
IBM DB2 Information Integrator

Addendum to the Data Source
Configuration Guide:
BioRS Wrapper and Life Sciences
User-Defined Functions

Version 8

���





IBM DB2 Information Integrator

Addendum to the Data Source
Configuration Guide:
BioRS Wrapper and Life Sciences
User-Defined Functions

Version 8

���



Before using this information and the product it supports, be sure to read the general information under “Notices” on
page 85.

This document contains proprietary information of IBM. It is provided under a license agreement and Copyright law
protects it. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative:
v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at
www.ibm.com/planetwide

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2003. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide


Contents

Chapter 1. Configuring access to BioRS
data sources . . . . . . . . . . . . 1
What is BioRS? . . . . . . . . . . . 1
Adding BioRS to a federated system . . . . 3
Registering custom functions for the BioRS
wrapper. . . . . . . . . . . . . . 3
Registering the BioRS wrapper . . . . . . 4
Setting the DB2_DJ_COMM profile variable for
the BioRS wrapper . . . . . . . . . . 5
Registering the server for a BioRS data source 6
Registering user mappings for BioRS data
sources . . . . . . . . . . . . . . 6
Registering nicknames for BioRS data sources 8
CREATE NICKNAME statement - Examples
for BioRS wrapper . . . . . . . . . . 9
Updating BioRS column cardinality statistics 11
Guidelines for optimizing BioRS wrapper
performance . . . . . . . . . . . . 13
Custom functions and BioRS queries . . . . 14
Equijoin predicates for the BioRS wrapper . . 18
BioRS wrapper - Example queries . . . . . 19
BioRS statistical information . . . . . . 26
Determining BioRS databank cardinality
statistics . . . . . . . . . . . . . 27
Updating BioRS nickname cardinality
statistics . . . . . . . . . . . . . 27
Updating BioRS _ID_ column cardinality . . 28
The BioRS AllText element . . . . . . . 29
Considerations for altering nicknames - BioRS
wrapper . . . . . . . . . . . . . 30
Custom function table - BioRS wrapper . . . 30
Messages for the BioRS wrapper . . . . . 31
CREATE NICKNAME statement syntax -
BioRS wrapper . . . . . . . . . . . 35
CREATE SERVER statement options - BioRS
wrapper . . . . . . . . . . . . . 37
CREATE USER MAPPING statement options
- BioRS wrapper . . . . . . . . . . 38

Chapter 2. Life sciences user-defined
functions. . . . . . . . . . . . . 39
Life sciences user-defined functions -
overview . . . . . . . . . . . . . 39
Life sciences user-defined functions by
functional category. . . . . . . . . . 39

Registering life sciences user-defined
functions . . . . . . . . . . . . . 40
Removing life sciences user-defined functions 41
Back translation user-defined functions . . . 42

LSPep2AmbNuc user-defined function . . 42
LSPep2AmbNuc user-defined function -
example . . . . . . . . . . . . 44
LSPep2AmbNuc user-defined function -
error messages . . . . . . . . . . 45
LSPep2ProbNuc user-defined function . . 46
LSPep2ProbNuc user-defined function -
example . . . . . . . . . . . . 47
LSPep2ProbNuc user-defined function -
error messages . . . . . . . . . . 48

Defline parsing user-defined functions . . . 49
LSDeflineParse user-defined functions . . 49
LSDeflineParse user-defined function —
examples . . . . . . . . . . . . 52

Generalized pattern matching user-defined
functions . . . . . . . . . . . . . 56

LSPatternMatch user-defined function . . 56
LSPatternMatch user-defined function –
example . . . . . . . . . . . . 57
LSPrositePattern user-defined function . . 59
LSPrositePattern user-defined function -
example . . . . . . . . . . . . 59
Regular expression support . . . . . . 60

GeneWise user-defined functions . . . . . 60
Linking to GeneWise . . . . . . . . 61
LSGeneWise user-defined function . . . 61
LSGeneWise user-defined function –
example . . . . . . . . . . . . 63

Motifs user-defined functions . . . . . . 64
LSBarCode user-defined function . . . . 64
LSBarCode user-defined function —
example . . . . . . . . . . . . 64
LSMultiMatch user-defined function . . . 66
LSMultiMatch user-defined function -
example . . . . . . . . . . . . 66
LSMultiMatch3 user-defined function . . 67
LSMultiMatch3 user-defined function –
example . . . . . . . . . . . . 68

Reverse user-defined functions . . . . . . 70
LSRevComp user-defined function . . . 70

© Copyright IBM Corp. 2003 iii



LSRevComp user-defined
function—example . . . . . . . . . 70
LSRevNuc user-defined function . . . . 72
LSRevNuc user-defined function - example 72
LSRevPep user-defined function . . . . 73
LSRevPep user-defined function - example 73

Translate . . . . . . . . . . . . . 74
LSNuc2Pep user-defined function . . . . 74
LSNuc2Pep user-defined function –
example . . . . . . . . . . . . 75
LSTransAllFrames user-defined function 76
LSTransAllFrames user-defined function -
example . . . . . . . . . . . . 77

Codon frequency table format . . . . . . 79
Codon frequency table - example . . . . . 79
Translation table format . . . . . . . . 80
Translation table - example . . . . . . . 81

Accessibility . . . . . . . . . . . 83

Keyboard input and navigation . . . . . 83
Accessible display . . . . . . . . . . 83

Font settings . . . . . . . . . . . 83
Nondependence on color. . . . . . . 83

Alternative alert cues . . . . . . . . . 83
Compatibility with assistive technologies . . 84
Accessible documentation . . . . . . . 84

Notices . . . . . . . . . . . . . 85
Trademarks . . . . . . . . . . . . 87

Index . . . . . . . . . . . . . . 89

Contacting IBM . . . . . . . . . . 91
Product information . . . . . . . . . 91
Comments on the documentation . . . . . 91

iv Addendum to the Data Source Configuration Guide



Chapter 1. Configuring access to BioRS data sources

This chapter explains what BioRS is, how to add BioRS data sources to your
federated system, and lists the error messages associated with the BioRS
wrapper.

What is BioRS?

BioRS is a query and retrieval system that is developed by Biomax
Informatics. You can use BioRS to retrieve information from multiple data
sources, including flat files and relational databases. You usually download
public data, such as SwissProt and GenBank, as flat files into your BioRS
system. BioRS can integrate public data sources and proprietary data sources
(for example, private databases that are maintained by your organization) into
a common environment.

After a data source is integrated into the BioRS system, it is referred to as a
databank. The elements that are contained in each databank entry are
collectively referred to as a schema. Only the elements of a databank that are
indexed in the BioRS system can be used in a BioRS query. You can establish
relationships between entries in databanks, so that you can link databanks
together in the BioRS system.

BioRS databanks can have a parent-child relationship (databanks can be
nested). In such a relationship, the child databank contains a Reference data
type element called PARENT. The PARENT element refers to the _ID_ element
of the parent databank. Other than the presence of this predefined PARENT
element, nested databanks contain the same data as unnested databanks.

BioRS provides a Web-based interface that enables users to run queries on the
data in BioRS databanks. The BioRS wrapper uses the same application
programming interfaces (APIs) as the BioRS Web-based interface to run
queries.

© Copyright IBM Corp. 2003 1



From the client, users or applications submit a query using SQL statements.
Then, the query is sent to your federated system where the BioRS wrapper is
installed. Depending on how the query is constructed, both DB2® Universal
Database and your BioRS server might be used to process the query. The
BioRS server can be on a different computer from the federated system.
Authentication information must be provided by the federated system to the
BioRS server for each query. This information can be either a user ID and
password combination, or an unauthenticated indication (usually a guest
account).

The BioRS wrapper works with BioRS Version 5.0.14.

For detailed information about the BioRS product, see the Biomax Web site at:
http://www.biomax.com.

Related tasks:

v “Adding BioRS to a federated system” on page 3

Related reference:

v “BioRS wrapper - Example queries” on page 19

Figure 1. How the BioRS wrapper works

2 Addendum to the Data Source Configuration Guide

http://www.biomax.com


Adding BioRS to a federated system

You can use a BioRS data source with your federated server by registering
custom functions and a BioRS wrapper. You then register a corresponding
BioRS server, user mappings, and nicknames to enable your federated server
to retrieve and process BioRS data.

You can run the SQL statements from the DB2 Control Center or from the
DB2 command line processor. After you add BioRS to your federated system,
you can run queries on a BioRS data source.

Procedure:

To add a BioRS data source to a federated server:
1. Register custom functions by using the CREATE FUNCTION statement.
2. Register the BioRS wrapper by using the CREATE WRAPPER statement.
3. Optional: Set the DB2_DJ_COMM environment variable to improve query

performance.
4. Register the BioRS server by using the CREATE SERVER statement.
5. Optional: Register authorized users with the CREATE USER MAPPING

statement.
6. Register nicknames by using the CREATE NICKNAME statement.
7. Optional: Update cardinality statistics for BioRS columns.

Related tasks:

v “Registering custom functions for the BioRS wrapper” on page 3
v “Registering the BioRS wrapper” on page 4
v “Setting the DB2_DJ_COMM profile variable for the BioRS wrapper” on

page 5
v “Registering the server for a BioRS data source” on page 6
v “Registering user mappings for BioRS data sources” on page 6
v “Registering nicknames for BioRS data sources” on page 8
v “Updating BioRS column cardinality statistics” on page 11

Registering custom functions for the BioRS wrapper

Registering custom functions for the BioRS wrapper is part of the larger task
of adding BioRS to a federated system. After the custom functions are
registered, you must register the wrapper.

You can use the sample file create_function_mappings.ddl to register custom
functions. This file is in the sqllib/samples/lifesci/biors directory. The

Chapter 1. Configuring access to BioRS data sources 3



create_function_mappings.ddl file contains definitions for each custom
function. You can run this DDL file to register the custom functions for each
DB2 database where the BioRS wrapper is installed.

Prerequisites:

v All of the custom functions for the BioRS wrapper must be registered with
the schema name BioRS.

v You must register each custom function once for each DB2 database where
the BioRS wrapper is installed.

Procedure:

To register custom functions, issue the CREATE FUNCTION statement with
the AS TEMPLATE keyword.

The fully qualified name of each function is BioRS.<function-name>.

The following example registers one version of the CONTAINS function:
CREATE FUNCTION biors.contains (varchar(), varchar())
RETURNS INTEGER AS TEMPLATE;

The next task in this sequence of tasks is registering the appropriate BioRS
wrapper.

Related tasks:

v “Registering the BioRS wrapper” on page 4

Related reference:

v “CREATE FUNCTION (Sourced or Template) statement” in the SQL
Reference, Volume 2

v “Custom functions and BioRS queries” on page 14
v “BioRS wrapper - Example queries” on page 19
v “Custom function table - BioRS wrapper” on page 30

Registering the BioRS wrapper

Registering the BioRS wrapper is part of the larger task of adding BioRS to a
federated system. You must register the wrapper to access a data source.
Wrappers are mechanisms that federated servers use to communicate with
and retrieve data from the data sources. Wrappers are installed on your
system as library files. Table 1 on page 5 lists the default BioRS library files
and the supported operating system for each file.

4 Addendum to the Data Source Configuration Guide



Table 1. BioRS library files and supported operating systems

BioRS library file Operating system

libdb2lsbiors.a IBM AIX Version 4.3.3 or later

db2lsbiors.dll Microsoft Windows NT Version 4
Microsoft Windows 2000
Microsoft Windows XP

Procedure:

To register the BioRS wrapper, issue the CREATE WRAPPER statement.

For example, to register a BioRS wrapper on AIX called wrap_biors from the
default library file, libdb2lsbiors.a, issue the following statement:
CREATE WRAPPER wrap_biors LIBRARY ’libdb2lsbiors.a’;

Related tasks:

v “Checking the nonrelational wrapper and life sciences user-defined function
libraries” in the DB2 Information Integrator Installation Guide

v “Setting the DB2_DJ_COMM profile variable for the BioRS wrapper” on
page 5

Related reference:

v “CREATE WRAPPER statement” in the SQL Reference, Volume 2

Setting the DB2_DJ_COMM profile variable for the BioRS wrapper

Setting the DB2_DJ_COMM DB2 profile variable for the BioRS wrapper is part
of the larger task of adding BioRS to a federated system. To improve
performance when BioRS data sources are accessed, you can optionally set the
DB2_DJ_COMM DB2 profile variable. This variable specifies whether the
federated server loads the wrapper upon initialization.

Processor usage increases when the federated server loads the wrapper
libraries during database startup. To avoid excessive usage, specify only the
libraries that you intend to access.

Procedure:

To set the DB2_DJ_COMM DB2 profile variable, issue the db2set command
with the wrapper library that corresponds to the wrapper that you specified
in the associated CREATE WRAPPER statement.

For example:

Chapter 1. Configuring access to BioRS data sources 5



db2set DB2_DJ_COMM=’libdb2lsbiors.a’

Ensure that there are no spaces on either side of the equal sign (=).

The next task in this sequence of tasks is registering the server for BioRS.

Related concepts:

v “Environment Variables and the Profile Registry” in the Administration
Guide: Implementation

Related tasks:

v “Registering the server for a BioRS data source” on page 6

Related reference:

v “db2set - DB2 Profile Registry Command” in the Command Reference

Registering the server for a BioRS data source

Registering the server for a BioRS data source is part of the larger task of
adding BioRS to a federated system. After you register the wrapper, you must
register a corresponding server.

Procedure:

To register the BioRS server to the federated system, issue a CREATE SERVER
statement.

For example:
CREATE SERVER brs_server WRAPPER wrap_biors OPTIONS(NODE ’biors_server2.com’);

Related tasks:

v “Registering nicknames for BioRS data sources” on page 8

Related reference:

v “CREATE SERVER statement options - BioRS wrapper” on page 37

Registering user mappings for BioRS data sources

Registering user mappings is part of the larger task of adding BioRS to a
federated system. You might not need to create user mappings, depending on
the account access method or methods that are used in your BioRS system.
v If your BioRS server is configured for guest access for all user accounts, you

do not need to create user mappings in DB2 Information Integrator.

6 Addendum to the Data Source Configuration Guide



v If your BioRS server is configured to authenticate user accounts with IDs
and passwords, you must create user mappings in your federated database
for the accounts that must use the BioRS wrapper.

v If your BioRS server is configured to use a mixture of guest and
authenticated user accounts, you must create user mappings for the
authenticated user accounts in your federated database for the accounts that
must use the BioRS wrapper.

User mappings provide a way to authenticate the access of users or
applications that query a BioRS data source with the BioRS wrapper. If a user
or application submits an SQL query to a registered BioRS nickname, and no
user mappings are defined for that user or application, the BioRS wrapper
uses a default user ID and password in an attempt to retrieve data from the
remote BioRS server. If a databank that is being queried requires
authentication, an error message might be returned.

To ensure that the correct user ID and password get passed to the BioRS
server, create user mappings in your federated database for users who are
authorized to search BioRS data sources. When you create a user mapping,
the password is stored in an encrypted format in a federated database system
catalog table.

Procedure:

To register BioRS user mappings, use the CREATE USER MAPPING
statement.

For example, the following CREATE USER MAPPING statement maps user
Charlie to user Charlene on the Biors_Server1 server.
CREATE USER MAPPING FOR Charlie SERVER Biors_Server1
OPTIONS(REMOTE_AUTHID ’Charlene’, REMOTE_PASSWORD ’Charlene_pw’);

You can also define your own user mapping. In the following example, USER
is a keyword that identifies the current user, not a username of USER.
CREATE USER MAPPING FOR USER SERVER Biors_Server1
OPTIONS(REMOTE_AUTHID ’Yudong’, REMOTE_PASSWORD ’Yudong_pw’)

The next task in this sequence of tasks is registering nicknames for the BioRS
wrapper.

Related tasks:

v “Registering nicknames for BioRS data sources” on page 8

Related reference:

v “CREATE USER MAPPING statement” in the SQL Reference, Volume 2

Chapter 1. Configuring access to BioRS data sources 7



v “CREATE USER MAPPING statement options - BioRS wrapper” on page 38

Registering nicknames for BioRS data sources

Registering nicknames for BioRS data sources is part of the larger task of
adding BioRS to a federated system. After you register a server, you must
register a nickname for each BioRS data source that you want to access. When
you refer to a BioRS data source in a query, you use nicknames.

Important: After a data source has been integrated into the BioRS system, it is
referred to as a databank in BioRS. BioRS databanks equate to nicknames in a
federated system.

Prerequisites:

v If a BioRS databank name does not conform to DB2 federated syntax, you
must use the REMOTE_OBJECT nickname option when you register the
nickname.

v If a BioRS element name does not conform to DB2 federated syntax, you
must use the ELEMENT_NAME column option when you register the
nickname.

Restrictions:

Do not use the BioRS AllText element as the first column for a nickname. You
can use the BioRS AllText element in any other column position (for example,
as the second column or as the third column).

Procedure:

To register a BioRS nickname, use the CREATE NICKNAME statement.

A federated nickname equates directly to a BioRS databank. When you create
a federated nickname, you define a list of nickname columns. The specified
nickname columns must correspond to elements of a specific BioRS databank
format. BioRS defines five possible data types for elements: Text, Number,
Date, Author, and Reference. These data types can be mapped only to the
CLOB, CHAR, or VARCHAR federated system data types.

The simplest way to register a nickname for a BioRS databank is to give the
nickname the same name as the BioRS databank. For example:
CREATE NICKNAME SwissProt
(ID VARCHAR(32) OPTIONS (ELEMENT_NAME ’_ID_’),
ALLTEXT VARCHAR(128),
ENTRYDATE VARCHAR (64))
FOR SERVER brs_server;

8 Addendum to the Data Source Configuration Guide



The underlying BioRS databank SwissProt is the name of the nickname.

Using this simple CREATE NICKNAME syntax limits you to one family of
nicknames per DB2 schema. You can use other names by specifying the
REMOTE_OBJECT option. This nickname option specifies the name of the
BioRS object type to be associated with the nickname. The name that is
specified in the REMOTE_OBJECT option determines the schema and the
BioRS databank for the nickname. The REMOTE_OBJECT option also specifies
the relationship of the nickname to other nicknames.

The following example shows the same set of nickname characteristics as the
previous example, but changes the nickname name, and uses the
REMOTE_OBJECT option to specify the BioRS databank for which the
nickname is being defined:
CREATE NICKNAME NewSP
(ID VARCHAR(32) OPTIONS (ELEMENT_NAME ’_ID_’),
ALLTEXT VARCHAR(128),
ENTRYDATE VARCHAR (64))
FOR SERVER brs_server
OPTIONS (REMOTE_OBJECT ’SwissProt’);

The underlying BioRS databank is SwissProt, and the name of the nickname is
NewSP.

Related concepts:

v “BioRS statistical information” on page 26

Related tasks:

v “Updating BioRS nickname cardinality statistics” on page 27

Related reference:

v “The BioRS AllText element” on page 29
v “CREATE NICKNAME statement - Examples for BioRS wrapper” on page 9
v “CREATE NICKNAME statement syntax - BioRS wrapper” on page 35
v “Considerations for altering nicknames - BioRS wrapper” on page 30

CREATE NICKNAME statement - Examples for BioRS wrapper

This topic provides examples that show you how to use the CREATE
NICKNAME statement to register nicknames for the BioRS wrapper.

Example 1:

Chapter 1. Configuring access to BioRS data sources 9



The following example shows how to create a nickname for a remote BioRS
databank that does not conform to DB2 Information Integrator syntax:
CREATE NICKNAME SwissFT
(ID VARCHAR(32) OPTIONS (ELEMENT_NAME ’_ID_’),
ALLTEXT VARCHAR (128),
ENTRYDATE VARCHAR (64),
FtLength VARCHAR (16),

FOR SERVER biors1
OPTIONS (REMOTE_OBJECT ’SwissProt.Features’);

The name of this nickname is SwissFT. The table columns are ID, ALLTEXT,
ENTRYDATE, and FtLength. The ELEMENT_NAME column option is
specified for the ID column. You must specify the ELEMENT_NAME option
when the name of a BioRS element does not conform to valid DB2 federated
syntax for column names. In this example, the BioRS element _ID_ conforms
to DB2 federated syntax, but _ID_ is a potentially confusing name for DB2
Information Integrator users. The name ID is simple and easy to understand.
In general, use the ELEMENT_NAME option under the following
circumstances:
v When a BioRS element name does not conform to valid DB2 federated

syntax
v When the case sensitivity of a BioRS element name does not conform to

your established DB2 federated system standards
v When the name of a BioRS element might not be obvious to DB2

Information Integrator users

Additionally, the REMOTE_OBJECT option is used to specify the name of the
BioRS databank to which the nickname equates. You must specify the
REMOTE_OBJECT option when the name of a BioRS databank does not
conform to valid DB2 federated syntax. In this example, the databank name
″SwissProt.Features″ does not conform to valid DB2 federated syntax. In
general, use the REMOTE_OBJECT option under the following circumstances:
v When the case sensitivity of BioRS databank names does not conform to

your established DB2 federated system standards
v When the BioRS databank name does not conform to valid DB2 federated

syntax
v When the name of a BioRS databank might not be obvious to DB2

Information Integrator users

Example 2:

The following example shows how to create a nickname for a table that uses a
BioRS databank that is linked to another BioRS databank:

10 Addendum to the Data Source Configuration Guide



CREATE NICKNAME SwissFT2
(ID VARCHAR(32) OPTIONS (ELEMENT_NAME ’_ID_’),
ALLTEXT VARCHAR (1200),
FtKey VARCHAR (32),
FtLength VARCHAR (64),

FtDescription VARCHAR (128),
Parent VARCHAR (32) OPTIONS (REFERENCED_OBJECT ’SwissProt’))

FOR SERVER biors1
OPTIONS (REMOTE_OBJECT ’SwissProt.Features’);

The name of this nickname is SwissFT2. The table columns are ID, ALLTEXT,
FtKey, FtLength, FtDescription, and Parent. The ELEMENT_NAME column
option is specified for the ID column. The REMOTE_OBJECT option is used to
specify the name of the BioRS databank to which the nickname corresponds.

Additionally, the Parent column uses the REFERENCED_OBJECT option. You
must specify this option for columns that correspond to BioRS Reference data
type elements. The REFERENCED_OBJECT option specifies the name of the
BioRS databank to which the column refers. In this case, the Parent element
refers to the BioRS SwissProt databank.

Related tasks:

v “Registering nicknames for BioRS data sources” on page 8

Related reference:

v “CREATE NICKNAME statement syntax - BioRS wrapper” on page 35
v “Considerations for altering nicknames - BioRS wrapper” on page 30

Updating BioRS column cardinality statistics

To update BioRS column cardinality statistics in your federated system, you
must modify the SYSSTAT.COLUMNS catalog view.

Maintaining correct cardinality statistics for BioRS columns enables the
optimizer and the BioRS wrapper to choose the best performing data access
plan during query processing.

You can optionally update BioRS column cardinality statistics as part of the
larger task of adding BioRS to a federated system. You can also update BioRS
column cardinality statistics when you want to improve query performance
for BioRS data sources.

Restrictions:

Chapter 1. Configuring access to BioRS data sources 11



Do not use this procedure to update the cardinality statistics for columns that
correspond to the BioRS _ID_ element. You must use a different procedure to
update the cardinality statistics for columns that correspond to the BioRS _ID_
element.

Procedure:

To update BioRS column cardinality statistics, issue an UPDATE statement
using the following syntax:
UPDATE sysstat.columns SET colcard=(SELECT COUNT(DISTINCT <column-name>)

FROM <nickname-schema>.<nickname-name>)
WHERE

tabschema=<nickname-schema>
AND tabname=<nickname-name>
AND colname=<column-name>

v <column-name> is the name of the column whose cardinality statistics you
want to update.

v <nickname-schema> is the name of the schema that is associated with the
nickname where the specified column is used.

v <nickname-name> is the name of the nickname where the specified column is
used.

The query might take several minutes to run, because all entries for the
databank that is specified in the nickname must be retrieved.

If a column can contain multiple values (for example, the PublicationYear
element of the SwissProt database format), the calculation becomes too
complex to use an SQL query. For such columns, you must manually calculate
the cardinality value, and then update the SYSSTAT.COLUMNS catalog view.
To calculate the cardinality value, divide the number of distinct values in the
column by the average number of values per row. The calculated cardinality
value cannot be greater than the cardinality of the table.

Example:

Suppose you have a nickname with three rows. The values of the
PublicationYear column for these three rows are:
v 1997 1992 1985
v 1997 1992 1982
v 1992 1991 1990 1976 1974 1971

There are nine distinct values, and the average number of values in a row is
four. The cardinality for this PublicationYear column is 9/4, or 3 (2.25

12 Addendum to the Data Source Configuration Guide



rounded to the next highest integer). Now that you have the cardinality
calculation, you can update the SYSSTAT.COLUMNS catalog view using the
following UPDATE statement:
UPDATE sysstat.columns SET colcard=3
WHERE

tabschema=<nickname-schema>
AND tabname=<nickname-name>
AND colname=<column-name>

v 3 is the column cardinality value.
v <nickname-schema> is the name of the schema that is associated with the

underlying nickname where the specified column is used.
v <nickname-name> is the name of the underlying nickname where the

specified column is used.
v <column-name> is the name of the column whose cardinality statistics you

want to update.

Related concepts:

v “BioRS statistical information” on page 26

Related tasks:

v “Updating BioRS nickname cardinality statistics” on page 27
v “Updating BioRS _ID_ column cardinality” on page 28

Guidelines for optimizing BioRS wrapper performance

This topic provides guidelines on how to optimize the performance of queries
when you use the BioRS wrapper.

Minimize the amount of data that is transferred between search engines.
The federated environment uses two query engines. For the BioRS
wrapper, these query engines are DB2® Universal Database and BioRS.
The DB2 engine processes predicates (relational operators, such as =,
BETWEEN, LIKE, and <>) specified on nickname columns. The BioRS
engine processes predicates specified using four custom functions for
the BioRS wrapper.

To minimize the amount of data that is transferred between the two
search engines, structure your queries so that data processing gets
pushed down to the BioRS system whenever possible.

If you need to perform join operations in a query, take advantage of
any parent-child relationships that already exist in BioRS databanks
and perform equijoin operations whenever possible. Equijoin
operations are processed in BioRS, which also minimizes the amount
of data transferred between the DB2 and BioRS query engines.

Chapter 1. Configuring access to BioRS data sources 13



Attention: Do not interrupt DB2 Information Integrator queries to
BioRS (for example, using Ctrl-D or Ctrl-Z in the command line
processor, or stopping an application program). Interrupting a query
leaves ″dead″ processes running on the BioRS server. These ″dead″
processes will rapidly degrade both BioRS and DB2 Information
Integrator system performance. If enough of these ″dead″ processes
are running, unexpected errors can occur during DB2 Information
Integrator query processing. For example, a valid query might return
0 rows, when rows are expected. In extreme situations, BioRS, DB2
Information Integrator, or both products can stop or abnormally end.

Maintain BioRS statistical information in the federated environment.
In a federated system, the federated database relies on catalog
statistics for nicknamed objects to optimize query processing.
Maintaining current statistics about the BioRS data sources is essential
to optimize the performance of the BioRS wrapper. If the statistical
data or structural characteristics for a remote object on which a
nickname is defined have changed, you must update the
corresponding nickname column cardinality statistics in your
federated system.

To optimize BioRS wrapper performance, perform these updates in
DB2 Information Integrator at regular intervals.

Related concepts:

v “Tuning query processing” in the Federated Systems Guide

v “Equijoin predicates for the BioRS wrapper” on page 18
v “BioRS statistical information” on page 26

Related reference:

v “Custom functions and BioRS queries” on page 14
v “BioRS wrapper - Example queries” on page 19

Custom functions and BioRS queries

The federated environment uses two query engines. For the BioRS wrapper,
these query engines are DB2 Universal Database and BioRS. You can specify
that predicates get pushed down to the BioRS engine by using the four BioRS
custom functions, which are:
v BIORS.CONTAINS
v BIORS.CONTAINS_LE
v BIORS.CONTAINS_GE
v BIORS.SEARCH_TERM

14 Addendum to the Data Source Configuration Guide



These four custom functions are registered in the BioRS schema. You must use
the BioRS schema to refer to the functions.

The custom functions BIORS.CONTAINS, BIORS.CONTAINS_LE and
BIORS.CONTAINS_GE require a search term column argument and a query
text argument. The following example shows a BIORS.CONTAINS statement:
BIORS.CONTAINS (<search term column>,<query term>)

The value of the search term column argument must refer to an indexed
BioRS column. The use of a non-indexed column produces the error message
SQL30090N (″Operation invalid for application execution environment″).

The value of the query term argument can be only a literal, a host variable, or
a column reference. You cannot use arithmetic or string concatenation. Also,
the value of the query term argument cannot be NULL, even if the search
term column that is used is defined as allowing null values.

The case of the query term argument does not matter.

The valid data types and formats of the query term argument depend on the
BioRS data type of the search term column that is used. BioRS defines five
possible data types: Text, Author, Date, Number, and Reference. The BioRS
data types and the valid function query terms for each data type are listed in
Table 2.

Table 2. BioRS data types and valid custom function query terms

Data type of
search term
column

Valid query term Format

Text VARCHAR() or CHAR() BioRS text term, including
wildcards.

Author VARCHAR() or CHAR() BioRS author reference in the form
″<last>, <init>″. ″<last>″ is the
author’s last name. ″<init>″ is the
author’s initials, without periods.
White space between the comma
and initials is accepted.

Alternatively, <last> can be
specified alone, without the comma
or initials.

Date VARCHAR(), CHAR(), DATE,
or TIMESTAMP

If a character string, DB2 format
date, yyyy/mm/dd.

Chapter 1. Configuring access to BioRS data sources 15



Table 2. BioRS data types and valid custom function query terms (continued)

Data type of
search term
column

Valid query term Format

Number VARCHAR() or CHAR(),
INTEGER, SMALLINT,
BIGINT REAL, DOUBLE,
DECIMAL

DB2 format numbers.

Reference VARCHAR() or CHAR() BioRS text term.

All other combinations of BioRS data type search term columns and query
term arguments produce the error message SQL30090N (″Operation invalid
for application execution environment″). You can use only the combinations
shown in Table 2 on page 15.

The query term argument for Text, Author, and Reference data type search
term columns must match a BioRS query language pattern. In BioRS, query
term arguments can consist of alphanumeric strings and wildcards. The
BIORS.CONTAINS function supports two wildcards: ? (question mark) and *
(asterisk).

The ? wildcard matches a single character. For example, the predicate
BioRS.CONTAINS (description, ’bacteri?’)=1 matches the term bacteria but
not the term bacterial.

The * wildcard character matches zero or more characters. For example, the
predicate BioRS.CONTAINS (description, ’bacteri*’)=1 matches the terms
bacteri, bacteria, and bacterial.

For detailed information about BioRS query language patterns, see your BioRS
documentation.

The BIORS.CONTAINS function can be specified for all BioRS column types.

The BIORS.CONTAINS_GE and BIORS.CONTAINS_LE custom functions only
can be specified for columns whose underlying BioRS data type is Number or
Date. The BIORS.CONTAINS_GE function selects rows where the column
contains a value that is greater than or equal to the value that is represented
by the query term argument. The BIORS.CONTAINS_LE function selects rows
where the column contains a value that is less than or equal to the value that
is represented by the query term argument.

The BIORS.CONTAINS, BIORS.CONTAINS_GE, and BIORS.CONTAINS_LE
functions return an integer result. When any of the three CONTAINS

16 Addendum to the Data Source Configuration Guide



functions are used in a predicate, the return value must be compared to the
value 1 using the = or <> operators. For example:
SELECT * FROM s.MySP WHERE BIORS.CONTAINS (s.AllText, ’muscus’) = 1;

An expression of the form NOT (BioRS.Contains (col,value) = 1) is
equivalent to BioRS.CONTAINS (col,value) <> 1.

You can run queries that might not otherwise be possible by issuing the
BIORS.SEARCH_TERM function. You can use this function to specify a search
term using the BioRS format. The BIORS.SEARCH_TERM function requires
two arguments. The first argument is a reference to the _ID_ column of the
nickname to which the term is to be applied. The second argument is a
character string that contains the term without a databank name.

The following example selects all columns for entries in the MyEMBL
databank where the SeqLength element contains a value greater than or equal
to 100.
SELECT * FROM MyEMBL s WHERE
BIORS.SEARCH_TERM (s.ID, ’[SeqLength GREATER number:100;]’) = 1;

The following example selects the MolWeight column from the Swiss
nickname where the value of the MolWeight element is greater than or equal
to 100368.
SELECT s.molweight FROM Swiss s WHERE

BIORS.SEARCH_TERM (s.ID, ’[MolWeight GREATER number:100368;]’) = 1;

If you specify the BIORS.SEARCH_TERM function, you cannot use any other
custom functions in a query. However, you can use any combination of the
BIORS.CONTAINS, BIORS.CONTAINS_GE, and BIORS.CONTAINS_LE
functions in the same query.

Related concepts:

v “Pushdown analysis” in the Federated Systems Guide

v “Guidelines for optimizing BioRS wrapper performance” on page 13
v “Equijoin predicates for the BioRS wrapper” on page 18

Related tasks:

v “Registering custom functions for the BioRS wrapper” on page 3

Related reference:

v “BioRS wrapper - Example queries” on page 19
v “Custom function table - BioRS wrapper” on page 30

Chapter 1. Configuring access to BioRS data sources 17



Equijoin predicates for the BioRS wrapper

You can specify predicates for the BioRS engine using the four BioRS custom
functions, with one exception. The exception is when you perform equijoin
operations during a query. A join operation involves retrieving data from two
or more tables based on matching column values. An equijoin is a join
operation in which the join condition has the form expression = expression.
For BioRS queries, equijoin terms must contain the _ID_ element of one
databank and a Reference type element of another databank.

Example:

This example shows sample nickname definitions and an equijoin query that
uses the sample nicknames.

Suppose you want to query two BioRS databanks, SwissProt and
SwissProt.features. The SwissProt.features databank is a child of the SwissProt
databank, and contains an element called Parent. The Parent element contains
references to entries that are identified by the _ID_ element of SwissProt. You
register two nickname definitions for the two databanks.

Nickname definition 1:
CREATE NICKNAME tc600sprot (

ID VARCHAR (32) OPTIONS (ELEMENT_NAME ’_ID_’),
AllText VARCHAR (128),
EntryDate VARCHAR (128),
Update VARCHAR (128),
Description VARCHAR (1200),
Crossreference VARCHAR (32),
Authors VARCHAR (256),
Journal VARCHAR (256),
JournalIssue VARCHAR (64) OPTIONS (IS_INDEXED ’N’),
PublicationYear VARCHAR (1024),
Gene VARCHAR (20) OPTIONS (IS_INDEXED ’Y’),
Remarks VARCHAR (1200),
RemarkType CHAR (20),
CatalyticActivity VARCHAR (20),
CoFactor VARCHAR (64),
Disease VARCHAR (128),
Function VARCHAR (128),
Pathway VARCHAR (128),
Similarity VARCHAR (128),
Complex VARCHAR (64),
FtKey VARCHAR (32),
FtDescription VARCHAR (128),
FtLength VARCHAR (256),
MolWeight VARCHAR (64),
ProteinLen VARCHAR (32) OPTIONS (ELEMENT_NAME ’Protein_length’),
Sequence CLOB,
AccNumber VARCHAR (32),
Taxonomy VARCHAR (128),

18 Addendum to the Data Source Configuration Guide



Organelle VARCHAR (128),
Organism VARCHAR (128),
Keywords VARCHAR (1200),
Localization VARCHAR (128),
FtKey_count VARCHAR (32)) FOR SERVER biors_server_600

OPTIONS (REMOTE_OBJECT ’SwissProt’);

Nickname definition 2:
CREATE NICKNAME tc600feat (

ID VARCHAR (32) OPTIONS (ELEMENT_NAME ’_ID_’),
AllText VARCHAR (1200),
FtKey VARCHAR (32),
FtLength VARCHAR (64),
FtDescription VARCHAR (128),
Parent VARCHAR (32) OPTIONS (REFERENCED_OBJECT ’SwissProt’))

FOR SERVER biors_server_600 OPTIONS (REMOTE_OBJECT ’SwissProt.features’);

The following query references both of these nicknames in an equijoin:
SELECT s.ID, f.ID, f.FtKey FROM tc600sprot s, tc600feat f

WHERE BioRS.CONTAINS (s.AllText, ’anopheles’) = 1
AND BioRS.CONTAINS (s.PublicationYear, 1997) = 1

AND BioRS.CONTAINS (f.FtKey, ’signal’) = 1
AND f.Parent = s.ID;

In the previous query, two predicates are applied to the tc600sprot nickname
(SwissProt databank). These two predicates filter the rows that contain the
term anopheles and have a publication year of 1997. One predicate is applied
to the tc600feat nickname (SwissProt.features databank), which filters those
rows whose FtKey element contains the term signal. The two nicknames are
joined using the term f.Parent = s.ID.

The final result set contains only the rows that meet these criteria, and where
the features entries reference a matching entry in the SwissProt databank.

Related concepts:

v “Guidelines for optimizing BioRS wrapper performance” on page 13

Related reference:

v “Custom functions and BioRS queries” on page 14
v “BioRS wrapper - Example queries” on page 19

BioRS wrapper - Example queries

This topic provides several sample queries that use the nicknames swiss and
swissft.

Chapter 1. Configuring access to BioRS data sources 19



The nickname swiss was registered with the following CREATE NICKNAME
statement:
CREATE NICKNAME swiss

(
ID CHAR (30) OPTIONS (ELEMENT_NAME ’_ID_’),
EntryDate VARCHAR (15),
Update CLOB (15),
Description CLOB (15),
Crossreference CLOB (15),
Authors CLOB (15),
Journal VARCHAR (15),
JournalIssue VARCHAR (15),
PublicationYear CLOB (15),
PublicationTitle CLOB (15),
Gene CLOB (15),
Remarks CLOB (15),
RemarkType VARCHAR (15),
CatalyticActivity VARCHAR (15),
CoFactor VARCHAR (15),
Disease VARCHAR (15),
Function CLOB (15),
Pathway VARCHAR (15),
Similarity CLOB (15),
Complex VARCHAR (15),
FtKey VARCHAR (15),
FtDescription CLOB (15),
FtLength VARCHAR (15),
MolWeight CHAR (15),
Protein_Length VARCHAR (15),
Sequence CLOB (15),
AccNumber VARCHAR (15),
Taxonomy CLOB (15),
Organelle VARCHAR (15),
Organism VARCHAR (15),
Keywords VARCHAR (15),
Localization VARCHAR (15),
FtKey_count VARCHAR (15),
AllText CLOB (15)
)

FOR SERVER biors_server
OPTIONS (REMOTE_OBJECT ’swissprot’);

The nickname swissft was registered with the following CREATE NICKNAME
statement:
CREATE NICKNAME swissft

(
ID VARCHAR (30) OPTIONS (ELEMENT_NAME ’_ID_’),
FtKey VARCHAR (15),
FtLength VARCHAR (15),
FtDescription VARCHAR (15),
Parent VARCHAR (30) OPTIONS (REFERENCED_OBJECT ’swissprot’),
AllText CLOB (15)

20 Addendum to the Data Source Configuration Guide



)
FOR SERVER biors_server

OPTIONS (REMOTE_OBJECT ’swissprot.features’);

The queries and results in Table 3 illustrate how you can structure your
queries to optimize the workload between the federated system and the BioRS
server.

Table 3. Samples of different queries that produce identical results

Query Result

select s.id from Swiss s where biors.CONTAINS(s.id,
’100K_RAT’) = 1 fetch first 3 rows only

ID
---------------
100K_RAT

1 record(s) selected.

select s.id from Swiss s where s.id LIKE
’%100K_RAT%’ fetch first 3 rows only

ID
---------------
100K_RAT

1 record(s) selected.

Both of the queries in Table 3 produce the same results. However, the first
query will run much faster than the second query. The first query uses the
BIORS.CONTAINS function to specify the input predicate. As a result, BioRS
selects the data in the swissprot databank, then passes the selected data to
DB2 Information Integrator. In the second query, the LIKE input predicate is
specified directly on the Swiss nickname. As a result, BioRS transfers the
entire swissprot databank to DB2 Information Integrator. After the databank
contents are transferred, DB2 Information Integrator then selects the data.

The queries and results in Table 4 show the use of wildcard characters in the
BIORS.CONTAINS function. All of the query results in Table 4 are identical,
even though different wildcard characters are used.

Table 4. Sample queries that use wildcards in the BIORS.CONTAINS function

Query Result

select s.crossreference from Swiss s where
biors.CONTAINS(s.crossreference, ’MEDLINE’) = 1
fetch first 3 rows only

CROSSREFERENCE
---------------
NCBI_TaxID=1011
NCBI_TaxID=5875
NCBI_TaxID=4081

3 record(s) selected.

Chapter 1. Configuring access to BioRS data sources 21



Table 4. Sample queries that use wildcards in the BIORS.CONTAINS
function (continued)

Query Result

select s.crossreference from Swiss s where
biors.CONTAINS(s.crossreference, ’?ED?IN?’) = 1 fetch
first 3 rows only

CROSSREFERENCE
---------------
NCBI_TaxID=1011
NCBI_TaxID=5875
NCBI_TaxID=4081

3 record(s) selected.

select s.crossreference from Swiss s where
biors.CONTAINS(s.crossreference, ’*D*N*’) = 1 fetch
first 3 rows only

CROSSREFERENCE
---------------
NCBI_TaxID=1011
NCBI_TaxID=5875
NCBI_TaxID=4081

3 record(s) selected

The queries and results in Table 5 show how you can access information in
BioRS Author data type elements with the BIORS.CONTAINS function.

The syntax of all of the queries in Table 5 is nearly identical. The only
difference is the presence or absence of the first initial in the query term, and
the amount of space between the first name and the last initial.

Table 5. Sample queries that access BioRS Author data type columns

Query Result

select s.authors from Swiss s where
biors.CONTAINS(s.authors, ’Mueller’) = 1 fetch
first 3 rows only

AUTHORS
---------------
Mueller D. Rehb
Mayer K.F.X. Sc
Zemmour J. Litt

3 record(s) selected.

select s.authors from Swiss s where
biors.CONTAINS(s.authors, ’Mueller,D’) = 1 fetch
first 3 rows only

AUTHORS
---------------

0 record(s) selected.

select s.authors from Swiss s where
biors.CONTAINS(s.authors, ’Mueller ,D’) = 1 fetch
first 3 rows only

AUTHORS
---------------

0 record(s) selected.

22 Addendum to the Data Source Configuration Guide



Table 5. Sample queries that access BioRS Author data type columns (continued)

Query Result

select s.authors from Swiss s where
biors.CONTAINS(s.authors, ’Mueller, D’) = 1 fetch
first 3 rows only

AUTHORS
---------------
Mueller D. Rehb
Zou P.J. Borovo
Davies J.D. Mue

3 record(s) selected.

The queries and results in Table 6 illustrate how you can access information in
BioRS Date type elements with the BIORS.CONTAINS function.

When a BioRS Date type field contains a sequence of dates, the results can
contain extra information, as shown in the second example of Table 6. BioRS
Numeric data type elements (Date and Number) can contain multiple values.
Therefore, the results of queries run on BioRS Date or Number elements can
also contain multiple values. Multiple values are always separated by spaces.

Table 6. Sample queries that access BioRS Date data type columns

Query Result

select e.entrydate from embl e where
biors.CONTAINS(e.entrydate, date(’11/01/1997’) ) = 1
fetch first 3 rows only

ENTRYDATE
---------------
01-NOV-1997
01-NOV-1997
01-NOV-1997

3 record(s) selected.

select g.update from gen g where
biors.CONTAINS(g.update, date(’11/01/1997’) ) = 1
fetch first 3 rows only

UPDATE
---------------
01-NOV-1997 11-
01-NOV-1997 12-
01-NOV-1997 06-

3 record(s) selected.

The queries and results in Table 7 on page 24 show how you can use the
BIORS.CONTAINS_LE and the BIORS.CONTAINS_GE functions.

Chapter 1. Configuring access to BioRS data sources 23



Table 7. Sample queries that use the BIORS.CONTAINS_LE and
BIORS.CONTAINS_GE functions

Query Result

select s.molweight from Swiss s where
biors.CONTAINS_LE(s.molweight, 100368) = 1 fetch
first 3 rows only

MOLWEIGHT
---------------
100368
10576
8523

3 record(s) selected.

select s.molweight from Swiss s where
biors.CONTAINS_GE(s.molweight, 100368) = 1 fetch
first 3 rows only

MOLWEIGHT
---------------
100368
103625
132801

3 record(s) selected.

select s.journalissue from Swiss s where
biors.CONTAINS_GE(s.journalissue, 172) = 1 fetch
first 3 rows only

JOURNALISSUE
---------------
172 21
242
196

3 record(s) selected.

The queries and results in Table 8 show how you can use the
BIORS.SEARCH_TERM function to specify a search term using the BioRS
format.

Table 8. Sample queries that use the BIORS.SEARCH_TERM function

Query Result

select s.publicationyear from Swiss s where
biors.SEARCH_TERM (s.id, ’[PublicationYear EQ
number:1997;]’)=1 fetch first 10 rows only

PUBLICATIONYEAR
---------------
1997
1997 2000
1988 1991 1997
1994 1997
1997 1998
1994 1995 1997
1997 1999
1997
1994 1994 1995
1993 1992 1997

10 record(s) selected.

24 Addendum to the Data Source Configuration Guide



Table 8. Sample queries that use the BIORS.SEARCH_TERM function (continued)

Query Result

select s.molweight from Swiss s where
biors.SEARCH_TERM (s.id, ’[MolWeight EQ
number:100368;]’) = 1 fetch first 10 rows only

MOLWEIGHT
---------------
100368
100368

2 record(s) selected.

select s.molweight from Swiss s where
biors.SEARCH_TERM (s.id, ’[MolWeight GREATER
number:100368;]’) = 1 fetch first 10 rows only

MOLWEIGHT
---------------
100368
103625
132801
194328
130277
287022
289130
135502
112715
112599

10 record(s) selected.

The following query shows how to use relational predicates to form an
equijoin between two databanks that have a parent-child relationship:
select s.id, f.id, f.parent from Swiss s, Swissft f
where (f.parent = s.id) fetch first 10 rows only

The query results are as follows:
ID ID PARENT
-------------------- ------------------ ------------------------------
100K_RAT 100K_RAT.1 swissprot:100K_RAT
100K_RAT 100K_RAT.2 swissprot:100K_RAT
100K_RAT 100K_RAT.3 swissprot:100K_RAT
100K_RAT 100K_RAT.4 swissprot:100K_RAT
100K_RAT 100K_RAT.5 swissprot:100K_RAT
100K_RAT 100K_RAT.6 swissprot:100K_RAT
100K_RAT 100K_RAT.7 swissprot:100K_RAT
100K_RAT 100K_RAT.8 swissprot:100K_RAT
100K_RAT 100K_RAT.9 swissprot:100K_RAT
104K_THEPA 104K_THEPA.1 swissprot:104K_THEPA

10 record(s) selected.

In the previous query results, the 100K_RAT record is a parent to nine child
records (100K_RAT.1 through 100K_RAT.9).

Related concepts:

Chapter 1. Configuring access to BioRS data sources 25



v “Guidelines for optimizing BioRS wrapper performance” on page 13
v “Equijoin predicates for the BioRS wrapper” on page 18

Related reference:

v “Custom functions and BioRS queries” on page 14
v “CREATE NICKNAME statement - Examples for BioRS wrapper” on page 9
v “CREATE NICKNAME statement syntax - BioRS wrapper” on page 35

BioRS statistical information

In a federated system, the federated database relies on catalog statistics for
objects with nicknames to optimize query processing. These statistics are
retrieved from BioRS data sources when you create a nickname using the
CREATE NICKNAME statement. The federated database verifies the presence
of the object at the data source, and then attempts to gather existing data
source statistical data. Information is read from the data source catalogs and
put into the DB2® federated database system catalog on the federated server.

For BioRS data sources, critical statistical information includes:
v The cardinality of a nickname. For BioRS data sources, nickname cardinality

is equivalent to the number of entries in the corresponding BioRS databank.
v The cardinality of the column that corresponds to the BioRS _ID_ element.

The cardinality of this column must match the cardinality of the nickname
in which the column is referenced.

v The cardinality of all columns that the BioRS wrapper might need to use.

You must maintain current statistics about the BioRS data sources to optimize
the performance of the BioRS wrapper. If the statistical data or structural
characteristics for a remote object on which a nickname is defined change, you
must update the corresponding cardinality statistics in your federated system.
The cardinality statistics are stored in the SYSSTAT.TABLES catalog view and
in the SYSSTAT.COLUMNS catalog view.

You perform the following tasks to maintain BioRS cardinality statistics in
your federated system:
1. Determine the cardinality statistics of the required nickname, if necessary.
2. Update the appropriate the cardinality statistics in the required catalog

view or catalog views.

Related concepts:

v “Tuning query processing” in the Federated Systems Guide

Related tasks:

26 Addendum to the Data Source Configuration Guide



v “Determining BioRS databank cardinality statistics” on page 27
v “Updating BioRS nickname cardinality statistics” on page 27
v “Updating BioRS column cardinality statistics” on page 11
v “Updating BioRS _ID_ column cardinality” on page 28

Determining BioRS databank cardinality statistics

You must determine BioRS databank cardinality statistics before you can
update nickname statistics or update the cardinality of the column that
corresponds to the BioRS _ID_ element.

Procedure:

To determine cardinality statistics for a specific databank in BioRS, use the
BioRS utility program admin_find or www_find.cgi. Specify the -c
(cardinality) option. For more information about these two BioRS utility
programs, see your BioRS documentation.

Related concepts:

v “BioRS statistical information” on page 26

Related tasks:

v “Updating BioRS nickname cardinality statistics” on page 27
v “Updating BioRS column cardinality statistics” on page 11
v “Updating BioRS _ID_ column cardinality” on page 28

Updating BioRS nickname cardinality statistics

You must update BioRS nickname cardinality statistics when the contents of a
BioRS databank for which you create a nickname change significantly.
Maintaining correct cardinality statistics for nicknames enables the optimizer
and the BioRS wrapper to choose the best performing data access plan.

To update BioRS nickname cardinality statistics, you modify the
SYSSTAT.TABLES catalog view with the correct cardinality number.

Prerequisites:

You must determine the cardinality number of the BioRS databank that
corresponds to the nickname whose statistics you want to update.

Procedure:

Issue an UPDATE statement using the following syntax:

Chapter 1. Configuring access to BioRS data sources 27



UPDATE sysstat.tables SET card=<cardinality>
WHERE tabschema=<nickname-schema>
AND tabname=<nickname-name>

v <cardinality> is the BioRS databank cardinality number that corresponds to
the nickname whose statistics you want to update.

v <nickname-schema> is the name of the schema that is associated with the
nickname whose statistics you want to update.

v <nickname-name> is the name of the nickname whose statistics you want to
update.

Related concepts:

v “BioRS statistical information” on page 26

Related tasks:

v “Determining BioRS databank cardinality statistics” on page 27
v “Updating BioRS column cardinality statistics” on page 11
v “Updating BioRS _ID_ column cardinality” on page 28

Updating BioRS _ID_ column cardinality

Maintaining correct cardinality statistics for the column that maps to the
BioRS _ID_ element enables the optimizer and the BioRS wrapper to choose
the best performing data access plan.

To update the cardinality number of the column that maps to the BioRS _ID_
element, you must modify the SYSSTAT.COLUMNS catalog view.

Prerequisites:

You must determine the cardinality number of the BioRS databank that
corresponds to the nickname in which the column is referenced. The
cardinality number of the column that maps to the BioRS _ID_ element must
match the cardinality of the nickname in which the column is referenced.

Procedure:

To update BioRS _ID_ column cardinality statistics, issue an UPDATE
statement using the following syntax:
UPDATE sysstat.columns SET colcard=<<cardinality>)
WHERE

tabschema=<nickname-schema>
AND tabname=<nickname-name>
AND colname IN (SELECT colname FROM syscat.coloptions

WHERE

28 Addendum to the Data Source Configuration Guide



tabschema=<nickname-name>
AND tabname=<nickname-name>
AND option=’ELEMENT_NAME’;
AND setting=’_ID_’)

v <cardinality> is the BioRS databank cardinality number that corresponds to
the nickname of the column.

v <nickname-schema> is the name of the schema that is associated with the
nickname of the column.

v <nickname-name> is the name of the nickname in which the column is used.

Related concepts:

v “BioRS statistical information” on page 26

Related tasks:

v “Determining BioRS databank cardinality statistics” on page 27
v “Updating BioRS nickname cardinality statistics” on page 27
v “Updating BioRS column cardinality statistics” on page 11

The BioRS AllText element

Every databank in the BioRS system contains an element called AllText. BioRS
automatically creates this indexed element for all databanks.

The AllText element enables you to search on all of the text in an entry, not
just on specific indexed elements. For example, searching on the term muscus
can return entries where the word muscus appears in the title, abstract,
description, or organism.

To use the AllText element in a DB2 Information Integrator query, you must
map the AllText element to a nickname column. After the AllText element is
properly mapped to a nickname column, you can use that nickname column
in a CONTAINS custom function invocation.

If a column that maps the AllText element is referenced in the SELECT list of
a query, a value of NULL will always be returned.

Related tasks:

v “Registering nicknames for BioRS data sources” on page 8

Related reference:

v “BioRS wrapper - Example queries” on page 19

Chapter 1. Configuring access to BioRS data sources 29



Considerations for altering nicknames - BioRS wrapper

You can modify previously registered BioRS nicknames using the ALTER
NICKNAME statement. With the ALTER NICKNAME statement, you can:
v Change the name of a column
v Change the data type of a column
v Add, change, or delete options for a column

Restrictions:

You cannot change the name of the BioRS databank that is referenced by or
used in a nickname. If the name of a BioRS databank that is used in a
nickname changes, you must drop and then recreate the entire nickname.

If you specified the REMOTE_OBJECT option, you cannot change or delete
the option value.

If you change the data type of a column, the new data type must be
compatible with the the data type of the corresponding BioRS element.

If you change the element name of a column using the ELEMENT_NAME
option, the new name is not checked to ensure that it is correct. An incorrect
option might result in errors when the column is referenced in a query.

If you make changes to the IS_INDEXED column option, the changes are not
verified with the BioRS server. An incorrect option might result in errors
when the column is referenced in a query.

Related reference:

v “ALTER NICKNAME statement” in the SQL Reference, Volume 2

Custom function table - BioRS wrapper

Table 9 on page 31 provides examples of how you can register each of the four
BioRS custom functions.

To assist you in registering custom functions, the sample file
create_function_mappings.ddl is provided in the sqllib/samples/lifesci/biors
directory. The create_function_mappings.ddl file contains definitions for each
custom function. You can run this DDL file to register the custom functions
for each DB2 database that has the BioRS wrapper installed.

30 Addendum to the Data Source Configuration Guide



Table 9. Custom functions for the BioRS wrapper

Function name Description

CONTAINS (col VARCHAR(), term VARCHAR()),
CONTAINS (col VARCHAR(), term CHAR())
CONTAINS (col VARCHAR(), term DATE)
CONTAINS (col VARCHAR(), term TIMESTAMP)

Searches an indexed
column using the given
expression.

col Indexed
column.

term Search term.

CONTAINS_LE (col VARCHAR(), term VARCHAR()),
CONTAINS_LE (col VARCHAR(), term SMALLINT)
CONTAINS_LE (col VARCHAR(), term BIGINT)
CONTAINS_LE (col VARCHAR(), term DECIMAL)
CONTAINS_LE (col VARCHAR(), term DOUBLE)
CONTAINS_LE (col VARCHAR(), term REAL)

Searches an indexed
column using the given
expression.

col Indexed
column.

term Search term.

CONTAINS_GE (col CHAR(), term CHAR())
CONTAINS_GE (col CHAR(), term DATE)
CONTAINS_GE (col CHAR(), term TIMESTAMP)
CONTAINS_GE (col CHAR(), term INTEGER)
CONTAINS_GE (col CHAR(), term SMALLINT)
CONTAINS_GE (col CLOB(), term DATE)

Searches an indexed
column using the given
expression.

col Indexed
column.

term Search term.

SEARCH_TERM (col VARCHAR(), term VARCHAR())
SEARCH_TERM (col VARCHAR(), term CHAR())
SEARCH_TERM (col CHAR(), term VARCHAR())
SEARCH_TERM (col CHAR(), term CHAR())

Passes a BioRS search
term to the BioRS search
engine.

col Indexed
column.

term Search term.

Related tasks:

v “Registering custom functions for the BioRS wrapper” on page 3

Messages for the BioRS wrapper

This topic explains messages that you might receive when you work with the
wrapper for BioRS. For more information about messages, see the DB2
Message Reference.

Chapter 1. Configuring access to BioRS data sources 31



Table 10. Messages issued by the wrapper for BioRS

Error Code Message Explanation

SQL0604N The length, precision or scale
attribute for a column, distinct
type, structured type, attribute
of a structured type, function or
type mapping <data-item> is
not valid.

The data type for a nickname column
is not compatible with the BioRS type
of the underlying databank element.
Check the data type of the column in
the CREATE NICKNAME statement.

SQL0901N The SQL statement failed
because of a non-severe system
error. Subsequent SQL
statements can be processed.
(Reason ″Error creating wrapper
object.″)

An error occurred when you created a
new wrapper object. Contact IBM
Software Support.

SQL0901N The SQL statement failed
because of a non-severe system
error. Subsequent SQL
statements can be processed.
(Reason ″BioRS
<trace-point>/<code>.″)

This is an internal error. Contact IBM
Software Support.

SQL0901N The SQL statement failed
because of a non-severe system
error. Subsequent SQL
statements can be processed.
(Reason ″Memory allocation
failed: <trace-point>.″)

An error occurred when memory was
allocated. Ensure that sufficient
memory is available to the federated
server host and submit the query
again. If the problem persists, contact
IBM Software Support.

SQL0901N The SQL statement failed
because of a non-severe system
error. Subsequent SQL
statements can be processed.
(Reason
″sqlno_crule_save_plans[100]:rc(-
214272209) Empty plan list.″)

The optimizer program and the BioRS
wrapper could not agree on a plan to
run the query. Simplify the query and
run it again.

SQL401N The data types of the operands
for the operation ″=″ are not
compatible.

The query is not valid because the
expression on the right side in a
custom function predicate must be an
integer value.

SQL1822N Unexpected error code ″″
received from data source
″BioRS wrapper.″ Associated text
and tokens are ″Databank not
found.″

The BioRS databank referenced in a
CREATE NICKNAME statement was
not found on the BioRS server. Check
the CREATE NICKNAME statement
and ensure that the name of the
referenced databank is correct.

32 Addendum to the Data Source Configuration Guide



Table 10. Messages issued by the wrapper for BioRS (continued)

Error Code Message Explanation

SQL1822N Unexpected error code ″″
received from data source
″BioRS wrapper.″ Associated text
and tokens are ″Connection
timed out.″

The BioRS server failed to respond to a
communications request within the
period specified by the TIMEOUT
option.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″BioRS wrapper.″
Associated text and tokens are
″Error reading from server.″

A communications error occurred
while reading data from the BioRS
server. The value of the <trace_point>
error code might provide more
information about the error.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″BioRS wrapper.″
Associated text and tokens are
″Host not found.″

The BioRS server host that is identified
in the HOST server option was not
found. Check the CREATE SERVER
statement and ensure that the HOST
server option value is correct.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″BioRS wrapper.″
Associated text and tokens are
″Unable to connect to server.″

The wrapper was unable to connect to
the server that is identified by the
HOST server option. The value of the
<trace_point> error code might provide
more information about the error.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″BioRS wrapper.″
Associated text and tokens are
″Unable to create TCPIP socket.″

The wrapper could not create a TCPIP
socket. The value of the <trace_point>
error code might provide more
information about the error code.

SQL1822N Unexpected error code
″<trace_point>″ received from
data source ″BioRS wrapper.″
Associated text and tokens are
″Error sending to server.″

The wrapper could not to send a
request to the BioRS server. The value
of the <trace_point> error code might
provide more information about the
error.

SQL30090N Operation invalid for application
execution environment. Reason
code = ″Cannot change
case-sensitivty of server.″

You cannot change the value of the
CASE_SENSITIVE server option with
SQL statements. To change the value of
this option, you must drop the server.
Then, you must create the server again
using the CREATE SERVER statement,
and specify the correct value for the
CASE_SENSITIVE option.

SQL30090N Operation invalid for application
execution environment. Reason
code = ″Multiple joins between
two nicknames.″

The query is not valid because only
one join predicate is allowed between
any two nicknames.

Chapter 1. Configuring access to BioRS data sources 33



Table 10. Messages issued by the wrapper for BioRS (continued)

Error Code Message Explanation

SQL30090N Operation invalid for application
execution environment. Reason
code = ″Right side of function
predicate must be constant.″

The query is not valid because the
expression on the right side in a
custom function predicate must be a
constant.

SQL30090N Operation invalid for application
execution environment. Reason
code = ″Arg 1 of custom
function not a column.″

The query is not valid because the first
argument of a custom function must
reference a column of a BioRS
nickname.

SQL30090N Operation invalid for application
execution environment. Reason
code = ″Arg 1 of CONTAINS
function not indexed.″

The query is not valid. The column
referenced in the first argument of a
BIORS.CONTAINS,
BIORS.CONTAINS_LE, or
BIORS.CONTAINS_GE function must
be an indexed column.

SQL30090N Operation invalid for application
execution environment. Reason
code = ″Bad type for arg1 of
<function-name> function.″

The query is not valid. The column
referenced in the first argument of a
BIORS.CONTAINS,
BIORS.CONTAINS_LE, or
BIORS.CONTAINS_GE function is not
of the correct data type.

SQL30090N Operation invalid for application
execution environment. Reason
code = ″Arg 1 of
SEARCH_TERM not _ID_
column.″

The query is not valid. The column
referenced in the first argument of a
SEARCH_TERM function does not
map a BioRS _ID_ element.

SQL30090N Operation invalid for application
execution environment. Reason
code = ″Bind parameter cannot
be NULL.″

A column or host variable value that
was referenced in the second argument
of a BIORS.CONTAINS function was
NULL. The BioRS wrapper cannot
process null values.

SQL30090N Operation invalid for application
execution environment. Reason
code = ″Cannot convert value to
BioRS literal.″

A value was submitted to the wrapper
in a literal, column, or host variable,
which could not be converted to a
valid BioRS literal.

SQL30090N Operation invalid for application
execution environment. Reason
code = ″Cannot change server
version.″

You cannot change the server version
with the ALTER SERVER statement. To
change the server version, you must
drop the server. Then, you must create
the server again with the correct
version using the CREATE SERVER
statement.

34 Addendum to the Data Source Configuration Guide



Table 10. Messages issued by the wrapper for BioRS (continued)

Error Code Message Explanation

SQL30090N Operation invalid for application
execution environment. Reason
code = ″Bad type for arg2 of
<function-name> function.″

The query is not valid. The column
referenced in the second argument of a
BIORS.CONTAINS,
BIORS.CONTAINS_LE, or
BIORS.CONTAINS_GE function is not
of the correct data type.

SQL30090N Operation invalid for application
execution environment. Reason
code = ″Nickname has no
columns.″

No column declarations were specified
on the CREATE NICKNAME
statement. Column declarations are
required to create nicknames.

CREATE NICKNAME statement syntax - BioRS wrapper

MM CREATE NICKNAME nickname N

,

( column-name column-information ) M

M FOR SERVER server-name OPTIONS (
REMOTE_OBJECT ’BioRS_databank_name’

) MO

column-information:

data-type nickname-column-options

data-type:

CLOB
CHARACTER LARGE OBJECT
CHAR

CHARACTER
CHAR ( integer )

VARCHAR ( integer )

nickname-column-options:

OPTIONS (
ELEMENT_NAME ’BioRS_element_name’ ,

IS_INDEXED ’Y’ ,
’N’

M

M REFERENCED_OBJECT ’BioRS_databank_name’ )

Nickname column options

Nickname column option values must be enclosed in single quotation marks.

Chapter 1. Configuring access to BioRS data sources 35



ELEMENT_NAME
Specifies the BioRS element name. The case sensitivity of this name
depends on the case sensitivity of the BioRS server and on the value
of the CASE_SENSITIVE server option. You need to specify the BioRS
element name only if it is different from the column name.

IS_INDEXED
Indicates whether the corresponding column is indexed (whether the
column can be referenced in a predicate). The valid values are ’Y’ and
’N’. The value ’Y’ can be specified only for columns whose
corresponding element is indexed by the BioRS server.

When a nickname is created, this option is automatically added with
the value ’Y’ to any columns that correspond to a BioRS indexed
element.

REFERENCED_OBJECT
This option is valid only for columns whose BioRS data type is
Reference. This option specifies the name of the BioRS databank that
is referenced by the current column. The case sensitivity of this name
depends on the case-sensitivity of the BioRS server and on the value
of the CASE_SENSITIVE server option.

Nickname options

Nickname option values must be enclosed in single quotation marks.

REMOTE_OBJECT
Specifies the name of the BioRS databank that is associated with the
nickname. This name determines the schema and the BioRS databank
for the nickname. This name also specifies the relationship of the
nickname to other nicknames. The case sensitivity of this name
depends on the case sensitivity of the BioRS server and on the value
of the CASE_SENSITIVE server option.

Important: You cannot change or delete this name with the ALTER
NICKNAME statement. If the name of the BioRS databank that is
used in this option changes, you must delete and then create the
entire nickname again.

Related tasks:

v “Registering nicknames for BioRS data sources” on page 8

Related reference:

v “CREATE NICKNAME statement” in the SQL Reference, Volume 2

v “CREATE NICKNAME statement - Examples for BioRS wrapper” on page 9

36 Addendum to the Data Source Configuration Guide



CREATE SERVER statement options - BioRS wrapper

Options for the CREATE SERVER statement for BioRS are:

TYPE Specifies the server type. The default value is BioRS. The default value
is the only value that is supported for the BioRS wrapper. You do not
need to specify this option.

VERSION
Specifies the server version. The default value is 1.0. The default
value is the only value that is supported for the BioRS wrapper You
do not need to specify this option.

NODE
Specifies the host name of the system on which the BioRS query tool
is available. The default value is localhost. You must specify this
option.

PORT Specifies the number of the port to be used to connect to the BioRS
server. The default value is 5014. You must specify this option.

TIMEOUT
Specifies the time, in minutes, that the BioRS wrapper should wait for
a response from the BioRS server. The default value is 10. You must
specify this option.

CASE_SENSITIVE
Specifies whether the BioRS server treats names in a case sensitive
manner. Valid values are ’Y’ or ’N’. The default value is ’Y’.

In the BioRS product, a configuration parameter controls the case
sensitivity of the data that is stored on the BioRS server machine. The
CASE_SENSITIVE option is the DB2 Information Integrator
counterpart to that BioRS system configuration parameter. You must
synchronize the BioRS server case sensitivity configuration settings in
your BioRS system and in DB2 Information Integrator. If you do not
keep the case sensitivity configuration settings synchronized between
BioRS and DB2 Information Integrator, errors will occur when you
attempt to access BioRS data through DB2 Information Integrator.

Important: You cannot change or delete the CASE_SENSITIVE option
after you create a new BioRS server in DB2 Information Integrator. If
you need to change the CASE_SENSITIVE option, you must drop and
then create the entire server again. If you drop the BioRS server, you
must also create all of the corresponding BioRS nicknames again. DB2
Information Integrator automatically drops all nicknames that
correspond to a dropped server.

Related tasks:

Chapter 1. Configuring access to BioRS data sources 37



v “Registering the server for a BioRS data source” on page 6
v “Registering nicknames for BioRS data sources” on page 8

Related reference:

v “CREATE SERVER statement” in the SQL Reference, Volume 2

v “CREATE NICKNAME statement syntax - BioRS wrapper” on page 35

CREATE USER MAPPING statement options - BioRS wrapper

GUEST
Specifies whether operations are to be performed under the BioRS
guest authentication mechanism on the BioRS server. Valid values are
’Y’ or ’N’. The default value is ’Y’.

If this option is set to ’Y’, then guest authentication is used to access
the BioRS server for this DB2 Information Integrator user.

If this option is set to ’N’, then a BioRS authorization ID and
password must be provided to access the BioRS server for this DB2
Information Integrator user.

If no user mapping is created, or if a user mapping is created with no
options specified, then guest authentication is used to access the
BioRS server for the DB2 Information Integrator user.

REMOTE_AUTHID
Specifies a user ID that allows this DB2 user to access BioRS data
sources. This remote ID must be in the format that is expected by the
BioRS application. This option is required if the GUEST option is set
to ’N’.

REMOTE_PASSWORD
Specifies the password for this remote ID. This option is required if
the GUEST option is set to ’N’.

Example:

The following CREATE USER MAPPING statement maps user Charlie to user
Charlene on the Biors_Server1 server.
CREATE USER MAPPING FOR Charlie SERVER Biors_Server1
OPTIONS(GUEST ’N’ REMOTE_AUTHID ’Charlene’, REMOTE_PASSWORD ’Charlene_pw’);

Related tasks:

v “Registering user mappings for BioRS data sources” on page 6

Related reference:

v “CREATE USER MAPPING statement” in the SQL Reference, Volume 2

38 Addendum to the Data Source Configuration Guide



Chapter 2. Life sciences user-defined functions

This chapter explains what the life sciences user-defined functions are, how to
add them to your federated system, and how to use them in your queries.

Life sciences user-defined functions - overview

The life sciences user-defined functions provide researchers with algorithms
they commonly use to analyze data. The functions are available on Windows®

NT, AIX, and Linux 32–bit platforms, except the GeneWise function which is
available on AIX® and Linux platforms.

The life sciences user-defined functions use the standard single-letter codes
and the IUPAC-IUB ambiguity codes to represent amino acids and
nucleotides.

Before you can use the life sciences user-defined functions, you must register
them. After you’ve registered them, you can remove them if needed.

Related tasks:

v “Registering life sciences user-defined functions” on page 40
v “Removing life sciences user-defined functions” on page 41

Related reference:

v “Life sciences user-defined functions by functional category” on page 39

Life sciences user-defined functions by functional category

Table 11 lists the life sciences user-defined functions by functional category. It
also provides a brief description of each category.

Table 11. Life sciences user-defined functions

Functional category User-defined functions Description

Back translate LSPep2AmbNuc,
LSPep2ProbNuc

Converts an amino acid
sequence into a nucleotide
sequence.

Defline parsing LSDeflineParse Parses elements of a definition
line, such as that returned by
the BLAST wrapper or present
in a FASTA format data file.

© Copyright IBM Corp. 2003 39



Table 11. Life sciences user-defined functions (continued)

Functional category User-defined functions Description

Generalized pattern
matching

LSPatternMatch,
LSPrositePattern

Identifies areas of interest in a
given string, such as a
nucleotide or peptide sequence.

GeneWise LSGeneWise Aligns a protein sequence to a
genomic sequence.

Motifs LSMultiMatch,
LSMultiMatch3,
LSBarCode

Matches patterns in nucleotide
or amino acid sequences.

Reverse LSRevNuc, LSRevPep,
LSRevComp

Reverses a nucleotide or amino
acid sequence.

Translate LSNuc2Pep,
LSTransAllFrames

Converts a nucleotide sequence
into a peptide sequence.

Related concepts:

v “Life sciences user-defined functions - overview” on page 39

Related tasks:

v “Registering life sciences user-defined functions” on page 40
v “Removing life sciences user-defined functions” on page 41

Registering life sciences user-defined functions

Before you can use the life sciences user-defined functions, you must register
them.

Procedure:

To register the life sciences user-defined functions, use the enable_LSFunctions
command available on Windows NT and AIX in the sqllib/bin directory.

The syntax for the enable_LSFunctions command is:
enable_LSFunctions -n dbName -u userID -p password [-force]

dbName
The name of the database to which you will register the functions.

userID
A valid user ID for the database.

password
A valid password for the user ID.

40 Addendum to the Data Source Configuration Guide



force A flag you can use to remove the functions and register them again.
You can use this flag to register the functions again if they get
corrupted or dropped accidentally.

The command creates the functions with the schema name DB2LS.

The following example shows sample output for the enable_LSFunctions
command:
C:> enable_LSFunctions -n test -u db2admin -p db2admin

(0) Life Sciences Functions were found
-- Create Life Sciences Functions ...
Create Life Sciences Functions Successfully.

*** Please allow a few seconds to clean up the system ......

The following example shows output for the enable_LSFunctions command
when you use the force flag and the functions are already registered:
C:> enable_LSFunctions -n test -u db2admin -p db2admin -force

(21) Life Sciences Functions were found

Life Sciences functions already exist ...
Reinstall Life Sciences functions ...

-- Drop Life Sciences Functions ...
Drop Life Sciences Functions Successfully.
-- Create Life Sciences Functions ...
Create Life Sciences Functions Successfully.

*** Please allow a few seconds to clean up the system ......

Removing life sciences user-defined functions

If you no longer want the life sciences user-defined functions on your system,
you can remove them.

Procedure:

To remove the life sciences user-defined functions, use the
disable_LSFunctions command available on Windows NT and AIX in the
sqllib/bin directory.

The syntax for the disable_LSFunctions command is:
disable_LSFunctions -n dbName -u userID -p password

Chapter 2. Life sciences user-defined functions 41



dbName
The name of the database from which you want to remove the
functions.

userID
A valid user ID for the database.

password
A valid password for the user ID.

The following example shows the output from the disable_LSFunctions
command:
C:>disable_LSFunctions -n test -u db2admin -p db2admin
a

(21) Life Sciences Functions were found
-- Drop Life Sciences Functions ...
Drop Life Sciences Functions Successfully.

*** Please allow a few seconds to clean up the system ......

Back translation user-defined functions

Use the back–translation user-defined functions to convert a peptide sequence
to a nucleotide sequence. Back translation is the inverse of translation.

Because the mapping from amino acids to nucleotide triplet codons is one to
many, a back translation produces two results:

most ambiguous
Simple text conversion and lookup. Use the LSPep2AmbNuc
user-defined function to do a most ambiguous translation.

most probable
Requires additional information from a codon frequency table. Use the
LSPep2ProbNuc user-defined function to do a most probable
translation.

LSPep2AmbNuc user-defined function

MM DB2LS.LSPep2AmbNuc (input peptide sequence )
,filepath to external translation table

MO

input peptide sequence
A valid character string representation describing a peptide sequence.
A character string representation must have a data type of VARCHAR
and an actual length that is no greater than 10890 bytes. The input
data uses the standard amino acid symbols and ambiguity codes.

42 Addendum to the Data Source Configuration Guide



filepath to external translation table
If you use a customized translation table, include the file path
information to find the translation table. The string value of the path
must be no greater than 255 characters.

The schema name is DB2LS.

Use the LSPep2AmbNuc function to produce the most ambiguous nucleotide
sequence, according to a translation table, from a peptide sequence.

The result of the function is a character string with a data type of VARCHAR
and an actual length that is not greater than 32672 bytes. The result represents
the most ambiguous nucleotide sequence, according to a translation table,
either built-in or specified by you.

If you do not specify a translation table, the function uses Table 12 by default.

Table 12. Default translation table

Amino acid symbol Abbreviation Codon

A Ala GCX

B Asx RAY

C Cys TGY

D Asp GAY

E Glu GAR

F Phe TTY

G Gly GGX

H His CAY

I Ile ATH

K Lys AAR

L Leu YTX

M Met ATG

N Asn AAY

P Pro CCX

Q Gln CAR

R Arg MGX

S Ser WSX

T Thr ACX

V Val GTX

W Trp TGG

Chapter 2. Life sciences user-defined functions 43



Table 12. Default translation table (continued)

Amino acid symbol Abbreviation Codon

X Xxx XXX

Y Tyr TAY

Z Glx SAR

* End TRR

Related reference:

v “LSPep2AmbNuc user-defined function - error messages” on page 45
v “LSPep2ProbNuc user-defined function” on page 46
v “LSPep2AmbNuc user-defined function - example” on page 44

LSPep2AmbNuc user-defined function - example

You can invoke the function with a values statement. The single input is a
peptide sequence, as in the following example:

values db2ls.LSPep2AmbNuc(’HR’);

The above example transforms a peptide into a nucleotide using the
ambiguous translations and the built-in translation table. The result of the
above statement is a nucleotide sequence created from the standard amino
acid symbols:
CAYMGX

The following example transforms a peptide into a nucleotide using the
ambiguous translations and the built-in table:
values db2ls.LSPep2AmbNuc(’SRGFGFITYSHSSMIDEAQKSRPHKIDGRVVEPKRA’);

The result of this values statement is the following nucleotide sequence. (The
sequence has been split to fit on the page.)
WSXMGXGGXTTYGGXTTYATHACXTAYWSXCAYWSXWSXATGATHGAYGARGCXCARA
ARWSXMGXCCXCAYAARATHGAYGGXMGXGTXGTXGARCCXAARMGXGCX

The next example shows the function applied to a set of values extracted from
a table or nickname:
SELECT DB2LS.LsPep2AmbNuc(peptide_seq) FROM table protein_table;

The data in column peptide_seq of table protein_table looks like the
following:

44 Addendum to the Data Source Configuration Guide



Table 13. Data in the peptide_seq column

peptide_seq

GIKEDTEEHHLRDYFE

QKYHTVNGHNCEVRKA

.....

The result of the select statement is:
GGXATHAARGARGAYACXGARGARCAYCAYYTXMGXGAYTAYTTYGAR
CARAARTAYCAYACXGTXAAYGGXCAYAAYTGYGARGTXMGXAARGCX
...

The following example transforms a peptide into a nucleotide using the
ambiguous translations and a user-defined table. Usually, the differences
between translation tables are small. There might be just one or two symbols
that are unique. They might occur because some species have more codons or
some species have fewer codons. For example, the codon AGG is absent in
Drosophila.
values db2ls.LSPep2AmbNuc(’RGNMGGGNYGNQNGGGNWNNG’,

’\data\transl_table_06.txt’)

Assuming the input translation table is for Drosophila, the result of the values
statement is shown in the following example:
MGRGGXAAYATGGGXGGXGGXAAYTAYGGXAAYTARAAYGGXGGXGGXAAYTGGAAYAAYGGX

Related reference:

v “LSPep2AmbNuc user-defined function” on page 42
v “LSNuc2Pep user-defined function – example” on page 75

LSPep2AmbNuc user-defined function - error messages

Table 14. Messages issued by the LSPep2AmbNuc user-defined function

Error code Message Explanation

SQL0443N Routine ″DB2LS.LSPEP2AMBNUC″
(specific name ″LSPEP2AMBNUC″)
has returned an error SQLSTATE
with diagnostic text ″Sequence not
valid″. SQLSTATE=38608

The sequence given is
invalid.

SQL0443N Routine ″DB2LS.LSPEP2AMBNUC″
(specific name
″LSPEP2AMBNUCUT″) has returned
an error SQLSTATE with diagnostic
text ″No translation found″.
SQLSTATE=38610

The translation table file
is empty.

Chapter 2. Life sciences user-defined functions 45



Table 14. Messages issued by the LSPep2AmbNuc user-defined function (continued)

Error code Message Explanation

SQL0443N Routine ″LSPEP2AMBNUC″ (specific
name ″LSPEP2AMBNUCUT″) has
returned an error SQLSTATE with
diagnostic text ″Can not open the
translation table file″.
SQLSTATE=38612

The translation table file
specified does not exist.

SQL0443N Routine ″DB2LS.LSPEP2AMBNUC″
(specific name
″LSPEP2AMBNUCUT″) has returned
an error SQLSTATE with diagnostic
text ″Line too long reading from file″.
SQLSTATE=38614

The file contained a line
that was longer than is
allowed.

SQL0443N Routine ″DB2LS.LSPEP2AMBNUC″
(specific name
″LSPEP2AMBNUCUT″) has returned
an error SQLSTATE with diagnostic
text ″Invalid data file″.
SQLSTATE=38615

The file format is
invalid.

SQL0443N Routine ″LSPEP2AMBNUC″ (specific
name ″LSPEP2AMBNUCUT″) has
returned an error SQLSTATE with
diagnostic text ″Can’t construct the
translation table″. SQLSTATE=38611

Invalid symbols were
found in the file.

Related reference:

v “LSPep2AmbNuc user-defined function” on page 42

LSPep2ProbNuc user-defined function

MM DB2LS.LSPep2ProbNuc (input peptide sequence )
,filepath to codon frequency table

MO

input peptide sequence
A valid character string representation describing a peptide sequence.
The character string representation must have a data type of
VARCHAR and an actual length that is no greater than 10890 bytes.
The input data uses the standard amino acid symbols.

filepath to codon frequency table
This is the codon frequency table. Include the file path information to
find the frequency table. The string value of the path must be no
greater than 255 characters.

The schema name is DB2LS.

46 Addendum to the Data Source Configuration Guide



Use the LSPep2ProbNuc function to generate the most probable nucleotide
sequence, from a peptide sequence, based on the codon frequency table
specified in the second argument.

The result of the function is a character string with a data type of VARCHAR
and an actual length that is not greater than 32672 bytes representing the most
probable nucleotide sequence using the codon frequency table.

Related reference:

v “LSPep2AmbNuc user-defined function” on page 42
v “LSPep2ProbNuc user-defined function - error messages” on page 48
v “LSPep2ProbNuc user-defined function - example” on page 47

LSPep2ProbNuc user-defined function - example

The following example shows how you can transform a peptide sequence into
a nucleotide sequence using the most probable translations defined in the
yeast_high.cod frequency table.
values db2ls.LSPep2ProbNuc(’RDNNDDDN’, ’\data\yeast_high.cod’)

The result of the above values statement is:
AGAGACAATAACGACGATGATAAC

A second execution of the same statement produces the following string:
AGAGATAATAACGACGATGACAAC

A third execution of the same statement produces the following string with
random values:
AGAGATAACAACGACGACGATAAT

Codons in bold codons highlight the differences between the current and
previous transformations.

The results from the single values statement shows that function
LSPep2ProbNuc chooses one of the possible symbols based on pervious
statistics. This is different from function LSPep2AmbNuc which uses
ambiguous symbols where there are more possible translations.

Function LSPep2ProbNuc picks up the most probable translations for each
symbol and then replaces every symbol with a random translation from the
set previously picked. Assume that we have the following data in a frequency
table:

Chapter 2. Life sciences user-defined functions 47



Table 15. Sample frequency table data

Amino acid Codon Frequency

Ala GCG 0.17

Ala GCA 0.13

Ala GCT 0.17

Ala GCC 0.53

Assume that the peptide sequence contains four “A” symbols (Ala). The
function translates A twice to GCC; once to GCG and once to GCT. However,
the order that the function produces the translations is random. The query
could translate the first A to each of translations from the set {GCC, GCC,
GCG, GCT}. The result is always two occurrences of GCC, one occurrence of
GCG and one occurrence of GCT in the output DNA sequence. Multiple
executions of the function on the same sequence might return DNA sequences
with the values interchanged.

Related reference:

v “LSPep2ProbNuc user-defined function” on page 46
v “LSPep2ProbNuc user-defined function - error messages” on page 48
v “LSPep2AmbNuc user-defined function - example” on page 44

LSPep2ProbNuc user-defined function - error messages

Table 16. Messages issued by the LSPep2ProbNuc user-defined function

Error code Message Explanation

SQL0443N Routine ″DB2LS.LSPEP2PROBNUC″
(specific name ″LSPEP2PROBNUC″)
has returned an error SQLSTATE
with diagnostic text ″Sequence not
valid″. SQLSTATE=38608

The input sequence is
invalid.

SQL0443N Routine ″DB2LS.LSPEP2PROBNUC″
(specific name ″LSPEP2PROBNUC″)
has returned an error SQLSTATE
with diagnostic text ″No translation
found″. SQLSTATE=38610

The codon frequency
table file is empty.

SQL0443N Routine ″LSPEP2PROBNUC″ (specific
name ″LSPEP2PROBNUC″) has
returned an error SQLSTATE with
diagnostic text ″Can’t open the
translation table file″.
SQLSTATE=38612

The file does not exist.

48 Addendum to the Data Source Configuration Guide



Table 16. Messages issued by the LSPep2ProbNuc user-defined function (continued)

Error code Message Explanation

SQL0443N Routine ″DB2LS.LSPEP2PROBNUC″
(specific name ″LSPEP2PROBNUC″)
has returned an error SQLSTATE
with diagnostic text ″Line too long
reading from file″. SQLSTATE=38614

The file contains lines
that are longer than
allowed.

SQL0443N Routine ″DB2LS.LSPEP2PROBNUC″
(specific name ″LSPEP2PROBNUC″)
has returned an error SQLSTATE
with diagnostic text ″Invalid data
file″. SQLSTATE=38615

The file format is
invalid.

SQL0443N Routine ″LSPEP2PROBNUC″ (specific
name ″LSPEP2PROBNUC″) has
returned an error SQLSTATE with
diagnostic text ″Can’t construct the
translation table″. SQLSTATE=38611

The file contains invalid
symbols.

Related reference:

v “LSPep2ProbNuc user-defined function” on page 46
v “LSPep2ProbNuc user-defined function - example” on page 47

Defline parsing user-defined functions

Defline parsing user-defined functions parse elements of a definition line, for
example, to enable joins with other data sources on sequence identifiers
parsed out of the defline, or to evaluate predicates on portions of the defline,
such as ’species = "human"’. The defline functions cover the most common
defline formats. Examples include definition line elements the BLAST wrapper
returns or that are present in a FASTA format data file.

LSDeflineParse user-defined functions

MM DB2LS.LSDeflineParse2 (definition line) MO

MM DB2LS.LSDeflineParse3 (definition line) MO

MM DB2LS.LSDeflineParse2_2 (definition line) MO

MM DB2LS.LSDeflineParse2_3 (definition line) MO

Chapter 2. Life sciences user-defined functions 49



MM DB2LS.LSDeflineParse3_3 (definition line) MO

definition line
A valid string representation of a definition line in FASTA format. The
string must have a data type of VARCHAR and an actual length that
is no greater than 1024 bytes.

The schema name is DB2LS.

Each LSDeflineParse function parses out the fields of the NCBI standard
FASTA sequence identifier (NSID) and the description into columns in a table.
Definition lines that are compound definitions are output on multiple rows,
with each row containing a single component definition.

LSDeflineParse2 parses a defline that has a two-field NSID. The result of the
function is a table with four columns:

Table 17. LSDeflineParse2 user-defined function result table column descriptions

Column name Description

ROWID An integer that numbers the rows returned from the
function.

TAG A VARCHAR of up to three characters that
represents the NSID tag.

IDENTIFIER A VARCHAR of up to 20 characters and represents
the second identifier field in the NSID.

DESCRIPTION A VARCHAR of up to 1019 characters.

LSDeflineParse3 parses a defline that has a three-field NSID. The result of the
function is a table with five columns:

Table 18. LSDeflineParse3 user-defined function result table column descriptions

Column name Description

ROWID An integer that numbers the rows returned from the
function.

TAG A VARCHAR of up to three characters that
represents the NSID tag.

ACCESSION A VARCHAR of up to 20 characters and represents
the second identifier field in the NSID.

LOCUS A VARCHAR of up to 20 characters and represents
the third identifier field in the NSID.

DESCRIPTION A VARCHAR of up to 1017 characters.

50 Addendum to the Data Source Configuration Guide



LSDeflineParse2_2 parses a defline that has a compound identifier consisting
of a pair of concatenated two-field NSIDs. The result of the function is a table
with six columns:

Table 19. LSDeflineParse2_2 user-defined function result table column descriptions

Column name Description

ROWID An integer that numbers the rows returned from the
function.

TAG1 A VARCHAR of up to three characters that
represents the NSID tag of the first identifier.

IDENTIFIER1 A VARCHAR of up to 20 characters and represents
the second identifier field of the first NSID.

TAG2 A VARCHAR of up to three characters that
represents the NSID tag of the first identifier.

IDENTIFIER2 A VARCHAR of up to 20 characters and represents
the second identifier field of the second NSID.

DESCRIPTION A VARCHAR of up to 1015 characters.

LSDeflineParse2_3 parses a defline that has a compound identifier consisting
of a two-field NSID concatenated with a three-field NSID. The order of
concatenation in the input defline--whether the two-field NSID comes before
the three-field NSID, or vice versa--is not important. The result of the function
is a table with seven columns:

Table 20. LSDeflineParse2_3 user-defined function result table column descriptions

Column name Description

ROWID An integer that numbers the rows returned from the
function.

TAG1 VARCHAR of up to three characters that represents
the NSID tag of the two-field identifier.

IDENTIFIER A VARCHAR of up to 20 characters and represents
the second identifier field of the two-field NSID.

TAG2 A VARCHAR of up to three characters that
represents the NSID tag of the three-field identifier.

ACCESSION A VARCHAR of up to 20 characters and represents
the second identifier field of the three-field NSID.

LOCUS A VARCHAR of up to 20 characters and represents
the third identifier field of the three-field NSID.

DESCRIPTION A VARCHAR of up to 1013 characters.

Chapter 2. Life sciences user-defined functions 51



LSDeflineParse3_3 parses a defline that has a compound identifier consisting
of a pair of three-field NSIDs. The result of the function is a table with eight
columns:

Table 21. LSDeflineParse3_3 user-defined function result table column descriptions

Column name Description

ROWID An integer that numbers the rows returned from the
function.

TAG1 A VARCHAR of up to three characters that
represents the NSID tag of the first identifier.

ACCESSION1 A VARCHAR of up to 20 characters and represents
the second identifier field of the first NSID.

LOCUS1 A VARCHAR of up to 20 characters and represents
the third identifier field of the first NSID.

TAG2 A VARCHAR of up to three characters that
represents the NSID tag of the first identifier.

ACCESSION2 A VARCHAR of up to 20 characters and represents
the second identifier field of the second NSID.

LOCUS2 A VARCHAR of up to 20 characters and represents
the third identifier field of the second NSID.

DESCRIPTION A VARCHAR of up to 1014 characters.

Related reference:

v “LSDeflineParse user-defined function — examples” on page 52

LSDeflineParse user-defined function — examples
This topic contains seven examples that show how the LSDeflineParse
user-defined functions parse definition lines into result tables.

The following example query and results table shows how the
LSDeflineParse2 user-defined function parses a definition line containing a
two-field NSID:
select *
from table(DB2LS.LSDeflineParse2(

’>gi|12346 hypothetical protein 185 –wheat chloroplast’)) as t

The result table contains the following data:

Table 22. LSDeflineParse2 user-defined function result data

Column name Data

ROWID 1

TAG gi

52 Addendum to the Data Source Configuration Guide



Table 22. LSDeflineParse2 user-defined function result data (continued)

Column name Data

IDENTIFIER 12346

DESCRIPTION hypothetical protein 185 – wheat chloroplast

The following example query and results table shows how the
LSDeflineParse3 user-defined function parses a definition line containing a
three-field NSID:
select *
from table(DB2LS.LSDeflineParse3(’

>gb|U37104|APU37104 Aethia pusilla cytochrome b gene’)) as t

The result table contains the following data:

Table 23. LSDeflineParse3 user-defined function result data

Column name Data

ROWID 1

TAG gb

ACCESSION U37104

LOCUS APU37104

DESCRIPTION Aethia pusilla cytochrome b gene

The following example query and results table shows how the
LSDeflineParse2_2 user-defined function parses a definition line containing a
compound identifier that consists of a pair of 2-field NSIDs:
select *
from table(DB2LS.LSDeflineParse2_2(

’>gb|U37104|gim|73401A Aethia pusilla cytochrome b gene’)) as t

The result table contains the following data:

Table 24. LSDeflineParse2_2 user-defined function result data

Column name Data

ROWID 1

TAG1 gb

IDENTIFIER1 U37104

TAG2 gim

IDENTIFIER2 73401A

DESCRIPTION Aethia pusilla cytochrome b gene

Chapter 2. Life sciences user-defined functions 53



The following example query contains a definition line with a compound
identifier that consists of a 2-field NSID concatenated with a 3-field NSID. The
example shows how the LSDeflineParse2_3 function parses the definition line.
select *
from table(DB2LS.LSDeflineParse2_3(’

>gi|12346|gp|CAA44030.1|CHTAHSRA_4
hypothetical protein 185 – wheat chloroplast’)) as t

The result table contains the following data:

Table 25. LSDeflineParse2_3 user-defined function result data

Column name Data

ROWID 1

TAG1 gi

IDENTIFIER 12346

TAG2 gp

ACCESSION CAA44030.1

LOCUS CHTAHSRA_4

DESCRIPTION hypothetical protein 185 – wheat chloroplast

The following example query contains a definition line with a compound
identifier that consists of a 3-field NSID concatenated with a 2-field NSID. The
example shows how the LSDeflineParse2_3 function parses the definition line.
select *
from table(DB2LS.LSDeflineParse2_3(’

>gp|CAA44030.1|CHTAHSRA_4|gi|12346
hypothetical protein 185 - wheat chloroplast’)) as t

The result table contains the following data:

Table 26. LSDeflineParse2_3 user-defined function result data

Column name Data

ROWID 1

TAG1 gi

IDENTIFIER 12346

TAG2 gp

ACCESSION CAA44030.1

LOCUS CHTAHSRA_4

DESCRIPTION hypothetical protein 185 – wheat chloroplast

54 Addendum to the Data Source Configuration Guide



The following example query and results table shows how the
LSDeflineParse3_3 user-defined function parses a definition line that contains
a compound identifier with a pair of 3-field NSIDs:
select * from table(DB2LS.LSDeflineParse3_3(’

>dbj|AAD55586.1|AF055084_1|gp|CAA44030.1|CHTAHSRA_4
hypothetical protein 185 – wheat chloroplast’)) as t

The result table contains the following data:

Table 27. LSDeflineParse3_3 user-defined function result data

Column name Data

ROWID 1

TAG1 dbj

ACCESSION1 AAD55586.1

LOCUS1 AF055084_1

TAG2 gp

ACCESSION2 CAA44030.1

LOCUS2 CHTAHSRA_4

DESCRIPTION hypothetical protein 185 – wheat chloroplast

You can use any of the defline user-defined functions to parse a compound
definition line. The following example query contains a compound definition
line with multiple definitions that are separated by a Control-A character. You
can find this type of definition line in NCBI’s non-redundant protein database
nr. The example shows how the LSDeflineParse2_3 function parses the
definition line.
select *
from table(DB2LS.LSDeflineParse2_3(’

>gi|12346|gp|CAA44030.1|CHTAHSRA_4
hypothetical protein 185 - wheat chloroplast

^Agp|CAA44030.1|CHTAHSRA_4|gi|12346
hypothetical protein 185 - wheat chloroplast’)) as t

The result table contains the following data:

Table 28. LSDeflineParse2_3 user-defined function result data

Column name Data Data

ROWID 1 2

TAG1 gi gi

IDENTIFIER 12346 12346

TAG2 gp gp

ACCESSION CAA44030.1 CAA44030.1

Chapter 2. Life sciences user-defined functions 55



Table 28. LSDeflineParse2_3 user-defined function result data (continued)

Column name Data Data

LOCUS CHTAHSRA_4 CHTAHSRA_4

DESCRIPTION hypothetical protein 185 –
wheat chloroplast

hypothetical protein 185 –
wheat chloroplast

Related reference:

v “LSDeflineParse user-defined functions” on page 49

Generalized pattern matching user-defined functions

The generalized pattern matching user-defined functions identify areas of
interest in a given string, such as a nucleotide or peptide sequence.

LSPatternMatch user-defined function

MM DB2LS.LSPatternMatch (input character sequence, pattern) MO

input character sequence
The character string representation must have a data type of
VARCHAR and an actual length that is no greater than 32672 bytes.

pattern
The pattern as specified in any valid Perl regular expression. The
character string representation must have a data type of VARCHAR
and an actual length that is no greater than 32672 bytes.

The schema name is DB2LS.

You can use the LSPatternMatch user-defined function to search the input
nucleotide or peptide sequence for a pattern you specify.

The result of the function is an integer representing the position of the first
match of the pattern in the sequence. The function returns a value of zero if
there is no match.

If you have patterns written with the PROSITE syntax, you can covert them to
Perl syntax with the LSPrositePattern user-defined function. You can then use
the converted syntax with the LSPatternMatch user-defined function.

Related reference:

v “LSPatternMatch user-defined function – example” on page 57
v “LSPrositePattern user-defined function” on page 59

56 Addendum to the Data Source Configuration Guide



LSPatternMatch user-defined function – example

In the following example, look for the beginning position of the string that
matches “coward”, “cowage”, “cowboy”, or “cowl”.
values DB2LS.LSPatternMatch(’joe the cowboy is next’, ’cow(ard|age|boy|l)’)

The function searches by characters, and in this example, returns a value of
nine. The string “cowboy” begins at position nine, assuming that the first
position is one.

In the next example, look for the beginning position of the string that matches
“not ” or “non ”:
values DB2LS.LSPatternMatch(’match not and non but

no match for no or none’, ’no[tn] ’)

The function searches by characters, and in this example, returns a value of
seven. The string “not ” begins at position seven, assuming that the first
position is one.

LSPatternMatch is useful in select statements to filter the results using the
PERL syntax, which is a more powerful syntax than the SQL LIKE statement.
In the following example, use LSPatternMatch on a blast output to filter the
genes that match a certain pattern:
SELECT BlastOutput.*
FROM BlastOutput
WHERE db2ls.LSPatternMatch(HSP_H_Seq, ’F[GSTV]PRL’) > 0;

If you are more familiar with the PROSITE syntax, you can use the
LSPrositePattern function with the above query. Change the query to the
following:
SELECT BlastOutput.*

FROM BlastOutput
WHERE db2ls.LSPatternMatch(HSP_H_Seq,

db2ls.LSPrositePattern(’F-[GSTV]-P-R-L.’) ) > 0;

The pattern matching functions are useful for searching other types of text, as
well as the nucleotide or peptide sequences. Consider using the SQL LIKE
statement when performance might be a concern.

The following example shows a query that filters BLAST hsp alignments
based on protein motifs found in the subject or target line of the alignment.
The example is adapted from Zhang,Z., Schaffer,A.A., Miller,W.,
Madden,T.L., Lipman,D.J., Koonin,E.V. and Altschul,S.F. (1998) Protein
sequence similarity searches using patterns as seeds. Nucl. Acids Res.,
26, 3896-3990.

Chapter 2. Life sciences user-defined functions 57



The following query returns only alignments in which the subject sequence
includes the P-loop ATPase domain [GA]xxxxGK[ST]. The query uses CED4,
the Caenorhabditis elegans regulator of cell death, as a query sequence against
NCBI’s non-redundant protein sequence database. The database retrieves the
blast query sequence from the translation of the CDS feature of GenBank
entry X69016.
SELECT HSP_Q_Seq, HSP_Midline, HSP_H_Seq
FROM BlastP b, GBseq gs, gbfeat gf, gbqual gq
WHERE gs.PRIMARYACCESSION = ’X69016’ and

gs.sequencekey = gf.sequencekey and
gf.featurejoinkey = gq.featurejoinkey and
gf.FeatureKey = ’CDS’ and
gq.QualifierName = ’translation’ and
gq.QualifierValue = b.BlastSeq and
db2ls.LSPatternMatch(HSP_H_Seq,

db2ls.LSPrositePattern(’[GA]-x(4)-G-K-[ST].’) ) > 0;

You can use the next example query to find HSPs in a genomic sequence that
contain putative single nucleotide polymorphisms (SNPs) with respect to a
canonical query sequence. It is adapted from Extending traditional
query-based integration approaches for functional characterization of
post-genomic data. (2001) Barbara A Eckman, Anthony S Kosky, and
Leonardo A Laroco Jr. Bioinformatics 17(7), 587-601.

The query uses the pattern matching on the blast hsp midline to find a
pattern of ≥20 perfect matches followed by a single mismatch followed by ≥20
perfect matches. That is, 20 ″|″ characters, a single space, and then 20 ″|″
characters in the midline of the alignment.

This example also shows the usage of the LSPatternMatch user-defined
function on strings that are not nucleotide or peptide sequences.
SELECT HSP_Info, HSP_Midline, HSP_H_Seq
FROM BlastOutput
WHERE db2ls.LSPatternMatch(HSP_Midline, ’\|{20} \|{20}’) > 0;

You can rewrite the previous query as:
SELECT HSP_Info, HSP_Midline, HSP_H_Seq, func.Position, func.Match
FROM BlastOutput,

table( select * as c from table(
LSMultiMatch(HSP_Midline, ’\|{20} \|{20}’) )

as f) as func

This second query will return the blast rows that have a match together with
the matched string and their position in the sequence.

BlastOutput is a view over a BlastN nickname.

58 Addendum to the Data Source Configuration Guide



Related reference:

v “LSPrositePattern user-defined function - example” on page 59
v “LSPatternMatch user-defined function” on page 56
v “LSPrositePattern user-defined function” on page 59

LSPrositePattern user-defined function

MM DB2LS.LSPrositePattern (pattern) MO

pattern
The pattern matching syntax specified by the Prosite syntax. The
character string representation must have a data type of VARCHAR
and an actual length that is no greater than 32672 bytes.

The schema name is DB2LS.

Use the LSPrositePattern user-defined function to convert from the PROSITE
syntax to the PERL syntax. You can then use the converted syntax with the
LSPatternMatch, LSMultiMatch, and LSMultiMatch3 user-defined functions.

The result of the function is a character string representing a regular
expression in the Perl syntax. The character string representation must have a
data type of VARCHAR and an actual length that is no greater than 32672
bytes.

Related reference:

v “LSPrositePattern user-defined function - example” on page 59
v “LSPatternMatch user-defined function” on page 56

LSPrositePattern user-defined function - example

In the following example, convert a pattern from PROSITE syntax into PERL
syntax.
values db2ls.LSPrositePattern(’[AC]-x-V-x(4)-{ED}.’);

The function converts the input pattern in PROSITE syntax into an equivalent
pattern in Perl syntax, as shown in the following example:
[AC].V.{4}[^ED]

The next example converts another syntax pattern from PROSITE into the
PERL syntax:
values db2ls.LSPrositePattern(’<A-x-[ST](2)-x(0,1)-V.’);

The function translate the string from the PROSITE syntax based on the input
pattern and returns the following:

Chapter 2. Life sciences user-defined functions 59



\AA.[ST]{2}.{0,1}V

The next example converts the the pattern corresponding to the PROSITE
database entry with the ID number of PS01205 into a PERL pattern that is
used as input by the pattern matching functions.
values db2ls.LSPrositePattern(’R-P-L-[IV]-x-[NS]-F-G-S-[CA]-T-C-P-x-F.’)

The result of this query is:
RPL[IV].[NS]FGS[CA]TCP.F

The next example shows how you can use the function in a query. The query
prints out only sequences that match the PROSITE pattern specified.
SELECT H_Accession, HSP_Info, HSP_H_Seq
FROM BlastOutput
WHERE db2ls.LSPatternMatch( HSP_H_Seq,

db2ls.LSPrositePattern(’R-P-L-[IV]-x-[NS]-F-G-S-[CA]-T-C-P-x-F.’) ) > 0;

The next example converts the pattern corresponding to the PROSITE entry
whose ID is PS00261:
values db2ls.LSPrositePattern(’C-[STAGM]-G-[HFYL]-C-x-[ST].’)

The result of this query is:
C[STAGM]G[HFYL]C.[ST]

Related reference:

v “LSPatternMatch user-defined function – example” on page 57
v “LSPrositePattern user-defined function” on page 59

Regular expression support

Regular expression support is provided by the PCRE library package, which is
open source software, written by Philip Hazel, and copyright by the
University of Cambridge, England.

The source can be found at
ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/.

GeneWise user-defined functions

The GeneWise user-defined function aligns a protein sequence with a genomic
sequence.

GeneWise is a commonly-used component which aligns a protein sequence
with a genomic DNA sequence, allowing for introns and frameshifting errors.

60 Addendum to the Data Source Configuration Guide

ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/


Linking to GeneWise

This topic describes the procedure for linking to the GeneWise library.

Procedure:

1. Download the Wise2 package version 2.1.20c from
http://www.ebi.ac.uk/Wise2.

2. Expand the archive into a folder of your preference.
3. Compile the package with pthread support. For more information on this

step, see the Wise2 documentation.
4. Run make api in its root directory.
5. Set the WISE2_HOME environment variable to point to the Wise2 package

root directory.
6. Set the WISECONFIGDIR variable in the sqllib/cfg/db2dj.ini file to point

to the wisecfg subdirectory.
The For example, if Wise2 package is installed in /usr/wise2.1.20c/, then
add WISECONFIGDIR=/usr/wise2.1.20c/wisecfg/ into db2dj.ini file.

7. Run djxlinkLSGeneWise from the sqllib/bin directory and check its
output.

8. Check djxlinkLSGeneWise.out in sqllib/lib directory.
9. If no errors were reported, then the library was successfully built.

Related reference:

v “LSGeneWise user-defined function” on page 61

LSGeneWise user-defined function

MM DB2LS.LSGeneWise (protein sequence, DNA_sequence) MO

protein sequence
A valid character string representation describing a peptide sequence.
The character string representation must have a data type of
VARCHAR and an actual length that is no greater than 32672 bytes.

DNA_sequence
A valid character string representation describing a nucleotide
sequence. The character string representation must have a data type of
VARCHAR and an actual length that is no greater than 32672 bytes.

Table 29 on page 62 shows the one row output table the LSGeneWise function
returns.

Chapter 2. Life sciences user-defined functions 61



Table 29. Column names, types, and descriptions for the output table from the
LSGeneWise function

Column name Type Description

PROTEIN_OFFSET INTEGER Represents the starting offset in the input
protein sequence at which an alignment
was found.

DNA_OFFSET INTEGER Represents the starting offset in the input
DNA sequence at which an alignment was
found.

PROTEIN VARCHAR(32672) A fragment from the input sequence
representing the aligned sequence.

SIMILARITY VARCHAR(32672) Shows the matching between the protein
and the dna sequences. Perfect matches are
marked with the corresponding symbol
letter. Non-perfect matches with a positive
score are indicated with the ″+″ sign, and
mismatches are indicated with a space.

TRANSLATED_DNA VARCHAR(32672) The translated DNA sequence. The
sequence might contain dashes and special
symbols like deletions and introns.

DNA VARCHAR(32672) The DNA sequence with special markers
like frame-shifting and introns.

The correspondence between the output of the GeneWise program and the
output of the LSGeneWise UDF is the following:
v protein and dna offsets printed by the GeneWise program match

PROTEIN_OFFSET and DNA_OFFSET columns.
v protein sequence printed on the first line by GeneWise matches PROTEIN

column.
v similarity line, the second line in GeneWise output matches SIMILARITY

column.
v the third line in the GeneWise output matches TRANSLATED_DNA

column.
v the fourth, fifth and sixth lines of the GeneWise output are combined, by

reading them vertically, into the DNA column.

Use the LSGeneWise user-defined function to align a protein sequence with a
genomic DNA sequence, allowing for introns and frameshifting errors.

For more information on the LSGeneWise user-defined function output, see
http://www.ebi.ac.uk/Wise2.

62 Addendum to the Data Source Configuration Guide



Related tasks:

v “Linking to GeneWise” on page 61

Related reference:

v “LSGeneWise user-defined function – example” on page 63

LSGeneWise user-defined function – example
The following example shows a query using the LSGeneWise user-defined
function and the resulting data.
select protein_offset, dna_offset, protein, similarity, translated_dna, dna
from table( db2ls.LSGeneWise( ’

VEPKRAVPRQDIDSPNAGATVKKLFVGALKDDHDEQSIRDYFQHFGNIVDINIVIDKETGK
KRGFAFVEFDDYDPVDKVVLQKQHQLNGKMVDVKKALPKQNDQQGGGGGRGGPGGRAGGNR
GNMGGGNYGNQNGGGNWNNGGNNWGNNR’,
’CACTTAACTGTGAAAGATATTTGTTGGTGGCATTAAAGAAGACACTGAAGAACATCACCTAAG
AGATTATTTTGAACAGTATGGAAAAATTGAAGTGATTGAAATCATGACTGACCGAGGCAGTGG
CAAGAAAAGGGGCTTTGCCTTRGTAACCTTTGACGACCATGACTCCGTGGATAAGATTGTCAT
TCAGAAATACCATACTGTGAATGGCCACAACTGTGAAGTTAGAAAAGCCCTGTCAAAGCAAGA
GATGGCTAGTGCTTCATCCAGCCAAAGAGGTCGAAGTGGTTCTGGAAACTTTGGTGGTGGTCG
TGGAGGTGGTTTCGGTGGGAATGACAACTTCGGTCGTGGAGGAAACTTCAGTGGTCGTGGTYG
CTTTGGTGGCAGCCGTGGTGGTGGTGGATATGGTGGC’ ) ) as f;

Table 30. Results table

Column Data

PROTEIN_OFFSET 23

DNA_OFFSET 14

PROTEIN KLFVGALKDDHDEQSIRDYFQHFGNIVDINIVIDKET
GKKRGFAFVEFDDYDPVDKVVLQKQHQLNGKMVD
VKKALPKQNDQQGGGGGRGGPGGRAGGNRGNMGG
GNYGNQNGGGNWNNGGN

SIMILARITY K+FVG +K+D +E +RDYF+ +G I I I+ D+ +GKKRGFA+V
FDD+D VDK+V+QK H +NG +V+KAL KQ RG G
GN+GGG G G N+ GGN

TRANSLATED_DNA KIFVGGIKEDTEEHHLRDYFEQYGKIEVIEIMTDRGSGK
KRGFAxVTFDDHDSVDKIVIQKYHTVNGHNCEVRKAL
SKQEMASASSSQRGRSGS------
GNFGGGRGGGFGGNDNFGRGGN

DNA aagatatttgttggtggcattaaagaagacactgaagaacatcacctaagagat...

Related tasks:

v “Linking to GeneWise” on page 61

Related reference:

v “LSGeneWise user-defined function” on page 61

Chapter 2. Life sciences user-defined functions 63



Motifs user-defined functions

Motif user-defined functions match patterns in nucleotide or amino acid
sequences.

LSBarCode user-defined function

MM DB2LS.LSBarCode (input string sequence) MO

input string sequence
A valid character string representing an HSP alignment between two
sequence fragments. The character string representation must have a
data type of VARCHAR and an actual length that is no greater than
32672 bytes.

The schema name is DB2LS.

Use the LSBarCode user-defined function to use a sequence as input and
generate another sequence by replacing every character except spaces and
plus signs with the vertical bar symbol (|).

The result of the function is a variable character sequence representing a
barcode sequence.

Related reference:

v “LSBarCode user-defined function — example” on page 64
v “LSMultiMatch user-defined function” on page 66
v “LSMultiMatch3 user-defined function” on page 67

LSBarCode user-defined function — example

This example creates a barcode from a string sequence:
values db2ls.LSBarCode(

’MDY +G++L GN ++ +PASLTK+MT YVV +A+ + +I D+VTVG+DAWA NP ’)

The result of the above values statement is:
||| +|++| || ++ +||||||+|| ||| +|+ + +| |+||||+|||| ||

The next example shows a more realistic use of this function. Suppose that a
researcher running a BLAST search wants to return only HSP alignments that
contain fewer than 25% prolines among their perfect matches. This example
uses the function to compute the percentage of prolines (symbol ’P’) among
the perfect matches in an alignment returned by BLAST. Notice that this
example also invokes the LSMultiMatch3 user-defined function. The query
uses match function to find perfect matches. It is used in conjunction with the

64 Addendum to the Data Source Configuration Guide



LSBarCode function in this query because Blast does not always return a
sequence of bars (“|”) in an alignment. The following example shows this:
Query: MDYTTGQILTAGNEHQQRNPASLTKLMTGYVVDRAIDSHRITPDDIVTVGRDAWAKDNPV
Alignment: MDY +G++L GN ++ +PASLTK+MT YVV +A+ + +I D+VTVG+DAWA NP
Target: MDYASGKVLAEGNADEKLDPASLTKIMTSYVVGQALKADKIKLTDMVTVGKDAWATGNPA

To ensure that the output is aligned with the correct sequence of bars, use the
LSBarCode function. The function replaces all characters except spaces and
plus signs with a vertical bar.
SELECT BlastOutput.* , float( p )/ float( m ) AS percent_prolines
FROM
BlastOutput b,
table(SELECT COUNT(*) AS p FROM table(

db2ls.LSMultiMatch3(
b.HSP_Q_Seq, ’P’,
db2ls.LSBarCode(b.HSP_Midline), ’\|’,
b.HSP_H_Seq, ’P’)

) AS f
) AS y,

table(SELECT COUNT(*) AS m FROM table(
db2ls.LSMultiMatch3(

b.HSP_Q_Seq, ’.’,
db2ls.LSBarCode(b.HSP_Midline), ’\|’,
b.HSP_H_Seq, ’.’)

) AS f
) AS z

WHERE float(p) / float(m) < 0.25;

In this query, BlastOutput is actually a view over a Blast nickname. The query
uses the LSMultiMatch3 function to return the perfect matches on alignment.
The first usage returns the perfect matches for symbol “P”, the second one
returns all the perfect matches. A row from the result table show in Table 31.

Table 31. Sample results row

HSP_Q_SEQ HSP_H_SEQ HSP_INFO PERCENT_PROLINES

NIWDFMQGN... NIWDFMQGN... Identities = 80/80
(100%), Positives =
80/80 (100%), Gaps =
0/80 (0%)

+2.50000000000000E-002

The previous query was adapted from Extending traditional query-based
integration approaches for functional characterization of post-genomic
data. (2001) Barbara A Eckman, Anthony S Kosky and Leonardo A Laroco
Jr. Bioinformatics 17(7), 587-601.

Related reference:

v “LSMultiMatch3 user-defined function – example” on page 68

Chapter 2. Life sciences user-defined functions 65



v “LSBarCode user-defined function” on page 64

LSMultiMatch user-defined function

MM DB2LS.LSMultiMatch (input nucleotide or peptide sequence, pattern) MO

input nucleotide or peptide sequence
A valid character string representation describing a nucleotide or
peptide sequence. The character string representation must have a
data type of VARCHAR and an actual length that is no greater than
32672 bytes.

pattern
The pattern matching grammar specified by the Perl language. The
character string representation must have a data type of VARCHAR
and an actual length that is no greater than 32672 bytes.

The schema name is DB2LS.

Use the LSMultiMatch user-defined function to return a table for each match
that does not overlap in the input sequence. Each table consists of a start
position and the matching sequence fragment.

The result of the function is a table with two columns. The first column is an
integer representing the start position of a match of the pattern in the
sequence. The second column is the matching sequence fragment.

Related reference:

v “LSMultiMatch user-defined function - example” on page 66
v “LSBarCode user-defined function” on page 64
v “LSMultiMatch3 user-defined function” on page 67

LSMultiMatch user-defined function - example

This example looks for the position and the matching fragments for all the
non-overlapping matches taken from the input.
SELECT position, match FROM table

(LSMultiMatch(’match not and non but no match for no or none’,
’no[tn] ’)) as f

The query returns a table that is based on this select statement that shows the
results of the matches:

Table 32. Result of LSMultiMatch returning multiple rows

POSITION MATCH

7 not

66 Addendum to the Data Source Configuration Guide



Table 32. Result of LSMultiMatch returning multiple rows (continued)

POSITION MATCH

15 non

LSMultiMatch returns the position and the matched string for all matches.
The following example searches Entrez Nucleotide for sequence entries that
contain a certain motif. The query prints the sequence identifiers and the
matched sequences. The sub-patterns “.{0,9}” at the beginning and at the end
have to match up to nine characters before and after the sequence. The query
also prints these characters.
select SequenceKey, Position, Match from GBSeq,

table(db2ls.LSMultiMatch(Sequence, ’.{0,9}(ATG|CGC)ACGGGC.{0,9}’) )
as fmatch
WHERE entrez.contains(KeywordList,

’Na/K/2Cl cotransporter AND nkcc1 gene’) = 1;

The result of this query is as follows:

Table 33. Search Entrez data

SEQUENCEKEY POSITION MATCH

N02B59AE0.04DD4E84 1 TGCTTGGTGATGACGGGCTACCCCAAC

N02B59AE0.04DD4E84 91 GGCCATGTTCGCACGGGCTCCAGAAGG

N02B59AE0.04DC5EF4 1 TGCTTGGTGATGACGGGCTACCCCAAC

N02B59AE0.04DC5EF4 91 GGCCATGTTCGCACGGGCTCCAGAAGG

Related reference:

v “LSMultiMatch user-defined function” on page 66
v “LSBarCode user-defined function” on page 64
v “LSMultiMatch3 user-defined function” on page 67

LSMultiMatch3 user-defined function

MM DB2LS.LSMultiMatch3 (input string1, pattern1, input string2, pattern2, input string3, pattern3) MO

input strings
A valid character string representation describing a nucleotide or
peptide sequence, or an HSP_Midline string from a blast alignment.
The character string representation must have a data type of
VARCHAR and an actual length that is no greater than 32672 bytes.

pattern
The pattern matching grammar specified by the Perl language. The

Chapter 2. Life sciences user-defined functions 67



character string representation must have a data type of VARCHAR
and an actual length that is no greater than 32672 bytes.

The schema name is DB2LS.

Use the LSMultiMatch3 user-defined function to input three patterns and
three strings and return any positions where all three strings match their
respective patterns. You can use this user-defined function to perform a
pattern match on an alignment.

The result of the function is a table with four columns. The first column is an
integer representing the start position of a match of the pattern in all the
sequences. The function anchors all the strings together at the first position.
The second, third, and fourth columns are the matching sequence fragments.

Related reference:

v “LSMultiMatch3 user-defined function – example” on page 68
v “LSMultiMatch user-defined function” on page 66
v “LSBarCode user-defined function” on page 64

LSMultiMatch3 user-defined function – example

The following example uses the function to compute the percentage of a
particular amino-acid symbol among the perfect matches returned by Blast.
Notice that this example also invokes the LSBarCode user-defined function.
The query needs this because Blast does not always return a sequence of bars
(“|”) in an alignment. The following example illustrates this:
Query: MDYTTGQILTAGNEHQQRNPASLTKLMTGYVVDRAIDSHRITPDDIVTVGRDAWAKDNPV
Alignment: MDY +G++L GN ++ +PASLTK+MT YVV +A+ + +I D+VTVG+DAWA NP
Target: MDYASGKVLAEGNADEKLDPASLTKIMTSYVVGQALKADKIKLTDMVTVGKDAWATGNPA

To ensure that the output is aligned with the correct sequence of bars, use the
LSBarCode function to convert the sequence. The function replaces all
non-space and non-“+” characters with a vertical bar.
SELECT BlastOutput.* , float( p )/ float( m ) AS percent_prolines
FROM
BlastOutput b,
table(SELECT COUNT(*) AS p FROM table(

db2ls.LSMultiMatch3(
b.HSP_Q_Seq, ’P’,
db2ls.LSBarCode(b.HSP_Midline), ’\|’,
b.HSP_H_Seq, ’P’)

) AS f
) AS y,

table(SELECT COUNT(*) AS m FROM table(
db2ls.LSMultiMatch3(

b.HSP_Q_Seq, ’.’,
db2ls.LSBarCode(b.HSP_Midline), ’\|’,

68 Addendum to the Data Source Configuration Guide



b.HSP_H_Seq, ’.’)
) AS f

) AS z
WHERE float(p) / float(m) < 0.25;

In this query, BlastOutput is a view over a Blast select. The query uses the
LSMultiMatch3 function to return the perfect matches on alignment. The first
usage returns the perfect matches for symbol “P”, the second one returns all
the perfect matches. A row from the result table show in Table 34.

Table 34. Sample results row

HSP_Q_SEQ HSP_H_SEQ HSP_INFO PERCENT_PROLINES

NIWDFMQG... NIWDFMQG... Identities = 80/80
(100%), Positives =
80/80 (100%), Gaps
= 0/80 (0%)

+2.50000000000000E-
002

The previous query was adapted from Extending traditional query-based
integration approaches for functional characterization of post-genomic
data. (2001) Barbara A Eckman, Anthony S Kosky and Leonardo A Laroco
Jr. Bioinformatics 17(7), 587-601.

The following example looks for three separate patterns in three separate
string fragments:
SELECT position, match_1, match_2, match_3

FROM table(db2ls.LSMultiMatch3(’zaza’, ’a’, ’abab’,
’b’, ’bcbc’, ’c’)) as f

It returns the positions and the matching strings for all of the matches, as
shown in the following table:

Table 35. Result of a multi-match using three inputs

POSITION MATCH_1 MATCH_2 MATCH_3

2 a b c

4 a b c

The next example finds three separate patterns within three separate string
fragments:
SELECT position, match_1, match_2, match_3

FROM table
(LSMultiMatch3(’cbccbbcccbbbccccbbbbccccc’,’c{1,3}b{1,3}c{1,3}’,
’abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz’,
’.’,’0123456789012345678901234567890123456789’,’\d’)) as f

Chapter 2. Life sciences user-defined functions 69



The results are in the following table:

Table 36. Result of a multi-match using three inputs

POSITION MATCH_1 MATCH_2 MATCH_3

1 cbcc a 0

7 cccbbbccc g 6

Related reference:

v “LSBarCode user-defined function — example” on page 64
v “LSBarCode user-defined function” on page 64
v “LSMultiMatch3 user-defined function” on page 67

Reverse user-defined functions

Reverse user-defined functions reverse a nucleotide or amino acid sequence.

LSRevComp user-defined function

MM DB2LS.LSRevComp (input nucleotide sequence) MO

input nucleotide sequence
A valid character string representation describing a nucleotide
sequence. The sequence can contain IUPAC ambiguity codes. A
character string representation must have a data type of VARCHAR
and an actual length that is no greater than 32672 bytes.

The schema name is DB2LS.

The result of the function is a character string with a data type of VARCHAR
and an actual length that is not greater than 32672 bytes representing the
reverse complement of the nucleotide sequence.

Related reference:

v “LSRevComp user-defined function—example” on page 70
v “LSRevNuc user-defined function” on page 72
v “LSRevPep user-defined function” on page 73

LSRevComp user-defined function—example

You can use the LSRevComp function in an SQL statement wherever you
would use any built-in function that accepts a nucleotide sequence. For
example:
SELECT DB2LS.LSRevComp(:NucSeq) FROM SYSDUMMY1;

70 Addendum to the Data Source Configuration Guide



This example uses the function to return the reverse complement of the input
sequence that comes from a host variable.

If you use an invalid string, or invalid data type, you get the following error
message:
SQL0443N Routine "DB2LS.LSREVCOMP" (specific name "LSREVCOMP") has returned
an error SQLSTATE with diagnostic text "Sequence not valid". SQLSTATE=38608

An exception is raised if the input alphabet is not correct.

The following example shows how the LSRevComp user-defined function
works in a query:
SELECT HSP_H_Seq, db2ls.LSRevComp(HSP_H_Seq) as REV_HSP_H_Seq
FROM BlastN
WHERE BlastSeq=’ccgctagtattggtcaatcttttgatatccaccgaa’

The results of the query are shown below:
HSP_H_SEQ REV_HSP_H_SEQ
------------------------------ ----------------------------

AGTATTGGTCAATCTTTTGAT ATCAAAAGATTGACCAATACT

TGGTCAATCTTTTGATA TATCAAAAGATTGACCA

TTGGCCAATCTTTTGATATCC GGATATCAAAAGATTGGCCAA

TCAATCTTTTGATATCC GGATATCAAAAGATTGA

GGATATCAAAAGATTGA TCAATCTTTTGATATCC

5 record(s) selected.

You can use the reverse function along with other life sciences user-defined
functions to translate the reverse complement of a nucleotide sequence, as in
the following example:
values db2ls.LSNuc2Pep(

db2ls.LSRevComp(’TTTTTCTTATTGTCTTCCTCATCGTATTTCTTATGTTGCTGATGT’))

The query returns the following:
TSAT*EIR*GRQ*EK

Related reference:

v “LSRevComp user-defined function” on page 70

Chapter 2. Life sciences user-defined functions 71



LSRevNuc user-defined function

MM DB2LS.LSRevNuc (input nucleotide sequence) MO

input nucleotide sequence
A valid character string representation describing a nucleotide
sequence. A character string representation must have a data type of
VARCHAR and an actual length that is no greater than 32672 bytes.
The nucleotide sequence must be part or all of the DNA alphabet.

The schema name is DB2LS.

The result of the function is a character string with a data type of VARCHAR
and an actual length that is not greater than 32672 bytes representing the
reverse order of the nucleotide sequence.

Related reference:

v “LSRevNuc user-defined function - example” on page 72
v “LSRevComp user-defined function” on page 70
v “LSRevPep user-defined function” on page 73

LSRevNuc user-defined function - example

You can use the LSRevNuc function in an SQL statement wherever you would
use any built-in function that accepts a nucleotide sequence. For example:
SELECT DB2LS.LSRevNuc(:NucSeq) FROM SYSDUMMY1;

This example uses the function to reverse input data that comes from a host
variable.

If you use an invalid string, or invalid data type, you get the following error
message:
SQL0443N Routine "DB2LS.LSREVNUC" (specific name "LSREVNUC") has returned
an error SQLSTATE with diagnostic text "Sequence not valid". SQLSTATE=38608

The following example shows the use of the LSRevNuc user-defined function
in a query.
SELECT HSP_H_Seq, db2ls.LSRevNuc(HSP_H_Seq) as REV_HSP_H_Seq
FROM BlastN
WHERE BlastSeq=’gtaatacgtagggggctagcgcgggcaaactgaagataaagc’

The following results table shows the reversed nucleotide sequences the query
returns:
HSP_H_SEQ REV_HSP_H_SEQ

-------------------------------------------------- --------------------------

72 Addendum to the Data Source Configuration Guide



CGCGGGCAAACTGAAGATAAAGC CGAAATAGAAGTCAAACGGGCGC

GCGCTAGCCCCCTACGTATTAC CATTATGCATCCCCCGATCGCG

GTAATACGTAGGGGGCTAGCG GCGATCGGGGGATGCATAATG

GTAATACGTAGGGGGCTAGCG GCGATCGGGGGATGCATAATG

GTAATACGTAGGGGGCTAGCG GCGATCGGGGGATGCATAATG

5 record(s) selected.

Related reference:

v “LSRevNuc user-defined function” on page 72

LSRevPep user-defined function

MM DB2LS.LSRevPep (input peptide sequence) MO

input peptide sequence
A valid character string representation describing a peptide sequence.
A character string representation must have a data type of VARCHAR
and an actual length that is no greater than 32672 bytes. The input
sequence must be part of the protein alphabet.

The schema name is DB2LS.

The result of the function is a character string with a data type of VARCHAR
and an actual length that is not greater than 32672 bytes representing the
reverse order of the peptide sequence.

Related reference:

v “LSRevPep user-defined function - example” on page 73
v “LSRevComp user-defined function” on page 70
v “LSRevNuc user-defined function” on page 72

LSRevPep user-defined function - example

You can use the LSRevPep function in an SQL statement wherever you would
use any built-in function that accepts a peptide sequence. For example:
SELECT DB2LS.LSRevPep(:NucSeq) FROM SYSDUMMY1;

This example uses the function to reverse input data that comes from a host
variable.

Chapter 2. Life sciences user-defined functions 73



If you use an invalid string, or invalid data type, you get the following error
message:
SQL0443N Routine "DB2LS.LSREVPEP" (specific name "LSREVPEP") has returned
an error SQLSTATE with diagnostic text "Sequence not valid". SQLSTATE=38608

The following example shows how the LSRevPep user-defined function is
used in a query:
SELECT HSP_H_Seq, db2ls.LSRevPep(HSP_H_Seq) as REV_HSP_H_Seq
FROM BlastP
WHERE BlastSeq=’MLCEIECRALSTAHTRLIHDFEPRDALTYLEGKNIFTEDH’

The following table shows the reversed peptide sequences the query returns.
HSP_H_SEQ REV_HSP_H_SEQ
----------------------------------- -----------------------------------

MLCEIECRALSTAHTRLIHDFEPRDALTYL... HDETFINKGELYTLADRPEFDHILRTHATS...

RVVSTEHTRLVTDAYPEFSISFTATKN NKTATFSISFEPYADTVLRTHETSVVR

STAHIRVLRDMVPGDEITCFYGSEFF FFESGYFCTIEDGPVMDRLVRIHATS

AHTRRCPDHEPRGVITYL LYTIVGRPEHDPCRRTHA

4 record(s) selected.

Related reference:

v “LSRevPep user-defined function” on page 73

Translate

The translation user-defined functions convert a nucleotide sequence into a
peptide sequence.

LSNuc2Pep user-defined function

MM DB2LS.LSNuc2Pep (input nucleotide sequence )
,filepath to external translation table

MO

input nucleotide sequence
A valid character string representation describing a nucleotide
sequence. A character string representation must have a data type of
VARCHAR and an actual length that is no greater than 32672 bytes.

filepath to external translation table
If you use a customized translation table, include the file path
information to find the translation table. The string value of the path
must be no greater than 255 characters.

74 Addendum to the Data Source Configuration Guide



The schema name is DB2LS.

The result of the function is a character string with a data type of VARCHAR
and an actual length that is not greater than 10890 bytes representing the
peptide sequence.

The input is a nucleotide sequence using the IUB character set. The functions
assume that the first codon begins at the first character of the nucleotide
sequence. If the first codon does not begin at the first character of the
nucleotide sequence, use a SUBSTR function on the input sequence.

The result of the function is a peptide sequence, using the standard amino
acid symbols.

The function:
v Excises spaces in input sequences.
v Ignores extraneous nucleotides outside of a reading frame.
v Returns null output if you input a null nucleotide sequence.

Related reference:

v “LSNuc2Pep user-defined function – example” on page 75
v “LSTransAllFrames user-defined function” on page 76

LSNuc2Pep user-defined function – example

Assume that you want to translate your nucleotide sequence data into a
peptide sequence. This example assumes that the first codon begins at the first
character of the nucleotide sequence.

You can invoke the function with a values statement. The single input is a
nucleotide sequence, as in the following example:
values db2ls.LSNuc2Pep(’TTTTTCTTATTGTCTTCCTCATCGTATTTCTTATGTTGCTGATGT’)

The result of the above statement is a peptide sequence using the standard
amino acid symbols:
FFLLSSSSYFLCC*C

If you want the translation in the +2 reading frame, then use the following
example:
values LSNuc2Pep(SUBSTR(’TTTTTCTTATTGTCTTCCTCATCGTATTTCTTATGTTGCTGATGT’,2))

The integer in the statement indicates the starting position of the search for
the codon.

Here is an example of using this function as a predicate in a query.

Chapter 2. Life sciences user-defined functions 75



SELECT *
FROM proteindata
WHERE peptideseq=DB2LS.LSNuc2Pep(’TTTTTCTTATTGTCTTCCTCATCG

TATTTCTTATGTTGCTGATGT’);

The result is shown in Table 37.

Table 37. Results using the LSNuc2Pep function as a predicate

ID PROTEINNAME PEPTIDESEQ

1 proteinA FSYCLPHRISYVAD

The following example translates a nucleotide sequence into a peptide
sequence using an external translation table. The first parameter is the
nucleotide sequence, and the second parameter is the path to the external
translation table.
values db2ls.LSNuc2Pep(’TTTTCTTATTGTCTTCCTCATCGTATTTCTTATGTTGCTGATGT’,

’C:\translation.txt’)

The result of the above statement using this particular translation table is the
following string:
FSYCLPHRISYVAD

The following example combines two of the user-defined functions to
demonstrate the additional uses of the functions:
values DB2LS.LSNuc2Pep(DB2LS.LSRevCompNuc(’TTT..’)

Notice that the previous example returns the same result as the following
query:
select * from table (DB2LS.LSTransAllFrames (’TTT..’)) as t
where t.readframe = -1

Related reference:

v “LSRevNuc user-defined function - example” on page 72
v “LSTransAllFrames user-defined function - example” on page 77
v “LSNuc2Pep user-defined function” on page 74

LSTransAllFrames user-defined function

MM DB2LS.LSTransAllFrames (input nucleotide sequence )
,filepath to external translation table

MO

input nucleotide sequence
A valid character string representation describing a nucleotide
sequence. The input sequence can contain IUPAC ambiguity codes. A
character string representation must have a data type of VARCHAR
and an actual length that is no greater than 32672 bytes.

76 Addendum to the Data Source Configuration Guide



filepath to external translation table
If you use a customized translation table, include the file path
information to find the translation table. The string value of the path
must be no greater than 255 characters.

The schema name is DB2LS.

Use the LSTransAllFrames user-defined function to produce a set of peptide
sequences from a given nucleotide sequence. These peptide sequences
represent possible translations of the input nucleotide sequence, in each of 6
frames. This function is useful when the input contains errors or the reading
frame is not known.

The result of the function is a table with two columns. The first column is
labelled READFRAME and represents the frame that is used for the
translation. This column has an integer value that represents the start position
of translation. A negative integer indicates a translation of the opposite strand.
The second column, called PEPTIDE, is a character string with a data type of
VARCHAR and an actual length that is not greater than 10890 bytes
representing the peptide sequence.

The function:
v Excises spaces in input sequences.
v Ignores extraneous nucleotides outside of a reading frame.
v Returns null output if you input a null nucleotide sequence.

Related reference:

v “LSTransAllFrames user-defined function - example” on page 77
v “LSNuc2Pep user-defined function” on page 74

LSTransAllFrames user-defined function - example

Assume that you want to translate a nucleotide sequence in all six reading
frames using the built-in translation table. The following example shows how
to do this:
SELECT * FROM table(DB2LS.LSTransAllFrames(’TTTTTCTTATTGTCTTCCTCATCG

TATTTCTTATGTTGCTGATGT’)) as t;

The query returns the peptides a table, as in the following example:

Table 38. Result of translating a nucleotide sequence

READFRAME PEPTIDE

1 FFLLSSSSYFLCC*C

2 FSYCLPHRISYVAD

Chapter 2. Life sciences user-defined functions 77



Table 38. Result of translating a nucleotide sequence (continued)

READFRAME PEPTIDE

3 FLIVFLIVFLMLLM

–1 TSAT*EIR*GRQ*EK

–2 HQQHKKYDEEDNKK

–3 ISNIRNTMRKTIRK

The next example uses a customized translation table to translate a nucleotide
sequence in all six reading frames.
SELECT * FROM table

(DB2LS.LSTransAllFrames
(’TTTTTCTTATTGTCTTCCTCATCGTATTTCTTATGTTGCTGATGT’,
’C:\msvs6\MyProjects\alin_udf\test\files\translation.txt’)) as t;

The resulting table is the same as the previous example because the input
sequence is the same and translation table is the same as the one built into the
function.

The following example combines two of the user-defined functions to
demonstrate the additional uses of the functions:
values DB2LS.LSNuc2Pep(DB2LS.LSRevCompNuc(’TTT..’)

Notice that the previous example returns the same result as the following
query:
select * from table (DB2LS.LSTransAllFrames (’TTT..’)) as t
where t.readframe = -1

The following example selects a specific reading frame from the output
produced by the LSTransAllFrames function.
SELECT * FROM

TABLE(db2ls.LSTransAllFrames(’TTTTTCTTATTGTCTTCCTCATCG
TATTTCTTATGTTGCTGATGT’)) AS t

WHERE t.readframe=-2

The result of this query is:

Table 39. Readframe function usage

READFRAME PEPTIDE

–2 HQQHKKYDEEDNKK

Related reference:

v “LSNuc2Pep user-defined function – example” on page 75

78 Addendum to the Data Source Configuration Guide



v “LSRevNuc user-defined function - example” on page 72
v “LSTransAllFrames user-defined function” on page 76

Codon frequency table format

A codon frequency table shows the frequency to which the amino acids are
back translated into a particular codon. The LSPep2ProbNuc user-defined
function uses the codon frequency table to determine a nucleotide sequence
from a given peptide sequence.

The following list describes the format of the codon frequency table file:
v Two adjacent periods mark the beginning of the table. Any text that comes

before is commentary. The two adjacent periods are required even if there is
no commentary before them.

v The table contains the following columns:
1. Am-Acid: a three letter code for the amino acid symbol.
2. Codon: the codon for that amino acid symbol.
3. Number: the number of occurrences of that codon in the genes from

which the table is compiled.
4. x/1000: the expected number of occurrences of the amino acid, codon

pair per 1000 translations in genes.
5. Fraction: the fraction of occurrences of the codon in its synonymous

codon family.

The product provides sample codon frequency tables in the
sqllib/samples/lifesci/ls_udfs subdirectory.

Related reference:

v “LSPep2ProbNuc user-defined function” on page 46
v “Codon frequency table - example” on page 79

Codon frequency table - example

Figure 2 on page 80 shows the format of a sample codon frequency table.

Chapter 2. Life sciences user-defined functions 79



Related reference:

v “LSPep2ProbNuc user-defined function” on page 46
v “Codon frequency table format” on page 79

Translation table format

This topic describes the format of a translation table that are used by the
LSPep2AmbNuc, LSTransAllFrames, and LSNuc2Pep life sciences user-defined
functions.

The following list describes the format of the codon frequency table file:
v Two adjacent periods mark the beginning of the table. Any text that comes

before is commentary.
v Each line of the table consists of a single-letter amino acid symbol, the

three-letter amino acid name, the unambiguous codons, an exclamation
mark, and the ambiguous codons. White space separates each word in the
line.

v Each codon and amino acid symbol must appear only once in the file.
v Stop codons translate to the symbol ’*’.
v Codons made up of lowercase letters are start codons.
v All other codons are uppercase.

Am-Acid Codon Number x/1000 Fraction ..

Gly GGG 198.00 18.34 0.23
Gly GGA 71.00 6.58 0.08
Gly GGT 66.00 6.11 0.08
Gly GGC 527.00 48.81 0.61

Glu GAG 534.00 49.46 0.88
Glu GAA 71.00 6.58 0.12
Asp GAT 31.00 2.87 0.06
Asp GAC 481.00 44.55 0.94

Val GTG 396.00 36.68 0.47
Val GTA 22.00 2.04 0.03
Val GTT 44.00 4.08 0.05
Val GTC 384.00 35.57 0.45

Ala GCG 446.00 41.31 0.39
Ala GCA 71.00 6.58 0.06
Ala GCT 116.00 10.74 0.10
Ala GCC 503.00 46.59 0.44
... (truncated)

Figure 2. Sample codon frequency table

80 Addendum to the Data Source Configuration Guide



v Codons that do not have a translation to a corresponding amino acid
symbol are translated to the symbol ’X’.

The product provides sample translation tables in the
sqllib/samples/lifesci/ls_udfs subdirectory.

Translation table - example

Figure 3 shows the format of a sample translation table.

Standard Translation Table

Symbol 3-letter Codons ! IUPAC ..

A Ala GCT GCC GCA GCG ! GCX
B Asx ! RAY
C Cys TGT TGC ! TGY
D Asp GAT GAC ! GAY
E Glu GAA GAG ! GAR
F Phe TTT TTC ! TTY
G Gly GGT GGC GGA GGG ! GGX
H His CAT CAC ! CAY
I Ile ATT ATC ATA ! ATH
K Lys AAA AAG ! AAR
L Leu TTG TTA CTT CTC CTA CTG ! TTR CTX YTR ; YTX
M Met atg ! ATG
N Asn AAT AAC ! AAY
P Pro CCT CCC CCA CCG ! CCX
Q Gln CAA CAG ! CAR
R Arg CGT CGC CGA CGG AGA AGG ! CGX AGR MGR ; MGX
S Ser TCT TCC TCA TCG AGT AGC ! TCX AGY ; WSX
T Thr ACT ACC ACA ACG ! ACX
V Val GTT GTC GTA GTG ! GTX
W Trp TGG ! TGG
X Xxx ! XXX
Y Tyr TAT TAC ! TAY
Z Glx ! SAR
* End TAA TAG TGA ! TAR TRA ; TRR

Figure 3. Sample translation table

Chapter 2. Life sciences user-defined functions 81



82 Addendum to the Data Source Configuration Guide



Accessibility

Users with physical disabilities, such as restricted mobility or limited vision,
can use software products successfully by using accessibility features. These
are the major accessibility features in DB2 Information Integrator Version 8:
v You can operate all features by using the keyboard instead of the mouse.
v You can customize the size and color of your fonts.
v You can receive either visual or audio alert cues.
v DB2 supports accessibility applications that use the Java™ Accessibility API.
v DB2 documentation is provided in an accessible format.

Keyboard input and navigation

You can operate the DB2 database tools, such as Control Center, Data
Warehouse Center, and Replication Center, by using only the keyboard. You
can use keys or key combinations instead of a mouse to perform most
operations.

In UNIX-based systems, the position of the keyboard focus is highlighted.
This highlighting indicates which area of the window is active and where
your keystrokes will have an effect.

Accessible display

The DB2 database tools have features that enhance the user interface and
improve accessibility for users with low vision. These accessibility
enhancements include support for customizable font properties.

Font settings
For the DB2 database tools, you can use the Tools Settings notebook to select
the color, size, and font for the text in menus and windows.

Nondependence on color
You do not need to distinguish between colors to use any of the functions in
this product.

Alternative alert cues

You can specify whether you want to receive alerts through audio or visual
cues, using the Tools Settings notebook.

© Copyright IBM Corp. 2003 83



Compatibility with assistive technologies

The DB2 Information Integrator graphical interface supports the Java
Accessibility API, enabling the use of screen readers and other assistive
technologies that are used by people with disabilities.

Accessible documentation

Documentation for the DB2 family of products is available in HTML format.
You can view documentation according to the display preferences set in your
browser. You can use screen readers and other assistive technologies.

84 Addendum to the Data Source Configuration Guide



Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in all countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country/region or send
inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country/region where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions; therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will

© Copyright IBM Corp. 2003 85



be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product, and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information that has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems, and there is no guarantee that these
measurements will be the same on generally available systems. Furthermore,
some measurements may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for
their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements, or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility, or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

86 Addendum to the Data Source Configuration Guide



All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
include the names of individuals, companies, brands, and products. All of
these names are fictitious, and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs, in source
language, which illustrate programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM
Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_. All
rights reserved.

Trademarks

The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both:

IBM
AIX
DB2
Domino
Informix
Lotus
Lotus Notes
QuickPlace
WebSphere

The following terms are trademarks or registered trademarks of other
companies:

Notices 87



Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and
other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States, other countries, or
both.

Other company, product or service names may be trademarks or service
marks of others.

88 Addendum to the Data Source Configuration Guide



Index

B
BioRS

adding to a federated system
CREATE NICKNAME

statement 35
CREATE SERVER

statement 37
CREATE USER MAPPING

statement 6
CREATE USER MAPPING

steement 38
nickname examples 9
registering custom

functions 30
custom functions

registering 3
using 14

example queries 19
nicknames, altering 30
statistical information,

maintaining 26

C
codon frequency table 79
CREATE NICKNAME statement

BioRS 9, 35
CREATE SERVER statement

BioRS 37
CREATE USER MAPPING statement

BioRS 6, 38
custom functions

BioRS 3, 14, 30

G
GeneWise 61, 63

L
life sciences user-defined functions

list 39
registering 40
removing 41

LSBarCode user-defined
function 64

LSDeflineParse user-defined
function 56

LSDeflineParse user-defined
functions 49

LSGeneWise user-defined
function 61, 63

LSMultiMatch user-defined
function 66

LSMultiMatch3 user-defined
function 67, 68

LSNuc2Pep user-defined
function 74, 75

LSPatternMatch user-defined
function 56, 57

LSPep2AmbNuc user-defined
function 42, 44, 45

LSPep2ProbNuc user-defined
function 46, 47, 48

LSPrositePattern user-defined
function 59

LSRevComp user-defined
function 70

LSRevNuc user-defined function 72
LSRevPep user-defined function 73,

76, 77

R
Regular expression support 60

S
samples

queries
BioRS 19

T
translation table 80, 81

U
UDFs (user-defined functions)

life sciences 39
user-defined functions (UDFs)

life sciences 39

© Copyright IBM Corp. 2003 89



90 Addendum to the Data Source Configuration Guide



Contacting IBM

To contact IBM in the United States or Canada, call one of the following
numbers:
v For customer service: 1-800-IBM-SERV (1-800-426-7378)
v For DB2 marketing and sales: 1-800-IBM-4YOU (1-800-426-4968)

To learn about available service options, call one of the following numbers:
v In the United States: 1-888-426-4343
v In Canada: 1-800-465-9600

To locate an IBM office in your country or region, see the IBM Directory of
Worldwide Contacts on the Web at www.ibm.com/planetwide.

Product information

Information about DB2 Information Integrator is available by telephone or on
the Web.

If you live in the United States, you can call one of the following numbers:
v To order products or to obtain general information: 1-800-IBM-CALL

(1-800-426-2255)
v To order publications: 1-800-879-2755

On the Web, go to www.ibm.com/software/data/integration. This site
contains the latest information on the technical library, ordering books, client
downloads, newsgroups, fix packs, news, and links to Web resources.

To locate an IBM office in your country or region, see the IBM Directory of
Worldwide Contacts on the Web at www.ibm.com/planetwide.

Comments on the documentation

Your feedback helps IBM to provide quality information. Please send any
comments that you have about this book or other DB2 Information Integrator
documentation. You can use any of the following methods to provide
comments:
v Send your comments using the online readers’ comment form at

www.ibm.com/software/data/rcf.
v Send your comments by electronic mail (e-mail) to comments@us.ibm.com.

Be sure to include the name of the product, the version number of the

© Copyright IBM Corp. 2003 91

http://www.ibm.com/planetwide
http://www.ibm.com/planetwide


product, and the name and part number of the book (if applicable). If you
are commenting on specific text, please include the location of the text (for
example, a title, a table number, or a page number).

92 Addendum to the Data Source Configuration Guide





����

Printed in U.S.A.


	Contents
	Chapter 1. Configuring access to BioRS data sources
	What is BioRS?
	Adding BioRS to a federated system
	Registering custom functions for the BioRS wrapper
	Registering the BioRS wrapper
	Setting the DB2_DJ_COMM profile variable for the BioRS wrapper
	Registering the server for a BioRS data source
	Registering user mappings for BioRS data sources
	Registering nicknames for BioRS data sources
	CREATE NICKNAME statement - Examples for BioRS wrapper
	Updating BioRS column cardinality statistics
	Guidelines for optimizing BioRS wrapper performance
	Custom functions and BioRS queries
	Equijoin predicates for the BioRS wrapper
	BioRS wrapper - Example queries
	BioRS statistical information
	Determining BioRS databank cardinality statistics
	Updating BioRS nickname cardinality statistics
	Updating BioRS _ID_ column cardinality
	The BioRS AllText element
	Considerations for altering nicknames - BioRS wrapper
	Custom function table - BioRS wrapper
	Messages for the BioRS wrapper
	CREATE NICKNAME statement syntax - BioRS wrapper
	CREATE SERVER statement options - BioRS wrapper
	CREATE USER MAPPING statement options - BioRS wrapper

	Chapter 2. Life sciences user-defined functions
	Life sciences user-defined functions - overview
	Life sciences user-defined functions by functional category
	Registering life sciences user-defined functions
	Removing life sciences user-defined functions
	Back translation user-defined functions
	LSPep2AmbNuc user-defined function
	LSPep2AmbNuc user-defined function - example
	LSPep2AmbNuc user-defined function - error messages
	LSPep2ProbNuc user-defined function
	LSPep2ProbNuc user-defined function - example
	LSPep2ProbNuc user-defined function - error messages

	Defline parsing user-defined functions
	LSDeflineParse user-defined functions
	LSDeflineParse user-defined function — examples

	Generalized pattern matching user-defined functions
	LSPatternMatch user-defined function
	LSPatternMatch user-defined function – example
	LSPrositePattern user-defined function
	LSPrositePattern user-defined function - example
	Regular expression support

	GeneWise user-defined functions
	Linking to GeneWise
	LSGeneWise user-defined function
	LSGeneWise user-defined function – example

	Motifs user-defined functions
	LSBarCode user-defined function
	LSBarCode user-defined function — example
	LSMultiMatch user-defined function
	LSMultiMatch user-defined function - example
	LSMultiMatch3 user-defined function
	LSMultiMatch3 user-defined function – example

	Reverse user-defined functions
	LSRevComp user-defined function
	LSRevComp user-defined function—example
	LSRevNuc user-defined function
	LSRevNuc user-defined function - example
	LSRevPep user-defined function
	LSRevPep user-defined function - example

	Translate
	LSNuc2Pep user-defined function
	LSNuc2Pep user-defined function – example
	LSTransAllFrames user-defined function
	LSTransAllFrames user-defined function - example

	Codon frequency table format
	Codon frequency table - example
	Translation table format
	Translation table - example

	Accessibility
	Keyboard input and navigation
	Accessible display
	Font settings
	Nondependence on color

	Alternative alert cues
	Compatibility with assistive technologies
	Accessible documentation

	Notices
	Trademarks

	Index
	Contacting IBM
	Product information
	Comments on the documentation


