

solidDB SQL Guide
Copyright © Solid Information Technology Ltd. 2007, 2009
Document number: SQLG60
Product version: 06.00.1059
Date: 2009-04-22

All rights reserved. No portion of this product may be used in any way except as expressly authorized in writing by Solid Information
Technology Ltd. or International Business Machines Corporation.

This product is protected by U.S. patents 6144941, 7136912, 6970876, 7139775, 6978396, and 7266702.

This product is assigned the U.S. Export Control Classification Number ECCN=5D992b.

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative
for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is
not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document
does not grant you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your country or
send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local
law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an en-
dorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web
sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between
independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been ex-
changed, should contact:

IBM Canada Limited
Office of the Lab Director
8200 Warden Avenue
Markham, Ontario
L6G 1C7
CANADA

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM
Customer Agreement, IBM International Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating
environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee
that these measurements will be the same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other
publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any
other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without notice, and represent goals and
objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible,
the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to
the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of devel-
oping, using, marketing or distributing application programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright notice as follows:

your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
Copyright IBM Corp. _enter the year or years_.

All rights reserved.

TRADEMARKS

IBM, the IBM logo, ibm.com, Solid, and solidDB are trademarks or registered trademarks of International Business Machines Corporation
in the United States, other countries, or both. A current list of IBM trademarks is available on the Web at "http://www.ibm.com/legal/copy-
trade.shtml".

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

Table of Contents
1 Welcome ... 1

1.1 About This Guide ... 1
1.1.1 Organization ... 1
1.1.2 Audience .. 2

1.2 Conventions .. 2
1.2.1 About solidDB ... 2
1.2.2 Typographic Conventions .. 2
1.2.3 Syntax Notation ... 3

1.3 solidDB Documentation ... 4
2 Database Concepts .. 7

2.1 Relational Databases ... 7
2.1.1 Tables, Rows, and Columns .. 7
2.1.2 Relating Data In Different Tables .. 8

2.2 Client-Server Architecture .. 11
2.3 Multi-User Capability .. 11
2.4 Transactions ... 12
2.5 Transaction Logging and Recovery ... 12

2.5.1 Background ... 12
2.6 Summary ... 13

3 Getting Started with SQL ... 15
3.1 Tables, Rows, and Columns .. 15
3.2 SQL ... 15
3.3 The Mathematical Origins of SQL .. 18
3.4 Creating Tables with Related Data .. 18

3.4.1 Table Aliases ... 21
3.4.2 Subqueries .. 21

3.5 Which Formats Are Used for Each Data Type? ... 22
3.5.1 BLOBs (or Binary Data Types) ... 24
3.5.2 NULL IS NOT NULL (or "How to say 'None of the above' in SQL") 25
3.5.3 NOT NULL ... 28
3.5.4 Expressions and Casts ... 28
3.5.5 Row Value Constructors ... 31

3.6 More about Transactions .. 34
3.7 Summary ... 34
3.8 Where to Find Additional Information about SQL ... 35

4 Stored Procedures, Events, Triggers, and Sequences ... 37
4.1 Stored Procedures ... 37

4.1.1 Basic Procedure Structure .. 37
4.1.2 Naming Procedures ... 38

v

4.1.3 Parameter Section ... 38
4.1.4 Declare Section .. 43
4.1.5 Procedure Body ... 44
4.1.6 Assignments .. 44
4.1.7 Expressions ... 47
4.1.8 Control Structures .. 49

4.2 Remote Stored Procedures .. 58
4.2.1 ACCESS RIGHTS .. 60

4.3 Using SQL in a Stored Procedure ... 62
4.3.1 EXECDIRECT .. 62
4.3.2 Using a Cursor ... 62
4.3.3 Error Handling ... 66
4.3.4 Parameter Markers in Cursors ... 68

4.4 Calling other Procedures .. 71
4.4.1 Positioned Updates and Deletes ... 72
4.4.2 Transactions .. 73
4.4.3 Default Cursor Management ... 74
4.4.4 Notes on SQL .. 75
4.4.5 Functions for Procedure Stack Viewing ... 75

4.5 Procedure Privileges .. 76
4.6 Using Triggers .. 76

4.6.1 How Triggers Work ... 77
4.6.2 Creating Triggers .. 78
4.6.3 Keywords and Clauses ... 79
4.6.4 Triggers Comments and Restrictions .. 83

4.7 Triggers and Procedures ... 84
4.7.1 Setting Default or Derived Columns ... 84
4.7.2 Using Parameters and Variables ... 85

4.8 Triggers and Transactions ... 88
4.8.1 Recursion and Concurrency Conflict Errors ... 88
4.8.2 Trigger Privileges and Security .. 97
4.8.3 Raising Errors from Inside Triggers ... 97
4.8.4 Trigger Example .. 98
4.8.5 Dropping Triggers ... 103
4.8.6 Altering Trigger Attributes .. 104
4.8.7 Obtaining Trigger Information ... 105
4.8.8 Trigger Functions .. 105
4.8.9 SYS_TRIGGERS System Table ... 105
4.8.10 Trigger Parameter Settings .. 106

4.9 Deferred Procedure Calls .. 107
4.9.1 Sync Pull Notify ("Push Synchronization") Example ... 119
4.9.2 Tracing the Execution of Background Jobs .. 122

vi

solidDB SQL Guide

4.9.3 Controlling Backgroung Tasks ... 123
4.10 Using Sequences ... 123
4.11 Using Events .. 125

5 Using solidDB SQL for Database Administration .. 139
5.1 Using solidDB SQL Syntax ... 139

5.1.1 solidDB SQL Data Types ... 139
5.1.2 solidDB ADMIN COMMAND .. 139
5.1.3 Using Functions ... 140

5.2 Managing User Privileges and Roles ... 140
5.2.1 User Privileges ... 141
5.2.2 User Roles ... 141
5.2.3 Examples of SQL Statements .. 142

5.3 Managing Tables ... 145
5.3.1 Accessing System Tables .. 146
5.3.2 Examples of SQL Statements .. 147

5.4 Managing Indexes ... 149
5.4.1 Examples of SQL Statements .. 149
5.4.2 Primary Key Indexes ... 150
5.4.3 Secondary Key Indexes .. 151
5.4.4 Protection Against Duplicate Indexes .. 152

5.5 Referential Integrity ... 153
5.5.1 Primary Keys and Candidate Keys ... 153
5.5.2 Foreign Keys ... 154
5.5.3 Referential Actions .. 157
5.5.4 Dynamic Constraint Management .. 158

5.6 Managing Database Objects .. 159
5.6.1 Introduction ... 159
5.6.2 Catalogs .. 160
5.6.3 Schemas ... 160
5.6.4 Uniquely Identifying Objects within Catalogs and Schemas 161
5.6.5 Examples of SQL Statements .. 162

6 Managing Transactions .. 165
6.1 Managing Transactions ... 165

6.1.1 Defining Read-Only and Read-Write Transactions .. 165
6.1.2 Setting Concurrency Control ... 166

6.2 Concurrency Control and Locking .. 167
6.2.1 The Purpose of Concurrency Control .. 168
6.2.2 EXCLUSIVE vs. SHARED LOCKS .. 169
6.2.3 PESSIMISTIC vs. OPTIMISTIC Concurrency Control .. 169
6.2.4 Table Locks ... 175
6.2.5 Lock Duration .. 177
6.2.6 TRANSACTION ISOLATION Levels .. 178

vii

solidDB SQL Guide

6.2.7 Miscellaneous Lock Information .. 179
6.2.8 Summary of Locking Information .. 180

6.3 Choosing the Transaction Durability ... 180
6.3.1 Setting the Transaction Durability Level .. 180

7 Diagnostics and Troubleshooting .. 183
7.1 Observing Performance .. 183

7.1.1 SQL Info Facility .. 183
7.1.2 The EXPLAIN PLAN FOR Statement .. 184

7.2 Problem Reporting .. 190
7.3 Problem Categories ... 191

7.3.1 solidDB ODBC API Problems ... 191
7.3.2 solidDB ODBC Driver Problems ... 191
7.3.3 solidDB JDBC Driver Problems .. 192
7.3.4 UNIFACE Driver for solidDB Problems .. 192
7.3.5 Communication between a Client and Server ... 192

7.4 Tracing Facilities for Stored Procedures and Triggers ... 193
7.4.1 User-Definable Trace Output from Procedure Code ... 193
7.4.2 Procedure Execution Trace ... 194

7.5 Measuring and Improving Performance of START AFTER COMMIT Statements 195
7.5.1 Tuning Performance of START AFTER COMMIT Statements 195
7.5.2 Analyzing Failures in START AFTER COMMIT Statements 195

8 Performance Tuning ... 197
8.1 Tuning SQL Statements and Applications .. 197

8.1.1 Evaluating Application Performance ... 198
8.1.2 Using Stored Procedure Language .. 198

8.2 Optimizing Single-Table SQL Queries ... 199
8.3 Using Indexes to Improve Query Performance .. 199

8.3.1 Full Table Scan ... 201
8.3.2 Concatenated Indexes .. 201

8.4 Waiting on Events ... 202
8.5 Optimizing Batch Inserts and Updates ... 203

8.5.1 Increasing Speed of Batch Inserts and Updates ... 203
8.6 Using Optimizer Hints ... 204
8.7 Diagnosing Poor Performance ... 206

A Data Types ... 209
A.1 Supported Data Types .. 209

A.1.1 Character Data Types .. 209
A.1.2 Numeric Data Types ... 210
A.1.3 Binary Data Types .. 212
A.1.4 Date Data Type .. 213
A.1.5 Time Data Type ... 214
A.1.6 Timestamp Data Type ... 214

viii

solidDB SQL Guide

A.1.7 The Smallest Possible Non-Zero Numbers .. 214
A.1.8 BLOBs and CLOBs .. 215

B solidDB SQL Syntax ... 217
B.1 ADMIN COMMAND .. 217

B.1.1 Supported in .. 217
B.1.2 Usage .. 217

B.2 ADMIN EVENT .. 233
B.2.1 Usage .. 233
B.2.2 Examples .. 234

B.3 ALTER TABLE .. 234
B.3.1 Usage .. 235
B.3.2 Example ... 236

B.4 ALTER TABLE ... SET HISTORY COLUMNS .. 236
B.4.1 Usage .. 236
B.4.2 Usage in Master ... 237
B.4.3 Usage in Replica .. 237
B.4.4 Example ... 237
B.4.5 Return Values .. 237
B.4.6 See Also ... 237

B.5 ALTER TABLE ... SET SYNCHISTORY .. 238
B.5.1 Usage .. 238
B.5.2 Usage in Master ... 239
B.5.3 Usage in Replica .. 239
B.5.4 Example ... 239
B.5.5 Return Values .. 239
B.5.6 See Also ... 240

B.6 ALTER TRIGGER .. 240
B.6.1 Usage .. 240
B.6.2 Example ... 240

B.7 ALTER USER .. 241
B.7.1 Usage .. 241
B.7.2 Example ... 241

B.8 ALTER USER .. 241
B.8.1 Usage .. 241
B.8.2 Usage in Master ... 242
B.8.3 Usage in Replica .. 242
B.8.4 Example ... 242
B.8.5 Return Values .. 243

B.9 CALL ... 243
B.9.1 Supported in .. 243
B.9.2 Usage .. 243
B.9.3 Transactions .. 244

ix

solidDB SQL Guide

B.9.4 Return Values from the Remote Procedure .. 244
B.9.5 Access Rights for Remote Stored Procedure Calls .. 245
B.9.6 Durability ... 246
B.9.7 Example ... 246

B.10 COMMIT WORK ... 247
B.10.1 Usage ... 247
B.10.2 Example ... 247
B.10.3 See Also ... 247

B.11 CREATE CATALOG ... 247
B.11.1 Usage ... 247
B.11.2 Examples .. 249

B.12 CREATE EVENT ... 250
B.12.1 Usage ... 251
B.12.2 Example ... 253
B.12.3 See Also ... 253

B.13 CREATE INDEX .. 253
B.13.1 Usage ... 253
B.13.2 Example ... 254
B.13.3 See Also ... 254

B.14 CREATE PROCEDURE ... 254
B.14.1 Usage ... 256
B.14.2 Preparing SQL Statements .. 261
B.14.3 Executing Prepared SQL Statements .. 261
B.14.4 Fetching Results ... 262
B.14.5 Closing and Dropping Cursors .. 262
B.14.6 Checking for Errors .. 262
B.14.7 Using Transactions ... 263
B.14.8 Using Sequencer Objects and Event Alerts .. 263
B.14.9 Writetrace ... 263
B.14.10 Procedure Stack Functions .. 263
B.14.11 Dynamic Cursor Names ... 264
B.14.12 EXECDIRECT ... 265
B.14.13 CREATE PROCEDURE .. 266
B.14.14 Using the Explicit RETURN Statement ... 266
B.14.15 Using EXECDIRECT .. 267
B.14.16 Using CURSORNAME .. 268
B.14.17 Using GET_UNIQUE_STRING and CURSORNAME 268
B.14.18 Example 6 ... 269
B.14.19 Creating a Unique Name for a Synchronization Message 269
B.14.20 Using GET_UNIQUE_STRING .. 270

B.15 CREATE [OR REPLACE] PUBLICATION ... 271
B.15.1 Usage ... 272

x

solidDB SQL Guide

B.15.2 Usage in Master ... 274
B.15.3 Usage in Replica .. 274
B.15.4 Example ... 274
B.15.5 Return Values .. 276

B.16 CREATE ROLE .. 276
B.16.1 Usage ... 276
B.16.2 Example ... 276

B.17 CREATE SCHEMA .. 276
B.17.1 Usage ... 277
B.17.2 Examples .. 278

B.18 CREATE SEQUENCE ... 279
B.18.1 Usage ... 279
B.18.2 Examples .. 281

B.19 CREATE SYNC BOOKMARK ... 281
B.19.1 Supported in .. 281
B.19.2 Usage ... 281
B.19.3 Usage in Master ... 282
B.19.4 Usage in Replica .. 282
B.19.5 Example ... 282
B.19.6 Return Values .. 282

B.20 CREATE TABLE .. 282
B.20.1 Usage ... 283
B.20.2 Example ... 286

B.21 CREATE TRIGGER .. 286
B.21.1 Usage ... 287
B.21.2 Trigger Name .. 288
B.21.3 BEFORE | AFTER Clause .. 288
B.21.4 INSERT | UPDATE | DELETE Clause .. 290
B.21.5 Table_name ... 291
B.21.6 Trigger_body ... 291
B.21.7 REFERENCING Clause .. 291
B.21.8 {OLD | NEW} column_name AS col_identifier .. 292
B.21.9 Triggers Comments and Restrictions .. 293

B.22 CREATE USER .. 296
B.22.1 Usage ... 297
B.22.2 Example ... 297

B.23 CREATE VIEW .. 297
B.23.1 Usage ... 297
B.23.2 Example ... 297

B.24 DELETE ... 297
B.24.1 Usage ... 297
B.24.2 Example ... 298

xi

solidDB SQL Guide

B.25 DELETE (positioned) .. 298
B.25.1 Usage ... 298
B.25.2 Example ... 298

B.26 DROP CATALOG ... 298
B.26.1 Usage ... 298
B.26.2 Example ... 299

B.27 DROP EVENT ... 299
B.27.1 Usage ... 299
B.27.2 Example ... 299

B.28 DROP INDEX .. 299
B.28.1 Usage ... 299
B.28.2 Example ... 299

B.29 DROP MASTER ... 300
B.29.1 Usage ... 300
B.29.2 Usage in Master ... 300
B.29.3 Usage in Replica .. 300
B.29.4 Examples .. 300
B.29.5 Return Values .. 301

B.30 DROP PROCEDURE .. 301
B.30.1 Usage ... 301
B.30.2 Example ... 301

B.31 DROP PUBLICATION .. 301
B.31.1 Usage ... 302
B.31.2 Usage in Master ... 302
B.31.3 Usage in Replica .. 302
B.31.4 Example ... 302
B.31.5 Return Values .. 302

B.32 DROP PUBLICATION REGISTRATION ... 302
B.32.1 Supported in .. 302
B.32.2 Usage ... 303
B.32.3 Usage in Master ... 303
B.32.4 Usage in Replica .. 303
B.32.5 Example ... 303
B.32.6 Return Values .. 303

B.33 DROP REPLICA .. 303
B.33.1 Supported in .. 304
B.33.2 Usage ... 304
B.33.3 Usage in Master ... 304
B.33.4 Usage in Replica .. 304
B.33.5 Example ... 304
B.33.6 Return Values .. 304

B.34 DROP ROLE ... 305

xii

solidDB SQL Guide

B.34.1 Usage ... 305
B.34.2 Example ... 305

B.35 DROP SCHEMA .. 305
B.35.1 Usage ... 305
B.35.2 Examples .. 306

B.36 DROP SEQUENCE ... 306
B.36.1 Usage ... 306
B.36.2 Examples .. 306

B.37 DROP SUBSCRIPTION .. 306
B.37.1 Supported in .. 307
B.37.2 Usage ... 307
B.37.3 Usage in Master ... 308
B.37.4 Usage in Replica .. 308
B.37.5 Example ... 308

B.38 DROP SYNC BOOKMARK ... 309
B.38.1 Supported in .. 309
B.38.2 Usage ... 309
B.38.3 Usage in Master ... 309
B.38.4 Usage in Replica .. 310
B.38.5 Example ... 310
B.38.6 Return Values .. 310

B.39 DROP TABLE .. 310
B.39.1 Usage ... 311
B.39.2 Examples .. 311

B.40 DROP TRIGGER .. 311
B.40.1 Usage ... 311
B.40.2 Examples .. 311

B.41 DROP USER .. 311
B.41.1 Usage ... 312
B.41.2 Example ... 312

B.42 DROP VIEW ... 312
B.42.1 Usage ... 312
B.42.2 Examples .. 312

B.43 EXPLAIN PLAN FOR ... 312
B.43.1 Usage ... 312
B.43.2 Example ... 313

B.44 EXPORT SUBSCRIPTION .. 313
B.44.1 Supported in .. 313
B.44.2 Usage ... 313
B.44.3 Usage in Master ... 315
B.44.4 Usage in Replica .. 315
B.44.5 Example ... 316

xiii

solidDB SQL Guide

B.44.6 Return Values .. 316
B.45 EXPORT SUBSCRIPTION TO REPLICA .. 316

B.45.1 Supported in .. 316
B.45.2 Usage ... 316
B.45.3 Usage in Master ... 317
B.45.4 Usage in Replica .. 317
B.45.5 Example ... 317
B.45.6 Return Values .. 318

B.46 GET_PARAM() .. 318
B.46.1 Supported in .. 318
B.46.2 Usage ... 318
B.46.3 Usage in Master ... 318
B.46.4 Usage in Replica .. 319
B.46.5 solidDB System Parameters .. 319
B.46.6 Example ... 319
B.46.7 Return Values .. 319
B.46.8 See Also ... 320

B.47 GRANT .. 320
B.47.1 Usage ... 321
B.47.2 Example ... 321
B.47.3 See Also ... 321

B.48 GRANT REFRESH ... 322
B.48.1 Supported in .. 322
B.48.2 Usage ... 322
B.48.3 Usage in Master ... 322
B.48.4 Usage in Replica .. 322
B.48.5 Example ... 322
B.48.6 Return Values .. 322

B.49 HINT .. 323
B.49.1 Pseudo Comment Identifier .. 323
B.49.2 Example 1 ... 325
B.49.3 Example 2 ... 325
B.49.4 Usage ... 328
B.49.5 Example ... 328

B.50 IMPORT ... 329
B.50.1 Usage ... 329
B.50.2 Usage in Master ... 330
B.50.3 Usage in Replica .. 331
B.50.4 Example ... 331
B.50.5 Return Values .. 331

B.51 INSERT .. 332
B.51.1 Usage ... 332

xiv

solidDB SQL Guide

B.51.2 Example ... 333
B.52 LOCK TABLE ... 333

B.52.1 Usage ... 334
B.52.2 Examples .. 336
B.52.3 Return Values .. 336
B.52.4 See Also ... 336

B.53 MESSAGE APPEND ... 336
B.53.1 Supported in .. 337
B.53.2 Usage ... 337
B.53.3 Usage in Master ... 339
B.53.4 Usage in Replica .. 339
B.53.5 Example ... 339
B.53.6 Return Values .. 339

B.54 MESSAGE BEGIN ... 340
B.54.1 Supported in .. 340
B.54.2 Usage ... 340
B.54.3 Usage in Master ... 341
B.54.4 Usage in Replica .. 341
B.54.5 Example ... 341
B.54.6 Return Values from Master ... 342

B.55 MESSAGE DELETE ... 342
B.55.1 Supported in .. 342
B.55.2 Usage ... 342
B.55.3 Usage in Master ... 343
B.55.4 Usage in Replica .. 343
B.55.5 Example ... 343

B.56 MESSAGE DELETE CURRENT TRANSACTION .. 344
B.56.1 Supported in .. 344
B.56.2 Usage ... 344
B.56.3 Usage in Master ... 345
B.56.4 Usage in Replica .. 345
B.56.5 Example ... 345
B.56.6 Return Values .. 345

B.57 MESSAGE END ... 346
B.57.1 Supported in .. 346
B.57.2 Usage ... 346
B.57.3 Usage in Master ... 346
B.57.4 Usage in Replica .. 346
B.57.5 Return Values from Replica .. 347
B.57.6 Return Values from Master ... 347

B.58 MESSAGE EXECUTE .. 348
B.58.1 Supported in .. 348

xv

solidDB SQL Guide

B.58.2 Usage ... 348
B.58.3 Usage in Master ... 348
B.58.4 Usage in Replica .. 348
B.58.5 Result Set ... 349
B.58.6 Example ... 349
B.58.7 Return Values .. 349

B.59 MESSAGE FORWARD ... 350
B.59.1 Supported in .. 350
B.59.2 Usage ... 350
B.59.3 Example ... 351
B.59.4 Return Values from Replica .. 352
B.59.5 Return Values from Master ... 354

B.60 MESSAGE FROM REPLICA DELETE .. 354
B.61 MESSAGE FROM REPLICA EXECUTE ... 354

B.61.1 Supported in .. 355
B.61.2 Usage ... 355
B.61.3 Usage in Master ... 355
B.61.4 Usage in Replica .. 355
B.61.5 Example ... 355
B.61.6 Return Values .. 355

B.62 MESSAGE FROM REPLICA RESTART .. 356
B.63 MESSAGE GET REPLY .. 356

B.63.1 Supported in .. 356
B.63.2 Usage ... 357
B.63.3 Usage in Master ... 357
B.63.4 Usage in Replica .. 358
B.63.5 Example ... 358
B.63.6 Return Values from Replica .. 358
B.63.7 Return Values from Master ... 359
B.63.8 Result Set ... 360

B.64 POST EVENT .. 361
B.65 PUT_PARAM() .. 361

B.65.1 Supported in .. 361
B.65.2 Usage ... 361
B.65.3 Usage in Master ... 362
B.65.4 Usage in Replica .. 362
B.65.5 Differences between "PUT_PARAM()" and "SAVE PROPERTY property_name
VALUE property_value;" ... 362
B.65.6 Example ... 362
B.65.7 Return Values .. 363
B.65.8 See Also ... 363

B.66 REFRESH ... 363

xvi

solidDB SQL Guide

B.66.1 Usage ... 363
B.66.2 Example ... 364
B.66.3 Return Values .. 364

B.67 REGISTER EVENT .. 367
B.68 REVOKE (Role from User) .. 367

B.68.1 Usage ... 367
B.68.2 Example ... 367

B.69 REVOKE (Privilege from Role or User) .. 367
B.69.1 Usage ... 368
B.69.2 Example ... 368
B.69.3 See Also ... 368

B.70 REVOKE REFRESH ... 368
B.70.1 Supported in .. 369
B.70.2 Usage ... 369
B.70.3 Usage in Master ... 369
B.70.4 Usage in Replica .. 369
B.70.5 Example ... 369
B.70.6 Return Values .. 369

B.71 ROLLBACK WORK ... 370
B.71.1 Usage ... 370
B.71.2 Example ... 370

B.72 SAVE ... 370
B.72.1 Supported in .. 370
B.72.2 Usage ... 370
B.72.3 Usage in Master ... 371
B.72.4 Usage in Replica .. 371
B.72.5 Example ... 371
B.72.6 Return Values .. 372

B.73 SAVE PROPERTY .. 372
B.73.1 Supported in .. 372
B.73.2 Usage ... 372
B.73.3 Usage in Master ... 373
B.73.4 Usage in Replica .. 373
B.73.5 Differences between "PUT_PARAM()" and "SAVE PROPERTY property_name
VALUE property_value;" ... 373
B.73.6 Example ... 374
B.73.7 Return Values .. 374
B.73.8 Result set .. 374

B.74 SELECT ... 374
B.74.1 Usage ... 375
B.74.2 Examples .. 375
B.74.3 START WITH Example ... 376

xvii

solidDB SQL Guide

B.74.4 LEVEL and ORDER SIBLINGS BY Example ... 376
B.75 SET .. 377

B.75.1 Usage ... 377
B.75.2 Differences between SET and SET TRANSACTION .. 378
B.75.3 SET (Read/Write Level) .. 379
B.75.4 SET CATALOG ... 379
B.75.5 SET DURABILITY .. 379
B.75.6 SET ISOLATION LEVEL .. 379
B.75.7 SET SAFENESS .. 380
B.75.8 SET SCHEMA .. 380
B.75.9 SET SQL .. 381
B.75.10 SET STATEMENT MAXTIME ... 383
B.75.11 SET SYNC .. 383
B.75.12 SET TIMEOUT .. 394
B.75.13 SET TRANSACTION ... 395

B.76 START AFTER COMMIT .. 400
B.76.1 Usage ... 400
B.76.2 Transactions .. 401
B.76.3 Context of the Background Statements ... 401
B.76.4 Durability ... 402
B.76.5 Rollback ... 402
B.76.6 Order of Execution ... 402
B.76.7 Examples .. 402

B.77 TRUNCATE TABLE ... 403
B.77.1 Usage ... 403

B.78 UNLOCK TABLE ... 403
B.78.1 Usage ... 404
B.78.2 Examples of Using LOCK and UNLOCK ... 404
B.78.3 Return Values .. 405
B.78.4 See Also ... 405

B.79 UNREGISTER EVENT ... 405
B.80 UPDATE (Positioned) .. 405

B.80.1 Usage ... 405
B.80.2 Example ... 406

B.81 UPDATE (Searched) .. 406
B.81.1 Usage ... 406
B.81.2 Example ... 406

B.82 WAIT EVENT .. 406
B.83 Table_reference .. 406
B.84 Query_specification ... 408
B.85 Search_condition .. 409
B.86 Check_condition ... 411

xviii

solidDB SQL Guide

B.87 Expression ... 412
B.88 String Functions ... 415
B.89 Numeric Functions .. 416
B.90 Date Time Functions .. 417
B.91 System Functions .. 419
B.92 Miscellaneous Functions .. 420
B.93 Data_type .. 420
B.94 Date and Time Literals ... 421
B.95 Pseudo Columns ... 422
B.96 Wildcard Characters .. 422

B.96.1 Using SQL Wildcards .. 423
B.96.2 Wildcard Characters as Literals ... 424

C Reserved Words .. 425
D Database System Tables and System Views ... 439

D.1 System Tables .. 439
D.1.1 SQL_LANGUAGES ... 439
D.1.2 SYS_ATTAUTH .. 439
D.1.3 SYS_BACKGROUNDJOB_INFO .. 440
D.1.4 SYS_BLOBS .. 441
D.1.5 SYS_CARDINAL .. 441
D.1.6 SYS_CATALOGS .. 442
D.1.7 SYS_CHECKSTRINGS .. 442
D.1.8 SYS_COLUMNS ... 442
D.1.9 SYS_COLUMNS_AUX .. 443
D.1.10 SYS_DL_REPLICA_CONFIG ... 444
D.1.11 SYS_DL_REPLICA_DEFAULT ... 444
D.1.12 SYS_EVENTS .. 445
D.1.13 SYS_FORKEYPARTS .. 446
D.1.14 SYS_FORKEYS .. 446
D.1.15 SYS_HOTSTANDBY ... 446
D.1.16 SYS_INFO ... 447
D.1.17 SYS_KEYPARTS .. 447
D.1.18 SYS_KEYS .. 447
D.1.19 SYS_PROCEDURES .. 448
D.1.20 SYS_PROCEDURE_COLUMNS .. 449
D.1.21 SYS_PROPERTIES .. 450
D.1.22 SYS_RELAUTH .. 450
D.1.23 SYS_SCHEMAS ... 451
D.1.24 SYS_SEQUENCES .. 451
D.1.25 SYS_SYNC_REPLICA_PROPERTIES .. 452
D.1.26 SYS_SYNONYM .. 452
D.1.27 SYS_TABLEMODES ... 452

xix

solidDB SQL Guide

D.1.28 SYS_TABLES ... 453
D.1.29 SYS_TRIGGERS ... 454
D.1.30 SYS_TYPES ... 454
D.1.31 SYS_UROLE .. 455
D.1.32 SYS_USERS ... 456
D.1.33 SYS_VIEWS ... 456

D.2 System Tables for Data Synchronization ... 456
D.2.1 SYS_BULLETIN_BOARD ... 457
D.2.2 SYS_PUBLICATION_ARGS .. 457
D.2.3 SYS_PUBLICATION_REPLICA_ARGS ... 457
D.2.4 SYS_PUBLICATION_REPLICA_STMTARGS .. 458
D.2.5 SYS_PUBLICATION_REPLICA_STMTS ... 458
D.2.6 SYS_PUBLICATION_STMTARGS .. 459
D.2.7 SYS_PUBLICATION_STMTS ... 459
D.2.8 SYS_PUBLICATIONS ... 460
D.2.9 SYS_PUBLICATIONS_REPLICA .. 460
D.2.10 SYS_SYNC_BOOKMARKS ... 461
D.2.11 SYS_SYNC_HISTORY_COLUMNS .. 461
D.2.12 SYS_SYNC_INFO ... 461
D.2.13 SYS_SYNC_MASTER_MSGINFO .. 462
D.2.14 SYS_SYNC_MASTER_RECEIVED_BLOB_REFS ... 463
D.2.15 SYS_SYNC_MASTER_RECEIVED_MSGPARTS .. 464
D.2.16 SYS_SYNC_MASTER_RECEIVED_MSGS .. 464
D.2.17 SYS_SYNC_MASTER_STORED_BLOB_REFS .. 464
D.2.18 SYS_SYNC_MASTER_STORED_MSGPARTS .. 465
D.2.19 SYS_SYNC_MASTER_STORED_MSGS .. 465
D.2.20 SYS_SYNC_MASTER_SUBSC_REQ ... 466
D.2.21 SYS_SYNC_MASTER_VERSIONS ... 466
D.2.22 SYS_SYNC_MASTERS ... 467
D.2.23 SYS_SYNC_RECEIVED_BLOB_ARGS ... 467
D.2.24 SYS_SYNC_RECEIVED_STMTS .. 468
D.2.25 SYS_SYNC_REPLICA_MSGINFO .. 468
D.2.26 SYS_SYNC_REPLICA_RECEIVED_BLOB_REFS .. 470
D.2.27 SYS_SYNC_REPLICA_RECEIVED_MSGPARTS .. 470
D.2.28 SYS_SYNC_REPLICA_RECEIVED_MSGS .. 471
D.2.29 SYS_SYNC_REPLICA_STORED_BLOB_REFS .. 471
D.2.30 SYS_SYNC_REPLICA_STORED_MSGS ... 471
D.2.31 SYS_SYNC_REPLICA_STORED_MSGPARTS ... 472
D.2.32 SYS_SYNC_REPLICA_VERSIONS ... 472
D.2.33 SYS_SYNC_REPLICAS ... 473
D.2.34 SYS_SYNC_SAVED_BLOB_ARGS ... 473
D.2.35 SYS_SYNC_SAVED_STMTS .. 473

xx

solidDB SQL Guide

D.2.36 SYS_SYNC_TRX_PROPERTIES ... 474
D.2.37 SYS_SYNC_USERMAPS ... 474
D.2.38 SYS_SYNC_USERS .. 475

D.3 System Views .. 475
D.3.1 COLUMNS .. 475
D.3.2 SERVER_INFO ... 476
D.3.3 TABLES .. 477
D.3.4 USERS .. 477

D.4 Synchronization-Related Views ... 477
D.4.1 SYNC_FAILED_MESSAGES ... 478
D.4.2 SYNC_FAILED_MASTER_MESSAGES .. 478
D.4.3 SYNC_ACTIVE_MESSAGES ... 479
D.4.4 SYNC_ACTIVE_MASTER_MESSAGES .. 479

E System Stored Procedures ... 481
E.1 Synchronization-Related Stored Procedures ... 481

E.1.1 SYNC_SETUP_CATALOG ... 481
E.1.2 SYNC_REGISTER_REPLICA ... 482
E.1.3 SYNC_UNREGISTER_REPLICA .. 483
E.1.4 SYNC_REGISTER_PUBLICATION ... 485
E.1.5 SYNC_UNREGISTER_PUBLICATION .. 486
E.1.6 SYNC_SHOW_SUBSCRIPTIONS ... 487
E.1.7 SYNC_SHOW_REPLICA_SUBSCRIPTIONS .. 488
E.1.8 SYNC_DELETE_MESSAGES ... 489
E.1.9 SYNC_DELETE_REPLICA_MESSAGES ... 490

E.2 Miscellaneous Stored Procedures ... 491
E.2.1 SYS_GETBACKGROUNDJOB_INFO .. 491

F System Events .. 493
F.1 Miscellaneous Events ... 494
F.2 Errors that Cause SYS_EVENT_ERROR ... 501
F.3 Conditions or Warnings that Cause SYS_EVENT_MESSAGES 502
F.4 HotStandby Events .. 503
F.5 SmartFlow Synchronization Events ... 503

Glossary ... 505
Index ... 509

xxi

solidDB SQL Guide

xxii

List of Figures
4.1 Sync Pull Notify ... 119
5.1 Referential Constraint .. 154
5.2 Self-referential Constraint ... 155
7.1 Execution Graph 1 ... 188
7.2 Execution Graph 2 ... 190

xxiii

xxiv

List of Tables
1.1 Typographic Conventions ... 2
1.2 Syntax Notation Conventions .. 3
2.1 Example Database Table .. 7
3.1 Example Database Table ... 15
4.1 Comparison Operators ... 47
4.2 Logical Operators: NOT ... 47
4.3 Logical Operators: AND ... 48
4.4 Logical Operators: OR ... 48
4.5 Determining Data Type from Parameters ... 70
4.6 Statement Atomicity in a Trigger .. 83
4.7 Insert/Update/Delete Operations for BEFORE/AFTER Triggers ... 91
4.8 Example Entry 1 ... 94
4.9 Example Entry 2 ... 94
4.10 Meta Data for the SYS_TRIGGERS System Table ... 106
5.1 Reserved User Names and Roles .. 142
5.2 Viewing Tables and Granting Access ... 146
5.3 Expressions and Operators .. 158
7.1 SQL Info Levels .. 184
7.2 EXPLAIN PLAN FOR Units ... 185
7.3 Explain Plan Table Columns .. 185
7.4 Texts in the Unit INFO Column ... 186
8.1 Diagnosing Poor Performance ... 206
A.1 Supported Data Types .. 209
A.2 Character Data Types .. 209
A.3 Numeric Data Types .. 210
A.4 Binary Data Types .. 212
A.5 Date Data Type .. 213
A.6 Time Data Type .. 214
A.7 Timestamp Data Type .. 214
A.8 Smallest Possible Non-Zero Numbers ... 214
B.1 ADMIN COMMAND Syntax ... 219
B.2 ALTER TABLE SET HISTORY COLUMNS Return Values ... 237
B.3 ALTER TABLE SET SYNCHISTORY Return Values .. 240
B.4 ALTER USER Return Values .. 243
B.5 Comparison of the Parameter Modes .. 257
B.6 Control Statements .. 259
B.7 CREATE PUBLICATION Return Values ... 276
B.8 CREATE SYNC BOOKMARK Return Values ... 282
B.9 Statement Atomicity in a Trigger ... 292

xxv

B.10 DROP MASTER Return Values ... 301
B.11 DROP PUBLICATION Return Values ... 302
B.12 DROP PUBLICATION REGISTRATION Return Values .. 303
B.13 DROP REPLICA Return Values ... 305
B.14 DROP SUBSCRIPTION Return Values ... 308
B.15 DROP SYNC BOOKMARK Return Values ... 310
B.16 EXPORT SUBSCRIPTION Return Values ... 316
B.17 EXPORT SUBSCRIPTION TO REPLICA Return Values ... 318
B.18 GET_PARAM Return Values .. 320
B.19 GRANT REFRESH Return Values ... 323
B.20 Hints .. 325
B.21 IMPORT Return Values .. 331
B.22 LOCK TABLE Return Values .. 336
B.23 MESSAGE APPEND Return Values ... 339
B.24 MESSAGE BEGIN Return Values from Replica ... 341
B.25 MESSAGE BEGIN Return Values from Master .. 342
B.26 MESSAGE DELETE Return Values from Replica ... 343
B.27 MESSAGE DELETE Return Values from Master .. 343
B.28 MESSAGE DELETE CURRENT TRANSACTION Return Values ... 345
B.29 MESSAGE END Return Values from Replica ... 347
B.30 MESSAGE END Return Values from Master .. 347
B.31 MESSAGE EXECUTE Return Values ... 349
B.32 MESSAGE FORWARD Return Values from Replica ... 352
B.33 MESSAGE FORWARD Return Values from Master .. 354
B.34 MESSAGE FROM REPLICA EXECUTE Return Values .. 356
B.35 MESSAGE GET REPLY Return Values from Replica .. 358
B.36 MESSAGE GET REPLY Return Values from Master ... 359
B.37 MESSAGE GET REPLY Result Set Table ... 360
B.38 PUT_PARAM() Return Values .. 363
B.39 REFRESH Return Values .. 364
B.40 REVOKE REFRESH Return Values ... 369
B.41 SAVE Return Values .. 372
B.42 SAVE PROPERTY Return Values .. 374
B.43 SET SYNC Return Values ... 384
B.44 SET SYNC CONNECT Return Values .. 385
B.45 How Different Operations Apply to Synchronization History Tables 387
B.46 SET SYNC MODE Return Values .. 388
B.47 SET SYNC NODE Return Values .. 390
B.48 SET SYNC PARAMETER Return Values .. 391
B.49 LOCK TABLE Return Values .. 405
B.50 Table_reference .. 406
B.51 Query_specification ... 408

xxvi

solidDB SQL Guide

B.52 Search_condition .. 409
B.53 Check_condition ... 411
B.54 Expression ... 412
B.55 String Functions ... 415
B.56 Numeric Functions .. 416
B.57 Date Time Functions .. 417
B.58 System Functions .. 419
B.59 Miscellaneous Functions .. 420
B.60 Data_type .. 420
B.61 Date and Time Literals ... 421
B.62 Pseudo Columns ... 422
B.63 Wildcard Characters .. 423
C.1 Reserved Words List .. 425
D.1 SQL_LANGUAGES ... 439
D.2 SYS_ATTAUTH .. 439
D.3 SYS_BACKGROUNDJOB_INFO ... 440
D.4 SYS_BLOBS ... 441
D.5 SYS_CARDINAL .. 441
D.6 SYS_CATALOGS .. 442
D.7 SYS_CHECKSTRINGS .. 442
D.8 SYS_COLUMNS ... 443
D.9 SYS_COLUMNS_AUX .. 444
D.10 SYS_DL_REPLICA_CONFIG .. 444
D.11 SYS_DL_REPLICA_DEFAULT .. 445
D.12 SYS_EVENTS ... 445
D.13 SYS_FORKEYPARTS .. 446
D.14 SYS_FORKEYS .. 446
D.15 SYS_INFO .. 447
D.16 SYS_KEYPARTS ... 447
D.17 SYS_KEYS ... 448
D.18 SYS_PROCEDURES .. 448
D.19 SYS_PROCEDURE_COLUMNS .. 449
D.20 SYS_PROPERTIES .. 450
D.21 SYS_RELAUTH .. 450
D.22 SYS_SCHEMAS .. 451
D.23 SYS_SEQUENCES .. 451
D.24 SYS_SYNC_REPLICA_PROPERTIES .. 452
D.25 SYS_SYNONYM ... 452
D.26 SYS_TABLEMODES .. 452
D.27 SYS_TABLES ... 453
D.28 SYS_TRIGGERS ... 454
D.29 SYS_TYPES ... 454

xxvii

solidDB SQL Guide

D.30 SYS_UROLE ... 455
D.31 SYS_USERS ... 456
D.32 SYS_VIEWS ... 456
D.33 SYS_BULLETIN_BOARD .. 457
D.34 SYS_PUBLICATION_ARGS ... 457
D.35 SYS_PUBLICATION_REPLICA_ARGS .. 457
D.36 SYS_PUBLICATION_REPLICA_STMTARGS ... 458
D.37 SYS_PUBLICATION_REPLICA_STMTS .. 458
D.38 SYS_PUBLICATION_STMTARGS ... 459
D.39 SYS_PUBLICATION_STMTS ... 459
D.40 SYS_PUBLICATIONS .. 460
D.41 SYS_PUBLICATIONS_REPLICA .. 460
D.42 SYS_SYNC_BOOKMARKS .. 461
D.43 SYS_SYNC_HISTORY_COLUMNS ... 461
D.44 SYS_SYNC_INFO ... 461
D.45 SYS_SYNC_MASTER_MSGINFO ... 462
D.46 SYS_SYNC_MASTER_RECEIVED_BLOB_REFS ... 463
D.47 SYS_SYNC_MASTER_RECEIVED_MSGPARTS ... 464
D.48 SYS_SYNC_MASTER_RECEIVED_MSGS ... 464
D.49 SYS_SYNC_MASTER_STORED_BLOB_REFS ... 464
D.50 SYS_SYNC_MASTER_STORED_MSGPARTS .. 465
D.51 SYS_SYNC_MASTER_STORED_MSGS .. 465
D.52 SYS_SYNC_MASTER_SUBSC_REQ ... 466
D.53 SYS_SYNC_MASTER_VERSIONS .. 466
D.54 SYS_SYNC_MASTERS .. 467
D.55 SYS_SYNC_RECEIVED_BLOB_ARGS ... 467
D.56 SYS_SYNC_RECEIVED_STMTS .. 468
D.57 SYS_SYNC_REPLICA_MSGINFO ... 469
D.58 SYS_SYNC_REPLICA_RECEIVED_BLOB_REFS ... 470
D.59 SYS_SYNC_REPLICA_RECEIVED_MSGPARTS .. 470
D.60 SYS_SYNC_REPLICA_RECEIVED_MSGS .. 471
D.61 SYS_SYNC_REPLICA_STORED_BLOB_REFS .. 471
D.62 SYS_SYNC_REPLICA_STORED_MSGS .. 471
D.63 SYS_SYNC_REPLICA_STORED_MSGPARTS .. 472
D.64 SYS_SYNC_REPLICA_VERSIONS ... 472
D.65 SYS_SYNC_REPLICAS ... 473
D.66 SYS_SYNC_SAVED_BLOB_ARGS ... 473
D.67 SYS_SYNC_SAVED_STMTS .. 474
D.68 SYS_SYNC_TRX_PROPERTIES ... 474
D.69 SYS_SYNC_USERMAPS ... 475
D.70 SYS_SYNC_USERS ... 475
D.71 COLUMNS ... 476

xxviii

solidDB SQL Guide

D.72 SERVER_INFO ... 476
D.73 TABLES ... 477
D.74 USERS ... 477
D.75 SYNC_FAILED_MESSAGES .. 478
D.76 SYNC_FAILED_MASTER_MESSAGES ... 479
D.77 SYNC_ACTIVE_MESSAGES .. 479
D.78 SYNC_ACTIVE_MASTER_MESSAGES ... 480
E.1 SYNC_SETUP_CATALOG Error Codes ... 482
E.2 SYNC_REGISTER_REPLICA Error Codes .. 483
E.3 SYNC_UNREGISTER_REPLICA Error Codes .. 484
E.4 SYNC_REGISTER_PUBLICATION Error Codes .. 485
E.5 SYNC_UNREGISTER_PUBLICATION Error Codes .. 486
E.6 CREATE PROCEDURE SYNC_SHOW_SUBSCRIPTIONS Result Set 487
E.7 SYNC_SHOW_SUBSCRIPTIONS Error Codes ... 487
E.8 SYNC_SHOW_REPLICA_SUBSCRIPTIONS Result Set .. 488
E.9 SYNC_SHOW_REPLICA_SUBSCRIPTIONS Error Codes ... 489
E.10 SYNC_DELETE_MESSAGES Error Codes ... 490
E.11 SYNC_DELETE_REPLICA_MESSAGES Error Codes ... 490
F.1 Miscellaneous Events ... 494
F.2 Errors that Cause SYS_EVENT_ERROR ... 501
F.3 Warnings that Cause SYS_EVENT_MESSAGES .. 502

xxix

solidDB SQL Guide

xxx

List of Examples
4.1 Trigger with Referencing Clause Example ... 86
4.2 Flawed Trigger ... 95
4.3 Trigger Example ... 98
4.4 Dropping and Recreating a Trigger ... 104
4.5 Sliced Replicas ... 120
4.6 Event Example 1 ... 127
4.7 Event Example 2 ... 130
4.8 Event Example 3 ... 133
B.1 SET Examples ... 378

xxxi

xxxii

Chapter 1. Welcome
1.1 About This Guide
solidDB SQL Guide introduces you to the relational database server theory and the SQL programming language.
It also includes appendices that show the syntax of all SQL statement supported by IBM solidDB (solidDB
or Solid), and describes the data types that can be used in tables and SQL statements.

1.1.1 Organization

This guide contains the following chapters:

• Chapter 2, Database Concepts, familiarizes you with the basics of relational databases.

• Chapter 3, Getting Started with SQL , familiarizes you with the basics of SQL (Structured Query Language).

• Chapter 4, Stored Procedures, Events, Triggers, and Sequences, explains how to use programming features,
including Stored Procedures, Triggers, etc.

• Chapter 5, Using solidDB SQL for Database Administration , explains the use of SQL for tasks such as
limiting access to particular users or roles, etc.

• Chapter 6, Managing Transactions , concentrates on transaction management.

• Chapter 7, Diagnostics and Troubleshooting, explains how to diagnose and solve some types of problems.

• Chapter 8, Performance Tuning, explains how to improve performance of SQL statements.

• Appendix A, Data Types, lists the valid SQL data types.

• Appendix B, solidDB SQL Syntax, shows the syntax for each SQL statement accepted by the solidDB.

• Appendix C, Reserved Words, lists the reserved words in SQL statements.

• Appendix D, Database System Tables and System Views , lists system tables and views.

• Appendix E, System Stored Procedures, lists stored procedures that are pre-defined by the server.

• Appendix F, System Events, lists events that are pre-defined by the server.

• Glossary provides definitions of terms.

1

1.1.2 Audience

This guide is for users who want to learn about SQL in general or who want to learn about solidDB-specific
SQL.

1.2 Conventions

1.2.1 About solidDB

solidDB provides advanced database solutions for mission-critical applications.

This documentation assumes that all options of solidDB are licensed for use. In some cases, however, a cus-
tomer may choose not to license certain options. These include in-memory engine, disk-based engine, Carri-
erGrade Option (also known as "HotStandby" in previous releases), and SmartFlow Option. Please refer to
your organization's contract with solidDB, or contact your solidDB account representative.

1.2.2 Typographic Conventions

This manual uses the following typographic conventions:

Table 1.1. Typographic Conventions

Used forFormat

This font is used for all ordinary text.Database table

Uppercase letters on this font indicate SQL keywords
and macro names.

NOT NULL

These fonts indicate file names and path expressions.solid.ini

This font is used for program code and program output.
Example SQL statements also use this font.SET SYNC MASTER YES;

COMMIT WORK;

This font is used for sample command lines.run.sh

This font is used for function names.TRIG_COUNT()

This font is used for interface names.java.sql.Connection

This font is used for parameter names, function argu-
ments, and Windows registry entries.

LockHashSize

2

1.1.2 Audience

Used forFormat

Words emphasised like this indicate information that
the user or the application must provide.

argument

This style is used for references to other documents,
or chapters in the same document. New terms and
emphasised issues are also written like this.

solidDB Administration Guide

File paths are presented in the Unix format. The slash
(/) character represents the installation root directory.

File path presentation

If documentation contains differences between operat-
ing systems, the Unix format is mentioned first. The

Operating systems

Microsoft Windows format is mentioned in paren-
theses after the Unix format. Other operating systems
are separately mentioned.

1.2.3 Syntax Notation

This manual uses the following syntax notation conventions:

Table 1.2. Syntax Notation Conventions

Used forFormat

Syntax descriptions are on this font. Replaceable sec-
tions are on this font.INSERT INTO table_name

This font indicates file names and path expressions.solid.ini

Square brackets indicate optional items; if in bold text,
brackets must be included in the syntax.

[]

A vertical bar separates two mutually exclusive choices
in a syntax line.

|

Curly brackets delimit a set of mutually exclusive
choices in a syntax line; if in bold text, braces must
be included in the syntax.

{ }

An ellipsis indicates that arguments can be repeated
several times.

...

A column of three dots indicates continuation of pre-
vious lines of code..

3

1.2.3 Syntax Notation

Used forFormat

.

.

1.3 solidDB Documentation
Below is a complete list of documents available for solidDB. solidDB documentation is distributed in PDF
format.

Electronic Documentation

• Release Notes. This file contains installation instructions and the most up-to-date information about the
specific product version. This file (releasenotes.txt) is copied onto your system when you install
the software.

• solidDB Getting Started Guide. This manual gives you an introduction to the solidDB.

• solidDB SQL Guide. This manual describes the SQL commands that solidDB supports. This manual also
describes some of the system tables, system views, system stored procedures, etc. that the engine makes
available to you. This manual contains some basic tutorial material on SQL for those readers who are not
already familiar with SQL. Note that some specialized material is covered in other manuals. For example,
solidDB "administrative commands" related to the High Availability (HotStandby) Option are described
in the solidDB High Availability User Guide, not the solidDB SQL Guide.

• solidDB Administration Guide. This guide describes administrative procedures for solidDB servers. This
manual includes configuration information. Note that some administrative commands use an SQL-like
syntax and are documented in the solidDB SQL Guide.

• solidDB Programmer Guide. This guide explains in detail how to use features such as solidDB Stored
Procedure Language, triggers, events, and sequences. It also describes the interfaces (APIs and drivers)
available for accessing solidDB and how to use them with a solidDB database.

• solidDB In-Memory Database User Guide. This manual describes how to use the in-memory database of
solidDB In-memory Engine.

• solidDB SmartFlow Data Replication Guide. This guide describes how to use the solidDB SmartFlow
technology to synchronize data across multiple database servers.

4

1.3 solidDB Documentation

• solidDB AcceleratorLib User Guide. Linking the client application directly to the server improves per-
formance by eliminating network communication overhead. This guide describes how to use the Acceler-
atorLib library, a database engine library that can be linked directly to the client application.

This manual also explains how to use two proprietary Application Programming Interfaces (APIs). The
first API is the solidDB SA interface, a low-level C-language interface that allows you to perform simple
single-table operations (such as inserting a row in a table) quickly. The second API is SSC API, which
allows your C-language program can control the behavior of the embedded (linked) database server

This manual also explains how to set up a solidDB to run without a disk drive.

• solidDB High Availability User Guide. solidDB CarrierGrade Option (formerly called the HotStandby
Option) allows your system to maintain an identical copy of the database in a backup server or "secondary
server". This secondary database server can continue working if the primary database server fails.

• Getting Started With solidDB For VxWorks. This guide describes how to take into use solidDB on the
VxWorks environment. It also provides guidelines for application development and performance tuning.
This manual is included only in packages for VxWorks.

5

Electronic Documentation

6

Chapter 2. Database Concepts
If you are not already familiar with relational database servers such as the solidDB family, you may want to
read this chapter.

This chapter explains the following concepts:

• Relational Databases

• Tables, Rows, and Columns

• Relating data in different tables

• Multi-User Capability / Concurrency Control and Locking

• Client-Server architecture

• Transactions

• Transaction Logging and Recovery

2.1 Relational Databases

2.1.1 Tables, Rows, and Columns

Most relational database servers, including the solidDB family, use a programming language known as the
Structured Query Language (SQL). SQL is a set-oriented programming language that is designed to allow
people to query and update tables of information. This chapter discusses tables, and how data is represented
within tables. Later in the manual, we will discuss the syntax of the SQL language in more detail.

All information is stored in tables. A table is divided into rows and columns. (SQL theorists refer to columns
as "attributes" and rows as "tuples", but we will use the more familiar terms "columns" and "rows". We will
also use the terms "record" and "row" interchangeably.) Each database contains 0 or more tables. Most databases
contain many tables. An example of a table is shown below.

Table 2.1. Example Database Table

ADDRESSNAMEID

23 Ludwig LaneBeethoven1

46 Robert RoadDylan2

7

ADDRESSNAMEID

79 Willie WayNelson3

This table contains 3 rows of data. (The top "row", which has the labels "ID", "NAME", and "ADDRESS" is
shown here for the convenience of the reader. The actual table in the database does not have such a row.) The
table contains 3 columns (ID, NAME, and ADDRESS).

SQL provides commands to create tables, insert rows into tables, update data in tables, delete rows from
tables, and query the rows in tables.

Tables in SQL, unlike arrays in programming languages like C, are not homogenous. In SQL one column
may have one data type (such as INTEGER), while an adjacent column may have a very different data type
(such as CHAR(20), which means an array of 20 characters).

A table may have varying numbers of rows. Rows may be inserted and deleted at any time; you do not need
to pre-allocate space for a maximum number of rows. (All database servers have some maximum number of
rows that they can handle. For example, most database servers that run on 32-bit operating systems have a
limit of approximately two billion rows. In most applications, the maximum is far more than you are likely
to need.)

Each row ("record") must have at least one value, or combination of values, that is unique. If we have two
composers named David Jones to our table, and we need to update the address of only one of them, then we
need some way to tell them apart. In some cases, you can find a combination of columns that is unique, even
if you can't find any single column that contains unique values. For example, if the name column is not suffi-
cient, then perhaps the combination of name and address will be unique. However, without knowing all the
data ahead of time, it is difficult to absolutely guarantee that each value will be unique. Most database designers
add an "extra" column that has no purpose other than to uniquely and easily identify each record. In our table
above, for example, the ID numbers are unique. As you may have noticed, when we actually try to update or
delete a record, we identify it by its unique ID (e.g. "... WHERE id = 1") rather than by using another value,
such as name, that might not be unique.

2.1.2 Relating Data In Different Tables

If SQL could only handle one table at a time, it would be convenient, but not very powerful. The true power
of SQL and relational databases lies in the fact that tables can be related to each other in useful ways, and
SQL queries can gather data from multiple tables and display that data in a logical fashion.

We will show how multiple tables are useful by using a bank as an example.

Each customer of a bank may have more than 1 account. There is no real limit to the number of accounts a
person might have. One customer might have a checking account, savings account, certificate of deposit,
mortgage, credit card, etc. Furthermore, a person may have multiple accounts of the same type. For example,

8

2.1.2 Relating Data In Different Tables

a customer might have one savings account with retirement money and another savings account (of the same
type) that has money for her daughter's college fund. We describe the "relationship" between a person and
her accounts as a "one to many" relationship -- one person may have many accounts.

Because there is no limit to the number of accounts a person may have, there is no way to design a record
structure ahead of time that can handle all possible combinations of accounts. And if you created a record
structure that held the maximum number of accounts that anyone actually owned, you'd have to waste a lot
of space. Let's suppose that we tried to build a single table that held all the information about one bank cus-
tomer and her accounts. Our first draft might look like the following:

Customer ID Number
Customer Name
Customer Address
Checking Account #1 ID
Checking Account #1 Balance
CD #1 ID
CD #1 Balance
CD #2 ID
CD #2 Balance
...

As you can see, we just don't know when to stop because there is no obvious limit to the number of accounts
that each person might own.

Another solution is to create multiple records, one for each account, and duplicate the customer information
for each account. So we have a table that looks like:

Customer Name
Customer Address
Account ID
Account Balance

If a customer has more than one account, we merely create a complete record for each account. This works
reasonably well, but it means that every single account record holds all the information about the customer.
This wastes storage space and also makes it harder to update the customer's address if the customer moves
(you may have to update the address in several places).

Relational databases, such as solidDB's, are designed to solve this problem. We will create one table for cus-
tomers, and another table for accounts. (In a real bank, we'd probably divide the accounts into multiple tables,
too, with one table for checking accounts, another table for savings accounts, etc.) Then we create a "link"

9

2.1.2 Relating Data In Different Tables

between the customer and each of her accounts. This allows us to waste very little space and yet still have
complete information available to us.

As we mentioned earlier, in our example of composers, every record should have a unique value that allows
us to identify that record. The unique value is usually just an integer. We'll use that unique integer to help us
"relate" a customer to her accounts. This is discussed in more detail in Chapter 3, Getting Started with SQL
.

When we create an account for a customer, we store that customer's ID number as part of the account inform-
ation. Specifically, each row in the accounts table has a customer_id value, and that customer_id value matches
the id of the customer who owns that account. Smith has customer id 1, and each of Smith's accounts has a 1
in the customer_id field. That means that we can find all of Smith's account records by doing the following:

1. Look up Smith's record in the customers table.

2. When we find Smith's record, look at the id number in that record. (In Smith's case, the id is 1.)

3. Now look up all accounts in the accounts table that have a value of 1 in the customer_id field.

It's as though you taped a copy of your home telephone number onto the forehead of each of your children
when they went to school. If there is an emergency and you need to send a taxi driver to find and pick up your
children at school, you can simply tell the taxi driver your phone number and he can check every child in the
school to see if the child has your phone number. (This isn't very efficient, but it works.) By knowing the
parent's id number, you can identify all the children. Conversely, by knowing each child, you can identify the
parent. If, for example, one of your children is lost on a field trip away from the school, any helpful person
can simply read the telephone number off the child's forehead and call you.

As you can see, the parent and child are linked to each other without any sort of physical contact. Simply
having the id number (or phone number) is enough to determine which children belong to a parent and which
parent belongs to each child. The technique works regardless of how many children you have.

Relational databases use the same technique. Note that join operations are not limited to two tables. It's possible
to create joins with an almost arbitrary number of tables. As a realistic extension of our banking example, we
might have another table, "checks", which holds information about each check written. Thus we would have
not only a 1-to-many relationship from each customer to her accounts, but also a 1-to-many relationship from
each checking account to all of the checks written on that account. It's quite possible to write a query that will
list all the checks that a customer has written, even if that customer has multiple checking accounts.

10

2.1.2 Relating Data In Different Tables

2.2 Client-Server Architecture
solidDB uses the client-server model. In a client-server model, a single "server" may process requests from
1 or more "clients". This is quite similar to the way that a restaurant works — a single waiter and cook may
handle requests from many customers.

In a client-server database model, the server is a specialized computer program that knows how to store and
retrieve data efficiently. The server typically accepts four basic types of requests:

• Insert a new piece of information

• Update an existing piece of information

• Retrieve an existing piece of information

• Delete an existing piece of information

The server can store almost any type of data, but generally doesn't know the "meaning" of the data. The
server typically knows little or nothing about "business issues", such as accounting, inventory, and so on. It
doesn't know whether a particular piece of information is an inventory record, a description of a bank deposit,
or a digitized copy of the song "American Pie".

The "clients" are responsible for knowing something about the particular business issues and about the
"meaning" of the data. For example, we might write a client program that knows something about accounting.
The client program might know how to calculate interest on late payments, for example. Or, the client might
recognize that a particular piece of data is a song, and might convert the digital data to analog audio output.

Of course, it's possible to write a single program that does both the "client" and the "server" part of the work.
A program that reads digitized music and plays it could also store that data to disk and look it up on request.
However, it's not very efficient for every company to write its own data storage and retrieval routines. It is
usually more efficient to buy an off-the-shelf data storage solution that is general enough to meet your needs,
yet has relatively high performance.

2.3 Multi-User Capability
An important advantage of client-server architecture is that it usually makes it easier to have more than one
client. solidDB, like most relational database servers, will allow multiple users to access the data in a table.

Of course, when two users try to update the same data, there is potential danger. If the updates aren't the same,
then one user's updates could write over the other user's updates. solidDB uses concurrency control mechanisms
to prevent this. For more information, see solidDB Administration Guide.

11

2.2 Client-Server Architecture

2.4 Transactions
SQL allows you to group multiple statements into a single "atomic" (indivisible) piece of work called a
transaction. For example, if you write a check to a grocery store, then the grocery store's bank account should
be given the money at the same instant that the money is withdrawn from your account. It wouldn't make
sense for you to pay the money without the grocery store receiving it, and it wouldn't make sense for the
grocery store to be paid without your account having the money subtracted. If either of these operations
(adding to the grocery store's account or subtracting from yours) fails, then the other one ought to fail, too.
If both statements are in the same transaction, and either statement fails, then you can use the ROLLBACK
command to restore things as they were before the transaction started — this prevents half-successful transac-
tions from occurring. Naturally, if both halves of our financial transaction are successful, then we'd like our
database transaction to be successful, too. Successful transactions are preserved with the command COMMIT
WORK. Below is a simplistic example.

COMMIT WORK; -- Finish the previous transaction.
UPDATE stores SET balance = balance + 199.95
 WHERE store_name = 'Big Tyke Bikes';
UPDATE checking_accounts SET balance = balance - 199.95
 WHERE name = 'Jay Smith';
COMMIT WORK;

2.5 Transaction Logging and Recovery
One of the major advantages of buying a commercial database server is that most such servers have been de-
signed to protect data if the database server shuts down unexpectedly for any reason, such as a power failure,
a hardware failure, or a failure in the database software itself.

There are a number of different ways to help protect data. We will focus on one such way, called Transaction
Logging.

2.5.1 Background

Suppose that you are writing data to a disk drive (or other permanent storage medium) and suddenly the power
fails. The data that you write might not be written completely. For example, you might try to write the account
balance "122.73", but because of the power failure you just write "12". The person whose account is missing
some money will be quite displeased. How do we ensure that we always write complete data? Part of the
solution is to use what is called a "transaction log".

12

2.4 Transactions

Note

In the world of computers, many different things are called "logs". For example, the solidDB writes
multiple log files, including a transaction log file and an error message log file. For the moment, we
are discussing only the transaction log file.

As we mentioned previously, work is usually done in "transactions". An entire transaction is either committed
or rolled back. No partial transactions are allowed. In the situation described here, where we started to write
a person's new account balance to disk but lost power before we could finish, we'd like to roll back this
transaction. Any transactions that were already completed and were correctly written to disk should, of course,
be preserved.

To help us track what data has been written successfully and what data has not been written successfully, we
actually write data to a "transaction log" as well as to the database tables. The transaction log is essentially a
linear sequence of the operations that have been performed — that is, the transactions that have been committed.
There are markers in the file to indicate the end of each transaction. If the last transaction in the file does not
have an "end-of-transaction" marker, then we know that fractional transaction was not completed, and it
should be rolled back rather than committed.

When the server re-starts after a failure, it reads the transaction log and applies the completed transactions
one by one. In other words, it updates the tables in the database, using the information in the transaction log
file. This is called "recovery". When done properly, recovery can even protect against power failures during
the recovery process itself.

This is not a complete description of how transaction logging protects against data corruption. We have ex-
plained how the server makes sure that it doesn't lose transactions. But we haven't really explained how the
server prevents the database file from becoming corrupted if a write failure occurs while the server is in the
middle of writing a record to a table in the disk drive. That topic is more advanced and is not discussed here.

2.6 Summary
This brief introduction to relational databases has explained the concepts that you need to start using a rela-
tional database. You should now be able to answer the following questions:

What are tables, rows, and columns?

Can you work with data in more than one table at a time?

How do transactions help keep data consistent?

Why do we write ("log") transaction data to the disk drive?

13

2.6 Summary

14

Chapter 3. Getting Started with SQL
This chapter gives you a quick overview (or refresher) in SQL.

3.1 Tables, Rows, and Columns
SQL is a set-oriented programming language that is designed to allow people to query and update tables of
information.

All information is stored in tables. A table is divided into rows and columns. (SQL theorists refer to columns
as "attributes" and rows as "tuples", but we will use the more familiar terms "columns" and "rows". We will
also use the terms "record" and "row" interchangeably.) Each database contains 0 or more tables. Most databases
contain many tables. An example of a table is shown below.

Table 3.1. Example Database Table

ADDRESSNAMEID

23 Ludwig LaneBeethoven1

46 Robert RoadDylan2

79 Willie WayNelson3

This table contains three rows of data. (The top "row", which has the labels "ID", "NAME", and "ADDRESS"
is shown here for the convenience of the reader. The actual table in the database does not have such a row.)
The table contains three columns (ID, NAME, and ADDRESS). SQL provides commands to create tables,
insert rows into tables, update data in tables, delete rows from tables, and query the rows in tables.

3.2 SQL
Below is a complete SQL "program" that creates the preceding table:

CREATE TABLE composers (id INTEGER PRIMARY KEY, name CHAR(20),
address CHAR(50));
INSERT INTO composers (id, name, address) VALUES (1, 'Beethoven',
'23 Ludwig Lane');
INSERT INTO composers (id, name, address) VALUES (2, 'Dylan',
'46 Robert Road');
INSERT INTO composers (id, name, address) VALUES (3, 'Nelson',
'79 Willie Way');

15

We designate the column "id" to be the "primary key" of the table. By doing this we are saying that each row
may be uniquely identified by using this column. From now on, the system will guarantee that the value of
"id" is unique and it always exists (i.e. it has the NOT NULL property)

If Mr. Dylan moves to 61 Bob Street, you can update his data with the command:

UPDATE composers SET ADDRESS = '61 Bob Street' WHERE ID = 2;

Because the ID field is unique for each composer, and because the WHERE clause in this command specifies
only one ID, this update will be performed on only one composer.

If Mr. Beethoven dies and you need to delete his record, you can do so with the command:

DELETE FROM composers WHERE ID = 1;

Finally, if you would like to list all the composers in your table, you can use the command:

SELECT id, name, address FROM composers;

Note that the SELECT statement, unlike the UPDATE and DELETE statements listed above, did not include
a WHERE clause. Therefore, the command applied to ALL records in the specified table. Thus the result of
this SQL statement is to select (and list) all of the composers listed in the table.

ID NAME ADDRESS
1 Beethoven 23 Ludwig Lane
2 Dylan 46 Robert Road
3 Nelson 79 Willie Way

Note that although you entered the strings with quotes, they are displayed without quotes.

Even this simple series of commands helps show some important points about SQL.

• SQL is a relatively "high level" language. A single command can create a table with as many columns as
you wish. Similarly, a single command can execute an UDPATE of almost any complexity. Although we
didn't show it here, you can update multiple columns at a time, and you can even update more than one
row at a time. Operations that might take dozens, or hundreds, of lines of code in languages like C or Java
can be executed in a single SQL command.

• Unlike some other computer languages, SQL uses single quotes to delimit strings. For example, 'Beethoven'
is a string. "Beethoven" is something different. (Technically, it is a delimited identifier, which we won't

16

3.2 SQL

discuss in this chapter.) If you are used to programming languages like C, which use double quotes to
delimit strings (character arrays) and single quotes to delimit individual characters, you will have to adjust
to SQL's way of doing things.

Although the example above doesn't clearly show it, there are several additional points you need to know
about basic SQL

• Although SQL is a very powerful high-level language, it is also a very limited one. SQL is designed for
table-oriented and record-oriented operations. It has very few low-level operations. For example, there is
no direct way to open a file, or to shift bits leftward or rightward. It is also hardware-independent, which
is both an advantage and disadvantage. You have very little control over the format of the output from
SQL queries; you may choose the order of the columns, and by using the ORDER BY clause you may
control the order of the rows, but you can't do things such as control the size of the font on the screen, or
print page numbers at the bottom of each printed page of output. SQL simply is not a complete programming
language such as C, Java, PASCAL, etc.

• Each SQL implementation has a fixed set of data types. The data types in solidDB (and most other imple-
mentations of SQL) include INTEGER, CHARacter array, FLOATing point, DATE, and TIME.

• SQL is generally an "interpreted" language rather than a "compiled" language. To execute one or more
SQL statements, you typically execute a separate program that reads your script and then executes it. No
"compiled program" or "executable" is generated and stored for later use. Each time you run the program,
it is interpreted again. (Stored Procedures can be re-used without necessarily re-interpreting them. Stored
Procedures are discussed briefly in Appendix B, solidDB SQL Syntax and extensively in Chapter 4, Stored
Procedures, Events, Triggers, and Sequences.

• Table and column names are case-insensitive in SQL. In our examples, keywords (such as CREATE,
INSERT, SELECT) are capitalized, and table and columns names are shown in lower case. However, this
is only a convention, not a requirement.

• SQL is also not very picky about whether commands are written on a single line or are split across multiple
lines. We'll show examples of multi-line statements later in this chapter.

• SQL commands can get extremely complicated, with multiple nested "layers" of queries within queries.
Figuring out how to write a complex query can be quite difficult - and figuring out how to understand a
query that someone else wrote can be equally difficult. As in any programming language, it's a good idea
to document your code!

• To help you document your code, SQL allows "comments". Comments are only for the human reader;
they are skipped over by the SQL interpreter. To create a comment, put two dashes at the start of the line.
All the subsequent characters up to the end of the line will be ignored. (There is an exception for "optimizer
hints", another advanced topic that we will not discuss in this chapter.)

17

3.2 SQL

3.3 The Mathematical Origins of SQL
Relational databases and SQL were originally based in part upon the mathematical concept of set theory. If
you are familiar with set theory, it will help you understand how relational databases work. If you are not fa-
miliar with set theory, then don't worry about it; this is merely one way of looking at relational databases and
SQL.

A table can be thought of as a mathematical set, where each element of the set is a row. (In our example above,
each person, or composer, is an element of a set. The table contains all of the elements of the set 'composers'.)
In mathematics, sets are unordered. Similarly, in SQL, tables are largely treated as unordered, even though
of course if you could look at the bits and bytes on the disk you would find that at any given time the records
are stored in a particular order.

This lack of ordering is important, because it means that the results of a query may be shown in a different
order each time that you run the query. With small data sets stored on a single disk drive, you will usually
see the same rows in the same order each time, but this is not necessarily the case when data is spread across
multiple files or disk drives.

Because SQL is a set-oriented language, you can use it to perform some set-oriented operations, such as
UNIONs (that is, combining two sets of input into one set of output). However, operations such as UNION
require that the sets match each other - i.e. that they have the same number of columns, and that they have
the same data type (or compatible data type) in corresponding columns. You can't perform a UNION operation
if the first column in set1 is of type DATETIME and the first column in set2 is INTEGER, for example.

Again, if you are not comfortable with set theory, don't worry about it. This is just another way of looking at
relational databases.

3.4 Creating Tables with Related Data
As described in the previous chapter, each customer of a bank may have more than one account. We describe
the "relationship" between a person and her accounts as a "one to many" relationship — one person may have
many accounts.

Because there is no limit to the number of accounts a person may have, there is no way to design a record
structure ahead of time that can handle all possible combinations of accounts.

Relational databases, such as solidDB's, are designed to solve this problem. We will create one table for cus-
tomers, and another table for accounts. (In a real bank, we'd probably divide the accounts into multiple tables,
too, with one table for checking accounts, another table for savings accounts, etc.) Then we create a "link"
between the customer and each of her accounts. This allows us to waste very little space and yet still have
complete information available to us.

18

3.3 The Mathematical Origins of SQL

As we mentioned earlier, in our example of composers, every record should have a primary key that allows
us to identify that record. It is usually just an integer. We'll now use that unique integer to help us "relate" a
customer to her accounts. Below are the commands to create and populate the customer table:

CREATE TABLE customers (id INTEGER PRIMARY KEY, name CHAR(20),
address CHAR(40));
INSERT INTO customers (id, name, address) VALUES (1, 'Smith',
'123 Main Street');
INSERT INTO customers (id, name, address) VALUES (2, 'Jones',
'456 Fifth Avenue');

We have inserted two customers, named Smith and Jones. Let us create the account table:

CREATE TABLE accounts (id INTEGER PRIMARY KEY, balance FLOAT,
customer_id INT REFERENCES customers);

Here, we have designated the column customer_id to be a "foreign key" pointing to the customer table (this
is indicated by the REFERENCES keyword). The value of this column is supposed to be exactly the same as
the "id" value (the primary key) in the corresponding customer row in the "customers" table. This way we
will associate account rows with customer rows. The feature of a database allowing to maintain such relation-
ships in a reliable way is called "referential integrity", and the corresponding SQL syntax elements used to
define such relationships are called "referential integrity constraints". For more on referential integrity, see
Section 5.5, “Referential Integrity”.

Customer Smith has two accounts, and customer Jones has 1 account.

INSERT INTO accounts (id, balance, customer_id)
VALUES (1001, 200.00, 1);
INSERT INTO accounts (id, balance, customer_id)
VALUES (1002, 5000.00, 1);
INSERT INTO accounts (id, balance, customer_id)
VALUES (1003, 222.00, 2);

As Smith has two accounts, each of Smith's accounts has a 1 in the customer_id field. That means that a user
can find all of Smith's account records by doing the following:

1. Look up Smith's record in the customers table.

2. When we find Smith's record, look at the id number in that record. (In Smith's case, the id is 1.)

3. Now look up all accounts in the accounts table that have a value of 1 in the customer_id field.

19

3.4 Creating Tables with Related Data

It's as though you taped a copy of your home telephone number onto the forehead of each of your children
when they went to school. If there is an emergency and you need to send a taxi driver to find and pick up your
children at school, you can simply tell the taxi driver your phone number and he can check every child in the
school to see if the child has your phone number. (This isn't very efficient, but it works.) By knowing the
parent's id number, you can identify all the children. Conversely, by knowing each child, you can identify the
parent. If, for example, one of your children is lost on a field trip away from the school, any helpful person
can simply read the telephone number off the child's forehead and call you.

As you can see, the parent and child are linked to each other without any sort of physical contact. Simply
having the id number (or phone number) is enough to determine which children belong to a parent and which
parent belongs to each child. The technique works regardless of how many children you have.

Relational databases use the same technique. Now that we've created our customer table and our accounts
table, we can show each customer and each of the accounts that she has. To do this, we use what SQL pro-
grammers call a "join" operation. The WHERE clause in the SELECT statement "joins" those pairs of records
where the account's customer_id number matches the customer's id number.

SELECT name, balance
 FROM customers, accounts
 WHERE accounts.customer_id = customers.id;

The output of this query is similar to the following:

NAME BALANCE
Smith 200.0
Smith 5000.0
Jones 222.0

Of course, if a person has multiple accounts, she might want to know the total amount of money that she has
in all accounts. The computer can provide this information by using the following query:

SELECT customers.id, SUM(balance)
 FROM customers, accounts
 WHERE accounts.customer_id = customers.id
 GROUP BY customers.id;

The output of this query is similar to the following:

NAME BALANCE

20

3.4 Creating Tables with Related Data

Smith 5200.0
Jones 222.0

Note that this time, Smith appears only once, and she appears with the total amount of money in all her accounts.

This query uses the GROUP BY clause and an aggregate function named SUM(). The topic of GROUP BY
clauses is more complex than we want to go into during this simple introduction to SQL. This query is just
to give you a little taste of the type of useful work that SQL can do in a single statement. Getting the same
result in a language like C would take many statements.

Note that join operations are not limited to two tables. It's possible to create joins with an almost arbitrary
number of tables. As a realistic extension of our banking example, we might have another table, "checks",
which holds information about each check written. Thus we would have not only a 1-to-many relationship
from each customer to her accounts, but also a 1-to-many relationship from each checking account to all of
the checks written on that account. It's quite possible to write a query that will list all the checks that a customer
has written, even if that customer has multiple checking accounts.

3.4.1 Table Aliases

SQL allows you to use an "alias" in place of a table name in some queries. In some cases, aliases are merely
an optional convenience. In some queries, however, aliases are actually required (for reasons we won't explain
here). We'll introduce the topic of aliases here because they are required for some examples later in this
chapter. The query below is the same as an earlier query, except that we've added the table alias "a" for the
accounts table and "c" for the customers table.

SELECT name, balance
FROM customers c, accounts a
WHERE a.customer_id = c.id;

As you can see, we defined an alias in the "FROM" clause and then used it elsewhere in the query (in the
WHERE clause in this case).

3.4.2 Subqueries

SQL allows one query to contain another query, called a "subquery".

Returning to our bank example, over time, some customers add accounts and other customers terminate ac-
counts. In some cases, a customer might gradually terminate accounts until he has no more accounts. Our
bank may want to identify all customers that don't have any accounts so that those customers' records can be
deleted, for example. One way to identify the customers who don't have any accounts is to use a subquery
and the EXISTS clause.

21

3.4.1 Table Aliases

Of course, to try this out, we need to create a customer who doesn't have any accounts:

INSERT INTO customers (id, name, address) VALUES (3, 'Zu', 'B St');

Before we list all customers who don't have accounts, let's list all customers who do have accounts.

SELECT id, name
FROM customers c
WHERE EXISTS (SELECT * FROM accounts a WHERE a.customer_id = c.id);

The subquery (also called the "inner query") is the query inside the parentheses. The inner query is executed
once for each record selected by the outer query. (This functions a lot like nested loops would function in
another programming language, except that with SQL we can do nested loops in a single statement.) Naturally,
if there are any accounts for the particular customer that the outer loop is processing, then those account records
are returned to the outer query.

The "EXISTS" clause in the outer query says, effectively, "We don't care what values are in those records;
all we care about is whether there are any records or not." Thus EXISTS returns TRUE if the customer has
any accounts. If the customer has no accounts, then the EXISTS returns false. The EXISTS clause doesn't
care whether there are multiple accounts or single accounts. It doesn't care what values are in the accounts.
All the EXISTS wants to know is "Is there at least one record?"

Thus, the entire statement lists those customers who have at least one account. No matter how many accounts
the customer has (as long as it's at least 1), the customer is listed only once.

Now let's list all those customers who don't have any accounts:

SELECT id, name
FROM customers c
WHERE NOT EXISTS (SELECT * FROM accounts a WHERE a.customer_id = c.id);

Merely adding the keyword NOT reverses the sense of the query.

Subqueries may themselves have subqueries. In fact, subqueries may be nested almost arbitrarily deep.

3.5 Which Formats Are Used for Each Data Type?
As we've already shown above, SQL requires that values be expressed in a particular way. For example,
character strings must be delimited by single quote marks.

22

3.5 Which Formats Are Used for Each Data Type?

Other values also must be formatted properly. The exact format required depends upon the data type. Several
data types other than CHARacter data types also require single quotes to delimit the values that you enter.

Below are some examples of how to format input data for most of the data types that solidDB supports. We'll
show this in the form of a simple SQL script that you can execute if you wish. Note that in this script, many
commands are split across multiple lines. This is quite legal in SQL. It's one of the reasons that most SQL
interpreters expect a semicolon to separate each SQL statement, even though the ANSI Standard for SQL
doesn't actually require a semicolon at the end of each statement.

CREATE TABLE one_of_almost_everything (
 int_col INTEGER,
 float_col FLOAT,
 string_col CHAR(20),
 wide_string_col WCHAR(20), -- "wide" means wide chars, e.g. unicode.
 varchar_col VARCHAR, -- Note that we did not have to specify width.
 date_col DATE,
 time_col TIME,
 timestamp_col TIMESTAMP
);

INSERT INTO one_of_almost_everything (
 int_col,
 float_col,
 string_col,
 wide_string_col,
 varchar_col,
 date_col,
 time_col,
 timestamp_col
)
VALUES (
 1,
 2.0,
 'three',
 'four',
 'five point zero zero zero zero zero zero zero zero zero zero ...',
 '2002-12-31',
 '11:59:00',
 '1999-12-31 23:59:59.00000'
);

23

3.5 Which Formats Are Used for Each Data Type?

As you can see, timestamp values are entered in order from the "most significant" digit to the "least significant"
digit. Similarly, date and time values are also entered from the most significant digit to the least significant
digit. And all 3 of these data types (timestamp, date, time) use punctuation to separate individual fields.

The reason for requiring particular formats is that some of the other possible formats are ambiguous. For ex-
ample, to someone in the U.S., '07-04-1776' is July 4, 1776, since Americans usually write dates in the 'mm-
dd-yyyy' (or 'mm/dd/yyyy' format). But to a person from Europe, this date is obviously April 7, not July 4th,
since most Europeans write dates in the format 'dd-mm-yyyy'. Although it may seem that the problem of
having too many formats is not well solved by adding still another format, there are some advantages to SQL's
approach of using a format that starts with the most significant digit and moves steadily towards the least
significant digit. First, it means that all three data types (date, time, and timestamp) follow the same rule.
Second, the date format and the time format are both perfect subsets of the timestamp format. Third, although
it's yet another format to memorize, the rule is reasonably simple and is consistent with the way that "western"
languages write numbers (most significant digit is furthest to the left). Finally, by being obviously incompatible
with the existing formats, there's no chance that a person will accidentally write one date (e.g. '07-04-1776')
and have it interpreted by the machine as another date.

3.5.1 BLOBs (or Binary Data Types)

So far, we have discussed data types that store data that is intended to be read by humans. Some types of data
are not intended to be read directly by humans, but can still be stored in a database. For example, a picture
from a digital camera, or a song from a CD, is stored as a series of numbers. These numbers are almost
meaningless to a human. Digitized pictures and sounds can be stored as BINARY data, however. solidDB
supports three binary data types: BINARY, VARBINARY, and LONG VARBINARY (or BLOB).

In most cases, you will read and write binary data using the ODBC (Open DataBase Connectivity) API from
a C program, or the JDBC API from a Java program. However, it is possible to insert data into a binary field
using a utility that executes SQL statements. To insert a value into a binary field, you must represent the value
as a series of hexadecimal numbers inside single quotes. For example, if you wanted to insert a series of bytes
with the values 1, 9, 11, 255 into a binary field, you would execute:

INSERT INTO table1 (binary_col) VALUES (CAST('01090BFF' AS VARBINARY));

Because this command instructs the server to CAST the value to type VARBINARY, the server automatically
interprets the string as a series of hexadecimal numbers, not as a string literal.

You may also insert a string literal directly, e.g.

INSERT INTO table1 (binary_col) VALUES ('Thank you');

24

3.5.1 BLOBs (or Binary Data Types)

When you retrieve the data via solsql (solidDB's utility for executing SQL statements), the return value from
a binary column is expressed in hexadecimal, whether or not you originally entered it as hexadecimal. Thus,
after you insert the value 'Thank you', if you select this value from the table you will see:

5468616E6B20796F75

where 54 represents capital 'T', 68 represents lower-case 'h', 61 represents lower-case 'a', 6E represents lower-
case 'n', etc.

Note also that for long values only the first several digits are shown.

3.5.2 NULL IS NOT NULL (or "How to say 'None of the above' in
SQL")

Sometimes you don't have enough information to fill out a form completely. SQL uses the keyword NULL
to represent "Unknown" or "No Value". (This is different from the meaning of NULL in programming languages
such as C.) For example, if we are inserting a record for Joni Mitchell into our table of composers, and we
don't know Joni Mitchell's address, then we might execute the following:

INSERT INTO composers (id, name, address) VALUES (5, 'Mitchell', NULL);

If we don't specify the address field, it will contain NULL by default.

INSERT INTO composers (id, name) VALUES (5, 'Mitchell');

To give you some information about NULL, and also give you some practice reading SQL code, we've written
our explanation of NULL as a sample program with comments. You can read this now. When you're ready
to run it, simply cut and paste part or all of it into a program that executes SQL, such as the solsql utility
provided with the solidDB Development Kit. (For more information about solsql, see solidDB Administration
Guide.)

-- This sample script shows some unusual characteristics
-- of the value NULL.

-- Data of any data type may contain NULL.
-- For example, a column of type INTEGER may contain not
-- only valid integer values, but also NULL.

-- Set up for experiments...

25

3.5.2 NULL IS NOT NULL (or "How to say 'None of the above' in SQL")

CREATE TABLE table1 (x INTEGER, name CHAR(30));

-- The value NULL means "there is no value".
-- NULL is not the same as zero, or an empty string.
-- (It's also not a pointer value, as it is in
-- programming languages such as C.)
-- To help show this, we'll insert 3 rows, one of which has
-- "normal" values, one of which has a 0 and an empty string,
-- and one of which has two NULL values.
INSERT INTO table1 (x, name) VALUES (2, 'Ludwig Von Beethoven');
INSERT INTO table1 (x, name) VALUES (0, '');
INSERT INTO table1 (x, name) VALUES (NULL, NULL);
-- This returns only the row containing 0,
-- not the row containing NULL.
SELECT * FROM table1 WHERE x = 0;
-- This returns only the row containing the empty string,
-- not the row containing NULL.
SELECT * FROM table1 WHERE name = '';

-- It's not surprising that NULL doesn't match other values.
-- What IS surprising is that NULL doesn't match even itself.
-- (A mathematician would say that NULL violates the
-- reflexive property "a = a"!)
SELECT * FROM table1 WHERE x = x;

-- Since NULL doesn't equal NULL, what will the following query return?
SELECT * FROM table1 WHERE x != x;

-- Similarly, although you might think that the
-- expression below is always true, it's actually
-- always false.
SELECT * FROM table1 WHERE NULL IN (NULL, 2);

-- The result set will contain 2 (since 2 is in
-- the set (NULL, 2)), but the result set will
-- not contain NULL.
SELECT * FROM table1 WHERE x IN (NULL, 2);

26

3.5.2 NULL IS NOT NULL (or "How to say 'None of the above' in SQL")

-- But suppose that I *want* to find all the records that
-- have NULL values. How do I do that if I can't say ... = NULL?
SELECT * FROM table1 WHERE x IS NULL;
-- And the opposite query is ...
SELECT * FROM table1 WHERE x IS NOT NULL;

-- Set up for more experiments...
CREATE TABLE parent (id INTEGER, name CHAR(20));
CREATE TABLE children (id INTEGER, name CHAR(12), parent_id INT);
INSERT INTO parent (id, name) VALUES (1, 'Smith');
INSERT INTO children (id, name, parent_id) VALUES (11, 'Smith child', 1);
INSERT INTO children (id, name, parent_id) VALUES (131, 'orphan', NULL);
INSERT INTO parent (id, name) VALUES (NULL, 'Has Null');

-- Since NULL != NULL, if a "parent" record has NULL and a "child"
-- record has NULL, the child's value won't match the parent's value.
-- This result set will contain 'Smith', but not 'Has Null'.
SELECT p.name FROM parent p, children c
 WHERE c.parent_id = p.id;

-- Note that a row that contains nothing but a
-- single NULL is still a row.
-- In the following query, we use an EXISTS clause,
-- which evaluates to TRUE if the subquery returns
-- any rows. Even a row that contains nothing but a
-- single NULL value is still a row, and so if the
-- subquery returns a single NULL the EXISTS clause
-- still evaluates to TRUE.
-- Even though the subquery below returns NULL rather than a name
-- or ID, the EXISTS expression evaluates to TRUE, and Smith is printed.
SELECT name FROM parent p
 WHERE EXISTS(SELECT NULL FROM children c WHERE c.parent_id = p.id);

-- Now that we've trained you to recognize that NULL != NULL,
-- we'll confuse you with something that breaks the pattern.
-- Contrary to what you might expect, the UNIQUE keyword
-- DOES filter out multiple NULL values.
INSERT INTO table1 (x, name) VALUES (NULL, 'any name');

27

3.5.2 NULL IS NOT NULL (or "How to say 'None of the above' in SQL")

-- Now the table has more than one row in which x is NULL,
-- but a query with UNIQUE nonetheless returns only a
-- single NULL value.
SELECT DISTINCT x FROM table1;
-- You may be interested to know that a UNIQUE index
-- will allow only a single NULL value. (Note that a primary key
-- will not allow any NULL values.)

-- Clean up.
DROP TABLE parent;
DROP TABLE children;
DROP TABLE table1;

3.5.3 NOT NULL

As opposed to NULL, NOT NULL is one of the SQL data constraints. NOT NULL indicates that null values
are not allowed in any row of the table for the specified column. For more information and examples, refer
to Appendix B, solidDB SQL Syntax.

3.5.4 Expressions and Casts

SQL allows expressions in some parts of SQL statements. For example, the following statement multiplies
the value in a column by 12:

SELECT monthly_average * 12 FROM table1;

As another example, the following statement uses the built-in SQRT function to calculate the square root of
each value in the column named "variance".

SELECT SQRT(variance) FROM table1;

Our next example uses the "REPLACE" function to convert numbers from U.S. format to European format.
In U.S. format, numbers use the period character ('.') as the decimal point, but in Europe the comma (',') is
used. For example, in the U.S. the approximation of pi is written as "3.14", while in Europe it is written as
"3,14". We can use the REPLACE function to replace the '.' character with the ',' character. The following
series of statements shows an example of this.

CREATE TABLE number_strings (n VARCHAR);

28

3.5.3 NOT NULL

INSERT INTO number_strings (n) VALUES ('3.14'); -- input in US format.
SELECT REPLACE(n, '.', ',') FROM number_strings; -- output in European.

The output of course looks like

n

3,14

Note that one function can call another. The following expression takes the square root of a number and then
takes the natural log of that square root:

SELECT LOG(SQRT(x)) FROM table1;

solidDB SQL does not accept completely general expressions in all clauses. For example, in the SELECT
clause, you may use pre-defined functions, but you may not call stored procedures that you have created.
Even if you have created a stored procedure named "foo", the following will not work:

SELECT foo(column1) FROM table1;

When you use expressions, you may want to specify a new name for a column. For example, if you use the
expression

SELECT monthly_average * 12 FROM table1;

you probably don't want the output column to be called "monthly_average". solidDB server will actually use
the expression itself as the name of the column. In this case, the name of the column would be "monthly_av-
erage * 12". That's certainly descriptive, but for a long expression this can get very messy. You can use the
"AS" keyword to give an output column a specific name. In the following example, the output will have the
column heading "yearly_average".

SELECT monthly_average * 12 AS yearly_average FROM table1;

Note that the AS clause works for any output column, not just for expressions. If you like, you may do
something like the following:

SELECT ssn AS SocialSecurityNumber FROM table2;

29

3.5.4 Expressions and Casts

A CASE clause allows you to control the output based on the input. Below is a simple example, which converts
a number (1-12) to the name of a month:

CREATE TABLE dates (m INT);
INSERT INTO dates (m) VALUES (1);
-- ...etc.
INSERT INTO dates (m) VALUES (12);
INSERT INTO dates (m) VALUES (13);

SELECT
 CASE m
 WHEN 1 THEN 'January'
 -- etc.
 WHEN 12 THEN 'December'
 ELSE 'Invalid value for month'
 END
 AS month_name
 FROM dates;

Note that this not only allows you to convert valid values, but also allows you to generate appropriate output
if there is an error. The "ELSE" clause allows you to specify an alternative value if you get an input value
that you weren't expecting.

In some situations, you may want to cast a value to a different data type. For example, when inserting BLOB
data, it is convenient to create a string that contains your data, and then insert that string into a BINARY
column. You may use a cast as shown below:

CREATE TABLE table1 (b BINARY(4));
INSERT INTO table1 VALUES (CAST('FF00AA55' AS BINARY));

This cast allows you to take data that is a series of hexadecimal digits and input it as though it were a string.
Each of the hexadecimal pairs in the quoted string represents a single byte of data. There are 8 hexadecimal
digits, and thus 4 bytes of input.

A cast can be used to change output as well as input. In the rather complex code sample below, the expression
in the CASE clause converts the output from the format '2003-01-20 15:33:40' to '2003-Jan-20 15:33:40'.

CREATE TABLE sample1(dt TIMESTAMP);
COMMIT WORK;

30

3.5.4 Expressions and Casts

INSERT INTO sample1 VALUES ('2003-01-20 15:33:40');
COMMIT WORK;

SELECT
 CASE MONTH(dt)
 WHEN 1 THEN REPLACE(CAST(dt AS varchar), '-01-', '-Jan-')
 WHEN 2 THEN REPLACE(CAST(dt AS varchar), '-02-', '-Feb-')
 WHEN 3 THEN REPLACE(CAST(dt AS varchar), '-03-', '-Mar-')
 WHEN 4 THEN REPLACE(CAST(dt AS varchar), '-04-', '-Apr-')
 WHEN 5 THEN REPLACE(CAST(dt AS varchar), '-05-', '-May-')
 WHEN 6 THEN REPLACE(CAST(dt AS varchar), '-06-', '-Jun-')
 WHEN 7 THEN REPLACE(CAST(dt AS varchar), '-07-', '-Jul-')
 WHEN 8 THEN REPLACE(CAST(dt AS varchar), '-08-', '-Aug-')
 WHEN 9 THEN REPLACE(CAST(dt AS varchar), '-09-', '-Sep-')
 WHEN 10 THEN REPLACE(CAST(dt AS varchar), '-10-', '-Oct-')
 WHEN 11 THEN REPLACE(CAST(dt AS varchar), '-11-', '-Nov-')
 WHEN 12 THEN REPLACE(CAST(dt AS varchar), '-12-', '-Dec-')
 END
 AS formatted_date
 FROM sample1;

This takes a value from a column named dt, converts that value from timestamp to VARCHAR, then replaces
the month number with an abbreviation for the month (for example, it replaces "-01-" with "-Jan-"). By using
the CASE/WHEN/END syntax, we can specify exactly what output we want for each possible input. Note
that because this expression is so complicated, it is almost mandatory to use an AS clause to specify the
column header in the output.

3.5.5 Row Value Constructors

This section explains one of the less familiar types of expressions, the Row Value Constructor (RVC), and
how it is used with relational operators, such as greater than, less than, etc.

A row value constructor is an ordered sequence of values delimited by parentheses, for example:

(1, 4, 9)
('Smith', 'Lisa')

You can think of this as constructing a row based on a series of elements/values, just like a row of a table is
composed of a series of fields.

31

3.5.5 Row Value Constructors

Row value constructors, like individual values, may be used in comparisons. For example, just as you may
have expressions like:

WHERE x > y;
WHERE 2 > 1;

you also may have expressions like:

WHERE (2, 3, 4) > (1, 2, 3);
WHERE (t1.last_name, t1.first_name) = (t2.last_name, t2.first_name);

Comparisons using row value constructors must be done carefully. Rather than give the technical definition
of comparisons (which you can find in section 8.2 (comparison predicates) of the SQL-92 standard), we will
give examples and an analogy to help you see the pattern.

The following expressions are true:

(9, 9, 9) > (1, 1, 1)
('Baker', 'Barbara') > ('Alpert', 'Andy')
(1, 1) = (1, 1)
(3, 2, 1) != (4, 3, 2)

The examples above are simple, because the expression is correct for each corresponding pair of elements
and is therefore true for the RVCs. For example,

'Baker' > 'Alpert' and 'Barbara' > 'Andy', and therefore
('Baker', 'Barbara') > ('Alpert', 'Andy')

However, when comparing row value constructors, it is not necessary that the expression be true for each
corresponding element. In a row value constructor, the further left an element is, the more significance it has.
Thus the following expressions are also true:

(9, 1, 1) > (1, 9, 9)
('Zoomer', 'Andy') > ('Alpert', 'Zelda')

In these examples, since the most significant element of the first RCV is greater than the corresponding element
of the second RCV, the expression is true, regardless of the values of the remaining elements. Similarly, in
the examples below, the first elements are identical, but the expressions overall are true:

32

3.5.5 Row Value Constructors

(1, 1, 2) > (1, 1, 1)
(1, 2, 1) > (1, 1, 1)
('Baker', 'Zelda') > ('Baker', 'Allison')

Again, in a row value constructor, the further left an element is, the more significance it has. This is similar
to the way that we compare multi-digit numbers. In a 3-digit number, such as 911, the hundreds-place digit
is more significant than the tens-place digit, and the tens-place digit is more significant than the ones-place
digit. Thus, the number 911 is greater than the number 199, even though not all digits of 911 are greater than
the corresponding digits of 199.

This is useful when comparing multiple columns that are related. A practical application of this is when
comparing people's names. For example, suppose that we have 2 tables, each of which has an lname (last
name) and fname (first name) column. Suppose that we want to find all people whose names are less than
Michael Morley's. In this situation, we want the last name to have more significance than the first name. The
following names are shown in the correct alphabetical order (by last name):

Adams, Zelda

Morley, Michael

Young, Anna

If we want to list all persons whose names are less than Michael Morley's, then we do NOT want to use the
following:

table1.lname < 'Morley' and table1.fname < 'Michael'

If we used this expression, we would reject Zelda Adams because her first name is alphabetically after Michael
Morley's first name. One correct solution is to use the row value constructor approach:

(table1.lname, table1.fname) < ('Morley', 'Michael')

Note that when using equality, the expression must be true for ALL elements of the RCVs. E.g.:

(1, 2, 3) = (1, 2, 3)

Not surprisingly, for inequality the expression must be true for only one element:

(1, 2, 1) != (1, 1, 1)

33

3.5.5 Row Value Constructors

3.6 More about Transactions
As described in the previous chapter, SQL allows you to group multiple statements into a single "atomic"
(indivisible) piece of work called a transaction. Successful transactions are preserved with the command
COMMIT WORK. Below is a simplistic example.

COMMIT WORK; -- Finish the previous transaction.
UPDATE stores SET balance = balance + 199.95
 WHERE store_name = 'Big Tyke Bikes';
UPDATE checking_accounts SET balance = balance - 199.95
 WHERE name = 'Jay Smith';
COMMIT WORK;

If you don't want to keep a particular transaction, you can roll it back by using the command:

ROLLBACK WORK;

If you do not explicitly commit or roll back your work, then the server will roll it back for you. In other words,
unless you confirm that you want to keep the data (by committing it), the data will be discarded.

3.7 Summary
This brief introduction to SQL and relational databases has explained the concepts that you need to start using
SQL. You should now be able to answer the following questions:

What are tables, rows, and columns?

How do I create a table?

How do I put data into a table?

How do I update data in a table?

How do I delete data from a table?

How do I list data in a table?

How do I list related data in two different tables?

How do I ensure that multiple statements are executed together (so that all fail or all succeed as a group)?

34

3.6 More about Transactions

3.8 Where to Find Additional Information about SQL
Other chapters in this manual explain more about SQL and solidDB-specific features. However, this manual
is neither a complete tutorial nor a comprehensive reference on SQL. You may wish to acquire additional
documents on SQL.

There are many books on SQL. These books are not specific to solidDB's implementation of SQL; most of
the material is generic and will apply to any database server, such as solidDB's, that conforms to the ANSI
standards. General SQL books include:

• Introduction to SQL: Mastering the Relational Database Language, by Rick van der Lans, published by
Addison-Wesley.

ANSI standards on SQL include:

• Database Language - SQL with Integrity Enhancement, ANSI, 1989 ANSI X3.135-1989.

• Database Language - SQL: ANSI X3H2 and ISO/IEC JTC1/SC21/WG3 9075:1992 (SQL-92).

You may purchase ANSI standards from www.ansi.org.

ISO (International Standards Organization) also has standards for SQL. See www.iso.org for a list of standards
and prices.

35

3.8 Where to Find Additional Information about SQL

www.ansi.org
www.iso.org

36

Chapter 4. Stored Procedures, Events,
Triggers, and Sequences
In solidDB databases, a number of features are available that make it possible to move parts of the application
logic into the database. These features include:

• stored procedures

• deferred procedure calls ("Start After Commit")

• event alerts

• triggers

• sequences

4.1 Stored Procedures
Stored procedures are simple programs, or procedures, that are executed in solidDB databases. The user can
create procedures that contain several SQL statements or whole transactions, and execute them with a single
call statement. In addition to SQL statements, 3GL type control structures can be used enabling procedural
control. In this way complex, data-bound transactions may be run on the server itself, thus reducing network
traffic.

Granting execute rights on a stored procedure automatically invokes the necessary access rights to all database
objects used in the procedure. Therefore, administering database access rights may be greatly simplified by
allowing access to critical data through procedures.

This section explains in detail how to use stored procedures. In the beginning of this section, the general
concepts of using the procedures are explained. Later sections go more in-depth and describe the actual syntax
of different statements in the procedures. The end of this section discusses transaction management, sequences
and other advanced stored procedure features.

4.1.1 Basic Procedure Structure

A stored procedure is a standard solidDB database object that can be manipulated using standard DDL state-
ments CREATE and DROP.

In its simplest form a stored procedure definition looks like:

37

"CREATE PROCEDURE procedure_name
parameter_section
BEGIN
declare_section_local_variables
procedure_body
END";

The following example creates a procedure called TEST:

"CREATE PROCEDURE test
BEGIN
END"

Procedures can be run by issuing a CALL statement followed by the name of the procedure to be invoked:

CALL test

4.1.2 Naming Procedures

Procedure names have to be unique within a database schema.

All the standard naming restrictions applicable to database objects, like using reserved words, identifier
lengths, etc., apply to stored procedure names. For an overview and complete list of reserved words, see Ap-
pendix C, Reserved Words.

4.1.3 Parameter Section

A stored procedure communicates with the calling program using parameters. solidDB supports two methods
to return values to the calling program. The first method is the standard SQL-99 method, which uses parameters,
and the other is a solidDB proprietary method, RETURNS, which uses result sets.

Using Parameters

Using parameters is the standard SQL-99 method of returning data. Stored procedures accept three types of
parameters:

• Input parameters, which are used as input to the procedure. Parameters are input parameters by default.
Thus, keyword IN is optional.

• Output parameters, which are returned values from the procedure.

38

4.1.2 Naming Procedures

• Input/output parameters, which pass values into the procedure and return a value back to the calling pro-
cedure.

Declaring input parameters in the procedure heading make their values accessible inside the procedure by
referring to the parameter name. The parameter data type must also be declared. For supported data types,
see Appendix A, Data Types.

The syntax used in the parameter declaration is (for the complete syntax, see Appendix B, solidDB SQL
Syntax):

parameter_definition ::= [parameter_mode] parameter_name data_type
parameter_mode ::= IN | OUT | INOUT

There can be any number of parameters. Input parameters have to be supplied in the same order as they are
defined when the procedure is called.

You can give default values to the parameters when you create the procedure. When you declare the parameter,
just add an equals character (=) and the default value after the parameter data type. For example:

"CREATE PROCEDURE participants(adults integer = 1,
children integer = '0',
pets integer = '0')
BEGIN
END"

When you call the procedure which has default values for the parameters defined, you don't have to give
values for all the parameters. To use default values for all parameters you can simply use the command:

call participants()

To give a value to a parameter, use the parameter name in the call statement and assign the parameter value
by using the equals character as shown in the example below:

call participants(children = 2)

This command gives value 2 for parameter "children" and default values for parameters "adults" and "pets".

If parameter names are not used in the call statement, solidDB assumes that the parameters are given in same
the order as in the create statement.

39

4.1.3 Parameter Section

Examples:

call participants(1)

This command uses value 1 for parameter "adults" and default values for parameters "children" and "pets".

call participants(1,2)

This command uses value 1 for parameter "adults" and value 2 for parameter "children". The default value is
used for parameter "pets".

If a name is given to a parameter, all parameters following it must also have a name. This is why command:

call participants(adults = 1,2)

returns an error.

call participants(1,children = 2)

This command uses value 1 for parameter "adults" and value 2 for parameter "children". The default value is
used for parameter "pets".

Using RETURNS

You can use stored procedures to return a result set table with several rows of data in separate columns. This
is a solidDB proprietary method to return data and it is performed by using the RETURNS structure.

When you use the RETURNS structure, you must separately declare result set column names for the output
data rows. There can be any number of result set column names. The result set column names are declared in
the RETURNS section of the procedure definition:

"CREATE PROCEDURE procedure_name
[(IN input_param1 datatype[,
input_param2 datatype, ...])]
[RETURNS
(output_column_definition1 datatype[,
output_column_definition2 datatype, ...])]

40

4.1.3 Parameter Section

BEGIN
END";

By default, the procedure only returns one row of data containing the values as they were at the moment when
the stored procedure was run or was forced to exit. However, it is also possible to return result sets from a
procedure using the following syntax:

return row;

Every RETURN ROW call adds a new row into the returned result set where column values are the current
values of the result set column names.

The following statement creates a procedure that has two input parameters and two result set column names
for output rows:

"CREATE PROCEDURE PHONEBOOK_SEARCH
 (IN FIRST_NAME VARCHAR, LAST_NAME VARCHAR)
 RETURNS (PHONE_NR NUMERIC, CITY VARCHAR)
BEGIN
-- procedure_body
END";

This procedure should be called by using two input parameter of data type VARCHAR. The procedure returns
an output table consisting of two columns named PHONE_NR of type NUMERIC and CITY of type
VARCHAR.

For example:

call phonebook_search ('JOHN','DOE');

The result looks as follows (when the procedure body has been programmed):

PHONE_NR CITY
3433555 NEW YORK
2345226 LOS ANGELES

The following statement creates a calculator procedure:

"create procedure calc(i1 float, op char(1),
 i2 float)

41

4.1.3 Parameter Section

 returns (calcresult float)
begin
 declare i integer;

 if op = '+' then
 calcresult := i1 + i2;
 elseif op = '-' then
 calcresult := i1 - i2;
 elseif op = '*' then
 calcresult := i1 * i2;
 elseif op = '/' then
 calcresult := i1 / i2;
 else
 calcresult := 'Error: illegal op';
 end if
end";

You can test the calculator with the command:

call calc(1,'/',3);

With RETURNS, select statements can also be wrapped into database procedures. The following statement
creates a procedure that uses a select statement to return backups created from the database:

"create procedure show_backups
 returns (backup_number varchar, date_created varchar)
begin
-- First set action for failing statements.
 exec sql whenever sqlerror rollback, abort;

-- Prepare and execute the select statement
 exec sql prepare sel_cursor select
 replace(property, 'backup ', ''),
 substring(value_str, 1, 19) from sys_info
 where property like 'backup %';
 exec sql execute sel_cursor into (backup_number, date_created);

-- Fetch first row;
 exec sql fetch sel_cursor;
-- Loop until end of table

42

4.1.3 Parameter Section

 while sqlsuccess loop
-- Return the fetched row
 return row;
-- Fetch next
 exec sql fetch sel_cursor;
 end loop;
end";

4.1.4 Declare Section

Local variables that are used inside the procedure for temporary storage of column and control values are
defined in a separate section of the stored procedure directly following the BEGIN keyword.

The syntax of declaring a variable is:

DECLARE variable_name datatype;

Note that every declare statement should be ended with a semicolon (;).

The variable name is an alphanumeric string that identifies the variable. The data type of the variable can be
any valid SQL data type supported. For supported data types, see Appendix A, Data Types.

For example:

"CREATE PROCEDURE PHONEBOOK_SEARCH
 (FIRST_NAME VARCHAR, LAST_NAME VARCHAR)
 RETURNS (PHONE_NR NUMERIC, CITY VARCHAR)
BEGIN
DECLARE i INTEGER;

DECLARE dat DATE;

END";

Note that input and output parameters are treated like local variables within a procedure with the exception
that input parameters have a preset value and output parameter values are returned or can be appended to the
returned result set.

43

4.1.4 Declare Section

4.1.5 Procedure Body

The procedure body contains the actual stored procedure program based on assignments, expressions, and
SQL statements.

Any type of expression, including scalar functions, can be used in a procedure body. For valid expressions,
see Appendix B, solidDB SQL Syntax.

4.1.6 Assignments

To assign values to variables either of the following syntax is used:

SET variable_name = expression;

or

variable_name := expression;

Example:

SET i = i + 20 ;

i := 100;

Scalar Functions with Assignments

A scalar function is an operation denoted by a function name followed by a pair of parentheses enclosing zero
or more specified arguments. Each scalar function returns one value. Note that scalar functions can be used
with assignments, as in:

"CREATE PROCEDURE scalar_sample
RETURNS (string_var VARCHAR(20))
BEGIN
-- CHAR(39) is the single quote/apostrophe
string_var := 'Joe' + {fn CHAR (39)} + 's Garage';
END";

The result of this stored procedure is the output:

44

4.1.5 Procedure Body

Joe's Garage

For a list of solidDB-supported scalar functions (SQL-92), see Appendix B, solidDB SQL Syntax. Note that
solidDB Programmer Guide contains an appendix that describes ODBC scalar functions, which contain some
differences for SQL-92.

Variables, Constants, and Parameters in Assignments

Variables and constants are initialized every time a procedure is executed. By default, variables are initialized
to NULL. Unless a variable has been explicitly initialized, its value is NULL, as the following example shows:

BEGIN
DECLARE total INTEGER;
...
total := total + 1; -- assigns a null to total
...

Therefore, a variable should never be referenced before it has been assigned a value.

The expression following the assignment operator can be arbitrarily complex, but it must yield a data type
that is the same as or convertible to the data type of the variable.

When possible, solidDB procedure language can provide conversion of data types implicitly. This makes it
possible to use literals, variables and parameters of one type where another type is expected.

Implicit conversion is not possible if:

• information would be lost in the conversion.

• a string to be converted to an integer contains non-numeric data

Examples:

DECLARE integer_var INTEGER;
integer_var := 'NR:123';

returns an error.

DECLARE string_var CHAR(3);
string_var := 123.45;

45

4.1.6 Assignments

results in value '123' in variable string_var.

DECLARE string_var VARCHAR(2);
string_var := 123.45;

returns an error.

Single Quotes and Apostrophes in String Assignments

Strings are delimited by single quotes. If you want to have a single quote marks within a string, then you can
put two single quote marks (''), side by side, to produce one quote mark in your output. This is commonly
known as an "escape sequence." Following is a stored procedure that uses this technique:

"CREATE PROCEDURE q
RETURNS (string_var VARCHAR(20))
BEGIN
string_var :='Joe''s Garage';
END";
CALL q;

The result is:

Joe's Garage

Here are some other examples:

'I''m writing.'

becomes:

I'm writing.

and

'Here are two single quotes:'''''

becomes:

46

4.1.6 Assignments

Here are two single quotes:''

Note that in the last example there are five single quotes in a row at the end of the string. The last of these is
the delimiter (the closing quote mark); the preceding four are part of the data. The four quotes are treated as
two pairs of quotes, and each pair of quotes is treated as an escape sequence representing one single quote
mark.

4.1.7 Expressions

Comparison Operators

Comparison operators compare one expression to another. The result is always TRUE, FALSE, or NULL.
Typically, comparisons are used in conditional control statements and allow comparisons of arbitrarily complex
expressions. The following table gives the meaning of each operator:

Table 4.1. Comparison Operators

MeaningOperator

is equal to=

is not equal to<>

is less than<

is greater than>

is less than or equal to<=

is greater than or equal to>=

Note that the != notation cannot be used inside a stored procedure, use the ANSI-SQL compliant <> instead.

Logical Operators

The logical operators can be used to build more complex queries. The logical operators AND, OR, and NOT
operate according to the tri-state logic illustrated by the truth tables shown below. AND and OR are binary
operators; NOT is a unary operator.

Table 4.2. Logical Operators: NOT

nullfalsetrueNOT

nulltruefalse

47

4.1.7 Expressions

Table 4.3. Logical Operators: AND

nullfalsetrueAND

nullfalsetruetrue

falsefalsefalsefalse

nullfalsenullnull

Table 4.4. Logical Operators: OR

nullfalsetrueOR

truetruetruetrue

nullfalsetruefalse

nullnulltruenull

As the truth tables show, AND returns the value TRUE only if both its operands are true. On the other hand,
OR returns the value TRUE if either of its operands is true. NOT returns the opposite value (logical negation)
of its operand. For example, NOT TRUE returns FALSE.

NOT NULL returns NULL because nulls are indeterminate.

When not using parentheses to specify the order of evaluation, operator precedence determines the order.

Note that 'true' and 'false' are not literals accepted by SQL parser but values. Logical expression value can be
interpreted as a numeric variable:

false = 0 or NULL

true = 1 or any other numeric value

Example:

IF expression = TRUE THEN

can be simply written

IF expression THEN

IS NULL Operator

The IS NULL operator returns the Boolean value TRUE if its operand is null, or FALSE if it is not null.
Comparisons involving nulls always yield NULL. To test whether a value is NULL, do not use the expression,

48

4.1.7 Expressions

IF variable = NULL THEN...

because it never evaluates to TRUE.

Instead, use the following statement:

IF variable IS NULL THEN...

Note that when using multiple logical operators in solidDB stored procedures the individual logical expressions
should be enclosed in parentheses like:

((A >= B) AND (C = 2)) OR (A = 3)

4.1.8 Control Structures

The following sections describe the statements that can be used in the procedure body, including branch and
loop statements.

IF Statement

Often, it is necessary to take alternative actions depending on circumstances. The IF statement executes a
sequence of statements conditionally. There are three forms of IF statements: IF-THEN, IF-THEN-ELSE,
and IF-THEN-ELSEIF.

IF-THEN

The simplest form of IF statement associates a condition with a statement list enclosed by the keywords THEN
and END IF (not ENDIF), as follows:

IF condition THEN
statement_list;
END IF

The sequence of statements is executed only if the condition evaluates to TRUE. If the condition evaluates
to FALSE or NULL, the IF statement does nothing. In either case, control passes to the next statement. An
example follows:

IF sales > quota THEN

49

4.1.8 Control Structures

 SET pay = pay + bonus;
END IF

IF-THEN-ELSE

The second form of IF statement adds the keyword ELSE followed by an alternative statement list, as follows:

IF condition THEN
statement_list1;
ELSE
statement_list2;
END IF

The statement list in the ELSE clause is executed only if the condition evaluates to FALSE or NULL. Thus,
the ELSE clause ensures that a statement list is executed. In the following example, the first or second assign-
ment statement is executed when the condition is true or false, respectively:

IF trans_type = 'CR' THEN
 SET balance = balance + credit;
ELSE
 SET balance = balance - debit;
END IF

THEN and ELSE clauses can include IF statements. That is, IF statements can be nested, as the following
example shows:

IF trans_type = 'CR' THEN
 SET balance = balance + credit ;
 ELSE
 IF balance >= minimum_balance THEN
 SET balance = balance - debit ;
 ELSE
 SET balance = minimum_balance;
 END IF
 END IF

IF-THEN-ELSEIF

Occasionally it is necessary to select an action from several mutually exclusive alternatives. The third form
of IF statement uses the keyword ELSEIF to introduce additional conditions, as follows:

50

4.1.8 Control Structures

IF condition1 THEN
statement_list1;
ELSEIF condition2 THEN
statement_list2;
ELSE
statement_list3;
END IF

If the first condition evaluates to FALSE or NULL, the ELSEIF clause tests another condition. An IF statement
can have any number of ELSEIF clauses; the final ELSE clause is optional. Conditions are evaluated one by
one from top to bottom. If any condition evaluates to TRUE, its associated statement list is executed and the
rest of the statements (inside the IF-THEN-ELSEIF) are skipped. If all conditions evaluate to FALSE or
NULL, the sequence in the ELSE clause is executed. Consider the following example:

IF sales > 50000 THEN
 bonus := 1500;
ELSEIF sales > 35000 THEN
 bonus := 500;
ELSE
 bonus := 100;
END IF

If the value of "sales" is more than 50000, the first and second conditions are true. Nevertheless, "bonus" is
assigned the proper value of 1500 since the second condition is never tested. When the first condition evaluates
to TRUE, its associated statement is executed and control passes to the next statement following the IF-THEN-
ELSEIF.

When possible, use the ELSEIF clause instead of nested IF statements. That way, the code will be easier to
read and understand. Compare the following IF statements:

IF condition1 THEN IF condition1 THEN
statement_list1; statement_list1;

ELSE ELSEIF condition2 THEN
 IF condition2 THEN statement_list2;

statement_list2; ELSEIF condition3 THEN
 ELSE statement_list3;
 IF condition3 THEN END IF

statement_list3;
 END IF

51

4.1.8 Control Structures

 END IF
END IF

These statements are logically equivalent, but the first statement obscures the flow of logic, whereas the
second statement reveals it.

Use of Parentheses in IF-THEN Statements

The following code illustrates the rules for using parentheses in IF-THEN statements. Refer also to the release
notes for additional information on using parentheses in IF-THEN statements.

--- This piece of code shows examples of valid logical conditions in IF
--- statements.
"CREATE PROCEDURE sample_if_conditions
BEGIN
DECLARE x INT;
DECLARE y INT;
x := 2;
y := 2;

--- As shown below, a single logical expression in an IF condition may
--- use parentheses.
IF (x > 0) THEN
x := x - 1;
END IF;

--- As shown below, although a single logical expression in an IF
--- condition may use parentheses, the parentheses are not required.
IF x > 0 THEN
x := x - 1;
END IF;

--- As shown below, if there are multiple expressions inside a
--- logical condition, parentheses are allowed (and in fact are
--- required) around each subexpression.
IF (x > 0) AND (y > 0) THEN
x := x - 1;
END IF;

--- The example below is the same as the preceding example,
--- except that this has additional parentheses around the

52

4.1.8 Control Structures

--- entire expression.
IF ((x > 0) AND (y > 0)) THEN
x := x - 1;
END IF;

WHILE-LOOP

The WHILE-LOOP statement associates a condition with a sequence of statements enclosed by the keywords
LOOP and END LOOP, as follows:

WHILE condition LOOP
statement_list;

END LOOP

Before each iteration of the loop, the condition is evaluated. If the condition evaluates to TRUE, the statement
list is executed, then control resumes at the top of the loop. If the condition evaluates to FALSE or NULL,
the loop is bypassed and control passes to the next statement. An example follows:

WHILE total <= 25000 LOOP
 ...
 total := total + salary;
 END LOOP

The number of iterations depends on the condition and is unknown until the loop completes. Since the condition
is tested at the top of the loop, the sequence might execute zero times. In the latter example, if the initial value
of "total" is greater than 25000, the condition evaluates to FALSE and the loop is bypassed altogether.

Loops can be nested. When an inner loop is finished, control is returned to the next loop. The procedure
continues from the next statement after END LOOP.

Leaving Loops

It may be necessary to force the procedure to leave a loop prematurely. This can be implemented using the
LEAVE keyword:

WHILE total < 25000 LOOP
 total := total + salary;
 IF exit_condition THEN
 LEAVE;
 END IF

53

4.1.8 Control Structures

END LOOP
statement_list2

Upon successful evaluation of the exit_condition the loop is left, and the procedure continues at the
statement_list2.

Note

Although solidDB databases support the ANSI-SQL CASE syntax, the CASE construct cannot be
used inside a stored procedure as a control structure.

Use of Parentheses in WHILE Loops

The following code illustrates the rules for using parentheses in WHILE loops. Refer also to the release notes
for additional information on using parentheses in WHILE loops.

--- This piece of code shows examples of valid logical conditions in
--- WHILE loops.
"CREATE PROCEDURE sample_while_conditions
BEGIN
DECLARE x INT;
DECLARE y INT;
x := 2;
y := 2;

--- As shown below, a single logical expression in a WHILE condition
--- may use parentheses.
WHILE (x > 0) LOOP
x := x - 1;
END LOOP;

--- As shown below, although a single logical expression in a WHILE
--- condition may use parentheses, the parentheses are not required.
WHILE x > 0 LOOP
x := x - 1;
END LOOP;

--- As shown below, if there are multiple expressions inside a
--- logical condition, then you need parentheses around EACH
--- individual expression.
WHILE (x > 0) AND (y > 0) LOOP

54

4.1.8 Control Structures

x := x - 1;
y := y - 1;
END LOOP;

--- The example below is the same as the preceding example,
--- except that this has additional parentheses around the
--- entire expression.
WHILE ((x > 0) AND (y > 0)) LOOP
x := x - 1;
y := y - 1;
END LOOP;

Handling Nulls

Nulls can cause confusing behavior. To avoid some common errors, observe the following rules:

• comparisons involving nulls always yield NULL

• applying the logical operator NOT to a null yields NULL

• in conditional control statements, if the condition evaluates to NULL, its associated sequence of statements
is not executed

In the example below, you might expect the statement list to execute because "x" and "y" seem unequal. Re-
member though that nulls are indeterminate. Whether "x" is equal to "y" or not is unknown. Therefore, the
IF condition evaluates to NULL and the statement list is bypassed.

x := 5;
 y := NULL;
 ...
 IF x <> y THEN -- evaluates to NULL, not TRUE

statement_list; -- not executed
 END IF

In the next example, one might expect the statement list to execute because "a" and "b" seem equal. But,
again, this is unknown, so the IF condition evaluates to NULL and the statement list is bypassed.

 a := NULL;
 b := NULL;
 ...
 IF a = b THEN -- evaluates to NULL, not TRUE

55

4.1.8 Control Structures

statement_list; -- not executed
 END IF

NOT Operator

Applying the logical operator NOT to a null yields NULL. Thus, the following two statements are not always
equivalent:

 IF x > y THEN IF NOT (x > y) THEN
 high := x; high := y;
 ELSE ELSE
 high := y; high := x;
 END IF END IF

The sequence of statements in the ELSE clause is executed when the IF condition evaluates to FALSE or
NULL. If either or both "x" and "y" are NULL, the first IF statement assigns the value of "y" to "high", but
the second IF statement assigns the value of "x" to "high". If neither "x" nor "y" is NULL, both IF statements
assign the corresponding value to "high".

Zero-Length Strings

Zero length strings are treated by a solidDB server like they are a string of zero length, instead of a null. NULL
values should be specifically assigned as in the following:

SET a = NULL;

This also means that checking for NULL values will return FALSE when applied to a zero-length string.

Example Stored Procedure

Following is an example of a simple procedure that determines whether a person is an adult on the basis of a
birthday as input parameter.

Note the usage of {fn ...} on scalar functions, and semicolons to end assignments.

"CREATE PROCEDURE grown_up
(birth_date DATE)
RETURNS (description VARCHAR)
BEGIN

56

4.1.8 Control Structures

DECLARE age INTEGER;
-- determine the number of years since the day of birth
age := {fn TIMESTAMPDIFF(SQL_TSI_YEAR, birth_date, now())};
IF age >= 18 THEN
-- If age is at least 18, then it's an adult
description := 'ADULT';
ELSE
-- otherwise it's still a minor
description := 'MINOR';
END IF
END";

Exiting a Procedure

A procedure may be exited prematurely by issuing the keyword

RETURN;

at any location. After this keyword, control is directly handed to the program calling the procedure returning
the values bound to the result set column names as indicated in the RETURNS section of the procedure
definition.

Returning Data

You can return data with the OUT parameter mode, which is a standard SQL-99 method of returning data.
This method allows you to pass data back to the program from the procedure. For syntax information, refer
to Appendix B, solidDB SQL Syntax.

The OUT parameter mode has the following characteristics:

• The OUT parameter mode allows you to pass data back to the calling program from the procedure. Inside
the calling program, the OUT parameter acts like a variable. That means you can use an OUT parameter
as if it were a local variable. You can change its value or reference the value in any way.

• The actual parameter that corresponds to an OUT parameter must be a variable; it cannot be a constant
or an expression.

• Like variables, OUT parameters are initialized to NULL.

Before exiting a procedure, you must explicitly assign values to all OUT parameters. Otherwise, the corres-
ponding actual parameters will be null. If you exit successfully, solidDB assigns values to the actual parameters.
However, if you exit with an unhandled exception, solidDB does not assign values to the actual parameters.

57

4.1.8 Control Structures

For a solidDB proprietary method of returning data, see the section called “Using RETURNS”.

4.2 Remote Stored Procedures
Stored procedures may be called locally or remotely. By "remotely", we mean that one database server may
call a stored procedure on another database server. Remote stored procedure calls use a syntax like the follow-
ing:

CALL procedure_name AT node-ref;

where node-ref indicates which database server the remote stored procedure is on.

Remote stored procedures calls can only be made between two solidDB servers that have a master/replica
relationship. The calls can be made in either "direction"; i.e. the master may call a stored procedure on the
replica, or the replica may call a stored procedure on the master. A remote stored procedure may be called
from any context that allows a local procedure call. Thus, for example, you may call a remote stored procedure
directly by using a CALL statement, or you may call the remote procedure from within a trigger, or another
stored procedure, or a Start After Commit statement.

A remotely-called stored procedure may contain any command that any other stored procedure may contain.
All stored procedures are created using the same syntax rules. A single stored procedure may be called both
locally and remotely at different times.

The stored procedure, when called remotely, accepts parameters from the caller, just as if the call was local.
However, a remote stored procedure cannot return a result set; it can only return an error code.

Both local and remote stored procedure calls are synchronous; in other words, whether the procedure is called
locally or remotely, the caller waits until the value is returned; the caller does not continue on while the stored
procedure executes in the background. (Note that if the stored procedure is called from inside a START
AFTER COMMIT, then the stored procedure call itself is synchronous, but the START AFTER COMMIT
was not synchronous, so the stored procedure will execute as an asynchronous background process.)

Important

Transaction handling for remote stored procedures is different from transaction handling for local
stored procedures. When a stored procedure is called remotely, the execution of the stored procedure
is NOT a part of the transaction that contained the call. Therefore, you cannot roll back a stored pro-
cedure call by rolling back the transaction that called it.

The full syntax of the command to call a remote stored procedure is:

58

4.2 Remote Stored Procedures

CALL <proc-name>[(param [, param...])] AT node-def;
node-def ::= DEFAULT | 'replica name' | 'master name'

For example:

CALL MyProc('Smith', 750) AT replica1;
CALL MyProcWithoutParameters AT replica2;

See Appendix B, solidDB SQL Syntax, for more details about the CALL statement.

The node definition "DEFAULT" is used only with the START AFTER COMMIT statement. See the section
on START AFTER COMMIT for more details.

Note

You can only list one node definition per CALL. If you want to notify multiple replicas, for example,
then you must call each of them separately. You can, however, create a stored procedure that contains
multiple CALL statements, and then simply make a single call to that procedure.

The remote stored procedure is always created on the server that executes the procedure, not on the server
that calls the procedure. For example, if the master is going to call procedure foo() to execute on replica1,
then procedure foo() must have been created on replica1. The master does not know the "content" of the stored
procedure that it calls remotely. In fact, the master does not know anything at all about the stored procedure
other than the information specified in the CALL statement itself, for example:

CALL foo(param1, param2) AT replica1

which of course includes the procedure's name, some parameter values, and the name of the replica on which
the procedure is to be executed. The stored procedure is not registered with the caller. This means that the
caller in some sense calls the procedure "blindly", without even knowing if it's there. Of course, if the caller
tries to call a procedure that doesn't exist, then the caller will get an error message that says that the procedure
doesn't exist.

Dynamic parameter binding is supported. For example, the following is legal:

CALL MYPROC(?, ?) AT MYREPLICA1;

Calls to the stored procedure are not buffered or queued. If you call the stored procedure and the procedure
does not exist, the call does not "persist", waiting until the stored procedure appears. Similarly, if the procedure

59

4.2 Remote Stored Procedures

does exist but the server that has that procedure is shut down or is disconnected from the network is not ac-
cessible for any other reason, then the call is not held "open" and retried when the server becomes accessible
again. This is important to know when using the "Sync Pull Notify" (push synchronization) feature.

4.2.1 ACCESS RIGHTS

To call a stored procedure, the caller must have EXECUTE privilege on that procedure. (This is true for any
stored procedure, whether it is called locally or remotely.)

When a procedure is called locally, it is executed with the privileges of the caller. When a procedure is called
remotely, it may be executed either with the privileges of a specified user on the remote server, or with the
privileges of the remote user who corresponds to the local caller. (The replica and master users must already
be mapped to each other before the stored procedure is called. For more information about mapping replica
users to master users, see solidDB SmartFlow Data Replication Guide.)

If a remote stored procedure was called from the replica (and is to be executed on the master), then you have
the option of specifying which master user's privileges you would like the procedure to be executed with.

If the remote stored procedure was called from the master (and is to be executed on the replica), or if you do
not specify which user's privileges to use, then the calling server will figure out which user's privileges should
be used, based on which user called the stored procedure and the mapping between replica and master users.

These possibilities are explained in more detail below.

1. If the procedure was called from a replica (and will be executed on the master), then you may execute
the SET SYNC USER statement to specify which master user's privileges to use. You must execute SET
SYNC USER on the local server before calling the remote stored procedure. Once the sync user has been
specified on the calling server, the calling server will send the user name and password to the remote
server (the master server) each time a remote stored procedure is called. The remote server will try to
execute the procedure using the user id and password that were sent with the procedure call. The user id
and password must exist in the remote server, and the specified user must have appropriate access rights
to the database and EXECUTE privilege on the called procedure.

The SET SYNC USER statement is valid only on a replica, so you can only specify the sync user when
a replica calls a stored procedure on a master.

2. If the caller is a master, or if the call was made from a replica and you did not specify a sync user before
the call, then the servers will attempt to determine which user on the remote server corresponds to the
user on the local server.

If the calling server is a replica (R → M)

The calling server sends the following information to the remote server when calling a remote procedure:

60

4.2.1 ACCESS RIGHTS

Name of the master (SYS_SYNC_MASTERS.NAME).

Replica id (SYS_SYNC_MASTERS.REPLICA_ID).

Master user id (This master user id is the master user id that corresponds to the user id of the local user
who called the procedure. Obviously, this local user must already be mapped to the corresponding master
user.)

Note that this method of selecting the master user id is the same as the method used when a replica re-
freshes data — the replica looks up in the SYS_SYNC_USERS table to find the master user who is
mapped to the current local replica user.

If the calling server is a master (M → R)

The calling server sends the following information to the remote server when calling a remote procedure:

Name of the master (SYS_SYNC_REPLICAS.MASTER_NAME).

Replica id (SYS_SYNC_REPLICAS.ID).

User name of the caller.

User id of the caller.

When the replica receives the master user id, the replica looks up the local user who is mapped to that
master id. Since more than one replica user may be mapped to a single master user, the server will use
the first local user it finds who is mapped to the specified master user and who has the privileges required
to execute this stored procedure.

Before a master server can call a stored procedure on a replica server, the master must of course know the
connect string of the replica. If a replica allows calls from a master, then the replica should define its own
connect string information in the solid.ini file. This information is provided to the master (the replica
includes a copy when it forwards any message to master). When the master receives the connect string from
the replica, the master replaces the previous value (if the new value differs).

Example:

[Synchronizer]
ConnectStrForMaster=tcp replicahost 1316

It is also possible to inform the master of the replica's connect string by using the statement:

SET SYNC CONNECT <connect-info> TO REPLICA <replica-name>

61

4.2.1 ACCESS RIGHTS

This is useful if the master needs to call the replica but the replica has not yet provided its connect string to
the master (i.e. has not yet forwarded any message to the master).

4.3 Using SQL in a Stored Procedure
Using SQL statements inside a stored procedure is somewhat different from issuing SQL directly from tools
like solsql or SolidConsole.

A special syntax is required when using SQL statements inside a stored procedure. There are two ways to
execute SQL statements inside a procedure: you may use the EXECDIRECT syntax to execute a statement,
or you may treat the SQL statement as a "cursor". Both possibilities are explained below.

4.3.1 EXECDIRECT

The EXECDIRECT syntax is particularly appropriate for statements where there is no result set, and where
you do not have to use any variable to specify a parameter value. For example, the following statement inserts
a single row of data:

EXEC SQL EXECDIRECT insert into table1 (id, name) values (1, 'Smith');

For more information about EXECDIRECT, see Section 4.3.1, “EXECDIRECT”.

4.3.2 Using a Cursor

Cursors are appropriate for statements where there is a result set, or where you want to repeat a single basic
statement but use different values from a local variable as a parameter (e.g. in a loop).

A cursor is a specific allocated part of the server process memory that keeps track of the statement being
processed. Memory space is allocated for holding one row of the underlying statement, together with some
status information on the current row (in SELECTS) or the number of rows affected by the statement (in
UPDATES, INSERTS and DELETES).

In this way query results are processed one row at a time. The stored procedure logic should take care of the
actual handling of the rows, and the positioning of the cursor on the required row(s).

There are five basic steps in handling a cursor:

1. Preparing the cursor - the definition

2. Executing the cursor - executing the statement

62

4.3 Using SQL in a Stored Procedure

3. Fetching on the cursor (for select procedure calls) - getting the results row by row

4. Closing the cursor after use - still enabling it to re-execute

5. Dropping the cursor from memory - removing it

1. Preparing the Cursor

A cursor is defined (prepared) using the following syntax:

EXEC SQL PREPARE cursor_name SQL_statement;

By preparing a cursor, memory space is allocated to accommodate one row of the result set of the statement,
and the statement is parsed and optimized.

A cursor name given for the statement must be unique within the connection. This means procedures that
contain cursors cannot be called recursively (at least not from a statement that is after a PREPARE CURSOR
and before the corresponding DROP CURSOR). When a cursor is prepared, a solidDB server checks that no
other cursor of this name is currently open. If there is one, error number 14504 is returned.

Note that statement cursors can also be opened using the ODBC API. These cursor names need to be different
from the cursors opened from procedures.

Example:

EXEC SQL PREPARE sel_tables
 SELECT table_name
 FROM sys_tables
 WHERE table_name LIKE 'SYS%';

This statement will prepare the cursor named sel_tables, but will not execute the statement that it contains.

2. Executing the Cursor

After a statement has been successfully prepared it can be executed. An execute binds possible input and
output variables to it and runs the actual statement.

Syntax of the execute statement is:

EXEC SQL EXECUTE cursor_name
 [INTO (var1 [, var2...])];

63

4.3.2 Using a Cursor

The optional section INTO binds result data of the statement to variables.

Variables listed in parentheses after the INTO keyword are used when running a SELECT or CALL statement.
The resulting columns of the SELECT or CALL statement are bound to these variables when the statement
is executed. The variables are bound starting from the left-most column listed in the statement. Binding of
variables continues to the following column until all variables in the list of variables have been bound. For
example to extend the sequence for the cursor sel_tables that was prepared earlier we need to run the following
statements:

EXEC SQL PREPARE sel_tables
 SELECT table_name
 FROM sys_tables
 WHERE table_name LIKE 'SYS%'

EXEC SQL EXECUTE sel_tables INTO (tab);

The statement is now executed and the resulting table names will be returned into variable tab in the subsequent
Fetch statements.

3. Fetching on the Cursor

When a SELECT or CALL statement has been prepared and executed, it is ready for fetching data from it.
Other statements (UPDATE, INSERT, DELETE, DDL) do not require fetching as there will be no result set.
Fetching results is done using the fetch syntax:

EXEC SQL FETCH cursor_name;

This command fetches a single row from the cursor to the variables that were bound with INTO keyword
when the statement was executed.

To complete the previous example to actually get result rows back, the statements will look like:

EXEC SQL PREPARE sel_tables
 SELECT table_name
 FROM sys_tables
 WHERE table_name LIKE 'SYS%'
EXEC SQL EXECUTE sel_tables INTO (tab);
EXEC SQL FETCH sel_tables;

After this the variable tab will contain the table name of the first table found conforming to the WHERE
clause.

64

4.3.2 Using a Cursor

Subsequent calls to fetch on the cursor sel_tables will get the next row(s) if the select found more than one.

To fetch all table names a loop construct may be used:

WHILE expression LOOP
 EXEC SQL FETCH sel_tables;
END LOOP

Note that after the completion of the loop, the variable tab will contain the last fetched table name.

4. Closing the Cursor

Cursors may be closed by issuing the statement

EXEC SQL CLOSE cursor_name;

This will not remove the actual cursor definition from memory; it may be re-executed when the need arises.

5. Dropping the Cursor

Cursors may be dropped from memory, releasing all resources by the statement:

EXEC SQL DROP cursor_name;

Example Stored procedure

Here is an example of a stored procedure that uses EXECDIRECT in one place and uses a cursor in another
place.

"CREATE PROCEDURE p2
BEGIN

-- This variable holds an ID that we insert into the table.
DECLARE id INT;

-- Here are simple examples of EXECDIRECT.
EXEC SQL EXECDIRECT create table table1 (id_col INT);
EXEC SQL EXECDIRECT insert into table1 (id_col) values (1);

65

4.3.2 Using a Cursor

-- Here is an example of a cursor.
EXEC SQL PREPARE cursor1 INSERT INTO table1 (id_col) values (?);
id := 2;
WHILE id <= 10 LOOP
 EXEC SQL EXECUTE cursor1 USING (id);
 id := id + 1;
END LOOP;
EXEC SQL CLOSE cursor1;
EXEC SQL DROP cursor1;

END";

4.3.3 Error Handling

SQLSUCCESS

The return value of the latest EXEC SQL statement executed inside a procedure body is stored into variable
SQLSUCCESS. This variable is automatically generated for every procedure. If the previous SQL statement
was successful, the value 1 is stored into SQLSUCCESS. After a failed SQL statement, a value 0 is stored
into SQLSUCCESS.

The value of SQLSUCCESS may be used, for instance, to determine when the cursor has reached the end of
the result set as in the following example:

EXEC SQL FETCH sel_tab;
-- loop as long as last statement in loop is successful
WHILE SQLSUCCESS LOOP
 -- do something with the results, for example, return a row
 EXEC SQL FETCH sel_tab;

END LOOP

SQLERRNUM

This variable contains the error code of the latest SQL statement executed. It is automatically generated for
every procedure. After successful execution, SQLERRNUM contains zero (0).

SQLERRSTR

This variable contains the error string from the last failed SQL statement.

66

4.3.3 Error Handling

SQLROWCOUNT

After the execution of UPDATE, INSERT and DELETE statements, an additional variable is available to
check the result of the statement. Variable SQLROWCOUNT contains the number of rows affected by the
last statement.

SQLERROR

To generate user errors from procedures, the SQLERROR variable may be used to return an actual error string
that caused the statement to fail to the calling application. The syntax is:

RETURN SQLERROR 'error string'
RETURN SQLERROR char_variable

The error is returned in the following format:

User error: error_string

SQLERROR OF cursorname

For error checking of EXEC SQL statements, the SQLSUCCESS variable may be used as described under
SQLSUCCESS in the beginning of this section. To return the actual error that caused the statement to fail to
the calling application, the following syntax may be used:

EXEC SQL PREPARE cursorname sql_statement;
EXEC SQL EXECUTE cursorname;
IF NOT SQLSUCCESS THEN
 RETURN SQLERROR OF cursorname;
END IF

END IF

Processing will stop immediately when this statement is executed and the procedure return code is SQLERROR.
The actual database error can be returned using the SQLError function:

Solid Database error 10033: Primary key unique constraint violation

The generic error handling method for a procedure can be declared with:

67

4.3.3 Error Handling

EXEC SQL WHENEVER SQLERROR [ROLLBACK [WORK],] ABORT;

When this statement is included in a stored procedure, all return values of executed SQL statements are
checked for errors. If a statement execution returns an error, the procedure is automatically aborted and
SQLERROR of the last cursor is returned. Optionally the transaction can also be rolled back.

The statement should be included before any EXEC SQL statements, directly following the DECLARE section
of variables.

Below is an example of a complete procedure returning all table names from SYS_TABLES that start with
'SYS':

"CREATE PROCEDURE sys_tabs
RETURNS (tab VARCHAR)
BEGIN
-- abort on errors
EXEC SQL WHENEVER SQLERROR ROLLBACK, ABORT;
-- prepare the cursor
EXEC SQL PREPARE sel_tables
 SELECT table_name
 FROM sys_tables
 WHERE table_name LIKE 'SYS%';
-- execute the cursor
EXEC SQL EXECUTE sel_tables INTO (tab);
-- loop through rows
EXEC SQL FETCH sel_tables;
WHILE sqlsuccess LOOP
 RETURN ROW;
 EXEC SQL FETCH sel_tables;
END LOOP
-- close and drop the used cursors
EXEC SQL CLOSE sel_tables;
EXEC SQL DROP sel_tables;
END";

4.3.4 Parameter Markers in Cursors

In order to make a cursor more dynamic, a SQL statement can contain parameter markers that indicate values
that are bound to the actual parameter values at execute time. The '?' symbol is used as a parameter marker.

68

4.3.4 Parameter Markers in Cursors

Syntax example:

EXEC SQL PREPARE sel_tabs
 SELECT table_name
 FROM sys_tables
 WHERE table_name LIKE ?
 AND table_schema LIKE ?;

The execution statement is adapted by including a USING keyword to accommodate the binding of a variable
to the parameter marker.

EXEC SQL EXECUTE sel_tabs USING (var1, var2) INTO (tabs);

In this way a single cursor can be used multiple times without having to re-prepare the cursor. As preparing
a cursor involves also the parsing and optimizing of the statement, significant performance gains can be
achieved by using re-usable cursors.

Note that the USING list only accepts variables; data can not be directly passed in this way. So if for example
an insert into a table should be made, one column value of which should always be the same (status = 'NEW')
then the following syntax would be wrong:

EXEC SQL EXECUTE ins_tab USING (nr, desc, dat, 'NEW');

The correct way would be to define the constant value in the prepare section:

EXEC SQL PREPARE ins_tab
 INSERT INTO my_tab (id, descript, in_date, status)
 VALUES (?, ?, ?,'NEW');
EXEC SQL EXECUTE ins_tab USING (nr, desc, dat);

Note that variables can be used multiple times in the using list.

The parameters in a SQL statement have no intrinsic data type or explicit declaration. Therefore, parameter
markers can be included in a SQL statement only if their data types can be inferred from another operand in
the statement.

For example, in an arithmetic expression such as ? + COLUMN1, the data type of the parameter can be inferred
from the data type of the named column represented by COLUMN1. A procedure cannot use a parameter
marker if the data type cannot be determined.

69

4.3.4 Parameter Markers in Cursors

The following table describes how a data type is determined for several types of parameters.

Table 4.5. Determining Data Type from Parameters

Assumed Data TypeLocation of Parameter

Same as the other operandOne operand of a binary arithmetic or comparison
operator

Same as the other operandThe first operand in a BETWEEN clause

Same as the first operandThe second or third operand in a BETWEEN clause

Same as the first value or the result column of the
subquery

An expression used with IN

Same as the expressionA value used with IN

VARCHARA pattern value used with LIKE

Same as the update columnAn update value used with UPDATE

An application cannot place parameter markers in the following locations:

• As a SQL identifier (name of a table, name of a column etc.)

• In a SELECT list.

• As both expressions in a comparison-predicate.

• As both operands of a binary operator.

• As both the first and second operands of a BETWEEN operation.

• As both the first and third operands of a BETWEEN operation.

• As both the expression and the first value of an IN operation.

• As the operand of a unary + or - operation.

• As the argument of a set-function-reference.

For more information, see the ANSI SQL-92 specification.

In the following example, a stored procedure will read rows from one table and insert parts of them in another,
using multiple cursors:

70

4.3.4 Parameter Markers in Cursors

"CREATE PROCEDURE tabs_in_schema (schema_nm VARCHAR)
RETURNS (nr_of_rows INTEGER)
BEGIN
DECLARE tab_nm VARCHAR;
EXEC SQL PREPARE sel_tab
 SELECT table_name
 FROM sys_tables
 WHERE table_schema = ?;
EXEC SQL PREPARE ins_tab
 INSERT INTO my_table (table_name, schema) VALUES (?,?);

nr_of_rows := 0;

EXEC SQL EXECUTE sel_tab USING (schema_nm) INTO (tab_nm);
EXEC SQL FETCH sel_tab;
WHILE SQLSUCCESS LOOP
 nr_of_rows := nr_of_rows + 1;
 EXEC SQL EXECUTE ins_tab USING(tab_nm, schema_nm);
 IF SQLROWCOUNT <> 1 THEN
 RETURN SQLERROR OF ins_tab;
 END IF
 EXEC SQL FETCH sel_tab;
END LOOP
END";

4.4 Calling other Procedures
As calling a procedure forms a part of the supported SQL syntax, a stored procedure may be called from
within another stored procedure. The default limit for levels of nested procedures is 16. When the maximum
is exceeded, the transaction fails. The maximum nesting level is set in the MaxNestedProcedures para-
meter in the solid.ini configuration file. For details, see appendix "Configuration Parameters" in solidDB
Administration Guide.

Like all SQL statements, a cursor should be prepared and executed like:

EXEC SQL PREPARE cp CALL myproc(?, ?);
EXEC SQL EXECUTE cp USING (var1, var2);

If procedure myproc returns one or more values, then subsequently a fetch should be done on the cursor cp
to retrieve those values:

71

4.4 Calling other Procedures

EXEC SQL PREPARE cp call myproc(?,?);
EXEC SQL EXECUTE cp USING (var1, var2) INTO
(ret_var1, ret_var2);
EXEC SQL FETCH cp;

Note that if the called procedure uses a return row statement, the calling procedure should utilize a WHILE
LOOP construct to fetch all results.

Recursive calls are possible, but discouraged because cursor names are unique at connection level.

4.4.1 Positioned Updates and Deletes

In solidDB procedures it is possible to use positioned updates and deletes. This means that an update or delete
will be done to a row where a given cursor is currently positioned. The positioned updates and deletes can
also be used within stored procedures using the cursor names used within the procedure.

The following syntax is used for positioned updates:

UPDATE table_name
SET column = value
WHERE CURRENT OF cursor_name

and for deletes

DELETE FROM table_name
WHERE CURRENT OF cursor_name

In both cases the cursor_name refers to a statement doing a SELECT on the table that is to be updated/de-
leted from.

Positioned cursor update is a semantically suspicious concept in SQL standard that may cause peculiarities
also with a solidDB server. Please note the following restriction when using positioned updates.

Below is an example written with pseudo code that will cause an endless loop with a solidDB server (error
handling, binding variables and other important tasks omitted for brevity and clarity):

"CREATE PROCEDURE ENDLESS_LOOP
BEGIN
EXEC SQL PREPARE MYCURSOR SELECT * FROM TABLE1;

72

4.4.1 Positioned Updates and Deletes

EXEC SQL PREPARE MYCURSOR_UPDATE
 UPDATE TABLE1 SET COLUMN2 = 'new data';
 WHERE CURRENT OF MYCURSOR;"
EXEC SQL EXECUTE MYCURSOR;
EXEC SQL FETCH MYCURSOR;
WHILE SQLSUCCESS LOOP
 EXEC SQL EXECUTE MYCURSOR_UPDATE;
 EXEC SQL COMMIT WORK;
 EXEC SQL FETCH MYCURSOR;
END LOOP
END";

The endless loop is caused by the fact that when the update is committed, a new version of the row becomes
visible in the cursor and it is accessed in the next FETCH statement. This happens because the incremented
row version number is included in the key value and the cursor finds the changed row as the next greater key
value after the current position. The row gets updated again, the key value is changed and again it will be the
next row found.

In the above example, the updated COLUMN2 is not assumed to be part of the primary key for the table, and
the row version number was the only part of the index entry that changed. However, if a column value is
changed that is part of the index through which the cursor has searched the data, the changed row may jump
further forward or backward in the search set.

For these reasons, using positioned update is not recommended in general and searched update should be used
instead whenever possible. However, sometimes the update logic may be too complex to be expressed in SQL
WHERE clause and in such cases positioned update can be used as follows:

Positioned cursor update works deterministically in solidDB, when the WHERE clause is such that the updated
row does not match the criteria and therefore does not reappear in the fetch loop. Constructing such a search
criteria may require using additional column only for this purpose.

Note that in an open cursor, user changes do not become visible unless they are committed within the same
database session.

4.4.2 Transactions

Stored procedures use transactions like any other interface to the database uses transactions. A transaction
may be committed or rolled back either inside the procedure or outside the procedure. Inside the procedure
a commit or roll back is done using the following syntax:

73

4.4.2 Transactions

EXEC SQL COMMIT WORK;
EXEC SQL ROLLBACK WORK;

These statements end the previous transaction and start a new one.

If a transaction is not committed inside the procedure, it may be ended externally using:

• solidDB SA

• Another stored procedure

• By autocommit, if the connection has AUTOCOMMIT switch set to ON

Note that when a connection has autocommit activated it does not force autocommit inside a procedure. The
commit is done when the procedure exits.

4.4.3 Default Cursor Management

By default, when a procedure exits, all cursors opened in a procedure are closed. Closing cursors means that
cursors are left in a prepared state and can be re-executed.

After exiting, the procedure is put in the procedure cache. When the procedure is dropped from the cache, all
cursors are finally dropped.

The number of procedures kept in cache is determined by the solid.ini file setting:

[SQL]
ProcedureCache = nbr_of_procedures

This means that, as long as the procedure is in the procedure cache, all cursors can be re-used as long as they
are not dropped. A solidDB server itself manages the procedure cache by keeping track of the cursors declared,
and notices if the statement a cursor contains has been prepared.

As cursor management, especially in a heavy multi-user environment, can use a considerable amount of
server resources, it is good practice to always close cursors immediately and preferably also drop all cursors
that are no longer used. Only the most frequently used cursors may be left non-dropped to reduce the cursor
preparation effort.

Note that transactions are not related to procedures or other statements. Commit or rollback therefore does
NOT release any resources in a procedure.

74

4.4.3 Default Cursor Management

4.4.4 Notes on SQL

• There is no restriction on the SQL statements used. Any valid SQL statement can be used inside a stored
procedure, including DDL and DML statements.

• Cursors may be declared anywhere in a stored procedure. Cursors that are certainly going to be used are
best prepared directly following the declare section.

• Cursors that are used inside control structures, and are therefore not always necessary, are best declared
at the point where they are activated, to limit the amount of open cursors and hence the memory usage.

• The cursor name is an undeclared identifier, not a variable; it is used only to reference the query. You
cannot assign values to a cursor name or use it in an expression.

• Cursors may be re-executed repeatedly without having to re-prepare them. Note that this can have a serious
influence on performance; repetitively preparing cursors on similar statements may decrease the performance
by around 40% in comparison to re-executing already prepared cursors!

• Any SQL statement will have to be preceded by the keywords EXEC SQL.

4.4.5 Functions for Procedure Stack Viewing

The following functions may be included in stored procedures to analyze the current contents of the procedure
stack:

• PROC_COUNT ()

This function returns the number of procedures in the procedure stack, including the current procedure.

• PROC_NAME (N)

This function returns the Nth procedure name in the stack. The first procedure is in position zero.

• PROC_SCHEMA (N)

This function returns the schema name of the Nth procedure in the procedure stack.

These functions allow for stored procedures that behave differently depending on whether they are called
from an application or from a procedure.

75

4.4.4 Notes on SQL

4.5 Procedure Privileges
Stored procedures are owned by the creator, and are part of the creator's schema. Users who need to run stored
procedures in other schemas need to be granted EXECUTE privilege on the procedure:

GRANT EXECUTE ON Proc_name TO { USER | ROLE };

This function returns the schema name of the Nth procedure in the procedure stack.

All database objects accessed within the granted procedure, even subsequently called procedures, are accessed
according to the rights of the owner of the procedure. No special grants are necessary.

Since the procedure is run with the privileges of the creator, the procedure not only has the creator's rights to
access objects such as tables, but also uses the creator's schema and catalog. For example, suppose that user
'Sally' runs a procedure named 'Proc1' created by user 'Jasmine'. Suppose also that both Sally and Jasmine
have a table named 'table1'. By default, the stored procedure Proc1 will use the table1 that is in Jasmine's
schema, even if Proc1 was called by user Sally.

See also Section 4.2.1, “ACCESS RIGHTS” for more information about privileges and remote stored procedure
calls.

4.6 Using Triggers
A trigger activates stored procedure code, which a solidDB server automatically executes when a user attempts
to change the data in a table. You may create one or more triggers on a table, with each trigger defined to
activate on a specific INSERT, UPDATE, or DELETE command. When a user modifies data within the table,
the trigger that corresponds to the command is activated.

Triggers enable you to:

• Implement referential integrity constraints, such as ensuring that a foreign key value matches an existing
primary key value.

• Prevent users from making incorrect or inconsistent data changes by ensuring that intended modifications
do not compromise a database's integrity.

• Take action based on the value of a row before or after modification.

• Transfer much of the logic processing to the backend, reducing the amount of work that your application
needs to do as well as reducing network traffic.

76

4.5 Procedure Privileges

4.6.1 How Triggers Work

The order in which a data manipulation statement is executed when triggers are enabled is the key to under-
standing how triggers work in solidDB databases.

In solidDB's DML Execution Model, a solidDB server performs a number of validation checks before executing
data manipulation statements (INSERT, UPDATE, or DELETE). Following is the execution order for data
validation, trigger execution, and integrity constraint checking for a single DML statement.

1. Validate values if they are part of the statement (that is, not bound). This includes null value checking,
data type checking (such as numeric), etc.

2. Perform table level security checks.

3. Loop for each row affected by the SQL statement. For each row perform these actions in this order:

a. Perform column level security checks.

b. Fire BEFORE row trigger.

c. Validate values if they are bound in. This includes null value checks, data type checking, and size
checking (for example, checking if the character string is too long).

Note that size checking is performed even for values that are not bound.

d. Execute INSERT/UPDATE/DELETE

e. Fire AFTER ROW trigger

4. Commit statement

a. Perform concurrency conflict checks.

b. Perform checks for duplicate values.

c. Perform referential integrity checks on invoking DML.

Note

A trigger itself can cause the DML to be executed, which applies to the steps shown in the above
model.

77

4.6.1 How Triggers Work

4.6.2 Creating Triggers

Use the CREATE TRIGGER statement (described below) to create a trigger. You can disable an existing
trigger or all triggers defined on a table by using the ALTER TRIGGER statement. For details, read Sec-
tion 4.8.6, “Altering Trigger Attributes”. The ALTER TRIGGER statement causes a solidDB server to ignore
the trigger when an activating DML statement is issued. With this statement, you can also enable a trigger
that is currently inactive.

To drop a trigger from the system catalog, use DROP TRIGGER. For details, read Section 4.8.5, “Dropping
Triggers”.

CREATE TRIGGER Statement

The CREATE TRIGGER statement creates a trigger. To create a trigger you must be a DBA or owner of the
table on which the trigger is being defined. To create a trigger, provide the catalog, schema/owner and name
of the table on which a trigger is being defined. For an example of the CREATE TRIGGER statement, see
Section 4.8.4, “Trigger Example”.

The syntax of the CREATE TRIGGER statement is:

create_trigger ::=
CREATE TRIGGER trigger_name ON table_name time_of_operation
triggering_event [REFERENCING column_reference] trigger_body
where:
trigger_name ::= literal
table_name ::= literal
time_of_operation ::= BEFORE | AFTER
triggering_event :: = INSERT | UPDATE | DELETE
column_reference ::= {OLD | NEW} column_name [AS] col_identifier
 [, REFERENCING column_reference]

trigger_body ::= [declare_statement;...]trigger_statement;[trigger_statement;...]

old_column_name ::= literal
new_column_name ::= literal
old_col_identifier ::= literal
new_col_identifier ::= literal
new_col_identifier ::= literal

78

4.6.2 Creating Triggers

4.6.3 Keywords and Clauses

Following is a summary of keywords and clauses.

Trigger_name

The trigger_name can contain up to 254 characters.

BEFORE | AFTER Clause

The BEFORE | AFTER clause specifies whether to execute the trigger before or after the invoking DML
statement, which modifies data. In some circumstances, the BEFORE and AFTER clauses are interchangeable.
However, there are some situations where one clause is preferred over the other.

• It is more efficient to use the BEFORE clause when performing data validation, such as domain constraint
and referential integrity checking.

• When you use the AFTER clause, table rows which become available due to the invoking DML statement
are processed. Conversely, the AFTER clause also confirms data deletion after the invoking DELETE
statement.

You can define up to six triggers per table, one for each combination of table, event (INSERT, UPDATE,
DELETE), and time (BEFORE and AFTER). For example, you can define one trigger for each BEFORE and
AFTER clause, providing two triggers per DML operation. In addition, if you provide INSERT, UPDATE,
and DELETE triggers to these combinations, you have a total maximum of six triggers.

The following example shows trigger trig01 defined BEFORE INSERT ON table t1.

"CREATE TRIGGER TRIG01 ON T1
 BEFORE INSERT
 REFERENCING NEW COL1 AS NEW_COL1
BEGIN
 EXEC SQL PREPARE CUR1
 INSERT INTO T2 VALUES (?);
 EXEC SQL EXECUTE CUR1 USING (NEW_COL1);
END"

Following are examples (including implications and advantages) of using the BEFORE and AFTER clause
of the CREATE TRIGGER command for each DML operation:

• UPDATE Operation

79

4.6.3 Keywords and Clauses

The BEFORE clause can verify that modified data follows integrity constraint rules before processing the
UPDATE. If the REFERENCING NEW AS new_col_identifier clause is used with the BEFORE
UPDATE clause, then the updated values are available to the triggered SQL statements. In the trigger,
you can set the default column values or derived column values before performing an UPDATE.

The AFTER clause can perform operations on newly modified data. For example, after a branch address
update, the sales for the branch can be computed.

If the REFERENCING OLD AS old_col_identifier clause is used with the AFTER UPDATE
clause, then the values that existed prior to the invoking update are accessible to the triggered SQL state-
ments.

• INSERT Operation

The BEFORE clause can verify that new data follows integrity constraint rules before performing an IN-
SERT. Column values passed as parameters are visible to the triggered SQL statements but the inserted
rows are not. In the trigger, you can set default column values or derived column values before performing
an INSERT.

The AFTER clause can perform operations on newly inserted data. For example, after insertion of a sales
order, the total order can be computed to see if a customer is eligible for a discount.

Column values are passed as parameters and inserted rows are visible to the triggered SQL statements.

• DELETE Operation

The BEFORE clause can perform operations on data about to be deleted. Column values passed as para-
meters and inserted rows that are about to be deleted are visible to the triggered SQL statements.

The AFTER clause can be used to confirm the deletion of data. Column values passed as parameters are
visible to the triggered SQL statements. Please note that the deleted rows are visible to the triggering SQL
statement.

INSERT | UPDATE | DELETE Clause

The INSERT | UPDATE | DELETE clause indicates the trigger action when a user action (INSERT, UPDATE,
DELETE) is attempted.

Statements related to processing a trigger occur first before commits and autocommits from the invoking
DML (INSERT, UPDATE, DELETE) statements on tables. If a trigger body or a procedure called within the
trigger body attempts to execute a COMMIT or ROLLBACK, a solidDB server returns an appropriate run-
time error.

80

4.6.3 Keywords and Clauses

INSERT specifies that the trigger is activated by an INSERT on the table. Loading n rows of data is considered
as n inserts.

Note

There may be some performance impact if you try to load the data with triggers enabled. Depending
on your business need, you may want to disable the triggers before loading and enable them after
loading. For details, see Section 4.8.6, “Altering Trigger Attributes”.

DELETE specifies that the trigger is activated by a DELETE on the table.

UPDATE specifies that the trigger is activated by an UPDATE on the table. Note the following rules for using
the UPDATE clause:

• Within the REFERENCES clause of a trigger, a column may be referenced (aliased) no more than once
in the BEFORE sub-clause and once in the AFTER sub-clause. Also, if the column is referenced in both
the BEFORE and AFTER sub-clauses, the column's alias must be different in each sub-clause.

• A solidDB server allows for recursive update to the same table and does not prohibit recursive updates to
the same row.

A solidDB server does not detect situations where the actions of different triggers cause the same data to be
updated. For example, assume there are two update triggers (one that is a BEFORE trigger and one that is an
AFTER trigger) on table1. When an update is attempted on Table1, the two triggers are activated. Both triggers
call stored procedures which update the same column, Col3, of a second table, Table2. The first trigger updates
Table2.Col3 to 10 and the second trigger updates Table2.Col3 to 20.

Likewise, a solidDB server does not detect situations where the result of an UPDATE which activates a trigger
conflicts with the actions of the trigger itself. For example, consider the following SQL statement:

UPDATE t1 SET c1 = 20 WHERE c3 = 10;

If the trigger activated by this UPDATE then calls a procedure that contains the following SQL statement,
the procedure overwrites the result of the UPDATE that activated the trigger:

UPDATE t1 SET c1 = 17 WHERE c1 = 20;

Note

The above example can lead to recursive trigger execution, which you should try to avoid.

81

4.6.3 Keywords and Clauses

Table_name

The table_name is the name of the table on which the trigger is created. solidDB server allows you to drop
a table that has dependent triggers defined on it. When you drop a table all dependent objects including triggers
are dropped. Be aware that you may still get run-time errors. For example, assume you create two tables A
and B. If a procedure SP-B inserts data into table A, and table A is then dropped, a user will receive a run-
time error if table B has a trigger which invokes SP-B.

Trigger_body

The trigger_body contains the statement(s) to be executed when a trigger fires. The rules for defining
the body of a trigger are the same as the rules for defining the body of a stored procedure. Read Section 4.1,
“Stored Procedures” for details on creating a stored procedure body.

A trigger body may also invoke any procedure registered with a solidDB server. solidDB procedure invocation
rules follow standard procedure invocation practices.

You must explicitly check for business logic errors and raise an error.

REFERENCING Clause

This clause is optional when creating a trigger on an INSERT/UPDATE/DELETE operation. It provides a
way to reference the current column identifiers in the case of INSERT and DELETE operations, and both the
old column identifier and the new updated column identifier by aliasing the column(s) on which an UPDATE
operation occurs.

You must specify the OLD or NEW col_identifier to access it. A solidDB server does not provide
access to the col_identifier unless you define it using the REFERENCING subclause.

{OLD | NEW} column_name AS col_identifier

This subclause of the REFERENCING clause allow you to reference the values of columns both before and
after an UPDATE operation. It produces a set of old and new column values which can be passed to a stored
procedure; once passed, the procedure contains logic (for example, domain constraint checking) used to de-
termine these parameter values.

Use the OLD AS clause to alias the table's old identifier as it exists before the UPDATE. Use the NEW AS
clause to alias the table's new identifier as it exists after the UPDATE.

If you reference both the old and new values of the same column, you must use a different col_identifier.

Each column that is referenced as NEW or OLD should have a separate REFERENCING subclause.

82

4.6.3 Keywords and Clauses

The statement atomicity in a trigger is such that operations made in a trigger are visible to the subsequent
SQL statements inside the trigger. For example, if you execute an INSERT statement in a trigger and then
also perform a select in the same trigger, then the inserted row is visible.

In the case of AFTER trigger, an inserted row or an updated row is visible in the AFTER insert trigger, but
a deleted row cannot be seen for a select performed within the trigger. In the case of a BEFORE trigger, an
inserted or updated row is invisible within the trigger and a deleted row is visible. In the case of an UPDATE,
the pre-update values are available in a BEFORE trigger.

The table below summarizes the statement atomicity in a trigger, indicating whether the row is visible to the
SELECT statement in the trigger body.

Table 4.6. Statement Atomicity in a Trigger

AFTER TRIGGERBEFORE TRIGGEROperation

row is visiblerow is invisibleINSERT

new value is visibleprevious value is visibleUPDATE

row is invisiblerow is visibleDELETE

4.6.4 Triggers Comments and Restrictions

• To use the stored procedure that a trigger calls, provide the catalog, schema/owner and name of the table
on which the trigger is defined and specify whether to enable or disable the triggers on the table. For more
details on stored procedures, read Section 4.7, “Triggers and Procedures”.

• To create a trigger on a table, you must have DBA authority or be the owner of the table on which the
trigger is being defined.

• You can define, by default, up to one trigger for each combination of table, event (INSERT, UPDATE,
DELETE) and time (BEFORE and AFTER). This means there can be a maximum of six triggers per table.

Note

The triggers are applied to each row. This means that if there are ten inserts, a trigger is executed ten
times.

• You cannot define triggers on a view (even if the view is based on a single table).

• You cannot alter a table that has a trigger defined on it when the dependent columns are affected.

• You cannot create a trigger on a system table.

83

4.6.4 Triggers Comments and Restrictions

• You cannot execute triggers that reference dropped or altered objects. To prevent this error:

• Recreate any referenced object that you drop.

• Restore any referenced object you changed back to its original state (known by the trigger).

• You can use reserved words in trigger statements if they are enclosed in double quotes. For example, the
following CREATE TRIGGER statement references a column named "data", which is a reserved word.

"CREATE TRIGGER TRIG1 ON TMPT BEFORE INSERT
REFERENCING NEW "DATA" AS NEW_DATA
BEGIN
END"

4.7 Triggers and Procedures
Triggers can call stored procedures and cause a solidDB server to execute other triggers. You can invoke
procedures within a trigger body. In fact, you can define a trigger body that contains only procedure calls. A
procedure invoked from a trigger body can invoke other triggers.

When using stored procedures within the trigger body, you must first store the procedure with the CREATE
PROCEDURE statement.

In a procedure definition, you can use COMMIT and ROLLBACK statements. But in a trigger body, you
cannot use COMMIT (including AUTOCOMMIT and COMMIT WORK) and ROLLBACK statements. You
can use only the WHENEVER SQLERROR ABORT statement.

You can nest triggers up to 16 levels deep (the limit can be changed using a configuration parameter). If a
trigger gets into an infinite loop, a solidDB server detects this recursive action when the 16-level nesting (or
system parameter) maximum is reached and returns an error to the user. For example, you could activate a
trigger by attempting to insert into the table T1 and the trigger could call a stored procedure which also attempts
to insert into T1, recursively activating the trigger.

If a set of nested triggers fails at any time, a solidDB server rolls back the statement which originally activated
the triggers.

4.7.1 Setting Default or Derived Columns

You can create triggers to set up default or derived column values in INSERT and UPDATE operations. When
you create the trigger for this purpose using the CREATE TRIGGER command, the trigger must follow these
rules:

84

4.7 Triggers and Procedures

• The trigger must be executed BEFORE the INSERT or UPDATE operation. Column values are modified
with only a BEFORE trigger. Because the column value must be set before the INSERT or UPDATE
operation, using the AFTER trigger to set column values is meaningless. Note also that the DELETE op-
eration does not apply to modifying column values.

• For an INSERT and UPDATE operation, the REFERENCING clause must contain a NEW column value
for modification. Note that modifying the OLD column value is meaningless.

• New column values can be set by simply changing the values of variables defined in the referencing section.

4.7.2 Using Parameters and Variables

When we update a record and that update invokes a trigger, the trigger itself may change the value of some
columns within that record. In some situations, you may want to refer to both the "old" value and the "new"
value within the trigger.

The REFERENCING clause allows you to create "aliases" for old and new values so that you can refer to
either one within the same trigger. For example, assume there are two tables, one that holds customer inform-
ation and one that holds invoice information. In addition to storing the amount of money billed for each invoice,
the table contains a "total_bought" field for each customer; this "total_bought" field contains the cumulative
total for all invoices ever sent to this customer. (This field might be used to identify high-volume customers.)

Any time the total_amount on an invoice is updated, the "total_bought" value for that customer's record in
the customer table is also updated. To do this, the amount of the old value stored in the invoice is subtracted
and the amount of the new value in the invoice is added. For example, if a customer's invoice used to be for
$100 and it is changed to $150, then $100 is subtracted and $150 is added to the "total_bought" field. By
properly using the REFERENCING clause, the trigger can "see" both the old value and the price column,
thereby allowing the update of the total_bought column.

Note that the column aliases created by the REFERENCING clause are valid only within the trigger. Let's
look at a pseudo-code example below:

CREATE TRIGGER pseudo_code_to_add_tax ON invoices
 AFTER UPDATE
 REFERENCING OLD total_price AS old_total_price,
 REFERENCING NEW total_price AS new_total_price
 BEGIN
 EXEC SQL PREPARE update_cursor
 UPDATE customers
 SET total_bought = total_bought - old_total_price

85

4.7.2 Using Parameters and Variables

 + new_total_price;
 END

This example is "pseudo-code"; a real trigger would require some changes and additions (such as code to
execute, close, and drop the cursor). A complete, valid SQL script for this example is provided below.

Example 4.1. Trigger with Referencing Clause Example

-- This SQL sample demonstrates how to use the clause
-- "REFERENCING OLD AS old_col, REFERENCING NEW AS new_col"
-- to have simultaneous access to both the "OLD" and "NEW"
-- column values of the field while inside a trigger.
-- In this scenario, we have customers and invoices.
-- For each customer, we keep track of the cumulative total of
-- all purchases by that customer.
-- Each invoice stores the total amount of all purchases on
-- that invoice. If an total price on an invoice must be
-- adjusted, then the cumulative value of that customer's
-- purchases must also be adjusted.
-- Therefore, we update the cumulative total by subtracting
-- the "old" price on the invoice and adding the "new" price.
-- For example, if the amount on a customer's invoice was
-- changed from $100 to $150 (an increase of $50), then we
-- would update the customer's cumulative total by
-- subtracting $100 and adding $150 (a net increase of $50).
-- Drop the sample tables if they already exist.
DROP TABLE customers;
DROP TABLE invoices;
CREATE TABLE customers (
 customer_id INTEGER, -- ID for each customer.
 total_bought FLOAT -- The cumulative total price of
 -- all this customer's purchases.
);
-- Each customer may have 0 or more invoices.
CREATE TABLE invoices (
 customer_id INTEGER,
 invoice_id INTEGER, -- unique ID for each invoice
 invoice_total FLOAT -- total price for this invoice
);
-- If the total_price on an invoice changes, then
-- update customers.total_bought to take into account

86

4.7.2 Using Parameters and Variables

-- the change. Subtract the old invoice price and add the
-- new invoice price.
"CREATE TRIGGER old_and_new ON invoices
 AFTER UPDATE
 REFERENCING OLD invoice_total AS old_invoice_total,
 REFERENCING NEW invoice_total AS new_invoice_total,
 -- If the customer_id doesn't change, we could use
 -- either the NEW or OLD customer_id.
 REFERENCING NEW customer_id AS new_customer_id
 BEGIN
 EXEC SQL PREPARE upd_curs
 UPDATE customers
 SET total_bought = total_bought - ? + ?
 WHERE customers.customer_id = ?;
 EXEC SQL EXECUTE upd_curs
 USING (old_invoice_total, new_invoice_total,
 new_customer_id);
 EXEC SQL CLOSE upd_curs;
 EXEC SQL DROP upd_curs;
 END";
-- When a new invoice is created, we update the total_bought
-- in the customers table.
"CREATE TRIGGER update_total_bought ON invoices
 AFTER INSERT
 REFERENCING NEW invoice_total AS new_invoice_total,
 REFERENCING NEW customer_id AS new_customer_id
 BEGIN
 EXEC SQL PREPARE ins_curs
 UPDATE customers
 SET total_bought = total_bought + ?
 WHERE customers.customer_id = ?;
 EXEC SQL EXECUTE ins_curs
 USING (new_invoice_total, new_customer_id);
 EXEC SQL CLOSE ins_curs;
 EXEC SQL DROP ins_curs;
 END";
-- Insert a sample customer.
INSERT INTO customers (customer_id, total_bought)
 VALUES (1000, 0.0);
-- Insert invoices for a customer; the INSERT trigger will
-- update the total_bought in the customers table.
INSERT INTO invoices (customer_id, invoice_id, invoice_total)

87

4.7.2 Using Parameters and Variables

 VALUES (1000, 5555, 234.00);
INSERT INTO invoices (customer_id, invoice_id, invoice_total)
 VALUES (1000, 5789, 199.0);
-- Make sure that the INSERT trigger worked.
SELECT * FROM customers;
-- Now update an invoice; the total_bought in the customers
-- table will also be updated and the trigger that does
-- this will use the REFERENCING clauses
-- REFERENCING NEW invoice_total AS new_invoice_total,
-- REFERENCING OLD invoice_total AS old_invoice_total
UPDATE invoices SET invoice_total = 235.00
 WHERE invoice_id = 5555;
-- Make sure that the UPDATE trigger worked.
SELECT * FROM customers;
COMMIT WORK;

4.8 Triggers and Transactions
Triggers require no commit from the invoking transaction in order to fire; DML statements alone cause triggers
to fire. COMMIT WORK is also disallowed in a trigger body.

In a procedure definition, you can use COMMIT and ROLLBACK statements. But in a trigger body, you
cannot use COMMIT and ROLLBACK statements. You can use only the WHENEVER SQLERROR ABORT
statement. Note that if autocommit is on, then each statement inside the trigger is not treated as a separate
statement and is not committed when it is executed; instead, the entire trigger body is executed as part of the
INSERT, UPDATE, or DELETE statement that fired the trigger. Either the entire trigger (and the statement
that fired it) is committed, or else the entire trigger (and the statement that fired it) is rolled back.

4.8.1 Recursion and Concurrency Conflict Errors

If a DML statement updates/deletes a row that causes a trigger to be fired, you cannot update/delete the same
row again within that trigger. In such cases an AFTER trigger event can cause a recursion error and a BEFORE
trigger event can cause a concurrency conflict error.

The following sections explain these terms, provide some examples of triggers that create these problems,
and provide a table (shown in the section called “Summary of Trigger Cases”), that indicates the trigger
situations that will and will not cause recursion errors or concurrency conflict errors.

88

4.8 Triggers and Transactions

Triggers and Recursion

A piece of code is "recursive" if the code causes itself to execute again. For example, a stored procedure that
calls itself is recursive. Recursion in stored procedures is occasionally useful. On the other hand, triggers can
create a slightly more subtle type of recursion, which is invalid and prohibited by the solidDB server. A trigger
that contains a statement that causes the same trigger to execute again on the same record is recursive. For
example, a delete trigger would be recursive if it tries to delete the same record whose deletion fired the trigger.

If the database server were to allow recursion in triggers, then the server might go into an "infinite loop" and
never finish executing the statement that fired the trigger. A concurrency conflict error occurs when a trigger
executes an operation that "competes with" the statement that fired the trigger by trying to do the same type
of action (for example, delete) within the same SQL statement. For example, if you create a trigger that is
supposed to be fired when a record is deleted, and if that trigger tries to delete the same record whose deletion
fired the trigger, then there are in essence two different "simultaneous" delete statements "competing" to delete
the record; this results in a concurrency conflict. The following section provides an example of a defective
delete trigger.

Examples of Defective Triggers Causing Recursion

The examples in this section explain just a few of the many restrictions and rules involving triggers.

In this scenario, an employee has resigned from a job and his or her medical coverage requires cancellation.
The medical coverage also requires cancellation for the employee's dependents. A business rule for this situation
is implemented by creating a trigger; the trigger is executed when an employee's record is deleted and the
statements inside the trigger then delete the employee's dependents. (This example assumes that the employees
and their dependents are stored in the same table; in the real world, dependents are normally kept in a separate
table. This example also assumes that each family has a unique last name.)

CREATE TRIGGER do_not_try_this ON employees_and_dependents
 AFTER DELETE
 REFERENCING OLD last_name AS old_last_name
 BEGIN
 EXEC SQL PREPARE del_cursor
 DELETE FROM employees_and_dependents
 WHERE last_name = ?;
 EXEC SQL EXECUTE del_cursor USING (old_last_name);
 -- ... close and drop the cursor.
 END;

Assume that an employee "John Smith" resigns and his medical coverage is deleted. When you delete "John
Smith", the trigger is invoked immediately after John Smith is deleted and the trigger will try to delete ALL

89

4.8.1 Recursion and Concurrency Conflict Errors

people named "John Smith", including not only the employee's dependents, but also the employee himself,
since his name meets the criteria in the WHERE clause.

Every time an attempt is made to delete the employee's record, this action fires the trigger again. The code
then recursively keeps trying to delete the employee by again firing the trigger, and again trying to delete. If
the database server did not prohibit this or detect the situation, the server could go into an infinite loop. If the
server detects this situation, it will give you an appropriate error, such as "Too many nested triggers."

A similar situation can happen with UPDATE. Assume that a trigger adds sales tax every time that a record
is updated. Here's an example that causes a recursion error:

CREATE TRIGGER do_not_do_this_either ON invoice
 AFTER UPDATE
 REFERENCING NEW total_price AS new_total_price
 BEGIN
 -- Add 8% sales tax.
 EXEC SQL PREPARE upd_curs1
 UPDATE invoice SET total_price = 1.08 * total_price
 WHERE ...;
 -- ... execute, close, and drop the cursor...
 END;

In this scenario, customer Ann Jones calls up to change her order; the new price (with sales tax) is calculated
by multiplying the new subtotal by 1.08. The record is updated with the new total price; each time the record
is updated, the trigger is fired, so updating the record once, causes the trigger to update it again and updates
are repeated in an infinite loop.

If AFTER triggers can cause recursion or looping, what happens with BEFORE triggers? The answer is that,
in some cases, BEFORE triggers can cause concurrency problems. Let's return to the first example of the
trigger that deleted medical coverage for employees and their dependents. If the trigger were a BEFORE
trigger (rather than an AFTER trigger), then just before the employee is deleted, we would execute the trigger,
which in this case deletes everyone named John Smith. After the trigger is executed, the engine resumes its
original task of dropping employee John Smith himself, but the server finds either he isn't there or that his
record cannot be deleted because it has already been marked for deletion — in other words, there is a concur-
rency conflict because there are two separate efforts to delete the same record.

Summary of Trigger Cases

In addition to the examples described in the previous section, the following table summarizes a number of
additional cases, including those involving INSERTs, as well as UPDATEs and DELETEs.

The table is divided into the following five columns:

90

4.8.1 Recursion and Concurrency Conflict Errors

• Trigger Mode (that is, BEFORE or AFTER)

• Operation (INSERT, DELETE, or UPDATE)

• Trigger Action (what the trigger itself attempts to do, such as update the record that was just inserted)

• Lock Type ("optimistic" or "pessimistic")

• Result that you will see (for example, that the trigger action was successful, or that the trigger failed for
a reason such as a recursion error like the one discussed in the previous section).

For details on interpreting a trigger entry in this table, see Example Entry 1 later in this chapter.

Table 4.7. Insert/Update/Delete Operations for BEFORE/AFTER Triggers

ResultLock TypeTrigger ActionOperationTrigger
Mode

Record is updated.OptimisticUPDATE the
same row by

INSERTAFTER

adding a number
to the value

Record is updated.PessimisticUPDATE the
same row by

INSERTAFTER

adding a number
to the value

Record is not updated since the WHERE con-
dition of the UPDATE within the trigger body

OptimisticUPDATE the
same row by

INSERTBEFORE

returns a NULL resultset (as the desired row
is not yet inserted in the table).

adding a number
to the value

Record is not updated since the WHERE con-
dition of the UPDATE within the trigger body

PessimisticUPDATE the
same row by

INSERTBEFORE

returns a NULL resultset (as the desired row
is not yet inserted in the table).

adding a number
to the value

Record is deleted.OptimisticDELETE the
same row that is
being inserted

INSERTAFTER

Record is deleted.PessimisticDELETE the
same row that is
being inserted

INSERTAFTER

91

4.8.1 Recursion and Concurrency Conflict Errors

ResultLock TypeTrigger ActionOperationTrigger
Mode

Record is not deleted since the WHERE condi-
tion of the DELETE within the trigger body

OptimisticDELETE the
same row that is
being inserted

INSERTBEFORE

returns a NULL resultset (as the desired row
is not yet inserted in the table).

Record is not updated since the WHERE con-
dition of the UPDATE within the trigger body

PessimisticDELETE the
same row that is
being inserted

INSERTBEFORE

returns a NULL resultset (as the desired row
is not yet inserted in the table).

Too many nested triggers.OptimisticINSERT a rowINSERTAFTER

Too many nested triggers.PessimisticINSERT a rowINSERTAFTER

Too many nested triggers.OptimisticINSERT a rowINSERTBEFORE

Too many nested triggers.PessimisticINSERT a rowINSERTBEFORE

Generates Solid Table Error: Too many nested
triggers.

OptimisticUPDATE the
same row by

UPDATEAFTER

adding a number
to the value

Generates Solid Table Error: Too many nested
triggers.

PessimisticUPDATE the
same row by

UPDATEAFTER

adding a number
to the value

Record is updated, but does not get into a nes-
ted loop because the WHERE condition in the

OptimisticUPDATE the
same row by

UPDATEBEFORE

trigger body returns a NULL resultset and no
rows are updated to fire the trigger recursively.

adding a number
to the value.

Record is updated, but does not get into a nes-
ted loop because the WHERE condition in the

PessimisticUPDATE the
same row by

UPDATEBEFORE

trigger body returns a NULL resultset and no
rows are updated to fire the trigger recursively.

adding a number
to the value.

Record is deleted.OptimisticDELETE the
same row that is
being updated.

UPDATEAFTER

Record is deleted.PessimisticDELETE the
same row that is
being updated.

UPDATEAFTER

92

4.8.1 Recursion and Concurrency Conflict Errors

ResultLock TypeTrigger ActionOperationTrigger
Mode

Concurrency conflict error.OptimisticDELETE the
same row that is
being updated.

UPDATEBEFORE

Concurrency conflict error.PessimisticDELETE the
same row that is
being updated.

UPDATEBEFORE

Same record is inserted after deleting.OptimisticINSERT a row
with the same
value.

DELETEAFTER

Hangs at the time of firing the trigger.PessimisticINSERT a row
with the same
value.

DELETEAFTER

Same record is inserted after deletingOptimisticINSERT a row
with the same
value.

DELETEBEFORE

Hangs at the time of firing the trigger.PessimisticINSERT a row
with the same
value.

DELETEBEFORE

Record is deleted.OptimisticINSERT a row
with the same
value.

DELETEAFTER

Record is deleted.PessimisticUPDATE the
same row by

DELETEAFTER

adding a number
to the value.

Record is deleted.OptimisticUPDATE the
same row by

DELETEBEFORE

adding a number
to the value.

Record is deleted.PessimisticUPDATE the
same row by

DELETEBEFORE

adding a number
to the value

Too many nested triggers.OptimisticDELETE same
row

DELETEAFTER

93

4.8.1 Recursion and Concurrency Conflict Errors

ResultLock TypeTrigger ActionOperationTrigger
Mode

Too many nested triggersPessimisticDELETE same
record

DELETEAFTER

Concurrency conflict error.OptimisticDELETE same
record

DELETEBEFORE

Concurrency conflict error.PessimisticDELETE same
record

DELETEBEFORE

Here's an example entry from the table and an explanation of that entry:

Table 4.8. Example Entry 1

ResultLock TypeTrigger ActionOperationTrigger

Record is updated.OptimisticUPDATE the
same row by

INSERTAFTER

adding a number
to the value

In this situation, we have a trigger that fires AFTER an INSERT operation is done. The body of the trigger
contains statements that update the same row as was inserted (that is, the same row as the one that fired the
trigger). If the lock type is "optimistic", then the result will be that the record gets updated. (Because there is
no conflict, the locking [optimistic versus pessimistic] does not make a difference).

Note that in this case there is no recursion issue, even though we update the same row that we just inserted.
The action that "fires" the trigger is not the same as the action taken inside the trigger, and so we do not create
a recursive/looping situation.

Here's another example from the table:

Table 4.9. Example Entry 2

ResultLock TypeTrigger ActionOperationTrigger

Record is not updated since the WHERE con-
dition of the UPDATE within the trigger body

OptimisticUPDATE the
same row by

INSERTBEFORE

returns a NULL resultset (as the desired row
is not yet inserted in the table).

adding a number
to the value

In this case, we try to insert a record, but before the insertion takes place the trigger is run. In this case, the
trigger tries to update the record (for example, to add sales tax to it). Since the record is not yet inserted,

94

4.8.1 Recursion and Concurrency Conflict Errors

however, the UPDATE command inside the trigger does not find the record, and never adds the sales tax.
Thus the result is the same as if the trigger had never fired. There is no error message, so you may not realize
immediately that your trigger does not do what you intended.

Flawed Trigger

Flawed trigger logic occurs in the following example in which the same row is deleted in a BEFORE UPDATE
trigger; this causes solidDB to generate a concurrency conflict error.

Example 4.2. Flawed Trigger

DROP EMP;
COMMIT WORK;

CREATE TABLE EMP(C1 INTEGER);
INSERT INTO EMP VALUES (1);
COMMIT WORK;

"CREATE TRIGGER TRIG1 ON EMP
 BEFORE UPDATE
 REFERENCING OLD C1 AS OLD_C1
BEGIN
 EXEC SQL WHENEVER SQLERROR ABORT;
 EXEC SQL PREPARE CUR1 DELETE FROM EMP WHERE C1 = ?;
 EXEC SQL EXECUTE CUR1 USING (OLD_C1);
 END";

UPDATE EMP SET C1=200 WHERE C1 = 1;
SELECT * FROM EMP;

ROLLBACK WORK;

Note

If the row that is updated/deleted were based on a unique key, instead of an ordinary column (as in
the example above), solidDB generates the following error message: 1001: key value not found.

To avoid recursion and concurrency conflict errors, be sure to check the application logic and take precautions
to ensure the application does not cause two transactions to update or delete the same row.

95

4.8.1 Recursion and Concurrency Conflict Errors

Error Handling

If a procedure returns an error to a trigger, the trigger causes its invoking DML command to fail with an error.
To automatically return errors during the execution of a DML statement, you must use WHENEVER
SQLERROR ABORT statement in the trigger body. Otherwise, errors must be checked explicitly within the
trigger body after each procedure call or SQL statement.

For any errors in the user written business logic as part of the trigger body, users must use the RETURN
SQLERROR statement. For details, see Section 4.8.3, “Raising Errors from Inside Triggers”.

If RETURN SQLERROR is not specified, then the system returns a default error message when the SQL
statement execution fails. Any changes to the database due to the current DML statement are undone and the
transaction is still active. In effect, transactions are not rolled back if a trigger execution fails, but the current
executing statement is rolled back.

Note

Triggered SQL statements are a part of the invoking transaction. If the invoking DML statement fails
due to either the trigger or another error that is generated outside the trigger, all SQL statements
within the trigger are rolled back along with the failed invoking DML command.

It is the responsibility of the invoking transaction to commit or rollback any DML statements executed within
the trigger's procedure. However, this rule does not apply if the DML command invoking the trigger fails as
a result of the associated trigger. In this case, any DML statements executed within that trigger's procedure
are automatically rolled back.

The COMMIT and ROLLBACK statements must be executed outside the trigger body and cannot be executed
within the trigger body. If one executes COMMIT or ROLLBACK within the trigger body or within a procedure
called from the trigger body or another trigger, the user will get a run-time error.

Nested and Recursive Triggers

If a trigger gets into an infinite loop, a solidDB server detects this recursive action when the 16-level nesting
(or MaxNestedTriggers system parameter maximum is reached). For example, an insert attempt on table
T1 activates a trigger and the trigger could call a stored procedure which also attempts to insert into Table
T1, recursively activating the trigger. A solidDB server returns an error on a user's insert attempt.

If a set of nested triggers fails at any time, a solidDB server rolls back the command which originally activated
the triggers.

96

4.8.1 Recursion and Concurrency Conflict Errors

4.8.2 Trigger Privileges and Security

Because triggers can be activated by a user's attempt to INSERT, UPDATE, or DELETE data, no privileges
are required to execute them.

When a user invokes a trigger, the user assumes the privileges of the owner of the table on which the trigger
is defined. The action statements are executed on behalf of the table owner, not the user who activates the
trigger. However, to create a trigger which uses a stored procedure requires that the creator of the trigger meet
one of the following conditions:

• You have DBA privileges.

• You are the owner of the table on which the trigger is being defined.

• You were granted all privileges on the table.

If the creator has DBA authority and creates a table for another user, a solidDB server assumes that unqualified
names specified in the TRIGGER command belong to the user. For example, the following command is ex-
ecuted under DBA authority:

CREATE TRIGGER A.TRIG ON EMP BEFORE UPDATE

Since the EMP table is unqualified, the solidDB server assumes that the qualified table name is A.EMP, not
DBA.EMP.

4.8.3 Raising Errors from Inside Triggers

At times, it is possible to receive an error in executing a trigger. The error may be due to execution of SQL
statements or business logic.

Users can receive any errors in a procedure variable using the SQL statement:

RETURN SQLERROR error_string

or

RETURN SQLERROR char_variable

The error is returned in the following format:

97

4.8.2 Trigger Privileges and Security

User error: error_string

If a user does not specify the RETURN SQLERROR statement in the trigger body, then all trapped SQL errors
are raised with a default error_string determined by the system. For details, see the appendix, "Error Codes".

4.8.4 Trigger Example

Example 4.3. Trigger Example

This example shows how simple triggers work. It contains some triggers that work correctly and some triggers
that contain errors. For the successful triggers in the example, a table (named trigger_test) is created and six
triggers are created on that table. Each trigger, when fired, inserts a record into another table (named trig-
ger_output). After performing the DML statements (INSERT, UPDATE, and DELETE) that fire the triggers,
the results of the triggers are displayed by selecting all records from the trigger_output table.

DROP TABLE TRIGGER_TEST;
DROP TABLE TRIGGER_ERR_TEST;
DROP TABLE TRIGGER_ERR_B_TEST;
DROP TABLE TRIGGER_ERR_A_TEST;
DROP TABLE TRIGGER_OUTPUT;
COMMIT WORK;
-- Create a table that has a column for each of the possible trigger
-- types (for example, BI = a trigger that is on Insert
-- operations and that executes as a "Before" trigger).
CREATE TABLE TRIGGER_TEST(
 XX VARCHAR,
 BI VARCHAR, -- BI = Before Insert
 AI VARCHAR, -- AI = After Insert
 BU VARCHAR, -- BU = Before Update
 AU VARCHAR, -- AU = After Update
 BD VARCHAR, -- BD = Before Delete
 AD VARCHAR -- AD = After Delete
);
COMMIT WORK;

-- Table for 'before' trigger errors
CREATE TABLE TRIGGER_ERR_B_TEST(
 XX VARCHAR,
 BI VARCHAR,
 AI VARCHAR,

98

4.8.4 Trigger Example

 BU VARCHAR,
 AU VARCHAR,
 BD VARCHAR,
 AD VARCHAR
);

INSERT INTO TRIGGER_ERR_B_TEST VALUES('x','x','x','x','x',
 'x','x');
COMMIT WORK;

-- Table for 'after X' trigger errors
CREATE TABLE TRIGGER_ERR_A_TEST(
 XX VARCHAR,
 BI VARCHAR, -- Before Insert
 AI VARCHAR, -- After Insert
 BU VARCHAR, -- Before Update
 AU VARCHAR, -- After Update
 BD VARCHAR, -- Before Delete
 AD VARCHAR -- After Delete
);

INSERT INTO TRIGGER_ERR_A_TEST VALUES('x','x','x','x','x',
 'x','x');
COMMIT WORK;

CREATE TABLE TRIGGER_OUTPUT(
 TEXT VARCHAR,
 NAME VARCHAR,
 SCHEMA VARCHAR
);
COMMIT WORK;

--
-- Successful triggers
--
-- Create a "Before" trigger on insert operations. When a record is
-- inserted into the table named trigger_test, then this trigger is
-- fired. When this trigger is fired, it inserts a record into the
-- "trigger_output" table to show that the trigger actually executed.

"CREATE TRIGGER TRIGGER_BI ON TRIGGER_TEST
 BEFORE INSERT

99

4.8.4 Trigger Example

 REFERENCING NEW BI AS NEW_BI
BEGIN
 EXEC SQL PREPARE BI INSERT INTO TRIGGER_OUTPUT VALUES(
 'BI', TRIG_NAME(0), TRIG_SCHEMA(0));
 EXEC SQL EXECUTE BI;
 SET NEW_BI = 'TRIGGER_BI';
END";
COMMIT WORK;

"CREATE TRIGGER TRIGGER_AI ON TRIGGER_TEST
 AFTER INSERT
 REFERENCING NEW AI AS NEW_AI
BEGIN
 EXEC SQL PREPARE AI INSERT INTO TRIGGER_OUTPUT VALUES(
 'AI', TRIG_NAME(0), TRIG_SCHEMA(0));
 EXEC SQL EXECUTE AI;
 SET NEW_AI = 'TRIGGER_AI';
END";
COMMIT WORK;

"CREATE TRIGGER TRIGGER_BU ON TRIGGER_TEST
 BEFORE UPDATE
 REFERENCING NEW BU AS NEW_BU
BEGIN
 EXEC SQL PREPARE BU INSERT INTO TRIGGER_OUTPUT VALUES(
 'BU', TRIG_NAME(0), TRIG_SCHEMA(0));
 EXEC SQL EXECUTE BU;
 SET NEW_BU = 'TRIGGER_BU';
END";
COMMIT WORK;

"CREATE TRIGGER TRIGGER_AU ON TRIGGER_TEST
 AFTER UPDATE
 REFERENCING NEW AU AS NEW_AU
BEGIN
 EXEC SQL PREPARE AU INSERT INTO TRIGGER_OUTPUT VALUES(
 'AU', TRIG_NAME(0), TRIG_SCHEMA(0));
 EXEC SQL EXECUTE AU;
 SET NEW_AU = 'TRIGGER_AU';
END";
COMMIT WORK;

100

4.8.4 Trigger Example

"CREATE TRIGGER TRIGGER_BD ON TRIGGER_TEST
 BEFORE DELETE
 REFERENCING OLD BD AS OLD_BD
BEGIN
 EXEC SQL PREPARE BD INSERT INTO TRIGGER_OUTPUT VALUES(
 'BD', TRIG_NAME(0), TRIG_SCHEMA(0));
 EXEC SQL EXECUTE BD;
 SET OLD_BD = 'TRIGGER_BD';
END";
COMMIT WORK;

"CREATE TRIGGER TRIGGER_AD ON TRIGGER_TEST
 AFTER DELETE
 REFERENCING OLD AD AS OLD_AD
BEGIN
 EXEC SQL PREPARE AD INSERT INTO TRIGGER_OUTPUT VALUES(
 'AD', TRIG_NAME(0), TRIG_SCHEMA(0));
 EXEC SQL EXECUTE AD;
 SET OLD_AD = 'TRIGGER_AD';
END";
COMMIT WORK;

-- This attempt to create a trigger will fail. The statement
-- specifies the wrong data type for the error variable named
-- ERRSTR.

"CREATE TRIGGER TRIGGER_ERR_AU ON TRIGGER_ERR_A_TEST
 AFTER UPDATE
 REFERENCING NEW AU AS NEW_AU
BEGIN
 -- The following line is incorrect; ERRSTR must be declared
 -- as VARCHAR, not INTEGER;
 DECLARE ERRSTR INTEGER;
 -- ...
 RETURN SQLERROR ERRSTR;
END";
COMMIT WORK;

-- Trigger that returns an error message.

101

4.8.4 Trigger Example

"CREATE TRIGGER TRIGGER_ERR_BI ON TRIGGER_ERR_B_TEST
 BEFORE INSERT
 REFERENCING NEW BI AS NEW_BI
BEGIN
 -- ...
 RETURN SQLERROR 'Error in TRIGGER_ERR_BI';
END";
COMMIT WORK;

-- Success trigger tests. These Insert, Update, and Delete
-- statements will force the triggers to fire. The SELECT
-- statements will show you the records in the trigger_test and
-- trigger_output tables.

INSERT INTO TRIGGER_TEST(XX) VALUES ('XX');
COMMIT WORK;

-- Show the records that were inserted into the trigger_test
-- table. (The records for trigger_output are shown later.)

SELECT * FROM TRIGGER_TEST;
COMMIT WORK;

UPDATE TRIGGER_TEST SET XX = 'XX updated';
COMMIT WORK;

-- Show the records that were inserted into the trigger_test
-- table. (The records for trigger_output are shown later.)

SELECT * FROM TRIGGER_TEST;
COMMIT WORK;

DELETE FROM TRIGGER_TEST;
COMMIT WORK;

SELECT * FROM TRIGGER_TEST;

-- Show that the triggers did run and did add values to the

102

4.8.4 Trigger Example

-- trigger_output table. You should see 6 records one for
-- each of the triggers that executed. The 6 triggers are:
-- BI, AI, BU, AU, BD, AD.

SELECT * FROM TRIGGER_OUTPUT;
COMMIT WORK;

-- Error trigger test

INSERT INTO TRIGGER_ERR_B_TEST(XX) VALUES ('XX');
COMMIT WORK;

4.8.5 Dropping Triggers

To drop a trigger defined on a table, use the DROP TRIGGER command. This command drops the trigger
from the system catalog.

You must be the owner of a table, or a user with DBA authority, to drop a trigger from the table.

The syntax is:

DROP TRIGGER [[catalog_name.]schema_name.]trigger_name
DROP TRIGGER trigger_name
DROP TRIGGER schema_name.trigger_name
DROP TRIGGER catalog_name.schema_name.trigger_name

The trigger_name is the name of the trigger on which the table is defined.

If the trigger is part of a schema, indicate the schema name as in:

schema_name.trigger_name

If the trigger is part of a catalog, indicate the catalog name as in:

catalog_name.schema_name.trigger_name

103

4.8.5 Dropping Triggers

Example 4.4. Dropping and Recreating a Trigger

DROP TRIGGER TRIGGER_BI;
COMMIT WORK;

"CREATE TRIGGER TRIGGER_BI ON TRIGGER_TEST
 BEFORE INSERT
 REFERENCING NEW BI AS NEW_BI
BEGIN
 EXEC SQL PREPARE BI INSERT INTO TRIGGER_OUTPUT VALUES(
 'BI_NEW', TRIG_NAME(0), TRIG_SCHEMA(0));
 EXEC SQL EXECUTE BI;
 SET NEW_BI = 'TRIGGER_BI_NEW';
END";
COMMIT WORK;

INSERT INTO TRIGGER_TEST(XX) VALUES ('XX');
COMMIT WORK;

SELECT * FROM TRIGGER_TEST;
SELECT * FROM TRIGGER_OUTPUT;
COMMIT WORK;

4.8.6 Altering Trigger Attributes

You can alter trigger attributes using the ALTER TRIGGER command. The valid attributes are ENABLED
and DISABLED trigger.

The ALTER TRIGGER SET DISABLED command causes a solidDB server to ignore the trigger when an
activating DML statement is issued. With ALTER TRIGGER SET ENABLED statement, you can enable a
trigger that is currently inactive.

You must be the owner of a table, or a user with DBA authority to alter a trigger from the table.

alter_trigger ::=
 ALTER TRIGGER trigger_name_att SET ENABLED | DISABLED
trigger_name_attr ::= [catalog_name.[schema_name]]trigger_name

For example:

104

4.8.6 Altering Trigger Attributes

ALTER TRIGGER trig_on_employee SET ENABLED;

4.8.7 Obtaining Trigger Information

You obtain trigger information by using trigger functions that return specific information and performing a
query on the trigger system table. Each of these sources is described in this section.

4.8.8 Trigger Functions

The following system supported triggers stack functions are useful for analyzing and debugging purposes.

Note

The trigger stack refer to those triggers that are cached, regardless of whether they are executed or
detected for execution. Trigger stack functions can be used in the application program like any other
function.

The functions are:

• TRIG_COUNT()

This function returns the number of triggers in the trigger stack, including the current trigger. The return
value is an integer.

• TRIG_NAME(n)

This function returns the nth trigger name in the trigger stack. The first trigger position or offset is zero.

• TRIG_SCHEMA(n)

This function returns the nth trigger schema name in the trigger stack. The first trigger position or offset
is zero. The return value is a string.

4.8.9 SYS_TRIGGERS System Table

Triggers are stored in a system table called SYS_TRIGGERS. The following is the meta data for the
SYS_TRIGGERS system table:

105

4.8.7 Obtaining Trigger Information

Table 4.10. Meta Data for the SYS_TRIGGERS System Table

DescriptionData TypeColumn Name

unique table identifier (primary key)INTEGERID

trigger name (unique with schema)WVARCHARTRIGGER_NAME

trigger bodyLONG WVARCHARTRIGGER_TEXT

compiled form of the triggerLONG VARBINARYTRIGGER_BIN

the schema in which the trigger was
created

WVARCHARTRIGGER_SCHEMA

the catalog in which the trigger was
created

WVARCHARTRIGGER_CATALOG

the creation time of the triggerTIMESTAMPCREATIME

reserved for future useINTEGERTYPE

the relation id (unique with type)INTEGERREL_ID

'YES' if the trigger is enabled; 'NO'
if the trigger is disabled.

WVARCHARTRIGGER_ENABLED

4.8.10 Trigger Parameter Settings

Setting Nested Trigger Maximum

Triggers can invoke other triggers or a trigger can invoke itself (recursive trigger). The maximum number of
nested or recursive triggers can be configured by the MaxNestedTriggers system parameter in the SQL
section of solid.ini.

[SQL]
MaxNestedTriggers = n;

where n is the maximum number of nested triggers.

The default number for nested triggers is 16.

Setting the Trigger Cache

In a solidDB server, triggers are cached in a separate cache. Each user has a separate cache for triggers. As
the triggers are executed, the trigger procedure logic is cached in the trigger cache and is reused when the
trigger is executed again.

106

4.8.10 Trigger Parameter Settings

You can set the size of the trigger cache using the TriggerCache system parameter in the SQL section of
solid.ini.

[SQL]
TriggerCache = n;

where n is the number of triggers being reserved for the cache.

4.9 Deferred Procedure Calls
At the end of a committed transaction, you may want to perform a specific action. For example, if the trans-
action updated some data in a "master" publication, then you may want to notify a replica that the master data
was updated. solidDB allows the START AFTER COMMIT statement to specify an SQL statement that will
be executed when the current transaction is committed. The specified SQL statement is called the "body" of
the START AFTER COMMIT. The body is executed asynchronously in a separate connection.

For example, if you would like to call a stored procedure named my_proc() when the transaction commits,
then you would write:

START AFTER COMMIT NONUNIQUE CALL
 my_proc;

This statement may appear anywhere inside the transaction; it may be the first statement, the last statement,
or any statement in between. Regardless of where the START AFTER COMMIT statement itself appears
within the transaction, the "body" (the call to my_proc) will be executed only when the transaction is committed.
In the example above, we put the body on a separate line, but that is not required syntactically.

Because the body of the statement is not executed at the same time as the START AFTER COMMIT statement
itself, we say that there are two different phases to the START AFTER COMMIT command: the "definition"
phase and the "execution" phase. In the definition phase of START AFTER COMMIT, you specify the body
but don't execute it. The creation phase may occur anywhere inside a transaction; in other words, the statement
"START AFTER COMMIT ..." may be placed in any order relative to other SQL statements in the same
transaction.

In the execution phase, the body of the START AFTER COMMIT statement is actually executed. The execution
phase occurs when the COMMIT WORK statement for the transaction is executed. (It is also possible to execute
a START AFTER COMMIT in autocommit mode, but there is rarely a reason to do this.)

Below is an example that shows the use of a START AFTER COMMIT statement inside a transaction.

107

4.9 Deferred Procedure Calls

-- Any valid SQL statement(s)...
...
-- Creation phase. The function my_proc() is not actually called here.
START AFTER COMMIT NONUNIQUE CALL my_proc(x, y);
...
-- Any valid SQL statement(s)...

-- Execution phase: This ends the transaction and starts execution
-- of the call to my_proc().
COMMIT WORK;

A START AFTER COMMIT does not execute unless and until the transaction is successfully committed. If
the transaction containing the START AFTER COMMIT is rolled back, then the body of the START AFTER
COMMIT is not executed. If you want to propagate the updated data from a replica to a master, then this is
an advantage because you only want the data propagated if it is committed. If you were to use triggers to start
the propagation, the data would be propagated before it was committed.

The START AFTER COMMIT command applies only to the current transaction, i.e. the one that the START
AFTER COMMIT command was issued inside. It does not apply to subsequent transactions, or to any other
transactions that are currently open in other connections.

The START AFTER COMMIT command allows you to specify only one SQL statement to be executed when
the COMMIT occurs. However, that one SQL statement may be a call to a stored procedure, and that stored
procedure may have many statements, including calls to other stored procedures. Furthermore, you may have
more than one START AFTER COMMIT command per transaction. The body of each of these START
AFTER COMMIT statements will be executed when the transaction is committed. However, these bodies
will run independently and asynchronously; they will not necessarily execute in the same order as their cor-
responding START AFTER COMMIT statements, and they are likely to have overlapping execution (there
is no guarantee that one will finish before the next one starts).

A common use of START AFTER COMMIT is to help implement "Sync Pull Notify" ("Push Synchronization"),
which is discussed in solidDB SmartFlow Data Replication Guide.

If the body of your START AFTER COMMIT is a call to a stored procedure, that procedure may be local or
it may be remote on one remote replica (or master).

If you are using Sync Pull Notify, then you may want to call the same procedure on many replicas. To do
this, you must use a slightly indirect method. The simplest method is to write one local procedure that calls
many procedures on replicas. For example, if the body of the START AFTER COMMIT statement is "CALL
my_proc", then you could write my_proc to be similar to the following:

108

4.9 Deferred Procedure Calls

CREATE PROCEDURE my_proc
BEGIN
CALL update_inventory(x) AT replica1;
CALL update_inventory(x) AT replica2;
CALL update_inventory(x) AT replica3;
END;

This approach works fine if your list of replicas is static. However, if you expect to add new replicas in the
future, you may find it more convenient to update "groups" of replicas based on their properties. This allows
you to add new replicas with specific properties and then have existing stored procedures operate on those
new replicas. This is done by making use of two features: the FOR EACH REPLICA clause in START AFTER
COMMIT, and the DEFAULT clause in remote stored procedure calls.

If the FOR EACH REPLICA clause is used in START AFTER COMMIT, the statement will be executed
once for each replica that meets the conditions in the WHERE clause. Note that the statement is executed
once FOR each replica, not once ON each replica. If there is no "AT node-ref" clause in the CALL statement,
then the stored procedure is called locally, i.e. on the same server as the START AFTER COMMIT was ex-
ecuted on. To make sure that a stored procedure is called once ON each replica, you must use the DEFAULT
clause. The typical way to do this is to create a local stored procedure that contains a remote procedure calling
that uses the DEFAULT clause. For example, suppose that my_local_proc contains the following:

CALL update_sales_statistics AT DEFAULT;

and suppose that the START AFTER COMMIT statement is

START AFTER COMMIT FOR EACH REPLICA
WHERE region = 'north'
UNIQUE
CALL my_local_proc;

The WHERE clause is

WHERE region = 'north'

Therefore, for each replica that has the properties

region = 'north'

109

4.9 Deferred Procedure Calls

we will call the stored procedure named my_local_proc. That local procedure, in turn, executes

CALL update_sales_statistics() AT DEFAULT

The keyword DEFAULT is resolved as the name of the replica. Each time that my_local_proc is called from
inside the body of the START AFTER COMMIT, the DEFAULT keyword is the name of a different replica
that has the property "region = 'north'".

For more information about property/value pairs such as "region = 'north'", please see the solidDB SmartFlow
Data Replication Guide's discussion of Replica Property Names.

Note that it's possible that not all replicas will have a procedure named update_sales_statistics(). If this is the
case, then the procedure will only be executed on those replicas that have the procedure. (The master will not
send each replica a copy of the procedure; the master only calls existing procedures.)

Note also that it's possible that not all replicas that have a procedure named update_sales_statistics() will have
the SAME procedure. Each replica may have its own custom version of the procedure.

Naturally, before executing each statement on each replica, a connection to the replica is established.

When the START AFTER COMMIT command is used to call multiple replicas, this enables the use of the
optional keyword "DEFAULT" in the syntax of the CALL command. For example, suppose that you use the
following:

START AFTER COMMIT
 FOR EACH REPLICA
 WHERE location = 'India'
 UNIQUE CALL push;

Then in the local procedure 'push' you can use the keyword "DEFAULT", which acts as a variable that contains
the name of the replica in question.

CREATE PROCEDURE push
BEGIN
EXEC SQL EXECDIRECT CALL remoteproc AT DEFAULT;
END

Procedure 'push' will be called once for each replica that has a property named 'location' with value 'India'.
Each time the procedure is called, "DEFAULT" will be set to the name of that replica. Thus

110

4.9 Deferred Procedure Calls

CALL remoteproc AT DEFAULT;

will call the procedure on that particular replica.

You can set the replica properties in the master with the statement:

SET SYNC PROPERTY propname = 'value' FOR REPLICA replica_name;

for example

SET SYNC PROPERTY location = 'India' FOR REPLICA asia_hq;

For more details about the DEFAULT keyword, see the section titled "More on the DEFAULT keyword..."
below.

The statement specified in START AFTER COMMIT is executed as an independent transaction. It is not part
of the transaction that contained the START AFTER COMMIT command. This independent transaction is
run as though autocommit mode were on; in other words, you do not need an explicit COMMIT WORK to
commit the work done in this statement.

In other respects, however, the execution of the statement is not much like a transaction. First, there is no
guarantee that the statement will execute to completion. The statement is launched as an independent back-
ground task. If the server crashes, or if for some other reason the statement cannot be executed, then the
statement disappears without being completely executed.

Second, because the statement is executed as a background task, there is no mechanism for returning an error.
Third, there is no way to roll back the statement; if the statement execution is completed, the "transaction"
statement is autocommitted regardless of whether any errors were detected. (Note that if the statement is a
procedure call, then the procedure itself may contain COMMIT and ROLLBACK commands.)

You may use the "RETRY" clause to try executing the statement more than once if it fails. The RETRY clause
allows you to specify the number of times the server should attempt to retry the failed statement. You must
specify the number of seconds to wait between each retry.

If you do not use the RETRY clause, the server attempts only once execute the statement, then the statement
is discarded. If, for example, the statement tries to call a remote procedure, and if the remote server is down
(or cannot be contacted due to a network problem), then the statement will not be executed and you will not
get any error message.

Any statement, including the statement specified in a START AFTER COMMIT, executes in a certain "context".
The context includes such factors as the default catalog, the default schema, etc. For a statement executed

111

4.9 Deferred Procedure Calls

from within a START AFTER COMMIT, the statement's context is based on the context at the time that the
START AFTER COMMIT is executed, not on the context at the time of the COMMIT WORK that actually
causes the statement inside START AFTER COMMIT to run. In the example below, 'CALL FOO_PROC' is
executed in the catalog foo_cat and schema foo_schema, not bar_cat and bar_schema.

SET CATALOG FOO_CAT;
SET SCHEMA FOO_SCHEMA;
START AFTER COMMIT UNIQUE CALL FOO_PROC;
...
SET CATALOG BAR_CAT;
SET SCHEMA BAR_SCHEMA;
COMMIT WORK;

The UNIQUE/NONUNIQUE keywords determine whether the server tries to avoid issuing the same command
twice.

The UNIQUE keyword before <stmt> defines that the statement is executed only if there isn't identical
statement under execution or "pending" for execution. Statements are compared with simple string compare.
So for example 'call foo(1)' is different from 'call foo(2)'. Replicas are also taken into account in the compar-
ison; in other words, UNIQUE does not prevent the server from executing the same trigger call on different
replicas. Note that "unique" only blocks overlapping execution of statements; it does not prevent the same
statement from being executed again later if it is called again after the current invocation has finished running.

NONUNIQUE means that duplicate statements can be executed simultaneously in the background.

Examples: The following statements are all considered different and are thus executed even though each
contains the UNIQUE keyword. (Name is a unique property of replica.)

START AFTER COMMIT UNIQUE call myproc;
START AFTER COMMIT FOR EACH REPLICA WHERE name='R1' UNIQUE call myproc;
START AFTER COMMIT FOR EACH REPLICA WHERE name='R2' UNIQUE call myproc;
START AFTER COMMIT FOR EACH REPLICA WHERE name='R3' UNIQUE call myproc;

But if the following statement is executed in the same transaction as the previous ones and if some of the
replicas R1, R2, and R3 have the property "color='blue'", then the call is not executed for those replicas again.

START AFTER COMMIT FOR EACH REPLICA WHERE color='blue'
UNIQUE call myproc;

112

4.9 Deferred Procedure Calls

Note that uniqueness also does not prevent "automatic" execution from overlapping "manual" execution. For
example, if you manually execute a command to refresh from a particular publication, and if the master also
calls a remote stored procedure to refresh from that publication, the master won't "skip" the call because a
manual refresh is already running. Uniqueness applies only to statements started by START AFTER COMMIT.

The START AFTER COMMIT statement can be used inside a stored procedure. For example, suppose that
you want to post an event if and only if a transaction completed successfully. You could write a stored pro-
cedure that would execute a START AFTER COMMIT statement that would post the event if the transaction
was committed (but not if it was rolled back). Your code might look similar to the following:

This sample also contains an example of "receiving" and then using an event parameter. See the stored pro-
cedure named "wait_on_event_e" in script #1.

-- To run this demo properly, you will need two users/connections.
-- This demo contains 5 separate "scripts", which must be executed
-- in the order shown below:
-- User1 executes the first script.
-- User2 executes the second script.
-- User1 executes the third script.
-- User2 executes the fourth script.
-- User1 executes the fifth script.
-- You may notice that there are some COMMIT WORK statements
-- in surprising places. These are to ensure that each user sees the
-- most recent changes of the other user. Without the COMMIT WORK
-- statements, in some cases one user would see an out-of-date
-- "snapshot" of the database.
--
-- Please set autocommit off for both users/connections!

-------------------- SCRIPT 1 (USER 1) --------------------
CREATE EVENT e (i int);
CREATE TABLE table1 (a int);

-- This inserts a row into table1. The value inserted into the is copied
-- from the parameter to the procedure.
"CREATE PROCEDURE inserter(i integer)
BEGIN
EXEC SQL PREPARE c_inserter INSERT INTO table1 (a) VALUES (?);

113

4.9 Deferred Procedure Calls

EXEC SQL EXECUTE c_inserter USING (i);
EXEC SQL CLOSE c_inserter;
EXEC SQL DROP c_inserter;
END";

-- This posts the event named "e".
"CREATE PROCEDURE post_event(i integer)
BEGIN
POST EVENT e(i);
END";

-- This demonstrates the use of START AFTER COMMIT inside a
-- stored procedure. After you call this procedure and
-- call COMMIT WORK, the server will post the event.
"CREATE PROCEDURE sac_demo
BEGIN
DECLARE MyVar INT;
MyVar := 97;
EXEC SQL PREPARE c_sacdemo START AFTER COMMIT NONUNIQUE CALL
 post_event(?);
EXEC SQL EXECUTE c_sacdemo USING (MyVar);
EXEC SQL CLOSE c_sacdemo;
EXEC SQL DROP c_sacdemo;
END";

-- When user2 calls this procedure, the procedure will wait until
-- the event named "e" is posted, and then it will call the
-- stored procedure that inserts a record into table1.
"CREATE PROCEDURE wait_on_event_e
BEGIN
-- Declare the variable that will be used to hold the event parameter.
-- Although the parameter was declared when the event was created, you
-- still need to declare it as a variable in the procedure that receives
-- that event.
DECLARE i INT;
WAIT EVENT
 WHEN e (i) BEGIN
 -- After we receive the event, insert a row into the table.
 EXEC SQL PREPARE c_call_inserter CALL inserter(?);
 EXEC SQL EXECUTE c_call_inserter USING (i);
 EXEC SQL CLOSE c_call_inserter;
 EXEC SQL DROP c_call_inserter;

114

4.9 Deferred Procedure Calls

 END EVENT
END WAIT
END";

COMMIT WORK;

-------------------- SCRIPT 2 (USER 2) --------------------
-- Make sure that user2 sees the changes that user1 made.
COMMIT WORK;

-- Wait until user1 posts the event.
CALL wait_on_event_e;
-- Don't commit work again (yet).

-------------------- SCRIPT 3 (USER 1) --------------------
COMMIT WORK;

-- User2 should be waiting on event e, and should see the event after
-- we execute the stored procedure named sac_demo and then commit work.
-- Note that since START AFTER COMMIT statements are executed
-- asynchronously, there may be a slight delay between the COMMIT WORK
-- and the associated POST EVENT.
CALL sac_demo;
COMMIT WORK;

-------------------- SCRIPT 4 (USER 2) --------------------
-- Commit the INSERT that we did earlier when we called inserter()
-- after receiving the event.
COMMIT WORK;

--------------------SCRIPT 5 (USER 1) --------------------
-- Ensure that we see the data that user2 inserted.
COMMIT WORK;

-- Show the record that user2 inserted.
SELECT * FROM table1;

COMMIT WORK;

There are several important things that you should know about START AFTER COMMIT.

115

4.9 Deferred Procedure Calls

• When the body of the deferred procedure call (START AFTER COMMIT) is executed, it runs asynchron-
ously in the background. This allows the server to immediately start executing the next SQL command
in your program without waiting for the deferred procedure call statement to finish. It also means that you
do not have to wait for completion before disconnecting from the server. In most situations, this is an ad-
vantage. However, in a few situations this may be a disadvantage. For example, if the body of the deferred
procedure call locks records that are needed by subsequent SQL commands in your program, you may
not appreciate having the body of the deferred procedure call run in the background while your next SQL
command runs in the foreground and has to wait to access those same records. (For a way around this,
see below...)

• The statement to be executed will only be executed if the transaction is completed with a COMMIT, not
a ROLLBACK. If the entire transaction is explicitly rolled back, or if the transaction is aborted and thus
implicitly rolled back (due to a failed connection, for example), then the body of the START AFTER
COMMIT will not be executed.

• Although the transaction in which the deferred procedure call occurs can be rolled back (thus preventing
the body of the deferred procedure call from running), the body of the deferred procedure call cannot itself
be rolled back if it has executed. Because it runs asynchronously in the background, there is no mechanism
for cancelling or rolling back the body once it starts executing.

• The statement in the deferred procedure call is not guaranteed to run until completion or to be run as an
"atomic" transaction. For example, if your server crashes, then the statement will not resume executing
the next time that the server starts, and any actions that were completed before the server crashed may be
kept. To prevent inconsistent data in this type of situation, you must program carefully and make proper
use of features like referential constraints to ensure data integrity.

• If you execute a START AFTER COMMIT statement in autocommit mode, then the body of the START
AFTER COMMIT will be executed "immediately" (i.e. as soon as the START AFTER COMMIT is ex-
ecuted and automatically committed). At first, this might seem useless — why not just execute the body
of the START AFTER COMMIT directly? There are a few subtle differences, however. First, a direct
call to my_proc is synchronous; the server will not return control to you until the stored procedure has
finished executing. If you call my_proc as the body of a START AFTER COMMIT, however, then the
call is asynchronous; the server does not wait for the end of my_proc before allowing you to execute the
next SQL statement. In addition, because START AFTER COMMIT statements are not truly executed
"immediately" (i.e. at the time that the transaction is committed) but may instead be delayed briefly if the
server is busy, you might or might not actually start running your next SQL statement before my_proc
even starts executing. It is rare for this to be desirable behavior. However, if you truly want to launch an
asynchronous stored procedure that will run in the background while you continue onward with your
program, it is valid to do START AFTER COMMIT in autocommit mode.

116

4.9 Deferred Procedure Calls

• If more than one deferred procedure call was executed in the same transaction, then the bodies of all the
START AFTER COMMIT statements will run asynchronously. This means that they will not necessarily
run in the same order as you executed the START AFTER COMMIT statements within the transaction.

• The body of a START AFTER COMMIT must contain only one SQL statement. That one statement may
be a procedure call, however, and the procedure may contain multiple SQL statements, including other
procedure calls.

• The START AFTER COMMIT statement applies only to the transaction in which it is defined. If you
execute START AFTER COMMIT in the current transaction, the body of the deferred procedure call will
be executed only when the current transaction is committed; it will not be executed in subsequent transac-
tions, nor will it be executed for transactions done by any other connections. START AFTER COMMIT
statements do not create "persistent" behavior. If you would like the same body to be called at the end of
multiple transactions, then you will have to execute a "START AFTER COMMIT ... CALL my_proc"
statement in each of those transactions.

• The "result" of the execution of the body of the deferred procedure call (START AFTER COMMIT)
statement is not returned in any way to the connection that ran the deferred procedure call. For example,
if the body of the deferred procedure call returns a value that indicates whether an error occurred, that
value will be discarded.

• Almost any SQL statement may be used as the body of a START AFTER COMMIT statement. Although
calls to stored procedures are typical, you may also use UPDATE, CREATE TABLE, or almost anything
else. (We don't advise putting another START AFTER COMMIT statements inside a START AFTER
COMMIT, however.) Note that a statement like SELECT is generally useless inside an deferred procedure
call because the result is not returned.

• Because the body is not executed at the time that the START AFTER COMMIT statement is executed
inside the transaction, START AFTER COMMIT statements rarely fail unless the deferred procedure call
itself or the body contains a syntax error or some other error that can be detected without actually executing
the body.

What if you don't want the next SQL statement in your program to run until deferred procedure call statement
has finished running? Here's a workaround:

1. At the end of the deferred procedure call statement (e.g. at the end of the stored procedure called by the
deferred procedure call statement), post an Event. (See solidDB Programmer Guide for a description of
events.)

2. Immediately after you commit the transaction that specified the deferred procedure call, call a stored
procedure that waits on the event.

117

4.9 Deferred Procedure Calls

3. After the stored procedure call (to wait on the event), put the next SQL statement that your program
wants to execute.

For example, your program might look like the following:

 ...
 START AFTER COMMIT ... CALL myproc;
 ...
 COMMIT WORK;
 CALL wait_for_sac_completion;
 UPDATE ...;

The stored procedure wait_for_sac_completion would wait for the event that myproc will post. Therefore,
the UPDATE statement won't run until after the deferred procedure call statement finishes.

Note that this workaround is slightly risky. Since deferred procedure call statements are not guaranteed to
execute until completion, there is a chance that the stored procedure wait_for_sac_completion will never get
the event that it is waiting for.

Why would anyone design a command that may or may not run to completion? The answer is that the primary
purpose of the START AFTER COMMIT feature is to support "Sync Pull Notify". The Sync Pull Notify
feature allows a master server to notify its replica(s) that data has been updated and that the replicas may request
refreshes to get the new data. If this notification process fails for some reason, it would not result in data
corruption; it would simply mean that there would be a longer delay before the replica refreshes the data.
Since a replica is always given all the data since its last successful refresh operation, a delay in receipt of data
does not cause the replica to permanently miss any data. For more details, see the section of solidDB SmartFlow
Data Replication Guide that documents the Sync Pull Notify feature.

Note

The statement inside the body of the START AFTER COMMIT may be any statement, including
SELECT. Remember, however, that the body of the START AFTER COMMIT does not return its
results anywhere, so a SELECT statement is generally not useful inside a START AFTER COMMIT.

Note

If you are in auto-commit mode and execute START AFTER COMMIT..., then the given statement
is started immediately in the background. "Immediately" here actually means "as soon as possible",
because it's still executed asynchronously when the server has time to do it.

118

4.9 Deferred Procedure Calls

4.9.1 Sync Pull Notify ("Push Synchronization") Example

To implement Sync Pull Notify (i.e. Master notifying all relevant Replicas that there is new data that they can
request a refresh of), users can use the START and CALL statements as defined earlier. This particular example
also uses triggers.

Let us consider a scenario where there is a Master M1 and there are Replicas R1 and R2.

Figure 4.1. Sync Pull Notify

To carry out Sync Pull Notify, follow the steps listed below:

1. Define a Procedure Pm1 in Master M1. In Procedure Pm1, include the statements:

EXECDIRECT CALL Pr1 AT R1;
EXECDIRECT CALL Pr1 AT R2;

(You will have one call for each interested Replica. Note that the replica name changes, but typically
the procedure name is the same on each replica.)

2. Define a Procedure Pr1 in Replica R1. If a master is to invoke the Pr1 in more than one replica, then Pr1
should be defined for every replica that is of interest. See the replica procedure example in the example
section below.

3. Define a Trigger for all relevant DML operations, such as

• INSERT

• UPDATE and

• DELETE

119

4.9.1 Sync Pull Notify ("Push Synchronization") Example

4. In each trigger body, embed the statement

EXECDIRECT START [UNIQUE] CALL Pm1;

5. Grant EXECUTE authority to the appropriate user on each replica. (A user Ur1 on the replica should
already be mapped to a corresponding user Um1 on the master. The user Um1 must execute the

EXECDIRECT START [UNIQUE] CALL Pm1;

When Um1 calls the procedure remotely, the call will actually execute with the privileges of Ur1 when
the call is executed on the replica.)

Example 4.5. Sliced Replicas

A sales application has a table named CUSTOMER, which has a column named SALESMAN. The master
database contains information for all salespersons. Each salesperson has her own replica database, and that
replica has only a "slice" of the master's data; specifically, each salesperson's replica has the slice of data for
that salesperson. For example, salesperson Smith's replica has only the data for salesperson Smith. If the
salesperson assigned to a particular customer changes, then the correct replicas should be notified. If XYZ
corporation is reassigned from salesperson Smith to salesperson Jones, then salesperson Jones's replica database
should add the data related to XYZ corporation, and salesperson Smith's replica should delete the data related
to XYZ corporation. Here is the code to update both replica databases:

-- If a customer is reassigned to a different salesman, then we
-- must notify both the old and new salesmen.
-- NOTE: This sample shows only the "UPDATE" trigger, but of course in
-- the real world you'd also need to define INSERT and DELETE triggers.
CREATE TRIGGER T_CUST_AFTERUPDATE ON CUSTOMER
AFTER UPDATE
REFERENCING NEW SALESMAN AS NEW_SALESMAN,
REFERENCING OLD SALESMAN AS OLD_SALESMAN
BEGIN
IF NEW_SALESMAN <> OLD_SALESMAN THEN
 EXEC SQL EXECDIRECT
 START AFTER COMMIT
 FOR EACH REPLICA WHERE NAME=OLD_SALESMAN
 UNIQUE CALL CUST(OLD_SALESMAN);

120

4.9.1 Sync Pull Notify ("Push Synchronization") Example

 EXEC SQL EXECDIRECT
 START AFTER COMMIT
 FOR EACH REPLICA WHERE NAME=NEW_SALESMAN
 UNIQUE CALL CUST(NEW_SALESMAN);
ENDIF
END;

Suppose that in the application, the user assigns all customers in sales area 'CA' to salesperson Mike.

UPDATE CUSTOMER SET SALESMAN='Mike' WHERE SALES_AREA='CA';
COMMIT WORK;

The Master server has the following procedure:

CREATE PROCEDURE CUST(salesman VARCHAR)
BEGIN
EXEC SQL EXECDIRECT CALL CUST(salesman) AT salesman;
COMMIT WORK;
END

Each replica has the following procedure:

CREATE PROCEDURE CUST(salesman VARCHAR)
BEGIN
 MESSAGE s BEGIN;
 MESSAGE s APPEND REFRESH CUSTS(salesman);
 MESSAGE s END;
 COMMIT WORK;
 MESSAGE s FORWARD TIMEOUT FOREVER;
 COMMIT WORK;
END

In the procedure CUST(), we force the salesperson's replica to refresh from the data in the master. This pro-
cedure CUST() is defined on all the replicas. If we call the procedure on both the replica that the customer
was reassigned to, and the replica that the customer was reassigned from, then the procedure updates both
those replicas. Effectively, this will delete the out-of-date data from the replica that no longer has this customer,
and will insert the data to the replica that is now responsible for this customer. If the publication and its
parameters are properly defined, we don't need to write additional detailed logic to handle each possible oper-
ation, such as reassigning a customer from one salesperson to another; instead, we simply tell each replica to
refresh from the most current data.

121

4.9.1 Sync Pull Notify ("Push Synchronization") Example

NOTES:

It is possible to implement a Sync Pull Notify without triggers. The application may call appropriate procedures
to implement SyncPull. Triggers are a way to achieve Sync Pull Notify in conjunction with the statement
START AFTER COMMIT and remote procedure calls.

Sometimes, in the Sync Pull Notify process, it is possible that a replica may have to exchange one extra round
trip of messages unnecessarily. This could happen if the master invoked procedure tries to send a message to
the replica that just sent the changes to the master, and that causes a change in the "hot data" in the master.
But this can be avoided with careful usage of the START AFTER COMMIT statement. Be careful not to
create an "infinite loop", where each update on the master leads to an immediate update on the replica, which
leads to an immediate update on the master... The best way to avoid this is to be careful when creating triggers
on the replica that might "immediately" send updated data to the master, which in turn "immediately" notifies
the replica to refresh again.

4.9.2 Tracing the Execution of Background Jobs

The START AFTER COMMIT statement returns a result-set with one INTEGER column. This integer is a
unique "job" id that can be used to query the status of statements that failed to start for one reason or another
(invalid SQL statement, no access rights, replica not available, etc.).

If a maximum number of uncommitted deferred procedure call statements is reached, then an error is returned
when the deferred procedure call is issued. The maximum number is configurable in solid.ini. See
solidDB Administration Guide.

If a statement cannot be started, the reason is logged to the system table SYS_BACKGROUNDJOB_INFO.

SYS_BACKGROUNDJOB_INFO
(
 ID INTEGER NOT NULL,
 STMT WVARCHAR NOT NULL,
 USER_ID INTEGER NOT NULL,
 ERROR_CODE INTEGER NOT NULL,
 ERROR_TEXT WVARCHAR NOT NULL,
 PRIMARY KEY(ID)
);

Only failed START AFTER COMMIT statements are logged into this table. If the statement (e.g. a procedure
call) starts successfully, no information is stored into the system tables.

User can retrieve the information from the table SYS_BACKGROUNDJOB_INFO using either SQL SELECT-
query or calling a system procedure SYS_GETBACKGROUNDJOB_INFO. The input parameters is the jobID.

122

4.9.2 Tracing the Execution of Background Jobs

The returned values are: ID INTEGER, STMT WVARCHAR, USER_ID INTEGER, ERROR_CODE IN-
TEGER, ERROR_TEXT INTEGER.

Also an event SYS_EVENT_SACFAILED is posted when a statement fails to start.

CREATE EVENT SYS_EVENT_SACFAILED (ENAME WVARCHAR,
POSTSRVTIME TIMESTAMP,
UID INTEGER,
NUMDATAINFO INTEGER,
TEXTDATA WVARCHAR);

The NUMDATAINFO field contains the jobID. The application can wait for this event and use the jobID to
retrieve the reason from the system table SYS_BACKGROUNDJOB_INFO.

The system table SYS_BACKGROUNDJOB_INFO can be emptied with the admin command cleanbgjobinfo.
You need DBA privileges to execute this command, which means that only a DBA can delete the rows from
the table.

4.9.3 Controlling Backgroung Tasks

Background tasks can be controlled with the SSC API and admin commands (see the AcceleratorLib manual
for details on the SSC API). The server uses the task type SSC_TASK_BACKGROUND for the tasks that
execute statements started with START AFTER COMMIT. Note that there may be several of these tasks, but
you cannot control them individually.

4.10 Using Sequences
A sequence object is used to get sequence numbers in an efficient manner. The syntax is:

CREATE [DENSE] SEQUENCE sequence_name

Depending on how the sequence is created, there may or may not be holes in the sequence (the sequence can
be sparse or dense). Dense sequences guarantee that there are no holes in the sequence numbers. The sequence
number allocation is bound to the current transaction. If the transaction rolls back, the sequence number alloc-
ations are also rolled back. The drawback of dense sequences is that the sequence is locked out from other
transactions until the current transaction ends.

If there is no need for dense sequences, a sparse sequence can be used. A sparse sequence guarantees
uniqueness of the returned values, but it is not bound to the current transaction. If a transaction allocates a
sparse sequence number and later rolls back, the sequence number is simply lost.

123

4.9.3 Controlling Backgroung Tasks

A sequence object can be used, for example, to generate primary key numbers. The advantage of using a se-
quence object instead of a separate table is that the sequence object is specifically fine-tuned for fast execution
and requires less overhead than normal update statements.

Both dense and sparse sequence numbers start from 1.

After creating the sequence with the CREATE SEQUENCE statement, you can access the Sequence object
values by using the following constructs in SQL statements:

• sequencename.CURRVAL which returns the current value of the sequence

• sequencename.NEXTVAL which increments the sequence by one and returns the next value.

An example of creating unique identifiers automatically for a table is given below:

INSERT INTO ORDERS (id, ...) VALUES (order_seq.NEXTVAL, ...);

Sequences can also be used inside stored procedures. The current sequence value can be retrieved using the
following statement:

EXEC SEQUENCE sequence_name.CURRENT INTO variable;

New sequence values can be retrieved using the following syntax:

EXEC SEQUENCE sequence_name.NEXT INTO variable;

It is also possible to set the current value of a sequence to a predefined value by using the following syntax:

EXEC SEQUENCE sequence_name SET VALUE USING variable;

An example of using a stored procedure to retrieve a new sequence number is given below:

"CREATE PROCEDURE get_my_seq
RETURNS (val INTEGER)
BEGIN
EXEC SEQUENCE my_sequence.NEXT INTO (val);
END";

124

4.10 Using Sequences

4.11 Using Events
Event alerts are special objects in solidDB databases. Events are used primarily to coordinate timing, but may
also be used to send a small amount of information. One connection "waits" on an event until another connection
"posts" that event.

More than one connection may wait on the same event. If multiple connections wait on the same event, then
all waiting connections are notified when the event is posted. A connection may also wait on multiple events,
in which case it will be notified when any of those events are posted.

Events generally consume a much smaller amount of resources than polling consumes.

Users may create their own events. The server also has some built-in system events.

The server does not automatically post user-defined events; they must be posted by a stored procedure. Sim-
ilarly, the events are received (waited on) in a stored procedure. (You may also wait on an event outside a
stored procedure by using the ADMIN EVENT command.) When an application calls a stored procedure that
waits for a specific event to happen, the application is blocked until the event is posted and received. In multi-
threaded environments, separate threads and connections can be used to access the database during the event
wait.

An event has a name that identifies it and a set of parameters. The name can be any user-specified alphanu-
meric string. An event object is created with the SQL statement:

CREATE EVENT event_name
 [(parameter_name datatype
 [parameter_name datatype...])]

The parameter list specifies parameter names and parameter types. The parameter types are normal SQL types.
Events are dropped with the SQL statement:

DROP EVENT event_name

Events are always posted inside stored procedures. Events are usually received inside stored procedures.
Special stored procedure statements are used to post and receive events.

The event is posted with the stored procedure statement

post_statement ::= POST EVENT event_name [(parameters)]

125

4.11 Using Events

Event parameters must be local variables or parameters in the stored procedure where the event is triggered.
All clients that are waiting for the posted event will receive the event.

Each connection has its own event queue. The events to be collected in the event queue are specified with the
stored procedure statement

wait_register-statement ::=
REGISTER EVENT event_name

Events are removed from the event queue with the stored procedure statement

UNREGISTER EVENT event_name

Event parameters must be local variables or parameters in the stored procedure where the event is triggered.

To make a procedure wait for an event to happen, the WAIT EVENT construct is used in the stored procedure:

wait_event_statement::=
 WAIT EVENT
 [event_specification...]
 END WAIT
event_specification::=
 WHEN event_name [(parameters)] BEGIN
statements

 END EVENT

You may also wait on an event by using the ADMIN EVENT command. You may use this at the solsql
command line, for example. Below is an example of the code required to register for and wait on an event
using ADMIN EVENT commands:

ADMIN EVENT 'register sys_event_hsbstateswitch';
ADMIN EVENT 'wait';

You may wait on either system-defined events or user-defined events. Note that you cannot post events using
ADMIN EVENT. For more details about ADMIN EVENT, see Section B.2, “ADMIN EVENT”.

126

4.11 Using Events

Example 4.6. Event Example 1

This section includes two examples for using events. Example 1 is a pair of SQL scripts that when used to-
gether show how to use events. Example 2 is a pair of SQL scripts, including a stored procedure, that when
used together waits for multiple events.

In this first example of using events, we have two scripts. One script waits on an event and the other script
posts the event. Once the event has been posted, the event that is waiting will finish waiting and move on to
the next command.

To execute this example code, you will need two windows (for example, two SolidConsole windows) so that
you can start the WaitOnEvent.sql script and then run the PostEvent.sql script while
WaitOnEvent.sql is waiting.

In this particular example, the stored procedure that waits does not actually do anything after the event has
posted; the script merely finishes the wait and returns to the caller. The caller can then proceed to do whatever
it wants, which in this case is to SELECT the record that was inserted while we were waiting.

This example waits for only a single event, which is called "record_was_inserted". Later in this chapter we
will have another script that waits for multiple events using a single"WAIT".

============================= SCRIPT 1=============================
-- SCRIPT NAME: WaitOnEvent.sql
-- PURPOSE:
-- This is one of a set of scripts that demonstrates posting events
-- and waiting on events. The sequence of steps is shown below:
--
-- THIS SCRIPT (WaitOnEvent.sql) PostEvent.sql script
-- --
-- CREATE EVENT.
-- CREATE TABLE.
-- WAIT ON EVENT.
-- Insert a record into table.
-- Post event.
-- SELECT * FROM TABLE.
--
-- To perform these steps in the proper order, start running this
-- script FIRST, but remember that this script does not finish running
-- until after the post_event script runs and posts the event.
-- Therefore, you will need two open windows (for example, two
-- SolidConsole windows, or two terminal windows) so that you can leave

127

4.11 Using Events

-- this running/waiting in one window while you run the other script
-- post_event) in the other window.
-- Create a simple event that has no parameters.
-- Note that this event (like any event) does not have any
-- commands or data; the event is just a label that allows both the
-- posting process and the waiting process to identify which event has
-- been posted (more than one event may be registered at a time).
-- As part of our demonstration of events, this particular event
-- will be posted by the other user after he or she inserted a record.
CREATE EVENT record_was_inserted;
-- Create a table that the other script will insert into.
CREATE TABLE table1 (int_col INTEGER);
-- Create a procedure that will wait on an event
-- named "record_was_inserted".
-- The other script (PostEvent.sql) will post this event.
"CREATE PROCEDURE wait_for_event
BEGIN
-- If possible, avoid holding open a transaction. Note that in most
-- cases it's better to do the COMMIT WORK before the procedure,
-- not inside it. See "Waiting on Events" at the end of this example.
EXEC SQL COMMIT WORK;
-- Now wait for the event to be posted.
WAIT EVENT
 WHEN record_was_inserted BEGIN
 -- In this demo, we simply fall through and return from the
 -- procedure call, and then we continue on to the next
 -- statement after the procedure call.
 END EVENT
 END WAIT;
END";
-- Call the procedure to wait. Note that this script will not
-- continue on to the next step (the SELECT) until after the
-- event is posted.
CALL wait_for_event();
COMMIT WORK;
-- Display the record inserted by the other script.
SELECT * FROM table1;

Guidelines for Committing Transaction in Script 1 (Wait0nEvent.sql)

Whenever possible, complete any current transaction before waiting on an event. If you execute a WAIT inside
a transaction, then the transaction will be held open until the event occurs and the next COMMIT or ROLL-

128

4.11 Using Events

BACK is executed. This means that during the wait, the server will hold locks, which may lead to excessive
bonsai tree growth. For details on the Bonsai Tree and preventing its growth, read the section "Reducing
Bonsai Tree Size by Committing Transactions," in solidDB Administration Guide.

In this example, we have put COMMIT WORK inside the procedure immediately before the WAIT. However,
this is not usually a good solution; putting the COMMIT or ROLLBACK inside the "wait" procedure means
that if the procedure is called as part of another transaction, then the COMMIT or ROLLBACK will terminate
that enclosing transaction and start a new transaction, which is probably not what you want. If, for example,
you were entering data into a "child" table with a referential constraint and you are waiting for the referenced
data to be entered into the "parent" table, then breaking the transaction into two transactions would simply
cause the insert of the "child" record to fail because the parent would not have been inserted yet.

The best strategy is to design your program so that you do not need to WAIT inside a transaction; instead,
your "wait" procedure should be called between transactions if that is possible. By using events/waits, you
have some control over the order in which things are done and you can use this to help ensure that dependencies
are met without actually putting everything into a single transaction. For example, in an "asynchronous"
situation you might be waiting for both a child and a parent record to be inserted, and if your database server
did not have the "events" feature, then you might require that both records be inserted in the same transaction
so that you could ensure referential integrity.

By using events/waits, you can ensure that the insertion of the parent is done first; you can then put the insertion
of the child record in a second transaction because you can guarantee that the parent will always be present
when the child is inserted. (To be more precise, you can ALMOST guarantee that the parent will be present
when the child is inserted. If you break up the insertions into two different transactions, then even if you ensure
that the parent is inserted before the child, there is a slight chance that the parent would be deleted before the
program tried to insert the child record.)

============================= SCRIPT 2=============================
-- SCRIPT NAME: PostEvent.sql
-- PURPOSE:
-- This script is one of a set of scripts that demonstrates posting
-- events and waiting on events. The sequence of steps is shown below:
--
-- WaitOnEvent.sql THIS SCRIPT (PostEvent.sql)
-- ---
-- Create event.
-- Create table.
-- Wait on event.
-- INSERT A RECORD INTO TABLE.
-- POST THE EVENT.
-- Select * from table.

129

4.11 Using Events

-- Insert a record into the table.
INSERT INTO table1 (int_col) VALUES (99);
COMMIT WORK;
-- Create a stored procedure to post the event.
"CREATE PROCEDURE post_event
BEGIN
 -- Post the event.
 POST EVENT record_was_inserted;
END";
-- Call the procedure that posts the event.
CALL post_event();
DROP PROCEDURE post_event;
COMMIT WORK;

Example 4.7. Event Example 2

The previous example showed how to wait on a single event. The next example shows how to write a stored
procedure that will wait on multiple events and that will finish the wait when any one of those events is posted.

============================= SCRIPT 1=============================
-- SCRIPT NAME: MultiWaitExamplePart1.sql
-- PURPOSE:
-- This code shows how to wait on more than one event.
-- If you run this demonstration, you will see that a "wait" lasts only
-- until one of the events is received. Thus a wait on multiple events
-- is like an "OR" (rather than an "AND"); you wait until event1 OR
-- event2 OR ... occurs.
--
-- This demo uses 2 scripts, one of which waits for an event(s) and one
-- of which posts an event.
-- To run this example, you will need 2 windows (for example,
-- SolidConsole windows).
-- 1) Run this script (MultiWaitExamplePart1.sql) in one window. After
-- this script reaches the point where it is waiting for the event, then
-- start Step 2.
-- 2) Run the script MultiWaitExamplePart2.sql in the other window.
-- This will post one of the events.
-- After the event is posted, the first script will finish.
-- Create the 3 different events on which we will wait.
CREATE EVENT event1;
CREATE EVENT event2(i INTEGER);

130

4.11 Using Events

CREATE EVENT event3(i INTEGER, c CHAR(4));
-- When an event is received, the process that is waiting on the event
-- will insert a record into this table. That lets us see which events
-- were received.
CREATE TABLE event_records(event_name CHAR(10));
-- This procedure inserts a record into the event_records table.
-- This procedure is called when an event is received.
"CREATE PROCEDURE insert_a_record(event_name_param CHAR(10))
BEGIN
 EXEC SQL PREPARE insert_cursor
 INSERT INTO event_records (event_name) VALUES (?);
 EXEC SQL EXECUTE insert_cursor USING (event_name_param);
 EXEC SQL CLOSE insert_cursor;
 EXEC SQL DROP insert_cursor;
END";
-- This procedure has a single "WAIT" command that has 3 subsections;
-- each subsection waits on a different event.
-- The "WAIT" is finished when ANY of the events occur, and so the
-- event_records table will hold only one of the following:
-- "event1",
-- "event2", or
-- "event3".
"CREATE PROCEDURE event_wait(i1 INTEGER)
RETURNS (eventresult CHAR(10))
BEGIN
 DECLARE i INTEGER;
 DECLARE c CHAR(4);
 -- The specific values of i and c are irrelevant in this example.
 i := i1;
 c := 'mark';
 -- Set eventresult to an empty string.
 eventresult := '';
 -- Will we exit after any of these 3 events are posted, or must
 -- we wait until all of them are posted? The answer is that
 -- we will exit after any one event is posted and received.
 WAIT EVENT
 -- When the event named "event1" is received...
 WHEN event1 BEGIN
 eventresult := 'event1';
 -- Insert a record into the event_records table showing that
 -- this event was posted and received.
 EXEC SQL PREPARE call_cursor

131

4.11 Using Events

 CALL insert_a_record(?);
 EXEC SQL EXECUTE call_cursor USING (eventresult);
 EXEC SQL CLOSE call_cursor;
 EXEC SQL DROP call_cursor;
 RETURN;
 END EVENT
 WHEN event2(i) BEGIN
 eventresult := 'event2';
 EXEC SQL PREPARE call_cursor2
 CALL insert_a_record(?);
 EXEC SQL EXECUTE call_cursor2 USING (eventresult);
 EXEC SQL CLOSE call_cursor2;
 EXEC SQL DROP call_cursor2;
 RETURN;
 END EVENT
 WHEN event3(i, c) BEGIN
 eventresult := 'event3';
 EXEC SQL PREPARE call_cursor3
 CALL insert_a_record(?);
 EXEC SQL EXECUTE call_cursor3 USING (eventresult);
 EXEC SQL CLOSE call_cursor3;
 EXEC SQL DROP call_cursor3;
 RETURN;
 END EVENT
 END WAIT
END";
COMMIT WORK;
-- Call the procedure that waits until one of the events is posted.
CALL event_wait(1);
-- See which event was posted.
SELECT * FROM event_records;
=========================== SCRIPT 2 ===================================
-- SCRIPT NAME: MultiWaitExamplePart2.sql
-- PURPOSE:
-- This is script 2 of 2 scripts that show how to wait for multiple
-- events. See the instructions at the top of MultiWaitExamplePart1.sql.
-- Create a stored procedure to post an event.
"CREATE PROCEDURE post_event1
BEGIN
 -- Post the event.
 POST EVENT event1;
END";

132

4.11 Using Events

--Create a stored procedure to post the event.
"CREATE PROCEDURE post_event2(param INTEGER)
BEGIN
 -- Post the event.
 POST EVENT event2(param);
END";
--Create a stored procedure to post the event.
"CREATE PROCEDURE post_event3(param INTEGER, s CHAR(4))
BEGIN
 -- Post the event.
 POST EVENT event3(param, s);
END";
COMMIT WORK;
-- Notice that to finish the "wait", only one event needs to be posted.
-- You may execute any one of the following 3 CALL commands to post an
-- event.
-- We've commented out 2 of them; you may change which one is de
-- commented.
CALL post_event1();
--CALL post_event2(2);
--CALL post_event3(3, 'mark');

Example 4.8. Event Example 3

This example shows very simple usage of the REGISTER EVENT and UNREGISTER EVENT commands.
You might notice that the previous scripts did not use REGISTER EVENT, yet their WAIT commands suc-
ceeded anyway. The reason for this is that when you wait on an event, you will be registered implicitly for
that event if you did not already explicitly register for it. Thus you only need to explicitly register events if
you want them to start being queued now but you don't want to start WAITing for them until later.

CREATE EVENT e0;
CREATE EVENT e1 (param1 int);
COMMIT WORK;

-- Create a procedure to register the events to that when they occur
-- they are put in this connection's event queue.
"CREATE PROCEDURE eeregister
 BEGIN
 REGISTER event e0;
 REGISTER EVENT e1;

133

4.11 Using Events

END";

CALL eeregister;
COMMIT WORK;

-- Create a procedure to post the events.
"CREATE PROCEDURE eepost
 BEGIN
 DECLARE x int;
 x := 1;
 POST EVENT e0;
 POST EVENT e1(x);
 END";

COMMIT WORK;

-- Post the events. Even though we haven't yet waited on the events,
-- they will be stored in our queue because we registered for them.
CALL eepost;
COMMIT WORK;

-- Now create a procedure to wait for the events.
"CREATE PROCEDURE eewait
 RETURNS (whichEvent VARCHAR(100))
 BEGIN
 DECLARE i INT;

 WAIT EVENT
 WHEN e0 BEGIN
 whichEvent := 'event0';
 END EVENT

 WHEN e1(i) BEGIN
 whichEvent := 'event1';
 END EVENT

 END WAIT

 END";

COMMIT WORK;

134

4.11 Using Events

-- Since we already registered for the 2 events and we already
-- posted the 2 events, when we call the eewait procedure twice
-- it should return immediately, rather than waiting.
CALL eewait;
CALL eewait;
COMMIT WORK;

-- Unregister for the events.
"CREATE PROCEDURE eeunregister
 BEGIN
 UNREGISTER event e0;
 UNREGISTER EVENT e1;
END";

CALL eeunregister;
COMMIT WORK;
CREATE EVENT e0;
CREATE EVENT e1 (param1 int);
COMMIT WORK;

-- Create a procedure to register the events to that when they occur
-- they are put in this connection's event queue.
"CREATE PROCEDURE eeregister
 BEGIN
 REGISTER event e0;
 REGISTER EVENT e1;
END";

CALL eeregister;
COMMIT WORK;

-- Create a procedure to post the events.
"CREATE PROCEDURE eepost
 BEGIN
 DECLARE x int;
 x := 1;
 POST EVENT e0;
 POST EVENT e1(x);
 END";

COMMIT WORK;

135

4.11 Using Events

-- Post the events. Even though we haven't yet waited on the events,
-- they will be stored in our queue because we registered for them.
CALL eepost;
COMMIT WORK;

-- Now create a procedure to wait for the events.
"CREATE PROCEDURE eewait
 RETURNS (whichEvent VARCHAR(100))
 BEGIN
 DECLARE i INT;

 WAIT EVENT
 WHEN e0 BEGIN
 whichEvent := 'event0';
 END EVENT

 WHEN e1(i) BEGIN
 whichEvent := 'event1';
 END EVENT

 END WAIT

 END";

COMMIT WORK;

-- Since we already registered for the 2 events and we already
-- posted the 2 events, when we call the eewait procedure twice
-- it should return immediately, rather than waiting.
CALL eewait;
CALL eewait;
COMMIT WORK;

-- Unregister for the events.
"CREATE PROCEDURE eeunregister
 BEGIN
 UNREGISTER event e0;
 UNREGISTER EVENT e1;
END";

136

4.11 Using Events

CALL eeunregister;
COMMIT WORK;

137

4.11 Using Events

138

Chapter 5. Using solidDB SQL for
Database Administration
You manage a solidDB database, as well as its users and schema, using solidDB SQL statements. This chapter
describes the management tasks you perform with solidDB SQL. These tasks include managing roles and
privileges, tables, indexes, transactions, catalogs, and schemas.

5.1 Using solidDB SQL Syntax
The SQL syntax is based on the ANSI X3H2-1989 (SQL-89) level 2 standard including important SQL-92
and SQL-99 extensions. Refer to Appendix B, solidDB SQL Syntax, for a more formal definition of the syntax.

SQL statements must be terminated with a semicolon (;) only when using solidDB SQL Editor or SolidConsole.
Otherwise, terminating SQL statements with a semicolon leads to a syntax error.

You can use SolidConsole (as well as solidDB SQL Editor, or third-party ODBC or JDBC compliant tools)
to execute SQL statements. To automate the tasks, you may want to save the SQL statements to a file. You
can use these files for rerunning your SQL statements later or as a document of your users, tables, and indexes.

5.1.1 solidDB SQL Data Types

solidDB SQL supports data types specified in the SQL-92 Standard Entry Level specifications, as well as
important Intermediate Level enhancements. Refer to Appendix A, Data Types, for a complete description
of the supported data types.

You can also define some data types with the optional length, scale, and precision parameters. In that case,
the default properties of the corresponding data type are not used.

5.1.2 solidDB ADMIN COMMAND

solidDB SQL provides the extension ADMIN COMMAND 'command [command_args]' to perform basic
administrative tasks, such as backups, performance monitoring, and shutdown.

You can use SolidConsole and solidDB SQL Editor (teletype) to execute the command options provided by
ADMIN COMMAND. To access a short description of available ADMIN COMMANDs, execute ADMIN
COMMAND 'help'. For a formal definition of the syntax of these statements, refer to Appendix B, solidDB
SQL Syntax, in this guide.

139

Note

ADMIN COMMAND tasks are also available as administrative commands in solidDB Remote Control
(teletype). For details, read the section of solidDB Administration Guide titled "solidDB Remote
Control (teletype)".

solidDB also provides SQL extensions that implement the data synchronization capability.

5.1.3 Using Functions

All solidDB proprietary scalar functions can be used in a normal way, e.g.:

 select substring(line, 1,4) from test;

On the other hand, functions whose name match reserved words, have to be used with escape characters. For
example:

 select "left"(line,4) from test;

or:

 select {fn left(line,4)} from test;

The latter one corresponds to the ODBC implementation-independent syntax. It can be used in all API and
GUI interfaces.

5.2 Managing User Privileges and Roles
You can use SolidConsole, solidDB teletype tools, and many ODBC compliant SQL tools to modify user
privileges. Users and roles are created and deleted using SQL statements or commands. A file consisting of
several SQL statements is called a SQL script.

In the Solid/solidDB6.0/samples/sql directory, you will find the SQL script sample.sql, which
gives an example of creating users and roles. You can run it using SolidConsole. To create your own users
and roles, you can make your own script describing your user environment.

140

5.1.3 Using Functions

5.2.1 User Privileges

When using solidDB databases in a multi-user environment, you may want to apply user privileges to hide
certain tables from some users. For example, you may not want an employee to see the table in which employee
salaries are listed, or you may not want other users to change your test tables.

You can apply five different kinds of user privileges. A user may be able to view, delete, insert, update or
reference information in a table or view. Any combination of these privileges may also be applied. A user
who has none of these privileges to a table is not able to use the table at all.

Note

Once user privileges are granted, they take effect when the user who is granted the privileges logs on
to the database. If the user is already logged on to the database when the privileges are granted, they
take effect only if the user:

• accesses for the first time the table or object on which the privileges are set, or

• disconnects and then reconnects to the database.

5.2.2 User Roles

Privileges can also be granted to an entity called a role. A role is a group of privileges that can be granted to
users as one unit. You can create roles and assign users to certain roles. A single user may have more than
one role assigned, and a single role may have more than one user assigned.

Note

1. The same string cannot be used both as a user name and a role name.

2. Once a user role is granted, it takes effect when the user who is granted the role logs on to the
database. If the user is already logged on to the database when the role is granted, the role takes
effect when the user disconnects and then reconnects to the database.

The following user names and roles are reserved:

141

5.2.1 User Privileges

Table 5.1. Reserved User Names and Roles

DescriptionReserved Names

This role grants privileges to all users. When user privileges to a certain table
are granted to the role PUBLIC, all current and future users have the specified
user privileges to this table. This role is granted automatically to all users.

PUBLIC

This is the default role for the database administrator. This role has adminis-
tration privileges to all tables, indexes and users, as well as the right to use

SYS_ADMIN_ROLE

SolidConsole administration functions, and solidDB Remote Control. This is
also the role of the creator of the database.

This is the schema name of all system tables and views._SYSTEM

This role has the right to use SolidConsole, but does not have other adminis-
tration privileges.

SYS_CONSOLE_ROLE

This is the administrator role for data synchronization functions.SYS_SYNC_ADMIN_ROLE

This role is only for registering and unregistering a replica database to the
master.

SYS_SYNC_RE-
GISTER_ROLE

5.2.3 Examples of SQL Statements

Below are some examples of SQL statements for administering users, roles, and user privileges.

Creating Users

CREATE USER username IDENTIFIED BY password;

Only an administrator has the privilege to execute this statement. The following example creates a new user
named CALVIN with the password HOBBES.

CREATE USER CALVIN IDENTIFIED BY HOBBES;

Deleting Users

DROP USER username;

Only an administrator has the privilege to execute this statement. The following example deletes the user
named CALVIN.

142

5.2.3 Examples of SQL Statements

DROP USER CALVIN;

Changing a Password

ALTER USER username IDENTIFIED BY new password;

The user username and the administrator have the privilege to execute this command. The following example
changes CALVIN's password to GUBBES.

ALTER USER CALVIN IDENTIFIED BY GUBBES;

Creating Roles

CREATE ROLE rolename;

The following example creates a new user role named GUEST_USERS.

CREATE ROLE GUEST_USERS;

Deleting Roles

DROP ROLE role_name;

The following example deletes the user role named GUEST_USERS.

DROP ROLE GUEST_USERS;

Granting Privileges to a User or a Role

GRANT user_privilege ON table_name TO username or role_name ;

The possible user privileges on tables are SELECT, INSERT, DELETE, UPDATE, REFERENCES and ALL.
ALL provides a user or a role all five privileges mentioned above. A new user has no privileges until they are
granted.

143

5.2.3 Examples of SQL Statements

The following example grants INSERT and DELETE privileges on a table named TEST_TABLE to the
GUEST_USERS role.

GRANT INSERT, DELETE ON TEST_TABLE TO GUEST_USERS;

The EXECUTE privilege provides a user the right to execute a stored procedure:

GRANT EXECUTE ON procedure_name TO username or role_name ;

The following example grants EXECUTE privilege on a stored procedure named SP_TEST to user CALVIN.

GRANT EXECUTE ON SP_TEST TO CALVIN;

Granting Privileges to a User by Giving the User a Role

GRANT role_name TO username ;

The following example gives the user CALVIN the privileges that are defined for the GUEST_USERS role.

GRANT GUEST_USERS TO CALVIN;

Revoking Privileges from a User or a Role

REVOKE user_privilege ON table_name FROM username or role_name ;

The following example revokes the INSERT privilege on the table named TEST_TABLE from the
GUEST_USERS role.

REVOKE INSERT ON TEST_TABLE FROM GUEST_USERS;

Revoking Privileges by Revoking the Role of a User

REVOKE role_name FROM username ;

The following example revokes the privileges that are defined for the GUEST_USERS role from CALVIN.

144

5.2.3 Examples of SQL Statements

REVOKE GUEST_USERS FROM CALVIN;

Granting Administrator Privileges to a User

GRANT SYS_ADMIN_ROLE TO username ;

The following example grants administrator privileges to CALVIN, who now has all privileges to all tables.

GRANT SYS_ADMIN_ROLE TO CALVIN;

You may also want to grant a user the right to perform data synchronization operations. To do this, execute
the command:

GRANT SYS_SYNC_ADMIN_ROLE TO HOBBES

Note

If the autocommit mode is set OFF, you need to commit your work. To commit your work use the
following SQL statement: COMMIT WORK; If the autocommit mode is set ON, the transactions are
committed automatically.

5.3 Managing Tables
solidDB has a dynamic data dictionary that allows you to create, delete and alter tables on-line. solidDB
database tables are managed using SQL commands.

In the solidDB directory, you can find a SQL script named sample.sql, which gives an example of managing
tables. You can run the script using SolidConsole.

Below are some examples of SQL statements for managing tables. Refer to Appendix B, solidDB SQL Syntax
for a formal definition of the solidDB SQL statements.

If you want to see the names of all tables in your database, issue the SQL statement SELECT * FROM
TABLES. ("TABLES" is a system-defined view.) Alternatively, you may use the predefined command
TABLES from SolidConsole. The table names can be found in the column TABLE_NAME.

145

5.3 Managing Tables

5.3.1 Accessing System Tables

The solidDB system tables store solidDB server information, including user information. Your ability to access
specific system tables depends on your user's role and access rights. For example, DBAs can view all inform-
ation about all stored procedures, including the procedure definition text (i.e. the CREATE PROCEDURE
statement). Normal users can see the stored procedures, including the procedure definition text, for procedures
that they have created. Normal users who have execute access on a stored procedure, but who did not create
that stored procedure, may look at some information about that stored procedure but may not see the procedure
definition text. For a list of system tables, refer to Appendix D, Database System Tables and System Views .

The table below provides the viewing access and/or object granting privileges for specific system tables and
their data by user role and user access rights.

Note that a "User with access rights" in this table refers to a normal user who has any one of the following
rights: INSERT, UPDATE, DELETE, or SELECT access.*

Table 5.2. Viewing Tables and Granting Access

User with no access
rights

User with access
rights*

OwnerDBATasks

All (no restrictions)All (no restrictions)All (no restrictions)All (no restric-
tions)

Viewing
SYS_TABLES

No tables can be
viewed.

All tables to which the
user has INSERT, UP-

Restricted to the own-
ers' tables only

All (no restric-
tions)

Viewing User tables in
SYS_TABLES

DATE, DELETE, SE-
LECT, or REFER-
ENCES access rights.

No columns can be
viewed.

Columns in tables to
which the user has IN-

Columns in the own-
er's tables

All (no restric-
tions)

Viewing
SYS_COLUMNS

SERT, UPDATE, DE-
LETE, SELECT, or
REFERENCES access
rights.

No procedures can be
viewed.

Those procedures in
which the user has ex-
ecute access.

Those procedures cre-
ated by the user
(owner).

All (no restric-
tions)

Viewing SYS_PRO-
CEDURES (excluding
the procedure definition
text — i.e. the text of
the CREATE PRO-
CEDUER statement)

146

5.3.1 Accessing System Tables

User with no access
rights

User with access
rights*

OwnerDBATasks

No procedures or pro-
cedure definition text
can be viewed.

Note that execute ac-
cess does not allow the
user to see the proced-
ure definition text.

Those procedures cre-
ated by the user
(owner)

All (no restric-
tions)

Viewing Procedure
definition text in
SYS_PROCEDURES

NoNoYesYesAbility to Grant Access
rights on procedures

No triggers can be
viewed.

NoneThose triggers created
by the user (owner)

All (no restric-
tions)

Viewing SYS_TRIG-
GERS

No triggers can be
viewed.

NoneThose triggers created
by the user (owner)

All (no restric-
tions)

Viewing Trigger defini-
tion text in SYS_TRIG-
GERS

5.3.2 Examples of SQL Statements

Below are some examples of SQL statements for administering tables.

Creating Tables

CREATE TABLE table_name (column_name column_type
 [, column_name column_type]...);

All users have privileges to create tables.

The following example creates a new table named TEST with the column I of the column type INTEGER
and the column TEXT of the column type VARCHAR.

CREATE TABLE TEST (I INTEGER, TEXT VARCHAR);

Removing Tables

DROP TABLE table_name;

Only the creator of the particular table or users having SYS_ADMIN_ROLE have privileges to remove tables.

The following example removes the table named TEST.

147

5.3.2 Examples of SQL Statements

DROP TABLE TEST;

Note

For catalogs and schemas: The ANSI standard for SQL defines the keywords RESTRICT and CAS-
CADE. When dropping a catalog or a schema, if you use the keyword RESTRICT, then you cannot
drop a catalog or schema if it contains other database objects (e.g. tables). Using the keyword CAS-
CADE allows you to drop a catalog or schema that still contains database objects — the database
objects that it contains will automatically be dropped. The default behavior (if you don't specify either
RESTRICT or CASCADE) is RESTRICT.

For database objects other than Catalogs and Schemas: The keywords RESTRICT and CASCADE
are not accepted as part of most DROP statements in solidDB SQL. Furthermore, for these database
objects, the rules are more complex than simply "pure CASCADE" or "pure RESTRICT" behavior,
but generally objects are dropped with drop behavior RESTRICT. For example, if you try to drop
table1 but table2 has a foreign key dependency on table1, or if there are publications that reference
table1, then you will not be able to drop table1 without first dropping the dependent table or publication.
However, the server does not use RESTRICT behavior for all possible types of dependency. For ex-
ample, if a view or a stored procedure references a table, the referenced table can still be dropped,
and the view or stored procedure will fail the next time that it tries to reference that table. Also, if a
table has a corresponding synchronization history table, that synchronization history table will be
dropped automatically. For more information about synchronization history tables, see solidDB
SmartFlow Data Replication Guide.

Adding Columns to a Table

ALTER TABLE table_name ADD COLUMN column_name column_type;

Only the creator of the particular table or users having SYS_ADMIN_ROLE have privileges to add or delete
columns in a table.

The following example adds the column C of the column type CHAR(1) to the table TEST.

ALTER TABLE TEST ADD COLUMN C CHAR(1);

Deleting Columns from a Table

ALTER TABLE table_name DROP COLUMN column_name;

148

5.3.2 Examples of SQL Statements

A column cannot be dropped if it is part of a unique constraint or primary key. For details on primary keys,
read Section 5.4, “Managing Indexes”.

The following example statement deletes the column C from the table TEST.

ALTER TABLE TEST DROP COLUMN C;

Note

If the autocommit mode is set OFF, you need to commit your work before you can modify the data
in the table you altered. To commit your work after altering a table, use the following SQL statement:

COMMIT WORK;

If the autocommit mode is set ON, then all statements, including DDL (Data Definition Language)
statements, are committed automatically.

5.4 Managing Indexes
Indexes are used to speed up access to tables. The database engine uses indexes to access the rows in a table
directly. Without indexes, the engine would have to search the whole contents of a table to find the desired
row. You can create as many indexes as you like on a single table; however, adding indexes does slow down
write operations, such as inserts, deletes, and updates on that table. For details on creating indexes to improve
performance, read Section 8.3, “Using Indexes to Improve Query Performance”.

There are two kinds of indexes: non-unique indexes and unique indexes. A unique index is an index where
all key values are unique. A unique index is always created, when the UNIQUE restraint is used when creating
an index.

You can create and delete indexes using the following SQL statements. Refer to Appendix B, solidDB SQL
Syntax, for a formal definition of the syntax for these statement.

5.4.1 Examples of SQL Statements

Below are some examples of SQL commands for administering indexes.

Creating an Index on a Table

CREATE [UNIQUE] INDEX index_name ON base_table_name

149

5.4 Managing Indexes

column_identifier [ASC | DESC]
 [, column_identifier [ASC | DESC]] ...

Only the creator of the particular table or users having SYS_ADMIN_ROLE have privileges to create or drop
indexes.

The following example creates an index named X_TEST on column I of the table TEST.

CREATE INDEX X_TEST ON TEST (I);

Creating a Unique Index on a Table

CREATE UNIQUE INDEX index_name ON table_name (column_name);

The following example creates a unique index named UX_TEST on column I of the table TEST.

CREATE UNIQUE INDEX UX_TEST ON TEST (I);

Deleting an Index

DROP INDEX index_name;

The following example deletes the index named X_TEST.

DROP INDEX X_TEST;

Note

After creating or dropping an index, you must commit (or roll back) your work before you can
modify the data in the table on which you created or dropped the index.

5.4.2 Primary Key Indexes

To retrieve a single specific record from a table, we must be able to uniquely identify that record. solidDB
uses "primary keys" to uniquely identify each record in each table. A primary key is a column or combination
of columns that contains a unique value or combination of values. Each table has a primary key — either ex-
plicit or implicit.

150

5.4.2 Primary Key Indexes

solidDB automatically creates a "primary key index" based on the field(s) of that primary key. A primary key
index, like any index, speeds up access to data in the table. Unlike other indexes, however, a primary key index
also controls the order in which records are stored in the database. (This is called "clustering".) Records are
stored in ascending order based on the primary key values.

If the creator of the table does not specify a primary key, then solidDB automatically creates a primary key
for the table. To ensure uniqueness in that primary key, the server uses a hidden internal row identifier. The
value of that row identifier may be retrieved and used in queries by way of a symbolic pseudo column name
"ROWID".

Note

In solidDB, it is not possible to add an explicit primary key after the table has been created. If a
primary key is not specified by a user, the most efficient query method is not available (unless
ROWID is used) for that table. Also, such a table cannot be used in referential integrity constraints
as a referenced table. For those reasons, it is strongly recommended that a primary key is always
defined at table creation.

Once a primary key is defined (whether by the table creator or by the server), the server will prevent rows
with duplicate primary key values from being inserted into the table.

5.4.3 Secondary Key Indexes

Since indexes speed up searches, it is often helpful for a table to have one index for each attribute (or combin-
ation of attributes) that is used frequently in searches. All indexes other than the primary index are called
"secondary indexes".

A table may have as many indexes as you like, as long as each index has a unique combination of columns,
order of columns, and order of values (ASCending, DESCending). For example, in the code shown below,
the third index duplicates the first and will either generate an error message or will waste disk space with
duplicate information.

CREATE INDEX i1 ON TABLE t1 (col1, col2);
-- The following is ok because although the columns are the same as in
-- index i1, the order of the columns is different.
CREATE INDEX i2 ON TABLE t1 (col2, col1);
-- The following is not ok because index i3 would be exactly the
-- same as index i1.
CREATE INDEX i3 ON TABLE t1 (col1, col2); -- ERROR.
-- The following is ok because although the columns and
-- column order are the same, the order of the index values

151

5.4.3 Secondary Key Indexes

-- (ASCending vs. DESCending) is different.
CREATE INDEX i3b ON TABLE t1 (col1, col2) DESC;

Note that if one index is a "leading subset" of another (meaning that the columns, column order, and value
order of all N columns in index2 are exactly the same as the first N column(s) of index1), then you only need
to create the index that is the superset. For example, suppose that you have an index on the combination of
DEPARTMENT + OFFICE + EMP_NAME. This index can be used not only for searches by department,
office and emp_name together, but also for searches of just the department, or just the department and office
together. So there is no need to create a separate index on the department name alone, or on the department
and office alone. The same is true for ORDER BY operations; if the ORDER BY criterion matches a subset
of an existing index, then the server can use that index.

Keep in mind that if you defined a primary key or unique constraint, that key or constraint is implemented as
an index. Thus you never need to create an index that is a "leading subset" of the primary key or of an existing
unique constraint; such an index would be redundant.

Note that when searching using a secondary index, if the server finds all the requested data in the index key,
the server doesn't need to look up the complete row in the table. (This applies only to "read" operations, i.e.
SELECT statements. If the user updates values in the table, then of course the data rows in the table as well
as the values in the index(es) must be updated.)

5.4.4 Protection Against Duplicate Indexes

solidDB contains a protection against duplicate indexes. Occasionally, the recreation of an index
(DROP/CREATE) can fail if other indexes were created whereby the original index became a duplicate index.
To understand what duplicate indexes are, see the example below:

Let's assume we have created a table containing five columns, named A, B, C, D, E. The following indexes
have been created on the table:

• A

• AB

• BCE

• ABC

As you can see, index B is used for searching or filtering column B. Index BCE starts with column B.
Therefore, queries that use an index for locating column B can use index BCE. The same is the case with indexes
AB and ABC. Thus, indexes B and AB are duplicate indexes.

Duplicate indexes have, for example, the following adverse effects:

152

5.4.4 Protection Against Duplicate Indexes

• The storage space required increases

• The update performance decreases

• Backup time increases

If you attempt to create duplicate indexes, index creation fails and solidDB issues error:

SOLID Table Error 13199: Duplicate index definition

For more information, see Appendix C, Error Codes, in solidDB Administration Guide.

5.5 Referential Integrity
Referential integrity is a concept for ensuring that relationships between database tables remain consistent.
In other words, references to data must be valid.

A relationship between two database tables, called a referenced table and a referencing table, is created by
using a foreign key. A foreign key is a field in the referencing table that matches the primary key column (or
other similar unique column) of the referenced table. In other words, the foreign key can be used to represent
a conceptual relationship of type 1:n such as "an employee belongs to a department". Now, when the referencing
table has a foreign key to the referenced table, the concept of referential integrity states that you cannot add
a record to the referencing table (containing the foreign key) unless there is a corresponding record in the
referenced table.

As explained above, referential integrity is enforced by using the foreign keys. Foreign keys are maintained
with referential constraint definitions. The constraints also specify what referential actions solidDB must take
when the constraint is violated. This can happen, for example, when a row with a referenced primary key is
deleted from the referenced table. Foreign keys and constraints are explained into more detail in the following
chapters.

5.5.1 Primary Keys and Candidate Keys

In order for a table to participate in referential constraints as a referenced table, a primary key (preferable) or
candidate keys have to be defined. A primary key is defined with the primary key constraint syntax in the
CREATE TABLE statement, e.g.:

CREATE TABLE customers (
 cust_id INTEGER PRIMARY KEY,
 name CHAR(24),
 city CHAR(40));

153

5.5 Referential Integrity

Another possibility is to define a unique index on a column or a group of columns and enact the NOT NULL
constraint for them. Effectively, this will produce a "candidate key". Using an explicit primary key is preferable
because of the involved performance gain while deriving joins.

5.5.2 Foreign Keys

A foreign key is a column (or group of columns) within a table that refers to (or "relates to") a unique value
in another table. Each value in the foreign key column must have a matching value in the other table.

To ensure that each record in the referencing table references exactly one record in the referenced table, the
referenced column(s) in the referenced table must have a primary key constraint or having both unique and
not-null constraints. (Note that having a unique index is not sufficient.)

For example, in a bank, one table might hold customer information, and another table might hold account
information. Each account must be related to a customer, and would have a unique customer_id. This custom-
er_id would serve as the primary key of the customers table. Each account would also have a copy of the
customer_id of the customer who owns that account; this allows us to look up customer information based
on account information. The copy of the customer_id in the accounts table is a foreign key; it references the
matching value in the primary key of the customers table.

Below is an example. In this example, the CUST_ID column in the CUSTOMERS table is the primary key
of the referenced table, and the CUST_ID column of the ACCOUNTS table is a foreign key that refers to the
CUSTOMERS table. As you can see in the diagram below, each account is associated with a corresponding
customer. Some customers have more than one account.

Figure 5.1. Referential Constraint

The referencing table "accounts" may be created with the following statement:

CREATE TABLE accounts (
 acc_id INTEGER PRIMARY KEY,
 balance FLOAT,
 customer_id INTEGER REFERENCES customers);

154

5.5.2 Foreign Keys

In the REFERENCES clause, only the referenced table is specified, with no referenced column. By default,
the primary key is assumed. This is a preferred way allowing to avoid errors possibly made while specifying
the referenced columns.

In the example shown above, the primary key and foreign key used a single column. However, primary and
foreign keys may be composed of more than one column. Since each foreign key value must exactly match
the corresponding primary key value, a foreign key must contain the same number and data type of columns
as the primary key, and these key columns must be in the same order. However, a foreign key can have different
column names than the primary key, although this is rare. (The foreign key and primary key may also have
different default values. However, since values in the referenced table must be unique, default values are not
much used and are rarely used for columns that are part of a primary key. Default values are also not used
very often for foreign key columns.)

Although primary key values must be unique, foreign key values are not required to be unique. For example,
a single customer at a bank might have multiple accounts. The account_id that appears in the primary key
column in the CUSTOMERS table must be unique; however, the same account_id might occur multiple times
in the foreign key column in the ACCOUNTS table. As you can see in the illustration above, customer SMITH
has more than one account, and therefore her CUST_ID appears more than once in the foreign key column
of the ACCOUNTS table.

Although it is rare, a foreign key in a table may refer to a primary key in that same table. In other words, the
referenced table and the referencing table are the same table. For example, in a table of employees, each em-
ployee record might have a field that contains the ID of the manager of that employee. The managers themselves
might be stored in the same table. Thus the manager_id of that table might be a foreign key that refers to the
employee_id of that same table. You can see an example of this below.

Figure 5.2. Self-referential Constraint

In this example, Rama's manager is Smith (Rama's MGR_ID is 20, and Smith's EMP_ID is 20). Smith reports
to Annan (Smith's MGR_ID is 1, and Annan's EMP_ID is 1.) Jones' manager is Wong, and Wong's manager
is Annan. If Annan is the president of the company, then Annan doesn't have a manager,and the value of the
foreign key is NULL.

155

5.5.2 Foreign Keys

If a primary key is composed of more than one column, it should be defined after the columns. For example:

CREATE TABLE DEPT (
 DIVNO INTEGER,
 DEPTNO INTEGER,
 DNAME VARCHAR,
 PRIMARY KEY (DIVNO, DEPTNO));

A similar syntax may be used for foreign keys. However, it is highly recommended that foreign keys are
defined with the CONSTRAINT syntax utilizing also a constraint name.This approach allows for removing
foreign key dynamicaly, with the ALTER TABLE statements, after tables have been created. For example:

CREATE TABLE EMP (
 EMPNO INTEGER PRIMARY KEY,
 DIVNO INTEGER,
 DEPTNO INTEGER,
 ENAME VARCHAR,
 CONSTRAINT emp_fk1 FOREIGN KEY (DIVNO, DEPTNO) REFERENCES DEPT);

Note

Similarly to other integrity constraints, you can name referential integrity constraints (foreign keys)
and manipulate them (drop or add) dynamically, with the ALTER TABLE statement. For more in-
formation, see Section 5.5.4, “Dynamic Constraint Management”.

Refer to Appendix B, solidDB SQL Syntax, for CREATE TABLE and ALTER TABLE syntax detail.

Not all tables are allowed to have foreign keys. If a table is involved in master/replica synchronization and is
in a replica server, that table can not have any foreign key constraints. This limitation applies only to the tables
that are in replicas and that are involved in publish/subscribe (refresh) activities. Note that tables in the replica
that are not involved in refresh activities may still have foreign keys. Foreign keys are allowed in the tables
that are in the master database, even if those tables are involved in publish/refresh activities.

This limitation does not apply to primary keys. Any table may have a primary key (and some tables, such as
synchronization tables, must have a primary key).

Defining a foreign key always creates an index on the foreign key column(s). Each time when a referenced
record is updated or deleted, the server checks that there are no referencing records that are left without a
reference. Giving each foreign key an index improves the performance of foreign key checking.

156

5.5.2 Foreign Keys

5.5.3 Referential Actions

Referential integrity is maintained by the system, by taking certain actions when referential constraints are
violated, for example, in one of the following ways:

• when a row containing an invalid foreign key value is inserted in the referencing table

• when a foreign key in the referencing table is updated to an invalid value

• when a row with a referenced primary key is deleted from the referenced table

• when a referenced primary key is updated in the referenced table

The following actions are available when the constraint is violated:

• No action. This option restricts the operation, or rolls back the operation that violates the referential integrity
constraint.

• Cascade. In the case of operations performed on the referenced table, cascades the operations on the ref-
erenced table down to the referencing tables. This includes deleting all the referencing rows (a cascading
delete) and updating all the referencing foreign-key values (a cascading update).

• Set default. In the case of operations performed on the referenced table, sets the referencing columns to
a predefined default value.

• Set null. In the case of operations performed on the referenced table, sets the referencing columns to null.

• Restrict. Referential integrity actions sometimes allow changes to a table that temporarily violate a refer-
ential constraint. The No action allows such violations. If you have a requirement that the table state must
never violate any constraint even temporarily, use the Restrict referential action.

If no action is specified, the default 'No action' is assumed.

No cycles are allowed in cascading referential actions. An effort to create a cycle composed of foreign keys
having cascading actions results in an error.

Note

For any two tables, at most one CASCADE UPDATE path between them can be defined. The restriction
does not apply to CASCADE DELETE.

157

5.5.3 Referential Actions

5.5.4 Dynamic Constraint Management

Constraints can be managed dynamically with the ALTER TABLE clause. The sub-clauses that can be used
are:

• ADD CONSTRAINT. This clause adds a named constraint to a table.

• DROP CONSTRAINT. This clause removes a named constraint from a table.

Note

In solidDB, when the keyword CONSTRAINT is used, the constraint name is mandatory.

• CHECK. This constraint allows you to specify rules to your tables or table columns. Each rule is a condition
that must not be false for any row in the table on which it is defined. Otherwise the table cannot be updated.

The rules are Boolean expressions. The rule can check, for example, a range of values, equity, or the rule
can be a simple comparison. You can use several checks in one statement. The following expressions and
operators are available:

Table 5.3. Expressions and Operators

ExplanationExpression

less than<

greater than>

equal to=

less than or equal to<=

greater than or equal to>=

not equal to<>

negationAND

in the list that follows or in the table specifiedANY

betweenBETWEEN

in the list that follows or in the table specifiedIN

maximum valueMAX

minimum valueMIN

conjunctionNOT

disjunctionOR

158

5.5.4 Dynamic Constraint Management

ExplanationExpression

exclusive orXOR

• UNIQUE. The UNIQUE constraint requires that no two rows in a table contain the same value in a given
column or list of columns. You can create a unique constraint at either the table level or the column level.
Note: primary keys contain the unique constraint.

• FOREIGN KEY. The FOREIGN KEY constraint requires that each value in the foreign key column must
have a matching value in the referenced table.

Note

solidDB automatically generates names for unnamed constraints. If you want to view the names, use
the command soldd -x hiddennames.

For constraint syntax information and examples, see the CREATE TABLE and ALTER TABLE sections in
Appendix B, solidDB SQL Syntax.

5.6 Managing Database Objects

5.6.1 Introduction

solidDB allows you to use catalogs and schemas to organize your data. (Catalogs also have other uses, which
we will explain later.) solidDB's use of schemas conforms to the SQL standard, while solidDB's use of catalogs
is an extension to the SQL standard.

Catalogs and schemas allow you to group database objects (e.g. tables, sequences, etc.) in a hierarchical way.
This allows you to put related items into the same group. For example, all the tables related to the accounting
system might be in one group (e.g. a catalog), while all the tables related to the human resources system might
be in another group. You can also group database objects by user. For example, all of the tables used by Jane
Smith might be in a single schema.

Catalogs are the highest (broadest) level of the hierarchy. Schema names are the mid-level. Specific database
objects, such as tables, are the lowest (narrowest) level of the hierarchy. Thus, a single catalog may contain
multiple schemas, and each of those schemas may contain multiple tables.

Object names must be unique within a group, but do not have to be unique across groups. Thus, for example,
Jane Smith's schema and Robin Trower's schema might each have a table named "bills". These two tables
have nothing to do with each other. They may have different structures and different data, even though they
have the same name. Similarly, the catalog "accounting_catalog" and the catalog "human_resources_catalog"

159

5.6 Managing Database Objects

might each have a schema named "david_jones". Those schemas are unrelated to each other, even though
they have the same name.

Not surprisingly, if you want to specify a particular table and that table name is not unique in the database,
you can identify it by specifying the catalog, schema, and table name, e.g.

accounting_catalog.david_jones.bills

The syntax is discussed in more detail later.

If you don't specify the complete name (i.e. if you omit the schema, or the schema and the catalog), then the
server uses the current/default catalog and schema name to determine which table to use.

In general, a catalog can be thought of as a logical database. A schema typically corresponds to a user. This
is discussed in more detail below.

5.6.2 Catalogs

A physical database file may contain more than one logical database. Each logical database is a complete,
independent group of database objects, such as tables, indexes, procedures, triggers, etc. Each logical database
is a catalog. Note that a solidDB catalog is not just limited to indexes (as in the traditional sense of a library
card catalog, which serves to locate an item without containing the full contents of the item).

Catalogs allow you to logically partition databases so you can:

• Organize your data to meet the needs of your business, users, and, applications.

• Specify multiple master or replica databases (by using logical databases) for synchronization within one
physical database server. For more details on implementing synchronization in multi-master environments,
read "Multi-master synchronization model" in solidDB SmartFlow Data Replication Guide.

5.6.3 Schemas

A catalog may contain one or more schemas. A schema is a persistent database object that provides a definition
for part or all of the database. It represents a collection of database objects associated with a specific schema
name. These objects include tables, views, indexes, stored procedures, triggers, and sequences. Schemas allow
you to provide each user with his or her own database objects (such as tables) within the same logical database
(that is, a single catalog). If no schema is specified with a database object, the default schema is the user id
of the user creating the object.

160

5.6.2 Catalogs

5.6.4 Uniquely Identifying Objects within Catalogs and Schemas

Schemas make it possible for two different users to create tables with the same names in the same physical
database or even in the same logical database. For example, assume in a single physical database, there are
two separate catalogs, employee_catalog and inventory_catalog. Assume also that each catalog contains two
separate schemas, named smith and jones, and that the same Smith owns both "smith" schemas and the same
Jones owns both "jones" schemas. If Smith and Jones create a table named books in each of their schemas,
then we have a total of 4 tables named "books", and these tables are accessible as:

employee_catalog.smith.books
employee_catalog.jones.books
inventory_catalog.smith.books
inventory_catalog.jones.books

As you can see, the catalog name and schema name can be used to "qualify" (uniquely identify) the name of
a database object such as a table. Object names can be qualified in all DML statements by using the syntax:

catalog_name.schema_name.database_object

or

catalog_name.user_id.database_object

For example:

SELECT cust_name FROM accounting_dept.smith.overdue_bills;

You can qualify one or more database objects with a schema name, whether or not you specify a catalog name.
The syntax is:

schema_name.database_object_name

or

user_id.database_object_name

For example,

161

5.6.4 Uniquely Identifying Objects within Catalogs and Schemas

SELECT SUM(sales_tax) FROM jones.invoices;

To use a schema name with a database object, you must have already created the schema.

By default, database objects that are created without schema names are qualified using the user ID of the
database object's creator. For example:

user_id.table_name

Catalog and schema contexts are set using the SET CATALOG or SET SCHEMA statement.

If a catalog context is not set using SET CATALOG, then all database object names are resolved by using
the default catalog name.

Note

When creating a new database or converting an old database to a new format, the user is prompted
to specify a default catalog name for the database system catalog. Users can access the default catalog
name without knowing this specified default catalog name. For example, users can specify the following
syntax to access the system catalog:

""._SYSTEM.table

solidDB translates the empty string ("") specified as a catalog name to the default catalog name.
solidDB also provides for automatic resolution of _SYSTEM schema to the system catalog, even
when users provide no catalog name.

The following SQL statements provide examples of creating catalogs and schemas. Refer to Appendix B,
solidDB SQL Syntax, for a formal definition of the solidDB SQL statements.

5.6.5 Examples of SQL Statements

Below are some examples of SQL statements for managing database objects.

Creating a Catalog

CREATE CATALOG catalog_name

162

5.6.5 Examples of SQL Statements

Only the creator of the database or users having SYS_ADMIN_ROLE have privileges to create or drop
catalogs.

The following example creates a catalog named C and assumes the userid is SMITH

CREATE CATALOG C;
SET CATALOG C;
CREATE TABLE T (i INTEGER);
SELECT * FROM T;
--The name T is resolved to C.SMITH.T

Setting a Catalog and Schema Context

The following example sets a catalog context to C
and the schema context to S.

SET CATALOG C;
SET SCHEMA S;
CREATE TABLE T (i INTEGER);
SELECT * FROM T;
-- The name T is resolved to C.S.T

Deleting a Catalog

DROP CATALOG catalog_name

The following example deletes the catalog named C.

DROP CATALOG C;

Creating a Schema

CREATE SCHEMA schema_name

Any database user can create a schema; however, the user must have permission to create the objects that
pertain to the schema (for example, CREATE PROCEDURE, CREATE TABLE, etc.).

163

5.6.5 Examples of SQL Statements

Note that creating a schema does not implicitly make that new schema the current/default schema. You must
explicitly set that schema with the SET SCHEMA statement if you want the new schema to become the current
schema.

The following example creates a schema named FINANCE and assumes the user id is SMITH:

CREATE SCHEMA FINANCE;
CREATE TABLE EMPLOYEE (EMP_ID INTEGER);
-- NOTE: The employee table is qualified to SMITH.EMPLOYEE, not
-- FINANCE.EMPLOYEE. Creating a schema does not implicitly make that
-- new schema the current/default schema.
SET SCHEMA FINANCE;
CREATE TABLE EMPLOYEE (ID INTEGER);
SELECT ID FROM EMPLOYEE;
-- In this case, the table is qualified to FINANCE.EMPLOYEE

Deleting a Schema

DROP SCHEMA schema_name

The following example deletes the schema named FINANCE.

DROP SCHEMA FINANCE;

164

5.6.5 Examples of SQL Statements

Chapter 6. Managing Transactions
This chapter concentrates on transaction management. To be more specific, this chapter explains how to
manage transactions, how to deal with concurrency control and locking, and how to choose the durability
level.

6.1 Managing Transactions
A transaction is a group of SQL statements treated as a single unit of work; either all the statements are executed
as a group, or none are executed. This section assumes you know the fundamentals for creating transactions
using standard SQL statements. It describes how solidDB SQL lets you handle transaction behavior, concurrency
control, and isolation levels.

6.1.1 Defining Read-Only and Read-Write Transactions

To define a transaction to be read-only or read-write, use the following SQL commands:

SET TRANSACTION { READ ONLY | READ WRITE }

The following options are available with this command.

• READ ONLY

Use this option for a read only transaction.

• READ WRITE

Use this option for a read and write transaction. This option is the default.

Note

To detect conflicts between transactions, use the standard ANSI SQL command SET TRANSACTION
ISOLATION LEVEL to define the transaction with a Repeatable Read or Serializable isolation level.
For details, read For details, read chapter Choosing Transaction Isolation Levels in solidDB Adminis-
tration Guide.

Transactions must be ended with the COMMIT WORK or ROLLBACK WORK commands unless autocommit
is used.

165

6.1.2 Setting Concurrency Control

Earlier, we discussed the theory behind concurrency control ("locking"). This section explains some of the
commands used in specifying what type of concurrency control you would like to use.

Setting Pessimistic and Mixed Concurrency Control

By default, solidDB uses optimistic concurrency control. When necessary, you can also use pessimistic (row-
level locking) or mixed concurrency control methods. Pessimistic concurrency control is more appropriate,
for example, in applications that contain small tables that are frequently updated. In the case of these so-called
hotspots, conflicts are so probable that optimistic concurrency control wastes effort in rolling back conflicting
transactions.

Mixed concurrency control is available by setting individual tables to optimistic or pessimistic. Mixed con-
currency control is a combination of row-level pessimistic locking and optimistic concurrency control. By
turning on row-level locking table-by-table, you can specify that a single transaction use both concurrency
control methods simultaneously. This functionality is available for both read-only and read-write transactions.

Note

Pessimistic table level locks in shared mode are possible with tables that are synchronized. This
functionality provides users with the option to run some operations for synchronization in pessimistic
mode even with optimistic tables. For example, when a REFRESH is executed in pessimistic mode
in a replica, solidDB locks all tables in shared mode; later, if necessary, the server can "promote"
these locks to exclusive table locks. This is done in a few synchronization statements when optional
keyword PESSIMISTIC is specified. Note that read operations do not use any locks.

To set individual tables for optimistic or pessimistic concurrency, use the following SQL command:

ALTER TABLE base_table_name SET {OPTIMISTIC | PESSIMISTIC}

Note that by default all tables are set for optimistic.

You can also set a database-wide default in the [General] section of the configuration file with the following
parameter:

Pessimistic = yes

When you specify PESSIMISTIC concurrency control, the server places locks on rows to control the level
of consistency and concurrency when users are submitting queries or updates to rows.

166

6.1.2 Setting Concurrency Control

Setting Lock Timeout

The lock timeout setting is the time in seconds that the engine waits for a lock to be released. By default, lock
timeout is set to 30 seconds. When the timeout interval is reached, solidDB terminates the timed-out statement.
For example, if one user is querying a specific row in a table and a second user tries to update data in the same
row, the update will not go through until the first user's query is completed (or times out). If the first user's
query is completed and the second user's query hasn't timed out yet, then a lock is issued for the second user's
update transaction. If the first user doesn't finish before the second user times out, then the second user's
statement is terminated by the server.

You can set the lock timeout with the following SQL command:

SET LOCK TIMEOUT timeout_in_seconds

By default, the granularity is in seconds. The lock timeout can be set at millisecond granularity by adding
"MS" after the value, e.g.

SET LOCK TIMEOUT 10MS;

Without the "MS", the lock timeout will be in seconds.

Note that the maximum timeout is 1000 seconds (a little over 15 minutes). The server will not accept a longer
value.

Setting Lock Timeout for Optimistic Tables

When you use SELECT FOR UPDATE, the selected rows are locked even if the table's locking mode was
set to "optimistic". These rows must be locked to ensure that the update will be successful. By default, the
lock timeout in this situation is 0 seconds — in other words, either you immediately get the lock, or you get
an error message. If you would like the server to wait and try again to get the lock before giving up, then you
can use the following SQL command to set the lock timeout separately for optimistic tables.

SET OPTIMISTIC LOCK TIMEOUT seconds

6.2 Concurrency Control and Locking
In a system where multiple users may try to update the same data simultaneously, the system must limit con-
current access; in other words, the system must allow only one user at a time to change the data.

Although concurrency control is a basic capability of any good database system, the topic can become surpris-
ingly complex and there are some subtleties. This section of the manual attempts to explain how concurrency

167

6.2 Concurrency Control and Locking

control and locking behave from a user perspective. (We do not attempt to describe most of the internal
mechanisms by which the server actually implements concurrency control.) This section explains:

1. the purpose of concurrency control,

2. exclusive vs. shared locks,

3. pessimistic vs. optimistic concurrency control,

4. table locks,

5. lock duration,

6. transaction isolation levels,

7. miscellaneous info

See also Chapter 6, Managing Transactions for more information about locks and transactions.

6.2.1 The Purpose of Concurrency Control

The purpose of concurrency control is to prevent two different users (or two different connections by the same
user) from trying to update the same data at the same. Concurrency control can also prevent one user from
seeing out-of-date data while another user is part way through updating the same data. Below is a simple ex-
ample of why concurrency control is needed.

Suppose that your checking account contains $1,000. Suppose also that today you deposit $300 and you spend
$200 from that account. Obviously, at the end of the day your account should have $1,100. However, if the
account updates are done "simultaneously" rather than in sequence, one update might write over another update.

Suppose that at 11:00 AM bank teller #1 looks up your account and sees that you have $1,000. She subtracts
the $200 check, but is not able to save the updated account balance ($800) immediately. At 11:01 AM, bank
teller #2 looks up your account and still sees the $1,000 balance. She adds your $300 deposit and saves your
new account balance as $1,300. At 11:09 AM, bank teller #1 returns to her terminal, finishes entering and
saving the updated value that she calculated ($800). That $800 value writes over the $1300. At the end of the
day, your account has $800 when it should have had $1,100 ($1000 + 300 - 200).

To prevent two users from "simultaneously" updating data (and potentially writing over each other's updates),
database software uses a concurrency control mechanism. solidDB offers two different concurrency control
mechanisms. These are called "pessimistic concurrency control" (usually just called "locking") and "optimistic
concurrency control". (We will explain the reasons for these terms later.

For simplicity, in this example we will assume the system uses locking as its concurrency control mechanism.

168

6.2.1 The Purpose of Concurrency Control

A lock is a mechanism for limiting other users' access to a piece of data. When one user has a lock on a record,
the lock prevents other users from changing (and in some cases reading) that record.

When teller #1 starts working on your account, a "lock" is placed on the account; if teller #2 tries to read or
update your account while teller #1 is updating your account, teller #2 will not be given access and will typ-
ically get an error message. In most database servers, the lock is placed on an individual record in the database.
(We will discuss table-level locks later.) Using our banking example, a teller might get a lock on the record
that contains your checking account balance without also locking your savings account balance and without
locking the records of any other users' accounts.

Locking allows us to increase SAFETY at the cost of CONCURRENCY. We assure data integrity, but we
do it by preventing more than one user at a time from working with a particular piece of data.

6.2.2 EXCLUSIVE vs. SHARED LOCKS

An exclusive lock allows only one user/connection to access (read or update) a particular piece of data. A
shared lock allows multiple users to read data, but doesn't allow any of them to update the data.

If a user is updating data (as in our bank example) and is using pessimistic concurrency control (i.e. locking),
then that user must acquire an "exclusive" lock. No other user may read or update that data (e.g. bank account
record) while the exclusive lock is held. In addition, if you are using pessimistic concurrency control, no
other user may even view the record that has been exclusively locked. That prevents a user from seeing, for
example, a mix of updated data and not-yet-updated data. At any given time, only one user may have an ex-
clusive lock on a particular piece of data.

If both users only want to read (not change) the data, then each user can use a "shared" lock. For example, if
I am reading, but not updating, a record, then another user can look at that record at the same time. Many
users may have shared locks on the same item (record, table, etc.) at the same time. For example, you, your
spouse, your banker, and a credit rating agency could all look at your checking account balance simultaneously,
as long as none of you try to change it at the same time.

Shared and exclusive locks cannot be mixed. If you have an exclusive lock on a record, I cannot get a shared
lock (or an exclusive lock) on that same record.

6.2.3 PESSIMISTIC vs. OPTIMISTIC Concurrency Control

As we mentioned previously, solidDB offers two different types of concurrency control mechanisms, which
are known as "pessimistic" and "optimistic". We explain both methods below. By default, solidDB uses "op-
timistic" concurrency control.

Pessimistic concurrency control is also known as "locking". Locks allow multiple users to safely share a
database as long as all users are updating different data at the same time. For example, you can update Ms.

169

6.2.2 EXCLUSIVE vs. SHARED LOCKS

Smith's record while I update Mr. Kumar's record. (For the moment, I will simplify the discussion by focussing
only on update operations and exclusive locks, not read-only/select operations and shared locks.)

When locks are used, the locks are placed as soon as any piece of the row is updated. Thus it is impossible
for two users to update a row at the same time. As soon as one user gets a lock, no one else can process that
row. This is a safe, conceptually simple approach. The disadvantage is that it requires overhead for every
operation, whether or not two or more users are actually trying to access the same record. This overhead is
small, but adds up because every row that is updated requires a lock. Furthermore, every time that a user tries
to access a row, the system must also check whether the requested row(s) are already locked by another user
(or connection).

To extend our earlier example with bank tellers, when teller #1 gets a lock, teller #2 must check for that lock,
no matter how unlikely it is that teller #2 will want to work on the same record at the same time as teller #1.
Checking every record that you use will take some time. Furthermore, it's important that during that checking
no other teller tries to run the same check as teller #2 (otherwise they might both see at 10:59:59 that record
X is not in use, and then they might both try to lock it at 11:00:00). Thus even checking a lock can itself require
another lock to prevent two users from changing the locks at the time.

Pessimistic concurrency control (i.e. locking) is called "pessimistic" because the system assumes the worst
— it assumes that two users will want to update the same record at the same time, and then prevents that
possibility by locking the record, no matter how unlikely conflicts actually are.

An alternative approach to locking is called "optimistic concurrency control". Optimistic concurrency control
assumes that although conflicts are possible, they will be very rare. Instead of locking every record every time
that it is used, the software merely looks for indications that two users actually did try to update the same record
at the same time. If that evidence is found, then one user's updates are discarded (and of course the user is
informed).

Below is a description of one way that the server can detect conflicts after they occur (rather than preventing
them before they occur). For simplicity, we'll assume that an update is done as the following series of actions:

1. Read the data from a disk drive into memory.

2. Update the data in memory.

3. Write the updated data back to the disk drive.

(The principle is the same even if the updated data is written to a device other than a disk drive.)

When using optimistic locking, each time that the server reads a record to try to update it, the server makes
a copy of the "version number" of the record and stores that copy for later reference. When it's time to write
the updated data back to the disk drive, the server compares the original version number that it read with the
version number that the disk drive now contains. If the version numbers are the same, then no one else changed

170

6.2.3 PESSIMISTIC vs. OPTIMISTIC Concurrency Control

the record and we can write our updated value. However, if the value we originally read and the current value
on the disk are not the same, then someone has changed the data since we read it, and whatever operation we
did is probably out-of-date, so we discard our version of the data and give the user an error message. Naturally,
each time that we update a record, we also update the version number.

When you use optimistic locking, you don't find out there's a conflict until just before you write the updated
data. In pessimistic locking, you find out there's a conflict as soon as you try to read the data. To use our
analogy with banks again, pessimistic locking is like having a guard at the bank door who checks your account
number when you try to enter; if someone else (a spouse, or a merchant to whom you wrote a check) is already
in the bank accessing your account, then you can't enter until that other person finishes her transaction and
leaves. Optimistic locking, on the other hand, allows you to walk into the bank at any time and try to do your
business, but at the risk that as you are walking out the door the bank guard will tell you that your transaction
conflicted with someone else's and you'll have to go back and do the transaction again.

Optimistic and pessimistic concurrency control differ in another important way besides the time at which
conflicts are detected and error messages are issued. Pessimistic locking allows one user to not only block
another user from updating the same record, but even from reading that record. If you use pessimistic locking
and you get an exclusive lock, then no other user can even read that record. With optimistic locking, however,
we don't check for conflicts except at the time that we write updated data to disk. If user1 updates a record
and user2 only wants to read it, then user2 simply reads whatever data is on the disk and then proceeds, without
checking whether the data is locked. User2 might see slightly out-of-date information if user1 has read the
data and updated it but has not yet "committed" the transaction.

solidDB actually implements optimistic concurrency control in a more sophisticated way than this. Rather
than giving each user "whatever version of data is on the disk at the moment it is read", solidDB can store
multiple versions of each data row temporarily. Each user's transaction sees the database as it was at the time
that the transaction started. This way, the data that each user sees is consistent throughout the transaction, and
users are able to concurrently access the database. Data is always available to users because locking is not
used; access is improved since deadlocks no longer apply. (Again, however, users run the risk that their
changes will be thrown out if those changes conflict with another user's changes.) For details about how
multiversioning is done, read the section of solidDB Administration Guide titled solidDB Bonsai Tree Mul-
tiversioning and Concurrency Control.

The descriptions above of optimistic and pessimistic concurrency control are slightly simplified. Even if a
table uses pessimistic locking, and even if a record within that table has an exclusive lock, another user may
execute read operations on the locked record under specific conditions. If the reader explicitly sets her trans-
action to be a read-only transaction, then she can use versioning rather than locking. This only occurs if the
user explicitly declares the transaction as read only by issuing the command:

SET TRANSACTION READ ONLY;

171

6.2.3 PESSIMISTIC vs. OPTIMISTIC Concurrency Control

Thus, for example, user1 might put an exclusive lock on a record and update it. When the record is updated,
its version number changes. User2, who is using a read-only transaction, can read the previous version of the
record even though the record has an exclusive lock on it.

Note that pessimistic locking allows you an option that optimistic locking does not offer. We said earlier that
pessimistic locks fail "immediately" — i.e., if you try to get an exclusive lock on a record and another user
already has a lock (shared or exclusive) on that record, then you will be told that you can't get a lock. In fact,
solidDB allows you the option of either failing immediately or of waiting a specified number of seconds before
failing. You might specify a wait of 30 seconds; this means that if you initially try to get the lock and cannot,
the server will continue trying to get the lock until either it gets the lock or until the 30 seconds has elapsed.
In many cases, especially when transactions tend to be very short, you may find that setting a brief wait allows
you to continue activities that otherwise would have been blocked by locks.

This wait mechanism applies only to pessimistic locking, not to optimistic concurrency control. There is no
such thing as "waiting for an optimistic lock". If someone else changed the data since the time that you read
it, no amount of waiting will prevent a conflict that has already occurred. In fact, since optimistic concurrency
methods do not place locks, there is literally no "optimistic lock" to wait on.

Note

When executing SELECT FOR UPDATE, the server uses an update mode lock, which prevents other
users from reading or updating that row and ensures that the current user can update the row. For
more information, see the section called “Shared, Exclusive, and Update Locks”, Section 6.1.2,
“Setting Concurrency Control”, and the section called “Setting Lock Timeout for Optimistic Tables”.

Neither pessimistic nor optimistic concurrency control is "right" or "wrong". When properly implemented,
both approaches ensure that your data is properly updated. In most scenarios, optimistic concurrency control
is more efficient and offers higher performance, but in some scenarios pessimistic locking is more appropriate.
In situations where there are a lot of updates and relatively high chances of users trying to update data at the
same time, you probably want to use pessimistic locking. If the odds of conflict are very low (many records
and relatively few users, or very few updates and mostly "read" operations), then optimistic concurrency
control is usually the best choice. The decision will also be affected by how many records each user updates
at a time. In our bank example, we usually update only one account/record at a time. For some applications,
however, each operation may update a large number of records at a time (for example, the bank might add
interest earnings to every account at the end of each month), virtually assuring that if two such applications
are running at the same time then they will have conflicts.

You can override optimistic locking and specify pessimistic locking instead. You can do this at the level of
individual tables. One table might follow the rules of optimistic locking while another table follows the rules
of pessimistic locking. Both tables can be used within the same transaction and even the same statement;
solidDB takes care of the details for you. For more details about how to specify optimistic vs. pessimistic,
see the section called “Setting the Concurrency (Locking) Mode to Optimistic or Pessimistic”.

172

6.2.3 PESSIMISTIC vs. OPTIMISTIC Concurrency Control

You might wonder whether "optimistic locking" is a true locking scheme at all. When we use optimistic
locking, we do not actually place any locks. Thus the name "optimistic locking" is misleading. However, op-
timistic locking serves the same purpose as pessimistic locking (it prevents overlapping updates), so it is
labeled "locking", even though the underlying mechanism is not a true lock.

Important

By default, solidDB servers use optimistic locking for disk-based tables. Optimistic locking allows
fast performance and high concurrency (access by multiple users), at the cost of occasionally "refusing"
to write data that was initially accepted but was found at the last second to conflict with another user's
changes.

On the other hand, in in-memory tables, only pessimistic concurrency control is available because it
leads to better memory preservation

Setting the Concurrency (Locking) Mode to Optimistic or Pessimistic

For in-memory tables that are used in transactions with an isolation level higher than READ COMMITTED,
the server will use pessimistic concurrency control.

For all other tables, the server uses the rules below (shown in declining order of precedence):

1. You may set the concurrency mode for a specific table by using the ALTER TABLE command, e.g.

ALTER TABLE MyTable SET PESSIMISTIC;
ALTER TABLE MyTable SET OPTIMISTIC;

2. You may set the default concurrency mode for all tables by setting the solid.ini configuration
parameter General.Pessimistic, e.g.

[General]
Pessimistic=yes

Note that this parameter takes effect only at the time that the server starts. If you manually edit the
solid.ini file, the change will not be visible until the server restarts.

Note also that this parameter cannot be set via an ADMIN COMMAND in versions up through and in-
cluding 4.0.

173

6.2.3 PESSIMISTIC vs. OPTIMISTIC Concurrency Control

3. If none of the above methods are used to specify the concurrency mode, then the server defaults to op-
timistic concurrency.

Since the value of the General.Pessimistic can change, the concurrency control for a table may change.
It is quite possible for a table to use optimistic concurrency control during one "execution" of the server, and
use pessimistic concurrency control during another execution.

For tables whose setting is based on the value of the General.Pessimistic parameter, the table uses
the current value of the General.Pessimistic parameter, not the value at the time that the table was
created.

Reading the Concurrency Mode

For in-memory tables that are used in transactions with an isolation level higher than READ COMMITTED,
the server will use pessimistic concurrency control, and you should ignore the rules below.

For all other tables, there is no single method of reading a table's concurrency mode. You must follow the
steps below to determine the concurrency mode for the desired table.

1. If a table's concurrency mode was set explicitly with the ALTER TABLE command, then the concurrency
mode for that table is recorded in the system table named SYS_TABLEMODES. You can read the value
by executing the following command:

SELECT SYS_TABLEMODES.ID, table_name,
FROM SYS_TABLES, SYS_TABLEMODES
WHERE SYS_TABLEMODES.ID = SYS_TABLES.ID;

Note that this works ONLY if you explicitly set the table's concurrency mode using the ALTER TABLE
command.

2. If a table's concurrency mode was not set with the ALTER TABLE command, then check the concurrency
control mode specified by the solid.ini file at the time that the server started. You can read this level
by executing the command:

ADMIN COMMAND 'describe parameter general.pessimistic';

If the value in the solid.ini file has not been changed since the server started, and if the value has
not been overridden by an ADMIN COMMAND, then of course you can determine the value by looking
at the solid.ini file.

174

6.2.3 PESSIMISTIC vs. OPTIMISTIC Concurrency Control

(Note: Prior to version 4.00.0031, the server did not properly recognize the ADMIN COMMAND to
display the value of the General.Pessimistic variable. This means that for earlier versions of the
server you will need to look at the value in the solid.ini file. If anyone changed the value in the
solid.ini file since the time that the server started, then you will not know the correct value.)

3. If none of the above apply, then the server will default to optimistic for all tables.

Shared, Exclusive, and Update Locks

The following lock modes are used only for rows in tables that are using pessimistic locking:

• SHARED

Multiple users can hold shared locks on the same row simultaneously. Shared locks are used on read-only
or SELECT operations. Shared locks allow many users to read data, but do not allow any users to change
that data.

• EXCLUSIVE

When one user has an exclusive lock on a row, no other lock of any type may be placed on that row. Thus
the user with the exclusive lock has exclusive access to that row. Exclusive locks are used on insert, update,
and delete operations.

• UPDATE

When a user accesses a row with the SELECT... FOR UPDATE statement, the row is locked with an update
mode lock. This means that no other user can read or update the row, and ensures the current user can
later update the row. Update locks are similar to exclusive locks. The main difference between the two is
that you can acquire an update lock when another user already has a shared lock on the same record. This
lets the holder of the update lock read data without excluding other users; however, once the holder of the
update lock changes the data, the update lock is converted to an exclusive lock. A surprising characteristic
of update locks is that they are asymmetric with respect to shared locks. A user may acquire an update
lock on a record that already has a shared lock; however, a user may not acquire a shared lock on a record
that already has an update lock. Because an update lock prevents subsequent read locks, it is easier to
convert the update lock to an exclusive lock.

6.2.4 Table Locks

So far, we've talked primarily about locking individual rows in a table, such as the bank account information
that contains your checking account balance. The server allows table-level locks as well as row-level locks.
Many of the principles that apply to locks on individual records also apply to locks on tables.

175

6.2.4 Table Locks

Why would you want to lock a table? Imagine that you want to alter a table to add a new column. You don't
want anyone else to try to add a column with the same name at the same time.

Therefore, when you execute an ALTER TABLE operation, you get a shared lock on that table. That allows
other users to continue to read data from the table, but prevents them from making changes to the table. If
another user wants to do DDL operations (such as ALTER TABLE) on the same table at the same time, he
or she will either have to wait or will get an error message.

Thus basic table locking has much the same purpose and mechanism as record locking. However, there are
some additional situations in which table locking is used; it's not always just because one user is trying to
update the structure of the table.

Imagine that you are updating a record in a table; for example, perhaps you are updating a customer's home
phone number. Meanwhile, another user decides to change the table, dropping the telephone number column
and adding an email address column. If we allowed another user to drop the telephone number column and
then allowed you to try to write an updated telephone number to that column that no longer exists, the data
would undoubtedly be corrupted. Therefore, when a user acquires a shared lock or an exclusive lock on a record
in a table, the user also implicitly acquires a lock (usually a shared lock) on the entire table. This prevents the
structure of the table from changing while users are in the middle of using any part of that table.

Table-level locks are always "pessimistic"; the server puts a real lock on the table rather than just looking at
versioning information. This is true even if the table is set to optimistic locking. (The terms here may be
confusing. Keep in mind that when you set the lock mode for a table, you are really setting the lock mode for
the rows in the table, not the table itself. In other words, you are setting the lock mode for row-level locks,
not table-level locks.)

Unless you are altering the table, the locks on tables are usually shared locks. These table locks usually have
a "timeout" of 0 seconds — if you can't get the lock immediately, then the server does not wait; it just gives
you an error message.

There is a third possible reason for locking an entire table. Suppose that you want to change every record in
the table within a single transaction. For example, suppose that it's 12:01 AM January 1st, and you want to
credit all of the savings accounts with the interest that they earned last year. You could acquire an individual
exclusive lock on each record in the table, but this is inefficient. You'd like to get an exclusive lock on the
entire table. Checking this one lock is more efficient than checking potential locks on every record in the
table. Naturally, if some other user has a lock on the table (such as the shared table lock that she acquires as
a result of locking any record in the table), then you won't be able to acquire an exclusive lock on that table.
The rules regarding exclusive/shared locks are the same for tables as for records: you can have as many shared
locks as you want, but only one exclusive lock may exist at a time; furthermore, you can't have a combination
of exclusive and shared locks.

176

6.2.4 Table Locks

When the server recognizes that a particular operation (such as an UPDATE statement without a where clause)
will affect every record in the table, the server itself can lock the entire table if it thinks that would be most
efficient, and if no conflicting locks on the table already exist.

Thus we see that table locks can be used for at least three purposes:

1. to protect against two users trying to change the table at the same time

2. to prevent the table from being changed while records within the table are being changed

3. to increase efficiency of operations that do mass updates

Most table-level locks are implicit — in other words, the server itself sets those locks when necessary. However,
you can also set table-level locks explicitly by using the LOCK TABLE command. This is useful when using
the Maintenance Mode feature set. See the chapter "Updating and Maintaining the Schema of a Distributed
System" in solidDB SmartFlow Data Replication Guide for more details.

Table-Level Locking

The EXCLUSIVE and SHARED lock modes (see the section called “Shared, Exclusive, and Update Locks”)
are used for both pessimistic and optimistic tables.

Note

By default, optimistic and pessimistic tables are always locked in shared mode. In addition, some
solidDB statements that are optionally run with the PESSIMISTIC keyword use EXCLUSIVE table
level locks even when the tables are optimistic.

6.2.5 Lock Duration

The purpose of a transaction (a sequence of statements that are all committed or rolled back together) is to
ensure that data is internally consistent. This may require locks to be held until the end of the transaction.

Let's review the subject of transactions first. Suppose that you just bought a new bicycle and paid for it by
check. The bank must subtract the price of the bicycle from your account and must add the price of the bicycle
to the bike store's account. These 2 operations must be done "together" or else money may seem to disappear
to, or appear from, nowhere. For example, suppose that we subtracted the money from your account, then
committed the transaction, and then failed to update the bike store's account (perhaps because a power failure
occurred immediately before we updated the store's account). You would be poorer, but the bike store would
be no richer. The money would seem to disappear (and you'd probably have a very angry bicycle dealer de-
manding that you pay again for something you've already paid for).

177

6.2.5 Lock Duration

If we put the two operations (subtracting from your account and adding to the store's account) into the same
transaction, then no money ever disappears. If the transaction is interrupted (and rolled back) for some reason
such as a power failure, then we can retry the same operation again later without risking the possibility of
charging you twice (or not paying the store at all).

Generally, an update lock is held from the time it is acquired until the time that the transaction completes (via
commit or rollback). If the lock were not held until the end of the transaction, then rollback might fail. (Imagine
what would happen if someone else updated the record after you updated it but before you finished your
transaction. If you have to roll back for some reason, the server would have to figure out whether to roll back
the other user's changes — or might simply lose those changes, even if the other user continued on and com-
mitted her transaction.)

In solidDB, shared locks ("read locks") are also held until the end of the transaction. solidDB servers differ
from some other servers in this regard. Some servers will release shared locks before the end of a transaction
if the Transaction Isolation Level is low enough.

You might wonder whether the transaction isolation level affects the server's behavior with regard to shared
locks if those shared locks are always held until the end of the transaction. There are still some differences
between the isolation levels, even when locks are held until the end of the transaction. For example, SERIAL-
IZABLE isolation level does additional checks. It checks also that no new rows are added to the result set
that the transaction should have seen. In other words, it prevents other users from inserting rows that would
have qualified for the result set that is in the transaction. For example, suppose that I have a SERIALIZABLE
transaction that has an update command like:

UPDATE customers SET x = y WHERE area_code = 415;

In a SERIALIZABLE transaction, the server does not allow other users to enter records with area_code=415
until the serializable transaction is committed.

See the next section for a more detailed discussion of transaction isolation.

6.2.6 TRANSACTION ISOLATION Levels

In a "simple" world, shared locks would be released as soon as you were done looking at the data. (Update
locks, as discussed above, are held until the end of the transaction.)

But the world is not always so simple. In some cases, a user may look at a record more than once in a single
transaction. For example, if you write a program that uses scroll cursors, your user may scroll back and forth
through a list of records, viewing the same record more than once. If the value of that record changed every
time that the user looked at it, even within the same transaction, the user might get quite confused. Therefore,
many database servers (especially those that comply with the ANSI and ISO standards for the SQL language),
allow you to extend the duration of read/shared locks. The idea is to ensure that the data looks the same every

178

6.2.6 TRANSACTION ISOLATION Levels

time you view it (within a single transaction). Once you read a record, you acquire a shared lock on that record,
and then hold it until the end of the transaction.

(This is really only one of the factors involved in transaction isolation level. The transaction isolation level
affects not only how long you lock a record, but also what you see. For example, on systems that (unlike
solidDB's) allow both "read uncommitted" (sometimes called "dirty read") and "read committed", your isolation
level affects what YOU see, not just what other users can and can't see because you've locked certain records.)

In solidDB, isolation levels may be set globally, with a configuration parameter, or per session and per
transaction. For more details, please refer to For details, read chapter Choosing Transaction Isolation Levels
in solidDB Administration Guide.

6.2.7 Miscellaneous Lock Information

All locks within a particular category (such as shared locks) are "equal". It does not matter who placed the
lock. Locks placed by a DBA are no more and no less "strong" than locks placed by any other user. It does
not matter whether the lock was executed as part of a statement typed in interactively, called from a compiled
remote application, or called from within the local application when using the AcceleratorLib. It does not
matter whether the lock was placed as a result of a statement inside a stored procedure or trigger.

With pessimistic locking, the first user to request a lock gets it. Once you have the lock, no other user or
connection can override your lock. In solidDB, the lock lasts until the end of the transaction or in the case of
"long" table locks, the lock lasts until you explicitly release it.

Note that some locks can be "escalated". For example, if you are using a scroll cursor and you acquire a shared
lock on a record, and then later within that same transaction you update that record, your shared lock may be
upgraded to an exclusive lock. Of course, getting an exclusive lock is only possible if there are no other locks
(shared or exclusive) on the table; if you and another user both have shared locks on the same record, then
the server cannot upgrade your shared lock to an exclusive lock until the other user drops her shared lock.

Notes on Table Locks

Although table locks are normally used with "Maintenance Mode" operations, the two features are independent.
You may use the table lock feature with or without the Maintenance Mode feature.

In the replica, exclusive table locks are issued implicitly on publication tables if refreshed with the PESSIM-
ISTIC keyword.

solidDB issues implicit table shared locks in all DDL and DML operations. These prevent one user from
dropping the table while another user is updating data in the table.

179

6.2.7 Miscellaneous Lock Information

6.2.8 Summary of Locking Information

Locks prevent two users from doing conflicting operations at the same time. Operations "conflict" if at least
one of the operations involves updating the data (via UPDATE, DELETE, INSERT, ALTER TABLE, etc.).
If all the operations are read-only operations (such as SELECT), then there is no conflict. The current version
of solidDB does not allow users to specify row-level locks explicitly. There is no "LOCK RECORD" command;
the server does all row-level locking for you. The server also does table-level locking for you. If you need to
set table-level locks explicitly, you may do so using the LOCK TABLE command.

6.3 Choosing the Transaction Durability
If you can afford to lose a small amount of recent data, and if performance is crucial to you, then you may
want to use relaxed durability. Relaxed durability is appropriate when each individual transaction is not crucial.
For example, if you are monitoring system performance and you want to store data on response times, you
may only be interested in average response times, which will not be significantly affected if you are missing
a few pieces of data. In fact, since measuring performance will itself affect performance (by using up resources
such as CPU time and I/O bandwidth), you probably want your performance tracking operations themselves
to have high performance (low cost) rather than high precision. Relaxed durability is appropriate in this situation.

On the other hand, if you are tracking financial data, such as bill payments, then you probably want to ensure
that 100% of your committed data is stored and recoverable. In this situation, you will want strict durability.

You should use relaxed durability ONLY when you can afford to lose a few of the most recent transactions.
Otherwise, use strict durability. If you are not sure whether strict or relaxed durability is appropriate, use strict
durability.

6.3.1 Setting the Transaction Durability Level

There are four ways to set the transaction durability level. These are listed below in descending order of pre-
cedence:

1. SET TRANSACTION DURABILITY

SET TRANSACTION DURABILITY { RELAXED | STRICT }

For example

SET TRANSACTION DURABILITY RELAXED;
SET TRANSACTION DURABILITY STRICT;

180

6.2.8 Summary of Locking Information

If you use the SET TRANSACTION DURABILITY command, then you specify the transaction durab-
ility on a per-transaction basis. The command affects only the current transaction.

2. SET DURABILITY

SET DURABILITY { RELAXED | STRICT }

For example

SET DURABILITY RELAXED;
SET DURABILITY STRICT;

If you use the SET DURABILITY command, then you specify the transaction durability on a per-session
basis. A session is the time between connecting and disconnecting to the server. Each user has a separate
session, even if the sessions overlap in time. In fact, a single user may establish more than one session
(for example, by running multiple copies of solsql, or SolidConsole, or by writing a program that makes
multiple connections to the same server). When you specify the transaction durability level by using the
SET DURABILITY statement, you are specifying it only for the session in which the command is issued.
Your choice will not affect any other user, any other open session that you yourself currently have, or
any future session that you may have. Each user session may set its own transaction durability level,
based on how important it is for the session not to lose any data.

The effect of this statement lasts until the end of the session, or until another SET DURABILITY command
is issued.

3. Setting the DurabilityLevel parameter in the solid.inii configuration file.

[Logging]
DurabilityLevel=3

See chapter DurabilityLevel in solidDB SmartFlow Data Replication Guide.

This setting affects all users.

This parameter can be changed dynamically. If you want to change the default setting while the server
is running, you may do so by using the following command:

ADMIN COMMAND 'parameter Logging.DurabilityLevel={1 | 2 | 3}'

If you execute this command, it will take effect immediately.

181

6.3.1 Setting the Transaction Durability Level

4. By default, if you do not set the transaction durability level using any of the methods above, the server
will use strict durability.

If you are using strict durability, you may also set an additional configuration parameter (LogWriteMode),
which also influences performance. For details about LogWriteMode, see its description in solidDB Admin-
istration Guide.

182

6.3.1 Setting the Transaction Durability Level

Chapter 7. Diagnostics and
Troubleshooting
This chapter provides information on the following solidDB diagnostic tools:

• SQL info facility and the EXPLAIN PLAN FOR statement used to tune your application and identify in-
efficient SQL statements in your application.

• Tracing facilities for stored procedures and triggers

You can use these facilities to observe performance, troubleshoot problems, and produce high quality problem
reports. These reports let you pinpoint the source of your problems by isolating them under product categories
(such as solidDB ODBC API, solidDB ODBC Driver, solidDB JDBC Driver, etc.).

7.1 Observing Performance
You can use the SQL Info facility to provide information on a SQL statement and the SQL statement EXPLAIN
PLAN FOR to show the execution graph that the SQL optimizer selected for a given SQL statement. Typically,
if you need to contact solidDB technical support, you will be asked to provide the SQL statement, EXPLAIN
PLAN output, and SQL Info output from the EXPLAIN PLAN run with info level 8 for more extensive trace
output.

7.1.1 SQL Info Facility

Run your application with the SQL Info facility enabled. The SQL Info facility generates information for
each SQL statement processed by solidDB.

The Info parameter in the [SQL] section specifies the tracing level on the SQL parser and optimizer as an
integer between 0 (no tracing) and 8 (solidDB info from every fetched row). Trace information will be output
to the file named soltrace.out in the solidDB directory.

Example:

[SQL]
info = 1

183

Table 7.1. SQL Info Levels

InformationInfo value

no output0

table, index, and view info in SQL format1

SQL execution graphs (for solidDB technical support use only)2

some SQL estimate info, solidDB selected key name3

all SQL estimate info, solidDB selected key info4

solidDB info also from discarded keys5

solidDB table level info6

SQL info from every fetched row7

solidDB info from every fetched row8

The SQL Info facility can also be turned on with the following SQL statement (this sets SQL Info on only
for the client that executes the statement):

SET SQL INFO ON LEVEL info_value FILE file_name

and turned off with the following SQL statement:

SET SQL INFO OFF

Example:

SET SQL INFO ON LEVEL 1 FILE 'my_query.txt'

7.1.2 The EXPLAIN PLAN FOR Statement

The syntax of the EXPLAIN PLAN FOR statement is:

EXPLAIN PLAN FOR sql_statement

The EXPLAIN PLAN FOR statement is used to show the execution plan that the SQL optimizer has selected
for a given SQL statement. An execution plan is a series of primitive operations, and an ordering of these

184

7.1.2 The EXPLAIN PLAN FOR Statement

operations, that solidDB performs to execute the statement. Each operation in the execution plan is called a
unit.

Table 7.2. EXPLAIN PLAN FOR Units

DescriptionUnit

Join unit joins two or more tables. The join can be done by using loop join or
merge join.

JOIN UNIT*

The table unit is used to fetch the data rows from a table or index.TABLE UNIT

Order unit is used to order rows for grouping or to satisfy ORDER BY. The
ordering can be done in memory or using an external disk sorter.

ORDER UNIT

Group unit is used to do grouping and aggregate calculation (SUM, MIN,
etc.).

GROUP UNIT

Union unit performs the UNION operation. The unit can be done by using
loop join or merge join.

UNION UNIT*

Intersect unit performs the INTERSECT operation. The unit can be done by
using loop join or merge join.

INTERSECT UNIT*

Except unit performs the EXCEPT operation. The unit can be done by using
loop join or merge join.

EXCEPT UNIT*

*This unit is generated also for queries that reference only a single table. In that case no join is executed in
the unit; it simply passes the rows without manipulating them.

The table returned by the EXPLAIN PLAN FOR statement contains the following columns.

Table 7.3. Explain Plan Table Columns

DescriptionColumn Name

The output row number, used only to guarantee that the rows are unique.ID

This is the internal unit id in the SQL interpreter. Each unit has a different id.
The unit id is a sparse sequence of numbers, because the SQL interpreter

UNIT_ID

generates unit ids also for those units that are removed during the optimization
phase. If more than one row has the same unit id it means that those rows be-
long to the same unit. For formatting reasons the info from one unit may be
divided into several different rows.

Parent unit id for the unit. The parent id number refers to the id in the UNIT_ID
column.

PAR_ID

185

7.1.2 The EXPLAIN PLAN FOR Statement

DescriptionColumn Name

For join, union, intersect, and except units there is a join path which specifies
which tables are joined in the unit and the join order for tables. The join path

JOIN_PATH

number refers to the unit id in the UNIT_ID column. It means that the input
to the unit comes from that unit. The order in which the tables are joined is
the order in which the join path is listed. The first listed table is the outermost
table in a loop join.

Unit type is the execution graph unit type.UNIT_TYPE

Info column is reserved for additional information. It may contain, for example,
index usage, the database table name and constraints used in the database en-

INFO

gine to select rows. Note that the constraints listed here may not match those
constraints given in the SQL statement.

The following texts may exist in the INFO column for different types of units.

Table 7.4. Texts in the Unit INFO Column

DescriptionText in Info columnUnit type

The table unit refers to table tablename.tablenameTABLE UNIT

The constraints that are passed to the database en-
gine are listed. If for example in joins the constraint

constraintsTABLE UNIT

value is not known in advance, the constraint value
is displayed as NULL.

Full table scan is used to search for rows.SCAN TABLETABLE UNIT

Index indexname is used to search for rows. If
all selected columns are found from an index,

SCAN indexnameTABLE UNIT

sometimes it is faster to scan the index instead of
the entire table because the index has fewer disk
blocks.

The primary key is used to search rows. This differs
from SCAN in that the whole table is not scanned

PRIMARY KEYTABLE UNIT

because there is a limiting constraint to the primary
key attributes.

Index indexname is used to search for rows. For
every matching index row, the actual data row is
fetched separately.

INDEX indexnameTABLE UNIT

Index indexname is used to search for rows. All
selected columns are in the index, so the actual data

INDEX ONLY index-
name

TABLE UNIT

186

7.1.2 The EXPLAIN PLAN FOR Statement

DescriptionText in Info columnUnit type

rows are not fetched separately by reading from the
table.

Merge join is used to join the tables.MERGE JOINJOIN UNIT

A 3-merge join is used to merge the tables.3-MERGE JOINJOIN UNIT

Loop join is used to join the tables.LOOP JOINJOIN UNIT

No ordering is required, the rows are retrieved in
correct order from the database engine.

NO ORDERING RE-
QUIRED

ORDER UNIT

External sorter is used to sort the rows. To enable
external sorter, the temporary directory name must

EXTERNAL SORTORDER UNIT

be specified in the Sorter section of the configura-
tion file.

For distinct result sets, an internal sorter (in-memory
sorter) is used for sorting and the rows retrieved

FIELD n USED AS PAR-
TIAL ORDER

ORDER UNIT

from the database engine are partially sorted with
column number n. The partial ordering helps the
internal sorter avoid multiple passes over the data.

An internal sorter (in-memory sorter) is used for
sorting and the rows retrieved from the database

n FIELDS USED FOR
PARTIAL SORT

ORDER UNIT

engine are partially sorted with n fields. The partial
ordering helps the internal sorter to avoid multiple
passes over the data.

Internal sorter is used for sorting. The rows are re-
trieved in random order from the database engine
to the sorter.

NO PARTIAL SORTORDER UNIT

Merge join is used to join the tables.MERGE JOINUNION UNIT

A 3-merge join is used to merge the tables.3-MERGE JOINUNION UNIT

Loop join is used to join the tables.LOOP JOINUNION UNIT

Merge join is used to join the tables.MERGE JOININTERSECT UNIT

A 3-merge join is used to merge the tables.3-MERGE JOININTERSECT UNIT

Loop join is used to join the tables.LOOP JOININTERSECT UNIT

Merge join is used to join the tables.MERGE JOINEXCEPT UNIT

A 3-merge join is used to merge the tables.3-MERGE JOINEXCEPT UNIT

Loop join is used to join the tables.LOOP JOINEXCEPT UNIT

187

7.1.2 The EXPLAIN PLAN FOR Statement

Example 1

EXPLAIN PLAN FOR SELECT * FROM TENKTUP1 WHERE
UNIQUE2_NI BETWEEN 0 AND 99;

INFOUNIT_TYPEJOIN_PATHPAR_IDUNIT_IDID

JOIN UNIT3121

TENKTUP1TABLE UNIT0232

FULL SCAN0233

UNIQUE2_NI <= 990234

UNIQUE2_NI >= 00235

0236

Execution graph:

JOIN UNIT 2 gets input from TABLE UNIT 3

TABLE UNIT 3 for table TENKTUP1 does a full table scan with constraints UNIQUE2_NI <= 99 and
UNIQUE2_NI >= 0

Figure 7.1. Execution Graph 1

Example 2

EXPLAIN PLAN FOR SELECT * FROM TENKTUP1, TENKTUP2
WHERE TENKTUP1.UNIQUE2 > 4000 AND TENKTUP1.UNIQUE2 < 4500
AND TENKTUP1.UNIQUE2 = TENKTUP2.UNIQUE2;

188

7.1.2 The EXPLAIN PLAN FOR Statement

INFOUNIT_TYPEJOIN_PATHPAR_IDUNIT_IDID

MERGE JOINJOIN UNIT9161

10162

NO ORDERING RE-
QUIRED

ORDER UNIT0693

TENKTUP2TABLE UNIT0984

PRIMARY KEY0985

UNIQUE2 < 45000986

UNIQUE2 > 40000987

0988

NO ORDERING RE-
QUIRED

ORDER UNIT06109

TENKTUP1TABLE UNIT010710

PRIMARY KEY010711

UNIQUE2 < 4500010712

UNIQUE2 > 4000010713

010714

Execution Graph:

JOIN UNIT 6 the input from order units 9 and 10 are joined using merge join algorithm

ORDER UNIT 9 orders the input from TABLE UNIT 8. Since the data is retrieved in correct order, no real
ordering is needed

ORDER UNIT 10 orders the input from TABLE UNIT 7. Since the data is retrieved in correct order, no real
ordering is needed

TABLE UNIT 8: rows are fetched from table TENKTUP2 using primary key. Constraints UNIQUE2 < 4500
and UNIQUE2 > 4000 are used to select the rows

TABLE UNIT 7: rows are fetched from table TENKTUP1 using primary key. Constraints UNIQUE2 < 4500
and UNIQUE2 > 4000 are used to select the rows

189

7.1.2 The EXPLAIN PLAN FOR Statement

Figure 7.2. Execution Graph 2

7.2 Problem Reporting
solidDB offers sophisticated diagnostic tools and methods for producing high quality problem reports with
very limited effort. Use the diagnostic tools to capture all the relevant information about the problem.

All problem reports should contain the following files and information:

• solid.ini

• license number

• solmsg.out

• solerror.out

• soltrace.out

• problem description

• steps to reproduce the problem

• all error messages and codes

• contact information, preferably email address of the contact person

190

7.2 Problem Reporting

7.3 Problem Categories
Most problems can be divided into the following categories:

• solidDB ODBC API

• solidDB ODBC or JDBC Driver

• UNIFACE driver for solidDB

• Communication problems between the application or an external application (if using the AcceleratorLib)
and solidDB.

The following pages include detailed instructions to produce a proper problem report for each problem type.
Please follow the guidelines carefully.

7.3.1 solidDB ODBC API Problems

If the problem concerns the performance of a specific solidDB ODBC API or SQL statement, you should run
SQL info facility at level 4 and include the generated soltrace.out file into your problem report. This file
contains the following information:

• create table statements

• create view statements

• create index statements

• SQL statement(s)

7.3.2 solidDB ODBC Driver Problems

If the problem concerns the performance of solidDB ODBC Driver, please include the following information:

• solidDB ODBC Driver name, version, and size

• ODBC Driver Manager version and size

If the problem concerns the cooperation of solidDB and any third party standard software package, please
include the following information:

• Full name of the software

191

7.3 Problem Categories

• Version and language

• Manufacturer

• Error messages from the third party software package

Use ODBC trace option to get a log of the ODBC statements and include it in your problem report.

7.3.3 solidDB JDBC Driver Problems

If the problem is related to the solidDB JDBC Driver, please include the following information in your
problem report:

• Exact version of JDK or JRK used

• Name, size, and date of the SOLIDDriver class package

• Contents of DriverManager.setLogStream(someOutputStream) output, if available

• Call stack (that is, Exception.printStackTract() output) of the application, if an exception has
occurred in the application

7.3.4 UNIFACE Driver for solidDB Problems

If the problem concerns the performance of solidDB UNIFACE Driver, please include the following inform-
ation:

• solidDB UNIFACE Driver version and size

• UNIFACE version and platform

• Contents of the UNIFACE message frame

• Error codes from the driver, $STATUS, $ERROR

• All necessary files to reproduce the problem (TRXs, SQL scripts, USYS.ASN etc.)

7.3.5 Communication between a Client and Server

If the problem concerns the performance of the communication between a client and server use the Network
trace facility and include the generated trace files into your problem report. Please include the following in-
formation:

192

7.3.3 solidDB JDBC Driver Problems

• solidDB communication DLLs used: version and size

• other communication DLLs used: version and size

• description of the network configuration

7.4 Tracing Facilities for Stored Procedures and Trig-
gers
When debugging a stored procedure or a trigger, you may want to add "trace" commands to see which parts
of the code are executing. Or you may want to trace every statement within the procedure or trigger. The
following two sections explain how to do these things.

7.4.1 User-Definable Trace Output from Procedure Code

From inside your stored procedure or trigger, you can send "trace" output to the soltrace.out file by
using the following command:

WRITETRACE (entry VARCHAR)

You can turn the output on or off by using the command:

ADMIN COMMAND 'usertrace { on | off }
user username { procedure | trigger | table } entity_name'

The "entity_name" is the name of the procedure, trigger, or table for which you want to turn tracing on or off.
If the keyword "table" is specified, then all triggers on that table are traced.

You may turn on (or off) tracing for a specified procedure, a specified trigger, or for all triggers on a specified
table.

Trace is activated only when the specified user calls the procedure / trigger. This is useful, for example, when
tracing propagated procedure calls in a SmartFlow master.

Turning on tracing turns it on in all procedure/trigger calls by this user, not just calls from the connection that
switched the trace on. If you have multiple connections that use the same username, then all of the calls in
all of those connections will be traced. Furthermore, the tracing will be done on calls propagated to (executed
on) the master, as well as the calls executed on the replica.

193

7.4 Tracing Facilities for Stored Procedures and Triggers

7.4.2 Procedure Execution Trace

If you must trace EVERY statement in your stored procedure or trigger, then you don't want to spend time to
write a WRITETRACE statement for every SQL statement. Instead, you can simply turn on "PROCTRACE",
which traces every statement inside the specified stored procedure or trigger. As with USERTRACE, you can
turn proctrace on for a specified procedure, a specified trigger, or for all triggers associated with a particular
table. The syntax is:

ADMIN COMMAND 'proctrace { on | off }
user username { procedure | trigger | table } entity_name'

The "entity_name" is the name of the procedure, trigger, or table for which you want to turn tracing on or off.

Trace is activated only when the specified user calls the procedure / trigger. This is useful, for example, when
tracing propagated procedure calls in a SmartFlow master.

Turning on tracing turns it on in all procedure/trigger calls by this user, not just calls from the connection that
switched the trace on. If you have multiple connections that use the same username, then all of the calls in
all of those connections will be traced. Furthermore, the tracing will be done on calls propagated to (executed
on) the master, as well as the calls executed on the replica.

If the keyword "table" is specified, then all triggers on that table are traced.

Example:

"create procedure trace_sample(i integer)
returns(j integer)
begin
 j := 2*i;
 return row;
end";
commit work;

admin command 'proctrace on user DBA procedure TRACE_SAMPLE';
call trace_sample(2);

OUTPUT FROM EXAMPLE:

23.01 17:25:17 ---- PROCEDURE 'DBA.DBA.TRACE_SAMPLE' TRACE BEGIN ----
0001:CREATE PROCEDURE TRACE_SAMPLE(I INTEGER)

194

7.4.2 Procedure Execution Trace

0002:RETURNS(J INTEGER)
0003:BEGIN
 --> I:=2
 --> J:=NULL
 --> SQLSUCCESS:=1
 --> SQLERRNUM:=NULL
 --> SQLERRSTR:=NULL
 --> SQLROWCOUNT:=NULL

0004: J := 2*I;
 --> J:=4
0005: RETURN ROW;
0006:END
23.01 17:25:17 ---- PROCEDURE 'DBA.DBA.TRACE_SAMPLE' TRACE END ----

7.5 Measuring and Improving Performance of START
AFTER COMMIT Statements

7.5.1 Tuning Performance of START AFTER COMMIT Statements

Background tasks can be controlled with SSC-API and admin commands (see the AcceleratorLib manual for
details). The task type SSC_TASK_BACKGROUND is used for the tasks that execute statements started
with START AFTER COMMIT. You can give this task type higher priority or lower priority, or you may
suspend this task type.

Note that there may be more than one of these tasks, but you cannot control them individually. In other words,
if you call SSCSuspendTaskClass for SSC_TASK_BACKGROUND, it will suspend all the background tasks.

7.5.2 Analyzing Failures in START AFTER COMMIT Statements

There is a limit on the number of uncommitted START AFTER COMMIT statements that may exist simul-
taneously. (By "uncommitted", we mean that the transaction in which the START AFTER COMMIT statement
was executed has not yet been committed. At this point, the body of the START AFTER COMMIT statement
— e.g. the procedure call — has not yet even started to execute.) If the maximum is reached, then an error is
returned when the next START AFTER COMMIT is issued. The maximum number is configurable in sol-
id.ini using the parameter named MaxStartStatements (for details, see the description of this para-
meter in solidDB Administration Guide).

195

7.5 Measuring and Improving Performance of START AFTER COMMIT
Statements

If a statement cannot be started, the reason for it is logged into the system table SYS_BACKGROUND-
JOB_INFO. Only failed START AFTER COMMIT statements are logged into this table. For more details
about this table, see Section D.1.3, “SYS_BACKGROUNDJOB_INFO”.

The user can retrieve the information from the table SYS_BACKGROUNDJOB_INFO using either an SQL
SELECT statement or by calling the system procedure SYS_GETBACKGROUNDJOB_INFO. The stored
procedure SYS_GETBACKGROUNDJOB_INFO returns the row that matches the given jobid of the START
AFTER COMMIT statement. For more details about SYS_GETBACKGROUNDJOB_INFO, see Section E.2.1,
“SYS_GETBACKGROUNDJOB_INFO”.

If you want to be notified when a statement fails to start, you can wait on the system event
SYS_EVENT_SACFAILED. See its description in Section F.1, “Miscellaneous Events” for details about this
event. The application can wait for this event and use the jobid to retrieve the error message from the system
table SYS_BACKGROUNDJOB_INFO.

196

7.5.2 Analyzing Failures in START AFTER COMMIT Statements

Chapter 8. Performance Tuning
This chapter discusses techniques that you can use to improve the performance of solidDB. The topics included
in this chapter are:

• Tuning SQL statements and applications

• Optimizing single-table SQL queries

• Using indexes to improve query performance

• Waiting on events

• Optimizing batch inserts and updates

• Using Optimizer hints for performance

• Diagnosing poor performance

For tips on optimizing SmartFlow data synchronization, see solidDB SmartFlow Data Replication Guide.

8.1 Tuning SQL Statements and Applications
Tuning the SQL statements, especially in applications where complex queries are involved, is generally the
most efficient means of improving the database performance.

Be sure to tune your application before tuning the RDBMS because:

• during application design you have control over the SQL statements and data to be processed

• you can improve performance even if you are unfamiliar with the internal working of the RDBMS you
are going to use

• if your application is not tuned well, it will not run well even on a well-tuned RDBMS

You should know what data your application processes, what are the SQL statements used, and what operations
the application performs on the data. For example, you can improve query performance when you keep SELECT
statements simple, avoiding unnecessary clauses and predicates.

197

8.1.1 Evaluating Application Performance

To isolate areas where performance is lacking in your application, the solidDB provides the following dia-
gnostic tools for observing database performance:

• SQL info facility

• EXPLAIN PLAN FOR statement

These tools are helpful in tuning your application and identifying any inefficient SQL statements in it. Read
Chapter 7, Diagnostics and Troubleshooting for additional information on how to use these tools.

In addition, the following commands provide useful information for evaluating performance.

• ADMIN COMMAND 'status'

This command returns statistics information from the server. For details, read about this command in
solidDB Administration Guide.

• ADMIN COMMAND 'perfmon'

The command returns detailed performance statistics from the server. For details, read about perfmon and
"Detailed DBMS Monitoring and Troubleshooting" in solidDB Administration Guide.

• ADMIN COMMAND 'trace'

This command switches tracing on for SQL statements and network communication. For complete syntax,
see the trace option syntax under Section B.1, “ADMIN COMMAND”.

8.1.2 Using Stored Procedure Language

Using stored procedures can speed up some operations in two ways:

• Statements in stored procedures are parsed and compiled once and then stored in compiled form. Statements
outside stored procedures are re-parsed and compiled every time that they are executed. Thus, putting
statements in stored procedures reduces overhead (parsing and compiling) if the statements are executed
more than once.

• If you have multiple statements inside a single stored procedure, calling that stored procedure once may
use fewer network "trips" than passing each statement individually from the client to the server.

198

8.1.1 Evaluating Application Performance

8.2 Optimizing Single-Table SQL Queries
solidDB provides a Simple SQL Optimization feature that increases performance with specific types of single-
table SQL queries. Performance improvements apply to SELECT, DELETE, and UPDATE statements. The
feature does not apply to INSERT statements.

Simple SQL Optimization is enabled/disabled by the SimpleSQLOpt parameter in the [SQL] section of
the solid.ini file. By default, this feature is turned on and the SimpleSQLOpt parameter does not appear
in the solid.ini file. To disable the feature, you must add the following lines to the solid.ini file:

[SQL]
SimpleSQLOpt=No

Once you have added these lines to the file, you can always enable the feature by specifying SimpleSQL-
Opt=Yes or removing the parameter from the [SQL] section. As always, remember that any changes to the
solid.ini file do not take effect until the server restarts.

When simple SQL optimization is turned on, solidDB automatically optimizes single-table SQL queries that
meet the following conditions:

• The statement accesses only a single table.

• The statement does not contain a view, subquery, UNION, INTERSECT, etc.

• The statement does not use ROWNUM.

• The statement does not use a solidDB sequence object that is used to retrieve sequence numbers.

Note that like other optimization techniques, the Simple SQL Optimization feature speeds up most queries,
but reduces performance for a few types of queries. If you find your particular queries run more slowly when
you are using simple SQL optimization, you can turn off the feature.

8.3 Using Indexes to Improve Query Performance
You can use indexes to improve the performance of queries. A query that references an indexed column in
its WHERE clause can use the index. If the query selects only the indexed column, the query can read the
indexed column value directly from the index, rather than from the table.

If all the fields in the SELECT list of a query are in an index, then the solidDB optimizer can simply use that
index, rather than doing an extra lookup to read the complete record. Similarly, if all the fields of a WHERE
clause are in an index, then the optimizer can use that index — if the information in the index is enough to

199

8.2 Optimizing Single-Table SQL Queries

prove that the record won't qualify for the WHERE clause, then the optimizer can avoid looking up the complete
record.

For example, suppose that we have a WHERE clause that refers to two or more columns, e.g.

WHERE col1 = x AND col2 >= a AND col2 <=b

Suppose further that we have an index that contains both col1 and col2, and that has either col1 or col2 as the
leading column of the key. For example, if we have an index on col2 + col3 + col1 then this index contains
both columns, and one of those columns (col2) is the leading column in the key. If the user's query is

SELECT col1, col4
 FROM table1
 WHERE col1 = x AND col2 >= a AND col2 <=b;

then we do not need to look up the complete record unless the search criteria are met. After all, if the search
criteria are not met, then we don't care what value col4 has and so we don't need to look up the full record.

If a table has a primary key, solidDB orders the rows on disk in the order of the values of the primary key.
Since the rows are physically in order by the primary key, the primary key itself serves as an index, and op-
timization tips that apply to indexes also apply to the primary key.

If the table does not have a user-specified primary key, then the rows are ordered using the ROWID. The
ROWID is assigned to each row when it is inserted, and each record gets a larger ROWID than the record
inserted before it. Thus, in tables without user-specified primary keys, the records are stored in the order in
which those rows were inserted. For more information about primary keys, read Section 5.4.2, “Primary Key
Indexes”.

Searches with row value constructor constraints are optimized to use an index if an index is available. For
efficiency, solidDB uses an index to resolve row value constructor constraints of the form (A, B, C) >= (1,
2, 3), where the operator may be any of the following: <, <=, >= and >. (The server does not use an index to
resolve row value constructor constraints that contain the operators =, !=, or <>. The server may, of course,
use an index to resolve other types of constraints that use =, !=, or <>.) For more information about row value
constructors, see Section 3.5.5, “Row Value Constructors”.

Indexes improve the performance of queries that select a small percentage of rows from a table. You should
consider using indexes for queries that select less than 15% of table rows.

200

8.3 Using Indexes to Improve Query Performance

8.3.1 Full Table Scan

If a query can use an index, solidDB must perform a full table scan to execute the query. This involves reading
all rows of a table sequentially. Each row is examined to determine whether it meets the criteria of the query's
WHERE clause. Finding a single row with an indexed query can be substantially faster than finding the row
with a full table scan. On the other hand, a query that selects more than 15% of a table's rows may be performed
faster by a full table scan than by an indexed query.

You should check every query using the EXPLAIN PLAN statement. (You should use your real data when
doing this, since the best plan will depend upon the actual amount of data and the characteristics of that data.)
The output from the EXPLAIN PLAN statement allows you to detect whether an index is really used and if
necessary you can redo the query or the index. Full table scans often cause slow response time for SELECT
queries, as well as excessive disk activity. To diagnose performance degradation problems, you can request
statistics on file operations using ADMIN COMMAND 'perfmon' as described in solidDB Administration
Guide (see the section titled "Detailed DBMS Monitoring and Troubleshooting").

To perform a full table scan, every block in the table is read. For each block, every row stored in the block is
read. To perform an indexed query, the rows are read in the order in which they appear in the index, regardless
of which blocks contain them. If a block contains more than one selected row it may be read more than once.
So, there are cases when a full table scan requires less I/O than an indexed query, if the result set is relatively
large.

8.3.2 Concatenated Indexes

An index can be made up of more than one column. Such an index is called a concatenated index. We recom-
mend using concatenated indexes when possible.

Whether or not a SQL statement uses a concatenated index is determined by the columns contained in the
WHERE clause of the SQL statement. A query can use a concatenated index if it references a leading portion
of the index in the WHERE clause. A leading portion of an index refers to the first column or columns specified
in the CREATE INDEX statement.

Example:

CREATE INDEX job_sal_deptno ON emp(job, sal, deptno);

This index can be used by these queries:

SELECT * FROM emp WHERE job = 'clerk' and sal =
800 and deptno = 20;

201

8.3.1 Full Table Scan

SELECT * FROM emp WHERE sal = 1250 and job = salesman;
SELECT job, sal FROM emp WHERE job = 'manager';

The following query does not contain the first column of the index in its WHERE clause and therefore cannot
use the index:

SELECT * FROM emp WHERE sal = 6000;

Choosing Columns to Index

The following list gives guidelines in choosing columns to index:

• You should create indexes on columns that are used frequently in WHERE clauses.

• You should create indexes on columns that are used frequently to join tables.

• You should create indexes on columns that are used frequently in ORDER BY clauses.

• You should create indexes on columns that have few of the same values or unique values in the table.

• You should not create indexes on small tables (tables that use only a few blocks) because a full table scan
may be faster than an indexed query.

• If possible, choose a primary key that orders the rows in the most appropriate order.

• If only one column of the concatenated index is used frequently in WHERE clauses, place that column
first in the CREATE INDEX statement.

• If more than one column in a concatenated index is used frequently in WHERE clauses, place the most
selective column first in the CREATE INDEX statement.

8.4 Waiting on Events
In many programs, you may have to wait for a particular condition to occur before you can perform a certain
task. In some cases, you may use a "while" loop to check whether the condition has occurred. solidDB provides
Events, which in some cases allow you to avoid wasting CPU time spinning in a loop waiting for a condition.

One (or more) clients or threads can wait on an event, and another client or thread can post that event. For
example, several threads might wait for a sensor to get a new piece of data. Another thread (working with
that sensor) can post an event indicating that the data is available. For more information about events, see
Section 4.11, “Using Events” and various sections of Appendix B, solidDB SQL Syntax, including Section B.12,
“CREATE EVENT”.

202

8.4 Waiting on Events

8.5 Optimizing Batch Inserts and Updates
It is highly recommended that you design a database schema that supports running a batch insert in primary
key order. Data in the database file is stored physically in the order defined by the primary key of the table.
If no primary key is defined, data is stored in the database file in the order it is written to the database. Database
operations (that is, reads and writes) always access data at the page level. The default page size of the database
is 8 KB.

If the batch write operations are performed in the order that supports the primary key, the caching algorithms
of the server are able to group the database file write operations. In this way, a larger number of rows are
written to the disk in one physical disk I/O operation. In the worst case, if the insert order is different from
the primary key order, each insert or delete operation requires re-writing a database page where only one row
has changed.

For these reasons, it makes sense to ensure that tables of a batch write operation have primary keys that match
the access order of the batch write operation. This type of database schema can make a significant difference
in the performance of the operation.

For example, assume you have the following kind of table:

CREATE TABLE USAGE_EVENT (
 EVENT_ID INTEGER NOT NULL PRIMARY KEY,
 DEVICE_ID INTEGER NOT NULL,
 EVENT_DATA VARCHAR NOT NULL);

In this table, EVENT_ID is a sequence number. The insert and delete operations are done in the order specified
by the EVENT_ID column, allowing for maximum efficiency.

Note that performance of batch write operations on this same table can be significantly worse if the first
column of the primary key were DEVICE_ID, but data was written to the database in the EVENT_ID order.
In this scenario, the number of file-I/O operations needed to complete the batch write operation increases
when the size of the table grows.

8.5.1 Increasing Speed of Batch Inserts and Updates

You can optimize the speed for large batch inserts and updates to solidDB. Following are guidelines for in-
creasing speed:

1. Check that you are running the application with the AUTOCOMMIT mode set off.

203

8.5 Optimizing Batch Inserts and Updates

solidDB ODBC Driver's default setting is AUTOCOMMIT. This is the standard setting according to the
ODBC specification. To set your application with AUTOCOMMIT off, call the SQLSetConnectOp-
tion function as in the following example:

rc = SQLSetConnectOption
(hdbc, SQL_AUTOCOMMIT, SQL_AUTOCOMMIT_OFF);

2. Do not use large transactions. Five hundred (500) rows is recommended as the initial transaction size.
The optimal value for the transaction size is dependent on the particular application; you may need to
experiment.

3. To make batch inserts faster, you can turn logging off. This, however, increases the risk of data loss
during system failure. In some environments, this trade-off is tolerable.

Number 1 and 2 of these guidelines are the most important actions you can take to increase the speed of batch
inserts. The actual rate of insertions also depends on your hardware, on the amount of data per row, and on
the existing indices for the table.

8.6 Using Optimizer Hints
Due to various conditions with the data, user query, and database, the SQL Optimizer is not always able to
choose the best possible execution plan. For example, for more efficiency, you may want to force a merge
join because you know, unlike the Optimizer, that your data is already sorted.

Or sometimes specific predicates in queries cause performance problems that the Optimizer cannot eliminate.
The Optimizer may be using an index that you know is not optimal. In this case, you may want to force the
Optimizer to use one that produces faster results.

Optimizer hints provide a way to have better control over response times to meet your performance needs.
Within a query, you can specify directives or hints to the Optimizer, which it then uses to determine its query
execution plan. Hints are detected through a pseudo comment syntax from SQL-92.

Hints are available for:

• Selecting merge or nested loop join

• Using a fixed join order as given in the from list

• Selecting internal or external sort

• Selecting a particular index

204

8.6 Using Optimizer Hints

• Selecting a table scan over an index scan

• Selecting sorting before or after grouping

You can place a hint(s) in a SQL statement as a static string, just after a SELECT, UPDATE, or DELETE
keyword. Hints are not allowed after the INSERT keyword.

Table name resolution in optimizer hints is the same as in any table name in a SQL statement. This means
that if there is a table alias name in the query, then you must use the alias, not the table name, in the optimizer
hints. For example:

SELECT
 --(* vendor(SOLID), product(Engine), option(hint)
 -- FULL SCAN emp_alias *)--
 emp_alias.emp_id, employee_name, dependent_name
FROM employee_table AS emp_alias LEFT OUTER JOIN dependent_table
AS dep_alias
 ON (dep_alias.emp_id = emp_alias.emp_id)
ORDER BY emp_alias.emp_id;

If you specify the table name when you should have specified the alias name, you will get the following error
message:

102: Unused optimizer hint.

If you are not using an alias and you are using a table that is in another schema and/or another catalog, then
make sure that in the hint you precede the table name with the schema and/or catalog name. For example:

SELECT
 --(* vendor(SOLID), product(Engine), option(hint)
 -- FULL SCAN sally_schema.employee_table *)--
 emp_id, employee_name
FROM sally_schema.employee_table;

When there is an error in a hint specification, then the whole SQL statement fails with an error message.

Hints are enabled and disabled using the following configuration parameter in solid.ini:

205

8.6 Using Optimizer Hints

[Hints]
EnableHints=YES | NO

The default is set to YES.

For more details on Optimizer Hints, including a description of possible hints and examples, refer to Sec-
tion B.49, “HINT”.

8.7 Diagnosing Poor Performance
There are different areas in solidDB that can result in performance degradation. In order to remedy performance
problems, you need to determine the underlying cause. Following is a table that lists common symptoms of
poor performance, possible causes, and directs you to the section in this chapter for the remedy.

Table 8.1. Diagnosing Poor Performance

SolutionDiagnosisSymptoms

If index definitions are missing, cre-
ate new indices or modify existing

Slow response time for a single
query. Other concurrent access to

• Inefficient usage of indexes in
the query.

the database is affected. Disk may
be busy.

ones to match the indexing require-
ments of the slow query. For more• Non-optimal decision from the

Optimizer. details, read Section 8.3, “Using In-
dexes to Improve Query Perform-
ance”.• External sorting is not defined

and a large internal sorting is

Run the EXPLAIN PLAN FOR
statement for the slow query and

causing excessive swapping to
disk.

verify whether the query optimizer
is using the indices. For more details,
read Section 7.1.2, “The EXPLAIN
PLAN FOR Statement”.

If the Optimizer is not choosing the
optimal query execution plan, over-
ride the Optimizer decision by using
optimizer hints. For more details,
read Section 8.6, “Using Optimizer
Hints”.

206

8.7 Diagnosing Poor Performance

SolutionDiagnosisSymptoms

Make sure the external sorter is en-
abled by defining the Sorter.Tm-
pDir configuration parameter. For
more details, see the description of
"TmpDir_[1...N]" in solidDB Admin-
istration Guide.

Increase the cache size. Allocate for
cache at least 0.5MB per concurrent

Insufficient cache size.Slow response time is experienced
for all queries. An increase in the

user or 2-5% of the database size.number of concurrent users deteri-
For more details, read the sectionorates the performance more than
titled "Tuning Cache" in solidDB
Administration Guide.

linearly. When all users are thrown
out and then reconnected, perform-
ance still does not improve.

Make sure that there are no uninten-
tionally long-running transactions.

The Bonsai Tree is too large to fit
into the cache.

Slow response time is experienced
for all queries and write operations.

Verify that all transactions (alsoWhen all users are thrown out and
read-only transactions) are commit-are connected, performance only
ted in a timely manner. For moreimproves temporarily. The disk is

very busy. details, read "Reducing Bonsai Tree
Size by Committing Transactions"
in solidDB Administration Guide.

Make sure that the autocommit is
switched off and the write operations

Slow performance during batch
write operation as the database size

• The data is committed to the
database in batches that are too
small.increases. There is an excessive

amount of disk I/O.
are committed in batches of at least
100 rows per transaction.

• Data is written to disk in an or-
der that is not supported by the
primary key of the table.

Modify the primary keys or batch
write processes so that write opera-
tions occur in the primary key order.
For more details, read Section 8.5,
“Optimizing Batch Inserts and Up-
dates”.

Make sure that the statements that
are no longer in use by the client ap-

SQL statements have not been
closed and dropped after use.

The server process footprint grows
excessively and causes the operat-

plication are closed and dropped in
a timely manner.

ing system to swap. The disk is
very busy. The ADMIN COM-
MAND 'report' output shows a long
list of currently active statements.

207

8.7 Diagnosing Poor Performance

208

Appendix A. Data Types
A.1 Supported Data Types
The tables in this appendix list the supported data types by category. The following abbreviations are used in
each table.

Table A.1. Supported Data Types

DescriptionAbbreviation

the defined length of the column; for example, for CHAR(24) the precision
and length is 24

DEFLEN

the defined precision; for example, for NUMERIC(10,3) it is 10DEFPREC

the defined scale; for example, for NUMERIC(10,3), it is 3DEFSCALE

the maximum length of columnMAXLEN

not applicableN/A

A.1.1 Character Data Types

Table A.2. Character Data Types

Display SizeLengthScalePrecisionSizeData Type

DEFLENDEFLENN/ADEFLEN2 G - 1*CHARACTER

(2147483647)CHAR

DEFLENDEFLENN/ADEFLEN2 G - 1*WCHAR

(2147483647)NATIONAL CHARACTER

NATIONAL CHAR

NCHAR

DEFLENDEFLENN/ADEFLEN2 G - 1**VARCHAR

(2147483647)CHARACTER VARYING

CHAR VARYING

209

Display SizeLengthScalePrecisionSizeData Type

DEFLENDEFLENN/ADEFLEN2 G - 1**WVARCHAR

(2147483647)NATIONAL VARCHAR

NCHAR VARYING

NVARCHAR

MAXLENMAXLENN/AMAXLEN2 G - 1LONG VARCHAR

(2147483647)CHARACTER LARGE OB-
JECT

CHAR LARGE OBJECT

CLOB

MAXLENMAXLENN/AMAXLEN2 G - 1LONG WVARCHAR

(2147483647)LONG NATIONAL VARCHAR

NCHAR LARGE OBJECT

NCLOB

* default is 1

** default is 254

A.1.2 Numeric Data Types

Table A.3. Numeric Data Types

Display SizeLengthScalePrecisionSizeData Type

4 (signed)1 (bytes)03[-128, 127]TINYINT

3 (unsigned)[0, 127]

6 (signed)2 (bytes)05[-32768, 32767]SMALLINT

5 (unsigned)[0, 32767]

11 (signed)4 (bytes)010[-231, 231- 1]INTEGER

210

A.1.2 Numeric Data Types

Display SizeLengthScalePrecisionSizeData Type

1 0 (u n -
signed)

[0, 231- 1]INT

20 (signed)8 (bytes)019[-263, 263- 1]BIGINT

134 (bytes)N/A7Positive numbers:REAL

1.175494351e-38 to

1.7014117e+38

Negative numbers:

-1.7014117e+38 to

-1.175494351e-38

You can also use value zero (0)
with this data type.

228 (bytes)N/A15Positive numbers:FLOAT

2.2250738585072014e-308 -

8.98846567431157854e+307

Negative numbers:

-8.98846567431157854e+307
to

-2.2250738585072014e-308

You can also use value zero (0)
with this data type.

228 (bytes)N/A15Positive numbers:DOUBLE

2.2250738585072014e-308 -PRECISION

8.98846567431157854e+307

Negative numbers:

211

A.1.2 Numeric Data Types

Display SizeLengthScalePrecisionSizeData Type

-8.98846567431157854e+307
to

-2.2250738585072014e-308

You can also use value zero (0)
with this data type.

1818D E F S -
CALE

16±3.6e16DECIMAL

DEFPRECDEFPRECD E F S -
CALE

DEFPREC±3.6e16NUMERIC

+2+2

Note

Although integer data types (TINYINT, SMALLINT, INT, and BIGINT) may be interpreted by the
client program as either signed or unsigned, solidDB stores and orders them as signed integers. There
is no way to tell the server to order the integer data types as though they were unsigned.

Caution

BIGINT has approximately 19 significant digits. This means that you may lose least significant digits
when storing BIGINT into non-integer data types such as FLOAT (which has approximately 15 sig-
nificant digits), SMALLFLOAT (which has approximately 7 significant digits), DECIMAL (which
has 16 significant digits).

A.1.3 Binary Data Types

Table A.4. Binary Data Types

Display SizeLengthScalePrecisionSizeData Type

DEFLEN x 2DEFLENN/ADEFLEN2 G*BINARY

DEFLEN x 2DEFLENN/ADEFLEN2 G**VARBINARY

MAXLEN x 2MAXLENN/AMAXLEN2 GLONG VARBINARY

BLOB

* default is 1

212

A.1.3 Binary Data Types

Display SizeLengthScalePrecisionSizeData Type

** default is 254

Tip

To insert values into BINARY, VARBINARY, and LONG VARBINARY fields, you may express
the value as hexadecimal and use the CAST operator, e.g.:

INSERT INTO table1 VALUES (CAST('FF00AA55' AS VARBINARY));

Similarly, you may use CAST() expressions in WHERE clauses:

CREATE TABLE t1 (x VARBINARY);
INSERT INTO t1 (x) VALUES (CAST('000000A512' AS VARBINARY));
INSERT INTO t1 (x) VALUES (CAST('000000FF12' AS VARBINARY));

-- To compare the VARBINARY value(s) using LIKE, cast the
-- VARBINARY to VARCHAR.
SELECT * FROM t1 WHERE CAST(x AS VARCHAR) LIKE '000000A5%';
SELECT * FROM t1 WHERE CAST(x AS VARCHAR) LIKE '000000A5__';

-- NOTE: If you want to use "=" rather than "LIKE" then you
-- can cast either operand.
SELECT * FROM t1 WHERE CAST(x AS VARCHAR) = '000000A512';
SELECT * FROM t1 WHERE x = CAST('000000A512' AS VARBINARY);

WARNING: this kind of query cannot use indexed search for the LIKE predicate and results in poor
query performance in many cases.

A.1.4 Date Data Type

Table A.5. Date Data Type

Display
Size

LengthScalePrecisionSizeData Type

10*6**N/A10*N/ADATE

* the number of characters in the yyyy-mm-dd format

213

A.1.4 Date Data Type

Display
Size

LengthScalePrecisionSizeData Type

** the size of the DATE_STRUCT structure

A.1.5 Time Data Type

Table A.6. Time Data Type

Display
Size

LengthScalePrecisionSizeData Type

8*6**N/A8*N/ATIME

* the number of characters in the hh:mm:ss format

** the size of the TIME_STRUCT structure

A.1.6 Timestamp Data Type

Table A.7. Timestamp Data Type

Display
Size

LengthScalePrecisionSizeData Type

19/29***16**919*N/ATIMESTAMP

* the number of characters in the 'yyyy-mm-dd hh:mm:ss.fffffffff' format

** the size of the TIMESTAMP_STRUCT structure

*** size is 29 with a decimal fraction part

A.1.7 The Smallest Possible Non-Zero Numbers

Table A.8. Smallest Possible Non-Zero Numbers

ValueData Type

2.2250738585072014e-308DOUBLE

1.175494351e-38REAL

214

A.1.5 Time Data Type

Description of Different Column Values in the Tables

The range of a numeric column refers to the minimum and maximum values the column can store. The size
of character columns refers to the maximum length of data that can be stored in the column of that data type.

The precision of a numeric column refers to the maximum number of digits used by the data type of the
column. The precision of a non-numeric column refers to the defined length of the column.

The scale of a numeric column refers to the maximum number of digits to the right of the decimal point. Note
that for the approximate floating point number columns, the scale is undefined, since the number of digits to
the right of the decimal point is not fixed.

The length of a column is the maximum number of bytes returned to the application when data is transferred
to its default C type. For character data, the length does not include the null termination byte. Note that the
length of a column may differ from the number of bytes needed to store the data on the data source.

The display size of a column is the maximum number of bytes needed to display data in character form.

A.1.8 BLOBs and CLOBs

solidDB can store binary and character data up to 2147483647 (2G - 1) bytes long. When such data exceeds
a certain length, the data is called a BLOB (Binary Large OBject) or CLOB (Character Large OBject), depend-
ing upon the data type that stores the information. CLOBS contain only "plain text" and can be stored in any
of the following data types:

CHAR, WCHAR

VARCHAR, WVARCHAR

LONG VARCHAR (mapped to standard type CLOB),

LONG WVARCHAR (mapped to standard type NCLOB)

BLOBs can store any type of data that can be represented as a sequence of bytes, such as a digitized picture,
video, audio, a formatted text document. (They can also store plain text, of course, but you'll have more
flexibility if you store plain text in CLOBs). BLOBs are stored in any of the following data types:

BINARY

VARBINARY

LONG VARBINARY (mapped to standard type BLOB)

215

A.1.8 BLOBs and CLOBs

Since character data is of course a sequence of bytes, character data can be stored in BINARY fields, as well
as in CHAR fields. CLOBs can be considered a subset of BLOBs.

For convenience, we will use the term BLOBs to refer to both CLOBs and BLOBs.

For most non-BLOB data types, such as integer, float, date, etc., there is a rich set of valid operations that
you can do on that data type. For example, you can add, subtract, multiply, divide, and do other operations
with FLOAT values. Because a BLOB is a sequence of bytes and the database server does not know the
"meaning" of that sequence of bytes (i.e. it doesn't know whether the bytes represent a movie, a song, or the
design of the space shuttle), the operations that you can do on BLOBs are very limited.

solidDB does allow you to perform some string operations on CLOBs. For example, you can search for a
particular substring (e.g. a person's name) inside a CLOB by using the LOCATE() function. Because such
operations require a lot of the server's resources (memory and/or CPU time), solidDB allows you to limit the
number of bytes of the CLOB that are processed. For example, you might specify that only the first 1 megabyte
of each CLOB be searched when doing a string search. For more information, see the description of the
MaxBlobExpressionSize configuration parameter in solidDB Administration Guide.

Although it is theoretically possible to store the entire blob "inside" a typical table, if the blob is large, then
the server usually performs better if most or all of the blob is not stored in the table. In solidDB, if a blob is
no more than N bytes long, then the blob is stored in the table. If the blob is longer than N bytes, then the first
N bytes are stored in the table, and the rest of the blob is stored outside the table as disk blocks in the physical
database file. The exact value of "N" depends in part upon the structure of the table, the disk page size that
you specified when you created the database, etc., but is always at least 256. (Data 256 bytes or shorter is always
stored in the table.)

If a data row size is larger than one third of the disk block size of the database file, you must store it partly
as a BLOB.

The SYS_BLOBS system table is used as a directory for all BLOB data in the physical database file. One
SYS_BLOB entry can accommodate 50 BLOB parts. If the BLOB size exceeds 50 parts, several SYS_BLOB
entries per BLOB are needed.

The query below returns an estimate on the total size of BLOBs in the database.

select sum(totalsize) from sys_blobs

The estimate is not accurate, because the info is only maintained at checkpoints. After two empty checkpoints,
this query should return an accurate response.

216

A.1.8 BLOBs and CLOBs

Appendix B. solidDB SQL Syntax
This appendix presents a simplified description of the SQL statements, including some examples.

Note that earlier versions of this manual put the sync-related SQL commands in a separate chapter. This version
of the manual puts all the SQL commands into this one appendix.

solidDB SQL syntax is based on the ANSI X3H2-1989 level 2 standard including important ANSI X3H2-
1992 (SQL-92) extensions. User and role management services missing from previous standards are based
on the ANSI SQL-99 draft.

Most commands listed here are available in solidDB Disk-based Engine and solidDB In-memory Engine.
Some commands related to SmartFlow synchronization are not available if you have not licensed SmartFlow.

B.1 ADMIN COMMAND
ADMIN COMMAND 'command_name'

command_name ::= ABORT | ASSERTEXIT | BACKUP |
BACKUPLIST | CHECKPOINTING | CLEANBGJOBINFO |
CLOSE | DESCRIBE | ERRORCODE | ERROREXIT | EXIT |
FILESPEC | HELP | HOTSTANDBY | INFO | MAKECP | MEMORY | MESSAGES
| MONITOR | NETBACKUP | NETBACKUPLIST | NETSTAT | NOTIFY | OPEN |
PARAMETER | PERFMON | PID | PROCTRACE |
PROTOCOLS | REPORT | RUNMERGE | SAVE | SHUTDOWN
| SQLLIST | STARTMERGE | STATUS | THROWOUT | TID | TRACE |
USERID | USERLIST | USERTRACE | VERSION

B.1.1 Supported in

ADMIN COMMAND syntax is supported in all solidDB editions.

B.1.2 Usage

This SQL extension executes administrative commands. The command_name in the syntax is a SolidConsole
or solidDB SQL Editor (solsql) command string, for example:

ADMIN COMMAND 'backup'

217

If you are entering these commands using solidDB Remote Control (solcon), be sure to specify the syntax
with command name only (without the quotes), for example:

backup

Abbreviations for ADMIN COMMANDs are also available, for example,

ADMIN COMMAND 'bak'

To access a list of abbreviated commands, execute

ADMIN COMMAND 'help'

The result set contains two columns: RC INTEGER and TEXT VARCHAR(254). Integer column RC is a
command return code (0 if success), and varchar column TEXT is the command reply. The TEXT field contains
the same lines that are displayed on SolidConsole screen, one line per one result row.

Note that all options of the ADMIN COMMAND are not transactional and cannot be rolled back.

Caution

ADMIN COMMANDS and Starting Transactions

Although ADMIN COMMANDs are not transactional, they will start a new transaction if one is not
already open. (They do not commit or roll back any open transaction.) This effect is usually insigni-
ficant. However, it may affect the 'start time" of a transaction, and that may occasionally have unex-
pected effects. solidDB's concurrency control is based on a versioning system; you see a database as
it was at the time that your transaction started. (See the section of solidDB Administration Guide titled
'solidDB Bonsai Tree Multiversioning and Concurrency Control"). So, for example, if you: commit
work, and issue an ADMIN COMMAND without doing another commit, and go to lunch and return
an hour later, then your next SQL command may see the database as it was an hour ago, i.e. when
you first started the transaction with the ADMIN COMMAND.

Caution

Error codes in ADMIN COMMANDS ADMIN COMMANDS return an error only if the command
syntax or parameter values are incorrect. That is, if only the requested operation may be started, the
command returns SQLSUCCESS (0). The outcome of the operation itself is written into a s result set.
The result set has two columns: TC and TEXT. The RC (return code) column contains the return code
of the operation: it is "0" for success, and different numeric values for errors. It is thus necessary to
check both the codes (of the ADMIN COMMAND statement and of the operation.

218

B.1.2 Usage

Following is a description of the syntax for each ADMIN COMMAND command option:

Table B.1. ADMIN COMMAND Syntax

DescriptionOption Syntax

Aborts the active local or network backup process. The
backup operation is not guaranteed to be atomic, thereforeADMIN COMMAND 'abort
the cancelled operation may produce an incomplete backup
file to the backup directory until the next backup takes place.

[backup | netbackup]'

If the options are not entered, the default behaviour is similar
to command ADMIN COMMAND 'abort backup'.

Asserts the server.
ADMIN COMMAND 'assertexit'
Abbreviation: asex

Makes a backup of the database. The operation can be per-
formed as a synchronized or an asynchronic (default) manner.ADMIN COMMAND 'backup [-s]
The synchronized operation is specified by using the optional
-s parameter.

[backup_directory]'
Abbreviation: bak

The default backup directory is the one defined in the
[General] section of the configuration parameter
BackupDirectory. The backup directory may also be
given as an argument. For example, backup abc creates a
backup in directory 'abc'. All directory definitions are relative
to the solidDB working directory.

Displays a status list of last local backups.
ADMIN COMMAND 'backuplist'
Abbreviation: bls

Sets the server to backupserver mode.
ADMIN COMMAND 'backupserveron'
Abbreviation: bakson

Turns on/off checkpointing.
ADMIN COMMAND 'checkpointing'

219

B.1.2 Usage

DescriptionOption Syntax

Abbreviation: cp

Closes the server to new connections; no new connections
are allowed.ADMIN COMMAND 'close'

Abbreviation: clo

Returns a description of the specified parameter.
ADMIN COMMAND 'describe

Note that the param should be in the form sec-
tion_name.param_name. The section and parameter
names are case-insensitive.

parameter param'
Abbreviation: des

The following example describes parameter Com.Trace
= y/n

ADMIN COMMAND 'des parameter com.trace'

Displays a description of an error code (or all codes). Give
the code number as an argument, for example, errorcode
10033.

ADMIN COMMAND 'errorcode
{all | SOLID_error_code}'
Abbreviation: ec

Forces the server into an immediate process exit with the
given process exit code.ADMIN COMMAND 'errorexit <number>'

Abbreviation: erex

Displays database file specifications, current fill ratios and
current file sizes.ADMIN COMMAND 'filespec'

Abbreviation: fs

Displays available commands.
ADMIN COMMAND 'help'

220

B.1.2 Usage

DescriptionOption Syntax

Abbreviation: ?

A HotStandby command. For list of options see solidDB High
Availability User Guide.ADMIN COMMAND

'hotstandby [option]'
Abbreviation: hsb

Returns server information. Options are one or more of the
following values, each separated by a space:ADMIN COMMAND 'info

options'
• numusers - Number of current users.Abbreviation: info

• sernum - Server serial number.

• dbsize - Database size.

• dbfreesize - Amount of free space remaining in database.

• imdbsize - Amount of space used by in-memory tables
(including Temporary Tables and Transient Tables) and
the indexes on those tables. The return value is in kilo-
bytes (KB) and is in the form of a VARCHAR.

• logsize - Size of log files.

• uptime - Server up since.

• bcktime - Timestamp of last successfully completed local
backup.

• netbackuptime - Timestamp of last successfully completed
network backup.

• cptime - Timestamp of last successfully completed
checkpoint.

• tracestate - Current trace state.

221

B.1.2 Usage

DescriptionOption Syntax

• monitorstate - Current monitor state, which is the number
of users who have SQL monitoring currently enabled;
this value is -1 if all users have SQL monitoring enabled.
Note that SQL monitoring is enabled using the ADMIN
COMMAND 'monitor {on | off} [user
{username | userid}]' (described below).

• openstate - Current open or close state — that is, whether
the database server accepts new connections or not.
"open" means that the database server accepts new con-
nections.

• primarystarttime - The time the Primary role has started.

• secondarystarttime- The time the Secondary role has
started.

More than one option can be used per command. Values are
returned in the same order as requested, one row for each
value.

Example command:

ADMIN COMMAND 'info dbsize logsize'

Example output:

RC TEXT
0 851968
0 573440

Makes a checkpoint. Requires SYS_ADMIN_ROLE priv-
ilege.ADMIN COMMAND 'makecp [-s]'

By default, the checkpoint is asynchronous. With the option
-s, the command returns only after the checkpoint has com-
pleted.

Abbreviation: mcp

222

B.1.2 Usage

DescriptionOption Syntax

Returns the server process memory size. The reported process
memory size can differ from the process size reported by your
operating system.

ADMIN COMMAND 'memory'
Abbreviation: mem

Displays server messages. Optional severity and message
numbers can also be defined. For example:ADMIN COMMAND 'messages

ADMIN COMMAND 'messages warnings 100' displays last
100 warnings.

[{ warnings | errors}] [count]'
Abbreviation: mes

Sets server monitoring on and off. Monitoring logs user
activity and SQL calls to soltrace.out file.ADMIN COMMAND 'monitor

{on | off} [user
{username | userid}]'
Abbreviation: mon

Makes a network backup of the database. The operation can
be performed as a synchronized or an asynchronic (default)ADMIN COMMAND 'netbackup
manner. The synchronized operation is specified by using the
optional -s parameter.

[options] [DELETE_LOGS |
KEEP_LOGS] [connect

If you use the DELETE_LOGS parameter, backed-up log
files in the source server are deleted. This is sometimes re-

connect str] [dir
backup dir]'
Abbreviation: nbak

ferred to as Full backup. This is the default value. On the
other hand, if you use the KEEP_LOGS parameter, backed-
up log files are ketp in the source server. This is sometimes
referred to as Copy backup. Using the keyword KEEP_LOGS
corresponds to setting the General parameter Netbackup-
DeleteLog to "no".

The default connect string and the default netbackup directory
are defined in the NetBackupConnect and in the Net-
BackupDirectory parameters in the [General] section
of the configuration file.

Options that are entered with the netbackup command over-
ride the values specified in the configuration file. Directory
definitions are relative to the solidDB working directory.

223

B.1.2 Usage

DescriptionOption Syntax

Displays a status list of the most recently made network
backups of the database server.ADMIN COMMAND 'netbackuplist'

Abbreviation: nbls

Displays server settings and the network status.
ADMIN COMMAND 'netstat'

This command sends an event to a given user with event
identifier NOTIFY. This identifier is used to cancel an event-ADMIN COMMAND 'notify
waiting thread when the statement timeout is not long enough
for a disconnect or to change the event registration.

user {username | user id | ALL }
message'

The following example sends a notify message to a user with
user id 5 ; the event then gets the value of the message para-
meter.

Abbreviation: not

ADMIN COMMAND 'notify user 5 Canceled by admin'

Opens server for new connections; new connections are al-
lowed.ADMIN COMMAND 'open'

Abbreviation: ope

Displays and sets server parameter values. If you run the
command without a specified value, the parameter will beADMIN COMMAND 'parameter
set to its startup value. If you assign a parameter value with[option][name[=
an asterisk (*), the parameter will be set to its factory value.[*|value][temporary]]'
The "name" may be either a section name, or it may be aAbbreviation: par
parameter name prefaced by a section name and period (e.g.
"com.trace"). For example:

• parameter used alone displays all parameters.

• parameter general displays all parameters from
section [General].

• parameter general.readonly displays a single
parameter named readonly from section [General].

224

B.1.2 Usage

DescriptionOption Syntax

You must place a period between the section name
([General])and the parameter name (readonly).

• parameter com.trace=yes sets communication
trace on. You must place a period between the section
name (e.g. [Com]) and the parameter name (e.g. trace).
You should not put blanks around the equals sign.

• parameter com.trace= sets communication trace to its
startup value.

• parameter com.trace=* sets communication trace to
its factory value.

The output may contain three values, as shown below:

0 Logging DurabilityLevel 1 2 3

The three values represent the following:

• 1 is the current value (may be set dynamically)

• 2 is the value in the INI file (startup value)

• 3 is the factory value

If the -r option is used, then only the current parameter values
are returned.

Returns server performance counters. The options are:
ADMIN COMMAND 'perfmon

• -c - prints actual counter values. If this option is not
provided, the output numbers are operations/second where
applicable.

[- c | - r] [options]
[diff [start | stop]
[filename interval]
[name_prefix_list]'

• -r - prints in raw mode, which includes only the latest
counter values without any formatting. No option names

Abbreviation: pmon

or additional information is printed. This option is useful
if actual monitoring is performed using some other extern-

225

B.1.2 Usage

DescriptionOption Syntax

al program that retrieves the counter values from the
server.

• -xtime - prints the time in seconds

• -xtimediff - prints the difference to the last pmon call in
milliseconds

• -xnames - prints out the column names for the output

• -xdiff - indicates the difference to the last perfmon execu-
tion instead of the absolute value

• diff - starts a server task that prints out all perfmon
counters with specified intervals to a file. The interval
must be given in milliseconds. The output file is written
using "comma-separated values", with the first row includ-
ing counter names. The file, as it is, can be processed by
spreadsheet programs like Excel.

• name_prefix_list - limits output to specific counter
names. For example, to print all file related counters, the
name_prefix_list should be file. You can also
specify multiple prefixes.

The following example returns all information:

ADMIN COMMAND 'perfmon'

The following example returns all values whose name starts
with prefix file and cache as counters.

ADMIN COMMAND 'perfmon-c file cache'

Note that the prefix file and cache are matched to those
counter names that are in the perfmon output.

The following example starts a diff task that writes to myd.csv
file on 1000 milliseconds interval:

ADMIN COMMAND 'pmon diff start myd.csv 1000'

226

B.1.2 Usage

DescriptionOption Syntax

For sample output, and description of counters, see the section
of solidDB Administration Guide titled "Detailed DBMS
Monitoring and Troubleshooting".

Returns server process id.
ADMIN COMMAND 'pid'
Abbreviation: pid

This turns on tracing in stored procedures and triggers.
ADMIN COMMAND 'proctrace

The "username" is the name of the user whose procedure calls
(or triggers) you want to trace. If multiple connections are

{ on | off } user username
{ procedure | trigger | table }

using the same username, then calls from all of those connec-entity_name'
tions will be traced. Furthermore, if you are using SmartFlow,Abbreviation: ptrc
the tracing will be done not only for calls on the replica, but
also calls that are propagated to the master and then executed
on the master.

The "entity_name" is the name of the procedure, trigger, or
table for which you want to turn tracing on or off. If you
specify a procedure or trigger name, then it will generate
output for every statement in the specified procedure or trig-
ger. If you specify a table name, then it will generate output
for all triggers on that table. Trace is activated only when the
specified username calls the procedure / trigger.

For more detail about proctrace, see "Tracing Facilities For
Stored Procedures And Triggers" in solidDB SQL Guide.

See also ADMIN COMMAND 'usertrace'.

Returns a list of available communication protocols, one row
for each protocol.ADMIN COMMAND 'protocols'

Example:
Abbreviation: prot

ADMIN COMMAND 'protocols'

Generates a report of server information to a file given as an
argument.ADMIN COMMAND 'report filename'

Abbreviation: rep

227

B.1.2 Usage

DescriptionOption Syntax

Runs an index merge.
ADMIN COMMAND 'runmerge'
Abbreviation: rm

Saves the set of current configuration parameter values to a
file. If no file name is given, the default solid.ini file isADMIN COMMAND 'save parameters

[filename]' rewritten. This operation is performed implicitly at each
checkpoint.Abbreviation: save

Stops solidDB.
ADMIN COMMAND

If the "force" option is used, the active transactions are aborted
and the users are disconnected forcefully.

'shutdown [force]'
Abbreviation: sd

This command prints out a list of the longest running SQL
statements among the currently running statements. The list
contains the selected number of statements.

ADMIN COMMAND 'sqllist
top number_of_statements'

Displays server statistics.
ADMIN COMMAND 'status'
Abbreviation: sta

Displays status of the last started local or network backup.
The status can be one of the following:ADMIN COMMAND 'status

backup | netbackup'
• If the last backup was successful or no backups have been

requested, the output is 0 SUCCESS.
Abbreviation:
sta backup | netbackup

• If the backup is in process (for example, started but not
ready yet), then the output is 14003 ACTIVE.

• If the last backup failed, the output is: errorcode ER-
ROR where the errorcode shows the reason for the
failure

228

B.1.2 Usage

DescriptionOption Syntax

Starts and waits for completion of merge.
ADMIN COMMAND 'startmerge'
Abbrevation: sm

Exits users from solidDB. To exit a specified user, give the
user id as an argument. To throw out all users, use the
keyword ALL as an argument.

ADMIN COMMAND 'throwout
{username |
userid | all}'
Abbreviation: to

This command returns the ID (a 4-digit code) of the current
user thread (in the server).ADMIN COMMAND 'tid'

Abbreviation: tid

Sets server trace on or off. The tracing options are:
ADMIN COMMAND 'trace

• sql - SQL messages{ on | off} sql | rpc |
sync | info <level> |

• rpc - Network communicationsflowplans | all'
Abbreviation: tra

• sync - Synchronization messages

• info <level> - SQL execution trace (level is 0...8)

• flowplans - plans of Flow SQL statements

If no options are specified, or all is specified, both SQL
messages and network communications messages are written
to the trace file. The name of the default trace file is sol-
trace.out.

Returns the user identification number of the current connec-
tion.ADMIN COMMAND 'userid'

Example:
Abbreviation: uid

229

B.1.2 Usage

DescriptionOption Syntax

ADMIN COMMAND 'userid'

This command displays a list of users currently logged in to
the database, together with a number of primary attributes.ADMIN COMMAND 'userlist [-l]
These attributes are: User name, User Id, Type, Machine Id,[name | id]'
Login time and Appinfo (optional). For attribute descriptions,
see the detailed output description below.

Abbreviation: ul

Option -l (long) displays a more detailed output. The fields
in the long output are:

• Id - The user session identification number within the
database. The lifetime of an Id is that of the user session.
After a user logs out, the number may be reused.

• Type - Client type. Possible values are:

• Java, which refers to a client using JDBC, such as the
SolidConsole

• ODBC, which refers to a client using ODBC

• SQL, which refers to solidDB's SolSql editor

• Machine - The client computer name (host name) and its
IP address, if available.

• Appinfo - The value of the client computer's environment-
al variable SOLAPPINFO, if the client is using ODBC.
In the case of JDBC, the Java utility property solid_ap-
pinfo has to be set to that value, for it to be visible in
the output. Alternatively, the following Java command
line may be used to pass the value of the environmental
variable to the driver:

java -Dsolid_appinfo=%SOLAPPINFO% java
program name

Note: the value of SOLAPPINFO must not contain blanks.

230

B.1.2 Usage

DescriptionOption Syntax

• Autocommit - If the autocommit mode is switched off
(value 0), the current transaction is open until a COMMIT
or ROLLBACK statement is issued. After that, a new
statement starts a new transaction.

If the autocommit mode is switched on (value 1), each
statement is automatically committed.

• Last activity - The time when the client last time sent a
request to the server.

• RPC compression - Indicates whether the data transmis-
sion compression is on or off.

• Transparent failover - This field indicates if Transparent
Failover (TF) is in use. Transparent failover is a charac-
teristic of the CarrierGrade configuration. It hides the
server role change from the user. Because solidDB Tools
do not support TF, you will only see a no value in this
field.

• Transaction active - This field indicates whether there is
an open, uncommitted transaction on the connections
(value 1) or not (value 0). When the connection is set for
Autocommit, the value is, most of the time, 0.

• Transaction duration - This field indicates the duration
of the currently open transaction. After COMMIT or
ROLLBACK, the value becomes 0.

• Transaction isolation - This field indicates the transaction
isolation level for the transactions. The isolation level
decides how data which is a part of an ongoing transaction
is made visible to other transactions.

• RPC seqno - Internal protocol message sequence number.

• SQL sortarray - The size of user-specific internal sort
array.

231

B.1.2 Usage

DescriptionOption Syntax

• SQL unionsfromors - The value tells how many (at most)
OR operators may be converted to UNIONs. Unions are
faster but require more memory to execute.

• Stmt id - The current statement identification number.
The numbers are session specific and they are assigned
for each different statement

• Stmt state - An internal statement execution state.

• Stmt rowcount - The number of rows retrieved or inserted
in the current statement.

• Stmt starttime - The current statement start date and time.

• Stmt duration - Internal statement duration in seconds.
Note: this value has no relevance to the externally visible
statement latency. Typically, the statement duration is
much longer than latency.

• Stmt SQL str - The current statement string.

This turns on user tracing in stored procedures and triggers.
This command will generate output for every WRITETRACE
statement in the specified procedure or trigger.

ADMIN COMMAND 'usertrace
{ on | off } user username

The "username" is the name of the user whose procedure calls
(or triggers) you want to trace. If multiple connections are

{ procedure | trigger | table }
entity_name'
Abbreviation: utrc

using the same username, then calls from all of those connec-
tions will be traced. Furthermore, if you are using SmartFlow,
the tracing will be done not only for calls on the replica, but
also calls that are propagated to the master and then executed
on the master.

The "entity_name" is the name of the procedure, trigger, or
table for which you want to turn tracing on or off. If you
specify a table name, then it will generate output for all trig-
gers on that table. Trace is activated only when the specified
user calls the procedure / trigger.

232

B.1.2 Usage

DescriptionOption Syntax

For more detail about proctrace, see "Tracing Facilities For
Stored Procedures And Triggers" in solidDB SQL Guide.

See also the discussion of "proctrace" on page D-10.

Displays server version info.
ADMIN COMMAND 'version'
Abbreviation: ver

B.2 ADMIN EVENT

ADMIN EVENT 'command'
command_name ::=
 REGISTER { event_name [, event_name ...] | ALL } |
 UNREGISTER { event_name [, event_name ...] | ALL } |
 WAIT
event_name ::= the name of a system event

B.2.1 Usage

This is a solidDB-specific extension to SQL that allows you to register for and wait for system-generated
events without writing and calling a stored procedure.

You must explicitly register for and wait for the event. For example

ADMIN EVENT 'register sys_event_hsbstateswitch';
ADMIN EVENT 'wait';

After the event is posted by the system, you will see something similar to the following:

ENAME POSTSRVTIME UID NUMDATAINFO TEXTDATA
----- ----------- --- ----------- --------
SYS_EVENT_HSBSTATESWITCH 2003-10-28 18:10:14 -1 NULL PRIMARY ACTIVE

1 rows fetched.

233

B.2 ADMIN EVENT

You must register for the event before you wait for it. (This is different from the way that WAIT works in
stored procedures. In stored procedures, explicit registration is optional.)

Note

You cannot register to synchronization events (starting with "SYNC_") with this command. You may
the use the procedure language command WAIT EVENT for that purpose.

Once the connection starts to wait for an event, the connection will not be able to do anything else until the
event is posted.

You may register for multiple events. When you wait, you cannot specify which type of event to wait for.
The wait will continue until you have received any of the events for which you have registered.

You may only wait for system events, not user events, using ADMIN EVENT. If you want to wait for user
events, then you must write and call a stored procedure.

The ADMIN EVENT command does not provide an option to post an event.

To use ADMIN EVENT, you must have DBA privileges or be granted the role SYS_ADMIN_ROLE.

B.2.2 Examples

ADMIN EVENT 'register sys_event_hsbstateswitch';
ADMIN EVENT 'wait';
ADMIN EVENT 'unregister sys_event_hsbstateswitch';

B.3 ALTER TABLE

ALTER TABLE base_table_name
 {
 ADD [COLUMN] column_identifier data_type
 [DEFAULT literal | NULL] [NOT NULL] |
 ADD CONSTRAINT constraint_name dynamic_table_constraint |
 DROP CONSTRAINT constraint_name |
 ALTER [COLUMN] column_name
 {DROP DEFAULT | {SET DEFAULT literal | NULL} } |
 {{ADD | DROP} NOT NULL }
 DROP [COLUMN] column_identifier |
 RENAME [COLUMN]

234

B.2.2 Examples

column_identifier column_identifier |
 MODIFY [COLUMN] column_identifier data-type |
 MODIFY SCHEMA schema_name} |
 SET HISTORY COLUMNS (c1, c2, c3) |
 SET {OPTIMISTIC | PESSIMISTIC} |
 SET STORE {DISK | MEMORY} |
 SET [NO]SYNCHHISTORY |
 SET TABLE NAME new_base_table_name
 }
dynamic_table_constraint::=
 {FOREIGN KEY (column_identifier [, column_identifier] ...)
 REFERENCES table_name [(column_identifier [, column_identifier]] ...)}
 [referential_triggered_action] |
 CHECK (check_condition) | UNIQUE (column_identifier)
referential_triggered_action::=
 ON {UPDATE | DELETE} {CASCADE | SET NULL | SET DEFAULT |
 RESTRICT |NO ACTION}

B.3.1 Usage

The structure of a table may be modified through the ALTER TABLE statement. Columns may be added,
removed, modified, or renamed. You may change whether the table uses optimistic or pessimistic concurrency
control. You may change whether the table is stored in memory or on disk. You may change which schema
the table is part of.

The server allows users to change the width of a column using the ALTER TABLE command. A column
width can be increased at any time (that is, whether a table is empty [no rows] or non-empty). However, the
ALTER TABLE command disallows decreasing the column width when the table is non-empty; a table must
be empty to decrease the column width.

Note that a column cannot be dropped if it is part of a unique or primary key.

The owner of a table can be changed using the ALTER TABLE base_table_name MODIFY SCHEMA
schema_name statement. This statement gives all rights, including creator rights, to the new owner. The
old owner's access rights to the table, excluding the creator rights, are preserved.

For information about the SET HISTORY COLUMNS clause, see Section B.4, “ALTER TABLE ... SET
HISTORY COLUMNS”.

For information about the SET [NO]SYNCHISTORY clause, see Section B.5, “ALTER TABLE ... SET
SYNCHISTORY”.

235

B.3.1 Usage

Individual tables can be set to optimistic or pessimistic with the statement ALTER TABLE
base_table_name SET {OPTIMISTIC | PESSIMISTIC}. By default, all tables are optimistic. A database-
wide default can be set in the General section of the configuration file with the parameter Pessimistic
= yes.

A table may be changed from disk-based to in-memory or vice-versa. (This is only allowed with solidDB In-
memory Engine.) This may be done only if the table is empty. If you try to change a table to the same storage
mode that it already uses (e.g. if you try to change an in-memory table to use in-memory storage), then the
command has no effect, and no error message is issued.

B.3.2 Example

ALTER TABLE table1 ADD x INTEGER;
ALTER TABLE table1 RENAME COLUMN old_name new_name;
ALTER TABLE table1 MODIFY COLUMN xyz SMALLINT;
ALTER TABLE table1 DROP COLUMN xyz;
ALTER TABLE table1 SET STORE MEMORY;
ALTER TABLE table1 SET PESSIMISTIC;
ALTER TABLE table2 ADD COLUMN col_new CHAR(8) DEFAULT 'VACANT' NOT NULL;
ALTER TABLE table2 ALTER COLUMN col_new SET DEFAULT 'EMPTY';
ALTER TABLE table2 ALTER COLUMN col_new DROP DEFAULT;
ALTER TABLE dept_tabl ADD CONSTRAINT div_check CHECK(division_id < 12);
ALTER TABLE dept_tabl DROP CONSTRAINT div_check;

B.4 ALTER TABLE ... SET HISTORY COLUMNS

ALTER TABLE table_name SET HISTORY COLUMNS (col1, col2, colN ...)

B.4.1 Usage

To further optimize the synchronization history process, after you set tables for synchronization history, you
can use the SET HISTORY COLUMNS statement to specify which column updates in the master and its
corresponding synchronized table cause entries to the history table. If you do not use this statement to specify
particular columns, then all update operations (on all columns) in the master database cause a new entry to
the history table when the corresponding synchronized table is updated. Generally, we recommend using
ALTER TABLE ... SET HISTORY COLUMNS for columns that are used for search criteria or for joining.

236

B.3.2 Example

B.4.2 Usage in Master

Use SET SYNCHISTORY and SET HISTORY COLUMNS in the master to enable incremental publications
on a table.

B.4.3 Usage in Replica

Use SET SYNCHISTORY and SET HISTORY COLUMNS in the replica to enable incremental REFRESH
on a table.

Note

In order for ALTER TABLE ... SET HISTORY COLUMNS to succeed, the statement ALTER TABLE
... SET SYNCHISTORY has to be executed first. Executing ALTER TABLE ... SET NOSYNCHIS-
TORY removes also the effect of ALTER TABLE ... SET HISTORY COLUMNS.

B.4.4 Example

ALTER TABLE myLargeTable SET HISTORY COLUMNS (accountid);

B.4.5 Return Values

For details on each error code, see the appendix titled Error Codes in solidDB Administration Guide.

Table B.2. ALTER TABLE SET HISTORY COLUMNS Return Values

DescriptionError code

No privilege for operation13047

Illegal table mode combination13100

Table is not a base table13134

Table is referenced in publication publication_name; drop or alter operations are
not allowed

25038

Table is referenced in subscription to publication publication_name; drop or alter
operations are not allowed.

25039

B.4.6 See Also

ALTER TABLE ... SET SYNCHISTORY

237

B.4.2 Usage in Master

B.5 ALTER TABLE ... SET SYNCHISTORY

ALTER TABLE table_name SET {SYNCHISTORY | NOSYNCHISTORY}

B.5.1 Usage

SET [NO]SYNCHISTORY

The "SET SYNCHISTORY / NOSYNCHISTORY" clause tells the server to use the incremental publications
mechanism of solidDB architecture for this table. By default, SYNCHISTORY is not on. When this statement
is set to SYNCHISTORY for a specified table, a shadow table is automatically created to store old versions
of updated or deleted rows of the main table. The shadow table is called a "synchronization history table" or
simply a "history table".

The data in a history table is referred to when a replica gets an incremental REFRESH from a publication in
the master. For example, let's suppose that the record with Ms. Smith's telephone bill is deleted from the main
table. A copy of her record is stored in the synchronization history table. When the replica refreshes, the
master checks the history table and tells the replica that Ms. Smith's record was deleted. The replica can then
delete that record, also. If the percentage of records that were deleted or changed is fairly small, then an incre-
mental update is faster than downloading the entire table from the master. (When the user does a full REFRESH,
rather than an incremental REFRESH, the history table is not used. The data in the table on the master is
simply copied to the replica.)

Versioned data is automatically deleted from the database when there are no longer any replicas that need the
data to fulfill REFRESH requests.

You must use this command to turn on synchronization history before a table can participate in master/replica
synchronization. You can use this command on a table even if data currently exists in that table; however
ALTER TABLE SET SYNCHISTORY can only be used if the specified table is not referenced by an existing
publication.

SET SYNCHISTORY must be specified in the tables of both master and replica databases.

You can check if SYNCHISTORY is on for a table from the SYS_TABLEMODES system table. The MODE
column contains the SYNCHISTORY information.

You can use, for example, the query below:

SELECT mode
FROM SYS_TABLES, SYS_TABLEMODES

238

B.5 ALTER TABLE ... SET SYNCHISTORY

WHERE table_name = 'MY_TABLE' AND SYS_TABLEMODES.ID = SYS_TABLES.ID;
MODE

SYNCHISTORY
1 rows fetched.

SYS_TABLEMODES only shows the mode of tables for which the mode was explicitly set. In other words,
SYS_TABLEMODES doesn't show the mode of tables that were left at the default mode. If SYNCHISTORY
(or NOSYNCHISTORY) is not set for the table, the query returns an empty resultset.

B.5.2 Usage in Master

Use SET SYNCHISTORY in the master to enable incremental publications on a table.

B.5.3 Usage in Replica

Use SET SYNCHISTORY in the replica to enable incremental REFRESHES on a table.

Note

If the Replica is read only (no changes are done to the replicated parts of the publication), the statement
ALTER TABLE ... SET SYNCHISTORY is not needed. In the same time, the following Flow Replica-
resident parameter should be set:

set sync parameter SYS_SYNC_KEEPLOCALCHANGES 'Yes';

B.5.4 Example

ALTER TABLE myLargeTable SET SYNCHISTORY;
ALTER TABLE myVerySmallTable SET NOSYNCHISTORY;

B.5.5 Return Values

For details on each error code, see the appendix titled Error Codes in the solidDB Administration Guide.

239

B.5.2 Usage in Master

Table B.3. ALTER TABLE SET SYNCHISTORY Return Values

DescriptionError code

No privilege for operation13047

Illegal table mode combination13100

Table is not a base table13134

Table is referenced in publication publication_name ; drop or alter operations are not
allowed

25038

Table is referenced in subscription to publication publication_name ; drop or alter op-
erations are not allowed.

25039

B.5.6 See Also

ALTER TABLE ... SET HISTORY COLUMNS

B.6 ALTER TRIGGER

ALTER TRIGGER trigger_name_attr SET {ENABLED | DISABLED}
trigger_name_attr ::= [catalog_name.[schema_name.]] trigger_name

B.6.1 Usage

You can alter trigger attributes using the ALTER TRIGGER statement. The valid attributes are ENABLED
and DISABLED trigger.

The ALTER TRIGGER DISABLED statement causes solidDB to ignore the trigger when an activating DML
statement is issued. With this command, you can also enable a trigger that is currently inactive or disable a
trigger that is currently active.

You must be the owner of the table, or a user with DBA authority, to alter a trigger on the table.

B.6.2 Example

ALTER TRIGGER trig_on_employee SET ENABLED;

240

B.5.6 See Also

B.7 ALTER USER

ALTER USER user_name IDENTIFIED BY password

B.7.1 Usage

The password of a user may be modified through the ALTER USER statement.

B.7.2 Example

ALTER USER MANAGER IDENTIFIED BY O2CPTG;

B.8 ALTER USER

ALTER USER replica_user SET MASTER master_name USER user_specification

where:

user_specification ::= { master_user IDENTIFIED BY master_password | NONE}

ALTER USER user_name SET {PUBLIC | PRIVATE}

B.8.1 Usage

The following statement is used to map replica user ids to specified master user ids.

ALTER USER replica_user SET MASTER master_name USER user_specification

Mapping user ids is used for implementing security in a multi-master or multi-tier synchronization environment.
In such environments, it is difficult to maintain the same username and passwords in separate, geographically
dispersed databases. For this reason mapping is effective.

Only a user with DBA authority or SYS_SYNC_ADMIN_ROLE can map users. To implement mapping, an
administrator must know the master user name and password. Note that it is always a replica user id that is
mapped to a master user id. If NONE is specified, the mapping is removed.

241

B.7 ALTER USER

All replica databases are responsible for subscribing to the SYNC_CONFIG system publication to update
user information. Public master user names and passwords are downloaded, during this process, to a replica
database using the MESSAGE APPEND SYNC_CONFIG command. Through mapping of the replica user
id with the master user id, the system determines the currently active master user based on the local user id
that is logged to the replica database. Note that if during SYNC_CONFIG loading, the system does not detect
mapping, it determines the currently active master user through the matching user id and password in the
master and the replica.

For more details on using mapping for security, read "Implementing Security Through Access Rights And
Roles" in solidDB SmartFlow Data Replication Guide.

It is also possible to limit what master users are downloaded to the replica during SYNC_CONFIG loading.
This is done by altering users as private or public with the following command:

ALTER USER user_name SET PRIVATE | PUBLIC

Note that the default is PUBLIC. If the PRIVATE option is set for the user, that user's information is not in-
cluded in a SYNC_CONFIG subscription, even if they are specified in a SYNC_CONFIG request. Only a
user with DBA authority or SYS_SYNC_ADMIN_ROLE can alter a user's status.

This allows administrators to ensure no user ids with administration rights are sent to a replica. For security
reasons, administrators may want to ensure that DBA passwords are never public, for example.

B.8.2 Usage in Master

You set user ids to PUBLIC or PRIVATE in a master database.

B.8.3 Usage in Replica

You map a replica user id to a master user id in a replica database.

B.8.4 Example

The following example maps a replica user id smith_1 to a master user id dba with a password of dba.

ALTER USER SMITH_1 SET MASTER MASTER_1 USER DBA IDENTIFIED BY DBA

The following example shows how users are set to PRIVATE and PUBLIC.

-- this master user should not be downloaded to any replica

242

B.8.2 Usage in Master

ALTER USER dba SET PRIVATE;

-- this master user should be downloaded to every replica
ALTER USER salesman SET PUBLIC;

B.8.5 Return Values

For details on each error code, see the appendix titled Error Codes in the solidDB Administration Guide.

Table B.4. ALTER USER Return Values

DescriptionError code

No privilege for operation13047

User name xxx not found13060

Database is not a master database25020

User user_id is not mapped to master user_id25062

User user_id is already mapped to master user_id25063

B.9 CALL

CALL procedure_name [(parameter [, parameter ...])] [AT node-def]
node-def ::= DEFAULT | <replica name> | <master name>

B.9.1 Supported in

solidDB Disk-based Engine, solidDB (Note that remote procedure calls are allowed only with solidDB with
the SmartFlow option)

B.9.2 Usage

Stored procedures are called with statement CALL.

You may call a stored procedure on another node by using the AT node_ref clause. This is valid only if the
call is made from a master node to one of its replica nodes or vice-versa.

DEFAULT means that the "current replica context" is used. The "current replica context" is only defined
when the procedure call is started in the background using the START AFTER COMMIT statement with the

243

B.8.5 Return Values

FOR EACH REPLICA option. If the default is not set, then an error 'Default node not defined' is returned.
DEFAULT can be used inside stored procedures and in a statement started with START AFTER COMMIT.

A remote stored procedure cannot return a result set; it can only return an error code.

A single call statement can only call a single procedure on a single node. If you want to call more than one
procedure on a single node, you must execute multiple CALL statements. If you want to execute the same
procedure (i.e. the same procedure name) on more than one node, then you have to either

1) Use

START AFTER COMMIT FOR EACH REPLICA.

E.g.

START AFTER COMMIT FOR EACH REPLICA WHERE NAME LIKE 'REPLICA%'
UNIQUE CALL MYPROC AT DEFAULT.

2) Execute multiple calls.

A procedure call is executed synchronously; it returns after the call is executed.

Note

The procedure call is executed asynchronously in the background if the procedure call is executed
using START AFTER COMMIT (e.g. START AFTER COMMIT UNIQUE CALL FOO AT REP-
LICA1). That is due to the nature of the START AFTER COMMIT command, not the nature of pro-
cedure calls.

B.9.3 Transactions

A remote procedure call (whether or not it was started by a START AFTER COMMIT) is executed in a sep-
arate transaction from the transaction that it was called from. The caller cannot roll back or commit the remote
procedure call. The procedure that is executing in the called node is responsible for issuing its own commit
or rollback statement.

B.9.4 Return Values from the Remote Procedure

When you call a remote stored procedure, you cannot get a complete result set returned. All that you get is
the return value of the stored procedure (a single value) or an error code.

244

B.9.3 Transactions

Note

If the remote procedure is executed in the background (using START AFTER COMMIT), then no
return value is returned to the user. Even error codes are not returned.

B.9.5 Access Rights for Remote Stored Procedure Calls

When a stored procedure is called remotely, you must take into account the access rights — i.e. does the caller
have the right to execute this procedure on the remote server?

CASE 1. If the Sync user is set with the command SET SYNC USER.

The caller sends the user name and password of the "sync user" to the remote server, and the remote server
tries to execute the procedure using that user name and password. In this case, the username and password
must exist in the remote server (i.e. the server that the stored procedure will be executed on) and the user must
have appropriate access rights to the database and the called procedure.

CASE 2. If the Sync user is not set:

The caller sends the following information to the remote server when calling a remote procedure:

If the caller is the master and the remote server is the replica (M → R):

• Name of the master (SYS_SYNC_REPLICAS.MASTER_NAME).

• Replica id (SYS_SYNC_REPLICAS.ID).

• User name of the caller.

• User id of the caller.

If the caller is the replica and the remote procedure is the master (R → M):

• Name of the master (SYS_SYNC_MASTERS.NAME).

• Replica id (SYS_SYNC_MASTERS.REPLICA_ID).

• Master user id (The same user id is used as when a replica refreshes data. There has to be a mapping from
the local replica user to a master user in SYS_SYNC_USERS table.)

The following actions are performed in the called node:

If the remote node is a replica (M → R):

245

B.9.5 Access Rights for Remote Stored Procedure Calls

• Get the master id from table SYS_SYNC_MASTERS according to the master name received from the
caller (master itself doesn't know it's id in the replica). From the table SYS_SYNC_USERMAPS get the
replica user ids according to master user name and master id. Select the first user that has access rights to
the procedure.

• If there are no matching rows in SYS_SYNC_USERMAPS, then get NAME and PASSWD from the table
SYS_SYNC_USERS according to master id and master user name received from the caller and try to
execute the procedure using them.

If the remote node is a master (R → M)

• Try to execute the procedure using the user id received from the replica.

If the replica allows calls from any master it should define its own connect string information in the sol-
id.ini file, for example:

[Synchronizer]
ConnectStrForMaster=tcp replicahost 1316

The replica sends that connect string automatically to the master when it forwards any message to the master.
When the master receives the connect string from the replica, it replaces any previous value (if it differs).

The master can set the connect string to the replica (if the replica has not done any messaging and the master
needs to call it and knows that the connect string has changed) using the following statement:

SET SYNC CONNECT <connect-info> TO REPLICA <replica-name>

B.9.6 Durability

Remote procedure calls are not durable. If the server goes down right after issuing the remote procedure call,
then the call is lost. It will not be executed in recovery phase.

B.9.7 Example

CALL proctest;
CALL proctest('some string', 14);
CALL remote_proc AT replica2;
CALL RemoteProc(?,?) AT MyReplica1;

246

B.9.6 Durability

B.10 COMMIT WORK

COMMIT WORK

B.10.1 Usage

The changes made in the database are made permanent by the COMMIT statement. It terminates the transaction.
To discard the changes, use the ROLLBACK command. Note that if you do not explicitly COMMIT a trans-
action, and if the program (e.g. solsql, SolidConsole) does not COMMIT for you, then the transaction will be
rolled back.

B.10.2 Example

COMMIT WORK;

B.10.3 See Also

ROLLBACK WORK

B.11 CREATE CATALOG

CREATE CATALOG catalog_name

B.11.1 Usage

Catalogs allow you to logically partition databases so you can organize your data to meet the needs of your
business or application. solidDB's use of catalogs is an extension to the SQL standard.

A solidDB physical database file may contain more than one logical database. Each logical database is a
complete, independent group of database objects, such as tables, indexes, triggers, stored procedures, etc.
Each logical database is implemented as a database catalog. Thus, solidDB can have one or more catalogs.

When creating a new database or converting an old database to a new format, users are prompted for a default
catalog name. This default catalog name allows for backward compatibility of solidDB databases prior to
version 3.x.

A catalog can have zero or more schema_names. The default schema name is the user ID of the user who
creates the catalog.

247

B.10 COMMIT WORK

A schema can have zero or more database object names. A database object can be qualified by a schema or
user ID.

The catalog name is used to qualify a database object name.

Caution

The catalog name must not contain spaces.

Database object names can be qualified in all DML statements as:

catalog_name.schema_name.database_object

or

catalog_name.user_id.database_object

Note that if you use the catalog name, then you must also use the schema name. The converse is not true; you
may use the schema name without using the catalog name (if you have already done an appropriate SET
CATALOG statement to specify the default catalog).

catalog_name.database_object -- Illegal
schema_name.database_object -- Legal

Only a user with DBA authority (SYS_ADMIN_ROLE) can create a catalog for a database.

Note that creating a catalog does not automatically make that catalog the current default catalog. If you have
created a new catalog and want your subsequent commands to execute within that catalog, then you must also
execute the SET CATALOG statement. For example:

CREATE CATALOG MyCatalog;
CREATE SCHEMA smith; -- not in MyCatalog
SET CATALOG MyCatalog;
CREATE SCHEMA jones; -- in MyCatalog

For more information about SET CATALOG, see the description of the command "SET" in Section B.75,
“SET”.

248

B.11.1 Usage

To use schemas, a schema name must be created before creating the database object name. However, a database
object name can be created without a schema name. In such cases, database objects are qualified using user_id
only. For details on creating schemas, read Section B.17, “CREATE SCHEMA”.

A catalog context can be set in a program using:

SET CATALOG catalog_name

A catalog can be dropped from a database using:

DROP CATALOG catalog_name

When dropping a catalog name, all objects associated with the catalog name must be dropped prior to dropping
the catalog.

Following are the rules for resolving catalog names:

• A fully qualified name (catalog_name.schema_name.database_object_name) does not
need any name resolution, but will be validated.

• If a catalog context is not set using SET CATALOG, then all database object names are resolved always
using the default catalog name as the catalog name. The database object name is resolved using schema
name resolution rules. For details on these rules, read Section B.17, “CREATE SCHEMA”.

• If a catalog context is set and the catalog name cannot be resolved using the catalog_name in the
context, then database_object_name resolution fails.

• To access a database system catalog, users do not need to know the system catalog name. Users can specify
""._SYSTEM.table". solidDB translates the empty string " used as a catalog name to the default
catalog name. solidDB also provides automatic resolution of _SYSTEM schema to the system catalog,
even when the catalog name is not provided.

B.11.2 Examples

CREATE CATALOG C;
SET CATALOG C;
CREATE SCHEMA S;
SET SCHEMA S;
CREATE TABLE T (i INTEGER);
SELECT * FROM T;
-- the name T is resolved to C.S.T

249

B.11.2 Examples

-- Assume the userid is SMITH
CREATE CATALOG C;
SET CATALOG C;
CREATE TABLE T (i INTEGER);
SELECT * FROM T;
--The name T is resolved to C.SMITH.T

-- Assume there is no Catalog context set.
-- Meaning the default catalog name is BASE or the setting
-- of the base catalog.
CREATE SCHEMA S;
SET SCHEMA S;
CREATE TABLE T (i INTEGER);
SELECT * FROM T;
--The name T is resolved to <BASE>.S.T

CREATE CATALOG C1;
SET CATALOG C1;
CREATE SCHEMA S1;
SET SCHEMA S1;
CREATE TABLE T1 (c1 INTEGER);

CREATE CATALOG C2;
SET CATALOG C2;
CREATE SCHEMA S2;
SET SCHEMA S2;
CREATE TABLE T1 (c2 INTEGER)

SET CATALOG BASE;
SET SCHEMA USER;
SELECT * FROM T1;
-- This select will give an error as it
-- cannot resolve the T1.

B.12 CREATE EVENT

CREATE EVENT event_name [(parameter_definition
 [,parameter_definition ...])]

250

B.12 CREATE EVENT

B.12.1 Usage

Event alerts are used to signal an event in the database. Events are simple objects with a name. Applications
can use event alerts instead of polling, which uses more resources.

An event object is created with the SQL statement

CREATE EVENT event_name [parameter_list]

The name can be any user-specified alphanumeric string. The parameter list specifies parameter names and
parameter types. The parameter types are normal SQL types.

Events are dropped with the SQL statement

DROP EVENT event_name

Events are sent and received inside stored procedures. Special stored procedure statements are used to send
and receive events.

The event is sent with the stored procedure statement

post_statement ::= POST EVENT event_name
 [(parameters)] [UNIQUE | DATA UNIQUE]

Event parameters must be local variables, constant values, or parameters in the stored procedure from which
the event is sent.

The keyword UNIQUE means that only last post is kept in event queue for each user and for each event. For
example after POST EVENT EV(1) and POST EVENT EV(2) only EV(2) is in event queue if EV(1) is not
processed before EV(2) is posted. Event EV(1) is discarded. The keyword DATA UNIQUE means that also
event parameters must be unique. So after calls POST EVENT EV(1), POST EVENT EV(2) and POST
EVENT EV(2) events EV(1) and EV(2) are kept in event queue. First EV(2) is discarded.

All clients that are waiting for the posted event will receive the event. Each connection has its own event
queue. The events to be collected in the event queue are specified with the stored procedure statement:

wait_register_statement ::= REGISTER EVENT event_name

Events are removed from the event queue with the stored procedure statement:

251

B.12.1 Usage

wait_register_statement ::= UNREGISTER EVENT event_name

Note that you do not need to register for every event before waiting for it. When you wait on an event, you
will be registered implicitly for that event if you did not already explicitly register for it. Thus you only need
to explicitly register events if you want them to start being queued now but you don't want to start WAITing
for them until later.

To make a procedure wait for an event to happen, the WAIT EVENT construct is used in a stored procedure:

wait_event_statement ::=
 WAIT EVENT
 [event_specification ...]
 END WAIT

event_specification ::=
 WHEN event_name [(parameters)] BEGIN

statements
 END EVENT

Each connection has its own event queue. To specify the events to be collected in the event queue, use the
command REGISTER EVENT event_name. Events are removed from the event queue by the command
UNREGISTER EVENT event_name.

"CREATE PROCEDURE register_event
begin
 register event test_event
end";

"CREATE PROCEDURE unregister_event
begin
 unregister event test_event
end";

The creator of an event or the database administrator can grant and revoke access rights on that event. Access
rights can be granted to users and roles. If a user has "SELECT" access right on an event, then the user has
the right to wait on that event. If a user has the INSERT access right on an event, then the user may post that
event.

If you want to stop the stored procedure waiting for an event, you can use ODBC function SQLCancel()
called from a separate thread in the client application. This function cancels executing statements. Alternatively,

252

B.12.1 Usage

you can create a specific user event and send it. The waiting stored procedure must be modified to wait for
this additional event. The client application recognises this event and exits the waiting loop.

For in-depth examples of events usage, refer to the section Section 4.11, “Using Events”. The example includes
a pair of SQL scripts that when used together post and wait for multiple events.

B.12.2 Example

CREATE EVENT ALERT1(I INTEGER, C CHAR(4));

B.12.3 See Also

CREATE PROCEDURE

B.13 CREATE INDEX

CREATE [UNIQUE] INDEX index_name
 ON base_table_name
 (column_identifier [ASC | DESC]
 [, column_identifier [ASC | DESC]] ...)

B.13.1 Usage

Creates an index for a table based on the given columns.

The keyword UNIQUE specifies that the column(s) being indexed must contain unique values. If more than
one column is specified, then the combination of columns must have a unique value, but the individual columns
do not need to have unique values. For example, if you create an index on the combination of LAST_NAME
and FIRST_NAME, then the following data values are acceptable because although there are duplicate first
names and duplicate last names, no 2 rows have the same value for both first name and last name.

SMITH, PATTI
SMITH, DAVID
JONES, DAVID

Keywords ASC and DESC specify whether the given columns should be indexed in ascending or descending
order. If neither ASC nor DESC is specified, then ascending order is used.

253

B.12.2 Example

B.13.2 Example

CREATE UNIQUE INDEX UX_TEST ON TEST (I);
CREATE INDEX X_TEST ON TEST (I DESC, J DESC);

B.13.3 See Also

Section B.15, “CREATE [OR REPLACE] PUBLICATION”.

B.14 CREATE PROCEDURE

CREATE PROCEDURE procedure_name [(parameter_definition
 [, parameter_definition ...])]
 [RETURNS (output_column_definition [, output_column_definition ...])]
 BEGIN procedure_body END;
parameter_definition ::= [parameter_mode] parameter_name data_type
output_column_definition::= column_name column_type
procedure_body ::= [declare_statement; ...][procedure_statement; ...]

parameter_mode ::= IN | OUT | INOUT

declare_statement ::= DECLARE variable_name data_type

procedure_statement ::= prepare_statement | execute_statement |
 fetch_statement | control_statement | post_statement |
 wait_event_statement | wait_register_statement | exec_direct_statement |
 writetrace_statement | sql_dml_or_ddl_statement

prepare_statement ::= EXEC SQL PREPARE
 { cursor_name | CURSORNAME({ string_literal | variable }) }
sql_statement

execute_statement ::=
 EXEC SQL EXECUTE cursor_name
 [USING (variable [, variable ...])]
 [INTO (variable [, variable ...])] |
 EXEC SQL CLOSE cursor_name |
 EXEC SQL DROP cursor_name |
 EXEC SQL {COMMIT | ROLLBACK} WORK |

254

B.13.2 Example

 EXEC SQL SET TRANSACTION {READ ONLY | READ WRITE} |
 EXEC SQL WHENEVER SQLERROR {ABORT | ROLLBACK [WORK], ABORT}
 EXEC SEQUENCE sequence_name.CURRENT INTO variable |
 EXEC SEQUENCE sequence_name.NEXT INTO variable |
 EXEC SEQUENCE sequence_name SET VALUE USING variable

fetch_statement ::= EXEC SQL FETCH cursor_name

cursor_name ::=
literal

post_statement ::= POST EVENT event_name [(parameters)]

wait_event_statement ::=
 WAIT EVENT
 [event_specification ...]
 END WAIT

event_specification ::=
 WHEN event_name [(parameters)] BEGIN

statements
 END EVENT

wait_register_statement ::=
 REGISTER EVENT event_name |
 UNREGISTER EVENT event_name
writetrace_statement ::=
 WRITETRACE(string)
control_statement ::=
 SET variable_name = value | variable_name ::= value |
 WHILE expression
 LOOP procedure_statement... END LOOP |
 LEAVE |
 IF expression THEN procedure_statement ...
 [ELSEIF procedure_statement ... THEN] ...
 ELSE procedure_statement ... END IF |
 RETURN | RETURN SQLERROR OF cursor_name | RETURN ROW |
 RETURN NO ROW
exec_direct_statement ::=
 EXEC SQL [USING (variable [, variable ...])]
 [CURSORNAME(variable)]
 EXECDIRECT sql_dml_or_ddl_statement |

255

B.14 CREATE PROCEDURE

 EXEC SQL cursor_name
 [USING (variable [, variable ...])]
 [INTO (variable [, variable ...])]
 [CURSORNAME(variable)]
 EXECDIRECT sql_dml_or_ddl_statement

B.14.1 Usage

Stored procedures are simple programs, or procedures, that are executed in the server. The user can create a
procedure that contains several SQL statements or a whole transaction and execute it with a single call statement.
Usage of stored procedures reduces network traffic and allows more strict control to access rights and database
operations.

Procedures are created with the statement

CREATE PROCEDURE name body

and dropped with the statement

DROP PROCEDURE name

Procedures are called with the statement

CALL name [parameter ...]

All SQL stored procedures are executed in the Primary unless they are specified as read-only procedures by
way of the SQL standard clause SQL Data Access Indication, in the procedure declaration.

<SQL-data-access-indication> ::=
 NO SQL |
 READS SQL DATA |
 CONTAINS SQL |
 MODIFIES SQL DATA

To avoid unnecessary handovers of read-only procedures and functions, one of the following values can be
declared:

• NO SQL

256

B.14.1 Usage

• READS SQL DATA

• CONTAINS SQL

Only MODIFIES SQL DATA (which is the default) inflicts transaction handover.

The clause comes between the (optional) RETURNS clause and the procedure body. For example:

"CREATE PROCEDURE PHONEBOOK_SEARCH
(IN FIRST_NAME VARCHAR, LAST_NAME VARCHAR)
RETURNS (PHONE_NR NUMERIC, CITY VARCHAR)
READS SQL DATA
BEGIN
-- procedure_body
END";

Stored procedures provide for three different parameter modes: input parameters, output parameters, and in-
put/output parameters. The parameter modes are:

1. Input parameters are passed to the stored procedure from the calling program. The parameter_mode
value is IN. This is the default behaviour.

2. Output parameters are returned to the calling program from the stored procedure. The parameter_mode
value is OUT.

3. Input/output parameters pass values into the procedure and return a value back to the calling procedure.
The parameter_mode is INOUT.

See the table below for a comparison of the parameter modes:

Table B.5. Comparison of the Parameter Modes

INOUTOUTINFeature

Must be specified.Must be specified.Default.Default/specified

Passes initial values to a
subprogram; returns up-
dated values to the caller.

Returns values to the
caller.

Passes values to a subpro-
gram.

Operation

257

B.14.1 Usage

INOUTOUTINFeature

Formal parameter, acts
like an initialised variable.

Formal parameter, acts
like an uninitialised vari-
able.

Formal parameter, acts
like a constant.

Action

Formal parameter, should
be assigned a value.

Formal parameter, cannot
be used in an expression;
must be assigned a value.

Formal parameter, cannot
be assigned a value.

Value assignation

Actual parameter, must be
a variable.

Actual parameter, must be
a variable.

Actual parameter, can be
a constant, initialised vari-
able, literal, or expression.

Parameter type

At programming interfaces, the output parameters are bound to variables as follows:

In JDBC, with the method CallableStatement.registerOutParameter().

In ODBC, with the function SQLBindParameter(), where the third argument, InputOutputType,
may be of type:

SQL_PARAM_INPUT

SQL_PARAM_OUTPUT

SQL_PARAM_INPUT_OUTPUT

For more information on binding parameters to variables, refer to solidDB Programmer Guide.

Note that it is syntactically valid, although not useful, to create a stored procedure with an empty body.

Procedures are owned by the creator of the procedure. Specified access rights can be granted to other users.
When the procedure is run, it has the creator's access rights to database objects.

The stored procedure syntax is a proprietary syntax modeled from SQL-99 specifications and dynamic SQL.
Procedures contain control statements and SQL statements.

The following control statements are available in the procedures:

258

B.14.1 Usage

Table B.6. Control Statements

DescriptionControl Statement

Assigns a value to a variable. The value can be either
a literal value (e.g., 10 or 'text') or another variable.
Parameters are considered as normal variables.

set variable = expression

Alternate syntax for assigning values to variables.
variable ::= expression

Loops while expression is true.
while

expr
loop

statement-list
end loop

Leaves the innermost while loop and continues execut-
ing the procedure from the next statement after the
keyword end loop.

leave

Executes statements-list1 if expression expr
is true; otherwise, executes statement-list2.if

expr
then

statement-list1
else

statement-list2
end if

If expr1 is true, executes statement-list1. If
expr2 is true, executes statement-list2. Theif

expr1 statement can optionally contain multiple elseif state-
ments and also an else statement.then

statement-list1
elseif

expr2

259

B.14.1 Usage

DescriptionControl Statement

then
statement-list2

end if

Returns the current values of output parameters and
exits the procedure. If a procedure has a return
row statement, return behaves like return norow.

return

Returns the sqlerror associated with the cursor and
exits the procedure.return sqlerror of cursor-name

Returns the current values of output parameters and
continues execution of the procedure. Return row does
not exit the procedure and return control to the caller.

return row

Returns the end of the set and exits the procedure.
return norow

All SQL DML and DDL statements can be used in procedures. Thus the procedure can, for example, create
tables or commit a transaction. Each SQL statement in the procedure is atomic.

The "autocommit" functionality works differently for statements inside a stored procedure than for statements
outside a stored procedure. For SQL statements outside a stored procedure, each individual statement is im-
plicitly followed by a COMMIT WORK operation when autocommit is on. For a stored procedure, however,
the implicit COMMIT WORK is executed after the stored procedure has returned to the caller. Note that this
does not imply that a stored procedure is "atomic". As indicated above, a stored procedure may contain its
own COMMIT and ROLLBACK commands. The implicit COMMIT WORK executed after the procedure
returns will commit only that portion of the stored procedure statements that were executed since:

• the last COMMIT WORK inside the procedure

• the last ROLLBACK WORK inside the procedure

• the start of the procedure (if no COMMIT or ROLLBACK commands were executed during the procedure)

260

B.14.1 Usage

Note that if one stored procedure is called from inside another, the implicit COMMIT WORK is done only
after the end of the OUTERMOST procedure call. There is no implicit COMMIT WORK done after "nested"
procedure calls.

For example, in the following script, the implicit COMMIT WORK is executed only after the CALL out-
er_proc(); statement:

"CREATE PROCEDURE inner_proc
BEGIN
 ...
END";
CREATE PROCEDURE outer_proc
BEGIN
 ...
 EXEC SQL PREPARE cursor1 CALL inner_proc();
 EXEC SQL EXECUTE cursor1;
 ...
END";
 CALL outer_proc();

B.14.2 Preparing SQL Statements

The SQL statements are first prepared with the statement

EXEC SQL PREPARE cursor sql_statement

The cursor specification is a cursor name that must be given. It can be any unique cursor name inside the
transaction. Note that if the procedure is not a complete transaction, other open cursors outside the procedure
may have conflicting cursor names.

B.14.3 Executing Prepared SQL Statements

The SQL statement is executed with the statement

EXEC SQL EXECUTE cursor [opt_using] [opt_into]

The optional opt-using specification has the syntax

261

B.14.2 Preparing SQL Statements

USING (variable_list)

where variable_list contains a list of procedure variables or parameters separated by a comma. These
variables are input parameters for the SQL statement. The SQL input parameters are marked with the standard
question mark syntax in the prepare statement. If the SQL statement has no input parameters, the USING
specification is ignored.

The optional opt_into specification has the syntax

INTO (variable_list)

where variable_list contains the variables that the column values of the SQL SELECT statement are
stored into. The INTO specification is effective only for SQL SELECT statements.

After the execution of UPDATE, INSERT and DELETE statements an additional variable is available to
check the result of the statement. Variable SQLROWCOUNT contains the number of rows affected by the
last statement.

B.14.4 Fetching Results

Rows are fetched with the statement

EXEC SQL FETCH cursor_name

If the fetch completed successfully, then the column values are stored into the variables defined in the
opt_into specification of the EXECUTE or EXECDIRECT statement.

B.14.5 Closing and Dropping Cursors

When you are finished using a cursor, you should CLOSE the cursor and DROP the cursor. If you do not do
this, then resources (such as memory) that are allocated to the cursor may not be freed up for re-use.

B.14.6 Checking for Errors

The result of each EXEC SQL statement executed inside a procedure body is stored into the variable
SQLSUCCESS. This variable is automatically generated for every procedure. If the previous SQL statement
was successful, a value one is stored into SQLSUCCESS. After a failed SQL statement, a value zero is stored
into SQLSUCCESS.

262

B.14.4 Fetching Results

EXEC SQL WHENEVER SQLERROR {ABORT | [ROLLBACK [WORK], ABORT}

is used to decrease the need for IF NOT SQLSUCCESS THEN tests after every executed SQL statement in
a procedure. When this statement is included in a stored procedure all return values of executed statements
are checked for errors. If statement execution returns an error, the procedure is automatically aborted. Optionally
the transaction can be rolled back.

The error string of latest failed SQL statement is stored into variable SQLERRSTR.

B.14.7 Using Transactions

EXEC SQL {COMMIT | ROLLBACK} WORK

is used to terminate transactions.

EXEC SQL SET TRANSACTION {READ ONLY | READ WRITE}

is used to control the type of transactions.

B.14.8 Using Sequencer Objects and Event Alerts

Refer to the usage of the CREATE SEQUENCE and CREATE EVENT statements.

B.14.9 Writetrace

The writetrace() function allows you to send a string to the soltrace.out trace file. This can be
useful when debugging problems in stored procedures.

The output will only be written if you turn tracing on.

For more information about writetrace and how to turn on tracing, see Section 7.4, “Tracing Facilities for
Stored Procedures and Triggers”.

B.14.10 Procedure Stack Functions

The following functions may be used to analyze the current contents of the procedure stack: PROC_COUNT(),
PROC_NAME(N), PROC_SCHEMA(N).

PROC_COUNT() returns the number of procedures in the procedure stack. This includes the current procedure.

263

B.14.7 Using Transactions

PROC_NAME(N) returns the Nth procedure name is the stack. First procedure position is zero.

PROC_SCHEMA(N) returns the schema name of the Nth procedure in procedure stack.

B.14.11 Dynamic Cursor Names

CURSORNAME(
 prefix -- VARCHAR
)

The CURSORNAME() function allows you to dynamically generate a cursor name rather than hard-coding
the cursor name.

Note

Strictly speaking, CURSORNAME() is not a function, despite the syntactic similarity. CURSOR-
NAME(arg) does not actually return anything; instead it sets the name of the current statement's
cursor based on the given argument. However, it is convenient to refer to it as a function, and therefore
we will do so.

Cursor names must be unique within a connection. This causes problems in recursive stored procedures because
each invocation uses the same cursor name(s). When the recursive procedure calls itself, the second invocation
will find that the first invocation has already created a cursor with the same name as the second invocation
wants to use.

To get around this problem, we must generate unique cursor names dynamically, and we must be able to use
those names when we declare and use cursors. To enable us to generate unique names and use them as cursors,
we use 2 functions:

• GET_UNIQUE_STRING

• CURSORNAME

The GET_UNIQUE_STRING function does just what it's name suggests — it generates a unique string. The
CURSORNAME function (actually a pseudo-function) allows you to use a dynamically generated string as part
of a cursor name.

Note that GET_UNIQUE_STRING returns a different output each time it is called, even if the input is the
same. CURSORNAME, on the other hand, returns the same output each time if the input is the same each time.

264

B.14.11 Dynamic Cursor Names

Below is an example of using GET_UNIQUE_STRING and CURSORNAME to dynamically generate a cursor
name. The dynamically generated cursorname is assigned to the placeholder "cname", which is then used in
each statement after the PREPARE.

DECLARE autoname VARCHAR;
Autoname := GET_UNIQUE_STRING('CUR_');
EXEC SQL PREPARE cname CURSORNAME(autoname) SELECT * FROM TABLES;
EXEC SQL EXECUTE cname USING(...) INTO(...);
EXEC SQL FETCH cname;
EXEC SQL CLOSE cname;
EXEC SQL DROP cname;

CURSORNAME() can only be used in PREPARE statements and EXECDIRECT statements. It cannot be
used in EXECUTE, FETCH, CLOSE, DROP, etc.

By using the CURSORNAME() feature and the GET_UNIQUE_STRING() function, you can generate unique
cursor names in recursive stored procedures. If the procedure calls itself, then each time that this function is
called within the stored procedure, this function will return a unique string that can be used as the cursor name
in a PREPARE statement. See below for some examples of code that you could use inside a stored procedure.

Note that each call to CURSORNAME(autoname) returns the same value — i.e. the same cursor name, as
long as the input (autoname) does not change.

B.14.12 EXECDIRECT

The EXECDIRECT statement allows you to execute statements inside stored procedures without first "pre-
paring" those statements. This reduces the amount of code required. Note that if the statement is a cursor, you
still need to close and drop it; only the PREPARE statement can be skipped.

When using

EXEC SQL [USING(var_list)] [CURSORNAME(variable)]
EXECDIRECT <statement>

or

EXEC SQL <cursor_name> [USING(var_list)] [INTO (var_list)]
[CURSORNAME(variable)] EXECDIRECT <statement>

remember the following rules:

265

B.14.12 EXECDIRECT

• If the statement specifies a cursor name, then the cursor must be dropped with the EXEC SQL DROP
statement.

• If a cursor name is not specified, then you don't need to drop the statement.

• If the statement is a fetch cursor, then the INTO... clause must be specified.

• If the INTO clause is specified, then the cursor_name must be specified; otherwise the FETCH statement
won't be able to specify which cursor name the row should be fetched from. (You may have more than
one open cursor at a time.)

Below are several examples of CREATE PROCEDURE statements. Some use the PREPARE and EXECUTE
commands, while others use EXECDIRECT.

B.14.13 CREATE PROCEDURE

"create procedure test2(tableid integer)
 returns (cnt integer)
begin
 exec sql prepare c1 select count(*) from sys_tables where id > ?;
 exec sql execute c1 using (tableid) into (cnt);
 exec sql fetch c1;
 exec sql close c1;
 exec sql drop c1;
end";

B.14.14 Using the Explicit RETURN Statement

This example uses the explicit RETURN statement to return multiple rows, one at a time.

"create procedure return_tables
 returns (name varchar)
begin
 exec sql execdirect create table table_name (lname char (20));
 exec sql whenever sqlerror rollback, abort;
 exec sql prepare c1 select table_name from sys_tables;
 exec sql execute c1 into (name);
 while sqlsuccess loop
 exec sql fetch c1;
 if not sqlsuccess

266

B.14.13 CREATE PROCEDURE

 then leave;
 end if
 return row;
 end loop;
 exec sql close c1;
 exec sql drop c1;
end";

B.14.15 Using EXECDIRECT

-- This example shows how to use "execdirect".
"CREATE PROCEDURE p
BEGIN
 DECLARE host_x INT;
 DECLARE host_y INT;

 -- Examples of execdirect without a cursor. Here we create a table
 -- and insert a row into that table.
 EXEC SQL EXECDIRECT create table foo (x int, y int);
 EXEC SQL EXECDIRECT insert into foo(x, y) values (1, 2);

 SET host_x = 1;

 -- Example of execdirect with cursor name.
 -- In this example, "c1" is the cursor name; "host_x" is the
 -- variable whose value will be substituted for the "?";
 -- "host_y" is the variable into which we will store the value of the
 -- column y (when we fetch it).
 -- Note: although you don't need a "prepare" statement, you still
 -- need close/drop.
 EXEC SQL c1 USING(host_x) INTO(host_y) EXECDIRECT
 SELECT y from foo where x=?;
 EXEC SQL FETCH c1;
 EXEC SQL CLOSE c1;
 EXEC SQL DROP c1;
END";

267

B.14.15 Using EXECDIRECT

B.14.16 Using CURSORNAME

This example shows the usage of the CURSORNAME() pseudo-function. This shows only part of the body
of a stored procedure, not a complete stored procedure.

-- Declare a variable that will hold a unique string that we can use
-- as a cursor name.
DECLARE autoname VARCHAR ;
Autoname := GET_UNIQUE_STRING('CUR_') ;
EXEC SQL PREPARE curs_name CURSORNAME(autoname) SELECT * FROM TABLES;
EXEC SQL EXECUTE curs_name USING(...) INTO(...);
EXEC SQL FETCH curs_name;
EXEC SQL CLOSE curs_name;
EXEC SQL DROP curs_name;

B.14.17 Using GET_UNIQUE_STRING and CURSORNAME

Here is a more complete example that actually uses the GET_UNIQUE_STRING and CURSORNAME
functions in a recursive stored procedure.

The stored procedure below demonstrates the use of these two functions in a recursive procedure. Note that
the cursor name "curs1" appears to be hard-coded, but in fact has been mapped to the dynamically generated
name.

-- Demonstrate GET_UNIQUE_STRING and CURSORNAME functions in a
-- recursive stored procedure.
-- Given a number N greater than or equal to 1, this procedure
-- returns the sum of the numbers 1 - N. (We could do this in a loop,
-- of course, but the purpose of the example is to show the use of the
-- CURSORNAME function in a recursive procedure.)
"CREATE PROCEDURE Sum1ToN(n INT)
RETURNS (SumSoFar INT)
BEGIN
 DECLARE SumOfRemainingItems INT;
 DECLARE nMinusOne INT;
 DECLARE autoname VARCHAR;

 SumSoFar := 0;
 SumOfRemainingItems := 0;
 nMinusOne := n - 1;

268

B.14.16 Using CURSORNAME

 IF (nMinusOne > 0) THEN
 Autoname := GET_UNIQUE_STRING('CURSOR_NAME_PREFIX_') ;
 EXEC SQL PREPARE curs1 CURSORNAME(autoname) CALL Sum1ToN(?);
 EXEC SQL EXECUTE curs1 USING(nMinusOne) INTO(SumOfRemainingItems);
 EXEC SQL FETCH curs1;
 EXEC SQL CLOSE curs1;
 EXEC SQL DROP curs1;
 END IF;

 SumSoFar := n + SumOfRemainingItems;
END";

B.14.18 Example 6

Using EXECDIRECT in CREATE PROCEDURE

CREATE TABLE table1 (x INT, y INT);
INSERT INTO table1 (x, y) VALUES (1, 2);

"CREATE PROCEDURE FOO
RETURNS (r INT)
BEGIN
DECLARE autoname VARCHAR;
Autoname := GET_UNIQUE_STRING('CUR_');
EXEC SQL curs_name INTO(r) CURSORNAME(autoname) EXECDIRECT
 SELECT y FROM TABLE1 WHERE x = 1;
EXEC SQL FETCH curs_name;
EXEC SQL CLOSE curs_name;
EXEC SQL DROP curs_name;
END";

CALL foo();
SELECT * FROM table1;

B.14.19 Creating a Unique Name for a Synchronization Message

Creating a unique name for a synchronization message:

DECLARE Autoname VARCHAR;

269

B.14.18 Example 6

DECLARE Sqlstr VARCHAR;
Autoname := get_unique_string('MSG_') ;
Sqlstr := 'MESSAGE' + autoname + 'BEGIN';
EXEC SQL EXECDIRECT Sqlstr;
...
Sqlstr := 'MESSAGE' + autoname + 'FORWARD';
EXEC SQL EXECDIRECT Sqlstr;

B.14.20 Using GET_UNIQUE_STRING

-- This demonstrates how to use the GET_UNIQUE_STRING() function
-- to generate unique message names from within a recursive stored
-- procedure.

CREATE TABLE table1 (i int, beginMsg VARCHAR, endMsg VARCHAR);

-- This is a simplified example of recursion.
-- Note that the messages I compose are not actually used! This is
-- not a true example of synchronization; it's only an example of
-- generating unique message names. The "count" parameter is the
-- number of times that you want this function to call
-- itself (not including the initial call).
"CREATE PROCEDURE repeater(count INT)

BEGIN

DECLARE Autoname VARCHAR;
DECLARE MsgBeginStr VARCHAR;
DECLARE MsgEndStr VARCHAR;

Autoname := GET_UNIQUE_STRING('MSG_');
MsgBeginStr := 'MESSAGE ' + Autoname + ' BEGIN';
MsgEndStr := 'MESSAGE ' + Autoname + ' END';

EXEC SQL c1 USING (count, MsgBeginStr, MsgEndStr) EXECDIRECT
 INSERT INTO table1 (i, beginMsg, endMsg) VALUES (?,?,?);
EXEC SQL CLOSE c1;
EXEC SQL DROP c1;

-- Once you have composed the SQL statement as a string,

270

B.14.20 Using GET_UNIQUE_STRING

-- you can execute it one of two ways:
-- 1) by using the EXECDIRECT feature or
-- 2) by preparing and executing the SQL statement.
-- In this example, we use EXECDIRECT.
EXEC SQL EXECDIRECT MsgBeginStr;
EXEC SQL EXECDIRECT MsgEndStr;
-- Do something useful here.

-- The recursive portion of the function.
IF (count > 1) THEN
 SET count = count - 1;
 -- Note that we can also use our unique name as a cursor name,
 -- as shown below.
 EXEC SQL Autoname USING (count) EXECDIRECT CALL repeater(?);
 EXEC SQL CLOSE Autoname;
 EXEC SQL DROP Autoname;
END IF

RETURN;
END";

CALL repeater(3);

-- Show the message names that we composed.
SELECT * FROM table1;

The output from this SELECT statement would look similar to the following:

I BEGINMSG ENDMSG
-- -------------------- ------------------
1 MESSAGE MSG_019 BEGIN MESSAGE MSG_019 END
2 MESSAGE MSG_020 BEGIN MESSAGE MSG_020 END
3 MESSAGE MSG_021 BEGIN MESSAGE MSG_021 END

B.15 CREATE [OR REPLACE] PUBLICATION

“CREATE [OR REPLACE] PUBLICATION publication_name
 [(parameter_definition [,parameter_definition...])]
BEGIN

271

B.15 CREATE [OR REPLACE] PUBLICATION

main_result_set_definition...
END”;

main_result_set_definition ::=
RESULT SET FOR main_replica_table_name

BEGIN
 SELECT select_list
 FROM master_table_name
 [WHERE search_condition] ;
 [[DISTINCT] result_set_definition...]
END

result_set_definition ::=
RESULT SET FOR replica_table_name

BEGIN
 SELECT select_list
 FROM master_table_name
 [WHERE search_condition] ;
 [[DISTINCT] result_set_definition...]
END

NOTE: Search_condition can reference parameter_definitions and/or columns of replica tables
defined on previous (higher) levels.

B.15.1 Usage

Publications define the sets of data that can be REFRESHed from the master to the replica database. A pub-
lication is always transactionally consistent, that is, its data has been read from the master database in one
transaction and the data is written to the replica database in one transaction.

Caution

The data read from the publication is internally consistent unless the master is using the READ
COMMITTED isolation level.

Search conditions of a SELECT clause can contain input arguments of the publication as parameters. The
parameter name must have a colon as a prefix.

272

B.15.1 Usage

Publications can contain data from multiple tables. The tables of the publication can be independent or there
can be relations between the tables. If there is a relation between tables, the result sets must be nested. The
WHERE clause of the SELECT statement of the inner result set of the publication must refer to a column of
the table of the outer result set.

If the relation between outer and inner result set of the publication is a N-1 relationship, then the keyword
DISTINCT must be used in the result set definition.

The replica_table_name can be different from the master_table_name. The publication definition
provides the mapping between the master and replica tables. (If you have multiple replicas, all the replicas
should use the same name, even if that name is different from the name used in the master.) Column names
in the master and replica tables must be the same.

Note that the initial download is always a full publication, which means that all data contained in the public-
ation is sent to the replica database. Subsequent downloads (refreshes) for the same publication may be incre-
mental publications, which means that they contain only the data that has been changed since the prior RE-
FRESH. To enable usage of incremental publications, SYNCHISTORY has to be set ON for tables included
in the publication in both the master and replica databases. For details, read Section B.5, “ALTER TABLE
... SET SYNCHISTORY” and Section B.32, “DROP PUBLICATION REGISTRATION”.

If the optional keywords "OR REPLACE" are used, then if the publication already exists it will be replaced
with the new definition. Since the publication was not dropped and recreated, replicas do not need to re-register,
and subsequent REFRESHes from that publication can be incremental rather than full, depending upon exactly
what changes were made to the publication.

To avoid having a replica refresh from a publication while you are updating that publication, you may tem-
porarily set the catalog's sync mode to Maintenance mode. However, using maintenance mode is not absolutely
required when replacing a publication.

If you replace an existing publication, the new definition of the publication will be sent to each replica the
next time that replica requests a refresh. The replica does not need to explicitly re-register itself to the public-
ation.

When you replace an existing publication with a new definition, you may change the resultset definitions.
You cannot change the parameters of the publication. The only way to change the parameters is to drop the
publication and create a new one, which also means that the replicas must re-register and the replicas will get
a full refresh rather than an incremental refresh the next time that they request a refresh.

When you replace an existing publication, the privileges related to that publication are left unchanged. (You
do not need to re-create them.)

The CREATE OR REPLACE PUBLICATION command can be executed in any situation where it is valid
to execute the CREATE PUBLICATION command.

273

B.15.1 Usage

Caution

If you use CREATE OR REPLACE PUBLICATION to alter the contents of an existing SmartFlow
publication, you have to take care of removing invalid rows from Replica.

B.15.2 Usage in Master

You define the publication in the master database to enable the replicas to get refrehses from it.

B.15.3 Usage in Replica

There is no need to define the publications in the replicas. Publication subscription functionality depends on
the definitions only at the master database. If this command is executed in a replica, it will store the publication
definition to the replica, but the publication definition is not used for anything. (Note that if a database is both
a replica (for a master above it) and a master (to a replica below it), then of course you may want to create a
publication definition in the database.)

B.15.4 Example

The following sample publication retrieves data from the customer table using the area code of the customer
as search criterion. For each customer, the orders and invoices of the customer (1-N relation) as well as the
dedicated salesman of the customer (1-1 relation) are also retrieved.

"CREATE PUBLICATION PUB_CUSTOMERS_BY_AREA
 (IN_AREA_CODE VARCHAR)
BEGIN
 RESULT SET FOR CUSTOMER
 BEGIN
 SELECT * FROM CUSTOMER
 WHERE AREA_CODE = :IN_AREA_CODE;
 RESULT SET FOR CUST_ORDER
 BEGIN
 SELECT * FROM CUST_ORDER
 WHERE CUSTOMER_ID = CUSTOMER.ID;
 END
 RESULT SET FOR INVOICE
 BEGIN
 SELECT * FROM INVOICE
 WHERE CUSTOMER_ID = CUSTOMER.ID;
 END

274

B.15.2 Usage in Master

 DISTINCT RESULT SET FOR SALESMAN
 BEGIN
 SELECT * FROM SALESMAN
 WHERE ID = CUSTOMER.SALESMAN_ID;
 END
 END
END";

Note

The colon (:) in :IN_AREA_CODE is used to designate a reference to a publication parameter with
the same name.

EXAMPLE 2:

Developers decided to add a new column C in table T, which is referenced in publication P. The modification
must be made to the master database and all replica databases.

The tasks to execute in the master database are:

-- Prevent other users from doing concurrent synchronization operations
-- to this catalog.
SET SYNC MAINTENANCE MODE ON;
ALTER TABLE T ADD COLUMN C INTEGER;
COMMIT WORK;
CREATE OR REPLACE PUBLICATION P ... (column C added also to publication)
COMMIT WORK;
SET SYNC MAINTENANCE MODE OFF;

The tasks to execute in all replica databases are:

-- Prevent other users from doing concurrent synchronization operations
-- to this catalog.
SET SYNC MAINTENANCE MODE ON;
ALTER TABLE T ADD COLUMN C INTEGER;
COMMIT WORK;
SET SYNC MAINTENANCE MODE OFF;

275

B.15.4 Example

B.15.5 Return Values

For details on each error code, see the appendix titled Error Codes in the solidDB Administration Guide.

Table B.7. CREATE PUBLICATION Return Values

DescriptionError Code

No privilege for operation. You do not have the privileges required to drop this public-
ation or create a publication.

13047

The name is too long for the publication13120

Syntax error: error_message, line line_number25015

Database is not master or replica database. Publications can be created only in a master
or replica database. (As a practical matter, they should only be created in a master
database.)

25021

Publication publication_name already exists25033

Referenced table table_name not found in subscription hierarchy25049

Where condition for table table_name must refer to an outer table of the publication25061

B.16 CREATE ROLE

CREATE ROLE role_name

B.16.1 Usage

Creates a new user role.

B.16.2 Example

CREATE ROLE GUEST_USERS;

B.17 CREATE SCHEMA

CREATE SCHEMA schema_name

276

B.15.5 Return Values

B.17.1 Usage

Schemas are a collection of database objects, such as tables, views, indexes, events, triggers, sequences, and
stored procedures for a database user. The default schema name is the user id. Note that with schemas, there
is one default for each user. solidDB's use of schemas conforms to the SQL standard.

The schema name is used to qualify a database object name. Database object names are qualified in all DML
statements as:

catalog_name.schema_name.database_object_name

or

user_id.database_object_name

To logically partition a database, users can create a catalog before they create a schema. For details on creating
a catalog, read Section B.11, “CREATE CATALOG”. Note that when creating a new database or converting
an old database to a new format, users are prompted for a default catalog name.

To use schemas, a schema name must be created before creating the database object name (such as a table
name or procedure name). However, a database object name can be created without a schema name. In such
cases, database objects are qualified using user_id only.

You can specify the database object names in a DML statement explicitly by fully qualifying them or implicitly
by setting the schema name context using:

SET SCHEMA schema_name

Creating a schema does not automatically make that schema the current default schema. If you have created
a new schema and want your subsequent commands to execute within that schema, then you must also execute
the SET SCHEMA statement. For example:

CREATE SCHEMA MySchema;
CREATE TABLE t1; -- not in MySchema
SET SCHEMA MySchema;
CREATE TABLE t2; -- in MySchema

For more information about SET SCHEMA, see the description of the SET SCHEMA command in Sec-
tion B.75, “SET”.

277

B.17.1 Usage

A schema can be dropped from a database using:

DROP SCHEMA schema_name

When dropping a schema name, all objects associated with the schema name must be dropped prior to dropping
the schema.

A schema context can be removed using:

SET SCHEMA USER

Below are the rules for resolving schema names:

• A fully qualified name (schema_name.database_object_name) does not need any name resolution,
but will be validated.

• If a schema context is not set using SET SCHEMA, then all database object names are resolved always
using the user id as the schema name.

• If the database object name cannot be resolved from the schema name, then the database object name is
resolved from all existing schema names.

• If name resolution finds either zero matching or more than one matching database object name, then a
solidDB server issues a name resolution conflict error.

B.17.2 Examples

-- Assume the userID is SMITH.
CREATE SCHEMA FINANCE;
CREATE TABLE EMPLOYEE (EMP_ID INTEGER);
SET SCHEMA FINANCE;
CREATE TABLE EMPLOYEE (ID INTEGER);
SELECT ID FROM EMPLOYEE;
-- In this case, the table is qualified to FINANCE.EMPLOYEE
SELECT EMP_ID FROM EMPLOYEE;
-- This will give an error as the context is with FINANCE and
-- table is resolved to FINANCE.EMPLOYEE

--The following are valid schema statements: one with a schema context,
--the other without.

278

B.17.2 Examples

SELECT ID FROM FINANCE.EMPLOYEE;
SELECT EMP_ID FROM SMITH.EMPLOYEE
--The following statement will resolve to schema SMITH without a schema
--context
SELECT EMP_ID FROM EMPLOYEE;

B.18 CREATE SEQUENCE

CREATE [DENSE] SEQUENCE sequence_name

B.18.1 Usage

Sequencer objects are objects that are used to get sequence numbers.

Using a dense sequence guarantees that there are no holes in the sequence numbers. The sequence number
allocation is bound to the current transaction. If the transaction rolls back, then the sequence number allocations
are also rolled back. The drawback of dense sequences is that the sequence is locked out from other transactions
until the current transaction ends.

Using a sparse sequence guarantees uniqueness of the returned values, but they are not bound to the current
transaction. If a transaction allocates a sparse sequence number and later rolls back, the sequence number is
simply lost.

Sequence numbers are 8-byte values. Sequence values can be stored in BIGINT, INT, or BINARY data types.
BIGINT is recommended. Sequence values stored in INT variables lose information because an 8-byte sequence
number will not fit in a 4-byte INT. 8-byte BINARY values can store a complete sequence number, but
BINARY values are not always as convenient to work with as integer data types.

Note

Because a sequence number is an 8-byte number, storing it in a 4-byte integer (in a stored procedure
or in an application program) will omit the highest four bytes. This will lead possibly to unwanted
behavior after the sequence number goes beyond 2^31 - 1 (=2147483647). Below is some sample
code and the output that demonstrates this behavior:

CREATE SEQUENCE seq1;

-- Set the sequence number to 2^31 - 1,
-- then return that value and the "next" value (2^31).
"CREATE PROCEDURE set_seq1_to_2G

279

B.18 CREATE SEQUENCE

RETURNS (x INT, y INT)
BEGIN
DECLARE int1 INTEGER;
int1 := 2147483647;
EXEC SEQUENCE seq1 SET VALUE USING int1;
EXEC SEQUENCE seq1 CURRENT INTO x;
EXEC SEQUENCE seq1 NEXT INTO y;
END";

COMMIT WORK;

CALL set_seq1_to_2G();

The return values from the call are:

 x y
2147483647 -2147483648

The value for x is correct, but the value for y is a negative number instead of the correct positive
number.

The advantage of using a sequencer object instead of a separate table is that the sequencer object is specifically
fine-tuned for fast execution and requires less overhead than normal update statements.

Sequence values can be incremented and used within SQL statements. These constructs can be used in SQL:

sequence_name.CURRVAL
sequence_name.NEXTVAL

Sequences can also be used inside stored procedures. The current sequence value can be retrieved using the
following stored procedure statement:

EXEC SEQUENCE sequence_name.CURRENT INTO variable

The new sequence value can be retrieved using the following stored procedure statement:

EXEC SEQUENCE sequence_name.NEXT INTO variable

Sequence values can be set with the following stored procedure statement:

280

B.18.1 Usage

EXEC SEQUENCE sequence_name SET VALUE USING variable

Select access rights are required to retrieve the current sequence value. Update access rights are required to
allocate new sequence values. These access rights are granted and revoked in the same way as table access
rights.

B.18.2 Examples

CREATE DENSE SEQUENCE SEQ1;
INSERT INTO ORDER (id) VALUES (order_sequence.NEXTVAL);

B.19 CREATE SYNC BOOKMARK

CREATE SYNC BOOKMARK bookmark_name

B.19.1 Supported in

This requires solidDB SmartFlow.

B.19.2 Usage

This statement creates a bookmark in a master database. Bookmarks represent a user-defined version of the
database. It is a persistent snapshot of a solidDB database, which provides a reference for performing specific
synchronization tasks. Bookmarks are used typically to export data from a master for import into a replica
using the EXPORT SUBSCRIPTION command. Exporting and importing data allows you to create a replica
from a master more efficiently if you have databases larger than 2GB.

To create a bookmark, you must have administrative DBA privileges or SYS_SYNC_ADMIN_ROLE. There
is no limit to the number of bookmarks you can create in a database. A bookmark is created only in a master
database. The system issues an error if you attempt to create a bookmark in a replica database.

If a table is set up for synchronization history with the ALTER TABLE SET SYNCHISTORY command, a
bookmark retains history information for the table. For this reason, use the DROP SYNC BOOKMARK
statement to drop bookmarks when they are not longer needed. Otherwise, extra history data will increase
disk space usage.

When you create a new bookmark, the system associates other attributes, such as creator of the bookmark,
creation data and time, and a unique bookmark ID. This metadata is maintained in the system table

281

B.18.2 Examples

SYS_SYNC_BOOKMARKS. For a description of this table, refer to Section D.2.10, “SYS_SYNC_BOOK-
MARKS”.

B.19.3 Usage in Master

Use the CREATE SYNC BOOKMARK statement to create a bookmark in a master database.

B.19.4 Usage in Replica

The CREATE SYNC BOOKMARK statement cannot be used in a replica database.

B.19.5 Example

CREATE SYNC BOOKMARK BOOKMARK_AFTER_DATALOAD;

B.19.6 Return Values

For details on each error code, see the appendix titled Error Codes in the solidDB Administration Guide.

Table B.8. CREATE SYNC BOOKMARK Return Values

DescriptionError Code

Bookmark already exists25066

No privilege for operation13047

B.20 CREATE TABLE

CREATE [{ [GLOBAL] TEMPORARY | TRANSIENT }] TABLE base_table_name
(column_element [, column_element] ...) [STORE {MEMORY | DISK}]

base_table_name ::= base_table_identifier | schema_name.base_table_identifier |
catalog_name.schema_name.base_table_identifier

column_element ::= column_definition | table_constraint_definition

column_definition ::= column_identifier
data_type [DEFAULT literal | NULL] [NOT NULL]

 [column_constraint_definition [column_constraint_definition] ...]

282

B.19.3 Usage in Master

column_constraint_definition ::= [CONSTRAINT constraint_name]
 UNIQUE | PRIMARY KEY |
 REFERENCES ref_table_name [(referenced_columns)] |
 CHECK (check_condition)

table_constraint_definition ::= [CONSTRAINT constraint_name]
 UNIQUE (column_identifier [, column_identifier] ...) |
 PRIMARY KEY (column_identifier [, column_identifier] ...) |
 CHECK (check_condition) |
 {FOREIGN KEY (column_identifier [, column_identifier] ...)
 REFERENCES table_name [(referenced_columns)]
 [referential_triggered_action] }
referential_triggered_action:: =
 ON {UPDATE | DELETE} {CASCADE | SET NULL | SET DEFAULT |
 RESTRICT | NO ACTION}

B.20.1 Usage

Tables are created through the CREATE TABLE statement. The CREATE TABLE statement requires a list
of the columns created, the data types, and, if applicable, sizes of values within each column, in addition to
other options, such as creating primary keys.

Important

Always define a primary key when you create a table. If you do not define a primary key, the database
engine will create one automatically. This will lead to unexpected data order on the disk and may
cause performance degradation. An appropriate primary key speeds up queries using the primary key.

Constraint definitions are available for both the column and table level. For the column level, constraints
defined with NOT NULL specify that a non-null value is required for a column insertion. UNIQUE specifies
that no two rows are allowed to have the same value. PRIMARY KEY ensures that the column(s), which is
(are) a primary key, does not permit two rows to have the same value and does not permit any NULL values;
PRIMARY KEY is thus equivalent to the combination of UNIQUE and NOT NULL. The REFERENCES
clause with FOREIGN KEY specifies a table name and a list of columns for a referential integrity constraint.
This means that when data is inserted or updated in this table, the data must match the values in the referenced
tables and columns.

The CHECK keyword restricts the values that can be inserted into a column (for example, restricting the
values with a specific integer range). When defined, the check constraint performs a validation check for any
data that is inserted or updated in that column. If the data violates the constraint, then the modification is
prohibited. For example:

283

B.20.1 Usage

CREATE TABLE table1 (salary DECIMAL CHECK (salary >= 0.0));

The check_condition is a boolean expression that specifies the check constraints for the column. Check con-
straints are defined with the predicates >, <, =, <>, <=, >= and the keywords BETWEEN, IN, LIKE (which
may contain wildcard characters), and IS [NOT] NULL. The expression (similar to the syntax of a WHERE
clause) can be qualified with keywords AND and OR. For example:

...CHECK (col1 = 'Y' OR col1 = 'N')...

...CHECK (last_name IS NOT NULL)...

Note that UNIQUE and PRIMARY KEY constraints can be defined at the column level or the table level.
They also automatically create a unique index on the specified columns.

A foreign key is a column or group of columns within a table that refers to, or relates to, some other table
through its values. The FOREIGN KEY is used to specify that the column(s) listed are foreign keys in this
table. The REFERENCES keyword in the statement specifies the table and those column(s) that are references
of the foreign key(s). Note that although column-level constraints can use a REFERENCES clause, only table-
level constraints can use the FOREIGN KEY ... REFERENCES clause.

To use the REFERENCES constraint with FOREIGN keys, a foreign key must always include enough columns
in its definition to uniquely identify a row in the referenced table. A foreign key must contain the same number
and type (data type) of columns as the primary key in the referenced table as well as be in the same order;
however, a foreign key can have different column names and default values than the primary key.

Note the following rules about constraints:

• The check_condition cannot contain subqueries, aggregate functions, host variables, or parameters.

• Column check constraints can reference only the columns on which they are defined.

• Table check constraints can reference any columns in the table, that is if all columns in the table have
been defined earlier in the statement.

• A table may have only one primary key constraint, but may have multiple unique constraints.

• The UNIQUE and PRIMARY KEY constraints in the CREATE TABLE statement can be used to create
indexes. However, if you use the ALTER TABLE statement, keep in mind that a column cannot be dropped
if it is part of a unique or primary key. You may want to use the CREATE INDEX statement to create an
index instead because the index will have a name and you can drop it. The CREATE INDEX statement
also offers some additional features, such as the ability to create non-unique indexes and to specify if the
indexes are sorted in ascending or descending order.

284

B.20.1 Usage

• The referential integrity rules for persistent, transient, and temporary table types are different.

• A temporary table may reference another temporary table, but may not reference any other type of
table (i.e. transient or persistent). No other type of table may reference a temporary table.

• Transient tables may reference other transient tables and may reference persistent tables. They may
not reference temporary tables. Neither temporary tables nor persistent tables may reference a transient
table.

In a disk-based table, the maximum size of a row (excluding BLOBs) is approximately 1/3 of the page size.
In an in-memory table, the maximum size of a row (including BLOBs) is approximately the page size. (There
is a small amount of overhead used in both disk-based and in-memory pages, so not quite all of the page is
available for user data.) The default page size is 8kB. For more information about page size, see the description
of the solid.ini configuration parameter BlockSize in solidDB Administration Guide.

The server does not use simple rules to determine BLOB storage, but as a general rule each BLOB occupies
256 bytes from the page where the row resides, and the rest of the BLOB goes to separate BLOB pages. If
the BLOB is shorter than 256 bytes, then it is stored entirely in the main disk page, not BLOB pages.

Each row is limited to 1000 columns.

The STORE clause indicates whether the table should be stored in memory or on disk. (This clause is only
available in solidDB In-memory Engine.) For more information about the STORE clause, see solidDB In-
Memory Database User Guide.

In-memory tables may be persistent (normal) tables, temporary tables, or transient tables. For a detailed dis-
cussion of temporary tables and transient tables, see solidDB In-Memory Database User Guide.

All temporary tables and transient tables must be in-memory tables. You do not need to specify the "STORE
MEMORY" clause; temporary tables and transient tables will automatically be created as in-memory tables
if you omit the STORE clause. (For temporary tables and transient tables, the solid.ini configuration
parameter DefaultStoreIsMemory is ignored.) You will get an error if you try to explicitly create tem-
porary tables or transient tables as disk-based tables, e.g. if you execute a command similar to the following:

CREATE TEMPORARY TABLE t1 (i INT) STORE DISK; --Wrong!

The keyword "GLOBAL" is included to comply with the SQL:1999 standard for temporary tables. In solidDB,
all temporary tables are global, whether or not the GLOBAL keyword is used.

285

B.20.1 Usage

Interactions with Configuration Parameters

The storage location (disk or memory) in the CREATE TABLE statement takes precedence over the storage
location specified by the DefaultStoreIsMemory parameter in the solid.ini configuration file.

B.20.2 Example

CREATE TABLE DEPT (DEPTNO INTEGER NOT NULL, DNAME VARCHAR, PRIMARY KEY(DEPTNO));
CREATE TABLE DEPT2 (DEPTNO INTEGER NOT NULL PRIMARY KEY, DNAME VARCHAR);
CREATE TABLE DEPT3 (DEPTNO INTEGER NOT NULL UNIQUE, DNAME VARCHAR);
CREATE TABLE DEPT4 (DEPTNO INTEGER NOT NULL, DNAME VARCHAR, UNIQUE(DEPTNO));
CREATE TABLE EMP (DEPTNO INTEGER, ENAME VARCHAR, FOREIGN KEY (DEPTNO)
REFERENCES DEPT (DEPTNO)) STORE DISK;
CREATE TABLE EMP2 (DEPTNO INTEGER, ENAME VARCHAR, CHECK (ENAME IS NOT NULL),
FOREIGN KEY (DEPTNO) REFERENCES DEPT (DEPTNO)) STORE MEMORY;
CREATE GLOBAL TEMPORARY TABLE T1 (C1 INT);
CREATE TRANSIENT TABLE T2 (C1 INT);

B.21 CREATE TRIGGER

CREATE TRIGGER trigger_name ON table_name time_of_operation
triggering_event [REFERENCING column_reference]

 BEGIN trigger_body END

where:

trigger_name ::= literal
table_name ::= literal
time_of_operation ::= BEFORE | AFTER
triggering_event ::= INSERT | UPDATE | DELETE
column_reference ::= {OLD | NEW} column_name [AS] col_identifier
 [, REFERENCING column_reference]

trigger_body ::=
 [declare_statement;...]
 [trigger_statement;...]

old_column_name ::= literal

286

B.20.2 Example

new_column_name ::= literal
col_identifier ::= literal

Note

This appendix is intended to provide a quick reference to using solidDB SQL commands. For details
on when and how to use triggers, read Section 4.7, “Triggers and Procedures”.

B.21.1 Usage

A trigger provides a mechanism for executing a series of SQL statements when a particular action (an INSERT,
UPDATE, or DELETE) occurs. The "body" of the trigger contains the SQL statement(s) that the user wants
to execute. The body of the trigger is written using the Stored Procedure Language (which is described in
more detail in section about the CREATE PROCEDURE statement).

You may create one or more triggers on a table, with each trigger defined to activate on a specific INSERT,
UPDATE, or DELETE command. When a user modifies data within the table, the trigger that corresponds
to the command is activated.

You can only use inline SQL or stored procedures with triggers. If you use a stored procedure in the trigger,
then the procedure must be created with the CREATE PROCEDURE command. A procedure invoked from
a trigger body can invoke other triggers.

To create a trigger, you must be a DBA or owner of the table on which the trigger is being defined.

Triggers are created with the statement

CREATE TRIGGER name body

and dropped from the system catalog with the statement

DROP TRIGGER name

Triggers are disabled by using the statement

ALTER TRIGGER name

When you disable a trigger defined on a table, a solidDB server ignores the trigger when an activating DML
statement is issued. With this command, you can also enable a trigger that is currently inactive.

287

B.21.1 Usage

Note

Following is a brief summary of the keywords and clauses used in the CREATE TRIGGER command.
For more information on usage, read Chapter 4, Stored Procedures, Events, Triggers, and Sequences.

B.21.2 Trigger Name

The trigger_name identifies the trigger and can contain up to 254 characters.

B.21.3 BEFORE | AFTER Clause

The BEFORE | AFTER clause specifies whether to execute the trigger before or after the invoking DML
statement. In some circumstances, the BEFORE and AFTER clauses are interchangeable. However, there are
some situations where one clause is preferred over the other.

• It is more efficient to use the BEFORE clause when performing data validation, such as domain constraint
and referential integrity checking.

• When you use the AFTER clause, table rows which become available due to the invoking DML statement
are processed. Conversely, the AFTER clause also confirms data deletion after the invoking DELETE
statement.

You can define up to six triggers per table, one for each combination of action (INSERT, UPDATE, DELETE)
and time (BEFORE and AFTER):

• BEFORE INSERT

• BEFORE UPDATE

• BEFORE DELETE

• AFTER INSERT

• AFTER UPDATE

• AFTER DELETE

The following example shows trigger trig01 defined BEFORE INSERT ON table1.

"CREATE TRIGGER TRIG01 ON table1
 BEFORE INSERT
 REFERENCING NEW COL1 AS NEW_COL1

288

B.21.2 Trigger Name

BEGIN
 EXEC SQL PREPARE CUR1
 INSERT INTO T2 VALUES (?);
 EXEC SQL EXECUTE CUR1 USING (NEW_COL1);
 EXEC SQL CLOSE CUR1;
 EXEC SQL DROP CUR1;
END"

Following are examples (including implications and advantages) of using the BEFORE and AFTER clause
of the CREATE TRIGGER command for each DML operation:

• UPDATE Operation

The BEFORE clause can verify that modified data follows integrity constraint rules before processing the
UPDATE. If the REFERENCING NEW AS new_column_identifier clause is used with the
BEFORE UPDATE clause, then the updated values are available to the triggered SQL statements. In the
trigger, you can set the default column values or derived column values before performing an UPDATE.

The AFTER clause can perform operations on newly modified data. For example, after a branch address
update, the sales for the branch can be computed.

If the REFERENCING OLD AS old_column_identifier clause is used with the AFTER UPDATE
clause, then the values that existed prior to the invoking update are accessible to the triggered SQL state-
ments.

• INSERT Operation

The BEFORE clause can verify that new data follows integrity constraint rules before performing an IN-
SERT. Column values passed as parameters are visible to the triggered SQL statements but the inserted
rows are not. In the trigger, you can set default column values or derived column values before performing
an INSERT.

The AFTER clause can perform operations on newly inserted data. For example, after insertion of a sales
order, the total order can be computed to see if a customer is eligible for a discount.

Column values are passed as parameters and inserted rows are visible to the triggered SQL statements.

• DELETE Operation

The BEFORE clause can perform operations on data about to be deleted. Column values passed as para-
meters and inserted rows that are about to be deleted are visible to the triggered SQL statements.

289

B.21.3 BEFORE | AFTER Clause

The AFTER clause can be used to confirm the deletion of data. Column values passed as parameters are
visible to the triggered SQL statements. Please note that the deleted rows are visible to the triggering SQL
statement.

B.21.4 INSERT | UPDATE | DELETE Clause

The INSERT | UPDATE | DELETE clause indicates the trigger action when a user action (INSERT, UPDATE,
DELETE) is attempted.

Statements related to processing a trigger occur first before commits and autocommits from the invoking
DML (INSERT, UPDATE, DELETE) statements on tables. If a trigger body or a procedure called within the
trigger body attempts to execute a COMMIT or ROLLBACK, a solidDB server returns an appropriate run-
time error.

INSERT specifies that the trigger is activated by an INSERT on the table. Loading n rows of data is considered
as n inserts.

Note

There may be some performance impact if you try to load the data with triggers enabled. Depending
on your business need, you may want to disable the triggers before loading and enable them after
loading. For details, For details, see Section B.6, “ALTER TRIGGER”.

DELETE specifies that the trigger is activated by a DELETE on the table.

UPDATE specifies that the trigger is activated by an UPDATE on the table. Note the following rules for using
the UPDATE clause:

• Within the REFERENCES clause of a trigger, a column may be referenced (aliased) no more than once
in the BEFORE sub-clause and once in the AFTER sub-clause. Also, if the column is referenced in both
the BEFORE and AFTER sub-clauses, the column's alias must be different in each sub-clause.

• A solidDB server allows for recursive update to the same table and does not prohibit recursive updates to
the same row.

A solidDB server does not detect situations where the actions of different triggers cause the same data to be
updated. For example, assume there are two update triggers (one that is a BEFORE trigger and one that is an
AFTER trigger) on different columns, Col1 and Col2, of table Table1. When an update is attempted on all
the columns of Table1, the two triggers are activated. Both triggers call stored procedures which update the
same column, Col3, of a second table, Table2. The first trigger updates Table2.Col3 to 10 and the second
trigger updates Table2.Col3 to 20.

290

B.21.4 INSERT | UPDATE | DELETE Clause

Likewise, a solidDB server does not detect situations where the result of an UPDATE which activates a trigger
conflicts with the actions of the trigger itself. For example, consider the following SQL statement:

UPDATE t1 SET c1 = 20 WHERE c3 = 10;

If the trigger is activated by this UPDATE then calls a procedure that contains the following SQL statement,
the procedure overwrites the result of the UPDATE that activated the trigger:

UPDATE t1 SET c1 = 17 WHERE c1 = 20;

Note

The above example can lead to recursive trigger execution, which you should try to avoid.

B.21.5 Table_name

The table_name is the name of the table on which the trigger is created. solidDB server allows you to drop
a table that has dependent triggers defined on it. When you drop a table all dependent objects including triggers
are dropped. Be aware that you may still get run-time errors. For example, assume you create two tables A
and B. If a procedure SP-B inserts data into table A, and table A is then dropped, a user will receive a run-
time error if table B has a trigger which invokes SP-B.

B.21.6 Trigger_body

The trigger_body contains the statement(s) to be executed when a trigger fires. The trigger_body
definition is identical to the stored procedure definition. Read Section B.14, “CREATE PROCEDURE” for
details on creating a stored procedure body.

Note that it is syntactically valid, although not useful, to create a trigger with an empty body.

A trigger body may also invoke any procedure registered with a solidDB server. solidDB procedure invocation
rules follow standard procedure invocation practices.

You must explicitly check for business logic errors and raise an error.

B.21.7 REFERENCING Clause

This clause is optional when creating a trigger on an INSERT/UPDATE/DELETE operation. It provides a
way to reference the current column identifiers in the case of INSERT and DELETE operations, and both the

291

B.21.5 Table_name

old column identifier and the new updated column identifier by aliasing the column(s) on which an UPDATE
operation occurs.

You must specify the OLD or NEW column_identifier to access it. A solidDB server does not provide
access to the column_identifier unless you define it using the REFERENCING subclause.

B.21.8 {OLD | NEW} column_name AS col_identifier

This subclause of the REFERENCING clause allow you to reference the values of columns both before and
after an UPDATE operation. It produces a set of old and new column values which can be passed to a stored
procedure; once passed, the procedure contains logic (for example, domain constraint checking) used to de-
termine these parameter values.

Use the OLD AS clause to alias the table's old identifier as it exists before the UPDATE. Use the NEW AS
clause to alias the table's new identifier as it exists after the UPDATE.

If you reference both the old and new values of the same column, you must use different column_identi-
fiers.

Each column that is referenced as NEW or OLD should have a separate REFERENCING subclause.

The statement atomicity in a trigger is such that operations made in a trigger are visible to the subsequent
SQL statements inside the trigger. For example, if you execute an INSERT statement in a trigger and then
also perform a select in the same trigger, then the inserted row is visible.

In the case of AFTER trigger, an inserted row or an updated row is visible in the AFTER insert trigger, but
a deleted row cannot be seen for a select performed within the trigger. In the case of a BEFORE trigger, an
inserted or updated row is invisible within the trigger and a deleted row is visible. In the case of an UPDATE,
the pre-update values are available in a BEFORE trigger.

The table below summarizes the statement atomicity in a trigger, indicating whether the row is visible to the
SELECT statement in the trigger body.

Table B.9. Statement Atomicity in a Trigger

AFTER TRIGGERBEFORE TRIGGEROperation

row is visiblerow is invisibleINSERT

new value is visibleprevious value is visibleUPDATE

row is invisiblerow is visibleDELETE

292

B.21.8 {OLD | NEW} column_name AS col_identifier

B.21.9 Triggers Comments and Restrictions

• To use the stored procedure that a trigger calls, provide the catalog, schema/owner and name of the table
on which the trigger is defined and specify whether to enable or disable the triggers on the table. For more
details on stored procedures, read Chapter 4, Stored Procedures, Events, Triggers, and Sequences.

• To create a trigger on a table, you must have DBA authority or be the owner of the table on which the
trigger is being defined.

• You can define, by default, up to one trigger for each combination of table, action (INSERT, UPDATE,
DELETE) and time (BEFORE and AFTER). This means there can be a maximum of six triggers per table.

Note

The triggers are applied to each row. This means that if there are ten inserts, a trigger is executed ten
times.

• You cannot define triggers on a view (even if the view is based on a single table).

• You cannot alter a table that has a trigger defined on it when the dependent columns are affected.

• You cannot create a trigger on a system table.

• You cannot execute triggers that reference dropped or altered objects. To prevent this error:

• Recreate any referenced object that you drop.

• Restore any referenced object you changed back to its original state (known by the trigger).

• You can use reserved words in trigger statements if they are enclosed in double quotes. For example, the
following CREATE TRIGGER statement references a column named "data" which is a reserved word.

"CREATE TRIGGER TRIG1 ON TMPT BEFORE INSERT
REFERENCING NEW "DATA" AS NEW_DATA
BEGIN
END"

Setting the Maximum Number of Nested Triggers

Triggers can invoke other triggers or a trigger can invoke itself (or recursive triggers). You can nest triggers
up to 16 levels deep. The maximum number of nested triggers is set in the MaxNestedTriggers parameter
in the SQL section of the solid.ini configuration file:

293

B.21.9 Triggers Comments and Restrictions

[SQL]
MaxNestedTriggers=n

where n is the maximum number of nested triggers.

The default is 16 triggers.

Setting the Triggers Cache

Triggers are cached in a separate cache in the solidDB server; each user has a separate cache for triggers. As
the triggers are executed, the trigger procedure logic is cached in the trigger cache and is resumed when the
trigger is executed again.

The cache size is set in the TriggerCache parameter in the SQL section of the solid.ini configuration
file:

[SQL]
TriggerCache=n

where n is the number of triggers that is reserved for the cache.

Checking for Errors

At times, it is possible to receive an error in executing a trigger. The error may be due to execution of SQL
statements or business logic. If a trigger returns an error, it causes its invoking DML command to fail. To
automatically return errors during the execution of a DML statement, you must use the WHENEVER
SQLERROR ABORT statement in the trigger body. Otherwise, errors must be checked explicitly within the
trigger body after each procedure call or SQL statement.

For any errors in the user-written business logic as part of the trigger body, users can receive errors in a pro-
cedure variable using the SQL statement:

RETURN SQLERROR error_string

or

RETURN SQLERROR char_variable

The error is returned in the following format:

294

B.21.9 Triggers Comments and Restrictions

User error: error_string

If a user does not specify the RETURN SQLERROR statement in the trigger body, then all trapped SQL errors
are raised with a default error_string determined by the system. For details, see the appendix on Error Codes
in solidDB Administration Guide.

Note

Triggered SQL statements are a part of the invoking transaction. If the invoking DML statement fails
due to either the trigger or another error that is generated outside the trigger, all SQL statements
within the trigger are rolled back along with the failed invoking DML command.

Below is an example of using WHENEVER SQLERROR ABORT to make sure that the trigger catches an
error in a stored procedure that it calls.

-- If you return an SQLERROR from a stored procedure, the error is
-- displayed. However, if the stored procedure is called from inside
-- a trigger, then the error is not displayed unless you use the
-- SQL statement WHENEVER SQLERROR ABORT.

CREATE TABLE table1 (x INT);
CREATE TABLE table2 (x INT);

"CREATE PROCEDURE stproc1
BEGIN
 RETURN SQLERROR 'Here is an error!';
END";
COMMIT WORK;

"CREATE TRIGGER displays_error ON table1 BEFORE INSERT
BEGIN
 EXEC SQL WHENEVER SQLERROR ABORT;
 EXEC SQL EXECDIRECT CALL stproc1();
END";
COMMIT WORK;

"CREATE TRIGGER does_not_display_error ON table2 BEFORE INSERT
BEGIN
 EXEC SQL EXECDIRECT CALL stproc1();
END";

295

B.21.9 Triggers Comments and Restrictions

COMMIT WORK;

-- This shows that the error is returned if you execute the stored procedure.
CALL stproc1();

-- Displays an error because the trigger had WHENEVER SQL ERROR ABORT.
INSERT INTO table1 (x) values (1);
-- Does not display an error.
INSERT INTO table2 (x) values (1);

Triggers Stack Functions

The following functions may be used to analyze the current contents of the trigger stack:

TRIG_COUNT() returns the number of triggers in the trigger stack. This includes the current trigger. The
return value is an integer.

TRIG_NAME(n) returns the nth trigger name in the trigger stack. The first trigger position or offset is zero.

TRIG_SCHEMA(n) returns the nth trigger schema name in the trigger stack. The first trigger position or
offset is zero. The return value is a string.

Example

"CREATE TRIGGER TRIGGER_BI ON TRIGGER_TEST
 BEFORE INSERT
 REFERENCING NEW BI AS NEW_BI
BEGIN
 EXEC SQL PREPARE BI INSERT INTO TRIGGER_OUTPUT VALUES (
 'BI', TRIG_NAME(0), TRIG_SCHEMA(0));
 EXEC SQL EXECUTE BI;
 SET NEW_BI = 'TRIGGER_BI';
END";

B.22 CREATE USER

CREATE USER user_name IDENTIFIED BY password

296

B.22 CREATE USER

B.22.1 Usage

Creates a new user with a given password.

B.22.2 Example

CREATE USER HOBBES IDENTIFIED BY CALVIN;

B.23 CREATE VIEW

CREATE VIEW viewed_table_name [(column_identifier
 [,column_identifier]...)]
AS query-specification

B.23.1 Usage

A view can be viewed as a virtual table; that is, a table that does not physically exist, but rather is formed by
a query specification against one or more tables.

B.23.2 Example

CREATE VIEW TEST_VIEW
 (VIEW_I, VIEW_C, VIEW_ID)
 AS SELECT I, C, ID FROM TEST;

B.24 DELETE

DELETE FROM table_name [WHERE search_ondition]

B.24.1 Usage

Depending on your search condition, the specified row(s) will be deleted from a given table.

297

B.22.1 Usage

B.24.2 Example

DELETE FROM TEST WHERE ID = 5;
DELETE FROM TEST;

B.25 DELETE (positioned)

DELETE FROM table_name WHERE CURRENT OF cursor_name

B.25.1 Usage

The positioned DELETE statement deletes the current row of the cursor.

B.25.2 Example

DELETE FROM TEST WHERE CURRENT OF MY_CURSOR;

B.26 DROP CATALOG

DROP CATALOG catalog_name [CASCADE | RESTRICT]

B.26.1 Usage

The DROP CATALOG statement drops the specified catalog from the database.

If you use the RESTRICT keyword, or if you do not specify either RESTRICT or CASCADE, then you must
drop all database objects in the catalog before you drop the catalog itself.

If you use the CASCADE keyword, then if the catalog contains database objects (such as tables), those will
automatically be dropped. If you use the CASCADE keyword, and if objects in other catalogs reference an
object in the catalog being dropped, then the references will automatically be resolved by dropping those
referencing objects or updating them to eliminate the reference.

Only the creator of the database or users having SYS_ADMIN_ROLE (i.e. DBA) have privileges to create
or drop a catalog. Even the creator of a catalog cannot drop that catalog if she loses SYS_ADMIN_ROLE
privileges.

298

B.24.2 Example

B.26.2 Example

DROP CATALOG C1;
DROP CATALOG C2 CASCADE;
DROP CATALOG C3 RESTRICT;

B.27 DROP EVENT

DROP EVENT event_name
DROP EVENT [[catalog_name.]schema_name.]event_name

B.27.1 Usage

The DROP EVENT statement removes the specified event from the database.

B.27.2 Example

DROP EVENT EVENT_TEST;
-- Using catalog, schema, and event name
DROP EVENT
HR_database.smith_schema.event1;

B.28 DROP INDEX

DROP INDEX index_name
DROP INDEX[[catalog_name.]schema_name.]index_name

B.28.1 Usage

The DROP INDEX statement removes the specified index from the database.

B.28.2 Example

DROP INDEX test_index;

299

B.26.2 Example

-- Using catalog, schema, and index name
DROP INDEX bank_accounts.bankteller.first_name_index;

B.29 DROP MASTER

DROP MASTER master_name

B.29.1 Usage

This statement drops the master database definitions from a replica database. After this operation, the replica
cannot synchronize with the master database.

Note

1. Unregistering the replica is the preferred way to quit using a master database. The DROP
MASTER statement is used only when the MESSAGE APPEND UNREGISTER REPLICA
statement is unable to be executed. For details on unregistering a replica, see Section B.53,
“MESSAGE APPEND”.

2. solidDB requires that autocommit be set OFF when using the DROP MASTER command.

3. If master_name is a reserved word, it must be enclosed in double quotes.

B.29.2 Usage in Master

This statement can not be used in a master.

B.29.3 Usage in Replica

This statement is used in replica to drop a master from replica.

B.29.4 Examples

DROP MASTER "MASTER";
DROP MASTER MY_MASTER;

300

B.29 DROP MASTER

B.29.5 Return Values

For details on each error code, see the appendix titled Error Codes in solidDB Administration Guide.

Table B.10. DROP MASTER Return Values

DescriptionError code

No privilege for operation13047

Master master_name not found25007

Database is not a replica database25019

Autocommit not allowed25056

Unfinished message message_name found for master master_name25065

B.30 DROP PROCEDURE

DROP PROCEDURE procedure_name
DROP PROCEDURE [[catalog_name.]schema_name.]procedure_name

B.30.1 Usage

The DROP PROCEDURE statement removes the specified procedure from the database.

B.30.2 Example

DROP PROCEDURE PROCTEST;
-- Using catalog, schema, and procedure name
DROP PROCEDURE telecomm_database.technician1.add_new_IP_address;

B.31 DROP PUBLICATION

DROP PUBLICATION publication_name

301

B.29.5 Return Values

B.31.1 Usage

This statement drops a publication definition in the master database. All subscriptions to the dropped public-
ation are automatically dropped as well.

B.31.2 Usage in Master

Dropping a publication from the master will remove it and replicas will not be able to refresh from it.

B.31.3 Usage in Replica

Using this statement in a replica will drop the publication definition from the replica if you defined a public-
ation on the replica. (However, it is not necessary or useful to define publications in replica databases, so you
should not need to use either CREATE PUBLICATION or DROP PUBLICATION in a replica.)

B.31.4 Example

DROP PUBLICATION customers_by_area;

B.31.5 Return Values

For details on each error code, see the appendix titled Error Codes in solidDB Administration Guide.

Table B.11. DROP PUBLICATION Return Values

DescriptionError Code

Publication publication_name not found.25010

Ambiguous entity name name13111

B.32 DROP PUBLICATION REGISTRATION

DROP PUBLICATION publication_name REGISTRATION

B.32.1 Supported in

This requires solidDB SmartFlow.

302

B.31.1 Usage

B.32.2 Usage

This statement drops a registration for a publication in the replica database. The publication definition remains
on the master database, but a user will be unable to refresh from the publication. All subscriptions to the re-
gistered publication are automatically dropped as well.

B.32.3 Usage in Master

This statement is not used in a master database.

B.32.4 Usage in Replica

Using this statement in a replica will drop the registration for the publication in the replica. All subscriptions
and their data to this publication are dropped automatically.

B.32.5 Example

DROP PUBLICATION customers_by_area REGISTRATION;

B.32.6 Return Values

For details on each error code, see the appendix titled Error Codes in solidDB Administration Guide.

Table B.12. DROP PUBLICATION REGISTRATION Return Values

DescriptionError Code

No privilege for operation13047

Database is not a replica database25019

Node name not defined25025

Not registered to publication publication_name25071

B.33 DROP REPLICA

DROP REPLICA replica_name

303

B.32.2 Usage

B.33.1 Supported in

This requires solidDB SmartFlow.

B.33.2 Usage

This statement drops a replica database from the master database. After this operation, the dropped replica
cannot synchronize with the master database.

Note

1. Unregistering the replica is the preferred way to quit using a replica database. The DROP REP-
LICA statement is used only when the MESSAGE APPEND UNREGISTER REPLICA statement
is unable to be executed. For details on unregistering a replica, see Section B.53, “MESSAGE
APPEND”.

2. solidDB requires that autocommit be set OFF when using the DROP REPLICA statement.

3. If replica_name is a reserved word, it should be enclosed in double quotes.

B.33.3 Usage in Master

Use this statement in the master to drop a replica from master.

B.33.4 Usage in Replica

This statement cannot be used in replica.

B.33.5 Example

DROP REPLICA salesman_smith ;
DROP REPLICA "REPLICA";

B.33.6 Return Values

For details on each error code, see the appendix titled Error Codes in solidDB Administration Guide.

304

B.33.1 Supported in

Table B.13. DROP REPLICA Return Values

DescriptionError code

No privilege for operation13047

Replica replica_name not found25009

Database is not a master database25020

Autocommit not allowed25056

Unfinished message message_name found for replica replica_name25064

B.34 DROP ROLE

DROP ROLE role_name

B.34.1 Usage

The DROP ROLE statement removes the specified role from the database.

B.34.2 Example

DROP ROLE GUEST_USERS;

B.35 DROP SCHEMA

DROP SCHEMA schema_name [CASCADE | RESTRICT]
DROP SCHEMA [catalog_name.] schema_name [CASCADE | RESTRICT]

B.35.1 Usage

The DROP SCHEMA statement drops the specified schema from the database. If you use the keyword RE-
STRICT, or if you do not specify either RESTRICT or CASCADE, then all the objects associated with the
specified schema_name must be dropped prior to using this statement. If you use the keyword CASCADE,
then all the database objects (such as tables) within the specified schema will be dropped automatically.

If you use the CASCADE keyword, and if objects in other schemas reference an object in the schema being
dropped, those references will automatically be resolved by dropping those referencing objects or updating
them to eliminate the reference.

305

B.34 DROP ROLE

B.35.2 Examples

DROP SCHEMA finance;
DROP SCHEMA finance CASCADE;
DROP SCHEMA finance RESTRICT;
DROP SCHEMA forecasting_db.securities_schema CASCADE;

B.36 DROP SEQUENCE

DROP SEQUENCE sequence_name
DROP SEQUENCE [[catalog_name.]schema_name.]sequence_name

B.36.1 Usage

The DROP SEQUENCE statement removes the specified sequence from the database.

B.36.2 Examples

DROP SEQUENCE SEQ1;
-- Using catalog, schema, and sequence name
DROP SEQUENCE bank_db.checking_acct_schema.account_num_seq;

B.37 DROP SUBSCRIPTION
In replica:

DROP SUBSCRIPTION publication_name [{(parameter_list) | ALL}]
 [COMMITBLOCK number_of_rows] [OPTIMISTIC | PESSIMISTIC]

In master:

DROP SUBSCRIPTION publication_name [{(parameter_list) | ALL}]
 REPLICA replica_name

306

B.35.2 Examples

B.37.1 Supported in

This command requires solidDB SmartFlow.

B.37.2 Usage

Data that is no longer needed in a replica database can be deleted from the replica database by dropping the
subscription that was used to retrieve the data from the master database.

Note

solidDB requires that autocommit be set OFF when dropping subscriptions.

By default, the data of a subscription is deleted in one transaction. If the amount of data is large, for example,
tens of thousands of rows, it is recommended that the COMMITBLOCK be defined. When using the COM-
MITBLOCK option the data is deleted in more than one transaction. This ensures good performance for the
operation.

In a replica, you can define the DROP SUBSCRIPTION statement to use table-level pessimistic locking when
it is initially executed. If the PESSIMISTIC mode is specified, all other concurrent access to the table affected
is blocked until the drop has completed. Otherwise, if the optimistic mode is used, the DROP SUBSCRIPTION
may fail due to a concurrency conflict.

A subscription can be dropped also from the master database. In this case, the replica name is included in the
command. Names of all replicates that have been registered in the master database can be found in the
SYS_SYNC_REPLICAS table. This operation deletes only the internal information about the subscription
for this replica. The actual data in the replica is kept.

Dropping a subscription from the master is useful when a replica is no longer using the subscription and the
replica has not dropped the subscription itself. Dropping old subscriptions releases old history data from the
database. This history data is automatically deleted from the master databases after dropping the subscription.

If a replica's subscription has been dropped in the master database, the replica will receive the full data in the
next refresh.

If a subscription is dropped in this case, DROP SUBSCRIPTION also drops the publication registration if
the last subscription to the publication was dropped. Otherwise, registration must be dropped explicitly using
the DROP PUBLICATION REGISTRATION statement or MESSAGE APPEND UNREGISTER PUBLIC-
ATION.

You can define the DROP SUBSCRIPTION statement to use table-level pessimistic locking when it is initially
executed. If the PESSIMISTIC mode is specified, all other concurrent access to the tables affected is blocked

307

B.37.1 Supported in

until the import has completed. Otherwise, if the optimistic mode is used, the DROP SUBSCRIPTION may
fail due to a concurrency conflict.

When a transaction acquires an exclusive lock to a table, the TableLockWaitTimeout parameter setting
in the [General] section of the solid.ini configuration file determines the transaction's wait period
until the exclusive or shared lock is released. For details, see the description of this parameter in solidDB
Administration Guide.

B.37.3 Usage in Master

Use this statement to drop a subscription for a specified replica.

B.37.4 Usage in Replica

Use this statement to drop a subscription from this replica.

B.37.5 Example

Drop subscription from a master database

DROP SUBSCRIPTION customers_by_area('south')
 FROM REPLICA salesman_joe

Return Values

For details on each error code, see the appendix titled Error Codes in solidDB Administration Guide.

Table B.14. DROP SUBSCRIPTION Return Values

DescriptionError Code

No privileges for operation13047

Dynamic parameters are not supported25004

Replica replica_name not found25009

Publication publication_name not found25010

Database is not a replica database25019

Database is not a master database25020

Subscription to publication publication_name not found25041

Autocommit not allowed25056

308

B.37.3 Usage in Master

B.38 DROP SYNC BOOKMARK

DROP SYNC BOOKMARK bookmark_name

B.38.1 Supported in

This command requires solidDB SmartFlow.

B.38.2 Usage

This statement drops a bookmark defined on a master database. To drop a bookmark, you must have admin-
istrative privileges DBA or SYS_SYNC_ADMIN_ROLE. Bookmarks are typically used when exporting data
to a file. After a file is successfully imported to a replica from the master database, it is recommended that
you drop the bookmark that you used to export the data to a file.

If a bookmark remains, then all subsequent changes to data on the master including deletes and updates are
tracked on the master database for each bookmark to facilitate incremental refreshes.

If you do not drop bookmarks, the history information takes up disk space and unwanted disk I/O is incurred,
as well, for each bookmark registered in the master database. This may result in performance degradation.

Caution

Bookmarks should only be dropped after the exported data is imported into all intended replicas and
after all the replicas have synchronized at least once. Be sure to drop a bookmark only when you no
longer have replicas to import and those replicas have refreshed once from the publication after the
import.

When dropping bookmarks, solidDB uses the following rules to delete history records:

• Finds the oldest REFRESH delivered to any replica on that table

• Finds the oldest bookmark

• Determines which is older, the oldest REFRESH or oldest bookmark

• Deletes all rows from history up to what it determines is older, the oldest REFRESH or oldest bookmark.

B.38.3 Usage in Master

Use the DROP SYNC BOOKMARK statement to drop a bookmark in a master database.

309

B.38 DROP SYNC BOOKMARK

B.38.4 Usage in Replica

The DROP SYNC BOOKMARK statement cannot be used in a replica database.

B.38.5 Example

DROP SYNC BOOKMARK new_database;
DROP SYNC BOOKMARK database_after_dataload;

B.38.6 Return Values

For details on each error code, see the appendix titled Error Codes in solidDB Administration Guide.

Table B.15. DROP SYNC BOOKMARK Return Values

DescriptionError Code

Synchronizer bookmark bookmark_name not found25067

No privilege for operation13047

B.39 DROP TABLE

DROP TABLE base_table_name [CASCADE [CONSTRAINTS]]
DROP TABLE [[catalog_name.]schema_name.]table_name [CASCADE
[CONSTRAINTS]]

Note

Objects are usually dropped with drop behavior RESTRICT. There are some exceptions, however,
including:

1. If your table has a synchronization history table, that synchronization history table will be dropped
automatically. (solidDB 3.7 and later.)

2. If a table has indexes on it, you do not need to drop the indexes first; they will be dropped auto-
matically when the table is dropped.

310

B.38.4 Usage in Replica

B.39.1 Usage

The DROP TABLE statement removes the specified table from the database.

B.39.2 Examples

DROP TABLE table1;
-- Using catalog, schema, and table name
DROP TABLE domains_db.demand_schema.bad_address_table;
--remove foreign key constraints in referencing tables
DROP TABLE table2 CASCADE CONSTRAINTS;

B.40 DROP TRIGGER

DROP TRIGGER trigger_name
DROP TRIGGER [[catalog_name.]schema_name.]trigger_name

B.40.1 Usage

Drops (or deletes) a trigger defined on a table from the system catalog.

You must be the owner of a table, or a user with DBA authority, to delete a trigger from the table.

B.40.2 Examples

DROP TRIGGER update_acct_balance;
-- Using schema and trigger name
DROP TRIGGER savings_accounts.update_acct_balance;
-- Using catalog, schema, and trigger name
DROP TRIGGER accounts.savings_accounts.update_acct_balance;

B.41 DROP USER

DROP USER user_name

311

B.39.1 Usage

B.41.1 Usage

The DROP USER statement removes the specified user from the database. All the objects associated with the
specified user_name must be dropped prior to using this statement; the DROP USER statement is not a
cascaded operation.

B.41.2 Example

DROP USER HOBBES;

B.42 DROP VIEW
DROP VIEW view_name
DROP VIEW [[catalog_name.]schema_name.]view_name

B.42.1 Usage

The DROP VIEW statement removes the specified view from the database.

B.42.2 Examples

DROP VIEW sum_of_acct_balances;
-- Using schema and view name
DROP VIEW acct_manager_schema.sum_of_acct_balances;
-- Using catalog, schema, and view name
DROP VIEW account_db.acct_manager_schema.sum_of_acct_balances;

B.43 EXPLAIN PLAN FOR

EXPLAIN PLAN FOR sql_statement

B.43.1 Usage

The EXPLAIN PLAN FOR statement shows the selected search plan for the specified SQL statement.

312

B.41.1 Usage

B.43.2 Example

EXPLAIN PLAN FOR select * from tables;

B.44 EXPORT SUBSCRIPTION

EXPORT SUBSCRIPTION publication_name [(publication_parameters)]
 TO 'filename'
 USING BOOKMARK bookmark_name;
 [WITH [NO] DATA];

B.44.1 Supported in

This command requires solidDB SmartFlow.

B.44.2 Usage

This EXPORT SUBSCRIPTION statement allows you export a version of the data from a master database
to a file. You can then use the IMPORT statement to import the data in the file into a replica database.

There are several uses for the EXPORT SUBSCRIPTION statement. Among them are:

• Creating a large replica database (greater than 2GB) from an existing master.

This procedure requires that you export a subscription with or without data to a file first, then import the
subscription to the replica. For details, read "Creating A Replica By Exporting A Subscription With Data"
or "Creating A Replica By Exporting A Subscription Without Data" in solidDB SmartFlow Data Replic-
ation Guide.

• Exporting specific versions of the data to a replica.

For performance reasons, you may choose to "export" the data rather then to use the MESSAGE APPEND
REFRESH to send the data to a replica.

• Export metadata information without the actual row data.

You may want to create a replica that already contains existing data and only needs the schema and version
information associated with a publication.

313

B.43.2 Example

Unlike the MESSAGE APPEND REFRESH statement where a REFRESH is requested from a replica, you
request an export directly from the master database. The export output is saved to a user-specified file rather
than a solidDB message.

B.44.2.1 Keywords and Clauses

The publication_name and bookmark_name are identifiers that must exist in the database. For details
on creating a publication, read Section B.15, “CREATE [OR REPLACE] PUBLICATION”. For details on
creating bookmarks, see Section B.19, “CREATE SYNC BOOKMARK”. The filename represents a literal
value enclosed in single quotes. You can export several publications to a single file by specifying the same
file name.

Publication data is exported from the master database as a REFRESH with a set of input parameter values (if
they are used in the publication).

The EXPORT SUBSCRIPTION statement is based on a given bookmark, which means that export data is
consistent up to this bookmark. When you export data, the EXPORT SUBSCRIPTION statement includes
all rows as in a full publication up to the bookmark. However, since export is based on a given bookmark,
the subsequent REFRESHes are incremental.

If a bookmark is created in a master for the purpose of exporting and importing data, then the bookmark must
exist when:

• The EXPORT SUBSCRIPTION statement is executed on the master database.

If the bookmark does not exist at this point, error message 25067 is generated, indicating the bookmark
cannot be found.

• The IMPORT statement is executed on all intended replicas and replicas receive their first set of data
("REFRESH").

During a file import, a connection to a master database is not needed and the existence of the bookmark
is not checked. However, if the bookmark does not exist at the time a replica receives its first REFRESH,
the REFRESH fails with error message 25067 and the import data is unusable. The remedy is to create a
new bookmark on the master, re-export the data, and re-import the data.

An export file can contain more than one publication. You can export subscriptions using either the WITH
DATA or WITH NO DATA options:

• Use the WITH DATA option to create a replica when data is exported to an existing database that does
not contain master data and requires a subset of data. For details, read "Creating A Replica By Exporting
A Subscription With Data" in solidDB SmartFlow Data Replication Guide.

314

B.44.2 Usage

• Use the WITH NO DATA option to create a replica when a subscription is imported to a database that
already contains the data (for example, using a backup copy of an existing master). For details, read
"Creating A Replica By Exporting A Subscription Without Data" in solidDB SmartFlow Data Replication
Guide.

By default, the export file is created using the WITH DATA option and includes all rows. If there is more
than one publication specified, the exported file can have a combination of "WITH DATA" and "WITH NO
DATA."

B.44.2.2 Usage Rules

Note the following rules when using the EXPORT SUBSCRIPTION statement:

• Only one file per subscription is allowed for export. You can use the same file name to include multiple
subscriptions on the same file.

• The file size of an export file is dependent upon the underlying operating system. If a respective platform
(such as SUN, or HP) allows more than 2GB, you can write files greater than 2GB. This means that replica
(recipient) should also have a compatible platform and file system. Otherwise, the replica is not able to
accept the export file. If both the operating system on a master and replica support file sizes greater than
2GB, then export files greater than 2GB are permitted.

• An export file can contain more than one subscription. Subscriptions can be exported using either the
WITH DATA or WITH NO DATA options. An exported file with multiple subscriptions can have a
combination of WITH DATA and WITH NO DATA included.

• When a subscription is exported to a file using the WITH NO DATA option, only metadata (that is, schema
and version information corresponding to that publication) is exported to the file.

• solidDB requires that autocommit be set OFF when using the EXPORT SUBSCRIPTION statement.

B.44.3 Usage in Master

Use this statement to request master data for export to a file.

B.44.4 Usage in Replica

This statement is not available in a replica database.

315

B.44.3 Usage in Master

B.44.5 Example

EXPORT SUBSCRIPTION FINANCE_PUBLICATION(2004) TO 'FINANCE.EXP'
USING BOOKMARK BOOKMARK_FOR_FINANCE_DB WITH NO DATA;

B.44.6 Return Values

For details on each error code, see the appendix titled Error Codes in solidDB Administration Guide.

Table B.16. EXPORT SUBSCRIPTION Return Values

DescriptionError Code

Autocommit not allowed25056

Bookmark is not found.25067

Export file file_name open failure.25068

Publication name not found.25010

B.45 EXPORT SUBSCRIPTION TO REPLICA

EXPORT SUBSCRIPTION publication_name [(publication_parameters)]
 TO REPLICA replica_node_name
 USING BOOKMARK bookmark_name
 [COMMITBLOCK number_of_rows]

B.45.1 Supported in

This command requires solidDB SmartFlow.

B.45.2 Usage

The EXPORT SUBSCRIPTION TO REPLICA statement allows you to send large volume of data specified
by a publication from master database to a replica database. After the EXPORT operation has completed, the
replica may use MESSAGE APPEND REFRESH statement to refresh the data of the subscription in an incre-
mental manner.

316

B.44.5 Example

Because the EXPORT SUBSCRIPTION TO REPLICA statement does not use the disk-based SmartFlow
MESSAGEs to send data from master to replica, it provides a significantly more efficient way to send large
volumes of data from master to replica as the usage of disk during the operation is minimized.

B.45.2.1 Keywords and Clauses

The publication_name and bookmark_name are identifiers that must exist in the database. For details
on creating a publication, read Section B.15, “CREATE [OR REPLACE] PUBLICATION”. For details on
creating bookmarks, see Section B.19, “CREATE SYNC BOOKMARK”.

Publication data is exported from the master database as a REFRESH with a set of input parameter values (if
they are used in the publication).

The EXPORT SUBSCRIPTION TO REPLICA statement is based on a given bookmark, which means that
export data is consistent up to this bookmark. When you export data, the EXPORT SUBSCRIPTION statement
includes all rows as in a full publication up to the bookmark. However, since export is based on a given
bookmark, the subsequent REFRESHes are incremental.

If a bookmark is created in a master for the purpose of exporting data, then the bookmark must exist when
the EXPORT SUBSCRIPTION statement is executed on the master database. If the bookmark does not exist
at this point, error message 25067 is generated, indicating the bookmark cannot be found.

The COMMIT BLOCK keywords specify how many rows of the exported data are committed in the replica
database in one transaction. Specifying a commit block when a large number of rows are to be exported im-
proves the performance of the operation. However, it is recommended that the replica database is not used
by other applications when export operation with commit block is active.

B.45.3 Usage in Master

Use this statement to request master data for export to a replica database.

B.45.4 Usage in Replica

This statement is not available in a replica database.

B.45.5 Example

EXPORT SUBSCRIPTION FINANCE_PUBLICATION(2004) TO REPLICA replica_1
USING BOOKMARK BOOKMARK_FOR_FINANCE_DB COMMITBLOCK 10000 ;

317

B.45.3 Usage in Master

B.45.6 Return Values

For details on each error code, see the appendix titled Error Codes in solidDB Administration Guide.

Table B.17. EXPORT SUBSCRIPTION TO REPLICA Return Values

DescriptionError Code

Autocommit not allowed25056

Bookmark is not found.25067

Publication name not found.25010

B.46 GET_PARAM()

get_param('param_name')

B.46.1 Supported in

This command requires solidDB SmartFlow.

B.46.2 Usage

The get_param() function retrieves a parameter that was placed on the transaction bulletin board using
the PUT_PARAM() function or with commands SAVE PROPERTY, SAVE DEFAULT PROPERTY, and
SET SYNC PARAMETER. The parameter that is retrieved is specific to a catalog and each catalog has a
different set of parameters. This function returns the VARCHAR value of the parameter or NULL, if the
parameter does not exist in the bulletin board.

Because get_param() is an SQL function, it can be used only in a procedure or as part of a SELECT
statement.

The parameter name must be enclosed in single quotes.

B.46.3 Usage in Master

Use the get_param() function in the master for retrieving parameter values.

318

B.45.6 Return Values

B.46.4 Usage in Replica

Use the get_param() function in replicas for retrieving parameter values.

B.46.5 solidDB System Parameters

solidDB system parameters are divided into the following categories:

• Read only system parameters that are maintained by solidDB and can only be read by using
GET_PARAM(parameter_name) syntax.

The life cycle of parameters in this category is one transaction, that is, values of these parameters will always
be initialized at the beginning of the transaction.

• Updatable system parameters that can be set and updated by the user through PUT_PARAM(paramet-
er_name, value). Updatable system parameters are used by solidDB.

Like the category above, the life cycle of these parameters is also one transaction.

• Database catalog level system parameters that are set using SET SYNC PARAMETER paramet-
er_name value syntax.

Parameters in this category are database catalog level parameters that are valid until changed or removed.
They are specified as bulletin board parameters.

Full syntax and examples of usage of GET_PARAM(), PUT_PARAM() and SET SYNC PARAMETER
functions are described earlier in this chapter.

For more information about specific bulletin board parameters, see solidDB SmartFlow Data Replication
Guide.

B.46.6 Example

SELECT put_param('myparam', '123abc');
SELECT get_param('myparam');

B.46.7 Return Values

For details on each error code, see the appendix titled Error Codes in solidDB Administration Guide.

319

B.46.4 Usage in Replica

Table B.18. GET_PARAM Return Values

DescriptionError Code

Invalid data type in a parameter.13086

When executed successfully get_param() returns the value of the assigned parameter.

B.46.8 See Also

PUT_PARAM

SAVE PROPERTY

SET SYNC PARAMETER

B.47 GRANT

GRANT {ALL | grant_privilege [, grant_privilege]...}
 ON table_name
TO {PUBLIC | user_name [, user_name]... |

role_name [, role_name]... }
[WITH GRANT OPTION]

GRANT role_name TO user_name

grant_privilege ::= DELETE | INSERT | SELECT |
 UPDATE [(column_identifier [, column_identifier]...)] |
 REFERENCES [(column_identifier [, column_identifier]...)]

GRANT EXECUTE ON procedure_name
 TO {PUBLIC | user_name [, user_name]... | role_name [, role_name]... }

GRANT {SELECT | INSERT} ON event_name
 TO {PUBLIC | user_name [, user_name]... | role_name [, role_name]... }

GRANT {SELECT | UPDATE} ON sequence_name
 TO {PUBLIC | user_name [, user_name]... | role_name [, role_name]... }

320

B.46.8 See Also

B.47.1 Usage

The GRANT statement is used to

1. grant privileges to the specified user or role.

2. grant privileges to the specified user by giving the user the privileges of the specified role.

When you grant a role to a user, the role may be one that you have created, or it may be a system-defined
role, such as SYS_SYNC_ADMIN_ROLE or SYS_ADMIN_ROLE.

The role SYS_SYNC_ADMIN_ROLE gives the specified user the privileges to execute data synchronization
administration operations, including:

• dropping or re-executing stopped synchronization messages,

• dropping a replica database from master database,

• creating a bookmark.

The role SYS_ADMIN_ROLE is the role given to the creator of the database. This role has privileges to all
tables, indexes, and users, as well as the right to use SolidConsole and solidDB Remote Control (teletype).

If you use the optional WITH GRANT OPTION, then the user who receives the privilege may grant the
privilege to other users.

B.47.2 Example

GRANT GUEST_USERS TO CALVIN;
GRANT INSERT, DELETE ON TEST TO GUEST_USERS;

B.47.3 See Also

For more information about user privileges, see also:

• Section B.69, “REVOKE (Privilege from Role or User)” and

• Section 5.2, “Managing User Privileges and Roles”.

For more information about pre-defined roles, see chapter Special Roles for Database Administration in
solidDB Administration Guide.

321

B.47.1 Usage

B.48 GRANT REFRESH

GRANT { REFRESH | SUBSCRIBE } ON publication_name TO {PUBLIC |
user_name,
 [user_name] ... | role_name , [role_name] ...}

B.48.1 Supported in

This command requires solidDB SmartFlow.

B.48.2 Usage

This statement grants access rights on a publication to a user or role defined in the master database.

Note

The keywords "SUBSCRIBE" and "REFRESH" are equivalent. However, the keyword "SUBSCRIBE"
is deprecated in the GRANT statement.

B.48.3 Usage in Master

Use this statement to grant user or role access rights to a publication.

B.48.4 Usage in Replica

This statement is not available in a replica database.

B.48.5 Example

GRANT REFRESH ON customers_by_area TO salesman_jones;
GRANT REFRESH ON customers_by_area TO all_salesmen;

B.48.6 Return Values

For details on each error code, see the appendix titled Error Codes in solidDB Administration Guide.

322

B.48 GRANT REFRESH

Table B.19. GRANT REFRESH Return Values

DescriptionError Code

Illegal grant/revoke mode13137

No grant option privilege13048

Publication name not found25010

B.49 HINT

--(* vendor (SOLID), product (Engine), option(hint)
--hint *)--

hint::=
[MERGE JOIN |
LOOP JOIN |
JOIN ORDER FIXED |
INTERNAL SORT |
EXTERNAL SORT |
INDEX [REVERSE] table_name.index_name |
PRIMARY KEY [REVERSE] table_name |
FULL SCAN table_name |
[NO] SORT BEFORE GROUP BY]

Following is a description of the keywords and clauses used in the syntax:

B.49.1 Pseudo Comment Identifier

The pseudo comment prefix is followed by identifying information. You must specify the vendor as SOLID,
product as Engine, and the option, which is the pseudo comment class name, as hint.

Note

In the pseudo comment prefix --(* and *)-- ,there must be no space between the parenthesis and the
asterisk.

Hint

Hints always follow the SELECT, UPDATE, or DELETE keyword that applies to it.

323

B.49 HINT

Note

Hints are not allowed after the INSERT keyword.

Caution

If you are using hints and you compose a query as a string and then submit that string using ODBC
or JDBC, you MUST ensure that appropriate newline characters are embedded within that string to
mark the end of the comments. Otherwise, you will get a syntax error. If you don't include any newlines,
then all of the statement after the start of the first comment will look like a comment. For example,
suppose that your code looks like the following:

strcpy(s, "SELECT --(* hint... *)-- col_name FROM table;");

Everything after the first "--" looks like a comment, and therefore your statement looks incomplete.
You must do something like the following:

strcpy(s, "SELECT --(* hint... *)-- \n col_name FROM table;");

Note the embedded newline "\n" character to terminate the comment. A useful technique for debugging
is to print out the strings to make sure that they look correct. They should look like:

SELECT --(* hint ... *)--
column_name FROM table_name...;

or

SELECT --(* hint ... *)--
column_name FROM table_name...;

Each subselect requires its own hint; for example, the following are valid uses of hints syntax:

INSERT INTO ... SELECT hint FROM ...
UPDATE hint TABLE ... WHERE column = (SELECT hint ... FROM ...)
DELETE hint TABLE ... WHERE column = (SELECT hint ... FROM ...)

324

B.49.1 Pseudo Comment Identifier

Be sure to specify multiple hints in one pseudo comment separated by commas as shown in the following
examples:

B.49.2 Example 1

SELECT
--(* vendor(SOLID), product(Engine), option(hint)
--MERGE JOIN
--JOIN ORDER FIXED *)--
*
FROM TAB1 A, TAB2 B;
WHERE A.INTF = B.INTF;

B.49.3 Example 2

SELECT
--(* vendor(SOLID), product(Engine), option(hint)
--INDEX TAB1.INDEX1
--INDEX TAB1.INDEX1 FULL SCAN TAB2 *)--
*
FROM TAB1, TAB2
WHERE TAB1.INTF = TAB2.INTF;

Hint is a specific semantic, corresponding to a specific behavior. Following is a list of possible hints:

Table B.20. Hints

DefinitionHint

Directs the Optimizer to choose the merge join access plan in a select query for all
tables listed in the FROM clause. The MERGE JOIN option is used when two tables

MERGE JOIN

are approximately equal in size and the data is distributed equally. It is faster than a
LOOP JOIN when an equal amount of rows are joined. For joining data, MERGE
JOIN supports a maximum of three tables. The joining table is ordered by joining
columns and combining the results of the columns.

You can use this hint when the data is sorted by a join key and the nested loop join
performance is not adequate. The Optimizer selects the merge join only where there
is an equal predicate between tables. Otherwise, the Optimizer selects LOOP JOIN
even if the MERGE JOIN hint is specified.

325

B.49.2 Example 1

DefinitionHint

Note that when data is not sorted before performing the merge operation, the solidDB
query executor sorts the data.

When considering the usage of this hint, keep in mind that the merge join with a sort
is more resource intensive than the merge join without the sort.

Directs the Optimizer to pick the nested loop join in a select query for all tables listed
in the FROM clause. By default, the Optimizer does not pick the nested loop join.

LOOP JOIN

Using the loop join when tables are small and fit in memory may offer greater effi-
ciency than using other join algorithms.

The LOOP JOIN loops through both inner and outer tables. It is used when a small
and large amount of rows are joined. It finds matches between columns in inner and
outer tables. For better performance, the joining columns should be indexed.

You can use the loop join when tables are small and fit in memory.

Specifies that the Optimizer use tables in a join in the order listed in the FROM clause
of the query. This means that the Optimizer does not attempt to rearrange any join
order and does not try to find alternate access paths to complete the join.

JOIN ORDER FIXED

Before using this hint, be sure to run the EXPLAIN PLAN to view the associated
plan. This gives you an idea on the access plan used for executing the query with this
join order.

Specifies that the query executor use the internal sorter. Use this hint if the expected
resultset is small (hundreds of rows as opposed to thousands of rows), for example,

INTERNAL SORT

if you are performing some aggregates, ORDER BY with small resultsets, or GROUP
BY with small resultsets, etc.

This hint avoids the use of the more expensive external sorter.

Specifies that the query executor use the external sorter. Use this hint when the ex-
pected resultset is large and does not fit in memory, for example, if the expected
resultset has thousands of rows.

EXTERNAL SORT

In addition, specify the SORT working directory in the solid.ini file before using
the external sort hint. If a working directory is not specified, you will receive a run-
time error. The working directory is specified in the [sorter] section of the
solid.ini configuration file. For example:

[sorter]

326

B.49.3 Example 2

DefinitionHint

TmpDir_1=c:\soldb\temp1

Forces a given index scan for a given table. In this case, the Optimizer does not pro-
ceed to evaluate if there are any other indexes that can be used to build the access
plan or whether a table scan is better for the given query.

INDEX [REVERSE]
table_name.in-
dex_name

Before using this hint, it is recommended that you "test" the hint by running the
EXPLAIN PLAN output to ensure that the plan generated is optimal for the given
query.

The optional keyword REVERSE returns the rows in the reverse order. In this case,
the query executor begins with the last page of the index and starts returning the rows
in the descending (reverse) key order of the index.

Note that in tablename.indexname, the tablename is a fully qualified table
name which includes the catalogname and schemaname.

Forces a primary key scan for a given table.PRIMARY KEY [RE-
VERSE] tablename

The optional keyword REVERSE returns the rows in the reverse order.

If the primary key is not available for the given table, then you will receive a run-
time error.

Forces a table scan for a given table. In this case, the optimizer does not proceed to
evaluate if there are any other indexes that can be used to build the access plan or
whether a table scan is better for the given query.

FULL SCAN
table_name

Before using this hint, it is recommended that you "test" the hint by running the
EXPLAIN PLAN output to ensure that the plan generated is optimal for the given
query.

Indicates whether the SORT operation occurs before the resultset is grouped by the
GROUP BY columns.

[NO] SORT BEFORE
GROUP BY

If the grouped items are few (hundreds of rows) then use NO SORT BEFORE. On
the other hand, if the grouped items are large (thousands of rows), then use SORT
BEFORE.

327

B.49.3 Example 2

B.49.4 Usage

Due to various conditions with the data, user query, and database, the SQL Optimizer is not always able to
choose the best possible execution plan. For more efficiency, you may want to force a merge join because
you, unlike the Optimizer, know that your data is already sorted.

Or sometimes specific predicates in queries cause performance problems that the Optimizer cannot eliminate.
The Optimizer may be using an index that you know is not optimal. In this case, you may want to force the
Optimizer to use one that produces faster results.

Optimizer hints is a way to have better control over response times to meet your performance needs. Within
a query, you can specify directives or hints to the Optimizer, which it then uses to determine its query execution
plan. Hints are detected through a pseudo comment syntax from SQL-92.

You can place a hint(s) in a SQL statement as a static string, just after a SELECT, INSERT, UPDATE, or
DELETE keyword. The hint always follows the SQL statement that applies to it.

Table name resolution in optimizer hints is the same as in any table name in a SQL statement. When there is
an error in a hint specification, then the whole SQL statement fails with an error message.

Hints are enabled and disabled using the following configuration parameter in the solid.ini:

[Hints]
EnableHints = YES | NO

The default is YES.

B.49.5 Example

SELECT
--(* vendor(SOLID), product(Engine), option(hint)
-- INDEX TAB1.IDX1 *)--
* FROM TAB1 WHERE I > 100

SELECT
--(* vendor(SOLID), product(Engine), option(hint)
-- INDEX MyCatalog.mySchema.TAB1.IDX1 *)--
* FROM TAB1 WHERE I > 100

SELECT

328

B.49.4 Usage

--(* vendor(SOLID), product(Engine), option(hint)
-- JOIN ORDER FIXED *)--
* FROM TAB1, TAB2 WHERE TAB1.I >= TAB2.I

SELECT
--(* vendor(SOLID), product(Engine), option(hint)
-- LOOP JOIN *)--
* FROM TAB1, TAB2 WHERE TAB1.I >= TAB2.I

SELECT
--(* vendor(SOLID), product(Engine), option(hint)
-- INDEX REVERSE MyCatalog.mySchema.TAB1.IDX1 *)--
* FROM TAB1 WHERE I > 100

SELECT
--(* vendor(SOLID), product(Engine), option(hint)
-- SORT BEFORE GROUP BY *)--
AVG(I) FROM TAB1 WHERE I > 10 GROUP BY I2

SELECT
--(* vendor(SOLID), product(Engine), option(hint)
-- INTERNAL SORT *)--
* FROM TAB1 WHERE I > 10 ORDER BY I2

B.50 IMPORT

IMPORT 'file_name' [COMMITBLOCK number_of_rows]
[{OPTIMISTIC | PESSIMISTIC}]

B.50.1 Usage

This IMPORT command allows you to import data to a replica from a data file created by the EXPORT
SUBSCRIPTION command.

The file_name represents a literal value enclosed in single quotes. The import command can accept a
single filename only. Therefore, all the data to be imported to a replica must be contained in one file.

The COMMITBLOCK option indicates the number of rows processed before the data is committed. The
number_of_rows is an integer value used with the optional COMMITBLOCK clause to indicate the

329

B.50 IMPORT

commitblock size. The use of the COMMITBLOCK option improves the performance of the import and releases
the internal transaction resources frequently.

The optimal value for the COMMITBLOCK size varies depending on various resources at the server. A good
example is a COMMITBLOCK size of 1000 for 10,000 rows. If you do not specify the COMMITBLOCK
option, the IMPORT command uses all rows in the publication as one transaction. This may work well for a
small number of rows, but is problematic for thousands and millions of rows.

You can define the import to use table-level pessimistic locking when it is initially executed. If the PESSIM-
ISTIC mode is specified, all other concurrent access to the table affected is blocked until the import has
completed. Otherwise, if the optimistic mode is used, the IMPORT may fail due to a concurrency conflict.

When a transaction acquires an exclusive lock to a table, the TableLockWaitTimeout parameter setting
in the [General] section of the solid.ini configuration file determines the transaction's wait period
until the exclusive or shared lock is released. For details, see the description of this parameter in solidDB
Administration Guide.

Imported data is not valid in a replica until it is refreshed once after the import. At the time a replica makes
its first REFRESH, the bookmark used to export the file must exist in the master database. If it does not exist,
then the REFRESH fails. This means that you are required to create a new bookmark on the master database,
re-export the data, and re-import the data on the replica.

B.50.1.1 Usage Rules

Note the following rules when using the IMPORT command:

• Only one file per subscription is allowed for import.

• The file size of an export file is dependent upon the underlying operating system. If a respective platform
(such as SUN, or HP) allows more than 2GB, you can write files greater than 2GB. This means that a
replica (recipient) should also have a compatible platform and file system. Otherwise, the replica is not
able to accept the export file. If both the operating system on a master and replica support file sizes
greater than 2GB, then export files greater than 2GB are permitted.

• Back up replica databases before using the IMPORT command. If a COMMITBLOCK option is used and
fails, then the imported data is only partially committed; you will need to restore the replica with a backup
file.

• solidDB requires that autocommit be set OFF when using the IMPORT command.

B.50.2 Usage in Master

This statement is not available in a master database.

330

B.50.2 Usage in Master

B.50.3 Usage in Replica

Use this statement in a replica to import data from a data file created by the EXPORT SUBSCRIPTION
statement in a master database.

B.50.4 Example

IMPORT 'FINANCE.EXP';

B.50.5 Return Values

For details on each error code, see the appendix titled Error Codes in solidDB Administration Guide.

Table B.21. IMPORT Return Values

DescriptionError Code

Master master_name not found.25007

Database is not a replica database.25019

Import file file_name open failure.25069

Table level error13XXX

User id num not found13124

This message is generated, for example, if the user has been dropped.

Concurrency conflict (simultaneous other operation)10006

No privilege for operation13047

Insert not allowed for pseudo column13056

Communication error21XXX

Master not defined25024

Not a valid master user25026

Transaction is active, operation failed25031

Publication publication_name not found or publication version mismatch25036

User id user_id is not found25040

While executing a message reply an attempt to map a master user to a local replica id
failed.

331

B.50.3 Usage in Replica

DescriptionError Code

Subscription to publication publication_name not found25041

Publication publication_name request info not found25048

Table table_name is not set for synchronization history25054

Autocommit not allowed25056

Column column_name does not exist on publication publication_name resultset
in table table_name

25060

B.51 INSERT

INSERT INTO table_name insert_columns_and_source

insert_columns_and_source::=
from_subquery
| from_constructor
| from_default

from subquery ::=
[insert_column_name_list] query expression

insert_column_name_list ::=
([column name [, column name]...])

from constructor ::=
[insert_column_name_list] VALUES row_constructor[, row_constructor]...]

row_constructor ::= ([insert_item[, insert_item]...])

insert_item ::= insert_value | DEFAULT | NULL

from default ::= DEFAULT VALUES

B.51.1 Usage

There are several variations of the INSERT statement. In the simplest instance, a value is provided for each
column of the new row in the order specified at the time the table was defined (or altered). In the preferable
form of the INSERT statement, the columns are specified as part of the statement and they do not need to be
in any specific order as long as the orders of the column list matches the order of the value list.

332

B.51 INSERT

<insert_value> can be a literal, a scalar fuction, or a variable (in a procedure).

B.51.2 Example

INSERT INTO TEST (C, ID) VALUES (0.22, 5);
INSERT INTO TEST VALUES (0.35, 9);

Multirow inserts can also be done. For example, to insert three rows in one statement, you can use the following
command:

INSERT INTO employees VALUES
(10021, 'Peter', 'Humlaut'),
(10543, 'John', 'Wilson'),
(10556, 'Bunba', 'Olo');

You can insert default values by using the DEFAULT VALUES statement as shown in the second example
below. An equivalent form is "INSERT INTO TEST() VALUES()". You can also assign a specific value for
one column and use the default value for another column. These methods as shown in the examples below:

INSERT INTO TEST () VALUES ();
INSERT INTO TEST DEFAULT VALUES;
INSERT INTO TEST (C, ID) VALUES (0.35, DEFAULT);

INSERT INTO TEST (C, ID) SELECT A, B FROM INPUT_TO_TEST;

B.52 LOCK TABLE

LOCK lock-definition [lock-definition] [wait-option]
lock-definition ::= TABLE tablename [,tablename]
IN { SHARED | [LONG] EXCLUSIVE } MODE
wait-option ::= NOWAIT | WAIT <#seconds>

Tablename: The name of the table to lock. You can also specify the catalog and schema of the table by qual-
ifying the table name. You may only lock tables, not views.

SHARED: Shared mode allows others to perform read and write operations on the table. Also DDL operations
are allowed. Shared mode prohibits others from issuing an EXCLUSIVE lock on the same table.

333

B.51.2 Example

EXCLUSIVE: If a table uses pessimistic locking, then an exclusive lock prevents any other user from accessing
the table in any way (e.g. reading data, acquiring a lock, etc.). If the table uses optimistic locking, then an
exclusive lock allows other users to perform SELECTs on the locked table but prohibits any other activity
(like acquiring shared locks) on that table.

LONG: By default, locks are released at the end of a transaction. If the LONG option is specified, then the
lock is not released when the locking transaction commits. (Note: If the locking transaction aborts or is rolled
back, then all locks, including LONG locks, are released.) The user must explicitly unlock long locks using
the UNLOCK command described later in this document. LONG duration locks are allowed only in EXCLUS-
IVE mode. LONG shared locks are not supported.

NOWAIT: Specifies that control is returned to you immediately even if any specified table is locked by an-
other user. If requested lock is not granted then an error is returned.

WAIT: Specifies a timeout how long in seconds system should wait to get requested locks. If requested lock
is not granted within that time then an error is returned.

B.52.1 Usage

The LOCK and UNLOCK commands allow you to manually lock and unlock tables. Putting a lock on a table
(or any other object) limits access to that object. The LOCK TABLE command has an option that allows you
to extend the duration of a manual exclusive lock past the end of the current transaction; in other words, you
can keep the table exclusively locked through a series of multiple transactions.

Manual locking is not needed very often. The server's automatic locking is usually sufficient. For a detailed
discussion of locking in general, and the server's automatic locking in particular, see Section 6.2, “Concurrency
Control and Locking”.

Explicit locking of tables is primarily intended to help database administrators execute maintenance operations
in a database without being disturbed by other users. (For more information about Maintenance Mode, see
the chapter titled "Updating and Maintaining the Schema of a Distributed System" in solidDB SmartFlow
Data Replication Guide.) However, tables can be locked manually even if you are not using "Maintenance
Mode".

Table locks can be either SHARED or EXCLUSIVE.

An EXCLUSIVE lock on a table prohibits any other user or connection from changing the table or any records
within the table. If you have an exclusive lock on a table, then other users/connections cannot do any of the
following on that table until your exclusive lock is released:

• INSERT, UPDATE, DELETE

• ALTER TABLE

334

B.52.1 Usage

• DROP TABLE

• LOCK TABLE (in shared or exclusive mode)

Furthermore, if the table uses pessimistic locking, then an exclusive lock also prevents others users/connections
from doing the following:

• SELECT

If the table uses pessimistic locking, no other user can SELECT from the table when it has an exclusive lock.
Note, however, that if the table uses optimistic locking, an exclusive lock does NOT prevent other users from
SELECTing records from that table. (Most database servers on the market behave differently — i.e. they do
not allow SELECTs on a table that is locked exclusively — because most other database servers use only
pessimistic locking.)

A SHARED lock is less restrictive than an exclusive lock. If you have a shared lock on a table, then other
users/connections cannot do any of the following on that table until your shared lock is released:

• ALTER TABLE

• DROP TABLE

• LOCK TABLE (in exclusive mode)

If you use a shared lock on a table, other users/connections may insert, update, delete, and of course select
from the table.

Note that shared locks on a table are somewhat different from shared locks on a record. If you have a shared
lock on a record, then no other user may change data in the record. However, if you have a shared lock on a
table, then other users may still change data in that table.

More than one user at a time may have shared locks on a table. Therefore, if you have a shared lock on the
table, other users may also get shared locks on the table. However, no user may get an exclusive lock on a
table when another user has a shared lock (or exclusive lock) on that table.

The LOCK command takes effect at the time it is executed. If you do not use the LONG option, then the lock
will be released at the end of the transaction. If you use the LONG option, the table lock lasts until you explicitly
unlock the table. (The table lock will also be released if you roll back the transaction in which the lock was
placed. In other words, LONG locks only persist across transactions if you commit the transaction in which
you placed the LONG lock.)

The LOCK/UNLOCK TABLE commands apply only to tables. There is no command to manually lock or
unlock individual records within a table.

335

B.52.1 Usage

Privileges required: To use the LOCK TABLE command to issue a lock on a table, you must have insert,
delete or update privileges on that table. Note that there is no GRANT command to give other users LOCK
and UNLOCK privileges on a table.

Note that in one LOCK command you can lock more than one table and specify different modes. If the lock
command fails, then none of the tables are locked. If the lock command was successful, then all requested
locks are granted.

If the user does not specify a wait option (NOWAIT or WAIT seconds), then the default wait time is used.
That is the same as the deadlock detection timeout.

B.52.2 Examples

LOCK TABLE emp IN SHARED MODE;
LOCK TABLE emp IN SHARED MODE TABLE dept IN EXCLUSIVE MODE;
LOCK TABLE emp,dept IN SHARED MODE NOWAIT;
LOCK TABLE emp IN LONG EXCLUSIVE MODE;

B.52.3 Return Values

For details on each error code, see the appendix titled Error Codes in solidDB Administration Guide.

Table B.22. LOCK TABLE Return Values

DescriptionError code

Resource is locked.10014

No privilege for operation.13047

Table <tablename> is not found.13011

B.52.4 See Also

UNLOCK TABLE

SET SYNC MODE { MAINTENANCE | NORMAL }

B.53 MESSAGE APPEND

MESSAGE unique_message_name APPEND

336

B.52.2 Examples

 [
 PROPAGATE TRANSACTIONS
 [{ IGNORE_ERRORS | LOG_ERRORS | FAIL_ERRORS }]
 [WHERE { property_name {=|<|<=|>|>=|<>} 'value_string' | ALL }]
]
[{ REFRESH | SUBSCRIBE }
publication_name[(publication_parameters)]
timeout[(timeout_in_seconds)]
[FULL]
]
[REGISTER PUBLICATION publication_name]
[UNREGISTER PUBLICATION publication_name]
[REGISTER REPLICA]
[UNREGISTER REPLICA]
[SYNC_CONFIG ('sync_config_arg')]

B.53.1 Supported in

This command requires solidDB SmartFlow.

B.53.2 Usage

Once a message has been created in the replica database with the MESSAGE BEGIN command, you can
append the following tasks to that message:

• Propagate transactions to the master database

• Refresh a publication from the master database

• Register or unregister a publication for replica subscription

• Register or unregister a replica database to the master

• Download master user information (list of user names and passwords) from the master database

The PROPAGATE TRANSACTIONS task may contain a WHERE clause that is used to propagate only those
transactions where a transaction property defined with the SAVE PROPERTY statement meets specific cri-
teria. Using the keyword ALL overrides any default propagation condition set earlier with the statement

SAVE DEFAULT PROPAGATE PROPERTY
WHERE property_name {=|<|<=|>|>=|<>} 'value'.

337

B.53.1 Supported in

This enables you to propagate transactions that do not contain any properties.

The REGISTER REPLICA task adds a new replica database to the list of replicas in the master database.
Replicas must be registered with the master database before any other synchronization functions can be per-
formed in the replica database.

Synchronizing each master database to the replica in a multi-master environment requires registration of a
replica to each master database by setting up catalogs. One replica catalog can register only to one master
catalog. This statement performs the actual registration once catalogs are created in a synchronization envir-
onment. For synchronization to the replica, a new catalog for each master database is required. Read the section
titled "Guidelines For Multi-Master Topology" in solidDB SmartFlow Data Replication Guide for details on
catalogs.

Note

A single-master environment does not require the use of catalogs. By default, when catalogs are not
used, registration of the replica occurs automatically with a base catalog that maps to a master base
catalog, whose name is given when the database is created. Therefore, no backward compatibility issues
exist for versions prior to SynchroNet 2.0, which supported only the single-master architecture.

Note

A single replica node may have multiple masters, but only if the node has a separate replica catalog
for each master catalog. A single replica catalog may not have multiple masters.

The UNREGISTER REPLICA option removes an existing replica database from the list of replicas in the
master database.

The REFRESH task may contain arguments to the publication (if used in the publication). The parameters
must be literals; you cannot use stored procedure variables, for example. Using keyword FULL with REFRESH
forces fetching full data to the replica. The publication requested must be registered. Note that the keywords
REFRESH and SUBSCRIBE are synonymous; however, SUBSCRIBE is deprecated in the MESSAGE AP-
PEND statement.

The REGISTER PUBLICATION task registers a publication in the replica so that it can be refreshed from.
Users can only refresh from publications that are registered. In this way, publication parameters are validated,
preventing users from accidentally subscribing to unwanted subscriptions or requesting ad hoc subscriptions.
All tables that the registered publication refers to must exist in the replica.

The UNREGISTER PUBLICATION option removes an existing registered publication from the list of registered
publications in the master database.

338

B.53.2 Usage

The input argument of the SYNC_CONFIG task defines the search pattern of the user names that are returned
from the master database to the replica. SQL wildcards (such as the symbol %) that follow the conventions
of the LIKE keyword are used in this argument with a match_string, which is a character string. For details
on using the LIKE keyword, see Section B.96, “Wildcard Characters”.

B.53.3 Usage in Master

The MESSAGE APPEND statement cannot be used in a master database.

B.53.4 Usage in Replica

Use MESSAGE APPEND in replicas to append tasks to a message that has been created with MESSAGE
BEGIN.

B.53.5 Example

MESSAGE MyMsg0001 APPEND PROPAGATE TRANSACTIONS;
MESSAGE MyMsg0001 APPEND REFRESH PUB_CUSTOMERS_BY_AREA('SOUTH');
MESSAGE MyMsg0001 APPEND REGISTER REPLICA;
MESSAGE MyMsg0001 APPEND SYNC_CONFIG ('S%');
MESSAGE MyMsg0001 APPEND REGISTER PUBLICATION publ_customer;

B.53.6 Return Values

For details on each error code, see the appendix titled Error Codes in solidDB Administration Guide.

Table B.23. MESSAGE APPEND Return Values

DescriptionError Code

Not a valid license for this product13133

Dynamic parameters are not supported25004

Message message_name is already active.25005

Message message_name not active25006

Syntax error: error_message, line line_number25015

Illegal message state.25018

An appending message in the replica must be placed between the MESSAGE
BEGIN and MESSAGE END statements.

339

B.53.3 Usage in Master

DescriptionError Code

Master not defined25024

Node name not defined25025

Not a valid master user25026

Message message_name can include only one system subscription25028

Message message_name is in use.25035

A user is currently creating or forwarding this message.

SYNC_CONFIG system publication takes only character arguments25044

Autocommit not allowed25056

Not registered to publication publication_name25071

Already registered to publication publication_name25072

B.54 MESSAGE BEGIN

MESSAGE unique_message_name BEGIN [TO master_node_name]

B.54.1 Supported in

This command requires solidDB SmartFlow.

B.54.2 Usage

Each message that is sent from a replica to the master database must explicitly begin with the MESSAGE
BEGIN statement.

Each message must have a name that is unique within a replica. To construct unique message names, you
may use the GET_UNIQUE_STRING() function, which is documented in Section B.88, “String Functions”.
After a message has been processed, that message name may be reused. However, if the message fails for any
reason, the master will keep a copy of the failed message, and if you try to reuse the message name before
you delete the failed message, then of course the name will not be unique. You may want to use a new message
name even in situations where you might be able to re-use an existing name. Note that it is possible for two
replicas of the same master to have the same message name.

When registering a replica to a master catalog, other than the master system catalog, you must provide the
master node name in the MESSAGE BEGIN command. The master node name is used to resolve the correct

340

B.54 MESSAGE BEGIN

catalog at the master database. Note that specifying a master node name only applies when using the REGISTER
REPLICA statement. Later messages are automatically sent to the correct master node.

If you use the optional "TO master_node_name" clause, then you must put double quotes around the
master_node_name.

Note

When working with messages, be sure the autocommit mode is always switched off.

B.54.3 Usage in Master

The MESSAGE BEGIN statement cannot be used in a master database.

B.54.4 Usage in Replica

Use MESSAGE BEGIN to start building a new message in a replica.

B.54.5 Example

MESSAGE MyMsg0001 BEGIN ;
MESSAGE MyMsg0002 BEGIN TO "BerkeleyMaster";

Return Values from Replica

For details on each error code, see the appendix titled Error Codes in solidDB Administration Guide.

Table B.24. MESSAGE BEGIN Return Values from Replica

DescriptionError Code

Message message_name is already active.25005

A message of the specified name was created and appears to still be active.
The message is automatically deleted when the reply of the message has been
successfully executed in the replica.

Message message_name is in use.25035

A user is currently creating or forwarding this message.

Autocommit not allowed25056

341

B.54.3 Usage in Master

B.54.6 Return Values from Master

For details on each error code, see the appendix titled Error Codes in solidDB Administration Guide.

Table B.25. MESSAGE BEGIN Return Values from Master

DescriptionError Code

Database is not a replica database.25019

Node name not defined.25025

Autocommit not allowed25056

B.55 MESSAGE DELETE

MESSAGE message_name [FROM REPLICA replica_name] DELETE

B.55.1 Supported in

This command requires solidDB SmartFlow.

B.55.2 Usage

If the execution of a message is terminated because of an error, this command lets you explicitly delete the
message from the database to recover from the error. Note that the current transaction and all subsequent
transactions that were propagated to the master in this message are permanently lost when the message is
deleted. To use this statement, you must have SYS_SYNC_ADMIN_ROLE access.

Note

As an alternative, the MESSAGE DELETE CURRENT TRANSACTION command provides better
recovery since it lets you delete only the offending transaction.

If the message needs to be deleted from the master database, then the node name of the replica database that
forwarded the message needs to also be provided.

When deleting messages, be sure the autocommit mode is always switched off.

342

B.54.6 Return Values from Master

B.55.3 Usage in Master

Use this statement in the master to delete a failed message. Be sure to specify the replica in the syntax: 'FROM
REPLICA replica_name'.

B.55.4 Usage in Replica

This statement is used in the replica to delete a message.

B.55.5 Example

MESSAGE MyMsg0000 DELETE ;
MESSAGE MyMsg0001 FROM REPLICA bills_laptop DELETE ;

Return Values from replica

For details on each error code, see the appendix titled Error Codes in solidDB Administration Guide.

Table B.26. MESSAGE DELETE Return Values from Replica

DescriptionError code

Message message_name is already active25005

Message message_name not found25013

Message message_name is in use.25035

A user is currently creating or forwarding this message.

Autocommit not allowed25056

For details on each error code, see the appendix titled Error Codes in solidDB Administration Guide.

Table B.27. MESSAGE DELETE Return Values from Master

DescriptionError code

No privilege for operation13047

Replica replica_name not found25009

Message message_name not found25013

Database is not a master database25020

343

B.55.3 Usage in Master

DescriptionError code

Message message_name is in use.25035

A user is currently executing this message.

Autocommit not allowed25056

B.56 MESSAGE DELETE CURRENT TRANSACTION

MESSAGE message_name FROM REPLICA replica_name
DELETE CURRENT TRANSACTION

B.56.1 Supported in

This command requires solidDB SmartFlow.

B.56.2 Usage

This statement deletes the current transaction from a given message in the master database. To use this statement
requires SYS_SYNC_ADMIN_ROLE privilege.

The execution of a message stops, if a DBMS level error such as a duplicate insert occurs during the execution.
This kind of error can be resolved by deleting the offending transaction from the message. Once deleted with
the MESSAGE FROM REPLICA DELETE CURRENT TRANSACTION, an administrator can proceed with
the synchronization process.

When deleting the current transaction, be sure the autocommit mode is always switched off.

This statement is used only when the message is in an error state; if used otherwise, an error message is returned.
This statement is a transactional operation and must be committed before message execution may continue.
To restart the message after the deletion is committed, use the following statement:

MESSAGE msgname FROM REPLICA replicaname EXECUTE

Note that the deletion is completed first before the MESSAGE FROM REPLICA EXECUTE statement is
executed; that is, the statement starts the message from replica, but waits until the active statement is completed
before actually executing the message. Thus the statement performs asynchronous message execution.

344

B.56 MESSAGE DELETE CURRENT TRANSACTION

Caution

Delete a transaction only as a last resort; normally transactions should be written to prevent unresolved
conflicts in a master database. MESSAGE FROM REPLICA DELETE CURRENT TRANSACTION
is intended for use in the development phase, when unresolved conflicts occur more frequently.

Use caution when deleting a transaction. Because subsequent transactions may be dependent on the
results of a deleted transaction, the risk incurred is more transaction errors.

B.56.3 Usage in Master

Use this statement in the master to delete a failed transaction.

B.56.4 Usage in Replica

This statement is not available in the replica.

B.56.5 Example

MESSAGE somefailures FROM REPLICA laptop1 DELETE
CURRENT TRANSACTION;
COMMIT WORK;
MESSAGE somefailures FROM REPLICA laptop1 EXECUTE;
COMMIT WORK;

B.56.6 Return Values

For details on each error code, see the appendix titled Error Codes in solidDB Administration Guide.

Table B.28. MESSAGE DELETE CURRENT TRANSACTION Return Values

DescriptionError code

No privilege for operation13047

Replica replica_name not found25009

Message name message_name not found25013

Illegal message state.25018

An attempt was made to delete a transaction from a message that is not in error.

345

B.56.3 Usage in Master

DescriptionError code

Autocommit not allowed25056

B.57 MESSAGE END

MESSAGE unique_message_name END

B.57.1 Supported in

This command requires solidDB SmartFlow.

B.57.2 Usage

A message must be "wrapped up" and made persistent before it can be sent to the master database. Ending
the message with the MESSAGE END command closes the message, i.e. you can no longer append anything
to it. Committing the transaction makes the message persistent.

Note

When working with messages, be sure the autocommit mode is switched off.

B.57.3 Usage in Master

The MESSAGE END statement cannot be used in a master database.

B.57.4 Usage in Replica

Use the MESSAGE END statement in replicas to end a message.

Example

MESSAGE MyMsg001 END ;
COMMIT WORK ;

The following example shows a complete message that propagates transactions and refreshes from publication
PUB_CUSTOMERS_BY_AREA.

MESSAGE MyMsg001 BEGIN ;

346

B.57 MESSAGE END

MESSAGE MyMsg001 APPEND PROPAGATE TRANSACTIONS;
MESSAGE MyMsg001 APPEND REFRESH PUB_CUSTOMERS_BY_AREA("˜SOUTH');
MESSAGE MyMsg001 END ;
COMMIT WORK ;

B.57.5 Return Values from Replica

For details on each error code, see the appendix titled Error Codes in solidDB Administration Guide.

Table B.29. MESSAGE END Return Values from Replica

DescriptionError Code

Not a valid license for this product13133

Message message_name is already active25005

Message message_name not found25013

Illegal message state.25018

The MESSAGE BEGIN statement must exist to begin a transaction and the
MESSAGE END statement can be executed only once per message.

Not a valid master user25026

Message message_name is in use25035

A user is currently creating or forwarding this message.

Autocommit not allowed25056

B.57.6 Return Values from Master

For details on each error code, see the appendix titled Error Codes in solidDB Administration Guide.

Table B.30. MESSAGE END Return Values from Master

DescriptionError Code

Database is not a replica database25019

Autocommit not allowed25056

347

B.57.5 Return Values from Replica

B.58 MESSAGE EXECUTE

MESSAGE message_name EXECUTE [{OPTIMISTIC | PESSIMISTIC}]

B.58.1 Supported in

This command requires solidDB SmartFlow.

B.58.2 Usage

This statement allows a message to be re-executed if the execution of a reply message fails in a replica. This
can occur, for example, if the database server detects a concurrency conflict between a REFRESH and an
ongoing user transaction.

If you anticipate concurrency conflicts to happen often and the re-execution of the message fails because of
a concurrency conflict, you can execute the message using the PESSIMISTIC option for table-level locking;
this ensures the message execution is successful.

In this mode, all other concurrent access to the table affected is blocked until the synchronization message
has completed. Otherwise, if the optimistic mode is used, the MESSAGE EXECUTE statement may fail due
to a concurrency conflict.

When a transaction acquires an exclusive lock to a table, the TableLockWaitTimeout parameter setting
in the General section of the solid.ini configuration file determines the transaction's wait period until
the exclusive or shared lock is released. For details, see the description of this parameter in solidDB Adminis-
tration Guide.

Note

When working with messages, be sure the autocommit mode is always switched off.

B.58.3 Usage in Master

This statement is not available in the master. See Section B.61, “MESSAGE FROM REPLICA EXECUTE”.

B.58.4 Usage in Replica

Use this statement in the replica to re-execute a failed message execution in the replica.

348

B.58 MESSAGE EXECUTE

B.58.5 Result Set

MESSAGE EXECUTE returns a result set. The returned result set is the same as with command MESSAGE
GET REPLY.

B.58.6 Example

MESSAGE MyMsg0002 EXECUTE;

B.58.7 Return Values

For details on each error code, see the appendix titled Error Codes in solidDB Administration Guide.

Table B.31. MESSAGE EXECUTE Return Values

DescriptionError code

Table level error13XXX

Concurrency conflict (simultaneous other operation)10006

No privilege for operation13047

Insert not allowed for pseudo column13056

Message message_name is already active25005

Message name message_name not found25013

Illegal message state25018

Master not defined25024

Not a valid master user25026

Transaction is active, operation failed25031

Message message_name is in use25035

A user is currently creating or forwarding this message.

User id user_id is not found25040

While executing a message reply an attempt to map a master user to a local replica id
failed.

Subscription to publication publication_name not found25041

Publication publication_name request info not found25048

349

B.58.5 Result Set

DescriptionError code

Autocommit not allowed25056

B.59 MESSAGE FORWARD

MESSAGE unique_message_name FORWARD
[TO {'connect_string' | node_name | "node_name"}]
[TIMEOUT {number_of_seconds | FOREVER}]
[COMMITBLOCK block_size_in_rows]
[{OPTIMISTIC | PESSIMISTIC}]

B.59.1 Supported in

This command requires solidDB SmartFlow.

B.59.2 Usage

After a message has been completed and made persistent with the MESSAGE END statement, it can be sent
to the master database using the MESSAGE FORWARD statement.

It is only necessary to specify the recipient of the message with keyword TO when a new replica is being re-
gistered with the master database; that is, when the first message from a replica to the master server is sent.

The connect_string is a valid connect string, such as:

tcp [host_computer_name] server_port_number

For more information about connect strings, read the section of solidDB Administration Guide titled "Com-
munication Protocols".

In the context of a MESSAGE FORWARD command, a connect string must be delimited in single quotes.

The node_name (without quotes) is a valid alphanumeric sequence that is not a reserved word. The
"node_name" (in double quote marks) is used if the node name is a reserved word; in this case, the double
quotes ensure that the node name is treated as a delimited identifier. For example, since the word "master" is
a reserved word, the word is placed in double quotes when it is used as a node name:

-- On master
SET SYNC NODE "master";

350

B.59 MESSAGE FORWARD

--On replica
MESSAGE refresh_severe_bugs2 FORWARD TO "master" TIMEOUT FOREVER;

Each sent message has a reply message. The TIMEOUT property defines how long the replica server will
wait for the reply message.

If a TIMEOUT is not defined, the message is forwarded to the master and the replica does not fetch the reply.
In this case the reply can be retrieved with a separate MESSAGE GET REPLY call.

If the reply of the sent message contains REFRESHes of large publications, the size of the REFRESH's
commit block, that is, the number of rows that are committed in one transaction, can be defined using the
COMMITBLOCK property. This has a positive impact on the performance of the replica database. It is re-
commended that there are no on-line users accessing the database when the COMMITBLOCK property is
being used.

As part of the MESSAGE FORWARD operation, you can specify table-level pessimistic locking when the
reply message is initially executed in the replica. If the PESSIMISTIC mode is specified, all other concurrent
access to the table affected is blocked until the synchronization message has completed. Otherwise, if the
optimistic mode is used, the MESSAGE FORWARD operation may fail due to a concurrency conflict.

When a transaction acquires an exclusive lock to a table, the TableLockWaitTimeout parameter setting
in the General section of the solid.ini configuration file determines the transaction's wait period until
the exclusive or shared lock is released. For details, see the description of this parameter in solidDB Adminis-
tration Guide.

If a forwarded message fails in delivery due to a communication error, you must explicitly use the MESSAGE
FORWARD to resend the message. Once re-sent, MESSAGE FORWARD re-executes the message.

Note

When working with the messages, be sure the autocommit mode is always switched off.

B.59.3 Example

Forward message, wait for the reply for 60 seconds

MESSAGE MyMsg001 FORWARD TIMEOUT 60 ;

Forward message to a master server that runs on the "mastermachine.acme.com" machine. Do not wait for
the reply message.

351

B.59.3 Example

MESSAGE MyRegistrationMsg FORWARD TO
'tcp mastermachine.acme.com 1313';

Forward message, wait for the reply for 5 minutes (300 seconds) and commit the data of the refreshed public-
ations to replica database in transactions of max. 1000 rows.

MESSAGE MyMsg001 FORWARD TIMEOUT 300 COMMITBLOCK 1000 ;

B.59.4 Return Values from Replica

For details on each error code, see the appendix titled Error Codes in solidDB Administration Guide.

Table B.32. MESSAGE FORWARD Return Values from Replica

DescriptionError Code

Table level error13XXX

Communication error21XXX

Concurrency conflict (simultaneous other operation)10006

No privilege for operation13047

Insert not allowed for pseudo column13056

Message message_name is already active25005

Message name message_name not found25013

Illegal message state25018

In the replica, the message can only be executed using the MESSAGE FORWARD
statement if the message is ended and the ending transaction is committed.

Master not defined25024

This message is produced if double quotes, rather than single quotes, are used around
the connect_string in a MESSAGE FORWARD statement.

For example, if the master node is given the node name "master" (which is a reserved
word and therefore should be delimited by double quotes), and if that node's connect
string is:

tcp localhost 1315

352

B.59.4 Return Values from Replica

DescriptionError Code

then the MESSAGE statements shown below are correct:

--On the replica
...
--double quotes
MESSAGE msg1 BEGIN TO "master";
...
--single quotes
MESSAGE msg2 FORWARD TO 'tcp localhost 1315';

Note that the MESSAGE BEGIN statement defines (within the replica server) what the
node name of the master is. The MESSAGE FORWARD statement may contain the
connect string to the server.

Not a valid master user25026

Transaction is active, operation failed25031

Message message_name is in use.25035

A user is currently creating or forwarding this message.

User id user_id is not found.25040

While executing a message reply an attempt to map a master user to a local replica id
failed.

Subscription to publication publication_name not found25041

Publication publication_name request info not found25048

Failed to set node name to node_name.25052

Table table_name is not set for synchronization history25054

Connect information is allowed only when not registered25055

The connect info in MESSAGE message_name FORWARD TO connect_info
options is allowed only if the replica has not yet been registered to the master data-
base.

Autocommit not allowed25056

The replica database has already been registered to a master database25057

353

B.59.4 Return Values from Replica

DescriptionError Code

Column column_name does not exist on publication publication_name resultset
in table table_name

25060

B.59.5 Return Values from Master

For details on each error code, see the appendix titled Error Codes in solidDB Administration Guide.

Table B.33. MESSAGE FORWARD Return Values from Master

DescriptionError code

Table level error13XXX

User id num not found13124

This message is generated, for example, if the user has been dropped.

Message not found, replica ID replica_id, message ID message_id25016

Autocommit not allowed25056

Result Set

If the MESSAGE FORWARD also retrieves the reply, the statement returns a result set. The result set returned
is the same as the one returned with the statement MESSAGE GET REPLY. See Section B.63, “MESSAGE
GET REPLY”.

B.60 MESSAGE FROM REPLICA DELETE

MESSAGE msgid FROM REPLICA replicaname DELETE;
MESSAGE msgid FROM REPLICA replicaname DELETE CURRENT TRANSACTION;

This command can only be executed on the master.

B.61 MESSAGE FROM REPLICA EXECUTE

MESSAGE message_name FROM REPLICA replica_name EXECUTE

354

B.59.5 Return Values from Master

B.61.1 Supported in

This command requires solidDB SmartFlow.

B.61.2 Usage

The execution of a message stops if a DBMS level error such as a duplicate insert occurs during the execution
or if an error is raised from a procedure by putting the SYS_ROLLBACK parameter to the transactions bul-
letin board. This kind of error is recoverable by fixing the reason for the error, for example, by removing the
duplicate row from the database, and then executing the message.

When the transaction in error is deleted with MESSAGE DELETE CURRENT TRANSACTION, the deletion
is completed first before the MESSAGE FROM REPLICA EXECUTE command is executed; that is, the
statement starts the message from replica, but waits until the active statement is completed before actually
executing the message. Thus the command performs asynchronous message execution.

Note

When working with the messages, be sure the autocommit mode is always switched off.

B.61.3 Usage in Master

Use this command in the master to execute a failed message.

B.61.4 Usage in Replica

This command is not available in the replica. See Section B.58, “MESSAGE EXECUTE” for an alternative.

B.61.5 Example

MESSAGE MyMsg0002 FROM REPLICA bills_laptop EXECUTE;

B.61.6 Return Values

For details on each error code, see the appendix titled Error Codes in solidDB Administration Guide.

355

B.61.1 Supported in

Table B.34. MESSAGE FROM REPLICA EXECUTE Return Values

DescriptionError code

No privilege for operation13047

Replica replica_name not found25009

Message name message_name not found25013

Illegal message state.25018

An attempt was made to delete a transaction from a message that is not in error.

Autocommit not allowed25056

B.62 MESSAGE FROM REPLICA RESTART

MESSAGE msgid FROM REPLICA replicaname RESTART <err-options>;

Where <err-options> can be IGNORE_ERRORS or LOG_ERRORS or FAIL_ERRORS

This command can only be executed on the master.

This command allows you to re-execute a failed transaction that has been stored in the system tables and that
can be retrieved using the SYNC_FAILED_MESSAGES view.

B.63 MESSAGE GET REPLY

MESSAGE unique_message_name GET REPLY
[TIMEOUT {FOREVER | seconds}]
[COMMITBLOCK block_size_in_rows]
[NO EXECUTE]
[{OPTIMISTIC | PESSIMISTIC}]

B.63.1 Supported in

This command requires solidDB SmartFlow.

356

B.62 MESSAGE FROM REPLICA RESTART

B.63.2 Usage

If the reply to a sent message has not been received by the MESSAGE FORWARD statement, it can be re-
quested separately from the master database by using the MESSAGE GET REPLY statement in the replica
database.

If the reply message contains REFRESHes of large publications, the size of the REFRESH's commit block,
that is, the number of rows that are committed in one transaction, can be limited using the COMMITBLOCK
property. This has a positive impact on the performance of the replica database. It is recommended that there
are no on-line users in the database when the COMMITBLOCK property is in use.

If the execution of a reply message with the COMMITBLOCK property fails in the replica database, it cannot
be re-executed. The failed message must be deleted from the replica database and refreshed from the master
database.

If NO EXECUTE is specified, when the reply message is available at the master, it is only read and stored
for later execution. Otherwise, the reply message is downloaded from the master and executed in the same
statement. Using NO EXECUTE reduces bottlenecks in communication lines by allowing reply messages for
later execution in different transactions.

You can define the reply message to use table-level pessimistic locking when it is initially executed. If the
PESSIMISTIC mode is specified, all other concurrent access to the table affected is blocked until the syn-
chronization message has completed. Otherwise, if the optimistic mode is used, the MESSAGE GET REPLY
operation may fail due to a concurrency conflict.

When a transaction acquires an exclusive lock to a table, the TableLockWaitTimeout parameter setting
in the General section of the solid.ini configuration file determines the transaction's wait period until
the exclusive or shared lock is released. For details, see the description of this parameter in solidDB Adminis-
tration Guide.

If a reply message fails in delivery due to a communication error (without COMMITBLOCK), you must ex-
plicitly use the MESSAGE GET REPLY to resend the message. Once resent, MESSAGE GET REPLY re-
executes the message.

Note

When working with the messages, be sure the autocommit mode is always switched off.

B.63.3 Usage in Master

MESSAGE GET REPLY cannot be used in the master.

357

B.63.2 Usage

B.63.4 Usage in Replica

Use MESSAGE GET REPLY in the replica to fetch a reply of a message from the master.

B.63.5 Example

MESSAGE MyMessage001 GET REPLY TIMEOUT 120
MESSAGE MyMessage001 GET REPLY TIMEOUT 300 COMMITBLOCK 1000

B.63.6 Return Values from Replica

Fatal errors in transaction propagation abort the message and return an error code to the replica. To propagate
the aborted message you need to correct the fatal errors and restart the message with command MESSAGE
FROM REPLICA EXECUTE.

If a REFRESH fails in the master, an error message about the failed REFRESH is added to the result set.
Other parts of the message are executed normally. The failed REFRESH must be REFRESHed from the
master in a separate synchronization message.

If a REFRESH (that is, the execution of the reply message) fails in the replica, the message is still available
in the replica database and can be restarted with the MESSAGE msg_name EXECUTE command.

For details on each error code, see the appendix titled Error Codes in solidDB Administration Guide.

Table B.35. MESSAGE GET REPLY Return Values from Replica

DescriptionError code

Table level error13XXX

User id num not found13124

This message is generated, for example, if the user has been dropped.

Concurrency conflict (simultaneous other operation)10006

No privilege for operation13047

Insert not allowed for pseudo column13056

Communication error21XXX

Message message_name is already active25005

Message name message_name not found25013

358

B.63.4 Usage in Replica

DescriptionError code

Illegal message state25018

In the replica, the message can only be executed using the MESSAGE GET REPLY
statement if the message is forwarded to the master.

Master not defined25024

Not a valid master user25026

Transaction is active, operation failed25031

Message message_name is in use. A user is currently creating or forwarding this
message.

25035

Publication publication_name not found or publication version mismatch25036

User id user_id is not found25040

While executing a message reply, an attempt to map a master user to a local replica id
failed.

Subscription to publication publication_name not found25041

Publication publication_name request info not found25048

Table table_name is not set for synchronization history25054

Autocommit not allowed25056

Already registered to master master_name25057

Column column_name does not exist on publication publication_name resultset
in table table_name

25060

B.63.7 Return Values from Master

For details on each error code, see the appendix titled Error Codes in solidDB Administration Guide.

Table B.36. MESSAGE GET REPLY Return Values from Master

DescriptionError code

Table level error13XXX

User id num not found13124

This message is generated, for example, if the user has been dropped.

Message reply timed out25012

359

B.63.7 Return Values from Master

DescriptionError code

Message not found, replica id replica-id, message id message-id25016

Reply message is too long (size_of_messages bytes). Maximum is set to
max_message_size bytes.

25043

Autocommit not allowed25056

B.63.8 Result Set

MESSAGE GET REPLY returns a result set table. The columns of the result set are as follows:

Table B.37. MESSAGE GET REPLY Result Set Table

DescriptionColumn Name

Message part numberPartno

The type of result set row. Possible types are:Type

0: Message part start

1: This type is not in use

2: The message was a propagation message and the status of that operation is stored in
the return message

3: Task

4: Subscription task

5: Type of refresh (FULL or INCREMENTAL)

6: MESSAGE DELETE status

Master IDMasterid

Message IDMsgid

Message error code. Zero if successful.Errcode

Message error string. NULL is successful.Errstr

Number of inserted rows to replica.Insertcount

Type=3: Total number of insert

Type=4: Row inserts restored from replica history to replica base table

360

B.63.8 Result Set

DescriptionColumn Name

Type=5: Insert operations received from master

Type = 3: Total number of deletesDeletecount

Type = 4: Row deletes restored from replica base table

Type = 5: Delete operations received from master

Size of message in bytes. Indicated in result received from command MESSAGE END.
Otherwise 0.

Bytecount

Information of the current task.Info

Type = 0: then Message name

Type = 3: Publication name

Type = 4: Table name

Type = 5: FULL/INCREMENTAL

B.64 POST EVENT
The POST EVENT command is allowed only inside stored procedures. See Section B.14, “CREATE PRO-
CEDURE” for more details.

B.65 PUT_PARAM()

put_param(param_name, param_value)

B.65.1 Supported in

This command requires solidDB SmartFlow.

B.65.2 Usage

With solidDB Intelligent Transaction, SQL statements or procedures of a transaction can communicate with
each other by passing parameters to each other using a parameter bulletin board. The bulletin board is a storage
of parameters that is visible to all statements of a transaction.

361

B.64 POST EVENT

Parameters are specific to a catalog. Different replica and master catalogs have their own set of bulletin board
parameters that are not visible to each other.

Use the put_param() function to place a parameter on the bulletin board. If the parameter already exists,
the new value overwrites the previous one.

These parameters are not propagated to the master. You can use the SAVE PROPERTY statement to
propagate properties from the replica to the master. For details, read Section B.73, “SAVE PROPERTY”.

Because put_param() is a SQL function, it can be used only within a procedure or in a SQL statement.

Both the parameter name and value are of type VARCHAR.

B.65.3 Usage in Master

Put_param() function can be used in the master for setting parameters to the parameter bulletin board of
the current transaction.

B.65.4 Usage in Replica

Put_param() function can be used in replicas for setting parameters to the parameter bulletin board of the
current transaction.

B.65.5 Differences between "PUT_PARAM()" and "SAVE PROP-
ERTY property_name VALUE property_value;"

You typically use put_param inside the (running) transaction to pass parameters between procedures. These
parameter values disappear from the bulletin board when the transaction terminates (commits or rolls back).

You typically use the SAVE PROPERTY statement in the replica to set properties for the entire transaction.
These properties can be used in the WHERE clause of the PROPAGATE TRANSACTIONS statement. When
the transaction is executed in the master, the properties of the transaction are put to the parameter bulletin
board of the transaction in the beginning of the transaction. Hence, they can be accessed by all procedures of
the transaction by using the GET_PARAM(param_name) function.

B.65.6 Example

Select put_param('myparam', '123abc');

362

B.65.3 Usage in Master

B.65.7 Return Values

For details on each error code, see the appendix titled Error Codes in solidDB Administration Guide.

Table B.38. PUT_PARAM() Return Values

DescriptionError Code

Invalid data type in a parameter.13086

When executed successfully, put_param() returns the new value of the assigned parameter.

B.65.8 See Also

GET_PARAM

SAVE PROPERTY

SET SYNC PARAMETER

B.66 REFRESH

REFRESH publication [parameters] [FULL]
[OPTIMISTIC|PESSIMISTIC]
[COMMITBLOCK number_of_rows]
[TIMEOUT {DEFAULT | FOREVER | timeout_ms}]

B.66.1 Usage

The REFRESH statement is a storageless refresh command. It conserves memory by streaming the associated
data. It also saves I/O bandwidth because no messages are written to disk. Each command blocks until it is
successfully executed.

The optional properties OPTIMISTIC|PESSIMISTIC define the way the replica table is being locked.

• The OPTIMISTIC mode (the default value) defines that the concurrency control method depends on the
table type and the isolation level. For D-tables in the OPTIMISTIC mode, the REFRESH will always
succeed. For M-tables in general, and for D-tables in the PESSIMISTIC mode, row-level locking will
be used. If a lock cannot be obtained, PESSIMISTIC fails and returns an error.

363

B.65.7 Return Values

• PESSIMISTIC defines that the table is exclusively locked, regardless of the table type and isolation level
chosen, for the time of refresh. If the lock cannot be obtained, the refresh request fails and returns an error.

If the reply to the REFRESH request contains REFRESHes of large publications, the size of the REFRESH's
commit block, that is, the number of rows that are committed in one transaction, can be defined using the
COMMITBLOCK property. This has a positive impact on the performance of the replica database. It is re-
commended that there are no on-line users accessing the database when the COMMITBLOCK property is
being used.

If COMMITBLOCK is not used, the execution of REFRESH is a part of the current transaction. The effect
of REFRESH can be revoked by issuing the ROLLBACK command. In order to make the effect of REFRESH
durable, COMMIT WORK has to be issued. REFRESH is idempotent in the sense that it can be issued repeat-
ably, over the rollbacks and commits, and the effects are (in the quiescent state of the database) always the
same.

If the COMMITBLOCK clause is used, each transfer part (of the specified size) is committed in Replica im-
plicitly. The ROLLBACK statement removes the effect of the latest transfer part only. COMMIT WORK
commits the last transfer part.

The TIMEOUT property defines how long the replica server will wait for the reply message. If TIMEOUT
is not defined, then FOREVER is used.

B.66.2 Example

Synchronous, messageless refresh:

REFRESH publ_states;
PESSIMISTIC;
COMMITBLOCK 1000;
COMMIT WORK;

B.66.3 Return Values

For details on each error code, see the appendix titled Error Codes in solidDB Administration Guide.

Table B.39. REFRESH Return Values

DescriptionError Code

Not a valid license for this product13133

Dynamic parameters are not supported25004

364

B.66.2 Example

DescriptionError Code

Syntax error: error_message, line line_number25015

Master not defined25024

Node name not defined25025

Not a valid master user25026

SYNC_CONFIG system publication takes only character arguments25044

Autocommit not allowed25056

Not registered to publication publication_name25071

Already registered to publication publication_name25072

Table level error13XXX

Communication error21XXX

Concurrency conflict (simultaneous other operation)10006

No privilege for operation13047

Insert not allowed for pseudo column13056

Message message_name is already active25005

Illegal message state25018

In the replica, the message can only be executed using the MESSAGE FORWARD
statement if the message is ended and the ending transaction is committed.

Master not defined25024

This message is produced if double quotes, rather than single quotes, are used around
the connect_string in a MESSAGE FORWARD statement.

For example, if the master node is given the node name "master" (which is a reserved
word and therefore should be delimited by double quotes), and if that node's connect
string is:

tcp localhost 1315

then the MESSAGE statements shown below are correct:

--On the replica
...
--double quotes

365

B.66.3 Return Values

DescriptionError Code

MESSAGE msg1 BEGIN TO "master";
...
--single quotes
MESSAGE msg2 FORWARD TO 'tcp localhost 1315';

Note that the MESSAGE BEGIN statement defines (within the replica server) what the
node name of the master is. The MESSAGE FORWARD statement may contain the
connect string to the server.

Not a valid master user25026

Transaction is active, operation failed25031

Message message_name is in use.25035

A user is currently creating or forwarding this message.

User id user_id is not found.25040

While executing a message reply an attempt to map a master user to a local replica id
failed.

Subscription to publication publication_name not found25041

Publication publication_name request info not found25048

Failed to set node name to node_name.25052

Table table_name is not set for synchronization history25054

Connect information is allowed only when not registered25055

The connect info in MESSAGE message_name FORWARD TO connect_info
options is allowed only if the replica has not yet been registered to the master data-
base.

Autocommit not allowed25056

The replica database has already been registered to a master database25057

Column column_name does not exist on publication publication_name resultset
in table table_name

25060

Table level error13XXX

User id num not found13124

This message is generated, for example, if the user has been dropped.

366

B.66.3 Return Values

DescriptionError Code

Autocommit not allowed25056

B.67 REGISTER EVENT
Registering an event tells the server that you would like to be notified of all future occurrences of this event,
even if you are not yet waiting for it. By separating the "register" and "wait" commands, you can start queuing
events immediately, while waiting until later to actually start processing them.

Note that you do not need to register for every event before waiting for it. When you wait on an event, you
will be registered implicitly for that event if you did not already explicitly register for it. Thus you only need
to explicitly register events if you want them to start being queued now but you don't want to start WAITing
for them until later.

You cannot register to synchronization events, because the ADMIN EVENT 'wait' command is not able to
return variable resultsets. Instead, you must use stored procedures to handle synchronization events.

The REGISTER EVENT command is allowed only inside stored procedures. See the CREATE PROCEDURE
statement and the CREATE EVENT statement for more details.

B.68 REVOKE (Role from User)

REVOKE { role_name [, role_name]... }
 FROM {PUBLIC | user_name [, user_name]... }

B.68.1 Usage

The REVOKE statement is used to take a role away from users.

B.68.2 Example

REVOKE GUEST_USERS FROM HOBBES;

B.69 REVOKE (Privilege from Role or User)

REVOKE
 {ALL | revoke_privilege [, revoke_privilege]... } ON table-name

367

B.67 REGISTER EVENT

 FROM {PUBLIC | user_name [, user_name]... | role_name [, role_name]... }

revoke-privilege ::= DELETE | INSERT | SELECT |
 UPDATE [(column_identifier [, column_identifier]...)] |
 REFERENCES

REVOKE EXECUTE ON procedure_name
 FROM {PUBLIC | user_name [, user_name]... | role_name [, role_name]... }

REVOKE {SELECT | INSERT} ON event_name FROM
 {PUBLIC | user_name [, user_name]... | role_name [, role_name]... }

REVOKE {SELECT | INSERT} ON sequence_name
 FROM {PUBLIC | user_name [, user_name]... | role_name [, role_name]... }

Note

solidDB does not support the keywords CASCADE and RESTRICT in REVOKE statements.

B.69.1 Usage

The REVOKE statement is used to take privileges away from users and roles.

B.69.2 Example

REVOKE INSERT ON TEST FROM GUEST_USERS;

B.69.3 See Also

For more information about user privileges, see also:

• Section B.47, “GRANT”, and

• Section 5.2, “Managing User Privileges and Roles”.

B.70 REVOKE REFRESH

REVOKE { REFRESH | SUBSCRIBE} ON publication_name FROM {PUBLIC |

368

B.69.1 Usage

user_name, [user_name] ... |
role_name , [role_name] ...}

B.70.1 Supported in

This command requires solidDB SmartFlow.

B.70.2 Usage

This statement revokes access rights to a publication from a user or role defined in the master database.

Note

The keywords "REFRESH" and "SUBSCRIBE" are synonymous. However, "SUBSCRIBE" is de-
precated in the REVOKE statement.

B.70.3 Usage in Master

Use this statement to revoke access rights to a publication from a user or role.

B.70.4 Usage in Replica

This statement is not available in a replica database.

B.70.5 Example

REVOKE REFRESH ON customers_by_area FROM joe_smith;
REVOKE REFRESH ON customers_by_area FROM all_salesmen;

B.70.6 Return Values

Table B.40. REVOKE REFRESH Return Values

DescriptionError Code

Illegal grant/revoke mode13137

No grant option privilege13048

Publication name not found25010

369

B.70.1 Supported in

B.71 ROLLBACK WORK

ROLLBACK WORK

B.71.1 Usage

The changes made in the database by the current transaction are discarded by the ROLLBACK WORK
statement. It terminates the transaction.

B.71.2 Example

ROLLBACK WORK;

B.72 SAVE

SAVE [NO CHECK] [{ IGNORE_ERRORS | LOG_ERRORS | FAIL_ERRORS }]
[{ AUTOSAVE | AUTOSAVEONLY }] sql_statement

B.72.1 Supported in

This command requires solidDB SmartFlow.

B.72.2 Usage

The statements of a transaction that need to be propagated to the master database must be explicitly saved to
the transaction queue of the replica database. Adding a SAVE statement before the transaction statements
does this.

Only master users are allowed to save statements. This is because when the saved statements are executed on
the master, they must be executed using the appropriate access rights of a user on the master. The saved
statements are executed in the master database using the access rights of the master user that was active in
the replica when the statement was saved. If a user in the replica was mapped to a user in the master, the
SAVE statement uses the access rights of the user in the master.

The default behavior for error handling with transaction propagation is that a failed transaction halts execution
of the message; this aborts the currently-executing transaction and prevents execution of any subsequent
transactions that are in that same message. However, you may choose a different error-handling behavior.

370

B.71 ROLLBACK WORK

The options for the SAVE command are explained below:

NO CHECK: This option means that the statement is not prepared in the replica. This option is useful if the
command would not make sense on the replica. For example, if the SQL command calls a stored procedure
that exists on the master but not on the replica, then you don't want the replica to try to prepare the statement.
If you use this option, then the statement can not have parameter markers.

IGNORE_ERRORS: This option means that if a statement fails while executing on the master, then the failed
statement is ignored and the transaction is aborted. However, only the transaction, not the entire message, is
aborted. The master continues executing the message, resuming with the first transaction after the failed one.

LOG_ERRORS: This means that if a statement failed while executing on the master, then the failed statement
is ignored and the current transaction is aborted. The failed transaction's statements are saved in
SYS_SYNC_RECEIVED_STMTS system table for later execution or investigation. The failed transactions
can be examined using SYNC_FAILED_MESSAGES system view and they can be re-executed from there
using MESSAGE <msg_id> FROM REPLICA <replica_name> RESTART -statement.

Note that, as with the IGNORE_ERROR option, aborting the transaction does not abort the entire message.
The master continues executing the message, resuming with the first transaction after the failed one.

FAIL_ERRORS: This option means that if a statement fails, the master stops executing the message. This is
the default behavior.

AUTOSAVE: This option means that the statement is executed in the master and automatically saved for
further propagation if the master is also a replica to some other master (i.e. a middle-tier node)

AUTOSAVEONLY: This option means that the statement is NOT executed in the master but instead is
automatically saved for further propagation if the master is also a replica to some other master (i.e. is a middle-
tier node)

B.72.3 Usage in Master

This statement cannot be used in the master.

B.72.4 Usage in Replica

Use this statement in the replica to save statements for propagation to the master.

B.72.5 Example

SAVE INSERT INTO mytbl (col1, col2) VALUES ('calvin', 'hobbes')

371

B.72.3 Usage in Master

SAVE CALL SP_UPDATE_MYTBL('calvin_1', 'hobbes')
SAVE CALL SP_DELETE_MYTBL('calvin')
SAVE NO CHECK IGNORE_ERRORS insert into mytab values(1,2)

B.72.6 Return Values

For details on each error code, see the appendix titled Error Codes in solidDB Administration Guide.

Table B.41. SAVE Return Values

DescriptionError Code

Internal error25001

Master database has exceeded the database size limit required to save the statement.

Cannot save SAVE statements25003

Statement can be saved only for one master in transaction.25070

B.73 SAVE PROPERTY

SAVE PROPERTY property_name VALUE 'value_string'
SAVE PROPERTY property_name VALUE NONE
SAVE DEFAULT PROPERTY property_name VALUE 'value_string'
SAVE DEFAULT PROPERTY property_name VALUE NONE
SAVE DEFAULT PROPAGATE PROPERTY WHERE name {=|<|<=|>|>=|<>}'value'
SAVE DEFAULT PROPAGATE PROPERTY NONE

B.73.1 Supported in

This command requires solidDB SmartFlow.

B.73.2 Usage

It is possible to assign properties to the current active transaction with the following command:

SAVE PROPERTY property_name VALUE 'value_string'

The statements of the transaction in the master database can access these properties by calling the
GET_PARAM() function. Properties are only available in the replica database that apply to the command

372

B.72.6 Return Values

MESSAGE APPEND unique_message_name PROPAGATE TRANSACTIONS
WHERE property > 'value_string'

When the transaction is executed in the master database, the saved properties are placed on the parameter
bulletin board of the transaction. If the saved property already exists, the new value overwrites the previous
one.

It is also possible to define default properties that are saved to all transactions of the current connection. The
statement for this is:

SAVE DEFAULT PROPERTY property_name VALUE 'value_string'

A SAVE DEFAULT PROPAGATE PROPERTY WHERE statement can be used to save default transaction
propagation criteria. This can be used for example to set the propagation priority of transactions created in
the current connection.

SAVE DEFAULT PROPAGATE PROPERTY WHERE property > 'value' can be used in a connection
level to append all MESSAGE unique_message_name APPEND PROPAGATE TRANSACTIONS
statements to have the default WHERE statement. If the WHERE statement is entered also in the PROPAGATE
statement, it will override the statement set with the DEFAULT PROPAGATE PROPERTY.

A property or a default property can be removed by re-saving the property with value string NONE.

B.73.3 Usage in Master

This statement cannot be used in the master database.

B.73.4 Usage in Replica

You can use these statements in the replica to set properties for a transaction that is saved for propagation to
the master. The property's value can be read in the master database.

B.73.5 Differences between "PUT_PARAM()" and "SAVE PROP-
ERTY property_name VALUE property_value;"

See the description of the PUT_PARAM() function for a discussion of the differences between "SAVE
PROPERTY" and "PUT_PARAM()".

373

B.73.3 Usage in Master

B.73.6 Example

SAVE PROPERTY conflict_rule VALUE 'override'
SAVE DEFAULT PROPERTY userid VALUE 'scott'
SAVE DEFAULT PROPERTY userid VALUE NONE
SAVE DEFAULT PROPAGATE PROPERTY WHERE priority > '2'

B.73.7 Return Values

For details on each error code, see the appendix titled Error Codes in solidDB Administration Guide.

Table B.42. SAVE PROPERTY Return Values

DescriptionError Code

Invalid data type in a parameter.13086

B.73.8 Result set

SAVE PROPERTY does not return a result set.

B.74 SELECT

SELECT [ALL | DISTINCT] select-list
 LEVEL
 FROM table_reference_list
 [WHERE search_condition]
 [GROUP BY column_name [, column_name]...]
 [HAVING search_condition]
 [hierarchical_condition]
 [[UNION | INTERSECT | EXCEPT] [ALL] select_statement]...
 [ORDER BY expression]
 [ASC | DESC]]
 [LIMIT row_count [OFFSET skipped_rows] | LIMIT skipped_rows,row_count]
hierarchical_condition ::=
START WITH search_condition CONNECT BY [PRIOR] search_condition

374

B.73.6 Example

B.74.1 Usage

The SELECT statement allows you to select 0 or more records from one or more tables.

The non-standard clause LIMIT row_count OFFSET skipped_rows allows to mask out a portion of a
result set with a sliding window having the size of row_count and positioned at the skipped_rows+1
row. A negative value of skipped_rows results in an error, while the negative value of row_count results
in the whole result set produced. Note that two forms are available: for example LIMIT 24 OFFSET 10
is equal to LIMIT 10, 24.

If your table contains hierarchical data, you can select rows in a hierarchical order using a hierarchical query
clause. In a hierarchical query clause, START WITH specifies the root row(s) of the hierarchy and CONNECT
BY specifies the relationship between parent rows and child rows of the hierarchy. The CONNECT BY con-
dition cannot contain a subquery.

LEVEL is a pseudocolumn valid in the context of the hierarchical query only. If the result set is viewed as a
tree of interreferenced rows, the LEVEL column produces the tree level number, assigning "1" to the top-
level row.

ORDER SIBLINGS BY causes the rows at any level to be ordered accordingly.

In a hierarchical query, one expression in the condition must be qualified with the PRIOR operator to refer
to the parent row. PRIOR is a unary operator and has the same precedence as the unary + and - arithmetic
operators. It evaluates the immediately following expression for the parent row of the current row in a hier-
archical query. PRIOR is most commonly used when comparing column values with the equality operator.
The PRIOR keyword can be on either side of the operator.

B.74.2 Examples

SELECT ID FROM TEST;
SELECT DISTINCT ID, C FROM TEST WHERE ID = 5;
SELECT DISTINCT ID FROM TEST ORDER BY ID ASC;
SELECT NAME, ADDRESS FROM CUSTOMERS
UNION
SELECT NAME, DEP FROM PERSONNEL;
SELECT dept, count(*) FROM person
GROUP BY dept
ORDER BY dept
LIMIT 20 OFFSET 10

375

B.74.1 Usage

B.74.3 START WITH Example

SELECT last_name, employee_id, manager_id, LEVEL
 FROM employees
 START WITH employee_id = 100
 CONNECT BY PRIOR employee_id = manager_id
 ORDER SIBLINGS BY last_name;

LAST_NAME EMPLOYEE_ID MANAGER_ID
------------------------- ----------- ----------
King 100
Cambrault 148 100
Bates 172 148
Bloom 169 148
Fox 170 148
Kumar 173 148
Ozer 168 148
Smith 171 148
De Haan 102 100
Hunold 103 102
Austin 105 103
Ernst 104 103
Lorentz 107 103
Pataballa 106 103
Errazuriz 147 100
Ande 166 147
Banda 167 147

B.74.4 LEVEL and ORDER SIBLINGS BY Example

SELECT last_name, employee_id, manager_id, LEVEL
 FROM employees
 START WITH last_name = 'King'
 CONNECT BY PRIOR employee_id = manager_id
 ORDER SIBLINGS BY last_name
 ORDER BY LEVEL;

LAST_NAME EMPLOYEE_ID MANAGER_ID LEVEL

376

B.74.3 START WITH Example

--------- ----------- ---------- -----
King 100 NULL 1
Cambrault 148 100 2
De Haan 102 100 2
Bates 172 148 3
Bloom 169 148 3
Gates 104 148 3
Hunold 103 102 3
Hope 202 172 4
Smith 201 172 4

B.75 SET

B.75.1 Usage

SET commands apply to the user session (connection) in which they are executed. They do not affect other
user sessions.

SET statements may be issued at any time; however, they do not all take effect immediately. The following
statements take effect immediately:

• SET CATALOG

• SET IDLE TIMEOUT

• SET SCHEMA

• SET STATEMENT MAXTIME

The following statements take effect after the next COMMIT WORK:

• SET DURABILITY

• SET OPTIMISTIC LOCK TIMEOUT

• SET LOCK TIMEOUT

• SET ISOLATION LEVEL

• SET { READ ONLY | READ WRITE | WRITE}

377

B.75 SET

SET statements are not subject to rollback, i.e. they remain in force even if the transaction they have been
issued in has been aborted or rolled back. It is a good practice to issue them before any DDL/DML SQL
statement in a transaction.

The settings continue in effect until the end of the session (connection) or until another SET command changes
the settings, or in some cases until a higher-precedence command (e.g. SET TRANSACTION) is executed.

B.75.2 Differences between SET and SET TRANSACTION

solidDB SQL gives you two different commands to set the transaction isolation level, the read level, and the
durability level. In addition to the SET command described in this section

SET { READ ONLY | READ WRITE | WRITE};
SET ISOLATION LEVEL {READ COMMITTED...};
SET DURABILITY ...;

there is also the SET TRANSACTION command described in Section B.75.13, “SET TRANSACTION”.

SET TRANSACTION { READ ONLY | READ WRITE | WRITE};
SET TRANSACTION ISOLATION LEVEL {READ COMMITTED ...};
SET TRANSACTION DURABILITY ...;

For information about the differences between these commands, see Section B.75.2, “Differences between
SET and SET TRANSACTION”.

Example B.1. SET Examples

SET CATALOG myCatalog;
SET DURABILITY STRICT;
SET IDLE TIMEOUT 30;
SET ISOLATION LEVEL REPEATABLE READ;
SET OPTIMISTIC LOCK TIMEOUT 30;
SET LOCK TIMEOUT 30;
SET LOCK TIMEOUT 500MS;
SET READ ONLY;
SET SCHEMA 'accounting_info';
SET SCHEMA 'john_smith';
SET STATEMENT MAXTIME 180;

378

B.75.2 Differences between SET and SET TRANSACTION

B.75.3 SET (Read/Write Level)

SET {READ ONLY | READ WRITE | WRITE}

SET {READ ONLY | READ WRITE | WRITE} allows you to specify whether the connection be allowed
only to read, read and write, or whether it be allowed to write only.

See also Section B.75.6, “SET ISOLATION LEVEL”.

B.75.4 SET CATALOG

SET CATALOG catalog_name

SET CATALOG sets the current catalog context in a conection.

B.75.5 SET DURABILITY

SET DURABILITY { RELAXED | STRICT | DEFAULT}

SET DURABILITY sets the transaction durability level. For details about the possible settings, see the discus-
sion of "Logging and Transaction Durability" in solidDB Administration Guide.

B.75.6 SET ISOLATION LEVEL

SET ISOLATION LEVEL {
 READ COMMITTED |
 REPEATABLE READ |
 SERIALIZABLE }

SET ISOLATION LEVEL allows you to specify the isolation level. For more information about isolation
levels, see Section 6.2.6, “TRANSACTION ISOLATION Levels”.

If the assigned workload server is Secondary, it can be changed programmatically to the Primary. At the session
level, the following statements change the workload connection server to the Primary:

SET WRITE (nonstandard)

379

B.75.3 SET (Read/Write Level)

SET ISOLATION LEVEL REPEATABLE READ
SET ISOLATION LEVEL SERIALIZABLE

The statement takes effect immediately, if it is a first statement of a transaction, or from the next transaction
otherwise.

If the above statement is not applicable, it returns SQL_SUCCESS, with no action performed. For example,
such is a the case when SET WRITE is applied to a standalone server. In that case the semantics of SET
WRITE is equal to that of SET READ WRITE.

The effect of the SET WRITE statement may be reverted with the statement SET READ WRITE or ... READ
ONLY (SQL:1999). Also, the isolation level statement has the same effect:

SET ISOLATION LEVEL READ COMMITTED

B.75.7 SET SAFENESS

SET SAFENESS {1SAFE | 2SAFE | DEFAULT}

SET SAFENESS determines whether the replication protocol is synchronous (2-safe) or asynchronous (1-
safe).

• 1-safe: the transaction is first committed at Primary and then transmitted to Secondary

• 2-safe: the transaction is not committed before it has been acknowledged by Secondary (default).

SET SAFENESS sets the safeness level for the current session.

B.75.8 SET SCHEMA

SET SCHEMA {'schema_name' | USER | 'user_name'}

Usage

solidDB supports SQL89 style schemas. Schemas are used to help uniquely identify entities (tables, views,
etc.) within a database. By using schemas, each user may create entities without worrying about whether her
names overlap the names chosen by other users/schemas.

To uniquely identify an entity (such as a table), you "qualify" it by specifying the catalog name and schema
name. Below is an example of a fully-qualified table name:

380

B.75.7 SET SAFENESS

FinanceCatalog.AccounstReceivableSchema.CustomersTable

In keeping with the ANSI SQL-92 standard, the user_name or schema_name may be enclosed in single quotes.

The default schema can be changed with the SET SCHEMA statement. The schema can be changed to the
current user name by using the SET SCHEMA USER statement. Alternatively, the schema can be set to
'user_name' which must be a valid user name in the database.

The algorithm to resolve entity names [schema_name.]table_identifier is the following:

1. If schema_name is given, then table_identifier is searched only from that schema.

2. If schema_name is not given, then

a. First table_identifier is searched from default schema. Default schema is initially the same
as user name, but can be changed with SET SCHEMA statement

b. Then table_identifier is searched from all schemas in the database. If more than one entity
with same identifier and type (table, stored procedure, ...) is found, a new error code 13110
(Ambiguous entity name table_identifier) is returned.

The SET SCHEMA statement affects only the default entity name resolution and it does not change any access
rights to database entities. It sets the default schema name for unqualified names in statements that are prepared
in the current session by an EXECDIRECT statement or a prepare statement.

Example

SET SCHEMA 'CUSTOMERS';

See Also

Catalogs are also used to quality (uniquely identify) the names of tables and other database entities, so you
may also want to read about the SET CATALOG command.

B.75.9 SET SQL

SET SQL INFO {ON | OFF} [FILE {file_name | "{file_name" | '{file_name'}]
 [LEVEL info_level]
SET SQL SORTARRAYSIZE {array-size | DEFAULT}
SET SQL JOINPATHSPAN {

381

B.75.9 SET SQL

path-span
 | DEFAULT}
SET SQL CONVERTORSTOUNIONS
 {YES [COUNT
value
] | NO | DEFAULT}

Usage

All the settings are read per user session (unlike the settings in the solid.ini file, which are automatically
read each time solidDB is started).

SET SQL INFO The SET SQL INFO command allows you to turn on trace information that may allow you
to debug problems or tune queries. For SQL INFO, the default file is a global soltrace.out shared by
all users. If the file name is given, all future INFO ON settings will use that file unless a new file is set. It is
recommended that the file name is given in single quotes, because otherwise the file name is converted to
uppercase. The info output is appended to the file and the file is never truncated, so after the info file is not
needed anymore, the user must manually delete the file. If the file open fails, the info output is silently discarded.

The default SQL INFO LEVEL is 4. A good way to generate useful info output is to set info on with a new
file name and then execute the SQL statement using EXPLAIN PLAN FOR syntax. This method gives all
necessary estimator information but does not generate output from the fetches (which may generate a huge
output file).

SET SQL SORTARRAYSIZE This command sets the size of the array that SQL uses when ordering the
result set of a query. The units are "rows" — e.g. if you specify a value of 1000, then the server will create
an array big enough to sort 1000 rows.

SET SQL JOINPATHSPAN This command is obsolete. The syntax is accepted, but the command has no effect.

SET SQL CONVERTORSTOUNIONS allows you to convert a query that contains "OR" operations into an
equivalent query that uses "UNION" operations. The following operations are logically equivalent:

select ... where x = 1 OR y = 1;
select ... where x = 1 UNION select... where y = 1;

By setting CONVERTORSTOUNIONS, you tell the optimizer that it may use equivalent UNION operations
instead of OR operations if the UNIONs seem more efficient based on the volume and distribution of data.
The COUNT parameter in SQL CONVERTORSTOUNIONS ("Convert ORs to UNIONs") specifies the
maximum number of OR operations that may be converted to UNION operations. Note that you can also
specify CONVERTORSTOUNIONS by using the solid.ini configuration parameter named Conver-

382

B.75.9 SET SQL

tORsToUNIONs (for details, see the description of this parameter in solidDB Administration Guide). The
default value is 100, which should be enough in almost all cases.

Example

SET SQL INFO ON FILE 'sqlinfo.txt' LEVEL 5

B.75.10 SET STATEMENT MAXTIME

SET STATEMENT MAXTIME minutes

SET STATEMENT MAXTIME sets connection-specific maximum execution time in minutes. The setting
is effective until a new maximum time is set. Zero time means no maximum time, which is also the default.

B.75.11 SET SYNC

The following chapters describe different SET SYNC commands.

B.75.11.1 SET SYNC master_or_replica

SET SYNC master_or_replica yes_or_no

where:

master_or_replica ::= MASTER | REPLICA
yes_or_no ::= YES | NO

Supported in

This command requires solidDB SmartFlow.

Usage

When a database catalog is created and configured for synchronization use, you must use this command to
specify whether the database is a master, replica, or both. Only a DBA or a user with SYS_SYNC_AD-
MIN_ROLE can set the database role.

383

B.75.10 SET STATEMENT MAXTIME

The database catalog is a master database if there are replicas in the domain that refresh from publications
from this database and/or propagate transactions to it. The database catalog is a replica catalog if it can refresh
from publications that are in a master database. In multi-tier synchronization, intermediate level databases
serve a dual role, as both master and replica databases.

Note that to use this command requires that you have already set the node name for the master or replica using
the SET SYNC NODE command. For details, read Section B.75.11.4, “SET SYNC NODE”.

When you set the database for a dual role, you can use the statement once or twice. For example:

SET SYNC MASTER YES;
SET SYNC REPLICA YES;

Note that when you set the database for dual roles, SET SYNC REPLICA YES does not override SET SYNC
MASTER YES. Only the following explicit statement can override the status of the master database:

SET SYNC MASTER NO;

Once overridden, the current database is set as replica only.

Examples

-- configure as replica
SET SYNC REPLICA YES;
-- configure as master
SET SYNC MASTER YES;

Return Values

For details on each error code, see the appendix titled Error Codes in solidDB Administration Guide.

Table B.43. SET SYNC Return Values

DescriptionError code

No privilege for operation13047

Illegal set operation13107

Not a valid license for this product13133

Unfinished messages found25051

384

B.75.11 SET SYNC

B.75.11.2 SET SYNC CONNECT

SET SYNC CONNECT 'connect_string [,connect_string]' TO MASTER
master_name
SET SYNC CONNECT 'connect_string' TO REPLICA replica_name

Supported in

This command requires solidDB SmartFlow.

Usage

This statement changes the network name associated with the database name. Use this statement in a replica
(or master) whenever you have changed network names in databases that a replica (or master) connects to.
Network names are defined in the Listen parameter of the solid.ini configuration file.

The second connect string in SET SYNC CONNECT ... TO MASTER facilitates transparent failover of a
Replica server to a standby Master server, should the Primary Master server fail. The order of the connect
strings is not significant. The connection is automatically maintained to the currently active Primary server.

Usage in Master

Use this statement in a master to change the replica's network name.

Usage in Replica

Use this statement in a replica to change the master's network name.

Example

SET SYNC CONNECT 'tcp server.company.com 1313' TO MASTER hq_master;

Return Values

For details on each error code, see the appendix titled Error Codes in solidDB Administration Guide.

Table B.44. SET SYNC CONNECT Return Values

DescriptionError code

No privilege for operation13047

385

B.75.11 SET SYNC

DescriptionError code

Illegal set operation13107

Illegal network protocol21300

Master master_name not found25007

Database is not a replica database25019

B.75.11.3 SET SYNC MODE

SET SYNC MODE { MAINTENANCE | NORMAL }

Supported in

This command requires solidDB SmartFlow.

Usage

This command sets the current catalog's sync mode to either Maintenance mode or Normal mode.

This command applies only to catalogs that are involved in synchronization (i.e. are "master" catalogs or
"replica" catalogs, or are both master and replica in a hierarchy with 3 or more levels).

This command applies only to the current catalog. If you want to set more than one catalog's sync mode to
Maintenance, then you will have to switch to each catalog (by using the SET CATALOG command) and then
issue the SET SYNC MODE MAINTENANCE command for that catalog.

While a catalog's sync mode is Maintenance, the following rules apply:

• The catalog will not send or receive synchronization messages and therefore will not engage in synchron-
ization activities (e.g. refresh or respond to a refresh request).

• DDL commands (e.g. ALTER TABLE) will be allowed on tables that are referenced by publications.

• When the sync mode changes, the server will send the system event SYNC_MAINTENANCEMODE_BE-
GIN or SYNC_MAINTENANCEMODE_END.

• If the master catalog's publications are altered (dropped and recreated) by using the REPLACE option,
then the publication's metadata (internal publication definition data) is refreshed automatically to each
replica the next time that replica refreshes from the changed publication. (This is true whether or not the
database was in Maintenance sync mode when the publication was REPLACEd.)

386

B.75.11 SET SYNC

• Each catalog has a read-only parameter named SYNC_MODE in the parameter bulletin board so that ap-
plications can check the catalog's mode. Values for that parameter are either 'MAINTENANCE' if the
catalog is in maintenance sync mode or 'NORMAL' if the catalog is not in maintenance sync mode. The
value is NULL if the catalog is not a master or a replica.

• The user must have DBA or synchronization administrations privileges to set sync mode to Maintenance
or Normal.

• A user may have more than one catalog in Maintenance sync mode at a time.

• If the session that set the mode ON disconnects, then mode is set off.

• The normal synchronization history operations are disabled. For example, when a delete or update operation
is done on a table that has synchronization history on, the synchronization history tables will not store the
"original" rows (i.e. the rows before they were deleted or updated). Note, however, that deletes and updates
apply to the synchronization history table; e.g.

DELETE * FROM T WHERE c = 5

will delete rows from the history table as well as from the base table. The table below shows how various
operations (INSERT, DELETE, etc.) apply to the synchronization history tables in master and replica
when sync mode is set to Maintenance.

Table B.45. How Different Operations Apply to Synchronization History Tables

ReplicaMasterOperation

Rows are inserted to base table and
marked as official.

Rows are inserted to base table.INSERT

Both base table and history is up-
dated. Tentative/official status is not

Both base table and history is up-
dated.

UPDATE

updated so tentative rows remains
tentative and official rows remains
official.

Rows are deleted from base table and
from history.

Rows are deleted from base table
and from history.

DELETE

Same operation is done to history
also.

Same operation is done to history
also.

Add, alter, drop column

History mode is not alteredHistory mode is not alteredAltering table mode

387

B.75.11 SET SYNC

ReplicaMasterOperation

Same index is created to history alsoSame index is created to history
also

Create index

Triggers are not created on historyTriggers are not created on historyCreate triggers

Example

SET SYNC MODE MAINTENANCE SET SYNC MODE NORMAL

Return Values

For details on each error code, see the appendix titled Error Codes in solidDB Administration Guide.

Table B.46. SET SYNC MODE Return Values

DescriptionError code

No privilege for operation.13047

Not a valid license for this product.13133

Database is not master or replica database. This operation only applies to master and
replica databases.

25021

Catalog already in maintenance mode. You have set the mode on already.25088

Not allowed to set maintenance mode off. Someone else has set the mode on so you
can not set it off.

25089

Catalog is already in maintenance mode. Someone else has set the mode on so you can
not set it on.

25090

Catalog is not in maintenance mode. You tried to set mode off and it is not currently
on.

25091

B.75.11.4 SET SYNC NODE

SET SYNC NODE {unique_node_name | NONE}

Supported in

This command requires solidDB SmartFlow.

388

B.75.11 SET SYNC

Usage

Assigning the node name is part of the registration process of a replica database. Each catalog of a solidDB
environment must have a node name that is unique within the domain. One catalog can have only one node
name. Two catalogs cannot have the same node name.

You can use the SET SYNC NODE unique_node_name option to rename a node name if:

• If the node is a replica database and it is not registered to a master

and/or

• If the node is a master database and there are no replicas registered in the master database

Following are examples for renaming a node name:

SET SYNC NODE A; -- Now the node name is A.
SET SYNC NODE B; -- Now the node name is B.
COMMIT WORK;
SET SYNC NODE C; -- Now the node name is C.
ROLLBACK WORK; -- Now the node name is rolled back to B.
SET SYNC NODE NONE; -- Now the node has no name.
COMMIT WORK;

The unique_node_name must conform to the rules that are used for naming other objects (such as tables)
in the database. Do not put single quotes around the node name.

If you specify NONE, then this command will remove the current node name.

If you want to use a reserved word, such as "NONE", as a node name, then you must put the keyword in
double quote marks to ensure that it is treated as a delimited identifier. For example:

SET SYNC NODE "NONE"; -- Now the node name is "NONE"

You can verify the node name assignment with the following statement:

SELECT GET_PARAM('SYNC NODE')

The SET SYNC NODE NONE option removes the node name from the current catalog. This option is used
when you are dropping a synchronized database and removing its registration.

389

B.75.11 SET SYNC

Note

When using the SET SYNC NODE NONE option, be sure the catalog associated with the node name
is not defined as a master, replica, or both. To remove the node name, the catalog must be defined as
SET SYNC MASTER NO and/or SET SYNC REPLICA NO. If you do try to set the node name to
NONE on a master and/or replica catalog, solidDB returns error message 25082.

Usage in Master

Use this statement in the master to set or remove the node name from the current catalog.

Usage in Replica

Use this statement in the replica to set or remove the node name from the current catalog.

Example

SET SYNC NODE SalesmanJones;

Return Values

For details on each error code, see the appendix titled Error Codes in solidDB Administration Guide.

Table B.47. SET SYNC NODE Return Values

DescriptionError code

No privilege for operation13047

Illegal set operation13107

After registration nodename cannot be changed25059

Node name can not be removed if node is master or replica.25082

B.75.11.5 SET SYNC PARAMETER

SET SYNC PARAMETER parameter_name 'value_as_string';
SET SYNC PARAMETER parameter_name NONE;

390

B.75.11 SET SYNC

Supported in

This command requires solidDB SmartFlow.

Usage

This statement defines persistent catalog-level parameters that are visible via the parameter bulletin board to
all transactions that are executed in that catalog. Each catalog has a different set of parameters.

If the parameter already exists, the new value overwrites the previous one. An existing parameter can be deleted
by setting its value to NONE. All parameters are stored in the SYS_BULLETIN_BOARD system table.

These parameters are not propagated to the master.

In addition to system specific-parameters, you can also store in the system table a number of system parameters
that configure the synchronization functionality. Available system parameters are listed at the end of the SQL
reference.

Usage in Master

Use the SET SYNC PARAMETER in the master for setting database parameters.

Usage in Replica

Use the SET SYNC PARAMETER in replicas for setting database parameters.

Example

SET SYNC PARAMETER db_type 'REPLICA'
SET SYNC PARAMETER db_type NONE

Return Values

For details on each error code, see the appendix titled Error Codes in solidDB Administration Guide.

Table B.48. SET SYNC PARAMETER Return Values

DescriptionError Code

Invalid data type in a parameter13086

391

B.75.11 SET SYNC

See Also

GET_PARAM

PUT_PARAM

B.75.11.6 SET SYNC PROPERTY

Syntax in Master:

SET SYNC PROPERTY <propertyname> = { 'value' | NONE } FOR REPLICA
<replicaname>

Syntax in Replica:

SAVE SET SYNC PROPERTY <propertyname> = {'value' | NONE }

Supported in

This command requires solidDB SmartFlow.

Usage

This command allows you to specify a property name and value for a replica. Replicas that have properties
may be grouped, and a group may be specified when using the START AFTER COMMIT statement. For
example, you might have some replicas that are related to the bicycle industry and others that are related to
the surfboard industry, and you may want to update each of those groups of replicas separately. You can use
Property Names to group these replicas. All members of a group have the same property and have the same
value for that property.

For more information, see the section titled "Replica Property Names" in solidDB SmartFlow Data Replication
Guide.

Examples

Master:

SET SYNC PROPERTY color = 'red' FOR REPLICA replica1;
SET SYNC PROPERTY color = NONE FOR REPLICA replica1;

392

B.75.11 SET SYNC

Replica:

SAVE SET SYNC PROPERTY color = 'red';
SAVE SET SYNC PROPERTY color = NONE;

B.75.11.7 SET SYNC USER

SET SYNC USER master_username IDENTIFIED BY password
SET SYNC USER NONE

Supported in

This command requires solidDB SmartFlow.

Usage

This statement is used to define the username and password for the registration process when the replica
database is being registered in the master database. To use this command, you are required to have
SYS_SYNC_ADMIN_ROLE access.

Note

The SET SYNC USER statement is used for replica registration only. Aside from registration, all
other synchronization operations require a valid master user ID in a replica database. If you want to
designate a different master user for a replica, you must map the replica ID on the replica database
with the master ID on the master database. For details, read the section titled "Mapping Replica User
ID With Master User ID" in solidDB SmartFlow Data Replication Guide.

You define the registration username in the master database. The name you specify must have sufficient rights
to execute the replica registration tasks. You can provide registration rights for a master user in the master
database by designating the user with the SYS_SYNC_REGISTER_ROLE or the SYS_SYNC_ADMIN_ROLE
using the GRANT rolename TO user statement.

After the registration has been successfully completed, you must reset the sync user to NONE; otherwise, if
a master user saves statements, propagates messages, or refreshes from or registers to publications, the following
error message is returned:

User definition not allowed for this operation.

393

B.75.11 SET SYNC

Usage in Master

This statement is not available in the master database.

Usage in Replica

Use this statement in the replica to set the user name.

Example

SET SYNC USER homer IDENTIFIED BY marge;
SET SYNC USER NONE;

B.75.12 SET TIMEOUT

SET IDLE TIMEOUT { timeout_in_seconds |
timout_in_millisecondsMS | DEFAULT }

SET LOCK TIMEOUT { timeout_in_seconds |
timeout_in_millisecondsMS}

SET OPTIMISTIC LOCK TIMEOUT { timeout_in_seconds |
timeout_in_millisecondsMS}

SET IDLE TIMEOUT sets the connection-specific maximum timeout in seconds. The setting is effective
until a new timeout is given. If the timeout is set to DEFAULT, it means no maximum time.

SET LOCK TIMEOUT sets the time in seconds that the engine waits for a lock to be released. By default,
lock timeout is set to 30 seconds. The maximum lock timeout is 1000 seconds. SET LOCK TIMEOUT of
more than 1000 seconds fails.

By default, the granularity is in seconds. The lock timeout can be set at millisecond granularity by adding
"MS" after the value, e.g.

SET LOCK TIMEOUT 500MS;
SET LOCK TIMEOUT 1500 MS;

Spacing of the "MS" is not significant, and you may use upper or lower case. Without the "MS", the lock
timeout will be in seconds. When the timeout interval is reached, solidDB terminates the timed-out statement.
For more information, see the section called “Setting Lock Timeout”.

394

B.75.12 SET TIMEOUT

B.75.13 SET TRANSACTION

B.75.13.1 Usage

The settings apply only to the current transaction.

B.75.13.2 Background Information on Transaction Logging and Durability

The server uses transaction logging to ensure that it can recover data in the event of an abnormal shutdown.
"Strict" durability means that as soon as a transaction is committed, the server writes the information to the
transaction log file. "Relaxed" durability means that the server may not write the information as soon as the
transaction is committed; instead, the server may wait, for example, until it is less busy, or until it can write
multiple transactions in a single write operation. If you use relaxed durability, then if the server shuts down
abnormally, you may lose a few of the most recent transactions. For more information about durability, see
solidDB In-Memory Database User Guide.

If the SET TRANSACTION DURABILITY statement matches the level of durability already set for the
session, the statement has no effect, and status "SUCCESS" is returned.

B.75.13.3 Differences between SET and SET TRANSACTION

solidDB SQL gives you two different commands to set the transaction isolation level, the read level, and the
transaction durability level. In addition to the SET TRANSACTION command described in this section:

SET TRANSACTION { READ ONLY | READ WRITE | WRITE}
SET TRANSACTION ISOLATION LEVEL {READ COMMITTED ...}
SET TRANSACTION DURABILITY ...;

there are also the SET commands described in Section B.75, “SET”.

SET { READ ONLY | READ WRITE | WRITE}
SET ISOLATION LEVEL {READ COMMITTED ...}
SET DURABILITY ...;

The commands that have the "TRANSACTION" keyword are called transaction-level commands, while the
commands that do not have the "TRANSACTION" keyword are sometimes called session-level commands.

The transaction-level commands follow different rules from the session-level commands. These differences
are listed below.

395

B.75.13 SET TRANSACTION

• The transaction-level commands take effect in the transaction in which they are issued; the session-level
commands take effect in the next transaction, i.e. after the next COMMIT WORK.

• The transaction-level commands apply to only the current transaction; the session-level commands apply
to all subsequent transactions — i.e. until the end of the session (connection) or until another SET command
changes them.

• The transaction-level commands must be executed at the beginning of a transaction, i.e. before any DML
or DDL statements. (They may be executed after other SET statements, however.) If this rule is violated,
an error is returned. The session-level commands may be executed at any point in a transaction.

• The transaction-level commands take precedence over the session-level commands. However, the trans-
action-level commands apply only to the current transaction. After the current transaction is finished, the
settings will return to the value set by the most recent previous SET command (if any). For example:

COMMIT WORK; -- Finish previous transaction;
SET ISOLATION LEVEL SERIALIZABLE;
COMMIT WORK;
-- Isolation level is now SERIALIZABLE
...
COMMIT WORK;
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;
-- Isolation level is now REPEATABLE READ because
-- transaction-level settings take precedence
-- over session-level settings.
COMMIT WORK;
-- Isolation level is now back to SERIALIZABLE, since the
-- transaction-level settings applied only to that
-- transaction.

The complete precedence hierarchy for isolation level and read level settings is below. Items closer to the top
of the list have higher precedence.

1. SET TRANSACTION... (i.e. transaction-level settings)

2. SET ... (session-level settings)

3. The server-level settings specified by the value in solid.ini configuration parameter (e.g. Isola-
tionLevel or DurabilityLevel (there is no solid.ini parameter for the READ ONLY /
READ WRITE setting)). You may change these settings by editing the solid.ini file, or by issuing
a command like the following:

396

B.75.13 SET TRANSACTION

ADMIN COMMAND 'parameter Logging.DurabilityLevel = 2';

Note that if you change the solid.ini parameter, the new setting will not take effect until the next
time that the server starts.

4. The server's default (REPEATABLE READ, STRICT, or READ WRITE).

B.75.13.4 Warnings Regarding Durability

• Unless you can afford to lose some transactions if the server is shut down unexpectedly, you should use
strict durability.

• There is no "DEFAULT" option to set the value to whatever value the DurabilityLevel parameter
has specified. Also, there is no way to read the durability level that applies to the current session. Therefore,
once you have explicitly set the durability by executing the SET DURABILITY statement, you cannot
restore the "default" durability level specified by the DurabilityLevel parameter. You can, of course,
switch from RELAXED to STRICT durability and back whenever you wish, but you cannot "undo" your
change and restore the default level without actually knowing what that default level was.

Caution

The behavior of the SET TRANSACTION command changed in solidDB Version 4.0. In previous
solidDB product versions, the SET TRANSACTION command applied to all subsequent transactions,
rather than to the current transaction. If you want to keep the Section B.75, “SET”) or you may set
the solid.ini configuration parameter SetTransCompatibility3 (see solidDB Administration
Guide for a description of this parameter).

The SET TRANSACTION command is based on ANSI SQL. However, the solidDB implementation has
some differences from the ANSI definition. The ANSI definition allows the two ANSI-defined "clauses"
(isolation level and read level) to be combined, e.g.:

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE, READ WRITE;

solidDB does not support this syntax. solidDB does, however, support multiple SET statements in a single
transaction, e.g.:

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
SET TRANSACTION READ WRITE;

397

B.75.13 SET TRANSACTION

B.75.13.5 SET TRANSACTION Examples

SET TRANSACTION DURABILITY RELAXED;
SET TRANSACTION ISOLATION REPEATABLE READ;
SET TRANSACTION READ WRITE;

B.75.13.6 See Also

Section B.75, “SET”.

Section 6.2.6, “TRANSACTION ISOLATION Levels”.

"Logging and Transaction Durability" in solidDB Administration Guide

B.75.13.7 SET TRANSACTION (Read/Write Level)

SET TRANSACTION {READ ONLY | READ WRITE | WRITE}

The command SET TRANSACTION { READ ONLY | READ WRITE | WRITE} is based on ANSI SQL.
It allows the user to specify whether the transaction is allowed to make any changes to data.

B.75.13.8 SET TRANSACTION DURABILITY

SET TRANSACTION DURABILITY {RELAXED | STRICT}

The command SET TRANSACTION DURABILITY { RELAXED | STRICT } controls whether the server
uses "strict" or "relaxed" durability for transaction logging. This command is a solidDB extension to SQL; it
is not part of the ANSI standard.

Your choice will not affect any other user, any other open session that you yourself currently have, or any
future session that you may have. Each user session may set its own durability level, based on how important
it is for the session not to lose any data.

Note that if the new transaction durability setting is STRICT, then any previous transactions that have not yet
been written to disk will be written at the time that the current transaction is committed. (Note that those
transactions are not written to disk as soon as the transaction durability level is changed to STRICT; the writes
wait until the current transaction is committed.)

398

B.75.13 SET TRANSACTION

If the assigned workload server is Secondary, it can be changed programmatically to the Primary for the time
of one transaction. At the transaction level, the following statements change the workload connection server
to Primary for the time of one transaction:

SET TRANSACTION WRITE (nonstandard)
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

The affected transaction is the one that is started with the statement, or the next one, in other cases. After the
transaction has been executed at the Primary, the workload connection server is reverted to the default one,
for the session.

If the above statement is not applicable, it returns SQL_SUCCESS, with no action performed. For example,
such is a the case when SET TRANSACTION WRITE is applied to a standalone server. In that case the se-
mantics of SET TRANSACTION WRITE is equal to that of SET TRANSACTION READ WRITE.

The effect of the SET TRANSACTION WRITE statement may be reverted with the statement SET
TRANSACTION READ WRITE or ... READ ONLY (SQL:1999). Also, the isolation level statement has the
same effect:

SET TRANSACTION ISOLATION LEVEL READ COMMITTED

B.75.13.9 SET TRANSACTION ISOLATION LEVEL

SET TRANSACTION ISOLATION LEVEL {
 READ COMMITTED |
 REPEATABLE READ |
 SERIALIZABLE}

The command SET TRANSACTION ISOLATION is based on ANSI SQL. It sets the transaction isolation
level (READ COMMITTED, REPEATABLE READ, or SERIALIZABLE) and the read level (READ ONLY
or READ WRITE). For more information about isolation levels, see Section 6.2.6, “TRANSACTION
ISOLATION Levels”.

B.75.13.10 SET TRANSACTION SAFENESS

SET TRANSACTION SAFENESS {1SAFE | 2SAFE | DEFAULT}

399

B.75.13 SET TRANSACTION

SET TRANSACTION SAFENESS determines whether the replication protocol is synchronous (2-safe) or
asynchronous (1-safe).

• 1-safe: the transaction is first committed at Primary and then transmitted to Secondary

• 2-safe: the transaction is not committed before it has been acknowledged by Secondary (default).

SET TRANSACTION SAFENESS sets the safeness level for the current transaction.

B.76 START AFTER COMMIT

START AFTER COMMIT
 [FOR EACH REPLICA WHERE search_condition [RETRY retry_spec]]
{UNIQUE | NONUNIQUE} stmt;

stmt ::= any SQL statement.
search_condition ::= search_item | search_item {AND|OR } search_item
search_item ::= {search_test | (search_condition)}
search_test ::= comparison_test | like_test
comparison_test ::= property_name { = | >> | > | >= | > | >= } value
property_name ::= name of a replica property
like_test ::= property_name [NOT] LIKE value [ESCAPE value]
value ::= literal
retry_spec ::= seconds,count

B.76.1 Usage

The START AFTER COMMIT statement specifies an SQL statement (such as a call to a stored procedure)
that will be executed when the current transaction commits. (If the transaction is rolled back, then the specified
SQL statement will not be executed.)

The START AFTER COMMIT statement returns a result set with one INTEGER column. This integer is a
unique "job" id and can be used to query the status of a statement that failed to start due to an invalid SQL
statement, insufficient access rights, replica not available etc.

If you use the UNIQUE keyword before the <stmt> then that the statement will be executed only if there isn't
already an identical statement executing or "pending". Statements are compared using simple string compare.
For example 'call foo(1)' is different from 'call foo(2)'. The server also takes into account whether the statement
already being executed (or pending for execution) is on the same replica or a different replica; only identical
statements on the same replica are discarded.

400

B.76 START AFTER COMMIT

Important

Remember that when duplicate statements are discarded by using the UNIQUE keyword, the most
recent statements are the ones thrown out, and the oldest one is the one that keeps running. It is quite
possible to create a situation where you do multiple updates, for example, and you trigger multiple
START AFTER COMMIT operations, but only the oldest one executes and thus the newest updated
data may not get sent to the replicas immediately.

NONUNIQUE means that duplicate statements can be executed simultaneously in the background.

FOR EACH REPLICA specifies that the statement is executed for each replica that fulfills the property con-
ditions given in the search_condition part of the WHERE clause. Before executing the statement, a connection
to the replica is established. If a procedure call is started, then the procedure can get the "current" replica name
using the keyword "DEFAULT".

If RETRY is specified, then the operation is re-executed after N seconds (defined by seconds in the retry_spec)
if the replica is not reached on the first attempt. The count specifies how many times a retry is attempted.

See Chapter 4, Stored Procedures, Events, Triggers, and Sequences for a more detailed description of the
START AFTER COMMIT command.

B.76.2 Transactions

A statement started in the background using START AFTER COMMIT is executed in a separate transaction.
That transaction is executed in autocommit mode, i.e. it cannot be rolled back once it has started.

B.76.3 Context of the Background Statements

Statements started in the background are executed in the context of the user who issued the START AFTER
COMMIT statement, and are executed in the catalog and schema in which the START AFTER COMMIT
statement executed.

In the example below, 'CALL FOO' is executed in the catalog 'katmandu' and the schema 'steinbeck'.

SET CATALOG katmandu;
SET SCHEMA steinbeck;
START AFTER COMMIT UNIQUE CALL FOO;
COMMIT WORK;
SET CATALOG irrelevant_catalog;
SET SCHEMA irrelevant_schema

401

B.76.2 Transactions

B.76.4 Durability

Background statements are NOT durable. In other words, the execution of statements started with START
AFTER COMMIT is not guaranteed.

B.76.5 Rollback

Background statements cannot be rolled back after they have been started. So after a statement that has been
started with START AFTER COMMIT has executed successfully, there is no way to roll it back.

The START AFTER COMMIT statement itself can of course be rolled back, and this will prevent the specified
statement from executing. For example,

START AFTER COMMIT UNIQUE INSERT INTO MyTable VALUES (1);
ROLLBACK;

In the example above, the transaction rolls back and thus "INSERT INTO MyTable VALUES (1)" will not
be executed.

B.76.6 Order of Execution

Background statements are executed asynchronously and they don't have any guaranteed order even inside a
transaction.

B.76.7 Examples

Start local procedure in the background.

START AFTER COMMIT NONUNIQUE CALL myproc;

Start the call if "CALL myproc" is not running in the background already.

START AFTER COMMIT UNIQUE call myproc;

Start procedure in the background using replicas which have property "color" = "blue".

START AFTER COMMIT FOR EACH REPLICA WHERE color='blue' UNIQUE CALL myproc;

402

B.76.4 Durability

The following statements are all considered different and therefore each is executed, despite the presence of
the keyword UNIQUE. (Note that "name" is a unique property of each replica.)

START AFTER COMMIT UNIQUE call myproc;
START AFTER COMMIT FOR EACH REPLICA WHERE name='R1' UNIQUE call myproc;
START AFTER COMMIT FOR EACH REPLICA WHERE name='R2' UNIQUE call myproc;
START AFTER COMMIT FOR EACH REPLICA WHERE name='R3' UNIQUE call myproc;

But if the following statement is executed in the same transaction as the previous ones and the condition
"color='blue'" matches some of the replicas R1, R2 or R3, then the call is not executed for those replicas again.

START AFTER COMMIT FOR EACH REPLICA WHERE color='blue' UNIQUE call myproc;

For additional examples, see Chapter 4, Stored Procedures, Events, Triggers, and Sequences.

B.77 TRUNCATE TABLE

TRUNCATE TABLE tablename

B.77.1 Usage

This statement is, from the caller's point of view, semantically equivalent to "DELETE FROM tablename".
However, it is much more efficient thanks to relaxed isolation. During the execution of this statement, the
defined isolation level is not maintained in concurrent transactions. The effect of removing the rows will be
immediately seen in all concurrent transactions. Therefore this statement is recommended for maintenance
purposes only.

B.78 UNLOCK TABLE

UNLOCK TABLE { ALL | tablename [,tablename]}
tablename ::= The name of the table to unlock

The keyword ALL releases all table-level locks on all tables.

You can also specify the catalog and schema of the table by qualifying the table name.

403

B.77 TRUNCATE TABLE

B.78.1 Usage

This command allows you to unlock tables that you manually locked (using the LOCK TABLE command)
with the LONG option. The LONG option allows you to hold a lock past the end of the transaction in which
the lock was placed. Since there is no natural endpoint for the lock (other than the end of the transaction), you
must explicitly release a LONG lock by using the UNLOCK command.

The UNLOCK TABLE command does not apply to the server's automatic locks, or to manual locks that were
not locked with the LONG option. If a lock is automatic, or if it is manual and not LONG, then the server
will automatically release the lock at the end of the transaction in which the lock was placed. Thus there is
no need to manually unlock those locks.

When the UNLOCK TABLE command is used, it does not take effect immediately; instead, the locks are
released when the current transaction is committed.

Caution

If the current transaction (the one in which the UNLOCK TABLE command was executed) is not
committed (e.g. if it is rolled back), then the tables are not unlocked; they will remain locked until
another UNLOCK TABLE command is successfully executed and committed.

The LOCK/UNLOCK commands apply only to tables. There is no command to manually lock or unlock in-
dividual records.

Note that if you have a table named "ALL", then you should use the delimited identifier feature to specify the
table name. (See the examples at the end of this section.)

B.78.2 Examples of Using LOCK and UNLOCK

LOCK TABLE emp IN SHARED MODE;
LOCK TABLE emp IN SHARED MODE TABLE dept IN EXCLUSIVE MODE;
LOCK TABLE emp,dept IN SHARED MODE NOWAIT;

-- Get an exclusive lock that will persist past the end of the current
-- transaction. If you can't get an exclusive lock immediately, then
-- wait up to 60 seconds to get it.
LOCK TABLE emp, dept IN LONG EXCLUSIVE MODE WAIT 60;
-- Make the schema changes (or do whatever you needed the exclusive
-- lock for).
CALL DO_SCHEMA_CHANGES_1;
COMMIT WORK;

404

B.78.1 Usage

CALL DO_SCHEMA_CHANGES_2;
UNLOCK TABLE ALL; -- at the end of this transaction, release locks.
...
COMMIT WORK;
...
UNLOCK TABLE “ALL”; -- Unlock the table named “ALL”.

B.78.3 Return Values

For details on each error code, see the appendix titled Error Codes in solidDB Administration Guide.

Table B.49. LOCK TABLE Return Values

DescriptionError code

Table <table_name> not locked.10083

Table <tablename> not found.13011

B.78.4 See Also

LOCK TABLE

SET SYNC MODE { MAINTENANCE | NORMAL }

B.79 UNREGISTER EVENT
The UNREGISTER EVENT command is allowed only inside stored procedures. See the CREATE PROCED-
URE statement and the CREATE EVENT statement for more details.

B.80 UPDATE (Positioned)

UPDATE table_name
 SET [table_name.]column_identifier = {expression | NULL}
 [, [table_name.]column_identifier = {expression | NULL}]...
 WHERE CURRENT OF cursor_name

B.80.1 Usage

The positioned UPDATE statement updates the current row of the cursor. The name of the cursor is defined
using ODBC API function named SQLSetCursorName.

405

B.78.3 Return Values

B.80.2 Example

UPDATE TEST SET C = 0.33
WHERE CURRENT OF MYCURSOR

B.81 UPDATE (Searched)

UPDATE table-name
 SET [table_name.]column_identifier = {expression | NULL}
 [, [table_name.]column_identifier = {expression | NULL}]...
 [WHERE search_condition]

B.81.1 Usage

The UPDATE statement is used to modify the values of one or more columns in one or more rows, according
the search conditions.

B.81.2 Example

UPDATE TEST SET C = 0.44
WHERE ID = 5

B.82 WAIT EVENT
The WAIT EVENT command is allowed only inside stored procedures. See the CREATE PROCEDURE and
CREATE EVENT statements for more details.

B.83 Table_reference

Table B.50. Table_reference

Table_reference

::= table_reference [, table-reference ...]
table_refer-
ence_list

406

B.80.2 Example

Table_reference

::= table_name [[AS] correlation_name] |
table_reference

derived_table [[AS] correlation_name
[(derived_column_list)]] | joined_table

::= table_identifier | schema_name.table_identifier
table_name

::= subquery
derived_table

::= column_name_list
de-
rived_column_list

::= cross_join | qualified_join | (joined_table)
joined_table

::= table_reference CROSS JOIN table_reference
cross_join

::= table_reference [NATURAL] [join_type] JOIN
qualified_join

table_reference [join_specification]

::= INNER | outer_join_type [OUTER] | UNION
join_type

::= LEFT | RIGHT | FULL
outer_join_type

407

B.83 Table_reference

Table_reference

::= join_condition | named_columns_join
join_specification

::= ON search_condition
join_condition

::= USING (column_name_list)
named_columns_join

::= column_identifier [{ , column_identifier } ...]
column_name_list

B.84 Query_specification

Table B.51. Query_specification

Query_specification

::= SELECT [DISTINCT | ALL] select_list
query_specifica-
tion

table_expression

::= * | select_sublist
select_list

[{, select_sublist } ...]

::= derived_column |
select_sublist

[table_name | table_identifier].*

408

B.84 Query_specification

Query_specification

::= expression [[AS] column_alias]]
derived_column

::= FROM table_reference_list
table_expression

[WHERE search_condition]
[GROUP BY column_name_list
[[UNION | INTERSECT | EXCEPT] [ALL]
[CORRESPONDING [BY (column_name_list)]]
query_specification]
[HAVING search_condition]

B.85 Search_condition

Table B.52. Search_condition

Search_condition

::= search_item | search_item { AND | OR }
search_condition

search_item

::= [NOT] { search_test |
search_item

(search_condition)}

::= comparison_test | between_test |
search_test

like_test | null_test | set_test |
quantified_test | existence_test

409

B.85 Search_condition

Search_condition

::= expression { = | <> | < | <= | > | >= }
comparison_test

{ expression | subquery }

Note: Spaces on each side of the operator are optional.

::= column_identifier [NOT] BETWEEN
between_test

expression AND expression

::= column_identifier [NOT] LIKE value [ESCAPE value]
like_test

::= column_identifier IS [NOT] NULL
null_test

::= expression [NOT] IN ({ value
set_test

[, value]... | subquery })

::= expression { = | <> | < | <= | > | >= }
quantified_test

[ALL | ANY | SOME] subquery

::= EXISTS subquery
existence_test

410

B.85 Search_condition

B.86 Check_condition

Table B.53. Check_condition

Check_condition

::= check_item | check_item { AND | OR }
check_condition

check_item

::= [NOT] { check_test |
check_item

(check_condition) }

::= comparison_test | between_test |
check_test

like_test | null_test | list_test

::= expression { = | <> | < | <= | > | >= }
{ expression | subquery }

comparison_test

::= column_identifier [NOT] BETWEEN
between_test

expression AND expression

::= column_identifier [NOT] LIKE value
like_test

[ESCAPE value]

::= column_identifier IS [NOT] NULL
null_test

411

B.86 Check_condition

Check_condition

::= expression [NOT] IN ({ value
list_test

[, value]...})

B.87 Expression

Table B.54. Expression

Expression

::= expression_item | expression_item
expression

{ + | - | * | / } expression_item

Note: Spaces on each side of the operator are optional.

::= [+ | -] { value | column_identifier | function |
expression_item

case_expression | cast_expression | (expression) }

::= literal | USER | variable
value

::= set_function | null_function | string_function |
function

numeric_function |
datetime_function | system_function |
datatypeconversion_function

NOTE: The string, numeric, datetime, and datatypeconversion functions are
scalar functions, in which an operation denoted by a function name is followed
by a pair of parenthesis enclosing zero or more specified arguments. Each scalar
function returns a single value.

412

B.87 Expression

Expression

::= COUNT (*) |
set_function

{ AVG | MAX | MIN | SUM | COUNT }
({ ALL | DISTINCT } expression)

::= { NULLVAL_CHAR() | NULLVAL_INT() }
null_function

::= CONVERT_CHAR(value_exp) |
datatypeconver-
sion_function

CONVERT_DATE(value_exp) |
CONVERT_DECIMAL(value_exp) |
CONVERT_DOUBLE(value_exp) |
CONVERT_FLOAT(value_exp) |
CONVERT_INTEGER(value_exp) |
CONVERT_LONGVARCHAR(value_exp) |
CONVERT_NUMERIC(value_exp) |
CONVERT_REAL(value_exp) |
CONVERT_SMALLINT(value_exp) |
CONVERT_TIME(value_exp) |
CONVERT_TIMESTAMP(value_exp) |
CONVERT_TINYINT(value_exp) |
CONVERT_VARCHAR(value_exp)

Note: These functions are used to implement the {fn CONVERT(value,
odbc_typename)} escape clauses defined by ODBC. The preferred way,
however, is to use CAST(valueAS sql_typename) which is defined in
SQL-92 and fully supported by solidDB. For details, see Appendix F of solidDB
Programmer Guide.

::= case_abbreviation | case_specification
case_expression

::= NULLIF(value_exp, value_exp) |
case_abbreviation

413

B.87 Expression

Expression

COALESCE(value_exp {, value_exp }...)

The NULLIF function returns NULL if the first parameter is equal to the second
parameter; otherwise, it returns the first parameter. It is equivalent to IF (p1 =
p2) THEN RETURN NULL ELSE RETURN p1; The NULLIF function is
useful if you have a special value that serves as a flag to indicate NULL. You
can use NULLIF to convert that special value to NULL. In other words, it be-
haves like IF (p1 = NullFlag) THEN RETURN NULL ELSE RETURN p1;

COALESCE returns the first non-NULL argument. The list of arguments may
be of almost any length. All arguments should be of the same (or compatible)
data types.

case_specification

::= CASE [value_exp]
WHEN value_exp
THEN {value_exp }
[WHEN value_exp
THEN { value_exp } ...]
[ELSE { value_exp }]
END

::= CAST (value_exp AS -data-type)
cast_expression

A row value constructor (RVC) is an ordered sequence of values delimited by
parentheses, for example:

row value con-
structor expres-
sion

(1, 4, 9)

('Smith', 'Lisa')

You can think of this as constructing a row based on a series of elements/values,
just like a row of a table is composed of a series of fields.

414

B.87 Expression

Expression

For more information about row value constructors, see Section 3.5.5, “Row
Value Constructors”.

B.88 String Functions

Table B.55. String Functions

PurposeFunction

Returns the integer equivalent of string strASCII(str)

Returns the character equivalent of codeCHAR(code)

Concatenates str2 to str1CONCAT(str1, str2)

Concatenates str2 to str1.str1 { + | || } str2

For example:

SELECT str1 + str2, col1 ...

SELECT str1 || str2, col1 ...

This function generates a unique string, based on a
"prefix" (the input string, which may be any string you

GET_UNIQUE_STRING(str)

choose) and a sequence number (which is created and
used internally). If the input is NULL, then the func-
tion still returns a string based on the unique sequence
number.

Merges strings by deleting length characters from
str1 and inserting str2

INSERT(str1, start, length, str2)

Converts string str to lowercaseLCASE(str)

Returns leftmost count characters of string strLEFT(str, count)

Returns the number of characters in strLENGTH(str)

Returns the starting position of str1 within str2.
If the optional argument, start, is specified, the

LOCATE(str1, str2 [, start])

search begins with the character position indicated by
the value of start. If string_exp1 is not found within
string_exp2, the function returns 0. For both the return
value and the input parameter start, string positions
are numbered starting from 1 (not 0).

415

B.88 String Functions

PurposeFunction

Removes leading spaces of strLTRIM(str)

Returns starting position of str1 within str2POSITION (str1 IN str2)

Returns characters of str repeated count timesREPEAT(str, count)

Replaces occurrences of str2 in str1 with str3REPLACE(str1, str2, str3)

Returns the rightmost count characters of string strRIGHT(str, count)

Removes trailing spaces in strRTRIM(str)

Calculate 4-character soundex (phonetic) codeSOUNDEX(str)

Returns a string of count spacesSPACE(count)

Derives substring length bytes long from str be-
ginning at start. For example, if str="First Second

SUBSTRING(str, start, length)

Third", then SUBSTRING(str, 7, 6) would return
"Second".

Note that string positions are numbered starting from
1 (not 0).

Removes leading and trailing spaces in strTRIM(str)

Converts str to uppercaseUCASE(str)

If you are using wildcard characters in your string operations, then see also Section B.96, “Wildcard Characters”.

B.89 Numeric Functions

Table B.56. Numeric Functions

PurposeFunction

Absolute value of numericABS(numeric)

Arccosine of float, where float is expressed in
radians

ACOS(float)

Arcsine of float, where float is expressed in radi-
ans

ASIN(float)

Arctangent of float, where float is expressed in
radians

ATAN(float)

416

B.89 Numeric Functions

PurposeFunction

Arctangent of the x and y coordinates, specified by
float1 and float2, respectively, as an angle, ex-
pressed in radians

ATAN2(float1, float2)

Smallest integer greater than or equal to numericCEILING(numeric)

Cosine of float, where float is expressed in radi-
ans

COS(float)

Cotangent of float, where float is expressed in
radians

COT(float)

Converts numeric radians to degreesDEGREES(numeric)

Return the value of phonetic difference: 0 - 4DIFFERENCE(str1, str2)

Exponential value of floatEXP(float)

Largest integer less than or equal to numericFLOOR(numeric)

Natural logarithm of floatLOG(float)

Base 10 log of floatLOG10(float)

Modulus of integer1 divided by integer2MOD(integer1, integer2)

Pi as a floating point numberPI()

Value of numeric raised to the power of integerPOWER(numeric, integer)

Converts from numeric degrees to radiansRADIANS(numeric)

Numeric rounded to integerROUND(numeric, integer)

Sign of numericSIGN(numeric)

Sine of float, where float is expressed in radiansSIN(float)

Square root of floatSQRT(float)

Tangent of float, where float is expressed in ra-
dians

TAN(float)

Numeric truncated to integerTRUNCATE(numeric, integer)

B.90 Date Time Functions

Table B.57. Date Time Functions

PurposeFunction

Returns the current dateCURDATE()

417

B.90 Date Time Functions

PurposeFunction

Returns the current timeCURTIME()

Returns a string with the day of the weekDAYNAME(date)

Returns the day of the month as an integer between 1
and 31

DAYOFMONTH(date)

Returns the day of the week as an integer between 1
and 7, where 1 represents Sunday

DAYOFWEEK(date)

Returns the day of the year as an integer between 1
and 366

DAYOFYEAR(date)

Isolates a single field of a datetime or a interval and
converts it to a number.

EXTRACT (date field FROM date_exp)

Returns the hour as an integer between 0 and 23HOUR(time_exp)

Returns the minute as an integer between 0 and 59MINUTE(time_exp)

Returns the month as an integer between 1 and 12MONTH(date)

Returns the month name as a stringMONTHNAME(date)

Returns the current date and time as a timestampNOW()

Returns the quarter as an integer between 1 and 4QUARTER(date)

Returns the second as an integer between 0 and 59SECOND(time_exp)

Calculates a timestamp by adding integer_exp
intervals of type interval to timestamp_exp

TIMESTAMPADD(interval, integer_exp,
timestamp_exp)

Keywords used to express valid TIMESTAMPADD
interval values are:

SQL_TSI_FRAC_SECOND

SQL_TSI_SECOND

SQL_TSI_MINUTE

SQL_TSI_HOUR

SQL_TSI_DAY

SQL_TSI_WEEK

SQL_TSI_MONTH

418

B.90 Date Time Functions

PurposeFunction

SQL_TSI_QUARTER

SQL_TSI_YEAR

Returns the integer number of intervals by which
timestamp-exp2 is greater than timestamp-
exp1

TIMESTAMPDIFF(interval, timestamp-exp1,
timestamp-exp2)

Keywords used to express valid TIMESTAMPDIFF
interval values are:

SQL_TSI_FRAC_SECOND

SQL_TSI_SECOND

SQL_TSI_MINUTE

SQL_TSI_HOUR

SQL_TSI_DAY

SQL_TSI_WEEK

SQL_TSI_MONTH

SQL_TSI_QUARTER

SQL_TSI_YEAR

Returns the week of the year as an integer between 1
and 52

WEEK(date)

Returns the year as an integerYEAR(date)

B.91 System Functions
The system functions return special information about the solidDB database.

Table B.58. System Functions

PurposeFunction

Returns the connection id associated with the connec-
tion

UIC()

419

B.91 System Functions

PurposeFunction

Returns the current user idCURRENT_USERID ()

Returns the login useridLOGIN_USERID ()

Returns the current catalogCURRENT_CATALOG ()

Returns the login catalogLOGIN_CATALOG ()

Returns the current schemaCURRENT_SCHEMA ()

Returns the login schemaLOGIN_SCHEMA ()

B.92 Miscellaneous Functions

Table B.59. Miscellaneous Functions

PurposeFunction

Returns the result of the bit-wise AND operation.BIT_AND(integer1, integer2)

If exp is null, returns value; if not, returns expIFNULL(exp, value)

(if value is returned, it is converetd to type of exp)

This can only be called from a stored procedure or a
trigger. This causes the stored procedure or trigger to

SLEEP(milliseconds)

"sleep" (temporarily suspend activity) for the specified
number of milliseconds. Resolution is accurate to ap-
proximately 1 second (i.e. 1000 milliseconds). The
exact length of the sleep also depends upon how busy
the computer is with other processes and threads. The
value must be a literal, not a variable or expression.

B.93 Data_type

Table B.60. Data_type

Data_type

::= {BIGINT |
data_type

BINARY |
BLOB |
CHAR [length] |

420

B.92 Miscellaneous Functions

Data_type

CHARACTER LARGE OBJECT |
CHAR LARGE OBJECT |
CLOB |
DATE |
DECIMAL [(precision [, scale])] |
DOUBLE PRECISION |
FLOAT [(precision)] |
INTEGER |
LONG NATIONAL VARCHAR |
LONG VARBINARY |
LONG VARCHAR |
LONG WVARCHAR |
NCHAR LARGE OBJECT |
NUMERIC [(precision [, scale])] |
NATIONAL CHAR |
NATIONAL CHARACTER |
NATIONAL VARCHAR |
NCHAR |
NCHAR VARYING |
NCLOB |
NVARCHAR |
REAL |
SMALLINT |
TIME |
TIMESTAMP [(timestamp precision)] |
TINYINT |
VARBINARY |
VARCHAR [(length)] } |
WCHAR |
WVARCHAR [length]

B.94 Date and Time Literals

Table B.61. Date and Time Literals

Date/time literal

'YYYY-MM-DD'date_literal

421

B.94 Date and Time Literals

Date/time literal

'HH:MM:SS'time_literal

'YYYY-MM-DD HH:MM:SS'timestamp_literal

B.95 Pseudo Columns
The following pseudo columns may also be used in the select-list of a SELECT statement:

Table B.62. Pseudo Columns

ExplanationTypePseudo column

Version of the row in a table.VARBINARY(10)ROWVER

Persistent id for a row in a table.VARBINARY(254)ROWID

Row number indicates the sequence
in which a row was selected from a

DECIMAL(16,2)ROWNUM

table or set of joined rows. The first
row selected has a ROWNUM of 1,
the second row has 2, etc.

Because ROWNUM is given to a
row before the order by clause is
evaluated, ROWNUM should not be
used to identify sorted rows.

ROWNUM is chiefly useful for
limiting the number of rows returned
by a query for example, WHERE
ROWNUM < 10).

Note

Since ROWID and ROWVER refer to a single row, they may only be used with queries that return
rows from a single table.

B.96 Wildcard Characters
The following may be used as wildcard characters in certain expressions, such as LIKE '<string>'.

422

B.95 Pseudo Columns

Table B.63. Wildcard Characters

ExplanationCharacter

The underscore character matches any single character.
For example, 'J_NE' matches 'JANE' and 'JUNE'.

_ (underscore)

The percent sign character matches any group of 0 or
more characters. For example 'ED%' matches 'ED-

% (percent sign)

WARD' and 'EDITOR'. As another example, '%ED%'
matches 'EDWARD', 'TEDDY', and 'FRED'.

B.96.1 Using SQL Wildcards

Exact match searches are conducted by specifying literal values, as in:

SELECT * FROM table1 WHERE name = 'SMITH';

The string 'SMITH' is a literal value.

Similar match searches are conducted by specifying a SQL wildcard that represents a character string that is
similar to another character string. Logical expressions (such as those used in WHERE clauses and CHECK
constraints) may use the "wildcard" characters and the keyword LIKE to match strings that are similar.

The underscore character (_) is a wildcard character that matches any single character. For example, the
following query:

SELECT * FROM table1 WHERE first_name LIKE 'J_NE';

returns both JANE and JUNE (as well as any other four-character name where the first letter is J and the last
two letters are NE).

The percent character (%) is a wildcard character that matches any occurrence of 0 or more characters. For
example, the following query:

SELECT * FROM table1 WHERE first_name LIKE 'JOHN%';

could return JOHN, JOHNNY, JOHNATHAN, etc.

The % wildcard is used most often at the end of strings, but it can be used anywhere. For example, the following
search pattern:

423

B.96.1 Using SQL Wildcards

LIKE '%JO%'

returns all people who have JO somewhere in their name, included but not limited to:

JOANNE, BILLY JO, and LONG JOHN SILVER

Multiple wildcards are allowed in a single string. For example, the string J_V_ matches JAVA and JIVE
and any other four-character words or names that start with J and have V as the third character. Note that
because the underscore (_) only matches exactly one character, the string J_V_ does not match the string
JOVIAL, which has more than four characters.

B.96.2 Wildcard Characters as Literals

A wildcard character may be used in one part of a string while the literal character % (percent) or underscore
(_) may be used in another part of the same string. To use a wildcard character as a literal, the wildcard
character is prefaced with an escape character; the escape character itself must be specified as part of the
query. For example, the expression below uses the backslash character (\) as the escape character:

LIKE 'MY_EXPRESSION_' ESCAPE '\';

matches the following:

MY_EXPRESSION1 MY_EXPRESSIONA MY_EXPRESSION_

but not:

MY#EXPRESSION1

ANSI standard SQL specifies that character strings must be delimited by single quotes. For example:

...LIKE ' J_N_'; -- CORRECT

...LIKE "J_N_"; --WRONG

Double quotes are used for delimited identifiers, not data. (C and Java programmers may find this confusing
because the C language uses double quotes to delimit strings as in "C-language string" and single quotes 'C'
to delimit single characters.

424

B.96.2 Wildcard Characters as Literals

Appendix C. Reserved Words
This appendix contains reserved words in several SQL standards: ODBC 3.0, X/Open and SQL Access Group
SQL CAE specification, Database Language - SQL: ANSI X3H2 (SQL-92). Some words are used by solidDB
SQL. Applications should avoid using any of these keywords for other purposes. The following table contains
also potential reserved words; these markings are enclosed in parenthesis.

Some of the reserved words in this appendix can be used as identifiers (such as table name, column name,
etc.) by surrounding the word in double quotes (""). Identifiers in double quote marks are known as delimited
identifiers and conform to the ANSI standard for SQL. In the following SQL statement example, the reserved
word "NULL" is used as a table name identifier:

CREATE TABLE "NULL" (column_1 INTEGER);

Note

solidDB SQL allows some reserved words to be used as identifiers even if those words are not in
double quotes. However, we strongly recommend that you use double quotes around any reserved
word that you want to use as an identifier; this will increase portability.

Table C.1. Reserved Words List

solidDB SQLANSI SQL-92X/Open SQLODBCReserved word

••ABSOLUTE

••ACTION

•ADA

••••ADD

•ADMIN

•(•)AFTER

(•)ALIAS

••••ALL

•••ALLOCATE

••••ALTER

••••AND

••••ANY

425

solidDB SQLANSI SQL-92X/Open SQLODBCReserved word

•APPEND

••ARE

••••AS

••••ASC

••ASSERTION

•(•)ASYNC

••AT

•••AUTHORIZATION

•••AVG

•(•)BEFORE

••••BEGIN

••••BETWEEN

•BINARY

••BIT

••BIT_LENGTH

•BOOKMARK

(•)BOOLEAN

••BOTH

(•)BREADTH

••••BY

•(•)CALL

••••CASCADE

•••CASCADED

•••CASE

•••CAST

•••CATALOG

••••CHAR

••CHAR_LENGTH

••••CHARACTER

426

solidDB SQLANSI SQL-92X/Open SQLODBCReserved word

••C H A R A C -
TER_LENGTH

••••CHECK

••••CLOSE

COALESCE

••COLLATE

••COLLATION

•••COLUMN

••••COMMIT

•COMMITBLOCK

•COMMITTED

(•)COMPLETION

••••CONNECT

•••CONNECTION

•••CONSTRAINT

••CONSTRAINTS

•••CONTINUE

••CONVERT

•••CORRESPONDING

•••COUNT

••••CREATE

•••CROSS

•••CURRENT

••CURRENT_DATE

••CURRENT_TIME

••C U R -
RENT_TIMESTAMP

••CURRENT_USER

••••CURSOR

(•)CYCLE

427

solidDB SQLANSI SQL-92X/Open SQLODBCReserved word

•(•)DATA

DATE

DAY

DEALLOCATE

••••DEC

••••DECIMAL

••••DECLARE

••••DEFAULT

••DEFERRABLE

••DEFERRED

••••DELETE

•DENSE

(•)DEPTH

••••DESC

•••DESCRIBE

•••DESCRIPTOR

•••DIAGNOSTICS

(•)DICTIONARY

•••DISCONNECT

••••DISTINCT

•••DOMAIN

••••DOUBLE

••••DROP

(•)EACH

•••ELSE

•(•)ELSEIF

•ENABLE

••••END

••END-EXEC

428

solidDB SQLANSI SQL-92X/Open SQLODBCReserved word

(•)EQUALS

•••ESCAPE

•EVENT

•••EXCEPT

EXCEPTION

••••EXEC

••••EXECUTE

••••EXISTS

•EXPLAIN

•EXPORT

•••EXTERNAL

•••EXTRACT

••FALSE

••••FETCH

••FIRST

•FIXED

••••FLOAT

••••FOR

••••FOREIGN

•FOREVER

•FORTRAN

•FORWARD

•••FOUND

••••FROM

•FROMFIXED

•••FULL

(•)GENERAL

••••GET

••GLOBAL

429

solidDB SQLANSI SQL-92X/Open SQLODBCReserved word

••GO

•••GOTO

••••GRANT

••••GROUP

••••HAVING

•HINT

••HOUR

•IDENTIFIED

••IDENTITY

•(•)IF

(•)•IGNORE

•••IMMEDIATE

•IMPORT

••••IN

••INCLUDE

•••INDEX

••INDICATOR

••INITIALLY

•••INNER

••INPUT

••INSENSITIVE

••••INSERT

••••INT

••••INTEGER

•INTERNAL

•••INTERSECT

••INTERVAL

••••INTO

••••IS

430

solidDB SQLANSI SQL-92X/Open SQLODBCReserved word

•••ISOLATION

•JAVA

•••JOIN

••••KEY

••LANGUAGE

••LAST

••LEADING

•(•)LEAVE

•••LEFT

(•)LESS

•••LEVEL

••••LIKE

(•)LIMIT

•••LOCAL

•LOCK

•LONG

•(•)LOOP

••LOWER

•MAINMEMORY

•MASTER

••MATCH

•••MAX

•MERGE

•MESSAGE

•••MIN

••MINUTE

•(•)MODIFY

••MODULE

••MONTH

431

solidDB SQLANSI SQL-92X/Open SQLODBCReserved word

••NAMES

••NATIONAL

•••NATURAL

••NCHAR

•(•)NEW

•••NEXT

•••NO

(•)•NONE

••••NOT

••••NULL

•••NULLIF

••••NUMERIC

(•)OBJECT

••OCTET_LENGTH

••••OF

OFF

(•)OID

•(•)OLD

••••ON

•••ONLY

•••OPEN

(•)OPERATION

(•)OPERATORS

•OPTIMISTIC

OPTION

•OR

ORDER

OTHERS

•OUTER

432

solidDB SQLANSI SQL-92X/Open SQLODBCReserved word

••OUTPUT

••OVERLAPS

(•)PARAMETERS

••PARTIAL

•PASCAL

(•)PENDANT

•PESSIMISTIC

•PLAN

•PLI

••POSITION

•POST

••••PRECISION

(•)PREORDER

PREPARE

PRESERVE

••••PRIMARY

••PRIOR

(•)PRIVATE

•••PRIVILEGES

•••PROCEDURE

•PROPAGATE

(•)PROTECTED

••••PUBLIC

•PUBLICATION

••READ

•••REAL

(•)RECURSIVE

(•)REF

••••REFERENCES

433

solidDB SQLANSI SQL-92X/Open SQLODBCReserved word

•(•)REFERENCING

•REFRESH

•REGISTER

••RELATIVE

•RENAME

•REPEATABLE

(•)REPLACE

•REPLICA

•REPLY

(•)RESIGNAL

•RESTART

••••RESTRICT

•RESULT

•(•)RETURN

•(•)RETURNS

•REVERSE

••••REVOKE

•••RIGHT

•(•)ROLE

••••ROLLBACK

(•)ROUTINE

(•)ROW

•ROWID

•ROWNUM

•ROWSPERMES-
SAGE

•ROWVER

••ROWS

•(•)SAVEPOINT

•SCAN

434

solidDB SQLANSI SQL-92X/Open SQLODBCReserved word

•••SCHEMA

••SCROLL

(•)SEARCH

••SECOND

•••SECTION

••••SELECT

(•)SENSITIVE

•(•)SEQUENCE

•SERIALIZABLE

••SESSION

••SESSION_USER

••••SET

(•)SIGNAL

(•)SIMILAR

••SIZE

••••SMALLINT

•••SOME

•SORT

•SPACE

••••SQL

••SQLCA

••SQLCODE

••••SQLERROR

(•)SQLEXCEPTION

SQLSTATE

(•)•SQLWARNING

•START

(•)STRUCTURE

•SUBSCRIBE

435

solidDB SQLANSI SQL-92X/Open SQLODBCReserved word

•SUBSCRIPTION

••SUBSTRING

•••SUM

•SYNC_CONFIG

•SYSTEM

•SYSTEM_USER

••••TABLE

••TEMPORARY

(•)TEST

•••THEN

(•)THERE

•••TIME

•TIMEOUT

•••TIMESTAMP

••TIMEZONE_HOUR

••TIMEZONE_MINUTE

•TINYINT

••••TO

•TRAILING

•••TRANSACTION

•TRANSACTIONS

••TRANSLATE

••TRANSLATION

•(•)TRIGGER

••TRIM

••TRUE

•TRUNCATE

(•)TYPE

(•)UNDER

436

solidDB SQLANSI SQL-92X/Open SQLODBCReserved word

••••UNION

••••UNIQUE

••UNKNOWN

•UNREGISTER

••••UPDATE

••UPPER

••USAGE

••••USER

••••USING

••••VALUE

••••VALUES

•VARBINARY

••••VARCHAR

(•)VARIABLE

•VARWCHAR

•••VARYING

••••VIEW

(•)VIRTUAL

(•)VISIBLE

•(•)WAIT

•WCHAR

•••WHEN

•••WHENEVER

••••WHERE

•(•)WHILE

••••WITH

(•)WITHOUT

••••WORK

••WRITE

437

solidDB SQLANSI SQL-92X/Open SQLODBCReserved word

•WVARCHAR

••YEAR

•ZONE

Note

CASCADED: The word CASCADED is reserved in solidDB; however, the word is not currently
used in any solidDB SQL statements.

438

Appendix D. Database System Tables
and System Views
D.1 System Tables

D.1.1 SQL_LANGUAGES

The SQL_LANGUAGES system table lists the SQL standards and SQL dialects which are supported.

Table D.1. SQL_LANGUAGES

DescriptionData typeColumn name

The organization that defined this
specific SQL version.

WVARCHARSOURCE

The year the relevant standard was
approved.

WVARCHARSOURCE_YEAR

The conformance level at which
conformance to the relevant stand-
ard.

WVARCHARCONFORMANCE

Indicates whether the Integrity En-
hancement Feature is supported.

WVARCHARINTEGRITY

Identifies uniquely the vendor's SQL
language; NULL if SOURCE is
'ISO'.

WVARCHARIMPLEMENTATION

The binding style 'DIRECT', *EM-
BED' or 'MODULE'.

WVARCHARBINDING_STYLE

The host language used.WVARCHARPROGRAMMING_LANG

D.1.2 SYS_ATTAUTH

Table D.2. SYS_ATTAUTH

DescriptionData typeColumn name

Table identifier.INTEGERREL_ID

439

DescriptionData typeColumn name

User or role identifier.INTEGERUR_ID

Column identifier.INTEGERATTR_ID

Privilege info.INTEGERPRIV

Grantor identifier.INTEGERGRANT_ID

Grant time.TIMESTAMPGRANT_TIM

D.1.3 SYS_BACKGROUNDJOB_INFO

If the body of a START AFTER COMMIT statement cannot be started, the reason is logged in the system
table SYS_BACKGROUNDJOB_INFO. Only failed START AFTER COMMIT statements are logged in
this table. If the statement (e.g. a procedure call) starts successfully, no information is stored in this system
table. Statements that start successfully but do not finish executing are not stored in this system table either.

The user can retrieve information from the table SYS_BACKGROUNDJOB_INFO by using either an SQL
SELECT statement or by calling a system procedure SYS_GETBACKGROUNDJOB_INFO. See Section D.1.3,
“SYS_BACKGROUNDJOB_INFO” for more details.

Also a system-defined event SYS_EVENT_SACFAILED is posted when a START AFTER COMMIT
statement fails to start. See its description Section F.1, “Miscellaneous Events” for more details. The application
can wait for this event and use the jobid to retrieve the error message from the system table SYS_BACK-
GROUNDJOB_INFO.

The system table SYS_BACKGROUNDJOB_INFO can be emptied with the admin command:

ADMIN COMMAND 'cleanbgjobinfo';

Only a DBA can execute the 'cleanbgjobinfo' command.

Table D.3. SYS_BACKGROUNDJOB_INFO

DescriptionData typeColumn name

Job identifier.INTEGERID

The statement that could not be ex-
ecuted.

WVARCHARSTMT

User or role identifier.INTEGERUSER_ID

The error that occurred when we
tried to execute the statement.

INTEGERERROR_CODE

440

D.1.3 SYS_BACKGROUNDJOB_INFO

DescriptionData typeColumn name

A description of the error.WVARCHARERROR_TEXT

D.1.4 SYS_BLOBS

This table includes information about the blobs stored into the database. Furthermore, this table sees to it that
the BLOB is physically saved on disk once only even if it is logically saved several times.

Table D.4. SYS_BLOBS

DescriptionData typeColumn name

Blob identifier.BIGINTID

Byte offset from the beginning of the blob — the start
position of the pages.

BIGINTSTARTPOS

Byte offset of the end of the last page +1.BIGINTENDSIZE

Total size of the blob.BIGINTTOTALSIZE

The number of references, that is, the number of existing
instances of the same blob.

INTEGERREFCOUNT

Indicates whether the write to the blob is ready or not.INTEGERCOMPLETE

Indicates on what checkpoint level the writing of the
blob started.

INTEGERSTARTCPNUM

The number of pages the blob consist of.INTEGERNUMPAGES

First page's byte offset from the beginning of the blob.INTEGERP01_ADDR

Last byte of the first page + 1.BIGINTP01_ENDSIZE

Byte offset of pages [2...50] from the beginning of the
blob.

INTEGERP[02...50]_ADDR

Last byte of the pages [2...50] +1.BIGINTP[02...50]_ENDSIZE

D.1.5 SYS_CARDINAL

The data in this table is refreshed within every checkpoint, not at another time.

Table D.5. SYS_CARDINAL

DescriptionData typeColumn name

The relation identifier as in SYS_TABLES.INTEGERREL_ID

441

D.1.4 SYS_BLOBS

DescriptionData typeColumn name

The number of rows in the table.INTEGERCARDIN

The size of the data in the table.INTEGERSIZE

The timestamp of the last update in the table.TIMESTAMPLAST_UPD

D.1.6 SYS_CATALOGS

The SYS_CATALOGS lists available catalogs.

Table D.6. SYS_CATALOGS

DescriptionData typeColumn name

Catalog identifier.INTEGERID

Catalog name.WVARCHARNAME

Create date and time.TIMESTAMPCREATIME

Creator name.WVARCHARCREATOR

D.1.7 SYS_CHECKSTRINGS

The SYS_CHECKSTRINGS lists CHECK constraints of the tables.

Table D.7. SYS_CHECKSTRINGS

DescriptionData typeColumn name

Table identifier referring to SYS_TABLES.INTEGERID

Name of the CHECK constraint (unique for the table)
or an empty string for unnamed constraints (one string

WVARCHARCONSTRAINT_NAME

for all unnamed CHECK constraints. They are AND-
concatenated).

The constraint string itself. It is checked by the SQL in-
terpreter while performing inserts/updates to the given
table.

WVARCHARCONSTRAINT

D.1.8 SYS_COLUMNS

This table lists all system table columns.

442

D.1.6 SYS_CATALOGS

There are no owner or user viewing restrictions for viewing the system columns, which means owners can
view columns other than those they have created in this table and users with no access rights or with specific
access rights can still view any system column in this table.

Table D.8. SYS_COLUMNS

DescriptionData typeColumn name

Unique column identifier.INTEGERID

The relation identifier as in
SYS_TABLES.

INTEGERREL_ID

The name of the column.WVARCHARCOLUMN_NAME

The number of the column in the
table (in creation order).

INTEGERCOLUMN_NUMBER

The data type of the column.WVARCHARDATA_TYPE

ODBC compliant data type number.SMALLINTSQL_DATA_TYPE_NUM

Internal data type number.INTEGERDATA_TYPE_NUMBER

Maximum length for a CHAR field.INTEGERCHAR_MAX_LENGTH

Numeric precision.INTEGERNUMERIC_PRECISION

Numeric precision radix.SMALLINTNUMERIC_PREC_RADIX

Numeric scale.SMALLINTNUMERIC_SCALE

Are NULL values allowed (Yes,
No).

CHARNULLABLE

ODBC, are NULL values allowed
(1,0).

SMALLINTNULLABLE_ODBC

Reserved for future use.WVARCHARFORMAT

Current default value (if set).WVARCHARDEFAULT_VAL

User defined (0) or internal (>0).INTEGERATTR_TYPE

Reserved for future use.LONG WVARCHARREMARKS

D.1.9 SYS_COLUMNS_AUX

If you insert a column with a default value to a table that has existing rows, the column default value is not
appended to the existing rows. Instead, the default value defined in the column insert statement is written to
the SYS_COLUMNS_AUX table. If an SQL query is targeted at a row that was inserted to the table before
the column, the column value is read from the SYS_COLUMNS_AUX table unless the new column value

443

D.1.9 SYS_COLUMNS_AUX

on the row has been changed after it was inserted. Only the original default value is saved in the
SYS_COLUMNS_AUX table.

Table D.9. SYS_COLUMNS_AUX

DescriptionData typeColumn name

Table identifier.INTEGERID

The original default value.WVARCHARORIGINAL_DEFAULT

D.1.10 SYS_DL_REPLICA_CONFIG

This table contains the diskless configurations in the master. This table is intended for updates only through
the soldlsetup command. Users should not modify this table directly. Doing so can have adverse repercussions.

Table D.10. SYS_DL_REPLICA_CONFIG

DescriptionData typeColumn name

The name of the diskless replica
configuration.

WVARCHAR (254)

PRIMARY KEY NOT NULL

CFG_NAME

The name of the replica configura-
tion file. The solid.ini file con-

LONG WVARCHARINI_FILE

tents are inserted into this column as
a blob.

The name of the replica license file.
The solid.lic file contents are inser-
ted into this column as a blob.

LONG WVARCHARLIC_FILE

The name of the replica schema. The
schema file contents are inserted into
this column as a blob.

LONG WVARCHARSCHEMA_FILE

D.1.11 SYS_DL_REPLICA_DEFAULT

This table contains the diskless default configurations in the master. This table is intended for updates only
through the soldlsetup command. Users should not modify this table directly. Doing so can have adverse re-
percussions.

444

D.1.10 SYS_DL_REPLICA_CONFIG

Table D.11. SYS_DL_REPLICA_DEFAULT

DescriptionData typeColumn name

The name of the replica.VARCHAR(254)REPLICA_NAME

NOT NULL PRIMARY KEY

The name of the replica configura-
tion file.

VARCHAR(254) REFERENCE

S Y S _ D L _ R E P L I C A _ C O N -
FIG(CFG_NAME)

INI_CFG

The name of the replica license file.VARCHAR(254) REFERENCELIC_CFG

S Y S _ D L _ R E P L I C A _ C O N -
FIG(CFG_NAME)

The name of the replica schema.VARCHAR(254) REFERENCESCHEMA_CFG

S Y S _ D L _ R E P L I C A _ C O N -
FIG(CFG_NAME)

D.1.12 SYS_EVENTS

Table D.12. SYS_EVENTS

DescriptionData typeColumn name

Unique event identifier.INTEGERID

The name of the event.WVARCHAREVENT_NAME

Number of parameters.INTEGEREVENT_PARAMCOUNT

Types of parameters.LONG VARBINARYEVENT_PARAMTYPES

The body of the event.WVARCHAREVENT_TEXT

The owner of the event.WVARCHAREVENT_SCHEMA

The owner of the event.WVARCHAREVENT_CATALOG

Creation time.TIMESTAMPCREATIME

Reserved for future use.INTEGERTYPE

445

D.1.12 SYS_EVENTS

D.1.13 SYS_FORKEYPARTS

Table D.13. SYS_FORKEYPARTS

DescriptionData typeColumn name

Creator name or the owner of the
key.

INTEGERKEY_CATALOG

Foreign key identifier.INTEGERID

Keypart number.INTEGERKEYP_NO

Column number.INTEGERATTR_NO

Column identifier.INTEGERATTR_ID

Column type.INTEGERATTR_TYPE

Possible internal constant value;
otherwise NULL.

VARBINARYCONST_VALUE

D.1.14 SYS_FORKEYS

Table D.14. SYS_FORKEYS

DescriptionData typeColumn name

Foreign key identifier.INTEGERID

Referenced table identifier.INTEGERREF_REL_ID

Creator table identifier.INTEGERCREATE_REL_ID

Referenced key identifier.INTEGERREF_KEY_ID

Reference type.INTEGERREF_TYPE

Creator name.WVARCHARKEY_SCHEMA

Creator name or the owner of the
key.

WVARCHARKEY_CATALOG

Number of referenced key parts.INTEGERKEY_NREF

D.1.15 SYS_HOTSTANDBY

Deprecated. Relevant to versions before 4.0.

446

D.1.13 SYS_FORKEYPARTS

D.1.16 SYS_INFO

Table D.15. SYS_INFO

DescriptionData typeColumn name

The name of the property.WVARCHARPROPERTY

Value as a string.WVARCHARVALUE_STR

Value as an integer.INTEGERVALUE_INT

D.1.17 SYS_KEYPARTS

Table D.16. SYS_KEYPARTS

DescriptionData typeColumn name

This column is a foreign key reference to sys_keys.id,
so that you can determine which key each keypart is part
of.

INTEGERID

The relation identifier as in SYS_TABLES.INTEGERREL_ID

Keypart identifier.INTEGERKEYP_NO

Column identifier.INTEGERATTR_ID

The number of the column in the table (in creation order).INTEGERATTR_NO

The type of the column.INTEGERATTR_TYPE

Constant value or NULL.VARBINARYCONST_VALUE

Is the key ascending (Yes) or descending (No).CHARASCENDING

D.1.18 SYS_KEYS

All database tables must have one clustering key. This key defines the physical sorting order of the data. It
has no capacity impact. If a primary key is defined, the primary key is used as the clustering key. If no primary
key is defined, an entry with key_name "$CLUSTKEY_xxxxx" will be automatically created in SYS_KEYS.

If there is a primary key definition for the table, there will be an entry in SYS_KEYS with a key_name like
"$PRIMARYKEY_xxxx" for this entry. The key_primary and key_clustering columns will have a value YES.

If there is no primary key definition for the table, there will be an entry in SYS_KEYS with a key_name like
"$CLUSTKEY_xxxxx". The key_primary column will have a value NO and key_clustering column will have
a value YES.

447

D.1.16 SYS_INFO

Table D.17. SYS_KEYS

DescriptionData typeColumn name

Unique key identifier.INTEGERID

The relation identifier as in
SYS_TABLES.

INTEGERREL_ID

The name of the key.WVARCHARKEY_NAME

Is the key unique (Yes, No).CHARKEY_UNIQUE

ODBC, is the key NOT unique (1,
0).

SMALLINTKEY_NONUNIQUE_ODBC

Is the key a clustering key (Yes, No).CHARKEY_CLUSTERING

Is the key a primary key (Yes, No).CHARKEY_PRIMARY

Reserved for future use.CHARKEY_PREJOINED

The owner of the key.WVARCHARKEY_SCHEMA

When creating a primary key, the
server uses ALL fields of the table,

INTEGERKEY_NREF

even if the user specified N fields
(the N fields specified by the user
become the first N fields of the key).
KEY_NREF = N, i.e. the number of
fields specified by the user.

D.1.19 SYS_PROCEDURES

This system table lists procedures.

Specific users are restricted from viewing procedures. Owners are restricted to viewing procedures they have
created. Users can only view procedures to which they have execute access to see the procedure definition.
If users have no access rights, they are restricted from viewing all procedures. Note that execute access does
not allow users to see procedure definitions. No restrictions apply to DBAs.

Table D.18. SYS_PROCEDURES

DescriptionData typeColumn name

Unique procedure identifier.INTEGERID

Procedure name.WVARCHARPROCEDURE_NAME

Procedure body.LONG WVARCHARPROCEDURE_TEXT

448

D.1.19 SYS_PROCEDURES

DescriptionData typeColumn name

Compiled form of the procedure.LONG VARBINARYPROCEDURE_BIN

The name of the schema containing
PROCEDURE_NAME.

WVARCHARPROCEDURE_SCHEMA

The name of the catalog containing
PROCEDURE_NAME.

WVARCHARPROCEDURE_CATALOG

Creation time.TIMESTAMPCREATIME

Reserved for future use.INTEGERTYPE

D.1.20 SYS_PROCEDURE_COLUMNS

The SYS_PROCEDURE_COLUMNS defines input parameters and result set columns.

Table D.19. SYS_PROCEDURE_COLUMNS

DescriptionData typeColumn name

Procedure identifier.INTEGERPROCEDURE_ID

Procedure column name.WVARCHARCOLUMN_NAME

Procedure column type
(SQL_PARAM_INPUT or
SQL_RESULT_COL).

SMALLINTCOLUMN_TYPE

Column's SQL data type.SMALLINTDATA_TYPE

Column's SQL data type name.WVARCHARTYPE_NAME

Size of the procedure column.INTEGERCOLUMN_SIZE

Column size in bytes.INTEGERBUFFER_LENGTH

Decimal digits of the procedure
column.

SMALLINTDECIMAL_DIGITS

Radix for numeric data types (2, 10,
or NULL if not applicable).

SMALLINTNUM_PREC_RADIX

Whether the procedure column ac-
cepts a NULL value.

SMALLINTNULLABLE

A description of the procedure
column.

WVARCHARREMARKS

449

D.1.20 SYS_PROCEDURE_COLUMNS

DescriptionData typeColumn name

Column's default value. Always
NULL, that is, no default value is
specified.

WVARCHARCOLUMN_DEF

SQL data type.SMALLINTSQL_DATA_TYPE

Subtype code for datetime. Always
NULL.

SMALLINTSQL_DATETIME_SUB

Maximum length in bytes of a char-
acter or binary data type column.

INTEGERCHAR_OCTET_LENGTH

Ordinal position of the column.INTEGERORDINAL_POSITION

Always "YES".WVARCHARIS_NULLABLE

D.1.21 SYS_PROPERTIES

This table is for internal use of HSB only.

Table D.20. SYS_PROPERTIES

DescriptionData typeColumn name

Property identifier.WVARCHARKEY

Value of a property.WVARCHARVALUE

Creation time for the property.TIMESTAMPMODTIME

D.1.22 SYS_RELAUTH

This table contains GRANT privileges issued for each table name and user name combination. When a database
is created with no GRANT statements executed, this table is empty.

Table D.21. SYS_RELAUTH

DescriptionColumn Name

Table or object identifier.REL_ID

User or role identifier.UR_ID

Information about privileges of a user or a role. Each privilege is related to
someone (GRANT_ID) who has granted it.

PRIV

Grantor identifier.GRANT_ID

450

D.1.21 SYS_PROPERTIES

DescriptionColumn Name

Grant time.GRANT_TIM

If set to "Yes", the user who receives the privilege may grant the privilege
to other users. The possible values are "Yes" or "No".

GRANT_OPT

D.1.23 SYS_SCHEMAS

The SYS_SCHEMAS lists available schemas.

Table D.22. SYS_SCHEMAS

DescriptionData typeColumn name

Schema identifier.INTEGERID

Schema name.WVARCHARNAME

Schema owner name.WVARCHAROWNER

Create date and time.TIMESTAMPCREATIME

Schema catalog.WVARCHARSCHEMA_CATALOG

D.1.24 SYS_SEQUENCES

Table D.23. SYS_SEQUENCES

DescriptionData typeColumn name

Sequence name.WVARCHARSEQUENCE_NAME

Unique identifier.INTEGERID

Is the sequence dense or sparse.CHARDENSE

The name of the schema containing
SEQUENCE_NAME.

WVARCHARSEQUENCE_SCHEMA

The name of the catalog containing
SEQUENCE_NAME.

WVARCHARSEQUENCE_CATALOG

Creation time.TIMESTAMPCREATIME

451

D.1.23 SYS_SCHEMAS

D.1.25 SYS_SYNC_REPLICA_PROPERTIES

Table D.24. SYS_SYNC_REPLICA_PROPERTIES

DescriptionData typeColumn name

Replica ID.INTEGERID

Property name.VARCHARNAME

Property value.VARCHARVALUE

The primary key is on the ID and NAME fields.

D.1.26 SYS_SYNONYM

Table D.25. SYS_SYNONYM

DescriptionData typeColumn name

Reserved for future use.INTEGERTARGET_ID

Reserved for future use.INTEGERSYNON

D.1.27 SYS_TABLEMODES

Table D.26. SYS_TABLEMODES

DescriptionData typeColumn name

Relation identifier.INTEGERID

Concurrency control mode (allowed values: OPTIMIST-
IC, PESSIMISTIC, MAINMEMORY, or MAIN-
MEMORY PESSIMISTIC).

WVARCHARMODE

Last modify time.TIMESTAMPMODIFY_TIME

Last user that modified.WVARCHARMODIFY_USER

SYS_TABLEMODES shows the mode only of tables for which the mode was explicitly set. SYS_TA-
BLEMODES doesn't show the mode of tables that were left at the default mode. (The default mode is "optim-
istic" unless you set the solid.ini configuration parameter Pessimistic=Yes.)

To list the names and modes of tables that were explicitly set to optimistic or pessimistic, execute the command:

452

D.1.25 SYS_SYNC_REPLICA_PROPERTIES

SELECT SYS_TABLEMODES.ID, table_name, mode
FROM SYS_TABLES, SYS_TABLEMODES
WHERE SYS_TABLEMODES.ID = SYS_TABLES.ID;

The output will look like:

 ID TABLE_NAME MODE
 -- ---------- ----
10054 TABLE2 OPTIMISTIC
10056 TABLE3 PESSIMISTIC

For more information about setting the concurrency control mode, see the section called “Setting the Concur-
rency (Locking) Mode to Optimistic or Pessimistic”.

D.1.28 SYS_TABLES

This table lists all the system tables.

There are no restrictions for viewing the system tables, which means even users with no access rights can
view them. However, specific users are restricted from viewing the user table information. Owners are restricted
to viewing user tables they have created and users can only view tables to which they have INSERT, UPDATE,
DELETE, or SELECT access. Users are restricted from viewing any user tables if they have no access rights.
No restrictions apply to DBAs.

Table D.27. SYS_TABLES

DescriptionData typeColumn name

Unique table identifier.INTEGERID

The name of the table.WVARCHARTABLE_NAME

The type of the table (BASE TABLE
or VIEW).

WVARCHARTABLE_TYPE

The name of the schema containing
TABLE_NAME

WVARCHARTABLE_SCHEMA

The name of the catalog containing
TABLE_NAME.

WVARCHARTABLE_CATALOG

The creation time of the table.TIMESTAMPCREATIME

453

D.1.28 SYS_TABLES

DescriptionData typeColumn name

Possible check option defined for the
table.

LONG WVARCHARCHECKSTRING

Reserved for future use.LONG WVARCHARREMARKS

D.1.29 SYS_TRIGGERS

This system table lists procedures.

Specific users are restricted from viewing triggers. Owners are restricted to viewing only those triggers that
they have created. Normal users are restricted from viewing triggers. No restrictions apply to DBAs.

Table D.28. SYS_TRIGGERS

DescriptionData typeColumn name

Unique table identifier.INTEGERID

Trigger name.WVARCHARTRIGGER_NAME

Trigger body.LONG WVARCHARTRIGGER_TEXT

Compiled form of the trigger.LONG VARBINARYTRIGGER_BIN

The name of the schema containing
TRIGGER_NAME.

WVARCHARTRIGGER_SCHEMA

The name of the catalog containing
TRIGGER_NAME.

WVARCHARTRIGGER_CATALOG

If triggers are enabled "YES"; other-
wise "NO".

CHARTRIGGER_ENABLED

The creation time of the trigger.TIMESTAMPCREATIME

Reserved for future use.INTEGERTYPE

The relation identifier.INTEGERREL_ID

D.1.30 SYS_TYPES

Table D.29. SYS_TYPES

DescriptionData typeColumn name

The name of the data type.WVARCHARTYPE_NAME

ODBC, data type number.SMALLINTDATA_TYPE

454

D.1.29 SYS_TRIGGERS

DescriptionData typeColumn name

ODBC, the precision of the data
type.

INTEGERPRECISION

ODBC, possible prefix for literal
values.

WVARCHARLITERAL_PREFIX

ODBC, possible suffix for literal
values.

WVARCHARLITERAL_SUFFIX

ODBC, the parameters needed to
create a column of the data type.

WVARCHARCREATE_PARAMS

ODBC, can the data type contain
NULL values.

SMALLINTNULLABLE

ODBC, is the data type case sensit-
ive.

SMALLINTCASE_SENSITIVE

ODBC, the supported search opera-
tions.

SMALLINTSEARCHABLE

ODBC, is the data type unsigned.SMALLINTUNSIGNED_ATTRIBUTE

ODBC, whether the data is a money
data type.

SMALLINTMONEY

ODBC, whether the data type is
autoincrementing.

SMALLINTAUTO_INCREMENT

ODBC, has the data type another
implementation defined name.

WVARCHARLOCAL_TYPE_NAME

ODBC, the minimum scale of the
data type.

SMALLINTMINIMUM_SCALE

ODBC, the maximum scale of the
data type.

SMALLINTMAXIMUM_SCALE

D.1.31 SYS_UROLE

The SYS_UROLE contains mapping of users to roles.

Table D.30. SYS_UROLE

DescriptionData typeColumn name

User identifier.INTEGERU_ID

Role identifier.INTEGERR_ID

455

D.1.31 SYS_UROLE

D.1.32 SYS_USERS

The SYS_USERS list information about users and roles.

Table D.31. SYS_USERS

DescriptionData typeColumn name

User or role identifier.INTEGERID

User or role name.WVARCHARNAME

User type, either USER or ROLE.WVARCHARTYPE

Privilege information.INTEGERPRIV

Password in encrypted format.VARBINARYPASSW

Reserved for future use.INTEGERPRIORITY

Specifies whether user is private or
public.

INTEGERPRIVATE

Reserved for future use.WVARCHARLOGIN_CATALOG

D.1.33 SYS_VIEWS

Table D.32. SYS_VIEWS

DescriptionData typeColumn name

Unique identifier for this view.INTEGERV_ID

View definition.LONG WVARCHARTEXT

Possible CHECK OPTION defined
for the view.

LONG WVARCHARCHECKSTRING

Reserved for future use.LONG WVARCHARREMARKS

D.2 System Tables for Data Synchronization
solidDB contains a number of system tables that are used for implementing synchronization functionality. In
general, these tables are for internal use only. However, you may need to know the contents of these tables
when developing and troubleshooting a new application.

Note that the tables are presented in alphabetical order.

456

D.1.32 SYS_USERS

D.2.1 SYS_BULLETIN_BOARD

This table contains persistent parameters that are always available in the parameter bulletin board when
transactions are executed in this database catalog.

Table D.33. SYS_BULLETIN_BOARD

DescriptionColumn Name

Name of the persistent parameter.PARAM_NAME

Value of the parameter.PARAM_VALUE

Defines the master/replica catalog.PARAM_CATALOG

D.2.2 SYS_PUBLICATION_ARGS

This table contains the publication input arguments in this master database

Table D.34. SYS_PUBLICATION_ARGS

DescriptionColumn Name

Internal ID of the publication.PUBL_ID

Sequence number of the argument.ARG_NUMBER

Name of the argument.NAME

Type of the argument.TYPE

Length or precision of the argument.LENGTH_OR_PRECISION

Scale of the argument.SCALE

D.2.3 SYS_PUBLICATION_REPLICA_ARGS

This table contains the definition of the publication arguments in a replica database.

Table D.35. SYS_PUBLICATION_REPLICA_ARGS

DescriptionColumn Name

Internal ID of the master from which the data is refreshed.MASTER_ID

Internal ID of the publication.PUBL_ID

Sequence number of the argument.ARG_NUMBER

457

D.2.1 SYS_BULLETIN_BOARD

DescriptionColumn Name

Name of the argument.NAME

Length or precision of the argument.LENGTH_OR_PRECISION

Scale of the argument.SCALE

D.2.4 SYS_PUBLICATION_REPLICA_STMTARGS

This table contains the mapping between the publication arguments and the statements in the replica.

Table D.36. SYS_PUBLICATION_REPLICA_STMTARGS

DescriptionColumn Name

Internal ID of the master from which the data is refreshed.MASTER_ID

Internal ID of the publication.PUBL_ID

Sequence number of the statement.STMT_NUMBER

Sequence number of the statement.STMT_ARG_NUMBER

Sequence number of the publication argument.PUBL_ARG_NUMBER

D.2.5 SYS_PUBLICATION_REPLICA_STMTS

This table contains the definition of the publication statements in a replica database.

Table D.37. SYS_PUBLICATION_REPLICA_STMTS

DescriptionColumn Name

Internal ID of the master from which the data is refreshed.MASTER_ID

Internal ID of the publication.PUBL_ID

Sequence number of the statement.STMT_NUMBER

Name of the target catalog in the replica database.REPLICA_CATALOG

Name of the target schema in the replica database.REPLICA_SCHEMA

Name of the target table in the replica database.REPLICA_TABLE

Alias name of the target table.TABLE_ALIAS

SQL FROM tables as string.REPLICA_FROM_STR

SQL WHERE arguments as string.WHERE STR

458

D.2.4 SYS_PUBLICATION_REPLICA_STMTARGS

DescriptionColumn Name

Level of this SQL statement in this publication hierarchy.LEVEL

D.2.6 SYS_PUBLICATION_STMTARGS

This table contains mapping between the publication arguments and the statements in the master database.

Table D.38. SYS_PUBLICATION_STMTARGS

DescriptionColumn Name

Internal ID of the publication.PUBL_ID

Sequence number of the statement.STMT_NUMBER

Sequence number of the statement argument.STMT_ARG_NUMBER

Sequence number of the publication argument.PUBL_ARG_NUMBER

D.2.7 SYS_PUBLICATION_STMTS

This table contains the publication statements in the master database.

Table D.39. SYS_PUBLICATION_STMTS

DescriptionColumn Name

Internal ID of the publication.PUBL_ID

Name of the publication schema in the master database.MASTER_SCHEMA

Name of the table in the master database.MASTER_TABLE

Name of the schema in the replica database.REPLICA_SCHEMA

Name of the table in the replica database.REPLICA_TABLE

The alias name of the target table.TABLE_ALIAS

SQL SELECT INTO columns as string.MASTER_SELECT_STR

SQL SELECT INTO columns as string.REPLICA_SELECT_STR

SQL SELECT FROM tables as string.MASTER_FROM_STR

SQL SELECT FROM tables as string.REPLICA_FROM_STR

SQL WHERE arguments as a string.WHERE_STR

For internal use.DELETEFLAG_STR

459

D.2.6 SYS_PUBLICATION_STMTARGS

DescriptionColumn Name

Level of this SQL statement in the publication hierarchy.LEVEL

D.2.8 SYS_PUBLICATIONS

This table contains the publications that have been defined in this master database.

Table D.40. SYS_PUBLICATIONS

DescriptionColumn Name

Internal ID of the publication.ID

Name of the publication.NAME

User ID of the creator of the publication.CREATOR

Date and time when the publication was created.CREATTIME

Number of input arguments for this publication.ARGCOUNT

Number of statement contained in this publication.STMTCOUNT

N/A.TIMEOUT

Contents of the CREATE PUBLICATION statement.TEXT

Defines the master catalog.PUBL_CATALOG

D.2.9 SYS_PUBLICATIONS_REPLICA

This table contains publications that are being used in this replica database.

Table D.41. SYS_PUBLICATIONS_REPLICA

DescriptionColumn Name

Internal ID of the master from which the data is refreshed.MASTER_ID

Internal ID of the publication.ID

Name of the publication.NAME

User ID of the creator of the publication.CREATOR

Number of input arguments for this publication.ARGCOUNT

Number of statements contained by this publication.STMTCOUNT

460

D.2.8 SYS_PUBLICATIONS

D.2.10 SYS_SYNC_BOOKMARKS

This table contains bookmarks that are being used in a master database.

Table D.42. SYS_SYNC_BOOKMARKS

DescriptionColumn Name

Internal ID of the bookmark.BM_ID

Reserved for future use.BM_CATALOG

Name of the bookmark.BM_NAME

Internal version information of the bookmark in the master.BM_VERSION

User ID of the creator of the bookmark.BM_CREATOR

Create time of the bookmark.BM_CREATIME

D.2.11 SYS_SYNC_HISTORY_COLUMNS

If you turn on synchronization history for a table, you may turn it on for all columns, or only for a subset of
columns. If you turn it on for a subset of columns, then the SYS_SYNC_HISTORY_COLUMNS table records
which columns you are keeping synchronization history information for. There is one row in
SYS_SYNC_HISTORY_COLUMNS for each column that you keep synchronization history for.

Table D.43. SYS_SYNC_HISTORY_COLUMNS

DescriptionColumn Name

The ID of the table to keep sync history for.REL_ID

The ordinal number of the column in that table that we keep sync history
for. (E.g. if we keep sync history for the second column in the table, then
this field will hold the number 2.

COLUMN_NUMBER

D.2.12 SYS_SYNC_INFO

This table contains synchronization information, one row for each node.

Table D.44. SYS_SYNC_INFO

DescriptionColumn Name

Master or replica node.NODE_NAME

461

D.2.10 SYS_SYNC_BOOKMARKS

DescriptionColumn Name

Catalog where node belongs.NODE_CATALOG

IF YES, this node is a master.IS_MASTER

If YES, this node is a replica.IS_REPLICA

Node create data and time.CREATIME

Node creator user name.CREATOR

D.2.13 SYS_SYNC_MASTER_MSGINFO

This table contains information about the currently active message in the master database.

Data in this table is used to control the synchronization process between the replica and master database. This
table also contains information that is useful for troubleshooting purposes. If the execution of a message halts
in the master database due to an error, you can query this table to obtain the reason for the problem, as well
as the transaction and statement that caused the error.

Table D.45. SYS_SYNC_MASTER_MSGINFO

DescriptionColumn Name

Current state of the message. The following values are possible:STATE

• 0 = DELETED N/A (internal non-persistent state)

• 1 = ERROR - Error has occurred during message processing; the reason
for the error was recorded in the error-columns of the row.

• 10 = RECEIVED - master has received a message from the replica

• 11 = SAVED - message has been saved in the master database and is
being processed

• 12 = READY - master has processed the message

• 13 = SENT - N/A (internal non-persistent state)

ID of the replica database from which the message was sent.REPLICA_ID

ID of the database to which the master is sent.MASTER_ID

Internal ID of the message.MSG_ID

Name of the message given by the user.MSG_NAME

462

D.2.13 SYS_SYNC_MASTER_MSGINFO

DescriptionColumn Name

Create time of the message.MSG_TIME

Size of the message in bytes.MSG_BYTE_COUNT

ID of the user who created the message.CREATE_UID

ID of the user who forwarded the message.FORWARD_UID

Code of the error that caused the termination of the message execution. You
can determine the transaction and statement that caused the error from the
TRX_ID and STMT_ID information.

ERROR_CODE

Description of the error that caused the termination of the message execution.ERROR_TEXT

Sequence number of the transaction that caused the error.TRX_ID

Sequence number of the statement of a transaction that caused an error.STMT_ID

N/A (internal use only).ORD_ID_COUNT

N/A (internal use only).ORD_ID

NULL or 0 = Normal message.FLAGS

1 = Message is deleted when reply is sent to replica.

This is an INTEGER column which is part of the primary key. The value
is zero for normal messages. The value is msg_id if LOG_ERRORS option
is ON and any errors exists.

FAILED_MSG_ID

D.2.14 SYS_SYNC_MASTER_RECEIVED_BLOB_REFS

The received BLOBs are stored in this table on the master. The implementation sees to it that the BLOB is
physically saved on disk once only even if it is logically saved several times.

Table D.46. SYS_SYNC_MASTER_RECEIVED_BLOB_REFS

DescriptionColumn Name

Internal ID of the replica database from which the message was received.REPLICA_ID

Internal ID of the message.MSG_ID

The number that identifies the BLOB.BLOB_NUM

A reference to the BLOB.DATA

463

D.2.14 SYS_SYNC_MASTER_RECEIVED_BLOB_REFS

D.2.15 SYS_SYNC_MASTER_RECEIVED_MSGPARTS

This table contains parts of the messages that were received in the master database from a replica database,
but not yet processed in the master database.

Table D.47. SYS_SYNC_MASTER_RECEIVED_MSGPARTS

DescriptionColumn Name

Internal ID of the replica database from which the message was received.REPLICA_ID

Internal ID of the message.MSG_ID

Sequence number of the message part.PART_NUMBER

Length of the data in the message part.DATA_LENGTH

Data of the message part.DATA

D.2.16 SYS_SYNC_MASTER_RECEIVED_MSGS

This table contains messages that were received in the master database from a replica database, but are not
yet processed in the master database.

Table D.48. SYS_SYNC_MASTER_RECEIVED_MSGS

DescriptionColumn Name

Internal ID of the replica database from which the message has been re-
ceived.

REPLICA_ID

Internal ID of the message.MSG_ID

Create time of the message.CREATIME

User ID of the user who created the message.CREATOR

D.2.17 SYS_SYNC_MASTER_STORED_BLOB_REFS

The BLOBs to be sent are stored in this table on the master. The implementation sees to it that the BLOB is
physically saved on disk once only even if it is logically saved several times.

Table D.49. SYS_SYNC_MASTER_STORED_BLOB_REFS

DescriptionColumn Name

Internal ID of the replica database to which the message will be sent.REPLICA_ID

464

D.2.15 SYS_SYNC_MASTER_RECEIVED_MSGPARTS

DescriptionColumn Name

Internal ID of the message.MSG_ID

The number that identifies the BLOB.BLOB_NUM

A reference to the BLOB.DATA

D.2.18 SYS_SYNC_MASTER_STORED_MSGPARTS

This table contains parts of the message result sets that were created in the master database, but not yet sent
to the replica database.

Table D.50. SYS_SYNC_MASTER_STORED_MSGPARTS

DescriptionColumn Name

Internal ID of the replica database to which the message will be sent.REPLICA_ID

Internal ID of the message.MSG_ID

Sequence number of the result set.ORDER_ID

Internal ID of the result set.RESULT_SET_ID

Type of the result set.RESULT_SET_TYPE

Sequence number of the message part in the result set.PART_NUMBER

Length of the data in the message part in the result set.DATA_LENGTH

Data of the message part.DATA

D.2.19 SYS_SYNC_MASTER_STORED_MSGS

This table contains messages that were created in the master database, but not yet sent to the replica database.

Table D.51. SYS_SYNC_MASTER_STORED_MSGS

DescriptionColumn Name

Internal ID of the replica database to which the message will be sent.REPLICA_ID

Internal ID of the message.MSG_ID

Create time of the message.CREATIME

User ID of the user who created the message.CREATOR

465

D.2.18 SYS_SYNC_MASTER_STORED_MSGPARTS

D.2.20 SYS_SYNC_MASTER_SUBSC_REQ

This table contains the list of requested subscriptions waiting to be executed in the master.

Table D.52. SYS_SYNC_MASTER_SUBSC_REQ

DescriptionColumn Name

Internal ID of the replica from which the statement has arrived.REPLICA_ID

Internal ID of the message in which the statement has arrived.MSG_ID

Sequence number of the subscription.ORD_ID

Internal ID of the transaction to which the subscription belongs.TRX_ID

Internal ID of the statement in the subscription.STMT_ID

N/A.REQUEST_ID

Internal ID of the subscribed/refreshed publication.PUBL_ID

Internal version information of the subscription in the master.VERSION

Internal version information of the subscription in the replica.REPLICA_VERSION

Indicates if the subscription is full or incremental.FULLSUBSC

D.2.21 SYS_SYNC_MASTER_VERSIONS

This table contains the list of subscriptions (that have been subscribed) to replica databases from the master
database.

Table D.53. SYS_SYNC_MASTER_VERSIONS

DescriptionColumn Name

Internal ID of the replica database.REPLICA_ID

Sequence number of the subscription.REQUEST_ID

Create time of the subscription.VERS_TIME

ID of the publication.PUBL_ID

Name of the table of the publication.TABNAME

Name of the schema of the table.TABSCHEMA

N/A (for internal use only).PARAM_CRC

Parameters of the publication in binary format.PARAM

466

D.2.20 SYS_SYNC_MASTER_SUBSC_REQ

DescriptionColumn Name

Version of the data that has been requested from the replica database.VERSION

D.2.22 SYS_SYNC_MASTERS

This table contains the list of master databases accessed by the replica.

Table D.54. SYS_SYNC_MASTERS

DescriptionColumn Name

Given name of the master database.NAME

Internal ID of the master database.ID

N/A.REMOTE_NAME

Given name of the replica database.REPLICA_NAME

Surrogate identifier for the replica database.REPLICA_ID

Defines the replica catalog which is registered to this master.REPLICA_CATALOG

Connect string of the master database.CONNECT

ID of the user who set the database as a master.CREATOR

Reserved for future use.ISDEFAULT

D.2.23 SYS_SYNC_RECEIVED_BLOB_ARGS

This table is on the master. The BLOB parameters are saved in this table when the message from the replica
is extracted. The rows only exist until the transaction in the message has been executed.

Table D.55. SYS_SYNC_RECEIVED_BLOB_ARGS

DescriptionColumn Name

Internal ID of the replica from which the BLOB parameters have arrived.REPLICA

Internal ID of the message.MSG

Sequence number of the BLOB part.ORD_ID

The transaction ID identifies the transaction.TRX_ID

Internal ID of the user.ID

Number of the parameter.ARGNO

Value of the parameter in binary format.ARG_VALUE

467

D.2.22 SYS_SYNC_MASTERS

D.2.24 SYS_SYNC_RECEIVED_STMTS

This table contains the propagated statements that have been received in the master database.

Table D.56. SYS_SYNC_RECEIVED_STMTS

DescriptionColumn Name

Internal ID of the replica from which the statement has arrived.REPLICA

Internal ID of the message in which the statement has arrived.MSG

N/A.ORD_ID

Internal ID of the transaction to which the statement belongs.TXN_ID

Sequence number of the statement within the transaction.ID

Type of the constant.CLASS

the SQL statement as a string.STRING

Number of parameters bound to the statement.ARG_COUNT

Types of the parameters bound to the statement.ARG_TYPES

Values of the parameters in binary format.ARG_VALUES

ID of the user who has saved the statement.USER_ID

N/A.REQUEST_ID

This indicates the error-handling mode (e.g. IGNORE_ERRORS,
LOG_ERRORS, etc.).

FLAGS

This has the error code if a statement failed while executing on the master.ERRCODE

This has a description of the error that occurred if a statement failed while
executing on the master.

ERR_STR

D.2.25 SYS_SYNC_REPLICA_MSGINFO

This table contains information about currently active messages in the replica database.

Data in this table is used to control the synchronization process between the replica and master database. This
table also contains information that is useful for troubleshooting purposes. If the execution of a message halts
in the replica database due to an error, you can query this table to obtain the reason for the problem, as well
as the transaction and statement that caused the error.

468

D.2.24 SYS_SYNC_RECEIVED_STMTS

Table D.57. SYS_SYNC_REPLICA_MSGINFO

DescriptionColumn Name

Current state of the message. The following values are possible:STATE

• 0 = DELETED N/A (internal non-persistent state)

• 1 = ERROR - Internal error has occurred during message processing;
the reason for the error was recorded in the error-columns of the row.

• 20 = R_INIT - N/A (internal non-persistent state)

• 21 = R_INITEND - N/A (internal non-persistent state)

• 22 = R_SAVED - Replica has saved an outgoing message

• 23 = R_SENT - Replica has sent a message to the master

• 24 = R_RECEIVED - Replica has received a reply message from the
master

• 25 = R_EXECUTE - The reply message in a replica is ready for execu-
tion

• 26 = R_EXECUTE_NOTIFYMASTER - Replica has received a reply,
but not yet confirmed it with the master

ID of the master database to which the message is sent.MASTER_ID

Name of the master database to which the message is sent.MASTER_NAME

Internal ID of the message.MSG_ID

Name of the message given by the user.MSG_NAME

Create time of the message.MSG_TIME

Size of the message in bytes.MSG_BYTE_COUNT

ID of the user who created the message.CREATE_UID

ID of the user who sent the message.FORWARD_UID

Code of the error that caused the message execution to terminate.ERROR_CODE

Description of the error that caused the message execution to terminate.ERROR_TEXT

NULL or 0 = Normal message.FLAGS

469

D.2.25 SYS_SYNC_REPLICA_MSGINFO

DescriptionColumn Name

1 = Message is deleted when a reply is received from master.

3 = Message is a registration message.

D.2.26 SYS_SYNC_REPLICA_RECEIVED_BLOB_REFS

The received BLOBs are stored in this table. The implementation sees to it that the BLOB is physically saved
on disk once only even if it is logically saved several times.

Table D.58. SYS_SYNC_REPLICA_RECEIVED_BLOB_REFS

DescriptionColumn Name

Internal ID of the master database from which the message has been re-
ceived.

MASTER_ID

Internal ID of the message.MSG_ID

The number that identifies the BLOB.BLOB_NUM

A reference to the BLOB.DATA

D.2.27 SYS_SYNC_REPLICA_RECEIVED_MSGPARTS

This table contains parts of the reply messages that have been received into the replica database from the
master database, but are not yet processed in the replica database.

Table D.59. SYS_SYNC_REPLICA_RECEIVED_MSGPARTS

DescriptionColumn Name

Internal ID of the master database from which the message has been re-
ceived.

MASTER_ID

Internal ID of the message.MSG_ID

Sequence number of the message part.PART_NUMBER

Length of the data in the message part.DATA_LENGTH

Type of the result set.RESULT_SET_TYPE

Data of the message part.DATA

470

D.2.26 SYS_SYNC_REPLICA_RECEIVED_BLOB_REFS

D.2.28 SYS_SYNC_REPLICA_RECEIVED_MSGS

This table contains reply messages that were received in the replica database from the master database, but
not yet processed in the replica database.

Table D.60. SYS_SYNC_REPLICA_RECEIVED_MSGS

DescriptionColumn Name

Internal ID of the master database from which the message has been re-
ceived.

MASTER_ID

Internal ID of the message.MSG_ID

Create time of the message.CREATIME

User ID of the user who created the message.CREATOR

D.2.29 SYS_SYNC_REPLICA_STORED_BLOB_REFS

The BLOBs in the flow message are stored in this table. The implementation sees to it that the BLOB is
physically saved on disk once only even if it is logically saved several times.

Table D.61. SYS_SYNC_REPLICA_STORED_BLOB_REFS

DescriptionColumn Name

Internal ID of the master database from which the message has been re-
ceived.

MASTER_ID

Internal ID of the message.MSG_ID

The number that identifies the BLOB.BLOB_NUM

A reference to the BLOB.DATA

D.2.30 SYS_SYNC_REPLICA_STORED_MSGS

This table contains messages that were created in the replica database, but not yet sent to the master database.

Table D.62. SYS_SYNC_REPLICA_STORED_MSGS

DescriptionColumn Name

Internal ID of the master database to which the message will be sent.MASTER_ID

Internal ID of the message.MSG_ID

471

D.2.28 SYS_SYNC_REPLICA_RECEIVED_MSGS

DescriptionColumn Name

Create time of the message.CREATIME

User ID of the user who has created the message.CREATOR

D.2.31 SYS_SYNC_REPLICA_STORED_MSGPARTS

This table contains parts of the messages that were created in the replica database, but not yet sent to the
master database.

Table D.63. SYS_SYNC_REPLICA_STORED_MSGPARTS

DescriptionColumn Name

Internal ID of the master database to which the message will be sent.MASTER_ID

Internal ID of the message.MSG_ID

Sequence number of the message part.PART_NUMBER

Length of the data in the message part.DATA_LENGTH

Data of the message part.DATA

D.2.32 SYS_SYNC_REPLICA_VERSIONS

This table contains the list of subscriptions (that have been subscribed) to this replica database from the
master database.

Table D.64. SYS_SYNC_REPLICA_VERSIONS

DescriptionColumn Name

Internal ID of the bookmark in the subscription.BOOKMARK_ID

Internal ID of the publication request in the subscription.REQUEST_ID

Create time of the subscription.VERS_TIME

ID of the subscribed publication.PUBL_ID

ID of the master database from which the publication has been subscribed.MASTER_ID

Internal use only.PARAM_CRC

Parameters of the subscription.PARAM

Version number of subscribed publication in the master database.VERSION

Version number of subscribed publication in the replica database.LOCAL VERSION

472

D.2.31 SYS_SYNC_REPLICA_STORED_MSGPARTS

DescriptionColumn Name

Name of the publication.PUBL_NAME

ID of the publication reply.REPLY_ID

D.2.33 SYS_SYNC_REPLICAS

This table contains the list of replica databases registered with the master.

Table D.65. SYS_SYNC_REPLICAS

DescriptionColumn Name

Given name of the replica database.NAME

Internal ID of the replica database.ID

N/A.MASTER_NAME

Defines the catalog where the replica is registeredMASTER_CATALOG

This contains the connect string (e.g. 'tcp MyWorkstation 1315') of the
replica.

CONNECT

D.2.34 SYS_SYNC_SAVED_BLOB_ARGS

If the user saves a transaction with a BLOB parameter at the replica, a reference to the BLOB is saved in the
SYS_SYNC_SAVED_BLOB_ARGS table. The reference points to the SYS_SYNC_REP-
LICA_STORED_BLOB_REFS table. The rows only exist until the sent message has been prepared.

Table D.66. SYS_SYNC_SAVED_BLOB_ARGS

DescriptionColumn Name

ID of the master database to which the parameters are sent.MASTER

The transaction ID identifies the transaction.TRX_ID

Internal ID of the user.ID

Number of the parameter.ARGNO

Value of the parameter in binary format.ARG_VALUE

D.2.35 SYS_SYNC_SAVED_STMTS

This table contains statements that have been saved in replica database for later propagation.

473

D.2.33 SYS_SYNC_REPLICAS

Table D.67. SYS_SYNC_SAVED_STMTS

DescriptionColumn Name

Internal ID of the master database to which the statement will be propagated.MASTER

Internal ID of the transaction to which the statement belongs.TRX_ID

Sequence number of the statement within the transaction.ID

Type of the constant.CLASS

The SQL statement as a string.STRING

Number of parameters bound to the statement.ARG_COUNT

Types of parameters bound to the statement.ARG_TYPES

Values of the parameters in binary format.ARG_VALUES

ID of the user who has saved the statement.USER_ID

N/A.REQUEST_ID

This indicates the error-handling mode (e.g. IGNORE_ERRORS,
LOG_ERRORS, etc.).

FLAGS

D.2.36 SYS_SYNC_TRX_PROPERTIES

When you save transactions, you can assign properties for them. These properties can later be used to select
transactions for propagation. The properties are saved in the SYS_SYNC_TRX_PROPERTIES table.

Table D.68. SYS_SYNC_TRX_PROPERTIES

DescriptionColumn Name

The transaction ID identifies the transaction.TRX_ID

The transaction property name (for example, COLOR).NAME

The transaction property value (for example, RED).VALUE_STR

D.2.37 SYS_SYNC_USERMAPS

This table maps replica user ids to master users in the SYS_SYNC_USERS table.

474

D.2.36 SYS_SYNC_TRX_PROPERTIES

Table D.69. SYS_SYNC_USERMAPS

DescriptionColumn Name

Replica user ID mapped to master user.REPLICA_UID

Master ID.MASTER_ID

Replica user name.REPLICA_USERNAME

Master user name.MASTER_USERNAME

Encrypted password for master user name.PASSW

D.2.38 SYS_SYNC_USERS

This table contains a list of users that have access to the synchronization functions of the replica database.
These functions include saving transactions and creating synchronization messages.

In a replica the data of this table is downloaded from the master in a message with the command:

MESSAGE unique-message-name APPEND SYNC_CONFIG
['sync-config-arg']

Table D.70. SYS_SYNC_USERS

DescriptionColumn Name

Internal ID of the master database.MASTER_ID

Internal ID of the user.ID

User name.NAME

Encrypted password of the user.PASSW

D.3 System Views
solidDB supports views as specified in the X/Open SQL Standard.

D.3.1 COLUMNS

The COLUMNS system view identifies the columns which are accessible to the current user.

475

D.2.38 SYS_SYNC_USERS

Table D.71. COLUMNS

DescriptionData typeColumn name

The name of the catalog containing TABLE_NAME.WVARCHARTABLE_CATALOG

The name of the schema containing TABLE_NAME.WVARCHARTABLE_SCHEMA

The name of the table or view.WVARCHARTABLE_NAME

The name of the column of the specified table or view.WVARCHARCOLUMN_NAME

The data type of the column.WVARCHARDATA_TYPE

ODBC compliant data type number.SMALLINTSQL_DATA_TYPE_NUM

Maximum length for a character data type column; for others
NULL.

INTEGERCHAR_MAX_LENGTH

The number of digits of mantissa precision of the column, if
DATA_TYPE is approximate numeric data type, NUMER-

INTEGERNUMERIC_PRECISION

IC_PREC_RADIX indicates the units of measurement; for
other numeric types contains the total number of decimal di-
gits allowed in the column; for character data types NULL.

The radix of numeric precision if DATA_TYPE is one of the
approximate numeric data types; otherwise NULL.

SMALLINTNUMERIC_PREC_RADIX

Total number of significant digits to the right of the decimal
point; for INTEGER and SMALLINT 0; for others NULL.

SMALLINTNUMERIC_SCALE

If column is known to be not nullable 'NO'; otherwise 'YES'.CHARNULLABLE

ODBC, if column is known to be not nullable '0'; otherwise
'1'.

SMALLINTNULLABLE_ODBC

Reserved for future use.L O N G
WVARCHAR

REMARKS

D.3.2 SERVER_INFO

The SERVER_INFO system view provides attributes of the current database system or server.

Table D.72. SERVER_INFO

DescriptionData typeColumn name

Identifies an attribute of the server.WVARCHARSERVER_ATTRIBUTE

The value of the attribute.WVARCHARATTRIBUTE_VALUE

476

D.3.2 SERVER_INFO

D.3.3 TABLES

The TABLES system view identifies the tables accessible to the current user.

Table D.73. TABLES

DescriptionData typeColumn name

The name of the catalog containing
TABLE_NAME.

WVARCHARTABLE_CATALOG

The name of the schema containing
TABLE_NAME.

WVARCHARTABLE_SCHEMA

The name of the table or view.WVARCHARTABLE_NAME

The type of the table.WVARCHARTABLE_TYPE

Reserved for future use.LONG WVARCHARREMARKS

D.3.4 USERS

The USERS system view identifies users and roles.

Table D.74. USERS

DescriptionData typeColumn name

User or role identifier.INTEGERID

User or role name.WVARCHARNAME

User type, either USER or ROLE.WVARCHARTYPE

Privilege information.INTEGERPRIV

Reserved for future use.INTEGERPRIORITY

Specifies whether user is private or
public.

INTEGERPRIVATE

D.4 Synchronization-Related Views
solidDB provides four views that show information about synchronization messages between masters and
replicas. One pair of views (SYNC_FAILED_MESSAGES and SYNC_FAILED_MASTER_MESSAGES)
shows failed messages. The other pair (SYNC_ACTIVE_MESSAGES and SYNC_ACTIVE_MASTER_MES-
SAGES) shows active messages.

477

D.3.3 TABLES

D.4.1 SYNC_FAILED_MESSAGES

This table is on the master and holds information about messages received from the replica. It is possible to
view all necessary information about failed messages using one simple view:

SELECT * FROM SYNC_FAILED_MESSAGES.

This returns the following columns:

Table D.75. SYNC_FAILED_MESSAGES

DescriptionData typeColumn name

Given node name of the replica from
which the message was sent.

WVARCHARREPLICA_NAME

Name of the message given by the
user.

WVARCHARMESSAGE_NAME

Internal ID of the replica transaction
that has failed.

BINARYTRANSACTION_ID

Sequence number of the statement
within the transaction.

INTEGERSTATEMENT_ID

SQL statement as a string.WVARCHARSTATEMENT_STRING

Code of the error that caused the
termination of the message execu-
tion.

INTEGERERROR_CODE

Description of the error.VARCHARERROR_MESSAGE

All users have access to this view; no particular privileges are required.

D.4.2 SYNC_FAILED_MASTER_MESSAGES

This table is on the replica and holds information about messages sent to the master. It is possible to view all
necessary information about failed messages using one simple view:

SELECT * FROM SYNC_FAILED_MASTER_MESSAGES.

This returns the following columns:

478

D.4.1 SYNC_FAILED_MESSAGES

Table D.76. SYNC_FAILED_MASTER_MESSAGES

DescriptionData typeColumn name

Given node name of the master.WVARCHARMASTER_NAME

Name of the message given by user.WVARCHARMESSAGE_NAME

Code of the error that caused the
termination of the message execu-
tion.

INTEGERERROR_CODE

Description of the error.VARCHARERROR_MESSAGE

All users have access to this view; no particular privileges are required.

D.4.3 SYNC_ACTIVE_MESSAGES

This table is on the master and holds information about messages received from the replica. This returns the
following columns:

Table D.77. SYNC_ACTIVE_MESSAGES

DescriptionData typeColumn name

Given node name of the replica.WVARCHARREPLICA_NAME

Name of the message given by user.WVARCHARMESSAGE_NAME

Current state of the message as a
string. See details in system table
SYS_SYNC_MASTER_MSGINFO.

VARCHARMESSAGE STATE

All users have access to this view; no particular privileges are required.

D.4.4 SYNC_ACTIVE_MASTER_MESSAGES

This table is on the replica and holds information about messages sent to the master. It is possible to view all
necessary information about failed messages using one simple view:

SELECT * FROM SYNC_FAILED_MASTER_MESSAGES.

This returns the following columns:

479

D.4.3 SYNC_ACTIVE_MESSAGES

Table D.78. SYNC_ACTIVE_MASTER_MESSAGES

DescriptionData typeColumn name

Given node name of the master.WVARCHARMASTER_NAME

Name of the message given by user.WVARCHARMESSAGE_NAME

Current state of the message as a
string. See details in system table
SYS_SYNC_REPLICA_MSGINFO.

VARCHARMESSAGE STATE

All users have access to this view; no particular privileges are required.

480

D.4.4 SYNC_ACTIVE_MASTER_MESSAGES

Appendix E. System Stored
Procedures
This chapter documents stored procedures that are provided with the solidDB to help simplify tasks. These
stored procedures are built into the server and can be thought of as a library for you to use.

E.1 Synchronization-Related Stored Procedures
These system procedures simplify routine sync tasks. To maintain this ease of use, "unnecessary" error situations
should be avoided.

To execute synchronization system procedures, you must have administrator or sync administrator access
rights.

E.1.1 SYNC_SETUP_CATALOG

CALL SYNC_SETUP_CATALOG (
 catalog_name, -- WVARCHAR
 node_name, -- WVARCHAR
 is_master, -- INTEGER
 is_replica -- INTEGER
)

EXECUTES ON: master or replica.

The SYNC_SETUP_CATALOG() procedure creates a catalog, assigns it a node name, and sets the role of
the catalog to be master, replica, or both.

If the catalog_name parameter is NULL, then the current catalog is assigned the specified node name and
role(s).

For is_master and is_replica, a value of 0 means "no"; any other value means "yes". At least one of
these should be non-zero, of course. Note that because a single catalog can be both a replica and a master, it
is legal to set both is_master and is_replica to non-zero values.

481

Table E.1. SYNC_SETUP_CATALOG Error Codes

DescriptionTextRC

No privilege for operation13047

Only the catalog name can be NULL; all other
parameters must be non-NULL.

NULL not allowed13110

Not a valid license for this product.13133

The user has made some changes that have not
yet been committed.

Transaction is active, operation failed.25031

The node_name may be invalid.Failed to set node name to node_name.25052

Catalog has a name already and has one or more
replicas.

After registration nodename cannot be changed.25059

E.1.2 SYNC_REGISTER_REPLICA

CALL SYNC_REGISTER_REPLICA (
 replica_node_name, -- WVARCHAR
 replica_catalog_name, -- WVARCHAR
 master_network_name, -- WVARCHAR
 master_node_name, -- WVARCHAR
 user_id, -- WVARCHAR
 password -- WVARCHAR
)

EXECUTES ON: replica.

The SYNC_REGISTER_REPLICA() system procedure creates a new catalog and registers the replica with
the specified master. User must have Administrator or Synchronization Administrator access rights.

The master_network_name is the connect string of the master database server.

If the specified catalog does not exist, then it is created automatically.

If the specified replica catalog name is NULL, then the current catalog is used. Also, the master nodename
can be NULL. No other parameter may be NULL.

If registration fails, both master and replica end are reset back to their original status. If any of the parameters
have illegal values, then an error is returned.

482

E.1.2 SYNC_REGISTER_REPLICA

If there are any open transactions that have modified data, then this function returns an error.

This system procedure does not return a resultset.

Table E.2. SYNC_REGISTER_REPLICA Error Codes

DescriptionTextRC

No privilege for operation13047

Only the catalog name and master node name
can be NULL; all other parameters must be non-
NULL.

NULL not allowed13110

Not a valid license for this product.13133

Was not able to connect to master. For more de-
tails about 21xxx errors, see the appendix of

Communication error21xxx

solidDB Administration Guide titled "Error
Codes".

Message is already active.25005

The user has made some changes that have not
yet been committed.

Transaction is active, operation failed.25031

Message is in use.25035

Unfinished messages found.25051

The node_name may be invalid.Failed to set node name to node_name.25052

You must run this stored procedure with autocom-
mit off.

Autocommit not allowed.25056

The replica database has already been registered
to a master database.

25057

After registration nodename cannot be changed.25059

E.1.3 SYNC_UNREGISTER_REPLICA

CALL SYNC_UNREGISTER_REPLICA (
 replica_catalog_name, -- WVARCHAR
 drop_catalog, -- INTEGER
 force -- INTEGER
)

483

E.1.3 SYNC_UNREGISTER_REPLICA

EXECUTES ON: replica.

The SYNC_UNREGISTER_REPLICA() system procedure unregisters the specified replica catalog from the
master and optionally drops the replica catalog if the drop_catalog parameter has nonzero value. Any
possibly hanging messages for this replica are deleted in both ends of the system. User must have Adminis-
trator or Synchronization Administrator access rights.

If the replica catalog name is NULL, then the current catalog is used. If force is non-zero, then the master
accepts unregistration even if messages for this replica exist in the master. In that case, those messages are
deleted.

If the user has any uncommitted changes (i.e. open transactions), then the call will fail with an error.

This system procedure does not return a resultset.

Table E.3. SYNC_UNREGISTER_REPLICA Error Codes

DescriptionTextRC

No privilege for operation13047

Catalog name cannot be NULL if drop_catalog
is non-zero.

NULL not allowed13110

Not a valid license for this product.13133

Was not able to connect to master. For more de-
tails about 21xxx errors, see the appendix of

Communication error21xxx

solidDB Administration Guide titled "Error
Codes".

Message is already active.25005

Database is not a replica database.25019

Database is not a master database.25020

Replica not registered.25023

The user has made some changes that have not
yet been committed.

Transaction is active, operation failed.25031

Message is in use.25035

Unfinished messages found.25051

You must run this stored procedure with autocom-
mit off.

Autocommit not allowed.25056

25079

484

E.1.3 SYNC_UNREGISTER_REPLICA

DescriptionTextRC

25093

E.1.4 SYNC_REGISTER_PUBLICATION

CALL SYNC_REGISTER_PUBLICATION (
 replica_catalog_name, -- WVARCHAR
 publication_name -- WVARCHAR
)

EXECUTES ON: replica.

The SYNC_REGISTER_PUBLICATION() system procedure registers a publication from the master database.

If the replica catalog name is NULL, then the current catalog is used.

If the user has uncommitted changes, then the call will fail with an error.

This system procedure does not return a resultset.

Table E.4. SYNC_REGISTER_PUBLICATION Error Codes

DescriptionTextRC

No privilege for operation13047

Only the catalog name can be NULL; all other
parameters must be non-NULL.

NULL not allowed13110

Not a valid license for this product.13133

Was not able to connect to master. For more de-
tails about 21xxx errors, see the appendix of

Communication error21xxx

solidDB Administration Guide titled "Error
Codes".

Message is already active.25005

Publication not found25010

Database is not a replica database25019

Database is not a master database.25020

Replica not registered.25023

Message is in use.25035

485

E.1.4 SYNC_REGISTER_PUBLICATION

DescriptionTextRC

You must run this stored procedure with autocom-
mit off.

Autocommit not allowed.25056

Already registered to publication.25072

E.1.5 SYNC_UNREGISTER_PUBLICATION

CALL SYNC_UNREGISTER_PUBLICATION (
 replica_catalog_name, -- WVARCHAR
 publication_name, -- WVARCHAR
 drop_data -- INTEGER
)

EXECUTES ON: replica.

The SYNC_UNREGISTER_PUBLICATION() system procedure unregisters a publication. If the drop_data
flag is set to a non-zero value, then all subscriptions to the publication are automatically dropped.

If the replica catalog name is NULL, then the current catalog is used.

If the user has uncommitted changes, then the call will fail with an error.

This system procedure does not return a resultset.

Table E.5. SYNC_UNREGISTER_PUBLICATION Error Codes

DescriptionTextRC

No privilege for operation13047

Only the catalog name can be NULL; all other
parameters must be non-NULL.

NULL not allowed13110

Not a valid license for this product.13133

Was not able to connect to master. For more de-
tails about 21xxx errors, see the appendix of

Communication error21xxx

solidDB Administration Guide titled "Error
Codes".

Message is already active.25005

Publication not found.25010

486

E.1.5 SYNC_UNREGISTER_PUBLICATION

DescriptionTextRC

Database is not a replica database.25019

Database is not a master database.25020

Replica not registered.25023

User has made some changes that are not yet
committed.

Transaction is active, operation failed.25031

Message is in use.25035

You must run this stored procedure with autocom-
mit off.

Autocommit not allowed.25056

Not registered to publication.25071

E.1.6 SYNC_SHOW_SUBSCRIPTIONS

CREATE PROCEDURE SYNC_SHOW_SUBSCRIPTIONS (
publication_name -- WVARCHAR
)

EXECUTES ON: replica.

Often it is useful for the application to know which subscriptions (i.e. publication name and parameters as
string representation) of a publication are active in replica or master database(s). This functionality is available
in both master and replica catalogs. Use this function (SYNC_SHOW_SUBSCRIPTIONS) in the replica
catalog. Use the function SYNC_SHOW_REPLICA_SUBSCRIPTIONS in the master catalog.

The resultset of this procedure call is:

Table E.6. CREATE PROCEDURE SYNC_SHOW_SUBSCRIPTIONS Result Set

DescriptionData TypeColumn Name

Publication name and parameters as
a string

WVARCHARSUBSCRIPTION

Time of last subscription.TIMESTAMPSUBSCRIPTION_TIME

Table E.7. SYNC_SHOW_SUBSCRIPTIONS Error Codes

DescriptionTextRC

No privilege for operation13047

487

E.1.6 SYNC_SHOW_SUBSCRIPTIONS

DescriptionTextRC

Not a valid license for this product.13133

Replica not found.25009

Publication not found25010

Database is not a replica database25019

Database is not a master database.25020

Replica not registered.25023

Not registered to publication.25071

See Also:

Section E.1.7, “SYNC_SHOW_REPLICA_SUBSCRIPTIONS”.

E.1.7 SYNC_SHOW_REPLICA_SUBSCRIPTIONS

Syntax in master:

CREATE PROCEDURE SYNC_SHOW_REPLICA_SUBSCRIPTIONS (
 replica_name, -- WVARCHAR
 publication_name -- WVARCHAR
)

EXECUTES ON: master.

Often it is useful for the application to know which subscriptions (i.e. publication name and parameters as
string representation) of a publication are active in a specified replica database(s). This functionality is
available in both master and replica catalogs.

If the publication name is NULL, then subscriptions to all publications are listed.

The resultset of this procedure call is:

Table E.8. SYNC_SHOW_REPLICA_SUBSCRIPTIONS Result Set

DescriptionData TypeColumn Name

Replica name.WVARCHARREPLICA_NAME

Publication name and parameters as
a string

WVARCHARSUBSCRIPTION

488

E.1.7 SYNC_SHOW_REPLICA_SUBSCRIPTIONS

DescriptionData TypeColumn Name

Time of last subscription.TIMESTAMPSUBSCRIPTION_TIME

Table E.9. SYNC_SHOW_REPLICA_SUBSCRIPTIONS Error Codes

DescriptionTextRC

No privilege for operation13047

Not a valid license for this product.13133

Replica not found.25009

Publication not found25010

Database is not a replica database25019

Database is not a master database.25020

Replica not registered.25023

Not registered to publication.25071

See Also:

Section E.1.6, “SYNC_SHOW_SUBSCRIPTIONS”.

E.1.8 SYNC_DELETE_MESSAGES

CALL SYNC_DELETE_MESSAGES (
 replica_catalog_name, -- WVARCHAR
)

EXECUTES ON: replica.

If the replica catalog name is NULL, then the current catalog is used.

If a replica application creates lots of messages and does not check / handle errors properly, then there may
be lots of messages hanging. Sometimes, the right way to recover is to delete all of them, regardless of the
state of the messages, in both master and replica ends. This procedure deletes the messages in the replica
database.

This procedure does not return a resultset.

489

E.1.8 SYNC_DELETE_MESSAGES

Table E.10. SYNC_DELETE_MESSAGES Error Codes

DescriptionTextRC

No privilege for operation13047

Not a valid license for this product.13133

Message is already active.25005

Replica not found.25009

Database is not a replica database25019

Database is not a master database.25020

Message is in use.25035

See Also:

Section E.1.9, “SYNC_DELETE_REPLICA_MESSAGES”.

E.1.9 SYNC_DELETE_REPLICA_MESSAGES

CALL SYNC_DELETE_REPLICA_MESSAGES(
 master_catalog_name -- WVARCHAR,
 replica_name -- WVARCHAR
)

EXECUTES ON: master.

If a replica application creates lots of messages and does not check / handle errors properly, then there are
lots of messages hanging. Sometimes, the right way to recover is to delete all of them, regardless of the state
of the messages, in both master and replica ends. This procedure deletes the messages of a specified replica
in the master database. The master_catalog_name parameter specifies the catalog in the master database from
which the messages of the specified replica are searched. If the master_catalog_name is set to NULL, the
current catalog is used.

This procedure does not return a resultset.

Table E.11. SYNC_DELETE_REPLICA_MESSAGES Error Codes

DescriptionTextRC

No privilege for operation13047

Not a valid license for this product.13133

490

E.1.9 SYNC_DELETE_REPLICA_MESSAGES

DescriptionTextRC

Message is already active.25005

Replica not found.25009

Database is not a replica database25019

Database is not a master database.25020

Message is in use.25035

See Also:

Section E.1.8, “SYNC_DELETE_MESSAGES”.

E.2 Miscellaneous Stored Procedures

E.2.1 SYS_GETBACKGROUNDJOB_INFO

CREATE PROCEDURE SYS_GETBACKGROUNDJOB_INFO(
 jobid INTEGER)
RETURNS(
 ID INTEGER,
 STMT WVARCHAR,
 USER_ID INTEGER,
 ERROR_CODE INTEGER,
 ERROR_TEXT INTEGER)

The user can retrieve information from the table SYS_BACKGROUNDJOB_INFO using either an SQL SE-
LECT statement or by calling the system stored procedure SYS_GETBACKGROUNDJOB_INFO. The pro-
cedure SYS_GETBACKGROUNDJOB_INFO returns the row that matches the given jobid. The jobid is the
job ID of the START AFTER COMMIT statement that was executed. (The job ID is returned by the server
when the START AFTER COMMIT statement is executed.)

491

E.2 Miscellaneous Stored Procedures

492

Appendix F. System Events
This chapter documents System Events. These events are provided with the solidDB to allow programs to be
notified when certain actions occur. You can use these events to monitor the progress of activities such as
synchronization between master and replica databases.

These events follow most of the same rules as any other events. For information about events in general, see

• Section B.12, “CREATE EVENT”

• Section B.12, “CREATE EVENT”, which describes how to post events and wait on events.

• Chapter 4, Stored Procedures, Events, Triggers, and Sequences, which discusses events extensively.

Because these events are pre-defined, you do not create them. Furthermore, you should not post any system
event. You should only wait on system events.

Many, although not all, system events have the same five parameters:

• ename: The event name.

• postsrvtime: The time that the server posted the event.

• uid: The user ID (if applicable).

• numdatainfo: Miscellaneous numeric data — the exact meaning depends upon the event. For example,
the event SYS_EVENT_BACKUP is posted both when a backup is started and when a backup is completed.
The value in the numdatainfo parameter indicates which case applies — i.e. whether the backup has just
started or has just completed. This parameter may be NULL if there is no numeric data.

• textdata: Miscellaneous text data — the exact meaning depends upon the event. This parameter may
be NULL if there is no numeric data.

This appendix contains the following tables:

1. Miscellaneous Events

2. Errors that cause the SYS_EVENT_ERROR event to be posted.

3. Conditions or warnings that cause the SYS_EVENT_MESSAGES event to be posted.

493

F.1 Miscellaneous Events
The following events are mostly related to the server's internal scheduling and "housekeeping". For example,
there are events related to backups, checkpoints, and merges. Although users do not post these events, in many
cases users may indirectly cause events, for example when requesting a backup, or when turning on "Main-
tenance Mode". You can monitor these events if you want.

Table F.1. Miscellaneous Events

PARAMETERSEVENT DESCRIPTIONEVENT NAME

ENAME WVARCHAR,The system has started or com-
pleted a backup operation. The

SYS_EVENT_BACKUP

POSTSRVTIME TIMESTAMP,"state" parameter (NUM-
DATAINFO) indicates:

UID INTEGER,

0: backup completed.
NUMDATAINFO INTEGER,

1: backup started.
TEXTDATA WVARCHAR

Note that the server also posts a
second event
(SYS_EVENT_MESSAGES) when
it starts or completes a backup.

ENAME WVARCHAR,A backup operation has been reques-
ted (but has not yet started).

SYS_EVENT_BACKUPREQ

POSTSRVTIME TIMESTAMP,
If the user application's callback
function returns non-zero, then
backup is not performed.

UID INTEGER,

NUMDATAINFO INTEGER,

This event can be caught by the
user only if the user is using the
AcceleratorLib.

TEXTDATA WVARCHAR

None of the parameters are used.

ENAME WVARCHAR,The system has started or com-
pleted a checkpoint operation.

SYS_EVENT_CHECKPOINT

POSTSRVTIME TIMESTAMP,
If the system started a checkpoint,
then the "state" parameter (NUM- UID INTEGER,

494

F.1 Miscellaneous Events

PARAMETERSEVENT DESCRIPTIONEVENT NAME

NUMDATAINFO INTEGER,DATAINFO) is 1, and the message
(TEXTDATA) parameter is "star-
ted". TEXTDATA WVARCHAR

If the system completed a check-
point, then the "state" parameter
(NUMDATAINFO) is 0, and the
message (TEXTDATA) parameter
is "completed".

ENAME WVARCHAR,A checkpoint operation has been
requested (but has not yet started).

SYS_EVENT_CHECKPOINTREQ

POSTSRVTIME TIMESTAMP,Checkpoints are typically executed

UID INTEGER,
each time a certain number of log
writes has completed.

NUMDATAINFO INTEGER,If the user application's callback
function returns non-zero, then the
merge is not performed.

TEXTDATA WVARCHAR

This event can be caught by the
user only if the user is using the
AcceleratorLib.

None of the parameters are used.

ENAME WVARCHAR,Some type of server error has oc-
curred. The message parameter

SYS_EVENT_ERROR

POSTSRVTIME TIMESTAMP,(TEXTDATA) contains the error

UID INTEGER,
text. See Section F.2, “Errors that
Cause SYS_EVENT_ERROR” for

NUMDATAINFO INTEGER,
a list of server errors that can cause
this event to be posted.

TEXTDATA WVARCHAR

ENAME WVARCHAR,The system is idle. (Note that some
tasks have a priority of "idle" and

SYS_EVENT_IDLE

POSTSRVTIME TIMESTAMP,are only run when the system is not

UID INTEGER,
running any other tasks. Because
very low priority tasks may be run-

NUMDATAINFO INTEGER,
ning in an "idle" system, the system

495

F.1 Miscellaneous Events

PARAMETERSEVENT DESCRIPTIONEVENT NAME

is not necessarily truly idle in the
sense of not doing anything.)

TEXTDATA WVARCHAR

This event can be caught by the
user only if the user is using the
AcceleratorLib.

None of the parameters are used.

ENAME WVARCHAR,There has been an illegal login at-
tempt. The username

SYS_EVENT_ILL_LOGIN

POSTSRVTIME TIMESTAMP,(TEXTDATA) and userid (NUM-

UID INTEGER,
DATAINFO) indicate the user who
tried to log in.

NUMDATAINFO INTEGER,

TEXTDATA WVARCHAR

node_name WVARCHAR.When the sync mode changes from
NORMAL to MAINTENANCE,

SYNC_MAINTEN-
ANCEMODE_BEGIN

the server will send this system
event. The node_name is the name
of the node in which maintenance
mode started. (Remember that a
single solidDB server can have
multiple "nodes" (catalogs).) For
more details about sync mode, see
Section B.75.11.3, “SET SYNC
MODE”.

node_name WVARCHARWhen the sync mode changes from
MAINTENANCE to NORMAL,

SYNC_MAINTEN-
ANCEMODE_END

the server will send this system
event. The node_name is the name
of the node in which maintenance
mode started. (Remember that a
single solidDB server can have
multiple "nodes" (catalogs).) For
more details about sync mode, see
Section B.75.11.3, “SET SYNC
MODE”.

496

F.1 Miscellaneous Events

PARAMETERSEVENT DESCRIPTIONEVENT NAME

ENAME WVARCHAR,An event associated with the
"merge" operation (merging data

SYS_EVENT_MERGE

POSTSRVTIME TIMESTAMP,from the Bonsai Tree to the main

UID INTEGER,
storage tree) has occurred. The
parameter STATE (NUM-
DATAINFO) gives more details:

NUMDATAINFO INTEGER,

0: stop the merge
TEXTDATA WVARCHAR

1: start the merge

2: merge progressing

3: merge accelerated.

ENAME WVARCHAR,A merge operation has been reques-
ted (but has not yet started).

SYS_EVENT_MERGEREQ

POSTSRVTIME TIMESTAMP,
If the user application's callback
function returns non-zero, then the
merge is not performed.

UID INTEGER,

NUMDATAINFO INTEGER,

This event can be caught by the
user only if the user is using the
AcceleratorLib.

TEXTDATA WVARCHAR

None of the parameters are used.

ENAME WVARCHAR,This event is posted when the serv-
er has a message (error message or

SYS_EVENT_MESSAGES

POSTSRVTIME TIMESTAMP,warning message) to log to

UID INTEGER,
solerror.out or
solmsg.out. In this case, the

NUMDATAINFO INTEGER,
TEXTDATA contains the message
text and NUMDATAINFO the

MESSAGE WVARCHARcode. If the message to be written
is an error, then both
SYS_EVENT_ERROR and
SYS_EVENT_MESSAGES will
be posted. If the message is only a
warning, then only
SYS_EVENT_MESSAGES is

497

F.1 Miscellaneous Events

PARAMETERSEVENT DESCRIPTIONEVENT NAME

posted. For a list of the warnings
that can cause
SYS_EVENT_MESSAGES, see
Section F.3, “Conditions or Warn-
ings that Cause
SYS_EVENT_MESSAGES”.

ENAME WVARCHAR,Event sent with the admin com-
mand 'notify'.

SYS_EVENT_NOTIFY

POSTSRVTIME TIMESTAMP,

UID INTEGER,

NUMDATAINFO INTEGER,

TEXTDATA WVARCHAR

ENAME WVARCHAR,This event is posted if a configura-
tion parameter is changed with the
command

SYS_EVENT_PARAMETER

POSTSRVTIME TIMESTAMP,

UID INTEGER,ADMIN COMMAND 'paramet-
er...';

NUMDATAINFO INTEGER,

The parameter MESSAGE
(TEXTDATA) contains the section TEXTDATA WVARCHAR

name (e.g. SRV) and the parameter
name.

ENAME WVARCHAR,This event indicates that there are
rows that need to be merged from

SYS_EVENT_ROWS2MERGE

POSTSRVTIME TIMESTAMP,the Bonsai Tree to the main storage

UID INTEGER,
tree. The rows parameter (NUM-
DATAINFO) indicates the number

NUMDATAINFO INTEGER,
of non-merged rows in the Bonsai
Tree.

TEXTDATA WVARCHAR

ENAME WVARCHAR,This event is posted when a START
AFTER COMMIT (SAC) fails. The

SYS_EVENT_SACFAILED

POSTSRVTIME TIMESTAMP,application can wait for this event

UID INTEGER,
and use the job ID (which is in the
NUMDATAINFO field) to retrieve

498

F.1 Miscellaneous Events

PARAMETERSEVENT DESCRIPTIONEVENT NAME

NUMDATAINFO INTEGER,the error message from the system
table SYS_BACKGROUND-

TEXTDATA WVARCHARJOB_INFO. (The job ID in NUM-
DATAINFO matches the job ID
that is returned when the START
AFTER COMMIT statement is ex-
ecuted.)

ENAME WVARCHAR,A shutdown request has been re-
ceived. If the user application's

SYS_EVENT_SHUTDOWNREQ

POSTSRVTIME TIMESTAMP,callback function returns non-zero,
then shutdown is not performed.

UID INTEGER,

This event can be caught by the
user only if the user is using the
AcceleratorLib.

NUMDATAINFO INTEGER,

TEXTDATA WVARCHAR

None of the parameters are used.

ENAME WVARCHAR,This event is posted when monitor-
ing settings are changed.

SYS_EVENT_STATE_MONITOR

POSTSRVTIME TIMESTAMP,
State (NUMDATAINFO) is one of
the following: UID INTEGER,

NUMDATAINFO INTEGER,0: monitoring off.

TEXTDATA WVARCHAR1: monitoring on.

UID is the user ID of the user for
whom monitoring was turned on or
off.

ENAME WVARCHAR,This event is posted when the
"state" of the database is changed.

SYS_EVENT_STATE_OPEN

POSTSRVTIME TIMESTAMP,The parameter STATE (NUM-

UID INTEGER,
DATAINFO) indicates the new
state:

NUMDATAINFO INTEGER,0: Closed. No new connections al-
lowed.

TEXTDATA WVARCHAR

499

F.1 Miscellaneous Events

PARAMETERSEVENT DESCRIPTIONEVENT NAME

1: Opened: New connections al-
lowed.

ENAME WVARCHAR,This event is posted when a server
shutdown is started. Note that the

SYS_EVENT_STATE_SHUT-
DOWN

POSTSRVTIME TIMESTAMP,NUMDATAINFO and

UID INTEGER,
TEXTDATA parameters have no
useful information.

NUMDATAINFO INTEGER,

TEXTDATA WVARCHAR

ENAME WVARCHAR,Server trace is turned on or off withSYS_EVENT_STATE_TRACE

POSTSRVTIME TIMESTAMP,ADMIN COMMAND 'trace';

UID INTEGER,The parameter STATE (NUM-
DATAINFO) indicates the new
trace state: NUMDATAINFO INTEGER,

TEXTDATA WVARCHAR0: tracing off.

1: tracing on.

ENAME WVARCHAR,This event is posted when an "AT"
command (i.e. a timed command)

SYS_EVENT_TMCMD

POSTSRVTIME TIMESTAMP,is executed. The message parameter

UID INTEGER,
(TEXTDATA) contains the com-
mand.

NUMDATAINFO INTEGER,

TEXTDATA WVARCHAR

ENAME WVARCHAR,This event is currently not used.SYS_EVENT_TRX_TIMEOUT

POSTSRVTIME TIMESTAMP,

UID INTEGER,

NUMDATAINFO INTEGER,

TEXTDATA WVARCHAR

500

F.1 Miscellaneous Events

PARAMETERSEVENT DESCRIPTIONEVENT NAME

ENAME WVARCHAR,The parameter REASON (NUM-
DATAINFO) contains the reason
for the event:

SYS_EVENT_USERS

POSTSRVTIME TIMESTAMP,

UID INTEGER,0: User connected.

NUMDATAINFO INTEGER,1: User disconnected.

TEXTDATA WVARCHAR2: User disconnected abnormally.

4: User disconnected because of
timeout.

F.2 Errors that Cause SYS_EVENT_ERROR
The table below shows the errors that can cause the server to post the event SYS_EVENT_ERROR.

The numbers in the "Error Code" column match the error code numbers in the appendix "Error Codes" in the
solidDB Administration Guide. These values get passed in the NUMDATAINFO event parameter.

Table F.2. Errors that Cause SYS_EVENT_ERROR

Error descriptionError code

Shutdown aborted; denied by user callback30104

Merge not started; denied by user callback30208

Checkpoint not started; denied by user callback30284

Backup start failed. Shutdown is in progress30302

Backup start failed. Backup is already active30302

Backup aborted30303

Backup failed. <error description>30304

Backup not started; denied by user callback30305

Backup not started; Backup is not supported on diskless server.30306

Backup not started, index check failed. Errors written to file ssdebug.log.30307

AT command failed. <reason>30360

Log file write failure.30403

501

F.2 Errors that Cause SYS_EVENT_ERROR

Error descriptionError code

Failed to save configuration file <file name>30454

Network backup failed. <reason>30573

<Server RPC error message>30640

F.3 Conditions or Warnings that Cause
SYS_EVENT_MESSAGES
The table below shows the warning messages that can cause the server to post the event
SYS_EVENT_MESSAGES.

Table F.3. Warnings that Cause SYS_EVENT_MESSAGES

Error descriptionError code

User '<username>' failed to connect, version mismatch. Client version <version>,
server version <version>.

30010

User '<username>' failed to connect, collation version mismatch.30011

User '<username>' failed to connect, there are too many connected clients.30012

Server is in fatal state, no new connections are allowed30020

Checkpoint creation not started because shutdown is in progress.30282

Checkpoint creation not started because it's disabled.30283

Backup completed successfully.30300

Note that the server also posts a second event (SYS_EVENT_BACKUP) when it
starts or completes a backup.

Backup started to <directory path>.30301

Note that the server also posts a second event (SYS_EVENT_BACKUP) when it
starts or completes a backup.

Server noticed time inconsistency during at-command execution. If the system
time has been changed, please restart server.

30359

Illegal at command <command> ignored.30361

Illegal immediate at command <command> ignored.30362

Unable to open message log file 'file name'30405

502

F.3 Conditions or Warnings that Cause SYS_EVENT_MESSAGES

Error descriptionError code

Unable to reserve requested <number> memory blocks for external sorter.30800

Only <number> memory blocks were available. SQL: <sql statement>

Unable to reserve requested <number> memory blocks for external sorter.30801

Only <number> memory blocks were available.

F.4 HotStandby Events
For a description of events related to HotStandby, see solidDB High Availability User Guide.

F.5 SmartFlow Synchronization Events
For a description of events related to SmartFlow Synchronization, see solidDB SmartFlow Data Replication
Guide.

503

F.4 HotStandby Events

504

Glossary
This glossary gives you a description of the terminology used in this guide.

A
Application Programming Interface (API)

An API is a way for one piece of code to use another piece of code. In the case of solidDB, client programs
use an API (such as ODBC or JDBC) to communicate with the server and make requests of it. For example,
your client application program may compose an SQL query and then use an ODBC or JDBC function
call to send that query to the server for processing.

C
Client/server computing

Client/server computing divides a large piece of software into modules that need not all be executed
within the same memory space nor on the same processor. The calling module becomes the 'client' that
requests services, and the called module becomes the 'server' that provides services. Client and server
processes exchange information by sending messages through a computer network. They may run on
different hardware and software platforms as appropriate for their special functions.

Communication protocol
A communication protocol is a set of rules and conventions used in the communication between servers
and clients. The server and client have to use the same communication protocol in order to establish a
connection. TCP/IP is an example of a common communication protocol.

D
Database administrator

The database administrator is a person responsible for tasks such as:

• managing users, tables, and indices

• backing up data

• allocating disk space for the database files

505

Database Management System (DBMS)
A DBMS is a system that stores information in and retrieves information from a database. A DBMS
typically consists of a database server, administration utilities, an application interface, and development
tools.

Database procedures (DBMS)
See stored procedures.

I
Index

An index of records has an entry for each key field (for example, employee name, identification number,
etc.) and the location of the record. Indexes are used to speed up access to tables. The database engine
uses indexes to access the rows in a table directly. Without indexes, the engine would have to search the
whole contents of a table to find the desired row. A single table can have more than one index; however,
adding indexes does slow down write operations, such as inserts, deletes, and updates on that table. There
are two kinds of indexes: non unique indexes and unique indexes. A unique index is an index where all
key values are unique.

O
Open Database Connectivity (ODBC)

ODBC is a programming interface standard for SQL database programs. solidDB offers a native ODBC
programming interface.

Optimizer Hints
Optimizer hints (which are an extension of SQL) are directives specified through embedded pseudo
comments within query statements. The Optimizer detects these directives or hints and bases its query
execution plan accordingly. Optimizer hints allow applications to be optimized under various conditions
to the data, query type, and the database. They not only provide solutions to performance problems occa-
sionally encountered with queries, but shift control of response times from the system to the user.

R
Relational database management system (RDBMS)

solidDB is an RDBMS, which stores and retrieves information that is organized into two-dimensional
tables. This name derives from the relational theory that formalizes the data manipulation requests as set
operations and allows mathematical analysis of these sets. RDBMSs typically support the SQL language
for data manipulation requests.

506

S
SQL Access Group's Call Level Interface (SAG CLI)

SAG CLI is a programming interface standard that defines the functions that are used to submit dynamic
SQL clauses to a database server for execution. The ODBC interface is also based on SAG CLI. The
solidDB SQL API conforms to the SAG CLI standard.

Stored procedures
Stored procedures allow programmers to split the application logic between the client and the server.
These procedures are stored in the database, and they accept parameters in the activation call from the
client application. This arrangement is used by intelligent transactions that are implemented with calls
to stored procedures.

Structured Query Language (SQL)
SQL is a standardized query language designed for handling database requests and administration. The
SQL syntax used in solidDB is based on the ANSI X3H2-1989 Level 2 standard including important
ANSI X3H2-1992 (SQL-92) extensions. Refer to Appendix B, solidDB SQL Syntax, for a more formal
definition of the syntax.

T
Triggers

Triggers are pieces of logic that solidDB automatically executes when a user attempts to change the data
in a table. When a user modifies data within the table, the trigger that corresponds to the command (such
as insert, delete, or update) is activated.

507

508

Index
Symbols
%, 423
* (asterisk), 412
+ (plus), 412, 415
- (minus), 412
/ (slash), 412
< (less than), 410
<= (less than or equal to), 410
<> (not equal to), 410
= (equal to), 410
> (greater than), 410
>= (greater than or equal to), 410
_ (underscore), 423
|| (concatenation operator), 415

A
ABS, 416
ACCESS RIGHTS, 60
access rights

publications, 322, 368
registration user, 393

ACOS, 416
ADD CONSTRAINT, 158
ADMIN COMMAND

abort, 219
assertexit, 219
backup, 219
backuplist, 219
backupserveron, 219
checkpointing, 219
close, 220
commands, 217
describe, 220
errorcode, 220
errorexit, 220
filespec, 220
help, 220

hotstandby, 221
info, 221
makecp

and checkpoint, 222
memory, 223
messages, 223
monitor, 223
netbackup, 223
netbackuplist, 224
netstat, 224
notify, 224
open, 224
parameter, 224
perfmon, 225
pid, 227
proctrace, 227
protocols, 227
runmerge, 228
save parameters, 228
shutdown, 228
sqllist, 228
startmerge, 229
status, 228
throwout, 229
tid, 229
trace, 229
userid, 229
userlist, 230
usertrace, 232
version, 233

ADMIN EVENT, 233
ALL (keyword)

PROPAGATE TRANSACTIONS, 337
ALTER TABLE SET HISTORY COLUMNS, 236
ALTER TABLE SET NOSYNCHISTORY

described, 238
ALTER TABLE SET SYNCHISTORY

described, 238
ALTER TABLE statement, 234
ALTER TRIGGER statement, 104, 240
ALTER USER statement, 241

509

amount of memory used by in-memory tables and in-
dexes, 221
AND (operator), 47, 411
API

defined, 505
APPEND (keyword), 336
Application Programming Interface

defined, 505
AS, 29
AS caluse in SELECT statement, 29
ASCending, 151
ASCII, 415
ASIN, 416
ATAN, 416
ATAN2, 417
autocommit, 260
AVG (function), 413

B
backup

and SYS_EVENT_BACKUP, 494
batch inserts and updates

optimizing, 203
bcktime, 221
BEGIN, 254
BIGINT data type, 211
BINARY

using CAST to enter values, 213
BINARY data type, 212
Binary Data Types, 212
BIT_AND function (bit-wise AND operator), 420
BLOB, 24, 215

using CAST to enter values, 213
BLOBs and CLOBs, 215
bookmarks

dropping, 281, 309
bulletin board, 318

(see also parameter bulletin board)

C
CALL

example of using with EXECDIRECT and para-
meter, 271

CALL statement, 243
invoking procedures, 38

candidate key, 153
CASCADE, 148, 298, 305
CASCADE keyword in REVOKE statements, 367
CASCADED

reserved word, 438
CASE, 29, 414
CAST, 30, 413, 414

entering binary values with, 213
catalogs

creating, 162, 247
deleting, 163
described, 160

CEILING, 417
CHAR, 415
CHAR data type, 209
CHAR LARGE OBJECT data type, 210
CHAR VARYING data type, 209
CHARACTER data type, 209
Character Data Types, 209, 210
CHARACTER LARGE OBJECT data type, 210
CHARACTER VARYING data type, 209
CHECK, 158
checkpoint

and 'makecp' command, 222
and SYS_EVENT_CHECKPOINT, 494

Client-Server Architecture
described, 11
multi-user capability, 11

CLOB, 215
CLOB data type, 210
clustering, 151
clustering key, 447
COALESCE, 414
column, 7, 15
columns

adding to a table, 148
deleting from a table, 148

COLUMNS system view, 475

510

commit block
defining refresh size, 351, 357

COMMIT statements
stored procedures, 73

COMMIT WORK, 12, 34
COMMIT WORK statement, 247
COMMITBLOCK (keyword)

DROP SUBSCRIPTION, 307
MESSAGE FORWARD, 351
MESSAGE GET REPLY, 357
REFRESH, 364

committing work
after altering table, 149
after altering users and roles, 145

Communication protocol
defined, 505

Comparison operators
described, 47

CONCAT, 415
concatenated indexes, 201
CONCURRENCY, 169
Concurrency control

optimistic, 169
pessimistic, 169
PESSIMISTIC vs. OPTIMISTIC, 169
purpose, 168
setting, 166

mixed, 166
pessimistic, 166

Concurrency Control and Locking, 167
Concurrency control mode

displaying, 452
MAINMEMORY, 452
MAINMEMORY PESSIMISTIC, 452
OPTIMISTIC, 452
PESSIMISTIC, 452

Conditions or warnings that cause
SYS_EVENT_ERROR, 502
configuring synchronozation

setting system parameters, 390
connect string

changing to master name, 385

ConnectStrForMaster, 246
constraints

foreign key, 285
Control structures

in stored procedures, 49
CONVERT_CHAR, 413
CONVERT_DATE, 413
CONVERT_DECIMAL, 413
CONVERT_DOUBLE, 413
CONVERT_FLOAT, 413
CONVERT_INTEGER, 413
CONVERT_LONGVARCHAR, 413
CONVERT_NUMERIC, 413
CONVERT_REAL, 413
CONVERT_SMALLINT, 413
CONVERT_TIME, 413
CONVERT_TIMESTAMP, 413
CONVERT_TINYINT, 413
CONVERT_VARCHAR, 413
CONVERTORSTOUNIONS, 382
COS, 417
COT, 417
COUNT (function), 413
cptime, 221
CREATE CATALOG statement, 162, 247
CREATE EVENT statement, 125, 250
CREATE INDEX statement, 253
CREATE PROCEDURE statement, 254

declare section, 43
parameter section, 38

CREATE PUBLICATION
described, 271

CREATE ROLE statement, 276
CREATE SCHEMA statement, 276
CREATE SEQUENCE statement, 123, 279
CREATE SYNC BOOKMARK

described, 281
CREATE TABLE statement, 282
CREATE TRIGGER statement, 78, 286
CREATE USER statement, 296
CREATE VIEW statement, 297
creating

511

publications, 271
CURDATE, 417
CURRENT_CATALOG (system function), 420
CURRENT_SCHEMA (system function), 420
CURRENT_USERID (system function), 420
CURSORNAME, 254, 264, 265

example usage, 265, 268
Cursors

closing in stored procedures, 65
default management in stored procedures, 74
droping in stored procedures, 65
executing in stored procedures, 63
fetching in stored procedures, 64
handling in stored procedures, 62
in stored procedures, 75
parameter markers, 68
preparing in stored procedures, 63

CURTIME, 418

D
data

exporting to file, 313
importing from a file, 329
returning in a stored procedure, 57

data management
using solidDB SQL, 165

data types, 17, 420
solidDB SQL, 139
supported, 209

database
column, 7, 15
free space in, 221
relational, 7
row, 7, 15
table, 7, 15

Database Management System
defined, 506

database objects
managing, 159

date and time literals, 421
DATE data type, 213

date time functions, 417
DAYNAME, 418
DAYOFMONTH, 418
DAYOFWEEK, 418
DAYOFYEAR, 418
dbfreesize, 221
DBMS

defined, 506
DBMS level errors

recovering, 344
recovering from, 355

dbsize, 221
DECIMAL data type, 212
DEFAULT, 58
DEFAULT (in START AFTER COMMIT), 401
Deferred Procedure Calls, 107
DEGREES, 417
DELETE (positioned) statement, 298
DELETE statement, 297
deleting

failed messages, 344
messages, 342

DESCending, 151
Diagnosing poor performance

diagnosis, 206
solutions, 206
symptoms, 206

DIFFERENCE, 417
Differences between SET and SET TRANSACTION,
395
DOUBLE data type, 211, 214
DROP BOOKMARK

described, 281
DROP CATALOG statement, 298
DROP CONSTRAINT, 158
DROP EVENT statement, 125, 299
DROP INDEX statement, 299
DROP MASTER

described, 300
DROP PROCEDURE statement, 301
DROP PUBLICATION

described, 301

512

DROP PUBLICATION REGISTRATION
described, 302

DROP PUBLICATION REGISTRATION statement,
302
DROP REPLICA

described, 303
DROP ROLE statement, 305
DROP SCHEMA statement, 305
DROP SEQUENCE statement, 306
DROP SUBSCRIPTION

described, 306
DROP SYNC BOOKMARK

described, 309
DROP TABLE statement, 310
DROP TRIGGER statement, 103, 311
DROP USER statement, 311
DROP VIEW statement, 312
dropping

bookmarks, 281, 309
master database, 300
publications, 301, 302
replica databases, 303
subscriptions, 306

duplicate inserts
fixing, 355

E
EnableHints (parameter), 205
END, 254
END LOOP, 259
ending

messages, 346
Error handling

in stored procedures, 66
errors, 358

(see also fatal errors, synchronization errors)
DBMS, 344, 355
problem reporting, 190

Errors that cause SYS_EVENT_ERROR, 501
escape character, 424
escape sequencefn, 46

Evaluating application performance, 198
EVENT

dropping an event, 299
posting an event, 254
registering for an event, 254
unregistering for an event, 254
waiting on an event, 254

Events
code example, 126
using, 125
waiting on, 202

events
ADMIN EVENT command, 233
CarrierGrade option, 503

(see also HotStandby Events)
HotStandby, 503

EXCLUSIVE (lock mode), 175
exclusive locks, 169, 175
EXECDIRECT, 265

example usage, 269
using an SQL statement in a VARCHAR variable,
269

executing
failed messages, 354
messages, 348

EXP, 417
EXPLAIN PLAN FOR statement, 184, 206, 312
EXPORT SUBSCRIPTION

described, 313
expression, 412
Expressions

in stored procedures, 47
EXTRACT FROM, 418

F
fatal errors

recovering from, 358
FLOAT data type, 211
FLOOR, 417
fn

usage in {fn func_name}, 44, 56

513

FOR EACH REPLICA, 109
foreign key, 153, 154
FOREIGN KEY, 159
foreign key constraints, 285
free space in database, 221
FULL (keyword), 336
full table scan, 201
functions, 361

(see also SQL functions)
AVG, 413
COUNT, 413
MAX, 413
MIN, 413
scalar, 44
SUM, 413

Functions
for triggers, 105
SET_PARAM(), 319
stack viewing in stored procedures, 75

G
GET_PARAM()

described, 318
GET_UNIQUE_STRING, 264, 415

example usage, 265, 268, 269
GLOBAL

keyword in CREATE TABLE command, 285
GRANT EXECUTE ON statement, 76
GRANT REFRESH ON

described, 322
GRANT statement, 320

H
HINT statement, 323
hints

optimizer, 506
history table, 238
HotStandby Events, 503
HOUR, 418

I
IF statement

described, 49
IF-THEN construct

described, 49
IF-THEN-ELSE construct

described, 50
IF-THEN-ELSEIF construct

described, 50
IFNULL (system function), 420
imdbsize, 221
IMPORT

described, 329
incremental publication

specifying, 238
Index

defined, 506
primary key index, 150
secondary key index, 151

Indexes
creating, 149
creating a unique index, 150
deleting, 150
foreign key, 154
managing, 149
primary key indexes, 150
secondary key indexes, 151

indexes, 199
concatenated, 201
multi-column, 201

indexing
columns, 202

INSERT, 415
multirow, 333
using default values, 333

INSERT statement, 332
INT data type, 210
INTEGER data type, 210
Intelligent Transaction

parameter bulletin board, 372
using saved properties, 372

514

IS NULL (operator)
described, 48

L
large replicas

creating, 313
LCASE, 415
LEFT, 415
LENGTH, 415
LIKE, 284, 410, 411, 423
LIKE (in START AFTER COMMIT), 400
LOCATE, 415
Lock

EXCLUSIVE LOCK, 169, 175
SHARED LOCK, 169, 175
UPDATE LOCK, 175

lock duration, 177
lock modes

EXCLUSIVE, 175
SHARED, 175
UPDATE, 175

LOCK TABLE statement, 333
Locking

concurrency control, 167
described, 166
optimistic, 166, 169
pessimistic, 166, 169

locking mode
displaying, 452

locks
exclusive, 169, 175
shared, 169, 175
update, 175

LOG, 417
LOG10, 417
Logical conditions

described, 49
logical database, 247
Logical operators

AND, 47
described, 47

IS NULL, 48
NOT, 47, 56
OR, 47

LOGIN_CATALOG (system function), 420
LOGIN_SCHEMA (system function), 420
LOGIN_USERID (system function), 420
logsize, 221

from 'info' command, 221
LONG NATIONAL VARCHAR data type, 210
LONG VARBINARY

using CAST to enter values, 213
LONG VARBINARY data type, 212
LONG VARCHAR data type, 210
LONG WVARCHAR data type, 210
LOOP, 259
Loops

in stored procedures, 53
LTRIM, 416

M
MAINTENANCE

set sync mode maintenance, 386
Maintenance Mode, 386
Managing indexes, 149
master database, 318, 337

(see also retrieving parameter values from)
changing network name, 385
dropping, 300
granting access to publications, 322
propagating transactions to, 337
requesting reply messages from, 356
setting node name, 388
setting parameters in, 390
user information, 337

master databases
properties in, 372
revoking access to publications, 368
setting parameters in, 362

master users
downloading list of, 337

MAX (function), 413

515

MaxStartStatements (parameter), 195
MESSAGE APPEND PROPAGATE TRANSAC-
TIONS

described, 336
MESSAGE APPEND PROPAGATE WHERE

using properties, 372
MESSAGE APPEND REFRESH

described, 336
MESSAGE APPEND REGISTER PUBLICATION

described, 336
MESSAGE APPEND REGISTER REPLICA

described, 336
MESSAGE APPEND SUBSCRIBE, 336

(see also Message Append Refresh)
MESSAGE APPEND SYNC_CONFIG

described, 336
MESSAGE APPEND UNREGISTER PUBLICA-
TION

described, 336
MESSAGE APPEND UNREGISTER REPLICA

described, 336
MESSAGE BEGIN

described, 340
MESSAGE DELETE

described, 342
MESSAGE END

described, 346
MESSAGE EXECUTE

described, 348
MESSAGE FORWARD

described, 350
MESSAGE FROM REPLICA DELETE, 354

described, 344
MESSAGE FROM REPLICA EXECUTE

described, 354
MESSAGE FROM REPLICA RESTART, 356
MESSAGE GET REPLY

described, 356
messages, 344, 354

(see also error messages, failed messages, reply
messages)
beginning, 340

deleting, 342
ending, 346
executing, 348
re-executing, 348
requesting replies from the master database, 356
saving, 346
sending, 350

metadata
exporting, 313

MIN (function), 413
MINUTE, 418
miscellaneous functions, 420
MOD, 417
monitorstate, 222
MONTH, 418
MONTHNAME, 418
multi-column indexes, 201

N
NATIONAL CHAR data type, 209
NATIONAL CHARACTERdata type, 209
NATIONAL VARCHAR data type, 210
NCHAR data type, 209
NCHAR LARGE OBJECT data type, 210
NCHAR VARYING data type, 210
NCLOB data type, 210
netbackuptime, 221
Network communication

troubleshooting, 192
node

setting, 388
node-def, 58
NONUNIQUE, 112
NORMAL

set sync mode normal, 386
NOT (operator), 47, 411
NOT NULL, 28
NOTUNIQUE, 400
NOW, 418
NULL, 25
NULLIF, 414

516

Nulls
handling, 55

NUMERIC data type, 212
numeric functions, 416
numusers, 221
NVARCHAR data type, 210

O
ODBC

defined, 506
Open Database Connectivity

defined, 506
openstate, 222
optimistic locking, 166, 169
optimizer hints

using, 204
Optimizer Hints

defined, 506
optimizing batch inserts and updates, 203
OR (operator), 47, 411

P
paramaters

placing on bulletin board, 361
PUT_PARAM(), 361

parameter bulletin board
defining database-level parameters, 390
described, 361
Intelligent Transaction, 372

parameter modes, 257
Input parameters, 257
Input/output parameters, 257
Output parameters, 257

Parameters
MaxStartStatements, 195
using in triggers, 85

parameters
database-level, 319
defining persistent database-level, 390
deleting, 390
EnableHints, 205

GET_PARAM(), 318
get_param(), 319
put_param(), 319
read-only, 319
retrieving from bulletin board, 318
SimpleSQLOpt, 199
updatable, 319

passwords
changing, 143
entering, 142, 143

percent sign character, 423
performance

diagnosing problems, 206
indexes, 199
observing, 183
single-table SQL queries, 199
tuning, 197
using indexes to improve, 199

pessimistic locking, 166, 169
PI, 417
POSITION, 416
POWER, 417
PRECISION data type, 211
primary key, 148, 153

and index, 150
Primary Key Indexes, 150
primarystarttime, 222
Privileges

managing, 140
stored procedures, 76

problem reporting, 190
PROC_COUNT function

stored procedure stack, 75
PROC_NAME (N) function

stored procedure stack, 75
PROC_SCHEMA (N) function

stored procedure, 75
Procedures, 38

(see also Stored procedures)
proctrace, 194
propagating

terminated messages, 358

517

propagating transactions, 337
SAVE command, 370
setting default properties, 373
setting priority, 373

properties
assigning, 372
saving as default, 372
saving default transaction propagation criteria, 373

pseudo columns, 422
publications

creating, 271
dropping, 301, 302
granting access, 322
refreshing, 337
revoking access, 368

Push Synchronization, 108
Example, 119

PUT_PARAM()
described, 361

Q
QUARTER, 418

R
RADIANS, 417
re-executing

messages, 348
READ COMMITTED, 377
REAL data type, 211, 214
Recovery

and transaction logging, 12
recovery

DBMS level error, 344, 355
referenced table, 153
REFERENCES (keyword), 283, 284, 320, 367
referencing table, 153
Referential actions

Cascade, 157
No action, 157
Restrict, 157
Set default, 157

Set null, 157
Referential Integrity, 153, 285

and transient tables, 285
constraints, 157
dynamic constraint management, 158

REFRESH
defining commit block, 351

REFRESH statement, 363
refreshes

handling failure in the master database, 358
handling failure in the replica database, 358

refreshing
publications, 337

REGISTER EVENT statement, 367
registering

replica databases, 337
setting replica node names, 388

registrating databases
registration user, 393

relational databases, 7
Remote stored procedures, 58
REPEAT, 416
REPEATABLE READ, 377
REPLACE, 416
replica database, 319

(see also retrieving parameter values from)
refreshing from publications, 337
setting parameters in, 390

replica databases
deleting messages, 342
dropping, 303
properties in, 372
registering, 337, 388, 393
requesting reply messages from the master data-
base, 356
saving transactions, 370
setting parameters in, 362
unregistering, 337

Replica Property Names, 110
reply messages

requesting from the master database, 356
setting timeout, 351

518

RESTRICT, 148, 298, 305, 310
RESTRICT keyword in REVOKE statements, 367
RETURN keyword, 57
REVOKE (Privilege from Role or User) statement,
367
REVOKE (Role from User) statement, 367
REVOKE REFRESH ON

described, 368
REVOKE SUBSCRIBE, 368

(see also Revoke Refresh)
RIGHT, 416
roles

_SYSTEM, 142
PUBLIC, 142
SYS_ADMIN_ROLE, 142
SYS_CONSOLE_ROLE, 142
SYS_SYNC_ADMIN_ROLE, 142
SYS_SYNC_REGISTER_ROLE, 142

ROLLBACK, 12
ROLLBACK statements

stored procedures, 73
ROLLBACK WORK statement, 370
ROUND, 417
row, 7, 15
Row Value Constructors, 31
ROWID, 200
ROWNUM, 199, 422, 434
RTRIM, 416
RVC, 31

(see also Row Value Constructors)

S
SAVE

described, 370
SAVE DEFAULT PROPAGATE PROPERTY
WHERE

described, 373
SAVE DEFAULT PROPERTY

described, 373
SAVE PROPERTY

described, 372

SAVE PROPERTY statement, 372
saving

messages, 346
Scalar functions, 44

described, 44
scalar functions

described, 412
schema

creating, 163
deleting, 164

schemas
described, 161, 276

SECOND, 418
secondary key

and index, 151
Secondary Key Indexes, 151
secondarystarttime, 222
SELECT statement, 374
sending

messages, 350
Sequences

Using, 123
SERIALIZABLE, 377
sernum, 221
SERVER_INFO system view, 476
SET

differences between SET and SET TRANSAC-
TION, 395

SET CATALOG catalog_name, 377
SET CATALOG statement, 162
SET DURABILITY, 181, 377
SET HISTORY COLUMNS

described, 238
SET IDLE TIMEOUT, 377
SET ISOLATION LEVEL, 377
SET LOCK TIMEOUT, 377
SET NOSYNCHISTORY

described, 238
SET OPTIMISTIC LOCK TIMEOUT, 377
SET READ-ONLY, 377
SET READ-WRITE, 377
SET SAFENESS, 377

519

SET SCHEMA, 377
SET SCHEMA statement, 162, 380
SET SCHEMA USER statement, 380
SET SQL statement, 381
SET statement, 377

in stored procedures, 44
SET STATEMENT MAXTIME, 377
SET SYNC CONNECT, 246

described, 385
SET SYNC MODE statement, 386
SET SYNC NODE

described, 388
SET SYNC PARAMETER

described, 390
SET SYNC USER IDENTIFIED BY

described, 393
SET SYNCHISTORY, 236

described, 238
set theory, 18
SET TRANSACTION

differences between SET and SET TRANSAC-
TION, 395

SET TRANSACTION DURABILITY, 180
SET TRANSACTION statement, 395
SET TRANSACTION WRITE, 395
SET WRITE, 377
setting concurrency control, 166
Setting Lock Timeout, 167

for optimistic tables, 167
Setting the Concurrency (Locking) Mode to Optimist-
ic or Pessimistic, 173
SHARED (lock mode), 175
shared locks, 169, 175
SIGN, 417
Simple SQL Optimization, 199
SimpleSQLOpt (parameter), 199
SIN, 417
SLEEP, 420
SMALLINT data type, 210
solidDB

data management, 165
solidDB JDBC Driver

troubleshooting, 192
solidDB ODBC API

troubleshooting, 191
solidDB ODBC Driver

troubleshooting, 191
solidDB SQL

data management, 165
data types, 139
extensions, 139
functions, 140
using for database administration, 139

solidDB SQL Syntax
compliance, 139
using, 139

solidDB UNIFACE Driver
troubleshooting, 192

soltrace.out, 193
SOUNDEX, 416
space, 221
SPACE, 416
SQL

defined, 507
getting started, 15
mathematical origins of, 18
subqueries, 21
using in stored procedures, 75

SQL functions
GET_PARAM(), 318, 319
PUT_PARAM(), 361

SQL Info Facility, 183
SQL scripts, 140

sample.sql, 145
users.sql, 140

SQL statements
examples for administering indexes, 149
examples for managing database objects, 162
examples for managing indexes, 149
examples for managing users, roles, and user
privileges, 142
examples of, 145
tuning, 197
using, 139

520

SQL-92, 139
SQL-99, 139
SQL_LANGUAGES system table, 439
SQL_TSI_DAY, 418, 419
SQL_TSI_FRAC_SECOND, 418, 419
SQL_TSI_HOUR, 418, 419
SQL_TSI_MINUTE, 418, 419
SQL_TSI_MONTH, 418, 419
SQL_TSI_QUARTER, 418, 419
SQL_TSI_SECOND, 418, 419
SQL_TSI_WEEK, 418, 419
SQL_TSI_YEAR, 418, 419
SQLERRNUM (variable)

error code, 66
SQLERROR (variable)

error string, 67
SQLERROR OF cursorname (variable), 67
SQLERRSTR (variable)

error string, 66
SQLROWCOUNT (variable)

row count, 67
SQLSUCCESS (variable)

stored procedure, 66
SQRT, 417
SSC_TASK_BACKGROUND, 195
START AFTER COMMIT statement, 400

analyzing failures in, 195
tuning performance of, 195

STORE
STORE clause of the CREATE TABLE command,
285

Stored procedures
assigning values to variables, 44
autocommit, 260
CREATE PROCEDURE statement, 37
cursors, 75
declaring local variables, 43
default cursor management, 74
default values, 39
defined, 507
described, 37
error handling, 66

exiting, 57
input parameters, 38
input/output parameters, 38
loops, 53
nesting sprocedures, 71
output parameters, 38
parameter markers in cursors, 68
positioned updates and deletes, 72
privileges, 76
procedure body, 44
procedure stack viewing, 75
remote, 58
tracing facilities for, 193
transactions, 73
triggers, 84
using events, 125
using parameters, 38
using SQL, 75
using SQL in, 62

string function, 415
Strings

zero-length, 56
Structured Query Language

defined, 507
SUBSCRIBE, 336

(see also Refresh)
subscriptions

defining commit block, 357
dropping, 306
exporting, 313
importing, 329

SUBSTRING, 416
SUM (function), 413
Sync Pull Notify, 108

Example, 119
SYNC_CONFIG, 338
SYNC_DELETE_MESSAGES, 489
SYNC_DELETE_REPLICA_MESSAGES, 490
SYNC_MAINTENANCEMODE_BEGIN

event, 386
SYNC_MAINTENANCEMODE_BEGIN (event),
496

521

SYNC_MAINTENANCEMODE_END
event, 386

SYNC_MAINTENANCEMODE_END (event), 496
SYNC_REGISTER_PUBLICATION, 485
SYNC_REGISTER_REPLICA, 482
SYNC_SETUP_CATALOG, 481
SYNC_SHOW_REPLICA_SUBSCRIPTIONS, 488
SYNC_SHOW_SUBSCRIPTIONS, 487
SYNC_UNREGISTER_PUBLICATION, 486
SYNC_UNREGISTER_REPLICA, 483
SYNCHISTORY, 236
synchronization history table, 238
synchronization messages, 361
SYS_ADMIN_ROLE, 321
SYS_ATTAUTH system table, 439
SYS_BACKGROUNDJOB_INFO, 196
SYS_BACKGROUNDJOB_INFO system table, 440
SYS_BLOBS system table, 441
SYS_BULLETIN_BOARD system table, 457
SYS_CARDINAL system table, 441
SYS_CATALOGS system table, 442
SYS_CHECKSTRINGS system table, 442
SYS_COLUMNS system table, 442
SYS_COLUMNS_AUX system table, 443
SYS_DL_REPLICA_CONFIG system table, 444
SYS_DL_REPLICA_DEFAULT system table, 444
SYS_EVENT_BACKUP, 494
SYS_EVENT_BACKUPREQ, 494
SYS_EVENT_CHECKPOINT (event), 494
SYS_EVENT_CHECKPOINTREQ, 495
SYS_EVENT_ERROR, 495, 501
SYS_EVENT_IDLE, 495
SYS_EVENT_ILL_LOGIN, 496
SYS_EVENT_MERGE, 497
SYS_EVENT_MERGEREQ, 497
SYS_EVENT_MESSAGES, 497
SYS_EVENT_NOTIFY, 498
SYS_EVENT_PARAMETER, 498
SYS_EVENT_ROWS2MERGE, 498
SYS_EVENT_SACFAILED, 196, 498
SYS_EVENT_SHUTDOWNREQ, 499
SYS_EVENT_STATE_MONITOR, 499

SYS_EVENT_STATE_OPEN, 499
SYS_EVENT_STATE_SHUTDOWN, 500
SYS_EVENT_STATE_TRACE, 500
SYS_EVENT_TMCMD, 500
SYS_EVENT_TRX_TIMEOUT, 500
SYS_EVENT_USERS, 501
SYS_EVENTS system table, 445
SYS_FORKEYPARTS system table, 446
SYS_FORKEYS system table, 446
SYS_GETBACKGROUNDJOB_INFO, 196, 491
SYS_HOTSTANDBY system table, 446
SYS_KEYPARTS system table, 447
SYS_KEYS system table, 447
SYS_PROCEDURE_COLUMNS system table, 449
SYS_PROCEDURES system table, 448
SYS_PROPERTIES system table, 450
SYS_PUBLICATION_ARGS system table, 457
SYS_PUBLICATION_REPLICA_ARGS system
table, 457
SYS_PUBLICATION_REPLICA_STMTARGS
system table, 458
SYS_PUBLICATION_REPLICA_STMTS system
table, 458
SYS_PUBLICATION_STMTARGS system table,
459
SYS_PUBLICATION_STMTS system table, 459
SYS_PUBLICATIONS system table, 460
SYS_PUBLICATIONS_REPLICA system table, 460
SYS_RELAUTH system table, 450
SYS_SCHEMAS system table, 451
SYS_SEQUENCES system table, 451
SYS_SYNC_ADMIN_ROLE, 321
SYS_SYNC_BOOKMARKS system table, 461
SYS_SYNC_HISTORY_COLUMNS system table,
461
SYS_SYNC_INFO system table, 461
SYS_SYNC_MASTER_MSGINFO system table,
462
SYS_SYNC_MASTER_RECEIVED_BLOB_REFS
system table, 463
SYS_SYNC_MASTER_RECEIVED_MSGPARTS
system table, 464

522

SYS_SYNC_MASTER_RECEIVED_MSGS system
table, 464
SYS_SYNC_MASTER_STORED_BLOB_REFS
system table, 464
SYS_SYNC_MASTER_STORED_MSGPARTS
system table, 465
SYS_SYNC_MASTER_STORED_MSGS system
table, 465
SYS_SYNC_MASTER_SUBSC_REQ system table,
466
SYS_SYNC_MASTER_VERSIONS system table,
466
SYS_SYNC_MASTERS system table, 467
SYS_SYNC_RECEIVED_BLOB_ARGS system
table, 467
SYS_SYNC_RECEIVED_STMTS system table, 468
SYS_SYNC_REPLICA_MSGINFO system table,
468
SYS_SYNC_REPLICA_PROPERTIES system table,
452
SYS_SYNC_REPLICA_RECEIVED_BLOB_REFS
system table, 470
SYS_SYNC_REPLICA_RECEIVED_MSGPARTS
system table, 470
SYS_SYNC_REPLICA_RECEIVED_MSGS system
table, 471
SYS_SYNC_REPLICA_STORED_BLOB_REFS
system table, 471
SYS_SYNC_REPLICA_STORED_MSGPARTS
system table, 472
SYS_SYNC_REPLICA_STORED_MSGS system
table, 471
SYS_SYNC_REPLICA_VERSIONS system table,
472
SYS_SYNC_REPLICAS system table, 473
SYS_SYNC_SAVED_BLOB_ARGS system table,
473
SYS_SYNC_SAVED_STMTS system table, 473
SYS_SYNC_TRX_PROPERTIES system table, 474
SYS_SYNC_USERMAPS system table, 474
SYS_SYNC_USERS system table, 475
SYS_SYNONYM system table, 452

SYS_TABLEMODES system table, 452
SYS_TABLES system table, 453
SYS_TRIGGERS (system table), 105
SYS_TRIGGERS system table, 454
SYS_TYPES system table, 454
SYS_UROLE system table, 455
SYS_USERS system table, 456
SYS_VIEWS system table, 456
system functions, 419
system parameters, 319

(see also parameters)
System table

for triggers, 105
system tables, 439

described, 146
granting access, 146
viewing, 146

system views, 475

T
table, 7, 15

aliases, 21
table locks, 175, 179
tables

adding columns to, 148
committing work after altering, 149
creating, 147
deleting columns from, 148
managing, 145
removing, 147

TABLES system view, 477
TAN, 417
temporary table, 285
THEN

keyword in CASE statement, 414
TIME data type, 214
timeout

setting for reply messages, 351
TIMEOUT (keyword)

MESSAGE FORWARD, 350
MESSAGE GET REPLY, 351

523

TIMESTAMP data type, 214
TIMESTAMPADD, 418
TIMESTAMPDIFF, 419
TINYINT data type, 210
TO (keyword)

MESSAGE FORWARD, 350
tracestate, 221
Tracing facilities for stored procedures and triggers,
193
Transaction

described, 177
transaction bulletin board, 318

(see also parameter bulletin board)
Transaction durability level

choosing, 180
improving performance with, 181
setting, 180

TRANSACTION ISOLATION Levels, 178
Transaction Log, 12
transaction propagation, 336
Transactions, 34

COMMIT WORK, 12
described, 12
read-only

defining, 165
read-write

defining, 165
ROLLBACK, 12
stored procedures, 73
transaction log, 12
using triggers in, 88

transactions, 337, 370
(see also Intelligent Transactions)
assigning properties, 372
propagating, 337
saving, 370
saving default properties , 372
setting default properties for propagation, 373
setting propagation priority, 373

transient table, 285
Triggers

altering attributes, 104

code example, 98
comments and restrictions, 83, 293
creating, 78
defined, 507
dropping, 103
error handling, 96
functions for analyzing and debugging, 105
how they work, 77
nested triggers, 96
obtaining information, 105
parameter settings, 106
privileges and security, 97
procedures, 84
recursive triggers, 96
setting cache, 106
setting default or derived columns, 84
setting nested maximum, 106
tracing facilities for, 193
transactions, 88
using, 76
using parameters and variables, 85

TRIM, 416
troubleshooting

Network communication, 192
problem reporting, 190
solidDB JDBC Driver, 192
solidDB ODBC API, 191
solidDB ODBC Driver, 191
solidDB UNIFACE Driver, 192

TRUNCATE, 417
TRUNCATE TABLE statement, 403
tuning

SQL statements, 197
Tuning SQL Statements, 197
Tuning SQL Statements and Applications, 197

U
UCASE, 416
UIC (system function), 419
underline, 423
underscore, 423

524

UNIQUE, 112, 159, 400
unique constraint, 148
UNLOCK TABLE statement, 403
unregistering

replica databases, 337
UPDATE (lock mode), 175
UPDATE (Positioned) statement, 405
UPDATE (Searched) statement, 406
update locks, 175
uptime, 221
user names

reserved names, 141
user privileges, 141

granting, 143
granting administrator privileges, 145
revoking, 144

user roles, 141
administrator, 142, 145
changing password, 143
creating, 143
deleting, 143
giving a user a role, 144
granting privileges to, 143, 144
reserved role names, 141
revoking privileges from, 144
revoking the role of a user, 144
system console role, 142

users
creating, 142
deleting, 142

users and roles
committing work after altering, 145

USERS system view, 477
usertrace, 193
Using Events, 125
Using indexes to improve query performance, 199
Using SQL in stored procedures, 62
using SQL wildcards, 423

V
VARBINARY

using CAST to enter values, 213
VARBINARY data type, 212
VARCHAR data type, 209
Variables

assigning in stored procedures, 44
SQLERRNUM, 66
SQLERROR, 67
SQLERROR OF cursorname, 67
SQLERRSTR, 66
SQLROWCOUNT, 67
SQLSUCCESS, 66
using in triggers, 85

W
WCHAR data type, 209
WEEK, 419
WHEN

in case_specification, 414
keyword in event specification, 252

WHERE (keyword)
PROPAGATE TRANSACTIONS, 337

WHILE-LOOP statement
described, 53

wildcard characters, 422
WRITETRACE, 193
WVARCHAR data type, 210

Y
YEAR, 419

Z
Zero-length strings, 56

525

526

	Chapter 1. Welcome
	1.1 About This Guide
	1.1.1 Organization
	1.1.2 Audience

	1.2 Conventions
	1.2.1 About solidDB
	1.2.2 Typographic Conventions
	1.2.3 Syntax Notation

	1.3 solidDB Documentation

	Chapter 2. Database Concepts
	2.1 Relational Databases
	2.1.1 Tables, Rows, and Columns
	2.1.2 Relating Data In Different Tables

	2.2 Client-Server Architecture
	2.3 Multi-User Capability
	2.4 Transactions
	2.5 Transaction Logging and Recovery
	2.5.1 Background

	2.6 Summary

	Chapter 3. Getting Started with SQL
	3.1 Tables, Rows, and Columns
	3.2 SQL
	3.3 The Mathematical Origins of SQL
	3.4 Creating Tables with Related Data
	3.4.1 Table Aliases
	3.4.2 Subqueries

	3.5 Which Formats Are Used for Each Data Type?
	3.5.1 BLOBs (or Binary Data Types)
	3.5.2 NULL IS NOT NULL (or "How to say 'None of the above' in SQL")
	3.5.3 NOT NULL
	3.5.4 Expressions and Casts
	3.5.5 Row Value Constructors

	3.6 More about Transactions
	3.7 Summary
	3.8 Where to Find Additional Information about SQL

	Chapter 4. Stored Procedures, Events, Triggers, and Sequences
	4.1 Stored Procedures
	4.1.1 Basic Procedure Structure
	4.1.2 Naming Procedures
	4.1.3 Parameter Section
	4.1.4 Declare Section
	4.1.5 Procedure Body
	4.1.6 Assignments
	4.1.7 Expressions
	4.1.8 Control Structures

	4.2 Remote Stored Procedures
	4.2.1 ACCESS RIGHTS

	4.3 Using SQL in a Stored Procedure
	4.3.1 EXECDIRECT
	4.3.2 Using a Cursor
	4.3.3 Error Handling
	4.3.4 Parameter Markers in Cursors

	4.4 Calling other Procedures
	4.4.1 Positioned Updates and Deletes
	4.4.2 Transactions
	4.4.3 Default Cursor Management
	4.4.4 Notes on SQL
	4.4.5 Functions for Procedure Stack Viewing

	4.5 Procedure Privileges
	4.6 Using Triggers
	4.6.1 How Triggers Work
	4.6.2 Creating Triggers
	4.6.3 Keywords and Clauses
	4.6.4 Triggers Comments and Restrictions

	4.7 Triggers and Procedures
	4.7.1 Setting Default or Derived Columns
	4.7.2 Using Parameters and Variables

	4.8 Triggers and Transactions
	4.8.1 Recursion and Concurrency Conflict Errors
	4.8.2 Trigger Privileges and Security
	4.8.3 Raising Errors from Inside Triggers
	4.8.4 Trigger Example
	4.8.5 Dropping Triggers
	4.8.6 Altering Trigger Attributes
	4.8.7 Obtaining Trigger Information
	4.8.8 Trigger Functions
	4.8.9 SYS_TRIGGERS System Table
	4.8.10 Trigger Parameter Settings

	4.9 Deferred Procedure Calls
	4.9.1 Sync Pull Notify ("Push Synchronization") Example
	4.9.2 Tracing the Execution of Background Jobs
	4.9.3 Controlling Backgroung Tasks

	4.10 Using Sequences
	4.11 Using Events

	Chapter 5. Using solidDB SQL for Database Administration
	5.1 Using solidDB SQL Syntax
	5.1.1 solidDB SQL Data Types
	5.1.2 solidDB ADMIN COMMAND
	5.1.3 Using Functions

	5.2 Managing User Privileges and Roles
	5.2.1 User Privileges
	5.2.2 User Roles
	5.2.3 Examples of SQL Statements

	5.3 Managing Tables
	5.3.1 Accessing System Tables
	5.3.2 Examples of SQL Statements

	5.4 Managing Indexes
	5.4.1 Examples of SQL Statements
	5.4.2 Primary Key Indexes
	5.4.3 Secondary Key Indexes
	5.4.4 Protection Against Duplicate Indexes

	5.5 Referential Integrity
	5.5.1 Primary Keys and Candidate Keys
	5.5.2 Foreign Keys
	5.5.3 Referential Actions
	5.5.4 Dynamic Constraint Management

	5.6 Managing Database Objects
	5.6.1 Introduction
	5.6.2 Catalogs
	5.6.3 Schemas
	5.6.4 Uniquely Identifying Objects within Catalogs and Schemas
	5.6.5 Examples of SQL Statements

	Chapter 6. Managing Transactions
	6.1 Managing Transactions
	6.1.1 Defining Read-Only and Read-Write Transactions
	6.1.2 Setting Concurrency Control

	6.2 Concurrency Control and Locking
	6.2.1 The Purpose of Concurrency Control
	6.2.2 EXCLUSIVE vs. SHARED LOCKS
	6.2.3 PESSIMISTIC vs. OPTIMISTIC Concurrency Control
	6.2.4 Table Locks
	6.2.5 Lock Duration
	6.2.6 TRANSACTION ISOLATION Levels
	6.2.7 Miscellaneous Lock Information
	6.2.8 Summary of Locking Information

	6.3 Choosing the Transaction Durability
	6.3.1 Setting the Transaction Durability Level

	Chapter 7. Diagnostics and Troubleshooting
	7.1 Observing Performance
	7.1.1 SQL Info Facility
	7.1.2 The EXPLAIN PLAN FOR Statement

	7.2 Problem Reporting
	7.3 Problem Categories
	7.3.1 solidDB ODBC API Problems
	7.3.2 solidDB ODBC Driver Problems
	7.3.3 solidDB JDBC Driver Problems
	7.3.4 UNIFACE Driver for solidDB Problems
	7.3.5 Communication between a Client and Server

	7.4 Tracing Facilities for Stored Procedures and Triggers
	7.4.1 User-Definable Trace Output from Procedure Code
	7.4.2 Procedure Execution Trace

	7.5 Measuring and Improving Performance of START AFTER COMMIT Statements
	7.5.1 Tuning Performance of START AFTER COMMIT Statements
	7.5.2 Analyzing Failures in START AFTER COMMIT Statements

	Chapter 8. Performance Tuning
	8.1 Tuning SQL Statements and Applications
	8.1.1 Evaluating Application Performance
	8.1.2 Using Stored Procedure Language

	8.2 Optimizing Single-Table SQL Queries
	8.3 Using Indexes to Improve Query Performance
	8.3.1 Full Table Scan
	8.3.2 Concatenated Indexes

	8.4 Waiting on Events
	8.5 Optimizing Batch Inserts and Updates
	8.5.1 Increasing Speed of Batch Inserts and Updates

	8.6 Using Optimizer Hints
	8.7 Diagnosing Poor Performance

	Appendix A. Data Types
	A.1 Supported Data Types
	A.1.1 Character Data Types
	A.1.2 Numeric Data Types
	A.1.3 Binary Data Types
	A.1.4 Date Data Type
	A.1.5 Time Data Type
	A.1.6 Timestamp Data Type
	A.1.7 The Smallest Possible Non-Zero Numbers
	A.1.8 BLOBs and CLOBs

	Appendix B. solidDB SQL Syntax
	B.1 ADMIN COMMAND
	B.1.1 Supported in
	B.1.2 Usage

	B.2 ADMIN EVENT
	B.2.1 Usage
	B.2.2 Examples

	B.3 ALTER TABLE
	B.3.1 Usage
	B.3.2 Example

	B.4 ALTER TABLE ... SET HISTORY COLUMNS
	B.4.1 Usage
	B.4.2 Usage in Master
	B.4.3 Usage in Replica
	B.4.4 Example
	B.4.5 Return Values
	B.4.6 See Also

	B.5 ALTER TABLE ... SET SYNCHISTORY
	B.5.1 Usage
	B.5.2 Usage in Master
	B.5.3 Usage in Replica
	B.5.4 Example
	B.5.5 Return Values
	B.5.6 See Also

	B.6 ALTER TRIGGER
	B.6.1 Usage
	B.6.2 Example

	B.7 ALTER USER
	B.7.1 Usage
	B.7.2 Example

	B.8 ALTER USER
	B.8.1 Usage
	B.8.2 Usage in Master
	B.8.3 Usage in Replica
	B.8.4 Example
	B.8.5 Return Values

	B.9 CALL
	B.9.1 Supported in
	B.9.2 Usage
	B.9.3 Transactions
	B.9.4 Return Values from the Remote Procedure
	B.9.5 Access Rights for Remote Stored Procedure Calls
	B.9.6 Durability
	B.9.7 Example

	B.10 COMMIT WORK
	B.10.1 Usage
	B.10.2 Example
	B.10.3 See Also

	B.11 CREATE CATALOG
	B.11.1 Usage
	B.11.2 Examples

	B.12 CREATE EVENT
	B.12.1 Usage
	B.12.2 Example
	B.12.3 See Also

	B.13 CREATE INDEX
	B.13.1 Usage
	B.13.2 Example
	B.13.3 See Also

	B.14 CREATE PROCEDURE
	B.14.1 Usage
	B.14.2 Preparing SQL Statements
	B.14.3 Executing Prepared SQL Statements
	B.14.4 Fetching Results
	B.14.5 Closing and Dropping Cursors
	B.14.6 Checking for Errors
	B.14.7 Using Transactions
	B.14.8 Using Sequencer Objects and Event Alerts
	B.14.9 Writetrace
	B.14.10 Procedure Stack Functions
	B.14.11 Dynamic Cursor Names
	B.14.12 EXECDIRECT
	B.14.13 CREATE PROCEDURE
	B.14.14 Using the Explicit RETURN Statement
	B.14.15 Using EXECDIRECT
	B.14.16 Using CURSORNAME
	B.14.17 Using GET_UNIQUE_STRING and CURSORNAME
	B.14.18 Example 6
	B.14.19 Creating a Unique Name for a Synchronization Message
	B.14.20 Using GET_UNIQUE_STRING

	B.15 CREATE [OR REPLACE] PUBLICATION
	B.15.1 Usage
	B.15.2 Usage in Master
	B.15.3 Usage in Replica
	B.15.4 Example
	B.15.5 Return Values

	B.16 CREATE ROLE
	B.16.1 Usage
	B.16.2 Example

	B.17 CREATE SCHEMA
	B.17.1 Usage
	B.17.2 Examples

	B.18 CREATE SEQUENCE
	B.18.1 Usage
	B.18.2 Examples

	B.19 CREATE SYNC BOOKMARK
	B.19.1 Supported in
	B.19.2 Usage
	B.19.3 Usage in Master
	B.19.4 Usage in Replica
	B.19.5 Example
	B.19.6 Return Values

	B.20 CREATE TABLE
	B.20.1 Usage
	B.20.2 Example

	B.21 CREATE TRIGGER
	B.21.1 Usage
	B.21.2 Trigger Name
	B.21.3 BEFORE | AFTER Clause
	B.21.4 INSERT | UPDATE | DELETE Clause
	B.21.5 Table_name
	B.21.6 Trigger_body
	B.21.7 REFERENCING Clause
	B.21.8 {OLD | NEW} column_name AS col_identifier
	B.21.9 Triggers Comments and Restrictions

	B.22 CREATE USER
	B.22.1 Usage
	B.22.2 Example

	B.23 CREATE VIEW
	B.23.1 Usage
	B.23.2 Example

	B.24 DELETE
	B.24.1 Usage
	B.24.2 Example

	B.25 DELETE (positioned)
	B.25.1 Usage
	B.25.2 Example

	B.26 DROP CATALOG
	B.26.1 Usage
	B.26.2 Example

	B.27 DROP EVENT
	B.27.1 Usage
	B.27.2 Example

	B.28 DROP INDEX
	B.28.1 Usage
	B.28.2 Example

	B.29 DROP MASTER
	B.29.1 Usage
	B.29.2 Usage in Master
	B.29.3 Usage in Replica
	B.29.4 Examples
	B.29.5 Return Values

	B.30 DROP PROCEDURE
	B.30.1 Usage
	B.30.2 Example

	B.31 DROP PUBLICATION
	B.31.1 Usage
	B.31.2 Usage in Master
	B.31.3 Usage in Replica
	B.31.4 Example
	B.31.5 Return Values

	B.32 DROP PUBLICATION REGISTRATION
	B.32.1 Supported in
	B.32.2 Usage
	B.32.3 Usage in Master
	B.32.4 Usage in Replica
	B.32.5 Example
	B.32.6 Return Values

	B.33 DROP REPLICA
	B.33.1 Supported in
	B.33.2 Usage
	B.33.3 Usage in Master
	B.33.4 Usage in Replica
	B.33.5 Example
	B.33.6 Return Values

	B.34 DROP ROLE
	B.34.1 Usage
	B.34.2 Example

	B.35 DROP SCHEMA
	B.35.1 Usage
	B.35.2 Examples

	B.36 DROP SEQUENCE
	B.36.1 Usage
	B.36.2 Examples

	B.37 DROP SUBSCRIPTION
	B.37.1 Supported in
	B.37.2 Usage
	B.37.3 Usage in Master
	B.37.4 Usage in Replica
	B.37.5 Example

	B.38 DROP SYNC BOOKMARK
	B.38.1 Supported in
	B.38.2 Usage
	B.38.3 Usage in Master
	B.38.4 Usage in Replica
	B.38.5 Example
	B.38.6 Return Values

	B.39 DROP TABLE
	B.39.1 Usage
	B.39.2 Examples

	B.40 DROP TRIGGER
	B.40.1 Usage
	B.40.2 Examples

	B.41 DROP USER
	B.41.1 Usage
	B.41.2 Example

	B.42 DROP VIEW
	B.42.1 Usage
	B.42.2 Examples

	B.43 EXPLAIN PLAN FOR
	B.43.1 Usage
	B.43.2 Example

	B.44 EXPORT SUBSCRIPTION
	B.44.1 Supported in
	B.44.2 Usage
	B.44.2.1 Keywords and Clauses
	B.44.2.2 Usage Rules

	B.44.3 Usage in Master
	B.44.4 Usage in Replica
	B.44.5 Example
	B.44.6 Return Values

	B.45 EXPORT SUBSCRIPTION TO REPLICA
	B.45.1 Supported in
	B.45.2 Usage
	B.45.2.1 Keywords and Clauses

	B.45.3 Usage in Master
	B.45.4 Usage in Replica
	B.45.5 Example
	B.45.6 Return Values

	B.46 GET_PARAM()
	B.46.1 Supported in
	B.46.2 Usage
	B.46.3 Usage in Master
	B.46.4 Usage in Replica
	B.46.5 solidDB System Parameters
	B.46.6 Example
	B.46.7 Return Values
	B.46.8 See Also

	B.47 GRANT
	B.47.1 Usage
	B.47.2 Example
	B.47.3 See Also

	B.48 GRANT REFRESH
	B.48.1 Supported in
	B.48.2 Usage
	B.48.3 Usage in Master
	B.48.4 Usage in Replica
	B.48.5 Example
	B.48.6 Return Values

	B.49 HINT
	B.49.1 Pseudo Comment Identifier
	B.49.2 Example 1
	B.49.3 Example 2
	B.49.4 Usage
	B.49.5 Example

	B.50 IMPORT
	B.50.1 Usage
	B.50.1.1 Usage Rules

	B.50.2 Usage in Master
	B.50.3 Usage in Replica
	B.50.4 Example
	B.50.5 Return Values

	B.51 INSERT
	B.51.1 Usage
	B.51.2 Example

	B.52 LOCK TABLE
	B.52.1 Usage
	B.52.2 Examples
	B.52.3 Return Values
	B.52.4 See Also

	B.53 MESSAGE APPEND
	B.53.1 Supported in
	B.53.2 Usage
	B.53.3 Usage in Master
	B.53.4 Usage in Replica
	B.53.5 Example
	B.53.6 Return Values

	B.54 MESSAGE BEGIN
	B.54.1 Supported in
	B.54.2 Usage
	B.54.3 Usage in Master
	B.54.4 Usage in Replica
	B.54.5 Example
	B.54.6 Return Values from Master

	B.55 MESSAGE DELETE
	B.55.1 Supported in
	B.55.2 Usage
	B.55.3 Usage in Master
	B.55.4 Usage in Replica
	B.55.5 Example

	B.56 MESSAGE DELETE CURRENT TRANSACTION
	B.56.1 Supported in
	B.56.2 Usage
	B.56.3 Usage in Master
	B.56.4 Usage in Replica
	B.56.5 Example
	B.56.6 Return Values

	B.57 MESSAGE END
	B.57.1 Supported in
	B.57.2 Usage
	B.57.3 Usage in Master
	B.57.4 Usage in Replica
	B.57.5 Return Values from Replica
	B.57.6 Return Values from Master

	B.58 MESSAGE EXECUTE
	B.58.1 Supported in
	B.58.2 Usage
	B.58.3 Usage in Master
	B.58.4 Usage in Replica
	B.58.5 Result Set
	B.58.6 Example
	B.58.7 Return Values

	B.59 MESSAGE FORWARD
	B.59.1 Supported in
	B.59.2 Usage
	B.59.3 Example
	B.59.4 Return Values from Replica
	B.59.5 Return Values from Master

	B.60 MESSAGE FROM REPLICA DELETE
	B.61 MESSAGE FROM REPLICA EXECUTE
	B.61.1 Supported in
	B.61.2 Usage
	B.61.3 Usage in Master
	B.61.4 Usage in Replica
	B.61.5 Example
	B.61.6 Return Values

	B.62 MESSAGE FROM REPLICA RESTART
	B.63 MESSAGE GET REPLY
	B.63.1 Supported in
	B.63.2 Usage
	B.63.3 Usage in Master
	B.63.4 Usage in Replica
	B.63.5 Example
	B.63.6 Return Values from Replica
	B.63.7 Return Values from Master
	B.63.8 Result Set

	B.64 POST EVENT
	B.65 PUT_PARAM()
	B.65.1 Supported in
	B.65.2 Usage
	B.65.3 Usage in Master
	B.65.4 Usage in Replica
	B.65.5 Differences between "PUT_PARAM()" and "SAVE PROPERTY property_name VALUE property_value;"
	B.65.6 Example
	B.65.7 Return Values
	B.65.8 See Also

	B.66 REFRESH
	B.66.1 Usage
	B.66.2 Example
	B.66.3 Return Values

	B.67 REGISTER EVENT
	B.68 REVOKE (Role from User)
	B.68.1 Usage
	B.68.2 Example

	B.69 REVOKE (Privilege from Role or User)
	B.69.1 Usage
	B.69.2 Example
	B.69.3 See Also

	B.70 REVOKE REFRESH
	B.70.1 Supported in
	B.70.2 Usage
	B.70.3 Usage in Master
	B.70.4 Usage in Replica
	B.70.5 Example
	B.70.6 Return Values

	B.71 ROLLBACK WORK
	B.71.1 Usage
	B.71.2 Example

	B.72 SAVE
	B.72.1 Supported in
	B.72.2 Usage
	B.72.3 Usage in Master
	B.72.4 Usage in Replica
	B.72.5 Example
	B.72.6 Return Values

	B.73 SAVE PROPERTY
	B.73.1 Supported in
	B.73.2 Usage
	B.73.3 Usage in Master
	B.73.4 Usage in Replica
	B.73.5 Differences between "PUT_PARAM()" and "SAVE PROPERTY property_name VALUE property_value;"
	B.73.6 Example
	B.73.7 Return Values
	B.73.8 Result set

	B.74 SELECT
	B.74.1 Usage
	B.74.2 Examples
	B.74.3 START WITH Example
	B.74.4 LEVEL and ORDER SIBLINGS BY Example

	B.75 SET
	B.75.1 Usage
	B.75.2 Differences between SET and SET TRANSACTION
	B.75.3 SET (Read/Write Level)
	B.75.4 SET CATALOG
	B.75.5 SET DURABILITY
	B.75.6 SET ISOLATION LEVEL
	B.75.7 SET SAFENESS
	B.75.8 SET SCHEMA
	B.75.9 SET SQL
	B.75.10 SET STATEMENT MAXTIME
	B.75.11 SET SYNC
	B.75.11.1 SET SYNC master_or_replica
	B.75.11.2 SET SYNC CONNECT
	B.75.11.3 SET SYNC MODE
	B.75.11.4 SET SYNC NODE
	B.75.11.5 SET SYNC PARAMETER
	B.75.11.6 SET SYNC PROPERTY
	B.75.11.7 SET SYNC USER

	B.75.12 SET TIMEOUT
	B.75.13 SET TRANSACTION
	B.75.13.1 Usage
	B.75.13.2 Background Information on Transaction Logging and Durability
	B.75.13.3 Differences between SET and SET TRANSACTION
	B.75.13.4 Warnings Regarding Durability
	B.75.13.5 SET TRANSACTION Examples
	B.75.13.6 See Also
	B.75.13.7 SET TRANSACTION (Read/Write Level)
	B.75.13.8 SET TRANSACTION DURABILITY
	B.75.13.9 SET TRANSACTION ISOLATION LEVEL
	B.75.13.10 SET TRANSACTION SAFENESS

	B.76 START AFTER COMMIT
	B.76.1 Usage
	B.76.2 Transactions
	B.76.3 Context of the Background Statements
	B.76.4 Durability
	B.76.5 Rollback
	B.76.6 Order of Execution
	B.76.7 Examples

	B.77 TRUNCATE TABLE
	B.77.1 Usage

	B.78 UNLOCK TABLE
	B.78.1 Usage
	B.78.2 Examples of Using LOCK and UNLOCK
	B.78.3 Return Values
	B.78.4 See Also

	B.79 UNREGISTER EVENT
	B.80 UPDATE (Positioned)
	B.80.1 Usage
	B.80.2 Example

	B.81 UPDATE (Searched)
	B.81.1 Usage
	B.81.2 Example

	B.82 WAIT EVENT
	B.83 Table_reference
	B.84 Query_specification
	B.85 Search_condition
	B.86 Check_condition
	B.87 Expression
	B.88 String Functions
	B.89 Numeric Functions
	B.90 Date Time Functions
	B.91 System Functions
	B.92 Miscellaneous Functions
	B.93 Data_type
	B.94 Date and Time Literals
	B.95 Pseudo Columns
	B.96 Wildcard Characters
	B.96.1 Using SQL Wildcards
	B.96.2 Wildcard Characters as Literals

	Appendix C. Reserved Words
	Appendix D. Database System Tables and System Views
	D.1 System Tables
	D.1.1 SQL_LANGUAGES
	D.1.2 SYS_ATTAUTH
	D.1.3 SYS_BACKGROUNDJOB_INFO
	D.1.4 SYS_BLOBS
	D.1.5 SYS_CARDINAL
	D.1.6 SYS_CATALOGS
	D.1.7 SYS_CHECKSTRINGS
	D.1.8 SYS_COLUMNS
	D.1.9 SYS_COLUMNS_AUX
	D.1.10 SYS_DL_REPLICA_CONFIG
	D.1.11 SYS_DL_REPLICA_DEFAULT
	D.1.12 SYS_EVENTS
	D.1.13 SYS_FORKEYPARTS
	D.1.14 SYS_FORKEYS
	D.1.15 SYS_HOTSTANDBY
	D.1.16 SYS_INFO
	D.1.17 SYS_KEYPARTS
	D.1.18 SYS_KEYS
	D.1.19 SYS_PROCEDURES
	D.1.20 SYS_PROCEDURE_COLUMNS
	D.1.21 SYS_PROPERTIES
	D.1.22 SYS_RELAUTH
	D.1.23 SYS_SCHEMAS
	D.1.24 SYS_SEQUENCES
	D.1.25 SYS_SYNC_REPLICA_PROPERTIES
	D.1.26 SYS_SYNONYM
	D.1.27 SYS_TABLEMODES
	D.1.28 SYS_TABLES
	D.1.29 SYS_TRIGGERS
	D.1.30 SYS_TYPES
	D.1.31 SYS_UROLE
	D.1.32 SYS_USERS
	D.1.33 SYS_VIEWS

	D.2 System Tables for Data Synchronization
	D.2.1 SYS_BULLETIN_BOARD
	D.2.2 SYS_PUBLICATION_ARGS
	D.2.3 SYS_PUBLICATION_REPLICA_ARGS
	D.2.4 SYS_PUBLICATION_REPLICA_STMTARGS
	D.2.5 SYS_PUBLICATION_REPLICA_STMTS
	D.2.6 SYS_PUBLICATION_STMTARGS
	D.2.7 SYS_PUBLICATION_STMTS
	D.2.8 SYS_PUBLICATIONS
	D.2.9 SYS_PUBLICATIONS_REPLICA
	D.2.10 SYS_SYNC_BOOKMARKS
	D.2.11 SYS_SYNC_HISTORY_COLUMNS
	D.2.12 SYS_SYNC_INFO
	D.2.13 SYS_SYNC_MASTER_MSGINFO
	D.2.14 SYS_SYNC_MASTER_RECEIVED_BLOB_REFS
	D.2.15 SYS_SYNC_MASTER_RECEIVED_MSGPARTS
	D.2.16 SYS_SYNC_MASTER_RECEIVED_MSGS
	D.2.17 SYS_SYNC_MASTER_STORED_BLOB_REFS
	D.2.18 SYS_SYNC_MASTER_STORED_MSGPARTS
	D.2.19 SYS_SYNC_MASTER_STORED_MSGS
	D.2.20 SYS_SYNC_MASTER_SUBSC_REQ
	D.2.21 SYS_SYNC_MASTER_VERSIONS
	D.2.22 SYS_SYNC_MASTERS
	D.2.23 SYS_SYNC_RECEIVED_BLOB_ARGS
	D.2.24 SYS_SYNC_RECEIVED_STMTS
	D.2.25 SYS_SYNC_REPLICA_MSGINFO
	D.2.26 SYS_SYNC_REPLICA_RECEIVED_BLOB_REFS
	D.2.27 SYS_SYNC_REPLICA_RECEIVED_MSGPARTS
	D.2.28 SYS_SYNC_REPLICA_RECEIVED_MSGS
	D.2.29 SYS_SYNC_REPLICA_STORED_BLOB_REFS
	D.2.30 SYS_SYNC_REPLICA_STORED_MSGS
	D.2.31 SYS_SYNC_REPLICA_STORED_MSGPARTS
	D.2.32 SYS_SYNC_REPLICA_VERSIONS
	D.2.33 SYS_SYNC_REPLICAS
	D.2.34 SYS_SYNC_SAVED_BLOB_ARGS
	D.2.35 SYS_SYNC_SAVED_STMTS
	D.2.36 SYS_SYNC_TRX_PROPERTIES
	D.2.37 SYS_SYNC_USERMAPS
	D.2.38 SYS_SYNC_USERS

	D.3 System Views
	D.3.1 COLUMNS
	D.3.2 SERVER_INFO
	D.3.3 TABLES
	D.3.4 USERS

	D.4 Synchronization-Related Views
	D.4.1 SYNC_FAILED_MESSAGES
	D.4.2 SYNC_FAILED_MASTER_MESSAGES
	D.4.3 SYNC_ACTIVE_MESSAGES
	D.4.4 SYNC_ACTIVE_MASTER_MESSAGES

	Appendix E. System Stored Procedures
	E.1 Synchronization-Related Stored Procedures
	E.1.1 SYNC_SETUP_CATALOG
	E.1.2 SYNC_REGISTER_REPLICA
	E.1.3 SYNC_UNREGISTER_REPLICA
	E.1.4 SYNC_REGISTER_PUBLICATION
	E.1.5 SYNC_UNREGISTER_PUBLICATION
	E.1.6 SYNC_SHOW_SUBSCRIPTIONS
	E.1.7 SYNC_SHOW_REPLICA_SUBSCRIPTIONS
	E.1.8 SYNC_DELETE_MESSAGES
	E.1.9 SYNC_DELETE_REPLICA_MESSAGES

	E.2 Miscellaneous Stored Procedures
	E.2.1 SYS_GETBACKGROUNDJOB_INFO

	Appendix F. System Events
	F.1 Miscellaneous Events
	F.2 Errors that Cause SYS_EVENT_ERROR
	F.3 Conditions or Warnings that Cause SYS_EVENT_MESSAGES
	F.4 HotStandby Events
	F.5 SmartFlow Synchronization Events

	Glossary
	Index

