Related

reference:

v

“CREATE

USER

MAPPING

statement”

in

the

SQL

Reference,

Volume

2

Testing

the

connection

to

the

Microsoft

SQL

Server

remote

server

Testing

the

connection

to

the

Microsoft

SQL

Server

remote

server

is

part

of

the

larger

task

of

adding

Microsoft

SQL

Server

data

sources

to

federated

servers.

You

can

test

the

connection

to

the

Microsoft

SQL

Server

remote

server

by

using

the

server

definition

and

user

mappings

that

you

defined.

Procedure:

To

test

the

connection:

1.

Open

a

pass-through

session

to

issue

an

SQL

SELECT

statement

on

the

Microsoft

SQL

Server

system

tables.

For

example:

SET

PASSTHRU

remote_server_name

SELECT

count(*)

FROM

dbo.sysobjects

SET

PASSTHRU

RESET

If

the

SQL

SELECT

statement

returns

a

count,

your

server

definition

and

your

user

mapping

are

set

up

properly.

2.

If

the

SQL

SELECT

statement

returns

an

error,

you

might

need

to:

v

Check

the

Microsoft

SQL

Server

remote

server

to

make

sure

that

it

is

started.

v

Check

the

Microsoft

SQL

Server

remote

server

to

make

sure

that

it

is

configured

for

incoming

connections.

v

Check

your

user

mapping

to

make

sure

that

the

settings

for

the

REMOTE_AUTHID

and

REMOTE_PASSWORD

options

are

valid

for

the

connections

to

the

Microsoft

SQL

Server

remote

server.

Alter

the

user

mapping,

or

create

another

user

mapping

as

necessary.

v

Check

the

ODBC

drivers

on

the

DB2

federated

server

to

make

sure

that

they

are

installed

and

configured

correctly

to

connect

to

the

Microsoft

SQL

Server

remote

server.

v

Check

the

settings

of

your

DB2

federated

variables

to

verify

that

they

are

correct

for

the

Microsoft

SQL

Server

remote

server.

These

variables

include

the

system

environment

variables,

the

db2dj.ini

variables,

and

the

DB2

Profile

Registry

(db2set)

variable.

Chapter

16.

Configuring

access

to

Microsoft

SQL

Server

data

sources

301

v

Check

your

server

definition.

If

necessary,

drop

it

and

create

it

again.

The

next

task

in

this

sequence

of

tasks

is

registering

nicknames

for

Microsoft

SQL

Server

tables

and

views.

Related

tasks:

v

“Adding

Microsoft

SQL

Server

data

sources

to

a

federated

server”

on

page

291

v

“Registering

nicknames

for

Microsoft

SQL

Server

tables

and

views”

on

page

302

v

“Setting

the

Microsoft

SQL

Server

environment

variables”

on

page

293

Related

reference:

v

“ALTER

USER

MAPPING

statement”

in

the

SQL

Reference,

Volume

2

Registering

nicknames

for

Microsoft

SQL

Server

tables

and

views

Registering

nicknames

for

Microsoft

SQL

Server

tables

and

views

is

part

of

the

larger

task

of

adding

Microsoft

SQL

Server

data

sources

to

federated

servers.

For

each

Microsoft

SQL

Server

remote

server

that

you

define,

register

a

nickname

for

each

table

or

view

that

you

want

to

access.

Use

these

nicknames,

instead

of

the

names

of

the

data

source

objects,

when

you

query

the

Microsoft

SQL

Server

remote

servers.

The

federated

database

relies

on

catalog

statistics

for

nicknamed

objects

to

optimize

query

processing.

These

statistics

are

gathered

when

you

register

a

nickname

for

a

data

source

object

by

using

the

CREATE

NICKNAME

statement.

The

federated

database

verifies

the

presence

of

the

object

at

the

data

source,

and

then

attempts

to

gather

existing

data

source

statistical

data.

Information

that

is

useful

to

the

optimizer

is

read

from

the

data

source

catalogs

and

placed

into

the

global

catalog

on

the

federated

server.

Because

some

or

all

of

the

data

source

catalog

information

might

be

used

by

the

optimizer,

update

statistics

(using

the

data

source

command

that

is

equivalent

to

the

DB2

RUNSTATS

command)

at

the

data

source

before

you

register

a

nickname.

Procedure:

To

register

a

nickname,

issue

the

CREATE

NICKNAME

statement.

For

example:

CREATE

NICKNAME

mss_name

FOR

sqlserver."remote_schema"."remote.table"

Nicknames

can

be

up

to

128

characters

in

length.

Repeat

this

step

for

each

Microsoft

SQL

Server

table

or

view

for

which

you

want

to

create

a

nickname.

When

you

create

the

nickname,

DB2

uses

the

connection

to

query

the

data

source

catalog

tables

(Microsoft

SQL

Server

refers

to

these

tables

as

system

tables).

This

query

tests

your

connection

to

the

data

source

by

using

the

nickname.

If

the

connection

does

not

work,

you

will

receive

an

error

message.

Related

reference:

v

“RUNSTATS

Command”

in

the

Command

Reference

302

Data

Source

Configuration

Guide

v

“CREATE

NICKNAME

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

NICKNAME

statement

-

Examples

for

Microsoft

SQL

Server

wrapper”

on

page

303

CREATE

NICKNAME

statement

-

Examples

for

Microsoft

SQL

Server

wrapper

This

topic

provides

an

example

that

shows

you

how

to

use

the

CREATE

NICKNAME

statement

to

register

a

nickname

for

a

Microsoft

SQL

Server

table

or

view

that

you

want

to

access.

This

example

shows

how

to

specify

a

remote

object

for

the

Microsoft

SQL

Server

remote

server

under

which

the

nickname

is

assigned:

CREATE

NICKNAME

cust_africa

FOR

sqlserver.customers.egypt

cust_africa

A

unique

nickname

for

the

Microsoft

SQL

Server

table

or

view.

Note:

The

nickname

is

a

two-part

name

which

includes

the

schema

and

the

nickname.

If

you

omit

the

schema

when

you

register

the

nickname,

the

schema

of

the

nickname

will

be

the

authentication

ID

of

the

user

creating

the

nickname.

sqlserver.customers.egypt

A

three-part

identifier

for

the

remote

object.

v

sqlserver

is

the

name

that

you

assigned

to

the

Microsoft

SQL

Server

database

server

in

the

CREATE

SERVER

statement.

v

customers

is

the

name

of

the

remote

schema

to

which

the

table

or

view

belongs.

v

egypt

is

the

name

of

the

remote

table

or

view

that

you

want

to

access.

The

federated

server

folds

the

names

of

the

Microsoft

SQL

Server

schemas

and

tables

to

uppercase

unless

you

enclose

the

names

in

quotation

marks.

Related

tasks:

v

“Registering

nicknames

for

Microsoft

SQL

Server

tables

and

views”

on

page

302

Related

reference:

v

“CREATE

NICKNAME

statement”

in

the

SQL

Reference,

Volume

2

Tuning

and

troubleshooting

the

configuration

to

Microsoft

SQL

Server

data

sources

After

you

set

up

the

configuration

to

Microsoft

SQL

Server

data

sources,

you

might

want

to

modify

the

configuration

to

improve

performance.

Obtaining

ODBC

traces

If

you

experience

problems

when

accessing

the

data

source,

you

can

obtain

ODBC

tracing

information

to

analyze

and

resolve

the

problems.

However,

activating

a

trace

does

impact

system

performance.

You

should

turn

off

tracing

after

you

have

resolved

the

problems.

On

federated

servers

that

run

Windows,

use

the

trace

tool

that

is

provided

by

the

ODBC

Data

Source

Administrator

to

ensure

that

the

ODBC

tracing

works

properly.

Chapter

16.

Configuring

access

to

Microsoft

SQL

Server

data

sources

303

On

federated

servers

that

run

UNIX,

you

can

set

tracing

on

by

changing

for

the

odbc.ini

file.

For

example,

if

you

use

the

DataDirect

ODBC

3.x

driver,

find

the

example

of

the

odbc.ini

file

in

the

client

directory.

The

odbc.ini

file

contains

a

sample

of

what

is

needed

for

the

trace

files:

[ODBC]

Trace=0

TraceFile=/home/user1/trace_dir/filename.xxx

TraceDll==ODBC_driver_directory/odbctrac.so

InstallDir=/opt/odbc

To

turn

tracing

ON,

set

the

first

line

to

Trace=1.

To

turn

tracing

OFF,

set

the

first

line

to

Trace=0.

The

TraceFile

should

point

to

a

path

and

file

name

that

the

federated

database

instance

has

write

access

to.

Related

tasks:

v

“Adding

Microsoft

SQL

Server

data

sources

to

a

federated

server”

on

page

291

Related

reference:

v

“db2set

-

DB2

Profile

Registry

Command”

in

the

Command

Reference

304

Data

Source

Configuration

Guide

|
|
|

Chapter

17.

Configuring

access

to

ODBC

data

sources

This

chapter

explains

how

to

configure

your

federated

server

to

access

data

that

is

stored

in

ODBC

data

sources.

You

can

configure

access

to

ODBC

data

sources

by

using

the

DB2

Control

Center

or

by

issuing

SQL

statements.

This

chapter

lists

the

tasks

that

you

need

to

perform

when

you

configure

the

federated

server,

contains

examples

of

the

SQL

statements

that

you

need,

and

provides

tuning

and

troubleshooting

information

for

configuring

the

federated

server.

Adding

ODBC

to

a

federated

system

Adding

ODBC

data

sources

to

a

federated

server

To

configure

the

federated

server

to

access

ODBC

data

sources,

you

must

provide

the

federated

server

with

information

about

the

data

sources

and

objects

that

you

want

to

access.

You

can

configure

the

federated

server

to

access

ODBC

data

sources

by

using

the

DB2

Control

Center

or

the

DB2

command

line.

The

DB2

Control

Center

includes

a

wizard

to

guide

you

through

the

steps

required

to

configure

the

federated

server.

The

data

sources

that

are

accessed

through

the

ODBC

API

are

referred

to

in

this

text

as

ODBC

data

sources.

Depending

on

your

needs,

you

can

access

Excel

data

using

the

ODBC

wrapper

instead

of

using

the

Excel

wrapper.

The

specific

steps

to

configure

the

ODBC

wrapper

to

access

Excel

data

are

documented

in

a

separate

topic.

Prerequisites:

v

DB2

Information

Integrator

must

be

installed

on

a

server

that

will

act

as

the

federated

server

v

A

federated

database

must

exist

on

the

federated

server

v

The

ODBC

driver

must

be

is

installed

and

configured

on

the

federated

server.

The

ODBC

wrapper

supports

ODBC

3.x.

v

The

proper

setup

of

the

system

environment

variables,

db2dj.ini

variables,

and

DB2

Profile

Registry

(db2set)

variables.

Check

the

vendor

documentation

for

the

required

variables

for

your

ODBC

client.

The

LIBPATH

variable

might

be

required.

Restrictions:

v

The

ODBC

wrapper

cannot

be

used

to

access

any

DB2

family

data

sources.

Use

the

DRDA

wrapper

to

access

DB2

family

data

sources.

v

The

ODBC

wrapper

does

not

support

the

following

functions

and

statements:

–

LOCK

TABLE

statements

on

nicknames

–

Features

deprecated

in

ODBC

3.x

–

X/Open

or

SQL/CLI

drivers

–

Stored

procedure

nicknames

©

Copyright

IBM

Corp.

1998,

2004

305

|
|
|

|
|

|
|
|

|
|

|

–

Statement-level

atomicity

enforcement

using

remote

savepoint

statements

–

64–bit

clients

–

WITH

HOLD

cursors
v

For

data

sources

that

do

not

support

positioned

update

and

delete

operations,

positioned

UPDATE

and

DELETE

statements

and

certain

searched

UPDATE

and

DELETE

statements

on

a

nickname

will

fail

if

a

unique

index

on

non-nullable

columns

does

not

exist

on

the

nickname

or

its

corresponding

remote

table.

The

error

SQL30090

reason

code

21

is

returned

when

these

statements

fail.

v

The

ODBC

wrapper

does

not

support

INSERT,

UPDATE,

or

DELETE

statements

against

data

sources

that

restrict

the

number

of

active

statements

for

each

connection.

Consult

the

documentation

for

your

data

source

to

determine

if

the

data

source

restricts

the

number

of

active

statements

for

each

connection.

This

restriction

applies

to

IBM

Red

Brick

Warehouse.

Procedure:

To

add

ODBC

data

sources

to

a

federated

server:

1.

Prepare

the

federated

server

and

federated

database.

2.

Register

the

wrapper.

3.

Register

the

server

definition.

4.

Create

the

user

mappings.

5.

Test

the

connection

to

the

ODBC

data

source.

6.

Register

nicknames

for

ODBC

data

source

tables

and

views.

Related

concepts:

v

“DB2

Information

Integrator

installation

process

-

overview”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Fast

track

to

configuring

your

data

sources”

on

page

55

v

“Methods

of

accessing

Excel

data”

on

page

25

Related

tasks:

v

“Accessing

Excel

data

using

the

ODBC

wrapper”

on

page

316

v

“Creating

a

federated

database”

on

page

51

v

“Preparing

the

federated

server

to

access

data

sources

through

ODBC”

on

page

306

v

“Registering

the

ODBC

wrapper”

on

page

307

v

“Registering

the

server

definitions

for

an

ODBC

data

source”

on

page

309

v

“Creating

a

user

mapping

for

an

ODBC

data

source”

on

page

311

v

“Testing

the

connection

to

the

ODBC

data

source

server”

on

page

313

v

“Registering

nicknames

for

ODBC

data

source

tables

and

views”

on

page

314

Related

reference:

v

“Choose

the

correct

wrapper”

on

page

24

Preparing

the

federated

server

to

access

data

sources

through

ODBC

Preparing

the

federated

server

to

access

data

sources

through

ODBC

is

part

of

the

larger

task

of

adding

ODBC

data

sources

to

federated

servers.

306

Data

Source

Configuration

Guide

|

|
|
|
|
|

|
|
|
|
|

The

steps

that

you

need

to

follow

to

prepare

the

federated

server

to

access

data

sources

through

ODBC

depend

on

the

operating

system

that

is

running

on

your

federated

server.

Note:

The

ODBC

driver

and

the

operating

system

that

you

use

have

unique

library

path

locations.

Procedure:

To

prepare

the

federated

server:

On

Windows:

Verify

that

the

ODBC

3.x

driver

has

been

installed

and

configured

on

the

federated

server.

The

node

name

for

the

ODBC

data

source

must

be

defined

in

the

System

DSN.

See

the

ODBC

driver

documentation

for

the

installation

and

configuration

procedures.

If

you

used

the

Microsoft

ODBC

Data

Source

Administrator

to

configure

the

DSN,

you

can

check

this

setting

in

the

Control

Panel.

Make

sure

that

ODBC

data

source

is

registered

as

a

System

DSN.

Otherwise

DB2

might

not

be

able

to

find

the

DSN.

On

UNIX:

1.

Consult

the

documentation

from

the

ODBC

client

vendor

for

instructions

on

how

to

configure

the

ODBC

client.

2.

If

the

client

is

DataDirect

ODBC

or

RedBrick,

verify

that

the

appropriate

symbolic

link

is

created:

v

On

HP-UX,

the

symbolic

link

is

from

/usr/exe/libodbcinst.sl

to

$ODBC_LIBRARY_PATH/libodbcinst.sl.

v

On

Linux,

the

symbolic

link

is

from

/usr/lib/libodbcinst.so

to

$DJX_ODBC_LIBRARY_PATH/libodbcinst.so.

v

On

Solaris,

the

symbolic

link

is

from

$HOME/sqllib/locale

to

$DJX_ODBC_LIBRARY_PATH/../locale.

$HOME

is

the

home

directory

of

the

DB2

instance

owner.

The

next

task

in

this

sequence

of

tasks

is

registering

the

ODBC

wrapper.

Related

tasks:

v

“Registering

the

ODBC

wrapper”

on

page

307

Registering

the

ODBC

wrapper

Registering

the

ODBC

wrapper

is

part

of

the

larger

task

of

adding

ODBC

data

sources

to

federated

servers.

You

must

register

a

wrapper

to

access

ODBC

data

sources.

Wrappers

are

used

by

federated

servers

to

communicate

with

and

retrieve

data

from

data

sources.

Wrappers

are

implemented

as

a

set

of

library

files.

Procedure:

To

register

a

wrapper,

issue

the

CREATE

WRAPPER

statement

and

specify

the

default

name

for

the

wrapper.

Chapter

17.

Configuring

access

to

ODBC

data

sources

307

|
|
|
|

|
|
|

|
|

|
|

|
|

|
|
|

For

example:

CREATE

WRAPPER

ODBC

Recommendation:

Use

the

default

wrapper

name

called

ODBC.

When

you

register

the

wrapper

that

uses

the

default

name,

the

federated

server

automatically

takes

the

default

library

name

that

is

associated

with

that

wrapper.

If

the

wrapper

name

conflicts

with

an

existing

wrapper

name

in

the

federated

database,

you

can

substitute

the

default

wrapper

name

with

a

name

you

choose.

If

you

use

a

name

that

is

different

from

the

default

name,

you

must

include

the

LIBRARY

parameter

in

the

CREATE

WRAPPER

statement.

For

example,

to

register

a

wrapper

with

the

name

odbc_wrapper

on

the

federated

server

that

uses

the

AIX

operating

system,

issue

the

following

statement:

CREATE

WRAPPER

odbc_wrapper

LIBRARY

’libdb2rcodbc.a’

OPTIONS

(MODULE

’/usr/lib/odbc.a’)

MODULE

’/usr/lib/odbc.a’

is

the

full

path

of

the

library

that

contains

the

ODBC

Driver

Manager.

The

name

of

the

wrapper

library

file

that

you

specify

depends

on

the

operating

system

of

the

federated

server.

See

the

list

of

ODBC

wrapper

library

files

for

the

correct

name

to

specify

in

the

CREATE

WRAPPER

statement.

The

next

task

in

this

sequence

of

tasks

is

registering

the

server

definitions

for

the

ODBC

wrapper.

Related

tasks:

v

“Registering

the

server

definitions

for

an

ODBC

data

source”

on

page

309

Related

reference:

v

“ODBC

wrapper

library

files”

on

page

308

v

“CREATE

WRAPPER

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

WRAPPER

statement

-

Examples

for

ODBC

wrapper”

on

page

309

ODBC

wrapper

library

files

The

following

table

lists

the

directory

paths

and

library

file

names

for

the

ODBC

wrapper.

When

you

install

DB2

Information

Integrator,

3

library

files

are

added

to

the

directory

path

listed

in

the

table.

For

example,

if

the

federated

server

is

running

on

AIX,

the

wrapper

library

files

added

to

the

directory

path

are

libdb2rcodbc.a,

libdb2rcodbcF.a,

and

libdb2rcodbcU.a.

When

you

register

a

wrapper,

specify

only

the

library

file

name

that

is

listed

in

the

table.

Table

78.

ODBC

client

library

locations

and

file

names

Operating

system

Directory

path

Wrapper

library

file

AIX

/usr/opt/db2_08_01/lib/

libdb2rcodbc.a

HP-UX

/opt/IBM/db2/V8.1/lib

libdb2rcodbc.sl

Linux

/opt/IBM/db2/V8.1/lib

libdb2rcodbc.so

308

Data

Source

Configuration

Guide

|

|
|

|
|
|
|

|
|

||

|||

|||

|||

|||

Table

78.

ODBC

client

library

locations

and

file

names

(continued)

Operating

system

Directory

path

Wrapper

library

file

Solaris

/opt/IBM/db2/V8.1/lib

libdb2rcodbc.so

Windows

%DB2PATH%\bin

db2rcodbc.dll

%DB2PATH%

is

the

environment

variable

that

is

used

to

specify

the

directory

path

where

DB2

Information

Integrator

is

installed

on

Windows.

The

default

Windows

directory

path

is

C:\Program

Files\IBM\SQLLIB.

Related

tasks:

v

“Registering

the

ODBC

wrapper”

on

page

307

CREATE

WRAPPER

statement

-

Examples

for

ODBC

wrapper

This

topic

provides

examples

that

show

you

how

to

use

the

CREATE

WRAPPER

statement

to

register

wrappers

for

ODBC

data

sources.

Example

for

UNIX

systems:

The

following

example

shows

you

how

to

register

a

wrapper

by

issuing

the

CREATE

WRAPPER

statement

on

a

UNIX

operating

system:

CREATE

WRAPPER

odbc

OPTIONS

(MODULE

’/usr/lib/odbc.so’)

In

this

example,

odbc

is

the

name

that

you

assign

to

the

wrapper

that

is

being

registered

in

the

federated

database.

MODULE

’/usr/lib/odbc.so’

is

the

full

path

of

the

library

that

contains

the

ODBC

Driver

Manager.

You

must

specify

the

MODULE

option

on

UNIX

operating

systems.

On

Windows,

the

MODULE

option

defaults

to

’odbc32.dll’.

Example

for

Windows:

The

following

example

shows

you

how

to

register

a

wrapper

by

issuing

the

CREATE

WRAPPER

statement

on

a

Windows

operating

system:

CREATE

WRAPPER

odbc

LIBRARY

’db2rcodbc.dll’

In

this

example,

odbc

is

the

name

that

you

assign

to

wrapper

that

is

being

registered

in

the

federated

database.

LIBRARY

’db2rcodbc.dll’

is

the

library

name

for

the

ODBC

wrapper.

Related

tasks:

v

“Registering

the

ODBC

wrapper”

on

page

307

Related

reference:

v

“CREATE

WRAPPER

statement”

in

the

SQL

Reference,

Volume

2

Registering

the

server

definitions

for

an

ODBC

data

source

Registering

the

server

definitions

for

an

ODBC

data

source

is

part

of

the

larger

task

of

adding

ODBC

data

sources

to

federated

servers.

Chapter

17.

Configuring

access

to

ODBC

data

sources

309

|

|||

|||

|||
|

|
|
|

|

|

In

the

federated

database,

you

must

define

each

ODBC

data

source

server

that

you

want

to

access.

Procedure:

To

register

a

server

definition

for

an

ODBC

data

source:

Issue

the

CREATE

SERVER

statement.

For

example:

CREATE

SERVER

server_name

TYPE

data_source_type

VERSION

version

WRAPPER

odbc

OPTIONS

(NODE

’node_name’)

The

TYPE

and

VERSION

parameters

are

optional.

Although

NODE

is

specified

as

option

in

the

CREATE

SERVER

statement,

it

is

required

for

ODBC

data

sources.

After

the

server

definition

is

created,

use

the

ALTER

SERVER

statement

to

add

or

drop

server

options.

The

next

task

in

this

sequence

of

tasks

is

creating

a

user

mapping

for

an

ODBC

data

source.

Related

tasks:

v

“Creating

a

user

mapping

for

an

ODBC

data

source”

on

page

311

Related

reference:

v

“ALTER

SERVER

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

SERVER

statement”

in

the

SQL

Reference,

Volume

2

v

Appendix

D,

“Server

options

for

federated

systems,”

on

page

575

v

“CREATE

SERVER

statement

-

Examples

of

ODBC

wrapper”

on

page

310

CREATE

SERVER

statement

-

Examples

of

ODBC

wrapper

This

topic

provides

examples

that

show

you

how

to

use

the

CREATE

SERVER

statement

to

register

servers

for

the

ODBC

wrapper.

This

topic

includes

a

complete

example,

which

shows

how

to

register

a

server

with

required

parameters,

and

an

example

with

additional

server

options.

Complete

example:

The

following

example

shows

you

how

to

register

a

server

definition

for

an

ODBC

wrapper

by

issuing

the

CREATE

SERVER

statement:

CREATE

SERVER

mysql_server

TYPE

mysql

VERSION

4.0

WRAPPER

odbc

OPTIONS

(NODE

’odbc_node’,

DBNAME

’venice’)

mysql_server

A

name

that

you

assign

to

the

ODBC

data

source

server.

This

name

must

be

unique.

Duplicate

server

names

are

not

allowed.

TYPE

mysql

Specifies

the

type

of

data

source

to

which

you

are

configuring

access.

This

parameter

is

optional.

310

Data

Source

Configuration

Guide

|
|
|

|

|
|

|

|
|
|

VERSION

4.0

The

version

of

the

ODBC

data

source

that

you

want

to

access.

This

parameter

is

optional.

WRAPPER

odbc

The

wrapper

name

that

you

specified

in

the

CREATE

WRAPPER

statement.

NODE

’mysql_node’

The

name

of

the

node

(the

system

DSN

name)

that

was

assigned

to

the

ODBC

data

source

when

the

DSN

was

defined.

This

value

is

case

sensitive.

On

Windows,

this

value

must

be

the

name

of

a

system

DSN

in

the

ODBC

Data

Administration

window.

On

UNIX,

consult

the

ODBC

client

vendor

documentation

for

information

about

the

value

to

use.

Although

the

NODE

is

specified

as

an

option

in

the

CREATE

SERVER

statement,

it

is

required

for

ODBC

data

sources.

DBNAME

’venice’

The

name

of

the

database

that

you

want

to

access.

This

value

is

case

sensitive.

Server

options

example:

The

following

example

shows

how

to

use

the

DB2_TABLE_QUOTE_CHAR,

DB2_ID_QUOTE_CHAR,

and

the

DB2_AUTHID_QUOTE_CHAR

server

options.

Some

ODBC

data

sources

(for

example,

MySQL)

cannot

process

quotation

marks

around

table

names

and

column

names

in

SQL

statements.

To

access

these

data

sources,

you

must

include

the

following

server

options

in

the

CREATE

SERVER

statement:

v

DB2_TABLE_QUOTE_CHAR

’

`

’

v

DB2_ID_QUOTE_CHAR

’

`

’

v

DB2_AUTHID_QUOTE_CHAR

’

`

’

The

`

character

is

the

delimiter

for

identifiers

such

as

schema

names,

table

names,

and

column

names.

For

example:

CREATE

SERVER

mysql_server

TYPE

mysql

VERSION

4.0

WRAPPER

odbc

OPTIONS

(NODE

’mysql_node’,

DB2_TABLE_QUOTE_CHAR

’

`

’,

DB2_ID_QUOTE_CHAR

’

`

’

DB2_AUTHID_QUOTE_CHAR

’

`

’)

Related

tasks:

v

“Registering

the

server

definitions

for

an

ODBC

data

source”

on

page

309

Related

reference:

v

“CREATE

SERVER

statement”

in

the

SQL

Reference,

Volume

2

Creating

a

user

mapping

for

an

ODBC

data

source

Creating

a

user

mapping

for

an

ODBC

data

source

is

part

of

the

larger

task

of

adding

ODBC

data

sources

to

federated

servers.

When

you

attempt

to

access

an

ODBC

data

source,

the

federated

server

establishes

a

connection

to

the

data

source

using

a

user

ID

and

password

that

are

valid

for

Chapter

17.

Configuring

access

to

ODBC

data

sources

311

|
|
|

|

|
|

|
|
|
|

|

|

|

|
|

|
|
|
|

that

data

source.

You

must

define

an

association

(a

user

mapping)

between

each

federated

server

user

ID

and

password

and

the

corresponding

data

source

user

ID

and

password.

Create

a

user

mapping

for

each

user

ID

that

will

access

the

federated

system

to

send

distributed

requests.

Procedure:

To

map

a

local

user

ID

to

the

ODBC

data

source

user

ID

and

password,

issue

a

CREATE

USER

MAPPING

statement.

For

example:

CREATE

USER

MAPPING

FOR

userid

SERVER

server_name

OPTIONS

(REMOTE_AUTHID

’remote_id’,

REMOTE_PASSWORD

’remote_password’)

The

next

task

in

this

sequence

of

tasks

is

testing

the

connection

to

the

ODBC

data

source

server.

Related

tasks:

v

“Testing

the

connection

to

the

ODBC

data

source

server”

on

page

313

Related

reference:

v

“CREATE

USER

MAPPING

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

USER

MAPPING

statement

-

Examples

for

ODBC

wrapper”

on

page

312

CREATE

USER

MAPPING

statement

-

Examples

for

ODBC

wrapper

This

topic

provides

examples

that

show

you

how

to

use

the

CREATE

USER

MAPPING

statement

to

map

a

local

user

ID

to

an

ODBC

data

source

user

ID

and

password.

This

topic

includes

a

complete

example

with

required

parameters

and

an

example

that

shows

you

how

to

use

the

DB2

special

register

USER

with

the

CREATE

USER

MAPPING

statement.

Complete

example:

The

following

example

shows

how

to

map

a

local

user

ID

to

an

ODBC

data

source

user

ID

and

password:

CREATE

USER

MAPPING

FOR

arturo

SERVER

server_name

OPTIONS

(REMOTE_AUTHID

’art’,

REMOTE_PASSWORD

’red4blue’)

arturo

Specifies

the

local

user

ID

that

you

are

mapping

to

a

user

ID

that

is

defined

at

the

ODBC

data

source.

server_name

Specifies

the

name

of

the

ODBC

data

source

that

you

defined

in

the

CREATE

SERVER

statement.

’art’

Specifies

the

user

ID

at

the

ODBC

data

source

to

which

you

are

mapping

arturo.

Use

single

quotation

marks

to

preserve

the

case

of

this

value

unless

you

set

the

FOLD_ID

server

option

to

’U’

or

’L’

in

the

CREATE

SERVER

statement.

’red4blue’

Specifies

the

password

associated

with

’art’.

Use

single

quotation

marks

to

preserve

the

case

of

this

value

unless

you

set

the

FOLD_PW

server

option

to

’U’

or

’L’

in

the

CREATE

SERVER

statement.

312

Data

Source

Configuration

Guide

Special

register

example:

The

following

example

shows

a

CREATE

USER

MAPPING

statement

that

includes

the

special

register

USER:

CREATE

USER

MAPPING

FOR

USER

SERVER

server_name

OPTIONS

(REMOTE_AUTHID

’art’,

REMOTE_PASSWORD

’red4blue’)

You

can

use

the

DB2

special

register

USER

to

map

the

authorization

ID

of

the

person

who

is

issuing

the

CREATE

USER

MAPPING

statement

to

the

data

source

authorization

ID

that

is

specified

in

the

REMOTE_AUTHID

user

option.

Related

tasks:

v

“Creating

a

user

mapping

for

an

ODBC

data

source”

on

page

311

Related

reference:

v

“CREATE

USER

MAPPING

statement”

in

the

SQL

Reference,

Volume

2

Testing

the

connection

to

the

ODBC

data

source

server

Testing

the

connection

to

the

ODBC

data

source

server

is

part

of

the

larger

task

of

adding

ODBC

data

sources

to

federated

servers.

You

can

test

the

connection

to

the

ODBC

data

source

server

by

using

the

server

definition

and

the

user

mappings

that

you

defined.

Prerequisites:

The

data

source

that

you

are

using

must

support

pass-through

sessions.

Procedure:

To

test

the

connection:

1.

Open

a

pass-through

session

to

issue

an

SQL

SELECT

statement

on

the

ODBC

data

source

system

tables.

For

example:

SET

PASSTHRU

server_name

SELECT

COUNT(*)

FROM

schema_name.table_name

SET

PASSTHRU

RESET

The

server_name

is

the

name

of

the

ODBC

data

source

that

you

defined

in

the

CREATE

SERVER

statement.

The

schema_name

is

the

name

of

the

schema

at

the

remote

ODBC

data

source.

If

your

ODBC

data

source

does

not

support

schemas,

omit

the

schema

from

the

statement.

The

table_name

is

the

name

of

the

table

at

the

remote

ODBC

data

source.

If

the

SQL

SELECT

statement

returns

a

count,

your

server

definition

and

your

user

mappings

are

set

up

properly.

2.

If

the

SQL

SELECT

statement

returns

an

error,

you

might

need

to:

v

Verify

that

the

data

source

is

available.

v

If

applicable,

check

the

data

source

server

to

make

sure

that

it

is

configured

for

incoming

connections.

Chapter

17.

Configuring

access

to

ODBC

data

sources

313

v

Check

your

user

mapping

to

make

sure

that

the

settings

for

the

REMOTE_AUTHID

and

REMOTE_PASSWORD

options

are

valid

for

the

connections

to

the

ODBC

data

source.

Alter

the

user

mapping,

or

create

another

user

mapping

as

necessary.

v

Check

the

ODBC

driver

on

the

DB2

federated

server

to

make

sure

that

it

is

installed

and

configured

correctly

to

connect

to

the

ODBC

data

source

server.

On

Windows

operating

systems,

use

the

ODBC

Data

Source

Administrator

tool

to

check

the

driver.

On

UNIX

operating

systems,

consult

the

ODBC

client

vendor’s

documentation.

v

Check

your

server

definition.

If

necessary,

drop

it

and

create

it

again.

The

next

task

in

this

sequence

of

tasks

is

registering

nicknames

for

ODBC

data

source

tables

and

views.

Related

tasks:

v

“Adding

ODBC

data

sources

to

a

federated

server”

on

page

305

v

“Preparing

the

federated

server

to

access

data

sources

through

ODBC”

on

page

306

v

“Registering

nicknames

for

ODBC

data

source

tables

and

views”

on

page

314

Related

reference:

v

“ALTER

USER

MAPPING

statement”

in

the

SQL

Reference,

Volume

2

Registering

nicknames

for

ODBC

data

source

tables

and

views

Registering

nicknames

for

ODBC

data

source

tables

and

views

is

part

of

the

larger

task

of

adding

ODBC

data

sources

to

federated

servers.

For

each

ODBC

data

source

server

that

you

define,

register

a

nickname

for

each

table

or

view

that

you

want

to

access.

Use

these

nicknames,

instead

of

the

names

of

the

data

source

objects,

when

you

query

the

ODBC

data

sources.

For

example,

suppose

that

you

define

the

nickname

cust_europe

to

represent

a

Microsoft

SQL

Server

table

called

italy

with

a

schema

name

of

customers.

The

SQL

statement

SELECT

*

FROM

cust_europe

is

allowed

from

the

federated

server.

However,

the

statement

SELECT

*

FROM

server_name.″customers″.″italy″

is

not

allowed.

In

addition

to

registering

nicknames

for

ODBC

data

source

tables

and

views,

you

can

also

register

nicknames

for

remote

system

tables.

If

your

ODBC

data

source

does

not

support

schemas,

omit

the

schema

from

the

CREATE

NICKNAME

statement.

The

federated

database

relies

on

catalog

statistics

for

nicknamed

objects

to

optimize

query

processing.

These

statistics

are

gathered

when

you

register

a

nickname

for

a

data

source

object

by

using

the

CREATE

NICKNAME

statement.

The

federated

database

verifies

the

presence

of

the

object

at

the

data

source,

and

then

attempts

to

gather

existing

data

source

statistical

data.

Information

that

is

useful

to

the

optimizer

is

read

from

the

data

source

catalogs

and

placed

into

the

global

catalog

on

the

federated

server.

Because

some

or

all

of

the

data

source

catalog

information

might

be

used

by

the

optimizer,

update

statistics

(using

the

314

Data

Source

Configuration

Guide

data

source

command

that

is

equivalent

to

the

DB2

RUNSTATS

command)

at

the

data

source

before

you

register

a

nickname.

Restrictions:

When

you

create

a

nickname

on

an

ODBC

data

source

that

contains

indexes,

the

ODBC

wrapper

does

not

record

the

index

information

in

the

federated

database

system

catalog.

You

must

create

index

specifications

for

the

table

by

using

the

CREATE

INDEX

statement

with

the

SPECIFICATION

ONLY

clause.

Procedure:

To

register

a

nickname,

issue

the

CREATE

NICKNAME

statement.

For

example:

CREATE

NICKNAME

odbc_name

FOR

server_name."remote_schema"."remote.table"

Nicknames

can

be

up

to

128

characters

in

length.

Repeat

this

step

for

each

ODBC

table

or

view

for

which

you

want

to

create

a

nickname.

When

you

create

the

nickname,

DB2

will

use

the

connection

to

query

the

data

source

catalog

tables.

This

query

tests

your

connection

to

the

ODBC

data

source

by

using

the

nickname.

If

the

connection

does

not

work,

you

will

receive

an

error

message.

Related

tasks:

v

“Creating

index

specifications

for

data

source

objects”

in

the

Federated

Systems

Guide

Related

reference:

v

“RUNSTATS

Command”

in

the

Command

Reference

v

“CREATE

NICKNAME

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

NICKNAME

statement

-

Examples

for

ODBC

wrapper”

on

page

315

CREATE

NICKNAME

statement

-

Examples

for

ODBC

wrapper

This

topic

provides

an

example

that

shows

you

how

to

use

the

CREATE

NICKNAME

statement

to

register

a

nickname

for

an

ODBC

data

source

table

or

view

that

you

want

to

access.

This

example

shows

how

to

specify

a

remote

object

for

the

ODBC

data

source

under

which

the

nickname

is

assigned:

CREATE

NICKNAME

cust_europe

FOR

server_name."customers"."italy"

cust_europe

A

unique

nickname

for

the

table

or

view.

The

nickname

must

be

unique

within

the

schema.

Note:

The

nickname

is

a

two-part

name

that

includes

the

schema

and

the

nickname.

If

you

omit

the

schema

when

you

register

the

nickname,

the

schema

of

the

nickname

will

be

the

authentication

ID

of

the

user

who

registers

the

nickname.

Chapter

17.

Configuring

access

to

ODBC

data

sources

315

|

|

|
|
|
|

server_name.″customers″.″italy″

A

three-part

identifier

for

the

remote

object.

v

server_name

is

the

name

that

you

assigned

to

the

ODBC

database

server

in

the

CREATE

SERVER

statement.

v

customers

is

the

name

of

the

remote

schema

to

which

the

table

or

view

belongs.

If

your

ODBC

data

source

does

not

support

schemas,

omit

the

schema

from

the

CREATE

NICKNAME

statement.

v

italy

is

the

name

of

the

remote

table

or

view

which

you

want

to

access.

ODBC

data

source

objects

might

be

case

sensitive.

Enclose

both

the

remote

schema

name

and

the

remote

table

name

in

quotation

marks.

Otherwise,

DB2

folds

these

names

to

uppercase.

Related

tasks:

v

“Registering

nicknames

for

ODBC

data

source

tables

and

views”

on

page

314

Related

reference:

v

“CREATE

NICKNAME

statement”

in

the

SQL

Reference,

Volume

2

Accessing

Excel

data

using

the

ODBC

wrapper

You

can

access

Microsoft

Excel

workbooks

with

the

ODBC

wrapper

by

using

the

Excel

ODBC

driver.

The

Excel

application

does

not

need

to

be

installed

on

the

federated

server.

The

Excel

ODBC

driver

is

automatically

installed

with

Microsoft

Windows.

With

the

ODBC

wrapper

and

the

Excel

ODBC

driver,

you

can

access

data

from

any

of

the

worksheets

within

a

workbook.

The

Excel

ODBC

driver

interprets

a

workbook

as

a

database

and

interprets

each

worksheet

within

the

workbook

as

a

table.

The

Excel

ODBC

driver

supports

earlier

versions

of

Excel

workbooks

even

if

the

version

of

Excel

application

that

produced

the

workbooks

is

no

longer

supported.

For

example,

Microsoft

no

longer

supports

worksheets

created

in

Excel

Version

4.0,

but

the

driver

supports

Excel

worksheets

that

were

created

in

that

version.

Prerequisites:

The

Excel

ODBC

driver

must

be

on

the

federated

server.

The

federated

server

must

be

able

to

open

and

read

the

worksheets

in

the

Excel

workbook

to

retrieve

the

data.

Therefore,

the

Excel

workbooks

must

be

on

the

same

computer

as

the

DB2

federated

server

or

on

a

accessible

mapped

network

drive.

Restrictions:

v

The

ODBC

wrapper

cannot

access

a

worksheet

when

the

workbook

is

already

opened

by

a

user

or

an

application

in

the

read/write

mode.

However,

if

the

ODBC

wrapper

opens

the

workbook

before

a

user

or

an

application

opens

the

workbook,

the

user

or

application

can

open

the

workbook

in

read-only

mode.

v

The

Excel

ODBC

driver

expects

that

the

first

nonblank

row

contains

the

labels

for

the

worksheet

columns.

You

must

insert

a

row

of

column

labels

in

the

worksheet

if

the

worksheet

does

not

have

the

labels.

316

Data

Source

Configuration

Guide

|

|
|
|
|

|
|
|
|

|
|
|
|

|

|

|
|
|
|

|

|
|
|
|

|
|
|

v

Because

the

Excel

ODBC

driver

is

only

available

for

Windows

operating

systems,

you

can

use

the

ODBC

wrapper

to

access

Excel

data

only

on

federated

servers

that

run

the

Windows

operating

system.

v

You

can

perform

insert

and

update

operations

on

Excel

worksheets,

but

you

cannot

perform

delete

operations.

The

Excel

ODBC

driver

does

not

support

delete

operations.

To

delete

data

from

the

worksheet,

you

must

open

the

worksheet

in

Excel

to

make

the

changes.

Procedure:

To

access

Excel

worksheets

with

the

ODBC

wrapper:

1.

Ensure

that

the

Excel

workbook

that

you

want

to

access

is

either

on

the

federated

server

or

on

an

accessible

mapped

network

drive.

2.

Methods

of

accessing

Excel

data:

v

If

necessary,

change

the

layout

of

the

data

in

the

Excel

worksheets

to

adhere

to

the

Excel

ODBC

driver

requirements.

v

If

necessary,

create

any

named

ranges

that

you

want

to

access.
3.

Create

a

system

DSN

for

the

workbook

that

you

want

to

access.

You

can

use

the

ODBC

Data

Source

Administrator

to

configure

the

system

DSN.

The

name

that

was

specified

when

you

created

the

system

DSN

is

assigned

as

the

value

for

the

NODE

option

in

the

CREATE

SERVER

statement.

4.

Issue

the

CREATE

WRAPPER

statement.

For

example:

CREATE

WRAPPER

odbc

5.

Specify

the

location

of

the

workbook

by

registering

a

server

object

in

the

federated

database

system

catalog.

For

the

ODBC

wrapper,

you

need

a

server

object

for

each

DSN.

The

DSN

is

associated

with

the

workbook

when

the

Excel

ODBC

driver

is

used.

To

specify

the

location

of

the

workbook,

issue

the

CREATE

SERVER

statement

and

use

the

DSN

as

the

system

DSN

for

the

NODE

option.

For

example:

CREATE

SERVER

compounds_workbook

WRAPPER

odbc

OPTIONS

(NODE

’compounds_workbook_dsn’,

PASSWORD

’n’)

The

NODE

compounds_workbook_dsn

is

the

system

DSN

that

you

created.

The

NODE

and

PASSWORD

options

are

required

for

the

ODBC

wrapper

to

access

Excel

worksheets.

Repeat

this

step

for

each

workbook

that

you

plan

to

access.

6.

Issue

the

CREATE

NICKNAME

statement

to

create

a

nickname

for

the

worksheet

that

you

want

to

access.

The

syntax

is:

CREATE

NICKNAME

nickname

FOR

server_name.remote_table

v

If

you

created

a

named

range

to

access

the

data,

specify

the

name

of

the

range

as

the

remote_table

portion

of

the

CREATE

NICKNAME

statement.

For

example,

if

the

name

of

the

range

is

testing,

the

CREATE

NICKNAME

statement

is:

CREATE

NICKNAME

compounds_nickname

FOR

compounds_workbook.testing

v

To

access

the

data

in

the

entire

worksheet

instead

of

a

range,

you

specify

the

name

of

the

worksheet

followed

by

the

$

symbol.

For

example,

if

the

name

of

the

worksheet

is

Sheet1,

the

CREATE

NICKNAME

statement

is:

CREATE

NICKNAME

compounds_nick

FOR

compounds_workbook.Sheet1$

Chapter

17.

Configuring

access

to

ODBC

data

sources

317

|
|
|

|
|
|
|

|

|

|
|

|

|
|

|

|
|
|
|

|

|

|

|
|
|
|

|
|

|

|
|

|
|
|

|

|
|

|

|
|

|
|

|

|
|

|
|

|

Repeat

this

step

for

each

worksheet

or

named

range

that

you

want

to

access.

Alter

the

default

data

type

mappings

When

you

use

the

ODBC

wrapper,

the

supported

data

types

are

determined

by

the

Excel

ODBC

driver.

The

Excel

ODBC

driver

maps

the

Excel

data

types

to

ODBC

data

types.

Then

the

ODBC

wrapper

maps

the

ODBC

data

types

to

DB2

data

types.

The

DB2

data

types

for

each

column

are

stored

in

the

federated

database

catalog

table.

These

are

referred

to

as

local

data

types.

The

following

table

lists

the

default

data

type

mappings:

Table

79.

Default

data

type

mappings

between

Excel

and

DB2

when

using

the

ODBC

wrapper

Excel

data

type

ODBC

data

type

DB2

data

type

CURRENCY

SQL_NUMERIC

DECIMAL/DOUBLE

DATETIME

SQL_TIMESTAMP

TIMESTAMP

LOGICAL

SQL_BIT

SMALLINT

NUMBER

SQL_DOUBLE

DOUBLE

TEXT

SQL_VARCHAR

VARCHAR

However,

the

ODBC

wrapper

supports

many

different

data

types.

You

can

map

the

default

data

types

to

other

DB2

data

types.

Use

the

ALTER

NICKNAME

statement

to

change

the

local

data

types.

The

list

of

data

types

that

are

available

through

the

ODBC

wrapper

is

comprehensive

and

includes

data

types

such

as

LOBs

and

other

double-byte

data

types.

Attention:

There

is

the

potential

of

running

into

a

data

type

mismatch

when

you

alter

the

local

data

type

to

something

other

than

the

original

mapping.

ALTER

SERVER

statement

-

Examples

for

ODBC

wrapper

to

access

Excel

data

Through

the

Excel

ODBC

driver,

the

ODBC

wrapper

allows

predicates

and

aggregate

functions

to

be

pushed

down

to

the

data

source

for

processing.

The

driver

also

supports

joins

between

worksheets.

Pushing

down

processing

to

the

data

source

can

improve

performance

because

all

of

the

data

source

rows

are

not

returned

to

DB2

when

a

query

references

a

worksheet.

Suppose

that

you

have

defined

the

server

compounds_workbook

to

identify

a

workbook

that

contains

data

that

you

want

to

access.

For

this

workbook,

you

want

to

specify

that

the

federated

server

can

pushdown

operations

to

the

Excel

ODBC

driver

for

processing.

The

ALTER

SERVER

statement

is:

ALTER

SERVER

compounds_workbook

OPTIONS

(ADD

PUSHDOWN

’Y’)

To

take

advantage

of

the

push

down

capabilities,

the

following

ODBC

server

options

need

to

be

set

using

the

CREATE

SERVER

statement

or

by

using

the

ALTER

SERVER

statement.

v

PUSHDOWN

’Y’

v

DB2_GROUP_BY

’Y

v

DB2_COLFUNC

’Y’

Related

concepts:

318

Data

Source

Configuration

Guide

|

|

|
|
|
|
|
|

||
|

|||

|||

|||

|||

|||

|||
|

|
|
|
|
|

|
|

|

|

|
|
|
|
|

|
|
|
|

|
|

|
|
|

|

|

|

|

v

“Methods

of

accessing

Excel

data”

on

page

25

Related

tasks:

v

“Preparing

the

federated

server

to

access

data

sources

through

ODBC”

on

page

306

Related

reference:

v

“Choose

the

correct

wrapper”

on

page

24

Tuning

and

troubleshooting

the

configuration

to

ODBC

data

sources

After

you

set

up

the

configuration

to

ODBC

data

sources,

you

might

want

to

modify

the

configuration

to

improve

performance.

Obtaining

ODBC

traces

If

you

experience

problems

when

accessing

the

data

source,

you

can

obtain

ODBC

tracing

information

to

analyze

and

resolve

the

problems.

However,

activating

a

trace

does

impact

system

performance.

You

should

turn

off

tracing

after

you

have

resolved

the

problems.

On

federated

servers

that

run

Windows,

click

Tracing

in

the

ODBC

Data

Source

Administrator

window.

On

federated

servers

that

run

UNIX,

consult

the

ODBC

client

vendor’s

documentation.

Related

tasks:

v

“Adding

ODBC

data

sources

to

a

federated

server”

on

page

305

Related

reference:

v

“db2set

-

DB2

Profile

Registry

Command”

in

the

Command

Reference

Chapter

17.

Configuring

access

to

ODBC

data

sources

319

|

|

|
|

|

|

320

Data

Source

Configuration

Guide

Chapter

18.

Configuring

access

to

OLE

DB

data

sources

This

chapter

explains

how

to

configure

your

federated

server

to

access

data

that

is

stored

in

OLE

DB

data

sources.

You

can

configure

access

to

OLE

DB

data

sources

by

using

the

DB2

Control

Center

or

by

issuing

SQL

statements.

This

chapter

lists

the

tasks

that

you

need

to

perform

and

contains

examples

of

the

SQL

statements

that

you

need

to

configure

the

federated

server.

Adding

OLE

DB

data

sources

to

a

federated

server

Microsoft

OLE

DB

is

a

set

of

OLE/COM

interfaces

that

provide

applications

with

uniform

access

to

data

that

is

stored

in

diverse

information

sources.

The

OLE

DB

component

DBMS

architecture

defines

OLE

DB

consumers

and

OLE

DB

providers.

An

OLE

DB

consumer

is

any

system

or

application

that

consumes

OLE

DB

interfaces.

An

OLE

DB

provider

is

a

component

that

exposes

OLE

DB

interfaces.

The

OLE

DB

wrapper

enables

you

to

access

OLE

DB

providers

that

are

compliant

with

Microsoft

OLE

DB

2.0

(or

later).

You

use

the

OLE

DB

wrapper

to

create

table

functions.

You

cannot

use

the

wrapper

to

create

nicknames

on

data

source

tables

and

views.

To

configure

the

federated

server

to

access

OLE

DB

data

sources,

you

must

provide

the

federated

server

with

information

about

the

OLE

DB

providers.

You

can

configure

access

to

OLE

DB

data

sources

through

the

DB2

Command

Center

or

through

the

DB2

command

line.

Prerequisites:

v

DB2

Information

Integrator

must

be

installed

on

a

server

that

will

act

as

the

federated

server

v

A

federated

database

must

exist

on

the

federated

server

Restriction:

The

OLE

DB

wrapper

is

used

only

to

assist

in

registering

user-defined

OLE

DB

external

table

functions.

Unlike

other

wrappers,

the

OLE

DB

wrapper

does

not

use

nicknames

to

access

data

that

is

stored

in

data

sources.

Procedure:

To

add

OLE

DB

data

sources

to

a

federated

server:

1.

Register

the

wrapper.

2.

Register

the

server

definition.

3.

Create

the

user

mappings.

After

you

configure

access

to

the

OLE

DB

data

source,

use

the

CREATE

FUNCTION

statement

to

register

a

user-defined

OLE

DB

external

table

function

in

the

federated

database.

©

Copyright

IBM

Corp.

1998,

2004

321

Related

concepts:

v

“DB2

Information

Integrator

installation

process

-

overview”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Fast

track

to

configuring

your

data

sources”

on

page

55

Related

tasks:

v

“Creating

a

federated

database”

on

page

51

v

“Registering

the

OLE

DB

wrapper”

on

page

322

Registering

the

OLE

DB

wrapper

Registering

the

OLE

DB

wrapper

is

part

of

the

larger

task

of

adding

OLE

DB

data

sources

to

a

federated

server.

You

must

register

a

wrapper

to

access

OLE

DB

data

sources.

Wrappers

are

used

by

federated

servers

to

communicate

with

and

retrieve

data

from

data

sources.

Wrappers

are

implemented

as

a

set

of

library

files.

Procedure:

To

register

a

wrapper,

issue

the

CREATE

WRAPPER

statement

and

specify

the

default

name

for

the

wrapper.

For

example:

CREATE

WRAPPER

OLEDB

Recommendation:

Use

the

default

wrapper

name

called

OLEDB.

When

you

register

the

wrapper

that

uses

the

default

name,

the

federated

server

automatically

takes

the

default

library

name

that

is

associated

with

that

wrapper.

If

the

wrapper

name

conflicts

with

an

existing

wrapper

name

in

the

federated

database,

you

can

substitute

the

default

wrapper

name

with

a

name

you

choose.

If

you

use

a

name

that

is

different

from

the

default

name,

you

must

include

the

LIBRARY

parameter

in

the

CREATE

WRAPPER

statement.

For

example,

to

register

a

wrapper

with

the

name

oledb_wrapper

on

the

federated

server

that

uses

the

Windows

operating

system,

issue

the

following

statement:

CREATE

WRAPPER

oledb_wrapper

LIBRARY

’db2oledb.dll’

The

name

of

the

wrapper

library

file

that

you

specify

depends

on

the

operating

system

of

the

federated

server.

See

the

list

of

OLE

DB

wrapper

library

files

for

the

correct

name

to

specify

in

the

CREATE

WRAPPER

statement.

The

next

task

in

this

sequence

of

tasks

is

registering

the

server

definitions

for

the

OLE

DB

wrapper.

Related

tasks:

v

“Registering

the

server

definitions

for

an

OLE

DB

data

source”

on

page

323

Related

reference:

v

“OLE

DB

wrapper

library

files”

on

page

323

v

“CREATE

WRAPPER

statement”

in

the

SQL

Reference,

Volume

2

322

Data

Source

Configuration

Guide

OLE

DB

wrapper

library

files

The

following

table

lists

the

directory

paths

and

library

file

names

for

the

OLE

DB

wrapper.

When

you

install

DB2

Information

Integrator,

the

library

file

is

added

to

the

directory

path

listed

in

the

table.

When

you

register

a

wrapper,

specify

only

the

library

file

name

that

is

listed

in

the

table.

Table

80.

OLE

DB

client

library

locations

and

file

names

Operating

system

Directory

path

Wrapper

library

file

Windows

%DB2PATH%\bin

db2oledb.dll

%DB2PATH%

is

the

environment

variable

that

is

used

to

specify

the

directory

path

where

DB2

Information

Integrator

is

installed

on

Windows.

The

default

Windows

directory

path

is

C:\Program

Files\IBM\SQLLIB.

Related

tasks:

v

“Registering

the

OLE

DB

wrapper”

on

page

322

Registering

the

server

definitions

for

an

OLE

DB

data

source

Registering

the

server

definitions

for

an

OLE

DB

data

source

is

part

of

the

larger

task

of

adding

OLE

DB

data

sources

to

federated

servers.

In

the

federated

database,

you

must

define

each

OLE

DB

data

source

server

that

you

want

to

access.

Procedure:

To

register

a

server

definition

for

an

OLE

DB

data

source:

Issue

the

CREATE

SERVER

statement.

For

example:

CREATE

SERVER

server_name

WRAPPER

OLEDB

OPTIONS

(CONNECTSTRING

’Provider=Microsoft.Jet.OLEDB.4.0;

Data

Source=c:\msdasdk\bin\oledb\nwind.mdb’)

The

next

task

in

this

sequence

of

tasks

is

creating

a

user

mapping

for

an

OLE

DB

data

source.

Related

tasks:

v

“Creating

a

user

mapping

for

an

OLE

DB

data

source”

on

page

324

Related

reference:

v

“CREATE

SERVER

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

SERVER

statement

-

Examples

for

OLE

DB

wrapper”

on

page

324

Chapter

18.

Configuring

access

to

OLE

DB

data

sources

323

|

|
|

|
|

|
|

||

|||

|||
|

|
|
|

|

|

CREATE

SERVER

statement

-

Examples

for

OLE

DB

wrapper

This

topic

provides

an

example

that

shows

you

how

to

use

the

CREATE

SERVER

statement

to

register

servers

for

the

OLE

DB

wrapper.

The

following

example

shows

a

CREATE

SERVER

statement:

CREATE

SERVER

Nwind

WRAPPER

OLEDB

OPTIONS

(CONNECTSTRING

’Provider=Microsoft.Jet.OLEDB.4.0;

Data

Source=c:\msdasdk\bin\oledb\nwind.mdb’,

COLLATING_SEQUENCE

’Y’)

Nwind

A

name

that

you

assign

to

the

OLE

DB

data

source.

This

name

must

be

unique.

Duplicate

server

names

are

not

allowed.

WRAPPER

OLEDB

The

wrapper

name

that

you

specified

in

the

CREATE

WRAPPER

statement.

CONNECTSTRING

’Provider=Microsoft.Jet.OLEDB.4.0;

Data

Source=c:\msdasdk\bin\oledb\nwind.mdb’

Provides

initialization

properties

that

are

needed

to

connect

to

a

data

source.

The

string

contains

a

series

of

keyword

and

value

pairs

that

are

separated

by

semicolons.

The

equal

sign

(=)

separates

each

keyword

and

its

value.

Keywords

are

the

descriptions

of

the

OLE

DB

initialization

properties

(property

set

DBPROPSET_DBINT)

or

provider-specific

keywords.

For

the

complete

syntax

and

semantics

of

the

CONNECTSTRING

option,

see

the

Microsoft

OLE

DB

2.0

Programmer’s

Reference

and

Data

Access

SDK,

Microsoft

Press,

1998.

COLLATING_SEQUENCE

’Y’

Specifies

whether

the

data

source

uses

the

same

collating

sequence

as

the

DB2

for

UNIX

and

Windows

collating

sequence.

Valid

values

are

’Y’

(the

data

source

uses

the

DB2

for

UNIX

and

Windows

collating

sequence)

and

’N’

(the

data

source

uses

a

collating

sequence

that

is

different

from

the

DB2

for

UNIX

and

Windows

collating

sequence).

The

default

value

is

’N’.

Related

tasks:

v

“Registering

the

server

definitions

for

an

OLE

DB

data

source”

on

page

323

Related

reference:

v

“CREATE

SERVER

statement”

in

the

SQL

Reference,

Volume

2

Creating

a

user

mapping

for

an

OLE

DB

data

source

Creating

a

user

mapping

for

an

OLE

data

source

is

part

of

the

larger

task

of

adding

OLE

data

sources

to

federated

servers.

When

you

attempt

to

access

an

OLE

data

source,

the

federated

server

establishes

a

connection

to

the

data

source

using

a

user

ID

and

password

that

are

valid

for

that

data

source.

You

must

define

an

association

(a

user

mapping)

between

each

federated

server

user

ID

and

password

and

the

corresponding

data

source

user

ID

and

password.

Create

a

user

mapping

for

each

user

ID

that

will

access

the

federated

system

to

send

distributed

requests.

324

Data

Source

Configuration

Guide

Procedure:

To

map

a

local

user

ID

to

the

OLE

data

source

user

ID

and

password,

issue

a

CREATE

USER

MAPPING

statement.

For

example:

CREATE

USER

MAPPING

FOR

userid

SERVER

server_name

OPTIONS

(REMOTE_AUTHID

’remote_id’,

REMOTE_PASSWORD

’remote_password’)

If

the

length

of

either

the

password

on

the

OLE

DB

data

source

or

the

password

on

the

federated

server

is

less

then

eight

characters,

SQL

statements

that

access

the

OLE

DB

data

source

will

fail.

The

following

error

message

appears:

SQL30082N

Attempt

to

establish

connection

failed

with

security

reason

"15"

("PROCESSING

FAILURE").

SQLSTATE=08001

To

avoid

this

problem,

change

either

the

OLE

DB

data

source

password

or

the

password

on

the

federated

server

to

eight

or

more

characters.

Related

reference:

v

“CREATE

USER

MAPPING

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

USER

MAPPING

statement

-

Examples

for

OLE

DB

wrapper”

on

page

325

CREATE

USER

MAPPING

statement

-

Examples

for

OLE

DB

wrapper

This

topic

provides

examples

that

show

you

how

to

use

the

CREATE

USER

MAPPING

statement

to

map

a

local

user

ID

to

an

OLE

data

source

user

ID

and

password.

This

topic

includes

a

complete

example

with

required

parameters

and

an

example

that

shows

you

how

to

use

the

DB2

special

register

USER

with

the

CREATE

USER

MAPPING

statement.

Complete

example:

The

following

example

shows

how

to

map

a

local

user

ID

to

an

OLE

data

source

user

ID

and

password:

CREATE

USER

MAPPING

FOR

laura

SERVER

Nwind

OPTIONS

(REMOTE_AUTHID

’lulu’,

REMOTE_PASSWORD

’raiders’)

laura

The

local

user

ID

that

you

are

mapping

to

a

user

ID

that

is

defined

at

the

OLE

DB

data

source.

SERVER

Nwind

The

name

of

the

OLE

DB

server

that

you

defined

in

the

CREATE

SERVER

statement.

REMOTE_AUTHID

’lulu’

The

user

ID

at

the

OLE

DB

server

to

which

you

are

mapping

laura.

This

value

is

case

sensitive.

REMOTE_PASSWORD

’raiders’

The

password

that

is

associated

with

’lulu’.

This

value

is

case

sensitive.

Special

register

example:

The

following

example

shows

a

CREATE

USER

MAPPING

statement

that

includes

the

special

register

USER:

Chapter

18.

Configuring

access

to

OLE

DB

data

sources

325

|
|
|

|
|

|
|

CREATE

USER

MAPPING

FOR

USER

SERVER

Nwind

OPTIONS

(REMOTE_AUTHID

’lulu’,

REMOTE_PASSWORD

’raiders’)

You

can

use

the

DB2

special

register

USER

to

map

the

authorization

ID

of

the

person

who

is

issuing

the

CREATE

USER

MAPPING

statement

to

the

data

source

authorization

ID

that

is

specified

in

the

REMOTE_AUTHID

user

option.

Related

tasks:

v

“Creating

a

user

mapping

for

an

OLE

DB

data

source”

on

page

324

Related

reference:

v

“CREATE

USER

MAPPING

statement”

in

the

SQL

Reference,

Volume

2

326

Data

Source

Configuration

Guide

Chapter

19.

Configuring

access

to

Oracle

data

sources

This

chapter

explains

how

to

configure

your

federated

server

to

access

data

that

is

stored

in

Oracle

data

sources.

You

can

configure

access

to

Oracle

data

sources

by

using

the

DB2

Control

Center

or

by

issuing

SQL

statements.

This

chapter

lists

the

tasks

that

you

need

to

perform

when

you

configure

the

federated

server,

contains

examples

of

the

SQL

statements

that

you

need,

and

provides

tuning

and

troubleshooting

information

for

configuring

the

federated

server.

Adding

Oracle

to

a

federated

system

Adding

Oracle

data

sources

to

a

federated

server

To

configure

the

federated

server

to

access

Oracle

data

sources,

you

must

provide

the

federated

server

with

information

about

the

data

sources

and

objects

that

you

want

to

access.

You

can

configure

the

federated

server

to

access

Oracle

data

sources

by

using

the

DB2

Control

Center

or

the

DB2

command

line.

The

DB2

Control

Center

includes

a

wizard

to

guide

you

through

the

steps

required

to

configure

the

federated

server.

Prerequisites:

v

The

Oracle

client

software

installed

and

configured

on

the

federated

server.

v

DB2

Information

Integrator

must

be

installed

on

a

server

that

will

act

as

the

federated

server

v

A

federated

database

must

exist

on

the

federated

server

Procedure:

To

add

Oracle

data

sources

to

a

federated

server:

1.

Set

up

and

test

the

Oracle

client

configuration

file.

2.

Set

the

Oracle

environment

variables.

3.

Register

the

wrapper.

4.

Register

the

server

definition.

5.

Create

the

user

mappings.

6.

Test

the

connection

to

the

Oracle

server.

7.

Register

nicknames

for

Oracle

tables,

views,

and

synonyms.

Related

concepts:

v

“DB2

Information

Integrator

installation

process

-

overview”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Fast

track

to

configuring

your

data

sources”

on

page

55

Related

tasks:

v

“Creating

a

federated

database”

on

page

51

v

“Setting

up

and

testing

the

Oracle

client

configuration

file”

on

page

331

©

Copyright

IBM

Corp.

1998,

2004

327

|
|
|

v

“Registering

the

Oracle

wrapper”

on

page

332

v

“Registering

the

server

definitions

for

an

Oracle

data

source”

on

page

334

v

“Creating

the

user

mappings

for

an

Oracle

data

source”

on

page

335

v

“Testing

the

connection

to

the

Oracle

server”

on

page

337

v

“Registering

nicknames

for

Oracle

tables

and

views”

on

page

338

v

“Tuning

and

troubleshooting

the

configuration

to

Oracle

data

sources”

on

page

339

v

“Setting

the

Oracle

environment

variables”

on

page

328

v

“Checking

the

setup

of

the

federated

server”

on

page

37

Related

reference:

v

“Supported

operating

systems

for

DB2

Information

Integrator

(32-bit)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Supported

operating

systems

for

DB2

Information

Integrator

(64-bit)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

Setting

the

Oracle

environment

variables

Setting

the

Oracle

environment

variables

is

part

of

the

larger

task

of

adding

Oracle

to

a

federated

server.

When

you

install

DB2

Information

Integrator,

the

installation

process

attempts

to

set

the

Oracle

environment

variables

in

the

db2dj.ini

file.

The

environment

variables

will

not

be

set

in

the

db2dj.ini

file

if

you:

v

Install

the

Oracle

client

software

after

the

DB2

federated

server

is

set

up.

v

Have

not

installed

the

Oracle

client

software.

The

valid

environment

variables

for

Oracle

are:

v

ORACLE_HOME

v

ORACLE_BASE

(optional)

v

ORA_NLS

(optional)

v

TNS_ADMIN

(optional)

v

NLS_LANG

(optional)

The

optional

environment

variables

must

be

set

manually.

Prerequisites:

A

federated

server

that

is

properly

set

up

to

access

your

data

sources.

This

includes

the

installation

and

configuration

of

any

required

software,

such

as

the

data

source

client

software.

Restrictions:

See

the

topic:

Restrictions

for

the

db2dj.ini

file

Procedure:

To

set

the

required

environment

variables

automatically:

328

Data

Source

Configuration

Guide

|
|

|
|

|

|

|

|

|

|

|

|

|

1.

Install

and

configure

the

client

software

on

the

DB2

federated

server,

if

it

is

not

already

installed.

2.

Set

the

required

environment

variables.

You

can

set

the

environment

variables

automatically

by

running

the

DB2

Information

Integrator

installation

again.

From

the

launchpad,

click

Install

Products

and

follow

the

instructions

in

the

wizard.

To

manually

set

the

Oracle

environment

variables:

1.

Edit

the

db2dj.ini

file.

v

On

federated

servers

running

Windows,

this

file

is

located

in

the

sqllib\cfg

directory.

v

On

federated

servers

running

UNIX,

this

file

is

located

in

the

sqllib/cfg

directory.

The

db2dj.ini

file

contains

configuration

information

about

the

Oracle

client

software

installed

on

your

federated

server.

If

the

file

does

not

exist,

you

can

create

a

new

file

with

the

name

db2dj.ini

using

any

text

editor.

In

the

db2dj.ini

file

you

must

specify

the

fully

qualified

path

for

the

variables,

otherwise

you

will

encounter

errors.

2.

Set

the

following

environment

variables

as

necessary:

ORACLE_HOME

Set

the

ORACLE_HOME

environment

variable

to

the

directory

path

where

the

Oracle

client

software

is

installed.

Specify

the

fully

qualified

path

for

the

variable,

ORACLE_HOME=oracle_home_directory.

For

example,

if

the

Oracle

home

directory

is

\usr\oracle\8.1.7,

the

entry

in

the

db2dj.ini

is

ORACLE_HOME=\usr\oracle\8.1.7

Note:

If

an

individual

user

of

the

federated

instance

has

the

ORACLE_HOME

environment

variable

set,

the

federated

instance

does

not

use

that

setting.

The

federated

instance

uses

only

the

value

of

ORACLE_HOME

that

you

set

in

the

db2dj.ini

file.

ORACLE_BASE

ORACLE_BASE

represents

the

root

of

the

Oracle

client

directory

tree.

If

you

set

the

ORACLE_BASE

variable

when

you

installed

the

Oracle

client

software,

set

the

ORACLE_BASE

environment

variable

on

the

federated

server.

For

example:

ORACLE_BASE=oracle_root_directory

ORA_NLS*

If

your

system

is

using

multiple

versions

of

Oracle,

you

must

ensure

that:

v

The

appropriate

ORA_NLS

variable

is

set.

v

The

corresponding

NLS

data

files

for

the

versions

you

are

using

are

available.

The

location-specific

data

is

stored

in

a

directory

specified

by

the

ORA_NLS*

environment

variable.

For

each

new

version

of

Oracle,

there

is

a

different

ORA_NLS

data

directory.

Table

81.

Oracle

ORA_NLS

variable

that

specifies

the

location

of

locale-specific

data

by

version.

Oracle

version

Environment

variable

7.2

ORA_NLS

Chapter

19.

Configuring

access

to

Oracle

data

sources

329

|

|
|
|

||
|

||

||

Table

81.

Oracle

ORA_NLS

variable

that

specifies

the

location

of

locale-specific

data

by

version.

(continued)

Oracle

version

Environment

variable

7.3

ORA_NLS32

8.x,

9.x

ORA_NLS33

10g

ORA_NLS10

For

example,

for

UNIX

federated

servers

that

access

Oracle

8.1

data

sources,

set

the

ORA_NLS33

environment

variable:

ORA_NLS33=oracle_home_directory/ocommon/nls/admin/<data>

TNS_ADMIN

v

On

federated

servers

that

run

Windows,

the

Oracle

client

looks

for

the

tnsnames.ora

file

in

the

%ORACLE_HOME%\NETWORK\ADMIN

directory,

where

%ORACLE_HOME%

is

defined

in

the

db2dj.ini

file.

If

the

tnsnames.ora

file

is

not

in

the

%ORACLE_HOME%\NETWORK\ADMIN

directory,

you

need

to

set

the

TNS_ADMIN

environment

variable

on

the

federated

server.

v

On

federated

servers

that

run

AIX,

Linux,

and

HP-UX,

the

client

looks

for

the

tnsnames.ora

file

in

the

/etc

directory.

If

the

client

does

not

locate

the

tnsnames.ora

file

in

the

/etc

directory,

then

the

client

looks

for

the

file

in

the

$ORACLE_HOME/network/admin

directory,

where

$ORACLE_HOME

is

defined

in

db2dj.ini

file.

If

client

does

not

find

the

tnsnames.ora

file,

you

need

to

set

the

TNS_ADMIN

environment

variable.

You

set

the

variable

in

the

db2dj.ini

file

to

the

path

where

the

tnsnames.ora

file

is

located.

For

example,

if

the

tnsnames.ora

file

is

in

the

/home/oracle

directory,

you

set

the

variable

to:

TNS_ADMIN=/home/oracle

v

On

federated

servers

that

run

Solaris,

the

client

looks

for

the

tnsnames.ora

file

in

the

/var/opt/oracle

directory.

If

the

client

does

not

find

the

tnsnames.ora

file

in

the

/var/opt/oracle

directory,

then

the

client

looks

for

the

file

in

the

$ORACLE_HOME/network/admin

directory,

where

$ORACLE_HOME

is

defined

in

db2dj.ini

file.

If

client

does

not

find

the

tnsnames.ora

file,

you

need

to

set

the

TNS_ADMIN

environment

variable.

You

set

the

variable

in

the

db2dj.ini

file

to

the

path

where

the

tnsnames.ora

file

is

located.

For

example,

if

the

tnsnames.ora

file

is

in

the

/home/oracle

directory,

you

set

the

variable

to:

TNS_ADMIN=/home/oracle

3.

On

UNIX,

update

the

.profile

file

of

the

DB2

instance

with

the

Oracle

environment

variable.

You

can

do

this

by

issuing

the

following

command:

export

ORACLE_HOME=oracle_home_directory

export

PATH=$ORACLE_HOME/bin:$PATH

Where

oracle_home_directory

is

the

directory

where

the

Oracle

client

software

is

installed.

4.

On

UNIX,

execute

the

DB2

instance

.profile

by

entering:

.

$HOME/

.profile

5.

To

ensure

that

the

environment

variables

are

set

on

the

federated

server,

recycle

the

DB2

instance.

Issue

the

following

commands

to

recycle

the

DB2

instance:

330

Data

Source

Configuration

Guide

|
|

||

||

||

||
|

|
|

|

|
|
|
|
|
|
|
|

|
|

|

db2stop

db2start

Setting

up

Oracle

code

page

conversion:

For

Oracle

code

page

conversion,

you

can

set

the

optional

environment

variable

NLS_LANG.

Each

time

the

Oracle

wrapper

connects

to

an

Oracle

data

source,

the

wrapper

determines

which

code

page

value

to

use

for

that

connection.

If

NLS_LANG

is

set

in

the

db2dj.ini

file

on

the

federated

server,

then

the

wrapper

uses

the

value

in

the

db2dj.ini

file.

The

db2dj.ini

file

contains

configuration

information

about

the

Oracle

client

software

installed

on

your

federated

server.

If

the

NLS_LANG

variable

is

not

set

on

the

federated

server,

the

wrapper

determines

the

territory

and

the

code

page

of

the

federated

database.

The

wrapper

sets

NLS_LANG

to

the

closest

matching

Oracle

locale.

If

there

is

no

closely

matching

locale,

NLS_LANG

is

set

to

American_America.US7ASCII.

If

you

access

a

data

source

that

contains

data

that

uses

the

Chinese

code

page

GB

18030,

your

federated

database

must

use

the

UTF-8

code

page.

For

Oracle

data

sources,

the

Oracle

wrapper

sets

the

Oracle

NLS_LANG

environment

variable

to:

NLS_LANG=Simplified

Chinese_China.UTF8

If

you

are

using

the

Oracle

9i

client,

change

the

NLS_LANG

setting

in

your

db2dj.ini

file

to

Simplified

Chinese_China.AL32UTF8,

so

that

the

Oracle

9i

client

translates

the

GB

18030

data

into

Unicode

correctly.

For

example:

NLS_LANG=Simplified

Chinese_China.AL32UTF8

See

the

documentation

that

accompanies

your

Oracle

software

for

a

list

of

valid

locales.

Related

tasks:

v

“Registering

nicknames

for

Oracle

tables

and

views”

on

page

338

Related

reference:

v

“Restrictions

for

the

db2dj.ini

file”

on

page

59

v

“Restrictions

for

the

db2dj.ini

file”

on

page

59

Setting

up

and

testing

the

Oracle

client

configuration

file

Setting

up

and

testing

the

Oracle

client

configuration

file

is

part

of

the

larger

task

of

adding

Oracle

data

sources

to

federated

servers.

The

client

configuration

file

is

used

to

connect

to

Oracle

databases,

using

the

client

libraries

that

are

installed

on

the

federated

server.

This

file

specifies

the

location

of

each

Oracle

database

server

and

type

of

connection

(protocol)

for

the

database

server.

The

default

name

for

the

Oracle

client

configuration

file

is

tnsnames.ora.

Procedure:

To

set

up

and

test

the

Oracle

client

configuration

file:

1.

Use

the

Oracle

NET8/NET

Configuration

utility

that

comes

with

the

Oracle

client

software.

Chapter

19.

Configuring

access

to

Oracle

data

sources

331

|

|
|

|
|
|
|
|

|
|
|
|

|
|
|

|

|
|
|

|

|
|

|
|

See

the

installation

documentation

from

Oracle

for

more

information

about

using

this

utility.

Within

the

tnsnames.ora

file,

the

SID

(or

SERVICE_NAME)

is

the

name

of

the

Oracle

instance,

and

the

HOST

is

the

host

name

where

the

Oracle

server

is

located.

The

directory

in

which

the

tnsnames.ora

file

is

created

depends

on

the

operating

system

running

on

your

federated

server.

v

On

UNIX

operating

systems,

the

default

path

and

name

of

this

file

is

$ORACLE_HOME/network/admin.

v

On

Windows

operating

systems,

the

default

path

and

name

of

this

file

is

%ORACLE_HOME%\NETWORK\ADMIN.
2.

If

you

want

to

place

the

tnsnames.ora

file

in

a

path

other

than

the

default

search

path,

set

the

TNS_ADMIN

environment

variable

to

specify

the

file

location.

a.

Edit

the

db2dj.ini

file

that

is

located

in

the

sqllib/cfg

directory,

and

set

the

TNS_ADMIN

environment

variable:

TNS_ADMIN=x:/path/

b.

Issue

the

following

commands

to

recycle

the

DB2

instance

and

ensure

that

the

environment

variable

is

set

in

the

program:

db2stop

db2start

3.

Test

the

connection

by

using

the

Oracle

sqlplus

tool

to

ensure

that

the

client

software

is

able

to

connect

to

the

Oracle

server.

The

next

task

in

this

sequence

of

tasks

is

registering

the

Oracle

wrapper.

Related

tasks:

v

“Registering

the

Oracle

wrapper”

on

page

332

v

“Tuning

and

troubleshooting

the

configuration

to

Oracle

data

sources”

on

page

339

Registering

the

Oracle

wrapper

Registering

the

Oracle

wrapper

is

part

of

the

larger

task

of

adding

Oracle

data

sources

a

federated

server.

You

must

register

a

wrapper

to

access

Oracle

data

sources.

Wrappers

are

used

by

federated

servers

to

communicate

with

and

retrieve

data

from

data

sources.

Wrappers

are

implemented

as

a

set

of

library

files.

Procedure:

To

register

a

wrapper,

issue

the

CREATE

WRAPPER

statement

and

specify

the

default

name

for

the

wrapper.

For

example:

CREATE

WRAPPER

NET8

Recommendation:

Use

the

default

wrapper

name

called

NET8.

When

you

register

the

wrapper

by

using

one

of

the

default

names,

the

federated

server

automatically

takes

the

default

library

name

associated

with

that

wrapper.

If

the

wrapper

name

conflicts

with

an

existing

wrapper

name

in

the

federated

database,

you

can

substitute

the

default

wrapper

name

with

a

name

that

you

332

Data

Source

Configuration

Guide

|
|
|
|

|
|

|
|

|
|

choose.

If

you

use

a

name

that

is

different

from

one

of

the

default

names,

you

must

include

the

LIBRARY

parameter

in

the

CREATE

WRAPPER

statement.

For

example,

to

register

a

wrapper

with

the

name

oracle_wrapper

on

the

federated

server

that

uses

the

AIX

operating

system,

issue

the

following

statement:

CREATE

WRAPPER

oracle_wrapper

LIBRARY

’libdb2net8.a’

The

name

of

the

wrapper

library

file

that

you

specify

depends

on

the

operating

system

of

the

federated

server.

See

the

list

of

Oracle

wrapper

library

files

for

the

correct

name

to

specify

in

the

CREATE

WRAPPER

statement.

The

next

task

in

this

sequence

of

tasks

is

registering

the

server

definitions

for

the

Oracle

wrapper.

Related

tasks:

v

“Registering

the

server

definitions

for

an

Oracle

data

source”

on

page

334

Related

reference:

v

“Oracle

wrapper

library

files”

on

page

333

v

“CREATE

WRAPPER

statement”

in

the

SQL

Reference,

Volume

2

Oracle

wrapper

library

files

The

following

table

lists

the

directory

paths

and

library

file

names

for

the

Oracle

wrapper.

When

you

install

DB2

Information

Integrator,

3

library

files

are

added

to

the

directory

path

listed

in

the

table.

For

example,

if

the

federated

server

is

running

on

AIX,

the

wrapper

library

files

added

to

the

directory

path

are

libdb2net8.a,

libdb2net8F.a,

and

libdb2net8U.a.

When

you

register

a

wrapper,

specify

only

the

library

file

name

that

is

listed

in

the

table.

Table

82.

Oracle

wrapper

library

locations

and

file

names

Operating

system

Directory

path

Wrapper

library

file

AIX

/usr/opt/db2_08_01/lib/

libdb2net8F.a

(NET8)

HP-UX

/opt/IBM/db2/V8.1/lib

libdb2net8F.sl

(NET8)

Linux

/opt/IBM/db2/V8.1/lib

libdb2net8F.so

(NET8)

Solaris

/opt/IBM/db2/V8.1/lib

libdb2net8F.so

(NET8)

Windows

%DB2PATH%\bin

db2net8.dll

(NET8)

%DB2PATH%

is

the

environment

variable

that

is

used

to

specify

the

directory

path

where

DB2

Information

Integrator

is

installed

on

Windows.

The

default

Windows

directory

path

is

C:\Program

Files\IBM\SQLLIB.

Related

tasks:

v

“Registering

the

server

definitions

for

an

Oracle

data

source”

on

page

334

Related

reference:

v

“CREATE

WRAPPER

statement”

in

the

SQL

Reference,

Volume

2

Chapter

19.

Configuring

access

to

Oracle

data

sources

333

|

|
|

|
|
|
|

|
|

||

|||

|||

|||

|||

|||

|||
|

|
|
|

|

|

|

|

Registering

the

server

definitions

for

an

Oracle

data

source

Registering

the

server

definitions

for

an

Oracle

data

source

is

part

of

the

larger

task

of

adding

Oracle

data

sources

to

federated

servers.

In

the

federated

database,

you

must

define

each

Oracle

server

that

you

want

to

access.

You

must

first

locate

the

node

name

of

the

Oracle

data

source,

and

then

use

this

node

name

when

you

register

the

server.

Procedure:

To

register

a

server

definition

for

an

Oracle

data

source:

1.

Locate

the

node

name

in

the

Oracle

tnsnames.ora

file.

Example

tnsnames.ora

file:

paris_node

=

(DESCRIPTION

=

(ADDRESS_LIST

=

(ADDRESS

=

(PROTOCOL

=

TCP)(HOST

=

somehost)(PORT

=

1521)))

(CONNECT_DATA

=

(SERVICE_NAME

=

ora9i.seel)))

In

this

example,

the

node

value

to

use

in

the

CREATE

SERVER

statement

is

paris_node.

Although

the

node_name

is

specified

as

an

option

in

the

CREATE

SERVER

SQL

statement,

it

is

required

for

Oracle

data

sources.

2.

Issue

the

CREATE

SERVER

statement.

For

example:

CREATE

SERVER

server_name

TYPE

oracle

VERSION

8.1.7

WRAPPER

net8

OPTIONS

(NODE

’node_name’)

After

the

server

definition

is

created,

use

the

ALTER

SERVER

statement

to

add

or

drop

server

options.

The

next

task

in

this

sequence

of

tasks

is

creating

the

user

mappings

for

an

Oracle

data

source.

Related

tasks:

v

“Creating

the

user

mappings

for

an

Oracle

data

source”

on

page

335

Related

reference:

v

“ALTER

SERVER

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

SERVER

statement”

in

the

SQL

Reference,

Volume

2

v

Appendix

D,

“Server

options

for

federated

systems,”

on

page

575

v

“CREATE

SERVER

statement

-

Examples

for

Oracle

wrapper”

on

page

334

CREATE

SERVER

statement

-

Examples

for

Oracle

wrapper

This

topic

provides

examples

that

show

you

how

to

use

the

CREATE

SERVER

statement

to

register

servers

for

the

Oracle

wrapper.

This

topic

includes

a

complete

example,

which

shows

how

to

register

a

server

with

required

parameters,

and

an

example

with

additional

server

options.

Complete

example:

334

Data

Source

Configuration

Guide

The

following

example

shows

you

how

to

register

a

server

definition

for

an

Oracle

wrapper

by

using

the

CREATE

SERVER

statement:

CREATE

SERVER

oraserver

TYPE

oracle

VERSION

8.1.7

WRAPPER

net8

OPTIONS

(NODE

’paris_node’)

oraserver

A

name

that

you

assign

to

the

Oracle

database

server.

This

name

must

be

unique.

Duplicate

server

names

are

not

allowed.

TYPE

oracle

Specifies

the

type

of

data

source

server

to

which

you

are

configuring

access.

The

type

parameter

for

the

SQLNET

and

NET8

wrappers

must

be

oracle.

VERSION

8.1.7

The

version

of

Oracle

database

server

that

you

want

to

access.

The

supported

Oracle

versions

are

7.3.4,

8.x,

and

9.x.

WRAPPER

net8

The

name

that

you

specified

in

the

CREATE

WRAPPER

statement.

NODE

’paris_node’

The

name

of

the

node

where

the

Oracle

database

server

resides.

Obtain

the

node

name

from

the

tnsnames.ora

file.

Although

the

node

name

is

specified

as

an

option

in

the

CREATE

SERVER

statement,

it

is

required

for

Oracle

data

sources.

Server

option

example:

When

you

create

the

server

definition,

you

can

specify

additional

server

options

in

the

CREATE

SERVER

statement.

These

server

options

include

general

server

options

and

Oracle-specific

server

options.

DB2

assumes

that

all

of

the

Oracle

VARCHAR

columns

contain

trailing

blanks.

If

you

are

certain

that

all

of

the

VARCHAR

columns

in

the

Oracle

database

do

not

contain

trailing

blanks,

you

can

set

a

server

option

to

specify

that

the

data

source

use

a

non-blank

padded

VARCHAR

comparison

semantic.

The

following

example

shows

an

Oracle

server

definition

with

this

server

option:

CREATE

SERVER

oraserver

TYPE

oracle

VERSION

8.1.7

WRAPPER

net8

OPTIONS

(NODE

’paris_node’,

VARCHAR_NO_TRAILING_BLANKS

’Y’)

Use

the

VARCHAR_NO_TRAILING_BLANKS

server

option

when

none

of

the

columns

contains

trailing

blanks.

If

only

some

of

the

VARCHAR

columns

contain

trailing

blanks,

you

can

set

an

option

on

those

specific

columns

with

the

ALTER

NICKNAME

statement.

Related

tasks:

v

“Registering

the

server

definitions

for

an

Oracle

data

source”

on

page

334

Related

reference:

v

“CREATE

SERVER

statement”

in

the

SQL

Reference,

Volume

2

Creating

the

user

mappings

for

an

Oracle

data

source

Creating

the

user

mappings

for

an

Oracle

data

source

is

part

of

the

larger

task

of

adding

Oracle

data

sources

to

federated

servers.

Chapter

19.

Configuring

access

to

Oracle

data

sources

335

|
|
|
|

When

you

attempt

to

access

an

Oracle

server,

the

federated

server

establishes

a

connection

to

the

data

source

using

a

user

ID

and

password

that

are

valid

for

that

data

source.

You

must

define

an

association

(a

user

mapping)

between

each

federated

server

user

ID

and

password

and

the

corresponding

data

source

user

ID

and

password.

Create

a

user

mapping

for

each

user

ID

that

will

access

the

federated

system

to

send

distributed

requests

to

the

Oracle

data

source.

Procedure:

To

map

a

local

user

ID

to

the

Oracle

server

user

ID

and

password,

issue

a

CREATE

USER

MAPPING

statement.

For

example:

CREATE

USER

MAPPING

FOR

userid

SERVER

oraserver

OPTIONS

(REMOTE_AUTHID

’remote_id’,

REMOTE_PASSWORD

’remote_password’)

The

next

task

in

this

sequence

of

tasks

is

testing

the

connection

to

the

Oracle

server.

Related

tasks:

v

“Testing

the

connection

to

the

Oracle

server”

on

page

337

Related

reference:

v

“CREATE

USER

MAPPING

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

USER

MAPPING

statement

-

Examples

for

Oracle

wrapper”

on

page

336

CREATE

USER

MAPPING

statement

-

Examples

for

Oracle

wrapper

This

topic

provides

examples

that

show

you

how

to

use

the

CREATE

USER

MAPPING

statement

to

map

a

federated

server

user

ID

to

an

Oracle

server

user

ID

and

password.

This

topic

includes

a

complete

example

with

required

parameters

and

an

example

that

shows

you

how

to

use

the

DB2

special

register

USER

with

the

CREATE

USER

MAPPING

statement.

Complete

example:

The

following

example

shows

how

to

map

a

federated

server

user

ID

to

an

Oracle

server

user

ID

and

password:

CREATE

USER

MAPPING

FOR

robert

SERVER

oraserver

OPTIONS

(REMOTE_AUTHID

’rob’,

REMOTE_PASSWORD

’then4now’)

robert

Specifies

the

local

user

ID

that

you

are

mapping

to

a

user

ID

defined

at

an

Oracle

server.

SERVER

oraserver

Specifies

the

name

of

the

Oracle

server

that

you

defined

in

the

CREATE

SERVER

statement.

REMOTE_AUTHID

’rob’

Specifies

the

user

ID

at

the

Oracle

database

server

to

which

you

are

mapping

robert.

Use

single

quotation

marks

to

preserve

the

case

of

this

value

unless

you

set

the

FOLD_ID

server

option

to

’U’

or

’L’

in

the

CREATE

SERVER

statement.

336

Data

Source

Configuration

Guide

REMOTE_PASSWORD

’then4now’

Specifies

the

password

that

is

associated

with

’rob’.

Use

single

quotation

marks

to

preserve

the

case

of

this

value

unless

you

set

the

FOLD_PW

server

option

to

’U’

or

’L’

in

the

CREATE

SERVER

statement.

Special

register

example:

The

following

example

shows

a

CREATE

USER

MAPPING

statement

that

includes

the

special

register

USER:

CREATE

USER

MAPPING

FOR

USER

SERVER

oraserver

OPTIONS

(REMOTE_AUTHID

’rob’,

REMOTE_PASSWORD

’then4now’)

You

can

use

the

DB2

special

register

USER

to

map

the

authorization

ID

of

the

person

who

is

issuing

the

CREATE

USER

MAPPING

statement

to

the

data

source

authorization

ID

that

is

specified

in

the

REMOTE_AUTHID

user

option.

Restriction:

The

user

ID

at

the

Oracle

data

source

must

have

been

created

using

the

Oracle

create

user

command

with

the

’identified

by’

clause,

instead

of

the

’identified

externally’

clause.

Related

tasks:

v

“Creating

the

user

mappings

for

an

Oracle

data

source”

on

page

335

Related

reference:

v

“CREATE

USER

MAPPING

statement”

in

the

SQL

Reference,

Volume

2

Testing

the

connection

to

the

Oracle

server

Testing

the

connection

to

the

Oracle

server

is

part

of

the

larger

task

of

adding

Oracle

data

sources

to

federated

servers.

You

can

test

the

connection

to

the

Oracle

server

by

using

the

server

definition

and

user

mappings

that

you

defined.

Procedure:

To

test

the

connection:

1.

Open

a

pass-through

session

to

issue

an

SQL

SELECT

statement

on

the

Oracle

system

tables.

For

example:

SET

PASSTHRU

remote_server_name

SELECT

count(*)

FROM

sys.all_tables

SET

PASSTHRU

RESET

If

the

SQL

SELECT

statement

returns

a

count,

your

server

definition

and

your

user

mapping

are

set

up

properly.

2.

If

the

SQL

SELECT

statement

returns

an

error,

you

might

need

to:

v

Check

the

Oracle

server

to

make

sure

that

it

is

configured

for

incoming

connections.

v

Check

your

user

mapping

to

make

sure

that

the

settings

for

the

REMOTE_AUTHID

and

REMOTE_PASSWORD

options

are

valid

for

the

connections

to

the

Oracle

server.

Alter

the

user

mapping,

or

create

another

user

mapping

as

necessary.

Chapter

19.

Configuring

access

to

Oracle

data

sources

337

v

Check

the

Oracle

client

software

on

the

DB2

federated

server

to

make

sure

that

it

is

installed

and

configured

correctly

to

connect

to

the

Oracle

server.

v

Check

the

settings

of

your

DB2

federated

variables

to

verify

that

they

are

correct

for

the

Oracle

server.

These

variables

include

the

system

environment

variables,

the

db2dj.ini

variables,

and

the

DB2

Profile

Registry

(db2set)

variable.

v

Check

your

server

definition.

If

necessary,

drop

it

and

create

it

again.

The

next

task

in

this

sequence

of

tasks

is

registering

nicknames

for

Oracle

tables

and

views.

Related

tasks:

v

“Adding

Oracle

data

sources

to

a

federated

server”

on

page

327

v

“Setting

up

and

testing

the

Oracle

client

configuration

file”

on

page

331

v

“Registering

nicknames

for

Oracle

tables

and

views”

on

page

338

v

“Setting

the

Oracle

environment

variables”

on

page

328

Related

reference:

v

“ALTER

USER

MAPPING

statement”

in

the

SQL

Reference,

Volume

2

Registering

nicknames

for

Oracle

tables

and

views

Registering

nicknames

for

Oracle

tables

and

views

is

part

of

the

larger

task

of

adding

Oracle

data

sources

to

federated

servers.

For

each

Oracle

server

that

you

define,

register

a

nickname

for

each

table

or

view

that

you

want

to

access.

Use

these

nicknames,

instead

of

the

names

of

the

data

source

objects,

when

you

query

the

Oracle

servers.

The

federated

database

relies

on

catalog

statistics

for

nicknamed

objects

to

optimize

query

processing.

These

statistics

are

gathered

when

you

register

a

nickname

for

a

data

source

object

by

using

the

CREATE

NICKNAME

statement.

The

federated

database

verifies

the

presence

of

the

object

at

the

data

source,

and

then

attempts

to

gather

existing

data

source

statistical

data.

Information

that

is

useful

to

the

optimizer

is

read

from

the

data

source

catalogs

and

placed

into

the

global

catalog

on

the

federated

server.

Because

some

or

all

of

the

data

source

catalog

information

might

be

used

by

the

optimizer,

update

statistics

(using

the

data

source

command

that

is

equivalent

to

the

DB2

RUNSTATS

command)

at

the

data

source

before

you

register

a

nickname.

Procedure:

To

register

a

nickname,

issue

the

CREATE

NICKNAME

statement.

For

example:

CREATE

NICKNAME

oracle_name

FOR

oraserver."remote_schema"."remote.table"

Nicknames

can

be

up

to

128

characters

in

length.

Repeat

this

step

for

each

Oracle

table

or

view

for

which

you

want

to

create

a

nickname.

338

Data

Source

Configuration

Guide

When

you

create

the

nickname,

DB2

will

use

the

connection

to

query

the

data

source

catalog.

This

query

tests

your

connection

to

the

data

source

by

using

the

nickname.

If

the

connection

does

not

work,

you

will

receive

an

error

message.

Related

reference:

v

“RUNSTATS

Command”

in

the

Command

Reference

v

“CREATE

NICKNAME

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

NICKNAME

statement

-

Examples

for

Oracle

wrapper”

on

page

339

CREATE

NICKNAME

statement

-

Examples

for

Oracle

wrapper

This

topic

provides

an

example

that

shows

you

how

to

use

the

CREATE

NICKNAME

statement

to

register

a

nickname

for

an

Oracle

table

or

view

that

you

want

to

access.

This

example

shows

how

to

specify

a

remote

object

for

the

Oracle

server

under

which

the

nickname

is

assigned:

CREATE

NICKNAME

PARISINV

FOR

oraserver."france"."inventory"

PARISINV

A

unique

nickname

used

to

identify

the

Oracle

table

or

view.

Note:

the

nickname

is

a

two-part

name—the

schema

and

the

nickname.

If

you

omit

the

schema

when

you

register

the

nickname,

the

schema

of

the

nickname

will

be

the

authorization

ID

of

the

user

who

is

registering

the

nickname.

oraserver.″france″.″inventory″

A

three-part

identifier

for

the

remote

object:

v

oraserver

is

the

name

that

you

assigned

to

the

Oracle

database

server

in

the

CREATE

SERVER

statement.

v

france

is

the

name

of

the

remote

schema

to

which

the

table

or

view

belongs.

v

inventory

is

the

name

of

the

remote

table

or

view

that

you

want

to

access.

The

federated

server

folds

the

names

of

the

Oracle

schemas

and

tables

to

uppercase

unless

you

enclose

the

names

in

quotation

marks.

Related

tasks:

v

“Registering

nicknames

for

Oracle

tables

and

views”

on

page

338

Related

reference:

v

“CREATE

NICKNAME

statement”

in

the

SQL

Reference,

Volume

2

Tuning

and

troubleshooting

the

configuration

to

Oracle

data

sources

After

you

set

up

the

configuration

to

Oracle

data

sources,

you

can

modify

the

configuration

to

improve

performance.

Connectivity

problems

For

each

HOST

in

the

DESCRIPTION

section

of

the

tnsnames.ora

file,

you

might

need

to

update

the

TCP/IP

hosts

file.

Whether

you

update

this

file

depends

on

Chapter

19.

Configuring

access

to

Oracle

data

sources

339

how

TCP/IP

is

configured

on

your

network.

Part

of

the

network

must

translate

the

remote

host

name

that

is

specified

in

the

DESCRIPTION

section

in

the

tnsnames.ora

file

to

an

address.

If

your

network

has

a

named

server

that

recognizes

the

host

name,

you

do

not

need

to

update

the

TCP/IP

hosts

file.

Otherwise,

you

need

an

entry

for

the

remote

host.

See

your

network

administrator

to

determine

how

your

network

is

configured.

If

you

need

to

update

the

hosts

file,

the

file

location

depends

on

the

federated

server

operating

system:

On

federated

servers

that

run

UNIX

Update

the

/etc/hosts

file.

On

federated

servers

that

run

Windows

Update

the

x:\winnt\system32\drivers\etc\hosts

file.

Related

tasks:

v

“Adding

Oracle

data

sources

to

a

federated

server”

on

page

327

Related

reference:

v

“db2set

-

DB2

Profile

Registry

Command”

in

the

Command

Reference

340

Data

Source

Configuration

Guide

Chapter

20.

Configuring

access

to

Sybase

data

sources

This

chapter

explains

how

to

configure

your

federated

server

to

access

data

that

is

stored

in

Sybase

data

sources.

You

can

configure

access

to

Sybase

data

sources

by

using

the

DB2

Control

Center

or

by

issuing

SQL

statements.

This

chapter

lists

the

tasks

that

you

need

to

perform

when

you

configure

the

federated

server,

contains

examples

of

the

SQL

statements

that

you

need,

and

provides

tuning

and

troubleshooting

information

for

configuring

the

federated

server.

Adding

Sybase

to

a

federated

system

Adding

Sybase

data

sources

to

a

federated

server

To

configure

the

federated

server

to

access

Sybase

data

sources,

you

must

provide

the

federated

server

with

information

about

the

data

sources

and

objects

that

you

want

to

access.

You

can

configure

the

federated

server

to

access

Sybase

data

sources

by

using

the

DB2

Control

Center

or

the

DB2

command

line.

The

DB2

Control

Center

includes

a

wizard

to

guide

you

through

the

steps

required

to

configure

the

federated

server.

Prerequisites:

v

DB2

Information

Integrator

must

be

installed

on

a

server

that

will

act

as

the

federated

server

v

A

federated

database

must

exist

on

the

federated

server

Procedure:

To

add

Sybase

data

sources

to

a

federated

server:

1.

Set

up

and

test

the

Sybase

client

configuration

file.

2.

Set

the

Sybase

environment

variables.

3.

Register

the

wrapper.

4.

Register

the

server

definition.

5.

Create

the

user

mappings.

6.

Test

the

connection

to

the

Sybase

server.

7.

Register

nicknames

for

Sybase

tables

and

views.

Related

concepts:

v

“DB2

Information

Integrator

installation

process

-

overview”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Fast

track

to

configuring

your

data

sources”

on

page

55

Related

tasks:

v

“Creating

a

federated

database”

on

page

51

v

“Checking

the

setup

of

the

federated

server”

on

page

37

v

“Setting

up

and

testing

the

Sybase

client

configuration

file”

on

page

344

©

Copyright

IBM

Corp.

1998,

2004

341

|
|
|

v

“Registering

the

Sybase

wrapper”

on

page

345

v

“Registering

the

server

definitions

for

a

Sybase

data

source”

on

page

347

v

“Creating

a

user

mapping

for

a

Sybase

data

source”

on

page

349

v

“Testing

the

connection

to

the

Sybase

server”

on

page

351

v

“Registering

nicknames

for

Sybase

tables

and

views”

on

page

352

v

“Tuning

and

troubleshooting

the

configuration

to

Sybase

data

sources”

on

page

353

v

“Setting

the

Sybase

environment

variables”

on

page

342

Related

reference:

v

“Supported

operating

systems

for

DB2

Information

Integrator

(32-bit)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Supported

operating

systems

for

DB2

Information

Integrator

(64-bit)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

Setting

the

Sybase

environment

variables

Setting

the

Sybase

environment

variables

is

part

of

the

larger

task

of

adding

Sybase

to

a

federated

server.

When

you

install

DB2

Information

Integrator,

the

installation

process

attempts

to

set

the

Sybase

environment

variables

in

the

db2dj.ini

file.

The

environment

variables

will

not

be

set

in

the

db2dj.ini

file

if

you:

v

Install

the

Sybase

client

software

after

the

federated

server

is

set

up.

v

Have

not

installed

the

Sybase

client

software.

The

valid

environment

variables

for

Sybase

are:

v

SYBASE

v

SYBASE_OCS

(required

for

Sybase,

Version

12

or

later)

v

SYBASE_CHARSET

(optional)

The

optional

environment

variable

must

be

set

manually.

Prerequisites:

A

federated

server

that

is

properly

set

up

to

access

your

data

sources.

This

includes

the

installation

and

configuration

of

any

required

software,

such

as

the

data

source

client

software.

Restrictions:

See

the

topic:

Restrictions

for

the

db2dj.ini

file

Procedure:

To

set

the

required

environment

variables

automatically:

1.

Install

and

configure

the

client

software

on

the

federated

server,

if

it

is

not

already

installed.

342

Data

Source

Configuration

Guide

|
|

|
|

|

|

|

2.

Set

the

required

environment

variables.

You

can

set

the

environment

variables

automatically

by

running

the

DB2

Information

Integrator

installation

again.

From

the

launchpad,

click

Install

Products

and

follow

the

instructions

in

the

wizard.

To

manually

set

the

environment

variables:

1.

Edit

the

db2dj.ini

file.

v

On

federated

servers

running

Windows,

this

file

is

located

in

the

sqllib\cfg

directory.

v

On

federated

servers

running

UNIX,

this

file

is

located

in

the

sqllib/cfg

directory.

The

db2dj.ini

file

contains

configuration

information

about

the

Sybase

client

software

installed

on

your

federated

server.

If

the

file

does

not

exist,

you

can

create

a

new

file

with

the

name

db2dj.ini

name

using

any

text

editor.

In

the

db2dj.ini

file

you

must

specify

the

fully

qualified

path

for

the

variables,

otherwise

you

will

encounter

errors.

2.

Set

the

following

environment

variables

as

necessary:

SYBASE

Set

the

SYBASE

environment

variable

to

the

directory

path

where

the

Sybase

Open

Client

software

is

installed.

Specify

the

fully

qualified

path

for

this

variable.

For

example:

SYBASE=sybase_home_directory

For

example,

if

the

directory

path

is

D:/djxclient/sybase/V12/OCS-
12_5,

the

SYBASE

variable

that

you

specify

is:

SYBASE=D:/djxclient/sybase/V12

SYBASE_OCS

For

Sybase

Open

Client

Version

12

or

later,

set

the

SYBASE_OCS

environment

variable

to

the

name

of

the

OCS

directory.

Do

not

specify

the

fully

qualified

path.

The

SYBASE_OCS

environment

variable

specifies

the

version

and

release

of

the

Sybase

Open

Client

that

is

installed:

SYBASE_OCS=OCS-version_release

For

example,

if

the

directory

path

is

D:/djxclient/sybase/V12/OCS-
12_5,

the

directory

that

you

specify

for

the

SYBASE_OCS

variable

is:

SYBASE_OCS=OCS-12_5

SYBASE_CHARSET

Set

the

SYBASE_CHARSET

variable

to

the

name

of

the

character

set

that

you

want

to

use.

The

Sybase

wrapper

uses

the

SYBASE_CHARSET

to

determine

which

character

set

to

use.

If

the

SYBASE_CHARSET

variable

is

not

set,

then

the

wrapper

uses

the

Sybase

character

set

that

matches

the

one

specified

on

the

code

page

of

the

federated

server.

If

there

is

no

matching

Sybase

character

set,

the

wrapper

uses

the

iso_1

character

set.

You

can

see

a

list

of

valid

character

set

names

in

the

$SYBASE\charsets

directory.

For

example:

SYBASE_CHARSET=iso_1

iso_1

is

the

name

of

the

character

set

that

you

want

to

use.

3.

Update

the

.profile

file

of

the

federated

database

instance

with

the

SYBASE

environment

variable.

You

can

do

this

by

issuing

the

following

commands:

Chapter

20.

Configuring

access

to

Sybase

data

sources

343

|
|
|

|

|
|

|

|
|

|

|

|

export

SYBASE=<sybase_home_directory>

export

SYBASE_OCS=OCS-version_release

export

PATH=$SYBASE/bin:$PATH

4.

From

the

home

directory,

run

the

federated

database

instance

.profile

by

entering:

.

.profile

5.

To

ensure

that

the

environment

variables

are

set

on

the

federated

server,

recycle

the

federated

database

instance.

Issue

the

following

commands

to

recycle

the

federated

database

instance:

db2stop

db2start

The

next

task

in

this

sequence

of

tasks

is

registering

the

Sybase

wrapper.

Related

tasks:

v

“Registering

nicknames

for

Sybase

tables

and

views”

on

page

352

Related

reference:

v

“Restrictions

for

the

db2dj.ini

file”

on

page

59

v

“Restrictions

for

the

db2dj.ini

file”

on

page

59

Setting

up

and

testing

the

Sybase

client

configuration

file

Setting

up

and

testing

the

Sybase

client

configuration

file

is

part

of

the

larger

task

of

adding

Sybase

data

sources

to

federated

servers.

The

client

configuration

file

is

used

to

connect

to

Sybase

using

the

Sybase

Open

Client

libraries

that

are

installed

on

the

federated

server.

This

file

specifies

the

location

of

each

Sybase

SQL

Server

and

Adaptive

Server

Enterprise

instance

and

the

type

of

connection

(protocol)

for

the

database

server.

You

must

set

up

a

client

configuration

file

on

each

instance

in

the

federated

server

that

will

be

used

to

connect

to

Sybase.

The

steps

that

you

must

use

to

set

up

and

test

this

file

depend

on

the

operating

system

that

you

are

running

on

your

federated

server.

Procedure:

To

set

up

and

test

the

client

configuration

file:

On

UNIX

operating

systems:

1.

Set

up

the

client

configuration

file

by

using

the

utility

that

comes

with

the

Sybase

Open

Client

software.

This

file

is

created

in

the

$SYBASE

directory.

The

name

of

the

file

is

interfaces.

See

the

Sybase

documentation

for

more

information

about

using

this

utility.

2.

Make

the

interfaces

file

accessible

to

the

federated

database

instance

by

using

one

of

the

following

methods:

v

Copy

this

file

to

the

$HOME/sqllib

directory

of

the

federated

database

instance.

v

Use

the

ln

command

to

create

a

link

from

the

$sybase

directory

to

the

interfaces

file

in

the

instance

$HOME/sqllib

directory.

For

example:

ln

-s

-f

/home/sybase/interfaces

/home/db2djinst1/sqllib

344

Data

Source

Configuration

Guide

|
|
|
|
|

|

v

Use

the

IFILE

server

option

to

specify

the

full

path

to

the

Sybase

interfaces

file.
3.

Test

the

connection

to

ensure

that

the

Sybase

Open

client

software

is

able

to

connect

to

the

Sybase

server.

Use

an

appropriate

Sybase

query

utility,

such

as

isql.

For

example:

isql

-Ssybnode

-Umary

-I/home/db2djinst1/sqllib/interfaces

On

Windows

operating

systems:

1.

Set

up

the

client

configuration

file

by

using

the

utility

that

comes

with

the

Sybase

Open

Client

software.

This

file

is

created

in

the

%SYBASE%\ini

directory.

The

name

of

the

file

is

sql.ini.

See

the

Sybase

documentation

for

more

information

about

using

this

utility.

2.

Make

this

sql.ini

file

accessible

to

the

federated

database

instance

by

using

copying

this

file

to

the

%DB2PATH%

directory

of

the

federated

database

instance.

The

default

path

is

c:\Program

Files\IBM\SQLLIB.

Because

DB2

Information

Integrator

uses

interfaces

as

the

default

name

for

the

Sybase

client

configuration

file,

rename

the

Windows

sql.ini

file

in

the

c:\Program

Files\IBM\SQLLIB

directory

to

interfaces.

Required:

If

you

do

not

rename

the

sql.ini

file

to

interfaces,

you

must

use

the

IFILE

server

option

when

you

create

the

server

definition.

3.

Test

the

connection

to

ensure

that

the

Sybase

Open

client

software

is

able

to

connect

to

the

Sybase

server.

Use

an

appropriate

Sybase

query

utility,

such

as

isql.

For

example:

isql

-Ssybnode

-Umary

-I"c:\Program

Files\IBM\SQLLIB\interfaces"

The

next

task

in

this

sequence

of

tasks

is

registering

the

Sybase

wrapper.

Related

tasks:

v

“Registering

the

Sybase

wrapper”

on

page

345

Registering

the

Sybase

wrapper

Registering

the

Sybase

wrapper

is

part

of

the

larger

task

of

adding

Sybase

data

sources

to

a

federated

server.

You

must

register

a

wrapper

to

access

Sybase

data

sources.

Wrappers

are

used

by

federated

servers

to

communicate

with

and

retrieve

data

from

data

sources.

Wrappers

are

implemented

as

a

set

of

library

files.

Procedure:

To

register

a

wrapper,

issue

the

CREATE

WRAPPER

statement

and

specify

the

default

name

for

the

wrapper.

For

example:

CREATE

WRAPPER

CTLIB

Recommendation:

Use

the

default

wrapper

name

called

CTLIB.

When

you

register

the

wrapper

by

using

the

default

name,

the

federated

server

automatically

takes

the

default

library

name

that

is

associated

with

that

wrapper

name.

If

the

wrapper

name

conflicts

with

an

existing

wrapper

name

in

the

federated

database,

you

can

substitute

the

default

wrapper

name

with

a

name

you

choose.

If

Chapter

20.

Configuring

access

to

Sybase

data

sources

345

|

|

you

use

a

name

that

is

different

from

the

default

name,

you

must

include

the

LIBRARY

parameter

in

the

CREATE

WRAPPER

statement.

For

example,

to

register

a

wrapper

with

the

name

sybase_wrapper

on

the

federated

server

that

uses

the

AIX

operating

system,

issue

the

following

statement:

CREATE

WRAPPER

sybase_wrapper

LIBRARY

’libdb2ctlib.a’

The

name

of

the

wrapper

library

file

that

you

specify

depends

on

the

operating

system

of

the

federated

server.

See

the

list

of

Sybase

wrapper

library

files

for

the

correct

name

to

specify

in

the

CREATE

WRAPPER

statement.

The

next

task

in

this

sequence

of

tasks

is

registering

the

server

definitions

for

the

Sybase

wrapper.

Related

tasks:

v

“Registering

the

server

definitions

for

a

Sybase

data

source”

on

page

347

Related

reference:

v

“Sybase

wrapper

library

files”

on

page

346

v

“CREATE

WRAPPER

statement”

in

the

SQL

Reference,

Volume

2

Sybase

wrapper

library

files

The

following

table

lists

the

directory

paths

and

library

file

names

for

the

Sybase

wrapper.

When

you

install

DB2

Information

Integrator,

3

library

files

are

added

to

the

directory

path

listed

in

the

table.

For

example,

if

the

federated

server

is

running

on

AIX,

the

wrapper

library

files

added

to

the

directory

path

are

libdb2ctlib.a,

libdb2ctlibF.a,

and

libdb2ctlibU.a.

When

you

register

a

wrapper,

specify

only

the

library

file

name

that

is

listed

in

the

table.

Table

83.

Sybase

wrapper

library

locations

and

file

names

Operating

system

Directory

path

Wrapper

library

file

AIX

/usr/opt/db2_08_01/lib/

libdb2ctlib.a

(CTLIB)

HP-UX

/opt/IBM/db2/V8.1/lib

libdb2ctlib.sl

(CTLIB)

Linux

/opt/IBM/db2/V8.1/lib

libdb2ctlib.so

(CTLIB)

Solaris

/opt/IBM/db2/V8.1/lib

libdb2ctlib.so

(CTLIB)

Windows

%DB2PATH%\bin

db2ctlib.dll

(CTLIB)

%DB2PATH%

is

the

environment

variable

that

is

used

to

specify

the

directory

path

where

DB2

Information

Integrator

is

installed

on

Windows.

The

default

Windows

directory

path

is

C:\Program

Files\IBM\SQLLIB.

Related

tasks:

v

“Registering

the

Sybase

wrapper”

on

page

345

346

Data

Source

Configuration

Guide

|

|
|

|
|
|
|

|
|

||

|||

|||

|||

|||

|||

|||
|

|
|
|

|

|

Registering

the

server

definitions

for

a

Sybase

data

source

Registering

the

server

definitions

for

a

Sybase

data

source

is

part

of

the

larger

task

of

adding

Sybase

data

sources

to

federated

servers.

In

the

federated

database,

you

must

define

each

Sybase

server

that

you

want

to

access.

Restriction:

If

you

use

the

DB2

Control

Center

to

register

the

server

definitions

for

a

Sybase

data

source,

the

Sybase

client

configuration

file,

interfaces,

must

be

in

the

default

directory:

v

On

federated

servers

that

run

UNIX,

default

directory

is

$HOME/sqllib/

v

On

federated

servers

that

run

Windows,

default

directory

is

c:\Program

Files\IBM\SQLLIB

Procedure:

You

can

register

a

server

definition

from

the

DB2

Control

Center

or

the

DB2

command

line:

v

To

do

this

task

from

the

DB2

Control

Center,

use

the

Federated

Objects

wizard

or

right-click

the

Server

Definitions

folder

and

click

Create.

The

Discover

tool

retrieves

the

node

names

for

the

Sybase

servers.

You

must

specify

the

information

for

the

DBNAME

server

option

to

register

the

server

definition.

v

To

do

this

task

from

the

DB2

command

line,

use

the

CREATE

SERVER

statement:

1.

Locate

the

node

name

in

the

Sybase

interfaces

file.

Example

interfaces

file

on

UNIX

operating

systems:

sybase119

query

tcp

ether

anaconda

4100

Example

interfaces

file

on

Windows

NT

or

Windows

2000

operating

systems:

[sybase119]

query=TCP,anaconda,4100

In

these

examples,

the

node

name

is

sybase119.

The

node

name

is

followed

by

the

type

of

connection

(TCP/IP)

and

the

host

name

(anaconda).

Although

the

node

name

is

specified

as

an

option

in

the

CREATE

SERVER

statement,

it

is

required

for

Sybase

data

sources.

2.

Issue

the

CREATE

SERVER

statement.

For

example:

CREATE

SERVER

server_name

TYPE

SYBASE

VERSION

12.0

WRAPPER

CTLIB

OPTIONS

(NODE

’sybnode’,

DBNAME

’sybdb’)

After

the

server

definition

is

created,

use

the

ALTER

SERVER

statement

to

add

or

drop

server

options.

Important:

If

you

did

not

rename

the

sql.ini

file

to

interfaces

when

you

set

up

the

Sybase

client

configuration

file,

you

must

use

the

IFILE

server

option

when

you

register

the

server

definition.

Chapter

20.

Configuring

access

to

Sybase

data

sources

347

|
|
|

|

|
|

|
|

|
|
|
|

The

next

task

in

this

sequence

of

tasks

is

creating

a

user

mapping

for

a

Sybase

data

source.

Related

tasks:

v

“Creating

a

user

mapping

for

a

Sybase

data

source”

on

page

349

Related

reference:

v

“ALTER

SERVER

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

SERVER

statement”

in

the

SQL

Reference,

Volume

2

v

Appendix

D,

“Server

options

for

federated

systems,”

on

page

575

v

“CREATE

SERVER

statement

-

Examples

for

Sybase

wrapper”

on

page

348

CREATE

SERVER

statement

-

Examples

for

Sybase

wrapper

This

topic

provides

examples

that

show

you

how

to

use

the

CREATE

SERVER

statement

to

register

server

definitions

for

the

Sybase

wrapper.

This

topic

includes

a

complete

example,

which

shows

how

to

register

a

server

definition

with

required

parameters,

and

an

example

with

additional

server

options.

Complete

example:

The

following

example

shows

you

how

to

register

a

server

definition

for

a

Sybase

wrapper

by

issuing

the

CREATE

SERVER

statement:

CREATE

SERVER

SYBSERVER

TYPE

SYBASE

VERSION

12.0

WRAPPER

CTLIB

OPTIONS

(NODE

’sybnode’,

DBNAME

’sybdb’)

SYBSERVER

A

name

that

you

assign

to

the

Sybase

server.

This

name

must

be

unique.

Duplicate

server

names

are

not

allowed.

TYPE

SYBASE

Specifies

Sybase

as

the

type

of

data

source

to

which

you

are

configuring

access.

The

TYPE

parameter

for

the

CTLIB

wrapper

must

be

SYBASE.

VERSION

12.0

The

version

of

the

Sybase

database

server

software

that

you

want

to

access.

The

supported

versions

are

11,

11.5,

11.9,

12,

and

12.5.

WRAPPER

CTLIB

The

wrapper

name

that

you

specified

in

the

CREATE

WRAPPER

statement.

NODE

’sybnode’

The

name

of

the

node

where

SYBSERVER

resides.

Obtain

the

node

name

from

the

interfaces

file.

This

value

is

case

sensitive.

Although

the

node

name

is

specified

as

an

option

in

the

CREATE

SERVER

statement,

it

is

required

for

Sybase

data

sources.

DBNAME

’sybdb’

The

name

of

the

Sybase

database

that

you

want

to

access.

Obtain

this

name

from

the

Sybase

server.

This

value

is

case

sensitive.

Although

the

database

name

is

specified

as

an

option

in

the

CREATE

SERVER

statement,

it

is

required

for

Sybase

data

sources.

348

Data

Source

Configuration

Guide

|
|

Important:

If

you

do

not

rename

the

sql.ini

file

to

interfaces

when

you

set

up

the

Sybase

client

configuration

file,

you

must

use

the

IFILE

server

option

when

you

register

the

server

definition.

Server

option

examples:

When

you

register

the

server,

you

can

specify

additional

server

options

in

the

CREATE

SERVER

statement.

These

server

options

include

general

server

options

and

Sybase-specific

server

options.

The

following

example

shows

how

to

use

the

TIMEOUT

server

option

when

you

register

a

server

definition

on

a

federated

server

that

runs

UNIX:

CREATE

SERVER

SYBSERVER

TYPE

SYBASE

VERSION

12.0

WRAPPER

CTLIB

OPTIONS

(NODE

’sybnode’,

DBNAME

’sybdb’,

TIMEOUT

’60’)

The

timeout

value

is

the

number

of

seconds

that

the

wrapper

waits

for

a

response

from

the

Sybase

server.

Use

the

TIMEOUT

option

to

avoid

deadlocks

on

transactions.

The

following

example

shows

how

to

use

the

IFILE

server

option

when

you

register

a

server

definition

on

a

federated

server

that

runs

Windows:

CREATE

SERVER

SYBSERVER

TYPE

SYBASE

VERSION

12.0

WRAPPER

CTLIB

OPTIONS

(NODE

’sybnode’,

DBNAME

’sybdb’,

IFILE

’C:\Sybase\ini\sql.ini’)

The

IFILE

value

is

full

path

and

name

of

the

Sybase

Open

Client

interfaces

file.

Use

this

server

option

if

you

did

not

copy

or

link

the

sql.ini

file

as

$SQLLIB\interfaces

(on

UNIX

systems)

or

as

%SQLLIB%/interfaces

(on

Windows

operating

systems).

The

additional

Sybase-specific

server

options

are:

v

LOGIN_TIMEOUT

v

PACKET_SIZE

Related

tasks:

v

“Registering

the

server

definitions

for

a

Sybase

data

source”

on

page

347

Related

reference:

v

“CREATE

SERVER

statement”

in

the

SQL

Reference,

Volume

2

v

Appendix

D,

“Server

options

for

federated

systems,”

on

page

575

Creating

a

user

mapping

for

a

Sybase

data

source

Creating

a

user

mapping

for

a

Sybase

data

source

is

part

of

the

larger

task

of

adding

Sybase

data

sources

to

federated

servers.

When

you

attempt

to

access

a

Sybase

server,

the

federated

server

establishes

a

connection

to

the

data

source

using

a

user

ID

and

password

that

are

valid

for

that

data

source.

You

must

define

an

association

(a

user

mapping)

between

each

federated

server

user

ID

and

password

and

the

corresponding

data

source

user

ID

and

password.

Create

a

user

mapping

for

each

user

ID

that

will

access

the

federated

system

to

send

distributed

requests

to

the

Sybase

data

source.

Chapter

20.

Configuring

access

to

Sybase

data

sources

349

|
|
|
|

|
|
|
|

Procedure:

To

map

a

local

user

ID

to

the

Sybase

server

user

ID

and

password,

issue

a

CREATE

USER

MAPPING

statement.

For

example:

CREATE

USER

MAPPING

FOR

userid

SERVER

SYBSERVER

OPTIONS

(REMOTE_AUTHID

’remote_id’,

REMOTE_PASSWORD

’remote_password’)

The

next

task

in

this

sequence

of

tasks

is

testing

the

connection

to

the

Sybase

server.

Related

tasks:

v

“Testing

the

connection

to

the

Sybase

server”

on

page

351

Related

reference:

v

“CREATE

USER

MAPPING

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

USER

MAPPING

statement

-

Examples

for

Sybase

wrapper”

on

page

350

CREATE

USER

MAPPING

statement

-

Examples

for

Sybase

wrapper

This

topic

provides

examples

that

show

you

how

to

use

the

CREATE

USER

MAPPING

statement

to

map

a

federated

server

user

ID

to

a

Sybase

server

user

ID

and

password.

This

topic

includes

a

complete

example

with

required

parameters

and

an

example

that

shows

you

how

to

use

the

DB2

special

register

USER

with

the

CREATE

USER

MAPPING

statement.

Complete

example:

The

following

example

shows

how

to

map

a

federated

server

user

ID

to

a

Sybase

server

user

ID

and

password:

CREATE

USER

MAPPING

FOR

maria

SERVER

SYBSERVER

OPTIONS

(REMOTE_AUTHID

’mary’,

REMOTE_PASSWORD

’day2night’)

maria

Specifies

the

local

user

ID

that

you

are

mapping

to

a

user

ID

that

is

defined

at

the

Sybase

server.

SERVER

SYBSERVER

Specifies

the

name

of

the

Sybase

server

that

you

defined

in

the

CREATE

SERVER

statement.

REMOTE_AUTHID

’mary’

Specifies

the

user

ID

at

the

Sybase

server

to

which

you

are

mapping

maria.

Use

single

quotation

marks

to

preserve

the

case

of

this

value

unless

you

set

the

FOLD_ID

server

option

to

’U’

or

’L’

in

the

CREATE

SERVER

statement.

REMOTE_PASSWORD

’day2night’

Specifies

the

password

that

is

associated

with

’mary’.

Use

single

quotation

marks

to

preserve

the

case

of

this

value

unless

you

set

the

FOLD_PW

server

option

to

’U’

or

’L’

in

the

CREATE

SERVER

statement.

Special

register

example:

350

Data

Source

Configuration

Guide

The

following

example

shows

a

CREATE

USER

MAPPING

statement

that

includes

the

special

register

USER:

CREATE

USER

MAPPING

FOR

USER

SERVER

SYBSERVER

OPTIONS

(REMOTE_AUTHID

’mary’,

REMOTE_PASSWORD

’day2night’)

You

can

use

the

DB2

special

register

USER

to

map

the

authorization

ID

of

the

person

who

is

issuing

the

CREATE

USER

MAPPING

statement

to

the

data

source

authorization

ID

that

is

specified

in

the

REMOTE_AUTHID

user

option.

Related

tasks:

v

“Creating

a

user

mapping

for

a

Sybase

data

source”

on

page

349

Related

reference:

v

“CREATE

USER

MAPPING

statement”

in

the

SQL

Reference,

Volume

2

Testing

the

connection

to

the

Sybase

server

Testing

the

connection

to

the

Sybase

server

is

part

of

the

larger

task

of

adding

Sybase

data

sources

to

federated

servers.

You

can

test

the

connection

to

the

Sybase

server

by

using

the

server

definition

and

user

mappings

that

you

defined.

Procedure:

To

test

the

connection:

1.

Open

a

pass-through

session

to

issue

an

SQL

SELECT

statement

on

the

Sybase

system

tables.

For

example:

SET

PASSTHRU

remote_server_name

SELECT

count(*)

FROM

dbo.sysobjects

SET

PASSTHRU

RESET

Where

remote_server_name

is

the

name

that

you

specified

for

the

remote

server

when

you

registered

the

server

definition

in

the

CREATE

SERVER

statement.

If

the

SELECT

statement

returns

a

count,

your

server

definition

and

your

user

mapping

are

set

up

properly.

2.

If

the

SELECT

statement

returns

an

error,

you

might

need

to:

v

Check

the

Sybase

server

to

make

sure

that

it

is

configured

for

incoming

connections.

v

Check

your

user

mapping

to

make

sure

that

the

settings

for

the

REMOTE_AUTHID

and

REMOTE_PASSWORD

options

are

valid

for

the

connections

to

the

Sybase

server.

Alter

the

user

mapping,

or

create

another

user

mapping

as

necessary.

v

Check

the

Sybase

client

software

on

the

DB2

federated

server

to

make

sure

that

it

is

installed

and

configured

correctly

to

connect

to

the

Sybase

server.

v

Check

the

settings

of

your

DB2

federated

variables

to

verify

that

they

are

correct

for

the

Sybase

server.

These

variables

include

the

system

environment

variables,

the

db2dj.ini

variables,

and

the

DB2

Profile

Registry

(db2set)

variable.

v

Check

your

server

definition.

If

necessary,

drop

it

and

create

it

again.

Chapter

20.

Configuring

access

to

Sybase

data

sources

351

|

|
|
|

|
|
|
|

The

next

task

in

this

sequence

of

tasks

is

registering

nicknames

for

Sybase

tables

and

views.

Related

tasks:

v

“Adding

Sybase

data

sources

to

a

federated

server”

on

page

341

v

“Setting

up

and

testing

the

Sybase

client

configuration

file”

on

page

344

v

“Registering

the

server

definitions

for

a

Sybase

data

source”

on

page

347

v

“Registering

nicknames

for

Sybase

tables

and

views”

on

page

352

v

“Setting

the

Sybase

environment

variables”

on

page

342

Related

reference:

v

“ALTER

USER

MAPPING

statement”

in

the

SQL

Reference,

Volume

2

Registering

nicknames

for

Sybase

tables

and

views

Registering

nicknames

for

Sybase

tables

and

views

is

part

of

the

larger

task

of

adding

Sybase

data

sources

to

federated

servers.

For

each

Sybase

server

that

you

define,

register

a

nickname

for

each

table

or

view

that

you

want

to

access.

Use

these

nicknames,

instead

of

the

names

of

the

data

source

objects,

when

you

query

the

Sybase

servers.

The

federated

database

relies

on

catalog

statistics

for

nicknamed

objects

to

optimize

query

processing.

These

statistics

are

gathered

when

you

register

a

nickname

for

a

data

source

object

by

using

the

CREATE

NICKNAME

statement.

The

federated

database

verifies

the

presence

of

the

object

at

the

data

source,

and

then

attempts

to

gather

existing

data

source

statistical

data.

Information

that

is

useful

to

the

optimizer

is

read

from

the

data

source

catalogs

and

placed

into

the

global

catalog

on

the

federated

server.

Because

some

or

all

of

the

data

source

catalog

information

might

be

used

by

the

optimizer,

update

statistics

(using

the

data

source

command

that

is

equivalent

to

the

DB2

RUNSTATS

command)

at

the

data

source

before

you

register

a

nickname.

Procedure:

To

register

a

nickname,

issue

the

CREATE

NICKNAME

statement.

For

example:

CREATE

NICKNAME

sybase_name

FOR

SYBSERVER."remote_schema"."remote.table"

Nicknames

can

be

up

to

128

characters

in

length.

Repeat

this

step

for

each

Sybase

table

or

view

for

which

you

want

to

create

a

nickname.

When

you

create

the

nickname,

the

federated

server

uses

the

information

that

you

specify

to

query

the

data

source

catalog.

This

query

tests

your

connection

to

the

data

source

by

using

the

nickname.

If

the

connection

does

not

work,

you

will

receive

an

error

message.

Related

reference:

v

“RUNSTATS

Command”

in

the

Command

Reference

v

“CREATE

NICKNAME

statement”

in

the

SQL

Reference,

Volume

2

352

Data

Source

Configuration

Guide

v

“CREATE

NICKNAME

statement

-

Examples

for

Sybase

wrapper”

on

page

353

CREATE

NICKNAME

statement

-

Examples

for

Sybase

wrapper

This

topic

provides

an

example

that

shows

you

how

to

use

the

CREATE

NICKNAME

statement

to

register

a

nickname

for

a

Sybase

table

or

view

that

you

want

to

access.

This

example

shows

how

to

specify

a

remote

object

for

the

Sybase

server

under

which

the

nickname

is

assigned:

CREATE

NICKNAME

SYBSALES

FOR

SYBSERVER."salesdata"."europe"

SYBSALES

Is

a

unique

nickname

for

the

Sybase

table

or

view.

The

nickname

is

a

two-part

name—the

schema

and

the

nickname.

If

you

omit

the

schema

when

creating

the

nickname,

the

schema

of

the

nickname

will

be

the

authentication

ID

of

the

user

creating

the

nickname.

SYBSERVER.″salesdata″.″europe″

Is

a

three-part

identifier

for

the

remote

object.

v

SYBSERVER

is

the

name

you

assigned

to

the

Sybase

database

server

in

the

CREATE

SERVER

statement.

v

salesdata

is

the

name

of

the

remote

schema

to

which

the

table

or

view

belongs.

v

europe

is

the

name

of

the

remote

table

or

view

that

you

want

to

access.

The

federated

server

folds

the

names

of

the

Sybase

schemas

and

tables

to

uppercase

unless

you

enclose

the

names

in

quotation

marks.

Related

tasks:

v

“Registering

nicknames

for

Sybase

tables

and

views”

on

page

352

Related

reference:

v

“CREATE

NICKNAME

statement”

in

the

SQL

Reference,

Volume

2

Tuning

and

troubleshooting

the

configuration

to

Sybase

data

sources

After

you

set

up

the

configuration

to

Sybase

data

sources,

you

might

want

to

modify

the

configuration

to

improve

performance.

Resolving

the

sp_helpindex

error

The

federated

system

relies

on

one

of

the

Sybase

catalog

stored

procedures,

sp_helpindex.

If

you

receive

the

following

SQL

error,

the

Sybase

catalog

stored

procedures

might

not

be

installed

on

the

Sybase

server.

SQL0204N

"sp_helpindex"

is

an

undefined

name.

Have

the

Sybase

administrator

install

the

catalog

stored

procedures

on

the

Sybase

server.

Related

tasks:

v

“Adding

Sybase

data

sources

to

a

federated

server”

on

page

341

Related

reference:

Chapter

20.

Configuring

access

to

Sybase

data

sources

353

v

“db2set

-

DB2

Profile

Registry

Command”

in

the

Command

Reference

354

Data

Source

Configuration

Guide

Chapter

21.

Configuring

access

to

Table-structured

file

data

sources

This

chapter

explains

how

to

configure

your

federated

server

to

access

data

that

is

stored

in

table-structured

file

data

sources.

You

can

configure

access

to

table-structured

file

data

sources

by

using

the

DB2

Control

Center

or

by

issuing

SQL

statements.

This

chapter:

v

Explains

what

table-structured

files

are

v

Lists

the

tasks

that

you

need

to

perform

v

Contains

examples

of

the

SQL

statements

that

you

need

v

Lists

the

error

messages

associated

with

the

table-structured

file

wrapper

What

are

table-structured

files?

A

table-structured

file

has

a

regular

structure

consisting

of

a

series

of

records,

where

each

record

contains

the

same

number

of

fields,

separated

by

an

arbitrary

delimiter.

Null

values

are

represented

by

two

delimiters

next

to

each

other.

The

following

example

shows

the

contents

of

a

file

called

DRUGDATA1.TXT.

It

contains

three

records,

each

with

three

fields,

separated

by

commas:

234,DrugnameA,Manufacturer1

332,DrugnameB,Manufacturer2

333,DrugnameC,Manufacturer2

The

first

field

is

the

drug’s

unique

ID

number.

The

second

field

is

the

name

of

the

drug.

The

third

field

is

the

name

of

the

manufacturer

who

produces

the

drug.

Related

concepts:

v

“Attributes

of

table-structured

files”

on

page

355

v

“How

DB2

Information

Integrator

works

with

table-structured

files”

on

page

356

Related

tasks:

v

“Adding

table-structured

file

data

sources

to

a

federated

server”

on

page

357

Attributes

of

table-structured

files

Table-structured

files

can

be

sorted

or

unsorted.

The

table-structured

files

wrapper

can

search

sorted

data

files

much

more

efficiently

than

non-sorted

files.

Sorted

files

DRUGDATA1.TXT

contains

sorted

records.

The

file

is

sorted

by

the

first

field,

the

unique

ID

number

for

the

drug.

This

field

is

the

primary

key

because

it

is

unique

for

each

drug.

Sorted

files

must

be

sorted

in

ascending

order.

234,DrugnameA,Manufacturer1

332,DrugnameB,Manufacturer2

333,DrugnameC,Manufacturer2

©

Copyright

IBM

Corp.

1998,

2004

355

Unsorted

files

DRUGDATA2.TXT

contains

unsorted

records.

There

is

no

order

to

the

way

the

records

are

listed

in

the

file.

332,DrugnameB,Manufacturer2

234,DrugnameA,Manufacturer1

333,DrugnameC,Manufacturer2

Related

concepts:

v

“What

are

table-structured

files?”

on

page

355

v

“How

DB2

Information

Integrator

works

with

table-structured

files”

on

page

356

Related

tasks:

v

“Adding

table-structured

file

data

sources

to

a

federated

server”

on

page

357

How

DB2

Information

Integrator

works

with

table-structured

files

Using

a

module

called

a

wrapper,

DB2®

Information

Integrator

can

process

SQL

statements

that

query

data

in

a

table-structured

file

as

if

it

were

contained

in

an

ordinary

relational

table

or

view.

This

enables

data

in

a

table-structured

file

to

be

joined

with

relational

data

or

data

in

other

table-structured

files.

This

process

is

illustrated

in

Figure

27.

For

example,

suppose

that

the

table-structured

file

DRUGDATA2.TXT

is

located

on

your

computer

in

your

laboratory.

Trying

to

query

this

data

and

match

it

up

with

other

tables

from

other

data

sources

that

you

use

can

be

tedious.

After

you

register

DRUGDATA2.TXT

with

DB2

Information

Integrator,

the

file

behaves

as

if

it

is

a

relational

data

source.

You

can

now

query

the

file

together

with

other

relational

and

nonrelational

data

sources

and

analyze

the

data

together.

For

example,

you

could

run

the

following

query:

SELECT

*

FROM

DRUGDATA2

ORDER

BY

DCODE

DB2 Universal
Database
federated
database

Relational
results
table

DB2 Client Federated database

Table-structured
file

Table-structured
file Wrapper

SQL A, B, C, D
E, F, G, H
I, J, K, L

Figure

27.

How

the

table–structured

file

wrapper

works

356

Data

Source

Configuration

Guide

This

query

produces

the

following

results.

Dcode

Drug

Manufacturer

234

DrugnameA

Manufacturer1

332

DrugnameB

Manufacturer2

333

DrugnameC

Manufacturer2

Related

concepts:

v

“What

are

table-structured

files?”

on

page

355

v

“Attributes

of

table-structured

files”

on

page

355

Related

tasks:

v

“Adding

table-structured

file

data

sources

to

a

federated

server”

on

page

357

Adding

table-structured

files

to

a

federated

system

Adding

table-structured

file

data

sources

to

a

federated

server

To

configure

the

federated

server

to

access

table-structured

file

data

sources,

you

must

provide

the

federated

server

with

information

about

the

data

sources

and

objects

that

you

want

to

access.

You

can

configure

the

federated

server

to

access

table-structured

file

data

sources

by

using

the

DB2

Control

Center

or

the

DB2

command

line.

The

DB2

Control

Center

includes

a

wizard

to

guide

you

through

the

steps

required

to

configure

the

federated

server.

Prerequisites:

v

DB2

Information

Integrator

must

be

installed

on

a

server

that

will

act

as

the

federated

server

v

A

federated

database

must

exist

on

the

federated

server

Procedure:

To

add

table-structured

file

data

sources

to

a

federated

server:

1.

Register

the

wrapper.

2.

Register

the

server

definition.

3.

Register

nicknames

for

the

table-structured

files.

Related

concepts:

v

“DB2

Information

Integrator

installation

process

-

overview”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

Related

tasks:

v

“Creating

a

federated

database”

on

page

51

v

“Registering

the

table-structured

file

wrapper”

on

page

358

v

“Registering

the

server

for

table-structured

files”

on

page

359

v

“Registering

nicknames

for

table-structured

files”

on

page

359

Related

reference:

Chapter

21.

Configuring

access

to

Table-structured

file

data

sources

357

|
|
|
|

v

“Supported

operating

systems

for

DB2

Information

Integrator

(32-bit)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Supported

operating

systems

for

DB2

Information

Integrator

(64-bit)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

Registering

the

table-structured

file

wrapper

Registering

the

table-structured

file

wrapper

is

part

of

the

larger

task

of

adding

table-structured

file

data

sources

to

a

federated

server.

You

must

register

a

wrapper

to

access

table-structured

file

data

sources.

Wrappers

are

used

by

federated

servers

to

communicate

with

and

retrieve

data

from

data

sources.

Wrappers

are

implemented

as

a

set

of

library

files.

Procedure:

To

register

a

wrapper,

issue

the

CREATE

WRAPPER

statement

with

the

name

of

the

wrapper

and

the

name

of

the

wrapper

library

file.

For

example,

to

register

a

wrapper

with

the

name

laboratory_flat_files

on

the

federated

server

that

uses

the

AIX

operating

system,

issue

the

following

statement:

CREATE

WRAPPER

laboratory_flat_files

LIBRARY

’libdb2lsfile.a’;

The

name

of

the

wrapper

library

file

that

you

specify

depends

on

the

operating

system

of

the

federated

server.

See

the

list

of

Table-structured

files

wrapper

library

files

for

the

correct

name

to

specify

in

the

CREATE

WRAPPER

statement.

The

next

task

in

this

sequence

of

tasks

is

registering

the

server

definition

for

the

table-structured

files.

Related

reference:

v

“Table-structured

files

wrapper

library

files”

on

page

358

v

“CREATE

WRAPPER

statement”

in

the

SQL

Reference,

Volume

2

Table-structured

files

wrapper

library

files

The

following

table

lists

the

directory

paths

and

library

file

names

for

the

Table-structured

files

wrapper.

When

you

install

DB2

Information

Integrator,

3

library

files

are

added

to

the

directory

path

listed

in

the

table.

For

example,

if

the

federated

server

is

running

on

AIX,

the

wrapper

library

files

added

to

the

directory

path

are

libdb2lsfile.a,

libdb2lsfileF.a,

and

libdb2lsfileU.a.

When

you

register

a

wrapper,

specify

only

the

library

file

name

that

is

listed

in

the

table.

Table

84.

Table-structured

files

client

library

locations

and

file

names

Operating

system

Directory

path

Wrapper

library

file

AIX

/usr/opt/db2_08_01/lib/

libdb2lsfile.a

HP-UX

/opt/IBM/db2/V8.1/lib

libdb2lsfile.sl

Linux

/opt/IBM/db2/V8.1/lib

libdb2lsfile.so

Solaris

/opt/IBM/db2/V8.1/lib

libdb2lsfile.so

358

Data

Source

Configuration

Guide

|

|
|

|
|
|
|

|
|

||

|||

|||

|||

|||

|||

Table

84.

Table-structured

files

client

library

locations

and

file

names

(continued)

Operating

system

Directory

path

Wrapper

library

file

Windows

%DB2PATH%\bin

db2lsfile.dll

%DB2PATH%

is

the

environment

variable

that

is

used

to

specify

the

directory

path

where

DB2

Information

Integrator

is

installed

on

Windows.

The

default

Windows

directory

path

is

C:\Program

Files\IBM\SQLLIB.

Related

tasks:

v

“Registering

the

table-structured

file

wrapper”

on

page

358

Registering

the

server

for

table-structured

files

Registering

the

server

for

table-structured

files

is

part

of

the

larger

task

of

adding

table-structured

files

to

a

federated

system.

After

the

wrapper

is

registered,

you

must

register

a

corresponding

server.

Procedure:

To

register

the

table-structured

file

server

to

the

federated

system,

use

the

CREATE

SERVER

statement.

For

example:

CREATE

SERVER

biochem_lab

WRAPPER

laboratory_flat_files

In

this

example,

biochem_lab

is

the

name

assigned

to

the

table-structured

file

server.

The

name

must

be

unique

to

the

database

in

which

the

server

is

being

registered.

The

next

task

in

this

sequence

of

tasks

is

registering

nicknames

for

table-structured

files.

Related

tasks:

v

“Registering

nicknames

for

table-structured

files”

on

page

359

Related

reference:

v

“CREATE

SERVER

statement”

in

the

SQL

Reference,

Volume

2

Registering

nicknames

for

table-structured

files

Registering

nicknames

for

table-structured

files

is

part

of

the

larger

task

of

adding

table-structured

files

to

a

federated

system.

After

you

register

a

server,

you

must

register

a

corresponding

nickname.

Nicknames

are

used

when

you

refer

to

a

table-structured

file

data

source

in

a

query.

Nicknames

are

associated

with

your

table-structured

file

in

one

of

two

ways:

v

in

a

fixed

manner

using

the

FILE_PATH

nickname

option.

When

this

option

is

used,

the

nickname

represents

data

from

a

specific

table-structured

file.

v

with

a

filename

specified

at

query

time

using

the

DOCUMENT

nickname

column

option.

When

this

option

is

used,

the

nickname

can

be

used

to

represent

data

from

any

table-structured

file

whose

schema

matches

the

nickname

definition.

Restrictions:

Chapter

21.

Configuring

access

to

Table-structured

file

data

sources

359

|

|||

|||
|

|
|
|

|

|

If

a

non-numeric

field

is

too

long

for

its

column

type,

the

excess

data

is

truncated.

If

a

decimal

field

in

the

file

has

more

digits

after

the

radix

char

than

are

allowed

by

the

scale

parameter

of

its

column

type,

the

excess

data

is

truncated.

The

radix

character

is

determined

by

the

RADIXCHAR

item

of

the

LC_NUMERIC

National

Language

Support

category.

The

maximum

line

length

is

10

MB

(10485760

bytes)..

Procedure:

To

register

a

nickname,

use

the

CREATE

NICKNAME

statement

for

each

table-structured

file

that

you

want

to

access.

There

are

no

further

tasks

in

this

sequence

of

tasks.

Related

tasks:

v

“Adding

table-structured

file

data

sources

to

a

federated

server”

on

page

357

v

“Specifying

nickname

columns

for

a

nonrelational

data

source”

on

page

65

Related

reference:

v

“File

access

control

model

for

the

table-structured

file

wrapper”

on

page

361

v

“Optimization

tips

and

considerations

for

the

table-structured

file

wrapper”

on

page

361

v

“CREATE

NICKNAME

statement

syntax

-

Table-structured

file

wrapper”

on

page

552

v

“CREATE

NICKNAME

statement

-

Examples

for

table-structured

file

wrapper”

on

page

360

CREATE

NICKNAME

statement

-

Examples

for

table-structured

file

wrapper

This

topic

provides

a

complete

example

of

using

a

CREATE

NICKNAME

statement

to

register

nicknames

for

the

table-structured

file

wrapper.

It

also

includes

examples

for

specific

options.

Complete

example:

The

following

example

shows

a

CREATE

NICKNAME

statement

for

the

table-structured

file

DRUGDATA1.TXT:

CREATE

NICKNAME

DRUGDATA1(Dcode

Integer

NOT

NULL,

Drug

CHAR(20),

Manufacturer

CHAR(20))

FOR

SERVER

biochem_lab

OPTIONS(FILE_PATH

’/usr/pat/DRUGDATA1.TXT’,

COLUMN_DELIMITER

’,’,

SORTED

’Y’,

KEY_COLUMN

’DCODE’,

VALIDATE_DATA_FILE

’Y’)

KEY

COLUMN

option

examples:

These

examples

show

that

the

column

designated

as

the

key

is

designated

not

nullable

by

adding

the

NOT

NULL

option

to

its

definition

in

the

nickname

statement:

CREATE

NICKNAME

tox

(tox_id

INTEGER

NOT

NULL,

toxicity

VARCHAR(100))

FOR

SERVER

tox_server1

OPTIONS

(FILE_PATH’/tox_data.txt’,

SORTED

’Y’)

360

Data

Source

Configuration

Guide

|

CREATE

NICKNAME

weights

(mol_id

INTEGER,

wt

VARCHAR(100)

NOT

NULL)

FOR

SERVER

wt_server

OPTIONS

(FILE_PATH’/wt_data.txt’,

SORTED

’Y’,

KEY_COLUMN

’WT’)

This

option

is

case-sensitive.

However,

DB2

folds

column

names

to

uppercase

unless

the

column

is

defined

with

double

quotes.

The

following

example

will

not

work

properly

because

the

empno

column

will

be

folded

to

uppercase

by

DB2,

and

the

empno

key

column

will

be

submitted

in

lowercase.

Thus

the

column

designated

as

the

key

will

not

be

found.

CREATE

NICKNAME

depart

(

empno

char(6)

NOT

NULL)

FOR

SERVER

DATASTORE

OPTIONS(FILE_PATH’data.txt’,

SORTED

’Y’,

KEY_COLUMN

’empno’);

Related

tasks:

v

“Registering

nicknames

for

table-structured

files”

on

page

359

Related

reference:

v

“CREATE

NICKNAME

statement

syntax

-

Table-structured

file

wrapper”

on

page

552

File

access

control

model

for

the

table-structured

file

wrapper

The

database

management

system

will

access

table-structured

files

with

the

authority

of

the

DB2

instance

owner.

The

wrapper

can

only

access

files

that

can

be

read

by

this

user

ID

(or

group

ID).

The

authorization

ID

of

the

application

(the

ID

that

establishes

the

connection

to

the

federated

database)

is

not

relevant.

On

DB2

Universal

Database

Enterprise

Server

Edition,

any

table-structured

file

for

which

a

nickname

has

been

created

must

be

accessible

with

the

same

path

name

from

each

node.

The

file

does

not

have

to

be

on

a

DB2

Universal

Database

node

as

long

as

it

can

be

accessed

from

any

node

with

a

common

path.

To

access

a

table-structured

file

on

a

mapped

drive

if

the

network

has

a

Windows

NT

or

Windows

2000

domain

configured,

the

DB2

service

logon

account

must

be

an

account

from

the

domain

that

has

access

to

he

shared

folder

where

data

files

reside.

To

access

a

table-structured

file

on

a

mapped

drive

if

the

network

doesn’t

have

a

Windows

NT

or

Windows

2000

domain,

and

your

user

logs

on

locally

to

each

workstation,

the

DB2

service

logon

account

should

have

the

same

user

name

and

password

as

a

valid

user

on

the

machine

that

shares

that

folder.

That

user

must

be

on

the

permissions

list

for

the

shared

folder

with

at

least

read

access.

Related

reference:

v

“Access

control

for

the

Documentum

wrapper”

on

page

188

v

“File

access

control

model

for

the

Excel

wrapper”

on

page

224

Optimization

tips

and

considerations

for

the

table-structured

file

wrapper

v

The

system

can

search

sorted

data

files

much

more

efficiently

than

non-sorted

files.

v

For

sorted

files,

you

can

improve

performance

by

specifying

a

value

or

range

for

the

key

column

when

submitting

a

query.

Chapter

21.

Configuring

access

to

Table-structured

file

data

sources

361

v

Statistics

for

nicknames

of

table-structured

files

must

be

updated

manually

by

updating

the

SYSSTAT

and

SYSCAT

views.

Related

reference:

v

“Optimization

tips

for

the

BLAST

wrapper”

on

page

116

Messages

for

the

table-structured

file

wrapper

This

section

lists

and

describes

messages

you

might

encounter

while

working

with

the

wrapper

for

table-structured

files.

Table

85.

Messages

issued

by

the

wrapper

for

table-structured

files

Error

Code

Message

Explanation

SQL0405N

The

numeric

literal

"<literal>"

is

not

valid

because

its

value

is

out

of

range.

A

column

in

the

data

file,

or

a

predicate

value

in

an

SQL

statement,

contains

a

value

that

is

out

of

the

possible

range

for

that

data

type.

Correct

the

data

file

or

redefine

the

column

to

a

more

appropriate

type.

SQL0408N

A

value

is

not

compatible

with

the

data

type

of

it’s

assignment

target.

Target

name

is

"<column_name>".

A

column

in

the

data

file

contains

characters

that

are

invalid

for

that

data

type.

Correct

the

data

file

or

redefine

the

column

to

a

more

appropriate

type.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"Data

source

path

is

NULL".)

Contact

IBM

Software

Support.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"Key

Column

retrieval

failure".)

Contact

IBM

Software

Support.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"STAT

failed

on

data

source.

ERRNO

=

<error_number>".)

Ensure

that

you

have

the

proper

directory

permissions.

Ensure

that

the

file

exists.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"No

column

info

found".)

Contact

IBM

Software

Support.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"Unsupported

operator".)

Contact

IBM

Software

Support.

362

Data

Source

Configuration

Guide

Table

85.

Messages

issued

by

the

wrapper

for

table-structured

files

(continued)

Error

Code

Message

Explanation

SQL1816N

Wrapper

"<wrapper_name>"

cannot

be

used

to

access

the

"type"

of

data

source

("<type>"

"")

that

you

are

trying

to

define

to

the

federated

database.

The

server

type

was

invalid.

No

server

type

should

be

specified

in

the

CREATE

SERVER

statement.

Remove

the

TYPE

keyword

and

value

and

rerun

it.

SQL1822N

Unexpected

error

code

"ERRNO

=

<error_number>"

received

from

data

source

"<server_name>".

Associated

text

and

tokens

are

"Unable

to

read

file".

Check

the

value

of

the

error

number.

Make

sure

that

the

file

can

be

read

by

the

DB2

instance

owner.

Then

rerun

the

SQL

command.

SQL1822N

Unexpected

error

code

"Data

Error"

received

from

data

source

"<server_name>".

Associated

text

and

tokens

are

"Data

source

is

a

non-standard

file".

The

data

source

file

is

a

directory,

socket,

or

FIFO.

Only

standard

files

can

be

accessed

as

data

source.

Change

the

FILE_PATH

option

to

point

to

a

valid

file

and

reissue

the

SQL

command.

SQL1822N

Unexpected

error

code

"ERRNO

=

<error_number>"

received

from

data

source

"<server_name>".

Associated

text

and

tokens

are

"File

open

error".

The

wrapper

was

unable

to

open

the

file.

Check

the

error

number

to

determine

why

the

error

occurred.

Correct

the

problem

with

the

data

source

and

reissue

the

SQL

command.

SQL1822N

Unexpected

error

code

"Data

Error"

received

from

data

source

"<server_name>".

Associated

text

and

tokens

are

"Key

column

missing".

A

record

retrieved

from

the

data

source

was

missing

the

key

field.

The

key

column

must

not

be

null.

Correct

the

data,

or

register

the

file

with

an

unsorted

nickname.

SQL1822N

Unexpected

error

code

"Data

Error"

received

from

data

source

"<server_name>".

Associated

text

and

tokens

are

"File

not

sorted".

The

file

was

not

sorted

on

the

key

column.

Do

one

of

the

following:

change

the

KEY_COLUMN

option

to

point

to

the

correct

column;

resort

the

data

file;

or

register

the

nickname

as

an

unsorted

nickname.

SQL1822N

Unexpected

error

code

"Data

Error"

received

from

data

source

"<server_name>".

Associated

text

and

tokens

are

"Key

exceeds

definition

size".

The

key

column

field

read

from

the

data

source

was

larger

than

the

DB2

column

definition

which

could

cause

the

wrapper

search

routines

to

function

incorrectly.

Correct

the

data

or

correct

the

nickname

definition,

and

reregister

the

nickname.

SQL1822N

Unexpected

error

code

"Data

Error"

received

from

data

source

"<server_name>".

Associated

text

and

tokens

are

"Line

in

data

file

exceeds

32k".

A

line

in

the

data

file

exceeded

the

maximum

line

length

allowed

by

the

wrapper.

The

line

length

cannot

be

greater

than

32768.

Shorten

the

length

of

the

line

in

the

data

file.

SQL1823N

No

data

type

mapping

exists

for

data

type

"<data_type>"

from

server

"<server_name>".

The

nickname

was

defined

with

an

unsupported

data

type.

Redefine

the

nickname

using

only

supported

data

types.

SQL1881N

"<option_name>"

is

not

a

valid

"<component>"

option

for

"<object_name>".

The

listed

value

is

not

a

valid

option

for

the

listed

object.

Remove

or

change

the

invalid

option

then

resubmit

the

SQL

statement.

Chapter

21.

Configuring

access

to

Table-structured

file

data

sources

363

Table

85.

Messages

issued

by

the

wrapper

for

table-structured

files

(continued)

Error

Code

Message

Explanation

SQL1882N

The

"Nickname"

option

"COLUMN_DELIMITER"

cannot

be

set

to

"<delimiter>"

for

"<nickname_name>".

The

column

delimiter

was

more

than

one

character

long.

Redefine

the

option

with

a

single

character.

Then

rerun

the

SQL

statement

command.

SQL1882N

The

"Nickname"

option

"KEY_COLUMN"

cannot

be

set

to

"<column_name>"

for

"<nickname_name>".

The

column

selected

as

the

key

column

is

not

defined

for

this

nickname.

Correct

the

KEY_COLUMN

option

to

be

one

of

the

sorted

columns

for

this

nickname,

then

reissue

the

SQL

command.

SQL1882N

The

"Nickname"

option

"VALIDATE_DATA_FILE"

cannot

be

set

to

"<option_value>"

for

"<nickname_name>".

The

option

value

was

invalid.

Valid

values

are

"Y"

or

"N".

Correct

the

option

and

register

the

nickname

again.

SQL1883N

"<option_name>"

is

a

required

"<component>"

option

for

"<object_name>".

A

required

option

for

the

wrapper

was

missing

from

the

SQL

statement.

Add

the

required

option

and

resubmit

the

SQL

statement.

SQL30090N

Operation

invalid

for

application

execution

environment.

Reason

code

=

"21".

You

attempted

a

pass-through

session.

The

table-structured

file

wrapper

does

not

support

pass-through

sessions.

Related

concepts:

v

“Introduction

to

messages”

in

the

Message

Reference

Volume

1

Related

reference:

v

“SQLSTATE

messages”

in

the

Message

Reference

Volume

2

364

Data

Source

Configuration

Guide

Chapter

22.

Configuring

access

to

Teradata

data

sources

This

chapter

explains

how

to

configure

your

federated

server

to

access

data

that

is

stored

in

Teradata

data

sources.

You

can

configure

access

to

Teradata

data

sources

by

using

the

DB2

Control

Center

or

by

issuing

SQL

statements.

This

chapter

lists

the

tasks

that

you

need

to

perform

when

you

configure

the

federated

server,

contains

examples

of

the

SQL

statements

that

you

need,

and

provides

tuning

and

troubleshooting

information

for

configuring

the

federated

server.

Adding

Teradata

to

a

federated

system

Adding

Teradata

data

sources

to

a

federated

server

To

configure

the

federated

server

to

access

Teradata

data

sources,

you

must

provide

the

federated

server

with

information

about

the

data

sources

and

objects

that

you

want

to

access.

You

can

configure

the

federated

server

to

access

Teradata

data

sources

by

using

the

DB2

Control

Center

or

the

DB2

command

line.

The

DB2

Control

Center

includes

a

wizard

to

guide

you

through

the

steps

required

to

configure

the

federated

server.

Prerequisites:

v

DB2

Information

Integrator

must

be

installed

on

a

server

that

will

act

as

the

federated

server

v

A

federated

database

must

exist

on

the

federated

server

v

Teradata

client

software

must

be

installed

and

configured

on

the

federated

server.

–

To

access

Teradata

version

V2R5,

the

Teradata

client

must

support

the

Teradata

Call-Level

Interface,

Version

2

(CLIv2)

Release

04.07

(or

later).

–

To

access

Teradata

version

V2R3

or

V2R4

,

the

Teradata

client

must

support

the

Teradata

Call-Level

Interface,

Version

2

(CLIv2)

Release

04.06

(or

later).

Procedure:

To

add

Teradata

data

sources

to

a

federated

server:

1.

Optional:

Test

the

connection

to

the

Teradata

server.

2.

Verify

that

the

Teradata

library

is

enabled

for

run-time

linking

(AIX).

3.

Set

the

environment

variables

for

the

Teradata

wrapper.

4.

Register

the

wrapper.

5.

Register

the

server

definition.

6.

Create

the

user

mappings.

7.

Test

the

connection

from

the

federated

server

to

the

Teradata

server.

8.

Register

nicknames

for

Teradata

tables

and

views.

Related

concepts:

©

Copyright

IBM

Corp.

1998,

2004

365

|
|
|

|
|

|
|

|
|

|

v

“DB2

Information

Integrator

installation

process

-

overview”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Fast

track

to

configuring

your

data

sources”

on

page

55

Related

tasks:

v

“Creating

a

federated

database”

on

page

51

v

“Tuning

and

troubleshooting

the

configuration

to

Teradata

data

sources”

on

page

378

v

“Testing

the

connection

to

the

Teradata

server”

on

page

366

v

“Registering

the

Teradata

wrapper”

on

page

370

v

“Registering

the

server

definitions

for

a

Teradata

data

source”

on

page

371

v

“Creating

the

user

mapping

for

a

Teradata

data

source”

on

page

373

v

“Registering

nicknames

for

Teradata

tables

and

views”

on

page

377

v

“Checking

the

setup

of

the

federated

server”

on

page

37

v

“Setting

the

Teradata

environment

variables”

on

page

368

Related

reference:

v

“Supported

operating

systems

for

DB2

Information

Integrator

(32-bit)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Supported

operating

systems

for

DB2

Information

Integrator

(64-bit)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

Testing

the

connection

to

the

Teradata

server

Testing

the

connection

to

the

Teradata

server

is

part

of

the

larger

task

of

adding

Teradata

data

sources

to

federated

servers.

Before

you

create

a

wrapper,

server

definition,

or

user

mapping,

you

can

test

the

connection

to

the

Teradata

server.

Test

the

connection

first

to

verify

that

the

client

software

is

properly

set

and

to

prevent

errors

when

you

issue

the

CREATE

WRAPPER,

CREATE

SERVER,

and

CREATE

USER

MAPPING

statements.

You

can

use

the

Basic

Teradata

Query

(BTEQ)

utility

to

submit

an

SQL

query

to

verify

that

you

can

connect

to

the

Teradata

server.

See

the

Teradata

documentation

for

more

information

about

the

BTEQ

utility.

Prerequisite:

Ensure

that

the

BTEQ

utility

and

the

Teradata

Data

Connector

Application

Program

Interface

(PIOM)

were

installed

during

the

Teradata

client

software

installation

process.

Procedure:

To

test

the

connection

to

the

Teradata

server:

1.

Start

a

BTEQ

utility

session,

and

log

on

to

the

Teradata

server.

2.

Issue

an

SQL

command

to

verify

that

you

can

successfully

connect

to

the

Teradata

server.

For

example:

select

count(*)

from

dbc.tables;

If

the

connection

is

successful,

you

should

see

the

query

output

on

the

screen.

For

example:

366

Data

Source

Configuration

Guide

Query

completed.

One

row

found.

One

column

returned.

Total

elapsed

time

was

1

second.

Count(*)

497

If

the

connection

is

unsuccessful,

check

the

Teradata

client

software

to

verify

that

it

is

properly

installed

and

configured

on

the

federated

server.

3.

Log

off

from

the

Teradata

server,

and

end

the

BTEQ

utility

session.

The

next

task

in

this

sequence

of

tasks

is

verifying

that

the

Teradata

library

is

enabled

for

run-time

linking.

Related

tasks:

v

“Adding

Teradata

data

sources

to

a

federated

server”

on

page

365

v

“Verifying

that

the

Teradata

library

is

enabled

for

run-time

linking

(AIX)”

on

page

367

Verifying

that

the

Teradata

library

is

enabled

for

run-time

linking

(AIX)

Verifying

that

the

Teradata

library

is

enabled

for

run-time

linking

is

part

of

the

larger

task

of

adding

Teradata

data

sources

to

federated

servers.

When

you

add

a

Teradata

data

source

to

your

federated

server

on

AIX,

you

must

verify

that

run-time

linking

is

enabled

before

you

register

wrappers

or

servers.

Procedure:

To

verify

that

the

Teradata

library

is

enabled

for

run-time

linking:

1.

Go

to

the

directory

in

which

the

libcliv2.so

file

resides.

By

default,

the

installation

process

places

this

file

in

the

/usr/lib

directory.

2.

Issue

the

following

UNIX

command.

dump

-

H

libcliv2.so

|

grep

libtli.a

3.

Check

the

file

names

that

appear

on

the

screen.

If

the

libtli.a

file

name

appears,

the

Teradata

library

is

enabled

for

run-time

linking.

4.

If

the

libtli.a

file

name

does

not

appear,

issue

the

following

UNIX

commands.

rtl_enable

libcliv2.so

-F

libtli.a

mv

libcliv2.so

libcliv2.so.old

mv

libcliv2.so.new

libcliv2.so

chmod

a+r

libcliv2.so

These

commands

enable

run-time

linking

for

the

Teradata

library.

The

next

task

in

this

sequence

of

tasks

is

registering

the

Teradata

wrapper.

Related

tasks:

v

“Registering

the

Teradata

wrapper”

on

page

370

Chapter

22.

Configuring

access

to

Teradata

data

sources

367

Setting

the

Teradata

environment

variables

Setting

the

Teradata

environment

variables

is

part

of

the

larger

task

of

adding

Teradata

to

a

federated

server.

When

you

install

DB2

Information

Integrator,

the

installation

process

attempts

to

set

the

Teradata

environment

variables

in

the

db2dj.ini

file.

The

environment

variables

will

not

be

set

in

the

db2dj.ini

file

if

you:

v

Install

the

Teradata

client

software

after

the

DB2

federated

server

is

set

up.

v

Have

not

installed

the

Teradata

client

software.

The

valid

environment

variables

for

Teradata

are:

v

COPERR

v

COPLIB

v

TERADATA_CHARSET

(optional)

v

NETRACE

(optional)

v

COPANOMLOG

(optional)

The

optional

environment

variables

must

be

set

manually.

Prerequisites:

A

federated

server

that

is

properly

set

up

to

access

your

data

sources.

This

includes

the

installation

and

configuration

of

any

required

software,

such

as

the

data

source

client

software.

Restrictions:

See

the

topic:

Restrictions

for

the

db2dj.ini

file

Procedure:

To

set

the

required

environment

variables

automatically:

1.

Install

and

configure

the

client

software

on

the

DB2

federated

server,

if

it

is

not

already

installed.

2.

Set

the

required

environment

variables.

You

can

set

the

environment

variables

automatically

by

running

the

DB2

Information

Integrator

installation

again.

From

the

launchpad,

click

Install

Products

and

follow

the

instructions

in

the

wizard.

To

manually

set

the

environment

variables:

1.

Edit

the

db2dj.ini

file.

v

On

federated

servers

running

Windows,

this

file

is

located

in

the

sqllib\cfg

directory.

v

On

federated

servers

running

UNIX,

this

file

is

located

in

the

sqllib/cfg

directory.

The

db2dj.ini

file

contains

configuration

information

about

the

Teradata

client

software

installed

on

your

federated

server.

If

the

file

does

not

exist,

you

can

create

a

new

file

with

the

name

db2dj.ini

name

using

any

text

editor.

In

the

db2dj.ini

file

you

must

specify

the

fully

qualified

path

for

the

variables,

otherwise

you

will

encounter

errors.

368

Data

Source

Configuration

Guide

|
|

|
|

|

|

|

2.

Set

the

following

environment

variables

as

necessary.

COPERR

Set

the

COPERR

environment

variable

to

the

directory

path

where

the

errmsg.txt

file

resides.

Specify

the

fully

qualified

path

for

the

variable,

COPERR=teradata_lib_directory.

For

example:

COPERR=/usr/lib

COPLIB

Set

the

COPLIB

environment

variable

to

the

directory

path

where

the

libcliv2.so

file

resides.

Specify

the

fully

qualified

path

for

the

variable,

COPLIB=teradata_lib_directory.

For

example:

COPLIB=/usr/lib

The

libcliv2.so

and

errmsg.txt

files

typically

reside

in

the

same

directory.

TERADATA_CHARSET

If

you

do

not

set

the

TERADATA_CHARSET

variable,

DB2

Information

Integrator

detects

the

client

character

set

based

on

the

code

page

of

the

database.

When

this

variable

is

set,

DB2

Information

Integrator

uses

variable

value

as

the

client

character

set.

The

value

in

the

TERADATA_CHARSET

variable

is

not

validated,

but

if

it

is

not

set

to

the

correct

value,

the

remote

data

source

returns

an

error.

Set

the

TERADATA_CHARSET

environment

variable

in

the

db2dj.ini

file

to

one

of

the

following

valid

character

sets:

On

federated

servers

running

UNIX:

v

HANGULKSC5601_2R4

v

KanjiEUC_0U

v

LATIN1_0A

v

LATIN9_0A

v

LATIN1252_0A

v

SCHGB2312_1T0

v

TCHBIG5_1R0

v

UTF8

On

federated

servers

running

Windows:

v

HANGULKSC5601_2R4

v

KanjiSJIS_0S

v

LATIN1_0A

v

LATIN1252_0A

v

SCHGB2312_1T0

v

TCHBIG5_1R0

v

UTF8
3.

To

ensure

that

the

environment

variables

are

set

on

the

federated

server,

recycle

the

DB2

instance.

Issue

the

following

commands

to

recycle

the

DB2

instance:

db2stop

db2start

Enabling

and

disabling

Teradata

tracing:

Chapter

22.

Configuring

access

to

Teradata

data

sources

369

|

|

|

|

|
|
|
|
|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

The

Teradata

NETRACE

and

COPANOMLOG

variables

are

used

to

enable

and

disable

Teradata

tracing.

You

can

enable

Teradata

tracing

if

you

need

to

preserve

a

listing

of

SQL

statements

that

are

sent

to

the

Teradata

server.

To

enable

Teradata

tracing,

edit

the

db2dj.ini

file

and

use

the

following

settings

for

these

environment

variables:

NETRACE=1

COPANOMLOG=trace_file

The

trace_file

is

the

fully

qualified

name

of

the

file

that

will

contain

the

trace

data.

These

variables

enable

the

Teradata

tracing

facility

only

and

do

not

affect

the

DB2

tracing.

To

disable

Teradata

tracing,

edit

the

db2dj.ini

file

and

remove

both

the

NETRACE

and

COPANOMLOG

variables.

The

next

task

in

this

sequence

of

tasks

is

registering

the

Teradata

wrapper.

Related

tasks:

v

“Registering

nicknames

for

Teradata

tables

and

views”

on

page

377

Related

reference:

v

“Restrictions

for

the

db2dj.ini

file”

on

page

59

v

“Restrictions

for

the

db2dj.ini

file”

on

page

59

Registering

the

Teradata

wrapper

Registering

the

Teradata

wrapper

is

part

of

the

larger

task

of

adding

Teradata

data

sources

to

a

federated

server.

You

must

register

a

wrapper

to

access

Teradata

data

sources.

Wrappers

are

used

by

federated

servers

to

communicate

with

and

retrieve

data

from

data

sources.

Wrappers

are

implemented

as

a

set

of

library

files.

Procedure:

To

register

a

wrapper,

issue

the

CREATE

WRAPPER

statement

and

specify

the

default

name

for

the

wrapper.

For

example:

CREATE

WRAPPER

TERADATA

Recommendation:

Use

the

default

wrapper

name

called

TERADATA.

When

you

register

the

wrapper

by

using

the

default

name,

the

federated

server

automatically

takes

the

default

library

name

that

is

associated

with

that

wrapper

name.

If

the

wrapper

name

conflicts

with

an

existing

wrapper

name

in

the

federated

database,

you

can

substitute

the

default

wrapper

name

with

a

name

you

choose.

If

you

use

a

name

that

is

different

from

the

default

name,

you

must

include

the

LIBRARY

parameter

in

the

CREATE

WRAPPER

statement.

For

example,

to

register

a

wrapper

with

the

name

tera_wrapper

on

the

federated

server

that

uses

the

AIX

operating

system,

issue

the

following

statement:

CREATE

WRAPPER

tera_wrapper

LIBRARY

’libdb2teradata.a’;

370

Data

Source

Configuration

Guide

|
|
|

|
|

|
|

|
|
|

|
|

The

name

of

the

wrapper

library

file

that

you

specify

depends

on

the

operating

system

of

the

federated

server.

See

the

list

of

Teradata

wrapper

library

files

for

the

correct

name

to

specify

in

the

CREATE

WRAPPER

statement.

The

next

task

in

this

sequence

of

tasks

is

registering

the

server

definition

for

the

Teradata

wrapper.

Related

tasks:

v

“Registering

the

server

definitions

for

a

Teradata

data

source”

on

page

371

Related

reference:

v

“Teradata

wrapper

library

files”

on

page

371

v

“CREATE

WRAPPER

statement”

in

the

SQL

Reference,

Volume

2

Teradata

wrapper

library

files

The

following

table

lists

the

directory

paths

and

library

file

names

for

the

Teradata

wrapper.

When

you

install

DB2

Information

Integrator,

3

library

files

are

added

to

the

directory

path

listed

in

the

table.

For

example,

if

the

federated

server

is

running

on

AIX,

the

wrapper

library

files

added

to

the

directory

path

are

libdb2teradata.a,

libdb2teradataF.a,

and

libdb2teradataU.a.

When

you

register

a

wrapper,

specify

only

the

library

file

name

that

is

listed

in

the

table.

Table

86.

Teradata

wrapper

library

locations

and

file

names

Operating

system

Directory

path

Wrapper

library

file

AIX

/usr/opt/db2_08_01/lib/

libdb2teradata.a

HP-UX

/opt/IBM/db2/V8.1/lib

libdb2teradata.sl

Solaris

/opt/IBM/db2/V8.1/lib

libdb2teradata.so

Windows

%DB2PATH%\bin

db2teradata.dll

%DB2PATH%

is

the

environment

variable

that

is

used

to

specify

the

directory

path

where

DB2

Information

Integrator

is

installed

on

Windows.

The

default

Windows

directory

path

is

C:\Program

Files\IBM\SQLLIB.

Related

tasks:

v

“Registering

the

Teradata

wrapper”

on

page

370

Registering

the

server

definitions

for

a

Teradata

data

source

Registering

the

server

definitions

for

a

Teradata

data

source

is

part

of

the

larger

task

of

adding

Teradata

data

sources

to

federated

servers.

In

the

federated

database,

you

must

define

each

Teradata

server

that

you

want

to

access.

You

must

first

locate

the

node

name

of

the

Teradata

data

source,

and

then

use

this

node

name

when

you

register

the

server.

Procedure:

Chapter

22.

Configuring

access

to

Teradata

data

sources

371

|

|
|

|
|
|
|

|
|

||

|||

|||

|||

|||

|||
|

|
|
|

|

|

To

register

a

server

definition

for

a

Teradata

data

source:

1.

Locate

the

node

name.

a.

Find

the

hosts

file.

On

AIX

operating

systems,

the

hosts

file

is

/etc/hosts.

On

Windows

operating

systems,

the

hosts

file

is

x:\WINNT\system32\drivers\etc\hosts.

x:

is

the

drive

where

the

\WINNT

directory

resides.

b.

Search

the

hosts

file

for

the

alias

of

the

remote

server.

This

alias

begins

with

an

alphabetic

string

and

ends

with

the

suffix

COPn.

The

value

n

is

the

number

of

the

application

processor

that

is

associated

with

the

Teradata

communications

processor.

c.

Find

the

line

in

the

hosts

file

that

contains

this

alias.

d.

Find

the

first

non-numeric

field

on

that

line.

Example

hosts

file:

127.0.0.1

localhost

9.22.5.77

nodexyz

nodexyzCOP1

#

teradata

server

9.66.111.133

rtplib05.data.xxx.com

aap

9.66.111.161

rtpscm11.data.xxx.com

aaprwrt

9.66.111.161

rtpscm11.data.xxx.com

accessm

In

this

example,

the

nodexyz

field

is

the

node

name.
2.

Issue

the

CREATE

SERVER

statement.

For

example:

CREATE

SERVER

server_name

TYPE

TERADATA

VERSION

2.4

WRAPPER

wrapper

OPTIONS

(NODE

’node_name’)

You

must

specify

a

server

name.

The

name

that

you

specify

must

be

unique.

You

must

set

the

TYPE

parameter

to

TERADATA

for

all

Teradata

servers.

The

Teradata

wrapper

supports

all

versions

of

Teradata

V2R3,

V2R4,

and

V2R5.

You

specify

the

version

number

as

two

digits

with

a

decimal

point.

Examples

of

valid

version

numbers

are

2.3,

2.4,

2.5.

You

must

specify

a

name

for

the

wrapper.

The

name

that

you

specify

must

correspond

to

a

Teradata

wrapper

that

you

registered

with

the

CREATE

WRAPPER

statement.

You

must

also

specify

the

name

of

the

node

where

the

Teradata

server

resides.

This

node

name

is

case

sensitive.

When

you

register

a

Teradata

server

definition,

you

can

specify

additional

server

options

in

the

CREATE

SERVER

statement,

if

required.

After

you

register

the

server

definition,

you

can

add

or

drop

server

options

by

issuing

the

ALTER

SERVER

statement.

The

next

task

in

this

sequence

of

tasks

is

creating

the

user

mapping

for

a

Teradata

data

source.

Related

tasks:

v

“Creating

the

user

mapping

for

a

Teradata

data

source”

on

page

373

Related

reference:

v

“CREATE

SERVER

statement”

in

the

SQL

Reference,

Volume

2

372

Data

Source

Configuration

Guide

|
|
|

v

“CREATE

SERVER

statement

-

Examples

for

Teradata

wrapper”

on

page

373

CREATE

SERVER

statement

-

Examples

for

Teradata

wrapper

This

topic

provides

several

examples

that

show

you

how

to

use

the

CREATE

SERVER

statement

to

register

servers

for

the

Teradata

wrapper.

This

topic

includes

a

complete

example,

which

shows

how

to

create

a

server

with

all

required

parameters,

and

an

example

with

optional

server

options.

Complete

example:

The

following

example

shows

you

how

to

create

a

server

definition

for

a

Teradata

wrapper

by

using

the

CREATE

SERVER

statement:

CREATE

SERVER

TERASERVER

TYPE

TERADATA

VERSION

2.4

WRAPPER

my_wrapper

OPTIONS

(NODE

’tera_node’);

The

server

option

TERASERVER

specifies

the

name

that

you

assign

to

the

Teradata

server.

TYPE

TERADATA

specifies

that

you

are

configuring

access

to

a

Teradata

data

source.

VERSION

2.4

is

the

version

of

the

Teradata

server

software

that

you

want

to

access.

WRAPPER

my_wrapper

specifies

the

name

of

the

Teradata

wrapper

that

you

registered

through

the

CREATE

WRAPPER

statement.

NODE

’tera_node’

is

the

name

of

the

node

where

the

Teradata

server

resides.

Server

option

example:

The

following

example

shows

a

Teradata

server

definition

with

statistics

for

the

optimizer:

CREATE

SERVER

TERASERVER1

TYPE

TERADATA

VERSION

2.4

WRAPPER

WRAPPERNAME1

OPTIONS

(NODE

’tera_node1’,

CPU_RATIO

’2.0’,

IO_RATIO

’3.0’);

In

this

example,

TERASERVER1

is

the

name

of

the

Teradata

server,

WRAPPERNAME1

is

the

wrapper

name

that

you

registered

through

the

CREATE

WRAPPER

statement,

and

’tera_node1’

is

the

name

of

the

node

where

the

Teradata

server

resides.

The

CPU_RATIO

and

IO_RATIO

server

options

provide

the

following

information

to

the

optimizer:

v

The

CPU

resources

of

the

federated

server

are

twice

as

powerful

as

the

CPU

resources

of

the

Teradata

server.

v

The

I/O

devices

of

the

federated

server

process

data

three

times

faster

than

the

I/O

devices

of

the

Teradata

server.

Related

tasks:

v

“Registering

the

server

definitions

for

a

Teradata

data

source”

on

page

371

Related

reference:

v

“CREATE

SERVER

statement”

in

the

SQL

Reference,

Volume

2

Creating

the

user

mapping

for

a

Teradata

data

source

Creating

the

user

mapping

for

a

Teradata

data

source

is

part

of

the

larger

task

of

adding

Teradata

data

sources

to

federated

servers.

When

you

attempt

to

access

a

Teradata

server,

the

federated

server

establishes

a

connection

to

the

data

source

using

a

user

ID

and

password

that

are

valid

for

that

Chapter

22.

Configuring

access

to

Teradata

data

sources

373

|
|
|

|
|
|

|

data

source.

You

must

define

an

association

(a

user

mapping)

between

each

federated

server

user

ID

and

password

and

the

corresponding

data

source

user

ID

and

password.

Create

a

user

mapping

for

each

user

ID

that

will

access

the

federated

system

to

send

distributed

requests

to

the

Teradata

data

source.

You

must

create

user

mappings

for

each

Teradata

server

that

you

registered

in

the

associated

CREATE

SERVER

statement.

Procedure:

To

map

the

federated

user

ID

to

the

Teradata

server

user

ID

and

password,

issue

a

CREATE

USER

MAPPING

statement.

For

example:

CREATE

USER

MAPPING

FOR

USERID

SERVER

TERASERVER

OPTIONS

(REMOTE_AUTHID

’remote_id’,

REMOTE_PASSWORD

’remote_password’)

Alternatively,

you

can

create

user

mappings

by

using

the

Create

User

Mapping

window

of

the

DB2

Control

Center.

The

next

task

in

this

sequence

of

tasks

is

testing

the

connection

from

the

federated

server

to

the

Teradata

server.

Related

tasks:

v

“Testing

the

connection

from

the

federated

server

to

the

Teradata

server”

on

page

375

Related

reference:

v

“CREATE

USER

MAPPING

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

USER

MAPPING

statement

-

Examples

for

Teradata

wrapper”

on

page

374

CREATE

USER

MAPPING

statement

-

Examples

for

Teradata

wrapper

This

topic

provides

examples

that

show

you

how

to

use

the

CREATE

USER

MAPPING

statement

to

map

a

local

federated

user

ID

to

a

Teradata

server

user

ID

and

password.

This

topic

includes

a

complete

example

with

all

the

required

parameters

and

an

example

that

shows

you

how

to

use

the

DB2

special

register

USER

with

the

CREATE

USER

MAPPING

statement.

Complete

example:

The

following

example

shows

how

to

map

a

local

federated

user

ID

(MICHAEL)

to

a

Teradata

server

user

ID

and

password

(’mike’

and

’passxyz123’):

CREATE

USER

MAPPING

FOR

MICHAEL

SERVER

TERASERVER

OPTIONS

(REMOTE_AUTHID

’mike’,

REMOTE_PASSWORD

’passxyz123’)

The

option

MICHAEL

specifies

the

federated

user

ID

that

you

are

mapping

to

a

user

ID

that

is

defined

at

the

Teradata

server.

SERVER

TERASERVER

specifies

the

name

of

the

Teradata

server

that

you

defined

in

the

CREATE

SERVER

statement.

REMOTE_AUTHID

’mike’

is

the

user

ID

at

the

Teradata

server

to

which

you

are

mapping

the

local

user

ID

called

MICHAEL.

REMOTE_PASSWORD

’passxyz123’

is

the

password

that

is

associated

with

the

REMOTE_AUTHID

value

of

’mike’.

374

Data

Source

Configuration

Guide

Special

register

example:

The

following

example

shows

a

CREATE

USER

MAPPING

statement

that

includes

the

special

register

USER:

CREATE

USER

MAPPING

FOR

USER

SERVER

TERASERVER

OPTIONS

(REMOTE_AUTHID

’mike’,

REMOTE_PASSWORD

’passxyz123’)

You

can

use

the

DB2

special

register

USER

to

map

the

authorization

ID

of

the

person

who

is

issuing

the

CREATE

USER

MAPPING

statement

to

the

data

source

authorization

ID

that

is

specified

in

the

REMOTE_AUTHID

user

option.

Related

tasks:

v

“Creating

the

user

mapping

for

a

Teradata

data

source”

on

page

373

Related

reference:

v

“CREATE

USER

MAPPING

statement”

in

the

SQL

Reference,

Volume

2

Testing

the

connection

from

the

federated

server

to

the

Teradata

server

Testing

the

connection

from

the

federated

server

to

the

Teradata

server

is

part

of

the

larger

task

of

adding

Teradata

data

sources

to

federated

servers.

You

can

test

the

connection

from

the

federated

server

to

the

Teradata

server

by

using

the

server

definition

and

the

user

mapping

that

you

defined.

Procedure:

To

test

the

connection:

1.

From

the

DB2

command

line

processor,

open

a

pass-through

session

to

issue

an

SQL

SELECT

statement

on

a

Teradata

system

table.

For

example:

SET

PASSTHRU

server_name

SELECT

count(*)

FROM

dbc.tables

SET

PASSTHRU

RESET

If

the

SQL

SELECT

statement

returns

a

count,

your

server

definition

and

your

user

mapping

are

set

up

properly.

2.

If

the

SQL

SELECT

statement

returns

an

error,

you

might

need

to:

v

Check

the

Teradata

server

to

make

sure

that

it

is

configured

for

incoming

connections.

v

Check

your

user

mapping

to

make

sure

that

the

settings

for

the

REMOTE_AUTHID

and

REMOTE_PASSWORD

options

are

valid

for

the

connections

to

the

Teradata

server.

Alter

the

user

mapping,

or

create

another

user

mapping

as

necessary.

v

Check

the

Teradata

client

software

on

the

DB2

federated

server

to

make

sure

that

the

software

is

correctly

installed

and

configured

to

connect

to

the

Teradata

server.

v

Check

the

settings

of

your

DB2

federated

variables

to

verify

that

you

can

access

the

Teradata

server.

These

variables

include

the

system

environment

variables,

the

db2dj.ini

variables,

and

the

DB2

Profile

Registry

(db2set)

variable.

v

Check

your

server

definition.

If

necessary,

drop

the

server

definition

and

create

it

again.

Chapter

22.

Configuring

access

to

Teradata

data

sources

375

When

you

initiate

a

pass-through

session

to

issue

SQL

statements

on

Teradata

objects,

you

cannot

submit

an

SQL

PREPARE

statement

with

an

INTO

parameter

if

the

statement

contains

host

variables.

The

next

task

in

this

sequence

of

tasks

is

registering

nicknames

for

Teradata

tables

and

views.

Related

tasks:

v

“Adding

Teradata

data

sources

to

a

federated

server”

on

page

365

v

“Testing

the

connection

to

the

Teradata

server”

on

page

366

v

“Registering

the

server

definitions

for

a

Teradata

data

source”

on

page

371

v

“Registering

nicknames

for

Teradata

tables

and

views”

on

page

377

v

“Setting

the

Teradata

environment

variables”

on

page

368

Related

reference:

v

“ALTER

USER

MAPPING

statement”

in

the

SQL

Reference,

Volume

2

Teradata

nicknames

on

federated

servers

You

must

create

a

nickname

for

each

Teradata®

table

and

view

that

you

want

to

access

on

each

Teradata

server

that

you

defined.

Use

these

nicknames,

instead

of

the

names

of

the

data

source

objects,

when

you

query

the

Teradata

servers.

The

federated

server

connects

to

the

Teradata

data

source

by

using

the

nickname

that

you

assigned

with

the

CREATE

NICKNAME

statement.

The

federated

server

then

queries

the

data

source

catalog

and

verifies

the

connection

to

the

data

source.

If

the

connection

does

not

work,

DB2®

generates

an

error

message.

The

federated

database

relies

on

catalog

statistics

for

nicknamed

objects

to

optimize

query

processing.

These

statistics

are

gathered

when

you

create

a

nickname

for

a

data

source

object.

The

federated

database

verifies

the

presence

of

the

object

at

the

data

source,

and

then

attempts

to

gather

existing

statistical

data

from

that

data

source.

Information

that

is

useful

to

the

optimizer

is

read

from

the

data

source

catalogs

and

placed

into

the

global

catalog

on

the

federated

server.

Because

some

or

all

of

the

data

source

catalog

information

might

be

used

by

the

optimizer,

update

the

statistics

at

the

data

source

before

you

create

a

nickname.

Update

these

statistics

at

the

data

source

by

using

a

command

or

utility

that

is

equivalent

to

the

DB2

RUNSTATS

command.

You

cannot

submit

an

SQL

INSERT,

UPDATE,

or

DELETE

statement

to

a

nickname

that

references

an

updatable

Teradata

view

unless

that

SQL

statement

can

be

completely

pushed

down

to

the

Teradata

data

source.

Related

tasks:

v

“Registering

nicknames

for

Teradata

tables

and

views”

on

page

377

Related

reference:

v

“RUNSTATS

Command”

in

the

Command

Reference

v

“CREATE

NICKNAME

statement

-

Examples

for

Teradata

wrapper”

on

page

377

376

Data

Source

Configuration

Guide

Registering

nicknames

for

Teradata

tables

and

views

Registering

nicknames

for

Teradata

tables

and

views

is

part

of

the

larger

task

of

adding

Teradata

data

sources

to

federated

servers.

For

each

Teradata

server

that

you

define,

register

a

nickname

for

each

table

and

view

that

you

want

to

access.

Procedure:

To

register

a

nickname,

issue

the

CREATE

NICKNAME

statement.

For

example:

CREATE

NICKNAME

TERANICKNAME

FOR

TERASERVER."remote_schema"."remote.table"

Recommendation:

Because

the

federated

database

uses

catalog

statistics

for

nicknamed

objects

to

optimize

query

processing,

update

the

statistics

at

the

Teradata

data

source

before

registering

a

nickname.

You

can

use

a

command

or

utility

that

is

equivalent

to

the

DB2

RUNSTATS

command.

Nicknames

can

be

up

to

128

characters

in

length.

You

can

specify

the

NUMERIC_STRING

column

option

when

you

issue

the

CREATE

NICKNAME

statement.

You

can

also

specify

this

column

option

by

using

the

ALTER

NICKNAME

statement.

Related

concepts:

v

“Teradata

nicknames

on

federated

servers”

on

page

376

Related

reference:

v

“RUNSTATS

Command”

in

the

Command

Reference

v

“CREATE

NICKNAME

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

NICKNAME

statement

-

Examples

for

Teradata

wrapper”

on

page

377

CREATE

NICKNAME

statement

-

Examples

for

Teradata

wrapper

This

topic

provides

an

example

that

shows

you

how

to

use

the

CREATE

NICKNAME

statement

to

register

a

nickname

for

a

Teradata

table

or

view

that

you

want

to

access.

This

example

shows

how

to

specify

a

remote

object

for

the

Teradata

server

under

which

the

nickname

is

assigned:

CREATE

NICKNAME

TERASALES

FOR

TERASERVER."salesdata"."europe"

TERASALES

is

the

unique

nickname

that

you

assign

for

the

Teradata

table

or

view.

A

nickname

is

a

two-part

name:

the

schema

and

the

actual

nickname.

If

you

omit

the

schema

when

you

create

the

nickname,

DB2

creates

the

nickname

using

your

authentication

ID

as

the

schema.

TERASERVER.″salesdata″.″europe″

specifies

a

three-part

identifier

for

the

remote

object:

v

TERASERVER

is

the

name

that

you

assigned

to

the

Teradata

database

server

in

the

CREATE

SERVER

statement.

Chapter

22.

Configuring

access

to

Teradata

data

sources

377

v

salesdata

is

the

name

of

the

remote

schema

to

which

the

table

or

view

belongs.

v

europe

is

the

name

of

the

remote

table

or

view

that

you

want

to

access.

Related

concepts:

v

“Teradata

nicknames

on

federated

servers”

on

page

376

Related

tasks:

v

“Registering

nicknames

for

Teradata

tables

and

views”

on

page

377

Related

reference:

v

“CREATE

NICKNAME

statement”

in

the

SQL

Reference,

Volume

2

Tuning

and

troubleshooting

the

configuration

to

Teradata

data

sources

After

you

set

up

the

configuration

to

Teradata

data

sources,

you

can

change

the

configuration

to

improve

performance

and

to

eliminate

potential

errors.

UPDATE

or

DELETE

operation

errors

on

nicknames

By

default,

rows

are

not

uniquely

identified

on

Teradata

data

source

tables.

You

might

receive

an

SQL30090N,

RC="21"

error

when

you

try

to

update

or

delete

a

nickname

that

is

associated

with

a

Teradata

table

or

a

Teradata

view.

If

the

SQL30090N,

RC="21"

error

occurs,

create

at

least

one

unique

index

on

the

Teradata

table

that

is

being

updated

or

deleted,

and

then

try

the

operation

again.

Tuning

and

disabling

Teradata

access

logging

The

Teradata

product

provides

an

access

logging

feature

that

generates

log

entries

when

Teradata

checks

the

specific

security

privileges

of

various

users

on

one

or

more

databases.

Although

access

logging

provides

considerable

and

meaningful

security

information,

this

feature

significantly

increases

processor

usage

and

can

degrade

system

performance.

If

you

need

to

improve

system

performance,

evaluate

the

checking

privilege

rules

that

you

defined

for

access

logging.

Then,

terminate

any

unnecessary

rules

by

defining

END

LOGGING

statements.

For

the

best

performance,

turn

off

all

access

logging.

Drop

the

Teradata

DBC.AccLogRules

macro

and

then

force

a

trusted

parallel

application

(TPA)

reset

to

stop

access

logging

completely.

See

the

Teradata

documentation

for

more

information.

Enabling

run-time

linking

for

libcliv2.so

(AIX)

If

you

run

the

djxlinkTeradata.sh

file

to

link

to

the

Teradata

shared

library

called

libcliv2.so,

you

might

receive

an

error

message

when

you

issue

a

CREATE

NICKNAME

statement.

An

example

of

an

error

message

that

you

might

receive

is:

DB21034E

The

command

was

processed

as

an

SQL

statement

because

it

was

not

a

valid

Command

Line

Processor

command.

During

SQL

processing

it

returned:

SQL30081N

A

communication

error

has

been

detected.

Communication

protocol

being

used:

"TCP/IP".

Communication

API

being

used:

"SOCKETS".

Location

where

the

error

was

detected:

"9.112.26.28".

Communication

function

detecting

the

error:

"recv".

Protocol

specific

error

code(s):

"*",

"*",

"0".

SQLSTATE=08001

378

Data

Source

Configuration

Guide

|

|
|
|
|
|

If

you

receive

an

error

message,

check

the

/sqllib/db2dump

directory

for

any

trap

files.

Trap

file

names

begin

with

the

letter

t

and

end

with

a

suffix

of

000.

For

example:

t123456.000

Check

the

trace

information

in

the

trap

file

for

any

OsCall

function

references

that

indicate

that

the

OsCall

function

caused

the

federated

server

to

stop.

The

following

example

shows

trace

information

with

an

OsCall

function

reference

that

you

might

find

in

a

trap

file:

Start

stack

traceback

0x239690E0

OsCall

+

0x28C

0x23973FB0

mtdpassn

+

0x8A4

0x239795A4

mtdp

+

0x208

0x2395A928

MTDPIO

+

0x28C

0x239609C4

CLICON

+

0xD50

0x23962350

DBCHCL

+

0xC4

If

you

find

an

OsCall

function

reference

in

one

of

the

trap

files,

issue

the

following

UNIX

commands:

cd

/usr/lib

rtl_enable

libcliv2.so

-F

libtli.a

mv

libcliv2.so

libcliv2.so.old

mv

libcliv2.so.new

libcliv2.so

chmod

a+r

libcliv2.so

These

commands

enable

run-time

linking

for

the

libcliv2.so

shared

library.

Related

tasks:

v

“Adding

Teradata

data

sources

to

a

federated

server”

on

page

365

v

“Verifying

that

the

Teradata

library

is

enabled

for

run-time

linking

(AIX)”

on

page

367

Related

reference:

v

“db2set

-

DB2

Profile

Registry

Command”

in

the

Command

Reference

Chapter

22.

Configuring

access

to

Teradata

data

sources

379

380

Data

Source

Configuration

Guide

Chapter

23.

Configuring

access

to

Web

services

data

sources

The

information

in

this

section

explains

how

to

add

Web

service

data

sources

to

your

federated

system.

The

Web

services

wrapper

and

the

Web

services

description

language

document

Web

service

providers

are

described

by

Web

Services

Description

Language

(WSDL)

documents.

You

can

use

the

Web

services

wrapper

to

access

Web

service

providers.

As

Figure

28

shows,

the

Web

service

provider

implements

a

service

and

publishes

the

interface

to

a

service

broker,

such

as

UDDI.

The

service

requester

can

then

use

the

service

broker

to

find

a

Web

service.

When

the

requester

finds

a

service,

the

requester

binds

to

the

service

provider

so

that

the

requester

can

use

the

Web

service.

The

requester

invokes

the

service

by

exchanging

SOAP

(simple

object

access

protocol)

messages

between

the

requester

and

provider.

The

SOAP

specification

defines

the

layout

of

an

XML-based

message.

A

SOAP

message

is

contained

in

a

SOAP

envelope.

The

envelope

consists

of

an

optional

SOAP

header

and

a

mandatory

SOAP

body.

The

SOAP

header

can

contain

information

about

the

message,

such

as

encryption

information

or

authentication

information.

The

SOAP

body

contains

the

message.

The

SOAP

specification

also

defines

a

default

encoding

for

programming

language

bindings,

which

is

called

the

SOAP

encoding.

The

key

to

the

Web

service

is

the

WSDL

document.

The

WSDL

document

is

an

XML

document

that

describes

Web

services

in

terms

of

the

messages

that

it

sends

and

receives.

Messages

are

described

by

using

a

type

system,

which

is

typically

the

XML

schema.

A

Web

service

operation

associates

a

message

exchange

pattern

with

one

or

more

messages.

A

message

exchange

pattern

identifies

the

sequence

and

cardinality

of

messages

that

are

sent

or

received,

as

well

as

who

the

messages

are

logically

sent

to

or

received

from.

An

interface

groups

together

operations

without

Service
provider

Service
broker

3. Return the WSDL

Service
consumer

2. Find a provider

4. Invoke the provider
using a SOAP message

1. Publish the WSDL

Bind

Figure

28.

Web

services:

a

service-oriented

architecture

©

Copyright

IBM

Corp.

1998,

2004

381

|

|

|
|

|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

any

commitment

to

the

transport

or

wire

format.

A

WSDL

binding

specifies

transport

and

wire

format

details

for

one

or

more

interfaces.

An

endpoint

associates

a

network

address

with

a

binding.

A

service

groups

together

endpoints

that

implement

a

common

interface.

The

messages

can

contain

document-oriented

information

or

process-oriented

information,

which

is

also

known

as

remote

procedure

calls

(RPC).

A

WSDL

document

can

contain

one

or

more

Web

services.

The

example

in

Figure

29

on

page

383

shows

the

WSDL

definition

of

a

simple

service

that

provides

stock

quotes.

The

Web

service

supports

a

single

operation

that

is

named

GetLastTradePrice.

The

service

can

be

accessed

with

the

SOAP

1.1

protocol

over

HTTP.

The

request

reads

a

ticker

symbol

as

input,

which

is

a

string

data

type,

and

returns

the

price,

which

is

a

float

data

type.

The

string

and

float

data

types

are

predefined

types

in

the

XML

schema

standards.

A

Web

service

can

also

define

data

types

and

use

those

user-defined

data

types

in

messages.

Predefined

and

user-defined

XML

data

types

map

to

columns

of

the

nicknames.

The

complete

example

and

the

WSDL

specification

is

at

the

W3C

Web

site.

382

Data

Source

Configuration

Guide

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

http://www.w3.org/TR/wsdl

The

Web

services

wrapper

uses

the

operations

in

a

port

type

that

have

a

SOAP

binding

with

an

HTTP

transport.

The

input

messages

in

the

operation,

and

the

<?xml

version="1.0"?>

<definitions

name="StockQuote"

...

<types>

<schema

targetNamespace="http://example.com/stockquote.xsd"

xmlns="http://www.w3.org/2000/10/XMLSchema">

<element

name="TradePriceRequest">

<complexType>

<all>

<element

name="tickerSymbol"

type="string"/>

</all>

</complexType>

</element>

<element

name="TradePrice">

<complexType>

<all>

<element

name="price"

type="float"/>

</all>

</complexType>

</element>

</schema>

</types>

<message

name="GetLastTradePriceInput">

...

</message>

<portType

name="StockQuotePortType">

<operation

name="GetLastTradePrice">

<input

message="tns:GetLastTradePriceInput"/>

<output

message="tns:GetLastTradePriceOutput"/>

</operation>

</portType>

<binding

name="StockQuoteSoapBinding"

type="tns:StockQuotePortType">

<soap:binding

style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>

<operation

name="GetLastTradePrice">

<soap:operation

soapAction="http://example.com/GetLastTradePrice"/>

<input>

<soap:body

use="literal"/>

</input>

<output>

<soap:body

use="literal"/>

</output>

</operation>

</binding>

<service

name="StockQuoteService">

<documentation>My

first

service</documentation>

<port

name="StockQuotePort"

binding="tns:StockQuoteBinding">

<soap:address

location="http://example.com/stockquote"/>

</port>

</service>

</definitions>

Figure

29.

Example

of

a

WSDL

document

Chapter

23.

Configuring

access

to

Web

services

data

sources

383

|
|

associated

types

or

elements,

become

columns

in

the

nickname.

The

output

messages

in

the

operation

are

extracted

into

the

nickname

hierarchy.

You

can

create

a

separate

hierarchy

of

nicknames

for

each

operation

in

the

WSDL

document.

Figure

30

uses

a

WSDL

document

that

contains

a

portType

with

an

operation

name

of

GETTEMP.

With

this

Web

service,

you

enter

a

zip

code

as

input,

and

receive

a

temperature

for

that

zip

code.

The

input

value

is

described

by

the

zipcode

column.

The

output

value

is

described

by

the

return

column.

In

the

WSDL

document,

those

columns

are

identified

in

the

messages

element.

The

messages

element

represents

the

logical

definition

of

the

data

that

is

sent

between

the

Web

service

provider

and

the

Web

service

consumer.

If

more

explanation

of

the

information

in

the

message

element

is

needed,

then

the

<?xml

version="1.0"?>

<definitions

name="TemperatureService"

targetNamespace=http://www.xmethods.net/

sd/TemperatureService.wsdl"

xmlns:tns="http://www.xmethods.net/sd/TemperatureService.wsdl"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<message

name="getTempRequest">

<part

name="zipcode"

type="xsd:string"/>

</message>

<message

name="getTempResponse">

<part

name="return"

type="xsd:float"/>

</message>

<portType

name="TemperaturePortType">

<operation

name="getTemp">

<input

message="tns:getTempRequest"/>

<output

message="tns:getTempResponse"/>

</operation>

</portType>

<binding

name="TemperatureBinding"

type="tns:TemperaturePortType">

<soap:binding

style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"

/>

<operation

name="getTemp">

<soap:operation

soapAction=""

/>

<input>

<soap:body

use="encoded"

namespace="urn:xmethods-Temperature"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

/>

</input>

<output>

<soap:body

use="encoded"

namespace="urn:xmethods-Temperature"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

/>

</output>

</operation>

</binding>

<service

name="TemperatureService">

<documentation>

Returns

current

temperature

in

a

given

U.S.

zipcode

</documentation>

<port

name="TemperaturePort"

binding="tns:TemperatureBinding">

<soap:address

location="http://services.xmethods.net:80/soap/servlet/rpcrouter"

/>

</port>

</service>

</definitions>

Figure

30.

GETTEMP

Web

service

384

Data

Source

Configuration

Guide

|
|
|

|
|
|
|

|
|
|
|
|

WSDL

document

can

also

contain

a

type

element.

The

type

element

can

refer

to

predefined

types

that

are

based

on

the

XML

schema

specifications,

or

types

that

are

defined

by

a

user.

Figure

31

shows

the

nickname

that

the

DB2®

Control

Center

Discover

tool

produces

from

the

WSDL

document.

The

zipcode

column

is

a

required

input

column

because

of

the

nickname

TEMPLATE

syntax:

The

Web

services

wrapper

nickname

options

URL

and

SOAPACTION

provide

the

ability

to

override

the

endpoint,

or

the

address

that

you

specified

when

you

created

the

nickname.

When

you

use

the

URLCOLUMN

or

SOAPACTIONCOLUMN

enabled

columns

in

a

query,

you

can

use

dynamic

addresses

with

the

same

nicknames.

If

you

define

the

nickname

options

URL

and

SOAPACTION

when

you

create

a

nickname,

and

enable

the

URLCOLUMN

and

SOAPACTIONCOLUMN

on

the

column

option,

then

you

are

using

the

late

binding

functions

of

Web

services

wrappers.

The

value

for

the

SOAPACTION

nickname

option

becomes

an

attribute

in

the

HTTP

header.

The

value

for

the

URL

nickname

option

is

the

HTTP

URL

to

which

the

request

is

sent.

The

URL

and

SOAPACTION

nickname

options

provide

dynamic

nickname

associations.

These

dynamic

addresses

are

useful

if

several

companies

implement

a

Web

service

portType.

The

Web

services

wrapper

requires

that

the

only

differences

between

the

WSDL

documents

are

different

URLs

and

SOAPACTIONS.

You

can

use

the

late

binding

function

to

create

and

use

the

same

nickname

for

different

service

endpoints

that

different

companies

might

want

to

use.

The

URL

and

SOAPACTION

values

are

derived

from

the

WSDL

document.

The

following

example

shows

how

you

can

use

the

URLCOLUMN

and

SOAPACTIONCOLUMN

column

options:

CREATE

NICKNAME

GETTEMP

(

ZIPCODE

VARCHAR

(48)

OPTIONS(TEMPLATE

’&column’),

RETURN

VARCHAR

(48)

OPTIONS(XPATH

’./return/text()’)

)

FOR

SERVER

"EHPWSSERV"

OPTIONS(URL

’http://services.xmethods.net:80/soap/servlet/rpcrouter’,

SOAPACTION

’

’

,

TEMPLATE

’<soapenv:Envelope>

<soapenv:Body>

<ns2:getTemp>

<zipcode>&zipcode[1,1]</zipcode>

</ns2:getTemp>

</soapenv:Body>

</soapenv:Envelope>’,

XPATH

’/soapenv:Envelope/soapenv:Body/*’

,

NAMESPACES

’

ns1="http://www.xmethods.net/sd/TemperatureService.wsdl",

ns2="urn:xmethods-Temperature"

,

soapenv="http://schemas.xmlsoap.org/soap/envelope/"’);

Figure

31.

GETTEMP

nickname

Chapter

23.

Configuring

access

to

Web

services

data

sources

385

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

The

following

example

uses

the

columns

URLCOL

and

SOAPACTIONCOL

that

were

defined

with

the

URLCOLUMN

column

option

enabled,

and

the

SOAPACTIONCOLUMN

column

option

enabled:

SELECT

*

FROM

supplier_endpoints

p,

GetPartQuote

q

WHERE

partnumber=1234

AND

p.url=q.urlcol

AND

p.soapaction=q.soapactioncol;

The

SQL

application

can

defer

choosing

which

endpoints

to

use

until

the

time

that

a

query

is

run,

instead

of

defining

a

specific

endpoint

at

the

time

that

the

nickname

is

created.

The

Web

services

wrapper

can

separate

a

large

amount

of

WSDL

document

data

into

fragments

to

decrease

the

total

memory

that

is

used.

Specify

the

STREAMING

option

in

the

DB2

Control

Center

in

the

Settings

page

of

the

Properties

window,

when

you

create

a

Web

services

nickname.

The

Web

services

wrapper

processes

the

resulting

stream

of

XML

data

and

then

extracts

the

information

that

is

requested

by

a

query

fragment.

The

Web

services

wrapper

parses

one

fragment

at

a

time.

Use

the

STREAMING

option

to

parse

large

XML

documents

only.

Related

concepts:

v

“WSDL

from

a

DADX

file”

in

the

IBM

DB2

Information

Integrator

Application

Developer’s

Guide

v

“Web

services

description

language”

in

the

IBM

DB2

Information

Integrator

Application

Developer’s

Guide

Related

tasks:

v

“Adding

Web

services

data

sources

to

a

federated

server”

on

page

387

v

“Registering

the

Web

services

wrapper”

on

page

388

v

“Registering

nicknames

for

Web

services

data

sources”

on

page

390

Related

reference:

v

“CREATE

NICKNAME

statement

–

examples

for

the

Web

services

wrapper”

on

page

398

v

“Messages

for

the

Web

services

wrapper”

on

page

411

CREATE

NICKNAME

GetPartQuote(

partnumber

INTEGER

OPTIONS

(TEMPLATE’&column’),

price

FLOAT

OPTIONS

(XPATH

’./price’)),

urlcol

VARCHAR(100)

OPTIONS

(URLCOLUMN

’Y’),

soapactioncol

VARCHAR(100)

OPTIONS

(SOAPACTIONCOLUMN

’Y’),

FOR

SERVER

myServer

OPTIONS

(

...

SOAPACTION

’http://example.com/GetPartPrice’

,

URL

’http://mycompany.com:9080/GetPartPrice’’,

...

)

Figure

32.

GetPartQuote

nickname

386

Data

Source

Configuration

Guide

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|

|
|

|
|

|

|

|

|

|

|
|

|

Adding

Web

services

to

a

federated

system

Adding

Web

services

data

sources

to

a

federated

server

To

configure

the

federated

server

to

access

Web

services

data

sources,

you

must

provide

the

federated

server

with

information

about

the

data

sources

and

objects

that

you

want

to

access,

such

as

a

valid

Web

services

description

language

(WSDL)

document.

You

can

configure

the

federated

server

to

access

Web

services

data

sources

by

using

the

DB2

Control

Center

or

the

DB2

command

line.

The

DB2

Control

Center

includes

a

wizard

to

guide

you

through

the

steps

required

to

configure

the

federated

server.

Prerequisites:

v

DB2

Information

Integrator

must

be

installed

on

a

server

that

will

act

as

the

federated

server

v

A

federated

database

must

exist

on

the

federated

server

Procedure:

To

add

Web

services

data

sources

to

a

federated

server:

1.

Register

the

wrapper.

2.

Register

the

server

definition.

3.

Optional:

Create

a

user

mapping.

4.

Register

nicknames

for

the

Web

services

data

sources.

5.

Optional:

Create

federated

views

for

the

Web

services

nicknames.

Related

concepts:

v

“DB2

Information

Integrator

installation

process

-

overview”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Web

services

wrapper

security”

on

page

411

v

“Web

services

wrapper

security”

on

page

411

v

“The

Web

services

wrapper

and

the

Web

services

description

language

document”

on

page

381

Related

tasks:

v

“Editing

the

Oracle

genclntsh

script

and

creating

the

libclntsh

file

after

you

install

DB2

Information

Integrator

(HP-UX,

Linux,

Solaris)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Registering

the

Web

services

wrapper”

on

page

388

v

“Registering

the

server

definition

for

Web

services

data

sources”

on

page

389

v

“Registering

nicknames

for

Web

services

data

sources”

on

page

390

v

“Creating

federated

views

for

Web

services

nicknames”

on

page

397

v

“Creating

a

federated

database”

on

page

51

v

“Registering

the

Web

services

wrapper”

on

page

388

Related

reference:

v

“Supported

operating

systems

for

DB2

Information

Integrator

(32-bit)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

Chapter

23.

Configuring

access

to

Web

services

data

sources

387

|
|

|

|
|
|
|

|
|
|
|

|

|
|

|

|

|

|

|

|

|

|

|

|
|

|

|

|
|

|

|
|
|

|

|

|

|

|

|

|

|
|

v

“CREATE

NICKNAME

statement

–

examples

for

the

Web

services

wrapper”

on

page

398

v

“Messages

for

the

Web

services

wrapper”

on

page

411

v

“Web

services

data

sources

–

example

queries”

on

page

408

v

“Query

restrictions

for

wrappers

for

business

applications

and

Web

services”

on

page

151

Registering

the

Web

services

wrapper

Registering

the

Web

services

wrapper

is

part

of

the

larger

task

of

adding

Web

services

data

sources

to

a

federated

server.

You

must

register

a

wrapper

to

access

Web

services

data

sources.

Wrappers

are

used

by

federated

servers

to

communicate

with

and

retrieve

data

from

data

sources.

Wrappers

are

implemented

as

a

set

of

library

files.

Procedure:

To

register

a

wrapper,

issue

a

CREATE

WRAPPER

statement

with

the

name

of

the

wrapper

and

the

name

of

the

wrapper

library

file.

For

example,

to

register

a

wrapper

with

the

name

websr_wrapper

on

the

federated

server

that

uses

the

Windows

operating

system,

issue

the

following

statement:

CREATE

WRAPPER

websr_wrapper

LIBRARY

’db2ws.dll’;

The

name

of

the

wrapper

library

file

that

you

specify

depends

on

the

operating

system

of

the

federated

server.

See

the

list

of

Web

services

wrapper

library

files

for

the

correct

name

to

specify

in

the

CREATE

WRAPPER

statement.

The

next

task

in

this

sequence

of

tasks

is

registering

the

server

definitions

for

the

Web

services

wrapper.

Related

concepts:

v

“Web

services

wrapper

security”

on

page

411

v

“The

Web

services

wrapper

and

the

Web

services

description

language

document”

on

page

381

Related

tasks:

v

“Adding

Web

services

data

sources

to

a

federated

server”

on

page

387

v

“Registering

the

server

definition

for

Web

services

data

sources”

on

page

389

Related

reference:

v

“Web

services

wrapper

library

files”

on

page

388

Web

services

wrapper

library

files

The

following

table

lists

the

directory

paths

and

library

file

names

for

the

Web

services

wrapper.

When

you

install

DB2

Information

Integrator,

3

library

files

are

added

to

the

directory

path

listed

in

the

table.

For

example,

if

the

federated

server

is

running

on

AIX,

the

wrapper

library

files

added

to

the

directory

path

are

libdb2ws.a,

libdb2wsF.a,

and

libdb2wsU.a.

388

Data

Source

Configuration

Guide

|
|

|

|

|
|

|

|
|

|
|
|

|

|
|

|
|

|

|
|
|

|
|

|

|

|
|

|

|

|

|

|

|

|
|

|
|
|
|

When

you

register

a

wrapper,

specify

only

the

library

file

name

that

is

listed

in

the

table.

Table

87.

Web

services

wrapper

library

locations

and

file

names

Operating

system

Directory

path

Wrapper

library

file

AIX

/usr/opt/db2_08_01/lib/

libdb2ws.a

Windows

%DB2PATH%\bin

db2ws.dll

%DB2PATH%

is

the

environment

variable

that

is

used

to

specify

the

directory

path

where

DB2

Information

Integrator

is

installed

on

Windows.

The

default

Windows

directory

path

is

C:\Program

Files\IBM\SQLLIB.

Related

tasks:

v

“Registering

the

Web

services

wrapper”

on

page

388

Registering

the

server

definition

for

Web

services

data

sources

Registering

the

server

definition

for

a

Web

services

data

source

is

part

of

the

larger

task

of

adding

Web

services

to

a

federated

system.

After

you

register

the

wrapper,

you

must

register

a

corresponding

server.

A

server

definition

must

be

registered

for

each

Web

service

that

you

want

to

access.

You

can

register

the

server

definition

from

a

DB2

command

line

or

from

the

DB2

Control

Center.

Procedure:

To

register

a

server

definition

to

the

federated

system

for

the

Web

services

wrapper,

issue

the

CREATE

SERVER

statement.

For

example,

to

register

a

Web

services

server

definition

named

ws_server

on

Windows,

issue

the

following

statement:

CREATE

SERVER

ws_server

WRAPPER

websr_wrapper;

The

next

task

in

this

sequence

of

tasks

is

registering

the

nicknames

for

the

Web

services

data

sources.

Related

tasks:

v

“Registering

the

Web

services

wrapper”

on

page

388

v

“Registering

nicknames

for

Web

services

data

sources”

on

page

390

Related

reference:

v

“CREATE

NICKNAME

statement

–

examples

for

the

Web

services

wrapper”

on

page

398

v

“Query

restrictions

for

wrappers

for

business

applications

and

Web

services”

on

page

151

Chapter

23.

Configuring

access

to

Web

services

data

sources

389

|
|

||

|||

|||

|||
|

|
|
|

|

|

|

|

|
|

|
|

|
|

|

|
|

|
|

|

|
|

|

|

|

|

|
|

|
|

Registering

nicknames

for

Web

services

data

sources

Registering

nicknames

for

Web

services

data

sources

Registering

nicknames

for

Web

services

data

sources

is

part

of

the

larger

task

of

adding

Web

services

to

a

federated

system.

You

create

one

nickname

hierarchy

for

each

Web

service

operation.

Web

service

operations

are

defined

in

the

Web

services

description

language

(WSDL)

document.

Parent

nicknames

contain

at

least

one

child

nickname.

Child

nicknames

correspond

to

the

elements

that

are

nested

within

the

element

for

the

parent

nickname.

You

can

create

the

nickname

from

a

DB2

command

line

or

from

the

DB2

Control

Center.

In

the

DB2

Control

Center,

you

can

use

the

Discovery

tool

to

quickly

create

the

nicknames.

The

input

to

the

Discover

tool

is

a

URL

of

the

location

of

a

WSDL

document.

The

Discover

tool

creates

nicknames

as

a

result

of

processing

the

WSDL

document.

The

WSDL

document

can

contain

schema

definitions

that

are

embedded

in

the

WSDL

file

or

in

an

external

XML

schema

file

that

is

imported

in

the

WSDL

file.

These

schema

definitions

are

imported

by

using

a

URL

address.

Prerequisites:

You

must

have

access

to

a

valid

WSDL

document

that

describes

the

Web

service

with

which

you

want

to

communicate.

Restrictions:

v

Only

request-response

operations

are

supported.

v

A

SOAP

binding

with

an

HTTP

transport

is

the

only

binding

that

is

supported.

v

You

must

use

either

the

TEMPLATE

option

or

the

XPATH

option

on

each

column,

except

for

the

special

columns

with

the

SOAPACTIONCOLUMN,

URLCOLUMN,

PRIMARY_KEY

or

FOREIGN_KEY

options.

Procedure:

To

register

nicknames

for

Web

services

data

sources

from

the

DB2

command

line,

issue

a

CREATE

NICKNAME

statement.

For

example,

to

register

the

nicknames

on

Windows

for

a

Web

service

named

GETTEMP,

issue

the

following

statement:

CREATE

NICKNAME

GETTEMP

(

ZIPCODE

VARCHAR

(48)

OPTIONS(TEMPLATE

’&column’),

RETURN

VARCHAR

(48)

OPTIONS(XPATH

’./return/text()’)

)

FOR

SERVER

"EHPWSSERV"

OPTIONS(URL

'http://services.xmethods.net:80/soap/servlet/rpcrouter',

SOAPACTION

’

’

,

TEMPLATE

’<soapenv:Envelope>

<soapenv:Body>

<ns2:getTemp>

<zipcode>&zipcode[1,1]</zipcode>

</ns2:getTemp>

</soapenv:Body>

</soapenv:Envelope>’,

XPATH

’/soapenv:Envelope/soapenv:Body/*’

,

390

Data

Source

Configuration

Guide

|

|

|
|

|
|
|
|
|

|
|

|
|
|
|
|
|

|

|
|

|

|

|

|
|
|

|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

NAMESPACES

’

ns1="http://www.xmethods.net/sd/TemperatureService.wsdl",

ns2="urn:xmethods-Temperature"

,

soapenv="http://schemas.xmlsoap.org/soap/envelope/"’);

The

data

definition

language

(DDL)

that

the

DB2

Control

Center

generates

maps

all

input

elements

to

columns

of

the

root

nickname

in

the

nickname

hierarchy.

The

nickname

that

is

created

is

derived

from

the

WSDL

document.

To

register

nicknames

for

Web

services

data

sources

from

the

DB2

Control

Center:

1.

Expand

the

Federated

Database

Objects

folder.

2.

Expand

the

wrapper

folder

for

which

you

want

to

register

nicknames.

3.

Expand

the

Server

Definitions

folder.

4.

Expand

the

server

folder

for

which

you

want

to

register

nicknames.

5.

Right

click

the

Nicknames

folder

and

select

Create.

6.

In

the

Create

Nicknames

window,

click

Discover

to

define

search

criteria

to

help

you

select

objects

at

the

data

source.

7.

Specify

the

WSDL

document

that

contains

the

definition

of

the

Web

service

that

you

want

DB2

Information

Integrator

users

to

access.

The

WSDL

document

can

be

a

local

document

or

you

can

specify

its

location

by

using

a

URL.

8.

Click

OK

to

create

the

nickname

according

to

the

selected

WSDL

document.

The

DB2

Control

Center

extracts

the

WSDL

document

into

multiple

create

nickname

DDL

statements,

with

the

appropriate

parent-child

relationship

definitions.

The

nicknames

that

are

created

represent

the

Web

services

hierarchy

that

is

defined

in

the

WSDL

document.

Optional:

The

next

task

in

this

sequence

of

tasks

is

creating

federated

views

for

the

Web

services

nicknames.

Related

concepts:

v

“Web

services

wrapper

security”

on

page

411

Related

tasks:

v

“Specifying

nickname

columns

for

a

nonrelational

data

source”

on

page

65

v

“Adding

Web

services

data

sources

to

a

federated

server”

on

page

387

v

“Registering

the

Web

services

wrapper”

on

page

388

Related

reference:

v

“CREATE

NICKNAME

statement

–

examples

for

the

Web

services

wrapper”

on

page

398

v

“Messages

for

the

Web

services

wrapper”

on

page

411

v

“Web

services

data

sources

–

example

queries”

on

page

408

v

“Query

restrictions

for

wrappers

for

business

applications

and

Web

services”

on

page

151

The

TEMPLATE

option

at

the

nickname

and

column

levels

This

topic

applies

to

the

WebSphere®

Business

Integration

wrapper

and

the

Web

services

wrapper.

The

WebSphere®

Business

Integration

wrapper

and

the

Web

services

wrapper

build

XML

documents

that

are

required

by

the

WebSphere

Business

Integration

Adapter

Chapter

23.

Configuring

access

to

Web

services

data

sources

391

|
|
|

|
|
|

|

|

|

|

|

|

|
|

|
|

|
|

|

|
|
|
|

|
|

|

|

|

|

|

|

|

|
|

|

|

|
|

|

|
|

|
|

and

the

Web

services

environment.

The

wrappers

need

the

nickname

level

and

the

column

level

template

fragments,

which

is

the

TEMPLATE

option

on

the

CREATE

NICKNAME

statement,

at

the

time

that

the

nickname

is

created.

The

wrappers

use

this

information

during

the

query

planning

and

the

query

execution

phases.

Web

services

wrapper

For

the

Web

services

wrapper,

the

required

and

optional

attributes

vary

according

to

the

definitions

in

the

WSDL

document

and

how

a

column

is

derived.

A

column

can

be

derived

from

either

an

element

or

an

attribute

of

an

element.

v

If

the

column

is

derived

from

an

element,

then

the

minOccurs

value

determines

if

a

column

is

optional.

v

If

the

value

of

minOccurs

equals

0,

then

the

column

is

optional.

v

If

the

value

of

minOccurs

equals

1,

then

the

column

is

required.

v

If

the

column

is

derived

from

an

attribute

of

an

element,

then

the

value

of

use

on

the

attribute

determines

if

a

column

is

optional.

v

If

an

attribute

contains

the

value

use=optional,

then

the

column

is

optional.

v

If

an

attribute

contains

the

value

use=required,

then

the

column

is

required.

The

following

example

is

an

attribute

in

a

schema

definition

that

is

associated

with

a

column:

<xsd:complexType>

<xsd:sequence>

<xsd:element

ref="tns:ZooName"/>

<xsd:element

ref="tns:Count"/>

<xsd:element

ref="tns:LastModified"/>

<xsd:element

maxOccurs="unbounded"

minOccurs="0"

ref="tns:Zookeeper"/>

</xsd:sequence>

<xsd:attribute

name="id"

type="xsd:string"

use="optional"/>

</xsd:complexType>

WebSphere

Business

Integration

wrapper

For

the

WebSphere

Business

Integration

wrapper,

the

required

and

optional

columns

vary

according

to

the

application

and

the

associated

adapter.

You

need

to

identify

the

required

and

optional

input

columns

by

specifying

the

appropriate

template

option

values

for

those

columns.

Before

you

use

the

DB2®

Control

Center

to

create

the

nicknames,

you

must

modify

the

XML

schema

definition

file

to

flag

the

required

and

optional

input

columns.

SAP

BAPI

The

IBM®

DB2

Control

Center

determines

the

required

and

optional

input

columns

based

on

the

value

of

specific

flags

in

the

XML

schema

definition

(XSD)

files

that

represent

the

business

object

definition

In

the

annotation

section

of

an

element

at

any

level

of

the

business

object

hierarchy

(parent

or

child

business

objects),

an

I

prefix

in

the

appSpecificInfo

value

indicates

an

import

parameter

for

the

SAP

BAPI

to

which

the

business

object

definition

maps.

An

E

prefix

indicates

an

export

parameter

for

the

SAP

BAPI.

Some

elements

can

be

both

import

and

export

parameters

for

a

BAPI.

The

following

example

shows

an

element

which

is

both

an

import

and

an

export

parameter:

<bx:appSpecificInfo>ICOMPANYCODE:ECOMPANYCODE</bx:appSpecificInfo>

392

Data

Source

Configuration

Guide

|
|
|
|

|

|
|
|

|
|

|

|

|
|

|

|

|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|

The

prefixes

are

generated

automatically

by

the

WebSphere

Business

Integration

Object

Discovery

Agent

tool

based

on

information

that

is

extracted

from

the

SAP

business

object

repository.

If

an

element

that

represents

an

import

parameter

(an

I

prefix

in

the

appSpecificInfo

value)

is

specified

with

the

attribute

minOccurs=1,

the

DB2

Control

Center

identifies

the

element

as

a

required

input

parameter

and

flags

the

elements

as

a

required

input

column

in

the

nickname

definition.

The

WebSphere

Business

Integration

Object

Discovery

Agent

tool

does

not

automatically

set

the

value

of

minOccurs

to

1

for

the

required

input

parameters

of

the

SAP

BAPI.

You

must

reference

the

SAP

Business

Object

Repository

to

determine

all

the

required

input

parameters

for

the

BAPI

that

you

want

to

access.

Then,

you

must

edit

the

corresponding

elements

in

the

XML

schema

file

by

manually

setting

the

attribute

to

minOccurs=1.

If

the

minOccurs

attribute

value

for

an

input

parameter

remains

as

the

default

value

of

0,

then

the

DB2

Control

Center

specifies

the

column

as

an

optional

input

column

in

the

nickname

hierarchy

that

is

generated.

The

following

example

shows

an

optional

input

column:

<xsd:element

name="Company_code"

minOccurs="0">

<xsd:annotation>

<xsd:appinfo>

<bx:boAttribute>

<bx:appSpecificInfo>ICOMPANYCODE:</bx:appSpecificInfo>

<bx:attributeInfo

isForeignKey="false"

isKey="true"

/>

</bx:boAttribute>

</xsd:appinfo>

</xsd:annotation>

<xsd:simpleType>

<xsd:restriction

base="xsd:string">

<xsd:maxLength

value="4"

/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

The

following

example

shows

a

required

input

column:

<xsd:element

name="Company_id"

minOccurs="1">

<xsd:annotation>

<xsd:appinfo>

<bx:boAttribute>

<bx:appSpecificInfo>ICOMPANYID:</bx:appSpecificInfo>

<bx:attributeInfo

isForeignKey="true"

isKey="true"

/>

</bx:boAttribute>

</xsd:appinfo>

</xsd:annotation>

<xsd:simpleType>

<xsd:restriction

base="xsd:string">

<xsd:maxLength

value="4"

/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

The

required

and

optional

input

columns

for

SAP

business

applications

are

designated

by

the

syntax

shown

in

the

following

table:

Table

88.

Flagging

schema

for

SAP

input

column

information

Flags

used

in

SAP

XSD

files

Required

input

column

Column

reference

in

nickname

template

Any

element

anywhere

in

the

hierarchy

with

the

prefix

=

’I’

and

minOccurs=1

Yes

&columnname[1,1]

Chapter

23.

Configuring

access

to

Web

services

data

sources

393

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

||

||
|
|
|

|
|
||

Table

88.

Flagging

schema

for

SAP

input

column

information

(continued)

Flags

used

in

SAP

XSD

files

Required

input

column

Column

reference

in

nickname

template

Any

element

anywhere

in

the

hierarchy

with

the

prefix

=

’I’

and

minOccurs=0

No

&columnname[0,1]

Siebel

and

PeopleSoft

The

DB2

Control

Center

determines

the

required

and

optional

input

columns

based

on

the

existence

and

the

value

of

the

isRequired

flag

in

the

attributeInfo

section

of

the

annotation

for

the

element.

If

there

is

no

isRequired

flag,

then

the

column

is

not

an

input

column.

The

WebSphere

Business

Integration

Object

Discovery

Agent

tool

does

not

automatically

generate

these

flags

in

the

XSD

file.

You

must

identify

the

required

and

optional

input

columns,

and

flag

them

appropriately

in

the

XSD

file

before

you

use

the

DB2

Control

Center

to

generate

the

nickname

DDL.

The

following

example

shows

the

flags

for

a

required

input

column

and

optional

input

columns

in

the

XSD

file

for

a

Siebel

or

PeopleSoft

business

object

definition.

<xsd:element

name="sieb_ssa_Contact_Contact">

<xsd:annotation>

<xsd:appinfo>

<bx:boDefinition

version="1.0.0">

<bx:appSpecificInfo>ON=Contact;CN=Contact</bx:appSpecificInfo>

</bx:boDefinition>

</xsd:appinfo>

</xsd:annotation>

<xsd:complexType>

<xsd:sequence>

<xsd:element

name="Id"

minOccurs="0">

<xsd:annotation>

<xsd:appinfo>

<bx:boAttribute>

<bx:appSpecificInfo>FN=Id</bx:appSpecificInfo>

<bx:attributeInfo

isForeignKey="false"

isKey="true"

isRequired="true"

/>

</bx:boAttribute>

</xsd:appinfo>

</xsd:annotation>

...

</xsd:element>

...

Figure

33.

Portion

of

a

Siebel

business

object

definition

(Part

1

of

2)

394

Data

Source

Configuration

Guide

|

||
|
|
|

|
|
||

|

|

|
|
|
|
|
|
|
|

|
|
|
|

|

The

required

and

optional

input

columns

for

Siebel

and

PeopleSoft

business

applications

are

designated

by

the

syntax

shown

in

the

following

table:

Table

89.

Flagging

schema

for

Siebel

and

PeopleSoft

input

column

information

Flags

used

in

Siebel

and

PeopleSoft

XSD

files

Required

input

column

Column

reference

in

nickname

template

isRequired=″true″

Yes

&columnname[1,1]

isRequired=″false″

No

&columnname[0,1]

The

following

example

shows

the

DDL

that

the

DB2

Control

Center

creates

based

on

the

XSD

file

that

is

shown

in

the

figure

labeled

Portion

of

a

Siebel

business

object

definition.

The

XSD

file

in

that

figure

included

a

value

of

false

for

the

isRequired

attribute.

CREATE

NICKNAME

sieb_ssa_Contact_Contact_NN(

Id

VARCHAR(15)

OPTIONS(XPATH

’./ns1:Id/text()’,

TEMPLATE

’<ns1:Id>&column</ns1:Id>’),

FirstName

VARCHAR(50)

OPTIONS(XPATH

’./ns1:FirstName/text()’,

TEMPLATE

’<ns1:FirstName>&column</ns1:FirstName>’),

LastName

VARCHAR(50)

OPTIONS(XPATH

’./ns1:LastName/text()’,

TEMPLATE

’<ns1:LastName>&column</ns1:LastName>’),

AccountId

VARCHAR(255)

OPTIONS(XPATH

’./ns1:AccountId/text()’),

PrimaryAccountName

VARCHAR(100)

OPTIONS(XPATH

’./ns1:PrimaryAccountName/text()’),

PrimaryPostalCode

VARCHAR(30)

OPTIONS(XPATH

’./ns1:PrimaryPostalCode/text()’),

PrimaryStreetAddress

VARCHAR(200)

OPTIONS(XPATH

’./ns1:PrimaryStreetAddress/text()’),

...

<xsd:element

name="FirstName"

minOccurs="1">

<xsd:annotation>

<xsd:appinfo>

<bx:boAttribute>

<bx:appSpecificInfo>FN=First

Name</bx:appSpecificInfo>

<bx:attributeInfo

isForeignKey="false"

isKey="false"

isRequired="false"

/>

</bx:boAttribute>

</xsd:appinfo>

</xsd:annotation>

<xsd:simpleType>

<xsd:restriction

base="xsd:string">

<xsd:maxLength

value="50"

/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element

name="LastName"

minOccurs="1">

<xsd:annotation>

<xsd:appinfo>

<bx:boAttribute>

<bx:appSpecificInfo>FN=Last

Name</bx:appSpecificInfo>

<bx:attributeInfo

isForeignKey="false"

isKey="false"

isRequired="false"

/>

</bx:boAttribute>

</xsd:appinfo>

</xsd:annotation>

...

Figure

33.

Portion

of

a

Siebel

business

object

definition

(Part

2

of

2)

Chapter

23.

Configuring

access

to

Web

services

data

sources

395

|
|
|

||

|
|
||
|

|||

|||
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

SalesRep

VARCHAR(255)

OPTIONS(XPATH

’./ns1:SalesRep/text()’),

State

VARCHAR(255)

OPTIONS(XPATH

’./ns1:State/text()’))

FOR

SERVER

siebel_server

OPTIONS(XPATH

’//ns1:sieb_ssa_Contact_Contact’,

TEMPLATE

’<ns1:sieb_ssa_Contact_Contact>

&Id[1,1]

&FirstName[0,1]

&LastName[0,1]

</ns1:sieb_ssa_Contact_Contact>’,

BUSOBJ_NAME

’sieb_ssa_Contact_Contact’,

NAMESPACES

’ns1="http://www.ibm.com/websphere/

crossworlds/2002/BOSchema/sieb_ssa_Contact_Contact"’);

Related

concepts:

v

“The

WebSphere

Business

Integration

wrapper”

on

page

119

v

“The

Web

services

wrapper

and

the

Web

services

description

language

document”

on

page

381

Related

tasks:

v

“Adding

business

application

data

sources

to

a

federated

system”

on

page

125

v

“Adding

Web

services

data

sources

to

a

federated

server”

on

page

387

v

“Registering

nicknames

for

Web

services

data

sources”

on

page

390

Related

reference:

v

“Business

application

data

sources

–

example

queries”

on

page

155

v

“CREATE

NICKNAME

statement

–

examples

for

the

WebSphere

Business

Integration

wrapper”

on

page

138

v

“CREATE

NICKNAME

statement

–

examples

for

the

Web

services

wrapper”

on

page

398

v

“Messages

for

the

Web

services

wrapper”

on

page

411

v

“Web

services

data

sources

–

example

queries”

on

page

408

v

“Query

restrictions

for

wrappers

for

business

applications

and

Web

services”

on

page

151

Nicknames

and

XPATH

expressions

This

topic

applies

to

the

WebSphere®

Business

Integration

wrapper

and

the

Web

services

wrapper.

Nicknames

correspond

to

the

tree

structure

of

your

XML

document

data.

Parent

nicknames

and

child

nicknames

correspond

to

the

root

structure

and

nested

elements

of

the

data

tree

structure.

These

parent

and

child

nicknames

are

connected

by

primary

and

foreign

keys

that

are

specified

with

the

CREATE

NICKNAME

statement.

Each

nickname

is

defined

by

XPath

expressions

that

represent

output

values.

The

WebSphere

Business

Integration

wrapper

and

the

Web

services

wrapper

use

XPath

expressions

to

establish

a

correspondence

between

the

data

in

an

XML

document

and

the

rows

in

a

relational

table.

These

XPath

expressions

identify

the

values

in

the

XML

document

and

determine

how

these

values

correspond

to

the

columns

of

each

row.

The

WebSphere

Business

Integration

wrapper

and

the

Web

services

wrapper

read

the

XML

document

data

only.

The

wrappers

do

not

update

the

data.

The

XPATH

option

contains

the

information

to

find

the

SOAP

messages

through

the

SOAP

envelope

and

SOAP

body

tags.

The

getQuote

message

is

contained

in

the

SOAP

envelope

and

body

elements.

396

Data

Source

Configuration

Guide

|
|
|
|
|
|
|
|
|
|

|

|

|
|

|

|

|

|

|

|

|
|

|
|

|

|

|
|

|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

The

NICKNAME

option

XPATH

expression

points

to

repeating

tags

that

are

in

the

output

element.

The

XPath

expression

determines

how

many

or

which

rows

will

be

in

the

nickname.

The

column

option

XPATH

expression

is

relative

to

the

NICKNAME

XPATH

expression.

The

column

option

XPATH

identifies

the

values

in

a

row.

A

NICKNAME

option

XPATH

in

a

child

nickname

is

relative

to

a

NICKNAME

option

XPATH

expression

in

a

parent

nickname.

When

you

create

a

nickname,

you

choose

options

that

specify

the

association

between

the

nickname

and

the

XML

document.

Nicknames

created

for

WebSphere

Business

Integration

wrappers

are

associated

with

an

XML

schema

definition

(XSD)

document.

Nicknames

that

are

created

for

Web

services

wrappers

are

associated

with

a

Web

services

description

language

(WSDL)

document.

Related

concepts:

v

“What

is

XML?”

on

page

415

v

“The

Web

services

wrapper

and

the

Web

services

description

language

document”

on

page

381

v

“Data

associations

between

nicknames

and

XML

documents”

on

page

422

Related

tasks:

v

“Adding

XML

to

a

federated

system”

on

page

418

v

“Registering

nicknames

for

XML

data

sources”

on

page

424

v

“Creating

federated

views

for

nonroot

nicknames

(XML

wrapper)”

on

page

430

v

“Adding

business

application

data

sources

to

a

federated

system”

on

page

125

v

“Registering

nicknames

for

business

application

data

sources”

on

page

129

v

“Adding

Web

services

data

sources

to

a

federated

server”

on

page

387

v

“Registering

nicknames

for

Web

services

data

sources”

on

page

390

Related

reference:

v

“Business

application

data

sources

–

example

queries”

on

page

155

v

“CREATE

NICKNAME

statement

–

examples

for

the

WebSphere

Business

Integration

wrapper”

on

page

138

v

“CREATE

NICKNAME

statement

–

examples

for

the

Web

services

wrapper”

on

page

398

v

“Web

services

data

sources

–

example

queries”

on

page

408

v

“Query

restrictions

for

wrappers

for

business

applications

and

Web

services”

on

page

151

v

“CREATE

NICKNAME

statement

-

Examples

for

XML

wrapper”

on

page

425

Creating

federated

views

for

Web

services

nicknames

Creating

federated

views

for

Web

services

nicknames

is

part

of

the

larger

task

of

adding

Web

services

data

sources

to

a

federated

system.

You

can

define

federated

views

for

the

hierarchy

of

nicknames

that

describe

a

Web

services

document.

Defining

federated

views

ensures

that

the

queries

that

join

pieces

of

a

Web

services

nickname

hierarchy

can

run

properly.

Procedure:

To

define

federated

views

for

Web

services

nicknames:

Chapter

23.

Configuring

access

to

Web

services

data

sources

397

|
|
|
|
|
|

|
|
|
|
|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|
|

|
|

|

|
|

|

|

|
|

|
|
|

|

|

1.

Define

a

view

for

one

or

more

Web

services

nicknames.

If

you

want

to

join

all

of

the

nicknames

that

are

related

to

an

operation

in

the

Web

service,

you

must

define

a

view

that

includes

all

of

those

nicknames.

2.

In

the

WHERE

clause

of

the

view,

use

join

predicates

for

all

columns

that

are

related

by

the

PRIMARY_KEY

and

FOREIGN_KEY

column

options.

In

the

following

example,

the

primary

key

is

on

column

ooport_getzooreport_pk

in

nickname

zooport_getzooreport_report_nn.

The

foreign

key

is

on

column

ooport_getzooreport_fkey

in

nickname

zooport_getzooreport_report_report_nn.

CREATE

VIEW

zooreport

(zooid,

zooname,

number_of_zookeeper,

lastmodified,zookeeper_id,

zookeeper_name,

fingers_left,

animal_name,

animal_species,

animal_lot)

AS

(

SELECT

zooid,

report_zooname,

report_count,

report_lastmodified,

zookeeper_id,

zk.report_name,

report_numberfingersleft,

a.report_name,

report_species,

report_lot

FROM

zooport_getzooreport_nn

,

zooport_getzooreport_report_nn

as

zk,

zooport_getzooreport_report_report_nn

as

a

WHERE

zk.ooport_getzooreport_pkey=a.ooport_getzooreport_fkey

AND

zooport_getzooreport_pkey=zk.ooport_getzooreport_fkey);

You

can

get

information

from

all

of

the

nicknames

with

the

following

SELECT

statement:

SELECT

*

FROM

zooreport

WHERE

zooid=’1’;

There

are

no

further

tasks

in

this

sequence

of

tasks.

Related

reference:

v

“CREATE

NICKNAME

statement

–

examples

for

the

Web

services

wrapper”

on

page

398

v

“Web

services

data

sources

–

example

queries”

on

page

408

v

“Query

restrictions

for

wrappers

for

business

applications

and

Web

services”

on

page

151

CREATE

NICKNAME

statement

–

examples

for

the

Web

services

wrapper

When

you

create

a

nickname

to

access

a

Web

service,

you

create

an

input

column

for

each

value

in

the

input

message

of

a

Web

service

operation

and

an

output

column

for

each

value

in

the

output

message

of

a

Web

service

operation.

You

control

the

input

and

output

column

definitions

with

the

nickname

column

option

definitions.

The

TEMPLATE

column

option

specifies

that

a

column

is

an

input

column.

The

XPATH

column

option

specifies

that

a

column

is

an

output

column.

When

the

TEMPLATE

nickname

option

contains

a

bracketed

notation

([1,1]),

the

column

is

a

required

input

column.

When

the

TEMPLATE

nickname

option

contains

a

bracketed

notation

([0,1]),

the

column

is

an

optional

input

column.

The

NAMESPACES

nickname

option

is

a

comma-separated

list

of

name-value

pairs

that

a

federated

system

uses

to

resolve

the

namespaces

that

are

used

for

elements

in

input

and

output

XML

documents.

The

namespaces

are

used

in

the

message

request

so

that

the

prefixes

that

are

used

in

the

TEMPLATE

nickname

option

are

398

Data

Source

Configuration

Guide

|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|

|

|
|

|

|
|

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

defined.

The

NAMESPACES

nickname

option

is

used

to

resolve

the

prefixes

that

are

used

in

XPath

expressions

with

the

namespace

URIs

that

are

defined

in

the

WSDL

or

XML

schemas.

The

XPath

expressions

are

applied

on

the

XML

document

that

is

returned

from

the

Web

service.

Example

1:

Required

input

columns

The

following

example

shows

a

nickname

that

uses

a

Web

service

named

getQuote.

The

Web

service

reads

a

stock

ticker

symbol,

and

returns

a

trading

price.

The

following

DDL

is

created

by

the

Discover

tool

in

the

DB2

Control

Center.

CREATE

NICKNAME

"stockquote.stockquoteport_getquote_nn"

(

symbol

VARCHAR

(48)

OPTIONS(TEMPLATE

’&column’),

result

VARCHAR

(48)

OPTIONS(XPATH

’./Result/text()’))

FOR

SERVER

"xmethods_server"

OPTIONS(

URL

’http://66.28.98.121:9090/soap’

,

SOAPACTION

’urn:xmethods-delayed-quotes#getQuote’

,

TEMPLATE

'<soapenv:Envelope>

<soapenv:Body>

<ns2:getQuote>

<symbol>&symbol[1,1]</symbol>

</ns2:getQuote>

</soapenv:Body>

</soapenv:Envelope>',

XPATH

’/soapenv:Envelope/soapenv:Body/*’

,

NAMESPACES

’ns2="urn:xmethods-delayed-quotes"

,

ns1="http://www.themindelectric.com/wsdl/

net.xmethods.services.stockquote.StockQuote/"

,

soapenv="http://schemas.xmlsoap.org/soap/envelope/"

’);

The

nickname

TEMPLATE

option

specifies

column

SYMBOL

as

a

required

input

column,

because

it

contains

the

[1,1]

designation.

In

the

nickname

TEMPLATE

option,

the

complete

SOAP

envelope

is

specified

for

the

Web

service.

The

getQuote

input

value

is

contained

in

the

SOAP

envelope

and

body

elements.

The

XPATH

nickname

option

contains

the

information

to

find

the

trading

price

value

through

the

SOAP

envelope

and

body

tags.

Use

the

"stockquote.stockquoteport_getquote_nn"

nickname

to

access

the

Web

service,

such

as

in

the

following

query:

SELECT

*

FROM

"stockquote.stockquoteport_getquote_nn"

WHERE

symbol=’IBM’;

You

must

use

the

predicate,

symbol='IBM'

in

this

statement

because

symbol

is

a

required

input

column.

The

equality

predicate

is

the

only

valid

predicate

on

input

columns.

Each

of

the

equality

predicates

sets

a

value

in

the

input

message.

If

the

input

column

is

optional,

an

equality

predicate

on

that

column

is

not

necessary.

If

the

input

column

is

required,

then

you

must

issue

the

query

with

an

equality

predicate.

You

can

use

a

literal

value

such

as

IBM

in

an

equality

expression

or

a

value

from

a

joined

table

or

nickname.

Example

2:

Repeating

elements

and

child

nicknames

The

following

example

uses

a

Web

service

named

getZooReport

that

produces

a

report

for

zoos.

The

input

value

is

a

zoo

identifier.

The

output

value

is

a

report

that

is

described

by

the

following

schema:

Chapter

23.

Configuring

access

to

Web

services

data

sources

399

|
|
|
|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|
|
|
|
|
|

|

|
|
|
|

Here

is

the

DDL

that

is

generated

by

the

DB2

Control

Center

Discover

tool

based

on

the

WSDL

that

contains

the

schema:

<wsdl:definitions

name="Name"

targetNamespace="http://myzoo.com"

...

<wsdl:types>

<xsd:schema

elementFormDefault="qualified"

targetNamespace="http://myzoo.com"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element

name="Animal">

<xsd:complexType>

<xsd:sequence>

<xsd:element

ref="tns:Name"/>

<xsd:element

ref="tns:Species"/>

<xsd:element

ref="tns:Lot"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element

name="AnimalCareList">

<xsd:complexType>

<xsd:sequence>

<xsd:element

maxOccurs="unbounded"

minOccurs="1"

ref="tns:Animal"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element

name="Count"

type="xsd:string"/>

<xsd:element

name="LastModified"

type="xsd:string"/>

<xsd:element

name="Lot"

type="xsd:string"/>

<xsd:element

name="Name"

type="xsd:string"/>

<xsd:element

name="NumberFingersLeft"

type="xsd:string"/>

<xsd:element

name="Species"

type="xsd:string"/>

<xsd:element

name="Zoo">

<xsd:complexType>

<xsd:sequence>

<xsd:element

ref="tns:ZooName"/>

<xsd:element

ref="tns:Count"/>

<xsd:element

ref="tns:LastModified"/>

<xsd:element

maxOccurs="unbounded"

minOccurs="0"

ref="tns:Zookeeper"/>

</xsd:sequence>

<xsd:attribute

name="id"

type="xsd:string"

use="optional"/>

</xsd:complexType>

</xsd:element>

<xsd:element

name="ZooName"

type="xsd:string"/>

<xsd:element

name="Zookeeper">

<xsd:complexType>

<xsd:sequence>

<xsd:element

ref="tns:Name"/>

<xsd:element

ref="tns:NumberFingersLeft"/>

<xsd:element

ref="tns:AnimalCareList"/>

</xsd:sequence>

<xsd:attribute

name="id"

type="xsd:string"

use="optional"/>

</xsd:complexType>

</xsd:element>

</xsd:schema>

</wsdl:types>

...

Figure

34.

getZooReport

Web

service

400

Data

Source

Configuration

Guide

|
|
|

The

schema

includes

some

elements

that

are

repeated,

or

sequence

elements.

These

repeated

elements

become

child

nicknames

of

the

parent

nickname,

as

shown

in

Figure

35,

Figure

36,

and

Figure

37.

For

example,

zooname,

count,

lastmodified,

CREATE

NICKNAME

zooport_getzooreport_nn

(

zooid

VARCHAR

(48)

OPTIONS(TEMPLATE

’&column’),

zoo_id

VARCHAR

(48)

OPTIONS(XPATH

’./ns1:Zoo/@ns1:id’),

report_zooname

VARCHAR

(48)

OPTIONS(XPATH

’./ns1:Zoo/ns1:ZooName/text()’),

report_count

VARCHAR

(48)

OPTIONS(XPATH

’./ns1:Zoo/ns1:Count/text()’),

report_lastmodified

VARCHAR

(48)

OPTIONS(XPATH

’./ns1:Zoo/ns1:LastModified/text()’),

zooport_getzooreport_pkey

VARCHAR

(16)

FOR

BIT

DATA

NOT

NULL

OPTIONS(PRIMARY_KEY

’YES’))

FOR

SERVER

"zooserver"

OPTIONS(

URL

’http://localhost:9080/MaelstromTest/services/ZooPort’

,

SOAPACTION

’http://myzoo.com/getZooReport’

,

TEMPLATE

’<soapenv:Envelope>

<soapenv:Body>

<zooId>&zooId[1,1]</zooId>

</soapenv:Body>

</soapenv:Envelope>’

,

XPATH

’/soapenv:Envelope/soapenv:Body’

,

NAMESPACES

’

soapenv="http://schemas.xmlsoap.org/soap/envelope/"

,

ns1="http://myzoo.com

"

’);

Figure

35.

Zoo

report

–

parent

nickname

–

zooport_getzooreport_nn

CREATE

NICKNAME

zooport_getzooreport_report_nn

(

zooport_getzooreport_fkey

VARCHAR

(16)

FOR

BIT

DATA

NOT

NULL

OPTIONS(FOREIGN_KEY

’ZOOPORT_GETZOOREPORT_NN’),

zookeeper_id

VARCHAR

(48)

OPTIONS(XPATH

’./ns1:Zookeeper/@ns1:id’),

report_name

VARCHAR

(48)

OPTIONS(XPATH

’./ns1:Zookeeper/ns1:Name/text()’),

report_numberfingersleft

VARCHAR

(48)

OPTIONS(XPATH

’./ns1:Zookeeper/ns1:NumberFingersLeft/text()’),

zooport_getzooreport_pkey

VARCHAR

(16)

FOR

BIT

DATA

NOT

NULL

OPTIONS(PRIMARY_KEY

’YES’))

FOR

SERVER

"zooserver"

OPTIONS(

XPATH

’./ns1:Zoo’

,

NAMESPACES

’

soapenv="http://schemas.xmlsoap.org/soap/envelope/"

,

ns1="http://myzoo.com"

’);

Figure

36.

Zoo

report

–

child

of

nickname

zooport_getzooreport_nn

CREATE

NICKNAME

zooport_getzooreport_report_report_nn

(

zooport_getzooreport_fkey

VARCHAR

(16)

FOR

BIT

DATA

NOT

NULL

OPTIONS(FOREIGN_KEY

’zooport_getzooreport_report_nn’),

report_name

VARCHAR

(48)

OPTIONS(XPATH

’./ns1:Animal/ns1:Name/text()’),

report_species

VARCHAR

(48)

OPTIONS(XPATH

’./ns1:Animal/ns1:Species/text()’),

report_lot

VARCHAR

(48)

OPTIONS(XPATH

’./ns1:Animal/ns1:Lot/text()’))

FOR

SERVER

"zooserver"

OPTIONS(

XPATH

’./ns1:Zookeeper/ns1:AnimalCareList’

,

NAMESPACES

’

soapenv="http://schemas.xmlsoap.org/soap/envelope/"

,

ns1="http://myzoo.com"

’);

Figure

37.

Zoo

report

–

child

of

zooport_getzooreport_report_nn

Chapter

23.

Configuring

access

to

Web

services

data

sources

401

||

|
|
|

and

zookeeper

are

all

elements

of

zoo.

The

element

zoo

contains

0

or

more

zookeeper

elements.

The

root

nickname,

zoo,

contains

the

columns

zooname,

count,

and

lastmodified.

A

child

nickname,

zookeeper,

is

created

by

the

DB2

Control

Center

Discover

tool

to

describe

the

repeating

elements

of

zookeeper.

The

third

element

in

the

zookeeper

column,

animalcarelist,

also

contains

0

or

more

elements

and

so

it

becomes

a

child

nickname,

zooport_getzooreport_report_report_nn.

The

following

figure

shows

the

nickname

hierarchy:

The

following

statement

is

a

typical

query

that

you

might

issue

on

the

nicknames

to

access

the

zoo

report

Web

service.

When

you

issue

this

statement,

you

retrieve

the

information

from

the

zoo

report

based

on

a

specific

identifier

and

on

where

the

primary

and

foreign

keys

of

the

child

nickname

zoo

reports

match.

SELECT

*

FROM

zooport_getzooreport_nn

,

zooport_getzooreport_report_nn

zk

,

zooport_getzooreport_report__report__nn

a

WHERE

zooid=’1’AND

zooport_getzooreport_pkey=zk.zooport_getzooreport_fkey

and

zk.zooport_getzooreport_pkey=a.zooport_getzooreport_fkey;

Example

3:

Late

binding

The

following

example

shows

how

you

can

use

the

Late

Binding

option.

You

can

use

this

option

from

the

DB2

Control

Center

or

from

a

DB2

Command

line.

If

you

define

the

nickname

options

URL

and

SOAPACTION,

and

if

you

enable

the

column

options

URLCOLUMN

and

SOAPACTIONCOLUMN

when

you

create

a

nickname,

you

are

using

the

late

binding

functions.

The

DB2

Control

Center

creates

two

column

options,

URLCOLUMN

and

SOAPACTIONCOLUMN,

and

sets

the

values

of

the

columns

to

yes.

The

following

example

is

for

a

Web

service

that

provides

price

quotes

for

parts

that

is

implemented

by

all

suppliers

for

a

company.

Here

is

the

CREATE

statement

that

includes

the

URLCOLUMN

and

SOAPACTIONCOLUMN

definitions:

Root

nickname:

zooport_getzooreport_nn

Zoo

(parent):

v

ZooName

v

Count

v

LastModified

v

ZooKeeper

(there

are

0

or

more

ZooKeeper

elements)

Child

nickname:

zooport_getzooreport_report_nn

ZooKeeper

elements

–

Name

–

NumberFingersLeft

–

AnimalCareList

(there

are

0

or

more

Animal

elements)

Child

nickname:

zooport_getzooreport_report_report_nn

Animal

-

Name

-

Species

-

Lot

Figure

38.

Parent

—>

Child

—>

nickname

hierarchies

402

Data

Source

Configuration

Guide

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|

CREATE

NICKNAME

GetPartQuote(

partnumber

INTEGER

OPTIONS

(TEMPLATE’&column’),

price

FLOAT

OPTIONS

(XPATH

’./price’)),

urlcol

VARCHAR(100)

OPTIONS

(URLCOLUMN

’Y’),

soapactioncol

VARCHAR(100)

OPTIONS

(SOAPACTIONCOLUMN

’Y’),

FOR

SERVER

myServer

OPTIONS

(

...

SOAPACTION

’http://example.com/GetPartPrice’

,

URL

’http://mycompany.com:9080/GetPartPrice’’,

...

)

To

get

price

quotes

from

all

of

the

suppliers

with

a

single

query,

the

values

that

each

supplier

uses

for

the

SOAPACTION

and

URL

column

options

are

needed.

The

query

looks

like

this:

SELECT

*

FROM

supplier_endpoints

p,

GetPartQuote

q

WHERE

partnumber=1234

AND

p.url=q.urlcol

AND

p.soapaction=q.soapactioncol;

Local

table

supplier_endpoints

contains

all

of

the

URLs

and

SOAP

addresses

with

which

you

can

call

the

Web

service.

You

can

include

an

ORDER

BY

price

clause

to

determine

the

least

expensive

supplier

for

this

part.

Example

4:

ESCAPE_INPUT

column

option

You

can

include

XML

fragments

as

input

values

in

your

query.

When

you

register

a

nickname,

include

the

column

option

ESCAPE_INPUT=N.

This

option

maintains

the

special

characters,

such

as

<,

and

>,

in

XML

fragments

in

the

input

values.

When

a

schema

contains

repeating

input

values

that

would

require

you

to

send

XML

as

part

of

the

SOAP

message,

you

can

use

the

ESCAPE_INPUT

column

option

to

build

the

output

message

with

the

correct

XML.

For

example,

the

zoo

Web

service

includes

an

operation

to

add

a

new

zoo

keeper

and

the

animals

that

are

associated

with

that

zoo

keeper.

In

the

schema

for

this

example,

an

AnimalCareList

can

have

multiple

animals.

CREATE

NICKNAME

add_zookeeper(

zookeeper_id

VARCHAR(48)

OPTIONS(TEMPLATE

’...’),

name

VARCHAR(48)

OPTIONS(TEMPLATE

’...’),

numberfingersleft

VARCHAR(48)

OPTIONS(TEMPLATE

’...’),

animals

VARCHAR(3000)

OPTIONS(

TEMPLATE

’...’

,

ESCAPE_INPUT

’N’)

...

To

add

a

new

zoo

keeper

with

two

animals,

issue

a

query

such

as

the

following

example:

SELECT

*

FROM

add_zookeeper

WHERE

zookeeper_ID=’37’

AND

name=’Amit

Tsunami’

AND

numberfingersleft=’3’

AND

animals=’<AnimalCareList

xmlns="http://myzoo.com">

<Animal>

<Name>Larry</Name>

<Species>Gorilla</Species>

<Lot>7</Lot>

</Animal>

<Animal>

<Name>Bill</Name>

Chapter

23.

Configuring

access

to

Web

services

data

sources

403

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

|

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

<Species>Chimpanzee</Species>

<Lot>8H</Lot>

</Animal>

</AnimalCareList>’;

The

add_zookeeper

nickname

is

a

Web

service

operation

that

can

change

the

state

of

the

Web

service,

or

update

information.

Although

nonrelational

wrappers

cannot

be

updated,

the

SELECT

statement

in

this

example

updates

the

zoo

information

to

add

a

new

zoo

keeper.

You

can

also

use

the

ESCAPE_INPUT

column

option

for

a

schema

that

uses

an

element

such

as

xsd:anyType.

In

this

case,

the

type

of

the

element

is

unknown.

You

can

use

the

ESCAPE_INPUT

column

option

on

the

input

column

for

that

element

so

that

you

can

specify

arbitrary

XML

fragments

for

your

input.

Related

concepts:

v

“The

Web

services

wrapper

and

the

Web

services

description

language

document”

on

page

381

Related

tasks:

v

“Adding

Web

services

data

sources

to

a

federated

server”

on

page

387

v

“Registering

nicknames

for

Web

services

data

sources”

on

page

390

Related

reference:

v

“Messages

for

the

Web

services

wrapper”

on

page

411

v

“Web

services

data

sources

–

example

queries”

on

page

408

v

“Query

restrictions

for

wrappers

for

business

applications

and

Web

services”

on

page

151

Query

restrictions

for

wrappers

for

business

applications

and

Web

services

Equal

predicates

The

only

valid

predicates

on

input

columns

are

equal

predicates.

For

output

columns,

any

predicate

is

valid.

The

following

example

returns

an

error

with

a

message

that

indicates

that

the

predicate

is

not

supported

on

that

column.

In

this

example,

the

column

zipcode

is

an

input

column:

SELECT

return

FROM

gettemp

WHERE

zipcode<’95141’

The

following

example

shows

a

valid

query

using

an

equal

predicate

on

the

input

columns.

The

customers

nickname

is

joined

with

a

local

DB2

UDB

table

that

contains

customer

IDs.

The

query

contains

an

additional

predicate

on

the

Sales

column,

which

is

an

output

only

column.

SELECT

a.name,

a.address

FROM

customers

a,

local_table

b

WHERE

a.customer_id=b.custid

AND

a.Sales

>

300000;

Predicates

for

required

input

columns

404

Data

Source

Configuration

Guide

|
|
|
|

|
|
|
|

|
|
|
|

|

|
|

|

|

|

|

|

|

|
|

|
|

|

|

|
|

|
|
|

|

|
|
|
|

|
|
|
|
|

|

You

must

provide

equality

predicate

values

for

all

required

input

columns

in

your

SQL

queries

for

the

nickname

hierarchy

that

you

reference.

The

wrapper

returns

an

SQLCODE

901

for

all

queries

that

violate

this

restriction.

IN

or

OR

predicates

For

WebSphere

Business

Integration

wrappers

and

Web

services

wrappers,

no

IN

or

OR

predicates

are

allowed

for

input

columns.

The

following

examples

show

invalid

queries.

The

customers

nickname

has

one

required

input

column,

customer_id:

SELECT

*

FROM

customers

WHERE

customer_id

IN

(12345,

67890,

11223);

SELECT

*

FROM

customers

WHERE

customer_id

IN

(SELECT

custid

FROM

local_table);

)

However,

for

the

WebSphere

Business

Integration

wrappers,

you

can

use

IN

list

predicates

with

required

input

columns

if

you

define

a

unique

index

with

the

SPECIFICATION

ONLY

parameter

for

the

required

input

columns:

CREATE

UNIQUE

INDEX

myuindex

ON

customers(customer_id)

SPECIFICATION

ONLY;

Joins

on

optional

input

columns

The

following

example

demonstrates

a

restriction

on

joining

optional

input

columns.

You

cannot

join

optional

input

columns

from

a

local

table

or

nickname.

If

the

WSDL

generates

an

input

nickname

column

as

optional

and

you

need

to

use

that

column

in

a

join,

then

you

must

edit

the

DDL

to

change

the

column

to

a

required

input

column.

In

this

example,

a

Web

service

wrapper

nickname

named

order

is

created

with

shipping_method

as

an

optional

input

column.

The

following

statement

is

a

valid

query

because

it

uses

a

literal

in

the

predicate:

SELECT

*

FROM

order

WHERE

part="hammer"

AND

shipping_method="FEDEX";

However,

if

you

include

a

local

table

named

orderparts,

which

defines

parts

and

shipping

methods,

in

the

query,

and

the

table

contains

a

column

named

shipping_method

that

is

optional,

the

statement

is

invalid:

SELECT

*

FROM

order

o,

orderparts

op

WHERE

o.part="hammer"

AND

o.shipping_method=op.shipping_method

For

a

WebSphere

Business

Integration

wrapper,

predicates

on

optional

input

columns

of

a

nickname

might

be

pushed

down

to

the

WebSphere

Business

Integration

Adapter.

DB2

UDB

can

decide

to

apply

those

predicates

locally

on

the

rows

fetched

from

the

application

data

source.

To

ensure

that

predicates

for

a

given

input

column

always

get

pushed

down

to

the

adapter,

declare

the

input

column

as

a

required

input

column.

Every

query

on

the

nickname

hierarchy

must

include

predicate

values

for

the

required

input

columns.

To

ensure

valid

results,

joined

input

columns

must

be

required

columns

for

Web

Services

wrappers.

Outer

joins

Chapter

23.

Configuring

access

to

Web

services

data

sources

405

|
|
|

|

|
|

|
|

|
|
|
|

|
|
|

|

|

|
|
|
|
|

|
|
|

|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|

|

Outer

joins

between

nicknames

using

the

primary

key

from

a

parent

nickname

and

the

foreign

key

from

child

nickname

columns

are

not

supported.

When

a

parent

element

in

an

XML

document

contains

no

child

elements,

and

if

you

use

an

inner

join

between

the

parent

nickname

and

the

child

nickname,

then

no

rows

are

returned

for

that

element.

For

example,

for

a

given

customer,

if

there

is

no

bankdetail

information

in

the

SAP

system,

then

no

rows

are

returned

for

the

sap_bapi_customer_getdetail2_sap_customerbankdetail_NN

nickname

for

the

particular

customer.

The

following

CREATE

NICKNAME

statements

define

the

columns

that

are

used

in

the

example

query:

CREATE

NICKNAME

sap_bapi_customer_getdetail2_NN(

...

NAME

VARCHAR(35)

OPTIONS(XPATH

’./ns3:sap_customeraddress/

ns1:sap_customeraddress/ns1:NAME/text()’),

...

NN__PKEY

VARCHAR(16)

OPTIONS(PRIMARY_KEY

’YES’),

COMPANYCODE

VARCHAR(4)

OPTIONS(XPATH

’./ns3:COMPANYCODE/text()’,

TEMPLATE

’<ns3:COMPANYCODE>&column</ns3:COMPANYCODE>’),

CUSTOMERNO

VARCHAR(10)

OPTIONS(XPATH

’./ns3:CUSTOMERNO/text()’,

TEMPLATE

’<ns3:CUSTOMERNO>&column</ns3:CUSTOMERNO>’),

...

FOR

SERVER

sap_server

OPTIONS(XPATH

’//ns3:sap_bapi_customer_getdetail2’,

TEMPLATE

’<ns3:sap_bapi_customer_getdetail2>

&sap_bapi_customer_getdetail2_sap_customerbankdetail_NN[0,1]

&COMPANYCODE[0,1]

&CUSTOMERNO[1,1]

</ns3:sap_bapi_customer_getdetail2>’,

...

Figure

39.

Excerpt

from

getdetail2

nickname

406

Data

Source

Configuration

Guide

|
|

|
|
|
|
|
|

|
|
||

In

the

following

example,

the

query

returns

no

rows

because

there

is

an

inner

join

condition

between

the

two

nicknames:

SELECT

a.name,

b.bank_key

FROM

sap_bapi_customer_getdetail2_NN

a,

sap_bapi_customer_getdetail2_sap_customerbankdetail_NN

b

WHERE

a.customerno='1234567890'

AND

a.NN__PKEY=b.NN__FKEY;

If

a

WebSphere

Business

Integration

wrapper

or

a

Web

services

wrapper

nickname

definition

contains

required

input

columns,

then

a

left

outer

join

between

this

nickname

and

any

other

local

DB2

UDB

table

or

other

nicknames

is

not

supported.

Related

concepts:

v

“The

TEMPLATE

option

at

the

nickname

and

column

levels”

on

page

131

Related

tasks:

v

“Adding

business

application

data

sources

to

a

federated

system”

on

page

125

v

“Adding

Web

services

data

sources

to

a

federated

server”

on

page

387

Related

reference:

v

“Business

application

data

sources

–

example

queries”

on

page

155

v

“CREATE

NICKNAME

statement

–

examples

for

the

WebSphere

Business

Integration

wrapper”

on

page

138

v

“CREATE

NICKNAME

statement

–

examples

for

the

Web

services

wrapper”

on

page

398

v

“Web

services

data

sources

–

example

queries”

on

page

408

CREATE

NICKNAME

sap_bapi_customer_getdetail2_sap_customerbankdetail_NN(

CUSTOMER

VARCHAR(10)

OPTIONS(XPATH

’./ns2:CUSTOMER/text()’,

TEMPLATE

’<ns2:CUSTOMER>&column</ns2:CUSTOMER>’),

BANK_KEY

VARCHAR(15)

OPTIONS(XPATH

’./ns2:BANK_KEY/text()’,

TEMPLATE

’<ns2:BANK_KEY>&column</ns2:BANK_KEY>’),

BANK_ACCT

VARCHAR(18)

OPTIONS(XPATH

’./ns2:BANK_ACCT/text()’,

TEMPLATE

’<ns2:BANK_ACCT>&column</ns2:BANK_ACCT>’),

CTRL_KEY

VARCHAR(2)

OPTIONS(XPATH

’./ns2:CTRL_KEY/text()’,

TEMPLATE

’<ns2:CTRL_KEY>&column</ns2:CTRL_KEY>’),

BANK_REF

VARCHAR(20)

OPTIONS(XPATH

’./ns2:BANK_REF/text()’,

TEMPLATE

’<ns2:BANK_REF>&column</ns2:BANK_REF>’),

NN__FKEY

VARCHAR(16)

OPTIONS(FOREIGN_KEY

’SAP_BAPI_CUSTOMER_GETDETAIL2_NN’))

FOR

SERVER

sap_server

OPTIONS(XPATH

’./ns3:sap_customerbankdetail/ns2:sap_customerbankdetail’,

TEMPLATE

’<ns3:sap_customerbankdetail>

<ns2:sap_customerbankdetail>

&CUSTOMER[0,1]

&BANK_KEY[0,1]

&BANK_ACCT[0,1]

&CTRL_KEY[0,1]

&BANK_REF[0,1]

</ns2:sap_customerbankdetail>

</ns3:sap_customerbankdetail>’,

...

Figure

40.

Excerpt

from

customer

bank

detail

nickname

Chapter

23.

Configuring

access

to

Web

services

data

sources

407

|
|

|
|
|
|
|

|
|
|

|

|

|

|

|

|

|

|
|

|
|

|

Web

services

data

sources

–

example

queries

Example

1:

Using

materialized

query

tables

You

use

materialized

query

tables

to

locally

cache

the

results

of

a

query

and

to

improve

the

performance

of

queries.

You

can

use

nicknames

from

Web

services

data

sources

to

create

materialized

query

tables.

For

some

queries,

the

database

can

automatically

determine

whether

the

materialized

query

table

can

answer

a

query

without

accessing

the

base

tables.

The

following

procedure

shows

how

to

create

and

populate

a

materialized

query

table:

1.

Create

a

local

or

base

table:

CREATE

TABLE

mystocks(ticker

VARCHAR(10));

You

can

use

the

local

table

to

maintain

all

the

values

that

you

want

to

cache.

2.

Insert

all

of

the

values

that

you

want

to

cache

into

the

table:

INSERT

INTO

mystocks

VALUES(’IBM’);

INSERT

INTO

mystocks

VALUES(’MSFT’);

...

3.

Create

a

Web

services

nickname:

CREATE

NICKNAME

stockquote_nn

(

ticker

VARCHAR(40)

OPTIONS

(TEMPLATE

’&column’),

price

VARCHAR(16)

OPTIONS

(XPATH

’./Result/text()’)

)

FOR

SERVER

stock_server

OPTIONS

(TEMPLATE

’<ticker>&column</ticker>’

XPATH

’./Result/text()’

);

4.

Create

a

view

that

consists

of

the

nickname

and

the

local

table:

CREATE

VIEW

stock_quote_view

(ticker,

price)

AS

(

SELECT

nn.ticker,

nn.price

FROM

stockquote_nn

nn,

mystocks

s

WHERE

nn.ticker=s.ticker

);

5.

Create

a

materialized

query

table:

CREATE

TABLE

stockquote_MQT

(ticker,

ticker2,

price)

as

(SELECT

nn.ticker,s.ticker

as

ticker2,

nn.price

FROM

stockquote_nn

nn,

mystocks

s

WHERE

nn.ticker=s.ticker

)

DATA

INITIALLY

DEFERRED

REFRESH

DEFERRED;

Include

all

of

the

VARCHAR

columns

that

are

used

in

the

join

predicate

(nn.ticker

and

s.ticker)

in

the

materialized

query

table

output

list

to

maximize

the

opportunities

that

the

materialized

query

table

is

used

by

DB2

Universal

Database.

To

defer

the

refresh

of

the

materialized

query

table,

specify

the

REFRESH

DEFERRED

keyword.

Materialized

query

tables

that

are

specified

with

the

REFRESH

DEFERRED

keyword

do

not

reflect

changes

to

the

underlying

base

table.

Use

the

clause

DATA

INITIALLY

DEFERRED

so

that

your

data

is

not

inserted

into

the

table

as

part

of

the

CREATE

TABLE

statement.

6.

Issue

a

REFRESH

TABLE

statement

to

populate

the

table.

The

data

in

the

table

reflects

the

result

of

the

query

as

a

snapshot

at

the

time

that

you

issue

the

REFRESH

TABLE

statement.

The

following

example

populates

the

stockquote_MQT

table,

and

sets

a

value

for

the

current

refresh

age

special

register.

408

Data

Source

Configuration

Guide

|
|

|

|
|
|
|
|
|

|

|
|

|

|

|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

REFRESH

TABLE

stockquote_MQT;

SET

CURRENT

REFRESH

AGE

any;

The

queries

that

run

on

the

data

in

the

materialized

query

table

are

faster

than

the

queries

that

run

on

the

data

in

a

base

table.

When

you

want

to

use

the

materialized

query

table,

you

refer

to

the

view

and

not

the

nickname:

SELECT

*

FROM

stock_quote_view

WHERE

ticker=’IBM’;

If

you

issue

a

query

to

select

a

value

that

has

not

been

cached,

0

rows

are

returned.

Example

2:

Issuing

joins

using

the

primary

and

foreign

keys

The

PRIMARY_KEY

and

FOREIGN_KEY

columns

are

used

to

define

relationships

between

the

parent

and

child

nicknames.

Each

parent

nickname

must

have

a

primary

key

column

option.

You

define

the

children

of

a

parent

nickname

with

the

foreign

key

column

option

that

references

the

primary

key

column

of

a

parent

nickname.

A

nickname

can

have

multiple

children,

but

a

nickname

can

have

only

one

parent.

Because

these

columns

contain

only

binary

data,

the

columns

are

defined

with

the

FOR

BIT

DATA

NOT

NULL

keywords.

The

DB2

Control

Center

generates

this

definition

for

you

when

you

create

the

nickname.

You

can

explicitly

define

the

PRIMARY_KEY

and

FOREIGN_KEY

columns

as

FOR

BIT

DATA

NOT

NULL

when

you

create

the

nickname.

The

following

example

shows

how

the

Web

services

wrapper

uses

the

PRIMARY_KEY

and

FOREIGN_KEY

columns

to

associate

parent

and

child

nicknames.

CREATE

NICKNAME

zooport_getzooreport_nn

(

zooid

VARCHAR

(48)

OPTIONS(TEMPLATE

’&column’),

zoo_id

VARCHAR

(48)

OPTIONS(XPATH

’./ns1:Zoo/@id’),

report_zoo_zooname

VARCHAR

(48)

OPTIONS(XPATH

’./ns1:Zoo/ns1:ZooName/text()’),

report_zoo_count

VARCHAR

(48)

OPTIONS(XPATH

’./ns1:Zoo/ns1:Count/text()’),

report_zoo_lastmodified

VARCHAR

(48)

OPTIONS(XPATH

’./ns1:Zoo/ns1:LastModified/text()’),

nn_pk

VARCHAR

(16)

NOT

NULL

OPTIONS(PRIMARY_KEY

’YES’),

url

VARCHAR

(256)

OPTIONS(URLCOLUMN

’Y’),

soapaction

VARCHAR

(256)

OPTIONS(SOAPACTIONCOLUMN

’Y’)

)

FOR

SERVER

"mytestsrvr"

OPTIONS(

URL

’http://localhost:9080/MaelstromTest/services/ZooPort’,

SOAPACTION

’http://myzoo.com/getZooReport’

,

TEMPLATE

’<soapenv:Envelope>

<soapenv:Body>

<zooId>&zooId[1,1]</zooId>

</soapenv:Body>

</soapenv:Envelope>’,

XPATH

’/soapenv:Envelope/soapenv:Body’

,

NAMESPACES

’

soapenv="http://schemas.xmlsoap.org/soap/envelope/",

ns1="http://myzoo.com"

’);

CREATE

NICKNAME

zooport_getzooreport_report_zookeeper_nn

(

nn_fk

VARCHAR

(16)

NOT

NULL

OPTIONS(FOREIGN_KEY

’ZOOPORT_GETZOOREPORT_NN’),

zookeeper_id

VARCHAR

(48)

OPTIONS(XPATH

’./@id’),

report_zookeeper_name

VARCHAR

(48)

OPTIONS(XPATH

’./ns1:Name/text()’),

zookeeper_numberfingersleft

VARCHAR(48)

Chapter

23.

Configuring

access

to

Web

services

data

sources

409

|
|
|

|
|
|

|
|

|
|

|

|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

OPTIONS(XPATH

’./ns1:NumberFingersLeft/text()’),

nn_pk

VARCHAR

(16)

NOT

NULL

OPTIONS(PRIMARY_KEY

’YES’)

)

FOR

SERVER

"MYTESTSRVR"

OPTIONS(

XPATH

’./ns1:Zoo/ns1:Zookeeper’

,

NAMESPACES

’

soapenv="http://schemas.xmlsoap.org/soap/envelope/",

ns1="http://myzoo.com"

’);

The

foreign

key,

nn_fk,

in

nickname

zooport_getzooreport_report_zookeeper_nn,

refers

to

the

parent

nickname,

zooport_getzooreport_nn

in

the

foreign

key

option.

The

designated

primary

and

foreign

key

nickname

columns

do

not

correspond

to

data

in

your

WSDL

document

because

these

nickname

columns

contain

keys

that

are

generated

by

the

wrapper.

These

keys

identify

a

relationship

between

the

parent

and

child

nicknames

that

is

unique

only

within

a

query.

If

the

child

nickname

contains

an

input

column,

the

parent

nickname

option

template

refers

to

that

child

nickname

in

the

nickname

option

template

structure.

The

following

SQL

statement

joins

the

parent

and

child

nicknames:

SELECT

*

FROM

zooport_getzooreport_nn

a,

zooport_getzooreport_report_zookeeper_nn

z,

WHERE

a.nn_pk

=

z.nn_fk

AND

a.zooid

=

100

;

The

following

description

explains

how

the

Web

services

wrapper

uses

the

TEMPLATE

and

XPATH

nickname

and

column

options

during

query

execution.

It

is

not

intended

as

an

example

of

specific

implementation.

When

you

join

the

primary

and

foreign

key

columns,

the

Web

services

wrapper

sends

a

message

to

the

Web

services

provider,

and

a

set

of

rows

is

returned

from

the

Web

services

provider.

The

wrapper

generates

a

message

for

the

parent

nickname

by

substituting

the

values

of

the

input

column

(a.zooid

=

100)

from

the

query

for

the

reference

in

the

column

option

template

(ZOOID

VARCHAR

(48)

OPTIONS(TEMPLATE

’&column’)),

and

then

all

of

the

column

references

in

the

nickname

template

option

(<zooId>&zooId[1,1]</zooId>).

The

nickname

template

option

can

include

column

references

or

child

nickname

references.

The

message

is

then

sent

to

the

Web

service.

The

wrapper

generates

the

rows

for

a

nickname

by

applying

the

nickname

option

XPATH

on

the

document

that

the

Web

service

returns.

If

the

nickname

option

XPATH

returns

multiple

XML

fragments,

then

the

nickname

contains

multiple

rows.

The

column

XPATH

option

is

applied

on

the

resulting

XML

fragments

that

represent

the

rows

to

get

the

column

values.

If

a

nickname

has

one

or

more

indirect

parents,

all

of

the

parent

nickname

XPATH

expressions

are

applied

in

the

order

from

the

top

of

the

hierarchy

down

before

the

nickname

option

XPATH

and

the

column

option

XPATH

are

applied

for

this

nickname.

Related

tasks:

v

“Adding

Web

services

data

sources

to

a

federated

server”

on

page

387

v

“Registering

the

Web

services

wrapper”

on

page

388

v

“Registering

nicknames

for

Web

services

data

sources”

on

page

390

Related

reference:

v

“CREATE

NICKNAME

statement

–

examples

for

the

Web

services

wrapper”

on

page

398

410

Data

Source

Configuration

Guide

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|

|

|

|

|
|

v

“Messages

for

the

Web

services

wrapper”

on

page

411

v

“Query

restrictions

for

wrappers

for

business

applications

and

Web

services”

on

page

151

Web

services

wrapper

security

The

Web

services

wrapper

supports

HTTPS

as

a

transport

protocol

for

SOAP

messages.

HTTPS

is

a

standard

encryption

protocol

that

is

used

by

many

Web

service

providers.

The

WSDL

document

that

is

generated

by

the

Web

services

provider

contains

https://

in

the

URL.

The

SOAP

messages

in

the

HTTP

request

or

HTTP

response

are

encrypted.

If

the

Web

service

uses

HTTPS

as

a

transport

protocol,

the

Web

service

wrapper

does

not

validate

the

SSL

certificates

that

the

server

sends

for

identification.

The

Web

service

wrapper

can

call

Web

services

with

self-signed

certificates.

The

Web

services

wrapper

supports

HTTP

authentication

by

using

the

CREATE

USER

MAPPING

statement.

Use

the

CREATE

USER

MAPPING

statement

to

map

a

federated

server

user

ID

to

a

Web

services

user

ID

and

password.

A

wrapper

developer

supplies

a

user

ID

and

password

with

a

user

mapping

statement

such

as

the

following

example:

CREATE

USER

MAPPING

FOR

RSPALTEN

SERVER

S1

OPTIONS

(

REMOTE_AUTHID

'SYSTEM',

REMOTE_PASSWORD

'MANAGER'

)

When

a

Web

services

nickname

on

the

S1

server

is

accessed,

the

HTTP

request

is

sent

with

SYSTEM

as

the

user

ID

and

MANAGER

as

the

password.

The

user

mapping

is

optional.

If

you

do

not

specify

a

user

mapping,

you

might

see

an

error

if

the

Web

service

provider

expects

authentication

information.

Some

servers

might

use

authentication

to

restrict

access

to

a

service.

The

need

for

authentication

is

not

apparent

from

the

information

in

the

WSDL

document.

Related

concepts:

v

“The

Web

services

wrapper

and

the

Web

services

description

language

document”

on

page

381

Related

tasks:

v

“Adding

Web

services

data

sources

to

a

federated

server”

on

page

387

v

“Registering

the

Web

services

wrapper”

on

page

388

v

“Registering

nicknames

for

Web

services

data

sources”

on

page

390

Related

reference:

v

“Messages

for

the

Web

services

wrapper”

on

page

411

Messages

for

the

Web

services

wrapper

The

following

table

explains

some

of

the

typical

error

messages

that

you

might

receive

when

you

use

the

Web

services

wrapper.

Chapter

23.

Configuring

access

to

Web

services

data

sources

411

|

|
|

|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|

|

|
|

|

|

|

|

|

|

|
|

|
|

Table

90.

Typical

error

messages

Error

Description

User

response

SQL1822N

Unexpected

error

code

″SOAP-Fault″

received

from

data

source

″wswrap.svl.ibm.″.

Associated

text

and

tokens

are

″java.lang.Exception:

HTTP

URI

s″.

SQLSTATE=560BD

The

Web

service

provider

returned

a

SOAP

fault.

v

The

input

might

be

incorrect.

Check

that

your

input

arguments

are

correct.

v

The

Web

services

provider

might

have

a

problem.

Contact

the

owner

of

the

Web

service.

SQL30081N

A

communication

error

has

been

detected.

Communication

protocol

being

used:

″SOAP″.

Communication

API

being

used:

″HTTP″.

Location

where

the

error

was

detected:

″localhos″.

Communication

function

detecting

the

error:

″connect″.

Protocol

specific

error

code(s):

″38309″,

″10061″,

″1″.

SQLSTATE=08001

The

Web

service

provider

did

not

listen

on

the

port

or

URL.

v

Check

to

see

if

the

URLs

that

you

use

are

all

valid.

v

Check

to

see

if

the

port

information

is

correct.

v

Ensure

that

the

server

is

running.

SQL30081N

A

communication

error

has

been

detected.

Communication

protocol

being

used:

″SOAP″.

Communication

API

being

used:

″HTTP″.

Location

where

the

error

was

detected:

″doesntexist.ibm″.

Communication

function

detecting

the

error:

″*″.

Protocol

specific

error

code(s):

″38308″,

″*″,

″0″.SQLSTATE=08001

The

Web

service

provider

host

name

is

not

in

the

domain

name

server.

Ensure

that

your

host

name

is

in

the

name

server.

SQL30081N

A

communication

error

has

been

detected.

Communication

protocol

being

used:

″SOAP″.

Communication

API

being

used:

″HTTP″.

Location

where

the

error

was

detected:

″www.ibm.com″.

Communication

function

detecting

the

error:

″*″.

Protocol

specific

error

code(s):

″38312″,

″*″,

″0″.SQLSTATE=08001

HTTP

return

code,

similar

to

a

404

error

that

a

browser

typically

reports.

Determine

if

the

server

is

returning

any

errors

to

your

application.

Run

a

DB2

UDB

trace

to

determine

what

response

the

server

is

returning.

SQL30081N

A

communication

error

has

been

detected.

Communication

protocol

being

used:

″SOAP″.

Communication

API

being

used:

″HTTP″.

Location

where

the

error

was

detected:

″″.

Communication

function

detecting

the

error:

″*″.

Protocol

specific

error

code(s):

″38304″,

″*″,

″0″.

SQLSTATE=08001

The

URL

is

incorrect.

The

SQLSTATE

38304

might

indicate

the

protocol

is

not

known.

The

SQLSTATE

38305

indicates

a

syntax

error

in

the

URL.

Verify

that

your

WSDL

document

contains

a

valid

URL

syntax

and

protocol.

412

Data

Source

Configuration

Guide

||

|||

|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

Table

90.

Typical

error

messages

(continued)

Error

Description

User

response

SQL1822N

Unexpected

error

code

″SAXException″

received

from

data

source

″wswrap.svl.ibm.″.

Associated

text

and

tokens

are

″Expected

end

of

tag

’ns0:Mi″.

SQLSTATE=560BD

The

response

includes

a

parse

error

on

the

XML

output.

Verify

that

the

server

returned

correct

XML

output.

Run

a

DB2

UDB

trace

to

determine

what

the

Web

services

provider

returns.

You

can

also

invoke

the

Web

service

with

a

different

tool

to

ensure

that

the

Web

service

response

is

valid.

Related

concepts:

v

“The

Web

services

wrapper

and

the

Web

services

description

language

document”

on

page

381

Related

tasks:

v

“Adding

Web

services

data

sources

to

a

federated

server”

on

page

387

v

“Registering

the

Web

services

wrapper”

on

page

388

Related

reference:

v

“CREATE

NICKNAME

statement

–

examples

for

the

Web

services

wrapper”

on

page

398

v

“Web

services

data

sources

–

example

queries”

on

page

408

v

“Query

restrictions

for

wrappers

for

business

applications

and

Web

services”

on

page

151

Chapter

23.

Configuring

access

to

Web

services

data

sources

413

|

|||

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|

|
|

|

|

|

|

|
|

|

|
|

414

Data

Source

Configuration

Guide

Chapter

24.

Configuring

access

to

XML

data

sources

This

chapter

explains

how

to

configure

your

federated

server

to

access

data

that

is

stored

in

XML

data

sources.

You

can

configure

access

to

XML

data

sources

by

using

the

DB2

Control

Center

or

by

issuing

SQL

statements.

This

chapter:

v

Explains

what

XML

is

v

Lists

the

tasks

that

you

need

to

perform

v

Contains

examples

of

the

SQL

statements

that

you

need

v

Lists

the

error

messages

associated

with

the

XML

wrapper

What

is

XML?

The

Extensible

Markup

Language

(XML)

is

a

universal

format

for

structured

documents

and

data.

XML

files

have

a

file

extension

of

xml.

Like

HTML,

XML

uses

tags

(words

bracketed

by

>

and

<)

for

structuring

data

in

the

document.

A

sample

XML

document

is

shown

in

Figure

41.

How

the

XML

wrapper

works

The

XML

wrapper

enables

the

use

of

SQL

to

query

the

following

types

of

data:

v

External

XML

documents

that

are

stored

in

a

single

file

v

Multiple

XML

files

in

a

directory

path

v

Remote

XML

files

that

are

referenced

with

a

Uniform

Reference

Identifier

(URI)

<?xml

version="1.0"

encoding=UTF-8"?>

<doc>

<customer

id=’123’>

<name>...</name>

<address>...</address>

...

<order>

<amount>...</amount>

<date>...</date>

<item

quant=’12’>

<name>...</name>

</item>

<item

quant=’4’>...</item>

...

</order>

<order>...</order>

...

<payment>

<number>...</number>

<date>...</date>

</payment>

<payment>>...</payment>

...

</customer>

<customer

id=’124’>...</customer>

</doc>

Figure

41.

Sample

XML

document

©

Copyright

IBM

Corp.

1998,

2004

415

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

v

XML

documents

stored

in

relational

columns

Figure

42

shows

how

the

XML

wrapper

works

with

your

federated

system.

With

the

XML

wrapper,

you

can

map

XML

data

from

an

external

data

source

into

a

relational

schema

that

is

composed

of

a

set

of

nicknames.

The

structure

of

an

XML

document

is

logically

equivalent

to

a

relational

schema

in

which

the

nested

and

repeating

elements

are

modeled

as

separate

tables

with

foreign

keys.

The

nicknames

that

correspond

to

an

XML

document

are

organized

into

a

tree

structure

in

which

the

child

nicknames

map

to

elements

that

are

nested

within

the

element

that

corresponds

to

the

parent

nickname.

When

nested

elements

are

repeated

or

have

distinct

identities

with

complex

structures,

you

can

provide

separate

nicknames

for

each

nested

element.

Child

and

parent

nicknames

are

connected

by

primary

and

foreign

keys

that

are

generated

by

the

wrapper.

XPath

expressions

are

used

to

map

an

XML

document

into

a

relational

schema

that

is

composed

of

a

set

of

nicknames.

XPath

is

an

addressing

mechanism

for

identifying

the

parts

of

an

XML

file

(for

example,

the

groups

of

nodes

and

attributes

within

an

XML

document

tree).

The

basic

XPath

syntax

is

similar

to

file

system

addressing.

Each

nickname

is

defined

by

an

XPath

expression

that

identifies

the

XML

elements

representing

individual

tuples,

and

a

set

of

XPath

expressions

that

specifies

how

to

extract

the

column

values

from

each

element.

An

example

of

XML

document

mapping:

The

following

example

illustrates

how

the

sample

XML

document,

shown

in

Figure

41

on

page

415,

is

mapped

into

a

set

of

nicknames,

how

parent

and

child

relationships

are

established

by

using

primary

and

foreign

keys,

how

XPath

expressions

are

used

to

define

individual

tuples

and

columns

within

each

element

DB2
Universal
database

Federated
database

Federated database

SQL

Relational
results
table

W
ra

pp
er

XML
wrapper

DB2 client

XML file

Figure

42.

How

the

XML

wrapper

works

416

Data

Source

Configuration

Guide

|

of

the

document,

and

how

a

query

can

run

on

the

XML

document

after

the

document

is

registered

to

your

federated

system.

The

sample

XML

document

contains

a

set

of

customer

elements.

Each

element

encloses

several

order

and

payment

elements.

The

order

elements

enclose

several

item

elements.

The

relationship

among

the

elements

is

shown

in

Figure

43.

From

this

structure,

you

can

use

the

CREATE

NICKNAME

statement

to

map

the

XML

document

into

a

relational

schema

that

includes

four

nicknames:

v

customers

v

orders

v

payments

v

items

You

define

relationships

between

the

nicknames

by

specifying

each

nickname

as

a

parent

nickname

or

a

child

nickname

by

using

special

primary

and

foreign

key

nickname

column

options.

Each

parent

nickname

must

have

a

special

column

that

is

designated

with

a

primary

key

column

option.

You

define

the

children

of

a

parent

nickname

with

the

foreign

key

column

option

that

references

the

primary

key

column

of

a

parent

nickname.

The

designated

primary

and

foreign

nickname

columns

do

not

correspond

to

data

in

your

XML

document

because

these

nickname

columns

will

contain

keys

that

are

generated

by

the

wrapper.

A

nickname

can

have

multiple

children,

but

a

nickname

can

have

only

one

parent.

The

root

nickname

has

no

parent.

For

the

sample

XML

document,

the

customers

nickname

has

a

defined

primary

key,

and

the

orders,

payments,

and

items

nicknames

have

defined

foreign

keys

that

point

to

the

parent

nickname.

The

foreign

keys

of

the

orders

and

payments

nicknames

point

to

the

customers

nickname,

and

the

foreign

key

of

the

items

nickname

points

to

the

orders

nickname.

To

identify

the

XML

elements

representing

individual

tuples,

you

create

one

XPath

expression.

In

this

example,

all

the

customer

elements

are

referenced

by

using

the

’/doc/customer’

XPath

expression,

and

all

the

order

elements

are

referenced

by

using

the

’./order’

XPath

expression.

The

period

in

the

’./order’

XPath

expression

indicates

that

the

tuples

of

each

order

element

are

nested

within

the

tuples

of

the

corresponding

customer

element.

customer

payment

item

order

Figure

43.

Tree

structure

of

the

sample

XML

document

Chapter

24.

Configuring

access

to

XML

data

sources

417

You

create

a

set

of

XPath

expressions

to

specify

how

to

extract

the

column

values

from

each

element.

In

this

example,

the

id

attribute

of

the

customer

elements,

now

a

column

defined

in

the

nickname,

is

referenced

by

using

the

’./@id’

XPath

expression.

The

name

element

of

the

customer

elements

is

referenced

by

using

the

’./name’

XPath

expression,

and

the

address

element

of

the

customer

elements

is

referenced

by

using

the

’./address/@street’

XPath

expression.

After

you

map

the

XML

document

into

a

set

of

nicknames

by

using

the

CREATE

NICKNAME

statement,

you

define

each

nickname

as

a

parent

or

child

by

using

primary

and

foreign

keys,

with

XPath

expressions

that

define

individual

tuples

and

columns

within

each

element

of

the

document.

You

can

then

run

SQL

queries

on

the

XML

document.

Related

concepts:

v

“Data

associations

between

nicknames

and

XML

documents”

on

page

422

Related

tasks:

v

“Adding

XML

to

a

federated

system”

on

page

418

Adding

XML

to

a

federated

system

Adding

XML

to

a

federated

system

To

configure

the

federated

server

to

access

XML

data

sources,

you

must

provide

the

federated

server

with

information

about

the

data

sources

and

objects

that

you

want

to

access.

You

can

configure

the

federated

server

to

access

XML

data

sources

by

using

the

DB2

Control

Center

or

the

DB2

command

line.

The

DB2

Control

Center

includes

a

wizard

to

guide

you

through

the

steps

required

to

configure

the

federated

server.

Prerequisites:

v

DB2

Information

Integrator

must

be

installed

on

a

server

that

will

act

as

the

federated

server

v

A

federated

database

must

exist

on

the

federated

server

Procedure:

To

add

an

XML

data

source

to

a

federated

server:

1.

Register

the

XML

wrapper.

2.

Register

the

XML

server

definition.

3.

Register

nicknames

for

the

XML

data

sources.

4.

Create

federated

views

for

non-root

nicknames.

A

root

nickname

is

a

nickname

at

the

top

level

of

a

nickname

hierarchy.

A

nonroot

nickname

is

a

nickname

that

has

a

parent

nickname

in

a

nickname

hierarchy.

You

can

have

root

nicknames

that

are

not

the

top

level

element

in

an

XML

document.

You

can

run

the

statements

from

the

DB2

Control

Center

or

from

a

DB2

command

line

processor.

After

you

add

the

XML

wrapper

to

your

federated

system,

you

can

run

queries

on

an

XML

data

source.

Related

concepts:

418

Data

Source

Configuration

Guide

|
|
|

|
|
|
|

v

“DB2

Information

Integrator

installation

process

-

overview”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

Related

tasks:

v

“Creating

a

federated

database”

on

page

51

v

“Registering

the

XML

wrapper”

on

page

419

v

“Registering

the

server

for

an

XML

data

source”

on

page

420

v

“Registering

nicknames

for

XML

data

sources”

on

page

424

v

“Creating

federated

views

for

nonroot

nicknames

(XML

wrapper)”

on

page

430

Related

reference:

v

“Supported

operating

systems

for

DB2

Information

Integrator

(32-bit)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Supported

operating

systems

for

DB2

Information

Integrator

(64-bit)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

Registering

the

XML

wrapper

Registering

the

XML

wrapper

is

part

of

the

larger

task

of

adding

XML

data

sources

to

a

federated

server.

You

must

register

a

wrapper

to

access

HMMER

data

sources.

Wrappers

are

used

by

federated

servers

to

communicate

with

and

retrieve

data

from

data

sources.

Wrappers

are

implemented

as

a

set

of

library

files.

Procedure:

To

register

a

wrapper,

issue

the

CREATE

WRAPPER

statement

with

the

name

of

the

wrapper

and

the

name

of

the

wrapper

library

file.

For

example,

to

register

a

wrapper

with

the

name

xml_wrapper

on

the

federated

server

that

uses

the

AIX

operating

system,

issue

the

following

statement:

CREATE

WRAPPER

xml_wrapper

LIBRARY

’libdb2lsxml.a’;

The

name

of

the

wrapper

library

file

that

you

specify

depends

on

the

operating

system

of

the

federated

server.

See

the

list

of

XML

wrapper

library

files

for

the

correct

name

to

specify

in

the

CREATE

WRAPPER

statement.

The

next

task

in

this

sequence

of

tasks

is

registering

the

server

definitions

for

the

XML

wrapper.

Related

reference:

v

“XML

wrapper

library

files”

on

page

419

v

“CREATE

WRAPPER

statement”

in

the

SQL

Reference,

Volume

2

XML

wrapper

library

files

The

following

table

lists

the

directory

paths

and

library

file

names

for

the

XML

wrapper.

Chapter

24.

Configuring

access

to

XML

data

sources

419

|

|
|

When

you

install

DB2

Information

Integrator,

3

library

files

are

added

to

the

directory

path

listed

in

the

table.

For

example,

if

the

federated

server

is

running

on

AIX,

the

wrapper

library

files

added

to

the

directory

path

are

libdb2lsxml.a,

libdb2lsxmlF.a,

and

libdb2lsxmlU.a.

When

you

register

a

wrapper,

specify

only

the

library

file

name

that

is

listed

in

the

table.

Table

91.

XML

wrapper

library

locations

and

file

names

Operating

system

Directory

path

Wrapper

library

file

AIX

/usr/opt/db2_08_01/lib/

libdb2lsxml.a

HP-UX

/opt/IBM/db2/V8.1/lib

libdb2lsxml.sl

Linux

/opt/IBM/db2/V8.1/lib

libdb2lsxml.so

Solaris

/opt/IBM/db2/V8.1/lib

libdb2lsxml.so

Windows

%DB2PATH%\bin

db2lsxml.dll

%DB2PATH%

is

the

environment

variable

that

is

used

to

specify

the

directory

path

where

DB2

Information

Integrator

is

installed

on

Windows.

The

default

Windows

directory

path

is

C:\Program

Files\IBM\SQLLIB.

Related

tasks:

v

“Registering

the

XML

wrapper”

on

page

419

Registering

the

server

for

an

XML

data

source

Registering

the

server

for

an

XML

data

source

is

part

of

the

larger

task

of

adding

XML

to

a

federated

system.

After

you

register

the

wrapper,

you

must

register

a

corresponding

server.

Restrictions:

The

XML

wrapper

does

not

use

the

TYPE

and

VERSION

keywords.

An

error

occurs

if

these

keywords

are

used

in

the

CREATE

SERVER

statement.

The

XML

wrapper

does

not

support

pass-through

sessions

to

the

federated

system.

Procedure:

To

register

the

XML

server

to

the

federated

system,

issue

the

CREATE

SERVER

statement.

For

example:

CREATE

SERVER

xml_server

WRAPPER

my_xml;

The

next

task

in

this

sequence

of

tasks

is

registering

nicknames

for

XML

data

sources.

Accessing

XML

documents

through

a

proxy

server

To

access

XML

documents

through

a

proxy

server,

you

must

specify

options

when

you

create

the

server

definition.

The

options

that

you

specify

depend

on

the

type

of

proxy

server

that

you

want

to

access.

420

Data

Source

Configuration

Guide

|
|
|
|

|
|

||

|||

|||

|||

|||

|||

|||
|

|
|
|

|

|

|
|
|
|

You

must

use

the

proxy

options

in

the

CREATE

SERVER

statement

if

all

of

the

following

conditions

are

true:

v

You

want

to

retrieve

data

using

a

URI

v

The

URI

used

will

retrieve

data

from

behind

a

firewall,

through

a

proxy

v

The

firewall

or

proxy

used

is

HTTP,

SOCKS4,

or

SOCKS5

Check

with

your

Network

administrator

for

information

about

the

type

of

proxy

that

you

use,

and

the

settings

that

you

should

specify

in

the

proxy

options.

Example

of

registering

a

server

definition

for

an

HTTP

proxy

server:

To

register

a

server

definition

and

specify

an

HTTP

proxy

server,

use

the

following

statement:

CREATE

SERVER

xml_server_h

WRAPPER

xml_wrapper

OPTIONS

(PROXY_TYPE

’HTTP’,

PROXY_SERVER_NAME

’proxy_h’,

PROXY_SERVER_PORT

’8080’);

Example

of

registering

a

server

definition

for

a

SOCKS4

proxy

server:

To

register

a

server

definition

and

specify

a

SOCKS4

proxy

server,

use

the

following

statement:

CREATE

SERVER

xml_server_s4

WRAPPER

xml_wrapper

OPTIONS

(PROXY_TYPE

’SOCKS4’,

PROXY_SERVER_NAME

’proxy_4’,

PROXY_SERVER_PORT

’1080’);

Example

of

registering

a

server

definition

for

a

SOCKS5

proxy

server

without

authentication

information:

To

register

a

server

definition

and

specify

a

SOCKS5

proxy

server

without

authentication

information,

use

the

following

statement:

CREATE

SERVER

xml_server_s5

WRAPPER

xml_wrapper

OPTIONS

(PROXY_TYPE

’SOCKS5’,

PROXY_SERVER_NAME

’proxy_5’,

PROXY_SERVER_PORT

’1081’);

Example

of

registering

a

server

definition

for

a

SOCKS5

proxy

server

with

authentication

information:

To

register

a

server

definition

and

specify

a

SOCKS5

proxy

server

with

authentication

information,

use

the

following

statement:

CREATE

SERVER

xml_server_s5a

WRAPPER

xml_wrapper

OPTIONS

(PROXY_TYPE

’SOCKS5’,

PROXY_SERVER_NAME

’proxy_5’,

PROXY_SERVER_PORT

’1081’,

PROXY_AUTHID

’Martin’,

PROXY_PASSWORD

’aaa’,

);

The

XML

validation

feature

might

have

some

limitations

when

it

is

used

with

the

proxy

feature.

The

conditions

in

which

you

will

see

this

limitation

are:

v

You

are

using

the

proxy

feature,

at

the

server

level,

you

have

set

the

various

proxy

options.

v

The

XML

instance

document

contains

a

reference

to

an

external

XML

schema

located

outside

the

firewall

Chapter

24.

Configuring

access

to

XML

data

sources

421

|
|

|

|

|

|
|

|

|
|

|
|
|
|

|

|
|

|
|
|
|

|
|

|
|

|
|
|
|

|
|

|
|

|
|
|
|
|

|
|

|
|

|
|

If

you

have

one

of

these

conditions,

try

to

change

the

location

of

your

XML

schema

to

a

location

inside

the

firewall.

If

you

change

the

XML

schema

location,

you

must

update

the

XML

instance

document

with

the

new

location

of

the

XML

schema.

Related

tasks:

v

“Registering

nicknames

for

XML

data

sources”

on

page

424

Related

reference:

v

“CREATE

SERVER

statement”

in

the

SQL

Reference,

Volume

2

Registering

nicknames

for

XML

data

sources

Data

associations

between

nicknames

and

XML

documents

Nicknames

correspond

to

the

tree

structure

of

your

XML

document

data.

Parent

nicknames

and

child

nicknames

correspond

to

the

root

structure

and

nested

elements

of

the

data

tree

structure.

These

parent

and

child

nicknames

are

connected

by

primary

and

foreign

keys

that

are

specified

with

the

CREATE

NICKNAME

statement.

Each

nickname

is

defined

by

XPath

expressions

that

perform

the

following

functions:

v

Identifies

the

XML

elements

that

represent

individual

tuples

v

Specifies

how

to

extract

the

column

values

from

each

element

The

XML

wrapper

uses

XPath

expressions

to

establish

a

correspondence

between

the

data

in

the

XML

document

and

the

rows

in

a

relational

table.

These

XPath

expressions

identify

the

values

within

the

XML

document

and

determine

how

these

values

correspond

to

the

columns

of

each

row.

The

XML

wrapper

reads

the

XML

document

data

only.

The

XML

wrapper

does

not

update

this

data.

When

you

create

a

nickname,

you

choose

options

that

specify

the

association

between

the

nickname

and

the

XML

document.

Nicknames

are

associated

with

your

XML

documents

either

in

a

fixed

manner

or

with

source

names

that

you

specify.

With

a

fixed

association,

the

nickname

represents

data

from

specific

XML

documents.

These

XML

documents

include:

One

local

file

You

specify

one

XML

file

as

your

XML

document.

Multiple

local

files

in

a

directory

path

You

specify

a

directory

path

in

which

multiple

XML

files

reside.

The

XML

files

in

this

directory

path

provide

the

XML

document

data

to

the

nickname.

All

of

the

XML

files

must

have

the

same

configuration.

If

any

XML

file

in

the

directory

has

a

configuration

that

is

different

from

the

configuration

of

the

nickname,

the

XML

wrapper

returns

null

values

when

it

processes

that

XML

data

file.

The

directory

must

be

either

local

to

the

federated

server

or

accessible

from

a

shared

file

system.

Note:

When

scanning

the

directory,

the

XML

wrapper

retains

and

parses

only

those

files

with

a

.xml

extension.

The

XML

wrapper

ignores

all

other

files,

including

files

with

a

.txt

extension,

files

with

a

.xsd

extension,

and

files

without

extensions.

422

Data

Source

Configuration

Guide

|
|
|
|

Use

the

FILE_PATH

option

of

the

CREATE

NICKNAME

statement

to

specify

fixed

data

from

a

file.

Use

the

DIRECTORY_PATH

option

to

specify

fixed

data

from

a

directory.

When

the

source

data

is

specified

while

the

query

is

running,

you

can

use

the

nickname

to

represent

data

from

any

XML

document

source

whose

schema

matches

the

nickname

definition.

These

XML

documents

include:

Uniform

Reference

Identifiers

A

remote

XML

file

that

a

URI

refers

to

supplies

the

XML

document

data

to

the

nickname.

(Specify

this

document

source

by

using

the

DOCUMENT

’URI’

nickname

column

option.)

Relational

columns

Columns

from

a

relational

table,

view,

or

nickname

are

used

as

input

to

your

XML

document.

(Specify

this

document

source

by

using

the

DOCUMENT

’COLUMN’

nickname

column

option.)

File

A

single

file

that

contains

XML

data

is

supplied

as

input

while

the

query

runs.

(Specify

this

document

source

by

using

the

DOCUMENT

’FILE’

nickname

column

option.)

Directory

Multiple

XML

files

under

a

specified

directory

path

supply

the

data

while

the

query

runs.

(Specify

this

document

source

by

using

the

DOCUMENT

’DIRECTORY’

nickname

column

option.)

You

specify

the

DOCUMENT

column

option

to

indicate

that

the

source

data

is

supplied

at

query

time.

Specify

either

URI,

COLUMN,

FILE,

or

DIRECTORY

with

the

DOCUMENT

column

to

indicate

the

type

of

XML

document

source.

You

cannot

specify

a

FILE_PATH

option

or

a

DIRECTORY_PATH

option

with

a

DOCUMENT

column

option.

Regardless

of

the

type

of

data

that

you

are

using

(data

in

a

fixed

format

or

data

from

source

names

that

are

specified

at

query

time),

you

can

specify

the

STREAMING

option

so

that

the

XML

wrapper

separates

the

XML

document

data

into

fragments.

The

XML

wrapper

processes

the

resulting

stream

of

XML

data

and

extracts

the

information

that

is

requested

by

a

query

fragment.

The

XML

wrapper

parses

one

fragment

at

a

time.

Because

fragments

are

parsed

one

at

a

time,

total

memory

use

decreases

but

the

processing

time

required

to

run

the

entire

query

increases

depending

on

the

memory

capacity

of

your

server.

Therefore,

use

the

STREAMING

option

to

parse

large

XML

documents

(documents

of

50

megabytes

or

more)

only.

You

can

also

choose

nickname

option

values

that

help

you

optimize

queries

that

retrieve

large

amounts

of

XML

data

or

data

that

contains

multiple

nested

elements.

These

options

include:

v

INSTANCE_PARSE_TIME

v

XPATH_EVAL_TIME

v

NEXT_TIME

You

can

set

values

for

these

options

to

test

and

optimize

the

XML

query.

These

option

values

control

the

processing

time

that

is

needed

to

locate

elements

and

to

parse

the

data

in

the

rows

of

the

XML

document.

Related

concepts:

Chapter

24.

Configuring

access

to

XML

data

sources

423

v

“What

is

XML?”

on

page

415

v

“The

cost

model

facility

for

the

XML

wrapper”

on

page

424

v

“Optimization

tips

for

the

XML

cost

model

facility”

on

page

430

Related

tasks:

v

“Registering

nicknames

for

XML

data

sources”

on

page

424

Related

reference:

v

“CREATE

NICKNAME

statement

syntax

-

XML

wrapper”

on

page

557

v

“CREATE

NICKNAME

statement

-

Examples

for

XML

wrapper”

on

page

425

The

cost

model

facility

for

the

XML

wrapper

The

XML

wrapper

provides

a

cost

model

facility

to

optimize

queries

on

nicknames

that

correspond

to

your

XML

source

documents.

When

you

create

a

nickname

by

using

the

CREATE

NICKNAME

statement,

you

can

specify

the

following

parameters

as

nickname

option

values

to

support

the

cost

model

facility:

v

INSTANCE_PARSE_TIME

v

XPATH_EVAL_TIME

You

can

use

the

default

values

for

these

parameters.

Or

you

can

set

the

values

for

these

parameters

to

optimize

queries

on

the

root

and

nonroot

nicknames

that

you

create.

The

INSTANCE_PARSE_TIME

parameter

is

the

amount

of

time

(in

milliseconds)

that

is

required

to

read

and

parse

one

row-producing

root

element

of

the

root

nickname

(for

example,

customers),

including

all

contained

row-producing

nonroot

elements

(for

example,

all

elements

that

correspond

to

the

orders,

payments,

and

items

of

each

customer).

The

XML

wrapper

builds

a

structure

in

memory

to

represent

these

row-producing

root

and

nonroot

elements.

The

XPATH_EVAL_TIME

parameter

is

the

amount

of

time

(in

milliseconds)

that

is

required

to

evaluate

the

XPath

expressions

that

locate

the

data

corresponding

to

a

row

of

the

nickname.

The

XPath

expressions

that

are

evaluated

include

the

XPath

expressions

that

locate

the

actual

rows

and

the

XPath

expressions

that

locate

column

values

within

these

rows.

Related

concepts:

v

“What

is

XML?”

on

page

415

v

“Data

associations

between

nicknames

and

XML

documents”

on

page

422

v

“Optimization

tips

for

the

XML

cost

model

facility”

on

page

430

Related

reference:

v

“CREATE

NICKNAME

statement

syntax

-

XML

wrapper”

on

page

557

v

“CREATE

NICKNAME

statement

-

Examples

for

XML

wrapper”

on

page

425

Registering

nicknames

for

XML

data

sources

Registering

nicknames

for

XML

data

sources

is

part

of

the

larger

task

of

adding

XML

to

a

federated

system.

You

must

create

nicknames

that

correspond

to

the

tree

structure

of

your

XML

data

source.

Parent

nicknames

correspond

to

the

root

424

Data

Source

Configuration

Guide

structure

of

the

tree.

Child

nicknames

correspond

to

the

elements

that

are

nested

within

the

element

for

the

parent

nickname.

Prerequisite:

The

database

code

page

must

match

the

character

set

of

the

XML

source

files.

Restriction:

Namespaces

are

not

supported.

Procedure:

To

register

nicknames

for

XML

data

sources,

issue

a

CREATE

NICKNAME

statement.

The

next

task

in

this

sequence

of

tasks

is

creating

federated

views

for

nonroot

nicknames

(XML

wrapper).

Related

concepts:

v

“Data

associations

between

nicknames

and

XML

documents”

on

page

422

v

“The

cost

model

facility

for

the

XML

wrapper”

on

page

424

Related

tasks:

v

“Adding

XML

to

a

federated

system”

on

page

418

v

“Creating

federated

views

for

nonroot

nicknames

(XML

wrapper)”

on

page

430

v

“Specifying

nickname

columns

for

a

nonrelational

data

source”

on

page

65

Related

reference:

v

“CREATE

NICKNAME

statement

syntax

-

XML

wrapper”

on

page

557

v

“CREATE

NICKNAME

statement

-

Examples

for

XML

wrapper”

on

page

425

CREATE

NICKNAME

statement

-

Examples

for

XML

wrapper

This

topic

provides

several

examples

that

show

you

how

to

use

the

CREATE

NICKNAME

statement

to

register

nicknames

for

the

XML

wrapper.

This

topic

includes

a

complete

example,

which

shows

how

to

create

parent

and

child

nicknames,

examples

for

specific

column

options,

and

examples

that

show

the

use

of

views.

Recommendation:

Do

not

use

the

self

or

descendant

operator

//

when

you

specify

XPATH

columns

and

nickname

options

in

your

queries.

The

self

or

descendant

operator

is

an

XPath

operator,

and

using

it

can

decrease

federated

server

performance.

Complete

example:

The

following

example

shows

how

to

create

nicknames

for

XML

data

sources

by

using

the

sample

XML

file

shown

in

Figure

44

on

page

426.

Chapter

24.

Configuring

access

to

XML

data

sources

425

|
|
|
|

The

parent

nickname:

The

first

step

is

to

create

the

parent

nickname,

customers.

To

create

the

nickname,

issue

the

following

statement:

CREATE

NICKNAME

customers

(

id

VARCHAR(5)

OPTIONS(XPATH

’./@id’)

name

VARCHAR(16)

OPTIONS(XPATH

’./name’),

address

VARCHAR(30)

OPTIONS(XPATH

’./address/@street’),

cid

VARCHAR(16)

FOR

BIT

DATA

NOT

NULL

OPTIONS(PRIMARY_KEY

’YES’))

FOR

SERVER

xml_server

OPTIONS(DIRECTORY_PATH

’/home/db2user’,

XPATH

’/doc/customer’,

STREAMING

’YES’);

This

statement

creates

the

customers

nickname

over

multiple

XML

files

under

the

specified

directory

path,

/home/db2user.

The

STREAMING

nickname

option

indicates

that

the

XML

source

data

is

separated

and

processed

by

node

(in

this

example,

by

customer

record).

When

the

STREAMING

nickname

option

is

used,

the

wrapper

does

not

storing

the

entire

XML

document

into

memory.

Instead,

the

XML

wrapper

divides

the

document

into

multiple

sections

which

are

parsed

individually

and

sequentially.

The

STREAMING

nickname

option

should

be

used

only

with

large

XML

documents.

The

performance

of

your

queries

is

impacted

when

you

use

this

option.

The

child

nicknames:

The

next

step

is

to

create

the

child

nicknames

for

the

orders,

payments,

and

items

elements.

Issue

the

following

statement

to

create

the

orders

child

nickname.

<?xml

version="1.0"

encoding="UTF-8"?>

<doc>

<customer

id=’123’>

<name>...</name>

<address>...</address>

...

<order>

<amount>...</amount>

<date>...</date>

<item

quant=’12’>

<name>...</name>

</item>

<item

quant=’4’>...</item>

...

</order>

<order>...</order>

...

<payment>

<number>...</number>

<date>...</date>

</payment>

<payment>>...</payment>

...

</customer>

<customer

id=’124’>...</customer>

</doc>

Figure

44.

Sample

XML

file

426

Data

Source

Configuration

Guide

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|

CREATE

NICKNAME

orders

(

amount

INTEGER

OPTIONS(XPATH

’./amount’),

date

VARCHAR(10)

OPTIONS(XPATH

’./date’),

oid

VARCHAR(16)

OPTIONS(PRIMARY_KEY

’YES’),

cid

VARCHAR(16)

FOR

BIT

DATA

NOT

NULL

OPTIONS(FOREIGN_KEY

’CUSTOMERS’))

FOR

SERVER

xml_server

OPTIONS(

XPATH

’./order’);

Issue

the

following

statement

to

create

the

payments

child

nickname.

CREATE

NICKNAME

payments

(

number

INTEGER

OPTIONS(XPATH

’./number’),

date

VARCHAR(10)

OPTIONS(XPATH

’./date’),

cid

VARCHAR(16)

FOR

BIT

DATA

NOT

NULL

OPTIONS(FOREIGN_KEY

’CUSTOMERS’))

FOR

SERVER

xml_server

OPTIONS(

XPATH

’./payment’);

Issue

the

following

statement

to

create

the

items

child

nickname.

CREATE

NICKNAME

items

(

name

VARCHAR(20)

OPTIONS(XPATH

’./name’),

quantity

INTEGER

OPTIONS(XPATH

’./@quant’),

oid

VARCHAR(16)

FOR

BIT

DATA

NOT

NULL

OPTIONS(FOREIGN_KEY

’ORDERS’))

FOR

SERVER

xml_server

OPTIONS(

XPATH

’./item’);

Column

option

examples:

The

following

examples

show

you

how

to

include

the

DOCUMENT

column

options

when

you

create

nicknames.

The

examples

also

show

you

how

those

options

are

used

in

queries.

The

following

CREATE

NICKNAME

example

shows

the

use

of

the

DOCUMENT

’FILE’

column

option:

CREATE

NICKNAME

customers

(

doc

VARCHAR(100)

OPTIONS(DOCUMENT

’FILE’),

name

VARCHAR(16)

OPTIONS(XPATH

’./name’),

address

VARCHAR(30)

OPTIONS(XPATH

’./address/@street’),

cid

VARCHAR(16)

FOR

BIT

DATA

NOT

NULL

OPTIONS(PRIMARY_KEY

’YES’))

FOR

SERVER

xml_server

OPTIONS(XPATH

’/doc/customer’);

You

can

then

run

the

following

query

on

the

customers

nickname,

specifying

the

location

of

the

XML

document

in

the

WHERE

clause:

SELECT

*

FROM

customers

WHERE

doc

=

’/home/db2user/Customers.xml’;

The

following

CREATE

NICKNAME

example

shows

the

use

of

the

DOCUMENT

’DIRECTORY’

column

option:

CREATE

NICKNAME

customers

(

doc

VARCHAR(100)

OPTIONS(DOCUMENT

’DIRECTORY’),

name

VARCHAR(16)

OPTIONS(XPATH

’./name’),

address

VARCHAR(30)

OPTIONS(XPATH

’./address/@street’),

cid

VARCHAR(16)

FOR

BIT

DATA

NOT

NULL

OPTIONS(PRIMARY_KEY

’YES’))

FOR

SERVER

xml_server

OPTIONS(XPATH

’/doc/customer’);

You

can

then

run

the

following

query

on

the

customers

nickname:

SELECT

name

FROM

customers

WHERE

doc

=

’/home/data/xml’;

Chapter

24.

Configuring

access

to

XML

data

sources

427

|
|
|
|
|
|
|
|

This

query

retrieves

the

XML

documents

that

are

located

under

the

directory

path

/home/data/xml,

which

is

specified

in

the

WHERE

clause.

The

following

CREATE

NICKNAME

example

shows

the

use

of

the

DOCUMENT

’URI’

nickname

column

option:

CREATE

NICKNAME

customers

(

doc

VARCHAR(100)

OPTIONS(DOCUMENT

’URI’),

name

VARCHAR(16)

OPTIONS(XPATH

’./name’),

address

VARCHAR(30)

OPTIONS(XPATH

’./address/@street’),

cid

VARCHAR(16)

FOR

BIT

DATA

NOT

NULL

OPTIONS(PRIMARY_KEY

’YES’))

FOR

SERVER

xml_server

OPTIONS(XPATH

’/doc/customer’);

You

can

then

run

the

following

query

on

the

customers

nickname

to

retrieve

the

XML

data

from

the

remote

location:

SELECT

*

FROM

customers

WHERE

doc

=

’http://www.lg-mv.org/foo.xml’;

The

following

CREATE

NICKNAME

example

shows

the

use

of

the

DOCUMENT

’COLUMN’

nickname

column

option:

CREATE

NICKNAME

emp

(

doc

VARCHAR(500)

OPTIONS(DOCUMENT

’COLUMN’)

fname

VARCHAR(16)

OPTIONS(XPATH

’@first’),

lname

VARCHAR(16)

OPTIONS(XPATH

’@last’))

FOR

SERVER

xml_server

OPTIONS(XPATH

’/doc/name’);

You

can

then

run

one

of

the

following

queries

on

the

emp

nickname

to

retrieve

the

XML

data:

SELECT

*

FROM

emp

WHERE

doc

=

’<?xml

version="1.0"

encoding="UTF-8"?>

<doc>

<title>

employees

</title>

<name

first="David"

last="Marston"/>

<name

first="Donald"

last="Leslie"/>

<name

first="Emily"

last="Farmer"/>

<name

first="Myriam"

last="Midy"/>

<name

first="Lee"

last="Tran"/>

<name

first="Lili"

last="Farmer"/>

<name

first="Sanjay"

last="Kumar"/>

</doc>’;

or

SELECT

*

FROM

emp

WHERE

doc

=

(SELECT

*

FROM

xml_tab);

The

xml_tab

table

contains

one

column

that

is

populated

with

the

XML

data.

View

examples:

The

following

examples

show

you

how

to

create

views

for

nonroot

nicknames

to

describe

XML

source

documents.

In

these

examples,

assume

that

the

nicknames

of

the

sample

file

shown

in

Figure

45

on

page

429

were

previously

created

as

customers,

orders,

payments,

and

items.

428

Data

Source

Configuration

Guide

The

following

example

shows

how

to

create

a

view

for

the

nonroot

nickname

order:

CREATE

VIEW

order_view

AS

SELECT

o.amount,

o.date,

o.oid,

c.cid

FROM

customers

c,

orders

o

WHERE

c.cid

=

o.cid;

The

following

example

shows

how

to

create

a

view

for

the

nonroot

nickname

payment:

CREATE

VIEW

payment_view

AS

SELECT

p.number,

p.date,

c.cid

FROM

customers

c,

payments

p

WHERE

c.cid

=

p.cid;

The

following

example

shows

how

to

create

a

view

for

the

nonroot

nickname

item:

CREATE

VIEW

item_view

AS

SELECT

i.quantity,

i.name,

o.oid

FROM

customers

c,

orders

o,

items

i

WHERE

c.cid

=

o.cid

AND

o.oid

=

i.oid;

Queries

that

are

submitted

to

these

views

are

processed

correctly

because

the

join

path

to

the

root

directory

is

present.

For

example,

the

following

query

pairs

the

amounts

of

the

orders

and

payments

from

the

same

date

for

customers:

SELECT

o.amount,

p.amount

FROM

order_view

o,

payment_view

p

WHERE

p.date

=

o.date

AND

p.cid

=

o.cid;

Related

tasks:

<?xml

version="1.0"

encoding="UTF-8"?>

<doc>

<customer

id=’123’>

<name>...</name>

<address>...</address>

...

<order>

<amount>...</amount>

<date>...</date>

<item

quant=’12’>

<name>...</name>

</item>

<item

quant=’4’>...</item>

...

</order>

<order>...</order>

...

<payment>

<number>...</number>

<date>...</date>

</payment>

<payment>...</payment>

...

</customer>

<customer

id=’124’>...</customer>

</doc>

Figure

45.

Sample

XML

file

Chapter

24.

Configuring

access

to

XML

data

sources

429

v

“Registering

nicknames

for

XML

data

sources”

on

page

424

Related

reference:

v

Appendix

G,

“Nickname

column

options

for

federated

systems,”

on

page

603

v

Appendix

F,

“Nickname

options

for

federated

systems,”

on

page

593

v

“CREATE

NICKNAME

statement

syntax

-

XML

wrapper”

on

page

557

Creating

federated

views

for

nonroot

nicknames

(XML

wrapper)

Creating

federated

views

for

nonroot

nicknames

(XML

wrapper)

is

part

of

the

larger

task

of

adding

XML

to

a

federated

system.

You

can

define

federated

views

over

the

hierarchy

of

nicknames

that

describe

an

XML

document.

Defining

federated

views

ensures

that

the

queries

that

join

pieces

of

an

XML

nickname

hierarchy

(not

including

the

root

nickname

and

queries

that

join

columns

other

than

the

special

PRIMARY_KEY

and

FOREIGN_KEY

columns)

run

properly.

Procedure:

To

define

federated

views

that

include

all

required

predicates

and

a

full

path

to

the

root

directory,

follow

these

steps:

1.

Define

a

view

for

each

nonroot

nickname

as

a

join

of

all

the

nicknames

on

the

path

to

the

root.

2.

In

the

WHERE

clause,

make

the

join

predicates

over

the

PRIMARY_KEY

and

FOREIGN_KEY

columns.

3.

In

the

SELECT

list,

include

all

the

columns

of

the

nonroot

nickname

except

the

column

that

is

designated

with

the

FOREIGN_KEY

nickname

column

option.

4.

In

the

SELECT

list,

include

the

column

of

the

parent

nickname

designated

with

the

PRIMARY_KEY

option.

Related

reference:

v

“CREATE

NICKNAME

statement

-

Examples

for

XML

wrapper”

on

page

425

Optimization

tips

for

the

XML

cost

model

facility

The

cost

model

facility

for

the

XML

wrapper

helps

optimize

queries

on

the

nicknames

that

you

create.

The

cost

model

facility

uses

the

following

parameters

of

the

CREATE

NICKNAME

statement:

v

INSTANCE_PARSE_TIME

v

XPATH_EVAL_TIME

You

can

specify

values

for

these

parameters

when

you

issue

a

CREATE

NICKNAME

statement

to

register

a

nickname

for

an

XML

data

source.

The

cost

model

facility

uses

these

parameter

values

when

determining

the

amount

of

time

required

to

parse

data

in

each

row

of

an

XML

source

document

and

to

evaluate

the

nickname’s

XPath

expression.

430

Data

Source

Configuration

Guide

You

can

use

the

default

values

for

these

parameters.

However,

if

you

want

to

optimize

queries

on

large

or

complex

XML

source

structures

for

the

nicknames

that

you

create,

use

the

following

example

as

a

guide.

An

example

of

optimizing

a

large

query:

Assume

that

your

XML

document

has

a

relational

schema

with

four

nicknames:

v

customers

v

orders

v

payments

v

items

Also,

assume

that

the

customers

nickname

is

the

root

nickname.

Run

queries

on

each

nickname.

Run

each

query

on

a

sample

of

the

XML

data

that

is

typical

for

your

environment.

For

example:

SELECT

*

from

customers;

SELECT

*

from

orders;

SELECT

*

from

payments;

SELECT

*

from

items;

Note

the

amount

of

time

(in

milliseconds)

that

is

required

to

run

each

query

by

using

the

db2batch

command

or

equivalent

command

or

utility.

(You

can

use

the

db2batch

command

to

obtain

an

output

file

that

contains

the

time

required

to

run

queries.)

Also,

note

the

number

of

tuples

that

are

returned.

For

each

nickname,

use

the

following

formulas

to

determine

the

optimal

values

for

the

INSTANCE_PARSE_TIME

and

XPATH_EVAL_TIME

parameters:

INSTANCE_PARSE_TIME

=

(75%

X

run

time

of

SELECT

*

query)

÷

number

of

tuples

returned

XPATH_EVAL_TIME

=

(25%

X

run

time

of

SELECT

*

query)

÷

number

of

tuples

returned

For

the

root

nickname

(in

the

example,

customers),

use

the

calculated

values

for

the

INSTANCE_PARSE_TIME

and

XPATH_EVAL_TIME

parameters.

For

nonroot

nicknames,

(in

the

example,

orders,

payments,

and

items),

use

only

the

calculated

value

for

the

XPATH_EVAL_TIME

parameter.

The

INSTANCE_PARSE_TIME

parameter

value

is

not

applicable

for

nonroot

nicknames.

You

can

use

these

formulas

as

a

guide

for

tuning

your

queries.

The

optimal

values

for

these

parameters

also

depend

on

the

complexity

of

your

XML

source

documents

and

on

the

speed

of

the

processor

that

you

are

using.

Related

concepts:

v

“What

is

XML?”

on

page

415

v

“Data

associations

between

nicknames

and

XML

documents”

on

page

422

v

“The

cost

model

facility

for

the

XML

wrapper”

on

page

424

Related

reference:

v

“db2batch

-

Benchmark

Tool

Command”

in

the

Command

Reference

Chapter

24.

Configuring

access

to

XML

data

sources

431

XML

data

source

-

Example

queries

This

topic

provides

several

sample

queries

that

use

the

nicknames

customers,

orders,

and

items.

These

nicknames

were

previously

registered

by

using

CREATE

NICKNAME

statements.

The

following

query

displays

all

customer

names:

SELECT

name

FROM

customers;

The

following

query

displays

all

records

in

which

the

customer

name

is

Chang:

SELECT

*

FROM

customers

WHERE

name=’Chang’;

The

following

query

displays

the

customer

names

and

amounts

for

each

order

of

each

customer:

SELECT

c.name,

o.amount

FROM

customers

c,

orders

o

WHERE

c.cid=o.cid;

You

must

specify

the

join,

c.cid=o.cid,

to

indicate

the

parent-child

relationship

between

the

customers

nickname

and

the

orders

nickname.

The

following

query

selects

the

customer

addresses,

order

amounts,

and

item

names

for

each

order

and

item

of

each

customer:

SELECT

c.address,

o.amount,

i.name

FROM

customers

c,

orders

o,

items

i

WHERE

c.cid=o.cid

AND

o.oid=i.oid;

You

must

specify

the

two

joins

to

maintain

the

parent-child

relationships.

The

following

examples

show

how

to

write

queries

by

using

a

nickname

that

specifies

a

DOCUMENT

column

option

rather

than

a

FILE_PATH

nickname

option.

The

corresponding

CREATE

NICKNAME

statement

that

is

used

to

create

the

customers

nickname

is

shown

here:

CREATE

NICKNAME

customers

(

doc

VARCHAR(100)

OPTIONS(DOCUMENT

’FILE’),

name

VARCHAR(16)

OPTIONS(XPATH

’./name’),

address

VARCHAR(30)

OPTIONS(XPATH

’./address/@street’),

cid

VARCHAR(16)

OPTIONS(PRIMARY_KEY

’YES’))

FOR

SERVER

xml_server

OPTIONS(XPATH

’/doc/customer’);

The

following

query

selects

all

the

data

from

the

XML

file

Customers.xml

with

a

file

path

of

/home/db2user/Customers.xml:

SELECT

*

FROM

customers

WHERE

doc=’/home/db2user/Customers.xml’;

The

following

query

selects

names

of

customers

and

dates

of

their

orders

from

the

Customers.xml

file

for

each

order

with

an

amount

over

1000:

SELECT

c.name,

o.date

FROM

customers

c,

orders

o

WHERE

c.doc=’/home/db2user/Customers.xml’

AND

o.amount

>

1000;

The

file

path

of

/home/db2user/Customers.xml

specifies

the

location

of

the

Customers.xml

file.

Related

reference:

v

“CREATE

NICKNAME

statement

syntax

-

XML

wrapper”

on

page

557

432

Data

Source

Configuration

Guide

v

“CREATE

NICKNAME

statement

-

Examples

for

XML

wrapper”

on

page

425

Messages

for

the

XML

wrapper

This

topic

describes

messages

that

you

might

encounter

when

working

with

the

wrapper

for

XML.

For

more

information

about

messages,

see

the

DB2

Message

Reference.

Table

92.

Messages

issued

by

the

wrapper

for

XML

Error

Code

Message

Explanation

SQL0405N

The

numeric

literal

"<column_name>"

is

not

valid

because

its

value

is

out

of

range.

The

specified

numeric

literal

is

not

within

the

acceptable

range.

Check

the

data

type

of

the

column

in

the

CREATE

NICKNAME

statement.

SQL0408N

A

value

is

not

compatible

with

the

data

type

of

its

assignment

target.

Target

name

is

"<column_name>."

The

data

type

of

the

value

that

is

being

assigned

to

the

column

is

not

compatible

with

the

declared

data

type

of

the

assignment

target.

Check

the

data

type

of

the

column

in

the

CREATE

NICKNAME

statement.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"Error

creating

wrapper

object.")

An

error

occurred

when

creating

a

new

wrapper

object.

Contact

IBM

Software

Support.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"<xerces_xalan_error_message>.")

An

error

occurred

during

a

call

to

a

Xerces

or

a

Xalan

function.

Check

the

XML

document.

If

the

document

is

well

structured,

refer

to

the

Xalan

documentation

for

more

information

about

the

error

message.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"XalanDOMException:

exception

code

is

<exception_code>.")

A

XalanDOMException

exception

occurred.

Refer

to

the

Xalan

documentation

for

more

information

about

the

exception

code.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"XMLException:

<exception_error_message>.")

An

XMLException

exception

occurred.

Refer

to

the

Xalan

documentation

for

more

information

about

the

exception

code.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"XSLException:

<exception_error_message>.")

An

XSLException

exception

occurred.

Refer

to

the

Xalan

documentation

for

more

information

about

the

exception

code.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"SAXParseException:

<exception_error_message>.")

A

SAXParseException

exception

occurred.

Refer

to

the

Xalan

documentation

for

more

information

about

the

exception

code.

Chapter

24.

Configuring

access

to

XML

data

sources

433

Table

92.

Messages

issued

by

the

wrapper

for

XML

(continued)

Error

Code

Message

Explanation

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"Error

getting

node

value.")

Xalan

tried

to

access

a

node

that

is

not

valid.

Contact

IBM

Software

Support.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"Error

parsing

XML

document.")

An

error

occurred

when

parsing

the

XML

document.

Check

the

XML

document.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"Error

getting

root

element

of

XML

document.")

After

parsing

the

XML

document,

Xalan

tried

to

retrieve

the

root

element

but

failed.

Check

the

XML

document.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"Unspecified

exception

while

evaluating

XPath

expression.")

Xalan

generated

an

unspecified

exception

when

evaluating

an

XPath

expression.

Check

the

XML

document,

and

refer

to

the

Xalan

documentation.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"Unspecified

exception

while

getting

node

value.")

Xalan

generated

an

unspecified

exception

when

retrieving

a

node

value.

Check

the

XML

document,

and

refer

to

the

Xalan

documentation.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"Unspecified

exception

while

parsing

input

document.")

Xalan

generated

an

unspecified

exception

when

parsing

the

XML

document.

Check

the

XML

document,

and

refer

to

the

Xalan

documentation.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"Error

when

evaluating

cardinality.")

Contact

IBM

Software

Support.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"<SOAP_error_message>.")

The

SOAP

library

issued

an

error.

If

you

cannot

resolve

the

SQL

statement

error,

contact

IBM

Software

Support.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"Invalid

URI.")

The

wrapper

cannot

access

the

specified

URL.

Verify

that

the

URL

is

accessible.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"Invalid

XML

document

content.")

The

content

of

the

XML

document

is

not

valid.

Verify

that

the

document

is

well

structured.

434

Data

Source

Configuration

Guide

Table

92.

Messages

issued

by

the

wrapper

for

XML

(continued)

Error

Code

Message

Explanation

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"Invalid

SOAP

envelope.")

The

SOAP

envelope

is

not

valid.

Check

its

syntax

and

content.

SQL0901N

The

SQL

statement

failed

because

of

a

non-severe

system

error.

Subsequent

SQL

statements

can

be

processed.

(Reason

"Memory

allocation

error.")

An

error

occurred

when

allocating

memory.

SQL1822N

Unexpected

error

code

"<trace_point>"

received

from

data

source

"XML

wrapper."

Associated

text

and

tokens

are

"Incorrect

DATE

format."

A

date

value

in

the

XML

document

does

not

have

the

correct

format.

The

valid

format

for

date

values

is

yyyy-mm-dd.

Check

the

XML

document.

SQL1822N

Unexpected

error

code

"<trace_point>"

received

from

data

source

"XML

wrapper."

Associated

text

and

tokens

are

"Column

data

type

not

supported."

A

nickname

column

has

an

unsupported

data

type.

Check

the

CREATE

NICKNAME

statement.

SQL1822N

Unexpected

error

code

"<trace_point>"

received

from

data

source

"XML

wrapper."

Associated

text

and

tokens

are

"TYPE

clause

not

supported."

The

CREATE

SERVER

statement

contains

a

TYPE

clause.

This

clause

is

not

supported

by

the

XML

wrapper.

Remove

the

clause.

SQL1822N

Unexpected

error

code

"<trace_point>"

received

from

data

source

"XML

wrapper."

Associated

text

and

tokens

are

"VERSION

clause

not

supported."

The

CREATE

SERVER

statement

contains

a

VERSION

clause.

This

clause

is

not

supported

by

the

XML

wrapper.

Remove

the

clause.

SQL1822N

Unexpected

error

code

"<trace_point>"

received

from

data

source

"XML

wrapper."

Associated

text

and

tokens

are

"Invalid

use

of

predicate

with

DOCUMENT

column."

The

query

contains

a

predicate

with

incorrect

operands.

Check

the

predicates

in

the

query.

SQL1822N

Unexpected

error

code

"<trace_point>"

received

from

data

source

"XML

wrapper."

Associated

text

and

tokens

are

"Invalid

use

of

predicate

with

FOREIGN_KEY

column."

The

query

contains

a

predicate

with

incorrect

operands.

Check

the

predicates

in

the

query.

SQL1822N

Unexpected

error

code

"<trace_point>"

received

from

data

source

"XML

wrapper."

Associated

text

and

tokens

are

"Invalid

use

of

predicate

with

PRIMARY_KEY

column."

The

query

contains

a

predicate

with

incorrect

operands.

Check

the

predicates

in

the

query.

Chapter

24.

Configuring

access

to

XML

data

sources

435

Table

92.

Messages

issued

by

the

wrapper

for

XML

(continued)

Error

Code

Message

Explanation

SQL1822N

Unexpected

error

code

"<trace_point>"

received

from

data

source

"XML

wrapper."

Associated

text

and

tokens

are

"XPATH

and

DOCUMENT

options

not

compatible."

The

CREATE

NICKNAME

statement

is

not

correct

as

specified.

Check

the

syntax

of

the

statement.

SQL1822N

Unexpected

error

code

"<trace_point>"

received

from

data

source

"XML

wrapper."

Associated

text

and

tokens

are

"XPATH

and

FOREIGN_KEY

options

not

compatible."

The

CREATE

NICKNAME

statement

is

not

correct

as

specified.

Check

the

syntax

of

the

statement.

SQL1822N

Unexpected

error

code

"<trace_point>"

received

from

data

source

"XML

wrapper."

Associated

text

and

tokens

are

"XPATH

and

PRIMARY_KEY

options

not

compatible."

The

CREATE

NICKNAME

statement

is

not

correct

as

specified.

Check

the

syntax

of

the

statement.

SQL1822N

Unexpected

error

code

"<trace_point>"

received

from

data

source

"XML

wrapper."

Associated

text

and

tokens

are

"DOCUMENT

and

FOREIGN_KEY

options

not

compatible."

The

CREATE

NICKNAME

statement

is

not

correct

as

specified.

Check

the

syntax

of

the

statement.

SQL1822N

Unexpected

error

code

"<trace_point>"

received

from

data

source

"XML

wrapper."

Associated

text

and

tokens

are

"DOCUMENT

and

PRIMARY_KEY

options

not

compatible."

The

CREATE

NICKNAME

statement

is

not

correct

as

specified.

Check

the

syntax

of

the

statement.

SQL1822N

Unexpected

error

code

"<trace_point>"

received

from

data

source

"XML

wrapper."

Associated

text

and

tokens

are

"FOREIGN_KEY

and

PRIMARY_KEY

options

not

compatible."

The

CREATE

NICKNAME

statement

is

not

correct

as

specified.

Check

the

syntax

of

the

statement.

SQL1822N

Unexpected

error

code

"<trace_point>"

received

from

data

source

"XML

wrapper."

Associated

text

and

tokens

are

"Column

option

missing."

The

CREATE

NICKNAME

statement

is

not

correct

as

specified.

Check

the

syntax

of

the

statement.

SQL1822N

Unexpected

error

code

"<trace_point>"

received

from

data

source

"XML

wrapper."

Associated

text

and

tokens

are

"DOCUMENT

column

option

not

unique."

The

CREATE

NICKNAME

statement

is

not

correct

as

specified.

Check

the

syntax

of

the

statement.

SQL1822N

Unexpected

error

code

"<trace_point>"

received

from

data

source

"XML

wrapper."

Associated

text

and

tokens

are

"FOREIGN_KEY

column

option

not

unique."

The

CREATE

NICKNAME

statement

is

not

correct

as

specified.

Check

the

syntax

of

the

statement.

436

Data

Source

Configuration

Guide

Table

92.

Messages

issued

by

the

wrapper

for

XML

(continued)

Error

Code

Message

Explanation

SQL1822N

Unexpected

error

code

"<trace_point>"

received

from

data

source

"XML

wrapper."

Associated

text

and

tokens

are

"PRIMARY_KEY

column

option

not

unique."

The

CREATE

NICKNAME

statement

is

not

correct

as

specified.

Check

the

syntax

of

the

statement.

SQL1822N

Unexpected

error

code

"<trace_point>"

received

from

data

source

"XML

wrapper."

Associated

text

and

tokens

are

"Invalid

DOCUMENT

option

value."

The

value

of

the

DOCUMENT

option

that

is

specified

in

the

CREATE

NICKNAME

statement

is

not

valid.

The

value

must

be

FILE.

Check

the

CREATE

NICKNAME

statement.

SQL1822N

Unexpected

error

code

"<trace_point>"

received

from

data

source

"XML

wrapper."

Associated

text

and

tokens

are

"Invalid

PRIMARY_KEY

option

value."

The

value

of

the

PRIMARY_KEY

option

that

is

specified

in

the

CREATE

NICKNAME

statement

is

not

valid.

The

value

must

be

YES.

Check

the

CREATE

NICKNAME

statement.

SQL1822N

Unexpected

error

code

"<trace_point>"

received

from

data

source

"XML

wrapper."

Associated

text

and

tokens

are

"Invalid

FOREIGN_KEY

option

value."

The

value

of

the

FOREIGN_KEY

option

that

is

specified

in

the

CREATE

NICKNAME

statement

is

not

valid.

The

value

does

not

match

any

parent

nickname.

Check

the

CREATE

NICKNAME

statement.

SQL1822N

Unexpected

error

code

"<trace_point>"

received

from

data

source

"XML

wrapper."

Associated

text

and

tokens

are

"FILE_PATH

and

DOCUMENT

options

not

compatible."

The

CREATE

NICKNAME

statement

is

not

correct

as

specified.

The

FILE_PATH

and

DOCUMENT

options

cannot

be

specified

at

the

same

time.

Check

the

syntax

of

the

CREATE

NICKNAME

statement.

SQL1822N

Unexpected

error

code

"<trace_point>"

received

from

data

source

"XML

wrapper."

Associated

text

and

tokens

are

"FILE_PATH

and

SOAP

options

not

compatible."

The

CREATE

NICKNAME

statement

is

not

correct

as

specified.

The

FILE_PATH

and

SOAP

options

cannot

be

specified

at

the

same

time.

Check

the

syntax

of

the

CREATE

NICKNAME

statement.

SQL1822N

Unexpected

error

code

"<trace_point>"

received

from

data

source

"XML

wrapper."

Associated

text

and

tokens

are

"DIRECTORY_PATH

and

SOAP

options

not

compatible."

The

CREATE

NICKNAME

statement

is

not

correct

as

specified.

The

DIRECTORY_PATH

and

SOAP

options

cannot

be

specified

at

the

same

time.

Check

the

syntax

of

the

CREATE

NICKNAME

statement.

SQL1822N

Unexpected

error

code

"<trace_point>"

received

from

data

source

"XML

wrapper."

Associated

text

and

tokens

are

"FILE_PATH

and

DIRECTORY_PATH

options

not

compatible."

The

CREATE

NICKNAME

statement

is

not

correct

as

specified.

The

FILE_PATH

and

DIRECTORY_PATH

options

cannot

be

specified

at

the

same

time.

Check

the

syntax

of

the

CREATE

NICKNAME

statement.

SQL1822N

Unexpected

error

code

"<trace_point>"

received

from

data

source

"XML

wrapper."

Associated

text

and

tokens

are

"VALIDATE

and

STREAMING

options

not

compatible."

The

CREATE

NICKNAME

statement

is

not

correct

as

specified.

The

VALIDATE

and

STREAMING

options

cannot

be

specified

at

the

same

time.

Check

the

syntax

of

the

CREATE

NICKNAME

statement.

Chapter

24.

Configuring

access

to

XML

data

sources

437

Table

92.

Messages

issued

by

the

wrapper

for

XML

(continued)

Error

Code

Message

Explanation

SQL1822N

Unexpected

error

code

"<trace_point>"

received

from

data

source

"XML

wrapper."

Associated

text

and

tokens

are

"FILE_PATH

and

FOREIGN_KEY

options

not

compatible."

The

CREATE

NICKNAME

statement

is

not

correct

as

specified.

The

FILE_PATH

and

FOREIGN_KEY

options

cannot

be

specified

at

the

same

time.

Check

the

syntax

of

the

CREATE

NICKNAME

statement.

SQL1822N

Unexpected

error

code

"<trace_point>"

received

from

data

source

"XML

wrapper."

Associated

text

and

tokens

are

"DIRECTORY_PATH

and

FOREIGN_KEY

options

not

compatible."

The

CREATE

NICKNAME

statement

is

not

correct

as

specified.

The

DIRECTORY_PATH

and

FOREIGN_KEY

options

cannot

be

specified

at

the

same

time.

Check

the

syntax

of

the

CREATE

NICKNAME

statement.

SQL1822N

Unexpected

error

code

"<trace_point>"

received

from

data

source

"XML

wrapper."

Associated

text

and

tokens

are

"XPATH

option

value

not

valid

with

STREAMING

enabled."

The

nickname

XPATH

expression

is

not

valid

when

you

enable

the

STREAMING

feature.

Check

the

XPATH

option

for

values

that

are

not

valid

such

as

/,

./,

and

//.

SQL1822N

Unexpected

error

code

"<trace_point>"

received

from

data

source

"XML

wrapper."

Associated

text

and

tokens

are

"Unable

to

read

XML

file."

The

file

path

that

is

specified

in

the

CREATE

NICKNAME

statement

or

in

the

query

is

not

valid.

The

specified

file

does

not

exist.

Check

the

CREATE

NICKNAME

statement

and

the

query.

SQL1822N

Unexpected

error

code

"<trace_point>"

received

from

data

source

"XML

wrapper."

Associated

text

and

tokens

are

"Unable

to

open

directory."

The

directory

path

that

is

specified

in

the

CREATE

NICKNAME

statement

or

in

the

query

is

not

valid.

The

specified

directory

does

not

exist.

Check

the

CREATE

NICKNAME

statement

and

the

query.

SQL1822N

Unexpected

error

code

"<trace_point>"

received

from

data

source

"XML

wrapper."

Associated

text

and

tokens

are

"Reference

to

XML

data

missing."

The

CREATE

NICKNAME

statement

must

contain

a

reference

to

the

XML

data.

Check

the

CREATE

NICKNAME

statement.

SQL1822N

Unexpected

error

code

"<trace_point>"

received

from

data

source

"XML

wrapper."

Associated

text

and

tokens

are

"DOCUMENT

column

option

with

value

’SOAP’

missing."

The

CREATE

NICKNAME

statement

is

not

correct

as

specified.

Check

the

value

of

the

DOCUMENT

option.

The

value

must

be

SOAP.

SQL1822N

Unexpected

error

code

"<trace_point>"

received

from

data

source

"XML

wrapper."

Associated

text

and

tokens

are

"SOAP

option

missing."

The

CREATE

NICKNAME

statement

is

not

correct

as

specified.

You

must

specify

the

SOAP

option.

SQL1822N

Unexpected

error

code

"<trace_point>"

received

from

data

source

"XML

wrapper."

Associated

text

and

tokens

are

"INSTANCE_PARSE_TIME

only

for

root

nicknames."

The

CREATE

NICKNAME

statement

is

not

correct

as

specified.

You

can

specify

an

INSTANCE_PARSE_TIME

value

only

for

root

nicknames.

Check

the

CREATE

NICKNAME

syntax.

438

Data

Source

Configuration

Guide

Table

92.

Messages

issued

by

the

wrapper

for

XML

(continued)

Error

Code

Message

Explanation

SQL1822N

Unexpected

error

code

"<trace_point>"

received

from

data

source

"XML

wrapper."

Associated

text

and

tokens

are

"VALIDATE

option

only

for

root

nicknames."

The

CREATE

NICKNAME

statement

is

not

correct

as

specified.

You

can

set

the

VALIDATE

option

to

YES

only

if

the

specified

nickname

is

a

root

nickname.

Check

the

CREATE

NICKNAME

syntax.

SQL1822N

Unexpected

error

code

"<trace_point>"

received

from

data

source

"XML

wrapper."

Associated

text

and

tokens

are

"STEAMING

option

only

for

root

nicknames."

The

CREATE

NICKNAME

statement

is

not

correct

as

specified.

You

can

set

the

STREAMING

option

to

YES

only

if

the

specified

nickname

is

a

root

nickname.

Check

the

CREATE

NICKNAME

syntax.

SQL1823N

No

data

type

mapping

exists

for

data

type

"<data_type_name>"

from

server

"<server_name>."

The

CREATE

NICKNAME

statement

is

not

correct

as

specified.

A

column

data

type

is

not

valid.

Check

the

CREATE

NICKNAME

syntax.

SQL1881N

"<option_name>"

is

not

a

valid

"<option_type>"

option

for

"<object_name>."

The

specified

option

might

not

exist

or

might

not

be

valid

for

this

data

source.

Check

the

CREATE

NICKNAME

statement.

SQL1881N

"DIRECTORY_PATH"

is

not

a

valid

"NICKNAME"

option

for

"<object_name>."

The

value

of

the

DIRECTORY_PATH

option

that

is

specified

in

the

CREATE

NICKNAME

statement

is

not

valid.

The

specified

directory

must

be

a

root

directory.

Check

the

CREATE

NICKNAME

statement.

SQL1882N

The

"nickname"

option

"VALIDATE"

cannot

be

set

to

"<option_value>"

for

"<object_name>."

The

value

of

the

VALIDATE

option

that

is

specified

in

the

CREATE

NICKNAME

statement

is

not

valid.

This

value

must

be

either

YES

or

NO.

Check

the

CREATE

NICKNAME

statement.

SQL1882N

The

"nickname"

option

"STREAMING"

cannot

be

set

to

"<option_value>"

for

v<object_name>."

The

value

of

the

STREAMING

option

that

is

specified

in

the

CREATE

NICKNAME

statement

is

not

valid.

This

value

must

be

either

YES

or

NO.

Check

the

CREATE

NICKNAME

statement.

SQL1883N

"<option_name>"

is

a

required

"<option_type>"

option

for

"<object_name>."

A

required

DB2

option

was

not

specified.

Check

the

CREATE

NICKNAME

statement.

Related

concepts:

v

“Introduction

to

messages”

in

the

Message

Reference

Volume

1

Related

reference:

v

“SQLSTATE

messages”

in

the

Message

Reference

Volume

2

Chapter

24.

Configuring

access

to

XML

data

sources

439

440

Data

Source

Configuration

Guide

Part

4.

User-defined

functions

©

Copyright

IBM

Corp.

1998,

2004

441

442

Data

Source

Configuration

Guide

Chapter

25.

Life

sciences

user-defined

functions

This

chapter

explains

what

the

life

sciences

user-defined

functions

are,

how

to

add

them

to

your

federated

system,

and

how

to

use

them

in

your

queries.

Life

sciences

user-defined

functions

-

overview

Life

sciences

user-defined

functions

-

overview

The

life

sciences

user-defined

functions

provide

you

with

algorithms

that

you

commonly

use

to

analyze

data.

The

life

sciences

user-defined

functions

use

the

standard

single-letter

codes

and

the

IUPAC-IUB

ambiguity

codes

to

represent

amino

acids

and

nucleotides.

The

life

sciences

user-defined

functions

are

installed

with

the

Life

Sciences

User-Defined

Functions

component

of

the

nonrelational

wrappers.

After

the

life

sciences

user-defined

functions

are

installed,

you

must

register

the

functions.

To

avoid

conflicts

with

namespaces,

all

of

the

life

sciences

user-defined

functions

are

registered

in

the

DB2LS

schema.

Related

concepts:

v

“DB2

Information

Integrator

Nonrelational

Wrappers”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“DB2

Information

Integrator

Relational

Wrappers”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

Related

tasks:

v

“Registering

life

sciences

user-defined

functions”

on

page

445

v

“Disabling

the

life

sciences

user-defined

functions”

on

page

446

Related

reference:

v

“Life

sciences

user-defined

function

library

files”

on

page

443

v

“Life

sciences

user-defined

functions

by

functional

category”

on

page

444

Life

sciences

user-defined

function

library

files

Some

of

the

user-defined

functions

that

are

included

with

DB2

Information

Integrator

require

library

files.

These

library

files

are

required

when

you

register

the

user-defined

functions

on

the

federated

server.

When

you

install

DB2

Information

Integrator

for

nonrelational

data

sources,

the

following

user-defined

library

files

are

installed

on

your

federated

server.

Life

sciences

user-defined

function

libraries:

©

Copyright

IBM

Corp.

1998,

2004

443

|
|
|

Table

93.

Life

sciences

user-defined

function

library

locations

and

file

names

Function

type

Operating

system

Directory

path

Library

file

name

Life

sciences

user-defined

functions

AIX

/SQLLIB/function

libdb2lsudfs.a

Life

sciences

user-defined

functions

HP-UX

/SQLLIB/function

libdb2lsudfs.sl

Life

sciences

user-defined

functions

Linux

/SQLLIB/function

libdb2lsudfs.so

Life

sciences

user-defined

functions

Solaris

/SQLLIB/function

libdb2lsudfs.so

Life

sciences

user-defined

functions

Windows

%DB2PATH%\bin

db2lsudfs.dll

The

default

Windows

directory

path

is

C:\Program

Files\IBM\SQLLIB.

%DB2PATH%

is

the

environment

variable

that

is

used

to

specify

the

directory

path

where

DB2

Information

Integrator

is

installed

on

Windows.

LSGeneWise

user-defined

function

library:

The

LSGeneWise

user-defined

function

requires

a

separate

library.

Table

94.

LSGeneWise

function

library

location

and

file

name

Function

type

Operating

system

Directory

path

Library

file

name

LSGeneWise

function

UNIX

/SQLLIB/lib

libdb2lsSTgenewise.a

Related

concepts:

v

“Life

sciences

user-defined

functions

-

overview”

on

page

443

Life

sciences

user-defined

functions

by

functional

category

Table

95

lists

the

life

sciences

user-defined

functions

by

functional

category.

It

also

provides

a

brief

description

of

each

category.

Table

95.

Life

sciences

user-defined

functions

Functional

category

User-defined

functions

Description

Back

translate

LSPep2AmbNuc,

LSPep2ProbNuc

Converts

an

amino

acid

sequence

into

a

nucleotide

sequence.

Defline

parsing

LSDeflineParse

Parses

elements

of

a

definition

line,

such

as

that

returned

by

the

BLAST

wrapper

or

present

in

a

FASTA

format

data

file.

Generalized

pattern

matching

LSPatternMatch,

LSPrositePattern

Identifies

areas

of

interest

in

a

given

string,

such

as

a

nucleotide

or

peptide

sequence.

GeneWise

LSGeneWise

Aligns

a

protein

sequence

to

a

genomic

sequence.

Motifs

LSMultiMatch,

LSMultiMatch3,

LSBarCode

Matches

patterns

in

nucleotide

or

amino

acid

sequences.

444

Data

Source

Configuration

Guide

Table

95.

Life

sciences

user-defined

functions

(continued)

Functional

category

User-defined

functions

Description

Reverse

LSRevNuc,

LSRevPep,

LSRevComp

Reverses

a

nucleotide

or

amino

acid

sequence.

Translate

LSNuc2Pep,

LSTransAllFrames

Converts

a

nucleotide

sequence

into

a

peptide

sequence.

Related

concepts:

v

“Life

sciences

user-defined

functions

-

overview”

on

page

443

Related

tasks:

v

“Registering

life

sciences

user-defined

functions”

on

page

445

v

“Disabling

the

life

sciences

user-defined

functions”

on

page

446

Registering

life

sciences

user-defined

functions

Before

you

can

use

the

life

sciences

user-defined

functions,

you

must

register

the

functions.

Prerequisites:

The

life

sciences

user-defined

functions

component

of

the

nonrelational

wrappers

must

be

installed

with

DB2

Information

Integrator.

Procedure:

To

register

the

life

sciences

user-defined

functions,

use

the

enable_LSFunctions

command.

v

On

federated

servers

that

run

Windows

NT,

this

command

is

in

the

sqllib\bin

directory

v

On

federated

servers

that

run

AIX,

this

command

is

in

the

sqllib/bin

directory

The

syntax

for

the

enable_LSFunctions

command

is:

enable_LSFunctions

-n

dbName

-u

userID

-p

password

[-force]

dbName

The

name

of

the

federated

database

that

you

are

registering

the

functions

in.

userID

A

valid

user

ID

for

the

federated

database.

password

A

valid

password

for

the

user

ID.

force

A

flag

that

you

can

use

to

remove

the

functions

and

register

them

again.

Use

this

flag

to

register

the

functions

again

if

the

functions

get

corrupted

or

dropped

accidentally.

The

enable_LSFunctions

command

registers

the

all

of

the

life

sciences

user-defined

functions

in

the

federated

database.

The

functions

are

registered

with

the

schema

name

DB2LS.

Chapter

25.

Life

sciences

user-defined

functions

445

|
|

The

following

example

shows

the

output

that

is

returned

when

you

issue

the

enable_LSFunctions

command:

C:>

enable_LSFunctions

-n

federateddb

-u

db2admin

-p

db2admin

(0)

Life

Sciences

Functions

were

found

--

Create

Life

Sciences

Functions

...

Create

Life

Sciences

Functions

Successfully.

Please

allow

a

few

seconds

to

clean

up

the

system

......

The

following

example

shows

the

output

that

is

returned

when

you

issue

the

enable_LSFunctions

command

when

you

use

the

force

flag

and

the

functions

are

already

registered:

C:>

enable_LSFunctions

-n

federateddb

-u

db2admin

-p

db2admin

-force

(21)

Life

Sciences

Functions

were

found

Life

Sciences

functions

already

exist

...

Reinstall

Life

Sciences

functions

...

--

Drop

Life

Sciences

Functions

...

Drop

Life

Sciences

Functions

Successfully.

--

Create

Life

Sciences

Functions

...

Create

Life

Sciences

Functions

Successfully.

Please

allow

a

few

seconds

to

clean

up

the

system

......

Related

concepts:

v

“Life

sciences

user-defined

functions

-

overview”

on

page

443

Related

tasks:

v

“Adding

relational

wrappers,

nonrelational

wrappers,

and

user-defined

functions

to

your

DB2

Information

Integrator

system”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Disabling

the

life

sciences

user-defined

functions”

on

page

446

Related

reference:

v

“Life

sciences

user-defined

functions

by

functional

category”

on

page

444

Disabling

the

life

sciences

user-defined

functions

If

you

no

longer

want

to

use

the

life

sciences

user-defined

functions,

you

can

temporarily

disable

the

functions

or

permanently

remove

the

functions

from

your

federated

database.

Procedure:

To

disable

the

life

sciences

user-defined

functions,

use

the

disable_LSFunctions

command.

v

On

federated

servers

that

run

Windows

NT,

this

command

is

in

the

sqllib\bin

directory

v

On

federated

servers

that

run

AIX,

this

command

is

in

the

sqllib/bin

directory

The

syntax

for

the

disable_LSFunctions

command

is:

disable_LSFunctions

-n

dbName

-u

userID

-p

password

446

Data

Source

Configuration

Guide

dbName

The

name

of

the

federated

database

that

you

want

to

disable

the

functions

from.

userID

A

valid

user

ID

for

the

federated

database.

password

A

valid

password

for

the

user

ID.

Example

of

disabling

the

life

sciences

user-defined

functions:

The

following

example

shows

the

output

that

is

returned

when

you

issue

the

disable_LSFunctions

command:

C:>disable_LSFunctions

-n

federateddb

-u

db2admin

-p

db2admin

(21)

Life

Sciences

Functions

were

found

--

Drop

Life

Sciences

Functions

...

Drop

Life

Sciences

Functions

Successfully.

Please

allow

a

few

seconds

to

clean

up

the

system

......

You

must

uninstall

the

functions

to

permanently

remove

the

functions

from

the

federated

database.

Related

tasks:

v

“Removing

relational

wrappers,

nonrelational

wrappers,

and

life

sciences

user-defined

functions

(Windows)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Removing

wrappers,

user-defined

functions,

and

the

wrapper

development

kits

(UNIX)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Registering

life

sciences

user-defined

functions”

on

page

445

Back

translation

user-defined

functions

Back

translation

user-defined

functions

-

overview

Use

the

back–translation

user-defined

functions

to

convert

a

peptide

sequence

to

a

nucleotide

sequence.

Back

translation

is

the

inverse

of

translation.

Because

the

mapping

from

amino

acids

to

nucleotide

triplet

codons

is

one-to-many,

a

back

translation

produces

two

results:

most

ambiguous

Simple

text

conversion

and

lookup.

Use

the

LSPep2AmbNuc

user-defined

function

to

do

a

most

ambiguous

translation.

most

probable

Requires

additional

information

from

a

codon

frequency

table.

Use

the

LSPep2ProbNuc

user-defined

function

to

do

a

most

probable

translation.

Related

concepts:

v

“Life

sciences

user-defined

functions

-

overview”

on

page

443

Related

reference:

Chapter

25.

Life

sciences

user-defined

functions

447

|

|
|

|
|

|
|
|

|
|
|

|

|

|

v

“LSPep2AmbNuc

user-defined

function”

on

page

448

v

“LSPep2AmbNuc

user-defined

function

-

error

messages”

on

page

450

v

“LSPep2ProbNuc

user-defined

function”

on

page

451

v

“LSPep2ProbNuc

user-defined

function

-

error

messages”

on

page

452

v

“LSPep2AmbNuc

user-defined

function

-

example”

on

page

449

v

“LSPep2ProbNuc

user-defined

function

-

example”

on

page

451

LSPep2AmbNuc

user-defined

function

��

DB2LS.LSPep2AmbNuc

(input

peptide

sequence

)

,filepath

to

external

translation

table

��

input

peptide

sequence

A

valid

character

string

representation

describing

a

peptide

sequence.

A

character

string

representation

must

have

a

data

type

of

VARCHAR

and

an

actual

length

that

is

no

greater

than

10890

bytes.

The

input

data

uses

the

standard

amino

acid

symbols

and

ambiguity

codes.

filepath

to

external

translation

table

If

you

use

a

customized

translation

table,

include

the

file

path

information

to

find

the

translation

table.

The

string

value

of

the

path

must

be

no

greater

than

255

characters.

The

schema

name

is

DB2LS.

Use

the

LSPep2AmbNuc

function

to

produce

the

most

ambiguous

nucleotide

sequence,

according

to

a

translation

table,

from

a

peptide

sequence.

The

result

of

the

function

is

a

character

string

with

a

data

type

of

VARCHAR

and

an

actual

length

that

is

not

greater

than

32672

bytes.

The

result

represents

the

most

ambiguous

nucleotide

sequence,

according

to

a

translation

table,

either

built-in

or

specified

by

you.

If

you

do

not

specify

a

translation

table,

the

function

uses

Table

96

by

default.

Table

96.

Default

translation

table

Amino

acid

symbol

Abbreviation

Codon

A

Ala

GCX

B

Asx

RAY

C

Cys

TGY

D

Asp

GAY

E

Glu

GAR

F

Phe

TTY

G

Gly

GGX

H

His

CAY

I

Ile

ATH

K

Lys

AAR

L

Leu

YTX

M

Met

ATG

N

Asn

AAY

448

Data

Source

Configuration

Guide

|

|

|

|

|

|

Table

96.

Default

translation

table

(continued)

Amino

acid

symbol

Abbreviation

Codon

P

Pro

CCX

Q

Gln

CAR

R

Arg

MGX

S

Ser

WSX

T

Thr

ACX

V

Val

GTX

W

Trp

TGG

X

Xxx

XXX

Y

Tyr

TAY

Z

Glx

SAR

*

End

TRR

Related

reference:

v

“LSPep2AmbNuc

user-defined

function

-

error

messages”

on

page

450

v

“LSPep2ProbNuc

user-defined

function”

on

page

451

v

“LSPep2AmbNuc

user-defined

function

-

example”

on

page

449

LSPep2AmbNuc

user-defined

function

-

example

You

can

invoke

the

function

with

a

values

statement.

The

single

input

is

a

peptide

sequence,

as

in

the

following

example:

values

db2ls.LSPep2AmbNuc(’HR’);

The

above

example

transforms

a

peptide

into

a

nucleotide

using

the

ambiguous

translations

and

the

built-in

translation

table.

The

result

of

the

above

statement

is

a

nucleotide

sequence

created

from

the

standard

amino

acid

symbols:

CAYMGX

The

following

example

transforms

a

peptide

into

a

nucleotide

using

the

ambiguous

translations

and

the

built-in

table:

values

db2ls.LSPep2AmbNuc(’SRGFGFITYSHSSMIDEAQKSRPHKIDGRVVEPKRA’);

The

result

of

this

values

statement

is

the

following

nucleotide

sequence.

(The

sequence

has

been

split

to

fit

on

the

page.)

WSXMGXGGXTTYGGXTTYATHACXTAYWSXCAYWSXWSXATGATHGAYGARGCXCARA

ARWSXMGXCCXCAYAARATHGAYGGXMGXGTXGTXGARCCXAARMGXGCX

The

next

example

shows

the

function

applied

to

a

set

of

values

extracted

from

a

table

or

nickname:

SELECT

DB2LS.LsPep2AmbNuc(peptide_seq)

FROM

table

protein_table;

Chapter

25.

Life

sciences

user-defined

functions

449

The

data

in

column

peptide_seq

of

table

protein_table

looks

like

the

following:

Table

97.

Data

in

the

peptide_seq

column

peptide_seq

GIKEDTEEHHLRDYFE

QKYHTVNGHNCEVRKA

.....

The

result

of

the

select

statement

is:

GGXATHAARGARGAYACXGARGARCAYCAYYTXMGXGAYTAYTTYGAR

CARAARTAYCAYACXGTXAAYGGXCAYAAYTGYGARGTXMGXAARGCX

...

The

following

example

transforms

a

peptide

into

a

nucleotide

using

the

ambiguous

translations

and

a

user-defined

table.

Usually,

the

differences

between

translation

tables

are

small.

There

might

be

just

one

or

two

symbols

that

are

unique.

They

might

occur

because

some

species

have

more

codons

or

some

species

have

fewer

codons.

For

example,

the

codon

AGG

is

absent

in

Drosophila.

values

db2ls.LSPep2AmbNuc(’RGNMGGGNYGNQNGGGNWNNG’,

’\data\transl_table_06.txt’)

Assuming

the

input

translation

table

is

for

Drosophila,

the

result

of

the

values

statement

is

shown

in

the

following

example:

MGRGGXAAYATGGGXGGXGGXAAYTAYGGXAAYTARAAYGGXGGXGGXAAYTGGAAYAAYGGX

Related

reference:

v

“LSPep2AmbNuc

user-defined

function”

on

page

448

v

“LSNuc2Pep

user-defined

function

–

example”

on

page

476

LSPep2AmbNuc

user-defined

function

-

error

messages

Table

98.

Messages

issued

by

the

LSPep2AmbNuc

user-defined

function

Error

code

Message

Explanation

SQL0443N

Routine

″DB2LS.LSPEP2AMBNUC″

(specific

name

″LSPEP2AMBNUC″)

has

returned

an

error

SQLSTATE

with

diagnostic

text

″Sequence

not

valid″.

SQLSTATE=38608

The

sequence

given

is

invalid.

SQL0443N

Routine

″DB2LS.LSPEP2AMBNUC″

(specific

name

″LSPEP2AMBNUCUT″)

has

returned

an

error

SQLSTATE

with

diagnostic

text

″No

translation

found″.

SQLSTATE=38610

The

translation

table

file

is

empty.

SQL0443N

Routine

″LSPEP2AMBNUC″

(specific

name

″LSPEP2AMBNUCUT″)

has

returned

an

error

SQLSTATE

with

diagnostic

text

″Can

not

open

the

translation

table

file″.

SQLSTATE=38612

The

translation

table

file

specified

does

not

exist.

SQL0443N

Routine

″DB2LS.LSPEP2AMBNUC″

(specific

name

″LSPEP2AMBNUCUT″)

has

returned

an

error

SQLSTATE

with

diagnostic

text

″Line

too

long

reading

from

file″.

SQLSTATE=38614

The

file

contained

a

line

that

was

longer

than

is

allowed.

450

Data

Source

Configuration

Guide

Table

98.

Messages

issued

by

the

LSPep2AmbNuc

user-defined

function

(continued)

Error

code

Message

Explanation

SQL0443N

Routine

″DB2LS.LSPEP2AMBNUC″

(specific

name

″LSPEP2AMBNUCUT″)

has

returned

an

error

SQLSTATE

with

diagnostic

text

″Invalid

data

file″.

SQLSTATE=38615

The

file

format

is

invalid.

SQL0443N

Routine

″LSPEP2AMBNUC″

(specific

name

″LSPEP2AMBNUCUT″)

has

returned

an

error

SQLSTATE

with

diagnostic

text

″Can’t

construct

the

translation

table″.

SQLSTATE=38611

Invalid

symbols

were

found

in

the

file.

Related

reference:

v

“LSPep2AmbNuc

user-defined

function”

on

page

448

LSPep2ProbNuc

user-defined

function

��

DB2LS.LSPep2ProbNuc

(input

peptide

sequence

)

,filepath

to

codon

frequency

table

��

input

peptide

sequence

A

valid

character

string

representation

describing

a

peptide

sequence.

The

character

string

representation

must

have

a

data

type

of

VARCHAR

and

an

actual

length

that

is

no

greater

than

10890

bytes.

The

input

data

uses

the

standard

amino

acid

symbols.

filepath

to

codon

frequency

table

This

is

the

codon

frequency

table.

Include

the

file

path

information

to

find

the

frequency

table.

The

string

value

of

the

path

must

be

no

greater

than

255

characters.

The

schema

name

is

DB2LS.

Use

the

LSPep2ProbNuc

function

to

generate

the

most

probable

nucleotide

sequence,

from

a

peptide

sequence,

based

on

the

codon

frequency

table

specified

in

the

second

argument.

The

result

of

the

function

is

a

character

string

with

a

data

type

of

VARCHAR

and

an

actual

length

that

is

not

greater

than

32672

bytes

representing

the

most

probable

nucleotide

sequence

using

the

codon

frequency

table.

Related

reference:

v

“LSPep2AmbNuc

user-defined

function”

on

page

448

v

“LSPep2ProbNuc

user-defined

function

-

error

messages”

on

page

452

v

“LSPep2ProbNuc

user-defined

function

-

example”

on

page

451

LSPep2ProbNuc

user-defined

function

-

example

The

following

example

shows

how

you

can

transform

a

peptide

sequence

into

a

nucleotide

sequence

using

the

most

probable

translations

defined

in

the

yeast_high.cod

frequency

table.

values

db2ls.LSPep2ProbNuc(’RDNNDDDN’,

’\data\yeast_high.cod’)

Chapter

25.

Life

sciences

user-defined

functions

451

The

result

of

the

above

values

statement

is:

AGAGACAATAACGACGATGATAAC

A

second

execution

of

the

same

statement

produces

the

following

string:

AGAGATAATAACGACGATGACAAC

A

third

execution

of

the

same

statement

produces

the

following

string

with

random

values:

AGAGATAACAACGACGACGATAAT

Codons

in

bold

codons

highlight

the

differences

between

the

current

and

previous

transformations.

The

results

from

the

single

values

statement

shows

that

function

LSPep2ProbNuc

chooses

one

of

the

possible

symbols

based

on

pervious

statistics.

This

is

different

from

function

LSPep2AmbNuc

which

uses

ambiguous

symbols

where

there

are

more

possible

translations.

Function

LSPep2ProbNuc

picks

up

the

most

probable

translations

for

each

symbol

and

then

replaces

every

symbol

with

a

random

translation

from

the

set

previously

picked.

Assume

that

you

have

the

following

data

in

a

frequency

table:

Table

99.

Sample

frequency

table

data

Amino

acid

Codon

Frequency

Ala

GCG

0.17

Ala

GCA

0.13

Ala

GCT

0.17

Ala

GCC

0.53

Assume

that

the

peptide

sequence

contains

four

“A”

symbols

(Ala).

The

function

translates

A

twice

to

GCC;

once

to

GCG

and

once

to

GCT.

However,

the

order

that

the

function

produces

the

translations

is

random.

The

query

could

translate

the

first

A

to

each

of

translations

from

the

set

{GCC,

GCC,

GCG,

GCT}.

The

result

is

always

two

occurrences

of

GCC,

one

occurrence

of

GCG

and

one

occurrence

of

GCT

in

the

output

DNA

sequence.

Multiple

executions

of

the

function

on

the

same

sequence

might

return

DNA

sequences

with

the

values

interchanged.

Related

reference:

v

“LSPep2ProbNuc

user-defined

function”

on

page

451

v

“LSPep2ProbNuc

user-defined

function

-

error

messages”

on

page

452

v

“LSPep2AmbNuc

user-defined

function

-

example”

on

page

449

LSPep2ProbNuc

user-defined

function

-

error

messages

Table

100.

Messages

issued

by

the

LSPep2ProbNuc

user-defined

function

Error

code

Message

Explanation

SQL0443N

Routine

″DB2LS.LSPEP2PROBNUC″

(specific

name

″LSPEP2PROBNUC″)

has

returned

an

error

SQLSTATE

with

diagnostic

text

″Sequence

not

valid″.

SQLSTATE=38608

The

input

sequence

is

invalid.

452

Data

Source

Configuration

Guide

Table

100.

Messages

issued

by

the

LSPep2ProbNuc

user-defined

function

(continued)

Error

code

Message

Explanation

SQL0443N

Routine

″DB2LS.LSPEP2PROBNUC″

(specific

name

″LSPEP2PROBNUC″)

has

returned

an

error

SQLSTATE

with

diagnostic

text

″No

translation

found″.

SQLSTATE=38610

The

codon

frequency

table

file

is

empty.

SQL0443N

Routine

″LSPEP2PROBNUC″

(specific

name

″LSPEP2PROBNUC″)

has

returned

an

error

SQLSTATE

with

diagnostic

text

″Can’t

open

the

translation

table

file″.

SQLSTATE=38612

The

file

does

not

exist.

SQL0443N

Routine

″DB2LS.LSPEP2PROBNUC″

(specific

name

″LSPEP2PROBNUC″)

has

returned

an

error

SQLSTATE

with

diagnostic

text

″Line

too

long

reading

from

file″.

SQLSTATE=38614

The

file

contains

lines

that

are

longer

than

allowed.

SQL0443N

Routine

″DB2LS.LSPEP2PROBNUC″

(specific

name

″LSPEP2PROBNUC″)

has

returned

an

error

SQLSTATE

with

diagnostic

text

″Invalid

data

file″.

SQLSTATE=38615

The

file

format

is

invalid.

SQL0443N

Routine

″LSPEP2PROBNUC″

(specific

name

″LSPEP2PROBNUC″)

has

returned

an

error

SQLSTATE

with

diagnostic

text

″Can’t

construct

the

translation

table″.

SQLSTATE=38611

The

file

contains

invalid

symbols.

Related

reference:

v

“LSPep2ProbNuc

user-defined

function”

on

page

451

v

“LSPep2ProbNuc

user-defined

function

-

example”

on

page

451

Defline

parsing

user-defined

functions

Defline

parsing

user-defined

functions

-

overview

Defline

parsing

user-defined

functions

parse

elements

of

a

definition

line.

For

example,

the

defline

parsing

user-defined

functions:

v

Enable

joins

with

other

data

sources

on

sequence

identifiers

parsed

out

of

the

defline

v

Evaluate

predicates

on

portions

of

the

defline,

such

as

’species

=

"human"’

The

defline

parsing

functions

cover

the

most

common

defline

formats.

Examples

include

definition

line

elements

that

the

BLAST

wrapper

returns

or

that

are

present

in

a

FASTA

format

data

file.

Related

concepts:

v

“Definition

line

parsing”

on

page

108

Related

reference:

v

“LSDeflineParse

user-defined

function

—

examples”

on

page

456

v

“LSDeflineParse

user-defined

functions”

on

page

454

Chapter

25.

Life

sciences

user-defined

functions

453

|

|
|

|
|

|

|
|
|

|

|

|

|

|

LSDeflineParse

user-defined

functions

Each

LSDeflineParse

function

parses

out

the

fields

of

the

NCBI

standard

FASTA

sequence

identifier

(NSID)

and

the

description

into

columns

in

a

table.

Definition

lines

that

are

compound

definitions

are

output

on

multiple

rows,

with

each

row

containing

a

single

component

definition.

DB2LS

is

the

schema

name

that

you

use

with

defline

parsing

user-defined

functions.

The

defline

parsing

user-defined

functions

are:

��

DB2LS.LSDeflineParse2

(definition

line)

��

��

DB2LS.LSDeflineParse3

(definition

line)

��

��

DB2LS.LSDeflineParse2_2

(definition

line)

��

��

DB2LS.LSDeflineParse2_3

(definition

line)

��

��

DB2LS.LSDeflineParse3_3

(definition

line)

��

definition

line

A

valid

string

representation

of

a

definition

line

in

FASTA

format.

The

string

must

have

a

data

type

of

VARCHAR

and

an

actual

length

that

is

no

greater

than

1024

bytes.

The

LSDeflineParse2

user-defined

function:

LSDeflineParse2

parses

a

defline

that

has

a

two-field

NSID.

The

result

of

the

function

is

a

table

with

four

columns:

Table

101.

LSDeflineParse2

user-defined

function

result

table

column

descriptions

Column

name

Description

ROWID

An

integer

that

numbers

the

rows

returned

from

the

function.

TAG

A

VARCHAR

of

up

to

three

characters

that

represents

the

NSID

tag.

IDENTIFIER

A

VARCHAR

of

up

to

20

characters

and

represents

the

second

identifier

field

in

the

NSID.

DESCRIPTION

A

VARCHAR

of

up

to

1019

characters.

The

LSDeflineParse3

user-defined

function:

LSDeflineParse3

parses

a

defline

that

has

a

three-field

NSID.

The

result

of

the

function

is

a

table

with

five

columns:

Table

102.

LSDeflineParse3

user-defined

function

result

table

column

descriptions

Column

name

Description

ROWID

An

integer

that

numbers

the

rows

returned

from

the

function.

454

Data

Source

Configuration

Guide

Table

102.

LSDeflineParse3

user-defined

function

result

table

column

descriptions

(continued)

Column

name

Description

TAG

A

VARCHAR

of

up

to

three

characters

that

represents

the

NSID

tag.

ACCESSION

A

VARCHAR

of

up

to

20

characters

and

represents

the

second

identifier

field

in

the

NSID.

LOCUS

A

VARCHAR

of

up

to

20

characters

and

represents

the

third

identifier

field

in

the

NSID.

DESCRIPTION

A

VARCHAR

of

up

to

1017

characters.

The

LSDeflineParse2_2

user-defined

function:

LSDeflineParse2_2

parses

a

defline

that

has

a

compound

identifier

consisting

of

a

pair

of

concatenated

two-field

NSIDs.

The

result

of

the

function

is

a

table

with

six

columns:

Table

103.

LSDeflineParse2_2

user-defined

function

result

table

column

descriptions

Column

name

Description

ROWID

An

integer

that

numbers

the

rows

returned

from

the

function.

TAG1

A

VARCHAR

of

up

to

three

characters

that

represents

the

NSID

tag

of

the

first

identifier.

IDENTIFIER1

A

VARCHAR

of

up

to

20

characters

and

represents

the

second

identifier

field

of

the

first

NSID.

TAG2

A

VARCHAR

of

up

to

three

characters

that

represents

the

NSID

tag

of

the

first

identifier.

IDENTIFIER2

A

VARCHAR

of

up

to

20

characters

and

represents

the

second

identifier

field

of

the

second

NSID.

DESCRIPTION

A

VARCHAR

of

up

to

1015

characters.

The

LSDeflineParse2_3

user-defined

function:

LSDeflineParse2_3

parses

a

defline

that

has

a

compound

identifier

consisting

of

a

two-field

NSID

concatenated

with

a

three-field

NSID.

The

order

of

concatenation

in

the

input

defline--whether

the

two-field

NSID

comes

before

the

three-field

NSID,

or

vice

versa--is

not

important.

The

result

of

the

function

is

a

table

with

seven

columns:

Table

104.

LSDeflineParse2_3

user-defined

function

result

table

column

descriptions

Column

name

Description

ROWID

An

integer

that

numbers

the

rows

returned

from

the

function.

TAG1

VARCHAR

of

up

to

three

characters

that

represents

the

NSID

tag

of

the

two-field

identifier.

IDENTIFIER

A

VARCHAR

of

up

to

20

characters

and

represents

the

second

identifier

field

of

the

two-field

NSID.

TAG2

A

VARCHAR

of

up

to

three

characters

that

represents

the

NSID

tag

of

the

three-field

identifier.

ACCESSION

A

VARCHAR

of

up

to

20

characters

and

represents

the

second

identifier

field

of

the

three-field

NSID.

Chapter

25.

Life

sciences

user-defined

functions

455

Table

104.

LSDeflineParse2_3

user-defined

function

result

table

column

descriptions

(continued)

Column

name

Description

LOCUS

A

VARCHAR

of

up

to

20

characters

and

represents

the

third

identifier

field

of

the

three-field

NSID.

DESCRIPTION

A

VARCHAR

of

up

to

1013

characters.

The

LSDeflineParse3_3

user-defined

function:

LSDeflineParse3_3

parses

a

defline

that

has

a

compound

identifier

consisting

of

a

pair

of

three-field

NSIDs.

The

result

of

the

function

is

a

table

with

eight

columns:

Table

105.

LSDeflineParse3_3

user-defined

function

result

table

column

descriptions

Column

name

Description

ROWID

An

integer

that

numbers

the

rows

returned

from

the

function.

TAG1

A

VARCHAR

of

up

to

three

characters

that

represents

the

NSID

tag

of

the

first

identifier.

ACCESSION1

A

VARCHAR

of

up

to

20

characters

and

represents

the

second

identifier

field

of

the

first

NSID.

LOCUS1

A

VARCHAR

of

up

to

20

characters

and

represents

the

third

identifier

field

of

the

first

NSID.

TAG2

A

VARCHAR

of

up

to

three

characters

that

represents

the

NSID

tag

of

the

first

identifier.

ACCESSION2

A

VARCHAR

of

up

to

20

characters

and

represents

the

second

identifier

field

of

the

second

NSID.

LOCUS2

A

VARCHAR

of

up

to

20

characters

and

represents

the

third

identifier

field

of

the

second

NSID.

DESCRIPTION

A

VARCHAR

of

up

to

1014

characters.

Related

reference:

v

“LSDeflineParse

user-defined

function

—

examples”

on

page

456

LSDeflineParse

user-defined

function

—

examples

This

topic

contains

seven

examples

that

show

how

the

LSDeflineParse

user-defined

functions

parse

definition

lines

into

result

tables.

The

following

example

query

and

results

table

shows

how

the

LSDeflineParse2

user-defined

function

parses

a

definition

line

containing

a

two-field

NSID:

select

*

from

table(DB2LS.LSDeflineParse2(

’>gi|12346

hypothetical

protein

185

–wheat

chloroplast’))

as

t

The

result

table

contains

the

following

data:

Table

106.

LSDeflineParse2

user-defined

function

result

data

Column

name

Data

ROWID

1

TAG

gi

IDENTIFIER

12346

456

Data

Source

Configuration

Guide

Table

106.

LSDeflineParse2

user-defined

function

result

data

(continued)

Column

name

Data

DESCRIPTION

hypothetical

protein

185

–

wheat

chloroplast

The

following

example

query

and

results

table

shows

how

the

LSDeflineParse3

user-defined

function

parses

a

definition

line

containing

a

three-field

NSID:

select

*

from

table(DB2LS.LSDeflineParse3(’

>gb|U37104|APU37104

Aethia

pusilla

cytochrome

b

gene’))

as

t

The

result

table

contains

the

following

data:

Table

107.

LSDeflineParse3

user-defined

function

result

data

Column

name

Data

ROWID

1

TAG

gb

ACCESSION

U37104

LOCUS

APU37104

DESCRIPTION

Aethia

pusilla

cytochrome

b

gene

The

following

example

query

and

results

table

shows

how

the

LSDeflineParse2_2

user-defined

function

parses

a

definition

line

containing

a

compound

identifier

that

consists

of

a

pair

of

2-field

NSIDs:

select

*

from

table(DB2LS.LSDeflineParse2_2(

’>gb|U37104|gim|73401A

Aethia

pusilla

cytochrome

b

gene’))

as

t

The

result

table

contains

the

following

data:

Table

108.

LSDeflineParse2_2

user-defined

function

result

data

Column

name

Data

ROWID

1

TAG1

gb

IDENTIFIER1

U37104

TAG2

gim

IDENTIFIER2

73401A

DESCRIPTION

Aethia

pusilla

cytochrome

b

gene

The

following

example

query

contains

a

definition

line

with

a

compound

identifier

that

consists

of

a

2-field

NSID

concatenated

with

a

3-field

NSID.

The

example

shows

how

the

LSDeflineParse2_3

function

parses

the

definition

line.

select

*

from

table(DB2LS.LSDeflineParse2_3(’

>gi|12346|gp|CAA44030.1|CHTAHSRA_4

hypothetical

protein

185

–

wheat

chloroplast’))

as

t

Chapter

25.

Life

sciences

user-defined

functions

457

The

result

table

contains

the

following

data:

Table

109.

LSDeflineParse2_3

user-defined

function

result

data

Column

name

Data

ROWID

1

TAG1

gi

IDENTIFIER

12346

TAG2

gp

ACCESSION

CAA44030.1

LOCUS

CHTAHSRA_4

DESCRIPTION

hypothetical

protein

185

–

wheat

chloroplast

The

following

example

query

contains

a

definition

line

with

a

compound

identifier

that

consists

of

a

3-field

NSID

concatenated

with

a

2-field

NSID.

The

example

shows

how

the

LSDeflineParse2_3

function

parses

the

definition

line.

select

*

from

table(DB2LS.LSDeflineParse2_3(’

>gp|CAA44030.1|CHTAHSRA_4|gi|12346

hypothetical

protein

185

-

wheat

chloroplast’))

as

t

The

result

table

contains

the

following

data:

Table

110.

LSDeflineParse2_3

user-defined

function

result

data

Column

name

Data

ROWID

1

TAG1

gi

IDENTIFIER

12346

TAG2

gp

ACCESSION

CAA44030.1

LOCUS

CHTAHSRA_4

DESCRIPTION

hypothetical

protein

185

–

wheat

chloroplast

The

following

example

query

and

results

table

shows

how

the

LSDeflineParse3_3

user-defined

function

parses

a

definition

line

that

contains

a

compound

identifier

with

a

pair

of

3-field

NSIDs:

select

*

from

table(DB2LS.LSDeflineParse3_3(’

>dbj|AAD55586.1|AF055084_1|gp|CAA44030.1|CHTAHSRA_4

hypothetical

protein

185

–

wheat

chloroplast’))

as

t

The

result

table

contains

the

following

data:

Table

111.

LSDeflineParse3_3

user-defined

function

result

data

Column

name

Data

ROWID

1

TAG1

dbj

ACCESSION1

AAD55586.1

LOCUS1

AF055084_1

TAG2

gp

458

Data

Source

Configuration

Guide

Table

111.

LSDeflineParse3_3

user-defined

function

result

data

(continued)

Column

name

Data

ACCESSION2

CAA44030.1

LOCUS2

CHTAHSRA_4

DESCRIPTION

hypothetical

protein

185

–

wheat

chloroplast

You

can

use

any

of

the

defline

user-defined

functions

to

parse

a

compound

definition

line.

The

following

example

query

contains

a

compound

definition

line

with

multiple

definitions

that

are

separated

by

a

Control-A

character.

You

can

find

this

type

of

definition

line

in

NCBI’s

non-redundant

protein

database

nr.

The

example

shows

how

the

LSDeflineParse2_3

function

parses

the

definition

line.

select

*

from

table(DB2LS.LSDeflineParse2_3(’

>gi|12346|gp|CAA44030.1|CHTAHSRA_4

hypothetical

protein

185

-

wheat

chloroplast

^Agp|CAA44030.1|CHTAHSRA_4|gi|12346

hypothetical

protein

185

-

wheat

chloroplast’))

as

t

The

result

table

contains

the

following

data:

Table

112.

LSDeflineParse2_3

user-defined

function

result

data

Column

name

Data

Data

ROWID

1

2

TAG1

gi

gi

IDENTIFIER

12346

12346

TAG2

gp

gp

ACCESSION

CAA44030.1

CAA44030.1

LOCUS

CHTAHSRA_4

CHTAHSRA_4

DESCRIPTION

hypothetical

protein

185

–

wheat

chloroplast

hypothetical

protein

185

–

wheat

chloroplast

Related

reference:

v

“LSDeflineParse

user-defined

functions”

on

page

454

Generalized

pattern

matching

user-defined

functions

The

generalized

pattern

matching

user-defined

functions

identify

areas

of

interest

in

a

given

string,

such

as

a

nucleotide

or

peptide

sequence.

LSPatternMatch

user-defined

function

��

DB2LS.LSPatternMatch

(input

character

sequence,

pattern)

��

input

character

sequence

The

character

string

representation

must

have

a

data

type

of

VARCHAR

and

an

actual

length

that

is

no

greater

than

32672

bytes.

pattern

The

pattern

as

specified

in

any

valid

Perl

regular

expression.

The

character

string

representation

must

have

a

data

type

of

VARCHAR

and

an

actual

length

that

is

no

greater

than

32672

bytes.

Chapter

25.

Life

sciences

user-defined

functions

459

The

schema

name

is

DB2LS.

You

can

use

the

LSPatternMatch

user-defined

function

to

search

the

input

nucleotide

or

peptide

sequence

for

a

pattern

you

specify.

The

result

of

the

function

is

an

integer

representing

the

position

of

the

first

match

of

the

pattern

in

the

sequence.

The

function

returns

a

value

of

zero

if

there

is

no

match.

If

you

have

patterns

written

with

the

PROSITE

syntax,

you

can

covert

them

to

Perl

syntax

with

the

LSPrositePattern

user-defined

function.

You

can

then

use

the

converted

syntax

with

the

LSPatternMatch

user-defined

function.

Related

reference:

v

“LSPatternMatch

user-defined

function

–

example”

on

page

460

v

“LSPrositePattern

user-defined

function”

on

page

462

LSPatternMatch

user-defined

function

–

example

In

the

following

example,

look

for

the

beginning

position

of

the

string

that

matches

“coward”,

“cowage”,

“cowboy”,

or

“cowl”.

values

DB2LS.LSPatternMatch(’joe

the

cowboy

is

next’,

’cow(ard|age|boy|l)’)

The

function

searches

by

characters,

and

in

this

example,

returns

a

value

of

nine.

The

string

“cowboy”

begins

at

position

nine,

assuming

that

the

first

position

is

one.

In

the

next

example,

look

for

the

beginning

position

of

the

string

that

matches

“not

”

or

“non

”:

values

DB2LS.LSPatternMatch(’match

not

and

non

but

no

match

for

no

or

none’,

’no[tn]

’)

The

function

searches

by

characters,

and

in

this

example,

returns

a

value

of

seven.

The

string

“not

”

begins

at

position

seven,

assuming

that

the

first

position

is

one.

LSPatternMatch

is

useful

in

select

statements

to

filter

the

results

using

the

PERL

syntax,

which

is

a

more

powerful

syntax

than

the

SQL

LIKE

statement.

In

the

following

example,

use

LSPatternMatch

on

a

blast

output

to

filter

the

genes

that

match

a

certain

pattern:

SELECT

BlastOutput.*

FROM

BlastOutput

WHERE

db2ls.LSPatternMatch(HSP_H_Seq,

’F[GSTV]PRL’)

>

0;

If

you

are

more

familiar

with

the

PROSITE

syntax,

you

can

use

the

LSPrositePattern

function

with

the

above

query.

Change

the

query

to

the

following:

SELECT

BlastOutput.*

FROM

BlastOutput

WHERE

db2ls.LSPatternMatch(HSP_H_Seq,

db2ls.LSPrositePattern(’F-[GSTV]-P-R-L.’)

)

>

0;

The

pattern

matching

functions

are

useful

for

searching

other

types

of

text,

as

well

as

the

nucleotide

or

peptide

sequences.

Consider

using

the

SQL

LIKE

statement

when

performance

might

be

a

concern.

The

following

example

shows

a

query

that

filters

BLAST

hsp

alignments

based

on

protein

motifs

found

in

the

subject

or

target

line

of

the

alignment.

The

example

is

460

Data

Source

Configuration

Guide

adapted

from

Zhang,Z.,

Schaffer,A.A.,

Miller,W.,

Madden,T.L.,

Lipman,D.J.,

Koonin,E.V.

and

Altschul,S.F.

(1998)

Protein

sequence

similarity

searches

using

patterns

as

seeds.

Nucl.

Acids

Res.,

26,

3896-3990.

The

following

query

returns

only

alignments

in

which

the

subject

sequence

includes

the

P-loop

ATPase

domain

[GA]xxxxGK[ST].

The

query

uses

CED4,

the

Caenorhabditis

elegans

regulator

of

cell

death,

as

a

query

sequence

against

NCBI’s

non-redundant

protein

sequence

database.

The

database

retrieves

the

blast

query

sequence

from

the

translation

of

the

CDS

feature

of

GenBank

entry

X69016.

SELECT

HSP_Q_Seq,

HSP_Midline,

HSP_H_Seq

FROM

BlastP

b,

GBseq

gs,

gbfeat

gf,

gbqual

gq

WHERE

gs.PRIMARYACCESSION

=

’X69016’

and

gs.sequencekey

=

gf.sequencekey

and

gf.featurejoinkey

=

gq.featurejoinkey

and

gf.FeatureKey

=

’CDS’

and

gq.QualifierName

=

’translation’

and

gq.QualifierValue

=

b.BlastSeq

and

db2ls.LSPatternMatch(HSP_H_Seq,

db2ls.LSPrositePattern(’[GA]-x(4)-G-K-[ST].’)

)

>

0;

You

can

use

the

next

example

query

to

find

HSPs

in

a

genomic

sequence

that

contain

putative

single

nucleotide

polymorphisms

(SNPs)

with

respect

to

a

canonical

query

sequence.

It

is

adapted

from

Extending

traditional

query-based

integration

approaches

for

functional

characterization

of

post-genomic

data.

(2001)

Barbara

A

Eckman,

Anthony

S

Kosky,

and

Leonardo

A

Laroco

Jr.

Bioinformatics

17(7),

587-601.

The

query

uses

the

pattern

matching

on

the

blast

hsp

midline

to

find

a

pattern

of

≥20

perfect

matches

followed

by

a

single

mismatch

followed

by

≥20

perfect

matches.

That

is,

20

″|″

characters,

a

single

space,

and

then

20

″|″

characters

in

the

midline

of

the

alignment.

This

example

also

shows

the

usage

of

the

LSPatternMatch

user-defined

function

on

strings

that

are

not

nucleotide

or

peptide

sequences.

SELECT

HSP_Info,

HSP_Midline,

HSP_H_Seq

FROM

BlastOutput

WHERE

db2ls.LSPatternMatch(HSP_Midline,

’\|{20}

\|{20}’)

>

0;

You

can

rewrite

the

previous

query

as:

SELECT

HSP_Info,

HSP_Midline,

HSP_H_Seq,

func.Position,

func.Match

FROM

BlastOutput,

TABLE(SELECT

*

AS

c

FROM

TABLE(

LSMultiMatch(HSP_Midline,

’\|{20}

\|{20}’)

)

AS

f)

AS

func

This

second

query

will

return

the

blast

rows

that

have

a

match

together

with

the

matched

string

and

their

position

in

the

sequence.

BlastOutput

is

a

view

over

a

BlastN

nickname.

Related

reference:

v

“LSPrositePattern

user-defined

function

-

example”

on

page

462

v

“LSPatternMatch

user-defined

function”

on

page

459

v

“LSPrositePattern

user-defined

function”

on

page

462

Chapter

25.

Life

sciences

user-defined

functions

461

LSPrositePattern

user-defined

function

��

DB2LS.LSPrositePattern

(pattern)

��

pattern

The

pattern

matching

syntax

specified

by

the

Prosite

syntax.

The

character

string

representation

must

have

a

data

type

of

VARCHAR

and

an

actual

length

that

is

no

greater

than

32672

bytes.

The

schema

name

is

DB2LS.

Use

the

LSPrositePattern

user-defined

function

to

convert

from

the

PROSITE

syntax

to

the

PERL

syntax.

You

can

then

use

the

converted

syntax

with

the

LSPatternMatch,

LSMultiMatch,

and

LSMultiMatch3

user-defined

functions.

The

result

of

the

function

is

a

character

string

representing

a

regular

expression

in

the

Perl

syntax.

The

character

string

representation

must

have

a

data

type

of

VARCHAR

and

an

actual

length

that

is

no

greater

than

32672

bytes.

Related

reference:

v

“LSPrositePattern

user-defined

function

-

example”

on

page

462

v

“LSPatternMatch

user-defined

function”

on

page

459

LSPrositePattern

user-defined

function

-

example

In

the

following

example,

convert

a

pattern

from

PROSITE

syntax

into

PERL

syntax.

values

db2ls.LSPrositePattern(’[AC]-x-V-x(4)-{ED}.’);

The

function

converts

the

input

pattern

in

PROSITE

syntax

into

an

equivalent

pattern

in

Perl

syntax,

as

shown

in

the

following

example:

[AC].V.{4}[^ED]

The

next

example

converts

another

syntax

pattern

from

PROSITE

into

the

PERL

syntax:

values

db2ls.LSPrositePattern(’<A-x-[ST](2)-x(0,1)-V.’);

The

function

translate

the

string

from

the

PROSITE

syntax

based

on

the

input

pattern

and

returns

the

following:

\AA.[ST]{2}.{0,1}V

The

next

example

converts

the

pattern

corresponding

to

the

PROSITE

database

entry

with

the

ID

number

of

PS01205

into

a

PERL

pattern

that

is

used

as

input

by

the

pattern

matching

functions.

values

db2ls.LSPrositePattern(’R-P-L-[IV]-x-[NS]-F-G-S-[CA]-T-C-P-x-F.’)

The

result

of

this

query

is:

RPL[IV].[NS]FGS[CA]TCP.F

The

next

example

shows

how

you

can

use

the

function

in

a

query.

The

query

prints

out

only

sequences

that

match

the

PROSITE

pattern

specified.

462

Data

Source

Configuration

Guide

SELECT

H_Accession,

HSP_Info,

HSP_H_Seq

FROM

BlastOutput

WHERE

db2ls.LSPatternMatch(

HSP_H_Seq,

db2ls.LSPrositePattern(’R-P-L-[IV]-x-[NS]-F-G-S-[CA]-T-C-P-x-F.’)

)

>

0;

The

next

example

converts

the

pattern

corresponding

to

the

PROSITE

entry

whose

ID

is

PS00261:

values

db2ls.LSPrositePattern(’C-[STAGM]-G-[HFYL]-C-x-[ST].’)

The

result

of

this

query

is:

C[STAGM]G[HFYL]C.[ST]

Related

reference:

v

“LSPatternMatch

user-defined

function

–

example”

on

page

460

v

“LSPrositePattern

user-defined

function”

on

page

462

Regular

expression

support

Regular

expression

support

is

provided

by

the

PCRE

library

package,

which

is

open

source

software,

written

by

Philip

Hazel,

and

copyright

by

the

University

of

Cambridge,

England.

The

source

can

be

found

at

ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/.

Related

concepts:

v

“Life

sciences

user-defined

functions

-

overview”

on

page

443

GeneWise

user-defined

functions

The

GeneWise

user-defined

function

aligns

a

protein

sequence

with

a

genomic

sequence.

GeneWise

is

a

commonly-used

component

which

aligns

a

protein

sequence

with

a

genomic

DNA

sequence,

allowing

for

introns

and

frameshifting

errors.

Linking

to

GeneWise

This

topic

describes

the

procedure

for

linking

to

the

GeneWise

library.

Procedure:

To

link

to

the

GeneWise

library:

1.

Download

the

Wise2

package

version

2.1.20c

from

www.ebi.ac.uk/Wise2.

2.

Expand

the

archive

into

a

folder

of

your

preference.

3.

Compile

the

package

with

pthread

support.

For

more

information

on

this

step,

see

the

Wise2

documentation.

On

HP-UX

federated

servers,

you

need

to

add

the

option

+z

to

the

compiler

options

before

you

compile

the

source

code.

To

add

this

option,

open

the

file

makefile

from

the

root

directory

of

the

Wise2

package

and

change

the

line

as

shown

in

this

example:

CFLAGS

=

-c

-O

-DPTHREAD

to:

CFLAGS

=

-c

-O

-DPTHREAD

+z

4.

Run

make

api

in

its

root

directory.

Chapter

25.

Life

sciences

user-defined

functions

463

|

|
|
|
|

|

ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/

5.

Set

the

WISE2_HOME

environment

variable

to

point

to

the

Wise2

package

root

directory.

6.

Set

the

WISECONFIGDIR

variable

in

the

sqllib/cfg/db2dj.ini

file

to

point

to

the

wisecfg

subdirectory.

For

example,

if

Wise2

package

is

installed

in

/usr/wise2.1.20c/,

then

add

WISECONFIGDIR=/usr/wise2.1.20c/wisecfg/

into

the

db2dj.ini

file.

7.

Run

the

djxlinkLSGeneWise

script

which

is

located

in

the

sqllib/bin

directory.

8.

Check

the

output

from

the

djxlinkLSGeneWise

script.

This

output

file,

djxlinkLSGeneWise.out,

is

located

in

the

sqllib/function

directory.

9.

If

no

errors

were

reported,

then

the

library

was

successfully

built.

Related

reference:

v

“LSGeneWise

user-defined

function”

on

page

464

LSGeneWise

user-defined

function

��

DB2LS.LSGeneWise

(protein

sequence,

DNA_sequence)

��

protein

sequence

A

valid

character

string

representation

describing

a

peptide

sequence.

The

character

string

representation

must

have

a

data

type

of

VARCHAR

and

an

actual

length

that

is

no

greater

than

32672

bytes.

DNA_sequence

A

valid

character

string

representation

describing

a

nucleotide

sequence.

The

character

string

representation

must

have

a

data

type

of

VARCHAR

and

an

actual

length

that

is

no

greater

than

32672

bytes.

Table

113

shows

the

one

row

output

table

the

LSGeneWise

function

returns.

Table

113.

Column

names,

types,

and

descriptions

for

the

output

table

from

the

LSGeneWise

function

Column

name

Type

Description

PROTEIN_OFFSET

INTEGER

Represents

the

starting

offset

in

the

input

protein

sequence

at

which

an

alignment

was

found.

DNA_OFFSET

INTEGER

Represents

the

starting

offset

in

the

input

DNA

sequence

at

which

an

alignment

was

found.

PROTEIN

VARCHAR(32672)

A

fragment

from

the

input

sequence

representing

the

aligned

sequence.

SIMILARITY

VARCHAR(32672)

Shows

the

matching

between

the

protein

and

the

dna

sequences.

Perfect

matches

are

marked

with

the

corresponding

symbol

letter.

Non-perfect

matches

with

a

positive

score

are

indicated

with

the

"+"

sign,

and

mismatches

are

indicated

with

a

space.

TRANSLATED_DNA

VARCHAR(32672)

The

translated

DNA

sequence.

The

sequence

might

contain

dashes

and

special

symbols

like

deletions

and

introns.

DNA

VARCHAR(32672)

The

DNA

sequence

with

special

markers

like

frame-shifting

and

introns.

464

Data

Source

Configuration

Guide

|
|
|
|

|
|

|
|

The

correspondence

between

the

output

of

the

GeneWise

program

and

the

output

of

the

LSGeneWise

UDF

is

the

following:

v

protein

and

dna

offsets

printed

by

the

GeneWise

program

match

PROTEIN_OFFSET

and

DNA_OFFSET

columns.

v

protein

sequence

printed

on

the

first

line

by

GeneWise

matches

PROTEIN

column.

v

similarity

line,

the

second

line

in

GeneWise

output

matches

SIMILARITY

column.

v

the

third

line

in

the

GeneWise

output

matches

TRANSLATED_DNA

column.

v

the

fourth,

fifth

and

sixth

lines

of

the

GeneWise

output

are

combined,

by

reading

them

vertically,

into

the

DNA

column.

Use

the

LSGeneWise

user-defined

function

to

align

a

protein

sequence

with

a

genomic

DNA

sequence,

allowing

for

introns

and

frameshifting

errors.

For

more

information

on

the

LSGeneWise

user-defined

function

output,

see

http://www.ebi.ac.uk/Wise2.

Related

tasks:

v

“Linking

to

GeneWise”

on

page

463

Related

reference:

v

“LSGeneWise

user-defined

function

–

example”

on

page

465

LSGeneWise

user-defined

function

–

example

The

following

example

shows

a

query

using

the

LSGeneWise

user-defined

function

and

the

resulting

data.

select

protein_offset,

dna_offset,

protein,

similarity,

translated_dna,

dna

from

table(

db2ls.LSGeneWise(

’

VEPKRAVPRQDIDSPNAGATVKKLFVGALKDDHDEQSIRDYFQHFGNIVDINIVIDKETGK

KRGFAFVEFDDYDPVDKVVLQKQHQLNGKMVDVKKALPKQNDQQGGGGGRGGPGGRAGGNR

GNMGGGNYGNQNGGGNWNNGGNNWGNNR’,

’CACTTAACTGTGAAAGATATTTGTTGGTGGCATTAAAGAAGACACTGAAGAACATCACCTAAG

AGATTATTTTGAACAGTATGGAAAAATTGAAGTGATTGAAATCATGACTGACCGAGGCAGTGG

CAAGAAAAGGGGCTTTGCCTTRGTAACCTTTGACGACCATGACTCCGTGGATAAGATTGTCAT

TCAGAAATACCATACTGTGAATGGCCACAACTGTGAAGTTAGAAAAGCCCTGTCAAAGCAAGA

GATGGCTAGTGCTTCATCCAGCCAAAGAGGTCGAAGTGGTTCTGGAAACTTTGGTGGTGGTCG

TGGAGGTGGTTTCGGTGGGAATGACAACTTCGGTCGTGGAGGAAACTTCAGTGGTCGTGGTYG

CTTTGGTGGCAGCCGTGGTGGTGGTGGATATGGTGGC’

)

)

as

f;

Table

114.

Results

table

Column

Data

PROTEIN_OFFSET

23

DNA_OFFSET

14

PROTEIN

KLFVGALKDDHDEQSIRDYFQHFGNIVDINIVIDKET

GKKRGFAFVEFDDYDPVDKVVLQKQHQLNGKMVD

VKKALPKQNDQQGGGGGRGGPGGRAGGNRGNMGG

GNYGNQNGGGNWNNGGN

SIMILARITY

K+FVG

+K+D

+E

+RDYF+

+G

I

I

I+

D+

+GKKRGFA+V

FDD+D

VDK+V+QK

H

+NG

+V+KAL

KQ

RG

G

GN+GGG

G

G

N+

GGN

Chapter

25.

Life

sciences

user-defined

functions

465

Table

114.

Results

table

(continued)

Column

Data

TRANSLATED_DNA

KIFVGGIKEDTEEHHLRDYFEQYGKIEVIEIMTDRGSGK

KRGFAxVTFDDHDSVDKIVIQKYHTVNGHNCEVRKAL

SKQEMASASSSQRGRSGS------
GNFGGGRGGGFGGNDNFGRGGN

DNA

aagatatttgttggtggcattaaagaagacactgaagaacatcacctaagagat...

Related

tasks:

v

“Linking

to

GeneWise”

on

page

463

Related

reference:

v

“LSGeneWise

user-defined

function”

on

page

464

Motifs

user-defined

functions

Motif

user-defined

functions

match

patterns

in

nucleotide

or

amino

acid

sequences.

LSBarCode

user-defined

function

��

DB2LS.LSBarCode

(input

string

sequence)

��

input

string

sequence

A

valid

character

string

representing

an

HSP

alignment

between

two

sequence

fragments.

The

character

string

representation

must

have

a

data

type

of

VARCHAR

and

an

actual

length

that

is

no

greater

than

32672

bytes.

The

schema

name

is

DB2LS.

Use

the

LSBarCode

user-defined

function

to

use

a

sequence

as

input

and

generate

another

sequence

by

replacing

every

character

except

spaces

and

plus

signs

with

the

vertical

bar

symbol

(|).

The

result

of

the

function

is

a

variable

character

sequence

representing

a

barcode

sequence.

Related

reference:

v

“LSBarCode

user-defined

function

—

example”

on

page

466

v

“LSMultiMatch

user-defined

function”

on

page

468

v

“LSMultiMatch3

user-defined

function”

on

page

469

LSBarCode

user-defined

function

—

example

This

example

creates

a

barcode

from

a

string

sequence:

values

db2ls.LSBarCode(

’MDY

+G++L

GN

++

+PASLTK+MT

YVV

+A+

+

+I

D+VTVG+DAWA

NP

’)

The

result

of

the

above

values

statement

is:

|||

+|++|

||

++

+||||||+||

|||

+|+

+

+|

|+||||+||||

||

466

Data

Source

Configuration

Guide

The

next

example

shows

a

more

realistic

use

of

this

function.

Suppose

that

a

researcher

running

a

BLAST

search

wants

to

return

only

HSP

alignments

that

contain

fewer

than

25%

prolines

among

their

perfect

matches.

This

example

uses

the

function

to

compute

the

percentage

of

prolines

(symbol

’P’)

among

the

perfect

matches

in

an

alignment

returned

by

BLAST.

Notice

that

this

example

also

invokes

the

LSMultiMatch3

user-defined

function.

The

query

uses

match

function

to

find

perfect

matches.

It

is

used

in

conjunction

with

the

LSBarCode

function

in

this

query

because

Blast

does

not

always

return

a

sequence

of

bars

(“|”)

in

an

alignment.

The

following

example

shows

this:

Query:

MDYTTGQILTAGNEHQQRNPASLTKLMTGYVVDRAIDSHRITPDDIVTVGRDAWAKDNPV

Alignment:

MDY

+G++L

GN

++

+PASLTK+MT

YVV

+A+

+

+I

D+VTVG+DAWA

NP

Target:

MDYASGKVLAEGNADEKLDPASLTKIMTSYVVGQALKADKIKLTDMVTVGKDAWATGNPA

To

ensure

that

the

output

is

aligned

with

the

correct

sequence

of

bars,

use

the

LSBarCode

function.

The

function

replaces

all

characters

except

spaces

and

plus

signs

with

a

vertical

bar.

SELECT

BlastOutput.*

,

float(

p

)/

float(

m

)

AS

percent_prolines

FROM

BlastOutput

b,

table(SELECT

COUNT(*)

AS

p

FROM

table(

db2ls.LSMultiMatch3(

b.HSP_Q_Seq,

’P’,

db2ls.LSBarCode(b.HSP_Midline),

’\|’,

b.HSP_H_Seq,

’P’)

)

AS

f

)

AS

y,

table(SELECT

COUNT(*)

AS

m

FROM

table(

db2ls.LSMultiMatch3(

b.HSP_Q_Seq,

’.’,

db2ls.LSBarCode(b.HSP_Midline),

’\|’,

b.HSP_H_Seq,

’.’)

)

AS

f

)

AS

z

WHERE

float(p)

/

float(m)

<

0.25;

In

this

query,

BlastOutput

is

actually

a

view

over

a

Blast

nickname.

The

query

uses

the

LSMultiMatch3

function

to

return

the

perfect

matches

on

alignment.

The

first

usage

returns

the

perfect

matches

for

symbol

“P”,

the

second

one

returns

all

the

perfect

matches.

A

row

from

the

result

table

show

in

Table

115.

Table

115.

Sample

results

row

HSP_Q_SEQ

HSP_H_SEQ

HSP_INFO

PERCENT_PROLINES

NIWDFMQGN...

NIWDFMQGN...

Identities

=

80/80

(100%),

Positives

=

80/80

(100%),

Gaps

=

0/80

(0%)

+2.50000000000000E-002

The

previous

query

was

adapted

from

Extending

traditional

query-based

integration

approaches

for

functional

characterization

of

post-genomic

data.

(2001)

Barbara

A

Eckman,

Anthony

S

Kosky

and

Leonardo

A

Laroco

Jr.

Bioinformatics

17(7),

587-601.

Related

reference:

v

“LSMultiMatch3

user-defined

function

–

example”

on

page

470

v

“LSBarCode

user-defined

function”

on

page

466

Chapter

25.

Life

sciences

user-defined

functions

467

LSMultiMatch

user-defined

function

��

DB2LS.LSMultiMatch

(input

nucleotide

or

peptide

sequence,

pattern)

��

input

nucleotide

or

peptide

sequence

A

valid

character

string

representation

describing

a

nucleotide

or

peptide

sequence.

The

character

string

representation

must

have

a

data

type

of

VARCHAR

and

an

actual

length

that

is

no

greater

than

32672

bytes.

pattern

The

pattern

matching

grammar

specified

by

the

Perl

language.

The

character

string

representation

must

have

a

data

type

of

VARCHAR

and

an

actual

length

that

is

no

greater

than

32672

bytes.

The

schema

name

is

DB2LS.

Use

the

LSMultiMatch

user-defined

function

to

return

a

table

for

each

match

that

does

not

overlap

in

the

input

sequence.

Each

table

consists

of

a

start

position

and

the

matching

sequence

fragment.

The

result

of

the

function

is

a

table

with

two

columns.

The

first

column

is

an

integer

representing

the

start

position

of

a

match

of

the

pattern

in

the

sequence.

The

second

column

is

the

matching

sequence

fragment.

Related

reference:

v

“LSMultiMatch

user-defined

function

-

example”

on

page

468

v

“LSBarCode

user-defined

function”

on

page

466

v

“LSMultiMatch3

user-defined

function”

on

page

469

LSMultiMatch

user-defined

function

-

example

This

example

looks

for

the

position

and

the

matching

fragments

for

all

the

non-overlapping

matches

taken

from

the

input.

SELECT

position,

match

FROM

table

(LSMultiMatch(’match

not

and

non

but

no

match

for

no

or

none’,

’no[tn]

’))

as

f

The

query

returns

a

table

that

is

based

on

this

select

statement

that

shows

the

results

of

the

matches:

Table

116.

Result

of

LSMultiMatch

returning

multiple

rows

POSITION

MATCH

7

not

15

non

LSMultiMatch

returns

the

position

and

the

matched

string

for

all

matches.

The

following

example

searches

Entrez

Nucleotide

for

sequence

entries

that

contain

a

certain

motif.

The

query

prints

the

sequence

identifiers

and

the

matched

sequences.

The

sub-patterns

“.{0,9}”

at

the

beginning

and

at

the

end

have

to

match

up

to

nine

characters

before

and

after

the

sequence.

The

query

also

prints

these

characters.

468

Data

Source

Configuration

Guide

select

SequenceKey,

Position,

Match

from

GBSeq,

table(db2ls.LSMultiMatch(Sequence,

’.{0,9}(ATG|CGC)ACGGGC.{0,9}’)

)

as

fmatch

WHERE

entrez.contains(KeywordList,

’Na/K/2Cl

cotransporter

AND

nkcc1

gene’)

=

1;

The

result

of

this

query

is

as

follows:

Table

117.

Search

Entrez

data

SEQUENCEKEY

POSITION

MATCH

N02B59AE0.04DD4E84

1

TGCTTGGTGATGACGGGCTACCCCAAC

N02B59AE0.04DD4E84

91

GGCCATGTTCGCACGGGCTCCAGAAGG

N02B59AE0.04DC5EF4

1

TGCTTGGTGATGACGGGCTACCCCAAC

N02B59AE0.04DC5EF4

91

GGCCATGTTCGCACGGGCTCCAGAAGG

Related

reference:

v

“LSMultiMatch

user-defined

function”

on

page

468

v

“LSBarCode

user-defined

function”

on

page

466

v

“LSMultiMatch3

user-defined

function”

on

page

469

LSMultiMatch3

user-defined

function

��

DB2LS.LSMultiMatch3

(input

string1,

pattern1,

input

string2,

pattern2,

input

string3,

pattern3)

��

input

strings

A

valid

character

string

representation

describing

a

nucleotide

or

peptide

sequence,

or

an

HSP_Midline

string

from

a

blast

alignment.

The

character

string

representation

must

have

a

data

type

of

VARCHAR

and

an

actual

length

that

is

no

greater

than

32672

bytes.

pattern

The

pattern

matching

grammar

specified

by

the

Perl

language.

The

character

string

representation

must

have

a

data

type

of

VARCHAR

and

an

actual

length

that

is

no

greater

than

32672

bytes.

The

schema

name

is

DB2LS.

Use

the

LSMultiMatch3

user-defined

function

to

input

three

patterns

and

three

strings

and

return

any

positions

where

all

three

strings

match

their

respective

patterns.

You

can

use

this

user-defined

function

to

perform

a

pattern

match

on

an

alignment.

The

result

of

the

function

is

a

table

with

four

columns.

The

first

column

is

an

integer

representing

the

start

position

of

a

match

of

the

pattern

in

all

the

sequences.

The

function

anchors

all

the

strings

together

at

the

first

position.

The

second,

third,

and

fourth

columns

are

the

matching

sequence

fragments.

Related

reference:

v

“LSMultiMatch3

user-defined

function

–

example”

on

page

470

v

“LSMultiMatch

user-defined

function”

on

page

468

v

“LSBarCode

user-defined

function”

on

page

466

Chapter

25.

Life

sciences

user-defined

functions

469

LSMultiMatch3

user-defined

function

–

example

The

following

example

uses

the

function

to

compute

the

percentage

of

a

particular

amino-acid

symbol

among

the

perfect

matches

returned

by

Blast.

Notice

that

this

example

also

invokes

the

LSBarCode

user-defined

function.

The

query

needs

this

because

Blast

does

not

always

return

a

sequence

of

bars

(“|”)

in

an

alignment.

The

following

example

illustrates

this:

Query:

MDYTTGQILTAGNEHQQRNPASLTKLMTGYVVDRAIDSHRITPDDIVTVGRDAWAKDNPV

Alignment:

MDY

+G++L

GN

++

+PASLTK+MT

YVV

+A+

+

+I

D+VTVG+DAWA

NP

Target:

MDYASGKVLAEGNADEKLDPASLTKIMTSYVVGQALKADKIKLTDMVTVGKDAWATGNPA

To

ensure

that

the

output

is

aligned

with

the

correct

sequence

of

bars,

use

the

LSBarCode

function

to

convert

the

sequence.

The

function

replaces

all

non-space

and

non-“+”

characters

with

a

vertical

bar.

SELECT

BlastOutput.*

,

float(

p

)/

float(

m

)

AS

percent_prolines

FROM

BlastOutput

b,

table(SELECT

COUNT(*)

AS

p

FROM

table(

db2ls.LSMultiMatch3(

b.HSP_Q_Seq,

’P’,

db2ls.LSBarCode(b.HSP_Midline),

’\|’,

b.HSP_H_Seq,

’P’)

)

AS

f

)

AS

y,

table(SELECT

COUNT(*)

AS

m

FROM

table(

db2ls.LSMultiMatch3(

b.HSP_Q_Seq,

’.’,

db2ls.LSBarCode(b.HSP_Midline),

’\|’,

b.HSP_H_Seq,

’.’)

)

AS

f

)

AS

z

WHERE

float(p)

/

float(m)

<

0.25;

In

this

query,

BlastOutput

is

a

view

over

a

Blast

select.

The

query

uses

the

LSMultiMatch3

function

to

return

the

perfect

matches

on

alignment.

The

first

usage

returns

the

perfect

matches

for

symbol

“P”,

the

second

one

returns

all

the

perfect

matches.

A

row

from

the

result

table

show

in

Table

118.

Table

118.

Sample

results

row

HSP_Q_SEQ

HSP_H_SEQ

HSP_INFO

PERCENT_PROLINES

NIWDFMQG...

NIWDFMQG...

Identities

=

80/80

(100%),

Positives

=

80/80

(100%),

Gaps

=

0/80

(0%)

+2.50000000000000E-002

The

previous

query

was

adapted

from

Extending

traditional

query-based

integration

approaches

for

functional

characterization

of

post-genomic

data.

(2001)

Barbara

A

Eckman,

Anthony

S

Kosky

and

Leonardo

A

Laroco

Jr.

Bioinformatics

17(7),

587-601.

The

following

example

looks

for

three

separate

patterns

in

three

separate

string

fragments:

SELECT

position,

match_1,

match_2,

match_3

FROM

table(db2ls.LSMultiMatch3(’zaza’,

’a’,

’abab’,

’b’,

’bcbc’,

’c’))

as

f

470

Data

Source

Configuration

Guide

It

returns

the

positions

and

the

matching

strings

for

all

of

the

matches,

as

shown

in

the

following

table:

Table

119.

Result

of

a

multi-match

using

three

inputs

POSITION

MATCH_1

MATCH_2

MATCH_3

2

a

b

c

4

a

b

c

The

next

example

finds

three

separate

patterns

within

three

separate

string

fragments:

SELECT

position,

match_1,

match_2,

match_3

FROM

table

(LSMultiMatch3(’cbccbbcccbbbccccbbbbccccc’,’c{1,3}b{1,3}c{1,3}’,

’abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz’,

’.’,’0123456789012345678901234567890123456789’,’\d’))

as

f

The

results

are

in

the

following

table:

Table

120.

Result

of

a

multi-match

using

three

inputs

POSITION

MATCH_1

MATCH_2

MATCH_3

1

cbcc

a

0

7

cccbbbccc

g

6

Related

reference:

v

“LSBarCode

user-defined

function

—

example”

on

page

466

v

“LSBarCode

user-defined

function”

on

page

466

v

“LSMultiMatch3

user-defined

function”

on

page

469

Reverse

user-defined

functions

Reverse

user-defined

functions

reverse

a

nucleotide

or

amino

acid

sequence.

LSRevComp

user-defined

function

��

DB2LS.LSRevComp

(input

nucleotide

sequence)

��

input

nucleotide

sequence

A

valid

character

string

representation

describing

a

nucleotide

sequence.

The

sequence

can

contain

IUPAC

ambiguity

codes.

A

character

string

representation

must

have

a

data

type

of

VARCHAR

and

an

actual

length

that

is

no

greater

than

32672

bytes.

The

schema

name

is

DB2LS.

The

result

of

the

function

is

a

character

string

with

a

data

type

of

VARCHAR

and

an

actual

length

that

is

not

greater

than

32672

bytes

representing

the

reverse

complement

of

the

nucleotide

sequence.

Related

reference:

v

“LSRevComp

user-defined

function—example”

on

page

472

v

“LSRevNuc

user-defined

function”

on

page

473

Chapter

25.

Life

sciences

user-defined

functions

471

v

“LSRevPep

user-defined

function”

on

page

474

LSRevComp

user-defined

function—example

You

can

use

the

LSRevComp

function

in

an

SQL

statement

wherever

you

would

use

any

built-in

function

that

accepts

a

nucleotide

sequence.

For

example:

SELECT

DB2LS.LSRevComp(:NucSeq)

FROM

SYSDUMMY1;

This

example

uses

the

function

to

return

the

reverse

complement

of

the

input

sequence

that

comes

from

a

host

variable.

If

you

use

an

invalid

string,

or

invalid

data

type,

you

get

the

following

error

message:

SQL0443N

Routine

"DB2LS.LSREVCOMP"

(specific

name

"LSREVCOMP")

has

returned

an

error

SQLSTATE

with

diagnostic

text

"Sequence

not

valid".

SQLSTATE=38608

An

exception

is

raised

if

the

input

alphabet

is

not

correct.

The

following

example

shows

how

the

LSRevComp

user-defined

function

works

in

a

query:

SELECT

HSP_H_Seq,

db2ls.LSRevComp(HSP_H_Seq)

as

REV_HSP_H_Seq

FROM

BlastN

WHERE

BlastSeq=’ccgctagtattggtcaatcttttgatatccaccgaa’

The

results

of

the

query

are

shown

below:

HSP_H_SEQ

REV_HSP_H_SEQ

AGTATTGGTCAATCTTTTGAT

ATCAAAAGATTGACCAATACT

TGGTCAATCTTTTGATA

TATCAAAAGATTGACCA

TTGGCCAATCTTTTGATATCC

GGATATCAAAAGATTGGCCAA

TCAATCTTTTGATATCC

GGATATCAAAAGATTGA

GGATATCAAAAGATTGA

TCAATCTTTTGATATCC

5

record(s)

selected.

You

can

use

the

reverse

function

along

with

other

life

sciences

user-defined

functions

to

translate

the

reverse

complement

of

a

nucleotide

sequence,

as

in

the

following

example:

values

db2ls.LSNuc2Pep(

db2ls.LSRevComp(’TTTTTCTTATTGTCTTCCTCATCGTATTTCTTATGTTGCTGATGT’))

The

query

returns

the

following:

TSAT*EIR*GRQ*EK

Related

reference:

v

“LSRevComp

user-defined

function”

on

page

471

472

Data

Source

Configuration

Guide

LSRevNuc

user-defined

function

��

DB2LS.LSRevNuc

(input

nucleotide

sequence)

��

input

nucleotide

sequence

A

valid

character

string

representation

describing

a

nucleotide

sequence.

A

character

string

representation

must

have

a

data

type

of

VARCHAR

and

an

actual

length

that

is

no

greater

than

32672

bytes.

The

nucleotide

sequence

must

be

part

or

all

of

the

DNA

alphabet.

The

schema

name

is

DB2LS.

The

result

of

the

function

is

a

character

string

with

a

data

type

of

VARCHAR

and

an

actual

length

that

is

not

greater

than

32672

bytes

representing

the

reverse

order

of

the

nucleotide

sequence.

Related

reference:

v

“LSRevNuc

user-defined

function

-

example”

on

page

473

v

“LSRevComp

user-defined

function”

on

page

471

v

“LSRevPep

user-defined

function”

on

page

474

LSRevNuc

user-defined

function

-

example

You

can

use

the

LSRevNuc

function

in

an

SQL

statement

wherever

you

would

use

any

built-in

function

that

accepts

a

nucleotide

sequence.

For

example:

SELECT

DB2LS.LSRevNuc(:NucSeq)

FROM

SYSDUMMY1;

This

example

uses

the

function

to

reverse

input

data

that

comes

from

a

host

variable.

If

you

use

an

invalid

string,

or

invalid

data

type,

you

get

the

following

error

message:

SQL0443N

Routine

"DB2LS.LSREVNUC"

(specific

name

"LSREVNUC")

has

returned

an

error

SQLSTATE

with

diagnostic

text

"Sequence

not

valid".

SQLSTATE=38608

The

following

example

shows

the

use

of

the

LSRevNuc

user-defined

function

in

a

query.

SELECT

HSP_H_Seq,

db2ls.LSRevNuc(HSP_H_Seq)

as

REV_HSP_H_Seq

FROM

BlastN

WHERE

BlastSeq=’gtaatacgtagggggctagcgcgggcaaactgaagataaagc’

The

following

results

table

shows

the

reversed

nucleotide

sequences

the

query

returns:

HSP_H_SEQ

REV_HSP_H_SEQ

--

CGCGGGCAAACTGAAGATAAAGC

CGAAATAGAAGTCAAACGGGCGC

GCGCTAGCCCCCTACGTATTAC

CATTATGCATCCCCCGATCGCG

GTAATACGTAGGGGGCTAGCG

GCGATCGGGGGATGCATAATG

GTAATACGTAGGGGGCTAGCG

GCGATCGGGGGATGCATAATG

GTAATACGTAGGGGGCTAGCG

GCGATCGGGGGATGCATAATG

Chapter

25.

Life

sciences

user-defined

functions

473

5

record(s)

selected.

Related

reference:

v

“LSRevNuc

user-defined

function”

on

page

473

LSRevPep

user-defined

function

��

DB2LS.LSRevPep

(input

peptide

sequence)

��

input

peptide

sequence

A

valid

character

string

representation

describing

a

peptide

sequence.

A

character

string

representation

must

have

a

data

type

of

VARCHAR

and

an

actual

length

that

is

no

greater

than

32672

bytes.

The

input

sequence

must

be

part

of

the

protein

alphabet.

The

schema

name

is

DB2LS.

The

result

of

the

function

is

a

character

string

with

a

data

type

of

VARCHAR

and

an

actual

length

that

is

not

greater

than

32672

bytes

representing

the

reverse

order

of

the

peptide

sequence.

Related

reference:

v

“LSRevPep

user-defined

function

-

example”

on

page

474

v

“LSRevComp

user-defined

function”

on

page

471

v

“LSRevNuc

user-defined

function”

on

page

473

LSRevPep

user-defined

function

-

example

You

can

use

the

LSRevPep

function

in

an

SQL

statement

wherever

you

would

use

any

built-in

function

that

accepts

a

peptide

sequence.

For

example:

SELECT

DB2LS.LSRevPep(:NucSeq)

FROM

SYSDUMMY1;

This

example

uses

the

function

to

reverse

input

data

that

comes

from

a

host

variable.

If

you

use

an

invalid

string,

or

invalid

data

type,

you

get

the

following

error

message:

SQL0443N

Routine

"DB2LS.LSREVPEP"

(specific

name

"LSREVPEP")

has

returned

an

error

SQLSTATE

with

diagnostic

text

"Sequence

not

valid".

SQLSTATE=38608

The

following

example

shows

how

the

LSRevPep

user-defined

function

is

used

in

a

query:

SELECT

HSP_H_Seq,

db2ls.LSRevPep(HSP_H_Seq)

as

REV_HSP_H_Seq

FROM

BlastP

WHERE

BlastSeq=’MLCEIECRALSTAHTRLIHDFEPRDALTYLEGKNIFTEDH’

The

following

table

shows

the

reversed

peptide

sequences

the

query

returns.

HSP_H_SEQ

REV_HSP_H_SEQ

MLCEIECRALSTAHTRLIHDFEPRDALTYL...

HDETFINKGELYTLADRPEFDHILRTHATS...

474

Data

Source

Configuration

Guide

RVVSTEHTRLVTDAYPEFSISFTATKN

NKTATFSISFEPYADTVLRTHETSVVR

STAHIRVLRDMVPGDEITCFYGSEFF

FFESGYFCTIEDGPVMDRLVRIHATS

AHTRRCPDHEPRGVITYL

LYTIVGRPEHDPCRRTHA

4

record(s)

selected.

Related

reference:

v

“LSRevPep

user-defined

function”

on

page

474

Translate

The

translation

user-defined

functions

convert

a

nucleotide

sequence

into

a

peptide

sequence.

LSNuc2Pep

user-defined

function

��

DB2LS.LSNuc2Pep

(input

nucleotide

sequence

)

,filepath

to

external

translation

table

��

input

nucleotide

sequence

A

valid

character

string

representation

describing

a

nucleotide

sequence.

A

character

string

representation

must

have

a

data

type

of

VARCHAR

and

an

actual

length

that

is

no

greater

than

32672

bytes.

filepath

to

external

translation

table

If

you

use

a

customized

translation

table,

include

the

file

path

information

to

find

the

translation

table.

The

string

value

of

the

path

must

be

no

greater

than

255

characters.

The

schema

name

is

DB2LS.

The

result

of

the

function

is

a

character

string

with

a

data

type

of

VARCHAR

and

an

actual

length

that

is

not

greater

than

10890

bytes

representing

the

peptide

sequence.

The

input

is

a

nucleotide

sequence

using

the

IUB

character

set.

The

functions

assume

that

the

first

codon

begins

at

the

first

character

of

the

nucleotide

sequence.

If

the

first

codon

does

not

begin

at

the

first

character

of

the

nucleotide

sequence,

use

a

SUBSTR

function

on

the

input

sequence.

The

result

of

the

function

is

a

peptide

sequence,

using

the

standard

amino

acid

symbols.

The

function:

v

Excises

spaces

in

input

sequences.

v

Ignores

extraneous

nucleotides

outside

of

a

reading

frame.

v

Returns

null

output

if

you

input

a

null

nucleotide

sequence.

Related

reference:

v

“LSNuc2Pep

user-defined

function

–

example”

on

page

476

v

“LSTransAllFrames

user-defined

function”

on

page

477

Chapter

25.

Life

sciences

user-defined

functions

475

LSNuc2Pep

user-defined

function

–

example

Assume

that

you

want

to

translate

your

nucleotide

sequence

data

into

a

peptide

sequence.

This

example

assumes

that

the

first

codon

begins

at

the

first

character

of

the

nucleotide

sequence.

You

can

invoke

the

function

with

a

values

statement.

The

single

input

is

a

nucleotide

sequence,

as

in

the

following

example:

values

db2ls.LSNuc2Pep(’TTTTTCTTATTGTCTTCCTCATCGTATTTCTTATGTTGCTGATGT’)

The

result

of

the

above

statement

is

a

peptide

sequence

using

the

standard

amino

acid

symbols:

FFLLSSSSYFLCC*C

If

you

want

the

translation

in

the

+2

reading

frame,

then

use

the

following

example:

values

LSNuc2Pep(SUBSTR(’TTTTTCTTATTGTCTTCCTCATCGTATTTCTTATGTTGCTGATGT’,2))

The

integer

in

the

statement

indicates

the

starting

position

of

the

search

for

the

codon.

Here

is

an

example

of

using

this

function

as

a

predicate

in

a

query.

SELECT

*

FROM

proteindata

WHERE

peptideseq=DB2LS.LSNuc2Pep(’TTTTTCTTATTGTCTTCCTCATCG

TATTTCTTATGTTGCTGATGT’);

The

result

is

shown

in

Table

121.

Table

121.

Results

using

the

LSNuc2Pep

function

as

a

predicate

ID

PROTEINNAME

PEPTIDESEQ

1

proteinA

FSYCLPHRISYVAD

The

following

example

translates

a

nucleotide

sequence

into

a

peptide

sequence

using

an

external

translation

table.

The

first

parameter

is

the

nucleotide

sequence,

and

the

second

parameter

is

the

path

to

the

external

translation

table.

values

db2ls.LSNuc2Pep(’TTTTCTTATTGTCTTCCTCATCGTATTTCTTATGTTGCTGATGT’,

’C:\translation.txt’)

The

result

of

the

above

statement

using

this

particular

translation

table

is

the

following

string:

FSYCLPHRISYVAD

The

following

example

combines

two

of

the

user-defined

functions

to

demonstrate

the

additional

uses

of

the

functions:

values

DB2LS.LSNuc2Pep(DB2LS.LSRevCompNuc(’TTT..’)

Notice

that

the

previous

example

returns

the

same

result

as

the

following

query:

select

*

from

table

(DB2LS.LSTransAllFrames

(’TTT..’))

as

t

where

t.readframe

=

-1

Related

reference:

v

“LSRevNuc

user-defined

function

-

example”

on

page

473

v

“LSTransAllFrames

user-defined

function

-

example”

on

page

477

476

Data

Source

Configuration

Guide

v

“LSNuc2Pep

user-defined

function”

on

page

475

LSTransAllFrames

user-defined

function

��

DB2LS.LSTransAllFrames

(input

nucleotide

sequence

)

,filepath

to

external

translation

table

��

input

nucleotide

sequence

A

valid

character

string

representation

describing

a

nucleotide

sequence.

The

input

sequence

can

contain

IUPAC

ambiguity

codes.

A

character

string

representation

must

have

a

data

type

of

VARCHAR

and

an

actual

length

that

is

no

greater

than

32672

bytes.

filepath

to

external

translation

table

If

you

use

a

customized

translation

table,

include

the

file

path

information

to

find

the

translation

table.

The

string

value

of

the

path

must

be

no

greater

than

255

characters.

The

schema

name

is

DB2LS.

Use

the

LSTransAllFrames

user-defined

function

to

produce

a

set

of

peptide

sequences

from

a

given

nucleotide

sequence.

These

peptide

sequences

represent

possible

translations

of

the

input

nucleotide

sequence,

in

each

of

6

frames.

This

function

is

useful

when

the

input

contains

errors

or

the

reading

frame

is

not

known.

The

result

of

the

function

is

a

table

with

two

columns.

The

first

column

is

labelled

READFRAME

and

represents

the

frame

that

is

used

for

the

translation.

This

column

has

an

integer

value

that

represents

the

start

position

of

translation.

A

negative

integer

indicates

a

translation

of

the

opposite

strand.

The

second

column,

called

PEPTIDE,

is

a

character

string

with

a

data

type

of

VARCHAR

and

an

actual

length

that

is

not

greater

than

10890

bytes

representing

the

peptide

sequence.

The

function:

v

Excises

spaces

in

input

sequences.

v

Ignores

extraneous

nucleotides

outside

of

a

reading

frame.

v

Returns

null

output

if

you

input

a

null

nucleotide

sequence.

Related

reference:

v

“LSTransAllFrames

user-defined

function

-

example”

on

page

477

v

“LSNuc2Pep

user-defined

function”

on

page

475

LSTransAllFrames

user-defined

function

-

example

Assume

that

you

want

to

translate

a

nucleotide

sequence

in

all

six

reading

frames

using

the

built-in

translation

table.

The

following

example

shows

how

to

do

this:

SELECT

*

FROM

table(DB2LS.LSTransAllFrames(’TTTTTCTTATTGTCTTCCTCATCG

TATTTCTTATGTTGCTGATGT’))

as

t;

The

query

returns

the

peptides

a

table,

as

in

the

following

example:

Table

122.

Result

of

translating

a

nucleotide

sequence

READFRAME

PEPTIDE

1

FFLLSSSSYFLCC*C

Chapter

25.

Life

sciences

user-defined

functions

477

Table

122.

Result

of

translating

a

nucleotide

sequence

(continued)

READFRAME

PEPTIDE

2

FSYCLPHRISYVAD

3

FLIVFLIVFLMLLM

–1

TSAT*EIR*GRQ*EK

–2

HQQHKKYDEEDNKK

–3

ISNIRNTMRKTIRK

The

next

example

uses

a

customized

translation

table

to

translate

a

nucleotide

sequence

in

all

six

reading

frames.

SELECT

*

FROM

table

(DB2LS.LSTransAllFrames

(’TTTTTCTTATTGTCTTCCTCATCGTATTTCTTATGTTGCTGATGT’,

’C:\msvs6\MyProjects\alin_udf\test\files\translation.txt’))

as

t;

The

resulting

table

is

the

same

as

the

previous

example

because

the

input

sequence

is

the

same

and

translation

table

is

the

same

as

the

one

built

into

the

function.

The

following

example

combines

two

of

the

user-defined

functions

to

demonstrate

the

additional

uses

of

the

functions:

values

DB2LS.LSNuc2Pep(DB2LS.LSRevCompNuc(’TTT..’)

Notice

that

the

previous

example

returns

the

same

result

as

the

following

query:

select

*

from

table

(DB2LS.LSTransAllFrames

(’TTT..’))

as

t

where

t.readframe

=

-1

The

following

example

selects

a

specific

reading

frame

from

the

output

produced

by

the

LSTransAllFrames

function.

SELECT

*

FROM

TABLE(db2ls.LSTransAllFrames(’TTTTTCTTATTGTCTTCCTCATCG

TATTTCTTATGTTGCTGATGT’))

AS

t

WHERE

t.readframe=-2

The

result

of

this

query

is:

Table

123.

Readframe

function

usage

READFRAME

PEPTIDE

–2

HQQHKKYDEEDNKK

Related

reference:

v

“LSNuc2Pep

user-defined

function

–

example”

on

page

476

v

“LSRevNuc

user-defined

function

-

example”

on

page

473

v

“LSTransAllFrames

user-defined

function”

on

page

477

Codon

frequency

table

format

A

codon

frequency

table

shows

the

frequency

to

which

the

amino

acids

are

back

translated

into

a

particular

codon.

The

LSPep2ProbNuc

user-defined

function

uses

the

codon

frequency

table

to

determine

a

nucleotide

sequence

from

a

given

peptide

sequence.

478

Data

Source

Configuration

Guide

The

following

list

describes

the

format

of

the

codon

frequency

table

file:

v

Two

adjacent

periods

mark

the

beginning

of

the

table.

Any

text

that

comes

before

is

commentary.

The

two

adjacent

periods

are

required

even

if

there

is

no

commentary

before

them.

v

The

table

contains

the

following

columns:

1.

Am-Acid:

a

three

letter

code

for

the

amino

acid

symbol.

2.

Codon:

the

codon

for

that

amino

acid

symbol.

3.

Number:

the

number

of

occurrences

of

that

codon

in

the

genes

from

which

the

table

is

compiled.

4.

x/1000:

the

expected

number

of

occurrences

of

the

amino

acid,

codon

pair

per

1000

translations

in

genes.

5.

Fraction:

the

fraction

of

occurrences

of

the

codon

in

its

synonymous

codon

family.

The

product

provides

sample

codon

frequency

tables

in

the

sqllib/samples/lifesci/ls_udfs

subdirectory.

Related

reference:

v

“LSPep2ProbNuc

user-defined

function”

on

page

451

v

“Codon

frequency

table

-

example”

on

page

479

Codon

frequency

table

-

example

Figure

46

shows

the

format

of

a

sample

codon

frequency

table.

Related

reference:

v

“LSPep2ProbNuc

user-defined

function”

on

page

451

v

“Codon

frequency

table

format”

on

page

478

Am-Acid

Codon

Number

x/1000

Fraction

..

Gly

GGG

198.00

18.34

0.23

Gly

GGA

71.00

6.58

0.08

Gly

GGT

66.00

6.11

0.08

Gly

GGC

527.00

48.81

0.61

Glu

GAG

534.00

49.46

0.88

Glu

GAA

71.00

6.58

0.12

Asp

GAT

31.00

2.87

0.06

Asp

GAC

481.00

44.55

0.94

Val

GTG

396.00

36.68

0.47

Val

GTA

22.00

2.04

0.03

Val

GTT

44.00

4.08

0.05

Val

GTC

384.00

35.57

0.45

Ala

GCG

446.00

41.31

0.39

Ala

GCA

71.00

6.58

0.06

Ala

GCT

116.00

10.74

0.10

Ala

GCC

503.00

46.59

0.44

...

(truncated)

Figure

46.

Sample

codon

frequency

table

Chapter

25.

Life

sciences

user-defined

functions

479

Translation

table

format

This

topic

describes

the

format

of

a

translation

table

that

are

used

by

the

LSPep2AmbNuc,

LSTransAllFrames,

and

LSNuc2Pep

life

sciences

user-defined

functions.

The

following

list

describes

the

format

of

the

codon

frequency

table

file:

v

Two

adjacent

periods

mark

the

beginning

of

the

table.

Any

text

that

comes

before

is

commentary.

v

Each

line

of

the

table

consists

of

a

single-letter

amino

acid

symbol,

the

three-letter

amino

acid

name,

the

unambiguous

codons,

an

exclamation

mark,

and

the

ambiguous

codons.

White

space

separates

each

word

in

the

line.

v

Each

codon

and

amino

acid

symbol

must

appear

only

once

in

the

file.

v

Stop

codons

translate

to

the

symbol

’*’.

v

Codons

made

up

of

lowercase

letters

are

start

codons.

v

All

other

codons

are

uppercase.

v

Codons

that

do

not

have

a

translation

to

a

corresponding

amino

acid

symbol

are

translated

to

the

symbol

’X’.

The

product

provides

sample

translation

tables

in

the

sqllib/samples/lifesci/ls_udfs

subdirectory.

Related

concepts:

v

“Life

sciences

user-defined

functions

-

overview”

on

page

443

Related

reference:

v

“Translation

table

-

example”

on

page

480

Translation

table

-

example

Figure

47

on

page

481

shows

the

format

of

a

sample

translation

table.

480

Data

Source

Configuration

Guide

Related

concepts:

v

“Life

sciences

user-defined

functions

-

overview”

on

page

443

Related

reference:

v

“Translation

table

format”

on

page

480

Standard

Translation

Table

Symbol

3-letter

Codons

!

IUPAC

..

A

Ala

GCT

GCC

GCA

GCG

!

GCX

B

Asx

!

RAY

C

Cys

TGT

TGC

!

TGY

D

Asp

GAT

GAC

!

GAY

E

Glu

GAA

GAG

!

GAR

F

Phe

TTT

TTC

!

TTY

G

Gly

GGT

GGC

GGA

GGG

!

GGX

H

His

CAT

CAC

!

CAY

I

Ile

ATT

ATC

ATA

!

ATH

K

Lys

AAA

AAG

!

AAR

L

Leu

TTG

TTA

CTT

CTC

CTA

CTG

!

TTR

CTX

YTR

;

YTX

M

Met

atg

!

ATG

N

Asn

AAT

AAC

!

AAY

P

Pro

CCT

CCC

CCA

CCG

!

CCX

Q

Gln

CAA

CAG

!

CAR

R

Arg

CGT

CGC

CGA

CGG

AGA

AGG

!

CGX

AGR

MGR

;

MGX

S

Ser

TCT

TCC

TCA

TCG

AGT

AGC

!

TCX

AGY

;

WSX

T

Thr

ACT

ACC

ACA

ACG

!

ACX

V

Val

GTT

GTC

GTA

GTG

!

GTX

W

Trp

TGG

!

TGG

X

Xxx

!

XXX

Y

Tyr

TAT

TAC

!

TAY

Z

Glx

!

SAR

*

End

TAA

TAG

TGA

!

TAR

TRA

;

TRR

Figure

47.

Sample

translation

table

Chapter

25.

Life

sciences

user-defined

functions

481

482

Data

Source

Configuration

Guide

Chapter

26.

KEGG

user-defined

functions

This

chapter

explains

what

the

KEGG

user-defined

functions

are,

how

to

add

them

to

your

federated

system,

and

how

to

use

them

in

your

queries.

KEGG

user-defined

functions

-

overview

The

Kyoto

Encyclopedia

of

Genes

and

Genomes

(KEGG)

is

a

suite

of

databases

that

contain

genomic

information.

The

KEGG

user-defined

functions

are

a

set

of

functions

provided

with

DB2®

Information

Integrator

to

access

the

genomic

information

in

the

KEGG

databases.

The

Pathway

database

and

Sequence

Similarity

Database

(SSDB)

are

the

only

two

databases

in

the

KEGG

suite

that

DB2

Information

Integrator

can

access

through

the

KEGG

web

services

interface.

The

Pathway

database

is

a

collection

of

data

about

molecular

interaction

networks

in

biological

processes,

including

metabolic

pathways,

regulatory

pathways,

and

molecular.

The

SSDB

is

a

collection

of

data

about

protein-coding

genes

in

the

complete

genomes

complexes.

The

KEGG

user-defined

functions

use

the

KEGG

API

to

access

these

databases.

Many

of

the

KEGG

methods

return

lists

of

values,

such

as

genes

or

pathways.

Some

of

these

methods

also

require

lists

of

values

as

input.

To

facilitate

the

composition

of

complex

operations

from

multiple

methods,

most

of

the

KEGG

user-defined

function

exist

in

both

table

and

scalar

formats.

The

table

functions

return

a

table

of

single

values.

The

scalar

functions

return

values

as

a

space-delimited

list.

The

KEGG

user-defined

functions

are

installed

with

the

life

sciences

user-defined

functions

component

of

the

nonrelational

wrappers.

After

the

KEGG

user-defined

functions

are

installed,

you

must

register

the

functions.

To

avoid

conflicts

with

namespaces,

all

of

the

KEGG

user-defined

functions

are

registered

in

the

DB2LS

schema.

Related

tasks:

v

“Registering

the

KEGG

user-defined

functions”

on

page

486

v

“Disabling

the

KEGG

user-defined

functions”

on

page

513

Related

reference:

v

“Function

arguments

for

the

KEGG

user-defined

functions”

on

page

485

v

“KEGG

user-defined

functions

by

functional

category”

on

page

483

KEGG

user-defined

functions

by

functional

category

DB2

Information

Integrator

includes

KEGG

user-defined

functions

to

access

data

in

the

Pathway

database

and

Sequence

Similarity

(SSDB)

database.

The

following

table

lists

the

user-defined

functions

that

you

can

use

to

retrieve

data

from

the

Pathway

database.

©

Copyright

IBM

Corp.

1998,

2004

483

|

|

|
|

|
|

|
|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|

|
|
|

|
|

|

|

|

|

|

|

|
|

|
|

|
|

Table

124.

Pathway

user-defined

functions

Description

Function

types

Function

names

Compounds

by

pathway

scalar

table

CompoundsByPathwyS

CompoundsByPathwyT

Enzymes

by

pathways

scalar

table

EnzymesByPathwyS

EnzymesByPathwyT

Genes

by

pathways

scalar

table

GenesByPathwyS

GenesByPathwyT

Pathways

by

compound

scalar

table

PathwysByCompndsS

PathwysByCompndsT

Pathways

by

enzymes

scalar

table

PathwysByEnzymesS

PathwysByEnzymesT

Pathways

by

genes

scalar

table

PathwysByGenesS

PathwysByGenesT

The

following

table

lists

the

user-defined

functions

that

you

can

use

to

retrieve

data

from

the

SSDB

database.

Table

125.

SSDB

user-defined

functions

Description

Function

types

Function

names

All

neighbors

by

gene

scalar

table

AllNbrsByGeneS

AllNbrsByGeneT

Best

neighbors

by

gene

scalar

table

BestNbrsByGeneS

BestNbrsByGeneT

Best-best

neighbors

by

gene

scalar

table

BstBstNbrsByGeneS

BstBstNbrsByGeneT

Reverse

best

neighbors

by

gene

scalar

table

RevBestNbrsByGeneS

RevBestNbrsByGeneT

Homologs

by

gene

scalar

table

BestHmlgsByGenesS

BestHmlgsByGenesT

Best-best

homologs

by

gene

scalar

table

BstBstHmlgByGenesS

BstBstHmlgByGenesT

Paralogs

by

gene

scalar

table

ParalogsByGeneS

ParalogsByGeneT

Definitions

by

gene

scalar

DefinitionsByGeneS

Genes

by

motifs

table

GenesByMotifsT

Smith-Waterman

score

between

genes

scalar

ScoreBetweenGenesS

All

of

the

table

user-defined

functions

that

are

for

the

SSDB

database

return

a

fixed

set

of

output

columns,

except

for

the

GetGenesByMotifsT

function.

The

GetGenesByMotifsT

function

returns

the

keggid

VARCHAR(100)

and

the

definition

VARCHAR(1000)

for

each

gene.

Related

concepts:

v

“KEGG

user-defined

functions

-

overview”

on

page

483

v

“Columns

that

are

returned

from

SSDB

database

queries

(table

functions)”

on

page

497

Related

tasks:

484

Data

Source

Configuration

Guide

||

|||

||
|
|
|

||
|
|
|

||
|
|
|

||
|
|
|

||
|
|
|

||
|
|
|
|

|
|

||

|||

||
|
|
|

||
|
|
|

||
|
|
|

||
|
|
|

||
|
|
|

||
|
|
|

||
|
|
|

|||

|||

|||
|

|
|
|
|

|

|

|
|

|

v

“Registering

the

KEGG

user-defined

functions”

on

page

486

Function

arguments

for

the

KEGG

user-defined

functions

The

KEGG

user-defined

functions

use

a

set

of

common

arguments.

The

arguments

for

the

KEGG

user-defined

function

are

described

in

the

following

list.

cpdlist

A

list

of

compounds.

The

list

must

have

a

data

type

of

VARCHAR

and

an

actual

length

that

is

no

greater

than

1630

bytes.

The

format

of

each

entry

in

the

list

must

be:

cpd:compound

compound

is

the

compound

identifier.

Each

entry

in

the

list

must

be

delimited

by

spaces,

commas,

or

semicolons.

enzymelist

A

list

of

enzymes.

The

list

must

have

a

data

type

of

VARCHAR

and

an

actual

length

that

is

no

greater

than

1630

bytes.

Each

entry

in

the

list

must

be

delimited

by

spaces,

commas,

or

semicolons.

keggid

A

unique

KEGG

identifier

for

each

organism,

expressed

as

a

character

string.

In

the

KEGG

API,

this

identifier

is

called

gene_ID.

The

identifier

must

have

a

data

type

of

VARCHAR

and

an

actual

length

that

is

no

greater

than

100

bytes.

The

format

that

you

use

for

the

keggid

argument

is

keggorg:gene_name.

The

keggorg

is

the

3-letter

KEGG

organism

code

and

is

expressed

as

a

character

string.

The

gene_name

is

the

name

of

the

gene.

Each

organism

in

the

KEGG

databases

is

assigned

an

identifier.

The

list

of

organisms

changes

frequently.

Check

the

current

list

of

genomes

at

http://www.genome.ad.jp/kegg/kegg2.html#genes

for

the

correct

identifier.

keggidlist

A

list

of

KEGG

identifiers.

The

list

is

a

character

string

of

delimited

values.

The

list

must

have

a

data

type

of

VARCHAR

and

an

actual

length

that

is

no

greater

than

1630

bytes.

Each

entry

in

the

list

must

be

delimited

by

spaces,

commas,

or

semicolons.

orglist

A

list

of

KEGG

organism

names.

The

list

is

a

character

string

of

delimited

values.

The

list

must

have

a

data

type

of

VARCHAR

and

an

actual

length

that

is

no

greater

than

1630

bytes.

Each

entry

in

the

list

must

be

delimited

by

spaces,

commas,

or

semicolons.

If

this

parameter

is

not

specified,

the

entire

organism

list

is

searched.

midlist

A

list

of

motif

identifiers.

The

midlist

is

a

character

string

of

delimited

values.

The

list

must

have

a

data

type

of

VARCHAR

and

an

actual

length

that

is

no

greater

than

1630

bytes.

Each

motif

identifier

in

the

midlist

must

be

delimited

by

spaces,

commas,

or

semicolons.

The

format

of

each

motif

identifier

is

database:entry.

The

database

is

an

identifier

for

a

motif

database

and

the

entry

is

a

motif

entry

in

that

database.

For

example,

the

motif

identifier

for

the

DnaJ

entry

in

the

pfam

database

is

pf:DnaJ.

Chapter

26.

KEGG

user-defined

functions

485

|

|
|

|
|

|
|
|
|

|

|
|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

||
|
|
|

|

|
|
|
|
|

|
|
|
|

http://www.genome.ad.jp/kegg/kegg2.html#genes

pathwayid

A

3-part

name

that

identifies

a

particular

pathway.

The

name

is

a

character

string.

The

name

must

have

a

data

type

of

VARCHAR

and

an

actual

length

that

is

no

greater

than

100

bytes.

The

format

of

the

pathwayid

must

be:

path:org

map

org

is

a

KEGG

organism

identifier,

and

map

is

a

pathway

map

identifier.

threshold

A

value

for

a

Smith-Waterman

score.

The

value

must

be

equal

to

or

greater

than

100.

The

value

must

have

a

data

type

of

INTEGER.

Related

concepts:

v

“KEGG

user-defined

functions

-

overview”

on

page

483

Related

tasks:

v

“Registering

the

KEGG

user-defined

functions”

on

page

486

Related

reference:

v

“KEGG

user-defined

functions

by

functional

category”

on

page

483

Registering

the

KEGG

user-defined

functions

Before

you

can

use

the

KEGG

user-defined

functions,

you

must

register

the

functions.

The

enable_KEGGFunctions

command

registers

all

of

the

KEGG

user-defined

functions

in

the

federated

database.

The

functions

are

registered

with

the

schema

name

DB2LS.

Prerequisites:

The

life

sciences

user-defined

functions

component

of

the

nonrelational

wrappers

must

be

installed

with

DB2

Information

Integrator.

Procedure:

To

register

the

KEGG

user-defined

functions,

run

the

enable_KEGGFunctions

command.

v

On

federated

servers

that

run

Windows,

this

command

is

in

the

sqllib\bin

directory

v

On

federated

servers

that

run

UNIX,

this

command

is

in

the

sqllib/bin

directory

Syntax:

enable_KEGGFunctions

-n

dbName

-u

userID

-p

password

[-force]

dbName

The

name

of

the

federated

database

that

you

are

registering

the

functions

in.

userID

A

valid

user

ID

for

the

federated

database.

486

Data

Source

Configuration

Guide

|
|
|
|
|

|

|

|
|
|

|

|

|

|

|

|

|
|

|
|

|
|
|

|

|
|

|

|
|

|
|

|
|

|

|

|
|
|

|
|

password

A

valid

password

for

the

user

ID.

force

An

optional

flag

that

you

can

use

to

remove

the

functions

and

register

them

again.

Use

this

flag

if

the

functions

get

corrupted

or

dropped

accidentally.

Example

of

registering

the

user-defined

functions:

The

following

example

shows

the

output

that

is

returned

when

you

issue

the

enable_KEGGFunctions

command:

C:>

enable_KEGGFunctions

-n

federateddb

-u

db2admin

-p

db2admin

(0)

KEGG

Functions

were

found

--

Create

KEGG

Functions

...

Create

KEGG

Functions

Successfully.

Please

allow

a

few

seconds

to

clean

up

the

system

......

Example

of

using

the

force

flag

to

drop

and

register

the

user-defined

functions:

The

following

example

shows

the

output

that

is

returned

when

you

issue

the

enable_KEGGFunctions

command

with

the

force

flag,

and

the

user-defined

functions

are

already

registered:

C:>

enable_KEGGFunctions

-n

federateddb

-u

db2admin

-p

db2admin

-force

(37)

KEGG

Functions

were

found

KEGG

functions

already

exist

...

Reinstall

KEGG

functions

...

--

Drop

KEGG

Functions

...

Drop

KEGG

Functions

Successfully.

--

Create

KEGG

Functions

...

Create

KEGG

Functions

Successfully.

Please

allow

a

few

seconds

to

clean

up

the

system

......

Related

concepts:

v

“KEGG

user-defined

functions

-

overview”

on

page

483

Related

tasks:

v

“Adding

relational

wrappers,

nonrelational

wrappers,

and

user-defined

functions

to

your

DB2

Information

Integrator

system”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Disabling

the

KEGG

user-defined

functions”

on

page

513

Related

reference:

v

“Function

arguments

for

the

KEGG

user-defined

functions”

on

page

485

v

“KEGG

user-defined

functions

by

functional

category”

on

page

483

Pathway

database

functions

The

following

sections

describe

the

user-defined

functions

for

the

Pathway

database.

These

sections

contain

the

syntax

and

examples

for

each

function.

Chapter

26.

KEGG

user-defined

functions

487

|
|

||
|
|

|

|
|

|
|
|
|
|
|
|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|
|
|

|

|

|

|

|
|

|
|

GenesByPathwyS

user-defined

function

Use

the

GenesByPathwyS

function

to

search

for

all

of

the

genes

on

a

pathway.

The

GenesByPathwyS

function

is

a

scalar

function

that

returns

a

space-delimited

list

of

genes.

The

list

is

a

character

string

with

a

data

type

of

VARCHAR

and

an

actual

length

that

is

not

greater

than

32767

bytes.

You

can

use

this

function

in

a

SELECT

statement.

Syntax:

��

DB2LS.GenesByPathwyS

(pathwayid)

��

The

schema

name

for

this

user-defined

function

is

DB2LS.

Example

of

searching

for

all

of

the

genes

on

a

pathway:

To

search

for

all

of

the

genes

on

a

pathway,

you

specify

the

pathwayid

argument

in

the

function.

For

example,

you

want

to

search

for

all

of

the

E.

coli

genes

on

the

pathway

map

00020.

The

clause

that

you

use

is:

VALUES

CAST(DB2LS.GenesByPathwyS

(’path:eco00020’)

AS

VARCHAR(1000));

Related

concepts:

v

“KEGG

user-defined

functions

-

overview”

on

page

483

Related

tasks:

v

“Registering

the

KEGG

user-defined

functions”

on

page

486

Related

reference:

v

“Function

arguments

for

the

KEGG

user-defined

functions”

on

page

485

v

“KEGG

user-defined

functions

by

functional

category”

on

page

483

GenesByPathwyT

user-defined

function

Use

the

GenesByPathwyT

function

to

search

for

all

of

the

genes

on

a

pathway.

The

GenesByPathwyT

function

is

a

table

function

that

returns

a

VARCHAR(100)

column

with

the

names

of

the

genes

on

the

pathway.

The

name

of

the

column

that

is

returned

is

gene.

You

can

use

this

function

in

a

SELECT

statement.

Syntax:

��

DB2LS.GenesByPathwyT

(pathwayid)

��

488

Data

Source

Configuration

Guide

|

|

|
|
|

|

|

|||||||||
|

|

|

|
|

|
|

|

|
|
|

|

|

|

|

|

|

|

|

|

|
|
|

|

|

|||||||||
|

The

schema

name

for

this

user-defined

function

is

DB2LS.

Example

of

searching

for

all

of

the

genes

on

a

pathway:

To

search

for

all

of

the

genes

on

a

particular

pathway,

you

specify

the

pathwayid

argument

in

the

function.

For

example,

you

want

to

search

for

all

of

the

E.

coli

genes

on

the

pathway

map

00020.

The

SELECT

statement

is:

SELECT

*

FROM

TABLE(DB2LS.GenesByPathwyT

(’path:eco00020’))

AS

t;

Related

concepts:

v

“KEGG

user-defined

functions

-

overview”

on

page

483

Related

tasks:

v

“Registering

the

KEGG

user-defined

functions”

on

page

486

Related

reference:

v

“Function

arguments

for

the

KEGG

user-defined

functions”

on

page

485

v

“KEGG

user-defined

functions

by

functional

category”

on

page

483

CompoundsByPathwyS

user-defined

function

Use

the

CompoundsByPathwyS

function

to

search

for

all

of

the

compounds

on

a

pathway.

The

CompoundsByPathwyS

function

is

a

scalar

function

that

returns

a

space-delimited

list

of

compounds.

The

list

is

a

character

string

with

a

data

type

of

VARCHAR

and

an

actual

length

that

is

not

greater

than

32767

bytes.

You

can

use

this

function

in

a

SELECT

statement.

Syntax:

��

DB2LS.CompoundsByPathwyS

(pathwayid)

��

The

schema

name

for

this

user-defined

function

is

DB2LS.

Example

of

searching

for

all

of

the

compounds

on

a

pathway:

To

search

for

the

all

of

the

compounds

on

a

pathway,

you

specify

the

pathwayid

argument

in

the

function.

For

example,

you

want

to

search

for

all

of

the

compounds

on

a

the

pathway

map

00020.

The

clause

that

you

use

is:

VALUES

CAST(DB2LS.CompoundsByPathwyS

(’path:00020’)

AS

VARCHAR(1000));

Chapter

26.

KEGG

user-defined

functions

489

|

|

|
|

|
|

|

|
|

|

|

|

|

|

|

|

|

|
|

|
|
|

|

|

|||||||||
|

|

|

|
|

|
|

|

|
|
|

Related

concepts:

v

“KEGG

user-defined

functions

-

overview”

on

page

483

Related

tasks:

v

“Registering

the

KEGG

user-defined

functions”

on

page

486

Related

reference:

v

“Function

arguments

for

the

KEGG

user-defined

functions”

on

page

485

v

“KEGG

user-defined

functions

by

functional

category”

on

page

483

CompoundsByPathwyT

user-defined

function

Use

the

CompoundsByPathwyT

function

to

search

for

all

of

the

compounds

on

a

pathway.

The

CompoundsByPathwyT

function

is

a

table

function

that

returns

a

VARCHAR(100)

column

with

the

names

of

the

compounds

on

the

pathway.

The

name

of

the

column

that

is

returned

is

compound.

You

can

use

this

function

in

a

SELECT

statement.

Syntax:

��

DB2LS.CompoundsByPathwyT

(pathwayid)

��

The

schema

name

for

this

user-defined

function

is

DB2LS.

Example

of

searching

for

all

of

the

compounds

on

a

pathway:

To

search

for

all

of

the

compounds

on

a

pathway,

you

specify

the

pathwayid

argument

in

the

function.

For

example,

you

want

to

search

for

all

of

the

compounds

on

a

the

pathway

map

00020.

The

SELECT

statement

is:

SELECT

*

FROM

TABLE(DB2LS.CompoundsByPathwyT

(’path:00020’))

AS

t;

Related

concepts:

v

“KEGG

user-defined

functions

-

overview”

on

page

483

Related

tasks:

v

“Registering

the

KEGG

user-defined

functions”

on

page

486

Related

reference:

v

“Function

arguments

for

the

KEGG

user-defined

functions”

on

page

485

v

“KEGG

user-defined

functions

by

functional

category”

on

page

483

490

Data

Source

Configuration

Guide

|

|

|

|

|

|

|

|

|
|

|
|
|

|

|

|||||||||
|

|

|

|
|

|
|

|

|
|

|

|

|

|

|

|

|

EnzymesByPathwyS

user-defined

function

Use

the

EnzymesByPathwyS

function

to

search

for

all

of

the

enzymes

on

a

pathway.

The

EnzymesByPathwyS

function

is

a

scalar

function

that

returns

a

space-delimited

list

of

enzymes.

The

list

is

a

character

string

with

a

data

type

of

VARCHAR

and

an

actual

length

that

is

not

greater

than

32767

bytes.

You

can

use

this

function

in

a

SELECT

statement.

Syntax:

��

DB2LS.EnzymesByPathwyS

(pathwayid)

��

The

schema

name

for

this

user-defined

function

is

DB2LS.

Example

of

searching

for

all

of

the

enzymes

on

a

pathway:

To

search

for

the

all

of

the

enzymes

on

a

pathway,

you

specify

the

pathwayid

argument

in

the

function.

For

example,

you

want

to

search

for

all

of

the

enzymes

on

the

pathway

map

00020.

The

clause

that

you

use

is:

VALUES

CAST(DB2LS.EnzymesByPathwyS

(’path:00020’)

AS

VARCHAR(1000));

Related

concepts:

v

“KEGG

user-defined

functions

-

overview”

on

page

483

Related

tasks:

v

“Registering

the

KEGG

user-defined

functions”

on

page

486

Related

reference:

v

“Function

arguments

for

the

KEGG

user-defined

functions”

on

page

485

v

“KEGG

user-defined

functions

by

functional

category”

on

page

483

EnzymesByPathwyT

user-defined

function

Use

the

EnzymesByPathwyT

function

to

search

for

all

of

the

enzymes

on

a

pathway.

The

EnzymesByPathwyT

function

is

a

table

function

that

returns

a

VARCHAR(100)

column

with

the

names

of

the

enzymes

on

the

pathway.

The

name

of

the

column

that

is

returned

is

enzyme.

You

can

use

this

function

in

a

SELECT

statement.

Syntax:

��

DB2LS.EnzymesByPathwyT

(pathwayid)

��

The

schema

name

for

this

user-defined

function

is

DB2LS.

Chapter

26.

KEGG

user-defined

functions

491

|

|
|

|
|
|

|

|

|||||||||
|
|
|
|
|

|

|

|
|
|

|

|

|

|

|

|

|

|

|
|

|
|
|

|

|

|||||||||
|

|

Example

of

searching

for

all

of

the

enzymes

on

a

pathway:

To

search

for

the

all

of

the

enzymes

on

a

pathway,

you

specify

the

pathwayid

argument

in

the

function.

For

example,

you

want

to

search

for

all

of

the

compounds

on

a

the

pathway

map

00020.

The

SELECT

statement

is:

SELECT

*

FROM

TABLE(DB2LS.EnzymesByPathwyT

(’path:00020’))

AS

t;

Related

concepts:

v

“KEGG

user-defined

functions

-

overview”

on

page

483

Related

tasks:

v

“Registering

the

KEGG

user-defined

functions”

on

page

486

Related

reference:

v

“Function

arguments

for

the

KEGG

user-defined

functions”

on

page

485

v

“KEGG

user-defined

functions

by

functional

category”

on

page

483

PathwysByGenesS

user-defined

function

Use

the

PathwysByGenesS

function

to

search

for

all

of

the

pathways

that

contain

the

genes

that

you

specify.

The

PathwysByGenesS

function

is

a

scalar

function

that

returns

a

space-delimited

list

of

pathways.

The

list

is

a

character

string

with

a

data

type

of

VARCHAR

and

an

actual

length

that

is

not

greater

than

32767

bytes.

You

can

use

this

function

in

a

SELECT

statement.

Syntax:

��

DB2LS.PathwysByGenesS

(keggidlist)

��

The

schema

name

for

this

user-defined

function

is

DB2LS.

Example

of

searching

for

all

of

the

pathways

that

contain

specific

genes:

To

search

for

the

all

of

the

pathways

that

contain

certain

genes,

you

specify

the

keggidlist

argument

in

the

function.

For

example,

you

want

to

search

for

all

of

the

pathways

that

contain

the

E.

coli

genes

b0077

and

b0078.

The

clause

that

you

use

is:

VALUES

CAST(DB2LS.PathwysByGenesS

(’eco:b0077

eco:0078’)

AS

VARCHAR(1000));

Related

concepts:

492

Data

Source

Configuration

Guide

|

|
|

|
|

|

|
|

|

|

|

|

|

|

|

|

|
|

|
|
|

|

|

|||||||||
|

|

|

|
|

|
|

|

|
|
|

|

v

“KEGG

user-defined

functions

-

overview”

on

page

483

Related

tasks:

v

“Registering

the

KEGG

user-defined

functions”

on

page

486

Related

reference:

v

“Function

arguments

for

the

KEGG

user-defined

functions”

on

page

485

v

“KEGG

user-defined

functions

by

functional

category”

on

page

483

PathwysByGenesT

user-defined

function

Use

the

PathwysByGenesT

function

to

search

for

all

of

the

pathways

that

contain

the

genes

that

you

specify.

The

PathwysByGenesT

function

is

a

table

function

that

returns

a

VARCHAR(100)

column

with

the

names

of

the

pathways

for

the

gene.

The

name

of

the

column

that

is

returned

is

pathway.

You

can

use

this

function

in

a

SELECT

statement.

Syntax:

��

DB2LS.PathwysByGenesT

(keggidlist)

��

The

schema

name

for

this

user-defined

function

is

DB2LS.

Example

of

searching

for

all

of

the

pathways

that

contain

specific

genes:

To

search

for

the

all

of

the

pathways

that

contain

certain

genes,

you

specify

the

keggidlist

argument

in

the

function.

For

example,

you

want

to

search

for

all

of

the

pathways

that

contain

the

E.

coli

genes

b0077

and

b0078.

The

SELECT

statement

is:

SELECT

*

FROM

TABLE(DB2LS.PathwysByGenesT

(’eco:b0077

eco:0078’))

AS

t;

Related

concepts:

v

“KEGG

user-defined

functions

-

overview”

on

page

483

Related

tasks:

v

“Registering

the

KEGG

user-defined

functions”

on

page

486

Related

reference:

v

“Function

arguments

for

the

KEGG

user-defined

functions”

on

page

485

v

“KEGG

user-defined

functions

by

functional

category”

on

page

483

PathwysByCompndsS

user-defined

function

Use

the

PathwysByCompndsS

function

to

search

for

all

of

the

pathways

that

contain

all

of

compounds

that

you

specify.

Chapter

26.

KEGG

user-defined

functions

493

|

|

|

|

|

|

|

|
|

|
|
|

|

|

|||||||||
|

|

|

|
|

|
|

|

|
|

|

|

|

|

|

|

|

|

|
|

The

PathwysByCompndsS

function

is

a

scalar

function

that

returns

a

space-delimited

list

of

compounds.

The

list

is

a

character

string

with

a

data

type

of

VARCHAR

and

an

actual

length

that

is

not

greater

than

32767

bytes.

You

can

use

this

function

in

a

SELECT

statement.

Syntax:

��

DB2LS.PathwysByCompndsS

(cpdlist)

��

The

schema

name

for

this

user-defined

function

is

DB2LS.

Example

of

searching

for

the

pathways

that

contain

all

of

the

specified

compounds:

To

search

for

all

of

the

pathways

that

contain

all

of

the

compounds

in

a

list,

you

specify

the

cpdlist

argument

in

the

function.

For

example,

you

want

to

search

for

all

of

the

pathways

that

contain

the

compounds

C00033

and

C00158.

The

clause

that

you

use

is:

VALUES

CAST(DB2LS.PathwysByCompndsS

(’cpd:C00033

cpd:C00158’)

AS

VARCHAR(1000));

Related

concepts:

v

“KEGG

user-defined

functions

-

overview”

on

page

483

Related

tasks:

v

“Registering

the

KEGG

user-defined

functions”

on

page

486

Related

reference:

v

“Function

arguments

for

the

KEGG

user-defined

functions”

on

page

485

v

“KEGG

user-defined

functions

by

functional

category”

on

page

483

PathwysByCompndsT

user-defined

function

Use

the

PathwysByCompndsT

function

to

search

for

all

of

the

pathways

that

contain

all

of

compounds

that

you

specify.

The

PathwysByCompndsT

function

is

a

table

function

that

returns

a

VARCHAR(100)

column

with

the

names

of

the

pathways.

The

name

of

the

column

that

is

returned

is

pathway.

You

can

use

this

function

in

a

SELECT

statement.

Syntax:

��

DB2LS.PathwysByCompndsT

(cpdlist)

��

The

schema

name

for

this

user-defined

function

is

DB2LS.

494

Data

Source

Configuration

Guide

|
|
|

|

|

|||||||||
|

|

|
|

|
|

|
|

|

|
|
|

|

|

|

|

|

|

|

|

|
|

|
|
|

|

|

|||||||||
|

|

Example

of

searching

for

the

pathways

that

contain

all

of

the

specified

compounds:

To

search

for

all

of

the

pathways

that

contain

all

of

the

compounds

in

a

list,

you

specify

the

cpdlist

argument

in

the

function.

For

example,

you

want

to

search

for

all

of

the

pathways

that

contain

the

compounds

C00033

and

C00158.

The

SELECT

statement

is:

SELECT

*

FROM

TABLE(DB2LS.PathwysByCompndsT

(’cpd:C00033

cpd:C00158’))

AS

t;

Related

concepts:

v

“KEGG

user-defined

functions

-

overview”

on

page

483

Related

tasks:

v

“Registering

the

KEGG

user-defined

functions”

on

page

486

Related

reference:

v

“Function

arguments

for

the

KEGG

user-defined

functions”

on

page

485

v

“KEGG

user-defined

functions

by

functional

category”

on

page

483

PathwysByEnzymesS

user-defined

function

Use

the

PathwysByEnzymesS

function

to

search

for

all

of

the

pathways

that

contain

all

of

the

enzymes

that

you

specify.

The

PathwysByEnzymesS

function

is

a

scalar

function

that

returns

a

space-delimited

list

of

pathways.

The

list

is

a

character

string

with

a

data

type

of

VARCHAR

and

an

actual

length

that

is

not

greater

than

32767

bytes.

You

can

use

this

function

in

a

SELECT

statement.

Syntax:

��

DB2LS.PathwysByEnzymesS

(emzymelist)

��

The

schema

name

for

this

user-defined

function

is

DB2LS.

Example

of

searching

for

all

of

the

pathways

that

contain

all

of

the

specified

enzymes:

To

search

for

all

of

the

pathways

that

contain

all

of

the

enzymes

in

a

list,

you

specify

the

enzymelist

argument

in

the

function.

For

example,

you

want

to

search

for

all

of

the

pathways

that

contain

the

enzyme

1.3.99.1.

The

clause

that

you

use

is:

VALUES

CAST(DB2LS.PathwysByEnzymesS

(’ec:1.3.99.1’)

AS

VARCHAR(1000));

Chapter

26.

KEGG

user-defined

functions

495

|
|

|
|

|
|

|

|
|

|

|

|

|

|

|

|

|

|
|

|
|
|

|

|

|||||||||
|

|

|
|

|
|

|
|

|

|
|
|

Related

concepts:

v

“KEGG

user-defined

functions

-

overview”

on

page

483

Related

tasks:

v

“Registering

the

KEGG

user-defined

functions”

on

page

486

Related

reference:

v

“Function

arguments

for

the

KEGG

user-defined

functions”

on

page

485

v

“KEGG

user-defined

functions

by

functional

category”

on

page

483

PathwysByEnzymesT

user-defined

function

Use

the

PathwysByEnzymesT

function

to

search

for

all

of

the

pathways

that

contain

all

of

the

enzymes

that

you

specify.

The

PathwysByEnzymesT

function

is

a

table

function

that

returns

a

VARCHAR(100)

column

with

the

names

of

the

pathways.

The

name

of

the

column

that

is

returned

is

pathway.

You

can

use

this

function

in

a

SELECT

statement.

Syntax:

��

DB2LS.PathwysByEnzymesT

(emzymelist)

��

The

schema

name

for

this

user-defined

function

is

DB2LS.

Example

of

searching

for

all

of

the

pathways

that

contain

all

of

the

specified

enzymes:

To

search

for

all

of

the

pathways

that

contain

all

of

the

enzymes

in

a

list,

you

specify

the

enzymelist

argument

in

the

function.

For

example,

you

want

to

search

for

all

of

the

pathways

that

contain

the

enzyme

1.3.99.1.

The

SELECT

statement

is:

SELECT

*

FROM

TABLE(DB2LS.PathwysByEnzymesT

(’ec:1.3.99.1’))

AS

t;

Related

concepts:

v

“KEGG

user-defined

functions

-

overview”

on

page

483

Related

tasks:

v

“Registering

the

KEGG

user-defined

functions”

on

page

486

Related

reference:

v

“Function

arguments

for

the

KEGG

user-defined

functions”

on

page

485

v

“KEGG

user-defined

functions

by

functional

category”

on

page

483

496

Data

Source

Configuration

Guide

|

|

|

|

|

|

|

|

|
|

|
|
|

|

|

|||||||||
|

|

|
|

|
|

|
|

|

|
|

|

|

|

|

|

|

|

Sequence

Similarity

Database

functions

The

following

topics

describe

the

user-defined

functions

for

the

Sequence

Similarity

database

(SSDB).

These

sections

contain

the

syntax

and

examples

for

each

function.

Columns

that

are

returned

from

SSDB

database

queries

(table

functions)

Many

of

the

user-defined

table

functions

for

the

Sequence

Similarity

Database

(SSDB)

return

a

set

of

fixed

output

columns.

When

you

use

an

SSDB

table

function,

you

can

specify

that

only

a

subset

of

the

columns

are

returned.

The

names

and

data

types

of

the

columns

that

are

returned

are

listed

in

the

following

table.

Table

126.

Columns

in

the

SSDB

database

Column

name

Column

data

type

Description

keggid1

VARCHAR

(100)

The

identifier

for

the

gene

that

is

specified

in

the

query.

keggid2

VARCHAR

(100)

The

identifier

for

the

gene

that

is

returned

from

the

query.

swscore

DOUBLE

The

Smith-Waterman

score

between

keggid1

and

keggid2.

identity

DOUBLE

The

identity

percent

between

keggid1

and

keggid2.

overlap

INTEGER

The

overlap

length

between

keggid1

and

keggid2.

s1_start

INTEGER

The

start

position

of

the

alignment

in

keggid1.

s1_end

INTEGER

The

end

position

of

the

alignment

in

keggid1.

s2_start

INTEGER

The

start

position

of

the

alignment

in

keggid2.

s2_end

INTEGER

The

end

position

of

the

alignment

in

keggid2.

best1

INTEGER

The

flag

that

indicates

the

best

hit

from

keggid1

to

keggid2.

A

value

of

1

indicates

a

best

hit

relationship

between

keggid1

to

keggid2.

A

value

of

0

indicates

that

there

is

not

a

best

hit

relationship

between

keggid1

to

keggid2.

best2

INTEGER

The

flag

that

indicates

the

best

hit

from

keggid2

to

keggid1.

A

value

of

1

indicates

a

best

hit

relationship

between

keggid2

to

keggid1.

A

value

of

0

indicates

that

there

is

not

a

best

hit

relationship

between

keggid2

to

keggid1.

def1

VARCHAR

(1000)

The

definition

for

keggid1.

def2

VARCHAR

(1000)

The

definition

for

keggid2.

length1

INTEGER

The

length

of

the

amino

acid

in

keggid1.

length2

INTEGER

The

length

of

the

amino

acid

in

keggid2.

Related

concepts:

v

“KEGG

user-defined

functions

-

overview”

on

page

483

Related

reference:

Chapter

26.

KEGG

user-defined

functions

497

|
|

|
|
|

|

|

|
|
|
|
|

||

|||

|||
|

|||
|

|||
|

|||
|

|||
|

|||

|||

|||

|||

|||
|
|
|
|

|||
|
|
|
|

|||

|||

|||

|||
|

|

|

|

v

“GenesByPathwyT

user-defined

function”

on

page

488

v

“AllNbrsByGeneT

user-defined

function”

on

page

499

v

“BstBstNbrsByGeneT

user-defined

function”

on

page

501

v

“BestNbrsByGeneT

user-defined

function”

on

page

503

v

“RevBestNbrsByGeneT

user-defined

function”

on

page

505

v

“ParalogsByGeneT

user-defined

function”

on

page

507

v

“BestHmlgsByGenesT

user-defined

function”

on

page

509

v

“BstBstHmlgByGenesT

user-defined

function”

on

page

510

AllNbrsByGeneS

user-defined

function

Use

the

AllNbrsByGeneS

function

to

search

for

all

organisms

that

are

homologous

neighbors

of

the

KEGG

identifier

that

you

specify.

Instead

of

searching

for

all

organisms,

you

can

specify

a

list

of

organisms

to

narrow

the

search.

The

AllNbrsByGeneS

function

is

a

scalar

function

that

returns

a

space-delimited

list

of

target

identifiers.

The

list

is

a

character

string

with

a

data

type

of

VARCHAR

and

an

actual

length

that

is

not

greater

than

32767

bytes.

You

can

use

this

function

in

a

SELECT

statement.

Syntax:

��

DB2LS.AllNbrsByGeneS

(keggid,

threshold

)

,orglist

��

The

schema

name

for

this

user-defined

function

is

DB2LS.

Example

of

searching

the

entire

organism

list:

To

search

the

entire

organism

list,

you

specify

the

keggid

and

threshold

arguments

in

the

function.

For

example,

to

search

for

all

homologous

genes

for

the

E.

coli

gene

with

a

threshold

value

greater

than

200,

the

clause

that

you

use

is:

VALUES

CAST(DB2LS.AllNbrsByGeneS

(’eco:b0002’,

200)

AS

VARCHAR(1000));

The

KEGG

code

for

the

E.

coli

gene

is

eco.

The

gene

name

is

b0002.

Example

of

searching

for

a

specific

set

of

organisms:

To

specify

a

list

of

organisms

to

search

for,

you

must

specify

the

keggid,

threshold,

and

orglist

arguments

in

the

function.

For

example,

to

search

for

all

homologous

genes

with

a

threshold

value

greater

than

500

and

return

only

the

0157

strain

of

the

E.

coli

gene

and

all

strains

of

the

H.

influenzae

gene,

the

clause

that

you

use

is:

498

Data

Source

Configuration

Guide

|

|

|

|

|

|

|

|

|

|
|

|
|

|
|
|

|

|

||||||||||||||||

|

|

|

|
|

|
|

|
|
|

|

|

|
|

|
|
|

VALUES

CAST(DB2LS.AllNbrsByGeneS

(’eco:b0002’,

500,

’ece

hin’)

AS

VARCHAR(1000));

The

KEGG

code

for

the

E.

coli

gene

is

eco.

The

gene

name

is

b0002.

The

KEGG

name

for

the

0157

strain

of

the

E.

coli

gene

is

ece.

The

KEGG

name

for

the

H.

influenzae

gene

is

hin.

Related

concepts:

v

“KEGG

user-defined

functions

-

overview”

on

page

483

Related

tasks:

v

“Registering

the

KEGG

user-defined

functions”

on

page

486

Related

reference:

v

“Function

arguments

for

the

KEGG

user-defined

functions”

on

page

485

v

“KEGG

user-defined

functions

by

functional

category”

on

page

483

AllNbrsByGeneT

user-defined

function

Use

the

AllNbrsByGeneT

function

to

search

for

all

organisms

that

are

homologous

neighbors

of

the

KEGG

identifier

that

you

specify.

Instead

of

searching

for

all

organisms,

you

can

specify

a

list

of

organisms

to

narrow

the

search.

The

AllNbrsByGeneT

function

is

a

table

function

that

returns

a

fixed

set

of

output

columns.

You

can

use

this

function

in

a

SELECT

statement.

Syntax:

��

DB2LS.AllNbrsByGeneT

(keggid,

threshold

)

,orglist

��

The

schema

name

for

this

user-defined

function

is

DB2LS.

Example

of

searching

the

entire

organism

list:

To

search

the

entire

organism

list,

you

specify

the

keggid

and

threshold

arguments

in

the

function.

For

example,

to

search

for

all

homologous

genes

for

the

E.

coli

gene

with

a

threshold

value

greater

than

200,

the

SELECT

statement

is:

SELECT

*

FROM

TABLE(DB2LS.AllNbrsByGeneT

(’eco:b0002’,

200))

AS

t;

The

KEGG

code

for

the

E.

coli

gene

is

eco.

The

gene

name

is

b0002.

Example

of

searching

for

a

specific

set

of

organisms:

To

specify

a

list

of

organisms

to

search

for,

you

must

specify

the

keggid,

threshold,

and

orglist

arguments

in

the

function.

Chapter

26.

KEGG

user-defined

functions

499

|
|
|

|
|
|

|

|

|

|

|

|

|

|

|
|

|
|

|
|

|

|

||||||||||||||||

|

|

|

|
|

|
|

|
|

|

|

|
|

For

example,

to

search

for

all

homologous

genes

with

a

threshold

value

greater

than

500

and

return

only

the

0157

strain

of

the

E.

coli

gene

and

all

strains

of

the

H.

influenzae

gene,

the

SELECT

statement

is:

SELECT

*

FROM

TABLE(DB2LS.AllNbrsByGeneT

(’eco:b0002’,

500,

’ece

hin’))

AS

t;

The

KEGG

code

for

the

E.

coli

gene

is

eco.

The

gene

name

is

b0002.

The

KEGG

name

for

the

0157

strain

of

the

E.

coli

gene

is

ece.

The

KEGG

name

for

the

H.

influenzae

gene

is

hin.

Related

concepts:

v

“KEGG

user-defined

functions

-

overview”

on

page

483

v

“Columns

that

are

returned

from

SSDB

database

queries

(table

functions)”

on

page

497

Related

tasks:

v

“Registering

the

KEGG

user-defined

functions”

on

page

486

Related

reference:

v

“Function

arguments

for

the

KEGG

user-defined

functions”

on

page

485

BstBstNbrsByGeneS

user-defined

function

Use

the

BstBstNbrsByGeneS

function

to

search

for

the

best-best

neighbors

of

the

gene

in

each

organism.

The

BstBstNbrsByGeneS

function

is

a

scalar

function

that

returns

a

space-delimited

list

of

target

identifiers.

The

list

is

a

character

string

with

a

data

type

of

VARCHAR

and

an

actual

length

that

is

not

greater

than

32767

bytes.

You

can

use

this

function

in

a

SELECT

statement.

Syntax:

��

DB2LS.BstBstNbrsByGeneS

(keggid,

threshold

)

,orglist

��

The

schema

name

for

this

user-defined

function

is

DB2LS.

Example

of

searching

the

entire

organism

list:

To

search

the

entire

organism

list,

you

specify

the

keggid

and

threshold

arguments

in

the

function.

For

example,

to

search

for

the

best-best

neighbors

of

the

E.

coli

gene

with

a

threshold

value

greater

than

200,

the

clause

that

you

use

is:

VALUES

CAST(DB2LS.BstBstNbrsByGeneS

(’eco:b0002’,

200)

AS

VARCHAR(1000));

The

KEGG

code

for

the

E.

coli

gene

is

eco.

The

gene

name

is

b0002.

Example

of

searching

for

a

specific

set

of

organisms:

500

Data

Source

Configuration

Guide

|
|
|

|
|

|
|
|

|

|

|
|

|

|

|

|

|

|
|

|
|
|

|

|

||||||||||||||||

|

|

|

|
|

|
|

|
|
|

|

|

To

specify

a

list

of

organisms

to

search

for,

you

must

specify

the

keggid,

threshold,

and

orglist

arguments

in

the

function.

For

example,

to

search

for

the

best-best

neighbors

with

a

threshold

value

greater

than

500

and

return

only

the

0157

strain

of

the

E.

coli

gene

and

all

strains

of

the

H.

influenzae

gene,

the

clause

that

you

use

is:

VALUES

CAST(DB2LS.BstBstNbrsByGeneS

(’eco:b0002’,

500,

’ece

hin’)

AS

VARCHAR(1000));

The

KEGG

code

for

the

E.

coli

gene

is

eco.

The

gene

name

is

b0002.

The

KEGG

name

for

the

0157

strain

of

the

E.

coli

gene

is

ece.

The

KEGG

name

for

the

H.

influenzae

gene

is

hin.

Related

concepts:

v

“KEGG

user-defined

functions

-

overview”

on

page

483

Related

tasks:

v

“Registering

the

KEGG

user-defined

functions”

on

page

486

Related

reference:

v

“Function

arguments

for

the

KEGG

user-defined

functions”

on

page

485

v

“KEGG

user-defined

functions

by

functional

category”

on

page

483

BstBstNbrsByGeneT

user-defined

function

Use

the

BstBstNbrsByGeneT

function

to

search

for

the

best-best

neighbors

of

the

gene

in

each

organism.

The

BstBstNbrsByGeneT

function

is

a

table

function

that

returns

a

fixed

set

of

output

columns.

You

can

use

this

function

in

a

SELECT

statement.

Syntax:

��

DB2LS.BstBstNbrsByGeneT

(keggid,

threshold

)

,orglist

��

The

schema

name

for

this

user-defined

function

is

DB2LS.

Example

of

searching

the

entire

organism

list:

To

search

the

entire

organism

list,

you

specify

the

keggid

and

threshold

arguments

in

the

function.

For

example,

to

search

for

the

best-best

neighbors

of

the

E.

coli

gene

with

a

threshold

value

greater

than

200,

the

SELECT

statement

is:

SELECT

*

FROM

TABLE(DB2LS.BstBstNbrsByGeneT

(’eco:b0002’,

200))

AS

t;

The

KEGG

code

for

the

E.

coli

gene

is

eco.

The

gene

name

is

b0002.

Example

of

searching

for

a

specific

set

of

organisms:

Chapter

26.

KEGG

user-defined

functions

501

|
|

|
|
|

|
|
|

|
|
|

|

|

|

|

|

|

|

|

|
|

|
|

|

|

||||||||||||||||

|

|

|

|
|

|
|

|
|

|

|

To

specify

a

list

of

organisms

to

search

for,

you

must

specify

the

keggid,

threshold,

and

orglist

arguments

in

the

function.

For

example,

to

search

for

the

best-best

neighbors

with

a

threshold

value

greater

than

500

and

return

only

the

0157

strain

of

the

E.

coli

gene

and

all

strains

of

the

H.

influenzae

gene,

the

SELECT

statement

is:

SELECT

*

FROM

TABLE(DB2LS.BstBstNbrsByGeneT

(’eco:b0002’,

500,

’ece

hin’))

AS

t;

The

KEGG

code

for

the

E.

coli

gene

is

eco.

The

gene

name

is

b0002.

The

KEGG

name

for

the

0157

strain

of

the

E.

coli

gene

is

ece.

The

KEGG

name

for

the

H.

influenzae

gene

is

hin.

Related

concepts:

v

“KEGG

user-defined

functions

-

overview”

on

page

483

v

“Columns

that

are

returned

from

SSDB

database

queries

(table

functions)”

on

page

497

Related

tasks:

v

“Registering

the

KEGG

user-defined

functions”

on

page

486

Related

reference:

v

“Function

arguments

for

the

KEGG

user-defined

functions”

on

page

485

v

“KEGG

user-defined

functions

by

functional

category”

on

page

483

BestNbrsByGeneS

user-defined

function

Use

the

BestNbrsByGeneS

function

to

search

for

the

best

neighbors

of

the

gene

in

each

organism.

The

BestNbrsByGeneS

function

is

a

scalar

function

that

returns

a

space-delimited

list

of

target

identifiers.

The

list

is

a

character

string

with

a

data

type

of

VARCHAR

and

an

actual

length

that

is

not

greater

than

32767

bytes.

You

can

use

this

function

in

a

SELECT

statement.

Syntax:

��

DB2LS.BestNbrsByGeneS

(keggid,

threshold

)

,orglist

��

The

schema

name

for

this

user-defined

function

is

DB2LS.

Example

of

searching

the

entire

organism

list:

To

search

the

entire

organism

list,

you

specify

the

keggid

and

threshold

arguments

in

the

function.

For

example,

to

search

for

the

best

neighbors

of

the

E.

coli

gene

with

a

threshold

value

greater

than

200,

the

clause

that

you

use

is:

VALUES

CAST(DB2LS.BestNbrsByGeneS

(’eco:b0002’,

200)

AS

VARCHAR(1000));

502

Data

Source

Configuration

Guide

|
|

|
|
|

|
|

|
|
|

|

|

|
|

|

|

|

|

|

|

|
|

|
|
|

|

|

||||||||||||||||

|

|

|

|
|

|
|

|
|
|

The

KEGG

code

for

the

E.

coli

gene

is

eco.

The

gene

name

is

b0002.

Example

of

searching

for

a

specific

set

of

organism:

To

specify

a

list

of

organisms

to

search

for,

you

must

specify

the

keggid,

threshold,

and

orglist

arguments

in

the

function.

For

example,

to

search

for

the

best

neighbors

with

a

threshold

value

greater

than

500,

and

return

only

the

0157

strain

of

the

E.

coli

gene

and

all

strains

of

the

H.

influenzae

gene,

the

clause

that

you

use

is:

VALUES

CAST(DB2LS.BestNbrsByGeneS

(’eco:b0002’,

500,

’ece

hin’)

AS

VARCHAR(1000));

The

KEGG

code

for

the

E.

coli

gene

is

eco.

The

gene

name

is

b0002.

The

KEGG

name

for

the

0157

strain

of

the

E.

coli

gene

is

ece.

The

KEGG

name

for

the

H.

influenzae

gene

is

hin.

Related

concepts:

v

“KEGG

user-defined

functions

-

overview”

on

page

483

Related

tasks:

v

“Registering

the

KEGG

user-defined

functions”

on

page

486

Related

reference:

v

“Function

arguments

for

the

KEGG

user-defined

functions”

on

page

485

v

“KEGG

user-defined

functions

by

functional

category”

on

page

483

BestNbrsByGeneT

user-defined

function

Use

the

BestNbrsByGeneT

function

to

search

for

the

best

neighbors

of

the

gene

in

each

organism.

The

BestNbrsByGeneT

function

is

a

table

function

that

returns

a

fixed

set

of

output

columns.

You

can

use

this

function

in

a

SELECT

statement.

Syntax:

��

DB2LS.BestNbrsByGeneT

(keggid,

threshold

)

,orglist

��

The

schema

name

for

this

user-defined

function

is

DB2LS.

Example

of

searching

the

entire

organism

list:

To

search

the

entire

organism

list,

you

specify

the

keggid

and

threshold

arguments

in

the

function.

For

example,

to

search

for

the

best

neighbors

of

the

E.

coli

gene

with

a

threshold

value

greater

than

200,

the

SELECT

statement

is:

SELECT

*

FROM

TABLE(DB2LS.BestNbrsByGeneT

(’eco:b0002’,

200))

AS

t;

Chapter

26.

KEGG

user-defined

functions

503

|

|

|
|

|
|
|

|
|
|

|
|
|

|

|

|

|

|

|

|

|

|
|

|
|

|

|

||||||||||||||||

|

|

|

|
|

|
|

|
|

The

KEGG

code

for

the

E.

coli

gene

is

eco.

The

gene

name

is

b0002.

Example

of

searching

for

a

specific

set

of

organisms:

To

specify

a

list

of

organisms

to

search

for,

you

must

specify

the

keggid,

threshold,

and

orglist

arguments

in

the

function.

For

example,

to

search

for

the

best

neighbors

with

a

threshold

value

greater

than

500

and

return

only

the

0157

strain

of

the

E.

coli

gene

and

all

strains

of

the

H.

influenzae

gene,

the

SELECT

statement

is:

SELECT

*

FROM

TABLE(DB2LS.BestNbrsByGeneT

(’eco:b0002’,

500,

’ece

hin’))

AS

t;

The

KEGG

code

for

the

E.

coli

gene

is

eco.

The

gene

name

is

b0002.

The

KEGG

name

for

the

0157

strain

of

the

E.

coli

gene

is

ece.

The

KEGG

name

for

the

H.

influenzae

gene

is

hin.

Related

concepts:

v

“KEGG

user-defined

functions

-

overview”

on

page

483

v

“Columns

that

are

returned

from

SSDB

database

queries

(table

functions)”

on

page

497

Related

tasks:

v

“Registering

the

KEGG

user-defined

functions”

on

page

486

Related

reference:

v

“Function

arguments

for

the

KEGG

user-defined

functions”

on

page

485

v

“KEGG

user-defined

functions

by

functional

category”

on

page

483

RevBestNbrsByGeneS

user-defined

function

Use

the

RevBestNbrsByGeneS

function

to

search

for

the

reverse

best

neighbors

of

the

gene

in

each

organism.

The

RevBestNbrsByGeneS

function

is

a

scalar

function

that

returns

a

space-delimited

list

of

target

identifiers.

The

list

is

a

character

string

with

a

data

type

of

VARCHAR

and

an

actual

length

that

is

not

greater

than

32767

bytes.

You

can

use

this

function

in

a

SELECT

statement.

Syntax:

��

DB2LS.RevBestNbrsByGeneS

(keggid,

threshold

)

,orglist

��

The

schema

name

for

this

user-defined

function

is

DB2LS.

Example

of

searching

the

entire

organism

list:

To

search

the

entire

organism

list,

you

specify

the

keggid

and

threshold

arguments

in

the

function.

504

Data

Source

Configuration

Guide

|

|

|
|

|
|
|

|
|

|
|
|

|

|

|
|

|

|

|

|

|

|

|
|

|
|
|

|

|

||||||||||||||||

|

|

|

|
|

For

example,

to

search

for

the

reverse

best

neighbors

of

the

E.

coli

gene

with

a

threshold

value

greater

than

200,

the

clause

that

you

use

is:

VALUES

CAST(DB2LS.RevBestNbrsByGeneS

(’eco:b0002’,

200)

AS

VARCHAR(1000));

The

KEGG

code

for

the

E.

coli

gene

is

eco.

The

gene

name

is

b0002.

Example

of

searching

for

a

specific

set

of

organisms:

To

specify

a

list

of

organisms

to

search

for,

you

must

specify

the

keggid,

threshold,

and

orglist

arguments

in

the

function.

For

example,

to

search

for

the

reverse

best

neighbors

with

a

threshold

value

greater

than

500

and

return

only

the

0157

strain

of

the

E.

coli

gene

and

all

strains

of

the

H.

influenzae

gene,

the

clause

that

you

use

is:

VALUES

CAST(DB2LS.RevBestNbrsByGeneS

(’eco:b0002’,

500,

’ece

hin’)

AS

VARCHAR(1000));

The

KEGG

code

for

the

E.

coli

gene

is

eco.

The

gene

name

is

b0002.

The

KEGG

name

for

the

0157

strain

of

the

E.

coli

gene

is

ece.

The

KEGG

name

for

the

H.

influenzae

gene

is

hin.

Related

concepts:

v

“KEGG

user-defined

functions

-

overview”

on

page

483

Related

tasks:

v

“Registering

the

KEGG

user-defined

functions”

on

page

486

Related

reference:

v

“Function

arguments

for

the

KEGG

user-defined

functions”

on

page

485

v

“KEGG

user-defined

functions

by

functional

category”

on

page

483

RevBestNbrsByGeneT

user-defined

function

Use

the

RevBestNbrsByGeneT

function

to

search

for

the

reverse

best

neighbors

of

the

gene

in

each

organism.

The

RevBestNbrsByGeneT

function

is

a

table

function

that

returns

a

fixed

set

of

output

columns.

You

can

use

this

function

in

a

SELECT

statement.

Syntax:

��

DB2LS.RevBestNbrsByGeneT

(keggid,

threshold

)

,orglist

��

The

schema

name

for

this

user-defined

function

is

DB2LS.

Example

of

searching

the

entire

organism

list:

Chapter

26.

KEGG

user-defined

functions

505

|
|

|
|
|

|

|

|
|

|
|
|

|
|
|

|
|
|

|

|

|

|

|

|

|

|

|
|

|
|

|

|

||||||||||||||||

|

|

|

To

search

the

entire

organism

list,

you

specify

the

keggid

and

threshold

arguments

in

the

function.

For

example,

to

search

for

the

reverse

best

neighbors

of

the

E.

coli

gene

with

a

threshold

value

greater

than

200,

the

SELECT

statement

is:

SELECT

*

FROM

TABLE(DB2LS.RevBestNbrsByGeneT

(’eco:b0002’,

200))

AS

t;

The

KEGG

code

for

the

E.

coli

gene

is

eco.

The

gene

name

is

b0002.

Example

of

searching

for

a

specific

set

of

organisms:

To

specify

a

list

of

organisms

to

search

for

,

you

must

specify

the

keggid,

threshold,

and

orglist

arguments

in

the

function.

For

example,

to

search

for

the

reverse

best

neighbors

with

a

threshold

value

greater

than

500

and

return

only

the

0157

strain

of

the

E.

coli

gene

and

all

strains

of

the

H.

influenzae

gene,

the

SELECT

statement

is:

SELECT

*

FROM

TABLE(DB2LS.RevBestNbrsByGeneT

(’eco:b0002’,

500,

’ece

hin’))

AS

t;

The

KEGG

code

for

the

E.

coli

gene

is

eco.

The

gene

name

is

b0002.

The

KEGG

name

for

the

0157

strain

of

the

E.

coli

gene

is

ece.

The

KEGG

name

for

the

H.

influenzae

gene

is

hin.

Related

concepts:

v

“KEGG

user-defined

functions

-

overview”

on

page

483

v

“Columns

that

are

returned

from

SSDB

database

queries

(table

functions)”

on

page

497

Related

tasks:

v

“Registering

the

KEGG

user-defined

functions”

on

page

486

Related

reference:

v

“Function

arguments

for

the

KEGG

user-defined

functions”

on

page

485

v

“KEGG

user-defined

functions

by

functional

category”

on

page

483

ParalogsByGeneS

user-defined

function

Use

the

ParalogsByGeneS

function

to

search

for

the

paralogous

genes

in

an

organism.

The

ParalogsByGeneS

function

is

a

scalar

function

that

returns

a

space-delimited

list

of

target

identifiers.

The

list

is

a

character

string

with

a

data

type

of

VARCHAR

and

an

actual

length

that

is

not

greater

than

32767

bytes.

You

can

use

this

function

in

a

SELECT

statement.

Syntax:

��

DB2LS.ParalogsByGeneS

(keggid,

threshold)

��

The

schema

name

for

this

user-defined

function

is

DB2LS.

506

Data

Source

Configuration

Guide

|
|

|
|

|
|

|

|

|
|

|
|
|

|
|

|
|
|

|

|

|
|

|

|

|

|

|

|

|
|

|
|
|

|

|

|||||||||
|

|

Example

of

searching

for

paralogous

genes:

To

search

for

paralogous

genes

in

an

organism,

you

specify

only

the

keggid

and

threshold

arguments

in

the

function.

For

example,

to

search

for

the

paralogous

genes

in

the

E.

coli

organism

with

a

threshold

value

greater

than

5000,

the

clause

that

you

use

is:

VALUES

CAST(DB2LS.ParalogsByGeneS

(’eco:b0002’,

5000)

AS

VARCHAR(1000));

The

KEGG

database

name

for

the

E.

coli

organism

is

eco.

The

organism

name

is

b0002.

Related

concepts:

v

“KEGG

user-defined

functions

-

overview”

on

page

483

Related

tasks:

v

“Registering

the

KEGG

user-defined

functions”

on

page

486

Related

reference:

v

“Function

arguments

for

the

KEGG

user-defined

functions”

on

page

485

v

“KEGG

user-defined

functions

by

functional

category”

on

page

483

ParalogsByGeneT

user-defined

function

Use

the

ParalogsByGeneT

function

to

search

for

the

paralogous

genes

in

an

organism.

The

ParalogsByGeneT

function

is

a

table

function

that

returns

a

fixed

set

of

output

columns.

You

can

use

this

function

in

a

SELECT

statement.

Syntax:

��

DB2LS.ParalogsByGeneT

(keggid,

threshold)

��

The

schema

name

for

this

user-defined

function

is

DB2LS.

Example

of

searching

for

paralogous

genes:

To

search

for

paralogous

genes

in

an

organism,

you

specify

the

keggid

and

threshold

arguments

in

the

function.

For

example,

to

search

for

the

paralogous

genes

in

the

E.

coli

organism

with

a

threshold

value

greater

than

5000,

the

SELECT

statement

is:

SELECT

*

FROM

TABLE(DB2LS.ParalogsByGeneT

(’eco:b0002’,

5000))

AS

t;

The

KEGG

database

name

for

the

E.

coli

organism

is

eco.

The

organism

name

is

b0002.

Related

concepts:

Chapter

26.

KEGG

user-defined

functions

507

|

|
|

|
|

|
|
|

|
|

|

|

|

|

|

|

|

|

|
|

|
|

|

|

|||||||||
|

|

|

|
|

|
|

|
|

|
|

|

v

“KEGG

user-defined

functions

-

overview”

on

page

483

v

“Columns

that

are

returned

from

SSDB

database

queries

(table

functions)”

on

page

497

Related

tasks:

v

“Registering

the

KEGG

user-defined

functions”

on

page

486

Related

reference:

v

“Function

arguments

for

the

KEGG

user-defined

functions”

on

page

485

v

“KEGG

user-defined

functions

by

functional

category”

on

page

483

BestHmlgsByGenesS

user-defined

function

Use

the

BestHmlgsByGenesS

function

to

search

for

the

best

homologous

neighbors

of

an

organism

from

a

list

of

genes

that

you

specify.

The

BestHmlgsByGenesS

function

is

a

scalar

function

that

returns

a

space-delimited

list

of

target

identifiers.

The

list

is

a

character

string

with

a

data

type

of

VARCHAR

and

an

actual

length

that

is

not

greater

than

32767

bytes.

You

can

use

this

function

in

a

SELECT

statement.

Syntax:

��

DB2LS.BestHmlgsByGenesS

(keggorg

,

keggidlist)

��

The

schema

name

for

this

user-defined

function

is

DB2LS.

For

better

performance,

use

the

BstBstHmlgByGenesS

function.

Example

of

searching

for

the

best

homologous

neighbors:

To

search

for

the

best

homologous

neighbors

of

an

organism

from

a

list

of

genes,

you

specify

the

keggorg

and

keggidlist

arguments

in

the

function.

For

example,

to

search

for

the

H.

influenzae

organism

in

the

list

of

E.

coli

genes

b0002,

b0003,

b0004,

and

b0005,

the

clause

that

you

use

is:

VALUES

CAST(DB2LS.BestHmlgsByGenesS

(’hin’,

’eco:b0002

eco:b0003

eco:b0004

eco:b0005’)

VARCHAR(1000));

Related

concepts:

v

“KEGG

user-defined

functions

-

overview”

on

page

483

Related

tasks:

v

“Registering

the

KEGG

user-defined

functions”

on

page

486

Related

reference:

v

“Function

arguments

for

the

KEGG

user-defined

functions”

on

page

485

v

“KEGG

user-defined

functions

by

functional

category”

on

page

483

508

Data

Source

Configuration

Guide

|

|
|

|

|

|

|

|

|

|
|

|
|
|

|

|

|||||||||||
|

|

|

|

|
|

|
|

|
|
|

|

|

|

|

|

|

|

BestHmlgsByGenesT

user-defined

function

Use

the

BestHmlgsByGenesT

function

to

search

for

the

best

homologous

neighbors

of

an

organism

from

a

list

of

genes

that

you

specify.

The

BestHmlgsByGenesT

function

is

a

table

function

that

returns

a

fixed

set

of

output

columns.

You

can

use

this

function

in

a

SELECT

statement.

Syntax:

��

DB2LS.BestHmlgsByGenesT

(keggorg,

keggidlist)

��

The

schema

name

for

this

user-defined

function

is

DB2LS.

For

better

performance,

use

the

BstBstHmlgByGenesT

function.

Example

of

searching

for

the

best

homologous

neighbors:

To

search

for

the

best

homologous

neighbors

of

an

organism

from

a

list

of

genes,

you

specify

the

keggorg

and

keggidlist

arguments

in

the

function.

For

example,

to

search

for

the

H.

influenzae

organism

in

the

list

of

E.

coli

genes

b0002,

b0003,

b0004,

and

b0005,

the

SELECT

statement

is:

SELECT

*

FROM

TABLE(DB2LS.BestHmlgsByGenesT

(’hin’,

’eco:b0002

eco:b0003

eco:b0004

eco:b0005’))

AS

t;

Related

concepts:

v

“KEGG

user-defined

functions

-

overview”

on

page

483

v

“Columns

that

are

returned

from

SSDB

database

queries

(table

functions)”

on

page

497

Related

tasks:

v

“Registering

the

KEGG

user-defined

functions”

on

page

486

Related

reference:

v

“Function

arguments

for

the

KEGG

user-defined

functions”

on

page

485

v

“KEGG

user-defined

functions

by

functional

category”

on

page

483

BstBstHmlgByGenesS

user-defined

function

Use

the

BstBstHmlgByGenesS

function

to

search

for

the

best-best

homologous

neighbors

of

an

organism

from

a

list

of

genes.

The

BstBstHmlgByGenesS

function

is

a

scalar

function

that

returns

a

space-delimited

list

of

target

identifiers.

The

list

is

a

character

string

with

a

data

type

of

VARCHAR

and

an

actual

length

that

is

not

greater

than

32767

bytes.

You

can

use

this

function

in

a

SELECT

statement.

Syntax:

Chapter

26.

KEGG

user-defined

functions

509

|

|
|

|
|

|

|

|||||||||
|

|

|

|

|
|

|
|

|
|

|

|

|
|

|

|

|

|

|

|

|
|

|
|
|

|

|

��

DB2LS.BstBstHmlgByGenesS

(keggorg,

keggidlist)

��

The

schema

name

for

this

user-defined

function

is

DB2LS.

Example

of

searching

for

only

the

best-best

neighbors:

To

search

for

only

the

best-best

neighbors

of

an

organism

from

a

list

of

genes,

you

specify

the

keggorg

and

keggidlist

arguments

in

the

function.

For

example,

to

search

for

the

H.

influenzae

organism

in

the

list

of

E.

coli

genes

b0002,

b0003,

b0004,

and

b0005,

the

clause

that

you

use

is:

VALUES

CAST(DB2LS.BstBstHmlgByGenesS

(’hin’,

’eco:b0002

eco:b0003

eco:b0004

eco:b0005’)

AS

VARCHAR(1000));

Related

concepts:

v

“KEGG

user-defined

functions

-

overview”

on

page

483

Related

tasks:

v

“Registering

the

KEGG

user-defined

functions”

on

page

486

Related

reference:

v

“Function

arguments

for

the

KEGG

user-defined

functions”

on

page

485

v

“KEGG

user-defined

functions

by

functional

category”

on

page

483

BstBstHmlgByGenesT

user-defined

function

Use

the

BstBstHmlgByGenesT

function

to

search

for

the

best-best

homologous

neighbors

of

an

organism

from

a

list

of

genes.

The

BstBstHmlgByGenesT

function

is

a

table

function

that

returns

a

fixed

set

of

output

columns.

You

can

use

this

function

in

a

SELECT

statement.

Syntax:

��

DB2LS.BstBstHmlgByGenesT

(keggorg,

keggidlist)

��

The

schema

name

for

this

user-defined

function

is

DB2LS.

Example

of

searching

for

only

the

best-best

neighbors:

To

search

for

only

the

best-best

neighbors

of

an

organism

from

a

list

of

genes,

you

specify

the

keggorg

and

keggidlist

arguments

in

the

function.

For

example,

to

search

for

the

H.

influenzae

organism

in

the

list

of

E.

coli

genes

b0002,

b0003,

b0004,

and

b0005,

the

SELECT

statement

is:

SELECT

*

FROM

TABLE(DB2LS.BstBstHmlgByGenesT

(’hin’,

’eco:b0002

eco:b0003

eco:b0004

eco:b0005’))

AS

t;

Related

concepts:

510

Data

Source

Configuration

Guide

|||||||||
|

|

|

|
|

|
|

|
|
|

|

|

|

|

|

|

|

|

|
|

|
|

|

|

|||||||||
|

|

|

|
|

|
|

|
|

|

v

“KEGG

user-defined

functions

-

overview”

on

page

483

v

“Columns

that

are

returned

from

SSDB

database

queries

(table

functions)”

on

page

497

Related

tasks:

v

“Registering

the

KEGG

user-defined

functions”

on

page

486

Related

reference:

v

“Function

arguments

for

the

KEGG

user-defined

functions”

on

page

485

v

“KEGG

user-defined

functions

by

functional

category”

on

page

483

ScoreBetweenGenesS

user-defined

function

Use

the

ScoreBetweenGenesS

function

to

determine

the

Smith-Waterman

score

between

two

genes.

The

ScoreBetweenGenesS

function

is

a

scalar

function

that

returns

a

single

value

that

has

a

data

type

of

DOUBLE.

You

can

use

this

function

in

a

SELECT

statement.

Syntax:

��

DB2LS.ScoreBetweenGenesS

(keggid1,

keggid2)

��

The

schema

name

for

this

user-defined

function

is

DB2LS.

Example

of

determining

the

Smith-Waterman

score

between

two

genes:

To

determine

the

Smith-Waterman

score

between

two

genes,

you

specify

the

keggid

of

each

gene.

For

example,

to

determine

the

Smith-Waterman

score

between

the

E.

Coli

genes

b0002

and

b3940,

the

clause

that

you

use

is:

VALUES

CAST(DB2LS.ScoreBetweenGenesS

(’eco:b0002’,

’eco:b3940’)

AS

DOUBLE);

Related

concepts:

v

“KEGG

user-defined

functions

-

overview”

on

page

483

Related

tasks:

v

“Registering

the

KEGG

user-defined

functions”

on

page

486

Related

reference:

v

“Function

arguments

for

the

KEGG

user-defined

functions”

on

page

485

v

“KEGG

user-defined

functions

by

functional

category”

on

page

483

DefinitionsByGeneS

user-defined

function

Use

the

DefinitionsByGeneS

function

to

search

for

the

definition

of

a

gene.

Chapter

26.

KEGG

user-defined

functions

511

|

|
|

|

|

|

|

|

|

|
|

|
|

|

|

|||||||||
|

|

|

|
|

|
|

|
|
|
|

|

|

|

|

|

|

|

|

|

The

DefinitionsByGeneS

function

is

a

scalar

function

that

returns

a

single

value

that

has

a

data

type

of

VARCHAR(1000).

You

can

use

this

function

in

a

SELECT

statement.

Syntax:

��

DB2LS.DefinitionsByGeneS

(keggid)

��

The

schema

name

for

this

user-defined

function

is

DB2LS.

Example

of

searching

for

the

definition

of

a

gene:

To

search

for

the

definition

of

a

gene,

you

specify

the

keggid.

For

example,

to

return

the

definition

for

the

E.

coli

gene

b0002,

the

clause

that

you

use

is:

VALUES

CAST(DB2LS.DefinitionsByGeneS

(’eco:b0002’))

AS

t;

AS

VARCHAR(1000));

Related

concepts:

v

“KEGG

user-defined

functions

-

overview”

on

page

483

Related

tasks:

v

“Registering

the

KEGG

user-defined

functions”

on

page

486

Related

reference:

v

“Function

arguments

for

the

KEGG

user-defined

functions”

on

page

485

v

“KEGG

user-defined

functions

by

functional

category”

on

page

483

GenesByMotifsT

user-defined

function

Use

the

GenesByMotifsT

function

to

search

for

genes

that

contain

all

of

the

motifs

in

a

list

of

motifs

that

you

specify.

The

GenesByMotifsT

function

is

a

table

function

that

returns

a

table.

The

table

contains

the

keggid

VARCHAR(100)

and

the

definition

VARCHAR(1000)

for

each

gene.

You

can

use

this

function

in

a

SELECT

statement.

Syntax:

��

DB2LS.GenesByMotifsT

(midlist)

��

The

schema

name

for

this

user-defined

function

is

DB2LS.

Example

of

searching

for

genes

that

contain

all

of

the

motifs

in

a

list:

To

search

for

genes

that

contain

all

of

the

motifs

in

a

list,

you

specify

the

midlist

argument.

512

Data

Source

Configuration

Guide

|
|

|

|

|||||||||
|

|

|

|

|
|

|
|
|

|

|

|

|

|

|

|

|

|
|

|
|
|

|

|

|||||||||
|

|

|

|
|

For

example,

to

find

the

genes

that

contain

both

the

Pfam

'DnaJ'

and

Prosite

'DNAJ_2'

motifs,

the

SELECT

statement

is:

SELECT

*

FROM

TABLE(DB2LS.GenesByMotifsT

(’pf:DnaJ

ps:DNAJ_2’))

AS

t;

Related

concepts:

v

“KEGG

user-defined

functions

-

overview”

on

page

483

Related

tasks:

v

“Registering

the

KEGG

user-defined

functions”

on

page

486

Related

reference:

v

“Function

arguments

for

the

KEGG

user-defined

functions”

on

page

485

v

“KEGG

user-defined

functions

by

functional

category”

on

page

483

Disabling

the

KEGG

user-defined

functions

If

you

no

longer

want

to

use

the

KEGG

user-defined

functions,

you

can

temporarily

disable

the

functions

or

permanently

remove

the

functions

from

your

federated

database.

If

you

disable

the

KEGG

user-defined

functions,

you

can

enable

the

functions

again

by

registering

the

functions

in

the

federated

database.

You

must

uninstall

the

functions

to

permanently

remove

the

functions

from

the

federated

database.

Procedure:

To

disable

the

KEGG

user-defined

functions,

run

the

disable_KEGGFunctions

command.

v

On

federated

servers

that

run

Windows,

this

command

is

in

the

sqllib\bin

directory

v

On

federated

servers

that

run

UNIX,

this

command

is

in

the

sqllib/bin

directory

Syntax:

disable_KEGGFunctions

-n

dbName

-u

userID

-p

password

dbName

The

name

of

the

federated

database

that

you

want

to

disable

the

functions

from.

userID

A

valid

user

ID

for

the

federated

database.

password

A

valid

password

for

the

user

ID.

Example

of

disabling

the

KEGG

user-defined

functions:

The

following

example

shows

the

output

that

is

returned

when

you

issue

the

disable_KEGGFunctions

command:

Chapter

26.

KEGG

user-defined

functions

513

|
|

|
|

|

|

|

|

|

|

|

|
|

|
|
|

|
|

|
|

|

|
|

|
|

|
|

|

|

|
|
|

|
|

|
|

|

|
|

C:>disable_KEGGFunctions

-n

federateddb

-u

db2admin

-p

db2admin

(37)

KEGG

Functions

were

found

--

Drop

KEGG

Functions

...

Drop

KEGG

Functions

Successfully.

Please

allow

a

few

seconds

to

clean

up

the

system

......

Related

tasks:

v

“Removing

relational

wrappers,

nonrelational

wrappers,

and

life

sciences

user-defined

functions

(Windows)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Removing

wrappers,

user-defined

functions,

and

the

wrapper

development

kits

(UNIX)”

in

the

IBM

DB2

Information

Integrator

Installation

Guide

for

Linux,

UNIX,

and

Windows

v

“Registering

the

KEGG

user-defined

functions”

on

page

486

514

Data

Source

Configuration

Guide

|
|
|
|
|
|
|
|

|

|
|
|

|
|
|

|

Part

5.

Reference

©

Copyright

IBM

Corp.

1998,

2004

515

516

Data

Source

Configuration

Guide

Chapter

27.

Data

types

supported

for

nonrelational

data

sources

The

following

sections

list

the

data

types

that

are

supported

by

the

nonrelational

wrappers.

Data

types

supported

for

nonrelational

data

sources

For

most

of

the

nonrelational

data

sources,

you

must

specify

the

column

information,

including

data

type,

when

you

create

the

nicknames

to

access

the

data

source.

Some

of

the

nonrelational

wrappers

create

all

of

the

columns

required

to

access

a

data

source.

These

are

called

fixed

columns.

Other

wrappers

let

you

specify

some

or

all

of

the

data

types

for

the

columns

in

the

CREATE

NICKNAME

statement.

The

following

sections

list

the

wrappers

that

you

can

specify

the

data

types

for,

and

the

data

types

that

are

supported

by

the

wrapper.

Data

types

supported

by

the

BioRS

wrapper

The

following

table

lists

the

DB2

data

types

that

are

supported

by

the

BioRS

wrapper.

Table

127.

BioRS

data

types

that

map

to

DB2

data

types

BioRS

data

types

DB2

data

type

AUTHOR

CHARACTER,

CLOB,

VARCHAR

DATE

CHARACTER,

CLOB,

VARCHAR

NUMBER

CHARACTER,

CLOB,

VARCHAR

REFERENCE

CHARACTER,

CLOB,

VARCHAR

TEXT

CHARACTER,

CLOB,

VARCHAR

The

maximum

length

allowed

for

the

CLOB

data

type

is

5

megabytes.

Data

types

supported

by

the

BLAST

wrapper

Some

of

the

data

types

are

automatically

set

for

the

fixed

columns

that

the

BLAST

wrapper

creates.

For

the

definition

line

fields,

you

can

assign

when

you

create

a

nickname.

If

the

data

in

the

definition

line

column

is

not

compatible

with

the

local

column

data

type,

you

will

get

an

error.

For

example,

if

you

define

a

definition

line

column

of

type

INTEGER

and

there

are

values

in

the

column

that

are

not

numeric,

an

error

is

returned.

The

following

table

lists

the

DB2

data

types

that

are

supported

by

the

BLAST

wrapper.

©

Copyright

IBM

Corp.

1998,

2004

517

|

|
|
|

|
|
|

|
|

|

|
|

||

||

||

||

||

||

||
|

|

|

|
|

|
|
|
|
|

|
|

Table

128.

BLAST

data

types

that

map

to

DB2

data

types

BLAST

data

types

DB2

data

type

definition

line

CLOB

The

maximum

length

allowed

for

the

CLOB

data

type

is

5

megabytes.

definition

line

DOUBLE

definition

line

FLOAT

definition

line

INTEGER

definition

line

VARCHAR

Data

types

supported

by

the

Documentum

wrapper

The

following

table

lists

the

DB2

data

types

that

are

supported

by

the

Documentum

wrapper.

Table

129.

Documentum

data

types

that

map

to

DB2

data

types

Documentum

data

types

DB2

data

type

DOUBLE

DOUBLE,

FLOAT,

INTEGER,

SMALLINT

ID

CHARACTER

(16)

INTEGER

DOUBLE,

FLOAT,

INTEGER,

SMALLINT

STRING

(up

to

255

characters)

CHAR,

VARCHAR

TIME

CHAR,

DATE,

TIMESTAMP,

VARCHAR

Data

types

supported

by

the

Entrez

wrapper

The

following

table

lists

the

DB2

data

types

that

are

supported

by

the

Entrez

wrapper.

Table

130.

Entrez

data

types

that

map

to

DB2

data

types

Entrez

data

types

DB2

data

type

character

CHARACTER

character

CLOB

The

maximum

length

allowed

for

the

CLOB

data

type

is

5

megabytes.

date

DATE

number

DECIMAL

number

DOUBLE

integer

INTEGER

number

REAL

integer

SMALLINT

time

TIMESTAMP

character

VARCHAR

Data

types

supported

by

the

Excel

wrapper

The

following

table

lists

the

DB2

data

types

that

are

supported

by

the

Excel

wrapper.

518

Data

Source

Configuration

Guide

||

||

||

|
|

||

||

||

||
|

|

|
|

||

||

||

||

||

||

||
|

|

|
|

||

||

||

||

|
|

||

||

||

||

||

||

||

||
|

|

|
|

Table

131.

Excel

data

types

that

map

to

DB2

data

types

Excel

data

types

DB2

data

type

date

DATE

number

DOUBLE

number

FLOAT

(n)

where

n

is

>=

25

and

≤=

53

integer

INTEGER

character

VARCHAR

Data

types

supported

by

the

Extended

Search

wrapper

The

following

table

lists

the

DB2

data

types

that

are

supported

by

the

Extended

Search

wrapper.

Table

132.

Extended

Search

data

types

that

map

to

DB2

data

types

Extended

Search

data

types

DB2

data

type

Date

DATE

Double

DOUBLE

Integer

INTEGER

String

VARCHAR

Data

types

supported

by

the

HMMER

wrapper

The

following

table

lists

the

DB2

data

types

that

are

supported

by

the

HMMER

wrapper.

Table

133.

HMMER

data

types

that

map

to

DB2

data

types

HMMER

data

types

DB2

data

type

character

CLOB

The

maximum

length

allowed

for

the

CLOB

data

type

is

5

megabytes.

character

DOUBLE

character

FLOAT

character

INTEGER

character

VARCHAR

Data

types

supported

by

the

table-structured

file

wrapper

The

following

table

lists

the

DB2

data

types

that

are

supported

by

the

table-structured

file

wrapper.

Table

134.

Table-structured

file

data

types

that

map

to

DB2

data

types

Table-structured

file

data

types

DB2

data

type

character

CHARACTER

character

CLOB

The

maximum

length

allowed

for

the

CLOB

data

type

is

5

megabytes.

number

DECIMAL

Chapter

27.

Data

types

supported

for

nonrelational

data

sources

519

||

||

||

||

||

||

||
|

|

|
|

||

||

||

||

||

||
|

|

|
|

||

||

||

|
|

||

||

||

||
|

|

|
|

||

||

||

||

|
|

||

Table

134.

Table-structured

file

data

types

that

map

to

DB2

data

types

(continued)

Table-structured

file

data

types

DB2

data

type

number

DOUBLE

number

FLOAT

integer

INTEGER

number

REAL

integer

SMALLINT

character

VARCHAR

Data

types

supported

by

the

Web

services

wrapper

The

following

table

lists

the

DB2

data

types

that

are

supported

by

the

Web

services

wrapper.

The

Web

services

wrapper

uses

XML

data

types.

Table

135.

XML

data

types

that

map

to

DB2

data

types

for

the

Web

services

wrapper

XML

data

types

DB2

data

type

character

CHARACTER

character

CHARACTER

FOR

BIT

DATA

character

CLOB

date

DATE

number

DECIMAL

number

DOUBLE

number

FLOAT

integer

INTEGER

number

REAL

integer

SMALLINT

character

VARCHAR

character

VARCHAR

FOR

BIT

DATA

Data

types

supported

by

the

WebSphere

Business

Integration

wrapper

The

following

table

lists

the

DB2

data

types

that

are

supported

by

the

WebSphere

Business

Integration

wrapper.

The

WebSphere

Business

Integration

wrapper

uses

XML

data

types.

Table

136.

XML

data

types

that

map

to

DB2

data

types

for

the

WebSphere

Business

Integration

wrapper

XML

data

types

DB2

data

type

character

CHARACTER

character

CHARACTER

FOR

BIT

DATA

character

CLOB

date

DATE

number

DECIMAL

number

DOUBLE

number

FLOAT

520

Data

Source

Configuration

Guide

|

||

||

||

||

||

||

||
|

|

|
|

||

||

||

||

||

||

||

||

||

||

||

||

||

||
|

|

|

|
|
|

||
|

||

||

||

||

||

||

||

||

Table

136.

XML

data

types

that

map

to

DB2

data

types

for

the

WebSphere

Business

Integration

wrapper

(continued)

XML

data

types

DB2

data

type

integer

INTEGER

number

REAL

integer

SMALLINT

character

VARCHAR

character

VARCHAR

FOR

BIT

DATA

Data

types

supported

by

the

XML

wrapper

The

following

table

lists

the

DB2

data

types

that

are

supported

by

the

XML

wrapper

Table

137.

XML

data

types

that

map

to

DB2

data

types

for

the

XML

wrapper

XML

data

types

DB2

data

type

character

CHARACTER

character

CHARACTER

FOR

BIT

DATA

character

CLOB

The

maximum

length

allowed

for

the

CLOB

data

type

is

5

megabytes.

date

DATE

number

DECIMAL

number

DOUBLE

number

FLOAT

integer

INTEGER

number

REAL

integer

SMALLINT

character

VARCHAR

character

VARCHAR

FOR

BIT

DATA

Related

concepts:

v

“Data

type

mappings

in

a

federated

system”

in

the

Federated

Systems

Guide

v

“Data

type

mappings

and

the

federated

database

global

catalog”

in

the

Federated

Systems

Guide

v

“Data

type

mappings

for

nonrelational

data

sources”

in

the

Federated

Systems

Guide

Chapter

27.

Data

types

supported

for

nonrelational

data

sources

521

|
|

||

||

||

||

||

||
|

|

|
|

||

||

||

||

||

|
|

||

||

||

||

||

||

||

||

||
|

|

|

|
|

|
|

522

Data

Source

Configuration

Guide

Chapter

28.

Altering

nicknames

This

chapter

explains

how

to

alter

previously

registered

nicknames.

Altering

a

nickname

Nicknames

are

identifiers

that

are

used

to

reference

an

object

that

you

want

to

access

at

a

data

source.

You

might

want

to

alter

a

nickname

to:

v

Alter

the

local

column

names

for

the

columns

of

the

data

source

object

v

Alter

the

local

data

types

for

the

columns

of

the

data

source

object

v

Add,

set,

or

drop

nickname

and

column

options

v

Add

or

drop

a

primary

key

v

Add

or

drop

one

or

more

unique,

referential,

or

check

constraints

v

Alter

one

or

more

referential,

check,

or

functional

dependency

constraint

attributes

Prerequisites:

The

privileges

held

by

the

authorization

ID

of

the

statement

must

include

at

least

one

of

the

following:

v

SYSADM

or

DBADM

authority

v

ALTER

privilege

on

the

nickname

specified

in

the

statement

v

CONTROL

privilege

on

the

nickname

specified

in

the

statement

v

ALTERIN

privilege

on

the

schema,

if

the

schema

name

of

the

nickname

exists

v

Definer

of

the

nickname

as

recorded

in

the

DEFINER

column

of

the

catalog

view

for

the

nickname

Restrictions:

See

the

topic

on

restrictions

to

altering

nicknames.

Procedure:

You

can

alter

a

nickname

from

the

DB2

Control

Center

or

the

DB2

command

line.

To

do

this

task

from

the

DB2

Control

Center:

1.

Select

the

Nicknames

folder.

2.

Right-click

on

the

nickname

that

you

want

to

change

and

click

Alter.

The

Alter

Nickname

notebook

opens.

3.

On

the

Nicknames

page,

change

the

local

column

names,

local

data

types,

or

column

options

for

the

columns

that

are

stored

in

the

global

catalog.

4.

On

the

Keys

page,

set

the

referential

integrity

constraints

for

the

nickname.

You

can

set

a

primary

key,

unique

key,

or

foreign

key

constraint.

5.

On

the

Check

Constraints

page,

set

the

check

constraints

or

functional

dependency

constraints

for

the

nickname.

6.

On

the

Settings

page,

set

the

nickname

options

for

the

nickname.

©

Copyright

IBM

Corp.

1998,

2004

523

|

|

|
|

|

|

|
|

|
|

|
|

|
|

|

7.

Click

OK

to

alter

the

nickname

and

close

the

notebook.

Some

nickname

options

are

required

and

cannot

be

dropped.

Other

nickname

options

cannot

be

added

if

specific

nickname

options

are

already

set.

See

the

nickname

options

for

federated

systems

and

the

nickname

column

options

for

federated

systems

for

a

list

of

descriptions

for

each

of

the

options.

To

do

this

task

from

the

DB2

command

line,

issue

the

ALTER

NICKNAME

statement

with

the

appropriate

parameters

set.

When

the

data

source

object

structure

or

content

changes

significantly,

you

should

update

the

nickname

statistics.

Significant

changes

include

the

addition

or

removal

of

multiple

rows.

Related

concepts:

v

“Informational

constraints

on

nicknames”

in

the

Federated

Systems

Guide

v

“Nickname

statistics

update

facility

-

overview”

in

the

Federated

Systems

Guide

Related

tasks:

v

“Altering

nickname

options”

on

page

527

v

“Altering

a

local

type

for

a

data

source

object”

on

page

530

v

“Altering

nickname

column

names”

on

page

526

v

“Altering

nickname

column

options”

on

page

528

Related

reference:

v

“Restrictions

on

altering

nicknames”

on

page

524

v

Appendix

F,

“Nickname

options

for

federated

systems,”

on

page

593

v

Appendix

G,

“Nickname

column

options

for

federated

systems,”

on

page

603

v

“ALTER

NICKNAME

statement”

in

the

SQL

Reference,

Volume

2

Restrictions

on

altering

nicknames

The

following

restrictions

apply

when

you

alter

a

nickname.

Column

names

The

ALTER

NICKNAME

statement

cannot

be

used

to

alter

column

names

for

the

following

data

sources.

You

must

drop

the

nickname

and

create

the

nickname

again

with

the

correct

column

names.

v

BLAST

v

Documentum

v

HMMER

Column

options

If

one

of

the

following

options

is

set

on

a

column,

you

cannot

add

any

other

options

to

that

column:

v

SOAPACTIONCOLUMN

v

URLCOLUMN

v

PRIMARY_KEY

v

FOREIGN_KEY

For

BioRS

524

Data

Source

Configuration

Guide

|

|
|
|
|

|
|
|

|

|

|
|
|
|

|

|

|

|
|
|

|

|

|

|

|

v

If

you

change

the

element

name

of

a

column

by

using

the

ELEMENT_NAME

option,

the

new

name

is

not

checked

to

ensure

that

it

is

correct.

An

incorrect

option

might

result

in

errors

when

the

column

is

referenced

in

a

query.

v

If

you

make

changes

to

the

IS_INDEXED

column

option,

the

changes

are

not

verified

with

the

BioRS

server.

An

incorrect

option

might

result

in

errors

when

the

column

is

referenced

in

a

query.

Data

types

v

If

you

change

the

data

type

of

a

column,

the

new

data

type

must

be

compatible

with

the

data

type

of

the

corresponding

data

source

column

or

element.

Changing

the

local

data

type

to

a

data

type

that

is

incompatible

with

the

remote

data

type

might

cause

unpredictable

errors.

v

The

local_data_type

cannot

be

long

VARCHAR,

LONG

VARGRAPHIC,

DATALINK

or

a

user-defined

data

type.

v

The

data_source_data_type

cannot

be

a

user-defined

type.

v

You

cannot

override

the

existing

local

types

or

create

new

local

types

for

some

of

the

nonrelational

data

sources.

Check

the

documentation

for

the

specific

data

source

wrapper

for

more

information

on

this

restriction.

v

When

the

local

specification

of

a

column’s

data

type

is

changed,

the

federated

database

manager

invalidates

any

statistics

(for

example,

HIGH2KEY

and

LOW2KEY)

that

are

gathered

for

that

column.

v

The

local

type

is

set

for

the

specific

data

source

object

when

it

is

accessed

with

that

nickname.

The

same

data

source

object

can

have

another

nickname

that

uses

the

default

data

type

mapping.

Indexes

The

ALTER

NICKNAME

statement

cannot

be

used

to

register

a

new

data

source

index

in

the

federated

database.

Use

the

CREATE

INDEX

statement

with

the

SPECIFICATION

ONLY

clause

to

create

an

index

specification.

LOCAL

NAME

and

LOCAL

TYPE

parameters

v

ALTER

NICKNAME

statement

cannot

be

used

to

change

the

local

names

or

data

types

for

the

columns

in

the

nickname

if:

–

The

nickname

is

used

in

a

view,

SQL

method,

or

SQL

function

–

You

define

an

informational

constraint

on

the

nickname
v

The

federated_column_options

clause

must

be

specified

last

if

you

also

need

to

specify

the

LOCAL

NAME

parameter,

the

LOCAL

TYPE

parameter,

or

both

in

the

ALTER

NICKNAME

statement..

Nicknames

The

ALTER

NICKNAME

statement

cannot

be

used

to

change

the

name

of

the

BioRS

databank

that

is

referenced

by

or

used

in

a

BioRS

nickname.

If

the

name

of

a

BioRS

databank

changes,

you

must

drop

the

nickname

and

create

the

nickname

again.

Units

of

work

The

federated

server

cannot

process

an

ALTER

NICKNAME

statement

within

a

given

unit

of

work

under

either

of

the

following

conditions:

v

If

the

nickname

referenced

in

the

ALTER

NICKNAME

statement

has

a

cursor

open

on

it

in

the

same

units

of

work.

v

If

an

insert,

delete

or

update

is

issued

in

the

same

unit

of

work

for

the

nickname

that

is

referenced

in

the

ALTER

NICKNAME

statement.

Chapter

28.

Altering

nicknames

525

|
|
|
|

|
|
|

|

|
|
|
|
|

|
|

|

|
|
|

|
|
|

|
|
|

|
|
|
|

|

|
|

|

|

|
|
|

|
|
|
|
|

|
|
|

|
|

|
|

v

For

nonrelational

data

sources,

if

the

ALTER

NICKNAME

statement

references

a

nickname

that

is

referenced

by

a

SELECT

statement

in

the

same

unit

of

work.

Related

tasks:

v

“Altering

nickname

options”

on

page

527

v

“Altering

a

local

type

for

a

data

source

object”

on

page

530

v

“Altering

a

nickname”

on

page

523

v

“Altering

nickname

column

names”

on

page

526

v

“Altering

nickname

column

options”

on

page

528

Altering

nickname

column

names

When

you

create

a

nickname,

the

column

names

that

are

associated

with

the

data

source

object

are

stored

in

the

federated

database.

For

some

data

sources,

the

wrapper

specifies

the

column

names.

For

other

data

sources,

you

must

specify

the

column

names

when

you

create

the

nickname.

You

can

alter

a

nickname

to

change

the

column

names.

Prerequisites:

The

authorization

ID

issuing

the

statement

must

include

at

least

one

of

the

following

privileges:

v

SYSADM

or

DBADM

authority

v

ALTER

privilege

on

the

nickname

specified

in

the

statement

v

CONTROL

privilege

on

the

nickname

specified

in

the

statement

v

ALTERIN

privilege

on

the

schema,

if

the

schema

name

of

the

nickname

exists

v

Definer

of

the

nickname

as

recorded

in

the

DEFINER

column

of

the

catalog

view

for

the

nickname

Restrictions:

See

the

topic

on

restrictions

to

altering

nicknames.

Procedure:

You

can

change

column

names

from

the

DB2

Control

Center

or

the

DB2

command

line.

To

do

this

task

from

the

DB2

Control

Center:

1.

Select

the

Nicknames

folder.

2.

Right-click

on

the

nickname

that

you

want

to

change

and

click

Alter.

The

Alter

Nickname

notebook

opens.

3.

On

the

Nicknames

page,

select

the

column

that

you

want

to

change

and

click

Change.

The

Change

Column

window

opens.

4.

Type

the

column

name.

5.

Click

OK

to

change

the

column

name

and

close

the

window.

6.

Click

OK

to

alter

the

nickname

and

close

the

notebook.

526

Data

Source

Configuration

Guide

|
|
|

|

|

|

|

|

|

|
|
|
|

|
|

|

|

|
|

|
|

|

|

|

To

do

this

task

from

the

DB2

command

line,

issue

the

ALTER

NICKNAME

statement:

ALTER

NICKNAME

nickname

ALTER

COLUMN

current_name

LOCAL

NAME

new_name

Example:

Changing

the

local

name

of

a

nickname

column:

For

example,

the

nickname

Z_EMPLOYEES

for

a

DB2

UDB

for

z/OS

table

includes

a

column

with

the

name

of

EMPNO.

To

alter

the

nickname

so

that

the

local

column

name

that

users

work

with

is

Employee_Number

instead

of

EMPNO,

issue

the

following

statement:

ALTER

NICKNAME

Z_EMPLOYEES

ALTER

COLUMN

EMPNO

LOCAL

NAME

"Employee_Number"

Related

tasks:

v

“Altering

a

nickname”

on

page

523

Related

reference:

v

“Restrictions

on

altering

nicknames”

on

page

524

v

“ALTER

NICKNAME

statement”

in

the

SQL

Reference,

Volume

2

Altering

nickname

options

Nickname

options

are

parameters

that

you

specify

on

the

nickname

when

you

issue

the

CREATE

NICKNAME

and

ALTER

NICKNAME

statements.

You

can

add,

set,

or

drop

nickname

options

by

using

the

ALTER

NICKNAME

statement.

Prerequisites:

The

authorization

ID

issuing

the

statement

must

include

at

least

one

of

the

following

privileges:

v

SYSADM

or

DBADM

authority

v

ALTER

privilege

on

the

nickname

specified

in

the

statement

v

CONTROL

privilege

on

the

nickname

specified

in

the

statement

v

ALTERIN

privilege

on

the

schema,

if

the

schema

name

of

the

nickname

exists

v

Definer

of

the

nickname

as

recorded

in

the

DEFINER

column

of

the

catalog

view

for

the

nickname

Restrictions:

See

the

topic

on

restrictions

to

altering

nicknames.

Procedure:

You

can

change

column

names

from

the

DB2

Control

Center

or

the

DB2

command

line.

To

do

this

task

from

the

DB2

Control

Center:

1.

Select

the

Nicknames

folder.

Chapter

28.

Altering

nicknames

527

|
|
|

|

|
|
|
|

|
|

|

|
|

|
|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

2.

Right-click

on

the

nickname

that

you

want

to

change

and

click

Alter.

The

Alter

Nickname

notebook

opens.

3.

On

the

Settings

page,

select

the

check

box

next

to

any

option

that

you

want

to

add

or

remove.

You

cannot

remove

a

required

option.

4.

To

specify

or

change

the

value

of

an

option,

click

the

Value

field

for

the

option.

Depending

on

the

option,

you

can

either

select

a

value

from

the

list,

click

to

select

multiple

values,

or

you

can

type

a

new

value.

5.

Click

OK

to

alter

the

nickname

and

close

the

notebook.

To

do

this

task

from

the

command

line

prompt,

use

the

ALTER

NICKNAME

statement.

For

example:

ALTER

NICKNAME

nickname

OPTIONS

(SET

option_name

’option_string_value’)

For

example,

the

nickname

DRUGDATA1

is

created

for

the

table-structured

file

drugdata1.txt.

The

fully

qualified

path

that

was

originally

defined

in

the

CREATE

NICKNAME

statement

was

/user/pat/drugdata1.txt.

To

change

the

FILE_PATH

nickname

option,

issue

the

following

statement

:

ALTER

NICKNAME

DRUGDATA1

OPTIONS

(SET

FILE_PATH

’/usr/kelly/data/drugdata1.txt’)

Related

tasks:

v

“Altering

a

nickname”

on

page

523

Related

reference:

v

“Restrictions

on

altering

nicknames”

on

page

524

v

“ALTER

NICKNAME

statement”

in

the

SQL

Reference,

Volume

2

v

Appendix

F,

“Nickname

options

for

federated

systems,”

on

page

593

Altering

nickname

column

options

You

specify

column

information

in

the

CREATE

NICKNAME

and

ALTER

NICKNAME

statements

by

using

parameters

called

nickname

column

options.

You

can

specify

any

of

these

values

in

either

uppercase

or

lowercase

letters.

You

can

add,

set,

or

drop

nickname

column

options

using

the

ALTER

NICKNAME

statement.

Prerequisites:

The

authorization

ID

issuing

the

statement

must

include

at

least

one

of

the

following

privileges:

v

SYSADM

or

DBADM

authority

v

ALTER

privilege

on

the

nickname

specified

in

the

statement

v

CONTROL

privilege

on

the

nickname

specified

in

the

statement

v

ALTERIN

privilege

on

the

schema,

if

the

schema

name

of

the

nickname

exists

v

Definer

of

the

nickname

as

recorded

in

the

DEFINER

column

of

the

catalog

view

for

the

nickname

Restrictions:

See

the

topic

on

restrictions

to

altering

nicknames.

528

Data

Source

Configuration

Guide

|
|

|
|

|
|
|

|

|
|

|
|

|
|
|

|

|

|

|

|

|

|

|

Procedure:

You

can

change

column

names

from

the

DB2

Control

Center

or

the

DB2

command

line.

To

do

this

task

from

the

DB2

Control

Center:

1.

Select

the

Nicknames

folder.

2.

Right-click

on

the

nickname

that

you

want

to

change

and

click

Alter.

The

Alter

Nickname

notebook

opens.

3.

On

the

Nicknames

page,

select

the

column

that

you

want

to

change

and

click

Change.

The

Change

Column

window

opens.

4.

Select

the

column

option

that

you

want

to

add

or

remove.

5.

For

options

that

you

are

adding

or

changing,

specify

the

value

of

an

option.

6.

Click

OK

to

change

the

column

option

and

close

the

window.

7.

Click

OK

to

alter

the

nickname

and

close

the

notebook.

To

do

this

task

from

the

command

line

prompt,

use

the

ALTER

NICKNAME

statement.

Example

1:

Specifying

the

NUMERIC_STRING

column

option

with

relational

data

sources:

The

NUMERIC_STRING

column

option

applies

to

character

type

columns

(CHAR

and

VARCHAR).

Suppose

that

a

data

source

has

a

collating

sequence

that

differs

from

the

federated

database

collating

sequence.

The

federated

server

typically

would

not

sort

any

columns

containing

character

data

at

the

data

source.

It

would

return

the

data

to

the

federated

database

and

perform

the

sort

locally.

However,

suppose

that

the

column

is

a

character

data

type

and

contains

only

numeric

characters

(’0’,’1’,...,’9’).

You

can

indicate

this

by

assigning

a

value

of

’Y’

to

the

NUMERIC_STRING

column

option.

This

gives

the

DB2

UDB

query

optimizer

the

option

of

performing

the

sort

at

the

data

source.

If

the

sort

is

performed

remotely,

you

can

avoid

the

overhead

of

sorting

the

data

at

the

federated

server.

The

nickname

ORA_INDSALES

for

an

Oracle

table

called

INDONESIA_SALES.

The

table

contains

the

column

POSTAL_CODE

with

the

data

type

of

VARCHAR.

Originally

the

column

contained

only

numeric

characters,

and

the

NUMERIC_STRING

column

option

was

set

to

’Y’.

However,

the

column

now

contains

a

mixture

of

numeric

and

non-numeric

characters.

To

change

the

NUMERIC_STRING

column

option

to

’N’,

use

this

statement:

ALTER

NICKNAME

ORA_INDSALES

ALTER

COLUMN

POSTAL_CODE

OPTIONS

(SET

NUMERIC_STRING

’N’)

Example

2:

Specfying

the

VARCHAR_NO_TRAILING_BLANKS

column

option

with

relational

data

sources:

The

VARCHAR_NO_TRAILING_BLANKS

column

option

can

be

used

to

identity

specific

columns

that

contain

no

trailing

blanks.

The

SQL

Compiler

will

factor

in

this

setting

when

it

checks

for

all

operations

(such

as

comparison

operations)

performed

on

columns.

The

nickname

ORA_INDSALES

is

for

an

Oracle

table

called

INDONESIA_SALES.

The

table

contains

the

column

NAME

with

the

data

type

of

VARCHAR.

The

NAME

column

does

not

have

trailing

blanks.

To

add

the

VARCHAR_NO_TRAILING_BLANKS

option

to

the

nickname,

use

this

statement:

Chapter

28.

Altering

nicknames

529

|
|

|

|

|
|

|
|

|

|

|

|

ALTER

NICKNAME

ORA_INDSALES

ALTER

COLUMN

NAME

OPTIONS

(ADD

VARCHAR_NO_TRAILING_BLANKS

’Y’)

Example

3:

Specifying

the

XPATH

column

option

with

nonrelational

data

sources:

The

nickname

EMPLOYEE

is

for

an

XML

data

source.

An

XPATH

was

specified

for

the

fname

column.

To

set

the

XPATH

column

option

to

a

different

path,

use

this

statement:

ALTER

NICKNAME

EMPLOYEE

ALTER

COLUMN

fname

OPTIONS

(SET

XPATH

’./@first’)

Related

tasks:

v

“Altering

a

nickname”

on

page

523

Related

reference:

v

“Restrictions

on

altering

nicknames”

on

page

524

v

“ALTER

NICKNAME

statement”

in

the

SQL

Reference,

Volume

2

v

Appendix

G,

“Nickname

column

options

for

federated

systems,”

on

page

603

Altering

a

local

type

for

a

data

source

object

When

you

create

a

nickname,

the

data

types

that

are

associated

with

the

data

source

object

are

stored

in

the

federated

database.

For

some

data

sources,

the

wrapper

specifies

the

data

types

for

you.

For

other

data

sources,

you

must

specify

the

data

types

when

you

create

the

nickname.

You

can

specify

a

local

type

for

a

column

of

a

specific

data

source

object.

You

use

the

ALTER

NICKNAME

statement

instead

of

the

CREATE

TYPE

MAPPING

statement.

Attention:

Changing

the

local

data

type

can

result

in

errors

or

loss

of

information

if

you

change

the

local

data

type

for

a

column

to

a

type

that

differs

greatly

from

its

remote

type.

Prerequisites:

The

authorization

ID

issuing

the

statement

must

include

at

least

one

of

the

following

privileges:

v

SYSADM

or

DBADM

authority

v

ALTER

privilege

on

the

nickname

specified

in

the

statement

v

CONTROL

privilege

on

the

nickname

specified

in

the

statement

v

ALTERIN

privilege

on

the

schema,

if

the

schema

name

of

the

nickname

exists

The

authorization

ID

associated

with

the

statement

must

be

the

definer

of

the

nickname

as

recorded

in

the

DEFINER

column

of

the

catalog

view

for

the

nickname.

Restrictions:

See

the

topic

on

restrictions

to

altering

nicknames.

Procedure:

530

Data

Source

Configuration

Guide

|
|
|
|

|
|
|

You

can

change

the

data

type

from

the

DB2

Control

Center

or

the

DB2

command

line.

To

do

this

task

from

the

DB2

Control

Center:

1.

Select

the

Nicknames

folder.

2.

Right-click

on

the

nickname

that

you

want

to

change

and

click

Alter.

The

Alter

Nickname

notebook

opens.

3.

On

the

Nicknames

page,

select

the

column

that

you

want

to

change

and

click

Change.

The

Change

Column

window

opens.

4.

Select

the

data

type.

5.

Click

OK

to

change

the

data

type

and

close

the

window.

6.

Click

OK

to

alter

the

nickname

and

close

the

notebook.

To

do

this

task

from

the

command

line

prompt,

use

the

ALTER

NICKNAME

statement.

For

example:

ALTER

NICKNAME

nickname

ALTER

COLUMN

column_name

LOCAL

TYPE

data_type

To

treat

the

contents

of

a

local

column

that

has

a

character

data

type

as

bit

(binary)

data,

use

the

FOR

BIT

DATA

clause

in

the

ALTER

NICKNAME

statement.

When

you

use

this

clause

to

change

the

local

data

type

of

a

column,

code

page

conversions

are

not

performed

when

data

is

exchanged

with

other

systems.

Comparisons

are

done

in

binary,

irrespective

of

the

remote

database

collating

sequence.

Related

tasks:

v

“Altering

a

nickname”

on

page

523

Related

reference:

v

“Restrictions

on

altering

nicknames”

on

page

524

v

“ALTER

NICKNAME

statement”

in

the

SQL

Reference,

Volume

2

v

Appendix

H,

“Default

forward

data

type

mappings,”

on

page

611

v

“Altering

a

local

type

for

a

data

source

object

–

examples”

on

page

531

v

“Data

types

supported

for

nonrelational

data

sources”

on

page

517

Altering

a

local

type

for

a

data

source

object

–

examples

The

following

examples

show

how

to

change

the

data

types

for

a

data

source

object.

Example:

A

numeric

data

type

mapping:

In

an

Oracle

table

for

employee

information,

the

BONUS

column

is

defined

with

a

data

type

of

NUMBER(32,3).

The

Oracle

data

type

NUMBER(32,3)

is

mapped

by

default

to

the

DB2

data

type

DOUBLE,

a

double-precision

floating-point

number

data

type.

A

query

that

includes

the

BONUS

column

might

return

values

that

look

like

this:

5.0000000000000E+002

1.0000000000000E+003

The

scientific

notation

indicates

the

number

of

decimal

places

and

the

direction

that

the

decimal

point

should

be

moved.

In

this

example

+002

signifies

that

the

Chapter

28.

Altering

nicknames

531

|
|

|

|

|
|

|
|

|

|

|

|
|
|
|
|
|

decimal

point

should

be

moved

two

places

to

the

right,

and

+003

signifies

that

the

decimal

point

should

be

moved

three

places

to

the

right.

Queries

that

include

the

BONUS

column

can

return

values

that

look

like

dollar

amounts.

You

change

the

local

definition

for

the

BONUS

column

in

the

table

from

the

DOUBLE

data

type

to

DECIMAL

data

type.

Use

a

precision

and

scale

that

reflect

the

format

of

actual

bonuses.

For

example,

if

the

dollar

portion

of

the

bonuses

would

not

exceed

six

figures,

map

NUMBER(32,3)

to

DECIMAL(8,2).

Under

the

constraint

of

this

new

local

type,

queries

that

include

the

BONUS

column

return

values

like

this:

500.00

1000.00

The

nickname

for

the

Oracle

table

is

ORASALES.

To

map

the

BONUS

column

in

the

ORASALES

table

to

the

DB2

DECIMAL

(8,2)

data

type,

issue

the

following

ALTER

NICKNAME

statement:

ALTER

NICKNAME

ORASALES

ALTER

COLUMN

BONUS

LOCAL

TYPE

DECIMAL(8,2)

ORASALES

The

nickname

that

you

defined

for

the

Oracle

table.

ALTER

COLUMN

BONUS

The

name

of

the

column

that

is

defined

locally

in

the

federated

database

SYSCAT.COLUMNS

catalog

view.

LOCAL

TYPE

DECIMAL(8,2)

Identifies

the

new

local

type

for

the

column.

This

mapping

applies

only

to

the

BONUS

column

in

the

Oracle

table

that

is

identified

by

the

nickname

ORASALES.

All

other

Oracle

data

source

objects

that

include

the

BONUS

column

use

the

default

data

type

mapping

for

the

Oracle

NUMBER

data

type.

Example:

A

date

data

type

mapping:

The

nickname

for

an

Oracle

table

named

SALES

is

ORASALES.

The

SALES

table

contains

a

column

that

is

the

Oracle

DATE

data

type.

The

default

type

mapping

for

the

Oracle

DATE

data

type

is

to

the

DB2

TIMESTAMP

data

type.

However,

you

want

to

display

only

the

date

value

when

you

retrieve

data

from

this

column.

You

can

alter

the

nickname

for

the

SALES

table

to

change

the

local

type

to

the

DB2

DATE

data

type.

ALTER

NICKNAME

ORASALES

ALTER

COLUMN

ORDER_DATE

LOCAL

TYPE

DATE

Example:

A

data

type

mapping

for

a

nonrelational

data

source:

The

nickname

for

a

table-structured

file

named

drugdata1.txt

is

DRUGDATA1.

The

drugdata1.txt

file

contains

a

column

that

lists

pharmaceutical

drug

names.

The

column

name

is

DRUG.

The

DRUG

column

was

originally

defined

as

a

CHAR(20).

The

length

of

the

column

must

be

changed

to

CHAR(30).

You

can

alter

the

nickname

for

the

drugdata1.txt

file

to

change

the

mapping

to

the

correct

length:

ALTER

NICKNAME

DRUGDATA1

ALTER

COLUMN

DRUG

LOCAL

TYPE

CHAR(30)

Related

tasks:

532

Data

Source

Configuration

Guide

|
|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|

|
|

v

“Creating

data

type

mappings”

in

the

Federated

Systems

Guide

v

“Altering

a

local

type

for

a

data

source

object”

on

page

530

Related

reference:

v

“ALTER

NICKNAME

statement”

in

the

SQL

Reference,

Volume

2

v

“Restrictions

on

altering

nicknames”

on

page

524

Chapter

28.

Altering

nicknames

533

534

Data

Source

Configuration

Guide

Chapter

29.

DDL

command

reference

This

chapter

provides

details

of

the

syntax

statements,

arguments,

and

options

for

the

wrapper

DDL

commands

that

are

discussed

in

this

book.

The

statements

are

ordered

by

wrapper.

BioRS

DDL

reference

information

CREATE

SERVER

statement

options

-

BioRS

wrapper

Options

for

the

CREATE

SERVER

statement

for

BioRS

are:

TYPE

Specifies

the

server

type.

The

default

value

is

BioRS.

The

default

value

is

the

only

value

that

is

supported

for

the

BioRS

wrapper.

You

do

not

need

to

specify

this

option.

VERSION

Specifies

the

server

version.

The

default

value

is

1.0.

The

default

value

is

the

only

value

that

is

supported

for

the

BioRS

wrapper

You

do

not

need

to

specify

this

option.

NODE

Specifies

the

host

name

of

the

system

on

which

the

BioRS

query

tool

is

available.

The

default

value

is

localhost.

PORT

Specifies

the

number

of

the

port

to

be

used

to

connect

to

the

BioRS

server.

The

default

value

is

5014.

TIMEOUT

Specifies

the

time,

in

minutes,

that

the

BioRS

wrapper

should

wait

for

a

response

from

the

BioRS

server.

The

default

value

is

10.

You

must

specify

this

option.

CASE_SENSITIVE

Specifies

whether

the

BioRS

server

treats

names

in

a

case

sensitive

manner.

Valid

values

are

’Y’

or

’N’.

The

default

value

is

’Y’.

In

the

BioRS

product,

a

configuration

parameter

controls

the

case

sensitivity

of

the

data

that

is

stored

on

the

BioRS

server

machine.

The

CASE_SENSITIVE

option

is

the

DB2

Information

Integrator

counterpart

to

that

BioRS

system

configuration

parameter.

You

must

synchronize

the

BioRS

server

case

sensitivity

configuration

settings

in

your

BioRS

system

and

in

DB2

Information

Integrator.

If

you

do

not

keep

the

case

sensitivity

configuration

settings

synchronized

between

BioRS

and

DB2

Information

Integrator,

errors

will

occur

when

you

attempt

to

access

BioRS

data

through

DB2

Information

Integrator.

Important:

You

cannot

change

or

delete

the

CASE_SENSITIVE

option

after

you

create

a

new

BioRS

server

in

DB2

Information

Integrator.

If

you

need

to

change

the

CASE_SENSITIVE

option,

you

must

drop

and

then

create

the

entire

server

again.

If

you

drop

the

BioRS

server,

you

must

also

create

all

of

the

corresponding

BioRS

nicknames

again.

DB2

Information

Integrator

automatically

drops

all

nicknames

that

correspond

to

a

dropped

server.

Related

tasks:

v

“Registering

the

server

definition

for

a

BioRS

data

source”

on

page

72

©

Copyright

IBM

Corp.

1998,

2004

535

v

“Registering

nicknames

for

BioRS

data

sources”

on

page

74

Related

reference:

v

“CREATE

SERVER

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

NICKNAME

statement

syntax

-

BioRS

wrapper”

on

page

536

CREATE

USER

MAPPING

statement

options

-

BioRS

wrapper

GUEST

Specifies

whether

operations

are

to

be

performed

under

the

BioRS

guest

authentication

mechanism

on

the

BioRS

server.

Valid

values

are

’Y’

or

’N’.

The

default

value

is

’Y’.

If

this

option

is

set

to

’Y’,

then

guest

authentication

is

used

to

access

the

BioRS

server

for

this

DB2

Information

Integrator

user.

If

this

option

is

set

to

’N’,

then

a

BioRS

authorization

ID

and

password

must

be

provided

to

access

the

BioRS

server

for

this

DB2

Information

Integrator

user.

If

no

user

mapping

is

created,

or

if

a

user

mapping

is

created

with

no

options

specified,

then

guest

authentication

is

used

to

access

the

BioRS

server

for

the

DB2

Information

Integrator

user.

REMOTE_AUTHID

Specifies

a

user

ID

that

allows

this

DB2

user

to

access

BioRS

data

sources.

This

remote

ID

must

be

in

the

format

that

is

expected

by

the

BioRS

application.

This

option

is

required

if

the

GUEST

option

is

set

to

’N’.

REMOTE_PASSWORD

Specifies

the

password

for

this

remote

ID.

This

option

is

required

if

the

GUEST

option

is

set

to

’N’.

Example:

The

following

CREATE

USER

MAPPING

statement

maps

user

Charlie

to

user

Charlene

on

the

Biors_Server1

server.

CREATE

USER

MAPPING

FOR

Charlie

SERVER

Biors_Server1

OPTIONS(GUEST

’N’,

REMOTE_AUTHID

’Charlene’,

REMOTE_PASSWORD

’Charlene_pw’);

Related

tasks:

v

“Registering

user

mappings

for

BioRS

data

sources”

on

page

73

Related

reference:

v

“CREATE

USER

MAPPING

statement”

in

the

SQL

Reference,

Volume

2

CREATE

NICKNAME

statement

syntax

-

BioRS

wrapper

The

syntax

for

the

CREATE

NICKNAME

statement

is:

��

CREATE

NICKNAME

nickname

�

,

(

column-name

column-information

)

�

536

Data

Source

Configuration

Guide

�

FOR

SERVER

server-name

OPTIONS

(

�

�

REMOTE_OBJECT

’BioRS_databank_name’

)

��

column-information:

data-type

nickname-column-options

data-type:

CLOB

CHARACTER

LARGE

OBJECT

(

integer

)

CHAR

K

M

G

CHARACTER

CHAR

(

integer

)

VARCHAR

(

integer

)

nickname-column-options:

OPTIONS

(

ELEMENT_NAME

’BioRS_element_name’

,

�

�

IS_INDEXED

’Y’

,

’N’

REFERENCED_OBJECT

’BioRS_databank_name’

)

Nickname

column

options

Nickname

column

option

values

must

be

enclosed

in

single

quotation

marks.

ELEMENT_NAME

Specifies

the

BioRS

element

name.

The

case

sensitivity

of

this

name

depends

on

the

case

sensitivity

of

the

BioRS

server

and

on

the

value

of

the

CASE_SENSITIVE

server

option.

You

need

to

specify

the

BioRS

element

name

only

if

it

is

different

from

the

column

name.

IS_INDEXED

Indicates

whether

the

corresponding

column

is

indexed

(whether

the

column

can

be

referenced

in

a

predicate).

The

valid

values

are

’Y’

and

’N’.

The

value

’Y’

can

be

specified

only

for

columns

whose

corresponding

element

is

indexed

by

the

BioRS

server.

When

a

nickname

is

created,

this

option

is

automatically

added

with

the

value

’Y’

to

any

columns

that

correspond

to

a

BioRS

indexed

element.

REFERENCED_OBJECT

This

option

is

valid

only

for

columns

whose

BioRS

data

type

is

Reference.

This

option

specifies

the

name

of

the

BioRS

databank

that

is

referenced

by

Chapter

29.

DDL

command

reference

537

||||||

the

current

column.

The

case

sensitivity

of

this

name

depends

on

the

case-sensitivity

of

the

BioRS

server

and

on

the

value

of

the

CASE_SENSITIVE

server

option.

Nickname

options

Nickname

option

values

must

be

enclosed

in

single

quotation

marks.

REMOTE_OBJECT

Specifies

the

name

of

the

BioRS

databank

that

is

associated

with

the

nickname.

This

name

determines

the

schema

and

the

BioRS

databank

for

the

nickname.

This

name

also

specifies

the

relationship

of

the

nickname

to

other

nicknames.

The

case

sensitivity

of

this

name

depends

on

the

case

sensitivity

of

the

BioRS

server

and

on

the

value

of

the

CASE_SENSITIVE

server

option.

Important:

You

cannot

change

or

delete

this

name

with

the

ALTER

NICKNAME

statement.

If

the

name

of

the

BioRS

databank

that

is

used

in

this

option

changes,

you

must

delete

and

then

create

the

entire

nickname

again.

Related

tasks:

v

“Registering

nicknames

for

BioRS

data

sources”

on

page

74

Related

reference:

v

“CREATE

NICKNAME

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

NICKNAME

statement

-

Examples

for

BioRS

wrapper”

on

page

75

BLAST

DDL

reference

information

CREATE

SERVER

statement

arguments

-

BLAST

wrapper

CREATE

SERVER

arguments

for

the

BLAST

wrapper:

TYPE

Determines

the

type

of

BLAST

search

performed

using

the

given

server.

This

argument

is

required.

It

must

be

set

to

one

of

the

following

values:

blastn,

blastp,

blastx,

tblastn,

tblastx.

VERSION

Specifies

the

version

of

the

server

that

you

are

using.

It

should

be

set

to

the

version

of

blastall

that

you

are

running.

This

argument

is

required.

WRAPPER

Specifies

the

name

of

the

wrapper

that

you

registered

using

the

CREATE

WRAPPER

statement.

This

argument

is

required.

Server

options

for

the

BLAST

wrapper:

The

options

for

BLAST

that

you

can

specify

in

the

CREATE

SERVER

statement

are:

v

DAEMON_PORT

v

NODE

v

USE_CLOB_SEQUENCE

Related

tasks:

v

“Registering

the

server

for

a

BLAST

data

source”

on

page

106

538

Data

Source

Configuration

Guide

Related

reference:

v

“CREATE

SERVER

statement”

in

the

SQL

Reference,

Volume

2

v

Appendix

D,

“Server

options

for

federated

systems,”

on

page

575

CREATE

NICKNAME

statement

syntax

-

BLAST

wrapper

The

syntax

for

the

CREATE

NICKNAME

statement

is:

��

CREATE

NICKNAME

nickname

�

,

(

column-name

column-information

)

�

�

FOR

SERVER

server-name

OPTIONS

(

DATASOURCE

’data_source_name’

�

�

,

PROCESSORS

’processor_number’

,

TIMEOUT

’timeout_duration’

)

��

column-information:

data-type

column-option

nickname-column-options

data-type:

INTEGER

INT

FLOAT

(

integer

)

PRECISION

DOUBLE

CLOB

*

CHARACTER

LARGE

OBJECT

(

integer

)

CHAR

K

M

G

CHARACTER

CHAR

(

integer

)

VARCHAR

(

integer

)

column-option:

NOT

NULL

nickname-column-options:

OPTIONS

(

INDEX

’index_number’

,

DELIMITER

’delimiter’

�

Chapter

29.

DDL

command

reference

539

||||||

�

DEFAULT

’new_default_value’

)

Restriction:

The

length

of

a

CLOB

is

limited

to

5

megabytes

(5MB)

for

the

BLAST

wrapper.

There

are

2

types

of

options

that

you

can

specify

in

the

CREATE

NICKNAME

statement

for

the

BLAST

data

sources:

v

Nickname

column

options

v

Nickname

options

Related

tasks:

v

“Registering

nicknames

for

BLAST

data

sources”

on

page

107

Related

reference:

v

“CREATE

NICKNAME

statement”

in

the

SQL

Reference,

Volume

2

v

Appendix

G,

“Nickname

column

options

for

federated

systems,”

on

page

603

v

Appendix

F,

“Nickname

options

for

federated

systems,”

on

page

593

v

“CREATE

NICKNAME

statement

-

Examples

for

BLAST

wrapper”

on

page

112

Documentum

DDL

reference

information

CREATE

SERVER

statement

arguments

and

options

-

Documentum

wrapper

Arguments

associated

with

the

CREATE

SERVER

statement

for

Documentum

are:

TYPE

Specifies

the

type

of

the

data

source.

For

Documentum,

the

type

is

DCTM.

This

argument

is

required.

VERSION

Specifies

the

version

of

the

data

source.

For

EDMS98,

the

value

is

’3’.

For

4i,

the

value

is

’4’.

This

argument

is

required.

WRAPPER

Specifies

the

name

of

the

wrapper

associated

with

this

server.

This

argument

is

required.

Options

associated

with

the

CREATE

SERVER

statement

for

Documentum

are:

CONTENT_DIR

Specifies

the

name

of

the

locally-accessible

root

directory

for

storing

content

files

retrieved

by

the

GET_FILE,

GET_FILE_DEL,

GET_RENDITION,

and

GET_RENDITION_DEL

pseudo

columns.

It

must

be

writable

by

all

users

who

can

use

these

pseudo

columns.

Its

default

value

is

/tmp.

This

option

is

optional.

NODE

Specifies

the

actual

name

of

the

Documentum

Docbase.

This

option

is

required.

OS_TYPE

Specifies

the

Docbase

server’s

operating

system.

Valid

values

are

AIX,

SOLARIS,

and

WINDOWS.

This

option

is

required.

540

Data

Source

Configuration

Guide

|
|

RDBMS_TYPE

Specifies

the

RDBMS

used

by

the

Docbase.

Valid

values

are

DB2,

INFORMIX,

ORACLE,

SQLSERVER

or

SYBASE.

This

option

is

required.

TRANSACTIONS

Specifies

the

server

transaction

mode.

The

valid

values

are:

v

NONE

—

no

transactions

are

enabled.

v

QUERY

—

transactions

are

enabled

only

for

Dctm_Query

methods.

v

ALL

—

transactions

are

enabled

for

the

Dctm_Query

method.

ALL

has

the

same

function

as

QUERY

in

this

release.

The

default

is

QUERY.

This

option

is

optional.

Related

tasks:

v

“Registering

the

server

for

Documentum

data

sources”

on

page

175

Related

reference:

v

“CREATE

SERVER

statement”

in

the

SQL

Reference,

Volume

2

CREATE

USER

MAPPING

statement

options

-

Documentum

wrapper

Option

definitions:

REMOTE_AUTHID

Authorization

identifier

for

you

at

the

remote

server.

REMOTE_PASSWORD

Password

for

you

at

the

remote

server.

REMOTE_DOMAIN

Windows

networking

domain

for

you

at

the

remote

server.

Valid

only

for

Windows

platforms.

Related

tasks:

v

“Registering

user

mappings

for

Documentum

data

sources”

on

page

176

Related

reference:

v

“CREATE

USER

MAPPING

statement”

in

the

SQL

Reference,

Volume

2

CREATE

NICKNAME

statement

syntax

-

Documentum

wrapper

The

syntax

for

the

CREATE

NICKNAME

statement

for

Documentum

is:

��

CREATE

NICKNAME

nickname

�

,

(

column-name

column-information

)

�

�

FOR

SERVER

server-name

OPTIONS

(

ALL_VERSIONS

’Y’

,

’N’

�

Chapter

29.

DDL

command

reference

541

�

FOLDERS

’folder_string’

,

IS_REG_TABLE

’Y’

,

’N’

�

�

REMOTE_OBJECT

’remote_object_type’

)

��

column-information:

data-type

column-option

nickname-column-options

data-type:

SMALLINT

INTEGER

INT

DOUBLE

PRECISION

CHARACTER

CHAR

(

integer

)

VARCHAR

(

integer

)

DATE

TIMESTAMP

column-option:

NOT

NULL

nickname-column-options:

OPTIONS

(

REMOTE_NAME

’attribute_name’

,

�

�

DELIMITER

’delimiter’

,

IS_REPEATING

’Y’

,

’N’

�

�

ALL_VALUES

’Y’

’N’

Column

options

associated

with

the

CREATE

NICKNAME

statement

for

Documentum

are:

NOT

NULL

All

single-valued

columns

except

those

defined

as

TIMESTAMP

and

DATE

must

be

defined

as

NOT

NULL.

Repeating

attributes

must

not

be

defined

as

NOT

NULL

in

nicknames.

542

Data

Source

Configuration

Guide

Nickname

column

options

associated

with

the

CREATE

NICKNAME

statement

for

Documentum

are:

Nickname

column

option

values

must

be

enclosed

in

single

quotation

marks.

ALL_VALUES

Specifies

that

all

values

of

a

repeating

attribute

will

be

returned,

separated

by

the

specified

delimiter.

If

this

option

is

missing

or

is

’N’,

then

only

the

last

value

of

a

repeating

attribute

will

be

returned.

As

noted

under

DELIMITER,

ALL_VALUES

can

only

be

specified

for

VARCHAR

columns

for

which

the

IS_REPEATING

option

is

’Y’

(and

is

invalid

when

IS_REG_TABLE

=

’Y’).

DELIMITER

Specifies

the

delimiter

string

to

be

used

when

concatenating

multiple

values

of

a

repeating

attribute.

The

delimiter

can

be

one

or

more

characters.

The

default

delimiter

is

a

comma.

This

option

is

only

valid

for

attributes

of

objects

with

data

type

VARCHAR

where

the

IS_REPEATING

option

is

set

to

’Y’.

This

option

is

optional.

IS_REPEATING

Indicates

if

the

column

is

multi-valued.

Valid

values

are

’Y’

and

’N’.

The

default

is

’N’.

This

option

is

optional.

Only

the

last

value

is

returned

for

v

non-VARCHAR

repeating

attributes

v

VARCHAR

columns

when

ALL_VALUES

’N’

is

specified

To

overcome

this

limitation,

you

can

create

a

dual

definition

for

the

repeating

attribute

column.

REMOTE_NAME

Specifies

the

name

of

the

corresponding

Documentum

attribute

or

column.

This

option

maps

remote

attribute

or

column

names

to

local

DB2

column

names.

It

defaults

to

the

DB2

column

name.

This

option

is

optional.

Nickname

column

options

associated

with

the

CREATE

NICKNAME

statement

for

Documentum

are:

Nickname

option

values

must

be

enclosed

in

single

quotation

marks.

ALL_VERSIONS

Specifies

whether

all

object

versions

will

be

searched.

The

valid

values

are

’y’,

’Y’,

’n’,

and

’N’.

The

default

value

of

’N’

means

that

only

the

current

object

versions

are

included

in

query

processing.

This

option

is

invalid

when

IS_REG_TABLE

=

’Y’.

This

option

is

optional.

FOLDERS

Specifies

a

string

that

contains

one

or

more

logically-combined

and

syntactically-correct

Documentum

FOLDER

predicates.

Specifying

FOLDER

predicates

restricts

the

set

of

documents

represented

by

this

nickname

to

those

in

the

designated

folders.

When

you

specify

this

option,

enclose

the

entire

value

of

the

FOLDERS

option

in

single

quotes

and

use

double

quotes

in

place

of

the

single

quotes

within

the

string.

For

example,

if

you

want

to

insert:

FOLDER(’/Tools’,DESCEND)

OR

FOLDER(’/Cars’)

Chapter

29.

DDL

command

reference

543

Specify

the

following

FOLDERS

option:

FOLDERS

’FOLDER("/Tools",DESCEND)

OR

FOLDER("/Cars")’

This

option

is

invalid

when

IS_REG_TABLE

=

’Y’.

This

option

is

optional.

IS_REG_TABLE

Specifies

whether

the

object

specified

by

the

REMOTE_OBJECT

option

is

a

Documentum

registered

table.

The

valid

values

are

’y’,

’Y’,

’n’,

and

’N’.

The

default

value

is

’N’.

This

option

is

optional.

You

cannot

change

a

nickname

from

a

Documentum

object

to

a

registered

table

(or

back)

by

changing

this

option

with

the

ALTER

NICKNAME

statement.

Instead,

you

must

DROP

and

re-CREATE

the

nickname.

REMOTE_OBJECT

Specifies

the

name

of

the

Documentum

object

type

associated

with

the

nickname.

The

name

can

be

any

Documentum

object

type

or

registered

table.

In

the

case

of

a

registered

table,

it

should

be

prefixed

by

the

table

owner’s

name.

If

the

registered

table

belongs

to

the

Docbase

owner,

dm_dbo

can

be

used

for

the

owner

name.

This

option

is

required.

Using

ALTER

NICKNAME

to

change

the

value

of

the

REMOTE_OBJECT

option

will

result

in

errors

if

the

structure

of

the

new

object

is

not

similar

to

that

of

the

original

object.

Related

tasks:

v

“Registering

nicknames

for

Documentum

data

sources”

on

page

176

Related

reference:

v

“CREATE

NICKNAME

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

NICKNAME

statement

-

Example

for

Documentum

wrapper”

on

page

180

Excel

DDL

reference

information

CREATE

SERVER

statement

arguments

-

Excel

wrapper

Arguments

associated

with

the

CREATE

SERVER

statement

for

Excel

are:

WRAPPER

Specifies

the

name

of

the

wrapper

that

you

registered

in

the

associated

CREATE

WRAPPER

statement.

This

argument

is

required.

Related

tasks:

v

“Registering

the

server

for

an

Excel

data

source”

on

page

220

Related

reference:

v

“CREATE

SERVER

statement”

in

the

SQL

Reference,

Volume

2

CREATE

NICKNAME

statement

syntax

-

Excel

wrapper

��

CREATE

NICKNAME

nickname

(

�

544

Data

Source

Configuration

Guide

�

�

,

column-name

data-type

column-option

)

�

�

FOR

SERVER

server-name

OPTIONS

�

�

(

FILE_PATH

’path’

,

RANGE

’range’

)

��

data-type:

INTEGER

INT

FLOAT

(

integer

)

VARCHAR

(

integer

)

DATE

column-option:

NOT

NULL

Where:

FOR

SERVER

Identifies

the

server

that

you

registered

in

the

associated

CREATE

SERVER

statement.

This

server

is

used

to

access

the

Excel

spreadsheet.

Specify

the

server

name.

The

following

list

describes

the

CREATE

NICKNAME

options

for

Excel:

FILE_PATH

Specifies

the

fully

qualified

directory

path

and

file

name

of

the

Excel

spreadsheet

that

you

want

to

access.

Data

types

must

be

consistent

within

each

column

and

the

column

data

types

must

be

described

correctly

during

the

register

nickname

process.

The

Excel

wrappers

can

only

access

the

primary

spreadsheet

within

an

Excel

workbook.

Blank

cells

in

the

spreadsheet

are

interpreted

as

NULL.

Up

to

10

consecutive

blank

rows

can

exist

in

the

spreadsheet

and

be

included

in

the

data

set.

More

than

10

consecutive

blank

rows

are

interpreted

as

the

end

of

the

data

set.

Blank

columns

can

exist

in

the

spreadsheet.

However,

these

columns

must

be

registered

and

described

as

valid

fields

even

if

they

will

not

be

used.

The

database

codepage

must

match

the

file’s

character

set;

otherwise,

you

could

get

unexpected

results.

Chapter

29.

DDL

command

reference

545

|

RANGE

Specifies

a

range

of

cells

to

be

used

in

the

data

source.

This

option

is

not

required.

Any

syntax

or

semantic

error

in

the

range

option

value

results

in

an

SQL1882E

message.

Errors

might

include:

v

The

top

left

and

bottom

right

indicators

are

not

oriented

correctly.

An

incorrect

orientation

is

one

in

which

the

top-left

cell

indicator

is

either

below

or

to

the

right

of

the

bottom-right

cell

indicator.

v

The

number

of

columns

designated

by

the

range

value

does

not

correspond

to

the

number

of

columns

specified

in

the

CREATE

NICKNAME

statement.

v

A

nonvalid

character

or

other

syntax

error

has

been

found.

Here

is

an

example

of

the

RANGE

nickname

option:

CREATE

NICKNAME

excel2

(c1

VARCHAR

(10),

c2

VARCHAR

(10),

c3

VARCHAR

(10),

c4

VARCHAR

(10)

)

FOR

SERVER

excel_server

OPTIONS

(FILE_PATH

’C:\My

Documents\test2.xls’,

RANGE

’B2:E5’);

In

this

example,

B2

represents

the

top

left

of

a

cell

range,

and

E5

represents

the

bottom

right

of

the

cell

range.

The

letter

B

in

the

B2

designation

is

the

column

designation.

The

number

2

in

the

B2

representation

is

the

row

number.

The

bottom

right

designation

can

be

omitted

from

the

range.

In

this

case,

the

bottom

right

valid

row

is

used.

If

the

top

left

value

is

omitted,

then

the

value

is

taken

as

A1.

If

the

range

specifies

more

rows

than

are

actually

in

the

spreadsheet,

then

the

actual

number

of

rows

is

used.

Related

tasks:

v

“Registering

nicknames

for

Excel

data

sources”

on

page

221

Related

reference:

v

“CREATE

NICKNAME

statement”

in

the

SQL

Reference,

Volume

2

Extended

Search

DDL

reference

information

CREATE

WRAPPER

statement

syntax

-

Extended

Search

wrapper

��

CREATE

WRAPPER

wrapper-name

LIBRARY

’library-name’

��

WRAPPER

Specifies

a

unique

name

for

this

Extended

Search

wrapper.

LIBRARY

Specifies

one

of

the

following

platform-dependent

library

names:

v

Windows:

db2uies.dll

v

AIX:

libdb2uies.a

546

Data

Source

Configuration

Guide

Related

tasks:

v

“Registering

the

Extended

Search

wrapper”

on

page

236

Related

reference:

v

“CREATE

WRAPPER

statement”

in

the

SQL

Reference,

Volume

2

CREATE

SERVER

statement

syntax

-

Extended

Search

wrapper

��

CREATE

SERVER

server-name

WRAPPER

wrapper-name

OPTIONS

(

�

�

ES_HOST

’host-name’

,

ES_PORT

’port-number’

,

�

�

’OFF’

ES_TRACING

,

’ON’

�

C

ES_TRACELEVEL

’

’

,

N

W

I

�

�

’$INSTHOME/sqllib/log/ESWrapper.log’

’%DB2TEMPDIR%\ESWrapper.log’

ES_TRACEFILENAME

’path’

)

��

SERVER

Specifies

a

unique

name

for

this

server

definition.

This

parameter

is

required.

WRAPPER

Specifies

the

name

of

a

previously

registered

Extended

Search

wrapper

that

you

want

to

use

with

this

server

definition.

This

parameter

is

required.

ES_HOST

Specifies

the

fully

qualified

host

name

or

IP

address

of

the

Extended

Search

server

that

you

want

to

search.

This

option

is

required.

ES_PORT

Specifies

the

port

number

where

this

Extended

Search

server

listens

for

requests.

If

you

omit

this

option,

the

default

value

is

6001.

ES_TRACING

Specifies

whether

tracing

should

be

enabled

for

error

messages,

warning

messages,

and

informational

messages

that

are

produced

by

the

remote

Extended

Search

server.

The

default

value,

OFF,

means

that

no

trace

messages

will

be

logged.

ES_TRACELEVEL

If

tracing

is

enabled,

this

option

specifies

the

types

of

messages

that

will

be

written

to

the

log

file.

The

default

value,

C,

logs

only

critical

messages.

You

can

enable

and

disable

the

following

trace

levels

independently:

C

—

Critical

error

messages

N

—

Noncritical

messages

W

—

Warning

messages

I

—

Informational

messages

Chapter

29.

DDL

command

reference

547

|

For

example:

ES_TRACELEVEL

’W’

ES_TRACELEVEL

’CN’

ES_TRACELEVEL

’CNWI’

ES_TRACEFILENAME

If

tracing

is

enabled,

this

option

specifies

the

name

of

a

directory

and

file

where

messages

will

be

written.

If

you

omit

this

option:

v

On

UNIX,

the

default

value

is

$INSTHOME/sqllib/log/ESWrapper.log

v

On

Windows,

the

default

value

is

%DB2TEMPDIR%\ESWrapper.log

Related

tasks:

v

“Registering

the

server

for

Extended

Search

data

sources”

on

page

237

Related

reference:

v

“CREATE

SERVER

statement”

in

the

SQL

Reference,

Volume

2

CREATE

USER

MAPPING

statement

syntax

-

Extended

Search

wrapper

��

CREATE

USER

MAPPING

FOR

authorization-name

SERVER

server-name

OPTIONS

�

�

(

REMOTE_AUTHID

’user-id’

,

REMOTE_PASSWORD

’password’

)

��

FOR

Specifies

the

user

ID

of

a

DB2

user

that

you

want

to

authorize

to

access

Extended

Search

data

sources.

This

parameter

is

required.

SERVER

Specifies

the

name

of

a

previously

registered

server

definition

that

was

created

for

the

Extended

Search

server

that

the

user

wants

to

search.

This

parameter

is

required.

REMOTE_AUTHID

Specifies

a

user

ID

that

allows

this

DB2

user

to

access

Extended

Search

data

sources.

This

remote

ID

must

be

in

the

format

that

is

expected

by

the

data

source

that

is

being

searched.

This

option

is

required.

REMOTE_PASSWORD

Specifies

the

password

for

this

remote

ID.

This

option

is

required.

Related

tasks:

v

“Registering

user

mappings

for

Extended

Search

data

sources”

on

page

238

Related

reference:

v

“CREATE

USER

MAPPING

statement”

in

the

SQL

Reference,

Volume

2

CREATE

NICKNAME

statement

syntax

-

Extended

Search

wrapper

��

CREATE

NICKNAME

nickname

(

�

,

column-name

data-type

)

�

548

Data

Source

Configuration

Guide

|

|

�

FOR

SERVER

server-name

OPTIONS

(

APPLICATIONID

’application-id’

,

�

�

CATEGORY

’category-name’

,

DATASOURCE

’source-name’

,

’NO’

VERTICAL_TABLE

,

’YES’

�

�

’30’

TIMEOUT

,

’timeout’

’50’

MAXHIT

,

’results’

�

�

’50’

TOTALMAXHIT

,

’total-results’

’A’

SORTORDER

,

’D’

�

�

’DOC_RANK’

SORTFIELD

’field-name’

)

��

data-type:

SMALLINT

INTEGER

INT

DOUBLE

PRECISION

VARCHAR

(

integer

)

DECIMAL

(

integer

)

DATE

NICKNAME

Specifies

a

unique

name

for

this

Extended

Search

nickname

table.

This

name

must

be

distinct

from

all

other

nicknames

in

the

schema

for

which

it

is

being

defined.

This

parameter

is

required.

column-name

Specifies

one

or

more

user-defined

column

names.

The

column

name

must

match

the

name

of

a

native

or

mapped

field

that

is

defined

in

the

Extended

Search

configuration

database.

This

parameter

is

optional.

data-type

Specifies

the

SQL

data

type

of

the

named

column.

This

data

type

must

correspond

to

the

data

type

that

is

defined

for

this

field

in

the

Extended

Search

configuration

database.

For

example,

to

search

a

field

in

an

Extended

Search

Chapter

29.

DDL

command

reference

549

data

source

that

has

a

String

data

type,

define

a

VARCHAR

column

for

this

field

in

the

nickname

table.

If

you

specify

a

column-name,

this

parameter

is

required.

FOR

SERVER

Specifies

the

name

of

a

previously

registered

server

definition

that

was

created

for

the

Extended

Search

server

that

you

want

to

search.

This

parameter

is

required.

APPLICATIONID

Specifies

the

name

of

the

Extended

Search

application

that

you

want

to

search.

This

name

must

exist

in

the

Extended

Search

configuration

database.

This

parameter

is

required.

CATEGORY

Specifies

one

or

more

Extended

Search

categories

that

you

want

to

search.

If

you

omit

this

option,

you

must

specify

at

least

one

data

source

name.

To

specify

multiple

categories,

delimit

the

category

names

with

a

semicolon.

For

example:

CATEGORY

’LotusNotes;MSAccess;LDAP’

DATASOURCE

Specifies

one

or

more

Extended

Search

data

sources

that

you

want

to

search.

If

you

omit

this

option,

you

must

specify

at

least

one

category

name.

To

specify

multiple

data

sources,

delimit

the

data

source

names

with

a

semicolon.

For

example:

DATASOURCE

’AltaVista;Google!;CNN’

VERTICAL_TABLE

Specifies

the

presentation

format

for

search

results.

If

you

specify

YES,

Extended

Search

returns

all

fields

that

are

configured

as

returnable,

not

just

the

user-defined

columns.

The

wrapper

stores

the

results

in

the

nickname

table

as

a

vertical

list

of

column

names.

The

default

value

is

NO.

TIMEOUT

An

INTEGER

that

specifies

the

number

of

seconds

to

wait

for

a

response

from

a

server

before

the

request

times

out.

This

option

is

optional.

The

default

value

is

30.

MAXHIT

An

INTEGER

that

specifies

the

maximum

number

of

results

that

can

be

returned

from

each

source

that

is

being

searched.

This

option

is

optional.

The

default

value

is

50.

TOTALMAXHIT

An

INTEGER

that

specifies

the

maximum

number

of

results

that

can

be

returned

from

all

the

sources

that

are

being

searched.

The

wrapper

combines

these

results

into

a

single

result

set.

This

option

is

optional.

The

default

value

is

50.

SORTORDER

Specifies

a

sort

order

for

the

return

of

search

results,

either

ascending

(A)

or

descending

(D).

The

default

value

is

A.

SORTFIELD

Specifies

the

name

of

a

field

on

which

search

results

should

be

sorted.

The

default

value,

DOC_RANK,

is

a

field

that

Extended

Search

uses

to

weigh

the

relevancy

of

a

result

document.

If

you

specify

a

different

field

name,

be

sure

that

name

exists

in

the

sources

that

you

search.

Related

concepts:

550

Data

Source

Configuration

Guide

v

“Extended

Search

nicknames”

on

page

232

v

“Extended

Search

vertical

tables”

on

page

233

Related

tasks:

v

“Registering

nicknames

for

Extended

Search

data

sources”

on

page

239

Related

reference:

v

“CREATE

NICKNAME

statement”

in

the

SQL

Reference,

Volume

2

v

“Extended

Search

wrapper

-

Example

queries”

on

page

242

CREATE

FUNCTION

statement

syntax

-

Extended

Search

wrapper

The

syntax

for

the

CREATE

FUNCTION

statement

is:

��

CREATE

FUNCTION

ESWRAPPER.ES_SEARCH

(

INTEGER

,

VARCHAR(1024)

)

�

�

RETURNS

INTEGER

AS

TEMPLATE

DETERMINISTIC

NO

EXTERNAL

ACTION

��

INTEGER

Defines

the

query

reference

parameter.

In

a

query,

this

parameter

must

specify

the

name

of

an

INTEGER

column

that

is

defined

in

the

nickname

table

for

which

this

custom

function

is

being

called.

The

value

must

be

a

bind

column

of

the

nickname,

not

a

constant

(for

example,

DOC_RANK).

The

reference

parameter

identifies

the

nickname

to

which

the

ES_SEARCH

function

should

be

applied.

The

parameter

itself

is

not

evaluated.

If

a

SELECT

statement

contains

more

than

one

table

in

the

FROM

clause,

and

the

WHERE

clause

contains

an

ES_SEARCH

statement,

the

reference

parameter

allows

you

to

tell

DB2

which

table

a

particular

search

statement

belongs

to.

For

example:

SELECT

*

FROM

ES_Nickname_1

as

N1,

ES_Nickname_2

as

N2

WHERE

ESWRAPPER.ES_SEARCH(N1.DOC_RANK,

’IBM’)=1

AND

ESWRAPPER.ES_SEARCH(N2.DOC_RANK,

’LOTUS’)=1

VARCHAR(1024)

Defines

the

query

expression.

In

a

query,

this

parameter

must

specify

a

string

that

uses

Extended

Search

generalized

query

language.

Related

tasks:

v

“Registering

the

custom

functions

for

the

Extended

Search

wrapper”

on

page

240

Related

reference:

v

“CREATE

FUNCTION

(Sourced

or

Template)

statement”

in

the

SQL

Reference,

Volume

2

v

“Extended

Search

wrapper

-

Example

queries”

on

page

242

v

“Extended

Search

wrapper

-

Generalized

query

language”

on

page

244

Chapter

29.

DDL

command

reference

551

Entrez

DDL

reference

information

CREATE

SERVER

statement

arguments

-

Entrez

wrapper

Arguments

for

the

CREATE

SERVER

statement

for

Entrez

are:

TYPE

Specifies

the

type

of

the

data

source.

The

acceptable

values

for

server

type

are

PubMed

and

Nucleotide.

These

are

case-insensitive.

VERSION

Specifies

the

version

of

the

NCBI

XML

schema

that

you

are

using.

This

argument

is

optional.

If

the

version

of

the

server

is

not

specified,

the

default

is

1.0.

WRAPPER

Specifies

the

name

of

the

wrapper

that

you

registered

by

using

the

CREATE

WRAPPER

statement.

Related

tasks:

v

“Registering

the

server

for

an

Entrez

data

source”

on

page

197

Related

reference:

v

“CREATE

SERVER

statement”

in

the

SQL

Reference,

Volume

2

v

Appendix

D,

“Server

options

for

federated

systems,”

on

page

575

CREATE

NICKNAME

statement

options

-

Entrez

wrapper

The

following

list

describes

the

CREATE

NICKNAME

options

for

Entrez:

REMOTE_OBJECT

Specifies

the

name

of

the

Entrez

object

type

associated

with

the

nickname.

This

name

determines

the

schema

and

NCBI

database

for

the

nickname

and

its

relationship

to

other

nicknames.

This

name

is

case-insensitive.

PARENT

Specified

only

for

a

child

nickname

whose

parent

has

been

renamed

through

the

REMOTE_OBJECT

option.

The

PARENT

option

associates

a

child

with

a

parent

when

multiple

nickname

families

are

defined

within

a

DB2

schema.

This

name

is

case-sensitive.

Related

tasks:

v

“Registering

nicknames

for

Entrez

data

sources”

on

page

199

Related

reference:

v

“CREATE

NICKNAME

statement”

in

the

SQL

Reference,

Volume

2

Table-structured

files

DDL

reference

information

CREATE

NICKNAME

statement

syntax

-

Table-structured

file

wrapper

The

syntax

for

the

CREATE

NICKNAME

statement

is:

552

Data

Source

Configuration

Guide

��

CREATE

NICKNAME

nickname

(

�

,

column-name

column–information

)

�

�

FOR

SERVER

server-name

OPTIONS

�

�

(

FILE_PATH

’path’

,

COLUMN_DELIMITER

’delimiter’

,

SORTED

’Y’

’N’

(1)

,

KEY_COLUMN

’key-column-name’

(1)

,

VALIDATE_DATA_FILE

’Y’

’N’

)

��

column–information:

data-type

column-option

nickname–column–options

data-type:

SMALLINT

INTEGER

INT

FLOAT

(

integer

)

REAL

DOUBLE

PRECISION

DECIMAL

DEC

(

integer

)

NUMERIC

,

integer

NUM

CLOB

*

CHARACTER

LARGE

OBJECT

(

integer

)

CHAR

K

M

G

CHARACTER

CHAR

(

integer

)

VARCHAR

(

integer

)

column-option:

NOT

NULL

Chapter

29.

DDL

command

reference

553

||||

nickname–column–options:

OPTIONS

(

DOCUMENT

’FILE’

)

Notes:

1 Not

allowed

for

unsorted

files.

Optional

for

sorted

files.

Restriction:

The

length

of

a

CLOB

is

limited

to

5

megabytes

(5MB)

for

the

table-structured

file

wrapper.

nickname

A

unique

nickname

for

the

table-structured

file

to

be

accessed.

It

must

be

distinct

from

all

other

nicknames,

tables,

and

views

in

the

schema

in

which

it

is

being

registered.

column-name

A

unique

name

given

to

each

field

in

the

table-structured

file.

Follow

each

column

name

with

its

data

type.

Only

columns

of

type

CHAR,

CLOB,

DECIMAL,

DOUBLE,

FLOAT,

INTEGER,

REAL,

SMALLINT,

and

VARCHAR

are

supported.

CHARACTER(integer)

or

CHAR(integer)

or

CHARACTER

or

CHAR

For

a

fixed-length

character

string

of

length

integer,

which

can

range

from

1

to

254.

If

the

length

specification

is

omitted,

a

length

of

1

character

is

assumed.

CLOB(integer)

For

a

character

large

object

of

length

integer,

with

a

maximum

length

of

5

megabytes.

If

the

length

specification

is

omitted,

a

length

of

1

megabyte

is

assumed.

DECIMAL(precision-integer,

scale-integer)

or

DEC(precision-integer,

scale-integer)

For

a

decimal

number.

The

first

integer

is

the

precision

of

the

number;

that

is,

the

total

number

of

digits.

This

value

can

range

from

1

to

31.

The

second

integer

is

the

scale

of

the

number;

that

is,

the

number

of

digits

to

the

right

of

the

decimal

point.

This

value

can

range

from

0

to

the

precision

of

the

number.

If

precision

and

scale

are

not

specified,

the

default

values

of

5,0

are

used.

The

words

NUMERIC

and

NUM

can

be

used

as

synonyms

for

DECIMAL

and

DEC.

DOUBLE

or

DOUBLE

PRECISION

For

double

precision

floating-point.

FLOAT(integer)

For

a

single

or

double

precision

floating-point

number,

depending

on

the

value

of

integer.

The

value

of

integer

must

be

in

the

range

1

through

53.

The

values

1

through

24

indicate

single

precision

and

the

values

25

through

53

indicate

double

precision.

INTEGER

or

INT

For

a

large

integer.

REAL

For

single

precision

floating-point.

SMALLINT

For

a

small

integer.

554

Data

Source

Configuration

Guide

|
|

|
|
|
|

VARCHAR(integer)

For

a

varying-length

character

string

of

maximum

length

integer,

which

can

range

from

1

to

32672.

NOT

NULL

Prevents

the

column

from

containing

null

values.

The

wrapper

does

not

enforce

the

NOT

NULL

constraint,

but

DB2

does.

If

you

create

a

nickname

and

attach

a

NOT

NULL

constraint

on

a

column

and

then

select

a

row

containing

a

null

value

for

the

column,

DB2

will

issue

a

SQL0407N

error

stating

that

you

can’t

assign

a

NULL

value

to

a

NOT

NULL

column.

The

exception

to

this

rule

is

for

sorted

nicknames.

The

key

column

for

sorted

nicknames

cannot

be

NULL.

If

a

NULL

key

column

is

found

for

a

sorted

nickname,

the

SQL1822N

error

is

issued,

stating

that

the

key

column

is

missing.

FOR

SERVER

Identifies

the

server

you

registered

using

the

CREATE

SERVER

statement.

This

server

will

be

used

to

access

the

table-structured

file.

FILE_PATH

The

fully

qualified

path

to

the

table-structured

file

to

be

accessed,

enclosed

in

single

quotation

marks.

The

data

file

must

be

a

standard

file

or

a

symbolic

link,

rather

then

a

pipe

or

another

non-standard

file

type.

Either

the

FILE_PATH

or

the

DOCUMENT

nickname

column

option

should

be

specified.

If

the

FILE_PATH

nickname

option

is

specified

then

no

DOCUMENT

nickname

column

option

can

be

specified.

SORTED

Specifies

whether

the

data

source

file

is

sorted

or

unsorted.

This

option

accepts

either

’Y’,

’y’,

’n’,

or

’N’.

It

has

a

default

value

of

’N’.

Sorted

data

sources

must

be

sorted

in

ascending

order

according

to

the

collation

sequence

for

the

current

locale,

as

defined

by

the

settings

in

the

LC_COLLATE

National

Language

Support

category.

If

you

specify

that

the

data

source

is

sorted,

it

is

recommended

you

set

VALIDATE_DATA_FILE

to

’Y’.

COLUMN_DELIMITER

The

delimiter

used

to

separate

columns

of

the

table-structured

file,

enclosed

in

single

quotation

marks.

The

delimiter

can

be

a

single

character

or

multiple

characters.

If

no

column

delimiter

is

defined,

the

column

delimiter

defaults

to

the

comma.

A

single

quote

cannot

be

used

as

a

delimiter.

The

column

delimiter

must

be

consistent

throughout

the

file.

A

null

value

is

represented

by

two

delimiters

next

to

each

other

or

a

delimiter

followed

by

a

line

terminator,

if

the

NULL

field

is

the

last

one

on

the

line.

The

column

delimiter

cannot

exist

as

valid

data

for

a

column.

For

example,

a

column

delimiter

of

a

comma

cannot

be

used

if

one

of

the

columns

contains

data

with

embedded

commas.

KEY_COLUMN

The

name

of

the

column

in

the

file

that

forms

the

key

on

which

the

file

is

sorted,

enclosed

in

single

quotation

marks.

Use

this

option

for

sorted

files

only.

A

column

that

is

designated

with

the

DOCUMENT

nickname

column

option

must

not

be

specified

as

the

key

column.

Only

single-column

keys

are

supported.

Multi-column

keys

are

not

allowed.

The

value

must

be

the

name

of

a

column

defined

in

the

CREATE

Chapter

29.

DDL

command

reference

555

|
|
|
|
|
|
|
|
|
|

NICKNAME

statement.

The

column

must

be

sorted

in

ascending

order.

If

the

value

is

not

specified

for

a

sorted

nickname,

it

defaults

to

the

first

column

in

the

nicknamed

file.

It

is

recommended

that

the

key

column

be

designated

not

nullable

by

adding

the

NOT

NULL

option

to

its

definition

in

the

nickname

statement.

This

option

is

case-sensitive.

However,

DB2

folds

column

names

to

uppercase

unless

the

column

is

defined

with

double

quotes.

VALIDATE_DATA_FILE

For

sorted

files,

this

option

specifies

whether

the

wrapper

verifies

that

the

key

column

is

sorted

in

ascending

order

and

checks

for

NULL

keys.

The

only

valid

values

for

this

option

are

’Y’

or

’N’,

enclosed

in

single

quotation

marks.

The

check

is

done

once

at

registration

time.

If

this

option

is

not

specified,

then

no

validation

takes

place.

This

option

is

not

allowed

if

the

DOCUMENT

nickname

column

option

is

used

for

the

file

path.

DOCUMENT

Specifies

the

kind

of

table-structured

file.

Currently,

this

wrapper

only

supports

FILE

for

this

option.

Only

one

column

can

be

specified

with

the

DOCUMENT

option

per

nickname.

The

column

associated

with

the

DOCUMENT

option

has

to

be

of

data

type

VARCHAR

or

CHAR.

Using

the

DOCUMENT

nickname

column

option,

instead

of

the

FILE_PATH

nickname

option,

implies

that

the

file

corresponding

to

this

nickname

will

be

supplied

during

query

execution.

If

the

DOCUMENT

option

has

the

″FILE″

value,

it

means

that

what

will

be

supplied

during

query

execution

is

the

full

path

of

the

file

whose

schema

matches

the

nickname

definition

for

this

nickname.

The

following

CREATE

NICKNAME

example

illustrates

the

use

of

the

DOCUMENT

nickname

column

option.

CREATE

NICKNAME

customers

(

doc

VARCHAR(100)

OPTIONS(DOCUMENT

’FILE’),

name

VARCHAR(16),

address

VARCHAR(30),

id

VARCHAR(16)

)

FOR

SERVER

file_server

The

following

query,

specifying

the

location

of

the

table-structured

file

in

the

WHERE

clause,

can

now

be

run

against

the

customers

nickname:

SELECT

name,

address,

id

FROM

customers

WHERE

doc=’/home/db2user/Customers.txt’

Related

tasks:

v

“Registering

the

server

for

table-structured

files”

on

page

359

Related

reference:

v

“CREATE

NICKNAME

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

NICKNAME

statement

-

Examples

for

table-structured

file

wrapper”

on

page

360

556

Data

Source

Configuration

Guide

XML

DDL

reference

information

CREATE

NICKNAME

statement

syntax

-

XML

wrapper

The

syntax

for

the

CREATE

NICKNAME

statement

is:

��

CREATE

NICKNAME

nickname

(

column-name

Column

structure

)

�

�

FOR

SERVER

server-name

OPTIONS

(

FILE_PATH

’path’

,

DIRECTORY_PATH

’path’

,

�

�

XPATH

’xpath_expression’

Nickname

parameters

)

��

Column

structure:

Data

type

options

NOT

NULL

Nickname

column

options

Data

type

options:

SMALLINT

INTEGER

INT

REAL

DOUBLE

PRECISION

DECIMAL

DEC

(

integer

)

NUMERIC

,

integer

NUM

CLOB

*

CHARACTER

LARGE

OBJECT

(

integer

)

CHAR

K

M

G

CHARACTER

CHAR

(

integer

)

VARCHAR

(

integer

)

DATE

Nickname

column

options:

OPTIONS

(

DOCUMENT

’FILE’

’DIRECTORY’

’URI’

’COLUMN’

XPATH

’xpath_expression’

PRIMARY_KEY

’YES’

FOREIGN_KEY

’parent_nickname’

)

Chapter

29.

DDL

command

reference

557

||||||

Nickname

parameters:

’NO’

STREAMING

’YES’

,

’NO’

VALIDATE

’YES’

,

�

�

INSTANCE_PARSE_TIME

’value’

,

XPATH_EVAL_TIME

’value’

,

�

�

NEXT_TIME

’value’

Restriction:

The

length

of

a

CLOB

is

limited

to

5

megabytes

(5MB)

for

the

XML

wrapper.

Nickname

parameters

and

options:

FILE_PATH

Specifies

the

file

path

of

the

XML

document.

If

you

specify

this

nickname

option,

do

not

specify

a

DOCUMENT

column.

This

FILE_PATH

option

is

accepted

only

for

the

root

nickname

(the

nickname

that

identifies

the

elements

at

the

top

level

of

the

XML

document).

DIRECTORY_PATH

Specifies

the

path

name

of

a

directory

that

contains

one

or

more

XML

files.

Use

this

option

to

create

a

single

nickname

over

multiple

XML

source

files.

The

XML

wrapper

uses

only

those

files

with

a

.xml

extension

that

are

located

in

the

directory

that

you

specify.

The

XML

wrapper

ignores

all

other

files

in

this

directory.

If

you

specify

this

nickname

option,

do

not

specify

a

DOCUMENT

column.

This

DIRECTORY_PATH

option

is

accepted

only

for

the

root

nickname

(the

nickname

that

identifies

the

elements

at

the

top

level

of

the

XML

document).

XPATH

Specifies

an

XPath

expression

that

identifies

the

XML

elements

that

represent

individual

tuples.

The

XPATH

nickname

option

for

a

child

nickname

is

evaluated

in

the

context

of

the

path

that

is

specified

by

the

XPATH

nickname

option

of

its

parent.

This

XPath

expression

is

used

as

a

context

for

evaluating

column

values

that

are

identified

by

the

XPATH

nickname

column

options.

Do

not

specify

a

namespace

prefix

in

an

XPath

expression.

The

XML

wrapper

does

not

support

namespaces.

Nickname

column

options:

DOCUMENT

Specifies

that

this

column

is

a

DOCUMENT

column.

The

value

of

the

DOCUMENT

column

indicates

the

type

of

XML

source

data

that

is

supplied

to

the

nickname

when

the

query

runs.

This

option

is

accepted

only

for

columns

of

the

root

nickname

(the

nickname

that

identifies

the

elements

at

the

top

level

of

the

XML

document).

Only

one

column

can

be

specified

with

the

DOCUMENT

option

per

nickname.

The

column

that

is

associated

with

the

DOCUMENT

option

must

be

a

VARCHAR

data

type.

If

you

use

a

DOCUMENT

column

option,

instead

of

the

FILE_PATH

or

DIRECTORY_PATH

nickname

option,

the

document

that

corresponds

to

this

nickname

is

supplied

when

the

query

runs.

558

Data

Source

Configuration

Guide

|
|

The

valid

values

for

the

DOCUMENT

option

are:

FILE

Specifies

that

the

value

of

the

nickname

column

is

bound

to

the

path

name

of

a

file

that

contains

an

XML

document.

The

data

from

this

file

is

supplied

when

the

query

runs.

DIRECTORY

Specifies

that

the

value

of

the

nickname

column

is

bound

to

the

path

name

of

a

directory

that

contains

multiple

XML

data

files.

The

XML

data

from

multiple

files

is

supplied

when

the

query

runs.

The

data

is

located

in

XML

files

that

reside

under

the

specified

directory

path.

The

XML

wrapper

uses

only

those

files

with

a

.xml

extension

that

are

located

in

the

directory

that

you

specify.

The

XML

wrapper

ignores

all

other

files

in

this

directory.

URI

Specifies

that

the

value

of

the

nickname

column

is

bound

to

the

path

name

of

a

remote

XML

file

to

which

a

URI

refers.

The

URI

address

indicates

the

remote

location

of

this

XML

file

on

the

Web.

COLUMN

Specifies

that

the

XML

document

is

stored

in

a

relational

column.

XPATH

Specifies

the

XPath

expression

in

the

XML

document

that

contains

the

data

that

corresponds

to

this

column.

The

XML

wrapper

evaluates

the

XPath

expression

after

the

CREATE

NICKNAME

statement

applies

this

XPath

expression

from

this

XPATH

nickname

option.

If

you

run

a

query

on

a

column

name

that

has

an

incorrectly

configured

XPATH

tag

reference

such

as

incorrect

case,

your

query

returns

null

values

in

this

column

for

all

returned

rows.

Do

not

specify

a

namespace

prefix

in

an

XPath

expression.

The

XML

wrapper

does

not

support

namespaces.

PRIMARY_KEY

Indicates

that

this

nickname

is

a

parent

nickname.

The

column

data

type

must

be

VARCHAR(16).

A

nickname

can

have

at

most

one

PRIMARY_KEY

column

option.

’YES’

is

the

only

valid

value.

The

column

that

is

designated

with

this

option

holds

a

key

that

is

generated

by

the

wrapper.

The

column’s

value

cannot

be

retrieved

in

a

SELECT

query,

and

the

XPATH

option

must

not

be

specified

for

this

column.

The

column

can

be

used

only

to

join

parent

nicknames

and

child

nicknames.

FOREIGN_KEY

Indicates

that

this

nickname

is

a

child

nickname

and

specifies

the

name

of

the

corresponding

parent

nickname.

A

nickname

can

have

at

most

one

FOREIGN_KEY

column

option.

The

value

for

this

option

is

case

sensitive.

The

column

that

is

designated

with

this

option

holds

a

key

that

is

generated

by

the

wrapper.

The

column’s

value

cannot

be

retrieved

in

a

SELECT

query,

and

the

XPATH

option

must

not

be

specified

for

this

column.

The

column

can

be

used

only

to

join

parent

nicknames

and

child

nicknames.

A

CREATE

NICKNAME

statement

with

a

FOREIGN_KEY

option

will

fail

if

the

parent

nickname

has

a

different

schema

name.

Unless

the

nickname

that

is

referred

to

in

a

FOREIGN_KEY

clause

was

explicitly

defined

to

be

lowercase

or

mixed

case

by

enclosing

it

in

quotation

marks

under

the

corresponding

CREATE

NICKNAME

statement,

Chapter

29.

DDL

command

reference

559

then

when

you

refer

to

this

nickname

in

the

FOREIGN_KEY

clause,

you

must

specify

the

nickname

in

uppercase.

Nickname

parameters:

STREAMING

Specifies

whether

the

XML

source

document

is

separated

into

logical

fragments

that

correspond

to

the

node

that

matches

the

XPath

expression

of

the

nickname.

The

XML

wrapper

then

parses

and

processes

the

XML

source

data

fragment

by

fragment,

reducing

total

memory

use.

You

can

specify

streaming

for

any

XML

source

document

(FILE,

DIRECTORY,

URI,

or

COLUMN).

This

option

is

accepted

only

for

columns

of

the

root

nickname

(the

nickname

that

identifies

the

elements

at

the

top

level

of

the

XML

document).

The

default

streaming

value

is

NO.

Do

not

set

the

STREAMING

parameter

to

YES

if

you

set

the

VALIDATE

parameter

to

YES.

If

you

set

both

parameters

to

YES,

you

will

receive

an

error

message.

VALIDATE

Specifies

whether

the

XML

source

document

is

validated

before

the

XML

data

is

extracted.

If

this

option

is

set

to

YES,

the

nickname

option

verifies

that

the

structure

of

the

source

document

conforms

to

an

XML

schema

or

to

a

document

type

definition

(DTD).

This

option

is

accepted

only

for

columns

of

the

root

nickname

(the

nickname

that

identifies

the

elements

at

the

top

level

of

the

XML

document).

The

default

value

is

NO.

The

XML

source

document

is

not

validated

if

the

XML

wrapper

cannot

locate

the

XML

schema

file

or

DTD

file

(.xsd

or

.dtd).

DB2

does

not

issue

an

error

message

if

the

validation

does

not

occur.

Therefore,

ensure

that

the

XML

schema

file

or

DTD

file

exists

in

the

location

that

is

specified

in

the

XML

source

document.

Do

not

set

the

VALIDATE

parameter

to

YES

if

you

set

the

STREAMING

parameter

to

YES.

If

you

set

both

parameters

to

YES,

you

will

receive

an

error

message.

INSTANCE_PARSE_TIME

Specifies

the

time

(in

milliseconds)

to

parse

the

data

in

one

row

of

the

XML

source

document.

You

can

modify

the

INSTANCE_PARSE_TIME,

XPATH_EVAL_TIME,

and

NEXT_TIME

options

to

optimize

queries

of

large

or

complex

XML

source

structures.

This

option

is

accepted

only

for

columns

of

the

root

nickname

(the

nickname

that

identifies

the

elements

at

the

top

level

of

the

XML

document).

The

number

that

you

specify

can

be

an

integer

or

a

decimal

value.

The

default

value

is

7

milliseconds.

XPATH_EVAL_TIME

Specifies

the

time

(in

milliseconds)

to

evaluate

the

XPath

expression

of

the

nickname

and

to

locate

the

first

element.

You

can

modify

the

XPATH_EVAL_TIME,

INSTANCE_PARSE_TIME,

and

NEXT_TIME

options

to

optimize

queries

of

large

or

complex

XML

source

structures.

This

option

is

accepted

for

root

nicknames

and

nonroot

nicknames.

The

number

that

you

specify

can

be

an

integer

or

a

decimal

value.

The

default

value

is

1

millisecond.

NEXT_TIME

Specifies

the

time

(in

milliseconds)

that

is

required

to

locate

subsequent

source

elements

from

the

XPath

expression.

You

can

modify

the

NEXT_TIME,

XPATH_EVAL_TIME,

and

INSTANCE_PARSE_TIME

options

560

Data

Source

Configuration

Guide

to

optimize

queries

of

large

or

complex

XML

source

structures.

This

option

is

accepted

for

root

nicknames

and

nonroot

nicknames.

The

default

value

is

1

millisecond.

Usage

notes:

If

you

use

the

DATE

data

type

option,

the

dates

in

your

XML

source

document

must

have

the

following

format:

CCYY-MM-DD.

For

example,

if

the

date

is

17

November

2002,

the

date

must

be

specified

as

2002-11-17

in

the

XML

source

document.

If

a

date

has

any

other

format,

you

will

receive

an

error

message.

Do

not

set

both

the

STREAMING

parameter

and

the

VALIDATE

parameter

to

YES.

The

XML

wrapper

validates

an

entire

XML

source

document

and

does

not

validate

source

document

fragments.

If

you

set

both

parameters

to

YES,

you

will

receive

an

error

message.

Related

tasks:

v

“Registering

nicknames

for

XML

data

sources”

on

page

424

Related

reference:

v

“CREATE

NICKNAME

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

NICKNAME

statement

-

Examples

for

XML

wrapper”

on

page

425

Chapter

29.

DDL

command

reference

561

562

Data

Source

Configuration

Guide

Appendix

A.

Views

in

the

global

catalog

table

containing

federated

information

Most

of

the

catalog

views

in

a

federated

database

are

the

same

as

the

catalog

views

in

any

other

DB2

for

Linux,

UNIX,

and

Windows

database.

There

are

several

unique

views

which

contain

information

pertinent

to

a

federated

system,

such

as

the

SYSCAT.WRAPPERS

view.

As

noted

in

the

DB2

for

Linux,

UNIX,

and

Windows

Version

6

and

Version

7

SQL

Reference

manuals,

the

DB2

Version

8

SYSCAT

views

are

now

read-only.

If

you

issue

an

UPDATE

or

INSERT

operation

on

a

view

in

the

SYSCAT

schema,

it

will

fail.

Using

the

SYSSTAT

views

is

the

recommended

way

to

update

the

system

catalog.

Change

applications

that

reference

the

SYSCAT

view

to

reference

the

updatable

SYSSTAT

view

instead.

The

following

table

lists

the

SYSCAT

views

which

contain

federated

information.

These

are

read-only

views.

Table

138.

Catalog

views

typically

used

with

a

federated

system

Catalog

views

Description

SYSCAT.CHECKS

Contains

check

constraint

information

that

you

defined.

SYSCAT.COLCHECKS

Contains

columns

referenced

by

a

check

constraint.

SYSCAT.COLUMNS

Contains

column

information

about

the

data

source

objects

(tables

and

views)

that

you

created

nicknames

for.

SYSCAT.COLOPTIONS

Contains

information

about

column

option

values

that

you

set

for

a

nickname.

SYSCAT.CONSTDEP

Contains

the

dependency

of

an

informational

constraint

that

you

defined.

SYSCAT.DATATYPES

Contains

data

type

information

about

local

built-in

and

user-defined

DB2

data

types.

SYSCAT.DBAUTH

Contains

the

database

authorities

held

by

individual

users

and

groups.

SYSCAT.FUNCMAPOPTIONS

Contains

information

about

option

values

that

you

have

set

for

a

function

mapping.

SYSCAT.FUNCMAPPINGS

Contains

the

function

mappings

between

the

federated

database

and

the

data

source

objects.

SYSCAT.INDEXCOLUSE

Contains

columns

that

participate

in

an

index.

SYSCAT.INDEXES

Contains

index

specifications

for

data

source

objects.

SYSCAT.KEYCOLUSE

Contains

columns

that

participate

in

a

key

defined

by

a

unique

key,

primary

key,

or

foreign

key

constraint.

SYSCAT.REFERENCES

Contains

information

about

referential

constraints

defined

by

you.

©

Copyright

IBM

Corp.

1998,

2004

563

|

|

|

|
|
|
|

|
|
|
|
|
|

|
|

||

||

||
|

||
|

||
|
|

||
|

||
|

||
|

||
|

||
|

||
|
|

||
|

||
|

||
|
|

||
|

Table

138.

Catalog

views

typically

used

with

a

federated

system

(continued)

Catalog

views

Description

SYSCAT.ROUTINES

Contains

local

DB2

user-defined

functions,

or

function

templates.

Function

templates

are

used

to

map

to

a

data

source

function.

SYSCAT.REVTYPEMAPPINGS

This

view

is

not

used.

All

data

type

mappings

are

recorded

in

the

SYSCAT.TYPEMAPPINGS

view.

SYSCAT.SERVEROPTIONS

Contains

information

about

server

option

values

that

you

set

with

a

server

definition.

SYSCAT.SERVERS

Contains

server

definitions

that

you

create

for

data

source

servers.

SYSCAT.TABCONST

Each

row

represents

a

table

and

nickname

constraints

of

type

CHECK,

UNIQUE,

PRIMARY

KEY,

or

FOREIGN

KEY.

SYSCAT.TABLES

Contains

information

about

each

local

DB2

table,

federated

view,

and

nickname

that

you

create.

SYSCAT.TYPEMAPPINGS

Contains

forward

data

type

mappings

and

reverse

data

type

mappings.

The

mapping

is

to

local

DB2

data

types

from

data

source

data

types.

These

mappings

are

used

when

you

create

a

nickname

on

a

data

source

object.

SYSCAT.USEROPTIONS

Contains

user

authorization

information

that

you

set

when

you

create

user

mappings

between

the

federated

database

and

the

data

source

servers.

SYSCAT.VIEWS

Contains

information

about

local

federated

views

that

you

create.

SYSCAT.WRAPOPTIONS

Contains

information

about

option

values

that

you

have

set

for

a

wrapper.

SYSCAT.WRAPPERS

Contains

the

name

of

the

wrapper

and

library

file

for

each

data

source

that

you

create

a

wrapper

for.

The

following

table

lists

the

SYSSTAT

views

which

contain

federated

information.

These

are

read-write

views

that

contain

statistics

you

can

update.

Table

139.

Federated

updatable

global

catalog

views

Catalog

views

Description

SYSSTAT.COLUMNS

Contains

statistical

information

about

each

column

in

the

data

source

objects

(tables

and

views)

that

you

have

created

nicknames

for.

Statistics

are

not

recorded

for

inherited

columns

of

typed

tables.

SYSSTAT.INDEXES

Contains

statistical

information

about

each

index

specification

for

data

source

objects.

SYSSTAT.ROUTINES

Contains

statistical

information

about

each

user-defined

function.

Does

not

include

built-in

functions.

Statistics

are

not

recorded

for

inherited

columns

of

typed

tables.

564

Data

Source

Configuration

Guide

|

||

||
|
|

||
|
|

||
|

||
|

||
|
|

||
|
|

||
|
|
|
|
|

||
|
|
|

||
|

||
|

||
|
|
|

|
|

||

||

||
|
|
|
|

||
|

||
|
|
|

Table

139.

Federated

updatable

global

catalog

views

(continued)

Catalog

views

Description

SYSSTAT.TABLES

Contains

information

about

each

base

table.

View,

synonym,

and

alias

information

is

not

included

in

this

view.

For

typed

tables,

only

the

root

table

of

a

table

hierarchy

is

included

in

the

view.

Statistics

are

not

recorded

for

inherited

columns

of

typed

tables.

Appendix

A.

Views

in

the

global

catalog

table

containing

federated

information

565

|

||

||
|
|
|
|
|
|
|

566

Data

Source

Configuration

Guide

Appendix

B.

Wrapper

options

for

federated

systems

Wrapper

options

are

used

to

configure

the

wrapper

or

to

define

how

the

federated

server

uses

the

wrapper.

Wrapper

options

can

be

set

when

you

create

or

alter

the

wrapper.

All

relational

and

nonrelational

data

sources

use

the

DB2_FENCED

wrapper

option.

The

ODBC

data

source

uses

the

MODULE

wrapper

option.

The

Entrez

data

source

uses

the

EMAIL

wrapper

option.

Table

140.

Wrapper

options

and

their

settings

Option

Valid

settings

Default

setting

DB2_FENCED

Specifies

whether

the

wrapper

runs

in

fenced

or

trusted

mode.

Y

The

wrapper

runs

in

fenced

mode.

N

The

wrapper

runs

in

trusted

mode.

Relational

wrappers:

N.

Nonrelational

wrappers

from

IBM:

N.

Nonrelational

wrappers

from

third

parties:

Y.

EMAIL

Specifies

an

e-mail

address

when

you

register

the

Entrez

wrapper.

This

e-mail

address

is

included

with

all

queries

and

allows

NCBI

to

contact

you

if

there

are

problems,

such

as

too

many

queries

overloading

the

NCBI

servers.

This

option

is

required.

MODULE

Specifies

the

full

path

of

the

library

that

contains

the

ODBC

Driver

Manager

implementation

or

the

SQL/CLI

implementation.

Required

for

the

ODBC

wrapper

on

UNIX

federated

servers.

On

Windows,

the

default

value

is

odbc32.dll

Related

concepts:

v

“Parallelism

with

queries

that

reference

nicknames”

in

the

Federated

Systems

Guide

Related

tasks:

v

“Trusted

and

fenced

mode

process

environments”

in

the

IBM

DB2

Information

Integrator

Wrapper

Developer’s

Guide

v

“Altering

a

wrapper”

in

the

Federated

Systems

Guide

v

“Registering

wrappers

for

a

data

source”

on

page

61

©

Copyright

IBM

Corp.

1998,

2004

567

|
|
|

||
|

||
|

||
|

|

|
|

|
|

||
|
|
|
|
|
|
|

|

||
|
|
|
|
|

|
|

568

Data

Source

Configuration

Guide

Appendix

C.

Valid

server

types

in

SQL

statements

Server

types

indicate

what

kind

of

data

source

that

the

server

definition

represents.

Server

types

vary

by

vendor,

purpose,

and

operating

system.

Supported

values

depend

on

the

wrapper

being

used.

For

most

data

sources,

you

must

specify

a

valid

server

type

in

the

CREATE

SERVER

statement.

BioRS

wrapper

BioRS

data

sources.

Server

Type

Data

Source

Not

required

in

the

CREATE

SERVER

statement.

BioRS

BLAST

wrapper

BLAST

data

sources

supported

by

the

BLAST

daemon.

Server

Type

Data

Source

BLASTN

BLAST

searches

in

which

a

nucleotide

sequence

is

compared

with

the

contents

of

a

nucleotide

sequence

database

to

find

sequences

with

regions

homologous

to

regions

of

the

original

sequence.

BLASTP

BLAST

searches

in

which

an

amino

acid

sequence

is

compared

with

the

contents

of

an

amino

acid

sequence

database

to

find

sequences

with

regions

homologous

to

regions

of

the

original

sequence.

BLASTX

BLAST

searches

in

which

a

nucleotide

sequence

is

compared

with

the

contents

of

an

amino

acid

sequence

database

to

find

sequences

with

regions

homologous

to

regions

of

the

original

sequence.

TBLASTN

BLAST

searches

in

which

an

amino

acid

sequence

is

compared

with

the

contents

of

a

nucleotide

sequence

database

to

find

sequences

with

regions

homologous

to

regions

of

the

original

sequence.

TBLASTX

BLAST

searches

in

which

a

nucleotide

sequence

is

compared

with

the

contents

of

a

nucleotide

sequence

database

to

find

sequences

with

regions

homologous

to

regions

of

the

original

sequence.

©

Copyright

IBM

Corp.

1998,

2004

569

|

|

|||

|
|
|

|

|
|

|

|||

||
|
|
|
|

||
|
|
|
|

||
|
|
|
|

||
|
|
|
|

||
|
|
|
|
|

CTLIB

wrapper

Sybase

data

sources

supported

by

the

CTLIB

client

software.

Server

Type

Data

Source

SYBASE

Sybase

Documentum

wrapper

Documentum

data

sources

supported

by

the

Documentum

Client

API/Library.

Server

Type

Data

Source

DCTM

Documentum

DRDA

wrapper

DB2

Family

data

sources

Table

141.

DB2

for

Linux,

UNIX,

and

Windows

Server

Type

Data

Source

DB2/UDB

IBM

DB2

Universal

Database

DB2/6000

IBM

DB2

for

AIX

DB2/AIX

IBM

DB2

for

AIX

DB2/HPUX

IBM

DB2

for

HP-UX

DB2/HP

IBM

DB2

for

HP-UX

DB2/NT

IBM

DB2

for

Windows

NT

DB2/EEE

IBM

DB2

Enterprise-Extended

Edition

DB2/SUN

IBM

DB2

for

Solaris

DB2/PE

IBM

DB2

for

Personal

Edition

DB2/2

IBM

DB2

for

OS/2

DB2/LINUX

IBM

DB2

for

Linux

DB2/PTX

IBM

DB2

for

NUMA-Q

DB2/SCO

IBM

DB2

for

SCO

Unixware

Table

142.

DB2

for

iSeries

(and

AS/400)

Server

Type

Data

Source

DB2/400

IBM

DB2

for

iSeries

and

AS/400

Table

143.

DB2

for

z/OS

and

OS/390

Server

Type

Data

Source

DB2/ZOS

IBM

DB2

for

z/OS

DB2/390

IBM

DB2

for

OS/390

DB2/MVS

IBM

DB2

for

MVS

570

Data

Source

Configuration

Guide

|

|

|

|||

||
|

|

Table

144.

DB2

Server

for

VM

and

VSE

Server

Type

Data

Source

DB2/VM

IBM

DB2

for

VM

DB2/VSE

IBM

DB2

for

VSE

SQL/DS

IBM

SQL/DS

Entrez

wrapper

Entrez

data

sources.

Server

Type

Data

Source

NUCLEOTIDE

Entrez

PUBMED

Entrez

Excel

wrapper

Excel

data

sources

supported

by

Microsoft

Excel

97,

2000,

and

2002.

Server

Type

Data

Source

Not

required

in

the

CREATE

SERVER

statement.

Microsoft

Excel

Extended

Search

wrapper

Extended

Search

data

sources

supported

by

the

Extended

Search

Client

Library.

Server

Type

Data

Source

Not

required

in

the

CREATE

SERVER

statement.

IBM

Lotus

Extended

Search

HMMER

wrapper

HMMER

data

sources

supported

by

the

HMMER

daemon.

Server

Type

Data

Source

PFAM

HMMER

SEARCH

HMMER

Informix

wrapper

Informix

data

sources

supported

by

Informix

Client

SDK

software.

Server

Type

Data

Source

INFORMIX

Informix

Appendix

C.

Valid

server

types

in

SQL

statements

571

|

|

|||

||

||
|

|
|

|

|||

|
|
|

|

|
|

|

|||

|
|
|

|

|
|

|

|||

||

||
|

|

MSSQLODBC3

wrapper

Microsoft

SQL

Server

data

sources

supported

by

the

DataDirect

Connect

ODBC

3.6

driver

or

the

ODBC

3.0

(or

later)

driver

Server

Type

Data

Source

MSSQLSERVER

Microsoft

SQL

Server

NET8

wrapper

Oracle

data

sources

supported

by

Oracle

NET8

client

software.

Server

Type

Data

Source

ORACLE

Oracle

Version

8.0.

or

later

ODBC

wrapper

ODBC

data

sources

supported

by

the

ODBC

3.x

driver.

Server

Type

Data

Source

ODBC

ODBC

OLE

DB

wrapper

OLE

DB

providers

compliant

with

Microsoft

OLE

DB

2.0

or

later.

Server

Type

Data

Source

Not

required

in

the

CREATE

SERVER

statement.

Any

OLE

DB

provider

Table-structured

files

wrapper

Table-structured

file

data

sources.

Server

Type

Data

Source

Not

required

in

the

CREATE

SERVER

statement.

Table-structured

files

Teradata

wrapper

Teradata

data

sources

supported

by

the

Teradata

V2R3,

V2R4,

and

V2R5

client

software.

Server

Type

Data

Source

TERADATA

Teradata

572

Data

Source

Configuration

Guide

|
|

|

|

|||

|
|
|

|

|
|

|
|

|||

||
|

Web

services

wrapper

Web

services

data

sources.

Server

Type

Data

Source

Not

required

in

the

CREATE

SERVER

statement.

Any

Web

services

data

source.

WebSphere

Business

Integration

wrapper

Business

application

data

sources

supported

by

the

WeSphere

Business

Integration

wrapper.

Server

Type

Data

Source

WBI

WebSphere

Business

Integration

2.2

or

2.3

XML

wrapper

XML

data

sources.

Server

Type

Data

Source

Not

required

in

the

CREATE

SERVER

statement.

XML

Appendix

C.

Valid

server

types

in

SQL

statements

573

|
|

|

|||

|
|
|

|

|
|

|
|

|||

||
|

|
|

|

|||

|
|
|

|
|

574

Data

Source

Configuration

Guide

Appendix

D.

Server

options

for

federated

systems

Server

options

are

used

to

describe

a

data

source

server.

Server

options

specify

data

integrity,

location,

security,

and

performance

information.

Some

server

options

are

available

for

all

data

sources,

and

other

server

options

are

data

source

specific.

The

common

federated

server

options

for

relational

data

sources

are:

v

Compatibility

options.

COLLATING_SEQUENCE,

IGNORE_UDT

v

Data

integrity

options.

IUD_APP_SVPT_ENFORCE

v

Data

and

time

options.

DATEFORMAT,

TIMEFORMAT,

TIMESTAMPFORMAT

v

Location

options.

CONNECTSTRING,

DBNAME,

IFILE

v

Security

options.

FOLD_ID,

FOLD_PW,

INFORMIX_LOCK_MODE

v

Performance

options.

COMM_RATE,

CPU_RATIO,

DB2_MAXIMAL_PUSHDOWN,

IO_RATIO,

LOGIN_TIMEOUT,

PACKET_SIZE,

PLAN_HINTS,

PUSHDOWN,

TIMEOUT,

VARCHAR_NO_TRAILING_BLANKS

The

following

table

lists

the

server

definition

server

options

applicable

for

each

relational

data

source.

Table

145.

Server

options

for

relational

data

sources

D
at

a

S
ou

rc
e

 C
O

D
E

PA
G

E
 C

O
L

L
A

T
IN

G
_S

E
Q

U
E

N
C

E
 C

O
M

M
_R

A
T

E
 C

O
N

N
E

C
T

S
T

R
IN

G
 C

P
U

_R
A

T
IO

 D
A

T
E

FO
R

M
A

T
 D

B
2_

M
A

X
IM

A
L

_P
U

S
H

D
O

W
N

 D
B

N
A

M
E

 FO
L

D
_I

D
 FO

L
D

_P
W

 IF
IL

E
 IN

FO
R

M
IX

_L
O

C
K

_M
O

D
E

 IO
_R

A
T

IO
 IU

D
_A

P
P

_S
V

P
T

_E
N

FO
R

C
E

 L
O

G
IN

_T
IM

E
O

U
T

 N
O

D
E

 PA
C

K
E

T
_S

IZ
E

 PA
S

S
W

O
R

D
 P

L
A

N
_H

IN
T

S
 P

U
S

H
D

O
W

N
 T

IM
E

O
U

T
 T

IM
E

FO
R

M
A

T
 T

IM
E

S
TA

M
P

FO
R

M
A

T
 V

A
R

C
H

A
R

_N
O

_T
R

A
IL

IN
G

_B
L

A
N

K
S

DB2

UDB

for

iSeries

X

X

X

X

X

X

X

X

X

X

X

X

DB2

UDB

for

z/OS

and

OS/390

X

X

X

X

X

X

X

X

X

X

X

X

DB2

for

VM

and

VSE

X

X

X

X

X

X

X

X

X

X

X

X

DB2

UDB

for

Linux,

UNIX,

and

Windows

X

X

X

X

X

X

X

X

X

X

X

X

Informix

X

X

X

X

X

X

X

X

X

X

X

X

X

Microsoft

SQL

Server

X

X

X

X

X

X

X

X

X

X

X

X

X

ODBC

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

©

Copyright

IBM

Corp.

1998,

2004

575

|

|

|
|
|

|

|

|

|

|

|

|
|
|

|
|

||

|||||||||||||||||||||||||

|
|
||||||||||||||||||||||||

|
|
|

||||||||||||||||||||||||

|
|
||||||||||||||||||||||||

|
|
|
|

||||||||||||||||||||||||

|||||||||||||||||||||||||

|
|
||||||||||||||||||||||||

|||||||||||||||||||||||||

Table

145.

Server

options

for

relational

data

sources

(continued)

D
at

a

S
ou

rc
e

 C
O

D
E

PA
G

E
 C

O
L

L
A

T
IN

G
_S

E
Q

U
E

N
C

E
 C

O
M

M
_R

A
T

E
 C

O
N

N
E

C
T

S
T

R
IN

G
 C

P
U

_R
A

T
IO

 D
A

T
E

FO
R

M
A

T
 D

B
2_

M
A

X
IM

A
L

_P
U

S
H

D
O

W
N

 D
B

N
A

M
E

 FO
L

D
_I

D
 FO

L
D

_P
W

 IF
IL

E
 IN

FO
R

M
IX

_L
O

C
K

_M
O

D
E

 IO
_R

A
T

IO
 IU

D
_A

P
P

_S
V

P
T

_E
N

FO
R

C
E

 L
O

G
IN

_T
IM

E
O

U
T

 N
O

D
E

 PA
C

K
E

T
_S

IZ
E

 PA
S

S
W

O
R

D
 P

L
A

N
_H

IN
T

S
 P

U
S

H
D

O
W

N
 T

IM
E

O
U

T
 T

IM
E

FO
R

M
A

T
 T

IM
E

S
TA

M
P

FO
R

M
A

T
 V

A
R

C
H

A
R

_N
O

_T
R

A
IL

IN
G

_B
L

A
N

K
S

OLE

DB

X

X

Oracle

X

X

X

X

X

X

X

X

X

X

X

X

Sybase

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Teradata

X

X

X

X

X

X

X

X

The

following

table

lists

the

server

definition

server

options

applicable

for

each

nonrelational

data

source,

except

WebSphere

Business

Integration.

The

server

definition

server

options

for

WebSphere

Business

Integration

are

listed

in

Table

147

on

page

577.

Table

146.

Server

options

for

nonrelational

data

sources.

D
at

a

S
ou

rc
e

 C
A

S
E

_S
E

N
S

IT
IV

E
 C

O
N

T
E

N
T

_D
IR

 D
A

E
M

O
N

_P
O

R
T

 E
S

_H
O

S
T

 E
S

_P
O

R
T

 E
S

_T
R

A
C

IN
G

 E
S

_T
R

A
C

E
L

E
V

E
L

 E
S

_T
R

A
C

E
FI

L
E

N
A

M
E

 H
M

M
P

FA
M

_O
P

T
IO

N
S

 H
M

M
S

E
A

R
C

H
_O

P
T

IO
N

S
 M

A
X

_R
O

W
S

 N
O

D
E

 O
S

_T
Y

P
E

 P
O

R
T

 P
R

O
C

E
S

S
O

R
S

 P
R

O
X

U
_A

U
T

H
ID

 P
R

O
X

Y
_P

A
S

S
W

O
R

D
 P

R
O

X
Y

_S
E

R
V

E
R

_N
A

M
E

 P
R

O
X

Y
_S

E
R

V
E

R
_P

O
R

T
 P

R
O

X
Y

_T
Y

P
E

 R
D

B
M

S
_T

Y
P

E
 S

O
C

K
E

T
_T

IM
E

O
U

T
 T

IM
E

O
U

T
 T

R
A

N
S

A
C

T
IO

N
S

 U
S

E
_C

L
O

B
_S

E
Q

U
E

N
C

E

BioRS

X

X

X

X

BLAST

X

X

X

Documentum

X

X

X

X

X

Entrez

X

X

X

X

X

X

X

Excel

Extended

Search

X

X

X

X

X

HMMER

X

X

X

X

X

X

Table-
structured

files

Web

services

XML

X

X

X

X

X

X

576

Data

Source

Configuration

Guide

|

|||||||||||||||||||||||||

|||||||||||||||||||||||||

|||||||||||||||||||||||||

|||||||||||||||||||||||||

|||||||||||||||||||||||||
|

|
|
|
|

||

||||||||||||||||||||||||||

||||||||||||||||||||||||||

||||||||||||||||||||||||||

||||||||||||||||||||||||||

||||||||||||||||||||||||||

||||||||||||||||||||||||||

|
|
|||||||||||||||||||||||||

||||||||||||||||||||||||||

|
|
|

|||||||||||||||||||||||||

||||||||||||||||||||||||||

||||||||||||||||||||||||||
|

The

following

table

lists

the

server

definition

server

options

applicable

for

WebSphere

Business

Integration

data

sources.

Table

147.

Server

options

for

WebSphere

Business

Integration

data

sources.

D
at

a

S
ou

rc
e

 A
P

P
_T

Y
P

E
 FA

U
LT

_Q
U

E
U

E
 M

Q
_C

O
N

N
_N

A
M

E
 M

Q
_M

A
N

A
G

E
R

 M
Q

_R
E

S
P

O
N

S
E

_T
IM

E
O

U
T

 M
Q

_S
V

R
C

O
N

N
_C

H
A

N
N

E
L

N
A

M
E

 R
E

Q
U

E
S

T
_Q

U
E

U
E

 R
E

S
P

O
N

S
E

_Q
U

E
U

E

WebSphere

Business

Integration

X

X

X

X

X

X

X

X

The

following

table

describes

each

server

option

and

lists

the

valid

and

default

settings.

Table

148.

Server

options

and

their

settings

Option

Description

and

valid

settings

Default

setting

APP_TYPE

The

type

of

remote

application.

Valid

values

are

’PSOFT’,

’SAP’,

and

’SIEBEL’.

This

option

is

required.

None.

Appendix

D.

Server

options

for

federated

systems

577

|
|

||

|||||||||

|||||||||
|

|
|

||

|||

||
|
|

|

Table

148.

Server

options

and

their

settings

(continued)

Option

Description

and

valid

settings

Default

setting

CASE_SENSITIVE

Specifies

whether

the

BioRS

server

treats

names

in

a

case

sensitive

manner.

Valid

values

are

Y

or

N.

’Y’

The

BioRS

server

treats

names

in

a

case

sensitive

manner.

’N’

The

BioRS

server

does

not

treat

names

in

a

case

sensitive

manner

In

the

BioRS

product,

a

configuration

parameter

controls

the

case

sensitivity

of

the

data

that

is

stored

on

the

BioRS

server.

The

CASE_SENSITIVE

option

is

the

DB2

Information

Integrator

counterpart

to

that

BioRS

system

configuration

parameter.

You

must

synchronize

the

BioRS

server

case

sensitivity

configuration

settings

in

your

BioRS

system

and

in

DB2

Information

Integrator.

If

you

do

not

keep

the

case

sensitivity

configuration

settings

synchronized

between

BioRS

and

DB2

Information

Integrator,

errors

will

occur

when

you

attempt

to

access

BioRS

data

through

DB2

Information

Integrator.

You

cannot

change

or

delete

the

CASE_SENSITIVE

option

after

you

create

a

new

BioRS

server

in

DB2

Information

Integrator.

If

you

need

to

change

the

CASE_SENSITIVE

option,

you

must

drop

and

then

create

the

entire

server

again.

If

you

drop

the

BioRS

server,

you

must

also

create

all

of

the

corresponding

BioRS

nicknames

again.

DB2

Information

Integrator

automatically

drops

all

nicknames

that

correspond

to

a

dropped

server.

Y

CODEPAGE

Specifies

the

DB2

code

page

identifier

corresponding

to

the

coded

character

set

of

the

data

source

client

configuration.

You

must

specify

the

client’s

code

page

if

the

client’s

code

page

and

the

federated

database

code

page

do

not

match.

For

data

sources

that

support

Unicode,

the

CODEPAGE

option

can

be

set

to

the

DB2

code

page

identifier

corresponding

to

the

supported

Unicode

encoding

of

the

data

source

client.

On

UNIX

or

Windows

systems

with

a

non-Unicode

federated

database:

The

federated

database

code

page.

On

UNIX

systems

with

a

Unicode

federated

database:

1208

On

Windows

systems

with

a

Unicode

federated

database:

1202

578

Data

Source

Configuration

Guide

|

|||

||
|

||
|

||
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|

||
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|

Table

148.

Server

options

and

their

settings

(continued)

Option

Description

and

valid

settings

Default

setting

COLLATING_

SEQUENCE

Specifies

whether

the

data

source

uses

the

same

default

collating

sequence

as

the

federated

database,

based

on

the

NLS

code

set

and

the

country/region

information.

’Y’

The

data

source

has

the

same

collating

sequence

as

the

DB2

federated

database.

’N’

The

data

source

has

a

different

collating

sequence

than

the

DB2

federated

database

collating

sequence.

’I’

The

data

source

has

a

different

collating

sequence

than

the

DB2

federated

database

collating

sequence,

and

the

data

source

collating

sequence

is

insensitive

to

case

(for

example,

’STEWART’

and

’StewART’

are

considered

equal).

’N’

COMM_RATE

Specifies

the

communication

rate

between

the

federated

server

and

the

data

source

server.

Expressed

in

megabytes

per

second.

Valid

values

are

greater

than

0

and

less

than

1x1023.

Values

can

be

expressed

in

any

valid

REAL

notation.

’2’

CONTENT_DIR

Specifies

the

name

of

the

locally-accessible

root

directory

for

storing

content

files

retrieved

by

the

GET_FILE,

GET_FILE_DEL,

GET_RENDITION,

and

GET_RENDITION_DEL

pseudo

columns.

It

must

be

writable

by

all

users

who

can

use

these

pseudo

columns.

On

UNIX

systems:

’/tmp’

On

Windows

systems:

’C:\temp’

CONNECTSTRING

Specifies

initialization

properties

needed

to

connect

to

an

OLE

DB

provider.

None.

CPU_RATIO

Indicates

how

much

faster

or

slower

a

data

source

CPU

runs

than

the

federated

server

CPU.

Valid

values

are

greater

than

0

and

less

than

1x1023.

Values

can

be

expressed

in

any

valid

REAL

notation.

A

setting

of

1

indicates

that

the

DB2

federated

CPU

speed

and

the

data

source

CPU

speed

have

the

same

CPU

speed,

a

1:1

ratio.

A

setting

of

.5

indicates

that

the

DB2

federated

CPU

speed

is

50%

slower

than

the

data

source

CPUO

speed.

A

setting

of

2

indicates

that

the

DB2

federated

CPU

speed

is

twice

as

fast

as

the

data

source

CPU

speed.

’1.0’

DATEFORMAT

The

date

format

used

by

the

data

source.

Enter

the

format

using

’DD’,

’MM’,

and

’YY’

or

’YYYY’

to

represent

the

numeric

form

of

the

date.

You

should

also

specify

the

delimiter

such

as

a

space

or

comma.

For

example,

to

represent

the

date

format

for

’2003-01-01’,

use

’YYYY-MM-DD’.

This

field

is

nullable.

None.

Appendix

D.

Server

options

for

federated

systems

579

|

|||

||
|
|
|

||
|

||
|
|

||
|
|
|
|
|

|

||
|
|

|
|
|

|

||
|
|
|
|
|

|

|
|

||
|
|

||
|

|
|
|

|
|
|
|
|
|
|

|

||
|
|
|
|
|
|

|

Table

148.

Server

options

and

their

settings

(continued)

Option

Description

and

valid

settings

Default

setting

DAEMON_PORT

Specifies

the

port

number

on

which

the

daemon

will

listen

for

BLAST

or

HMMER

job

requests.

The

port

number

must

be

the

same

number

specified

in

the

DAEMON_PORT

option

of

the

daemon

configuration

file.

BLAST:

’4007’;

HMMER:

’4098’

DB2_MAXIMAL_

PUSHDOWN

Specifies

the

primary

criteria

that

the

query

optimizer

uses

when

choosing

an

access

plan.

The

query

optimizer

can

choose

access

plans

based

on

cost

or

based

on

the

user

requirement

that

as

much

query

processing

as

possible

be

performed

by

the

remote

data

sources.

’Y’

The

query

optimizer

chooses

an

access

plan

that

pushes

down

more

query

operations

to

the

data

source

than

other

plans.

When

several

access

plans

provide

the

same

amount

of

pushdown,

the

query

optimizer

then

chooses

the

plan

with

the

lowest

cost.

If

a

materialized

query

table

(MQT)

on

the

federated

server

can

process

part

or

all

of

the

query,

then

an

access

plan

that

includes

the

materialized

query

table

is

might

be

used.

The

federated

database

does

not

push

down

queries

that

result

in

a

Cartesian

product.

’N’

The

query

optimizer

chooses

an

access

plan

based

on

cost.

’N’

DBNAME

Name

of

the

data

source

database

that

you

want

the

federated

server

to

access.

For

DB2

database,

this

value

corresponds

to

a

specific

database

for

the

initial

remote

DB2

database

connection.

This

specific

database

is

the

database

alias

for

the

remote

DB2

database

that

is

cataloged

at

the

federated

server

using

the

CATALOG

DATABASE

command

or

the

DB2

Configuration

Assistant.

Does

not

apply

to

Oracle

data

sources

because

Oracle

instances

contain

only

one

database.

None.

ES_HOST

Specifies

the

fully

qualified

host

name

or

IP

address

of

the

Extended

Search

server

that

you

want

to

search.

This

option

is

required.

None.

ES_PORT

Specifies

the

port

number

where

this

Extended

Search

server

listens

for

requests.

This

option

is

optional.

’6001’

ES_TRACING

Specifies

whether

tracing

should

be

enabled

for

error

messages,

warning

messages,

and

informational

messages

that

are

produced

by

the

remote

Extended

Search

server.

Valid

values

are:

’OFF’

No

trace

messages

will

be

logged.

’ON’

Trace

messages

will

be

logged.
This

option

is

optional.

’OFF’

580

Data

Source

Configuration

Guide

|

|||

||
|
|
|
|

|

||
|
|
|
|
|

||
|
|
|
|
|
|

|
|
|
|
|
|
|

||
|

|

||
|
|
|
|
|
|
|
|
|

|

||
|
|

|

||
|
|

|

||
|
|
|

||

||
|

|

Table

148.

Server

options

and

their

settings

(continued)

Option

Description

and

valid

settings

Default

setting

ES_TRACELEVEL

If

tracing

is

enabled,

this

option

specifies

the

types

of

messages

that

will

be

written

to

the

log

file.

You

can

enable

and

disable

the

following

trace

levels

independently:

’C’

Critical

error

messages.

’N’

Noncritical

messages.

’W’

Warning

messages.

’I’

Informational

messages.
For

example:

ES_TRACELEVEL

’W’

ES_TRACELEVEL

’CN’

This

option

is

optional.

’C’

ES_TRACEFILENAME

If

tracing

is

enabled,

this

option

specifies

the

name

of

a

directory

and

file

where

messages

will

be

written.

This

option

is

optional.

For

UNIX

operating

systems:

$INSTHOME/sqllib/log/

ESWrapper.log.

For

Windows

operating

systems:

%DB2TEMPDIR%\

ESWrapper.log.

FAULT_QUEUE

The

name

of

the

fault

queue

that

delivers

error

messages

from

the

adapter

to

the

wrapper.

The

name

must

conform

to

the

specifications

for

queue

names

for

WebSphere

MQ.

This

is

a

required

option.

None.

FOLD_ID

(See

notes

1

and

4

at

the

end

of

this

table.)

Applies

to

user

IDs

that

the

federated

server

sends

to

the

data

source

server

for

authentication.

Valid

values

are:

’U’

The

federated

server

folds

the

user

ID

to

uppercase

before

sending

it

to

the

data

source.

This

is

a

logical

choice

for

DB2

family

and

Oracle

data

sources

(See

note

2

at

end

of

this

table.)

’N’

The

federated

server

does

nothing

to

the

user

ID

before

sending

it

to

the

data

source.

(See

note

2

at

end

of

this

table.)

’L’

The

federated

server

folds

the

user

ID

to

lowercase

before

sending

it

to

the

data

source.

If

none

of

these

settings

are

used,

the

federated

server

tries

to

send

the

user

ID

to

the

data

source

in

uppercase.

If

the

user

ID

fails,

the

server

tries

sending

it

in

lowercase.

None.

Appendix

D.

Server

options

for

federated

systems

581

|

|||

||
|
|
|

||

||

||

||
|

|
|

|

|

||
|
|

|
|
|

|
|
|

||
|
|
|
|

|

|

|
|

|
|
|

||
|
|
|
|

||
|
|

||
|
|

|
|
|
|

|

Table

148.

Server

options

and

their

settings

(continued)

Option

Description

and

valid

settings

Default

setting

FOLD_PW

(See

notes

1,

3

and

4

at

the

end

of

this

table.)

Applies

to

passwords

that

the

federated

server

sends

to

data

sources

for

authentication.

Valid

values

are:

’U’

The

federated

server

folds

the

password

to

uppercase

before

sending

it

to

the

data

source.

This

is

a

logical

choice

for

DB2

family

and

Oracle

data

sources.

’N’

The

federated

server

does

nothing

to

the

password

before

sending

it

to

the

data

source.

’L’

The

federated

server

folds

the

password

to

lowercase

before

sending

it

to

the

data

source.

If

none

of

these

settings

are

used,

the

federated

server

tries

to

send

the

password

to

the

data

source

in

uppercase.

If

the

password

fails,

the

server

tries

sending

it

in

lowercase.

None.

HMMPFAM_OPTIONS

Specifies

hmmpfam

options

such

as

--null2,

--pvm,

and

--xnu

that

have

no

corresponding

column

name

in

a

reference

table

that

maps

options

to

column

names.

For

example:

HMMPFAM_OPTIONS

’--xnu

--pvm’

In

this

example,

the

daemon

runs

the

HMMPFAM

program

with

options

from

the

WHERE

clause

of

the

query,

plus

the

additional

options

--xnu

--pvm.

HMMSEARCH_

OPTIONS

Allows

the

user

to

provide

additional

command

line

options

to

the

hmmsearch

command.

Only

valid

with

type

SEARCH.

See

the

HMMER

User’s

Guide

for

more

information.

None.

IFILE

Specifies

the

path

and

name

of

the

Sybase

Open

Client

interfaces

file.

On

Windows

NT

federated

servers,

the

default

is

%DB2PATH%\interfaces.

On

UNIX

federated

servers,

the

default

path

and

name

value

is

$DB2INSTANCE/sqllib/interfaces.

None.

582

Data

Source

Configuration

Guide

|

|||

|

|
|

|
|
|

||
|
|
|

||
|
|

||
|
|

|
|
|
|

|

||
|
|
|

|

|

|
|
|

|

||
|
|
|

|

||
|
|
|
|

|

Table

148.

Server

options

and

their

settings

(continued)

Option

Description

and

valid

settings

Default

setting

INFORMIX_LOCK_

MODE

Specifies

the

lock

mode

to

be

set

for

an

Informix

data

source.

The

Informix

wrapper

issues

the

’SET

LOCK

MODE’

command

immediately

after

establishing

the

connection

to

an

Informix

data

source.

Valid

values

are:

’W’

Sets

the

Informix

lock

mode

to

WAIT.

If

the

wrapper

tries

to

access

a

locked

table

or

row,

Informix

waits

until

the

lock

is

released.

’N’

Sets

the

Informix

lock

mode

to

NOWAIT.

If

the

wrapper

tries

to

access

a

locked

table

or

row,

Informix

returns

an

error.

’n’

Sets

the

Informix

lock

mode

to

WAIT

n

seconds.

If

the

wrapper

tries

to

access

a

locked

table

or

row

and

the

lock

is

not

released

within

the

specified

number

of

seconds,

Informix

returns

an

error.

’W’

IO_RATIO

Denotes

how

much

faster

or

slower

a

data

source

I/O

system

runs

than

the

federated

server

I/O

system.

Valid

values

are

greater

than

0

and

less

than

1x1023

.

Values

can

be

expressed

in

any

valid

REAL

notation.

A

setting

of

1

indicates

that

the

DB2

federated

I/O

speed

and

the

data

source

I/O

speed

have

the

same

I/O

speed,

a

1:1

ratio.

A

setting

of

.5

indicates

that

the

DB2

federated

I/O

speed

is

50%

slower

than

the

data

source

I/O

speed.

A

setting

of

2

indicates

that

the

DB2

federated

I/O

speed

is

twice

as

fast

as

the

data

source

I/O

speed.

’1.0’

IUD_APP_SVPT_

ENFORCE

Specifies

whether

the

DB2

federated

system

should

enforce

detecting

or

building

of

application

savepoint

statements.

When

set

using

the

SET

SERVER

OPTION

statement,

this

server

option

will

have

no

effect

with

static

SQL

statements.

’Y’

The

federated

server

rolls

back

insert,

update,

or

delete

transactions

if

an

error

occurs

in

an

insert,

update,

or

delete

operation

and

the

data

source

does

not

enforce

application

savepoint

statements.

SQL

error

code

SQL1476N

is

returned.

’N’

The

federated

server

will

not

roll

back

transactions

when

an

error

is

encountered.

Your

application

must

handle

the

error

recovery.

’Y’

LOGIN_TIMEOUT

Specifies

the

number

of

seconds

for

the

DB2

federated

server

to

wait

for

a

response

from

Sybase

Open

Client

to

the

login

request.

The

default

values

are

the

same

as

for

TIMEOUT.

’0’

Appendix

D.

Server

options

for

federated

systems

583

|

|||

||
|
|
|
|

||
|
|
|

||
|
|

||
|
|
|
|

|

||
|
|

|
|
|

|
|
|
|
|
|
|

|

||
|
|
|
|

||
|
|
|
|
|

||
|
|
|

|

||
|
|
|

|

Table

148.

Server

options

and

their

settings

(continued)

Option

Description

and

valid

settings

Default

setting

MAX_ROWS

Specifies

the

number

of

rows

that

the

federated

server

returns

for

a

query

that

uses

the

Entrez

wrapper.

You

can

specify

only

positive

numbers

and

zero.

When

you

set

the

option

to

be

zero,

you

enable

queries

to

retrieve

an

unlimited

number

of

rows

from

the

NCBI

Web

site.

However,

setting

the

MAX_ROWS

server

option

to

zero

or

to

a

very

high

number

can

impact

your

query

performance.

The

MAX_ROWS

server

option

is

not

required.

Microsoft

Windows

operating

systems:

2000

rows.

UNIX-based

operating

systems:

5000

rows.

MQ_CONN_NAME

The

hostname

or

network

address

of

the

computer

where

the

Websphere

MQ

server

is

running.

An

example

of

a

connection

name

is:

9.30.76.151(1420)

where

1420

is

the

port

number.

If

the

port

number

is

excluded

a

default

value

of

1414

will

be

used.

This

option

is

optional.

If

it

is

omitted,

the

MQSERVER

environment

variable

(if

sepcified

in

db2dj.ini

file)

is

used

to

select

the

channel

definition.

If

MQSERVER

is

not

set,

the

client

channel

table

is

used.

The

wrapper

uses

the

MQSERVER

environment

variable,

if

specified

in

the

db2dj.ini

file,

to

select

the

channel

definition.

If

the

MQSERVER

environment

variable

is

not

set,

the

wrapper

uses

the

client

channel

table.

MQ_MANAGER

The

name

of

the

WebSphere

MQ

manager.

Any

valid

WebSphere

MQ

manager

name.

This

option

is

required.

None.

MQ_RESPONSE_

TIMEOUT

The

amount

of

time

that

the

wrapper

should

wait

for

a

response

message

from

the

response

queue.

The

value

is

in

milliseconds.

You

can

specify

a

special

value

of

-1

to

indicate

that

there

is

no

timeout

period.

This

option

is

optional.

10000

MQ_SVRCONN_

CHANNELNAME

The

name

of

the

server-connection

channel

on

the

Webspehere

MQ

Manager

that

the

wrapper

should

try

to

connect

to.

This

parameter

can

be

specified

only

if

the

MQ_CONN_NAME

server

option

is

specified.

The

default

server-connection

channel,

SYSTEM.DEF.SVRCONN,

is

used

if

this

option

is

omitted.

SYSTEM.DEF.SVRCONN

NODE

Relational

data

sources:

Name

by

which

a

data

source

is

defined

as

an

instance

to

its

RDBMS.

Documentum:

Specifies

the

actual

name

of

the

Documentum

Docbase.

This

option

is

required.

BLAST:

Specifies

the

host

name

of

the

system

on

which

the

BLAST

daemon

process

is

running.

This

option

is

required.

HMMER:

Specifies

the

host

name

of

the

server

on

which

the

HMMER

daemon

process

runs.

This

option

is

required.

BioRS:

Specifies

the

host

name

of

the

system

on

which

the

BioRS

query

tool

is

available.

This

option

is

optional.

BioRS:

localhost

584

Data

Source

Configuration

Guide

|

|||

||
|
|

|
|
|
|
|
|

|

|
|

|
|

||
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

||
|
|

|

||
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|

||
|

|
|

|
|
|

|
|
|

|
|
|

|

Table

148.

Server

options

and

their

settings

(continued)

Option

Description

and

valid

settings

Default

setting

OS_TYPE

Specifies

the

Docbase

server’s

operating

system.

Valid

values

are

AIX,

SOLARIS,

and

WINDOWS.

This

option

is

required.

None.

PACKET_SIZE

Specifies

the

packet

size

of

the

Sybase

interfaces

file

in

bytes.

If

the

data

source

does

not

support

the

specified

packet

size,

the

connection

will

fail.

Increasing

the

packet

size

when

each

record

is

very

large

(for

example,

when

inserting

rows

into

large

tables)

significantly

increases

performance.

The

byte

size

is

a

numeric

value.

PASSWORD

Specifies

whether

passwords

are

sent

to

a

data

source.

’Y’

Passwords

are

sent

to

the

data

source

and

validated.

’N’

Passwords

are

not

sent

to

the

data

source

and

not

validated.

’Y’

PLAN_HINTS

Specifies

whether

plan

hints

are

to

be

enabled.

Plan

hints

are

statement

fragments

that

provide

extra

information

for

data

source

optimizers.

This

information

can,

for

certain

query

types,

improve

query

performance.

The

plan

hints

can

help

the

data

source

optimizer

decide

whether

to

use

an

index,

which

index

to

use,

or

which

table

join

sequence

to

use.

’Y’

Plan

hints

are

to

be

enabled

at

the

data

source

if

the

data

source

supports

plan

hints.

’N’

Plan

hints

are

not

to

be

enabled

at

the

data

source.

This

option

is

only

available

for

Oracle

and

Sybase

data

sources.

’N’

PORT

Specifies

the

number

of

the

port

the

wrapper

uses

to

connect

to

the

BioRS

server.

This

option

is

optional.

’5014’

PROCESSORS

Specifies

the

number

of

processors

that

the

HMMER

program

uses.

This

option

is

equivalent

to

the

--cpu

option

of

the

hmmpfam

command.

None.

PROXY_AUTHID

Specifies

the

user

name

to

use

when

the

value

of

PROXY_TYPE

is

’SOCKS5’.

This

field

is

optional

if

the

value

of

PROXY_TYPE

is

’SOCKS5’.

Contact

your

network

administrator

for

the

user

name

to

use.

This

option

is

invalid

if

the

PROXY_TYPE

is

not

’SOCKS5’.

None.

PROXY_PASSWORD

Specifies

the

password

to

use

when

the

value

of

PROXY_TYPE

is

’SOCKS5’.

This

field

is

optional

if

the

value

of

PROXY_TYPE

is

’SOCKS5’.

Contact

your

network

administrator

for

the

password

to

use.

This

option

is

invalid

if

the

PROXY_TYPE

is

not

’SOCKS5’.

None.

Appendix

D.

Server

options

for

federated

systems

585

|

|||

||
|
|

|

||
|
|
|
|
|
|

|

||
|

||
|

||
|

|

||
|
|
|
|
|
|
|

||
|
|

||
|

|
|

|

||
|
|

|

||
|
|

|

||
|
|
|
|
|

|

||
|
|
|
|
|

|

Table

148.

Server

options

and

their

settings

(continued)

Option

Description

and

valid

settings

Default

setting

PROXY_SERVER_

NAME

Specifies

the

proxy

server

name

or

the

IP

address.

This

field

is

required

if

the

value

of

PROXY_TYPE

is

’HTTP’,

’SOCKS4’,

or

’SOCKS5’.

Contact

your

network

administrator

for

the

proxy

server

name

or

the

IP

address.

None.

PROXY_SERVER_

PORT

Specifies

the

proxy

server

port

number.

This

field

is

required

if

the

value

of

PROXY_TYPE

is

’HTTP’,

’SOCKS4’,

or

’SOCKS5’.

Contact

your

network

administrator

for

the

proxy

server

port

number

that

should

be

used.

None.

PROXY_TYPE

Specifies

the

proxy

type

that

is

used

to

access

the

Internet

when

behind

a

firewall.

The

valid

values

are

’NONE’,

’HTTP’,

’SOCKS4’,

or

’SOCKS5’.

The

default

value

is

’NONE’.

Contact

your

network

administrator

for

the

type

of

proxy

that

is

used.

’NONE’

PUSHDOWN

’Y’

DB2

UDB

will

consider

letting

the

data

source

evaluate

operations.

’N’

DB2

UDB

will

send

the

data

source

SQL

statements

that

include

only

SELECT

with

column

names.

Predicates

(such

as

WHERE=)

column

and

scalar

functions

(such

as

MAX

and

MIN),

sorts

(such

as

ORDER

BY

or

GROUP

BY),

and

joins

will

not

be

included

in

any

SQL

sent

to

the

data

source.

’Y’

RDBMS_TYPE

Specifies

the

RDBMS

used

by

the

Docbase.

Valid

values

are

DB2,

INFORMIX,

ORACLE,

SQLSERVER

or

SYBASE.

This

option

is

required.

None.

RESPONSE_QUEUE

The

name

of

the

response

queue

that

delivers

query

results

from

the

adapter

to

the

wrapper.

The

name

must

conform

to

the

specifications

for

queue

names

for

WebSphere

MQ.

This

option

is

required.

None.

REQUEST_QUEUE

The

name

of

the

request

queue

that

delivers

query

requests

from

the

wrapper

to

the

adapter.

The

name

must

conform

to

the

specifications

for

queue

names

for

WebSphere

MQ.

This

option

is

required.

None.

SOCKET_TIMEOUT

Specifies

the

maximum

time

in

minutes

that

the

DB2

federated

server

will

wait

for

results

from

the

proxy

server.

A

valid

value

is

any

number

that

is

greater

than

or

equal

to

zero.

The

default

is

zero

’0’.

A

value

of

zero

denotes

an

unlimited

amount

of

time

to

wait.

0

TIMEFORMAT

The

time

format

used

by

the

data

source.

Enter

the

format

using

’hh12’,

’hh24’,

’mm’,

’ss’,

’AM’,

or

’A.M’.

For

example,

to

represent

the

time

format

of

’16:00:00’,

use

’hh24:mm:ss’.

To

represent

the

time

format

of

’8:00:00

AM’,

use

’hh12:mm:ss

AM’.

This

field

is

nullable.

None.

586

Data

Source

Configuration

Guide

|

|||

||
|
|
|
|

|

||
|
|
|
|

|

||
|
|
|
|

|

|
||
|

||
|
|
|
|
|
|
|

|

||
|
|

|

||
|
|
|

|

||
|
|
|

|

||
|
|
|
|
|

|

||
|
|
|
|
|

|

Table

148.

Server

options

and

their

settings

(continued)

Option

Description

and

valid

settings

Default

setting

TIMESTAMPFORMAT

The

timestamp

format

used

by

the

data

source.

The

format

follows

that

for

date

and

time,

plus

’n’

for

tenth

of

a

second,

’nn’

for

hundredth

of

a

second,

’nnn’

for

milliseconds,

and

so

on,

up

to

’nnnnnn’

for

microseconds.

For

example,

to

represent

the

timestamp

format

of

’2003-01-01-24:00:00.000000’,

use

’YYYY-MM-DD-hh24:mm:ss.nnnnnn’.

This

field

is

nullable.

None.

TIMEOUT

Sybase:

Specifies

the

number

of

seconds

the

DB2

federated

server

will

wait

for

a

response

from

Sybase

Open

Client

for

any

SQL

statement.

The

value

of

seconds

is

a

positive

whole

number

in

DB2

Universal

Database’s

integer

range.

The

timeout

value

that

you

specify

depends

on

which

wrapper

you

are

using.

The

default

behavior

of

the

TIMEOUT

option

for

the

Sybase

wrappers

is

0,

which

causes

DB2

UDB

to

wait

indefinitely

for

a

response.

BioRS:

Specifies

the

time,

in

minutes,

that

the

BioRS

wrapper

should

wait

for

a

response

from

the

BioRS

server.

The

default

value

is

10.

This

option

is

optional.

’0’;

BioRS:

’10’

TRANSACTIONS

Specifies

the

server

transaction

mode.

The

valid

values

are:

’NONE’

No

transactions

are

enabled.

’QUERY’

Transactions

are

enabled

only

for

Dctm_Query

methods.

’ALL’

Transactions

are

enabled

for

the

Dctm_Query

method.

ALL

has

the

same

function

as

QUERY

in

this

release.

’QUERY’

USE_CLOB_

SEQUENCE

This

option

specifies

the

data

type

the

federated

server

uses

for

the

BlastSeq

or

HmmQSeq

column.

The

values

can

be

’Y’

or

’N’.

You

can

use

the

CREATE

NICKNAME

or

ALTER

NICKNAME

statement.

to

override

the

default

data

type

for

the

BlastSeq

or

HmmQSeq

column.

’Y’

Appendix

D.

Server

options

for

federated

systems

587

|

|||

||
|
|
|
|
|
|
|

|

||
|
|
|
|
|
|
|
|
|

|
|
|
|

|

||
|

|
|

|
|
|

||
|
|

|

||
|
|
|
|
|

|

Table

148.

Server

options

and

their

settings

(continued)

Option

Description

and

valid

settings

Default

setting

VARCHAR_NO_

TRAILING_BLANKS

This

option

applies

to

data

sources

which

have

variable

character

data

types

that

do

not

pad

the

length

with

trailing

blanks

during

comparison.

Some

data

sources,

such

as

Oracle,

do

not

have

blank-padded

character

comparison

semantics

that

return

the

same

results

as

the

DB2

for

Linux,

UNIX,

and

Windows

comparison

semantics.

Set

this

option

when

you

want

it

to

apply

to

all

the

VARCHAR

and

VARCHAR2

columns

in

the

data

source

objects

that

will

be

accessed

from

the

designated

server.

This

includes

views.

Y

Trailing

blanks

are

absent

from

these

VARCHAR

columns,

or

the

data

source

has

blank-padded

character

comparison

semantics

that

are

similar

to

the

semantics

on

the

federated

server.

The

federated

server

pushes

down

character

comparison

operations

to

the

data

source

for

processing.

N

Trailing

blanks

are

present

in

these

VARCHAR

columns

and

the

data

source

has

blank-padded

character

comparison

semantics

that

are

different

than

the

federated

server.

The

federated

server

processes

character

comparison

operations

if

it

is

not

possible

to

compensate

for

equivalent

semantics.

For

example,

rewriting

the

predicate.

N

for

affected

data

sources.

Notes

on

this

table:

1.

This

field

is

applied

regardless

of

the

value

specified

for

authentication.

2.

Because

DB2

UDB

stores

user

IDs

in

uppercase,

the

values

‘N’

and

‘U’

are

logically

equivalent

to

each

other.

3.

The

setting

for

FOLD_PW

has

no

effect

when

the

setting

for

password

is

‘N’.

Because

no

password

is

sent,

case

cannot

be

a

factor.

4.

Avoid

null

settings

for

either

of

these

options.

A

null

setting

can

seem

attractive

because

DB2

UDB

will

make

multiple

attempts

to

resolve

user

IDs

and

passwords;

however,

performance

might

suffer

(it

is

possible

that

DB2

UDB

will

send

a

user

ID

and

password

four

times

before

successfully

passing

data

source

authentication).

Related

concepts:

v

“Server

characteristics

affecting

pushdown

opportunities”

in

the

Federated

Systems

Guide

v

“Server

characteristics

affecting

global

optimization”

in

the

Federated

Systems

Guide

Related

tasks:

v

“Registering

server

definitions

for

a

data

source”

on

page

61

Related

reference:

588

Data

Source

Configuration

Guide

|

|||

|
|
|
|
|

|
|
|
|
|
|
|
|

||
|
|
|
|

|
|
|

||
|
|
|
|

|
|
|
|

|

|
|

|

|
|

|
|

|
|
|
|
|

|

|
|

|
|

|

|

|

v

“DROP

statement”

in

the

SQL

Reference,

Volume

2

v

“ALTER

SERVER

statement”

in

the

SQL

Reference,

Volume

2

v

“CREATE

SERVER

statement”

in

the

SQL

Reference,

Volume

2

Appendix

D.

Server

options

for

federated

systems

589

|

|

|

590

Data

Source

Configuration

Guide

Appendix

E.

User

mapping

options

for

federated

systems

These

options

are

valid

for

all

relational

data

sources.

For

nonrelational

data

sources,

the

REMOTE_AUTHID

and

REMOTE_PASSWORD

options

are

valid

for

the

following

data

sources:

BioRS,

Documentum,

Extended

Search,

and

Web

services.

The

GUEST

option

is

valid

for

the

BioRS

data

source.

These

options

are

used

with

the

CREATE

USER

MAPPING

and

ALTER

USER

MAPPING

statements.

Table

149.

User

mapping

options

and

their

settings

Option

Valid

settings

Default

setting

ACCOUNTING

DRDA:

Used

to

specify

a

DRDA

accounting

string.

Valid

settings

include

any

string

of

length

255

or

less.

This

option

is

required

only

if

accounting

information

needs

to

be

passed.

See

the

DB2

Connect

Users

Guide

for

more

information.

None

GUEST

Specifies

if

the

wrapper

is

to

use

the

guest

access

mode

to

the

BioRS

server.

Y

The

wrapper

uses

the

guest

access

mode

to

the

BioRS

server.

N

The

wrapper

does

not

use

the

guest

access

mode

to

the

BioRS

server.

When

set

to

a

value

of

Y,

this

option

is

mutually

exclusive

with

the

REMOTE_AUTHID

option

and

the

REMOTE_PASSWORD

option.

N

REMOTE_AUTHID

Indicates

the

authorization

ID

used

at

the

data

source.

Valid

settings

include

any

string

of

length

255

or

less.

The

authorization

ID

you

use

to

connect

to

the

DB2

Universal

Database.

REMOTE_DOMAIN

Documentum:

Indicates

the

Windows

NT

domain

used

to

authenticate

users

connecting

to

a

Documentum

data

source.

Valid

settings

include

any

valid

Windows

NT

domain

name.

The

default

authentication

domain

for

the

Documentum

database.

REMOTE_PASSWORD

Indicates

the

authorization

password

used

at

the

data

source.

Valid

settings

include

any

string

of

length

32

or

less.

You

do

not

need

to

set

this

option

if

the

following

conditions

are

met:

v

The

database

manager

configuration

parameter

AUTHENTICATON

is

set

to

SERVER.

v

When

you

connected

to

the

DB2

database,

you

specified

an

auth

ID

and

password.

If

your

server

requires

a

password

and

you

do

not

set

this

option,

you

must

ensure

both

of

the

previous

conditions

are

met

or

the

connection

will

fail.

The

password

you

use

to

connect

to

the

DB2

Universal

Database

if

both

conditions

listed

in

the

valid

settings

column

are

met.

Related

concepts:

v

“DB2

Connect

and

DRDA”

in

the

DB2

Connect

User’s

Guide

v

“DRDA

and

data

access”

in

the

DB2

Connect

User’s

Guide

©

Copyright

IBM

Corp.

1998,

2004

591

||

||||

||
|
|
|
|

||

||
|

||
|

||
|

|
|
|

||

||
|
||
|
|

||
|
|
|

||
|
|

||
|
|

|
|

|
|

|
|

|
|
|

||
|
|
|
|

|

Related

tasks:

v

“Registering

user

mappings

for

a

data

source”

on

page

63

592

Data

Source

Configuration

Guide

Appendix

F.

Nickname

options

for

federated

systems

Table

150

and

Table

151

list

the

nickname

options

for

each

data

source.

Table

152

on

page

594

describes

each

nickname

option

and

lists

the

valid

and

default

settings.

Table

150.

Available

nickname

options

–

A

through

P

D
at

a

so
u

rc
e

 A
L

L
_V

E
R

S
IO

N
S

 A
P

P
L

IC
A

T
IO

N
ID

 B
U

S
O

B
J_

N
A

M
E

 C
A

T
E

G
O

R
Y

 C
O

L
U

M
N

_D
E

L
IM

IT
E

R
 D

A
TA

S
O

U
R

C
E

 D
IR

E
C

T
O

R
Y

_P
A

T
H

 FI
L

E
_P

A
T

H
 FO

L
D

E
R

S
 H

M
M

T
Y

P
E

 IN
S

TA
N

C
E

_P
A

R
S

E
_T

IM
E

 IS
_R

E
G

_T
A

B
L

E
 K

E
Y

_C
O

L
U

M
N

 M
A

X
H

IT
 N

A
M

E
S

PA
C

E
S

 N
E

X
T

_T
IM

E
 PA

R
E

N
T

 P
R

O
C

E
S

S
O

R
S

BioRS

BLAST

X

X

Documentum

X

X

X

Entrez

X

Excel

X

Extended

Search

X

X

X

X

HMMER

X

X

Table-structured

files

X

X

X

Web

services

X

WebSphere

Business

Integration

X

X

XML

X

X

X

X

Table

151

lists

the

nickname

options,

R

through

X,

for

each

data

source.

Table

151.

Available

nickname

options

–

R

through

X

D
at

a

S
ou

rc
e

 R
A

N
G

E
 R

E
M

O
T

E
_O

B
JE

C
T

 S
O

A
PA

C
T

IO
N

 S
O

R
T

E
D

 S
O

R
T

FI
E

L
D

 S
O

R
T

O
R

D
E

R
 S

T
R

E
A

M
IN

G
 T

E
M

P
L

A
T

E
 T

O
TA

L
M

A
X

H
IT

 T
IM

E
O

U
T

 U
R

L
 V

A
L

ID
A

T
E

 V
A

L
ID

A
T

E
_D

A
TA

_F
IL

E
 V

E
R

T
IC

A
L

_T
A

B
L

E
 X

PA
T

H
 X

PA
T

H
_E

V
A

L
_T

IM
E

BioRS

X

BLAST

X

Documentum

X

Entrez

X

Excel

X

Extended

Search

X

X

X

X

X

HMMER

X

©

Copyright

IBM

Corp.

1998,

2004

593

|

|

|
|

||

|||||||||||||||||||

|||||||||||||||||||

|||||||||||||||||||

|||||||||||||||||||

|||||||||||||||||||

|||||||||||||||||||

|||||||||||||||||||

|||||||||||||||||||

|||||||||||||||||||

|||||||||||||||||||

|
|
||||||||||||||||||

|||||||||||||||||||
|
|

||

|||||||||||||||||

|||||||||||||||||

|||||||||||||||||

|||||||||||||||||

|||||||||||||||||

|||||||||||||||||

|||||||||||||||||

|||||||||||||||||

Table

151.

Available

nickname

options

–

R

through

X

(continued)

D
at

a

S
ou

rc
e

 R
A

N
G

E
 R

E
M

O
T

E
_O

B
JE

C
T

 S
O

A
PA

C
T

IO
N

 S
O

R
T

E
D

 S
O

R
T

FI
E

L
D

 S
O

R
T

O
R

D
E

R
 S

T
R

E
A

M
IN

G
 T

E
M

P
L

A
T

E
 T

O
TA

L
M

A
X

H
IT

 T
IM

E
O

U
T

 U
R

L
 V

A
L

ID
A

T
E

 V
A

L
ID

A
T

E
_D

A
TA

_F
IL

E
 V

E
R

T
IC

A
L

_T
A

B
L

E
 X

PA
T

H
 X

PA
T

H
_E

V
A

L
_T

IM
E

Table-structured

files

X

X

Web

services

X

X

X

X

X

WebSphere

Business

Integration

X

X

XML

X

X

X

X

Table

152

describes

each

nickname

option

and

lists

the

valid

and

default

settings.

Table

152.

Nickname

options

and

their

settings

Option

Description

and

valid

settings

Default

setting

ALL_VERSIONS

Specifies

whether

all

object

versions

will

be

searched.

The

valid

values

are

y,

Y,

n,

and

N.

The

default

value

of

N

means

that

only

the

current

object

versions

are

included

in

query

processing.

This

option

is

invalid

when

IS_REG_TABLE

=

’Y’.

N

APPLICATIONID

Specifies

the

name

of

the

Extended

Search

application

that

you

want

to

search.

This

name

must

exist

in

the

Extended

Search

configuration

database.

This

option

is

required.

BUSOBJ_NAME

The

name

of

the

XML

schema

definition

file

(.xsd)

that

represents

the

business

object.

For

example

sap_bapi_customer_get_detail2

.

This

option

must

be

specified

in

a

parent

nickname.

CATEGORY

Specifies

one

or

more

Extended

Search

categories

that

you

want

to

search.

If

you

omit

this

option,

you

must

specify

at

least

one

data

source

name.

To

specify

multiple

categories,

delimit

the

category

names

with

a

semicolon.

COLUMN_DELIMITER

The

delimiter

that

is

used

to

separate

columns

of

a

table-structured

file,

enclosed

in

single

quotation

marks.

The

column

delimiter

can

be

more

than

one

character

in

length.

If

no

column

delimiter

is

defined,

the

default

delimiter

is

a

comma.

A

single

quotation

mark

cannot

be

used

as

a

delimiter.

The

column

delimiter

must

be

consistent

throughout

the

file.

A

null

value

is

represented

by

two

delimiters

next

to

each

other

or

a

delimiter

followed

by

a

line

terminator,

if

the

NULL

field

is

the

last

one

on

the

line.

The

column

delimiter

cannot

exist

as

valid

data

for

a

column.

The

default

delimiter

is

a

comma.

594

Data

Source

Configuration

Guide

|

|||||||||||||||||

|
|
||||||||||||||||

|||||||||||||||||

|
|
|

||||||||||||||||

|||||||||||||||||
|

|

||

|||

||
|
|
|
|
|

|

||
|
|
|

|

||
|
|
|

|

||
|
|
|
|

|

||
|
|
|
|
|
|
|
|
|
|
|
|

|

Table

152.

Nickname

options

and

their

settings

(continued)

Option

Description

and

valid

settings

Default

setting

DATASOURCE

For

Extended

Search:

Specifies

one

or

more

Extended

Search

data

sources

that

you

want

to

search.

If

you

omit

this

option,

you

must

specify

at

least

one

category

name.

To

specify

multiple

data

sources,

delimit

the

data

source

names

with

a

semicolon.

For

BLAST:

The

name

of

the

data

source

on

which

the

BLAST

search

will

run.

The

same

string

that

is

used

here

must

be

present

in

the

configuration

file

of

the

BLAST

daemon.

This

option

is

required.

For

HMMER

(type

PFAM):

The

name

of

the

HMM

Profile

database

that

is

to

be

searched

by

HMMPFAM.

The

same

string

that

is

used

here

must

be

present

in

the

configuration

file

of

the

HMMER

daeamon.

This

option

is

required.

For

HMMER

(type

SEARCH):

The

name

of

the

sequence

file

that

is

to

be

searched

by

HMMSEARCH.

The

same

string

that

is

used

here

must

be

present

in

the

configuration

file

of

the

HMMER

daeamon.

This

option

is

required.

DIRECTORY_PATH

Specifies

the

path

name

of

a

directory

that

contains

one

or

more

XML

files.

Use

this

option

to

create

a

single

nickname

over

multiple

XML

source

files.

The

XML

wrapper

uses

only

the

files

with

an

.xml

extension

that

are

located

in

the

directory

that

you

specify.

The

XML

wrapper

ignores

all

other

files

in

this

directory.

If

you

specify

this

nickname

option,

do

not

specify

a

DOCUMENT

column.

This

option

is

accepted

only

for

the

root

nickname

(the

nickname

that

identifies

the

elements

at

the

top

level

of

the

XML

document).

FILE_PATH

For

Microsoft

Excel:

Specifies

the

fully

qualified

directory

path

and

file

name

of

the

Excel

spreadsheet

that

you

want

to

access.

This

option

is

required.

For

table-structured

files:

The

fully

qualified

path

to

the

table-structured

file

to

be

accessed,

enclosed

in

single

quotation

marks.

The

data

file

must

be

a

standard

file

or

a

symbolic

link,

rather

then

a

pipe

or

another

non-standard

file

type.

Either

the

FILE_PATH

or

the

DOCUMENT

nickname

column

option

must

be

specified.

If

the

FILE_PATH

nickname

option

is

specified,

then

no

DOCUMENT

nickname

column

option

can

be

specified.

For

XML:

Specifies

the

file

path

of

the

XML

document.

If

you

specify

this

nickname

option,

do

not

specify

a

DOCUMENT

column.

This

option

is

accepted

only

for

the

root

nickname

(the

nickname

that

identifies

the

elements

at

the

top

level

of

the

XML

document).

Appendix

F.

Nickname

options

for

federated

systems

595

|

|||

||
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|

||
|
|
|
|
|
|
|
|
|
|
|

|

||
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

Table

152.

Nickname

options

and

their

settings

(continued)

Option

Description

and

valid

settings

Default

setting

FOLDERS

Specifies

a

string

that

contains

one

or

more

logically

combined

and

syntactically

correct

Documentum

FOLDER

predicates.

Specifying

FOLDER

predicates

restricts

the

set

of

documents

that

are

represented

by

this

nickname

to

the

documents

in

the

designated

folders.

When

you

specify

this

option,

enclose

the

entire

value

of

the

FOLDERS

option

in

single

quotation

marks

and

use

double

quotation

marks

in

place

of

the

single

quotation

marks

within

the

string.

This

option

is

not

valid

when

IS_REG_TABLE

=

’Y’.

HMMTYPE

Optional:

The

alphabet

that

is

used

in

both

models

and

gene

sequences.

The

value

can

be

either

NUCLEIC

or

PROTEIN

and

is

not

case

sensitive.

PROTEIN

INSTANCE_PARSE_TIME

Specifies

the

time

(in

milliseconds)

to

parse

the

data

in

one

row

of

the

XML

source

document.

You

can

modify

the

INSTANCE_PARSE_TIME,

XPATH_EVAL_TIME,

and

NEXT_TIME

options

to

optimize

queries

of

large

or

complex

XML

source

structures.

This

option

is

accepted

only

for

columns

of

the

root

nickname

(the

nickname

that

identifies

the

elements

at

the

top

level

of

the

XML

document).

The

number

that

you

specify

can

be

an

integer

or

a

decimal

value.

7

IS_REG_TABLE

Specifies

whether

the

object

that

is

specified

by

the

REMOTE_OBJECT

option

is

a

Documentum

registered

table.

The

valid

values

are

’y’,

’Y’,

’n’,

and

’N’.

You

cannot

change

a

nickname

from

a

Documentum

object

to

a

registered

table

(or

back)

by

changing

this

option

with

the

ALTER

NICKNAME

statement.

Instead,

you

must

drop

and

recreate

the

nickname.

N

KEY_COLUMN

The

name

of

the

column

in

the

file

that

forms

the

key

on

which

the

file

is

sorted,

enclosed

in

single

quotation

marks.

Use

this

option

for

sorted

files

only.

A

column

that

is

designated

with

the

DOCUMENT

nickname

column

option

must

not

be

specified

as

the

key

column.

Only

single-column

keys

are

supported.

Multi-column

keys

are

not

allowed.

The

value

must

be

the

name

of

a

column

that

is

defined

in

the

CREATE

NICKNAME

statement.

The

column

must

be

sorted

in

ascending

order.

The

key

column

must

be

designated

not

nullable

by

adding

the

NOT

NULL

option

to

its

definition

in

the

nickname

statement.

This

option

is

case-sensitive.

However,

DB2

UDB

changes

column

names

to

uppercase

unless

the

column

is

defined

with

double

quotation

marks.

If

the

value

is

not

specified

for

a

sorted

nickname,

the

value

is

the

name

of

the

first

column

in

the

nicknamed

file.

596

Data

Source

Configuration

Guide

|

|||

||
|
|
|
|
|

|
|
|
|

|
|

|

||
|
|
|

|

||
|
|
|
|
|
|
|
|
|

|

||
|
|
|

|
|
|
|
|

|

||
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

Table

152.

Nickname

options

and

their

settings

(continued)

Option

Description

and

valid

settings

Default

setting

MAXHIT

An

INTEGER

that

specifies

the

maximum

number

of

results

that

can

be

returned

from

each

source

that

is

being

searched.

50

NAMESPACES

The

namespaces

that

are

associated

with

the

namespace

prefixes

that

is

used

in

the

XPATH

and

TEMPLATE

options

for

each

column.

The

syntax

is:

NAMESPACES

’prefix1=

"actual_namespace1",

prefix2="actual_namespace2"

’

Separate

each

namespace

with

a

comma.

For

example:

NAMESPACES

’

c="http://www.myweb.com/cust",

i="http://www.myweb.com/cust/id",

n="http://www.myweb.com/cust/name"’

NEXT_TIME

Specifies

the

time

(in

milliseconds)

that

is

required

to

locate

subsequent

source

elements

from

the

XPath

expression.

You

can

modify

the

NEXT_TIME,

XPATH_EVAL_TIME,

and

INSTANCE_PARSE_TIME

options

to

optimize

queries

of

large

or

complex

XML

source

structures.

This

option

is

accepted

for

root

nicknames

and

non-root

nicknames.

1

PARENT

Specified

only

for

a

child

nickname

whose

parent

was

renamed

through

the

REMOTE_OBJECT

option.

The

PARENT

option

associates

a

child

with

a

parent

when

multiple

nickname

families

are

defined

within

a

DB2

schema.

This

name

is

case-sensitive.

PROCESSORS

Specifies

the

number

of

processors

to

be

used

when

a

BLAST

query

is

evaluated.

This

option

corresponds

to

the

blastall

-a

option.

1

RANGE

Specifies

a

range

of

cells

to

be

used

in

the

data

source.

Appendix

F.

Nickname

options

for

federated

systems

597

|

|||

||
|
|

|

||
|
|
|

|
|
|

|
|

|
|
|
|

|

||
|
|
|
|
|
|
|

|

||
|
|
|
|
|

|

||
|
|

|

||
|
|

Table

152.

Nickname

options

and

their

settings

(continued)

Option

Description

and

valid

settings

Default

setting

REMOTE_OBJECT

For

BioRS:

Specifies

the

name

of

the

BioRS

databank

that

is

associated

with

the

nickname.

This

name

determines

the

schema

and

the

BioRS

databank

for

the

nickname.

This

name

also

specifies

the

relationship

of

the

nickname

to

other

nicknames.

The

case

sensitivity

of

this

name

depends

on

the

case

sensitivity

of

the

BioRS

server

and

on

the

value

of

the

CASE_SENSITIVE

server

option.

You

cannot

use

the

ALTER

NICKNAME

statement

to

change

or

delete

this

name.

If

the

name

of

the

BioRS

databank

that

is

used

in

this

option

changes,

you

must

delete

and

then

create

the

entire

nickname

again.

For

Documentum:

Specifies

the

name

of

the

Documentum

object

type

that

is

associated

with

the

nickname.

The

name

can

be

any

Documentum

object

type

or

registered

table.

The

name

of

a

registered

table

must

be

prefixed

by

the

table

owner’s

name.

If

the

registered

table

belongs

to

the

Docbase

owner,

the

value

dm_dbo

can

be

used

for

the

owner

name.

This

option

is

required.

Using

the

ALTER

NICKNAME

statement

to

change

the

value

of

the

REMOTE_OBJECT

option

results

in

errors

if

the

structure

of

the

new

object

is

not

similar

to

that

of

the

original

object.

For

Entrez:

Specifies

the

name

of

the

Entrez

object

type

that

is

associated

with

the

nickname.

This

name

determines

the

schema

and

NCBI

database

for

the

nickname

and

its

relationship

to

other

nicknames.

This

name

is

case

insensitive.

SOAPACTION

The

URI

SOAPACTION

attribute

from

the

Web

Service

Description

Language

(WSDL)

format.

This

option

is

required

for

the

root

nickname.

This

option

is

not

allowed

with

nonroot

nicknames.

SORTED

Specifies

whether

the

data

source

file

is

sorted

or

unsorted.

This

option

accepts

either

Y,

y,

n,

or

N.

Sorted

data

sources

must

be

sorted

in

ascending

order

according

to

the

collation

sequence

for

the

current

locale,

as

defined

by

the

settings

in

the

LC_COLLATE

National

Language

Support

category.

If

you

specify

that

the

data

source

is

sorted,

set

the

VALIDATE_DATA_FILE

option

to

Y.

N

SORTFIELD

Specifies

the

name

of

a

field

on

which

search

results

should

be

sorted.

The

default

value,

DOC_RANK,

is

a

field

that

Extended

Search

uses

to

determine

the

relevancy

of

a

result

document.

If

you

specify

a

different

field

name,

that

name

must

exist

in

the

sources

that

you

search.

DOC_RANK

598

Data

Source

Configuration

Guide

|

|||

||
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

||
|
|
|
|

|

||
|

|
|
|
|
|

|
|

|

||
|
|
|
|
|

|

Table

152.

Nickname

options

and

their

settings

(continued)

Option

Description

and

valid

settings

Default

setting

SORTORDER

Specifies

a

sort

order

for

the

return

of

search

results,

either

ascending

(A)

or

descending

(D).

A

STREAMING

Specifies

whether

the

XML

source

document

should

be

separated

into

logical

fragments

for

processing.

The

fragments

correspond

to

the

node

that

matches

the

XPath

expression

of

the

nickname.

The

wrapper

then

parses

and

processes

the

XML

source

data

fragment

by

fragment.

This

type

of

parsing

minimizes

memory

usage.

This

option

is

specified

on

only

the

root

nickname.

You

can

specify

streaming

for

any

XML

source

document

(FILE,

DIRECTORY,

URI,

or

COLUMN).

This

option

is

accepted

only

for

columns

of

the

root

nickname

(the

nickname

that

identifies

the

elements

at

the

top

level

of

the

XML

document).

Valid

values

are:

Y

The

XML

documents

are

parsed.

N

The

XML

documents

are

not

parsed.

Do

not

set

the

STREAMING

parameter

to

YES

if

you

set

the

VALIDATE

parameter

to

YES.

If

you

set

both

parameters

to

YES,

you

will

receive

an

error

message.

N

TEMPLATE

For

WebSphere

Business

Integration:

The

nickname

template

fragment

to

use

to

construct

an

XML

input

document.

The

fragment

must

conform

to

the

specified

template

syntax.

For

Web

Services:

The

nickname

template

fragment

to

use

to

construct

a

SOAP

request.

The

fragment

must

conform

to

the

specified

template

syntax.

TOTALMAXHIT

An

INTEGER

that

specifies

the

maximum

number

of

results

that

can

be

returned

from

all

the

sources

that

are

being

searched.

The

wrapper

combines

these

results

into

a

single

result

set.

50

TIMEOUT

For

Extended

Search:

An

INTEGER

that

specifies

the

number

of

seconds

to

wait

for

a

response

from

a

server

before

the

request

times

out.

For

BLAST

and

HMMER:

The

maximum

time,

in

minutes,

that

the

wrapper

waits

for

results

from

the

daemon.

For

Extended

Search:

30.

For

BLAST

and

HMMER:

60.

URL

The

URL

for

the

Web

service

endpoint.

This

option

is

required

for

the

root

nickname.

This

option

is

not

allowed

with

nonroot

nicknames.

Supported

protocols

are

HTTP

and

HTTPS.

Appendix

F.

Nickname

options

for

federated

systems

599

|

|||

||
|
|

||
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

||

||

|
|
|
|

|

||
|
|
|

|
|
|
|

|

||
|
|
|

|

||
|
|

|
|
|

|

|

||
|
|
|

|

Table

152.

Nickname

options

and

their

settings

(continued)

Option

Description

and

valid

settings

Default

setting

VALIDATE

Specifies

whether

the

XML

source

document

is

validated

before

the

XML

data

is

extracted.

If

this

option

is

set

to

YES,

the

nickname

option

verifies

that

the

structure

of

the

source

document

conforms

to

an

XML

schema

or

to

a

document

type

definition

(DTD).

This

option

is

accepted

only

for

columns

of

the

root

nickname

(the

nickname

that

identifies

the

elements

at

the

top

level

of

the

XML

document).

The

XML

source

document

is

not

validated

if

the

XML

wrapper

cannot

locate

the

XML

schema

file

or

DTD

file

(.xsd

or

.dtd).

DB2

UDB

does

not

issue

an

error

message

if

the

validation

does

not

occur.

Therefore,

ensure

that

the

XML

schema

file

or

DTD

file

exists

in

the

location

that

is

specified

in

the

XML

source

document.

Do

not

set

the

VALIDATE

parameter

to

YES

if

you

set

the

STREAMING

parameter

to

YES.

If

you

set

both

parameters

to

YES,

you

will

receive

an

error

message.

NO

VALIDATE_DATA_FILE

For

sorted

files,

this

option

specifies

whether

the

wrapper

verifies

that

the

key

column

is

sorted

in

ascending

order

and

checks

for

null

keys.

The

only

valid

values

for

this

option

are

Y

or

N.

The

check

is

done

once

at

registration

time.

This

option

is

not

allowed

if

the

DOCUMENT

nickname

column

option

is

used

for

the

file

path.

N

VERTICAL_TABLE

Specifies

the

presentation

format

for

search

results.

If

you

specify

YES,

Extended

Search

returns

all

fields

that

are

configured

as

returnable,

in

addition

to

the

user-defined

columns.

The

wrapper

stores

the

results

in

the

nickname

table

as

a

vertical

list

of

column

names.

NO

XPATH

Specifies

the

XPATH

expression

that

identifies

the

elements

that

represent

the

individual

tuples.

The

XPATH

nickname

option

for

a

child

nickname

is

evaluated

in

the

context

of

the

path

that

is

specified

by

the

XPATH

nickname

option

of

its

parent.

This

XPATH

expression

is

used

as

a

context

for

evaluating

column

values

that

are

identified

by

the

XPATH

nickname

column

options.

For

XML:

Do

not

specify

a

namespace

prefix

in

an

XPATH

expression.

The

XML

wrapper

does

not

support

namespaces.

600

Data

Source

Configuration

Guide

|

|||

||
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|

||
|
|
|
|
|
|
|

|

||
|
|
|
|
|
|

|

||
|
|
|
|
|
|
|
|

|
|
|

|

Table

152.

Nickname

options

and

their

settings

(continued)

Option

Description

and

valid

settings

Default

setting

XPATH_EVAL_TIME

Specifies

the

time

(in

milliseconds)

to

evaluate

the

XPath

expression

of

the

nickname

and

to

locate

the

first

element.

You

can

modify

the

XPATH_EVAL_TIME,

INSTANCE_PARSE_TIME,

and

NEXT_TIME

options

to

optimize

queries

of

large

or

complex

XML

source

structures.

This

option

is

accepted

for

root

nicknames

and

nonroot

nicknames.

The

number

that

you

specify

can

be

an

integer

or

a

decimal

value.

1

Appendix

F.

Nickname

options

for

federated

systems

601

|

|||

||
|
|
|
|
|
|
|
|

|

|
|

602

Data

Source

Configuration

Guide

Appendix

G.

Nickname

column

options

for

federated

systems

You

can

specify

column

information

in

the

CREATE

NICKNAME

or

ALTER

NICKNAME

statements

using

parameters

called

nickname

column

options.

The

following

table

lists

the

nickname

column

options

for

each

data

source.

Table

153.

Available

nickname

column

options

D
at

a

so
u

rc
e

 A
L

L
_V

A
L

U
E

S
 D

E
FA

U
LT

 D
E

L
IM

IT
E

R
 D

O
C

U
M

E
N

T
 E

S
C

A
P

E
_I

N
P

U
T

 FO
R

E
IG

N
_K

E
Y

 IN
D

E
X

 IS
_R

E
P

E
A

T
IN

G
 N

U
M

E
R

IC
_S

T
R

IN
G

 P
R

IM
A

R
Y

_K
E

Y
 R

E
M

O
T

E
_N

A
M

E
 S

O
A

PA
C

T
IO

N
C

O
L

U
M

N
 T

E
M

P
L

A
T

E
 U

R
L

C
O

L
U

M
N

 V
A

R
C

H
A

R
_N

O
_T

R
A

IL
IN

G
_B

L
A

N
K

S
 X

PA
T

H

BLAST

X

X

X

DB2

Universal

Database

for

iSeries

X

DB2

Universal

Database

for

z/OS

and

OS/390

X

DB2

Universal

Database

for

VM

and

VSE

X

DB2

Universal

Database

for

Linux,

UNIX,

and

Windows

X

Documentum

X

X

X

X

Informix

X

Microsoft

SQL

Server

X

ODBC

X

OLE

DB

Oracle

X

X

Sybase

X

Table-structured

files

X

Teradata

X

WebSphere

Business

Integration

X

X

X

X

X

©

Copyright

IBM

Corp.

1998,

2004

603

|

|

|
|

|

||

|||||||||||||||||

|||||||||||||||||

|
|
||||||||||||||||

|
|
|

||||||||||||||||

|
|
|

||||||||||||||||

|
|
|
|

||||||||||||||||

|||||||||||||||||

|||||||||||||||||

|
|
||||||||||||||||

|||||||||||||||||

|||||||||||||||||

|||||||||||||||||

|||||||||||||||||

|
|
||||||||||||||||

|||||||||||||||||

|
|
||||||||||||||||

Table

153.

Available

nickname

column

options

(continued)

D
at

a

so
u

rc
e

 A
L

L
_V

A
L

U
E

S
 D

E
FA

U
LT

 D
E

L
IM

IT
E

R
 D

O
C

U
M

E
N

T
 E

S
C

A
P

E
_I

N
P

U
T

 FO
R

E
IG

N
_K

E
Y

 IN
D

E
X

 IS
_R

E
P

E
A

T
IN

G
 N

U
M

E
R

IC
_S

T
R

IN
G

 P
R

IM
A

R
Y

_K
E

Y
 R

E
M

O
T

E
_N

A
M

E
 S

O
A

PA
C

T
IO

N
C

O
L

U
M

N
 T

E
M

P
L

A
T

E
 U

R
L

C
O

L
U

M
N

 V
A

R
C

H
A

R
_N

O
_T

R
A

IL
IN

G
_B

L
A

N
K

S
 X

PA
T

H

Web

services

X

X

X

X

X

X

X

XML

X

X

X

X

Table

154.

Column

options

and

their

settings

Option

Description

and

valid

settings

Default

setting

ALL_VALUES

Specifies

that

all

values

of

a

repeating

attribute

will

be

returned,

separated

by

the

specified

delimiter.

If

this

option

is

missing

or

is

N,

then

only

the

last

value

of

a

repeating

attribute

is

returned.

The

ALL_VALUES

option

can

be

specified

only

for

VARCHAR

columns

for

which

the

IS_REPEATING

option

is

’Y’

(and

is

invalid

when

IS_REG_TABLE

=

’Y’).

DEFAULT

Specifies

a

new

default

value

for

the

following

input

fixed

columns:

v

E_value

v

QueryStrands

v

GapAlign

v

NMisMatchPenalty

v

NMatchReward

v

Matrix

v

FilterSequence

v

NumberOfAlignments

v

GapCost

v

ExtendedGapCost

v

WordSize

v

ThresholdEx

This

new

value

overrides

the

preset

default

values.

The

new

default

value

must

be

of

the

same

type

as

the

indicated

value

for

a

given

column.

604

Data

Source

Configuration

Guide

|

|||||||||||||||||

|||||||||||||||||

|||||||||||||||||
|

||

|||

||
|
|
|
|
|
|

|

||
|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|

|

Table

154.

Column

options

and

their

settings

(continued)

Option

Description

and

valid

settings

Default

setting

DELIMITER

For

Documentum:

Specifies

the

delimiter

string

to

be

used

when

multiple

values

of

a

repeating

attribute

are

concatenated.

The

delimiter

can

be

one

or

more

characters.

This

option

is

valid

only

for

attributes

of

objects

with

data

type

VARCHAR

where

the

IS_REPEATING

option

is

set

to

Y.

For

BLAST:

The

delimiter

characters

to

be

used

to

determine

the

end

point

of

the

definition

line

information

for

the

column

on

which

this

option

appears.

If

more

than

one

character

appears

in

this

option’s

value,

then

the

first

occurrence

of

any

one

of

the

characters

signals

the

end

of

this

field’s

information.

The

default

is

end

of

line.

This

option

is

required,

unless

you

want

the

last

specified

column

to

contain

the

remainder

of

the

definition

line.

For

Documentum:

The

default

delimiter

is

a

comma.

For

BLAST:

The

default

delimiter

is

end

of

line.

Appendix

G.

Nickname

column

options

for

federated

systems

605

|

|||

||
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|

Table

154.

Column

options

and

their

settings

(continued)

Option

Description

and

valid

settings

Default

setting

DOCUMENT

For

table-structured

files:

Specifies

the

kind

of

table-structured

file.

This

wrapper

supports

only

the

value

FILE

for

this

option.

Only

one

column

can

be

specified

with

the

DOCUMENT

option

per

nickname.

The

column

that

is

associated

with

the

DOCUMENT

option

must

be

a

data

type

of

VARCHAR

or

CHAR.

Using

the

DOCUMENT

nickname

column

option

instead

of

the

FILE_PATH

nickname

option

implies

that

the

file

that

corresponds

to

this

nickname

will

be

supplied

when

the

query

runs.

If

the

DOCUMENT

option

has

the

FILE

value,

the

value

that

is

supplied

when

the

query

runs

is

the

full

path

of

the

file

whose

schema

matches

the

nickname

definition

for

this

nickname.

For

XML:

Specifies

that

this

column

is

a

DOCUMENT

column.

The

value

of

the

DOCUMENT

column

indicates

the

type

of

XML

source

data

that

is

supplied

to

the

nickname

when

the

query

runs.

This

option

is

accepted

only

for

columns

of

the

root

nickname

(the

nickname

that

identifies

the

elements

at

the

top

level

of

the

XML

document).

Only

one

column

can

be

specified

with

the

DOCUMENT

option

per

nickname.

The

column

that

is

associated

with

the

DOCUMENT

option

must

be

a

VARCHAR

data

type.

If

you

use

a

DOCUMENT

column

option

instead

of

the

FILE_PATH

or

DIRECTORY_PATH

nickname

option

the

document

that

corresponds

to

this

nickname

is

supplied

when

the

query

runs.

The

valid

values

for

the

DOCUMENT

option

are:

FILE

Specifies

that

the

value

of

the

nickname

column

is

bound

to

the

path

name

of

a

file.

The

data

from

this

file

is

supplied

when

the

query

runs.

DIRECTORY

Specifies

that

the

value

of

the

nickname

column

is

bound

to

the

path

name

of

a

directory

that

contains

multiple

XML

data

files.

The

XML

data

from

multiple

files

is

supplied

when

the

query

runs.

The

data

is

in

XML

files

in

the

specified

directory

path.

The

XML

wrapper

uses

only

the

files

with

an

.xml

extension

that

are

located

in

the

directory

that

you

specify.

The

XML

wrapper

ignores

all

other

files

in

this

directory.

URI

Specifies

that

the

value

of

the

nickname

column

is

bound

to

the

path

name

of

a

remote

XML

file

to

which

a

URI

refers.

The

URI

address

indicates

the

remote

location

of

this

XML

file

on

the

Web.

COLUMN

Specifies

that

the

XML

document

is

stored

in

a

relational

column.

606

Data

Source

Configuration

Guide

|

|||

||
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

||
|
|

|
|
|
|
|
|
|
|
|
|

||
|
|
|

|
|
|

|

Table

154.

Column

options

and

their

settings

(continued)

Option

Description

and

valid

settings

Default

setting

ELEMENT_NAME

Specifies

the

BioRS

element

name.

The

case

sensitivity

of

this

name

depends

on

the

case

sensitivity

of

the

BioRS

server

and

on

the

value

of

the

CASE_SENSITIVE

server

option.

You

must

specify

the

BioRS

element

name

only

if

it

is

different

from

the

column

name.

ESCAPE_INPUT

Specifies

whether

XML

special

characters

are

replaced

in

XML

input

values

or

not.

Use

this

option

to

include

XML

fragments

as

input,

such

as

XML

fragments

with

repeating

elements.

The

TEMPLATE

column

option

must

be

defined

on

columns

that

use

the

ESCAPE_INPUT

column

option.

The

column

data

type

must

be

VARCHAR

or

CHAR.

Valid

values

are:

Y

If

the

XML

input

contains

special

characters

these

are

replaced

with

their

counterpart

characters

that

XML

uses

to

represent

the

input

characters.

N

Input

characters

are

preserved

exactly

as

they

appear.

Y

FOREIGN_KEY

Indicates

that

this

nickname

is

a

child

nickname

and

specifies

the

name

of

the

corresponding

parent

nickname.

A

nickname

can

have

at

most

one

FOREIGN_KEY

column

option.

The

value

for

this

option

is

case

sensitive.

The

table

that

is

designated

with

this

option

holds

a

key

that

is

generated

by

the

wrapper.

The

XPATH

option

must

not

be

specified

for

this

column.

The

column

can

be

used

only

to

join

parent

nicknames

and

child

nicknames.

A

CREATE

NICKNAME

statement

with

a

FOREIGN_KEY

option

will

fail

if

the

parent

nickname

has

a

different

schema

name.

Unless

the

nickname

that

is

referred

to

in

a

FOREIGN_KEY

clause

was

explicitly

defined

as

lowercase

or

mixed

case

by

enclosing

it

in

quotation

marks

in

the

corresponding

CREATE

NICKNAME

statement,

then

when

you

refer

to

this

nickname

in

the

FOREIGN_KEY

clause,

you

must

specify

the

nickname

in

uppercase.

When

this

option

is

set

on

a

column,

no

other

option

can

be

set

on

the

column.

INDEX

The

ordinal

number

of

the

column

on

which

this

option

appears

in

the

group

of

definition

line

columns.

This

option

is

required.

IS_INDEXED

Indicates

whether

the

corresponding

column

is

indexed

(whether

the

column

can

be

referenced

in

a

predicate).

The

valid

values

are

Y

and

N.

The

value

Y

can

be

specified

only

for

columns

whose

corresponding

element

is

indexed

by

the

BioRS

server.

When

a

nickname

is

created,

this

option

is

automatically

added

with

the

value

Y

to

any

columns

that

correspond

to

a

BioRS

indexed

element.

Appendix

G.

Nickname

column

options

for

federated

systems

607

|

|||

||
|
|
|
|

|

||
|
|
|
|
|

|

||
|
|

||
|

|

||
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|

|

||
|
|

|

||
|
|
|
|

|
|
|
|
|
|

Table

154.

Column

options

and

their

settings

(continued)

Option

Description

and

valid

settings

Default

setting

IS_REPEATING

Indicates

whether

the

column

is

multi-valued.

Valid

values

are

Y

and

N.

Only

the

last

value

is

returned

for:

v

Non-VARCHAR

repeating

attributes

v

VARCHAR

columns

when

ALL_VALUES

’N’

is

specified

To

overcome

this

limitation,

you

can

create

a

dual

definition

for

the

repeating

attribute

column.

N

NUMERIC_STRING

Specifies

whether

a

column

contains

strings

of

numeric

characters.

Y

This

column

contains

strings

of

numeric

characters

’0’,

’1’,

’2’,

....

’9’.

It

does

not

contain

blanks.

If

this

column

contains

only

numeric

strings

followed

by

trailing

blanks,

do

not

specify

Y.

When

you

set

NUMERIC_STRING

to

Y

for

a

column,

you

are

informing

the

optimizer

that

this

column

contains

no

blanks

that

could

interfere

with

sorting

of

the

column’s

data.

Use

this

option

when

the

collating

sequence

of

a

data

source

is

different

from

the

collating

sequence

that

the

federated

server

uses.

Columns

that

use

this

option

are

not

excluded

from

remote

evaluation

because

of

a

different

collating

sequence.

N

This

column

is

either

not

a

numeric

string

column

or

is

a

numeric

string

column

that

contains

blanks.

N

PRIMARY_KEY

Indicates

that

this

nickname

is

a

parent

nickname.

The

column

data

type

must

be

VARCHAR(16).

A

nickname

can

have

at

most

one

PRIMARY_KEY

column

option.

YES

is

the

only

valid

value.

The

column

that

is

designated

with

this

option

holds

a

key

that

is

generated

by

the

wrapper.

The

XPATH

option

must

not

be

specified

for

this

column.

The

column

can

be

used

only

to

join

parent

nicknames

and

child

nicknames.

When

this

option

is

set

on

a

column,

no

other

option

can

be

set

on

the

column.

REFERENCED_OBJECT

This

option

is

valid

only

for

columns

whose

BioRS

data

type

is

Reference.

This

option

specifies

the

name

of

the

BioRS

databank

that

is

referenced

by

the

current

column.

The

case

sensitivity

of

this

name

depends

on

the

case

sensitivity

of

the

BioRS

server

and

on

the

value

of

the

CASE_SENSITIVE

server

option.

REMOTE_NAME

Specifies

the

name

of

the

corresponding

Documentum

attribute

or

column.

This

option

maps

remote

attribute

or

column

names

to

local

DB2

UDB

column

names.

The

DB2

UDB

column

name.

SOAPACTIONCOLUMN

A

column

to

dynamically

specify

the

URI

SOAPACTION

attribute

from

the

Web

Service

Description

Language

(WSDL)

format.

This

option

is

specified

on

only

the

root

nickname.

When

this

option

is

set

on

a

column,

no

other

option

can

be

set

on

the

column.

608

Data

Source

Configuration

Guide

|

|||

||
|

|

|

|

|
|

|

||
|

||
|
|
|

|
|
|
|
|
|
|
|
|

||
|

|

||
|
|
|
|
|
|
|

|
|

|

||
|
|
|
|
|

|

||
|
|

|
|

||
|
|
|

|
|

|

Table

154.

Column

options

and

their

settings

(continued)

Option

Description

and

valid

settings

Default

setting

TEMPLATE

The

column

template

fragment

to

use

to

construct

the

XML

input

document.

The

fragment

must

conform

to

the

specified

template

syntax.

URLCOLUMN

A

column

to

dynamically

specify

the

URL

for

the

Web

service

endpoint

when

you

run

a

query.

This

option

is

specified

on

only

the

root

nickname.

When

this

option

is

set

on

a

column,

no

other

option

can

be

set

on

the

column.

VARCHAR_NO_

TRAILING_BLANKS

This

option

applies

to

data

sources

that

have

variable

character

data

types

that

do

not

pad

the

length

with

trailing

blanks

during

comparison.

Some

data

sources,

such

as

Oracle,

do

not

have

blank-padded

character

comparison

semantics

that

return

the

same

results

as

the

DB2

UDB

for

Linux,

UNIX,

and

Windows

comparison

semantics.

Set

this

option

when

you

want

it

to

apply

only

to

a

specific

VARCHAR

or

VARCHAR2

column

in

a

data

source

object.

Y

Trailing

blanks

are

absent

from

these

VARCHAR

columns,

or

the

data

source

has

blank-padded

character

comparison

semantics

that

are

similar

to

the

semantics

on

the

federated

server.

The

federated

server

sends

character

comparison

operations

to

the

data

source

for

processing.

N

Trailing

blanks

are

present

in

these

VARCHAR

columns,

and

the

data

source

has

blank-padded

character

comparison

semantics

that

are

different

than

the

federated

server.

The

federated

server

processes

character

comparison

operations

if

it

is

not

possible

to

compensate

for

equivalent

semantics.

For

example,

rewriting

the

predicate.

N

for

affected

data

sources

XPATH

Specifies

the

XPath

expression

in

the

XML

document

that

contains

the

data

that

corresponds

to

this

column.

The

wrapper

evaluates

the

XPath

expression

after

the

CREATE

NICKNAME

statement

applies

this

XPath

expression

from

this

XPATH

nickname

option.

Related

concepts:

v

“Pushdown

analysis”

in

the

Federated

Systems

Guide

Related

tasks:

v

“Global

optimization”

in

the

Federated

Systems

Guide

Appendix

G.

Nickname

column

options

for

federated

systems

609

|

|||

||
|
|

|

||
|
|

|
|

|

|
|
|
|
|

|
|
|
|
|
|

||
|
|
|

|
|

||
|
|
|

|
|
|
|

|

||
|
|
|
|

|

|

|

|

|

|

610

Data

Source

Configuration

Guide

Appendix

H.

Default

forward

data

type

mappings

The

two

kinds

of

mappings

between

data

source

data

types

and

federated

database

data

types

are

forward

type

mappings

and

reverse

type

mappings.

In

a

forward

type

mapping,

the

mapping

is

from

a

remote

type

to

a

comparable

local

type.

You

can

override

a

default

type

mapping,

or

create

a

new

type

mapping

with

the

CREATE

TYPE

MAPPING

statement.

These

mappings

are

valid

with

all

the

supported

versions,

unless

otherwise

noted.

For

all

default

forward

data

types

mapping

from

a

data

source

to

DB2

for

Linux,

UNIX,

and

Windows,

the

DB2

federated

schema

is

SYSIBM.

The

following

tables

show

the

default

forward

mappings

between

DB2

for

Linux,

UNIX,

and

Windows

data

types

and

data

source

data

types.

DB2

for

z/OS

and

OS/390

data

sources

Table

155.

DB2

for

z/OS

and

OS/390

forward

default

data

type

mappings

(Not

all

columns

shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

 R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

 R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

 R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

 R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

 R
E

M
O

T
E

_B
IT

_D
A

TA
 R

E
M

O
T

E
_D

A
TA

_O
P

E
R

A
T

O
R

S
 FE

D
E

R
A

T
E

D
_T

Y
P

E
N

A
M

E
 FE

D
E

R
A

T
E

D
_L

E
N

G
T

H
 FE

D
E

R
A

T
E

D
_S

C
A

L
E

 FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

BLOB

-

-

-

-

-

-

BLOB

-

-

-

CHAR

1

254

-

-

-

-

CHAR

-

0

N

CHAR

255

32672

-

-

-

-

VARCHAR

-

0

N

CHAR

1

254

-

-

Y

-

CHAR

-

0

Y

CHAR

255

32672

-

-

Y

-

VARCHAR

-

0

Y

CLOB

-

-

-

-

-

-

CLOB

-

-

-

DATE

-

-

-

-

-

-

DATE

-

0

-

DBCLOB

-

-

-

-

-

-

DBCLOB

-

-

-

DECIMAL

-

-

-

-

-

-

DECIMAL

-

-

-

FLOAT

4

-

-

-

-

-

REAL

-

-

-

FLOAT

8

-

-

-

-

-

DOUBLE

-

-

-

GRAPHIC

1

127

-

-

-

-

GRAPHIC

-

0

N

INTEGER

-

-

-

-

-

-

INTEGER

-

0

-

ROWID

-

-

-

-

Y

-

VARCHAR

40

-

Y

SMALLINT

-

-

-

-

-

-

SMALLINT

-

0

-

©

Copyright

IBM

Corp.

1998,

2004

611

|||||||||||

|||||||||||

|||||||||||

Table

155.

DB2

for

z/OS

and

OS/390

forward

default

data

type

mappings

(Not

all

columns

shown)

(continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

 R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

 R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

 R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

 R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

 R
E

M
O

T
E

_B
IT

_D
A

TA
 R

E
M

O
T

E
_D

A
TA

_O
P

E
R

A
T

O
R

S
 FE

D
E

R
A

T
E

D
_T

Y
P

E
N

A
M

E
 FE

D
E

R
A

T
E

D
_L

E
N

G
T

H
 FE

D
E

R
A

T
E

D
_S

C
A

L
E

 FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

TIME

-

-

-

-

-

-

TIME

-

0

-

TIMESTAMP

-

-

-

-

-

-

TIMESTAMP

-

0

-

TIMESTMP

-

-

-

-

-

-

TIMESTAMP

-

0

-

VARCHAR

1

32672

-

-

-

-

VARCHAR

-

0

N

VARCHAR

1

32672

-

-

Y

-

VARCHAR

-

0

Y

VARG

1

16336

-

-

-

-

VARGRAPHIC

-

0

N

VARGRAPHIC

1

16336

-

-

-

-

VARGRAPHIC

-

0

N

DB2

for

iSeries

data

sources

Table

156.

DB2

for

iSeries

forward

default

data

type

mappings

(Not

all

columns

shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

 R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

 R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

 R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

 R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

 R
E

M
O

T
E

_B
IT

_D
A

TA
 R

E
M

O
T

E
_D

A
TA

_O
P

E
R

A
T

O
R

S
 FE

D
E

R
A

T
E

D
_T

Y
P

E
N

A
M

E
 FE

D
E

R
A

T
E

D
_L

E
N

G
T

H
 FE

D
E

R
A

T
E

D
_S

C
A

L
E

 FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

BLOB

-

-

-

-

-

-

BLOB

-

-

-

CHAR

1

254

-

-

-

-

CHAR

-

0

N

CHAR

255

32672

-

-

-

-

VARCHAR

-

0

N

CHAR

1

254

-

-

Y

-

CHAR

-

0

Y

CHAR

255

32672

-

-

Y

-

VARCHAR

-

0

Y

CLOB

-

-

-

-

-

-

CLOB

-

-

-

DATE

-

-

-

-

-

-

DATE

-

0

-

DBCLOB

-

-

-

-

-

-

DBCLOB

-

-

-

DECIMAL

-

-

-

-

-

-

DECIMAL

-

-

-

FLOAT

4

-

-

-

-

-

REAL

-

-

-

FLOAT

8

-

-

-

-

-

DOUBLE

-

-

-

GRAPHIC

1

127

-

-

-

-

GRAPHIC

-

0

N

612

Data

Source

Configuration

Guide

|||||||||||

|||||||||||

Table

156.

DB2

for

iSeries

forward

default

data

type

mappings

(Not

all

columns

shown)

(continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

 R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

 R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

 R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

 R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

 R
E

M
O

T
E

_B
IT

_D
A

TA
 R

E
M

O
T

E
_D

A
TA

_O
P

E
R

A
T

O
R

S
 FE

D
E

R
A

T
E

D
_T

Y
P

E
N

A
M

E
 FE

D
E

R
A

T
E

D
_L

E
N

G
T

H
 FE

D
E

R
A

T
E

D
_S

C
A

L
E

 FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

GRAPHIC

128

16336

-

-

-

-

VARGRAPHIC

-

0

N

INTEGER

-

-

-

-

-

-

INTEGER

-

0

-

NUMERIC

-

-

-

-

-

-

DECIMAL

-

-

-

SMALLINT

-

-

-

-

-

-

SMALLINT

-

0

-

TIME

-

-

-

-

-

-

TIME

-

0

-

TIMESTAMP

-

-

-

-

-

-

TIMESTAMP

-

0

-

TIMESTMP

-

-

-

-

-

-

TIMESTAMP

-

0

-

VARCHAR

1

32672

-

-

-

-

VARCHAR

-

0

N

VARCHAR

1

32672

-

-

Y

-

VARCHAR

-

0

Y

VARG

1

16336

-

-

-

-

VARGRAPHIC

-

0

N

VARGRAPHIC

1

16336

-

-

-

-

VARGRAPHIC

-

0

N

DB2

Server

for

VM

and

VSE

data

sources

Table

157.

DB2

Server

for

VM

and

VSE

forward

default

data

type

mappings

(Not

all

columns

shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

 R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

 R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

 R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

 R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

 R
E

M
O

T
E

_B
IT

_D
A

TA
 R

E
M

O
T

E
_D

A
TA

_O
P

E
R

A
T

O
R

S
 FE

D
E

R
A

T
E

D
_T

Y
P

E
N

A
M

E
 FE

D
E

R
A

T
E

D
_L

E
N

G
T

H
 FE

D
E

R
A

T
E

D
_S

C
A

L
E

 FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

BLOB

-

-

-

-

-

-

BLOB

-

-

-

CHAR

1

254

-

-

-

-

CHAR

-

0

N

CHAR

1

254

-

-

Y

-

CHAR

-

0

Y

CLOB

-

-

-

-

-

-

CLOB

-

-

-

DATE

-

-

-

-

-

-

DATE

-

0

-

DBAHW

-

-

-

-

-

-

SMALLINT

-

0

-

DBAINT

-

-

-

-

-

-

INTEGER

-

0

-

DBCLOB

-

-

-

-

-

-

DBCLOB

-

-

-

Appendix

H.

Default

forward

data

type

mappings

613

Table

157.

DB2

Server

for

VM

and

VSE

forward

default

data

type

mappings

(Not

all

columns

shown)

(continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

 R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

 R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

 R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

 R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

 R
E

M
O

T
E

_B
IT

_D
A

TA
 R

E
M

O
T

E
_D

A
TA

_O
P

E
R

A
T

O
R

S
 FE

D
E

R
A

T
E

D
_T

Y
P

E
N

A
M

E
 FE

D
E

R
A

T
E

D
_L

E
N

G
T

H
 FE

D
E

R
A

T
E

D
_S

C
A

L
E

 FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

DECIMAL

-

-

-

-

-

-

DECIMAL

-

-

-

FLOAT

4

-

-

-

-

-

REAL

-

-

-

FLOAT

8

-

-

-

-

-

DOUBLE

-

-

-

GRAPHIC

1

127

-

-

-

-

GRAPHIC

-

0

N

INTEGER

-

-

-

-

-

-

INTEGER

-

-

-

SMALLINT

-

-

-

-

-

-

SMALLINT

-

-

-

TIME

-

-

-

-

-

-

TIME

-

0

-

TIMESTAMP

-

-

-

-

-

-

TIMESTAMP

-

0

-

TIMESTMP

-

-

-

-

-

-

TIMESTAMP

-

0

-

VARCHAR

1

32672

-

-

-

-

VARCHAR

-

0

N

VARCHAR

1

32672

-

-

Y

-

VARCHAR

-

0

Y

VARGRAPHIC

1

16336

-

-

-

-

VARGRAPHIC

-

0

N

VARGRAPH

1

16336

-

-

-

-

VARGRAPHIC

-

0

N

DB2

for

Linux,

UNIX,

and

Windows

data

sources

Table

158.

DB2

for

Linux,

UNIX,

and

Windows

forward

default

data

type

mappings

(Not

all

columns

shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

 R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

 R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

 R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

 R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

 R
E

M
O

T
E

_B
IT

_D
A

TA
 R

E
M

O
T

E
_D

A
TA

_O
P

E
R

A
T

O
R

S
 FE

D
E

R
A

T
E

D
_T

Y
P

E
N

A
M

E
 FE

D
E

R
A

T
E

D
_L

E
N

G
T

H
 FE

D
E

R
A

T
E

D
_S

C
A

L
E

 FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

BIGINT

-

-

-

-

-

-

BIGINT

-

0

-

BLOB

-

-

-

-

-

-

BLOB

-

-

-

CHAR

-

-

-

-

-

-

CHAR

-

0

N

CHAR

-

-

-

-

Y

-

CHAR

-

0

Y

CLOB

-

-

-

-

-

-

CLOB

-

-

-

DATE

-

-

-

-

-

-

DATE

-

0

-

614

Data

Source

Configuration

Guide

|||||||||||

|||||||||||

|||||||||||

|||||||||||

Table

158.

DB2

for

Linux,

UNIX,

and

Windows

forward

default

data

type

mappings

(Not

all

columns

shown)

(continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

 R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

 R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

 R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

 R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

 R
E

M
O

T
E

_B
IT

_D
A

TA
 R

E
M

O
T

E
_D

A
TA

_O
P

E
R

A
T

O
R

S
 FE

D
E

R
A

T
E

D
_T

Y
P

E
N

A
M

E
 FE

D
E

R
A

T
E

D
_L

E
N

G
T

H
 FE

D
E

R
A

T
E

D
_S

C
A

L
E

 FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

DBCLOB

-

-

-

-

-

-

DBCLOB

-

-

-

DECIMAL

-

-

-

-

-

-

DECIMAL

-

-

-

DOUBLE

-

-

-

-

-

-

DOUBLE

-

-

-

FLOAT

-

-

-

-

-

-

DOUBLE

-

-

-

GRAPHIC

-

-

-

-

-

-

GRAPHIC

-

0

N

INTEGER

-

-

-

-

-

-

INTEGER

-

0

-

LONGVAR

-

-

-

-

N

-

CLOB

-

-

-

LONGVAR

-

-

-

-

Y

-

BLOB

-

-

-

LONGVARG

-

-

-

-

-

-

DBCLOB

-

-

-

REAL

-

-

-

-

-

-

REAL

-

-

-

SMALLINT

-

-

-

-

-

-

SMALLINT

-

0

-

TIME

-

-

-

-

-

-

TIME

-

0

-

TIMESTAMP

-

-

-

-

-

-

TIMESTAMP

-

0

-

TIMESTMP

-

-

-

-

-

-

TIMESTAMP

-

0

-

VARCHAR

-

-

-

-

-

-

VARCHAR

-

0

N

VARCHAR

-

-

-

-

Y

-

VARCHAR

-

0

Y

VARGRAPH

-

-

-

-

-

-

VARGRAPHIC

-

0

N

VARGRAPHIC

-

-

-

-

-

-

VARGRAPHIC

-

0

N

Appendix

H.

Default

forward

data

type

mappings

615

|||||||||||

|||||||||||

|||||||||||

|||||||||||

Informix

data

sources

Table

159.

Informix

forward

default

data

type

mappings

(Not

all

columns

shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

 R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

 R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

 R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

 R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

 R
E

M
O

T
E

_B
IT

_D
A

TA
 R

E
M

O
T

E
_D

A
TA

_O
P

E
R

A
T

O
R

S
 FE

D
E

R
A

T
E

D
_T

Y
P

E
N

A
M

E
 FE

D
E

R
A

T
E

D
_L

E
N

G
T

H
 FE

D
E

R
A

T
E

D
_S

C
A

L
E

 FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

BLOB

-

-

-

-

-

-

BLOB

2147483647

-

-

BOOLEAN

-

-

-

-

-

-

CHARACTER

1

-

-

BYTE

-

-

-

-

-

-

BLOB

2147483647

-

-

CHAR

1

254

-

-

-

-

CHARACTER

-

-

-

CHAR

255

32672

-

-

-

-

VARCHAR

-

-

-

CLOB

-

-

-

-

-

-

CLOB

2147483647

-

-

DATE

-

-

-

-

-

-

DATE

4

-

-

DATETIME

0

4

0

4

-

-

DATE

4

-

-

DATETIME

6

10

6

10

-

-

TIME

3

-

-

DATETIME

0

4

6

15

-

-

TIMESTAMP

10

-

-

DATETIME

6

10

11

15

-

-

TIMESTAMP

10

-

-

DECIMAL

1

31

0

31

-

-

DECIMAL

-

-

-

DECIMAL

32

130

-

-

-

-

DOUBLE

8

-

-

FLOAT

-

-

-

-

-

-

DOUBLE

8

-

-

INTEGER

-

-

-

-

-

-

INTEGER

4

-

-

INTERVAL

-

-

-

-

-

-

VARCHAR

25

-

-

INT8

-

-

-

-

-

-

BIGINT

19

0

-

LVARCHAR

1

32672

-

-

-

-

VARCHAR

-

-

-

MONEY

1

31

0

31

-

-

DECIMAL

-

-

-

MONEY

32

32

-

-

-

-

DOUBLE

8

-

-

NCHAR

1

254

-

-

-

-

CHARACTER

-

-

-

NCHAR

255

32672

-

-

-

-

VARCHAR

-

-

-

NVARCHAR

1

32672

-

-

-

-

VARCHAR

-

-

-

REAL

-

-

-

-

-

-

REAL

4

-

-

SERIAL

-

-

-

-

-

-

INTEGER

4

-

-

SERIAL8

-

-

-

-

-

-

BIGINT

-

-

-

SMALLFLOAT

-

-

-

-

-

-

REAL

4

-

-

SMALLINT

-

-

-

-

-

-

SMALLINT

2

-

-

TEXT

-

-

-

-

-

-

CLOB

2147483647

-

-

VARCHAR

1

32672

-

-

-

-

VARCHAR

-

-

-

616

Data

Source

Configuration

Guide

|||||||||||

|

|||||||||||

Table

159.

Informix

forward

default

data

type

mappings

(Not

all

columns

shown)

(continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

 R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

 R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

 R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

 R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

 R
E

M
O

T
E

_B
IT

_D
A

TA
 R

E
M

O
T

E
_D

A
TA

_O
P

E
R

A
T

O
R

S
 FE

D
E

R
A

T
E

D
_T

Y
P

E
N

A
M

E
 FE

D
E

R
A

T
E

D
_L

E
N

G
T

H
 FE

D
E

R
A

T
E

D
_S

C
A

L
E

 FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

Notes:

v

For

the

Informix

DATETIME

data

type,

the

DB2

UNIX

and

Windows

federated

server

uses

the

Informix

high-level

qualifer

as

the

REMOTE_LENGTH

and

the

Informix

low-level

qualifier

as

the

REMOTE_SCALE.

The

Informix

qualifiers

are

the

″TU_″

constants

defined

in

the

Informix

Client

SDK

datatime.h

file.

The

contstants

are:

0

=

YEAR

8

=

MINUTE

13

=

FRACTION(3)

2

=

MONTH

10

=

SECOND

14

=

FRACTION(4)

4

=

DAY

11

=

FRACTION(1)

15

=

FRACTION(5)

6

=

HOUR

12

=

FRACTION(2)

Microsoft

SQL

Server

data

sources

Table

160.

Microsoft

SQL

Server

forward

default

data

type

mappings

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

 R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

 R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

 R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

 R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

 R
E

M
O

T
E

_B
IT

_D
A

TA
 R

E
M

O
T

E
_D

A
TA

_O
P

E
R

A
T

O
R

S
 FE

D
E

R
A

T
E

D
_T

Y
P

E
N

A
M

E
 FE

D
E

R
A

T
E

D
_L

E
N

G
T

H
 FE

D
E

R
A

T
E

D
_S

C
A

L
E

 FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

bigint

4

-

-

-

-

-

-

BIGINT

-

-

-

binary

1

254

-

-

-

-

CHARACTER

-

-

Y

binary

255

8000

-

-

-

-

VARCHAR

-

-

Y

bit

-

-

-

-

-

-

SMALLINT

2

-

-

char

1

254

-

-

-

-

CHAR

-

-

N

char

255

8000

-

-

-

-

VARCHAR

-

-

N

datetime

-

-

-

-

-

-

TIMESTAMP

10

-

-

datetimen

-

-

-

-

-

-

TIMESTAMP

10

-

-

decimal

1

31

0

31

-

-

DECIMAL

-

-

-

decimal

32

38

0

38

-

-

DOUBLE

-

-

-

decimaln

1

31

0

31

-

-

DECIMAL

-

-

-

Appendix

H.

Default

forward

data

type

mappings

617

|
|

|
|

|

Table

160.

Microsoft

SQL

Server

forward

default

data

type

mappings

(continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

 R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

 R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

 R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

 R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

 R
E

M
O

T
E

_B
IT

_D
A

TA
 R

E
M

O
T

E
_D

A
TA

_O
P

E
R

A
T

O
R

S
 FE

D
E

R
A

T
E

D
_T

Y
P

E
N

A
M

E
 FE

D
E

R
A

T
E

D
_L

E
N

G
T

H
 FE

D
E

R
A

T
E

D
_S

C
A

L
E

 FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

decimaln

32

38

0

38

-

-

DOUBLE

-

-

-

DUMMY65

1

1

38

-84

127

-

-

DOUBLE

-

-

-

DUMMY2000

3

1

38

-84

127

-

-

DOUBLE

-

-

-

float

-

8

-

-

-

-

DOUBLE

8

-

-

floatn

-

8

-

-

-

-

DOUBLE

8

-

-

float

-

4

-

-

-

-

REAL

4

-

-

floatn

-

4

-

-

-

-

REAL

4

-

-

image

-

-

-

-

-

-

BLOB

2147483647

-

Y

int

-

-

-

-

-

-

INTEGER

4

-

-

intn

-

-

-

-

-

-

INTEGER

4

-

-

money

-

-

-

-

-

-

DECIMAL

19

4

-

moneyn

-

-

-

-

-

-

DECIMAL

19

4

-

nchar

1

127

-

-

-

-

CHAR

-

-

N

nchar

128

4000

-

-

-

-

VARCHAR

-

-

N

numeric

1

31

0

31

-

-

DECIMAL

-

-

-

numeric

32

38

0

38

-

-

DOUBLE

8

-

-

numericn

32

38

0

38

-

-

DOUBLE

-

-

-

numericn

1

31

0

31

-

-

DECIMAL

-

-

-

ntext

2

-

-

-

-

-

-

CLOB

2147483647

-

Y

nvarchar

1

4000

-

-

-

-

VARCHAR

-

-

N

real

-

-

-

-

-

-

REAL

4

-

-

smallint

-

-

-

-

-

-

SMALLINT

2

-

-

smalldatetime

-

-

-

-

-

-

TIMESTAMP

10

-

-

smallmoney

-

-

-

-

-

-

DECIMAL

10

4

-

smallmoneyn

-

-

-

-

-

-

DECIMAL

10

4

-

SQL_BIGINT

-

-

-

-

-

-

DECIMAL

-

-

-

SQL_BIGINT

4

-

-

-

-

-

-

BIGINT

-

-

-

SQL_BINARY

1

254

-

-

-

-

CHARACTER

-

-

Y

SQL_BINARY

255

8000

-

-

-

-

VARCHAR

-

-

Y

SQL_BIT

-

-

-

-

-

-

SMALLINT

2

-

-

SQL_CHAR

1

254

-

-

-

-

CHAR

-

-

N

SQL_CHAR

255

8000

-

-

-

-

VARCHAR

-

-

N

618

Data

Source

Configuration

Guide

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|

Table

160.

Microsoft

SQL

Server

forward

default

data

type

mappings

(continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

 R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

 R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

 R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

 R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

 R
E

M
O

T
E

_B
IT

_D
A

TA
 R

E
M

O
T

E
_D

A
TA

_O
P

E
R

A
T

O
R

S
 FE

D
E

R
A

T
E

D
_T

Y
P

E
N

A
M

E
 FE

D
E

R
A

T
E

D
_L

E
N

G
T

H
 FE

D
E

R
A

T
E

D
_S

C
A

L
E

 FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

SQL_DATE

-

-

-

-

-

-

DATE

4

-

-

SQL_DECIMAL

1

31

0

31

-

-

DECIMAL

-

-

-

SQL_DECIMAL

32

38

0

38

-

-

DOUBLE

8

-

-

SQL_DECIMAL

32

32

0

31

-

-

DOUBLE

8

-

-

SQL_DOUBLE

-

-

-

-

-

-

DOUBLE

8

-

-

SQL_FLOAT

-

-

-

-

-

-

DOUBLE

8

-

-

SQL_GUID

2

1

4000

-

-

Y

-

VARCHAR

16

-

Y

SQL_INTEGER

-

-

-

-

-

-

INTEGER

4

-

-

SQL_LONGVARCHAR

-

-

-

-

-

-

CLOB

2147483647

-

N

SQL_LONGVARBINARY

-

-

-

-

-

-

BLOB

-

-

Y

SQL_NUMERIC

1

31

0

31

-

-

DECIMAL

-

-

-

SQL_REAL

-

-

-

-

-

-

DOUBLE

8

-

-

SQL_SMALLINT

-

-

-

-

-

-

SMALLINT

2

-

-

SQL_TIME

-

-

-

-

-

-

TIME

3

-

-

SQL_TIMESTAMP

-

-

-

-

-

-

TIMESTAMP

10

-

-

SQL_TINYINT

-

-

-

-

-

-

SMALLINT

2

-

-

SQL_VARBINARY

1

8000

-

-

-

-

VARCHAR

-

-

Y

SQL_VARCHAR

1

8000

-

-

-

-

VARCHAR

-

-

N

text

-

-

-

-

-

-

CLOB

-

-

N

timestamp

-

-

-

-

-

-

VARCHAR

8

Y

tinyint

-

-

-

-

-

-

SMALLINT

2

-

-

uniqueidentifier

2

1

4000

-

-

Y

-

VARCHAR

16

-

Y

varbinary

1

8000

-

-

-

-

VARCHAR

-

-

Y

varchar

1

8000

-

-

-

-

VARCHAR

-

-

N

Notes:

1.

This

type

mapping

is

valid

only

with

Microsoft

SQL

Server

Version

6.5.

2.

This

type

mapping

is

valid

only

with

Microsoft

SQL

Server

Version

7

and

Version

2000.

3.

This

type

mapping

is

valid

only

with

Windows

2000

operating

systems.

4.

This

type

mapping

is

valid

only

with

Microsoft

SQL

Server

Version

2000.

Appendix

H.

Default

forward

data

type

mappings

619

|

|

|

|

ODBC

data

sources

Table

161.

ODBC

forward

default

data

type

mappings

(Not

all

columns

shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

 R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

 R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

 R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

 R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

 R
E

M
O

T
E

_B
IT

_D
A

TA
 R

E
M

O
T

E
_D

A
TA

_O
P

E
R

A
T

O
R

S
 FE

D
E

R
A

T
E

D
_T

Y
P

E
N

A
M

E
 FE

D
E

R
A

T
E

D
_L

E
N

G
T

H
 FE

D
E

R
A

T
E

D
_S

C
A

L
E

 FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

SQL_BIGINT

-

-

-

-

-

-

BIGINT

8

-

-

SQL_BINARY

1

254

-

-

-

-

CHARACTER

-

-

Y

SQL_BINARY

255

32672

-

-

-

-

VARCHAR

-

-

Y

SQL_BIT

-

-

-

-

-

-

SMALLINT

2

-

-

SQL_CHAR

1

254

-

-

-

-

CHAR

-

-

N

SQL_CHAR

255

32672

-

-

-

-

VARCHAR

-

-

N

SQL_DECIMAL

1

31

0

31

-

-

DECIMAL

-

-

-

SQL_DECIMAL

32

38

0

38

-

-

DOUBLE

8

-

-

SQL_DOUBLE

-

-

-

-

-

-

DOUBLE

8

-

-

SQL_FLOAT

-

-

-

-

-

-

DOUBLE

8

-

-

SQL_INTEGER

-

-

-

-

-

-

INTEGER

4

-

-

SQL_LONGVARCHAR

-

-

-

-

-

-

CLOB

2147483647

-

N

SQL_LONGVARBINARY

-

-

-

-

-

-

BLOB

-

-

Y

SQL_NUMERIC

1

31

0

31

-

-

DECIMAL

-

-

-

SQL_NUMERIC

32

32

0

31

-

-

DOUBLE

8

-

-

SQL_REAL

-

-

-

-

-

-

REAL

4

-

-

SQL_SMALLINT

-

-

-

-

-

-

SMALLINT

2

-

-

SQL_TYPE_DATE

-

-

-

-

-

-

DATE

4

-

-

SQL_TYPE_TIME

-

-

-

-

-

-

TIME

3

-

-

SQL_TYPE_TIMESTAMP

-

-

-

-

-

-

TIMESTAMP

10

-

-

SQL_TINYINT

-

-

-

-

-

-

SMALLINT

2

-

-

SQL_VARBINARY

1

32672

-

-

-

-

VARCHAR

-

-

Y

SQL_VARCHAR

1

32672

-

-

-

-

VARCHAR

-

-

N

SQL_WCHAR

1

127

-

-

-

-

CHAR

-

-

N

SQL_WCHAR

128

16336

-

-

-

-

VARCHAR

-

-

N

SQL_WVARCHAR

1

16336

-

-

-

-

VARCHAR

-

-

N

SQL_WLONGVARCHAR

-

1073741823

-

-

-

-

CLOB

2147483647

-

N

620

Data

Source

Configuration

Guide

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

Oracle

NET8

data

sources

Table

162.

Oracle

NET8

forward

default

data

type

mappings

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

 R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

 R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

 R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

 R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

 R
E

M
O

T
E

_B
IT

_D
A

TA
 R

E
M

O
T

E
_D

A
TA

_O
P

E
R

A
T

O
R

S
 FE

D
E

R
A

T
E

D
_T

Y
P

E
N

A
M

E
 FE

D
E

R
A

T
E

D
_L

E
N

G
T

H
 FE

D
E

R
A

T
E

D
_S

C
A

L
E

 FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

BLOB

0

0

0

0

-

\0

BLOB

2147483647

0

Y

CHAR

1

254

0

0

-

\0

CHAR

0

0

N

CHAR

255

2000

0

0

-

\0

VARCHAR

0

0

N

CLOB

0

0

0

0

-

\0

CLOB

2147483647

0

N

DATE

0

0

0

0

-

\0

TIMESTAMP

0

0

N

FLOAT

1

126

0

0

-

\0

DOUBLE

0

0

N

LONG

0

0

0

0

-

\0

CLOB

2147483647

0

N

LONG

RAW

0

0

0

0

-

\0

BLOB

2147483647

0

Y

MLSLABEL

0

0

0

0

-

\0

VARCHAR

255

0

N

NUMBER

1

38

-84

127

-

\0

DOUBLE

0

0

N

NUMBER

1

31

0

31

-

>=

DECIMAL

0

0

N

NUMBER

1

4

0

0

-

\0

SMALLINT

0

0

N

NUMBER

5

9

0

0

-

\0

INTEGER

0

0

N

NUMBER

-

10

0

0

-

\0

DECIMAL

0

0

N

RAW

1

2000

0

0

-

\0

VARCHAR

0

0

Y

ROWID

0

0

0

NULL

-

\0

CHAR

18

0

N

TIMESTAMP

1

-

-

-

-

-

-

TIMESTAMP

10

-

-

VARCHAR2

1

4000

0

0

-

\0

VARCHAR

0

0

N

Notes:

1.

This

type

mapping

is

valid

only

for

Oracle

9i

(or

later)

client

and

server

configurations.

Appendix

H.

Default

forward

data

type

mappings

621

||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|

|
|

Sybase

data

sources

Table

163.

Sybase

CTLIB

forward

default

data

type

mappings

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

 R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

 R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

 R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

 R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

 R
E

M
O

T
E

_B
IT

_D
A

TA
 R

E
M

O
T

E
_D

A
TA

_O
P

E
R

A
T

O
R

S
 FE

D
E

R
A

T
E

D
_T

Y
P

E
N

A
M

E
 FE

D
E

R
A

T
E

D
_L

E
N

G
T

H
 FE

D
E

R
A

T
E

D
_S

C
A

L
E

 FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

binary

1

254

-

-

-

-

CHAR

-

-

Y

binary

255

16384

-

-

-

-

VARCHAR

-

-

Y

bit

-

-

-

-

-

-

SMALLINT

-

-

-

char

1

254

-

-

-

-

CHAR

-

-

N

char

255

16384

-

-

-

-

VARCHAR

-

-

N

char

null

(see

varchar)

datetime

-

-

-

-

-

-

TIMESTAMP

-

-

-

datetimn

-

-

-

-

-

-

TIMESTAMP

-

-

-

decimal

1

31

0

31

-

-

DECIMAL

-

-

-

decimal

32

38

0

38

-

-

DOUBLE

-

-

-

decimaln

1

31

0

31

-

-

DECIMAL

-

-

-

decimaln

32

38

0

38

-

-

DOUBLE

-

-

-

float

-

4

-

-

-

-

REAL

-

-

-

float

-

8

-

-

-

-

DOUBLE

-

-

-

floatn

-

4

-

-

-

-

REAL

-

-

-

floatn

-

8

-

-

-

-

DOUBLE

-

-

-

image

-

-

-

-

-

-

BLOB

-

-

-

int

-

-

-

-

-

-

INTEGER

-

-

-

intn

-

-

-

-

-

-

INTEGER

-

-

-

money

-

-

-

-

-

-

DECIMAL

19

4

-

moneyn

-

-

-

-

-

-

DECIMAL

19

4

-

nchar

1

254

-

-

-

-

CHAR

-

-

N

nchar

255

16384

-

-

-

-

VARCHAR

-

-

N

nchar

null

(see

nvarchar)

numeric

1

31

0

31

-

-

DECIMAL

-

-

-

numeric

32

38

0

38

-

-

DOUBLE

-

-

-

numericn

1

31

0

31

-

-

DECIMAL

-

-

-

numericn

32

38

0

38

-

-

DOUBLE

-

-

-

nvarchar

1

16384

-

-

-

-

VARCHAR

-

-

N

real

-

-

-

-

-

-

REAL

-

-

-

622

Data

Source

Configuration

Guide

||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

Table

163.

Sybase

CTLIB

forward

default

data

type

mappings

(continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

 R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

 R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

 R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

 R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

 R
E

M
O

T
E

_B
IT

_D
A

TA
 R

E
M

O
T

E
_D

A
TA

_O
P

E
R

A
T

O
R

S
 FE

D
E

R
A

T
E

D
_T

Y
P

E
N

A
M

E
 FE

D
E

R
A

T
E

D
_L

E
N

G
T

H
 FE

D
E

R
A

T
E

D
_S

C
A

L
E

 FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

smalldatetime

-

-

-

-

-

-

TIMESTAMP

-

-

-

smallint

-

-

-

-

-

-

SMALLINT

-

-

-

smallmoney

-

-

-

-

-

-

DECIMAL

10

4

-

sysname

1

254

-

-

-

-

CHAR

-

-

N

text

-

-

-

-

-

-

CLOB

-

-

-

timestamp

-

-

-

-

-

-

VARCHAR

8

-

Y

tinyint

-

-

-

-

-

-

SMALLINT

-

-

-

unichar1

1

254

-

-

-

-

CHAR

-

-

N

unichar1

255

16384

-

-

-

-

VARCHAR

-

-

N

unichar

null

(see

univarchar)

univarchar1

1

16384

-

-

-

-

VARCHAR

-

-

N

varbinary

1

16384

-

-

-

-

VARCHAR

-

-

Y

varchar

1

16384

-

-

-

-

VARCHAR

-

-

N

Notes:

1.

Valid

for

non-Unicode

federated

databases.

Teradata

data

sources

Table

164.

Teradata

forward

default

data

type

mappings

(Not

all

columns

shown)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

 R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

 R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

 R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

 R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

 R
E

M
O

T
E

_B
IT

_D
A

TA
 R

E
M

O
T

E
_D

A
TA

_O
P

E
R

A
T

O
R

S
 FE

D
E

R
A

T
E

D
_T

Y
P

E
N

A
M

E
 FE

D
E

R
A

T
E

D
_L

E
N

G
T

H
 FE

D
E

R
A

T
E

D
_S

C
A

L
E

 FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

BYTE

1

254

-

-

-

-

CHAR

-

-

Y

BYTE

255

32672

-

-

-

-

VARCHAR

-

-

Y

BYTE

32673

64000

-

-

-

-

BLOB

-

-

-

Appendix

H.

Default

forward

data

type

mappings

623

|

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|
|||||||||||

|||||||||||

|||||||||||

|||||||||||

|

|
|

|

||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

Table

164.

Teradata

forward

default

data

type

mappings

(Not

all

columns

shown)

(continued)

R
E

M
O

T
E

_T
Y

P
E

N
A

M
E

 R
E

M
O

T
E

_L
O

W
E

R
_L

E
N

 R
E

M
O

T
E

_U
P

P
E

R
_L

E
N

 R
E

M
O

T
E

_L
O

W
E

R
_S

C
A

L
E

 R
E

M
O

T
E

_U
P

P
E

R
_S

C
A

L
E

 R
E

M
O

T
E

_B
IT

_D
A

TA
 R

E
M

O
T

E
_D

A
TA

_O
P

E
R

A
T

O
R

S
 FE

D
E

R
A

T
E

D
_T

Y
P

E
N

A
M

E
 FE

D
E

R
A

T
E

D
_L

E
N

G
T

H
 FE

D
E

R
A

T
E

D
_S

C
A

L
E

 FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

BYTEINT

-

-

-

-

-

-

SMALLINT

-

-

-

CHAR

1

254

-

-

-

-

CHARACTER

-

-

-

CHAR

255

32672

-

-

-

-

VARCHAR

-

-

-

CHAR

32673

64000

-

-

-

-

CLOB

-

-

-

DATE

-

-

-

-

-

-

DATE

-

-

-

DECIMAL

1

18

0

18

-

-

DECIMAL

-

-

-

DOUBLE

PRECISION

-

-

-

-

-

-

DOUBLE

-

-

-

FLOAT

-

-

-

-

-

-

DOUBLE

-

-

-

GRAPHIC

1

127

-

-

-

-

GRAPHIC

-

-

-

GRAPHIC

128

16336

-

-

-

-

VARGRAPHIC

-

-

-

GRAPHIC

16337

32000

-

-

-

-

DBCLOB

-

-

-

INTEGER

-

-

-

-

-

-

INTEGER

-

-

-

INTERVAL

-

-

-

-

-

-

CHAR

-

-

-

NUMERIC

1

18

0

18

-

-

DECIMAL

-

-

-

REAL

-

-

-

-

-

-

DOUBLE

-

-

-

SMALLINT

-

-

-

-

-

-

SMALLINT

-

-

-

TIMESTAMP

-

-

-

-

-

-

TIMESTAMP

-

-

-

VARBYTE

1

32762

-

-

-

-

VARCHAR

-

-

Y

VARBYTE

32763

64000

-

-

-

-

BLOB

-

-

-

VARCHAR

1

32672

-

-

-

-

VARCHAR

-

-

-

VARCHAR

32673

64000

-

-

-

-

CLOB

-

-

-

VARGRAPHIC

1

16336

-

-

-

-

VARGRAPHIC

-

-

-

VARGRAPHIC

16337

32000

-

-

-

-

DBCLOB

-

-

-

Related

concepts:

v

“Forward

and

reverse

data

type

mappings”

in

the

Federated

Systems

Guide

Related

reference:

v

“Altering

long

data

types

to

varchar

data

types”

in

the

Federated

Systems

Guide

v

“Unicode

default

forward

data

type

mappings

-

NET8

wrapper”

in

the

Federated

Systems

Guide

v

“Unicode

default

forward

data

type

mappings

-

Sybase

wrapper”

in

the

Federated

Systems

Guide

624

Data

Source

Configuration

Guide

|

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||
|

|

v

“Unicode

default

forward

data

type

mappings

-

ODBC

wrapper”

in

the

Federated

Systems

Guide

v

“Unicode

default

forward

data

type

mappings

-

Microsoft

SQL

Server

wrapper”

in

the

Federated

Systems

Guide

Appendix

H.

Default

forward

data

type

mappings

625

626

Data

Source

Configuration

Guide

Appendix

I.

Default

reverse

data

type

mappings

The

two

kinds

of

mappings

between

data

source

data

types

and

federated

database

data

types

are

forward

type

mappings

and

reverse

type

mappings.

In

a

forward

type

mapping,

the

mapping

is

from

a

remote

type

to

a

comparable

local

type.

The

other

type

of

mapping

is

a

reverse

type

mapping,

which

is

used

with

transparent

DDL

to

create

or

modify

remote

tables.

For

most

data

sources,

the

default

type

mappings

are

in

the

wrappers.

The

default

type

mappings

for

DB2

family

data

sources

are

in

the

DRDA

wrapper.

The

default

type

mappings

for

Informix

are

in

the

INFORMIX

wrapper,

and

so

forth.

When

you

define

a

remote

table

or

view

to

the

DB2

federated

database,

the

definition

includes

a

reverse

type

mapping.

The

mapping

is

from

a

local

DB2

for

Linux,

UNIX,

and

Windows

data

type

for

each

column,

and

the

corresponding

remote

data

type.

For

example,

there

is

a

default

reverse

type

mapping

in

which

the

local

type

REAL

points

to

the

Informix

type

SMALLFLOAT.

DB2

for

Linux,

UNIX,

and

Windows

federated

servers

do

not

support

mappings

for

LONG

VARCHAR,

LONG

VARGRAPHIC,

DATALINK,

and

user-defined

types.

When

you

use

the

CREATE

TABLE

statement

to

create

a

remote

table,

you

specify

the

local

data

types

you

want

to

include

in

the

remote

table.

These

default

reverse

type

mappings

will

assign

corresponding

remote

types

to

these

columns.

For

example,

suppose

that

you

use

the

CREATE

TABLE

statement

to

define

an

Informix

table

with

a

column

C2.

You

specify

BIGINT

as

the

data

type

for

C2

in

the

statement.

The

default

reverse

type

mapping

of

BIGINT

depends

on

which

version

of

Informix

you

are

creating

the

table

on.

The

mapping

for

C2

in

the

Informix

table

will

be

to

DECIMAL

in

Informix

Version

8

and

to

INT8

in

Informix

Version

9.

You

can

override

a

default

reverse

type

mapping,

or

create

a

new

reverse

type

mapping

with

the

CREATE

TYPE

MAPPING

statement.

The

following

tables

show

the

default

reverse

mappings

between

DB2

for

Linux,

UNIX,

and

Windows

local

data

types

and

remote

data

source

data

types.

These

mappings

are

valid

with

all

the

supported

versions,

unless

otherwise

noted.

©

Copyright

IBM

Corp.

1998,

2004

627

|
|

|
|

DB2

for

z/OS

and

OS/390

data

sources

Table

165.

DB2

for

z/OS

and

OS/390

reverse

default

data

type

mappings

(Not

all

columns

shown)

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

 FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

 FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

 FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

 FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

 FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA
 FE

D
E

R
A

T
E

D
_D

A
TA

_O
P

E
R

A
T

O
R

S
 R

E
M

O
T

E
_T

Y
P

E
N

A
M

E
 R

E
M

O
T

E
_L

E
N

G
T

H
 R

E
M

O
T

E
_S

C
A

L
E

 R
E

M
O

T
E

_B
IT

_D
A

TA

BLOB

-

-

-

-

-

-

BLOB

-

-

-

CHARACTER

-

-

-

-

-

-

CHAR

-

-

N

CHARACTER

-

-

-

-

Y

-

CHAR

-

-

Y

CLOB

-

-

-

-

-

-

CLOB

-

-

-

DATE

-

4

-

-

-

-

DATE

-

-

-

DBCLOB

-

-

-

-

-

-

DBCLOB

-

-

-

DECIMAL

-

-

-

-

-

-

DECIMAL

-

-

-

DOUBLE

-

8

-

-

-

-

DOUBLE

-

-

–

FLOAT

-

8

-

-

-

-

DOUBLE

-

-

-

GRAPHIC

-

-

-

-

-

-

GRAPHIC

-

-

N

INTEGER

-

4

-

-

-

-

INTEGER

-

-

-

REAL

-

4

-

-

-

-

REAL

-

-

-

SMALLINT

-

2

-

-

-

-

SMALLINT

-

-

-

TIME

-

3

-

-

-

-

TIME

-

-

-

TIMESTAMP

-

10

-

-

-

-

TIMESTAMP

-

-

-

VARCHAR

-

-

-

-

-

-

VARCHAR

-

-

N

VARCHAR

-

-

-

-

Y

-

VARCHAR

-

-

Y

VARGRAPHIC

-

-

-

-

-

-

VARGRAPHIC

-

-

N

628

Data

Source

Configuration

Guide

|||||||||||

|||||||||||

|||||||||||

DB2

for

iSeries

data

sources

Table

166.

DB2

for

iSeries

reverse

default

data

type

mappings

(Not

all

columns

shown)

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

 FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

 FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

 FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

 FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

 FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA
 FE

D
E

R
A

T
E

D
_D

A
TA

_O
P

E
R

A
T

O
R

S
 R

E
M

O
T

E
_T

Y
P

E
N

A
M

E
 R

E
M

O
T

E
_L

E
N

G
T

H
 R

E
M

O
T

E
_S

C
A

L
E

 R
E

M
O

T
E

_B
IT

_D
A

TA

BLOB

-

-

-

-

-

-

BLOB

-

-

-

CHARACTER

-

-

-

-

-

-

CHARACTER

-

-

N

CHARACTER

-

-

-

-

Y

-

CHARACTER

-

-

Y

CLOB

-

-

-

-

-

-

CLOB

-

-

-

DATE

-

4

-

-

-

-

DATE

-

-

-

DBCLOB

-

-

-

-

-

-

DBCLOB

-

-

-

DECIMAL

-

-

-

-

-

-

NUMERIC

-

-

-

DECIMAL

-

-

-

-

-

-

DECIMAL

-

-

-

DOUBLE

-

8

-

-

-

-

FLOAT

-

-

-

GRAPHIC

-

-

-

-

-

-

GRAPHIC

-

-

N

INTEGER

-

4

-

-

-

-

INTEGER

-

-

-

REAL

-

4

-

-

-

-

FLOAT

-

-

-

SMALLINT

-

2

-

-

-

-

SMALLINT

-

-

-

TIME

-

3

-

-

-

-

TIME

-

-

-

TIMESTAMP

-

10

-

-

-

-

TIMESTAMP

-

-

-

VARCHAR

-

-

-

-

-

-

VARCHAR

-

-

N

VARCHAR

-

-

-

-

Y

-

VARCHAR

-

-

Y

VARGRAPHIC

-

-

-

-

-

-

VARG

-

-

N

Appendix

I.

Default

reverse

data

type

mappings

629

|||||||||||

DB2

for

VM

and

VSE

data

sources

Table

167.

DB2

for

VM

and

VSE

reverse

default

data

type

mappings

(Not

all

columns

shown)

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

 FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

 FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

 FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

 FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

 FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA
 FE

D
E

R
A

T
E

D
_D

A
TA

_O
P

E
R

A
T

O
R

S
 R

E
M

O
T

E
_T

Y
P

E
N

A
M

E
 R

E
M

O
T

E
_L

E
N

G
T

H
 R

E
M

O
T

E
_S

C
A

L
E

 R
E

M
O

T
E

_B
IT

_D
A

TA

BLOB

-

-

-

-

-

-

BLOB

-

-

-

CHARACTER

-

-

-

-

-

-

CHAR

-

-

-

CHARACTER

-

-

-

-

Y

-

CHAR

-

-

Y

CLOB

-

-

-

-

-

-

CLOB

-

-

-

DATE

-

4

-

-

-

-

DATE

-

-

-

DBCLOB

-

-

-

-

-

-

DBCLOB

-

-

-

DECIMAL

-

-

-

-

-

-

DECIMAL

-

-

-

DOUBLE

-

8

-

-

-

-

FLOAT

-

-

-

GRAPHIC

-

-

-

-

-

-

GRAPHIC

-

-

N

INTEGER

-

4

-

-

-

-

INTEGER

-

-

-

REAL

-

4

-

-

-

-

REAL

-

-

-

SMALLINT

-

2

-

-

-

-

SMALLINT

-

-

-

TIME

-

3

-

-

-

-

TIME

-

-

-

TIMESTAMP

-

10

-

-

-

-

TIMESTAMP

-

-

-

VARCHAR

-

-

-

-

-

-

VARCHAR

-

-

-

VARCHAR

-

-

-

-

Y

-

VARCHAR

-

-

Y

VARGRAPH

-

-

-

-

-

-

VARGRAPH

-

-

N

630

Data

Source

Configuration

Guide

|||||||||||

DB2

for

Linux,

UNIX,

and

Windows

data

sources

Table

168.

DB2

for

Linux,

UNIX,

and

Windows

reverse

default

data

type

mappings

(Not

all

columns

shown)

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

 FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

 FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

 FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

 FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

 FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA
 FE

D
E

R
A

T
E

D
_D

A
TA

_O
P

E
R

A
T

O
R

S
 R

E
M

O
T

E
_T

Y
P

E
N

A
M

E
 R

E
M

O
T

E
_L

E
N

G
T

H
 R

E
M

O
T

E
_S

C
A

L
E

 FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

BIGINT

-

8

-

-

-

-

BIGINT

-

-

-

BLOB

-

-

-

-

-

-

BLOB

-

-

-

CHARACTER

-

-

-

-

-

-

CHAR

-

-

N

CHARACTER

-

-

-

-

Y

-

CHAR

-

-

Y

CLOB

-

-

-

-

-

-

CLOB

-

-

-

DATE

-

4

-

-

-

-

DATE

-

-

-

DBCLOB

-

-

-

-

-

-

DBCLOB

-

-

-

DECIMAL

-

-

-

-

-

-

DECIMAL

-

-

-

DOUBLE

-

8

-

-

-

-

DOUBLE

-

-

-

FLOAT

-

8

-

-

-

-

DOUBLE

-

-

-

GRAPHIC

-

-

-

-

-

-

GRAPHIC

-

-

N

INTEGER

-

4

-

-

-

-

INTEGER

-

-

-

REAL

-

-

-

-

-

-

REAL

-

-

-

SMALLINT

-

2

-

-

-

-

SMALLINT

-

-

-

TIME

-

3

-

-

-

-

TIME

-

-

-

TIMESTAMP

-

10

-

-

-

-

TIMESTAMP

-

-

-

VARCHAR

-

-

-

-

-

-

VARCHAR

-

-

N

VARCHAR

-

-

-

-

Y

-

VARCHAR

-

-

Y

VARGRAPH

-

-

-

-

-

-

VARGRAPHIC

-

-

N

VARGRAPHIC

-

-

-

-

-

-

VARGRAPHIC

-

-

-

Appendix

I.

Default

reverse

data

type

mappings

631

|||||||||||

|||||||||||

Informix

data

sources

Table

169.

Informix

reverse

default

data

type

mappings

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

 FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

 FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

 FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

 FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

 FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA
 FE

D
E

R
A

T
E

D
_D

A
TA

_O
P

E
R

A
T

O
R

S
 R

E
M

O
T

E
_T

Y
P

E
N

A
M

E
 R

E
M

O
T

E
_L

E
N

G
T

H
 R

E
M

O
T

E
_S

C
A

L
E

 R
E

M
O

T
E

_B
IT

_D
A

TA

BIGINT

1

-

-

-

-

-

-

DECIMAL

19

-

-

BIGINT

2

-

-

-

-

-

-

INT8

-

-

-

BLOB

1

2147483647

-

-

-

-

BYTE

-

-

-

CHARACTER

-

-

-

-

N

-

CHAR

-

-

-

CHARACTER

-

-

-

-

Y

-

BYTE

-

-

-

CLOB

1

2147483647

-

-

-

-

TEXT

-

-

-

DATE

-

4

-

-

-

-

DATE

-

-

-

DECIMAL

-

-

-

-

-

-

DECIMAL

-

-

-

DOUBLE

-

8

-

-

-

-

FLOAT

-

-

-

INTEGER

-

4

-

-

-

-

INTEGER

-

-

-

REAL

-

4

-

-

-

-

SMALLFLOAT

-

-

-

SMALLINT

-

2

-

-

-

-

SMALLINT

-

-

-

TIME

-

3

-

-

-

-

DATETIME

6

10

-

TIMESTAMP

-

10

-

-

-

-

DATETIME

0

15

-

VARCHAR

1

254

-

-

N

-

VARCHAR

-

-

-

VARCHAR

255

32672

-

-

N

-

TEXT

-

-

-

VARCHAR

-

-

-

-

Y

-

BYTE

-

-

-

VARCHAR

2

255

2048

-

-

N

-

LVARCHAR

-

-

-

VARCHAR

2

2049

32672

-

-

N

-

TEXT

-

-

-

Notes:

1.

This

type

mapping

is

valid

only

with

Informix

server

Version

8

(or

lower).

2.

This

type

mapping

is

valid

only

with

Informix

server

Version

9.

For

the

Informix

DATETIME

data

type,

the

DB2

UNIX

and

Windows

federated

server

uses

the

Informix

high-level

qualifer

as

the

REMOTE_LENGTH

and

the

Informix

low-level

qualifier

as

the

REMOTE_SCALE.

The

Informix

qualifiers

are

the

″TU_″

constants

defined

in

the

Informix

Client

SDK

datatime.h

file.

The

contstants

are:

0

=

YEAR

8

=

MINUTE

13

=

FRACTION(3)

2

=

MONTH

10

=

SECOND

14

=

FRACTION(4)

4

=

DAY

11

=

FRACTION(1)

15

=

FRACTION(5)

6

=

HOUR

12

=

FRACTION(2)

632

Data

Source

Configuration

Guide

|

||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|

|

|

|
|

|
|

|||

|||

|||

|||

Microsoft

SQL

Server

data

sources

Table

170.

Microsoft

SQL

Server

reverse

default

data

type

mappings

(Not

all

columns

shown)

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

 FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

 FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

 FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

 FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

 FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA
 FE

D
E

R
A

T
E

D
_D

A
TA

_O
P

E
R

A
T

O
R

S
 R

E
M

O
T

E
_T

Y
P

E
N

A
M

E
 R

E
M

O
T

E
_L

E
N

G
T

H
 R

E
M

O
T

E
_S

C
A

L
E

 R
E

M
O

T
E

_B
IT

_D
A

TA

BIGINT

1

-

-

-

-

-

-

bigint

-

-

-

BLOB

-

-

-

-

-

-

image

-

-

-

CHARACTER

-

-

-

-

Y

-

binary

-

-

-

CHARACTER

-

-

-

-

N

-

char

-

-

-

CLOB

-

-

-

-

-

-

text

-

-

-

DATE

-

4

-

-

-

-

datetime

-

-

-

DECIMAL

-

-

-

-

-

-

decimal

-

-

-

DOUBLE

-

8

-

-

-

-

float

-

-

-

INTEGER

-

-

-

-

-

-

int

-

-

-

SMALLINT

-

-

-

-

-

-

smallint

-

-

-

REAL

-

4

-

-

-

-

real

-

-

-

TIME

-

3

-

-

-

-

datetime

-

-

-

TIMESTAMP

-

10

-

-

-

-

datetime

-

-

-

VARCHAR

1

8000

-

-

N

-

varchar

-

-

-

VARCHAR

8001

32672

-

-

N

-

text

-

-

-

VARCHAR

1

8000

-

-

Y

-

varbinary

-

-

-

VARCHAR

8001

32672

-

-

Y

-

image

-

-

-

Notes:

1.

This

type

mapping

is

valid

only

with

Microsoft

SQL

Server

Version

2000.

Appendix

I.

Default

reverse

data

type

mappings

633

|

|

|||||||||||

|

Oracle

NET8

data

sources

Table

171.

Oracle

NET8

reverse

default

data

type

mappings

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

 FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

 FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

 FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

 FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

 FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA
 FE

D
E

R
A

T
E

D
_D

A
TA

_O
P

E
R

A
T

O
R

S
 R

E
M

O
T

E
_T

Y
P

E
N

A
M

E
 R

E
M

O
T

E
_L

E
N

G
T

H
 R

E
M

O
T

E
_S

C
A

L
E

 R
E

M
O

T
E

_B
IT

_D
A

TA

BLOB

0

2147483647

0

0

Y

\0

BLOB

0

0

Y

CHARACTER

1

254

0

0

N

\0

CHAR

0

0

N

CHARACTER

1

254

0

0

Y

\0

RAW

0

0

Y

CLOB

0

2147483647

0

0

N

\0

CLOB

0

0

N

DATE

0

4

0

0

N

\0

DATE

0

0

N

DECIMAL

0

0

0

0

N

\0

NUMBER

0

0

N

DOUBLE

0

8

0

0

N

\0

FLOAT

126

0

N

FLOAT

0

8

0

0

N

\0

FLOAT

126

0

N

INTEGER

0

4

0

0

N

\0

NUMBER

9

0

N

REAL

0

4

0

0

N

\0

FLOAT

63

0

N

SMALLINT

0

2

0

0

N

\0

NUMBER

4

0

N

TIME

0

3

0

0

N

\0

DATE

0

0

N

TIMESTAMP

0

10

0

0

N

\0

DATE

0

0

N

VARCHAR

1

4000

0

0

N

\0

VARCHAR2

0

0

N

VARCHAR

1

2000

0

0

Y

\0

RAW

0

0

Y

Note:

The

DB2

Universal

Database

for

Linux,

UNIX,

and

Windows

BIGINT

data

type

is

not

available

for

transparent

DDL.

You

cannot

specify

the

BIGINT

data

type

in

a

CREATE

TABLE

statement

when

you

create

a

remote

Oracle

table.

634

Data

Source

Configuration

Guide

||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|
|
|
|

Sybase

data

sources

Table

172.

Sybase

CTLIB

default

reverse

data

type

mappings

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

 FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

 FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

 FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

 FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

 FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA
 FE

D
E

R
A

T
E

D
_D

A
TA

_O
P

E
R

A
T

O
R

S
 R

E
M

O
T

E
_T

Y
P

E
N

A
M

E
 R

E
M

O
T

E
_L

E
N

G
T

H
 R

E
M

O
T

E
_S

C
A

L
E

 R
E

M
O

T
E

_B
IT

_D
A

TA

BIGINT

-

-

-

-

-

-

decimal

19

0

-

BLOB

-

-

-

-

-

-

image

-

-

-

CHARACTER

-

-

-

-

N

-

char

-

-

-

CHARACTER

-

-

-

-

Y

-

binary

-

-

-

CLOB

-

-

-

-

-

-

text

-

-

-

DATE

-

-

-

-

-

-

datetime

-

-

-

DECIMAL

-

-

-

-

-

-

decimal

-

-

-

DOUBLE

-

-

-

-

-

-

float

-

-

-

GRAPHIC

-

-

-

-

-

-

unichar

-

-

-

VARGRAPHIC

-

-

-

-

-

-

univarchar

-

-

-

INTEGER

-

-

-

-

-

-

integer

-

-

-

REAL

-

-

-

-

-

-

real

-

-

-

SMALLINT

-

-

-

-

-

-

smallint

-

-

-

TIME

-

-

-

-

-

-

datetime

-

-

-

TIMESTAMP

-

-

-

-

-

-

datetime

-

-

-

VARCHAR1

1

255

-

-

N

-

varchar

-

-

-

VARCHAR1

256

32672

-

-

N

-

text

-

-

-

VARCHAR

2

1

16384

-

-

N

-

varchar

-

-

-

VARCHAR

2

16385

32672

-

-

N

-

text

-

-

-

VARCHAR1

1

255

-

-

Y

-

varbinary

-

-

-

VARCHAR1

256

32672

-

-

Y

-

image

-

-

-

VARCHAR

2

1

16384

-

-

Y

-

varbinary

-

-

-

VARCHAR

2

16385

32672

-

-

Y

-

image

-

-

-

Notes:

1.

This

type

mapping

is

valid

only

for

CTLIB

with

Sybase

server

version

12.0

(or

earlier).

2.

This

type

mapping

is

valid

only

for

CTLIB

with

Sybase

server

version

12.5

(or

later).

Appendix

I.

Default

reverse

data

type

mappings

635

|

||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|

|

|
|

Teradata

data

sources

Table

173.

Teradata

reverse

default

data

type

mappings

(Not

all

columns

shown)

FE
D

E
R

A
T

E
D

_T
Y

P
E

N
A

M
E

 FE
D

E
R

A
T

E
D

_L
O

W
E

R
_L

E
N

 FE
D

E
R

A
T

E
D

_U
P

P
E

R
_L

E
N

 FE
D

E
R

A
T

E
D

_L
O

W
E

R
_S

C
A

L
E

 FE
D

E
R

A
T

E
D

_U
P

P
E

R
_S

C
A

L
E

 FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA
 FE

D
E

R
A

T
E

D
_D

A
TA

_O
P

E
R

A
T

O
R

S
 R

E
M

O
T

E
_T

Y
P

E
N

A
M

E
 R

E
M

O
T

E
_L

E
N

G
T

H
 R

E
M

O
T

E
_S

C
A

L
E

 FE
D

E
R

A
T

E
D

_B
IT

_D
A

TA

BLOB

1

1

64000

-

-

-

-

VARBYTE

-

-

-

CHARACTER

-

-

-

-

-

-

CHARACTER

-

-

-

CHARACTER

-

-

-

-

Y

-

BYTE

-

-

-

CLOB

2

1

64000

-

-

-

VARCHAR

-

-

-

DATE

-

-

-

-

-

-

DATE

-

-

-

DBCLOB

3

1

32000

-

-

-

-

VARGRAPHIC

-

-

-

DECIMAL

1

18

0

18

-

-

DECIMAL

-

-

-

DECIMAL

19

31

0

31

-

-

FLOAT

-

-

-

DOUBLE

-

-

-

-

-

-

FLOAT

-

-

-

GRAPHIC

-

-

-

-

-

-

GRAPHIC

-

-

-

INTEGER

-

-

-

-

-

-

INTEGER

-

-

-

REAL

-

-

-

-

-

-

FLOAT

-

-

-

SMALLINT

-

-

-

-

-

-

SMALLINT

-

-

-

TIME

-

-

-

-

-

-

TIME

-

-

-

TIMESTAMP

-

-

-

-

-

-

TIMESTAMP

-

-

-

VARCHAR

-

-

-

-

-

-

VARCHAR

-

-

-

VARCHAR

-

-

-

-

Y

-

VARBYTE

-

-

-

VARGRAPHIC

-

-

-

-

-

-

VARGRAPHIC

-

-

-

Notes:

1.

The

Teradata

VARBYTE

data

type

can

contain

only

the

specified

length

(1

to

64000)

of

a

DB2

BLOB

data

type.

2.

The

Teradata

VARCHAR

data

type

can

contain

only

the

specified

length

(1

to

64000)

of

a

DB2

CLOB

data

type.

3.

The

Teradata

VARGRAPHIC

data

type

can

contain

only

the

specified

length

(1

to

32000)

of

a

DB2

DBCLOB

data

type.

Related

concepts:

v

“Forward

and

reverse

data

type

mappings”

in

the

Federated

Systems

Guide

636

Data

Source

Configuration

Guide

|
|

||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|||||||||||

|

|

|

|
|
|

|

Appendix

J.

Function

mapping

options

for

federated

systems

DB2

Information

Integrator

supplies

default

mappings

between

existing

built-in

data

source

functions

and

built-in

DB2

functions.

For

most

data

sources,

the

default

function

mappings

are

in

the

wrappers.

To

use

a

data

source

function

that

the

federated

server

does

not

recognize,

you

must

create

a

function

mapping

between

a

data

source

function

and

a

counterpart

function

at

the

federated

database.

The

primary

purpose

of

function

mapping

options,

is

to

provide

information

about

the

potential

cost

of

executing

a

data

source

function

at

the

data

source.

Pushdown

analysis

determines

if

a

function

at

the

data

source

is

able

to

execute

a

function

in

a

query.

The

query

optimizer

decides

if

pushing

down

the

function

processing

to

the

data

source

is

the

least

cost

alternative.

The

statistical

information

provided

in

the

function

mapping

definition

helps

the

query

optimizer

compare

the

estimated

cost

of

executing

the

data

source

function

with

the

estimated

cost

of

executing

the

DB2

function.

Table

174.

Function

mapping

options

and

their

settings

Option

Valid

settings

Default

setting

DISABLE

Disable

a

default

function

mapping.

Valid

values

are

‘Y’

and

‘N’.

‘N’

INITIAL_INSTS

Estimated

number

of

instructions

processed

the

first

and

last

time

that

the

data

source

function

is

invoked.

‘0’

INITIAL_IOS

Estimated

number

of

I/Os

performed

the

first

and

last

time

that

the

data

source

function

is

invoked.

‘0’

IOS_PER_ARGBYTE

Estimated

number

of

I/Os

expended

for

each

byte

of

the

argument

set

that’s

passed

to

the

data

source

function.

‘0’

IOS_PER_INVOC

Estimated

number

of

I/Os

per

invocation

of

a

data

source

function.

‘0’

INSTS_PER_ARGBYTE

Estimated

number

of

instructions

processed

for

each

byte

of

the

argument

set

that’s

passed

to

the

data

source

function.

‘0’

INSTS_PER_INVOC

Estimated

number

of

instructions

processed

per

invocation

of

the

data

source

function.

‘450’

PERCENT_ARGBYTES

Estimated

average

percent

of

input

argument

bytes

that

the

data

source

function

will

actually

read.

‘100’

REMOTE_NAME

Name

of

the

data

source

function.

local

name

©

Copyright

IBM

Corp.

1998,

2004

637

638

Data

Source

Configuration

Guide

DB2

Information

Integrator

documentation

This

topic

provides

information

about

the

documentation

that

is

available

for

DB2

Information

Integrator.

The

tables

in

this

topic

provide

the

official

document

title,

form

number,

and

location

of

each

PDF

book.

To

order

a

printed

book,

you

must

know

either

the

official

book

title

or

the

document

form

number.

Titles,

file

names,

and

the

locations

of

the

DB2

Information

Integrator

release

notes

and

installation

requirements

are

also

provided

in

this

topic.

This

topic

contains

the

following

sections:

v

Accessing

DB2

Information

Integrator

documentation

v

Documentation

for

replication

function

on

z/OS

v

Documentation

for

event

publishing

function

for

DB2

Universal

Database

on

z/OS

v

Documentation

for

event

publishing

function

for

IMS

and

VSAM

on

z/OS

v

Documentation

for

event

publishing

and

replication

function

on

Linux,

UNIX,

and

Windows

v

Documentation

for

federated

function

on

z/OS

v

Documentation

for

federated

function

on

Linux,

UNIX,

and

Windows

v

Documentation

for

enterprise

search

on

Linux,

UNIX,

and

Windows

v

Release

notes

and

installation

requirements

Accessing

DB2

Information

Integrator

documentation

All

DB2

Information

Integrator

books

and

release

notes

are

available

in

PDF

files

from

the

DB2

Information

Integrator

Support

Web

site

at

www.ibm.com/software/data/integration/db2ii/support.html.

To

access

the

latest

DB2

Information

Integrator

product

documentation,

from

the

DB2

Information

Integrator

Support

Web

site,

click

on

the

Product

Information

link,

as

shown

in

Figure

48

on

page

640.

©

Copyright

IBM

Corp.

1998,

2004

639

|
|
|
|
|
|

|

|

|

|
|

|

|
|

|

|

|

|

|
|
|

http://www.ibm.com/software/data/integration/db2ii/support.html

You

can

access

the

latest

DB2

Information

Integrator

documentation,

in

all

supported

languages,

from

the

Product

Information

link:

v

DB2

Information

Integrator

product

documentation

in

PDF

files

v

Fix

pack

product

documentation,

including

release

notes

v

Instructions

for

downloading

and

installing

the

DB2

Information

Center

for

Linux,

UNIX,

and

Windows

v

Links

to

the

DB2

Information

Center

online

Scroll

though

the

list

to

find

the

product

documentation

for

the

version

of

DB2

Information

Integrator

that

you

are

using.

Figure

48.

Accessing

the

Product

Information

link

from

DB2

Information

Integrator

Support

Web

site

640

Data

Source

Configuration

Guide

|
|

|

|

|
|

|

The

DB2

Information

Integrator

Support

Web

site

also

provides

support

documentation,

IBM

Redbooks,

white

papers,

product

downloads,

links

to

user

groups,

and

news

about

DB2

Information

Integrator.

You

can

also

view

and

print

the

DB2

Information

Integrator

PDF

books

from

the

DB2

PDF

Documentation

CD.

To

view

or

print

the

PDF

documentation:

1.

From

the

root

directory

of

the

DB2

PDF

Documentation

CD,

open

the

index.htm

file.

2.

Click

the

language

that

you

want

to

use.

3.

Click

the

link

for

the

document

that

you

want

to

view.

Documentation

about

replication

function

on

z/OS

Table

175.

DB2

Information

Integrator

documentation

about

replication

function

on

z/OS

Name

Form

number

Location

ASNCLP

Program

Reference

for

Replication

and

Event

Publishing

N/A

DB2

Information

Integrator

Support

Web

site

Introduction

to

Replication

and

Event

Publishing

GC18-7567

DB2

Information

Integrator

Support

Web

site

Migrating

to

SQL

Replication

N/A

DB2

Information

Integrator

Support

Web

site

Replication

and

Event

Publishing

Guide

and

Reference

SC18-7568

v

DB2

PDF

Documentation

CD

v

DB2

Information

Integrator

Support

Web

site

Replication

Installation

and

Customization

Guide

for

z/OS

SC18-9127

DB2

Information

Integrator

Support

Web

site

SQL

Replication

Guide

and

Reference

SC27-1121

v

DB2

PDF

Documentation

CD

v

DB2

Information

Integrator

Support

Web

site

Tuning

for

Replication

and

Event

Publishing

Performance

N/A

DB2

Information

Integrator

Support

Web

site

Tuning

for

SQL

Replication

Performance

N/A

DB2

Information

Integrator

Support

Web

site

Release

Notes

for

IBM

DB2

Information

Integrator

Standard

Edition,

Advanced

Edition,

and

Replication

for

z/OS

N/A

v

In

the

DB2

Information

Center,

Product

Overviews

>

Information

Integration

>

DB2

Information

Integrator

overview

>

Problems,

workarounds,

and

documentation

updates

v

DB2

Information

Integrator

Installation

launchpad

v

DB2

Information

Integrator

Support

Web

site

v

The

DB2

Information

Integrator

product

CD

DB2

Information

Integrator

documentation

641

|
|
|

|

|
|

|

|

||

|
|
||

|
|
||
|

|
|
||
|

|||
|

|
|
||

|
|

|
|
||
|

|||

|
|

|
|
||
|

|||
|

|
|
|

||
|
|
|
|
|
|

|
|

|
|

|
|
|

Documentation

about

event

publishing

function

for

DB2

Universal

Database

on

z/OS

Table

176.

DB2

Information

Integrator

documentation

about

event

publishing

function

for

DB2

Universal

Database

on

z/OS

Name

Form

number

Location

ASNCLP

Program

Reference

for

Replication

and

Event

Publishing

N/A

DB2

Information

Integrator

Support

Web

site

Introduction

to

Replication

and

Event

Publishing

GC18-7567

v

DB2

PDF

Documentation

CD

v

DB2

Information

Integrator

Support

Web

site

Replication

and

Event

Publishing

Guide

and

Reference

SC18-7568

v

DB2

PDF

Documentation

CD

v

DB2

Information

Integrator

Support

Web

site

Tuning

for

Replication

and

Event

Publishing

Performance

N/A

DB2

Information

Integrator

Support

Web

site

Release

Notes

for

IBM

DB2

Information

Integrator

Standard

Edition,

Advanced

Edition,

and

Replication

for

z/OS

N/A

v

In

the

DB2

Information

Center,

Product

Overviews

>

Information

Integration

>

DB2

Information

Integrator

overview

>

Problems,

workarounds,

and

documentation

updates

v

DB2

Information

Integrator

Installation

launchpad

v

DB2

Information

Integrator

Support

Web

site

v

The

DB2

Information

Integrator

product

CD

Documentation

about

event

publishing

function

for

IMS

and

VSAM

on

z/OS

Table

177.

DB2

Information

Integrator

documentation

about

event

publishing

function

for

IMS

and

VSAM

on

z/OS

Name

Form

number

Location

Client

Guide

for

Classic

Federation

and

Event

Publisher

for

z/OS

SC18-9160

DB2

Information

Integrator

Support

Web

site

Data

Mapper

Guide

for

Classic

Federation

and

Event

Publisher

for

z/OS

SC18-9163

DB2

Information

Integrator

Support

Web

site

Getting

Started

with

Event

Publisher

for

z/OS

GC18-9186

DB2

Information

Integrator

Support

Web

site

Installation

Guide

for

Classic

Federation

and

Event

Publisher

for

z/OS

GC18-9301

DB2

Information

Integrator

Support

Web

site

Operations

Guide

for

Event

Publisher

for

z/OS

SC18-9157

DB2

Information

Integrator

Support

Web

site

642

Data

Source

Configuration

Guide

||
|

|
|
||

|
|
||
|

|
|
||

|
|

|
|
||

|
|

|
|
||
|

|
|
|

||
|
|
|
|
|
|

|
|

|
|

|
|
|

||
|

|
|
||

|
|
||
|

|
|
||
|

|||
|

|
|
||
|

|||
|

Table

177.

DB2

Information

Integrator

documentation

about

event

publishing

function

for

IMS

and

VSAM

on

z/OS

(continued)

Name

Form

number

Location

Planning

Guide

for

Event

Publisher

for

z/OS

SC18-9158

DB2

Information

Integrator

Support

Web

site

Reference

for

Classic

Federation

and

Event

Publisher

for

z/OS

SC18-9156

DB2

Information

Integrator

Support

Web

site

System

Messages

for

Classic

Federation

and

Event

Publisher

for

z/OS

SC18-9162

DB2

Information

Integrator

Support

Web

site

Release

Notes

for

IBM

DB2

Information

Integrator

Event

Publisher

for

IMS

for

z/OS

N/A

DB2

Information

Integrator

Support

Web

site

Release

Notes

for

IBM

DB2

Information

Integrator

Event

Publisher

for

VSAM

for

z/OS

N/A

DB2

Information

Integrator

Support

Web

site

Documentation

about

event

publishing

and

replication

function

on

Linux,

UNIX,

and

Windows

Table

178.

DB2

Information

Integrator

documentation

about

event

publishing

and

replication

function

on

Linux,

UNIX,

and

Windows

Name

Form

number

Location

ASNCLP

Program

Reference

for

Replication

and

Event

Publishing

N/A

DB2

Information

Integrator

Support

Web

site

Installation

Guide

for

Linux,

UNIX,

and

Windows

GC18-7036

v

DB2

PDF

Documentation

CD

v

DB2

Information

Integrator

Support

Web

site

Introduction

to

Replication

and

Event

Publishing

GC18-7567

v

DB2

PDF

Documentation

CD

v

DB2

Information

Integrator

Support

Web

site

Migrating

to

SQL

Replication

N/A

DB2

Information

Integrator

Support

Web

site

Replication

and

Event

Publishing

Guide

and

Reference

SC18-7568

v

DB2

PDF

Documentation

CD

v

DB2

Information

Integrator

Support

Web

site

SQL

Replication

Guide

and

Reference

SC27-1121

DB2

Information

Integrator

Support

Web

site

Tuning

for

Replication

and

Event

Publishing

Performance

N/A

DB2

Information

Integrator

Support

Web

site

Tuning

for

SQL

Replication

Performance

N/A

DB2

Information

Integrator

Support

Web

site

DB2

Information

Integrator

documentation

643

|
|

|
|
||

|||
|

|
|
||
|

|
|
||
|

|
|
||
|

|
|
||
|
|

||
|

|||

|
|
||
|

|
|
||

|
|

|
|
||

|
|

|||
|

|
|
||

|
|

|||
|

|
|
||
|

|||
|

Table

178.

DB2

Information

Integrator

documentation

about

event

publishing

and

replication

function

on

Linux,

UNIX,

and

Windows

(continued)

Name

Form

number

Location

Release

Notes

for

IBM

DB2

Information

Integrator

Standard

Edition,

Advanced

Edition,

and

Replication

for

z/OS

N/A

v

In

the

DB2

Information

Center,

Product

Overviews

>

Information

Integration

>

DB2

Information

Integrator

overview

>

Problems,

workarounds,

and

documentation

updates

v

DB2

Information

Integrator

Installation

launchpad

v

DB2

Information

Integrator

Support

Web

site

v

The

DB2

Information

Integrator

product

CD

Documentation

about

federated

function

on

z/OS

Table

179.

DB2

Information

Integrator

documentation

about

federated

function

on

z/OS

Name

Form

number

Location

Client

Guide

for

Classic

Federation

and

Event

Publisher

for

z/OS

SC18-9160

DB2

Information

Integrator

Support

Web

site

Data

Mapper

Guide

for

Classic

Federation

and

Event

Publisher

for

z/OS

SC18-9163

DB2

Information

Integrator

Support

Web

site

Getting

Started

with

Classic

Federation

for

z/OS

GC18-9155

DB2

Information

Integrator

Support

Web

site

Installation

Guide

for

Classic

Federation

and

Event

Publisher

for

z/OS

GC18-9301

DB2

Information

Integrator

Support

Web

site

Reference

for

Classic

Federation

and

Event

Publisher

for

z/OS

SC18-9156

DB2

Information

Integrator

Support

Web

site

System

Messages

for

Classic

Federation

and

Event

Publisher

for

z/OS

SC18-9162

DB2

Information

Integrator

Support

Web

site

Transaction

Services

Guide

for

Classic

Federation

for

z/OS

SC18-9161

DB2

Information

Integrator

Support

Web

site

Release

Notes

for

IBM

DB2

Information

Integrator

Classic

Federation

for

z/OS

N/A

DB2

Information

Integrator

Support

Web

site

Documentation

about

federated

function

on

Linux,

UNIX,

and

Windows

Table

180.

DB2

Information

Integrator

documentation

about

federated

function

on

Linux,

UNIX,

and

Windows

Name

Form

number

Location

Application

Developer’s

Guide

SC18-7359

v

DB2

PDF

Documentation

CD

v

DB2

Information

Integrator

Support

Web

site

644

Data

Source

Configuration

Guide

|
|

|||

|
|
|

||
|
|
|
|
|
|

|
|

|
|

|
|
|

||

|||

|
|
||
|

|
|
||
|

|
|
||
|

|
|
||
|

|
|
||
|

|
|
||
|

|
|
||
|

|
|
||
|
|

||
|

|
|
||

|||

|
|

Table

180.

DB2

Information

Integrator

documentation

about

federated

function

on

Linux,

UNIX,

and

Windows

(continued)

Name

Form

number

Location

C++

API

Reference

for

Developing

Wrappers

SC18-9172

v

DB2

PDF

Documentation

CD

v

DB2

Information

Integrator

Support

Web

site

Data

Source

Configuration

Guide

N/A

v

DB2

PDF

Documentation

CD

v

DB2

Information

Integrator

Support

Web

site

Federated

Systems

Guide

SC18-7364

v

DB2

PDF

Documentation

CD

v

DB2

Information

Integrator

Support

Web

site

Guide

to

Configuring

the

Content

Connector

for

VeniceBridge

N/A

DB2

Information

Integrator

Support

Web

site

Installation

Guide

for

Linux,

UNIX,

and

Windows

GC18-7036

v

DB2

PDF

Documentation

CD

v

DB2

Information

Integrator

Support

Web

site

Java

API

Reference

for

Developing

Wrappers

SC18-9173

v

DB2

PDF

Documentation

CD

v

DB2

Information

Integrator

Support

Web

site

Migration

Guide

SC18-7360

v

DB2

PDF

Documentation

CD

v

DB2

Information

Integrator

Support

Web

site

Wrapper

Developer’s

Guide

SC18-9174

v

DB2

PDF

Documentation

CD

v

DB2

Information

Integrator

Support

Web

site

Release

Notes

for

IBM

DB2

Information

Integrator

Standard

Edition,

Advanced

Edition,

and

Replication

for

z/OS

N/A

v

In

the

DB2

Information

Center,

Product

Overviews

>

Information

Integration

>

DB2

Information

Integrator

overview

>

Problems,

workarounds,

and

documentation

updates

v

DB2

Information

Integrator

Installation

launchpad

v

DB2

Information

Integrator

Support

Web

site

v

The

DB2

Information

Integrator

product

CD

DB2

Information

Integrator

documentation

645

|
|

|
|
||

|||

|
|

|||

|
|

|||

|
|

|
|
||
|

|
|
||

|
|

|||

|
|

|||

|
|

|||

|
|

|
|
|

||
|
|
|
|
|
|

|
|

|
|

|
|
|

Documentation

about

enterprise

search

function

on

Linux,

UNIX,

and

Windows

Table

181.

DB2

Information

Integrator

documentation

about

enterprise

search

function

on

Linux,

UNIX,

and

Windows

Name

Form

number

Location

Administering

Enterprise

Search

SC18-9283

DB2

Information

Integrator

Support

Web

site

Installation

Guide

for

Enterprise

Search

GC18-9282

DB2

Information

Integrator

Support

Web

site

Programming

Guide

and

API

Reference

for

Enterprise

Search

SC18-9284

DB2

Information

Integrator

Support

Web

site

Release

Notes

for

Enterprise

Search

N/A

DB2

Information

Integrator

Support

Web

site

Release

notes

and

installation

requirements

Release

notes

provide

information

that

is

specific

to

the

release

and

fix

pack

level

for

your

product

and

include

the

latest

corrections

to

the

documentation

for

each

release.

Installation

requirements

provide

information

that

is

specific

to

the

release

of

your

product.

Table

182.

DB2

Information

Integrator

Release

Notes

and

Installation

Requirements

Name

File

name

Location

Installation

Requirements

for

IBM

DB2

Information

Integrator

Event

Publishing

Edition,

Replication

Edition,

Standard

Edition,

Advanced

Edition,

Advanced

Edition

Unlimited,

Developer

Edition,

and

Replication

for

z/OS

Prereqs

v

The

DB2

Information

Integrator

product

CD

v

DB2

Information

Integrator

Installation

Launchpad

Release

Notes

for

IBM

DB2

Information

Integrator

Standard

Edition,

Advanced

Edition,

and

Replication

for

z/OS

ReleaseNotes

v

In

the

DB2

Information

Center,

Product

Overviews

>

Information

Integration

>

DB2

Information

Integrator

overview

>

Problems,

workarounds,

and

documentation

updates

v

DB2

Information

Integrator

Installation

launchpad

v

DB2

Information

Integrator

Support

Web

site

v

The

DB2

Information

Integrator

product

CD

Release

Notes

for

IBM

DB2

Information

Integrator

Event

Publisher

for

IMS

for

z/OS

N/A

DB2

Information

Integrator

Support

Web

site

646

Data

Source

Configuration

Guide

||
|

|||

|||
|
|

|||
|
|

|
|
||
|
|

|||
|
|
|

||

|||

|
|
|
|
|
|
|

||
|

|
|

|
|
|
|

||
|
|
|
|
|

|
|

|
|

|
|

|
|
|

||
|

Table

182.

DB2

Information

Integrator

Release

Notes

and

Installation

Requirements

(continued)

Name

File

name

Location

Release

Notes

for

IBM

DB2

Information

Integrator

Event

Publisher

for

VSAM

for

z/OS

N/A

DB2

Information

Integrator

Support

Web

site

Release

Notes

for

IBM

DB2

Information

Integrator

Classic

Federation

for

z/OS

N/A

DB2

Information

Integrator

Support

Web

site

Release

Notes

for

Enterprise

Search

N/A

DB2

Information

Integrator

Support

Web

site

To

view

the

installation

requirements

and

release

notes

that

are

on

the

product

CD:

v

On

Windows

operating

systems,

enter:

x:\doc\%L

x

is

the

Windows

CD

drive

letter

and

%L

is

the

locale

of

the

documentation

that

you

want

to

use,

for

example,

en_US.

v

On

UNIX

operating

systems,

enter:

/cdrom/doc/%L/

cdrom

refers

to

the

UNIX

mount

point

of

the

CD

and

%L

is

the

locale

of

the

documentation

that

you

want

to

use,

for

example,

en_US.

DB2

Information

Integrator

documentation

647

|
|

|||

|
|
|

||
|

|
|
|

||
|

|||
|
|

648

Data

Source

Configuration

Guide

Accessibility

Accessibility

features

help

users

with

physical

disabilities,

such

as

restricted

mobility

or

limited

vision,

to

use

software

products

successfully.

The

following

list

specifies

the

major

accessibility

features

in

DB2®

Version

8

products:

v

All

DB2

functionality

is

available

using

the

keyboard

for

navigation

instead

of

the

mouse.

For

more

information,

see

“Keyboard

input

and

navigation.”

v

You

can

customize

the

size

and

color

of

the

fonts

on

DB2

user

interfaces.

For

more

information,

see

“Accessible

display.”

v

DB2

products

support

accessibility

applications

that

use

the

Java™

Accessibility

API.

For

more

information,

see

“Compatibility

with

assistive

technologies”

on

page

650.

v

DB2

documentation

is

provided

in

an

accessible

format.

For

more

information,

see

“Accessible

documentation”

on

page

650.

Keyboard

input

and

navigation

Keyboard

input

You

can

operate

the

DB2

tools

using

only

the

keyboard.

You

can

use

keys

or

key

combinations

to

perform

operations

that

can

also

be

done

using

a

mouse.

Standard

operating

system

keystrokes

are

used

for

standard

operating

system

operations.

For

more

information

about

using

keys

or

key

combinations

to

perform

operations,

see

Keyboard

shortcuts

and

accelerators:

Common

GUI

help.

Keyboard

navigation

You

can

navigate

the

DB2

tools

user

interface

using

keys

or

key

combinations.

For

more

information

about

using

keys

or

key

combinations

to

navigate

the

DB2

Tools,

see

Keyboard

shortcuts

and

accelerators:

Common

GUI

help.

Keyboard

focus

In

UNIX®

operating

systems,

the

area

of

the

active

window

where

your

keystrokes

will

have

an

effect

is

highlighted.

Accessible

display

The

DB2

tools

have

features

that

improve

accessibility

for

users

with

low

vision

or

other

visual

impairments.

These

accessibility

enhancements

include

support

for

customizable

font

properties.

Font

settings

You

can

select

the

color,

size,

and

font

for

the

text

in

menus

and

dialog

windows,

using

the

Tools

Settings

notebook.

For

more

information

about

specifying

font

settings,

see

Changing

the

fonts

for

menus

and

text:

Common

GUI

help.

©

Copyright

IBM

Corp.

1998,

2004

649

|

|
|
|

|
|

Non-dependence

on

color

You

do

not

need

to

distinguish

between

colors

in

order

to

use

any

of

the

functions

in

this

product.

Compatibility

with

assistive

technologies

The

DB2

tools

interfaces

support

the

Java

Accessibility

API,

which

enables

you

to

use

screen

readers

and

other

assistive

technologies

with

DB2

products.

Accessible

documentation

Documentation

for

DB2

is

provided

in

XHTML

1.0

format,

which

is

viewable

in

most

Web

browsers.

XHTML

allows

you

to

view

documentation

according

to

the

display

preferences

set

in

your

browser.

It

also

allows

you

to

use

screen

readers

and

other

assistive

technologies.

Syntax

diagrams

are

provided

in

dotted

decimal

format.

This

format

is

available

only

if

you

are

accessing

the

online

documentation

using

a

screen-reader.

Related

concepts:

v

“Dotted

decimal

syntax

diagrams”

in

the

Infrastructure

Topics

(DB2

Common

Files)

Related

tasks:

v

“Keyboard

shortcuts

and

accelerators:

Common

GUI

help”

v

“Changing

the

fonts

for

menus

and

text:

Common

GUI

help”

650

Data

Source

Configuration

Guide

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

all

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country/region

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106-0032,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country/region

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY,

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions;

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product,

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

IBM

Corp.

1998,

2004

651

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

that

has

been

exchanged,

should

contact:

IBM

Corporation

J46A/G4

555

Bailey

Avenue

San

Jose,

CA

95141-1003

U.S.A.

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems,

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurements

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements,

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility,

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

This

information

contains

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious,

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

contains

sample

application

programs,

in

source

language,

which

illustrate

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

IBM’s

application

programming

interfaces.

652

Data

Source

Configuration

Guide

Each

copy

or

any

portion

of

these

sample

programs

or

any

derivative

work

must

include

a

copyright

notice

as

follows:

©

(your

company

name)

(year).

Portions

of

this

code

are

derived

from

IBM

Corp.

Sample

Programs.

©

Copyright

IBM

Corp.

_enter

the

year

or

years_.

All

rights

reserved.

Trademarks

The

following

terms

are

trademarks

of

International

Business

Machines

Corporation

in

the

United

States,

other

countries,

or

both:

IBM

DB2

DB2

Universal

Database

Domino

Domino.Doc

Informix

Lotus

Lotus

Discovery

Server

Lotus

Notes

QuickPlace

Sametime

SecureWay

WebSphere

The

following

terms

are

trademarks

or

registered

trademarks

of

other

companies:

Java

and

all

Java-based

trademarks

and

logos

are

trademarks

or

registered

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

Intel,

Intel

Inside

(logos),

MMX

and

Pentium

are

trademarks

of

Intel

Corporation

in

the

United

States,

other

countries,

or

both.

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Other

company,

product

or

service

names

may

be

trademarks

or

service

marks

of

others.

Notices

653

654

Data

Source

Configuration

Guide

Index

A
access

plans
description

8

accessibility
features

649

ACCOUNTING_STRING

user

option
valid

settings

591

Action

Output

utility
configuring

federated

servers

57

AllNbrsByGeneS

user-defined

function
syntax

498

AllNbrsByGeneT

user-defined

function
syntax

499

AllText

element
BioRS

81

ALTER

NICKNAME

statement
example

changing

column

options

528

changing

local

column

names

526

restrictions

524

ALTER

NICNAME

statement
example

local

data

type

531

altering
nicknames

local

data

type

530

nickname

options

527

overview

523

application

data

entity
business

object

definition

121

authorizations
file

access

for

Excel

files

224

file

access

for

table-structured

files

361

B
back

translation

UDFs
LSPep2AmbNuc

448

LSPep2ProbNuc

451

overview

447

BestHmlgsByGenesS

user-defined

function
syntax

508

BestHmlgsByGenesT

user-defined

function
syntax

509

BestNbrsByGeneS

user-defined

function
syntax

502

BestNbrsByGeneT

user-defined

function
syntax

503

Biomax

Informatics

67

BioRS
adding

to

a

federated

system

68

AllText

element

81

configuring

access

to

68

CREATE

NICKNAME

statement

example

75

CREATE

NICKNAME

syntax

536

CREATE

SERVER

statement

535

BioRS

(continued)
CREATE

USER

MAPPING

statement

73,

536

custom

functions

69,

77

data

types,

supported

517

description

67

messages

91

optimizing

wrapper

performance

86

registering

custom

functions

70

registering

nicknames

74

registering

server

definitions

72

registering

wrappers

71

sample

queries

79,

81

statistics
column

cardinality

89,

90

databank

cardinality

88

maintaining

87

nickname

cardinality

88

using

join

predicates

79

wrapper

library

files

72

BLAST
adding

to

a

federated

system

98

verifying

that

the

correct

blastall

executable

is

installed

99

verifying

that

the

correct

matrix

files

are

installed

99

configuring

access

to

98

configuring

TurboBlast

113

CREATE

NICKNAME

statement

107

CREATE

NICKNAME

statement

example

112

CREATE

NICKNAME

syntax

539

CREATE

SERVER

statement

538

daemon
configuring

100

starting

103

daemon

configuration

file
examples

103

data

types,

supported

517

definition

line

parsing

108

fixed

input

and

output

columns

108

high-scoring

segment

pairs

(HSP)

95

messages

116

nicknames,

valid

objects

for

15

optimizing

configuration

116

queries

114

registering

nicknames

107

registering

server

definitions

106

registering

wrappers

105

sample

queries

115

supported

versions

5

wrapper

library

files

106

BLAST_OUT_DIR_PATH
BLAST

daemon

100

BLASTALL_PATH
BLAST

daemon

100

BstBstHmlgByGenesS

user-defined

function
syntax

509

BstBstHmlgByGenesT

user-defined

function
syntax

510

BstBstNbrsByGeneS

user-defined

function
syntax

500

BstBstNbrsByGeneT

user-defined

function
syntax

501

built-in

functions

17

business

application

data

sources
adding

to

a

federated

system

125

configuring

access

to

125

federated

views

397

registering

nicknames

129

business

applications
accessing

with

wrappers

121

configuring

the

adapters

122

data

types,

supported

517

federated

views

137

sample

queries

155

server

definitions

127

wrapper

library

files

127

wrappers

126

business

object

application

wrappers
examples

151,

404

business

object

applications
WebSphere

Business

Integration

wrappers

119

business

objects

121

adding

to

a

federated

system

125

WebSphere

Business

Integration

wrappers

119

C
case

sensitivity
checklist

for

federated

data

sources

31

preserving

case-sensitive

values

22

catalog
See

global

catalog

563

CATALOG

DATABASE

command
accessing

DB2

family

data

sources

159

CATALOG

TCPIP

NODE

command
accessing

DB2

family

data

sources

158

checklists
planning

federated

system

configuration

31

client

libraries
Documentum

172

CLP

(command

line

processor)
federated

functions

18

code

pages

48

federated

systems

46

codon

frequency

table

478,

479

collating

sequences
federated

systems

45,

46,

47

COLLATING_SEQUENCE

server

option
valid

settings

575

©

Copyright

IBM

Corp.

1998,

2004

655

column

names
changing

526

column

options
description

16

specifying

for

nicknames

528

valid

settings

603

COMM_RATE

server

option
valid

settings

575

Command

Center
configuring

data

sources

55

using

for

federated

18

command

line

processor

(CLP)
federated

functions

18

compensation,

description

9

CompoundsByPathwyS

user-defined

function
syntax

489

CompoundsByPathwyT

user-defined

function
syntax

490

configurations
federated

data

sources
overview

66

configuring

data

sources
nickname

options

593

using

DB2

Control

Center

56

Connector

Configurator
business

object

application

configuration

122

CONNECTSTRING

server

option
valid

settings

575

Control

Center
configuring

data

sources

55,

56

interface

for

federated

systems

18

CPU_RATIO

server

option
valid

settings

575

CREATE

FUNCTION

statement
Extended

Search

240,

551

CREATE

INDEX

statement

18

CREATE

NICKNAME

statement

65

BioRS

74,

75

BLAST

107,

112

business

application

data

sources

129

DB2

family

data

sources

166

Documentum

176,

180

Entrez

199,

552

Excel

files

221

Extended

Search

239

HMMER

265,

269

Informix

286,

287

Microsoft

SQL

Server

302,

303

ODBC

314,

315

Oracle

338,

339

Sybase

352,

353

table-structured

files

359,

360

Teradata

377

Web

services

390

WebSphere

Business

Integration

wrappers

129

XML

424,

425

CREATE

NICKNAME

syntax
BioRS

536

BLAST

539

Documentum

541

Excel

544

Extended

Search

548

table-structured

files

552

CREATE

NICKNAME

syntax

(continued)
XML

557

CREATE

SERVER

statement

4

BioRS

72,

535

BLAST

106,

538

DB2

family

data

sources

161,

162

Documentum

175,

540

Entrez

197,

552

Excel

544

Excel

files

220

Extended

Search

237,

547

HMMER

263

Informix

282,

283

Microsoft

SQL

Server

297,

298

ODBC

309,

310

OLE

DB

323,

324

Oracle

334

Sybase

347,

348

table-structured

files

359

Teradata

371,

373

Web

services

389

XML

420

CREATE

USER

MAPPING

statement
BioRS

73,

536

DB2

family

data

source

164

DB2

family

data

sources

163

Documentum

176,

541

Extended

Search

238,

548

Informix

284,

285

Microsoft

SQL

Server

299,

300

ODBC

311,

312

OLE

DB

324,

325

Oracle

335,

336

Sybase

349,

350

Teradata

373,

374

CREATE

WRAPPER

statement
Extended

Search

546

ODBC

309

creating

wrappers
BioRS

71

BLAST

105

DB2

family

data

sources

160

Documentum

174

Entrez

196

Excel

files

219

Extended

Search

236

HMMER

262

Informix

280

ODBC

307

OLE

DB

322

Oracle

332

Sybase

345

table-structured

files

358

Teradata

370

XML

419

custom

functions
BioRS

69,

70,

77

Documentum

182

Entrez

195,

201

Extended

Search

240

D
daemon

configuration

file
BLAST

examples

103

HMMER

examples

258

daemon

(continued)
configuring

for

BLAST

100

configuring

for

HMMER

255

starting

for

BLAST

103

starting

for

HMMER

259

DAEMON_LOGFILE_DIR
BLAST

daemon

100

HMMER

daemon

255

DAEMON_PORT
BLAST

daemon

100

HMMER

daemon

255

data

elements
conversion

for

Entrez

203

data

source

objects
description

14

valid

object

types

15

data

sources

7,

8

business

applications

125

configuring

55

default

wrapper

names

12

description

4

optional

configuration

steps

66

valid

server

types

569

data

type

mappings
checklist

for

federated

data

sources

31

description

17

for

a

specific

data

source

object

530,

531

forward

611

planning

29

reverse

627

data

types
for

nonrelational

data

sources

517

unsupported

17

databank
description

67

DATALINK

data

type
unsupported

17

DATEFORMAT

server

option
valid

settings

575

DB2

family

data

sources
adding

to

a

federated

system

157

cataloging

node

entries

158

cataloging

remote

databases

159

configuring

access

to

157

CREATE

NICKNAME

statement

example

166

CREATE

SERVER

statement

162

CREATE

USER

MAPPING

statement

164

registering

nicknames

166

registering

server

definitions

161

registering

user

mappings

163

registering

wrappers

160

testing

server

connections

165

wrapper

library

files

160

DB2

for

iSeries
default

forward

type

mappings

611

default

reverse

type

mappings

627

default

wrapper

name

12

nicknames,

valid

objects

for

15

supported

versions

5

valid

server

types

569

DB2

for

Linux,

UNIX

and

Windows
default

forward

type

mappings

611

default

reverse

type

mappings

627

656

Data

Source

Configuration

Guide

DB2

for

Linux,

UNIX

and

Windows

(continued)
default

wrapper

name

12

nicknames,

valid

objects

for

15

supported

versions

5

valid

server

types

569

DB2

for

VM

and

VSE
default

forward

type

mappings

611

default

reverse

type

mappings

627

default

wrapper

name

12

nicknames,

valid

objects

for

15

supported

versions

5

valid

server

types

569

DB2

for

z/OS

and

OS/390
default

forward

type

mappings

611

default

reverse

type

mappings

627

default

wrapper

name

12

nicknames,

valid

objects

for

15

supported

versions

5

valid

server

types

569

DB2_DJ_COMM

environment

variable
Informix,

tuning

288

Microsoft

SQL

Server,

tuning

303

ODBC,

tuning

319

Oracle,

tuning

339

Sybase,

tuning

353

Teradata,

tuning

378

DB2_MAXIMAL_PUSHDOWN

server

option
valid

settings

575

db2blast_daemon

command

104

steps

to

issue

103

db2dj.ini
multi-partition

instance

configuration

60

restrictions

59

db2hmmer_daemon

command
examples

260

steps

to

issue

259

db2nodes.cfg

file
federated

database

51

DBNAME

server

option
valid

settings

575

definition

line

parsing
description

108

DefinitionsByGeneS

user-defined

function
syntax

511

Defline

parsing

UDFs
description

108

LSDeflineParse

454

overview

453

disability

649

DISABLE

function

mapping

option
valid

settings

637

distributed

database

management

system

3

djxlink
confirming

the

link

to

client

libraries

37

error

message

file

40

manually

linking

to

the

client

libraries

41

dmcl.ini

file
Documentum

172

Documentum
adding

to

a

federated

system

171

client

libraries

172

Documentum

(continued)
configuring

access

to

171

CREATE

NICKNAME

statement

176

CREATE

NICKNAME

statement

example

180

CREATE

NICKNAME

syntax

541

CREATE

SERVER

statement

540

CREATE

USER

MAPPING

statement

176,

541

custom

functions

182

data

types,

supported

517

description

169

dual

defining

repeating

attributes

181

environment

variables,

setting

172

example

169

messages

188

nickname

columns

181

nicknames,

valid

objects

for

15

pseudo

columns

177

registering

nicknames

176

registering

server

definitions

175

registering

user

mappings

176

registering

wrappers

174

sample

queries

187

supported

versions

5

user

access

to

documents

188

wrapper

library

files

174

E
Entrez

adding

to

a

federated

system

194

configuring

access

to

194

CREATE

SERVER

statement

552

custom

functions

195,

201

data

elements

in

SQL

schemas

203

description

193

invalid

WHERE

clauses

203

messages

213

nickname

options

552

nicknames,

valid

objects

for

15

Nucleotide

schema

tables

209

PubMed

schema

tables

205

registering

custom

functions

195

registering

nicknames

199

registering

server

definitions

197

registering

wrappers

196

relational

predicates

202

sample

queries

204

supported

versions

5

wrapper

library

files

197

environment

variables
Documentum

172

in

a

federated

multi-partition

instance

60

Informix

277

Microsoft

SQL

Server

293

Oracle

328

overview

for

federated

58

Sybase

342

Teradata

368

EnzymesByPathwyS

user-defined

function
syntax

491

EnzymesByPathwyT

user-defined

function
syntax

491

error-checking
Web

services

wrapper

411

examples
business

application

wrappers

151,

404

codon

frequency

table

479

db2blast_daemon

command

104

db2hmmer_daemon

command

260

Excel

files

25,

217

Web

services

wrappers

151,

398,

404

WebSphere

Business

Integration

wrapper

138

XML

document

mapping

415

examples,

CREATE

USER

MAPPING
Oracle

336

Teradata

374

examples,

CREATE

USER

MAPPING

statement
DB2

family

data

sources

164

Informix

285

Microsoft

SQL

Server

300

ODBC

312

OLE

DB

325

Sybase

350

examples,

CREATE

WRAPPER

statement
ODBC

309

examples,

daemon
BLAST

configuration

file

103

HMMER

configuration

file

258

examples,

queries
BioRS

79,

81

BLAST

115

business

application

data

sources

155

Documentum

187

Entrez

204

Excel

221

Extended

Search

242

HMMER

270

table-structured

files

356

Web

services

408

XML

432

examples,

UDFs
LSBarCode

user-defined

function

466

LSDeflineParse

user-defined

function

459

LSMultiMatch

user-defined

function

468

LSMultiMatch3

user-defined

function

470

LSNuc2Pep

user-defined

function

476

LSPatternMatch

user-defined

function

460

LSPep2AmbNuc

user-defined

function

449

LSPep2ProbNuc

user-defined

function

451

LSPrositePattern

user-defined

function

462

LSRevComp

user-defined

function

472

LSRevNuc

user-defined

function

473

LSRevPep

user-defined

function

474

LSTransAllFrames

477

Index

657

examples,

UDFs

(continued)
translation

table

for

life

sciences

480

Excel

files
Access

using

the

ODBC

wrapper

316

adding

to

a

federated

system

218

CREATE

NICKNAME

statement

221

registering

nicknames

221

configuring

access

to

218

CREATE

NICKNAME

syntax

544

CREATE

SERVER

statement

544

data

types,

supported

517

description

217

file

access

control

model

224

messages

224

nicknames,

valid

objects

for

15

preparing

to

access

25

registering

server

definitions

220

registering

wrappers

219

sample

queries

221

sample

user

scenario

222

supported

versions

5

wrapper

library

files

220

Extended

Search
adding

to

a

federated

system

235

configuring

access

to

235

CREATE

FUNCTION

statement

240,

551

CREATE

NICKNAME

statement

239

CREATE

NICKNAME

syntax

548

CREATE

SERVER

statement

547

CREATE

USER

MAPPING

statement

238,

548

CREATE

WRAPPER

statement

546

creating

multiple

nicknames

232

customizing

queries

240

data

types,

supported

517

description

229

generalized

query

language

244

mapped

fields

233

messages

246

nicknames,

valid

objects

for

15

query

guidelines

240

registering

function

templates

240

registering

nicknames

239

registering

server

definitions

237

registering

user

mappings

238

registering

wrappers

236

sample

queries

242

searchable

sources

229

supported

versions

5

vertical

tables

233

wrapper

library

files

236

F
FaultQueue

business

object

application

configuration

122

federated

database
collating

sequence

46,

47

federated

databases
creating

51

description

7

system

catalog

7

FEDERATED

parameter
setting

42

federated

server

4

checking

the

setup

37

configuring

multiple

servers

57

description

4

wrapper

modules

11

wrappers

11

federated

systems
overview

3

federated

views
business

applications

397

for

nonroot

nicknames

430

file

types
table-structured

files

355

fixed

columns
BLAST

nicknames

108

HMMER

nicknames

265

flat

files
See

also

table-structured

files

5

FOLD_ID

server

option
case-sensitive

values

22

setting

on

Informix

data

sources

288

valid

settings

575

FOLD_PW

server

option
case-sensitive

values

22

setting

on

Informix

data

sources

288

valid

settings

575

foreign

key
using

with

nicknames

138

forward

type

mappings
default

mappings

611

function

mappings
description

17

options
valid

settings

637

planning

30

function

templates
Extended

Search

240

G
generalized

query

language
Extended

Search

244

GenesByMotifsS

user-defined

function
syntax

512

GenesByPathwyS

user-defined

function
syntax

488

GenesByPathwyT

user-defined

function
syntax

488

GeneWise

464,

466

GeneWise

UDFs
linking

to

the

library

463

Genome

database

193

global

catalog
description

7

views

containing

federated

information

563

H
H2X_PATH,

HMMER

daemon

255

high-scoring

segment

pairs

95

HMMER
CREATE

SERVER

statement

example

263

fixed

column

for

nicknames

265

wrapper

library

files

262

HMMER

data

source
adding

to

a

federated

system

254

configuring

access

to

254

CREATE

NICKNAME

statement

example

269

daemon
configuring

255

starting

259

daemon

configuration

file

examples

258

data

types,

supported

517

description

251

hmmpfam

executable

file

255

list

of

utilities

251

messages

273

nicknames,

valid

objects

for

15

queries

271

registering

nicknames

265

registering

server

definitions

263

registering

wrappers

262

sample

queries

270

supported

versions

5

HMMER_OUT_DIR_PATH
HMMER

daemon

255

HMMERPFAM_PATH,

HMMER

daemon

255

hmmpfam

executable

file
description

251

verifying

installed

version

255

I
IFILE

server

option
valid

settings

575

IGNORE_UDT

server

option
valid

settings

575

index

specifications
description

18

Informix
adding

to

a

federated

system

275

configuring

access

to

275

CREATE

NICKNAME

statement

example

287

CREATE

SERVER

statement

283

CREATE

USER

MAPPING

statement

285

default

forward

type

mappings

611

default

reverse

type

mappings

627

default

wrapper

name

12

environment

variables,

setting

277

nicknames,

valid

objects

for

15

registering

nicknames

286

registering

server

definitions

282

registering

user

mappings

284

registering

wrappers

280

setting

up

client

configuration

files

276

supported

versions

5

testing

client

configuration

files

276

testing

server

connections

286

tuning

288

valid

server

types

569

wrapper

library

file

names

281

INFORMIX_LOCK_MODE

server

option
valid

settings

575

INITIAL_INSTS

function

mapping

option
valid

settings

637

658

Data

Source

Configuration

Guide

INITIAL_IOS

function

mapping

option
valid

settings

637

INSTS_PER_ARGBYTE

function

mapping

option
valid

settings

637

INSTS_PER_INVOC

function

mapping

option
valid

settings

637

IO_RATIO

server

option
valid

settings

575

IOS_PER_ARGBYTE

function

mapping

option
valid

settings

637

IOS_PER_INVOC

function

mapping

option
valid

settings

637

IUD_APP_SVPT_ENFORCE

server

option
valid

settings

575

K
KEGG

user-defined

functions
argument

descriptions

485

list

of

functions

483

overview

483

registering

486

removing

513

SSDB

returned

columns

497

keyboard

shortcuts
support

for

649

L
libraries

Informix

wrapper

281

manually

linking

to

client

libraries

41

Microsoft

SQL

Server

wrapper

296

Oracle

wrappers

333

Sybase

wrapper

346

Teradata

wrapper

371

user-defined

functions

443

wrappers

38,

39

life

sciences

user-defined

functions
example,

translation

table

480

format,

translation

table

480

GeneWise

463

list

of

functions

444

overview

443

overview,

back

translation

functions

447

overview,

defline

parsing

UDFs

453

registering

445

regular

expression

support

463

removing

446

link-edit
See

djxlink

37

local

catalog
See

global

catalog

7

LOGIN_TIMEOUT

server

option
valid

settings

575

LSBarCode

user-defined

function
example

466

syntax

466

LSDeflineParse

user-defined

function
examples

459

LSDeflineParse

user-defined

functions
syntax

454

LSGeneWise

user-defined

function

464,

466

library

443

LSMultiMatch

user-defined

function
example

468

syntax

468

LSMultiMatch3

user-defined

function
example

470

syntax

469

LSNuc2Pep

user-defined

function
example

476

syntax

475

LSPatternMatch

user-defined

function
example

460

syntax

459

LSPep2AmbNuc

user-defined

function
error

messages

450

example

449

syntax

448

LSPep2ProbNuc

user-defined

function
codon

frequency

table

format

478

error

messages

452

example

451

syntax

451

LSPrositePattern

user-defined

function
example

462

syntax

462

LSRevComp

user-defined

function
example

472

syntax

471

LSRevNuc

user-defined

function
example

473

syntax

473

LSRevPep

user-defined

function
example

474,

477

syntax

474,

477

M
mapped

fields
Extended

Search

233

mapping
XML

documents

136,

396

MAX_PENDING_REQUESTS
BLAST

daemon

100

HMMER

daemon

255

messages
BioRS

wrapper

91

BLAST

wrapper

116

djxlink

40

Documentum

wrapper

188

Entrez

wrapper

213

Excel

wrapper

224

Extended

Search

wrapper

246

HMMER

wrapper

273

LSPep2AmbNuc

user-defined

function

450

LSPep2ProbNuc

user-defined

function

452

table-structured

file

wrapper

362

Web

services

wrapper

411

XML

wrapper

433

Microsoft

Excel
See

Excel

files

5

Microsoft

SQL

Server
adding

to

a

federated

system

291

configuring

access

to

291

CREATE

NICKNAME

statement

example

303

CREATE

SERVER

statement

298

CREATE

USER

MAPPING

statement

example

300

default

forward

type

mappings

611

default

reverse

type

mappings

627

default

wrapper

names

12

environment

variables,

setting

293

nicknames,

valid

objects

for

15

preparing

federated

servers

292

registering

nicknames

302

registering

server

definitions

297

registering

user

mappings

299

registering

wrappers

295

supported

versions

5

testing

server

connections

301

troubleshooting

303

tuning

303

valid

server

types

569

wrapper

library

file

names

296

MODULE

wrapper

option
valid

settings

567

Motif

UDFs
LSBarCode

466

LSMultiMatch

468

LSMultiMatch3

469

multiple

partition

configurations

60

N
naming

rules
checklist

for

federated

data

sources

31

federated

database

objects

21

NET8

wrapper
library

file

names,

Oracle

333

nickname

and

column

options
Web

services

wrapper

131,

381,

391

WebSphere

business

integration

wrappers

131,

391

nickname

hierarchy,

examples

138

nickname

column

options
description

16

examples

528

nickname

hierarchy,

examples

138

nickname

options
specifying

527

nickname

statistics
BioRS

88,

89,

90

nicknames
business

applications

119

changing
column

options

528

local

column

names

526

local

data

type

530

local

data

type,

example

531

nickname

options

527

overview

523

restrictions

524

creating
BioRS

74

business

application

data

sources

129

Index

659

nicknames

(continued)
creating

(continued)
Entrez

199

extended

search

232

HMMER

265

Informix

286

Microsoft

SQL

Server

302

ODBC

314

on

nicknames

65

Oracle

338

Sybase

352

table-structured

files

359

Teradata

376,

377

Web

services

390,

398

WebSphere

Business

Integration

data

sources

129

XML

424

database

techniques

151,

404

DB2

family

data

sources

166

description

14,

136,

396

registering
overview

63

specifying
columns

for

nonrelational

data

sources

65

valid

data

source

objects

15

Web

services

description

language

(WSDL)

381

NLS

(national

language

support)

45

NODE

server

option,

valid

settings

575

nodes
cataloging,

for

DB2

family

data

sources

158

nonrelational

data

sources
nickname

columns

65

specifying

data

type

mappings

17

supported

data

types

517

Nucleotide
database

193

schema

tables

209

NUMERIC_STRING

column

option
example

528

valid

settings

603

O
Object

Discovery

Agent
business

application

wrappers

122

business

applications

121

objects
naming

21

ODBC
adding

to

a

federated

system

305

registering

nicknames

314

configuring

access

to

305

CREATE

NICKNAME

statement

example

315

CREATE

SERVER

statement

310

CREATE

USER

MAPPING

statement

312

CREATE

WRAPPER

statement

309

default

forward

type

mappings

611

default

wrapper

name

12

nicknames,

valid

objects

for

15

preparing

federated

servers

306

registering

server

definitions

309

registering

user

mappings

311

ODBC

(continued)
registering

wrappers

307

supported

versions

5

testing

server

connections

313

troubleshooting

319

tuning

319

valid

server

types

569

wrapper

library

files

308

ODBC

wrapper
accessing

Excel

files

316

OLE

DB
adding

to

a

federated

system
overview

321

configuring

access

to

321

CREATE

SERVER

statement

324

CREATE

USER

MAPPING

statement

325

default

wrapper

name

12

registering

server

definitions

323

registering

user

mappings

324

registering

wrappers

322

supported

versions

5

valid

server

types

569

wrapper

library

files

323

OMIM

database

193

optimization
BLAST

116

table-structured

files

361

optimizer
description

8

options
nicknames

593

Oracle
adding

to

a

federated

system

327

registering

nicknames

338

configuring

access

to

327

CREATE

NICKNAME

statement

example

339

CREATE

SERVER

statement

334

default

forward

type

mappings

611

default

reverse

type

mappings

627

default

wrapper

names

12

environment

variables,

setting

328

examples,

CREATE

USER

MAPPING

statement

336

library

names

333

nicknames,

valid

objects

for

15

registering

server

definitions

334

registering

user

mappings

335

registering

wrappers

332

setting

up

client

configuration

files

331

testing

client

configuration

files

331

testing

server

connections

337

troubleshooting

339

tuning

339

wrapper

names

333

P
PACKET_SIZE

server

option
valid

settings

575

ParalogsByGeneS

user-defined

function
syntax

506

ParalogsByGeneT

user-defined

function
syntax

507

parameters
FEDERATED

42

pass-through
description

10

restrictions

10

PASSWORD

server

option
valid

settings

575

passwords
case-sensitive

values

22

Pathway

database
list

of

functions

483

Pathway

database

UDFs
CompoundsByPathwyS

489

CompoundsByPathwyT

490

EnzymesByPathwyS

491

EnzymesByPathwyT

491

GenesByPathwyS

488

GenesByPathwyT

488

PathwysByCompndsS

493

PathwysByCompndsT

user-defined

function

494

PathwysByEnzymesS

495

PathwysByEnzymesT

496

PathwysByGenesS

492

PathwysByGenesT

493

PathwysByCompndsS

user-defined

function
syntax

493

PathwysByCompndsT

user-defined

function
syntax

494

PathwysByEnzymesS

user-defined

function
syntax

495

PathwysByEnzymesT

user-defined

function
syntax

496

PathwysByGenesS

user-defined

function
syntax

492

PathwysByGenesT

user-defined

function
syntax

493

pattern

matching

UDFs
LSPatternMatch

459

LSPrositePattern

462

PCRE

library

package

463

PeopleSoft
business

objects

119

PERCENT_ARGBYTES

function

mapping

option
valid

settings

637

PLAN_HINTS

server

option
valid

settings

575

planning
accessing

Excel

data

25

checking

the

federated

server

setup

37

checklist

for

federated

system

configuration

31

choosing

the

correct

wrapper

24

data

source

environment

variables

58

data

type

mappings

29

federated

servers
for

Microsoft

SQL

Server

292

for

ODBC

306

function

mappings

30

nonrelational

nickname

columns

65

registering

nicknames

63

660

Data

Source

Configuration

Guide

planning

(continued)
registering

server

definitions

61

registering

user

mappings

63

registering

wrappers

61

user

mappings

28

predicates
Entrez

202

primary

keys
using

with

nicknames

138

pseudo

columns
Documentum

177

PubMed

database

193

PubMed

schema

tables

205

pushdown

analysis
description

8

PUSHDOWN

server

option
valid

settings

575

Q
Q_SEQ_DIR_PATH

BLAST

daemon

100

HMMER

daemon

255

queries
accessing

data

sources
BioRS

79,

81

BLAST

114,

115

business

applications

155

Documentum

187,

188

Entrez

203,

204

Excel

221

Extended

Search

242

HMMER

271

Web

services

408

XML

432

cost

model

used

for

XML

files

424

examples
business

applications

151,

404

Web

services

wrappers

151,

404

fragments

8

query

optimization
description

8

guidelines

for

BioRS

queries

86

XML

430

R
regular

expression

support
life

sciences

user-defined

functions

463

remote

catalog

information

7

REMOTE_AUTHID

user

option
valid

settings

591

REMOTE_DOMAIN

user

option
valid

settings

591

REMOTE_NAME

function

mapping

option
valid

settings

637

REMOTE_PASSWORD

user

option
valid

settings

591

repeating

column

attributes
Documentum

181

RequestQueue
business

object

application

configuration

122

ResponseQueue
business

object

application

configuration

122

restrictions
altering

nicknames

524

db2dj.ini

file

59

RevBestNbrsByGeneS

user-defined

function
syntax

504

RevBestNbrsByGeneT

user-defined

function
syntax

505

reverse

type

mappings
default

mappings

627

Reverse

UDFs
LSRevComp

471

LSRevNuc

473

LSRevPep

474

RUNPFAM_PATH
HMMER

daemon

255

S
samples

queries
Extended

Search

240

SAP
business

objects

119

scenarios
accessing

Excel

files

222

ScoreBetweenGenesS

user-defined

function
syntax

511

security
Web

services

wrapper

411

Sequence

Similarity

database
list

of

functions

483

returned

columns

497

Sequence

Similarity

database

UDFs
AllNbrsByGeneS

498

AllNbrsByGeneT

499

BestHmlgsByGenesS

508

BestHmlgsByGenesT

509

BestNbrsByGeneS

502

BestNbrsByGeneT

503

BstBstHmlgByGenesS

509

BstBstHmlgByGenesT

510

BstBstNbrsByGeneS

500

BstBstNbrsByGeneT

501

DefinitionsByGeneS

511

GenesByMotifsS

512

ParalogsByGeneS

506

ParalogsByGeneT

507

RevBestNbrsByGeneS

504

RevBestNbrsByGeneT

505

ScoreBetweenGenesS

511

server

definitions
BioRS

72

BLAST

106

business

applications

127

DB2

family

data

sources

161

description

13

Documentum

175

Entrez

197

Excel

files

220

Extended

Search

237

HMMER

263

server

definitions

(continued)
Informix

282

Microsoft

SQL

Server

297

ODBC

309

OLE

DB

323

Oracle

334

overview

of

registering

61

Sybase

347

table-structured

files

359

Teradata

371

Web

services

389

WebSphere

Business

Integration

wrappers

127

XML

420

server

options
description

13

temporary

13

valid

settings

575

server

types
valid

federated

types

569

SET

SERVER

OPTION

statement
setting

an

option

temporarily

13

shredding

business

objects
nicknames

119

Siebel
business

objects

119

SQL

compiler
in

a

federated

system

8

SQL

dialect
description

9

SQLNET

wrapper
library

file

names

333

statistics
checklist

for

federated

data

sources

31

for

BioRS

87,

88

updating

data

source

23

Sybase
adding

to

a

federated

system

341

registering

nicknames

352

configuring

access

to

341

CREATE

NICKNAME

statement

example

353

CREATE

SERVER

statement

348

default

forward

type

mappings

611

default

reverse

type

mappings

627

default

wrapper

names

12

environment

variables,

setting

342

examples,

CREATE

USER

MAPPING

statement

350

nicknames,

valid

objects

for

15

registering

server

definitions

347

registering

user

mappings

349

registering

wrappers

345

setting

up

client

configuration

files

344

supported

versions

5

testing

client

configuration

files

344

testing

server

connections

351

troubleshooting

353

tuning

353

valid

server

types

569

wrapper

library

file

names

346

syntax
KEGG

user-defined

functions

485

SYSCAT

catalog

views

563

SYSSTAT

catalog

views

563

Index

661

T
table-structured

files
accessing

with

DB2

Information

Integrator

356

adding

to

a

federated

system

357

configuring

access

to

357

CREATE

NICKNAME

statement

example

360

CREATE

NICKNAME

syntax

552

data

types,

supported

517

example

355

file

access

control

model

361

messages

362

nicknames,

valid

objects

for

15

optimization

361

overview

355

registering

nicknames

359

registering

server

definitions

359

registering

wrappers

358

sample

queries

356

supported

versions

5

types

355

wrapper

library

files

358

templates
business

objects

121

Teradata
access

logging

378

adding

to

a

federated

system

365

registering

nicknames

377

verifying

run-time

linking

(AIX)

367

configuring

access

to

365

CREATE

NICKNAME

statement

example

377

CREATE

SERVER

statement

373

CREATE

USER

MAPPING

statement

374

default

forward

type

mappings

611

default

reverse

type

mappings

627

default

wrapper

name

12

environment

variables,

setting

368

nicknames

on

federated

servers,

overview

376

nicknames,

valid

objects

for

15

registering

server

definitions

371

registering

user

mappings

373

registering

wrappers

370

run-time

linking,

enabling

(AIX)

367,

378

testing

server

connections

366,

375

troubleshooting

378

tuning

378

valid

server

types

569

wrapper

library

file

names

371

TIMEFORMAT

server

option
valid

settings

575

TIMEOUT

server

option
valid

settings

575

TIMESTAMPFORMAT

server

option
valid

settings

575

Translate

UDFs
LSNuc2Pep

475

LSTransAllFrames

477

translation

table
life

sciences

user-defined

functions
example

480

format

480

troubleshooting
Microsoft

SQL

Server

configurations

303

ODBC

configurations

319

Oracle

configurations

339

Sybase

configurations

353

Teradata

configurations

378

testing

DB2

family

server

connections

165

testing

Informix

server

connections

286

testing

Microsoft

SQL

Server

server

connections

301

testing

ODBC

server

connections

313

testing

Oracle

server

connections

337

testing

Sybase

server

connections

351

testing

Teradata

server

connections

366,

375

Web

services

wrappers

411

tuning
data

source

configuration
Informix

288

Microsoft

SQL

Server

303

ODBC

319

Oracle

339

Sybase

353

Teradata

378

TurboBlast

113

U
Unicode

48

updating
statistics

planning

23

user

IDs
case-sensitive

values

22

user

mappings
checklist

for

federated

data

sources

31

description

14

options

14

overview

of

registering

63

planning

28

valid

settings

591

Web

services

wrapper

411

user-defined

functions
KEGG

483

user-defined

functions

(UDFs)

17

KEGG

483

life

sciences

443,

444

registering,

KEGG

486

registering,

life

sciences

445

removing,

KEGG

513

removing,

life

sciences

446

user-defined

types

(UDTs)
unsupported

data

types

17

V
VARCHAR_NO_TRAILING_

BLANKS

column

option
example

528

valid

settings

603

VARCHAR_NO_TRAILING_

BLANKS

server

option
valid

settings

575

vertical

tables
Extended

Search

233

views
business

applications

137,

397

federated,

for

nonroot

nicknames

430

W
Web

services
adding

to

a

federated

system

387

configuring

access

to

387

data

types,

supported

517

examples

151,

404

nicknames

381,

398

registering

nicknames

390

registering

server

definitions

389

sample

queries

408

troubleshooting

411

wrapper

library

files

388

Web

services

description

language

(WSDL)
mapping

to

nicknames

136,

396

nicknames

381

Web

services

provider
troubleshooting

411

Web

services

wrappers
creating

388

WebSphere

Business

Integration
configuration

121

WebSphere

Business

Integration

Adapters
installing

122

WebSphere

Business

Integration

wrapper
creating

126

data

types,

supported

517

examples

138

wrapper

library

files

127

WebSphere

Business

Integration

wrappers

119

examples

151,

404

registering

nicknames

129

server

definitions

127

WebSphere

MQ
message

queues

122

wrapper

libraries

388

BioRS

file

names

72

BLAST

file

names

106

DB2

family

file

names

160

Documentum

file

names

174

Entrez

file

names

197

Excel

file

names

220

Extended

Search

file

names

236

HMMER

file

names

262

Informix

file

names

281

manually

linking

to

41

Microsoft

SQL

Server

file

names

296

ODBC

file

names

308

OLE

DB

file

names

323

Oracle

file

names

333

Sybase

file

names

346

table-structured

file

names

358

Teradata

file

names

371

WebSphere

Business

Integration

wrapper

file

names

127

XML

file

names

419

662

Data

Source

Configuration

Guide

wrapper

options
valid

settings

567

wrappers
BioRS,

registering

for

71

BLAST,

registering

for

105

business

applications

119,

126

checklist

for

federated

data

sources

31

DB2

family

data

sources,

registering

for

160

default

names

12

description

11

Documentum,

registering

for

174

Entrez,

registering

for

196

Excel

files,

registering

for

219

Extended

Search,

registering

for

236

HMMER,

registering

for

262

Informix,

registering

for

280

libraries

38

library

files

39

Microsoft

SQL

Server,

registering

for

295

ODBC,

registering

for

307

OLE

DB,

registering

for

322

Oracle,

registering

for

332

overview

of

registering

61

planning

24

Sybase,

registering

for

345

table-structured

files,

registering

for

358

Teradata,

registering

for

370

Web

services

data

sources

387,

388

WebSphere

Business

Integration

126

XML,

registering

for

419

X
XML

adding

to

a

federated

system

418

CREATE

NICKNAME

statement

424

registering

nicknames

422,

424

configuring

access

to

418

cost

model

facility

424,

430

CREATE

NICKNAME

statement

example

425

CREATE

NICKNAME

syntax

557

creating

federated

views

for

nonroot

nicknames

430

data

types,

supported

517

description

415

messages

433

nicknames,

valid

objects

for

15

registering

server

definitions

420

registering

wrappers

419

sample

queries

432

source

documents

and

nicknames

422

supported

versions

5

wrapper

library

files

419

XML

schemas
business

applications

121

mapping

to

nicknames

136,

396

XPath
using

with

nicknames

136,

396

Index

663

664

Data

Source

Configuration

Guide

Contacting

IBM

To

contact

IBM

customer

service

in

the

United

States

or

Canada,

call

1-800-IBM-SERV

(1-800-426-7378).

To

learn

about

available

service

options,

call

one

of

the

following

numbers:

v

In

the

United

States:

1-888-426-4343

v

In

Canada:

1-800-465-9600

To

locate

an

IBM

office

in

your

country

or

region,

see

the

IBM

Directory

of

Worldwide

Contacts

on

the

Web

at

www.ibm.com/planetwide.

Product

information

Information

about

DB2

Information

Integrator

is

available

by

telephone

or

on

the

Web.

If

you

live

in

the

United

States,

you

can

call

one

of

the

following

numbers:

v

To

order

products

or

to

obtain

general

information:

1-800-IBM-CALL

(1-800-426-2255)

v

To

order

publications:

1-800-879-2755

On

the

Web,

go

to

www.ibm.com/software/data/integration/db2ii/support.html.

This

site

contains

the

latest

information

about:

v

The

technical

library

v

Ordering

books

v

Client

downloads

v

Newsgroups

v

Fix

packs

v

News

v

Links

to

Web

resources

Comments

on

the

documentation

Your

feedback

helps

IBM

to

provide

quality

information.

Please

send

any

comments

that

you

have

about

this

book

or

other

DB2

Information

Integrator

documentation.

You

can

use

any

of

the

following

methods

to

provide

comments:

v

Send

your

comments

using

the

online

readers’

comment

form

at

www.ibm.com/software/data/rcf.

v

Send

your

comments

by

e-mail

to

comments@us.ibm.com.

Include

the

name

of

the

product,

the

version

number

of

the

product,

and

the

name

and

part

number

of

the

book

(if

applicable).

If

you

are

commenting

on

specific

text,

please

include

the

location

of

the

text

(for

example,

a

title,

a

table

number,

or

a

page

number).

©

Copyright

IBM

Corp.

1998,

2004

665

http://www.ibm.com/planetwide
http://www.ibm.com/software/data/integration/db2ii/support.html
http://www.ibm.com/software/data/rcf/

666

Data

Source

Configuration

Guide

����

Printed

in

USA

S
pi

ne

in
fo

rm
at

io
n:

 �
�

�

IB
M

D
B

2

In
fo

rm
at

io
n

In
te

gr
at

or

D
at

a

So
ur

ce

Co
nf

ig
ur

at
io

n

G
ui

de

Ve
rs

io
n

8.
2

	Contents
	About this book
	Who should read this book
	Conventions and terminology used in this book
	How to read the syntax diagrams

	Part 1. Concepts and Planning
	Chapter 1. Overview of a federated system
	Federated systems
	The federated server
	What is a data source?
	Supported data sources
	The federated database
	The federated database system catalog
	The SQL Compiler
	The query optimizer
	Compensation
	Pass-through sessions
	Wrappers and wrapper modules
	Default wrapper names
	Server definitions and server options
	User mappings
	Nicknames and data source objects
	Valid data source objects
	Nickname column options
	Data type mappings
	Function mappings
	Index specifications
	How you interact with a federated system
	DB2 command line processor (CLP)
	DB2 Command Center
	DB2 Control Center
	Application programs
	DB2 family tools
	Web services providers

	Chapter 2. Planning for federated data source configuration
	Federated object naming rules
	Preserving case-sensitive values in a federated system
	Update data source statistics
	Choose the correct wrapper
	Methods of accessing Excel data
	Plan the user mappings
	Plan the data type mappings
	Plan the function mappings
	Checklist for planning your federated system configuration
	Checklist: Federated object naming rules
	Checklist: Preserving case-sensitive values
	Checklist: Data source statistics
	Checklist: Data type mappings
	Checklist: User mappings
	Checklist: Wrappers

	Part 2. Federated server and database
	Chapter 3. Checking the setup of the federated server
	Checking the setup of the federated server
	Confirming the link-edit of the wrapper library files (UNIX)
	Confirming the link-edit of the wrapper library files (UNIX)
	Checking the wrapper library files (UNIX)
	Wrapper library files
	Checking the link-edit message files (UNIX)
	Manually linking the wrapper libraries to the data source client software

	Checking the FEDERATED parameter

	Chapter 4. Creating a federated database
	Federated database national language considerations
	Collating sequences in a federated system
	Setting the federated database collating sequence
	Unicode support for federated systems
	Creating a federated database

	Part 3. Data sources
	Chapter 5. Overview of configuring access to data sources
	Fast track to configuring your data sources
	Adding data sources to a federated server using the DB2 UDB Control Center
	Configuring multiple federated servers to access data sources
	Setting the data source environment variables
	Setting the data source environment variables
	Restrictions for the db2dj.ini file
	Applying environment variables in a multi-partition instance configuration

	Registering wrappers for a data source
	Registering server definitions for a data source
	Registering user mappings for a data source
	Registering nicknames for a data source
	Registering nicknames for a data source
	Creating a nickname on a nickname
	Specifying nickname columns for a nonrelational data source

	Optional configuration steps

	Chapter 6. Configuring access to BioRS data sources
	What is BioRS?
	Adding BioRS to a federated server
	Adding BioRS data sources to a federated server
	Registering the custom functions for the BioRS wrapper
	Custom function table - BioRS wrapper
	Registering the BioRS wrapper
	BioRS wrapper library files
	Registering the server definition for a BioRS data source
	Registering user mappings for BioRS data sources
	Registering nicknames for BioRS data sources
	CREATE NICKNAME statement - Examples for BioRS wrapper

	Queries and custom functions for BioRS data sources
	Custom functions and BioRS queries
	Equijoin predicates for the BioRS wrapper
	The BioRS AllText element
	BioRS wrapper - Example queries

	Optimizing BioRS wrapper performance
	Guidelines for optimizing BioRS wrapper performance
	BioRS statistical information
	Determining BioRS databank cardinality statistics
	Updating BioRS nickname cardinality statistics
	Updating BioRS column cardinality statistics
	Updating BioRS _ID_ column cardinality

	Messages for the BioRS wrapper

	Chapter 7. Configuring access to BLAST data sources
	What is BLAST?
	Adding BLAST to a federated server
	Adding BLAST data sources to a federated server
	Verifying that the correct version of the blastall executable and matrix files are installed
	Configuring the BLAST daemon
	BLAST daemon configuration file - examples
	Starting the BLAST daemon
	db2blast_daemon command - syntax and examples
	Registering the BLAST wrapper
	BLAST wrapper library files
	Registering the server for a BLAST data source
	Registering nicknames for BLAST data sources
	Registering nicknames for BLAST data sources
	Definition line parsing
	Fixed columns for BLAST nicknames
	CREATE NICKNAME statement - Examples for BLAST wrapper

	Setting up TurboBlast to work with the BLAST wrapper
	Constructing BLAST SQL queries
	BLAST data source – Example queries
	Optimization tips for the BLAST wrapper
	Messages for the BLAST wrapper

	Chapter 8. Configuring access to business application data sources
	The WebSphere Business Integration wrapper
	Business object definitions
	Configuring the WebSphere Business Integration Adapters
	Adding business applications to a federated server
	Adding business application data sources to a federated system
	Registering the WebSphere Business Integration wrapper
	WebSphere Business Integration wrapper library files
	Registering the server definition for business application data sources
	Registering nicknames for business application data sources
	Registering nicknames for business application data sources
	The TEMPLATE option at the nickname and column levels
	Nicknames and XPATH expressions
	Creating federated views for business application nicknames
	CREATE NICKNAME statement – examples for the WebSphere Business Integration wrapper

	Query restrictions for wrappers for business applications and Web services
	Business application data sources – example queries

	Chapter 9. Configuring access to DB2 family data sources
	Adding DB2 family data sources to a federated server
	Adding DB2 family data sources to a federated server
	Cataloging a node entry in the federated node directory
	Cataloging the remote database in the federated system database directory
	Registering the DB2 wrapper
	DB2 wrapper library files
	Registering the server definitions for a DB2 data source
	CREATE SERVER statement - Examples for DB2 wrapper
	Creating the user mapping for a DB2 data source
	CREATE USER MAPPING statement - Examples for DB2 wrapper
	Testing the connection to the DB2 data source server
	Registering nicknames for DB2 tables and views
	CREATE NICKNAME statement - Examples for DB2 wrapper

	Chapter 10. Configuring access to Documentum data sources
	What is Documentum?
	Adding Documentum to a federated server
	Adding Documentum data sources to a federated server
	Making the Documentum client library available to the wrapper
	Setting the Documentum environment variables
	Registering the Documentum wrapper
	Documentum wrapper library files
	Registering the server for Documentum data sources
	Registering user mappings for Documentum data sources
	Registering nicknames for Documentum data sources
	Registering nicknames for Documentum data sources
	Pseudo columns
	CREATE NICKNAME statement - Example for Documentum wrapper
	Dual defining repeating attributes (Documentum wrapper)

	Queries and custom functions for Documentum data sources
	Registering the custom functions for the Documentum wrapper
	Custom function string argument rules
	Using custom functions in queries
	Custom function table

	Documentum data source – Example queries
	Access control for the Documentum wrapper

	Messages for the Documentum wrapper

	Chapter 11. Configuring access to Entrez data sources
	What is Entrez?
	Adding Entrez to a federated server
	Adding Entrez data sources to a federated server
	Registering the custom functions for the Entrez wrapper
	Custom function table - Entrez wrapper
	Registering the Entrez wrapper
	Entrez wrapper library files
	Registering the server for an Entrez data source
	Limiting the number of rows that are retrieved for Entrez queries
	Accessing Entrez through a proxy server

	Registering nicknames for Entrez data sources

	Queries and custom functions for Entrez data sources
	Custom functions and Entrez queries
	Relational predicates for the Entrez wrapper
	Invalid WHERE clauses for the Entrez wrapper
	Schema data element simplification
	Item lists
	Names
	Dates

	Entrez data source - Example queries
	PubMed schema tables
	Nucleotide schema tables

	Messages for the Entrez wrapper

	Chapter 12. Configuring access to Excel data sources
	What is Excel?
	Adding Excel to a federated server
	Adding Excel data sources to a federated server
	Registering the Excel wrapper
	Excel wrapper library files
	Registering the server for an Excel data source
	Registering nicknames for Excel data sources

	Excel data source – Example queries
	Excel data source – Sample scenario
	File access control model for the Excel wrapper
	Messages for the Excel wrapper

	Chapter 13. Configuring access to Extended Search data sources
	What is Extended Search?
	Extended Search data sources
	How the Extended Search wrapper works

	Extended Search nicknames
	Extended Search vertical tables
	Adding Extended Search to a federated server
	Adding Extended Search data sources to a federated server
	Registering the Extended Search wrapper
	Extended Search wrapper library files
	Registering the server for Extended Search data sources
	Registering user mappings for Extended Search data sources
	Registering nicknames for Extended Search data sources
	Registering the custom functions for the Extended Search wrapper

	Querying Extended Search data sources
	Extended Search wrapper - Query guidelines
	Extended Search wrapper - Example queries
	Extended Search wrapper - Generalized query language

	Messages for the Extended Search wrapper

	Chapter 14. Configuring access to HMMER data sources
	What is HMMER?
	Adding HMMER to a federated server
	Adding HMMER data sources to a federated server
	Verifying the version of the HMMER program executable
	Configuring the HMMER daemon
	HMMER daemon configuration file - examples
	Starting the HMMER daemon
	db2hmmer_daemon command - syntax and examples
	Registering the HMMER wrapper
	HMMER wrapper library files
	Registering the server definition for a HMMER data source
	CREATE SERVER statement - examples for HMMER wrapper
	Registering nicknames for HMMER data sources
	Fixed columns for HMMER nicknames
	Fixed input columns for HMMER nicknames
	Fixed output columns for HMMER nicknames

	CREATE NICKNAME statement - Example for HMMER wrapper
	HMMER data source – complete example

	Construct new HMMER queries with samples
	Messages for the HMMER wrapper

	Chapter 15. Configuring access to Informix data sources
	Adding Informix to a federated server
	Adding Informix data sources to federated servers
	Setting up and testing the Informix client configuration file
	Setting the Informix environment variables
	Registering the Informix wrapper
	Informix wrapper library files
	Registering the server definitions for an Informix data source
	CREATE SERVER statement - Examples for Informix wrapper
	Creating the user mapping for an Informix data source
	CREATE USER MAPPING statement - Examples for Informix wrapper
	Testing the connection to the Informix server
	Registering nicknames for Informix tables, views, and synonyms
	CREATE NICKNAME statement - Examples for Informix wrapper

	Tuning and troubleshooting the configuration to Informix data sources
	Improving performance by setting the FOLD_ID and FOLD_PW server options

	Chapter 16. Configuring access to Microsoft SQL Server data sources
	Adding Microsoft SQL Server to a federated server
	Adding Microsoft SQL Server data sources to a federated server
	Preparing the federated server to access Microsoft SQL Server data sources
	Setting the Microsoft SQL Server environment variables
	Registering the Microsoft SQL Server wrapper
	Microsoft SQL Server wrapper library files
	Registering the server definitions for a Microsoft SQL Server data source
	CREATE SERVER statement - Examples for Microsoft SQL Server wrapper
	Creating a user mapping for a Microsoft SQL Server data source
	CREATE USER MAPPING statement - Examples for Microsoft SQL Server wrapper
	Testing the connection to the Microsoft SQL Server remote server
	Registering nicknames for Microsoft SQL Server tables and views
	CREATE NICKNAME statement - Examples for Microsoft SQL Server wrapper

	Tuning and troubleshooting the configuration to Microsoft SQL Server data sources
	Obtaining ODBC traces

	Chapter 17. Configuring access to ODBC data sources
	Adding ODBC to a federated system
	Adding ODBC data sources to a federated server
	Preparing the federated server to access data sources through ODBC
	Registering the ODBC wrapper
	ODBC wrapper library files
	CREATE WRAPPER statement - Examples for ODBC wrapper
	Registering the server definitions for an ODBC data source
	CREATE SERVER statement - Examples of ODBC wrapper
	Creating a user mapping for an ODBC data source
	CREATE USER MAPPING statement - Examples for ODBC wrapper
	Testing the connection to the ODBC data source server
	Registering nicknames for ODBC data source tables and views
	CREATE NICKNAME statement - Examples for ODBC wrapper

	Accessing Excel data using the ODBC wrapper
	Alter the default data type mappings
	ALTER SERVER statement - Examples for ODBC wrapper to access Excel data

	Tuning and troubleshooting the configuration to ODBC data sources
	Obtaining ODBC traces

	Chapter 18. Configuring access to OLE DB data sources
	Adding OLE DB data sources to a federated server
	Registering the OLE DB wrapper
	OLE DB wrapper library files
	Registering the server definitions for an OLE DB data source
	CREATE SERVER statement - Examples for OLE DB wrapper
	Creating a user mapping for an OLE DB data source
	CREATE USER MAPPING statement - Examples for OLE DB wrapper

	Chapter 19. Configuring access to Oracle data sources
	Adding Oracle to a federated system
	Adding Oracle data sources to a federated server
	Setting the Oracle environment variables
	Setting up and testing the Oracle client configuration file
	Registering the Oracle wrapper
	Oracle wrapper library files
	Registering the server definitions for an Oracle data source
	CREATE SERVER statement - Examples for Oracle wrapper
	Creating the user mappings for an Oracle data source
	CREATE USER MAPPING statement - Examples for Oracle wrapper
	Testing the connection to the Oracle server
	Registering nicknames for Oracle tables and views
	CREATE NICKNAME statement - Examples for Oracle wrapper

	Tuning and troubleshooting the configuration to Oracle data sources
	Connectivity problems

	Chapter 20. Configuring access to Sybase data sources
	Adding Sybase to a federated system
	Adding Sybase data sources to a federated server
	Setting the Sybase environment variables
	Setting up and testing the Sybase client configuration file
	Registering the Sybase wrapper
	Sybase wrapper library files
	Registering the server definitions for a Sybase data source
	CREATE SERVER statement - Examples for Sybase wrapper
	Creating a user mapping for a Sybase data source
	CREATE USER MAPPING statement - Examples for Sybase wrapper
	Testing the connection to the Sybase server
	Registering nicknames for Sybase tables and views
	CREATE NICKNAME statement - Examples for Sybase wrapper

	Tuning and troubleshooting the configuration to Sybase data sources
	Resolving the sp_helpindex error

	Chapter 21. Configuring access to Table-structured file data sources
	What are table-structured files?
	Attributes of table-structured files
	Sorted files
	Unsorted files

	How DB2 Information Integrator works with table-structured files
	Adding table-structured files to a federated system
	Adding table-structured file data sources to a federated server
	Registering the table-structured file wrapper
	Table-structured files wrapper library files
	Registering the server for table-structured files
	Registering nicknames for table-structured files
	CREATE NICKNAME statement - Examples for table-structured file wrapper

	File access control model for the table-structured file wrapper
	Optimization tips and considerations for the table-structured file wrapper
	Messages for the table-structured file wrapper

	Chapter 22. Configuring access to Teradata data sources
	Adding Teradata to a federated system
	Adding Teradata data sources to a federated server
	Testing the connection to the Teradata server
	Verifying that the Teradata library is enabled for run-time linking (AIX)
	Setting the Teradata environment variables
	Registering the Teradata wrapper
	Teradata wrapper library files
	Registering the server definitions for a Teradata data source
	CREATE SERVER statement - Examples for Teradata wrapper
	Creating the user mapping for a Teradata data source
	CREATE USER MAPPING statement - Examples for Teradata wrapper
	Testing the connection from the federated server to the Teradata server
	Teradata nicknames on federated servers
	Registering nicknames for Teradata tables and views
	CREATE NICKNAME statement - Examples for Teradata wrapper

	Tuning and troubleshooting the configuration to Teradata data sources
	UPDATE or DELETE operation errors on nicknames
	Tuning and disabling Teradata access logging
	Enabling run-time linking for libcliv2.so (AIX)

	Chapter 23. Configuring access to Web services data sources
	The Web services wrapper and the Web services description language document
	Adding Web services to a federated system
	Adding Web services data sources to a federated server
	Registering the Web services wrapper
	Web services wrapper library files
	Registering the server definition for Web services data sources
	Registering nicknames for Web services data sources
	Registering nicknames for Web services data sources
	The TEMPLATE option at the nickname and column levels
	Nicknames and XPATH expressions
	Creating federated views for Web services nicknames
	CREATE NICKNAME statement – examples for the Web services wrapper

	Query restrictions for wrappers for business applications and Web services
	Web services data sources – example queries
	Web services wrapper security
	Messages for the Web services wrapper

	Chapter 24. Configuring access to XML data sources
	What is XML?
	Adding XML to a federated system
	Adding XML to a federated system
	Registering the XML wrapper
	XML wrapper library files
	Registering the server for an XML data source
	Accessing XML documents through a proxy server

	Registering nicknames for XML data sources
	Data associations between nicknames and XML documents
	The cost model facility for the XML wrapper
	Registering nicknames for XML data sources
	CREATE NICKNAME statement - Examples for XML wrapper

	Creating federated views for nonroot nicknames (XML wrapper)
	Optimization tips for the XML cost model facility

	XML data source - Example queries
	Messages for the XML wrapper

	Part 4. User-defined functions
	Chapter 25. Life sciences user-defined functions
	Life sciences user-defined functions - overview
	Life sciences user-defined functions - overview
	Life sciences user-defined function library files
	Life sciences user-defined functions by functional category
	Registering life sciences user-defined functions
	Disabling the life sciences user-defined functions

	Back translation user-defined functions
	Back translation user-defined functions - overview
	LSPep2AmbNuc user-defined function
	LSPep2AmbNuc user-defined function - example
	LSPep2AmbNuc user-defined function - error messages
	LSPep2ProbNuc user-defined function
	LSPep2ProbNuc user-defined function - example
	LSPep2ProbNuc user-defined function - error messages

	Defline parsing user-defined functions
	Defline parsing user-defined functions - overview
	LSDeflineParse user-defined functions
	LSDeflineParse user-defined function — examples

	Generalized pattern matching user-defined functions
	LSPatternMatch user-defined function
	LSPatternMatch user-defined function – example
	LSPrositePattern user-defined function
	LSPrositePattern user-defined function - example
	Regular expression support

	GeneWise user-defined functions
	Linking to GeneWise
	LSGeneWise user-defined function
	LSGeneWise user-defined function – example

	Motifs user-defined functions
	LSBarCode user-defined function
	LSBarCode user-defined function — example
	LSMultiMatch user-defined function
	LSMultiMatch user-defined function - example
	LSMultiMatch3 user-defined function
	LSMultiMatch3 user-defined function – example

	Reverse user-defined functions
	LSRevComp user-defined function
	LSRevComp user-defined function—example
	LSRevNuc user-defined function
	LSRevNuc user-defined function - example
	LSRevPep user-defined function
	LSRevPep user-defined function - example

	Translate
	LSNuc2Pep user-defined function
	LSNuc2Pep user-defined function – example
	LSTransAllFrames user-defined function
	LSTransAllFrames user-defined function - example

	Codon frequency table format
	Codon frequency table - example
	Translation table format
	Translation table - example

	Chapter 26. KEGG user-defined functions
	KEGG user-defined functions - overview
	KEGG user-defined functions by functional category
	Function arguments for the KEGG user-defined functions
	Registering the KEGG user-defined functions
	Pathway database functions
	GenesByPathwyS user-defined function
	GenesByPathwyT user-defined function
	CompoundsByPathwyS user-defined function
	CompoundsByPathwyT user-defined function
	EnzymesByPathwyS user-defined function
	EnzymesByPathwyT user-defined function
	PathwysByGenesS user-defined function
	PathwysByGenesT user-defined function
	PathwysByCompndsS user-defined function
	PathwysByCompndsT user-defined function
	PathwysByEnzymesS user-defined function
	PathwysByEnzymesT user-defined function

	Sequence Similarity Database functions
	Columns that are returned from SSDB database queries (table functions)
	AllNbrsByGeneS user-defined function
	AllNbrsByGeneT user-defined function
	BstBstNbrsByGeneS user-defined function
	BstBstNbrsByGeneT user-defined function
	BestNbrsByGeneS user-defined function
	BestNbrsByGeneT user-defined function
	RevBestNbrsByGeneS user-defined function
	RevBestNbrsByGeneT user-defined function
	ParalogsByGeneS user-defined function
	ParalogsByGeneT user-defined function
	BestHmlgsByGenesS user-defined function
	BestHmlgsByGenesT user-defined function
	BstBstHmlgByGenesS user-defined function
	BstBstHmlgByGenesT user-defined function
	ScoreBetweenGenesS user-defined function
	DefinitionsByGeneS user-defined function
	GenesByMotifsT user-defined function

	Disabling the KEGG user-defined functions

	Part 5. Reference
	Chapter 27. Data types supported for nonrelational data sources
	Data types supported for nonrelational data sources
	Data types supported by the BioRS wrapper
	Data types supported by the BLAST wrapper
	Data types supported by the Documentum wrapper
	Data types supported by the Entrez wrapper
	Data types supported by the Excel wrapper
	Data types supported by the Extended Search wrapper
	Data types supported by the HMMER wrapper
	Data types supported by the table-structured file wrapper
	Data types supported by the Web services wrapper
	Data types supported by the WebSphere Business Integration wrapper
	Data types supported by the XML wrapper

	Chapter 28. Altering nicknames
	Altering a nickname
	Restrictions on altering nicknames
	Altering nickname column names
	Altering nickname options
	Altering nickname column options
	Altering a local type for a data source object
	Altering a local type for a data source object – examples

	Chapter 29. DDL command reference
	BioRS DDL reference information
	CREATE SERVER statement options - BioRS wrapper
	CREATE USER MAPPING statement options - BioRS wrapper
	CREATE NICKNAME statement syntax - BioRS wrapper

	BLAST DDL reference information
	CREATE SERVER statement arguments - BLAST wrapper
	CREATE NICKNAME statement syntax - BLAST wrapper

	Documentum DDL reference information
	CREATE SERVER statement arguments and options - Documentum wrapper
	CREATE USER MAPPING statement options - Documentum wrapper
	CREATE NICKNAME statement syntax - Documentum wrapper

	Excel DDL reference information
	CREATE SERVER statement arguments - Excel wrapper
	CREATE NICKNAME statement syntax - Excel wrapper

	Extended Search DDL reference information
	CREATE WRAPPER statement syntax - Extended Search wrapper
	CREATE SERVER statement syntax - Extended Search wrapper
	CREATE USER MAPPING statement syntax - Extended Search wrapper
	CREATE NICKNAME statement syntax - Extended Search wrapper
	CREATE FUNCTION statement syntax - Extended Search wrapper

	Entrez DDL reference information
	CREATE SERVER statement arguments - Entrez wrapper
	CREATE NICKNAME statement options - Entrez wrapper

	Table-structured files DDL reference information
	CREATE NICKNAME statement syntax - Table-structured file wrapper

	XML DDL reference information
	CREATE NICKNAME statement syntax - XML wrapper

	Appendix A. Views in the global catalog table containing federated information
	Appendix B. Wrapper options for federated systems
	Appendix C. Valid server types in SQL statements
	BioRS wrapper
	BLAST wrapper
	CTLIB wrapper
	Documentum wrapper
	DRDA wrapper
	Entrez wrapper
	Excel wrapper
	Extended Search wrapper
	HMMER wrapper
	Informix wrapper
	MSSQLODBC3 wrapper
	NET8 wrapper
	ODBC wrapper
	OLE DB wrapper
	Table-structured files wrapper
	Teradata wrapper
	Web services wrapper
	WebSphere Business Integration wrapper
	XML wrapper

	Appendix D. Server options for federated systems
	Appendix E. User mapping options for federated systems
	Appendix F. Nickname options for federated systems
	Appendix G. Nickname column options for federated systems
	Appendix H. Default forward data type mappings
	DB2 for z/OS and OS/390 data sources
	DB2 for iSeries data sources
	DB2 Server for VM and VSE data sources
	DB2 for Linux, UNIX, and Windows data sources
	Informix data sources
	Microsoft SQL Server data sources
	ODBC data sources
	Oracle NET8 data sources
	Sybase data sources
	Teradata data sources

	Appendix I. Default reverse data type mappings
	DB2 for z/OS and OS/390 data sources
	DB2 for iSeries data sources
	DB2 for VM and VSE data sources
	DB2 for Linux, UNIX, and Windows data sources
	Informix data sources
	Microsoft SQL Server data sources
	Oracle NET8 data sources
	Sybase data sources
	Teradata data sources

	Appendix J. Function mapping options for federated systems
	DB2 Information Integrator documentation
	Accessing DB2 Information Integrator documentation
	Documentation about replication function on z/OS
	Documentation about event publishing function for DB2 Universal Database on z/OS
	Documentation about event publishing function for IMS and VSAM on z/OS
	Documentation about event publishing and replication function on Linux, UNIX, and Windows
	Documentation about federated function on z/OS
	Documentation about federated function on Linux, UNIX, and Windows
	Documentation about enterprise search function on Linux, UNIX, and Windows
	Release notes and installation requirements

	Accessibility
	Keyboard input and navigation
	Keyboard input
	Keyboard navigation
	Keyboard focus

	Accessible display
	Font settings
	Non-dependence on color

	Compatibility with assistive technologies
	Accessible documentation

	Notices
	Trademarks

	Index
	Contacting IBM
	Product information
	Comments on the documentation

