
IBM solidDB
IBM solidDB Universal Cache
Version 6.3

Linked Library Access User Guide

SC23-9831-03

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 57.

First edition, third revision

This edition applies to version 6, release 3 of IBM solidDB (product number 5724-V17) and IBM solidDB Universal
Cache (product number 5724-W91) and to all subsequent releases and modifications until otherwise indicated in
new editions.

© Oy International Business Machines Ab 1993, 2011

Contents

Figures v

Tables vii

Summary of changes. ix

About this manual xi
Typographic conventions xi
Syntax notation conventions. xii

1 Introducing linked library access . . . 1
Linked library access library 2

Disk-based vs. diskless servers 3
Library contents 3
Application types used with linked library access 4

solidDB client APIs and drivers for linked library
access. 5

solidDB SA API 5
solidDB ODBC API 6
solidDB JDBC API 6
solidDB Server Control API (SSC API) 7

2 Creating and running an linked library
access application 9
Accessing the linked library access library 9

Libraries for remote applications. 9
Sample C applications 10
Using data synchronization 10

Linking applications for the linked library access . . 11
Preparing user applications for the linked library
access 12
Establishing a local or remote connection to
solidDB with the linked library access 14

Starting and shutting down solidDB linked library
access 15

Explicit startup with the Control API function
SSCStartServer 16
Implicit startup with ODBC API function call
SQLConnect 18
Implicit startup with SA API function call
SaConnect 20
Shutting down solidDB linked library access . . 20
Implicit start configuration parameter 21

3 Description of control API 23
Retrieving task information 23
Notifying functions of a special event 23

Obtaining solidDB status and server information 23
Summary of control API functions 24
Control API and equivalent ADMIN COMMANDs 24
Control API reference 25

Function synopsis 25
Return value 26
Control API error codes and messages 26

SSCGetServerHandle 27
Synopsis 27
Comments. 27
Return value 27

SSCGetStatusNum 27
Synopsis 28
Comments. 28
Return value 28

SSCIsRunning 28
Synopsis 28
Return value 28
Comments. 29

SSCIsThisLocalServer 29
Synopsis 29
Return value 29
Comments. 29

SSCRegisterThread 29
Synopsis 29
Return value 29
Comments. 29
See also. 30

SSCSetNotifier 30
Synopsis 30
Return value 31
Comments. 32
Example 32

SSCSetState 33
Synopsis 33
Return value 34
Comments. 34

SSCStartDisklessServer 34
Synopsis 34
SSCStartDisklessServer parameter options . . . 35
Return value 35
Comments. 35
Example 36
See also. 36

SSCStartServer 36
Synopsis 36
Return value 37
Comments. 38
See also. 38

SSCStopServer 38
Synopsis 38
Return value 39
Comments. 39
See also. 39

SSCUnregisterThread 39
Synopsis 39
Return value 40
Comments. 40
See also. 40

4 Using the diskless capability 41
Configuration parameters for a diskless server. . . 41

iii

Parameters used in diskless servers 41
Configuration parameters that do not apply to
diskless engines 43

5 Using solidDB linked library access
with Java. 45
Overview of solidDB JDBC Accelerator (SJA) . . . 45
How the Accelerator works 45
System requirements 47
Basic usage 47

Installation 47
Compiling and running a program 47
Making JDBC connections 48

Limitations 49
solidDB Server Control (SSC) API 49

Appendix. Linked library access
parameters 53
Linked library access parameters 53

Accelerator section 53

Index 55

Notices 57

iv IBM solidDB: Linked Library Access User Guide

Figures

1. solidDB with Linked Library Access. 2
2. Linking to solidDB 4

3. solidDB with Linked Library Access - APIs 7

v

vi IBM solidDB: Linked Library Access User Guide

Tables

1. Typographic conventions xi
2. Syntax notation conventions xii
3. Linked library access system libraries 11
4. Library files 12
5. SSCStartServer parameters 16
6. SSCStartServer argv options 17
7. Summary of control API functions 24
8. Control API parameter usage types 25
9. Error codes and messages for control API

functions 26
10. SSCGetStatusNum parameters 28
11. SSCIsRunning parameters 28

12. SCCRegisterThread parameters 29
13. SSCSetNotifier parameters 30
14. SSCSetState parameters 33
15. SSCStartDisklessServer parameters 34
16. Command line options for the argv parameter 35
17. SSCStartServer parameters 36
18. SSCStopServer parameters 38
19. SCCUnregisterThread parameters 39
20. Configuration parameters not applicable to

diskless engines 43
21. Accelerator parameters. 53

vii

viii IBM solidDB: Linked Library Access User Guide

Summary of changes

Changes for revision 03

v Editorial corrections.

Changes for revision 02

v Editorial corrections.

Changes for revision 01

v Editorial corrections.

ix

x IBM solidDB: Linked Library Access User Guide

About this manual

The IBM® solidDB® Linked Library Access is a higher performance version of
solidDB® data management solution. To avoid network delays, the solidDB
executable and the user application are linked in the same program space to
produce a single executable. By replacing the network connection and Remote
Procedure Calls (RPCs) with local function calls, performance is improved
significantly.

This guide contains information specific to the linked library access. This guide
supplements the information contained in the IBM solidDB Administrator Guide,
which contains details on administration and maintenance of solidDB.

This guide assumes a working knowledge of the C programming language, general
DBMS knowledge, familiarity with SQL, and knowledge of a solidDB data
management product, such as solidDB in-memory database, or solidDB disk-based
engine. If you are going to work with the solidDB Java™ Accelerator, then this
manual also assumes a working knowledge of Java.

Typographic conventions
solidDB documentation uses the following typographic conventions:

Table 1. Typographic conventions

Format Used for

Database table This font is used for all ordinary text.

NOT NULL Uppercase letters on this font indicate SQL keywords and
macro names.

solid.ini These fonts indicate file names and path expressions.

SET SYNC MASTER YES;
COMMIT WORK; This font is used for program code and program output.

Example SQL statements also use this font.

run.sh This font is used for sample command lines.

TRIG_COUNT() This font is used for function names.

java.sql.Connection This font is used for interface names.

LockHashSize This font is used for parameter names, function arguments,
and Windows® registry entries.

argument Words emphasized like this indicate information that the
user or the application must provide.

Administrator Guide This style is used for references to other documents, or
chapters in the same document. New terms and emphasized
issues are also written like this.

xi

Table 1. Typographic conventions (continued)

Format Used for

File path presentation Unless otherwise indicated, file paths are presented in the
UNIX® format. The slash (/) character represents the
installation root directory.

Operating systems If documentation contains differences between operating
systems, the UNIX format is mentioned first. The Microsoft®

Windows format is mentioned in parentheses after the
UNIX format. Other operating systems are separately
mentioned. There may also be different chapters for
different operating systems.

Syntax notation conventions
solidDB documentation uses the following syntax notation conventions:

Table 2. Syntax notation conventions

Format Used for

INSERT INTO table_name
Syntax descriptions are on this font. Replaceable sections are
on this font.

solid.ini This font indicates file names and path expressions.

[] Square brackets indicate optional items; if in bold text,
brackets must be included in the syntax.

| A vertical bar separates two mutually exclusive choices in a
syntax line.

{ } Curly brackets delimit a set of mutually exclusive choices in
a syntax line; if in bold text, braces must be included in the
syntax.

... An ellipsis indicates that arguments can be repeated several
times.

.

.

.

A column of three dots indicates continuation of previous
lines of code.

xii IBM solidDB: Linked Library Access User Guide

1 Introducing linked library access

The IBM® solidDB Linked Library Access is a function library that provides the
same functionality and interfaces available with the solidDB. A user application
may be linked to this library. The linked application communicates with the server
by using direct function calls, thus skipping the overhead required when the client
and server communicate through network protocols such as TCP/IP. Linking the
application and server into a single executable provides higher performance.

Your application does not have to be re-written to use the linked library access
library. For example, you do not need to call proprietary functions (except a few to
start and stop the database server). Instead, your application may continue to use
the same ODBC function calls that it has always used. When the linked library
access library is linked to your application, these ODBC function calls go directly
to the server, bypassing the network.

Your application also has access to some additional linked library access function
calls to do things such as scheduling tasks within the server. However, you are not
required to use these function calls unless you want to.

The fact that your server is linked to your application does not mean that your
linked application is the only client that can use the server. A solidDB server that is
executing as an linked library access function library is accessible not only to the
"local" client application (the application that is linked directly to the library), but
also to "remote" client applications (which connect to the server through
communications protocols such as TCP/IP). Your remote clients see the linked
library access server as similar to any other solidDB server, while your local client
sees a faster, more precisely controllable version of the solidDB server.

Note: Although "remote" applications usually run on a different computer from
the one that the server is running on, an application is also considered "remote" if
it uses a network communication protocol to communicate with the server, even if
that client runs on the same computer as the database server runs on.

1

The figure above shows a sample solidDB that uses the linked library access
library.

Note:

Local application requests are handled through solidDB SA API or ODBC API
direct function calls. For the local application, linked library access also provides a
Control API which handles local requests for controlling solidDB background
processes and client tasks. You may also use JDBC calls with the linked library
access. See 5, “Using solidDB linked library access with Java,” on page 45.

As you can see in the illustration, remote clients communicate through an ODBC
or JDBC driver that is linked to the client application, while the local client
application does not need any remote communication driver.

Linked library access library
In a standard (non-linked library access) solidDB configuration, the application (the
"client") and the database engine (the 'server") are separate processes that
communicate through a network protocol. The client must link to a
communications driver (such as an ODBC or JDBC driver) that communicates with
the database server through the network.

With the linked library access, an application links to a static library (for example,
.lib or .a for UNIX) that contains the full database server functionality. This means
solidDB runs in the same executable with the application, eliminating the need to
transfer data through the network. The application that links to the linked library
access library can also have multiple connections, using both ODBC API and SA
API. Both of these APIs are reentrant, allowing simultaneous connections from
separate threads.

21

JDBC/ODBC
driver

Application N
(optional)

JDBC/ODBC
driver

Application 2
(optional)

solidDB linked
library

Application 1

JDBC/ODBC
driver

Application N
(optional)

JDBC/ODBC
driver

Application 2
(optional)

solidDB

JDBC/ODBC
driver

Application 1

1. In a standard solidDB database configuration, the applications and the server are separate programs.

2. solidDB linked library is a library of subroutines that are linked into an application. Other applications may also
communicate with the server.

Figure 1. solidDB with Linked Library Access

2 IBM solidDB: Linked Library Access User Guide

A user application that links directly to the linked library access library can also
create remote connections to other database servers. The connect string that is
passed to the ODBC API or SA API connect function defines whether the
connection type is local or remote.

For details on linking an application, read “Linking applications for the linked
library access” on page 11.

When you start your application, only the code in your application starts running
automatically. The server code is largely independent of your application code, and
you must explicitly start the server by calling a function. (In most or all
implementations, the server runs on threads that are separate from the thread(s)
used by the application. Calling the function to start a server will perform any
initialization steps required by the server code, create the appropriate additional
threads if necessary, and start the server running on those threads.)

Disk-based vs. diskless servers
Linked library access library contains two different function calls to start the server.
One of the function calls starts a normal (that is, disk-based) server, while the other
starts a server that does not use the disk drive. For more information, see 4,
“Using the diskless capability,” on page 41 and the descriptions of the
SSCStartServer and SSCStartDisklessServer functions.

Library contents
Linked library access library includes functions for three separate APIs:
v solidDB Control API (SSC API) library that contains functions to control task

scheduling.
v solidDB ODBC Driver functions that allows for direct communication with the

server library, without going through the network.
v solidDB SA API library which may be required for additional functionality

using the linked library access. For example, this library allows you to insert,
delete, and select records from a table.

Because your application gets linked to a library with all three of these APIs (SSC,
SA, and ODBC), your application program may call functions from any
combination of these APIs. For details on each of these APIs, read “solidDB client
APIs and drivers for linked library access” on page 5.

Note: Remote applications have access to the same three APIs (SSC, SA, and
ODBC). However, the functions for these three APIs are not all in the same file for
remote applications. For details on remote and dual role applications, read
“Application types used with linked library access” on page 4. For information on
API files for remote applications, read “solidDB client APIs and drivers for linked
library access” on page 5.

1 Introducing linked library access 3

Application types used with linked library access
The linked library access application is "local" to the server; the server and the
application are combined into a single program. Calls to ODBC functions actually
go directly to the server, rather than going through an ODBC driver and the
communications protocol (such as TCP/IP).

In addition to handling requests from the local application that is linked to the
linked library access library, the server also handles requests from remote
applications.

A remote application is not linked to the linked library access library. It is a
separate executable that must communicate with the server using a network
connection (such as TCP/IP) or other connection (for example shared memory).
Remote applications are usually, but not always, run on a different computer from
the one that is running the server. However, a single computer can run an linked
library access local application, while running one or more remote applications as
separate processes.

Most applications are either local (that is linked to the linked library access library
in a single executable) or remote (never linked to the linked library access library).
However, it is also possible to write an application that can be either local and
remote; it switches modes, depending upon how it is compiled and linked. Such a
dual mode application uses, for example, the same C-language application code in
either local or remote mode; but it is linked to a different library when in local
mode than when in remote mode.

21

JDBC/ODBC
driver

Application N
(optional)

JDBC/ODBC
driver

Application 2
(optional)

solidDB linked
library

Application 1

JDBC/ODBC
driver

Application N
(optional)

JDBC/ODBC
driver

Application 2
(optional)

solidDB

JDBC/ODBC
driver

Application 1

1. In a standard solidDB database configuration, the applications and the server are separate programs.

2. solidDB linked library is a library of subroutines that are linked into an application. Other applications may also
communicate with the server.

Figure 2. Linking to solidDB

4 IBM solidDB: Linked Library Access User Guide

Using dual-mode applications with linked library access
In the case of linked library access, for example, a dual-mode application must be
linked to the local linked library access library when it is run locally. However,
when it is run remotely, the dual-mode application must be linked to the linked
library access control API stub library (for example, solidctrlstub.lib in
Windows), so that it can be compiled, linked, and executed without link-time
errors.

The "Control API stub library" is required for remote applications because the
linked library access's own Control API (which is provided in the local linked
library access library) cannot be used with remote applications. For example,
assume you have a local application (containing Control API functions) that links
to a standard ODBC library. You want to run the same application remotely. By
linking to the Control API stub library, you avoid having to remove the Control
API function calls from your code. In this way, you can easily turn your linked
library access local application into a normal remote client application.

Note: The Control API stub library contains "do-nothing" functions; if you call
them in a remote application, they have no effect on the server.

A dual-mode application is useful for other reasons as well:
v You may want to test your local application first before linking it with the linked

library access library.
v You may want all users/processes to have the same application logic whether

they are local or remote.

Dual-mode application

Assume there are two users who are running the same application. User1 runs the
application locally (benefiting from higher performance). User2 runs the same
application remotely.

User1 (local user) compiles and links with the server library (solidac.a, for
example) and is responsible for starting and stopping the server and performing
other scheduling tasks using the linked library access's Control API. User2 (remote
user) runs the same application, but is not able to connect to the server until User1
has started the server. Thus, only User1 is able to control the tasking system.

solidDB client APIs and drivers for linked library access
Below is a brief description of the APIs available for use with the linked library
access.

Note:

These descriptions use the term "local" and "remote" applications as defined in
“Application types used with linked library access” on page 4.

solidDB SA API
solidDB SA defined SA API is a low-level proprietary C-language API to solidDB
data management services. It is included in the linked library access library (for
example, ssolidacxx.dll for Windows or solidac.a for UNIX). The linked library
access library includes the SA-API library that provides support for local
applications using SA API function calls.

1 Introducing linked library access 5

The SA API library is used internally in solidDB products and provides access to
data in solidDB database tables. The library contains 90 functions providing
low-level mechanisms for connecting the database and running cursor-based
operations. solidDB SA API can enhance performance significantly. You can use SA
API to optimize the performance of batch insert operations, for example.

For remote applications, the linked library access library also provides support for
the SA API function calls. However, you must link to a separate SA API library file
(for example, solidimpsa.lib for Windows).

For details on the solidDB SA API, see solidDB Programmer Guide.

solidDB ODBC API
solidDB ODBC API provides a standards-compliant way to access data of a local or
remote solidDB database through SQL. It provides functions for controlling
database connections, executing SQL statements, retrieving result sets, committing
transactions, and other data management functionality.

ODBC API, a Call Level Interface (CLI) for solidDB databases, is compliant with
ANSI X3H2 SQL CLI, and is included in the linked library access library (for
example, ssolidacxx.dll for Windows or solidac.a for UNIX).

Linked library access supports the ODBC 3.51 standard. The linked library access
library includes solidDB ODBC 3.x, which provides support for local applications
that require direct function calls to the server.

For local applications, the linked library access library provides support for ODBC
function calls. For remote applications (or for a dual-mode application that is to be
run remotely), you must link the ODBC Driver to get the same functionality.

If your application is a dual mode application (i.e. can be run either locally or
remotely), and if it uses linked library access's Control API and ODBC, then you
will need two different executables, one to be run locally and one to be run
remotely. When you link your application to run it locally, you will link it to the
linked library access library, which provides support for both the ODBC functions
and the Control API library. When you link your application to run it remotely,
you must link it to both the ODBC driver and to the Control API stub library (for
example, solidctrlstub.lib for Windows). This stub library does not actually give
your remote application any control over the server; it simply allows you to
compile and link your program without getting errors about "unresolved symbols".

Note:

When ODBC functions (in a dual mode application) are called remotely, then the
calls go through the network from the client to the server. When ODBC functions
are called locally (in accelerated applications), then the ODBC subroutine library
bypasses the network and directly connects the local application to the server.

Read IBM solidDB Programmer Guide for more details on ODBC API.

solidDB JDBC API
JDBC API is used by remote applications only. As the core API for JDK 1.2, it
defines Java classes to represent database connections, SQL statements, result sets,
database metadata, etc. It allows you to issue SQL statements and process the

6 IBM solidDB: Linked Library Access User Guide

results. JDBC is the primary API for database access in Java. Linked Library Access
supports both JDBC 1.x and 2.x. Read IBM solidDB Programmer Guide for more
details.

solidDB Server Control API (SSC API)
solidDB Server Control API (SSC API) is a C-language, thread-safe interface to
control the server behavior in solidDB database products.

The Control API is included in the linked library access library (for example,
ssolidacxx.dll for Windows or solidac.a for UNIX). The linked library access
library provides support for local applications using Control API function calls and
a separate library is available for remote-only applications.

If your application will run remotely and contains Control API function calls, then
you must link the Control API Stub library (for example, solidctrlstub.lib for
Windows). This library does not actually give your remote application control of
the server; it merely allows you to compile and link your application as a remote
application without getting link-time errors from solidDB with linked library
access.

solidDB
database files

Local
APIs

Accelerator library

Query executor

SQL parser and optimizer

SA
API

Control
API

ODBC

Linked application

Network
layer

ODBC
API

JDBC
API

External application

solidDBConsole

Figure 3. solidDB with Linked Library Access - APIs

1 Introducing linked library access 7

8 IBM solidDB: Linked Library Access User Guide

2 Creating and running an linked library access application

This chapter describes how to create and run the linked library access application.
It includes the following topics:
v Accessing the linked library access library
v Linking Applications to the linked library access library
v Creating or using an existing database
v Starting and stopping solidDB with the linked library access

Note: This chapter provides linked library access-specific additions, supplements,
and linked library access usage differences from solidDB without the linked library
access. For information on solidDB SQL, solidDB data management tools, general
solidDB administration and maintenance, and database error codes, refer to the
IBM solidDB Administrator Guide. Read 3, “Description of control API,” on page 23
and IBM solidDB Programmer Guide for details on developing applications with an
linked library access supported API.

Accessing the linked library access library
The solidDB with linked library access is a library file that is included in the
solidDB Development Kit.

For example, if you are using solidDB with HP-UX, the linked library access
library file is solidac.a. Refer to “Linking applications for the linked library
access” on page 11 for a list of platform-specific libraries.

The linked library access library for all platforms contains the following:
v solidDB data management functionality
v SA API header (sa.h) for local user applications
v solidDB Control API interface header (sscapi.h) for local user applications

For details on linking a user application to the linked library access library, read
“Linking applications for the linked library access” on page 11.

Libraries for remote applications
For the purposes of this linked library access guide, a "remote" application is any
application that is not linked to the server - that is, any application that is not
using the linked library access library. Thus an application that is running on the
same node as the database server, but that is not linked to it, is considered to be a
"remote" application. A remote application communicates with the server through a
network communications protocol such as TCP/IP. A "local" application, on the
other hand, is linked to the linked library access library, and can call functions in
that library directly, without going through a network protocol.

Because a remote application goes through the network communications protocol,
the linked library access does not improve performance for remote applications.
Only the local application (the one that is directly linked to the accelerator library)
has higher performance.

9

In some cases, however, remote applications can benefit from improved
performance by using the SA API, which allows low-level operations to read from
and write to the database.

If you are using a remote application, you may need to link to the following
libraries in the solidDB SDK into your application.
v Link to the solidDB Control API stub library (solidctrlstub.lib for Windows

platforms), when you have Control API function calls in your application and
you want to run your application remotely. (Note that if your application is a
local rather than remote application —i.e. if it is directly linked to the linked
library access library - then you do not need solidctrlstub.lib.)

For more details on the Control API Stub library (solidctrlstub.lib), read “Using
dual-mode applications with linked library access” on page 5.
v Link to solidDB SA API (solidimpsa.lib for Windows platforms) if you are

running a remote solidDB SA API application (without linked library access).

If you are using ODBC, SA API, or JDBC as remote applications only (that do not
use Control API function calls), then you do not need to link to solidctrlstub.lib.

Sample C applications
For Accelerator Control API usage samples (available in C programming language),
refer to samples/aclib, samples/aclib_replication and samples/
aclib_control_api under the installation directory. These C samples reflect linked
applications that use ODBC API functions to connect to solidDB servers.

Using data synchronization
If you are new to solidDB data synchronization, IBM solidDB Advanced Replication
User Guide contains introductions on how to use the sample scripts provided with
solidDB.

Before you run the sample C application acsnet.c (under directory
samples/aclib_replication), it is recommended that you become familiar with
solidDB functionality by doing at least one of the following:
v Using solidDB (without the linked library access) to run the SQL scripts

contained in IBM solidDB Advanced Replication User Guide. These scripts are
found in samples/replication.

v Running the SQL scripts locally, using the solidDB linked library access. As a
prerequisite, you are required to set up an application to start the server
according to the instructions in this chapter. For details, read “Linking
applications for the linked library access” on page 11 and “Starting and shutting
down solidDB linked library access” on page 15.

Note: You cannot use the SA API to run synchronization commands.
v Running the implementation sample file aclibstandalone.c, which with the

linked library access library, emulates a normal server. The sample file is located
in directory samples/aclib.

After using any of these methods, it is possible to run all the steps in IBM solidDB
Advanced Replication User Guide's chapter titled Getting Started with Data
Synchronization using solidDB SQL Editor (solsql).

10 IBM solidDB: Linked Library Access User Guide

Setting up your ODBC application with the advanced replication
scripts
You can build an ODBC application, similar to the sample C application acsNet.c,
to execute all statements required to set up, configure, and run a synchronizing
environment. You can find acsNet.c under directory samples/aclib_replication.

To set up sample databases for use with an ODBC client application, you can
execute sample scripts replica3.sql, replica4.sql, replica5.sql, and
replica6.sql, all of which you can find in the samples/replication/eval_setup
directory. These sample scripts contain SQL statements that write new data to
replica(s) and control the execution of synchronization messages. These scripts may
be run independently through the solidDB SQL Editor (solsql).

Alternatively, you can embed the SQL statements into a C/ODBC application,
compile, and link it directly to the linked library access library. When linked with
the linked library access, the sample scripts allow you to get the performance
benefit inherent in linked library access's architecture.

The sample program embed.c in the samples/odbc directory illustrates how to set
up databases with an ODBC client application using linked library access. You can
insert the SQL commands from the sample scripts, such as replica3.sql, etc., into
the embed.c application.

Linking applications for the linked library access
The solidDB linked library access is a library that must be linked to a user
application. As long as the application is running, local and remote application
requests for solidDB data management services are available through the library.

Note: If you are writing remote user applications that use solidDB Control API,
you will need to link your remote application to the solidDB Control API stub
library (for example, solidctrlstub.lib for Windows). If you are using solidDB
SA API remotely (without linked library access) then you need to link to a separate
solidDB API library (solidimpsa.lib for Windows). If you are only using ODBC,
SA API, or JDBC remotely, without Control API, then there is no need to link to
the solidDB Control API stub library.

You link only one application directly to the linked library access library at one
time. However, once the linked application is up and running, and the server
started, any network client can connect to the server using any of the protocols
supported by the server, which depends on the operating system. These are for
example, TCP/IP, shared memory and named pipes. Remote clients cannot use
direct function calls.

When linking an application to solidDB with the linked library access, use one of
the following libraries required for your operating system. Refer to your operating
system documentation.

Table 3. Linked library access system libraries

Platforms solidDB with linked library access library

Windows solidimpac.lib (this is an import library file that gives you access to
the real library file, which is ssolidacxx.dll)

Solaris solidac.a

2 Creating and running an linked library access application 11

Table 3. Linked library access system libraries (continued)

Platforms solidDB with linked library access library

HP-UX solidac.a

Linux® solidac.a

VxWorks solidac.a

Preparing user applications for the linked library access
To allow your application to use the solidDB with linked library access, be sure to:
v Link to the linked library access library instead of to the driver libraries.

If you are using remote applications, you may need to link to other libraries. For
details, read “Libraries for remote applications” on page 9.

v Change the connect string to the local or remote server name. For details, read
“Establishing a local or remote connection to solidDB with the linked library
access” on page 14.

v If needed, add calls to SSCStartServer and SSCStopServer or other Control API
calls. For details, read “Control API reference” on page 25.

Signal handlers
Signal handlers are used to report the occurrence of an exceptional event to the
application, for example division by zero. You must not set signal handlers in user
applications because they would override the signal handlers that are set by the
linked library access. For example, if the user application sets a signal handler for
floating point exceptions, that setting overrides the handler set by the linked
library access. Thus the server is unable to catch, for example, division by zero.

Dynamic link library
solidDB provides both a "static" and a "dynamic" version of the linked library
access library. The names of the dynamic link library files are shown below for
some major platforms. (For the names of the static libraries, see “Linking
applications for the linked library access” on page 11.

Table 4. Library files

Platforms solidDB with Linked Library Access Library

Windows ssolidacxx.dll

Solaris ssolidacxx.so

HP-UX ssolidacxx.sl

Linux ssolidacxx.so

Both the static and dynamic library files contain a complete copy of the solidDB
server, in library format. When you use a static library file (e.g. lib/solidac.a),
you link your program directly to it, and both your code and the library code are
written to the resulting executable file. If you link to a dynamic library file, the

12 IBM solidDB: Linked Library Access User Guide

code from the library is not included in the output file that contains your
executable program. Instead, the code is loaded from the dynamic link library
separately when your program runs.

Other than changing the size of your executable, there is very little difference
between linking to the static library file vs. the dynamic library file. The total
amount of code in memory at any one time is similar (assuming that you are
executing a single client and a single server on your computer). Performance is
also similar, although there is a slight amount of extra overhead if you use the
dynamic library.

The main advantage of using the dynamic link library file is that you can save
memory IF you execute more than one copy of the server in the same computer.
For example, if you are doing development work on a single computer and you
want to have both a advanced replication Master and advanced replication Replica
on the computer at the same time, or you'd like to have a HotStandby Primary and
a HotStandby Secondary at the same time, then you may prefer to use the dynamic
library so that you don't have multiple copies of the linked library access library in
memory at the same time.

On Microsoft Windows, the solidDB linked library access includes the additional
file lib/solidimpac.lib. On Microsoft Windows, if you want to use a dynamic link
library, you do not link directly to the ssolidacxx.dll dynamic link library itself;
instead you link to solidimpac.lib, which is an import library. This links only a
small amount of code to your client executable. At the time that your client
program actually executes, the ssolidacxx.dll file will automatically be loaded by
the Microsoft Windows operating system, and your client will be able to call the
usual linked library access functions in that .dll file. The .dll file must be in your
load path when you run the program that references that .dll.

Note: Using the dynamic link library file does not mean that you can have
multiple "local" clients linked to the solidDB server. Even with the dynamic library
approach, you are still limited to a single local client; all other clients must be
remote clients, which means that they will communicate with the solidDB server
by using TCP or some other network protocol, rather than the direct function calls
available to the local client.

Makefile examples
Following are examples for providing the library name in Windows and Vxworks.

Microsoft Windows MakeFile example

For the Microsoft Windows makefile example below, the solidDB library name for
the linked library access is used, solidimpac.lib.
compiler
CC = cl
compiler flags
CFLAGS = -I. -DSS_WINDOWS -DSS_WINNT
linker flags and directives
SYSLIBS = libcmt.lib kernel32.lib advapi32.lib netapi32.lib wsock32.lib
user32.lib oldnames.lib gdi32.lib
LFLAGS = ..\solidimpac.lib
OUTFILE = -Fe

MyApp building
all: myapp

2 Creating and running an linked library access application 13

myapp: myapp.c
$(CC) $(CFLAGS) $(OUTFILE)myapp myapp.c /link$(LFLAGS)

/NODEFAULTLIB:libc.lib

VxWorks MakeFile example

For the VxWorks makefile example below, the solidDB library name for the linked
library access is used, solidac.a. Note that the example uses backslashes. If your
makefile program does not support backslashes in pathnames, then change the
backslashes to slashes.
CC = ccppc
CFLAGS = -DSS_UNIX -DSS_VXW -I. -I..\..\include -I$(WIND_BASE)
\target\h \
-DCPU=PPC603 -DMV2600
LFLAGS = -nostartfiles -s -r ..\..\lib\solidac.a
OUTFILE = -o

solidDB with AcceleratorLib samples building

all: acsNet acsrv

acsNet: acsNet.c
$(CC) $(CFLAGS) $(OUTFILE)acsNet acsNet.c $(LFLAGS)

acsrv: acsrv.c
$(CC) $(CFLAGS) $(OUTFILE)acsrv acsrv.c $(LFLAGS)

Establishing a local or remote connection to solidDB with the
linked library access

Once an application is linked to the linked library access library, it can use ODBC
API or SA API to establish a local or remote connection directly to the local server.
An application can also establish remote connections to other solidDB servers,
including others using the linked library access.

Establishing a local connection
When you establish a local connection, the client's calls to the server are direct
function calls to the linked library access library; they do not go through the
network.

In the ODBC API, to establish a connection to a local server (i.e. to the server that
was linked to the application), the user application calls the SQLConnect function
with the literal string "localserver". Note that for the local server connection you
can also specify an empty source name "". You can also specify a local server name,
but this will cause linked library access to use a "remote" connection (to go
through the network rather than to use the direct function calls to the linked
library access library).

The following ODBC API code examples connect directly to a local solidDB server
with username dba and password dba :
rc = SQLConnect(hdbc, "localserver", (SWORD)SQL_NTS, "dba", 3, "dba", 3);

or
rc = SQLConnect(hdbc, "", (SWORD)SQL_NTS, "dba", 3, "dba", 3);

In the SA API, to establish a connection, the user application calls the SaConnect
function with the literal string "localserver" (not the server name). Note that for the
local server connection you can also specify an empty source name "". You can also

14 IBM solidDB: Linked Library Access User Guide

specify a local server name, but this will cause linked library access to use a
"remote" connection (to go through the network rather than to use the direct
function calls to the linked library access library).

The following SA API example code connects directly to a solidDB server with
username dba and password dba :
SaConnectT* sc = SaConnect("localserver", "dba", "dba");

or
SaConnectT* sc = SaConnect("", "dba", "dba");

Establishing a remote connection
When you establish a remote connection, the client's calls to the server will go
through the network rather than use the direct function calls to the linked library
access library.

In the ODBC API, to establish a remote connection, the user application calls the
SQLConnect function with the name of the remote server. The following ODBC
API code example connects to a remote solidDB server with username dba and
password dba. In this example, the network protocol that the client and server use
is "tcp" (TCP/IP). The server is named "remote_server1" and the port that it listens
on is 1313.
rc = SQLConnect(hdbc, "tcp remote_server1 1313",
(SWORD)SQL_NTS, "dba", 3, "dba", 3);

In the SA API, to establish a remote connection, the user application calls the
SaConnect function with the name of the remote server. In this example, the
network protocol that the client and server use is "tcp" (TCP/IP). The server is
named "remote_server1" and the port that it listens on is 1313.
SaConnectT* sc = SaConnect("tcp remote_server1 1313", "dba", "dba");

Starting and shutting down solidDB linked library access
You can start up, restart, and shut down the solidDB server from the following
APIs:
v Explicitly, from local (linked) user application by calling the Control API

function SSCStartServer to start solidDB and SSCStopServer to shut it down.
When you start a new solidDB server that does not already have a database, you
must explicitly specify that solidDB create a new database with the function
SSCStartServer() with the

-Uusername
-Ppassword
-Ccatalogname (the default database catalog name)

parameters. For details, read “Explicit startup with the Control API function
SSCStartServer” on page 16.

v Implicitly, when connecting locally to solidDB for the first time, either using
ODBC API function SQLConnect or SA API function SaConnect. In this case,
shut down occurs when the last local connection disconnects from solidDB using
either function SQLDisconnect or SaDisconnect.
When solidDB engine/server is started implicitly from the application, it checks
if a database already exists in the solidDB directory. If a database file is found,
solidDB will automatically open that database. If a database file is not found,
then solidDB will give an error. (solidDB will not create a new database during

2 Creating and running an linked library access application 15

implicit startup. To create a new database, you must use an explicit startup
function, such as SSCStartServer, and pass the appropriate parameters.)
For details, read “Implicit startup with ODBC API function call SQLConnect” on
page 18 and “Implicit startup with SA API function call SaConnect” on page 20.

Note:

1. At server start up, recovery is performed if needed before control returns to the
application. Therefore, if the server is successfully started, it is ready to serve
application requests. For the duration of the application process, the server can
be started or stopped as needed.

2. If you want to start a diskless server, you must start the server with Control
API function SSCStartDisklessServer.

Explicit startup with the Control API function SSCStartServer
To start solidDB explicitly, have the user application call the following Control API
function:
SSCStartServer (int argc, char* argv [],
SscServerT* h, SscStateT runflags)

where parameters are:

Table 5. SSCStartServer parameters

Parameter Description

argc The number of command line arguments.

argv Array of command line arguments that are used during the function
call. The argument argv[0] is reserved for the path and filename of the
user application only and must be present. For valid options, see
SSCStartServer options below.

h Each server has a "handle" (a pointer to a data structure) that identifies
that server and indicates where information about that server is stored.
This handle is required when referencing the server with other Control
API functions. The handle of the server is provided to you when you
call the SSCStartServer function. To get the handle of the server, you
create a variable that is of type pointer-to-server-handle (i.e. you create
an SSCServerT *, which is a pointer to a handle — essentially a pointer
to a pointer) and you pass that when you call SSCStartServer. If the
server is created successfully, then the SSCStartServer function will
write the handle (pointer) of the new server into the variable whose
address you passed.

runflags The options for this parameter are SSC_STATE_OPEN (remote
connections are allowed) and SSC_STATE_PREFETCH (the server
performs a prefetch if needed). Prefetch refers to the memory and/or
disk cache that provides read-ahead capability for table content. See
below for a runflags parameter entry:

runflags = SSC_STATE_OPEN | SSC_STATE_PREFETCH;

When you start the server for the first time, solidDB creates a new database only if
you have specified the database administrator's username, password, and a name
for the default database catalog. For details on the database catalog, read the

16 IBM solidDB: Linked Library Access User Guide

section "Managing Database Objects" in chapter "Using solidDB SQL for Data
Administration" in IBM solidDB Administrator Guide.

For example:
SscServerT h; char* argv[4];
argv[0] = "appname"; /* path and filename of the user app. */
argv[1] = "-UDBA"; /* user name */
argv[2] = "-PDBA"; /* user’s password */
argv[3] = "-CDBA"; /* catalog name */
/* Start the server */
rc = SSCStartServer(argc, argv, &h, run_flags);

If you start the server without an existing database and do not specify a database
catalog name, solidDB returns an error that the database is not found.

Note: If you already have an existing database, you do not need to specify the
username and password, or the catalog name.

By default, the database will be created as one file (with the default name,
solid.db, or the name you specified in the solid.ini file) in the solidDB working
directory, where the current working directory is located. An empty database
containing only the system tables and views uses approximately 850 KB of disk
space. The time it takes to create the database depends on the hardware platform
you are using.

After the database has been created, solidDB starts listening to the network for
remote client connection requests.

SSCStartServer argv parameter options
Following are the command line options for the argv parameter. Note that all
options are case sensitive.

Table 6. SSCStartServer argv options

Option Description

-c dir Changes the working directory.

-m Monitors users' messages and SQL statements.

-n name Sets the server name.

-U username Specifies the user name of the administrator for the database being
created. The user name is case insensitive and it requires at least two
characters. For user name, the maximum number of characters is 80. A
user name must begin with a letter or an underscore. Use lower case
letters from a to z, upper case letters from A to Z, the underscore
character '_', and digits from 0 to 9.

CAUTION:
You must remember your user name to be able to connect to solidDB.
There are no default user names; the user name you enter when
creating the database is the only user name available for connecting
to the new database.

2 Creating and running an linked library access application 17

Table 6. SSCStartServer argv options (continued)

Option Description

-P password Specifies the password of the administrator for the database being
created. The password is case insensitive and it requires at least three
characters. Passwords can begin with a letter, an underscore, or a digit.
Use lower case letters from a to z, upper case letters from A to Z, the
underscore character '_', and digits from 0 to 9.

-C catalogname Specifies the name of the default catalog of the database, which is
required if you are starting the server for the first time. For details on
catalogs, read the section "Managing Database Objects" in chapter
"Using solidDB SQL for Data Management" in IBM solidDB
Administrator Guide.

-xautoconvert Converts database format to current version and starts server process.

-xforcerecovery Does a forced roll-forward recovery.

-xignoreerrors Ignores index errors.

-xtestblocks Tests database blocks.

-xtestindex Tests database index.

Starting up SSCStartServer

Start up SSCStartServer with the servername, the catalog name, and the
administrator's username and password:
SscStateT runflags = SSC_STATE_OPEN; SscServerT h; char* argv[5];
argv[0] = "appname"; /* path and filename of the user app. */
argv[1] = "-nsolid1"; argv[2] = "-UDBA" argv[3] = "-PDBA";
argv[4] = "-CDBA"; /* Start the server */ rc =
SSCStartServer(argc, argv, &h, run_flags);

Note: If you already have an existing database, you do not need to specify the
username and password, or the catalog name.

Shut down with SSCStopServer
If the server is started by SSCStartServer, then it must be shut down with the
following function call in the embedded application:

SSCStopServer()

For example:
/* Stop the server * /
SSCStopServer (h, TRUE);

Implicit startup with ODBC API function call SQLConnect
When function SQLConnect is called for the first time, the server is implicitly
started. The server is shut down implicitly when the user application calls function
SQLDisconnect and this is the last open local connection. Note that the server will
shut down regardless of currently existing remote connections.

18 IBM solidDB: Linked Library Access User Guide

Note: When you start the server for the first time, you must create a solidDB
database by using function SSCStartServer() and specifying the default database
catalog, along with the administrator's username and password. For a description
and example, read “Explicit startup with the Control API function SSCStartServer”
on page 16.

Following is an example of implicit start up and shut down with SQLConnect and
SQLDisconnect:
/* Connection #1 */
rc = SQLConnect (hdbc1, "", SQL_NTS, "dba", SQL_NTS, "dba",
SQL_NTS); //Server Started Here
... odbc calls

/* Disconnect #1 */
SQLDisconnect (hdbc1); //Server Shut Down Here

/* Connection #2 */
rc = SQLConnect (hdbc2, "", SQL_NTS, "dba", SQL_NTS, "dba",
SQL_NTS); //Server Started Here
... odbc calls

/* Disconnect #2 * /
SQLDisconnect (hdbc2); //Server Shut Down Here

OR
/* Connection #1*/
rc = SQLConnect (hdbc1, "", SQL_NTS, "dba",
SQL_NTS, "dba", SQL_NTS); // Server Started Here

/* Connection #2*/
rc = SQLConnect (hdbc2, "", SQL_NTS, "dba", SQL_NTS, "dba", SQL_NTS);

... odbc calls

/* Disconnect #1 */
SQLDisconnect (hdbc1);
/* Disconnect #2 * /
SQLDisconnect (hdbc2); // Server Shut Down Here

Note: If the server is started with an SSCStartServer function call, then
SQLDisconnect does not do implicit shut down. The server must be shut down
explicitly, either by SSCStopServer, ADMIN COMMAND 'shutdown', or other
explicit shutdown methods.
SscStateT runflags = SSC_STATE_OPEN;
SscServerT server;
SQLHDBC hdbc;
SQLHENV henv;
SQLHSTMT hstmt;

/* Start the server */
SSCStartServer (argc, argv, &server, runflags); // Server Started Here

/* Alloc environment */
rc = SQLAllocEnv (&henv);

/* Connect to the database */
rc = SQLAllocConnect (henv, &hdbc);
rc = SQLConnect (hdbc, "", SQL_NTS, "dba", SQL_NTS, "dba", SQL_NTS);

/* Delete all the rows from table foo */
rc = SQLAllocStmt (hdbc, &hstmt):
rc = SQLExecDirect (hsmt, (SQLCHAR *) "DELETE FROM FOO", SQL_NTS);

2 Creating and running an linked library access application 19

/* Commit */
rc = SQLTransact (henv, hdbc, SQL_COMMIT);
rc = SQLFreeStmt (hstmt, SQL_DROP);

/* Disconnect */
SQLDisconnect (hdbc);
SQLFreeConnect (hdbc);

/* Free the environment */
SQLFreeEnv(henv);

/* Stop the server */
SSCStopServer (server, TRUE); // Server Shut Down Here

Implicit startup with SA API function call SaConnect
When function SaConnect is called for the first time, the server is implicitly started.
The server is shut down implicitly when the user application calls function
SaDisconnect and there are no more subsequent connections.

Note: When you start the server for the first time, you must create a solidDB
database by using function SSCStartServer() and specifying the default database
catalog, along with the username and password. For a description and example,
read “Explicit startup with the Control API function SSCStartServer” on page 16.

Following is an example of implicit start up and shut down with SaConnect and
SaDisconnect:
/* Open Connection */
SaConnect(...);

Server Started Here
... sa calls

/* Close Connection */
SaDisconnect(...);

Server Shut Down Here

Note: If the server is started with an SSCStartServer function call, then it must be
shut down only with an SSCStopServer function call.

Shutting down solidDB linked library access
From solidDB client interfaces and even from another remote solidDB connection,
you can shut down the solidDB server as long as you have SYS_ADMIN_ROLE
privileges.

Programmatically, you can perform the shut down from an application such as
solidDB SQL Editor (solsql), or solidDB Remote Control1.

To do this, perform the following steps:
1. To prevent new connections to solidDB, close the database(s) by entering the

following command:
ADMIN COMMAND 'close'

2. Exit all solidDB users by entering the following command:
ADMIN COMMAND 'throwout all'

3. Stop solidDB by entering the following command:

1. When using solidDB Remote Control for steps 1-3, you enter the command name only without quotes (for example, close).

20 IBM solidDB: Linked Library Access User Guide

ADMIN COMMAND 'shutdown'

All the shutdown mechanisms will start the same routine, which writes all
buffered data to the database file, frees cache memory, and finally terminates the
server program. Shutting down a server may take awhile since the server must
write all buffered data from main memory to the disk.

Note: You can use explicit methods (e.g. SSCStopServer) to shut down a server
that was started with implicit methods (e.g. SQLConnect). The converse is not true;
for example, you cannot use SQLDisconnect to stop a server that was started with
SSCStartServer.

Implicit start configuration parameter
solidDB implicitly starts up the server only when a local connection is established.
In the Accelerator section of the solid.ini configuration file, the parameter
ImplicitStart, by default, is set to Yes. This default setting starts the server
automatically when you use the function SQLConnect which is required for any
ODBC connection. The function SaConnect behaves similarly. When it is called for
the first time, the server is implicitly started.

2 Creating and running an linked library access application 21

22 IBM solidDB: Linked Library Access User Guide

3 Description of control API

The Control API (also called the SSC API) is a set of functions that provide a
simple and efficient means to control the tasking system of a solidDB.

Retrieving task information
To retrieve a list of all active tasks, use the SSCGetActiveTaskClass function. To
retrieve a list of all suspended tasks, use the SSCGetSuspendedTaskClass function.
To get the priority of a task class, use the SSCGetTaskClassPrio function.

Notifying functions of a special event
The linked library access provides fine tuning of priority tasks. You can use the
SSCSetNotifier() function to establish that solidDB calls a specified user-defined
function whenever a special event occurs. Special events that the function detects
are:
v solidDB server shutdown
v Bonsai merge from the index to the storage tree
v Bonsai merge interval maximum
v Backup or checkpoint request
v Idle server state
v Netcopy request (which is a request to send a network copy of the Primary

database to the Secondary server) received from the Primary server.
v Completion of a netcopy request, which occurs when the server is started up

with the new database received through the network copy (netcopy).

Obtaining solidDB status and server information
You can use the function SSCGetStatusNum to view current status information of
the solidDB database server. The following information is displayed:
v Number of rows that are not merged from the Bonsai Tree to the Storage Tree

The SSCGetServerHandle function returns the solidDB server handle if the server
is running.

You can also use the function SSCIsRunning to verify if the server is running and
the function SSCIsThisLocalServer to verify whether an application is linked to the
local linked library access server library (for example, ssolidacxx.dll for Windows
platforms) or a "dummy" server library (for example, solidctrlstub.lib for
Windows platforms) that are used to test remote applications that are using
Control API.

23

Summary of control API functions
The following is a brief summary of Control API functions and where the function
is described in the Control API Function Reference section.

Table 7. Summary of control API functions

Function Description For more details, see

SSCStartServer Starts a solidDB linked library access server. See “SSCStartServer” on page
36.

SSCStartDisklessServer Starts a solidDB linked library access diskless server. See “SSCStartDisklessServer”
on page 34.

SSCSetState Sets the state of a solidDB server (for example,
SSC_STATE_OPEN indicates if subsequent connections
are allowed). Setting the state to ~SSC_STATE_OPEN
will block local, as well as remote, connections.

See “SSCSetState” on page 33.

SSCRegisterThread Registers an linked library access application thread for
the server. Registration is required in every thread in the
user application before any Accelerator API function can
be called.

See “SSCRegisterThread” on
page 29.

SSCUnregisterThread Unregisters an linked library access application thread
for the server. Registration removal is required in every
thread that is registered before terminating.

See “SSCUnregisterThread” on
page 39.

SSCStopServer Stops solidDB server. See “SSCStopServer” on page
38.

SSCSetNotifier Specifies a user-defined function which solidDB calls at a
specified event, such as merge, backup, shutdown, etc.

See “SSCSetNotifier” on page
30.

SSCIsRunning Returns non-zero if the server is running. See “SSCIsRunning” on page
28.

SSCIsThisLocalServer Indicates whether the application is linked to the
solidDB server with the linked library access or the
"dummy" (solidctrlstub) library to test solidDB remote
applications using the linked library access's Control
API.

See “SSCIsThisLocalServer” on
page 29.

SSCGetServerHandle Returns the solidDB server handle if the server is
running.

See “SSCGetServerHandle” on
page 27.

SSCGetStatusNum Gets solidDB status information. See “SSCGetStatusNum” on
page 27.

Control API and equivalent ADMIN COMMANDs
Control API functions have equivalent solidDB SQL extension ADMIN
COMMANDs. You can execute these commands from both remote and local sites
through solidDB tools, such as solidDB Remote Control (solcon), and solidDB SQL
Editor (solsql).

Refer to “Linked library access parameters” on page 53 for details on Control API
equivalent ADMIN Commands.

24 IBM solidDB: Linked Library Access User Guide

Control API reference
The following pages describe each Control API function in alphabetic order. Each
description includes the purpose, synopsis, parameters, return value, and
comments.

Function synopsis
The declaration synopsis for the function is:
ReturnType SSC_CALL function(modifier parameter[,...]);

The ReturnType varies, but is usually a value that indicates success or failure of
the call. Return values are described in more detail later in this section.

SSC_CALL is required for portability. SSC_CALL specifies the calling convention of
the function. It is defined appropriately for each platform in the sscapi.h file.

Parameters are in italics and are described below.

Parameter description
In each function description, parameters are described in a table format. Included
in the table is the general usage type of the parameter (described below), as well as
the use of the parameter variable in the specific function.

Parameter Usage Type

The table below shows the possible usage type for Control API parameters. Note
that if a parameter is used as a pointer, it contains a second category of usage to
specify the ownership of the parameter variable after the call.

Table 8. Control API parameter usage types

Usage Type Meaning

in Indicates the parameter is input.

output Indicates the parameter is output.

in out Indicates the parameter is input/output

use Applies only to a pointer parameter. It means that the parameter is just
used during the function call. The caller can do whatever it wants with
the parameter after the function call. This is the most common type of
parameter passing.

take Applies only to a pointer parameter. It means that the parameter value
is taken by the function. The caller cannot reference the parameter after
the function call. The function or an object created in the function is
responsible for releasing the parameter when it is no longer needed.

3 Description of control API 25

Table 8. Control API parameter usage types (continued)

Usage Type Meaning

hold Applies only to a pointer parameter. It means that the function holds
the parameter value even after the function call. The caller can continue
to reference the parameter value after the function call and is
responsible for releasing the parameter.

Attention:

Because this parameter is shared by the user and the server, you must
not release it until the server is finished with it. In general, you can free
the held object after you free the object that is holding it. For example:

conn = SaConnect("", "dba", "dba");
/* Connection is held until cursor is freed */
scur = SaCursorCreate(conn, "mytable");
...
SaCursorFree(scur);
/* After we free the cursor, it is safe to free */
/* the connection (or, as in this case, call a */
/* server function that frees the connection). */
SaDisconnect(conn);

Return value
Each function description indicates if the function returns a value and the type of
value that is returned.

SscTaskSetT
When functions return a value of type SscTaskSetT, this definition is used as a bit
mask. SScTaskSetT is defined in sscapi.h with the following possible values:
SSC_TASK_NONE
SSC_TASK_CHECKPOINT
SSC_TASK_BACKUP
SSC_TASK_MERGE
SSC_TASK_LOCALUSERS
SSC_TASK_REMOTEUSERS
SSC_TASK_SYNC_HISTCLEAN
SSC_TASK_SYNC_MESSAGE
SSC_TASK_HOTSTANDBY
SSC_TASK_HOTSTANDBY_CATCHUP
SSC_TASK_ALL (all of the above tasks)

Note that the HotStandby "netcopy" and HotStandby "copy" operations are
performed by the task "SSC_TASK_BACKUP"; there is no separate task
"SSC_TASK_NETCOPY".

Control API error codes and messages
Control API functions may return the following error codes and messages:

Table 9. Error codes and messages for control API functions

Error Code/Message Description

SSC_SUCCESS Operation is successful.

26 IBM solidDB: Linked Library Access User Guide

Table 9. Error codes and messages for control API functions (continued)

Error Code/Message Description

SSC_ERROR Generic error.

SSC_ABORT Operation aborted.

SSC_FINISHED SSCAdvanceTasks returns this message if all
tasks are executed.

SSC_CONT SSCAdvanceTasks returns this message if
there are still more tasks to execute.

SSC_CONNECTIONS_EXIST There are open connections.

SSC_UNFINISHED_TASKS There are unfinished tasks.

SSC_INFO_SERVER_RUNNING The server is already running.

SSC_INVALID_HANDLE Invalid local server handle given. This
server does not match the one started
through SSCStartServer.

SSC_INVALID_LICENSE No license or invalid license file found.

SSC_NODATABASEFILE No database file found.

SSC_SERVER_NOTRUNNING The server is not running.

SSC_SERVER_INNETCOPYMODE The server is in netcopy mode (applies only
with High Availability/HotStandby).

These constants (SSC_SUCCESS, etc.) are defined in the sscapi.h file.

SSCGetServerHandle
SSCGetServerHandle returns the solidDB server handle if the server is running.

Synopsis
SscServerT SSC_CALL SSCGetServerHandle(void)

Comments
This function has no corresponding solidDB SQL extension ADMIN COMMAND.

Return value
v NULL if the server is not running.
v The server handle if the server is running.

SSCGetStatusNum
SSCGetStatusNum gets the status information of solidDB.

3 Description of control API 27

Synopsis
SscRetT SSC_CALL SSCGetStatusNum(SscServerT h, SscStatusT stat,

long * num)

The SSCGetStatusNum function accepts the following parameters:

Table 10. SSCGetStatusNum parameters

Parameters Usage Type Description

h in, use Handle to server.

stat in Specifies the status identifier for retrieval:

num out If the function was successful, then when it returns this
parameter's value will be set to either the number of
writes not merged, or the number of server threads,
depending upon which information was requested.

Comments
This function has no corresponding solidDB SQL extension ADMIN COMMAND.

If you call SSCGetStatusNum and pass it an unrecognized value for the stat
parameter, then the function will return SSC_SUCCESS.

Return value
v SSC_SUCCESS - Operation is successful. This value is also returned if you pass

an invalid value for the stat parameter.
v SSC_ERROR - Operation failed.
v SSC_SERVER_INNETCOPYMODE - The server is in netcopy mode (HotStandby

only)
v SSC_SERVER_NOTRUNNING - The server is not running.

SSCIsRunning
SSCIsRunning returns non-zero if the server is running.

Synopsis
int SSC_CALL SSCIsRunning(SscServerT h)

The SSCIsRunning function accepts the following parameters:

Table 11. SSCIsRunning parameters

Parameters Usage Type Description

h in, use Handle to server

Return value
v 0 - The server is not running.
v nonzero - The server is running.

28 IBM solidDB: Linked Library Access User Guide

Comments
This function has no corresponding solidDB SQL extension ADMIN COMMAND.

SSCIsThisLocalServer
SSCIsThisLocalServer indicates whether the application is linked to a solidDB
server or the "dummy" (solidctrlstub) library. The solidctrlstub library allows
developers to test solidDB remote applications using Control API without linking
the linked library access library and modifying the source code.

Synopsis
int SSC_CALL SSCIsThisLocalServer(void)

Return value
v 0 - The application is not linked to the solidDB server.
v 1 - The application is linked to the solidDB server.

Comments
This function has no corresponding solidDB SQL extension ADMIN COMMAND.

SSCRegisterThread
SSCRegisterThread registers a solidDB application thread for the server. Every
thread that uses Control API, ODBC API, or SA API must be registered. The
SSCRegisterThread function must be called by the thread before any other linked
library access API function can be used.

If the application has only one (main) thread, that is, if the application creates no
threads itself, then registration is not required.

Before a thread terminates, it must unregister itself by calling the function
SSCUnregisterThread.

Synopsis
SscRetT SSC_CALL SSCRegisterThread(SscServerT h)

The SCCRegisterThread function accepts the following parameters:

Table 12. SCCRegisterThread parameters

Parameters Usage Type Description

h In, Use Handle to server

Return value
v SSC_SUCCESS
v SSC_INVALID_HANDLE

Comments
This function has no corresponding solidDB SQL extension ADMIN COMMAND.

3 Description of control API 29

See also
SSCUnregisterThread

SSCSetNotifier
SSCSetNotifier sets the callback functions that an linked library access server calls
when it is started or stopped. The function does not have a corresponding ADMIN
COMMAND.

Synopsis
SscRetT SSC_CALL SSCSetNotifier(SscServerT h, SscNotFunT what,

notify_fun handler, void* userdata
)

The SSCSetNotifier function accepts the following parameters:

Table 13. SSCSetNotifier parameters

Parameters Usage Type Description

h in Handle to the server.

30 IBM solidDB: Linked Library Access User Guide

Table 13. SSCSetNotifier parameters (continued)

Parameters Usage Type Description

what in Specifies the event for notification. Options are:

v SSC_NOTIFY_EMERGENCY_EXIT

This function is called if a server crashes after it has been activated with
SSCStartServer(). The notifier call SSCSetNotifier() has to be issued before
SSCStartServer()

v SSC_NOTIFY_SHUTDOWN

Function is called at shutdown.

v SSC_NOTIFY_SHUTDOWN_REQUEST

Function is called when the server receives the shutdown request and may
shut down if the user-defined function accepts the request. You can refuse
the shut down by returning SSC_ABORT from the notified function, or
proceed with the request by returning SSC_CONT.

v SSC_NOTIFY_ROWSTOMERGE

Function is called when there is data in the bonsai index tree that needs to
be merged to the storage server.

v SSC_NOTIFY_MERGE_REQUEST

Function is called when the MergeInterval parameter setting in the
solid.ini configuration file is exceeded and the merge has to start.

v SSC_NOTIFY_BACKUP_REQUEST

Function is called when a backup is requested. You can refuse the backup by
returning SSC_ABORT from the notified function.

v SSC_NOTIFY_CHECKPOINT_REQUEST

Function is called when a checkpoint is requested. You can refuse the
checkpoint by returning SSC_ABORT from the notified function.

v SSC_NOTIFY_IDLE

Function is called when the server switches to the idle state.

v SSC_NOTIFY_NETCOPY_REQUEST

This callback function applies to the HotStandby component only. The
function is called when a netcopy request (which is a request to send a
network copy of the Primary database to the Secondary server) is received
from the Primary server. For details on the netcopy command, refer to IBM
solidDB High Availability User Guide.

v SSC_NOTIFY_NETCOPY_FINISHED

This callback function applies to the HotStandby component only. The
function is called when a netcopy request is finished. When finished, the
server is started up with the new database received through the network
copy (netcopy) and SSC_NOTIFY_FINISHED is called to inform the
application that the server is again available.

notify_fun_handler in, hold User function to call.

userdata in, hold User data to be passed to the notify function.

Be sure to read the warning on releasing a parameter of usage type hold under
“Parameter description” on page 25.

Return value
v SSC_SUCCESS - Request from the server accepted.

HotStandby only:
If SSC_NOTIFY_NETCOPY_FINISHED returns SSC_SUCCESS, then all other
application connections are terminated and the server is set to "netcopy listening
mode". In this mode the server accepts the connection from the Primary server

3 Description of control API 31

and the only possible operation for the Secondary server is to receive the data
from the hotstandby netcopy command. For more details on "netcopy listening
mode", read IBM solidDB High Availability User Guide. (Note that in the past,
"netcopy listening mode" was also called "backup listening mode".)

v SSC_ABORT - Request from the server denied.
HotStandby only:
If the SSC_NOTIFY_NETCOPY_REQUEST returns SSC_ABORT, then the
netcopy is not started and an error code (SRV_ERR_OPERATIONREFUSED) is
returned to the Primary server.

v SSC_INNETCOPYMODE - The server is in netcopy mode (HotStandby only).
SSC_SERVER_NOTRUNNING - The server is not running.

Comments
This function has no corresponding solidDB SQL extension ADMIN COMMAND.

Releasing a parameter of usage type hold should be done with caution. Read the
warning for hold “Parameter description” on page 25.

The user-defined notifier function should not call any SA, SSC, or ODBC function.

When creating a user-defined notifier function, you must conform to the following
prototype:
int SSC_CALL mynotifyfun(SscServerT h, SscNotFunT what ,void* userdata);

Once you have used SSC_CALL to explicitly define the convention for your user
function, then you use the SSCSetNotifier function to register the function so that it
is called during the specified event; for example:
SscRetT SSCSetNotifier(h, SSC_NOTIFY_IDLE, mynotifyfun, NULL);

Example
Calling a function upon shutdown

Assume a user creates the function user_own_shutdownrequest, which is called
every time a shut down is requested:
int SSC_CALL user_own_shutdownrequest(SscServerT h, SscNotFunT what, void

*userdata);
{

if (shutdown not needed) {
return SSC_ABORT;

}
return SSC_CONT; /*Proceed with shutdown*/

}

The SSCSetNotifier function can then be called as follows to specify that
user_own_shutdownrequest gets called before the server is shut down.
SSCSetNotifier(handle, SSC_NOTIFY_SHUTDOWN, user_own_shutdownrequest, NULL);

Note:

If function user_own_shutdownrequest returns SSC_ABORT, the shut down is not
allowed and if the function returns SSC_CONT, the shut down can proceed.

32 IBM solidDB: Linked Library Access User Guide

SSCSetState
SSCSetState sets the state of an linked library access server. This allows you to
control whether the server accepts subsequent connections, and whether the server
uses prefetch.

If the server is set to "open", then the server will accept connections. If the server is
set to "closed", then it will not accept any further connections (this applies to both
local connections and remote connections); however, any connections that have
already been made are allowed to continue.

Turning on prefetch tells the server to "read ahead" to fetch data that is likely to be
referenced soon. Prefetch requires more memory or disk cache space. When
prefetch is on, performance is generally higher. When prefetch is off, less memory
is required. Turning on prefetch is most useful if you have queries that involve
large sequential scans of the server. For example, if you use reports or aggregate
functions to get values for the entire database (or large portions of it), then
prefetch may help. Prefetch is generally not useful if all your queries involve only
one or a few records. Because prefetch uses up memory, prefetch may actually
reduce performance in systems with little available memory.

The following guidelines may help you decide when to use prefetch.

DO use prefetch when: you have a lot of available memory (or disk cache space)
and your queries require large sequential scans.

DO NOT use prefetch when: you have little available memory and your queries
generally read unrelated records one at a time.

Synopsis
SscRetT SSC_CALL SSCSetState(SscServerT h,SscStateT runflags)

The SSCSetState function accepts the following parameters:

Table 14. SSCSetState parameters

Parameter Usage Type Description

h in, use Handle to the server.

runflags in Options can be a combination of the flags
SSC_STATE_OPEN, which means new remote
connections are allowed and SSC_STATE_PREFETCH,
which means the user allows the server to do a prefetch
if needed. Following is an example of the possible
combinations:

v set server open: state = state | SSC_STATE_OPEN;

v set server closed: state = state &
~SSC_STATE_OPEN;

v set prefetch on: state = state |
SSC_STATE_PREFETCH;

v set prefetch off: state = state &
~SSC_STATE_PREFETCH;

3 Description of control API 33

Return value
v SSC_SUCCESS - Operation is successful.
v SSC_ERROR - Operation failed.
v SSC_SERVER_INNETCOPYMODE - The server is in netcopy mode (HotStandby

only).
v SSC_SERVER_NOTRUNNING - The server is not running.

Comments
This function has a corresponding solidDB SQL extension ADMIN COMMAND.
The command is:

ADMIN COMMAND 'close';

SSCStartDisklessServer
SSCStartDisklessServer starts a diskless server using the linked library access.

Synopsis
SscRetT SSC_CALL SSCStartDisklessServer (int argc, char* argv[],

SscServerT * h, SscStateT runflags, char* lic_string, char* ini_string);

The SSCStartDisklessServer function accepts the following parameters:

Table 15. SSCStartDisklessServer parameters

Parameters Usage Type Description

argc in The number of command line arguments.

argv in, use Array of command line arguments that are used during
the function call. The argument argv[0] is reserved only
for the path and filename of the user application and
must be present. For a list of valid arguments, refer to
the SSCStartDisklessServer parameter options listed
below.

h out Returns a handle to the started server. This handle is
needed when referencing the server with other Control
API functions.

runflags in The only option for this parameter is:

SSC_STATE_OPEN - Remote connections are allowed.

runflags = SSC_STATE_OPEN

lic_string in Specifies the string containing the solidDB license file.

ini_string in Specifies the string containing the solidDB configuration
file.

34 IBM solidDB: Linked Library Access User Guide

SSCStartDisklessServer parameter options
Following are the command line options for the argv parameter.

Table 16. Command line options for the argv parameter

Option Description

-h Displays help.

-n name Sets server name.

-U username Specifies the username for the data. The username is case
insensitive. The username requires at least two characters. For
username, the maximum number of characters is 80. A user
name must begin with a letter or an underscore. Use lower
case letters from a to z, upper case letters from A to Z and the
underscore character '_', and digits from 0 to 9.
Note: You must remember your username to be able to
connect to solidDB. There are no default usernames ; the
username you enter when creating the database is the only
username available for connecting to the new database.

-P password Specifies the given password for the data. The password is
case insensitive. The password requires at least three
characters. Passwords can begin with a letter, underscore, or a
number. Use lower case letters from a to z, upper case letters
from A to Z and the underscore character '_', and digits from 0
to 9.

-C catalogname Specifies the catalog name for the data, required if you are
starting the server for the first time. When specifying this
parameter, be sure to use uppercase C. For details on catalogs,
read the section "Managing Database Objects" in chapter
"Using solidDB SQL for Data Administration" in IBM solidDB
SQL Guide.

-x ignoreerrors Ignores index errors.

Return value
v SSC_SUCCESS - The server is started.
v SSC_ERROR - The server failed to start.
v SSC_SERVER_INNETCOPYMODE - The server is netcopy mode (HotStandby

only).
v SSC_INFO_SERVER_RUNNING - The server is already running.
v SSC_INVALID_HANDLE - Invalid local server handle given.
v SSC_INVALID_LICENSE - No license or invalid license file found.

Comments
By default, the state is set to SSC_STATE_OPEN.

This function has no corresponding solidDB SQL extension ADMIN COMMAND.

3 Description of control API 35

Example
SSCStartDisklessServer
SscStateT runflags = SSC_STATE_OPEN;
SscServerT h;
char* argv[4]; /* pointers to four parameter strings */
int argc = 4;
char* lic = get_lic(); /* get the license */
char* ini = get_ini(); /* get the solid.ini */
SscRetT rc;
argv[0] = "appname"; /* path and filename of the user app. */
argv[1] = "-Udba"; /* user name */
argv[2] = "-Pdba"; /* user’s password */
argv[3] = "-Cdba"; /* catalog name */
/* Start the diskless server */
rc = SSCStartDisklessServer(argc, argv, &h, runflags, lic, ini);

Note:

In the example, get_ini() and get_lic() are functions that a user must write. Each
must return a string that contains the solid.ini file text or the solid.lic license
file.

If you do not specify a catalog name, solidDB returns an error.

See also
SSCStopServer

See also 4, “Using the diskless capability,” on page 41.

SSCStartServer
SSCStartServer starts the linked library access. In multi-thread environments, the
server runs in a separate thread(s) from the client. For the duration of the
application, the application can start or stop the server subroutines as needed.

Note that the third parameter is an "out" parameter. If the server is started
successfully, then the SSCStartServer routine will set this parameter to point to the
handle for this server.

Note:

If you are starting a diskless server, you must start the server with Control API
function SSCStartDisklessServer. Read “SSCStartDisklessServer” on page 34.

Synopsis
SscRetT SSC_CALL SSCStartServer(int argc, char* argv[], SscServerT* h

SscStateT runflags)

The SSCStartServer function accepts the following parameters:

Table 17. SSCStartServer parameters

Parameters Usage Type Description

argc in Number of command line arguments.

36 IBM solidDB: Linked Library Access User Guide

Table 17. SSCStartServer parameters (continued)

Parameters Usage Type Description

argv in, use Array of command line arguments. For a list of valid
arguments, refer to “SSCStartServer” on page 36.

h out Returns a handle to the started server. This handle is
needed when referencing the server with other Control
API functions.

runflags in Options can be one or both of the following:

v SSC_STATE_OPEN - Remote connections are allowed.

v SSC_STATE_PREFETCH - Server will do a prefetch if
needed.

For example:

runflags = SSC_STATE_OPEN &
SSC_STATE_PREFETCH

Return value
v SSC_SUCCESS - The server started.
v SSC_ERROR - The server failed to start.
v SSC_ABORT
v SSC_BROKENNETCOPY - Database corrupted because of incomplete netcopy.
v SSC_FINISHED
v SSC_CONT
v SSC_CONNECTIONS_EXIST
v SSC_UNFINISHED_TASKS
v SSC_INVALID_HANDLE - Invalid local server handle given.
v SSC_INVALID_LICENSE - No license or invalid license file found.
v SSC_NODATABASEFILE - No database file found.
v SSC_SERVER_NOTRUNNING
v SSC_INFO_SERVER_RUNNING - The server is already running.
v SSC_SERVER_INNETCOPYMODE - The server is in netcopy mode (HotStandby

only).
v SSC_DBOPENFAIL - Failed to open database.
v SSC_DBCONNFAIL - Failed to connect to database.
v SSC_DBTESTFAIL - Database test failed.
v SSC_DBFIXFAIL - Database fix failed.
v SSC_MUSTCONVERT - Database must be converted.
v SSC_DBEXIST - Database exists.
v SSC_DBNOTCREATED - Database not created.
v SSC_DBCREATEFAIL - Database create failed.
v SSC_COMINITFAIL - Communication init failed.
v SSC_COMLISTENFAIL - Communication listen failed.
v SSC_SERVICEFAIL - Service operation failed.

3 Description of control API 37

v SSC_ILLARGUMENT - Illegal command line argument.
v SSC_CHDIRFAIL - Failed to change directory.
v SSC_INFILEOPENFAIL - Input file open failed.
v SSC_OUTFILEOPENFAIL - Output file open failed.
v SSC_SRVCONNFAIL - Server connect failed.
v SSC_INITERROR - Operation init failed.
v SSC_CORRUPTED_DBFILE - Assert or other fatal error.
v SSC_CORRUPTED_LOGFILE - Assert or other fatal error.

Comments
By default, the state is set to SSC_STATE_OPEN.

This function has no corresponding solidDB SQL extension ADMIN COMMAND.

When you start a new solidDB server, you must explicitly specify that solidDB
create a new database with the function SSCStartServer() with the -U username -P
password -C catalogname (the default database catalog name) parameters. For details,
read “Explicit startup with the Control API function SSCStartServer” on page 16.

If you are restarting a database server (i.e. a database already exists in the
directory), then SSCStartServer will use the existing database.

The SSCStartServer function may spawn multiple threads to run the server tasks.
The server tasks include processing local and remote client requests, as well as
running various background tasks, such as checkpoints, merges, etc.

See also
SSCStopServer

SSCStopServer
SSCStopServer stops an linked library access server.

Note that you can use explicit methods (e.g. SSCStopServer) to shut down a server
that was started with implicit methods (e.g. SQLConnect). The converse is not true;
for example, you cannot use SQLDisconnect to stop a server that was started with
SSCStartServer.

An application is not limited to starting and stopping the server once each time
that the application is run. After the server has been stopped, the application can
re-start the server by using SSCStartServer.

Synopsis
SscRetT SSC_CALL SSCStopServer(SscServerT h, bool force)

The SSCStopServer function accepts the following parameters:

Table 18. SSCStopServer parameters

Parameter Usage Type Description

h in, use Handle to server

38 IBM solidDB: Linked Library Access User Guide

Table 18. SSCStopServer parameters (continued)

Parameter Usage Type Description

force in Options are:

v TRUE - stop server in all cases.

v FALSE - stop server if there are no open connections.
Otherwise, stop fails.

Return value
v SSC_SUCCESS - The server is stopped.
v SSC_CONNECTIONS_EXIT - There are open connections.
v SSC_UNFINISHED_TASKS - Tasks that are executing.
v SSC_ABORT
v SSC_ERROR

Comments
Remote users can stop solidDB by using ADMIN COMMAND 'shutdown'. Refer to
“Linked library access parameters” on page 53 for details.

The FALSE option does not permit shut down if there are open connections to the
database or existing users. This option is equivalent to solidDB SQL extension
ADMIN COMMAND 'shutdown'.

The SSCSetState() with the &~SSC_STATE_OPEN option prevents new connections
to solidDB.

See also
SSCStartServer

SSCSetState

SSCUnregisterThread
SSCUnregisterThread unregisters a solidDB application thread for the server. The
SSCUnregisterThread function must be called by every thread that has registered
itself with the function SSCRegisterThread. The function is called before the thread
terminates.

Synopsis
SscRetT SSC_CALL SSCUnregisterThread(SscServerT h)

The SCCUnregisterThread function accepts the following parameters:

Table 19. SCCUnregisterThread parameters

Parameter Usage Type Description

h in, use Handle to server

3 Description of control API 39

Return value
v SSC_SUCCESS
v SSC_INVALID_HANDLE

Comments
SSC_CALL is required to explicitly define the calling convention of your user
function. It is defined in the sscapi.h file appropriately for each platform.

This function has no corresponding solidDB SQL extension ADMIN COMMAND.

See also
SSCRegisterThread

40 IBM solidDB: Linked Library Access User Guide

4 Using the diskless capability

solidDB linked library access allows you to create a database engine that runs
without any disk storage space. This is useful in embedded systems that do not
have hard disks, such as line cards in a network router or switch.

There are two main ways to run a diskless server: alone, and as a replica in a
advanced replication system. In each case, you will start the server by using the
linked library access function call SSCStartDisklessServer().

Diskless Server Alone

If you run a diskless server alone, it has no way to read data when it starts up and
no way to write data when it shuts down. This means that each time the server
starts, it starts without any previous data.

Furthermore, since the server has no way to write data to disk, if the server is shut
down abnormally (due to a power failure, for example), then any data in the
server is lost and cannot be recovered. You can reduce the risk of data loss by
using the solidDB HotStandby component to create a "hot standby" machine that
contains a copy of the data. For more information about this hot standby
capability, see IBM solidDB High Availability User Guide.

Diskless Server as Part of a Advanced Replication System

A diskless server may be a replica in a advanced replication system. In this
situation, the replica may send data to the master server and may download data
from that master server. Thus, even though the replica has no disk storage or other
permanent storage of its own, it may make some or all of its data persistent within
the advanced replication system.

Configuration parameters for a diskless server
This section describes the parameter settings for implementing and maintaining a
diskless server.

Parameters used in diskless servers
The following sections of the configuration file contain parameters that have
specific settings for diskless servers.

Index file section
Following are the configuration parameters that affect the index file.

Filespec_[1...n] parameter
The FileSpec parameter describes the name and the maximum size of the database
file. To define the maximum size in bytes for the main memory engine, the
FileSpec parameter accepts the following arguments:
v database file name - Since the diskless server does not create a physical database

file, this parameter is not used; however, a dummy value must be provided for
this argument.

41

v maximum file size - This setting is required. You need to specify the size in
bytes that is large enough to store all the data in the diskless server. Note that
the maximum file size must be smaller than the cache size, which is set with the
CacheSize parameter.

The default value for the FileSpec parameter is solidr.db, 5000000 bytes. For
example:
FileSpec_1=SOLIDR.db 5000000

Note: If you specify multiple files, then the maximum file size setting must be the
sum of all the FileSpec parameter settings.

Not surprisingly, the maximum size is limited by the physical memory available,
since a diskless machine has no disk to use as swap space for virtual memory.
Note that on some platforms, the amount of physical memory available to the
applications may be less than the amount of physical memory in the machine. For
example, in some versions of Linux on 32-bit systems, the amount of memory
available to applications is limited to one half or one quarter of the theoretical
address space (4GB) because Linux reserves the 1 or 2 most significant bits of the
address for its own memory manager.

If the data in memory exceeds the maximum file size, the error message 11003 is
displayed:
File write failed, configuration exceeded

CacheSize
The CacheSize parameter defines the amount of main memory in bytes that the
server allocates for the buffer cache. For example:
CacheSize=10000000

The setting for this value depends on the following criteria for diskless servers:
v For disk based tables, the cache size (in bytes) should be at least 20% larger than

the maximum file size (that is, the amount of data) set with the FileSpec
parameter since this data is held in the buffer cache. The 20% overhead is an
estimate that may vary depending on the usage of the database. For example:
[IndexFile]
FileSpec_1=solid.db 10MB
CacheSize=12MB

v Even if no disk-based tables are used (the database is created by using
in-memory tables), the cache is necessary to hold system tables. In that case, the
minimum cache size is 1-2 MB. The space occupied by the system tables
depends of the number and complexity of database objects and whether
advanced replication is used or not.

v The cache size must be less than the physical memory available for running the
diskless server.
Total memory used by the diskless server can be estimated as follows. (Note that
the TOTAL of all of these must fit within the amount of physical memory
available, which means that the cache size must in fact be significantly smaller
than the amount of physical memory available to the server:)
CacheSize
+ 5MB
+ (100K * number of users * number of active statements per user)
+ in-memory table space
+ (HSB operations to be sent to the Secondary) [1][2]

42 IBM solidDB: Linked Library Access User Guide

[1] This term of the equation applies to HotStandby users only. An HSB Primary
server needs some memory to store HotStandby operations that are to be sent to
the Secondary server. During a temporary network failure between the Primary
server and the Secondary diskless server, the Primary may continue to accept
transactions from an application. When the network connection is restored
between the servers, updates from the Primary server are sent to the Secondary
server. (HotStandby uses the transaction log to store these operations. A diskless
server cannot write the transaction log to disk; the information must be stored in
memory.) This memory is separate from the Cache.
[2] For this term of the equation, the maximum limit is currently 1 MB or 512
operations, whichever is lower. Unlike on a disk-based server, the transaction log
is not allowed to keep growing until it uses up all available space.
The exact amount required also depends on other factors, including the nature
of the queries executed against the server. Naturally, the amount of memory
available to the server is less than the total physical memory, since the operating
system etc. will use up some of the physical memory.

Com section
Following are the configuration parameters that affect communication between the
master and the diskless replica server (if you are using the diskless server as a
advanced replication replica server).

Listen parameter [Com]
This is the protocol and name that the diskless server uses when it starts listening
to the network. Its default is Operating System dependent. Refer to "Managing
Network Connections" in IBM solidDB Administrator Guide.

Configuration parameters that do not apply to diskless
engines

The following configuration file parameters (grouped by section) are disabled or
inoperable for diskless servers. These parameters affect behaviors that do not apply
to diskless engines.

Table 20. Configuration parameters not applicable to diskless engines

Parameter Description

[General] Section

CheckpointInterval This parameter is disabled since checkpoints do not apply to
diskless servers.

[IndexFile] Section

ReadAhead No physical read from the database file, so this parameter is
inoperable

PreFlushPercent No physical write to the database file, so this parameter is
inoperable

[Logging] Section

4 Using the diskless capability 43

Table 20. Configuration parameters not applicable to diskless engines (continued)

Parameter Description

LogEnabled This parameter is disabled since transaction logging is always
disabled for diskless servers.
Note: Diskless mode supports transaction rollback only.
Transaction rollbacks are typically used when some failure
interrupts a half-completed transaction. The diskless mode
does not support rollforward recovery.

44 IBM solidDB: Linked Library Access User Guide

5 Using solidDB linked library access with Java

Note: This chapter assumes that you are already familiar with the material in the
preceding chapters. If you jumped straight to this chapter because you are
interested only in Java/JDBC, not C/ODBC, you will have missed too much
material to understand this entire chapter.

Overview of solidDB JDBC Accelerator (SJA)
A Java/JDBC program, like a C/ODBC program, may use the solidDB linked
library access to get higher performance and greater control over the server. SJA
enables a Java application to start a local solidDB server, which will be loaded into
the Java Virtual Machine context from a dynamic library called 'ssolidacxx'. The
Java application will then be able to connect to the solidDB server and use the
services solidDB DBMS provides through a standard JDBC API.

The client application program will get higher performance because it is directly
linked to the server library, so calls to server functions do not have the overhead of
network (RPC) calls. The application will have greater control because it can call
functions (methods) in the solidDB Server Control (SSC) library to do things such
as assign priorities to certain types of tasks. For example, the application might
give itself a high priority and might give remote client applications a low priority.

solidDB JDBC Accelerator (SJA) can only be used when the server and client are
linked together; thus, if the Java application and the solidDB server are to be run
in separate hosts, SJA cannot be used.

Only the "local" client (the one that is linked to the linked library access library)
can bypass the network and get the higher performance of the linked library
access. Other client programs may also use the server, but they must connect
through the network, and are treated as "remote" programs even if they are
running on the same computer as the solidDB server. You may only have one
"local" client; the rest are "remote". The remote programs may be a mix of C and
Java programs.

The language in which the local client is written does not restrict which languages
the remote clients can be written in. For example, if you use JDBC Accelerator, the
remote client programs may use C, Java, or both.

How the Accelerator works
As with C programs, Java/JDBC programs that want to use the linked library
access must link to the solidDB linked library access library (ssolidacxx). This
library contains the entire solidDB server, except that it is in the form of a callable
library instead of a standalone executable program. The ssolidacxx used with
Java/JDBC is the same as the ssolidacxx that was explained in previous chapters;
there are not separate versions for Java and C clients. Linking to the library allows
a client program to avoid the overhead of RPC (Remote Procedure Calls) through
the network.

When you use the linked library access with Java/JDBC, you link the following
into a single executable process:
v solidDB linked library access library,

45

v your Java-language client program, and
v the JVM.

The "layers" in the executable process are, from top to bottom:
v Local Java/JDBC client application
v JVM (Java Virtual Machine)
v solidDB Accelerator Library (ssolidacxx)

Java commands in your client are executed by the JVM. If the command is a JDBC
function call, then the JVM calls the appropriate function in ssolidacxx. The
function call is "direct", rather than going through the network (through RPC). The
calls are made using JNI (Java Native Interface). Note that you do not need to
know about these low-level details. You do not need to write any JNI code
yourself; you simply have to call the same JDBC functions that you would call if
you were a remote client program.

Accessing a solidDB database from Java Accelerator is identical to accessing a
solidDB database through RPC — with one exception: in order to access the
database services, the application using Java Accelerator must first start the
solidDB linked library access server. This is done with a proprietary API called
SolidServerControl (SSC). SSC API calls are used to start, as well as to stop, the
solidDB DBMS. The actual database connections are done with normal JDBC API.
Both the SolidServerControl API and solidDB's JDBC driver can be found in a .jar
file named SolidDriver2.0.jar.

When the local solidDB server is started, it will be loaded into the Java Virtual
Machine context from a dynamic library called ssolidacxx. The Java application
will then be able to connect to the solidDB server and use the services solidDB
DBMS provides through a standard JDBC API.

Every local client program that uses solidDB Java Accelerator follows the same
basic three-step pattern:
1. Start the accelerator server with SolidServerControl
2. Access the database by using normal JDBC API
3. When database processing is done, stop the accelerator server again with

SolidServerControl

The SolidServerControl classes for accessing solidDB accelerator server have been
embedded inside solidDB JDBC driver file, inside the solid.ssc package. The
solidDB JDBC driver jar file (SolidDriver2.0.jar) contains the following packages:
v solid.jdbc.* solidDB JDBC driver classes
v solid.ssc.* solidDB Server Control classes (proprietary interface)

The classes inside the solidDB Server Control (solid.ssc) package are:
v SolidServerControl (for starting and stopping solidDB server from Java)
v SolidServerControlInitializationError (for reporting errors)

For detailed information on SolidServerControl (SSC) class interface, see “solidDB
Server Control (SSC) API” on page 49.

To start a solidDB server from a Java application, you must instantiate the class
SolidServerControl in the beginning of your application and call the startServer

46 IBM solidDB: Linked Library Access User Guide

method with correct parameters (examples are given below). After you've started
the server, you should be ready to make a JDBC connection to the server.

System requirements
You need the following to use the solidDB Java Accelerator:
v The solidDB linked library access library itself. This is a file named ssolidacxx.

The filename extension varies depending upon the platform; some common
names and platforms are listed below:
– Microsoft Windows: ssolidacxx.dlland the import library solidimpac.lib

– Solaris and Linux: ssolidacxx.so
– HP-UX: ssolidacxx.sl

v A valid license file for using the solidDB server and the linked library access
v solidDB JDBC2 driver file (SolidDriver2.0.jar)
v solidDB communication libraries for your platform (these are normally installed

when you install the solidDB Development Kit).
v Java Development Kit (JDK) 1.4.2 or newer

Basic usage

Installation
If you have installed a Java Development Kit, then you do not need to do any
further installation. When solidDB is installed, it includes the library(s) that are
needed when using the solidDB Java Accelerator.

Note: You may need to set PATH and CLASSPATH environment variables to
appropriate values so that you can access the Java compiler.

Compiling and running a program
In order for the server startup to succeed, you need to have at least a valid license
for using solidDB and linked library access.

The ssolidacxx dynamic link library must be in the system search path. Proceed as
follows:
1. Set the paths (examples from Microsoft Windows command prompt)

set PATH=<path to your ssolidacxx DLL>;%PATH%
Make sure you have the directory containing solidDB communication libraries
in your path too.

2. Set your path environment variable to include JDK's HOTSPOT runtime
environment in (SJA has only been tested in hotspot JRE's). For example,
set PATH=<your JDK directory>\jre\bin\hotspot;%PATH%

3. Compile the sample SJASample.java file (located in the samples/aclib_java
directory) with the following command:
javac -classpath <IBM solidDB JDBC driver directory>/SolidDriver2.0.jar;. \
SJASample.java

4. Run your application with a command line resembling the next one:
java -Djava.library.path=<path to ssolidacxx DLL> \ -classpath <IBM soliDB
JDBC driver directory>/SolidDriver2.0.jar;. \ <your application name>

5 Using solidDB linked library access with Java 47

For example, on Microsoft Windows, if you installed the server to C:\soliddb
and would like to run the SJASample program, then your command line would
look like:
java -Djava.library.path=C:\soliddb\bin
-classpath C:\soliddb\jdbc\SolidDriver2.0.jar;. SJASample

(On Microsoft Windows, the ssolidacxx.dll dynamic library is in the bin
subdirectory of the solidDB root installation directory.)
As in the example class SJASample, you must pass the solidDB server at least
the following parameters with SolidServerControl's startServer method:
-c<directory containing solidDB license file>
-U<username>
-P<password>
-C<catalog>

Note that upper and lower case "C" are both used, and they mean different
things.
Assuming you have all the necessary files (ssolidacxx library, communication
libraries, JDBC driver and solid.lic) in your current working directory, you
can start SJASample with a command line like the following one:
java -Djava.library.path=. -classpath SolidDriver2.0.jar;. <your application>
If all things went as they were supposed to go, you should now have a solidDB
accelerator server up and running.

Making JDBC connections
solidDB Java accelerator supports both local database connections as well as RPC
based connections.

In order to make a local (non RPC-based) JDBC connection, you need to specify
the JDBC driver that you are using 'localserver' at port 0. Thus, if you are making
the database connection by using, for example, JDBC class DriverManager, connect
by using the following statement (as also presented in the example code
SJASample further below)
DriverManager.getConnection("jdbc:solid://localserver:0", myLogin, myPwd);

As you can see, the DriverManager uses the URL "jdbc:solid://localserver:0" for
making a connection to the local server. If the getConnection subroutine is given
another URL, the driver will probably try to connect with RPC.

So remember the URL -
jdbc:solid://localserver:0

when making Java accelerator connections.

Note:

If you are using multiple threads (java.lang.Thread objects) that access solidDB
linked library access server inside your Java application, you must register each
thread separately with the solidDB linked library access server before you start any
JDBC-related activities using that thread. The thread registration is done by calling
SolidServerControl API's registerThread method in the thread's context. The thread
registration must be done explicitly for each user thread (except the main thread)
using solidDB's JDBC driver.

48 IBM solidDB: Linked Library Access User Guide

The user must also explicitly unregister each thread that has been registered to the
solidDB linked library access server. To unregister a thread, call SolidServerControl
API's unregisterThread function.

Limitations
v solidDB 'admin commands' do not work in the Java accelerator context.
v Java does not behave consistently if something fails outside the VM context (for

example, inside a native method call). If something should assert (or even crash)
in the solidDB server native code, Java either exits (when it notices an
unexpected exception) or hangs up completely. In the latter case, you may have
to kill the dangling Java process manually.

v To minimize memory consumption, we recommend that users explicitly drop all
allocated statements; that is, all allocated JDBC Statement objects must be
explicitly freed by calling the close() method.

v The server can crash if you access the same statement object from multiple Java
threads. You must open a separate JDBC connection (and statement) for each
thread that needs to use JDBC.

solidDB Server Control (SSC) API
Below is the complete public interface for the SolidServerControl class. For an
example of a program that uses some of the methods in this class, see the file
samples/aclib_java/SJASample.java

/**
* See solidDB Linked Library Access User Guide
* for the following constants
*/

public final static int SSC_SUCCESS = 0;
public final static int SSC_ERROR = 1;
public final static int SSC_ABORT = 2;
public final static int SSC_FINISHED = 3;
public final static int SSC_CONT = 4;
public final static int SSC_CONNECTIONS_EXIST = 5;
public final static int SSC_UNFINISHED_TASKS = 6;
public final static int SSC_INVALID_HANDLE = 7;
public final static int SSC_INVALID_LICENSE = 8;
public final static int SSC_NODATABASEFILE = 9;
public final static int SSC_SERVER_NOTRUNNING = 10;
public final static int SSC_INFO_SERVER_RUNNING = 11;
public final static int SSC_SERVER_INNETCOPYMODE = 12;

public final static int SSC_STATE_OPEN = (1 << 0);
public final static int SSC_STATE_PREFETCH = (1 << 1);

/**
* Initiates a SolidServerControl class. Output is not directed to any
* PrintStream.
*
* @return SolidServerControl instance
*/
public static SolidServerControl instance()

throws SolidServerInitializationError;

/**
* Initiates a SolidServerControl class. Output is being directed
* to a PrintStream object given in parameter ’os’.
*
* @param os the PrintStream for output

5 Using solidDB linked library access with Java 49

* @return SolidServerControl instance
*
*/
public static SolidServerControl instance(PrintStream os)

throws SolidServerInitializationError;

/**
* setOutStream method sets the output to the given PrintStream
*
* @param os the PrintStream for output
*/
public void setOutStream(PrintStream os);

/**
* getOutStream returns the stream used for output in class
* SolidServerControl
*
* @return returns the outputstream of this object
*/
public PrintStream getOutStream();

/**
* startServer starts the solidSB Linked Library Access server
*
* @param argv parameter vector for the accelerator server
* (be sure to give the working directory containing
* solidDB license file (f.ex. -c\tmp) first, in front

* of other parameters.) See solidDB Linked Library
* Access User Guide for details of parameters that can
* be passed to the Linked Library Access server.
*
* @param runflags Options for this parameter are SSC_STATE_OPEN
* (remote connections are allowed) and
* SSC_STATE_PREFETCH (server will do a "prefetch"
* if needed). Prefetch refers to the memory
* and/or disk cache that provides read-ahead
* capability for table content. Following is
* a runflags parameter entry:
* runflags |= SSC_STATE_OPEN & SSC_STATE_PREFETCH
*
* @return the return value from the server :
* SSC_SUCCESS
* SSC_ERROR
* SSC_INVALID_LICENSE - No license or invalid license file found.
* SSC_NODATABASEFILE - No database file found.
*/
public long startServer(String[] argv, long runflags);

/**
* stopServer stops the solidDB Linked Library Access server
*
* @param runflags Runflags for stopping solidDB Linked Library Access server.

* See solidDB Linked Library Access User Guide for more
* details.
*
* @return the return value from the server
* SSC_SUCCESS if server is stopped.
* SSC_CONNECTIONS_EXIT if there are open connections.
* SSC_UNFINISHED_TASKS if there are still tasks that are
* executing.
* SSC_SERVER_NOTRUNNING if the server is not running.
*/
public long stopServer(int runflags);

50 IBM solidDB: Linked Library Access User Guide

/**
* returns the state of the server, i.e. is the server running or not
*
* @return SSC_STATE_OPEN if server is up and running
*/
public int getState();

/**
* registerThread registers this user thread to solidDB Linked Library Access server
*
*
* @return the return value from the server
* SSC_SUCCESS Registration succeeded.
* SSC_ERROR Registration failed.
* SSC_INVALID_HANDLE Invalid local server handle
given.
* SSC_SERVER_NOTRUNNING Server is not running.
*/
public long registerThread();

/**
* unregisterThread unregisters this user thread from the
* solidDB Linked Library Access server
*
*
* @return the return value from the server
* SSC_SUCCESS Registration succeeded.
* SSC_ERROR Registration failed.
* SSC_INVALID_HANDLE Invalid local server handle given.
* SSC_SERVER_NOTRUNNING Server is not running.
*/
public long unregisterThread();

5 Using solidDB linked library access with Java 51

52 IBM solidDB: Linked Library Access User Guide

Appendix. Linked library access parameters

Linked library access parameters
This appendix provides a list of all parameters for the linked library access. Linked
library access parameters appear in the [Accelerator] section of the solidDB
configuration file (solid.ini).

For a description of all other solidDB parameters, refer to the appropriate
Appendix in the IBM solidDB Administrator Guide .

Note that you can change solidDB parameters in the following ways:
v Entering the ADMIN COMMAND 'parameter' command in solidDB solsql.
v Manually editing the solid.ini configuration file.

Note that any changes to the solid.ini file using the methods above do not take
effect until the next time that the server starts.

Accelerator section
Table 21. Accelerator parameters

[Accelerator] Description Factory Value

ImplicitStart If set to yes, this parameter starts solidDB automatically as
soon as the ODBC API function SQLConnect is called in a
user application. If set to no, solidDB must be explicitly
started with a call to the Control API function
SSCStartServer.

yes

© Solid Information Technology Ltd. 1993, 2008 © Oy International Business Machines Ab 1993, 2011 © Oy International Business

Machines Ab 1993, 2008 53

54 IBM solidDB: Linked Library Access User Guide

Index

A
accessing linked library access

description 9
administering diskless servers

defining solidDB configuration file options 41
applications

preparing for the linked library access 12

B
backup listening mode 31

C
C applications

samples 10
CacheSize (parameter)

configuring for diskless 42
Com section

configuring for diskless 43
configuration file

CacheSize (parameter) 42
configuring 41

connections
establishing for linked library access 14
ODBC remote without server startup 21

Control API
ADMIN COMMAND equivalents 24
SSCGetActiveTaskClass (function) 23
SSCGetServerHandle (function) 23
SSCGetStatusNum (function) 23
SSCGetTaskClassState (function) 23
SSCIsRunning (function) 23
SSCIsThisLocalServer (function) 23
SSCSetNotifier (function) 23
summary of scheduling functions 24

D
database

Index file section 41
size 16

diskless
parameter settings 41

dual mode application
description 4

E
events

notifying function of 23

F
FileSpec (parameter) 41

configuring for diskless 41

I
implicit startup 21
ImplicitStart (parameter) 21, 53
IndexFile section

configuring for diskless 41

J
JDBC API

description 6

L
library

contents of linked library access 9
for remote user applications 9
solidimpac 12

linked library access
accessing 9
Components 1
Described 1
linking applications 11
shutting down 20
starting 15

linking applications
linked library access 11

Linux
memory limitations with 41

Listen (parameter)
configuring for diskless 43

local application
description 4

M
makefile examples 13
memory

CacheSize (for diskless server) 42
total used by diskless server 42

N
netcopy listening mode 31

O
ODBC

API 6
applications

building with advanced replication scripts 11

P
parameters

FileSpec 41
passwords

criteria 18, 35

55

R
remote application 4

S
SaConnect

implicit startup with 20
server information

retrieving 23
shutting down

linked library access 20
solidctrlstub 5, 6, 9, 24
solidDB client APIs and drivers 5
solidDB configuration file

FileSpec (parameter) 41
Listen (parameter) 43
parameter settings 41

solidDB Control API
description 7
solidctrlstub 7

solidDB drivers and client APIs 5
solidDB SA 5
solidDB Server Control (SSC) API 49
solidimpac 12
SQLConnect (function)

implicit startup 18
SSC API 49
SSC_ABORT 27
SSC_CALL 25
SSC_CONNECTIONS_EXIST 27
SSC_CONT 27
SSC_ERROR 27
SSC_FINISHED 27
SSC_INFO_SERVER_RUNNING 27
SSC_INVALID_HANDLE 27
SSC_INVALID_LICENSE 27
SSC_NODATABASEFILE 27
SSC_SERVER_INNETCOPYMODE 27
SSC_SERVER_NOTRUNNING 27
SSC_STATE_OPEN 33, 34, 37
SSC_STATE_PREFETCH 33, 37
SSC_SUCCESS 26
SSC_TASK_ALL 26
SSC_TASK_BACKUP 26
SSC_TASK_CHECKPOINT 26
SSC_TASK_HOTSTANDBY 26
SSC_TASK_HOTSTANDBY_CATCHUP 26
SSC_TASK_LOCALUSERS 26
SSC_TASK_MERGE 26
SSC_TASK_NONE 26
SSC_TASK_REMOTEUSERS 26
SSC_TASK_SYNC_HISTCLEAN 26
SSC_TASK_SYNC_MESSAGE 26
SSC_UNFINISHED_TASKS 27
sscapi.h 26
SSCGetServerHandle

function description 27
SSCGetStatusNum

function description 27
SSCIsRunning

function description 28
SSCIsThisLocalServer

function description 29
SSCRegisterThread

function description 29
SSCServerT 16

SSCSetNotifier
function description 30

SSCSetState
function description 33

SSCStartDisklessServer
function description 34

SSCStartServer
explicit startup with 16
function description 36

SSCStopServer
function description 38
shut down with 18

SscTaskSetT 26
SSCUnregisterThread

function description 39
starting solidDB

with linked library access 15
status information

retrieving 23
synchronization

using 10

T
task information

retrieving 23

U
usernames

default 17, 35

56 IBM solidDB: Linked Library Access User Guide

Notices

© Copyright Oy International Business Machines Ab 1993, 2011.

All rights reserved.

No portion of this product may be used in any way except as expressly authorized
in writing by Oy International Business Machines Ab.

This product is protected by U.S. patents 6144941, 7136912, 6970876, 7139775,
6978396, 7266702, 7406489, 7502796, and 7587429.

This product is assigned the U.S. Export Control Classification Number
ECCN=5D992b.

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

57

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Canada Limited
Office of the Lab Director
8200 Warden Avenue
Markham, Ontario
L6G 1C7
CANADA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the

58 IBM solidDB: Linked Library Access User Guide

names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

IBM, the IBM logo, ibm.com®, Solid®, solidDB, InfoSphere™, DB2®, Informix®, and
WebSphere® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and
service names might be trademarks of IBM or other companies. A current list of
IBM trademarks is available on the Web at “Copyright and trademark information”
at www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other product and service names might be trademarks of IBM or other companies.

Notices 59

http://www.ibm.com/legal/copytrade.shtml

60 IBM solidDB: Linked Library Access User Guide

����

Printed in USA

SC23-9831-03

	Contents
	Figures
	Tables
	Summary of changes
	About this manual
	Typographic conventions
	Syntax notation conventions

	1 Introducing linked library access
	Linked library access library
	Disk-based vs. diskless servers
	Library contents
	Application types used with linked library access
	Using dual-mode applications with linked library access

	solidDB client APIs and drivers for linked library access
	solidDB SA API
	solidDB ODBC API
	solidDB JDBC API
	solidDB Server Control API (SSC API)

	2 Creating and running an linked library access application
	Accessing the linked library access library
	Libraries for remote applications
	Sample C applications
	Using data synchronization
	Setting up your ODBC application with the advanced replication scripts

	Linking applications for the linked library access
	Preparing user applications for the linked library access
	Signal handlers
	Dynamic link library
	Makefile examples

	Establishing a local or remote connection to solidDB with the linked library access
	Establishing a local connection
	Establishing a remote connection

	Starting and shutting down solidDB linked library access
	Explicit startup with the Control API function SSCStartServer
	SSCStartServer argv parameter options
	Shut down with SSCStopServer

	Implicit startup with ODBC API function call SQLConnect
	Implicit startup with SA API function call SaConnect
	Shutting down solidDB linked library access
	Implicit start configuration parameter

	3 Description of control API
	Retrieving task information
	Notifying functions of a special event
	Obtaining solidDB status and server information

	Summary of control API functions
	Control API and equivalent ADMIN COMMANDs
	Control API reference
	Function synopsis
	Parameter description

	Return value
	SscTaskSetT

	Control API error codes and messages

	SSCGetServerHandle
	Synopsis
	Comments
	Return value

	SSCGetStatusNum
	Synopsis
	Comments
	Return value

	SSCIsRunning
	Synopsis
	Return value
	Comments

	SSCIsThisLocalServer
	Synopsis
	Return value
	Comments

	SSCRegisterThread
	Synopsis
	Return value
	Comments
	See also

	SSCSetNotifier
	Synopsis
	Return value
	Comments
	Example

	SSCSetState
	Synopsis
	Return value
	Comments

	SSCStartDisklessServer
	Synopsis
	SSCStartDisklessServer parameter options
	Return value
	Comments
	Example
	See also

	SSCStartServer
	Synopsis
	Return value
	Comments
	See also

	SSCStopServer
	Synopsis
	Return value
	Comments
	See also

	SSCUnregisterThread
	Synopsis
	Return value
	Comments
	See also

	4 Using the diskless capability
	Configuration parameters for a diskless server
	Parameters used in diskless servers
	Index file section
	Filespec_[1...n] parameter
	CacheSize
	Com section
	Listen parameter [Com]

	Configuration parameters that do not apply to diskless engines

	5 Using solidDB linked library access with Java
	Overview of solidDB JDBC Accelerator (SJA)
	How the Accelerator works
	System requirements
	Basic usage
	Installation
	Compiling and running a program
	Making JDBC connections

	Limitations
	solidDB Server Control (SSC) API

	Appendix. Linked library access parameters
	Linked library access parameters
	Accelerator section

	Index
	A
	B
	C
	D
	E
	F
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U

	Notices

