
A technical discussion of the next evolution of database technology
April 2003

IBM Informix Dynamic Server 9.4:
Unequalled performance, scalability
and availability

by Carlton Doe
Technical Sales Manager,
IBM Information Management

IBM Informix Dynamic Server 9.4
Page 2

3 Introduction

4 About IBM Informix Dynamic

Server 9.4

5 A brief look at extensibility

 –Data types

 –Casts and casting

 –User-defined routines,

 aggregates and access

 methods

 –DataBlades

 –IBM IDS and Foundation

 bundles

17 Unmatched scalability

 –Large chunk and file sizes

 –Support for full tape sizes

 –64-bit support

 –Long identifier support

 –Lvarchars

 –Dynamic and byte-range

 locking

22 Performance improvements

 –B-tree index cleaning

 improvements

 –LRU fractional values and

 buffer management

 –Shared-statement cache

 –Fuzzy checkpoints

Contents

32 Availability/replication/backup

and restore

 –Dynamic logical logs

 –Restartable fast recovery

 –Redirected restores

 –Additional chunk information

 to full rootdbs structures

 –HDR and ER

 –Metadata stealing

40 Application-oriented

technologies

 –Client communication

 encryption

 –New Unicode and GLS

 support

 –SQL enhancements and

 compatibility

 –New “explain” mode

45 Management technologies

 –Informix Server Administrator

 –Server Studio JE

 –Utilities

49 Conclusion

50 Appendix A: Exploiting system

power—a review of the DSA

 –Processing

–Memory

–Disks

–Data partitioning

– Leveraging the strengths

of DSA

IBM Informix Dynamic Server 9.4
Page 2

IBM Informix Dynamic Server 9.4
Page 3

Highlights

Today’s mission-critical database

management applications need a

database engine that can scale in

performance as well as functionality.

IBM IDS is built on the IBM DSA,

providing a highly effective

database architecture that delivers

mainframe-caliber performance

characteristics and the capability

to extend the server to handle new

types of data.

Introduction

IBM Informix® Dynamic Server™ 9.4 (IDS) continues a long-standing tradi-
tion within IBM and Informix of delivering a fi rst-in-class database engine.
It combines the robustness, high performance, availability and scalability
needed by today’s global e-businesses.

Complex, mission-critical database management applications typically require
a combination of online transaction processing (OLTP), batch and decision-
support operations, including online analytical processing (OLAP). Meeting
these needs is contingent upon a database engine that can scale in perfor-
mance as well as in functionality. It must dynamically adjust as requirements
change—from accommodating larger amounts of data to changes in query
operations to increasing numbers of concurrent users. The technology should
be designed to effi ciently use all the capabilities of the existing hardware and
software confi guration, including single and multiprocessor architectures.
Finally, the database engine must satisfy users’ demands for more complex
application support, which often uses nontraditional or “rich” data types that
cannot be stored in simple character or numeric form.

IBM IDS is built on the IBM Informix Dynamic Scalable Architecture™ (DSA),
which is discussed in Appendix A. It provides one of the most effective solu-
tions available—a next-generation parallel database architecture that delivers
mainframe-caliber scalability, manageability and performance; minimal opera-
ting system overhead; automatic distribution of workload; and the capability
to extend the server to handle new types of data. With version 9.4, IBM IDS
dramatically alters the database landscape with signifi cantly larger storage and
processing capabilities than are available in virtually any other product.

IBM Informix Dynamic Server 9.4
Page 4

Highlights
IBM IDS delivers proven technology that effi ciently integrates new and com-
plex data directly into the database. It handles time-series, spatial, geodetic,
XML (Extensible Markup Language), video, image and other user-defi ned
data side by side with traditional legacy data to meet today’s most rigorous
data and business demands. IBM IDS helps businesses to lower their total cost
of ownership (TCO) by leveraging its well-regarded general ease of use and
administration as well as its support of existing standards for development
tools and systems infrastructure. IBM IDS is a development-neutral environ-
ment and supports a comprehensive array of application development tools
for rapid deployment of applications under Linux, Microsoft® Windows® and
UNIX® operating environments.

The maturity and success of IBM IDS is built on more than ten years of
widespread use in critical business operations, which attests to its stability,
performance and usability. IBM IDS 9.4 moves this already highly successful
enterprise relational database to a new level.

About IBM Informix Dynamic Server 9.4

The IBM IDS version 9.4 engine represents the next evolution of database
technology by merging the world-class performance and scalability of the
DSA architecture with cutting-edge object-relational technology. IBM IDS 9.4
sets new standards for scalability, reliability and availability that cannot be
matched by other products on the market today. It is also the fastest of the
IBM IDS engines. A number of signifi cant changes were made in various com-
ponents to streamline processing and increase effi ciency. The net result is an
engine whose performance eclipses that of IBM IDS 7.x.

IBM IDS helps businesses lower

their TCO by leveraging its well-

regarded ease of use and

administration as well as support

for existing standards.

IBM IDS 9.4 sets new standards

for scalability, reliability and

availability that cannot be

matched by other products.

IBM Informix Dynamic Server 9.4
Page 5

Highlights
A brief look at extensibility

IBM IDS provides a complete set of features to extend the database server,
including support for new data types, routines, aggregates and access methods.
With this technology, in addition to recognizing and storing standard char-
acter and numeric-based information, the engine can, with the appropriate
access and manipulation routines, manage non-traditional data structures that
are either modeled more like the business environment or contain new types
of information never before available for business application processing.
Though the data may be considered “nonstandard,” and some types can be
table-like in and of themselves, it is stored in a relational manner using tables,
columns and rows. In addition, all data, data structures created through
Data Defi nition Language (DDL) commands, and access routines recognize
objected-oriented behaviors such as overloading, inheritance and polymor-
phism. This object-relational extensibility supports transactional consistency
and data integrity while simplifying database optimization and administra-
tion. Other database management systems (DBMS) rely on middleware to
link multiple servers, each managing different data types, to make it look as
if there is a single processing environment. This approach compromises not
only performance, but also transactional consistency and integrity because
problems with the network can corrupt the data. This is not the case with IBM
IDS. Its object-relational technology is built into the DSA core and can be
used, or not, at will within the context of a single database environment.

Data types

IBM IDS 9.4 uses a wide range of data types to store and retrieve data. The
breadth and depth of the data types available to the database administrator and
application developer is signifi cant—allowing them to truly defi ne data structures
and rules that accurately mirror the business environment rather than trying to
approximate it through normalized database design and access constraints.

Object-relational extensibility in

IBM IDS supports transactional

consistency and data integrity

while simplifying database

optimization and administration.

Given the wide range of data types

used by IBM IDS 9.4, database

administrators and application

developers can truly define data

structures and rules that accurately

reflect the business environment.

IBM Informix Dynamic Server 9.4
Page 6

Highlights

Some types, referred to as built-in types, include standard data representations
such as character(n), decimal, integer, serial, varchar(n), date, and datetime,
alias types such as money, and simple large objects (LOBs). IBM has also added
additional built-in types to recent releases of IBM IDS 9, including boolean,
int8, serial8 and an even longer variable length character string, the lvarchar.

Extended data types themselves are of two classes, including:

• Super-sets of built-in data types with enhanced functionality

• Types that were not originally built into the IBM Informix database engine

but that, once defi ned, can be used to intelligently model data objects to

meet business needs.

Built-In

Character Time

Numeric

Data Types

Extended

Distinct

User Defined

Opaque

Collection

Set ListMulti-Set

Complex

Row

NamedUnnamed

Simple Large
Object

Figure 1:
The IBM Informix Dynamic Server 9.4 data type tree.

IBM has added additional built-in

data types to IBM IDS, including

boolean, int8, serial8 and an even

longer variable-length character

string, the lvarchar.

IBM Informix Dynamic Server 9.4
Page 7

Highlights
The collection type is used to store repeating sets of values within one row of
one column that would normally require multiple rows or redundant columns in
one or more tables in a traditional database. The three collection types enforce
rules on whether or not duplicate values or data order is signifi cant. Collection
data types can be nested and contain almost any type, built-in or extended.

With row data types, a new data type can be built that is composed of other
data types. The format of a row type is similar to that used when defi ning
columns to build a table—a parameter name and data type. Once defi ned, row
types can be used as columns within a table or as a table in and of themselves.
With certain restrictions, a row type can be dynamically defi ned on the fl y as
a table is being created or can be inherited into other tables.

Named:
 create row type name_t
 (fname char(20),
 Iname char(20));

 create row type address_t
 (street_1 char(20),
 street_2 char(20),
 city char(20),
 state char(2),
 zip char(9));

 create table student
 (student_id serial,
 name name_t,
 address address_t,
 company char(30));

Unnamed:
ROW (a int, b char(10))

Note: is also equal to
ROW (x int, y char(10))

 create table part
 (part_id serial,
 cost decimal,
 part_dimensions row
 (length decimal,
 width decimal,
 height decimal,
 weight decimal));

Figure 2:
Examples of named and unnamed row data types and their application.

Row data types facilitate the

building of new data types that are

composed of other data types.

IBM Informix Dynamic Server 9.4
Page 8

Highlights
A distinct data type is an alias for an existing data type. A newly defi ned dis-
tinct data type will inherit all of the properties of its parent type (for example,
a type defi ned using a fl oat parent will inherit the elements of precision before
and after the decimal point) but because it is a unique type, its values cannot
be combined with any other data type but its own without either “casting” the
value or using a user-defi ned routine. Finally, opaque data types are those
created by developers in C or Java™ and can be used to represent any data
structure that needs to be stored in the database. When using opaque data
types, as opposed to the other types already mentioned, the engine is com-
pletely dependent on the type’s creator to defi ne all access methods that might
be required for the type including insert, query, modify and delete operations.

Extended data types can be used in queries or function calls, passed as argu-
ments to database functions, indexed and optimized in the same way as the
core built-in data types. Since any data that can be represented in C or Java
can be natively stored and processed by the engine, IBM IDS can encapsulate
applications that have already implemented data types as C or Java structures.
Because the defi nition and use of extended data types is built into the DSA
architecture, specialized access routines support high performance. The access
routines are fully and automatically recoverable, and they benefi t from the
proven manageability and integrity of the IBM Informix database architecture.

Casts and casting

With the enormous fl exibility and capability that both built-in and extended
data types provide to create a database environment that accurately matches the
business environment, they must often be used together. To do so requires func-
tionality to convert values between types. This is generally done through the
use of casts and, quite often, the casting process will use user-defi ned functions.

Since the engine can natively store

or process any data that can be

represented in C or Java, IBM IDS

can encapsulate applications that

have already implemented data

types as C or Java structures.

IBM IDS access routines are fully

and automatically recoverable, and

they benefit from the proven

manageability and integrity of the

IBM DSA.

IBM Informix Dynamic Server 9.4
Page 9

Highlights
Casts enable a developer to manipulate values of different data types together
or to substitute the value of one type in the place of another. While casts, as
an identifi able function, have only been recently added to the SQL syntax,
IBM IDS administrators and developers have been using casts for some time;
however, they’ve been hidden in the engine’s functionality. For example, to
store the value of the integer “12” in a table’s character fi eld requires casting
the integer value to its character equivalent, and this action is performed by
the engine on behalf of the user. The inverse cannot be done because there
is no appropriate cast available to represent a character, such as an “a,” in a
numeric fi eld.

When using “user-defi ned types” (UDTs), casts must be created to change
values between the source type and each of the expected target data. For
some types, such as collections, LOBs and unnamed row types, casts cannot
be created due to the unique nature of these types. Casts can be defi ned as
either “explicit” or “implicit.” For example, with an implicit cast, a routine is
created that adds values of type “a” to the value of type “b” by fi rst converting
the value of one type to the other type and then adding the values together.
The result can either remain in that type or be converted back into the other
type before being returned. Any time an SQL operation requires this opera-
tion to occur, this cast is automatically invoked behind the scenes and a result
returned. An explicit cast, while it may perform the exact same task as an
implicit cast, only executes when it is specifi cally called to manipulate the
values of the two data types. While it requires a little more developer effort
to use explicit casts, there are more program options available with their use
based on the desired output type.

IBM IDS includes casts, which

enable a developer to manipulate

the values of different types of data

together or to substitute the value

of one type in place of another.

While explicit casts take more

effort on the part of the developer,

they provide more program options

based on the desired output type.

IBM Informix Dynamic Server 9.4
Page 10

Highlights
User-defi ned routines, aggregates and access methods

In earlier versions of the IBM IDS engine, developers and administrators who
wanted to capture application logic that manipulated data and have it execute
within the engine only had stored procedures to work with. Although stored
procedures have an adequate amount of functionality, they may not optimize
performance. IBM IDS 9 provides the ability to create signifi cantly more
robust and higher performing application or data manipulation logic in the
engine where it can benefi t from the processing power of the physical server
and the DSA.

A “user-defi ned routine” (UDR) is a collection of program statements
that—when invoked from an SQL statement, a trigger, or from another UDR—
perform new domain-specifi c operations, such as searching geographic data
or collecting data from Web site visitors. UDRs are most commonly used to
execute logic in the engine, either generally useful algorithms or business-
specifi c rules, reducing the time it takes to develop applications and increasing
the applications’ speed. UDRs can be either functions that return values or
procedures that do not. They can be written in IBM Informix Stored Procedure Lan-

guage (SPL), C or Java. SPL routines contain SQL statements that are parsed,
optimized and stored in the system catalog tables in executable format —
making SPL ideal for SQL-intensive tasks. Since C and Java are powerful,
full-function development languages, routines written in these languages can
carry out much more complicated tasks than SPL routines. C routines are
stored outside the engine with the pathname to the shared library fi le regis-
tered as the UDR. Java routines are fi rst collected into “ jar” fi les, which are
stored inside the engine as “smart large objects” (SLOs). Regardless of their
storage location, C and Java routines execute as if they were a built-in compo-
nent of the engine.

IBM IDS 9 provides the ability to

create significantly more robust

and higher-performing application

or data management logic in

the engine where it can benefit

from the processing power of the

physical server and the DSA.

Regardless of their location, C and

Java routines execute as if they were

a built-in component of the engine.

IBM Informix Dynamic Server 9.4
Page 11

Highlights
A “user-defi ned aggregate” (UDA) is a UDR that can either extend the func-
tionality of an existing built-in aggregate (for example, SUM or AVG) or
provide new functionality that wasn’t previously available. Generally speaking,
aggregates return summarized results from one or more queries. For example,
the built-in SUM aggregate adds values of certain built-in data types from a
query result set and returns their total. An extension of the SUM aggregate can
be created to include user-defi ned data types, enabling the reuse of existing
client application code without requiring new SQL syntax to handle the func-
tionality of new data types within the application. To do so, using the example
of the SUM aggregate, would require creating (and registering) a user-defi ned
function that would overload the “plus” function and take the user-defi ned
data types, which needed to be added together, as input parameters.

To create a completely new user-defi ned aggregate requires creating and reg-
istering two to four functions to perform the following:

• Initialize the data working space

• Merge a partial existing result set with the result of the current iteration

• Merge all the partial result sets

• Return the fi nal result set with the associated closure and release of system

resources to generate the aggregate.

In defi ning the ability to work with partial result sets, UDAs can, like built-in
aggregates, execute in parallel. Functions created and registered for UDAs can
be written in SPL, C or Java. Like built-in aggregates, the engine wholly man-
ages a UDA once it’s registered (as either an extended or user-defi ned aggregate).

A UDA is a UDR that can either

extend the functionality of an

existing built-in aggregate or

provide new functionality.

Functions created and registered

for UDAs can be written in SPL,

C or Java.

IBM Informix Dynamic Server 9.4
Page 12

Highlights
IBM IDS provides primary and secondary access methods to access and
manipulate data stored in tables and indexes. Primary access methods, used
in conjunction with built-in data types, provide functionality for table use.
Secondary access methods are specifi cally targeted to indexes and include
B-tree and R-tree indexing technologies. Additional user-defi ned access
methods can be created to access other data sources. IBM IDS has methods
that provide SQL access to data in either a heterogeneous database table, an
external sequential fi le or to other nonstandard data stored anywhere on the
network. Secondary access methods can be defi ned to index any data as well
as alternative strategies to access SLOs. These access methods can be created
using the Virtual Table Interface (VTI) and the Virtual Index Interface (VII)
server application programming interfaces (APIs).

DataBlades

IBM Informix DataBlade™ modules bring additional business functionality to
the engine through specialized user-defi ned data types, routines and access
methods. Developers can use these new data types and routines to more easily
create and deploy richer applications that better address a company’s business
needs. IBM IDS provides the same level of support to DataBlade functionality
that is accorded to built-in or other user-defi ned types/routines. With IBM
Informix DataBlade modules, almost any kind of information can be easily
managed as a data type within the engine.

There is a growing portfolio of third-party DataBlade modules, or developers
can use the IBM Informix DataBlade Developer’s Kit (DBDK) to create spe-
cialized blades for a particular business need.

IBM IDS provides primary and

secondary access methods to

access and manipulate data stored

in tables and indexes.

IBM Informix DataBlade modules

bring additional business

functionality to the engine through

specialized user-defined data types,

routines and access methods.

IBM Informix Dynamic Server 9.4
Page 13

Highlights
The following is a partial list of available IBM Informix DataBlade technolo-
gies (a current list is available at ibm.com/informix):

• IBM Informix TimeSeries DataBlade—This DataBlade provides a better
way to organize and manipulate any form of realtime, time-stamped data.
Applications that use large amounts of time-stamped data, such as network
analysis, manufacturing throughput monitoring or fi nancial tick data analy-
sis, can provide measurably better performance and reduced data storage
requirements with this DataBlade than can be achieved using traditional
relational database design, storage and manipulation technologies.

• IBM Informix NAG DataBlade—IBM partnered with the Numerical Algo-
rithms Group (www.nag.co.uk) to provide the ability to perform quantitative
analysis of tick-based fi nancial data within the engine itself through the use
of routines from their Fortran-based library. These libraries can be applied
to the analysis of currency, equity and bond instruments to identify over-
and under-valued assets, implement automated trading strategies, price
complex instruments such as derivatives, or to create customized products
for an institution’s corporate customers. Because the analysis occurs in
the engine where the data is stored, response times are a fraction of those
achieved by systems that must fi rst transfer the data through middleware to
a client-side application.

• IBM Informix TimeSeries Real-Time Loader®—A companion piece to the
IBM Informix TimeSeries DataBlade, the TimeSeries Real-Time Loader is
specifi cally designed to load time-stamped data and make it available to
queries in realtime.

The TimeSeries DataBlade provides

a better way to organize and

manipulate any form of realtime,

time-stamped data.

The NAG DataBlade provides the

ability to perform quantitative

analysis of tick-based financial

data within the engine itself

through the use of routines.

IBM Informix Dynamic Server 9.4
Page 14

Highlights
• IBM Informix Spatial DataBlade and the IBM Informix Geodetic

DataBlade—Provide functionality to intelligently manage complex geospa-
tial information within the effi ciency of a relational database model. The
IBM Informix Geodetic DataBlade stores and manipulates objects from
a “whole-earth” perspective using four dimensions—latitude, longitude,
altitude and time. It is designed to manage spatio-temporal data in a global
context, such as satellite imagery and related metadata, or trajectory track-
ing in the airline, cruise or military environment. The IBM Informix Spatial
DataBlade is a set of routines that is compliant with open-GIS (geographic
information system) standards, which take a “fl at-earth” perspective to
mapping geospatial data points. Based on ESRI technology (www.esri.com),
routines and utilities, this DataBlade is better suited for answering questions
such as, “how many grocery stores are within ‘n’ miles of point ‘x’?”, or
“what is the most effi cient route from point ‘a’ to point ‘b’?” All IBM Informix
geospatial DataBlades take advantage of the built-in IBM Informix R-tree
multi-dimensional index technology, resulting in industry-leading spatial
query performance. While the IBM Informix Geodetic DataBlade is a for-
charge item, the IBM Informix Spatial DataBlade is available at no charge
to licensed users of IBM IDS 9.4.

• IBM Informix Excalibur Text DataBlade—Performs full-text searches of
documents stored in database tables and supports any language, word or
phrase that can be expressed in an 8-bit, single-byte character set.

• IBM Informix Video Foundation DataBlade—Allows strategic third-party
development partners to incorporate specifi c video technologies, such as
video servers, external control devices, codecs or cataloging tools, into data-
base management applications. It also provides the ability to manage video
content and video metadata regardless of the content’s location.

The Geodetic DataBlade is

designed to manage spatio-

temporal data in a global context,

such as satellite imagery and

related metadata, or trajectory

tracking in various environments.

The Excalibur Text DataBlade

performs full-text searches of

documents and supports any

language, word or phrase that can

be expressed in an 8-bit, single-

byte character set.

IBM Informix Dynamic Server 9.4
Page 15

Highlights
• IBM Informix Image Foundation DataBlade—Provides functionality for the

storage, retrieval, transformation and format conversion of image-based data
and metadata. While this DataBlade supplies basic imaging functionality,
third-party development partners can also use it as a base for new DataBlade
modules to provide new functionality, such as support for new image formats,
new image processing functions and content-driven searches.

• IBM Informix C-ISAM DataBlade—Provides two separate pieces of func-
tionality to the storage and use of Indexed Sequential Access Method
(ISAM)-based data. In those environments where the data is stored in its
native fl at-fi le format, the DataBlade provides engine-based SQL access to
the data. From a user or application developer perspective, it’s as if the data
resided in standard database tables. The second element of functionality
enables the storage and retrieval of ISAM data in the database itself while
preserving the native C-ISAM application access interface. From a C-ISAM
developer’s perspective, it’s as if the data continued to reside in its native
fl at-fi le format; however, with the data stored in the engine, transactional
integrity can be added to C-ISAM applications. Another benefi t to storing
C-ISAM data in the engine is gaining access to the more comprehensive
backup and recovery routines provided by IBM IDS.

The DBDK is a single development kit for Java-, C- and SPL-based
DataBlades and the DataBlade application programming interface. The
DataBlade API is a server-side “C” API for adding functionality to the
database server, as well as for managing database connections, server
events, errors, memory and processing query results. Additional support for
DataBlade module developers includes the IBM Informix Developer Zone
available at www7b.boulder.ibm.com/dmdd/zones/informix/. Developers can
interact with peers, pass along information and expertise, and discuss new develop-
ment trends, strategies and products. Examples of DataBlades and Bladelets,
indexes and access methods are available for downloading and use. Online
documentation for the DBDK and other IBM Informix products is available
at ibm.com/informix/pubs/library/.

The C-ISAM DataBlade provides

two separate pieces of functionality

to the storage and use of ISAM-

based data.

The IBM Informix DataBlade

Developer’s Kit is a single

development kit for Java-, C-, and

SPL-based DataBlades and the

DataBlade API.

IBM Informix Dynamic Server 9.4
Page 16

Highlights
IBM IDS and Foundation bundles

IBM IDS 9.4 is the foundation of several functional bundles targeted to spe-
cifi c vertical markets. These Foundation bundles usually include additional
DataBlades that best serve target markets by providing turnkey database and
application capabilities. With one exception, the components in any given
Foundation bundle can be purchased separately and added to an IBM IDS 9.4
installation. Purchasing the Foundation bundle does, however, provide some
additional cost savings over buying the components separately.

IBM offers three IBM IDS Foundation bundles. The fi rst is the IBM IDS with

J/Foundation, which includes a Java HotSpot™ virtual machine (JVM™) as a
database engine extension delivering scalable, high-performance Java UDRs
by executing Java code directly in the server. Rather than building a single,
proprietary JVM, J/Foundation uses standard JVMs from IBM platform vendor
partners. This standard environment provides compatibility with third-party
Java products and helps when migrating existing Java applications into the
database engine. J/Foundation is required for businesses planning to develop
user-defi ned routines in Java.

The IBM IDS Financial Foundation for Capital Markets, targeted at the fi nan-
cial services market, includes the IBM Informix TimeSeries, IBM Informix
NAG, and IBM Informix TimeSeries Real-Time Loader DataBlades and IBM
Informix Offi ce Connect. The IBM IDS Law Enforcement Foundation includes
the IBM Informix Video Foundation DataBlade as well as biometric technol-
ogy from Identix and Cogent, which provides facial, retinal, fi ngerprint and
other biometric analysis and recognition functionality. This Foundation would
be of interest to any organization looking to build strong, uniquely personal-
ized authentication routines or recognition capabilities.

IBM offers three IBM IDS

Foundation bundles, which provide

turnkey database and application

capabilities for target markets.

The IBM IDS Foundation bundles

include the IBM IDS J/Foundation,

IBM IDS Financial Foundation for

Capital Markets and IBM IDS Law

Enforcement Foundation.

IBM Informix Dynamic Server 9.4
Page 17

Highlights
Unmatched scalability

Today’s data processing requirements have exceeded Moore’s Law, and what
once appeared to be unreachable processing limits are becoming part of
tomorrow’s systems design. With Dynamic Scalable Architecture, the IBM IDS
engine is well recognized for its ability to fully leverage the processing power
of today’s SMP (symmetric multiprocessing) servers. As more processors or
memory are added to the server, the engine can effi ciently use them to support
database activity. While adequate for most companies’ needs, earlier versions
and capabilities of the IDS engine were hampered by a few infrastructure
limitations. IBM IDS 9.4 provides new growth capabilities that practically
eliminate the limitations to what an IBM IDS engine can do.

Large chunk and fi le sizes

In 1990, when DSA was fi rst designed and construction started on the
IBM IDS engine, hard disk drive capacity and system memory limits were
measured in the low hundreds of megabytes, and database capacities were
measured in the low tens of gigabytes. Trying to work with then-existing
technology yet plan for future growth and capacity, the DSA designers set
several infrastructure limits that have remained in place until now. Database
engine memory capacity, output fi le size and individual chunk (used to create
dbspaces to store data) size was limited to 2GB. With an additional limit of
2,048 chunks, IBM IDS instances were limited to 4TB of total capacity. Need-
less to say, data processing capacities and demands have grown signifi cantly
since then, and these limits needed to be changed.

In IBM IDS 9.4, the maximum chunk size has been increased to 4TB. In
addition, the maximum number of instance chunks has increased to 32,767.
As a result, IBM IDS 9.4 has a total storage capacity of just under 128 peta-
bytes—about 1 quadrillion (128 * 1015) bytes. This assumes that the engine
administrator is not using IBM IDS-based disk mirroring for fault tolerance.
Moreover, using IBM IDS mirroring technology doubles the total number of
chunks and storage capacity.

IBM IDS 9.4 provides new growth

capabilities that practically

eliminate the limitations to what

an IBM IDS engine can do.

IBM IDS 9.4 has a total storage

capacity of just under 128

petabytes—about 1 quadrillion

(128 * 1015) bytes.

IBM Informix Dynamic Server 9.4
Page 18

Highlights
To put this capacity into perspective:

• With a sustained load rate of 1TB per hour, it would take more than 15

years to fi ll 128 petabytes of storage.

• It is estimated that the U.S. Library of Congress contains the equivalent of

10TB of printed material. IBM IDS 9.4 could store approximately 12,800

Libraries of Congress.

• Based on current prices, it would cost more than US$3 billion to purchase

128 petabytes of storage.

The engine changes made to accommodate this capacity increase occurred
in the page header structure. Without affecting the existing 24-byte struc-
ture and requiring an off-line conversion, the chunk number and page-offset
ranges were increased while the time-stamp structure was changed to take
less space. The net effect of these changes is that in upgrading to IBM IDS
9.4, little to no disk conversion work is required. Page header information is
converted on the fl y and as needed once the engine administrator turns on
full support for this feature.

Conversion to large chunk sizes is a two-step process. Initially, access to large
chunks is disabled and the engine acts in legacy mode. An administrator must
execute an onmode command to activate Stage 1 access to large chunks. In
Stage 1 mode, existing chunks are left in legacy mode; however, newly created
chunks can be larger than 2GB. If desired, existing dbspaces can be upgraded
to support the new functionality by adding a large chunk (greater than 2GB)
to the dbspace. If a chunk smaller than 2GB is added to a legacy dbspace, it
will not trigger a conversion to the new functionality.

Engine changes made to

accommodate the capacity

increases in IBM IDS 9.4 occurred

in the page header structure.

In upgrading to IBM IDS 9.4, little to

no disk conversion work is required.

IBM Informix Dynamic Server 9.4
Page 19

Highlights
After executing another onmode command, the engine will be in Stage 2 con-
version, from which there is no reversion path except reloading from a Level 0
archive taken prior to the command’s execution. In Stage 2 mode, whenever
a legacy page on disk is to be modifi ed, its header will be converted to the
new format. Since it could take some time, if ever, for all pages in an instance
to be converted into the new format, the engine will support both legacy and
“new” page formats. An engine administrator can force a mass conversion of
all pages to the new format by executing a dummy SQL update operation that
affects all rows in a table but does not write new data. For example, “UPDATE
orders SET order_date = order_date”. However, IBM does not recommend
executing this type of conversion since there is no real performance benefi t.

In conjunction with the increase in total storage capacity, the output limits for
many engine utilities has been increased from 2GB to 8 trillion MB or 263-1 bytes.
Those utilities affected include oncheck, onload, onlog, onparams, onstat,

onunload, DB-Access, dbload, dbschema and onpload. The output capacity
for other utilities, including ontape, load, unload, dbexport and dbimport, has
increased to 4TB.

Other parameters have also been increased as well; however, for some, their
real-world application is currently limited. For example, a single IBM IDS
instance will support over 21 million unique databases, more than 477 mil-
lion tables, and almost 34 billion bytes per partitioned table fragment. The
maximum transaction size supported in Enterprise Replication (ER) is now
4TB. While the engine can have a virtually unlimited number of logical logs
to capture transactional changes, each log cannot be greater than 1GB. More
practical changes include increasing the number of DBSERVERALIAS entries
from 10 to 32 and changing the number of columns in a functional index
from 16 to 102 (C-based) or 341 (SPL or Java-based) columns.

In conjunction with the increase in

total storage capacity, the output

limits for many engine utilities have

been increased from 2GB to

8 trillion MB or 263-1 bytes.

More practical changes to IBM IDS

include increasing the number of

DBSERVERALIAS entries as well

as the number of columns in a

functional index.

IBM Informix Dynamic Server 9.4
Page 20

Highlights
Support for full tape sizes

With the increase in output fi le sizes for DBA utilities, IBM changed how
IBM IDS manages tape devices. Prior to IBM IDS 9.4, tape device confi gura-
tion within the engine required not only a read and write block size but the
media storage capacity as well. While these parameters were not enforced
when the ON-Bar backup and restore interface was used in conjunction with
a third-party tape management system, they otherwise affected tape output
from engine utilities. If the media length varied in a cartridge during a write
operation, there was either unused or wasted space at the end of the media or
the job aborted with an unexpected end-of-media error.

IBM IDS 9.4 now supports a TAPESIZE and LTAPESIZE $ONCONFIG value
of “0” (zero) which causes an output stream through the ontape and dbexport
utilities to continue until the end-of-tape (EOT) marker code is returned. If
more data needs to be written, the administrator will be prompted to insert
new media.

This functionality is also supported in the High Performance Loader and its
corresponding ipload, onpload and onpladm utilities by setting the “-s” parameter
to “0” (zero) for an onpload or onunload job. The “-Z” option can also be set in
onpload or onpladm runjob commands to write to the end of the media.

64-bit support

Memory addressability schemes built around a 32-bit architecture severely limit
systems to 2GB of shared memory or less. These limitations are relaxed in 64-
bit architectures, providing a signifi cant breakthrough in database performance.
With large memory addressability, IBM IDS can support tens of gigabytes of
physical memory and hundreds of gigabytes of virtual address space, enabling
the creation of larger buffer pools to provide increased data caching. This, in
turn, increases the number of users that can be supported, improves database
throughput and reduces swapping in heavy OLTP environments.

With large memory addressability,

IBM IDS can support tens of

gigabytes of physical memory

and hundreds of gigabytes of

address space, enabling the

creation of larger buffer pools to

provide increased data caching.

IBM Informix Dynamic Server 9.4
Page 21

Highlights
Long identifi er support

As databases and their applications have become more complex, so has the
need to create meaningful names for database objects. Previously, user names
were limited to eight characters while other object names couldn’t be longer
than 18 characters. This length is insuffi cient when trying to build logical
database and application models to represent the object’s business use or
refl ect its true identity or purpose. IBM IDS 9 now supports the use of long
identifi ers for both user identifi cation and database object naming. Databases,
tables, views, constraints, stored procedures, indexes, columns, dbspaces,
blobspaces, triggers and other database object names can now be up to 128
characters long. User names can be up to 32 characters in length.

Lvarchars

IBM IDS has supported the use of both fi xed-length and variable-length
character data types for some time, though early support was limited to 255
characters for the variable-length type. IBM IDS 9.4 provides two longer
variable-length data types, the lvarchar and lvarchar(n). Without specifying a
size, a lvarchar can be up to 2KB. A column defi ned with this lvarchar cannot
be used in an index. If a larger capacity is needed, a size of “0 < n < 32k - 2”
bytes can be specifi ed. If even more text needs to be stored as a columnar
element, database designers should use the CLOB (Character Large Object)
“smart” large object. Columns defi ned with this larger capacity lvarchar can
be used in indexes, although it is not recommended for performance and
storage reasons.

Dynamic and byte-range locking

To maintain data integrity and concurrency within the database, IBM IDS
uses locks to help ensure an orderly process of isolating data that is about to be
changed or needs to be protected for the duration of a query operation. In ear-
lier versions of the engine, the number of locks was a fi xed resource: It had to
be managed by the administrator to ensure enough were confi gured not only
for normal operations but for the odd runaway query as well. With the object-
relational extensions available in IBM IDS 9 and the need to have multi-user
access to a single SLO, IBM implemented a new locking mechanism.

IBM IDS 9 supports the use of

long identifiers for both user

identification and database object

naming, allowing logical database

and application models to represent

the object’s business use or reflect

its true identity or purpose.

IBM IDS 9.4 provides two longer

variable-length data types, the

lvarchar and the lvarchar(n).

IBM Informix Dynamic Server 9.4
Page 22

Highlights
IBM IDS 9.4 uses a dynamic locking mechanism, with the engine dynami-
cally adding and deleting locks as needed for operations. While the LOCKS

$ONCONFIG parameter is still in place, it now represents a minimum number
of locks that should be confi gured. As such, it should be confi gured for normal
day-to-day operations. These locks will reside in the resident portion of the
instance’s shared memory. If more locks are needed, the engine will allocate
additional locks that are managed in the virtual portion of the instance’s memory.

Concurrent and multi-user access to SLOs is managed through byte-range
locks, where, as the name suggests, a lock is placed on portions of the SLO
rather than the entire SLO as happens with simple LOBs. To prevent an
excessive number of locks being allocated within a SLO, a range lock will be
upgraded to a whole SLO lock if transactional integrity requires locks cover-
ing more than ten percent of the SLO. Byte-range locks can be split, joined,
overlapped or separated as needed to support user operations.

Performance improvements

The continued enhancement of engine performance beyond that provided by
IBM IDS version 7.x was of primary concern in the development of IBM IDS
9.4. This was accomplished through various improvements within the code
stream and new technologies. In fact, during the build and test phase of this
release, engine benchmarks regularly showed a 10 to 15 percent improvement
in engine performance when compared to IDS version 7.

IBM IDS 9.4 uses a dynamic locking

mechanism, with the engine

dynamically adding and deleting

locks as needed for operations.

Compared to IDS version 7, IBM

IDS 9.4 showed a 10 to 15 percent

increase in engine performance

during the product build and

test phase.

IBM Informix Dynamic Server 9.4
Page 23

Highlights
B-tree index cleaning improvements

Where possible, the query optimizer uses indexes for an operation’s access
plan to locate data that does not already exist in the instance buffers. IBM
IDS uses a hierarchical system of cascading nodes called a B+ tree indexing
method with root, branch and leaf nodes for indexing most data types. Each
branch node contains pointers to values in the next-lower level of the index
that are either greater than or less than its own value. Leaf nodes contain page
addresses of the data within the table, referred to by the key value, as well as a
pointer to the leaf node on either side of it.

Root
Node

Leaf
Nodes

Branch
Nodes

Figure 3:
A conceptual view of IBM Informix Dynamic Server B+ tree indexing.

IBM IDS uses a hierarchical system

of cascading nodes called a B+ tree

indexing method with root, branch

and leaf nodes for indexing most

data types.

IBM Informix Dynamic Server 9.4
Page 24

Highlights
Prior to IBM IDS 9.4, whenever a transaction deleted a row from a table in a
logged database, the space in the data page was marked open for reuse. The
index entry for the row was not deleted immediately, however. Instead it was
marked for deletion and an entry was made in the B-tree cleaner pool in the
virtual portion of the instance’s shared memory. These entries can be viewed
by executing the onstat -C command. Whenever the pool entries reached a
predetermined depth or a specifi c time interval elapsed, the B-tree cleaner
thread was activated. As the cleaner parsed the entries in the pool, it executed
various tasks and safety checks in addition to locating the index node entry to
be deleted and clearing the key value and associated page entry. Given that one
or more partitions of a partitioned table could be deleted in one transaction—or
that the cleaner thread might have to return to the same index multiple times
while deleting all the entries listed in the cleaner pool since it ran in unsorted
mode—a considerable amount of code was required to manage the index cleaning
process, in addition to the time required to execute the clean.

IBM IDS 9.4 completely replaces this process with a more effi cient system
called the “B-tree scanner” which, among other things, optimizes and priori-
tizes index entries to be deleted and can take advantage of additional cleaner
threads added by the engine administrator for the processing of index deletes.
The new removal process uses dirty counts, or the number of times a user or
administrative thread encounters index entries marked for deletion during
normal processing, to compile a hot list or prioritized list of indexes to be
cleaned. The more hits an index receives, the higher it climbs in the hot list
so that the index gets cleaned earlier by the B-tree scanner thread(s). Hot lists
expire over time and are automatically regenerated but the engine administra-
tor can manually force a regeneration of the hotlist with the onmode utility.

Previously in IBM IDS, when

transactions deleted a row from

a table in a logged database, a

con siderable amount of code and

time was required to manage the

index-cleaning process.

IBM IDS 9.4 uses a “B-tree scanner,”

which optimizes and prioritizes

index entries to be deleted and

can take advantage of additional

cleaner threads added by the engine

administrator for the processing of

index deletes.

IBM Informix Dynamic Server 9.4
Page 25

Highlights
When the B-tree scanner threads are active, they pick from the top of the list
and, starting from the root node, traverse to the outmost left leaf node then
perform a left-to-right light scan of the leaf nodes utilizing the index buffer
pools to locate and delete the necessary entries. As the deletes occur, page
compression occurs with node redistribution where possible. Under specifi c
conditions, the engine administrator can confi gure index cleaning to occur by
using light range scans rather than left-to-right leaf node scans. This cleaning
mode achieves batch-processing-like speed and effi ciency.

The number, execution priority and other operating parameters of the B-tree
scanner threads can be monitored or tuned by the engine administrator through
the onmode and onstat utilities or the Informix Server Administrator (ISA).

LRU fractional values and buffer management

The Least-Recently Used (LRU) queue mechanism is actually sets of two
queues—the free least-recently used (FLRU) and modifi ed least-recently used

(MLRU) queues—and contains addresses to the buffers in the resident portion
of the instance’s memory confi gured through the BUFFERS$ONCONFIG
parameter. Within these queues, there is a “most-recently used” and “least-
recently used” end of each queue.

Under specific conditions, the

engine administrator can configure

index cleaning to use light range

scans, which helps achieve batch-

processing-like speed and efficiency.

The number, execution priority and

other operating parameters of the

B-tree scanner threads can

be monitored or tuned by the

engine administrator.

IBM Informix Dynamic Server 9.4
Page 26

Highlights

At instance activation, all buffer addresses are evenly divided into the FLRU
component of the queue pairs. As threads need buffers for processing, buffer
addresses are transferred to the MLRU component of the pair. Depending on
what happens to the data in the buffer during the SQL operation, the buffer
address could be moved to the most-recently used or least-recently used end
of either queue. For example, if the data is modifi ed, the buffer address is
moved to the most-recently used end of the MLRU queue. If the data was
simply read and then discarded, the buffer address is also moved to the most-
recently used end of a queue, but it is the FLRU queue. This helps ensure that
modifi ed buffers are not immediately reused before their contents are written
to disk, available buffers are evenly cycled back into use, and buffer contents
are preserved for as long as possible in case another operation needs the
same data. If so, the request can be satisfi ed from the buffer pool as opposed
to having to go back to disk. The distribution and activity of the LRU queue
pairs can be monitored using the onstat utility.

Queue
Pair

1

FreeFLRU O

MLRU 1

MLRU 3

MLRU 5

FLRU 2

FLRU 4

Modified

Free

Modified

Free

Modified

Most-recently used Least-recently used

Queue
Pair

2

Queue
Pair

3

1 7

6 11

13

14

2

8

9

15

12

5 10

3

4

Figure 4:
Architectural diagram of LRU queue pairs.

Buffer addresses can be moved

to either the most-recently or

least-recently used end of the

FLRU or MLRU queue during

instance processing.

This helps ensure that modified

buffers are not immediately reused

before their contents are written to

disk, available buffers are evenly

cycled back into use and buffer

contents are preserved for as long

as possible.

IBM Informix Dynamic Server 9.4
Page 27

Highlights
As the MLRU portion of the queues grows, the modifi ed data needs to be writ-
ten to disk. Assuming for the moment that the instance is not using “fuzzy”
checkpoints (see page 31), these write operations usually occur in conjunction
with a checkpoint. When a checkpoint occurs, the buffer entries are sorted
into chunk order, then written to disk. While these writes are highly effi cient,
depending on the number of modifi ed buffers to be written, the operation
could take anywhere from less than a second to several minutes to complete.
This time interval is called the checkpoint duration. Since these types of
checkpoints interrupt some end-user access to the engine, administrators have
always worked to tune checkpoint durations to as short an amount of time as
is reasonably possible.

One tuning method is to set an upper and lower bound for the percentage of
buffers in an LRU pair that could be “dirty” or contain modifi ed data need-
ing to be written to disk. Called LRU_MAX_DIRTY and LRU_MIN_DIRTY
respectively in $ONCONFIG, when the max limit is reached a trickle feed
of data from the dirty buffers to disk begins. It stops when the LRU_MIN_

DIRTY limit is reached or a checkpoint happens, whichever occurs fi rst.
These write operations are not as effi cient as sorted chunk writes but the abil-
ity to trickle data to disk does help reduce checkpoint duration.

IBM IDS 9.4 enables administrators to use decimals with up to four places of
precision instead of whole numbers when setting the LRU_MAX/MIN_DIRTY
values. Prior to this change, the lowest possible combination (other than 0/1
that continually fed data out of the system) was “2” and “1”. If the instance
supported a large number of users or transactions and had a lot of buffers,
even a 2/1 combination was too large to prevent end-user interruption during
a checkpoint.

Engine administrators have

always worked to tune checkpoint

durations to as short an amount of

time as possible.

IBM IDS 9.4 enables administrators

to use decimals with up to four

places of precision instead of

whole numbers when setting the

LRU_MAX/MIN_DIRTY values,

which helps reduce checkpoint

duration.

IBM Informix Dynamic Server 9.4
Page 28

Highlights
For example, if the instance had 750,000 buffers, a LRU_MIN_DIRTY value
of 1 percent would leave 7,500 buffers to be fl ushed to disk at a checkpoint.
Conservatively assuming that the instance uses at least 1 percent of its buffer
pool per minute, the engine would have to fl ush at least 7,500 buffers per
minute, to stay within the max and min boundaries. With the ability to use
decimal values, the administrator could set the boundaries at 1.125 percent
and 1 percent, triggering writes at 8,438 buffers but stopping at 7,500, or
about 900 buffers every eight seconds.

The buffers whose addresses are in the LRU queues store more than just
data for end-user operations. Tables or fragments thereof can be declared
“memory-resident” and stored in the buffers. Index pages that are regularly
used can also be stored in buffers for quicker index response. This can
cause a problem in OLTP environments where many indexes are “wide”—
containing a lot of fi xed-length character columns, which generates an index
that is larger than the table itself. In addition, based on the pre-IBM IDS 9.4
buffer design, cached index entries always included the root and most of the
branch entries since they were used to get to leaf nodes. They were given a
“high” priority value, which was used to determine what buffers remained in
cache as opposed to being fl ushed out to accommodate new requests for space.
The leaf nodes that actually pointed to data were given a lower priority for
remaining in cache. Depending on the number of BUFFERS confi gured, this
could result in “buffer thrashing,” causing premature foreground data writes
to disk and the fl ushing of leaf index pages out of the buffers to make room
for other data only to have to reload the leaf index information again after the
other operations completed.

With the ability to use decimal

values, the administrator can set

the max and min boundaries to

optimize checkpoint efficiency.

IBM Informix Dynamic Server 9.4
Page 29

Highlights
IBM IDS 9.4 introduces a new buffer management algorithm that balances
the needs of high-priority buffers (containing commonly used data) with
low-priority buffers whose values are used less often. This prevents the buffers
from being overrun with index or data use. Within these limits, the engine
has the ability to dynamically shift buffers closer to or farther away from
being fl ushed and reused based on actual use. The process is simple—the more
times the values of a specifi c buffer are used, the longer it stays in place. As a
buffer’s values are used less and less often, the buffer is migrated to the end of
the list where it is freed. Its address then returns to the “most-recently used”
side of either the FLRU or MLRU, depending on what happened to the data it
contained. In this way, infrequently used branch index node entries are gradu-
ally dropped from the buffers. With these entries out of the buffer pool, there
is more space to cache data for end-user operations or other index entries.

Shared-statement cache

It is not uncommon in OLTP environments to have more than one user
session executing the same query, albeit with different data values in the
WHERE clause. For example, an order-processing system application repeat-
edly queries the “customer” table for billing and shipping information, the
“items” table for product- and stock-level information. Rather than treating
each query as a “never-before-seen” entity, IBM IDS 9 uses a SQL statement
cache to cache query access plans so that similar statements do not need to be
processed by the query optimizer every time they’re executed. Instead, they
can use preexisting query plans.

To help prevent buffers from

being overrun with index or data

use, IBM IDS 9.4 includes a new

buffer management algorithm that

balances the needs of high-priority

and low-priority buffers.

IBM IDS 9 uses a SQL statement

cache to cache query access

plans so that similar statements

do not need to be processed by

the query optimizer every time

they’re executed.

IBM Informix Dynamic Server 9.4
Page 30

Highlights
Primarily of benefi t to queries that have complex WHERE clauses, the SQL
statement cache only accepts SQL DML statements that:

• Connect to the local instance using built-in data types

• Does not contain an embedded sub-select

• Is not executed from within a stored procedure or user-defi ned function

• Does not create an explicit temporary table.

The cache can be confi gured to dynamically increase and decrease its size as
needed, within pre-set boundaries, to support valid entries.

After enabling the cache, an SQL operation is fi rst hashed to see if it already
exists in the cache. Several factors can affect the statement’s hash value,
including the case (upper versus lower) of the statement’s text, any optimiza-
tion directives or parallel data query (PDQ) prioritization. Some elements of
the statement are ignored so that the hashing process can focus on fi nding
commonality in the statement. This includes variable names or placeholders
representing values in the WHERE clause. If a hash match is found, the exist-
ing plan is used and immediately executed. If a hash match is not found, the
statement is evaluated for inclusion in the cache. If all tests prove true, it is
parsed and prepared by the optimizer, and the plan is entered into the cache
while the statement is executing.

The engine administrator can confi gure and tune the SQL statement cache
to function optimally. Parameters include the initial and total size of the
cache, the number of times a statement must be executed before it’s entered
into the cache, and the number of cache pools created. Statement caching
can be turned on or off at an instance, session or statement level through
$ONCONFIG parameters, environment variables, onmode commands or SQL
statements. The cache can also be fl ushed to force reoptimization of all state-
ments to pick up changes in table statistics.

The SQL statement cache can be

configured to dynamically increase

and decrease its size as needed,

within pre-set boundaries, to

support valid entries.

The engine administrator can

configure and tune the SQL statement

cache to function optimally.

IBM Informix Dynamic Server 9.4
Page 31

Highlights
The use of the shared statement cache reduces the cost of executing SQL
operations and frees up memory that would otherwise be used to store query
plans. The net benefi t is the faster execution of SQL operations.

Fuzzy checkpoints

During a standard, or “sync” checkpoint, like that discussed in the LRU
fractional values and buffer management section of this paper, certain user
activities are interrupted while data is fl ushed from the shared memory buf-
fers to disk and the physical log and its buffers are cleared. The greater the
number of buffers to fl ush, the longer the interruption, which can be signifi -
cant for OLTP applications and users accustomed to almost instantaneous
response times. IBM IDS 9 supports new technology, called “fuzzy” check-
points, that signifi cantly reduces checkpoint duration.

With fuzzy checkpoints enabled, certain SQL operations such as INSERT,
DELETE and UPDATE are reclassifi ed as fuzzy operations. During a fuzzy
checkpoint, buffers containing results from fuzzy operations have their
addresses recorded in a new cross-reference table created in memory. This
table’s purpose is to record not only the buffer address associated with the
transaction but also the position in the logical log where the completed transac-
tion was recorded. As the fuzzy checkpoint ends, the cross-reference table is
written into the logical logs and any outstanding non-fuzzy operations, such as
table changes, are written to disk. These two operations occur quickly, enabling
the engine to continue processing user requests. Dirty buffers containing trans-
actional data whose addresses were written into the cross-reference table are,
over time, gradually fl ushed to disk. The engine ensures that the buffer fl ush
does not fall too far behind current processing through a series of markers
placed in the logical logs. This fl ush to disk is independent of any buffer clear-
ing that would occur due to LRU_MAX/MIN_DIRTY parameters.

The shared statement cache

reduces the cost of executing SQL

operations and frees up memory

that would otherwise be used to

store query plans.

IBM IDS 9 supports new technology,

called “fuzzy” checkpoints, that

significantly reduces checkpoint

duration.

IBM Informix Dynamic Server 9.4
Page 32

Highlights
Instance recovery with fuzzy checkpoints enabled is heavily dependent on the
logical logs and their archiving. With data synchronization to disk lagging
behind transaction closure, the logical portion of a restore (which checks for
the need to reapply transaction information recorded in the logical logs to
disk) is critical. In beginning to reprocess the logical log entries, some might
not be available within the instance because the log was reused. In this case,
it would be imperative that the logs were properly archived to tape or other
media so they could be retrieved.

With fuzzy checkpoints, BUFFERS can be increased so that more data can
remain cached in instance memory for quicker response without the corre-
sponding penalty of having to fl ush all the buffers during a checkpoint.

Availability/replication/backup and restore

The IBM IDS engine has a number of features and functions whose goal is to
minimize unnecessary interruption to the data-processing environment. Since
the engine can dynamically adjust a number of operational resources to meet
changing workloads, it signifi cantly reduces the overhead required to admin-
ister the engine and eliminates most of the planned outages required by other
database products to maintain or tune the environment. An administrator,
without interrupting user activity, can manually adjust most of the remaining
parameters. The engine also provides its own disk mirroring functional-
ity to duplicate critical data providing automatic disk fail-over capabilities.
Instances can be backed up without interrupting users and without having to
disassociate a set of disks. Partial restores can also be effected under normal
workloads. Data consistency is provided through transaction logging and
internal consistency checking, as well as by enforcing locking procedures,
isolation levels and business rules. Data can be replicated from server to server
in either a peer-to-peer group or enterprisewide with any level of granularity
or direction. In IBM IDS 9.4, many of these features and functions received
important upgrades or changes intended to enhance the engine’s reliability
and serviceability.

With fuzzy checkpoints, BUFFERS

can be increased, without penalty,

so that more data can remain

cached in instance memory for

quicker response.

Because it can dynamically adjust

a number of operational resources

to meet changing workloads, the

IBM IDS engine helps minimize

administration overhead and

virtually eliminates the need for

planned outages.

IBM Informix Dynamic Server 9.4
Page 33

Highlights
Dynamic logical logs

A series of logs, called the logical logs, are used to capture transactional
information. In earlier releases, the number, size and storage location of the
logs was fi xed at instance start-up and could only be modifi ed during a main-
tenance window. Administrators had to tune these logs for expected usage as
well as for the odd runaway transaction that fi lled a signifi cant portion of the
logs. On rare occasions, if the instance suffered an uncontrolled shutdown,
suffi cient log space might not be available during instance start up for previ-
ously opened transactions to roll back without intervention from support.

The IBM IDS 9 engine can now dynamically add and activate logical logs
as needed without interrupting user activity or requiring a Level 0 backup.
Administrators can also add and drop logs manually without user interruption
or Level 0 backup. Log activation is automatic, similar to logs added dynami-
cally by the engine.

Logs added dynamically by the engine are inserted into the middle of the
log stack, just after the current log, so that they are used next, preventing
suspension of instance activity. Logs added by an administrator, through the
onparams or ISA utility, can be inserted either after the current log or at the
bottom of the stack. The engine uses a simple hierarchy of rules to determine
which dbspace to use when dynamically adding a new log. The engine admin-
istrator can tune this feature so that it waits rather than automatically adding a
new log in case the administrator wants to use a specifi c dbspace for new logi-
cal log use. Dynamic logging can be turned on or off as needed. For example,
if there isn’t enough log space to roll back transactions during an instance
restart, the administrator can turn dynamic logging on and then restart the
instance. Logs are automatically added to complete the rollback enabling the
instance to come online—assuming the instance is in good condition.

While this functionality neither eliminates long transactions nor their fi lling
of the logical logs, it does mitigate their impact to the instance, particularly at
instance restart.

The IBM IDS 9 engine can now

dynamically add and activate

logical logs as needed without

interrupting user activity or

requiring a Level 0 backup.

IBM Informix Dynamic Server 9.4
Page 34

Highlights
Restartable fast recovery

In instances that use sync checkpoints, the physical log is used to record
“before” images of data pages that are about to be changed. The pages are
fl ushed from the physical log during a checkpoint and, at the end of a sync
checkpoint, the instance is physically and logically consistent. During an
instance restart, the physical log is checked to see if it contains any images. If
so, it indicates that the instance was not shut down cleanly and that transac-
tion integrity must be checked. The engine uses a fast-recovery process, which
includes the reapplication of physical log pages to disk followed by a check of
the logical log records generated after the last completed sync checkpoint to
see if the committed changes they contain exist on disk. If not, the transaction
is reapplied.

Prior to IBM IDS 9.4, physical logging was not active during the fast-recovery
process for all operations. If the fast-recovery process was interrupted before
it completed, it might not have been able to restart and complete success-
fully. For example, during the reapplication of log records in a fast recovery
a logical log record is written to disk. Prior to IDS 9.4, a before image was
not written into the physical log for this change. Suppose the physical server
crashes before the fast-recovery process completes. When the server is
restarted and the instance fast-recovery process begins again, an attempt is
made to reapply all the logical records from the last recorded checkpoint.
The recovery process would fail when attempting to apply a change to disk
on which the change had already been written. Another failure situation
occurs if multiple rows on a page are affected by numerous transactions and
a fast recovery rollback operation for one of the last transactions on that page

The IBM IDS engine uses a fast-

recovery process to verify transaction

integrity and, if necessary, reapplies

the transactions.

IBM Informix Dynamic Server 9.4
Page 35

Highlights
is interrupted. Prior to IDS 9.4, when rolling back a transaction during fast
recovery a before image was written into the physical log. In this example
though, the image would contain changes made by committed transactions
from earlier in the logical log. If the physical server fails before the transac-
tion rollback completes, when the server is restarted and the instance fast
recovery begins again, the before image that is reapplied to disk contains
committed changes that were made prior to the rollback. When fast recovery
attempts to apply the fi rst logical log records for that page, it will fail; the
change is already on disk.

IBM IDS 9.4 now captures all before images of pages during the fast-recovery
process to support fast-recovery process completion with total transactional
integrity—even if interrupted. Now, during the roll-forward phase of recovery,
checkpoints are disabled until all records are applied to prevent premature
buffer and log fl ushing to disk. In addition, in the event more physical log
records are generated than can be contained in the log itself, overfl ow records
are written and read from the fi le specifi ed by the PLOG_OVERFLOW_PATH
$ONCONFIG parameter. If this parameter is not set, the engine default is to
use $INFORMIXDIR/tmp.

Redirected restores

IBM IDS 9.4 now supports the substitution of new physical path names for
storage devices during a cold restore. With this functionality, administrators
can relocate instances to faster devices within a storage subsystem, easily
migrate an instance to another machine without unloading and reloading
data, change path names to refl ect newer naming standards in the enterprise,
and complete a restore on the same server even though some of the original
devices are not available.

IBM IDS 9.4 now captures all before

images of pages during the fast-

recovery process to support

fast-recovery process completion

with total transactional integrity—

even if interrupted.

IBM IDS 9.4 now supports the

substitution of new physical path

names for storage devices during

a cold restore to either shift data

between physical devices or to

restore to another system.

IBM Informix Dynamic Server 9.4
Page 36

Highlights
Redirected restores are possible through both the ON-Bar and ontape utilities
when the “-rename” fl ag is set. During the initialization of a cold restore, the
device names are read from the chunk-reserved page of the rootdbs captured
to tape. Under normal conditions, the restore operation validates that the
devices are accessible, writes the appropriate device information to disk to
support the restore, and then begins writing to the devices. If the “-rename”
fl ag is set, the restore operation compares the original device information with
the new targets for compatibility then substitutes the new device information
when writing the restore support information to disk.

Creating a redirected restore requires entering the original device path and
offset as well as the new device path and offset. For a single device, this can
easily be done at the command line. For example:

 ontape –r –rename –p <old_chunk_path> -o <old_offset>

 -n <new_chunk_path> -o <new_offset>. . .

 onbar –r –rename –p <old_chunk_path> -o <old_offset>

 -n <new_chunk_path> -o <new_offset>. . .

If multiple devices need to be relocated, a fi lename can be substituted by
using “-f <fi le_name>” in conjunction with the “-rename” fl ag. For example:

 onbar -r -rename -f <fi le_name>. . .

In the fi le, the old device path, old offset, new device path and new offset must
be listed using one device pair to a line with whitespace or tab separation.
Other fi le requirements include using only one device pair per line, and ignor-
ing trailing and leading whitespaces or tabs as well as empty lines. Comments
can be included in the fi le if they are preceded with a “#”.

Redirected restores are possible

through both the ON-Bar and

ontape utilities.

IBM Informix Dynamic Server 9.4
Page 37

Highlights
When redirecting the restore, all chunk devices in a dbspace do not need to
be redirected. The redirection occurs at a chunk level so only those chunks
that must be moved need to be listed. If IBM IDS mirroring is used, those
chunks have signifi cance and must be explicitly redirected on a chunk-by-
chunk basis like primary chunks.

If the chunks supporting the rootdbs (primary or mirror) are redirected, the
appropriate changes will automatically be made in $ONCONFIG. A copy of the
original $ONCONFIG will be made in the $INFORMIXDIR/etc directory. Other
messages related to the redirection and the restore are written into $MSGPATH.

Once a redirected restore has completed, a new Level 0 backup must be taken
to capture the new device information.

Additional chunk information to full rootdbs structures

Concurrent with the changes enabling more and larger individual chunks,
IBM IDS 9.4 also changes how chunk-related information is stored in the
rootdbs. Previously, all chunk descriptor information had to be stored in the
primary or mirror chunk pages in the reserved section of the rootdbs. If full
with information about allocated chunks, these two sections of pages could
be extended provided there were suffi cient unused pages within the reserved
section. If not, new chunks could not be added to the instance.

With IBM IDS 9.4, chunk reserve pages can be extended with any open set
of pages from the rootdbs. This allows additional chunks to be added to the
instance, provided there are unused pages in the rootdbs and the instance has
not reached the maximum number of supported chunks.

With IBM IDS 9.4, chunk reserve

pages can be extended with

any open set of pages from the

rootdbs, which allows additional

chunks to be added to the instance.

IBM Informix Dynamic Server 9.4
Page 38

Highlights
HDR and ER

IBM IDS uses High Availability Data Replication (HDR) and Enterprise
Replication (ER) data replication technologies. HDR is primarily intended for
immediate fail-over support to provide high-availability services to applica-
tions. Using synchronous or asynchronous transfers of log information, HDR
creates a complete copy of a logged instance to another peer server. ER, as its
name suggests, is used to replicate subsets of data throughout the enterprise
for data consolidation, distribution or performance reasons. HDR supports a
primary/target directly connected topology. Because ER provides enterprise-
wide data replication, it supports additional network topologies such as fully
connected, star and tree topologies.

In IBM IDS 9.4, not only have the functionalities of each technology been
improved, but their use is no longer mutually exclusive. ER and HDR can be
run simultaneously within the same instance to provide both disaster recovery
protection and comprehensive data distribution. ER-related confi guration can
only be executed on the primary node of an HDR pair but will be replicated
to the secondary server in the pair via HDR. Since any node within the ER
domain can be defi ned to be part of an HDR pair, this merging of technolo-
gies allows the fl exibility of ER while providing the availability of HDR.

HDR in IBM IDS 9.4 now supports the replication of all UDTs including built-
in UDTs, such as collection, boolean, row and SLOs, with a couple of caveats.
If the access methods are not stored in the database, but reside in outside
fi les (for example, C routines), information about the fi le will be replicated but
the fi le itself will not. If the UDT has data components that are not logged
(typically SLOs), those components will not be replicated either. HDR will
replicate indexes created using UDTs as well as R-tree indexes. There is condi-
tional support for replicating UDRs. The IBM Informix TimeSeries DataBlade
is now supported, in addition to several of the core DataBlades.

In IBM IDS 9.4, not only have the

HDR and ER technologies been

improved, but their use is no longer

mutually exclusive.

HDR in IBM IDS 9.4 now supports

the replication of all UDTs, including

built-in UDTs, and ER in IBM IDS

9.4 now supports all extensible

data types.

IBM Informix Dynamic Server 9.4
Page 39

Highlights
ER in IBM IDS 9.4 now supports all extensible data types, such as row and
collections as well as serial and serial8 types. The individual transaction
size that can be replicated has been increased to 4TB through improvements
in the shared memory management and spooling functions. The converted
queue manager and transactional statistics have also been converted to
64-bit implementations.

Considerable work has been done to ER to provide support for autonomic
dynamic administration. The net result has been a signifi cant improvement
in DataSync performance as well as an improvement in overall stability. For
example, the DataSync adjusts the amount of resources it uses based on its
own statistical history. In addition, as the “log snooping” process monitors
logical log usage and senses that an increase in log use has increased the risk
of a log wrap, it will issue warnings that additional log space is needed. If
the logs do fi ll, it invokes the dynamic insertion of a logical log provided the
DYNAMIC_LOGS $ONCONFIG parameter has been enabled.

With the appropriate options set in $SQLHOSTS and $ONCONFIG, ER traffi c
can be encrypted, enabling transmission across public networks.

Metadata stealing

The addition of smart blobspaces (sbspaces) to store SLOs added new require-
ments to the sizing process that occurs when allocating space to store data.
Administrators need to consider the size of the sbspace metadata area and
whether or not it is big enough to hold all of the address entries for the
expected number of SLOs. This preallocation of pages must be factored into
the total sizing estimate of the sbspace so its data area is large enough for
the expected number of SLOs. In most cases, administrators can rely on the
engine-sized metadata area created based on input parameters in the sbspace
creation command. Unfortunately, if the metadata area size turns out to be too
small and fi lls up with entries, sbspace activity will be suspended. Until now,
the only work-around was adding a new chunk to the sbspace and, optimally,
reserving its pages for metadata use only.

The individual transaction size that

can be replicated using ER has

been increased to 4TB through

improvements in the shared memory

management and spooling functions.

With the appropriate options set

in $SQLHOSTS and $ONCONFIG,

ER traffic can be encrypted,

enabling transmission across

public networks.

IBM Informix Dynamic Server 9.4
Page 40

Highlights
IBM IDS now provides metadata stealing to eliminate the end-user impact
of a poorly sized metadata area. Within the data pages area of a sbspace, 40
percent of the pages will be fl agged as dual-purpose pages. They can either be
metadata or user-data pages. If the original allocation of metadata space fi lls
up, it will dynamically expand by using portions of these dual-purpose pages.
If the metadata area continues to grow and all dual-purpose pages are used,
activity in the sbspace will be suspended until more metadata space is added
to the sbspace. Administrators can monitor the dynamic expansion of meta-
data areas in sbspaces through messages in $MSGPATH.

Application-oriented technologies

The IBM IDS engine is used extensively for developing and supporting high-
quality and critical line-of-business applications. IBM IDS 9.4 includes several
new features and technologies that may be of interest to application developers.

Client communication encryption

As enterprises have grown, locations have become more dispersed and more
employees have begun working from home or on the road, which means that
applications and data are being distributed farther from each other. Con-
sequently, data must sometimes be accessed from across public networks.
Previous releases of IBM IDS have supported the encryption of passwords sent
from clients to the engine for access validation through the Communication
Support Module (CSM). IBM IDS 9.4 adds the ability to encrypt all client/
server communication with software developed by the OpenSSL Project for
use in the OpenSSL Toolkit (www.openssl.org). It is based on OpenSSL 0.9.6g.

Managed through options set in the $SQLHOSTS fi le, IBM IDS 9.4 provides
strong network encryption using many of the popular cyphers such as DES
(Data Encryption Standard), triple DES and multiple versions of the Blowfi sh
cypher. Additional message security is provided by use of SHA1/HMAC mes-
sage authentication and periodic cypher/key renegotiation. All cyphers use
block chaining to further increase the strength of encryption.

In addition to session encryption, data replication occurring with ER can be
encrypted as it is transferred between nodes.

IBM IDS now provides metadata

stealing to eliminate the end-user

impact of a poorly sized metadata

area.

IBM IDS 9.4 adds the ability

to encrypt all client/server

communication with software

developed by the OpenSSL Project

for use in the OpenSSL Toolkit.

IBM Informix Dynamic Server 9.4
Page 41

Highlights
New Unicode and GLS support

IBM IDS Global Language Support (GLS) conforms to the GLS Level-4 speci-
fi cation, a coding standard allowing multi-byte characters. By providing GLS
support, IBM IDS can collate character strings, print dates and accept mone-
tary input in the rules and formats required by the country where products
are being used. Furthermore, GLS provides worldwide support of database
applications so they can be migrated to multiple languages while maintaining
the same functionality.

IBM IDS 9.4 supports and uses the International Components for Unicode
(ICU) extensions to GLS Level 4, which supports localized collation as well as
the full implementation of GB18030 for the complete Chinese character set.
In addition, the database limitation of a single GLS collation order has been
removed. Applications can now declare the desired collation order on the fl y
with the SET COLLATION SQL command.

SQL enhancements and compatibility

IBM IDS 9.4 brings several new enhancements and compatibility features to
SQL processing. Some of these features simplify the work developers must do
to create robust and full-featured applications; others further simplify the
process and decrease the pain involved in migrating applications from other
database engines to IBM IDS.

Application developers often build nested sets of cursor-driven queries using
the results of outer queries to drive inner queries. If the results returned by
the innermost query are updated, unless all the cursors are opened with the
WITH HOLD SQL keywords, the transaction commit closes all the cursors and
releases their resources. Prior to IDS 9.4, the statement or engine’s PDQ set-
ting was ignored when processing transactions generated through these types
of cursors. The optimizer and Memory Grant Manager in IBM IDS 9.4 will
now consider the PDQ settings for transactions executed by “with hold” cur-
sors and ensure they are executed with the requested parallelized resources.

IBM IDS conforms to the GLS

Level-4 specification, which allows

it to collate character strings, print

dates and accept monetary input in

the rules and formats required by

the country where it’s being used.

IBM IDS 9.4 adds several new

enhancements and compatibility

features to SQL processing that

help simplify the work required

to create full-featured applications

as well as simplify migrating

applications from other database

engines to IBM IDS.

IBM Informix Dynamic Server 9.4
Page 42

Highlights
The query rewrite function in IBM IDS 9.4 has been enhanced to enable sort-
ing by column(s) not in the SELECT clause of a query. Prior to this release,
even if the application didn’t need the results of a particular column, the
column had to be in the query (and its values returned) for the result set to be
sorted by the column’s values. With this new functionality, a query such as the
following is possible:

SELECT emp_last_name,

emp_fi rst_name,

emp_department_number

FROM employee

WHERE emp_active = TRUE

SORT BY emp_hire_date;

This query would return active employee names and department numbers
sorted by their hire date. When parsing this type of query, the optimizer will
rewrite the query to include the SORT BY column in the SELECT clause so
its values are captured. After sorting, the SORT BY column values will be
stripped from the result set before the result is returned to the application.

With respect to Web-server-driven application servers, such as IBM WebSphere®

Application Server, IBM IDS 9.4 now supports the right outer and cross joins.
The latter join creates a Cartesian product of the rows in the joined tables
while the former changes the table dominance within the join. Normally, the
table name following the JOIN keyword in a SQL operation is the subservient
table. With the right outer feature, the table following the join would be the
dominant table with each of its rows being returned even if there were not a
corresponding JOIN match within the other table.

The query rewrite function in IBM

IDS 9.4 has been enhanced to

enable sorting by column(s) not

in the SELECT clause of a query.

With respect to Web-server-driven

applications, IBM IDS 9.4 now

supports the right outer and

cross joins.

IBM Informix Dynamic Server 9.4
Page 43

Highlights
IBM IDS 9.4 introduces a sequence generator to create unique numbers
that are instance rather than table driven. IBM IDS has long supported
the creation and automatic incrementing (or decrementing) of a serialized
column within a table. Often used to create unique values, such as an order or
customer number, these identifi ers were table-specifi c with no inherent sig-
nifi cance across the database. When a universally unique value was required,
a table with just a serial or serial8 column was created. To use it, however,
required obtaining an exclusive lock on the table in order to increment and
capture the next value. This serialized approach presented performance
issues and limited its usefulness in large applications. With the new sequence
generator, parallelized access is available. The generator can be confi gured to
increment or decrement by any desired interval and its values can be either
non-cyclical (and unique) or cyclical, once the domain range has been met. If
necessary, more than one sequence generator can be created in the instance.

Generally speaking, triggers are most commonly executed in conjunction with
SQL data operations on tables. Whenever the triggering action occurs, be it an
insert, delete, modify or select, the trigger’s functionality is executed—
typically through a call to a UDR with its more robust functionality. IBM IDS
9.4 gives database designers and application developers the ability to create
INSTEAD OF triggers on views so that SQL operations previously denied on
views can occur. For example, in most cases views are query-only entities; new
data cannot be inserted nor existing data modifi ed in the underlying table(s)
through the view. With an INSTEAD OF trigger on the view, an operation
executed against the view will invoke the trigger which will most likely call
a UDR with the data passed to the trigger. The UDR will then modify the
individual table(s) that the view covers. The functionality of these triggers
is somewhat restricted. For example, they are limited in scope to one action,
meaning they cannot have BEFORE and AFTER functionality. The triggering
actions are limited to insert, delete and modify operations, and must execute
FOR EACH ROW.

IBM IDS 9.4 introduces a sequence

generator to create unique

numbers that are instance rather

than table driven.

IBM IDS 9.4 gives database

designers and application

developers the ability to create

INSTEAD OF triggers on views,

so that SQL operations previously

denied on views can occur.

IBM Informix Dynamic Server 9.4
Page 44

Highlights
With IBM IDS 9.4, union operations are not limited to the SELECT clause of
a query. Union functionality can be invoked in the FROM clause or within a
sub-select in the WHERE clause.

Finally, prior to IBM IDS 9.4 data returned from stored procedures or DB-
Access had column headings of “expression.” For some application interfaces,
such as OBDC and JBDC, this caused issues that had to be handled program-
matically. IBM IDS 9.4 provides the ability to provide names for the result
columns with the AS keyword. For example:

CREATE PROCEDURE new_names (parm_1 INTEGER, parm_2

CHARACTER(20)) RETURNING out_1 AS fi rst_name, out_2 AS

last_name;

..

.

END PROCEDURE;

The identifi ers used as return names have no signifi cance within the procedure
other than as a column name pushed with the result set. A duplicate of the
identifi er can be used as a variable or parameter name within the procedure.
All return columns must have a name attached or no names will be returned.

New “explain” mode

During the design and development of new database applications, rigorous
testing of the design and application logic needs to occur. As components
of the application are ready, ideally they are tested against ever-increasing
subsets of data to help ensure that they, and the database, react as expected.
A signifi cant portion of the testing process is the staging and re-creation of
data for each test iteration. As the data loads increase, the shift turns from
application functionality to database performance. With earlier versions of
the engine, there was no way to review query plans created by the optimizer
without actually executing the operation. While this worked in test environ-
ments where test data could be reconstructed, it prevented testing applications
against production data to see how the engine would respond under full loads.

IBM IDS better facilitates rigorous

testing of the design and

application logic of new database

applications as they are being

developed by providing the ability

to interrupt statement processing.

IBM Informix Dynamic Server 9.4
Page 45

Highlights
IBM IDS now provides the ability to interrupt statement processing after the
optimizer “prepare” phase completes building the query plan and outputs it
for review. This feature can be enabled on a statement-by-statement basis with
an optimizer directive or turned on (and off) for a block of statements with a
SET EXPLAIN SQL command.

Management technologies

The administration features of IBM IDS allow administrators to manage
instances easily and effi ciently while keeping data online and available. A key
component to engine administration is the system master database, which
holds information about the instance. Some of this information is transitive,
meaning it resides in shared memory and is lost when the instance is shut
down, and some is kept on disk mainly for recovery purposes. The System
Master Interface (SMI) is used as a query interface to access the real tables
and pseudo-tables in shared memory. Through the SMI, administrators have
monitoring access to every facet of engine activity and can use it to identify
problems, monitor resource usage or performance, or track user session activ-
ity. The onstat utility and Informix Server Administrator are used as front
ends to this database.

Informix Server Administrator

The IBM Informix Server Administrator (ISA) is a browser-based, cross-
platform database server administration tool. IBM ISA provides an easy-to-use
interface for almost all database engine administrative tasks. As a graphic
front end to the onstat and other utilities, IBM ISA relieves new administrators
of the need to learn all the various fl ags and permutations of the commands.
The output displayed by the ISA is fully cross-referenced to other relevant
pieces of information, enabling click-and-dive analysis. Written in Perl, ISA
allows administrators to add their own modules to it to customize it to their
needs. The ISA can be used to manage all instances, including IBM

Informix MaxConnect™ instances from a single Web page. It is included at
no additional charge on the engine distribution media.

IBM IDS includes a System

Master Interface, which provides

administrators with monitoring

access to every facet of engine

activity, helping them to identify

problems, monitor resource usage

or track session activity.

IBM ISA provides an easy-to-use,

browser-based interface for almost

all database administrative tasks.

IBM Informix Dynamic Server 9.4
Page 46

Highlights

Figure 5:
IBM Informix Server Administrator enables point-and-click engine administration and
monitoring functionality.

Server Studio JE

Server Studio JE provides an open-architecture tool with an easy-to-use
interface for the management of databases and database objects. The utility is
composed of several base components, including the Database Object Explorer
for object creation and modifi cation plus the management of server connec-
tions; an SQL editor for writing, executing and reviewing the results of SQL
operations and the creation of stored procedures; and a table editor for the
creation and management of tables and indexes.

Server Studio JE provides an

open-architecture tool for the

management of databases and

database objects.

IBM Informix Dynamic Server 9.4
Page 47

Highlights

Figure 6:
 Server Studio JE provides an easy-to-use interface to manage database objects.

The utility and base components are distributed at no additional charge,
and they support additional modules, which can be purchased and added.
The modules include the DB Difference Analyzer, which compares two
database schemas and generates a DDL fi le to synchronize them, and the
Dependency Analyzer, for analyzing referential constraints and other data
dependencies. Additional functional enhancements to the bundled SQL
editor and table manager can be purchased as well.

Server Studio JE utility and base

components are distributed at no

additional charge, and support

additional modules, which can

be purchased, including the

DB Difference Analyzer and the

Dependency Analyzer.

IBM Informix Dynamic Server 9.4
Page 48

Highlights
Utilities

There are a number of administrative utilities bundled with the engine. These
include the UNIX Bundle Installer, which simplifi es installation in UNIX envi-
ronments by providing a way to easily install components in the correct order.
Prior to IBM IDS 9.4, to install the engine an administrator had to extract the
engine, connectivity libraries, the ISA, DataBlades and so on from the instal-
lation media to disk. While standard UNIX commands were used (i.e., cpio
and tar), there was no consistency; some packages used cpio and others tar.
Once extracted, the components needed to be installed in the correct order by
executing their install scripts. Over the years, that order changed and it was
important to read the release notes to verify the installation order. With the
UNIX Bundle Installer, all the packages are in one distribution fi le that gets
“tar-ed” to disk. Once in place, the administrator executes one command to
launch the installation of all products. The installer will verify which pack-
ages exist and then ask what should be installed. If desired, the installer will
even create and initialize a simple instance. The administrator simply selects
the options needed and the installer does the rest of the work. When the
installer is fi nished, the administrator can initialize a new instance or work
with the one created by the installer.

The archecker utility checks the consistency of database backups without
executing a restore. The onsmsync tool synchronizes backup objects main-
tained by the ON-Bar database, the emergency bootfi le and the storage
manager database to optimize backup handling and improve restore times.
The oncheck utility performs consistency checks on data and indexes and can
be used while the instance is online with active user sessions.

The UNIX Bundle Installer, which

is included in the IBM IDS engine,

simplifies installation in UNIX

environments by providing a way

to easily install components in the

correct order.

IBM IDS includes an archecker

utility, which can check the

consistency of database backups

without executing a restore.

IBM Informix Dynamic Server 9.4
Page 49

Highlights
Conclusion

The powerful and extensible IBM Informix Dynamic Server delivers break-
through scalability, manageability and performance. IBM IDS users and
administrators benefi t from the performance and scalability offered by the
proven Dynamic Server Architecture, as well as reap the advantages provided
by object-oriented technology and unlimited extensibility. With these features
and functionality, database professionals can create databases in a way that
is meaningful to business users, and application developers can quickly and
easily build robust applications. IBM IDS 9.4 provides an immense capacity to
grow and adapt to ever-changing business needs.

For more information

To learn more about IBM IDS 9.4, additional information management tech-
nologies, and world-class IBM customer support and services, please contact
your local IBM sales representative, or visit:

ibm.com /informix

IBM IDS 9.4 provides an array

of industry-leading features and

functionality that allow database

professionals to create databases

in a way that is meaningful to

business users, and application

developers to quickly and easily

build robust applications.

IBM Informix Dynamic Server 9.4
Page 50

Highlights Appendix A: Exploiting system
power—a review of the DSA

High system performance is essential for maintaining maximum throughput.
IBM Informix Dynamic Server (IDS) maintains industry-leading performance
levels through multiprocessor features, shared memory management, effi -
cient data access and cost-based query optimization. IBM IDS is available on
many hardware platforms and because the underlying platform is transparent
to applications, the engine can migrate easily to more powerful computing
environments as needs change. This transparency enables developers to take
advantage of high-end SMP (symmetric multiprocessing) systems with little or
no need to modify application code.

Database engine architecture is a signifi cant differentiator and contributor
to the engine’s performance, scalability and ability to support new data types
and processing requirements. Almost all database engines available today use
an older technological design that requires each database operation for an
individual user (for example, read, sort, write, communication, etc.) to invoke
a separate operating system process. This architecture worked well when
database sizes and user counts were relatively small. Today, these types of
engines spawn many hundreds and into the thousands of individual processes
that the operating system must create, queue, schedule, manage/control and
then terminate when no longer needed. Given that, generally speaking, any
individual system CPU can only work on one thing at a time—and the operating
system works through each of the processes before returning to the top of
the queue—this engine architecture creates an environment where individual
database operations must wait for one or more passes through the queue to
complete their task. Scalability with this type of architecture has nothing to
do with the software; it’s entirely dependent on the speed of the processor—
how fast it can work through the queue before it starts over again.

IBM IDS maintains industry-leading

performance levels through

multiprocessor features, shared

memory management, efficient

data access and cost-based query

optimization.

IBM IDS is available on many

hardware platforms and can be

easily migrated to more powerful

platforms as needs change.

IBM Informix Dynamic Server 9.4
Page 51

Highlights
The IBM IDS engine architecture is based on advanced technology that
effi ciently uses virtually all of today’s hardware and software resources. Called
the Dynamic Scalable Architecture (DSA), it fully exploits the processing
power available in SMP environments by performing similar types of database
activities (such as I/O, complex queries, index builds, log recovery, inserts and
backups/restores) in parallelized groups rather than as discrete operations.
The DSA design architecture includes built-in multi-threading and parallel
processing capabilities, dynamic and self-tuning shared memory components,
and intelligent logical data storage capabilities, supporting the most effi cient
use of all available system resources.

Processing

IBM IDS provides the unique ability to scale the database system by employ-
ing a dynamically confi gurable pool of database server processes called virtual

processors. Database operations such as a sorted data query are broken into
task-oriented subtasks (for example, data read, join, group, sort) for rapid
processing by virtual processors that specialize in that type of subtask. Virtual
processors mimic the functionality of the hardware CPUs in that virtual pro-
cessors schedule and manage user requests using multiple, concurrent threads.

The DSA design architecture

supports the most efficient use of

available system resources through

advanced capabilities such as

built-in multi-threading and parallel

processing.

IBM IDS provides the unique ability

to scale the database system

by employing a dynamically

configurable pool of database server

processes called virtual processors.

IBM Informix Dynamic Server 9.4
Page 52

Highlights

A thread represents a discrete task within a database server process and many
threads may execute simultaneously, and in parallel, across the pool of virtual
processors. Unlike a CPU process-based (or single-threaded) engine, which
leaves tasks on the system CPU for its given unit of time (even if no work can
be done thus wasting processing time), virtual processors are multi-threaded.
Consequently, when a thread is either waiting for a resource or has completed
its task, a thread switch will occur and the virtual processor will immediately
work on another thread. As a result, precious CPU time is not only saved, but
it is used to satisfy as many user requests as possible in the given amount of
time. This is referred to as fan-in parallelism.

Virtual Processors

DB Buffer Cache Shared Data

CPU 1 CPU 2 CPU 3 CPU n

Shared Memory

Figure a1:
IBM IDS has a configurable pool of database server processes called virtual processors, which can
respond to any client's request.

Virtual processors are multi-threaded,

which helps save precious CPU

time by dynamically switching

threads when tasks are completed.

IBM Informix Dynamic Server 9.4
Page 53

Highlights

Not only can one virtual processor respond to multiple user requests in any
given unit of time, but one user request can also be distributed across multiple
virtual processors. For example, with a processing-intensive request such as
a multi-table join, the database server divides the task into multiple sub-
tasks and then spreads these subtasks across all available virtual processors.
With the ability to distribute tasks, the request is completed quicker. This is
referred to as fan-out parallelism. Together with fan-in parallelism, the net
effect is more work being accomplished quicker than with single-threaded
architectures; in other words, the engine is faster.

Dynamic load balancing occurs within IBM IDS because threads are not stati-
cally assigned to virtual processors. Outstanding requests are serviced by the
fi rst available virtual processor, balancing the workload across all available
resources. For effi cient execution and versatile tuning, virtual processors can
be grouped into classes—each optimized for a particular function, such as CPU
operations, disk I/O, communications and administrative tasks. An admin-
istrator can confi gure the system with the appropriate number of virtual
processors in each class to handle the workload. Adjustments can be made
while the engine is online without interrupting database operations in order
to handle occasional periods of heavy activity or different load mixes.

CPU

User 3 User 4 User 5User 2User 1

Virtual Processor

Figure a2:
A virtual processor can respond to many user requests.

Dynamic load balancing occurs

within IBM IDS because threads are

not statically assigned to virtual

processors.

For efficient execution and versatile

tuning, virtual processors can

be grouped into classes—each

optimized for a particular function.

IBM Informix Dynamic Server 9.4
Page 54

Highlights

In UNIX and Linux systems, the use of multi-threaded virtual processors
signifi cantly reduces the number of UNIX/Linux processes and, consequently,
less context switching is required. In Microsoft Windows systems, virtual
processors are implemented as threads to take advantage of the operating
system’s inherent multi-threading capability. Because IBM IDS includes its
own threading capability for servicing client requests, the actual number of
Windows threads is decreased—reducing the system thread scheduling over-
head and providing better throughput.

In fully utilizing the hardware processing cycles, IBM IDS engines do not
need as much hardware power to achieve comparable to better performance
than other database engines.

Database Server

Dynamically Turnable

Parallelized Multi-Threaded
Database Operating System

Faster Content Switching

Better Scheduling

Better Locking

Dynamic Memory

CPU VP

AIO VP

Communication VP
(shared memory,
TCP/IP, IPX/SPX)

Figure a3:
Virtual procesors (VPs) are grouped into classes, which are optimized for a particular function.
IBM IDS may be configured with the appropriate number of virtual processors in each class to handle
the engine's workload.

Because IBM IDS includes its own

threading capability for serving

client requests, the actual

number of Windows threads is

decreased—reducing the system

thread scheduling overhead and

providing better throughput.

IBM Informix Dynamic Server 9.4
Page 55

Highlights
Memory

All memory used by IBM IDS is shared among the pool of virtual processors.
Beyond a small initial allocation of memory for engine-level management,
usually a single shared memory portion is created and used by the virtual
processors for all data operations. This portion contains the buffers of queried
and modifi ed data, sort, join and group tables, lock pointers, etc. Should data-
base operations require more (or less) shared memory, additional segments
will be dynamically added and dropped from this portion without interrupt-
ing user activities. An administrator can also make similar modifi cations
manually while the server is running. When a user session terminates, the
thread-specifi c memory for that session is freed within the portion and reused
by another session.

The buffer pool is used to hold data from the database disk supply during
processing. When users request data, the engine fi rst attempts to locate the
data in the buffer pool to avoid unnecessary disk I/Os. Depending on the
characteristics of the engine workload, increasing the size of the buffer pool
can result in a signifi cant reduction in the number of disk accesses, which can
help signifi cantly improve performance, particularly for online transaction
processing (OLTP) applications.

Access to data in frequently used tables or indexes can be improved by keep-
ing such tables or indexes “in memory.” Depending on the amount of memory
allocated to the engine, portions to entire tables or indexes can be kept “resi-
dent” in the database buffer pool, eliminating the need for physical disk I/O
to satisfy requests for data. Any data that changes in these “resident” tables
will be written out to disk to preserve logical consistency of the database.

All memory used by IBM IDS is

shared among the pool of virtual

processors.

Access to data in frequently used

tables or indexes can be improved

by keeping such tables or indexes

“in memory.”

IBM Informix Dynamic Server 9.4
Page 56

Highlights
Disks

The parallelism and scalability of the DSA processor and memory components
are supported by the ability to perform asynchronous I/O across database
tables and indexes that have been logically partitioned. To speed up what is
typically the slowest component of database processing, IBM IDS uses its own
asynchronous I/O (AIO) feature, or the operating system’s kernel AIO, when
available. Because I/O requests are serviced asynchronously, virtual processors
do not have to wait for one I/O operation to complete before starting work on
another request. To ensure that requests are prioritized appropriately, four
specifi c classes of virtual processors are available to service I/O requests: logical
log I/O, physical log I/O, asynchronous I/O and kernel asynchronous I/O. With
this separation, an administrator can create additional virtual processors to ser-
vice specifi c types of I/O in order to alleviate any bottlenecks that might occur.

The read-ahead feature enables IBM IDS to asynchronously read several data
pages ahead from disk while the current set of pages retrieved into memory
is being processed. This feature signifi cantly improves the throughput of
sequential table or index scans, and end-user applications spend less time
waiting for disk accesses to complete.

Data partitioning

Table and index data can be logically divided into partitions, or fragments,
using one or more “partitioning schemes” to improve the ability to access sev-
eral data elements within the table or index in parallel as well as increase and
manage data availability and currency. For example, if a sequential read of a
partitioned table were required, it would complete quicker because the parti-
tions would be scanned simultaneously rather than each disk section being
read serially from the top to the bottom. With a partitioned table, database
administrators can move, associate or disassociate partitions to easily migrate
old or new data into the table without tying up table access with mass inserts
or deletes.

To speed up what is typically the

slowest component of database

processing, IBM IDS uses its own

asynchronous I/O feature when

available.

The IBM IDS read-ahead feature

significantly improves the

throughput of sequential table or

index scans, and end-user

applications spend less time waiting

for disk access to complete.

IBM Informix Dynamic Server 9.4
Page 57

Highlights
IBM IDS has two major partitioning schemes that defi ne how data is spread
across the fragments. Regardless of the partitioning scheme chosen, or even if
none is used at all, the effects are transparent to end users and their appli-
cations. Table partitions can be set and altered without bringing down the
database server and, in some cases, without interrupting user activity within
the table. When partitioning a table, an administrator can specify either:

• Round robin—Data is evenly distributed across each partition with each new

row going to the next partition sequentially.

• Expression-based—Data is distributed into the partitions based on one or

more sets of logical rules applied to values within the data. Rules can be

“range” based, using operators such as “=”, “>”, “<”, “<=”, MATCHES, IN,

and their inverses, or “hash” based where the SQL MOD operator is used in

an algorithm to distribute data.

Depending on the data types used in the table, individual data columns can
be stored in different data storage spaces, or “dbspaces” than the rest of the
table’s data. These columns, which are primarily smart large objects, can have
their own unique partitioning strategy that effectively distributes those specifi c
columnar values in addition to the partitioning scheme applied to the rest of
the table. Simple LOBs can and should be fragmented into simple blobspaces,
however, because they are black-box objects, as far as the engine is concerned,
no further fragmentation options are possible.

Indexes can also be partitioned using an expression-based partitioning scheme.
A table’s index partitioning scheme need not be the same as that used for the
associated table. Partitioned indexes can be placed on a different physical disk
than the data, resulting in optimum parallel processing performance. Partitioning
tables and indexes improves the performance of data-loading and index-
building operations.

Table partitions in IBM IDS can be

set and altered without bringing

down the database server and, in

some cases, without interrupting

user activity within the table.

Partitioned indexes can be placed

on a different physical disk than

the data, resulting in optimum

parallel processing performance.

IBM Informix Dynamic Server 9.4
Page 58

Highlights
With expression-based partitioning, the IBM IDS cost-based SQL optimizer
can create more effi cient and quicker plans using partition elimination to
only access those table/index partitions where the data is known to reside or
should be placed. The benefi t is that multiple operations can be executing
simultaneously on the same table, each in its unique partition, resulting in
greater system performance than typical database systems.

Depending on the operating system used, IBM IDS can use “raw” disks when
creating dbspaces to store table or index data. When raw disk space is used,
IBM IDS uses its own data storage system to allocate contiguous disk pages.
Contiguous disk pages reduce latency from spindle arm movement to fi nd the
next data element. It also allows IBM IDS to use direct memory access when
writing data. With the exception of Windows-based platforms, where standard
fi le systems should be used, using raw disk-based dbspaces provides a measur-
able performance benefi t.

Leveraging the strengths of DSA

With an architecture as robust and effi cient as IBM IDS, the engine provides
a number of performance features that other engines cannot match.

The High-Performance Loader (HPL) utility can load data very quickly
because it can read from multiple data sources (for example, tapes, disk
fi les, pipes or other tables) and load the data in parallel. As the HPL reads
from the data sources, it can execute data manipulation operations such as
converting from EBCDIC to ASCII (American Standard Code for Informa-
tion Interchange), masking or changing data values, or converting data to
the local environment based on Global Language Support requirements.
An HPL job can be confi gured so that normal load tasks, such as referential
integrity checking, logging and index builds, are performed either during
the load or afterwards, which speeds up the load time. The HPL can also be
used to extract data from one or more tables for output to one or more target
locations. Data manipulation similar to that performed in a load job can be
performed during an unload job.

With the help of expression-based

partitioning, multiple operations

can be executing simultaneously

on the same table, each in its

unique partition, resulting in

greater system performance than

typical database systems.

IBM Informix Dynamic Server 9.4
Page 59

Highlights
The speed with which IBM IDS responds to a data operation can vary depend-
ing on the amount of data being manipulated and the database’s design. While
many simple OLTP operations such as single row inserts/updates/deletes can
be executed without straining the system, a properly designed database can
leverage IBM IDS features such as parallel data query, parallel scan, sort, join,
group and data aggregation for larger, more complex operations.

The parallel data query (PDQ) feature takes advantage of the CPU power
provided by SMP systems and the IBM IDS virtual processors to execute
fan-out parallelism. PDQ is of greatest benefi t to more complex SQL opera-
tions that are more analytical, or OLAP oriented, than operational, or OLTP
oriented. With PDQ enabled, not only is a complex SQL operation divided into
a number of sub-tasks but the sub-tasks are given higher or lower priority for
execution within the engine’s resources based on the overall “PDQ-priority”
level requested by the operation.

CPU 2 CPU 3CPU 1

Virtual Processor 1 Virtual Processor 2

Figure a4:
Many virtual processors can be used to respond to a single user's request.

CPU 2 CPU 3CPU 1

Virtual Processor 1 Virtual Processor 3

A properly designed database can

leverage IBM IDS features such

as parallel data query, parallel

scan, sort, join, group and data

aggregation for larger, more

complex operations.

The IBM IDS parallel data query

feature benefits complex SQL

operations that are more analytical,

or OLAP oriented, than operational,

or OLTP oriented.

IBM Informix Dynamic Server 9.4
Page 60

Highlights
The Memory Grant Manager (MGM) works in conjunction with PDQ to control
the degree of parallelism by balancing the priority of OLAP-oriented user
requests with available system resources, such as memory, virtual proces-
sor capacity and disk scan threads. Each OLAP query can be constructed
to request a percentage of engine resources (i.e., PDQ priority level) for
execution. The IBM IDS administrator can set query type priorities, adjust
the number of queries allowed to run concurrently, and adjust the maxi-
mum amount of memory used for PDQ-type queries. The MGM enforces the
rules by releasing queries for execution when the proper amounts of system
resources are available.

The parallel scan feature takes advantage of table partitioning in two ways.
First, if the SQL optimizer determines that each partition must be accessed, a
scan thread for each partition will execute in parallel with the other threads
to bring the requested data out as quickly as possible. Second, if the access
plan only calls for “1” to “N-1” of the partitions to be accessed, another access
operation can execute on the remaining partitions so that two (or more)
operations can be active on the table or index at the same time. Since disk I/O
is the slowest element of database operations, to scan in parallel or have mul-
tiple operations executing simultaneously across the table/index can provide a
signifi cant performance boost.

As data is being retrieved from disk or from memory buffers, the IBM IDS
parallel sort and join technology takes the incoming data stream and imme-
diately begins the join and sorting process rather than waiting for the scan to
complete. If several join levels are required, higher-level joins are immediately
fed results from lower-level joins as they occur.

Similarly, if aggregate functions such as SUM, AVG, MIN or MAX need to be
executed on the data or a GROUP BY SQL operator is present, these functions
execute in realtime and in parallel with the disk scan, join and sort opera-
tions. Consequently, a fi nal result can often be returned to the requester as
soon as the disk scan is completed.

The parallel scan feature of

IBM IDS, which facilitates the

simultaneous execution of multiple

operations across the table/

index, can provide a significant

performance boost.

IBM Informix Dynamic Server 9.4
Page 61

Highlights

Like the parallel scan, a parallel insert takes advantage of table partitioning
allowing multiple virtual processors and update threads to insert records into
the target table(s) in parallel. This can yield performance gains proportional
to the number of disks on which the table was fragmented.

With single-threaded database engines, index building can be a time-consuming
process. IBM IDS uses parallelized index-building technology to signifi cantly
reduce the time needed to build indexes. During the build process, data is
sampled to determine the number of scan threads to allocate. The data is then
scanned in parallel (using read-ahead I/O where possible), sorted in parallel

Ti
m

e
to

 P
ro

ce
ss

DSA Processes
Tasks Concurrently

Parallel Parallel

DSA Breaks
Tasks into
Subtasks

Sort

Join

Scan

Figure a5:
The IBM DSA is designed to process tasks (such as scan, join and sort) concurrently and breaks them
into subtasks to greatly reduce processing time.

IBM IDS uses parallelized

index-building technology to

significantly reduce the time

needed to build indexes.

IBM Informix Dynamic Server 9.4
Page 62

Highlights
and then merged into the fi nal index. As with other I/O operations already
mentioned, everything is done in parallel; the sort threads do not need to wait
for the scan threads to complete and the index builds do not wait for the sorts.
This parallelization produces a dramatic increase in index-build performance
when compared to serial index builds.

Sort Result Set

IBM Informix
Dynamic Server

B-tree or R-tree Index Thread

Sort Threads

Calculate UDR

Scan Threads

Index Result Set

Parallel UDR

Scan Result Set

Figure a6:
An example of parallel index build using read-ahead, parallel scans and parallel sorts.

Parallelization produces a

dramatic increase in index-build

performance when compared to

serial index builds.

IBM Informix Dynamic Server 9.4
Page 63

Highlights
IBM IDS uses a cost-based optimizer to determine the fastest way to retrieve
data from database tables and/or indexes based on detailed statistical informa-
tion about the data within the database generated by the UPDATE STATISTICS

SQL command. This statistical information includes more than just the number
of rows in the table; the maximum and minimum values for selected columns,
value granularity and skew, index depth and more are captured and recorded
in overhead structures for the optimizer. The optimizer uses this information
to pick the access plan that will provide the quickest access to the data while
trying to minimize the impact on system resources. The optimizer’s plan is
built using estimates of I/O and CPU costs in its calculations.

Access plan information is available for review through several management
interfaces so developers and engine administrators can evaluate the effective-
ness of their application and/or database design. The SQL operation(s) under
review do not need to actually execute in order to get the plan information. By
either setting an environment variable, executing a separate SQL command or
embedding an instruction in the target SQL operation, the operation will stop
after the operation is “prepared” and the access plan information is output for
review. With this functionality, application logic and database design can be
tested for effi ciency without having to constantly rebuild data back to a known
“good” state.

In some rare cases, the optimizer may not choose the best plan for accessing
data. This can happen when, for example, the query is extremely complex or
there is insuffi cient statistical information available about the table’s data. In
these situations, after careful review and consideration, an administrator or
developer can infl uence the plan by including optimizer directives (also known
as optimizer hints) in the SQL statement. Optimizer directives can be set to
use or exclude specifi c indexes, specify the join order of tables, or specify the
join type to be used when the operation is executed. An optimizer directive
can also be set to optimize a query to retrieve only the “N” rows of the pos-
sible result set.

IBM IDS uses a cost-based

optimizer to determine the fastest

way to retrieve data from database

tables and/or indexes.

© Copyright IBM Corporation 2003

IBM Corporation
Silicon Valley Laboratory
555 Bailey Avenue
San Jose, CA 95141
U.S.A.

Printed in the United States of America
04-03
All Rights Reserved

IBM, the IBM logo, the e-business software logo,
DataBlade, Dynamic Scalable Architecture,
Dynamic Server, Informix, MaxConnect, Time-
Series Real-Time Loader and WebSphere are
trademarks or registered trademarks of Inter-
national Business Machines Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks are trade-
marks of Sun Microsystems, Inc. in the United
States, other countries, or both.

Microsoft and Windows are registered trademarks
of Microsoft Corporation in the United States, other
countries, or both.

UNIX is a registered trademark of The Open
Group in the United States and other countries.

Other company, product and service names may
be trademarks or service marks of others.

References in this publication to IBM products or
services do not imply that IBM intends to make them
available in all countries in which IBM operates.

GC18-7624-02business software

