

8/15/2001 Migrating from UniData ObjectCall to UniObjects Page 1 of 14

Informix Software, Inc. White Paper

Migrating UniData ObjectCall to UniObjects

Introduction

Release 5.1 of UniData was the "common middleware" release incorporating existing and new
Informix technology for middleware solutions. As part of this release we introduced InterCall,
UniObjects and UniObjects for Java to UniData users. UniData 5.1 also included UniOLEDB,
middleware supporting Microsoft's API for universal data access to both SQL and non-SQL data
sources.

InterCall and the UniObjects APIs provide high-performance, native APIs to both UniData and
UniVerse. InterCall and UniObjects provide access to UniData similar to that provided by ObjectCall
and ObjectCall/EasyX respectively. UniObjects for Java provides new Java-based API into UniData
as well as UniVerse.

Please note that, in release 5.1 and going forward, ObjectCall will still be available to UniData
users. This was done expressly to provide an easier migration path by allowing existing applications
to continue functioning while developers work on migrating to the newer UniObjects technology.
However, ObjectCall is a deprecated product that will not be enhanced or repaired. Since
implementation of device licensing and on-going enhancements will be made only in the
InterCall/UniObjects products, this document provides a guide to the migration effort.

Summary

This document provides technical guidance on issues arising from the migration of an application
using ObjectCall to one using UniObjects. Although these two products are very similar in
functionality, they are at different levels of abstraction. ObjectCall is a C interface API and
UniObjects is a COM-based custom control. ObjectCall is actually at the same level of abstraction
as InterCall and UniObjects is at the same level as ObjectCall/EasyX.

Migrating from ObjectCall/EasyX to UniObjects should be very straightforward as they are at the
same level of abstraction and EasyX was expressly designed to emulate UniObjects. However,
some architectural differences remain.

This documents only looks at the ObjectCall to UniObjects differences. Since this document
describes the migration of ObjectCall to UniObjects, additional functionality that exists in
UniObjects is not covered. For complete information on UniObjects see the "UniObjects Developer's
Guide" on-line documentation.

In working through a function-for-function and property-for-property mapping there is very little
that is not covered. The number of possible wrapper functions to complete this mapping further
would be fairly small. Each wrapper will probably require a bit of overhead since it would emulate
behavior existing in a single function or property.

This document assumes some familiarity with the Informix extended relational database object-
based middleware products. For complete information on ObjectCall, ObjectCall with EasyX,
InterCall, and UniObjects see the UniData 5.1 on-line documentation.

8/15/2001 Migrating from UniData ObjectCall to UniObjects Page 2 of 14

Major Differences

This section discusses the major architectural differences between ObjectCall and UniObjects. Each
area discusses a potential workaround.

Aggregates

The most significant conceptual difference between UniObjects and ObjectCall is the use of
aggregates to represent record data. This can be a powerful way to manipulate nested data of any
level and is extensively used within ObjectCall. However, aggregates tend to be complicated to
understand and use.

UniObjects uses a DynamicArray object that functionally performs much the same, although it only
supports 3 nesting levels, equivalent to single, multi-, and multi-sub values. The UniObjects
DynamicArray object is not used as fundamentally as ObjectCall uses the aggregate.

Record Access

The next most significant conceptual difference between UniObjects and ObjectCall is in accessing
and updating records. Most ObjectCall applications open a table, then open a row and perform
operations on that row as a persistent object. There is no need to explicitly write the data back to
the database. Closing the row automatically saves any changes made.

UniObjects requires any record read from the table to be written back after modifications have
been done. Practically speaking, this is only a matter of replacing the ObjectCall row Open and
Close functions with the UniObjects table Read and Write functions.

Dictionary Filters

ObjectCall allows the user to filter the record read in the server so that only certain fields of
interest are returned to the client. UniObjects allows you to access fields in a record one at a time
but not multiple at once.

Multiple Reads and Writes

ObjectCall’s UniMultiRead and UniMultiWrite functions improve performance by doing large
numbers of reads and writes. UniObjects doesn’t support these functions directly but can do the
MultiRead by creating a select list then using the ReadList function. A subroutine will be needed to
perform the MultiWrite functionality. Note: UniObjects for Java includes the UniDataSet
object that performs a function similar to UniMultiRead.

Record Locks

ObjectCall locks records by opening and manipulating a Lock object on a table. UniObjects locks
records by calling the LockRecord function.

Remote Executions

ObjectCall is able to provide a list of commands to be performed by the server; UniObjects
performs commands one at a time. Only a few customers are known to use this ObjectCall feature.

8/15/2001 Migrating from UniData ObjectCall to UniObjects Page 3 of 14

A wrapper function could be written in UniObjects to take a list of commands and execute them
one by one.

The UNItermIn property passes terminal input to commands run by ObjectCall using the UniRun
function. In UniObjects, the Command.Reply function supplies this input interactively.

Possible wrapper functions

The following table describes the wrapper functions that need to be created for UniObjects to
provide the equivalent ObjectCall functionality:

Differing ObjectCall
Functionality

UniObjects Solution

Multiple Writes (MultiWrite) Create and call a UniBasic
subroutine on the host

Remote Executions Create a wrapper function to
repeatedly call Command.Exec

Dictionary Filters For small numbers of fields, use
the UniObjects ReadField
command. For large numbers of
fields, use the Read command
to read the whole record and
remove unwanted fields.

Table Count Create and call a UniBasic
subroutine that counts records.

Function Mappings

This section lists all of the ObjectCall functions and describes how to achieve the same or similar
functionality using UniObjects.

UniAgrFromStr

UniObjects’s DynamicArray object maps fairly well to the Aggregate object and the default
StringValue property of the DynamicArray performs this operation internally when assigned a
value.

UniCleanUp

In ObjectCall, this function closes all open objects, writes back any unwritten data to the database,
closes the database connection and cleans up any internal tables and memory used by ObjectCall.
No other ObjectCall function call can be made after this call unless UniStartUp is called again.

8/15/2001 Migrating from UniData ObjectCall to UniObjects Page 4 of 14

UniObjects doesn’t have this global cleanup operation but the Session object's Disconnect method
will close any open files and locks and will release the session. Setting the Session object to
nothing (in Visual Basic) cleans up any memory associated with it.

UniClose

The UniClose function closes various ObjectCall objects. The UniObjects mapping for UniClose
depends on what type of object is being closed by UniClose:

ObjectCall Object UniObjects Mapping

UNIserver Session.Disconnect

UNIdatabase Session.Disconnect (Database concept not
supported)

UNItable File.CloseFile

UNIrex N/A. UniObjects has one Command object held
by Session object

UNIrpc N/A UniObjects uses a Subroutine method on
Session object

UNIrow ObjectCall writes data back to database on close
so UniObjects should call FileWrite method
before setting DynamicArray variable to nothing

UNIlock File.UnlockRecord

UNIagr N/A. DynamicArrays are cleaned up when they
go out of scope

UNIstr N/A. String objects not used

UniCopy

The UniCopy function is used to break the persistent nature of some pieces of data. You can take a
copy of the object (UNIagr, UNIrow or UNIstr) and modify the copy and not affect the original
persistent version. All data read from the database in UniObjects is non-persistent until written
back so data objects can be copied by assignment.

UniCreate

The creation of UniObjects COM objects is specific to the development environment. For example,
in Visual Basic you would use the CreateObject function. Almost all objects are derived from other
objects in UniObjects except for the Session object and temporary DynamicArray objects.

8/15/2001 Migrating from UniData ObjectCall to UniObjects Page 5 of 14

UniDelDict

N/A. Dictionary filters are not supported in UniObjects.

UniDelete

File.DeleteRecord

UniDelPos

DynamicArray.[Context].Del. A Position value of 0 (all members) in ObjectCall can be achieved by
not specifying a Context value, but using –1 (the last member) is not supported.

UniDestroy

File.DeleteRecord. UniDestroy normally operates with a row handle but the DeleteRecord function
will need the row name.

UniGetClass

N/A. No Object handles in UniObjects.

UniGetCnt

DynamicArray.Count maps to UniGetCnt on UNIrow objects but there is no mapping on UNIserver,
UNIdatabase or UNItable objects.

UniGetEventCode

Each UniObjects object has an Error property that contains the error code for the last operation.

UniGetLabel

N/A. UniGetLabel returns a text description for each of the internal constants.

UniGenLen

Use DynamicArray.Length or a development platform library function that returns the string length.
For example, in Visual Basic you would use Len().

UniGetLevel

N/A. UniObjects error codes are grouped in various numerical ranges but there is not a notion of
levels of severity. UniObjects separates bad states into Exceptions and Errors with the Exceptions
being Fatal Errors.

UniGetNull

In UniObjects you can test if a string is the NULL value by comparing it with the
Session.GetAtVariable(AT_NULLSTR) value.

8/15/2001 Migrating from UniData ObjectCall to UniObjects Page 6 of 14

UniGetParent

N/A.

UniGetProp

UniObjects properties are handled with the "dot" notation, i.e., Session.Hostname

UniGetRtn

Use object.Error to get last error code.

UniGetStatus

There is no status object in UniObjects but the same thing can be implemented using a global
Exception handling function and setting the ExceptionOnError property to True for all objects. Each
object in UniObjects has a Status property, which contains the status of the object (usually the
status of the last operation).

UniGetValInt

Use Field, Value and SubValue methods of DynamicArray object to extract data.

UniGetValStr

Use Field, Value and SubValue methods of DynamicArray object to extract data.

UniInqProp

N/A.

UniInsert

File.Write. Writing to a new record ID inserts it.

UniInsPos

DynamicArray.Ins. Insert position of –1 (append at the end) is not supported. Use Count to
determine the number of entries then Ins at a position of Count plus one.

UniInterrupt

Command.Cancel for REX calls. Not supported on RPC (SubRoutine) calls.

UniMRead

Use the SelectList object to do Multi Reads. Call the FormList method to create a SelectList on the
server the call ReadList to bring back the data.

8/15/2001 Migrating from UniData ObjectCall to UniObjects Page 7 of 14

UniMWrite

Need to write a subroutine on the server that accepts the record ID’s and data.

UniOpen

The UniObjects mapping for the UniOpen function depends on the object being opened:

ObjectCall Object UniObjects Mapping

UNIdatabase Session.Connect

UNItable Session.OpenFile

UNIrow File.Read (This is non-persistent)

UniOpenLock

UNIlock File.LockRecord

UniOpenPos

Connections, files and records in UniObjects can only be opened by name so the mappings are the
same as for the ObjectCall UniOpen function. For opening a position in a record, UniOpenPos maps
to the Field, Value and SubValue methods of the DynamicArray object.

UniRead

File.Read

UniReadBck

Cannot read backwards on an Alternate key.

UniReadFwd

Use the SelectList object and the Next method in combination with File.Read. To read multiple
records you would have to create another SelectList with the ID’s returned by Next then use
ReadList to bring them back.

UniReadString

File.Read

UniReplace

File.Write. Writing to an existing record replaces it.

8/15/2001 Migrating from UniData ObjectCall to UniObjects Page 8 of 14

UniRepPos

DynamicArray.Replace. Setting a Replace position of –1 (the last member) is not supported. Use
Count to determine the number of entries then Replace at that position.

UniRun

Command.Exec or Subroutine.Call

UniRunRex

Command.Exec. Use the Command.Text property to set the command to run. ECLTYPE cannot be
selected at runtime; this is set up at account creation time. One synchronous command can be run
at a time. Use Command.Reply to supply input data.

UniRunRpc

Subroutine.Call. The Session.Subroutine call is passed the routine name to run and creates a
Subroutine object. Use the SetArg method to set up arguments.

UniSetDictInt

ObjectCall uses this function to set up a dictionary filter for all subsequent reads and writes.
UniObjects uses File.ReadField and File.WriteField to read or write a single field immediately.

UniSetDictStr

Same as UniSetDictInt except UniObjects uses the functions File.ReadNamedField and
File.WriteNamedField. Note that the XxxxNamedField function always do the input or output
conversion as if UniSetDictStrCnv had been set. If you don’t want the conversion then use the
XxxxField function.

UniSetDictStrCnv

The conversion is always applied when using File.XxxxNamedField functions and not applied when
calling File.XxxxField functions.

UniSetIndex

SelectList.SelectAlternateKey

UniSetNull

Set the DynamicArray Field, Value, SubValue method to the Session.GetAtVariable(AT_NULLSTR)
value.

UniSetParent

N/A

8/15/2001 Migrating from UniData ObjectCall to UniObjects Page 9 of 14

UniSetValInt

Use Field, Value and SubValue methods of DynamicArray object to set data.

UniSetValStr

Use the Field, Value and SubValue methods of DynamicArray object to set data.

UniStartUp

Creating the initial Session object in UniObjects effectively does the same thing.

UniStatusHandler

UniObjects does not have a StatusHandler function like ObjectCall does but the same thing can be
achieved using Exception Handlers.

UniStrFromAgr

The DynamicArray object maps fairly well to the Aggregate object and the default StringValue
property of the DynamicArray performs this operation when queried.

UniWait

UniObjects always waits for it’s Command and Subroutine calls to finish before returning. The data
generated from these can be read back incrementally though through Command.Response and
Command.NextBlock.

UniWriteString

File.Write

Property Mappings

The following section describes how to map ObjectCall properties to UniObjects properties:

UNIargs

Subroutine.SetArg or Subroutine.ResetArgs

UNIchildClass

N/A

UNIchildNames

This is not supported at the UNIclient, UNIServer, and UNIdatabase level but the names of the
records in a table can be retrieved using a SelectList object.

8/15/2001 Migrating from UniData ObjectCall to UniObjects Page 10 of 14

UNIclass

N/A

UNIcmds

Command.Text. This only takes a single command at a time, however a wrapper function could be
written to take a list of commands and execute them one at a time.

UNIcount

Same as UniGetCount function.

UNIdatabaseName

Session.AccountPath

UNIdict

UniObjects uses a separate object to handle dictionary files. Calling Session.OpenDictionary creates
the Dictionary object.

UNIdictionary

This aggregate contains all the dictionary filters set up by calls to UniSetDictInt or UniSetDictStr.
UniObjects has no equivalent.

UNIdictChild

See UNIdict.

UNIdone

N/A. UniObjects Command and Subroutine calls return when they are done.

UNIeventCode

See UniGetEventCode.

UNIeventLevel

See UniGetLevel.

UNIeventRemote

N/A. UniObjects error codes don’t distinguish between local and remote origin.

UNIfmValue

Session.FM

8/15/2001 Migrating from UniData ObjectCall to UniObjects Page 11 of 14

UNIfunc

This is supported by the development environment exception handling rather than by UniObjects
itself.

UNIhostNames

N/A UniObjects does not have a lookup list of possible servers.

UNIinternetAddress

Session.HostName

UNIlength

The mechanism for determining the length of the screen in UniObjects is development environment
specific. For example, in Visual Basic you would use the Len() function.

UNIlockType

LockType is passed as a parameter to File.RecordLock or is obtained from the
Session.DefaultLockStrategy or File.LockStrategy properties.

UNIlockTypeChild

See UNIlockType above.

UNIlockWait

UniObjects doesn’t have a specific lock object so if RecordLock succeeds you cannot tell if it had to
wait for the lock.

UNIlockWaitChild

File.LockStrategy

UNIlogDir

ObjectCall has the ability to log events on both the client and server machines to assist in
diagnosing problems. UniObjects does not support logging.

UNIlogLevel

UniObjects does not support logging.

UNImodified

N/A Only useful when row is persistent.

8/15/2001 Migrating from UniData ObjectCall to UniObjects Page 12 of 14

UNImsg

Only error codes are available.

UNIname

N/A

UNInull

See UniGetNull function

UNIoconv

See UNIdictionary.

UNIpacketSize

This is handled by the UniObjects RPC layer and is not configurable.

UNIparent

N/A

UNIpasswordChild

Session.Password

UNIport

Session.HostName

UNIreadOnly

Read-Only mode is not supported in UniObjects.

UNIreadOnlyChild

Same as UNIreadOnly

UNIreopenChild

UniObjects always reopens files.

UNIresponseSize

See UNIpacketSize and also Command.BlockSize

UNIresultsCodes

Command.CommandStatus one command at a time.

8/15/2001 Migrating from UniData ObjectCall to UniObjects Page 13 of 14

UNIresultsSets

SelectList.GetList

UNIrexType

N/A. This property sets the ECLTYPE for a given command. With UniObjects you must set this up in
the account itself.

UNIrowPickFormat

DynamicArray.StringValue

UNIrpcType

N/A

UNIserverName

N/A

UNIstatusHandle

N/A

UNIstatusLevel

N/A

UNIstatusLevelChild

N/A

UNIsync

Both Command and Subroutine are always synchronous.

UNItermIn

Command.Reply supplies input data as requested.

UNItermOut

Command.Response and Command.Reply.

UNIuserName

Session.UserName

8/15/2001 Migrating from UniData ObjectCall to UniObjects Page 14 of 14

UNIuserNameChild

Session.UserName

UNIvalue

DynamicArray Field, Value and SubValue methods.

	Introduction
	Summary
	Major Differences
	Aggregates
	Record Access
	Dictionary Filters
	Multiple Reads and Writes
	Record Locks
	Remote Executions

	Possible wrapper functions
	Function Mappings
	UniAgrFromStr
	UniCleanUp
	UniClose
	UniCopy
	UniCreate
	UniDelDict
	UniDelete
	UniDelPos
	UniDestroy
	UniGetClass
	UniGetCnt
	UniGetEventCode
	UniGetLabel
	UniGenLen
	UniGetLevel
	UniGetNull
	UniGetParent
	UniGetProp
	UniGetRtn
	UniGetStatus
	UniGetValInt
	UniGetValStr
	UniInqProp
	UniInsert
	UniInsPos
	UniInterrupt
	UniMRead
	UniMWrite
	UniOpen
	UniOpenLock
	UniOpenPos
	UniRead
	UniReadBck
	UniReadFwd
	UniReadString
	UniReplace
	UniRepPos
	UniRun
	UniRunRex
	UniRunRpc
	UniSetDictInt
	UniSetDictStr
	UniSetDictStrCnv
	UniSetIndex
	UniSetNull
	UniSetParent
	UniSetValInt
	UniSetValStr
	UniStartUp
	UniStatusHandler
	UniStrFromAgr
	UniWait
	UniWriteString

	Property Mappings
	UNIargs
	UNIchildClass
	UNIchildNames
	UNIclass
	UNIcmds
	UNIcount
	UNIdatabaseName
	UNIdict
	UNIdictionary
	UNIdictChild
	UNIdone
	UNIeventCode
	UNIeventLevel
	UNIeventRemote
	UNIfmValue
	UNIfunc
	UNIhostNames
	UNIinternetAddress
	UNIlength
	UNIlockType
	UNIlockTypeChild
	UNIlockWait
	UNIlockWaitChild
	UNIlogDir
	UNIlogLevel
	UNImodified
	UNImsg
	UNIname
	UNInull
	UNIoconv
	UNIpacketSize
	UNIparent
	UNIpasswordChild
	UNIport
	UNIreadOnly
	UNIreadOnlyChild
	UNIreopenChild
	UNIresponseSize
	UNIresultsCodes
	UNIresultsSets
	UNIrexType
	UNIrowPickFormat
	UNIrpcType
	UNIserverName
	UNIstatusHandle
	UNIstatusLevel
	UNIstatusLevelChild
	UNIsync
	UNItermIn
	UNItermOut
	UNIuserName
	UNIuserNameChild
	UNIvalue

