
IBM solidDB
Version 7.0

In-Memory Database User Guide

SC27-3845-05

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 41.

First edition, fifth revision

This edition applies to V7.0 Fix Pack 8 of IBM solidDB (product number 5724-V17) and to all subsequent releases
and modifications until otherwise indicated in new editions.

© Oy IBM Finland Ab 1993, 2013

Contents

Tables v

Summary of changes vii

About this manual ix
Typographic conventions ix
Syntax notation conventions x

1 Overview of solidDB in-memory
features 1
1.1 In-memory versus disk-based tables 1
1.2 Types of in-memory tables 2

1.2.1 Persistent in-memory tables 2
1.2.2 Non-persistent in-memory tables 2
1.2.3 Table types and referential integrity 6

1.3 Considerations for developing applications with
in-memory tables 7

1.3.1 Performance and in-memory tables 7
1.3.2 Physical memory and virtual memory . . . 8
1.3.3 Transaction isolation limitations with
in-memory tables 8
1.3.4 Shared memory access and linked library
access. 9
1.3.5 HotStandby and in-memory tables 9

2 Working with in-memory tables . . . 11
2.1 How to decide which tables to designate as
in-memory tables 11
2.2 Creating in-memory and disk-based tables . . . 12
2.3 Creating temporary and transient tables. . . . 12
2.4 Changing a table from in-memory to disk-based
or vice-versa 13

3 Configuring in-memory database . . 15
3.1 Configuration parameters 15

3.1.1 General section 15
3.1.2 MME section 17

3.2 Memory consumption. 20
3.2.1 Monitoring memory consumption 20
3.2.2 Controlling memory consumption 21

Appendix A. Algorithm for choosing
which tables to store in memory . . . 27

Appendix B. Calculating maximum
BLOB size 29
B.1 Purpose 29
B.2 Background 29
B.3 Calculating 30

Appendix C. Calculating storage
requirements 33
C.1 Calculating storage requirements for disk-based
tables 33
C.2 Calculating storage requirements for in-memory
tables 35
C.3 Column sizes against column type 37
C.4 Measuring memory consumption 38

Index 39

Notices 41

iii

iv IBM solidDB: In-Memory Database User Guide

Tables

1. Typographic conventions ix
2. Syntax notation conventions x
3. MME related parameters in the [General]

section 15
4. MME parameters 17

5. Calculating the space available for BLOB data 30
6. Number of bytes required to store values 31
7. Header bytes 34
8. Column sizes against column type 37

v

vi IBM solidDB: In-Memory Database User Guide

Summary of changes

Changes for revision 05
v Editorial corrections.

Changes for revision 04
v Editorial corrections.

Changes for revision 03
v Editorial corrections.

Changes for revision 02
v Information related to concurrency control updated in section Persistent

in-memory tables.

Changes for revision 01
v Editorial corrections.

vii

viii IBM solidDB: In-Memory Database User Guide

About this manual

IBM® solidDB® in-memory database allows you to choose the optimal balance of
maximum performance and the ability to handle large volumes of data by
providing a unique dual-engine Database Management System (DBMS)
architecture. Inside the database server, there are two engines: a main memory
engine (MME) for fastest possible access to performance-critical data and a
traditional on-disk engine for efficiently handling virtually any volume of data.

The solidDB main memory engine is built on solidDB disk-based engine and
solidDB capabilities, which means that solidDB main memory engine inherits all
functionality of these products. The solidDB main memory engine can be used in
embedded systems, requiring virtually no administration or maintenance. You can
make solidDB main memory engine suitable for highly available systems by
deploying solidDB as a High Availability configuration. You can also deploy the
Advanced Replication component, which enables multiple solidDB main memory
engine and solidDB disk-based engine servers to share and synchronize data with
each other.

This guide introduces you to the features that allow you to optimize your database
server's performance by using in-memory database technology.

This guide assumes the reader has general knowledge of relational database
management systems and familiarity with SQL. This guide also assumes that the
reader has basic familiarity with the solidDB product family. You should read IBM
solidDB Administrator Guide prior to reading this guide. If you are not already
familiar with relational databases, you should also read the IBM solidDB Getting
Started Guide and IBM solidDB SQL Guide first.

Typographic conventions
solidDB documentation uses the following typographic conventions:

Table 1. Typographic conventions

Format Used for

Database table This font is used for all ordinary text.

NOT NULL Uppercase letters on this font indicate SQL keywords and
macro names.

solid.ini These fonts indicate file names and path expressions.

SET SYNC MASTER YES;
COMMIT WORK; This font is used for program code and program output.

Example SQL statements also use this font.

run.sh This font is used for sample command lines.

TRIG_COUNT() This font is used for function names.

java.sql.Connection This font is used for interface names.

ix

Table 1. Typographic conventions (continued)

Format Used for

LockHashSize This font is used for parameter names, function arguments,
and Windows registry entries.

argument Words emphasized like this indicate information that the
user or the application must provide.

Administrator Guide This style is used for references to other documents, or
chapters in the same document. New terms and emphasized
issues are also written like this.

File path presentation Unless otherwise indicated, file paths are presented in the
UNIX format. The slash (/) character represents the
installation root directory.

Operating systems If documentation contains differences between operating
systems, the UNIX format is mentioned first. The Microsoft
Windows format is mentioned in parentheses after the
UNIX format. Other operating systems are separately
mentioned. There may also be different chapters for
different operating systems.

Syntax notation conventions
solidDB documentation uses the following syntax notation conventions:

Table 2. Syntax notation conventions

Format Used for

INSERT INTO table_name
Syntax descriptions are on this font. Replaceable sections are
on this font.

solid.ini This font indicates file names and path expressions.

[] Square brackets indicate optional items; if in bold text,
brackets must be included in the syntax.

| A vertical bar separates two mutually exclusive choices in a
syntax line.

{ } Curly brackets delimit a set of mutually exclusive choices in
a syntax line; if in bold text, braces must be included in the
syntax.

... An ellipsis indicates that arguments can be repeated several
times.

.

.

.

A column of three dots indicates continuation of previous
lines of code.

x IBM solidDB: In-Memory Database User Guide

1 Overview of solidDB in-memory features

The solidDB main memory engine combines the high performance of in-memory
tables along with the nearly unlimited capacity of disk-based tables. Pure
in-memory databases are fast, but strictly limited by the size of memory. Pure
disk-based databases allow nearly unlimited amounts of storage, but their
performance is dominated by disk access. Even if the computer has enough
memory to store the entire database in memory buffers, database servers designed
for disk-based tables can be slow because the data structures that are optimal for
disk-based tables are far from being optimal for in-memory tables.

The solidDB solution is to provide a single database server that contains two
optimized servers inside it: one server is optimized for disk-based access and the
other is optimized for in-memory access. Both servers coexist inside the same
process, and a single SQL statement may access data from both engines.

1.1 In-memory versus disk-based tables
If a table is an in-memory table (M-table), the entire contents of the table are stored
in memory so that the data can be accessed as quickly as possible. If a table is
disk-based (D-table), the data is stored primarily on disk, and usually the server
copies only small pieces of data at a time into memory.

From application design perspective, in-memory tables and disk-based tables are
the same in most respects.
v Both table types provide full persistence of data unless specified differently.
v You can run the same types of queries on each of them.
v You can combine disk-based and in-memory tables in the same SQL query or

transaction.
v Both table types can be used with indexes, triggers, stored procedures, and other

common database objects.
v Both table types allow constraints, including primary key and foreign key

constraints, although there are some limitations on foreign key constraints with
non-persistent in-memory tables.

The main difference between M-tables and D-tables is performance. M-tables
provide better performance; they can provide the same durability and
recoverability as D-tables. For example, read operations on M-tables do not wait
for disk access, even when the system is engaged in activities such as
checkpointing and transaction logging.

With solidDB, you can decide which tables are in-memory tables and which tables
are disk-based tables. For example, you can put heavily used tables in main
memory so that they can be accessed more quickly. If you have enough memory,
you can put all of your tables in main memory.

1

1.2 Types of in-memory tables
There are two basic types of in-memory tables: persistent tables and non-persistent
tables. Persistent tables provide recoverability of data; non-persistent tables provide
fast access.

Disk-based tables are always persistent tables.

1.2.1 Persistent in-memory tables
Persistent in-memory tables persist indefinitely. Although client queries access the
copy of the data in memory, the server stores the persistent in-memory tables on
disk when it shuts down, and therefore the data is available each time that the
server starts. Persistent in-memory tables also use transaction logging; if the server
is shut down unexpectedly (for example, due to a power failure), the server has a
record of the transactions that have occurred and can update the tables to ensure
that they have all the data from all the committed transactions. As with disk-based
tables, data in persistent in-memory tables is copied to the hard disk during
checkpoints.

Persistent in-memory tables can also be used with the solidDB HotStandby
component; data in in-memory tables is copied to the Secondary server from where
it is available if the Primary server fails.

Differences between persistent in-memory tables and disk-based
tables

In most regards, in-memory tables are indistinguishable from disk-based tables,
except that in-memory tables are generally significantly faster. The following
sections highlight the differences between in-memory tables and disk-based tables.

Concurrency control
In-memory tables always use pessimistic row-level concurrency control
(locking). Disk-based tables use optimistic (versioning) concurrency control
by default.

Depending on the type of table used, the error handling needs to take
different error codes into account.

Checkpointing algorithm
The checkpointing of in-memory tables is entirely different from the
algorithm used on disk-based tables. Checkpointing in-memory tables does
not block the transactions' access to the tables in any way during the
checkpoint. Thus, the predictability of response times is better with
in-memory tables than with disk-based tables.

Secondary indexes
With in-memory tables, the secondary indexes are never written to the
disk. Instead, they are maintained in-memory only and rebuilt when the
server is started. The impact of secondary indexes on the write
performance of in-memory tables is significantly smaller than with
disk-based tables. Moreover, all indexes of in-memory tables are equally
fast whereas on disk-based tables, the primary key is significantly faster
than the other indexes.

1.2.2 Non-persistent in-memory tables
Non-persistent in-memory tables are not written to disk when the server shuts down.
Therefore, any time that the server shuts down, whether normally or abnormally,

2 IBM solidDB: In-Memory Database User Guide

the data in non-persistent tables is lost. Their data is not logged or checkpointed.
That makes them unrecoverable but remarkably faster than persistent tables.

There are two different types of non-persistent in-memory tables: transient tables
and temporary tables. The main difference between temporary tables and transient
tables is that the data of a temporary table is visible to a single connection whereas
data of a transient table is visible to all users.

Non-persistent tables are useful as scratchpads. For example, you can copy data
from a persistent table, do a series of intensive operations on the data while it is in
the temporary table, and then store the results back in a persistent table. This
allows you to maximize performance, yet still keep part or all of the data when
you are done. If, for some reason, your work is interrupted, the original data is still
safe in the persistent table, and you can restart the processing.

Because transactions for non-persistent tables are not logged, they cannot be used
with HotStandby or solidDB Universal Cache.

Temporary tables
Data in temporary tables is visible only to the connection that inserted the data,
and the data is retained only for the duration of the connection. Temporary tables
are like private scratchpads that no one else can see. Temporary tables are even
faster than transient tables because they do not use logging or any type of
concurrency control mechanism (such as record locking).

Limited visibility

Data in temporary tables has limited visibility because only the session
(connection) that inserted the data can see it.

If your session creates a temporary table and inserts data into it, no other user
session can see your data, even if you grant privileges on that table. Multiple
sessions can use the same table simultaneously, but each session can see only its
own data.

Since each session can see only its own data, you do not need to coordinate with
other sessions to make sure that you insert unique values into the table, even if the
table has a unique constraint. For example, if you create a temporary table that has
a unique constraint on the ID column, you and another session might both insert
records that have the ID set to the value 1. Since each session sees only its own
data, operations such as UPDATE and DELETE affect only the data in the session.

Limited duration

Data in temporary tables has limited duration because as soon as you exit your
current session (disconnect from the server), the data is discarded. If you connect
again, you cannot see your data.

The word temporary in the term temporary tables refers to the data, not the table
itself. The server stores the definition of the temporary table (but not the data) in
the system tables and keeps that definition even after you disconnect. Thus, if you
reconnect to the server later, you the table still exists, but it is empty. When you
create the table, you do not need to create it again in future sessions. In fact, if you
or another user try to create a temporary table with the same name as an existing

1 Overview of solidDB in-memory features 3

temporary table, you get an error message. The behavior can be unexpected if you
think that a temporary table means that the table (not just the data) disappears as
soon as you disconnect.

Because the tables persist (even though the data does not), use the DROP TABLE
command to drop the table definition after you no longer need it. Also, because
the table persists, if you export a database schema definition, the output includes
the commands to re-create the temporary tables.

Because temporary tables are cleared when the user disconnects, the processor
usage can seem high for some time after a session with a large amount of
temporary table data.

Other characteristics
v If you use the HotStandby component, data in temporary tables is not replicated

to the Secondary server. However, temporary table definitions themselves are
replicated to the Secondary server. Thus, if you want to fail over to your
Secondary, you do not need to re-create any temporary tables that are already
created. However, you must re-create any data in them.

v In Universal Cache, if solidDB is as a source datastore, temporary tables are not
supported and they cannot be part of a subscription. Temporary tables can be
used in a subscription where solidDB is the target datastore.

v Temporary tables can be used only as replica tables in advanced replication
systems, not as master tables.

v Temporary tables have restrictions on how they can be used with referential
constraints. A temporary table can reference another temporary table, but it
cannot reference transient or persistent tables. No other type of table can
reference a temporary table.

With the exceptions of the limitations listed in this section, temporary tables
behave like normal (persistent) in-memory tables. For example,
v Temporary tables can have indexes on them.
v Temporary tables can be used in Views.
v Temporary tables can have triggers on them.
v Temporary tables can contain BLOB columns (but the length of those columns is

limited to a couple of kilobytes).
v Temporary tables exist in a specific catalog and schema.
v Privileges apply to temporary tables; in other words, the creator of the

temporary table can grant and revoke privileges on the table. The DBA can also
grant and revoke privileges on the table. However, when a session puts data
into a temporary table, the data cannot be seen by any other session, even if that
session is by a DBA or a user that has SELECT privilege on the temporary table.
Therefore, granting privileges on a table merely grants the other user the right to
use your table, not your data. Default privileges on temporary tables are the
same as the default privileges on persistent tables.

Standards compliance

The solidDB implementation of temporary tables fully complies with the ANSI
SQL:1999 standard for global temporary tables. All solidDB temporary tables are
global. In the CREATE TABLE syntax, the keyword GLOBAL is supported for
compatibility reasons. However, even if the keyword GLOBAL is not specified, all
temporary tables are global.

4 IBM solidDB: In-Memory Database User Guide

The solidDB server does not support local temporary tables as defined by ANSI.

Transient tables
Transient tables last until the database server shuts down. Multiple users can use
the same transient table, and each user sees the data of all other users.

In most regards, transient tables behave like standard (persistent) in-memory
tables. For example:
v Data in transient tables has the same scope or visibility as data in persistent

tables. The data that you insert into a transient table can be seen by other users'
sessions, if those users have appropriate privileges.

v Transient tables can be used in views.
v Transient tables can have indexes on them.
v Transient tables can have triggers on them.
v Transient tables can contain BLOB columns. However, the length of BLOB

columns is limited to few KB in all in-memory tables.
v Privileges apply to transient tables.
v Transient tables reside in a specific catalog and schema.
v You can import data into transient tables by using the solidDB Speed Loader

(solload) utility.

If you export a database with a transient table, the data in the transient tables and
the structure of the tables are exported.

The server stores the definition of the transient table (but not the data) in the
system tables and keeps that definition even after the server is shut down. If you
restart the server later, the table still exists, but the data does not. Thus, you need
to create the table only once. In fact, if you or another user try to create a transient
table with the same name as an existing transient table, you get an error message,
even if the server has been shut down and restarted since the time that the table
with that name was originally created. This behavior can be unexpected if you
think that a transient table disappears as soon as you shut down the server.

Also, since a transient table persists (even though the data does not), you can use
the DROP TABLE command to drop the table after you no longer need it.

Limitations

Transient tables have some limitations when compared to persistent in-memory
tables.
v Transient table data is not replicated to the Secondary server when you use the

HotStandby component. Transient tables themselves (but not their data) are
replicated to the HotStandby Secondary server. Thus, for failover to Secondary,
you do not have to re-create transient tables. However, you must re-create any
data in them.

v In Universal Cache, if solidDB is as a source datastore, transient tables are not
supported and they cannot be part of a subscription. Transient tables can be
used in a subscription where solidDB is the target datastore.

v Transient tables have restrictions on how they can be used with referential
constraints. Transient tables can reference other transient tables and persistent
tables. They cannot reference temporary tables. Temporary tables and persistent
tables cannot reference a transient table.

1 Overview of solidDB in-memory features 5

v Transient tables can be used only as replica tables in advanced replication
systems, not as master tables.

Standards compliance

Transient tables are not defined by the ANSI standard for SQL. Transient tables are
a solidDB extension to the SQL standard.

Differences between temporary and transient tables
The main differences between temporary tables and transient tables are:
v Transient tables allow all sessions (connections) in the system to see the same

data. Temporary tables allow only the user who created a piece of data to see
that data.

v Because users may access the same data, transient tables use concurrency
control. Only pessimistic concurrency control (locking) is supported.

v Temporary tables are faster than transient tables because they do not use
concurrency control.

v The data in transient tables lasts until the server is shut down, while data in
temporary tables lasts only until the user logs out of the session. This means that
if one session inserts data into a transient table, then other sessions may see that
data even after the creator of the data disconnects.

v Data in transient tables is exportable using solexp tool. Data in temporary tables
is not.

v The referential integrity rules for the two table types are different.

1.2.3 Table types and referential integrity
The persistent and non-persistent table differ in reference to referential integrity.

The following table shows which table types are allowed to refer to other types.
For example, if a transient table is allowed to have a foreign key that references a
persistent table, you will see "YES" in the cell at the intersection of the row
"Transient Child" and the column "Persistent Parent". If the foreign key constraint
is not allowed, you will see a dash (-).

Every type of table may reference itself. In addition, transient tables may reference
persistent tables (but not vice-versa). All other combinations are invalid.

REFERENCED
TABLE

REFERENCING
TABLE

Persistent
Disk-based Table

Persistent
In-Memory Table Transient Table Temporary Table

Persistent

Disk-Based Table

YES YES - -

Persistent

In-Memory Table

YES YES - -

Transient

Table

YES YES YES -

6 IBM solidDB: In-Memory Database User Guide

REFERENCED
TABLE

REFERENCING
TABLE

Persistent
Disk-based Table

Persistent
In-Memory Table Transient Table Temporary Table

Temporary

Table

- - - Yes

1.3 Considerations for developing applications with in-memory tables
Before starting to develop applications with in-memory tables, review the
following considerations on performance, memory usage, transaction isolation, and
using M-tables with HotStandby or shared memory (SMA) and linked library
(LLA) access methods.

1.3.1 Performance and in-memory tables
If data is stored in a disk-based table, it must be read into memory before it can be
used, and it must be written back to the disk after it has been used. In-memory
tables provide higher performance because all the data resides always in the main
memory; the server may use more efficient techniques to provide the maximum
performance for accessing and manipulating data.

Almost any database server will perform faster if it has more memory and can
store a larger percentage of its data in the cache memory of the server. However,
solidDB main memory engine's high-performance in-memory technology does
much more than merely copy data into memory. The solidDB main memory engine
also uses index structures that are optimized to work with data that is stored
entirely in memory. The solidDB main memory engine also takes into account
issues that arise with in-memory tables, such as memory "fragmentation" when
tables grow or shrink.

Temporary and transient tables and performance

Temporary and transient tables provide higher performance than persistent tables
for the following reasons:
v Data in temporary tables and transient tables is stored solely in memory; it is

never written to disk. If you shut down and restart the server, or if the server
terminates abnormally, the data is lost. In the case of temporary tables, the data
is discarded at the end of the user session -- it does not even remain until the
server is shut down.

v Temporary and transient tables do not log transaction data to disk. The data is
not recoverable after an abnormal server termination.

v When the server does its periodic checkpoint operations, which write database
data to the disk drive, the data in temporary tables and transient tables is not
written to the disk.

v Temporary tables and transient tables use a more efficient data storage structure
than regular in-memory tables use.

v Temporary tables have a further performance advantage over transient tables.
Sessions (connections) do not see each other's records in a temporary table, and
therefore they do not need sophisticated concurrency control – for example,
there is no need to check for locking conflicts on records within the table.

1 Overview of solidDB in-memory features 7

Indexes

If a table is stored in memory, all indexes on that table are also stored in memory.
This improves performance but also consumes memory space. In general,
in-memory indexes can be extremely fast, and you should use them to ensure fast
access to the data of the tables. However, if you do not have enough memory to
store all your tables and indexes in memory, adding a particular index might not
help in all cases. This is because even though it will speed up some queries, it will
slow up other queries by using memory that otherwise could be used to put other
tables in memory.

1.3.2 Physical memory and virtual memory
The total size of the in-memory database tables cannot exceed the amount of
virtual memory available.

Important:

Since virtual memory is swapped to disk frequently, using virtual memory negates
part of the advantage of in-memory tables. You should limit your in-memory
tables to less than the size of the available physical memory, not the size of the
available virtual memory.

When calculating the amount of space required for tables, do not forget BLOB
data. Generally, BLOB data should be kept on disk-based tables as the maximum
size of a BLOB column is significantly reduced on main-memory tables.

The amount of space required to store a table includes the space not only for the
data that is in the table, but also for any indexes on that table, including any
indexes created in support of primary key and foreign key constraints. Also, tables
occupy significantly more space in memory than on disk.

If the server runs out of virtual memory when it tries to allocate memory (for
example, to expand a table during an INSERT or ALTER TABLE operation), you
will get an error message.

1.3.3 Transaction isolation limitations with in-memory tables
The SERIALIZABLE isolation level is not supported with M-tables.

You cannot use in-memory tables in transactions where the transaction
isolation level is SERIALIZABLE. The levels of transaction isolation that
are supported for in-memory tables are REPEATABLE READ and READ
COMMITTED.

For in-memory tables in the HotStandby secondary server, the transaction
isolation level is always READ COMMITTED.

If you are using HotStandby and you connected to the HotStandby
secondary server, when you read data from in-memory tables, the
transaction isolation level is automatically set to READ COMMITTED,
even if you specified REPEATABLE READ.

REPEATABLE READ related differences between M-tables and D-tables.
If you use in-memory tables and have set the transaction isolation level to
REPEATABLE READ (default is READ COMMITTED), read operations
block write operations for the duration of the read transaction. Moreover,
with READ REPEATABLE isolation level, deadlocks are possible with

8 IBM solidDB: In-Memory Database User Guide

in-memory tables whereas they cannot occur on versioning disk-based
tables. On the other hand, concurrency conflicts can occur when optimistic
concurrency control is in use.

1.3.4 Shared memory access and linked library access
Shared memory access (SMA) and linked library access (LLA) provide the solidDB
server in the form of a linkable library. You can link you application directly to the
SMA or LLA library and access it via function calls without going through a
network communications protocol.

SMA and LLA are compatible with in-memory tables.

For more information, see Overview of shared memory access and linked library
access.

For more information about SMA and LLA, see the IBM solidDB Shared Memory
Access and Linked Library Access User Guide.

1.3.5 HotStandby and in-memory tables
In-memory tables can be used with solidDB High Availability, given the following
considerations:
v Persistent in-memory tables are replicated from the HotStandby Primary server

to the Secondary server.
v Temporary tables and transient tables are not replicated to the Secondary server.

1 Overview of solidDB in-memory features 9

10 IBM solidDB: In-Memory Database User Guide

2 Working with in-memory tables

When creating tables, you specify the table type you want to use as part of the
CREATE TABLE statement. By default, new tables are created as persistent
in-memory tables. You can also change the table type of tables that have no data.

2.1 How to decide which tables to designate as in-memory tables
Ideally your computer would have enough memory to store all of your tables in
memory and thus would provide the best possible performance for database
transactions. However, in practice most users will have to choose a subset of tables
to store in memory, while the remaining tables will be disk-based.

If you cannot fit all tables in memory, try to put the most-frequently-used data in
memory. In principle, small frequently-used tables should go into memory, and
large rarely-used tables can be left on disk. With other possible combinations, such
as large tables that are heavily used, or small tables that are not heavily used, the
table type should depend on the "density" of access to a table. In-memory tables
work best the higher the number of accesses is per megabyte per second.

Once you have decided to store a table in memory, you must choose whether to
store the data in a persistent table, a transient table, or a temporary table. The basic
guidelines are as shown below.

You can decide on the most appropriate type of table by asking the questions
below until you reach the first question for which you answer "Yes".
1. Do you need the data to be available again the next time that the server starts?

If yes, use a persistent table.
2. Do you need the data to be copied to the Secondary HotStandby server? If yes,

use a persistent table.
3. Do you need the data only during the current server session, but the data must

be available to multiple users (or multiple connections from the same user)? If
yes, use a transient table.
The term server session refers to a single run of the server, from the time that it
starts until the time that it is either deliberately shut down or it goes down for
an unexpected reason (such as a power failure). A connection lasts from the time
that a single user connects to the server until the time that user disconnects the
same connection. A user may establish multiple connections, but each of these
is independent.

4. If none of the above rules applied, use a temporary table.

Note: Temporary and transient tables have restrictions that might affect your
decision. For example, a temporary table can reference another temporary table,
but it cannot reference transient or persistent tables. No other type of table can
reference a temporary table.
Related information:
Appendix A, “Algorithm for choosing which tables to store in memory,” on page
27

11

“Temporary tables” on page 3
Data in temporary tables is visible only to the connection that inserted the data,
and the data is retained only for the duration of the connection. Temporary tables
are like private scratchpads that no one else can see. Temporary tables are even
faster than transient tables because they do not use logging or any type of
concurrency control mechanism (such as record locking).
“Transient tables” on page 5
Transient tables last until the database server shuts down. Multiple users can use
the same transient table, and each user sees the data of all other users.

2.2 Creating in-memory and disk-based tables
There are two ways to explicitly specify whether tables are to be located
in-memory or on disk.
1. Use the STORE MEMORY or STORE DISK clause of the CREATE TABLE or

ALTER TABLE command.
CREATE TABLE employees (name CHAR(20)) STORE MEMORY;
CREATE TABLE ... STORE DISK;
ALTER TABLE network_addresses SET STORE MEMORY;

For more information about the syntax of the CREATE TABLE and ALTER
TABLE statement, see the IBM solidDB SQL Guide.

2. Specify the default with the General.DefaultStoreIsMemory parameter.
For example:
[General]
DefaultStoreIsMemory=yes

When General.DefaultStoreIsMemory is set to 'yes', new tables are created as
in-memory tables unless specified otherwise in the CREATE TABLE statement.
If this parameter is set to 'no', new tables are created as disk-based tables
unless specified otherwise in the CREATE TABLE statement.

Note: These instructions apply to persistent tables only. Tables that are declared to
be temporary tables or transient tables are automatically stored in memory, even if
you do not use the STORE MEMORY clause.

2.3 Creating temporary and transient tables
By default, when you create an in-memory table, the table is persistent. To create
temporary or transient tables, use the keyword TEMPORARY or TRANSIENT.

Creating temporary tables

To create a temporary table, use the following command:
CREATE [GLOBAL] TEMPORARY TABLE <...>;

where

GLOBAL is supported for compatibility reasons. However, even if the keyword
GLOBAL is not specified, all temporary tables are global.

<...> denotes syntax that is the same as for any other type of table.

Temporary tables are always in-memory tables. If you use the STORE DISK clause,
the server will give you an error. If you use STORE MEMORY, or if you omit the

12 IBM solidDB: In-Memory Database User Guide

STORE clause altogether, the server will create the temporary table as an
in-memory table.

Creating transient tables

To create a transient table, use the following command:
CREATE TRANSIENT TABLE <...>;

where

<...> denotes syntax that is the same as for any other type of table.

Transient tables are always in-memory tables. If you use the STORE DISK clause,
the server will give you an error. If you use STORE MEMORY, or if you omit the
STORE clause altogether, the server will create the transient table as an in-memory
table.
Related information:
1.2, “Types of in-memory tables,” on page 2
There are two basic types of in-memory tables: persistent tables and non-persistent
tables. Persistent tables provide recoverability of data; non-persistent tables provide
fast access.

2.4 Changing a table from in-memory to disk-based or vice-versa
If the table is empty, you can alter the type of a table from in-memory table to
disk-based table or vice versa. To do this, use the following command:
ALTER TABLE table_name SET STORE MEMORY | DISK

If the table contains data, you need to create a new table with different name to
which you copy the data. After copying the data to the new table, you can drop
the old table and rename the new table with the same name as the original table.

2 Working with in-memory tables 13

14 IBM solidDB: In-Memory Database User Guide

3 Configuring in-memory database

You can configure solidDB to create new tables as in-memory tables (M-tables) by
default by setting the General.DefaultStoreIsMemory parameter to yes. Most other
in-memory features are configured using the parameters in the [MME] section of the
solid.ini file.

You need to pay special attention to controlling memory consumption; if the
in-memory database or the server process uses up all of the available virtual
memory in the system, you will be unable to add or update data. If the server uses
up all of the physical memory and starts to use virtual memory, the server will
continue to operate, but performance will be greatly reduced.

3.1 Configuration parameters
Most parameters related to the solidDB in-memory database are stored into the
[MME] section of the solid.ini configuration file.

You can change configuration parameters in either by manually editing the
solid.ini configuration file or by entering the following command in solidDB SQL
Editor:
ADMIN COMMAND ’parameter section_name.param_name=value’

For example:

ADMIN COMMAND 'parameter mme.imdbmemorylimit=1gb';

Note:

The server reads the configuration file only when it starts, and therefore changes to
the configuration file do not take effect until the next time that the server starts.

3.1.1 General section
Table 3. MME related parameters in the [General] section

[General] Description Factory Value Access Mode

DefaultStoreIsMemory
If set to yes, new tables are
created as in-memory tables,
unless they are created without
an explicit STORE clause in the
CREATE TABLE statement. If
set to no, new tables are stored
on disk by default. You can
override the factory value by
using the STORE clause in the
CREATE TABLE statement.
Note: System tables are stored
on disk, even if this parameter
is set to yes.

yes RW

15

Table 3. MME related parameters in the [General] section (continued)

[General] Description Factory Value Access Mode

MultiprocessingLevel This parameter defines the
number of processing units
(processors, cores) available in
the computer system. Typically,
the concurrency of write
operations in the database can
be improved if the value
matches the number of
physical processors (cores) in
your system.

The factory value is read from
the system as the number of
logical processing units. The
auto-detected value is output
to solmsg.out at server startup.
With some processor
architectures, the number of
logical processing units might
not be the same as the number
of physical cores. In such cases,
the optimal value for this
parameter typically varies
between the number of the
physical cores and the number
of logical processing units.
Note: the value of the
MME.RestoreThreads parameter
defaults to the value of this
parameter, unless you set it to
a different value explicitly.

Read from system RW/Startup

16 IBM solidDB: In-Memory Database User Guide

3.1.2 MME section
Table 4. MME parameters
[MME] Description Factory Value Access Mode

ImdbMemoryLimit This sets an upper limit on the amount of memory (virtual
memory) that the server will allocate for in-memory tables and
indexes on in-memory tables. In-memory tables includes
Temporary Tables and Transient Tables, as well as persistent
in-memory tables.

The limit may be specified in bytes, kilobytes (KB), megabytes
(MB), or gigabytes (GB). For example:

ImdbMemoryLimit=1073741824
ImdbMemoryLimit=1048576kb
ImdbMemoryLimit=1024MB
ImdbMemoryLimit=1GB

Value 0 means "no limit".

As a general rule, for servers with 1 GB or less memory, the
maximum amount that you should allocate to in-memory tables is
usually 30% - 70% of the system's physical memory. The more
memory the system has, the larger the percentage of it you may
use for in-memory tables.
Note: This parameter only applies only to solidDB main memory
engine tables. It does not apply to disk-based tables.

You can change this parameter with the command:

ADMIN COMMAND ’parameter
MME.ImdbMemoryLimit=n[kb|mb|gb]’;

where 'n' is a positive integer. You may only increase, not
decrease, this value while the server is running. The command
takes effect immediately. The new value is written back to the
solid.ini file at shutdown.
Important: Ensure that your in-memory tables will fit within the
available physical memory. If you exceed the amount of physical
memory available, performance will decrease significantly. If you
use up all of the available virtual memory, the server will abruptly
limit inserts, updates, and so on, and will return error codes.

0

Unit: 1 byte
k=KB m=MB
g=GB

RW

ImdbMemoryLowPercentage
Once you have set ImdbMemoryLimit, you may set this additional
parameter to give you advance warning before you use up all of
memory. This ImdbMemoryLowPercentage parameter allows you to
indicate what percentage of memory you may use before the
server starts limiting your ability to insert rows into in-memory
tables, and so on. For example, if ImdbMemoryLimit is 1000MB and
ImdbMemoryLowPercentage is 90 (percent), then the server will stop
accepting inserts when you've used up 900 megabytes of memory
for your in-memory tables.

Valid values are between 60 and 99 (percent).
Note: This parameter only applies to solidDB main memory
engine tables.

90 RW

ImdbMemoryWarningPercentage
This parameter sets a warning limit for the IMDB memory size.
The warning limit is expressed as a percentage of the
ImdbMemoryLimit parameter value. When the
ImdbMemoryWarningPercentage limit is exceeded, a system event is
given.

The ImdbMemoryWarningPercentage parameter value is
automatically checked for consistency. It must be lower than the
ImdbMemoryLimit parameter value.
Note: This parameter only applies to solidDB main memory
engine tables. It does not apply to disk-based tables.

80 RW

3 Configuring in-memory database 17

Table 4. MME parameters (continued)
[MME] Description Factory Value Access Mode

LockEscalationEnabled
Typically, when the server needs to use locks to prevent
concurrency conflicts, the server locks individual rows. This means
that each user affects only those other users who want to use the
same row(s). However, the more rows are locked, the more time
the server must spend checking for conflicting locks.

In some cases, it is worthwhile to lock an entire table rather than a
large number of the rows in that table.

When this parameter is set to yes, the lock level is escalated from
row-level to table-level after a specified number of rows (in the
same table) have been locked within the current transaction.

Lock escalation improves performance, but reduces concurrency,
because it means that other users are temporarily unable to use
the same table, even if they want to use different rows within that
table.

See also the parameter LockEscalationLimit.

Possible values are yes and no.
Note: This parameter applies to in-memory tables only.

no RW/Startup

LockEscalationLimit If LockEscalationEnabled is set to yes, this parameter indicates
how many rows must be locked (within a single table) before the
server will escalate lock level from row-level to table-level. See
LockEscalationEnabled for more details.

The value may be any number from 1 to 2,147,483,647 (2^32-1).
Note: This parameter applies to in-memory tables only.

1000 RW/Startup

LockHashSize The server uses a hash table (array) to store lock information. If
the size of the array is remarkably underestimated the
performance degrades. Too large hash table doesn't affect directly
to the performance although it causes memory overhead. The
LockHashSize determines the number of elements in hash table.

This information is needed when the server is using pessimistic
concurrency control (locking). The server uses separate arrays for
in-memory tables and disk-based tables. This parameter applies to
in-memory tables.

In general, the more locks you need, the larger this array should
be. However, it is difficult to calculate the number of locks that
you need, so you may need to experiment to find the best value
for your applications.

The value that you enter is the number of hash table entries. Each
table entry has a size of one pointer (4 bytes in 32-bit
architectures). Thus, for example, if you choose a hash table size of
1,000,000, then the amount of memory required is 4,000,000 bytes
(assuming 32-bit pointers).

1000000 RW/Startup

MaxBytesCachedInPrivateMemoryPool
This parameter defines the maximum bytes stored into the free list
of MME's private memory pool (private memory pool is private
for each main-memory index). If there is more free memory in the
private pool, the extra memory is merged into global pools.

Value 0 means immediate merge to global pool, usually degrades
performance, but minimizes memory footprint. There is no
maximum value; the default value of 100000 gives good
performance with little memory overhead.

100000 RW/Startup

MaxCacheUsage The value of MaxCacheUsage limits the amount of D-table cache
used while checkpointing M-tables. The value is expected to be
given in bytes. Regardless of the value of the MaxCacheUsage at
most half of the D-table cache (IndexFile.CacheSize) is used for
checkpointing M-tables. Value MaxCacheUsage=0 sets the value
unlimited, which means that the cache usage is
IndexFile.CacheSize/2.

8MB RW/Startup

18 IBM solidDB: In-Memory Database User Guide

Table 4. MME parameters (continued)
[MME] Description Factory Value Access Mode

MaxTransactionSize This parameter defines the maximum approximate size of a
transaction in bytes.

Some MME transactions (for example, DELETE FROM <table>)
might cause solidDB to allocate a lot of memory for the operation.
This can lead to an out-of-memory situation where solidDB cannot
allocate any more memory from the operating system, and
performs an emergency exit. To prevent this, use this parameter to
define the maximum approximate size (in bytes) for each MME
transaction; when the transaction size exceeds the value set with
this parameter, the transaction fails with the error SOLID Database
error 16509: MME transaction maximum size exceeded.

Value 0 means unlimited.

0 RW

MemoryPoolScope This parameter sets the memory pool scope. Possible values are
Global and Table.

When set to Table, only objects that belong to the same database
table are allocated from a single memory segment. This ensures,
for example, that dropping a whole table frees the memory
segment back to operating system. Only unused memory
segments can be returned back to system.

When set to Global, memory pools are shared between all MME
data.

When MME.MemoryPoolScope is set to Table, you can use the
DESCRIBE <table> statement to view the memory consumption
for the table. For example:

DESCRIBE tmemlimit_tab;
RESULT

Catalog: DBA
Schema: DBA
Table: TMEMLIMIT_TAB
Table type: in-memory

Memory usage: 7935 KB (total), 7925 KB (active),
6192 KB (rows), 1733 KB (indexes).

...
1 rows fetched.

Global RW/Startup

NumberOfMemoryPools This parameter defines the number of global memory pools.
Bigger values may give better performance on multicore systems
with certain load scenarios but they also increase memory slack
and hence server process size.

Minimum value is 1. There is no maximum value; however, the
number of cores in the system should not be exceeded.

1 RW/Startup

ReleaseMemoryAtShutdown
When set to yes, at shutdown, the server releases the memory
used by M-tables explicitly, rather than relying on the operating
system to clean up all memory associated with this process. Some
operating systems may require you to set this to yes to ensure that
all memory is released.

The possible values are yes and no.

The factory value is no because shutting down the server is faster
that way.

no RW/Startup

3 Configuring in-memory database 19

Table 4. MME parameters (continued)
[MME] Description Factory Value Access Mode

RestoreThreads This parameter defines the maximum number of threads used
while restoring in-memory database during database startup. If
you do not set this parameter explicitly, the value of this
parameter is set to the same value as
General.MultiprocessingLevel.

Possible values are between 1 and 65536. Value 1 means that the
load is executed in single thread.

With invalid values, this parameter defaults to the value of
General.MultiprocessingLevel.

In-memory database restore assigns one thread per each table if
the number of tables is smaller or equal to the number of the
parameter value.

Maximal concurrency is reached when the parameter value is
smaller than the following two values: number of
cores/processors, and the number of tables in the database.

Same as General.
Multiprocessing
Level

RW/Startup

3.2 Memory consumption
The in-memory database main memory usage differs from the standard solidDB.
The in-memory database resides in its own memory pool.

solidDB main memory engine provides commands and configuration parameters
to help you monitor and control memory consumption of the in-memory database
and the server process. These commands and parameters focus on the server's
in-memory database feature, not the server as a whole.

3.2.1 Monitoring memory consumption
There are several ADMIN COMMANDs available for monitoring memory
consumption.

ADMIN COMMAND 'info imdbsize'

The ADMIN COMMAND 'info imdbsize' command returns the current amount of
memory allocated to use by in-memory database tables and indexes. The value
returned is a VARCHAR, and it indicates the number of kilobytes used by the
server. The command returns the amount of virtual memory used, not the amount
of physical memory used.

In time, the value of imdbsize can grow, because returning data back to operating
system can only be done in allocation units which need to be completely unused
before they can be returned back to the operating system.

Transient memory allocations (such as SQL execution graphs) are excluded from
the ADMIN COMMAND 'info imdbsize' report.

ADMIN COMMAND 'info processsize'

The ADMIN COMMAND 'info processsize' command returns the virtual memory
process size, that is, the full address space size of the database server that the
in-memory database process uses. The value returned is a VARCHAR, and it
indicates the number of kilobytes used by the process. This command returns the
amount of virtual memory used, not the amount of physical memory used.

20 IBM solidDB: In-Memory Database User Guide

ADMIN COMMAND 'pmon mme'

There are also several performance counters available, which include the runtime
information related to the in-memory database server.

The ADMIN COMMAND 'pmon mme' command produces the following list of current
values of counters.
RC TEXT
-- ----
0 Performance statistics:
0 Time (sec) 30 21 Total
0 MME current number of locks : 0 0 0
0 MME maximum number of locks : 0 0 0
0 MME current number of lock chains : 0 0 0
0 MME maximum number of lock chains : 0 0 0
0 MME longest lock chain path : 0 0 0
0 MME memory used by tuples : 0 0 0
0 MME memory used by indexes : 0 0 0
0 MME memory used by page structures: 0 0 0
10 rows fetched.

In the performance statistics listing, the amount of memory used by tuples,
indexes, and page structures is given in KB.

ADMIN COMMAND 'memory'

The ADMIN COMMAND 'memory' command reports the amount of dynamically
allocated heap memory. In heap-based memory allocation, memory is allocated
from a large pool of unused memory area called the heap. The size of the heap
memory allocation can be determined at runtime. Transient memory allocations
(such as SQL execution graphs) are included in the ADMIN COMMAND 'memory' report.

3.2.2 Controlling memory consumption
The in-memory database memory consumption is controlled by the following three
configuration parameters in the [MME] section of the solid.ini file:
v ImdbMemoryLimit

v ImdbMemoryLowPercentage

v ImdbMemoryWarningPercentage

Additionally, the process memory consumption is controlled by the following four
configuration parameters in the [SRV] section of the solid.ini file:
v ProcessMemoryLimit

v ProcessMemoryLowPercentage

v ProcessMemoryWarningPercentage

v ProcessMemoryCheckInterval

The violations of the in-memory database memory and process limits are logged in
the solmsg.out log file. Every time the memory limit defined with the
ImdbMemoryLimit and ProcessMemoryLimit parameters is crossed, a system event is
posted. These system events are described in IBM solidDB SQL Guide.

Memory consumption
The in-memory database main memory usage differs from the standard solidDB.
The in-memory database resides in its own memory pool.

3 Configuring in-memory database 21

solidDB main memory engine provides commands and configuration parameters
to help you monitor and control memory consumption of the in-memory database
and the server process. These commands and parameters focus on the server's
in-memory database feature, not the server as a whole.

MME.ImdbMemoryLimit: The MME.ImdbMemoryLimit parameter specifies the
maximum amount of virtual memory that can be allocated to in-memory tables
(including temporary tables and transient tables) and the indexes on those
in-memory tables.

The default value for MME.ImdbMemoryLimit is 0, which means "no limit". You
should not use the default value; instead, set the parameter to a value that will
ensure that the in-memory data will fit entirely within physical memory. Consider
also the following factors:
v the amount of physical memory in the computer
v the amount of memory used by the operating system
v the amount of memory used by solidDB (the program itself)
v the amount of memory set aside for the solidDB server's cache (the

IndexFile.CacheSize solid.ini configuration parameter)
v the amount of memory required by the connections, transactions and statements

running concurrently in the server. The more concurrent connections and active
statements there are in the server, the more working memory the server requires.
Typically, you should allocate at least 0.5 MB of memory for each client
connection in the server.

v the memory used by other processes (programs and data) that are running in the
computer

When 100% of the memory specified by MME.ImdbMemoryLimit is reached, the server
will prohibit UPDATE operations on in-memory tables. Before the limit is reached,
the server will prohibit creation of new in-memory tables and INSERT operations
on those tables. See “MME.ImdbMemoryLowPercentage” for more details.

Example:
[MME]
ImdbMemoryLimit=1000MB

MME.ImdbMemoryLowPercentage: The MME.ImdbMemoryLowPercentage parameter
sets a "low water mark" for the amount of virtual memory that can be allocated to
in-memory tables. The limit is expressed as a percentage of the
MME.ImdbMemoryLimit parameter value.

When the server has consumed the percentage of memory specified with
MME.ImdbMemoryLowPercentage, the server will start to limit activities in order to
prevent memory consumption from continuing to grow. For example, if
MME.ImdbMemoryLimit is 1000 megabytes and MME.ImdbMemoryLowPercentage is 90%,
the server will start limiting activities if the memory allocated to the in-memory
tables exceeds 900 megabytes. Specifically, the server will:
v Prohibit further creation of in-memory tables (including temporary tables and

transient tables) and indexes on in-memory tables.
v Prohibit INSERTs into in-memory tables.

When the limit set with MME.ImdbMemoryLimit itself is reached, the server will also
prohibit UPDATE operations on records in in-memory tables.

22 IBM solidDB: In-Memory Database User Guide

Valid values for MME.ImdbMemoryLowPercentage range between 60-99 (percent).

MME.ImdbMemoryWarningPercentage: The MME.ImdbMemoryWarningPercentage
parameter sets a limit at which a system even is given to warn you that the
maximum amount of virtual memory that can be allocated to in-memory tables is
being reached.

The warning limit is expressed as a percentage of the MME.ImdbMemoryLimit
parameter value. When the MME.ImdbMemoryWarningPercentage limit is exceeded, a
system event is given.

Troubleshooting MME.ImdbMemoryLimit:

If you get an error message indicating that the limit set with MME.ImdbMemoryLimit
has been reached, you need to take action immediately.

You must address both the immediate problems and the long term problems. The
immediate problems are to prevent users from experiencing serious errors, and to
free up some memory before shutting down the server so that your system is not
out of memory when you restart the server. For long term, you need to ensure that
you will not run out of memory in the future as tables expand.

Resolving the immediate problem

To address the immediate problem, you typically need do the following:
1. Notify users that they should disconnect from the server. This will accomplish

two things: it will minimize the number of users who will be impacted if the
situation deteriorates. Also, if any of the users who disconnect were using
temporary tables, disconnecting will free up memory. You may wish to have a
policy or error-checking code to ensure that users and/or programs will
attempt to disconnect gracefully if they see this error.

2. If there were not enough temporary tables to free memory, drop some transient
table indexes or transient tables if any exist.

If there were not enough temporary tables and transient tables to free enough
memory, do the following:
1. Drop one or more indexes on in-memory tables.
2. Shut down the server.
3. If there was absolutely nothing in memory that you could discard (for example,

you had only normal in-memory tables, none of which had indexes, and all of
which had valuable data), increase the MME.ImdbMemoryLimit slightly before
restarting the server. This may force the server to start paging virtual memory
which will greatly reduce performance, but it will allow you to continue using
the server and address the long-term problems. If you previously set the
ImdbMemoryLimit a little bit lower than the maximum, you will be able to raise
it slightly now without forcing the system to start paging virtual memory.

4. Restart the server.
5. Minimize the number of people using the system until you have had time to

address the long-term problem. Ensure that users do not create temporary
tables or transient tables until the long-term problem has been addressed.

3 Configuring in-memory database 23

Resolving the long term problem

After you have solved the immediate problem and have ensured that the server
has at least some free memory, you are ready to address the long term problems.

For long term, reduce the amount of data stored in in-memory tables. The ways to
do this are to reduce the number or size of in-memory tables (including temporary
tables and transient tables), or reduce the number of indexes on in-memory tables.
v If the problem was caused solely by heavy usage of temporary or transient

tables, ensure that not too many sessions create too many large temporary or
transient tables at the same time.

v If the problem was caused by using too much memory for normal in-memory
tables, and if you cannot increase the amount of memory available to the server,
move one or more tables out of main memory and onto the disk.

To move a table from memory to disk, do the following:
1. Create an empty disk-based table with the same structure (but a different

name) as one of the tables in memory.
2. Copy the information from the in-memory table to an intermediate disk-based

table.
If you try to copy records of a large table to another table using a single SQL
statement (INSERT INTO ...VALUES SELECT FROM), keep in mind that the
entire operation occurs in one transaction. Such an operation is efficient only if
the entire amount of data fits in the cache memory of the server. If transaction
size outgrows the cache size, the performance degrades significantly. Therefore,
you should copy data of a large table to another table in smaller transactions
(for example, few thousands of rows per transaction) using a simple stored
procedure or application.

Note: The intermediate table does not need indices. The indices should be
re-created in the new table after the data has been successfully copied.

3. Drop the in-memory table.
4. Rename the disk-based table to have the original name of the dropped

in-memory table.

Tip:

v You should set the MME.ImdbMemoryLimit to a slightly lower value than the
maximum you really have available. If you run out of memory and have no
unnecessary in-memory tables or indexes that you can get rid of, you can
increase the MME.ImdbMemoryLimit slightly, restart the server with enough free
memory that you can address the long-term need.

v Use the MME.ImdbMemoryWarningPercentage to warn you about increasing
memory consumption.

v Not all situations require you to reduce the number of in-memory tables. In
some cases, the most practical solution may be to simply install more memory in
the computer.

Process memory consumption
Use the configuration parameters in the Srv section to control the maximum
amount of virtual memory that can be allocated to the in-memory database
process.

24 IBM solidDB: In-Memory Database User Guide

Srv.ProcessMemoryLimit:

The Srv.ProcessMemoryLimit parameter specifies the maximum amount of virtual
memory that can be allocated to the in-memory database process.

The factory value for Srv.ProcessMemoryLimit is 0; there is no process memory
limit. If you use the parameter, set it to a value that will ensure that the in-memory
database process will fit entirely within physical memory. The following factors
impact the amount of memory needed:
v the amount of physical memory in the computer
v the amount of memory used by the operating system
v the amount of memory used by in-memory tables (including temporary tables

and transient tables) and the indexes on those in-memory tables
v the amount of memory set aside for the solidDB server's cache (the

IndexFile.CacheSize parameter)
v the amount of memory required by the connections, transactions and statements

running concurrently in the server. The more concurrent connections and active
statements there are in the server, the more working memory the server requires.
Typically, you should allocate at least 0.5 MB of memory for each client
connection in the server.

v the memory used by other processes (programs and data) that are running in the
computer

When the limit is reached, that is, when the in-memory database process uses up
100% of the memory specified by Srv.ProcessMemoryLimit, the server will accept
ADMIN COMMANDs only. You can use the Srv.ProcessMemoryWarningPercentage
and Srv.ProcessMemoryLowPercentage parameters to warn you about increasing
process memory consumption.

Note:

v The Srv.ProcessMemoryLimit and Srv.ProcessMemoryCheckInterval parameters
are interlinked; if the ProcessMemoryCheckInterval parameter is set to 0, the
ProcessMemoryLimit parameter is not effective, that is, there is no process
memory limit.

v You should not set the Srv.ProcessMemoryLimit parameter when using SMA. If
you need to limit the memory the SMA server uses, use the
SharedMemoryAccess.MaxSharedMemorySize parameter.

Srv.ProcessMemoryLowPercentage:

The Srv.ProcessMemoryLowPercentage parameter sets a warning limit for the total
process size. The limit is expressed as percentage of the Srv.ProcessMemoryLimit
parameter value.

Prior to exceeding the limit, you have exceeded the warning limit defined with the
ProcessMemoryWarningPercentage parameter and received a warning in the
solmsg.out log file. When the Srv.ProcessMemoryLowPercentage limit is exceeded, a
system event is given.

The limit set with Srv.ProcessMemoryLowPercentage must be higher than the
Srv.ProcessMemoryWarningPercentage limit. For example, if the
Srv.ProcessMemoryWarningPercentage is set to 82, the
Srv.ProcessMemoryLowPercentage value must be at least 83.

3 Configuring in-memory database 25

Srv.ProcessMemoryWarningPercentage:

The Srv.ProcessMemoryWarningPercentage parameter sets the first warning limit for
the total process size. The warning limit is expressed as percentage of the
Srv.ProcessMemoryLimit parameter value.

When the Srv.ProcessMemoryWarningPercentage limit is exceeded, a system event
is given in the solmsg.out log file.

The limit set with Srv.ProcessMemoryWarningPercentage must be lower than the
Srv.ProcessMemoryLowPercentage limit.

Srv.ProcessMemoryCheckInterval:

The Srv.ProcessMemoryCheckInterval parameter defines the interval for checking
the process size limits. The interval is given in milliseconds.

The minimum non-zero value for Srv.ProcessMemoryCheckInterval is 1000 (ms).
Only values 0, 1000, or above 1000 (1 second) are allowed. If the given value is
above 0 but below 1000, an error message is given.

The factory value is 0, that is, the process size checking is disabled.

The Srv.ProcessMemoryLimit and Srv.ProcessMemoryCheckInterval parameters are
interlinked; if the ProcessMemoryCheckInterval parameter is set to 0, the
ProcessMemoryLimit parameter is not effective, that is, there is no process memory
limit.

26 IBM solidDB: In-Memory Database User Guide

Appendix A. Algorithm for choosing which tables to store in
memory

This section describes a strategy that will guide you in choosing which tables to
put in memory.

The main principle is to consider the density of access to the table; the higher the
frequency of access, the higher the access "density". Similarly, the larger the table,
the lower the access density for a given number of accesses per second.

The access density is measured in units of accesses per megabyte per second,
which is shown here as rows/MB/s. (For simplicity, one access per row is
assumed.)

Example 1:

If you have a 1 megabyte table, and you access 300 rows in a 10-second period, the
density is 30 rows/MB/s = 300 rows / 1 MB / 10 seconds.

Example 2:

If you have a 500 KB table and you access 300 rows per second, the access density
is 600 rows/MB/s = 300 rows / 0.5 MB / second.

The table in the second example has a higher access density than the first one, and
if you can only fit one of these tables into memory, you should put the second one
into memory.
1. You may want to take into account the number of bytes accessed each time.

This is typically the average row size, although it may be different if you are
using binary large objects, or if the server can find all the information that it
needs by reading just an index rather than the entire table.
Because the server normally reads data from the disk in multiples of a "block"
(where a block is typically 8 KB), the number of bytes per access or the number
of bytes per row gives you only slightly more precise figures than the formula
without these. Whether you read a 10-byte row or a 2000 byte row, the server
does approximately the same amount of work.

2. When taking into account the size of the table, you must also take into account
the size of any indexes on that table. Each time that you add an index, you add
more data that is stored about that table. Furthermore, when you add a foreign
key constraint to a table, the server will create an appropriate index (if one
does not already exist) to speed up certain types of lookup operations on that
table. When you calculate the size of your table in memory, you must take into
account the table, all its indexes, and all its BLOBs.

Once you have calculated the access density of all your tables, you rank order
those tables from highest to lowest. Starting with the table that has the highest
density, work your way down the list, designating tables as in-memory tables until
you use up all of the available physical memory.

This description is simplified as it assumes that you have perfect information and
that you can change a table from disk-based to in-memory (or vice-versa) at any
time. In fact, you may not know the total amount of free memory in your

27

computer. You might accidentally designate more in-memory tables than the
computer has room in physical memory for. The result may be that tables are
swapped to disk. This may substantially reduce performance. Also, you may not
really know how frequently each table is accessed until that table has a substantial
amount of data in it. Yet the solidDB server requires that you designate a table as
in-memory or disk-based at the time that you create the table, before you have put
any data into it. Thus your calculations are going to have to be based on estimates
of the amount of usage each table gets, estimates of the size of each table, and
estimates of the amount of free memory. It also assumes that the average access
density does not change over time.

This approach also assumes that you are not planning to add still more tables in
the future, and it assumes that your tables do not grow in size. In a typical
situation, you should not use up all the memory that you have - you should leave
enough space to take into account that your tables are likely to grow in size, and
you should leave a little bit of a margin for error so that you do not run out of
memory.

Important: Since virtual memory may be swapped to disk frequently, using
virtual memory negates the advantage of in-memory tables. Always make sure that
the entire DBMS process fits into the physical memory of the computer.

28 IBM solidDB: In-Memory Database User Guide

Appendix B. Calculating maximum BLOB size

B.1 Purpose
One important difference between in-memory tables and disk-based tables is that
column values in in-memory tables must fit into a single "page" (the page size is
specified in the solid.ini configuration file, and its maximum is 32 KB Therefore,
in-memory tables cannot store character or binary files larger than the page size.
Smaller binary files, however, are supported.

This appendix shows how to calculate the maximum size of a character or binary
column value that will fit in your in-memory tables.

B.2 Background
Many applications today use data that cannot be easily stored in the standard data
types such as INT or CHAR. Instead, a long character or binary format may be
better suitable. In these cases, the data may be stored as CLOBs and BLOBs,
Character and Binary Large OBjects, respectively. A CLOB includes interpretable
characters whose number may be up to 2 billion. A BLOB data type can hold
virtually any data that can be stored as a series of binary numbers (8-bit bytes).
Typically, BLOBs are used to store large, variable-length data that cannot be easily
interpreted as numbers or characters. For example, BLOBs may hold digitized
sound (for example, the music on a Compact Disc), multimedia files, or time-series
data read from sensors.

In solidDB BLOBs are widely supported and there are several different data types
to choose from: BINARY, VARBINARY and LONG VARBINARY, of which the
latest is mapped to standard data type BLOB.

CLOB is implemented with six data types, CHAR, WCHAR, VARCHAR,
WVARCHAR, LONG VARCHAR and LONG WVARCHAR. The two latest data
types are mapped to standard data types CLOB and NCLOB. For detailed
information about CLOB and BLOB data types see sections Character Data Types
and Binary Data Types in the Appendix A in the IBM solidDB SQL Guide.

For disk-based tables, solidDB's implementation of BLOB storage balances speed of
access with the need to be able to store large amounts of data. Regardless of the
data type (VARCHAR, VARBINARY), short values are generally stored in the table,
while longer values have part or all of their data stored in a separate area in the
database storage tree. This is entirely transparent to the user; the user simply
decides on the data type, and solidDB takes care of the rest. Your data will always
be accessed the same way, and will appear to be stored in the table, regardless of
the actual physical location of the data. In disk-based tables, the maximum length
of a VARCHAR or VARBINARY field is 2 gigabytes.

For in-memory tables, BLOB data is stored entirely in the table itself, and the
maximum length of a BLOB is limited by the "block size" (no row of an in-memory
table may exceed the length of a page or "block"). In this appendix, we give you
some information to help you estimate the largest size VARCHAR or VARBINARY
data that you can store in an in-memory table.

29

B.3 Calculating
The algorithm for calculating the space available for BLOBs is approximate. Make
a copy of the table below, then fill it in with the values appropriate for your table.
Follow the steps to calculate the remaining space available for BLOB data.

Table 5. Calculating the space available for BLOB data

VALUE WHAT TO ENTER IN VALUE WHAT THE VALUE MEANS

1 In the space to the left, enter either your
block size or 32767 (whichever is smaller).
The block size will be either the value
that you set in the [IndexFile] BlockSize
solid.ini configuration file, or the
default documented in the IBM solidDB
Administrator Guide.

The block size (page size) is the number
of bytes in a "block", analogous to a disk
block. Since each row must fit within a
block, this represents the maximum size
of a row.

2 17 Use the hardcoded value shown to the
left.

This is the number of bytes of overhead
per page.

3 10 Use the hardcoded value shown to the
left.

This is the number of bytes of overhead
per row. We'll assume that you have only
1 row per page if you have large BLOBs.

4 If you have declared an explicit primary
key for your table, enter the value 10.
Otherwise, enter 20.

This represents bytes used for columns
that the server automatically adds to each
table.

5 Enter the number of columns in your
table, multiplied by 2.

This is the number of bytes of overhead
for the columns.

6 Enter the sum of the sizes of the
fixed-size columns of data in your table.
(See table #2 below for the size of each
fixed-size data type.)

This represents space taken up by
fixed-size columns.

7 Enter the number of blob columns. This is the number of bytes used to
terminate BLOB values (1 byte per value).

8 Sum the values in rows 2 through 7. This is the total space used by everything
except the BLOB values.

9 Subtract row 8 from row 1. This is the approximate number of bytes
available for BLOB data. If you have a
single BLOB column in your table, then
this is the approximate maximum size of
that BLOB value.

Note: The maximum block size is 64K; however, the maximum row size (and thus
the maximum blob size) is only 32K (actually 32K-1, or 32767). If your block size is
64K or 32K, enter 32767 instead of the block size in row 1 of the table.

The table below indicates the number of bytes required to store a value of each
fixed-size data type. For example, it takes 8 bytes to store a value of type SQL
FLOAT.

30 IBM solidDB: In-Memory Database User Guide

Table 6. Number of bytes required to store values

Data Type Storage Size (in bytes)

TINYINT 1

SMALLINT 2

INT 4

BIGINT 8

DATE/TIME/TIMESTAMP 11

FLOAT / DOUBLE PRECISION 8

REAL 4

NUMERIC / DECIMAL 11

CHAR / VARCHAR / LONG VARCHAR char_length(column_value) + 1

WCHAR / WVARCHAR / LONG WVARCHAR char_length(column_value) * 2 + 1

BINARY / VARBINARY / LONG VARBINARY octet_length(column_value) + 1

Appendix B. Calculating maximum BLOB size 31

32 IBM solidDB: In-Memory Database User Guide

Appendix C. Calculating storage requirements

This appendix gives you information that helps you estimate how much memory
or disk space is required to store a table and its indexes in memory or on disk.

The formulas given here are not precise, for example, because of the following
reasons:
v solidDB compresses some data.
v Variable-length data (for example, VARCHAR) requires different amounts of

space, depending upon the actual lengths of the values stored.
v The in-memory data structures do not necessarily store the same number of

pointers for every record.

In the formulas presented here, it is assumed that the data is not compressed, and
there are the maximum number of pointers. Thus the results that you get by using
these formulas are conservative - that is, the formulas typically overestimate the
amount of space required.

In the formulas below, the notation sum_of(x) means to take the sum of the sizes
of each x. For example:
v sum_of(col_size) means to take the sum of the sizes of each of the columns in

the table or index.
v sum_of(index_sizes) means to take the sum of the sizes of all of the indexes on

the table.

C.1 Calculating storage requirements for disk-based tables
The general formula for the space required for a disk-based table is:
chkpt_factor x (table_size + sum_of(index_sizes))
where

chkpt_factor is between 1.0 and 3.0 (explained below), and
table_size =

1.4 x rows x (sum_of(col_size + 1) + 12)
where

rows is the number of rows; and
sum_of(col_size + 1) is the sum of the sizes of the columns

plus one byte per column.
The column sizes are shown in a table later.

For each disk-based index, the index_size is
1.4 x rows x (pkey_size + idx_size)

where pkey_size is the sum of the sizes of the columns in the primary key, and
idx_size is the sum of the sizes of the columns in the index.

The chkpt_factor is needed to take into account that "checkpoint" operations may
briefly require up to three times the size of the database. During a checkpoint
operation, a copy of each of the changed pages in the database is copied from
memory to the disk. If every page in the database has been updated, then it is
possible to copy as many pages from memory as there already are on disk.
Furthermore, the most recent successful checkpoint is not deleted until the current
checkpoint is successfully completed. Therefore, during a checkpoint the disk can
simultaneously have up to 3 copies of each page (1 copy for the page in the

33

database, 1 copy in the most recent successful checkpoint, and 1 copy for the
current checkpoint while it is executing). The checkpoint factor therefore can be
between 1.0 and 3.0. Values approaching 3.0 are rare in most databases. A value of
1.5 is usually well sufficient even for small databases that have high levels of
activity. The less frequent the checkpoint, the larger the chkpt_factor might need to
be.

Note: In a disk-based index, if you do not explicitly define a primary key, the
server uses a server-generated "row number" as the primary key. This forces the
primary key index to store records in the same order that they were inserted.

Background information

On disk-based tables, data and indexes are stored in a B-tree. Each entry in the tree
consumes space for the header and the data.

The space used by the actual data can be calculated using the column sizes per
column type as shown in C.3, “Column sizes against column type,” on page 37.

In addition, in disk-based tables, the server requires 1 additional byte per column;
this byte is used as part of the length indicator, which also serves as a null
indicator.

The header for each row uses 12 bytes:

Table 7. Header bytes

Number of bytes Used for...

3 bytes Row header

3 bytes Table id

6 bytes Row version

If a disk-based table contains indexes other than the primary key, the size of the
entries in those indexes must be estimated separately using the same guideline. An
index entry contains the following components:
v Columns that are defined in the index
v Columns of the primary key of the table
v A row header (12 bytes)

Additionally, there is usually some empty space (for example, 20 - 40%) in the
database pages. This is why the formulas include a multiplier of 1.4 for both tables
and indexes.

For example:

You first create a disk-based table as follows:
CREATE TABLE subscriber (

id INTEGER NOT NULL PRIMARY KEY,
name VARCHAR(50),
salary FLOAT)
STORE DISK;

Then you create a secondary index as follows:

34 IBM solidDB: In-Memory Database User Guide

CREATE INDEX subscriber_idx_name ON subscriber (name);

The index entry contains the NAME column; it also contains the primary key
column, which in this case is ID. The space required by that index should be
estimated separately. The total size of the disk-based table, assuming the "empty
space factor" is 1.4, can be calculated as follows:
rows x 1.4 // 1.4 = the empty space estimate.

x ((12 + 4 + (50+5) + 8 + 3) // size of the table entry,
+ (12 + 4 + (50+5) + 2)) // size of the secondary index entry

Tip: You can present the above calculation also in the following way:
space required for space required for
one row in table one row in index

| |
------------------------- ---------------------
| | | |
| | | |

rows x 1.4 x ((12 + 4 + (50+5) + 8 + 3) + (12 + 4 + (50+5) + 2))
| | | | | | | | | | |

row header size <-- | | | | | | | | | |
size of INT <---------- | | | | | | | | |
size of VARCHAR(50) <------- | | | | | | | |
VARCHAR overhead <----------- | | | | | | |
size of FLOAT <-------------------- | | | | | |
length indicators (1 byte per col) <---- | | | | |
row header size (in index) <------------------- | | | |
size of INT <------------------------------------- | | |
size of VARCHAR(50) <----------------------------------- | |
VARCHAR overhead <--------------------------------------- |
length indicator bytes (1 per column) <-----------------------

C.2 Calculating storage requirements for in-memory tables
The general formula for the space required for an in-memory table is:
table_size + sum_of(index_sizes)

table_size =

1.3 x rows x (sum_of(col_sizes) + (3 x word_size) + (2 * num_cols) + 2)

where:
v rows is the number of rows
v word_size is the machine word size (for example, 4 bytes for 32-bit OS and 8

bytes for 64-bit OS)
v num_cols is the number of columns
v sum_of(col_sizes) is the sum of the sizes of the columns

For each in-memory index, the index size is
1.3 x rows x ((dist_factor x sum_of(col_sizes + 1)) + (8 x word_size) + 4)

where dist_factor is a value between 1.0 and 2.0 that depends upon the distribution
of the key values. If key values are highly dissimilar, use a value closer to 2.0. If
key values are highly similar, use a value closer to 1.0.

Background information

When calculating the storage requirements of in-memory tables, the size of each
entry is the combined size of the data of the table plus three memory pointers (4
bytes each in 32-bit operating systems or 8 bytes each in 64-bit operating systems)

Appendix C. Calculating storage requirements 35

of overhead per row. Additionally, there is overhead of two bytes per row and two
bytes per each column of the row. You do not need to add 1 byte per column to
take into account the length indicator; that is included in the 2 bytes per row.

In addition, the in-memory tables can have indexes, which are populated upon
server startup. Each index entry contains the data of the columns defined in the
index. Additionally, each index entry contains up to eight memory pointers. A copy
of the primary key is NOT required for an in-memory index.

Furthermore, there is some other overhead that depends on the actual data values
of the index. This is a percentage of the data size of the index. An exact value
cannot be given exactly because it depends on the key value distribution, but the
multiplier ranges between 1.0 and 2.0.

Additionally, the index structure itself needs an average of 4 bytes per index entry
(that is, per row).

For the above example table and index

For example:

You first create an in-memory table as follows:
CREATE TABLE subscriber (

id INTEGER NOT NULL PRIMARY KEY,
name VARCHAR(50),
salary FLOAT)
STORE MEMORY;

Then you create a secondary index as follows:
CREATE INDEX subscriber_idx_name ON subscriber (name);

You can then estimate the memory consumption in a 32-bit operating system as
follows:
rows * 1.3 x (

((3 x 4) + 2 + (4 + 2) + (50+5+2) + (8+2)) // Size of data in table
+ ((8 x 4) + 4 + 1.2 x 4) // Size of the primary key index
+ ((8 x 4) + 4 + 1.2 x (50+5))) // Size of the secondary index.
)

((3 x 4) + 2 + (4 + 2)+(50+5+2)+(8+2)) // Size of data in the table.
| | | | | | | | | |
| | | | | | | | | -> 2 bytes per col
| | | | | | | | ---> 8 bytes for FLOAT (Salary)
| | | | | | | -------> 2 bytes per col
| | | | | | ---------> 5 bytes overhead per VARCHAR
| | | | | ------------> 50 bytes for VARCHAR(50)
| | | | ----------------> 2 bytes per col
| | | --------------------> 4 bytes for INT (ID)
| | -------------------------> 2 bytes per row
| ------------------------------> pointer size (4 bytes on 32-bit OS)
----------------------------------> 3 pointers

((8 x 4) + 4 + 1.2 x 4) // Size of the primary key index
| | | | |
| | | | ---------------> 4 bytes for INT
| | | --------------------> 1.2 index value distribution factor
| | -------------------------> 4 bytes per index entry
| ------------------------------> pointer size (4 bytes on 32-bit OS)
----------------------------------> 8: up to 8 pointers

36 IBM solidDB: In-Memory Database User Guide

((8 x 4) + 4 + 1.2 x (50+5)) // Size of the secondary index.
| | | | | |
| | | | | -----------> 4 bytes for VARCHAR overhead
| | | | --------------> 50 bytes for VARCHAR(50)
| | | --------------------> 1.2 index value distribution factor
| | -------------------------> 4 bytes per index entry
| ------------------------------> pointer size (4 bytes on 32-bit OS)
----------------------------------> 8 up to 8 pointers

In a 64-bit operating system, use a memory pointer size of 8 bytes rather than 4
bytes.

The factor 1.2 in the above estimate is the "TRIE index value distribution factor"
whose exact value depends on the actual values of the indexed column. Its value is
typically between 1 and 2. With random value distribution, the value is closer to
2.0. With sequential value distribution, it is closer to 1.0. The 4 bytes is the data
overhead needed by an index entry on average.

The factor of 1.3 is to take into account the internal overhead of the memory
allocator.

Note: Indexes of main memory tables are created dynamically each time the server
starts. The in-memory indexes are never written to disk and therefore they do not
occupy any disk space. However, the tables themselves are written to disk during
checkpoints and when the server shuts down, so the total amount of disk space
that you have must be enough to store both the disk-based tables and the
in-memory tables.

C.3 Column sizes against column type
Table 8. Column sizes against column type

Column type Size

TINYINT 2 bytes

SMALLINT 2 bytes

INT 4 bytes

BIGINT 8 bytes

DATE/TIME/
TIMESTAMP

11 bytes

FLOAT / DOUBLE
PRECISION

8 bytes

REAL 4 bytes

NUMERIC / DECIMAL 12 bytes

CHAR / VARCHAR /
LONG VARCHAR

char_length(column_value) + 5

WCHAR / WVARCHAR
/ LONG WVARCHAR

char_length(column_value) * 2 + 5

BINARY / VARBINARY
/ LONG VARBINARY

octet_length(column_value) + 5

Note: The values in the above table are the maximum lengths. Variable-length data
(VARCHAR) or compressible data might require fewer bytes.

Appendix C. Calculating storage requirements 37

C.4 Measuring memory consumption
After you have created your tables and indexes, you can measure the actual
amount of memory consumed by using the command:

ADMIN COMMAND 'info imdbsize';

This command gives the total memory consumption of in-memory tables and
indexes. The units are kilobytes.

38 IBM solidDB: In-Memory Database User Guide

Index

Special characters
= (equal to)

use of the equals sign when setting parameter values 15

A
ADMIN COMMAND

info imdbsize 20
pmon mme 20

algorithm for choosing which tables to store in memory 27

B
BLOBs (Binary Large Objects)

calculating maximum size 29

C
CacheSize (parameter) 22
CLOB data type 29
configuring

in-memory database 15

D
database

changing tables types 13
choosing table types 11
configuring 15
in-memory 2, 7, 11, 13, 15, 27
non-persistent tables 2
persistent tables 2
table types 2
tables improving performance 7
temporary tables 2, 3
transient tables 2, 5
which tables to choose 27

DefaultStoreIsMemory (parameter) 15

E
equals sign 15

H
HotStandby

in-memory databases 8

I
ImdbMemoryLimit (parameter) 17, 21, 22, 23
ImdbMemoryLowPercentage (parameter) 17, 21, 22
ImdbMemoryWarningPercentage (parameter) 17, 21, 23
in-memory tables

limitations 7
info imdbsize ADMIN COMMAND 20

L
linked library access (LLA) 9
LockEscalationEnabled (parameter) 18
LockEscalationLimit (parameter) 18
LockHashSize (parameter) 18

M
MaxBytesCachedInPrivateMemoryPool (parameter) 18
MaxCacheUsage (parameter) 18
MaxTransactionSize (parameter) 19
memory

consumption
controlling 20, 21
measuring 38
monitoring 20

physical 8
virtual 8

MemoryPoolScope (parameter) 19
MultiprocessingLevel (parameter) 16

N
NumberOfMemoryPools (parameter) 19

P
parameters

CacheSize 22
DefaultStoreIsMemory 12
ImdbMemoryLimit 21, 22, 23
ImdbMemoryLowPercentage 21, 22
ImdbMemoryWarningPercentage 21, 23
ProcessMemoryCheckInterval 21, 25, 26
ProcessMemoryLimit 21, 25, 26
ProcessMemoryLowPercentage 21, 25
ProcessMemoryWarningPercentage 21, 26
reaching 23

pmon mme
ADMIN COMMAND 20

ProcessMemoryCheckInterval (parameter) 21, 25, 26
ProcessMemoryLimit (parameter) 21, 25, 26
ProcessMemoryLowPercentage (parameter) 21, 25
ProcessMemoryWarningPercentage (parameter) 21, 26

R
READ COMMITTED 8
ReleaseMemoryAtShutdown (parameter) 19
REPEATABLE READ 8
RestoreThreads (parameter) 20

S
SERIALIZABLE 8

restrictions on using 8
shared memory access (SMA) 9
SMA (see shared memory access) 9

39

solid.ini
MME section 21
SRV section 21

storage requirements
calculating 33, 35
for disk-based tables 33
for in-memory tables 35

T
tables

in-memory 7, 12
in-memory table types 2
limitations 7
non-persistent in-memory tables 2
persistent in-memory tables 2
specifying 12
temporary 2, 3, 22
transient 2, 5, 22

temporary tables
limitations 12
relationship to ImdbMemoryLimit 22
using with referential constraints 12

transactions
isolation levels

overview 8
READ COMMITTED 8
REPEATABLE READ 8
restrictions 8
SERIALIZABLE 8

transient tables
cannot be used as master 5
duration 5
limitations 5
relationship to ImdbMemoryLimit 22
using with referential constraints 5

40 IBM solidDB: In-Memory Database User Guide

Notices

© Copyright Oy IBM Finland Ab 1993, 2013.

All rights reserved.

No portion of this product may be used in any way except as expressly authorized
in writing by IBM.

This product is protected by U.S. patents 6144941, 7136912, 6970876, 7139775,
6978396, 7266702, 7406489, 7502796, and 7587429.

This product is assigned the U.S. Export Control Classification Number
ECCN=5D992b.

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

41

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Canada Limited
Office of the Lab Director
8200 Warden Avenue
Markham, Ontario
L6G 1C7
CANADA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

42 IBM solidDB: In-Memory Database User Guide

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

IBM, the IBM logo, ibm.com®, Solid, solidDB, InfoSphere®, DB2®, Informix®, and
WebSphere® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and
service names might be trademarks of IBM or other companies. A current list of
IBM trademarks is available on the Web at “Copyright and trademark information”
at www.ibm.com/legal/copytrade.shtml.

Java™ and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other product and service names might be trademarks of IBM or other companies.

Notices 43

http://www.ibm.com/legal/copytrade.shtml

44 IBM solidDB: In-Memory Database User Guide

����

SC27-3845-05

	Contents
	Tables
	Summary of changes
	About this manual
	Typographic conventions
	Syntax notation conventions

	1 Overview of solidDB in-memory features
	1.1 In-memory versus disk-based tables
	1.2 Types of in-memory tables
	1.2.1 Persistent in-memory tables
	1.2.2 Non-persistent in-memory tables
	Temporary tables
	Transient tables
	Differences between temporary and transient tables

	1.2.3 Table types and referential integrity

	1.3 Considerations for developing applications with in-memory tables
	1.3.1 Performance and in-memory tables
	1.3.2 Physical memory and virtual memory
	1.3.3 Transaction isolation limitations with in-memory tables
	1.3.4 Shared memory access and linked library access
	1.3.5 HotStandby and in-memory tables

	2 Working with in-memory tables
	2.1 How to decide which tables to designate as in-memory tables
	2.2 Creating in-memory and disk-based tables
	2.3 Creating temporary and transient tables
	2.4 Changing a table from in-memory to disk-based or vice-versa

	3 Configuring in-memory database
	3.1 Configuration parameters
	3.1.1 General section
	3.1.2 MME section

	3.2 Memory consumption
	3.2.1 Monitoring memory consumption
	3.2.2 Controlling memory consumption
	Memory consumption
	Process memory consumption

	Appendix A. Algorithm for choosing which tables to store in memory
	Appendix B. Calculating maximum BLOB size
	B.1 Purpose
	B.2 Background
	B.3 Calculating

	Appendix C. Calculating storage requirements
	C.1 Calculating storage requirements for disk-based tables
	C.2 Calculating storage requirements for in-memory tables
	C.3 Column sizes against column type
	C.4 Measuring memory consumption

	Index
	Special characters
	A
	B
	C
	D
	E
	H
	I
	L
	M
	N
	P
	R
	S
	T

	Notices

