www.ibm.com/software/data/soliddb

IBM solidDB
SQL Guide

Version 6.0 April 2009

solid)2

solidDB SQL Guide

Copyright © Solid Information Technology Ltd. 2007, 2009
Document number: SQLG60

Product version: 06.00.1059

Date: 2009-04-22

All rights reserved. No portion of this product may be used in any way except as expressly authorized in writing by Solid Information
Technology Ltd. or International Business Machines Corporation.

This product is protected by U.S. patents 6144941, 7136912, 6970876, 7139775, 6978396, and 7266702.
This product is assigned the U.S. Export Control Classification Number ECCN=5D992b.
This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative
for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is
not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document
does not grant you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your country or
send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local
law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-1BM Web sites are provided for convenience only and do not in any manner serve as an en-
dorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web
sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between
independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been ex-
changed, should contact:

IBM Canada Limited
Office of the Lab Director
8200 Warden Avenue
Markham, Ontario

L6G 1C7

CANADA

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM
Customer Agreement, IBM International Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating
environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee
that these measurements will be the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other
publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any
other claims related to non-IBM products. Questions on the capabilities of non-1IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without notice, and represent goals and
objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible,
the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to
the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of devel-
oping, using, marketing or distributing application programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright notice as follows:
your company name) (year).

Portions of this code are derived from IBM Corp. Sample Programs.
Copyright IBM Corp. _enter the year or years_.

All rights reserved.

TRADEMARKS

IBM, the IBM logo, ibm.com, Solid, and solidDB are trademarks or registered trademarks of International Business Machines Corporation
in the United States, other countries, or both. A current list of IBM trademarks is available on the Web at "http://www.ibm.com/legal/copy-
trade.shtml".

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.
Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

Table of Contents

Y =] (oo 33T PP 1
1.1 ADOUL THIS GUITE ...t e e e e e e et e e e eaens 1

1,01 OFQANIZALION ...eieiit ettt 1

I A AN (o 1< o= PP 2

A 001V T (o] PPN 2

1.2 2 ADOUL SOHADB .. .ceieie e e e et e e e 2

1.2.2 Typographic CONVENTIONSiiiiriieiiiii ettt 2

1.2.3 SYNEAX NOTATIONeeitte e e e 3

1.3 30lidDB DOCUMENTALION ...ttt ettt et e e et e e et e e eeenaees 4

2 Database CONCEPLS ... ettt e 7
2.1 Relational DAtADASEScivueiiteeit et e e 7

2.1.1 Tables, ROWS, and COIUMNSviitiii e 7

2.1.2 Relating Data In Different Tablesooooiiiiiiiiiii e 8

2.2 Client-Server ArCRITECIUIEc... e e e e eeens 11

2.3 MUlti-User Capabilityoooiiiiiii e 11

A I - Y Tod o o TP 12

2.5 Transaction Logging and RECOVENYciiiitiieiiii e e ettt e 12

2.5.1 BaCKGrOUNG ...t e e e 12

2.6 SUMIMANY . oute ittt ettt et ettt r et e e et et et e e e e 13

3 Getting Started WIth SQL i e et e 15
3.1 Tables, ROWS, and COIUMNScuiiiitiii e e e 15

B2 S ittt s 15

3.3 The Mathematical Origing Of SQLiiiiiiiiieiii e e 18

3.4 Creating Tables With Related Dataccoouuiiiiiiiiiieiii e e e 18

B4 L TADIE AIASES ..eeeeeiieii et 21

3i4.2 SUDQUETTES ...ttt ettt et e 21

3.5 Which Formats Are Used for Each Data TYPE?coovvnieiiiiiieiiii e 22

3.5.1 BLOBS (0r Binary Data TYPES)ccevruueeeiiiiieeeiii ettt 24

3.5.2 NULL IS NOT NULL (or "How to say 'None of the above' in SQL™)ccccevveernnns 25

BB 3 INOT NULL et e et 28

3.5.4 EXPressions AN CaSESuuuiiiiriieeiiii ettt 28

3.5.5 ROW ValU CONSIIUCTOISceiivteeiiii e et ettt ettt ettt e e e e e e e eeees 31

3.6 MOre about TIaNSACTIONSiiiiii ettt et e s 34

BT SUMIMANY .ottt et ettt et et et e et e e e e 34

3.8 Where to Find Additional Information about SQLcc.viiiiiiiiiiiii e 35

4 Stored Procedures, Events, Triggers, and SEQUENCESuivuriiiteeiieeiie et ee et e et e et e et e eeanes 37
4.1 SEOTEA PrOCEAUIES ...ttt ettt et e et e et e e e 37
4.1.1 BaSiC Procedure STIUCTUIEiiiiiiiieiiii et et 37

4.1.2 NAMING PIOCEAUIES ...ttt ettt eaaes 38

solidDB SQL Guide

4.1.3 Parameter SECHION .. .cvvvui ettt e e et 38
4.1.4 DECIAIE SECLION ..uviiiiiii et e 43
4.1.5 Procedure BOAYccouiiiiiiiiiii e 44
R ANt To | 1.1 =1) PP 44
A (] =157 (o] PP 47
4.1.8 CONIOl STIUCTUIES ..vvteiiiii e e a e 49
4.2 RemOte StOred PrOCEAUIESvutieiiii et ettt e e e e e e et e e e eae e eeenes 58
4.2 L ACCESS RIGHTS ...ttt e e e e e e e e eene 60
4.3 Using SQL in @ Stored ProCRAUIEuuiiii i e e e e e s e e e e e e aaneees 62
4.3.1 EXECDIRECT ottt 62
B U o - W OV o] PP 62
4.3.3Ermror Handlingcovviiiiiii e 66
4.3.4 Parameter Markers in CUMSOISoiuuureeeiiieeetiiiee ettt n e e e s e e et eeeeat e e aeneaeeeenes 68
4.4 Calling Other PrOCEAUIESiiiiiiii e e e e e e e e e e e e 71
4.4.1 Positioned Updates and DelBteSccvviiiiiiiiiicii e 72
A I -4 U0 o] TSP 73
4.4.3 Default Cursor Managementiiiiieiiieii e e e a e aaeas 74
444 NOEES ON SO L .iiiiii e e 75
4.4.5 Functions for Procedure Stack VIEWINGoevuviiiiiiiiiiiieiii e e e 75
4.5 ProCeaUre PriIVIIBOESuiiiiiiii et e e e 76
O a0 T I T o =1 £ 76
T o Y g To o T=T £ VLY o] o PP 77
A O3 (- Lo To N W T o 1= £ PP 78
4.6.3 Keywords and CIAUSESoiiuiiiiiiieiiiie e e e e e e a e e e eaens 79
4.6.4 Triggers Comments and ReSIIICHIONScvvviiiiici e 83
4.7 Triggers and PrOCEAUIEScivuteiii et e e e e e e e e e e e e e e e e e et e et e et e e e e eanaes 84
4.7.1 Setting Default or Derived COIUMNSccoovviiiiii e 84
4.7.2 Using Parameters and Variablescoooiiiiiiii i 85
4.8 Triggers and TranSACTIONSvuueiiieiiiees e e e e e e e e e e e e e e et e e et e et e e e e aaeeeenaes 88
4.8.1 Recursion and Concurrency Conflict EFTOrSc.ooovviiiiiiiiiiii e 88
4.8.2 Trigger Privileges and SECUFILYvvviiiii i e e e 97
4.8.3 Raising Errors from INSide TrIgOerScvuniiiii e e e e e e e e e e e 97
4.8.4 Trigger EXAMPIE ... 98
4.8.5 DIOPPING TIIOETS .vvvuitit ettt ettt et e e e et e e s e e e e e e et e e et e e et e et eeateeaanaeees 103
4.8.6 Altering Trigger AtrDULESoiii i 104
4.8.7 Obtaining Trigger INfOrmationc.coiiiiiiiiii e 105
RS Iy To o[- 0 o 1o P 105
4.8.9 SYS_TRIGGERS System Tablecovvviiiiiiiii e 105
4.8.10 Trigger Parameter SEHINGScvvvueiii e 106
4.9 Deferred ProCcedure Callsiiiiiiiiieiii e e 107
4.9.1 Sync Pull Notify ("Push Synchronization™) Exampleccoovviiiieiiiiiiinecieen, 119

4.9.2 Tracing the Execution of Background JODScccoooiiiiiiiiiiiii e 122

solidDB SQL Guide

4.9.3 Controlling Backgroung TasKScccuuiiiiieiiiie e e e e 123

4,10 USING SEOUEBNCES ..vvuueeiteriteeiteeat e ettt e st e st e e st e e et e st eeaa e e st e ettt e eataesstaertnaeeanaaees 123
410 USING EVENES ..outiiiiiiii e e e e e e e e e e e e e a e 125
5 Using solidDB SQL for Database AdMINIStrationc.uiviiiiieiiiiiiiiin e 139
5.1 USING SOlIADB SQL SYNAX .. cvuviiiiieiiiieci e e e e e e e e e e e e e eeanaeaaens 139
5.1.1 S0lIdDB SQL Data TYPES ..uuvvteiiieiii et et e e e et e e e e e e e e e e e e e 139

5.1.2 50lidDB ADMIN COMMAND ... ottt 139

5.1.3 USING FUNCHIONS ...ivtiiiiieii e e e e e e e e e e eeaes 140

5.2 Managing User Privileges and ROIESc..ooiviiiiiiiiii e 140
5. 2. L USEI PrIVIIBOES .. cvviiii ittt e e e e e e a s 141

B.2.2 USBI ROIBS ...ttt e 141

5.2.3 Examples of SQL StatemeNtSccouuiiiiiiiiiiieiie e 142

5.3 Managing TabIESiiiiiii e 145
5.3.1 Accessing SYSteM TabIesuiiiiniii i 146

5.3.2 Examples of SQL StatemeNtSccouuiiiiiiiiiiieiir e 147

5.4 MaNAQING INAEXES ...vvuiiiiieiieeiie et e e e e e e e e e e e e e et e e et e e e e e e e et e e et e eaanaeees 149
5.4.1 Examples of SQL StatemeNntSccouuiiiiiiiiiiieiie e 149

5.4.2 Primary KeY INEXESccvviiiiiieiiii e e e 150

5.4.3 Secondary KeY INAEXESccvuiiiiiiiii e 151

5.4.4 Protection Against DUPlicate INAEXEScvvviiiiieiiiieiiiie e e 152

5.5 Referential INtegrityoivieiiii e 153
5.5.1 Primary Keys and Candidate KEYSoviiiiieiiiiiiiiiieii e 153

R IV AN o] =TT | (I G-V TP 154

5.5.3 Referential ACLIONSuuiiieiii e e 157

5.5.4 Dynamic Constraint Managementc..vviiiiieiiiieiiieei e e 158

5.6 Managing Database ODJECESciuriiiiii i e e e e e e e e 159
ST G A 1011 (o [FTod T o PR 159

IS I L 0% - [0 L PPN 160

5.8.3 SCRBMAS «.oevi i e 160

5.6.4 Uniquely Identifying Objects within Catalogs and Schemascccooceiveiins 161

5.6.5 Examples of SQL StatemeNtSccouuiiiiiiiiiiieii e 162

6 Managing TraNSACLIONSiiiueeiitieii et et e e e e et e e et e e e e e e e s e e e e e et e et e e et e e aan e e eeaenes 165
6.1 Managing TranNSACLIONSivuueeiiierii ettt e e e e s e e e et e et e e e e et e et e e et e e aan e raneaaens 165
6.1.1 Defining Read-Only and Read-Write Transactionscooevvieiiiieiiiineiinieninenns 165

6.1.2 Setting Concurrency CONIolcoouiiiiiiiii e 166

6.2 Concurrency Control and LOCKINGuiiiuiiiiiiiiii e e e 167
6.2.1 The Purpose of Concurrency CONrolooeiiiiiiiiiiiie e 168

6.2.2 EXCLUSIVE vS. SHARED LOCKS ...ttt 169

6.2.3 PESSIMISTIC vs. OPTIMISTIC Concurrency Controlccooevvieeiiiiiiinennnnnn, 169

B.2.4 TADIE LOCKS ...eviiiiiei e 175

B.2.5 LOCK DUFALION ...iiiiiiecci et e s 177

6.2.6 TRANSACTION ISOLATION LEVEIScvvviiiiiiiiii e 178

vii

solidDB SQL Guide

6.2.7 Miscellaneous Lock INfOrMationccouuiiiiiiiiiieeiieee e 179

6.2.8 Summary of Locking Informationccooeiiiiiiiiiii e, 180

6.3 Choosing the Transaction Durabilityc.ccoiiiiiiiiii e 180
6.3.1 Setting the Transaction Durability Levelcccccooiiiiiiiii e 180

7 Diagnostics and TroubleShoOtINGviiiieii e 183
7.1 ObSErving PerfOrManCeoiiueiiiiiiei e e e e e 183
7.0 1 SQLINTO FACHITY «.vvvieiiii e 183

7.1.2 The EXPLAIN PLAN FOR Statementvveiiiiiiieeiiiiiieeeii e 184

A o (0] o] (=T o T L oo 13 To PPN 190
I 0] o] T o I 0% 1 1o o] 1= PN 191
7.3.1501idDB ODBC API ProbIEmScoviviiiieiii e 191

7.3.2 s0lidDB ODBC Driver Problemscouuuiiiiiiiiiei e 191

7.3.3 50lidDB JDBC Driver ProbIEMSuiiiiiiiiiiiiie e 192

7.3.4 UNIFACE Driver for solidDB Problemsc..ooveiiiiiiiiiiiiieie e 192

7.3.5 Communication between a Client and SEIVErcc.ooviiiiiiiiiiiiii e, 192

7.4 Tracing Facilities for Stored Procedures and Trggersc.uvveiviieiiiiiiiiiieeieeeie e e eeeeen 193
7.4.1 User-Definable Trace Output from Procedure Codeccooevviveiiiieiiiiiiiiieeiieee, 193

7.4.2 Procedure EXECULION TIACE .. .vvvuurieieii ettt s e et s e ettt e e et e e eeab e e eai s 194

7.5 Measuring and Improving Performance of START AFTER COMMIT Statements 195
7.5.1 Tuning Performance of START AFTER COMMIT Statementscccooccvvverannn.. 195

7.5.2 Analyzing Failures in START AFTER COMMIT Statementsc.ccoovevvieeinnnnnns 195

SR e o] gaaT oot U a1 T 197
8.1 Tuning SQL Statements and ApPlICALIONSccouieiiiiiiii e 197
8.1.1 Evaluating Application Performancecoooiiiiiiiiiiiii e 198

8.1.2 Using Stored Procedure LanQUAGJEoeviuneriiieiiieeiiee s eeeiie e e e e erieeaiaens 198

8.2 Optimizing Single-Table SQL QUETIESuuiiiiiiiiieiii et a e 199
8.3 Using Indexes to Improve Query Performancecooovuiiiiiiieiiiieiii e 199
8.3 L FUII TABIE SCAN ...ovv e e e 201

8.3.2 CoNCAENALET INEXES .. evvveneeiiii ettt e s 201

8.4 Waiting ON EVENLSuuiiiii e e e e e 202
8.5 Optimizing Batch Inserts and UPdatescouviiiiiiiiiiiici e 203
8.5.1 Increasing Speed of Batch Inserts and Updatesccoeeviiiiiiiiiiiiieiiiiecieeeis 203

8.6 USING OptiMIzZer HINES ...uvuiiiiiii i e e e e e e e 204
8.7 Diagnosing Poor PErfOrMAaNCEc.ueiiiiiiiieii e e e e e e e e 206
F N B = Y/ 0 TR 209
AL SUPPOIE Data TYPES ..ivvniiiieiiiei ettt e et e e e e e e s e e e e e e et e et e e e eees 209
A.LL CharaCter Data TYPES .vvuuiiit ettt et e e e e e e e e e e e e e e e e e e aaes 209
A.L2 NUMETIC DAta TYPES .. .evvneiitieiiiie e et e e e e e e e e e e e e e e e e et e et e e et eaanaeees 210
A.LI3 BINAry Data TYPES ..uuevveneiiieeiiieeeiie e e s e e e e e e e e e et e et e e e e a e e eaaees 212

AL LA Date Data Ty P8 ittt 213
ALLD TIME DAt TYP ooniiiiieii et e e e e 214
AL TIMEStAMP Data TYPE vvvneiiiiiiii e e e e e e r e e 214

viii

solidDB SQL Guide

A.1.7 The Smallest Possible Non-Zero NUMDErScccouiiiiiiiiiiiiiiiiieeec e 214
A.L8BLOBS ANA CLOBSuiiiiiiiieiii e 215

B SOIIADB SQL SYNAX .\utiiiiiiiii i et e e e e e e e e e e e et e et e e e e et e e aaeas 217
B.1 ADMIN COMMAND ...ttt et et e e e eeeran e 217
I 10T o o Yo 1 ¢=To I 1o TP 217
Bl 2 USAgE 1ottt 217

B.2 ADMIN EVENT .ottt et e et et e e et e e e et e e e aran e eaee 233
B2, USAgE 1ottt 233
B.2.2 EXAMPIES et 234
B.3ALTER TABLE ...ttt 234
B3 USAgE 1uuitiitiiiii ittt 235
B.3.2 EXAMPIE ..ot 236

B.4 ALTER TABLE ... SET HISTORY COLUMNS ...ttt 236
Bl USAgE oottt 236
B.4.2 USAQE IN IMASTETvuiiiiiiii e e e e e e e e e e e e e 237
B.4.3 UsSage iN REPIICAcoviiii e 237
o 4 o] 237
B.4.5 RELUM VAIUESvtiiiiii e e et 237
BL4.6 SO AlISO ...ttt 237

B.5 ALTER TABLE ... SET SYNCHISTORYouttiiiiiiiiiiiiiiiie et 238
B0, d USAgE 1ottt 238
B.5.2 USAQE IN IMASTETuuiiiiiiii e e e e e e e e e e e 239
B.5.3USage iN REPIICAciiiiiii e 239
I e o] - 239
B.5.5 RELUM VAIUES ...ttt e 239
BL5.6 SEE AlISO ...neiiiii et 240

B.6 ALTER TRIGGERuiiiiiiiiiiiii et et e e e e e e 240
BLB.L USAgE 1uuitiitiiiiiii et 240
B.6.2 EXAMPIE . ooviiiii et 240

B.7 ALTER USER ... ittt e e e e 241
Bl 7. USAE ettt 241
o 1 1 o] - 241

B.B ALTER USER ...ttt ettt e e e 241
BLB.d USAgE 1uuitiitiiiti ittt 241
B.8.2 USAQE IN IMASTETuuiiii it e e e e e e e e e e 242
B.8.3USage iN REPIICAciiviiii i 242
1 1 o] 242
B.8.5 RELUM VAlUES ...\ttt e e 243

BLO CALL ittt e 243
e S TUT o] o Yo 1 ¢=To 1N 1o T 243
B0, USAgE 1ottt 243
B.9.3 TIaNSACTIONS ... uvtiiiiii ettt 244

solidDB SQL Guide

B.9.4 Return Values from the Remote ProCedurecoovvviiiiiiiiiiiniiiiiiineei e 244
B.9.5 Access Rights for Remote Stored Procedure Callscccooiviiiiiiiiiinen, 245
BLO.6 DUIADIIILY ..ot e e 246
B.O.7 EXAMPIE ..ot 246
B.10 COMMIT WORK ..ottt e e eaeaans 247
0 0 U To PP 247
B.10.2 EXAMPIE .o 247
BL10.3 SEE AlSD ..vtieeiiii et 247
B.11 CREATE CATALODG ...ttt ettt e e et e e eaanns 247
0 O U T PP 247
B.11.2 EXAMPIES .oiiiiiii e 249
B.12 CREATE EVENT Lottt et et et e e et e e e et e e e e et e eeeees 250
0 2 U L To PP 251
B.12.2 EXAMPIE o oo 253
BL12.3 SEE AlSD ..utieiiii it 253
B.13 CREATE INDEX ...oiitiiiiiiiiitiii ettt e et e e e a e e eeeeaen s 253
0 O 0 U L To PP 253
B.13.2 EXAMPIE ..o 254
BL13.3 SEE AlSD vttt 254
B.14 CREATE PROCEDUREcciitiiiiiiiiiieee et e e 254
0 0 U L To PP 256
B.14.2 Preparing SQL STateMENTSuuiivtiiiii e 261
B.14.3 Executing Prepared SQL Statementsccuviiiiiiiiiieiiii e e 261
B.14.4 Fetching RESUILSovviii e 262
B.14.5 Closing and Dropping CUISOKScuuueiiieieieeiiieesiieeiee st e e e e et e s e enens 262
B.14.6 CheCKing FOr EITOISu.iiiiiii i e e e e e e e e e e 262
B.14.7 USING TraNSACTIONSivuuiiiiiiiiiieiiiesi e e e e e e s e e e e et e e st e e et e e aat e e aaeeaeaees 263
B.14.8 Using Sequencer Objects and EVENt AIErtScooovviiiiiiieiiii e, 263
e Y 1 (=) 1 - Lot PSPPSR 263
B.14.10 Procedure Stack FUNCLIONSiviveiiieiiii e 263
B.14.11 Dynamic CUrSOr NAIMESuuuiiiieiiiieiii e e e e e e e e e e e e e eaans 264
B.14.12 EXECDIRECT ..oitiiiiii ittt e et e e e 265
B.14.13 CREATE PROCEDURE ... oottt 266
B.14.14 Using the Explicit RETURN Statementccccoviiiiiiiiiiiin e, 266
B.14.15 USING EXECDIRECT ...otiiiiiiiiiiieii et e e 267
B.14.16 USINg CURSORNAMEouuiiiiiiiieeiie e e e 268
B.14.17 Using GET_UNIQUE_STRING and CURSORNAMEcccoiiiiiiiiiiineeiiinnnn, 268
B.14.18 EXAMPIE B ..ovvniiiiiii e 269
B.14.19 Creating a Unique Name for a Synchronization Messagecccoeevvvveviinennnnn. 269
B.14.20 Using GET_UNIQUE_STRINGiiiiiiiiiiiiiiin e 270
B.15 CREATE [OR REPLACE] PUBLICATIONuuiiiiiiiiiiiis e 271

0 0 U L To PP 272

solidDB SQL Guide

B.15.2 USAQE IN IMASTETiiii i et e e e e e e e e e e e aaes 274
B.15.3 Usage iN REPIICAovviiiiici e 274
B.15.4 EXAMPIE .ot 274
B.15.5 REIUIM ValUBSvieiiiii e e e e e e e aa e e 276
B.16 CREATE ROLE ..ot e e 276
0 0 U L To PP 276
B.16.2 EXAMPIE o ooeniiii i 276
B.17 CREATE SCHEMA ..o et e et e e et eeaees 276
0 0 U L To - PP 277
B.17.2 EXAMPIES .oiiiiiii i 278
B.18 CREATE SEQUENCEuuiiiiiiiiiiii ettt e e e e e e 279
0 0 U LT L PP 279
B.18.2 EXAMPIES .ouiiiiii i 281
B.19 CREATE SYNC BOOKMARK ..ottt a s 281
0 T ST o] o] o (=T Ty 281
0 e T U L To PP 281
B.19.3 USAQE IN IMASTETiiiiiiii e et e e e e e e e e e e e eaaes 282
B.19.4 Usage iN REPIICAcovviiiici e 282
B.10.5 EXAMPIE .o 282
B.19.6 REIUIMN ValUBS ...t e e e e e e 282
B.20 CREATE TABLE ..ottt e 282
BL20. L USA0E ouuititiii ittt 283
B.20.2 EXAMPIE o oiiiii e 286
B.21 CREATE TRIGGER ... ittt 286
T O U L To PP 287
o A W T o[- Gl V- T 1 PN 288
B.21.3 BEFORE | AFTER CIaUSEeuuieiiiiiie ittt 288
B.21.4 INSERT | UPDATE | DELETE CIaUSEvuuiiiiiiieeiiiiiee e 290
B.21.5 Table NAME . ooueiiiiii e e 291
B.21.6 Trigger_DOGYcviiiii e 291
B.21.7 REFERENCING CIaUSEuuiiiiiiiiieiiii ettt eeene 291
B.21.8 {OLD | NEW?} column_name AS col_identifiercccooovviiiiiiiiiiiiii e 292
B.21.9 Triggers Comments and REStHCIIONSccuiiiiiiiiiiieiii e, 293
B.22 CREATE USER ...ttt e e e et e e 296
B2, S0 ittt ittt 297
B.22.2 EXAMPIE « i 297
B.23 CREATE VIEW ...ttt e e 297
BL23. L S0 ouiiitiiiii ettt 297
B.23.2 EXAMPIE .o 297
BL24 DELETE ...uoiiiii ittt ettt e e e e e et 297
BL24. L S0 .o ittt 297
B.24.2 EXAMPIE «.ooeniiii e 298

Xi

solidDB SQL Guide

B.25 DELETE (POSILIONEA)uiiiniiii i e e e e e e e e e e e aaeees 298
T 0 R U L Vo PP 298
B.25.2 EXAMPIE . ooiniiiii e 298

B.26 DROP CATALOG ..ottt ittt e et e e et e e e b 298
BL26. L U SA0E .uiuiitiiiiitti ettt 298
B.26.2 EXAMPIE . ooeniiiii 299

B.27 DROP EVENT ..ottt ettt ettt r e et e et e e e et e e eeaens 299
T 0 R U L To PP 299
B.27.2 EXAMPIE .o 299

B.28 DROP INDEX ... iiiiiiiiiiit ittt sttt e et n e et e e e e e e e e e e eae e 299
BL28. L USA0E .. ittt 299
B.28.2 EXAMPIE ..o 299

B.29 DROP MASTERotiiiiiii ittt e et e e e e e e a s 300
BL20. L S0 ettt ittt 300
B.29.2 USAQE IN IMASTET\.iiiiiii et e e e e e e e e e aaes 300
B.29.3 Usage iN REPIICAovvviiiici e 300
B.29.4 EXAMPIES ...uiiiiiii e 300
B.29.5 REIUIM ValUBSiiiiiii e et e e e e e e 301

B.30 DROP PROCEDUREciiiitiiiiiii ettt e e et e e e aeeaee 301
B30, L USA0E tu ittt 301
B.30.2 EXAMPIE .o 301

B.31 DROP PUBLICATION ...ttt et aeaees 301
[0 3 O U L To PP 302
B.31.2 USAQE IN IMASTETuiiiiiii et e e e e e e e e e e e aaes 302
B.31.3 Usage iN REPIICAovveiiiici e 302
B.3L.4 EXAMPIE .o 302
B.31.5 REIUMN ValUBS ...ttt e e e e e 302

B.32 DROP PUBLICATION REGISTRATION ...coiiiiiiiiiiiiieci e 302
e ST o] o] 1 (=To Ty 302
[0 Y U L To PP 303
B.32.3 USAQE IN IMASTETuiiii it e e e e e e e e e e aaes 303
B.32.4 Usage iN REPIICAcvvuiiiici e 303
B.32.5 EXAMPIE .o 303
B.32.6 REIUIMN ValUBSi it eaaa e e e 303

B.33 DROP REPLICA ..ottt et e et e eaens 303
e T ST o] o] 1 (=To Ty 304
B33 2 S0 .. ittt ittt 304
B.33.3 USAQE IN IMASTETuiiii it e e e e e e e e 304
B.33.4 Usage iN REPIICAcovviiiici e 304
B.33.5 EXAMPIE ..o 304
B.33.6 REIUIMN ValUBSieeiiii e e e e e e e 304

B.34 DROP ROLE ..ottt et e e et e e et e e e e aaae 305

Xii

solidDB SQL Guide

[0 7 0 R U L To PP 305
B.34.2 EXAMPIE « it 305
B.35 DROP SCHEMA ..ottt et et et a e eaens 305
[0 10 U L To PP 305
B.35.2 EXAMPIES .ouiiiiii i 306
B.36 DROP SEQUENCE ... oottt et e e e e e e b 306
BL3B. L U SA0E e ittt ittt 306
B.36.2 EXAMPIES ...uiiiiii i 306
B.37 DROP SUBSCRIPTION ..ttt ettt e et e e et e e e e eaee 306
G ST o] o] (=T Ty 307
BL37. 2 USA0E .. ittt 307
B.37.3 USAQE IN IMASTETiiiicii ettt e e e e e e e e e e aaes 308
B.37.4 Usage iN REPIICAcovviiiici e 308
B.37.5 EXAMPIE .o 308
B.38 DROP SYNC BOOKMARK ..ottt e e 309
B.38.1 SUPPOITEA 1N vttt e 309
BL38.2 USA0E .. ittt 309
B.38.3 USAQE IN IMASTETiiiiiii et e e e e e e e e aaes 309
B.38.4 Usage iN REPIICAcouuiiiiii e 310
B.38.5 EXAMPIE ..o 310
B.38.6 REIUIM ValUBStieiiii e et e e e eees 310
B.39 DROP TABLE ...ttt 310
B30, S0 ettt et 311
B.39.2 EXAMPIES .ottt 311
B.40 DROP TRIGGERuiiiiiiiiieiii ettt et e e e e e e e b 311
BLid0. L USA0E oottt et 311
B.40.2 EXAMPIES .ouiiiiii e 311
B.AL DROP USER ...ttt 311
L O U L To PP 312
B.AL.2 EXAMPIE .ot 312
B.42 DROP VIEW ..ottt et e ettt e e e e e e aeae 312
L R U L To PP 312
B.42.2 EXAMPIES .ouiiiiii i 312
B.A3 EXPLAIN PLAN FOR L..oiiiiiiiiiiiieet ettt e e e e e e e 312
L T U L To PP 312
B.43.2 EXAMPIE « e 313
B.44 EXPORT SUBSCRIPTION ...uuiiiiiiiieiiii ettt e et et e et eeeaan e eeee 313
[T o] o] (=T Ty 313
BLld4.2 USA0E .. ittt 313
B.44.3 USAQE IN IMASTETiiiiiii et e e e e e e e e e eaes 315
B.44.4 Usage iN REPIICAcovviiici e 315
B.44.5 EXAMPIE .o 316

solidDB SQL Guide

B.44.6 REIUIN ValUBS ...t e et e e e e e e eaes 316
B.45 EXPORT SUBSCRIPTION TO REPLICAouiiiiiiii i 316
LT ST o] o] (=T T 316
T U LT To L PP 316
B.45.3 USAQE IN IMASTETiiiiiiii et e e e e e e e e e aaes 317
B.45.4 Usage iN REPIICAcovviiiici e 317
B.45.5 EXAMPIE . oiniii i 317
B.45.6 REIUIMN VaIUBSiiiiiii e e e e e e e e 318
B.4B GET _PARAMU() ittt sttt 318
LT YT o] o] (=T Ty T 318
BLdB.2 USA0E .. ittt 318
B.46.3 USAQE IN IMASTET\iiii i e e e e e e e e e e e eaes 318
B.46.4 Usage iN REPIICAcouviiiiii e 319
B.46.5 s0lidDB SYStEmM Parametersccuuueeiiiieiiiieeiieeeiieee e e e e s e e et e s eaanes 319
B.4B.6 EXAMPIE «.ooeeiiii 319
B.46.7 REIUIMN ValUBSvi ittt e e e e e e eaes 319
BL4B.8 SEE AlSD ...viiiiii et 320
BT GRANT i e e e e et aan 320
L 0 U L To PP 321
B.A7.2 EXAMPIE .o 321
BLAT7.3 SEE AlSD .ttt e e 321
B.48 GRANT REFRESHcooiiiiiiiiiiiiii ittt 322
T YT o] o] (=T Ty 322
Bld8.2 USA0E .. vttt 322
B.48.3 USAQE IN IMASTETiiiiiiiiici et e e e e e e e e e e aaes 322
B.48.4 Usage iN REPIICAcovviiiici e 322
B.4B.5 EXAMPIE . ooeniiii i 322
B.48.6 REIUIM ValUBSeiiiii i e e e e e eees 322
B0 HIN T ottt e 323
B.49.1 Pseudo Comment IAentifieruiiiiiiiiii e 323
B.49.2 EXAMPIE L ..oorniiiiiii e e 325
B.49.3 EXAMPIE 2 ..oveiiitiei e 325
BLi40.4 USA0E .. vttt ittt 328
B.40.5 EXAMPIE « e 328
BL50 IMPORT .ottt et et e a e aae 329
B 00, S0 tuititiiii ittt 329
B.50.2 USAQE IN IMASTETiiiiiiii e et e e e e e e e e e e eaes 330
B.50.3 USage iN REPIICAovviciiici e 331
B.50.4 EXAMPIE « i 331
B.50.5 REIUIMN ValUES ...t e e e e eees 331
BL5L INSERT ..ottt ittt e e e e e aan 332
TN O U L To L PP 332

Xiv

solidDB SQL Guide

B.5L.2 EXAMPIE .o 333
B.52 LOCK TABLE ..ottt e et e et e e e 333
Y20 R U L To PP 334
B.52.2 EXAMPIES .ottt 336
B.52.3 REIUIM ValUBS ...t et e e e e e e 336
BL52.4 SEE AlSD ...ttt 336
B.53 MESSAGE APPENDouuiiiiiiiiiieiii ettt 336
[N T ST o] o] (=To Ty 337
B 03,2 U SA08 e ittt ittt 337
B.53.3 USAQE IN IMASTETiiiicii et e e e e e e e e e aaes 339
B.53.4 Usage iN REPIICAcouuiiiici e 339
B.53.5 EXAMPIE ..o 339
B.53.6 REIUIMN ValUBS ...t it e et 339
B.54 MESSAGE BEGINuiiiiiiiiiiiiiii et et 340
oY 0 ST o] o] 1 (=Yoo 340
B 54,2 U S0 .. ittt 340
B.54.3 USAQE IN IMASTETiiiiiii e e e e e e e e e e e e aaes 341
B.54.4 Usage iN REPIICAcovuiiiici e 341
B.54.5 EXAMPIE .o 341
B.54.6 Return Values from IMASLEEiiviiiiiiiiii e 342
B.55 MESSAGE DELETE ...ttt e e e e 342
TSI ST o] o] (=To Ty 342
B 05,2 S0 1. ittt 342
B.55.3 USAQE IN IMASTETiiiiiiii e e e e e e e e e e e e e e e aaes 343
B.55.4 Usage iN REPIICAcouviiiiii e 343
B.55.5 EXAMPIE .o 343
B.56 MESSAGE DELETE CURRENT TRANSACTIONcocouiiiiiiiiiiiiiii e 344
TSI ST o] o] (=To Ty 344
BL5B.2 U SA0E .. ittt 344
B.56.3 USAQE IN IMASTETiiiiiiii e et e e e e e e e e e e aaes 345
B.56.4 Usage iN REPIICAcouviiiii e 345
B.56.5 EXAMPIE . ooeeiii i 345
B.56.6 REIUIMN ValUBSeiiiii et e e e 345
B.57 MESSAGE ENDouiiiiiiiiieiii et 346
Y ST o] o] (=T Ty 346
B 07,2 U SA0E oo ittt 346
B.57.3 USAQE IN IMASTETiiiiiii e e e e e e e e e e e aaes 346
B.57.4 Usage iN REPIICAcovviiiiii e 346
B.57.5 Return Values from RepliCaccoiiiiiiiiiiii e 347
B.57.6 Return Values from IMASLETiiviiiiiiiiie e 347
B.58 MESSAGE EXECUTE .. .ciittiiiiiiiiiieiii ettt eaeaees 348
B.58.1 SUPPOITEA 1N 1.uuiiiiiiii e e e e e 348

XV

solidDB SQL Guide

B 08,2 U S0 .. ittt 348
B.58.3 USAQE IN IMASTETiiiiciii et e e e e e e e e e e aaes 348
B.58.4 Usage iN REPIICAcouviiiiiii e 348
B.58.5 RESUIL SEL ... ittt e e e e 349
B.58.6 EXAMPIE «.ooeeiiiiii e 349
B.58.7 REIUIM ValUBS ...t ittt e e e e e 349
B.59 MESSAGE FORWARD ... oottt et et e eaeaa e eeees 350
[T IO ST o] o] (=To T 350
B L5002 U SA0E .. ittt ittt 350
B.59.3 EXAMPIE « e 351
B.59.4 Return Values from RepliCacccviiiiiiiiii e 352
B.59.5 Return Values from IMASLETviiiiiiiiiiie e 354
B.60 MESSAGE FROM REPLICA DELETE ...ccovviiiiiiii e 354
B.61 MESSAGE FROM REPLICA EXECUTE ...oovtiiiiii e 354
[ST o] o] o (=T Ty 355
BLBL.2 U SA0E .. iiitiii ittt 355
B.61.3 USAQE IN IMASTETuiiiiiiii et e e e e e e e e e aaes 355
B.61.4 Usage iN REPIICAcvvviiiici e 355
B.6L.5 EXAMPIE .o 355
B.61.6 REIUIMN ValUBSieiiiii et e e e e 355
B.62 MESSAGE FROM REPLICA RESTART ...ioitiiiiiiiiieeiii et 356
B.63 MESSAGE GET REPLY ...utiiiiiiiiiitiie ettt e e e e e e e 356
[S T ST o] o] (=To Ty 356
BLB3.2 U SA0E ..ttt 357
B.63.3 USAQE IN IMASTETiiiicii et e e e e e e e e e e aaes 357
B.63.4 Usage iN REPIICAcouviiiiii e 358
B.63.5 EXAMPIE .o 358
B.63.6 Return Values from RepliCaccviiiiiiiiii e 358
B.63.7 Return Values from IMASLEEviiiiiiiiiiie e 359
B.63.8 RESUIL SBL ... ittt e e e e 360
B.64 POST EVENT .ottt et e e e e e e 361
B.65 PUT_PARAIMU() .. ettt e e et et e e e e e e eaan s 361
[TSI ST o] o] (=To Ty T 361
BLB5.2 U SA0E .. ittt ittt 361
B.65.3 USAQE IN IMASTET\iiiiiiiiici e e e e e e e e e e aaes 362
B.65.4 Usage iN REPIICAccuviiiiii e 362
B.65.5 Differences between "PUT_PARAM()" and "SAVE PROPERTY property_name
VALUE property ValUe;™ e 362
B.65.6 EXAMPIE ... 362
B.65.7 REUIN VAIUBSieiiiiii e 363
B.65.8 SEE AlSO . ..eiiiiei i 363
B.66 REFRESH ...ttt et 363

XVi

solidDB SQL Guide

BLBB. L U SA0E .. uiuitiiiiit ittt 363
B.66.2 EXAMPIE . oeniiii i 364
B.66.3 REIUIMN ValUBS ...ttt e e e e e e e 364
B.67 REGISTER EVENT ...itiiiiiiiiiiii ettt e e et e e eaans 367
B.68 REVOKE (ROIE oM USEI) .. civiiiiiiicii it e e e e e 367
BLB8. L U SA0E ..ttt 367
B.68.2 EXAMPIE . ooeeiiii e 367
B.69 REVOKE (Privilege from RoIE OF USEI)iiviiiiii e 367
B8O, L U SA0E 1u ittt 368
B.69.2 EXAMPIE . oeeiiiii i 368
BL69.3 SEE AlSD vttt e 368
B.70 REVOKE REFRESHouuiiiiiiiiiiit et e et e e 368
OIS o] o] (=T Ty 369
BL70.2 USA0E ..ttt ittt 369
B.70.3 USAQE IN IMASTETiiiiiiii et e e e e e e e e e e e aaes 369
B.70.4 Usage iN REPIICAcouviiiici e 369
B.70.5 EXAMPIE .o 369
B.70.6 REIUIMN ValUBSieiiiii et e e e e e e eees 369
B.71 ROLLBACK WORK ...ttt et e e e e e eaens 370
T O U L To PP 370
B.71.2 EXAMPIE .o 370
BL72 SAVE oo 370
A RS o] oo (=T T 370
BT 2.2 S0 .. ittt 370
B.72.3 USAQE IN IMASTETiiiiiii et e e e e e e e e aaes 371
B.72.4 Usage iN REPIICAcovviiiii e 371
B.72.5 EXAMPIE .o 371
B.72.6 REIUIMN ValUBS ...ttt et e e e e e e eees 372
B.73 SAVE PROPERTY .oitiiiiiiiiiitiii ettt et e et e e a e et e e e e ae e 372
A T ST o] o] (=T Ty 372
T T U L To L PP 372
B.73.3 USAQE IN IMASTETuiiiiiii et e e e e e e e e e e e aaes 373
B.73.4 Usage iN REPIICAcovviiici e 373
B.73.5 Differences between "PUT_PARAM()" and "SAVE PROPERTY property_name
VALUE property ValUe;™ e 373
B.73.6 EXAMPIE <. 374
B.73.7 REUIMN VAIUBS ...t e 374
B.73.8 RESUIL SBL ... e 374
B 74 SELE T ittt e e 374
BL74. L USAQE .. .eiiiiiiieit ettt 375
B.74.2 EXAMPIES ... 375
B.74.3 START WITH EXAMPIEviiiiiiiiiiiii e 376

solidDB SQL Guide

B.74.4 LEVEL and ORDER SIBLINGS BY EXamPplec..covviiiiiiiiiiiiiiiieeiiineeecie, 376
Bl 7D SE T ittt ittt e 377
A0 R U L To L PP 377
B.75.2 Differences between SET and SET TRANSACTIONoovvviiiiiiiiiiiiiiiiiiiieeciienn, 378
B.75.3 SET (Read/WHrite LEVEI)ccovriiiiii e 379
B.75.4 SET CATALOG .. oottt et 379
B.75.5 SET DURABILITY oottt 379
B.75.6 SET ISOLATION LEVELouvviiiiiiiiii et 379
B.75.7 SET SAFENESS ..ottt 380
B.75.8 SET SCHEMA ... ittt et e e eees 380
BL75.9 SET SQL ..ttt 381
B.75.10 SET STATEMENT MAXTIMEouiiiiiiiiiiiii e 383
B.75.11 SET SYNC .o ittt ettt et 383
B.75.12 SET TIMEOUT ...ttt ittt e e e s 394
B.75.13 SET TRANSACTION ..ottt et e e 395
B.76 START AFTER COMMIT ..ottt e s 400
T IO U L To PP 400
S 1 T 7 Yol 1o o LSRR 401
B.76.3 Context of the Background Statementscccooeviiieiiiieiiiiiciiiecree e, 401
B.76.4 DUFADIITY L.ovvieiiii e 402
B.76.5 ROIDACK ... oiiiiiiieiii e e 402
B.76.6 Order Of EXECULIONiiiiiiiiieiii ettt e e e e e e e eeeee 402
B.76.7 EXAMPIES .oiiiiiii e 402
B.77 TRUNCATE TABLE ...t e e e enes 403
T 0 U L To PP 403
B.78 UNLOCK TABLEiiiiiiieii ettt e e e e et e e 403
Bl 78, L USA0E .. ittt ittt 404
B.78.2 Examples of Using LOCK and UNLOCKccociiiiiiiiiiiiiiiccieceee e 404
B.78.3 REIUIM ValUBS ...ttt e e e e e e e eaes 405
BL78.4 SEE AlSD ...ttt 405
B.79 UNREGISTER EVENT ..ottt eeeaens 405
B.80 UPDATE (POSItIONEA) ...ieetiiiiiiiie ettt e e e e e e aen s 405
BLB0. L USA0E 1.ttt ittt 405
B.80.2 EXAMPIE ..o 406
B.81 UPDATE (SArCNE) ... cievutieiiiiii ettt e 406
BBl L USA0E 1 ittt et 406
B.8L.2 EXAMPIE . ooeeiiiii i e 406
B.82 WAIT EVENT .ottt e et e et e e b e 406
B.83 TaDIE FEIBIBNCE .uviiiit i e e 406
B.84 QUErY SPECITICALION ... iiuiiiii it e e 408
B.85 S€arch _CONQITIONuuiiii it e e e 409
B.86 CheCk CONItIONvuiiii it e e e e e e e 411

xviii

solidDB SQL Guide

R o1 (=XYoo PP 412
TSI (1o V10 Tod o] P 415
B.89 NUMEIIC FUNCHIONS ©..vtiitiii e e e aae e 416
B.90 Date Time FUNCHIONS . ..uuiieiiiiiieiie ettt e et e e eans 417
B.91 SYStEM FUNCLIONSuiiiiiii e e e e e e e e e aaaees 419
B.92 MISCEllaN@OUS FUNCLIONS .. .vuiitiiitiii et eaaas 420
S R B (- R 1Y 0T PP 420
B.94 Date and Time LItEralSccvuiirieiiii et ees 421
B.95 PSEUAOD COIUMNS ©..uiiitiiitiii ettt e e e e et e e e et e e e 422
B.96 WIlACAId CRAraCeIS ... vvuiiviiitiiittii ettt e e e et e e e e e et et e et e e eaans 422
B.96.1 Using SQL WIIACArdSuoiiiiiiiii e 423
B.96.2 Wildcard Characters as LIteralSoevuviiiiiiiiiiiiii e 424

(O = (T Y=o IV o] (o [P 425
D Database System Tables and SYStEM VIBWSiiiiiiiiiiiiiii e e e e e aaens 439
[0 Y25 (=Y T I T o PRI 439
D.1.1 SQL _LANGUAGES ... oottt e e 439
D.1.2 SYS ATTAUTH L. o e e 439
D.1.3 SYS_BACKGROUNDJIOB INFOciiiiiiiiiiiiii e e e e e e 440
D.1.4 SYS BLOBS . .oiiiiiiiii e 441
D.15 SYS CARDINAL ...ttt 441
D.1.6 SYS CATALOGS ...ttt e 442
D.1.7 SYS CHECKSTRINGS ...ttt e a s 442
D.1.B8SYS COLUMNS ... e 442
D.1.9 SYS COLUMNS AUX ..ottt e e e e e aaens 443
D.1.10 SYS_DL_REPLICA CONFIG . ..ottt 444
D.1.11 SYS _DL_REPLICA DEFAULT ...ttt s e 444
D.1.12 SYS EVENTS Lot e e e e 445
D.1.13 SYS FORKEYPARTS ..ottt e aaes 446
D.1.14 SYS FORKEYS ..ottt e e e e e 446
D.1.15 SYS HOTSTANDBY ..ottt e 446
D.1.16 SYS INFO oottt 447
D.1.17 SYS KEY PARTS Lottt e e 447
D118 SY S KEY S ittt 447
D.1.19 SYS PROCEDURESciiiiiii e 448
D.1.20 SYS PROCEDURE _COLUMNS ..ottt 449
D.1.21 SYS PROPERTIESciitiiiiii e 450
D.1.22 SYS RELAUTH ... 450
D.1.23 SYS SCHEMAS ..o e e 451
D.1.24 SYS SEQUENCES ..ottt e 451
D.1.25 SYS_SYNC _REPLICA PROPERTIESccuiiiiiiiiiiieeie e 452
D.1.26 SYS _SYNONYM ..ottt e e e e 452
D.1.27 SYS _TABLEMODESiiiiiii i e e 452

XiX

solidDB SQL Guide

D.1.28 SYS TABLES ... i 453
D.1.29 SYS _TRIGGERSottt e e e s 454
D.1.30 SY S T PES ottt ittt e 454
D.1.31 SYS_UROLE ..ottt e e 455
D.1.32 SYS USERS ...ttt 456
D.1.33 SYS VIEWS ... it 456
D.2 System Tables for Data Synchronizationccoovviiiiiiiiiiieiee e 456
D.2.1 SYS_BULLETIN_BOARDoutiiiiiiiiiiiiiiiii et s e e aat e e e e e aaavanees 457
D.2.2 SYS_PUBLICATION_ARGSotiiiiiiiiiiiiiiiie ettt e e e e e e e aaanaes 457
D.2.3 SYS_PUBLICATION_REPLICA_ARGScoiiiiiiiiiii e 457
D.2.4 SYS_PUBLICATION_REPLICA STMTARGScoovviiiiiieiiiiiiiiiie e eeeeaiiiinn, 458
D.2.5 SYS_PUBLICATION_REPLICA_STMTS ... oo it 458
D.2.6 SYS_PUBLICATION_STMTARGSoutiiiiieiiieiiiiiiis e 459
D.2.7 SYS_PUBLICATION_STMTS ...iiiiiiiieieeiietiis et e e e a vt eeeeaes 459
D.2.8 SYS _PUBLICATIONS ...ttt e e e e s 460
D.2.9 SYS_PUBLICATIONS _REPLICA ... oottt 460
D.2.10 SYS_SYNC_BOOKMARKS ..ottt aeeaaaaaaaens 461
D.2.11 SYS_SYNC_HISTORY_COLUMNSovtiiiiiiieiiiiiiiiiiee s eee e eeenaanans 461
D.2.12 SYS_SYNC_INFO ..ttt e e e a e e s 461
D.2.13 SYS_SYNC_MASTER_MSGINFOcouviiiiiiiieiiiiiiiiii e ees e eeeaaanens 462
D.2.14 SYS_SYNC_MASTER_RECEIVED_BLOB_REFSccoviiiiiiiieiieii e 463
D.2.15 SYS_SYNC_MASTER_RECEIVED_MSGPARTScoooiiiiiiiiiiiiieie e 464
D.2.16 SYS_SYNC_MASTER_RECEIVED_MSGScooviiiiiiiiiiiiiiiiiie e eee v 464
D.2.17 SYS_SYNC_MASTER_STORED BLOB REFScccooiiiiiiiiiiiiiiiiiieeeeeeeiiiiens 464
D.2.18 SYS_SYNC_MASTER_STORED_MSGPARTSiiiiiiiiiiiiiii e 465
D.2.19 SYS_SYNC_MASTER_STORED_MSGScuviiiiiiiiiiiiiiiiiiiie e 465
D.2.20 SYS_SYNC_MASTER_SUBSC REQccvvviiiiieiiiiiiiiiiiii e eee e eeeeeaanans 466
D.2.21 SYS_SYNC_MASTER _VERSIONSoiiiiiiiiiiiiiiie e 466
D.2.22 SYS_SYNC_MASTERS ..ottt e e e e e 467
D.2.23 SYS_SYNC_RECEIVED BLOB_ARGSccoitiiiiiiiiii e 467
D.2.24 SYS_SYNC_RECEIVED_STMTS ...ttt e 468
D.2.25 SYS_SYNC_REPLICA MSGINFOcuviiiiiiiiiiiiiiiie e 468
D.2.26 SYS_SYNC_REPLICA_RECEIVED BLOB_REFSc.ooooeiiiiiiiiiiiie e 470
D.2.27 SYS_SYNC_REPLICA_RECEIVED_MSGPARTSccoiiiiiiiiiii e 470
D.2.28 SYS_SYNC_REPLICA RECEIVED_MSGSccoiiiiiiiiiiiiiiiii e 471
D.2.29 SYS_SYNC_REPLICA _STORED _BLOB_REFSccceeiiiiiiiiiiiie e 471
D.2.30 SYS_SYNC_REPLICA_STORED_MSGSiiiiiiiiiiiiii e eeeaanens 471
D.2.31 SYS_SYNC_REPLICA_STORED_MSGPARTScovvviiiiiiieeieiiiiiiiiie e e eeeaiiiens 472
D.2.32 SYS_SYNC_REPLICA _VERSIONScoiiiiiiiiiis e 472
D.2.33 SYS_SYNC_REPLICAS ...ttt e 473
D.2.34 SYS_SYNC_SAVED BLOB_ARGSiiiiiiiiiiiciei e 473
D.2.35 SYS_SYNC_SAVED _STMTS ..oiiiiiiiieiiiiiiiiiie et e e e e e e e aaaaes 473

XX

solidDB SQL Guide

D.2.36 SYS_SYNC_TRX_PROPERTIESiiiiiiiiiiiiiiii e 474

D.2.37 SYS_SYNC_USERMAPS ... it 474

D.2.38 SYS_SYNC _USERS ...ttt et et e e aeeees 475

D.3 SYSIBIM VIBWS ...iiiiiii it e et e e e e e e e e e e e e e e e e e et e et e et e e e e e 475
D.3.1 COLUMNS Lo e e 475

D.3.2 SERVER_INFO ..ottt 476

D.3.3 TABLES ..ottt e 477

D.3L4A USERS ..ottt e 477

D.4 Synchronization-Related VIBWScouiiiiiiiiiii e 477
D.4.1 SYNC_FAILED_MESSAGEScoiiiiiiiiiiee e 478

D.4.2 SYNC_FAILED_MASTER_MESSAGESoiiiiiiiiiieiiii e 478

D.4.3 SYNC_ACTIVE_MESSAGES ...ttt e 479

D.4.4 SYNC_ACTIVE_MASTER_MESSAGESccocviiiiiiiiieeii e 479

E SyStem StOred PrOCEOUIESiveieiii i e e e e e e e e e e et e et eaanas 481
E.1 Synchronization-Related Stored ProCeduresooiviuieiiiiiiiiiieiieece e e 481
E.1.1 SYNC_SETUP_CATALOG ..ottt 481

E.1.2 SYNC_REGISTER_REPLICA ...ttt 482

E.1.3 SYNC_UNREGISTER_REPLICA ... oottt 483

E.1.4 SYNC_REGISTER_PUBLICATIONuutiiiiiiiiiiiiiieeeiii e 485

E.1.5 SYNC_UNREGISTER_PUBLICATIONciiiiiiiiiiiiiieeiiii et 486

E.1.6 SYNC_SHOW_SUBSCRIPTIONSccoiiiiiiiiiiiiiieeeii et 487

E.1.7 SYNC_SHOW _REPLICA_SUBSCRIPTIONSouiiiiiiiiieiiiii e 488

E.1.8 SYNC_DELETE_MESSAGEScooutiiiiiiiiiiieiiii et 489

E.1.9 SYNC_DELETE_REPLICA MESSAGESoiiiiiiiiieiiiiieec e 490

E.2 Miscellaneous StOred PrOCEAUIESuuriiiiii et e st e e e eeenns 491
E.2.1 SYS_GETBACKGROUNDUJIOB_INFOiiiiiiiiiiiiiiiiieeii e 491

F Sy S M BV BNES Lottt 493
F.1 MISCEIIANEOUS EVENESiieiii it e e e e e e 494

F.2 Errors that Cause SYS_ EVENT ERRORcoiiiiiiiiii e 501

F.3 Conditions or Warnings that Cause SYS EVENT _MESSAGESccoooociiiiiiiiiiiiienis 502

F.4 HOtSTaNADY EVENESiiiiii i e e e e e e e e e e e aees 503

F.5 SmartFlow Synchronization EVENESccovuiiiiiiiiii e 503

(] 101517 505
1T G PRSPPI 509

XXi

XXii

List of Figures

4.1 SYNC PUITINOTITY ..t 119
5.1 Referential CoNSIraINtcviitii i e e e e e aeas 154
5.2 Self-referential CoNSIIAINTiiviiiii e 155
T L EXECULION Graph L ...oe ittt ettt 188
T2 EXECULION Graphi 2 ...ou i ettt 190

xXxiii

XXIV

List of Tables

1.1 TypographiC CONVENTIONSu.eiiiii ettt ettt e et et e e e ae s 2
1.2 Syntax NOtation CONVENTIONSuuueiiitiee ittt e e e et e e 3
2.1 Example Database Table ... e 7
3.1 Example Database Tablecoouuiiiii e 15
4.1 COMPAIISON OPEIALOISeeivteeiitt ettt ettt et et e et e et e ettt e ettt e ettt e e e ene e 47
4.2 Logical OPerators: NOT ittt et et ettt ettt 47
4.3 L0gical OPErators: ANDuuuiiiiii et 48
4.4 1.0giCal OPEIators: OR ittt et et et ettt 48
4.5 Determining Data Type from Parametersccoouuiiiiiiiiiiiii e 70
4.6 Statement ATOMICITY IN 8 TIIGGEE .vvvuneiiii ettt 83
4.7 Insert/Update/Delete Operations for BEFORE/AFTER TFHQQEISuueviiiiiiiiiiiieeeiiieeeeeii e 91
A8 EXAMPIE ENLIY L ..ottt et 94
A9 EXAMPIE ENLIY 2 ..ottt et et 94
4.10 Meta Data for the SYS_TRIGGERS System Tablec.ccooiiiiiiiiii e 106
5.1 Reserved User Names and ROIESuuuiiiiiiiii e 142
5.2 Viewing Tables and Granting ACCESSccuuruuieiiiiieeiii ettt ettt 146
5.3 EXPressions aN0 OPEIALOIScceuuuiiitii ettt ettt ettt e e et e e e et e e ne e 158
7L SQLINTO LBVEIS ..ot ee 184
7.2 EXPLAIN PLAN FOR UNIES ..ttt ettt et 185
7.3 Explain Plan Table ColUMNS ... 185
7.4 Texts in the UNIt INFO COIUMN L....iiii et 186
8.1 Diagnosing POOr PEITOIMANCEuuiiiiiii ittt 206
AL SUPPOITEA DALA TYPES ... ettt ettt ettt 209
A2 CharaCter Data TYPES ...oevuiieiiii ettt ettt et 209
A3 NUMETIC DAL TYPES .ttt et ettt e e e e e s 210
AL BINArY DAEA TYPES ..ttt et ettt e e aee 212
A5 DAe DAtA TYPE ..oviniiiiiiii et 213
ALB TIME DALA TYPE vttt ettt ettt 214
A7 TIMESIAMP DALA TYPE e ettt ettt ettt 214
A.8 Smallest Possible NON-Zero NUMDEISooiiiii e 214
B.1 ADMIN COMMAND SYNEAX ... eieitiietiiti ettt et ettt e e e e et e eeeea e eenes 219
B.2 ALTER TABLE SET HISTORY COLUMNS Return ValUescc.uvviiiiiiiniiiiiiniciiii e, 237
B.3 ALTER TABLE SET SYNCHISTORY Return ValUEScc.uiiiiiiiiiiiiiiicci e 240
B.4 ALTER USER REIUIM VAIUEScoiiiieiiiti ettt 243
B.5 Comparison of the Parameter MOGEScooovuiiiiiii e 257
B.6 CONLIOI STALEIMENES ...\ttt e e e e 259
B.7 CREATE PUBLICATION RetUrN ValUESooiiiiiiiiii e 276
B.8 CREATE SYNC BOOKMARK REUM VaIUESouuiiiiiiiiiiiiii e 282
B.9 Statement AtOMICILY N @ TIIGGEE «..vuneeiiii et e e 292

XXV

solidDB SQL Guide

B.10 DROP MASTER ReUIM VAIUESciviiiiiiiii ittt a s 301
B.11 DROP PUBLICATION REUIN ValUBScivviiieiiiieeeie et 302
B.12 DROP PUBLICATION REGISTRATION Return Valuesccoeviviiiiiiiiiieiiiiiieeeiii e 303
B.13 DROP REPLICA REUIMN VAlUBSeieiiieeiii et 305
B.14 DROP SUBSCRIPTION REUIN ValUESevviiiiiiiiieii et 308
B.15 DROP SYNC BOOKMARK RetUIN VAIUEScovviiiiiiiii i 310
B.16 EXPORT SUBSCRIPTION REIUMM VAIUESciveiiieiiiiie e 316
B.17 EXPORT SUBSCRIPTION TO REPLICA Return Valuescccoviiiiiiiiiiieiiiiiieeceee e 318
B.18 GET_PARAM RELUIN VAIUESeevuiiiiiii et e e e e e et e eeeee 320
B.19 GRANT REFRESH REIUIM VaIUES .. .cevviieiiii it 323
BL20 HINES oottt et e 325
B.21 IMPORT REUIMN VAIUBSvtiiieiiii et e e e e e e e e e e e aan s 331
B.22 LOCK TABLE REtUM VAIUESuiiiiiiieiii et 336
B.23 MESSAGE APPEND RELUIN VAIUESuiiiiiiieiiiie e 339
B.24 MESSAGE BEGIN Return Values from Replicacocoviviiiiiiiiii e 341
B.25 MESSAGE BEGIN Return Values from MaStercooovuiiiiiiiiiiiici e 342
B.26 MESSAGE DELETE Return Values from RepPlICaccuvviiiiiiiiii e 343
B.27 MESSAGE DELETE Return Values from MaSterc..oviiiiiiiiiiiiiieci e 343
B.28 MESSAGE DELETE CURRENT TRANSACTION Return Valuescoooevvviiiieiiiinieeeiiinnnn, 345
B.29 MESSAGE END Return Values from RepliCaccovviiiiiiiiii e 347
B.30 MESSAGE END Return Values from MaSterccuuuiiiiiieiieciie e e 347
B.31 MESSAGE EXECUTE REtUIN ValUBScivvinieiiie ettt 349
B.32 MESSAGE FORWARD Return Values from Replicacccoooviiiiiiiiiii e, 352
B.33 MESSAGE FORWARD Return Values from MasStercccoiviiiiiiiiiiiciin e 354
B.34 MESSAGE FROM REPLICA EXECUTE Return Valuescocovvviiiiiiiiiiiiiiiieeeiie e 356
B.35 MESSAGE GET REPLY Return Values from Replicacocciviiiiiiiiiiiiii e, 358
B.36 MESSAGE GET REPLY Return Values from MaStercooeiiiiiiiiiiiiiin e 359
B.37 MESSAGE GET REPLY ReSUlt SEt Tableviiiiiiiii e 360
B.38 PUT_PARAMY() REIUIM VAIUESovtieiiii ettt e e eaeee 363
B.39 REFRESH RELUIN VAIUBScovuiiiiicii et e e e e e e e e e aana e 364
B.40 REVOKE REFRESH RELUIM ValUBSvvtiiiiiiiieiiii et 369
B.41 SAVE REUIMN VAIUBSuiiiiiiiiiei et e e e et et e e e e aeas 372
B.42 SAVE PROPERTY REUMN VAIUESceeviiiieiiiiie ettt e s 374
B.43 SET SYNC REUMN VAIUES ... covuiiiiicii et e e e e e e e e e e e e e e e aaa e 384
B.44 SET SYNC CONNECT REtUIM ValUESevviiieiiiiii it 385
B.45 How Different Operations Apply to Synchronization History Tablescccoocoveeiiiiiinnennnn. 387
B.46 SET SYNC MODE RetUrN VAlUESuuiiiiiiiiiiiie et 388
B.47 SET SYNC NODE RetUIN VaIUEScoeuiiiiiiiiiieiii et a s 390
B.48 SET SYNC PARAMETER RetUMN VAIUESciiviiiiiii e 391
B.49 LOCK TABLE REtUM VAIUESuiiiiiiieiiie ettt 405
B.50 TaBIE FEIBIBNCE . vt iiii i e e e e e 406
B.51 QUENY _SPECITICALION .. .iut ittt e e e e e e e e e 408

XXVi

solidDB SQL Guide

B.52 S€arch_CONGITIONvviiiiii i e e e e e e e e e et e e e eees 409
X I @ 3 T-Tod oo o [o o P 411
oY g o1 (=X (] o PP 412
TSI 1 T To V14 Tox 1 o] 415
B.56 NUMEIIC FUNCIIONS © vttt e e e e e e e e e e et e aaeas 416
B.57 Date TimMe FUNCHIONSvuiitiiiiieii et e e et e et e et e e eans 417
B.58 SYSIEM FUNCIIONSiiiiiii et e e e e e e e e e e e e e e e eeaeaas 419
B.59 MiSCEIlANEBOUS FUNCLIONS .. .vuiittiitii et e e eaans 420
B B0 Dala LY 8 teuitiiiite ettt et 420
B.61 Date and Time LITEIalSovviiiriiiiiiei ettt e e e et e e e aaaes 421
B.62 PSEUAD COIUMNS ..ottt ettt e e e et e e et et e e e e et e et e et e e et aeaas 422
S SR ALY [o [or= T o IO (ot (- £ PSP 423
O T e Y To AV o o [T PP 425
D.1 SQL_LANGUAGES ... oottt e 439
D.2 SY S AT TAUTH oot e e e e e e e 439
D.3 SYS BACKGROUNDJIOB _INFOuiiiiiiiiiiiii et e e e e e e aaens 440
D4 SYS BLOBS ..ottt e 441
D.5 SYS CARDINAL .t e e 441
DB SY S CATALODGS ...ttt et 442
D.7 SYS CHECKSTRINGS ... ittt e e e e e e e e e e e aaees 442
D.8 SYS COLUMNS ..ot e e e e e e e e e et e et eaanas 443
D.9 SYS COLUMNS AUX Lottt e e e e e e e e e e e e e et e e aanaeaes 444
D.10 SYS DL _REPLICA CONFIG . .ootiiii it e e 444
D.11 SYS DL _REPLICA DEFAULT ..ot e e 445
D.12 SY S EVENT S oot 445
D.13 SY S FORKEY PART S L.ttt e e e e e e e e e e e ataees 446
D.14 SYS FORKEY S ottt ittt e e e e e e 446
D15 SY'S INFO Loiiiiiiiiii i e 447
D.16 SY S KEY PART S ..ottt et e e e e e e e e e e e 447
(DI AN A T (= 2 TP 448
D.18 SYS PROCEDURES ...ttt et e e e e e e e e e e e e et e et e aaens 448
D.19 SYS PROCEDURE_COLUMNS ...t e e e a e e e e e 449
D.20 SYS PROPERTIES ... ittt ittt e e e e e e e e e e e e e e et e e e aaaeees 450
D.21 SYS RELAUTH Lot e e e e e e e e e et e e aaaeees 450
D.22 SY S SCHEMAS ..o e e e 451
D.23 SYS SEQUENCES ... ittt et e e e e e e e et e e e e e e e e e 451
D.24 SYS SYNC_REPLICA PROPERTIEScouiiiiiiiii et a e 452
D.25 SY'S SYNONY M Lottt e e e e e e 452
D.26 SYS TABLEMODESoiiiiiiiiii e e e e 452
D.27 SYS TABLES ..o 453
D.28 SYS TRIGGERS ...ttt e e e 454
D29 SY S T PES oottt e e 454

solidDB SQL Guide

D.30 SYS_UROLE ...ttt oottt ettt ettt ettt ettt 455
D.3L SYS_USERS ... eeteeeeeetes e eee ettt ettt ettt 456
D.32 SYS_VIEWS .ottt ettt ettt ettt ettt 456
D.33 SYS_BULLETIN_BOARDovvteieteeeeteseeeeeeeeee e eee ettt e et e e 457
D.34 SYS_PUBLICATION_ARGSoetuieteeeeeseeeeeeeeeeeeeeeeee et ee e e et 457
D.35 SYS_PUBLICATION_REPLICA ARGSoieteeteeeeeeeeeeteseeeeeees e eeeeeeenes e eeeeenen e, 457
D.36 SYS_PUBLICATION_REPLICA_STMTARGScvviieteeeeeereeseeeeeseeeeeeeseseeeseeees e 458
D.37 SYS_PUBLICATION_REPLICA_STMTSetveveteteeeeeeeeeeeeee et eeeteee e 458
D.38 SYS_PUBLICATION_STMTARGSovvvteeeeeeeeeeeseeeeetes et eee oo ete oo, 459
D.39 SYS_PUBLICATION_STMTS ...ooieieieeteeeeeeeeeeee e eee et ettt een e 459
D.40 SYS_PUBLICATIONScvvtteeeeeeeeeeeeeeeee oot et et ettt ee et 460
D.41 SYS_PUBLICATIONS_REPLICAovvvteeeeeeeeeeeeeeeeeeee ettt 460
D.42 SYS_SYNC_BOOKMARKSooeeeteeeeeeeeeeeeee e eeeeeeet et ee et 461
D.43 SYS_SYNC_HISTORY_COLUMNSvivivereteeeeeeeeees e eeees e e see e 461
D84 SYS_SYNC_INFO o.vvvteeeeeeeeee oottt ettt 461
D.45 SYS_SYNC_MASTER_MSGINFOooeivieeeeeeeeeeeeeeseeeeeeeee e eeeeet e eeee e 462
D.46 SYS_SYNC_MASTER_RECEIVED_BLOB_REFSciveviieieeeeeeeseeeeeeeeeeeeeres e 463
D.47 SYS_SYNC_MASTER_RECEIVED_MSGPARTSo.tvieteeteteseeeeeeeeereseeseeeseseeeeenen e, 464
D.48 SYS_SYNC_MASTER_RECEIVED _MSGSeveveveeieeeeeeeeeeseeeeeeeeeeeeeseeen e eeeeeenen e, 464
D.49 SYS_SYNC_MASTER_STORED_BLOB_REFSeitivetieieeeeeeeeseeeeeee e eeeeeer e, 464
D.50 SYS_SYNC_MASTER_STORED_MSGPARTSoviveeivereeieeeeereseseeeeeeseeeeseeenes s 465
D.51 SYS_SYNC_MASTER_STORED_MSGSceevevevreeeeeseeeeeeseeeeseeneseseeeeeseses e seenes e 465
D.52 SYS_SYNC_MASTER_SUBSC_REQcvivveeeeeeeeeeeeseeeeeeeteseeeeeres e een e 466
D.53 SYS_SYNC_MASTER_VERSIONScoevvtieeeeeeeeeeseeeeeetes e eeeeeer e seeeees e e, 466
D.54 SYS_SYNC_MASTERSeveeteteeeeeeeeeees et eeee et ettt ettt ettt 467
D.55 SYS_SYNC_RECEIVED_BLOB_ARGScvevveirieeeeeeseeeeseereeeeeeeseseseee e, 467
D.56 SYS_SYNC_RECEIVED _STMTS «...eevevveeeieeeeeeeeeeseeeeees et eeet e ee et eeen e 468
D.57 SYS_SYNC_REPLICA MSGINFOooiuiveeeeieeeeeeeeeeeeeeeer e eeeee et 469
D.58 SYS_SYNC_REPLICA_RECEIVED BLOB_REFScoovtieieeereeeseeseeeee e seeeeres e, 470
D.59 SYS_SYNC_REPLICA_RECEIVED_MSGPARTScoevivevvtieeeeeeeeseeeeeeeeeseeeeseenenesees 470
D.60 SYS_SYNC_REPLICA_RECEIVED_MSGScvviieeeeeeeeeeseeeeeeeseeeeeeeseseeeeseenes s 471
D.61 SYS_SYNC_REPLICA_STORED _BLOB_REFSciivetieteeeeeeseeeeeeeeeeeseeeres e 471
D.62 SYS_SYNC_REPLICA_STORED_MSGScvvveieieeeeeereeeeeeeeeeeseeeeeteees e eeeees e, 471
D.63 SYS_SYNC_REPLICA_STORED_MSGPARTSvteeeeteieeeeeereseseeeeees e seeees e eeeenenan 472
D.64 SYS_SYNC_REPLICA_VERSIONSovtieeeeeeeeeeeeeeees e ee e ee et 472
D.65 SYS_SYNC_REPLICASoeivvteeeeeeeeeeeseeeee oottt ee et 473
D.66 SYS_SYNC_SAVED _BLOB_ARGScvvveieieeeeeeeeeeeeeeeee et eeeeeteses e eeee e eesees s 473
D.67 SYS_SYNC_SAVED_STMTS ...ocvvieieieeeeeeeeeeeeeeeee e e e et e et eee s 474
D.68 SYS_SYNC_TRX_PROPERTIEScvvteieteeeeeeeeeeeeeeeeses e eeeete s ee et 474
D.69 SYS_SYNC_USERMAPSoooeieitieeteeeeeeet e eeeeeet et et ettt e e, 475
D.70 SYS_SYNC _USERSveeeeeeeeteteeeeeeeeeeees et e ettt ettt 475
D71 COLUMNS ..ttt ettt ettt ettt 476

XXViii

solidDB SQL Guide

D.72 SERVER_INFO ..ottt et e e e s 476
.73 TABLES .. ot e 477
D74 USERS ..ot e e e e e 477
D.75 SYNC_FAILED _IMESSAGESottt 478
D.76 SYNC_FAILED_MASTER_MESSAGESuiiiiiiiiiiiii et 479
D.77 SYNC_ACTIVE_IMESSAGES ...ttt et e e 479
D.78 SYNC_ACTIVE_MASTER_MESSAGEScoouiiiiiiiiiieeiii et 480
E.1 SYNC_SETUP_CATALOG EIrOr COUES .. .cvvuunieiiiiiietiiiie ettt e e ettt e et e e e e e eran e 482
E.2 SYNC_REGISTER_REPLICA EITOr COUES ...oevvviiiiiinieeiiiiie et e et e et ne e e e e aenes 483
E.3 SYNC_UNREGISTER_REPLICA EITOr COUESuuuiiiiiiiiieiiiiiee et e et e e avi e 484
E.4 SYNC_REGISTER_PUBLICATION EFrOr COUES ...cevvvuieiiiiiieeiiiiniaeeeii e e eeiine e et e e eeiinaeeenes 485
E.5 SYNC_UNREGISTER_PUBLICATION Error COUESuuviiiiiniiiiiiiiieeeiiiieeevi e e e e 486
E.6 CREATE PROCEDURE SYNC_SHOW_SUBSCRIPTIONS Result Setccccvvvvviiiiinieeiiiinnnnn, 487
E.7 SYNC_SHOW _SUBSCRIPTIONS Error COUESuuuiviiiinieiiiiieeiiii e et e e e e e e e e 487
E.8 SYNC_SHOW_REPLICA_SUBSCRIPTIONS ReSUIt SEtcovvvviiiiiiiiiiiiiii e 488
E.9 SYNC_SHOW_REPLICA_SUBSCRIPTIONS Error COUescveviiuiieeiiiiinaeiiiiieeeiiinneeannns 489
E.10 SYNC_DELETE_MESSAGES EITOr COUES ... evvvvnieiiiiieeiiiinieeiiinaeetiinaeeasineeeaiinaeeeaninaeens 490
E.11 SYNC_DELETE_REPLICA_MESSAGES Error COUEScccvuviiiiiiiiiiiiiiaeeiiinaeeeiineeaeannns 490
F.1 MISCEIIANEOUS EVENESiiiiii et e et e e e eeeaai s 494
F.2 Errors that Cause SYS EVENT ERROR ..ot 501
F.3 Warnings that Cause SYS_EVENT MESSAGESoiiiiiiiiiiici e 502

XXiX

XXX

List of Examples

4.1 Trigger with Referencing Clause EXAMPIEccoouiiiiiiiiiii e e 86
o b o B T o[]S PP PP PR PPPPTRUPPPPN 95
4.3 TrIgOEr EXAMPIE . e 98
4.4 Dropping and RECreating @ TIIgOEY o eeiiit ettt et 104
4.5 SHCEU REPIICAS .. ettt ettt 120
4.6 EVENE EXAMPIE L oot e e e e e 127
4.7 EVENEEXAMPIE 2 ..ot e e e e 130
4.8 EVENT EXAMPIE 3 .. e 133

B.1 SET Examples

XXXI

XXXil

Chapter 1. Welcome
1.1 About This Guide

solidDB SQL Guide introduces you to the relational database server theory and the SQL programming language.
It also includes appendices that show the syntax of all SQL statement supported by IBM solidDB (solidDB
or Solid), and describes the data types that can be used in tables and SQL statements.

1.1.1 Organization

This guide contains the following chapters:

Chapter 2, Database Concepts, familiarizes you with the basics of relational databases.
Chapter 3, Getting Started with SQL , familiarizes you with the basics of SQL (Structured Query Language).

Chapter 4, Stored Procedures, Events, Triggers, and Sequences, explains how to use programming features,
including Stored Procedures, Triggers, etc.

Chapter 5, Using solidDB SQL for Database Administration , explains the use of SQL for tasks such as
limiting access to particular users or roles, etc.

Chapter 6, Managing Transactions , concentrates on transaction management.

Chapter 7, Diagnostics and Troubleshooting, explains how to diagnose and solve some types of problems.
Chapter 8, Performance Tuning, explains how to improve performance of SQL statements.

Appendix A, Data Types, lists the valid SQL data types.

Appendix B, solidDB SQL Syntax, shows the syntax for each SQL statement accepted by the solidDB.
Appendix C, Reserved Words, lists the reserved words in SQL statements.

Appendix D, Database System Tables and System Views , lists system tables and views.

Appendix E, System Stored Procedures, lists stored procedures that are pre-defined by the server.
Appendix F, System Events, lists events that are pre-defined by the server.

Glossary provides definitions of terms.

1.1.2 Audience

1.1.2 Audience

This guide is for users who want to learn about SQL in general or who want to learn about solidDB-specific
SQL.

1.2 Conventions
1.2.1 About solidDB

solidDB provides advanced database solutions for mission-critical applications.

This documentation assumes that all options of solidDB are licensed for use. In some cases, however, a cus-
tomer may choose not to license certain options. These include in-memory engine, disk-based engine, Carri-
erGrade Option (also known as "HotStandby" in previous releases), and SmartFlow Option. Please refer to
your organization's contract with solidDB, or contact your solidDB account representative.

1.2.2 Typographic Conventions

This manual uses the following typographic conventions:

Table 1.1. Typographic Conventions

Format Used for
Database table This font is used for all ordinary text.
NOT NULL Uppercase letters on this font indicate SQL keywords

and macro names.

solid.ini These fonts indicate file names and path expressions.

This font is used for program code and program output.
SET SYNC MASTER YES; Example SQL statements also use this font.
COMMIT WORK;

run.sh This font is used for sample command lines.
TRIG_COUNTQ) This font is used for function names.

java.sqgl .Connection This font is used for interface names.

LockHashSi ze This font is used for parameter names, function argu-

ments, and Windows registry entries.

1.2.3 Syntax Notation

Format

Used for

ar gunment

Words emphasised like this indicate information that
the user or the application must provide.

solidDB Administration Guide

This style is used for references to other documents,
or chapters in the same document. New terms and
emphasised issues are also written like this.

File path presentation

File paths are presented in the Unix format. The slash
(/) character represents the installation root directory.

Operating systems

If documentation contains differences between operat-
ing systems, the Unix format is mentioned first. The
Microsoft Windows format is mentioned in paren-
theses after the Unix format. Other operating systems
are separately mentioned.

1.2.3 Syntax Notation

This manual uses the following syntax notation conventions:

Table 1.2. Syntax Notation Conventions

Format

Used for

INSERT INTO tabl e _nane

Syntax descriptions are on this font. Replaceable sec-
tionsare ont hi s font.

solid.ini This font indicates file names and path expressions.

[1 Square brackets indicate optional items; if in bold text,
brackets must be included in the syntax.

| A vertical bar separates two mutually exclusive choices
in a syntax line.

{} Curly brackets delimit a set of mutually exclusive

choices in a syntax line; if in bold text, braces must
be included in the syntax.

An ellipsis indicates that arguments can be repeated
several times.

A column of three dots indicates continuation of pre-
vious lines of code.

1.3 solidDB Documentation

Format Used for

1.3 solidDB Documentation

Below is a complete list of documents available for solidDB. solidDB documentation is distributed in PDF
format.

Electronic Documentation

» Release Notes. This file contains installation instructions and the most up-to-date information about the
specific product version. This file (releasenotes . txt) is copied onto your system when you install
the software.

» solidDB Getting Started Guide. This manual gives you an introduction to the solidDB.

» solidDB SQL Guide. This manual describes the SQL commands that solidDB supports. This manual also
describes some of the system tables, system views, system stored procedures, etc. that the engine makes
available to you. This manual contains some basic tutorial material on SQL for those readers who are not
already familiar with SQL. Note that some specialized material is covered in other manuals. For example,
solidDB "administrative commands" related to the High Availability (HotStandby) Option are described
in the solidDB High Availability User Guide, not the solidDB SQL Guide.

» solidDB Administration Guide. This guide describes administrative procedures for solidDB servers. This
manual includes configuration information. Note that some administrative commands use an SQL-like
syntax and are documented in the solidDB SQL Guide.

» solidDB Programmer Guide. This guide explains in detail how to use features such as solidDB Stored
Procedure Language, triggers, events, and sequences. It also describes the interfaces (APIs and drivers)
available for accessing solidDB and how to use them with a solidDB database.

» solidDB In-Memory Database User Guide. This manual describes how to use the in-memory database of
solidDB In-memory Engine.

» solidDB SmartFlow Data Replication Guide. This guide describes how to use the solidDB SmartFlow
technology to synchronize data across multiple database servers.

Electronic Documentation

solidDB AcceleratorLib User Guide. Linking the client application directly to the server improves per-
formance by eliminating network communication overhead. This guide describes how to use the Acceler-
atorL.ib library, a database engine library that can be linked directly to the client application.

This manual also explains how to use two proprietary Application Programming Interfaces (APIs). The
first API is the solidDB SA interface, a low-level C-language interface that allows you to perform simple
single-table operations (such as inserting a row in a table) quickly. The second API is SSC API, which
allows your C-language program can control the behavior of the embedded (linked) database server

This manual also explains how to set up a solidDB to run without a disk drive.

solidDB High Availability User Guide. solidDB CarrierGrade Option (formerly called the HotStandby
Option) allows your system to maintain an identical copy of the database in a backup server or "secondary
server". This secondary database server can continue working if the primary database server fails.

Getting Started With solidDB For VxWorks. This guide describes how to take into use solidDB on the
VxWorks environment. It also provides guidelines for application development and performance tuning.
This manual is included only in packages for VVxWorks.

Chapter 2. Database Concepts

If you are not already familiar with relational database servers such as the solidDB family, you may want to
read this chapter.

This chapter explains the following concepts:
* Relational Databases
» Tables, Rows, and Columns
e Relating data in different tables
* Multi-User Capability / Concurrency Control and Locking
» Client-Server architecture
» Transactions

» Transaction Logging and Recovery

2.1 Relational Databases

2.1.1 Tables, Rows, and Columns

Most relational database servers, including the solidDB family, use a programming language known as the
Structured Query Language (SQL). SQL is a set-oriented programming language that is designed to allow
people to query and update tables of information. This chapter discusses tables, and how data is represented
within tables. Later in the manual, we will discuss the syntax of the SQL language in more detail.

All information is stored in tables. A table is divided into rows and columns. (SQL theorists refer to columns
as "attributes" and rows as "tuples", but we will use the more familiar terms "columns" and "rows". We will
also use the terms "record" and "row" interchangeably.) Each database contains 0 or more tables. Most databases
contain many tables. An example of a table is shown below.

Table 2.1. Example Database Table

ID NAME ADDRESS
1 Beethoven 23 Ludwig Lane
2 Dylan 46 Robert Road

2.1.2 Relating Data In Different Tables

ID NAME ADDRESS
3 Nelson 79 Willie Way

This table contains 3 rows of data. (The top "row", which has the labels "ID", "NAME", and "ADDRESS" is
shown here for the convenience of the reader. The actual table in the database does not have such a row.) The
table contains 3 columns (ID, NAME, and ADDRESS).

SQL provides commands to create tables, insert rows into tables, update data in tables, delete rows from
tables, and query the rows in tables.

Tables in SQL, unlike arrays in programming languages like C, are not homogenous. In SQL one column
may have one data type (such as INTEGER), while an adjacent column may have a very different data type
(such as CHAR(20), which means an array of 20 characters).

A table may have varying numbers of rows. Rows may be inserted and deleted at any time; you do not need
to pre-allocate space for a maximum number of rows. (All database servers have some maximum number of
rows that they can handle. For example, most database servers that run on 32-bit operating systems have a
limit of approximately two billion rows. In most applications, the maximum is far more than you are likely
to need.)

Each row (“"record") must have at least one value, or combination of values, that is unique. If we have two
composers named David Jones to our table, and we need to update the address of only one of them, then we
need some way to tell them apart. In some cases, you can find a combination of columns that is unique, even
if you can't find any single column that contains unique values. For example, if the name column is not suffi-
cient, then perhaps the combination of name and address will be unique. However, without knowing all the
data ahead of time, it is difficult to absolutely guarantee that each value will be unique. Most database designers
add an "extra" column that has no purpose other than to uniquely and easily identify each record. In our table
above, for example, the ID numbers are unique. As you may have noticed, when we actually try to update or
delete a record, we identify it by its unique ID (e.g. "... WHERE id = 1") rather than by using another value,
such as name, that might not be unique.

2.1.2 Relating Data In Different Tables

If SQL could only handle one table at a time, it would be convenient, but not very powerful. The true power
of SQL and relational databases lies in the fact that tables can be related to each other in useful ways, and
SQL queries can gather data from multiple tables and display that data in a logical fashion.

We will show how multiple tables are useful by using a bank as an example.

Each customer of a bank may have more than 1 account. There is no real limit to the number of accounts a
person might have. One customer might have a checking account, savings account, certificate of deposit,
mortgage, credit card, etc. Furthermore, a person may have multiple accounts of the same type. For example,

2.1.2 Relating Data In Different Tables

a customer might have one savings account with retirement money and another savings account (of the same
type) that has money for her daughter's college fund. We describe the "relationship” between a person and
her accounts as a "one to many" relationship -- one person may have many accounts.

Because there is no limit to the number of accounts a person may have, there is no way to design a record
structure ahead of time that can handle all possible combinations of accounts. And if you created a record
structure that held the maximum number of accounts that anyone actually owned, you'd have to waste a lot
of space. Let's suppose that we tried to build a single table that held all the information about one bank cus-
tomer and her accounts. Our first draft might look like the following:

Customer 1D Number

Customer Name

Customer Address

Checking Account #1 1D
Checking Account #1 Balance
CD #1 1D

CD #1 Balance

CD #2 ID

CD #2 Balance

As you can see, we just don't know when to stop because there is no obvious limit to the number of accounts
that each person might own.

Another solution is to create multiple records, one for each account, and duplicate the customer information
for each account. So we have a table that looks like:

Customer Name
Customer Address
Account ID
Account Balance

If a customer has more than one account, we merely create a complete record for each account. This works
reasonably well, but it means that every single account record holds all the information about the customer.
This wastes storage space and also makes it harder to update the customer's address if the customer moves
(you may have to update the address in several places).

Relational databases, such as solidDB's, are designed to solve this problem. We will create one table for cus-
tomers, and another table for accounts. (In a real bank, we'd probably divide the accounts into multiple tables,
too, with one table for checking accounts, another table for savings accounts, etc.) Then we create a "link"

2.1.2 Relating Data In Different Tables

between the customer and each of her accounts. This allows us to waste very little space and yet still have
complete information available to us.

As we mentioned earlier, in our example of composers, every record should have a unique value that allows
us to identify that record. The unique value is usually just an integer. We'll use that unique integer to help us
"relate" a customer to her accounts. This is discussed in more detail in Chapter 3, Getting Started with SQL

When we create an account for a customer, we store that customer's ID number as part of the account inform-
ation. Specifically, each row in the accounts table has a customer_id value, and that customer_id value matches
the id of the customer who owns that account. Smith has customer id 1, and each of Smith's accounts has a 1
in the customer_id field. That means that we can find all of Smith's account records by doing the following:

1. Look up Smith's record in the customers table.
2. When we find Smith's record, look at the id number in that record. (In Smith's case, the id is 1.)
3. Now look up all accounts in the accounts table that have a value of 1 in the customer _id field.

It's as though you taped a copy of your home telephone number onto the forehead of each of your children
when they went to school. If there is an emergency and you need to send a taxi driver to find and pick up your
children at school, you can simply tell the taxi driver your phone number and he can check every child in the
school to see if the child has your phone number. (This isn't very efficient, but it works.) By knowing the
parent's id number, you can identify all the children. Conversely, by knowing each child, you can identify the
parent. If, for example, one of your children is lost on a field trip away from the school, any helpful person
can simply read the telephone number off the child's forehead and call you.

As you can see, the parent and child are linked to each other without any sort of physical contact. Simply
having the id number (or phone number) is enough to determine which children belong to a parent and which
parent belongs to each child. The technique works regardless of how many children you have.

Relational databases use the same technique. Note that join operations are not limited to two tables. It's possible
to create joins with an almost arbitrary number of tables. As a realistic extension of our banking example, we
might have another table, "checks", which holds information about each check written. Thus we would have
not only a 1-to-many relationship from each customer to her accounts, but also a 1-to-many relationship from
each checking account to all of the checks written on that account. It's quite possible to write a query that will
list all the checks that a customer has written, even if that customer has multiple checking accounts.

10

2.2 Client-Server Architecture

2.2 Client-Server Architecture

solidDB uses the client-server model. In a client-server model, a single "server" may process requests from
1 or more “clients". This is quite similar to the way that a restaurant works — a single waiter and cook may
handle requests from many customers.

In a client-server database model, the server is a specialized computer program that knows how to store and
retrieve data efficiently. The server typically accepts four basic types of requests:

* Insert a new piece of information

» Update an existing piece of information
» Retrieve an existing piece of information
* Delete an existing piece of information

The server can store almost any type of data, but generally doesn't know the "meaning™ of the data. The
server typically knows little or nothing about "business issues™, such as accounting, inventory, and so on. It
doesn't know whether a particular piece of information is an inventory record, a description of a bank deposit,
or a digitized copy of the song "American Pie".

The "clients" are responsible for knowing something about the particular business issues and about the
"meaning" of the data. For example, we might write a client program that knows something about accounting.
The client program might know how to calculate interest on late payments, for example. Or, the client might
recognize that a particular piece of data is a song, and might convert the digital data to analog audio output.

Of course, it's possible to write a single program that does both the "client™ and the "server" part of the work.
A program that reads digitized music and plays it could also store that data to disk and look it up on request.
However, it's not very efficient for every company to write its own data storage and retrieval routines. It is
usually more efficient to buy an off-the-shelf data storage solution that is general enough to meet your needs,
yet has relatively high performance.

2.3 Multi-User Capability

An important advantage of client-server architecture is that it usually makes it easier to have more than one
client. solidDB, like most relational database servers, will allow multiple users to access the data in a table.

Of course, when two users try to update the same data, there is potential danger. If the updates aren't the same,
then one user's updates could write over the other user's updates. solidDB uses concurrency control mechanisms
to prevent this. For more information, see solidDB Administration Guide.

11

2.4 Transactions

2.4 Transactions

SQL allows you to group multiple statements into a single "atomic™ (indivisible) piece of work called a
transaction. For example, if you write a check to a grocery store, then the grocery store's bank account should
be given the money at the same instant that the money is withdrawn from your account. It wouldn't make
sense for you to pay the money without the grocery store receiving it, and it wouldn't make sense for the
grocery store to be paid without your account having the money subtracted. If either of these operations
(adding to the grocery store's account or subtracting from yours) fails, then the other one ought to fail, too.
If both statements are in the same transaction, and either statement fails, then you can use the ROLLBACK
command to restore things as they were before the transaction started — this prevents half-successful transac-
tions from occurring. Naturally, if both halves of our financial transaction are successful, then we'd like our
database transaction to be successful, too. Successful transactions are preserved with the command COMMIT
WORK. Below is a simplistic example.

COMMIT WORK; -- Finish the previous transaction.

UPDATE stores SET balance = balance + 199.95

WHERE store_name = "Big Tyke Bikes";

UPDATE checking_accounts SET balance = balance - 199.95
WHERE name = "Jay Smith";

COMMIT WORK;

2.5 Transaction Logging and Recovery

One of the major advantages of buying a commercial database server is that most such servers have been de-
signed to protect data if the database server shuts down unexpectedly for any reason, such as a power failure,
a hardware failure, or a failure in the database software itself.

There are a number of different ways to help protect data. We will focus on one such way, called Transaction
Logging.

2.5.1 Background

Suppose that you are writing data to a disk drive (or other permanent storage medium) and suddenly the power
fails. The data that you write might not be written completely. For example, you might try to write the account
balance "122.73", but because of the power failure you just write "12". The person whose account is missing
some money will be quite displeased. How do we ensure that we always write complete data? Part of the
solution is to use what is called a "transaction log".

12

2.6 Summary

- Note

In the world of computers, many different things are called "logs". For example, the solidDB writes
multiple log files, including a transaction log file and an error message log file. For the moment, we
are discussing only the transaction log file.

As we mentioned previously, work is usually done in "transactions". An entire transaction is either committed
or rolled back. No partial transactions are allowed. In the situation described here, where we started to write
a person's new account balance to disk but lost power before we could finish, we'd like to roll back this
transaction. Any transactions that were already completed and were correctly written to disk should, of course,
be preserved.

To help us track what data has been written successfully and what data has not been written successfully, we
actually write data to a "transaction log" as well as to the database tables. The transaction log is essentially a
linear sequence of the operations that have been performed — that is, the transactions that have been committed.
There are markers in the file to indicate the end of each transaction. If the last transaction in the file does not
have an "end-of-transaction” marker, then we know that fractional transaction was not completed, and it
should be rolled back rather than committed.

When the server re-starts after a failure, it reads the transaction log and applies the completed transactions
one by one. In other words, it updates the tables in the database, using the information in the transaction log
file. This is called "recovery". When done properly, recovery can even protect against power failures during
the recovery process itself.

This is not a complete description of how transaction logging protects against data corruption. We have ex-
plained how the server makes sure that it doesn't lose transactions. But we haven't really explained how the
server prevents the database file from becoming corrupted if a write failure occurs while the server is in the
middle of writing a record to a table in the disk drive. That topic is more advanced and is not discussed here.

2.6 Summary

This brief introduction to relational databases has explained the concepts that you need to start using a rela-
tional database. You should now be able to answer the following questions:

What are tables, rows, and columns?
Can you work with data in more than one table at a time?
How do transactions help keep data consistent?

Why do we write ("log") transaction data to the disk drive?

13

14

Chapter 3. Getting Started with SQL

This chapter gives you a quick overview (or refresher) in SQL.

3.1 Tables, Rows, and Columns

SQL is a set-oriented programming language that is designed to allow people to query and update tables of
information.

All information is stored in tables. A table is divided into rows and columns. (SQL theorists refer to columns
as "attributes" and rows as "tuples", but we will use the more familiar terms "columns" and "rows". We will
also use the terms "record" and "row" interchangeably.) Each database contains 0 or more tables. Most databases
contain many tables. An example of a table is shown below.

Table 3.1. Example Database Table

ID NAME ADDRESS

1 Beethoven 23 Ludwig Lane
2 Dylan 46 Robert Road
3 Nelson 79 Willie Way

This table contains three rows of data. (The top "row", which has the labels "ID", "NAME", and "ADDRESS"
is shown here for the convenience of the reader. The actual table in the database does not have such a row.)
The table contains three columns (ID, NAME, and ADDRESS). SQL provides commands to create tables,
insert rows into tables, update data in tables, delete rows from tables, and query the rows in tables.

3.2 SQL

Below is a complete SQL "program" that creates the preceding table:

CREATE TABLE composers (id INTEGER PRIMARY KEY, name CHAR(20),
address CHAR(50));

INSERT INTO composers (id, name, address) VALUES (1, "Beethoven-®,
"23 Ludwig Lane®);

INSERT INTO composers (id, name, address) VALUES (2, "Dylan”,

"46 Robert Road");

INSERT INTO composers (id, name, address) VALUES (3, "Nelson®,
"79 Willie Way");

15

3.2S0L

We designate the column "id" to be the "primary key" of the table. By doing this we are saying that each row
may be uniquely identified by using this column. From now on, the system will guarantee that the value of
"id" is unique and it always exists (i.e. it has the NOT NULL property)

If Mr. Dylan moves to 61 Bob Street, you can update his data with the command:

UPDATE composers SET ADDRESS = "61 Bob Street” WHERE ID = 2;

Because the ID field is unique for each composer, and because the WHERE clause in this command specifies
only one ID, this update will be performed on only one composer.

If Mr. Beethoven dies and you need to delete his record, you can do so with the command:

DELETE FROM composers WHERE ID = 1;

Finally, if you would like to list all the composers in your table, you can use the command:

SELECT id, name, address FROM composers;

Note that the SELECT statement, unlike the UPDATE and DELETE statements listed above, did not include
a WHERE clause. Therefore, the command applied to ALL records in the specified table. Thus the result of
this SQL statement is to select (and list) all of the composers listed in the table.

ID NAME ADDRESS

1 Beethoven 23 Ludwig Lane
2 Dylan 46 Robert Road
3 Nelson 79 Willie Way

Note that although you entered the strings with quotes, they are displayed without quotes.
Even this simple series of commands helps show some important points about SQL.

e SQL is arelatively "high level" language. A single command can create a table with as many columns as
you wish. Similarly, a single command can execute an UDPATE of almost any complexity. Although we
didn't show it here, you can update multiple columns at a time, and you can even update more than one
row at a time. Operations that might take dozens, or hundreds, of lines of code in languages like C or Java
can be executed in a single SQL command.

» Unlike some other computer languages, SQL uses single quotes to delimit strings. For example, 'Beethoven'
is a string. "Beethoven" is something different. (Technically, it is a delimited identifier, which we won't

16

3.2S0L

discuss in this chapter.) If you are used to programming languages like C, which use double quotes to
delimit strings (character arrays) and single quotes to delimit individual characters, you will have to adjust
to SQL's way of doing things.

Although the example above doesn't clearly show it, there are several additional points you need to know
about basic SQL

Although SQL is a very powerful high-level language, it is also a very limited one. SQL is designed for
table-oriented and record-oriented operations. It has very few low-level operations. For example, there is
no direct way to open a file, or to shift bits leftward or rightward. It is also hardware-independent, which
is both an advantage and disadvantage. You have very little control over the format of the output from
SQL queries; you may choose the order of the columns, and by using the ORDER BY clause you may
control the order of the rows, but you can't do things such as control the size of the font on the screen, or
print page numbers at the bottom of each printed page of output. SQL simply is not a complete programming
language such as C, Java, PASCAL, etc.

Each SQL implementation has a fixed set of data types. The data types in solidDB (and most other imple-
mentations of SQL) include INTEGER, CHARacter array, FLOATIng point, DATE, and TIME.

SQL is generally an "interpreted" language rather than a "compiled" language. To execute one or more
SQL statements, you typically execute a separate program that reads your script and then executes it. No
"compiled program" or "executable" is generated and stored for later use. Each time you run the program,
it is interpreted again. (Stored Procedures can be re-used without necessarily re-interpreting them. Stored
Procedures are discussed briefly in Appendix B, solidDB SQL Syntax and extensively in Chapter 4, Stored
Procedures, Events, Triggers, and Sequences.

Table and column names are case-insensitive in SQL. In our examples, keywords (such as CREATE,
INSERT, SELECT) are capitalized, and table and columns names are shown in lower case. However, this
is only a convention, not a requirement.

SQL is also not very picky about whether commands are written on a single line or are split across multiple
lines. We'll show examples of multi-line statements later in this chapter.

SQL commands can get extremely complicated, with multiple nested "layers" of queries within queries.
Figuring out how to write a complex query can be quite difficult - and figuring out how to understand a
query that someone else wrote can be equally difficult. As in any programming language, it's a good idea
to document your code!

To help you document your code, SQL allows "comments”. Comments are only for the human reader;
they are skipped over by the SQL interpreter. To create a comment, put two dashes at the start of the line.
All the subsequent characters up to the end of the line will be ignored. (There is an exception for "optimizer
hints", another advanced topic that we will not discuss in this chapter.)

17

3.3 The Mathematical Origins of SQL

3.3 The Mathematical Origins of SQL

Relational databases and SQL were originally based in part upon the mathematical concept of set theory. If
you are familiar with set theory, it will help you understand how relational databases work. If you are not fa-
miliar with set theory, then don't worry about it; this is merely one way of looking at relational databases and
SQL.

A table can be thought of as a mathematical set, where each element of the set is a row. (In our example above,
each person, or composer, is an element of a set. The table contains all of the elements of the set ‘composers'.)
In mathematics, sets are unordered. Similarly, in SQL, tables are largely treated as unordered, even though
of course if you could look at the bits and bytes on the disk you would find that at any given time the records
are stored in a particular order.

This lack of ordering is important, because it means that the results of a query may be shown in a different
order each time that you run the query. With small data sets stored on a single disk drive, you will usually
see the same rows in the same order each time, but this is not necessarily the case when data is spread across
multiple files or disk drives.

Because SQL is a set-oriented language, you can use it to perform some set-oriented operations, such as
UNIONSs (that is, combining two sets of input into one set of output). However, operations such as UNION
require that the sets match each other - i.e. that they have the same number of columns, and that they have
the same data type (or compatible data type) in corresponding columns. You can't perform a UNION operation
if the first column in setl is of type DATETIME and the first column in set2 is INTEGER, for example.

Again, if you are not comfortable with set theory, don't worry about it. This is just another way of looking at
relational databases.

3.4 Creating Tables with Related Data

As described in the previous chapter, each customer of a bank may have more than one account. We describe
the "relationship” between a person and her accounts as a "one to many" relationship — one person may have
many accounts.

Because there is no limit to the number of accounts a person may have, there is no way to design a record
structure ahead of time that can handle all possible combinations of accounts.

Relational databases, such as solidDB's, are designed to solve this problem. We will create one table for cus-
tomers, and another table for accounts. (In a real bank, we'd probably divide the accounts into multiple tables,
too, with one table for checking accounts, another table for savings accounts, etc.) Then we create a "link"
between the customer and each of her accounts. This allows us to waste very little space and yet still have
complete information available to us.

18

3.4 Creating Tables with Related Data

As we mentioned earlier, in our example of composers, every record should have a primary key that allows
us to identify that record. It is usually just an integer. We'll now use that unique integer to help us "relate” a
customer to her accounts. Below are the commands to create and populate the customer table:

CREATE TABLE customers (id INTEGER PRIMARY KEY, name CHAR(20),
address CHAR(40));

INSERT INTO customers (id, name, address) VALUES (1, "Smith-",
"123 Main Street");

INSERT INTO customers (id, name, address) VALUES (2, "Jones",
"456 Fifth Avenue®);

We have inserted two customers, named Smith and Jones. Let us create the account table:

CREATE TABLE accounts (id INTEGER PRIMARY KEY, balance FLOAT,
customer_id INT REFERENCES customers);

Here, we have designated the column customer _id to be a "foreign key" pointing to the customer table (this
is indicated by the REFERENCES keyword). The value of this column is supposed to be exactly the same as
the "id" value (the primary key) in the corresponding customer row in the "customers" table. This way we
will associate account rows with customer rows. The feature of a database allowing to maintain such relation-
ships in a reliable way is called "referential integrity", and the corresponding SQL syntax elements used to
define such relationships are called "referential integrity constraints". For more on referential integrity, see
Section 5.5, “Referential Integrity”.

Customer Smith has two accounts, and customer Jones has 1 account.

INSERT INTO accounts (id, balance, customer_id)
VALUES (1001, 200.00, 1);
INSERT INTO accounts (id, balance, customer_id)
VALUES (1002, 5000.00, 1);
INSERT INTO accounts (id, balance, customer_id)
VALUES (1003, 222.00, 2);

As Smith has two accounts, each of Smith's accounts has a 1 in the customer _id field. That means that a user
can find all of Smith's account records by doing the following:

1. Look up Smith's record in the customers table.
2. When we find Smith's record, look at the id number in that record. (In Smith's case, the id is 1.)

3. Now look up all accounts in the accounts table that have a value of 1 in the customer_id field.

19

3.4 Creating Tables with Related Data

It's as though you taped a copy of your home telephone number onto the forehead of each of your children
when they went to school. If there is an emergency and you need to send a taxi driver to find and pick up your
children at school, you can simply tell the taxi driver your phone number and he can check every child in the
school to see if the child has your phone number. (This isn't very efficient, but it works.) By knowing the
parent's id number, you can identify all the children. Conversely, by knowing each child, you can identify the
parent. If, for example, one of your children is lost on a field trip away from the school, any helpful person
can simply read the telephone number off the child's forehead and call you.

As you can see, the parent and child are linked to each other without any sort of physical contact. Simply
having the id number (or phone number) is enough to determine which children belong to a parent and which
parent belongs to each child. The technique works regardless of how many children you have.

Relational databases use the same technique. Now that we've created our customer table and our accounts
table, we can show each customer and each of the accounts that she has. To do this, we use what SQL pro-
grammers call a "join" operation. The WHERE clause in the SELECT statement "joins" those pairs of records
where the account's customer_id number matches the customer's id number.

SELECT name, balance
FROM customers, accounts
WHERE accounts.customer_id = customers.id;

The output of this query is similar to the following:

NAME BALANCE
Smith 200.0
Smith 5000.0
Jones 222.0

Of course, if a person has multiple accounts, she might want to know the total amount of money that she has
in all accounts. The computer can provide this information by using the following query:

SELECT customers.id, SUM(balance)
FROM customers, accounts
WHERE accounts.customer_id = customers.id
GROUP BY customers.id;

The output of this query is similar to the following:

NAME BALANCE

20

3.4.1 Table Aliases

Smith 5200.0
Jones 222.0

Note that this time, Smith appears only once, and she appears with the total amount of money in all her accounts.

This query uses the GROUP BY clause and an aggregate function named SUM(). The topic of GROUP BY
clauses is more complex than we want to go into during this simple introduction to SQL. This query is just
to give you a little taste of the type of useful work that SQL can do in a single statement. Getting the same
result in a language like C would take many statements.

Note that join operations are not limited to two tables. It's possible to create joins with an almost arbitrary
number of tables. As a realistic extension of our banking example, we might have another table, "checks",
which holds information about each check written. Thus we would have not only a 1-to-many relationship
from each customer to her accounts, but also a 1-to-many relationship from each checking account to all of
the checks written on that account. It's quite possible to write a query that will list all the checks that a customer
has written, even if that customer has multiple checking accounts.

3.4.1 Table Aliases

SQL allows you to use an "alias" in place of a table name in some queries. In some cases, aliases are merely
an optional convenience. In some queries, however, aliases are actually required (for reasons we won't explain
here). We'll introduce the topic of aliases here because they are required for some examples later in this
chapter. The query below is the same as an earlier query, except that we've added the table alias "a" for the
accounts table and "c" for the customers table.

SELECT name, balance
FROM customers c, accounts a
WHERE a.customer_id = c.id;

As you can see, we defined an alias in the "FROM" clause and then used it elsewhere in the query (in the
WHERE clause in this case).

3.4.2 Subqueries

SQL allows one query to contain another query, called a "subquery".

Returning to our bank example, over time, some customers add accounts and other customers terminate ac-
counts. In some cases, a customer might gradually terminate accounts until he has no more accounts. Our
bank may want to identify all customers that don't have any accounts so that those customers' records can be
deleted, for example. One way to identify the customers who don't have any accounts is to use a subquery
and the EXISTS clause.

21

3.5 Which Formats Are Used for Each Data Type?

Of course, to try this out, we need to create a customer who doesn't have any accounts:

INSERT INTO customers (id, name, address) VALUES (3, "Zu®, "B St");

Before we list all customers who don't have accounts, let's list all customers who do have accounts.

SELECT id, name
FROM customers c
WHERE EXISTS (SELECT * FROM accounts a WHERE a.customer_id = c.id);

The subquery (also called the "inner query") is the query inside the parentheses. The inner query is executed
once for each record selected by the outer query. (This functions a lot like nested loops would function in
another programming language, except that with SQL we can do nested loops in a single statement.) Naturally,
if there are any accounts for the particular customer that the outer loop is processing, then those account records
are returned to the outer query.

The "EXISTS" clause in the outer query says, effectively, "We don't care what values are in those records;
all we care about is whether there are any records or not." Thus EXISTS returns TRUE if the customer has
any accounts. If the customer has no accounts, then the EXISTS returns false. The EXISTS clause doesn't
care whether there are multiple accounts or single accounts. It doesn't care what values are in the accounts.
All the EXISTS wants to know is "Is there at least one record?"

Thus, the entire statement lists those customers who have at least one account. No matter how many accounts
the customer has (as long as it's at least 1), the customer is listed only once.

Now let's list all those customers who don't have any accounts:
SELECT id, name

FROM customers c
WHERE NOT EXISTS (SELECT * FROM accounts a WHERE a.customer_id = c.id);

Merely adding the keyword NOT reverses the sense of the query.

Subqueries may themselves have subqueries. In fact, subqueries may be nested almost arbitrarily deep.

3.5 Which Formats Are Used for Each Data Type?

As we've already shown above, SQL requires that values be expressed in a particular way. For example,
character strings must be delimited by single quote marks.

22

3.5 Which Formats Are Used for Each Data Type?

Other values also must be formatted properly. The exact format required depends upon the data type. Several
data types other than CHARacter data types also require single quotes to delimit the values that you enter.

Below are some examples of how to format input data for most of the data types that solidDB supports. We'll
show this in the form of a simple SQL script that you can execute if you wish. Note that in this script, many
commands are split across multiple lines. This is quite legal in SQL. It's one of the reasons that most SQL
interpreters expect a semicolon to separate each SQL statement, even though the ANSI Standard for SQL
doesn't actually require a semicolon at the end of each statement.

CREATE TABLE one_of_almost_everything (

int_col INTEGER,

Ffloat_col FLOAT,

string_col CHAR(20),

wide_string_col WCHAR(20), -- "wide" means wide chars, e.g. unicode.
varchar_col VARCHAR, -- Note that we did not have to specify width.
date_col DATE,

time_col TIME,
timestamp_col TIMESTAMP

);

INSERT INTO one_of _almost_everything (

int_col,

float_col,

string_col,

wide_string_col,

varchar_col,

date_col,

time_col,

timestamp_col
)
VALUES (

1,

2.0,

"three”,

“four”,

"five point zero zero zero zero zero zero zero zero zero zero ...",
"2002-12-31",

"11:59:00",
"1999-12-31 23:59:59.00000"
):

23

3.5.1 BLOBs (or Binary Data Types)

As you can see, timestamp values are entered in order from the "most significant” digit to the "least significant"
digit. Similarly, date and time values are also entered from the most significant digit to the least significant
digit. And all 3 of these data types (timestamp, date, time) use punctuation to separate individual fields.

The reason for requiring particular formats is that some of the other possible formats are ambiguous. For ex-
ample, to someone in the U.S., '07-04-1776" is July 4, 1776, since Americans usually write dates in the 'mm-
dd-yyyy' (or 'mm/dd/yyyy' format). But to a person from Europe, this date is obviously April 7, not July 4th,
since most Europeans write dates in the format 'dd-mm-yyyy'. Although it may seem that the problem of
having too many formats is not well solved by adding still another format, there are some advantages to SQL's
approach of using a format that starts with the most significant digit and moves steadily towards the least
significant digit. First, it means that all three data types (date, time, and timestamp) follow the same rule.
Second, the date format and the time format are both perfect subsets of the timestamp format. Third, although
it's yet another format to memorize, the rule is reasonably simple and is consistent with the way that "western"
languages write numbers (most significant digit is furthest to the left). Finally, by being obviously incompatible
with the existing formats, there's no chance that a person will accidentally write one date (e.g. '07-04-1776")
and have it interpreted by the machine as another date.

3.5.1 BLOBs (or Binary Data Types)

So far, we have discussed data types that store data that is intended to be read by humans. Some types of data
are not intended to be read directly by humans, but can still be stored in a database. For example, a picture
from a digital camera, or a song from a CD, is stored as a series of numbers. These numbers are almost
meaningless to a human. Digitized pictures and sounds can be stored as BINARY data, however. solidDB
supports three binary data types: BINARY, VARBINARY, and LONG VARBINARY (or BLOB).

In most cases, you will read and write binary data using the ODBC (Open DataBase Connectivity) APl from
a C program, or the JDBC API from a Java program. However, it is possible to insert data into a binary field
using a utility that executes SQL statements. To insert a value into a binary field, you must represent the value
as a series of hexadecimal numbers inside single quotes. For example, if you wanted to insert a series of bytes
with the values 1, 9, 11, 255 into a binary field, you would execute:

INSERT INTO tablel (binary_col) VALUES (CAST("01090BFF" AS VARBINARY));

Because this command instructs the server to CAST the value to type VARBINARY, the server automatically
interprets the string as a series of hexadecimal numbers, not as a string literal.

You may also insert a string literal directly, e.g.

INSERT INTO tablel (binary_col) VALUES ("Thank you®);

24

3.5.2 NULL ISNOT NULL (or "How to say 'None of the above' in SQL")

When you retrieve the data via solsgl (solidDB's utility for executing SQL statements), the return value from
a binary column is expressed in hexadecimal, whether or not you originally entered it as hexadecimal. Thus,
after you insert the value 'Thank you', if you select this value from the table you will see:

5468616E6B20796F75

where 54 represents capital 'T', 68 represents lower-case 'h', 61 represents lower-case ‘a’, 6E represents lower-
case 'n', etc.

Note also that for long values only the first several digits are shown.

3.5.2 NULL IS NOT NULL (or "How to say ‘None of the above' in
SQL"™)

Sometimes you don't have enough information to fill out a form completely. SQL uses the keyword NULL
to represent "Unknown" or "No Value". (This is different from the meaning of NULL in programming languages
such as C.) For example, if we are inserting a record for Joni Mitchell into our table of composers, and we
don't know Joni Mitchell's address, then we might execute the following:

INSERT INTO composers (id, name, address) VALUES (5, “Mitchell®, NULL);

If we don't specify the address field, it will contain NULL by default.

INSERT INTO composers (id, name) VALUES (5, "Mitchell™);

To give you some information about NULL, and also give you some practice reading SQL code, we've written
our explanation of NULL as a sample program with comments. You can read this now. When you're ready
to run it, simply cut and paste part or all of it into a program that executes SQL, such as the solsql utility
provided with the solidDB Development Kit. (For more information about solsgl, see solidDB Administration
Guide.)

-— This sample script shows some unusual characteristics
-- of the value NULL.

-— Data of any data type may contain NULL.
-— For example, a column of type INTEGER may contain not
-— only valid integer values, but also NULL.

-— Set up for experiments...

25

3.5.2 NULL ISNOT NULL (or "How to say 'None of the above' in SQL")

CREATE TABLE tablel (x INTEGER, name CHAR(30)):

-- The value NULL means '‘there is no value™.

-— NULL is not the same as zero, or an empty string.

-—- (It"s also not a pointer value, as it iIs iIn

-- programming languages such as C.)

-— To help show this, we"ll insert 3 rows, one of which has
-- "normal™ values, one of which has a 0 and an empty string,
-- and one of which has two NULL values.

INSERT INTO tablel (x, name) VALUES (2, "Ludwig Von Beethoven®);
INSERT INTO tablel (x, name) VALUES (0, "%);

INSERT INTO tablel (x, name) VALUES (NULL, NULL);

-— This returns only the row containing O,

-- not the row containing NULL.

SELECT * FROM tablel WHERE x = O;

-— This returns only the row containing the empty string,

-- not the row containing NULL.

SELECT * FROM tablel WHERE name = "*°;

-— It"s not surprising that NULL doesn"t match other values.
-— What 1S surprising is that NULL doesn®t match even itself.
-— (A mathematician would say that NULL violates the

-- reflexive property "a = a"'l)

SELECT * FROM tablel WHERE x = X;

-— Since NULL doesn®t equal NULL, what will the following query return?
SELECT * FROM tablel WHERE x I= x;

--— Similarly, although you might think that the
-- expression below is always true, it"s actually
-- always false.

SELECT * FROM tablel WHERE NULL IN (NULL, 2);

-— The result set will contain 2 (since 2 is in
-- the set (NULL, 2)), but the result set will
-- not contain NULL.

SELECT * FROM tablel WHERE x IN (NULL, 2);

26

3.5.2 NULL ISNOT NULL (or "How to say 'None of the above' in SQL")

-— But suppose that I *want* to find all the records that

-- have NULL values. How do I do that if I can"t say ... = NULL?
SELECT * FROM tablel WHERE x IS NULL;

-— And the opposite query is ...

SELECT * FROM tablel WHERE x IS NOT NULL;

-— Set up for more experiments...

CREATE TABLE parent (id INTEGER, name CHAR(20));

CREATE TABLE children (id INTEGER, name CHAR(12), parent_id INT);

INSERT INTO parent (id, name) VALUES (1, "Smith%);

INSERT INTO children (id, name, parent_id) VALUES (11, *Smith child", 1);
INSERT INTO children (id, name, parent_id) VALUES (131, “orphan®, NULL);
INSERT INTO parent (id, name) VALUES (NULL, “Has Null®);

-— Since NULL != NULL, if a "parent” record has NULL and a *‘child”
-- record has NULL, the child®s value won"t match the parent®s value.
-- This result set will contain "Smith", but not "Has Null~®.

SELECT p.name FROM parent p, children c

WHERE c.parent_id = p.id;

-- Note that a row that contains nothing but a

-- single NULL is still a row.

-— In the following query, we use an EXISTS clause,

-- which evaluates to TRUE if the subquery returns

-— any rows. Even a row that contains nothing but a

-- single NULL value is still a row, and so if the

-- subquery returns a single NULL the EXISTS clause

-- still evaluates to TRUE.

-- Even though the subquery below returns NULL rather than a name
-— or ID, the EXISTS expression evaluates to TRUE, and Smith is printed.
SELECT name FROM parent p

WHERE EXISTS(SELECT NULL FROM children c WHERE c.parent_id = p.id);

-- Now that we"ve trained you to recognize that NULL != NULL,
-— we"ll confuse you with something that breaks the pattern.
-- Contrary to what you might expect, the UNIQUE keyword

-— DOES filter out multiple NULL values.

INSERT INTO tablel (x, name) VALUES (NULL, “any name®);

27

3.5.3 NOT NULL

-- Now the table has more than one row in which x is NULL,

-— but a query with UNIQUE nonetheless returns only a

-- single NULL value.

SELECT DISTINCT x FROM tablel;

-- You may be interested to know that a UNIQUE index

-— will allow only a single NULL value. (Note that a primary key
-— will not allow any NULL values.)

-- Clean up.

DROP TABLE parent;
DROP TABLE children;
DROP TABLE tablel;

3.5.3 NOT NULL

As opposed to NULL, NOT NULL is one of the SQL data constraints. NOT NULL indicates that null values
are not allowed in any row of the table for the specified column. For more information and examples, refer
to Appendix B, solidDB SQL Syntax.

3.5.4 Expressions and Casts

SQL allows expressions in some parts of SQL statements. For example, the following statement multiplies
the value in a column by 12:

SELECT monthly_average * 12 FROM tablel;

As another example, the following statement uses the built-in SQRT function to calculate the square root of
each value in the column named "variance".

SELECT SQRT(variance) FROM tablel;

Our next example uses the "REPLACE" function to convert numbers from U.S. format to European format.
In U.S. format, numbers use the period character ('.") as the decimal point, but in Europe the comma (',") is
used. For example, in the U.S. the approximation of pi is written as "3.14", while in Europe it is written as
"3,14". We can use the REPLACE function to replace the '." character with the ', character. The following
series of statements shows an example of this.

CREATE TABLE number_strings (n VARCHAR);

28

3.5.4 Expressions and Casts

INSERT INTO number_strings (n) VALUES ("3.14%); -- input in US format.
SELECT REPLACE(n, *.", ",") FROM number_strings; -- output in European.

The output of course looks like

Note that one function can call another. The following expression takes the square root of a number and then
takes the natural log of that square root:

SELECT LOG(SQRT(x)) FROM tablel;

solidDB SQL does not accept completely general expressions in all clauses. For example, in the SELECT
clause, you may use pre-defined functions, but you may not call stored procedures that you have created.
Even if you have created a stored procedure named "foo", the following will not work:

SELECT foo(columnl) FROM tablel;

When you use expressions, you may want to specify a new name for a column. For example, if you use the
expression

SELECT monthly_average * 12 FROM tablel;

you probably don't want the output column to be called "monthly_average". solidDB server will actually use
the expression itself as the name of the column. In this case, the name of the column would be "monthly_av-
erage * 12". That's certainly descriptive, but for a long expression this can get very messy. You can use the
"AS" keyword to give an output column a specific name. In the following example, the output will have the
column heading "yearly_average".

SELECT monthly _average * 12 AS yearly average FROM tablel;
Note that the AS clause works for any output column, not just for expressions. If you like, you may do

something like the following:

SELECT ssn AS SocialSecurityNumber FROM table2;

29

3.5.4 Expressions and Casts

A CASE clause allows you to control the output based on the input. Below is a simple example, which converts
a number (1-12) to the name of a month;

CREATE TABLE dates (m INT);

INSERT INTO dates (m) VALUES (1);
-— ...etc.

INSERT INTO dates (m) VALUES (12);
INSERT INTO dates (m) VALUES (13);

SELECT
CASE m
WHEN 1 THEN "January”
-- etc.
WHEN 12 THEN "December*
ELSE "Invalid value for month*
END
AS month_name
FROM dates;

Note that this not only allows you to convert valid values, but also allows you to generate appropriate output
if there is an error. The "ELSE" clause allows you to specify an alternative value if you get an input value
that you weren't expecting.

In some situations, you may want to cast a value to a different data type. For example, when inserting BLOB
data, it is convenient to create a string that contains your data, and then insert that string into a BINARY
column. You may use a cast as shown below:

CREATE TABLE tablel (b BINARY(4));
INSERT INTO tablel VALUES (CAST("FFOOAA55" AS BINARY));

This cast allows you to take data that is a series of hexadecimal digits and input it as though it were a string.
Each of the hexadecimal pairs in the quoted string represents a single byte of data. There are 8 hexadecimal
digits, and thus 4 bytes of input.

A cast can be used to change output as well as input. In the rather complex code sample below, the expression
in the CASE clause converts the output from the format '2003-01-20 15:33:40' to '2003-Jan-20 15:33:40'".

CREATE TABLE samplel(dt TIMESTAMP);
COMMIT WORK;

30

3.5.5 Row Value Constructors

INSERT INTO samplel VALUES ("2003-01-20 15:33:407);
COMMIT WORK;

SELECT
CASE MONTH(dt)
WHEN 1 THEN REPLACE(CAST(dt AS varchar), "-01-", "-Jan-")
WHEN 2 THEN REPLACE(CAST(dt AS varchar), "-02-", "-Feb-")
WHEN 3 THEN REPLACE(CAST(dt AS varchar), "-03-", "-Mar-")
WHEN 4 THEN REPLACE(CAST(dt AS varchar), "-04-", "-Apr-")
WHEN 5 THEN REPLACE(CAST(dt AS varchar), "-05-", "-May-")
WHEN 6 THEN REPLACE(CAST(dt AS varchar), "-06-", "-Jun-")
WHEN 7 THEN REPLACE(CAST(dt AS varchar), "-07-", "-Jul-")
WHEN 8 THEN REPLACE(CAST(dt AS varchar), "-08-", "-Aug-")
WHEN 9 THEN REPLACE(CAST(dt AS varchar), "-09-", "-Sep-")
WHEN 10 THEN REPLACE(CAST(dt AS varchar), "-10-", "-Oct-")
WHEN 11 THEN REPLACE(CAST(dt AS varchar), "-11-", "-Nov-")
WHEN 12 THEN REPLACE(CAST(dt AS varchar), "-12-", "-Dec-")
END

AS formatted _date
FROM samplel;

This takes a value from a column named dt, converts that value from timestamp to VARCHAR, then replaces
the month number with an abbreviation for the month (for example, it replaces "-01-" with "-Jan-"). By using
the CASE/WHEN/END syntax, we can specify exactly what output we want for each possible input. Note
that because this expression is so complicated, it is almost mandatory to use an AS clause to specify the
column header in the output.

3.5.5 Row Value Constructors

This section explains one of the less familiar types of expressions, the Row Value Constructor (RVC), and
how it is used with relational operators, such as greater than, less than, etc.

A row value constructor is an ordered sequence of values delimited by parentheses, for example:
, 4, 9
("Smith", "Lisa")

You can think of this as constructing a row based on a series of elements/values, just like a row of a table is
composed of a series of fields.

31

3.5.5 Row Value Constructors

Row value constructors, like individual values, may be used in comparisons. For example, just as you may
have expressions like:

WHERE X > y;
WHERE 2 > 1;

you also may have expressions like:

WHERE (2, 3, 4) > (1, 2, 3);
WHERE (tl.last _name, tl.first_name) = (t2.last _name, t2_first_name);

Comparisons using row value constructors must be done carefully. Rather than give the technical definition
of comparisons (which you can find in section 8.2 (comparison predicates) of the SQL-92 standard), we will
give examples and an analogy to help you see the pattern.

The following expressions are true:

(9, 9,9 >, 1, D

("Baker®, "Barbara®) > ("Alpert®, “Andy")
@, =3, D

G, 2, 1 1=, 3, 2

The examples above are simple, because the expression is correct for each corresponding pair of elements
and is therefore true for the RVCs. For example,

"Baker®™ > "Alpert® and "Barbara®" > "Andy", and therefore
("Baker*®, "Barbara®) > (“Alpert®, “Andy")

However, when comparing row value constructors, it is not necessary that the expression be true for each
corresponding element. In a row value constructor, the further left an element is, the more significance it has.
Thus the following expressions are also true:

@, 1, 1) > (1, 9, 9
("Zoomer®, "Andy") > ("Alpert, "Zelda")

In these examples, since the most significant element of the first RCV is greater than the corresponding element
of the second RCV, the expression is true, regardless of the values of the remaining elements. Similarly, in
the examples below, the first elements are identical, but the expressions overall are true:

32

3.5.5 Row Value Constructors

@, 1, 2>, 1, 1
@, 2, 1>, 1, 1
("Baker®, "Zelda®") > ("Baker®, “Allison")

Again, in a row value constructor, the further left an element is, the more significance it has. This is similar
to the way that we compare multi-digit numbers. In a 3-digit number, such as 911, the hundreds-place digit
is more significant than the tens-place digit, and the tens-place digit is more significant than the ones-place
digit. Thus, the number 911 is greater than the number 199, even though not all digits of 911 are greater than
the corresponding digits of 199.

This is useful when comparing multiple columns that are related. A practical application of this is when
comparing people's names. For example, suppose that we have 2 tables, each of which has an Iname (last
name) and fname (first name) column. Suppose that we want to find all people whose names are less than
Michael Morley's. In this situation, we want the last name to have more significance than the first name. The
following names are shown in the correct alphabetical order (by last name):

Adams, Zelda
Morley, Michael
Young, Anna

If we want to list all persons whose names are less than Michael Morley's, then we do NOT want to use the
following:

tablel.lname < "Morley" and tablel.fname < "Michael”
If we used this expression, we would reject Zelda Adams because her first name is alphabetically after Michael

Morley's first name. One correct solution is to use the row value constructor approach:

(tablel.lname, tablel.fname) < ("Morley®, “Michael*®)

Note that when using equality, the expression must be true for ALL elements of the RCVs. E.g.:

@, 2,3 =(, 2, 3

Not surprisingly, for inequality the expression must be true for only one element:

@, 2, 1=, 1, 1

33

3.6 More about Transactions

3.6 More about Transactions

As described in the previous chapter, SQL allows you to group multiple statements into a single "atomic"
(indivisible) piece of work called a transaction. Successful transactions are preserved with the command
COMMIT WORK. Below is a simplistic example.

COMMIT WORK; -- Finish the previous transaction.

UPDATE stores SET balance = balance + 199.95

WHERE store_name = "Big Tyke Bikes";

UPDATE checking_accounts SET balance = balance - 199.95
WHERE name = "Jay Smith";

COMMIT WORK;

If you don't want to keep a particular transaction, you can roll it back by using the command:

ROLLBACK WORK;

If you do not explicitly commit or roll back your work, then the server will roll it back for you. In other words,
unless you confirm that you want to keep the data (by committing it), the data will be discarded.

3.7 Summary

This brief introduction to SQL and relational databases has explained the concepts that you need to start using
SQL. You should now be able to answer the following questions:

What are tables, rows, and columns?

How do I create a table?

How do | put data into a table?

How do | update data in a table?

How do | delete data from a table?

How do | list data in a table?

How do I list related data in two different tables?

How do | ensure that multiple statements are executed together (so that all fail or all succeed as a group)?

34

3.8 Where to Find Additional Information about SQL

3.8 Where to Find Additional Information about SQL

Other chapters in this manual explain more about SQL and solidDB-specific features. However, this manual
is neither a complete tutorial nor a comprehensive reference on SQL. You may wish to acquire additional
documents on SQL.

There are many books on SQL. These books are not specific to solidDB's implementation of SQL; most of
the material is generic and will apply to any database server, such as solidDB's, that conforms to the ANSI
standards. General SQL books include:

» Introduction to SQL: Mastering the Relational Database Language, by Rick van der Lans, published by
Addison-Wesley.

ANSI standards on SQL include:

» Database Language - SQL with Integrity Enhancement, ANSI, 1989 ANSI X3.135-1989.

» Database Language - SQL: ANSI X3H2 and ISO/IEC JTC1/SC21/WG3 9075:1992 (SQL-92).
You may purchase ANSI standards from www.ansi.org.

ISO (International Standards Organization) also has standards for SQL. See www.iso.org for a list of standards
and prices.

35

www.ansi.org
www.iso.org

36

Chapter 4. Stored Procedures, Events,
Triggers, and Sequences

In solidDB databases, a number of features are available that make it possible to move parts of the application
logic into the database. These features include:

» stored procedures

» deferred procedure calls ("Start After Commit™)
* eventalerts

o triggers

e sequences

4.1 Stored Procedures

Stored procedures are simple programs, or procedures, that are executed in solidDB databases. The user can
create procedures that contain several SQL statements or whole transactions, and execute them with a single
call statement. In addition to SQL statements, 3GL type control structures can be used enabling procedural
control. In this way complex, data-bound transactions may be run on the server itself, thus reducing network
traffic.

Granting execute rights on a stored procedure automatically invokes the necessary access rights to all database
objects used in the procedure. Therefore, administering database access rights may be greatly simplified by
allowing access to critical data through procedures.

This section explains in detail how to use stored procedures. In the beginning of this section, the general
concepts of using the procedures are explained. Later sections go more in-depth and describe the actual syntax
of different statements in the procedures. The end of this section discusses transaction management, sequences
and other advanced stored procedure features.

4.1.1 Basic Procedure Structure

A stored procedure is a standard solidDB database object that can be manipulated using standard DDL state-
ments CREATE and DROP.

In its simplest form a stored procedure definition looks like:

37

4.1.2 Naming Procedures

""CREATE PROCEDURE procedure_nane
par amet er _secti on

BEGIN

decl are_section_| ocal vari abl es
pr ocedur e_body

END™;

The following example creates a procedure called TEST:

"CREATE PROCEDURE test
BEGIN
END"

Procedures can be run by issuing a CALL statement followed by the name of the procedure to be invoked:

CALL test

4.1.2 Naming Procedures

Procedure names have to be unique within a database schema.

All the standard naming restrictions applicable to database objects, like using reserved words, identifier
lengths, etc., apply to stored procedure names. For an overview and complete list of reserved words, see Ap-
pendix C, Reserved Words.

4.1.3 Parameter Section

A stored procedure communicates with the calling program using parameters. solidDB supports two methods
to return values to the calling program. The first method is the standard SQL-99 method, which uses parameters,
and the other is a solidDB proprietary method, RETURNS, which uses result sets.

Using Parameters

Using parameters is the standard SQL-99 method of returning data. Stored procedures accept three types of
parameters:

« Input parameters, which are used as input to the procedure. Parameters are input parameters by default.
Thus, keyword IN is optional.

» Output parameters, which are returned values from the procedure.

38

4.1.3 Parameter Section

» Input/output parameters, which pass values into the procedure and return a value back to the calling pro-
cedure.

Declaring input parameters in the procedure heading make their values accessible inside the procedure by
referring to the parameter name. The parameter data type must also be declared. For supported data types,
see Appendix A, Data Types.

The syntax used in the parameter declaration is (for the complete syntax, see Appendix B, solidDB SQL
Syntax):
paranmeter_definition ::= [paranmeter_node] paraneter_nane data_type

paranmeter_node z:= IN | OUT | INOUT

There can be any number of parameters. Input parameters have to be supplied in the same order as they are
defined when the procedure is called.

You can give default values to the parameters when you create the procedure. When you declare the parameter,
just add an equals character (=) and the default value after the parameter data type. For example:

""CREATE PROCEDURE participants(adults integer = 1,
children integer = "0°,

pets integer = "0%)

BEGIN

END™

When you call the procedure which has default values for the parameters defined, you don't have to give
values for all the parameters. To use default values for all parameters you can simply use the command:

call participants()

To give a value to a parameter, use the parameter name in the call statement and assign the parameter value
by using the equals character as shown in the example below:

call participants(children = 2)
This command gives value 2 for parameter "children” and default values for parameters "adults" and "pets".

If parameter names are not used in the call statement, solidDB assumes that the parameters are given in same
the order as in the create statement.

39

4.1.3 Parameter Section

Examples:

call participants(l)

This command uses value 1 for parameter "adults" and default values for parameters "children™ and "pets".

call participants(1,2)

This command uses value 1 for parameter "adults” and value 2 for parameter "children”. The default value is
used for parameter "pets".

If a name is given to a parameter, all parameters following it must also have a name. This is why command:

call participants(adults = 1,2)

returns an error.

call participants(l,children = 2)

This command uses value 1 for parameter "adults” and value 2 for parameter "children". The default value is
used for parameter "pets".

Using RETURNS

You can use stored procedures to return a result set table with several rows of data in separate columns. This
is a solidDB proprietary method to return data and it is performed by using the RETURNS structure.

When you use the RETURNS structure, you must separately declare result set column names for the output
data rows. There can be any number of result set column names. The result set column names are declared in
the RETURNS section of the procedure definition:

"CREATE PROCEDURE procedure_nane
[(IN input_paraml datatypel,

i nput _paran® datatype, --.. 1D 1

[RETURNS

(out put _colum_definitionl datatypel[,

out put_colum_definition2 datatype, -.. 1) 1

40

4.1.3 Parameter Section

BEGIN
END";

By default, the procedure only returns one row of data containing the values as they were at the moment when
the stored procedure was run or was forced to exit. However, it is also possible to return result sets from a
procedure using the following syntax:

return row;

Every RETURN ROW call adds a new row into the returned result set where column values are the current
values of the result set column names.

The following statement creates a procedure that has two input parameters and two result set column names
for output rows:

"CREATE PROCEDURE PHONEBOOK_SEARCH

(IN FIRST_NAME VARCHAR, LAST_NAME VARCHAR)
RETURNS (PHONE_NR NUMERIC, CITY VARCHAR)
BEGIN

-— procedure_body

END™;

This procedure should be called by using two input parameter of data type VARCHAR. The procedure returns
an output table consisting of two columns named PHONE_NR of type NUMERIC and CITY of type
VARCHAR.

For example:

call phonebook _search ("JOHN®,"DOE");
The result looks as follows (when the procedure body has been programmed):
PHONE_NR CITY

3433555 NEW YORK
2345226 LOS ANGELES

The following statement creates a calculator procedure:

create procedure calc(il float, op char(l),
i2 float)

41

4.1.3 Parameter Section

returns (calcresult float)

begin
declare 1 integer;
if op = "+" then
calcresult = il + 12;
elseif op = *-" then
calcresult = il - i12;
elseif op = **" then
calcresult = il * i12;
elseif op = "/ then
calcresult = il / i2;
else
calcresult = "Error: illegal op~;
end If
end”;

You can test the calculator with the command:

call calc(1,"/",3);

With RETURNS, select statements can also be wrapped into database procedures. The following statement
creates a procedure that uses a select statement to return backups created from the database:

""create procedure show_backups

returns (backup_number varchar, date created varchar)
begin
-— First set action for failing statements.

exec sql whenever sglerror rollback, abort;

-— Prepare and execute the select statement
exec sql prepare sel_cursor select
replace(property, "backup ", "),
substring(value_str, 1, 19) from sys_info
where property like "backup %";
exec sql execute sel_cursor into (backup_number, date created);

-- Fetch first row;
exec sql fetch sel _cursor;
-— Loop until end of table

42

4.1.4 Declare Section

while sqlsuccess loop
-- Return the fetched row
return row;
-- Fetch next
exec sql fetch sel_cursor;
end loop;
end”;

4.1.4 Declare Section

Local variables that are used inside the procedure for temporary storage of column and control values are
defined in a separate section of the stored procedure directly following the BEGIN keyword.

The syntax of declaring a variable is:

DECLARE vari abl e_nane dat at ype;
Note that every declare statement should be ended with a semicolon (;).

The variable name is an alphanumeric string that identifies the variable. The data type of the variable can be
any valid SQL data type supported. For supported data types, see Appendix A, Data Types.

For example:

"CREATE PROCEDURE PHONEBOOK_SEARCH
(FIRST_NAME VARCHAR, LAST_NAME VARCHAR)
RETURNS (PHONE_NR NUMERIC, CITY VARCHAR)

BEGIN

DECLARE i INTEGER;

DECLARE dat DATE;
END™;
Note that input and output parameters are treated like local variables within a procedure with the exception

that input parameters have a preset value and output parameter values are returned or can be appended to the
returned result set.

43

4.1.5 Procedure Body

4.1.5 Procedure Body

The procedure body contains the actual stored procedure program based on assignments, expressions, and
SQL statements.

Any type of expression, including scalar functions, can be used in a procedure body. For valid expressions,
see Appendix B, solidDB SQL Syntax.

4.1.6 Assignments

To assign values to variables either of the following syntax is used:

SET vari abl e_nane = expression;

or

vari abl e_nane := expression;

Example:

SET 1 =1 + 20 ;

1 = 100;
Scalar Functions with Assignments

A scalar function is an operation denoted by a function name followed by a pair of parentheses enclosing zero
or more specified arguments. Each scalar function returns one value. Note that scalar functions can be used
with assignments, as in:

""CREATE PROCEDURE scalar_sample

RETURNS (string_var VARCHAR(20))

BEGIN

-—- CHAR(39) is the single quote/apostrophe
string_var := "Joe” + {fn CHAR (39)} + "s Garage-;
END™;

The result of this stored procedure is the output:

44

4.1.6 Assignments

Joe"s Garage

For a list of solidDB-supported scalar functions (SQL-92), see Appendix B, solidDB SQL Syntax. Note that
solidDB Programmer Guide contains an appendix that describes ODBC scalar functions, which contain some
differences for SQL-92.

Variables, Constants, and Parameters in Assignments

Variables and constants are initialized every time a procedure is executed. By default, variables are initialized
to NULL. Unless a variable has been explicitly initialized, its value is NULL, as the following example shows:

BEGIN
DECLARE total INTEGER;

total := total + 1; -- assigns a null to total

Therefore, a variable should never be referenced before it has been assigned a value.

The expression following the assignment operator can be arbitrarily complex, but it must yield a data type
that is the same as or convertible to the data type of the variable.

When possible, solidDB procedure language can provide conversion of data types implicitly. This makes it
possible to use literals, variables and parameters of one type where another type is expected.

Implicit conversion is not possible if:
» information would be lost in the conversion.
» astring to be converted to an integer contains non-numeric data

Examples:

DECLARE integer_var INTEGER;
integer_var = "NR:123";

returns an error.

DECLARE string_var CHAR(3);
string_var := 123.45;

45

4.1.6 Assignments

results in value '123' in variable st ri ng_var.

DECLARE string_var VARCHAR(2);
string_var := 123.45;

returns an error.

Single Quotes and Apostrophes in String Assignments

Strings are delimited by single quotes. If you want to have a single quote marks within a string, then you can
put two single quote marks ("), side by side, to produce one quote mark in your output. This is commonly
known as an "escape sequence." Following is a stored procedure that uses this technique:

""CREATE PROCEDURE q

RETURNS (string_var VARCHAR(20))
BEGIN

string_var :="Joe""s Garage";
END™;

CALL q;

The result is:

Joe"s Garage

Here are some other examples:

“I*"m writing."

becomes:

I"m writing.

and

"Here are two single quotes:

becomes:

46

4.1.7 Expressions

Here are two single quotes:**

Note that in the last example there are five single quotes in a row at the end of the string. The last of these is
the delimiter (the closing quote mark); the preceding four are part of the data. The four quotes are treated as
two pairs of quotes, and each pair of quotes is treated as an escape sequence representing one single quote
mark.

4.1.7 Expressions

Comparison Operators
Comparison operators compare one expression to another. The result is always TRUE, FALSE, or NULL.

Typically, comparisons are used in conditional control statements and allow comparisons of arbitrarily complex
expressions. The following table gives the meaning of each operator:

Table 4.1. Comparison Operators

Operator Meaning

= is equal to

<> is not equal to

< is less than

> is greater than

<= is less than or equal to
>= is greater than or equal to

Note that the != notation cannot be used inside a stored procedure, use the ANSI-SQL compliant <> instead.

Logical Operators
The logical operators can be used to build more complex queries. The logical operators AND, OR, and NOT

operate according to the tri-state logic illustrated by the truth tables shown below. AND and OR are binary
operators; NOT is a unary operator.

Table 4.2. Logical Operators: NOT

NOT true false null
false true null

47

4.1.7 Expressions

Table 4.3. Logical Operators: AND

AND true false null
true true false null
false false false false
null null false null
Table 4.4. Logical Operators: OR

OR true false null
true true true true
false true false null
null true null null

As the truth tables show, AND returns the value TRUE only if both its operands are true. On the other hand,
OR returns the value TRUE if either of its operands is true. NOT returns the opposite value (logical negation)
of its operand. For example, NOT TRUE returns FALSE.

NOT NULL returns NULL because nulls are indeterminate.
When not using parentheses to specify the order of evaluation, operator precedence determines the order.

Note that 'true’ and 'false’ are not literals accepted by SQL parser but values. Logical expression value can be
interpreted as a numeric variable:

false = 0 or NULL

true = 1 or any other numeric value
Example:

IF expression = TRUE THEN
can be simply written

IF expression THEN

IS NULL Operator

The IS NULL operator returns the Boolean value TRUE if its operand is null, or FALSE if it is not null.
Comparisons involving nulls always yield NULL. To test whether a value is NULL, do not use the expression,

48

4.1.8 Control Structures

IF variable = NULL THEN...
because it never evaluates to TRUE.

Instead, use the following statement:

IF variable IS NULL THEN. ..

Note that when using multiple logical operators in solidDB stored procedures the individual logical expressions
should be enclosed in parentheses like:

((A >= B) AND (C = 2)) OR (A = 3)

4.1.8 Control Structures

The following sections describe the statements that can be used in the procedure body, including branch and
loop statements.

IF Statement

Often, it is necessary to take alternative actions depending on circumstances. The IF statement executes a
sequence of statements conditionally. There are three forms of IF statements: IF-THEN, IF-THEN-ELSE,
and IF-THEN-ELSEIF.

IF-THEN

The simplest form of IF statement associates a condition with a statement list enclosed by the keywords THEN
and END IF (not ENDIF), as follows:

IF condition THEN
statement |ist;
END IF

The sequence of statements is executed only if the condition evaluates to TRUE. If the condition evaluates
to FALSE or NULL, the IF statement does nothing. In either case, control passes to the next statement. An
example follows:

IF sales > quota THEN

49

4.1.8 Control Structures

SET pay = pay + bonus;
END IF

IF-THEN-ELSE

The second form of IF statement adds the keyword ELSE followed by an alternative statement list, as follows:

IF condition THEN
statement |istl;
ELSE

statement |ist2;
END IF

The statement list in the ELSE clause is executed only if the condition evaluates to FALSE or NULL. Thus,
the ELSE clause ensures that a statement list is executed. In the following example, the first or second assign-
ment statement is executed when the condition is true or false, respectively:

IF trans_type = "CR" THEN

SET balance = balance + credit;
ELSE

SET balance
END IF

balance - debit;

THEN and ELSE clauses can include IF statements. That is, IF statements can be nested, as the following
example shows:

IF trans_type = "CR" THEN
SET balance = balance + credit ;
ELSE
IF balance >= minimum_balance THEN
SET balance = balance - debit ;
ELSE
SET balance = minimum_balance;
END IF
END IF

IF-THEN-ELSEIF

Occasionally it is necessary to select an action from several mutually exclusive alternatives. The third form
of IF statement uses the keyword ELSEIF to introduce additional conditions, as follows:

50

4.1.8 Control Structures

IF conditionl THEN
statement |istl;

ELSEIF condition2 THEN
statement |ist2;

ELSE

statenment |ist3;

END IF

If the first condition evaluates to FALSE or NULL, the ELSEIF clause tests another condition. An IF statement
can have any number of ELSEIF clauses; the final ELSE clause is optional. Conditions are evaluated one by
one from top to bottom. If any condition evaluates to TRUE, its associated statement list is executed and the
rest of the statements (inside the IF-THEN-ELSEIF) are skipped. If all conditions evaluate to FALSE or
NULL, the sequence in the ELSE clause is executed. Consider the following example:

IF sales > 50000 THEN
bonus := 1500;

ELSEIF sales > 35000 THEN
bonus := 500;

ELSE
bonus := 100;

END IF

If the value of "sales" is more than 50000, the first and second conditions are true. Nevertheless, "bonus" is
assigned the proper value of 1500 since the second condition is never tested. When the first condition evaluates
to TRUE, its associated statement is executed and control passes to the next statement following the IF-THEN-
ELSEIF.

When possible, use the ELSEIF clause instead of nested IF statements. That way, the code will be easier to
read and understand. Compare the following IF statements:

IF conditionl THEN IF conditionl THEN
statement _listl; statement _listl;
ELSE ELSEIF conditi on2 THEN
IF condition2 THEN statement list2;
statement list2; ELSEIF condition3 THEN
ELSE statement |ist3;
IF condition3 THEN END IF
statement |ist3;
END IF

51

4.1.8 Control Structures

END IF
END IF

These statements are logically equivalent, but the first statement obscures the flow of logic, whereas the
second statement reveals it.

Use of Parentheses in IF-THEN Statements

The following code illustrates the rules for using parentheses in IF-THEN statements. Refer also to the release
notes for additional information on using parentheses in IF-THEN statements.

-—— This piece of code shows examples of valid logical conditions in IF
--— statements.

"CREATE PROCEDURE sample_if _conditions

BEGIN

DECLARE X INT;

DECLARE y INT;

X = 2;
y =2

-—- As shown below, a single logical expression in an IF condition may
-—- use parentheses.

IF (x > 0) THEN

X 1= x - 1;

END IF;

-—- As shown below, although a single logical expression in an IF
-—- condition may use parentheses, the parentheses are not required.
IF x > 0 THEN

X 1= x - 1;

END IF;

-—- As shown below, if there are multiple expressions inside a
-—- logical condition, parentheses are allowed (and in fact are
required) around each subexpression.

IF (x > 0) AND (y > 0) THEN

X 1= x - 1;

END IF;

-—- The example below is the same as the preceding example,
-—- except that this has additional parentheses around the

52

4.1.8 Control Structures

-—- entire expression.
IF ((x > 0) AND (y > 0)) THEN

X =X - 1;
END IF;
WHILE-LOOP

The WHILE-LOOP statement associates a condition with a sequence of statements enclosed by the keywords
LOOP and END LOORP, as follows:

WHILE conditi on LOOP
statement |ist;
END LOOP

Before each iteration of the loop, the condition is evaluated. If the condition evaluates to TRUE, the statement
list is executed, then control resumes at the top of the loop. If the condition evaluates to FALSE or NULL,
the loop is bypassed and control passes to the next statement. An example follows:

WHILE total <= 25000 LOOP

total := total + salary;
END LOOP

The number of iterations depends on the condition and is unknown until the loop completes. Since the condition
is tested at the top of the loop, the sequence might execute zero times. In the latter example, if the initial value
of "total" is greater than 25000, the condition evaluates to FALSE and the loop is bypassed altogether.

Loops can be nested. When an inner loop is finished, control is returned to the next loop. The procedure
continues from the next statement after END LOOP.

Leaving Loops

It may be necessary to force the procedure to leave a loop prematurely. This can be implemented using the
LEAVE keyword:

WHILE total < 25000 LOOP

total := total + salary;

IF exit_condition THEN
LEAVE;

END IF

53

4.1.8 Control Structures

END LOOP
statement |ist2

Upon successful evaluation of the exi t _condi ti on the loop is left, and the procedure continues at the
statement |ist2.

< Note

Although solidDB databases support the ANSI-SQL CASE syntax, the CASE construct cannot be
used inside a stored procedure as a control structure.

Use of Parentheses in WHILE Loops

The following code illustrates the rules for using parentheses in WHILE loops. Refer also to the release notes
for additional information on using parentheses in WHILE loops.

-—- This piece of code shows examples of valid logical conditions in
--— WHILE loops.-

""CREATE PROCEDURE sample_while_conditions

BEGIN

DECLARE x INT;

DECLARE y INT;

X 1= 2;

y = 2;

-—- As shown below, a single logical expression in a WHILE condition
--- may use parentheses.

WHILE (x > 0) LOOP

X = xX - 1;

END LOOP;

--— As shown below, although a single logical expression in a WHILE
-—- condition may use parentheses, the parentheses are not required.
WHILE x > O LOOP

X = x - 1;

END LOOP;

-—- As shown below, if there are multiple expressions inside a
-—- logical condition, then you need parentheses around EACH
individual expression.

WHILE (x > 0) AND (y > 0) LOOP

54

4.1.8 Control Structures

X =X - 1;
y ==y -1;
END LOOP;

-—- The example below is the same as the preceding example,
-—- except that this has additional parentheses around the
entire expression.

WHILE ((x > 0) AND (y > 0)) LOOP

X = x - 1;

y :=y-1;

END LOOP;

Handling Nulls

Nulls can cause confusing behavior. To avoid some common errors, observe the following rules:
e comparisons involving nulls always yield NULL

» applying the logical operator NOT to a null yields NULL

» inconditional control statements, if the condition evaluates to NULL, its associated sequence of statements
is not executed

In the example below, you might expect the statement list to execute because "x" and "y" seem unequal. Re-
member though that nulls are indeterminate. Whether "x" is equal to "y" or not is unknown. Therefore, the
IF condition evaluates to NULL and the statement list is bypassed.

X = 5;
y o= NULL;
IF Xx <>y THEN -- evaluates to NULL, not TRUE
statement list; -- not executed
END IF

In the next example, one might expect the statement list to execute because "a" and "b" seem equal. But,
again, this is unknown, so the IF condition evaluates to NULL and the statement list is bypassed.

a = NULL;
b = NULL;

IF a=b THEN -- evaluates to NULL, not TRUE

55

4.1.8 Control Structures

statement |ist; -- not executed
END IF

NOT Operator

Applying the logical operator NOT to a null yields NULL. Thus, the following two statements are not always
equivalent:

IF x >y THEN IF NOT (x > y) THEN
high = x; high = y;
ELSE ELSE
high = y; high = x;
END IF END IF

The sequence of statements in the ELSE clause is executed when the IF condition evaluates to FALSE or
NULL. If either or both "x" and "y" are NULL, the first IF statement assigns the value of "y" to "high", but
the second IF statement assigns the value of "x" to "high". If neither "x" nor "y" is NULL, both IF statements
assign the corresponding value to "high".

Zero-Length Strings

Zero length strings are treated by a solidDB server like they are a string of zero length, instead of a null. NULL
values should be specifically assigned as in the following:

SET a = NULL;

This also means that checking for NULL values will return FALSE when applied to a zero-length string.
Example Stored Procedure

Following is an example of a simple procedure that determines whether a person is an adult on the basis of a
birthday as input parameter.

Note the usage of {fn ...} on scalar functions, and semicolons to end assignments.

"CREATE PROCEDURE grown_up
(birth_date DATE)

RETURNS (description VARCHAR)
BEGIN

56

4.1.8 Control Structures

DECLARE age INTEGER;

-— determine the number of years since the day of birth
age := {fn TIMESTAMPDIFF(SQL_TSI_YEAR, birth_date, now())};
IF age >= 18 THEN

-— If age is at least 18, then it"s an adult
description = “ADULT";

ELSE

-- otherwise it"s still a minor

description = "MINOR";

END IF

END™;

Exiting a Procedure

A procedure may be exited prematurely by issuing the keyword

RETURN;

at any location. After this keyword, control is directly handed to the program calling the procedure returning
the values bound to the result set column names as indicated in the RETURNS section of the procedure
definition.

Returning Data

You can return data with the OUT parameter mode, which is a standard SQL-99 method of returning data.
This method allows you to pass data back to the program from the procedure. For syntax information, refer
to Appendix B, solidDB SQL Syntax.

The OUT parameter mode has the following characteristics:

» The OUT parameter mode allows you to pass data back to the calling program from the procedure. Inside
the calling program, the OUT parameter acts like a variable. That means you can use an OUT parameter
as if it were a local variable. You can change its value or reference the value in any way.

e The actual parameter that corresponds to an OUT parameter must be a variable; it cannot be a constant
or an expression.

» Like variables, OUT parameters are initialized to NULL.

Before exiting a procedure, you must explicitly assign values to all OUT parameters. Otherwise, the corres-
ponding actual parameters will be null. If you exit successfully, solidDB assigns values to the actual parameters.
However, if you exit with an unhandled exception, solidDB does not assign values to the actual parameters.

57

4.2 Remote Stored Procedures

For a solidDB proprietary method of returning data, see the section called “Using RETURNS”.

4.2 Remote Stored Procedures

Stored procedures may be called locally or remotely. By "remotely", we mean that one database server may
call a stored procedure on another database server. Remote stored procedure calls use a syntax like the follow-

ing:

CALL procedure_nane AT node-ref ;
where node- r ef indicates which database server the remote stored procedure is on.

Remote stored procedures calls can only be made between two solidDB servers that have a master/replica
relationship. The calls can be made in either "direction"; i.e. the master may call a stored procedure on the
replica, or the replica may call a stored procedure on the master. A remote stored procedure may be called
from any context that allows a local procedure call. Thus, for example, you may call a remote stored procedure
directly by using a CALL statement, or you may call the remote procedure from within a trigger, or another
stored procedure, or a Start After Commit statement.

A remotely-called stored procedure may contain any command that any other stored procedure may contain.
All stored procedures are created using the same syntax rules. A single stored procedure may be called both
locally and remotely at different times.

The stored procedure, when called remotely, accepts parameters from the caller, just as if the call was local.
However, a remote stored procedure cannot return a result set; it can only return an error code.

Both local and remote stored procedure calls are synchronous; in other words, whether the procedure is called
locally or remotely, the caller waits until the value is returned; the caller does not continue on while the stored
procedure executes in the background. (Note that if the stored procedure is called from inside a START
AFTER COMMIT, then the stored procedure call itself is synchronous, but the START AFTER COMMIT
was not synchronous, so the stored procedure will execute as an asynchronous background process.)

1) Important

Transaction handling for remote stored procedures is different from transaction handling for local
stored procedures. When a stored procedure is called remotely, the execution of the stored procedure
is NOT a part of the transaction that contained the call. Therefore, you cannot roll back a stored pro-
cedure call by rolling back the transaction that called it.

The full syntax of the command to call a remote stored procedure is:

58

4.2 Remote Stored Procedures

CALL <proc-name>[(param [, param...])] AT node-def ;
node- def ::= DEFAULT | “replica nane®™ | "master nane-”

For example:

CALL MyProc("Smith", 750) AT replical;
CALL MyProcWithoutParameters AT replica2;

See Appendix B, solidDB SQL Syntax, for more details about the CALL statement.

The node definition "DEFAULT" is used only with the START AFTER COMMIT statement. See the section
on START AFTER COMMIT for more details.

@ Note

You can only list one node definition per CALL. If you want to notify multiple replicas, for example,
then you must call each of them separately. You can, however, create a stored procedure that contains
multiple CALL statements, and then simply make a single call to that procedure.

The remote stored procedure is always created on the server that executes the procedure, not on the server
that calls the procedure. For example, if the master is going to call procedure foo() to execute on replical,
then procedure foo() must have been created on replical. The master does not know the "content” of the stored
procedure that it calls remotely. In fact, the master does not know anything at all about the stored procedure
other than the information specified in the CALL statement itself, for example:

CALL foo(paraml, param2) AT replical

which of course includes the procedure's name, some parameter values, and the name of the replica on which
the procedure is to be executed. The stored procedure is not registered with the caller. This means that the
caller in some sense calls the procedure "blindly", without even knowing if it's there. Of course, if the caller
tries to call a procedure that doesn't exist, then the caller will get an error message that says that the procedure
doesn't exist.

Dynamic parameter binding is supported. For example, the following is legal:

CALL MYPROC(?, ?) AT MYREPLICAL;

Calls to the stored procedure are not buffered or queued. If you call the stored procedure and the procedure
does not exist, the call does not "persist", waiting until the stored procedure appears. Similarly, if the procedure

59

4.2.1 ACCESS RIGHTS

does exist but the server that has that procedure is shut down or is disconnected from the network is not ac-
cessible for any other reason, then the call is not held "open" and retried when the server becomes accessible
again. This is important to know when using the "Sync Pull Notify" (push synchronization) feature.

4.2.1 ACCESS RIGHTS

To call a stored procedure, the caller must have EXECUTE privilege on that procedure. (This is true for any
stored procedure, whether it is called locally or remotely.)

When a procedure is called locally, it is executed with the privileges of the caller. When a procedure is called
remotely, it may be executed either with the privileges of a specified user on the remote server, or with the
privileges of the remote user who corresponds to the local caller. (The replica and master users must already
be mapped to each other before the stored procedure is called. For more information about mapping replica
users to master users, see solidDB SmartFlow Data Replication Guide.)

If a remote stored procedure was called from the replica (and is to be executed on the master), then you have
the option of specifying which master user's privileges you would like the procedure to be executed with.

If the remote stored procedure was called from the master (and is to be executed on the replica), or if you do
not specify which user's privileges to use, then the calling server will figure out which user's privileges should
be used, based on which user called the stored procedure and the mapping between replica and master users.

These possibilities are explained in more detail below.

1. If the procedure was called from a replica (and will be executed on the master), then you may execute
the SET SYNC USER statement to specify which master user's privileges to use. You must execute SET
SYNC USER on the local server before calling the remote stored procedure. Once the sync user has been
specified on the calling server, the calling server will send the user name and password to the remote
server (the master server) each time a remote stored procedure is called. The remote server will try to
execute the procedure using the user id and password that were sent with the procedure call. The user id
and password must exist in the remote server, and the specified user must have appropriate access rights
to the database and EXECUTE privilege on the called procedure.

The SET SYNC USER statement is valid only on a replica, so you can only specify the sync user when
a replica calls a stored procedure on a master.

2. Ifthe caller is a master, or if the call was made from a replica and you did not specify a sync user before
the call, then the servers will attempt to determine which user on the remote server corresponds to the
user on the local server.

If the calling server is a replica (R - M)

The calling server sends the following information to the remote server when calling a remote procedure:

60

4.2.1 ACCESS RIGHTS

Name of the master (SYS_SYNC_MASTERS.NAME).
Replica id (SYS_SYNC_MASTERS.REPLICA_ID).

Master user id (This master user id is the master user id that corresponds to the user id of the local user
who called the procedure. Obviously, this local user must already be mapped to the corresponding master
user.)

Note that this method of selecting the master user id is the same as the method used when a replica re-
freshes data — the replica looks up in the SYS _SYNC_USERS table to find the master user who is
mapped to the current local replica user.

If the calling server is a master (M - R)

The calling server sends the following information to the remote server when calling a remote procedure:
Name of the master (SYS_SYNC_REPLICAS.MASTER_NAME).

Replica id (SYS_SYNC_REPLICAS.ID).

User name of the caller.

User id of the caller.

When the replica receives the master user id, the replica looks up the local user who is mapped to that
master id. Since more than one replica user may be mapped to a single master user, the server will use
the first local user it finds who is mapped to the specified master user and who has the privileges required
to execute this stored procedure.

Before a master server can call a stored procedure on a replica server, the master must of course know the
connect string of the replica. If a replica allows calls from a master, then the replica should define its own
connect string information in the solid. ini file. This information is provided to the master (the replica
includes a copy when it forwards any message to master). When the master receives the connect string from
the replica, the master replaces the previous value (if the new value differs).

Example:

[Synchronizer]

ConnectStrForMaster=tcp replicahost 1316

It is also possible to inform the master of the replica's connect string by using the statement:

SET SYNC CONNECT <connect-info> TO REPLICA <replica-name>

61

4.3 Using SQL in a Stored Procedure

This is useful if the master needs to call the replica but the replica has not yet provided its connect string to
the master (i.e. has not yet forwarded any message to the master).

4.3 Using SQL in a Stored Procedure

Using SQL statements inside a stored procedure is somewhat different from issuing SQL directly from tools
like solsqgl or SolidConsole.

A special syntax is required when using SQL statements inside a stored procedure. There are two ways to
execute SQL statements inside a procedure: you may use the EXECDIRECT syntax to execute a statement,
or you may treat the SQL statement as a "cursor"”. Both possibilities are explained below.

4.3.1 EXECDIRECT

The EXECDIRECT syntax is particularly appropriate for statements where there is no result set, and where
you do not have to use any variable to specify a parameter value. For example, the following statement inserts
a single row of data:

EXEC SQL EXECDIRECT insert into tablel (id, name) values (1, "Smith");

For more information about EXECDIRECT, see Section 4.3.1, “EXECDIRECT”.

4.3.2 Using a Cursor

Cursors are appropriate for statements where there is a result set, or where you want to repeat a single basic
statement but use different values from a local variable as a parameter (e.g. in a loop).

A cursor is a specific allocated part of the server process memory that keeps track of the statement being
processed. Memory space is allocated for holding one row of the underlying statement, together with some
status information on the current row (in SELECTS) or the number of rows affected by the statement (in
UPDATES, INSERTS and DELETES).

In this way query results are processed one row at a time. The stored procedure logic should take care of the
actual handling of the rows, and the positioning of the cursor on the required row(s).

There are five basic steps in handling a cursor:
1. Preparing the cursor - the definition

2. Executing the cursor - executing the statement

62

4.3.2 Using a Cursor

3. Fetching on the cursor (for select procedure calls) - getting the results row by row
4. Closing the cursor after use - still enabling it to re-execute
5. Dropping the cursor from memory - removing it

1. Preparing the Cursor

A cursor is defined (prepared) using the following syntax:

EXEC SQL PREPARE cursor_nanme SQ._st at enent ;

By preparing a cursor, memory space is allocated to accommaodate one row of the result set of the statement,
and the statement is parsed and optimized.

A cursor name given for the statement must be unique within the connection. This means procedures that
contain cursors cannot be called recursively (at least not from a statement that is after a PREPARE CURSOR
and before the corresponding DROP CURSOR). When a cursor is prepared, a solidDB server checks that no
other cursor of this name is currently open. If there is one, error number 14504 is returned.

Note that statement cursors can also be opened using the ODBC API. These cursor names need to be different
from the cursors opened from procedures.

Example:

EXEC SQL PREPARE sel tables
SELECT table_name

FROM sys tables

WHERE table_name LIKE "SYS%";

This statement will prepare the cursor named sel_tables, but will not execute the statement that it contains.
2. Executing the Cursor

After a statement has been successfully prepared it can be executed. An execute binds possible input and
output variables to it and runs the actual statement.

Syntax of the execute statement is:

EXEC SQL EXECUTE cursor_nane
[INTO (varl [, var2...]) 1;

63

4.3.2 Using a Cursor

The optional section INTO binds result data of the statement to variables.

Variables listed in parentheses after the INTO keyword are used when running a SELECT or CALL statement.
The resulting columns of the SELECT or CALL statement are bound to these variables when the statement
is executed. The variables are bound starting from the left-most column listed in the statement. Binding of
variables continues to the following column until all variables in the list of variables have been bound. For
example to extend the sequence for the cursor sel_tables that was prepared earlier we need to run the following
statements:

EXEC SQL PREPARE sel_tables
SELECT table_name

FROM sys tables

WHERE table_name LIKE "SYS%*®

EXEC SQL EXECUTE sel_tables INTO (tab);

The statement is now executed and the resulting table names will be returned into variable tab in the subsequent
Fetch statements.

3. Fetching on the Cursor

When a SELECT or CALL statement has been prepared and executed, it is ready for fetching data from it.
Other statements (UPDATE, INSERT, DELETE, DDL) do not require fetching as there will be no result set.
Fetching results is done using the fetch syntax:

EXEC SQL FETCH cursor _nane;

This command fetches a single row from the cursor to the variables that were bound with INTO keyword
when the statement was executed.

To complete the previous example to actually get result rows back, the statements will look like:

EXEC SQL PREPARE sel_tables

SELECT table_name

FROM sys tables

WHERE table _name LIKE "SYS%*

EXEC SQL EXECUTE sel_tables INTO (tab);
EXEC SQL FETCH sel_tables;

After this the variable tab will contain the table name of the first table found conforming to the WHERE
clause.

64

4.3.2 Using a Cursor

Subsequent calls to fetch on the cursor sel_tables will get the next row(s) if the select found more than one.

To fetch all table names a loop construct may be used:

WHILE expression LOOP
EXEC SQL FETCH sel_tables;
END LOOP
Note that after the completion of the loop, the variable tab will contain the last fetched table name.

4. Closing the Cursor

Cursors may be closed by issuing the statement

EXEC SQL CLOSE cursor_nane;

This will not remove the actual cursor definition from memory; it may be re-executed when the need arises.
5. Dropping the Cursor

Cursors may be dropped from memory, releasing all resources by the statement;

EXEC SQL DROP cursor_nane;

Example Stored procedure

Here is an example of a stored procedure that uses EXECDIRECT in one place and uses a cursor in another
place.

""CREATE PROCEDURE p2

BEGIN

-- This variable holds an ID that we insert into the table.
DECLARE id INT;

-— Here are simple examples of EXECDIRECT.
EXEC SQL EXECDIRECT create table tablel (id_col INT);
EXEC SQL EXECDIRECT insert into tablel (id_col) values (1);

65

4.3.3 Error Handling

-- Here is an example of a cursor.
EXEC SQL PREPARE cursorl INSERT INTO tablel (id_col) values (?);
id := 2;
WHILE id <= 10 LOOP
EXEC SQL EXECUTE cursorl USING (id);
id := id + 1;
END LOOP;
EXEC SQL CLOSE cursorl;
EXEC SQL DROP cursorl;

END"';
4.3.3 Error Handling
SQLSUCCESS

The return value of the latest EXEC SQL statement executed inside a procedure body is stored into variable
SQLSUCCESS. This variable is automatically generated for every procedure. If the previous SQL statement
was successful, the value 1 is stored into SQLSUCCESS. After a failed SQL statement, a value 0 is stored
into SQLSUCCESS.

The value of SQLSUCCESS may be used, for instance, to determine when the cursor has reached the end of
the result set as in the following example:

EXEC SQL FETCH sel_tab;
-- loop as long as last statement in loop is successful
WHILE SQLSUCCESS LOOP
-- do something with the results, for example, return a row
EXEC SQL FETCH sel_tab;

END LOOP

SQLERRNUM

This variable contains the error code of the latest SQL statement executed. It is automatically generated for
every procedure. After successful execution, SQLERRNUM contains zero (0).

SQLERRSTR

This variable contains the error string from the last failed SQL statement.

66

4.3.3 Error Handling

SQLROWCOUNT

After the execution of UPDATE, INSERT and DELETE statements, an additional variable is available to
check the result of the statement. Variable SQLROWCOUNT contains the number of rows affected by the
last statement.

SQLERROR

To generate user errors from procedures, the SQLERROR variable may be used to return an actual error string
that caused the statement to fail to the calling application. The syntax is:

RETURN SQLERROR "error string"
RETURN SQLERROR char _vari abl e

The error is returned in the following format:

User error: error _string

SQLERROR OF cur sor nane

For error checking of EXEC SQL statements, the SQLSUCCESS variable may be used as described under
SQLSUCCESS in the beginning of this section. To return the actual error that caused the statement to fail to
the calling application, the following syntax may be used:

EXEC SQL PREPARE cursornanme sqgl _statenent ;
EXEC SQL EXECUTE cursornane;

IF NOT SQLSUCCESS THEN

RETURN SQLERROR OF cursornane;

END IF

END IF

Processing will stop immediately when this statement is executed and the procedure return code is SQLERROR.
The actual database error can be returned using the SQLError function:

Solid Database error 10033: Primary key unique constraint violation

The generic error handling method for a procedure can be declared with:

67

4.3.4 Parameter Markers in Cursors

EXEC SQL WHENEVER SQLERROR [ROLLBACK [WORK],] ABORT;

When this statement is included in a stored procedure, all return values of executed SQL statements are
checked for errors. If a statement execution returns an error, the procedure is automatically aborted and
SQLERROR of the last cursor is returned. Optionally the transaction can also be rolled back.

The statement should be included before any EXEC SQL statements, directly following the DECLARE section
of variables.

Below is an example of a complete procedure returning all table names from SYS_TABLES that start with
'SYS":

"CREATE PROCEDURE sys_tabs
RETURNS (tab VARCHAR)

BEGIN

-- abort on errors

EXEC SQL WHENEVER SQLERROR ROLLBACK, ABORT;
-- prepare the cursor

EXEC SQL PREPARE sel tables

SELECT table_name

FROM sys tables

WHERE table_name LIKE "SYS%";

-- execute the cursor

EXEC SQL EXECUTE sel_tables INTO (tab);
-— loop through rows

EXEC SQL FETCH sel_tables;
WHILE sqlsuccess LOOP

RETURN ROW;
EXEC SQL FETCH sel_tables;

END LOOP

-— close and drop the used cursors
EXEC SQL CLOSE sel_tables;

EXEC SQL DROP sel_tables;

END™;

4.3.4 Parameter Markers in Cursors

In order to make a cursor more dynamic, a SQL statement can contain parameter markers that indicate values
that are bound to the actual parameter values at execute time. The *?' symbol is used as a parameter marker.

68

4.3.4 Parameter Markers in Cursors

Syntax example:

EXEC SQL PREPARE sel_tabs
SELECT table_name

FROM sys tables

WHERE table_name LIKE ?
AND table_schema LIKE ?;

The execution statement is adapted by including a USING keyword to accommodate the binding of a variable
to the parameter marker.

EXEC SQL EXECUTE sel_tabs USING (varl, var2) INTO (tabs);

In this way a single cursor can be used multiple times without having to re-prepare the cursor. As preparing
a cursor involves also the parsing and optimizing of the statement, significant performance gains can be
achieved by using re-usable cursors.

Note that the USING list only accepts variables; data can not be directly passed in this way. So if for example
an insert into a table should be made, one column value of which should always be the same (status = 'NEW")
then the following syntax would be wrong:

EXEC SQL EXECUTE ins_tab USING (nr, desc, dat, "NEW");

The correct way would be to define the constant value in the prepare section:

EXEC SQL PREPARE ins_tab

INSERT INTO my_tab (id, descript, in_date, status)
VALUES (?, ?, ?,"NEW");
EXEC SQL EXECUTE ins_tab USING (nr, desc, dat);

Note that variables can be used multiple times in the using list.

The parameters in a SQL statement have no intrinsic data type or explicit declaration. Therefore, parameter
markers can be included in a SQL statement only if their data types can be inferred from another operand in
the statement.

For example, in an arithmetic expression such as ? + COLUMNL, the data type of the parameter can be inferred
from the data type of the named column represented by COLUMNL1. A procedure cannot use a parameter
marker if the data type cannot be determined.

69

4.3.4 Parameter Markers in Cursors

The following table describes how a data type is determined for several types of parameters.

Table 4.5. Determining Data Type from Parameters

Location of Parameter Assumed Data Type

One operand of a binary arithmetic or comparison |Same as the other operand

operator

The first operand in a BETWEEN clause Same as the other operand

The second or third operand in a BETWEEN clause |Same as the first operand

An expression used with IN Same as the first value or the result column of the
subquery

A value used with IN Same as the expression

A pattern value used with LIKE VARCHAR

An update value used with UPDATE Same as the update column

An application cannot place parameter markers in the following locations:
e AsaSQL identifier (name of a table, name of a column etc.)

* InaSELECT list.

» As both expressions in a comparison-predicate.

» As both operands of a binary operator.

* As both the first and second operands of a BETWEEN operation.
* As both the first and third operands of a BETWEEN operation.

» As both the expression and the first value of an IN operation.

e As the operand of a unary + or - operation.

* Asthe argument of a set-function-reference.

For more information, see the ANSI SQL-92 specification.

In the following example, a stored procedure will read rows from one table and insert parts of them in another,
using multiple cursors:

70

4.4 Calling other Procedures

"CREATE PROCEDURE tabs_in_schema (schema_nm VARCHAR)
RETURNS (nr_of _rows INTEGER)
BEGIN
DECLARE tab_nm VARCHAR;
EXEC SQL PREPARE sel_tab

SELECT table_name

FROM sys tables

WHERE table_schema = ?;
EXEC SQL PREPARE ins_tab

INSERT INTO my_table (table_name, schema) VALUES (?,7?);

nr_of rows := 0;

EXEC SQL EXECUTE sel_tab USING (schema_nm) INTO (tab_nm);
EXEC SQL FETCH sel_tab;
WHILE SQLSUCCESS LOOP
nr_of rows := nr_of rows + 1;
EXEC SQL EXECUTE ins_tab USING(tab_nm, schema_nm);
IF SQLROWCOUNT <> 1 THEN
RETURN SQLERROR OF ins_tab;
END IF
EXEC SQL FETCH sel_tab;
END LOOP
END";

4.4 Calling other Procedures

As calling a procedure forms a part of the supported SQL syntax, a stored procedure may be called from
within another stored procedure. The default limit for levels of nested procedures is 16. When the maximum
is exceeded, the transaction fails. The maximum nesting level is set in the MaxNest edPr ocedur es para-
meter inthe sol id. ini configuration file. For details, see appendix "Configuration Parameters" in solidDB
Administration Guide.

Like all SQL statements, a cursor should be prepared and executed like:
EXEC SQL PREPARE cp CALL myproc(?, ?);
EXEC SQL EXECUTE cp USING (varl, var2);

If procedure myproc returns one or more values, then subsequently a fetch should be done on the cursor cp
to retrieve those values:

71

4.4.1 Positioned Updates and Deletes

EXEC SQL PREPARE cp call myproc(?,?);

EXEC SQL EXECUTE cp USING (varl, var2) INTO
(ret_varl, ret_var2);

EXEC SQL FETCH cp;

Note that if the called procedure uses a return row statement, the calling procedure should utilize a WHILE
LOOP construct to fetch all results.

Recursive calls are possible, but discouraged because cursor names are unique at connection level.

4.4.1 Positioned Updates and Deletes

In solidDB procedures it is possible to use positioned updates and deletes. This means that an update or delete
will be done to a row where a given cursor is currently positioned. The positioned updates and deletes can
also be used within stored procedures using the cursor names used within the procedure.

The following syntax is used for positioned updates:

UPDATE t abl e_nane
SET col um = val ue
WHERE CURRENT OF cursor _nane

and for deletes

DELETE FROM tabl e_nane
WHERE CURRENT OF cursor _nane

In both cases the cur sor _narne refers to a statement doing a SELECT on the table that is to be updated/de-
leted from.

Positioned cursor update is a semantically suspicious concept in SQL standard that may cause peculiarities
also with a solidDB server. Please note the following restriction when using positioned updates.

Below is an example written with pseudo code that will cause an endless loop with a solidDB server (error
handling, binding variables and other important tasks omitted for brevity and clarity):

""CREATE PROCEDURE ENDLESS_LOOP
BEGIN
EXEC SQL PREPARE MYCURSOR SELECT * FROM TABLE1;

72

4.4.2 Transactions

EXEC SQL PREPARE MYCURSOR_UPDATE
UPDATE TABLE1l SET COLUMN2 = "new data“;
WHERE CURRENT OF MYCURSOR;™

EXEC SQL EXECUTE MYCURSOR;

EXEC SQL FETCH MYCURSOR;

WHILE SQLSUCCESS LOOP
EXEC SQL EXECUTE MYCURSOR_UPDATE;
EXEC SQL COMMIT WORK;

EXEC SQL FETCH MYCURSOR;

END LOOP

END";

The endless loop is caused by the fact that when the update is committed, a new version of the row becomes
visible in the cursor and it is accessed in the next FETCH statement. This happens because the incremented
row version number is included in the key value and the cursor finds the changed row as the next greater key
value after the current position. The row gets updated again, the key value is changed and again it will be the
next row found.

In the above example, the updated COLUMN?2 is not assumed to be part of the primary key for the table, and
the row version number was the only part of the index entry that changed. However, if a column value is
changed that is part of the index through which the cursor has searched the data, the changed row may jump
further forward or backward in the search set.

For these reasons, using positioned update is not recommended in general and searched update should be used
instead whenever possible. However, sometimes the update logic may be too complex to be expressed in SQL
WHERE clause and in such cases positioned update can be used as follows:

Positioned cursor update works deterministically in solidDB, when the WHERE clause is such that the updated
row does not match the criteria and therefore does not reappear in the fetch loop. Constructing such a search
criteria may require using additional column only for this purpose.

Note that in an open cursor, user changes do not become visible unless they are committed within the same
database session.

4.4.2 Transactions

Stored procedures use transactions like any other interface to the database uses transactions. A transaction
may be committed or rolled back either inside the procedure or outside the procedure. Inside the procedure
a commit or roll back is done using the following syntax:

73

4.4.3 Default Cursor Management

EXEC SQL COMMIT WORK;
EXEC SQL ROLLBACK WORK;

These statements end the previous transaction and start a new one.

If a transaction is not committed inside the procedure, it may be ended externally using:
+ solidDB SA

» Another stored procedure

» By autocommit, if the connection has AUTOCOMMIT switch set to ON

Note that when a connection has autocommit activated it does not force autocommit inside a procedure. The
commit is done when the procedure exits.

4.4.3 Default Cursor Management

By default, when a procedure exits, all cursors opened in a procedure are closed. Closing cursors means that
cursors are left in a prepared state and can be re-executed.

After exiting, the procedure is put in the procedure cache. When the procedure is dropped from the cache, all
cursors are finally dropped.

The number of procedures kept in cache is determined by the solid. ini file setting:

[sQLl

ProcedureCache = nbr_of procedures

This means that, as long as the procedure is in the procedure cache, all cursors can be re-used as long as they
are not dropped. A solidDB server itself manages the procedure cache by keeping track of the cursors declared,
and notices if the statement a cursor contains has been prepared.

As cursor management, especially in a heavy multi-user environment, can use a considerable amount of
server resources, it is good practice to always close cursors immediately and preferably also drop all cursors
that are no longer used. Only the most frequently used cursors may be left non-dropped to reduce the cursor
preparation effort.

Note that transactions are not related to procedures or other statements. Commit or rollback therefore does
NOT release any resources in a procedure.

74

4.4.4 Notes on SQL

4.4.4 Notes on SQL

There is no restriction on the SQL statements used. Any valid SQL statement can be used inside a stored
procedure, including DDL and DML statements.

Cursors may be declared anywhere in a stored procedure. Cursors that are certainly going to be used are
best prepared directly following the declare section.

Cursors that are used inside control structures, and are therefore not always necessary, are best declared
at the point where they are activated, to limit the amount of open cursors and hence the memory usage.

The cursor name is an undeclared identifier, not a variable; it is used only to reference the query. You
cannot assign values to a cursor name or use it in an expression.

Cursors may be re-executed repeatedly without having to re-prepare them. Note that this can have a serious
influence on performance; repetitively preparing cursors on similar statements may decrease the performance
by around 40% in comparison to re-executing already prepared cursors!

Any SQL statement will have to be preceded by the keywords EXEC SQL.

4.4.5 Functions for Procedure Stack Viewing

The following functions may be included in stored procedures to analyze the current contents of the procedure
stack:

PROC_COUNT ()

This function returns the number of procedures in the procedure stack, including the current procedure.
PROC_NAME (N)

This function returns the Nth procedure name in the stack. The first procedure is in position zero.
PROC_SCHEMA (N)

This function returns the schema name of the Nth procedure in the procedure stack.

These functions allow for stored procedures that behave differently depending on whether they are called
from an application or from a procedure.

75

4.5 Procedure Privileges

4.5 Procedure Privileges

Stored procedures are owned by the creator, and are part of the creator's schema. Users who need to run stored
procedures in other schemas need to be granted EXECUTE privilege on the procedure:

GRANT EXECUTE ON Proc_nane TO { USER | ROLE };
This function returns the schema name of the Nth procedure in the procedure stack.

All database objects accessed within the granted procedure, even subsequently called procedures, are accessed
according to the rights of the owner of the procedure. No special grants are necessary.

Since the procedure is run with the privileges of the creator, the procedure not only has the creator's rights to
access objects such as tables, but also uses the creator's schema and catalog. For example, suppose that user
'Sally' runs a procedure named 'Procl' created by user ‘Jasmine'. Suppose also that both Sally and Jasmine
have a table named 'tablel'. By default, the stored procedure Procl will use the tablel that is in Jasmine's
schema, even if Procl was called by user Sally.

See also Section 4.2.1, “ACCESS RIGHTS” for more information about privileges and remote stored procedure
calls.

4.6 Using Triggers

A trigger activates stored procedure code, which a solidDB server automatically executes when a user attempts
to change the data in a table. You may create one or more triggers on a table, with each trigger defined to
activate on a specific INSERT, UPDATE, or DELETE command. When a user modifies data within the table,
the trigger that corresponds to the command is activated.

Triggers enable you to:

» Implement referential integrity constraints, such as ensuring that a foreign key value matches an existing
primary key value.

» Prevent users from making incorrect or inconsistent data changes by ensuring that intended modifications
do not compromise a database's integrity.

» Take action based on the value of a row before or after modification.

» Transfer much of the logic processing to the backend, reducing the amount of work that your application
needs to do as well as reducing network traffic.

76

4.6.1 How Triggers Work

4.6.1 How Triggers Work

The order in which a data manipulation statement is executed when triggers are enabled is the key to under-
standing how triggers work in solidDB databases.

In solidDB's DML Execution Model, a solidDB server performs a number of validation checks before executing
data manipulation statements (INSERT, UPDATE, or DELETE). Following is the execution order for data
validation, trigger execution, and integrity constraint checking for a single DML statement.

1. Validate values if they are part of the statement (that is, not bound). This includes null value checking,
data type checking (such as numeric), etc.

2. Perform table level security checks.

3. Loop for each row affected by the SQL statement. For each row perform these actions in this order:
a. Perform column level security checks.
b. Fire BEFORE row trigger.

c. Validate values if they are bound in. This includes null value checks, data type checking, and size
checking (for example, checking if the character string is too long).

Note that size checking is performed even for values that are not bound.
d. Execute INSERT/UPDATE/DELETE
e. Fire AFTER ROW trigger
4. Commit statement
a. Perform concurrency conflict checks.
b. Perform checks for duplicate values.

c. Perform referential integrity checks on invoking DML.

< Note

A trigger itself can cause the DML to be executed, which applies to the steps shown in the above
model.

7

4.6.2 Creating Triggers

4.6.2 Creating Triggers

Use the CREATE TRIGGER statement (described below) to create a trigger. You can disable an existing
trigger or all triggers defined on a table by using the ALTER TRIGGER statement. For details, read Sec-
tion 4.8.6, “Altering Trigger Attributes”. The ALTER TRIGGER statement causes a solidDB server to ignore
the trigger when an activating DML statement is issued. With this statement, you can also enable a trigger
that is currently inactive.

To drop a trigger from the system catalog, use DROP TRIGGER. For details, read Section 4.8.5, “Dropping
Triggers”.

CREATE TRIGGER Statement

The CREATE TRIGGER statement creates a trigger. To create a trigger you must be a DBA or owner of the
table on which the trigger is being defined. To create a trigger, provide the catalog, schema/owner and name
of the table on which a trigger is being defined. For an example of the CREATE TRIGGER statement, see
Section 4.8.4, “Trigger Example”.

The syntax of the CREATE TRIGGER statement is:

create_trigger :-:=
CREATE TRIGGER trigger_nane ON table_name tinme_of operation
triggering_event [REFERENCING col um_reference] trigger_body
where:
trigger_name
t abl e_nane

: literal
ti me_of _operation :

literal

BEFORE | AFTER
= INSERT | UPDATE | DELETE
= {OLD | NEW} colum_nane [AS] col _identifier
[, REFERENCING column_reference]

triggering_event
col um_r ef erence

trigger_body := [declare_statenent ;.._.]trigger_statement ;[trigger_statenent ;.
ol d_col um_nane 2= literal
new_col um_nane 2= literal
old_col _identifier 2= literal
new col _identifier ::= literal
new col _identifier ::= literal

78

4.6.3 Keywords and Clauses

4.6.3 Keywords and Clauses
Following is a summary of keywords and clauses.
Trigger_name

The trigger_nane can contain up to 254 characters.

BEFORE | AFTER Clause

The BEFORE | AFTER clause specifies whether to execute the trigger before or after the invoking DML
statement, which modifies data. In some circumstances, the BEFORE and AFTER clauses are interchangeable.
However, there are some situations where one clause is preferred over the other.

» Itis more efficient to use the BEFORE clause when performing data validation, such as domain constraint
and referential integrity checking.

» When you use the AFTER clause, table rows which become available due to the invoking DML statement
are processed. Conversely, the AFTER clause also confirms data deletion after the invoking DELETE
statement.

You can define up to six triggers per table, one for each combination of table, event (INSERT, UPDATE,
DELETE), and time (BEFORE and AFTER). For example, you can define one trigger for each BEFORE and
AFTER clause, providing two triggers per DML operation. In addition, if you provide INSERT, UPDATE,
and DELETE triggers to these combinations, you have a total maximum of six triggers.

The following example shows trigger trig01 defined BEFORE INSERT ON table t1.

"CREATE TRIGGER TRIGO1 ON T1
BEFORE INSERT
REFERENCING NEW COL1 AS NEW_COL1
BEGIN
EXEC SQL PREPARE CUR1
INSERT INTO T2 VALUES (?);
EXEC SQL EXECUTE CUR1 USING (NEW_COL1);
END"

Following are examples (including implications and advantages) of using the BEFORE and AFTER clause
of the CREATE TRIGGER command for each DML operation:

» UPDATE Operation

79

4.6.3 Keywords and Clauses

The BEFORE clause can verify that modified data follows integrity constraint rules before processing the
UPDATE. If the REFERENCING NEW AS new_col _identi fi er clause is used with the BEFORE
UPDATE clause, then the updated values are available to the triggered SQL statements. In the trigger,
you can set the default column values or derived column values before performing an UPDATE.

The AFTER clause can perform operations on newly modified data. For example, after a branch address
update, the sales for the branch can be computed.

If the REFERENCING OLD AS ol d_col _i dentifi er clause is used with the AFTER UPDATE
clause, then the values that existed prior to the invoking update are accessible to the triggered SQL state-
ments.

* INSERT Operation

The BEFORE clause can verify that new data follows integrity constraint rules before performing an IN-
SERT. Column values passed as parameters are visible to the triggered SQL statements but the inserted
rows are not. In the trigger, you can set default column values or derived column values before performing
an INSERT.

The AFTER clause can perform operations on newly inserted data. For example, after insertion of a sales
order, the total order can be computed to see if a customer is eligible for a discount.

Column values are passed as parameters and inserted rows are visible to the triggered SQL statements.
e DELETE Operation

The BEFORE clause can perform operations on data about to be deleted. Column values passed as para-
meters and inserted rows that are about to be deleted are visible to the triggered SQL statements.

The AFTER clause can be used to confirm the deletion of data. Column values passed as parameters are
visible to the triggered SQL statements. Please note that the deleted rows are visible to the triggering SQL
statement.

INSERT | UPDATE | DELETE Clause

The INSERT | UPDATE | DELETE clause indicates the trigger action when a user action (INSERT, UPDATE,
DELETE) is attempted.

Statements related to processing a trigger occur first before commits and autocommits from the invoking
DML (INSERT, UPDATE, DELETE) statements on tables. If a trigger body or a procedure called within the
trigger body attempts to execute a COMMIT or ROLLBACK, a solidDB server returns an appropriate run-
time error.

80

4.6.3 Keywords and Clauses

INSERT specifies that the trigger is activated by an INSERT on the table. Loading n rows of data is considered
as n inserts.

< Note

There may be some performance impact if you try to load the data with triggers enabled. Depending
on your business need, you may want to disable the triggers before loading and enable them after
loading. For details, see Section 4.8.6, “Altering Trigger Attributes”.

DELETE specifies that the trigger is activated by a DELETE on the table.

UPDATE specifies that the trigger is activated by an UPDATE on the table. Note the following rules for using
the UPDATE clause:

» Within the REFERENCES clause of a trigger, a column may be referenced (aliased) no more than once
in the BEFORE sub-clause and once in the AFTER sub-clause. Also, if the column is referenced in both
the BEFORE and AFTER sub-clauses, the column's alias must be different in each sub-clause.

« AsolidDB server allows for recursive update to the same table and does not prohibit recursive updates to
the same row.

A solidDB server does not detect situations where the actions of different triggers cause the same data to be
updated. For example, assume there are two update triggers (one that is a BEFORE trigger and one that is an
AFTER trigger) on tablel. When an update is attempted on Tablel, the two triggers are activated. Both triggers
call stored procedures which update the same column, Col3, of a second table, Table2. The first trigger updates
Table2.Col3 to 10 and the second trigger updates Table2.Col3 to 20.

Likewise, a solidDB server does not detect situations where the result of an UPDATE which activates a trigger
conflicts with the actions of the trigger itself. For example, consider the following SQL statement:

UPDATE t1 SET cl = 20 WHERE c3 = 10;

If the trigger activated by this UPDATE then calls a procedure that contains the following SQL statement,
the procedure overwrites the result of the UPDATE that activated the trigger:

UPDATE t1 SET cl = 17 WHERE cl1 = 20;

- Note

The above example can lead to recursive trigger execution, which you should try to avoid.

81

4.6.3 Keywords and Clauses

Table_name

Thet abl e_nane is the name of the table on which the trigger is created. solidDB server allows you to drop
atable that has dependent triggers defined on it. When you drop a table all dependent objects including triggers
are dropped. Be aware that you may still get run-time errors. For example, assume you create two tables A
and B. If a procedure SP-B inserts data into table A, and table A is then dropped, a user will receive a run-
time error if table B has a trigger which invokes SP-B.

Trigger_body

The t ri gger _body contains the statement(s) to be executed when a trigger fires. The rules for defining
the body of a trigger are the same as the rules for defining the body of a stored procedure. Read Section 4.1,
“Stored Procedures” for details on creating a stored procedure body.

A trigger body may also invoke any procedure registered with a solidDB server. solidDB procedure invocation
rules follow standard procedure invocation practices.

You must explicitly check for business logic errors and raise an error.

REFERENCING Clause

This clause is optional when creating a trigger on an INSERT/UPDATE/DELETE operation. It provides a
way to reference the current column identifiers in the case of INSERT and DELETE operations, and both the
old column identifier and the new updated column identifier by aliasing the column(s) on which an UPDATE
operation occurs.

You must specify the OLD or NEW col _i denti fi er to access it. A solidDB server does not provide
access to the col _i denti fi er unless you define it using the REFERENCING subclause.

{OLD | NEW} col um_nane AS col _identifier

This subclause of the REFERENCING clause allow you to reference the values of columns both before and
after an UPDATE operation. It produces a set of old and new column values which can be passed to a stored
procedure; once passed, the procedure contains logic (for example, domain constraint checking) used to de-
termine these parameter values.

Use the OLD AS clause to alias the table's old identifier as it exists before the UPDATE. Use the NEW AS
clause to alias the table's new identifier as it exists after the UPDATE.

If you reference both the old and new values of the same column, you must use a differentcol _i denti fi er.

Each column that is referenced as NEW or OLD should have a separate REFERENCING subclause.

82

4.6.4 Triggers Comments and Restrictions

The statement atomicity in a trigger is such that operations made in a trigger are visible to the subsequent
SQL statements inside the trigger. For example, if you execute an INSERT statement in a trigger and then
also perform a select in the same trigger, then the inserted row is visible.

In the case of AFTER trigger, an inserted row or an updated row is visible in the AFTER insert trigger, but
a deleted row cannot be seen for a select performed within the trigger. In the case of a BEFORE trigger, an
inserted or updated row is invisible within the trigger and a deleted row is visible. In the case of an UPDATE,
the pre-update values are available in a BEFORE trigger.

The table below summarizes the statement atomicity in a trigger, indicating whether the row is visible to the
SELECT statement in the trigger body.

Table 4.6. Statement Atomicity in a Trigger

Operation BEFORE TRIGGER AFTER TRIGGER
INSERT row is invisible row is visible
UPDATE previous value is visible new value is visible
DELETE row is visible row is invisible

4.6.4 Triggers Comments and Restrictions

» To use the stored procedure that a trigger calls, provide the catalog, schema/owner and name of the table
on which the trigger is defined and specify whether to enable or disable the triggers on the table. For more
details on stored procedures, read Section 4.7, “Triggers and Procedures”.

» To create a trigger on a table, you must have DBA authority or be the owner of the table on which the
trigger is being defined.

* You can define, by default, up to one trigger for each combination of table, event (INSERT, UPDATE,
DELETE) and time (BEFORE and AFTER). This means there can be a maximum of six triggers per table.

< Note

The triggers are applied to each row. This means that if there are ten inserts, a trigger is executed ten
times.

* You cannot define triggers on a view (even if the view is based on a single table).
* You cannot alter a table that has a trigger defined on it when the dependent columns are affected.

* You cannot create a trigger on a system table.

83

4.7 Triggers and Procedures

* You cannot execute triggers that reference dropped or altered objects. To prevent this error:
« Recreate any referenced object that you drop.
« Restore any referenced object you changed back to its original state (known by the trigger).

* You can use reserved words in trigger statements if they are enclosed in double quotes. For example, the
following CREATE TRIGGER statement references a column named "data", which is a reserved word.

"CREATE TRIGGER TRIG1 ON TMPT BEFORE INSERT
REFERENCING NEW "'DATA™ AS NEW_DATA

BEGIN

END™

4.7 Triggers and Procedures

Triggers can call stored procedures and cause a solidDB server to execute other triggers. You can invoke
procedures within a trigger body. In fact, you can define a trigger body that contains only procedure calls. A
procedure invoked from a trigger body can invoke other triggers.

When using stored procedures within the trigger body, you must first store the procedure with the CREATE
PROCEDURE statement.

In a procedure definition, you can use COMMIT and ROLLBACK statements. But in a trigger body, you
cannot use COMMIT (including AUTOCOMMIT and COMMIT WORK) and ROLLBACK statements. You
can use only the WHENEVER SQLERROR ABORT statement.

You can nest triggers up to 16 levels deep (the limit can be changed using a configuration parameter). If a
trigger gets into an infinite loop, a solidDB server detects this recursive action when the 16-level nesting (or
system parameter) maximum is reached and returns an error to the user. For example, you could activate a
trigger by attempting to insert into the table T1 and the trigger could call a stored procedure which also attempts
to insert into T1, recursively activating the trigger.

If a set of nested triggers fails at any time, a solidDB server rolls back the statement which originally activated
the triggers.

4.7.1 Setting Default or Derived Columns

You can create triggers to set up default or derived column values in INSERT and UPDATE operations. When
you create the trigger for this purpose using the CREATE TRIGGER command, the trigger must follow these
rules:

84

4.7.2 Using Parameters and Variables

e The trigger must be executed BEFORE the INSERT or UPDATE operation. Column values are modified
with only a BEFORE trigger. Because the column value must be set before the INSERT or UPDATE
operation, using the AFTER trigger to set column values is meaningless. Note also that the DELETE op-
eration does not apply to modifying column values.

e For an INSERT and UPDATE operation, the REFERENCING clause must contain a NEW column value
for modification. Note that modifying the OLD column value is meaningless.

» New column values can be set by simply changing the values of variables defined in the referencing section.

4.7.2 Using Parameters and Variables

When we update a record and that update invokes a trigger, the trigger itself may change the value of some
columns within that record. In some situations, you may want to refer to both the "old" value and the "new"
value within the trigger.

The REFERENCING clause allows you to create "aliases" for old and new values so that you can refer to
either one within the same trigger. For example, assume there are two tables, one that holds customer inform-
ation and one that holds invoice information. In addition to storing the amount of money billed for each invoice,
the table contains a "total_bought" field for each customer; this "total_bought™ field contains the cumulative
total for all invoices ever sent to this customer. (This field might be used to identify high-volume customers.)

Any time the total_amount on an invoice is updated, the "total_bought" value for that customer's record in
the customer table is also updated. To do this, the amount of the old value stored in the invoice is subtracted
and the amount of the new value in the invoice is added. For example, if a customer's invoice used to be for
$100 and it is changed to $150, then $100 is subtracted and $150 is added to the "total bought" field. By
properly using the REFERENCING clause, the trigger can "see" both the old value and the price column,
thereby allowing the update of the total_bought column.

Note that the column aliases created by the REFERENCING clause are valid only within the trigger. Let's
look at a pseudo-code example below:

CREATE TRIGGER pseudo_code_to_add_tax ON invoices

AFTER UPDATE
REFERENCING OLD total_price AS old_total _price,
REFERENCING NEW total _price AS new_total price
BEGIN

EXEC SQL PREPARE update_cursor

UPDATE customers

SET total_bought = total _bought - old_total_price

85

4.7.2 Using Parameters and Variables

+ new_total _price;
END

This example is "pseudo-code"; a real trigger would require some changes and additions (such as code to
execute, close, and drop the cursor). A complete, valid SQL script for this example is provided below.

Example 4.1. Trigger with Referencing Clause Example

-- This SQL sample demonstrates how to use the clause
-- "REFERENCING OLD AS old_col, REFERENCING NEW AS new_col"
-- to have simultaneous access to both the '"OLD'" and "NEW"
-- column values of the field while inside a trigger.
-— In this scenario, we have customers and invoices.
-- For each customer, we keep track of the cumulative total of
--— all purchases by that customer.
-- Each invoice stores the total amount of all purchases on
-- that invoice. |If an total price on an invoice must be
-- adjusted, then the cumulative value of that customer®s
-- purchases must also be adjusted.
-- Therefore, we update the cumulative total by subtracting
-- the "old" price on the invoice and adding the "new'" price.
-- For example, if the amount on a customer®s invoice was
-- changed from $100 to $150 (an increase of $50), then we
-- would update the customer®"s cumulative total by
-- subtracting $100 and adding $150 (a net increase of $50).
- Drop the sample tables if they already exist.
DROP TABLE customers;
DROP TABLE invoices;
CREATE TABLE customers (
customer_id INTEGER, -— ID for each customer.
total_bought FLOAT -— The cumulative total price of
-— all this customer®s purchases.
)
-- Each customer may have O or more invoices.
CREATE TABLE invoices (
customer_id INTEGER,

invoice_id INTEGER, -- unique ID for each invoice
invoice_total FLOAT -- total price for this invoice
E

-- IT the total_price on an invoice changes, then
-— update customers.total_bought to take into account

86

4.7.2 Using Parameters and Variables

-— the change. Subtract the old invoice price and add the
-— new invoice price.
"CREATE TRIGGER old_and new ON invoices
AFTER UPDATE
REFERENCING OLD invoice_total AS old _invoice_total,
REFERENCING NEW invoice_total AS new_invoice_total,
-— If the customer_id doesn"t change, we could use
-— either the NEW or OLD customer_id.
REFERENCING NEW customer_id AS new_customer_id
BEGIN
EXEC SQL PREPARE upd_curs
UPDATE customers
SET total_bought = total _bought - ? + ?
WHERE customers.customer_id = ?;
EXEC SQL EXECUTE upd_curs
USING (old_invoice_total, new_invoice_total,
new_customer_id);
EXEC SQL CLOSE upd_curs;
EXEC SQL DROP upd_curs;
END;
-—- When a new invoice is created, we update the total_bought
-— 1In the customers table.
"CREATE TRIGGER update_total_bought ON invoices
AFTER INSERT
REFERENCING NEW invoice_total AS new_invoice_total,
REFERENCING NEW customer_id AS new_customer_id
BEGIN
EXEC SQL PREPARE ins_curs
UPDATE customers
SET total_bought = total _bought + ?
WHERE customers.customer_id = ?;
EXEC SQL EXECUTE ins_curs
USING (new_invoice_total, new_customer_id);
EXEC SQL CLOSE ins_curs;
EXEC SQL DROP ins_curs;
END;
-- Insert a sample customer.
INSERT INTO customers (customer_id, total bought)
VALUES (1000, 0.0);
-- Insert invoices for a customer; the INSERT trigger will
-- update the total_bought in the customers table.
INSERT INTO invoices (customer_id, invoice_id, invoice_total)

4.8 Triggers and Transactions

VALUES (1000, 5555, 234.00);
INSERT INTO invoices (customer_id, invoice_id, invoice_total)
VALUES (1000, 5789, 199.0);
-— Make sure that the INSERT trigger worked.
SELECT * FROM customers;
-—- Now update an invoice; the total_bought in the customers
-— table will also be updated and the trigger that does
-— this will use the REFERENCING clauses
- REFERENCING NEW invoice_total AS new_invoice_total,
- REFERENCING OLD invoice_total AS old_invoice_total
UPDATE invoices SET invoice_total = 235.00
WHERE invoice_id = 5555;
-- Make sure that the UPDATE trigger worked.
SELECT * FROM customers;
COMMIT WORK;

4.8 Triggers and Transactions

Triggers require no commit from the invoking transaction in order to fire; DML statements alone cause triggers
to fire. COMMIT WORK is also disallowed in a trigger body.

In a procedure definition, you can use COMMIT and ROLLBACK statements. But in a trigger body, you
cannot use COMMIT and ROLLBACK statements. You can use only the WHENEVER SQLERROR ABORT
statement. Note that if autocommit is on, then each statement inside the trigger is not treated as a separate
statement and is not committed when it is executed; instead, the entire trigger body is executed as part of the
INSERT, UPDATE, or DELETE statement that fired the trigger. Either the entire trigger (and the statement
that fired it) is committed, or else the entire trigger (and the statement that fired it) is rolled back.

4.8.1 Recursion and Concurrency Conflict Errors

If a DML statement updates/deletes a row that causes a trigger to be fired, you cannot update/delete the same
row again within that trigger. In such cases an AFTER trigger event can cause a recursion error and a BEFORE
trigger event can cause a concurrency conflict error.

The following sections explain these terms, provide some examples of triggers that create these problems,
and provide a table (shown in the section called “Summary of Trigger Cases”), that indicates the trigger
situations that will and will not cause recursion errors or concurrency conflict errors.

88

4.8.1 Recursion and Concurrency Conflict Errors

Triggers and Recursion

A piece of code is "recursive" if the code causes itself to execute again. For example, a stored procedure that
calls itself is recursive. Recursion in stored procedures is occasionally useful. On the other hand, triggers can
create a slightly more subtle type of recursion, which is invalid and prohibited by the solidDB server. A trigger
that contains a statement that causes the same trigger to execute again on the same record is recursive. For
example, a delete trigger would be recursive if it tries to delete the same record whose deletion fired the trigger.

If the database server were to allow recursion in triggers, then the server might go into an "infinite loop" and
never finish executing the statement that fired the trigger. A concurrency conflict error occurs when a trigger
executes an operation that "competes with" the statement that fired the trigger by trying to do the same type
of action (for example, delete) within the same SQL statement. For example, if you create a trigger that is
supposed to be fired when a record is deleted, and if that trigger tries to delete the same record whose deletion
fired the trigger, then there are in essence two different "simultaneous” delete statements "competing™ to delete
the record; this results in a concurrency conflict. The following section provides an example of a defective
delete trigger.

Examples of Defective Triggers Causing Recursion
The examples in this section explain just a few of the many restrictions and rules involving triggers.

In this scenario, an employee has resigned from a job and his or her medical coverage requires cancellation.
The medical coverage also requires cancellation for the employee's dependents. A business rule for this situation
is implemented by creating a trigger; the trigger is executed when an employee's record is deleted and the
statements inside the trigger then delete the employee's dependents. (This example assumes that the employees
and their dependents are stored in the same table; in the real world, dependents are normally kept in a separate
table. This example also assumes that each family has a unique last name.)

CREATE TRIGGER do_not_try_this ON employees_and_dependents
AFTER DELETE

REFERENCING OLD last _name AS old_last name

BEGIN

EXEC SQL PREPARE del cursor

DELETE FROM employees_and_dependents

WHERE last_name = ?;

EXEC SQL EXECUTE del_cursor USING (old_last _name);

-— ... close and drop the cursor.

END;

Assume that an employee "John Smith" resigns and his medical coverage is deleted. When you delete "John
Smith", the trigger is invoked immediately after John Smith is deleted and the trigger will try to delete ALL

89

4.8.1 Recursion and Concurrency Conflict Errors

people named "John Smith", including not only the employee's dependents, but also the employee himself,
since his name meets the criteria in the WHERE clause.

Every time an attempt is made to delete the employee's record, this action fires the trigger again. The code
then recursively keeps trying to delete the employee by again firing the trigger, and again trying to delete. If
the database server did not prohibit this or detect the situation, the server could go into an infinite loop. If the
server detects this situation, it will give you an appropriate error, such as "Too many nested triggers."

A similar situation can happen with UPDATE. Assume that a trigger adds sales tax every time that a record
is updated. Here's an example that causes a recursion error:

CREATE TRIGGER do_not _do_this _either ON invoice
AFTER UPDATE
REFERENCING NEW total_price AS new_total price
BEGIN
-- Add 8% sales tax.
EXEC SQL PREPARE upd_cursl
UPDATE invoice SET total _price = 1.08 * total_price
WHERE ...;
-—- ... execute, close, and drop the cursor...
END;

In this scenario, customer Ann Jones calls up to change her order; the new price (with sales tax) is calculated
by multiplying the new subtotal by 1.08. The record is updated with the new total price; each time the record
is updated, the trigger is fired, so updating the record once, causes the trigger to update it again and updates
are repeated in an infinite loop.

If AFTER triggers can cause recursion or looping, what happens with BEFORE triggers? The answer is that,
in some cases, BEFORE triggers can cause concurrency problems. Let's return to the first example of the
trigger that deleted medical coverage for employees and their dependents. If the trigger were a BEFORE
trigger (rather than an AFTER trigger), then just before the employee is deleted, we would execute the trigger,
which in this case deletes everyone named John Smith. After the trigger is executed, the engine resumes its
original task of dropping employee John Smith himself, but the server finds either he isn't there or that his
record cannot be deleted because it has already been marked for deletion — in other words, there is a concur-
rency conflict because there are two separate efforts to delete the same record.

Summary of Trigger Cases

In addition to the examples described in the previous section, the following table summarizes a number of
additional cases, including those involving INSERTS, as well as UPDATES and DELETEsS.

The table is divided into the following five columns:

90

4.8.1 Recursion and Concurrency Conflict Errors

e Trigger Mode (that is, BEFORE or AFTER)

» Operation (INSERT, DELETE, or UPDATE)

» Trigger Action (what the trigger itself attempts to do, such as update the record that was just inserted)

e Lock Type ("optimistic" or "pessimistic")

» Result that you will see (for example, that the trigger action was successful, or that the trigger failed for
a reason such as a recursion error like the one discussed in the previous section).

For details on interpreting a trigger entry in this table, see Example Entry 1 later in this chapter.

Table 4.7. Insert/Update/Delete Operations for BEFORE/AFTER Triggers

Trigger Operation |Trigger Action |Lock Type |Result

Mode

AFTER INSERT UPDATE the Optimistic |Record is updated.
same row by
adding a number
to the value

AFTER INSERT UPDATE the Pessimistic |Record is updated.
same row by
adding a number
to the value

BEFORE INSERT UPDATE the Optimistic |Record is not updated since the WHERE con-
same row by dition of the UPDATE within the trigger body
adding a number returns a NULL resultset (as the desired row
to the value is not yet inserted in the table).

BEFORE INSERT UPDATE the Pessimistic |Record is not updated since the WHERE con-
same row by dition of the UPDATE within the trigger body
adding a number returns a NULL resultset (as the desired row
to the value is not yet inserted in the table).

AFTER INSERT DELETE the Optimistic |Record is deleted.
same row that is
being inserted

AFTER INSERT DELETE the Pessimistic |Record is deleted.

same row that is
being inserted

91

4.8.1 Recursion and Concurrency Conflict Errors

Trigger Operation |Trigger Action |Lock Type |Result

Mode

BEFORE INSERT DELETE the Optimistic |Record is not deleted since the WHERE condi-
same row that is tion of the DELETE within the trigger body
being inserted returns a NULL resultset (as the desired row

is not yet inserted in the table).

BEFORE INSERT DELETE the Pessimistic |Record is not updated since the WHERE con-
same row that is dition of the UPDATE within the trigger body
being inserted returns a NULL resultset (as the desired row

is not yet inserted in the table).

AFTER INSERT INSERT arow |Optimistic |Too many nested triggers.

AFTER INSERT INSERT arow |Pessimistic |Too many nested triggers.

BEFORE INSERT INSERT arow |Optimistic |Too many nested triggers.

BEFORE INSERT INSERT arow |Pessimistic |Too many nested triggers.

AFTER UPDATE UPDATE the Optimistic |Generates Solid Table Error: Too many nested
same row by triggers.
adding a number
to the value

AFTER UPDATE UPDATE the Pessimistic |Generates Solid Table Error: Too many nested
same row by triggers.
adding a number
to the value

BEFORE UPDATE UPDATE the Optimistic |Record is updated, but does not get into a nes-
same row by ted loop because the WHERE condition in the
adding a number trigger body returns a NULL resultset and no
to the value. rows are updated to fire the trigger recursively.

BEFORE UPDATE UPDATE the Pessimistic |Record is updated, but does not get into a nes-
same row by ted loop because the WHERE condition in the
adding a number trigger body returns a NULL resultset and no
to the value. rows are updated to fire the trigger recursively.

AFTER UPDATE DELETE the Optimistic |Record is deleted.
same row that is
being updated.

AFTER UPDATE DELETE the Pessimistic |Record is deleted.

same row that is
being updated.

92

4.8.1 Recursion and Concurrency Conflict Errors

Trigger
Mode

Operation

Trigger Action

Lock Type

Result

BEFORE

UPDATE

DELETE the
same row that is
being updated.

Optimistic

Concurrency conflict error.

BEFORE

UPDATE

DELETE the
same row that is
being updated.

Pessimistic

Concurrency conflict error.

AFTER

DELETE

INSERT a row
with the same
value.

Optimistic

Same record is inserted after deleting.

AFTER

DELETE

INSERT a row
with the same
value.

Pessimistic

Hangs at the time of firing the trigger.

BEFORE

DELETE

INSERT a row
with the same
value.

Optimistic

Same record is inserted after deleting

BEFORE

DELETE

INSERT a row
with the same
value.

Pessimistic

Hangs at the time of firing the trigger.

AFTER

DELETE

INSERT a row
with the same
value.

Optimistic

Record is deleted.

AFTER

DELETE

UPDATE the
same row by
adding a number
to the value.

Pessimistic

Record is deleted.

BEFORE

DELETE

UPDATE the
same row by
adding a number
to the value.

Optimistic

Record is deleted.

BEFORE

DELETE

UPDATE the
same row by
adding a number
to the value

Pessimistic

Record is deleted.

AFTER

DELETE

DELETE same
row

Optimistic

Too many nested triggers.

93

4.8.1 Recursion and Concurrency Conflict Errors

Trigger Operation |Trigger Action |Lock Type |Result

Mode

AFTER DELETE DELETE same |Pessimistic |Too many nested triggers
record

BEFORE DELETE DELETE same |Optimistic |Concurrency conflict error.
record

BEFORE DELETE DELETE same |Pessimistic |Concurrency conflict error.
record

Here's an example entry from the table and an explanation of that entry:

Table 4.8. Example Entry 1

Trigger Operation |Trigger Action |Lock Type |Result

AFTER INSERT UPDATE the Optimistic |Record is updated.
same row by
adding a number
to the value

In this situation, we have a trigger that fires AFTER an INSERT operation is done. The body of the trigger
contains statements that update the same row as was inserted (that is, the same row as the one that fired the
trigger). If the lock type is "optimistic", then the result will be that the record gets updated. (Because there is
no conflict, the locking [optimistic versus pessimistic] does not make a difference).

Note that in this case there is no recursion issue, even though we update the same row that we just inserted.
The action that "fires" the trigger is not the same as the action taken inside the trigger, and so we do not create
a recursive/looping situation.

Here's another example from the table:

Table 4.9. Example Entry 2

Trigger Operation |Trigger Action |Lock Type |Result

BEFORE INSERT UPDATE the Optimistic |Record is not updated since the WHERE con-
same row by dition of the UPDATE within the trigger body
adding a number returns a NULL resultset (as the desired row
to the value is not yet inserted in the table).

In this case, we try to insert a record, but before the insertion takes place the trigger is run. In this case, the
trigger tries to update the record (for example, to add sales tax to it). Since the record is not yet inserted,

94

4.8.1 Recursion and Concurrency Conflict Errors

however, the UPDATE command inside the trigger does not find the record, and never adds the sales tax.
Thus the result is the same as if the trigger had never fired. There is no error message, so you may not realize
immediately that your trigger does not do what you intended.

Flawed Trigger

Flawed trigger logic occurs in the following example in which the same row is deleted in a BEFORE UPDATE
trigger; this causes solidDB to generate a concurrency conflict error.

Example 4.2. Flawed Trigger

DROP EMP;
COMMIT WORK;

CREATE TABLE EMP(C1 INTEGER);
INSERT INTO EMP VALUES (1);
COMMIT WORK;

"CREATE TRIGGER TRIG1 ON EMP

BEFORE UPDATE

REFERENCING OLD C1 AS OLD_C1

BEGIN

EXEC SQL WHENEVER SQLERROR ABORT;

EXEC SQL PREPARE CUR1 DELETE FROM EMP WHERE C1 = ?;
EXEC SQL EXECUTE CUR1 USING (OLD_C1);

END";

UPDATE EMP SET C1=200 WHERE C1 = 1;
SELECT * FROM EMP;

ROLLBACK WORK;

< Note

If the row that is updated/deleted were based on a unique key, instead of an ordinary column (as in
the example above), solidDB generates the following error message: 1001: key value not found.

To avoid recursion and concurrency conflict errors, be sure to check the application logic and take precautions
to ensure the application does not cause two transactions to update or delete the same row.

95

4.8.1 Recursion and Concurrency Conflict Errors

Error Handling

If a procedure returns an error to a trigger, the trigger causes its invoking DML command to fail with an error.
To automatically return errors during the execution of a DML statement, you must use WHENEVER
SQLERROR ABORT statement in the trigger body. Otherwise, errors must be checked explicitly within the
trigger body after each procedure call or SQL statement.

For any errors in the user written business logic as part of the trigger body, users must use the RETURN
SQLERROR statement. For details, see Section 4.8.3, “Raising Errors from Inside Triggers”.

If RETURN SQLERROR is not specified, then the system returns a default error message when the SQL
statement execution fails. Any changes to the database due to the current DML statement are undone and the
transaction is still active. In effect, transactions are not rolled back if a trigger execution fails, but the current
executing statement is rolled back.

< Note

Triggered SQL statements are a part of the invoking transaction. If the invoking DML statement fails
due to either the trigger or another error that is generated outside the trigger, all SQL statements
within the trigger are rolled back along with the failed invoking DML command.

It is the responsibility of the invoking transaction to commit or rollback any DML statements executed within
the trigger's procedure. However, this rule does not apply if the DML command invoking the trigger fails as
a result of the associated trigger. In this case, any DML statements executed within that trigger's procedure
are automatically rolled back.

The COMMIT and ROLLBACK statements must be executed outside the trigger body and cannot be executed
within the trigger body. If one executes COMMIT or ROLLBACK within the trigger body or within a procedure
called from the trigger body or another trigger, the user will get a run-time error.

Nested and Recursive Triggers

If a trigger gets into an infinite loop, a solidDB server detects this recursive action when the 16-level nesting
(or MaxNest edTr i gger s system parameter maximum is reached). For example, an insert attempt on table
T1 activates a trigger and the trigger could call a stored procedure which also attempts to insert into Table
T1, recursively activating the trigger. A solidDB server returns an error on a user's insert attempt.

If a set of nested triggers fails at any time, a solidDB server rolls back the command which originally activated
the triggers.

96

4.8.2 Trigger Privileges and Security

4.8.2 Trigger Privileges and Security

Because triggers can be activated by a user's attempt to INSERT, UPDATE, or DELETE data, no privileges
are required to execute them.

When a user invokes a trigger, the user assumes the privileges of the owner of the table on which the trigger
is defined. The action statements are executed on behalf of the table owner, not the user who activates the
trigger. However, to create a trigger which uses a stored procedure requires that the creator of the trigger meet
one of the following conditions:

e You have DBA privileges.
* You are the owner of the table on which the trigger is being defined.
* You were granted all privileges on the table.

If the creator has DBA authority and creates a table for another user, a solidDB server assumes that unqualified
names specified in the TRIGGER command belong to the user. For example, the following command is ex-
ecuted under DBA authority:

CREATE TRIGGER A.TRIG ON EMP BEFORE UPDATE

Since the EMP table is unqualified, the solidDB server assumes that the qualified table name is A.EMP, not
DBA.EMP.

4.8.3 Raising Errors from Inside Triggers

At times, it is possible to receive an error in executing a trigger. The error may be due to execution of SQL
statements or business logic.

Users can receive any errors in a procedure variable using the SQL statement:

RETURN SQLERROR error_string

or

RETURN SQLERROR char _vari abl e

The error is returned in the following format:

97

4.8.4 Trigger Example

User error: error_string

If a user does not specify the RETURN SQLERROR statement in the trigger body, then all trapped SQL errors
are raised with a default error_string determined by the system. For details, see the appendix, "Error Codes".

4.8.4 Trigger Example

Example 4.3. Trigger Example

This example shows how simple triggers work. It contains some triggers that work correctly and some triggers
that contain errors. For the successful triggers in the example, a table (named trigger_test) is created and six
triggers are created on that table. Each trigger, when fired, inserts a record into another table (named trig-
ger_output). After performing the DML statements (INSERT, UPDATE, and DELETE) that fire the triggers,
the results of the triggers are displayed by selecting all records from the trigger_output table.

DROP TABLE TRIGGER_TEST;
DROP TABLE TRIGGER_ERR_TEST;
DROP TABLE TRIGGER_ERR_B_TEST;
DROP TABLE TRIGGER_ERR_A_TEST;
DROP TABLE TRIGGER_OUTPUT;
COMMIT WORK;
-- Create a table that has a column for each of the possible trigger
-- types (for example, Bl = a trigger that is on Insert
-— operations and that executes as a '"'Before' trigger).
CREATE TABLE TRIGGER_TEST(
XX VARCHAR,

Bl VARCHAR, -- Bl = Before Insert
Al VARCHAR, -- Al = After Insert
BU VARCHAR, -- BU = Before Update
AU VARCHAR, -- AU = After Update
BD VARCHAR, -- BD = Before Delete
AD VARCHAR -- AD = After Delete

);
COMMIT WORK:

-— Table for "before" trigger errors
CREATE TABLE TRIGGER_ERR_B_TEST(

XX VARCHAR,

Bl VARCHAR,

Al VARCHAR,

98

4.8.4 Trigger Example

BU VARCHAR,
AU VARCHAR,
BD VARCHAR,
AD VARCHAR

);

INSERT INTO TRIGGER_ERR_B_TEST VALUES("x","x","x","x","x",
IXI , IXI);
COMMIT WORK;

-— Table for "after X* trigger errors
CREATE TABLE TRIGGER_ERR_A_TEST(
XX VARCHAR,

Bl VARCHAR, -- Before Insert
Al VARCHAR, -- After Insert
BU VARCHAR, -- Before Update
AU VARCHAR, -- After Update
BD VARCHAR, -- Before Delete
AD VARCHAR -- After Delete
);
INSERT INTO TRIGGER_ERR_A TEST VALUES("x","x","x","x","x",
X", 'X"):

COMMIT WORK;

CREATE TABLE TRIGGER_OUTPUT(
TEXT VARCHAR,
NAME VARCHAR,
SCHEMA VARCHAR

)

COMMIT WORK:

-- Create a "'Before™ trigger on insert operations. When a record is
-- inserted into the table named trigger_test, then this trigger is
-— fired. When this trigger is fired, It inserts a record into the
-- "trigger_output™ table to show that the trigger actually executed.

"CREATE TRIGGER TRIGGER_BI ON TRIGGER_TEST
BEFORE INSERT

4.8.4 Trigger Example

REFERENCING NEW BI AS NEW_BI
BEGIN
EXEC SQL PREPARE BI INSERT INTO TRIGGER OUTPUT VALUES(
"BI", TRIG_NAME(O), TRIG_SCHEMA(0)):
EXEC SQL EXECUTE BI;
SET NEW_BI = "TRIGGER BI";
END"';
COMMIT WORK;

"CREATE TRIGGER TRIGGER_Al ON TRIGGER_TEST
AFTER INSERT
REFERENCING NEW Al AS NEW_Al
BEGIN
EXEC SQL PREPARE Al INSERT INTO TRIGGER OUTPUT VALUES(
"Al", TRIG_NAME(O), TRIG_SCHEMA(0)):
EXEC SQL EXECUTE Al;
SET NEW_Al = "TRIGGER_Al";
END"';
COMMIT WORK;

"CREATE TRIGGER TRIGGER_BU ON TRIGGER_TEST
BEFORE UPDATE
REFERENCING NEW BU AS NEW_BU
BEGIN
EXEC SQL PREPARE BU INSERT INTO TRIGGER OUTPUT VALUES(
"BU", TRIG_NAME(O), TRIG_SCHEMA(0)):
EXEC SQL EXECUTE BU;
SET NEW_BU = "TRIGGER BU";
END"';
COMMIT WORK;

"CREATE TRIGGER TRIGGER_AU ON TRIGGER_TEST
AFTER UPDATE
REFERENCING NEW AU AS NEW_AU
BEGIN
EXEC SQL PREPARE AU INSERT INTO TRIGGER OUTPUT VALUES(
"AU", TRIG_NAME(O), TRIG_SCHEMA(0)):
EXEC SQL EXECUTE AU;
SET NEW_AU = "TRIGGER_AU";
END"';
COMMIT WORK;

100

4.8.4 Trigger Example

"CREATE TRIGGER TRIGGER_BD ON TRIGGER_TEST
BEFORE DELETE
REFERENCING OLD BD AS OLD_BD
BEGIN
EXEC SQL PREPARE BD INSERT INTO TRIGGER OUTPUT VALUES(
"BD", TRIG_NAME(O), TRIG_SCHEMA(0)):
EXEC SQL EXECUTE BD;
SET OLD_BD = "TRIGGER BD";
END"';
COMMIT WORK;

"CREATE TRIGGER TRIGGER_AD ON TRIGGER_TEST
AFTER DELETE
REFERENCING OLD AD AS OLD_AD
BEGIN
EXEC SQL PREPARE AD INSERT INTO TRIGGER OUTPUT VALUES(
"AD", TRIG_NAME(O), TRIG_SCHEMA(0)):
EXEC SQL EXECUTE AD;
SET OLD_AD = "TRIGGER_AD";
END"';
COMMIT WORK;

-— This attempt to create a trigger will fail. The statement
-- specifies the wrong data type for the error variable named
-- ERRSTR.

"CREATE TRIGGER TRIGGER_ERR_AU ON TRIGGER_ERR_A_TEST
AFTER UPDATE
REFERENCING NEW AU AS NEW_AU
BEGIN
-— The following line is iIncorrect; ERRSTR must be declared
-- as VARCHAR, not INTEGER;
DECLARE ERRSTR INTEGER;

RETURN SQLERROR ERRSTR;
END";
COMMIT WORK;

-- Trigger that returns an error message.

101

4.8.4 Trigger Example

"CREATE TRIGGER TRIGGER_ERR_BI ON TRIGGER_ERR_B_TEST
BEFORE INSERT
REFERENCING NEW BI AS NEW_BI

BEGIN

RETURN SQLERROR "Error in TRIGGER_ERR_BI*;
END";
COMMIT WORK;

-— Success trigger tests. These Insert, Update, and Delete

-- statements will force the triggers to fire. The SELECT

-- statements will show you the records in the trigger_test and
-— trigger_output tables.

INSERT INTO TRIGGER_TEST(XX) VALUES ("XX%);
COMMIT WORK;

-- Show the records that were inserted into the trigger_test
-- table. (The records for trigger_output are shown later.)

SELECT * FROM TRIGGER_TEST;
COMMIT WORK;

UPDATE TRIGGER_TEST SET XX = *XX updated”;
COMMIT WORK;

-- Show the records that were inserted into the trigger_test
-- table. (The records for trigger_output are shown later.)

SELECT * FROM TRIGGER_TEST;
COMMIT WORK;

DELETE FROM TRIGGER_TEST;
COMMIT WORK;

SELECT * FROM TRIGGER_TEST;

-- Show that the triggers did run and did add values to the

102

4.8.5 Dropping Triggers

-— trigger_output table. You should see 6 records one for
-- each of the triggers that executed. The 6 triggers are:
- B1, Al, BU, AU, BD, AD.

SELECT * FROM TRIGGER_OUTPUT;
COMMIT WORK;

INSERT INTO TRIGGER_ERR_B_TEST(XX) VALUES ("XX");
COMMIT WORK;

4.8.5 Dropping Triggers

To drop a trigger defined on a table, use the DROP TRIGGER command. This command drops the trigger
from the system catalog.

You must be the owner of a table, or a user with DBA authority, to drop a trigger from the table.

The syntax is:

DROP TRIGGER [[catal og_nanme.]schema_nane.]tri gger _nane
DROP TRIGGER tri gger_nane

DROP TRIGGER schema_nane.tri gger _name

DROP TRIGGER cat al og_nane. scherma_nane. tri gger _namne

The trigger_name is the name of the trigger on which the table is defined.

If the trigger is part of a schema, indicate the schema name as in:

schema_nane. tri gger _nane

If the trigger is part of a catalog, indicate the catalog name as in:

cat al og_nane. schena_nane. tri gger _nane

103

4.8.6 Altering Trigger Attributes

Example 4.4. Dropping and Recreating a Trigger

DROP TRIGGER TRIGGER_BI;
COMMIT WORK;

"CREATE TRIGGER TRIGGER_BI ON TRIGGER_TEST
BEFORE INSERT
REFERENCING NEW Bl AS NEW_BI

BEGIN
EXEC SQL PREPARE BI INSERT INTO TRIGGER_OUTPUT VALUES(
"BI_NEW", TRIG_NAME(O), TRIG_SCHEMA(0));
EXEC SQL EXECUTE BI;
SET NEW_BI = "TRIGGER_BI_NEW";
END"';

COMMIT WORK;

INSERT INTO TRIGGER_TEST(XX) VALUES ("XX");
COMMIT WORK;

SELECT * FROM TRIGGER_TEST;
SELECT * FROM TRIGGER_OUTPUT;
COMMIT WORK;

4.8.6 Altering Trigger Attributes

You can alter trigger attributes using the ALTER TRIGGER command. The valid attributes are ENABLED
and DISABLED trigger.

The ALTER TRIGGER SET DISABLED command causes a solidDB server to ignore the trigger when an
activating DML statement is issued. With ALTER TRIGGER SET ENABLED statement, you can enable a
trigger that is currently inactive.

You must be the owner of a table, or a user with DBA authority to alter a trigger from the table.
alter_trigger ::=
ALTER TRIGGER trigger_name_att SET ENABLED | DISABLED

trigger_nanme_attr ::= [catal og_name.[schema_name]]trigger_nane

For example:

104

4.8.7 Obtaining Trigger Information

ALTER TRIGGER trig_on_employee SET ENABLED;

4.8.7 Obtaining Trigger Information

You obtain trigger information by using trigger functions that return specific information and performing a
query on the trigger system table. Each of these sources is described in this section.

4.8.8 Trigger Functions

The following system supported triggers stack functions are useful for analyzing and debugging purposes.

@ Note

The trigger stack refer to those triggers that are cached, regardless of whether they are executed or
detected for execution. Trigger stack functions can be used in the application program like any other
function.

The functions are:
* TRIG_COUNTQO

This function returns the number of triggers in the trigger stack, including the current trigger. The return
value is an integer.

* TRIG_NAME(n)
This function returns the nth trigger name in the trigger stack. The first trigger position or offset is zero.
* TRIG_SCHEMA(N)

This function returns the nth trigger schema name in the trigger stack. The first trigger position or offset
is zero. The return value is a string.

4.8.9 SYS_TRIGGERS System Table

Triggers are stored in a system table called SYS_TRIGGERS. The following is the meta data for the
SYS_TRIGGERS system table:

105

4.8.10 Trigger Parameter Settings

Table 4.10. Meta Data for the SYS_TRIGGERS System Table

Column Name Data Type Description

ID INTEGER unique table identifier (primary key)

TRIGGER_NAME WVARCHAR trigger name (unique with schema)

TRIGGER_TEXT LONG WVARCHAR trigger body

TRIGGER_BIN LONG VARBINARY compiled form of the trigger

TRIGGER_SCHEMA WVARCHAR the schema in which the trigger was
created

TRIGGER_CATALOG WVARCHAR the catalog in which the trigger was
created

CREATIME TIMESTAMP the creation time of the trigger

TYPE INTEGER reserved for future use

REL_ID INTEGER the relation id (unique with type)

TRIGGER_ENABLED WVARCHAR '"YES' if the trigger is enabled; 'NO'
if the trigger is disabled.

4.8.10 Trigger Parameter Settings

Setting Nested Trigger Maximum

Triggers can invoke other triggers or a trigger can invoke itself (recursive trigger). The maximum number of
nested or recursive triggers can be configured by the MaxNest edTr i gger s system parameter in the SQL
section of solid. ini.

[SQL]
MaxNestedTriggers = n;
where n is the maximum number of nested triggers.

The default number for nested triggers is 16.

Setting the Trigger Cache

In a solidDB server, triggers are cached in a separate cache. Each user has a separate cache for triggers. As
the triggers are executed, the trigger procedure logic is cached in the trigger cache and is reused when the
trigger is executed again.

106

4.9 Deferred Procedure Calls

You can set the size of the trigger cache using the Tr i gger Cache system parameter in the SQL section of
solid.ini.

[SQL]

TriggerCache = n;

where n is the number of triggers being reserved for the cache.

4.9 Deferred Procedure Calls

At the end of a committed transaction, you may want to perform a specific action. For example, if the trans-
action updated some data in a "master" publication, then you may want to notify a replica that the master data
was updated. solidDB allows the START AFTER COMMIT statement to specify an SQL statement that will
be executed when the current transaction is committed. The specified SQL statement is called the "body" of
the START AFTER COMMIT. The body is executed asynchronously in a separate connection.

For example, if you would like to call a stored procedure named my_proc() when the transaction commits,
then you would write:

START AFTER COMMIT NONUNIQUE CALL
my_proc;

This statement may appear anywhere inside the transaction; it may be the first statement, the last statement,
or any statement in between. Regardless of where the START AFTER COMMIT statement itself appears
within the transaction, the "body" (the call to my_proc) will be executed only when the transaction is committed.
In the example above, we put the body on a separate line, but that is not required syntactically.

Because the body of the statement is not executed at the same time as the START AFTER COMMIT statement
itself, we say that there are two different phases to the START AFTER COMMIT command: the "definition™
phase and the “execution” phase. In the definition phase of START AFTER COMMIT, you specify the body
but don't execute it. The creation phase may occur anywhere inside a transaction; in other words, the statement
"START AFTER COMMIT ..." may be placed in any order relative to other SQL statements in the same
transaction.

In the execution phase, the body of the START AFTER COMMIT statement is actually executed. The execution
phase occurs when the COMMIT WORK statement for the transaction is executed. (It is also possible to execute
a START AFTER COMMIT in autocommit mode, but there is rarely a reason to do this.)

Below is an example that shows the use of a START AFTER COMMIT statement inside a transaction.

107

4.9 Deferred Procedure Calls

-— Any valid SQL statement(s)...
-- Creation phase. The function my_proc() is not actually called here.
START AFTER COMMIT NONUNIQUE CALL my_proc(X, VY);

-— Any valid SQL statement(s)...

-- Execution phase: This ends the transaction and starts execution
-— of the call to my_proc().-
COMMIT WORK;

A START AFTER COMMIT does not execute unless and until the transaction is successfully committed. If
the transaction containing the START AFTER COMMIT is rolled back, then the body of the START AFTER
COMMIT is not executed. If you want to propagate the updated data from a replica to a master, then this is
an advantage because you only want the data propagated if it is committed. If you were to use triggers to start
the propagation, the data would be propagated before it was committed.

The START AFTER COMMIT command applies only to the current transaction, i.e. the one that the START
AFTER COMMIT command was issued inside. It does not apply to subsequent transactions, or to any other
transactions that are currently open in other connections.

The START AFTER COMMIT command allows you to specify only one SQL statement to be executed when
the COMMIT occurs. However, that one SQL statement may be a call to a stored procedure, and that stored
procedure may have many statements, including calls to other stored procedures. Furthermore, you may have
more than one START AFTER COMMIT command per transaction. The body of each of these START
AFTER COMMIT statements will be executed when the transaction is committed. However, these bodies
will run independently and asynchronously; they will not necessarily execute in the same order as their cor-
responding START AFTER COMMIT statements, and they are likely to have overlapping execution (there
is no guarantee that one will finish before the next one starts).

A common use of START AFTER COMMIT is to help implement "Sync Pull Notify" ("Push Synchronization™),
which is discussed in solidDB SmartFlow Data Replication Guide.

If the body of your START AFTER COMMIT is a call to a stored procedure, that procedure may be local or
it may be remote on one remote replica (or master).

If you are using Sync Pull Notify, then you may want to call the same procedure on many replicas. To do
this, you must use a slightly indirect method. The simplest method is to write one local procedure that calls
many procedures on replicas. For example, if the body of the START AFTER COMMIT statement is "CALL
my_proc", then you could write my_proc to be similar to the following:

108

4.9 Deferred Procedure Calls

CREATE PROCEDURE my_proc

BEGIN

CALL update_inventory(x) AT replical;
CALL update_inventory(x) AT replica2;
CALL update_inventory(x) AT replica3;
END;

This approach works fine if your list of replicas is static. However, if you expect to add new replicas in the
future, you may find it more convenient to update "groups" of replicas based on their properties. This allows
you to add new replicas with specific properties and then have existing stored procedures operate on those
new replicas. This is done by making use of two features: the FOR EACH REPLICA clause in START AFTER
COMMIT, and the DEFAULT clause in remote stored procedure calls.

If the FOR EACH REPLICA clause is used in START AFTER COMMIT, the statement will be executed
once for each replica that meets the conditions in the WHERE clause. Note that the statement is executed
once FOR each replica, not once ON each replica. If there is no "AT node-ref" clause in the CALL statement,
then the stored procedure is called locally, i.e. on the same server as the START AFTER COMMIT was ex-
ecuted on. To make sure that a stored procedure is called once ON each replica, you must use the DEFAULT
clause. The typical way to do this is to create a local stored procedure that contains a remote procedure calling
that uses the DEFAULT clause. For example, suppose that my_local_proc contains the following:

CALL update_sales_statistics AT DEFAULT;

and suppose that the START AFTER COMMIT statement is

START AFTER COMMIT FOR EACH REPLICA
WHERE region = "north*®

UNIQUE

CALL my_local_proc;

The WHERE clause is

WHERE region = "north*®

Therefore, for each replica that has the properties

region = "north*

109

4.9 Deferred Procedure Calls

we will call the stored procedure named my_local_proc. That local procedure, in turn, executes

CALL update_sales_statistics() AT DEFAULT

The keyword DEFAULT is resolved as the name of the replica. Each time that my_local_proc is called from
inside the body of the START AFTER COMMIT, the DEFAULT keyword is the name of a different replica

that has the property "region = 'north™'.

For more information about property/value pairs such as "region = 'north
Data Replication Guide's discussion of Replica Property Names.

, please see the solidDB SmartFlow

Note that it's possible that not all replicas will have a procedure named update_sales_statistics(). If this is the
case, then the procedure will only be executed on those replicas that have the procedure. (The master will not
send each replica a copy of the procedure; the master only calls existing procedures.)

Note also that it's possible that not all replicas that have a procedure named update_sales_statistics() will have
the SAME procedure. Each replica may have its own custom version of the procedure.

Naturally, before executing each statement on each replica, a connection to the replica is established.

When the START AFTER COMMIT command is used to call multiple replicas, this enables the use of the
optional keyword "DEFAULT" in the syntax of the CALL command. For example, suppose that you use the
following:

START AFTER COMMIT
FOR EACH REPLICA
WHERE location = "India*
UNIQUE CALL push;

Then in the local procedure 'push’ you can use the keyword "DEFAULT", which acts as a variable that contains
the name of the replica in question.

CREATE PROCEDURE push

BEGIN

EXEC SQL EXECDIRECT CALL remoteproc AT DEFAULT;
END

Procedure 'push’ will be called once for each replica that has a property named 'location' with value 'India’.
Each time the procedure is called, "DEFAULT" will be set to the name of that replica. Thus

110

4.9 Deferred Procedure Calls

CALL remoteproc AT DEFAULT;
will call the procedure on that particular replica.

You can set the replica properties in the master with the statement:

SET SYNC PROPERTY propnanme = “val ue® FOR REPLICA replica_nane;

for example

SET SYNC PROPERTY location = "India® FOR REPLICA asia_hq;

For more details about the DEFAULT keyword, see the section titled "More on the DEFAULT keyword..."
below.

The statement specified in START AFTER COMMIT is executed as an independent transaction. It is not part
of the transaction that contained the START AFTER COMMIT command. This independent transaction is
run as though autocommit mode were on; in other words, you do not need an explicit COMMIT WORK to
commit the work done in this statement.

In other respects, however, the execution of the statement is not much like a transaction. First, there is no
guarantee that the statement will execute to completion. The statement is launched as an independent back-
ground task. If the server crashes, or if for some other reason the statement cannot be executed, then the
statement disappears without being completely executed.

Second, because the statement is executed as a background task, there is no mechanism for returning an error.
Third, there is no way to roll back the statement; if the statement execution is completed, the "transaction”
statement is autocommitted regardless of whether any errors were detected. (Note that if the statement is a
procedure call, then the procedure itself may contain COMMIT and ROLLBACK commands.)

You may use the "RETRY" clause to try executing the statement more than once if it fails. The RETRY clause
allows you to specify the number of times the server should attempt to retry the failed statement. You must
specify the number of seconds to wait between each retry.

If you do not use the RETRY clause, the server attempts only once execute the statement, then the statement
is discarded. If, for example, the statement tries to call a remote procedure, and if the remote server is down
(or cannot be contacted due to a network problem), then the statement will not be executed and you will not
get any error message.

Any statement, including the statement specified in a START AFTER COMMIT, executes in a certain "context".
The context includes such factors as the default catalog, the default schema, etc. For a statement executed

111

4.9 Deferred Procedure Calls

from within a START AFTER COMMIT, the statement's context is based on the context at the time that the
START AFTER COMMIT is executed, not on the context at the time of the COMMIT WORK that actually
causes the statement inside START AFTER COMMIT to run. In the example below, 'CALL FOO_PROC' is
executed in the catalog foo_cat and schema foo_schema, not bar_cat and bar_schema.

SET CATALOG FOO_CAT;

SET SCHEMA FOO_SCHEMA;

START AFTER COMMIT UNIQUE CALL FOO_PROC;
SET CATALOG BAR_CAT;

SET SCHEMA BAR_SCHEMA;

COMMIT WORK;

The UNIQUE/NONUNIQUE keywords determine whether the server tries to avoid issuing the same command
twice.

The UNIQUE keyword before <stmt> defines that the statement is executed only if there isn't identical
statement under execution or "pending" for execution. Statements are compared with simple string compare.
So for example 'call foo(1)' is different from 'call foo(2)'. Replicas are also taken into account in the compar-
ison; in other words, UNIQUE does not prevent the server from executing the same trigger call on different
replicas. Note that "unique™ only blocks overlapping execution of statements; it does not prevent the same
statement from being executed again later if it is called again after the current invocation has finished running.

NONUNIQUE means that duplicate statements can be executed simultaneously in the background.

Examples: The following statements are all considered different and are thus executed even though each
contains the UNIQUE keyword. (Name is a unique property of replica.)

START AFTER COMMIT UNIQUE call myproc;

START AFTER COMMIT FOR EACH REPLICA WHERE name="R1" UNIQUE call myproc;
START AFTER COMMIT FOR EACH REPLICA WHERE name="R2" UNIQUE call myproc;
START AFTER COMMIT FOR EACH REPLICA WHERE name="R3" UNIQUE call myproc;

But if the following statement is executed in the same transaction as the previous ones and if some of the

replicas R1, R2, and R3 have the property "color="blue™, then the call is not executed for those replicas again.

START AFTER COMMIT FOR EACH REPLICA WHERE color="blue*
UNIQUE call myproc;

112

4.9 Deferred Procedure Calls

Note that uniqueness also does not prevent "automatic™ execution from overlapping "manual” execution. For
example, if you manually execute a command to refresh from a particular publication, and if the master also
calls a remote stored procedure to refresh from that publication, the master won't "skip" the call because a
manual refresh is already running. Uniqueness applies only to statements started by START AFTER COMMIT.

The START AFTER COMMIT statement can be used inside a stored procedure. For example, suppose that
you want to post an event if and only if a transaction completed successfully. You could write a stored pro-
cedure that would execute a START AFTER COMMIT statement that would post the event if the transaction
was committed (but not if it was rolled back). Your code might look similar to the following:

This sample also contains an example of "receiving" and then using an event parameter. See the stored pro-
cedure named "wait_on_event_e" in script #1.

-— To run this demo properly, you will need two users/connections.
-— This demo contains 5 separate *'scripts’™, which must be executed
-- In the order shown below:

-— Userl executes the first script.

-— User2 executes the second script.

-— Userl executes the third script.

-— User2 executes the fourth script.

-— Userl executes the Tifth script.

-— You may notice that there are some COMMIT WORK statements

-— 1n surprising places. These are to ensure that each user sees the
-- most recent changes of the other user. Without the COMMIT WORK
-- statements, in some cases one user would see an out-of-date

-— "snapshot" of the database.

-- Please set autocommit off for both users/connections!

-------------------- SCRIPT 1 (USER 1) —-——-———mmmmmmmmmeo
CREATE EVENT e (i int);
CREATE TABLE tablel (a int);

-— This inserts a row into tablel. The value inserted into the is copied
-— from the parameter to the procedure.

""CREATE PROCEDURE inserter(i integer)

BEGIN

EXEC SQL PREPARE c_inserter INSERT INTO tablel (a) VALUES (?);

113

4.9 Deferred Procedure Calls

EXEC SQL EXECUTE c_inserter USING (i1);
EXEC SQL CLOSE c_inserter;

EXEC SQL DROP c_inserter;

END";

-— This posts the event named "e™.
""CREATE PROCEDURE post_event(i integer)
BEGIN

POST EVENT e(i);

END™;

-- This demonstrates the use of START AFTER COMMIT inside a
-- stored procedure. After you call this procedure and

-— call COMMIT WORK, the server will post the event.
"CREATE PROCEDURE sac_demo

BEGIN

DECLARE MyVar INT;

MyVar := 97;

EXEC SQL PREPARE c_sacdemo START AFTER COMMIT NONUNIQUE CALL
post_event(?);

EXEC SQL EXECUTE c_sacdemo USING (MyVar);

EXEC SQL CLOSE c_sacdemo;

EXEC SQL DROP c_sacdemo;

END™;

-— When user2 calls this procedure, the procedure will wait until
-- the event named e is posted, and then it will call the
-- stored procedure that inserts a record into tablel.
"CREATE PROCEDURE wait_on_event_e
BEGIN
—-— Declare the variable that will be used to hold the event parameter.
-— Although the parameter was declared when the event was created, you
-— still need to declare it as a variable in the procedure that receives
-- that event.
DECLARE 1 INT;
WAIT EVENT
WHEN e (i) BEGIN
-- After we receive the event, insert a row into the table.
EXEC SQL PREPARE c_call_inserter CALL inserter(?);
EXEC SQL EXECUTE c_call_inserter USING (i);
EXEC SQL CLOSE c_call_inserter;
EXEC SQL DROP c_call_inserter;

114

4.9 Deferred Procedure Calls

END EVENT
END WAIT
END";

COMMIT WORK;

———————————————————— SCRIPT 2 (USER 2) - ———————————————————
-- Make sure that user2 sees the changes that userl made.
COMMIT WORK;

-— Wait until userl posts the event.
CALL wait_on_event e;
-— Don"t commit work again (yet).

COMMIT WORK;

-— User2 should be waiting on event e, and should see the event after
-- we execute the stored procedure named sac_demo and then commit work.
-- Note that since START AFTER COMMIT statements are executed

—--— asynchronously, there may be a slight delay between the COMMIT WORK
-- and the associated POST EVENT.

CALL sac_demo;

COMMIT WORK;

———————————————————— SCRIPT 4 (USER 2) - ———————————————————

-— Commit the INSERT that we did earlier when we called inserter()
-— after receiving the event.

COMMIT WORK;

———————————————————— SCRIPT 5 (USER 1) ——————————— e~
-- Ensure that we see the data that user2 inserted.
COMMIT WORK;

-- Show the record that user2 inserted.
SELECT * FROM tablel;

COMMIT WORK;

There are several important things that you should know about START AFTER COMMIT.

115

4.9 Deferred Procedure Calls

When the body of the deferred procedure call (START AFTER COMMIT) is executed, it runs asynchron-
ously in the background. This allows the server to immediately start executing the next SQL command
in your program without waiting for the deferred procedure call statement to finish. It also means that you
do not have to wait for completion before disconnecting from the server. In most situations, this is an ad-
vantage. However, in a few situations this may be a disadvantage. For example, if the body of the deferred
procedure call locks records that are needed by subsequent SQL commands in your program, you may
not appreciate having the body of the deferred procedure call run in the background while your next SQL
command runs in the foreground and has to wait to access those same records. (For a way around this,
see below...)

The statement to be executed will only be executed if the transaction is completed with a COMMIT, not
a ROLLBACK. If the entire transaction is explicitly rolled back, or if the transaction is aborted and thus
implicitly rolled back (due to a failed connection, for example), then the body of the START AFTER
COMMIT will not be executed.

Although the transaction in which the deferred procedure call occurs can be rolled back (thus preventing
the body of the deferred procedure call from running), the body of the deferred procedure call cannot itself
be rolled back if it has executed. Because it runs asynchronously in the background, there is no mechanism
for cancelling or rolling back the body once it starts executing.

The statement in the deferred procedure call is not guaranteed to run until completion or to be run as an
"atomic" transaction. For example, if your server crashes, then the statement will not resume executing
the next time that the server starts, and any actions that were completed before the server crashed may be
kept. To prevent inconsistent data in this type of situation, you must program carefully and make proper
use of features like referential constraints to ensure data integrity.

If you execute a START AFTER COMMIT statement in autocommit mode, then the body of the START
AFTER COMMIT will be executed "immediately" (i.e. as soon as the START AFTER COMMIT is ex-
ecuted and automatically committed). At first, this might seem useless — why not just execute the body
of the START AFTER COMMIT directly? There are a few subtle differences, however. First, a direct
call to my_proc is synchronous; the server will not return control to you until the stored procedure has
finished executing. If you call my_proc as the body of a START AFTER COMMIT, however, then the
call is asynchronous; the server does not wait for the end of my_proc before allowing you to execute the
next SQL statement. In addition, because START AFTER COMMIT statements are not truly executed
"immediately" (i.e. at the time that the transaction is committed) but may instead be delayed briefly if the
server is busy, you might or might not actually start running your next SQL statement before my_proc
even starts executing. It is rare for this to be desirable behavior. However, if you truly want to launch an
asynchronous stored procedure that will run in the background while you continue onward with your
program, it is valid to do START AFTER COMMIT in autocommit mode.

116

4.9 Deferred Procedure Calls

If more than one deferred procedure call was executed in the same transaction, then the bodies of all the
START AFTER COMMIT statements will run asynchronously. This means that they will not necessarily
run in the same order as you executed the START AFTER COMMIT statements within the transaction.

The body of a START AFTER COMMIT must contain only one SQL statement. That one statement may
be a procedure call, however, and the procedure may contain multiple SQL statements, including other
procedure calls.

The START AFTER COMMIT statement applies only to the transaction in which it is defined. If you
execute START AFTER COMMIT in the current transaction, the body of the deferred procedure call will
be executed only when the current transaction is committed; it will not be executed in subsequent transac-
tions, nor will it be executed for transactions done by any other connections. START AFTER COMMIT
statements do not create "persistent™ behavior. If you would like the same body to be called at the end of
multiple transactions, then you will have to execute a "START AFTER COMMIT ... CALL my_proc"
statement in each of those transactions.

The "result" of the execution of the body of the deferred procedure call (START AFTER COMMIT)
statement is not returned in any way to the connection that ran the deferred procedure call. For example,
if the body of the deferred procedure call returns a value that indicates whether an error occurred, that
value will be discarded.

Almost any SQL statement may be used as the body of a START AFTER COMMIT statement. Although
calls to stored procedures are typical, you may also use UPDATE, CREATE TABLE, or almost anything
else. (We don't advise putting another START AFTER COMMIT statements inside a START AFTER
COMMIT, however.) Note that a statement like SELECT is generally useless inside an deferred procedure
call because the result is not returned.

Because the body is not executed at the time that the START AFTER COMMIT statement is executed
inside the transaction, START AFTER COMMIT statements rarely fail unless the deferred procedure call
itself or the body contains a syntax error or some other error that can be detected without actually executing
the body.

What if you don't want the next SQL statement in your program to run until deferred procedure call statement
has finished running? Here's a workaround:

1.

At the end of the deferred procedure call statement (e.g. at the end of the stored procedure called by the
deferred procedure call statement), post an Event. (See solidDB Programmer Guide for a description of
events.)

Immediately after you commit the transaction that specified the deferred procedure call, call a stored
procedure that waits on the event.

117

4.9 Deferred Procedure Calls

3. After the stored procedure call (to wait on the event), put the next SQL statement that your program
wants to execute.

For example, your program might look like the following:

START AFTER COMMIT ... CALL myproc;
COMMIT WORK;

CALL wait_for_sac_completion;
UPDATE ...;

The stored procedure wait_for_sac_completion would wait for the event that myproc will post. Therefore,
the UPDATE statement won't run until after the deferred procedure call statement finishes.

Note that this workaround is slightly risky. Since deferred procedure call statements are not guaranteed to
execute until completion, there is a chance that the stored procedure wait_for_sac_completion will never get
the event that it is waiting for.

Why would anyone design a command that may or may not run to completion? The answer is that the primary
purpose of the START AFTER COMMIT feature is to support "Sync Pull Notify". The Sync Pull Notify
feature allows a master server to notify its replica(s) that data has been updated and that the replicas may request
refreshes to get the new data. If this notification process fails for some reason, it would not result in data
corruption; it would simply mean that there would be a longer delay before the replica refreshes the data.
Since a replica is always given all the data since its last successful refresh operation, a delay in receipt of data
does not cause the replica to permanently miss any data. For more details, see the section of solidDB SmartFlow
Data Replication Guide that documents the Sync Pull Notify feature.

- Note

The statement inside the body of the START AFTER COMMIT may be any statement, including
SELECT. Remember, however, that the body of the START AFTER COMMIT does not return its
results anywhere, so a SELECT statement is generally not useful inside a START AFTER COMMIT.

< Note
If you are in auto-commit mode and execute START AFTER COMMIT..., then the given statement

is started immediately in the background. "Immediately"” here actually means "as soon as possible"”,
because it's still executed asynchronously when the server has time to do it.

118

4.9.1 Sync Pull Notify ("Push Synchronization™) Example

4.9.1 Sync Pull Notify (""Push Synchronization") Example

To implement Sync Pull Notify (i.e. Master notifying all relevant Replicas that there is new data that they can
request a refresh of), users can use the START and CALL statements as defined earlier. This particular example
also uses triggers.

Let us consider a scenario where there is a Master M1 and there are Replicas R1 and R2.

Figure 4.1. Sync Pull Notify

w

To carry out Sync Pull Notify, follow the steps listed below:

1. Define a Procedure Pm1 in Master M1. In Procedure Pm1, include the statements:

EXECDIRECT CALL Pril1 AT R1;
EXECDIRECT CALL Pri1 AT R2;

(You will have one call for each interested Replica. Note that the replica name changes, but typically
the procedure name is the same on each replica.)

2. Define a Procedure Prl in Replica R1. If a master is to invoke the Prl in more than one replica, then Prl
should be defined for every replica that is of interest. See the replica procedure example in the example
section below.

3. Define a Trigger for all relevant DML operations, such as
¢ INSERT
« UPDATE and

« DELETE

119

4.9.1 Sync Pull Notify ("Push Synchronization™) Example

4. Ineach trigger body, embed the statement

EXECDIRECT START [UNIQUE] CALL Pmi;

5. Grant EXECUTE authority to the appropriate user on each replica. (A user Url on the replica should
already be mapped to a corresponding user Um1 on the master. The user Um1 must execute the

EXECDIRECT START [UNIQUE] CALL Pmi;

When Um1 calls the procedure remotely, the call will actually execute with the privileges of Url when
the call is executed on the replica.)

Example 4.5. Sliced Replicas

A sales application has a table named CUSTOMER, which has a column named SALESMAN. The master
database contains information for all salespersons. Each salesperson has her own replica database, and that
replica has only a "slice" of the master's data; specifically, each salesperson's replica has the slice of data for
that salesperson. For example, salesperson Smith's replica has only the data for salesperson Smith. If the
salesperson assigned to a particular customer changes, then the correct replicas should be notified. If XYZ
corporation is reassigned from salesperson Smith to salesperson Jones, then salesperson Jones's replica database
should add the data related to XYZ corporation, and salesperson Smith's replica should delete the data related
to XYZ corporation. Here is the code to update both replica databases:

-— If a customer is reassigned to a different salesman, then we
-— must notify both the old and new salesmen.
-— NOTE: This sample shows only the "UPDATE" trigger, but of course in
-— the real world you"d also need to define INSERT and DELETE triggers.
CREATE TRIGGER T_CUST_AFTERUPDATE ON CUSTOMER
AFTER UPDATE
REFERENCING NEW SALESMAN AS NEW_SALESMAN,
REFERENCING OLD SALESMAN AS OLD_SALESMAN
BEGIN
IF NEW_SALESMAN <> OLD_SALESMAN THEN
EXEC SQL EXECDIRECT
START AFTER COMMIT
FOR EACH REPLICA WHERE NAME=OLD_SALESMAN
UNIQUE CALL CUST(OLD_SALESMAN);

120

4.9.1 Sync Pull Notify ("Push Synchronization™) Example

EXEC SQL EXECDIRECT
START AFTER COMMIT
FOR EACH REPLICA WHERE NAME=NEW_SALESMAN
UNIQUE CALL CUST(NEW_SALESMAN);
ENDIF
END;

Suppose that in the application, the user assigns all customers in sales area 'CA' to salesperson Mike.

UPDATE CUSTOMER SET SALESMAN="Mike" WHERE SALES_AREA="CA";
COMMIT WORK;

The Master server has the following procedure:

CREATE PROCEDURE CUST(salesman VARCHAR)

BEGIN

EXEC SQL EXECDIRECT CALL CUST(salesman) AT salesman;
COMMIT WORK;

END

Each replica has the following procedure:

CREATE PROCEDURE CUST(salesman VARCHAR)
BEGIN

MESSAGE s BEGIN;

MESSAGE s APPEND REFRESH CUSTS(salesman);
MESSAGE s END;

COMMIT WORK;

MESSAGE s FORWARD TIMEOUT FOREVER;

COMMIT WORK;

END

In the procedure CUST(), we force the salesperson's replica to refresh from the data in the master. This pro-
cedure CUST() is defined on all the replicas. If we call the procedure on both the replica that the customer
was reassigned to, and the replica that the customer was reassigned from, then the procedure updates both
those replicas. Effectively, this will delete the out-of-date data from the replica that no longer has this customer,
and will insert the data to the replica that is now responsible for this customer. If the publication and its
parameters are properly defined, we don't need to write additional detailed logic to handle each possible oper-
ation, such as reassigning a customer from one salesperson to another; instead, we simply tell each replica to
refresh from the most current data.

121

4.9.2 Tracing the Execution of Background Jobs

NOTES:

It is possible to implement a Sync Pull Notify without triggers. The application may call appropriate procedures
to implement SyncPull. Triggers are a way to achieve Sync Pull Notify in conjunction with the statement
START AFTER COMMIT and remote procedure calls.

Sometimes, in the Sync Pull Notify process, it is possible that a replica may have to exchange one extra round
trip of messages unnecessarily. This could happen if the master invoked procedure tries to send a message to
the replica that just sent the changes to the master, and that causes a change in the "hot data" in the master.
But this can be avoided with careful usage of the START AFTER COMMIT statement. Be careful not to
create an "infinite loop", where each update on the master leads to an immediate update on the replica, which
leads to an immediate update on the master... The best way to avoid this is to be careful when creating triggers
on the replica that might "immediately" send updated data to the master, which in turn "immediately" notifies
the replica to refresh again.

4.9.2 Tracing the Execution of Background Jobs

The START AFTER COMMIT statement returns a result-set with one INTEGER column. This integer is a
unique "job" id that can be used to query the status of statements that failed to start for one reason or another
(invalid SQL statement, no access rights, replica not available, etc.).

If a maximum number of uncommitted deferred procedure call statements is reached, then an error is returned
when the deferred procedure call is issued. The maximum number is configurable in solid. ini. See
solidDB Administration Guide.

If a statement cannot be started, the reason is logged to the system table SYS_BACKGROUNDJOB_INFO.

SYS_BACKGROUNDJOB_ INFO
¢
ID INTEGER NOT NULL,
STMT WVARCHAR NOT NULL,
USER_ID INTEGER NOT NULL,
ERROR_CODE INTEGER NOT NULL,
ERROR_TEXT WVARCHAR NOT NULL,
PRIMARY KEY(ID)

);

Only failed START AFTER COMMIT statements are logged into this table. If the statement (e.g. a procedure
call) starts successfully, no information is stored into the system tables.

User can retrieve the information from the table SYS_ BACKGROUNDJOB_INFO using either SQL SELECT-
query or calling a system procedure SYS_GETBACKGROUNDJOB_INFO. The input parameters is the jobID.

122

4.9.3 Controlling Backgroung Tasks

The returned values are: ID INTEGER, STMT WVARCHAR, USER_ID INTEGER, ERROR_CODE IN-
TEGER, ERROR_TEXT INTEGER.

Also an event SYS_EVENT_SACFAILED is posted when a statement fails to start.

CREATE EVENT SYS_EVENT_SACFAILED (ENAME WVARCHAR,
POSTSRVTIME TIMESTAMP,

UID INTEGER,

NUMDATAINFO INTEGER,

TEXTDATA WVARCHAR);

The NUMDATAINFO field contains the joblD. The application can wait for this event and use the jobID to
retrieve the reason from the system table SYS_ BACKGROUNDJOB_INFO.

The system table SYS_BACKGROUNDJOB_INFO can be emptied with the admin command cleanbgjobinfo.
You need DBA privileges to execute this command, which means that only a DBA can delete the rows from
the table.

4.9.3 Controlling Backgroung Tasks

Background tasks can be controlled with the SSC APl and admin commands (see the AcceleratorLib manual
for details on the SSC API). The server uses the task type SSC_TASK_BACKGROUND for the tasks that
execute statements started with START AFTER COMMIT. Note that there may be several of these tasks, but
you cannot control them individually.

4.10 Using Sequences

A sequence object is used to get sequence numbers in an efficient manner. The syntax is:

CREATE [DENSE] SEQUENCE sequence_nhane

Depending on how the sequence is created, there may or may not be holes in the sequence (the sequence can
be sparse or dense). Dense sequences guarantee that there are no holes in the sequence numbers. The sequence
number allocation is bound to the current transaction. If the transaction rolls back, the sequence number alloc-
ations are also rolled back. The drawback of dense sequences is that the sequence is locked out from other
transactions until the current transaction ends.

If there is no need for dense sequences, a sparse sequence can be used. A sparse sequence guarantees
uniqueness of the returned values, but it is not bound to the current transaction. If a transaction allocates a
sparse sequence number and later rolls back, the sequence number is simply lost.

123

4.10 Using Sequences

A sequence object can be used, for example, to generate primary key numbers. The advantage of using a se-
quence object instead of a separate table is that the sequence object is specifically fine-tuned for fast execution
and requires less overhead than normal update statements.

Both dense and sparse sequence numbers start from 1.

After creating the sequence with the CREATE SEQUENCE statement, you can access the Sequence object
values by using the following constructs in SQL statements:

* sequencenane.CURRVAL which returns the current value of the sequence
» sequencenane.NEXTVAL which increments the sequence by one and returns the next value.

An example of creating unique identifiers automatically for a table is given below:

INSERT INTO ORDERS (id, ...) VALUES (order_seq.NEXTVAL, ...);

Sequences can also be used inside stored procedures. The current sequence value can be retrieved using the
following statement:

EXEC SEQUENCE sequence_name.CURRENT INTO vari abl e;

New sequence values can be retrieved using the following syntax:

EXEC SEQUENCE sequence_nane.NEXT INTO vari abl e;

It is also possible to set the current value of a sequence to a predefined value by using the following syntax:

EXEC SEQUENCE sequence_nane SET VALUE USING vari abl e;

An example of using a stored procedure to retrieve a new sequence number is given below:

""CREATE PROCEDURE get_my_seq

RETURNS (val INTEGER)

BEGIN

EXEC SEQUENCE my_sequence.NEXT INTO (val);
END™;

124

4.11 Using Events

4.11 Using Events

Event alerts are special objects in solidDB databases. Events are used primarily to coordinate timing, but may
also be used to send a small amount of information. One connection "waits" on an event until another connection
"posts” that event.

More than one connection may wait on the same event. If multiple connections wait on the same event, then
all waiting connections are notified when the event is posted. A connection may also wait on multiple events,
in which case it will be notified when any of those events are posted.

Events generally consume a much smaller amount of resources than polling consumes.
Users may create their own events. The server also has some built-in system events.

The server does not automatically post user-defined events; they must be posted by a stored procedure. Sim-
ilarly, the events are received (waited on) in a stored procedure. (You may also wait on an event outside a
stored procedure by using the ADMIN EVENT command.) When an application calls a stored procedure that
waits for a specific event to happen, the application is blocked until the event is posted and received. In multi-
threaded environments, separate threads and connections can be used to access the database during the event
wait.

An event has a name that identifies it and a set of parameters. The name can be any user-specified alphanu-
meric string. An event object is created with the SQL statement:

CREATE EVENT event _nane
[(par anet er _nanme dat at ype
[paramet er _name datatype...])]

The parameter list specifies parameter names and parameter types. The parameter types are normal SQL types.
Events are dropped with the SQL statement:
DROP EVENT event _name

Events are always posted inside stored procedures. Events are usually received inside stored procedures.
Special stored procedure statements are used to post and receive events.

The event is posted with the stored procedure statement

post _statenent :-:= POST EVENT event nanme [(parameters)]

125

4.11 Using Events

Event parameters must be local variables or parameters in the stored procedure where the event is triggered.
All clients that are waiting for the posted event will receive the event.

Each connection has its own event queue. The events to be collected in the event queue are specified with the
stored procedure statement

wait_register-statement :-:=
REGISTER EVENT event _nane

Events are removed from the event queue with the stored procedure statement

UNREGISTER EVENT event _nane
Event parameters must be local variables or parameters in the stored procedure where the event is triggered.

To make a procedure wait for an event to happen, the WAIT EVENT construct is used in the stored procedure:

wait _event statenent::=
WAIT EVENT
[event specification...]
END WAIT
event specification::=
WHEN event _name [(paraneters)] BEGIN
statenents
END EVENT

You may also wait on an event by using the ADMIN EVENT command. You may use this at the solsql
command line, for example. Below is an example of the code required to register for and wait on an event
using ADMIN EVENT commands:

ADMIN EVENT “register sys_event hsbstateswitch”;
ADMIN EVENT “wait";

You may wait on either system-defined events or user-defined events. Note that you cannot post events using
ADMIN EVENT. For more details about ADMIN EVENT, see Section B.2, “ADMIN EVENT”.

126

4.11 Using Events

Example 4.6. Event Example 1

This section includes two examples for using events. Example 1 is a pair of SQL scripts that when used to-
gether show how to use events. Example 2 is a pair of SQL scripts, including a stored procedure, that when
used together waits for multiple events.

In this first example of using events, we have two scripts. One script waits on an event and the other script
posts the event. Once the event has been posted, the event that is waiting will finish waiting and move on to
the next command.

To execute this example code, you will need two windows (for example, two SolidConsole windows) so that
you can start the WaitOnEvent.sqgl script and then run the PostEvent.sqgl script while
WaitOnEvent.sql is waiting.

In this particular example, the stored procedure that waits does not actually do anything after the event has
posted; the script merely finishes the wait and returns to the caller. The caller can then proceed to do whatever
it wants, which in this case is to SELECT the record that was inserted while we were waiting.

This example waits for only a single event, which is called "record_was_inserted". Later in this chapter we
will have another script that waits for multiple events using a single"WAIT".

SCRIPT 1
—-- SCRIPT NAME: WaitOnEvent.sql

-- PURPOSE:

-- This is one of a set of scripts that demonstrates posting events
-- and waiting on events. The sequence of steps is shown below:

-- THIS SCRIPT (WaitOnEvent.sql) PostEvent.sqgl script
-- CREATE EVENT.

-- CREATE TABLE.

-- WAIT ON EVENT.

-— Insert a record into table.

- Post event.

-- SELECT * FROM TABLE.

-— To perform these steps in the proper order, start running this

-- script FIRST, but remember that this script does not finish running
-- until after the post_event script runs and posts the event.

-- Therefore, you will need two open windows (for example, two

-- SolidConsole windows, or two terminal windows) so that you can leave

127

4.11 Using Events

-- this running/waiting in one window while you run the other script
-- post_event) in the other window.
-- Create a simple event that has no parameters.
-- Note that this event (like any event) does not have any
-— commands or data; the event is just a label that allows both the
-— posting process and the waiting process to identify which event has
-- been posted (more than one event may be registered at a time).
-— As part of our demonstration of events, this particular event
-— will be posted by the other user after he or she inserted a record.
CREATE EVENT record_was_inserted;
-- Create a table that the other script will insert into.
CREATE TABLE tablel (int_col INTEGER);
-— Create a procedure that will wait on an event
-- named "‘record_was_inserted".
-— The other script (PostEvent.sql) will post this event.
"CREATE PROCEDURE wait_for_event
BEGIN
-— If possible, avoid holding open a transaction. Note that in most
-— cases It"s better to do the COMMIT WORK before the procedure,
-- not inside it. See "Waiting on Events”™ at the end of this example.
EXEC SQL COMMIT WORK;
-—- Now wait for the event to be posted.
WAIT EVENT
WHEN record_was_inserted BEGIN
-— In this demo, we simply fall through and return from the
-— procedure call, and then we continue on to the next
-- statement after the procedure call.
END EVENT
END WAIT;
END™;
-— Call the procedure to wait. Note that this script will not
-— continue on to the next step (the SELECT) until after the
-- event 1Is posted.
CALL wait_for_event();
COMMIT WORK;
-- Display the record inserted by the other script.
SELECT * FROM tablel;

Guidelines for Committing Transaction in Script 1 (WaitOnEvent.sgl)

Whenever possible, complete any current transaction before waiting on an event. If you execute a WAIT inside
a transaction, then the transaction will be held open until the event occurs and the next COMMIT or ROLL-

128

4.11 Using Events

BACK is executed. This means that during the wait, the server will hold locks, which may lead to excessive
bonsai tree growth. For details on the Bonsai Tree and preventing its growth, read the section "Reducing
Bonsai Tree Size by Committing Transactions," in solidDB Administration Guide.

In this example, we have put COMMIT WORK inside the procedure immediately before the WAIT. However,
this is not usually a good solution; putting the COMMIT or ROLLBACK inside the "wait" procedure means
that if the procedure is called as part of another transaction, then the COMMIT or ROLLBACK will terminate
that enclosing transaction and start a new transaction, which is probably not what you want. If, for example,
you were entering data into a "child" table with a referential constraint and you are waiting for the referenced
data to be entered into the "parent" table, then breaking the transaction into two transactions would simply
cause the insert of the "child" record to fail because the parent would not have been inserted yet.

The best strategy is to design your program so that you do not need to WAIT inside a transaction; instead,
your "wait" procedure should be called between transactions if that is possible. By using events/waits, you
have some control over the order in which things are done and you can use this to help ensure that dependencies
are met without actually putting everything into a single transaction. For example, in an "asynchronous"
situation you might be waiting for both a child and a parent record to be inserted, and if your database server
did not have the "events" feature, then you might require that both records be inserted in the same transaction
so that you could ensure referential integrity.

By using events/waits, you can ensure that the insertion of the parent is done first; you can then put the insertion
of the child record in a second transaction because you can guarantee that the parent will always be present
when the child is inserted. (To be more precise, you can ALMOST guarantee that the parent will be present
when the child is inserted. If you break up the insertions into two different transactions, then even if you ensure
that the parent is inserted before the child, there is a slight chance that the parent would be deleted before the
program tried to insert the child record.)

SCRIPT 2

-— SCRIPT NAME: PostEvent.sql

-- PURPOSE:

-— This script is one of a set of scripts that demonstrates posting
-— events and waiting on events. The sequence of steps is shown below:

-— WaitOnEvent.sql THIS SCRIPT (PostEvent.sql)
-- Create event.

-- Create table.

-— Wait on event.

- INSERT A RECORD INTO TABLE.

- POST THE EVENT.

-- Select * from table.

129

4.11 Using Events

-- Insert a record into the table.
INSERT INTO tablel (int_col) VALUES (99);
COMMIT WORK;
-- Create a stored procedure to post the event.
"CREATE PROCEDURE post_event
BEGIN
-- Post the event.
POST EVENT record_was_inserted;
END™;
-— Call the procedure that posts the event.
CALL post_event();
DROP PROCEDURE post_event;
COMMIT WORK;

Example 4.7. Event Example 2

The previous example showed how to wait on a single event. The next example shows how to write a stored
procedure that will wait on multiple events and that will finish the wait when any one of those events is posted.

SCRIPT 1
—-- SCRIPT NAME: MultiWaitExamplePartl.sqgl

-- PURPOSE:

-- This code shows how to wait on more than one event.

-— If you run this demonstration, you will see that a "wait" lasts only
-- until one of the events is received. Thus a wait on multiple events
-- is like an "OR" (rather than an "AND'™); you wait until eventl OR

-- event2 OR ... occurs.

-— This demo uses 2 scripts, one of which waits for an event(s) and one
-- of which posts an event.

-- To run this example, you will need 2 windows (for example,

-- SolidConsole windows).

-- 1) Run this script (MultiWaitExamplePartl.sql) in one window. After
-- this script reaches the point where it is waiting for the event, then
-— start Step 2.

-- 2) Run the script MultiWaitExamplePart2.sql in the other window.

-- This will post one of the events.

-- After the event is posted, the first script will finish.

-- Create the 3 different events on which we will wait.

CREATE EVENT eventl;

CREATE EVENT event2(i INTEGER);

130

4.11 Using Events

CREATE EVENT event3(i INTEGER, c CHAR(4));

-- When an event is received, the process that is waiting on the event
-— will insert a record into this table. That lets us see which events

-- were received.
CREATE TABLE event_records(event_name CHAR(10));
-— This procedure inserts a record into the event_records table.
-— This procedure is called when an event is received.
""CREATE PROCEDURE insert_a_record(event_name_param CHAR(10))
BEGIN

EXEC SQL PREPARE insert_cursor

INSERT INTO event_records (event_name) VALUES (?);

EXEC SQL EXECUTE insert_cursor USING (event_name_ param);

EXEC SQL CLOSE insert_cursor;

EXEC SQL DROP insert_cursor;
END™;
-— This procedure has a single "WAIT" command that has 3 subsections;
-- each subsection waits on a different event.
-- The "WAIT" is finished when ANY of the events occur, and so the
-- event_records table will hold only one of the following:
-- "eventl”,
-- "event2", or
-- "event3".
"CREATE PROCEDURE event_wait(il INTEGER)
RETURNS (eventresult CHAR(10))
BEGIN

DECLARE 1 INTEGER;

DECLARE c¢ CHAR(4);

-— The specific values of 1 and c are irrelevant in this example.

1 2= il;

Cc = "mark";

-- Set eventresult to an empty string.
eventresult = "*";

-— Will we exit after any of these 3 events are posted, or must
-— we wait until all of them are posted? The answer is that
-— we will exit after any one event is posted and received.
WAIT EVENT

-- When the event named "eventl™ is received...
WHEN eventl BEGIN
eventresult = "eventl®;
-- Insert a record into the event _records table showing that
-- this event was posted and received.
EXEC SQL PREPARE call_cursor

131

4.11 Using Events

CALL insert_a record(?);

EXEC SQL EXECUTE call_cursor USING (eventresult);
EXEC SQL CLOSE call_cursor;

EXEC SQL DROP call_cursor;

RETURN;

END EVENT

WHEN event2(i) BEGIN
eventresult := "event2”;

EXEC SQL PREPARE call_cursor2

CALL insert_a record(?);

EXEC SQL EXECUTE call_cursor2 USING (eventresult);
EXEC SQL CLOSE call_cursor2;

EXEC SQL DROP call_cursor2;

RETURN;

END EVENT

WHEN event3(i, c) BEGIN
eventresult := "event3~;

EXEC SQL PREPARE call_cursor3
CALL insert_a record(?);
EXEC SQL EXECUTE call_cursor3 USING (eventresult);
EXEC SQL CLOSE call_cursor3;
EXEC SQL DROP call_cursor3;
RETURN;
END EVENT
END WAIT
END™;
COMMIT WORK;
-— Call the procedure that waits until one of the events is posted.
CALL event_wait(l);
-- See which event was posted.
SELECT * FROM event_records;

SCRIPT 2

-— SCRIPT NAME: MultiWaitExamplePart2._sql

-- PURPOSE:

-— This is script 2 of 2 scripts that show how to wait for multiple
-— events. See the instructions at the top of MultiWaitExamplePartl.sql.
-- Create a stored procedure to post an event.
""CREATE PROCEDURE post_eventl

BEGIN

-- Post the event.

POST EVENT eventl;

END™;

132

4.11 Using Events

--Create a stored procedure to post the event.
""CREATE PROCEDURE post_event2(param INTEGER)
BEGIN
-- Post the event.
POST EVENT event2(param);
END™;
--Create a stored procedure to post the event.
""CREATE PROCEDURE post_event3(param INTEGER, s CHAR(4))
BEGIN
-- Post the event.
POST EVENT event3(param, s);
END™;
COMMIT WORK;
-- Notice that to finish the "wait', only one event needs to be posted.
-- You may execute any one of the following 3 CALL commands to post an
-- event.
-— We"ve commented out 2 of them; you may change which one is de
-- commented.
CALL post_eventl();
--CALL post_event2(2);
--CALL post_event3(3, "mark®);

Example 4.8. Event Example 3

This example shows very simple usage of the REGISTER EVENT and UNREGISTER EVENT commands.
You might notice that the previous scripts did not use REGISTER EVENT, yet their WAIT commands suc-
ceeded anyway. The reason for this is that when you wait on an event, you will be registered implicitly for
that event if you did not already explicitly register for it. Thus you only need to explicitly register events if
you want them to start being queued now but you don't want to start WAITing for them until later.

CREATE EVENT eO;
CREATE EVENT el (paraml int);
COMMIT WORK;

-- Create a procedure to register the events to that when they occur
-- they are put in this connection"s event queue.

""CREATE PROCEDURE eeregister

BEGIN

REGISTER event eO0;

REGISTER EVENT el;

133

4.11 Using Events

END";

CALL eeregister;
COMMIT WORK;

-- Create a procedure to post the events.
"CREATE PROCEDURE eepost

BEGIN

DECLARE X int;

X = 1;

POST EVENT eO;

POST EVENT el(x);

END™;

COMMIT WORK;

-- Post the events. Even though we haven®t yet waited on the events,
-— they will be stored in our queue because we registered for them.
CALL eepost;

COMMIT WORK;

-— Now create a procedure to wait for the events.
""CREATE PROCEDURE eewait

RETURNS (whichEvent VARCHAR(100))

BEGIN

DECLARE 1 INT;

WAIT EVENT
WHEN eO BEGIN
whichEvent := "eventO";
END EVENT
WHEN el(i) BEGIN
whichEvent := "eventl”;
END EVENT
END WAIT
END™ ;

COMMIT WORK;

134

4.11 Using Events

-- Since we already registered for the 2 events and we already
-- posted the 2 events, when we call the eewait procedure twice
-— 1t should return immediately, rather than waiting.

CALL eewalt;

CALL eewalt;

COMMIT WORK;

-- Unregister for the events.
""CREATE PROCEDURE eeunregister
BEGIN

UNREGISTER event eO;
UNREGISTER EVENT el;
END™;

CALL eeunregister;

COMMIT WORK;

CREATE EVENT eO;

CREATE EVENT el (paraml int);
COMMIT WORK;

-- Create a procedure to register the events to that when they occur
-- they are put in this connection®s event queue.

""CREATE PROCEDURE eeregister

BEGIN

REGISTER event eO0;

REGISTER EVENT el;

END™;

CALL eeregister;
COMMIT WORK;

-- Create a procedure to post the events.
"CREATE PROCEDURE eepost

BEGIN

DECLARE X int;

X = 1;

POST EVENT eO;

POST EVENT el(x);

END™;

COMMIT WORK;

135

4.11 Using Events

-- Post the events. Even though we haven®t yet waited on the events,
-— they will be stored in our queue because we registered for them.
CALL eepost;

COMMIT WORK;

-— Now create a procedure to wait for the events.
“"CREATE PROCEDURE eewait

RETURNS (whichEvent VARCHAR(100))

BEGIN

DECLARE 1 INT;

WAIT EVENT
WHEN eO BEGIN
whichEvent := "eventO0~;
END EVENT

WHEN el(i) BEGIN
whichEvent := "eventl”;
END EVENT

END WAIT
END";
COMMIT WORK;

-- Since we already registered for the 2 events and we already
-- posted the 2 events, when we call the eewait procedure twice
-— 1t should return immediately, rather than waiting.

CALL eewalt;

CALL eewalt;

COMMIT WORK;

-- Unregister for the events.
""CREATE PROCEDURE eeunregister
BEGIN

UNREGISTER event eO;
UNREGISTER EVENT el;
END™;

136

4.11 Using Events

CALL eeunregister;
COMMIT WORK;

137

138

Chapter 5. Using solidDB SQL for
Database Administration

You manage a solidDB database, as well as its users and schema, using solidDB SQL statements. This chapter
describes the management tasks you perform with solidDB SQL. These tasks include managing roles and
privileges, tables, indexes, transactions, catalogs, and schemas.

5.1 Using solidDB SQL Syntax

The SQL syntax is based on the ANSI X3H2-1989 (SQL-89) level 2 standard including important SQL-92
and SQL-99 extensions. Refer to Appendix B, solidDB SQL Syntax, for a more formal definition of the syntax.

SQL statements must be terminated with a semicolon (;) only when using solidDB SQL Editor or SolidConsole.
Otherwise, terminating SQL statements with a semicolon leads to a syntax error.

You can use SolidConsole (as well as solidDB SQL Editor, or third-party ODBC or JDBC compliant tools)
to execute SQL statements. To automate the tasks, you may want to save the SQL statements to a file. You
can use these files for rerunning your SQL statements later or as a document of your users, tables, and indexes.

5.1.1 solidDB SQL Data Types

solidDB SQL supports data types specified in the SQL-92 Standard Entry Level specifications, as well as
important Intermediate Level enhancements. Refer to Appendix A, Data Types, for a complete description
of the supported data types.

You can also define some data types with the optional length, scale, and precision parameters. In that case,
the default properties of the corresponding data type are not used.

5.1.2 solidDB ADMIN COMMAND

solidDB SQL provides the extension ADMIN COMMAND ‘conmand [conmand_ar gs]' to perform basic
administrative tasks, such as backups, performance monitoring, and shutdown.

You can use SolidConsole and solidDB SQL Editor (teletype) to execute the command options provided by
ADMIN COMMAND. To access a short description of available ADMIN COMMANDs, execute ADMIN
COMMAND 'help*. For a formal definition of the syntax of these statements, refer to Appendix B, solidDB
SQL Syntax, in this guide.

139

5.1.3 Using Functions

- Note

ADMIN COMMAND tasks are also available as administrative commands in solidDB Remote Control
(teletype). For details, read the section of solidDB Administration Guide titled "solidDB Remote
Control (teletype)".

solidDB also provides SQL extensions that implement the data synchronization capability.

5.1.3 Using Functions

All solidDB proprietary scalar functions can be used in a normal way, e.g.:

select substring(line, 1,4) from test;

On the other hand, functions whose name match reserved words, have to be used with escape characters. For
example:

select "left"(line,4) from test;

or:

select {fn left(line,4)} from test;

The latter one corresponds to the ODBC implementation-independent syntax. It can be used in all APl and
GUI interfaces.

5.2 Managing User Privileges and Roles

You can use SolidConsole, solidDB teletype tools, and many ODBC compliant SQL tools to modify user
privileges. Users and roles are created and deleted using SQL statements or commands. A file consisting of
several SQL statements is called a SQL script.

Inthe Solid/sol1dDB6.0/samples/sql directory, you will find the SQL script sample .sql, which
gives an example of creating users and roles. You can run it using SolidConsole. To create your own users
and roles, you can make your own script describing your user environment.

140

5.2.1 User Privileges

5.2.1 User Privileges

When using solidDB databases in a multi-user environment, you may want to apply user privileges to hide
certain tables from some users. For example, you may not want an employee to see the table in which employee
salaries are listed, or you may not want other users to change your test tables.

You can apply five different kinds of user privileges. A user may be able to view, delete, insert, update or
reference information in a table or view. Any combination of these privileges may also be applied. A user
who has none of these privileges to a table is not able to use the table at all.

- Note

Once user privileges are granted, they take effect when the user who is granted the privileges logs on
to the database. If the user is already logged on to the database when the privileges are granted, they
take effect only if the user:

» accesses for the first time the table or object on which the privileges are set, or

» disconnects and then reconnects to the database.

5.2.2 User Roles

Privileges can also be granted to an entity called a role. A role is a group of privileges that can be granted to
users as one unit. You can create roles and assign users to certain roles. A single user may have more than
one role assigned, and a single role may have more than one user assigned.

< Note

1. The same string cannot be used both as a user name and a role name.

2. Once a user role is granted, it takes effect when the user who is granted the role logs on to the
database. If the user is already logged on to the database when the role is granted, the role takes
effect when the user disconnects and then reconnects to the database.

The following user names and roles are reserved:

141

5.2.3 Examples of SQL Statements

Table 5.1. Reserved User Names and Roles

Reserved Names Description

PUBLIC This role grants privileges to all users. When user privileges to a certain table
are granted to the role PUBLIC, all current and future users have the specified
user privileges to this table. This role is granted automatically to all users.

SYS_ADMIN_ROLE This is the default role for the database administrator. This role has adminis-
tration privileges to all tables, indexes and users, as well as the right to use
SolidConsole administration functions, and solidDB Remote Control. This is
also the role of the creator of the database.

_SYSTEM This is the schema name of all system tables and views.

SYS CONSOLE_ROLE This role has the right to use SolidConsole, but does not have other adminis-
tration privileges.

SYS _SYNC_ADMIN_ROLE|This is the administrator role for data synchronization functions.

SYS_SYNC_RE- This role is only for registering and unregistering a replica database to the
GISTER_ROLE master.

5.2.3 Examples of SQL Statements

Below are some examples of SQL statements for administering users, roles, and user privileges.

Creating Users

CREATE USER username IDENTIFIED BY password;

Only an administrator has the privilege to execute this statement. The following example creates a new user
named CALVIN with the password HOBBES.

CREATE USER CALVIN IDENTIFIED BY HOBBES;

Deleting Users

DROP USER user nane;

Only an administrator has the privilege to execute this statement. The following example deletes the user
named CALVIN.

142

5.2.3 Examples of SQL Statements

DROP USER CALVIN;

Changing a Password
ALTER USER username IDENTIFIED BY new password;

The user username and the administrator have the privilege to execute this command. The following example
changes CALVIN's password to GUBBES.

ALTER USER CALVIN IDENTIFIED BY GUBBES;

Creating Roles

CREATE ROLE rol enane;

The following example creates a new user role named GUEST_USERS.

CREATE ROLE GUEST_USERS;

Deleting Roles

DROP ROLE rol e_nane;

The following example deletes the user role named GUEST_USERS.

DROP ROLE GUEST_USERS;

Granting Privileges to a User or a Role

GRANT user_privilege ON table_name TO username or rol e_nane ;

The possible user privileges on tables are SELECT, INSERT, DELETE, UPDATE, REFERENCES and ALL.
ALL provides a user or arole all five privileges mentioned above. A new user has no privileges until they are
granted.

143

5.2.3 Examples of SQL Statements

The following example grants INSERT and DELETE privileges on a table named TEST_TABLE to the
GUEST_USERS role.

GRANT INSERT, DELETE ON TEST_TABLE TO GUEST_USERS;

The EXECUTE privilege provides a user the right to execute a stored procedure:

GRANT EXECUTE ON procedure_nanme TO usernane or role_nane ;

The following example grants EXECUTE privilege on a stored procedure named SP_TEST to user CALVIN.

GRANT EXECUTE ON SP_TEST TO CALVIN;

Granting Privileges to a User by Giving the User a Role

GRANT rol e_nane TO usernane ;

The following example gives the user CALVIN the privileges that are defined for the GUEST_USERS role.

GRANT GUEST_USERS TO CALVIN;

Revoking Privileges from a User or a Role

REVOKE user_privil ege ON tabl e_name FROM usernane or rol e_nane ;

The following example revokes the INSERT privilege on the table named TEST_TABLE from the
GUEST_USERS role.

REVOKE INSERT ON TEST_TABLE FROM GUEST_USERS;

Revoking Privileges by Revoking the Role of a User

REVOKE rol e_name FROM usernane ;

The following example revokes the privileges that are defined for the GUEST_USERS role from CALVIN.

144

5.3 Managing Tables

REVOKE GUEST_USERS FROM CALVIN;

Granting Administrator Privileges to a User

GRANT SYS_ADMIN_ROLE TO usernane ;

The following example grants administrator privileges to CALVIN, who now has all privileges to all tables.

GRANT SYS_ADMIN_ROLE TO CALVIN;

You may also want to grant a user the right to perform data synchronization operations. To do this, execute
the command:

GRANT SYS_SYNC_ADMIN_ROLE TO HOBBES

< Note

If the autocommit mode is set OFF, you need to commit your work. To commit your work use the
following SQL statement: COMMIT WORK; If the autocommit mode is set ON, the transactions are
committed automatically.

5.3 Managing Tables

solidDB has a dynamic data dictionary that allows you to create, delete and alter tables on-line. solidDB
database tables are managed using SQL commands.

In the solidDB directory, you can find a SQL script named sample.sql, which gives an example of managing
tables. You can run the script using SolidConsole.

Below are some examples of SQL statements for managing tables. Refer to Appendix B, solidDB SQL Syntax
for a formal definition of the solidDB SQL statements.

If you want to see the names of all tables in your database, issue the SQL statement SELECT * FROM
TABLES. ("TABLES" is a system-defined view.) Alternatively, you may use the predefined command
TABLES from SolidConsole. The table names can be found in the column TABLE_NAME.

145

5.3.1 Accessing System Tables

5.3.1 Accessing System Tables

The solidDB system tables store solidDB server information, including user information. Your ability to access
specific system tables depends on your user's role and access rights. For example, DBAs can view all inform-
ation about all stored procedures, including the procedure definition text (i.e. the CREATE PROCEDURE
statement). Normal users can see the stored procedures, including the procedure definition text, for procedures
that they have created. Normal users who have execute access on a stored procedure, but who did not create
that stored procedure, may look at some information about that stored procedure but may not see the procedure
definition text. For a list of system tables, refer to Appendix D, Database System Tables and System Views .

The table below provides the viewing access and/or object granting privileges for specific system tables and
their data by user role and user access rights.

Note that a "User with access rights" in this table refers to a normal user who has any one of the following
rights: INSERT, UPDATE, DELETE, or SELECT access.*

Table 5.2. Viewing Tables and Granting Access

Tasks DBA Owner User with access User with no access
rights* rights

Viewing All (no restric- |All (no restrictions) |All (no restrictions) All (no restrictions)

SYS_TABLES tions)

Viewing User tables in [All (no restric- |Restricted to the own- | All tables to which the |No tables can be

SYS_TABLES tions) ers' tables only user has INSERT, UP- |viewed.

DATE, DELETE, SE-
LECT, or REFER-

ENCES access rights.
Viewing All (no restric- |Columns in the own- |Columns in tables to [No columns can be
SYS_COLUMNS tions) er's tables which the user has IN- |viewed.

SERT, UPDATE, DE-
LETE, SELECT, or

REFERENCES access

rights.
Viewing SYS_PRO- |All (no restric- | Those procedures cre-| Those procedures in -~ |No procedures can be
CEDURES (excluding [tions) ated by the user which the user has ex- |viewed.
the procedure definition (owner). ecute access.

text — i.e. the text of
the CREATE PRO-
CEDUER statement)

146

5.3.2 Examples of SQL Statements

Tasks

DBA

Owner

User with access
rights*

User with no access
rights

Viewing Procedure
definition text in

All (no restric-
tions)

Those procedures cre-
ated by the user

Note that execute ac-
cess does not allow the

No procedures or pro-
cedure definition text

SYS_PROCEDURES (owner) user to see the proced- |can be viewed.
ure definition text.
Ability to Grant Access | Yes Yes No No

rights on procedures

Viewing SYS_TRIG- [All (no restric- | Those triggers created |[None No triggers can be
GERS tions) by the user (owner) viewed.
Viewing Trigger defini- [All (no restric- | Those triggers created | None No triggers can be

tiontextinSYS_TRIG-
GERS

tions)

by the user (owner)

viewed.

5.3.2 Examples of SQL Statements

Below are some examples of SQL statements for administering tables.

Creating Tables

CREATE TABLE tabl e_nanme (col utm_nane col umm_type
[, columm_name columm_type]-..);

All users have privileges to create tables.

The following example creates a new table named TEST with the column | of the column type INTEGER
and the column TEXT of the column type VARCHAR.

CREATE TABLE TEST (I

Removing Tables

DROP TABLE tabl e_nane;

INTEGER, TEXT VARCHAR);

Only the creator of the particular table or users having SYS_ADMIN_ROLE have privileges to remove tables.

The following example removes the table named TEST.

147

5.3.2 Examples of SQL Statements

DROP TABLE TEST;

Note

For catalogs and schemas: The ANSI standard for SQL defines the keywords RESTRICT and CAS-
CADE. When dropping a catalog or a schema, if you use the keyword RESTRICT, then you cannot
drop a catalog or schema if it contains other database objects (e.g. tables). Using the keyword CAS-
CADE allows you to drop a catalog or schema that still contains database objects — the database
objects that it contains will automatically be dropped. The default behavior (if you don't specify either
RESTRICT or CASCADE) is RESTRICT.

For database objects other than Catalogs and Schemas: The keywords RESTRICT and CASCADE
are not accepted as part of most DROP statements in solidDB SQL. Furthermore, for these database
objects, the rules are more complex than simply "pure CASCADE" or "pure RESTRICT" behavior,
but generally objects are dropped with drop behavior RESTRICT. For example, if you try to drop
tablel but table2 has a foreign key dependency on tablel, or if there are publications that reference
tablel, then you will not be able to drop tablel without first dropping the dependent table or publication.
However, the server does not use RESTRICT behavior for all possible types of dependency. For ex-
ample, if a view or a stored procedure references a table, the referenced table can still be dropped,
and the view or stored procedure will fail the next time that it tries to reference that table. Also, if a
table has a corresponding synchronization history table, that synchronization history table will be
dropped automatically. For more information about synchronization history tables, see solidDB
SmartFlow Data Replication Guide.

Adding Columns to a Table

ALTER TABLE tabl e_name ADD COLUMN col utm_name col unm_type;

Only the creator of the particular table or users having SYS_ADMIN_ROLE have privileges to add or delete
columns in a table.

The following example adds the column C of the column type CHAR(1) to the table TEST.

ALTER TABLE TEST ADD COLUMN C CHAR(1);

Deleting Columns from a Table

ALTER TABLE tabl e_name DROP COLUMN col um_nane;

148

5.4 Managing Indexes

A column cannot be dropped if it is part of a unique constraint or primary key. For details on primary keys,
read Section 5.4, “Managing Indexes”.

The following example statement deletes the column C from the table TEST.

ALTER TABLE TEST DROP COLUMN C;

- Note

If the autocommit mode is set OFF, you need to commit your work before you can modify the data
in the table you altered. To commit your work after altering a table, use the following SQL statement:

COMMIT WORK;

If the autocommit mode is set ON, then all statements, including DDL (Data Definition Language)
statements, are committed automatically.

5.4 Managing Indexes

Indexes are used to speed up access to tables. The database engine uses indexes to access the rows in a table
directly. Without indexes, the engine would have to search the whole contents of a table to find the desired
row. You can create as many indexes as you like on a single table; however, adding indexes does slow down
write operations, such as inserts, deletes, and updates on that table. For details on creating indexes to improve
performance, read Section 8.3, “Using Indexes to Improve Query Performance”.

There are two kinds of indexes: non-unique indexes and unique indexes. A unique index is an index where
all key values are unique. A unique index is always created, when the UNIQUE restraint is used when creating
an index.

You can create and delete indexes using the following SQL statements. Refer to Appendix B, solidDB SQL
Syntax, for a formal definition of the syntax for these statement.

5.4.1 Examples of SQL Statements

Below are some examples of SQL commands for administering indexes.

Creating an Index on a Table

CREATE [UNIQUE] INDEX index_nane ON base tabl e nane

149

5.4.2 Primary Key Indexes

colum_identifier [ASC | DESC]
[, colum_identifier [ASC | DESC]] ---

Only the creator of the particular table or users having SYS_ADMIN_ROLE have privileges to create or drop
indexes.

The following example creates an index named X_TEST on column | of the table TEST.

CREATE INDEX X_TEST ON TEST (I);

Creating a Unique Index on a Table

CREATE UNIQUE INDEX index_nane ON tabl e _name (col utmm_nane);

The following example creates a unique index named UX_TEST on column | of the table TEST.

CREATE UNIQUE INDEX UX_TEST ON TEST (I);

Deleting an Index

DROP INDEX i ndex_nane;

The following example deletes the index hamed X_TEST.

DROP INDEX X_TEST;

- Note

After creating or dropping an index, you must commit (or roll back) your work before you can
modify the data in the table on which you created or dropped the index.

5.4.2 Primary Key Indexes

To retrieve a single specific record from a table, we must be able to uniquely identify that record. solidDB
uses "primary keys" to uniquely identify each record in each table. A primary key is a column or combination
of columns that contains a unique value or combination of values. Each table has a primary key — either ex-
plicit or implicit.

150

5.4.3 Secondary Key Indexes

solidDB automatically creates a "primary key index" based on the field(s) of that primary key. A primary key
index, like any index, speeds up access to data in the table. Unlike other indexes, however, a primary key index
also controls the order in which records are stored in the database. (This is called "clustering".) Records are
stored in ascending order based on the primary key values.

If the creator of the table does not specify a primary key, then solidDB automatically creates a primary key
for the table. To ensure uniqueness in that primary key, the server uses a hidden internal row identifier. The
value of that row identifier may be retrieved and used in queries by way of a symbolic pseudo column name
"ROWID".

@ Note

In solidDB, it is not possible to add an explicit primary key after the table has been created. If a
primary key is not specified by a user, the most efficient query method is not available (unless
ROWID is used) for that table. Also, such a table cannot be used in referential integrity constraints
as a referenced table. For those reasons, it is strongly recommended that a primary key is always
defined at table creation.

Once a primary key is defined (whether by the table creator or by the server), the server will prevent rows
with duplicate primary key values from being inserted into the table.

5.4.3 Secondary Key Indexes

Since indexes speed up searches, it is often helpful for a table to have one index for each attribute (or combin-
ation of attributes) that is used frequently in searches. All indexes other than the primary index are called
"secondary indexes".

A table may have as many indexes as you like, as long as each index has a unique combination of columns,
order of columns, and order of values (ASCending, DESCending). For example, in the code shown below,
the third index duplicates the first and will either generate an error message or will waste disk space with
duplicate information.

CREATE INDEX il ON TABLE t1 (coll, col2);

-- The following is ok because although the columns are the same as in
-- index i1, the order of the columns is different.

CREATE INDEX i2 ON TABLE t1 (col2, coll);

-- The following is not ok because index i3 would be exactly the

-- same as index il.

CREATE INDEX i3 ON TABLE t1 (coll, col2); -- ERROR.

-- The following is ok because although the columns and

-- column order are the same, the order of the index values

151

5.4.4 Protection Against Duplicate Indexes

-— (ASCending vs. DESCending) is different.
CREATE INDEX i3b ON TABLE t1 (coll, col2) DESC;

Note that if one index is a "leading subset" of another (meaning that the columns, column order, and value
order of all N columns in index2 are exactly the same as the first N column(s) of index1), then you only need
to create the index that is the superset. For example, suppose that you have an index on the combination of
DEPARTMENT + OFFICE + EMP_NAME. This index can be used not only for searches by department,
office and emp_name together, but also for searches of just the department, or just the department and office
together. So there is no need to create a separate index on the department name alone, or on the department
and office alone. The same is true for ORDER BY operations; if the ORDER BY criterion matches a subset
of an existing index, then the server can use that index.

Keep in mind that if you defined a primary key or unique constraint, that key or constraint is implemented as
an index. Thus you never need to create an index that is a "leading subset" of the primary key or of an existing
unique constraint; such an index would be redundant.

Note that when searching using a secondary index, if the server finds all the requested data in the index key,
the server doesn't need to look up the complete row in the table. (This applies only to "read" operations, i.e.
SELECT statements. If the user updates values in the table, then of course the data rows in the table as well
as the values in the index(es) must be updated.)

5.4.4 Protection Against Duplicate Indexes

solidDB contains a protection against duplicate indexes. Occasionally, the recreation of an index
(DROP/CREATE) can fail if other indexes were created whereby the original index became a duplicate index.
To understand what duplicate indexes are, see the example below:

Let's assume we have created a table containing five columns, named A, B, C, D, E. The following indexes
have been created on the table:

e A
 AB

« BCE
* ABC

As you can see, index B is used for searching or filtering column B. Index BCE starts with column B.
Therefore, queries that use an index for locating column B can use index BCE. The same is the case with indexes
AB and ABC. Thus, indexes B and AB are duplicate indexes.

Duplicate indexes have, for example, the following adverse effects:

152

5.5 Referential Integrity

e The storage space required increases

* The update performance decreases

» Backup time increases

If you attempt to create duplicate indexes, index creation fails and solidDB issues error:
SOLID Table Error 13199: Duplicate index definition

For more information, see Appendix C, Error Codes, in solidDB Administration Guide.

5.5 Referential Integrity

Referential integrity is a concept for ensuring that relationships between database tables remain consistent.
In other words, references to data must be valid.

A relationship between two database tables, called a referenced table and a referencing table, is created by
using a foreign key. A foreign key is a field in the referencing table that matches the primary key column (or
other similar unique column) of the referenced table. In other words, the foreign key can be used to represent
a conceptual relationship of type 1:n such as "an employee belongs to a department”. Now, when the referencing
table has a foreign key to the referenced table, the concept of referential integrity states that you cannot add
a record to the referencing table (containing the foreign key) unless there is a corresponding record in the
referenced table.

As explained above, referential integrity is enforced by using the foreign keys. Foreign keys are maintained
with referential constraint definitions. The constraints also specify what referential actions solidDB must take
when the constraint is violated. This can happen, for example, when a row with a referenced primary key is
deleted from the referenced table. Foreign keys and constraints are explained into more detail in the following
chapters.

5.5.1 Primary Keys and Candidate Keys

In order for a table to participate in referential constraints as a referenced table, a primary key (preferable) or
candidate keys have to be defined. A primary key is defined with the primary key constraint syntax in the
CREATE TABLE statement, e.g.:

CREATE TABLE customers (
cust_id INTEGER PRIMARY KEY,
name CHAR(24),
city CHAR(40));

153

5.5.2 Foreign Keys

Another possibility is to define a unique index on a column or a group of columns and enact the NOT NULL
constraint for them. Effectively, this will produce a "candidate key". Using an explicit primary key is preferable
because of the involved performance gain while deriving joins.

5.5.2 Foreign Keys

A foreign key is a column (or group of columns) within a table that refers to (or "relates to™) a unique value
in another table. Each value in the foreign key column must have a matching value in the other table.

To ensure that each record in the referencing table references exactly one record in the referenced table, the
referenced column(s) in the referenced table must have a primary key constraint or having both unique and
not-null constraints. (Note that having a unique index is not sufficient.)

For example, in a bank, one table might hold customer information, and another table might hold account
information. Each account must be related to a customer, and would have a unique customer_id. This custom-
er_id would serve as the primary key of the customers table. Each account would also have a copy of the
customer_id of the customer who owns that account; this allows us to look up customer information based
on account information. The copy of the customer_id in the accounts table is a foreign key; it references the
matching value in the primary key of the customers table.

Below is an example. In this example, the CUST_ID column in the CUSTOMERS table is the primary key
of the referenced table, and the CUST_ID column of the ACCOUNTS table is a foreign key that refers to the
CUSTOMERS table. As you can see in the diagram below, each account is associated with a corresponding
customer. Some customers have more than one account.

Figure 5.1. Referential Constraint

Referencing Table: Accounts Referenced Table: Customers
ACCT_ID BALANCE | CUST_ID CUST_ID NAME CITY
100 100.00 [- 1 SMITH | cHICAGO

101 347.00 2 2 JONES OAKLAND
102 224.19 3 3 WONG ATLANTA
103 800.00 1

The referencing table "accounts" may be created with the following statement:

CREATE TABLE accounts (
acc_id INTEGER PRIMARY KEY,
balance FLOAT,
customer_id INTEGER REFERENCES customers);

154

5.5.2 Foreign Keys

In the REFERENCES clause, only the referenced table is specified, with no referenced column. By default,
the primary key is assumed. This is a preferred way allowing to avoid errors possibly made while specifying
the referenced columns.

In the example shown above, the primary key and foreign key used a single column. However, primary and
foreign keys may be composed of more than one column. Since each foreign key value must exactly match
the corresponding primary key value, a foreign key must contain the same number and data type of columns
as the primary key, and these key columns must be in the same order. However, a foreign key can have different
column names than the primary key, although this is rare. (The foreign key and primary key may also have
different default values. However, since values in the referenced table must be unique, default values are not
much used and are rarely used for columns that are part of a primary key. Default values are also not used
very often for foreign key columns.)

Although primary key values must be unique, foreign key values are not required to be unique. For example,
a single customer at a bank might have multiple accounts. The account_id that appears in the primary key
column in the CUSTOMERS table must be unique; however, the same account_id might occur multiple times
in the foreign key column in the ACCOUNTS table. As you can see in the illustration above, customer SMITH
has more than one account, and therefore her CUST _ID appears more than once in the foreign key column
of the ACCOUNTS table.

Although it is rare, a foreign key in a table may refer to a primary key in that same table. In other words, the
referenced table and the referencing table are the same table. For example, in a table of employees, each em-
ployee record might have a field that contains the 1D of the manager of that employee. The managers themselves
might be stored in the same table. Thus the manager_id of that table might be a foreign key that refers to the
employee_id of that same table. You can see an example of this below.

Figure 5.2. Self-referential Constraint

A SELF-REFERENTIAL TABLE

EMP_ID MGR_ID EMP_NAME
1 NULL [ANNAN
10 1 WONG
20 1 SMITH
147 10 JONES
162 20 RAMA

In this example, Rama’s manager is Smith (Rama's MGR_ID is 20, and Smith's EMP_ID is 20). Smith reports
to Annan (Smith's MGR_ID is 1, and Annan's EMP_ID is 1.) Jones' manager is Wong, and Wong's manager
is Annan. If Annan is the president of the company, then Annan doesn't have a manager,and the value of the
foreign key is NULL.

155

5.5.2 Foreign Keys

If a primary key is composed of more than one column, it should be defined after the columns. For example:

CREATE TABLE DEPT (
DIVNO INTEGER,
DEPTNO INTEGER,
DNAME VARCHAR,
PRIMARY KEY (DIVNO, DEPTNO));

A similar syntax may be used for foreign keys. However, it is highly recommended that foreign keys are
defined with the CONSTRAINT syntax utilizing also a constraint name.This approach allows for removing
foreign key dynamicaly, with the ALTER TABLE statements, after tables have been created. For example:

CREATE TABLE EMP (
EMPNO INTEGER PRIMARY KEY,
DIVNO INTEGER,
DEPTNO INTEGER,
ENAME VARCHAR,
CONSTRAINT emp_fkl FOREIGN KEY (DIVNO, DEPTNO) REFERENCES DEPT);

< Note

Similarly to other integrity constraints, you can name referential integrity constraints (foreign keys)
and manipulate them (drop or add) dynamically, with the ALTER TABLE statement. For more in-
formation, see Section 5.5.4, “Dynamic Constraint Management”.

Refer to Appendix B, solidDB SQL Syntax, for CREATE TABLE and ALTER TABLE syntax detail.

Not all tables are allowed to have foreign keys. If a table is involved in master/replica synchronization and is
in a replica server, that table can not have any foreign key constraints. This limitation applies only to the tables
that are in replicas and that are involved in publish/subscribe (refresh) activities. Note that tables in the replica
that are not involved in refresh activities may still have foreign keys. Foreign keys are allowed in the tables
that are in the master database, even if those tables are involved in publish/refresh activities.

This limitation does not apply to primary keys. Any table may have a primary key (and some tables, such as
synchronization tables, must have a primary key).

Defining a foreign key always creates an index on the foreign key column(s). Each time when a referenced
record is updated or deleted, the server checks that there are no referencing records that are left without a
reference. Giving each foreign key an index improves the performance of foreign key checking.

156

5.5.3 Referential Actions

5.5.3 Referential Actions

Referential integrity is maintained by the system, by taking certain actions when referential constraints are
violated, for example, in one of the following ways:

when a row containing an invalid foreign key value is inserted in the referencing table
when a foreign key in the referencing table is updated to an invalid value
when a row with a referenced primary key is deleted from the referenced table

when a referenced primary key is updated in the referenced table

The following actions are available when the constraint is violated:

No action. This option restricts the operation, or rolls back the operation that violates the referential integrity
constraint.

Cascade. In the case of operations performed on the referenced table, cascades the operations on the ref-
erenced table down to the referencing tables. This includes deleting all the referencing rows (a cascading
delete) and updating all the referencing foreign-key values (a cascading update).

Set default. In the case of operations performed on the referenced table, sets the referencing columns to
a predefined default value.

Set null. In the case of operations performed on the referenced table, sets the referencing columns to null.

Restrict. Referential integrity actions sometimes allow changes to a table that temporarily violate a refer-
ential constraint. The No action allows such violations. If you have a requirement that the table state must
never violate any constraint even temporarily, use the Restrict referential action.

If no action is specified, the default 'No action' is assumed.

No cycles are allowed in cascading referential actions. An effort to create a cycle composed of foreign keys
having cascading actions results in an error.

Note

For any two tables, at most one CASCADE UPDATE path between them can be defined. The restriction
does not apply to CASCADE DELETE.

157

5.5.4 Dynamic Constraint Management

5.5.4 Dynamic Constraint Management

Constraints can be managed dynamically with the ALTER TABLE clause. The sub-clauses that can be used
are:

« ADD CONSTRAINT. This clause adds a named constraint to a table.

+ DROP CONSTRAINT. This clause removes a named constraint from a table.
@) Note
In solidDB, when the keyword CONSTRAINT is used, the constraint name is mandatory.

e CHECK. This constraint allows you to specify rules to your tables or table columns. Each rule is a condition
that must not be false for any row in the table on which it is defined. Otherwise the table cannot be updated.

The rules are Boolean expressions. The rule can check, for example, a range of values, equity, or the rule

can be a simple comparison. You can use several checks in one statement. The following expressions and
operators are available:

Table 5.3. Expressions and Operators

Expression Explanation
< less than
> greater than
= equal to
<= less than or equal to
>= greater than or equal to
<> not equal to
AND negation
ANY in the list that follows or in the table specified
BETWEEN between
IN in the list that follows or in the table specified
MAX maximum value
MIN minimum value
NOT conjunction
OR disjunction

158

5.6 Managing Database Objects

Expression Explanation

XOR exclusive or

» UNIQUE. The UNIQUE constraint requires that no two rows in a table contain the same value in a given
column or list of columns. You can create a unique constraint at either the table level or the column level.
Note: primary keys contain the unique constraint.

» FOREIGN KEY. The FOREIGN KEY constraint requires that each value in the foreign key column must
have a matching value in the referenced table.

= Note

solidDB automatically generates names for unnamed constraints. If you want to view the names, use
the command soldd -x hiddennames.

For constraint syntax information and examples, see the CREATE TABLE and ALTER TABLE sections in
Appendix B, solidDB SQL Syntax.

5.6 Managing Database Objects

5.6.1 Introduction

solidDB allows you to use catalogs and schemas to organize your data. (Catalogs also have other uses, which
we will explain later.) solidDB's use of schemas conforms to the SQL standard, while solidDB's use of catalogs
is an extension to the SQL standard.

Catalogs and schemas allow you to group database objects (e.g. tables, sequences, etc.) in a hierarchical way.
This allows you to put related items into the same group. For example, all the tables related to the accounting
system might be in one group (e.g. a catalog), while all the tables related to the human resources system might
be in another group. You can also group database objects by user. For example, all of the tables used by Jane
Smith might be in a single schema.

Catalogs are the highest (broadest) level of the hierarchy. Schema names are the mid-level. Specific database
objects, such as tables, are the lowest (narrowest) level of the hierarchy. Thus, a single catalog may contain
multiple schemas, and each of those schemas may contain multiple tables.

Object names must be unique within a group, but do not have to be unique across groups. Thus, for example,
Jane Smith's schema and Robin Trower's schema might each have a table named "bills". These two tables
have nothing to do with each other. They may have different structures and different data, even though they
have the same name. Similarly, the catalog "accounting_catalog" and the catalog "human_resources_catalog"

159

5.6.2 Catalogs

might each have a schema named "david_jones". Those schemas are unrelated to each other, even though
they have the same name.

Not surprisingly, if you want to specify a particular table and that table name is not unique in the database,
you can identify it by specifying the catalog, schema, and table name, e.g.

accounting_catalog.david_jones._bills
The syntax is discussed in more detail later.

If you don't specify the complete name (i.e. if you omit the schema, or the schema and the catalog), then the
server uses the current/default catalog and schema name to determine which table to use.

In general, a catalog can be thought of as a logical database. A schema typically corresponds to a user. This
is discussed in more detail below.

5.6.2 Catalogs

A physical database file may contain more than one logical database. Each logical database is a complete,
independent group of database objects, such as tables, indexes, procedures, triggers, etc. Each logical database
is a catalog. Note that a solidDB catalog is not just limited to indexes (as in the traditional sense of a library
card catalog, which serves to locate an item without containing the full contents of the item).

Catalogs allow you to logically partition databases so you can:
» Organize your data to meet the needs of your business, users, and, applications.

» Specify multiple master or replica databases (by using logical databases) for synchronization within one
physical database server. For more details on implementing synchronization in multi-master environments,
read "Multi-master synchronization model" in solidDB SmartFlow Data Replication Guide.

5.6.3 Schemas

A catalog may contain one or more schemas. A schema is a persistent database object that provides a definition
for part or all of the database. It represents a collection of database objects associated with a specific schema
name. These objects include tables, views, indexes, stored procedures, triggers, and sequences. Schemas allow
you to provide each user with his or her own database objects (such as tables) within the same logical database
(that is, a single catalog). If no schema is specified with a database object, the default schema is the user id
of the user creating the object.

160

5.6.4 Uniquely Identifying Objects within Catalogs and Schemas

5.6.4 Uniquely Identifying Objects within Catalogs and Schemas

Schemas make it possible for two different users to create tables with the same names in the same physical
database or even in the same logical database. For example, assume in a single physical database, there are
two separate catalogs, employee_catalog and inventory_catalog. Assume also that each catalog contains two
separate schemas, named smith and jones, and that the same Smith owns both "smith" schemas and the same
Jones owns both "jones" schemas. If Smith and Jones create a table named books in each of their schemas,
then we have a total of 4 tables named "books", and these tables are accessible as:

employee_catalog.smith._books
employee_catalog. jones_books
inventory_catalog.smith_books
inventory_catalog. jones_books

As you can see, the catalog name and schema name can be used to "qualify" (uniquely identify) the name of
a database object such as a table. Object names can be qualified in all DML statements by using the syntax:

cat al og_name. schena_nane. dat abase_obj ect

or

cat al og_nane. user _i d. dat abase_obj ect

For example:

SELECT cust_name FROM accounting_dept.smith._overdue_bills;

You can qualify one or more database objects with a schema name, whether or not you specify a catalog name.
The syntax is:

schenma_nane. dat abase_obj ect _nane

or

user _i d. dat abase_obj ect _nane

For example,

161

5.6.5 Examples of SQL Statements

SELECT SUM(sales_tax) FROM jones.invoices;
To use a schema name with a database object, you must have already created the schema.

By default, database objects that are created without schema names are qualified using the user 1D of the
database object's creator. For example:

user i d.table_name
Catalog and schema contexts are set using the SET CATALOG or SET SCHEMA statement.

If a catalog context is not set using SET CATALOG, then all database object names are resolved by using
the default catalog name.

- Note

When creating a new database or converting an old database to a new format, the user is prompted
to specify a default catalog name for the database system catalog. Users can access the default catalog
name without knowing this specified default catalog name. For example, users can specify the following
syntax to access the system catalog:

"' __SYSTEM.tabl e

solidDB translates the empty string (") specified as a catalog name to the default catalog name.
solidDB also provides for automatic resolution of SYSTEM schema to the system catalog, even
when users provide no catalog name.

The following SQL statements provide examples of creating catalogs and schemas. Refer to Appendix B,
solidDB SQL Syntax, for a formal definition of the solidDB SQL statements.

5.6.5 Examples of SQL Statements

Below are some examples of SQL statements for managing database objects.

Creating a Catalog

CREATE CATALOG cat al og_nane

162

5.6.5 Examples of SQL Statements

Only the creator of the database or users having SYS_ADMIN_ROLE have privileges to create or drop
catalogs.

The following example creates a catalog hamed C and assumes the userid is SMITH

CREATE CATALOG C;

SET CATALOG C;

CREATE TABLE T (i INTEGER);

SELECT * FROM T;

--The name T is resolved to C.SMITH.T

Setting a Catalog and Schema Context
The following example sets a catalog context to C

and the schema context to S.

SET CATALOG C;

SET SCHEMA S;

CREATE TABLE T (i INTEGER);

SELECT * FROM T;

-- The name T is resolved to C.S.T

Deleting a Catalog

DROP CATALOG cat al og_nane

The following example deletes the catalog named C.

DROP CATALOG C;

Creating a Schema

CREATE SCHEMA schema_nane

Any database user can create a schema; however, the user must have permission to create the objects that
pertain to the schema (for example, CREATE PROCEDURE, CREATE TABLE, etc.).

163

5.6.5 Examples of SQL Statements

Note that creating a schema does not implicitly make that new schema the current/default schema. You must
explicitly set that schema with the SET SCHEMA statement if you want the new schema to become the current
schema.

The following example creates a schema named FINANCE and assumes the user id is SMITH:

CREATE SCHEMA FINANCE;

CREATE TABLE EMPLOYEE (EMP_ID INTEGER);

-- NOTE: The employee table is qualified to SMITH.EMPLOYEE, not

-— FINANCE.EMPLOYEE. Creating a schema does not implicitly make that
-- new schema the current/default schema.

SET SCHEMA FINANCE;

CREATE TABLE EMPLOYEE (1D INTEGER);

SELECT 1D FROM EMPLOYEE;

-— In this case, the table is qualified to FINANCE.EMPLOYEE

Deleting a Schema

DROP SCHEMA schema_nane

The following example deletes the schema named FINANCE.

DROP SCHEMA FINANCE;

164

Chapter 6. Managing Transactions

This chapter concentrates on transaction management. To be more specific, this chapter explains how to
manage transactions, how to deal with concurrency control and locking, and how to choose the durability
level.

6.1 Managing Transactions

A transaction is a group of SQL statements treated as a single unit of work; either all the statements are executed
as a group, or none are executed. This section assumes you know the fundamentals for creating transactions
using standard SQL statements. It describes how solidDB SQL lets you handle transaction behavior, concurrency
control, and isolation levels.

6.1.1 Defining Read-Only and Read-Write Transactions
To define a transaction to be read-only or read-write, use the following SQL commands:
SET TRANSACTION { READ ONLY | READ WRITE }
The following options are available with this command.
* READ ONLY

Use this option for a read only transaction.
* READWRITE

Use this option for a read and write transaction. This option is the default.

& Note

To detect conflicts between transactions, use the standard ANSI SQL command SET TRANSACTION
ISOLATION LEVEL to define the transaction with a Repeatable Read or Serializable isolation level.
For details, read For details, read chapter Choosing Transaction Isolation Levels in solidDB Adminis-
tration Guide.

Transactions must be ended with the COMMIT WORK or ROLLBACK WORK commands unless autocommit
is used.

165

6.1.2 Setting Concurrency Control

6.1.2 Setting Concurrency Control

Earlier, we discussed the theory behind concurrency control ("locking™). This section explains some of the
commands used in specifying what type of concurrency control you would like to use.

Setting Pessimistic and Mixed Concurrency Control

By default, solidDB uses optimistic concurrency control. When necessary, you can also use pessimistic (row-
level locking) or mixed concurrency control methods. Pessimistic concurrency control is more appropriate,
for example, in applications that contain small tables that are frequently updated. In the case of these so-called
hotspots, conflicts are so probable that optimistic concurrency control wastes effort in rolling back conflicting
transactions.

Mixed concurrency control is available by setting individual tables to optimistic or pessimistic. Mixed con-
currency control is a combination of row-level pessimistic locking and optimistic concurrency control. By
turning on row-level locking table-by-table, you can specify that a single transaction use both concurrency
control methods simultaneously. This functionality is available for both read-only and read-write transactions.

@ Note

Pessimistic table level locks in shared mode are possible with tables that are synchronized. This
functionality provides users with the option to run some operations for synchronization in pessimistic
mode even with optimistic tables. For example, when a REFRESH is executed in pessimistic mode
in a replica, solidDB locks all tables in shared mode; later, if necessary, the server can "promote”
these locks to exclusive table locks. This is done in a few synchronization statements when optional
keyword PESSIMISTIC is specified. Note that read operations do not use any locks.

To set individual tables for optimistic or pessimistic concurrency, use the following SQL command:

ALTER TABLE base_t abl e_nane SET {OPTIMISTIC | PESSIMISTIC}
Note that by default all tables are set for optimistic.

You can also set a database-wide defaultinthe [Gener al] section of the configuration file with the following
parameter:

Pessinistic = yes

When you specify PESSIMISTIC concurrency control, the server places locks on rows to control the level
of consistency and concurrency when users are submitting queries or updates to rows.

166

6.2 Concurrency Control and Locking

Setting Lock Timeout

The lock timeout setting is the time in seconds that the engine waits for a lock to be released. By default, lock
timeout is set to 30 seconds. When the timeout interval is reached, solidDB terminates the timed-out statement.
For example, if one user is querying a specific row in a table and a second user tries to update data in the same
row, the update will not go through until the first user's query is completed (or times out). If the first user's
query is completed and the second user's query hasn't timed out yet, then a lock is issued for the second user's
update transaction. If the first user doesn't finish before the second user times out, then the second user's
statement is terminated by the server.

You can set the lock timeout with the following SQL command:

SET LOCK TIMEOUT ti meout i n_seconds

By default, the granularity is in seconds. The lock timeout can be set at millisecond granularity by adding
"MS" after the value, e.g.

SET LOCK TIMEOUT 10MS;
Without the "MS", the lock timeout will be in seconds.

Note that the maximum timeout is 1000 seconds (a little over 15 minutes). The server will not accept a longer
value.

Setting Lock Timeout for Optimistic Tables

When you use SELECT FOR UPDATE, the selected rows are locked even if the table's locking mode was
set to "optimistic”. These rows must be locked to ensure that the update will be successful. By default, the
lock timeout in this situation is 0 seconds — in other words, either you immediately get the lock, or you get
an error message. If you would like the server to wait and try again to get the lock before giving up, then you
can use the following SQL command to set the lock timeout separately for optimistic tables.

SET OPTIMISTIC LOCK TIMEOUT seconds

6.2 Concurrency Control and Locking

In a system where multiple users may try to update the same data simultaneously, the system must limit con-
current access; in other words, the system must allow only one user at a time to change the data.

Although concurrency control is a basic capability of any good database system, the topic can become surpris-
ingly complex and there are some subtleties. This section of the manual attempts to explain how concurrency

167

6.2.1 The Purpose of Concurrency Control

control and locking behave from a user perspective. (We do not attempt to describe most of the internal
mechanisms by which the server actually implements concurrency control.) This section explains:

1. the purpose of concurrency control,

2. exclusive vs. shared locks,

3. pessimistic vs. optimistic concurrency control,
4. table locks,

5. lock duration,

6. transaction isolation levels,

7. miscellaneous info

See also Chapter 6, Managing Transactions for more information about locks and transactions.

6.2.1 The Purpose of Concurrency Control

The purpose of concurrency control is to prevent two different users (or two different connections by the same
user) from trying to update the same data at the same. Concurrency control can also prevent one user from
seeing out-of-date data while another user is part way through updating the same data. Below is a simple ex-
ample of why concurrency control is needed.

Suppose that your checking account contains $1,000. Suppose also that today you deposit $300 and you spend
$200 from that account. Obviously, at the end of the day your account should have $1,100. However, if the
account updates are done "simultaneously" rather than in sequence, one update might write over another update.

Suppose that at 11:00 AM bank teller #1 looks up your account and sees that you have $1,000. She subtracts
the $200 check, but is not able to save the updated account balance ($800) immediately. At 11:01 AM, bank
teller #2 looks up your account and still sees the $1,000 balance. She adds your $300 deposit and saves your
new account balance as $1,300. At 11:09 AM, bank teller #1 returns to her terminal, finishes entering and
saving the updated value that she calculated ($800). That $800 value writes over the $1300. At the end of the
day, your account has $800 when it should have had $1,100 ($1000 + 300 - 200).

To prevent two users from "simultaneously" updating data (and potentially writing over each other's updates),
database software uses a concurrency control mechanism. solidDB offers two different concurrency control
mechanisms. These are called "pessimistic concurrency control” (usually just called "locking") and "optimistic
concurrency control”. (We will explain the reasons for these terms later.

For simplicity, in this example we will assume the system uses locking as its concurrency control mechanism.

168

6.2.2 EXCLUSIVE vs. SHARED LOCKS

A lock is a mechanism for limiting other users' access to a piece of data. When one user has a lock on a record,
the lock prevents other users from changing (and in some cases reading) that record.

When teller #1 starts working on your account, a "lock" is placed on the account; if teller #2 tries to read or
update your account while teller #1 is updating your account, teller #2 will not be given access and will typ-
ically get an error message. In most database servers, the lock is placed on an individual record in the database.
(We will discuss table-level locks later.) Using our banking example, a teller might get a lock on the record
that contains your checking account balance without also locking your savings account balance and without
locking the records of any other users' accounts.

Locking allows us to increase SAFETY at the cost of CONCURRENCY. We assure data integrity, but we
do it by preventing more than one user at a time from working with a particular piece of data.

6.2.2 EXCLUSIVE vs. SHARED LOCKS

An exclusive lock allows only one user/connection to access (read or update) a particular piece of data. A
shared lock allows multiple users to read data, but doesn't allow any of them to update the data.

If a user is updating data (as in our bank example) and is using pessimistic concurrency control (i.e. locking),
then that user must acquire an "exclusive" lock. No other user may read or update that data (e.g. bank account
record) while the exclusive lock is held. In addition, if you are using pessimistic concurrency control, no
other user may even view the record that has been exclusively locked. That prevents a user from seeing, for
example, a mix of updated data and not-yet-updated data. At any given time, only one user may have an ex-
clusive lock on a particular piece of data.

If both users only want to read (not change) the data, then each user can use a "shared" lock. For example, if
I am reading, but not updating, a record, then another user can look at that record at the same time. Many
users may have shared locks on the same item (record, table, etc.) at the same time. For example, you, your
spouse, your banker, and a credit rating agency could all look at your checking account balance simultaneously,
as long as none of you try to change it at the same time.

Shared and exclusive locks cannot be mixed. If you have an exclusive lock on a record, | cannot get a shared
lock (or an exclusive lock) on that same record.

6.2.3 PESSIMISTIC vs. OPTIMISTIC Concurrency Control

As we mentioned previously, solidDB offers two different types of concurrency control mechanisms, which
are known as "pessimistic" and "optimistic". We explain both methods below. By default, solidDB uses "op-
timistic" concurrency control.

Pessimistic concurrency control is also known as "locking”. Locks allow multiple users to safely share a
database as long as all users are updating different data at the same time. For example, you can update Ms.

169

6.2.3 PESSIMISTIC vs. OPTIMISTIC Concurrency Control

Smith's record while | update Mr. Kumar's record. (For the moment, | will simplify the discussion by focussing
only on update operations and exclusive locks, not read-only/select operations and shared locks.)

When locks are used, the locks are placed as soon as any piece of the row is updated. Thus it is impossible
for two users to update a row at the same time. As soon as one user gets a lock, no one else can process that
row. This is a safe, conceptually simple approach. The disadvantage is that it requires overhead for every
operation, whether or not two or more users are actually trying to access the same record. This overhead is
small, but adds up because every row that is updated requires a lock. Furthermore, every time that a user tries
to access a row, the system must also check whether the requested row(s) are already locked by another user
(or connection).

To extend our earlier example with bank tellers, when teller #1 gets a lock, teller #2 must check for that lock,
no matter how unlikely it is that teller #2 will want to work on the same record at the same time as teller #1.
Checking every record that you use will take some time. Furthermore, it's important that during that checking
no other teller tries to run the same check as teller #2 (otherwise they might both see at 10:59:59 that record
X is not in use, and then they might both try to lock it at 11:00:00). Thus even checking a lock can itself require
another lock to prevent two users from changing the locks at the time.

Pessimistic concurrency control (i.e. locking) is called "pessimistic" because the system assumes the worst
— it assumes that two users will want to update the same record at the same time, and then prevents that
possibility by locking the record, no matter how unlikely conflicts actually are.

An alternative approach to locking is called "optimistic concurrency control”. Optimistic concurrency control
assumes that although conflicts are possible, they will be very rare. Instead of locking every record every time
that it is used, the software merely looks for indications that two users actually did try to update the same record
at the same time. If that evidence is found, then one user's updates are discarded (and of course the user is
informed).

Below is a description of one way that the server can detect conflicts after they occur (rather than preventing
them before they occur). For simplicity, we'll assume that an update is done as the following series of actions:

1. Read the data from a disk drive into memory.

2. Update the data in memory.

3. Write the updated data back to the disk drive.

(The principle is the same even if the updated data is written to a device other than a disk drive.)

When using optimistic locking, each time that the server reads a record to try to update it, the server makes
a copy of the "version number" of the record and stores that copy for later reference. When it's time to write
the updated data back to the disk drive, the server compares the original version number that it read with the
version number that the disk drive now contains. If the version numbers are the same, then no one else changed

170

6.2.3 PESSIMISTIC vs. OPTIMISTIC Concurrency Control

the record and we can write our updated value. However, if the value we originally read and the current value
on the disk are not the same, then someone has changed the data since we read it, and whatever operation we
did is probably out-of-date, so we discard our version of the data and give the user an error message. Naturally,
each time that we update a record, we also update the version number.

When you use optimistic locking, you don't find out there's a conflict until just before you write the updated
data. In pessimistic locking, you find out there's a conflict as soon as you try to read the data. To use our
analogy with banks again, pessimistic locking is like having a guard at the bank door who checks your account
number when you try to enter; if someone else (a spouse, or a merchant to whom you wrote a check) is already
in the bank accessing your account, then you can't enter until that other person finishes her transaction and
leaves. Optimistic locking, on the other hand, allows you to walk into the bank at any time and try to do your
business, but at the risk that as you are walking out the door the bank guard will tell you that your transaction
conflicted with someone else's and you'll have to go back and do the transaction again.

Optimistic and pessimistic concurrency control differ in another important way besides the time at which
conflicts are detected and error messages are issued. Pessimistic locking allows one user to not only block
another user from updating the same record, but even from reading that record. If you use pessimistic locking
and you get an exclusive lock, then no other user can even read that record. With optimistic locking, however,
we don't check for conflicts except at the time that we write updated data to disk. If userl updates a record
and user2 only wants to read it, then user2 simply reads whatever data is on the disk and then proceeds, without
checking whether the data is locked. User2 might see slightly out-of-date information if userl has read the
data and updated it but has not yet "committed" the transaction.

solidDB actually implements optimistic concurrency control in a more sophisticated way than this. Rather
than giving each user "whatever version of data is on the disk at the moment it is read", solidDB can store
multiple versions of each data row temporarily. Each user's transaction sees the database as it was at the time
that the transaction started. This way, the data that each user sees is consistent throughout the transaction, and
users are able to concurrently access the database. Data is always available to users because locking is not
used; access is improved since deadlocks no longer apply. (Again, however, users run the risk that their
changes will be thrown out if those changes conflict with another user's changes.) For details about how
multiversioning is done, read the section of solidDB Administration Guide titled solidDB Bonsai Tree Mul-
tiversioning and Concurrency Control.

The descriptions above of optimistic and pessimistic concurrency control are slightly simplified. Even if a
table uses pessimistic locking, and even if a record within that table has an exclusive lock, another user may
execute read operations on the locked record under specific conditions. If the reader explicitly sets her trans-
action to be a read-only transaction, then she can use versioning rather than locking. This only occurs if the
user explicitly declares the transaction as read only by issuing the command:

SET TRANSACTION READ ONLY;

171

6.2.3 PESSIMISTIC vs. OPTIMISTIC Concurrency Control

Thus, for example, userl might put an exclusive lock on a record and update it. When the record is updated,
its version number changes. User2, who is using a read-only transaction, can read the previous version of the
record even though the record has an exclusive lock on it.

Note that pessimistic locking allows you an option that optimistic locking does not offer. We said earlier that
pessimistic locks fail "immediately" — i.e., if you try to get an exclusive lock on a record and another user
already has a lock (shared or exclusive) on that record, then you will be told that you can't get a lock. In fact,
solidDB allows you the option of either failing immediately or of waiting a specified number of seconds before
failing. You might specify a wait of 30 seconds; this means that if you initially try to get the lock and cannot,
the server will continue trying to get the lock until either it gets the lock or until the 30 seconds has elapsed.
In many cases, especially when transactions tend to be very short, you may find that setting a brief wait allows
you to continue activities that otherwise would have been blocked by locks.

This wait mechanism applies only to pessimistic locking, not to optimistic concurrency control. There is no
such thing as "waiting for an optimistic lock". If someone else changed the data since the time that you read
it, no amount of waiting will prevent a conflict that has already occurred. In fact, since optimistic concurrency
methods do not place locks, there is literally no "optimistic lock" to wait on.

- Note

When executing SELECT FOR UPDATE, the server uses an update mode lock, which prevents other
users from reading or updating that row and ensures that the current user can update the row. For
more information, see the section called “Shared, Exclusive, and Update Locks”, Section 6.1.2,
“Setting Concurrency Control”, and the section called “Setting Lock Timeout for Optimistic Tables”.

Neither pessimistic nor optimistic concurrency control is "right" or "wrong". When properly implemented,
both approaches ensure that your data is properly updated. In most scenarios, optimistic concurrency control
is more efficient and offers higher performance, but in some scenarios pessimistic locking is more appropriate.
In situations where there are a lot of updates and relatively high chances of users trying to update data at the
same time, you probably want to use pessimistic locking. If the odds of conflict are very low (many records
and relatively few users, or very few updates and mostly "read" operations), then optimistic concurrency
control is usually the best choice. The decision will also be affected by how many records each user updates
at a time. In our bank example, we usually update only one account/record at a time. For some applications,
however, each operation may update a large number of records at a time (for example, the bank might add
interest earnings to every account at the end of each month), virtually assuring that if two such applications
are running at the same time then they will have conflicts.

You can override optimistic locking and specify pessimistic locking instead. You can do this at the level of
individual tables. One table might follow the rules of optimistic locking while another table follows the rules
of pessimistic locking. Both tables can be used within the same transaction and even the same statement;
solidDB takes care of the details for you. For more details about how to specify optimistic vs. pessimistic,
see the section called “Setting the Concurrency (Locking) Mode to Optimistic or Pessimistic”.

172

6.2.3 PESSIMISTIC vs. OPTIMISTIC Concurrency Control

You might wonder whether "optimistic locking" is a true locking scheme at all. When we use optimistic
locking, we do not actually place any locks. Thus the name "optimistic locking" is misleading. However, op-
timistic locking serves the same purpose as pessimistic locking (it prevents overlapping updates), so it is
labeled "locking", even though the underlying mechanism is not a true lock.

1) Important

By default, solidDB servers use optimistic locking for disk-based tables. Optimistic locking allows
fast performance and high concurrency (access by multiple users), at the cost of occasionally "refusing"
to write data that was initially accepted but was found at the last second to conflict with another user's
changes.

On the other hand, in in-memory tables, only pessimistic concurrency control is available because it
leads to better memory preservation

Setting the Concurrency (Locking) Mode to Optimistic or Pessimistic

For in-memory tables that are used in transactions with an isolation level higher than READ COMMITTED,
the server will use pessimistic concurrency control.

For all other tables, the server uses the rules below (shown in declining order of precedence):

1. You may set the concurrency mode for a specific table by using the ALTER TABLE command, e.g.

ALTER TABLE MyTable SET PESSIMISTIC;
ALTER TABLE MyTable SET OPTIMISTIC;

2. You may set the default concurrency mode for all tables by setting the solid. ini configuration
parameter Gener al . Pessi ni sti c, e.g.

[General]
Pessimistic=yes

Note that this parameter takes effect only at the time that the server starts. If you manually edit the
solid. ini file, the change will not be visible until the server restarts.

Note also that this parameter cannot be set via an ADMIN COMMAND in versions up through and in-
cluding 4.0.

173

6.2.3 PESSIMISTIC vs. OPTIMISTIC Concurrency Control

3. If none of the above methods are used to specify the concurrency mode, then the server defaults to op-
timistic concurrency.

Since the value of the Gener al . Pessi mi st i ¢ can change, the concurrency control for a table may change.
It is quite possible for a table to use optimistic concurrency control during one "execution” of the server, and
use pessimistic concurrency control during another execution.

For tables whose setting is based on the value of the Gener al . Pessi ni st i ¢ parameter, the table uses
the current value of the Gener al . Pessi m st i ¢ parameter, not the value at the time that the table was
created.

Reading the Concurrency Mode

For in-memory tables that are used in transactions with an isolation level higher than READ COMMITTED,
the server will use pessimistic concurrency control, and you should ignore the rules below.

For all other tables, there is no single method of reading a table's concurrency mode. You must follow the
steps below to determine the concurrency mode for the desired table.

1. Ifatable's concurrency mode was set explicitly with the ALTER TABLE command, then the concurrency
mode for that table is recorded in the system table named SYS_TABLEMODES. You can read the value
by executing the following command:

SELECT SYS_TABLEMODES.ID, table_name,
FROM SYS_TABLES, SYS_TABLEMODES
WHERE SYS_TABLEMODES.ID = SYS_TABLES.ID;

Note that this works ONLY if you explicitly set the table's concurrency mode using the ALTER TABLE
command.

2. Ifatable's concurrency mode was not set with the ALTER TABLE command, then check the concurrency
control mode specified by the solid. ini file at the time that the server started. You can read this level
by executing the command:

ADMIN COMMAND ‘describe parameter general.pessimistic';

If the value in the solid. ini file has not been changed since the server started, and if the value has
not been overridden by an ADMIN COMMAND, then of course you can determine the value by looking
atthe solid. ini file.

174

6.2.4 Table Locks

3.

(Note: Prior to version 4.00.0031, the server did not properly recognize the ADMIN COMMAND to
display the value of the Gener al . Pessi mi st i c variable. This means that for earlier versions of the
server you will need to look at the value in the solid. ini file. If anyone changed the value in the
solid. ini file since the time that the server started, then you will not know the correct value.)

If none of the above apply, then the server will default to optimistic for all tables.

Shared, Exclusive, and Update Locks

The following lock modes are used only for rows in tables that are using pessimistic locking:

SHARED

Multiple users can hold shared locks on the same row simultaneously. Shared locks are used on read-only
or SELECT operations. Shared locks allow many users to read data, but do not allow any users to change
that data.

EXCLUSIVE

When one user has an exclusive lock on a row, no other lock of any type may be placed on that row. Thus
the user with the exclusive lock has exclusive access to that row. Exclusive locks are used on insert, update,
and delete operations.

UPDATE

When a user accesses a row with the SELECT... FOR UPDATE statement, the row is locked with an update
mode lock. This means that no other user can read or update the row, and ensures the current user can
later update the row. Update locks are similar to exclusive locks. The main difference between the two is
that you can acquire an update lock when another user already has a shared lock on the same record. This
lets the holder of the update lock read data without excluding other users; however, once the holder of the
update lock changes the data, the update lock is converted to an exclusive lock. A surprising characteristic
of update locks is that they are asymmetric with respect to shared locks. A user may acquire an update
lock on a record that already has a shared lock; however, a user may not acquire a shared lock on a record
that already has an update lock. Because an update lock prevents subsequent read locks, it is easier to
convert the update lock to an exclusive lock.

6.2.4 Table Locks

So far, we've talked primarily about locking individual rows in a table, such as the bank account information
that contains your checking account balance. The server allows table-level locks as well as row-level locks.
Many of the principles that apply to locks on individual records also apply to locks on tables.

175

6.2.4 Table Locks

Why would you want to lock a table? Imagine that you want to alter a table to add a new column. You don't
want anyone else to try to add a column with the same name at the same time.

Therefore, when you execute an ALTER TABLE operation, you get a shared lock on that table. That allows
other users to continue to read data from the table, but prevents them from making changes to the table. If
another user wants to do DDL operations (such as ALTER TABLE) on the same table at the same time, he
or she will either have to wait or will get an error message.

Thus basic table locking has much the same purpose and mechanism as record locking. However, there are
some additional situations in which table locking is used; it's not always just because one user is trying to
update the structure of the table.

Imagine that you are updating a record in a table; for example, perhaps you are updating a customer's home
phone number. Meanwhile, another user decides to change the table, dropping the telephone number column
and adding an email address column. If we allowed another user to drop the telephone number column and
then allowed you to try to write an updated telephone number to that column that no longer exists, the data
would undoubtedly be corrupted. Therefore, when a user acquires a shared lock or an exclusive lock on a record
in a table, the user also implicitly acquires a lock (usually a shared lock) on the entire table. This prevents the
structure of the table from changing while users are in the middle of using any part of that table.

Table-level locks are always "pessimistic"; the server puts a real lock on the table rather than just looking at
versioning information. This is true even if the table is set to optimistic locking. (The terms here may be
confusing. Keep in mind that when you set the lock mode for a table, you are really setting the lock mode for
the rows in the table, not the table itself. In other words, you are setting the lock mode for row-level locks,
not table-level locks.)

Unless you are altering the table, the locks on tables are usually shared locks. These table locks usually have
a "timeout" of 0 seconds — if you can't get the lock immediately, then the server does not wait; it just gives
you an error message.

There is a third possible reason for locking an entire table. Suppose that you want to change every record in
the table within a single transaction. For example, suppose that it's 12:01 AM January 1st, and you want to
credit all of the savings accounts with the interest that they earned last year. You could acquire an individual
exclusive lock on each record in the table, but this is inefficient. You'd like to get an exclusive lock on the
entire table. Checking this one lock is more efficient than checking potential locks on every record in the
table. Naturally, if some other user has a lock on the table (such as the shared table lock that she acquires as
a result of locking any record in the table), then you won't be able to acquire an exclusive lock on that table.
The rules regarding exclusive/shared locks are the same for tables as for records: you can have as many shared
locks as you want, but only one exclusive lock may exist at a time; furthermore, you can't have a combination
of exclusive and shared locks.

176

6.2.5 Lock Duration

When the server recognizes that a particular operation (such as an UPDATE statement without a where clause)
will affect every record in the table, the server itself can lock the entire table if it thinks that would be most
efficient, and if no conflicting locks on the table already exist.

Thus we see that table locks can be used for at least three purposes:

1. to protect against two users trying to change the table at the same time

2. to prevent the table from being changed while records within the table are being changed
3. toincrease efficiency of operations that do mass updates

Most table-level locks are implicit — in other words, the server itself sets those locks when necessary. However,
you can also set table-level locks explicitly by using the LOCK TABLE command. This is useful when using
the Maintenance Mode feature set. See the chapter "Updating and Maintaining the Schema of a Distributed
System™ in solidDB SmartFlow Data Replication Guide for more details.

Table-Level Locking

The EXCLUSIVE and SHARED lock modes (see the section called “Shared, Exclusive, and Update Locks”)
are used for both pessimistic and optimistic tables.

@ Note

By default, optimistic and pessimistic tables are always locked in shared mode. In addition, some
solidDB statements that are optionally run with the PESSIMISTIC keyword use EXCLUSIVE table
level locks even when the tables are optimistic.

6.2.5 Lock Duration

The purpose of a transaction (a sequence of statements that are all committed or rolled back together) is to
ensure that data is internally consistent. This may require locks to be held until the end of the transaction.

Let's review the subject of transactions first. Suppose that you just bought a new bicycle and paid for it by
check. The bank must subtract the price of the bicycle from your account and must add the price of the bicycle
to the bike store's account. These 2 operations must be done "together" or else money may seem to disappear
to, or appear from, nowhere. For example, suppose that we subtracted the money from your account, then
committed the transaction, and then failed to update the bike store's account (perhaps because a power failure
occurred immediately before we updated the store's account). You would be poorer, but the bike store would
be no richer. The money would seem to disappear (and you'd probably have a very angry bicycle dealer de-
manding that you pay again for something you've already paid for).

177

6.2.6 TRANSACTION ISOLATION Levels

If we put the two operations (subtracting from your account and adding to the store's account) into the same
transaction, then no money ever disappears. If the transaction is interrupted (and rolled back) for some reason
such as a power failure, then we can retry the same operation again later without risking the possibility of
charging you twice (or not paying the store at all).

Generally, an update lock is held from the time it is acquired until the time that the transaction completes (via
commit or rollback). If the lock were not held until the end of the transaction, then rollback might fail. (Imagine
what would happen if someone else updated the record after you updated it but before you finished your
transaction. If you have to roll back for some reason, the server would have to figure out whether to roll back
the other user's changes — or might simply lose those changes, even if the other user continued on and com-
mitted her transaction.)

In solidDB, shared locks ("read locks") are also held until the end of the transaction. solidDB servers differ
from some other servers in this regard. Some servers will release shared locks before the end of a transaction
if the Transaction Isolation Level is low enough.

You might wonder whether the transaction isolation level affects the server's behavior with regard to shared
locks if those shared locks are always held until the end of the transaction. There are still some differences
between the isolation levels, even when locks are held until the end of the transaction. For example, SERIAL-
IZABLE isolation level does additional checks. It checks also that no new rows are added to the result set
that the transaction should have seen. In other words, it prevents other users from inserting rows that would
have qualified for the result set that is in the transaction. For example, suppose that | have a SERIALIZABLE
transaction that has an update command like:

UPDATE customers SET x = y WHERE area_code = 415;

In a SERIALIZABLE transaction, the server does not allow other users to enter records with area_code=415
until the serializable transaction is committed.

See the next section for a more detailed discussion of transaction isolation.

6.2.6 TRANSACTION ISOLATION Levels

In a "simple"” world, shared locks would be released as soon as you were done looking at the data. (Update
locks, as discussed above, are held until the end of the transaction.)

But the world is not always so simple. In some cases, a user may look at a record more than once in a single
transaction. For example, if you write a program that uses scroll cursors, your user may scroll back and forth
through a list of records, viewing the same record more than once. If the value of that record changed every
time that the user looked at it, even within the same transaction, the user might get quite confused. Therefore,
many database servers (especially those that comply with the ANSI and ISO standards for the SQL language),
allow you to extend the duration of read/shared locks. The idea is to ensure that the data looks the same every

178

6.2.7 Miscellaneous Lock Information

time you view it (within a single transaction). Once you read a record, you acquire a shared lock on that record,
and then hold it until the end of the transaction.

(This is really only one of the factors involved in transaction isolation level. The transaction isolation level
affects not only how long you lock a record, but also what you see. For example, on systems that (unlike
solidDB's) allow both "read uncommitted" (sometimes called "dirty read™) and "read committed", your isolation
level affects what YOU see, not just what other users can and can't see because you've locked certain records.)

In solidDB, isolation levels may be set globally, with a configuration parameter, or per session and per
transaction. For more details, please refer to For details, read chapter Choosing Transaction Isolation Levels
in solidDB Administration Guide.

6.2.7 Miscellaneous Lock Information

All locks within a particular category (such as shared locks) are "equal". It does not matter who placed the
lock. Locks placed by a DBA are no more and no less "strong" than locks placed by any other user. It does
not matter whether the lock was executed as part of a statement typed in interactively, called from a compiled
remote application, or called from within the local application when using the AcceleratorLib. It does not
matter whether the lock was placed as a result of a statement inside a stored procedure or trigger.

With pessimistic locking, the first user to request a lock gets it. Once you have the lock, no other user or
connection can override your lock. In solidDB, the lock lasts until the end of the transaction or in the case of
"long" table locks, the lock lasts until you explicitly release it.

Note that some locks can be “escalated". For example, if you are using a scroll cursor and you acquire a shared
lock on a record, and then later within that same transaction you update that record, your shared lock may be
upgraded to an exclusive lock. Of course, getting an exclusive lock is only possible if there are no other locks
(shared or exclusive) on the table; if you and another user both have shared locks on the same record, then
the server cannot upgrade your shared lock to an exclusive lock until the other user drops her shared lock.

Notes on Table Locks

Although table locks are normally used with "Maintenance Mode" operations, the two features are independent.
You may use the table lock feature with or without the Maintenance Mode feature.

In the replica, exclusive table locks are issued implicitly on publication tables if refreshed with the PESSIM-
ISTIC keyword.

solidDB issues implicit table shared locks in all DDL and DML operations. These prevent one user from
dropping the table while another user is updating data in the table.

179

6.2.8 Summary of Locking Information

6.2.8 Summary of Locking Information

Locks prevent two users from doing conflicting operations at the same time. Operations "conflict" if at least
one of the operations involves updating the data (via UPDATE, DELETE, INSERT, ALTER TABLE, etc.).
If all the operations are read-only operations (such as SELECT), then there is no conflict. The current version
of solidDB does not allow users to specify row-level locks explicitly. There is no "LOCK RECORD" command;
the server does all row-level locking for you. The server also does table-level locking for you. If you need to
set table-level locks explicitly, you may do so using the LOCK TABLE command.

6.3 Choosing the Transaction Durability

If you can afford to lose a small amount of recent data, and if performance is crucial to you, then you may
want to use relaxed durability. Relaxed durability is appropriate when each individual transaction is not crucial.
For example, if you are monitoring system performance and you want to store data on response times, you
may only be interested in average response times, which will not be significantly affected if you are missing
a few pieces of data. In fact, since measuring performance will itself affect performance (by using up resources
such as CPU time and 1/0 bandwidth), you probably want your performance tracking operations themselves
to have high performance (low cost) rather than high precision. Relaxed durability is appropriate in this situation.

On the other hand, if you are tracking financial data, such as bill payments, then you probably want to ensure
that 100% of your committed data is stored and recoverable. In this situation, you will want strict durability.

You should use relaxed durability ONLY when you can afford to lose a few of the most recent transactions.
Otherwise, use strict durability. If you are not sure whether strict or relaxed durability is appropriate, use strict
durability.

6.3.1 Setting the Transaction Durability Level

There are four ways to set the transaction durability level. These are listed below in descending order of pre-
cedence:

1. SET TRANSACTION DURABILITY
SET TRANSACTION DURABILITY { RELAXED | STRICT }

For example

SET TRANSACTION DURABILITY RELAXED;
SET TRANSACTION DURABILITY STRICT;

180

6.3.1 Setting the Transaction Durability Level

If you use the SET TRANSACTION DURABILITY command, then you specify the transaction durab-
ility on a per-transaction basis. The command affects only the current transaction.

SET DURABILITY
SET DURABILITY { RELAXED | STRICT }

For example

SET DURABILITY RELAXED;
SET DURABILITY STRICT;

If you use the SET DURABILITY command, then you specify the transaction durability on a per-session
basis. A session is the time between connecting and disconnecting to the server. Each user has a separate
session, even if the sessions overlap in time. In fact, a single user may establish more than one session
(for example, by running multiple copies of solsqgl, or SolidConsole, or by writing a program that makes
multiple connections to the same server). When you specify the transaction durability level by using the
SET DURABILITY statement, you are specifying it only for the session in which the command is issued.
Your choice will not affect any other user, any other open session that you yourself currently have, or
any future session that you may have. Each user session may set its own transaction durability level,
based on how important it is for the session not to lose any data.

The effect of this statement lasts until the end of the session, or until another SET DURABILITY command
is issued.

Setting the Dur abi | i t yLevel parameter inthe solid. inii configuration file.
[Logging]

DurabilitylLevel=3

See chapter DurabilityLevel in solidDB SmartFlow Data Replication Guide.

This setting affects all users.

This parameter can be changed dynamically. If you want to change the default setting while the server
is running, you may do so by using the following command:

ADMIN COMMAND T"parameter Logging.-DurabilitylLevel={1 | 2 | 3}~

If you execute this command, it will take effect immediately.

181

6.3.1 Setting the Transaction Durability Level

4. By default, if you do not set the transaction durability level using any of the methods above, the server
will use strict durability.

If you are using strict durability, you may also set an additional configuration parameter (LogW i t eMbde),
which also influences performance. For details about LogW i t eMbde, see its description in solidDB Admin-
istration Guide.

182

Chapter 7. Diagnostics and
Troubleshooting

This chapter provides information on the following solidDB diagnostic tools:

* SQL info facility and the EXPLAIN PLAN FOR statement used to tune your application and identify in-
efficient SQL statements in your application.

» Tracing facilities for stored procedures and triggers

You can use these facilities to observe performance, troubleshoot problems, and produce high quality problem
reports. These reports let you pinpoint the source of your problems by isolating them under product categories
(such as solidDB ODBC API, solidDB ODBC Driver, solidDB JDBC Driver, etc.).

7.1 Observing Performance

You can use the SQL Info facility to provide information on a SQL statement and the SQL statement EXPLAIN
PLAN FOR to show the execution graph that the SQL optimizer selected for a given SQL statement. Typically,
if you need to contact solidDB technical support, you will be asked to provide the SQL statement, EXPLAIN
PLAN output, and SQL Info output from the EXPLAIN PLAN run with info level 8 for more extensive trace
output.

7.1.1 SQL Info Facility

Run your application with the SQL Info facility enabled. The SQL Info facility generates information for
each SQL statement processed by solidDB.

The | nf o parameter in the [SQL] section specifies the tracing level on the SQL parser and optimizer as an
integer between O (no tracing) and 8 (solidDB info from every fetched row). Trace information will be output
to the file named soltrace .out in the solidDB directory.

Example:

[sQLl

info = 1

183

7.1.2 The EXPLAIN PLAN FOR Statement

Table 7.1. SQL Info Levels

Info value Information

no output

table, index, and view info in SQL format

SQL execution graphs (for solidDB technical support use only)

some SQL estimate info, solidDB selected key name

all SQL estimate info, solidDB selected key info

solidDB info also from discarded keys
solidDB table level info
SQL info from every fetched row

| N0 W N | O

solidDB info from every fetched row

The SQL Info facility can also be turned on with the following SQL statement (this sets SQL Info on only
for the client that executes the statement):

SET SQL INFO ON LEVEL info_value FILE file_nane

and turned off with the following SQL statement:

SET SQL INFO OFF

Example:

SET SQL INFO ON LEVEL 1 FILE "my_query.txt”

7.1.2The EXPLAIN PLAN FOR Statement

The syntax of the EXPLAIN PLAN FOR statement is:

EXPLAIN PLAN FOR sql _st at enment

The EXPLAIN PLAN FOR statement is used to show the execution plan that the SQL optimizer has selected
for a given SQL statement. An execution plan is a series of primitive operations, and an ordering of these

184

7.1.2 The EXPLAIN PLAN FOR Statement

operations, that solidDB performs to execute the statement. Each operation in the execution plan is called a

unit.

Table 7.2. EXPLAIN PLAN FOR Units

Unit Description

JOIN UNIT* Join unit joins two or more tables. The join can be done by using loop join or
merge join.

TABLE UNIT The table unit is used to fetch the data rows from a table or index.

ORDER UNIT Order unit is used to order rows for grouping or to satisfy ORDER BY. The
ordering can be done in memory or using an external disk sorter.

GROUP UNIT Group unit is used to do grouping and aggregate calculation (SUM, MIN,
etc.).

UNION UNIT* Union unit performs the UNION operation. The unit can be done by using
loop join or merge join.

INTERSECT UNIT* Intersect unit performs the INTERSECT operation. The unit can be done by
using loop join or merge join.

EXCEPT UNIT* Except unit performs the EXCEPT operation. The unit can be done by using
loop join or merge join.

*This unit is generated also for queries that reference only a single table. In that case no join is executed in
the unit; it simply passes the rows without manipulating them.

The table returned by the EXPLAIN PLAN FOR statement contains the following columns.

Table 7.3. Explain Plan Table Columns

Column Name

Description

ID

The output row number, used only to guarantee that the rows are unique.

UNIT_ID

This is the internal unit id in the SQL interpreter. Each unit has a different id.
The unit id is a sparse sequence of numbers, because the SQL interpreter
generates unit ids also for those units that are removed during the optimization
phase. If more than one row has the same unit id it means that those rows be-
long to the same unit. For formatting reasons the info from one unit may be
divided into several different rows.

PAR_ID

Parent unit id for the unit. The parent id number refers to the id in the UNIT_ID
column.

185

7.1.2 The EXPLAIN PLAN FOR Statement

Column Name

Description

JOIN_PATH

For join, union, intersect, and except units there is a join path which specifies
which tables are joined in the unit and the join order for tables. The join path
number refers to the unit id in the UNIT_ID column. It means that the input
to the unit comes from that unit. The order in which the tables are joined is
the order in which the join path is listed. The first listed table is the outermost
table in a loop join.

UNIT_TYPE

Unit type is the execution graph unit type.

INFO

Info column is reserved for additional information. It may contain, for example,
index usage, the database table name and constraints used in the database en-
gine to select rows. Note that the constraints listed here may not match those
constraints given in the SQL statement.

The following texts may exist in the INFO column for different types of units.

Table 7.4. Texts in the Unit INFO Column

Unit type

Text in Info column Description

TABLE UNIT

t abl enane The table unit refers to table t abl enane.

TABLE UNIT

constraints The constraints that are passed to the database en-
gine are listed. If for example in joins the constraint
value is not known in advance, the constraint value
is displayed as NULL.

TABLE UNIT

SCAN TABLE Full table scan is used to search for rows.

TABLE UNIT

SCAN i ndexnane Index i ndexnane is used to search for rows. If
all selected columns are found from an index,
sometimes it is faster to scan the index instead of
the entire table because the index has fewer disk
blocks.

TABLE UNIT

PRIMARY KEY The primary key is used to search rows. This differs
from SCAN in that the whole table is not scanned
because there is a limiting constraint to the primary
key attributes.

TABLE UNIT

INDEX i ndexnane Index indexname is used to search for rows. For
every matching index row, the actual data row is
fetched separately.

TABLE UNIT

INDEX ONLY i ndex- |Index i ndexname is used to search for rows. All
name selected columns are in the index, so the actual data

186

7.1.2 The EXPLAIN PLAN FOR Statement

Unit type Text in Info column Description
rows are not fetched separately by reading from the
table.

JOIN UNIT MERGE JOIN Merge join is used to join the tables.

JOIN UNIT 3-MERGE JOIN A 3-merge join is used to merge the tables.

JOIN UNIT LOOP JOIN Loop join is used to join the tables.

ORDER UNIT NO ORDERING RE-|No ordering is required, the rows are retrieved in

QUIRED correct order from the database engine.

ORDER UNIT EXTERNAL SORT External sorter is used to sort the rows. To enable
external sorter, the temporary directory name must
be specified in the Sorter section of the configura-
tion file.

ORDER UNIT FIELD n USED AS PAR-|For distinct result sets, an internal sorter (in-memory

TIAL ORDER sorter) is used for sorting and the rows retrieved
from the database engine are partially sorted with
column number n. The partial ordering helps the
internal sorter avoid multiple passes over the data.

ORDER UNIT n FIELDS USED FOR|An internal sorter (in-memory sorter) is used for

PARTIAL SORT sorting and the rows retrieved from the database
engine are partially sorted with n fields. The partial
ordering helps the internal sorter to avoid multiple
passes over the data.

ORDER UNIT NO PARTIAL SORT Internal sorter is used for sorting. The rows are re-
trieved in random order from the database engine
to the sorter.

UNION UNIT MERGE JOIN Merge join is used to join the tables.

UNION UNIT 3-MERGE JOIN A 3-merge join is used to merge the tables.

UNION UNIT LOOP JOIN Loop join is used to join the tables.

INTERSECT UNIT MERGE JOIN Merge join is used to join the tables.

INTERSECT UNIT 3-MERGE JOIN A 3-merge join is used to merge the tables.

INTERSECT UNIT LOOP JOIN Loop join is used to join the tables.

EXCEPT UNIT MERGE JOIN Merge join is used to join the tables.

EXCEPT UNIT 3-MERGE JOIN A 3-merge join is used to merge the tables.

EXCEPT UNIT LOOP JOIN Loop join is used to join the tables.

187

7.1.2 The EXPLAIN PLAN FOR Statement

Example 1

EXPLAIN PLAN FOR SELECT * FROM TENKTUP1 WHERE
UNIQUE2_NI BETWEEN O AND 99;

ID UNIT_ID [PAR_ID [JOIN PATH[UNIT TYPE INFO
1 2 1 3 JOIN UNIT

2 3 2 0 TABLE UNIT TENKTUP1

3 3 2 0 FULL SCAN

4 3 2 0 UNIQUE2_NI <= 99
5 3 2 0 UNIQUE2_NI>=0
6 3 2 0

Execution graph:
JOIN UNIT 2 gets input from TABLE UNIT 3

TABLE UNIT 3 for table TENKTUP1 does a full table scan with constraints UNIQUE2_NI <= 99 and
UNIQUE2_NI>=0

Figure 7.1. Execution Graph 1

JOIN UNIT 2

A

JOIN PATH 3
A

TABLE UNIT 3

Example 2

EXPLAIN PLAN FOR SELECT * FROM TENKTUP1, TENKTUP2
WHERE TENKTUP1.UNIQUE2 > 4000 AND TENKTUP1.UNIQUE2 < 4500
AND TENKTUP1.UNIQUEZ = TENKTUP2_.UNIQUEZ2;

188

7.1.2 The EXPLAIN PLAN FOR Statement

ID UNIT_ID |PAR_ID [JOIN_PATH|UNIT_TYPE INFO
6 1 9 JOIN UNIT MERGE JOIN
6 1 10
3 9 6 0 ORDER UNIT NO ORDERING RE-
QUIRED
4 8 9 0 TABLE UNIT TENKTUP2
5 8 9 0 PRIMARY KEY
6 8 9 0 UNIQUE?2 < 4500
7 8 9 0 UNIQUE2 > 4000
8 8 9 0
9 10 6 0 ORDER UNIT NO ORDERING RE-
QUIRED
10 7 10 0 TABLE UNIT TENKTUP1
11 7 10 0 PRIMARY KEY
12 7 10 0 UNIQUE2 < 4500
13 7 10 0 UNIQUE2 > 4000
14 7 10 0

Execution Graph:
JOIN UNIT 6 the input from order units 9 and 10 are joined using merge join algorithm

ORDER UNIT 9 orders the input from TABLE UNIT 8. Since the data is retrieved in correct order, no real
ordering is needed

ORDER UNIT 10 orders the input from TABLE UNIT 7. Since the data is retrieved in correct order, no real
ordering is needed

TABLE UNIT 8: rows are fetched from table TENKTUP2 using primary key. Constraints UNIQUE2 < 4500
and UNIQUE2 > 4000 are used to select the rows

TABLE UNIT 7: rows are fetched from table TENKTUP1 using primary key. Constraints UNIQUE2 < 4500
and UNIQUE2 > 4000 are used to select the rows

189

7.2 Problem Reporting

Figure 7.2. Execution Graph 2

7.2 Problem Reporting

solidDB offers sophisticated diagnostic tools and methods for producing high quality problem reports with
very limited effort. Use the diagnostic tools to capture all the relevant information about the problem.

All problem reports should contain the following files and information:
o solid.ini

» license number

* solmsg.out

» solerror.out

» soltrace.out

» problem description

» steps to reproduce the problem

 all error messages and codes

» contact information, preferably email address of the contact person

190

7.3 Problem Categories

7.3 Problem Categories

Most problems can be divided into the following categories:
» solidDB ODBC API

» solidDB ODBC or JDBC Driver

* UNIFACE driver for solidDB

» Communication problems between the application or an external application (if using the AcceleratorL.ib)
and solidDB.

The following pages include detailed instructions to produce a proper problem report for each problem type.
Please follow the guidelines carefully.

7.3.1 solidDB ODBC API Problems

If the problem concerns the performance of a specific solidDB ODBC API or SQL statement, you should run
SQL info facility at level 4 and include the generated soltrace.out file into your problem report. This file
contains the following information:

» create table statements
» create view statements
e create index statements

* SQL statement(s)

7.3.2 solidDB ODBC Driver Problems

If the problem concerns the performance of solidDB ODBC Driver, please include the following information:
» solidDB ODBC Driver name, version, and size
» ODBC Driver Manager version and size

If the problem concerns the cooperation of solidDB and any third party standard software package, please
include the following information:

» Full name of the software

191

7.3.3 solidDB JDBC Driver Problems

e Version and language
* Manufacturer
» Error messages from the third party software package

Use ODBC trace option to get a log of the ODBC statements and include it in your problem report.

7.3.3 solidDB JDBC Driver Problems

If the problem is related to the solidDB JDBC Driver, please include the following information in your
problem report:

» Exact version of JDK or JRK used
» Name, size, and date of the SOLIDDr iver class package
» Contents of DriverManager .setLogStream(someOutputStream) output, if available

» Call stack (that is, Exception.printStackTract() output) of the application, if an exception has
occurred in the application

7.3.4 UNIFACE Driver for solidDB Problems

If the problem concerns the performance of solidDB UNIFACE Driver, please include the following inform-
ation:

» solidDB UNIFACE Driver version and size

e UNIFACE version and platform

» Contents of the UNIFACE message frame
 Error codes from the driver, $STATUS, $ERROR

» All necessary files to reproduce the problem (TRXs, SQL scripts, USYS.ASN etc.)
7.3.5 Communication between a Client and Server
If the problem concerns the performance of the communication between a client and server use the Network

trace facility and include the generated trace files into your problem report. Please include the following in-
formation:

192

7.4 Tracing Facilities for Stored Procedures and Triggers

» solidDB communication DLLs used: version and size
e other communication DLLs used: version and size

» description of the network configuration

7.4 Tracing Facilities for Stored Procedures and Trig-
gers

When debugging a stored procedure or a trigger, you may want to add "trace" commands to see which parts
of the code are executing. Or you may want to trace every statement within the procedure or trigger. The
following two sections explain how to do these things.

7.4.1 User-Definable Trace Output from Procedure Code

From inside your stored procedure or trigger, you can send "trace" output to the soltrace.out file by
using the following command:

WRITETRACE (entry VARCHAR)

You can turn the output on or off by using the command:

ADMIN COMMAND “usertrace { on | off }
user username { procedure | trigger | table } entity_nane-

The "entity_name" is the name of the procedure, trigger, or table for which you want to turn tracing on or off.
If the keyword "table" is specified, then all triggers on that table are traced.

You may turn on (or off) tracing for a specified procedure, a specified trigger, or for all triggers on a specified
table.

Trace is activated only when the specified user calls the procedure / trigger. This is useful, for example, when
tracing propagated procedure calls in a SmartFlow master.

Turning on tracing turns it on in all procedure/trigger calls by this user, not just calls from the connection that
switched the trace on. If you have multiple connections that use the same username, then all of the calls in
all of those connections will be traced. Furthermore, the tracing will be done on calls propagated to (executed
on) the master, as well as the calls executed on the replica.

193

7.4.2 Procedure Execution Trace

7.4.2 Procedure Execution Trace

If you must trace EVERY statement in your stored procedure or trigger, then you don't want to spend time to
write a WRITETRACE statement for every SQL statement. Instead, you can simply turn on "PROCTRACE",
which traces every statement inside the specified stored procedure or trigger. As with USERTRACE, you can
turn proctrace on for a specified procedure, a specified trigger, or for all triggers associated with a particular
table. The syntax is:

ADMIN COMMAND “proctrace { on | off }
user username { procedure | trigger | table } entity_nane”

The "entity_name" is the name of the procedure, trigger, or table for which you want to turn tracing on or off.

Trace is activated only when the specified user calls the procedure / trigger. This is useful, for example, when
tracing propagated procedure calls in a SmartFlow master.

Turning on tracing turns it on in all procedure/trigger calls by this user, not just calls from the connection that
switched the trace on. If you have multiple connections that use the same username, then all of the calls in
all of those connections will be traced. Furthermore, the tracing will be done on calls propagated to (executed
on) the master, as well as the calls executed on the replica.

If the keyword "table" is specified, then all triggers on that table are traced.

Example:

""create procedure trace_sample(i integer)
returns(j integer)
begin
J = 2*i;
return row;
end";
commit work;

admin command "proctrace on user DBA procedure TRACE_SAMPLE";
call trace_sample(2);

OUTPUT FROM EXAMPLE:

23.01 17:25:17 ---- PROCEDURE "DBA.DBA.TRACE_SAMPLE®" TRACE BEGIN ----
0001:CREATE PROCEDURE TRACE_SAMPLE(I INTEGER)

194

7.5 Measuring and Improving Performance of START AFTER COMMIT

Statements

0002:RETURNS(J INTEGER)
0003:BEGIN

—> =2

--> J:=NULL

--> SQLSUCCESS:=1

—--> SQLERRNUM:=NULL

--> SQLERRSTR:=NULL

—-> SQLROWCOUNT -=NULL
0004: J = 2*1;

——> J-=4
0005: RETURN ROW;
0006 :END
23.01 17:25:17 ---- PROCEDURE "DBA.DBA.TRACE_SAMPLE®" TRACE END ----

7.5 Measuring and Improving Performance of START
AFTER COMMIT Statements

7.5.1 Tuning Performance of START AFTER COMMIT Statements

Background tasks can be controlled with SSC-API and admin commands (see the AcceleratorLib manual for
details). The task type SSC_TASK_BACKGROUND is used for the tasks that execute statements started
with START AFTER COMMIT. You can give this task type higher priority or lower priority, or you may
suspend this task type.

Note that there may be more than one of these tasks, but you cannot control them individually. In other words,
if you call SSCSuspendTaskClass for SSC_TASK_BACKGROUND, it will suspend all the background tasks.

7.5.2 Analyzing Failures in START AFTER COMMIT Statements

There is a limit on the number of uncommitted START AFTER COMMIT statements that may exist simul-
taneously. (By "uncommitted", we mean that the transaction in which the START AFTER COMMIT statement
was executed has not yet been committed. At this point, the body of the START AFTER COMMIT statement
— e.g. the procedure call — has not yet even started to execute.) If the maximum is reached, then an error is
returned when the next START AFTER COMMIT is issued. The maximum number is configurable in sol -
id. ini using the parameter named MaxSt art St at erment s (for details, see the description of this para-
meter in solidDB Administration Guide).

195

7.5.2 Analyzing Failures in START AFTER COMMIT Statements

If a statement cannot be started, the reason for it is logged into the system table SYS BACKGROUND-
JOB_INFO. Only failed START AFTER COMMIT statements are logged into this table. For more details
about this table, see Section D.1.3, “SYS_BACKGROUNDJOB_INFO”.

The user can retrieve the information from the table SYS_BACKGROUNDJOB_INFO using either an SQL
SELECT statement or by calling the system procedure SYS_GETBACKGROUNDJOB_INFO. The stored
procedure SYS_GETBACKGROUNDJOB_INFO returns the row that matches the given jobid of the START
AFTER COMMIT statement. For more details about SYS_ GETBACKGROUNDJOB_INFO, see Section E.2.1,
“SYS_GETBACKGROUNDJOB_INFO”.

If you want to be notified when a statement fails to start, you can wait on the system event
SYS_EVENT_SACFAILED. See its description in Section F.1, “Miscellaneous Events” for details about this
event. The application can wait for this event and use the jobid to retrieve the error message from the system
table SYS_BACKGROUNDJOB_INFO.

196

Chapter 8. Performance Tuning

This chapter discusses techniques that you can use to improve the performance of solidDB. The topics included
in this chapter are:

Tuning SQL statements and applications
Optimizing single-table SQL queries

Using indexes to improve query performance
Waiting on events

Optimizing batch inserts and updates

Using Optimizer hints for performance

Diagnosing poor performance

For tips on optimizing SmartFlow data synchronization, see solidDB SmartFlow Data Replication Guide.

8.1 Tuning SQL Statements and Applications

Tuning the SQL statements, especially in applications where complex queries are involved, is generally the
most efficient means of improving the database performance.

Be sure to tune your application before tuning the RDBMS because:

during application design you have control over the SQL statements and data to be processed

you can improve performance even if you are unfamiliar with the internal working of the RDBMS you
are going to use

if your application is not tuned well, it will not run well even on a well-tuned RDBMS

You should know what data your application processes, what are the SQL statements used, and what operations
the application performs on the data. For example, you can improve query performance when you keep SELECT
statements simple, avoiding unnecessary clauses and predicates.

197

8.1.1 Evaluating Application Performance

8.1.1 Evaluating Application Performance

To isolate areas where performance is lacking in your application, the solidDB provides the following dia-
gnostic tools for observing database performance:

» SQL info facility
e EXPLAIN PLAN FOR statement

These tools are helpful in tuning your application and identifying any inefficient SQL statements in it. Read
Chapter 7, Diagnostics and Troubleshooting for additional information on how to use these tools.

In addition, the following commands provide useful information for evaluating performance.
+ ADMIN COMMAND ’status'

This command returns statistics information from the server. For details, read about this command in
solidDB Administration Guide.

« ADMIN COMMAND ‘perfmon’

The command returns detailed performance statistics from the server. For details, read about perfmon and
"Detailed DBMS Monitoring and Troubleshooting” in solidDB Administration Guide.

« ADMIN COMMAND 'trace’

This command switches tracing on for SQL statements and network communication. For complete syntax,
see the trace option syntax under Section B.1, “ADMIN COMMAND”.

8.1.2 Using Stored Procedure Language
Using stored procedures can speed up some operations in two ways:

» Statements in stored procedures are parsed and compiled once and then stored in compiled form. Statements
outside stored procedures are re-parsed and compiled every time that they are executed. Thus, putting
statements in stored procedures reduces overhead (parsing and compiling) if the statements are executed
more than once.

« If you have multiple statements inside a single stored procedure, calling that stored procedure once may
use fewer network "trips" than passing each statement individually from the client to the server.

198

8.2 Optimizing Single-Table SQL Queries

8.2 Optimizing Single-Table SQL Queries

solidDB provides a Simple SQL Optimization feature that increases performance with specific types of single-
table SQL queries. Performance improvements apply to SELECT, DELETE, and UPDATE statements. The
feature does not apply to INSERT statements.

Simple SQL Optimization is enabled/disabled by the Si npl eSQLOpt parameter in the [SQL] section of
the solid. ini file. By default, this feature is turned on and the SimpleSQLOpt parameter does not appear
in the solid. ini file. To disable the feature, you must add the following lines to the solid. ini file:

[SQL]
SimpleSQLOpt=No

Once you have added these lines to the file, you can always enable the feature by specifying Si nmpl eSQL-
Opt =Yes or removing the parameter from the [SQL] section. As always, remember that any changes to the
solid. ini file do not take effect until the server restarts.

When simple SQL optimization is turned on, solidDB automatically optimizes single-table SQL queries that
meet the following conditions:

» The statement accesses only a single table.

» The statement does not contain a view, subquery, UNION, INTERSECT, etc.

* The statement does not use ROWNUM.

» The statement does not use a solidDB sequence object that is used to retrieve sequence numbers.

Note that like other optimization techniques, the Simple SQL Optimization feature speeds up most queries,
but reduces performance for a few types of queries. If you find your particular queries run more slowly when
you are using simple SQL optimization, you can turn off the feature.

8.3 Using Indexes to Improve Query Performance

You can use indexes to improve the performance of queries. A query that references an indexed column in
its WHERE clause can use the index. If the query selects only the indexed column, the query can read the
indexed column value directly from the index, rather than from the table.

If all the fields in the SELECT list of a query are in an index, then the solidDB optimizer can simply use that
index, rather than doing an extra lookup to read the complete record. Similarly, if all the fields of a WHERE
clause are in an index, then the optimizer can use that index — if the information in the index is enough to

199

8.3 Using Indexes to Improve Query Performance

prove that the record won't qualify for the WHERE clause, then the optimizer can avoid looking up the complete
record.

For example, suppose that we have a WHERE clause that refers to two or more columns, e.g.

WHERE coll = x AND col2 >= a AND col2 <=b

Suppose further that we have an index that contains both coll and col2, and that has either coll or col2 as the
leading column of the key. For example, if we have an index on col2 + col3 + coll then this index contains
both columns, and one of those columns (col2) is the leading column in the key. If the user's query is

SELECT coll, col4
FROM tablel
WHERE coll = x AND col2 >= a AND col2 <=b;

then we do not need to look up the complete record unless the search criteria are met. After all, if the search
criteria are not met, then we don't care what value col4 has and so we don't need to look up the full record.

If a table has a primary key, solidDB orders the rows on disk in the order of the values of the primary key.
Since the rows are physically in order by the primary key, the primary key itself serves as an index, and op-
timization tips that apply to indexes also apply to the primary key.

If the table does not have a user-specified primary key, then the rows are ordered using the ROWID. The
ROWID is assigned to each row when it is inserted, and each record gets a larger ROWID than the record
inserted before it. Thus, in tables without user-specified primary keys, the records are stored in the order in
which those rows were inserted. For more information about primary keys, read Section 5.4.2, “Primary Key
Indexes”.

Searches with row value constructor constraints are optimized to use an index if an index is available. For
efficiency, solidDB uses an index to resolve row value constructor constraints of the form (A, B, C) >= (1,
2, 3), where the operator may be any of the following: <, <=, >= and >. (The server does not use an index to
resolve row value constructor constraints that contain the operators =, 1=, or <>. The server may, of course,
use an index to resolve other types of constraints that use =, !=, or <>.) For more information about row value
constructors, see Section 3.5.5, “Row Value Constructors”.

Indexes improve the performance of queries that select a small percentage of rows from a table. You should
consider using indexes for queries that select less than 15% of table rows.

200

8.3.1 Full Table Scan

8.3.1 Full Table Scan

If a query can use an index, solidDB must perform a full table scan to execute the query. This involves reading
all rows of a table sequentially. Each row is examined to determine whether it meets the criteria of the query's
WHERE clause. Finding a single row with an indexed query can be substantially faster than finding the row
with a full table scan. On the other hand, a query that selects more than 15% of a table's rows may be performed
faster by a full table scan than by an indexed query.

You should check every query using the EXPLAIN PLAN statement. (You should use your real data when
doing this, since the best plan will depend upon the actual amount of data and the characteristics of that data.)
The output from the EXPLAIN PLAN statement allows you to detect whether an index is really used and if
necessary you can redo the query or the index. Full table scans often cause slow response time for SELECT
queries, as well as excessive disk activity. To diagnose performance degradation problems, you can request
statistics on file operations using ADMIN COMMAND 'perfmon' as described in solidDB Administration
Guide (see the section titled "Detailed DBMS Monitoring and Troubleshooting™).

To perform a full table scan, every block in the table is read. For each block, every row stored in the block is
read. To perform an indexed query, the rows are read in the order in which they appear in the index, regardless
of which blocks contain them. If a block contains more than one selected row it may be read more than once.
So, there are cases when a full table scan requires less 1/0 than an indexed query, if the result set is relatively
large.

8.3.2 Concatenated Indexes

An index can be made up of more than one column. Such an index is called a concatenated index. We recom-
mend using concatenated indexes when possible.

Whether or not a SQL statement uses a concatenated index is determined by the columns contained in the
WHERE clause of the SQL statement. A query can use a concatenated index if it references a leading portion
of the index in the WHERE clause. A leading portion of an index refers to the first column or columns specified
in the CREATE INDEX statement.

Example:

CREATE INDEX job_sal_deptno ON emp(job, sal, deptno);

This index can be used by these queries:

SELECT * FROM emp WHERE job = "clerk® and sal =
800 and deptno = 20;

201

8.4 Waiting on Events

SELECT * FROM emp WHERE sal = 1250 and job = salesman;
SELECT job, sal FROM emp WHERE job = "manager-;

The following query does not contain the first column of the index in its WHERE clause and therefore cannot
use the index:

SELECT * FROM emp WHERE sal = 6000;

Choosing Columns to Index

The following list gives guidelines in choosing columns to index:

* You should create indexes on columns that are used frequently in WHERE clauses.

* You should create indexes on columns that are used frequently to join tables.

* You should create indexes on columns that are used frequently in ORDER BY clauses.

* You should create indexes on columns that have few of the same values or unique values in the table.

* You should not create indexes on small tables (tables that use only a few blocks) because a full table scan
may be faster than an indexed query.

» If possible, choose a primary key that orders the rows in the most appropriate order.

» If only one column of the concatenated index is used frequently in WHERE clauses, place that column
first in the CREATE INDEX statement.

e If more than one column in a concatenated index is used frequently in WHERE clauses, place the most
selective column first in the CREATE INDEX statement.

8.4 Waiting on Events

In many programs, you may have to wait for a particular condition to occur before you can perform a certain
task. In some cases, you may use a "while" loop to check whether the condition has occurred. solidDB provides
Events, which in some cases allow you to avoid wasting CPU time spinning in a loop waiting for a condition.

One (or more) clients or threads can wait on an event, and another client or thread can post that event. For
example, several threads might wait for a sensor to get a new piece of data. Another thread (working with
that sensor) can post an event indicating that the data is available. For more information about events, see
Section 4.11, “Using Events” and various sections of Appendix B, solidDB SQL Syntax, including Section B.12,
“CREATE EVENT".

202

8.5 Optimizing Batch Inserts and Updates

8.5 Optimizing Batch Inserts and Updates

It is highly recommended that you design a database schema that supports running a batch insert in primary
key order. Data in the database file is stored physically in the order defined by the primary key of the table.
If no primary key is defined, data is stored in the database file in the order it is written to the database. Database
operations (that is, reads and writes) always access data at the page level. The default page size of the database
is 8 KB.

If the batch write operations are performed in the order that supports the primary key, the caching algorithms
of the server are able to group the database file write operations. In this way, a larger number of rows are
written to the disk in one physical disk 1/0 operation. In the worst case, if the insert order is different from
the primary key order, each insert or delete operation requires re-writing a database page where only one row
has changed.

For these reasons, it makes sense to ensure that tables of a batch write operation have primary keys that match
the access order of the batch write operation. This type of database schema can make a significant difference
in the performance of the operation.

For example, assume you have the following kind of table:

CREATE TABLE USAGE_EVENT (

EVENT_ID INTEGER NOT NULL PRIMARY KEY,
DEVICE_ID INTEGER NOT NULL,
EVENT_DATA VARCHAR NOT NULL);

In this table, EVENT _ID is a sequence number. The insert and delete operations are done in the order specified
by the EVENT_ID column, allowing for maximum efficiency.

Note that performance of batch write operations on this same table can be significantly worse if the first
column of the primary key were DEVICE_ID, but data was written to the database in the EVENT _ID order.
In this scenario, the number of file-1/0 operations needed to complete the batch write operation increases
when the size of the table grows.

8.5.1 Increasing Speed of Batch Inserts and Updates

You can optimize the speed for large batch inserts and updates to solidDB. Following are guidelines for in-
creasing speed:

1. Check that you are running the application with the AUTOCOMMIT mode set off.

203

8.6 Using Optimizer Hints

solidDB ODBC Driver's default setting is AUTOCOMMIT. This is the standard setting according to the
ODBC specification. To set your application with AUTOCOMMIT off, call the SQLSetConnectOp-
tion function as in the following example:

rc = SQLSetConnectOption
(hdbc, SQL_AUTOCOMMIT, SQL_AUTOCOMMIT_OFF);

2. Do not use large transactions. Five hundred (500) rows is recommended as the initial transaction size.
The optimal value for the transaction size is dependent on the particular application; you may need to
experiment.

3. To make batch inserts faster, you can turn logging off. This, however, increases the risk of data loss
during system failure. In some environments, this trade-off is tolerable.

Number 1 and 2 of these guidelines are the most important actions you can take to increase the speed of batch
inserts. The actual rate of insertions also depends on your hardware, on the amount of data per row, and on
the existing indices for the table.

8.6 Using Optimizer Hints

Due to various conditions with the data, user query, and database, the SQL Optimizer is not always able to
choose the best possible execution plan. For example, for more efficiency, you may want to force a merge
join because you know, unlike the Optimizer, that your data is already sorted.

Or sometimes specific predicates in queries cause performance problems that the Optimizer cannot eliminate.
The Optimizer may be using an index that you know is not optimal. In this case, you may want to force the
Optimizer to use one that produces faster results.

Optimizer hints provide a way to have better control over response times to meet your performance needs.
Within a query, you can specify directives or hints to the Optimizer, which it then uses to determine its query
execution plan. Hints are detected through a pseudo comment syntax from SQL-92.

Hints are available for:

e Selecting merge or nested loop join

» Using a fixed join order as given in the from list
» Selecting internal or external sort

e Selecting a particular index

204

8.6 Using Optimizer Hints

e Selecting a table scan over an index scan
» Selecting sorting before or after grouping

You can place a hint(s) in a SQL statement as a static string, just after a SELECT, UPDATE, or DELETE
keyword. Hints are not allowed after the INSERT keyword.

Table name resolution in optimizer hints is the same as in any table name in a SQL statement. This means
that if there is a table alias name in the query, then you must use the alias, not the table name, in the optimizer
hints. For example:

SELECT
-—(* vendor(SOLID), product(Engine), option(hint)
-— FULL SCAN emp_alias *)--
emp_alias.emp_id, employee name, dependent_name
FROM employee table AS emp_alias LEFT OUTER JOIN dependent_table
AS dep_alias
ON (dep_alias.emp_id = emp_alias.emp_id)
ORDER BY emp_alias.emp_id;

If you specify the table name when you should have specified the alias name, you will get the following error
message:

102: Unused optimizer hint.

If you are not using an alias and you are using a table that is in another schema and/or another catalog, then
make sure that in the hint you precede the table name with the schema and/or catalog name. For example:

SELECT
-—(* vendor(SOLID), product(Engine), option(hint)
-— FULL SCAN sally_schema.employee_table *)--
emp_id, employee name
FROM sally_schema.employee_table;

When there is an error in a hint specification, then the whole SQL statement fails with an error message.

Hints are enabled and disabled using the following configuration parameter in solid. ini:

205

8.7 Diagnosing Poor Performance

[Hints]
EnableHints=YES | NO

The default is set to YES.

For more details on Optimizer Hints, including a description of possible hints and examples, refer to Sec-

tion B.49, “HINT”.

8.7 Diagnosing Poor Performance

There are different areas in solidDB that can result in performance degradation. In order to remedy performance
problems, you need to determine the underlying cause. Following is a table that lists common symptoms of
poor performance, possible causes, and directs you to the section in this chapter for the remedy.

Table 8.1. Diagnosing Poor Performance

Symptoms

Diagnosis

Solution

Slow response time for a single
query. Other concurrent access to
the database is affected. Disk may
be busy.

Inefficient usage of indexes in
the query.

Non-optimal decision from the
Optimizer.

External sorting is not defined
and a large internal sorting is
causing excessive swapping to
disk.

If index definitions are missing, cre-
ate new indices or modify existing
ones to match the indexing require-
ments of the slow query. For more
details, read Section 8.3, “Using In-
dexes to Improve Query Perform-
ance”.

Run the EXPLAIN PLAN FOR
statement for the slow query and
verify whether the query optimizer
is using the indices. For more details,
read Section 7.1.2, “The EXPLAIN
PLAN FOR Statement”.

If the Optimizer is not choosing the
optimal query execution plan, over-
ride the Optimizer decision by using
optimizer hints. For more details,
read Section 8.6, “Using Optimizer
Hints”.

206

8.7 Diagnosing Poor Performance

Symptoms

Diagnosis

Solution

Make sure the external sorter is en-
abled by defining the Sort er . Tm
pDi r configuration parameter. For
more details, see the description of
"TmpDir_[1...N]" in solidDB Admin-
istration Guide.

Slow response time is experienced
for all queries. An increase in the
number of concurrent users deteri-
orates the performance more than
linearly. When all users are thrown
out and then reconnected, perform-
ance still does not improve.

Insufficient cache size.

Increase the cache size. Allocate for
cache at least 0.5MB per concurrent
user or 2-5% of the database size.
For more details, read the section
titled "Tuning Cache" in solidDB
Administration Guide.

Slow response time is experienced
for all queries and write operations.
When all users are thrown out and
are connected, performance only
improves temporarily. The disk is
very busy.

The Bonsai Tree is too large to fit
into the cache.

Make sure that there are no uninten-
tionally long-running transactions.
Verify that all transactions (also
read-only transactions) are commit-
ted in a timely manner. For more
details, read "Reducing Bonsai Tree
Size by Committing Transactions"
in solidDB Administration Guide.

Slow performance during batch
write operation as the database size
increases. There is an excessive
amount of disk 1/0.

e The data is committed to the
database in batches that are too
small.

» Data is written to disk in an or-
der that is not supported by the
primary key of the table.

Make sure that the autocommit is
switched off and the write operations
are committed in batches of at least
100 rows per transaction.

Modify the primary keys or batch
write processes so that write opera-
tions occur in the primary key order.
For more details, read Section 8.5,
“Optimizing Batch Inserts and Up-
dates”.

The server process footprint grows
excessively and causes the operat-
ing system to swap. The disk is
very busy. The ADMIN COM-
MAND 'report' output shows a long
list of currently active statements.

SQL statements have not been
closed and dropped after use.

Make sure that the statements that
are no longer in use by the client ap-
plication are closed and dropped in
a timely manner.

207

208

Appendix A. Data Types
A.l Supported Data Types

The tables in this appendix list the supported data types by category. The following abbreviations are used in
each table.

Table A.1. Supported Data Types

Abbreviation Description

DEFLEN the defined length of the column; for example, for CHAR(24) the precision
and length is 24

DEFPREC the defined precision; for example, for NUMERIC(10,3) it is 10

DEFSCALE the defined scale; for example, for NUMERIC(10,3), it is 3

MAXLEN the maximum length of column

N/A not applicable

A.1.1 Character Data Types

Table A.2. Character Data Types

Data Type Size Precision |Scale |Length Display Size
CHARACTER 2G-1* DEFLEN |N/A DEFLEN |DEFLEN
CHAR (2147483647)

WCHAR 2G-1* DEFLEN N/A DEFLEN DEFLEN

NATIONAL CHARACTER (2147483647)
NATIONAL CHAR

NCHAR
VARCHAR 2G-1** DEFLEN N/A DEFLEN DEFLEN

CHARACTER VARYING (2147483647)

CHAR VARYING

209

A.1.2 Numeric Data Types

Data Type Size Precision |Scale |Length Display Size

WVARCHAR 2G-1** DEFLEN N/A DEFLEN DEFLEN

NATIONAL VARCHAR (2147483647)

NCHAR VARYING

NVARCHAR

LONG VARCHAR 2G-1 MAXLEN |N/A MAXLEN |MAXLEN

CHARACTER LARGE OB-|(2147483647)

JECT

CHAR LARGE OBJECT

CLOB

LONG WVARCHAR 2G-1 MAXLEN |N/A MAXLEN |MAXLEN

LONG NATIONAL VARCHAR|(2147483647)

NCHAR LARGE OBJECT

NCLOB

* default is 1

** default is 254

A.1.2 Numeric Data Types

Table A.3. Numeric Data Types

Data Type Size Precision |Scale |Length Display Size

TINYINT [-128, 127] 3 0 1 (bytes) 4 (signed)
[0, 127] 3 (unsigned)

SMALLINT [-32768, 32767] 5 0 2 (bytes) 6 (signed)
[0, 32767] 5 (unsigned)

INTEGER [-2%, 2%L 1] 10 0 4 (bytes) 11 (signed)

210

A.1.2 Numeric Data Types

Data Type

Size

Precision

Scale

Length

Display Size

INT

[0, 2°L- 1]

10 (un-
signed)

BIGINT

[-2%, 25 1]

19

8 (bytes)

20 (signed)

REAL

Positive numbers:
1.175494351e-38 to
1.7014117e+38
Negative numbers:
-1.7014117e+38 to
-1.175494351e-38

You can also use value zero (0)
with this data type.

N/A

4 (bytes)

13

FLOAT

Positive numbers:
2.2250738585072014e-308 -
8.98846567431157854e+307
Negative numbers:

-8.98846567431157854e+307
to

-2.2250738585072014e-308

You can also use value zero (0)
with this data type.

15

N/A

8 (bytes)

22

DOUBLE

PRECISION

Positive numbers:
2.2250738585072014e-308 -
8.98846567431157854e+307

Negative numbers:

15

N/A

8 (bytes)

22

211

A.1.3 Binary Data Types

Data Type Size Precision |Scale |Length Display Size
-8.98846567431157854e+307
to
-2.2250738585072014e-308
You can also use value zero (0)
with this data type.
DECIMAL +3.6e16 16 DEFS-|18 18
CALE
NUMERIC +3.6e16 DEFPREC |DEFS-|DEFPREC DEFPREC
CALE
+2 +2
< Note

Although integer data types (TINYINT, SMALLINT, INT, and BIGINT) may be interpreted by the
client program as either signed or unsigned, solidDB stores and orders them as signed integers. There
is no way to tell the server to order the integer data types as though they were unsigned.

a Caution

BIGINT has approximately 19 significant digits. This means that you may lose least significant digits
when storing BIGINT into non-integer data types such as FLOAT (which has approximately 15 sig-
nificant digits), SMALLFLOAT (which has approximately 7 significant digits), DECIMAL (which
has 16 significant digits).

A.1.3 Binary Data Types

Table A.4. Binary Data Types

Data Type Size Precision Scale Length Display Size
BINARY 2G* DEFLEN N/A DEFLEN DEFLEN x 2
VARBINARY 2 G** DEFLEN N/A DEFLEN DEFLEN x 2
LONG VARBINARY 2G MAXLEN N/A MAXLEN MAXLEN x 2
BLOB

* default is 1

212

A.1.4 Date Data Type

Data Type Size Precision ‘Scale ‘Length Display Size
** default is 254

i) Tip

To insert values into BINARY, VARBINARY, and LONG VARBINARY fields, you may express
the value as hexadecimal and use the CAST operator, e.g.:

INSERT INTO tablel VALUES (CAST("FFOOAA55" AS VARBINARY));

Similarly, you may use CAST() expressions in WHERE clauses:

CREATE TABLE t1 (x VARBINARY):
INSERT INTO t1 (x) VALUES (CAST("000000A512" AS VARBINARY));
INSERT INTO t1 (x) VALUES (CAST("000000FF12" AS VARBINARY));

-- To compare the VARBINARY value(s) using LIKE, cast the
-- VARBINARY to VARCHAR.

SELECT * FROM tl1 WHERE CAST(x AS VARCHAR) LIKE "000000A5%" ;
SELECT * FROM tl1 WHERE CAST(x AS VARCHAR) LIKE "000000A5__*;

-- NOTE: If you want to use "=" rather than "LIKE"™ then you
-- can cast either operand.

SELECT * FROM t1 WHERE CAST(x AS VARCHAR) = "000000A512";
SELECT * FROM tl1 WHERE x = CAST("000000A512" AS VARBINARY);

WARNING: this kind of query cannot use indexed search for the LIKE predicate and results in poor
query performance in many cases.

A.1.4 Date Data Type

Table A.5. Date Data Type

Data Type Size Precision Scale Length Display
Size
DATE N/A 10* N/A 6** 10*

* the number of characters in the yyyy-mm-dd format

213

A.1.5 Time Data Type

Data Type Size Precision Scale Length Display
Size
** the size of the DATE_STRUCT structure
A.1.5Time Data Type
Table A.6. Time Data Type
Data Type Size Precision Scale Length Display
Size
TIME N/A 8* N/A 6** 8*
* the number of characters in the hh:mm:ss format
** the size of the TIME_STRUCT structure
A.1.6 Timestamp Data Type
Table A.7. Timestamp Data Type
Data Type Size Precision Scale Length Display
Size
TIMESTAMP N/A 19* 9 16** 19/29***

* the number of characters in the 'yyyy-mm-dd hh:mm:ss.fffffffff' format
** the size of the TIMESTAMP_STRUCT structure

*** size is 29 with a decimal fraction part

A.1.7 The Smallest Possible Non-Zero Numbers

Table A.8. Smallest Possible Non-Zero Numbers

Data Type Value
DOUBLE 2.2250738585072014e-308
REAL 1.175494351e-38

214

A.1.8 BLOBs and CLOBs

Description of Different Column Values in the Tables

The range of a numeric column refers to the minimum and maximum values the column can store. The size
of character columns refers to the maximum length of data that can be stored in the column of that data type.

The precision of a numeric column refers to the maximum number of digits used by the data type of the
column. The precision of a non-numeric column refers to the defined length of the column.

The scale of a numeric column refers to the maximum number of digits to the right of the decimal point. Note
that for the approximate floating point number columns, the scale is undefined, since the number of digits to
the right of the decimal point is not fixed.

The length of a column is the maximum number of bytes returned to the application when data is transferred
to its default C type. For character data, the length does not include the null termination byte. Note that the
length of a column may differ from the number of bytes needed to store the data on the data source.

The display size of a column is the maximum number of bytes needed to display data in character form.

A.1.8 BLOBs and CLOBs

solidDB can store binary and character data up to 2147483647 (2G - 1) bytes long. When such data exceeds
acertain length, the data is called a BLOB (Binary Large OBject) or CLOB (Character Large OBject), depend-
ing upon the data type that stores the information. CLOBS contain only "plain text" and can be stored in any
of the following data types:

CHAR, WCHAR

VARCHAR, WVARCHAR

LONG VARCHAR (mapped to standard type CLOB),
LONG WVARCHAR (mapped to standard type NCLOB)

BLOBs can store any type of data that can be represented as a sequence of bytes, such as a digitized picture,
video, audio, a formatted text document. (They can also store plain text, of course, but you'll have more
flexibility if you store plain text in CLOBs). BLOBs are stored in any of the following data types:

BINARY
VARBINARY

LONG VARBINARY (mapped to standard type BLOB)

215

A.1.8 BLOBs and CLOBs

Since character data is of course a sequence of bytes, character data can be stored in BINARY fields, as well
as in CHAR fields. CLOBs can be considered a subset of BLOBS.

For convenience, we will use the term BLOBSs to refer to both CLOBs and BLOBs.

For most non-BLOB data types, such as integer, float, date, etc., there is a rich set of valid operations that
you can do on that data type. For example, you can add, subtract, multiply, divide, and do other operations
with FLOAT values. Because a BLOB is a sequence of bytes and the database server does not know the
"meaning" of that sequence of bytes (i.e. it doesn't know whether the bytes represent a movie, a song, or the
design of the space shuttle), the operations that you can do on BLOBs are very limited.

solidDB does allow you to perform some string operations on CLOBs. For example, you can search for a
particular substring (e.g. a person's name) inside a CLOB by using the LOCATE() function. Because such
operations require a lot of the server's resources (memory and/or CPU time), solidDB allows you to limit the
number of bytes of the CLOB that are processed. For example, you might specify that only the first 1 megabyte
of each CLOB be searched when doing a string search. For more information, see the description of the
MaxBl obExpr essi onSi ze configuration parameter in solidDB Administration Guide.

Although it is theoretically possible to store the entire blob "inside™ a typical table, if the blob is large, then
the server usually performs better if most or all of the blob is not stored in the table. In solidDB, if a blob is
no more than N bytes long, then the blob is stored in the table. If the blob is longer than N bytes, then the first
N bytes are stored in the table, and the rest of the blob is stored outside the table as disk blocks in the physical
database file. The exact value of "N" depends in part upon the structure of the table, the disk page size that
you specified when you created the database, etc., but is always at least 256. (Data 256 bytes or shorter is always
stored in the table.)

If a data row size is larger than one third of the disk block size of the database file, you must store it partly
asaBLOB.

The SYS_BLOBS system table is used as a directory for all BLOB data in the physical database file. One
SYS_BLOB entry can accommodate 50 BLOB parts. If the BLOB size exceeds 50 parts, several SYS_BLOB
entries per BLOB are needed.

The query below returns an estimate on the total size of BLOBs in the database.

select sum(totalsize) from sys blobs

The estimate is not accurate, because the info is only maintained at checkpoints. After two empty checkpoints,
this query should return an accurate response.

216

Appendix B. solidDB SQL Syntax

This appendix presents a simplified description of the SQL statements, including some examples.

Note that earlier versions of this manual put the sync-related SQL commands in a separate chapter. This version
of the manual puts all the SQL commands into this one appendix.

solidDB SQL syntax is based on the ANSI X3H2-1989 level 2 standard including important ANSI X3H2-
1992 (SQL-92) extensions. User and role management services missing from previous standards are based
on the ANSI SQL-99 draft.

Most commands listed here are available in solidDB Disk-based Engine and solidDB In-memory Engine.
Some commands related to SmartFlow synchronization are not available if you have not licensed SmartFlow.

B.1 ADMIN COMMAND

ADMIN COMMAND "conmand_nane*

command_name ::= ABORT | ASSERTEXIT | BACKUP |

BACKUPLIST | CHECKPOINTING | CLEANBGJOBINFO |

CLOSE | DESCRIBE | ERRORCODE | ERROREXIT | EXIT |

FILESPEC | HELP | HOTSTANDBY | INFO | MAKECP | MEMORY | MESSAGES
| MONITOR | NETBACKUP | NETBACKUPLIST | NETSTAT | NOTIFY | OPEN |
PARAMETER | PERFMON | PID | PROCTRACE |

PROTOCOLS | REPORT | RUNMERGE | SAVE | SHUTDOWN

| SQLLIST | STARTMERGE | STATUS | THROWOUT | TID | TRACE |

USERID | USERLIST | USERTRACE | VERSION

B.1.1 Supported in

ADMIN COMMAND syntax is supported in all solidDB editions.

B.1.2 Usage

This SQL extension executes administrative commands. The command_name in the syntax is a SolidConsole
or solidDB SQL Editor (solsql) command string, for example:

ADMIN COMMAND “backup*

217

B.1.2 Usage

If you are entering these commands using solidDB Remote Control (solcon), be sure to specify the syntax
with command name only (without the quotes), for example:

backup

Abbreviations for ADMIN COMMAND:Ss are also available, for example,

ADMIN COMMAND *"bak*

To access a list of abbreviated commands, execute

ADMIN COMMAND “help*®

The result set contains two columns: RC INTEGER and TEXT VARCHAR(254). Integer column RC is a
command return code (0 if success), and varchar column TEXT is the command reply. The TEXT field contains
the same lines that are displayed on SolidConsole screen, one line per one result row.

Note that all options of the ADMIN COMMAND are not transactional and cannot be rolled back.

Caution

ADMIN COMMANDS and Starting Transactions

Although ADMIN COMMAND s are not transactional, they will start a new transaction if one is not
already open. (They do not commit or roll back any open transaction.) This effect is usually insigni-
ficant. However, it may affect the 'start time" of a transaction, and that may occasionally have unex-
pected effects. solidDB's concurrency control is based on a versioning system; you see a database as
it was at the time that your transaction started. (See the section of solidDB Administration Guide titled
'solidDB Bonsai Tree Multiversioning and Concurrency Control"). So, for example, if you: commit
work, and issue an ADMIN COMMAND without doing another commit, and go to lunch and return
an hour later, then your next SQL command may see the database as it was an hour ago, i.e. when
you first started the transaction with the ADMIN COMMAND.

Caution

Error codes in ADMIN COMMANDS ADMIN COMMANDS return an error only if the command
syntax or parameter values are incorrect. That is, if only the requested operation may be started, the
command returns SQLSUCCESS (0). The outcome of the operation itself is written into a s result set.
The result set has two columns: TC and TEXT. The RC (return code) column contains the return code
of the operation: it is "0" for success, and different numeric values for errors. It is thus necessary to
check both the codes (of the ADMIN COMMAND statement and of the operation.

218

B.1.2 Usage

Following is a description of the syntax for each ADMIN COMMAND command option:

Table B.1. ADMIN COMMAND Syntax

Option Syntax

Description

ADMIN COMMAND "abort
[backup | netbackup]*

Aborts the active local or network backup process. The
backup operation is not guaranteed to be atomic, therefore
the cancelled operation may produce an incomplete backup
file to the backup directory until the next backup takes place.

If the options are not entered, the default behaviour is similar
to command ADMIN COMMAND ‘abort backup'.

ADMIN COMMAND "assertexit”
Abbreviation: asex

Asserts the server.

ADMIN COMMAND "backup [-s]
[backup_directory]”
Abbreviation: bak

Makes a backup of the database. The operation can be per-
formed as a synchronized or an asynchronic (default) manner.
The synchronized operation is specified by using the optional
-S parameter.

The default backup directory is the one defined in the

[Gener al] section of the configuration parameter
BackupDi r ect ory. The backup directory may also be
given as an argument. For example, backup abc creates a
backup in directory 'abc'. All directory definitions are relative
to the solidDB working directory.

ADMIN COMMAND "backuplist”
Abbreviation: bls

Displays a status list of last local backups.

ADMIN COMMAND "backupserveron*
Abbreviation: bakson

Sets the server to backupserver mode.

ADMIN COMMAND *"checkpointing”

Turns on/off checkpointing.

219

B.1.2 Usage

Option Syntax Description
Abbreviation: cp
Closes the server to new connections; no new connections
ADMIN COMMAND "close” are allowed.
Abbreviation: clo
Returns a description of the specified parameter.
ADMIN COMMAND "describe

parameter param"

Abbreviation:

des

Note that the param should be in the form sec-
ti on_nane. par am narme. The section and parameter
names are case-insensitive.

The following example describes parameter Com Tr ace
=yln

ADMIN COMMAND "des parameter com.trace”

ADMIN COMMAND

"errorcode

{all | SCLID error_code}"

Abbreviation:

ec

Displays a description of an error code (or all codes). Give
the code number as an argument, for example, errorcode
10033.

ADMIN COMMAND
Abbreviation:

"errorexit <number>"
erex

Forces the server into an immediate process exit with the
given process exit code.

Displays database file specifications, current fill ratios and

ADMIN COMMAND *"filespec” current file sizes.
Abbreviation: fs

Displays available commands.
ADMIN COMMAND “help*®

220

B.1.2 Usage

Option Syntax

Description

Abbreviation: ?

ADMIN COMMAND
"hotstandby [option]*
Abbreviation: hsb

A HotStandby command. For list of options see solidDB High
Availability User Guide.

ADMIN COMMAND *"info
options*”
Abbreviation: info

Returns server information. Options are one or more of the
following values, each separated by a space:

numusers - Number of current users.

sernum - Server serial number.

dbsize - Database size.

dbfreesize - Amount of free space remaining in database.

imdbsize - Amount of space used by in-memory tables
(including Temporary Tables and Transient Tables) and
the indexes on those tables. The return value is in kilo-
bytes (KB) and is in the form of a VARCHAR.

logsize - Size of log files.
uptime - Server up since.

bcktime - Timestamp of last successfully completed local
backup.

netbackuptime - Timestamp of last successfully completed
network backup.

cptime - Timestamp of last successfully completed
checkpoint.

tracestate - Current trace state.

221

B.1.2 Usage

Option Syntax

Description

¢ monitorstate - Current monitor state, which is the number
of users who have SQL monitoring currently enabled;
this value is -1 if all users have SQL monitoring enabled.
Note that SQL monitoring is enabled using the ADMIN
COMMAND “monitor {on | off} [user
{username | userid}]" (described below).

e openstate - Current open or close state — that is, whether
the database server accepts new connections or not.
"open" means that the database server accepts new con-
nections.

e primarystarttime - The time the Primary role has started.

» secondarystarttime- The time the Secondary role has
started.

More than one option can be used per command. Values are
returned in the same order as requested, one row for each
value.

Example command:
ADMIN COMMAND ‘info dbsize logsize'

Example output:

RC TEXT
0 851968
0 573440

ADMIN COMMAND "makecp [-s]-
Abbreviation: mcp

Makes a checkpoint. Requires SYS_ADMIN_ROLE priv-
ilege.

By default, the checkpoint is asynchronous. With the option
-s, the command returns only after the checkpoint has com-
pleted.

222

B.1.2 Usage

Option Syntax

Description

ADMIN COMMAND "memory*
Abbreviation: mem

Returns the server process memory size. The reported process
memory size can differ from the process size reported by your
operating system.

ADMIN COMMAND "messages

[{ warnings | errors}] [count]*

Abbreviation: mes

Displays server messages. Optional severity and message
numbers can also be defined. For example:

ADMIN COMMAND 'messages warnings 100’ displays last
100 warnings.

ADMIN COMMAND "monitor
{on | off} [user
{usernanme | userid}]"
Abbreviation: mon

Sets server monitoring on and off. Monitoring logs user
activity and SQL calls to soltrace.out file.

ADMIN COMMAND *netbackup
[options] [DELETE_LOGS |
KEEP_LOGS] [connect
connect str] [dir

backup dir]*
Abbreviation: nbak

Makes a network backup of the database. The operation can
be performed as a synchronized or an asynchronic (default)
manner. The synchronized operation is specified by using the
optional -s parameter.

If you use the DELETE_LOGS parameter, backed-up log
files in the source server are deleted. This is sometimes re-
ferred to as Full backup. This is the default value. On the
other hand, if you use the KEEP_LOGS parameter, backed-
up log files are ketp in the source server. This is sometimes
referred to as Copy backup. Using the keyword KEEP_LOGS
corresponds to setting the Gener al parameter Net backup-
Del et eLog to "no".

The default connect string and the default netbackup directory
are defined in the Net BackupConnect and in the Net -
BackupDi r ect or y parametersinthe[Gener al] section
of the configuration file.

Options that are entered with the netbackup command over-
ride the values specified in the configuration file. Directory
definitions are relative to the solidDB working directory.

223

B.1.2 Usage

Option Syntax

Description

ADMIN COMMAND "netbackuplist”
Abbreviation: nbls

Displays a status list of the most recently made network
backups of the database server.

ADMIN COMMAND "netstat”

Displays server settings and the network status.

ADMIN COMMAND “notify
user {usernane | user id | ALL }
nessage”

Abbreviation: not

This command sends an event to a given user with event
identifier NOTIFY. This identifier is used to cancel an event-
waiting thread when the statement timeout is not long enough
for a disconnect or to change the event registration.

The following example sends a notify message to a user with
user id 5 ; the event then gets the value of the message para-
meter.

ADMIN COMMAND *notify user 5 Canceled by admin’

ADMIN COMMAND “open*
Abbreviation: ope

Opens server for new connections; new connections are al-
lowed.

ADMIN COMMAND *parameter
[option] [name[=
[*]value][temporary]]"
Abbreviation: par

Displays and sets server parameter values. If you run the
command without a specified value, the parameter will be
set to its startup value. If you assign a parameter value with
an asterisk (*), the parameter will be set to its factory value.
The "name" may be either a section name, or it may be a
parameter name prefaced by a section name and period (e.g.
"com.trace"). For example:

e par anet er used alone displays all parameters.

e paraneter general displays all parameters from
section[General] .

e« paraneter general.readonly displaysasingle
parameter namedr eadonl y from section[Gener al] .

224

B.1.2 Usage

Option Syntax Description

You must place a period between the section name
([Gener al])and the parameter name (r eadonl y).

e paranmeter comtrace=yes sets communication
trace on. You must place a period between the section
name (e.g. [Conj) and the parameter name (e.g. t r ace).
You should not put blanks around the equals sign.

e parametercom t r ace=sets communication trace to its
startup value.

e parameter com t r ace=* sets communication trace to
its factory value.

The output may contain three values, as shown below:

0 Logging DurabilitylLevel 1 2 3

The three values represent the following:

e 1isthe current value (may be set dynamically)
e 2isthe value in the INI file (startup value)

e 3isthe factory value

If the -r option is used, then only the current parameter values
are returned.

Returns server performance counters. The options are:
ADMIN COMMAND *perfmon

[- c | - r] [options] e -C- prints actual counter values. If this option is not
[diff [start | stop] provided, the output numbers are operations/second where
[fil enane interval] applicable.

[name_prefix_list]" L L

Abbreviation: pmon e -r - prints in raw mode, which includes only the latest

counter values without any formatting. No option names
or additional information is printed. This option is useful
if actual monitoring is performed using some other extern-

225

B.1.2 Usage

Option Syntax Description

al program that retrieves the counter values from the
server.

e -xtime - prints the time in seconds

e -xtimediff - prints the difference to the last pmon call in
milliseconds

e -Xnames - prints out the column names for the output

< -xdiff - indicates the difference to the last perfmon execu-
tion instead of the absolute value

o diff - starts a server task that prints out all perfmon
counters with specified intervals to a file. The interval
must be given in milliseconds. The output file is written
using "comma-separated values", with the first row includ-
ing counter names. The file, as it is, can be processed by
spreadsheet programs like Excel.

 nanme_prefix_|ist -limitsoutput to specific counter
names. For example, to print all file related counters, the
nane_prefix_|i st should be file. You can also
specify multiple prefixes.

The following example returns all information;
ADMIN COMMAND 'perfmon’

The following example returns all values whose name starts
with prefix file and cache as counters.

ADMIN COMMAND 'perfmon-c file cache’

Note that the prefix file and cache are matched to those
counter names that are in the perfmon output.

The following example starts a diff task that writes to myd.csv
file on 1000 milliseconds interval:

ADMIN COMMAND 'pmon diff start myd.csv 1000

226

B.1.2 Usage

Option Syntax

Description

For sample output, and description of counters, see the section
of solidDB Administration Guide titled "Detailed DBMS
Monitoring and Troubleshooting™.

ADMIN COMMAND "pid*®
Abbreviation: pid

Returns server process id.

ADMIN COMMAND *proctrace

{ on | off } user usernane

{ procedure | trigger | table }
entity_nane*

Abbreviation: ptrc

This turns on tracing in stored procedures and triggers.

The "username" is the name of the user whose procedure calls
(or triggers) you want to trace. If multiple connections are
using the same username, then calls from all of those connec-
tions will be traced. Furthermore, if you are using SmartFlow,
the tracing will be done not only for calls on the replica, but
also calls that are propagated to the master and then executed
on the master.

The "entity_name" is the name of the procedure, trigger, or
table for which you want to turn tracing on or off. If you
specify a procedure or trigger name, then it will generate
output for every statement in the specified procedure or trig-
ger. If you specify a table name, then it will generate output
for all triggers on that table. Trace is activated only when the
specified username calls the procedure / trigger.

For more detail about proctrace, see "Tracing Facilities For
Stored Procedures And Triggers™ in solidDB SQL Guide.

See also ADMIN COMMAND ‘usertrace'.

ADMIN COMMAND *"protocols*
Abbreviation: prot

Returns a list of available communication protocols, one row
for each protocol.

Example:

ADMIN COMMAND ‘protocols’

ADMIN COMMAND “"report fil ename®
Abbreviation: rep

Generates a report of server information to a file given as an
argument.

227

B.1.2 Usage

Option Syntax

Description

ADMIN COMMAND *runmerge*
Abbreviation: rm

Runs an index merge.

ADMIN COMMAND "save parameters

[fil enane]"
Abbreviation: save

Saves the set of current configuration parameter values to a
file. If no file name is given, the default solid. ini file is
rewritten. This operation is performed implicitly at each
checkpoint.

ADMIN COMMAND
"shutdown [force]"
Abbreviation: sd

Stops solidDB.

If the "force" option is used, the active transactions are aborted
and the users are disconnected forcefully.

ADMIN COMMAND *"sqgllist
top nunber _of _statenents”

This command prints out a list of the longest running SQL
statements among the currently running statements. The list
contains the selected number of statements.

ADMIN COMMAND “status”
Abbreviation: sta

Displays server statistics.

ADMIN COMMAND *status
backup | netbackup®
Abbreviation:

sta backup | netbackup

Displays status of the last started local or network backup.
The status can be one of the following:

e Ifthe last backup was successful or no backups have been
requested, the output is 0 SUCCESS.

« If the backup is in process (for example, started but not
ready yet), then the output is 14003 ACTIVE.

¢ If the last backup failed, the output is: er r or code ER-
ROR where the er r or code shows the reason for the
failure

228

B.1.2 Usage

Option Syntax Description

Starts and waits for completion of merge.
ADMIN COMMAND “"startmerge*
Abbrevation: sm

Exits users from solidDB. To exit a specified user, give the
ADMIN COMMAND *"throwout user id as an argument. To throw out all users, use the
{username | keyword ALL as an argument.

userid | all}"
Abbreviation: to

This command returns the ID (a 4-digit code) of the current
ADMIN COMMAND "tid- user thread (in the server).
Abbreviation: tid

Sets server trace on or off. The tracing options are:
ADMIN COMMAND *"trace
{ on | off} sql | rpc | ¢ sgl - SQL messages
sync | info <level> |
flowplans | all”
Abbreviation: tra

e rpc - Network communications

e sync - Synchronization messages

« info <level> - SQL execution trace (level is 0...8)
» flowplans - plans of Flow SQL statements

If no options are specified, or all is specified, both SQL
messages and network communications messages are written
to the trace file. The name of the default trace file is sol -
trace.out.

Returns the user identification number of the current connec-
ADMIN COMMAND “userid” tion.

Abbreviation: uid
Example:

229

B.1.2 Usage

Option Syntax

Description

ADMIN COMMAND “"userid-®

ADMIN COMMAND “userlist [-1]
[name | id]"
Abbreviation: ul

This command displays a list of users currently logged in to
the database, together with a number of primary attributes.
These attributes are: User name, User Id, Type, Machine Id,
Login time and Appinfo (optional). For attribute descriptions,
see the detailed output description below.

Option -1 (long) displays a more detailed output. The fields
in the long output are:

Id - The user session identification number within the
database. The lifetime of an Id is that of the user session.
After a user logs out, the number may be reused.

Type - Client type. Possible values are:

» Java, which refers to a client using JDBC, such as the
SolidConsole

e ODBC, which refers to a client using ODBC
* SQL, which refers to solidDB's SolSql editor

Machine - The client computer name (host name) and its
IP address, if available.

Appinfo - The value of the client computer's environment-
al variable SOLAPPI NFQ, if the client is using ODBC.
In the case of JDBC, the Java utility property sol i d_ap-
pi nf o has to be set to that value, for it to be visible in
the output. Alternatively, the following Java command
line may be used to pass the value of the environmental
variable to the driver:

java -Dsolid_appinfo=%SOLAPPINFQO% j ava
pr ogr am name

Note: the value of SOLAPPINFO must not contain blanks.

230

B.1.2 Usage

Option Syntax

Description

L]

Autocommit - If the autocommit mode is switched off
(value 0), the current transaction is open untila COMMIT
or ROLLBACK statement is issued. After that, a new
statement starts a new transaction.

If the autocommit mode is switched on (value 1), each
statement is automatically committed.

Last activity - The time when the client last time sent a
request to the server.

RPC compression - Indicates whether the data transmis-
sion compression is on or off.

Transparent failover - This field indicates if Transparent
Failover (TF) is in use. Transparent failover is a charac-
teristic of the CarrierGrade configuration. It hides the
server role change from the user. Because solidDB Tools
do not support TF, you will only see a no value in this
field.

Transaction active - This field indicates whether there is
an open, uncommitted transaction on the connections
(value 1) or not (value 0). When the connection is set for
Autocommit, the value is, most of the time, 0.

Transaction duration - This field indicates the duration
of the currently open transaction. After COMMIT or
ROLLBACK, the value becomes 0.

Transaction isolation - This field indicates the transaction
isolation level for the transactions. The isolation level
decides how data which is a part of an ongoing transaction
is made visible to other transactions.

RPC seqno - Internal protocol message sequence number.

SQL sortarray - The size of user-specific internal sort
array.

231

B.1.2 Usage

Option Syntax

Description

¢ SQL unionsfromors - The value tells how many (at most)
OR operators may be converted to UNIONSs. Unions are
faster but require more memory to execute.

¢ Stmt id - The current statement identification number.
The numbers are session specific and they are assigned
for each different statement

« Stmt state - An internal statement execution state.

* Stmt rowcount - The number of rows retrieved or inserted
in the current statement.

* Stmt starttime - The current statement start date and time.

e Stmt duration - Internal statement duration in seconds.
Note: this value has no relevance to the externally visible
statement latency. Typically, the statement duration is
much longer than latency.

e Stmt SQL str - The current statement string.

ADMIN COMMAND

"usertrace

{ on | off } user usernane

{ procedure | trigger | table }

entity nane*
Abbreviation:

utrc

This turns on user tracing in stored procedures and triggers.
This command will generate output for every WRITETRACE
statement in the specified procedure or trigger.

The "username” is the name of the user whose procedure calls
(or triggers) you want to trace. If multiple connections are
using the same username, then calls from all of those connec-
tions will be traced. Furthermore, if you are using SmartFlow,
the tracing will be done not only for calls on the replica, but
also calls that are propagated to the master and then executed
on the master.

The "entity_name" is the name of the procedure, trigger, or
table for which you want to turn tracing on or off. If you
specify a table name, then it will generate output for all trig-
gers on that table. Trace is activated only when the specified
user calls the procedure / trigger.

232

B.2 ADMIN EVENT

Option Syntax Description

For more detail about proctrace, see "Tracing Facilities For
Stored Procedures And Triggers™ in solidDB SQL Guide.

See also the discussion of "proctrace” on page D-10.

Displays server version info.
ADMIN COMMAND *"version®
Abbreviation: ver

B.2 ADMIN EVENT

ADMIN EVENT “"comand”
command_name ::=

REGISTER { event_nane [, event_nanme ...] | ALL } |
UNREGISTER { event_name [, event_name ...] | ALL } |
WAIT

event _name ::= the name of a system event

B.2.1 Usage

This is a solidDB-specific extension to SQL that allows you to register for and wait for system-generated
events without writing and calling a stored procedure.

You must explicitly register for and wait for the event. For example

ADMIN EVENT "register sys_event hsbstateswitch”;
ADMIN EVENT “wait";

After the event is posted by the system, you will see something similar to the following:

ENAME POSTSRVTIME UID NUMDATAINFO TEXTDATA

SYS_EVENT_HSBSTATESWITCH 2003-10-28 18:10:14 -1 NULL PRIMARY ACTIVE

1 rows fetched.

233

B.2.2 Examples

You must register for the event before you wait for it. (This is different from the way that WAIT works in
stored procedures. In stored procedures, explicit registration is optional.)

< Note

You cannot register to synchronization events (starting with "SYNC_") with this command. You may
the use the procedure language command WAIT EVENT for that purpose.

Once the connection starts to wait for an event, the connection will not be able to do anything else until the
event is posted.

You may register for multiple events. When you wait, you cannot specify which type of event to wait for.
The wait will continue until you have received any of the events for which you have registered.

You may only wait for system events, not user events, using ADMIN EVENT. If you want to wait for user
events, then you must write and call a stored procedure.

The ADMIN EVENT command does not provide an option to post an event.

To use ADMIN EVENT, you must have DBA privileges or be granted the role SYS_ADMIN_ROLE.

B.2.2 Examples

ADMIN EVENT “register sys _event hsbstateswitch”;
ADMIN EVENT “wait";
ADMIN EVENT “unregister sys_event _hsbstateswitch”;

B.3 ALTER TABLE

ALTER TABLE base_t abl e_nane
{
ADD [COLUMN] column_identifier data type
[DEFAULT literal | NULL] [NOT NULL] |
ADD CONSTRAINT constrai nt_name dynani c_table constraint |
DROP CONSTRAINT constraint_nanme |
ALTER [COLUMN] col um_nane
{DROP DEFAULT | {SET DEFAULT literal | NULL} } |
{{ADD | DROP} NOT NULL }
DROP [COLUMN] columm_identifier |
RENAME [COLUMN]

234

B.3.1 Usage

colum_identifier colum_identifier |
MODIFY [COLUMN] columm_identifier data-type |
MODIFY SCHEMA schema_nane} |
SET HISTORY COLUMNS (cl, c2, c3) |
SET {OPTIMISTIC | PESSIMISTIC} |
SET STORE {DISK | MEMORY} |
SET [NO]SYNCHHISTORY |
SET TABLE NAME new _base_t abl e_nane
}
dynam c_table_constraint::=
{FOREIGN KEY (colum_identifier [, colum_identifier] ...)
REFERENCES table_name [(columm_identifier [, colum_identifier]] ---)}
[referential _triggered_action] |
CHECK (check_condition) | UNIQUE (columm_identifier)
referential triggered_action::=
ON {UPDATE | DELETE} {CASCADE | SET NULL | SET DEFAULT |
RESTRICT |NO ACTION}

B.3.1 Usage

The structure of a table may be modified through the ALTER TABLE statement. Columns may be added,
removed, modified, or renamed. You may change whether the table uses optimistic or pessimistic concurrency
control. You may change whether the table is stored in memory or on disk. You may change which schema
the table is part of.

The server allows users to change the width of a column using the ALTER TABLE command. A column
width can be increased at any time (that is, whether a table is empty [no rows] or non-empty). However, the
ALTER TABLE command disallows decreasing the column width when the table is non-empty; a table must
be empty to decrease the column width.

Note that a column cannot be dropped if it is part of a unique or primary key.

The owner of a table can be changed using the ALTER TABLE base_t abl e_nanme MODIFY SCHEMA
schema_nane statement. This statement gives all rights, including creator rights, to the new owner. The
old owner's access rights to the table, excluding the creator rights, are preserved.

For information about the SET HISTORY COLUMNS clause, see Section B.4, “ALTER TABLE ... SET
HISTORY COLUMNS”.

For information about the SET [NO]SYNCHISTORY clause, see Section B.5, “ALTER TABLE ... SET
SYNCHISTORY™.

235

B.3.2 Example

Individual tables can be set to optimistic or pessimistic with the statement ALTER TABLE
base_t abl e_name SET {OPTIMISTIC | PESSIMISTIC}. By default, all tables are optimistic. A database-
wide default can be set in the Gener al section of the configuration file with the parameter Pessi m sti c
= yes.

A table may be changed from disk-based to in-memory or vice-versa. (This is only allowed with solidDB In-
memory Engine.) This may be done only if the table is empty. If you try to change a table to the same storage
mode that it already uses (e.g. if you try to change an in-memory table to use in-memory storage), then the
command has no effect, and no error message is issued.

B.3.2 Example

ALTER TABLE tablel ADD x INTEGER;

ALTER TABLE tablel RENAME COLUMN old_name new_name;

ALTER TABLE tablel MODIFY COLUMN xyz SMALLINT;

ALTER TABLE tablel DROP COLUMN xyz;

ALTER TABLE tablel SET STORE MEMORY;

ALTER TABLE tablel SET PESSIMISTIC;

ALTER TABLE table2 ADD COLUMN col_new CHAR(8) DEFAULT "VACANT" NOT NULL;
ALTER TABLE table2 ALTER COLUMN col_new SET DEFAULT "EMPTY";

ALTER TABLE table2 ALTER COLUMN col_new DROP DEFAULT;

ALTER TABLE dept_tabl ADD CONSTRAINT div_check CHECK(division_id < 12);
ALTER TABLE dept_tabl DROP CONSTRAINT div_check;

B.4 ALTER TABLE ... SET HISTORY COLUMNS

ALTER TABLE tabl e_nane SET HISTORY COLUMNS (col 1, col2, colN ...)

B.4.1 Usage

To further optimize the synchronization history process, after you set tables for synchronization history, you
can use the SET HISTORY COLUMNS statement to specify which column updates in the master and its
corresponding synchronized table cause entries to the history table. If you do not use this statement to specify
particular columns, then all update operations (on all columns) in the master database cause a new entry to
the history table when the corresponding synchronized table is updated. Generally, we recommend using
ALTER TABLE ... SET HISTORY COLUMNS for columns that are used for search criteria or for joining.

236

B.4.2 Usage in Master

B.4.2 Usage in Master

Use SET SYNCHISTORY and SET HISTORY COLUMNS in the master to enable incremental publications
on a table.

B.4.3 Usage in Replica

Use SET SYNCHISTORY and SET HISTORY COLUMNS in the replica to enable incremental REFRESH
on a table.

< Note

In order for ALTER TABLE ... SET HISTORY COLUMNS to succeed, the statement ALTER TABLE
... SET SYNCHISTORY has to be executed first. Executing ALTER TABLE ... SET NOSYNCHIS-
TORY removes also the effect of ALTER TABLE ... SET HISTORY COLUMNS.

B.4.4 Example

ALTER TABLE myLargeTable SET HISTORY COLUMNS (accountid);

B.4.5 Return Values

For details on each error code, see the appendix titled Error Codes in solidDB Administration Guide.

Table B.2. ALTER TABLE SET HISTORY COLUMNS Return Values

Error code Description

13047 No privilege for operation

13100 Illegal table mode combination

13134 Table is not a base table

25038 Table is referenced in publication publ i cat i on_nare; drop or alter operations are
not allowed

25039 Table is referenced in subscription to publication publ i cat i on_nane; drop or alter
operations are not allowed.

B.4.6 See Also

ALTER TABLE ... SET SYNCHISTORY

237

B.5ALTER TABLE ... SET SYNCHISTORY

B.5 ALTER TABLE ... SET SYNCHISTORY

ALTER TABLE tabl e_nanme SET {SYNCHISTORY | NOSYNCHISTORY}

B.5.1 Usage
SET [NO]SYNCHISTORY

The "SET SYNCHISTORY / NOSYNCHISTORY™ clause tells the server to use the incremental publications
mechanism of solidDB architecture for this table. By default, SYNCHISTORY is not on. When this statement
is set to SYNCHISTORY for a specified table, a shadow table is automatically created to store old versions
of updated or deleted rows of the main table. The shadow table is called a "synchronization history table” or
simply a "history table".

The data in a history table is referred to when a replica gets an incremental REFRESH from a publication in
the master. For example, let's suppose that the record with Ms. Smith's telephone bill is deleted from the main
table. A copy of her record is stored in the synchronization history table. When the replica refreshes, the
master checks the history table and tells the replica that Ms. Smith's record was deleted. The replica can then
delete that record, also. If the percentage of records that were deleted or changed is fairly small, then an incre-
mental update is faster than downloading the entire table from the master. (When the user does a full REFRESH,
rather than an incremental REFRESH, the history table is not used. The data in the table on the master is
simply copied to the replica.)

Versioned data is automatically deleted from the database when there are no longer any replicas that need the
data to fulfill REFRESH requests.

You must use this command to turn on synchronization history before a table can participate in master/replica
synchronization. You can use this command on a table even if data currently exists in that table; however
ALTER TABLE SET SYNCHISTORY can only be used if the specified table is not referenced by an existing
publication.

SET SYNCHISTORY must be specified in the tables of both master and replica databases.

You can check if SYNCHISTORY is on for a table from the SYS_TABLEMODES system table. The MODE
column contains the SYNCHISTORY information.

You can use, for example, the query below:

SELECT mode
FROM SYS TABLES, SYS TABLEMODES

238

B.5.2 Usage in Master

WHERE table_name = "MY_TABLE" AND SYS_TABLEMODES.ID = SYS_TABLES.ID;
MODE

SYNCHISTORY
1 rows fetched.

SYS_TABLEMODES only shows the mode of tables for which the mode was explicitly set. In other words,

SYS_TABLEMODES doesn't show the mode of tables that were left at the default mode. If SYNCHISTORY
(or NOSYNCHISTORY) is not set for the table, the query returns an empty resultset.

B.5.2 Usage in Master

Use SET SYNCHISTORY in the master to enable incremental publications on a table.
B.5.3 Usage in Replica

Use SET SYNCHISTORY in the replica to enable incremental REFRESHES on a table.
=) Note

If the Replica is read only (no changes are done to the replicated parts of the publication), the statement
ALTER TABLE ... SET SYNCHISTORY is not needed. In the same time, the following Flow Replica-
resident parameter should be set:

set sync parameter SYS_SYNC_KEEPLOCALCHANGES "Yes*®;
B.5.4 Example

ALTER TABLE myLargeTable SET SYNCHISTORY;
ALTER TABLE myVerySmallTable SET NOSYNCHISTORY;

B.5.5 Return Values

For details on each error code, see the appendix titled Error Codes in the solidDB Administration Guide.

239

B.5.6 See Also

Table B.3. ALTER TABLE SET SYNCHISTORY Return Values

Error code Description

13047 No privilege for operation

13100 Illegal table mode combination

13134 Table is not a base table

25038 Table is referenced in publication publication_name ; drop or alter operations are not
allowed

25039 Table is referenced in subscription to publication publication_name ; drop or alter op-
erations are not allowed.

B.5.6 See Also

ALTER TABLE ... SET HISTORY COLUMNS

B.6 ALTER TRIGGER

ALTER TRIGGER trigger name_attr SET {ENABLED | DISABLED}
trigger _nanme_attr ::= [catal og name.[schena_nane.]] trigger_nane

B.6.1 Usage

You can alter trigger attributes using the ALTER TRIGGER statement. The valid attributes are ENABLED
and DISABLED trigger.

The ALTER TRIGGER DISABLED statement causes solidDB to ignore the trigger when an activating DML
statement is issued. With this command, you can also enable a trigger that is currently inactive or disable a
trigger that is currently active.

You must be the owner of the table, or a user with DBA authority, to alter a trigger on the table.

B.6.2 Example

ALTER TRIGGER trig_on_employee SET ENABLED;

240

B.7 ALTER USER

B.7 ALTER USER

ALTER USER user_nane IDENTIFIED BY password

B.7.1 Usage

The password of a user may be modified through the ALTER USER statement.

B.7.2 Example

ALTER USER MANAGER IDENTIFIED BY O2CPTG;

B.8 ALTER USER

ALTER USER replica user SET MASTER master_name USER user_specification

where:

user _specification ::= { master_user IDENTIFIED BY naster_password | NONE}

ALTER USER user_nane SET {PUBLIC | PRIVATE}

B.8.1 Usage

The following statement is used to map replica user ids to specified master user ids.

ALTER USER replica user SET MASTER master name USER user _specification

Mapping user ids is used for implementing security in a multi-master or multi-tier synchronization environment.
In such environments, it is difficult to maintain the same username and passwords in separate, geographically
dispersed databases. For this reason mapping is effective.

Only a user with DBA authority or SYS_SYNC_ADMIN_ROLE can map users. To implement mapping, an
administrator must know the master user name and password. Note that it is always a replica user id that is
mapped to a master user id. If NONE is specified, the mapping is removed.

241

B.8.2 Usage in Master

All replica databases are responsible for subscribing to the SYNC_CONFIG system publication to update
user information. Public master user names and passwords are downloaded, during this process, to a replica
database using the MESSAGE APPEND SYNC_CONFIG command. Through mapping of the replica user
id with the master user id, the system determines the currently active master user based on the local user id
that is logged to the replica database. Note that if during SYNC_CONFIG loading, the system does not detect
mapping, it determines the currently active master user through the matching user id and password in the
master and the replica.

For more details on using mapping for security, read "Implementing Security Through Access Rights And
Roles" in solidDB SmartFlow Data Replication Guide.

It is also possible to limit what master users are downloaded to the replica during SYNC_CONFIG loading.

This is done by altering users as private or public with the following command:

ALTER USER user_name SET PRIVATE | PUBLIC

Note that the default is PUBLIC. If the PRIVATE option is set for the user, that user's information is not in-
cluded in a SYNC_CONFIG subscription, even if they are specified in a SYNC_CONFIG request. Only a
user with DBA authority or SYS_SYNC_ADMIN_ROLE can alter a user's status.

This allows administrators to ensure no user ids with administration rights are sent to a replica. For security
reasons, administrators may want to ensure that DBA passwords are never public, for example.

B.8.2 Usage in Master

You set user ids to PUBLIC or PRIVATE in a master database.

B.8.3 Usage in Replica

You map a replica user id to a master user id in a replica database.

B.8.4 Example

The following example maps a replica user id smith_1 to a master user id dba with a password of dba.

ALTER USER SMITH_1 SET MASTER MASTER_1 USER DBA IDENTIFIED BY DBA

The following example shows how users are set to PRIVATE and PUBLIC.

-- this master user should not be downloaded to any replica

242

B.8.5 Return Values

ALTER USER dba SET PRIVATE;

-- this master user should be downloaded to every replica
ALTER USER salesman SET PUBLIC;

B.8.5 Return Values

For details on each error code, see the appendix titled Error Codes in the solidDB Administration Guide.

Table B.4. ALTER USER Return Values

Error code Description

13047 No privilege for operation

13060 User name xxx not found

25020 Database is not a master database

25062 User user _i d is not mapped to master user _i d
25063 User user _i d is already mapped to master user _i d

B.9 CALL

CALL procedure _nane [(paraneter [, paraneter ...]1)] [AT node-def]
node-def ::= DEFAULT | <replica nane> | <nmaster name>

B.9.1 Supported in

solidDB Disk-based Engine, solidDB (Note that remote procedure calls are allowed only with solidDB with
the SmartFlow option)

B.9.2 Usage

Stored procedures are called with statement CALL.

You may call a stored procedure on another node by using the AT node_ref clause. This is valid only if the
call is made from a master node to one of its replica nodes or vice-versa.

DEFAULT means that the "current replica context" is used. The "current replica context" is only defined
when the procedure call is started in the background using the START AFTER COMMIT statement with the

243

B.9.3 Transactions

FOR EACH REPLICA option. If the default is not set, then an error 'Default node not defined' is returned.
DEFAULT can be used inside stored procedures and in a statement started with START AFTER COMMIT.

A remote stored procedure cannot return a result set; it can only return an error code.

A single call statement can only call a single procedure on a single node. If you want to call more than one
procedure on a single node, you must execute multiple CALL statements. If you want to execute the same
procedure (i.e. the same procedure hame) on more than one node, then you have to either

1) Use

START AFTER COMMIT FOR EACH REPLICA.

E.g.

START AFTER COMMIT FOR EACH REPLICA WHERE NAME LIKE “REPLICA%"
UNIQUE CALL MYPROC AT DEFAULT.

2) Execute multiple calls.

A procedure call is executed synchronously; it returns after the call is executed.

- Note

The procedure call is executed asynchronously in the background if the procedure call is executed
using START AFTER COMMIT (e.g. START AFTER COMMIT UNIQUE CALL FOO AT REP-
LICAL). That is due to the nature of the START AFTER COMMIT command, not the nature of pro-
cedure calls.

B.9.3 Transactions

A remote procedure call (whether or not it was started by a START AFTER COMMIT) is executed in a sep-
arate transaction from the transaction that it was called from. The caller cannot roll back or commit the remote
procedure call. The procedure that is executing in the called node is responsible for issuing its own commit
or rollback statement.

B.9.4 Return Values from the Remote Procedure

When you call a remote stored procedure, you cannot get a complete result set returned. All that you get is
the return value of the stored procedure (a single value) or an error code.

244

B.9.5 Access Rights for Remote Stored Procedure Calls

- Note

If the remote procedure is executed in the background (using START AFTER COMMIT), then no
return value is returned to the user. Even error codes are not returned.

B.9.5 Access Rights for Remote Stored Procedure Calls

When a stored procedure is called remotely, you must take into account the access rights — i.e. does the caller
have the right to execute this procedure on the remote server?

CASE 1. If the Sync user is set with the command SET SYNC USER.

The caller sends the user name and password of the "sync user" to the remote server, and the remote server
tries to execute the procedure using that user name and password. In this case, the username and password
must exist in the remote server (i.e. the server that the stored procedure will be executed on) and the user must
have appropriate access rights to the database and the called procedure.

CASE 2. If the Sync user is not set:

The caller sends the following information to the remote server when calling a remote procedure:
If the caller is the master and the remote server is the replica (M - R):

« Name of the master (SYS_SYNC_REPLICAS.MASTER_NAME).

+ Replicaid (SYS_SYNC_REPLICAS.ID).

* User name of the caller.

» User id of the caller.

If the caller is the replica and the remote procedure is the master (R — M):

» Name of the master (SYS_SYNC_MASTERS.NAME).

« Replicaid (SYS_SYNC_MASTERS.REPLICA_ID).

» Master user id (The same user id is used as when a replica refreshes data. There has to be a mapping from
the local replica user to a master user in SYS_SYNC_USERS table.)

The following actions are performed in the called node:

If the remote node is a replica (M - R):

245

B.9.6 Durability

e Get the master id from table SYS_SYNC_MASTERS according to the master name received from the
caller (master itself doesn't know it's id in the replica). From the table SYS_SYNC_USERMAPS get the
replica user ids according to master user name and master id. Select the first user that has access rights to
the procedure.

» If there are no matching rows in SYS_SYNC_USERMAPS, then get NAME and PASSWD from the table
SYS_SYNC_USERS according to master id and master user name received from the caller and try to
execute the procedure using them.

If the remote node is a master (R - M)
« Try to execute the procedure using the user id received from the replica.

If the replica allows calls from any master it should define its own connect string information in the soll -
id. ini file, for example:

[Synchronizer]
ConnectStrForMaster=tcp replicahost 1316

The replica sends that connect string automatically to the master when it forwards any message to the master.
When the master receives the connect string from the replica, it replaces any previous value (if it differs).

The master can set the connect string to the replica (if the replica has not done any messaging and the master
needs to call it and knows that the connect string has changed) using the following statement:

SET SYNC CONNECT <connect-info> TO REPLICA <replica-nanme>

B.9.6 Durability

Remote procedure calls are not durable. If the server goes down right after issuing the remote procedure call,
then the call is lost. It will not be executed in recovery phase.

B.9.7 Example

CALL proctest;

CALL proctest("some string™, 14);
CALL remote proc AT replica2;

CALL RemoteProc(?,?) AT MyReplical;

246

B.10 COMMIT WORK

B.10 COMMIT WORK

COMMIT WORK

B.10.1 Usage

The changes made in the database are made permanent by the COMMIT statement. It terminates the transaction.
To discard the changes, use the ROLLBACK command. Note that if you do not explicitly COMMIT a trans-
action, and if the program (e.g. solsgl, SolidConsole) does not COMMIT for you, then the transaction will be
rolled back.

B.10.2 Example

COMMIT WORK;

B.10.3 See Also

ROLLBACK WORK

B.11 CREATE CATALOG

CREATE CATALOG cat al og_nane

B.11.1 Usage

Catalogs allow you to logically partition databases so you can organize your data to meet the needs of your
business or application. solidDB's use of catalogs is an extension to the SQL standard.

A solidDB physical database file may contain more than one logical database. Each logical database is a
complete, independent group of database objects, such as tables, indexes, triggers, stored procedures, etc.
Each logical database is implemented as a database catalog. Thus, solidDB can have one or more catalogs.

When creating a new database or converting an old database to a new format, users are prompted for a default
catalog name. This default catalog name allows for backward compatibility of solidDB databases prior to
version 3.x.

A catalog can have zero or more schema_names. The default schema name is the user 1D of the user who
creates the catalog.

247

B.11.1 Usage

A schema can have zero or more database object names. A database object can be qualified by a schema or
user ID.

The catalog name is used to qualify a database object name.
4> Caution
The catalog name must not contain spaces.

Database object names can be qualified in all DML statements as:

cat al og_nane. schena_nane. dat abase_obj ect

or

cat al og_nane. user _i d. dat abase_obj ect

Note that if you use the catalog name, then you must also use the schema name. The converse is not true; you
may use the schema name without using the catalog name (if you have already done an appropriate SET
CATALOG statement to specify the default catalog).

cat al og_nane. dat abase_obj ect -- Illegal
schema_nane. dat abase_obj ect -- Legal

Only a user with DBA authority (SYS_ADMIN_ROLE) can create a catalog for a database.

Note that creating a catalog does not automatically make that catalog the current default catalog. If you have
created a new catalog and want your subsequent commands to execute within that catalog, then you must also
execute the SET CATALOG statement. For example:

CREATE CATALOG MyCatalog;

CREATE SCHEMA smith; -- not in MyCatalog
SET CATALOG MyCatalog;

CREATE SCHEMA jones; -- i1n MyCatalog

For more information about SET CATALOG, see the description of the command "SET" in Section B.75,
“SET”.

248

B.11.2 Examples

To use schemas, a schema name must be created before creating the database object name. However, a database
object name can be created without a schema name. In such cases, database objects are qualified using user_id
only. For details on creating schemas, read Section B.17, “CREATE SCHEMA”.

A catalog context can be set in a program using:
SET CATALOG cat al og_nane

A catalog can be dropped from a database using:
DROP CATALOG cat al og_nane

When dropping a catalog name, all objects associated with the catalog name must be dropped prior to dropping
the catalog.

Following are the rules for resolving catalog names:

e A fully qualified name (cat al og_nane. schema_nane. dat abase_obj ect _nane) does not
need any name resolution, but will be validated.

» Ifacatalog context is not set using SET CATALOG, then all database object names are resolved always
using the default catalog nhame as the catalog name. The database object name is resolved using schema
name resolution rules. For details on these rules, read Section B.17, “CREATE SCHEMA”.

» |If a catalog context is set and the catalog name cannot be resolved using the cat al og_nan® in the
context, then dat abase_obj ect _nan® resolution fails.

» Toaccess a database system catalog, users do not need to know the system catalog name. Users can specify
"" . SYSTEM t abl e". solidDB translates the empty string " used as a catalog name to the default
catalog name. solidDB also provides automatic resolution of _SYSTEM schema to the system catalog,
even when the catalog name is not provided.

B.11.2 Examples

CREATE CATALOG C;

SET CATALOG C;

CREATE SCHEMA S;

SET SCHEMA S;

CREATE TABLE T (i INTEGER);

SELECT * FROM T;

-— the name T is resolved to C.S.T

249

B.12 CREATE EVENT

-- Assume the userid is SMITH

CREATE CATALOG C;

SET CATALOG C;

CREATE TABLE T (i INTEGER);

SELECT * FROM T;

--The name T is resolved to C.SMITH.T

-— Assume there is no Catalog context set.

-- Meaning the default catalog name is BASE or the setting
-- of the base catalog.

CREATE SCHEMA S;

SET SCHEMA S;

CREATE TABLE T (i INTEGER);

SELECT * FROM T;

--The name T is resolved to <BASE>.S.T

CREATE CATALOG C1;

SET CATALOG C1;

CREATE SCHEMA S1;

SET SCHEMA S1;

CREATE TABLE T1 (cl INTEGER);

CREATE CATALOG C2;

SET CATALOG C2;

CREATE SCHEMA S2;

SET SCHEMA S2;

CREATE TABLE T1 (c2 INTEGER)

SET CATALOG BASE;

SET SCHEMA USER;

SELECT * FROM T1;

-— This select will give an error as it
-— cannot resolve the T1.

B.12 CREATE EVENT

CREATE EVENT event _nane [(paraneter_definition
[.paranmeter _definition ...])]

250

B.12.1 Usage

B.12.1 Usage

Event alerts are used to signal an event in the database. Events are simple objects with a name. Applications
can use event alerts instead of polling, which uses more resources.

An event object is created with the SQL statement

CREATE EVENT event _name [paraneter list]

The name can be any user-specified alphanumeric string. The parameter list specifies parameter names and
parameter types. The parameter types are normal SQL types.

Events are dropped with the SQL statement

DROP EVENT event _nane

Events are sent and received inside stored procedures. Special stored procedure statements are used to send
and receive events.

The event is sent with the stored procedure statement

post _statenment ::= POST EVENT event _nane
[(paraneters)] [UNIQUE | DATA UNIQUE]

Event parameters must be local variables, constant values, or parameters in the stored procedure from which
the event is sent.

The keyword UNIQUE means that only last post is kept in event queue for each user and for each event. For
example after POST EVENT EV(1) and POST EVENT EV(2) only EV(2) is in event queue if EV(1) is not
processed before EV(2) is posted. Event EV/(1) is discarded. The keyword DATA UNIQUE means that also
event parameters must be unique. So after calls POST EVENT EV(1), POST EVENT EV(2) and POST
EVENT EV/(2) events EV(1) and EV/(2) are kept in event queue. First EV/(2) is discarded.

All clients that are waiting for the posted event will receive the event. Each connection has its own event
queue. The events to be collected in the event queue are specified with the stored procedure statement:
wait _register_statenment ::= REGISTER EVENT event nane

Events are removed from the event queue with the stored procedure statement:

251

B.12.1 Usage

wait_register_statenment ::= UNREGISTER EVENT event _nane

Note that you do not need to register for every event before waiting for it. When you wait on an event, you
will be registered implicitly for that event if you did not already explicitly register for it. Thus you only need
to explicitly register events if you want them to start being queued now but you don't want to start WAITing
for them until later.

To make a procedure wait for an event to happen, the WAIT EVENT construct is used in a stored procedure:

wait_event statenment ::=
WAIT EVENT
[event _specification ...]
END WAIT

event _specification ::=
WHEN event _nane [(paramneters)] BEGIN
statenents
END EVENT

Each connection has its own event queue. To specify the events to be collected in the event queue, use the
command REGISTER EVENT event _nane. Events are removed from the event queue by the command
UNREGISTER EVENT event _nane.

"CREATE PROCEDURE register_event
begin

register event test_event
end";

"CREATE PROCEDURE unregister_event
begin

unregister event test_event
end";

The creator of an event or the database administrator can grant and revoke access rights on that event. Access
rights can be granted to users and roles. If a user has "SELECT" access right on an event, then the user has
the right to wait on that event. If a user has the INSERT access right on an event, then the user may post that
event.

If you want to stop the stored procedure waiting for an event, you can use ODBC function SQLCancel ()
called from a separate thread in the client application. This function cancels executing statements. Alternatively,

252

B.12.2 Example

you can create a specific user event and send it. The waiting stored procedure must be modified to wait for
this additional event. The client application recognises this event and exits the waiting loop.

For in-depth examples of events usage, refer to the section Section 4.11, “Using Events”. The example includes
a pair of SQL scripts that when used together post and wait for multiple events.

B.12.2 Example

CREATE EVENT ALERT1(l INTEGER, C CHAR(4));

B.12.3 See Also

CREATE PROCEDURE

B.13 CREATE INDEX

CREATE [UNIQUE] INDEX i ndex_nane
ON base_t abl e_nane
(colum_identifier [ASC | DESC]
[, colum_identifier [ASC | DESC]] ---)

B.13.1 Usage

Creates an index for a table based on the given columns.

The keyword UNIQUE specifies that the column(s) being indexed must contain unique values. If more than
one column is specified, then the combination of columns must have a unique value, but the individual columns
do not need to have unique values. For example, if you create an index on the combination of LAST_NAME
and FIRST_NAME, then the following data values are acceptable because although there are duplicate first
names and duplicate last names, no 2 rows have the same value for both first name and last name.

SMITH, PATTI
SMITH, DAVID
JONES, DAVID

Keywords ASC and DESC specify whether the given columns should be indexed in ascending or descending
order. If neither ASC nor DESC is specified, then ascending order is used.

253

B.13.2 Example

B.13.2 Example

CREATE UNIQUE INDEX UX_TEST ON TEST (I);
CREATE INDEX X_TEST ON TEST (I DESC, J DESC);

B.13.3 See Also

Section B.15, “CREATE [OR REPLACE] PUBLICATION”.

B.14 CREATE PROCEDURE

CREATE PROCEDURE procedure_nanme [(paraneter_definition
[, paraneter _definition ...]]
[RETURNS (out put _columm_definition [, output_columm_definition ...]]
BEGIN procedure_body END;

paranmeter_definition ::= [paraneter_node] paraneter_nane data_ type

out put _colum_definition::= colum_nane columm_type

procedure_body ::= [declare_statenent; ...][procedure_statenent; ...]

paranmeter_node ::= IN | OUT | INOUT
decl are_statenent ::= DECLARE vari abl e_nane data_type

procedure_statenent ::= prepare_statenment | execute_statenent |

fetch _statenent | control _statement | post_statenent |

wait _event statenent | wait_register_statenent | exec_direct_statenent |
witetrace statenent | sqgl_dm _or_ddl _statenent

prepare_statenent ::.= EXEC SQL PREPARE
{ cursor_nane | CURSORNAME({ string literal | variable }) }
sqgl _st at enent

execute_statenment ::=
EXEC SQL EXECUTE cursor_nane
[USING (variable [, variable ...]D]
[INTO (variable [, variable ...]] |
EXEC SQL CLOSE cursor_nane |
EXEC SQL DROP cursor_nane |
EXEC SQL {COMMIT | ROLLBACK} WORK |

254

B.14 CREATE PROCEDURE

EXEC SQL SET TRANSACTION {READ ONLY | READ WRITE} |

EXEC SQL WHENEVER SQLERROR {ABORT | ROLLBACK [WORK], ABORT}
EXEC SEQUENCE sequence_nane.CURRENT INTO variable |

EXEC SEQUENCE sequence_name.NEXT INTO variable |

EXEC SEQUENCE sequence_nane SET VALUE USING vari abl e

fetch_statenment ::= EXEC SQL FETCH cursor_name

cursor_nane ::
literal

post _statenent ::= POST EVENT event _nanme [(paraneters)]

wait_event statenment ::=
WAIT EVENT
[event _specification ...]
END WAIT

event _specification ::=
WHEN event _nane [(paramneters)] BEGIN
statenents
END EVENT

wait_register_statement ::=
REGISTER EVENT event _nane |
UNREGISTER EVENT event _nane
writetrace statenment ::=
WRITETRACE(stri ng)
control _statenment ::=
SET variabl e_nane = value | variable_name ::= value |
WHILE expression
LOOP procedure_statenent ... END LOOP |
LEAVE |
IF expression THEN procedure_statenent ...
[ELSEIF procedure_statement ... THEN] ...
ELSE procedure_statement ... END IF |
RETURN | RETURN SQLERROR OF cursor_nanme | RETURN ROW |
RETURN NO ROW
exec_direct _statement ::=
EXEC SQL [USING (variable [, variable ...]]
[CURSORNAME(vari abl e)]
EXECDIRECT sql _dm _or_ddl _statenent |

255

B.14.1 Usage

EXEC SQL cursor_nane

[USING (variable [, variable ...]]
[INTO (variable [, variable ...])]
[CURSORNAME(variable)]

EXECDIRECT sql _dm _or_ddl _st at enent

B.14.1 Usage

Stored procedures are simple programs, or procedures, that are executed in the server. The user can create a
procedure that contains several SQL statements or a whole transaction and execute it with a single call statement.
Usage of stored procedures reduces network traffic and allows more strict control to access rights and database
operations.

Procedures are created with the statement

CREATE PROCEDURE nane body

and dropped with the statement

DROP PROCEDURE nane

Procedures are called with the statement

CALL nane [paraneter ...]

All SQL stored procedures are executed in the Primary unless they are specified as read-only procedures by
way of the SQL standard clause SQL Data Access Indication, in the procedure declaration.

<SQL-data-access-indication> ::=
NO SQL |
READS SQL DATA |
CONTAINS SQL |
MODIFIES SQL DATA

To avoid unnecessary handovers of read-only procedures and functions, one of the following values can be
declared:

« NOSQL

256

B.14.1 Usage

* READS SQL DATA

« CONTAINS SQL

Only MODIFIES SQL DATA (which is the default) inflicts transaction handover.

The clause comes between the (optional) RETURNS clause and the procedure body. For example:

"CREATE PROCEDURE PHONEBOOK_SEARCH
(IN FIRST_NAME VARCHAR, LAST_NAME VARCHAR)
RETURNS (PHONE_NR NUMERIC, CITY VARCHAR)

READS SQL DATA
BEGIN

-— procedure_body

END";

Stored procedures provide for three different parameter modes: input parameters, output parameters, and in-
put/output parameters. The parameter modes are:

1. Input parameters are passed to the stored procedure from the calling program. The par anet er _node
value is IN. This is the default behaviour.

2. Output parameters are returned to the calling program from the stored procedure. The par anet er _node

value is OUT.

3. Input/output parameters pass values into the procedure and return a value back to the calling procedure.
The par anet er _node is INOUT.

See the table below for a comparison of the parameter modes:

Table B.5. Comparison of the Parameter Modes

Feature

IN

ouT

INOUT

Default/specified

Default.

Must be specified.

Must be specified.

Operation

Passes values to a subpro-
gram.

Returns values to the
caller.

Passes initial values to a
subprogram; returns up-
dated values to the caller.

257

B.14.1

Usage

Feature

IN

ouT

INOUT

Action

Formal parameter, acts

like a constant.

Formal parameter, acts
like an uninitialised vari-
able.

Formal parameter, acts
like an initialised variable.

Value assignation

Formal parameter, cannot
be assigned a value.

Formal parameter, cannot
be used in an expression;
must be assigned a value.

Formal parameter, should
be assigned a value.

Parameter type

Actual parameter, can be

Actual parameter, must be

Actual parameter, must be

a constant, initialised vari-|a variable. a variable.

able, literal, or expression.

At programming interfaces, the output parameters are bound to variables as follows:
In JDBC, with the method Cal lableStatement.registerOutParameter().

In ODBC, with the function SQLBindParameter (), where the third argument, | nput Qut put Type,
may be of type:

SQL_PARAM | NPUT
SQL_PARAM OUTPUT

SQL_PARAM | NPUT_OQUTPUT

For more information on binding parameters to variables, refer to solidDB Programmer Guide.

Note that it is syntactically valid, although not useful, to create a stored procedure with an empty body.

Procedures are owned by the creator of the procedure. Specified access rights can be granted to other users.
When the procedure is run, it has the creator's access rights to database objects.

The stored procedure syntax is a proprietary syntax modeled from SQL-99 specifications and dynamic SQL.
Procedures contain control statements and SQL statements.

The following control statements are available in the procedures:

258

B.14.1 Usage

Table B.6. Control Statements

Control Statement Description
Assigns a value to a variable. The value can be either
set variabl e = expression a literal value (e.g., 10 or 'text) or another variable.
Parameters are considered as normal variables.
Alternate syntax for assigning values to variables.
vari able ::= expression
Loops while expression is true.
while
expr
loop
statenment-1i st
end loop
Leaves the innermost while loop and continues execut-
leave ing the procedure from the next statement after the
keyword end loop.
Executes st at ement s-1 i st 1 if expression expr
if is true; otherwise, executes st at ement - | i st 2.
expr
then
statement-listl
else
statement-1list2
end if
If expr 1 is true, executes st at ement - 1i st 1. If
if expr 2 is true, executes st at enent - 1 i st 2. The
exprl statement can optionally contain multiple elseif state-
then ments and also an else statement.
statement-1listl
elseif
expr2

259

B.14.1 Usage

Control Statement Description

then
statenment-1ist2
end if

Returns the current values of output parameters and
return exits the procedure. If a procedure has a ret urn
r owstatement, return behaves like r et ur n nor ow.

Returns the sglerror associated with the cursor and
return sqlerror of cursor-name exits the procedure.

Returns the current values of output parameters and
return row continues execution of the procedure. Return row does
not exit the procedure and return control to the caller.

Returns the end of the set and exits the procedure.
return norow

All SQL DML and DDL statements can be used in procedures. Thus the procedure can, for example, create
tables or commit a transaction. Each SQL statement in the procedure is atomic.

The "autocommit" functionality works differently for statements inside a stored procedure than for statements
outside a stored procedure. For SQL statements outside a stored procedure, each individual statement is im-
plicitly followed by a COMMIT WORK operation when autocommit is on. For a stored procedure, however,
the implicit COMMIT WORK is executed after the stored procedure has returned to the caller. Note that this
does not imply that a stored procedure is "atomic"”. As indicated above, a stored procedure may contain its
own COMMIT and ROLLBACK commands. The implicit COMMIT WORK executed after the procedure
returns will commit only that portion of the stored procedure statements that were executed since:

» the last COMMIT WORK inside the procedure
» the last ROLLBACK WORK inside the procedure

 the start of the procedure (if no COMMIT or ROLLBACK commands were executed during the procedure)

260

B.14.2 Preparing SQL Statements

Note that if one stored procedure is called from inside another, the implicit COMMIT WORK is done only
after the end of the OUTERMOST procedure call. There is no implicit COMMIT WORK done after "nested"
procedure calls.

For example, in the following script, the implicit COMMIT WORK is executed only after the CALL out-
er_proc(); statement:

""CREATE PROCEDURE inner_proc

BEGIN

END™;

CREATE PROCEDURE outer_proc

BEGIN
EXEC SQL PREPARE cursorl CALL inner_proc();
EXEC SQL EXECUTE cursorl;

END™;
CALL outer_proc();

B.14.2 Preparing SQL Statements

The SQL statements are first prepared with the statement

EXEC SQL PREPARE cursor sql _statenent

The cur sor specification is a cursor name that must be given. It can be any unique cursor name inside the
transaction. Note that if the procedure is not a complete transaction, other open cursors outside the procedure
may have conflicting cursor names.

B.14.3 Executing Prepared SQL Statements

The SQL st at enrent is executed with the statement

EXEC SQL EXECUTE cursor [opt_using] [opt_into]

The optional opt - usi ng specification has the syntax

261

B.14.4 Fetching Results

USING (variable_list)

where vari abl e_| i st contains a list of procedure variables or parameters separated by a comma. These
variables are input parameters for the SQL statement. The SQL input parameters are marked with the standard
question mark syntax in the prepare statement. If the SQL statement has no input parameters, the USING
specification is ignored.

The optional opt _i nt o specification has the syntax

INTO (variable_list)

where vari abl e_| i st contains the variables that the column values of the SQL SELECT statement are
stored into. The INTO specification is effective only for SQL SELECT statements.

After the execution of UPDATE, INSERT and DELETE statements an additional variable is available to
check the result of the statement. Variable SQLROWCOUNT contains the number of rows affected by the
last statement.

B.14.4 Fetching Results

Rows are fetched with the statement

EXEC SQL FETCH cursor _nane

If the fetch completed successfully, then the column values are stored into the variables defined in the
opt _i nt o specification of the EXECUTE or EXECDIRECT statement.

B.14.5 Closing and Dropping Cursors

When you are finished using a cursor, you should CLOSE the cursor and DROP the cursor. If you do not do
this, then resources (such as memory) that are allocated to the cursor may not be freed up for re-use.

B.14.6 Checking for Errors

The result of each EXEC SQL statement executed inside a procedure body is stored into the variable
SQLSUCCESS. This variable is automatically generated for every procedure. If the previous SQL statement
was successful, a value one is stored into SQLSUCCESS. After a failed SQL statement, a value zero is stored
into SQLSUCCESS.

262

B.14.7 Using Transactions

EXEC SQL WHENEVER SQLERROR {ABORT | [ROLLBACK [WORK], ABORT}

is used to decrease the need for IF NOT SQLSUCCESS THEN tests after every executed SQL statement in
a procedure. When this statement is included in a stored procedure all return values of executed statements
are checked for errors. If statement execution returns an error, the procedure is automatically aborted. Optionally
the transaction can be rolled back.

The error string of latest failed SQL statement is stored into variable SQLERRSTR.

B.14.7 Using Transactions

EXEC SQL {COMMIT | ROLLBACK} WORK

is used to terminate transactions.

EXEC SQL SET TRANSACTION {READ ONLY | READ WRITE}

is used to control the type of transactions.

B.14.8 Using Sequencer Objects and Event Alerts

Refer to the usage of the CREATE SEQUENCE and CREATE EVENT statements.

B.14.9 Writetrace

The writetrace() function allows you to send a string to the soltrace.out trace file. This can be
useful when debugging problems in stored procedures.

The output will only be written if you turn tracing on.

For more information about writetrace and how to turn on tracing, see Section 7.4, “Tracing Facilities for
Stored Procedures and Triggers”.

B.14.10 Procedure Stack Functions

The following functions may be used to analyze the current contents of the procedure stack: PROC_COUNT (),
PROC_NAME(N), PROC_SCHEMA(N).

PROC_COUNT () returns the number of procedures in the procedure stack. This includes the current procedure.

263

B.14.11 Dynamic Cursor Names

PROC_NAME(N) returns the Nth procedure name is the stack. First procedure position is zero.

PROC_SCHEMA(N) returns the schema name of the Nth procedure in procedure stack.

B.14.11 Dynamic Cursor Names

CURSORNAME (
prefix -- VARCHAR

))

The CURSORNAME () function allows you to dynamically generate a cursor name rather than hard-coding
the cursor name.

< Note

Strictly speaking, CURSORNAME() is not a function, despite the syntactic similarity. CURSOR-
NAME (arg) does not actually return anything; instead it sets the name of the current statement's
cursor based on the given argument. However, it is convenient to refer to it as a function, and therefore
we will do so.

Cursor names must be unique within a connection. This causes problems in recursive stored procedures because
each invocation uses the same cursor name(s). When the recursive procedure calls itself, the second invocation
will find that the first invocation has already created a cursor with the same name as the second invocation
wants to use.

To get around this problem, we must generate unique cursor names dynamically, and we must be able to use
those names when we declare and use cursors. To enable us to generate unique names and use them as cursors,
we use 2 functions:

« GET_UNIQUE_STRING
« CURSORNAME

The GET_UNIQUE_STRING function does just what it's name suggests — it generates a unique string. The
CURSORNAME function (actually a pseudo-function) allows you to use a dynamically generated string as part
of a cursor name.

Note that GET_UNIQUE_STRING returns a different output each time it is called, even if the input is the
same. CURSORNAME, on the other hand, returns the same output each time if the input is the same each time.

264

B.14.12 EXECDIRECT

Below is an example of using GET_UNIQUE_STRING and CURSORNAME to dynamically generate a cursor
name. The dynamically generated cursorname is assigned to the placeholder “cname”, which is then used in
each statement after the PREPARE.

DECLARE autoname VARCHAR;

Autoname := GET_UNIQUE_STRING("CUR_");

EXEC SQL PREPARE cname CURSORNAME(autoname) SELECT * FROM TABLES;
EXEC SQL EXECUTE cname USING(...) INTO(-..);

EXEC SQL FETCH cname;

EXEC SQL CLOSE cname;

EXEC SQL DROP cname;

CURSORNAME() can only be used in PREPARE statements and EXECDIRECT statements. It cannot be
used in EXECUTE, FETCH, CLOSE, DROP, etc.

By using the CURSORNAME () feature and the GET_UNIQUE_STRING() function, you can generate unique
cursor names in recursive stored procedures. If the procedure calls itself, then each time that this function is
called within the stored procedure, this function will return a unique string that can be used as the cursor name
in a PREPARE statement. See below for some examples of code that you could use inside a stored procedure.

Note that each call to CURSORNAME (autoname) returns the same value — i.e. the same cursor name, as
long as the input (autoname) does not change.

B.14.12 EXECDIRECT

The EXECDIRECT statement allows you to execute statements inside stored procedures without first "pre-
paring" those statements. This reduces the amount of code required. Note that if the statement is a cursor, you
still need to close and drop it; only the PREPARE statement can be skipped.

When using

EXEC SQL [JUSING(var |ist)] [CURSORNAME(vari abl e)]
EXECDIRECT <st at enent >

or

EXEC SQL <cursor_name> [USING(var _list)] [INTO (var_list)]
[CURSORNAME(vari abl e)] EXECDIRECT <st at enent >

remember the following rules:

265

B.14.13 CREATE PROCEDURE

 If the statement specifies a cursor name, then the cursor must be dropped with the EXEC SQL DROP
statement.

» Ifacursor name is not specified, then you don't need to drop the statement.
» If the statement is a fetch cursor, then the INTO... clause must be specified.

e Ifthe INTO clause is specified, then the cursor_name must be specified; otherwise the FETCH statement
won't be able to specify which cursor name the row should be fetched from. (You may have more than
one open cursor at a time.)

Below are several examples of CREATE PROCEDURE statements. Some use the PREPARE and EXECUTE
commands, while others use EXECDIRECT.

B.14.13 CREATE PROCEDURE

"create procedure test2(tableid integer)
returns (cnt integer)
begin
exec sql prepare cl select count(*) from sys_tables where id > ?;
exec sql execute cl using (tableid) into (cnt);
exec sql fetch cil;
exec sql close c1;
exec sql drop cl;
end”;

B.14.14 Using the Explicit RETURN Statement

This example uses the explicit RETURN statement to return multiple rows, one at a time.

'create procedure return_tables
returns (name varchar)
begin
exec sql execdirect create table table_name (Iname char (20));
exec sql whenever sqlerror rollback, abort;
exec sql prepare cl select table _name from sys_tables;
exec sql execute cl into (name);
while sqlsuccess loop
exec sql fetch cil;
if not sqglsuccess

266

B.14.15 Using EXECDIRECT

then leave;
end If
return row;
end loop;
exec sql close c1;
exec sql drop cl;
end”;

B.14.15 Using EXECDIRECT

-- This example shows how to use "execdirect”.
""CREATE PROCEDURE p
BEGIN

DECLARE host_x INT;

DECLARE host_y INT;

-- Examples of execdirect without a cursor. Here we create a table
-- and insert a row into that table.

EXEC SQL EXECDIRECT create table foo (x int, y int);

EXEC SQL EXECDIRECT insert into foo(x, y) values (1, 2);

SET host_x = 1;

-- Example of execdirect with cursor name.

-- In this example, "cl1"™ is the cursor name; "host_x" is the

-- variable whose value will be substituted for the "?";

-- "host_y" is the variable into which we will store the value of the

-— column y (when we fetch it).

-- Note: although you don"t need a '‘prepare' statement, you still
- need close/drop.

EXEC SQL cl1l USING(host_x) INTO(host_y) EXECDIRECT
SELECT y from foo where x=7?;

EXEC SQL FETCH c1;

EXEC SQL CLOSE c1;

EXEC SQL DROP c1;

END";

267

B.14.16 Using CURSORNAME

B.14.16 Using CURSORNAME

This example shows the usage of the CURSORNAME () pseudo-function. This shows only part of the body
of a stored procedure, not a complete stored procedure.

-— Declare a variable that will hold a unique string that we can use
-- as a cursor name.

DECLARE autoname VARCHAR ;

Autoname := GET_UNIQUE_STRING("CUR_")

EXEC SQL PREPARE curs_name CURSORNAME(autoname) SELECT * FROM TABLES;
EXEC SQL EXECUTE curs_name USING(...) INTO(--..);

EXEC SQL FETCH curs_name;

EXEC SQL CLOSE curs_name;

EXEC SQL DROP curs_name;

B.14.17 Using GET_UNIQUE_STRING and CURSORNAME

Here is a more complete example that actually uses the GET_UNIQUE_STRING and CURSORNAME
functions in a recursive stored procedure.

The stored procedure below demonstrates the use of these two functions in a recursive procedure. Note that
the cursor name "curs1" appears to be hard-coded, but in fact has been mapped to the dynamically generated
name.

-- Demonstrate GET_UNIQUE_STRING and CURSORNAME functions in a
-— recursive stored procedure.
-— Given a number N greater than or equal to 1, this procedure
-- returns the sum of the numbers 1 - N. (We could do this in a loop,
-- of course, but the purpose of the example is to show the use of the
-— CURSORNAME function in a recursive procedure.)
""CREATE PROCEDURE SumlToN(n INT)
RETURNS (SumSoFar INT)
BEGIN
DECLARE SumOfRemainingltems INT;
DECLARE nMinusOne INT;
DECLARE autoname VARCHAR;

SumSoFar := O;
SumOfRemainingltems := 0;
nMinusOne = n - 1;

268

B.14.18 Example 6

IF (nMinusOne > 0) THEN
Autoname := GET_UNIQUE_STRING("CURSOR_NAME_PREFIX_") ;
EXEC SQL PREPARE cursl CURSORNAME(autoname) CALL SumlToN(?);
EXEC SQL EXECUTE cursl USING(nMinusOne) INTO(SumOfRemainingltems);
EXEC SQL FETCH cursil;
EXEC SQL CLOSE cursil;
EXEC SQL DROP cursl;
END IF;

SumSoFar = n + SumOfRemainingltems;
END™;

B.14.18 Example 6

Using EXECDIRECT in CREATE PROCEDURE

CREATE TABLE tablel (x INT, y INT);
INSERT INTO tablel (x, y) VALUES (1, 2);

""CREATE PROCEDURE FOO

RETURNS (r INT)

BEGIN

DECLARE autoname VARCHAR;

Autoname :$= GET_UNIQUE_STRING("CUR_");

EXEC SQL curs_name INTO(r) CURSORNAME(autoname) EXECDIRECT
SELECT y FROM TABLE1 WHERE x = 1;

EXEC SQL FETCH curs_name;

EXEC SQL CLOSE curs_name;

EXEC SQL DROP curs_name;

END;

CALL foo();
SELECT * FROM tablel;

B.14.19 Creating a Unique Name for a Synchronization Message

Creating a unique name for a synchronization message:

DECLARE Autoname VARCHAR;

269

B.14.20 Using GET_UNIQUE_STRING

DECLARE Sqlstr VARCHAR;

Autoname := get_unique_string("MSG_") ;
Sqlstr = "MESSAGE®" + autoname + "BEGIN-;
EXEC SQL EXECDIRECT Sqglstr;

Sqlstr = "MESSAGE®" + autoname + “FORWARD®;
EXEC SQL EXECDIRECT Sqglstr;

B.14.20 Using GET_UNIQUE_STRING

-— This demonstrates how to use the GET_UNIQUE_STRING() function
-- to generate unique message names from within a recursive stored
-— procedure.

CREATE TABLE tablel (i int, beginMsg VARCHAR, endMsg VARCHAR);

-- This is a simplified example of recursion.

-- Note that the messages | compose are not actually used! This is
-- not a true example of synchronization; it"s only an example of
-— generating unique message names. The 'count™ parameter is the

-- number of times that you want this function to call

-- itself (not including the initial call).

"CREATE PROCEDURE repeater(count INT)

BEGIN

DECLARE Autoname VARCHAR;
DECLARE MsgBeginStr VARCHAR;
DECLARE MsgEndStr VARCHAR;

Autoname := GET_UNIQUE_STRING("MSG_");
MsgBeginStr := "MESSAGE * + Autoname + " BEGIN®;
MsgEndStr := "MESSAGE " + Autoname + " END";

EXEC SQL cl1 USING (count, MsgBeginStr, MsgEndStr) EXECDIRECT
INSERT INTO tablel (i, beginMsg, endMsg) VALUES (?,7,?);

EXEC SQL CLOSE c1;

EXEC SQL DROP c1;

-- Once you have composed the SQL statement as a string,

270

B.15 CREATE [OR REPLACE] PUBLICATION

-- you can execute it one of two ways:

-— 1) by using the EXECDIRECT feature or

-- 2) by preparing and executing the SQL statement.
-— In this example, we use EXECDIRECT.

EXEC SQL EXECDIRECT MsgBeginStr;

EXEC SQL EXECDIRECT MsgEndStr;

-— Do something useful here.

-— The recursive portion of the function.

IF (count > 1) THEN
SET count = count - 1;
-- Note that we can also use our unique name as a cursor name,
-- as shown below.
EXEC SQL Autoname USING (count) EXECDIRECT CALL repeater(?);
EXEC SQL CLOSE Autoname;
EXEC SQL DROP Autoname;

END IF

RETURN;
END";

CALL repeater(3);

-- Show the message names that we composed.
SELECT * FROM tablel;

The output from this SELECT statement would look similar to the following:

I BEGINMSG ENDMSG

1 MESSAGE MSG_019 BEGIN MESSAGE MSG_019 END
2 MESSAGE MSG_020 BEGIN MESSAGE MSG_020 END
3 MESSAGE MSG_021 BEGIN MESSAGE MSG_021 END

B.15 CREATE [OR REPLACE] PUBLICATION

“CREATE [OR REPLACE] PUBLICATION publi cation_nane
[(paraneter_definition [,paranmeter_definition...])]
BEGIN

271

B.15.1 Usage

mai n_result_set _definition...
END”’;

mai n_result_set _definition ::=
RESULT SET FOR main_replica_tabl e_nane

BEGIN

SELECT select _|i st

FROM master _tabl e _name

[WHERE search_condition] ;

[[DISTINCT] result_set _definition...]
END

result_set _definition ::=
RESULT SET FOR replica_tabl e_nane

BEGIN

SELECT sel ect _|i st

FROM master_tabl e _name

[WHERE search_condition] ;

[[DISTINCT] result_set _definition...]
END

NOTE: Sear ch_condi ti on canreference par anet er _def i ni ti ons and/or columns of replica tables
defined on previous (higher) levels.

B.15.1 Usage

Publications define the sets of data that can be REFRESHed from the master to the replica database. A pub-
lication is always transactionally consistent, that is, its data has been read from the master database in one
transaction and the data is written to the replica database in one transaction.

a Caution

The data read from the publication is internally consistent unless the master is using the READ
COMMITTED isolation level.

Search conditions of a SELECT clause can contain input arguments of the publication as parameters. The
parameter name must have a colon as a prefix.

272

B.15.1 Usage

Publications can contain data from multiple tables. The tables of the publication can be independent or there
can be relations between the tables. If there is a relation between tables, the result sets must be nested. The
WHERE clause of the SELECT statement of the inner result set of the publication must refer to a column of
the table of the outer result set.

If the relation between outer and inner result set of the publication is a N-1 relationship, then the keyword
DISTINCT must be used in the result set definition.

Therepl i ca_t abl e_nane can be different from the nast er _t abl e_name. The publication definition
provides the mapping between the master and replica tables. (If you have multiple replicas, all the replicas
should use the same name, even if that name is different from the name used in the master.) Column names
in the master and replica tables must be the same.

Note that the initial download is always a full publication, which means that all data contained in the public-
ation is sent to the replica database. Subsequent downloads (refreshes) for the same publication may be incre-
mental publications, which means that they contain only the data that has been changed since the prior RE-
FRESH. To enable usage of incremental publications, SYNCHISTORY has to be set ON for tables included
in the publication in both the master and replica databases. For details, read Section B.5, “ALTER TABLE
... SET SYNCHISTORY” and Section B.32, “DROP PUBLICATION REGISTRATION”.

If the optional keywords "OR REPLACE" are used, then if the publication already exists it will be replaced
with the new definition. Since the publication was not dropped and recreated, replicas do not need to re-register,
and subsequent REFRESHes from that publication can be incremental rather than full, depending upon exactly
what changes were made to the publication.

To avoid having a replica refresh from a publication while you are updating that publication, you may tem-
porarily set the catalog's sync mode to Maintenance mode. However, using maintenance mode is not absolutely
required when replacing a publication.

If you replace an existing publication, the new definition of the publication will be sent to each replica the
next time that replica requests a refresh. The replica does not need to explicitly re-register itself to the public-
ation.

When you replace an existing publication with a new definition, you may change the resultset definitions.
You cannot change the parameters of the publication. The only way to change the parameters is to drop the
publication and create a new one, which also means that the replicas must re-register and the replicas will get
a full refresh rather than an incremental refresh the next time that they request a refresh.

When you replace an existing publication, the privileges related to that publication are left unchanged. (You
do not need to re-create them.)

The CREATE OR REPLACE PUBLICATION command can be executed in any situation where it is valid
to execute the CREATE PUBLICATION command.

273

B.15.2 Usage in Master

a Caution

If you use CREATE OR REPLACE PUBLICATION to alter the contents of an existing SmartFlow
publication, you have to take care of removing invalid rows from Replica.

B.15.2 Usage in Master

You define the publication in the master database to enable the replicas to get refrehses from it.

B.15.3 Usage in Replica

There is no need to define the publications in the replicas. Publication subscription functionality depends on
the definitions only at the master database. If this command is executed in a replica, it will store the publication
definition to the replica, but the publication definition is not used for anything. (Note that if a database is both
a replica (for a master above it) and a master (to a replica below it), then of course you may want to create a
publication definition in the database.)

B.15.4 Example

The following sample publication retrieves data from the customer table using the area code of the customer
as search criterion. For each customer, the orders and invoices of the customer (1-N relation) as well as the
dedicated salesman of the customer (1-1 relation) are also retrieved.

""CREATE PUBLICATION PUB_CUSTOMERS_BY_AREA
(IN_AREA_CODE VARCHAR)
BEGIN
RESULT SET FOR CUSTOMER
BEGIN
SELECT * FROM CUSTOMER
WHERE AREA_CODE = :IN_AREA CODE;
RESULT SET FOR CUST_ORDER
BEGIN
SELECT * FROM CUST_ORDER
WHERE CUSTOMER_ID = CUSTOMER. ID;
END
RESULT SET FOR INVOICE
BEGIN
SELECT * FROM INVOICE
WHERE CUSTOMER_ID = CUSTOMER. ID;
END

274

B.15.4 Example

DISTINCT RESULT SET FOR SALESMAN
BEGIN
SELECT * FROM SALESMAN
WHERE 1D = CUSTOMER.SALESMAN_ID;
END
END
END";

< Note

The colon (3) in :IN_AREA_CODE is used to designate a reference to a publication parameter with
the same name.

EXAMPLE 2:

Developers decided to add a new column C in table T, which is referenced in publication P. The modification
must be made to the master database and all replica databases.

The tasks to execute in the master database are:

-- Prevent other users from doing concurrent synchronization operations
-- to this catalog.

SET SYNC MAINTENANCE MODE ON;

ALTER TABLE T ADD COLUMN C INTEGER;

COMMIT WORK;

CREATE OR REPLACE PUBLICATION P ... (column C added also to publication)
COMMIT WORK;

SET SYNC MAINTENANCE MODE OFF;

The tasks to execute in all replica databases are:

-- Prevent other users from doing concurrent synchronization operations
-- to this catalog.

SET SYNC MAINTENANCE MODE ON;

ALTER TABLE T ADD COLUMN C INTEGER;

COMMIT WORK;

SET SYNC MAINTENANCE MODE OFF;

275

B.15.5 Return Values

B.15.5 Return Values

For details on each error code, see the appendix titled Error Codes in the solidDB Administration Guide.

Table B.7. CREATE PUBLICATION Return Values

Error Code Description

13047 No privilege for operation. You do not have the privileges required to drop this public-
ation or create a publication.

13120 The name is too long for the publication

25015 Syntax error: er r or _message, linel i ne_nunber

25021 Database is not master or replica database. Publications can be created only in a master
or replica database. (As a practical matter, they should only be created in a master
database.)

25033 Publication publ i cat i on_nane already exists

25049 Referenced table t abl e_nane not found in subscription hierarchy

25061 Where condition for table t abl e_nane must refer to an outer table of the publication

B.16 CREATE ROLE

CREATE ROLE rol e_nane

B.16.1 Usage

Creates a new user role.

B.16.2 Example

CREATE ROLE GUEST_USERS;

B.17 CREATE SCHEMA

CREATE SCHEMA schena_narme

276

B.17.1 Usage

B.17.1 Usage

Schemas are a collection of database objects, such as tables, views, indexes, events, triggers, sequences, and
stored procedures for a database user. The default schema name is the user id. Note that with schemas, there
is one default for each user. solidDB's use of schemas conforms to the SQL standard.

The schema name is used to qualify a database object name. Database object names are qualified in all DML
statements as:

cat al og_nane. schena_nane. dat abase_obj ect _nane

or

user _i d. dat abase_obj ect _nane

To logically partition a database, users can create a catalog before they create a schema. For details on creating
a catalog, read Section B.11, “CREATE CATALOG”. Note that when creating a new database or converting
an old database to a new format, users are prompted for a default catalog name.

To use schemas, a schema name must be created before creating the database object name (such as a table
name or procedure name). However, a database object name can be created without a schema name. In such
cases, database objects are qualified using user_id only.

You can specify the database object names in a DML statement explicitly by fully qualifying them or implicitly
by setting the schema name context using:

SET SCHEMA schema_nane

Creating a schema does not automatically make that schema the current default schema. If you have created
anew schema and want your subsequent commands to execute within that schema, then you must also execute
the SET SCHEMA statement. For example:

CREATE SCHEMA MySchema;

CREATE TABLE tl1; -- not in MySchema
SET SCHEMA MySchema;

CREATE TABLE t2; -- in MySchema

For more information about SET SCHEMA, see the description of the SET SCHEMA command in Sec-
tion B.75, “SET".

277

B.17.2 Examples

A schema can be dropped from a database using:

DROP SCHEMA schema_nane

When dropping a schema name, all objects associated with the schema name must be dropped prior to dropping
the schema.

A schema context can be removed using:

SET SCHEMA USER
Below are the rules for resolving schema names:

» Afully qualified name (schera_nane. dat abase_obj ect _nane) does not need any name resolution,
but will be validated.

» |If a schema context is not set using SET SCHEMA, then all database object names are resolved always
using the user id as the schema name.

» If the database object name cannot be resolved from the schema name, then the database object name is
resolved from all existing schema names.

» If name resolution finds either zero matching or more than one matching database object name, then a
solidDB server issues a name resolution conflict error.

B.17.2 Examples

-— Assume the userlID is SMITH.

CREATE SCHEMA FINANCE;

CREATE TABLE EMPLOYEE (EMP_ID INTEGER);

SET SCHEMA FINANCE;

CREATE TABLE EMPLOYEE (1D INTEGER);

SELECT ID FROM EMPLOYEE;

-— In this case, the table is qualified to FINANCE.EMPLOYEE
SELECT EMP_ID FROM EMPLOYEE;

-- This will give an error as the context is with FINANCE and
-- table is resolved to FINANCE.EMPLOYEE

--The following are valid schema statements: one with a schema context,
--the other without.

278

B.18 CREATE SEQUENCE

SELECT 1D FROM FINANCE.EMPLOYEE;

SELECT EMP_ID FROM SMITH.EMPLOYEE

--The following statement will resolve to schema SMITH without a schema
--context

SELECT EMP_ID FROM EMPLOYEE;

B.18 CREATE SEQUENCE

CREATE [DENSE] SEQUENCE sequence_nane

B.18.1 Usage

Sequencer objects are objects that are used to get sequence numbers.

Using a dense sequence guarantees that there are no holes in the sequence numbers. The sequence number
allocation is bound to the current transaction. If the transaction rolls back, then the sequence number allocations
are also rolled back. The drawback of dense sequences is that the sequence is locked out from other transactions
until the current transaction ends.

Using a sparse sequence guarantees uniqueness of the returned values, but they are not bound to the current
transaction. If a transaction allocates a sparse sequence number and later rolls back, the sequence number is
simply lost.

Sequence numbers are 8-byte values. Sequence values can be stored in BIGINT, INT, or BINARY data types.
BIGINT is recommended. Sequence values stored in INT variables lose information because an 8-byte sequence
number will not fit in a 4-byte INT. 8-byte BINARY values can store a complete sequence number, but
BINARY values are not always as convenient to work with as integer data types.

< Note

Because a sequence number is an 8-byte number, storing it in a 4-byte integer (in a stored procedure
or in an application program) will omit the highest four bytes. This will lead possibly to unwanted
behavior after the sequence number goes beyond 2731 - 1 (=2147483647). Below is some sample
code and the output that demonstrates this behavior:

CREATE SEQUENCE seql;

-- Set the sequence number to 2731 - 1,
-- then return that value and the "next™ value (2731).
"CREATE PROCEDURE set_seql_to_2G

279

B.18.1 Usage

RETURNS (x INT, y INT)

BEGIN

DECLARE intl INTEGER;

intl := 2147483647;

EXEC SEQUENCE seql SET VALUE USING intl;
EXEC SEQUENCE seql CURRENT INTO x;

EXEC SEQUENCE seql NEXT INTO y;

END"';

COMMIT WORK;
CALL set_seql _to 2G(Q);
The return values from the call are:
X Yy
2147483647 -2147483648

The value for x is correct, but the value for y is a negative number instead of the correct positive
number.

The advantage of using a sequencer object instead of a separate table is that the sequencer object is specifically
fine-tuned for fast execution and requires less overhead than normal update statements.

Sequence values can be incremented and used within SQL statements. These constructs can be used in SQL:
sequence_name .CURRVAL

sequence_name .NEXTVAL

Sequences can also be used inside stored procedures. The current sequence value can be retrieved using the
following stored procedure statement:

EXEC SEQUENCE sequence_namne.CURRENT INTO vari abl e

The new sequence value can be retrieved using the following stored procedure statement:

EXEC SEQUENCE sequence_nane.NEXT INTO vari abl e

Sequence values can be set with the following stored procedure statement:

280

B.18.2 Examples

EXEC SEQUENCE sequence_nane SET VALUE USING vari abl e

Select access rights are required to retrieve the current sequence value. Update access rights are required to
allocate new sequence values. These access rights are granted and revoked in the same way as table access
rights.

B.18.2 Examples

CREATE DENSE SEQUENCE SEQ1;
INSERT INTO ORDER (id) VALUES (order_sequence_NEXTVAL);

B.19 CREATE SYNC BOOKMARK

CREATE SYNC BOOKMARK booknar k_nane

B.19.1 Supported in

This requires solidDB SmartFlow.

B.19.2 Usage

This statement creates a bookmark in a master database. Bookmarks represent a user-defined version of the
database. It is a persistent snapshot of a solidDB database, which provides a reference for performing specific
synchronization tasks. Bookmarks are used typically to export data from a master for import into a replica
using the EXPORT SUBSCRIPTION command. Exporting and importing data allows you to create a replica
from a master more efficiently if you have databases larger than 2GB.

To create a bookmark, you must have administrative DBA privileges or SYS_SYNC_ADMIN_ROLE. There
is no limit to the number of bookmarks you can create in a database. A bookmark is created only in a master
database. The system issues an error if you attempt to create a bookmark in a replica database.

If a table is set up for synchronization history with the ALTER TABLE SET SYNCHISTORY command, a
bookmark retains history information for the table. For this reason, use the DROP SYNC BOOKMARK
statement to drop bookmarks when they are not longer needed. Otherwise, extra history data will increase
disk space usage.

When you create a new bookmark, the system associates other attributes, such as creator of the bookmark,
creation data and time, and a unique bookmark ID. This metadata is maintained in the system table

281

B.19.3 Usage in Master

SYS_SYNC_BOOKMARKS. For a description of this table, refer to Section D.2.10, “SYS_SYNC_BOOK-
MARKS”.

B.19.3 Usage in Master

Use the CREATE SYNC BOOKMARK statement to create a bookmark in a master database.

B.19.4 Usage in Replica

The CREATE SYNC BOOKMARK statement cannot be used in a replica database.

B.19.5 Example

CREATE SYNC BOOKMARK BOOKMARK_AFTER_DATALOAD;

B.19.6 Return Values

For details on each error code, see the appendix titled Error Codes in the solidDB Administration Guide.

Table B.8. CREATE SYNC BOOKMARK Return Values

Error Code Description
25066 Bookmark already exists
13047 No privilege for operation

B.20 CREATE TABLE
CREATE [{ [GLOBAL] TEMPORARY | TRANSIENT }] TABLE base_t abl e_nane
(colum_el ement [, colum_elenent] ...) [STORE {MEMORY | DISK}]

base table _nane ::= base_table_ identifier | schema_nane. base _table_ identifier |
cat al og_nane. schena_nane. base_tabl e_identifier

colum_el ement ::= columm_definition | table_constraint_definition
col um_definition ::= colum_identifier

data_type [DEFAULT Iliteral | NULL] [NOT NULL]

[col utm_constraint _definition [columm_constraint_definition] ...]

282

B.20.1 Usage

col um_constraint_definition ::= [CONSTRAINT constrai nt_nane]
UNIQUE | PRIMARY KEY |
REFERENCES ref _table_nane [(referenced_col ums)] |
CHECK (check_condition)

tabl e_constraint_definition ::= [CONSTRAINT constrai nt_nane]
UNIQUE (colum_identifier [, colum_identifier] ...) |
PRIMARY KEY (colum_identifier [, colum_identifier] ...) |
CHECK (check_condition) |
{FOREIGN KEY (colum_identifier [, colum_identifier] ...)
REFERENCES t abl e_name [(referenced_col ums)]
[referential _triggered_action] }

referential triggered_action:: =
ON {UPDATE | DELETE} {CASCADE | SET NULL | SET DEFAULT |
RESTRICT | NO ACTION}

B.20.1 Usage

Tables are created through the CREATE TABLE statement. The CREATE TABLE statement requires a list
of the columns created, the data types, and, if applicable, sizes of values within each column, in addition to
other options, such as creating primary keys.

1) Important

Always define a primary key when you create a table. If you do not define a primary key, the database
engine will create one automatically. This will lead to unexpected data order on the disk and may
cause performance degradation. An appropriate primary key speeds up queries using the primary key.

Constraint definitions are available for both the column and table level. For the column level, constraints
defined with NOT NULL specify that a non-null value is required for a column insertion. UNIQUE specifies
that no two rows are allowed to have the same value. PRIMARY KEY ensures that the column(s), which is
(are) a primary key, does not permit two rows to have the same value and does not permit any NULL values;
PRIMARY KEY is thus equivalent to the combination of UNIQUE and NOT NULL. The REFERENCES
clause with FOREIGN KEY specifies a table name and a list of columns for a referential integrity constraint.
This means that when data is inserted or updated in this table, the data must match the values in the referenced
tables and columns.

The CHECK keyword restricts the values that can be inserted into a column (for example, restricting the
values with a specific integer range). When defined, the check constraint performs a validation check for any
data that is inserted or updated in that column. If the data violates the constraint, then the modification is
prohibited. For example:

283

B.20.1 Usage

CREATE TABLE tablel (salary DECIMAL CHECK (salary >= 0.0)):

The check_condition is a boolean expression that specifies the check constraints for the column. Check con-
straints are defined with the predicates >, <, =, <>, <=, >= and the keywords BETWEEN, IN, LIKE (which
may contain wildcard characters), and 1S [NOT] NULL. The expression (similar to the syntax of a WHERE
clause) can be qualified with keywords AND and OR. For example:

--.-CHECK (coll = "Y" OR coll = "N")...
.- .CHECK (last_name IS NOT NULL)...

Note that UNIQUE and PRIMARY KEY constraints can be defined at the column level or the table level.
They also automatically create a unique index on the specified columns.

A foreign key is a column or group of columns within a table that refers to, or relates to, some other table
through its values. The FOREIGN KEY is used to specify that the column(s) listed are foreign keys in this
table. The REFERENCES keyword in the statement specifies the table and those column(s) that are references
of the foreign key(s). Note that although column-level constraints can use a REFERENCES clause, only table-
level constraints can use the FOREIGN KEY ... REFERENCES clause.

To use the REFERENCES constraint with FOREIGN keys, a foreign key must always include enough columns
in its definition to uniquely identify a row in the referenced table. A foreign key must contain the same number
and type (data type) of columns as the primary key in the referenced table as well as be in the same order;
however, a foreign key can have different column names and default values than the primary key.

Note the following rules about constraints:

The check_condi ti on cannot contain subqueries, aggregate functions, host variables, or parameters.
Column check constraints can reference only the columns on which they are defined.

Table check constraints can reference any columns in the table, that is if all columns in the table have
been defined earlier in the statement.

A table may have only one primary key constraint, but may have multiple unique constraints.

The UNIQUE and PRIMARY KEY constraints in the CREATE TABLE statement can be used to create
indexes. However, if you use the ALTER TABLE statement, keep in mind that a column cannot be dropped
if it is part of a unique or primary key. You may want to use the CREATE INDEX statement to create an
index instead because the index will have a name and you can drop it. The CREATE INDEX statement
also offers some additional features, such as the ability to create non-unique indexes and to specify if the
indexes are sorted in ascending or descending order.

284

B.20.1 Usage

« The referential integrity rules for persistent, transient, and temporary table types are different.

< A temporary table may reference another temporary table, but may not reference any other type of
table (i.e. transient or persistent). No other type of table may reference a temporary table.

« Transient tables may reference other transient tables and may reference persistent tables. They may
not reference temporary tables. Neither temporary tables nor persistent tables may reference a transient
table.

In a disk-based table, the maximum size of a row (excluding BLOBS) is approximately 1/3 of the page size.
In an in-memory table, the maximum size of a row (including BLOBS) is approximately the page size. (There
is a small amount of overhead used in both disk-based and in-memory pages, so not quite all of the page is
available for user data.) The default page size is 8kB. For more information about page size, see the description
of the sol1d. ini configuration parameter Bl ockSi ze in solidDB Administration Guide.

The server does not use simple rules to determine BLOB storage, but as a general rule each BLOB occupies
256 bytes from the page where the row resides, and the rest of the BLOB goes to separate BLOB pages. If
the BLOB is shorter than 256 bytes, then it is stored entirely in the main disk page, not BLOB pages.

Each row is limited to 1000 columns.

The STORE clause indicates whether the table should be stored in memory or on disk. (This clause is only
available in solidDB In-memory Engine.) For more information about the STORE clause, see solidDB In-
Memory Database User Guide.

In-memory tables may be persistent (normal) tables, temporary tables, or transient tables. For a detailed dis-
cussion of temporary tables and transient tables, see solidDB In-Memory Database User Guide.

All temporary tables and transient tables must be in-memory tables. You do not need to specify the "STORE
MEMORY" clause; temporary tables and transient tables will automatically be created as in-memory tables
if you omit the STORE clause. (For temporary tables and transient tables, the solid. ini configuration
parameter Def aul t St or el sMenor y is ignored.) You will get an error if you try to explicitly create tem-
porary tables or transient tables as disk-based tables, e.g. if you execute a command similar to the following:

CREATE TEMPORARY TABLE t1 (i INT) STORE DISK; --Wrong!

The keyword "GLOBAL" is included to comply with the SQL:1999 standard for temporary tables. In solidDB,
all temporary tables are global, whether or not the GLOBAL keyword is used.

285

B.20.2 Example

Interactions with Configuration Parameters

The storage location (disk or memory) in the CREATE TABLE statement takes precedence over the storage
location specified by the Def aul t St or el sMenor y parameter in the solid. ini configuration file.

B.20.2 Example

CREATE TABLE DEPT (DEPTNO INTEGER NOT NULL, DNAME VARCHAR, PRIMARY KEY(DEPTNO));
CREATE TABLE DEPT2 (DEPTNO INTEGER NOT NULL PRIMARY KEY, DNAME VARCHAR);

CREATE TABLE DEPT3 (DEPTNO INTEGER NOT NULL UNIQUE, DNAME VARCHAR);

CREATE TAB