
IBM solidDB
Version 7.0

High Availability User Guide

SC27-3843-05

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 203.

First edition, fifth revision

This edition applies to V7.0 Fix Pack 8 of IBM solidDB (product number 5724-V17) and to all subsequent releases
and modifications until otherwise indicated in new editions.

© Oy IBM Finland Ab 1993, 2013

Contents

Figures v

Tables vii

Summary of changes. ix

About this manual xi
Illustration conventions xi
Typographic conventions xii
Syntax notation conventions xiii

1 Introduction to IBM solidDB
HotStandby 1
1.1 Key features of HotStandby 2

1.1.1 HotStandby API (HSB admin commands) . . 3
1.1.2 Basic HotStandby server scheme 3
1.1.3 Server HotStandby states 7
1.1.4 Replication modes in HotStandby 10
1.1.5 Durability and logging 13
1.1.6 Load balancing of read-only workloads . . 15
1.1.7 HotStandby and SMA 16
1.1.8 HotStandby and advanced replication . . . 17

1.2 Performance and HotStandby 18
1.3 High Availability Controller (HAC) 20

1.3.1 Recognized failures 22
1.3.2 Controlling database server processes . . . 22
1.3.3 External Reference Entity (ERE) 23
1.3.4 Networking in HAC. 24
1.3.5 HAC logging 25

1.4 High Availability Manager (sample) 25

2 Getting started with HotStandby . . . 27
2.1 HotStandby quick start procedure. 27
2.2 HotStandby with HAC quick start procedure . . 29

2.2.1 Starting and stopping HA Controller . . . 31
2.3 Summary of startup sequences 32
2.4 HotStandby samples 33

3 Administering and configuring
HotStandby. 35
3.1 Basics of HotStandby administration 35

3.1.1 Querying HotStandby configuration
parameters 36
3.1.2 Modifying HotStandby configuration
parameters 37

3.2 Configuring HotStandby 37
3.2.1 Defining primary and secondary node
HotStandby configuration 37
3.2.2 Setting HotStandby server wait time to help
detect broken or unavailable connections . . . 38
3.2.3 Defining transaction durability level . . . 40
3.2.4 Defining name and location for HotStandby
database copy operation 40

3.2.5 Defining primary server behavior during a
secondary failure 40
3.2.6 Ensuring that Primary and Secondary
parameter values are coordinated 41
3.2.7 Determining whether the Primary settings
take precedence over the Secondary settings . . 42

3.3 Configuring HA Controller and HA Manager . . 42
3.4 Administering HotStandby with ADMIN
COMMANDs (HotStandby API) 43

3.4.1 Overview of administration tasks 44
3.4.2 Performing HotStandby recovery and
maintenance 44
3.4.3 Switching server states 45
3.4.4 Shutting off HotStandby operations . . . 49
3.4.5 Synchronizing primary and secondary
servers 50
3.4.6 Connecting HotStandby servers 59
3.4.7 Checking HotStandby status 59
3.4.8 Verifying HotStandby server states 62
3.4.9 Choosing which server to make primary . . 63
3.4.10 Changing a HotStandby server to a
non-HotStandby server 64

3.5 Performance tuning 65
3.5.1 Tuning replication performance with
safeness and durability levels 65
3.5.2 Tuning netcopy performance 65
3.5.3 Tuning database catchup performance. . . 66

3.6 Special considerations for using solidDB with
HotStandby 66

3.6.1 Transaction isolation level and in-memory
tables 66
3.6.2 Network partitions and dual primaries . . 66
3.6.3 Running out of space for transaction logs . 67
3.6.4 Throttling and multiprocessing in Secondary 68

3.7 Configuring for lower cost versus higher safety 69
3.7.1 Reducing cost: N + 1 spare and N + M
spares scenarios 69
3.7.2 Increasing reliability: 2N + 1 spare and 2N
+ M spare scenarios 70
3.7.3 How solidDB HSB supports the N+1 (N+M)
and 2N+1 (2N+M) approaches 70
3.7.4 Using HAC with spares 71

4 Using HotStandby with applications 73
4.1 Connecting to HotStandby servers 73

4.1.1 Choosing the connectivity type 74
4.2 Transparent Connectivity. 74

4.2.1 Defining the Transparency Connectivity
connection. 75
4.2.2 Failure transparency in Transparent
Connectivity 87
4.2.3 Load balancing in Transparent Connectivity 89
4.2.4 Handling TC Info contradictions 92

4.3 Basic Connectivity 92

iii

4.3.1 Reconnecting to primary servers from
applications 94
4.3.2 Reconnecting to secondary servers 97

4.4 Defining timeouts between applications and
servers 98

4.4.1 Application read timeout option. 98
4.4.2 Specifying -C option in the connect
parameters 99

4.5 Configuring SMA with HotStandby 99
4.6 Configuring advanced replication with
HotStandby 100

5 Failure handling with High
Availability Controller (HAC) 103
5.1 Primary database fails 103
5.2 Secondary database fails 104
5.3 Primary node fails 104
5.4 Secondary node fails 105
5.5 HotStandby link fails 105
5.6 Server is unresponsive to external clients . . . 106

6 Upgrading (migrating) HotStandby
servers 109
6.1 Cold migration procedure 109
6.2 Hot migration procedure 109
6.3 Hot migration procedure using netcopy . . . 112

Appendix A. HotStandby configuration
parameters 117
A.1 Server-side parameters 118

A.1.1 Cluster section 118
A.1.2 HotStandby section 118

A.2 Client-side parameters 121
A.2.1 Com section 122
A.2.2 TransparentFailover section 123

A.3 High Availability Controller (HAC) parameters 123
A.4 High Availability Manager (HAM)
configuration parameters 128
A.5 Configuration file examples 129

A.5.1 The solid.ini configuration file 129
A.5.2 The solidhac.ini configuration file . . . 129
A.5.3 The HAManager.ini configuration file . . 132

Appendix B. Error codes for
HotStandby 135
B.1 HotStandby errors and status codes 135
B.2 High Availability Controller errors and status
codes 144

B.3 solidDB database errors for HotStandby . . . 146
B.4 solidDB table errors 148
B.5 solidDB communication errors 148

Appendix C. HotStandby and HAC
ADMIN COMMANDs. 151
C.1 HotStandby commands (ADMIN COMMAND) 151
C.2 High Availability Controller commands
(ADMIN COMMAND) 159

Appendix D. Server state transitions 161
D.1 HotStandby state transition diagram 161

Appendix E. HotStandby system
events 169

Appendix F. Watchdog sample 171
F.1 HotStandby configuration using Watchdog . . 171

F.1.1 How the Watchdog application works . . 172
F.1.2 System design issues 173
F.1.3 Watchdog configuration 174
F.1.4 Using the sample Watchdog application 175

F.2 Failure situations and Watchdog actions . . . 175
F.2.1 Primary is down 176
F.2.2 Secondary is down 178
F.2.3 Watchdog is down 181
F.2.4 Communication link between Primary and
Secondary is down 183
F.2.5 Communication link between the
Watchdog and Primary is down 185
F.2.6 Communication link between the
Watchdog and Secondary is down 187
F.2.7 Communication links between the
Watchdog and Primary, and between the
Primary and Secondary, are down 189
F.2.8 Communication links between the
Watchdog and Secondary, and between the
Primary and Secondary, are down 192

F.3 Watchdog section of the solid.ini
configuration file 194

Index 199

Notices 203

iv IBM solidDB: High Availability User Guide

Figures

1. HotStandby architecture. 2
2. HotStandby server scheme 3
3. HotStandby switchover to new Primary (old

Secondary) 6
4. Server failover and catchup example 7
5. Synchronous HotStandby configuration 11
6. Architecture of SMA Transparent Connectivity

with HotStandby. 17
7. HotStandby with master and replica server

scheme 18
8. High Availability Controller architecture 21
9. External Reference Entity components. . . . 24

10. High Availability Manager 26
11. Summary of startup sequences 32
12. State switch 46
13. Manual full copy procedure 53
14. Example: TC connection 85
15. Example: TC connection with multi-home

servers 86
16. Example: HotStandby with SMA

configuration 100
17. HotStandby and advanced replication:

failover of Master database 101

18. HotStandby and advanced replication:
failover of Replica database 102

19. HotStandby server state transitions 163
20. Heterogeneous HotStandby configuration

with Watchdog 174
21. Primary is down scenario and remedy 177
22. Secondary is down scenario and remedy 180
23. Watchdog is down scenario and remedy 182
24. Broken link between Primary and Secondary

scenario and remedy 184
25. Broken link between Watchdog and Primary

scenario and remedy 186
26. Broken link between Watchdog and

Secondary scenario and remedy 188
27. Broken link between Watchdog and Primary,

and between Primary and Secondary, scenario
and remedy 190

28. Broken link between Watchdog and
Secondary and between Primary and
Secondary scenario and remedy 193

v

vi IBM solidDB: High Availability User Guide

Tables

1. HotStandby illustration conventions xi
2. Typographic conventions xii
3. Syntax notation conventions. xiii
4. Description of server states. 8
5. Example: solid.ini configuration files in

single-computer and two-computer setups . . 28
6. Installation sequence steps 32
7. Administration tasks 44
8. Connect status return values 61
9. Server states 63

10. Pmon counters for monitoring multiprocessing
in the Secondary 68

11. Choosing the connectivity type 74
12. TC Info abbreviations 75
13. Connect string options 76
14. Possible combinations of TC Info attributes 82
15. Connect request errors 83
16. Warnings 84
17. Connection switch request 87
18. Communication link failure 88
19. Session state preservation 89
20. Connect string options 92
21. HOTSTANDBY_CONNECTSTATUS status

values 96
22. Cluster parameters 118
23. HotStandby parameters 118

24. Client-side communication parameters 122
25. TransparentFailover parameters 123
26. HAC configuration parameters:

[HAController] section 123
27. HAC configuration parameters: [LocalDB]

section 125
28. HAC configuration parameters: [RemoteDB]

section 128
29. HAC configuration parameters: [ERE] section 128
30. High Availability Manager configuration

parameters 128
31. solidDB server errors for HotStandby 135
32. solidDB HotStandby errors 140
33. solidDB HSB errors and messages 141
34. High Availability Controller errors and status

codes 144
35. solidDB database errors 146
36. solidDB table errors 148
37. solidDB communication errors 149
38. HotStandby commands (ADMIN

COMMAND) 151
39. High Availability Controller commands

(ADMIN COMMAND) 159
40. Server state transition table 164
41. HotStandby events. 169
42. Watchdog parameters 195

vii

viii IBM solidDB: High Availability User Guide

Summary of changes

Changes for revision 05
v New parameter HotStandby.NetcopyRpcCompress added in section HotStandby

section.
v New error message 30794,HSB,Message,Invalid HotStandby.Connect option -z.

-z option is not supported. added in section HotStandby errors and status
codes.

Changes for revision 04
v Examples for the parameter values of HotStandby.Connect parameter corrected

in sections HotStandby quick start procedure and Defining primary and
secondary node HotStandby configuration. The HotStandby.Connect parameter
must include the node name or IP address of the other computer in the HSB
pair.

v New High Availability Controller (HAC) parameters added in section High
Availability Controller (HAC) parameters
– HAController.NetcopyErrorLevel

– HAController.NetcopyWarningLevel

Changes for revision 03
v Previously undocumented High Availability Controller (HAC) commands added

in section High Availability Controller commands (ADMIN COMMAND):
– hac shutdowndb

– hac restartdb

Changes for revision 02
v New parameter HotStandby.NetcopyReceiveBufferSize added in section

HotStandby section.
v New simplified hot migration procedure added in section Hot migration

procedure. As of 7.0 Interim Fix 2 / Fix Pack 3, the hot migration procedure no
longer requires a netcopy to synchronize the servers during the upgrade.

Changes for revision 01
v Sections Configuring SMA TC with HotStandby and Syntax of Transparent

Connectivity Info – ODBC updated with information about specifying load
balancing method when using SMA with Transparent Connectivity. When using
SMA with TC, the load balancing method must be set to LOCAL_READ. If
READ_MOSTLY or WRITE_MOSTLY is specified, a network connection is used
instead of the SMA connection.

v Section Hot migration procedure updated: instead of -xmigratetohsbg2, the
option –xconvert or –xautoconvert is used in hot migration.

v Section Syntax of Transparent Connectivity Info – ODBC updated: encryption
attribute [USE_GSKIT={YES|NO}] added.

ix

x IBM solidDB: High Availability User Guide

About this manual

The IBM® solidDB® High Availability (HotStandby) component increases the
reliability of your database system, reducing downtime. HotStandby uses a "hot
standby" approach, in which a second database server runs in parallel with the
primary server and keeps an exact up-to-date copy of the data. If the primary
database server fails, the High Availability Controller (HAC) makes a switch over
to the secondary, transparently to applications and with no loss of committed
transactions, and with minimal performance impact. Switchover times can be quite
fast — as short as a couple of hundred milliseconds, depending upon the
characteristics of your hardware and software environment.

This guide contains information specific to the HotStandby component only. For
general administration and maintenance information about solidDB databases, see
IBM solidDB Administrator Guide.

This guide assumes the reader has general database management system (DBMS)
knowledge, and familiarity with SQL and solidDB.

Illustration conventions
This document contains several server diagrams depicting different scenarios in the
HotStandby environment.

The table below provides an illustration key for the server diagrams:.

Table 1. HotStandby illustration conventions

Symbol Description

Database
engine

The rectangle represents the executing program, that
is, the database server (engine) itself.

Database

The cylinder represents the data, generally stored on
disk. Alternatively, some or all may be stored in
memory.

Txn log

This symbol represents the transaction log (Txn Log),
which is used in both database recovery and
HotStandby.

xi

Table 1. HotStandby illustration conventions (continued)

Symbol Description

Txn log

Database
Database
engine

Secondary server
A rounded rectangle represents a complete server
with data and Txn Log. If the phrase Secondary
server or Primary server is inside the rounded
rectangle, then the server is a HotStandby server.

Secondary
server

Txn log

Database
engine

Primary server
For simplicity, in some cases the cylinder that
represents the data in the database is omitted. In
some cases, the symbol is simplified even further to
show just the rounded rectangle. Both icons are
simplified representations of a server.

Typographic conventions
solidDB documentation uses the following typographic conventions:

Table 2. Typographic conventions

Format Used for

Database table This font is used for all ordinary text.

NOT NULL Uppercase letters on this font indicate SQL keywords and
macro names.

solid.ini These fonts indicate file names and path expressions.

SET SYNC MASTER YES;
COMMIT WORK; This font is used for program code and program output.

Example SQL statements also use this font.

run.sh This font is used for sample command lines.

TRIG_COUNT() This font is used for function names.

java.sql.Connection This font is used for interface names.

LockHashSize This font is used for parameter names, function arguments,
and Windows registry entries.

argument Words emphasized like this indicate information that the
user or the application must provide.

xii IBM solidDB: High Availability User Guide

Table 2. Typographic conventions (continued)

Format Used for

Administrator Guide This style is used for references to other documents, or
chapters in the same document. New terms and emphasized
issues are also written like this.

File path presentation Unless otherwise indicated, file paths are presented in the
UNIX format. The slash (/) character represents the
installation root directory.

Operating systems If documentation contains differences between operating
systems, the UNIX format is mentioned first. The Microsoft
Windows format is mentioned in parentheses after the
UNIX format. Other operating systems are separately
mentioned. There may also be different chapters for
different operating systems.

Syntax notation conventions
solidDB documentation uses the following syntax notation conventions:

Table 3. Syntax notation conventions

Format Used for

INSERT INTO table_name
Syntax descriptions are on this font. Replaceable sections are
on this font.

solid.ini This font indicates file names and path expressions.

[] Square brackets indicate optional items; if in bold text,
brackets must be included in the syntax.

| A vertical bar separates two mutually exclusive choices in a
syntax line.

{ } Curly brackets delimit a set of mutually exclusive choices in
a syntax line; if in bold text, braces must be included in the
syntax.

... An ellipsis indicates that arguments can be repeated several
times.

.

.

.

A column of three dots indicates continuation of previous
lines of code.

About this manual xiii

xiv IBM solidDB: High Availability User Guide

1 Introduction to IBM solidDB HotStandby

The goal of high availability (HA) systems is to make system failures tolerable. To
implement high availability, the solidDB HotStandby component enables a
secondary server (a standby server) to run in parallel with the primary server (an
active server) and keep an up-to-date copy of the data in the primary server.

The HotStandby component implements an internal state machine that makes the
server aware of the HA state. The HA state machine makes it possible to preserve
database consistency. For example, when the server is in the Secondary state (that
is, receiving a transaction stream from the Primary), updates to the Secondary
database are disabled.

The availability or states of the servers can be controlled with a watchdog program.
The solidDB server provides a watchdog implementation called the solidDB High
Availability Controller (HAC).

Internally, HAC uses a set of HotStandby commands (HotStandby API) to control
the server states. A solution such as this allows implementation of systems that
have increased reliability. A failed database server no longer brings your site to a
complete halt. In as little as a few hundred milliseconds, in any engine
configuration supported by solidDB (such as solidDB advance replication with
master and replica servers), HotStandby allows the secondary database to replace
the failed one.

HotStandby architecture

HotStandby includes the following components:
v Watchdog application (for example, HAC)
v HotStandby API (HSB admin commands)
v Primary and Secondary solidDB servers

1

Principles of operation

HotStandby (HSB) performs synchronous transaction replication between two
nodes: a primary server and a secondary server.

The primary server node (Primary) contains the active database. The secondary
server node (Secondary) contains an exact, up-to-date copy of the active database,
and it can replace the Primary if the Primary fails.

The Secondary receives updates from the primary server, and is ready to take over
as the Primary if the original Primary fails. An additional benefit of having the
Secondary is that the Secondary can also respond to read-only requests (for
example, SELECT statements) from clients. This allows you to spread some of your
workload over two servers rather than one.

Note: The term "hot standby" (two words, all lower case) refers to the general
technique of having a second server ready to take over if the first server fails.
"HotStandby" (one word, capitalized as shown) refers to solidDB's specific
implementation of this general technique. The abbreviation for HotStandby is HSB.

Similarly, a watchdog refers to a technology that supervises the state of two
databases and can switch the states, if necessary. HAC is the solidDB watchdog
implementation. You can also use the HSB API to program your own watchdog
application. The solidDB package also includes a watchdog sample that you can
use as a starting point.

1.1 Key features of HotStandby
The HotStandby key features include failover support, transaction logging, and
load balancing.

DatabaseDatabase

HSB

HSB API

A watchdog
application

Secondary server,
node 2

Primary server,
node 1

Figure 1. HotStandby architecture

2 IBM solidDB: High Availability User Guide

1.1.1 HotStandby API (HSB admin commands)
The high availability behavior is controlled with an API that is based on a subset
of solidDB admin commands.

This subset of commands is identified by the command prefix hotstandby,
abbreviated as hsb. These commands can be issued by using any SQL-capable tool
(like solsql) or programmatic interfaces like ODBC or JDBC. The HotStandby
admin commands have the following syntax:
admin command ’hotstandby hsb-command options’;

or
admin command ’hsb hsb-command options’;

The hotstandby admin commands control the high availability state of a solidDB
HSB server, or retrieve state information. The commands can be issued manually
or programmatically. The solidDB HA management tools, High Availability
Controller (HAC), and the Watchdog sample use the commands programmatically.

1.1.2 Basic HotStandby server scheme
In the basic HotStandby server scheme, there are two database servers, the Primary
and the Secondary server. Both servers have their own disk drives on which they
stores the database, and each of which have their own transaction logs (Txn Log).

Figure 2 illustrates the basic HotStandby server scheme. The Primary writes to its
transaction log and forwards it to the Secondary so that the Secondary can make
the same changes to its copy of the database. The transaction log on the Secondary
is not actively involved in HSB, but it is maintained so that the Secondary can
recover data that was committed but not yet written to the main data tables.

Heartbeat
Internally, solidDB HSB uses a technique, which is referred to as heartbeat, to
monitor the connection between servers.

Sequences of keepalive messages are sent between active and standby servers. Both
servers continuously send the unidirectional "I am here" messages to the other
server. The messages are sent on a fixed time interval. A message from the other
server is expected to arrive within a predefined time window. In solidDB, the
heartbeat technique is called ping.

Txn log

Database
Database
engineHSB

Txn log

Database
Database
engine

Secondary serverPrimary server

Figure 2. HotStandby server scheme

1 Introduction to IBM solidDB HotStandby 3

Important: In solidDB the heartbeat technique is called ping, although there are no
ping requests sent. The heartbeat technique is different from the Ping protocol used
in Internet Protocol networks.

The transaction log and HotStandby
HotStandby uses the Primary server transaction log, which contains a copy of the
transactions that are committed on the server. In a non-HotStandby server, this
transaction log is used to recover data if the server shuts down abnormally.

In a HotStandby Primary server, the log data is also sent to the Secondary server
so that the Secondary knows what data to update. The Secondary database runs a
continuous roll-forward process that receives the log data and keeps the copy of
the data on the Secondary synchronized with the Primary.

If the Primary server fails, a watchdog application tells the secondary to become
the Primary. When the new Primary is in operation, the clients can connect to it
and continue working. Clients continue to see all data that was committed before
the Primary went down. (Clients must restart any transactions that were started
but not finished when the original Primary server went down.)

A special type of client connectivity called Transparent Connectivity (TC) is available
for clients in the HSB environment that calls for handling of failovers and
switchovers. For more information, see 4, “Using HotStandby with applications,”
on page 73.

If the Secondary server fails, the Primary can continue to operate. It continues
writing data to the transaction log and keeps that transaction log until the Primary
and Secondary are reconnected to each other and the Primary has sent the log to
the Secondary. The exact length of time that the Primary keeps the log depends
upon the settings of the solid.ini configuration parameters
General.CheckpointDeleteLog and General.BackupDeleteLog.
1. If General.CheckpointDeleteLog=Y, the Primary keeps all transaction logs since

the time that the Secondary went down or since the most recent checkpoint,
whichever is less recent.

2. If General.CheckpointDeleteLog=N and General.BackupDeleteLog=Y, the
Primary keeps all transaction logs since the time that the Secondary went down
or since the most recent backup, whichever is less recent.

3. If General.CheckpointDeleteLog=N and General.BackupDeleteLog=N, the server
keeps the logs indefinitely.

When the failed database server becomes available again, it can be configured to
become the new Secondary database server (the server that did not fail is already
acting as the current Primary).

If the Primary server is the server that fails, then the servers will reverse their
responsibilities, with the original Secondary taking over as the Primary, and the
original Primary coming back into the system as the new Secondary after it is
repaired. These reversals can happen each time there is a failure. The fact that
either server can be the Primary allows the system to survive multiple failures over
time, and continue operating indefinitely.

Note: If the Primary server is unable to contact the Secondary server for a long
time, the transaction log can fill all the available disk space. You can avoid running

4 IBM solidDB: High Availability User Guide

out of disk space because of large log files by applying appropriate configuration
parameter settings. For more information, see 3.6.3, “Running out of space for
transaction logs,” on page 67.

You can use HSB to reduce downtime during hardware and software upgrades.
You can leave one server to run as Primary while you upgrade the other.

HotStandby can also be used to help choose a customized balance of speed and
safety. The HSB parameters HotStandby.SafenessLevel and
HotStandby.2SafeAckPolicy control the way the Secondary server acknowledges
the transactions. Together with the logging-related Logging.DurabilityLevel
parameter, these parameters let you specify a combination of speed and safety.
Some parameter settings can increase performance over non-HSB servers. (For
more information, see the discussion of durability level and safeness parameters in
3.5, “Performance tuning,” on page 65.)

You can also configure the safeness level to change dynamically in relation to the
durability level by using the HotStandby.SafenessLevel=auto setting.

Failover
In a failover, the secondary is switched to be the new primary.

There are several reasons for switching the secondary to new primary:
1. The primary fails-
2. You want to administer the primary.
3. You must choose a primary when there is no existing primary on the system.

The secondary is switched to be the new primary by issuing the following
command on the Secondary server:
ADMIN COMMAND ’hotstandby set primary alone’;

In the case of a failover, the new Primary contains the up-to-date committed data
from the old Primary database. Everything that was committed in the Primary
database, can be found from the Secondary database. If Transparent Connectivity
(TC) is used, connections are not lost on the failover. However, the ongoing
transactions are aborted and must be re-executed. For more information, see 4.2.2,
“Failure transparency in Transparent Connectivity,” on page 87. The new Primary
can operate alone and continue to write transactions and data to its database and
transaction log.

1 Introduction to IBM solidDB HotStandby 5

1. The server that was originally the Secondary becomes the new Primary after
the old Primary server fails.

Server Catchup
When the old Primary is back online, assuming that there is an existing Primary, it
becomes the new Secondary. At this stage, the information in the new Secondary
lags behind that of the new Primary as new transactions are committed to the new
Primary database. To bring the new Secondary up to date, the transaction log data
of the new Primary is sent to the new Secondary automatically after the servers are
connected. All pending changes are written from the transaction log to the new
Secondary so that the Secondary can keep in sync with the Primary. Server catchup
is illustrated in Figure 4 on page 7.

1

Txn log

Database
Database
engine

Txn log

Database
Database
engine

Formerly secondary
server

Primary server

New primaryOld primary (down)

Figure 3. HotStandby switchover to new Primary (old Secondary)

6 IBM solidDB: High Availability User Guide

1. Normal operation: Primary server sends data to Secondary server.
2. When Primary server fails, Secondary server takes over as the new Primary.

New Primary server saves transaction information in its transaction log so that
it can send the data to the new Secondary server later.

3. After the old Primary server is brought up as the new Secondary server, the
information in the transaction log of the new Primary is sent to the new
Secondary so that it can catch up.

1.1.3 Server HotStandby states
In a HotStandby system, each server is in one of several possible states that
describes the current behavior of the server.

For example, when the Primary and Secondary are communicating and
synchronizing, they are in the PRIMARY ACTIVE and SECONDARY ACTIVE
states.

Alternatively, if the Primary loses contact with the Secondary, the Primary switches
to the PRIMARY UNCERTAIN state automatically. In that state, it does not accept
new transactions. The user or, more typically, the HAC can switch the server to the

2

3

1

Txn log

Database
engine

HSB

Txn log

Database
engine

Txn log

Database
engine

HSB

Txn log

Database
engine

Txn log

Database
engine

Txn log

Database
engine

New primary serverNew secondary server

New primary serverPrimary server

Secondary serverPrimary server

Figure 4. Server failover and catchup example

1 Introduction to IBM solidDB HotStandby 7

PRIMARY ALONE state, in which the server acts as an independent server–it
accepts new transactions and stores them to send to the Secondary later.

Description of server states
Both servers in an HotStandby (HSB) pair have states that can be queried and
manipulated.

Table 4. Description of server states

STATE DESCRIPTION

PRIMARY ACTIVE The servers are connected, and this server
(the Primary server) is accepting read/write
transactions and sending the data to the
Secondary server. The Secondary server
must be in SECONDARY ACTIVE state.

PRIMARY ALONE The peer servers are not interconnected. The
peer might be up, but it is not connected
and therefore is not accepting any
transactions. The peer might be in the
SECONDARY ALONE state).

This server (the Primary) is actively
accepting and executing read/write
transactions and collecting them to be sent
to the Secondary later.

8 IBM solidDB: High Availability User Guide

Table 4. Description of server states (continued)

STATE DESCRIPTION

PRIMARY UNCERTAIN The servers have disconnected abnormally
and the AutoPrimaryAlone configuration
parameter is set to No. In the PRIMARY
UNCERTAIN state, any unacknowledged
transactions remain in a pending status,
which means that the server does not
commit or roll back the transaction until
HAC changes the server to another state.

The operator has three possible actions:
reconnect the Primary to the Secondary, set
the Primary server to PRIMARY ALONE
state, or set the Primary server to
SECONDARY ALONE state.

1. If the server is reconnected to the
Secondary, then the transactions are
committed on the Primary.

2. If the state is changed to PRIMARY
ALONE, then the open transactions are
committed on the Primary.

3. If the state is changed to SECONDARY
ALONE, then the open transactions
remain pending. They are finally
resolved after the server changes to
another state. For example, if the server
is moved to the SECONDARY ACTIVE
state, the blocked transactions are
aborted or committed, depending on the
catchup outcome. If the server state is
changed to STANDALONE or PRIMARY
ALONE, then the blocked transactions
are committed.

If you want the Primary server to
automatically go to PRIMARY ALONE
rather than PRIMARY UNCERTAIN when it
loses contact with the Secondary, then read
the description of the AutoPrimaryAlone
configuration parameter.
Note:

HAC can maximize safety by always
switching the server from PRIMARY
UNCERTAIN to SECONDARY ALONE. This
prevents the possibility of dual primaries.
However, it also prevents users from
updating data on the server. For more
information, see 3.6.2, “Network partitions
and dual primaries,” on page 66.

1 Introduction to IBM solidDB HotStandby 9

Table 4. Description of server states (continued)

STATE DESCRIPTION

SECONDARY ACTIVE The peer servers are interconnected, and this
server is accepting incoming transaction log
data from the Primary. The transactions are
executed on the Secondary so that it has the
same data as the Primary. The transactions
are also written to the transaction log of the
Secondary so that the Secondary itself can
recover the data if the Secondary fails.
Additionally, clients can perform read-only
transactions on a server in the SECONDARY
ACTIVE state. When a server is in the
SECONDARY ACTIVE state, the server's
peer must be in PRIMARY ACTIVE state.

SECONDARY ALONE The Secondary is disconnected from its peer
server. Only read requests are accepted. The
server can be connected to the peer by
issuing the command HotStandby connect
on either the Secondary or the Primary.

STANDALONE The server has no HSB state (Primary or
Secondary) and operates in the way a
regular stand-alone server operates.
Transaction logs are processed and removed
in the normal way, too; they are not saved
for the Secondary. To resume HSB operation,
the server must be set to either PRIMARY
ALONE or SECONDARY ALONE, and the
Primary has to do a netcopy or copy
operation to send a complete copy of the
database to the Secondary.

OFFLINE The server was started in "netcopy listen
mode" (also called "backupserver mode"). In
this mode, the server is waiting for an
incoming netcopy from a server that is in
PRIMARY ALONE state. When the server
successfully completes netcopy, the server
moves to the state SECONDARY ALONE.

You cannot directly observe the OFFLINE
state because a server in OFFLINE state does
not accept client connections. If you attempt
to connect to a server in the OFFLINE state,
error code 14552 Server is in backup
server mode, no connections are allowed
is returned. A server in the OFFLINE state
responds only to a netcopy operation.

1.1.4 Replication modes in HotStandby
The purpose of a HotStandby replication protocol is to carry the transaction results
safely from the primary server to the secondary server. solidDB offers both
synchronous (2-safe) and asynchronous (1-safe) replication protocols. Together with
various durability (logging) levels, the replication protocol t can be used to tune
the HotStandby system to the required balance between performance and
endurance.

10 IBM solidDB: High Availability User Guide

v 1-safe: the transaction is first committed at Primary and then transmitted to
Secondary

v 2-safe: the transaction is not committed before it has been acknowledged by
Secondary (default).

The safeness level can be controlled at three levels:
v Global – HotStandby.SafenessLevel parameter
v Session – SET SAFENESS statement
v Transaction – SET TRANSACTION SAFENESS statement

Synchronous HotStandby with 2-safe replication
To ensure that the Primary and Secondary have the same data, solidDB uses,
primarily, a synchronous HotStandby model. It is called a 2–safe replication method;
the data is written in two places before the user is told that the data has been
committed.

Before committing changes to a transaction in the Primary database, the Primary
server sends the transaction data to the Secondary server. The Secondary server
must send acknowledgement to the Primary that it has committed or at least
received the data. Otherwise, the Primary server times out and changes its state
from PRIMARY ACTIVE to PRIMARY UNCERTAIN. In this case, the Primary
server cannot roll back or commit the transaction. The HAC can set the Primary
server to PRIMARY ALONE state, which allows the Primary to continue to receive
transactions and operate independently of the Secondary. It commits the pending
transactions that were sent to the Secondary and resumes accepting new
transactions.

Note: The Secondary server sends an acknowledgement as soon as it has
committed (or at least received) the transaction log entries. This configuration
prevents lost transactions when there is a single failure. Additionally, a file-based
transaction log is optionally retained to facilitate database recovery in case a total
system failure occurs.

Txn log

Commit

Client
Primary

Primary up, secondary down

Commit

Txn log

OKCommit

Client
SecondaryPrimary

Both primary and secondary are up

Figure 5. Synchronous HotStandby configuration

1 Introduction to IBM solidDB HotStandby 11

Basic steps in sending data

Sending data with synchronous replication includes the following steps:
1. The Primary server writes data (in record level format) to the transaction log at

the Primary node.
2. When the Primary server encounters a commit statement, all changed data is

sent to the Secondary server.

Note: If the Secondary server fails after the transaction starts and before the
Primary sends the data, then the Primary will roll back the transaction.

3. The Secondary acknowledges the commit message. The timing of the
acknowledgement depends upon the setting of the HotStandby.2SafeAckPolicy
configuration parameter. With the fastest alternative, 2-safe received, the
Secondary sends acknowledgement to the Primary immediately upon receiving
the commit message. With the safest alternative, 2-safe durable, the Secondary
sends acknowledgement after it has executed and written the transaction
durably to its own transaction log.
When the Primary receives the acknowledgement, the Primary notifies the user
that the data has been committed.

4. If the Primary does not receive acknowledgement from the Secondary (for
example, because of a network failure or node failure), the Primary server times
out and switches to the PRIMARY UNCERTAIN state. The Primary is unable to
roll back or commit the transaction itself because it does not know the state of
recent transactions in the Secondary. The Primary does not know which of the
following happened:
v The Secondary was down before the transaction was committed.
v The Secondary already committed the transaction, but the Primary server did

not receive acknowledgement, for example because of network failure.
While the server is in PRIMARY UNCERTAIN state, the current transaction and
new transactions that a user tries to commit are blocked and the user might
perceive that the server is unresponsive.

5. If the HAC detects that the Secondary is down or the network has failed, it can
switch the Primary server to the PRIMARY ALONE state. When the Primary
server is set to PRIMARY ALONE, it commits the pending transactions that
were sent to the Secondary and resumes accepting new transactions.

6. Changes are accumulated to the transaction log file until the Secondary server
is back in operation or until the Primary server is out of disk space. If the
server runs out of disk space for the transaction log, the Primary changes to
read-only mode.

7. If the Secondary server is out of operation for a long time and the server is
likely to run out of disk space for the transaction log, you might want to switch
the Primary server from PRIMARY ALONE to STANDALONE state. This
means that the transaction log does not store all transactions since contact was
lost with the Secondary, and therefore the Secondary cannot catch up only by
reading the transaction logs from the Primary. If the Secondary cannot be
brought up to date with the transaction logs, the only way to synchronize the
Secondary with the Primary is to copy its database files to the Secondary. This
can be done with the hotstandby netcopy command.

8. To execute hotstandby netcopy, the Primary must be in the PRIMARY ALONE
state. After hotstandby netcopy, the Primary server remains in the PRIMARY
ALONE state, regardless of whether the command succeeds or fails.

9. In order for the Primary to start sending its transactions to the Secondary
again, the Primary server must be connected explicitly to the Secondary server

12 IBM solidDB: High Availability User Guide

by using the command hotstandby connect. After the Primary server is
connected to the Secondary server, the Primary operates in the PRIMARY
ACTIVE state.
After the servers are connected, they start performing catchup – when all
pending changes are automatically written from the transaction log to the
Secondary to keep in sync with the Primary. Before server catchup, the Primary
and Secondary exchange information and determine where to begin the
catchup so that a transaction is not committed twice on the Secondary.

Related tasks:
“Copying a primary database to a secondary over the network” on page 54
To send a copy of the database file from the Primary server to the Secondary
server, use the netcopy command. The Secondary server must already be running.
“Copying a database file from the primary server to a specified directory” on page
57
If the directory that the Secondary uses for the database is visible to the Primary,
you can use the hotstandby copy command to copy the database from the Primary
to the Secondary.
3.4.6, “Connecting HotStandby servers,” on page 59

Asynchronous HotStandby with 1-safe replication
Optionally, asynchronous replication from Primary to Secondary can be used. This
is called 1-safe replication.

With 1-safe replication, the transactions are acknowledged immediately after they
have been committed at the Primary. This offers significant performance gains.
After the commit, the transactions are sent to the Secondary, in an asynchronous
way. The trade-off is that, when a failure occurs at Primary, a few transactions that
were in transfer, might be lost.

Either of the two replication methods can be chosen dynamically, or even per
session or transaction. The replication delay that is involved with 1-safe replication
can be controlled, too.

1.1.5 Durability and logging
The durability level controls how solidDB handles transaction logging. The solidDB
server supports three durability levels: strict (safe), relaxed (fast), and adaptive.
Relaxed durability yields best performance while strict durability minimizes loss of
transactions. The adaptive durability level is available only in HotStandby
configurations.
v Strict durability: If a transaction is written to the transaction logs as soon as the

transaction is committed, this is called "strict durability". This type of durability
maximizes safety.

v Relaxed durability: If the server is permitted to defer the transaction write until
the server is less busy, or until it can write multiple transactions together, this is
called "relaxed durability" (or "relaxed logging"). If you use relaxed durability in
a server that is not part of an HSB pair, you risk losing the most recent few
transactions if the server terminates abnormally. If the server is part of an HSB
pair, however, a copy of the transaction is on the other server (the Secondary).
Also, even if the Primary server fails before it has logged the transaction, the
transaction is not lost. Thus, when relaxed durability is used with HSB, relaxed
durability causes little reduction in safety. Relaxed durability can also improve
the performance of the system, especially in situations where the server load
consists of many small write transactions.

1 Introduction to IBM solidDB HotStandby 13

v Adaptive durability: Adaptive durability applies only to HotStandby Primary
servers. Adaptive durability means that if the server is in Primary Active state
(sending transactions to the Secondary), it uses relaxed durability. In any other
state, strict durability is used. This gives you high performance (with little loss
of safety) when HSB is active, yet maintains high safety if only one server is
operating. Adaptive durability can be enabled effectively only when the 2-Safe
replication is used (default).

Adaptive durability can significantly increase performance while it provides a high
degree of data safety in failure situations. It can increase overall system throughput
and it can reduce latency, that is, the time the user must wait before being told that
the transaction has committed.

The durability level can be set as a server default with the
Logging.DurabilityLevel parameter, or per session or transaction with the SET
[TRANSACTION] DURABILITY statements.

Regarding replication protocols, STRICT corresponds to 2-safe and RELAXED to
1-safe.

1-Safe replication
With 1-safe replication, the commit statement is acknowledged immediately after
the commit processing is completed at the Primary. The committed transaction is
transmitted to the secondary asynchronously, after the control has been returned to
the application.

The delay in transmitting the transaction can range from few milliseconds to a few
hundred milliseconds. 1-safe replication offers significant performance gains
because the latencies are reduced dramatically at Primary. The downside of 1-safe
is that, in the case of a failure, a few transactions can be lost in a failover.

You can set the 1-safe replication for the server with the parameter
HotStandby.SafenessLevel=1safe. Possible values of the HotStandby.SafenessLevel
parameter are 1safe, 2safe, and auto; default is 2safe.

You can also control the safeness level dynamically with the SET commands:
SET SAFENESS {1SAFE| 2SAFE| DEFAULT}

SET SAFENESS sets the safeness level for the current session, until it is changed.
SET TRANSACTION SAFENESS {1SAFE| 2SAFE| DEFAULT}

SET TRANSACTION SAFENESS sets the safeness level for the current transaction.
After commit, the safeness level returns to the value set for the session, or the
startup value, or the system default (which is 2-safe).

The option DEFAULT denotes the current setting for the session.

If the HotStandby.SafenessLevel parameter is set to auto (that is, "automatic"), you
can control the safeness level with the programmatic durability controls (such as,
SET DURABILITY RELAXED).

2-safe acknowledgement policy
When the 2-safe replication is enabled (default), the Primary server does not tell
the client that the transaction has been successfully committed until the Primary
receives acknowledgement that the Secondary has the transaction.

14 IBM solidDB: High Availability User Guide

There are three different acknowledgement policies:
v 2-safe received: The Secondary server sends acknowledgement when it receives

the data (default).
v 2-safe visible: The Secondary has updated its copy of the data, and the change is

now visible. In other words, a client application that is connected to the
Secondary server would be able to see the update.

v 2-safe durable: The Secondary server acknowledges when it has made the data
durable, that is, when it has committed the data and written the data to the
disk.

Choosing the 2-safe acknowledgement policy

2-safe received is faster. 2-safe durable is safer. Because the acknowledgement
policies apply only when the Primary and Secondary server are both active (that is,
both are applying the transactions), even 2-safe received is considered safe. You
risk losing transactions only if both servers fail practically simultaneously (within a
second of each other).

Using 2-safe received reduces latency (the amount of time between the start of the
commit and the time that the user receives confirmation of the commit). The 2-safe
received policy has little impact on overall throughput.

1.1.6 Load balancing of read-only workloads
In addition to the built-in transparent failover functionality, the Transparent
Connectivity functionality in the solidDB JDBC and ODBC drivers provide support
for load balancing of read-only workloads.

Load balancing is based on the fact that there are two synchronized (HotStandby)
databases that running at the same time. All read queries provide the same result
regardless of whether it is executed in the Primary or the Secondary database.

When the load balancing is activated, the JDBC or ODBC driver uses two physical
connections, one to each database, and allocates the query load to the workload
connection. The workload connection is selected based on query type (such as read
or write), and the then-current load in the database servers.

The load balancing implementation is based on the following principles:
v Read-only queries can be executed in either database, if the isolation level is

READ COMMITTED.
v Read queries that need high isolation level (repeatable read, select for update)

are executed in the Primary database.
v Write queries are always executed in the Primary database.
v Read queries after any write operation within the same transaction are executed

in the Primary database. Using the Primary database ensures that updated rows
are visible for subsequent reads.

v Internal read/write level consistency of the databases is ensured so that after a
write transaction is committed, the secondary database is not used for reading
from the same connection until the secondary database is up-to-date for that
write transaction. Using the same connection consistently ensures that if the
1-safe or 2-safe received HotStandby replication protocol is used, the next read
transaction does not see committed data from the previous write transaction.

1 Introduction to IBM solidDB HotStandby 15

solidDB makes the selection of the workload connection automatically; the load
balancing is automatic and transparent to the application. Especially read-centric
applications can easily balance out the load between the two database servers, and
use the full processor capacity of both servers.

The load balancing is activated with the solidDB ODBC driver by setting the
PREFERRED_ACCESS connection attribute to value READ_MOSTLY; or with the solidDB
JDBC driver by setting the property called solid_preferred_access to value
READ_MOSTLY. Each application that connects to the database can choose to use the
load balancing functionality, or choose to use the Primary database for all queries
(default). You can also control load balancing dynamically on session or transaction
level by altering the transaction isolation level of the servers.
Related concepts:
“Static load balancing configuration” on page 89
“Controlling load balancing dynamically” on page 90
When using load balancing (READ_MOSTLY or LOCAL_READ), you can change
the assigned workload server from Secondary to Primary programmatically.
4.2.1, “Defining the Transparency Connectivity connection,” on page 75
Transparent Connectivity is specified using non-standard ODBC connection string
settings or JDBC connection properties.

1.1.7 HotStandby and SMA
The SMA server node can be made highly available with the solidDB HotStandby
component.

In an SMA with HotStandby setup, there can be one or more SMA applications on
each node. The application connection to the database can be configured as a
regular SMA connection (SMA Basic Connectivity) or as a Transparent Connectivity
SMA connection (SMA TC). With both connectivity types, the application on the
Primary node uses an SMA connection to execute reads and writes locally, and the
application on the Secondary uses an SMA connection to execute reads locally.
Additionally, with SMA TC connection, write transactions from the application on
the Secondary can be executed on the Primary server using a network connection.
Furthermore, if the load balancing option is enabled with the SMA TC connection,
the applications can operate in an active-active manner; on each node, the full
functionality of database access is available.

16 IBM solidDB: High Availability User Guide

With SMA TC, the application on each node must be able to connect to the local
server with a SMA connection and to the remote server with a network-based
connection.

Failover and switchover handling
v The connection handle is maintained over switchovers and failovers for as long

as one of the servers is in the PRIMARY ACTIVE, PRIMARY ALONE, or
STANDALONE state.

v If the SMA server fails, the application might fail also. To ensure high
availability in such a failure scenario, your system needs to include an
application-level failover mechanism that moves the service offered by the
application from the failed application instance to another one.

1.1.8 HotStandby and advanced replication
The solidDB HotStandby component can be used in combination with solidDB
advanced replication. Advanced replication provides bidirectional, periodically
occurring data synchronization that allows you to create a distributed system that
contains master and replica servers. With HotStandby, you can make any of the
database servers of the distributed system highly available.

Figure 7 on page 18 shows a simple distributed system that contains a master
database and two replica databases. Each replica contains at least a subset of the
data of the master database. Each of the database servers has been made
fault-tolerant with HotStandby replication. Advanced replication occurs between
the Primary servers of the database server hierarchy. In case of a problem with any
of the Primary database servers, the failed node can do a HotStandby failover
making the Secondary server of that node the new Primary. Advanced replication
can now continue with the new Primary server.

Application

SMA driver

solidDB
Secondary

Node A

Application

SMA driver

solidDB
Primary

Node B

SMA connection
Read/Write

SMA connection
Read-only

solidDB
HSB replication

Network connection
Write

Figure 6. Architecture of SMA Transparent Connectivity with HotStandby

1 Introduction to IBM solidDB HotStandby 17

1.2 Performance and HotStandby
There are several aspects to consider when tuning performance for a HotStandby
system. With a HA (redundant) system, the effect of replicating the changed data
reliably and consistently to another node plays an important role.

This section describes performance considerations in HotStandby setups. However,
before you consider how to tune HotStandby setups, remember to optimize the
SQL query and schema design. You can often correct poor performance by
improving SQL queries, indexes, and so on. Actual throughput and response times
depend on many factors, including (but not limited to) the speed of the network,
the amount of other traffic on the network, the complexity of the SQL statements,
and the number of SQL statements per transaction. The general environment
factors, such as amount of memory and disk speed, also affect performance.

In a HotStandby setup, consider the following main performance elements:
v Latency or response times – How quickly is a single read or a write operation

completed?
v Throughput – How much of the total query or transaction volume the two-node

system can handle?

Replica2

(HSB secondary)(HSB secondary)

Replica1

HSBHSB

(HSB primary)

Replica2

(HSB primary)

Replica1

Master

(HSB secondary)

SmartFlow data
synchronizationHSB

SmartFlow data
synchronization

Master

(HSB primary)

Figure 7. HotStandby with master and replica server scheme

18 IBM solidDB: High Availability User Guide

v Data safeness – Does the system ensure that every transaction is safely persisted
on the same node (to disk) or to the next node (over the network)?

v Failover times – How quickly can the system continue to provide its service after
a single-node failure, including the error detection time?

v Recovery times – How quickly and how automatically does the system recover
to an HA state after the failure has been resolved?

In solidDB HotStandby setups, the following configuration and setup options can
be used to optimize HotStandby performance:
v Adaptive durability is useful when you want to preserve transactions over single

failures.
v 1-Safe replication protocol is useful when minor transaction loss over failures is

acceptable.
v 2-Safe replication protocol and a suitable 2-Safe Acknowledgement Policy

enforces maximum safety.
v Load balancing directs read-only transactions to the Secondary server.

With the load balancing feature in HotStandby, clients can connect to the
Secondary and perform read-only operations. In some situations, you can spread
the load and improve overall system performance by having read-only clients
connect to the Secondary and perform their reads there. Load balancing is useful
for work such as report-generation or "data warehousing" queries, where you
want to read several records and do not want to change any of them.

v Internal parallelism
To ensure that your system takes advantage of parallelism, consider spreading
your transactions across several connections rather than submitting all
transactions through the same connection.
When you use the HotStandby (HSB) component, every transaction that contains
a write operation is executed twice, once on the Primary, and once on the
Secondary. Subsequently in some situations, a single transaction might take
twice as long with HSB as without HSB. However, this does not mean that
overall throughput decreases 50%. The servers have a high degree of parallelism,
and while the Secondary is working on one transaction, the Primary can work
on another transaction.

Note: The more queries you run in parallel, the more memory the server needs.
Thus, adding connections and running queries in parallel does not always
increase throughput, especially in systems that do not have a large amount of
memory. You might have to experiment to find the optimal number of queries to
run at a time.

In summary, unless you need the highest possible level of safety, you can increase
performance by using the following configuration settings:
v Use adaptive logging by setting Logging.DurabilityLevel to 2.
v Use 2-safe received mode by setting HotStandby.2SafeAckPolicy to 1.

Even if you use the less safe settings (adaptive durability and 2-safe received
mode), you are still protected by HotStandby unless there are at least two failures,
for example, when both servers go down nearly simultaneously. To protect against
power failure, each server must be connected to an Uninterruptible Power Supply
(UPS). Furthermore, as with any database system, important data should be backed
up and archived at a separate site. HotStandby is not a substitute for backing up
your data.

1 Introduction to IBM solidDB HotStandby 19

Tip: You can run the backup (ADMIN COMMAND backup) on either of the servers of
the HSB pair. Often it is the secondary server that has more resources available for
creating the backup.
Related concepts:
3.5, “Performance tuning,” on page 65

1.3 High Availability Controller (HAC)
High Availability Controller (HAC) is an automatic redundancy management
program for solidDB HotStandby configurations. It maintains the availability of the
database service by detecting failures, performing failovers to standby units, and
restarting failed processes when necessary.

A failure can be caused by a hardware problem in a database node, a database
process failure, or a broken HSB link. HAC monitors the HSB states of the servers,
and in the case of a failure, ensures that the server that is not affected by the
failure holds the Primary role and that the server is ready to accept the transaction
load.

In other words, HAC plays the role of a watchdog program. In its implementation,
the solidDB's event mechanism is used to monitor the server states. Every time the
state of the HSB server changes, it sends an event to HAC, which then deduces
potential needs for actions that are executed by using the HotStandby admin
command API.

20 IBM solidDB: High Availability User Guide

HAC has two main purposes:
1. HAC can be used as a watchdog to automatically maintain the availability of

the database service. In this mode, called the AUTOMATIC mode, HAC
performs the following actions:
v Starts, restarts, and terminates the database server processes (optional)
v Monitors the state of the servers and the HSB link between them
v Infers the necessary action to be performed
v Performs the action

2. HAC can also play a role of a monitor for an HSB system by monitoring the
state changes of the HSB servers (triggered by someone else) and reporting the
status of the system. This is called the ADMINISTRATIVE mode. In this mode,
HAC does not execute any HSB state transitions or otherwise modify the HSB
system.

High Availability Controller is configured through the solidhac.ini configuration
file. Before HAC is started, the configuration file must be in the HAC working
directory. You can specify the working directory with the command-line option -c.

The solidDB package includes a HAC configuration file template which includes
all available configuration parameters with comments, and examples. The
solidhac_template.ini is available in the root of the samples\hac\ directory.

HA manager
GUI

GUI based
HA manager

JDBC

solidDB
HA controller

Secondary
server

HSB

solidDB
HA controller

Primary
server

Node 2Node 1

Figure 8. High Availability Controller architecture

1 Introduction to IBM solidDB HotStandby 21

A sample graphical user interface (GUI) component called High Availability
Manager (HAM) is also available for HAC. It is included in the sample directory
samples\hac\. The HA Manager is configured in the same as the HA Controller.
The samples\hac\ directory contains a sample configuration file (HAManager.ini)
for the High Availability Manager.

1.3.1 Recognized failures
HAC monitors the health and status of the HotStandby servers. In failure
situations, such as a database process failure or a computer node failure, HAC
performs failovers and other necessary state transitions to maintain the best
possible availability of the database service.

For all failures considered, it is assumed that they happen in a normal, fully
operational state that is expressed by the PRIMARY ACTIVE and SECONDARY
ACTIVE states of the two HSB servers. HAC takes care of single failures only. In
other words, it is assumed that a failure cannot occur before the system has
recovered from a previous failure. There is, however, a number of predefined
multiple-failure scenarios that HAC can handle.

As far as single failures are concerned, HAC maintains an almost uninterruptible
database service. If multiple failures occur, HAC attempts to avoid an erroneous
system state (such as dual primaries).

The failures HAC can handle are:
v Single failures

– The primary (ACTIVE) database server process fails
– The secondary (ACTIVE) database server process fails
– Primary node fails
– Secondary node fails
– If an External Reference Entity is used, HAC can also handle a HotStandby

link failure, that is, a lost connection between the two HotStandby database
processes. For more information about the External Reference Entity, see 1.3.3,
“External Reference Entity (ERE),” on page 23.

– Server is unresponsive to external clients
v Double failures

– While recovering from a previous failure, HAC recognizes an error in the
synchronization between the Primary and the Secondary database.

– HAC also takes care several less common failures, such as a server process
failure while servers are establishing HSB link after previous failure.

For detailed descriptions of the failure and recovery scenarios, see 5, “Failure
handling with High Availability Controller (HAC),” on page 103.

1.3.2 Controlling database server processes
HAC can be configured to start database processes, and restart failed processes.

When a HAC instance loses connection with a local database server, it calls the
start script that is specified in the solidhac.ini configuration file. The script is
provided by the user. An example script is provided with the package.

22 IBM solidDB: High Availability User Guide

Important: A HAC instance assumes that the server is running, and responsive at
the moment the start script terminates. Since HAC does not handle failures that
occur in server startup, the script must not exit unless the server accepts
connections.

HAC restarts the database server whenever it fails or disappears for some other
reason, except in the following cases:
v The database process is available in the process list of the operating system.
v The database server was shut down by using HA Manager.
v The database server was shut down by using the ADMIN COMMAND 'hsb

shutdowndb' command.

1.3.3 External Reference Entity (ERE)
One of the failure situations you must prepare for is when the communication link
between the database nodes fails, and both database servers might assume that the
other one is down. This can lead into a dual primary situation (split brain), and you
might lose transactions when databases are later synchronized. To avoid a wrong
decision by HAC, you can use a network reference device, an External Reference
Entity (ERE) to check the health of the network. For example, if a network adapter
fails in one computer, HAC can detect this situation and is able to set the correct
database node to continue as the Primary database, while the other one continues
as Secondary.

If ERE is used, HAC checks the status of the physical link between the HotStandby
node and the ERE device by pinging ERE. If the physical link to the nearest ERE is
not operational, the local HAC sets the local server to the SECONDARY ALONE
state. If the nearest physical link is operational, and no connection is available to
the other server, the local HAC concludes that the local server is the one to
continue offering the service, and sets it to PRIMARY ALONE. Consequently, The
HotStandby node, which loses its connection to the opposite HotStandby node and
to the nearest ERE, becomes the Secondary. In this way, the two Primaries (a split
brain) situation is prevented in the case of network failure.

For more information about configuring HAC for ERE, see 3.3, “Configuring HA
Controller and HA Manager,” on page 42.

1 Introduction to IBM solidDB HotStandby 23

The figure above depicts two possible locations of ERE:
v The cluster switch
v Any computer in the network outside the cluster. If a redundant network (that

is, duplicate network controllers, cables and switches) is used in a cluster, define
ERE outside the cluster.

Important: If the HotStandby link is considered unreliable (including all the cases
where ERE is used), the following HotStandby server parameter must be set to its
factory value:

HotStandby.AutoPrimaryAlone=no

ERE must use the same HSB link that the keepalive messages do.

1.3.4 Networking in HAC
To optimize your HotStandby setup, use a single logical network access (IP
address) in each HSB server for all communications. The servers can use different
port numbers for different purposes.

You can use multiple, or redundant, lower-level network components (network
interface cards, cables and switches), that are transparent at the network interface
API level.

When only one logical network access is used, HAC (with ERE) detects network
breaks that affect both the HSB transaction replication and the database client
applications. If separate interfaces are used, HAC cannot detect failures in database
client communications because HAC monitors the health of the HSB link only.

solidDB
HA controller

Secondary
server

Switch

solidDB
HA controller

Primary
server

Ere

Node 2Node 1

External
node

Figure 9. External Reference Entity components

24 IBM solidDB: High Availability User Guide

However, regardless of the underlaying network access implementation, the ERE
feature of HAC can be used if the network access is regarded unreliable for
whatever reason.

1.3.5 HAC logging
HAC writes log records to the hacmsg.out file in the HAC working directory.

The log contains information about the following HAC operations:
v Warnings
v Unrecoverable errors
v Configuration-related information
v Initialization-related information
v All input events
v HotStandby state changes
v User commands, which cause changes in the system
v HAC state changes
v HAC mode changes (AUTOMATIC/ADMINISTRATIVE)
v Events, which cause state changes in the system

HAC log file has a maximum size of 64 megabytes. When the size limit exceeds,
hacmsg.out is renamed to hacmsg.bak, and a new hacmsg.out is created. The files
contain at most 128 MB of the most recent logs.

1.4 High Availability Manager (sample)
The solidDB package includes a sample program called High Availability Manager
(HAM). HAM is a Java program with a GUI for displaying the state of the
HotStandby servers and the state of the HACs. It also provides basic functionality
for managing the HAC, for example, by switching the roles of HotStandby servers
and to suspend and resume HAC.

The following figure shows the HAM interface.

1 Introduction to IBM solidDB HotStandby 25

The High Availability Manager is configured through the HAManager.ini
configuration file.

You can perform the following actions by using the High Availability Manager:
v Perform a switchover between the HotStandby servers
v Switch the HAC mode between AUTOMATIC and ADMINISTRATIVE

– In the ADMINISTRATIVE mode, HAC monitors only the HSB cluster, and the
user can perform administrative tasks on HSB servers

– In the AUTOMATIC mode, HAC acts as a watchdog, handles failures, and
maintains the availability of the database service.

v Shut down a HotStandby database server process
v Start a HotStandby database server process
v Suspend a High Availability Controller
v Resume a High Availability Controller

Note:

Shutting down and starting the database server process is possible only if the
HAController.EnableDBProcessControl parameter is set to Yes in the solidhac.ini
configuration file.

Figure 10. High Availability Manager

26 IBM solidDB: High Availability User Guide

2 Getting started with HotStandby

This section provides step-by-step instructions for setting up two solidDB
HotStandby servers (a Primary server and a Secondary server).

The getting started steps assume that you have already installed solidDB on one or
two computers.

You can set up an evaluation configuration for HotStandby using one computer;
you can run two instances of solidDB on one computer and set up one of the
instances as a Primary server and the other one as Secondary.

2.1 HotStandby quick start procedure
With the quick start procedure, you can reach a state where your HSB system is
ready to serve applications.

About this task

You can use the quick start procedure to set up a pair of HotStandby servers on
one or two computers. For evaluation purposes, you can use a single node setup.
For testing and production environments, use two computers.

To set up and run an HSB server pair, you need two networked computers. To set
up your HotStandby servers (without any other solidDB components), follow the
procedure below.

Tip: The quick start procedure does not assume use of any other components than
HSB servers. For example, HAC is not needed. A similar step-by-step procedure
for HAC is described in 2.2.1, “Starting and stopping HA Controller,” on page 31.
There is also a sample watchdog application included in the solidDB server
package. To use the sample watchdog, you need to provide configuration settings
for it.

Procedure
1. Install the solidDB server on one or two computers.

v If you are using a single computer, create two working directories and copy
the license file to each directory. An evaluation license file is available in the
root directory of the solidDB installation directory.
For example, if you have installed solidDB server into the C:\solid directory,
create two directories named node1 and node2:
mkdir C:\solid\node1
mkdir C:\solid\node2

v If you are using two computers, create a working directory on each computer
and copy the license file to the directories.
For example, if you have installed solidDB server into the C:\solid
directories on both computers, create a directory named node1 on one
computer and a directory named node2 on the other:

Node 1
mkdir C:\solid\node1

27

Node 2
mkdir C:\solid\node2

2. Configure the Primary and Secondary nodes. Create solid.ini configuration
files in the working directories.
At minimum, HotStandby requires that you configure the
HotStandby.HSBEnabled and HotStandby.Connect parameters in the solid.ini
configuration file on both the Primary (Node 1) and Secondary (Node 2)
servers:
v HotStandby.HSBEnabled=Yes
v HotStandby.Connect=connect string for the opposite HSB server

Additionally, the Com.Listen parameter must be set.

Table 5. Example: solid.ini configuration files in single-computer and two-computer setups

Single computer setup Two-computer setup

Node1 C:\solid\node1\solid.ini

[Com]
Listen=tcp 2315

[HotStandby]
HsbEnabled=yes

Connect=tcp 2325

The server instance Node 1 connects to the Node 2
instance using the connect string tcp 2325. Because
the servers are on the same computer, you do not
need to define a node name or IP address for Node 2.

C:\solid\node1\solid.ini

[Com]
Listen=tcp 2315

[HotStandby]
HsbEnabled=yes

Connect=tcp node2 2325

The server on Node 1 connects to the server on Node
2 using the connect string tcp node2 2325. Instead of
using a node name such as node2, you can use the IP
address of the Node 2 computer, for example, tcp
10.0.0.2 2325.

Node2 C:\solid\node2\solid.ini

[Com]
Listen=tcp 2325

[HotStandby]
HsbEnabled=yes
Connect=tcp 2315

The server instance Node 2 connects to the Node 1
instance using the connect string tcp 2315. Because
the servers are on the same computer, you do not
need to define a node name or IP address for Node 1.

C:\solid\node2\solid.ini

[Com]
Listen=tcp 2325

[HotStandby]
HsbEnabled=yes
Connect=tcp node1 2315

The server on Node 2 connects to the server on Node
1 using the connect string tcp node1 2315. Instead of
using a node name such as node1, you can use the IP
address of the Node 1 computer, for example, tcp
10.0.0.1 2315.

3. Start both HSB servers the way you would start any solidDB server.
The servers read the HotStandby configuration information from their own
solid.ini files. The state of both servers after startup is SECONDARY ALONE.

4. Choose the server that will become the Primary, and switch the state of the
chosen server to PRIMARY ALONE by issuing the following command:
ADMIN COMMAND ’hsb set primary alone’;

Tip: In the HotStandby ADMIN COMMANDs, you can use the abbreviation
hsb in place of hotstandby.

5. Connect the Primary to the Secondary by issuing the following command in
either server:
ADMIN COMMAND ’hsb connect’

To verify that the connection was successful, issue the following command:
ADMIN COMMAND ’hsb state’

28 IBM solidDB: High Availability User Guide

The Primary server responds that its state is PRIMARY ACTIVE. However, if
the state of the Primary is something else than expected (for example,
PRIMARY ALONE), the status of hsb connect can be checked by issuing the
command:
ADMIN COMMAND ’hsb status connect’

If the result is ACTIVE, then connect process is still active. If the result is
BROKEN, the databases of the servers must be synchronized before you
connect them.

6. Synchronizing the databases by issuing the following command in the Primary:
ADMIN COMMAND ’hsb netcopy’

Check the status of database copy process by issuing the command:
ADMIN COMMAND ’hsb status copy’

7. As soon as the result of hsb status copy is SUCCESS, the databases are
synchronized, and the servers can be connected. Reissue the following
command in either server:
ADMIN COMMAND ’hsb connect’

Verify the success by issuing the command ADMIN COMMAND ’hsb state’.
8. Start using applications.
Related concepts:
3.2.1, “Defining primary and secondary node HotStandby configuration,” on page
37
At minimum, to configure HotStandby, you must set the HotStandby.HSBEnabled
parameter to yes on both nodes, and define the connection settings between the
two nodes.
3.2, “Configuring HotStandby,” on page 37
HotStandby is configured by using the solid.ini configuration files at both the
Primary and Secondary nodes. The [HotStandby] section contains all the
HotStandby-specific configuration parameters. Other sections and parameters, such
as the Com.Listen parameter, must be set also.

2.2 HotStandby with HAC quick start procedure
This section describes a quick start procedure for HotStandby with solidDB High
Availability Controller (HAC).

About this task

The procedure is similar to 2.1, “HotStandby quick start procedure,” on page 27.
However, instead of just setting up two HSB servers, this procedure guides you to
set up a highly available HSB system, where availability is enforce by the High
Availability Controller (HAC). Following the procedure below, you will get a
failure tolerant HSB system ready to serve applications.

To set up and run a high availability HSB system, you need two networked
computers. One instance of the HAC is set up on each HSB server.

Procedure
1. Follow the 2.1, “HotStandby quick start procedure,” on page 27 to configure

the Primary and Secondary servers.
As a result, one of the servers is in the PRIMARY ACTIVE state and the other
in the SECONDARY ACTIVE state.

2 Getting started with HotStandby 29

2. Configure the HACs on the Primary and Secondary servers. HAC reads its
configuration from the solidhac.ini file in the working directory. The
following mandatory configuration parameters are needed:

[HAController] section

v Listen=<listen address, 'tcp' and chosen port #>

v Username

v Password

v DBUsername

v DBPassword

[LocalDB] section

v Connect=<connect address, protocol, ip/hostname, port #>

v StartScript (mandatory if EnableDBProcessControl=Yes, which is
the default value)

[RemoteDB] section

v Connect=<connect address, protocol, ip/hostname, port #>

3. Start HAC on both nodes as instructed in 2.2.1, “Starting and stopping HA
Controller,” on page 31.
HAC automatically finds out, which server becomes the new Primary according
to the previous roles, and log positions. The mechanism is described in more
detail in 3.4.9, “Choosing which server to make primary,” on page 63. In some
special situations, for example when started with empty databases, both servers
are equally good candidates for the new Primary. In these situations HAC
chooses its local server if in the PreferredPrimary parameter in the [LocalDB]
section in solidhac.ini is set to Yes.

4. After the second step, there should be one server in the PRIMARY ACTIVE
state and the other in the SECONDARY ACTIVE state. You can switch the
roles, by issuing the following command on the Secondary server:
ADMIN COMMAND ’hsb switch primary’

or on the Primary server:
ADMIN COMMAND ’hsb switch secondary’

After this point, HAC switches the roles of the servers when necessary. At least
one server executes read and write transactions.

5. Start using applications.
Related concepts:
3.3, “Configuring HA Controller and HA Manager,” on page 42
High Availability Controller (HAC) is deployed on each of the HotStandby server
nodes; it is configured through the solidhac.ini configuration file. High
Availability Manager (HAM) is configured through the HAManager.ini
configuration file.
Related reference:
A.3, “High Availability Controller (HAC) parameters,” on page 123
This section describes the High Availability Controller (HAC) configuration
parameters in the solidhac.ini configuration file.
A.5.2, “The solidhac.ini configuration file,” on page 129
A sample excerpt of the High Availability Controller (HAC) configuration file
(solidhac.ini).

30 IBM solidDB: High Availability User Guide

2.2.1 Starting and stopping HA Controller
Before you can start HAC, you must have a solidhac.ini configuration file in the
HAC working directory. See 2.2, “HotStandby with HAC quick start procedure,”
on page 29 for a short description of configuring HAC. For more information
about configuring HAC, see 3.3, “Configuring HA Controller and HA Manager,”
on page 42. For a list of parameters and detailed parameter descriptions, see A.3,
“High Availability Controller (HAC) parameters,” on page 123 and A.5.2, “The
solidhac.ini configuration file,” on page 129.

Note: Depending on the platform you are using, the HAC binary is named either
solidhac, or solidhac.exe. In the examples, solidhac.exe is used for clarity.
Similarly, the name of the sample solidDB start script is either start_solid.sh, or
start_solid.bat. In the examples, start_solid.bat is used.

Starting HAC

The syntax for starting HAC is:
solidhac.exe [-c working_directory | -?]

The ? argument, or any other argument except -c prints the usage message.

When HAC starts, it starts to listen to the port specified HAController.Listen
parameter in the solidhac.ini configuration file. That port is used, for example,
for transporting commands between HAC and the HAManager, and for issuing
HAC-specific ADMIN COMMANDs.

Stopping HAC

To issue the command, you must first connect to HAC by specifying the port that
is defined with the HAController.Listen parameter in the solidhac.ini
configuration file. For example, you can use solsql or the ODBC interface to
connect to HAC.

You can stop (terminate) HAC by executing the following command:
ADMIN COMMAND ’hacontroller shutdown’

Example: Starting HAC

If solidhac.exe is located in c:\solid\hac, which is also the current directory, and
you use c:\solid\run\server1 as the working directory for HAC, you start HA
Controller with the following command:
solidhac.exe -c c:\solid\run\server1

or
solidhac.exe -c ..\run\server1

Related reference:
C.2, “High Availability Controller commands (ADMIN COMMAND),” on page 159

2 Getting started with HotStandby 31

2.3 Summary of startup sequences
The following figure and table present side-by-side sequences for an installation
with HAC and for an installation without HAC. In the figure, the installation
sequence for HAC is on the left and the installation sequence without HAC is on
the right. The table after the figure explains each numbered step in the figure for
both installation types.

Table 6. Installation sequence steps

Installation with HAC Installation without HAC

Step 1. Configure HSB servers

HSB
ready

Step 6

Step 5

Step 4

Step 3

Step 2

Step 1

HSB
ready

Step 4

Step 3

Step 2

Step 1

Without HACWith HAC

Figure 11. Summary of startup sequences

32 IBM solidDB: High Availability User Guide

Table 6. Installation sequence steps (continued)

Installation with HAC Installation without HAC

Step 2. Configure HA Controller

Step 3. Start HA Controllers in both nodes

Step 4. Switch HSB roles, if necessary

Step 2. Start HSB servers in both nodes

Step 3. Switch the state of the database
server to PRIMARY ALONE

Step 4. Connect Primary to the Secondary

Step 5. If connect failed, start db copy from
Primary to Secondary

Step 6. After netcopy, reconnect

HSB is ready. You can start using applications.

2.4 HotStandby samples
The solidDB server package includes samples for running demonstrations of the
HotStandby component with HAC or the sample watchdog implementations.

HotStandby with HAC

A sample for HotStandby with High Availability Controller (HAC) is available in
the samples\hac directory. Detailed information about the sample is available in the
file: samples\hac\readme.txt

HotStandby with watchdog sample

A sample for HotStandby with watchdog is available in the samples\hsb directory.
Detailed information about the sample is available in the file: samples\hsb\
readme.txt

2 Getting started with HotStandby 33

34 IBM solidDB: High Availability User Guide

3 Administering and configuring HotStandby

This section describes how to maintain your HotStandby installation, including
HSB servers and HAC instances, using the HotStandby related parameters and
ADMIN COMMANDs.

This description supplements the information in the section.

3.1 Basics of HotStandby administration
The HotStandby related components are administered with configuration
parameters and ADMIN COMMANDs.

Configuration parameters

Parameters are grouped according to section categories in the solid.ini
configuration file. When you are using HotStandby, you mainly use the
[HotStandby] section of the solid.ini configuration file. Other sections can be
used to configure the overall behavior of the solidDB server.

The High Availability Controller (HAC) is configured by using the solidhac.ini
configuration file. The parameters in the solidhac.ini configuration file are also
grouped according to different section categories.

The High Availability Manager (HAM) is configured by using the HAManager.ini
configuration file. The parameters in the HAManager.ini identify the HA Controller
instances so that the High Availability Manager has access to them.

You can change configuration parameters in the following ways:
v Edit the configuration files solid.ini, solidhac.ini and HAManager.ini

manually.

Note: The server reads the configuration files during startup only, and therefore
any changes to any configuration file will not take effect until the next time that
the corresponding program is started.

v Use the following ADMIN COMMAND syntax to change the settings of a
running solidDB server dynamically:
ADMIN COMMAND ’parameter section_name.param_name=value’;

For example:
ADMIN COMMAND ’parameter hotstandby.2SafeAckPolicy=2’;
ADMIN COMMAND ’parameter com.listen="tcp sf_server 1315"’;

Note: All configuration parameters cannot be changed dynamically.

HotStandby ADMIN COMMANDs (HotStandby API)

The HSB API is provided as a syntax extension to solidDB SQL, in the form of
ADMIN COMMAND:
ADMIN COMMAND hotstandby hsb-command options

or

35

ADMIN COMMAND hsb hsb-command options

The HSB commands can be issued via any SQL-capable interactive tool (like
solsql), or programmatically, through ODBC or JDBC.

HotStandby and access rights

There are no specific access rights for HotStandby, normal administrator access
rights suffice. To execute the HotStandby administrative commands,
SYS_ADMIN_ROLE or SYS_CONSOLE_ROLE access rights are required.

HotStandby and solidDB tools

The solidDB data management tools can be used with HotStandby servers.

Console tools for issuing ADMIN COMMANDs

You can issue HotStandby-specific administrative commands (ADMIN
COMMAND 'hotstandby <option>') with solidDB SQL Editor (solsql), and
solidDB Remote Control (solcon).

When you are using solsql, the command name must be given with single
quotation marks and a semicolon at the end of the command. For example:
ADMIN COMMAND ’hotstandby status connect’;

When you are using solcon, the command name must be given without
the ADMIN COMMAND prefix, quotation marks, and without the
semicolon at the end of the command. For example: :
hotstandby status connect

Import and export tools

The import and export tools, solidDB Speed Loader (solloado or solload),
solidDB Export (solexp), and solidDB Data Dictionary (soldd) can also be
used with HotStandby.

High Availability Manager (HAM) sample

The solidDB package also contains a sample tool, High Availability
Manager (HAM) that can be used to monitor solidDB HotStandby states,
and to control HSB servers and High Availability Controllers (HAC). HAM
can be used only with the HA Controller.

3.1.1 Querying HotStandby configuration parameters
Standard parameter manipulation commands can be used to query the values and
properties of the HotStandby parameters.

The commands are:
ADMIN COMMAND ’[describe] parameter[section_name[.parameter_name]]’;

For example:
ADMIN COMMAND ’parameter logging.durabilitylevel’;
RC TEXT
-- ----
0 Logging DurabilityLevel 3 3 2

ADMIN COMMAND ’parameter hotstandby.MaxLogSize’;
RC TEXT
-- ----
0 HotStandby MaxLogSize 10000000 0 0

36 IBM solidDB: High Availability User Guide

The result set shows the following 3 values:
v Current value - set dynamically or inherited from the default or factory value.
v Default value - read originally from the solid.ini file or inherited from the

factory value.
v Factory value - preset in the product.

3.1.2 Modifying HotStandby configuration parameters
Normally, you change the value of a parameter by changing the value in the
solid.ini configuration file and then restarting the server. However, most of the
HotStandby parameters can also be changed with an ADMIN COMMAND.

About this task

The syntax for modifying parameters is:
ADMIN COMMAND ’parameter section_name.parameter_name=value [temporary]’;

Unless the temporary option is used, all the changes made to the parameters will
be saved in the solid.ini file at the next checkpoint. The saving can be expedited
also with the command:
ADMIN COMMAND ’save parameters [file_name]’;

By default, the command rewrites the default solid.ini file. By using the file_name
option, the output can be directed to a different location.

3.2 Configuring HotStandby
HotStandby is configured by using the solid.ini configuration files at both the
Primary and Secondary nodes. The [HotStandby] section contains all the
HotStandby-specific configuration parameters. Other sections and parameters, such
as the Com.Listen parameter, must be set also.

3.2.1 Defining primary and secondary node HotStandby
configuration

At minimum, to configure HotStandby, you must set the HotStandby.HSBEnabled
parameter to yes on both nodes, and define the connection settings between the
two nodes.

The solid.ini configuration files on each node must have the following minimum
configuration information in the [HotStandby] sections of the solid.ini files:
v The HotStandby.HSBEnabled parameter must be set to yes.

If the HotStandby.HSBEnabled is not set to yes, the server starts as a
non-HotStandby server and HotStandby replication is not used.

v The HotStandby.Connect parameter must be set. This parameter defines the
network name that is used to connect to the other server (either Primary or
Secondary). If you do not set this parameter in the solid.ini file, the server can
run only in the states that do not require a connection, for example, PRIMARY
ALONE, SECONDARY ALONE, and STANDALONE. When the server is
running, you can set or change this parameter by using the ADMIN
COMMAND 'parameter' command.

v The HotStandby.Connect string for each server must match the Com.Listen string
of the other server. For example, if the server on Node 1 is listening at tcp 2315,

3 Administering and configuring HotStandby 37

the HotStandby.Connect parameter on the server at Node 2 must be set to tcp
<node_name | ip_address> 2315. The node_name or ip_address of the server on
Node 1 must be specified also.

Example: Node 1 minimum configuration
[Com]
Listen=tcp 2315

[HotStandby]
HsbEnabled=yes

Connect=tcp node2 2325
;The server on Node 1 connects to the server on Node 2
;using the connect string ’tcp node2 2325’:
;The host name ’node2’ can be replaced by IP address.

Example: Node 2 minimum configuration
[Com]
Listen=tcp 2325

[HotStandby]
HsbEnabled=yes

Connect=tcp node1 2315
;The server on Node 2 connects to the server on Node 1
;using the connect string ’tcp node1 2315’.
;The host name ’node1’ can be replaced by IP address.

3.2.2 Setting HotStandby server wait time to help detect
broken or unavailable connections

A HotStandby server uses timeout parameters to control how long it waits before it
concludes that an existing connection is broken or a new connection cannot be
established.

About this task

The timeout parameters are:
v HotStandby.PingTimeout

v HotStandby.PingInterval

v HotStandby.ConnectTimeout

If a HotStandby server that is in the PRIMARY ACTIVE or SECONDARY ACTIVE
state tries to contact the other server and receives no reply within a specified
amount of time, it changes to PRIMARY UNCERTAIN, PRIMARY ALONE, or
SECONDARY ALONE.

Procedure

To control how long the server waits, you can:
v Set the PingTimeout parameter to specify the amount of time that the server

must wait before it changes to the PRIMARY UNCERTAIN state.
v Set the PingInterval parameter to specify the interval between the "ping"

messages the server sends to indicate that it is working correctly.
v Set the ConnectTimeout parameter to specify the amount of time that the server

must wait when it tries to establish a new connection to the other server (for
example, in an ADMIN COMMAND 'hotstandby connect' operation).

38 IBM solidDB: High Availability User Guide

PingTimeout and PingInterval parameters [HotStandby]
The optional PingTimeout and PingInterval parameters in the [HotStandby]
section control the ping operation.

A ping operation is essentially an "I'm alive" message that is sent by one database
server to another. The ping system in the HotStandby setup is a passive heartbeat
system. When enabled, both the Primary and Secondary servers send ping
messages to each other at regular intervals. For more information, see “Heartbeat”
on page 3.
v HotStandby.PingTimeout specifies how long a server should wait before

concluding that the other server is down or inaccessible. Default is 4000 (4 sec.)
v HotStandby.PingInterval specifies the interval, in milliseconds, between two

pings. Default is 1000 (1 sec.)

For example, if the PingInterval is 10 seconds, then the servers will send ping
messages to each other after every 10 seconds. If PingTimeout is 20 seconds and
one server (S1) does not hear from the other (S2) within 20 seconds, then S1
concludes that S2 is down or inaccessible. Server S1 then switches to another state,
for example, from PRIMARY ACTIVE to PRIMARY UNCERTAIN.

If the values of the parameters are different, the precedence take values set in
Primary during execution of the hsb connect command. The values do not change
during switchovers. However, they can be changed dynamically with the ADMIN
COMMAND 'parameter' command.

If PingTimeout is set to zero, pinging is disabled.

Ping requires little overhead and a solidDB server is set up to respond quickly to
missing ping messages. You can set the PingInterval value to a fairly short
interval, such as a second, or even less.

If it is important that you detect a failover quickly, set the PingTimeout value to a
relatively short time. However, shorter values also mean a higher chance for false
alarms. If your network has a lot of traffic and thus causes delays before a ping
message is received, you might need to set the PingTimeout to a large value to
avoid false alarms.

Note: Some networking software also has a ping operation, but the
HotStandby.PingTimeout and HotStandby.PingInterval parameters apply only to
the solidDB server pings, not general network pings.

ConnectTimeout parameter [HotStandby]
In some network implementations, a connect operation might not respond for an
indefinite period of time. One possible reason is that the remote server is a known
node but unavailable during the connect attempt. By specifying a connect timeout
value, you can set the maximum time in seconds that a HotStandby connect
operation waits for a connection to a remote server.

You set the connect timeout value with the HotStandby.ConnectTimeout parameter.
The unit is milliseconds. The default is 0, which means no timeout. You can set it
to a different value, for example:
[HotStandby]
; Set ConnectTimeout to 20 seconds (20000 milliseconds).
ConnectTimeout=20000

3 Administering and configuring HotStandby 39

The HotStandby.ConnectTimeout parameter is used with the following
administration commands:
v hotstandby connect

v hotstandby switch primary

v hotstandby switch secondary

3.2.3 Defining transaction durability level
The transaction durability level is set with the Logging.DurabilityLevel parameter.
The parameter has three different values: relaxed (1), adaptive (2), and strict (3)
durability.

Adaptive durability is used only with HotStandby. Adaptive durability means:
v If Primary and Secondary are connected and operating normally (in PRIMARY

ACTIVE and SECONDARY ACTIVE states), the server uses relaxed durability.
v In all other situations (for example, PRIMARY ALONE, STANDALONE), the

server uses strict durability.

For an explanation of the differences between strict and relaxed durability, or for
more information about the Logging.DurabilityLevel parameter, see IBM solidDB
Administrator Guide.

3.2.4 Defining name and location for HotStandby database
copy operation

The optional HotStandby.CopyDirectory parameter defines the name and location
of the directory that the HotStandby copy operation copies to.

The HotStandby copy operation is specified with the command:
ADMIN COMMAND ’hotstandby copy [directory_name]’;

The HotStandby.CopyDirectory parameter has no default value, so if the directory
is not specified in the solid.ini file, it must be provided in the copy command. If
you provide a relative path for the HotStandby.CopyDirectory parameter, the path
is relative to the working directory of the Primary server.

The HotStandby.CopyDirectory parameter is not needed if you perform the
HotStandby database copy operations by using the ADMIN COMMAND 'hotstandby
netcopy' command.

Important: The copy command is deprecated. Instead, use the netcopy command.

3.2.5 Defining primary server behavior during a secondary
failure

You can use the HotStandby.AutoPrimaryAlone parameter to control whether the
Primary server automatically switches to PRIMARY ALONE state or stays in
PRIMARY UNCERTAIN state after it has lost contact with the Secondary server.

If AutoPrimaryAlone is set to Yes, when Primary loses contact with Secondary,
Primary automatically switches automatically to the PRIMARY ALONE state . The
PRIMARY ALONE state means that the Primary continues to accep transactions. If
AutoPrimaryAlone is set to No, when Primary loses contact with Secondary, Primary
switches automatically to the PRIMARY UNCERTAIN state.

40 IBM solidDB: High Availability User Guide

By default, AutoPrimaryAlone is set to No.
[HotStandby]
AutoPrimaryAlone = No

The PRIMARY UNCERTAIN state prevents Primary from accepting new
transactions or committing the currently active ones. Primary does not switch to
PRIMARY ALONE state until HAC, the Watchdog, or System Administrator tells it
to do so.

If AutoPrimaryAlone is set to No, the server can be set to the PRIMARY ALONE
state by executing the ADMIN COMMAND 'hotstandby set primary alone' command.
The ADMIN COMMAND 'hotstandby set primary alone' command does not change
the value of AutoPrimaryAlone in the configuration file.

If you change the default to Yes, the Primary server state changes from PRIMARY
ACTIVE to PRIMARY ALONE rather than to PRIMARY UNCERTAIN.

3.2.6 Ensuring that Primary and Secondary parameter values
are coordinated

Some of the HotStandby or other parameters must be the same on the Primary and
Secondary servers, some must be different.

Certain parameters should be the same on both the . To ensure that after a failover,
the original Secondary becomes the new Primary and behaves the same as the old
Primary, some of the HotStandby parameters must be set to same values on the
Primary and the Secondary. However, the usage of the same values is not an
absolute requirement nor enforced by the system. If you use different values, the
servers do not fail, but clients might see different behavior.

Some parameters that are not in the [HotStandby] section, but which are indirectly
related, must also be the same on both the Primary and Secondary servers. For
example, the Logging.DurabilityLevel parameter generally must be the same on
the Primary and Secondary.

Certain parameters must be different on the Primary and Secondary servers, for
example, to ensure that the servers can be uniquely identified and can talk to each
other.

The following HotStandby parameters must be the same on both the Primary and
Secondary:
v [HotStandby]

– 2SafeAckPolicy

– AutoPrimaryAlone

– ConnectTimeout

– HSBEnabled

– PrimaryAlone (deprecated, but must be the same if used)
v [IndexFile]

– FileSpec must be compatible, which means that the number of FileSpec
parameters must be the same and the sizes of the corresponding FileSpec
parameters must match.

– BlockSize

v [Logging]

3 Administering and configuring HotStandby 41

– BlockSize

The following parameters must be different:
v [HotStandby]

– Connect

The following parameters can be the same or different, depending upon
circumstances such as the disk drive configuration on the computer:
v [General]

– BackupDirectory

v [HotStandby]

– CopyDirectory

There are also some settings of "non-HSB" parameters that affect HSB performance.
For example, the Logging.DurabilityLevel parameter has a setting that you can
use to optimize performance with HotStandby. See 1.1.5, “Durability and logging,”
on page 13 and see the description of Logging.DurabilityLevel in IBM solidDB
Administrator Guide.

3.2.7 Determining whether the Primary settings take
precedence over the Secondary settings

Some parameters must be the same for both the Primary and Secondary servers. If
you do not set the parameters to same values, you might expect that each server
uses the value that is defined in solid.ini file of server. However, this is not
necessarily the case.

Even for some parameters that control the behavior of the Secondary, such as
2SafeAckPolicy, the value on the Primary is the value that determines the
behavior. The principle is that all safeness and durability parameters are controlled
at the Primary. For example, the Primary reads its value of 2SafeAckPolicy and
sends that value to the Secondary to use. The value stored in the Secondary's
solid.ini file is used only if the Secondary becomes the Primary.

The values set at the Primary take precedence over the values set at the Secondary
for the following parameters:
v HotStandby.SafenessLevel

v HotStandby.2SafeAckPolicy

v Logging.DurabilityLevel

v HotStandby.NetcopyRpcTimeout

When the command hsb connect is issued, the following Primary parameters take
precedence:
v HotStandby.PingTimeout

v HotStandby.PingInterval

3.3 Configuring HA Controller and HA Manager
High Availability Controller (HAC) is deployed on each of the HotStandby server
nodes; it is configured through the solidhac.ini configuration file. High
Availability Manager (HAM) is configured through the HAManager.ini
configuration file.

42 IBM solidDB: High Availability User Guide

HA Controller

The HAC configuration file solidhac.ini must be located in the HAC working
directory. Parameters in the solidhac.ini configuration file are grouped under the
following sections:
v HAController

v LocalDB

v RemoteDB

v ERE

For descriptions of the parameters, see A.3, “High Availability Controller (HAC)
parameters,” on page 123

All the configuration parameters are shown also in the solidhac.ini example file
in A.5.2, “The solidhac.ini configuration file,” on page 129.

HA Manager

The HAM configuration file HAManager.ini must be located in the HAM working
directory.

For descriptions of the parameters, see A.4, “High Availability Manager (HAM)
configuration parameters,” on page 128

All the configuration parameters are shown also in the HAManager.ini example file
in A.5.3, “The HAManager.ini configuration file,” on page 132.

3.4 Administering HotStandby with ADMIN COMMANDs (HotStandby
API)

The HotStandby API (HSB API) is used for monitoring and controlling the server
processes. For example, the solidDB High Availability Controller (HAC) uses the
HSB API. Another example is the Watchdog sample program that is included in
the solidDB server package.

The HSB API is provided as a syntax extension to solidDB SQL, in the form of
ADMIN COMMAND:
ADMIN COMMAND hotstandby hsb-command options

or
ADMIN COMMAND hsb hsb-command options

The HSB commands can be issued via any SQL-capable interactive tool (like
solsql), or programmatically, through ODBC or JDBC.

You can use the HSB commands to program your own application to manage high
availability in solidDB, for example, to implement an integration to an external
cluster management software.

3 Administering and configuring HotStandby 43

3.4.1 Overview of administration tasks
The HotStandby administration includes tasks such as recovery and maintenance.

Table 7. Administration tasks

Topic Description Page

Performing HotStandby
recovery and maintenance
tasks

Describes HotStandby tasks
in the case of a system
failure (resulting from either
a broken communication link
or an inoperable HotStandby
server). These tasks include:

v Switching server states

v Shutting off HotStandby
operations

v Synchronizing Primary
and Secondary servers

v Connecting HotStandby
servers

3.4.2, “Performing
HotStandby recovery and
maintenance”

Copying a Primary database
to a new Secondary over the
network

Describes how to create a
remote (network) copy of a
database when the remote
server is a new addition to
the HotStandby
configuration (that is, it is a
new Secondary), or the
remote server data becomes
corrupted and must be
replaced.

“Copying a primary database
to a secondary over the
network” on page 54

Checking HotStandby status Describes how to check
HotStandby status
information for the Primary
and Secondary servers.

3.4.7, “Checking HotStandby
status,” on page 59

Verifying HotStandby server
states

Describes how to check the
state (Primary, Secondary, or
stand-alone) of a HotStandby
server.

3.4.8, “Verifying HotStandby
server states,” on page 62

Changing a HotStandby
server to a non-HotStandby
server

Describes how to set a server
that is configured for
HotStandby to a normal,
non-HotStandby server.

3.4.10, “Changing a
HotStandby server to a
non-HotStandby server,” on
page 64

3.4.2 Performing HotStandby recovery and maintenance
After a system failure or during server maintenance, you might have to perform
HotStandby tasks such as, switching server states, shutting off HotStandby
operations, synchronizing Primary and Secondary servers, and connecting
HotStandby servers.

Procedure
1. Perform some or all of the following operations:

a. Switch the server state.
This includes setting the Primary server to PRIMARY ALONE state, which
continues accumulating transactions in the transaction log so that they can
be sent to the Secondary later, or shutting down HotStandby.

44 IBM solidDB: High Availability User Guide

b. Synchronize the servers to be sure the Primary and Secondary databases are
identical.

c. Connect the Primary server to the Secondary server if the communication
link is broken for some reason.

2. The same steps can be taken with HAC and HA Manager as follows:
a. Press the Switch button in HA Manager. If the server needs to be shut

down, press the Shutdown button in HA Manager.
b. Set HAC instances to the ADMINISTRATIVE mode by pressing the

Administrative buttons in HA Manager.
c. Set HAC instances to AUTOMATIC mode by pressing the Automatic

buttons in HA Manager.

What to do next

For details on reconnecting applications to Secondary or Primary databases, see
4.3.1, “Reconnecting to primary servers from applications,” on page 94.

Important:

If HAC is used, either use HA Manager to perform administrative steps, or set
HAC instances to ADMINISTRATIVE mode before you start the administration
task.

3.4.3 Switching server states
The HotStandby component requires that the server state is switched, when
necessary, either automatically or manually by a user.

In production use, the server state is chosen by using automatic state switching,
that is, by performing failovers. The automatic state switching can be the
responsibility of, for example, the solidDB High Availability Controller (HAC).

Switchover means reversing the roles of the Primary and Secondary when they are
running. Switchover can be used for various maintenance purposes.

Failover is the action by Secondary for taking up the role of the Primary when the
Primary fails.

Performing switchovers
The roles of the servers can be reversed by issuing the following command at the
Secondary: ADMIN COMMAND ’hotstandby switch primary’; or, at the Primary:ADMIN
COMMAND ’hotstandby switch secondary’;

The switch commands can be used regardless of whether the two servers are
connected. If the servers are connected, the states are reversed; the old Secondary
becomes the new Primary, and the old Primary becomes the new Secondary. If the
servers are not connected, the old Secondary becomes the new Primary, and the
state of the other server is unchanged.

The diagram below shows what happens if you issue the command hsb switch
secondary or hsb switch primary when the servers are connected. The command
hsb switch primary can be issued only on a server that is in a SECONDARY state
(for example, SECONDARY ACTIVE), while the command hsb switch secondary
can only be used on a server that is in a PRIMARY state (for example, PRIMARY
ACTIVE).

3 Administering and configuring HotStandby 45

When you issue the command hotstandby switch primary to switch the Secondary
server (Srvr2) to Primary, if the Secondary server (Srvr2) is not connected to the
other server (Srvr1), an error is returned.

If the two servers are connected, they switch states. In other words, the old
Primary (Srvr1) becomes the new Secondary and old Secondary (Srvr2) becomes
the new Primary.

If the old Secondary (Srvr2) cannot connect to the other server (Srvr1), both servers
switch to SECONDARY ALONE. Even if the AutoPrimaryAlone configuration
parameter is set to yes, the new Primary switches to SECONDARY ALONE, not
PRIMARY ALONE.

Switching Secondary to Primary:

You can switch a Secondary server to PRIMARY state by issuing the command:
ADMIN COMMAND ’hotstandby switch primary’;.

When the hotstandby switch primary command is issued, it starts a process to
switch the state. If the switch process started successfully, the following message is
displayed: Started the process of switching the role to primary. You can
monitor the status of the switch by using the command hotstandby status switch.

If you issue a commit after the hotstandby switch primary command, the commit
fails with the error replicated transaction is aborted.

All transactions are terminated during the switch. However, administrative
commands (ADMIN COMMAND) are not transactional commands and cannot be
rolled back.

Note: Administrative commands force the start of a new transaction if one is not
already open. To avoid leaving an open transaction, or having a transaction start
time be different from what you expected, issue COMMIT WORK after
administrative commands.

If a configuration error causes both servers to have the state of PRIMARY (for
example, both are PRIMARY ALONE), you can use the command hotstandby
switch secondary to switch one of the servers back to a SECONDARY state.

Srvr1

Admin command 'HSB switch primary'

Admin command 'HSB switch secondary'

State switch

Primary active

Srvr2

Secondary active

Figure 12. State switch

46 IBM solidDB: High Availability User Guide

v If the servers have the same data, normal operations on both servers are
resumed.

v If the servers do not have the same data, the Primary server rejects the connect
operation from the Secondary and issues the following message: 14525:
HotStandby databases are not properly synchronized.
HotStandby replication is not started. In this case, a full copy of the Primary
database is required at the Secondary server. First you must decide which
database is correct.
Also, if the 14525 error occurs, the database states do not change. Both servers
remain in the same state they were in before the command was issued.

Related tasks:
“Displaying switch status information” on page 60
You can use the ADMIN COMMAND 'hotstandby status switch' command to verify
whether a state switch occurred between two HotStandby servers.

Switching Primary to Secondary:

You can switch a Primary server to SECONDARY state by issuing the command
ADMIN COMMAND 'hotstandby switch secondary'.

The ADMIN COMMAND 'hotstandby switch secondary' can be useful if two servers
have switched states and you want to switch them back to their original states. For
example, when the new Secondary comes back in service, you can switch its state
back to Primary and switch the new Primary back to Secondary.

When the hotstandby switch secondary command is issue, it starts a process to
switch the state. If the switch process started successfully, the following message is
displayed: Started the process of switching the role to secondary. You can
monitor the status of the switch by using the command hotstandby status switch.

When you execute the hotstandby switch secondary command, if the servers are
not already connected to each other, the old Primary tries to connect to the old
Secondary.

If the two servers are connected, they switch states. The old Primary becomes the
new Secondary and the old Secondary becomes the new Primary.
Related tasks:
“Displaying switch status information” on page 60
You can use the ADMIN COMMAND 'hotstandby status switch' command to verify
whether a state switch occurred between two HotStandby servers.

Performing failovers
A failover is performed by executing the command ADMIN COMMAND 'hotstandby
set primary alone' at the Secondary.

After all the pending transactions received from the Primary have been processed,
server gains the new state once. No transactions are lost, and the database state
reflects the state at the Primary just before the failure. However, if the safeness
level used is 1-safe, some transactions can be lost in failover.

Running the new Primary in PRIMARY ALONE state
Although the connection to the Secondary server is broken when the Primary
server is in the PRIMARY ALONE state, you can run a Primary server with

3 Administering and configuring HotStandby 47

continuous updates to the transaction log. After the Secondary server comes back
up, the server in PRIMARY ALONE state can resume sending transactions to the
Secondary server.

Procedure

There are three ways to set a server to PRIMARY ALONE state:
v Issue the following command:

ADMIN COMMAND ’hotstandby set primary alone’;

v Perform a controlled disconnect at either the Primary or the Secondary with the
following command:
ADMIN COMMAND ’hotstandby disconnect’;

If you do a controlled shutdown by executing ADMIN COMMAND ’shutdown’; on
the Secondary, the Secondary disconnects implicitly before shutting down, and
the Primary will switch safely to the PRIMARY ALONE state.

v Set the HotStandby.AutoPrimaryAlone parameter to yes to default to the
PRIMARY ALONE state.
When HotStandby.AutoPrimaryAlone=yes, the server is automatically put in
PRIMARY ALONE state when the connection to the Secondary is broken.
Otherwise, after a server fails, the state of the server remains PRIMARY
UNCERTAIN unless the command ADMIN COMMAND ’hotstandby set primary
alone’ is issued by the HAC, the administrator, or the watchdog program. By
default, the HotStandby.AutoPrimaryAlone parameter is set to no, which specifies
that the Primary server operating in its PRIMARY ACTIVE state is switched to
PRIMARY UNCERTAIN automatically if the Secondary server fails.

Results

The PRIMARY ALONE state persists until one of the following occurs:
v A connection is successfully made to the Secondary server.
v The server runs out of space for the transaction log.
v The log size limit (MaxLogSize) is reached.
v Another command switches the server to another state, such as STANDALONE.
v The Primary server is shut down.

Important: Do not shut down the Primary simultaneously with commanding
Secondary to the PRIMARY ALONE state. The two operations are conflicting and
might result in the Secondary gaining the SECONDARY ALONE state instead.
These two actions do not coincide in normal operation.

Also, even during the test phase, do not try to simulate Primary failure using
shutdown because shutdown is no substitute for failure. Shutdown is a complex
distributed operation that involves both Primary and Secondary. Also, after a
shutdown the Primary server that starts as a new Secondary cannot catchup with
the new Primary. To shut down Primary, the correct sequence is:
1. Perform the switchover.
2. Shut down the new Secondary.
3. The new Primary switches automatically to the PRIMARY ALONE state.

48 IBM solidDB: High Availability User Guide

Bringing the secondary server back online
Procedure

To bring the Secondary server back online, connect the Primary with the Secondary
server. For more information, see 3.4.6, “Connecting HotStandby servers,” on page
59.
After you bring a Secondary node online, it might require catchup. Changes in the
Primary have accumulated over time. While the Primary was set to PRIMARY
ALONE state, the Primary wrote transactions and data to the transaction log.
When the Secondary is connected again to the Primary, the pending changes at the
Primary are written from the transaction log to the Secondary server for
synchronization. While the changes are written to the Secondary, the Secondary is
in SECONDARY ALONE state and the Primary is in PRIMARY ALONE state. If
you issue the command ADMIN COMMAND 'hsb status connect', the return message
indicates whether the servers are performing catchup.

Note: If the Primary server was set to the STANDALONE state by using the
command hotstandby set standalone, the full database must be copied from the
Primary to the Secondary before the Secondary can be put in SECONDARY
ACTIVE state. For more information, see 3.4.5, “Synchronizing primary and
secondary servers,” on page 50.

Results

After the Secondary finished processing the pending changes, the Primary and
Secondary server states are automatically changed to PRIMARY ACTIVE and
SECONDARY ACTIVE.

3.4.4 Shutting off HotStandby operations
You might want to shut off HotStandby operations temporarily in the Primary
server, for example, if you are taking the Secondary server out of service to
upgrade it and the Primary does not have enough disk space to store the
transaction logs that accumulates while the Secondary is out of service.

About this task

(See 3.6.3, “Running out of space for transaction logs,” on page 67 for more
details.)

To shut off HotStandby at the Primary server:

Procedure
1. Disconnect the servers (if they are currently connected).
2. Set the Primary server to STANDALONE state, using the following sequence of

commands:
ADMIN COMMAND ’hotstandby disconnect’; -- if servers are connected
ADMIN COMMAND ’hotstandby set standalone’;

The Primary server continues to operate as a non-HotStandby server.

Note:

After you have stopped storing transaction logs to send to the Secondary, you
can no longer have the Primary and Secondary servers catch up merely by

3 Administering and configuring HotStandby 49

connecting them again. Instead, you must synchronize the servers manually
when you resume HotStandby operations.

What to do next

If you want to permanently stop using the server as a HotStandby server, see
3.4.10, “Changing a HotStandby server to a non-HotStandby server,” on page 64.

3.4.5 Synchronizing primary and secondary servers
To start HSB replication, the databases on the Primary and Secondary must be
identical. The secondary database must be an exact copy of the primary database.
The process of making the databases of a HotStandby system identical is called
HotStandby synchronization.

The Primary and Secondary must be synchronized, for example, in the following
situations:
v The Secondary is new and does not yet have a copy of the Primary database to

start with.
v The Secondary was not running for awhile and its copy of the data is not

up-to-date.
v Both the "Primary" and the "Secondary" were running in Primary Alone state at

the same time, and thus have conflicting data.
v The Secondary disk drive fails, or the file is corrupted and must be replaced.

There are two main ways of synchronizing the data on the servers: catchup and full
copy.

Catchup
Catchup can be used if and only if the Primary server has stored a copy of all of
the transactions that the Secondary server "missed" while the servers were
disconnected. If the Primary has stored all those transactions, when it is
reconnected to the Secondary, it automatically forwards those transactions to the
Secondary so that the Secondary can catch up with the Primary.

The solidDB server stores transactions (to forward to the Secondary) only while it
is in the PRIMARY ALONE state, not while it is in the STANDALONE state or is
operating as a non-HotStandby server. Therefore, if the server has been in
STANDALONE state or has been operating as a non-HotStandby server since it
last was connected with the Secondary, it does not have all the transactions and
cannot do catchup. Instead, you must do a full copy.

There is no explicit catchup command. The servers try to catch up automatically
when you connect them using the ADMIN COMMAND 'hotstandby connect' command.

When the Primary and Secondary are connected, they automatically check to see
whether the Primary server has data in its transaction logs to send to the
Secondary. If the data is there, the servers automatically attempt to catch up.

During the catchup process, the Primary and Secondary servers stay in PRIMARY
ALONE and SECONDARY ALONE states. Clients can continue to submit queries
and commit transactions. The catchup process is transparent to the client
applications.

50 IBM solidDB: High Availability User Guide

If the servers recognize that the Primary and Secondary databases are not identical
even after the transactions are copied from the Primary to the Secondary, you will
get an error message.

If catchup fails (or if you know ahead of time that it will not work because the
Primary server was in STANDALONE state, for example), you must do a full copy.

Catchup applies only when the Secondary has already been running in
SECONDARY ACTIVE state at some point. If you have a brand new Secondary
server, and even if the Primary was running in PRIMARY ALONE state and has
stored all transactions since the time that the Primary itself started, you must do a
full copy to give the Secondary its initial copy of the database.

For more information about the catchup process, see “Bringing the secondary
server back online” on page 49.

Full copy (hsb netcopy)
A full copy is just what its name implies: copying all the data from the Primary to
the Secondary. Full copy is made by copying the database files themselves.

Full copy is used in the following situations:
v The Secondary server is brand new and is getting its initial copy of the Primary

database.
v The Primary server has written transactions when it was not in the PRIMARY

ALONE state, and therefore catchup is not possible.
v The Secondary database is corrupted or missing.
v The Secondary is diskless and has failed. When a Secondary diskless server is

started after a failure, the diskless server requires a complete copy of the
database by using the hotstandby netcopy command. Unlike a disk-based
Secondary, the Secondary diskless server cannot read the transaction log and
apply the changes that occurred while it was inoperable.

v The Primary server has all of the data that is needed for catchup, but catchup is
expected to take longer than copying the current data files.

CAUTION:
If the Secondary server has old database files, a full copy writes over those old
files. If for any reason the files on the Secondary contain data that was not in
the Primary (for example, if both servers were operating in PRIMARY ALONE
state at the same time), that data is lost.

There are two HotStandby commands that can do a full copy, that is, they copy the
database files from the Primary to the Secondary. You can use either of the
following commands:
ADMIN COMMAND ’hotstandby netcopy’;
ADMIN COMMAND ’hotstandby copy [<directory_name>]’;

The netcopy operation copies the database over the network to a Secondary server
that is running and can receive the files over the network. The copy operation
copies the database files to a specified disk drive directory that is visible to the
Primary server. The secondary server must not be running during the copy
operation. The netcopy command is usually preferable to the copy command, so
most of the examples show only netcopy, not copy.

3 Administering and configuring HotStandby 51

The copy and netcopy commands are described in “Copying a database file from
the primary server to a specified directory” on page 57 and “Copying a primary
database to a secondary over the network” on page 54.

52 IBM solidDB: High Availability User Guide

3

2

1

Secondary

Secondary
database

Txn log

Primary
database

Primary

Secondary
(offline)

Full copy of
primary database

Txn log

Primary
database

Primary

Secondary

Txn log

Primary
database

Primary

1. Secondary is down for a long time so the primary stops using the transaction log to store data for the secondary.
The log is still used for local recovery.

2. Primary database is copied to the secondary node and the primary starts writing to the transaction log.

3. Database is copied and the primary sends transaction log file changes to the secondary.

Figure 13. Manual full copy procedure
3 Administering and configuring HotStandby 53

Note:

The preceding diagram oversimplifies the usage of the transaction log. In the first
part of the diagram, when the Primary and Secondary are not connected, the
Primary actually continues to write data to the transaction log, but keeps only
enough data for recovery, not enough to allow the Secondary to catch up with all
the changes since the connection was broken.

Using a watchdog to synchronize servers
The commands synchronize servers manually can also be used by a watchdog
program to synchronize servers automatically.

If catchup is sufficient, all that the watchdog must do is monitor the Secondary to
see when it comes up, and then issue the command to connect the Primary to the
Secondary. If a full copy is required, the watchdog can instruct the Primary server
to do a netcopy operation. A full copy writes over any data on the Secondary.

Copying a primary database to a secondary over the network
To send a copy of the database file from the Primary server to the Secondary
server, use the netcopy command. The Secondary server must already be running.

Before you begin
v To start the netcopy operation, the Primary server must be in PRIMARY ALONE

state.
v To use data compression during the netcopy operation, set the

HotStandby.NetcopyRpcCompress parameter to yes.

About this task

There are two main situations in which you use netcopy to create a copy of the
database for the Secondary server:
v You want to create a database for a brand-new Secondary that has never had

one before. This method is also used to copy a database to a diskless Secondary,
since after a failure it loses its entire database and must be treated as a
brand-new Secondary.

v You want to replace an existing Secondary database. For example, one that has
been corrupted.

Procedure

To start the netcopy operation, issue the following command:
ADMIN COMMAND ’hotstandby netcopy’;

When the Primary does a netcopy, the Primary uses the connect string that is
specified in the [HotStandby] section of solid.ini.
For details on the HotStandby.Connect parameter, which defines the connect string,
see 3.2.1, “Defining primary and secondary node HotStandby configuration,” on
page 37.
When you execute the hotstandby netcopy command, a database checkpoint is
created before the copy of the Primary database is sent to the Secondary.
The Primary continues accepting transactions and connections during the netcopy
(however, any ADMIN COMMAND that changes the server state are rejected.) The
Secondary does not continue accepting transactions and connections. When the
netcopy starts, if the Secondary has any open connections or transactions, it rolls
back the open transactions and disconnect from its clients, it starts receiving the

54 IBM solidDB: High Availability User Guide

netcopy. While the Secondary receives the netcopy, the Secondary communicates
only with the Primary server.
When the netcopy is completed successfully, the Secondary state changes to
SECONDARY ALONE (if it was not already in that state).
The Primary server stays in the PRIMARY ALONE state during the netcopy
operation. After the netcopy is completed, the Primary server continues to stay in
the same state. Before you can resume full hot standby operations, you must
connect the Primary and Secondary servers. Connecting the servers sets the
Primary server to PRIMARY ACTIVE state. For information about connecting the
servers, see 3.4.6, “Connecting HotStandby servers,” on page 59.

Creating a new database for the secondary server
Normally, when you start the solidDB server, it prompts you to create a new
database if there is not already a database. However, if the server is a Secondary
server, it must use a copy of the Primary database rather than create its own
database. Therefore, when you start a Secondary server that does not have an
existing database, you must give it a command-line parameter to tell it to wait to
receive a copy of the database from the Primary. The command-line parameter is
-x backupserver. For example, you start the Secondary server with the command:
solid -x backupserver

The space between the -x and backupserver is optional.

The -x backupserver command-line parameter sets the server into netcopy listening
mode (also called backup listening mode). In the netcopy listening mode, the only
possible operation for the Secondary server is to receive a database copy from the
Primary server. The Secondary does not respond to any other command, and it
does not even accept a connection request from a client program such as solsql,
your application, or a watchdog program.

If there is a Secondary database, you can start the server in a normal way. The
server starts in the SECONDARY ALONE state.

After the Secondary has been started with -x backupserver, or is in the
SECONDARY ALONE state, you can execute the netcopy command on the
Primary.

First, make sure that the Primary is in PRIMARY ALONE state. Then, issue the
following command on the Primary:
ADMIN COMMAND ’hsb netcopy’;

On the Primary, the hotstandby netcopy command uses the connect string that is
defined with the Connect parameter in the solid.ini configuration file to connect
to the Secondary server. After the servers are connected, the Primary copies the
database files through the network link. In the netcopy listening mode, the
Secondary server attempts to open the Secondary database only after it has
received a new database copy through the hotstandby netcopy command at the
Primary.

Following is the procedure to create the Secondary database copy:
1. Ensure that you have configured the solid.ini file so that it is valid for the

HotStandby configuration. For more information about the Connect parameter,
which defines the connect string, see 3.2.1, “Defining primary and secondary
node HotStandby configuration,” on page 37.

3 Administering and configuring HotStandby 55

The connect string is used to connect to the Secondary server from the Primary
and to copy the database files over the network.

2. Start the Primary server.
3. Start the Secondary server in netcopy listening mode by executing the

following command:
solid -x backupserver

Or, alternatively, start the Secondary server with an existing database.
4. Set the Primary server to PRIMARY ALONE state if it is not already in that

state:
ADMIN COMMAND ’hotstandby set primary alone’;

5. Issue the following command at the Primary server:
ADMIN COMMAND ’hotstandby netcopy’;

6. After the netcopy has completed, you can connect the two servers and start (or
resume) full hot standby operation by issuing the command:
ADMIN COMMAND ’hotstandby connect’;

When the Secondary server receives a new copy of the database through the
network link, it opens the Secondary database. After the servers are connected
(with the hsb connect command), the Secondary server runs in its normal
SECONDARY ACTIVE state and is ready to accept user transactions from the
Primary.

If HAC is used, the procedure to get the Primary server database copied to the
Secondary is as follows:
1. Ensure that the servers have the correct Connect parameters.
2. Ensure that the HAC in Primary node has the PreferredPrimary=Yes parameter

set in solidhac.ini, and that the HAC in the Secondary node does not. For
further information of configuring HACs see 3.3, “Configuring HA Controller
and HA Manager,” on page 42.

3. Start the HAC instances, or optionally set HACs to the AUTOMATIC mode.

Note: If netcopy is sent to a server that is in the SECONDARY ALONE state, the
existing database is overwritten with the copied database. Netcopy is useful if you
want to resynchronize databases or repair a corrupted Secondary database.

Replacing an existing database on the secondary server
Although netcopy is used primarily to send a database to a Secondary that has
never had a database before, netcopy can be used in other situations as well. For
example, if the Secondary copy of the database is corrupted, for example, after a
disk drive failure, you can send the Secondary a copy of the Primary database by
using the netcopy command.

Before you begin

If you are replacing an existing database, then the Secondary server does not have
to be in "netcopy listening mode"; in other words, you do not have to start the
Secondary server with -x backupserver.

Procedure
1. Make sure that the Primary is in PRIMARY ALONE state and the Secondary is

in SECONDARY ALONE state.
2. Issue the following command to the Primary:

56 IBM solidDB: High Availability User Guide

ADMIN COMMAND ’hotstandby netcopy’;

After netcopy completes, the Primary server is in PRIMARY ALONE state and
the Secondary server is automatically put into SECONDARY ALONE state (if it
was not already in that state).
If you do a netcopy while the Secondary is in SECONDARY ALONE state, and
if any clients are connected to the Secondary (to do read-only queries), then the
Secondary server rolls back any open transactions and breaks any client
connections. Once the netcopy is completed, the Secondary server remains in
the SECONDARY ALONE state.

3. The servers do not connect automatically: To connect the servers, issue the
following command:
ADMIN COMMAND ’hotstandby connect’;

Verifying netcopy status
When you start a netcopy command, it runs asynchronously in the background.
The servers do not display a message when the netcopy completes – instead, you
have to monitor the status of the netcopy.

About this task

The servers do not display a message even if the netcopy fails due to a problem
such as a network error.

Procedure

Issue the following command at the Primary server:
ADMIN COMMAND ’hotstandby status copy’;

Note: The command uses the keyword copy, not netcopy. The same command is
used for both the copy and netcopy operations.
The command displays a status message that indicates whether the netcopy was
successful, is still in progress, or failed.

Copying a database file from the primary server to a specified
directory
If the directory that the Secondary uses for the database is visible to the Primary,
you can use the hotstandby copy command to copy the database from the Primary
to the Secondary.

Before you begin

This task is only possible in cases where the Primary and Secondary servers acan
see some of the same disk drives and therefore can read and write some of the
same directories.

CAUTION:
Before you issue the hotstandby copy command, shut down the Secondary
server. The Secondary server must not try to access the database file while the
Primary is writing that file.

Note: The Primary server must be in PRIMARY ALONE state when you issue the
hotstandby copy command, and the Primary server remains in that state during
(and after) the command.

3 Administering and configuring HotStandby 57

About this task

The key difference between the hotstandby copy command and the hotstandby
netcopy command is that the netcopy command can be used only when the
Secondary is running. The copy command can be used only when the Secondary
server is not running. Performance-wise, there is no significant difference between
the two database copy methods.

Procedure
1. To copy the file by using hotstandby copy, issue the following command at the

Primary server:
ADMIN COMMAND ’hotstandby copy[directory_name]’;

where directory_name is the name of the directory that you want to copy the file
to. The format of the directory name is operating system dependent. The
directory name is optional. If you do not specify a directory name, then the
server uses the value that is specified by the HotStandby.CopyDirectory
parameter.
When you issue the hotstandby copy command, the server creates a checkpoint
and makes a copy of the Primary database before it sends the copy to the
Secondary.
Since the server is in PRIMARY ALONE state, transaction processing on the
Primary continues normally during the copy command, and the Primary stores
the transactions in the transaction log so that they can be forwarded to the
Secondary later.

2. After a copy operation, the Secondary is still down. You must bring it back up
and then issue the hotstandby connect command to connect the two servers.
When the Primary database is connected to the Secondary using the
administrative command hotstandby connect, the Primary and Secondary
servers automatically perform "catchup" to bring the Secondary up-to-date.

Starting the secondary server and catching up:

When the copy is completed, you must start the Secondary server with the newly
copied database.

Procedure

1. Start the Secondary server.
2. Use the hotstandby connect command at the Primary server to connect the

Primary server to the Secondary server.
ADMIN COMMAND ’hotstandby connect’;

For more information about he hotstandby connect command, see 3.4.6,
“Connecting HotStandby servers,” on page 59.

Results

After the Primary is connected to the Secondary, the Primary server and Secondary
server automatically start performing catchup. During catchup, the Primary server
brings the Secondary database up-to-date by copying the Primary transaction log
to the Secondary. Then the Secondary rolls forward the transaction log and updates
its copy of the database.

58 IBM solidDB: High Availability User Guide

3.4.6 Connecting HotStandby servers
About this task

The connect string that the Primary uses to connect to the Secondary server is
specified using the HotStandby.Connect parameter.

You can view current connect settings in the Primary and Secondary nodes by
issuing the command:
ADMIN COMMAND ’hotstandby cominfo’;

Procedure

If the connection between the Primary and Secondary servers is broken or not yet
established, you must issue the following command at the Primary or Secondary
node:
ADMIN COMMAND ’hotstandby connect’;

For example, after performing a netcopy, you normally connect the servers.
Since there is no automatic connect mechanism in the HotStandby servers, your
high availability control application must issue the command when the connection
between the servers is broken.
After issuing this command, a confirmation message is displayed if the connection
between the Primary and Secondary servers is successful. If the Primary and
Secondary are connected, but the transaction log is not yet fully copied at the
Secondary, the Primary server returns the following message: Started the process
of connecting the servers.
If the state of the Primary server was PRIMARY UNCERTAIN or PRIMARY
ALONE when you issued the command, and if the connection is successful, the
state of the Primary server changes to PRIMARY ACTIVE. If unsuccessful, the state
remains PRIMARY UNCERTAIN or PRIMARY ALONE.

What to do next

For more information about querying the connect status at Primary and Secondary
servers, see “Displaying connect status information” on page 60. For more
information about reconnecting an application to the Primary server, see 4.3.1,
“Reconnecting to primary servers from applications,” on page 94.

3.4.7 Checking HotStandby status
You can request information about the HotStandby status from both the Primary
and Secondary servers.

Procedure

To check status, issue the following command in the Primary or Secondary server:
ADMIN COMMAND ’hotstandby status option’;

where option can be one of the following:

3 Administering and configuring HotStandby 59

Option Description

catchup Indicates whether the server is doing
catchup. Catchup occurs after the Primary
server connects to the Secondary. During
catchup, the Primary sends accumulated
transaction logs so that the Secondary can
apply the changes. Possible values are:
'ACTIVE' and 'NOT ACTIVE'.

connect Shows whether the last attempt to connect
the servers was successful.

copy Shows whether the last attempt to
copy/netcopy was successful.

switch Shows whether the last attempt to switch
the server into PRIMARY ACTIVE or
SECONDARY ACTIVE state was successful.

Example
ADMIN COMMAND ’hotstandby status catchup’;

Displaying switch status information
You can use the ADMIN COMMAND 'hotstandby status switch' command to verify
whether a state switch occurred between two HotStandby servers.

About this task

To check HotStandby switch status information:

Procedure

Issue the following command in the Primary or Secondary server:
ADMIN COMMAND ’hotstandby status switch’;

v When no prior switch has occurred between the two servers, the following
message is displayed: NO SERVER SWITCH OCCURRED BEFORE.

v When the switch process is still active, the following message is displayed:
ACTIVE.

v When the most recent prior switch process has completed successfully, the
following message is displayed: SUCCESS.

v When the most recent attempt to switch has failed, the following message is
displayed: ERROR number, where number identifies the type of error that occurred
during the switch.

Displaying connect status information
You can query connect status information between the Primary and Secondary
servers. This capability is equivalent to the SQL function
HOTSTANDBY_CONNECTSTATUS, which you can use in the application code.

Procedure

To check connect status, issue the following command in the Primary or Secondary
server:
ADMIN COMMAND ’hotstandby status connect’;

The possible return values are:

60 IBM solidDB: High Availability User Guide

Table 8. Connect status return values

Error Code Text Description

0 CONNECTED Connect active. Returned
from both the Primary and
Secondary server.

14007 CONNECTING Primary server is connecting
to the Secondary server.
Returned from both the
Primary and Secondary
servers.

14008 CATCHUP Primary server is connected
to the Secondary server, but
the transaction log is not yet
fully copied. Returned from
both the Primary and
Secondary server.

14010 DISCONNECTING The servers are in the
process of disconnecting.

14537 BROKEN Connection is broken.
Returned from both the
Primary and Secondary
servers.

Displaying connection information
You can query the connection information that the HotStandby server uses to
connect to the other server by using the ADMIN COMMAND 'hotstandby cominfo'
command.

Procedure

To display connection information, issue the following command in the Primary or
Secondary server:
ADMIN COMMAND ’hotstandby cominfo’;

The command returns the connection information that is defined with the
HotStandby.Connect parameter.

Displaying role start time
Sometimes it is important to know when the server entered the current role of
Primary or Secondary.

You can retrieve information about the start time of the Primary or Secondary role
by using the ADMIN COMMAND 'info' command with the options primarystarttime
and secondarystarttime.

For example:
admin command ’info primarystarttime’;

RC TEXT
-- ----
0 2005-06-09 14:22:18

admin command ’info secondarystarttime’;
RC TEXT
-- ----
0 2005-06-09 18:24:44

3 Administering and configuring HotStandby 61

The reported time is the time the server role became Primary or Secondary. The
STANDALONE state is considered to be a state of the Primary role.

The primary start time is set when the following transitions occur:
v SECONDARY ALONE => PRIMARY ALONE
v SECONDARY ALONE => STANDALONE
v SECONDARY ACTIVE => PRIMARY ACTIVE

The secondary start time is set when the following transitions occur:
v The server is started in the SECONDARY ALONE state
v OFFLINE (started with -x backupserver) => SECONDARY ALONE
v PRIMARY ALONE => SECONDARY ALONE
v STANDALONE => SECONDARY ALONE
v PRIMARY ACTIVE => SECONDARY ACTIVE

If the current role contradicts the query, the query returns an empty string. For
example, if the role is SECONDARY and the command info primarystarttime is
issued, it returns an empty string.

3.4.8 Verifying HotStandby server states
You can check the state of HotStandby servers by using the ADMIN COMMAND
'hotstandby state' command.

Procedure

To check the current state of a HotStandby server, issue the following HotStandby
command in the server:
ADMIN COMMAND ’hotstandby state’;

Results

For descriptions of possible states the command returns, see “Description of server
states” on page 8.

Note:

1. If the server is configured as a HotStandby server, when the server is started,
the server starts in the SECONDARY ALONE state.

2. The server cannot return the state OFFLINE because when the server is in the
OFFLINE state, you cannot connect to it and issue any query (such as ADMIN
COMMAND 'hotstandby state').

3. If ADMIN COMMAND 'hotstandby state' is issued on a server that is not
configured as a HotStandby, the following error message is returned:

14527: This is a non-HotStandby Server

If HAC, and HA Manager are used, the HA Manager displays the HSB states of
both servers. The information is queried periodically every second.

What to do next

For a summary of HotStandby state transitions that occur while performing
administrative and troubleshooting operations, see Appendix D, “Server state
transitions,” on page 161.

62 IBM solidDB: High Availability User Guide

Server state combinations
All combinations of server states are not possible. For example, if the Primary is in
PRIMARY ACTIVE state, the Secondary can be only in SECONDARY ACTIVE
state.

The following table shows possible server states of a HotStandby server when its
associated server is in a particular state.

Table 9. Server states

State of the server Possible states of the associated server

PRIMARY ACTIVE SECONDARY ACTIVE

PRIMARY ALONE PRIMARY ALONE *
PRIMARY UNCERTAIN
SECONDARY ALONE
STANDALONE *

PRIMARY UNCERTAIN PRIMARY ALONE
PRIMARY UNCERTAIN
SECONDARY ALONE
STANDALONE

SECONDARY ACTIVE PRIMARY ACTIVE

SECONDARY ALONE PRIMARY ALONE
PRIMARY UNCERTAIN
SECONDARY ALONE
STANDALONE

STANDALONE PRIMARY ALONE *
PRIMARY UNCERTAIN
SECONDARY ALONE
STANDALONE *

* If one server is in the PRIMARY ALONE state or STANDALONE state, the other
server cannot be in the PRIMARY ALONE or STANDALONE state. This is because
if changes are made to both servers independently, there is no way to merge the
two databases into one.

3.4.9 Choosing which server to make primary
In some error recovery situations, you might not know which server you must
make the Primary. You can use the hsb logpos command to determine which
server to make the Primary.

About this task

This procedure can be used, for example, in a case where both databases have
failed; the server that was the Primary before the servers lost contact with each
other is not necessarily the server that should become the Primary now.

Procedure
1. Ensure that both servers are in SECONDARY ALONE state.
2. Connect to both servers.
3. In each server, issue the following command:

ADMIN COMMAND ’hsb logpos’;

3 Administering and configuring HotStandby 63

This commands returns the log operation ID and the server's role (PRIMARY,
SECONDARY, STANDALONE) at the time of the last operation. Successful
admin commands return error code 0, a string, and the previous role of the
server.
For example:
ADMIN COMMAND ’hsb logpos’;
RC TEXT
-- ----
0 000000000000000000871:PRIMARY

The application must regard the string as an opaque value, which has no
defined structure.

4. Compare the string values.
For example, in C, use the strcmp() function.
In principle, the server that has the greater value for the log operation ID has
accepted more transactions, and thus should become the Primary. However, if
you have made updates to both servers after the HSB connection has failed, the
log operation ID values can no longer be compared reliably.
If HAC is used and the STRINGS are equal, the LocalDB.PreferredPrimary
HAC parameter defines whether the local server becomes the Primary.

5. Select the Primary by using the following command on the server that will
become Primary:
ADMIN COMMAND ’hsb set primary alone’;

6. Connect the HotStandby servers with each other by using the following
command:
ADMIN COMMAND ’hsb connect’;

Results
v If the hsb connect command succeeds, the Secondary catches up with the

Primary, and the HotStandby pair is functional again.
v If the hsb connect command fails, you must synchronize the nodes separately.

For more information, see 3.4.5, “Synchronizing primary and secondary servers,”
on page 50.

Important: This procedure does not ensure that the server with the higher string
value is a superset of the other server. The two servers might have each accepted
transactions that the other did not. For example, both servers might have been
running in the PRIMARY ALONE state. To detect the possibility that neither server
is a superset of the other, the servers compare information when the hsb connect
command is issued. If neither server is a superset, the hsb connect command fails
with an appropriate error message.

3.4.10 Changing a HotStandby server to a non-HotStandby
server

You can change a Primary or Secondary server to become a normal,
non-HotStandby server by editing the [HotStandby] section of the solid.ini file.

Procedure
1. Remove the HSBEnabled parameter (or set it to no).
2. (Optional) Remove or comment out the Connect parameter.
3. To make the changes in the solid.ini file effective, restart the server.

64 IBM solidDB: High Availability User Guide

Example

If you want the server to temporarily stop acting as a HotStandby server, but you
would like it to resume acting as a HotStandby server later, you can leave the
solid.ini file unchanged and change the state of the server to STANDALONE.

3.5 Performance tuning

3.5.1 Tuning replication performance with safeness and
durability levels

The performance of data replication during normal operation depends on the
setting of the durability level and safeness level. Additionally, when 2-safe
replication is used, the acknowledgement policy that is used in 2-safe mode affects
the latency time, as perceived by the application. For more information, see 1.2,
“Performance and HotStandby,” on page 18.

3.5.2 Tuning netcopy performance
The netcopy command allows the Primary database to be copied to a remote
Secondary. The netcopy command is also used to copy a database from a Primary
server to a Secondary server when one or both servers are diskless. The Primary
database files are copied through a network link.

The connect string that is used to connect to the Secondary server for the netcopy
operation is specified with the HotStandby.Connect parameter.

Controlling netcopy block size

You can tune the performance of netcopy (and the performance of backup) by
increasing or decreasing the block size of the database file when it is copied from
the Primary to the Secondary server. You can define the block size with the
General.BackupBlockSize parameter. Generally, larger block size means faster
netcopy and backup, but at the cost of possibly slowing down the server response
time to other requests while the netcopy or backup is being done.

By default, the General.BackupBlockSize parameter is set to 64K.

You can set the value in bytes, or by using the suffixes "M" and "K". For example:
[General]
BackupBlockSize = 32K

or
[General]
BackupBlockSize = 32768

Note:

v The minimum value for General.BackupBlockSize is the server block size
(defined with IndexFile.BlockSize parameter).

v The maximum value is 8MB. If the parameter value exceeds the maximum value,
the default value is used (64K).

v The value of General.BackupBlockSize needs to be a multiple of the database
block size of the server (defined with IndexFile.BlockSize parameter).

Related tasks:

3 Administering and configuring HotStandby 65

“Copying a primary database to a secondary over the network” on page 54
To send a copy of the database file from the Primary server to the Secondary
server, use the netcopy command. The Secondary server must already be running.

3.5.3 Tuning database catchup performance
When a failed Secondary server is back in service and connected to Primary,
HotStandby continues sending the Primary transaction log file contents to the
Secondary node in an automated process that is known as HotStandby database
catchup.

You can tune the performance of the database catchup by adjusting how much
time the server spends on catchup, as opposed to servicing current client database
queries. The catchup time is controlled with the HotStandby.CatchupSpeedRate
parameter, which defines in percentages the time the server spends on catchup. For
example:
[HotStandby]
CatchupSpeedRate = 90

If HotStandby.CatchupSpeedRate is assigned a value of 90, the server spends
approximately 90% of its time on catchup and about 10% of its time responding to
user queries.

The higher the HotStandby.CatchupSpeedRate value is, the faster the catchup.
However, a higher catchup rate also affects other activities, such as user queries.
By default, HotStandby.CatchupSpeedRate is set to 50.

3.6 Special considerations for using solidDB with HotStandby
When you are using solidDB with HotStandby, you must pay special attention to
the transaction isolation level, transaction log space, unplanned network
partitioning, and throttling.

3.6.1 Transaction isolation level and in-memory tables
If you are connected to the Secondary and you are reading data from in-memory
tables, the transaction isolation level is automatically set to READ COMMITTED.
The transaction level is READ COMMITTED even if you have specified it as
REPEATABLE READ, or SERIALIZABLE.

Additionally, if load balancing is used, the isolation level is READ COMMITTED
by default.

3.6.2 Network partitions and dual primaries
In some circumstances, both servers can be in the PRIMARY ALONE state. Having
dual primaries can lead to serious, unrecoverable errors.

In the dual primary situation, if each server commits any transactions that the
other does not, you cannot resynchronize the servers, because the databases cannot
be merged to create a single database that has correct information. In practice, the
transactions committed in the "wrong primary" database during the dual primary
situation, will be lost. Having dual primaries can also lead to other errors.

The dual primaries problem is most likely to be caused by a network partition. In a
network partition situation, some but not all network connections are lost and your
single network effectively becomes divided into separate subpieces. Each subpiece

66 IBM solidDB: High Availability User Guide

can communication within the piece but not with other pieces. Thus both servers
lose connections with each other, but are still up and running, and in some cases
can still communicate with some clients.

The dual primaries scenario can be avoided by using a single-instance watchdog in
a node that is external to the HSB system. By using such a watchdog, it is easy to
decide which server must be set to Primary and to ensure that clients see only one
Primary.

Although HAC in composed of two instances that running in the same nodes with
HSB servers, the dual primary situation is impossible when HAC is used with
ERE.

Even if you have dual primaries, you do not have inconsistent data unless
someone is able to perform a write operation on the original Secondary (after it
has switched to PRIMARY ALONE). If the original Secondary is cut off from the
rest of the network, no one can write to it. The original Primary is a superset of the
Secondary, and you can get a single consistent set of data (after you reconnect the
servers and allow the Secondary to catch up with the changes made on the original
Primary).

Although dual primaries are rare, they are dangerous when they do occur. You
must plan you environment so that you can prevent your data from becoming
inconsistent. For example, use ERE.

The chances of dual primaries increase if you set the configuration parameter
AutoPrimaryAlone to Yes for one or both servers. The AutoPrimaryAlone=Yes
parameter setting means that your system can respond to failures quickly, but it
also means that the system no longer has any independent observer (HAC,
watchdog or human) to prevent dual primaries. If you have any doubts on your
network reliability, keep the AutoPrimaryAlone parameter in its factory value, that
is, No.

3.6.3 Running out of space for transaction logs
When you use HotStandby, if you put a server in PRIMARY ALONE state, you
must be careful that it does not run out of disk space for transaction logs. In a
non-HotStandby server, if you checkpoint frequently, then the transaction log does
not grow large because after each checkpoint the server deletes the old transaction
logs.

In particular, the non-HotStandby server deletes the logs with the data changes
that occurred before the checkpoint. For more information about checkpointing, see
solidDB Administration Guide.

However, in a HotStandby server that is operating in PRIMARY ALONE state, the
server must keep the transaction logs that have accumulated since the time that the
Primary lost contact with the Secondary. If the Secondary is down for a long time,
the server might keep a large amount of transaction log data that it would
otherwise throw away after each checkpoint. In a worst-case situation, if the
Secondary cannot be brought back up in a reasonable time and there is not enough
disk space to store all the transactions that occur, the Primary transaction logs can
fill up all of the available disk space. When the disk is full, the server switches to
read-only mode.

3 Administering and configuring HotStandby 67

To prevent running out of disk space for transaction logs, you can control the log
size with the parameter MaxLogSize. After the log reaches the specified total log
size, the server automatically switches to the STANDALONE state at the next
checkpoint. In a diskless server, the state remains PRIMARY ALONE, even though
there is no disk writing at all.

If the server is set to the STANDALONE state, it no longer keeps all transactions
logs since the time that the Primary lost contact with the Secondary. Without
complete transaction logs, you cannot synchronize your system merely by
connecting the Primary to the Secondary and allowing the Secondary to "catch up"
by reading old logs. You have to copy the entire database from the Primary to the
Secondary by using the copy or netcopy command.

If HAC is used, it identifies the situation described above, and leads the servers to
the ACTIVE state by automatically performing the necessary actions.

3.6.4 Throttling and multiprocessing in Secondary
To keep the data in the Primary and Secondary server up-to-date, the Primary
writes to its transaction log and forwards it to the Secondary so that the Secondary
can make the same changes to its copy of the database. If the Secondary cannot
keep up with the processing pace of the Primary, the solidDB throttling mechanism
slows down the processing on the Primary. From the application standpoint,
throttling results in increased response times.

As of V7.0, the Secondary can use multiple threads for processing the write loads.
The Secondary receives operations from the Primary in one stream. Operations are
parsed and each transaction is attached in execution queue; there are as many
execution queues as there are open parallel transactions. To ensure that conflicting
operations are executed in the correct order, row locks are used.

You can monitor the use of threads with the following performance counters
(pmons):

Table 10. Pmon counters for monitoring multiprocessing in the Secondary

Perfmon Variable Description

HSB grpcommits Number of transactions in the most recent group
commit

Transaction commits are grouped in one-log
bursts which are sent to Secondary as one packet.

You can use this counter only on the Primary.

HSB secondary ops in packet Number of log records the Secondary received
from the Primary in the most recent log record
packet.

HSB secondary trx count Number of open transactions the Secondary has
received from the Primary

HSB secondary locks Number of row-level locks on the Secondary

HSB secondary lock reqs Number of lock requests on the Secondary

HSB secondary lock waits Number of lock waits on the Secondary since the
server was started

HSB secondary op waits Number of times operations (transactions) on the
Secondary have been waiting to continue
execution

HSB secondary buffers Number of buffered log record packets the
Secondary has received from the Primary

68 IBM solidDB: High Availability User Guide

Table 10. Pmon counters for monitoring multiprocessing in the Secondary (continued)

Perfmon Variable Description

HSB secondary serial mode count Number of times the Secondary parallel executor
has switched to serial mode instead of running in
parallel

HSB secondary dispatch queuelength Size of the most recent dispatch thread (operations
to dispatch) on the Secondary

You can also optimize the multiprocessing level of the Secondary with the
HotStandby.SecondaryThreads parameter. The optimal number of threads depends
on the environment and requires experimenting with loads typical to your
environment. In principle, the more processing capacity (cores) the computer has,
the higher you can set the value of the HotStandby.SecondaryThreads parameter.
However, excessive use of threads is not likely to improve performance.

3.7 Configuring for lower cost versus higher safety
The HotStandby solution uses pairs of Primary and Secondary servers to provide
true high availability. However, using pairs of servers might not be optimal for
every use scenario. If near-instantaneous failover is not required, you might not be
able to justify the expense of having a Secondary for every Primary server. At the
other extreme, some business cases might need extra reliability and also warrant
the resources to purchase spares for the spares. Spare for spares means that you
might want to purchase not only a Secondary for every Primary, but also one or
more spare servers so that when a Primary fails and its Secondary replaces it, a
spare can be used as the new Secondary if the original Primary cannot be repaired
quickly.

To help you to reduce costs or increase reliability, HotStandby supports various
alternatives to the so called N+N or 2N standard hot standby model (in the
standard model the number of Primary and Secondary servers is the same (N)).
The alternatives include:
v N + 1 Spare or N + M Spares: This is the Spare Node scenario for stand-alone

servers. There are N "primary" servers and one or more spares. There are no
Secondary servers. A failed (primary) server is replaced with a spare. The
stand-alone server case is not a true hot standby scenario. It can be called warm
standby: the spare computer is available but it does not have a copy of the
database.

v 2N + 1 Spare or 2N + M Spares: This is the Spare Node scenario for HotStandby.
There are N HotStandby pairs, that is, every Primary has a Secondary. In
addition, there are M spares, where M is at least one and usually less than N.
When a Primary or Secondary fails, a spare is brought in as the new Secondary.
Thus a Primary server never operates alone for long, even if its original partner
has failed.

3.7.1 Reducing cost: N + 1 spare and N + M spares scenarios
In the N + 1 spare and N + M spares scenarios, there are N "primary" servers, each
of which operates in STANDALONE state, that is, without being connected to a
Secondary. In addition, there are M spare servers, where M is at least 1 and usually
less than N. If a "primary" server fails, one of the spares replaces it. Data is copied
from the original server to the spare, the original server is taken offline, and the
spare is configured to act as the original server. Any spare can replace any Primary
server (no spare is dedicated to a particular Primary server). Also, failover is not
almost instantaneous.

3 Administering and configuring HotStandby 69

The N + 1 approach is referred to as single-spare scenario and N + M is referred to
as multiple-spare scenario.

Both approaches require that you have a copy of the data of the original server
somewhere. The single-spare and multiple-spare scenarios do not prevent data lost
if the disk drive of the original server is damaged and there is no backup of the
data.

The N+M approach can be useful in the following situations:
1. You are using the spare nodes to handle scheduled maintenance, not

unexpected failures.
2. You have reliable backups that you can quickly copy to the spare server.

a. You have backups on tape or on some other safe location.
b. You are using solidDB advanced replication technology, and you can copy

or re-create enough of the data by reading from the advanced replication
master or replicas of the server that failed.

3. Individual pieces of data are not critical or are not unique.
a. For example, if what you need is the "computing horsepower"

(load-spreading capability) rather than the specific data, you might be able
to meet your needs by copying a standard or "seed" database, or getting the
data from clients, and then continue to run.

b. Similarly, if all the servers have approximately the same data and are
responding almost entirely to read requests with few or no write requests,
you can copy a useful database from any one of your computers. For
example, if you are running a large number of servers that all use the same
internet routing tables, or telephone directory information, you can use any
of the server for recovery of data.

3.7.2 Increasing reliability: 2N + 1 spare and 2N + M spare
scenarios

Normal HotStandby operation is highly reliable. The odds of both the Primary and
Secondary failing at nearly the same time are low, if they use separate reliable
power supplies. But suppose that you want to reduce even the risk of power
failure, or suppose that the server that failed cannot be repaired rapidly? Ideally,
when a Primary fails and you replace it with a Secondary (or when a Secondary
fails), you want to have a new Secondary that replaces the old Secondary so that
you can continue to run with a complete pair of servers.

This situation is called the 2N + 1 Spare (or 2N + M Spares) scenario. You have N
Primary servers, N Secondary servers, and at least 1 spare that can replace any
Secondary that has failed or has been converted to a Primary. Spares are not
dedicated to a particular server (or HSB pair of servers), and some configuration is
required before the spare can replace the failed server.

3.7.3 How solidDB HSB supports the N+1 (N+M) and 2N+1
(2N+M) approaches

You must make a spare server look like the server that it is replacing. Typically,
this means:
1. You must copy data to the spare.
2. You must tell the spare to "listen" at the same network address as the server

that it is replacing, or at another address that the client programs know to
communicate through.

70 IBM solidDB: High Availability User Guide

3. In addition, in the 2N+1 (2N+M) scenario, you must also tell the new
Secondary server and the current Primary server how to communicate with
each other, In other words, you must tell each of them the address to use to
connect to the other.

solidDB has two features to support such needs:
v You can copy data to the spare server without shutting down the spare server.
v You can set certain configuration parameters dynamically.
1. Although solidDB configuration parameters are normally set by shutting down

the server, updating the solid.ini configuration file, and then restarting the
server, it is also possible to change some configuration parameters (such as the
"com.listen" and "hotstandby.connect" parameters) by executing ADMIN
commands similar to the following examples:
ADMIN COMMAND ’parameter com.listen="tcp SpareServer1 1315"’;
ADMIN COMMAND ’hsb parameter connect "tcp srvr27 1316"’;

This means that a spare can be configured dynamically to take the place of
another server without shutting down first. Similarly, a Primary can be told the
Connect string of its new Secondary.

Tip: Executing the commands do not write the updated parameter values to
the solid.ini file. To ensure that the server has the new values the next time it
restarts, update the parameter values also in the solid.ini file.

Important:

The spare server must be started with the command-line option -x
backupserver so that it is ready to receive the netcopy from the Primary server.
For more information about the -x backupserver option, see “Creating a new
database for the secondary server” on page 55.

2. The netcopy command copies a database to a server that is already up and
running.
a. Set the new value of the "connect" parameter:

ADMIN COMMAND ’hsb parameter connect "tcp srvr27 1316"’;

b. Execute the netcopy command:
ADMIN COMMAND ’hsb netcopy’;

c. Connect the current Primary with the new Secondary by executing the
command:
ADMIN COMMAND ’hsb connect’;

3.7.4 Using HAC with spares
HAC has limited support on spare scenarios. It can be used in a spare, but before
HAC in the Primary node is able to start monitoring the HSB state of the spare
server, the connect information for the Primary HAC (RemoteDB.Connect) must be
updated. You must update the solidhac.ini file and restart the HAC in the
Primary node.

Similarly, the HAC in the spare node needs the connect information of the Primary
server. If the connect information is not known beforehand, the information must
be added in the solidhac.ini file. After you have added the information to
solidhac.ini, you must restart HAC.

3 Administering and configuring HotStandby 71

72 IBM solidDB: High Availability User Guide

4 Using HotStandby with applications

To use HotStandby, your application design must address how your application
connects to the HotStandby server and how the application handles failures and
failovers.

The way the application connects to the HotStandby server pair might vary
depending on where the application resides (compared to the database it is using),
and depending on the preferred level of automation in failover situations.

In general, when an application uses a database, it connects to one database, and
uses that database for all the queries, reads, and writes. If that database becomes
unavailable, the connection is broken and the application must wait until it can
reconnect again to the same database. With a HotStandby pair, there are two
databases, both live and running, mirroring each other and having the same
content. The application has more options available and more responsibilities of
making sure that the service the application provides to its users is able to
continue even if one of the database nodes fails.

4.1 Connecting to HotStandby servers
You can use two connection methods for your applications in HotStandby
environments, Basic Connectivity and Transparent Connectivity (TC). With Basic
Connectivity, the client connects to each of the HSB servers explicitly. With the
Transparent Connectivity, the client enacts only one logical connection that is called
the TC Connection.

Both connectivity types are supported in the solidDB ODBC and JDBC drivers, as
well as with SMA servers. The connectivity type is defined within the connect
string. With Basic Connectivity, the standard solidDB connection syntax is used.
With Transparent Connectivity, a TC-connection-specific syntax is used.

Basic Connectivity

With Basic Connectivity, the application has to take care of connecting to each
server of the HotStandby configuration separately, by using specific server
addresses. If a failover happens, the active connection is lost, and the application
has to reconnect to the new Primary server.

Transparent Connectivity

With Transparent Connectivity, the application does not have to deal with
connecting to any specific server, or to reconnect in the case of a failover. The
application maintains a logical connection (handle) called a TC Connection. In
simple terms, the Transparent Connectivity relieves the application from taking
care of the multiplicity of servers and their addresses.

The connection handle is maintained over failovers and switchovers for as long as
there is any server in the PRIMARY ACTIVE, PRIMARY ALONE or
STANDALONE state, within the specified set of servers. At failovers and
switchovers, the driver performs an internal operation called connection switch. The

73

application is notified about the connection switch, because the application must
reconstruct some of the session states (depending on the failure transparency
level).

Transparent Connectivity with network-based connection

With network-based connections, the application and the servers can be
located on the same or different nodes.

Applications can use the load-balancing functionality to send read-only
loads to the Secondary server.

Transparent Connectivity with SMA connection
With SMA, there are two applications, one on each HotStandby node. The
application on the primary node uses a SMA connection for reads and
writes. The application on the secondary uses a SMA connection to execute
reads locally; write transactions from the application on the secondary are
executed on the primary server using a network connection.

Server failovers and switchovers are handled in principle the same way as
with network-based. However, if the application fails because the SMA
server has failed, an application-specific high availability handling is
needed.

4.1.1 Choosing the connectivity type
Procedure

The following compatibility matrix helps you choose the connectivity type by
indicating the supported feature against the selected connect info:

Table 11. Choosing the connectivity type

Feature Standalone config. HSB configuration

Basic connectivity Yes (BC Info) Yes (BC Info)

Transparent failover No Yes (TC Info)

Load balancing No Yes (TC Info)

4.2 Transparent Connectivity
When using solidDB Transparent Connectivity, the solidDB ODBC or JDBC driver
hides the existence of two HSB servers from the application. Transparent
Connectivity also offers transparent load balancing between the primary and
secondary servers.

The driver offers a single logical TC Connection that is mapped to the internal
active connection. In an ideal case, when both Primary and Secondary servers are
running in the active state, the driver also maintains the standby connection, that is,
the connection to Secondary. This connection will be set to the event wait mode,
where it is ready to receive HSB state change events. Those events are the primary
source of information about failovers and switchovers that the driver will use. In
some cases (such as the Primary Alone operation), the standby connection will be
missing, but the driver will try to enact it whenever possible.

The standby connection is handled totally transparently to the application. Also,
any occurrence of a connection switch, that is, changing the mapping of the TC
Connection to an internal active connection, will be notified to the application by
way of a special error code.

74 IBM solidDB: High Availability User Guide

Important: solidDB tools, such as solidDB SQL Editor (solsql), do not support the
TC connection.

4.2.1 Defining the Transparency Connectivity connection
Transparent Connectivity is specified using non-standard ODBC connection string
settings or JDBC connection properties.

Syntax of Transparent Connectivity Info – ODBC
When using solidDB Transparent Connectivity, the client enacts only one logical
connection called the TC Connection. With ODBC, the TC connection is specified
in the TC Info. TC Info enacts transparent failover and load balancing in both HSB
configurations.

With ODBC applications, the TC connection can be specified in the following ways:
v SQLConnect function:

rc = SQLConnect(comHandle, "<solidDB_TC_Info>", ...

v Client-side solid.ini file:
[Com]
Connect = <solidDB_TC_Info>

The syntax of the solidDB TC Info is:
<solidDB_TC_Info>::= {[<failure_transparency_level_attribute>]
[<preferred_access_attribute>] [<encryption_attribute>]
<connect_target_list>} | <cluster_info>

failure_transparency_level_attribute ::= TF_LEVEL={NONE |
CONNECTION | SESSION}

preferred_access_attribute::= PREFERRED_ACCESS={WRITE_MOSTLY |
READ_MOSTLY | LOCAL_READ}

encryption_attribute::=USE_ENCRYPTION={YES|NO} [USE_GSKIT={YES|NO}]

connect_target_list::= [SERVERS=]<connect_string>[, <connect_string > ...]

cluster_info::= CLUSTER= <connect_string>[, <connect_string>...]

The following abbreviations can be used.

Table 12. TC Info abbreviations

Abbreviation Corresponding syntax

TF TF_LEVEL

CO CONNECTION

SES SESSION

PA PREFERRED_ACCESS

RM READ_MOSTLY

WM WRITE_MOSTLY

LR LOCAL_READ

S SERVERS

Failure transparency attribute

Failure transparency handles the masking of failures. The failure transparency level
is set with the TF_LEVEL attribute of the TC Info. Three levels are available:

4 Using HotStandby with applications 75

1. NONE – failure transparency is disabled. This is the default value.
2. CONNECTION – the server connection is preserved, that is, it is unnecessary

to reconnect in the case of failover or switchover.
3. SESSION – certain session attributes that have non-default values are

preserved. Additionally, prepared statements are preserved. However, open
cursors are closed, and ongoing transactions are aborted.

Preferred access attribute – load balancing

The preferred access attribute (PREFERRED_ACCESS) indicates whether the load
balancing of read-only loads is applied or not. The following levels are available:
v WRITE_MOSTLY – no load balancing (default). All transactions are executed on

the Primary.
v READ_MOSTLY – load balancing by distributing read-only transactions between

Primary and Secondary, as defined by Cluster.ReadMostlyLoadPercentAtPrimary

v LOCAL_READ – load balancing by executing read-only transactions locally
when possible. Read-only transactions are always directed to the local server, be
it Primary or Secondary. If local server cannot be found, the Primary server’s
assigned workload connection is used (first network-based connection defined in
the connect string). Write transactions are always executed at the Primary server.
LOCAL_READ is typical with SMA setups where there is at least one SMA
application on each node.

Important: When using SMA with Transparent Connectivity (TC), if you set the
load balancing method to READ_MOSTLY or WRITE_MOSTLY (default), a
network connection is used instead of the SMA connection. Thus, when using SMA
with TC, always set the load balancing method to LOCAL_READ.

Connect target list and cluster info – server addresses

The solidDB TC Info includes a list of server addresses, called connect target list. If
the HotStandby configuration includes SMA, a SMA-specific connect target list
must be used.

The syntax of the connect target list for network-based applications is:
[SERVERS:] <network_connect_string>, <network_connect_string>

The syntax of the connect target list for SMA applications is:
[SERVERS:] <sma_connect_string>, <network_connect_string>

network_connect_string
The format of a connect string for network-based connections is the following:
protocol_name [options] [host_computer_name] server_name

where
v options can be any combination of the following:

Table 13. Connect string options

Option Description Protocol

-4 Specifies that client connects using IPv4 protocol only. TCP/IP

-6 Specifies that client connects using IPv6 protocol only.

In Windows environments, this option is mandatory if IPv6 protocol is used.

TCP/IP

76 IBM solidDB: High Availability User Guide

Table 13. Connect string options (continued)

Option Description Protocol

-isource_address Specifies an explicit connecting socket source address for cases where the system
default source IP address binding does not meet application needs.

source_address can be an IP address or a host name.

TCP/IP

-z Enables data compression for the connection
Important:

v Data compression is not available for HotStandby connections (HotStandby.Connect)
and NetBackup connections (ADMIN COMMAND 'netbackup').

v Data compression for netcopy connections cannot be enabled with the -z option.
Instead, use the HotStandby.NetcopyRpcCompress=yes parameter setting.

All

-c milliseconds Specifies the login timeout (the default is operating-system-specific). A login request
fails after the specified time has elapsed.

TCP/IP

-r milliseconds Specifies the connection (or read) timeout. A network request fails when no response is
received during the time specified. The value 0 (default) sets the timeout to infinite
(operating system default timeout applies).

TCP/IP

-ofilename Turns on the Network trace facility and defines the name of the trace output file

See Network trace facility in the IBM solidDB Administrator Guide for details.

All

-plevel Pings the server at the given level (0-5).

Clients can always use the solidDB Ping facility at level 1 (0 is no operation/default).
Levels 2, 3, 4 or 5 may only be used if the server is set to use the Ping facility at least at
the same level.

See Ping facility in the IBM solidDB Administrator Guide for details.

All

-t Turns on the Network trace facility

See Network trace facility in the IBM solidDB Administrator Guide for details.

All

v host_computer_name is needed with TCP/IP and Named Pipes protocols, if
the client and server are running on different machines.

v server_name depends on the communication protocol:
– In TCP/IP protocol, server_name is a service port number, such as '2315'.
– In other protocols, server_name is a name, such as 'soliddb' or

'chicago_office'.
For details on the syntax in different communication protocols, see
Communication protocols in the IBM solidDB Administrator Guide.

Note:

v The protocol_name and the server_name must match the ones that the server
is using in its network listening name.

v If given at the connection time, the connect string must be enclosed in
double quotation marks.

v All components of the connect string are case insensitive.

sma_connect_string
The format of a connect string for SMA-based connections is the following:
sma protocol_name port_number | pipe_name

4 Using HotStandby with applications 77

When SMA is used, applications on each node must be able to connect to the
local server with a SMA connection and to the remote server with a
network-based connection. This means that the list of server addresses takes
the following format:
connect_target_list::= [SERVERS=]<sma_connect_string>, <network_connect_string>

cluster_info::= CLUSTER <sma_connect_string>, <network_connect_string>

For example:
sma tcp 2315, tcp 192.168.255.1 1315

The driver will scan the list from left to right and try to find the Primary and
Secondary servers. Therefore, the preferable configuration must be put at the
beginning of the list. The rest of the list may contain some spare addresses that
might be activated at some point during the system lifetime. Keep the list short; in
error situations, it can take a long time before the error is returned to the
application. The addresses are tried one by one, involving the login timeouts
specified (network-based connections). The number of addresses in the list is
unlimited.

If none of the attributes TF_LEVEL nor PREFERRED_ACCESS is specified (or
TF_LEVEL=NONE), the connection behavior falls back to Basic Connectivity. If
more than one connect string is given, the connection is established to the first
server on the list that accepts the connection request.

Configuring server addresses with multi-home servers

If your setup uses multi-home servers to deploy different networks for the
connections between the application and the servers and the servers themselves,
you need to define the server addresses for the TC connection with the
HotStandby.TCConnect parameter.

From the application connection perspective, the address specified with the
HotStandby.TCConnect parameter precedes the address defined with the
HotStandby.Connect parameter. The TC connection will thus use the server
addresses specified with HotStandby.TCConnect parameter, while the HotStandby
connection between the servers uses the server addresses defined with the
HotStandby.Connect parameter.

For an example of a multi-home server configuration, see “Example: TC connection
with multi-home servers” on page 85.

CLUSTER

The CLUSTER keyword sets TF_LEVEL to SESSION and PREFERRED_ACCESS to
READ_MOSTLY automatically.

For example, the following TC Info and the CLUSTER string are interchangeable:
TF_LEVEL=SESSION PREFERRED_ACCESS=READ_MOSTLY
SERVERS=tcp srv1.acme.com 1315, tcp srv2.acme.com 1315

CLUSTER=tcp srv1.acme.com 1315, tcp srv2.acme.com 1315

Tip: The cluster configuration can also be defined in the client-side solid.ini file,
in which case the connect string in SQLConnect can use the logical name. For
example:
rc = SQLConnect(comHandle, "Cluster1", ...

78 IBM solidDB: High Availability User Guide

[Data Sources]
Cluster1=

TF_LEVEL=SESSION
PREFERRED_ACCESS=READ_MOSTLY
SERVERS=

tcp -c 1000 srv1.dom.acme.com 1315,
tcp srv2.dom.acme.com 1315,
tcp srv3.dom.acme.com 1316

Encryption attributes

The encryption attributes control whether the password for the connection is
encrypted. The USE_ENCRYPTION keyword controls whether encryption is used.
The USE_GSKIT controls whether IBM Global Security Kit (GSKit) is used for the
encryption.
v If USE_ENCRYPTION=NO, encryption is disabled.
v If USE_ENCRYPTION=YES and USE_GSKIT=NO, the solidDB built-in DES

algorithm is used for encryption.
v If USE_ENCRYPTION=YES and USE_GSKIT=YES, the GSKit is used for

encryption.

SQLConnect examples
rc = SQLConnect(comHandle, "TF=CONNECTION

USE_ENCRYPTION=YES PA=READ_MOSTLY
SERVERS=
tcp -c 1000 srv1.dom.acme.com 1315,
tcp srv2.dom.acme.com 1315,
tcp srv3.dom.acme.com 1316", ...

rc = SQLConnect(comHandle, "CLUSTER=
tcp -c 1000 srv1.dom.acme.com 1315,
tcp srv2.dom.acme.com 1315,
tcp srv3.dom.acme.com 1316", ...

SMA setup: SQLConnect on the application on Node1 (srv1.dom.acme.com)
rc = SQLConnect(comHandle, "TF=CONNECTION

PA=LOCAL_READ
SERVERS=
sma tcp 1315,
tcp srv2.dom.acme.com 2315", ...

SMA setup: SQLConnect on the application on Node2 (srv2.dom.acme.com)
rc = SQLConnect(comHandle, "TF=CONNECTION

PA=LOCAL_READ
SERVERS=
sma tcp 2315,
tcp srv1.dom.acme.com 1315", ...

Client-side solid.ini examples

Note: For layout reasons, the Com.Connect parameter values in the following
examples are split on several lines. In your solid.ini file, the entire parameter
entry must be on one line.
[Com]
Connect = TF=CONNECTION USE_ENCRYPTION=YES

PA=READ_MOSTLY
SERVERS=

tcp -c 1000 srv1.dom.acme.com 1315,
tcp srv2.dom.acme.com 1315,
tcp srv3.dom.acme.com 1316

4 Using HotStandby with applications 79

SMA setup: solid.ini file on Node1 (srv1.dom.acme.com)
[Com]
Connect = TF=CONNECTION USE_ENCRYPTION=YES

PA=LOCAL_READ
SERVERS=

sma tcp 1315,
tcp srv2.dom.acme.com 2315

SMA setup: solid.ini file on Node2 (srv2.dom.acme.com)
[Com]
Connect = TF=CONNECTION USE_ENCRYPTION=YES

PA=LOCAL_READ
SERVERS=

sma tcp 2315,
tcp srv1.dom.acme.com 1315

Transparent connectivity with JDBC
With JDBC, transparent connectivity is enabled with non-standard connection
properties. The list of server addresses is given as a part of the JDBC connect
string.

Note: When using transparent connectivity in JDBC, you have to take care of
dropping the statement objects explicitly. The garbage collector will not detect
unreferenced statement objects.

Failure transparency level (solid_tf_level)

Failure transparency is enabled with the solid_tf_level connection property. The
value is a string; you can specify it as a mnemonic (for example, NONE) or as a
number (0 for NONE). For clarity, use of mnemonics is preferable.

Three levels are available:
1. NONE | 0 – failure transparency is disabled. This is the default value.
2. CONNECTION | 1 – the server connection is preserved, that is, it is unnecessary to

reconnect in the case of failover or switchover.
3. SESSION | 3 – certain session attributes that have non-default values are

preserved. Additionally, prepared statements are preserved. However, open
cursors are closed, and ongoing transactions are aborted.

Preferred access attribute (solid_preferred_access)

The preferred access attribute indicates whether a read-only load is distributed or
not. The preferred access attribute is enabled with the solid_preferred_access
connection property. The value is a string; you can specify it as a mnemonic or as a
number. For clarity, use of mnemonics is preferable.

The following levels are available:
v WRITE_MOSTLY | 0 – the read workload is directed to Primary. This is the default

value. WRITE_MOSTLY also sets the connection to the WRITE MOSTLY mode. It is not
possible to do that by specifying a numeric value.

v READ_MOSTLY | 1 – the read workload is directed to Secondary and Primary as
defined by the Cluster.ReadMostlyLoadPercentAtPrimary parameter. The write
transactions are handed over to the Primary.
By default, the Cluster.ReadMostlyLoadPercentAtPrimary parameter is set to 50,
which means that 50 percent of the read loads are directed to the Primary.

80 IBM solidDB: High Availability User Guide

Reconnect timeout (solid_tf1_reconnect_timeout)

The solid_tf1_reconnect_timeout property specifies the connection reconnect
timeout in milliseconds. The default value is 10 000 milliseconds (10 seconds).

Server addresses

The list of server addresses is given as a part of the extended JDBC connect string:
conStr= "jdbc:solid://host_name:port [,host_name:port].../user_name/password";

The number of addresses in the address list is limited to 20.

Configuring server addresses with multi-home servers

If your setup uses multi-home servers to deploy different networks for the
connections between the application and the servers and the servers themselves,
you need to define the server addresses for the TC connection with the
HotStandby.TCConnect parameter.

From the application connection perspective, the address specified with the
HotStandby.TCConnect parameter precedes the address defined with the
HotStandby.Connect parameter. The TC connection will thus use the server
addresses specified with HotStandby.TCConnect parameter, while the HotStandby
connection between the servers uses the server addresses defined with the
HotStandby.Connect parameter.

SMA connection (solid_shared_memory)

With SMA configurations, the non-standard property solid_shared_memory must
be set to yes. You must also define that you are using a local server at a given
port.

Example: TC connection with failure transparency level of
CONNECTION
...
String conStr = "jdbc:solid://srv1.acme.com:1323,srv2-acme.com:1423/dba/dba";
Properties prop = new Properties();
prop.setProperty("solid_tf_level", "CONNECTION");
...
Connection c = DriverManager.getConnection(conStr, prop);
...

Example: TC connection with SMA
...
String conStr = "jdbc:solid://localhost:1323,srv2-acme.com:1423/dba/
dba?solid_shared_memory=yes";
Properties prop = new Properties();
prop.setProperty("solid_tf_level", "CONNECTION");
Connection c = DriverManager.getConnection(conStr, prop);
...

Example: TC connection with load balancing
...
String conStr = "jdbc:solid://12.345.67.88:1323,12.345.67.89:1423/dba/dba";
Properties prop = new Properties();
prop.setProperty("solid_tf_level", "CONNECTION");

4 Using HotStandby with applications 81

prop.setProperty("solid_preferred_access", "READ_MOSTLY");
...
Connection c = DriverManager.getConnection(conStr, prop);
...

Example: JDBC URL defined TC connection with load balancing
jdbc:solid://12.345.67.88 1323, 12.345.67.89 1423/
dba/dba?solid_tf_level=1?solid_preferred_access=READ_MOSTLY

TC attribute combinations
The following table summarizes the possible combinations of the TC attributes and
presents the resulting connection capabilities:

Table 14. Possible combinations of TC Info attributes

PREFERRED_
ACCESS:

TF_LEVEL: Not
specified or NONE

TF_LEVEL:
CONNECTION

TF_LEVEL:
SESSION

Not specified v No failover or
switchover support

v No load balancing

(Basic connectivity)

v Transparent
failover (session
state not
preserved)

v Transparent
switchover

v Workload in
Primary only

v No load balancing

v Transparent
failover (session
state preserved)

v Transparent
switchover

v Workload in
Primary only

v No load balancing

WRITE_MOSTLY
(default)

v No transparent
failover support

v Transparent
switchover

v Workload in
Primary only

v No load balancing

v Transparent
failover (session
state not
preserved)

v Transparent
switchover

v Workload in
Primary only

v No load balancing

v Transparent
failover (session
state preserved)

v Transparent
switchover

v Workload in
Primary only

v No load balancing

READ_MOSTLY v No transparent
failover support

v Transparent
switchover

v Workload in
Secondary and
Primary

v Load balancing

v Transparent
failover (session
state not
preserved)

v Transparent
switchover

v Workload in
Secondary and
Primary

v Load balancing

v Transparent
failover (session
state preserved)

v Transparent
switchover

v Workload in
Secondary and
Primary

v Load balancing

82 IBM solidDB: High Availability User Guide

Table 14. Possible combinations of TC Info attributes (continued)

PREFERRED_
ACCESS:

TF_LEVEL: Not
specified or NONE

TF_LEVEL:
CONNECTION

TF_LEVEL:
SESSION

LOCAL_READ v No transparent
failover support

v Transparent
switchover

v Primary reads and
writes executed
locally using SMA
connection

v Secondary reads
executed locally
using SMA
connection, writes
on Primary using
network
connection

v Transparent
failover (session
state not
preserved)

v Transparent
switchover

v Primary reads and
writes executed
locally using SMA
connection

v Secondary reads
executed locally
using SMA
connection, writes
on Primary using
network
connection

v Transparent
failover (session
state preserved)

v Transparent
switchover

v Primary reads and
writes executed
locally using SMA
connection

v Secondary reads
executed locally
using SMA
connection, writes
on Primary using
network
connection

Connect error processing
When a connect request is issued for a TC Connection, it is considered successful if
at least one applicable server is found and connected to.

The server may be in one of the states: PRIMARY ACTIVE, PRIMARY ALONE, or
STANDALONE. Otherwise, the connect effort is considered failed. The address list
is scanned once.

There may be various reasons for the connect request to fail. Most of them are
masked by the following error cases:

Table 15. Connect request errors

SQLSTATE Native code
Message text and
description

08001 25217 Client unable to establish
a connection

Description: The driver has
used the TC connect info to
find an applicable server and
connect to it. The effort has
failed due to one of he
following reasons:

v No host listed in the
address list was found

v A host was found but the
login timed out

v A host was found but the
login was rejected

v Hosts found but not in the
PRIMARY/
STANDALONE state

4 Using HotStandby with applications 83

Table 15. Connect request errors (continued)

SQLSTATE Native code
Message text and
description

HY000 21307 Invalid connect info...

Description: a syntax error is
found in an elementary
connect string or in the TC
connect info (data source
info).

HY000 21300 Protocol ... not
supported.

Description: the string "TC"
in the beginning of the TC
connect info is misspelled
(or, an incorrect protocol
name is given in the
elementary connect string).

There are cases when the connection is accepted with a warning.

Table 16. Warnings

SQLSTATE Native code
Message text and
description

0100 25218 Connected to Standalone or
Primary Alone server.

An effort has been made to
set any non-default value of
TF_LEVEL or
PREFERRED_ACCESS, and
there is only one server
available. On this case,
neither failure transparency
nor load balancing is
available.

Example: TC connection
This example shows a Transparent Connectivity configuration for a typical
HotStandby setup where the application and the servers are within the same
network.

84 IBM solidDB: High Availability User Guide

Example: TC connection with multi-home servers
This example shows a Transparent Connectivity configuration for a HotStandby
setup where the Primary and Secondary are multi-home servers. It is typical in
setups where the application and the servers are in different networks or the
application cannot or should not connect to the servers using the same network
that is used for the HotStandby connection between the servers.

To differentiate between the TC connection and the HotStandby connection, you
need to use two parameters that define the server addresses:

10.0.0.3

solid.ini

[COM]
Listen=tcp 1964

[HotStandby]
Connect=tcp 10.0.0.2 2315

solidDB
Secondary

1964

tcp 10.0.0.2 2315

tcp 10.0.0.3 1964

10.0.0.1

solid.ini (client)

[COM]
Connect=TF=SES PA=RM

SERVERS=
tcp 10.0.0.2 2315, 10.0.0.3 1964

Application

10.0.0.2

solid.ini

[COM]
Listen=tcp 2315

[HotStandby]
Connect=tcp 10.0.0.3 1964

solidDB
Primary

2315

tcp 10.0.0.3 1964

tcp 10.0.0.2 2315

Figure 14. Example: TC connection

4 Using HotStandby with applications 85

v The HotStandby.Connect parameters specify the server addresses that are used
for the HotStandby connection between the primary and secondary servers.

v The HotStandby.TCConnect parameters specify the server addresses that are used
with the TC connection.

192.0.0.3

10.0.0.3

solid.ini

[COM]
Listen=tcp 1964

[HotStandby]
Connect=tcp 10.0.0.2 2315

solidDB
Secondary

1964

TCConnect=tcp 192.0.0.2 2315

tcp 10.0.0.2 2315

tcp 10.0.0.3 1964

192.0.0.1

solid.ini (client)

[COM]
Connect=TF=SES PA=RM

SERVERS=
tcp 192.0.0.2 2315, 192.0.0.3 1964

Application

192.0.0.2

10.0.0.2

solid.ini

[COM]
Listen=tcp 2315

[HotStandby]
Connect=tcp 10.0.0.3 1964

solidDB
Primary

2315

TCConnect=tcp 192.0.0.3 1964

tcp 192.0.0.3 1964

tcp 192.0.0.2 2315

Figure 15. Example: TC connection with multi-home servers

86 IBM solidDB: High Availability User Guide

4.2.2 Failure transparency in Transparent Connectivity
Failure transparency handles the masking of failures. The failure transparency level
is set with the TF_LEVEL attribute.

Three failure transparency levels are available:

TF_LEVEL=NONE
Failure transparency is disabled (default).

TF_LEVEL=CONNECTION
The server connection is preserved, that is, it is unnecessary to reconnect in
the case of failover or switchover.

TF_LEVEL=SESSION
Most nondefault session level settings are preserved. Additionally,
prepared statements are preserved. However, open cursors are closed, and
ongoing transactions are aborted.

Principles of connection switch handling
A connection switch refers to a situation where the driver changes the active server
connection. Generally, the reason for a connection switch is a failover to the
Secondary server or a switchover between the servers.

More specifically, a need for a connection switch is detected from one of the
following events:
v Event from the Secondary server about the state change to PRIMARY ALONE

(failover) or PRIMARY ACTIVE (switchover). This is the main (and the fastest)
mode of performing the connection switch.

v Indication of the state change at Primary.
v Link failure on the active connection.
v Connection timeout on the active connection.

The driver executes the connection switch in two steps:
1. The need for the connection switch is detected. The driver returns the following

connection switch error on a pending request, or the following request:

Table 17. Connection switch request

SQLSTATE Native code
Message text and
description

HY000 25216 Connection switch, some
session context may be
lost

Description: The driver has
discovered the need of the
connection switch. The client
is expected to issue a
transaction rollback call to
finalize the connection
switch. This error code and
message will be received at
each consecutive network
request call until the rollback
call is issued

4 Using HotStandby with applications 87

2. The Client program issues a rollback command (ODBC: SQLEndTran() with
SQL_ROLLBACK; JDBC: Connection.rollback()). If the rollback is successful, a
new active connection has been mapped to the TC connection that may be
used.

Note: The connection switch error may be returned on a few consecutive
ODBC calls. Therefore, a provision must be made to always respond with a
rollback to this error, on any ODBC network request. If this happens in the
middle of a transaction, the transaction must be re-executed.
On the other hand, if a new active connection cannot be established, the
following error code is returned:

Table 18. Communication link failure

SQLSTATE Native code
Message text and
description

08S01 14503 Communication link failure

Description: The driver has
failed to establish a new
active connection. The TF
connection is lost and the
Client has to reconnect
(using a Data Source Info) in
order to continue.

After receiving the rollback call, the driver will use a few alternative ways of
finding the new active connection. In the simplest case, it will use the standby
connection for the purpose. If that connection is not in the right state, the driver
will wait for two seconds for the proper event to arrive. If the event does not
arrive, and in other cases, the driver will fall back to the address list in the TC
connect info and will repeat the connect sequence iteratively for a maximum time
of 10 seconds. If all the efforts fail, the driver returns the above error.

The effect of the error is that the connection is lost, as seen by the application. Any
further request issued on that connection will result in the same error.

Preservation of session state
When the connection switch is executed by the driver, some of the session context
can be lost and the application must reconstruct it. The amount of the preserved
state is dictated by the Transparent Failover level, expressed with the TC Info
attribute TF_LEVEL.

With the TF level CONNECTION, no state is preserved. With the SESSION level,
most of the session state is preserved. The preservation of the session state is
implemented by caching the necessary data in the driver. The higher transparency
level is achieved at the expense of the response time of the requests requiring
caching, as well as increased memory usage in the driver.

Regardless of the TF level, the following applies in the case of failovers:
v The updates of the current transactions are lost (because of the transaction

rollback).
v Open cursors and their positions are lost.

88 IBM solidDB: High Availability User Guide

Table 19. Session state preservation

TF_LEVEL Preserved state

CONNECTION No session state is preserved.

SESSION Prepared statements

v The prepared states are preserved.

The effects of the following statements are
preserved:

v SET CATALOG

v SET SQL INFO

v SET SQL SORTARRAYSIZE

v SET SQL CONVERTORSTOUNIONS

v SET SQL JOINPATHSPAN

v SET LOCK TIMEOUT <seconds>

v SET IDLE TIMEOUT

v SET OPTIMISTIC LOCK TIMEOUT

v SET STATEMENT MAXTIME

v SET ISOLATION LEVEL

v SET DURABILITY

v SET SAFENESS

v SET SCHEMA

v SET SYNC USER

v SET SYNC MODE

The following standard ODBC attributes are
preserved

v SQL_ATTR_ACCESS_MODE

(SET READ ONLY, SET READ WRITE)

v SQL_ATTR_CURRENT_CATALOG

(duplicates SET CATALOG above)

v SQL_ATTR_AUTOCOMMIT

4.2.3 Load balancing in Transparent Connectivity
With TC, the driver uses two methods to direct the transaction load; one to handle
read intensive load and the other to handle write intensive load. For load
balancing, the logical TC Connection is mapped to a lower level server connection
called Workload Connection. The workload connection can change over time and it is
normally of no concern to the application. However, if necessary, there is a way to
find out what is the current workload connection.

Static load balancing configuration
The load balancing methods are:

PREFERRED_ACCESS=WRITE_MOSTLY – no load balancing (default)
With WRITE_MOSTLY, all transactions are executed at the Primary server.
This corresponds to the typical HotStandby operation. WRITE_MOSTLY
method is useful with write-intensive loads.

4 Using HotStandby with applications 89

PREFERRED_ACCESS=READ_MOSTLY – load balancing by distributing
read-only transactions between Primary and Secondary

With READ_MOSTLY, read-only transactions can be executed at both the
Secondary and Primary. Write transactions are always executed at the
Primary server.

For read-only transactions, the assigned workload server is selected on the
basis of the Cluster.ReadMostlyLoadPercentAtPrimary parameter setting,
which specifies the percentage of the total read-mostly load that is directed
to Primary.

The default value of the Cluster.ReadMostlyLoadPercentAtPrimary
parameter is 50, which means that by default, half of the connections use
the Primary and half the Secondary. This is a preferable value for most
mixed loads. If the value is set to zero, all the load is directed at the
Secondary. This is suitable in cases where very read-intensive (or
read-only) applications use PREFERRED_ACCESS=READ_MOSTLY and (in
the same time) write-intensive applications use
PREFERRED_ACCESS=WRITE_MOSTLY.

With READ_MOSTLY, the Primary server tells the driver which server to
connect to for the workload connection. If the load for a given connection
is directed to Secondary, and a write operation is issued, a handover to
Primary takes place and the transaction is executed in the Primary server.
After the transaction commit, the load is directed back to Secondary. If
Secondary fails, the connection fails over from Secondary to Primary.

PREFERRED_ACCESS=LOCAL_READ – load balancing by executing
transactions locally when possible

With LOCAL_READ, read-only transactions are always directed to the
local server, be it Primary or Secondary. Write transactions are always
executed at the Primary server.

The LOCAL_READ method is typically used with SMA setups. The
application on the Primary server uses the SMA connection for read and
write transactions. The application on the Secondary uses SMA connection
for reads and a network-based connection for writes on the Primary.

Important: When using SMA with Transparent Connectivity (TC), if you set the
load balancing method to READ_MOSTLY or WRITE_MOSTLY (default), a
network connection is used instead of the SMA connection. Thus, when using SMA
with TC, always set the load balancing method to LOCAL_READ.

Isolation levels and load balancing

Load balancing operates only at the isolation level READ COMMITTED. If the
server's isolation level (startup) default is set to a different value, the settings
PREFERRED_ACCESS=READ_MOSTLY and
PREFERRED_ACCESS=LOCAL_READ force the isolation level of this session to
READ COMMITTED. The isolation level may be dynamically reset to a higher one
(for example, REPEATABLE READ), but then the load balancing is disabled.

Autocommit and load balancing

To use load balancing, autocommit for the session must be disabled.

Controlling load balancing dynamically
When using load balancing (READ_MOSTLY or LOCAL_READ), you can change
the assigned workload server from Secondary to Primary programmatically.

90 IBM solidDB: High Availability User Guide

At the session level, the workload connection server can be changed to Primary
with the following statements:
v SET WRITE

v SET ISOLATION LEVEL REPEATABLE READ

v SET ISOLATION LEVEL SERIALIZABLE

The statement takes effect immediately, if it is the first statement of a transaction,
or from the next transaction, otherwise.

At the transaction level, the following statements change the workload connection
server to Primary for the time of one transaction:
v SET TRANSACTION WRITE

v SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

v SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

The affected transaction is the one that is started by using the statement, or the
next one, in other cases. After the transaction has been executed at the Primary, the
workload connection server is reverted to the one assigned for the session.

The effect of the SET [TRANSACTION] WRITE statement may be reverted with
the statement SET [TRANSACTION] READ WRITE. Also, the following isolation
level statements have the same effect:
v SET ISOLATION LEVEL READ COMMITTED

v SET TRANSACTION ISOLATION LEVEL READ COMMITTED

Note: With READ_MOSTLY, the proportional distribution of the read loads
between the Primary and Secondary is defined with the
Cluster.ReadMostlyLoadPercentAtPrimary parameter. By default, the value is set to
50, which means that 50 percent of the read loads are directed to the Primary.
Changing the value of the Cluster.ReadMostlyLoadPercentAtPrimary parameter
requires a server restart.
Related information:
A.1.1, “Cluster section,” on page 118

Failover transparency with load balancing
When both failure transparency is set (TF_LEVEL is other than NONE) and load
balancing is enabled (PREFERRED_ACCESS=READ_MOSTLY or
PREFERRED_ACCESS=LOCAL_READ), the applied failover policy is the following:
1. Primary failure: all the load is directed to the new Primary being in the

PRIMARY ALONE state.
2. Secondary failure: all the load is directed to the Primary (PRIMARY ALONE)
3. Connection break between the servers; the servers are in the PRIMARY ALONE

and SECONDARY ALONE states: if there is an ongoing read-only transaction
executing in the Secondary, it is also successfully committed in the Secondary.
All the subsequent transactions are directed to the Primary (in PRIMARY
ALONE).

When the normal hotstandby operation is resumed (with servers being in
PRIMARY ACTIVE and SECONDARY ACTIVE states), the load is rebalanced
between the Primary and the Secondary.

Note: Even when failure transparency is not enabled (TF_LEVEL=NONE), some
rudimentary failover capability is available: failover from Secondary to Primary

4 Using HotStandby with applications 91

when the Secondary fails. All other failures result in a communication link failure.
Thus, in most failure cases where TF_LEVEL=NONE, the application must
reconnect with the same TC Info. To avoid reconnection, enable failure
transparency when load balancing is used.

Executing stored procedures under load balancing
All SQL stored procedures are executed in the Primary unless they are specified as
read-only procedures with the SQL standard clause SQL_data_access_indication in
the procedure declaration.
<SQL_data_access_indication> ::=

NO SQL |
READS SQL DATA |
CONTAINS SQL |
MODIFIES SQL DATA

Only the keyword MODIFIES SQL DATA inflicts transaction handover. This is the
default behavior.

To avoid unnecessary handovers of read-only procedures and functions, use one of
the following values:
v NO SQL
v READS SQL DATA
v CONTAINS SQL

4.2.4 Handling TC Info contradictions
The attributes of the TC Info may contradict the actual service made available. In
those situations, the connection is granted, but the SUCCESS_WITH_INFO
warning is issued.

This is done in the following cases:
v PREFERRED_ACCESS is specified, but HSB is not enabled. Basic connectivity is

enabled.
v TF_LEVEL is specified, but HSB is not enabled. Basic connectivity is enabled.

4.3 Basic Connectivity
With Basic Connectivity, the application has to take care of connecting to each
server of the HotStandby or Cluster configuration separately, by using specific
server addresses. If a failover happens, the active connection is lost, and the
application has to reconnect to the new Primary server.

Basic Connectivity syntax

The Basic Connectivity uses the standard solidDB connect string syntax:
protocol_name [options] [host_computer_name] server_name

where
v options can be any combination of the following:

Table 20. Connect string options

Option Description Protocol

-4 Specifies that client connects using IPv4 protocol only. TCP/IP

92 IBM solidDB: High Availability User Guide

Table 20. Connect string options (continued)

Option Description Protocol

-6 Specifies that client connects using IPv6 protocol only.

In Windows environments, this option is mandatory if IPv6 protocol is used.

TCP/IP

-isource_address Specifies an explicit connecting socket source address for cases where the system
default source IP address binding does not meet application needs.

source_address can be an IP address or a host name.

TCP/IP

-z Enables data compression for the connection
Important:

v Data compression is not available for HotStandby connections (HotStandby.Connect)
and NetBackup connections (ADMIN COMMAND 'netbackup').

v Data compression for netcopy connections cannot be enabled with the -z option.
Instead, use the HotStandby.NetcopyRpcCompress=yes parameter setting.

All

-c milliseconds Specifies the login timeout (the default is operating-system-specific). A login request
fails after the specified time has elapsed.

TCP/IP

-r milliseconds Specifies the connection (or read) timeout. A network request fails when no response is
received during the time specified. The value 0 (default) sets the timeout to infinite
(operating system default timeout applies).

TCP/IP

-ofilename Turns on the Network trace facility and defines the name of the trace output file

See Network trace facility in the IBM solidDB Administrator Guide for details.

All

-plevel Pings the server at the given level (0-5).

Clients can always use the solidDB Ping facility at level 1 (0 is no operation/default).
Levels 2, 3, 4 or 5 may only be used if the server is set to use the Ping facility at least at
the same level.

See Ping facility in the IBM solidDB Administrator Guide for details.

All

-t Turns on the Network trace facility

See Network trace facility in the IBM solidDB Administrator Guide for details.

All

v host_computer_name is needed with TCP/IP and Named Pipes protocols, if the
client and server are running on different machines.

v server_name depends on the communication protocol:
– In TCP/IP protocol, server_name is a service port number, such as '2315'.
– In other protocols, server_name is a name, such as 'soliddb' or 'chicago_office'.
For details on the syntax in different communication protocols, see
Communication protocols in the IBM solidDB Administrator Guide.

Note:

v The protocol_name and the server_name must match the ones that the server is
using in its network listening name.

v If given at the connection time, the connect string must be enclosed in double
quotation marks.

v All components of the connect string are case insensitive.

For example:
Connect=tcp srv1.dom.acme.com 1315

4 Using HotStandby with applications 93

4.3.1 Reconnecting to primary servers from applications

Preparing client applications for HotStandby
Client programs that have lost their connection to the Primary must be able to
reconnect to the new Primary server (the old Secondary). You must code client
applications to be able to:
1. Recognize that Primary is not available for write transactions any more.
2. Connect to the other server or switch to using previously created connection.
3. Take into account whether the current (interrupted) transaction was

lost/aborted and must be re-executed on the new Primary server.

Getting the secondary server address
The easiest way to get the connection information for the Secondary database
server is to use the ADMIN COMMAND 'hotstandby cominfo' command, which gives
the connection information for the other server in the HSB pair.

About this task

Procedure
1. When your application first connects to Primary, the application can execute the

ADMIN COMMAND 'hotstandby cominfo' command and store the result. Note that
when the cominfo command returns a value, it does NOT imply that Primary
and Secondary are currently connected. The "cominfo" command simply returns
the value specified in the Connect parameter of the solid.ini configuration file,
or the value most recently specified with the hsb parameter connect command.
If you need to check the connect status between Primary and Secondary
servers, you can use ADMIN COMMAND 'hotstandby status connect'.

2. Later, if Primary fails, the application can use the stored information to connect
to Secondary (new Primary).

Detecting HotStandby server failure in client applications
To use the HotStandby (HSB) component, applications must know when to switch
from the failed Primary to the Secondary (new Primary) server. There are a couple
of possible ways to do this. The best way is to simply check the return codes from
the functions that you call to see if you have received an error that indicates you
should switch to the other server.

You may also monitor the states of the servers (for example, check the Primary
server to see whether its state has changed to PRIMARY UNCERTAIN).

The errors that indicate you should try switching to another server include:
v 10013: Transaction is read only
v 10041: Database is read only
v 10047: Replication transaction aborted
v 11002: Disk full
v 11003: File write failed, configuration exceeded
v 14501: Operation failed
v 14502: Invalid rpc parameter
v 14503: Communication error
v 14506: Server is closed (for example, because it is currently the target of an HSB

netcopy operation)
v 14510: Communication write operation failed

94 IBM solidDB: High Availability User Guide

v 14511: Communication read operation failed
v 14518: Connection broken
v 14519: User thrown out (for example, because of some administrative operation)
v 14529: Operation timed out
v 20009: Session error, write operation failed
v 21306: Server not found, connect failed
v 21308: Connection is broken (write failed with code ...)
v 21318: Operation failed (unusual return code)

ODBC applications

The following error message is returned to ODBC applications that cannot
establish a connection (for example, due to an inoperable database server):
v SQLState = 08001 - Client unable to establish connection

In addition, the following solidDB communication error message is produced:
v 21306 - Server 'server_name' not found, connection failed.

If a connection fails (for example, due to a network failure) in between operations,
such as executing queries and fetching results, the following error message is
returned:
v SQLState = 08S01 - Communication link failure

JDBC applications

The following error message is returned to JDBC applications that cannot establish
a connection (for example, due to an inoperable database):
v SQLState = 08001 - Unable to connect to data source.

If a connection fails (for example, due to a network failure) in between operations,
such as executing queries and fetching results, the following error message is
returned:
v SQLState = 08S01 - Communication link failure

Note:

ODBC and JDBC use different error messages for the same error code (08001).

Switching the application to the new primary
After the application detects that it cannot send transactions to the "old Primary"
server, the application must poll the old Primary and old Secondary servers until it
finds a server that is in PRIMARY ACTIVE, PRIMARY ALONE, or STANDALONE
state.

Polling is accomplished by having the application attempt to connect to the servers
and check the status of the servers when the connection is established. When the
connect is successful, the client can request the server state by using SQL function
HOTSTANDBY_STATE, which is described in section “Using the
HOTSTANDBY_STATE function” on page 96.

4 Using HotStandby with applications 95

CAUTION:
After the switch, all open database objects, such as prepared statements, open
cursors and transactions, are no longer active. Thus, you must initialize these
objects again. Also, if you were using Temporary Tables or Transient Tables
(solidDB main memory engine features), the tables will be empty on the new
Primary.

Using the HOTSTANDBY_CONNECTSTATUS function

To verify connect status information when reconnecting to a Primary server from
an application, you can use the HOTSTANDBY_CONNECTSTATUS function. This
function is equivalent to the administrative command hotstandby status connect.

The function has no arguments and returns one of the following status values:

Table 21. HOTSTANDBY_CONNECTSTATUS status values

Status Description

CONNECTED The connection is active. This status is
returned from both the Primary and
Secondary servers.

CONNECTING The Primary server is connecting to the
Secondary server. This status is returned
from both the Primary and Secondary
servers.

CATCHUP The Primary server is connected to the
Secondary server, but the transaction log is
not yet fully copied. This status is returned
from both the Primary and Secondary
server.

BROKEN The connection is broken. This status is
returned from both the Primary and
Secondary servers.

Using the HOTSTANDBY_STATE function

To implement application polling of the Primary and Secondary servers, you can
use the HOTSTANDBY_STATE function. This function is equivalent to the
administrative command hotstandby state. It allows the application request the
current HotStandby state when it is connected to the server.

Note: This function has no arguments. For a description of each possible state that
this function may return, see 3.4.8, “Verifying HotStandby server states,” on page
62.

Sample pseudo-code

An application, whether or not it is HSB-enabled, should have error handling that
allows the application to replay a failed/aborted transaction.

In a non-HSB environment, a transaction may be aborted because of a concurrency
conflict (optimistic tables) or deadlock (pessimistic tables). The application must
catch these error situations and either automatically retry the transaction or ask
interactive user to re-execute the transaction.

96 IBM solidDB: High Availability User Guide

If your application already has code to handle failed or aborted transactions, then
it is relatively easy to extend this code to make use of HSB.

In a very simplified example, the application pseudo-code with proper error
handling for a non-HA-aware application handling looks something like this:
BEGIN TRANSACTION
EXECUTE APPLICATION LOGIC
PREPARE & EXECUTE STATEMENTS
COMMIT TRANSACTION
IF ERROR OCCURRED

IF ERROR == concurrency conflict or deadlock
GO TO BEGIN TRANSACTION

END IF
other error handling

END IF ;

Improving the above application to make it HA-aware is very simple. You must
add code so that the application can:
v Connect to either of the two servers instead of only one; and
v In the case of an error, find the server that is currently in one of the following

states: PRIMARY ACTIVE, PRIMARY ALONE or STANDALONE.

The pseudo-code should look similar to the following:
BEGIN TRANSACTION
EXECUTE APPLICATION LOGIC
PREPARE & EXECUTE STATEMENTS
COMMIT TRANSACTION
IF ERROR OCCURRED

IF ERROR == server unavailable for write transactions
FIND CURRENT PRIMARY SERVER
GO TO BEGIN TRANSACTION

END IF
IF ERROR == concurrency conflict or deadlock

GO TO BEGIN TRANSACTION
END IF
IF ERROR == something else

other error handling
END IF

END IF

The logic to find the current primary server is also very simple. Just check the
current state of both servers (try to reconnect if necessary) and if either of them is
PRIMARY ACTIVE, PRIMARY ALONE or STANDALONE, set that server as the
current primary. If neither server meets that criterion, wait awhile and retry
checking the current server states.

4.3.2 Reconnecting to secondary servers
In some cases, you may want to connect to the current Secondary (if it is up).
Applications can submit read-only queries to the Secondary server; this can
sometimes help you balance the workload across your servers.

An application can only connect to Secondary databases in the read-only mode.
Note that a client can connect to the Secondary server (only in read-only mode) by
using the following parameter values in the HotStandby section of the solid.ini
configuration file in these servers:
v Connect parameter in the Primary server
v Listen parameter in the Secondary server

4 Using HotStandby with applications 97

You can also use the following command to get the connection information for a
server's partner:
ADMIN COMMAND ’hotstandby cominfo’;

Thus, if you are connected to the current Primary server, you can get the address
of the current Secondary by using the cominfo query.

4.4 Defining timeouts between applications and servers
This section describes how to configure application read timeout and connect
timeout settings by using either the solid.ini Connect parameter or the connect
string of the SQLConnect function for ODBC.

These timeout values apply to the server's connections with client applications,
including solidDB SQL Editor (solsql), solidDB Remote Control (solcon), and HA
Manager.

4.4.1 Application read timeout option
The application read timeout option helps detect failures in low level network RPC
read operations. The timeout setting applies to the read in the physical network
(TCP/IP protocol only).

This RPC read timeout (called connection timeout in ODBC and JDBC) can be
configured (in milliseconds) in the following ways. The default timeout is 0 –
infinite (operating system default timeout applies),
v Client-side Com.ClientReadTimeout parameter

For example:
[Com]
;Set RPC read timeout to 1000 milliseconds (one second)
ClientReadTimeout=1000

v Client-side Com.Connect parameter with option -rmilliseconds

For example:
[Com]
;Set RPC read timeout to 1000 milliseconds (one second)
Connect=TCP -r1000 1313

Note: For client applications such as the watchdog, it is convenient to provide
the RPC read timeout (called also connection timeout) in the Com.Connect
parameter using the -r option. Otherwise certain network failure types may
cause indefinite waits.

Note:

The Connect parameters in the [Com] section, [Watchdog] section, and
[Hotstandby] section are for different purposes. Make sure that you edit the
correct one.

v Connect string of the SQLConnect function (-r option)
For example:
SQLConnect (hdbc, "TCP -r1000 1313", SQL_NTS,
"dba", SQL_NTS, "dba", SQL_NTS);

In the example above, the constant SQL_NTS indicates that the previous string
(servername, username, or password) was passed as a standard Null-Terminated
String.

98 IBM solidDB: High Availability User Guide

4.4.2 Specifying -C option in the connect parameters
You can specify the connect timeout (called also login timeout) value in the
Connect parameter used in the [Com] and [Watchdog] sections of the solid.ini file.
This connect timeout works only for the TCP/IP protocol.

The syntax is:
Parameter = tcp -cnumber-of-milliseconds [machine name] port_number

where Parameter is Connect or Listen.

If no value is provided for the connect timeout, the server uses the operating
system-specific default value.

Note:

For client applications, such as the watchdog, it is convenient to provide the
connect timeout value in the Connect parameter using the -c option. Otherwise
certain network failure types may cause a long wait before the failure is detected.

For example:

Application node:
[Com] ;The server listens to port 1320, and the Connection timeout is 1000 ms.
Listen = tcpip -c1000 1320

4.5 Configuring SMA with HotStandby
When using SMA with Transparent Connectivity (TC), the applications on the
Primary and the Secondary must connect to the databases using a SMA-specific TC
connect info syntax.

About this task

With SMA TC, the application on each node must be able to connect to the local
server with a SMA connection and to the remote server with a network-based
connection.

The format of the TC connect target list for SMA with HotStandby is the following:
connect_target_list::=[SERVERS:]sma_connect_string, network_connect_string

where
sma_connect_string::= sma protocol_name port_number | pipe_name

network_connect_string::= protocol_name IP_address | host_computer_name
port_number | pipe_name

Additionally, you need to set the load balancing method to LOCAL_READ
(PREFERRED_ACCESS=LOCAL_READ).

Important: When using SMA with TC, if you set the load balancing method to
READ_MOSTLY or WRITE_MOSTLY (default), a network connection is used
instead of the SMA connection. Thus, when using SMA with TC, always set the
load balancing method to LOCAL_READ.

4 Using HotStandby with applications 99

Procedure
1. Set up the two HotStandby servers.
2. Set up SMA on both servers.
3. For both applications, define the TC connection using the SMA-specific connect

target list syntax and the load balancing attribute
PREFERRED_ACCESS=LOCAL_READ.

4. Compile and start the applications.

Example

Connect info of the application on host1 where solidDB is listening at port 1964:
PREFERRED_ACCESS=LOCAL_READ SERVERS=sma tcp 1964, tcp host2 2315

Connect string of the application on host2 where solidDB is listening at port 2315:
PREFERRED_ACCESS=LOCAL_READ SERVERS=sma tcp 2315, tcp host1 1964

4.6 Configuring advanced replication with HotStandby
Any node of a advanced replication system can be made highly available with the
solidDB HotStandby component.

When the master and replica databases of a advanced replication system are
synchronizing data, the synchronization occurs between the Primary servers of the
database server pairs. In other words, the Primary of the Master communicates
with the Primary of the Replica. See Figure 7 on page 18.

A database server may fail over to its Secondary server at any point of time,
including when the database server is synchronizing data with another server
using advanced replication. If the failover occurs during synchronization, executing
the synchronization message stops and the process must be resumed after the
failover. For details about how to resume synchronization after an error has
occurred, refer to the IBM solidDB Advanced Replication User Guide.

Application

SMA driver

solidDB
Secondary

sma tcp 2315

host1

tcp host2 2315

tcp host1 1964

Application

SMA driver

solidDB
Primary

sma tcp 1964

host2

Figure 16. Example: HotStandby with SMA configuration

100 IBM solidDB: High Availability User Guide

If a server containing a master database is made fault tolerant with solidDB
HotStandby, the replicas of the master database must know the connect strings to
both master servers. To do this, execute the following statement in each of the
replica databases:
SET SYNC CONNECT ’connect_string_to_server_1, connect_string_to_server_2’
TO MASTER master_nodename

In the diagram below, the gray arrows represent the original connections to the
original Primary server, while the black arrows represent the new connections to
the new Primary (old Secondary) server. The alternate connection is used if the
synchronization with the old Primary server fails.

If the server using solidDB HotStandby is a server containing a replica database
and if the master server uses remote procedure calls (CALL procedure_name AT
node_name) to run procedures at the replica, for example to initiate the
synchronization, the master server must be informed about the connect strings to
both of the replica servers. Typically a master server uses remote procedure calls to
initiate synchronization with a replica database. To inform the master about the
connect strings to the replica server pair, execute the following statement in the
master database:
SET SYNC CONNECT ’connect_string_to_server_1,
connect_string_to_server_2’ TO REPLICA replica_nodename

Replica2

(HSB secondary)(HSB secondary)

Replica1

HSBHSB

(HSB primary)

Replica2

(HSB primary)

Replica1

SmartFlow data synchronization

MasterDB

(new HSB primary)

HSB

MasterDB

(old HSB primary)

Figure 17. HotStandby and advanced replication: failover of Master database

4 Using HotStandby with applications 101

Alternatively, you can save the statement in the replica server and propagate it to
master the next time that you synchronize. In that case, use the following
statement:
SAVE SET SYNC CONNECT ’connect_string_to_server_1,
connect_string_to_server_2’ TO REPLICA replica_nodename

If the master server never executes remote procedure calls in the replica, the above
statement is not needed.

2

1

ReplicaDB2

(HSB secondary)(HSB secondary)

ReplicaDB1

HSBHSB

(HSB primary)

ReplicaDB2

(HSB primary)

ReplicaDB1

Master

(HSB secondary)

SmartFlow data
synchronization

SmartFlow data
synchronization

HSB

Master

(HSB primary)

1. Failover in ReplicaDB

2. SET SYNC CONNECT 'tcp machine4 1315' REPLICA TO replicaDB1

Figure 18. HotStandby and advanced replication: failover of Replica database

102 IBM solidDB: High Availability User Guide

5 Failure handling with High Availability Controller (HAC)

This section describes possible failure scenarios and typical recovery procedures for
them if using the High Availability Controller (HAC). HAC handles various failure
scenarios implicitly. However, different failure or initialization scenarios
(administrative scenarios, for short) can be handled by a human administrator, or a
watchdog type software program.

HAC is a watchdog type program that monitors Primary and Secondary servers,
and gives commands to change those servers' states when necessary. For example,
HAC can determine when the Primary or Secondary server itself has failed or
when just the communication link between these servers is down.

The purpose of recovery is to bring the failed component back to operation.
Occasionally, further failures happen during recovery. They usually lead to a
situation where the system remains in a state of limited availability (only one
server is up), awaiting human intervention. Typical recovery-time failures that are
not automatically taken care of are:
v The failed database is corrupted to a point that it is impossible to restart it.
v There is not enough free disk space to perform a catchup.

5.1 Primary database fails
Scenario

The primary database (in the PRIMARY ACTIVE state) on node 1 fails.

The secondary database (in the SECONDARY ACTIVE state) on node 2 encounters
connection failure to the primary database on node 1.

Recovery

In the recovery from the Primary database failure the Secondary server replaces the
Primary server. The recovery proceeds automatically as follows:
1. Upon the connection failure, the Secondary database on node 2 moves

automatically to the SECONDARY ALONE state.
2. The HAC instance on the Secondary database on node 2 concludes that the

Primary database on node 1 has failed and sets the Secondary database on
node 2 to the PRIMARY ALONE state.

3. In parallel with the above task, the HAC instance on the Primary database on
node 1 restarts the Primary database, which enters the SECONDARY ALONE
state.

4. The HAC instance on the Secondary database on node 2 initiates the process of
connecting the Primary and Secondary database.

5. A catchup is made.
Optionally, the connection process includes a netcopy operation from the
Secondary database on node 2 to the Primary database on node 1.

103

5.2 Secondary database fails
Scenario

The secondary database (in the SECONDARY ACTIVE state) on node 2 fails.

The Primary database (in the PRIMARY ACTIVE state) on node 1 encounters
connection failure to the Secondary database on node 2.

Recovery

In the recovery from the Secondary database failure the Secondary server is
restarted. The recovery proceeds automatically as follows:
1. Upon the connection failure, the Primary database on node 1 moves

automatically to the PRIMARY UNCERTAIN state, or if the AutoPrimaryAlone
parameter is enabled, to the PRIMARY ALONE state.

2. The HAC instance on the Primary database on node 1 concludes that the
Secondary database on node 2 has failed.

3. If the Primary database was set to the PRIMARY UNCERTAIN state in step 1,
HAC sets it now to the PRIMARY ALONE state.

4. In parallel with the above task, the HAC instance on the Secondary database on
node 2 restarts the Secondary database, which enters the SECONDARY ALONE
state.

5. The HAC instance on the Primary database on node 1 initiates the process of
connecting the Primary and Secondary database.

6. A catchup is made.
Optionally, the connection process includes a netcopy operation from the
Primary database to the Secondary database.

5.3 Primary node fails

Scenario

The primary node (node 1) fails.

The Secondary database (in the SECONDARY ACTIVE state) on node 2 encounters
connection failure to the Primary database (in the PRIMARY ACTIVE state) on
node 1.

Recovery

In the recovery from the Primary node failure the Primary server is restarted. The
recovery proceeds automatically as follows:
1. Upon the connection failure, the Secondary database moves automatically to

the SECONDARY ALONE state.
2. The HAC instance on the Secondary database on node 2 concludes that the

Primary database on node 1 has failed.
3. The HAC instance on the Secondary database on node 2 sets the Secondary

database to the PRIMARY ALONE state.
4. The Primary node (node 1) is restarted.
5. The HAC instance on the Primary database (node 1) is restarted.

104 IBM solidDB: High Availability User Guide

6. The HAC instance on the Primary database (node 1) concludes that the Primary
database is not running.

7. The HAC instance on the Primary database (node 1) restarts the Primary
database and sets it to the SECONDARY ALONE state.

8. The HAC instance on the Secondary database on node 2 initiates the process of
connecting the Primary and Secondary database.

9. A catchup is made.
Optionally, the connection process includes a netcopy operation from the
Primary database to the Secondary database.

5.4 Secondary node fails
Scenario

The secondary node (node 2) fails.

The Primary database (in the PRIMARY ACTIVE state) on node 1 encounters
connection failure to the Secondary database (in the SECONDARY ACTIVE state)
on node 2.

Recovery

In the recovery from the Secondary node failure the Secondary server is restarted.
The recovery proceeds automatically as follows:
1. Upon the connection failure, the Primary database on node 1 moves

automatically to the PRIMARY UNCERTAIN state.
2. The HAC instance on the Primary database on node 1 concludes that the

Secondary database on node 2 has failed.
3. The HAC instance on the Primary database on node 1 sets the Primary

database to the PRIMARY ALONE state.
4. The Secondary node (node 2) is restarted.
5. The HAC instance on the Secondary database (node 2) is restarted.
6. The HAC instance on the Secondary database (node 2) concludes that the

Secondary database is not running.
7. The HAC instance on the Secondary database (node 2) restarts the Secondary

database and sets it to the SECONDARY ALONE state.
8. The HAC instance on the Primary database on node 1 initiates the process of

connecting the Primary and Secondary database.
9. A catchup is made.

Optionally, the connection process includes a netcopy operation from the
Primary database to the new Secondary database.

5.5 HotStandby link fails

Scenario

The HotStandby link fails.

The Primary database (in the PRIMARY ACTIVE state) on node 1 and the
Secondary database (in the SECONDARY ACTIVE state) on node 2 both encounter
connection failure to each other.

5 Failure handling with HAC 105

Recovery

In the recovery from the HotStandby link failure the HAC instances ping the
External Reference Entity (ERE) to find out if it is the network or the opposite
server that has failed. The recovery proceeds automatically as follows:
1. Upon the connection failure, both databases move automatically to the

PRIMARY UNCERTAIN (node 1) and SECONDARY ALONE state (node 2),
respectively.

2. The direct connections of both HAC instances to the remote server fail.
3. Both HAC instances ping the ERE by using the operating system's ping utility.
4. If the ping fails, the local server is retained or set to the SECONDARY ALONE

state.
5. If the ping succeeds, the successful HAC tries to connect to the remote database

server.
6. If the connect effort to the remote database server fails, the HAC concludes that

its part of the network connection is operational and sets the local server to the
PRIMARY ALONE state.

7. The HAC instance on the Primary database attempts to re-establish the
connection to the Secondary database.

8. Once the network becomes operational and the connect succeeds, the Primary
database and the Secondary database move automatically to the PRIMARY
ACTIVE and SECONDARY ACTIVE state, respectively.

5.6 Server is unresponsive to external clients
Scenario

Connection to the server fails or hangs forever. Servers are in PRIMARY ACTIVE,
and SECONDARY ACTIVE state, but clients cannot connect to them and they
cannot execute transactions.

Recovery

Regardless of the state of unresponsive server, HAC executes a script as configured
in the solidhac.ini configuration file with the LocalDB.UnresponsiveActionScript
parameter. The script is started with single parameter including the process id
(pid) of unresponsive solidDB process.

Typical solution is to terminate the process identified by the process id. In such a
case, the recovery proceeds automatically as follows:

If the unresponsive server was in Primary role:
1. Upon the connection failure, the Secondary database (node 2) moves

automatically to the SECONDARY ALONE state.
2. The HAC instance on the Secondary database (node 2) notices that the Primary

database process (node 1) has terminated and sets the Secondary database
(node 2) to the PRIMARY ALONE state.

3. In parallel with the above task, the HAC instance on the Primary database
(node 1) restarts the old Primary database, which enters the SECONDARY
ALONE state.

4. The HAC instance on the Secondary database (node 2) initiates the process of
connecting the Primary and Secondary database.

5. A catchup is made.

106 IBM solidDB: High Availability User Guide

Optionally, the connection process includes a netcopy operation from the
Secondary database (node 2) to the Primary database (node 1).

If the unresponsive server was in Secondary role:
1. Upon the connection failure, the Primary database (node 1) moves

automatically to the PRIMARY UNCERTAIN state, or if the AutoPrimaryAlone
parameter is enabled, to the PRIMARY ALONE state.

2. The HAC instance on the Primary database (node 1) notices that the Secondary
database process (node 2) has terminated.

3. If the Primary database was set to the PRIMARY UNCERTAIN state in step 1,
HAC sets it now to the PRIMARY ALONE state.

4. In parallel with the above task, the HAC instance on the Secondary database
(node 2) restarts the old Secondary database, which enters the SECONDARY
ALONE state.

5. The HAC instance on the Primary database (node 1) initiates the process of
connecting the Primary and Secondary database.

6. A catchup is made.
Optionally, the connection process includes a netcopy operation from the
Primary database to the Secondary database.

5 Failure handling with HAC 107

108 IBM solidDB: High Availability User Guide

6 Upgrading (migrating) HotStandby servers

Migration involves updating the version of the software. For a highly-available
system like solidDB HotStandby, the migration can be cold or hot.

Cold migration means that you shut down the whole system (both servers), upgrade
the system, and restart with new software and configuration data.

Hot migration means that you upgrade your HotStandby server pair without taking
your entire system offline for the amount of time required to upgrade the servers.
One server can keep operating while the other server is being upgraded.

Important: With hot migration, although your entire system will not be down,
users or applications might have to disconnect from one server and connect to the
other server if you are using basic connectivity. If you are using transparent
connectivity, you can perform the hot migration transparently to users and
applications.

6.1 Cold migration procedure
About this task

The migration steps are:

Procedure
1. Disconnect the servers and shut them down.
2. Install the new version of the software.
3. If you are upgrading to a new version, copy the new license file (solid.lic)

from the License Certificate image to both the Primary and Secondary servers.
4. If necessary, update the solid.ini files.
5. Start Primary with the command line parameter -x autoconvert, which

instructs the server to convert existing database to the new format.
6. Set the Primary to the PRIMARY ALONE state.
7. Perform 'hsb netcopy' from Primary to Secondary.
8. Connect the servers.

6.2 Hot migration procedure
This hot migration procedure is supported as of solidDB server version level 7.0
Interim Fix 2 / 7.0 Fix Pack 3. For versions prior to Fix Pack 3, use the hot
migration procedure using netcopy.

Before you begin
1. If your applications have not been designed to fail over automatically, notify

users that they will lose their connections and will need to reconnect to the
new Primary server.

2. Prepare your system and your software for upgrades:
a. Since each of your solidDB servers will be operating alone (specifically, in

PRIMARY ALONE state) during part of the upgrade operation, make sure

109

that both computers are in a healthy state. For example, both computers
should have sufficient free disk space, reliable network connections, and a
UPS device in case of power failure.

b. Each of the servers will operate in PRIMARY ALONE state for at least a
short time (while the other server is being upgraded). While the server is in
PRIMARY ALONE state, it will be storing transactions in the transaction
log. You must have enough disk space available for the log file to store all
the transactions that will occur while the other server is being upgraded,
including the time it takes that other server to catch up after it is restarted.

c. Make sure that a copy of the new software version is available on each
computer.

Note: solidDB is delivered as a single installation file. If you do not want to
run the installer on your production environment node, install solidDB on a
separate node and copy the executables, libraries, and drivers manually to
your production node, as applicable for your setup.

Tip: The upgrade procedure differs depending on whether you are
upgrading to a new version level (for example, from 6.5 to 7.0) or applying
a fix pack (for example, 7.0 Fix Pack 2 to 7.0 Fix Pack 3). The differences are
described in the procedure.

3. If you have a watchdog program, turn it off temporarily so that it does not
issue commands that conflict with the commands that you issue during the
upgrade process. For example, after you disconnect the Primary from the
Secondary, you do not want the watchdog to try to reconnect them before you
upgrade the Secondary.

About this task

In the steps below, S1 ("OP") and S2 ("OS") represent the original Primary and
Secondary servers. Each server's state changes as you go through this process.

Procedure
1. S1: Disconnect the Primary from the Secondary:

ADMIN COMMAND ’hsb disconnect’;

2. S2 OS: Shut down server S2 (Secondary):
ADMIN COMMAND ’shutdown force’;

3. S1 OP: Tell server S1 (Primary) to operate in PRIMARY ALONE state if it has
not already automatically switched to that state. Verify that server S1
(Primary) is in the PRIMARY ALONE state.
ADMIN COMMAND ’hsb set primary alone’;
ADMIN COMMAND ’hsb state’;

4. S2 OS: Upgrade server S2 (original Secondary) to the new solidDB version
level.

Note: solidDB is delivered as a single installation file. If you do not want to
run the installer on your production environment node, install solidDB on a
separate node and copy the executables, libraries, drivers, and license file
manually to your production node, as applicable for your setup. If necessary,
update also the solid.ini file.

5. S2 OS: Bring up server S2 (original Secondary).
v If you are upgrading to a new version level (for example, 6.5 to 7.0), start

the solidDB server using the -x autoconvert command-line option.

110 IBM solidDB: High Availability User Guide

solid -x autoconvert

The -x autoconvert option instructs the server to accept and convert the
existing database to the new version level.

v If you are applying a new fix pack level (for example, 7.0 Fix Pack 2 to 7.0
Fix Pack 3), you can start the solidDB server normally. Conversion of the
database is not needed.

The S2 server comes up in SECONDARY ALONE state.
6. S1 OP: Connect the Primary server to the Secondary:

ADMIN COMMAND ’hsb connect’;

Note: If the Secondary server is running a newer version of the server, you
cannot issue the hsb connect command on the Secondary.
This step starts the process by which the Secondary catches up on data changes
that occurred while the Secondary was down.

7. S1 OP: Wait for the catchup to complete before continuing.
8. S2: After the servers are connected and caught up, perform a role switch to

prepare for shutting down the current Primary (S1 OP):
ADMIN COMMAND ’ hsb switch primary’;

9. S2: Disconnect the Primary from the Secondary:
ADMIN COMMAND ’hsb disconnect’;

10. S1 OP: Shut down server S1 OP (now in Secondary mode):
ADMIN COMMAND ’shutdown force’;

Important: The force option aborts all open transactions.
11. S2 OS: Set the new Primary server S2 (old Secondary) to operate in the

PRIMARY ALONE state, if it has not already automatically switched to that
state. Verify that server S2 is in the PRIMARY ALONE state.
ADMIN COMMAND ’hsb set primary alone’;
ADMIN COMMAND ’hsb state’;

12. S1 OP: Upgrade server S1 (your original Primary server) to the new solidDB
version level.

Note: solidDB is delivered as a single installation file. If you do not want to
run the installer on your production environment node, install solidDB on a
separate node and copy the executables, libraries, drivers, and license file
manually to your production node, as applicable for your setup. If necessary,
update also the solid.ini file.

13. S1 OP: Bring up server S1.
v If you are upgrading to a new version level (for example, 6.5 to 7.0), start

the solidDB server using the -x autoconvert command-line option.
solid -x autoconvert

The -x autoconvert option instructs the server to accept and convert the
existing database to the new version level.

v If you are applying a new fix pack level (for example, 7.0 Fix Pack 2 to 7.0
Fix Pack 3), you can start the solidDB server normally. Conversion of the
database is not needed.

The S1 OP server comes up in SECONDARY ALONE state.
14. S2 OS: Connect the servers:

ADMIN COMMAND ’hsb connect’;

6 Upgrading HotStandby servers 111

The hsb connect command connects the new Primary server to the new
Secondary and starts the process by which the new Secondary catches up on
data changes that occurred while it was down.
If this step fails, copy the entire database to the Secondary server using hsb
netcopy and then resume from step 12.

Results

After the new Secondary server catches up to the new Primary, your system
should be operating normally. Both the new Primary and the new Secondary
server have been upgraded and have the most current data.

What to do next

After the upgrade, you might want to run some test queries to make sure that
everything is operating properly.
1. Test that both your Primary server and your Secondary server are working

correctly. For example, you might choose the following sequence of operations:
On the Primary:
ADMIN COMMAND ’hsb state’;
ADMIN COMMAND ’hsb status catchup’;

Issue any type of read-only query.
On the Secondary:
ADMIN COMMAND ’hsb state’;
ADMIN COMMAND ’hsb status catchup’;

Issue any type of read-only query.
2. If you had a watchdog program, restart it.
Related tasks:
6.3, “Hot migration procedure using netcopy”
The hot migration procedure using netcopy must be used when upgrading the
solidDB server up to version level 7.0 Fix Pack 2.

6.3 Hot migration procedure using netcopy
The hot migration procedure using netcopy must be used when upgrading the
solidDB server up to version level 7.0 Fix Pack 2.

Before you begin
1. If your applications have not been designed to fail over automatically, notify

users that they will lose their connections and will need to reconnect to the
new Primary server.

2. Prepare your system and your software for upgrades:
a. Since each of your solidDB servers will be operating alone (specifically, in

PRIMARY ALONE state) during part of the upgrade operation, make sure
that both computers are in a healthy state. For example, both computers
should have sufficient free disk space, reliable network connections, and a
UPS device in case of power failure.

b. Each of the servers will operate in PRIMARY ALONE state for at least a
short time (while the other server is being upgraded). While the server is in
PRIMARY ALONE state, it will be storing transactions in the transaction
log. You must have enough disk space available for the log file to store all

112 IBM solidDB: High Availability User Guide

the transactions that will occur while the other server is being upgraded,
including the time it takes that other server to catch up after it is restarted.

c. Make sure that a copy of the new software version is available on each
computer.

Note: solidDB is delivered as a single installation file. If you do not want to
run the installer on your production environment node, install solidDB on a
separate node and copy the executables, libraries, and drivers manually to
your production node, as applicable for your setup.

Tip: The upgrade procedure differs depending on whether you are
upgrading to a new version level (for example, from 6.5 to 7.0) or applying
a fix pack (for example, 7.0 Fix Pack 2 to 7.0 Fix Pack 3). The differences are
described in the procedure.

3. If you have a watchdog program, turn it off temporarily so that it does not
issue commands that conflict with the commands that you issue during the
upgrade process. For example, after you disconnect the Primary from the
Secondary, you do not want the watchdog to try to reconnect them before you
upgrade the Secondary.

About this task

In the steps below, S1 ("OP") and S2 ("OS") represent the original Primary and
Secondary servers. Each server's state changes as you go through this process.

Procedure
1. S1: Disconnect the Primary from the Secondary:

ADMIN COMMAND ’hsb disconnect’;

2. S2 OS: Shut down server S2 (Secondary):
ADMIN COMMAND ’shutdown force’;

3. S1 OP: Tell server S1 (Primary) to operate in PRIMARY ALONE state if it has
not already automatically switched to that state. Verify that server S1
(Primary) is in the PRIMARY ALONE state.
ADMIN COMMAND ’hsb set primary alone’;
ADMIN COMMAND ’hsb state’;

4. S2 OS: Upgrade server S2 (original Secondary) to the new solidDB version
level.

Note: solidDB is delivered as a single installation file. If you do not want to
run the installer on your production environment node, install solidDB on a
separate node and copy the executables, libraries, drivers, and license file
manually to your production node, as applicable for your setup. If necessary,
update also the solid.ini file.

5. S2 OS: Bring up server S2 (original Secondary).
v If you are upgrading to a new version level (for example, 6.5 to 7.0), start

the solidDB server using the -x autoconvert command-line option.
solid -x autoconvert

The -x autoconvert option instructs the server to accept and convert the
existing database to the new version level.

v If you are applying a new fix pack level (for example, 7.0 Fix Pack 2 to 7.0
Fix Pack 3), you can start the solidDB server normally. Conversion of the
database is not needed.

6 Upgrading HotStandby servers 113

The S2 server comes up in SECONDARY ALONE state.
6. S1 OP: Netcopy the database from the old Primary (S1) to the new Secondary

(S2):
ADMIN COMMAND ’hsb netcopy’;

7. S1 OP: Verify that the netcopy succeeded:
ADMIN COMMAND ’hsb status copy’;

8. S1 OP: Connect the Primary server to the Secondary:
ADMIN COMMAND ’hsb connect’;

Note: If the Secondary server is running a newer version of the server, you
cannot issue the hsb connect command on the Secondary.
This step starts the process by which the Secondary catches up on data changes
that occurred while the Secondary was down.

9. S1 OP: Wait for the catchup to complete before continuing.
10. S2: After the servers are connected and caught up, perform a role switch to

prepare for shutting down the current Primary (S1 OP):
ADMIN COMMAND ’ hsb switch primary’;

11. S2: Disconnect the Primary from the Secondary:
ADMIN COMMAND ’hsb disconnect’;

12. S1 OP: Shut down server S1 OP (now in Secondary mode):
ADMIN COMMAND ’shutdown force’;

Important: The force option aborts all open transactions.
13. S2 OS: Set the new Primary server S2 (old Secondary) to operate in the

PRIMARY ALONE state, if it has not already automatically switched to that
state. Verify that server S2 is in the PRIMARY ALONE state.
ADMIN COMMAND ’hsb set primary alone’;
ADMIN COMMAND ’hsb state’;

14. S1 OP: Upgrade server S1 (your original Primary server) to the new solidDB
version level.

Note: solidDB is delivered as a single installation file. If you do not want to
run the installer on your production environment node, install solidDB on a
separate node and copy the executables, libraries, drivers, and license file
manually to your production node, as applicable for your setup. If necessary,
update also the solid.ini file.

15. S1 OP: Bring up server S1.
v If you are upgrading to a new version level (for example, 6.5 to 7.0), start

the solidDB server using the -x autoconvert command-line option.
solid -x autoconvert

The -x autoconvert option instructs the server to accept and convert the
existing database to the new version level.

v If you are applying a new fix pack level (for example, 7.0 Fix Pack 2 to 7.0
Fix Pack 3), you can start the solidDB server normally. Conversion of the
database is not needed.

The S1 OP server comes up in SECONDARY ALONE state.
16. S2 OS: Netcopy the database from the new Primary (S2) to the new Secondary

(S1):
ADMIN COMMAND ’hsb netcopy’;

17. S2 OS: Verify that the netcopy succeeded:

114 IBM solidDB: High Availability User Guide

ADMIN COMMAND ’hsb status copy’;

18. S2 OS: Connect the servers:
ADMIN COMMAND ’hsb connect’;

The hsb connect command connects the new Primary server to the new
Secondary and starts the process by which the new Secondary catches up on
data changes that occurred while it was down.
If this step fails, copy the entire database to the Secondary server using hsb
netcopy and then resume from step 14.

Results

After the new Secondary server catches up to the new Primary, your system
should be operating normally. Both the new Primary and the new Secondary
server have been upgraded and have the most current data.

What to do next

After the upgrade, you might want to run some test queries to make sure that
everything is operating properly.
1. Test that both your Primary server and your Secondary server are working

correctly. For example, you might choose the following sequence of operations:
On the Primary:
ADMIN COMMAND ’hsb state’;
ADMIN COMMAND ’hsb status catchup’;

Issue any type of read-only query.
On the Secondary:
ADMIN COMMAND ’hsb state’;
ADMIN COMMAND ’hsb status catchup’;

Issue any type of read-only query.
2. If you had a watchdog program, restart it.

6 Upgrading HotStandby servers 115

116 IBM solidDB: High Availability User Guide

Appendix A. HotStandby configuration parameters

This section discusses the configuration parameters used with HotStandby.

There are four types of parameters:
v Server-side parameters in the server-side solid.ini configuration file

– There are two HotStandby-specific sections in the server-side solid.ini
configuration file: [Cluster] and [HotStandby].

– Various other parameters can also affect HotStandby functionality.
v Client-side parameters in the client-side solid.ini configuration file
v High Availability Controller (HAC) configuration parameters in the

solidhac.ini configuration file
v High Availability Manager (HAM) configuration parameters in the

HAManager.ini configuration file

Tip: If you use the Watchdog sample provided with the solidDB package, the
solid.ini will also contain watchdog-specific parameters in a [Watchdog] section.
For information, see the section Appendix F, “Watchdog sample,” on page 171.

Access mode

The access mode of a parameter defines whether the parameter can be changed
dynamically, and when the change takes effect. When the value of a parameter is
changed with an ADMIN COMMAND, the change might not apply immediately,
nor the next time that the server is started. If a parameter value is written to the
solid.ini file, it will take effect the next time that the server starts.

Access mode values

The possible access modes are:
v RO (read-only): the value cannot be changed; the current value is always

identical to the startup value.
v RW: can be changed through an ADMIN COMMAND, and the change takes

effect immediately.
v RW/Startup: can be changed through an ADMIN COMMAND, and the change

takes effect the next time that the server starts.
v RW/Create: can be changed through an ADMIN COMMAND, and the change

applies when a new database is created.
Related concepts:
3.2, “Configuring HotStandby,” on page 37
HotStandby is configured by using the solid.ini configuration files at both the
Primary and Secondary nodes. The [HotStandby] section contains all the
HotStandby-specific configuration parameters. Other sections and parameters, such
as the Com.Listen parameter, must be set also.

117

A.1 Server-side parameters
The server-side configuration parameters define various performance, memory and
disk usage, and other characteristics of the solidDB server. For HotStandby use, the
most important server-side parameters are in the [HotStandby] and [Cluster]
sections.

A.1.1 Cluster section
Table 22. Cluster parameters

[Cluster] Description Factory Value Access Mode

ReadMostlyLoadPercentAtPrimary Defines the percentage of read
loads that are directed to the
Primary when load balancing is
set to READ_MOSTLY.

50 RW/Startup

A.1.2 HotStandby section
Table 23. HotStandby parameters

HotStandby Description Factory value Access mode

1SafeMaxDelay In 1-Safe replication, the maximum delay before a
committed transaction is sent to the Secondary (in
milliseconds).

5000 RW

2SafeAckPolicy This specifies the timing of the Secondary's
acknowledgement when it receives a transaction
from the Primary.

Valid values are:

v 1 = 2-safe received. The Secondary server
acknowledges when it receives the data.

v 2 = 2-safe visible. The Secondary server
acknowledges when the data is "visible", that is,
when the Secondary has executed the transaction.

v 3 = 2-safe durable. The Secondary server
acknowledges when it has made the data durable,
that is, when it has committed the data and
written the data to the disk.

2-safe durable is the safest approach, and 2-safe
received has the fastest response time. However, in
practice, the 2-safe received mode provides in most
cases sufficient guarantees for data safety hence
providing the best compromise between safety and
speed.

This parameter applies only if the server is using
2-safe replication.
Note: Although this parameter controls the
Secondary server's behavior, this parameter is set on
the Primary. The value in the Secondary's solid.ini
value is ignored.

1 RW

AutoPrimaryAlone If this parameter is set to yes, the server is
automatically put in PRIMARY ALONE state (rather
than PRIMARY UNCERTAIN state) when the
connection to the Secondary is broken.

no RW

118 IBM solidDB: High Availability User Guide

Table 23. HotStandby parameters (continued)

HotStandby Description Factory value Access mode

CatchupSpeedRate While the server is performing catchup, it also
continues to service database requests from clients.
You may use the CatchupSpeedRate parameter to
give greater importance to responding to application
requests and lower priority to catchup, or vice versa.

The speed rate is expressed as a percentage of the
maximum available speed dictated by the link and
Secondary throughput. Larger numbers mean more
emphasis on catchup and less on servicing client
requests. Valid values are 1-99.

50 RW

Connect The Connect parameter indicates the address of the
other HotStandby server in the pair.

The value of this parameter is a standard solidDB
connect string (Basic Connectivity) or a TC-specific
connect string (Transparent Connectivity).

The connect string defined with this parameter must
match the server listening name of the other
HotStandby server (defined with Com.Listen
parameter).

If you omit this parameter in a server that you
intend for HotStandby, you can set this parameter
dynamically by using an ADMIN COMMAND.
Until the server has a connect string, the server can
only be in the states that do not involve a
HotStandby connection, that is, PRIMARY ALONE,
SECONDARY ALONE, and STANDALONE.

If HSBEnabled is set to no, this parameter is ignored.

For Transparent Connectivity (TC) connections with
multi-home servers, the Connect parameter can be
overridden with the HotStandby.TCConnect
parameter.

No factory value. RW

ConnectTimeout By specifying a connect timeout value, you can set
the maximum time in seconds that a HotStandby
connect operation waits for a connection to a remote
machine.

The ConnectTimeout parameter is used with the
following administration commands:

v hotstandby connect

v hotstandby switch primary

v hotstandby switch secondary

For example, to set the timeout to 30 seconds (30000
milliseconds):

[HotStandby]
ConnectTimeout=30000

See also PingTimeout.

0 (no timeout)

Unit: 1 ms

RW

Appendix A. Configuration parameters 119

Table 23. HotStandby parameters (continued)

HotStandby Description Factory value Access mode

CopyDirectory The CopyDirectory parameter in the [HotStandby]
section defines a name and location for the
HotStandby copy operation that is performed when
the user executes the command:

ADMIN COMMAND ’hotstandby copy’;

For example, the parameter may look like:

[HotStandby]
CopyDirectory=C:\solidDB\secondary\dbfiles

If you provide a relative path for the CopyDirectory
parameter, the path will be relative to the directory
that holds the Primary server's solid.ini file.

This parameter has no factory value, so if the
directory is not specified in the solid.ini file, it
must be provided in the copy command.

The ADMIN COMMAND 'hotstandby netcopy' is the
recommended way to copy the database because it
is a more flexible solution.

No factory value RW

HSBEnabled If this parameter is set to yes, the server may act as
a HotStandby Primary or Secondary server. If this
parameter is set to no, then the server may not act as
a HotStandby server.

Setting this parameter to yes will implicitly define
the default initial state of the server to be
SECONDARY ALONE when the server first starts.
Valid values are yesand no.

To use HotStandby, you must also specify the
Connect parameter, either by setting it in the
solid.ini file or by using an ADMIN COMMAND
to set it.

no RO

MaxLogSize Defines the maximum size of the disk-based HSB
log. The factory value: unlimited

0

Unit: 1 byte k=KB
m=MB

MaxMemLogSize When the file-based logging is disabled
(Logging.LogEnabled=no), the size of the in-memory
log holding transactions before they are sent to the
Secondary. The value affects the time the server may
stay in the PRIMARY ALONE state, before the
in-memory log becomes full.

8M

Unit: 1 byte k=KB
m=MB

RO

NetcopyReceiveBufferSize Defines the buffer size at Secondary server for
storing data during netcopy. When the buffer is full,
writes of netcopy data are throttled.

32M

Unit: 1 byte k=KB
m=MB

RW

NetcopyRpcCompress Controls whether data compression is used for a
netcopy connection.

no RW

NetcopyRpcTimeout Data transmission acknowledgment timeout for
netcopy operation (in milliseconds)

30000

Unit: 1 ms

RW

PingInterval The Primary and Secondary send "ping" messages to
each other at regular intervals to make sure that
they are still connected. (These pings are
independent of the transaction information that the
Primary sends to the Secondary.)

The value is equal to the interval (in milliseconds)
between two consecutive pings sent by a server.

1000 (one second)

Unit: 1 ms

RW

120 IBM solidDB: High Availability User Guide

Table 23. HotStandby parameters (continued)

HotStandby Description Factory value Access mode

PingTimeout The parameter specifies how long a server should
wait before concluding that the other server is down
or inaccessible.

After the time specified (in milliseconds) has passed
the server concludes that a connection is broken and
changes the state accordingly.

See also ConnectTimeout.

4000 (four seconds)

Unit: 1 ms

RW

PrimaryAlone This parameter is deprecated. Use the
AutoPrimaryAlone parameter.

no RW

SafenessLevel This parameter sets the safeness level of the
replication protocol.

Possible values are: 1safe, 2safe and auto

By using the auto value, you can allow the safeness
level to dynamically change in relation to the
durability level. If you set SafenessLevel to auto
and set the durability to relaxed by using the SET
DURABILITY command or the DurabilityLevel
parameter, the safeness level is set to 1-safe, and
when you set the durability level to strict, the
safeness level is set to 2-safe. However, if
DurabilityLevel is set to 2 (Adaptive Durability),
the auto setting has no effect; the safeness level will
always be 2-safe.

2-safe RW

SecondaryThreads This parameter defines the number of threads that
the Secondary server uses for processing write
operations.

The optimal number of threads depends on the
environment. In principle,

Valid values are 1–256.

4 RW/Startup

TCConnect This parameter defines the address of the other
HotStandby server in the pair for a Transparent
Connectivity (TC) connection, if the applications and
servers need to use different networks to connect to
each other (for example, when using multi-home
servers).

From the application connection perspective, the
address specified with this parameter precedes the
address defined with the HotStandby.Connect
parameter. The TC connection will thus use the
server addresses specified with this parameter, while
the HotStandby connection between the servers uses
the server addresses defined with the
HotStandby.Connect parameter.

No factory value. RW

A.2 Client-side parameters
The client-side configuration parameters define various characteristics for usage of
the solidDB ODBC client and solidDB tools such as solidDB SQL Editor (solsql).
For HotStandby use, the most important client-side parameters are in the [Com]
and [TransparentFailover] sections. The client-side parameters are stored in the
client-side solid.ini configuration file and are read when the client starts.

Appendix A. Configuration parameters 121

A.2.1 Com section
The [Com] section in the client-side solid.ini file contains the Com.Connect
parameter that can be used with HotStandby.

Table 24. Client-side communication parameters

[Com] Description Factory Value

ClientReadTimeout
This parameter defines the connection (or read) timeout in milliseconds. A
network request fails if no response is received during the time specified.
The value 0 sets the timeout to infinite. This value can be overridden with
the connect string option -r and, further on, with the ODBC attribute
SQL_ATTR_CONNECTION_TIMEOUT.
Note: This parameter applies only to the TCP protocol.

0 (infinite)

Connect
The Connect parameter defines the default network name (connect string)
that the client uses to connect to the solidDB server, if the connect string is
not specified in the connection parameters explicitly. This value is used
also when the SQLConnect() call is issued with an empty data source
name.

The format of the standard solidDB connect string is:

protocol_name [options] [host_comput
er_name] server_name

where options and server_name depend on the communication protocol.
Important: In HotStandby and SMA setups, additional connect string
attributes are used to specify further functionality, such as Transparent
Connectivity (TC).

For more details, see Network name and connect string syntax.

tcp localhost 1964
(Windows)

upipe SOLID (Linux
and UNIX)

ConnectTimeout
The ConnectTimeout parameter defines the login timeout in milliseconds.

This value can be overridden with the connect string option -c and, further
on, with the ODBC attribute SQL_ATTR_LOGIN_TIMEOUT.
Note: This parameter applies only to the TCP protocol.

OS-specific

SocketLinger This parameter controls the TCP socket linger (SO_LINGER) behavior after
a close on the socket connection is issued. It indicates if the system
attempts to deliver any buffered data (yes), or if the system discards it (no),
when a close() is issued.

no

SocketLingerTime
This parameter defines the length of the time interval (in seconds) the
socket lingers after a close is issued. If the time interval expires before the
graceful shutdown sequence completes, an abortive shutdown sequence
occurs (the data is discarded). The default value zero indicates that the
system default is used (typically, 1 second)

0

Trace
If this parameter is set to yes, trace information about network messages
for the established network connection is written to a file specified with
the TraceFile parameter.

no

TraceFile
If the Trace parameter is set to yes, trace information about network
messages is written to a file specified with this parameter.

The trace file is output to the current working directory of the server or
client, depending on which end the tracing is started.

soltrace.out

122 IBM solidDB: High Availability User Guide

A.2.2 TransparentFailover section
The TransparentFailover parameters are client-side parameters.

Table 25. TransparentFailover parameters

[TransparentFailover] Description Factory value

ReconnectTimeout This parameter specifies how long (in milliseconds) the driver
should wait until it tries to reconnect to the primary in case of
TF switchover or failover. If the driver cannot find the new
primary (reconnect), an error is returned and the TF connection
becomes broken.

10000

WaitTimeout This parameter specifies how long (in milliseconds) the driver
should wait for the server to switch state. When the driver tries
to reconnect to the servers, it might connect to the server being
in an intermediate (switching or uncertain) state.

10000

A.3 High Availability Controller (HAC) parameters
This section describes the High Availability Controller (HAC) configuration
parameters in the solidhac.ini configuration file.

The HAC configuration file solidhac.ini is divided into different sections; the
sections are described in the following sections. The parameters are presented in
the same order as they are in the configuration file.

For an example of the solidhac.ini, see section A.5.2, “The solidhac.ini
configuration file,” on page 129.

The format of parameter names, values, and section headings in the solidhac.ini
configuration file follows the same conventions as the solid.ini configuration file.

To change the HAC parameter settings, edit the solidhac.ini file and restart HAC.

[HAController] section

Table 26. HAC configuration parameters: [HAController] section

Parameter name Description Mandatory Factory
value

Listen The value of the Listen parameter specifies the protocol and the
port that the HAC uses for communication with the High
Availability Manager (HAM) or the solidDB utilities such as
solsql and solcon.

For example, Listen=tcp 3135.

v The only supported protocol is TCP/IP ('tcp').

v If listening cannot be started, for example, because the port is
used by another process, the information is written to the log
file (hacmsg.out), followed by the termination of HAC.

X

NetcopyErrorLevel This parameter defines the number of times a hsb netcopy
operation followed by a hsb connect operation can fail before an
error message is printed to the hacmsg.out file and HAC is
switched to ADMINISTRATIVE mode.

After you have fixed the problem, switch HAC back to the
AUTOMATIC mode by issuing the command admin command
'hacontroller setautomatic'.

The value of the parameter must be a positive 64-bit integer.

10

Appendix A. Configuration parameters 123

Table 26. HAC configuration parameters: [HAController] section (continued)

Parameter name Description Mandatory Factory
value

NetcopyWarningLevel This parameter defines the number of times a netcopy operation
followed by a hsb connect can fail before a warning message is
printed to the hacmsg.out file.

The value of the parameter must be a positive 64-bit integer.

3

StartInAutomaticMode This parameter specifies the initial mode for HAC; it defines
whether the HAC starts execution in the automatic mode.

Once the HAC is running, it can be in one of the following modes:
AUTOMATIC, or ADMINISTRATIVE.

v In the AUTOMATIC mode (yes), HAC automatically tries to
maximize the availability by changing the HSB states of the
server, and restarting the server processes when necessary.

v In the ADMINISTRATIVE mode (no), HAC only monitors the
health of the servers.

This parameter can be changed dynamically.

The possible values are yes and no.
Note: See also the PreferredPrimary parameter in the LocalDB
section; the PreferredPrimary parameter is effective only if the
StartInAutomaticMode parameter has value yes.

yes

EnableDBProcessControl Setting EnableDBProcessControl=yes allows HAC to manage local
server process by automatically starting the server, and by
providing the user with commands to shutdown and restart the
database process.

This value is only valid if the HAC is in the AUTOMATIC mode.

The possible values are yes and no.
Note: Setting EnableDBProcessControl=yes makes the StartScript
parameter in the [LocalDB] section mandatory.

no

EnableAutoNetcopy Setting EnableAutoNetcopy=yes allows HAC to initiate netcopy
when a HSB link cannot be established with the hsb connect
command.

The possible values are yes and no.

yes

RequiredConnectFailures This parameter defines the number of consecutive failed connect
attempts that are required before the server is considered to have
failed.

When a server state is unknown, or HAC needs for some other
reason to ensure the state of the server, the non-blocking
SQLConnect (check) command is used. If the execution of
non-blocking SQLConnects in such a case fails, it is repeated
multiple times before the server in question is considered
non-responsive.

The possible values are numerical values from 1 to unlimited.

1

CheckTimeout This parameter defines the timeout in milliseconds between
consecutive non-blocking SQLConnect commands in CHECK mode.

Very small values tend to cause 'false positives'. That is, a server
seems to be failed, although it is running, but was not able to
respond within the timeout period.

The possible values are milliseconds from 1 to unlimited.

150

124 IBM solidDB: High Availability User Guide

Table 26. HAC configuration parameters: [HAController] section (continued)

Parameter name Description Mandatory Factory
value

CheckInterval This parameter defines the interval between consecutive
non-blocking SQLConnect commands. This value does not affect the
failover time. Checking (polling) takes place typically after failure
or during system startup.

The possible values are milliseconds from 1 to unlimited.

1000

Username Username for HAC.

The username must begin with a letter or an underscore. Use
lowercase letters from a to z, uppercase letters from A to Z, the
underscore character "_", and numbers from 0 to 9.

X

Password Password for HAC for the user identified by the Username
parameter.

The password can begin with any letter, underscore, or number.
Use lowercase letters from a to z, uppercase letters from A to Z,
the underscore character "_", and numbers from 0 to 9.

X

DBUsername Username for the local HotStandby server to which the HAC
connects.

The database user should have either SYS_ADMIN_ROLE, or
SYS_CONSOLE_ROLE.

X

DBPassword Password for the local HotStandby server for the user identified
by the DBUsername parameter.

X

ApplicationConnTestUsername Defines the username for the connections used in application
connection tests (EnableApplicationConnCheck is set to yes).

If EnableApplicationConnCheck is set to yes and the value for this
parameter is not set, the value of DBUsername is used.

ApplicationConnTestPassword Defines the password for the connections used in application
connection tests (EnableApplicationConnCheck is set to yes).

If EnableApplicationConnCheck is set to yes and the value for this
parameter is not set, the value of DBPassword is used.

[LocalDB] section

Table 27. HAC configuration parameters: [LocalDB] section

Parameter name Description Mandatory
Factory
value

Connect This parameter defines connect information of the local database
server. HAC uses this information when it connects to the local
server.

The connect information consists of a communication protocol (tcp)
and the server port, for example: tcp 2125.

X

Appendix A. Configuration parameters 125

Table 27. HAC configuration parameters: [LocalDB] section (continued)

Parameter name Description Mandatory
Factory
value

EnableApplicationConnTest If set to yes, periodical testing for the application connection is
enabled. The application connection test checks whether the
connection the application uses to connect to the server is working.

To test the connection, HAC connects to the server using the same
connect information as the application and executes simple
commands to ensure the server is responsive.

The application connection test enables HAC to monitor the
external availability of solidDB server. If connection to server
cannot be established or the server does not respond to simple
queries, HAC concludes that the service provided by server is not
available. If the server process exist in the system, HAC calls the
script specified with the parameter UnresponsiveActionScript.
Important: Before enabling application connection test, ensure that
you have created the user account the test uses. If the application
connection test cannot connect to solidDB due to an invalid user
name or password, it waits until the time specified with
ApplicationConnTestInterval expires. An error is also output to
hacmsg.out.

Also, if EnableApplicationConnTest is set to yes and the user
account the Application Connection Tester uses is missing from
either server, solidDB might slow down considerably. To recover:

1. Suspend HAC operations with ADMIN COMMAND ’hac suspend’.

2. Create the user accounts on both servers.

3. Resume HAC operations with ADMIN COMMAND ’hac resume’.

no

ApplicationConnTestConnect This parameter defines the connect information for application
connection test connections (EnableApplicationConnCheck is set to
yes).

The value of this parameter needs to be the same as the connect
information the application uses to connect to the server. The value
consists of a communication protocol (tcp), server address, and
port number, for example: tcp -i10.0.0.101 2125.

If ApplicationConnTestConnect is not specified, the value defined
with the parameter Connect is used.

EnableUnresponsiveActions If set to yes, a user-provided script is executed if an application
connection test fails.

The script is defined with the parameter
UnresponsiveActionScript.

no

RequiredAppConnTestFailures This parameter defines the number of times the application
connection test commands are executed before the server is
considered unresponsive.

3

ApplicationConnTestTimeout This parameter defines timeout in milliseconds for consecutive
commands used in application connection test.

5000

ApplicationConnTestInterval This parameter defines the interval in milliseconds between
consecutive non-blocking commands used in application
connection test.

3000

126 IBM solidDB: High Availability User Guide

Table 27. HAC configuration parameters: [LocalDB] section (continued)

Parameter name Description Mandatory
Factory
value

StartScript This parameter declares the name of the script which is used to
initiate the database process, for example, /home/soliddb/
start_solid.sh.

This parameter is mandatory if HAC is configured to control the
database process with the EnableDBProcessControl parameter:

v If EnableDBProcessControl is set to yes, this parameter is
mandatory.

v If EnableDBProcessControl is set to no, this parameter is not
effective.

Tip: In Linux and UNIX environments, you can use the -x option
to sh to print commands and their arguments as they are executed.

For example:

#!/bin/sh -x

The log of the start script (start_solid.sh) is output by default
into /tmp/hac_start_solid.err. The log of the starting solidDB
process is output by default into /tmp/hac_start_solid.out.

See
description

UnresponsiveActionScript This parameter defines the name and location of the script that
contains the actions to be taken if application connection test fails,
for example: /home/solid/terminate_solid.sh.

When calling the script, HAC needs to specify the solidDB process
identifier as a parameter. If HAC does not know the solidDB
process id, the script cannot be executed.

This parameter is mandatory if both EnableApplicationConnTest
and EnableUnresponsiveActions are set to yes.

Example:

The following terminate_solid.sh script terminates the solidDB
process with id 1 in Linux and UNIX operating systems:

#!/bin/sh
#terminate_solid.sh

ulimit -c unlimited
kill -6 $1
sleep 30
kill -9 $1

Tip: In Linux and UNIX environments, you can use the -x option
to sh to print commands and their arguments as they are executed.

For example:

#!/bin/sh -x

The log of the action script (terminate_solid.sh) is output into
/tmp/hac_terminate_solid.err. The log of the terminating solidDB
process is output into /tmp/hac_terminate_solid.out.

See
description

PreferredPrimary This parameter defines whether the local server becomes the
Primary when the logpos values of both servers are equal. If both
servers have the same value in PreferredPrimary, the first server
becomes the new Primary.

This parameter is effective only if the StartInAutomaticMode
parameter has value yes.

The possible values are yes and no.

no

Appendix A. Configuration parameters 127

[RemoteDB] section

Table 28. HAC configuration parameters: [RemoteDB] section

Parameter name Description Mandatory
Factory
value

Connect This parameter defines connect information of the remote database
server. HAC uses this information when it connects to the remote
server.

The remote database is defined by giving the communication
protocol, the remote server IP address, and its port, for example,
tcp 192.168.3.123 2125.

X

[ERE] section

Table 29. HAC configuration parameters: [ERE] section

Parameter name Description Mandatory
Factory
value

EREIP This parameter identifies the IP address of an External Reference
Entity, for example, 192.168.3.1.

See also the RequiredPingFailures parameter.

RequiredPingFailures This parameter defines the maximum number of consecutive Ping
calls that must fail before HAC concludes that the server is
disconnected from the ERE and isolated from the client network.

This parameter can only be used with ERE.

The possible values are numerical values from 1 to unlimited.

3

A.4 High Availability Manager (HAM) configuration parameters
This section describes the High Availability Manager configuration parameters in
the HAManager.ini configuration file.

The format of parameter names, values, and section headings in the HAManager.ini
configuration file follows the same conventions as the solid.ini configuration file.

Table 30. High Availability Manager configuration parameters

Parameter name Description

Header_text
This parameter defines the header text for
the HA manager. This value is shown in the
user interface.

This is a mandatory parameter.

Server1_host Server2_host
These two parameters define the host names
of the HAC instances.

Server1_name Server2_name
These two parameters define the names of
the HAC instances.

Server1_pass Server2_pass
These two parameters define the passwords
of the HAC instances.

128 IBM solidDB: High Availability User Guide

Table 30. High Availability Manager configuration parameters (continued)

Parameter name Description

Server1_port Server2_port
These two parameters define the ports of the
HAC instances.

Server1_user Server2_user
These two parameters define the usernames
of the HAC instances.

Window_title
This parameter defines the window title for
the HA manager. This value is shown in the
user interface.

This is a mandatory parameter.

A.5 Configuration file examples
The following sections give examples of different configuration files related to
HotStandby.

A.5.1 The solid.ini configuration file
Below is a sample excerpt of the solidDB configuration file (solid.ini) for the first
HotStandby server:
[Com]
; The first server listens to the network with this
; name
Listen = tcp 1320
[HotStandby]
HSBEnabled=yes
; The first server connects to the second server
; using the following connect string.
Connect = tcp 188.177.166.12 1321
AutoPrimaryAlone=No
[Logging]
LogEnabled=yes

Below is a sample excerpt of the solidDB configuration file (solid.ini) for the
second HotStandby server:
[Com]
; The second server listens to the network using the following
; connect string.
Listen = tcp 1321
[HotStandby]
HSBEnabled=yes
; The second server connects to the first server
; using the following connect string.
Connect = tcp 188.177.166.11 1320
AutoPrimaryAlone=No
[Logging]
LogEnabled=yes

A.5.2 The solidhac.ini configuration file
A sample excerpt of the High Availability Controller (HAC) configuration file
(solidhac.ini).
;==
; NOTE : Copy this file as solidhac.ini
; to solidhac working directory

Appendix A. Configuration parameters 129

;
; solidDB High Availability Controller inifile
;==

[HAController]
;** HAC connect info
;** HAC clients, HA Manager, for example, use this information.
;** Mandatory
;** Listen=tcp 3135
Listen=

;** Setting StartInAutomaticMode=Yes starts HAC in AUTOMATIC mode.
;** In AUTOMATIC mode, solidhac automatically tries
;** to maximize the availability by changing the HSB states of the
;** server, and restarting the server processes when necessary.
;** In contrast, it can be in ADMINISTRATIVE mode
;** in which HAC only monitors the health of the servers.
;**
;** This is dynamically changeable parameter.
;** Optional
;** Values : Yes/No, default = Yes
StartInAutomaticMode=

;** Setting EnableDBProcessControl=Yes allows solidhac
;** manage local db process by automatically starting
;** the db, and by providing the user with commands to
;** shutdown and restart db process.
;**
;** Optional
;** Effective only when HAC is in AUTOMATIC mode.
;** Values : Yes/No, default = No
EnableDBProcessControl=

;** Setting EnableAutoNetcopy=Yes allows solidhac to initiate
;** netcopy when HSB link cannot be established with ’hsb connect’.
;**
;** Optional
;** Effective only when HAC is in AUTOMATIC mode.
;** Values : Yes/No, default = Yes
EnableAutoNetcopy=

;** When server state is unknown, or HAC needs, for some other reason, to
;** ensure the state of server, non-blocking SQLConnect command is used.
;** If the execution of non-blocking SQLConnect in such a case fails,
;** it is repeated multiple (RequiredConnectFailures) times before
;** the server in question is considered as non-responsive.
;**
;** Optional
;** Values : 1..n, default=2
RequiredConnectFailures=

;** Timeout in milliseconds for non-blocking SQLConnect commands.
;** Too short interval can cause ’false positives’, server seems
;** to be failed because it wasn’t able to respond within the timeout period.
;**
;** Optional
;** Values : 1..n, default=150 (milliseconds)
CheckTimeout=

;** Interval between consecutive non-blocking SQLConnect commands.
;** The value doesn’t affect on failover time. Checking (polling)
;** takes place typically after failure, or during system startup.
;**
;** Optional
;** default = 1000 (milliseconds)
CheckInterval=

130 IBM solidDB: High Availability User Guide

;** HAC user identification
;** Mandatory
Username=
Password=

;** HSB server user identification
;** Mandatory
DBUsername=
DBPassword=

;** Identification for application connection test
;** These values are used when ApplicationConnectionTest
;** thread monitors the connection, and availability of
;** the server.
;** If values are not set, and
;** LocalDB.EnableApplicationConnCheck=Yes, then DBUsername, and
;** DBPassword are used.
;**
;** Optional
ApplicationConnTestUsername=
ApplicationConnTestPassword=

[LocalDB]
;** soliddb connect info
;** Mandatory
;** Connect=tcp 2125
Connect=

;** Enable periodical connection testing in the server.
;** In practice, HAC connects to the server, and executes
;** simple command(s) to ensure the responsiveness.
;**
;** Optional
;** default = No
EnableApplicationConnTest=

;** Connect info for applications, used in application connection test,
;** if it is enabled.
;**
;** Optional, if not specified, LocalDB.Connect is used.
;** ApplicationConnect=tcp 10.0.0.101 2125
ApplicationConnTestConnect=

;** Enables execution of the user-provided script when application
;** connection test fails. The script is defined with
;** UnresponsiveActionScript.
;**
;** Optional
;** default = No
EnableUnresponsiveActions=

;** Number of times the application connection test commands
;** are executed before the server is considered unresponsive.
;**
;** Optional
;** default = 3
RequiredAppConnTestFailures=

;** Timeout in milliseconds for consecutive application connection
;** test commands.
;**
;** Optional
;** default = 5000 (milliseconds)
ApplicationConnTestTimeout=

;** Interval between consecutive non-blocking application connection

Appendix A. Configuration parameters 131

;** test commands.
;**
;** Optional
;** default = 30000 (milliseconds)
ApplicationConnTestInterval=

;** The name of the script, which is used to initiate the db process.
;**
;** Optional, except if HAC controls db process (EnableDBProcessControl=Yes).
;** Value is not effective if EnableHACActions=No or EnableDBProcessControl=No
;** StartScript=/home/solid/start_solid.sh
StartScript=

;** The name and location of the script that contains the intended actions that
;** take place if application connection test fails.
;** When calling the script, HAC needs to specify the solidDB® process
;** identifier as a parameter. If HAC does not know the solidDB process id,
;** the script cannot be executed.
;**
;** Optional, except if ApplicationConnectionTest=Yes, and
;** EnableUnresponsiveAction=Yes
;**
;** UnresponsiveActionScript=/home/solid/terminate_solid.sh
UnresponsiveActionScript=

;** Setting PreferredPrimary=Yes moves local HSB server to as Primary
;** in the case where either of the servers could start as Primary.
;** If both servers have PreferredPrimary=No, or no value, first
;** (new Primary) server wins.
;**
;** Optional
;** Value is not effective if EnableHACActions=No.
;** Values : Yes/No, default no
PreferredPrimary=

[RemoteDB]
;** soliddb connect info
;** Mandatory
;** Connect=tcp 192.168.3.123 2125
Connect=

[ERE]
;** IP address of an ERE
;** Optional
;** Connect=192.168.3.1
EREIP=

;** The number of consecutive ping calls that must
;** fail before HAC concludes that the server is
;** disconnected from ERE.
;**
;** Optional
;** Values : 1..n, default=3
;** RequiredPingFailures=10
RequiredPingFailures=

A.5.3 The HAManager.ini configuration file
Below is a sample excerpt of the High Availability Manager configuration file
(HAManager.ini):
;===
;solidDB High-Availability Manager
; Configuration file HAManager.ini
; V. 0.3

132 IBM solidDB: High Availability User Guide

; 2008-21-01
;===
;** HA Controller connect info, for example
;Server1_name = Server 1
;Server1_host = node1.acme.com
;Server1_port = 2220
;Server2_name = Server 2
;Server2_host = node2.acme.com
;Server2_port = 2220

; All the following lines are mandatory.
Window_title = HA Manager
Header_text = SolidDB HA Manager

; Display names, host addresses and port numbers
; of the SolidHAC (HA Controllers) instances
;Server 1 HA Controller
;----------------------
Server1_name = Server 1
Server1_host = localhost
Server1_port = 1234
Server1_user = foo
Server1_pass = bar
;
;Server 2 HA Controller
;-----------------------
Server2_name = Server 2
Server2_host = 192.168.0.1
Server2_port = 1234
Server2_user = foo
Server2_pass = bar

Appendix A. Configuration parameters 133

134 IBM solidDB: High Availability User Guide

Appendix B. Error codes for HotStandby

This section documents error codes that are related to HotStandby.

A full list of solidDB error codes is available in the appendix Error codes in IBM
solidDB Administrator Guide.

Some of the errors documented in this section are values of the RC (Return Code)
column of the ADMIN COMMAND result set, whereas some other errors are
returned as the error code of the ODBC or JDBC driver. For example, most errors
in sections B.1, “HotStandby errors and status codes” and B.2, “High Availability
Controller errors and status codes,” on page 144 are ADMIN COMMAND result
set values, whereas all B.5, “solidDB communication errors,” on page 148 are
returned by the driver.

B.1 HotStandby errors and status codes
solidDB HotStandby errors (14009 - 147xx, 307xx) occur when using the
HotStandby commands.

solidDB server errors for HotStandby

This section lists the solidDB server errors that are related to HotStandby. A full list
of the errors in the Server class is available in section solidDB server errors in the
IBM solidDB Administrator Guide.

Table 31. solidDB server errors for HotStandby

Code Class Type Description

14003 Server Return Code ACTIVE

ADMIN COMMANDs that may return this status in the result set of the
command:

v ADMIN COMMAND 'hotstandby status switch'

v ADMIN COMMAND 'hotstandby status catchup'

v ADMIN COMMAND 'hotstandby status copy'

Meaning: The switch process, catchup process, copy or netcopy process is still
active.

14007 Server Return Code CONNECTING

ADMIN COMMANDs that may return this status in the result set of the
command:

v ADMIN COMMAND 'hotstandby status connect'

Meaning: The Primary and Secondary servers are in the process of connecting.

14008 Server Return Code CATCHUP

ADMIN COMMANDs that may return this status in the result set of the
command:

v ADMIN COMMAND 'hotstandby status connect'

Meaning: The Primary server is connected to the Secondary server, but the
transaction log is not yet fully copied. This message is returned only from the
Primary server.

135

Table 31. solidDB server errors for HotStandby (continued)

Code Class Type Description

14009 Server Return Code No server switch occurred before.

ADMIN COMMANDs that may return this status in the result set of the
command:

v ADMIN COMMAND 'hotstandby status switch'

Meaning: The switch process has never happened between the servers.

14501 Server Error Operation failed.

Meaning: The operation failed and the server is shutting down. Failure may be
due to issuing the command to a non-HotStandby server, or to either a
Primary or Secondary server in which the command does not apply.

ADMIN COMMANDs that may return this status in the result set of the
command:

v ADMIN COMMAND 'hotstandby switch primary'

v ADMIN COMMAND 'hotstandby switch secondary'

v ADMIN COMMAND 'hotstandby cominfo'

v ADMIN COMMAND 'hotstandby connect'

v ADMIN COMMAND 'hotstandby status switch'

v ADMIN COMMAND 'hotstandby set standalone'

v ADMIN COMMAND 'hotstandby copy'

v ADMIN COMMAND 'hotstandby netcopy'

14502 Server Error RPC parameter is invalid

Meaning: some of the connection info provided in the HSB connect string is
erroneous and the connection to another server failed.

ADMIN COMMANDs that may return this status in the result set of the
command:

v ADMIN COMMAND 'hotstandby status connect'

14503 Server Error Communication error, connection lost.

Meaning: There was a communication error and the other server was not
found. There was a failure to connect to the other server.

ADMIN COMMANDs that may return this status in the result set of the
command:

v ADMIN COMMAND 'hotstandby status connect'

14520 Server Error Server is HotStandby secondary server, no connections are allowed.

14522 Server Error HotStandby copy directory not specified.

Meaning: No copy directory is specified.

ADMIN COMMANDs that may return this status in the result set of the
command:

v ADMIN COMMAND 'hotstandby copy'

To solve this problem, either specify the directory as part of the command, for
example:

ADMIN COMMAND ’hotstandby copy \Secondary\dbfiles\’

or else set the CopyDirectory parameter in the solid.ini configuration file.

136 IBM solidDB: High Availability User Guide

Table 31. solidDB server errors for HotStandby (continued)

Code Class Type Description

14523 Server Error Switch process is already active.

Meaning: The switch process is already active in the HotStandby server. If you
only need to complete the current switch, then wait. If you are trying to switch
a second time (that is, switch back to the original configuration), then you
must wait for the first switch to complete before you can start the second
switch.

ADMIN COMMANDs that may return this status in the result set of the
command:

v ADMIN COMMAND 'hotstandby switch primary'

v ADMIN COMMAND 'hotstandby switch secondary'

v ADMIN COMMAND 'hotstandby status switch'

14524 Server Error HotStandby databases have a different base database, database time stamps
are different.

Meaning: Databases are from a different seed database. You must synchronize
databases. You may need to perform netcopy of the Primary's database to the
Secondary.

ADMIN COMMANDs that may return this status in the result set of the
command:

v ADMIN COMMAND 'hotstandby connect'

v ADMIN COMMAND 'hotstandby status switch'

14525 Server Error HotStandby databases are not properly synchronized.

Meaning: Databases are not properly synchronized. You must synchronize the
databases. You might need to start one of the database servers (the one that
you intend to become the Secondary) with the command-line option -x
backupserver and then netcopy the Primary's database to the Secondary.

For more information about how to resynchronize the primary and secondary
servers after receiving error 14525, see How to resync HotStandby primary and
secondary servers if hsb netcopy takes such a long time that hsb connect fails
with error 14525?.

ADMIN COMMANDs that may return this status in the result set of the
command:

v ADMIN COMMAND 'hotstandby connect'

v ADMIN COMMAND 'hotstandby status switch'

14526 Server Error Invalid argument.

Meaning: An argument used in the HotStandby ADMIN COMMAND is
unknown or invalid.

All HotStandby commands can return this error in the result set of the
ADMIN COMMAND.

Note: In the following HotStandby commands, the invalid argument error is a
syntax error when the specified Primary or Secondary server can not apply to
the switch:

v ADMIN COMMAND 'hotstandby switch primary'

v ADMIN COMMAND 'hotstandby switch secondary'

Appendix B. Error codes 137

http://www.ibm.com/support/docview.wss?uid=swg21570038
http://www.ibm.com/support/docview.wss?uid=swg21570038
http://www.ibm.com/support/docview.wss?uid=swg21570038

Table 31. solidDB server errors for HotStandby (continued)

Code Class Type Description

14527 Server Error This is a non-HotStandby server.

Meaning: The command was executed on a server that is not configured for
HotStandby.

ADMIN COMMANDs that may return this status in the result set of the
command:

v ADMIN COMMAND 'hotstandby connect'

v ADMIN COMMAND 'hotstandby status switch'

v ADMIN COMMAND 'hotstandby switch primary'

v ADMIN COMMAND 'hotstandby switch secondary'

v ADMIN COMMAND 'hotstandby state'

14528 Server Error Both HotStandby databases are primary databases.

Meaning: Both databases are Primary. This is a fatal error because there may
be conflicting changes. Both databases are automatically dropped to Secondary
state by the system. You must decide which database is the real Primary
database and then synchronize the databases.

ADMIN COMMANDs that may return this status in the result set of the
command:

v ADMIN COMMAND 'hotstandby connect'

v ADMIN COMMAND 'hotstandby status switch'

14535 Server Error Server is already a primary server.

Meaning: The server you are trying to switch to Primary is already in one of
the PRIMARY states.

ADMIN COMMANDs that may return this status in the result set of the
command:

v ADMIN COMMAND 'hotstandby switch primary'

14536 Server Error Server is already a secondary server.

Meaning: The server you are trying to switch to Secondary is already in one of
the SECONDARY states.

ADMIN COMMANDs that may return this status in the result set of the
command:

v ADMIN COMMAND 'hotstandby switch secondary'

14537 Server Error HotStandby connection is broken.

Meaning: This command is returned from both the Primary and Secondary
server.

ADMIN COMMANDs that may return this status in the result set of the
command:

v ADMIN COMMAND 'hotstandby status connect'

v ADMIN COMMAND 'hotstandby connect'

One possible cause of this problem is an incorrect Connect string in the
Secondary's solid.ini file. If the netcopy operation succeeds but the connect
command fails, check the Connect string. Netcopy does not require the
Secondary to open a separate connection to the Primary, and thus may succeed
even if the Connect string on the Secondary is wrong.

138 IBM solidDB: High Availability User Guide

Table 31. solidDB server errors for HotStandby (continued)

Code Class Type Description

14538 Server Error Server is not HotStandby primary server.

Meaning: To issue this command, the server must be a HotStandby Primary
server.

ADMIN COMMANDs that may return this status in the result set of the
command:

v ADMIN COMMAND 'hotstandby copy copy_directory'

v ADMIN COMMAND 'hotstandby netcopy'

v ADMIN COMMAND 'hotstandby connect'

v ADMIN COMMAND 'hotstandby set primary alone'

v ADMIN COMMAND 'hotstandby set standalone'

14539 Server Error Operation Refused.

This error code is given when one of the following situations occurs:

v The user issued a netcopy command to a Primary server, but the server that
should be Secondary is not actually in a Secondary state, or is not in
"netcopy listening mode". (Both the Primary and the "Secondary" server are
probably in PRIMARY ALONE state.)

To solve the problem, restart the "Secondary" with the -x backupserver
command-line option, then try again to issue the netcopy command to the
Primary.

Attention: If both servers were in PRIMARY ALONE state, and if both
servers executed transactions while they were in PRIMARY ALONE state,
then they probably each have data that the other one does not. This is a
serious error, and doing a netcopy to put them back in sync would result in
writing over some transactions that have already been committed in the
"Secondary" server.

v This message can be generated when you use a callback function and the
callback function refuses to shut down or accept a backup or netcopy
command.

When you use linked library access, you can provide "callback" functions by
using the SSCSetNotifier function. Your callback functions will be notified
when the server has been commanded to shut down or to do a netcopy
operation. If for some reason your application doesn't want the command to
be followed, then your callback can return a value that cancels the
command. In this situation, you will see error 14539.

To solve the problem, wait until the client code finishes the operation that it
does not want to interrupt, then retry the command (for example, the
shutdown or netcopy).

14540 Server Error Server is already a non-HotStandby server.

14541 Server Error HotStandby configuration in solid.ini conflicts with ADMIN COMMAND 'HSB SET
STANDALONE'.

14542 Server Error Server in backupserver mode. Operation refused.

14543 Server Error Invalid command. The database is a HotStandby database but, HotStandby
section not found in solid.ini configuration file.

14544 Server Error Operation failed. This command is not supported on diskless server.

14545 Server Error Primary can only be set to primary alone when its role is primary broken.

Appendix B. Error codes 139

Table 31. solidDB server errors for HotStandby (continued)

Code Class Type Description

14546 Server Error Switch failed. The server or the remote server cannot switch from primary
alone to secondary server. Catchup should be done first before switch.

Meaning: This command is returned when a state switch to SECONDARY is
executed from a local or remote Primary server that is in the PRIMARY
ALONE state and it is detected that the Primary and Secondary server are not
in sync. You must connect the Primary server to the Secondary server and wait
for the catchup process to complete before switching the Secondary to the
Primary.

HotStandby commands that return this error:

v ADMIN COMMAND 'hotstandby switch secondary'

14547 Server Error The value for the -R option (Read Timeout) was missing or invalid.

14548 Server Error Switch failed. The server in Standalone cannot be switched to a secondary.

Meaning: This command is returned when a state switch to SECONDARY is
executed from a local or remote Primary server that is in the STANDALONE
state and it is detected that the Primary and Secondary server are not in sync.
You must connect the Primary server to the Secondary server and wait for the
catchup to complete before switching the Secondary to the Primary.

HotStandby commands that return this error:

v ADMIN COMMAND 'hotstandby switch secondary'

14549 Server Error HotStandby transaction is active.

Meaning: If the HotStandby connection is broken, Primary server must be set
to alone mode or switched to secondary mode before shutdown.

14550 Server Error Hotstandby connect parameter can be changed only when the primary is not
connected to secondary.

14551 Server Error Maximum number of START AFTER COMMIT statements reached.

14552 Server Error Server is in backup server mode, no connections are allowed.

Error 14552 is returned when a client attempts to establish a connection to a
solidDB server which is in a backup server mode (also called netcopy listening
mode). The backup server mode is a special server mode where the solidDB
instance has been started with the command line option -xbackupserver. This
mode indicates that the solidDB instance is a Secondary server that is either
waiting for or in the process of receiving the database file from the Primary
server due to a netcopy command issued at the Primary server.

solidDB HotStandby errors

Table 32. solidDB HotStandby errors

Code Class Type Description

14700 HotStandby Error Rejected connection, both servers in PRIMARY role.

Meaning: Command 'hsb connect' returns this error if both nodes are in
same role.

14701 HotStandby Error Rejected connection, both servers in SECONDARY role.

Meaning: Command 'hsb connect' returns this error if both nodes are in
same role.

140 IBM solidDB: High Availability User Guide

Table 32. solidDB HotStandby errors (continued)

Code Class Type Description

14702 HotStandby Error Operation failed, catchup is active.

Meaning: While the servers are performing catchup, you will get this error if
you issue any of the following commands on the Primary: 'hsb switch
secondary', 'hsb set secondary alone', 'hsb set standalone', 'hsb
connect', 'hsb copy' or 'hsb netcopy'.

While the servers are performing catchup, you will get this error if you issue
any of the following commands on the Secondary: 'hsb switch primary', 'hsb
set secondary alone', 'hsb set primary alone', 'hsb set standalone', or
'hsb connect'.

14703 HotStandby Error Operation failed, copy is active.

Meaning: While the Primary is doing copy or netcopy, the following
commands returns this error: 'hsb switch secondary', 'hsb set secondary
alone', 'hsb set standalone', 'hsb connect', 'hsb disconnect', 'hsb copy'
or 'hsb netcopy'.

14704 HotStandby Error HotStandby copy or netcopy is only allowed when primary is in alone state.

Meaning: This error is returned if the server is in PRIMARY ACTIVE state and
the command 'hsb copy' or 'hsb netcopy' is issued.

14705 HotStandby Error Setting to STANDALONE is not allowed in this state.

Meaning: If the server is in PRIMARY ACTIVE state and you issue the
command 'hsb set standalone', then you will get this message.

14706 HotStandby Error Invalid read thread mode for HotStandby, only mode 2 is supported.

14707 HotStandby Error Operation not allowed in the STANDALONE state.

14708 HotStandby Error Catchup failed, catchup position was not found from log files.

14709 HotStandby Error Hot Standby enabled, but connection string is not defined.

14710 HotStandby Error Hot Standby admin command conflict with an incoming admin command.

14711 HotStandby Error Failed because server is shutting down.

14712 HotStandby Error Server is secondary. Use primary server for this operation.

solidDB HSB errors and messages

Table 33. solidDB HSB errors and messages

Code Class Type Description

14007 HSB Message CONNECTING

14008 HSB Message CATCHUP

14009 HSB Message No role switches since the server startup

14010 HSB Message DISCONNECTING

14522 HSB Message HotStandby copy directory not specified.

14537 HSB Message BROKEN

14704 HSB Error HotStandby copy or netcopy is only allowed when primary is in alone state

14712 HSB Error Server is secondary. Use primary server for this operation

30500 HSB Message Started as a HotStandby primary

30501 HSB Message Started as a HotStandby secondary

30502 HSB Message
The database was not shut down properly the last time that it was used starting as a HotStandby
secondary

30503 HSB Message Forcing HotStandby primary to start as a secondary

30504 HSB Message HotStandby role switched to secondary

30505 HSB Message HotStandby role switched to primary

Appendix B. Error codes 141

Table 33. solidDB HSB errors and messages (continued)

Code Class Type Description

30506 HSB Message Primary server must be set to PRIMARY ALONE or switched to the secondary role.

30507 HSB Message HotStandby server set to PRIMARY ALONE.

30508 HSB Message HotStandby server set to SECONDARY ALONE

30509 HSB Message HotStandby switch to primary failed, error error_code

30510 HSB Message HotStandby switch to secondary failed, error error_code

30511 HSB Message Failed to start HotStandby to server_name, error error_code

30512 HSB Message Failed to switch HotStandby role to primary, error error_code

30513 HSB Message Failed to switch HotStandby role to secondary, error error_code

30514 HSB Message Both databases are primary servers starting as a secondary

30515 HSB Message Both HotStandby databases are primaries

30516 HSB Message Failed to start HotStandby to server_name, other server rejected with error error_code

30517 HSB Message HotStandby role in secondary switched

30518 HSB Message HotStandby role switched to standalone

30530 HSB Message Starting to send HotStandby catchup data to secondary server

30531 HSB Message HotStandby catchup completed successfully

30532 HSB Message HotStandby catchup ended abnormally

30533 HSB Message
HotStandby catchup can not be started. Secondary is not properly synchronized with primary full
synchronization is required

30534 HSB Message HotStandby catchup ended abnormally, status error_code

30535 HSB Message HotStandby catchup ended abnormally, error error_code

30536 HSB Message HotStandby catchup ended abnormally due to a communication error

30537 HSB Message HotStandby catchup ended abnormally, secondary returned error error_code

30538 HSB Message
HotStandby catchup size <value> greater than configured maximum size value, stopping
HotStandby

30539 HSB Message File error in HotStandby catchup, stopping HotStandby

30540 HSB Message Starting to receive HotStandby catchup data from primary server

30541 HSB Message
Secondary is not properly synchronized with primary due to a log file corruption. Restart
secondary and execute a HSB netcopy.

30550 HSB Message Connection broken to HotStandby secondary server

30551 HSB Message Connected to HotStandby

30552 HSB Message HotStandby secondary connected

30553 HSB Message HotStandby primary connected

30554 HSB Message

Hot Standby connection broken to Secondary server with an open transaction waiting for the
operator to resolve transaction status. Primary server must be set to alone mode or switched to
secondary mode.

30555 HSB Message HotStandby ping timeout

30556 HSB Message Connection broken to HotStandby secondary

30557 HSB Message HotStandby databases are not properly synchronized

30558 HSB Message HotStandby connection to secondary timed out

30559 HSB Message HotStandby connection broken

30560 HSB Message HotStandby: HotStandby_error_message

30561 HSB Message Started connecting to HotStandby

30562 HSB Message Connection broken to HotStandby primary server

30570 HSB Message Network backup completed.

30571 HSB Message Started to receive network backup.

30572 HSB Message Database started using a HotStandby copy/netcopy.

142 IBM solidDB: High Availability User Guide

Table 33. solidDB HSB errors and messages (continued)

Code Class Type Description

30573 HSB Message Network backup failed.

30574 HSB Message Hot Standby forcing threads to 1

30575 HSB Message Hot Standby replication configured but no active license found replication not started

30577 HSB Message HotStandby connect operation failed

30579 HSB Message HotStandby connection is already active.

30581 HSB Message Invalid event event

30582 HSB Message HotStandby cannot set the server to PRIMARY ALONE.

30583 HSB Message HotStandby copy failed.

30585 HSB Message Database starts to listen for netcopy.

30586 HSB Message

HotStandby catchup, catchup_phase logpos: log_position

catchup_phase can be:

v HSB waitdurable

v HSB catchup start

v HSB write catchup

v HSB write switch

30750 HSB Message HotStandby connection is already active.

30752 HSB Message Operation failed disconnect is active.

30757 HSB Message CONNECTED

30758 HSB Message Bad Hot Standby command.

30759 HSB Message HotStandby server is set to STANDALONE.

30760 HSB Message Started the process of disconnecting the servers.

30761 HSB Message Started the process of switching the role to primary.

30762 HSB Message Started the process of switching the role to secondary.

30763 HSB Message Started the process of connecting the servers.

30764 HSB Message Copy started.

30765 HSB Message Parameter AutoPrimaryAlone is set to Yes.

30766 HSB Message Parameter AutoPrimaryAlone is set to No.

30767 HSB Message Parameter Connect is set to value.

30768 HSB Message HotStandby connection is already broken.

30769 HSB Message Operation failed because connection between the servers is active.

30772 HSB Message Hot Standby node identifier must be defined in the ini file.

30774 HSB Message Server is already STANDALONE.

30775 HSB Message Parameter CopyDirectory is set to value.

30776 HSB Message Parameter ConnectTimeout is set to value.

30777 HSB Message Parameter PingTimeout is set to value milliseconds.

30779 HSB Message Hot Standby migration is active

30782 HSB Message Server is already set to primary alone.

30783 HSB Message Server is already set to secondary alone.

30784 HSB Message Parameter parameter_name is set to value.

30785 HSB Message Parameter parameter_name is set to value.

30786 HSB Message Parameter parameter_name is set to value.

30787 HSB Fatal Error

pri_dologskip:bad type, log pos, log size

This error refers to a failed operation on the HSB primary server. The error returns the failed
operation and its location in the log, and the log size. Operations in the replication log are
skipped.

Appendix B. Error codes 143

Table 33. solidDB HSB errors and messages (continued)

Code Class Type Description

30788 HSB Fatal Error

pri_hsblogcopy_write:bad type, log pos, log size

This error refers to a failed operation on the HSB primary server. The write to the replication log
file fails. The error returns the failed operation and its location in the log, and the log size.

30789 HSB Fatal Error Failed to open hot standby replication log file.

30790 HSB Fatal Error

Failed to allocate memory for HotStandby log. Max Log size is logsize.

This error concerns a diskless database using HotStandby. In these systems, the HotStandby log is
written to memory. This error is given if allocating more memory for the log file fails.

30791 HSB Fatal Error HotStandby:solhsby:bad type type, log pos log_pos, log size log_size

30792 HSB Message Both servers are secondary.

30793 HSB Message

Maximum number of secondary tasks value reached.

The queue at the secondary server for incoming log operations is growing faster than the
operations can be executed and acknowledged to the primary server.

The queue can be monitored with the performance counter HSB secondary queues.

30794 HSB Message Invalid HotStandby.Connect option -z. -z option is not supported.

B.2 High Availability Controller errors and status codes
solidDB High Availability Controller errors (17xxx) occur when using specific High
Availability Controller commands.

Table 34. High Availability Controller errors and status codes

Error or status code Description

17501 HAC is shutting down.

ADMIN COMMANDs that may return this
status in the result set of the command:

v ADMIN COMMAND 'hac shutdown'

Meaning: The High Availability Controller is
shutting down.

17502 Command failed, HAC is suspended.

ADMIN COMMANDs that may return this
status in the result set of the command:

v ADMIN COMMAND 'hac suspend'

v ADMIN COMMAND 'hac gethsbdstate'

v ADMIN COMMAND 'hac getdbstate'

v ADMIN COMMAND 'hac shutdowndb'

v ADMIN COMMAND 'hac restartdb'

v ADMIN COMMAND 'hac switchdb'

v ADMIN COMMAND 'hac statemachinestate'

v ADMIN COMMAND 'hac getereip'

v ADMIN COMMAND 'hac pingere'

Meaning: The command execution failed
and the High Availability Controller is
suspended.

144 IBM solidDB: High Availability User Guide

Table 34. High Availability Controller errors and status codes (continued)

Error or status code Description

17503 Unknown command. Enter 'hac commands'
for help.

Meaning: Incorrect admin command syntax.

17504 HAC is already running.

ADMIN COMMANDs that may return this
status in the result set of the command:

v ADMIN COMMAND 'hac resume'

17506 HSB state does not allow for switchover.

ADMIN COMMANDs that may return this
status in the result set of the command:

v ADMIN COMMAND 'hac switchdb'

17507 Cannot execute command.

ADMIN COMMANDs that may return this
status in the result set of the command:

v ADMIN COMMAND 'hac shutdowndb'

17509 Restarting database server failed, see
solmsg.out for details.

ADMIN COMMANDs that may return this
status in the result set of the command:

v ADMIN COMMAND 'hac restartdb'

17510 Cannot connect to database server.

ADMIN COMMANDs that may return this
status in the result set of the command:

v ADMIN COMMAND 'hac switchdb'

17511 Database server was not shut down.

ADMIN COMMANDs that may return this
status in the result set of the command:

v ADMIN COMMAND 'hac restartdb'

17513 Switchover failed.

ADMIN COMMANDs that may return this
status in the result set of the command:

v ADMIN COMMAND 'hac switchdb'

17514 ERE IP is not specified in the configuration
file.

ADMIN COMMANDs that may return this
status in the result set of the command:

v ADMIN COMMAND 'hac getereip'

v ADMIN COMMAND 'hac pingere'

Appendix B. Error codes 145

Table 34. High Availability Controller errors and status codes (continued)

Error or status code Description

17516 HAC is already active.

ADMIN COMMANDs that may return this
status in the result set of the command:

v ADMIN COMMAND 'hac setactive'

v ADMIN COMMAND 'hac pingere'

17517 HAC is already passive.

ADMIN COMMANDs that may return this
status in the result set of the command:

v ADMIN COMMAND 'hac setpassive'

B.3 solidDB database errors for HotStandby
solidDB database errors (10002 - 10050) are detected by solidDB and are sent to the
client application. They may demand administrative actions.

This section lists the solidDB database errors that are related to HotStandby. A full
list of the errors in the Database class is available in section solidDB database errors
in the IBM solidDB Administrator Guide.

Table 35. solidDB database errors

Code Class Type Description

10002 Database Error Operation failed.

Meaning: The connect operation failed with an unexpected error.
Most likely, the servers are not properly synchronized.

10013 Database Error Transaction is read-only.

Meaning: You have tried to write inside a transaction that is set
read-only, or the server is temporarily set to read-only mode, for
example during the state switch. Updatable transactions are not
allowed.

10019 Database Error Backup is already active.

Meaning: You have tried to start a backup or copy when one is
already in progress.

10024 Database Error Illegal backup directory "directory_name".

Meaning: The backup or copy directory is either an empty string
or a dot indicating that the backup or copy will be created in the
current directory.

10030 Database Error Backup or copy directory 'directory_name' does not exist.

Meaning: Backup or copy directory is not found. Check the name
of the backup or copy directory.

146 IBM solidDB: High Availability User Guide

Table 35. solidDB database errors (continued)

Code Class Type Description

10045 Database Error This operation cannot be executed on a HotStandby Secondary
server.

Meaning: This operation cannot be executed on a HotStandby
Secondary server.

In order for the requested operation to succeed, the server must
be a Primary.

10046 Database Error Operation failed, data dictionary operation is active.

Meaning: A data dictionary operation is currently in progress.

10047 Database Error Replicated transaction is aborted.

Meaning: Transactions are aborted, for example, in a state switch.
When the server state is switched from Primary to Secondary, all
active transactions are aborted.

10048 Database Error Replicated transaction contains data dictionary changes, normal
update operations are not allowed.

Meaning: HotStandby mode restricts data dictionary operations;
for example, CREATE TABLE cannot be mixed with normal
update operations.

This message is obsolete in version 4.1 and later, which allow
you to mix DML and DDL operations within a transaction while
using HSB.

10049 Database Error The remote server is not a secondary server.

Meaning: The server that you specified in the command is not in
a SECONDARY state.

10050 Database Error Replicated operation updated BLOB columns.

Meaning: BLOB columns cannot be replicated to the Secondary
server.

10078 Database Error User rolled back the transaction.

10079 Database Error Cannot remove filespec. File is already in use.

10080 Database Error HotStandby Secondary server can not execute operation received
from Primary server.

Meaning: A possible cause for this error is that the database did
not originate from the Primary server using HotStandby copy or
netcopy command.

10081 Database Error The database file is incomplete or corrupt.

Meaning: If the file is on a hot standby secondary server, use the
hotstandby copy or hotstandby netcopy command to send the
file from the primary server again.

10082 Database Error Backup aborted.

10083 Database Error Failed to abort HSB transaction because commit is already sent to
secondary.

10084 Database Error Table is not locked.

10085 Database Error Checkpointing is disabled.

10087 Database Error HotStandby not allowed for main memory tables.

Appendix B. Error codes 147

Table 35. solidDB database errors (continued)

Code Class Type Description

10088 Database Error Specified lock timeout is too large.

10089 Database Error Operation failed, server is in HSB primary uncertain mode.

B.4 solidDB table errors
solidDB database table errors are caused by erroneous SQL statements and are
detected by solidDB. Administrative actions are not needed.

This section lists the solidDB table errors that are related to HotStandby. A full list
of the errors in the Table class is available in section solidDB table errors in the IBM
solidDB Administrator Guide.

Table 36. solidDB table errors

Code Class Type Description

13068 Table Error Server shutdown in progress

Meaning: You are unable to complete this operation because server shutdown is in
progress.

13123 Table Error Table 'table_name' is not empty

Meaning: This operation can only be executed when a table is empty. For example, you
can only change a table from disk-based to in-memory (or vice-versa) when the table is
empty.

13167 Table Error Only M-tables can be transient

Meaning: You cannot create a transient table that is disk-based. For example, the
following SQL statement will get this error message:

CREATE TRANSIENT TABLE t1 (i INT) STORE DISK;

13170 Table Error Only M-tables can be temporary

Meaning: You cannot create a temporary table that is disk-based. For example, the
following SQL statement will get this error message:

CREATE TEMPORARY TABLE t1 (i INT) STORE DISK;

B.5 solidDB communication errors
solidDB communication errors (21306, 21308) are caused by network errors. These
errors demand administrative actions.

This section lists the solidDB communication errors that are related to HotStandby.
A full list of the errors in the Server class is available in section solidDB
communication errors in the IBM solidDB Administrator Guide.

148 IBM solidDB: High Availability User Guide

Table 37. solidDB communication errors

Code Class Type Description

21306 Communication Error Server "server_name" not found, connection failed.

Meaning: The Secondary server was not found.

v Check that the server is running.

v Check that the network name is valid.

v Check that the server is listening to the specified network name.

21308 Communication Error "Connection is broken (<operation> operation failed with code
<code>)".

For example,

"Connection is broken (TCP/IP ’Write’
operation failed with code 7)."

Recommended actions:

v Check that the server is running.

v Check that the network name is valid.

v Check that the server is listening to the specified network name.

Appendix B. Error codes 149

150 IBM solidDB: High Availability User Guide

Appendix C. HotStandby and HAC ADMIN COMMANDs

This section describes the ADMIN COMMANDs available with HotStandby.

Depending on the tool you are using, the ADMIN COMMAND syntax differs:
v solidDB SQL Editor (solsql)

When used with solsql, the command name must be given with single
quotation marks. For example:
ADMIN COMMAND ’hotstandby switch primary’;

ADMIN COMMAND ’hacontroller shutdown’;

v solidDB Remote Control (solcon)

When used with solcon, the command name must be given without the ADMIN
COMMAND prefix and quotation marks. For example:
hotstandby switch primary

hacontroller shutdown

Tip: You can abbreviate 'hotstandby' to 'hsb' and 'hacontroller' to 'hac'. For
example:
ADMIN COMMAND hsb switch primary

ADMIN COMMAND hac shutdown

In the syntax descriptions, the shortest possible form is used; the ADMIN
COMMAND and the quotation marks are omitted, and the abbreviations 'hsb' and
'hac' are used.

Note: ADMIN COMMANDs always return a success return code (0) if there is no
syntax error in the command. The actual result code of the command is included
in the "RC" field of the result set.

For more information about the ADMIN COMMAND, see section ADMIN
COMMAND in the IBM solidDB SQL Guide.

C.1 HotStandby commands (ADMIN COMMAND)
Table 38. HotStandby commands (ADMIN COMMAND)

Command Explanation

hsb cominfo Returns the connect string used to connect to the other server. This is usually
the value of the HotStandby.Connect parameter, but it might also have been
set with the command:

ADMIN COMMAND ’hsb parameter connect connect_string’;

You can use this information in an application to connect to other servers.

151

Table 38. HotStandby commands (ADMIN COMMAND) (continued)

Command Explanation

hsb connect If the connection between the Primary and Secondary servers is broken or
has not yet been established, this command connects the Primary server to
the Secondary server and starts HotStandby replication. This command is
always needed to connect the servers since there is no automatic mechanism
for connecting between servers. After a successful connect, the state of the
Primary server is automatically set from PRIMARY ALONE to PRIMARY
ACTIVE. If unsuccessful, the state remains PRIMARY ALONE.

This command can be executed on either the Primary or the Secondary.
Note: When you execute this command, if the Primary server and Secondary
server are connected, but the transaction log is not yet fully copied to the
Secondary, the following message is displayed: Catchup is active.

hsb copy [directory_name] Important: This command is deprecated. Use the hsb netcopy command
instead.

You can use the hsb copy command to initially create the Secondary database
from the Primary. This command copies the database into a directory that is
local to the Primary node (and also local to the Secondary node). After the
copy is completed, you may start the Secondary server. After you connect the
Primary to the Secondary, the Primary automatically brings the Secondary
server up-to-date by copying the transaction log to the Secondary server.

You can also use this command to synchronize the Primary database with a
Secondary database (when it has been offline for a considerable period of
time) that is in a directory local to the Primary node. Read 3.4.5,
“Synchronizing primary and secondary servers,” on page 50.

If the optional directory_name is specified, the database files are copied to that
directory; otherwise they are copied to the directory specified with the
copydirectory parameter in the [Hotstandby] section of the solid.ini
configuration file. Because the hsb copy command does not copy the
solid.ini configuration file or log files, it is recommended that you make
this directory different from the normal backup directory.

The Primary can execute the hsb copy command only if the Primary is in
PRIMARY ALONE state. During and after the command, the server remains
in PRIMARY ALONE state. After the command has been completed, you
may start the Secondary server and connect the two servers.

hsb disconnect This tells the server to disconnect gracefully from the other member of the
HSB pair. This command is valid on either the Primary or the Secondary
server. A typical reason to use this command is to disconnect the servers
before upgrading one of them. (The other server can be set to PRIMARY
ALONE state so that it can continue responding to client requests.)

This command normally causes both servers to go into an "Alone" mode;
that is, the Primary server switches from PRIMARY ACTIVE to PRIMARY
ALONE, while the Secondary server switches from SECONDARY ACTIVE to
SECONDARY ALONE.

This command is valid on both the Primary and the Secondary.
Note: Using the shutdown command ADMIN COMMAND ’shutdown’ causes the
server to do a controlled disconnect before it shuts down. If the Secondary is
shut down (and disconnects), the Primary knows that it is safe to go to
PRIMARY ALONE state, and will do so.

152 IBM solidDB: High Availability User Guide

Table 38. HotStandby commands (ADMIN COMMAND) (continued)

Command Explanation

hsb logpos This commands returns the log operation ID and the server's role (PRIMARY,
SECONDARY, STANDALONE) at the time of the last operation.

A typical output is shown below:

ADMIN COMMAND ’hsb logpos’;
RC TEXT
-- ----
0 000000000000000000871:PRIMARY

This command can be used to determine which of two servers should
become Primary, for example, after a failure where both databases have
failed and you do not know which server should be made the Primary. (The
server that was the Primary before the connection was broken is not
necessarily the server that should become the Primary now.)

In principle, the server that has the greater value for the log operation ID has
accepted more transactions, and thus should become the Primary. However,
if you have made updates to both servers after the HSB connection has
failed, the log operation ID values can no longer be compared reliably.

For more information about how to use this command, see 3.4.9, “Choosing
which server to make primary,” on page 63.

hsb netcopy This command can be used copy the Primary database or diskless
in-memory data to a Secondary server. The database files are copied through
the network link, using the connection defined with the HotStandby.Connect
parameter in the Primary's solid.ini file.

You might want to use this command, for example, to synchronize a Primary
database with a Secondary database that has been offline for a long time.
You can also use hsb netcopy to create a new Secondary database, for
example, to replace a corrupt Secondary database, to set up a Secondary
database for a new HotStandby configuration, or add a new Secondary to an
existing configuration.

The Primary server must be in PRIMARY ALONE state to issue this
command.

After the command has completed (successfully or unsuccessfully), the
Primary server remains in the PRIMARY ALONE state. If the copy is
completed successfully, the Secondary server is automatically switched to
SECONDARY ALONE state.
Tip: The hsb netcopy command is usually followed by the hsb connect
command to connect the Primary and Secondary servers. After the Primary
server is connected to the Secondary, the Primary automatically brings the
Secondary up-to-date by copying the transaction log.

For more details on using hsb netcopy, see 3.4.5, “Synchronizing primary
and secondary servers,” on page 50 and “Copying a primary database to a
secondary over the network” on page 54.

Appendix C. HotStandby and HAC ADMIN COMMANDs 153

Table 38. HotStandby commands (ADMIN COMMAND) (continued)

Command Explanation

hsb parameter Important: This command is deprecated.

This command allows you to set HSB-specific parameters such as
AutoPrimaryAlone, Connect, and PingTimeout. For a complete description of
each of these parameters, see Appendix A, “HotStandby configuration
parameters,” on page 117.

When you set the value of one of some parameters, the command takes
effect immediately, but is not written to the solid.ini configuration file
before a shutdown is executed.

The syntax for this command is:

ADMIN COMMAND ’hsb parameter
param_name param_value’;

This command does not use an equals sign. Thus it differs from the
otherwise similar command (recommended):

ADMIN COMMAND ’parameter
hotstandby.param_name = param_value’;

154 IBM solidDB: High Availability User Guide

Table 38. HotStandby commands (ADMIN COMMAND) (continued)

Command Explanation

hsb role Important: This command is deprecated. Use the hsb state command
instead.

Returns one of the following roles in the result set:

v PRIMARY, if the connected server is a normal Primary server. In this role,
the transactions at the Primary server are sent to the Secondary server.

v PRIMARY NOHSBLOG, indicating that the Primary server accepts
transactions and stores them in the database. However, it does not store
the transactions in a log so that it could later send them to the Secondary.
To resynchronize the Secondary with the Primary, the entire database at
the Primary must be copied to the Secondary server.

v PRIMARY BROKEN, if the Primary server has a broken connection to the
Secondary server. Only read-only transactions can be executed in the
Primary server.

v PRIMARY ALONE, if the Primary server is working by itself. The
connection to the Secondary is broken, but transactions are accepted and
added to the transaction log at the Primary so that later they can be sent
to the Secondary.

v PRIMARY CATCHUP, if the catchup is in progress. During catchup, the
Primary automatically sends the transaction log changes to the Secondary
server after the 'hsb connect' command has been issued at the Primary.
After the catchup process is completed, the role of the server is switched
automatically to PRIMARY. The Primary can continue to accept
transactions if its role was PRIMARY ALONE before the connect.

v SECONDARY, if the connected server is a normal Secondary server. This
means the server receives and applies transactions from the Primary.

v SECONDARY BROKEN, if the Secondary server has a broken connection
to the Primary server.

v SECONDARY CATCHUP, if the Secondary server is catching up with the
changes from the Primary server after the 'hsb connect' command was
issued at the Primary server. After the catchup process is completed, the
role of the Secondary is switched automatically to SECONDARY.

If you issue hsb role on a server that is not configured for HotStandby, the
following error message is returned: 14527: This is a non-HotStandby
Server.

This command returns the same information as the SQL function:
HOTSTANDBY_ROLE.

Appendix C. HotStandby and HAC ADMIN COMMANDs 155

Table 38. HotStandby commands (ADMIN COMMAND) (continued)

Command Explanation

hsb set primary alone This command sets the Primary server to the PRIMARY ALONE state
unconditionally. This command is available if the server is currently in one of
the following states: PRIMARY ACTIVE, SECONDARY ACTIVE,
SECONDARY ALONE and STANDALONE.

This command can be used to implement fast failovers. When the Secondary
is in the SECONDARY ACTIVE state, the server will not make any attempt
to communicate with the Primary, having received this command. Instead, it
will immediately switch to the PRIMARY ALONE state. This behavior may
be utilized in cases when the information about the Primary failure reaches
HAC before the Secondary has detected the failure (the delay is dictated by
the PingTimeout and PingInterval parameters).

However, if it happens (for example, because of incorrect failure detection)
that the Primary is "alive" and in the PRIMARY ACTIVE state when this
command is executed in the Secondary, the Primary will be automatically
forced to PRIMARY UNCERTAIN state. It can then be moved to the
SECONDARY ALONE state and reconnected without any loss of
transactions.
Note: The alternative way of executing failovers is to use the hsb switch
primary command.

In the PRIMARY ALONE state, the connection to the Secondary server is
broken, but this state allows the Primary server to run with continuous
updates to the transaction log. The PRIMARY ALONE state persists until the
Primary server is shut down, a connection is successfully made to the
Secondary server, or the server runs out of space for the transaction log.

When you set a server to PRIMARY ALONE state, it does not automatically
make any attempt to re-establish connections with the other server.
Important: Before executing this command on a server, make sure that the
other server in the pair is not already in PRIMARY ALONE state (or
STANDALONE state). This is to avoid dual primaries – see 3.6.2, “Network
partitions and dual primaries,” on page 66 for more details.

See also the command 'hsb switch primary'.

hsb set secondary alone This command sets the server state to SECONDARY ALONE. This command
is available if the server is currently in one of the following states: PRIMARY
ALONE, PRIMARY UNCERTAIN, STANDALONE.

hsb set standalone When this command is issued, the state of the Primary server becomes
STANDALONE. The server stops storing transactions for the Secondary
server. The Primary (STANDALONE) can continue accepting read/write
transactions. This option is useful in the Primary server when the Secondary
server is offline for a significant period of time and the transaction log may
grow too large. This command is available if the server is currently in one of
the following states: PRIMARY ALONE or SECONDARY ALONE.

156 IBM solidDB: High Availability User Guide

Table 38. HotStandby commands (ADMIN COMMAND) (continued)

Command Explanation

hsb state Returns the state of the server:

v PRIMARY ACTIVE, if the connected server is a normal Primary server. In
this state, transactions on the Primary server are sent to the Secondary
server.

v STANDALONE, indicating that the Primary server accepts transactions
and stores them in the database, but it does not store the transactions to
forward them to the Secondary.

v PRIMARY UNCERTAIN, if the Primary server has a broken connection to
the Secondary server and has not yet been switched to another state, such
as PRIMARY ALONE. Only read-only transactions can be executed in the
Primary server.

v PRIMARY ALONE, if the Primary server is working by itself. The
connection to the Secondary is broken, but transactions are accepted and
stored in the Primary's transaction log so that they can be forwarded to
the Secondary.

v SECONDARY ACTIVE, if the connected server is a normal Secondary
server. This means the server receives and applies transactions from the
Primary.

v SECONDARY ALONE, if the Secondary server has a broken connection to
the Primary server.

If ADMIN COMMAND 'hsb state' is issued on a server that is not configured for
HotStandby, the following error message is returned: 14527: This is a
non-HotStandby Server.

This command returns the same information as the SQL function:
HOTSTANDBY_STATE. See section Using Function HOTSTANDBY_STATE in
“Switching the application to the new primary” on page 95 for details on
this function.

See Appendix D, “Server state transitions,” on page 161 for an overview of
HotStandby state transitions that occur while performing administrative and
troubleshooting operations.

hsb status option This command returns HotStandby status information of the last successfully
started operation. The option may be any of the following:

v catchup

v connect

v copy

v switch

For more details, see the descriptions of the individual commands/options
below, for example, hsb status catchup.

The status command gives information about the outcome of operations that
take a prolonged time, after they have started successfully. If the starting of
operation fails (for example, because of incorrect state) the status command
will not return the status of that operation but the one executed previously.

hsb status catchup This command indicates whether or not the server is doing catchup, that is,
when the Secondary reads the Primary's transaction log and applies the
changes.

Possible return values are:

v ACTIVE

v NOT ACTIVE

Appendix C. HotStandby and HAC ADMIN COMMANDs 157

Table 38. HotStandby commands (ADMIN COMMAND) (continued)

Command Explanation

hsb status connect This command returns status information:

v CONNECTED - Connect active. This information is returned from both the
Primary and Secondary servers.

v CONNECTING - The Primary server and Secondary server are connecting
to each other. This information is returned from both the Primary and
Secondary servers.

v CATCHUP - The Primary server is connected to the Secondary server, but
the Primary HotStandby database log is not fully copied to the Secondary
server. This information is returned from both the Primary and Secondary
servers.

v BROKEN - Connection between the Primary and Secondary server is
broken. This information is returned from both the Primary and Secondary
servers.

Note: This command returns the same information as the SQL function
HOTSTANDBY_CONNECTSTATUS. See section Using function
HOTSTANDBY_CONNECTSTATUS in “Switching the application to the new
primary” on page 95 for details on this function.

hsb status copy This command allows you to check the result of the last hsb copy or hsb
netcopy command. This status command always uses the keyword copy,
even if you are checking the result of a hsb netcopy rather than a hsb copy.

Status information returned:

v SUCCESS - Copy completed successfully.

v ACTIVE - Copy process is still active.

v ERROR number - Copy failed with error code number.

hsb status switch This command returns HotStandby switch status information:

v ACTIVE - Copy process is still active.

v SUCCESS - Copy completed successfully.

v ERROR number - Copy failed with error code number.

v NO SERVER SWITCH OCCURRED BEFORE - No switch has happened
before.

hsb switch primary This command switches the database server to PRIMARY. The command
starts a switch process, which can be monitored using command hsb status
switch.

If the servers are connected at the time that you execute this command, the
servers simply reverse states — that is, the old Primary changes from
PRIMARY ACTIVE to SECONDARY ACTIVE, and the Secondary server
switches from SECONDARY ACTIVE to PRIMARY ACTIVE.

If the servers are not connected and the server is in SECONDARY ALONE
state, when you switch the server to Primary, it will end up in PRIMARY
ALONE state. The new Primary server will not automatically try to connect
to the other server and switch to PRIMARY ACTIVE state.

Because the command is available both in the SECONDARY ACTIVE and
SECONDARY ALONE states, it can be used to perform failovers. However,
because the server will always make attempt to communicate with the
Primary, the network timeout may be involved. Thus, this method is slower
than using the hsb set primary alone command. On the other hand, this
method secures better against a possibility of dual primaries.

See also the command hsb set primary alone.

158 IBM solidDB: High Availability User Guide

Table 38. HotStandby commands (ADMIN COMMAND) (continued)

Command Explanation

hsb switch secondary This command switches the database to SECONDARY state. All active write
transactions are terminated.
Note: If the connected database server is a Primary server, it becomes a
Secondary server. If the old Secondary server is available, the old Secondary
server is switched to Primary (see the hsb switch primary command).
Note: If the hsb switch secondary command is issued inside an open
transaction (in Windows environments, after the transaction has started and
before you execute the COMMIT statement), when you issue the COMMIT
statement, it fails with an error: replicated transaction is aborted. All
transactions are rolled back during the switch, including the transaction in
which the switch statement is executed. The switch itself is successful (that
is, it is not rolled back) because ADMIN COMMANDs are not transactional
commands. However, administrative commands force the start of a new
transaction if one is not already open.

C.2 High Availability Controller commands (ADMIN COMMAND)
To issue the HAC commands, you must first connect to HAC using the port
defined with the HAController.Listen parameter in the solidhac.ini. You can use,
for example, solsql or the ODBC interface to connect to HAC.

Table 39. High Availability Controller commands (ADMIN COMMAND)

Command Explanation

hac restartdb

Abbreviation: hac rsd

If the solidDB server process has been
terminated using the hac shutdowndb
command, this command instructs the HAC
to restart the solidDB server process.

hac resume

Abbreviation: hac rs

This command resumes the HAC operations
when HAC is in suspended mode (set with
hac suspend). The solidhac.ini is not
reread, that is, any changes to solidhac.ini
are not effective.

hac setadministrative

Abbreviation: hac sad

This command sets HAC to
ADMINISTRATIVE mode.

hac setautomatic

Abbreviation: hac sam

This command sets HAC to AUTOMATIC
mode.

hac shutdown

Abbreviation: hac sd

This command terminates the HAC process.

hac shutdowndb

Abbreviation: hac sdd

This command instructs the HAC to
shutdown the solidDB server process. When
the server process is terminated using this
command, HAC does not try to restart the
server process. To restart the server process,
use the hac restartdb command.

hac suspend

Abbreviation: hac sp

This command shuts down all HAC
operations (threads), expect for the thread
that HAC uses to listen for ADMIN
COMMANDs. When HAC has been
suspended, the operations can be resumed
with ADMIN COMMAND hac resume.

Appendix C. HotStandby and HAC ADMIN COMMANDs 159

Table 39. High Availability Controller commands (ADMIN COMMAND) (continued)

Command Explanation

trace { on | off } hac

Abbreviation: tra { on | off } hac

This command controls tracing of HAC
operations. The trace information is output
to hactrace.out in the HAC working
directory.

In general, IBM Software Support and
development teams use HAC traces facility
for troubleshooting. You can also generate
the trace to gain information about a
problem that you are investigating, but its
use is rather limited without knowledge of
the solidDB source code.

Using the HAC trace facility has minimal
impact on performance.

160 IBM solidDB: High Availability User Guide

Appendix D. Server state transitions

This chapter describes the possible state transitions (for example, the transition
from OFFLINE to SECONDARY ALONE).

A description of each of the server states is in “Description of server states” on
page 8.

D.1 HotStandby state transition diagram
The diagram in this section shows the state transitions that can occur, and the
circumstances under which they may occur.

For example, you can change the state of a server from PRIMARY UNCERTAIN to
PRIMARY ALONE by executing the command 'hsb set primary alone':
ADMIN COMMAND ’hsb Set Primary Alone’;

As you use this diagram, remember the following:
1. The complete syntax of the commands is not shown. For example, it shows:

’hsb set primary alone’

rather than
ADMIN COMMAND ’hsb Set Primary Alone’;

2. The state transition paths shown for 'hsb copy' also apply to 'hsb netcopy'.
3. Some commands may fail when they are executed. When a command might

succeed or fail, both possibilities are shown. If the branch is intended to
describe what happens if the command fails, it will have the word 'failed':
'Disconnect' failed.

4. In some situations, the behavior depends upon the setting of the solid.ini
configuration parameter named AutoPrimaryAlone. The abbreviation "APA" is
often used to represent this parameter.

5. When the diagram refers to "events", it refers to internally-generated
notifications. These are not the same as the "events" that users can post and
wait on, as described in the SQL commands for CREATE EVENT, for example.

6. Near the top left of the diagram, you will see the text "Start with ’-x
backupserver’". If you want to start a new Secondary server and you want it
to get a copy of the database from the Primary via the "netcopy" command,
then you start the server (from the operating system command line) with the
command-line option -x backupserver. This tells the server to wait for a
netcopy from the Primary. Note that while the server is waiting to receive the
netcopy, the server will not respond to queries about its state (or role). For
example, if you issue the command:
ADMIN COMMAND ’hsb state’;

the server will not respond and therefore you will not actually see it return the
state "OFFLINE".

7. "rpc" stands for "Remote Procedure Call". "rpc broken" means that the Primary
and Secondary lost connection with each other without doing an explicit
Disconnect. The connection may be lost if the network fails, or if one server
crashes, for example.

161

8. When an arrow loops back to the same state that it started from, it means that
the state does not change. For example, if a server is in the state PRIMARY
ALONE, and if it tries to connect to the other server but fails, then the state
remains PRIMARY ALONE.

162 IBM solidDB: High Availability User Guide

The following table shows server states and the ways in which a HotStandby
command can change the server state.

SECONDARY
ALONE

'hsb connect'

failed
by Primary

'hsb connect'
failed

START

OFFLINE
EVENT: copy ready

Start with "-x backupserver"

'hsb connect' OK

EVENT: Connect by Primary OK

'hsb set primary alone' failed

EVENT: rpc broken

'hsb switch primary' failed

'hsb disconnect'

EVENT: disconnect by Primary

EVENT: Primary executes
'hsb set Primary Alone'

'h
sb

 s
et

se
co

nd
ar

y
al

on
e'

'h
sb

 s
et

 s
ta

nd
al

on
e'

STANDALONE

'h
sb

 s
et

st
an

da
lo

ne
'

'h
sb

 s
et

pr
im

ar
y

al
on

e'

PRIMARY
ALONE

'h
sb

 s
et

 s
ec

on
da

ry
 a

lo
ne

',
'h

sb
 s

w
itc

h
se

co
nd

ar
y'

'h
sb

 s
et

 p
rim

ar
y

al
on

e'
,

'h
sb

 s
w

itc
h

pr
im

ar
y'

'hsb switch primary' rpc broken

'hsb switch primary alone' OK

'hsb set
secondary

alone'

PRIMARY
ACTIVE

'hsb connect'
failed

'hsb set
primary
alone'

PRIMARY
UNCERTAIN

'hsb connect' OK

EVENT: rpc broken
(APA=No)

'h
sb

 s
w

itc
h

se
co

nd
ar

y'
 O

K

'h
sb

 s
w

itc
h

pr
im

ar
y'

 O
K

'h
sb

 s
w

itc
h

se
co

nd
ar

y'
 fa

ile
d

'hsb connect' OK

EVENT: Connect by Secondary OK

EVENT: rpc broken (APA=Yes)

'hsb set primary alone'

'hsb disconnect'

EVENT Secondary: disconnect by

EVENT shutdown by Secondary:

'hsb connect'

failed
by Secondary

'hsb connect'
failed

'hsb copy'

SECONDARY
ACTIVE

Figure 19. HotStandby server state transitions

Appendix D. Server state transitions 163

Table 40. Server state transition table

Server state

If this condition
occurs, or if this
HSB command is
issued...

Then server state
becomes...

If command is
unsuccessful, then
the state is...

OFFLINE If the Primary server
executes ADMIN
COMMAND 'hotstandby
netcopy' then the
Secondary's state will
change to
SECONDARY
ALONE after the
database has been
copied.

SECONDARY
ALONE

Unchanged

PRIMARY ACTIVE
HotStandby timeout
(automatic) when
AutoPrimaryAlone =
Yes.

NOTE: The HSB
timeout occurs
automatically when
the Secondary server
is down or a
connection between
the Primary and
Secondary is broken.

PRIMARY ALONE (Not applicable)

PRIMARY ACTIVE
HotStandby timeout
(automatic) when
AutoPrimaryAlone =
No.

NOTE: The HSB
timeout occurs
automatically when
the Secondary server
is down or a
connection between
the Primary and
Secondary is broken.

PRIMARY
UNCERTAIN

(Not applicable)

PRIMARY ACTIVE
ADMIN COMMAND
'hotstandby set
standalone' at the
Primary

STANDALONE Unchanged

PRIMARY ACTIVE
ADMIN COMMAND
'hotstandby switch
secondary' at the
Primary or ADMIN
COMMAND 'hotstandby
switch primary' at
the Secondary.

SECONDARY
ACTIVE

SECONDARY
ALONE

PRIMARY ACTIVE
ADMIN COMMAND
'hotstandby
disconnect' at the
Primary.

PRIMARY ALONE PRIMARY ALONE

164 IBM solidDB: High Availability User Guide

Table 40. Server state transition table (continued)

Server state

If this condition
occurs, or if this
HSB command is
issued...

Then server state
becomes...

If command is
unsuccessful, then
the state is...

PRIMARY ALONE
ADMIN COMMAND
'hotstandby copy' or
ADMIN COMMAND
'hotstandby
netcopy' at the
Primary.

Note that the state of
the Primary server
does not change. The
server stays in
PRIMARY ALONE
state. To change the
state to PRIMARY
ACTIVE, you must
issue the "connect"
command: ADMIN
COMMAND 'hotstandby
connect';

NOTE: If you are
using a diskless
server without file
access to the
Secondary server,
you must use
netcopy, not copy.

PRIMARY ALONE PRIMARY ALONE

PRIMARY ALONE
ADMIN COMMAND
'hotstandby
connect' at the
Primary

NOTE: The above
command is used to
connect to the
Secondary server,
which is now fixed,
or a server other than
the failed Secondary.

PRIMARY ACTIVE
(after the catchup is
completed)

Unchanged

PRIMARY ALONE
ADMIN COMMAND
'hotstandby set
standalone' at the
Primary or the
transaction log is full.

STANDALONE Unchanged

PRIMARY ALONE
ADMIN COMMAND
'hotstandby set
secondary alone' or
ADMIN COMMAND
'hotstandby switch
secondary' at the
Primary.

SECONDARY
ALONE

SECONDARY
ALONE

Appendix D. Server state transitions 165

Table 40. Server state transition table (continued)

Server state

If this condition
occurs, or if this
HSB command is
issued...

Then server state
becomes...

If command is
unsuccessful, then
the state is...

PRIMARY
UNCERTAIN

ADMIN COMMAND
'hotstandby set
primary alone' at
the Primary server

PRIMARY ALONE Unchanged

PRIMARY
UNCERTAIN

ADMIN COMMAND
'hotstandby
connect' at the
Primary.
Note:

The above command
is used to connect to
the Secondary server
(which is now fixed)
or to connect to a
server other than the
failed Secondary.

PRIMARY ACTIVE Unchanged

PRIMARY
UNCERTAIN (HSB
timeout has occurred
for connecting to the
Secondary)

ADMIN COMMAND
'hotstandby set
standalone' at the
Primary

STANDALONE Unchanged

PRIMARY
UNCERTAIN

ADMIN COMMAND
'hotstandby set
secondary alone' or
ADMIN COMMAND
'hotstandby switch
secondary' at the
Primary.

SECONDARY
ALONE

Unchanged

SECONDARY
ACTIVE

HotStandby timeout
(automatic)
Note: The HSB
timeout occurs
automatically when
the Secondary server
is down or a
connection between
the Primary and
Secondary is broken.

SECONDARY
ALONE

(not applicable)

SECONDARY
ACTIVE

ADMIN COMMAND
'hotstandby switch
secondary' at the
Primary or ADMIN
COMMAND 'hotstandby
switch primary' at
the Secondary.

PRIMARY ACTIVE Unchanged

SECONDARY
ACTIVE

ADMIN COMMAND
'hotstandby set
primary alone' at
the Secondary.

PRIMARY ALONE Unchanged

166 IBM solidDB: High Availability User Guide

Table 40. Server state transition table (continued)

Server state

If this condition
occurs, or if this
HSB command is
issued...

Then server state
becomes...

If command is
unsuccessful, then
the state is...

SECONDARY
ACTIVE

ADMIN COMMAND
'hotstandby
disconnect' at the
Secondary or
Primary.

SECONDARY
ALONE

SECONDARY
ALONE

SECONDARY
ALONE

ADMIN COMMAND
'hotstandby
connect' at the
Secondary or
Primary

SECONDARY
ACTIVE

Unchanged

SECONDARY
ALONE

ADMIN COMMAND
'hotstandby set
standalone' at the
Secondary.

STANDALONE Unchanged

SECONDARY
ALONE

ADMIN COMMAND
'hotstandby set
primary alone' or
ADMIN COMMAND
'hotstandby switch
primary' at the
Secondary

PRIMARY ALONE Unchanged

Appendix D. Server state transitions 167

168 IBM solidDB: High Availability User Guide

Appendix E. HotStandby system events

This appendix covers only HSB-specific events. For a discussion of other types of
events, see other manuals, such as IBM solidDB SQL Guide.

Each HotStandby operation generates an event. To monitor these events you can
use an application, such as a watchdog application.

Events are objects with a name that signal that a specific action occurred in the
server. Special statements in stored procedures are required to receive events.
HotStandby events are no different from other events created and supported
bysolidDB. They are sent to those users who are registered to receive the event in a
stored procedure. For details on posting, registering, and waiting for events, read
"Stored Procedures, Events, Triggers, and Sequences", in IBM solidDB SQL Guide,
and solidDB SQL Syntax, also in IBM solidDB SQL Guide.

The following table lists the events that are currently available for HotStandby.
Note that most events include five parameters, but not all of those parameters are
necessarily used.

Table 41. HotStandby events

HSB Event Event parameters Cause of event

SYS_EVENT_HSBCONNECTSTATUS
ENAME WVARCHAR,
POSTSRVTIME TIMESTAMP, UID
INTEGER, NUMDATAINFO
INTEGER, TEXTDATA WVARCHAR

For TEXTDATA, the possible valid
values are:

TEXTDATA = {
CONNECTED |
CONNECTING |
CATCHUP |
BROKEN}

Change in connect status between the
Primary and Secondary server

SYS_EVENT_HSBSTATESWITCH ENAME WVARCHAR,
POSTSRVTIME TIMESTAMP, UID
INTEGER, NUMDATAINFO
INTEGER, TEXTDATA WVARCHAR

For TEXTDATA, the possible valid
values are:

TEXTDATA = {
PRIMARY ACTIVE |
PRIMARY ALONE |
PRIMARY UNCERTAIN |
SECONDARY ACTIVE |
SECONDARY ALONE |
STANDALONE
}

Each state switch sends a state switch
event.

169

Table 41. HotStandby events (continued)

HSB Event Event parameters Cause of event

SYS_EVENT_NETCOPYEND ENAME WVARCHAR,
POSTSRVTIME TIMESTAMP, UID
INTEGER, NUMDATAINFO
INTEGER, TEXTDATA WVARCHAR

None of the parameters are used.

HotStandby NETCOPY operation
ended.

This event can be caught by the user
only if the user is using shared
memory access or linked library
access.

SYS_EVENT_NETCOPYREQ ENAME WVARCHAR,
POSTSRVTIME TIMESTAMP, UID
INTEGER, NUMDATAINFO
INTEGER, TEXTDATA WVARCHAR

None of the parameters are used.

A HotStandby NETCOPY was
requested.

If the user application's callback
function returns non-zero, then
netcopy is not performed.

This event can be caught by the user
only if the user is using shared
memory access or linked library
access.

170 IBM solidDB: High Availability User Guide

Appendix F. Watchdog sample

This section discusses the Watchdog sample application available in the samples
included in your solidDB installation.

A watchdog is a separate program for monitoring and controlling Primary and
Secondary servers. The watchdog monitors both hot standby servers and switches
their states when necessary. This alleviates the need for a database administrator to
monitor the servers.

solidDB provides a sample watchdog that you can use as a basis for building a
custom watchdog that meets your needs. This sample application is called the
Watchdog. Pay attention to the following features of the Watchdog sample before
you start programming.
v The Watchdog is meant to be used as an example of a watchdog
v The Watchdog uses polling to keep itself up-to-date with server states
v The Watchdog is a one-thread program
v The Watchdog uses the HSB API through ODBC. This API implementation can

be used as a model for your own watchdog application.
v The Watchdog has no user interface.

If you are using the Watchdog, you need to configure a [WatchDog] section in the
solidDB configuration file (solid.ini), which resides in the current working
directory of the Watchdog. If the Watchdog is running in the same directory as the
Primary or Secondary server, then you will have only one solid.ini file, which
will be shared by the server and the Watchdog. If the Watchdog is running in a
separate directory, then the Watchdog will have its own solid.ini file.

Furthermore, this appendix contains explanations of solid.ini configuration
parameters that are specific to the Watchdog. These parameters are set in the
[WatchDog] section of the solid.ini configuration file. If you write your own
watchdog program, you do not need to use any of these parameters.

For a discussion of other solid.ini parameters, see IBM solidDB Administrator
Guide.

F.1 HotStandby configuration using Watchdog
A HotStandby configuration allows for a Primary server, Secondary server, and the
Watchdog to reside in different machines and use different operating systems and
APIs as shown in the example in F.1.2, “System design issues,” on page 173. For
details on implementing heterogeneous configurations, read F.1.2, “System design
issues,” on page 173.

All communication between the Primary and Secondary database (including
putting a failed system back in service and re-synchronizing Primary and
Secondary databases) occurs within existing communication layers, such as
TCP/IP. HotStandby requires no auxiliary storage or transfer methods, such as
shared disks or FTP transfers.

Important: If you are running the Watchdog on the same machine where the
Secondary server resides, be sure to set the parameter AutoPrimaryAlone to no. In

171

this situation, setting AutoPrimaryAlone to no is crucial because it prevents the
potential error of having two primary servers. Primary may be in the PRIMARY
ALONE state, and the Watchdog at server failure could switch Secondary to a
PRIMARY ALONE state. This same error can also occur if a user happens to set
the old Secondary server to become the new Primary. For more information about
dual primaries, see 3.6.2, “Network partitions and dual primaries,” on page 66.

F.1.1 How the Watchdog application works
The Watchdog sample application notifies you when the Primary server is down.
In normal mode, the Watchdog checks the connection status of servers using the
hotstandby status connect command in both Primary and Secondary servers.

The Watchdog performs this check between servers at regular intervals. The
interval time is set with the PingInterval parameter in the Watchdog's solid.ini
configuration file.

The Watchdog reaches the conclusion that there is a problem in the HotStandby
system when it receives no response from the Primary or Secondary node or both
nodes after a given number of polling attempts. The number of attempts is set in
the NumRetry parameter in the Watchdog configuration file (the [Watchdog] section
in the solid.ini).

The Watchdog also observes whether the Primary server and the Secondary server
are connected to each other. If the Primary or Secondary server returns a successful
connect status to the Watchdog, this means the Primary and Secondary are still
connected. If it returns an error, on the other hand, then the Primary and
Secondary are no longer connected.

If the AutoSwitch parameter in the Watchdog configuration file is set to YES, then
the Watchdog is also responsible for automatically switching server states in the
event of a Primary failure. For example, when the Primary server is down, the
Watchdog switches the Secondary server to make it the new Primary and put it in
PRIMARY ALONE state. If the AutoSwitch parameter is set to NO, the Watchdog
does not change the server state itself, but instead writes a message to the
Watchdog log to notify the user to switch server states.

To continue monitoring, the Watchdog switches to failure mode, which means it
continuously keeps checking failed servers for a working connection.

Failure mode
When the Watchdog sample application knows that HotStandby Primary and
Secondary servers are connected, the Watchdog stays in normal mode. If one of the
servers fails, or if the communication link between these servers fails, the
Watchdog will take some course of action. If the action fails to connect the servers,
the Watchdog goes into failure mode.

After the Watchdog enters failure mode, the Watchdog waits for the system
administrator to fix the problem with the Primary and Secondary servers. If, in the
meantime, a second failure occurs, the Watchdog does not handle the failure. This
limitation in the Watchdog is deliberate. There are situations where a series of
failures and even seemingly appropriate responses can cause the error of having
two Primary servers (either in PRIMARY ALONE or STANDALONE states). This is
especially true if there are brief failures in the network, but no failures in the
database servers themselves. An example that produces two Primary servers is
provided in “Coding the Watchdog for multiple failures” on page 173.

172 IBM solidDB: High Availability User Guide

During failure mode, the Watchdog polls both the Primary and Secondary servers.
When it is able to connect to both servers, it sends the hotstandby state command
to both servers to see whether it can communicate with them and to see which
state each of them is in.

Once the Watchdog is able to communicate with both servers, it will decide what
to do next based on the solid.ini parameter DualSecAutoSwitch. If
DualSecAutoSwitch = Yes and both servers are secondary, then the Watchdog will
automatically select one of the two secondaries to be a new primary and switch it
to primary. If DualSecAutoSwitch = No then the system administrator must switch
one server to be the primary. Note that DualSecAutoSwitch applies whether the
Watchdog is in "normal" mode or "failure" mode.

Coding the Watchdog for multiple failures
There are two ways to handle multiple failures in the Watchdog. You can:
v After each failure (and automatic response by the Watchdog), require manual

(human) intervention to check the situation. Manual intervention may require
actions, such as restarting a server, or fixing a network problem. This is the
approach that the Watchdog uses because it reduces the risk of having two
Primary servers.

v Write a watchdog application that can handle multiple failures over time.
This method does run the risk of having two Primary servers, as shown in the
following example.

Dual primaries

In this example, Server1 is initially the Primary and Server2 is initially the
Secondary.
1. A network failure occurs and Server1 becomes inaccessible.
2. The Watchdog switches Server2 from SECONDARY to PRIMARY ALONE.
3. A second network failure occurs, and Server2 becomes inaccessible.
4. The first network failure is repaired, and Server1 becomes accessible again.
5. The Watchdog, seeing that Server1 is accessible and Server2 is not, switches

Server1 to PRIMARY ALONE.
6. The second network failure is fixed and Server2 becomes accessible again.
7. At this point, both Server1 and Server2 are in the PRIMARY ALONE state.

F.1.2 System design issues
How you configure HotStandby (locally or remotely, at one or more different
locations, over the Internet, and with the Watchdog program) can affect the
reliability and efficiency of your system. This section addresses these issues.

The illustration below shows one example of a heterogeneous system, in which the
Primary and Secondary servers do not even use the same type of hardware and
operating system.

Appendix F. Watchdog sample 173

F.1.3 Watchdog configuration
For better efficiency and more precision in monitoring the state of the servers, the
Watchdog is recommended as a separate component of any HotStandby
configuration.

If only two machines are available, making it impossible to run the Watchdog
program in a separate machine, run the Watchdog on the same machine where the
Secondary server resides and set the parameter AutoPrimaryAlone to no in the
configuration file (solid.ini) of both the Primary and Secondary server. Note that
setting this parameter to no is extremely important, as it prevents the potential
error of having two Primary servers.

CAUTION:
If both servers are in a state that allows writing (PRIMARY ALONE or
STANDALONE), and if the databases of both servers are independently
updated, then it will not be possible to resynchronize the two databases. Make
sure that the Watchdog does not allow both servers to be put in the PRIMARY
ALONE or STANDALONE state at the same time. See 3.6.2, “Network partitions
and dual primaries,” on page 66.

If the Primary server does fail, then the Watchdog is able to switch the Secondary
to become the new Primary.

Application 3

Watchdog
application

Application 2

Application 1

Secondary
server

Primary
server

ODBC API
(Read-only)

(Read-only)

TCP/IP

ODBC API

JDBC API

Windows PC

Linux PC

UNIX computer

Figure 20. Heterogeneous HotStandby configuration with Watchdog

174 IBM solidDB: High Availability User Guide

There are some disadvantages to putting the Watchdog in the same machine as the
Secondary. The disadvantages include:
v If only the communication link between the Watchdog and the Primary is down,

this configuration may result in a false switchover between the Primary and the
Secondary.

v The communication link becomes a "single point of failure", that is, a single
failure that may disable the entire system. (In most HotStandby configurations,
the entire system is not disabled unless there are at least two failures.)

v If there is a network failure and the Secondary machine cannot communicate
with the Primary machine, the users and applications are still able to access the
Primary server and theoretically could continue operating with the Primary
server. However, the Primary server stops accepting transactions because the
watchdog cannot notify the Primary server to continue operating, for example
by switching to PRIMARY ALONE state.

F.1.4 Using the sample Watchdog application
About this task

Initially, you should start the Watchdog after both servers are up and connected.

Procedure

To start the Watchdog, go to the current working directory of the Watchdog and at
the prompt, issue the command:
watchdog

If you have not specified the usernames and passwords for connect1 and connect2
servers (capable of serving as Primary and Secondary) in the solid.ini file, the
Watchdog prompts you for them.

Results

When started, the Watchdog pings both servers to check which one is Primary. The
Watchdog remains in normal mode unless it detects a server failure after the
number of retry attempts is exceeded. If a failure occurs after the Watchdog sends
the last retry attempt to the server, the Watchdog switches to failure mode. When
both the Primary and Secondary servers are up and reconnected, the Watchdog
switches to normal mode.

F.2 Failure situations and Watchdog actions
This section describes how a typical watchdog program should work in specific
failure scenarios that are commonly encountered.

The scenarios are in the context of either a server failure or a broken
communication link between the Primary and Secondary server, or between one of
the servers and the watchdog.

Although these commands may be issued by either a human administrator or a
software program, for simplicity it is assumed that the commands are issued by
the Watchdog sample.

Appendix F. Watchdog sample 175

F.2.1 Primary is down
Scenario

All connections to the Primary server are broken.

Remedy

When the Primary is down, switch the Secondary to be the new Primary and set
the new Primary to the PRIMARY ALONE state. Later, the old Primary can
become a new Secondary.

176 IBM solidDB: High Availability User Guide

1. Watchdog instructs Server2:
HSB SET PRIMARY ALONE

3

Poll OK
Poll OK

Txn log

Connected

Watchdog

Server1
secondary
active

Server2
primary
active

Application(s)

Resolution

Poll OK
Poll fails

Broken

Txn log

Connected

Watchdog

Server1
(unavailable)

Server2
primary
alone

Application(s)

Failover/remedy

Poll OKPoll fails

Broken

Broken

Watchdog

Server2
secondary
alone

Server1
(unavailable)

Application(s)

Scenario

2

1

Figure 21. Primary is down scenario and remedy

Appendix F. Watchdog sample 177

Applications switch from Server1 to Server 2.
HSB SET STANDALONE

2. After Server1 is fixed, Server 1 is brought back up as Secondary.
Watchdog instructs Server 2:
v HSB NETCOPY
v HSB CONNECT

3. If the transaction log fills up, you may have to switch the PRIMARY ALONE
server to STANDALONE. In that case, you will also need to execute HSB
NETCOPY before you reconnect the servers. If the transaction log does not fill
up, then you must skip the NETCOPY command.

Symptoms

Applications cannot connect to the Primary. Also, the watchdog poll fails at the
Primary. The HSB state of the secondary server is SECONDARY ALONE.

How to recover when the primary is down
About this task

To allow the "HotStandby" (Secondary server) to replace the Primary, do the
following:

Procedure
1. Set the new Primary server to PRIMARY ALONE state by using the command:

ADMIN COMMAND ’hotstandby set primary alone’;

2. Reconnect applications to the new Primary.
3. Start using applications.
4. Fix and start the old Primary server as new Secondary server.
5. If necessary, copy the database from the new Primary to the new Secondary

using command:
ADMIN COMMAND ’hotstandby netcopy’;

Read 3.4.5, “Synchronizing primary and secondary servers,” on page 50 for
details.

6. Reconnect the new Primary to the new Secondary using the command:
ADMIN COMMAND ’hotstandby connect’;

F.2.2 Secondary is down
Scenario

All connections to the Secondary server are broken. This may be caused either by a
failure in the Secondary, or by a failure in the network that makes it impossible for
either the Primary or the Watchdog to communicate with the Secondary server. In
this section, the Secondary is referred to as failing, but in fact the problem may be
with either the Secondary or the network.

Remedy

The standard remedy is to switch the Primary server to the PRIMARY ALONE
state. After the Secondary is up again, synchronize it with the Primary.

Upon finding a problem with the connection to the Secondary server, the Primary
server:

178 IBM solidDB: High Availability User Guide

1. Suspends any open transactions, neither committing them nor rolling them
back (the Primary does not send an error message — or a "success" message —
to the client); and

2. Automatically switches its own state from PRIMARY ACTIVE to PRIMARY
UNCERTAIN.

Typically, after making sure that the secondary server is unavailable, the watchdog
will switch the Primary from PRIMARY UNCERTAIN to PRIMARY ALONE. After
the Primary is switched to PRIMARY ALONE state, it can continue accepting
transactions and saving them to send to the Secondary. Later, when the Secondary
is brought back up, the Secondary can be sent the transaction log so that it can
"catch up" to the Primary.

The Primary commits the open transactions after the Primary is set to PRIMARY
ALONE state. To avoid the possibility that the Primary will commit the
transactions when the Secondary has not, the transactions are kept in the
transaction log, as though they had never been sent to the Secondary. When the
Secondary is brought back up and starts catching up, the Primary sends that
transaction log, and the Secondary checks each of the transactions. If any of the
transactions are duplicates (that is, if the Secondary already committed that
transaction before the Secondary failed), then the duplicate transactions are not
re-executed on the Secondary.

The watchdog or system administrator must be careful in choosing whether to
bring the Primary to PRIMARY ALONE state, or choose an alternative action. If
the watchdog or system administrator chooses a different action than switching the
Primary to PRIMARY ALONE state, she must take into account that the Secondary
and Primary may not have the same data i.e. they may not both have rolled back
the transaction. It is possible that the failed Secondary actually committed the data
and crashed after committing the data but before sending the confirmation to the
Primary, while the Primary never committed. In this situation, the secondary may
actually be "ahead" of the Primary rather than behind it.

As always, the watchdog or administrator also must be careful not to allow both
servers to go into PRIMARY ALONE state at the same time.

The diagram below is divided into three frames. The first frame shows the
scenario, which is that the Primary and watchdog have lost contact with the
Secondary. The next frame shows how to respond to keep your system working
until the problem can be completely solved. The third frame shows the final state
after the problem has been solved — that is, after the broken server has been fixed,
or after communications have been restored.

Appendix F. Watchdog sample 179

1. Watchdog instructs Server 1:
HSB SET PRIMARY ALONE

3

2

1

Poll OK
Poll OK

Txn log

Connected

Watchdog

Server2
secondary
active

Server1
primary
active

Application(s)

Resolution

Poll fails
Poll OK

Txn log

Connected

Watchdog

Server2
(unavailable)

Server1
primary
alone

Application(s)

Failover/remedy

Poll fails
Poll OK

Txn log

Connected

Watchdog

Server2
(unavailable)

Server1
primary
uncertain

Application(s)

Scenario

Figure 22. Secondary is down scenario and remedy

180 IBM solidDB: High Availability User Guide

HSB SET STANDALONE
2. After Server 2 is brought back up, Watchdog instructs Server 1:

HSB NETCOPY
HSB CONNECT

3. If the transaction log fills up, you may have to switch the PRIMARY ALONE
server to STANDALONE. In that case, you will also need to execute HSB
NETCOPY before you reconnect the servers. If the transaction log does not fill
up, then you must skip the NETCOPY command.

Symptoms

The watchdog poll fails at the Secondary. The state of the primary server is either
PRIMARY ALONE or PRIMARY UNCERTAIN.

How to recover when the secondary is down
About this task

To allow the Primary server to continue to receive transactions, operating
independently of the Secondary server, do the following:

Procedure
1. If the Primary server is in the PRIMARY UNCERTAIN state, then set the

Primary server to PRIMARY ALONE using the command:
ADMIN COMMAND ’hotstandby set primary alone’;

2. After the Secondary server has been repaired and restarted and/or the
Secondary's network connections have been reestablished, check the state of the
Primary server using the command:
ADMIN COMMAND ’hotstandby state’;

3. If the state of the Primary server is PRIMARY ALONE, then reconnect the
Primary to the Secondary using the command:
ADMIN COMMAND ’hotstandby connect’;

4. If the state of the Primary server has earlier been changed to STANDALONE,
then:
a. Copy the database from the new Primary to the Secondary using the

command:
ADMIN COMMAND ’hotstandby netcopy’;

b. Read 3.4.5, “Synchronizing primary and secondary servers,” on page 50 for
details.

5. Reconnect the Primary to the Secondary using the command:
ADMIN COMMAND ’hotstandby connect’;

Further scenarios when the secondary is down
If an application receives error message 10047 or 14537 from the Primary:
v Try to connect to the Secondary to check if its state was switched to new

Primary.
v If its state is not one of the Primary states (PRIMARY ACTIVE or PRIMARY

ALONE), see the scenario in F.2.1, “Primary is down,” on page 176.

F.2.3 Watchdog is down
This section explains what happens if the Watchdog fails.

Appendix F. Watchdog sample 181

Scenario

All connections to the Watchdog are broken.

Remedy

Manual intervention is required. When the Watchdog is brought up, be sure to
check the Primary and Secondary servers to confirm their states.

1

Poll OK
Poll OK

Txn log

Connected

Watchdog

Server2
secondary
active

Server1
primary
active

Application(s)

Resolution

Txn log

Connected

Watchdog (unavailable)

Server2
secondary
active

Server1
primary
active

Application(s)

Scenario

1. Bring the Watchdog back up or fix the network.

Figure 23. Watchdog is down scenario and remedy

182 IBM solidDB: High Availability User Guide

Symptoms

The Watchdog process is down or network connections from the Watchdog to both
servers are unavailable.

Further scenarios

If the servers have changed states and one server is no longer in service, refer to
the applicable scenario in this section for instructions.

How to recover when the watchdog is down
About this task

To recover from the scenario where all connections to the Watchdog are broken:

Procedure
1. Allow the Primary and Secondary servers to continue normal operations.
2. Once the Watchdog is brought up, have it check the state of each server with

the command:
ADMIN COMMAND ’hotstandby state’;

F.2.4 Communication link between Primary and Secondary is
down

Scenario

The connection between the Primary and Secondary server is broken.

The Primary will switch itself to PRIMARY UNCERTAIN state. (If
AutoPrimaryAlone is set to Yes, then the server will switch itself to PRIMARY
ALONE state.)

Note: If the Primary server sends a commit message to the Secondary and then
detects the failure of the Secondary, the Primary server relies on the Watchdog or
the administrator to indicate how the Primary server is to proceed. This is because
the Primary server is unable to detect whether the transaction was committed or
rolled back in the Secondary before the Secondary server failed.

Until the Primary server receives a command from the Watchdog or the
administrator, it no longer accepts transactions. At this stage, in order for the
Primary server to continue operations, the Watchdog or administrator can set the
Primary server to PRIMARY ALONE state.

Remedy

The Primary server can continue operations even when its link to the Secondary
server is down. If the Primary is not already in PRIMARY ALONE state, then
switch the Primary to the PRIMARY ALONE state. Once the link between the
Primary and Secondary is restored, synchronize the databases.

Appendix F. Watchdog sample 183

1. Watchdog instructs Server 1:
HSB SET PRIMARY ALONE

3

2

1

Poll OK
Poll OK

Txn log

Connected

Watchdog

Server2
secondary
active

Server1
primary
active

Application(s)

Resolution

Poll OK
Poll OK

Broken

Txn log

Connected

Watchdog

Server2
secondary
alone

Server1
primary
alone

Application(s)

Failover/remedy

Poll OK
Poll OK

Broken

Txn log

Connected

Watchdog

Server2
secondary
alone

Server1
primary
uncertain

Application(s)

Scenario

Figure 24. Broken link between Primary and Secondary scenario and remedy

184 IBM solidDB: High Availability User Guide

HSB SET STANDALONE
2. After the connection between primary and secondary is fixed, Watchdog

instructs Server1:
HSB NETCOPY
HSB CONNECT

3. If the transaction log fills up, you may have to switch the PRIMARY ALONE
server to STANDALONE. In that case, you will also need to execute HSB
NETCOPY before you reconnect the servers. If the transaction log does not fill
up, then you must skip the NETCOPY command.

Symptoms

The Primary server has no Secondary connected and the state is PRIMARY
UNCERTAIN or PRIMARY ALONE.

How to recover when the communication link between the
Primary and Secondary is down
About this task

To recover from the scenario where the connection between the Primary and
Secondary server is broken:

Procedure
1. Fix the network connection between the Primary and Secondary servers.
2. Check the state of the Primary server using the command:

ADMIN COMMAND ’hotstandby state’;

3. If the state of the Primary server is PRIMARY ALONE, reconnect the Primary
to the Secondary using the command:
ADMIN COMMAND ’hotstandby connect’;

4. If the state of the Primary server is STANDALONE, then:
a. Copy the database from the Primary to the Secondary. Read 3.4.5,

“Synchronizing primary and secondary servers,” on page 50 for details.
Before using the command ADMIN COMMAND 'hotstandby netcopy'; be sure
that the Secondary is up and running and is ready to receive the netcopy.
Also, make sure that you set the Primary server's state to PRIMARY
ALONE.

b. Reconnect the Primary to the Secondary using the command:
ADMIN COMMAND ’hotstandby connect’;

Further scenarios when the communication link between the
Primary and Secondary is down
If an application receives error message 10047 or 14537 from the Primary:
v Try to connect to the Secondary to check if it is switched as the new Primary.
v If the old Secondary is not switched as the new Primary, see scenario in F.2.1,

“Primary is down,” on page 176.

F.2.5 Communication link between the Watchdog and Primary
is down

Scenario

The connection between the Watchdog and the Primary server is broken.

Appendix F. Watchdog sample 185

Remedy

The Primary and Secondary servers can continue operations even when the
Watchdog link to the Primary server is down. When the Watchdog link to the
Primary is fixed, be sure to check the states of the Primary and Secondary servers.

1

Poll OK
Poll OK

Txn log

Connected

Watchdog

Server2
secondary
active

Server1
primary
active

Application(s)

Resolution

Poll OK
Poll fails

Txn log

Connected

Watchdog (unavailable)

Server2
secondary
active

Server1
primary
active

Application(s)

Scenario

1. Fix Watchdog's network connection to Server1.

Figure 25. Broken link between Watchdog and Primary scenario and remedy

186 IBM solidDB: High Availability User Guide

Symptoms

The Watchdog poll fails at the Primary server. However, the secondary server state
is reported to be SECONDARY ACTIVE. This means that the primary server is
very probably okay and that the Watchdog has merely lost contact with the
Primary.

Further scenarios

If the states of the servers have changed and one server is no longer in service,
refer to the applicable scenario in this section for instructions.

How to recover when the communication link between the
Watchdog and Primary is down
About this task

To recover from the scenario where connection between the Watchdog and the
Primary server is broken:

Procedure
1. Allow the Primary and Secondary servers to continue normal operations.
2. Fix the network connection between the Watchdog and the Primary server.
3. Once the network is connected, have the Watchdog check the states of each

server with the command:
ADMIN COMMAND ’hotstandby state’;

F.2.6 Communication link between the Watchdog and
Secondary is down

Scenario

The connection between the Watchdog and the Secondary server is broken.

Remedy

The Primary and Secondary servers can continue operations even when the
Watchdog link to the Secondary server is down. When the Watchdog link to the
Secondary is fixed, be sure to check the Primary and Secondary servers to confirm
their states.

Appendix F. Watchdog sample 187

Symptoms

The Watchdog poll fails at the Secondary server.

Further scenarios

If the servers states have changed and one server is no longer in service, refer to
the applicable scenario in this section for instructions.

1

Poll OK
Poll OK

Txn log

Connected

Watchdog

Server2
secondary
active

Server1
primary
active

Application(s)

Resolution

Poll fails
Poll OK

Txn log

Connected

Watchdog

Server2
secondary
active

Server1
primary
active

Application(s)

Scenario

1. Fix Watchdog's network connection to Server2.

Figure 26. Broken link between Watchdog and Secondary scenario and remedy

188 IBM solidDB: High Availability User Guide

How to recover when the communication link between the
Watchdog and Secondary is down
About this task

To recover from the scenario where the connection between the Watchdog and the
Secondary server is broken:

Procedure
1. Allow the Primary and Secondary servers to continue normal operations.
2. Fix the network connection between the Watchdog and the Secondary server.
3. Once the network is connected, have the Watchdog check the state of each

server with the command:
ADMIN COMMAND ’hotstandby state’;

F.2.7 Communication links between the Watchdog and
Primary, and between the Primary and Secondary, are down

Scenario

The connections between the Watchdog and the Primary server, and between the
Primary server and Secondary server, are broken.

Remedy

For the Watchdog to continue monitoring the Primary server, switch the Secondary
server to be the new Primary and set this new Primary to the PRIMARY ALONE
state. Later, set up a new Secondary server and synchronize it with the Primary.

Appendix F. Watchdog sample 189

1. Server1's role is Primary Uncertain. However, from the watchdog's point of
view, Server1 is unavailable, not Primary Uncertain.
Watchdog instructs Server2:

3

2

1

Poll OK
Poll OK

Txn log

Connected

Watchdog

Server1
secondary
active

Server2
primary
active

Application(s)

Resolution

Poll fails
Poll OK

Broken

Txn log

Connected

Watchdog

Server1
primary
uncertain
(unavailable)

Server2
primary
alone

Application(s)

Failover/remedy

Poll OKPoll fails

Broken

Possibly
connected

Watchdog

Server2
secondary
alone

Server1
primary
uncertain
(unavailable)

Application(s)

Scenario

Figure 27. Broken link between Watchdog and Primary, and between Primary and Secondary, scenario and remedy

190 IBM solidDB: High Availability User Guide

HSB SET PRIMARY ALONE
Applications switch from Server1 to Server 2.

2. Both servers believe they are primary. If a program or an administrator
(manual intervention) switches Server1 from Primary Uncertain to Primary
Alone, then there are two active primaries, both of which could be updating
data, and the differences would not be resolvable.
After network connections are fixed, Watchdog instructs Server 1:
HSB SWITCH SECONDARY
Watchdog instructs Server2:
HSB NETCOPY
HSB CONNECT

3. If the transaction log fills up, you may have to switch the PRIMARY ALONE
server to STANDALONE. In that case, you will also need to execute HSB
NETCOPY before you reconnect the servers. If the transaction log does not fill
up, then you must skip the NETCOPY command.

Symptoms

The Watchdog poll fails at the Primary server. The Secondary server and Primary
server have lost their connections to each other; therefore Server2 is in the state
SECONDARY ALONE, and the Primary (if it can be contacted) will report that its
state is PRIMARY UNCERTAIN or PRIMARY ALONE.

The beginning of this scenario assumes that applications are possibly connected to
the old Primary. However, since the old Primary is in the PRIMARY UNCERTAIN
state, the applications are unable to perform updates. Note that it is also possible
that the applications connected to Server1 may have lost their communication link
and no longer know that the old Primary exists.

How to recover when communication links between the
Watchdog and Primary, and between the Primary and Secondary,
are down
To recover from the scenario where the connections between the Watchdog and the
Primary server, and between the Primary server and Secondary server, are broken,
perform the steps necessary to make the hot standby server (the Secondary server)
replace the Primary.

About this task

To allow the Secondary server to replace the Primary, do the following:

Procedure
1. If the old Primary is in the PRIMARY UNCERTAIN state or is cut off from the

applications as well as the Secondary, then set the Secondary server to
PRIMARY ALONE state using the command:
ADMIN COMMAND ’hotstandby set primary alone’;

2. Reconnect applications to the new Primary.
3. Fix the network or the broken connections to the old Primary.
4. Check the server states. Both servers must now be running.
5. If the new Primary is in STANDALONE state (for example, because the new

Primary's transaction log filled up while the connections were being fixed):
a. Set the new primary to PRIMARY ALONE state using the command:

Appendix F. Watchdog sample 191

ADMIN COMMAND ’hotstandby set primary alone’;

b. Copy the database from the new Primary to the new Secondary. Read 3.4.5,
“Synchronizing primary and secondary servers,” on page 50 for details.

6. If the new Primary is in PRIMARY ALONE state:
a. Switch the old Primary to be the new Secondary server using the command:

ADMIN COMMAND ’hotstandby switch secondary’;

7. Reconnect the new Primary to the new Secondary using the command:
ADMIN COMMAND ’hotstandby connect’;

Further scenarios where communication links between the
Watchdog and Primary, and between the Primary and Secondary,
are down
If an application receives error message 10047 or 14537 from the new Primary:
v Try to connect to the old Secondary to check if it has switched to be the new

Primary.
v If the old Secondary is not switched to be the new Primary, re-execute the

transaction with the original Primary in PRIMARY ALONE state.

F.2.8 Communication links between the Watchdog and
Secondary, and between the Primary and Secondary, are down

Scenario

The connection between the Watchdog and the Secondary server, and the
connection between the Primary server and Secondary, server are broken.

Remedy

The Primary server can continue operations even when its links to the Secondary
server and the Watchdog are down. Switch the Primary server to the PRIMARY
ALONE state, if it is not already in PRIMARY ALONE state. Later, when the
Secondary is up again, synchronize it with the Primary.

192 IBM solidDB: High Availability User Guide

1. Server2 sees its role as Secondary Alone, but the Watchdog cannot see Server2
and therefore believes Server2 is unavailable.
Watchdog instructs Server 1:

3

2

1

Poll OK
Poll OK

Txn log

Connected

Watchdog

Server2
secondary
active

Server1
primary
active

Application(s)

Resolution

Poll fails
Poll OK

Broken

Txn log

Connected

Watchdog

Server2
secondary
alone
(unavailable)

Server1
primary
alone

Application(s)

Failover/remedy

Poll failsPoll OK

Broken

Connected

Watchdog

Server2
secondary
alone
(unavailable)

Server1
primary
uncertain

Application(s)

Scenario

Figure 28. Broken link between Watchdog and Secondary and between Primary and Secondary scenario and remedy

Appendix F. Watchdog sample 193

HSB SET PRIMARY ALONE
2. After the connections to secondary are fixed, Watchdog instructs Server 1:

HSB NETCOPY
HSB CONNECT

3. If the transaction log fills up, you may have to switch the PRIMARY ALONE
server to STANDALONE. In that case, you will also need to execute HSB
NETCOPY before you reconnect the servers. If the transaction log does not fill
up, then you must skip the NETCOPY command.

Symptoms

The Watchdog poll fails at the Secondary; the Primary server has no Secondary
connected and switches to state PRIMARY UNCERTAIN or PRIMARY ALONE.

How to recover when communication links between the
Watchdog and Secondary, and between the Primary and
Secondary, are down
About this task

To recover from the scenario where the connection between the Watchdog and the
Secondary server, and the connection between the Primary server and Secondary
server are broken:

Procedure
1. Try to fix the connections.
2. After the connections are fixed, check the state of the Primary server using the

command ADMIN COMMAND 'hotstandby state'.
3. If the state of the Primary is STANDALONE:

a. Ensure that both servers are running.
b. Set the state of the Primary server to PRIMARY ALONE using command:

ADMIN COMMAND ’hotstandby set primary alone’;

c. Copy the database from the Primary to the secondary using command:
ADMIN COMMAND ’hotstandby netcopy’;

Read 3.4.5, “Synchronizing primary and secondary servers,” on page 50 for
details.

4. Reconnect the Primary to the Secondary using the command:
ADMIN COMMAND ’hotstandby connect’;

Further scenarios where the communication links between the
Watchdog and Secondary, and between the Primary and
Secondary are down
If an application receives error message 10047 or 14537 from the Primary:
v Try to connect to the Secondary to check if it switched to be Primary.
v If the Secondary is not switched as the new Primary, re-execute the transaction

with the original Primary in PRIMARY ALONE state.

F.3 Watchdog section of the solid.ini configuration file
The solid.ini file for the Watchdog contains a [Watchdog] configuration section to
specify Watchdog-specific parameters.

194 IBM solidDB: High Availability User Guide

Important: The parameters in the [Watchdog] section of the solid.ini file are NOT
all predefined by solidDB. Depending upon how you write your Watchdog and
whether you want it to read parameter information from the solid.ini file, you
can use any mix of the parameters defined here and parameters that you have
defined. You can also ignore parameters. The parameters shown here are for the
sample C-language Watchdog program that solidDB provides.

Table 42. Watchdog parameters

[Watchdog] Description Factory value

AutoSwitch If the AutoSwitch parameter is set to yes, the Watchdog
automatically does the following:

1. If the Secondary server fails, then the Watchdog tells the
Primary server to switch to PRIMARY ALONE state (rather
than stay in PRIMARY UNCERTAIN) state.

2. If the Primary server fails, then the Watchdog
automatically sends the commands:

’hsb switch primary’
’hsb set primary alone’

to switch the original Secondary to be the new Primary.

For example:

[Watchdog]
AutoSwitch = NO

This parameter is optional.

Yes

Connect1 The Connect1 parameter in the [Watchdog] section enables the
Watchdog application to connect to the Primary or Secondary
server. This is a required parameter that defines the protocol
and network address for the Connect1 server.

For example:

connect1 = tcp primarymachine 1313

None

Connect2 The Connect2 parameter in the [Watchdog] section enables the
Watchdog application to connect to the Primary or Secondary
server. This is a required parameter that defines the protocol
and network address for the Connect2 server.

For example:

connect2 = tcp secondarymachine 1313

None

DualSecAutoSwitch If DualSecAutoSwitch = Yes and both servers are secondary,
then the Watchdog will automatically select one of the two
secondaries to be a new primary and switch it to primary. If
DualSecAutoSwitch = No then the system administrator must
switch one server to be the primary. Note that
DualSecAutoSwitch applies whether the Watchdog is in
"normal" mode or "failure" mode.

Yes

Appendix F. Watchdog sample 195

Table 42. Watchdog parameters (continued)

[Watchdog] Description Factory value

NumRetry The NumRetry parameter in the [Watchdog] section lets you
specify the number of Watchdog attempts to connect to a
Secondary or Primary server before the connection attempt is
considered a response failure or error.

For example:

[Watchdog]
NumRetry = 3

The retries are in addition to the original try. If number of
retries is set to 3, then the total number of attempts is 4. Note
that the retries are immediate. The Watchdog does not wait for
an interval of time (such as PingTimeout) in between retries
when there is a failure.

This parameter is optional.

0

Password1 Password2 See the description of the Username1 and Username2 parameters
below.

No factory value.

Pessimistic Setting this parameter to Yes can speed up Watchdog
reactions.

When Pessimistic = No, the Watchdog checks its connections
with the servers, but does not actually act (for example,
change the state of a server to PRIMARY ALONE) until after
one of the servers detects that there is a problem and changes
its state (for example, to PRIMARY UNCERTAIN).

When Pessimistic = Yes, the Watchdog acts as soon as the
Watchdog itself loses contact with one of the servers; the
Watchdog does not wait for the remaining server to change
states. This can speed up the reaction time, but may also
increase the odds of false alarms, for example due to network
problems.

When Pessimistic = Yes, the Watchdog reacts as follows: If
the Watchdog has lost contact with the Primary, then the
Watchdog switches the Secondary to be the Primary; if the
Watchdog loses contact with the Secondary, then the Watchdog
sets the Primary to PRIMARY ALONE.

CAUTION:
Setting Pessimistic = Yes may cause extra switching or even
dual primaries. This parameter should not be set to Yes
unless the network is much less likely to fail than the server.

You can also turn on Pessimistic behavior by using the
optional command-line switch "-p".

No

196 IBM solidDB: High Availability User Guide

Table 42. Watchdog parameters (continued)

[Watchdog] Description Factory value

PingInterval The PingInterval parameter in the [Watchdog] section lets you
specify the interval in milliseconds between querying status
connect information in normal Watchdog mode. To detect
server failure, the Watchdog sends the hotstandby status
connect command to both Primary and Secondary servers after
every PingInterval milliseconds.

For example:

[Watchdog]
PingInterval = 5000

This parameter is optional.

Note that the PingInterval parameter for the Watchdog is
different from the PingTimeout parameter for the servers.

CAUTION:
Previous sample Watchdogs required that the PingInterval
be specified in seconds, not milliseconds. If you are using an
older solid.ini file, you should update it.

1000

(1 second)

Username1 Username2 The Username and Password parameters in the [Watchdog]
section are optional. They specify the username and password
that are authorized for using the connect1 server.

For example:

[Watchdog]
Username1 = Tom
Password1 = dr17xy
Username2 = Jerry
Password2 = M89tvt

If (for security reasons) these parameters are not specified in
the solid.ini configuration file, the Watchdog will prompt for
them when the Watchdog is started.

No factory value.

WatchdogLog The WatchdogLog parameter in the [Watchdog] section lets you
specify the file name of the Watchdog log. The Watchdog log
is created in the current working directory. It is used to record
Watchdog messages, alerting administrators of the need to
issue Watchdog commands.

For example:

[Watchdog]
WatchdogLog = Watchdog.log

Note that quotation marks around the file name are not
required (as long as it does not contain special characters such
as the blank or certain punctuation marks).

This parameter is optional.

Watchdog.log

When using the parameter
[Logging]
DurabilityLevel

the DurabilityLevel parameter value affects only the Primary server. The logging
mode of the Secondary server is dictated by the 2SafeAckPolicy parameter in the
[HotStandby] section.

Appendix F. Watchdog sample 197

198 IBM solidDB: High Availability User Guide

Index

Special characters
-x autoconvert (command line option) 109, 112
-x backupserver (command line option) 55
= (equal to)

use of the equals sign when setting parameter values 35

Numerics
1SafeMaxDelay (parameter) 118
2SafeAckPolicy (parameter) 118

A
access mode

RO (read-only) 117
RW (read-write) 117
RW/Create 117
RW/Startup 117

ADMIN COMMAND 'hotstandby cominfo'
viewing connect settings 59

ADMIN COMMAND 'hotstandby connect'
connecting HotStandby servers 59

ADMIN COMMAND 'hotstandby copy'
copying database contents 57

ADMIN COMMAND 'hotstandby netcopy'
copying database contents 55, 56

ADMIN COMMAND 'hotstandby set primary alone'
Running the server in PRIMARY ALONE state 48

ADMIN COMMAND 'hotstandby set standalone'
shutting off HotStandby operations 49

ADMIN COMMAND 'hotstandby state'
verifying server states 62

ADMIN COMMAND 'hotstandby status connect'
displaying connect status information 60

ADMIN COMMAND 'hotstandby status copy'
verifying a copy procedure 57

ADMIN COMMAND 'hotstandby status'
querying HotStandby status 59

ADMIN COMMAND 'hotstandby switch primary'
switching server states 45

ADMIN COMMAND 'hotstandby switch secondary'
switching server states 45

administering
HotStandby 60, 61

status information 60
switching server states 45

application development
HotStandby

Basic Connectivity 92
switching to the new primary 95

ApplicationConnTestConnect (HAC parameter) 123
ApplicationConnTestInterval (HAC parameter) 123
ApplicationConnTestPassword (HAC parameter) 123
ApplicationConnTestTimeout (HAC parameter) 123
ApplicationConnTestUsername (HAC parameter) 123
autoconvert

command line option 109, 112
AutoPrimaryAlone (parameter) 40, 48, 118, 174

'hotstandby switch' command 45
AutoSwitch (parameter) 195

B
backup 4

listening mode, netcopy 55
BackupDeleteLog (parameter) 4
Basic Connectivity 92

C
catchup 50
CatchupSpeedRate (parameter) 66, 118
CatchupStepsToSkip (parameter) 66
CheckInterval (parameter) 123
CheckpointDeleteLog (parameter) 4
checkpoints 4
CheckTimeout (parameter) 123
ClientReadTimeout (parameter) 122
CLUSTER 75
configuring

HotStandby
netcopy performance 65

Connect (parameter) 37, 64, 118, 122
Connect [LocalDB] (parameter) 123
Connect [RemoteDB] (parameter) 123
Connect1 (parameter) 195
Connect2 (parameter) 195
connectivity

basics 92
choosing connectivity type 74
Transparent Failover 74

ConnectTimeOut (parameter) 38, 39, 118, 122
CopyDirectory (parameter) 40, 118
copying

database contents 55, 56, 57
Primary database to Secondary server over network 54
primary to local secondary 57
verifying procedure 54, 57

creating
secondary databases 55

current value 36

D
database

copying contents 55, 56, 57
in-memory tables 66
verifying a copy procedure 57

DBPassword (parameter) 123
DBUsername (parameter) 123
displaying

communication information 61
connect status information 60
switch status information 60

dual primaries 66
DualSecAutoSwitch (parameter) 195
DurabilityLevel (parameter) 40

199

E
EnableApplicationConnTest (HAC parameter) 123
EnableAutoNetcopy (parameter) 123
EnableDBProcessControl (parameter) 123
EnableUnresponsiveActions (HAC parameter) 123
equals sign 35
ERE (External Reference Entity) 23
EREIP (parameter) 123
External Reference Entity

configuring 123
description 23

F
Failure Transparency

choosing connectivity type
CONNECTION 87
NONE 87
SESSION 87

G
GUI

High Availability Manager 25

H
HA Manager parameters

Header_text 128
Server1_host 128
Server1_name 128
Server1_pass 128
Server1_port 128
Server1_user 128
Server2_host 128
Server2_name 128
Server2_pass 128
Server2_port 128
Server2_user 128
Window_title 128

HAC failure scenarios
HotStandby link fails 105
primary database fails 103
primary node fails 104
secondary database fails 104
secondary node fails 105
unresponsive server 106

HAManager.ini 117
Header_text (parameter) 128
High Availability Controller 43

commands 43
configuration 31
configuring 43
logging 25
principles 43
sample 33
setup 31
solidhac.ini 31
starting 31
stopping 31

High Availability Manager
configuring 43
definition 25
screenshot 25

HotStandby
administering 35
configuration 27

timeouts between applications and servers 98
configuring 35, 43
events

SYS_EVENT_HSBCONNECTSTATUS 169
SYS_EVENT_HSBSTATESWITCH 169
SYS_EVENT_NETCOPYEND 169
SYS_EVENT_NETCOPYREQ 169

HAC
configuration 29
quick start 29
setup 29

quick start 27
setup 27
shutting off operations 49
status

checking 59
turning off 64

hotstandby copy (ADMIN COMMAND) 161
HotStandby failure handling 103
hotstandby netcopy (ADMIN COMMAND) 161
HOTSTANDBY_CONNECTSTATUS (SQL function) 60, 95
HOTSTANDBY_STATE (SQL function) 95
hsb status ADMIN COMMAND

catchup 151
connect 151
copy 151
switch 151

HSBEnabled (parameter) 37, 64, 118

I
in-memory tables

HotStandby 66

L
Listen (parameter) 123
load balancing

dynamic control 91
methods

PREFERRED_ACCESS=LOCAL_READ 89
PREFERRED_ACCESS=READ_MOSTLY 89
PREFERRED_ACCESS=WRITE_MOSTLY 89

Transparent Connectivity 89
LogEnabled (parameter) 37
logging

High Availability Controller 25
logpos ADMIN COMMAND 151
logpos ADMIN COMMAND hotstandby 63

M
MaxLogSize (parameter) 118
MaxMemLogSize (parameter) 118

N
netcopy 161

ADMIN COMMAND 'hotstandby netcopy' 55
listening mode 55

tuning 65
tuning performance 65

200 IBM solidDB: High Availability User Guide

netcopy (continued)
Primary must be in PRIMARY ALONE state 11

NetcopyErrorLevel (HAC parameter) 123
NetcopyRpcTimeout (parameter) 118
NetcopyWarningLevel (HAC parameter) 123
network partitions 66

dual primaries 66
NumRetry (parameter) 195

O
OFFLINE (state) 161

P
parameters

AutoPrimaryAlone 40, 45, 48
AutoSwitch 195
BackupDeleteLog 4
CatchupSpeedRate 66
CatchupStepsToSkip 66
CheckInterval 123
CheckpointDeleteLog 4
CheckTimeout 123
Connect 37, 64
Connect [LocalDB] 123
Connect [RemoteDB] 123
Connect1 195
Connect2 195
ConnectTimeout 38, 39
CopyDirectory 40
DBPassword 123
DBUsername 123
DualSecAutoSwitch 195
DurabilityLevel 40
EnableAutoNetcopy 123
EnableDBProcessControl 123
EREIP 123
Header_text 128
High Availability Controller

CheckInterval 123
CheckTimeout 123
Connect [LocalDB] 123
Connect [RemoteDB] 123
DBPassword 123
DBUsername 123
EnableAutoNetcopy 123
EnableDBProcessControl 123
EREIP 123
Listen 123
Password 123
PreferredPrimary 123
RequiredConnectFailures 123
RequiredPingFailures 123
StartInAutomaticMode 123
StartScript 123
Username 123

HSBEnabled 37, 64
LogEnabled 37
NumRetry 195
Password 123
Password1 195
Password2 195
Pessimistic 195
PingInterval 38, 39, 195
PingTimeout 38, 39

parameters (continued)
PreferredPrimary 123
ReadMostlyLoadPercentAtPrimary 89
RequiredConnectFailures 123
RequiredPingFailures 123
Server1_host 128
Server1_name 128
Server1_pass 128
Server1_port 128
Server1_user 128
Server2_host 128
Server2_name 128
Server2_pass 128
Server2_port 128
Server2_user 128
StartInAutomaticMode 123
StartScript 123
Username 123
Username1 195
Username2 195
WatchdogLog 195
Window_title 128

partition
network 66

Password (parameter) 123
Password1 (parameter) 195
Password2 (parameter) 195
performing recovery and maintenance 44
Pessimistic (parameter) 195
ping 39
PingInterval (parameter) 38, 39, 118, 195
PingTimeout (parameter) 38, 39, 118
PreferredPrimary (parameter) 123
PRIMARY ACTIVE (state) 161
PRIMARY ALONE (state) 48, 161
PRIMARY UNCERTAIN (state) 161
PrimaryAlone (parameter) 118

R
READ COMMITTED

transaction isolation level 66
ReadMostlyLoadPercentAtPrimary (parameter) 89, 118
recovery

maintenance 44
REPEATABLE READ

transaction isolation level 66
RequiredAppConnTestFailures (HAC parameter) 123
RequiredConnectFailures (parameter) 123
RequiredPingFailures (parameter) 123
RO

access mode 117
running servers in PRIMARY ALONE state 48
RW

access mode 117
RW/Create

access mode 117
RW/Startup

access mode 117

S
samples

High Availability Controller 33
Watchdog 33

Index 201

secondary server
bringing back online 49

SERIALIZABLE
transaction isolation level 66

server states
OFFLINE 8
PRIMARY ACTIVE 8
PRIMARY ALONE 8, 48
PRIMARY UNCERTAIN 8
SECONDARY ACTIVE 8
SECONDARY ALONE 8
STANDALONE 8
switching server states 45
verifying 62

Server1_host (parameter) 128
Server1_name (parameter) 128
Server1_pass (parameter) 128
Server1_port (parameter) 128
Server1_user (parameter) 128
Server2_host (parameter) 128
Server2_name (parameter) 128
Server2_pass (parameter) 128
Server2_port (parameter) 128
Server2_user (parameter) 128
servers

connecting 59
SET TRANSACTION WRITE 91
SET WRITE 91
shutdown

HotStandby 49
SocketLinger (parameter) 122
SocketLingerTime (parameter) 122
solidhac.ini 31, 117
space for transaction logs 67
SQL functions

HOTSTANDBY_CONNECTSTATUS 60, 95
HOTSTANDBY_STATE 95

STANDALONE (state) 49, 64, 161
StartInAutomaticMode (parameter) 123
StartScript (parameter) 123
startup sequence 32
states

OFFLINE 161
PRIMARY ACTIVE 161
PRIMARY ALONE 161
PRIMARY UNCERTAIN 161
STANDALONE 49, 64, 161
verifying server states 62

status 59
displaying communication information 61
displaying connect status information 60
displaying switch status information 60
HotStandby 59
list of 60, 83, 87

store mode 117
switching

connect status information 60
switch status information 60

synchronizing Primary and Secondary servers 50
SYS_EVENT_HSBCONNECTSTATUS (event) 169
SYS_EVENT_HSBSTATESWITCH (event) 169
SYS_EVENT_NETCOPYEND (event) 169
SYS_EVENT_NETCOPYREQ (event) 169

T
TC Connection 74
TC Info 75

attribute combinations 82
handling contradictions 92
JDBC syntax 80
syntax 75

TF Connectivity 74
Trace (parameter) 122
TraceFile (parameter) 122
transactions

isolation levels
in-memory tables 66

logs
running out of space 67

Transparent Connectivity 74

U
UnresponsiveActionScript (HAC parameter) 123
upgrading

cold and hot migration 109
cold migration 109
hot migration 109, 112

Username (parameter) 123
Username1 (parameter) 195
Username2 (parameter) 195

V
verifying

connect status information 95
copy procedure 57

viewing current connect settings 59

W
Watchdog sample 33
WatchdogLog (parameter) 195
Window_title (parameter) 128

202 IBM solidDB: High Availability User Guide

Notices

© Copyright Oy IBM Finland Ab 1993, 2013.

All rights reserved.

No portion of this product may be used in any way except as expressly authorized
in writing by IBM.

This product is protected by U.S. patents 6144941, 7136912, 6970876, 7139775,
6978396, 7266702, 7406489, 7502796, and 7587429.

This product is assigned the U.S. Export Control Classification Number
ECCN=5D992b.

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

203

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Canada Limited
Office of the Lab Director
8200 Warden Avenue
Markham, Ontario
L6G 1C7
CANADA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

204 IBM solidDB: High Availability User Guide

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

IBM, the IBM logo, ibm.com®, Solid, solidDB, InfoSphere®, DB2®, Informix®, and
WebSphere® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and
service names might be trademarks of IBM or other companies. A current list of
IBM trademarks is available on the Web at “Copyright and trademark information”
at www.ibm.com/legal/copytrade.shtml.

Java™ and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other product and service names might be trademarks of IBM or other companies.

Notices 205

http://www.ibm.com/legal/copytrade.shtml

206 IBM solidDB: High Availability User Guide

����

SC27-3843-05

	Contents
	Figures
	Tables
	Summary of changes
	About this manual
	Illustration conventions
	Typographic conventions
	Syntax notation conventions

	1 Introduction to IBM solidDB HotStandby
	1.1 Key features of HotStandby
	1.1.1 HotStandby API (HSB admin commands)
	1.1.2 Basic HotStandby server scheme
	Heartbeat
	The transaction log and HotStandby
	Failover
	Server Catchup

	1.1.3 Server HotStandby states
	Description of server states

	1.1.4 Replication modes in HotStandby
	Synchronous HotStandby with 2-safe replication
	Asynchronous HotStandby with 1-safe replication

	1.1.5 Durability and logging
	1-Safe replication
	2-safe acknowledgement policy

	1.1.6 Load balancing of read-only workloads
	1.1.7 HotStandby and SMA
	1.1.8 HotStandby and advanced replication

	1.2 Performance and HotStandby
	1.3 High Availability Controller (HAC)
	1.3.1 Recognized failures
	1.3.2 Controlling database server processes
	1.3.3 External Reference Entity (ERE)
	1.3.4 Networking in HAC
	1.3.5 HAC logging

	1.4 High Availability Manager (sample)

	2 Getting started with HotStandby
	2.1 HotStandby quick start procedure
	2.2 HotStandby with HAC quick start procedure
	2.2.1 Starting and stopping HA Controller

	2.3 Summary of startup sequences
	2.4 HotStandby samples

	3 Administering and configuring HotStandby
	3.1 Basics of HotStandby administration
	3.1.1 Querying HotStandby configuration parameters
	3.1.2 Modifying HotStandby configuration parameters

	3.2 Configuring HotStandby
	3.2.1 Defining primary and secondary node HotStandby configuration
	3.2.2 Setting HotStandby server wait time to help detect broken or unavailable connections
	PingTimeout and PingInterval parameters [HotStandby]
	ConnectTimeout parameter [HotStandby]

	3.2.3 Defining transaction durability level
	3.2.4 Defining name and location for HotStandby database copy operation
	3.2.5 Defining primary server behavior during a secondary failure
	3.2.6 Ensuring that Primary and Secondary parameter values are coordinated
	3.2.7 Determining whether the Primary settings take precedence over the Secondary settings

	3.3 Configuring HA Controller and HA Manager
	3.4 Administering HotStandby with ADMIN COMMANDs (HotStandby API)
	3.4.1 Overview of administration tasks
	3.4.2 Performing HotStandby recovery and maintenance
	3.4.3 Switching server states
	Performing switchovers
	Performing failovers
	Running the new Primary in PRIMARY ALONE state
	Bringing the secondary server back online

	3.4.4 Shutting off HotStandby operations
	3.4.5 Synchronizing primary and secondary servers
	Catchup
	Full copy (hsb netcopy)
	Using a watchdog to synchronize servers
	Copying a primary database to a secondary over the network
	Creating a new database for the secondary server
	Replacing an existing database on the secondary server
	Verifying netcopy status
	Copying a database file from the primary server to a specified directory

	3.4.6 Connecting HotStandby servers
	3.4.7 Checking HotStandby status
	Displaying switch status information
	Displaying connect status information
	Displaying connection information
	Displaying role start time

	3.4.8 Verifying HotStandby server states
	Server state combinations

	3.4.9 Choosing which server to make primary
	3.4.10 Changing a HotStandby server to a non-HotStandby server

	3.5 Performance tuning
	3.5.1 Tuning replication performance with safeness and durability levels
	3.5.2 Tuning netcopy performance
	3.5.3 Tuning database catchup performance

	3.6 Special considerations for using solidDB with HotStandby
	3.6.1 Transaction isolation level and in-memory tables
	3.6.2 Network partitions and dual primaries
	3.6.3 Running out of space for transaction logs
	3.6.4 Throttling and multiprocessing in Secondary

	3.7 Configuring for lower cost versus higher safety
	3.7.1 Reducing cost: N + 1 spare and N + M spares scenarios
	3.7.2 Increasing reliability: 2N + 1 spare and 2N + M spare scenarios
	3.7.3 How solidDB HSB supports the N+1 (N+M) and 2N+1 (2N+M) approaches
	3.7.4 Using HAC with spares

	4 Using HotStandby with applications
	4.1 Connecting to HotStandby servers
	4.1.1 Choosing the connectivity type

	4.2 Transparent Connectivity
	4.2.1 Defining the Transparency Connectivity connection
	Syntax of Transparent Connectivity Info – ODBC
	Transparent connectivity with JDBC
	TC attribute combinations
	Connect error processing
	Example: TC connection
	Example: TC connection with multi-home servers

	4.2.2 Failure transparency in Transparent Connectivity
	Principles of connection switch handling
	Preservation of session state

	4.2.3 Load balancing in Transparent Connectivity
	Static load balancing configuration
	Controlling load balancing dynamically
	Failover transparency with load balancing
	Executing stored procedures under load balancing

	4.2.4 Handling TC Info contradictions

	4.3 Basic Connectivity
	4.3.1 Reconnecting to primary servers from applications
	Preparing client applications for HotStandby
	Getting the secondary server address
	Detecting HotStandby server failure in client applications
	Switching the application to the new primary

	4.3.2 Reconnecting to secondary servers

	4.4 Defining timeouts between applications and servers
	4.4.1 Application read timeout option
	4.4.2 Specifying -C option in the connect parameters

	4.5 Configuring SMA with HotStandby
	4.6 Configuring advanced replication with HotStandby

	5 Failure handling with High Availability Controller (HAC)
	5.1 Primary database fails
	5.2 Secondary database fails
	5.3 Primary node fails
	5.4 Secondary node fails
	5.5 HotStandby link fails
	5.6 Server is unresponsive to external clients

	6 Upgrading (migrating) HotStandby servers
	6.1 Cold migration procedure
	6.2 Hot migration procedure
	6.3 Hot migration procedure using netcopy

	Appendix A. HotStandby configuration parameters
	A.1 Server-side parameters
	A.1.1 Cluster section
	A.1.2 HotStandby section

	A.2 Client-side parameters
	A.2.1 Com section
	A.2.2 TransparentFailover section

	A.3 High Availability Controller (HAC) parameters
	A.4 High Availability Manager (HAM) configuration parameters
	A.5 Configuration file examples
	A.5.1 The solid.ini configuration file
	A.5.2 The solidhac.ini configuration file
	A.5.3 The HAManager.ini configuration file

	Appendix B. Error codes for HotStandby
	B.1 HotStandby errors and status codes
	B.2 High Availability Controller errors and status codes
	B.3 solidDB database errors for HotStandby
	B.4 solidDB table errors
	B.5 solidDB communication errors

	Appendix C. HotStandby and HAC ADMIN COMMANDs
	C.1 HotStandby commands (ADMIN COMMAND)
	C.2 High Availability Controller commands (ADMIN COMMAND)

	Appendix D. Server state transitions
	D.1 HotStandby state transition diagram

	Appendix E. HotStandby system events
	Appendix F. Watchdog sample
	F.1 HotStandby configuration using Watchdog
	F.1.1 How the Watchdog application works
	Failure mode
	Coding the Watchdog for multiple failures

	F.1.2 System design issues
	F.1.3 Watchdog configuration
	F.1.4 Using the sample Watchdog application

	F.2 Failure situations and Watchdog actions
	F.2.1 Primary is down
	How to recover when the primary is down

	F.2.2 Secondary is down
	How to recover when the secondary is down
	Further scenarios when the secondary is down

	F.2.3 Watchdog is down
	How to recover when the watchdog is down

	F.2.4 Communication link between Primary and Secondary is down
	How to recover when the communication link between the Primary and Secondary is down
	Further scenarios when the communication link between the Primary and Secondary is down

	F.2.5 Communication link between the Watchdog and Primary is down
	How to recover when the communication link between the Watchdog and Primary is down

	F.2.6 Communication link between the Watchdog and Secondary is down
	How to recover when the communication link between the Watchdog and Secondary is down

	F.2.7 Communication links between the Watchdog and Primary, and between the Primary and Secondary, are down
	How to recover when communication links between the Watchdog and Primary, and between the Primary and Secondary, are down
	Further scenarios where communication links between the Watchdog and Primary, and between the Primary and Secondary, are down

	F.2.8 Communication links between the Watchdog and Secondary, and between the Primary and Secondary, are down
	How to recover when communication links between the Watchdog and Secondary, and between the Primary and Secondary, are down
	Further scenarios where the communication links between the Watchdog and Secondary, and between the Primary and Secondary are

	F.3 Watchdog section of the solid.ini configuration file

	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

	Notices

