

Business Intelligence Solutions

Scalability: Architecting for Growth

Glen Sheffield shef@ca.ibm.com

Person to Person, Lisbon, November 2003

| January 12, 2004 |

© Copyright IBM Corporation 2002

Scalability – Definition

• How well a solution to some problem will work when the size of the problem increases.

- Source : <u>www.dictionary.com</u>

In our case – The size of the problem increases when users and/or data is added.

- Need to manage growth in a predictable manner

Scalability Principles

Scalable Database and Platform

- DB2 UDB and IBM Servers

Basic Configuration Unit"

- System components must be added in proportional manner
- CPU, Memory, I/O, interconnect

Tools to enhance and manage Scalability

- Query Patroller
- Cube Views

DB2 UDB for Linux, Unix, and Windows

 The Database Partitioning Feature (DPF) is used for scaling to larger data volumes and workloads (Known as DB2 UDB EEE prior to V8) **Enterprise Server Edition with DPF** Workgroup **Sever Edition** (WSE) Enterprise **Server Edition** (ESE)

Hardware Scalability Models

- SMP Scaleup
 - Within a Single System OS Image
 - SMP Servers
 - •e.g. IBM p690 "Regatta"
- Clustering Scale-out
 - Build larger systems from building blocks
 - Clustered, or MPP systems
 - Building blocks can be large or small
 - Requires high performance / low latency interconnect
 - e.g. IBM High Speed Switch, gigabit ethernet, InfiniBand

SMP – Scale Up

• Enhanced Scale up with DB2 Partitioning Feature

- Break the SMP into logical DB2 partitions
 - "MPP within the SMP"
 - Message passing between partitions via shared memory
- Reduced contention for resources, e.g.
 - Dedicated memory per partition
 - Private data ownership
- Result
 - Improved efficiency of adding CPUs
 - Better scaling

 Note - DB2 Partitioning does not require hardware LPAR capability

Multiple DB2 partitions leveraging CPUs and memory inside one SMP server for one query.

Clustering – Scaling Out

Multiple SMP servers working as a "single image" database for

one query.

DB2 UDB and pSeries – Scaling Up and Out

BCU – Basic Configuration Unit

- Pair of Servers
 - CPUs
 - Memory
 - I/O
- Storage
 - Balanced to Server I/O
 - SAN for ease of management
- Database Partitions
 - Balanced to Server CPUs and I/O
- Interconnect
 - Scalable, Redundant paths, non-blocking switch
- High Availability
 - Twin tailed disk resources
 - Redundant "Hot Swap" Components
 - Automated Failover and Detection software

Defines Standard Building Blocks for Scalable System

BCU – Basic Configuration Unit

Example – BCU and Scalability

- Customer project, Spring 2003
- Scalability Objectives:
 - Show that the POC query throughput scales linearly as IBM hardware and DB2 partitions are added.
- Query Set 1
 - Total of 2351 queries
 - Set 1a: Start queries by timestamp
 - Set 1b: Start queries to maintain concurrency of 86
- Query Set 2
 - Total of 2042 queries (maintain concurrency of 86)

Example – BCU and Scalability

- Two hardware configurations
 - 2 Node system (2 8way P650s) One BCU
 - 3 Node system (3 8way P650s) One and one half BCU
- Test on 2 Node system
- Test on 3 Node system
- Execute same tests exactly on each system
 - Measure Scalability

Example – BCU and Scalability

- Query Set 1a Throughput scaling is 112.1 %
- Query Set 1b Throughput scaling is 96.7 %
- Query Set 2 Throughput scaling is 84.5%

Scalability

IBI

Scalability – BCU for a VERY large databasse

- 32 Terabytes "Raw" Data
 - 97 Terabytes including index, temp, logs
- Concurrent Query, Insert, Delete
 - 800 queries per hour
 - Peak of 1.6m inserts and deletes per second
- DB2 UDB V8.1
 - Exploitation of MDC
 - Latitude, Longitude, Time
 - Binary Large Objects stored within DB2
- 12 P690 Servers
 - 384 Processors
 - Gigabit Ethernet interconnect
- FAStT 900 Storage
 - 140TB usable after Raid 5

Scalability –BCU for VERY large Database

Enhance Scalability with Query Patroller

- Query Patroller will give you the following capabilities:
 - Predictive Governing
 - -regulate data access before entering the system
 - Priority queuing
 - Assign different priorities to different users and build up job queues to make them run efficiently
 - Query monitoring
 - -Real time view and access to queries
 - Historical analysis
 - -Over a period of time, view what data is being accessed and by wh
 - -Over a period of time, view what data is not being accessed.
 - Result caching
 - -Optionally save query results to be used over again

Customer experience with Query Patroller

Real Customer workload - DB2 V8.1 on Cluster of 4 IBM P650 servers

Set up 5 queues

-Shortest queries get 70% of system

-Start 2350 queries at once

-Query Patroller set up to manage based on cost

Overview Results

Shortest 600 queries completed in 10 minutes

- -Previous tests required over 1 hour
- -Short queue emptied in less than 45 minutes
- -Best overall throughput achieved for all queries

Lessons Learned

- Better throughput/less contention Enhanced Scalability
- Substantial improvement in Workload Management using Query Patroller V8.1

Enhance Scalability with Cube Views

Wizard to design & generate "cube views"
aka multidimensional MQTs
Multi-dimensional metadata inside DB2
Import/export for metadata exchange bridges
Use Standard SQL for "rollup" reports
DB2 optimizer query rewrite to MQTs
fast performance
Included in DB2 Warehouse Edition

Cube Views aka multidimensional MQTs

Scalability: Architecting for Growth

Scalable Database and Platform

- DB2 UDB and IBM Servers

"Basic Configurable Unit"

- System components must be added in proportional manner
- CPU, Memory, I/O, interconnect

Tools to enhance and manage Scalability

- Query Patroller
- Cube Views