
IBM solidDB
Version 7.0

Advanced Replication User Guide

SC27-3842-05

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 163.

First edition, fifth revision

This edition applies to V7.0 Fix Pack 8 of IBM solidDB (product number 5724-V17) and to all subsequent releases
and modifications until otherwise indicated in new editions.

© Oy IBM Finland Ab 1993, 2013

Contents

Figures v

Tables vii

Summary of changes. ix

About this manual xi
Overview of replication in IBM solidDB xi
Conventions xi

Typographic conventions xi
Syntax notation conventions. xii

1 Introduction to data synchronization
using advanced replication 1
1.1 Principles of operation 2

1.1.1 Replication models 2
1.1.2 Sending data from a master to a replica . . 3
1.1.3 Sending data from a replica to its master . . 7
1.1.4 Accepting propagated data on the master . . 7
1.1.5 Push-based synchronization with Sync Pull
Notify 8
1.1.6 Configuring and administering
synchronization environment 9

1.2 Typical applications 9

2 solidDB data synchronization
architecture. 11
2.1 Advanced replication topologies and
synchronization models 11

2.1.1 Multitier redundancy model 11
2.1.2 Multi-master synchronization model . . . 14

2.2 solidDB advanced replication architecture
components 18

2.2.1 Master and replica databases 18
2.2.2 Publications, subscriptions, and refreshes. . 19
2.2.3 Asynchronous replication - messages . . . 20
2.2.4 Synchronous replication - messageless
REFRESH 20
2.2.5 Intelligent Transaction 20

2.3 Sync Pull Notify 25
2.3.1 Replica Property Names 26
2.3.2 Introduction to Sync Pull Notify. 28
2.3.3 Scheduling REFRESH or Sync Pull Notify 31

3 Getting started with data
synchronization - evaluation setup . . 33
3.1 Overview of setting up advanced replication
using the evaluation setup sample 33
3.2 Preparing to use the advanced replication
evaluation sample 34

3.2.1 Designing a database table for
synchronization 34

3.3 Configuring the servers and creating the
publications 35

3.3.1 Configuring master database 35
3.3.2 Configuring the replica database 37

3.4 Creating stored procedures for populating
master and replica databases 38
3.5 Enabling refresh of data and inserting data in
replica 41
3.6 Synchronizing data using synchronization
messages 42

4 Planning and designing for advanced
replication applications 47
4.1 Planning for advanced replication installation. . 47

4.1.1 Distributing data 47
4.1.2 Tailoring the synchronization process . . . 47
4.1.3 Evaluating performance and scalability . . 47

4.2 Designing and preparing databases for
synchronization 49

4.2.1 Defining master and replica databases. . . 49
4.2.2 Creating the database schema 50
4.2.3 Defining a database table 55
4.2.4 Handling UPDATE triggers 57
4.2.5 Handling concurrency conflict in
synchronized tables in replica 62

4.3 Determining user access requirements 63
4.4 Creating backups for fault tolerance 63
4.5 Designing the application for synchronization. . 64

4.5.1 Providing a tentative data status on the user
interface 64
4.5.2 Providing a user interface to manage
synchronization 64
4.5.3 Providing Intelligent Transaction based on
application needs 65

5 Using advanced replication with
applications 67
5.1 Using advanced replication data synchronization
statements 67

5.1.1 Types of advanced replication statements. . 67
5.2 Building messages for synchronization 68

5.2.1 Beginning messages 69
5.2.2 Propagating transactions from replica to
master 69
5.2.3 Refreshing publication data from master to
replica 70
5.2.4 Ending messages 70
5.2.5 Forwarding messages to the master
database 70
5.2.6 Requesting a reply message from the master
database 71
5.2.7 Configuring advanced replication messages 71
5.2.8 Executing a synchronization process . . . 72

5.3 Using synchronous refresh 73

iii

5.4 Implementing security through access rights and
roles 74

5.4.1 How advanced replication security works 74
5.4.2 Changing replica access to the master
database 75
5.4.3 Setting up access rights. 77
5.4.4 Implementing special advanced replication
roles 80
5.4.5 Access rights summary 80

5.5 Setting up databases for synchronization . . . 83
5.5.1 Configuring the master database(s) 84
5.5.2 Registering replicas with the master
database 84

5.6 Creating publications 85
5.6.1 Creating incremental publications 86
5.6.2 Using the create publication statement . . 86
5.6.3 Subscribing to publications 89

5.7 Designing and implementing Intelligent
Transactions 91

5.7.1 Updating local data 92
5.7.2 Saving the transaction for later propagation 92
5.7.3 Using the advanced replication Parameter
Bulletin Board 93
5.7.4 Creating stored procedures 96
5.7.5 Creating a synchronization error log table
for an application 97

5.8 Validating Intelligent Transactions. 97
5.8.1 Designing complex validation logic . . . 98
5.8.2 Error handling in the application 99
5.8.3 Specifying recovery from fatal errors . . . 100

6 Updating and maintaining the
schema of a distributed system . . . 105
6.1 Managing solidDB tables and databases . . . 105

6.1.1 Modifying the database schema 105
6.1.2 Changing master or replica database
location 105
6.1.3 Unregistering a replica database 105
6.1.4 Creating large replica databases 106
6.1.5 Managing data with synchronization
bookmarks 106
6.1.6 Exporting and importing subscriptions . . 107
6.1.7 Modifying publications and tables in
publications 112
6.1.8 Modifying SQL procedures of intelligent
transaction 113

6.2 Upgrading the schema of a distributed system 113
6.2.1 Introduction to Maintenance Mode . . . 113
6.2.2 Major features and functionality for
upgrading the schema of a distributed system . 114
6.2.3 Updating a distributed schema 117
6.2.4 Example: Upgrading a distributed schema 117
6.2.5 Considerations for using maintenance
mode 123
6.2.6 Upgrading the server version 123

7 Administering advanced replication
systems. 125
7.1 Monitoring solidDB advanced replication . . . 125

7.1.1 Monitoring the status of synchronization
messages 125
7.1.2 Managing synchronization errors 126

7.2 Performing backup and recovery 130

8 Performance monitoring and tuning 133
8.1 Monitoring the progress of messages 133
8.2 Tuning for data synchronization 135

8.2.1 Tuning publication definitions 136
8.2.2 Optimizing synchronization history data
management 136
8.2.3 Read-only replica 139
8.2.4 Optimizing synchronization messages . . 140

Appendix A. Bulletin board
parameters 141
A.1 Advanced replication system parameter
categories 141
A.2 Parameters on replica 141
A.3 Parameters on master 144
A.4 Parameters on both master and replica . . . 147

Appendix B. Synchronization events 151
B.1 Sequence of events 151
B.2 Parameters of synchronization-related events 153
B.3 Parameters of message progress events . . . 156

Index 157

Notices 163

iv IBM solidDB: Advanced Replication User Guide

Figures

1. Propagate and Refresh 6
2. Two-tier data redundancy architecture . . . 12
3. Multitier data redundancy architecture 13
4. Multi-master model 14
5. Database, catalogs, and schemas 16
6. Transaction in a central database 22
7. Transaction in a synchronized database 23

8. The structure of Intelligent Transaction 24
9. Multi-Master Model. 52

10. Details on an incremental refresh 59
11. Advanced Replication user access rights 75
12. Error-prone areas in synchronization

messaging 126

v

vi IBM solidDB: Advanced Replication User Guide

Tables

1. Typographic conventions xi
2. Syntax notation conventions xii
3. Replica properties and values 26
4. Steps for setting up advanced replication using

a sample 33
5. Handling a concurrency conflict. 62
6. Access rights in the replica 81
7. Access rights in the master 82

8. Parameters on replica 142
9. Parameters on master 144

10. Parameters on both master and replica 147
11. Events when replica propagates messages to

master 152
12. Parameters associated with

synchronization-related events 153
13. Parameters of message progress events 156

vii

viii IBM solidDB: Advanced Replication User Guide

Summary of changes

Changes for revision 05
v Editorial corrections.

Changes for revision 04
v Editorial corrections.

Changes for revision 03
v Editorial corrections.

Changes for revision 02
v Editorial corrections.

Changes for revision 01
v Editorial corrections.

ix

x IBM solidDB: Advanced Replication User Guide

About this manual

IBM® solidDB® advanced replication is a capability to replicate the data across
disparate computer nodes in a network to meet the needs of your applications.
With advanced replication, the data can be as close to the application as implied by
the latency, performance, or availability requirements. The core of advanced
replication is asynchronous replication based on the publish/subscribe model. In
the solidDB context, the replication type used in advanced replication is called
synchronization.

This guide introduces you to synchronization concepts and architecture and
describes how to set up, use, and administer a solidDB using advanced replication.

This guide assumes the reader has general database management system (DBMS)
knowledge and a familiarity with SQL. It also assumes that you are already
knowledgeable about solidDB. You may want to read Getting Started Guide and
Administrator Guide before reading this manual.

Tip: solidDB offers also another replication solution using InfoSphere® CDC
replication technology, which is documented in the CDC Replication User Guide.

Overview of replication in IBM solidDB
With IBM solidDB, data replication can be implemented with three different
technologies: advanced replication, InfoSphere CDC replication, and solidDB High
Availability (HotStandby).

Advanced replication
Advanced replication uses built-in SQL extensions and is targeted for
occasional or event-based asynchronous replication in N+M topologies.

InfoSphere CDC replication
InfoSphere CDC replication uses transaction log reading and is targeted for
occasional or continuous replication flow. It supports heterogeneous
environments.

HotStandby replication
HotStandby replication is targeted for High Availability systems that need
very fast failover and recovery functionality, using 1+1 topology.

Conventions

Typographic conventions
solidDB documentation uses the following typographic conventions:

Table 1. Typographic conventions

Format Used for

Database table This font is used for all ordinary text.

NOT NULL Uppercase letters on this font indicate SQL keywords and
macro names.

xi

Table 1. Typographic conventions (continued)

Format Used for

solid.ini These fonts indicate file names and path expressions.

SET SYNC MASTER YES;
COMMIT WORK; This font is used for program code and program output.

Example SQL statements also use this font.

run.sh This font is used for sample command lines.

TRIG_COUNT() This font is used for function names.

java.sql.Connection This font is used for interface names.

LockHashSize This font is used for parameter names, function arguments,
and Windows registry entries.

argument Words emphasized like this indicate information that the
user or the application must provide.

Administrator Guide This style is used for references to other documents, or
chapters in the same document. New terms and emphasized
issues are also written like this.

File path presentation Unless otherwise indicated, file paths are presented in the
UNIX format. The slash (/) character represents the
installation root directory.

Operating systems If documentation contains differences between operating
systems, the UNIX format is mentioned first. The Microsoft
Windows format is mentioned in parentheses after the
UNIX format. Other operating systems are separately
mentioned. There may also be different chapters for
different operating systems.

Syntax notation conventions
solidDB documentation uses the following syntax notation conventions:

Table 2. Syntax notation conventions

Format Used for

INSERT INTO table_name
Syntax descriptions are on this font. Replaceable sections are
on this font.

solid.ini This font indicates file names and path expressions.

[] Square brackets indicate optional items; if in bold text,
brackets must be included in the syntax.

| A vertical bar separates two mutually exclusive choices in a
syntax line.

xii IBM solidDB: Advanced Replication User Guide

Table 2. Syntax notation conventions (continued)

Format Used for

{ } Curly brackets delimit a set of mutually exclusive choices in
a syntax line; if in bold text, braces must be included in the
syntax.

... An ellipsis indicates that arguments can be repeated several
times.

.

.

.

A column of three dots indicates continuation of previous
lines of code.

About this manual xiii

xiv IBM solidDB: Advanced Replication User Guide

1 Introduction to data synchronization using advanced
replication

With IBM solidDB advanced replication data synchronization, you can store,
manage, and synchronize data across databases.

The advanced replication data synchronization functionality is built into the
solidDB server. It uses all the capabilities that solidDB provides, such as
transactions and SQL to provide a rich set of data distribution features.

As a simple example, suppose that you manage an enterprise that has multiple
branch offices. You might want to give every branch office or user a local copy of
your database so that each user gets the fastest possible response time. But If each
office has its own copy of the database, the database can become inconsistent over
time, as various data is updated in numerous databases of the system. The
advanced replication feature provides the flexibility and fast access of providing
local copies of the database, while maintaining the data consistency of the data of
the distributed system.

Tip: The advanced replication feature is sometimes referred to as SmartFlow.

Key features

Master/replica model
In solidDB advanced replication, a master database contains the master
copy of the data. One or more replica databases contain full or partial
copies of the master data. A replica database, like any other database, can
contain multiple tables. Some tables can contain only replicated data
(copied from the master), some local-only data (not copied from the
master), and some a mix of replicated data and local-only data.

System-wide information sharing
Each server in the advanced replication system can have its own local copy
of the data that it needs. There is no need to provide users with online
access to central data management resources. In addition, each replica
database of an advanced replication system can serve a specific purpose.
For example, one replica can be dedicated to a decision support or
reporting application, while another is dedicated to an online transaction
processing application.

Data integrity
In a multi-database system, where updates can occur in multiple databases
periodically, maintaining data integrity poses challenges. For example, a
technician in the field might update a customer's address on a local replica,
while a customer service person at the main office might update the
customer's address in the master database. When the replica is reconnected
to the network, whose data takes precedence if the data does not match?

With the advanced replication transaction management architecture,
application developers can build transaction validation capabilities into the
transaction itself. You can write your own application-specific business
rules and logic to resolve conflicts if they occur.

Advanced replication also provides the Intelligent Transaction feature that
helps application developers control the consistency of the master

1

database. The Intelligent Transaction feature allows a transaction to
validate itself in the master database and adjust its behavior to ensure the
validity of the transaction.

High performance and flexibility
You can synchronize data between the master and replicas on intervals of
your choice using pull-based replication models. You can also disconnect
local copies of the database from the network and then reconnect them
later. Each time you reconnect, you can synchronize bidirectionally. You
send the latest version of your local data to the master server, and
download the latest data from the master to your local replica server.
Replicas can submit updates to the master server, which then verifies the
updates according to rules set by the application programmers. The
verified data is then published and made available to all replicas.

Each user or office can also be given only the slice of information that is
relevant to their work. Partitioning the data reduces the bandwidth
required to synchronize databases across a network. You can also use
partitioning to increase data security by limiting access without requiring
all data to be stored in a single secure location.

Application developers can also tailor the synchronization process to
maximize performance. For example, large amounts of data can be
transferred over the network when the available bandwidth is optimal.
Similarly, you can specify that only high-priority transactions that reflect
urgent data are propagated during rush hours.

1.1 Principles of operation
The advanced replication technology uses a master/replica model. The master has
the official copy of the data, and replicas can subscribe to that data. Replicas can
also change the local copy of the data and propagate the transaction to the master,
but the master has the authority to alter or reject the data of the transaction to
maintain the consistency of the master data.

solidDB allows bidirectional data flow. Masters can send data to replicas, and
replicas can send data to masters.

Sending data from masters to replicas is done using a model that is called publish
and subscribe: the master publishes data that replicas can subscribe to.

Sending data from a replica to a master is called propagating the data.

1.1.1 Replication models
Advanced replication supports several different data distribution models that you
can tailor to meet the requirements of your application. For example, you can use a
geographic or conceptual model to control how data is distributed.

The master/replica architecture of advanced replication supports various
replication models. In an advanced replication setup, each computer or device has
a database managed by a solidDB server. The advanced replication functionality is
included in all solidDB server instances. Each solidDB instance can send data to
another solidDB instance, and the receiving solidDB instance can store the data in
its database.

With advanced replication, you can decide how to divide the data and when to
synchronize the data between the solidDB instances.

2 IBM solidDB: Advanced Replication User Guide

Example: Replication models based on data

Identical master and replica databases
You might want every computer to have an exact copy of all of the data.
For example, you might want every repair person out in the field to have a
complete, up-to-date copy of the repair parts lists and prices

Partitioned replicas
You might want to partition the data to distribute different pieces of the
whole to different computers. The distribution might be based on
geographic responsibility. For example, the computer at headquarters
might have a copy of all of the data (for example, all the customer
accounts), while each local branch might keep only a copy of the data that
applies to it. Or, you might want to have a rack of telecommunications line
cards, each of which is responsible for handling particular connections or
addresses. A single master computer keeps a complete set of connections
and assigns them to individual line cards.

Example: Replication models based on synchronization
frequency

Synchronizing at regular intervals
You might choose to update data at regular intervals, such as once a week,
once a day, once a minute, or once every 5 seconds.

Synchronizing as soon as updates are available
You might choose to propagate updated data as soon as the change occurs,
rather than according to a clock or calendar. For example, you can use the
Sync Pull Notify feature to configure the master to notify replicas when
there is new data that might be worth subscribing to.

Synchronizing data based on importance
You might want to propagate certain types of data (updated email
addresses, for example) as soon as they are updated, while propagating
other types of data (such as billing summaries) once a month.

1.1.2 Sending data from a master to a replica
A master database can share as much or as little data as it wants. A user on the
master creates publications, which are sets of data that replicas can request. A
publication is similar to a view — it is a set of data defined by stating the tables
where the data comes from and the portions of the data that should be included.

Once these publications are created, replicas can register for those publications.

Once a replica has registered for a publication, the replica can get refreshes from
that publication. The replica can use parameters to request only a subset of the
publication. For example, the master might decide to publish billing summaries for
all customers. Replicas (at branch offices) might want only the billing summaries of
the customers that branch is responsible for. To specify which billing summaries
the replica wants, the replica can provide input parameters that act as search
criteria for the data of the publication.

The steps for sending data from a master to a replica are as follows:
1. Master creates a publication with specified data (for example, billing

summaries of all customers).
2. Replica registers for that publication.
3. Replica requests a refresh from that publication to get all or part of the data.

1 Introduction to data synchronization using advanced replication 3

The model of publish and subscribe is similar, but not identical to the way magazines
are published and subscribed to. A large publishing company might sell many
different monthly magazines — perhaps one on SQL, one on C, and one on Java™.
The publisher decides what information to put into each issue. You do not control
the content. You as a subscriber register to receive one or more of those
publications. For example, you might send in your money to subscribe to an SQL
magazine.

A key difference between the world of magazine publishing and the world of
advanced replication synchronization is that in solidDB synchronization, the
recipient, not the publisher, decides when to get new data. In magazine publishing,
the magazine company decides when to send the magazine. If you subscribe to a
monthly computer magazine, the publisher sends you a magazine each month,
whether or not you have time to read it. In the world of advanced replication
synchronization, however, it is you the subscriber who decide when to request new
data. In this way, solidDB synchronization is similar to publishing on the web
rather than publishing on paper. With web publishing, you pay the publisher, the
publisher puts data on the web site whenever the publisher wants, and you visit
that web site whenever you want.

The term push is used to describe the situation where the publisher decides when
to send data to the recipient. Pull describe the situation where the recipient decides
when to get data from the publisher. In the world of web publishing (and solidDB
synchronization), the reader pulls the data.

In some applications, it is important for the master (the publisher) to send data as
soon as it is updated. The solidDB synchronization technology provides a Sync
Pull Notify feature that enables a master to notify replicas when there is new data
that might be worth subscribing to. The Sync Pull Notify functionality provides the
equivalent of push technology, but with more flexibility.

With solidDB synchronization, similar to magazine publishing, the customer (the
replica) can subscribe to more than one master database (more than one magazine).
If you want to subscribe to three different magazines, or three different master
databases, you can do so. However, data from each master must be stored in a
separate catalog (logical database) in the replica. One database catalog can contain
data from only one master database. However, a single physical database can
contain multiple database catalogs. Hence, a replica database server can contain
data from multiple master databases. One server can also contain both master and
replica database catalogs.

With solidDB synchronization, a subscriber can request a full or incremental
download (or refresh) of information. An incremental refresh contains just the
changes since the most recent prior refresh — analogous to receiving the most
recent issue of a magazine, or seeing only the new articles on a web site.
Alternatively, a subscriber can request a full refresh — analogous to ordering the
complete set of back issues for a magazine or looking at the entire current web
site. Replicas in a solidDB system always start with a full download; after that,
they can request only incremental refreshes if they wish.

Tip: Although the term refresh implies that it is an update of previous data, it is
used loosely to refer to the initial download as well as subsequent downloads.

Data sent from the replica to the master is not automatically accepted at the
master. The solidDB Intelligent Transaction capability allows the Master to reject or
modify data to make sure that only valid data is stored in the master.

4 IBM solidDB: Advanced Replication User Guide

The following illustration shows an overview of the propagate and refresh process
between a master and a single replica. This illustration includes an example of a
record that was accepted by the master and another record that was rejected by the
master (for example, because the update was invalid according to business rules
enforced on the master).

1 Introduction to data synchronization using advanced replication 5

You can configure the advanced replication system to automatically keep track of
which data is new for each replica; users themselves do not need to keep track of
anything to request only an incremental update. Furthermore, each replica's need
for incremental data is tracked independently. A replica that has not refreshed for a
week will receive the most recent week's worth of changes. A replica that refreshed
an hour ago will only be sent the most recent hour's worth of changes.

5

4

3

2

1

A

B

C

2

1

1

A

B

C

2

1

1

A

B

C

2

1

1

A

B

C

2

2

1

A

B

C

1

1

1

A

B

C

2

2

1

A

B

C

1

1

1

A

B

C

1

1

1

A

B

C

1

1

1

Master
table

Replica
tableAction

1. Initial state

2. Full refresh

3. Anne Anderson (A) and Barry Barrymore (B) update their records and save them for later propagation.

4. Propagate updates to the Master. In this example, the master accepts Anne's change but reject's Barry's.

5. Incremental Refresh. The master sends back Anne's update, but not Barry's, because Barry's update was rejected.
Barry's record is left at its last official value.

Figure 1. Propagate and Refresh

6 IBM solidDB: Advanced Replication User Guide

Related information:
2.2.5, “Intelligent Transaction,” on page 20
“Incremental vs. full refresh” on page 113

1.1.3 Sending data from a replica to its master
Sending data from a replica to its master is called propagating the data to the
master. The replica controls when and how much data should be sent.

When data is propagated from a replica to a master, the propagation is done by
composing a message that is sent from the replica to the master. The message
contains SQL statements rather than rows of data. A single message can contain
multiple statements and multiple transactions. There is no way to send a fragment
of a transaction to the master; the message must commit the SQL statements that it
sends. You can divide a message into multiple transactions, but you cannot divide
a transaction into multiple messages.

Although there is almost no restriction on the SQL statements that you can use, as
a practical matter, the statements that you send to the master are typically the
same as the statements that you executed on the replica. Instead of sending raw
data to the master, you send a series of statements that perform the same
operations on the master as you performed on the replica. For example, if you
performed the following steps on the replica, you send the same commands to the
master so that the same steps are repeated on the master.
INSERT INTO employees (id, name) VALUES (12, ’Michelle Uhuru’);
UPDATE employees SET department = ’Telecommunications’ WHERE id = 12;

Important: If your replica contains a subset of the data on master, executing
statements can affect more records on the master than on the replica. For example,
a command that uses a unique employee ID in the WHERE clause is likely to have
the same effect on the master as on the replica. If the replica has only a subset of
the data on the master, a command that has a broad WHERE clause can affect
more records on the master than on the replica.

You use SAVE statements to compose the message that is send from replica to
master. In pseudo-code, this looks similar to the following:
INSERT INTO employees (id, name) VALUES (12, ’Michelle Uhuru’);
UPDATE employees SET department = ’Telecommunications’ WHERE id = 12;
-- Save the statements for later propagation to the master
-- database.
SAVE INSERT INTO employees (id, name) VALUES (12, ’Michelle Uhuru’);
SAVE UPDATE employees SET department = ’Telecommunications’ WHERE id = 12;
COMMIT WORK;

Tip: The propagated SQL statements can include stored procedure calls.
Related information:
5.7.2, “Saving the transaction for later propagation,” on page 92

1.1.4 Accepting propagated data on the master
When the replica propagates data to the master, the master is not required to
accept that data. Within a master/replica system, only the master has the authority
to declare data official. If the master receives data that violates database rules (such
as referential integrity constraints), or business rules (such as prohibiting customers
from exceeding a certain credit limit), the master can reject or alter the data.

1 Introduction to data synchronization using advanced replication 7

The master also has other options to bring data into conformance, such as
modifying the data. For example, if a customer orders more widgets than are in
stock, the master might modify the customer's order so that the customer is sent all
the remaining available widgets. This way, the customer's order is not thrown out
completely.

Advanced replication includes the Intelligent Transaction feature that helps
application developers control the consistency of the master database. The
Intelligent Transaction feature allows a transaction to validate itself in the master
database and adjust its behavior to ensure the validity of the transaction.
Related information:
2.2.5, “Intelligent Transaction,” on page 20

1.1.5 Push-based synchronization with Sync Pull Notify
The advanced replication feature provides push-based synchronization using the
Sync Pull Notify capability.

The advanced replication feature offers pull-based synchronization in which the
replica decides when to pull a copy of updated data from the master. However, in
many situations, users might prefer a push-based model, where the master
determines when to send data to the replicas. For example, in a push-based model,
the master can send data as soon as that data is updated, rather than waiting for
replicas to request an updated copy.

The advantage of the pull-based model is that it tends to semi-randomly distribute
requests to the master; this keeps the master from being overloaded with a large
number of update requests at once. The pull-based model also works well when
replicas are connected to the network only irregularly. For example, data on mobile
devices might need to be synchronized only occasionally. The advantages of the
push-based model are that out-of-date data is updated rapidly and replicas do not
have to waste time polling for new data when none has arrived.

The advanced replication feature provides push-based synchronization using the
Sync Pull Notify capability. With the Sync Pull Notify capability, the master notifies
the replica that there is updated data, and the replica can then choose whether to
download the updated data.

The Sync Pull Notify capability is implemented by using a combination of the
following functionality:
v START AFTER COMMIT statement, which specifies an SQL statement (such as a

call to a stored procedure) that will be executed when the current transaction
commits. For example, if a specific transaction updates information on the
master, then the START AFTER COMMIT can tell the master to do a remote
procedure call to the replica after the update has been successfully committed.

v Remote stored procedures, which provide a way to call a stored procedure in
another database. Specifically, a stored procedure is created on the replica, and
the master calls that stored procedure. For example, the replica might create a
stored procedure that contains a REFRESH command, and the master can then
call that procedure, thus causing the replica to request the refresh.

v Replica property names, which provide a way to identify the replicas that the
master wants to notify.

8 IBM solidDB: Advanced Replication User Guide

1.1.6 Configuring and administering synchronization
environment

You configure and administer the advanced replication environment using SQL
statements and system stored procedures.

Typically the setup of the advanced replication environment includes the following
steps:

Set up master

1. Define the database as a master database and create a catalog for
synchronization.

2. Create a publication to define the data set that will be replicated to one
or more replica databases.

3. Define user access rights to control who can synchronize data.

You can complete the set up steps using a combination of system
procedures and SQL statements or by using SQL statements only. To
modify the publication definitions later on, a set of SQL statements are
available.

Set up replicas

1. Define each database as a replica database, register replicas with the
master database and create a catalog for synchronization.

2. Define user access rights to control who can synchronize data.
3. Register each replica for a publication.

You can complete the set up steps using a combination of system
procedures and SQL statements or by using SQL statements only. To
modify the publication definitions later on, a set of SQL statements are
available.

In the advanced replication environment, data changes can be synchronized
bidirectionally:

Synchronize data

1. To synchronize (load) data from the master to replica, issue a refresh.
The refresh can load all data (full refresh) or only changed data
(incremental refresh).

2. To synchronize changes to data from replica to master:
a. Save each DML statement using a proprietary SAVE statement.
b. Compose a message that defines the saved data to be propagated to

the master.
c. Send (forward) the message to the master.

The refreshes of data from the master to the replica are started by issuing a
REFRESH command on the replica.

The propagation of data from the replica to the master is controlled using
SQL statements and procedure-type MESSAGE statements.

1.2 Typical applications
Below are examples of how solidDB synchronization technology can be used:
v A bank might keep all of its account information in a central database. Branch

offices might get subset of the data for customers who use that particular
branch.

1 Introduction to data synchronization using advanced replication 9

v Mobile sales people or repair people might keep copies of a subset of customer
information or product information about their mobile computing devices, while
a central office keeps a complete set of the data.

v A rack of telecommunications equipment can hold many line cards, each with its
own memory. One card can act as the master, assigning connections to specific
line cards. Other line cards can act as replicas, each handling a subset of the
connections. Each card might be responsible for, for example, a particular range
of network addresses.

v A content provider might keep a complete set of files (movies, music, and so
on), which could be downloaded to individual consumers for their use. This
type of application is not limited to "1-to-many" relationships. Customers could
have relationships with multiple content providers, so that there is a
many-to-many relationship between content providers and customers.

10 IBM solidDB: Advanced Replication User Guide

2 solidDB data synchronization architecture

2.1 Advanced replication topologies and synchronization models
The advanced replication architecture is designed for a large variety of topologies
that all support multitier data redundancy. In a multitier architecture, replicas can
also be masters to other replicas The data is known as redundant when the same
data exists in multiple databases in the same system. Thus, by nature, multiple and
possibly temporarily different versions of the same data item can coexist.

Advanced replication also supports synchronization models where a single replica
is synchronized with multiple masters.

2.1.1 Multitier redundancy model
The multitier data redundancy model has one top-level master database and
multiple replica databases below it. The replicas are updatable but the replica data
is always tentative until it has been committed to the master database. A replica can
act as a master to some other replica below it in the hierarchy.

This model allows implementation of a bidirectional asynchronous data
synchronization mechanism between databases in a way that fully addresses the
database consistency and scalability issues of a multi-database system.

The multitier data redundancy model is based on the following principles:
v For each data item, there is one master version considered the official version of

the data. Other copies of the item are tentative versions, that is, replicas.
v A replica can act as a master to other replicas below it. A replica that is also a

master contains a subset (or a full set) of the data in the master version above it.
v Data in each database of the system is updatable.
v Modifications made directly to a master database are official.
v Transactions that are committed in a replica database are tentative until they

have been successfully propagated to the master database and committed there.
v Replica databases are refreshed by sending changed data from the master

database to replicas.

In a multi-tier synchronization environment, synchronized databases can be
configured to serve a dual role as both a master and a replica. These roles are
established by creating a catalog and defining it to be both a replica and a master.

Basic two-tier architecture
The simplest implementation of the multitier redundancy model is a two-tier
synchronization architecture as shown in Figure 2 on page 12. In a two-tier
architecture, there is a top-level master database and multiple replica databases
below it.

Transactions are always sent to the master databases where they are committed.
The changed master data is then sent to the replicas.

11

Advanced multitier architecture
A more advanced implementation of the multitier redundancy model enables
information flow in more than two tiers through replicas that are also masters to
other replicas that below them in the hierarchy. Such a architecture is often used in
a scenario that requires the flow of system information to local areas and
information from various local areas to specific end nodes.

Note: The term many-tiered is used to describe systems that have three or more
tiers, that is, systems that have nodes that are both master and replica. The term
multitier is sued to describe systems that have two or more tiers.

Tentative
write

Read

Replica
DB #2

Refresh data

Propagate tentative
transactions

Write

Read

Master
database

Replica
DB #3

Replica
DB #1

Figure 2. Two-tier data redundancy architecture

12 IBM solidDB: Advanced Replication User Guide

Transaction models in advanced replication setups
In both two-tiered and multi-tiered architectures, transactions that modify
revalidated replica data are always tentative. A tentative transaction becomes
official when it has been accepted in the master database. The overall lifecycle of a
transaction is extended from the moment of replica commit to the moment of
master commit. During this phase, activities can occur within an application that
can invalidate a transaction that has already been committed by a replica. Thus, all
transactions that are to be propagated to the master database need to have
embedded in them sufficient validation logic to ensure the integrity of the master
database.

To address the data integrity issues of a synchronized multi-database system, the
advanced replication architecture provides a transaction model called intelligent
transaction. With the intelligent transaction model, you can implement transactions
that always leave the master database in a consistent state.

Note: Transactions that are committed in a replica database are propagated only to
its master database. These transactions are not propagated to other replicas directly.
Instead, the other replicas can request changed data from a master database by
requesting refreshes from one or more publications. A publication is a definition of a
set of data on the master; replicas can refresh from a publication to get
replica-specific data updates from the master.

Refresh data

Propagate
tentative
transactions

REPLICA
DB #3

REPLICA
DB #2

REPLICA
DB #1B

REPLICA
DB #1A

Tentative
write

Read

MASTER
REPLICA DB #1

MASTER
REPLICA DB #1

Tentative
write

Read

Write

Read

Master
database

Figure 3. Multitier data redundancy architecture

2 solidDB data synchronization architecture 13

Related information:
2.2.5, “Intelligent Transaction,” on page 20

2.1.2 Multi-master synchronization model
In distributed, networked environments, a system can consist of multiple
applications. Each application can have its own database. The advanced replication
architecture supports a model where a replica database contains data from multiple
master databases. For instance, a local database can contain a replica from a billing
host system and network configuration host system. Both two-tier and many-tier
architectures are scalable to accommodate multiple master databases. The two-tier
architecture shown in Figure 4 makes use of multi-master synchronization.

The example shown in Figure 4 illustrates the concept of multi-master
synchronization on a table level.
v A database server can contain replica databases from multiple masters.
v Systems A and B are separate and independent of each other.
v For each replica database, a database catalog is created in the database server.
v Replica A synchronizes with master A and replica B synchronizes with master B.
v A database server can also have one or multiple master databases or local-only

databases in one or multiple catalogs.

Key features in multi-master synchronization models
v Replicas can register to synchronize data with multiple masters.
v Replica data from different masters is kept separate using catalogs.

Application

Cat 3
(local data)Cat 2Cat 1

Master
catalog

Master
catalog

Local
database

SYSTEM B
Central master database 2
(Master users)

SYSTEM A
Central master database 1

Figure 4. Multi-master model

14 IBM solidDB: Advanced Replication User Guide

v Local data is kept separate from shared data.

Managing replica data in a multi-master environment
A solidDB database can be divided into multiple, independent partitions or
catalogs. Each catalog can be divided into multiple independent schemas. The ability
to divide a database into catalogs is useful if your database contains multiple
topics or is used by more than one application. Typically, each application would
have its data stored in a separate database catalog.

In a multi-master environment, the ability to have multiple catalogs enables you to
specify multiple databases (master or replica) for synchronization within one
database server. For example, a solidDB server of an access router can have two
catalogs, one for a replica of a configuration management database and the other
catalog for a replica of a subscriber provisioning system.

solidDB database, catalogs, and schemas: The solidDB server stores data in a file
(or a set of files). These files are known as the physical database. The locations of
these files are specified in the solid.ini configuration file. These files can be
stored in one user-specified directory or in multiple user-specified directories.

Since each solid.ini configuration file specifies the location of one physical
database, a single solidDB program can theoretically operate on different physical
databases at different times, simply by starting the server with different solid.ini
files. Although you can have more than one physical database from creating
multiple physical files (and solid.ini files), one solidDB instance "sees" and
"works with" only one physical database at a time. Using a single solidDB program
with multiple databases at different times is uncommon.

A physical database file can contain more than one logical database. Each logical
database is a complete, independent group of database objects, such as tables,
indexes, procedures, triggers, and so on. Each logical database is called a catalog.
However, a catalog contains a wide variety of data objects, not just indexes as in
the traditional sense of a library card catalog, which serves to locate an item
without containing the full contents of the item.

As a general rule, the term catalog refers to a logical database and database refers to
a physical database.

2 solidDB data synchronization architecture 15

Catalogs and the objects within them are arranged in a hierarchy. Catalogs can
contain database objects known as schema. You can have multiple schemas within
each catalog. Each schema, in turn, can have multiple database objects, such as
tables, views, sequences, and so on. Catalogs are at the top of the hierarchy and
objects such as tables are at the bottom of the hierarchy.

Within a schema, the name of each object must be unique. For example, you
cannot have two tables named table1 inside the same schema. Similarly, within a
catalog, the name of each schema must be unique. For example, you cannot have
two schemas named smith_schema inside the same catalog.

Although object names within a schema must be unique, different objects in
different schemas can have the same name. For example, it is legal to have both of
the following:
smith_schema.table1
jones_schema.table1

Similarly, although schema names within a catalog must be unique, different
catalogs may contains schemas with the same name. For example, the following is
valid:
employee_catalog.smith_schema.table1
inventory_catalog.smith_schema.table1

When an object name is preceded by the schema name and the catalog name, the
object name is fully qualified, that is, unambiguous. Database object names are
qualified in DML statements in the following way:
catalog_name.schema_name.database_object

or
catalog_name.user_id.database_object

Typically, all users in a catalog can have their own schema(s). For example, a user
can own smith_schema in employee_catalog.

Schema_DSchema_A

CATALOG_INVENTORY

Schema_BSchema_A

CATALOG_EMPLOYEE

DATABASE

Figure 5. Database, catalogs, and schemas

16 IBM solidDB: Advanced Replication User Guide

A single user can have schemas in more than one catalog. For example, as shown
above, user smith might have schemas named smith_schema in multiple catalogs.
As long as database objects within each catalog are specified by fully qualified
names (that is, names that include the object name, the schema name, and the
catalog name), there is no confusion as to which database object is the one
required. By organizing your data appropriately inside catalogs and schemas, you
can restrict the context so that users or applications see only those database objects
that are relevant to their task. You apply these concepts when creating catalogs and
schemas for synchronization.

Catalogs and synchronization: Catalogs allow you to implement multiple logical
databases for synchronization. If your local physical database has replica data from
multiple masters, then the replica needs one catalog for each master database of
which the replica has a copy (or a partial copy). Note that a catalog on a replica
may contain not only synchronized data, but also local data, which belongs to the
local database only and never gets replicated from and to other databases.

In this way, tables are defined in both replica and master databases to distinguish
local from shared data. Shared data is synchronized with the master database, but
data belonging to only the replica or only the master is never changed during
synchronization.

In a multi-master environment, catalogs keep data from different masters
separated. Object name conflicts between catalogs do not occur. Even when the
same table names and other object names are used in different masters, the distinct
catalog names for each master qualify table and object names, as well as provide a
way to specify which objects belong to which master. In addition, solidDB
advanced replication enforces that a single catalog contain no objects from different
masters. However, using catalogs does not require that all objects in a schema be a
synchronized object, so catalogs can contain local tables.

Schema names of a master and replica must be identical. This is consistent with the
basic two-tiered architecture, which is no different from a single replica that is
registered to a single master. When a database is created, a default schema name is
created which is the user id of the database owner. Separate schemas within
databases are created with the CREATE SCHEMA statement. For details on
managing database objects with schemas, read solidDB Administration Guide.

solidDB advanced replication's use of catalogs and schemas for synchronization
offers a flexible and scalable architecture. One replica is registered to only one
master; that is, one replica catalog is mapped to one master catalog. However, a
single physical database can have multiple catalogs. Additional master databases
are included by creating more master catalogs in the same local database which
map to new replica catalogs in the same or different database servers. Furthermore,
both master catalogs and replica catalogs can exist in the same physical database.

As shown in Figure 3 on page 13, a master/replica hierarchy may have more than
two layers, and some catalogs within that hierarchy may serve as both replica and
master catalogs. For details on defining catalogs with the dual role of master and
replica, read 4.2.1, “Defining master and replica databases,” on page 49.

For details on implementing catalogs, read “Guidelines for multi-master topology”
on page 51.

2 solidDB data synchronization architecture 17

Transactions in a multi-master environment: In a multi-master environment, a
transaction cannot span two different masters. For example, the following is
invalid:
SAVE UPDATE table A in CATALOG A
SAVE UPDATE table B in CATALOG B
COMMIT WORK

A transaction is propagated to a specific master database. This master cannot be
changed in the middle of a transaction, which means that all saved statements in
the transaction are propagated to one master only. solidDB can detect cases where
one transaction is updating data from two different masters. In such cases, the
operation fails with an error message.

solidDB advanced replication allows local data modifications in the same
transaction within a catalog. The SET CATALOG command explicitly defines the
master used for all advanced replication-related operations. The SET CATALOG
command is executed before any synchronization command and is required when
more than one catalog is defined in the database.

2.2 solidDB advanced replication architecture components
solidDB advanced replication gives application programmers a rich set of data
distribution and management functions. These functions support a reliable, flexible,
and robust data distribution system that meets the specific needs of the
application.

The solidDB advanced replication architecture consists of the following functional
components:
v Master and replica databases for storing official and tentative versions of data.
v Publications and subscriptions for transferring new and changed data from the

master database to the replica database.
v Intelligent Transactions for propagating changes from a replica database to the

master database.
v Asynchronous store and forward messaging for implementing safe and reliable

communication between the master and a replica.

2.2.1 Master and replica databases
The advanced replication synchronization technology relies on a master/replica
model. A single computer keeps a master or official copy of the data. All other
nodes (replicas) in the system can also have a copy of some or all of the master
data. When the replica changes data, that data is unofficial until it has been sent to,
and accepted by, the master. Once the data has been accepted on the master, the
replica that sent that data (and other replicas, as well) can request a copy of the
new official data. In this way, replicas can temporarily become out of sync with the
master, but such differences can be corrected quickly.

The advanced replication architecture supports a virtually unlimited number of
replicas to have access to data. Each replica can read and write the data, as long as
users know that local writes must be accepted at the master before they are official.
Replicas do not need to be connected to the network 100% of the time. A replica
can be stored on a mobile device or computer that is only connected to the
network part of the time. This allows replicas to operate for long periods
independently of the master, providing flexibility. It also means that the entire
system is not disabled just because the master database server is shut down for

18 IBM solidDB: Advanced Replication User Guide

maintenance or to correct a problem. Distributed systems based on the advanced
replication technology are inherently robust with respect to isolated failures.

A replica database can hold not only copies of some or all master data, but also
local data that is not shared with the master. A single computer can hold a mix of
local and shared data.

The master database stores the data and the synchronization definitions. The
synchronization definition data includes catalog, database schema, publication
definitions, registrations, subscriptions, user access definitions of the replica
databases, and so on.

The replica database stores local data and transactions that are to be propagated to
the master. All replica data, or a suitable part of it, can be refreshed from the
master database whenever needed by sending a REFRESH command to one or more
publications. The local data includes data that is typically a subset of the master
database, as well as system tables that contain information specific to the particular
database.

In a multi-tier synchronization environment, synchronized databases can be
configured to serve a dual role as both a master and a replica. These roles are
established by creating a catalog and defining it to be both a replica and a master.
Related information:
2.1.2, “Multi-master synchronization model,” on page 14

2.2.2 Publications, subscriptions, and refreshes
The synchronization architecture of a multi-database system requires a way for
applications to download data from the master database to the replica database,
and to refresh this replica data on an as-needed basis.

A publication is a definition of a set of master data that can be downloaded to
replicas. Replica databases use subscriptions to register their interest in a particular
publication from the master. A publication is registered in a replica. Users can
refresh data from only those publications that are registered. In this way publication
parameters are validated, preventing users from accidentally refreshing from
unwanted or non-existing publications or making ad hoc refresh commands.

The initial download (refresh) always returns data of a full publication; all data of
the publication that matches the search criteria (given as publication parameters) is
sent to the replica database.

After the initial download, subsequent refreshes to the same publication (using the
same parameter values) receive only the data that has been changed since the prior
refresh. This is known as an incremental refresh. Typically, only publication updates
with the latest modifications need to be sent to a replica. Creating publications and
specifying that they be incremental are done through solidDB advanced replication
commands, which are extensions to solidDB SQL.
Related information:
5.6, “Creating publications,” on page 85
5, “Using advanced replication with applications,” on page 67

2 solidDB data synchronization architecture 19

2.2.3 Asynchronous replication - messages
Communication between the advanced replication master and replicas is based on
asynchronous store and forward messaging. The messages are extensions to
solidDB SQL.

Each message is assembled dynamically and can contain numerous
synchronization tasks. For example, you can propagate multiple transactions from
a replica to the master and request refreshes from numerous publications from the
master database in one message.

The messages from the replica are sent asynchronously to the master database.
Built-in message queuing capabilities ensure that no message is deleted from the
sending node before the entire message has arrived at the receiving node.
Related information:
5.2, “Building messages for synchronization,” on page 68

2.2.4 Synchronous replication - messageless REFRESH
Asynchronous data refreshes can consume large amounts of memory and inflict
disk I/O overhead. To avoid this, you can use the synchronous, messageless
advanced replication interface to replicate data from the master to the replica. The
synchronous replication is started by issuing the command REFRESH. The refresh
of data can be full or incremental, that is, you can update all data or only change
data.

In the synchronous replication mode, the associated data is sent as a data stream,
thus conserving memory. The synchronous replication mode also reduces the
needed disk I/O bandwidth, because no messages are written to disk.

For more information about synchronous refresh and its use, see 5.3, “Using
synchronous refresh,” on page 73.

2.2.5 Intelligent Transaction
Intelligent Transaction refers to propagating changes from a replica database to the
master database. The data of all the replica databases is unofficial. Any
modifications to the data on a replica are tentative. The modifications become
official only when they are successfully validated and committed in the master
database.

The "create now in replica, commit later in master" requirement extends the
lifecycle of a transaction from a fraction of a second to an undefined duration. In a
multi-database system, transactions are propagated from replicas to the master
database over a time period that can vary from seconds to even weeks. The
challenge of such a transaction is to ensure that whenever it is validated and
committed to the master database, it changes the master database from one
consistent state to another consistent state.

Ensuring database consistency
A database is consistent if the transactions that modify the contents of the database
meet the following criteria at the commit moment of the transaction:
v DBMS specific rules, such as referential integrity rules, are not violated.
v Business rules that apply to the business transactions and their respective

database transactions are not violated.

20 IBM solidDB: Advanced Replication User Guide

When the propagated replica transaction is eventually committed in the master
database, it is possible that the state of the master database is different than the
state of the replica database (where the transaction was originally created). The
state of the master database might have been changed because of propagated
transactions from other replicas or updates done directly to the master database
after the replica's latest refresh. For this reason, the replica transaction cannot be
used in the master database with its original content.

To address the consistency requirement in the two-tier replication model, each
transaction that can become invalid during its lifecycle must contain built-in
business logic for ensuring that the master database remains consistent when the
transaction is committed on the master. If the database becomes inconsistent with
the original behavior of the transaction, the transaction must detect this and
change the behavior so that the consistency of the database is maintained.

The Intelligent Transaction model provides a framework for implementing
transactions with long life spans. Transaction propagation in advanced replication
architecture is based on solidDB Intelligent Transaction technology. See Figure 1 on
page 6 for a simple illustration of propagating and refreshing data when some
records are accepted by the master and some are not.

Intelligent Transaction scenario
To illustrate Intelligent Transaction implementation, assume an order entry
application has a business rule that customers must not exceed their credit limit. If
the limit has been exceeded, new orders are prohibited.

In a multi-database system it is possible that the customer credit limit in a replica
database is OK, whereas the same data in the master database indicates a limit
overrun. In this situation, a customer can still enter an order to the replica
database, because the information about the limit overrun has not reached that
database yet. However, when the "add a new order" transaction is propagated from
the replica to the master database, it must not be committed in its original form,
because that would mean a violation of the "credit limit" business rule. Instead the
transaction needs to change its behavior to be valid. For instance, the "status"
column of the order must be given the value "invalid" in the master database to
keep the order separate from the valid orders. The invalid order can be refreshed
back to the replica to notify the replica users that the transaction has failed.

Multi-database systems versus centralized systems
In a traditional client/server system that uses a central database, the validation
logic of each transaction is typically in the client application or in the application
server's services. For instance, in an Order Entry application, the application logic
must check prior to committing the transaction that the credit limit of a customer
is not exceeded by the new order.

When propagating a transaction to the master database, similar validation is
needed to ensure the database integrity. The only difference is that the transaction
validation logic of the application is not available to the synchronization
mechanism. Therefore the logic must be bundled into the transaction itself. The
following kind of validation logic is required in each transaction:
v update conflict detection
v validation using business rules
v DBMS error handling

2 solidDB data synchronization architecture 21

The transactions of a centralized system are very different from the transactions of
a multi-database system. In a centralized system, the lifetime of a transaction is
typically a fraction of a second and with the DBMS locking mechanism, update
conflicts are not possible.

The figure above illustrates a typical transaction. Within the transaction, some
queries are made prior to write operations to validate the contents of the
transaction. For example, an order entry system can check that a customer credit
limit is OK prior to creating a new order to the customer. During the transaction,
the concurrency control mechanism of the server takes care of the update conflicts
and other issues caused by concurrent usage of the data.

In a multi-database system, a transaction is initially created and saved in the
replica database but finally committed in the master database later when the
transaction is propagated there as part of the database synchronization process.
The tentatively committed transaction can exist in the system for an unlimited
period of time. In other words, the lifecycle of the transaction is entirely different.

1

Commit workBegin transaction

DELETEUPDATEINSERTSELECTSELECT

Central DBMS

1. Unless local users have master access, they are unable to perform any synchronization operations.

Figure 6. Transaction in a central database

22 IBM solidDB: Advanced Replication User Guide

Intelligent Transaction in the multi-database system
In a multi-database system, a transaction has "two lives". The transaction is created
as tentative in the replica database where it is validated and committed by the
business application. The transaction is saved (put to the transaction queue) in the
replica database for later propagation to the master database. The transaction has
its "second life" when it is propagated to the master database. There it must
perform the same validation routines, that is, the queries that were performed in
the replica database. For instance, if a customer credit limit was checked in the
replica database to ensure the transaction validity, the same operation must usually
be done also in the master database prior to committing the transaction. Otherwise
the validity of the transaction cannot be guaranteed in the master database.

To support the extended lifecycle of the two-tier data redundancy model, solidDB
Intelligent Transaction allows a transaction to validate itself in the master database
and adjust its behavior to ensure the validity of the transaction.

Commit workBegin transaction

DELETEUPDATEINSERTSELECTSELECT

Propagate transaction to
master during synchronization

Commit workBegin transaction

DELETEUPDATEINSERTSELECTSELECT

Master DBMS (Official transaction)

Replica DBMS (Tentative transaction)

Figure 7. Transaction in a synchronized database

2 solidDB data synchronization architecture 23

How Intelligent Transaction functionality works
With Intelligent Transaction functionality, a transaction not only has the capability
of validating itself in its current database, but is also capable of changing its
behavior (that is, the database operations) if the original behavior was invalid.

Statements of a transaction can be any SQL statements, but most often are calls to
stored procedures. Statements should contain logic that is required to ensure the
validity of the statement in different environments and situations.

When executing the transaction in the master database, the statements of the
transaction can communicate with each other by putting transaction parameters on
the Parameter Bulletin Board for the following statements of the same transaction to
read. This communication ability of the statements makes it possible to create
transactions that can validate themselves and adjust their behavior according to the
current environment.

For example, if a transaction which is propagated to the master database attempts
to add a new order to a customer whose credit limit has been exceeded, the
following takes place:

The transaction has the following operations:
v Insert a row to the CUST_ORDER table.
v Update the CREDIT column of the CUSTOMER table.

The processing of the statements goes as follows:
1. Prior to inserting a new row to the CUST_ORDER table, the INSERT_ORDER

procedure checks if the customer has credit In this example, it is assumed the
credit level has been exceeded.

2. Because the customer does not have sufficient credit, the intelligent transaction
inserts the new row to the CUST_ORDER table with a different STATUS value
(for example, STATUS = 'Not approved').

Parameter
bulletin board

Statement N

Statement 2

Statement 1

Transaction
properties

Intelligent transaction

Figure 8. The structure of Intelligent Transaction

24 IBM solidDB: Advanced Replication User Guide

3. Because the order is not a valid one, the update operation of the CREDIT
column must not be done. Therefore the INSERT_ORDER procedure puts a
parameter with name "ORDER_FAILED" and value "YES" to the bulletin board.

4. The UPDATE_CUST_CREDIT procedure checks the bulletin board and detects
that it contains information that applies to this procedure.

5. The UPDATE_CUST_CREDIT procedure then knows that it must not update
the credit amount.

6. Later, when the replica refreshes to get up-to-date data, the replica's own
information about the customer order is updated, and the data on the replica
will correctly indicate that the order was not processed. As a result, both the
master and replica have correct data, even when the replica made a
request/update that could not be fulfilled.

2.3 Sync Pull Notify
So far, our discussion of data synchronization has focused on the "pull" model, in
which the replica decides when to "pull" a copy of updated data from the master.
However, in many situations, users may prefer a "push" model, where the master
determines when to send data to the replicas. For example, in a "push" model, the
master can send data as soon as that data is updated, rather than waiting for
replicas to request an updated copy.

The difference between "pull" and "push" models is similar to the difference
between "polling" and responding to "signals" or "interrupts". In a "pull" model, the
replica never knows when new data has arrived at the master, and thus the replica
typically "polls" the master at regular intervals, or when reconnecting to the
network, or when manually told to do so by the replica's synchronization
administrator. In a "push" model, on the other hand, the master knows when new
or updated data has arrived, and sends the data to the replicas.

The advantage of the "pull" model is that it tends to semi-randomly distribute
requests to the master; this keeps the master from being overloaded with a large
number of update requests at once. The "pull" model also works well when
replicas are connected to the network only irregularly (for example, if you keep
your data on a PDA (Personal Digital Assistant) and only synchronize your PDA
occasionally). The advantages of the "push" model are that out-of-date data is
updated rapidly and replicas do not have to waste time "polling" for new data
when none has arrived.

Although solidDB does not provide a true "push" capability, solidDB provides Sync
Pull Notify capability, which is similar to, but more flexible than, push
synchronization. With the Sync Pull Notify approach, the master notifies the replica
that there is updated data, and the replica may then choose whether to download
the updated data.

To implement a system based on Sync Pull Notify, the system must meet the
following requirements:
v Updated data must not be "pushed" to replicas until it is committed. Basically,

the data should be pushed at the end of the transaction, not during the
transaction.

v The system must be able to detect when data has changed in the master and
thus may need to be pushed to the replica(s).

In solidDB advanced replication, Sync Pull Notify is not implemented as a feature;
instead the Sync Pull Notify capability is implemented by using a combination of

2 solidDB data synchronization architecture 25

the features "START AFTER COMMIT", "Remote Stored Procedures", and "Replica
Property Names". These features are described briefly below. More complete
descriptions are elsewhere (Replica Property Names are described later in this
manual, and Remote Stored Procedures and START AFTER COMMIT are
documented in IBM solidDB SQL Guide).

The Remote Stored Procedure feature is just what it sounds like — a way to call a
stored procedure in another database. Specifically, a replica may create a stored
procedure, and a master may call that stored procedure. For example, the replica
might create a stored procedure that contains a REFRESH command, and the
master could then call that procedure, thus causing the replica to request the
refresh.

The "START AFTER COMMIT" feature allows a user to specify an action that will
be taken when a transaction is committed. For example, if a specific transaction
updates information on the master, then the START AFTER COMMIT could tell the
master to do a remote procedure call to the replica after the update has been
successfully committed.

The combination of START AFTER COMMIT and Remote Stored Procedures allows
you to implement Sync Pull Notify. When the master updates some data, the
master can notify the subscribers by creating a START AFTER COMMIT that calls
a Remote Stored Procedure on each replica; the stored procedure then refreshes to
get the updated data.

The next issue is to decide which replicas are notified — in other words, on which
replicas do we call the stored procedure when data is updated. To control this, we
use the feature "Replica Property Names", described below. (It is also possible to
refer to a single replica using its nodename.)

Note:

The START AFTER COMMIT feature and the Remote Stored Procedures feature are
documented in more detail in IBM solidDB SQL Guide. You may want to read more
about those features before you continue reading about Sync Pull Notify.

2.3.1 Replica Property Names
Property Names allow a replica to be labeled. Replicas that are labeled may be
grouped, which becomes important when using the START AFTER COMMIT
feature (see START AFTER COMMIT ...). For example, you might have some
replicas that are related to the bicycle industry and others that are related to the
surfboard industry, and you may want to update each of those groups of replicas
separately. You can use Property Names to group these replicas. All members of a
group have the same property and have the same value for that property.

Properties and values may be almost any arbitrary names and literals. For
example:

Table 3. Replica properties and values

Property Some Possible Values

Region north, south, east, west

Color red, yellow, green, blue, rainbow, transparent

26 IBM solidDB: Advanced Replication User Guide

Table 3. Replica properties and values (continued)

Property Some Possible Values

Mood upbeat, blue

Philosophy realist, nihilist, purple

Because the properties and values have no meaning to the server and are simply
arbitrary labels, the values do not need to "make sense". If you decide that "purple"
is a useful value in the "philosophy" category, then go ahead and use it.
Furthermore, different properties may use overlapping values. If you decide that
"blue" is both a useful color and a useful mood, then you may use it as a value for
both properties. (A server categorized as having a blue mood will NOT fall into
the same category as servers having a blue color; properties are completely
independent.)

A server may have more than one property, and thus may belong to more than one
group. For example, my replica might have

Region = west

Color = green

A server does not have to have a setting for every possible property; my replica
might not have any Philosophy or Mood property at all.

For examples of using properties, see the section on the START AFTER COMMIT
command.

Replica property names may be added at any time, and new replicas may also be
added at any time. By using property names to group your replicas, you avoid
having to rewrite the logic on the master to call remote stored procedures on
replicas. For example, suppose that you want to notify all offices in the "north"
region when a particular piece of data is updated. If you add a new office (replica),
you can simply give that new office the property "Region=north", and that new
office will automatically be notified when relevant data is updated. Nothing on the
master needs to be changed, except that the master must be notified that the new
replica has the property "Region=north". Also, the new replica must have a copy of
the stored procedure that the master expects to call.

Every replica has an implicit property called "name", which is the node name
assigned to the replica when it was registered.

A replica's properties are useful in Sync Pull Notify only if the master knows the
replica's properties. Either the master or the replica may set a property for the
replica. If the replica sets its own property, then it must notify the master of that
property and value. The replica can send its properties to the master with the
messages using SAVE. The master can set properties for a named replica with the
SET command.

Syntax in master:
SET SYNC PROPERTY <propertyname> = { ’value’ | NONE } FOR REPLICA
<replicaname>

2 solidDB data synchronization architecture 27

Syntax in replica:
SAVE SET SYNC PROPERTY <propertyname> = { ’value’ | NONE; }

Examples

Master:
SET SYNC PROPERTY color = ’red’ FOR REPLICA replica_node_01;
SET SYNC PROPERTY color = NONE FOR REPLICA replica_node_01;

Replica:
SAVE SET SYNC PROPERTY color = ’red’;
SAVE SET SYNC PROPERTY color = NONE;

2.3.2 Introduction to Sync Pull Notify
Before we discuss Sync Pull Notify in detail, we should contrast it with other
methods of replicating data.

"Sync Push" vs. "Sync Pull" vs. "Sync Pull Notify"
When data is replicated, the servers can use
v a "pull" approach, or
v a "push" approach, or
v a hybrid, such as "sync pull notify".

solidDB advanced replication supports the "pull" and "pull notify" approaches.

The "pull" approach is that the replica requests the data. This corresponds to the
"refresh" operation in solidDB advanced replication. When the replica refreshes, it
requests that the master server send all of the data in a particular publication (or
the data that has changed since the last refresh operation).

The "push" approach is that the master sends the data to the replica at a time
chosen by the master. (This is usually, but not necessarily, immediately after the
data was updated on the master). When the master pushes the data, the replica
must accept the data. solidDB servers do not use a true "push" method.

solidDB uses a hybrid approach called "sync pull notify". In this approach, the
replica is notified that new data is available. The replica may then "pull" the new
data by executing a REFRESH command. The REFRESH is optional; after being
notified that there is new data, the replica can choose to refresh immediately, or to
refresh after delaying, or simply to ignore the notification and not refresh at all.
See the next section for details.

Implementing Sync Pull Notify
The solidDB server implements Sync Pull Notify as a two-step process. First, the
master server notifies the replica server; second, the replica server does a
REFRESH.

Generally, the master server notifies the replica by calling a remote stored
procedure. The replica must already have created this stored procedure. Normally,
this procedure will itself contain the appropriate REFRESH command(s). (It is
possible to use more indirect methods, but this approach is the shortest and
simplest.)

What induces the master to call the remote stored procedure? One way to do this
is to create a trigger. For example, suppose that you know that replica_node_01

28 IBM solidDB: Advanced Replication User Guide

would like to refresh data in the table named "employees" every time the table is
changed on the master. You could create INSERT, UPDATE, and DELETE triggers
on the master's copy of the employees table. Each trigger would call the remote
stored procedure on replica_node_01 that requests a refresh of the data.
trigger
|
|
v

stored procedure
|
|
v

REFRESH statement

Although the process of notifying a replica is straightforward, there is no
automated way to decide which replica(s) should be notified. The person who
creates or updates the triggers on the master must know the name of the stored
procedure to call on each replica that wants to be notified.

Similarly, the replica must have REFRESH statements that specify the appropriate
publications. There is no automated way of having the master server figure out
which replicas subscribe to which publications and then automatically creating
triggers to call procedures on those replicas. (This wouldn't be sufficient anyway
because the master server would also have to compose the appropriate stored
procedure and force the replica to create that stored procedure.)

Whether you use a trigger or a START AFTER COMMIT or some other method to
notify replicas that data in the master has been updated, it is important to
remember that only the specified nodes are notified.

Note:

If you decide to use a trigger to initiate Sync Pull Notify or use some other
mechanism to run synchronization very frequently, always make sure that you are
aware of the possible performance consequences. Because synchronization
messaging is based on a store & forward architecture that writes data to disk
before sending it over the network, there is always some overhead related to
synchronization messaging. The relative overhead of the messaging is the bigger,
the smaller amount of data is to be synchronized. For example, a solidDB server is
capable of performing hundreds or thousands of update operations per second but
it may be able to handle only some dozens of synchronization messages per
second. If you write an update trigger into a frequently updated table to initiate
synchronization for each occurred update, the update performance is limited by
the synchronization messaging performance. Instead of achieving performance of
1000 updates per second, you may be able to run only 10 updates per second
because every update causes a synchronization message that contains only one row
of changed data. The remedy to this issue is to make the synchronization occur
only, for example, once every few seconds. This way, each synchronization message
contains more than one row in it and the overhead of the synchronization message
is only a fraction of the worst case scenario.

DEFAULT keyword in remote stored procedures
To understand the DEFAULT keyword in remote stored procedures, you must
understand both remote stored procedures and the START AFTER COMMIT
command.

2 solidDB data synchronization architecture 29

A START AFTER COMMIT command may contain the optional clause:
FOR EACH REPLICA [WHERE ...];

For example
START AFTER COMMIT FOR EACH REPLICA WHERE region = ’west’
UNIQUE CALL my_proc;

or, if you'd like the command to apply to all replicas:
START AFTER COMMIT FOR EACH REPLICA UNIQUE CALL my_proc;

The server that is executing this statement effectively creates a list of all the
replicas that match the WHERE clause and then calls the specified procedure
(my_proc) for each replica on the list. While that stored procedure is running, the
DEFAULT clause identifies the replica that is currently being processed. For
example, suppose that we have three replicas that match the WHERE clause, i.e.
three replicas for which region = 'west':

California

Oregon

Washington

The my_proc procedure is then called three times. During the first call DEFAULT is
equal to "California"; during the second call DEFAULT is equal to "Oregon"; and
during the third call the DEFAULT is equal to "Washington". If the stored
procedure named my_proc wants to call a remote stored procedure on each of the
three replicas, it can do so by using the syntax:
CALL remote_proc_name AT DEFAULT;

Each time that my_proc is called, DEFAULT will be set to the name of one of the
three replicas, so the effect will be to call each of the following:
CALL remote_proc_name AT California;
CALL remote_proc_name AT Oregon;
CALL remote_proc_name AT Washington;

If the "remote_proc_name" contains a command to refresh from the master, then
the effect will be that all three replicas are notified that there is updated data and
they should refresh. Thus by using a combination of

START AFTER COMMIT

and

remote procedure calls

we have been able to notify every replica that needs to refresh the data.

One way to make such maintenance easier is to use the "properties" feature
described earlier. For example, suppose that you have three replica servers named
California, Oregon, and Washington, all of which refresh from a particular
publication. Now suppose that you want to add a new replica named Arizona and
it should also refresh from the same publication and thus should be notified under
the same circumstances as the servers California, Oregon, and Washington. You can

30 IBM solidDB: Advanced Replication User Guide

simply set the property for that new server to match the property that the other
three servers have (and which is used in the WHERE clause of the START AFTER
COMMIT). For example,
SET SYNC PROPERTY region = ’west’; -- on the replica
SET SYNC PROPERTY region = ’west’ FOR REPLICA arizona; -- on the master

When to use Sync Pull Notify
The Sync Pull Notify feature decreases the delay between updating information
about the master and updating information on the replica(s). However, in some
situations it may increase network traffic.

Sync Pull Notify may increase the load on your network. If your current
synchronization approach is to synchronize each replica once per hour, and if you
typically have multiple updates per hour, then you only use 1 set of network
messages per replica per hour to synchronize. If you switch to using the Sync Pull
Notify feature, however, then you will have as many sets of network messages per
replica per hour as you have updates.

The converse is also true. If you currently refresh frequently but only have updates
infrequently, then Sync Pull Notify will actually reduce your network traffic
because you will only refresh when you actually need data; you will not need to
frequently "poll" to see if any data has changed. If you work in a situation where
updates are infrequent, but it's necessary for you to know about those updates
immediately when they occur, then Sync Pull Notify is a very good solution.

Note that "pull" and "push" (Sync Pull Notify) approaches are not mutually
exclusive. You may use a combination of these. As an example, you might choose
to design your system so that every day at a specific time the master will notify
the replicas that it is time to refresh. However, a repair person going out into the
field and taking her replica database with her could also issue a "REFRESH"
command just before leaving the office, thus making sure that she has the most
up-to-date data.

When designing your system for Sync Pull Notify, you may find it helpful to know
that there are only three ways that data in the master can be changed, and thus
there are only three situations in which you might need to "push" updated data to
the affected replicas:
1. Data may be changed directly on the master, that is, a client may insert,

update, or delete a record in a table on the master.
2. The master may receive data from a replica.
3. If the master server is both a master and a replica (for example, it is "in the

middle" in a hierarchy that has three or more levels), then the server may
request a refresh from its master and get data from that.

2.3.3 Scheduling REFRESH or Sync Pull Notify
In some cases, you may want to perform an operation such as a REFRESH or a
Sync Pull Notify at regular intervals, for example, every 30 seconds. You may use
the SLEEP() command to do this within a stored procedure. Below are 2 examples
of performing tasks at regular intervals by using the SLEEP() command. Note that
these examples would be implemented as stored procedures, and the stored
procedures would probably be run in the background by getting called from the
body of a START AFTER COMMIT command. Note that the parameter passed to
the SLEEP() function is the desired duration (in milliseconds).

Here is a very simple example of using sleep:

2 solidDB data synchronization architecture 31

CREATE PROCEDURE SIMPLE_CLOCK
RETURNS (T TIMESTAMP)
BEGIN

-- Loop "forever".
WHILE 1 LOOP

T := NOW();
RETURN ROW;
EXEC SQL COMMIT WORK;
SLEEP(1000);

END LOOP
END

Here is an example of scheduling REFRESH commands by using sleep() in
procedure code:
CREATE PROCEDURE REFRESH_SCHEDULER
BEGIN

DECLARE I INTEGER;
I := 0;
WHILE I = 0 LOOP

EXEC SQL COMMIT WORK;
SLEEP(10000); -- here the procedure sleeps 10 seconds (10000ms)
EXEC SQL EXECDIRECT call refresh_now;

END LOOP
END

You can extend this approach to apply it to Sync Pull Notify.

The SLEEP function can be called from stored procedures. The duration is
measured in milliseconds. Note that the duration is approximate. The resolution of
the clocks and timers on your platform may not support millisecond accuracy.
Also, the exact timing depends in part upon how busy the computer is.
Furthermore, any SQL statement or procedure call that is executed in a START
AFTER COMMIT statement is run asynchronously in the background and doesn't
have very precise execution timing. Finally, the duration of the non-sleep activities
also affects the timing. For example, if your loop contains a SLEEP() that lasts 10
seconds and an SQL statement that takes 2 seconds to run, then your loop will
actually run approximately every 12 seconds, not every 10 seconds.

32 IBM solidDB: Advanced Replication User Guide

3 Getting started with data synchronization - evaluation setup

This section gives instructions on setting up a simple advanced replication system
that demonstrates the basic functionality of synchronizing data between two
databases. The section contains sample scripts that are also included in the solidDB
installation package.

Fast path: Instead of going through the steps in this section and setting up the
evaluation environment manually, you can use the sample scripts available in the
samples/replication/eval_setup directory of the solidDB package. You can run
the sample scripts in an automated mode or execute them manually. For more
information about using the sample, see the readme.txt file in the
samples/replication/eval_setup directory.

Before you start

The evaluation setup procedure assumes familiarity with working with solidDB,
such as the following:
v Basic administration of solidDB, such as installing, starting, shutting down,

configuring network names, and so on
v Working with solidDB, such as connecting to the database, running SQL

statements

Tip: In advanced replication, synchronization is implemented with SQL
statements. The data synchronization SQL statements described in this section
can be used through solidDB SQL Editor (solsql), as well as through the ODBC
and JDBC APIs.

v solidDB SQL stored procedure programming
v Fundamentals of solidDB advanced replication architecture

Tip: The getting started steps and scripts use a number of system stored
procedures to configure the synchronization environment. Instead of using the
stored procedures, you can configure the environment by using SQL statements.
For more information about the SQL statements, see 5.5, “Setting up databases for
synchronization,” on page 83.

If for some reason the set up of the advanced replication environment using the
stored procedures fail, you might need to use the SQL statements to remove and
modify configuration information.

3.1 Overview of setting up advanced replication using the evaluation
setup sample

The following steps are included when setting up, configuring and using solidDB
to use advanced replication technology.

Table 4. Steps for setting up advanced replication using a sample

Step Action Description

1 Preparation Install and start two solidDB database
servers.

33

Table 4. Steps for setting up advanced replication using a sample (continued)

Step Action Description

2 Configuring the servers and creating the
publications.

Configure the servers as master and
replica.

Define a table in both the master and
replica databases that meets the advanced
replication design requirements.

Define a sample publication in the master
database.

3 Creating stored procedures for populating
master and replica databases

Create stored procedures for inserting and
updating data in the master and replica
databases.

4 Using synchronization functionality Register the sample publication, update
the replica database, and save the
transactions for propagation to the master
database.

5 Synchronize data by implementing
synchronization messages

Synchronize the master and replica
databases by issuing advanced replication
SQL commands from a console.

3.2 Preparing to use the advanced replication evaluation sample
1. Install the solidDB Development Kit.

Tip: In the examples, the default installation location in Windows
environments is assumed: \Program Files\IBM\solidDB\solidDB7.0\

2. Set up the database environment for the master and replica databases (separate
working directories, solid.ini configuration files and license files) . At
minimum, you must define different network listening names (port numbers)
for the master and replica databases.

Fast path: The \samples\replication\run directory contains working
directories for master and replica databases, including the relevant solid.ini
and license files.

3. Create and start the master and replica databases.

3.2.1 Designing a database table for synchronization
The typical requirements for a database table used in a synchronized application
are:
v It must have unique primary key to ensure global uniqueness of rows.
v It may need to have a row status column to provide a means for handling

update conflicts.
v It should include a version number or the time of the last update to allow

detection of update conflicts.

For more information, see 4.2.3, “Defining a database table,” on page 55.

The evaluation sample creates a table that meets the above mentioned criteria,
containing the following columns:

34 IBM solidDB: Advanced Replication User Guide

v REPLICAID contains a unique identification for the database. In the sample
script, the value 1 is reserved for the replica and value 2 for the master.

v ID is a row identifier that is unique inside the database where the row is
created.

v Status has the following values: -1 for updates invalidated by master, 1 for
tentative replica data and 2 for official master data.

v INTDATA and TEXTDATA demonstrate the "business data" of the table.

Setting the SYNCHISTORY property on for the table enables incremental
publication, which means that only the modified rows are transferred from the
master to the replica when synchronizing the table data. Setting the
SYNCHISTORY property creates a "shadow table" for the SYNCDEMO main table.
The name of the "shadow table" is the name of the main table with "_SYNCHIST_"
prefix. Old versions of updated and deleted rows are moved to this shadow table.
SYNCHISTORY must be active in both the master and the replica databases.

As with any table to be synchronized, the table must be defined in both the master
and replica databases.

3.3 Configuring the servers and creating the publications
The advanced replication configuration procedure includes the following steps:
1. Configure one server as a master.
2. Configure the other server as a replica.
3. Create the table on each server.
4. On the master, create a publication.
5. On the replica, register to the publication.

Fast path: The samples\replication\eval_setup\ directory contains two scripts to
carry out the steps. Run the master1.sql script on the master, and the
replica1.sql script on the replica.

3.3.1 Configuring master database
Configuring the master database for the evaluation setup includes the following
steps: creating a catalog using the system stored procedure
SYNC_SETUP_CATALOG, creating a table to be replicated, and creating a
publication that defines the replicated data set in the master.

The SQL statements that are needed to configure the master database are provided
in the master1.sql sample script below.

Fast path: If you are using the working directories and sample scripts in the
samples\replication\ directory, go the solidDB installation root directory and
issue the following command:
.\bin\solsql -O eval.out "tcp 1315" dba dba_password .\samples\
replication\eval_setup\master1.sql

where:
v -O eval.out is an optional parameter that defines the output file for results.
v "tcp 1315" is the network protocol and address of the master server. You may

have to customize this part of the command.
v dba and dba_password are username and password respectively.

3 Getting started 35

v master1.sql is the executed SQL script.

You can view the results in eval.out with any text editor.

Note: When you execute advanced replication scripts, you must set the
autocommit mode OFF. In solidDB SQL Editor (solsql), the autocommit mode is
set OFF by default.

Sample script: master1.sql
--**
-- master1.sql
-- Execute this script in the MASTER database.
-- Initializes the master with node name MASTER.
-- Creates a table and publication.
--**

-- Create the catalog named "sync_demo_catalog".
-- Give this node the name "master_node".
-- Register this node as a master, and not as a replica.

CALL SYNC_SETUP_CATALOG (
’sync_demo_catalog’,
’master_node’,
1,
0);

COMMIT WORK;

-- Set the catalog to be the current catalog.
SET CATALOG sync_demo_catalog;
COMMIT WORK;

-- Create the table that will be synchronized.
CREATE TABLE SYNCDEMO
(

REPLICAID INTEGER NOT NULL,
ID INTEGER NOT NULL,
STATUS INTEGER NOT NULL,
INTDATA INTEGER,
TEXTDATA CHAR(30),
UPDATETIME TIMESTAMP,
PRIMARY KEY (REPLICAID, ID, STATUS)

);
--Enable syncronization history for the table
ALTER TABLE SYNCDEMO SET SYNCHISTORY;
COMMIT WORK;

-- Create a publication that publishes all data of the SYNCDEMO table.
-- Note: CREATE PUBLICATION commands must be inside double quotation marks.
"CREATE PUBLICATION PUB_DEMO

BEGIN
RESULT SET FOR SYNCDEMO
BEGIN

SELECT * FROM SYNCDEMO ;
END

END";
COMMIT WORK;

The PUB_DEMO publication contains all the rows in the syncdemo table. Refreshes
from this publication will be incremental because the SYNCHISTORY property is
set for this table in both the master and replica databases. See IBM solidDB SQL
Guide for more information about the SYNC_SETUP_CATALOG stored procedure.

36 IBM solidDB: Advanced Replication User Guide

3.3.2 Configuring the replica database
Configuring the replica database for the evaluation setup includes the following
steps: creating a catalog and registering the replica to the master using the system
stored procedure SYNC_REGISTER_REPLICA, creating a table to hold the
replicated data, and registering the replica database to the publication using the
system stored procedure SYNC_REGISTER_PUBLICATION.

The SQL statements that are needed to configure the replica database are provided
in the replica1.sql sample script below.

Fast path: If you are using the working directories and sample scripts in the
samples\replication\ directory, go the solidDB installation root directory and
issue the following command:
./bin/solsql -O eval.out "tcp 1316" dba dba_password ./samples/
replication/eval_setup/replica1.sql

where:
v -O eval.out is an optional parameter that defines the output file for results.
v "tcp 1316" is the network protocol and address of the master server. You may

have to customize this part of the command.
v dba and dba_password are username and password respectively.
v replica1.sql is the executed SQL script.

You can view the results in eval.out with any text editor.

You might need to make changes to the following areas in the script:
v In the call to SYNC_REGISTER_REPLICA() you might have to specify a different

user id and password for connecting to the master database for the first time.
v In the call to SYNC_REGISTER_REPLICA() you might have to set the master

database's connection string to a different value from 'tcp localhost 1315'.

Note: When you execute the advanced replication scripts, you must set the
autocommit mode OFF. If you are using the solidDB SQL Editor (solsql), the
autocommit mode is set OFF by default.

Sample script: replica1.sql
--***
-- replica1.sql
-- Initialize a replica database with node name
-- "replica_node_01".
-- (Each replica must have a unique node name.)
-- Execute this script in the REPLICA database.
-- NOTE: AUTOCOMMIT must be set off for MESSAGE handling!
--***
-- Create a replica catalog named ’sync_demo_catalog’ and
-- register it with the master database server called
-- ’master_node’. Also, specify the network address and name of the
-- master node, and specify the user ID and password to use.

CALL SYNC_REGISTER_REPLICA (
’replica_node_01’,
’sync_demo_catalog’,
’tcp localhost 1315’, -- Master’s net address. CUSTOMIZE
’master_node’, -- Node name of master.
’dba’,
’dba_password’);

COMMIT WORK;

3 Getting started 37

SET CATALOG sync_demo_catalog;
COMMIT WORK;

-- Create the table.
CREATE TABLE SYNCDEMO
(

REPLICAID INTEGER NOT NULL,
ID INTEGER NOT NULL,
STATUS INTEGER NOT NULL,
INTDATA INTEGER,
TEXTDATA CHAR(30),
UPDATETIME TIMESTAMP,
PRIMARY KEY (REPLICAID, ID, STATUS)

);
-- Enable the use of incremental publications for this
table.
ALTER TABLE SYNCDEMO SET SYNCHISTORY;
COMMIT WORK;

-- Register a publication that is already defined in the master.
CALL SYNC_REGISTER_PUBLICATION (

’sync_demo_catalog’,
’pub_demo’);

COMMIT WORK;

For more information about the stored procedures SYNC_REGISTER_REPLICA
and SYNC_REGISTER_PUBLICATION, see the IBM solidDB SQL Guide.

3.4 Creating stored procedures for populating master and replica
databases

Write operations in the synchronized architecture are typically implemented using
stored procedures. Stored procedures are useful for implementing business logic in
the transactions to handle possible conflicts without violating the application's data
integrity and business rules. In the evaluation sample, stored procedures are used
to insert and update data in both the master and replica databases.

The sample scripts provided below contain SQL statements to create stored
procedures for inserting and updating data in the master and replica databases.

The procedure logic in the scripts is designed to be as simple as possible. The only
logic for handling conflicts is implemented in the update procedure. If the update
fails, then the row is inserted with status -1. Other values for status field are 1 for
a tentative write at the replica and 2 for the official data accepted by the master.

Fast path: If you are using the working directories and sample scripts in the
samples\replication\ directory, go the solidDB installation root directory and
issue the following commands on both the master and replica servers:
.\bin\solsql -O eval.out "tcp 1315" dba dba_password .\samples\
replication\eval_setup\proced1.sql

.\bin\solsql -O eval.out "tcp 1315" dba dba_password .\samples\
replication\eval_setup\proced2.sql

where:
v -O eval.out is an optional parameter that defines the output file for results.
v "tcp 1315" is the network protocol and address of the server. You might need to

customize this part of the command.
v dba and dba_password are username and password respectively.

38 IBM solidDB: Advanced Replication User Guide

You can view the results in eval.out with any text editor.

Sample script: proced1.sql
--***
-- proced1.sql
-- Creates a procedure SYNCDEMO_INSERT for inserting data
-- into the sample table SYNCDEMO and inserts one row.
--
-- Execute in both the MASTER and REPLICA DBs.
--
-- Note: This has no validation rules. Duplicates are handled
-- by ignoring the duplicate insert. For simplicity, there
-- is no processing for errors. An actual application should
-- have logic for handling unique key constraint violations
-- and other possible error situations.
--***

SET CATALOG sync_demo_catalog ;

"CREATE PROCEDURE SYNCDEMO_INSERT
(MACHINEID INTEGER,
ID INTEGER,
INTDATA INTEGER,
TEXTDATA CHAR(20),
UPDATETIME TIMESTAMP,
TARGETDB CHAR(1))

RETURNS
(SUCCESS INTEGER, ROWS_AFFECTED INTEGER)

BEGIN

DECLARE STATUS INTEGER ;
IF TARGETDB = ’R’ THEN

STATUS := 1 ;
ELSE IF TARGETDB = ’M’ THEN
STATUS := 2;

ELSE
STATUS := -1;

END IF;
END IF;

EXEC SQL PREPARE SYNCDEMO_INS
INSERT INTO SYNCDEMO
(REPLICAID,ID,STATUS,INTDATA,TEXTDATA,UPDATETIME)
VALUES(?,?,?,?,?,?);

EXEC SQL EXECUTE SYNCDEMO_INS USING
(MACHINEID,ID,STATUS,INTDATA,TEXTDATA,UPDATETIME);

SUCCESS := SQLSUCCESS;
ROWS_AFFECTED := SQLROWCOUNT;

EXEC SQL CLOSE SYNCDEMO_INS;
EXEC SQL DROP SYNCDEMO_INS;

END";
COMMIT WORK;

Sample script: proced2.sql
--***
-- proced2.sql
-- Creates a procedure SYNCDEMO_UPDATE for updating data of
-- the sample table SYNCDEMO and updates one row.
--
-- Execute in both the MASTER and REPLICA DBs.

3 Getting started 39

--
-- Validation rule: If the timestamp has changed, the update
-- is changed to insert with parameter ’targetdb’ as ’f’.
-- this will result in an insert with the status of -1 in
-- the called procedure syncdemo_insert.
--
-- An actual application needs to handle an almost
-- unlimited number of conflicts as well as other
-- transaction validation errors.
--
-- The procedure takes a parameter value for the column ID
-- instead of using a sequence value. Also, a parameter
-- value is provided for the database ID. In an actual
-- application, the column ID should contain a sequence value.
--***

SET CATALOG sync_demo_catalog ;

"CREATE PROCEDURE SYNCDEMO_UPDATE
(
MACHINEID INTEGER,
ID INTEGER,
INTDATA INTEGER,
TEXTDATA CHAR(20),
UPDATETIME TIMESTAMP,
TARGETDB CHAR(1)
)
RETURNS
(SUCCESS INTEGER, ROWS_AFFECTED INTEGER)
BEGIN
DECLARE TMPSTR VARCHAR;
DECLARE TNOW TIMESTAMP;
DECLARE DSTAT INTEGER;
DECLARE STATUS INTEGER;
IF TARGETDB = ’R’ THEN
STATUS := 1;
ELSE
STATUS := 2;
END IF;

TNOW := NOW();
TMPSTR := ’R’;
DSTAT := -1;

EXEC SQL PREPARE SYNCDEMO_UPD
UPDATE SYNCDEMO SET

STATUS = ?,
INTDATA = ?,
TEXTDATA = ?,
UPDATETIME = ?

WHERE
REPLICAID = ? AND
ID = ? AND
UPDATETIME = ? ;

EXEC SQL EXECUTE SYNCDEMO_UPD USING
(STATUS, INTDATA, TEXTDATA, TNOW, MACHINEID, ID, UPDATETIME);

SUCCESS := SQLSUCCESS ;
ROWS_AFFECTED := SQLROWCOUNT;

IF (SUCCESS = 1) AND (ROWS_AFFECTED = 0) THEN
TMPSTR := ’F’ ;

EXEC SQL PREPARE SYNC_UPD1 CALL
SYNCDEMO_INSERT(?,?,?,?,?,?);

EXEC SQL EXECUTE SYNC_UPD1 USING

40 IBM solidDB: Advanced Replication User Guide

(MACHINEID, ID, INTDATA, TEXTDATA, TNOW, TARGETDB);
EXEC SQL FETCH SYNC_UPD1 ;

SUCCESS := SQLSUCCESS;
ROWS_AFFECTED := SQLROWCOUNT;

END IF ;

END";
COMMIT WORK;

3.5 Enabling refresh of data and inserting data in replica
The publication defined at the master database must be registered at the replica so
that the replica can receive refreshes of data from the master. Updates to data in
the replica database are marked for synchronization by using a SAVE statement.

The sample scripts below contain the SQL statements for registering a publication,
inserting data in the replica, and saving the data to be propagated to the master.

Registering publications allows publication parameters to be validated. This
prevents users from accidentally requesting refreshes they do not want, or
requesting ad-hoc refreshes.
1. Query the sample table SYNCDEMO to ensure that it does not contain any

data in the master or replica database:
SELECT * FROM SYNCDEMO;

0 rows are returned.
2. Register publication and insert two rows in the replica by running the

following statements at the replica:
--***
-- replica2.sql
-- This script registers to publication PUB_DEMO, inserts two
-- rows to the REPLICA database and
-- saves the transaction to be propagated to the MASTER
--
-- Execute in the REPLICA database
--***
-- register to publication
SET CATALOG sync_demo_catalog ;
MESSAGE REG_PUBL BEGIN;
MESSAGE REG_PUBL APPEND REGISTER PUBLICATION
PUB_DEMO;
MESSAGE REG_PUBL END;
COMMIT WORK;
MESSAGE REG_PUBL FORWARD TIMEOUT FOREVER;
COMMIT WORK;

CALL SYNCDEMO_INSERT (1,1,100,’First row’,’1998-05-15 12:00:00’,’R’);
SAVE CALL SYNCDEMO_INSERT (1,1,100,’First row’,’1998-05-15 12:00:00’,’M’);
CALL SYNCDEMO_INSERT (1,2,101,’Second row’,’1998-05-15 12:00:01’,’R’);
SAVE CALL SYNCDEMO_INSERT (1,2,101,’Second row’,’1998-05-15 12:00:01’,’M’);

COMMIT WORK;

3. Query the sample table SYNCDEMO on the replica to ensure that the replica
database contains two rows.
SELECT * FROM SYNCDEMO;

4. Query the sample table SYNCDEMO on the master to ensure that the master
database contains 0 rows.
SELECT * FROM SYNCDEMO;

3 Getting started 41

At this point, the replica database also has two saved statements in one transaction
waiting to be propagated to the master database.

Fast path: If you are using the working directories and sample scripts in the
samples\replication\ directory, go the solidDB installation root directory and
issue the following commands:
.\bin\solsql -O eval.out "tcp 1315" dba dba_password .\samples\
replication\eval_setup\select.sql

.\bin\solsql -O eval.out "tcp 1315" dba dba_password .\samples\
replication\eval_setup\replica2.sql

where:
v -O eval.out is an optional parameter that defines the output file for results.
v "tcp 1315" is the network protocol and address of the server. You might need to

customize this part of the command.
v dba and dba_password are username and password respectively.

You can view the results in eval.out with any text editor.

3.6 Synchronizing data using synchronization messages
Data between master and replica is synchronized using synchronization messages.
The synchronization messages are programmed using SQL statements (MESSAGE)
that are executed in the replica database. Messages include the database operations
needed for synchronization.

In the evaluation setup, the synchronization of data between the master and replica
is showcased using a set of SQL scripts.
1. Synchronize the master and replica databases by executing in the replica the

SQL statement shown in replica3.sql.
The statements create a message, send the message to the master, and wait for
a reply.

REPLICA3.SQL
--***
-- replica3.sql
-- Creates a new message with name ’my_msg’ and
-- appends two tasks to message my_msg:
-- propagate all local transactions to the master
-- refresh data from master to the replica using
-- the pub_demo publication
--
-- Execute in the REPLICA database.
--
-- Note: AUTOCOMMIT must be off
--***
SET CATALOG replica_catalog ;
MESSAGE my_msg BEGIN ;
MESSAGE my_msg APPEND PROPAGATE TRANSACTIONS ;
MESSAGE my_msg APPEND REFRESH PUB_DEMO ;
MESSAGE my_msg END ;
COMMIT WORK ;

-- Send the message to the master, do not
wait for reply.
MESSAGE my_msg FORWARD;
COMMIT WORK;

42 IBM solidDB: Advanced Replication User Guide

-- Request reply to the message separately from
master.
MESSAGE my_msg GET REPLY TIMEOUT DEFAULT ;
COMMIT WORK;

Query table SYNCDEMO on both the replica and master to verify that both
databases contain two rows.
SELECT * FROM SYNCDEMO;

2. Delete a row from the master by executing in the master the SQL statements
shown in master2.sql.
--***
-- master2.sql
-- Deletes a row from the sample table
-- Execute in the MASTER database
--**
SET CATALOG sync_demo_catalog ;
DELETE FROM SYNCDEMO WHERE ID = 2;

COMMIT WORK ;

3. Query table SYNCDEMO on both the replica and master to verify that the
replica contains two rows and the master contains one.
SELECT * FROM SYNCDEMO;

4. Resynchronize the master and replica databases by executing in the replica the
SQL statements shown in replica3.sql above.

5. Query table SYNCDEMO on both the replica and master to verify that both
replica and master contain one row.
SELECT * FROM SYNCDEMO;

6. Insert two more rows in the replica by executing in the replica the SQL
statements shown in replica4.sql.

REPLICA4.SQL
--***
-- replica4.sql
-- This script inserts two rows to the REPLICA database
-- and saves the transaction to be propagated to the MASTER
--
-- Execute in the REPLICA database
--

SET CATALOG sync_demo_catalog; CALL SYNCDEMO_INSERT
(1,3,102,’Third row’,’1998-05-15 12:10:00’,’R’);
SAVE CALL SYNCDEMO_INSERT (1,3,102,’Third
row’,’1998-05-15 12:10:00’,’M’);
CALL SYNCDEMO_INSERT (1,4,103,’Fourth
row’,’1998-05-15 12:10:01’,’R’);
SAVE CALL SYNCDEMO_INSERT (1,4,103,’Fourth
row’,’1998-05-15 12:10:01’,’M’);
COMMIT WORK;

7. Resynchronize the master and replica databases by executing in the replica the
SQL statements shown in replica3.sql above.

8. Query table SYNCDEMO on both the replica and master to verify that both
replica and master contain three rows.
SELECT * FROM SYNCDEMO;

9. Update one row in the replica by executing in the replica the SQL statements
shown in replica5.sql.

REPLICA5.SQL
--***
-- replica5.sql
-- This script updates one row in the REPLICA database
-- and saves the row to be propagated to the MASTER

3 Getting started 43

--
-- Execute in the REPLICA database
--***
SET CATALOG sync_demo_catalog ;

CALL SYNCDEMO_UPDATE (1,1,201,’Row 1
changed’,’1998-05-15 12:00:00’,’R’);
SAVE CALL SYNCDEMO_UPDATE (1,1,201,’Row 1
changed’,’1998-05-15 12:00:00’,’M’);
COMMIT WORK;

10. Resynchronize the master and replica databases by executing in the replica the
SQL statements shown in replica3.sql above.

11. Query table SYNCDEMO on both the replica and master to verify that both
the replica and master databases contain three rows and that the update has
been propagated to the master database.
SELECT * FROM SYNCDEMO;

12. Update one row at the master by executing in the master the SQL statements
shown in master3.sql.

MASTER3.SQL
--***
-- master3.sql
-- This script updates one row in the MASTER database
--
-- Execute in the MASTER database
--***
SET CATALOG sync_demo_catalog ;

CALL SYNCDEMO_UPDATE (1,3,203,’Row 3
masterchange’,’1998-05-15
12:10:00’,’M’);
COMMIT WORK ;

Important: Do not synchronize the data to replica.
13. Query table SYNCDEMO on both the replica and master to verify that both

the replica and master contain three rows and that the last update has
occurred only at the master database.
SELECT * FROM SYNCDEMO;

14. Update the same row in the replica by executing in the replica the SQL
statements shown in replica6.sql.

REPLICA6.SQL
--***
-- replica6.sql
-- This script updates one row in the REPLICA database
-- and saves the row to be propagated to the MASTER
--
-- Execute in the REPLICA database
--***
SET CATALOG sync_demo_catalog ;
CALL SYNCDEMO_UPDATE (1,3,203,’Row 3
replicachange’,’1998-05-15 12:10:00’,’R’);
SAVE CALL SYNCDEMO_UPDATE (1,3,203,’Row 3
replicachange’,’1998-05-15 12:10:00’,’M’);
COMMIT WORK;

15. Query table SYNCDEMO on both the replica and master to verify that the
updates in master and replica are now different.
SELECT * FROM SYNCDEMO;

16. Resynchronize the master and replica databases by executing in the replica the
SQL statements shown in replica3.sql above.

44 IBM solidDB: Advanced Replication User Guide

17. Query table SYNCDEMO on both the replica and master to verify that the
conflict caused by updating the same row was processed properly.
SELECT * FROM SYNCDEMO;

Both master and replica should now contain four rows. One of the rows
should have invalid (-1) status since the last update operation at the replica
will cause a conflict at master database.

3 Getting started 45

46 IBM solidDB: Advanced Replication User Guide

4 Planning and designing for advanced replication
applications

This chapter describes the design and planning issues you need to consider before
installing and implementing an application that uses solidDB advanced replication
data synchronization technology. 3, “Getting started with data synchronization -
evaluation setup,” on page 33 provides you with a quick overview of advanced
replication functionality. Now you can begin planning for solidDB advanced
replication application development and customizing it to meet your own unique
business needs. This chapter shows you how to plan and design your
multi-database system to do this. It pinpoints the various areas of the application
and database where design issues apply.

4.1 Planning for advanced replication installation
Before installing a distributed database system using solidDB advanced replication,
you need to determine, analyze, and evaluate the synchronization needs of your
application. These needs affect the resource and application requirements of the
system. In addition, performance considerations can affect how you decide to
distribute data, initiate data propagation, schedule synchronization, create your
infrastructure, and allocate computer and network resources.

4.1.1 Distributing data
The amount and nature of local data needed at the replica affects the resource
requirements of the synchronization process. For more scalability, plan to partition
the data into different replica databases so that replica database contains only a
subset of the master data. Typically the better the data is partitioned, the more
scalability you achieve in your overall system. Be sure to consider performance
needs when designing the logical and physical data model of the system.

4.1.2 Tailoring the synchronization process
A distributed advanced replication system can use the off-peak hours of the
system. The advanced replication architecture allows the synchronization process
to be fully tailored.

When you are designing your advanced replication environment, consider the
capacity of the available infrastructure. For example, you can tailor large amounts
of data transfer over the network when the available bandwidth is optimal. During
rush hours, you can allow the transfer of only the most urgent synchronization
tasks, such as propagation of high-priority transactions.

Because there is some overhead related to synchronizing data, a compromise
between the overall performance of the database and the data timeliness is often
needed. The higher the timeliness requirement of the data (that is, the smaller the
synchronization messages are), the more overhead the synchronization causes and
hence, the less scalability you have in the overall system.

4.1.3 Evaluating performance and scalability
From performance and scalability perspective, the infrastructure must provide
enough capacity for I/O handling, fault tolerance, and transfer of synchronization

47

messages. The key components that affect performance and scalability are the
master database, the replica database, and the network capacity.

Tuning master database performance
From performance perspective, the master database is a critical component of the
system. All synchronized transactions created in the system are eventually
committed in the master database. Similarly, publication data is refreshed from the
master database. From the system infrastructure point of view, this means two
things:
v The capacity of the master server must be sufficient to manage the CPU and

disk-I/O load caused by the replica transactions and refreshes. Some additional
disk I/O is caused by the store and forward messaging of the synchronization
architecture. If the additional disk I/O is caused by the store and forward
messaging becomes a problem, consider using the synchronous refresh method
described in 2.2.4, “Synchronous replication - messageless REFRESH,” on page
20.

v The fault tolerance of the master server must be at a sufficient level. Since the
replica databases communicate with each other only through the master, the
master server is the single point of failure. If the master server goes down,
synchronization between replicas stop. To avoid problems cause by master
server failure, consider using the solidDB high availability component.

Optimizing the load of the master database

In a typical database system, most of the database load is read I/O load caused by
the read-intensive online usage of the database. In a multi-database system, this
load can be distributed to a large number of databases. The capacity of the master
database is then left for processing the transactions that have been propagated
from the replica databases of the system.

Because all shared or synchronized transactions of the system are committed in the
master database, it is very important that the resources of the master database are
used as efficiently as possible. The following actions can help optimize the resource
usage of the master database:
v If possible, dedicate the master database for synchronization use only. Online

access to this database might have unpredictable response times if heavy
synchronization processes are being run simultaneously.

v Optimize the indexing of the database for synchronization use only. For
example, if the database has no online usage, provide only those indices that are
used by the search criteria and joins of the publications, as well as those needed
by the transactions.

v If a database for centralized online use is needed, it is often preferable to have a
full replica of the master database available for that purpose. This database can
have indexing that is optimized for the online usage.

v Keep the publications simple. Complex publications with lots of joins between
tables mean more complex queries that require more server resources.
Since incremental refreshes usually use fewer resources than full refreshes, you
can enable incremental refreshes by setting the SYNCHISTORY property for the
tables of the publication. This allows the master server to send only the master
data that has changed in the publication, rather than a full publication.

v Do not synchronize more frequently than necessary.
v Utilize the off-peak hours in the synchronization processes. Synchronize the

large masses of less-urgent data when the online usage of the system is at its
minimum.

48 IBM solidDB: Advanced Replication User Guide

Related information:
5.6, “Creating publications,” on page 85
8.2.2, “Optimizing synchronization history data management,” on page 136

Replica database
The usage pattern of replica servers of the system is usually fairly "traditional."
The servers are accessed by applications that perform queries and write operations
to the database. The capacity of the replica databases should be sufficient to serve
the normal online usage of the server. Reserve some additional capacity to cover
the overhead caused by database synchronization.

If possible, deny user access to the physical database file to ensure the maximum
level of data security in the system.

Network
Be sure to place the master server on a machine that has the best possible
throughput. Carefully estimate and test the maximum amount of data transferred
during synchronization to ensure that the bandwidth of the network is sufficient
for database synchronization.

Be sure to test the network for transmission of the synchronization messages.
These messages contain:
v Header data (insignificant)
v Transactions which include:

– procedure calls as strings
– parameters as binary data

v Refreshes to publications which include:
– all inserted and updated rows from the master database
– primary keys of rows that are deleted from the master database

4.2 Designing and preparing databases for synchronization
After you install solidDB on each machine, you are ready to prepare and design
your databases for synchronization. This requires the following tasks:
v Define master and replica databases.
v Create your database schema according to advanced replication guidelines.
v Create catalogs if you have a multi-master environment or you are using

different schema names in your master and replica database.
v Define concurrency conflict handling in synchronized tables, i.e. determine if the

tables should use optimistic or pessimistic concurrency control.
v Provide user access required for synchronization.
v Set up backups of the master database and large replicas.
v Design application(s) for data synchronization.

4.2.1 Defining master and replica databases
Before you create your database schema, you need to set your database catalogs as
a "master" or "replica" or both using the SET SYNC command. You can use
solidDB SQL Editor (teletype) to enter the commands required for set up.

To specify a catalog as a dedicated "master" database, enter the following
command in the catalog where the database resides:

4 Planning and designing for advanced replication applications 49

SET SYNC MASTER YES;
COMMIT WORK;

To specify a catalog for a dual role (that is, a middle tier database of a multi-tier
synchronization hierarchy), enter the following command in the catalog where the
database resides:

SET SYNC MASTER YES;
SET SYNC REPLICA YES;
COMMIT WORK;

In each catalog where a dedicated replica resides, specify the catalog as a "replica"
database:

SET SYNC REPLICA YES;
COMMIT WORK;

The current database catalog can be defined with the SET CATALOG command. If
no catalog is specified, the base catalog is used.

4.2.2 Creating the database schema
In a multi-database system, the usage of databases can vary a lot. Therefore you
must consider the way databases in your system will be used when physically
implementing and tuning them.

Following are the guidelines for using schemas and catalogs. Refer to the section
that applies to your advanced replication architecture.

Guidelines for a two-tier topology
A two-tier data redundancy model has one master database and multiple replica
databases. Both master and replica databases can have different schemas using the
default schema name which is the user id of the database owner. In this case, no
schema is explicitly defined; instead the server automatically assigns one with the
user id. It is recommended that you use identical schema names for the master and
replica databases. Although you can use different schema names, be aware that
different schema names in master and replicas may complicate the application
programming.

To use schemas, a schema name must be created before creating the database
objects that will be associated with the schema. To create a schema use the
CREATE SCHEMA command. See the solidDB SQL Guide for details.

Guidelines for multi-tier topology
A multi-tier topology contains three or more tiers in the hierarchy of synchronized
databases. The top tier of the topology is the master database for the overall
system. The mid-tier databases of the topology have a dual role of both master and
replica databases. The lowest tier contains only replicas.

A multi-tier topology is especially useful in systems that have a wide geographic
distribution and a potentially large number of replica databases that also have local
data (i.e. data that does not require synchronization with the top-tier master). The
data in this type of system is typically partitioned to limit data access to specific
replicas. For example, a network management system that contains a database to
manage configuration and event information for a large managed network meets
the criteria for a multi-tier topology.

50 IBM solidDB: Advanced Replication User Guide

Guidelines for multi-master topology
solidDB's physical database file may contain more than one logical database. Each
logical database is a complete, independent group of database objects, such as
tables, indexes, procedures, triggers, and so on. Each logical database is
implemented as a database catalog. Each of these catalogs can act as an
independent master or replica database. This makes it possible, for example, to
create two or more independent replica databases into one physical local database.
It is also possible to have one or more catalogs in this same local database that
each contain a master database.

Multi-master topologies are useful in environments where a solidDB database is
used by multiple applications. For example, a local database may contain a replica
of two masters: one for a configuration management application and another one
for a usage-monitoring application. Note that you can combine multi-tier and
multi-master topologies.

Creating Catalogs

The following are guidelines for designing and implementing multiple catalogs
used for synchronization:
v When creating a database, solidDB creates a default catalog for the database.
v Besides the default catalog, a single solidDB database can contain any practical

number of catalogs.
v If you do not explicitly CREATE and SET any catalogs, then you will use the

default catalog for the database.
v Each catalog of a database can be either a master, replica, or both.
v Each catalog can contain multiple schemas. Transactions can access database

objects in any catalog.
v A catalog can contain local tables as well as tables that are synchronized with a

master. A single transaction may use a combination of local tables and master
tables.

v The physical database has a set of defined local users that have access to the
local data management functions. For accessing the data synchronization
functions, each catalog has one or more master users that have been
downloaded as part of a replica registration.

Figure 9 on page 52 illustrates these guidelines.

4 Planning and designing for advanced replication applications 51

To create and set catalogs for masters and replicas, use the CREATE CATALOG
and SET CATALOG commands. Refer to the CREATE CATALOG and SET
CATALOG commands in the solidDB SQL Guide for details on creating and setting
catalogs.

On Master:
CREATE CATALOG INVENTORY;
SET CATALOG INVENTORY;
COMMIT WORK;

On Replica:
CREATE CATALOG INVENTORY;
SET CATALOG INVENTORY;
COMMIT WORK;

Note:

1. A catalog name does not need to be the same in a master and replica. want to
use (if you do not specify a fully qualified name).

2. When actually using the catalogs after they are created, you may specify them
by using fully-qualified table names (including the catalog name), or you may
use the SET CATALOG command to specify which catalog you want to use (if
you do not specify a fully qualified name).

Using Schemas within Catalogs

To logically partition a database, you create a catalog(s) first before you create a
schema. After you create the catalog and schema, you then create the database

Application

Cat 3
(local data)Cat 2Cat 1

Master
catalog

Master
catalog

Local
database

SYSTEM B
Central master database 2
(Master users)

SYSTEM A
Central master database 1

Figure 9. Multi-Master Model

52 IBM solidDB: Advanced Replication User Guide

objects that will be associated with the schema. If you create the database objects
without a specified schema, the schema becomes your user id.

You may use multiple schemas within catalogs (although a single schema may be
sufficient). If you have multiple schemas, you may specify them either by
including the schema as part of the table name, or you may use the SET SCHEMA
command to specify which schema you want to use.

If you do not explicitly CREATE and SET any schema name, then you will use the
default schema name, which is your user id.

Note: With catalogs, there is one default for the entire database, but with schemas,
there is one default for each user — there is NOT one default for the entire
database.

Refer to the CREATE SCHEMA and SET CATALOG commands in the SQL Guide
for details on creating and setting schemas.

Set up data for synchronization
This section applies to both two-tier, and multi-tier, multi-level architectures. It
assumes that you have created your catalogs and schema names (if required).

The following are guidelines for designing and implementing the schema and
using the CREATE TABLE command to create the master database and replica
database tables.

You define tables that are required for synchronization and will be used in a
publication. A publication is a set of data to be downloaded from the master
database to a replica database. When creating your schema you need to define:
v Tables of the master database
v Tables of the replica database
v Replica databases can contain all tables of the master database or a subset of

them.
v Replica databases can also contain tables that are for local use only.
v Replica tables can contain a subset of columns from the master table.
v The name of the replica table can be different from the master table. When

publications are created using the CREATE PUBLICATION command, a master
table name can be associated with a replica table that has a different name. The
publication definition takes care of the mapping between the master and replica
tables.

Keep in mind the following when creating tables:
v All tables in the schema must have a user-defined primary key. The primary

keys in master and replica tables must be identical and uniqueness must be
guaranteed globally. More columns in a replica's primary key will lead to
conflicts in propagating transactions to the master database. More columns in a
master's primary key will similarly lead to conflict when refreshing data to a
replica.

v Apply the ALTER TABLE SET SYNCHISTORY command to enable incremental
publications on the master and replica tables. Otherwise the master sends the
replica full publications (which use more resources) rather than incremental
publications.

4 Planning and designing for advanced replication applications 53

By setting the SYNCHISTORY property for each table of the publication in both
the master and the replica databases, you allow the creation of a shadow history
table that keeps track of data updates for incremental publication. For details on
the ALTER TABLE syntax, read 5.6.1, “Creating incremental publications,” on page
86.

Design the logical database
The data modeling of a multi-database system is slightly different from that of a
centralized system. The tentative nature of replica data as well as the possible
coexistence of multiple different versions of the same data item (row) must be
handled properly in the logical data model. Therefore, there are some rules of
thumb to consider when designing the logical database of a multi-database system.

Unique Surrogate Primary Keys

All write operations that are executed in the master database must be successful. A
"unique constraint violation" causes the entire synchronization process to halt.
Therefore the primary keys (and unique indices) of the rows must be unique
throughout the entire system. It is strongly recommended, that globally unique,
surrogate primary key values are used in all tables of the database. This kind of
key can for instance be a combination of database ID and a sequence number. For
example:
CREATE TABLE CUST_ORDER
DB_ID VARCHAR NOT NULL, ID INTEGER NOT NULL,
... other columns of the table,
(PRIMARY KEY (DB_ID, ID));

Detecting Update Conflicts

The easiest method of detecting update conflicts is to use an "updatetime" column
in each table of the system. Whenever a row is updated, the current (that is,
pre-update) value of the updatetime column is appended to the WHERE clause. If
the row is not found, it means that the updatetime has changed, that is, someone
else has updated the row causing a conflict. This mechanism is known as
"optimistic locking."

Reporting Synchronization Errors

It is always possible that an error can occur during synchronization. The error may
be an application-level error such as update conflict in the master database. If such
error cannot be automatically resolved, it should be logged for manual resolution.

One way to implement this is to create a synchronization error log table that
contains an entry about each error. Whenever an application-level error occurs
during synchronization, the stored procedures of the transactions should insert a
row to the error log table. For a suggestion on how to create an error log, read
5.7.5, “Creating a synchronization error log table for an application,” on page 97.

The error may also be server-level error that halts the processing of the
synchronization message. In this case, the error recovery is done at messaging
level. For details, refer to 7, “Administering advanced replication systems,” on
page 125.

Design the Database Schema

54 IBM solidDB: Advanced Replication User Guide

The usage pattern of master and replica databases can be very different. The
queries performed in the master database can also be very different from those of
replica databases.

Due to these facts, the indexing of the databases should be carefully designed,
bearing in mind the different usage patterns. The indexing of replicas should
follow the requirements of the applications that are using the database. When
designing an index for a master database, note that unique indexes must be
globally unique. Also consider the following index guidelines for publications and
transactions.

Publications

Be sure to index queries that are derived from publication definitions. solidDB
treats nested publications as joins. To make the publication operation efficient, the
joining columns of the tables of the publication must be indexed.

In the example that follows, CUSTOMER and SALESMAN tables are joined
together using the SALESMAN_ID column of the CUSTOMER table. To allow
efficient execution of refreshes from this publication, index the SALESMAN_ID
column using a secondary index.
CREATE PUBLICATION pub_customers_by_salesperson (sperson_area varchar)
BEGIN

RESULT SET FOR salesman
BEGIN

SELECT * FROM salesman where area = :sperson_area
DISTINCT RESULT SET FOR customer
BEGIN

SELECT * FROM customer WHERE salesman_id = salesman.id
END

END
END;

In addition to the indices created by the user, solidDB automatically creates two
system indices for tables that have the SYNCHISTORY property set on. The same
indices are also automatically created for the history tables of the main tables.

Write Load Caused by Transactions

The write load of the master database sets the practical limits to the scalability of a
advanced replication system. In a advanced replication system, all propagated
transactions are eventually committed in the master database. Each index causes
additional disk I/O in all write operations (insert, update, delete) to that table. For
this reason, minimize the number of secondary indexes in the master database if
the write performance is a critical factor.

4.2.3 Defining a database table
The following CREATE TABLE SQL command creates a table that is typical in a
database set up for synchronization. Note also that the ALTER TABLE SET
SYNCHISTORY advanced replication extension prepares the table for incremental
publications. Be sure also to set up the table for incremental publications if you are
using large tables, as opposed to tables that are small and heavily updated.

Note:

Before you execute the ALTER TABLE SET SYNCHISTORY statement, be sure you
have defined your databases to be masters and replicas using the SET SYNC

4 Planning and designing for advanced replication applications 55

MASTER and SET SYNC REPLICA commands. Failure to define masters and
replicas results in an error message when you attempt to use the ALTER TABLE
command. Read 5.5, “Setting up databases for synchronization,” on page 83 for
details.

Note:

If the Replica is read only (no changes are done to the replicated parts of the
publication), the statement ALTER TABLE ... SET SYNCHISTORY is not needed. In
the same time, the following Flow Replica-resident parameter should be set:
set sync parameter SYS_SYNC_KEEPLOCALCHANGES ’Yes’;

Note also that, in this case, ALTER TABLE ... SET HISTORY COLUMNS cannot be
used.
CREATE TABLE CUST_ORDER (
ID VARCHAR NOT NULL,
SYNC_STATUS CHAR(3) NOT NULL,
CUST_ID VARCHAR NOT NULL,
PRODUCT_ID VARCHAR NOT NULL,
QUANTITY INTEGER NOT NULL,
PRICE DECIMAL(10,2) NOT NULL,
UPDATETIME TIMESTAMP NOT NULL,
PRIMARY KEY (ID, SYNC_STATUS));
ALTER TABLE CUST_ORDER SET SYNCHISTORY;
COMMIT WORK;

Some remarks about the above example:
v The ID column is a generated primary key value (surrogate key) of the new row:

ID VARCHAR NOT NULL,

The value should preferably be a composite that contains two parts: the unique
ID of the database where the row was first created and a sequence number
within that database.
The reason for recommending usage of surrogate keys is the requirement of
global key uniqueness. Inserting a row in two different replica databases with
the same key value must not be permitted. If allowed, the next transaction
propagation task would produce a unique constraint violation error in the
master database. Whenever such an error occurs, the synchronization process
halts and cannot continue until the problem has been fixed by deleting the
duplicate row from the database.

v The SYNC_STATUS column holds information about the synchronization status
of the row:
SYNC_STATUS CHAR(3) NOT NULL,

If the row is a valid one, then the value can be, for example, "OK". On the other
hand, if an update conflict or other transaction validation error has happened
when the row was committed in the master database, then the row should be
inserted to the database with for example, value "C01" (first update conflict of
this row). The existence of this column makes it possible to store multiple
versions of the same row to the database: one official version (with status "OK")
and multiple additional versions for conflict resolution and error recovery
purposes. The primary key of the table is composed of the ID and
SYNC_STATUS columns.

v The UPDATETIME column contains a timestamp that indicates the last date and
time when the row was updated:
UPDATETIME TIMESTAMP NOT NULL,

56 IBM solidDB: Advanced Replication User Guide

The application logic (including the stored procedures that form the
transactions) can use this column to detect update conflicts in the system.

4.2.4 Handling UPDATE triggers
In some situations, UPDATE triggers require special design and coding.

You might expect that if you UPDATE a record on the master, and if that UPDATE
operation fires an UPDATE trigger, then when the record is sent to the replica (via
a REFRESH), an UPDATE trigger will also be fired on the master. In fact, however,
this is not the case. If a record is updated on the master, and the same record is
"updated" via a REFRESH operation on the replica, then the replica server will
actually fire a DELETE+INSERT pair of triggers, not an UPDATE trigger. The
reason for this is that the replica does not directly update the record; instead it
deletes the old record and then inserts the new record.

Description of the possible causes of triggers
The server can also do an additional pair of insert-delete operations that is related
to synchronization and that causes triggers to be fired. Prior to copying the master
data to the replica's tables, the replica "undoes" all local data changes that have
been written into the replica since the last synchronization. The reason for this is
that the replica's data is always "tentative" until it has been processed and made
official by the master. If the replica has tentative data, then each time that it
receives official data from the master, it (the replica) simply discards any unofficial
data that it has and stores only the official data from the master. The process of
"undoing" the tentative changes on the data causes the replica server to do an
additional delete and insert. We explain this in more detail below.

If the REFRESH is incremental, then the process is executed in multiple steps. The
first step is effectively to throw out all tentative changes made since the last official
data was received, then restore the last official data. The second step is to process
the new official data. Thus we have all the old official data as of the last refresh,
and we have all the official changes since that refresh, so we have exactly what the
master has.

Let's step through an example, in which we get a full refresh from the master,
make some changes on the replica, and then get an incremental refresh from the
master. During the process of getting the refresh(es) from the master, we throw out
all the data on the replica, and store all the data sent by the master.

At 10:00 AM we get a full refresh with data records for Anne Anderson, Barry
Barrymore, and Carrie Carlson.

At 10:01 AM Anne Anderson updates her record.

At 10:02, Barry updates his record.

At 10:03, we propagate the changes, in this case the change to Anne's and Barry's
records. For the purpose of this example, assume that Anne's changes are accepted
by the master and Barry's changes are rejected.

At 10:04, we get an incremental refresh. During the processing of the incremental
refresh, the replica discards all changes since the last official refresh (in this case
the one at 10:00 AM). Both Anne's changes Barry's changes are discarded from the
replica.

4 Planning and designing for advanced replication applications 57

At this point, our replica looks just as it did after the last refresh operation and
thus is ready to get an incremental subscription that contains only those changes
approved by the master since the last refresh.

During our incremental refresh, we get an updated record for Anne (whose
propagated data was accepted by the master and then returned during the
REFRESH). Barry's changes, which were rejected by the master, are gone forever.
The net result is that the database has the official values for all three records - the
new/approved changes for Anne, and the older (most recent official) data for
Barry and Carrie.

(Note that the preceding description uses some simplifying assumptions, including
that Barry and Carrie's records were not changed on the master since the last
official refresh by this replica.)

Now let's give an example of a complete cycle, starting with an update on the
replica and ending with the refresh from the master, so that we can see all the
triggers that may be executed during this cycle. In our example, a replica makes a
local update that is propagated to the master and executed there, and then the
master version of the update is downloaded back to replica in the result set of the
synchronization. During this cycle, triggers are fired in master and replica
databases as shown below:
1. The update on the replica fires regular UPDATE triggers (both the BEFORE and

AFTER triggers) in the replica. If the replica contains any old master values
(which it probably does unless it is brand new and has never done a
REFRESH), those data values from the master are written to the history table in
the replica.

2. The replica then propagates its data to the master. When executing the
propagated transaction in the master, UPDATE triggers are fired in the master.
The old value of the row to be updated is written to the sync history table of
the master database. The new value of the row is written to the main table.

3. After the replica requests a refresh, the master server assembles the result set of
the subscription. It contains the primary key values of the old versions of
updated rows. These rows will be deleted from the replica table. After those
rows are deleted, the new values of the same rows will be inserted. (The result
set that is sent to the replica will contain first a list of primary keys to be
deleted, followed by the rows to be inserted.)

4. When the replica receives the sync message from the master, it deletes all
"tentative" data from the main tables. This fires a delete trigger (Delete local
tentative row). After this, the replica server inserts the possibly existing old
master version of the row from the sync history table. This fires an insert
trigger (Insert old official row). After this, the server applies the deletes from
the synchronization message. This fires a delete trigger (Delete old official row).
Finally, the server applies the inserts from the synchronization message. This
fires an insert trigger (Insert new official row).

See Figure 10 on page 59 for an illustration of step 4 above. The illustration shows
a detailed breakdown of what occurs during an incremental refresh. In an earlier
diagram in Figure 1 on page 6, we showed the overall process of propagating and
refreshing a record. The illustration below shows the details of just the incremental
refresh portion of the earlier diagram.) As you can see, for the record updated by
"Anne", the replica server actually executes multiple delete and insert operations.
The record updated by "Barry" is also deleted and then inserted (rather than
simply updated).

58 IBM solidDB: Advanced Replication User Guide

1. The initial state shows the state after the propagate and just prior to the
incremental refresh. Anne and Barry changed their data since the last refresh.
Note: Barry's update was not accepted by the master.

2. During the refresh state, there are two steps: 1) the roll back replica changes
since the last refresh and 2) new or updated records from the master are
inserted. Each of these two steps is itself composed of two sub-steps (delete
and insert).

3b

3a

3

2b

2a

2

1

A

B

C

2

1

1

A

B

1

1

A

B

C

2

1

1

A

B

C

2

1

1

A

B

1

1B

C

1

1

A

B

C

2

1

1

A

B

1

1

A

B

C

1

1

1

A

B

C

2

1

1

A

B

1

1

C 1

A

B

C

2

1

1

A

B

1

1

A

B

C

2

2

1

Apply

Refresh

Initial state

Master
table

Replica sync
history table

Replica
tableAction

Figure 10. Details on an incremental refresh

4 Planning and designing for advanced replication applications 59

a. Delete the records that changed since the last refresh.
b. Insert the most recent "official" records by copying from synchistory. The

replica now looks as it did right after the last refresh.
3. Apply new record values received from the master. In this case, "Anne

Anderson 2" is sent from master.
a. Delete the records for which the master sent new values.
b. Insert the most recent 'official' records from the master.

When synchronizing an update operation that may have taken place in both
replica and master databases, we have up to four sync-related triggers that may
fire on the replica:
v Delete current tentative
v Insert old official
v Delete old official
v Insert new official

(In addition, some trigger(s) on the master may also have fired.)

Now that you understand all the possible triggers that can occur in a advanced
replication operation when an UPDATE occurs on the master, you will understand
all the possible values that the new bulletin board parameters can take. The
possible values are documented in Appendix A, “Bulletin board parameters,” on
page 141, and are summarized below:

The possible values of the SYS_SYNC_OPERATION_TYPE parameter in DELETE
triggers are:
v CURRENT_TENTATIVE_DELETE (set when deleting the current locally updated

value of a row prior to executing the reply message in replica)
v OLD_OFFICIAL_DELETE (set when deleting a row that was deleted in master)
v OLD_OFFICIAL_UNIQUE_DELETE (set when the master sends a row to be

added to the replica, but a similar row already exists on the replica. With this
parameter value, the old official row is deleted before the new row is added to
the replica.)

v OLD_OFFICIAL_UPDATE (set when executing a delete that was created as a
result of an update in master)

The possible values of the SYS_SYNC_OPERATION_TYPE parameter in INSERT
triggers are:
v OLD_OFFICIAL_INSERT (set when restoring the old master value prior to

executing the reply message in replica)
v NEW_OFFICIAL_INSERT (set when inserting row that was inserted in master)
v NEW_OFFICIAL_UPDATE (set when executing an insert that was created as a

result of an update in master)

If the trigger is fired by a local transaction (i.e. not by synchronization logic), then
the value of this parameter is NULL.

The above is valid only for incremental refreshes. If the result set is full, all local
data is deleted and a full set of master data is applied. In this case the DELETE
operations from the master database are not sent to the replica. To find out
whether the refresh was full or incremental read the value of the bulletin board
parameter SYS_SYNC_RESULTSET_TYPE. Its possible values are:

60 IBM solidDB: Advanced Replication User Guide

v FULL
v INCREMENTAL

Executing the code intended for the UPDATE triggers
It is not trivial to ensure that an UPDATE operation on the master is executed as
an UPDATE on the replica. Instead of directly trying to force an UDPATE trigger
on the replica to be executed, the solidDB server (the master) posts two parameters
on the advanced replication parameter bulletin board. These parameters can be
read by the trigger logic on the replica to determine how the record was originally
processed on the master. The replica can then execute the logic appropriate for an
UDPATE operation, if desired.

The bulletin board parameter(s) tell you how the record was originally processed
— for example, whether it was originally part of an UDPATE operation on the
master. Since an INSERT or DELETE trigger has no easy way to stop itself and
then force the firing of an UPDATE trigger, merely knowing that the original
command was an UPDATE trigger is not sufficient. You will need to modify the
code inside your triggers so that they take different actions depending on what the
original statement was (for example, whether the original statement on the master
was an update or was a DELETE/INSERT pair). If necessary, your DELETE or
INSERT trigger will call the same code that your UPDATE trigger would have
called. You should do the following on the replica(s):

For each of the six possible triggers on a table
BEFORE UPDATE,
AFTER UDPATE,
BEFORE INSERT,
AFTER INSERT,
BEFORE DELETE,
AFTER DELETE,

extract all of the trigger's logic into a stored procedure that can be called from
inside a trigger.

Thus, for example, if your BEFORE UPDATE trigger looked like:
CREATE TRIGGER trigger_name ON table1 BEFORE UPDATE

BEGIN
stmt1;
stmt2;
stmt3;
END;

You will now have something like:
CREATE PROCEDURE before_update_on_table1

BEGIN
stmt1;
stmt2;
stmt3;
END;

CREATE TRIGGER trigger_name ON table1 BEFORE UDPATE...
BEGIN
CALL before_update_on_table1;
END;

Once you have done this, you can rewrite your triggers so that they take into
account whether the record was originally UPDATED or was originally INSERTED.
For example, the logic of your BEFORE INSERT trigger will look something like

4 Planning and designing for advanced replication applications 61

CREATE TRIGGER trig1 ON table1 BEFORE INSERT...
BEGIN;
IF (get_param(’SYS_SYNC_OPERATION_TYPE’) = ’NEW_OFFICIAL_UPDATE’) THEN
IF (get_param(’SYS_SYNC_RESULTSET_TYPE’) = ’INCREMENTAL’) THEN
CALL before_update;
ELSE ...
END IF;
ELSE IF (get_param(’SYS_SYNC_OPERATION_TYPE’) = ’NEW_OFFICIAL_INSERT’) THEN
CALL before_insert; - do what is normally done in the INSERT trigger.
ELSE ...
END IF;
END;

Moving the body of your trigger(s) to a stored procedure(s) is relatively easy, since
triggers and stored procedure language are essentially the same.

Note:

The "Before" values from the master are not available, even if you use the
"BEFORE" keyword in the trigger(s) on the replica.

4.2.5 Handling concurrency conflict in synchronized tables in
replica

solidDB uses the same concurrency control mechanism to handle such data
management functions as online queries and write operations. As a default method
of concurrency control, optimistic concurrency control is automatically set for all
tables. This means that if two users concurrently attempt to modify the same data,
the later attempt fails and an error is returned to the user.

During synchronization, concurrency conflicts can occur through a sequence of
events as shown in this example:
1. A replica creates and executes a synchronization script that makes a refresh

from a publication.
2. Simultaneously, another user in the replica updates a row that will be

refreshed.
3. Before the user commits the transaction, the reply message of the

synchronization message arrives at the replica and the engine starts applying
the refresh data to the database.

4. The user commits the online transaction.
5. The refresh attempts to modify the same row that the online user already

modified.
6. The execution of the synchronization reply message fails because of a

concurrency conflict.

The following table shows you the various ways you can handle a concurrency
conflict reflected in this example or a similar situation.

Table 5. Handling a concurrency conflict

Criteria and/or Method of Recovery Use this Command for Recovery

If you do not anticipate concurrency conflicts to happen often,
then you can recover from this incident by re-executing the
failed reply message in a replica.

The command for re-executing the failed reply is:

MESSAGE msgname EXECUTE

62 IBM solidDB: Advanced Replication User Guide

Table 5. Handling a concurrency conflict (continued)

Criteria and/or Method of Recovery Use this Command for Recovery

If you anticipate concurrency conflicts to happen often and the
re-execution of the message fails because of a concurrency
conflict, you can execute the message using pessimistic
table-level locking; this ensures the message execution is
successful.

In this mode, all other concurrent access to the table affected is
blocked until the synchronization message has completed.

The command for executing the message in pessimistic mode is:

MESSAGE msgname EXECUTE PESSIMISTIC

You can define the reply message to use table-level pessimistic
locking when it is initially executed.

The command for requesting the reply message in pessimistic
mode from the master is:

MESSAGE msgname GET REPLY PESSIMISTIC

As part of the MESSAGE FORWARD operation, the reply
message can use table-level pessimistic locking when it is
initially executed.

The command for requesting the reply message in pessimistic
mode is:

MESSAGE msgname FORWARD
TIMEOUT seconds PESSIMISTIC

The synopsis has been placed on two lines for layout purposes.
The command is entered as one line.

solidDB also allows you to define a table to be pessimistically
locked using row-level locking. This approach is useful if lots of
conflicting updates are expected on the table.

The command for setting a table to use pessimistic locking is:

ALTER TABLE tablename SET PESSIMISTIC

4.3 Determining user access requirements
After you create your database schema, you need to determine:
v The local users on each replica database that need authorization to use specific

tables in a publication, as well as execute rights to procedures they need to
execute.

v The master users that need authorization to manage synchronized data in both
the master and replica databases. For example, master users who define
publications must have access rights to tables referenced by the publications.
This also allows them to drop the publication.

v The master user of the system who requires rights to perform synchronization
operations through the SYS_SYNC_ADMIN role created specifically for
administrative tasks.

v The master or local users who require rights to register replica databases for
synchronization through the SYS_SYNC_REGISTER_ROLE.

Read 5.4, “Implementing security through access rights and roles,” on page 74 for
details on implementing synchronization access.

4.4 Creating backups for fault tolerance
The critical component of a advanced replication system is the server that hosts the
master database. After you create the master database and its schema, you should
use a reliable storage medium, such as tape or CD-ROM, to ensure availability of
multiple backup versions. Normal backup procedure tasks you use on standard
databases also apply to solidDB databases. For details, see 7.2, “Performing backup
and recovery,” on page 130.

4 Planning and designing for advanced replication applications 63

In addition, you can make the master database fault tolerant by using RAID disks
and hardware clustering in your system.

Replica databases can be reconstructed from the master database by refreshing data
from the master database to a new replica. To ensure quick recovery from disaster
situations, make backups of large replicas separately using normal solidDB backup
procedures.

4.5 Designing the application for synchronization
What sets solidDB advanced replication apart from traditional data replication
solutions is its principle of building data synchronization functionality inside the
application. The following sections describe some considerations in the
functionality of the client application.

4.5.1 Providing a tentative data status on the user interface
The tentative nature of replica data means that a transaction that is committed in a
replica can be changed in the master database. Sometimes this has visible
implications to the application itself. For instance in an order-entry system, the
status of an order can first be Tentatively OK, which means that it has been
accepted by the replica, but not yet by the master. In your application design,
consider that you might want to show the tentative status also to the user.

4.5.2 Providing a user interface to manage synchronization
In a stand-alone replica database, the data contents of the database may vary. Data
can be downloaded to and deleted from the local database based on the user's
need. For instance, a salesman may need customer information for the western
region today and the same data about the eastern region tomorrow. To be able to
dynamically populate the replica database, a user interface may be needed for
refreshing new (and existing) data as well as deleting unnecessary local data by
dropping the corresponding subscriptions.

Managing the synchronization process
The synchronization process of solidDB advanced replication architecture needs to
be implemented at the application level. The synchronization process management
may contain the following tasks:
v Define the contents of the synchronization process, that is, define which

transactions are propagated to the master and which publications are refreshed
to the replica in a single synchronization message.

v Execute the process, that is, send the request message and get the reply message
back. Depending on the application need, these steps can be executed as one
"synchronous" or two "asynchronous" operations.

v Monitor the status of the process.
v Resolve the system- and application-level errors that may have occurred during

synchronization.

You can design these tasks through the user interface or by an automatic process.
For example, you can implement a user interface into your application for manual
monitoring and execution of these tasks. Alternatively, you may want to fully
automate the tasks inside your application so that no user interaction is necessary.

During synchronization, errors can occur. These errors can be either at the
application or at the system level.

64 IBM solidDB: Advanced Replication User Guide

Application-Level Errors

These are errors that occur when the validation logic of a transaction detects an
error and manual actions are necessary to fix the situation. For example, if an
"insert order" transaction of an order-entry application detects that the customer
credit limit has been exceeded in the master database, manual approval to the
order is required. Tracking and resolving the errors typically requires an
application-level error log table that can be viewed from the client application.

System-Level Errors

These errors are typically failures in the store-and-forward messaging. For instance,
the network may be down when synchronization is being attempted. Due to this, it
is important, that proper error handling is implemented in the execution of the
synchronization process. The information that is required to monitor and manage
the synchronization process is available in the system tables of solidDB.

4.5.3 Providing Intelligent Transaction based on application
needs

solidDB Intelligent Transaction is an extension to the traditional transaction model.
It allows developers to implement transactions that are capable of validating
themselves in the current database and adapting their contents (if required)
according to the rules of the transaction.

Users create transactions in replica databases. These transactions are tentative since
they have yet to be committed to the master database, which contains the "official"
version of data. The replica transactions are saved for later propagation to the
master database. In this model, transactions are long-lived and there can be
multiple instances of a data item in different databases of the system.

When a replica transaction is propagated to the master database, transaction
validation errors such as update conflicts may occur. Transactions must respond in
such a way that meets the business rules required for the application. This is the
best way for ensuring database consistency and reliability.

Developers need to evaluate the business rules required and build transactions
based on advanced replication's easy-to-use model. Read 5.7, “Designing and
implementing Intelligent Transactions,” on page 91 for details on creating
transactions with solidDB Intelligent Transaction.

4 Planning and designing for advanced replication applications 65

66 IBM solidDB: Advanced Replication User Guide

5 Using advanced replication with applications

This section describes the basic tasks required to implement synchronization. These
tasks, demonstrated briefly in 3, “Getting started with data synchronization -
evaluation setup,” on page 33, are described in more detail in this chapter. You are
also introduced to solidDB advanced replication synchronization statements, which
are SQL extensions that allow you to set up and define your advanced replication
installation for data synchronization.

5.1 Using advanced replication data synchronization statements
Advanced replication synchronization statements are extensions to solidDB SQL.
They allow you to manage distributed data by letting you specify synchronization
operations. You can execute advanced replication statements using solidDB SQL
Editor (teletype). Read the solidDB SQL Guide for more details.

5.1.1 Types of advanced replication statements
Advanced replication data synchronization statements let you perform such tasks
as registering replica databases, implementing access rights, and creating
publications. In addition, you administer the advanced replication functionality
using many of these statements. For example, you use MESSAGE commands to
create and manage synchronization messages and DROP commands to remove
synchronization objects such as publications and subscriptions.

The advanced replication statements are grouped into the following categories and
their usage is described in this chapter. Refer to solidDB SQL Guide for an
alphabetical list of all SQL statements, including those used in advanced
replication operations.

Database configuration statements
These following statements are used to set up and configure the databases used in
an advanced replication system.
DROP MASTER
DROP REPLICA
REGISTER REPLICA
SET SYNC master_or_replica
SET SYNC master_or_replica
SET SYNC CONNECT
SET SYNC NODE
SET SYNC PARAMETER
SET SYNC USER

Security statements
These statements are used to set up security for multi-tier and multi-master
environments.
ALTER USER SET MASTER
ALTER USER SET PUBLIC | PRIVATE

Publication statements
These statements are used to create and maintain publications, as well as refresh
data from them.
ALTER TABLE SET { SYNCHISTORY | NOSYNCHISTORY }
CREATE SYNC BOOKMARK
CREATE PUBLICATION

67

DROP PUBLICATION
DROP PUBLICATION REGISTRATION
DROP SUBSCRIPTION
DROP SYNC BOOKMARK
EXPORT SUBSCRIPTION
GRANT REFRESH ON
IMPORT
MESSAGE APPEND REGISTER | UNREGISTER PUBLICATION
MESSAGE APPEND REFRESH
REVOKE REFRESH ON
REFRESH

Intelligent Transaction control
The functions and statements below are used to control the execution of Intelligent
Transactions:
v saving transactions in the replica database for propagation to the master,
v defining bulletin board parameters (for example to control which transactions

are propagated in a particular message),
v setting parameters on the parameter bulletin board within a transaction, and
v reading parameters from the parameter bulletin board.
GET_PARAM()
PUT_PARAM()
SAVE
SAVE PROPERTY

Message statements
The MESSAGE statements are used to create and execute the synchronization
messages that are sent between a replica and the master database.
MESSAGE APPEND PROPAGATE TRANSACTIONS
MESSAGE APPEND REFRESH
MESSAGE APPEND REGISTER | UNREGISTER PUBLICATION
MESSAGE APPEND REGISTER | UNREGISTER REPLICA
MESSAGE APPEND SYNC_CONFIG
MESSAGE BEGIN
MESSAGE DELETE
MESSAGE DELETE CURRENT TRANSACTION
MESSAGE END
MESSAGE EXECUTE
MESSAGE FORWARD
MESSAGE FROM REPLICA EXECUTE
MESSAGE GET REPLY

5.2 Building messages for synchronization
The data synchronization between two solidDB servers relies on the solidDB
advanced replication messaging architecture. This is a store-and-forward messaging
architecture that is built inside solidDB. It is capable of transferring messages
reliably between a replica and the master database.

The synchronization process of advanced replication architecture consists of two
different tasks:
v propagating transactions to the master database
v refreshing of publications to a replica

A combination of these tasks (containing the propagation command, REFRESHes,
or both) is grouped together in a synchronization message. Note that transactions
referring to a particular table should always be propagated to the master before

68 IBM solidDB: Advanced Replication User Guide

refreshing data from that table. Both of these actions are permitted in the same
synchronization message as shown in the example below:

Synchronization messaging

MESSAGE my_msg BEGIN ;
MESSAGE my_msg APPEND PROPAGATE TRANSACTIONS ;
MESSAGE my_msg APPEND REFRESH ORDERS_BY_SALESPERSON (’1’) ;
MESSAGE my_msg APPEND REFRESH PARTS_IN_INVENTORY ;
MESSAGE my_msg END ;
COMMIT WORK ;

5.2.1 Beginning messages
You must explicitly begin each synchronization message that is sent from the
replica to the master database with the MESSAGE BEGIN statement. The syntax is:
MESSAGE unique_message_name BEGIN [TO master_node_name]

For the message, provide a name that is unique within the replica database. Be
sure to also set autocommit to off. Any open transaction must be committed or
rolled back in the connection before executing this statement.

Note:

Use the optional TO clause if you want to send a message that contains the
REGISTER REPLICA command and are registering a replica with a master that
resides in a database catalog other than the default catalog. For details on
registration, read 5.5.2, “Registering replicas with the master database,” on page 84.

If you want to create and execute a synchronization message from a stored
procedure, here's an example of how to create a synchronization message with a
unique message name.
DECLARE Autoname VARCHAR;
DECLARE MsgBeginStr VARCHAR;
Autoname := GET_UNIQUE_STRING(’MSG_’) ;
MsgBeginStr := ’MESSAGE ’ + autoname + ’ BEGIN’;

Once you have composed the SQL statement as a string, you can execute it inside
a stored procedure in one of two ways — either by using the EXECDIRECT
feature, or by preparing and executing the SQL statement.
EXEC SQL EXECDIRECT MsgBeginStr;

or
EXEC SQL PREPARE cursor1 MsgBeginStr;
EXEC SQL EXECUTE cursor1;
EXEC SQL CLOSE cursor1;
EXEC SQL DROP cursor1;

5.2.2 Propagating transactions from replica to master
The MESSAGE APPEND PROPAGATE TRANSACTIONS statement lets you
propagate transactions from a replica to the master database. Only statements that
have been explicitly put to the replica database's transaction queue with the SAVE
<sql-statement> statement, can be propagated. The syntax is:
MESSAGE unique_message_name APPEND

[PROPAGATE TRANSACTIONS [WHERE {property_name {=|<|<=|>|>=|<>}
’value_string’ | ALL}]]

5 Using advanced replication with applications 69

Use the WHERE clause to propagate only those transactions where the
property_name meets specific criteria. You can set a property to a currently active
transaction in the replica database with the SAVE PROPERTY statement. Use the
keyword ALL to propagate all statements, including those with no properties.

The keyword ALL overrides any default propagation condition that may have been
set earlier with the SAVE DEFAULT PROPAGATE PROPERTY WHERE command.
This command is used to make parameters available to other statements in the
transaction on the Parameter Bulletin Board.

5.2.3 Refreshing publication data from master to replica
The MESSAGE APPEND REFRESH statement lets you refresh from a publication
that is in the master database. The syntax is:
MESSAGE unique_message_name APPEND

[REFRESH publication_name [(publication_parameters)] [FULL]]

Using this statement, you provide parameters to the publication (if they are used
in the publication definitions) to narrow the scope of the replica's refresh. For
example, you could specify that you only want to refresh the data related to a
particular branch office.

5.2.4 Ending messages
It is good practice to explicitly end each synchronization message with the
MESSAGE END statement. This statement, together with the transaction commit
operation, makes the message persistent in the replica by saving it to the
synchronization system tables of the replica database. The syntax for ending the
message is:
MESSAGE unique_messsage_name END

Note that after ending the message, you must be sure to commit the message by
providing the COMMIT WORK statement.

5.2.5 Forwarding messages to the master database
After a message has ended with the MESSAGE END statement and has been
committed to make it persistent, you send it to the master database using the
MESSAGE FORWARD statement. Each sent message is issued a reply message
from the master database and each message returns a result set that should be
fetched through the client application. The syntax is:
MESSAGE unique_message_name FORWARD

[TIMEOUT {FOREVER | seconds }]

For example:
MESSAGE mymsg FORWARD TIMEOUT 60;

You can set the TIMEOUT option to define how long the replica database waits for
the reply message before it expires and has to be requested using the MESSAGE
GET REPLY statement described in the following section.

Note:

If a master does not receive a complete message, then the master will not execute
the portion of the message that it did receive.

70 IBM solidDB: Advanced Replication User Guide

5.2.6 Requesting a reply message from the master database
If the TIMEOUT in the MESSAGE FORWARD statement is not defined, the
message is only forwarded to the master and the replica does not wait for the
reply. In this case the reply can be retrieved with a separate MESSAGE GET REPLY
call in the replica database. The syntax is:
MESSAGE unique_message_name GET REPLY

[TIMEOUT {FOREVER | seconds }]

5.2.7 Configuring advanced replication messages
The content of the synchronization process is fully definable by the application
designer. This way the application's needs are best considered. Similarly, the
synchronization process can be tailored to efficiently utilize the capacity and
characteristics of the currently available infrastructure. solidDB advanced
replication architecture itself does not provide any default process but it does not
set any limitations on the contents of a custom built process either.

Setting message size maximum
The maximum size of a single synchronization message can be set by database
level system parameters. The SYS_R_MAXBYTES_OUT parameter sets the
maximum length of messages sent from a replica database to the master, while
SYS_R_MAXBYTES_IN sets the maximum length of messages that can be received
to a replica database from the master database.

The default message length for both parameters is 2GB. Valid values for both
parameters are between 0 - 2 GB. If 0 is specified, then 2GB is used.

To set these parameters, use the SET SYNC PARAMETER statement in the replica
database. The syntax is:
SET SYNC PARAMETER parameter_name value_as_string

For example:
SET SYNC PARAMETER SYS_R_MAXBYTES_OUT ’1048576000’;

Note that for both parameters, an error message is issued if the message is longer
than expected.

Setting the commit block size
By default, all data of a publication refresh is written to the replica database in a
single transaction. If the reply of a sent message will contain refreshes of large
publications, you can adjust the number of rows that are committed in one
transaction using the COMMITBLOCK option of the MESSAGE FORWARD or
MESSAGE GET REPLY statements. This allows you to divide a single large
transaction into multiple smaller transactions. The syntax for using
COMMITBLOCK is:
MESSAGE unique_message_name FORWARD
[COMMITBLOCK block_size_in_rows]

or
MESSAGE unique_message_name GET REPLY
[COMMITBLOCK block_size_in_rows]

For example:
MESSAGE mymsg FORWARD TIMEOUT 300 COMMITBLOCK 1000
MESSAGE mymsg GET REPLY TIMEOUT 300 COMMITBLOCK 1000

5 Using advanced replication with applications 71

Setting the maximum size of the commitblock can improve performance of the
replica databases. However, data integrity cannot be guaranteed if the data is
transmitted in more than one transaction and active users on the replica are
changing data at the same time. Therefore, we recommend that you disconnect all
online users from the replica database when you use the COMMITBLOCK option.

Note:

If a Replica runs in the HSB configuration, the COMMITBLOCK clause is illegal in
commands: MESSAGE GET REPLY, DROP SUBSCRIPTION, MESSAGE FORWARD
and MESSAGE GET REPLY. If the COMMITBLOCK clause is used, it produces the
error: 25083 Commit block can not be used with HotStandby

5.2.8 Executing a synchronization process
The synchronization process is usually initiated by, and is largely controlled from,
the replica database. If you need master-initiated synchronization, you can use the
Sync Pull Notify feature, which allows the master to notify the replica that it is
time to start a synchronization operation. For details about Sync Pull Notify, see
2.3, “Sync Pull Notify,” on page 25.

The creation and execution of a synchronization process follows this pattern:
1. Create a message by giving a unique name to it. For example:

MSGNAME := GET_UNIQUE_STRING(’MSG’);

Note that the autocommit mode must be switched off.
2. Append the synchronization tasks (propagate transactions and refresh from

publications) to the message. Any number of tasks can be included in the
message.

3. End the message and make it persistent by committing the transaction. From
this point on, the store and forward messaging architecture guarantees that
data contained by the message will not be lost.

4. Forward (send) the message to the master database.

The reply message can be received as part of the forward command. This is a
useful approach if the reply message can be expected within a reasonable amount
of time, for example, within a minute. Alternatively, if the reply is expected much
later, for example, the next morning, the reply can be requested using a separate
GET REPLY command.

Executing a typical synchronization process
-- Create a new message with name ’my_msg’.
-- AUTOCOMMIT must be off! Also, any preceding transaction must be
-- completed prior to executing the MESSAGE statements.
MESSAGE my_msg BEGIN ;
-- Append tasks to message: propagate transactions.
MESSAGE my_msg APPEND PROPAGATE TRANSACTIONS ;
-- Append tasks to message: refresh from publications.
MESSAGE my_msg APPEND REFRESH ORDERS_BY_SALESPERSON (’1’) ;
MESSAGE my_msg APPEND REFRESH PARTS_IN_INVENTORY ;
-- End the message, make it persistent.
MESSAGE my_msg END ;
-- Commit the message creation operation.
COMMIT WORK ;
-- Send the message to master, do not wait for reply.
MESSAGE my_msg FORWARD ;

72 IBM solidDB: Advanced Replication User Guide

-- Request reply to the message separately from master.
-- Wait for the reply message for a maximum of 100 seconds.
MESSAGE my_msg GET REPLY TIMEOUT 100 ;
COMMIT WORK ;

5.3 Using synchronous refresh
Asynchronous data refreshes can consume large amounts of memory and inflict
disk I/O overhead. To avoid this, you can use a synchronous, messageless
advanced replication interface. In this mode, the associated data is sent as a data
stream, thus conserving memory. This mode also reduces the needed disk I/O
bandwidth, because no messages are written to disk.

Tip:

You can also restrict the resources available for the refresh operations by using the
ReplicaRefreshLoad parameter.

You can define the mode how the replica table is being locked in conjunction with
the asynchronous data refresh. The options are:
v The OPTIMISTIC mode (the default value) defines that the concurrency control

method depends on the table type and the isolation level. For D-tables in the
OPTIMISTIC mode, the REFRESH will always succeed. For M-tables in general,
and for D-tables in the PESSIMISTIC mode, row-level locking will be used. If a
lock cannot be obtained, PESSIMISTIC fails and returns an error.

v PESSIMISTIC defines that the table is exclusively locked, regardless of the table
type and isolation level chosen, for the time of refresh. If the lock cannot be
obtained, the refresh request fails and returns an error.

By default, all data of a publication REFRESH is written to the replica database in
a single transaction. If the reply to the REFRESH request contains REFRESHes of
large publications, the size of the REFRESH's commit block, that is, the number of
rows that are committed in one transaction, can be defined using the
COMMITBLOCK property.

Setting the maximum size of the commitblock can improve performance of the
replica databases. However, data integrity cannot be guaranteed if the data is
transmitted in more than one transaction and active users on the replica are
changing data at the same time. Therefore, we recommend that you disconnect all
online users from the replica database when you use the COMMITBLOCK option.

The TIMEOUT property defines how long the replica server will wait for the reply
message. If TIMEOUT is not defined, then FOREVER is used.

See below for an example of a synchronous refresh:

Synchronous refresh
REFRESH my_table;
COMMITBLOBK 1000;
COMMIT WORK;

For more information about the synchronous refresh syntax, see the explanation of
the REFRESH command in the IBM solidDB SQL Guide, Appendix, solidDB SQL
Syntax.

5 Using advanced replication with applications 73

5.4 Implementing security through access rights and roles
solidDB advanced replication enforces security throughout the system by
implementing access rights and roles. This section describes basic principles of
advanced replication security and how to use advanced replication commands to
set it up.

5.4.1 How advanced replication security works
The solidDB advanced replication security model is based on the following
principles:
v There are two kinds of users: local users and master users.
v A local user has access rights in the replica database.
v A master user has access rights in the master database.
v For a local user to be able to perform synchronization-related tasks, the local

user must be mapped to a corresponding master user in the master database.
v Master user's access rights are used when executing a synchronization message

in master database.
v Both local users and master users exist in the replica database of an advanced

replication system.
v Local users can perform local database operations such as execute queries, create

tables, or call stored procedures based on the access rights that are defined for
them. For example, the administrator of the local database can perform any
operations on the local database. However, a local user has no access to the
synchronization-related statements such as SAVE sql_statement or MESSAGE
statements. A local user must be mapped to a master user in order for that local
user to be able to propagate transactions to the master.

v Master users are users that are defined in the master database and have been
downloaded to the replica database as part of the replica registration process. All
synchronization operations require that a current master user is defined by
mapping a local user ID to a master user ID.
Master user names and passwords are defined separately in the
SYS_SYNC_USERS table (described in the following section) of each replica
database, giving master users the rights to save transactions in tables in which
they have authorization. User access is also verified in the master database
during synchronization.

v Both master and local users can have synchronization-specific roles, such as a
role that allows replica registration or administrative role for synchronization
functions.

For an overview of access rights requirements for each command, refer to 5.4.5,
“Access rights summary,” on page 80.

74 IBM solidDB: Advanced Replication User Guide

5.4.2 Changing replica access to the master database
When a transaction is executed on any server, that transaction must be executed
with appropriate privileges (for example, INSERT, DELETE, UPDATE, and so on
privileges on the tables). When a transaction is propagated from a replica server to
the master server, the transaction must execute with appropriate privileges on the
master. Executing with appropriate privileges on the replica is not sufficient to
guarantee that the transaction will execute with appropriate privileges on the
master.

To ensure that propagated transactions can be executed on the master, you must
map a replica user to a corresponding master user who has the appropriate
privileges. For example, you might map the user kathy_on_replica1 to the user
kathy_on_master, if the user kathy_on_master has the appropriate privileges.

When the users on the master change, you may need to update the "mapping"
information about the replicas; otherwise, your replica users might map to master
users that are no longer appropriate or that no longer exist. To download the
updated information to applicable replicas, you need to execute the MESSAGE
APPEND SYNC_CONFIG command in the replicas. Once the updated master user

1

local user access
(login)

Master access verification
(mapping or user id match)

SYS_SYNC_USERS table
(master user listings)

local user access
(login)

Master access verification
(mapping or user id match)

SYS_SYNC_USERS table
(master user listings)

MESSAGE APPEND SYNC_CONFIG(%')'MESSAGE APPEND SYNC_CONFIG(%')'

Public users only

SYS_USERS table
(master user listings)

Master Database

Public users only

1. Unless local users have master access, they are unable to perform any synchronization operations.

Figure 11. Advanced Replication user access rights

5 Using advanced replication with applications 75

information has been downloaded, you then need to re-map replica user ids to the
appropriate master user ids using the ALTER USER SET MASTER statements (refer
to Mapping replica user ID with master user ID below).

The MESSAGE APPEND SYNC_CONFIG command itself requires appropriate
privileges. When you create a new replica, that replica has no privileges and thus
cannot connect to the master. You need to create a replica registration user to
initially populate the SYS_SYNC_USERS table with the list of master users from
the master database; from then on, the list of master users can be downloaded as
needed from the master database.

Updating master users for advanced replication operations
To update master users in a replica:

From the replica, subscribe user information from the master database in a
separate message using the following command:

MESSAGE unique_message_name APPEND SYNC_CONFIG
(sync_config_arg)

The sync_config_arg defines the search pattern of the user names that are returned
from the master database to the replica. If you want all names to be sent to the
replica, specify the SQL wildcard % as the input argument.

For example:
MESSAGE CFG2 BEGIN;
MESSAGE CFG2 APPEND SYNC_CONFIG(’%’);
MESSAGE CFG2 END;
COMMIT WORK;

Managing master users
Master users control all access to the data synchronization functions of solidDB. To
allow a replica database to synchronize its data with the master database, the
replica must download master user information from the master database and map
one or more local user ids to a master user id.

Mapping replica user id with master user id

To map a replica user id to a master user id, you use the ALTER USER SET
MASTER statement. When you use the ALTER USER SET MASTER statement, you
provide the master user names and passwords for the local users that you want to
map to master users. The same local user can be mapped to multiple master users.

After you have completed the mapping, when a local user logs into a replica
database, solidDB checks to see whether that local user is mapped to any master
user id. If no mapping is specified, by default, solidDB looks for the same user id
and password in the master and replica. Thus, if mapping is not used, the user id
and password in both the master and replica must be the same.

Replica table SYS_SYNC_USERS can be updated with the latest master usernames
using the MESSAGE APPEND SYNC_CONFIG command. Refer to Figure 11 on
page 75, which illustrates this concept.

Setting public and private users

Database Administrators can alter users in the SYS_USERS table of the master
database to designate those users as private or public. If the PRIVATE option is set

76 IBM solidDB: Advanced Replication User Guide

for a user, this user's id and password are never sent to the replica during a
subscription of the publication to the replica.

Even if a PRIVATE user matches a specified subscription request in the MESSAGE
APPEND SYNC_CONFIG command, as long as that user is set for PRIVATE, the
user's information stays in the master's SYS_USERS table. Only PUBLIC users are
downloaded from master to replica to fulfill a SYS_SYNC_USERS table
subscription request. By default, a user is set for PUBLIC. For details on setting
users to public and private, read the IBM solidDB SQL Guide.

To change a user from public to private or vice-versa, use the command:
ALTER USER SET { PRIVATE | PUBLIC }

Note: There is no way to set a user as private for some replicas and public for
others. Users are designated as either public or private throughout the system.

You should grant all users with administrative rights (DBA) to PRIVATE. This
provides an extra measure of security by preventing a DBA's password from ever
being sent to a replica and becoming public. If the DBA password became exposed
and you needed to restore security, all replicas of the system would need to be
dropped and re-created after the password was changed in the master database.

Other users may also be set to PRIVATE if those users are not needed in replicas.

Note: If a replica builds messages or executes transactions using a user who is
private in a master database, then the operation in the master (when receiving
messages or when executing transactions) fails with a security error.

Determining access rights of transactions and refresh commands

Synchronization messages are labeled with the master username of the creator of
the message. solidDB uses the master username to specify the account under
which the message is executed. All subscriptions are executed using this account.
Each transaction uses the master user who saved the statements in the replica.

5.4.3 Setting up access rights
The following sections identify the access rights required to implement a advanced
replication system.

Granting access
Local users must have appropriate access rights (in both the master database and
the user's local replica database) to the tables they use for transactions and execute
rights to the procedures they execute. Note that if procedures are used to perform
synchronization functions in the replica database, the local user who has created
the procedure must be mapped to a master user.

The DBA of the master database should grant to master users
v appropriate access rights in the master database to the tables they use for

publications and transactions, and
v execute rights to the procedures they execute.

Note:

5 Using advanced replication with applications 77

Once access rights are granted, they take effect when the user who is granted the
rights logs on to the database. If the user is already logged on to the database
when the rights are granted, the rights take effect only if the user:
v accesses for the first time the table or object on which the rights are set, or
v disconnects and then reconnects to the database.

In the applicable replica database, specify which is the currently active master user
by mapping the replica user id with the master user id by using the ALTER USER
SET MASTER command.

When setting up access rights, you can use the following advanced replication SQL
commands:
CREATE USER username IDENTIFIED BY password
GRANT rolename TO username
GRANT [SELECT | UPDATE | INSERT | DELETE] ON tablename TO username
GRANT EXECUTE ON procedure_name TO username

Read the solidDB SQL Guide for details.

To grant users access to publications, use:
GRANT REFRESH ON publication_name TO username

Read “Granting REFRESH access” for details.

To map a replica user id to a master user id:
ALTER USER replica_user SET MASTER master_name USER user_specification

Read the IBM solidDB SQL Guide for details.

Granting REFRESH access
To grant access rights on a publication to a local user, user role (created with the
create role statement), or all users, use the GRANT REFRESH statement in the
master database. The syntax is:
GRANT REFRESH ON publication_name TO {PUBLIC | user_name,

[, user_name] ... | role_name [, role_name] ...

For example:
GRANT REFRESH ON customers_by_area TO salesman_jones

Revoking REFRESH access
To revoke access rights on a publication to a local user, user role (created with the
create role statement), or all users, use the REVOKE REFRESH statement in the
master database. The syntax is:
REVOKE REFRESH ON publication_name FROM {PUBLIC | user_name,

[user_name] ... | role_name [, role_name, [, role_name]...}

For example:
REVOKE REFRESH ON customers_by_area FROM salesman_jones

Saving transactions in replica
When a local user saves a statement of a transaction in the replica, the transaction
in the statement is labeled with the current master user's username. When the
transaction is re-executed in the master database, it uses the access rights defined
for the master user.

78 IBM solidDB: Advanced Replication User Guide

When the master encounters a user access violation during transaction
propagation, it terminates the execution of the synchronization message. This
ensures that a local replica user is not able to execute any unauthorized statements
in the master database.

Creating access to applications on different masters
In a multi-master environment, you can map a single user id to a different master
user in each catalog. When you change the active replica catalog using the SET
CATALOG command, the current master user changes automatically. For example,
in a replica database assume there is one local user. This user is mapped to the
CALENDARUSER master user of the calendar application and the NEWSUSER
master user of the news application. The SET CATALOG command is used to set
the current catalog to either CALENDAR or NEWS. If CALENDAR catalog is set,
then the current master user is automatically set to the CALENDARUSER master
user. Similarly, if NEWS is set, the current master user is set to NEWSUSER.

If mapping is not defined, the first advanced replication data synchronization
operation (for example, SAVE or MESSAGE statement) returns the "no active
master user" error.

Creating user rights to publications and tables
A user on the master who defines a publication must have read and write access
rights to the tables referenced by that publication.

Note that subscriptions are executed in the master database using the master
username of the creator of the message that contained the REFRESH publication
clause.

To use a table that is involved in synchronization, the local user must have rights
to the actual subscription tables in the replica database, and the corresponding
(mapped) master user must have subscribe access rights to the publication in the
master database. When subscription rows are inserted (or deleted) in a replica,
solidDB verifies that the subscriber has INSERT and DELETE rights on the tables.

The user who defines a publication also has the right to drop that publication.

Read 5.4.3, “Setting up access rights,” on page 77 for details on granting
publications access rights.

Creating the replica registration user
When a new advanced replication replica database is created, the
SYS_SYNC_USERS table of the new database is empty (contains no data). To
register the new replica database with the master database and to initially populate
the table with data requires a username that is from the master database and that
has registration rights.

You can provide registration rights for a master user in the master database by
designating the user with the SYS_SYNC_REGISTER_ROLE or the
SYS_SYNC_ADMIN_ROLE using the GRANT rolename TO user command.

You must provide this registration username and password to the replica site that
wants to register with the master. This allows each replica site to explicitly set the
registration user at the replica with the following command:
SET SYNC USER username IDENTIFIED BY password

5 Using advanced replication with applications 79

Since the username resides in the master database, this command allows the
registration user to explicitly register the replica. The SYS_SYNC_USERS replica
table can then be populated with the public SYS_USERS information from the
master database as part of the replica registration process.

When the replica has successfully executed registration, execute the following
statement:
SET SYNC USER NONE

Otherwise, if SET SYNC USER username is active and a user saves statements,
propagates, refreshes, or registers to a publication, the following error message is
returned:

User definition not allowed for this operation.

Note:

The SET SYNC USER command is used for replica registration only. Aside from
registration, all other synchronization operations require a valid master user ID
that has been downloaded to the replica database using the SYNC_CONFIG task.
If you want to designate a different master user for a replica, you must map the
replica ID on the replica database to the master ID on the master database. For
details, read Mapping Replica User ID with Master User ID in this chapter.

For details on how the master users control user access of data synchronization
functions, read “Managing master users” on page 76.

5.4.4 Implementing special advanced replication roles
solidDB's two special roles for performing synchronization operations are:
v SYS_SYNC_ADMIN_ROLE

This is an administration role for performing advanced replication data
synchronization operations, such as deleting messages. Anyone with this
privilege has all synchronization roles granted automatically.

v SYS_SYNC_REGISTER_ROLE
This is a role only for registering or unregistering a replica database to the
master.

SYS_SYNC_ADMIN_ROLE automatically includes the
SYS_SYNC_REGISTER_ROLE.

To grant these roles, use the following syntax of the GRANT statement in the
master database:
GRANT role_name TO user_name

Note:

Once a user role is granted, it takes effect when the user who is granted the role
logs on to the database. If the user is already logged on to the database, the user
must disconnect and then reconnect to the database for the role to take effect.

5.4.5 Access rights summary
Following is a comprehensive summary of the access rights required to execute
each advanced replication command in a replica database and the master database.

80 IBM solidDB: Advanced Replication User Guide

Access rights in the replica
The following table lists the access rights requirements for synchronization
operations in the replica database.

Table 6. Access rights in the replica

Command Task Access rights requirements

ALTER TABLE SET SYNCHISTORY |
NOSYNCHISTORY

Specify whether to set up a table for
incremental publication

Same as the SQL ALTER TABLE
command (owner of the table, or DBA)

ALTER USER SET MASTER Map a replica user id to a master user id SYS_SYNC_ADMIN_ROLE

GET_PARAM() Retrieve a parameter that was placed on
the bulletin board with PUT_PARAM()

Any user

PUT_PARAM() Place a parameter on the bulletin board Any user

SAVE Save a statement of a transaction in the
replica database for later propagation to
the master

Valid master user

SAVE PROPERTY Assign properties to the current active
transaction

Valid master user

MESSAGE BEGIN Begin a new synchronization message Valid master user,
SYS_SYNC_ADMIN_ROLE, or
SYS_SYNC_REGISTER_ROLE

MESSAGE APPEND REFRESH Refresh from a publication Valid master user

MESSAGE APPEND PROPAGATE
TRANSACTIONS

Propagate transactions Valid master user

MESSAGE APPEND { REGISTER |
UNREGISTER } REPLICA

Register or unregister replicas with the
master database

SYS_SYNC_ADMIN_ROLE or
SYS_SYNC_REGISTER_ROLE

MESSAGE APPEND{ REGISTER
PUBLICATION | UNREGISTER
PUBLICATION }

Register or unregister publications in a
replica. If the publication is registered,
users are allowed to refresh from the
publication.

Refresh access to the publication

MESSAGE APPEND SYNC_CONFIG Download the data of the
SYS_SYNC_USERS table to the replicas

SYS_SYNC_ADMIN_ROLE or
SYS_SYNC_REGISTER_ROLE

MESSAGE FORWARD Send saved message to master database Valid master user or
SYS_SYNC_ADMIN_ROLE

MESSAGE GET REPLY Get reply to the sent message Valid master user or
SYS_SYNC_ADMIN_ROLE

MESSAGE DELETE [FROM REPLICA] Delete entire message (all transactions)
from the replica database to recover from
an error

SYS_SYNC_ADMIN_ROLE

MESSAGE DELETE [FROM REPLICA]
CURRENT TRANSACTION

Delete current transaction from the
synchronization message to recover from
an error

SYS_SYNC_ADMIN_ROLE

DROP MASTER Drop master definition SYS_SYNC_ADMIN_ROLE

5 Using advanced replication with applications 81

Table 6. Access rights in the replica (continued)

Command Task Access rights requirements

DROP SUBSCRIPTION Drop subscriptions in a replica database Valid master user

DROP PUBLICATION REGISTRATION Drop publication registrations in a replica
database

SYS_SYNC_ADMIN_ROLE

IMPORT Import data from a data file created by
the EXPORT SUBSCRIPTION command in
a master database.

Valid master user

SET SYNC CONNECT listen_name TO
MASTER master_name

Change the network name associated with
a master database

SYS_SYNC_ADMIN_ROLE

SET SYNC NODE node_name | NONE Assign a nodename to the database as
part of registration; or remove a node
name, for example when removing
registration and dropping a synchronized
database.

SYS_SYNC_ADMIN_ROLE

SET SYNC PARAMETER Set synchronization-related database
parameters in a synchronized database
catalog

SYS_SYNC_ADMIN_ROLE

SET SYNC { REPLICA | MASTER } { YES
| NO }

Designates the database catalog as a
replica and/or master

SYS_SYNC_ADMIN_ROLE

SET SYNC USER NONE Makes current registration user inactive in
the current database connection

Any local user

SET SYNC USER username IDENTIFIED
BY password

Defines the currently active master user
name and password used for the
registration process.

SYS_SYNC_ADMIN_ROLE

Access rights in the master
The following table lists the access rights that are required to execute advanced
replication commands in the master database.

Table 7. Access rights in the master

Command Task Access right requirements

ALTER TABLE SET SYNCHISTORY |
NOSYNCHISTORY

Specify whether to set up a table for
incremental publication

Same as the SQL ALTER TABLE
command (owner of the table, or DBA)

ALTER USER SET { PUBLIC | PRIVATE } Include or exclude a user id in
subscription downloads to a replica
SYS_SYNC_USERS table.

DBA or SYS_SYNC_ADMIN_ROLE

GET_PARAM() Retrieve a parameter that was placed on
the bulletin board with PUT_PARAM().

Any user

PUT_PARAM() Place a parameter on the bulletin board Any user

CREATE PUBLICATION Define a publication in the master
database

Valid master user who has full access to
the tables of the publication.

CREATE SYNC BOOKMARK Create a bookmark in the master database DBA or SYS_SYNC_ADMIN_ROLE

82 IBM solidDB: Advanced Replication User Guide

Table 7. Access rights in the master (continued)

Command Task Access right requirements

DROP SYNC BOOKMARK Drop a bookmark in the master database DBA or SYS_SYNC_ADMIN_ROLE

GRANT REFRESH ON Grant access rights on a publication to a
user or role defined in the master
database.

Creator of the publication, or DBA

REVOKE REFRESH ON Revoke access rights on a publication to a
user or role defined in the master
database

Creator of the publication, or DBA

DROP PUBLICATION Drop a publication in the master database Creator of the publication, or DBA.

EXPORT SUBSCRIPTION Export master data to a file Master user who has subscribe access to
the publication

MESSAGE DELETE FROM REPLICA Delete entire synchronization message (all
transactions) to recover from an error

SYS_SYNC_ADMIN_ROLE or DBA

MESSAGE DELETE CURRENT
TRANSACTION

Delete current (failed) transaction of a
synchronization message to recover from
an error

SYS_SYNC_ADMIN_ROLE or DBA

MESSAGE FROM REPLICA EXECUTE Execute a failed message from the replica
in the master database

SYS_SYNC_ADMIN_ROLE or DBA

DROP SUBSCRIPTION REPLICA Drop a replica's subscription to a
publication in the master

SYS_SYNC_ADMIN_ROLE or DBA

DROP REPLICA Drop a replica database from the master
database

SYS_SYNC_ADMIN_ROLE or DBA

SET SYNC {MASTER | REPLICA}{YES |
NO}

Designate the database catalog as a master
and/or replica

SYS_SYNC_ADMIN_ROLE or DBA

SET SYNC USER NONE Makes current master user inactive in the
current database connection

SYS_SYNC_ADMIN_ROLE or DBA

SET SYNC PARAMETER Set synchronization-related database
parameters in the master database catalog

Valid master user

SET SYNC NODE { node_name | NONE} Assign a nodename to the master
database as part of registration; or remove
a node name, for example when removing
registration and dropping a synchronized
database.

SYS_SYNC_ADMIN_ROLE or DBA

5.5 Setting up databases for synchronization
After a database is defined (as a master, replica, or both), a database schema and
catalogs (if necessary) are created, and user access rights are implemented, you are
ready to configure the databases for synchronization. This section requires that you
assign database node names for each database. You can use solidDB SQL Editor
(solsql) to enter the advanced replication statements required for set up.

5 Using advanced replication with applications 83

5.5.1 Configuring the master database(s)
Before you begin, be sure you have defined your master database(s). For details,
see 4.2.1, “Defining master and replica databases,” on page 49.

To each master database, provide a node name that is unique within the domain.
For example:
SET SYNC NODE "MASTER";
COMMIT WORK;

5.5.2 Registering replicas with the master database
Before you begin, be sure to set AUTOCOMMIT off so that you can compose
multi-statement MESSAGEs. Make sure that you commit or roll back any active
transaction. Also, be sure that you have defined a master username and password
for registering replicas to the master database, and that you know the name(s) of
the catalog(s) in your environment. Also be sure you have defined your replica
databases; for details see 4.2.1, “Defining master and replica databases,” on page
49.

In each replica database, perform the following steps:
1. If a local database will synchronize data with multiple master databases (i.e. it

will contain more than one replica), then create a catalog for each replica. For
example:
CREATE CATALOG CAT_FOR_REP1;
COMMIT WORK;

2. Give this replica catalog a node name that is unique across the replicas of the
master database of this replica. Before you set the node name of the catalog,
you must already have set that catalog to be the current catalog. For example:
SET CATALOG CAT_FOR_REP1;
COMMIT WORK;
SET SYNC NODE "REPLICA1";
COMMIT WORK;

Note:

If you have many replicas, then we recommend that you name replicas with
logical names that are derived, for example, from the server's logical name or
location.

Also, note that a catalog in the master and its corresponding node in the master
can have different names.

3. Set the master user for replica registration. For example:
SET SYNC USER REG_USER IDENTIFIED BY SECRET;

4. Register the replica to master Master1 by sending a registration message. For
example:
MESSAGE CFG1 BEGIN TO "MASTER";
MESSAGE CFG1 APPEND REGISTER REPLICA;
MESSAGE CFG1 END;
COMMIT WORK;
MESSAGE CFG1 FORWARD TO ’tcp 1315’ TIMEOUT FOREVER;
COMMIT WORK;

Note:

When using the REGISTER REPLICA command and registering a replica with a
catalog other than the master server's default catalog, you must provide the

84 IBM solidDB: Advanced Replication User Guide

applicable master node name of the catalog in the MESSAGE BEGIN command.
solidDB can then resolve the correct catalog at the master database for the
replica. Following is the syntax:
MESSAGE message_name BEGIN TO master_node_name

The MESSAGE FORWARD command sends the message to the master database
after the message is made persistent with the MESSAGE END command. Note
that the network listen name of the recipient of the message is specified in the
MESSAGE FORWARD command. This is necessary only when the first message
from a new replica to the master database is sent. If a TIMEOUT is not defined,
the replica does not fetch the reply. It must be retrieved with a separate
MESSAGE GET REPLY call.

5. Subscribe master username information from the master database using the
MESSAGE APPEND SYNC_CONFIG command in a separate message. In this
example the SQL wildcard '%' is used to request that all user names are sent
from the master database.
MESSAGE CFG2 BEGIN;
MESSAGE CFG2 APPEND SYNC_CONFIG(’%’);
MESSAGE CFG2 END;
COMMIT WORK;
MESSAGE CFG2 FORWARD TIMEOUT FOREVER;
COMMIT WORK;

6. When you have subscribed the master username information successfully, reset
the sync user to "none" so the registration user is no longer active in the replica
database connection. For example:
SET SYNC USER NONE;

The registration user has no rights other than registration. If the registration
user is still active, subsequent commands will typically get the following error
message:

User definition not allowed for this operation

5.6 Creating publications
A publication is a definition of a set of data to be downloaded from the master
database to a subscribing replica database. It is completely separated from the
transactions that change the data. Note that "traditional" replication methods
typically rely on sending transactions (inserts, updates, and deletes) from master to
replicas, but solidDB instead sends a snapshot of the updated data to the replicas.

advanced replication publication definitions may include:
v Data from one or multiple tables — You can define relations between the tables

of a publication
v All or subset rows of a table — A publication can contain a normal SELECT

statements for selecting data for a publication
– By limiting a subset row of tables with parameters, you can specify fixed or

dynamic search criteria for the publication
v All or defined columns of a table — A publication can contain normal SELECT

statement for selecting columns for a publication
v Full or incremental data — A full publication sends all data contained in a

publication. An incremental publication sends only data that has changed since
the previous refresh.

Note:

5 Using advanced replication with applications 85

To save resources and increase performance, we recommend that you use
incremental publications. You must set up tables for incremental publication before
creating the actual publication. For details, read 5.6.1, “Creating incremental
publications” in the following section.

5.6.1 Creating incremental publications
For the server to be able to do incremental refreshes on a table, the server must
store some information about the most recent preceding refresh for that table. This
refresh information is known as synchronization history data. (The synchronization
history data for each table is stored in a synchronization history table. There must
be one synchronization history table for each table in the publication.)

In order to make a publication incremental, you must set each table's
SYNCHISTORY property, which tells the server to gather that table's
synchronization history data. The command to do this is:
ALTER TABLE table_name SET SYNCHISTORY

You must execute this command for each table in the publication, and you must do
so on both the master and replica databases.

The synchistory setting for a table is considered a "property" of that table. By
default, this property is set to NOSYNCHISTORY for each table. If this property is
set to SYNCHISTORY in both the master and the replica databases, then after the
first refresh, subsequent refreshes to a specific publication will send the replica
database only new and modified rows when the data in the table is synchronized.

It is recommendable that you set the SYNCHISTORY property for a table before it
is referenced by any publication. If you want to alter the SYNCHISTORY property
for a table after it has been included as part of a publication, you need to use the
Sync Maintenance Mode. For details, see 6.2, “Upgrading the schema of a
distributed system,” on page 113.

For example, to set the SYNCHISTORY property of the table named SYNCDEMO,
use the command:
ALTER TABLE SYNCDEMO SET SYNCHISTORY;
COMMIT WORK;

This statement creates a shadow table that stores history data. The shadow table
tracks rows that were modified or deleted from the main table. If there are no
longer any replica databases that require the data for their refreshes, the
unnecessary data of the shadow table is automatically deleted.

For details on optimizing history data management, read 8, “Performance
monitoring and tuning,” on page 133.

5.6.2 Using the create publication statement
When you create a publication, you specify which table (in the master) the data
should be read from, and which table (in the replica(s)) the data should be written
to.

To create a publication, execute the CREATE PUBLICATION statement in the
master database. The syntax is:
"CREATE PUBLICATION publication_name

[(parameter_definition [,parameter_definition ...])]
BEGIN

86 IBM solidDB: Advanced Replication User Guide

main_result_set_definition...
END";

main_result_set_definition ::=
RESULT SET FOR main_replica_table_name

BEGIN
SELECT select_list

FROM master_table_name
[WHERE search_condition] ;

[[DISTINCT] result_set_definition...
END

result_set_definition ::=
RESULT SET FOR replica_table_name

BEGIN
SELECT select_list

FROM master_table_name
[WHERE search_condition] ;
[[DISTINCT] result_set_definition...]
END

The CREATE PUBLICATION statement lets you specify publications for
incremental "download" of new and changed data from the master to a replica
database.

The data of a publication is always read from the master database in one
transaction. This guarantees that the data read from the publication is internally
consistent.

CAUTION:

The data read from the publication is internally consistent unless the master is
using the READ COMMITTED transaction isolation level. The transaction
isolation level for refreshes can be different from the system default. For more
information, refer to IBM solidDB Administrator Guide, Appendix: Configuration
Parameters, parameter RefreshIsolationLevel.

By default, the publication data is also written to the replica database in one
transaction to maintain that consistency. However, on the replica side you may
override the default behavior and split the refresh into multiple transactions by
using COMMITBLOCK. If you use COMMITBLOCK, then you lose the guarantee
of internal consistency. See “Setting the commit block size” on page 71 for more
details about COMMITBLOCK.

The search_condition can reference parameter_definitions and/or columns of replica
tables defined on previous (higher) levels. Search conditions of a SELECT clause
can contain input arguments of the publication as parameters. The parameter name
must have a colon as a prefix.

Publications can contain data from multiple tables. These tables may be
independent, or there may be relations between them. If there is a relation between
tables, you must nest the result sets. The WHERE clause of the SELECT statement
of the inner result set of the publication must refer to a column of the table of the
outer result set.

Note that even if the publication contains multiple tables and there is a relation
between tables, the number of tables that the data is written to (in the replica) is
the same as the number of tables that the data was read from (in the master).
Records from multiple tables in the master are not summarized or joined into a

5 Using advanced replication with applications 87

single record in the replica the way you might join two tables into a single view, or
summarize data by using an aggregate function such as SUM().

Here is a typical publication:
CREATE PUBLICATION ORDERS_BY_SALESPERSON
(SALESPERSON_ID VARCHAR)
BEGIN

RESULT SET FOR CUST_ORDER
BEGIN

SELECT * FROM CUST_ORDER
WHERE SM_ID = :SALESPERSON_ID AND STATUS = ’ACTIVE’;
RESULT SET FOR ORDER_LINE
BEGIN

SELECT * FROM ORDER_LINE
WHERE ORDER_ID = CUST_ORDER.ID;

END
DISTINCT RESULT SET FOR CUSTOMER
BEGIN

SELECT * FROM CUSTOMER
WHERE ID = CUST_ORDER.CUSTOMER_ID ;

END
END

END;

The above sample publication retrieves data from three tables of the master
database:
v The main table of the publication is CUST_ORDER. Rows are retrieved from the

table using SALESPERSON_ID as a search criterion.
v For each order, rows from ORDER_LINE table are retrieved. The multiplicity

between CUST_ORDER and ORDER_LINE is 1-N. The data is linked together
using the ID column of CUST_ORDER table and ORDER_ID column of the
ORDER_LINE table.

v For each order, also a row from the CUSTOMER table is retrieved. The
multiplicity between CUST_ORDER and CUSTOMER tables is N-1; that is, a
customer may have multiple orders. The data is linked together using the
CUSTOMER_ID column of the CUST_ORDER table and ID column of the
CUSTOMER table. The keyword DISTINCT ensures that the same customer
information is brought to the replica database only once.

Publication guidelines
You can make publications that have 1-N and N-1 relationships between the result
sets. You can also nest the result sets. For example, a CUST_ORDER can have
ORDER LINES (1-N) and each ORDER LINE can have a PRODUCT (N-1).

If the relation between outer and inner result set of the publication is a N-1
relationship, then the keyword DISTINCT must be used in the result set definition.

Each nested result set is internally treated as a join. The more tiers of result sets in
the publication, the more complex the queries must be to retrieve the data.
Therefore, for better performance, avoid extensive nesting of result sets. In the
following examples, better performance is achieved by rewriting the CREATE
PUBLICATION statement into an equivalent unnested version of the statement:

Nested publication version
CREATE PUBLICATION NESTED (IN_ORDER_ID INTEGER)
BEGIN
RESULT SET FOR CUST_ORDER

BEGIN
SELECT * FROM CUST_ORDER

88 IBM solidDB: Advanced Replication User Guide

WHERE ID = :IN_ORDER_ID;
RESULT SET FOR ORDER_LINE
BEGIN

SELECT * FROM ORDER_LINE
WHERE ORDER_ID = CUST_ORDER.ID;

END
END

END;

Unnested publication version
CREATE PUBLICATION UNNESTED (IN_ORDER_ID INTEGER)
BEGIN
RESULT SET FOR CUST_ORDER

BEGIN
SELECT * FROM CUST_ORDER
WHERE ID = :IN_ORDER_ID;

END
RESULT SET FOR ORDER_LINE

BEGIN
SELECT * FROM ORDER_LINE
WHERE ORDER_ID = :IN_ORDER_ID;

END
END;

Each publication that you create is fully independent from every other publication.
This means you cannot define dependencies between publications.

Do not use overlapping publication definitions in replicas. This includes
publication definitions with overlapping tables and WHERE conditions. Publication
definitions overlap if they can potentially produce overlapping subsets of the same
table, i.e. some or all rows can simultaneously be in both subsets.

For example, if the publication "ORDERS_BY_SALESPERSON" retrieves customer
information, it is not advisable to have another publication, such as
"CUSTOMERS_BY_AREA", that can retrieve the same rows from the master
database to the subscribing replica. This will lead to conflict situations, for
example, when dropping subscriptions to publications, resulting in the deletion of
a subscription's entire replica data, regardless of whether another subscription is
referring to those rows.

Also make sure that you are not doing overlapping refreshes of same publication
within a replica. For example, if you start a new REFRESH before the reply
message of the previous REFRESH operation has been processed, the replica
database may contain incorrect data.

After using CREATE PUBLICATION, it is important to commit the transaction
before any replica subscribes to the publication. If a transaction that defines a
publication is uncommitted at the master, then when the replica tries to subscribe
to that publication, the system issues an error message stating that the publication
does not exist.

Publication data is requested from the master database using the MESSAGE
APPEND REFRESH publication_name statement.

5.6.3 Subscribing to publications
Replica databases use refreshes to request publication data from the master.
Refreshes depend on the publication definition in the master database. You must
be sure that the replica registers publications so that they can be refreshed from.

5 Using advanced replication with applications 89

Users are unable to refresh from publications that are not registered in the replica.
Registering publications allows publication parameters to be validated.

Publications are registered in a replica using the MESSAGE APPEND REGISTER
PUBLICATION statement. The syntax is:
MESSAGE APPEND REGISTER PUBLICATION publication_name

For example:
MESSAGE MyMsg0001 APPEND REGISTER PUBLICATION publ_customer;

For users to access a publication, they must have REFRESH privilege on the
publication, and they must have privileges on the tables that are used in the
publication. The table owners (or DBA) must grant privileges on the tables that are
used in the publication, and the publication creator (or DBA) must GRANT
REFRESH to give the user access rights on the publication. For details, read 5.4,
“Implementing security through access rights and roles,” on page 74.

Note:

A replica can only refresh from publications that are defined in the master. A
replica cannot use a publication that has been defined in the replica database itself.
If a CREATE PUBLICATION command is executed in the replica database, the
publication definition is stored in the replica, but it not used unless the replica is
also a master to another tier in a hierarchy of three or more tiers.

Publication data is requested from the master database as a publication call with a
set of input parameter values (if they are used in the publication). The syntax is:
MESSAGE unique_message_name APPEND

[REFRESH publication_name [(publication_parameters)]
[FULL]]

For example:
MESSAGE my_msg APPEND

REFRESH ORDERS_BY_SALESMAN (’SMITH’) ;

The initial "refresh" is always a full publication and all data meeting the search
criterion of the publication is sent to the replica database. Subsequent refreshes for
the same publication contain only the data that has been changed since the prior
refresh. This is known as an incremental publication. To save resources and increase
performance, we recommend that you use incremental publications. Typically, only
publication updates with the latest modifications need to be sent to a replica. Read
5.6.1, “Creating incremental publications,” on page 86 for details on setting tables
to track modifications for incremental publication.

When you use the keyword FULL with REFRESH, this forces the fetching of full
publication data to the replica. If the publication is a large one, then the initial
(non-incremental) download of the data to the replica database will make a large
transaction. In such cases, the size of a single transaction of a synchronization
message can be limited with the COMMITBLOCK option. See “Setting the commit
block size” on page 71 for more details about COMMITBLOCK.

Tip:

You can also restrict the resources available for the refresh operations by using the
ReplicaRefreshLoad parameter.

90 IBM solidDB: Advanced Replication User Guide

Combining subscribed and local data
A table on the replica may contain not only subscribed data, but also "local data".
To have rows for local use only at a replica, the publications should have 'where'
constraints that exclude the local rows. In this situation, the replica will keep the
local rows in the table, and will add the subscribed data from the master.

Dropping subscriptions
After the subscribed data becomes obsolete in the replica, you can delete the
subscribed data by dropping the subscription using the DROP SUBSCRIPTION
command in the replica. For details, refer to 6.1.7, “Modifying publications and
tables in publications,” on page 112.

Unregistering or dropping publication registrations
Registered publications can be unregistered in the replica using the following
command in a synchronization message:
MESSAGE APPEND UNREGISTER PUBLICATION publication_name

For example:
MESSAGE MyMsg0001 APPEND UNREGISTER PUBLICATION publ_customer;

This must be part of a message that gets propagated to the master.

Registered publication definitions can also be dropped in the replica without
sending a message. The syntax is:
DROP PUBLICATION publication_name REGISTRATION

For example:
DROP PUBLICATION publ_customer REGISTRATION;

The DROP PUBLICATION REGISTRATION command is meant only for situations
where the replica cannot communicate with the master. If you drop a subscription
without notifying the master, then any system information for that subscription
will remain on the master and use up space indefinitely. Most importantly,
synchronization history data is gathered for this replica even though the replica
will never use it. This causes bloating of the "shadow tables" related to the
publication. If possible, you should manually release that system info by going to
the master database and dropping the subscriptions using the following command:
DROP SUBSCRIPTION publication_name(parameters) FROM REPLICA replica_name

5.7 Designing and implementing Intelligent Transactions
Traditionally, a transaction is an atomic set of database operations that changes a
database from one valid state to another valid state. A "valid state of a database" is
a state in which no integrity rules or consistency rules are violated in the database.
These rules can be both database specific (referential integrity) and application
specific.

solidDB Intelligent Transaction is an extension to the traditional transaction model. It
allows you to implement transactions that are capable of validating themselves in
the current database and adapting their contents (if required) according to the rules
of the transaction.

For example, in an order processing system, an application rule might permit the
creation of an order only if the customer's credit limit is not exceeded. A "create
order" transaction may consist of inserting a row into the CUST_ORDER table and

5 Using advanced replication with applications 91

inserting another row into the INVOICE table. If inserting an order fails because a
customer credit limit is exceeded, then inserting an invoice about the order should
also fail. The INSERT_ORDER procedure should inform the INSERT_INVOICE
procedure about the validation error. This allows the INSERT_INVOICE procedure
to change its behavior and thus keep the transaction valid.

The existence of application specific consistency rules lead to the following
transaction design principles:

A solidDB Intelligent Transaction is a collection of SQL statements that may contain
business logic that is typically implemented as a solidDB stored procedure.
Transactions that are intelligent have the following behavior and characteristics:
v They contain more than one operation, that is, calls to more than one stored

procedure.
v They are long-lived because they are created, tentatively committed, and saved

in the replica database, but finally committed in the master database. Thus, all
validity checking of each transaction in the master database must be done by the
transaction itself.

v They are responsible for the consistency of the master database.

“Create order transaction” creates a "create order" transaction in a simple order
entry application. The following sections use this example to illustrate how to
implement a solidDB Intelligent Transaction.

Create order transaction
-- Make changes to local database
CALL INSERT_ORDER(...) ;
CALL UPDATE_CUSTOMER_CREDIT(...) ;
-- Save a property to the transaction
SAVE PROPERTY priority VALUE ’1’;
-- Save the statements for later propagation to master
SAVE CALL INSERT_ORDER(...) ;
SAVE CALL UPDATE_CUSTOMER_CREDIT(...) ;
-- make the local changes as well as the saved transaction
-- persistent
COMMIT WORK;

5.7.1 Updating local data
In “Create order transaction,” the first part (local changes) of the transaction is a
straightforward execution of the standard SQL clauses:
-- Make changes to local database
CALL INSERT_ORDER(...) ;
CALL UPDATE_CUSTOMER_CREDIT(...) ;

In the solidDB advanced replication architecture, local changes remain local unless
the statements and parameters of a transaction are explicitly saved for later
propagation.

5.7.2 Saving the transaction for later propagation
In this excerpt from “Create order transaction,” the presence of the SAVE statement
after the local changes specifies the later propagation of the local updates to the
master database.
-- save the statements for later propagation to master
SAVE CALL INSERT_ORDER(...) ;
SAVE CALL UPDATE_CUSTOMER_CREDIT(...) ;

92 IBM solidDB: Advanced Replication User Guide

The syntax for saving a statement for later propagation is:
SAVE sql_statement

Note that it is also possible to merely save the statements for later propagation and
not update the local database at all. In this case, the replica will get the updated
information after it propagates the information to the master and then refreshes
from updated data from the master.

Important:

The SAVEd statement is executed "as is" on the master; the statement does not
carry with it any memory of which records on the replica were affected when it
was executed on the replica. For example, suppose that you execute a series of
statements like:
UPDATE employee_table SET salary = salary * 1.10
WHERE state = ’California’;
SAVE UPDATE employee_table SET salary = salary * 1.10
WHERE state = ’California’;

Suppose also that the master database contains 200 employees who work in
California, while the replica contains only the 100 employees who worked at the
local branch office in San Francisco, California. In that case, the UPDATE command
executed on the replica would apply only to the 100 employees contained in the
replica's database, but the identical saved statement would apply to all 200
California employees listed in the master's database. When you propagate a
command to the master, be careful to use a WHERE clause that ensures that the
command applies only to the appropriate records.

5.7.3 Using the advanced replication Parameter Bulletin Board
solidDB advanced replication introduces a new parameter passing method,
"Parameter Bulletin Board" for transactions to use for various purposes. Parameter
Bulletin Board is a memory area to which one can add parameters of various kinds
and from which the operations (procedures) of the transaction may read those
parameters.

There are three different kinds of parameters that appear on the Parameter Bulletin
Board.
v Volatile Transaction Parameters that are used within a transaction for transferring

information between the different procedures of the transaction.
v Transaction Properties (persistent transaction parameters) that are used for giving

a transaction some properties (i.e. describing the transaction) when the
transaction is created in the replica database.

v Persistent, catalog-level Sync Parameters that are used for describing the catalog
where the transaction is being executed.

Depending on the type of parameter, there is a different way to specify the
parameter and a different mechanism for when and how the parameter is put to
the parameter bulletin board. However, the mechanism for reading the parameters
from the bulletin board is the same for all different types of parameters.

Passing parameters between procedures within a transaction
Procedures of a transaction may communicate with each other by putting volatile
parameters on the parameter bulletin board using the PUT_PARAM() function and
reading the parameters using the GET_PARAM() function. Each parameter is a
name-value pair. If a parameter already exists in the bulletin board, the

5 Using advanced replication with applications 93

PUT_PARAM() function replaces the current value with a new one. If a parameter
does not exist in the bulletin board, then GET_PARAM() returns NULL.

Below are some examples of writing and reading parameters:
-- Procedure P1 sets a bulletin board sync parameter.
"CREATE PROCEDURE P1()
BEGIN
PUT_PARAM(’CreditLimitExceeded’, ’Y’);
...
END";

-- Procedure P2 reads the bulletin board sync parameter.
"CREATE PROCEDURE P2()
BEGIN
DECLARE cred_lim_exceeded CHAR(1);
cred_lim_exceeded := GET_PARAM(’CreditLimitExceeded’);
...
END";

Note that you may use GET_PARAM() not only to read the sync parameter values
set by the PUT_PARAM() command, but also to read the transaction properties
that were set with the SAVE PROPERTY command.

The parameter bulletin board is visible to all statements of the transaction. This
allows different stored procedures, for example, to communicate with each other
even if they do not call each other. If one procedure detects an error, it can set a
flag that will notify subsequent procedures in that same transaction to skip
processing of the erroneous data.

The parameters appear on the parameter bulletin board of the transaction when
the transaction is executed in the master database. The parameters are also visible
to the replica while the transaction is executing on the replica.

In most cases, the transaction properties are used when the transaction executes on
the master, that is, after the transaction has been propagated from the replica to the
master. However, you may use the values on either the replica or the master (or
both).

Note: When implementing intelligent transactions for conflict resolution, be sure to
set autocommit OFF to prevent losing transaction properties. The lifecycle of a
transaction parameter is one transaction; that is, it is visible only in the transaction
that has set the value. If autocommit is ON, then each statement is a separate
transaction and bulletin board values are lost immediately.

Refer to the IBM solidDB SQL Guide for details on PUT_PARAM() and
GET_PARAM().

Assigning properties to a replicated transaction
Transaction properties are used for describing an entire replicated transaction.
These parameters are persistent parameters that are defined in the replica database
using SAVE PROPERTY statement and who persist until the transaction to which
they are attached, has been successfully propagated to the master database and
executed there. The SAVE PROPERTY command stores the parameter for a
propagateable transaction in the replica database. When the propagated transaction
is later executed in the master, these parameters are put to the parameter bulletin
board (in the master db) in the beginning of the transaction. Any procedure of the
transaction may query the value of this parameter using the GET_PARAM()
function.

94 IBM solidDB: Advanced Replication User Guide

The transaction properties can be used for two purposes.
v act as a selection criteria for selecting, which transactions to propagated in a

synchronization message
v internally by the procedures of the transaction when it is executed in the master

database.

The syntax for saving a property to a transaction is:
SAVE PROPERTY property_name VALUE property_value

In the excerpt from “Create order transaction” on page 92, the transaction has one
saved property with the name 'priority' and value '1'.
-- Save a parameter to the transaction
SAVE PROPERTY priority VALUE ’1’;

This parameter can be used as a search criterion of the transaction propagation
process ("propagate only those transactions that have parameter 'priority' with
value '1'"). For example:
MESSAGE APPEND PROPAGATE TRANSACTIONS WHERE priority = ’1’;

When the transaction has been propagated to the master database, the values of all
defined properties of this transaction appear on the parameter bulletin board of the
transaction when the transaction is executed in the master database. Thus, you can
query the value of the 'priority' property from a procedure using the
GET_PARAMI() function.
DECLARE priority_value CHAR(1);
priority_value := GET_PARAM(’priority’);

This information may be used for the application's own purposes, for example, for
determining how a possible update conflict should be resolved with this particular
transaction.

Defining catalog-level persistent synchronization parameters
To define a parameter that has a per-catalog scope, you use SET SYNC
PARAMETER command. This command specifies a parameter that can be read by
any transaction (using the GET_PARAM() function) that executes within that
catalog. Each transaction in that catalog can also alter the value of the parameter,
but those updated values are only seen within the current transaction. Subsequent
transactions do not see the updated values; subsequent transactions only see the
"original" values.

Advanced replication system parameters
The advanced replication system itself pre-defines some parameters known as
"system parameters". System parameters are something that the server knows
about and can act upon (for example, by terminating transaction). (The generic
catalog-scope parameters are something the application-level intelligent
transactions must know about. They do not affect the server's own behavior.) An
example of a system parameter is SYS_ROLLBACK. Setting SYS_ROLLBACK to
'YES' causes the server to terminate that transaction. The value of SYS_ROLLBACK
is reset back to default 'NO' for the next transaction. System parameters are merely
parameters that use names that are reserved by the system. System parameters are
visible on the bulletin board, just like any other parameters. Your transaction can
read and write system parameters just as it can read and write other parameters.

5 Using advanced replication with applications 95

5.7.4 Creating stored procedures
To ensure the physical and logical database consistency, you must write stored
procedures using the solidDB SQL stored procedure language. These procedures
can use the parameter bulletin board to communicate with each other. In
“INSERT_ORDER stored procedure,” the account balance update must not be
made if the insert of the new order fails.

Following is a simplified example of the procedures called in “Create order
transaction” on page 92.

INSERT_ORDER stored procedure
"CREATE PROCEDURE INSERT_ORDER

(ORDER_ID VARCHAR, CUST_ID VARCHAR, ...)
BEGIN
DECLARE ORDER_FAILED VARCHAR ;
DECLARE CUST_OK INTEGER ;
DECLARE STATUS VARCHAR ;
ORDER_FAILED := ’N’ ;
STATUS := ’OK’ ;

-- Validate the order
-- For instance, it must have a valid customer
EXEC SQL PREPARE CHECK_CUST
CALL CHECK_CUSTOMER (?) ;
EXEC SQL EXECUTE CHECK_CUST
USING (CUST_ID)
INTO (CUST_OK) ;
IF CUST_OK = 0 THEN
ORDER_FAILED := ’Y’ ;
STATUS := ’FAIL’ ;
END IF ;
-- Other validation checking should go here...
-- ...
-- End of validation

-- If the validation fails, put a parameter to the bulletin board to
-- inform subsequent stored procedures about the validation failure.
IF ORDER_FAILED = ’Y’ THEN
PUT_PARAM(’ORDER_FAILED’, ’Y’);
END IF;

-- Insert the order row into the database. The STATUS value in the
-- row may be either ’OK’ or ’FAIL’.
EXEC SQL PREPARE INS_ORD
INSERT INTO CUST_ORDER (ORD_ID, CUST_ID, STATUS, ...)
VALUES (?,?,? ...);
EXEC SQL EXECUTE INS_ORD
USING (ORD_ID, CUST_ID, STATUS...);
EXEC SQL CLOSE INS_ORD;
EXEC SQL DROP INS_ORD;
END";

The following procedure updates the balance of a given account:
"CREATE PROCEDURE UPDATE_CUST_CREDIT (ACC_NUM VARCHAR, AMOUNT FLOAT)
BEGIN
DECLARE ORDER_FAILED VARCHAR;
-- Check from the bulletin board, whether the order
-- was inserted/modified successfully.
-- In case of failure, do not update the account balance
ORDER_FAILED := GET_PARAM(’ORDER_FAILED’);
IF ORDER_FAILED = ’Y’ THEN

RETURN
END IF;

96 IBM solidDB: Advanced Replication User Guide

EXEC SQL PREPARE UPD_CREDIT
UPDATE ACCOUNT
SET BALANCE = BALANCE + ?
WHERE ACC_NUM = ?;

EXEC SQL EXECUTE UPD_CREDIT
USING (AMOUNT, ACC_NUM);
EXEC SQL CLOSE UPD_CREDIT;
EXEC SQL DROP UPD_CREDIT;
END";

5.7.5 Creating a synchronization error log table for an
application

It is highly recommended that a synchronization error log table be created as part
of the database schema of a decentralized system. The log table allows application
developers to store information about the application-level errors that may occur
during synchronization.

If the error requires manual resolution, the error log serves as a source of
information required to correct the error. For instance, if an update conflict occurs,
a log can contain information about which row was conflicting and what was done
to the conflicted row by the transaction. Below is an example of an error log table:
CREATE TABLE ERRLOG

(ID CHAR(20) NOT NULL,
LOG_TITLE CHAR(80) NOT NULL,
LOG_DESCRIPTION VARCHAR NOT NULL,
UPDATETIME DATETIME NOT NULL,
PRIMARY KEY (ID));

The ID is a generated, globally unique key of the log entry.

The LOG_TITLE and LOG_DESCRIPTION columns contain the information about
the error, such as an update conflict.

The UPDATETIME column contains the timestamp of the last update operation of
the error log row.

5.8 Validating Intelligent Transactions
Data synchronization brings a new aspect to the functionality of the business
application. The major difference between centralized and decentralized systems is
the existence of tentative data in decentralized systems. There can be multiple
different versions of the same data item in the system.

The master database has the officially correct version of the data. The replicas may
have a different, unofficial version of the same data. When a replica transaction
(which is based on the unofficial replica version of data) is propagated to the
master database, transaction validation errors such as update conflicts may occur
in the master. In this kind of situation, transactions need to act in a way that meets
the requirements of the business rules of the application.

When a transaction validation error occurs, there are different options for handling
the situation:
v Resolve the error automatically without user intervention. For instance in the

case of an update conflict, select the most recent update.

5 Using advanced replication with applications 97

v Leave the master version of the data intact and save a sufficient amount of
information about the conflicted or otherwise erroneous operation to allow error
correction through manual user intervention.

The first approach does not require anything special from the data model, because
transaction validation errors are automatically resolved as they occur and do not
require manual attention.

However, the first approach does not always take into consideration all imaginable
transaction validation errors, some of which cannot be resolved automatically. For
example, if an order is updated in both the master and the replica databases of an
Order Entry system, it is very hard to determine automatically which one of the
updates is the correct one. Sometimes, user intervention is required to fix the error.

In order to enable the user to fix the error, a sufficient amount of information
about the failed transaction must be made persistent. This information can be
stored in a separate error log table or the data model can be designed to
accommodate multiple versions of the same data item.

5.8.1 Designing complex validation logic
Although transactions of business applications are typically small groups of atomic
read and write operations, they can also be complex. For example, in a
decentralized Order Entry system, the transaction may contain the following
operations:
v insert a row into CUST_ORDER table
v insert multiple rows into ORDER_LINE table
v update USED_CREDIT information of CUSTOMER table
v insert an entry into the ACCOUNT_TRANSACTION table of the bookkeeping

part of the application
v for each type of product ordered, update the STOCK_BALANCE column of a

row of the PRODUCT table to update the warehouse balance of the ordered
product

In this example, various things can go wrong when the transaction is executed in
the master database. For instance:
v According to the master database, the customer does not have sufficient credit

available for the order. Therefore the entire order is invalid or must be
separately approved.

v There is insufficient inventory given the amount of the products ordered. This
makes part of the order incomplete. It may be that the entire order must be put
on hold or another order (back order) is required for the missing product.

v The accounting transaction is invalid because the transaction has been
propagated after the month end when entries to the previous month are no
longer allowed. This creates a mismatch between corporate bookkeeping and
order systems.

There are different approaches to solving these challenges when using solidDB
Intelligent Transaction. Two are discussed here: pre-validation and compensation.

Pre-validation
The individual operations of the transaction can be split into two parts: validation
operations and writing operations.

98 IBM solidDB: Advanced Replication User Guide

You can implement the transaction so that the validation parts are executed before
any of the writing parts. In the parameter bulletin board, the validation parts leave
all the necessary information for the writing parts to behave correctly.

In the above example, the validation part of the transaction could look as follows:
VALIDATE_ORDER
VALIDATE_ORDER_LINE (multiple)
VALIDATE_CREDIT_UPDATE
VALIDATE_ACCOUNT_TRANSACTION
VALIDATE_STOCK_UPDATE

At this point, no write operations have been made yet, but the parameter bulletin
board now has all the information that the write operations need in order make
the whole transaction valid. The rest of the transaction would look as follows:
INSERT_ORDER
INSERT_ORDER_LINE (multiple)
UPDATE_CUSTOMER_CREDIT
INSERT_ACCOUNT_TRANSACTION
UPDATE_PRODUCT_STOCK_BALANCE

Compensation
Another way to solve the above problem is to add compensating operations in the
end of the transactions. They can be used, for instance, in a scenario where a
product to be ordered in one of the order lines does not exist any more. Therefore
the entire order becomes incomplete. However, the row to the ORDER table has
already been inserted with STATUS column value 'OK'.

In this case, the VALIDATE_AND_INSERT_ORDER_LINE must leave a parameter
on the bulletin board that informs the last operation (COMPENSATE_ORDER) of
the transaction required to change the status of the order to 'INVALID'. The overall
Intelligent Transaction implementation could in this example case look as follows:
VALIDATE_AND_INSERT_ORDER
VALIDATE_AND_INSERT_ORDER_LINE (multiple)
VALIDATE_AND_UPDATE_CUSTOMER_CREDIT
VALIDATE_AND_INSERT_ACCOUNT_TRANSACTION
VALIDATE_AND_UPDATE_PRODUCT_STOCK_BALANCE
COMPENSATE_ORDER

5.8.2 Error handling in the application
Because the synchronization of databases is done by the application, the error
handling must also be implemented in the application, that is, in the stored
procedures. Transactions can generate errors that appear either at the system or at
the application level. The system level errors are typically fatal; that is, they cannot
be recovered automatically.

Application level error occurs when the original behavior of the transaction is no
longer valid. Typically this occurs when a conflict is detected. For instance, an
order is inserted for a customer who no longer exists in the master database.

There are numerous options on how to recover from this kind of error:
v Resolve the error automatically inside the transaction using a conflict resolution

rule, such as "the current master version wins."
v Leave the resolution of the error to the user or system administrator. An error

log table can be used for storing sufficient information about the error.
v Combinations of the above options — for example, resolve the conflict

automatically but inform a user about the resolution using an error log table.

5 Using advanced replication with applications 99

The method to use depends on the application and its requirements.

5.8.3 Specifying recovery from fatal errors
The most important rule of error handling is that all transactions must commit in
the master database. Any DBMS error is a fatal error and by default, causes the
execution of the synchronization message to halt. These errors are system-level
errors. For instance, if a write operation fails in the master database during
synchronization because of a unique constraint violation, then the execution of the
message is halted and an error code is returned to the replica database.

If a fatal error is detected by the business logic of a transaction, the transaction can
be aborted and the further execution of the synchronization message halted by
putting a rollback request to the bulletin board of the transaction. Remember that
the COMMIT WORK and ROLLBACK WORK statements are not allowed in
propagated transactions. However, the rollback request can be issued with the
following system bulletin board parameters:
SYS_ROLLBACK = ’YES’
SYS_ERROR_CODE = user_defined_error_code
SYS_ERROR_TEXT = user_defined_error_text

The SYS_ROLLBACK parameter is a system-recognized parameter. If the
transaction sets the value to 'YES', then the server will automatically roll back the
transaction. The previously committed transactions of the same synch message will
remain committed. What happens to the rest of the synchronization message
depends on the mode of the PROPAGATE TRANSACTIONS operation. (See
“IGNORE_ERRORS, FAIL_ERRORS, and LOG_ERRORS flags for propagate
transactions command” for details about the error-handling mode of the
PROPAGATE TRANSACTIONS operation.)

Here is a sample scenario:

Let us assume that a transaction detects a violation of referential integrity of the
database; for example, the customer of an order does not exist in the master
database. The transaction can put the following parameters on the bulletin board
in order to request rollback and return application-specific error codes:
Put_param(’SYS_ROLLBACK’, ’YES’);
Put_param(’SYS_ERROR_CODE’, ’90001’);
Put_param(’SYS_ERROR_TEXT’, ’Referential integrity violation detected’);

Note that because the transaction management of transactions is done outside the
procedure, directly issuing the ROLLBACK WORK or COMMIT WORK command
inside the procedure is never allowed.

IGNORE_ERRORS, FAIL_ERRORS, and LOG_ERRORS flags for
propagate transactions command
If an error occurs during transaction propagation, the default behavior is that the
server stops processing the message and aborts the current transaction. Any
previous transactions in the message remain in effect. This means that you may
wind up with just part of a message executed.

solidDB supports three error-handling modes for propagated messages.
v IGNORE_ERRORS - This option means that if an error occurs, the transaction is

aborted. Execution continues with the next transaction. In other words, an error
does not abort the entire message.

100 IBM solidDB: Advanced Replication User Guide

v LOG_ERRORS - Like IGNORE_ERRORS, this option means that if an error
occurs, the transaction is aborted, and execution continues with the next
transaction. In addition, failed transaction statements are saved in
SYS_SYNC_RECEIVED_STMTS system table for later execution or investigation.

v FAIL_ERRORS - This option means that if a statement fails, the current
transaction is rolled back, and the server does not continue on to process
subsequent transactions in the same message. (Any transactions that have
already been committed are not undone.) This is the default error-handling
mode for propagation.

There are three ways to specify which of these error-handling modes you want to
apply to a particular message or transaction.
v Use an appropriate keyword in the SAVE command. If you specify the

error-handling mode in the SAVE command, then the specified mode applies
only to that saved statement (not the entire transaction or the entire message).

v Use a transaction bulletin board parameter to specify the error-handling mode.
In this case, the specified mode applies to the current transaction.

v Use a MESSAGE APPEND PROPAGATE TRANSACTIONS command to specify
the error behavior. In this case, the specified mode applies to the entire message.

If error-handling options are specified in both the SAVE and the PROPAGATE
TRANSACTIONS statement, then the error-handling options specified in the
PROPAGATE TRANSACTIONS statement take precedence.

The failed messages can be examined using SYNC_FAILED_MESSAGES system
view and they can be re-executed from there using statement MESSAGE <msg_id>
FROM REPLICA <replica_name> RESTART <error_options>.

The syntax for setting values in the parameter bulletin board is shown below.

The parameter name for error handling is
SYNC_DEFAULT_PROPAGATE_ERRORMODE

The values can be:
IGNORE_ERRORS
LOG_ERRORS
FAIL_ERRORS

The parameter name used for autosave in the master is:
SYNC_DEFAULT_PROPAGATE_SAVEMODE

The values can be:
AUTOSAVE
AUTOSAVEONLY

Autosave is used in hierarchies that have more than two levels. If a replica needs
to propagate a transaction not to its direct master, but to a master above that, then
the replica may use AUTOSAVE. AUTOSAVE is discussed in more detail later in
this chapter.

For example,
PUT_PARAM(’SYNC_DEFAULT_PROPAGATE_ERRORMODE’, ’LOG_ERRORS’);
PUT_PARAM(’SYNC_DEFAULT_PROPAGATE_SAVEMODE’, ’AUTOSAVE’);

The syntax for setting values in messages is shown below.

5 Using advanced replication with applications 101

MESSAGE <message_name> APPEND PROPAGATE TRANSACTIONS
[{ IGNORE_ERRORS | LOG_ERRORS | FAIL_ERRORS }] [WHERE ...]

Note that the autosave option is not possible in this statement.

Syntax (in save):
SAVE [NO CHECK] [{ IGNORE_ERRORS | LOG_ERRORS | FAIL_ERRORS }]
[{ AUTOSAVE | AUTOSAVEONLY }] <sqlstring>

v NO CHECK: This option means that the statement is not prepared in the replica.
This option is useful if the command would not make sense on the replica. For
example, if the SQL command calls a stored procedure that exists on the master
but not on the replica, then you do not want the replica to try to prepare the
statement. If you use this option, then the statement can not have parameter
markers.

v IGNORE_ERRORS: This option means that if a statement fails while executing
on the master, then the failed statement is ignored and the transaction is
aborted. However, only the transaction, not the entire message, is aborted. The
master continues executing the message, resuming with the first transaction after
the failed one.

v LOG_ERRORS: This means that if a statement failed while executing on the
master, then the failed statement is ignored and the current transaction is
aborted. The failed transaction's statements are saved in
SYS_SYNC_RECEIVED_STMTS system table for later execution or investigation.
The failed transactions can be examined using SYNC_FAILED_MESSAGES
system view and they can be re-executed from there using MESSAGE <msg_id>
FROM REPLICA <replica_name> RESTART statement. Note that, as with the
IGNORE_ERRORS option, aborting the transaction does not abort the entire
message. The master continues executing the message, resuming with the first
transaction after the failed one.

v FAIL_ERRORS: This option means that if a statement fails, the master stops
executing the message. This is the default behavior.

v AUTOSAVE: This option means that the statement is executed in the master and
automatically saved for further propagation if the master is also a replica to
some other master (i.e. a middle-tier node).

v AUTOSAVEONLY: This option means that the statement is NOT executed in the
master but instead is automatically saved for further propagation if the master is
also a replica to some other master (i.e. is a middle-tier node).

When a master database is propagating a message, the autosave setting is ignored
if the node is not also a replica. In other words, the autosave setting is ignored for
the topmost master in the hierarchy. The setting affects one node only, for example,
all nodes must set it separately if needed.

Example:
SAVE NO CHECK IGNORE_ERRORS insert into mytab values(1, 2)

The table sys_sync_master_msginfo has a new column FAILED_MSG_ID which is
part of the primary key. The value is zero for normal messages. The value is
msg_id if LOG_ERRORS option is ON and any errors exists. Also the
SYS_SYNC_RECEIVED_STMTS table has errcode and err_str columns where actual
errors are logged.

The autosave option takes effect if defined in SAVE or if defined in the master
bulletin board.

102 IBM solidDB: Advanced Replication User Guide

Note:

If a replica registration or a publication registration message fails, the hung
messages are automatically deleted from both the master and the replica, and the
status is reset back to what it was before the message execution. The
IGNORE_ERRORS, FAIL_ERRORS, and SAVE_ERRORS flags do not apply to these
two types of messages.

Re-executing or deleting logged errors in master
If transactions were propagated with the LOG_ERRORS option, the server saves
the statements that were in the transaction that failed. These statements can be
examined the cause of the problem fixed. The failed statements can then be
re-executed with the following statement:
MESSAGE msgid FROM REPLICA replicaname RESTART {IGNORE_ERRORS | LOG_ERRORS | FAIL_ERRORS}

If the problem cannot be corrected, or you do not re-execute the transactions that
failed, you can delete the entire message with the following command:
MESSAGE msgid FROM REPLICA replicaname DELETE

Alternatively, you can delete one or more transactions within the message with the
following command:
MESSAGE msgid FROM REPLICA replicaname DELETE CURRENT TRANSACTION

Important: Do not use the following statement to delete the messages:
MESSAGE message_name FROM REPLICA replicaname DELETE

The message_name is not valid after the message has completed its replica-perceived
lifecycle. message_name is removed from the system, for example, after the
statement MESSAGE ... GET REPLY. However, msgid applies for as long as the
message is logged at the master.

Creating and sending a synchronization message from a
propagated transaction
You can create and send a synchronization message from a propagated transaction.
Although in most situations explicit commits are not allowed in a propagated
transaction, they are allowed when creating and sending a synchronization
message from inside a propagated transaction. You may issue an explicit COMMIT
in the middle of a propagated transaction if the transaction has not executed any
DML statements and if the previous statement was one of the following:
MESSAGE ... END
MESSAGE ... FORWARD, or
MESSAGE ... GET REPLY

5 Using advanced replication with applications 103

104 IBM solidDB: Advanced Replication User Guide

6 Updating and maintaining the schema of a distributed
system

This chapter is divided into two major sections. The first discusses some of the
"mechanics" of using advanced replication. The second discusses the specific issue
of upgrading a schema across a distributed system — that is, upgrading a schema
that is shared across as master and its replicas.

6.1 Managing solidDB tables and databases
After your initial implementation of a advanced replication system, you may need
to alter your database schema, add a new master, or drop replicas. This section
provides step-by-step procedures to manage tables and databases. Before you
perform database maintenance, be sure to close all database connections.
Depending on what type of maintenance you are performing, you may want to be
sure all databases are synchronized.

6.1.1 Modifying the database schema
You can modify the database schema in the master database (see the CREATE OR
REPLACE PUBLICATION command, which allows you not only to create new
publications, but also to modify existing publications). You may also modify
indexing and user access rights even if the table is referenced by publications.

6.1.2 Changing master or replica database location
You can easily change the database location of a master and replica by copying the
database and log files to the target directory.
1. Shut down the server to release the operating system file locks on the database

file and log files.
2. Copy the database and log files to the target directory.
3. Copy the solid.ini file to the target directory.
4. Check that the database file directory, log file directory, and backup directory,

are correctly defined in the solid.ini configuration file.
5. If the database you moved is the master, issue the SET SYNC CONNECT

command in all the replicas.
This must be set in all replicas to ensure connection before the next message to
the master.

6. Start solidDB at the new location using the target directory as the current
working directory with the command line option -c directory_name .

7. If the database you moved is a replica, check that you are able to access the
master with the connection string in MESSAGE FORWARD or MESSAGE
APPEND REGISTER REPLICA.

6.1.3 Unregistering a replica database
When a replica database is not used in a advanced replication system, it is strongly
recommended that it is unregistered, i.e. the synchronization relationship between
the replica and master databases is removed. After unregistering the replica, the
master database knows that it does not need to accumulate synchronization history
data for this replica database any more. This may save significant amounts of disk
space in the master database.

105

To unregister a replica database:
1. Drop the subscription(s) in the replica if data is no longer needed in the replica

database.
2. In the replica, use the following command to unregister the replica with the

master database:
MESSAGE message_name BEGIN;
MESSAGE message_name APPEND UNREGISTER REPLICA;
MESSAGE message_name END;
COMMIT WORK;

3. Send the message to the master database.
MESSAGE message_name FORWARD TIMEOUT seconds;
COMMIT WORK;

The replica database can no longer synchronize with the master database.

A replica database can also be dropped from the master database using the
following command in the master database:
DROP REPLICA replica_name;

If you drop the replica using DROP REPLICA, you should also drop the master
from the replica with DROP MASTER.

This method may be necessary if access to the master database needs to be denied
from the replica database or the replica database was not able to successfully
unregister itself.

6.1.4 Creating large replica databases
When creating large replicas that are greater than 2 GB from a master database,
use the EXPORT SUBSCRIPTION and IMPORT commands. However, when
synchronizing BLOB data, the limitation of 2 GB per synchronization message
doesn't apply. You can export any subscription from a master database to a file and
later import that file to a replica. For details, see 6.1.5, “Managing data with
synchronization bookmarks.”

Note:

A replica can be created by subscribing to a publication from a master database,
but because data is sent in one logical chunk, this method is problematic for
replicas larger than 2 GB unless the data is BLOB data. Downloading large
amounts of data may require a substantial amount of time, and there are
limitations in sending the large data in a single advanced replication message.

6.1.5 Managing data with synchronization bookmarks
A synchronization bookmark is a state of the solidDB database that you define for
future reference purposes. Bookmarks are created with the following command in
the master database:
CREATE SYNC BOOKMARK bookmark_name

This command automatically associates other attributes such as creator of the
bookmark, create date and time, and unique bookmark ID.

Bookmarks are more than placeholders in the database. In a sense, a bookmark can
be thought of as a user-defined persistent snapshot of a database. They are used
also to export data from the master and import data into a replica. For more
information, read 6.1.6, “Exporting and importing subscriptions,” on page 107.

106 IBM solidDB: Advanced Replication User Guide

Bookmarks are created only in the master database. You cannot create a bookmark
in a replica database. Attempting to do this results in an error. Note that there is
no practical limit to the number of bookmarks you can create in a database.

Creating bookmarks requires Database Administrator (DBA) or solidDB
Administrator (SYS_SYNC_ADMIN_ROLE) privileges.

Bookmarks retain history information for all tables that have history versions
defined. For this reason, it is recommended that bookmarks be dropped when they
are no longer needed. Otherwise, disk space usage increases considerably to
accommodate the extra history versions.

Retrieving bookmark information
Before creating a new bookmark or dropping an existing bookmark, you can query
the solidDB catalog table SYS_SYNC_BOOKMARKS to see a list of existing
bookmarks. For example, the following query gives the bookmark name, creation
date, and the creator of the bookmark:
SELECT BM_NAME, BM_VERSION, BM_CREATOR, BM_CREATIME FROM SYS_SYNC_BOOKMARKS;

Administrative privileges are not required to retrieve bookmarks from the system
catalog table.

Dropping bookmarks
Bookmarks are dropped with the following command in the master database:
DROP SYNC BOOKMARK bookmark_name
bookmark_name ::= literal

Note:

Bookmarks should only be dropped after the exported data is imported into all
intended replicas, not just one. After the import, the replicas need to refresh the
imported subscription once before the bookmark may be dropped in the master.
Drop a bookmark only when you no longer have any replicas to import.

After using a bookmark to successfully import a file to a replica or to receive the
first refresh of the data from the master database, it is recommended that you drop
the bookmark that you used to export the data to a file. For details on importing
and exporting subscriptions, see the following section.

If a bookmark remains, then all subsequent changes to data on the master
including deletes and updates are tracked on the master database for each
bookmark to facilitate incremental refreshes.

By dropping a bookmark, you allow the server to delete the history data that was
required by the bookmark. If you do not drop bookmarks, more disk space is
consumed for each bookmark registered in the master database. This may result in
performance degradation.

For more details, see the description of the SQL command DROP SYNC
BOOKMARK in the solidDB SQL Guide.

6.1.6 Exporting and importing subscriptions
The advanced replication EXPORT SUBSCRIPTION command let you export a
version of the data from a master database to a replica database or to a disk file. If
the data is exported to a disk file, it can be imported into a replica database with

6 Updating and maintaining the schema of a distributed system 107

IMPORT command. These commands assume you have created subscriptions in
your database and bookmarks to reference the state of the database you want to
export.

Specifying a subscription for export
The concept and procedures for using the EXPORT SUBSCRIPTION command are
similar to refreshing from a publication. You use the EXPORT SUBSCRIPTION
command instead of the MESSAGE APPEND REFRESH or REFRESH command in
the following circumstances:
v You need to create a large replica database from an existing master. This

procedure requires that you export a subscription with or without data to a file
first, then import the subscription to the replica. For details, read “Creating a
replica by exporting a subscription with data” on page 109 or “Creating a replica
by exporting a subscription without data” on page 111.

v You want to export specific versions of the data to a replica.
v You want to export metadata information only without the actual row data.

Note the difference between using the EXPORT SUBSCRIPTION command vs.
refreshing from a publication with MESSAGE APPEND REFRESH or REFRESH:
v The EXPORT SUBSCRIPTION command is executed in the master, whereas a

refresh is requested from a replica.
v The export output is saved to a user specified file, whereas output of a

REFRESH command is stored in a advanced replication reply message.
v The export file can be created with no data (actual rows are not included in

output) as well as with data.
v The export file is never incremental (for example, if the data for the export

contains rows, all rows are included in the export file, as in a refresh based on a
full publication).

v The export file is based on a given bookmark; this means that export data is
consistent up to a given bookmark and refreshes based on incremental
publications are possible from that bookmark.

EXPORT SUBSCRIPTION COMMAND

There are two different ways to export data from master to replica database.

If you want to export data of a subscription from the master database to a file for
later import to one or multiple replicas, use the following EXPORT
SUBSCRIPTION syntax:
EXPORT SUBSCRIPTION publication_name [(arguments)]

TO ’filename’
USING BOOKMARK bookmark_name
[WITH [NO] DATA];

Once the export operation to a file has completed, the data of the file can be
imported to a replica database with IMPORT command.

If you want to export data from a master database directly to specified existing
replica database, use the following syntax:
EXPORT SUBSCRIPTION publication_name [(arguments)]

TO REPLICA replica_name
USING BOOKMARK bookmark_name
[COMMITBLOCK #rows] ;

108 IBM solidDB: Advanced Replication User Guide

Note that EXPORT SUBSCRIPTION TO REPLICA command does not use files as
the means to transfer data from master to replica database. Instead, it writes the
data to the replica database directly. Hence, no separate import step is needed. The
replica database must exist and be available in the network.

The publication_name and bookmark_name are identifiers that must exist in the
database. The filename represents a literal value enclosed in single quotation
marks. An export file can contain more than one subscription. You can export
subscriptions "WITH DATA" and "WITH NO DATA" options. If there is more than
one publication specified, the exported file can have a combination of "WITH
DATA" and "WITH NO DATA."

For more details, including rules for usage, read the description of the SQL
commands "EXPORT SUBSCRIPTION TO <file>" and "EXPORT SUBSCRIPTION
TO REPLICA" in the solidDB SQL Guide. For the procedure to create a replica
WITH DATA, read “Creating a replica by exporting a subscription with data” and
to create a replica WITH NO DATA, read “Creating a replica by exporting a
subscription without data” on page 111.

Specifying a subscription for import
The IMPORT command is used on a replica database to import the data from a
data file created by the EXPORT SUBSCRIPTION command.

IMPORT Command

The IMPORT command is created using the following syntax:
IMPORT ’filename’ [COMMITBLOCK #rows]

The filename represents a literal value enclosed in single quotation marks. The
import command can accept a single filename only. All publication data for import
to a replica must fit in a single file. However, you can use multiple import
statements to import multiple files.

The #rows is an integer value used with the optional COMMITBLOCK clause to
indicate the commitblock size.

The COMMITBLOCK clause indicates the number of rows processed before the
data is committed. If COMMITBLOCK is not specified, the IMPORT command
takes all rows in the publication as one transaction. If the file contains a large
number of rows, the use of COMMITBLOCK is recommended.

For more details, including rules for usage, read the description of the "IMPORT"
command in the solidDB SQL Guide.

Creating a replica by exporting a subscription with data
When you have an existing (replica) database that needs a subset of the master's
data but does not yet have it, then you use the EXPORT SUBSCRIPTION
command using the WITH DATA option to export data for the replica.

The following procedure requires that you include data in the export file(s) and
load the data to the replica with the IMPORT command.

Note:

v When using the EXPORT SUBSCRIPTION command, you can export data to the
same file more than once. With each command, the data is appended to the file.
If you plan to do this, be sure you have enough disk space to accommodate the

6 Updating and maintaining the schema of a distributed system 109

exported data for each export command. If you run out of disk space in the
middle of the export, the EXPORT SUBSCRIPTION command will fail with an
error and the export file will not be usable.

v solidDB requires that autocommit be set OFF when using the EXPORT
SUBSCRIPTION command.

Procedure at a Master

Perform these steps in the master database:
1. Create a bookmark if one does not exist. If a bookmark already exists and

meets your needs, you can use it. Refer to 6.1.5, “Managing data with
synchronization bookmarks,” on page 106 for information about creating
bookmarks.
You can also perform queries to see what bookmarks and publications currently
exist in your system. Refer to “Retrieving bookmark information” on page 107.

2. Execute the EXPORT SUBSCRIPTION command WITH DATA option for every
needed publication to create export file(s).
If a bookmark is associated with more than one publication at the master, then
be sure to execute the EXPORT SUBSCRIPTION commands for each
publication separately.
For each EXPORT SUBSCRIPTION command WITH DATA option, the
metadata and versioned data corresponding to that publication and bookmark
are added to the export file.

Error Messages

If you receive an error that you have run out of disk space, delete the previous file
and execute the EXPORT SUBSCRIPTION command again with sufficient disk
space.

Note:

You cannot suspend and resume an EXPORT SUBSCRIPTION command. If the
execution did not complete for some reason, you need to execute the EXPORT
SUBSCRIPTION command again.

Possible errors you may encounter include:
v Error message 25067, indicating that the advanced replication bookmark could

not be found. Check to see that you have entered the bookmark name correctly.
v Error message 25068, indicating that the filename you specified in the EXPORT

SUBSCRIPTION or IMPORT command cannot be opened or cannot be opened
in the append mode. Check to see that you have entered the filename correctly
and it is not currently in use.

Procedure at a Replica

Perform these steps at the replica site:
1. Register this replica with the master database.
2. Set the replica catalog to be current catalog using SET CATALOG command.
3. Register the publication whose subscription(s) will be imported.
4. Import the file(s) you created using the EXPORT SUBSCRIPTION command.

The procedure for import is described in “Specifying a subscription for import”
on page 109.

110 IBM solidDB: Advanced Replication User Guide

The IMPORT command accepts only one file at a time. If you have multiple
export files, execute a separate IMPORT command for each file. Remember that
one file may include multiple exports.
You can import the same subscription to the same replica more than once as
this has the same effect as subscribing with the FULL publication option.

Note:

You cannot suspend and resume an IMPORT command. If the execution did
not complete for some reason, you need to execute the IMPORT command
again.

5. REFRESH the publication(s) from the master database using advanced
replication's MESSAGE (for example, MESSAGE APPEND REFRESH) or
REFRESH command.

Creating a replica by exporting a subscription without data
In some cases, you might have a database that already contains all the appropriate
data, but is not already configured to be a replica. For example, you might have a
server that has a backup copy of an existing master, and you might want to
convert that copy to a replica. If the database already has the appropriate data,
then you do not want to have to discard and then refresh all that data. One
solution is to export just the subscription metadata from the master, then import
that into the copy of the master (i.e. into the database that you want to convert to
a replica). You use the EXPORT SUBSCRIPTION command with the WITH NO
DATA option to export the schema (the "metadata").

CAUTION:

Be sure valid data exists on the replica before you use this option, or you risk
the consequence that an application accessing the replica will use the wrong set
of data.

Note:

solidDB requires that autocommit be set OFF when using the EXPORT
SUBSCRIPTION command.

The following procedure requires that you export file(s) with no data and load the
files containing the metadata and publication information to the replica with the
IMPORT command.

Procedure at a Master

Perform these steps in the master database:
1. Create a bookmark if one does not exist. If a bookmark already exists and

meets your needs, you can use it. Refer to 6.1.5, “Managing data with
synchronization bookmarks,” on page 106 for information about creating
bookmarks.
You can also perform queries to see what bookmarks and publications currently
exist in your system. Refer to “Retrieving bookmark information” on page 107.

2. Execute the EXPORT SUBSCRIPTION command WITH NO DATA option for
every needed publication to create export file(s).
Only one bookmark is required even if several publications are exported. You
can export several publications to a single file by specifying the same file name.

6 Updating and maintaining the schema of a distributed system 111

For each EXPORT SUBSCRIPTION command WITH NO DATA option, the
metadata and history data corresponding to that publication and bookmark are
added to the export file.

Procedure at a Replica

Perform these steps at each applicable replica site:
1. Create a backup of an existing master database (for example, by using the

ADMIN COMMAND 'backup') command.
2. Start the backup database and drop all replicas using the DROP REPLICA

command and all publications using the DROP PUBLICATION command.
3. Change the node name using the SET SYNC NODE unique_node_name command

(since the database is a backup of an existing master database and the original
master is currently using that node name).

4. Configure the database as a replica by executing the following commands:
SET SYNC MASTER NO
SET SYNC REPLICA YES

Note:

If you are switching the database to be a replica and the database is already a
backup/copy of the master database, the backup is already set as a master
database. If you execute the command SET SYNC REPLICA YES, then the
database will be defined as a dual role (master and replica) database, instead of
a dedicated replica-only database. If you want to make this database a replica
exclusively, then you must execute SET SYNC MASTER NO as well as SET
SYNC REPLICA YES.

5. Register this replica to the master database.
6. Import the file(s) you created using the EXPORT SUBSCRIPTION command.

The procedure for import is described in “Specifying a subscription for import”
on page 109.

7. Refresh from the publication(s) from the master database using advanced
replication's MESSAGE or REFRESH commands.

The newly created replica is ready for use. If this is the last replica you are
creating, drop the bookmark from the master database as described in “Dropping
bookmarks” on page 107.

6.1.7 Modifying publications and tables in publications
You can modify existing publications. For more information, see the description of
the command CREATE [OR REPLACE] PUBLICATION in IBM solidDB SQL Guide.
This command allows you not only to create new publications, but also to modify
existing publications.

You may also modify tables that are in publications. For more information about
this, see the description of the command SET SYNC MODE in IBM solidDB SQL
Guide.

Depending upon the modifications that you make, the next refresh from each
replica may be either an incremental refresh or a full refresh.

Note:

112 IBM solidDB: Advanced Replication User Guide

If you use CREATE OR REPLACE PUBLICATION to alter the contents of an
existing advanced replication publication, you have to take care of removing
invalid rows from Replica.

Incremental vs. full refresh
If you change a publication using the command "CREATE OR REPLACE
PUBLICATION..." then replicas will receive updated data the next time that they
refresh. Depending upon the changes to the publication, subscribers may get a full
refresh or an incremental refresh. Below is a summary of the rules that control
whether the next refresh is incremental or full. Keep in mind that a single
publication may contain multiple result sets. Each result set is relatively
independent, so changes to one result set do not necessarily require that the
subscriber get any information for the other result sets.
v Adding a new result set to a publication requires only an incremental refresh;

the data of the new result set is sent to subscribers.
v Dropping a result set does not require sending data over the network.
v Modifying a result set generally requires full data of that result set.
v If you do drop a publication and then re-create it (rather than "replace" it using

CREATE OR REPLACE), then subscribers must reregister with the new
publication and will get a full refresh the first time that they refresh.

Note:

You cannot switch a replica to use another existing master database. This would
lead to a mismatch in synchronization of incremental publications. If you need to
do this, you must create a database from scratch and define the new master
database as well as re-create tables, procedures, and publications.

6.1.8 Modifying SQL procedures of intelligent transaction
The SQL stored procedures of transactions are identified by their call interface only.
Therefore you can freely modify them as long as the call interface remains the
same. If the call interface (that is, the parameter list) of the procedure changes,
then the name of the procedure must typically be changed also. In this case, the
previous version of the procedure should be left available in the master database to
ensure that all those transactions that are still on their way to master database, can
be successfully executed there.

6.2 Upgrading the schema of a distributed system

6.2.1 Introduction to Maintenance Mode
Advanced replication architecture allows you to distribute your data between a
master and one or more replicas. The master creates publications, and replicas may
subscribe to those publications.

In some cases, you may need to change the schema of your publication by altering
the tables used by that publication. For example, you might want to add a new
column to an existing table.

solidDB provides a set of schema management and synchronization features that
allow you to change the schema of master and replica databases in your system.
Schema management features in solidDB do not fully automate the schema
upgrade process, but instead provide a powerful set of programming tools that
make it possible to build a solution that best matches the application's needs.

6 Updating and maintaining the schema of a distributed system 113

Hence, for example, creating a new table or altering an existing one in the master
database does not mean that the table is also automatically created or altered in the
replica database. solidDB lets the system administrator decide whether the table
must be modified in the replica and, if so, when the modification should be done.

This chapter documents four features that are loosely categorized under the name
"Maintenance Mode for Publications" (called "Maintenance Mode" for short). The
primary purpose of these features is to reduce the effort required to upgrade the
schema of a distributed system — that is, to alter the structure of a table that is
used in a publication.

If you do not use the Maintenance Mode features, you cannot change a table
without dropping the publication referencing to the table first. Re-creating the
publication forces all replicas to do a full refresh (rather than an incremental
refresh) the next time that they refresh from a publication that contains that table.
This is true even if the publication uses only a subset of the columns in that table,
and the ALTER TABLE command you used did not affect any of those columns.

Using Maintenance Mode, you can often avoid forcing full refreshes after altering
tables. Maintenance mode also allows large 'maintenance' updates to databases
without causing large amounts of data to be synchronized after schema upgrade.
Write operations made to a master database's data in Maintenance Mode are not
synchronized at all. Instead, it is assumed that the same updates are done in the
replica database using similar kind of script that modified the master database's
schema and data.

This chapter provides an example of implementing the schema upgrade
functionality. To understand most of this chapter, you should be familiar with the
solidDB synchronization feature, including publications. For details about the
various SQL statements used in the example, refer to IBM solidDB SQL Guide.

6.2.2 Major features and functionality for upgrading the
schema of a distributed system

v Sync Mode – Setting the Sync Mode to "Maintenance" allows schema changes
(DDL operations) on tables that are referenced by a publication. It also disables
"sync history" tracking temporarily.

v REPLACE option in the CREATE PUBLICATION command – The REPLACE
option allows you to change an existing publication without necessarily
requiring a full refresh afterward. When possible, incremental refreshes will still
be allowed after the change.

v Table-level locking – You can explicitly lock an entire table. This makes it easier
to change the schema.

v Schema version tracking – If either the master or replica sets the persistent
catalog-level parameter SYNC_APP_SCHEMA_VERSION (using SET SYNC
PARAMETER command), the two servers will refuse to synchronize unless both
have the same value for the version. This prevents synchronization when the
schema of the replica does not match the schema of the master.

Sync mode
Setting the Sync Mode to "Maintenance" allows schema changes (DDL operations)
on tables that are referenced by a publication. If the catalog's sync mode is not
Maintenance, then the server prohibits DDL operations on tables that are used by
publications. This means that to change a table, you would have to drop the
publication, change the table, and re-create the publication — even if the change to

114 IBM solidDB: Advanced Replication User Guide

the table (for example, adding a new column) did not affect the publication. Since
dropping and re-creating a publication forces replicas to get a full refresh rather
than an incremental refresh, you would have to force replicas to get full refreshes
every time that you wanted to change a table.

Setting the Sync Mode to Maintenance allows you to alter a table without
dropping the publication(s), and therefore without necessarily forcing full
refreshes.

Setting the Sync Mode to Maintenance also temporarily disables sync history; in
other words, it tells the server not to store data that is used in deciding which
records to send to a replica when the replica requests a refresh of the data. This
allows you to do some types of major data changes (DML) quickly; you can make
the same updates to the master and replica and simply skip over the
synchronization step.

However, if you accidentally make the master and replica "out of sync" while you
have disabled sync history, the master and replica will not automatically
resynchronize (correct the error) the next time that the replica refreshes. Since there
is no synchistory to show what changes were made on the master, the master has
no reason to send updates to the replica. If the replica gets out of sync, it may stay
out of sync indefinitely or until the next full refresh of the publication. You must
be very careful when making changes to the master and replica databases when
you have the Sync Mode set to Maintenance.

When you set the Sync Mode back to Normal (the default value), the server will
resume tracking sync history information, and will also stop allowing DDL
operations on tables in publications.

Note that Sync Mode Maintenance does not guarantee that replicas will not be
required to get a full refresh when a table is changed. Some changes to a table (for
example, dropping a column that is used in a publication) may affect the table (or
the publication) enough that the replicas will have to get a full refresh.

REPLACE option in the CREATE PUBLICATION command
The advantage of the REPLACE option is that it allows you to change a
publication without necessarily forcing replicas to reregister and get a full refresh.
In some cases, replicas may continue getting incremental refreshes.

If you do not use the REPLACE option, any time you want to change a
publication, you must drop that publication and re-create it. When a publication is
dropped and re-created, replicas must reregister for that publication and must get
a full refresh.

When you use the REPLACE option, however, you can modify a publication that
already exists. You can change the definition of an existing publication without
dropping and re-creating the publication. Since you did not drop and re-create the
publication, replicas can continue getting incremental refreshes instead of being
forced to get a full refresh.

The REPLACE option does not guarantee that replicas will not be required to get a
full refresh when a publication is changed. Some changes to a publication may be
significant enough that the replicas will have to get a full refresh. Also, not all
operations can be performed with a REPLACE statement. For example, the
REPLACE does not allow you to change the publication argument list. If you do

6 Updating and maintaining the schema of a distributed system 115

need to change the publication argument list, you will have to drop and re-create
the publication, and this means that replicas will have to reregister and get a full
refresh.

Both the REPLACE option and the SYNC MODE MAINTENANCE setting allow
you to make changes that do not necessarily require replicas to get a full refresh.
The difference is that SYNC MODE MAINTENANCE allows you to make changes
to the schema of a table, while the REPLACE option allows you to make changes
to a publication.

Table-level locking
Table-level locking allows you to lock (and unlock) an entire table explicitly, for
example, for the duration of critical schema upgrade operations. This allows you to
ensure that the schema upgrade operations are not interfered with by other
operations on the affected tables.

You may lock a table in EXCLUSIVE or SHARED mode. If you plan to change the
schema of a table, you will probably want to lock the table in EXCLUSIVE mode.
You cannot acquire an exclusive table lock if any other user has locked the table. In
a busy system, it may be very difficult to get an exclusive lock on a table. You may
have to ask other users to stop using the system (or at least stop using that table)
temporarily so that you can get the lock. Once you have the exclusive lock, it will
prevent any other users from using that table until you unlock it.

In most situations, locks are released at the end of a transaction. The LOCK TABLE
command, however, gives you the option of holding a lock past the end of a
transaction. If you do hold a lock past the end of a transaction, then you must
explicitly UNLOCK the table to release that lock. Otherwise, the lock will persist
until the client application who has obtained the lock, disconnects.

Although table locking is used primarily to make it easier and safer to upgrade
schemas, you may use it for other purposes as well. You may use table locks at
any time, not just when the Sync Mode is set to Maintenance.

For more details, including the exact syntax to use to get an EXCLUSIVE lock or to
get a long lock that lasts past the end of the current transaction, see the
descriptions of the SQL commands LOCK TABLE and UNLOCK TABLE in the
IBM solidDB SQL Guide.

Version checking with SYNC_APP_SCHEMA_VERSION
When you change the schema on a master and a replica, you usually cannot do
these changes simultaneously. Typically, if you've changed the schema on the
master and not the replicas, you do not want the replicas to refresh until they, too,
have updated their schema. You may use the bulletin board parameter titled
SYNC_APP_SCHEMA_VERSION to help prevent synchronization when the master
and replica do not have the same schema.

If either the master or the replica has this parameter set, then when the master and
replica try to synchronize they will compare values of this parameter. If the value
on the master does not match the value on the replica, then the two will refuse to
synchronize. Instead, the replica will merely store the synchronization message.
You may re-send that message later by using the MESSAGE FORWARD command
after you've updated the replica's schema.

116 IBM solidDB: Advanced Replication User Guide

For example, if the master sets its SYNC_APP_SCHEMA_VERSION to "Version2"
while the replica has its value set to "Version1", then the two will refuse to
synchronize.

Note that the master and replica servers merely compare their values for this
parameter; they do not actually compare their schemas. If you accidentally set the
master's and replica's SYNC_APP_SCHEMA_VERSION to the same value when
the servers do not actually have the same schema, then the master and replica will
try to synchronize.

The servers only use this bulletin board parameter if it is set. This bulletin board
parameter is optional, and is not set automatically. There is no default value, and
the servers do not automatically "increment" the value each time that their schemas
are updated. The actual values are meaningless; the only thing that matters is
whether or not the master and replica have the same value or a different value.
You may use any value you want, for example, "Version1", "VersionA", "XYZ" or
any other string (up to the maximum legal length for bulletin board parameter
values).

6.2.3 Updating a distributed schema
The combination of the following three features allows you to update the structure
of a table in a publication without requiring a full refresh to each replica that uses
that publication:
v SYNC MODE MAINTENANCE
v REPLACE option in CREATE OR REPLACE PUBLICATION
v table-level locking

One possible process for updating the tables in the publication is outlined below.
First the master is upgraded, and then the replica(s) are upgraded.
1. Set the catalog's sync mode to Maintenance so that the synchronization history

feature is temporarily turned off.
2. Lock a table or set of tables in the publication with the LOCK TABLE

command.
3. Make whatever table or schema changes are required. For example, modify a

table, add a new table, or modify a publication.
4. Update the value of the bulletin board parameter

SYNC_APP_SCHEMA_VERSION.
5. Upgrade application programs (if necessary).
6. Unlock the table(s) with the UNLOCK TABLE command.
7. Change the catalog's sync mode from Maintenance back to Normal.

After the master has been upgraded, a nearly identical process is used to update
the replica.

6.2.4 Example: Upgrading a distributed schema
This example describes a typical sequence of steps used to create and update the
schema of a distributed system. The schema is first created (without using the
Maintenance Mode features) and the upgraded using the Maintenance Mode
features.

Creating the initial schema
When the distributed system is first created, the administrator of the overall
system defines for each database type (master, replicas) a set of scripts (which may

6 Updating and maintaining the schema of a distributed system 117

be stored procedures) that create the schema of the database catalog. These scripts
are responsible for creating all database objects of the schema, including
procedures, triggers, events, publications, and so on. Many of the scripts may be
the same for the replica as for the master. As an example, some or all CREATE
TABLE commands may be the same on the replica and master. Other scripts will
be different for master and replicas. For example, the scripts that create
publications are run only on the master, while the scripts that register a replica are
run only on the replicas.

Each synchronizable catalog may have a schema version name as one of its
properties. If master and replica catalogs have different schema version names,
sending the synchronization message from replica to master fails. The name of the
property is SYNC_APP_SCHEMA_VERSION. This version name can be set using
the SET SYNC PARAMETER statement.

Creating the Initial Master Schema

The script to create the initial master database is below:
CREATE TABLE MYTABLE (

ID INTEGER NOT NULL PRIMARY KEY,
STATUS INTEGER NOT NULL,
TEXTDATA VARCHAR NOT NULL);

ALTER TABLE MYTABLE SET SYNCHISTORY ;
COMMIT WORK ;

"CREATE PUBLICATION
MYPUBLICATION
BEGIN

RESULT SET FOR MYTABLE
BEGIN

SELECT * FROM MYTABLE ;
END

END";
COMMIT WORK ;

SET SYNC PARAMETER SYNC_APP_SCHEMA_VERSION ’VER1’;
COMMIT WORK ;

Creating a Replica Schema

When each replica is first created, the replica's administrator connects to the replica
server, sets the current catalog, and executes the scripts. As part of the schema
creation process, the replica is registered with the master.

After this process, both the master and the replica catalogs have the same version
name, which means that their schemas are compatible with each other. You should
set the synchronization parameter SYNC_APP_SCHEMA_VERSION to the same
value in both the master and replica(s) so that they can recognize that their
schemas are compatible.

In the replica, the initial schema looks as follows:
CREATE TABLE MYTABLE (

ID INTEGER NOT NULL,
STATUS INTEGER NOT NULL,
TEXTDATA VARCHAR NOT NULL,
PRIMARY KEY (ID, STATUS));

ALTER TABLE MYTABLE SET SYNCHISTORY ;
COMMIT WORK ;

118 IBM solidDB: Advanced Replication User Guide

CALL SYNC_REGISTER_PUBLICATION (NULL, ’MYPUBLICATION’);
COMMIT WORK ;

SET SYNC PARAMETER SYNC_APP_SCHEMA_VERSION ’VER1’;
COMMIT WORK ;

In the above script, the table MYTABLE is set to support incremental publications
by setting the SYNCHISTORY on. Additionally, the replica database registers to the
MYPUBLICATION publication by calling the SYNC_REGISTER_PUBLICATION
system procedure. The version name for both the master and the replica database
catalogs is set to be 'VER1'.

Specifying and distributing a schema upgrade
The administrator of the overall system creates for each database type (master and
replicas) a set of scripts that change the schema from the current version to the
upgraded version. Upon completion of the scripts, the version name is upgraded
to a new one.

The new scripts can be distributed to the replicas using any data distribution
mechanism, including synchronization across a advanced replication database
hierarchy.

When defining a schema upgrade, the following rules apply:
v Any new database objects may be added to the schema. Any database object

may also be dropped from the schema. If a table is dropped from the schema, it
must be removed from publication definitions first.

v The call interface (i.e. parameter list) of stored procedures should not be
changed. If such a change is needed, the new procedure should have a different
name. The old procedure should remain in the system for a while to guarantee
successful execution of transactions that have been saved in replicas but that
have not yet been propagated to the master.

v Publications can be changed by adding/removing result sets or
adding/removing columns of a result set. Changing search criteria of a result set
is also possible; however, it may force the next refresh of that result set to be a
full refresh rather than an incremental refresh.

v The parameter list of publications must not change. If you must change the
parameter list, then you must drop the old publication and create a new one.
The refreshes from the new publication will be full refreshes rather than
incremental refreshes.

If you write scripts to make changes to the schema, most of the commands will be
the same for the replica as for the master. For example, if you add a new column
to a table on the master, then you may want to add that new column to the
corresponding tables on each replica. However, there are some commands that will
not be the same on the master and replica. For example, the commands to change
the publications do not apply to the replicas. Similarly, if you make changes that
do require to completely drop and re-create a publication, and thus that require a
replica to reregister with the master, the reregister commands will be executed only
by the replica(s), not by the master. As you write your scripts, you may want to
organize them in such a way that you make maximum re-use of the common
elements (such as ALTER TABLE statements) without running other statements
(such as statements to create publications or register replicas) on the wrong
servers.

6 Updating and maintaining the schema of a distributed system 119

Below, we show a simple example of upgrading a schema of a distributed database
system using the schema upgrade capabilities of solidDB.

Typically the first database schema to be upgraded is that of the master database.
After upgrading the master, the databases of the replicas are upgraded. In a system
that has more than 2 tiers (and thus where intermediate-level nodes are both
masters and replicas), the process is to start at the topmost tier and upgrade it.
Upon completion of the scripts in a database, the version name of the affected
database catalog is upgraded to a new one. This indicates to the next tier of
databases that they need to be upgraded as well.

Upgrading the distributed schema
Upgrading the Master Schema

The master schema should be upgraded prior to upgrading the replica schemas. To
do this, the administrator of the master database server executes the upgrade
scripts. During the upgrade, the administrator usually should deny concurrent
write access to the tables in the publication (by using the LOCK TABLE statement)
and all synchronization access to the catalog (by using MAINTENANCE MODE).

The following script shows how to add a new table to the schema and include it in
the existing publication.
-- Set the sync mode to Maintenance to allow changes to tables that are
-- referenced by publications. Setting the sync mode to Maintenance also
-- blocks synchronization access to the master database.
SET SYNC MODE MAINTENANCE ;
COMMIT WORK ;

-- Alter the existing table by adding a new column to it
LOCK TABLE MYTABLE IN LONG EXCLUSIVE MODE ;
COMMIT WORK ;
ALTER TABLE MYTABLE ADD COLUMN NEWCOL INTEGER ;
COMMIT WORK ;

-- Set a default value to the new column.
-- While the sync mode is set to Maintenance, updates are not sent to
-- replicas. Therefore, if any updates were done on the master, the same
-- updates must be done locally on each replica while its sync mode is
-- set to Maintenance.
UPDATE MYTABLE SET NEWCOL = 1 ;
COMMIT WORK ;

-- Release the lock in the MYTABLE table.
UNLOCK TABLE MYTABLE ;
COMMIT WORK ;

-- Create a new table in the schema.
CREATE TABLE MYSECONDTABLE (

ID INTEGER NOT NULL,
MYTABLEID INTEGER NOT NULL,
STATUS INTEGER NOT NULL,
TEXTDATA VARCHAR NOT NULL,
UPDATETIME TIMESTAMP NOT NULL,
PRIMARY KEY (ID, MYTABLEID, STATUS)) ;

ALTER TABLE MYSECONDTABLE SET SYNCHISTORY ;
COMMIT WORK ;

-- Create a new version of the publication.
"CREATE OR REPLACE PUBLICATION MYPUBLICATION
BEGIN
RESULT SET FOR MYTABLE
BEGIN

SELECT * FROM MYTABLE ;

120 IBM solidDB: Advanced Replication User Guide

RESULT SET FOR MYSECONDTABLE
BEGIN

SELECT * FROM MYSECONDTABLE
WHERE MYTABLEID = MYTABLE.ID ;

END
END
END";
COMMIT WORK ;

-- Change the version information of the master catalog.
SET SYNC PARAMETER SYNC_APP_SCHEMA_VERSION ’VER2’;
COMMIT WORK ;
-- Set the sync mode back from MAINTENANCE to NORMAL.
SET SYNC MODE NORMAL ;
COMMIT WORK ;

After successful execution of the script in the master database, the schema of the
master database has been upgraded and the version name of the catalog has been
changed to 'VER2'. The database is also opened again for synchronization access by
setting the sync mode to NORMAL. However, the replica databases cannot
synchronize with the master before they upgrade their schema to the same level.

Detecting the Need for Upgrading Replica Schema

If the master and replica have each defined their version by setting the bulletin
board parameter SYNC_APP_SCHEMA_VERSION, and if the master and replica
versions do not match, then an error is returned when the replica attempts to
synchronize with the master next time. Typically, the data is synchronized by
executing the following kind of SQL script in the replica database.
MESSAGE syncmsg BEGIN ;
MESSAGE syncmsg APPEND PROPAGATE TRANSACTIONS ;
MESSAGE syncmsg APPEND REFRESH MYPUBLICATION ;
MESSAGE syncmsg END ;
COMMIT WORK ;
MESSAGE syncmsg FORWARD TIMEOUT 10 ;
COMMIT WORK ;

If the version name of the master database does not match the version name of the
replica database, then the statement
MESSAGE <msgname> FORWARD

will fail with error:

25092 - User version strings are not equal in master and replica, operation
failed.

Although sending the message to the master failed, the message stays persistent in
the replica database. After the replica schema is upgraded to match the master's
schema, the failed message can be resent to the master by using the statement
MESSAGE <msgname> FORWARD;

After the need for replica schema upgrade has been detected, the administrator of
the replica server needs to upgrade the schema to the new version using version
upgrade scripts developed for that replica database.

Upgrading the Replica Schema

6 Updating and maintaining the schema of a distributed system 121

In a typical upgrade process, the administrator of the master database server
writes a set of scripts to modify the schema, and then sends the appropriate scripts
to the administrator of the replica database server.

After a successful upgrade, the schema version name is changed to the new one.
The possibly hanging synchronization message(s) can now be resent to the master.

In our example, the script for upgrading the replica to match with the new version
of the master schema looks like the following:
-- Set the sync mode to Maintenance to allow changes to tables that
-- are referenced by publications.
-- The synchronization functions of the replica database are suspended.
SET SYNC MODE MAINTENANCE ;
COMMIT WORK ;

-- Alter the existing table by adding a new column to it.
-- Updates done in maintenance mode are not rolled back in the next
-- synchronization.
-- Corresponding updates have already been done in the master DB.
LOCK TABLE MYTABLE IN LONG EXCLUSIVE MODE ;
ALTER TABLE MYTABLE ADD COLUMN NEWCOL INTEGER
;
COMMIT WORK ;
UPDATE MYTABLE SET NEWCOL = 1 ;
COMMIT WORK ;

-- Release the lock on the MYTABLE table.
UNLOCK TABLE MYTABLE ;
COMMIT WORK ;

-- Create a new table in the replica schema.
CREATE TABLE MYSECONDTABLE (

ID INTEGER NOT NULL,
MYTABLEID INTEGER NOT NULL,
STATUS INTEGER NOT NULL,
TEXTDATA VARCHAR NOT NULL,
UPDATETIME TIMESTAMP NOT NULL,
PRIMARY KEY (ID, MYTABLEID, STATUS)) ;

ALTER TABLE MYSECONDTABLE SET SYNCHISTORY ;
COMMIT WORK ;

-- Note that changes in the publication definition do not require any
-- actions in the replica end. The changes in the publication’s meta
-- data as well as data of the added tables are automatically sent
-- to the replicas.

-- Change the version information of the replica database catalog.
SET SYNC PARAMETER SYNC_APP_SCHEMA_VERSION ’VER2’;
COMMIT WORK ;
-- Set the sync mode back from MAINTENANCE to NORMAL.
SET SYNC MODE NORMAL ;
COMMIT WORK ;

After the script has been executed successfully in the replica database, the possibly
stopped synchronization messages can be resent to the master database by
executing the statement
MESSAGE <msgname> FORWARD

for each stopped message. In this example, re-execute the following statements:
MESSAGE syncmsg FORWARD TIMEOUT 10 ;
COMMIT WORK ;

122 IBM solidDB: Advanced Replication User Guide

6.2.5 Considerations for using maintenance mode
When you SET SYNC MODE MAINTENANCE in a database, you tell the server
not to update synchistory info. Because the server is not recording changes, the
next incremental refresh does not necessarily copy all changes from the master to
the replica. Before you synchronize the master and replica databases, you must
repeat the master database changes in the replica databases. Use the Maintenance
Mode in the replica also.

The requirement for applying in both master and replica is an important difference
from the way that a solidDB synchronized system normally behaves. One of the
major advantages of the advanced replication technology is that it allows a system
to be "self-healing" in some situations. Incorrect data on a replica tends to be
replaced with data from the master, and therefore errors on replicas tend to
disappear over time.

In Maintenance Mode, however, you lose this self-healing property. Since the
master and replica do not store sync history data, they do not know what changes
were made, and the master does not send all the updates to the replica the next
time that the replica refreshes.

There are two possible sources of error:
1. You might accidentally make a different change on the master than on the

replica. For example, when you add a new column to a table, you might set the
default value to 1 on the master, but accidentally set it to 2 on the replica.

2. Even if you perform the same operations without error on both the master and
the replica, certain types of errors might occur if the replica and master do not
have the same starting values of data. For example, imagine that the master
and replica each calculate sales tax on an invoice. If the master and replica have
different values for the total price on the invoice, they calculate different sales
tax, even if they use the same formula. This situation is easy to get into because
replicas and masters are updated independently (asynchronously) during
Maintenance Mode operations. The replica is not necessarily in synchrony with
the master at the time that the replica start its updates.

When you are in Maintenance Mode, it is not safe to perform operations that rely
on the replica and master being exactly in sync. The types of operations that you
do in Maintenance Mode should be insensitive to whether the data in the replica is
completely up-to-date. For example, adding a new column does not affect existing
data values. However, if you change the values of existing columns while in
Maintenance Mode, those changes might not match. Avoid perform DML
operations while in Maintenance Mode.

6.2.6 Upgrading the server version
When the solidDB server is upgraded (for example from version 6.1 to version 6.3),
the master server must be upgraded prior to upgrading any replica servers. To
ensure that data is converted from the previous format to the newer format, you
should start the new server and use either the -x convert or -x autoconvert
option on the command line. See section Upgrading solidDB to a new release level in
the IBM solidDB Getting Started Guide and Appendix solidDB command line options in
the IBM solidDB Administrator Guide for more details.

Note: After the conversion, you cannot use the database with an older server
version.

6 Updating and maintaining the schema of a distributed system 123

If you are using solidDB HotStandby, then you must first set the Primary server to
PRIMARY ALONE state to allow upgrade of the Secondary server. After the
Primary server has been switched to PRIMARY ALONE state, the Secondary server
can be shut down and upgraded. After the Secondary is upgraded, it is restarted.
After successful catchup, the original Primary is shut down and the Secondary
server is immediately switched to PRIMARY ALONE state. The original Primary
server can be upgraded while former Secondary runs in PRIMARY ALONE state.
Finally, the old Primary is started as a Secondary and runs in catchup mode using
the transaction log of the new Primary. For more details, see IBM solidDB High
Availability User Guide.

When you use solidDB with shared memory access (SMA) or linked library access
(LLA), the application typically changes when the schema changes. This means
that a new build of the application and the SMA or LLA library might be needed
as part of the schema upgrade process.

124 IBM solidDB: Advanced Replication User Guide

7 Administering advanced replication systems

This section describes how to maintain your solidDB when using the advanced
replication capability. The administration tasks covered in this section include
managing synchronization errors, and tips on backing up masters and replicas.

Important:

If you are using solidDB with shared memory access (SMA) or linked library
access (LLA), there are some differences in administration from standard solidDB.
This section assumes that if you will be using SMA or LLA with advanced
replication, you have already read IBM solidDB Shared Memory Access and Linked
Library Access User Guide.

7.1 Monitoring solidDB advanced replication
The following sections describe the methods used for querying the status of the
data synchronization of a solidDB database.

7.1.1 Monitoring the status of synchronization messages
Because synchronization is implemented using synchronization messages, you can
monitor the status of the synchronization process by checking the status of the
currently existing messages.

When a message is active, it is always persistent in some state in the system. The
message is deleted from the databases only after it has been successfully processed.
A message that is hanging in either the master database or a replica database is
never completely processed. In most cases, an idle, persistent message means that
a synchronization error has occurred.

Figure 12 on page 126 illustrates store and forward messaging and shows the
points in the process where messaging errors can occur.

125

As Figure 12 shows, there are four error prone areas:
1. Message is being forwarded from replica to master
2. Message is executed in the master
3. Reply message is being received from the master
4. Reply message is being executed in the replica

In all the above-mentioned cases, a failure stops the synchronization. A query of
the following message information system tables provides the reason for the
failure:
v SYS_SYNC_REPLICA_MSGINFO in replica databases
v SYS_SYNC_MASTER_MSGINFO in the master database

7.1.2 Managing synchronization errors
A synchronization messaging error occurs when a message delivery or receipt fails.
This section describes the procedures to manage synchronization errors. Depending
on where the synchronization error occurred, the way to recover from errors can
vary.

Error in forwarding a message to the master
When sending a message from the replica to the master fails, the message remains
in the replica database and it can be resent to the master. The value of the STATE
column of row in SYS_SYNC_REPLICA_MSGINFO table is in this case 22 -
R_SAVED. You can query names of those messages that have not been successfully
sent to the master with the following SQL statement:

Error prone

Get reply

Msg

Data Pub2

Data Pub1

Refresh 1,2

TX stmts

Msg

Error proneError proneError proneError prone

Forward

Error prone

MasterReplica

Figure 12. Error-prone areas in synchronization messaging

126 IBM solidDB: Advanced Replication User Guide

SELECT MSG_NAME
FROM SYS_SYNC_REPLICA_MSGINFO
WHERE STATE = 22;

Failed messages can be resent to the master database with the following command
in the replica database:
MESSAGE message_name FORWARD;

The possible values of the STATE column of the SYS_SYNC_REPLICA_MSGINFO
table are documented in the Appendix: System Tables in theIBM solidDB SQL Guide.

Error in execution of a synchronization message in the master
A message execution can fail in the master database, if:
v an SQL statement of a transaction fails
v refreshing data from a publication fails
v sending a reply message back to the replica fails

The method used to handle each of these reasons for a failed message execution is
covered in this section.

Error Handling in solidDB Intelligent Transaction

If an intelligent transaction fails because of a fatal error, then the execution of the
message is stopped in the master database and the transaction is rolled back. The
error code of the failed operation is returned to the replica as the error code of the
synchronization messaging command that was supposed to return the reply
message to the replica database.

The error code is returned to the replica as a return code from either of these
statements:
MESSAGE message_name FORWARD TIMEOUT timeout_in_seconds

or
MESSAGE message_name GET REPLY TIMEOUT timeout_in_seconds

In the master database, the system table SYS_SYNC_MASTER_MSGINFO contains
information about all messages that currently reside in the master database. If the
execution of a message has failed because of an error, that message will have value
1 in the STATE column. The ERROR_CODE and ERROR_TEXT columns contain
information about the error that caused the message execution to halt. You can
query these hanging messages, their originating replica database as well as the
statement that caused the message to halt from the master database, by querying
the view named SYNC_FAILED_MESSAGES. This view exists on the master and
shows the replica name, message name, statement string, error information, and
other information.

The proper way to recover from a hanging message in the master is to fix the error
in the master database. For example, the reason for the error could be a unique
constraint violation. To fix this error, the existing data of the master database must
be modified to allow the new row to be inserted. (It is not possible to modify the
contents of the transaction that resides in the transaction queue.) Alternatively,
there could be a programming error in a stored procedure that needs to be
corrected by re-creating the stored procedure in the master database.

7 Administering advanced replication systems 127

Once the error is corrected, restart the message in the master database with the
following command:
MESSAGE message_name FROM REPLICA replica_name EXECUTE

After the message is successfully executed in the master database, the reply
message can be requested to the replica database with the following command:
MESSAGE message_name GET REPLY TIMEOUT timeout_in_seconds

Alternatively, the entire halted message can be deleted from the master database
with the following command:
MESSAGE message_name [FROM REPLICA replica_name] DELETE

or, just the current transaction in the message can be deleted from the master
database with the following command:
MESSAGE message_name FROM REPLICA replica_name DELETE CURRENT TRANSACTION

However, using this alternative will cause loss of data and should be used only as
a last resort when there is no other means for resolving the error.

Note that MESSAGE DELETE CURRENT TRANSACTION is a transactional
operation and must be committed before message execution may continue. To
restart the message (where it left off) after the deletion is committed, use the
following statement:
MESSAGE msgname FROM REPLICA replicaname EXECUTE

In general, transactions should be written to avoid concurrency conflicts and
deadlocks. Because conflicts can still occur when transactions update or delete
rows, we recommend you specify the SYS_TRAN_MAXRETRY bulletin board
parameter in the master database using the SET SYNC PARAMETER command.
The SYS_TRAN_MAXRETRY parameter retries a transaction that has failed due to
a concurrency conflict or a deadlock based on a user configurable maximum
number of attempts. For details, read the description of the
SYS_TRAN_MAXRETRY in Appendix A, “Bulletin board parameters,” on page 141.

Error Handling During Refresh Operations

Unlike transactions, an error while executing a REFRESH request on the master
does not cause the entire message to stop. Instead, the error is reported back to the
replica database in the result set of the messaging command. The error code is
returned in the ERRCODE column of the result set. Similarly, the error text can be
found from the ERRSTR column of the result set.

The result set of the messaging commands should always be fetched and the
ERRCODE checked. All non-zero values mean that an error has occurred during
the message execution in the master database.

One possible source of error is that the version of the publication has changed in
the master database. If the publication was dropped and then re-created, the
subscription(s) to the old version of the publication must be dropped in the replica
database prior to subscribing to the new version. Dropping a subscription is done
with the following command:
DROP SUBSCRIPTION publication_name [{(parameter_list) | ALL}]

[COMMITBLOCK number_of_rows] [OPTIMISTIC | PESSIMISTIC];

128 IBM solidDB: Advanced Replication User Guide

When a subscription is dropped, all data for that subscription is deleted from the
replica database. Subscribing to the new version and then requesting a refresh
always brings the full publication to the replica.

In many cases, you can avoid this problem by using the "OR REPLACE" option of
the CREATE PUBLICATION command when you need to update a publication. If
you update a publication by using CREATE OR REPLACE PUBLICATION, rather
than by dropping and re-creating the publication, then you will not necessarily
need to drop and re-create the subscriptions. If you do not need to re-create the
subscriptions, then in some cases the master can send the replicas an incremental
refresh rather than a full refresh. Incremental refreshes reduce network traffic.

Error in receiving a reply message to a replica
A transfer of a reply message from master to replica can fail because of a
networking error. In this case, the message remains in the master database.

You can use the following SQL statement to list messages whose replies have not
been successfully received by the replica:
SELECT MSG_NAME
FROM SYS_SYNC_REPLICA_MSGINFO
WHERE STATE = 23

You can request the message again from the master database using the following
command:
MESSAGE message_name GET REPLY TIMEOUT timeout_in_seconds

The possible values of the STATE column of the SYS_SYNC_REPLICA_MSGINFO
table are documented in the Appendix: System Tables of IBM solidDB SQL Guide.

Error in executing a reply message in a replica
An execution of a reply message in a replica database can fail because of a
concurrency conflict. Records applicable to a transaction may be locked so that an
operation can't be performed in the replica. In this case, the message remains in the
replica database. For example, when other transactions are updating a table, a
concurrent refresh operation may fail. In this case, the REFRESH command
remains in the replica database and must be re-executed.

You can allow the message to be re-executed from the replica database using the
following command:
MESSAGE message_name EXECUTE

For example:
MESSAGE MyMsg0002 EXECUTE;

Sometimes it may be necessary to execute the message using pessimistic locking.
This way, you avoid concurrency conflict handling, especially during REFRESH
operations. For more information, read the 4.2.5, “Handling concurrency conflict in
synchronized tables in replica,” on page 62.

Deleting a message for error recovery
You can also explicitly delete a message from a replica database to recover from an
error. When you delete a message, you can specify that the entire contents or only
the current transaction that is propagated to the master database in the message be
permanently deleted. The command to delete the entire message is:
MESSAGE message_name [FROM REPLICA replica_name] DELETE

7 Administering advanced replication systems 129

The command to delete the current transaction is:
MESSAGE message_name FROM REPLICA replica_name DELETE CURRENT TRANSACTION

Note that the above statement can be used only in the master database.

When deleting the message from the master database, be sure to specify the replica
name in the clause FROM REPLICA replica_name.

For example:
Message MyMsg0001 FROM REPLICA bills_laptop DELETE;

7.2 Performing backup and recovery
To ensure that data is secure in the event of a system failure, always back up the
master and possibly also the replica databases on a periodic basis.

Backup guidelines
v The normal disaster prevention and recovery tasks you use on a

non-synchronized solidDB database also apply to synchronized databases.
– You should automate backups to run during non-busy hours.
– For protection against disk crashes, after completing the backup, copy your

backup files on tape or other media using your backup software.
– You can make an online backup of any database of a solidDB system. Upon

recovery, solidDB uses transaction log files to roll forward the backup
database from the state of the backup to the state of the last committed
transaction. The last persistent state of the synchronization is also restored at
that time.

v Because the master database has the official version of data and the data in the
replicas are tentative, do not use a replica database as a backup for the master
database. The last persistent state of a master database can be restored only from
the backup files of the master database itself.

v If the master database is recovered from a backup without data loss (rollforward
recovery is able to recover all the transactions from the log files),
synchronization can proceed normally.

v If the master database is recovered with data loss, for example, due to missing
transaction logs, the data loss is reflected in the replicas during the next refresh.
If synchronization data is not in sync between the master and replicas, a full
publication (all data in the publication) is sent to the replica database during
the next refresh. This occurs regardless of whether the tables in the publication
are set for incremental publication.

v A replica database can be reconstructed in the following ways:
– Restore the database from the backup of the replica database. Creating

backups of the replica database is useful if the database is a large one and
there is disk space available for the backup.

– Re-create the replica and refresh the data from the master database.
Recreating the replica database is useful if the replica database is a small one
and there is no local-only data in the replica database.

v When you restore any backup of a solidDB database, make sure that the restore
is rolling forward all transactions to the latest committed transaction. This
ensures that the synchronization continues from the point where it was at the
time of the database failure.

130 IBM solidDB: Advanced Replication User Guide

v Once the restore is complete, verify that any possible ongoing synchronization
messaging has been completed successfully in both the master or replica
database.
For instructions on checking for synchronization errors, see 7.1.1, “Monitoring
the status of synchronization messages,” on page 125.
For instructions on correcting stopped synchronization messages, see 7.1.2,
“Managing synchronization errors,” on page 126.

7 Administering advanced replication systems 131

132 IBM solidDB: Advanced Replication User Guide

8 Performance monitoring and tuning

This chapter discusses techniques that you can use to improve the performance of
the advanced replication component of solidDB. For information about tuning the
performance of other aspects of solidDB, see solidDB Administration Guide.

8.1 Monitoring the progress of messages
solidDB provides a number of events that let you monitor the processes of
propagating and refreshing data between a master and a replica. Two of those
events are specifically for tracking how many bytes of a message have been sent or
received so far. These events are useful primarily when sending very large
messages, such as messages containing BLOBs, or when sending messages over
very slow communication channels. If you are sending a BLOB, for example, you
could use this to notify you after every 20K of data has been sent, and you could
then update a screen display showing the amount of data that has been
downloaded.

The two events are:
SYNC_MSGBYTES_SENT(

sender_nodename WVARCHAR,
receiver_nodename WVARCHAR,
message_name WVARCHAR,
cumulative_bytes_sent INTEGER,
total_bytes INTEGER);

SYNC_MSGBYTES_RECEIVED(
sender_nodename WVARCHAR,
receiver_nodename WVARCHAR,
message_name WVARCHAR,
cumulative_bytes_received INTEGER,
total_bytes INTEGER);

Both events essentially have the same parameters.

Both messages are posted 0 or more times during the process of forwarding a
synchronization message between a master and a replica. SYNC_MSGBYTES_SENT
events are posted in the transmitting node, and SYNC_MSGBYTES_RECEIVED
events are posted in the receiving node.

The event lists the cumulative number of bytes sent/received so far as well as the
total number of bytes to be sent/received inside the corresponding sync message.
The user can monitor the progress of the sending/receiving process by catching
these events and comparing the cumulative byte count sent so far to the total bytes
in the message.

To control how frequently these messages are sent, you set the solid.ini
configuration parameter
[Synchronizer]
RpcEventThresholdBytecount=<value>

The value is specified in bytes, and must be greater than or equal to 0. Note that
abbreviations, such as K for kilobytes, are not accepted in the value.

133

If the value is 0, then neither SYNC_MSGBYTES_SENT nor
SYNC_MSGBYTES_RECEIVED events will be posted inside the corresponding
node. The default value is 0 (i.e. no events are posted).

This parameter specifies the minimum number of bytes that must be sent before
the first event is posted and in between each successive event. The server will post
the first event after it has sent or received approximately the specified number of
bytes, and will post another event each time it has sent or received approximately
the specified number of additional bytes. For example, if
RpcEventThresholdByteCount is set to 1000, then the server will post events at
approximately the following times:

After 1000 bytes have been sent.

After 2000 bytes have been sent.

After 3000 bytes have been sent.

...

The RpcEventThresholdByteCount sets the MINIMUM number of bytes that must
be transmitted before the first event and between each subsequent event. Events
are not necessarily posted after exactly as many bytes as are specified in
RpcEventThresholdByteCount. The server only checks the byte count and considers
posting an event after it has completed the sending of each communication packet
(not each byte). These packets are not necessarily the same size as
RpcEventThresholdByteCount.

For example, suppose that RpcEventThresholdByteCount is 1000, and that you are
sending 3500 bytes. Suppose also that each packet is 1500 bytes. Instead of getting
events after exactly 1000, 2000, and 3000 bytes, you will get an event after the first
packet (1500 bytes) and the second packet (3000 bytes).

As another example, suppose again that RpcEventThresholdByteCount is 1000, and
that you are sending 3500 bytes. However, suppose this time that each packet is
600 bytes. Instead of getting events after exactly 1000, 2000, and 3000 bytes, you
will get an event after the second packet (1200 bytes) and the 4th packet (2400
bytes) and the fifth packet (3000 bytes).

Note that the server does not post SYNC_MSGBYTES_SENT or
SYNC_MSGBYTES_RECEIVED after the final packet has been sent (or received).
Instead, after each complete message has been sent or received, the server will post
another event, such as SYNC_MASTER_MESSAGE_RECEIVE_END.

If you plan to use SYNC_MSGBYTES_SENT and SYNC_MSGBYTES_RECEIVED,
then we recommend that you also catch the starting and finishing events of the
corresponding message. When you get an event that tells you that the specific
synchronization message has been completely received, then you may want to
unregister for that event, or at least stop executing a WAIT statement to wait for
the next such event. Similarly, when you get an event saying that a new message is
being forwarded (SYNC_MASTER_MESSAGE_RECEIVE_BEGIN) then you may
want to start monitoring SYNC_MSGBYTES_RECEIVED.

Below is an outline of some of the message-related events that will occur.
1. Forward message from replica: monitoring of sent bytes.

134 IBM solidDB: Advanced Replication User Guide

SYNC_REPLICA_MESSAGE_FORWARD_BEGIN
...
0 or more occurrences of SYNC_MSGBYTES_SENT
...
SYNC_REPLICA_MESSAGE_FORWARD_END

2. Master receives the forwarded message and monitors the number of bytes
received.
SYNC_MASTER_MESSAGE_RECEIVE_BEGIN
...
0 or more occurrences of SYNC_MSGBYTES_RECEIVED
...
SYNC_MASTER_MESSAGE_RECEIVE_END

3. Master sends a reply message to the replica.
SYNC_MASTER_MESSAGE_SENDREPLY_BEGIN
...
0 or more occurrences of SYNC_MSGBYTES_SENT
...
SYNC_MASTER_MESSAGE_SENDREPLY_END

4. Replica receives the reply message from the master.
SYNC_REPLICA_MESSAGE_REPLY_BEGIN
...
0 or more occurrences of SYNC_MSGBYTES_RECEIVED
...
SYNC_REPLICA_MESSAGE_REPLY_END

Note:

v There is only a single variable to control both the send and receive intervals.
Within a node, the interval (byte count) for send and receive will be the same.
Furthermore, "receive" events and "send" events will either both be on or both be
off at the same time. You cannot turn on only one of them.

v Since the sender and receiver are normally different nodes, they may have
different values for RpcEventThresholdByteCount. In fact, one server can have
such events turned off (RpcEventThresholdByteCount=0) while the other server
has the events turned on.

v For more information about waiting for synchronization events, see IBM solidDB
SQL Guide, especially the sections on the ADMIN EVENT and CREATE
PROCEDURE commands.

8.2 Tuning for data synchronization
To be sure solidDB is well-tuned for data synchronization, review the following
solidDB guidelines for these areas of synchronization:
v Tuning publication definitions
v Optimizing synchronization history data management
v Optimizing synchronization messages

Each of these topics is described in the following sections.

8 Performance monitoring and tuning 135

8.2.1 Tuning publication definitions
solidDB advanced replication uses publications for downloading incremental data
from the master to replica databases. In a publication, you define the data for
propagation from the master to the replica. Using the CREATE PUBLICATION
statement, you specify the tables and the search criteria for selecting data to the
replica. For details on publications, read 5.6, “Creating publications,” on page 85.

Below is a simple publication definition example:
CREATE PUBLICATION configuration_of_device (device_name VARCHAR)
BEGIN

RESULT SET FOR device
BEGIN

SELECT * FROM device WHERE name = :device_name;
RESULT SET FOR device_cfg_parameter
BEGIN

SELECT * FROM device_cfg_parameter WHERE device_id = device.id;
END

END
END

Internally, the queries of the RESULT SET FOR paragraphs are executed as regular
SELECTs. Nested result sets always produce a join between an outer and inner
result set. Therefore, in optimizing performance, the same indexing rules apply
here as with other queries, which means you should:
v

create an index on columns of large tables that are used as search criteria
v

create an index on columns that are used for joins in the nested result set

In addition, we recommend that you avoid nesting result sets in publication
definitions. See the following sections of solidDB Advanced Replication Guide for
examples of nested vs. unnested result sets:
v

"Nested Publication version"
v

"Unnested Publication version"

You can extract the SQL that is actually generated from the publication definitions
by setting SQL trace on in the master database using the following command:

ADMIN COMMAND 'trace on sql'

The output of the trace goes to the standard trace file of solidDB. The default name
of the file is soltrace.out.

8.2.2 Optimizing synchronization history data management
The first time that a replica refreshes from a publication in the master, the replica
must download a copy of all the information in the publication; i.e. the replica
must get a "full refresh". After that first download, each time the replica refreshes,
the replica only needs to download the records that have changed since the
previous download, i.e. an "incremental refresh".

When synchronizing changed data from the master to a replica, solidDB (in both
the master and replica) must know the data written to these databases since the

136 IBM solidDB: Advanced Replication User Guide

previous synchronization. If the data updates occurred, then solidDB must have a
record of the previous version of the row before the update. These old versions of
updated rows are recorded to a synchronization history table.

The use of incremental publications is highly recommended for optimum
performance. For details on setting up incremental publications, read 5.6.1,
“Creating incremental publications,” on page 86.

Tuning synchronized history tables
In a system where update operations are frequent (relative to how often the
replicas request refreshes), the history tables can grow large. By default, solidDB
creates a new row in the history table whenever a row of the main table is updated
in the master database. This is not always necessary, however. You can reduce the
amount of data stored in the history table by specifying which columns of a
synchronized table need to cause a new entry to the history table during data
updates. Only those columns in the publication that are used as search criteria
(WHERE clause or join columns) need to be specified as history columns. (See
“Inside Information: SET HISTORY COLUMNS” on page 138 for technical details.)
To specify these columns, use the following command:
ALTER TABLE tablename SET HISTORY COLUMNS (col1, col2, colN...)

If your publication definition contains all rows of a table, then specify the primary
key column(s) as the HISTORY COLUMNS of that table.

Without this definition, all update operations in the master database cause a new
entry to the history table when the corresponding synchronized table is updated. If
you have rows that are frequently updated, setting history columns can
significantly reduce overhead in terms of performance and disk space consumption
in the master database.

Note:

In order for ALTER TABLE ... SET HISTORY COLUMNS to succeed, the statement
ALTER TABLE ... SET SYNCHISTORY has to be executed first. Executing ALTER
TABLE ... SET NOSYNCHISTORY removes also the effect of ALTER TABLE ... SET
HISTORY COLUMNS.

Example

Assume you have set the following table, which has already been set for
synchronization history:
CREATE TABLE account

(accountid VARCHAR NOT NULL PRIMARY KEY,
balance numeric(12,2));

You can now use the following command to specify that the history entry occurs
only if the accountid column value is changed by an update operation.
ALTER TABLE account SET HISTORY COLUMNS (accountid);

Now any changes to the balance column value do not cause a history table row
update.

8 Performance monitoring and tuning 137

Inside Information: SET HISTORY COLUMNS

You might wonder why the history table only needs to track changes in certain
columns. After all, each replica needs to be notified of ANY changes to the data,
not just changes to certain columns. A slightly simplified example and explanation
are below.

Suppose that your replica database contains information only for customers of the
London branch office. Your replica must be notified of each of the following types
of changes:
1. Changes to information about customers of the London office (for example,

changes to customer phone numbers).
2. Addition of new customers to (or deletion of old customers from) the London

office. For example, if you open up a Liverpool office and assign the Liverpool
office some customers who were formerly assigned to the London office, then
those customers should no longer be received by the London office when it
requests refreshes of updated data. In fact, the master must explicitly notify the
London replica that it should delete its copy of information about those
customers.

In other words, there are changes to records within a set (the London set), and
there are changes that cause records to move from one set to another set (for example,
from the London set to the Liverpool set). Each of these 2 possible types of
changes is tracked using a separate mechanism.

Changes within a set are tracked using the server's general versioning system. For
example, if the London office last refreshed data at 12:01 AM December 3, 2001,
then the London office will want updates for any records that are in London's set
and that have changed since 12:01 AM December 3, 2001.

Changes that affect which set a record appears in (London, Liverpool, and so on)
are tracked in the history table. Since the history table only needs to track addition
of or removal of customers from a particular set, it only needs to track changes to
the fields that determine which set the record is in. Those fields are the "search
criteria" — i.e. the WHERE clause and the join fields that you specified when you
defined the publication. Since the only way that a customer record can suddenly
appear in, or disappear from, the London branch's publication is if there is a
change to one of the columns used in the WHERE clause (or the join clause), the
history table only needs to record changes to values in those columns.

An example is below:
CREATE TABLE customer (

id VARCHAR NOT NULL PRIMARY KEY,
name VARCHAR NOT NULL,
salesman_id VARCHAR NOT NULL) ;

CREATE TABLE invoice (
customer_id VARCHAR NOT NULL,
invoice_number VARCHAR NOT NULL,
invoice_date DATE NOT NULL,
invoice_total NUMERIC (12,2),
PRIMARY KEY (customer_id, invoice_number));

CREATE PUBLICATION customers_by_salesman (salesman_id VARCHAR)
BEGIN

RESULT SET FOR customer
BEGIN

SELECT * FROM customer WHERE salesman_id = :salesman_id ;

138 IBM solidDB: Advanced Replication User Guide

RESULT SET FOR invoice
BEGIN

SELECT * FROM invoice WHERE customer_id = customer.id ;
END

END
END

To optimize this for update performance, the following ALTER TABLEs are needed:
ALTER TABLE customer SET HISTORY COLUMNS (salesman_id)
ALTER TABLE invoice SET HISTORY COLUMNS (customer_id)

CAUTION:

If you execute the command ALTER TABLE tablename SET HISTORY
COLUMNS, but you make a mistake and do not specify all the appropriate
columns, then the refresh mechanism will not work properly, and records may
not get stored in the proper replica(s). Each time you add a new publication, you
must consider whether you need to execute the ...SET HISTORY COLUMNS
command again to take into account additional columns used in the search
criteria of the new publications.

The ALTER TABLE ... SET SYNC HISTORY command is never required. If the
HISTORY COLUMN property is not set for a table, the synchronization will work
properly but may not be optimized for performance.

Discarding history data
After synchronization, a background process purges the obsolete data (i.e. data that
is older than the most recent synchronization) from the history tables. You do not
need to manually delete old history data to prevent it from accumulating.

8.2.3 Read-only replica
If the nature of the Replica database is such that the replicated data is used in a
read-only manner or, more precisely, no replica changes are to be propagated to the
Master, maintaining of the history data may be avoided by setting:
set sync parameter SYS_SYNC_KEEPLOCALCHANGES ’Yes’;

In that case, the statement:
ALTER TABLE ... SET SYNCHISTORY

is not needed. If it has been already executed, the statement:
ALTER TABLE ... SET NOSYNCHISTORY

reverts the effect.

Note also that, in this case, ALTER TABLE ... SET HISTORY COLUMNS cannot be
used.

By setting the SYS_SYNC_KEEPLOCALCHANGES parameter to "Yes", all the local
changes and row inserts, if made, are kept despite the refresh or subscribe
operations. This setting reduces processing load and storage requirements at the
Replica. The use of this parameter should normally be limited to read-only
replicas. However, in the cases where the Replica is a read-write database, and the
application guarantees that all local replica writes are successfully propagated to
the Master, this parameter can be set to "Yes" as well

8 Performance monitoring and tuning 139

8.2.4 Optimizing synchronization messages
solidDB advanced replication data synchronization ensures that once data is
committed in one database of a advanced replication configuration, data is never
lost during synchronization between databases. The advanced replication Store and
Forward Messaging feature ensures that before sending a synchronization message
from one database to another, the message is stored on the originating database.
Similarly, the message is stored in the receiving database before it is executed in
the receiving database. Once the stored messages become obsolete, they are
deleted.

Because Store and Forward Messaging stores data persistently to disk, it causes
some overhead in the synchronization process. When a message holds less data for
synchronization, the overhead is significantly higher. For example, when you send
a synchronization message that contains one transaction between databases, it may
take up to one second to complete the messaging roundtrip, whereas when you
synchronize a few dozen transactions within one message, it still typically takes
less than one second.

To minimize the overhead caused from Store and Forward Messaging, be sure to
create synchronization messages that contain more than one transaction. While you
are not prohibited from synchronizing a single transaction in a message, doing so
has significant adverse performance implications, especially if your site has high
transaction volume. Before you use single transactions (or few transactions) in a
single synchronization message, consider if there are any critical performance and
scalability requirements for the databases at your site.

Using RPC message compression with synchronization
solidDB supports message compression for all network traffic between client and
server. In data synchronization, the replica database server acts as a client and
master database server acts as a server. Therefore, the message compression utility
that is available for Client/Server communication, is also available for advanced
replication's Server-to-Server communication.

You can set the message compression on by specifying "-z" parameter in the
connect string given in the SET SYNC CONNECT command in replica database
server. For example:
SET SYNC CONNECT ’tcp -z masterserver 1315’ TO MASTER myMaster

The data compression's effect on performance depends heavily on the
compressibility of the data and on the available bandwidth. In very fast networks
the increased CPU consumption caused by compression & decompression of the
messages may outweigh the performance gain achieved by smaller network
messages. Generally, the slower the network is, the more positive impact network
traffic compression may have in the overall performance.

140 IBM solidDB: Advanced Replication User Guide

Appendix A. Bulletin board parameters

solidDB allows both master and replica servers to use bulletin board parameters to
store information that can be used when processing propagated transactions. This
appendix lists the bulletin board parameters that are defined by solidDB.

Remember that you may create additional bulletin board parameters of your own
when you create and use intelligent transactions.

Bulletin board parameters can be set by using the PUT_PARAM() function and can
be read using the GET_PARAM() function.

A.1 Advanced replication system parameter categories
Advanced replication system parameters are divided into the following categories:

Read-only system parameters
Read-only system parameters are maintained by solidDB and can be read
only by using the following syntax:
GET_PARAM(parameter_name)

The lifecycle of parameters in this category is one transaction, that is,
values of these parameters is always initialized at the beginning of the
transaction.

Updatable transaction-level system parameters
Users can set and update transaction-level system parameters using the
following function call inside the transaction:
PUT_PARAM(parameter_name, value)

Updatable system parameters are used by solidDB advanced replication to
configure synchronization-related operations.

The lifecycle of parameters in this category is one transaction, that is,
values of these parameters is always initialized at the beginning of the
transaction.

Database catalog level system parameters
Database catalog level system parameters are set by using the following
syntax:
SET SYNC PARAMETER(parameter_name value)

Parameters in this category are database catalog level parameters that are
valid until changed or removed. They are specified as bulletin board
parameters.

Full syntax and examples of usage of GET_PARAM(), PUT_PARAM() and SET
SYNC PARAMETER functions are described in IBM solidDB SQL Guide.

A.2 Parameters on replica
In the table below, the Duration column indicates whether the parameter value
lasts for only the current transaction (T) or whether it lasts until changed (C).

141

The R/W column indicates whether the value can be only be read (R/O) or can be
read and written/updated (R/W).

Table 8. Parameters on replica

Name Description Factory Value Duration R/W

SYS_R_MAXBYTES_OUT The maximum size of a single synchronization
message can be set by database level system
parameters. The SYS_R_MAXBYTES_OUT
parameter sets the maximum length of messages
sent from a replica database to the master.

The value of this parameter can be set only in
the replica database.

If the master database receives a message longer
than the value of SYS_R_MAXBYTES_OUT,
solidDB issues the following error message:

25042 - Message is too long (<number> bytes)
to forward. Maximum is set to <number>
bytes.

Example:

SET SYNC PARAMETER
SYS_R_MAXBYTES_OUT ’1048576000’;

2 GB

Valid values
are between 0
- 2 GB. If 0 is
specified,
2GB is used.

C

(until
changed)

R/W

SYS_R_MAXBYTES_IN The maximum size of a single synchronization
message can be set by database level system
parameters. The SYS_R_MAXBYTES_IN
parameter sets the maximum length of messages
that can be received by a replica database.

If the master database sends a message longer
than value of SYS_R_MAXBYTES_IN, the server
issues the following error message:

25043 - Reply message is too long (<number>
bytes). Maximum is set to <number> bytes.

Example:

SET SYNC PARAMETER
SYS_R_MAXBYTES_IN ’1048576000’;

2GB

Valid values
are between 0
- 2 GB. If 0 is
specified,
2GB is used.

C

(until
changed)

R/W

SYS_SYNC_ID This parameter is for internal use only. Do not
set it. N/A N/A R/O

SYS_SYNC_KEEPLOCALCHANGES If the replica is read-only, setting this parameter
to yes reduces processing load and storage
requirements at Replica. The ALTER TABLE SET
SYNCHISTORY statement is not required for
replica tables in that case, and thus history table
are not created at the replica. With this setting,
all the local changes and row inserts (if made)
are kept despite the refresh operation.

No Valid until
changed

R/W

142 IBM solidDB: Advanced Replication User Guide

Table 8. Parameters on replica (continued)

Name Description Factory Value Duration R/W

SYS_SYNC_OPERATION_TYPE When the replica gets a REFRESH request from
the master, the parameters
SYS_SYNC_OPERATION_TYPE and
SYS_SYNC_RESULTSET_TYPE provide the
replica with information about what operations
the master originally performed on this data.
The primary purpose of the parameters is to
indicate whether an UPDATE operation occurred
on the master and was converted into a
DELETE+INSERT pair on the replica. For more
information, see 4.2.4, “Handling UPDATE
triggers,” on page 57.

The possible values of the
SYS_SYNC_OPERATION_TYPE parameter in
DELETE triggers are:

v CURRENT_TENTATIVE_DELETE (set when
deleting the current locally updated value of a
row prior to executing the reply message in
replica)

v OLD_OFFICIAL_DELETE (set when deleting
a row that was deleted in master)

v OLD_OFFICIAL_UNIQUE_DELETE (set when
the master sends a row to be added to the
replica, but a similar row already exists on the
replica. With this parameter value, the old
official row is deleted before the new row is
added to the replica)

v OLD_OFFICIAL_UPDATE (set when
executing a delete that was created as a result
of an update in master)

The possible values of the
SYS_SYNC_OPERATION_TYPE parameter in
INSERT triggers are:

v OLD_OFFICIAL_INSERT (set when restoring
the old master value prior to executing the
reply message in replica)

v NEW_OFFICIAL_INSERT (set when inserting
row that was inserted in master)

v NEW_OFFICIAL_UPDATE (set when
executing an insert that was created as a
result of an update in master)

If the trigger is fired by a local transaction (that
is, not by synchronization logic), the value of
this parameter is NULL.

None T R/W

Appendix A. Bulletin board parameters 143

Table 8. Parameters on replica (continued)

Name Description Factory Value Duration R/W

SYS_SYNC_REPLICA_REFRESH_LOAD This parameter defines the amount of system
processing capacity (as percentage) that is used
to perform a refresh in the replica. By default,
full capacity is used (100).

If you want to reserve some capacity for local
processing in parallel with refresh, set this
parameter to a lower value.

Possible values are between 0 and 100. Value 0
means that the feature is disabled and full
processor capacity is used.
Note: To use this parameter, the corresponding
solid.ini configuration parameter
Synchronizer.ReplicaRefreshLoad must be set
to 0 or 100.

100 Valid until
changed

R/W

SYS_SYNC_RESULTSET_TYPE This parameter indicates whether the result set
of a REFRESH operation is full or incremental.

Possible values of this parameter are:

v FULL

v INCREMENTAL

See also the discussion of
SYS_SYNC_OPERATION_TYPE.

For more information about
SYS_SYNC_RESULTSET_TYPE and
SYS_SYNC_OPERATION_TYPE, see 4.2.4,
“Handling UPDATE triggers,” on page 57.

None T R/W

A.3 Parameters on master
In the table below, the Duration column indicates whether the parameter value
lasts for only the current transaction (T) or whether it lasts until changed (C).

The R/W column indicates whether the value can be only be read (R/O) or can be
read and written/updated (R/W).

Table 9. Parameters on master

Name Description Factory Value Duration R/W

SYNC_DEFAULT_PROPAGATE_ERRORMODE This parameter controls what the server does when
an error occurs while propagating a message. The
possible values are IGNORE_ERRORS,
LOG_ERRORS, or FAIL_ERRORS. The meanings of
these values are the same as for the SAVE
command. See the description of the SQL command
SAVE in IBM solidDB SQL Guide.

Note that the error-handling mode may be set in
three different ways (by setting a bulletin board
parameter, by specifying an optional keyword with
the SAVE command, or by using the

MESSAGE APPEND PROPAGATE
TRANSACTIONS

statement). See 5.8.3, “Specifying recovery from
fatal errors,” on page 100 for more details.

By default, the
system behaves
as though the
error mode is
FAIL_ERRORS.

C R/W

144 IBM solidDB: Advanced Replication User Guide

Table 9. Parameters on master (continued)

Name Description Factory Value Duration R/W

SYNC_DEFAULT_PROPAGATE_SAVEMODE The possible values are AUTOSAVE,
AUTOSAVEONLY, and NULL. Null means that the
propagated transaction is not automatically saved.
See 5.8.3, “Specifying recovery from fatal errors,”
on page 100 for more details.

NULL C R/W

SYS_ERROR_CODE This parameter can be used together with the
SYS_ROLLBACK parameter. Users can set their
own error code in this parameter to indicate the
reason why the transaction was rolled back. This
error code is returned after roll back.

The error code specified using this parameter is
also returned to the replica database as part of the
MESSAGE FORWARD or MESSAGE GET REPLY
command.

Example:

PUT_PARAM(
’SYS_ERROR_CODE’,’99000’
);

None T R/W

SYS_ERROR_TEXT This parameter can be used together with
SYS_ROLLBACK parameter. Users can put their
own error text in this parameter to indicate the
reason why the transaction was rolled back. This
error text is returned after roll back.

Example:

PUT_PARAM(
’SYS_ERROR_TEXT’,
’User defined error text’
);

None T R/W

SYS_IS_PROPAGATE This parameter value is YES if the transaction is a
propagated transaction that is being executed in the
master. For non-advanced replication transactions,
the value of this parameter is NULL.

None T R/O

Appendix A. Bulletin board parameters 145

Table 9. Parameters on master (continued)

Name Description Factory Value Duration R/W

SYS_NOSYNCESTIMATE In many cases, either an incremental refresh or a
full refresh would synchronize the replica. An
incremental refresh is usually the most efficient
choice. However, there are cases where a full
refresh is more efficient. As an extreme example, if
99% of the rows in a table have been deleted, then
it is more efficient to send a full refresh (1% of the
rows) than to send each individual row that was
deleted (99% of the rows).

By default (SYS_NOSYNCESTIMATE=None), the
server calculates whether an incremental refresh is
more efficient than a full refresh and then chooses
the one that it thinks is more efficient.

You can turn off the calculation and thus force the
server to use an incremental refresh by setting
SYS_NOSYNCESTIMATE to Yes.

This parameter is used only rarely.

To disable the estimator, execute on master:

SET SYNC PARAMETER
SYS_NOSYNCESTIMATE ’YES’;
COMMIT WORK;

To enable the estimator (=default), execute on
master:

SET SYNC PARAMETER
SYS_NOSYNCESTIMATE NONE;
COMMIT WORK;

"None"

This means that
the estimator is
not disabled.
This does not
mean that there
is no factory
value.

R/W

SYS_ROLLBACK This parameter is used inside a transaction when
the execution of the transaction should be rolled
back. If the value of this parameter is set to YES,
then using the PUT_PARAM function causes
solidDB to stop execution of the transaction and
roll back all statements executed already. Rollback
of the transaction will cause the execution of the
synchronization message to halt. Note that
COMMIT WORK and ROLLBACK WORK
commands are not allowed in propagated
transactions.

SYS_ROLLBACK can be used, for instance, if a
transaction detects a fatal error such as a referential
integrity error in the database.

Example:

PUT_PARAM(’SYS_ROLLBACK’,’YES’);

The factory
value is "No".

T R/W

SYS_TRAN_ID This parameter is valid only for propagated
transactions, that is, when a propagated transaction
is executed in the master database SYS_TRAN_ID
will contain the original transaction's id from
replica database. For non-advanced replication
transactions, the value of this parameter is NULL.

None T R/O

146 IBM solidDB: Advanced Replication User Guide

Table 9. Parameters on master (continued)

Name Description Factory Value Duration R/W

SYS_TRAN_USERID This parameter is valid only for propagated
transactions, that is, when the propagated
transaction is executed in the master database
SYS_TRAN_USERID will contain the original user
id used when the transaction was executed in the
replica database. The transaction is executed in the
master database using the access rights defined to
this user id. If the user id was mapped from the
replica to a master user id, the access rights used
during execution in the master database are the
access rights of the master user id (not the original
replica user id).

For non-advanced replication transactions, the
value of this parameter is NULL.

None T R/O

A.4 Parameters on both master and replica
In the table below, the Duration column indicates whether the parameter value
lasts for only the current transaction (T) or whether it lasts until changed (C).

The R/W column indicates whether the value can be only be read (R/O) or can be
read and written/updated (R/W).

Table 10. Parameters on both master and replica

Name Description Factory Value Duration R/W

SYNC_APP_SCHEMA_VERSION Each synchronizable catalog can have a
schema version name as one of its
properties. If master and replica catalogs
have different schema version names,
sending the synchronization messages
between master and replica nodes fails.

The name of the property is
SYNC_APP_SCHEMA_VERSION. This
version name can be set using SET SYNC
PARAMETER statement.

Examples:

SET SYNC PARAMETER
SYNC_APP_SCHEMA_VERSION
’sputnik’;

SET SYNC PARAMETER
SYNC_APP_SCHEMA_VERSION
NONE;

None C R/W

Appendix A. Bulletin board parameters 147

Table 10. Parameters on both master and replica (continued)

Name Description Factory Value Duration R/W

SYNC_MODE Each catalog has a read-only parameter
named SYNC_MODE. Applications use
this parameter to check the catalog's
mode. The parameter values are:

v MAINTENANCE, if the catalog is in
maintenance sync mode

v NORMAL, if the catalog is not in
maintenance sync mode

v NULL, if the catalog is not a master or
a replica

You can change the catalog mode with
command:

SET SYNC MODE{NORMAL |
MAINTENANCE}

NORMAL C RO

148 IBM solidDB: Advanced Replication User Guide

Table 10. Parameters on both master and replica (continued)

Name Description Factory Value Duration R/W

SYS_TRAN_MAXRETRY This parameter provides a way to handle
concurrency conflicts and deadlocks,
which occur when transactions update or
delete rows. When this parameter is set,
the server retries a transaction that has
failed execution at the master due to a
concurrency conflict. The value specifies
the maximum number of retries.

You can set this value on the master by
using the SET SYNC PARAMETER
statement. If you set it on the master, it
will be the default value used for all
transactions propagated to that master.
Note that this parameter only applies
when the master executes propagated
transactions received from the replica.

You can set this value on the replica by
using the command.

SAVE PROPERTY ...

to put the value on the individual
transaction's bulletin board. The value is
propagated to the master's bulletin board
for that same transaction. Setting the
parameter this way means that the value
applies only to this particular transaction.

If the value is set both by the SAVE
PROPERTY command on the replica and
the SET SYNC PARAMETER command on
the master, the SAVE PROPERTY
command on the replica takes precedence.
The value that you set for a specific
transaction takes precedence over the
general default value on the master.

When SYS_TRAN_MAXRETRY reaches its
retry' maximum, the offending transaction
is marked as failed. A separate MESSAGE
EXECUTE command must be executed to
start the transaction again.

SYS_TRAN_RETRYTIMEOUT is closely
related to the SYS_TRAN_MAXRETRY
parameter. See the discussion of
SYS_TRAN_RETRYTIMEOUT below for
details.

The factory
value is zero
(0), which
means that if
the transaction
fails, it is not
retried. Valid
values for the
parameter are
integers
between 0 and
2147483647
(inclusive).

C R/W

Appendix A. Bulletin board parameters 149

Table 10. Parameters on both master and replica (continued)

Name Description Factory Value Duration R/W

SYS_TRAN_RETRYTIMEOUT This parameter is used in conjunction with
the SYS_TRAN_MAXRETRY parameter.
The SYS_TRAN_MAXRETRY parameter
specifies the number of transaction retry
attempts that occur after the transaction
has failed at the master due to a
concurrency conflict. The
SYS_TRAN_RETRYTIMEOUT parameter
sets the timeout (in seconds) that the
master server waits before it actually
retries the failed transaction that was
received from the replica. The value of this
parameter can be set only in the master
database using the SET SYNC
PARAMETER statement. For details on
SET SYNC PARAMETER, see the chapter
on SET SYNC PARAMETER in the
Appendixes of the IBM solidDB SQL Guide.

The factory
value is zero
(0), which
means that the
master server
does not wait
between
retries. Valid
values for the
parameter are
any integer
between 0 and
2147483647
(inclusive).

C R/W

150 IBM solidDB: Advanced Replication User Guide

Appendix B. Synchronization events

The advanced replication or synchronization events enable programs to be notified
when certain advanced replication related actions occur. You can use these events
to monitor the progress of synchronization between master and replica databases.

These events follow most of the same rules as any other events. The main
difference is that you cannot register to synchronization events, because the ADMIN
EVENT 'wait' command is not able to return variable resultsets. Instead, you must
use stored procedures to handle synchronization events.

For information about events in general, see the solidDB SQL Guide, especially the
sections on:
v CREATE EVENT command
v CREATE PROCEDURE command, which describes how to post events and wait

on events

The synchronization events are predefined; you do not create them. Furthermore,
you should not post any system event. You should only register for and wait on
system events.

Most system events have the same five parameters:
v ename: The event name.
v postsrvtime: The time that the server posted the event.
v uid: The user ID (if applicable).
v numdatainfo: Miscellaneous numeric data — the exact meaning depends upon

the event. For example, the event SYS_EVENT_BACKUP is posted both when a
backup is started and when a backup is completed. The value in the
numdatainfo parameter indicates which case applies — that is, whether the
backup has just started or has just completed. This parameter can be NULL if
there is no numeric data.

v textdata: Miscellaneous text data — the exact meaning depends upon the event.
This parameter can be NULL if there is no numeric data.

B.1 Sequence of events
The table below shows the sequence of events posted as the replica and master
process a message that is sent from the replica to the master.

Note that some events do not always occur. For example, this sequence shows
some places that the event SYNC_MASTER_MESSAGE_ERROR_OCCURRED may
occur; however, the event does not always occur there.

Note also that in some cases the order of events may vary slightly. For example,
the time that a master deletes an old message is partly independent of the
activities of the replica (and vice-versa), and therefore may not always be done in
exactly the order shown here.

Note:

Applications cannot monitor sync events unless they have administrator's rights.

151

A separate table later gives more information about the parameters used in each of
these synchronization-related events.

Table 11. Events when replica propagates messages to master
Action,
command, or
situation on
Replica EVENT Posted on Replica

Action or
situation on
Master EVENT Posted on Master

Message Begin

Message Append

Message end /
commit

When message is persistent (i.e. assembled and
committed): SYNC_REPLICA_MESSAGE_ASSEMBLED

Message forward When replica starts sending the message:
SYNC_REPLICA_MESSAGE_FORWARD_BEGIN

When replica has finished sending the message to the
master: SYNC_REPLICA_MESSAGE_FORWARD_END

Master starts
receiving a
message

When master starts receiving the message:
SYNC_MASTER_MESSAGE_RECEIVE_BEGIN

Master has
received a
message

When master has received and made message
persistent:
SYNC_MASTER_MESSAGE_RECEIVE_END

Master starts
processing the
message

SYNC_MASTER_MESSAGE_REPLY_BEGIN

Master
processed the
message

SYNC_MASTER_MESSAGE_REPLY_END

If an error
occurred while
processing the
message.

SYNC_MASTER_MESSAGE_ERROR_OCCURRED

Message get
reply

When replica sends get-reply request to master:
SYNC_REPLICA_MESSAGE_GETREPLY

Master receives
"get reply"
request from
replica

SYNC_MASTER_MESSAGE_GETREPLY_REQUEST

If "get reply"
request timed
out.

SYNC_REPLICA_MESSAGE_GETREPLY_TIMEDOUT

Master starts
sending reply
message

SYNC_MASTER_MESSAGE_SENDREPLY_BEGIN

Replica starts
receiving the
reply from the
master.

SYNC_REPLICA_MESSAGE_REPLY_BEGIN

Master finishes
sending reply.

SYNC_MASTER_MESSAGE_SENDREPLY_END

152 IBM solidDB: Advanced Replication User Guide

Table 11. Events when replica propagates messages to master (continued)
Action,
command, or
situation on
Replica EVENT Posted on Replica

Action or
situation on
Master EVENT Posted on Master

Reply received
and made
persistent

SYNC_REPLICA_MESSAGE_REPLY_END

Message is
deleted

SYNC_MASTER_MESSAGE_DELETED. Note that the
message also can be deleted explicitly using the
MESSAGE DELETE statement.

Replica starts
processing the
reply.

SYNC_REPLICA_MESSAGE_PROCESS_BEGIN

If an error
occurred while
processing

SYNC_REPLICA_MESSAGE_ERROR_OCCURRED

Reply is
processed

SYNC_REPLICA_MESSAGE_PROCESS_END

Message is
deleted

SYNC_REPLICA_MESSAGE_DELETED. Note that the
message also can be deleted explicitly using the
MESSAGE DELETE statement.

B.2 Parameters of synchronization-related events
The table below shows the parameters associated with each synchronization-
related event.

Table 12. Parameters associated with synchronization-related events

EVENT NAME Purpose PARAMETERS

SYNC_MASTER_MESSAGE_DELETED This event is posted on the master
when the master has deleted a
message.

master_name WVARCHAR,

replica_name WVARCHAR,

message_name WVARCHAR

SYNC_MASTER_MESSAGE_ERROR_OCCURRED This event is posted on the master
when an error occurred while
processing the message.

master_name WVARCHAR,

replica_name WVARCHAR,

message_name WVARCHAR,

error_code INTEGER,

error_message WVARCHAR

Appendix B. Synchronization events 153

Table 12. Parameters associated with synchronization-related events (continued)

EVENT NAME Purpose PARAMETERS

SYNC_MASTER_MESSAGE_GETREPLY_REQUEST This event is posted on the master
when the master receives a reply
request from a replica.

The parameter request_timeout
holds the requested reply timeout in
seconds.

The parameter iftimedout holds one
of the following values:

0 - if request has not timed out in
the master

1 - if request timed out in the
master

The master may not start processing
the reply request immediately.
Timeout is set to 1 if the master is
unable to start processing the reply
within the timeout period requested
by the replica.

master_name WVARCHAR,

replica_name WVARCHAR,

message_name WVARCHAR,

request_timeout INTEGER,

iftimedout INTEGER

SYNC_MASTER_MESSAGE_RECEIVE_BEGIN This event is posted on the master
when the master begins to receive a
new message from a replica.

master_name WVARCHAR,

replica_name WVARCHAR,

message_name WVARCHAR

SYNC_MASTER_MESSAGE_RECEIVE_END This event is posted on the master
when it finishes receiving a new
message from a replica.

master_name WVARCHAR,

replica_name WVARCHAR,

message_name WVARCHAR

SYNC_MASTER_MESSAGE_REPLY_BEGIN This event is posted on the master
when it starts creating a reply
message to a replica.

master_name WVARCHAR,

replica_name WVARCHAR,

message_name WVARCHAR

SYNC_MASTER_MESSAGE_REPLY_END This event is posted on the master
when it finishes creating a reply
message to a replica.

master_name WVARCHAR,

replica_name WVARCHAR,

message_name WVARCHAR

SYNC_MASTER_MESSAGE_SENDREPLY_BEGIN This event is posted on the master
when it starts sending a reply
message to a replica.

master_name WVARCHAR,

replica_name WVARCHAR,

message_name WVARCHAR

SYNC_MASTER_MESSAGE_SENDREPLY_END This event is posted on the master
when master has finished sending a
reply message to a replica.

master_name WVARCHAR,

replica_name WVARCHAR,

message_name WVARCHAR

154 IBM solidDB: Advanced Replication User Guide

Table 12. Parameters associated with synchronization-related events (continued)

EVENT NAME Purpose PARAMETERS

SYNC_MASTER_REGISTER_REPLICA This event is posted on the master
when a new replica is registered to
the master.

master_name WVARCHAR,

replica_name WVARCHAR,

message_name WVARCHAR

SYNC_MASTER_UNREGISTER_REPLICA This event is posted on the master
when a replica is unregistered from
the master.

master_name WVARCHAR,

replica_name WVARCHAR,

message_name WVARCHAR

SYNC_REPLICA_MESSAGE_ASSEMBLED This event is posted by the replica
when it creates a new message.

replica_name WVARCHAR,

master_name WVARCHAR,

message_name WVARCHAR

SYNC_REPLICA_MESSAGE_DELETED The replica posts this event when it
deletes a message.

replica_name WVARCHAR,

master_name WVARCHAR,

message_name WVARCHAR

SYNC_REPLICA_MESSAGE_ERROR_OCCURRED This event is posted on the replica
when an error occurred while
processing the message.

replica_name WVARCHAR,

master_name WVARCHAR,

message_name WVARCHAR,

error_code INTEGER,

error_message WVARCHAR

SYNC_REPLICA_MESSAGE_FORWARD_BEGIN This event is posted by a replica
when it starts forwarding a
message.

replica_name WVARCHAR,

master_name WVARCHAR,

message_name WVARCHAR

SYNC_REPLICA_MESSAGE_FORWARD_END This event is posted by a replica
when it finishes forwarding a
message.

replica_name WVARCHAR,

master_name WVARCHAR,

message_name WVARCHAR

SYNC_REPLICA_MESSAGE_GETREPLY A replica posts this event when it
requests a reply message.

replica_name WVARCHAR,

master_name WVARCHAR,

message_name WVARCHAR

SYNC_REPLICA_MESSAGE_GETREPLY_TIMEDOUT A replica posts this event when the
replica's "get reply" has timed out.

replica_name WVARCHAR,

master_name WVARCHAR,

message_name WVARCHAR

Appendix B. Synchronization events 155

Table 12. Parameters associated with synchronization-related events (continued)

EVENT NAME Purpose PARAMETERS

SYNC_REPLICA_MESSAGE_PROCESS_BEGIN The replica posts this event when it
starts processing a reply message.

replica_name WVARCHAR,

master_name WVARCHAR,

message_name WVARCHAR

SYNC_REPLICA_MESSAGE_PROCESS_END The replica posts this event when it
finishes processing a reply message.

replica_name WVARCHAR,

master_name WVARCHAR,

message_name WVARCHAR

SYNC_REPLICA_MESSAGE_REPLY_BEGIN The replica posts this event when it
starts receiving a reply message.

replica_name WVARCHAR,

master_name WVARCHAR,

message_name WVARCHAR

SYNC_REPLICA_MESSAGE_REPLY_END The replica posts this event when it
finished receiving a reply message.

replica_name WVARCHAR,

master_name WVARCHAR,

message_name WVARCHAR

B.3 Parameters of message progress events
The events described in this table allow you to track how many bytes of a message
have been sent or received so far. These events are useful primarily when sending
very large messages, such as messages containing blobs, or when sending
messages over very slow communication channels.

Table 13. Parameters of message progress events

EVENT NAME Purpose PARAMETERS

SYNC_MSGBYTES_SENT The event lists the cumulative number of
bytes sent/received so far as well as the
total number of bytes to be sent/received
inside the corresponding sync message.
The user can monitor the progress of the
sending/receiving process by catching
these events and comparing the
cumulative byte count sent so far to the
total bytes in the message. For more
information, see 8.1, “Monitoring the
progress of messages,” on page 133

sender_nodename WVARCHAR

receiver_nodename WVARCHAR

message_name WVARCHAR

cumulative_bytes_sent INTEGER

total_bytes INTEGER

SYNC_MSGBYTES_RECEIVED The event lists the cumulative number of
bytes sent/received so far as well as the
total number of bytes to be sent/received
inside the corresponding sync message.
The user can monitor the progress of the
sending/receiving process by catching
these events and comparing the
cumulative byte count sent so far to the
total bytes in the message. For more
information, see 8.1, “Monitoring the
progress of messages,” on page 133

sender_nodename WVARCHAR

receiver_nodename WVARCHAR

message_name WVARCHAR

cumulative_bytes_received INTEGER

total_bytes INTEGER

156 IBM solidDB: Advanced Replication User Guide

Index

A
access rights 74

changing 75
commands for setting 78
local user 74
master user 74
Publication tables 79
registration user 79
Replica database 80
roles for synchronization 74
saving transactions 78
setting up 77
summary 80
SYS_SYNC_ADMIN_ROLE 80
tables 77

advanced replication
administering 105
applications (examples) 9
architecture 11

concepts 11
master database 18
replica database 18

architecture components 18
architecture components - incremental refresh 19
architecture components - Intelligent Transaction 20
architecture components - Publication 19
architecture components - Refresh 19
architecture components - Subscription 19
configuring messages 71
getting started 33
installation planning 47
replication models 2
sample scripts 41, 42
special roles 80
synchronization 49
transaction model 13
user access requirements 63

ALTER TABLE SET NOSYNCHISTORY statement
access rights 81, 82

ALTER TABLE SET SYNCHISTORY statement
access rights 81, 82

ALTER USER SET MASTER statement
access rights 81

ALTER USER SET PRIVATE statement
access rights 82

ALTER USER SET PUBLIC statement
access rights 82

application development
advanced replication

basics 67
design for synchronization 64
error handling 99
error log table creation 97
Intelligent Transactions 65
tentative data on user interface 64

asynchronous store and forward messaging
definition 20
points of error 125

B
backup

manual 130
Bulletin board parameters 141

SYNC_APP_SCHEMA_VERSION 147
SYNC_DEFAULT_PROPAGATE_ERRORMODE 144
SYNC_DEFAULT_PROPAGATE_SAVEMODE 145
SYNC_MODE 148
SYS_ERROR_CODE 145
SYS_ERROR_TEXT 145
SYS_IS_PROPAGATE 145
SYS_NOSYNCESTIMATE 146
SYS_R_MAXBYTES_IN 142
SYS_R_MAXBYTES_OUT 142
SYS_ROLLBACK 146
SYS_SYNC_ID 142
SYS_SYNC_KEEPLOCALCHANGES 142
SYS_SYNC_OPERATION_TYPE 143
SYS_SYNC_REPLICA_REFRESH_LOAD 144
SYS_SYNC_RESULTSET_TYPE 144
SYS_TRAN_ID 146
SYS_TRAN_MAXRETRY 149
SYS_TRAN_RETRYTIMEOUT 150
SYS_TRAN_USERID 147

C
catalogs

creating 51
synchronization (advanced replication) 17

columns
advanced replication

error log table 97
publications 55
synchronization status 56
timestamp column for last row update 56
updatetime for update conflicts 54

COMMITBLOCK (keyword)
definition 71
MESSAGE GET REPLY 90
REFRESH 73

Complex Validation Logic 98
concurrency control

conflicts 129
configuring

Master database 84
conflict resolution

advanced replication 54
conflicts 54, 62
CREATE PUBLICATION statement 105

access rights 82
usage 86

CREATE SYNC BOOKMARK statement
access rights 82

CREATE USER statement 77
creating

publications 85

157

D
data

advanced replication
distribution 47
multiple versions 97
official version 97
synchronization bookmarks 106

updating locally 92
database

backups for fault tolerance 63
configuration statement 67
management 105
removing a replica 105
Setting up for synchronization 83

DROP MASTER statement
access rights 81

DROP PUBLICATION REGISTRATION statement
access rights 82

DROP PUBLICATION statement
access rights 83
database schemas, modifying 105

DROP REPLICA statement
access rights 83
removing a replica 105

DROP SUBSCRIPTION REPLICA statement
access rights 83

DROP SUBSCRIPTION statement 91
access rights, replica 82

DROP SYNC BOOKMARK statement
access rights 83

DROP SYNC MASTER statement
access rights 83

DROP SYNC REPLICA statement
access rights 83

E
error handling

log table 97
errors

application-level 65, 99
asynchronous store and forward messaging 125
Concurrency conflict 129
deleting messages 129
fatal (advanced replication) 100
Managing synchronization errors 126
networking 129
referential integrity 100
reporting 54
system-level 65, 100
update conflict 97
User access violation 78
validation 97

EXECDIRECT
example usage 32

EXPORT SUBSCRIPTION
access rights 83

exporting subscriptions 107

F
FULL (keyword)

MESSAGE APPEND REFRESH 90

G
GET_PARAM()

access rights 81, 82
GRANT EXECUTE ON statement 78
GRANT REFRESH ON

access rights 83
usage 78

GRANT statement 78

H
history tables 139
HotStandby 123

I
IMPORT statement

access rights 82
incremental publication

creating 86
using 53

incremental refresh 19, 57
indexes

creating 55
performance 55
queries derived from publication definition 55
Secondary 55
synchronized databases 55

Intelligent Transaction
adding compensation operation for validation 99
application needs 65
controlling with commands 68
description 20, 91
design principles 92
errors in execution 127
example 38, 91
fatal error detection 100
how it works 24
implementation 91
local data 92
multi-database systems 23
saving for later propagation 92
scenarios 21
stored procedures 96, 113
validating 97
validation operations 98
write load of the master database 55

L
local user 74

access rights 77
LOCK TABLE statement 116
logical database 15

design 54

M
management

databases 105
tables 105

master database
access rights 82
changing access rights 75
changing database location 105

158 IBM solidDB: Advanced Replication User Guide

master database (continued)
configuring 84
defining 49
definition 48
forwarding messages 70
initializing 35
message execution failures 127
official data version 97
optimizing 48
parameters 144, 147
physical design 55
registering 84
requesting reply messages 71
write load 55

master users
access rights 77
security 74
updating for advanced replication operations 76

MESSAGE APPEND PROPAGATE TRANSACTIONS
access rights 81
parameter bulletin board 69
propagating transactions 69

MESSAGE APPEND REFRESH 70
access rights 81
description 89

MESSAGE APPEND REGISTER PUBLICATION 89
access rights 81

MESSAGE APPEND REGISTER REPLICA
access rights 81

MESSAGE APPEND SYNC_CONFIG
access rights 81
definition 76

MESSAGE APPEND UNREGISTER PUBLICATION
access rights 81

MESSAGE APPEND UNREGISTER REPLICA
access rights 81

MESSAGE BEGIN
access rights 81
Beginning messages with 69

MESSAGE DELETE
access rights 81

MESSAGE DELETE CURRENT TRANSACTION
access rights 81, 83

MESSAGE DELETE FROM REPLICA
access rights 83

MESSAGE END
Ending messages with 70

MESSAGE FORWARD 70
access rights 81
Receipt failure 126

MESSAGE FROM REPLICA DELETE
Deleting a message for error recovery 129

MESSAGE FROM REPLICA EXECUTE
access rights 83

MESSAGE GET REPLY 71
access rights 81

message statements 68
messages

commit block size 71
configuring 71
error in forwarding 126
error recovery 129
forwarding to master 70
management 126
maximum size 71
MESSAGE APPEND PROPAGATE TRANSACTIONS 69
MESSAGE APPEND REFRESH 70

messages (continued)
MESSAGE BEGIN 69
MESSAGE END 70
MESSAGE FORWARD 70
MESSAGE GET REPLY 71
monitoring 133
optimizing 140
requesting reply messages from master 71
SAVE DEFAULT PROPAGATE PROPERTY WHERE 69
synchronization 68

modifying
publications and tables in publications 112
SQL procedures of intelligent transaction 113

monitoring 125
progress 133
synchronization messages, status 125

multi-database systems
comparisong to centralized systems 21

Multi-master synchronization model 14
Multi-tier redundancy model

description 11

N
nested publications 88
network

definition 49
error in receiving reply message 129

O
optimizing

synchronization history data management 136
synchronization messages 140

P
parameters

Database-level 141
GET_PARAM() 141
master 146
master and replica 147
message progress events 156
PUT_PARAM() 141
Read-only parameters 141
replica 142
SET SYNC PARAMETER 141
synchronization-related events 153
Updateable 141

performance
advanced replication 47, 48, 49
tuning 133

physical database 15, 54
primary keys 53

surrogate key example 56
unique, surrogate 54

procedures
execute rights for users 77

propagating transactions
Saving for later propagation 92
user access violation 78

publications 19
Creating 85
Creating access rights to 79
Defining 85
Example of 86

Index 159

publications (continued)
guidelines 88
Indexing queries 55
Joins 55
MESSAGE APPEND REFRESH 70
Modifying 112
Modifying tables in 112
Nested 88
Refreshing data from 70
requesting 89
statement 67
Subscribing to 89
tuning 136
Unnested 89

PUT_PARAM()
access rights 81, 82

R
recovery 130

deleting messages 129
fatal errors 100
From synchronization errors 126

refreshes 19
Error handling in 127
Incremental 57
Refreshing data from publication 70
synchronous refresh 20
Synchronous refresh 73

RefreshIsolationLevel 87
registering

replicas databases with the master database 84
remote stored procedures 8, 26
REPLACE PUBLICATION 105
replica databases

access rights 81
changing access rights 75
changing database location 105
creating large replica databases 106
definition 49
initializing 37
parameters 141, 147
physical design 55
registering users 79
registering with the master database 84
unofficial data 97
unregistering 105

Replica Property Names 8, 26
reply messages

error in receiving 129
Reporting synchronization errors 54
REVOKE REFRESH ON

access rights 83
usage 78

roles 74
Rollback

recovery from fatal errors 100

S
SAVE

access rights 81
transaction for later propagation 92

SAVE DEFAULT PROPAGATE PROPERTY WHERE
parameter bulletin board 69

SAVE PROPERTY statement
access rights 81

scalability 47
schemas

defining 50
design 54
modifying 105
upgrading 113
usage within catalogs 52

security
controlling with the SYS_SYNC_USERS table 76
statements 67

sending data
Master to Replica 3
replica to master 7

SET HISTORY COLUMNS 137
SET SYNC CONNECT TO MASTER

access rights 82
SET SYNC MASTER

access rights 82
SET SYNC NODE

access rights 82, 83
SET SYNC PARAMETER

access rights 82, 83
Setting message size 71

SET SYNC REPLICA
access rights 82

SET SYNC USER
access rights 82, 83

shadow tables 86, 139
SQL functions

GET_PARAM() 141
SET SYNC PARAMETER 141

START AFTER COMMIT statement 8, 26
statements

Database configuration 67
Publication statements 67
Security statements 67
types 67
Types of 67
usage 67

stored procedures 113
creating 96
error handling 99
example 96

subscriptions 19
dropping 91
exporting 107
importing 107

Sync Pull Notify 8, 25
Implementing 28
When to use 31

SYNC_APP_SCHEMA_VERSION 116
Bulletin board parameters 147

SYNC_DEFAULT_PROPAGATE_ERRORMODE
Bulletin board parameter 100
Bulletin board parameters 144

SYNC_DEFAULT_PROPAGATE_SAVEMODE 100
Bulletin board parameters 145

SYNC_MASTER_MESSAGE_DELETE 153
SYNC_MASTER_MESSAGE_ERROR_OCCURRED 153
SYNC_MASTER_MESSAGE_GETREPLY_REQUEST 154
SYNC_MASTER_MESSAGE_RECEIVE_BEGIN 154
SYNC_MASTER_MESSAGE_RECEIVE_END 154
SYNC_MASTER_MESSAGE_REPLY_BEGIN 154
SYNC_MASTER_MESSAGE_REPLY_END 154
SYNC_MASTER_MESSAGE_SENDREPLY_BEGIN 154

160 IBM solidDB: Advanced Replication User Guide

SYNC_MASTER_MESSAGE_SENDREPLY_END 154
SYNC_MASTER_REGISTER_REPLICA 155
SYNC_MASTER_UNREGISTER_REPLICA 155
SYNC_MODE

Bulletin board parameters 148
SYNC_MSGBYTES_RECEIVED 156
SYNC_MSGBYTES_SENT 156
SYNC_REPLICA_MESSAGE_ASSEMBLED 155
SYNC_REPLICA_MESSAGE_DELETED 155
SYNC_REPLICA_MESSAGE_ERROR_OCCURRED 155
SYNC_REPLICA_MESSAGE_FORWARD_BEGIN 155
SYNC_REPLICA_MESSAGE_FORWARD_END 155
SYNC_REPLICA_MESSAGE_GETREPLY 155
SYNC_REPLICA_MESSAGE_GETREPLY_TIMEDOUT 155
SYNC_REPLICA_MESSAGE_PROCESS_BEGIN 156
SYNC_REPLICA_MESSAGE_PROCESS_END 156
SYNC_REPLICA_MESSAGE_REPLY_BEGIN 156
SYNC_REPLICA_MESSAGE_REPLY_END 156
Synchistory table

Usage on the replica 57
synchronization

bookmarks 106
Building messages 68
errors, unique constraint violation 56
Managing with user interface 64
Messageless 73
messages 125

monitoring status 125
process 47, 64, 72, 126

sample script 72
setting up data 53
Setting up databases 83
Synchronous 73

synchronous refresh 20
Synchronous refresh 73
SYS_ERROR_CODE

Bulletin board parameters 100, 145
SYS_ERROR_TEXT

Bulletin board parameters 100, 145
SYS_IS_PROPAGATE

Bulletin board parameters 145
SYS_NOSYNCESTIMATE

Bulletin board parameters 146
SYS_R_MAXBYTES_IN

Bulletin board parameters 142
definition 71

SYS_R_MAXBYTES_OUT
Bulletin board parameters 142
definition 71

SYS_ROLLBACK
Bulletin board parameters 95, 100, 146

SYS_SYNC_ADMIN_ROLE
access rights 80
Registration user 79

SYS_SYNC_ID
Bulletin board parameters 142

SYS_SYNC_KEEPLOCALCHANGES
Bulletin board parameters 142

SYS_SYNC_MASTER_MSGINFO
Querying for message failure 125
Querying unsent messages in master 127

SYS_SYNC_OPERATION_TYPE
Bulletin board parameters 143

SYS_SYNC_REGISTER_ROLE 80
Registration user 79

SYS_SYNC_REPLICA_MSGINFO
Querying for message failure 125

SYS_SYNC_REPLICA_MSGINFO (continued)
Querying unsent messages in replica 126

SYS_SYNC_REPLICA_REFRESH_LOAD
Bulletin board parameters 144

SYS_SYNC_RESULTSET_TYPE
Bulletin board parameters 144

SYS_SYNC_USERS
Initially populating 79

SYS_SYNC_USERS table 76
definition 76

SYS_TRAN_ID
Bulletin board parameters 146

SYS_TRAN_MAXRETRY
Bulletin board parameters 149

SYS_TRAN_RETRYTIMEOUT
Bulletin board parameters 150

SYS_TRAN_USERID
Bulletin board parameters 147

system parameters 141

T
tables

access rights 79
design 34
management 105
publications 55
Shadow tables 86
synchronization 55, 62

Transaction parameters 24
Transaction validation

Compensating operations 99
Designing logic 98
Example of 98, 99
Handling errors 97
Pre-validation 98
Using a status column 56

transactions 91
Saving 78
Saving for later propagation 92
transaction model (advanced replication) 13
User access 77
Validating for update conflicts 54

triggers
Possible causes 57
UPDATE 57, 61

tuning
data synchronization 135
publication definitions 136
synchronized history tables 137

Two-tier redundancy model
description 11

U
UNLOCK TABLE statement 116
Unnested publication 89
UPDATE triggers 57, 61

Index 161

162 IBM solidDB: Advanced Replication User Guide

Notices

© Copyright Oy IBM Finland Ab 1993, 2013.

All rights reserved.

No portion of this product may be used in any way except as expressly authorized
in writing by IBM.

This product is protected by U.S. patents 6144941, 7136912, 6970876, 7139775,
6978396, 7266702, 7406489, 7502796, and 7587429.

This product is assigned the U.S. Export Control Classification Number
ECCN=5D992b.

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

163

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Canada Limited
Office of the Lab Director
8200 Warden Avenue
Markham, Ontario
L6G 1C7
CANADA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

164 IBM solidDB: Advanced Replication User Guide

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

IBM, the IBM logo, ibm.com®, Solid, solidDB, InfoSphere, DB2®, Informix®, and
WebSphere® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and
service names might be trademarks of IBM or other companies. A current list of
IBM trademarks is available on the Web at “Copyright and trademark information”
at www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other product and service names might be trademarks of IBM or other companies.

Notices 165

http://www.ibm.com/legal/copytrade.shtml

166 IBM solidDB: Advanced Replication User Guide

����

SC27-3842-05

	Contents
	Figures
	Tables
	Summary of changes
	About this manual
	Overview of replication in IBM solidDB
	Conventions
	Typographic conventions
	Syntax notation conventions

	1 Introduction to data synchronization using advanced replication
	1.1 Principles of operation
	1.1.1 Replication models
	1.1.2 Sending data from a master to a replica
	1.1.3 Sending data from a replica to its master
	1.1.4 Accepting propagated data on the master
	1.1.5 Push-based synchronization with Sync Pull Notify
	1.1.6 Configuring and administering synchronization environment

	1.2 Typical applications

	2 solidDB data synchronization architecture
	2.1 Advanced replication topologies and synchronization models
	2.1.1 Multitier redundancy model
	Basic two-tier architecture
	Advanced multitier architecture
	Transaction models in advanced replication setups

	2.1.2 Multi-master synchronization model
	Managing replica data in a multi-master environment

	2.2 solidDB advanced replication architecture components
	2.2.1 Master and replica databases
	2.2.2 Publications, subscriptions, and refreshes
	2.2.3 Asynchronous replication - messages
	2.2.4 Synchronous replication - messageless REFRESH
	2.2.5 Intelligent Transaction
	Ensuring database consistency
	Intelligent Transaction scenario
	Multi-database systems versus centralized systems
	Intelligent Transaction in the multi-database system
	How Intelligent Transaction functionality works

	2.3 Sync Pull Notify
	2.3.1 Replica Property Names
	2.3.2 Introduction to Sync Pull Notify
	"Sync Push" vs. "Sync Pull" vs. "Sync Pull Notify"
	Implementing Sync Pull Notify
	DEFAULT keyword in remote stored procedures
	When to use Sync Pull Notify

	2.3.3 Scheduling REFRESH or Sync Pull Notify

	3 Getting started with data synchronization - evaluation setup
	3.1 Overview of setting up advanced replication using the evaluation setup sample
	3.2 Preparing to use the advanced replication evaluation sample
	3.2.1 Designing a database table for synchronization

	3.3 Configuring the servers and creating the publications
	3.3.1 Configuring master database
	3.3.2 Configuring the replica database

	3.4 Creating stored procedures for populating master and replica databases
	3.5 Enabling refresh of data and inserting data in replica
	3.6 Synchronizing data using synchronization messages

	4 Planning and designing for advanced replication applications
	4.1 Planning for advanced replication installation
	4.1.1 Distributing data
	4.1.2 Tailoring the synchronization process
	4.1.3 Evaluating performance and scalability
	Tuning master database performance
	Replica database
	Network

	4.2 Designing and preparing databases for synchronization
	4.2.1 Defining master and replica databases
	4.2.2 Creating the database schema
	Guidelines for a two-tier topology
	Guidelines for multi-tier topology
	Guidelines for multi-master topology
	Set up data for synchronization
	Design the logical database

	4.2.3 Defining a database table
	4.2.4 Handling UPDATE triggers
	Description of the possible causes of triggers
	Executing the code intended for the UPDATE triggers

	4.2.5 Handling concurrency conflict in synchronized tables in replica

	4.3 Determining user access requirements
	4.4 Creating backups for fault tolerance
	4.5 Designing the application for synchronization
	4.5.1 Providing a tentative data status on the user interface
	4.5.2 Providing a user interface to manage synchronization
	Managing the synchronization process

	4.5.3 Providing Intelligent Transaction based on application needs

	5 Using advanced replication with applications
	5.1 Using advanced replication data synchronization statements
	5.1.1 Types of advanced replication statements
	Database configuration statements
	Security statements
	Publication statements
	Intelligent Transaction control
	Message statements

	5.2 Building messages for synchronization
	5.2.1 Beginning messages
	5.2.2 Propagating transactions from replica to master
	5.2.3 Refreshing publication data from master to replica
	5.2.4 Ending messages
	5.2.5 Forwarding messages to the master database
	5.2.6 Requesting a reply message from the master database
	5.2.7 Configuring advanced replication messages
	Setting message size maximum
	Setting the commit block size

	5.2.8 Executing a synchronization process

	5.3 Using synchronous refresh
	5.4 Implementing security through access rights and roles
	5.4.1 How advanced replication security works
	5.4.2 Changing replica access to the master database
	Updating master users for advanced replication operations
	Managing master users

	5.4.3 Setting up access rights
	Granting access
	Granting REFRESH access
	Revoking REFRESH access
	Saving transactions in replica
	Creating access to applications on different masters
	Creating user rights to publications and tables
	Creating the replica registration user

	5.4.4 Implementing special advanced replication roles
	5.4.5 Access rights summary
	Access rights in the replica
	Access rights in the master

	5.5 Setting up databases for synchronization
	5.5.1 Configuring the master database(s)
	5.5.2 Registering replicas with the master database

	5.6 Creating publications
	5.6.1 Creating incremental publications
	5.6.2 Using the create publication statement
	Publication guidelines

	5.6.3 Subscribing to publications
	Combining subscribed and local data
	Dropping subscriptions
	Unregistering or dropping publication registrations

	5.7 Designing and implementing Intelligent Transactions
	5.7.1 Updating local data
	5.7.2 Saving the transaction for later propagation
	5.7.3 Using the advanced replication Parameter Bulletin Board
	Passing parameters between procedures within a transaction
	Assigning properties to a replicated transaction
	Defining catalog-level persistent synchronization parameters
	Advanced replication system parameters

	5.7.4 Creating stored procedures
	5.7.5 Creating a synchronization error log table for an application

	5.8 Validating Intelligent Transactions
	5.8.1 Designing complex validation logic
	Pre-validation
	Compensation

	5.8.2 Error handling in the application
	5.8.3 Specifying recovery from fatal errors
	IGNORE_ERRORS, FAIL_ERRORS, and LOG_ERRORS flags for propagate transactions command
	Re-executing or deleting logged errors in master
	Creating and sending a synchronization message from a propagated transaction

	6 Updating and maintaining the schema of a distributed system
	6.1 Managing solidDB tables and databases
	6.1.1 Modifying the database schema
	6.1.2 Changing master or replica database location
	6.1.3 Unregistering a replica database
	6.1.4 Creating large replica databases
	6.1.5 Managing data with synchronization bookmarks
	Retrieving bookmark information
	Dropping bookmarks

	6.1.6 Exporting and importing subscriptions
	Specifying a subscription for export
	Specifying a subscription for import
	Creating a replica by exporting a subscription with data
	Creating a replica by exporting a subscription without data

	6.1.7 Modifying publications and tables in publications
	Incremental vs. full refresh

	6.1.8 Modifying SQL procedures of intelligent transaction

	6.2 Upgrading the schema of a distributed system
	6.2.1 Introduction to Maintenance Mode
	6.2.2 Major features and functionality for upgrading the schema of a distributed system
	Sync mode
	REPLACE option in the CREATE PUBLICATION command
	Table-level locking
	Version checking with SYNC_APP_SCHEMA_VERSION

	6.2.3 Updating a distributed schema
	6.2.4 Example: Upgrading a distributed schema
	Creating the initial schema
	Specifying and distributing a schema upgrade
	Upgrading the distributed schema

	6.2.5 Considerations for using maintenance mode
	6.2.6 Upgrading the server version

	7 Administering advanced replication systems
	7.1 Monitoring solidDB advanced replication
	7.1.1 Monitoring the status of synchronization messages
	7.1.2 Managing synchronization errors
	Error in forwarding a message to the master
	Error in execution of a synchronization message in the master
	Error in receiving a reply message to a replica
	Error in executing a reply message in a replica
	Deleting a message for error recovery

	7.2 Performing backup and recovery

	8 Performance monitoring and tuning
	8.1 Monitoring the progress of messages
	8.2 Tuning for data synchronization
	8.2.1 Tuning publication definitions
	8.2.2 Optimizing synchronization history data management
	Tuning synchronized history tables
	Discarding history data

	8.2.3 Read-only replica
	8.2.4 Optimizing synchronization messages
	Using RPC message compression with synchronization

	Appendix A. Bulletin board parameters
	A.1 Advanced replication system parameter categories
	A.2 Parameters on replica
	A.3 Parameters on master
	A.4 Parameters on both master and replica

	Appendix B. Synchronization events
	B.1 Sequence of events
	B.2 Parameters of synchronization-related events
	B.3 Parameters of message progress events

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U

	Notices

