Modeling Spatial Business Cases with Geodatabases

Jonathan Lowe, IBM Informix

Maps work because we know the "rules" of conventional map reading: blue lines are rivers, North is toward the top of the page, and so on. In a similar way, geographic data models define their own set of concepts and relationships, which must be understood before you can expect to create or interpret your own data model. These concepts relate to how you can represent geographic information in a computer system, rather than, as in the map example, on paper. -- Scott Morehouse

Director of Software Development, ESRI

Geospatial Data Models offer today's spatial professionals several advantages not previously available with traditional CAD, GIS, or relational database technology. To understand these new benefits, it helps to also understand how spatial technology has changed over time.

Introducing Cartography

Cartography existed even in preliterate cultures as early as 2000 B.C. on rocks, sculptural media, or, later, vellum and paper.

Introducing Computer Aided Drafting

Until the 1960's, design of objects, buildings, and infrastructure relied on t-squares, triangles, drafting tables, and similar tools. CAD made the creation, editing, and sharing of design documents more efficient.

Introducing Geographic Information Systems

The file-based data model combining spatial data with attribute data has been dominant from the 1970s through the early 1990s. GIS vendors call this data model the coverage, theme, or layer.

Introducing Relational Databases

In parallel with spatial computing, databases made storage and retrieval of text, numbers, and dates highly performant through use of indexes and sophisticated physical data-storage techniques beginning in the mid-1960s.

Introducing Spatially Enabled Databases

In the mid-1990's, some professional database vendors extended their databases to handle not just text, numbers, and dates, but additional types like audio, video, and spatial data (among others).

Introducing Geospatial Data Models

Spatial data stored in a database can be a data "ecosystem" rather than simply raw data. Sharing not only your data, but the rules governing its use and behavior conveys several advantages over the traditional file-system storage techniques.

Introducing Cartography

Satisfying navigation and inventory needs with two-dimensional media

A Bedolina map from northern Italy, ca. 2000-1500 B.C. carved into a rock, possibly depicting humans, animals, houses, fields, streams and wells.

Marshall Islands stick charts show the pattern of wave swells caused by winds, with island positions marked by shells or coral.

Introducing Computer Aided Drafting (CAD)

Digital drawing software creates efficient ways to share, edit, and print design documents

Before the 1960's, traditional drafting was the only method of producing technical drawings and architectural drawings. The traditional drafting station was made up of pencils, scales, T-squares, triangles, various other manual drafting tools, and a drafting table.

CAD was popular with people needing professional quality drawings that could also be quickly modified, shared, and reprinted for construction jobs.

CAD programs store data in binary file formats with representations for points, lines, and areas, but scant information about textual attributes.

Introducing Geographic Information Systems (GIS)

Spatial data is combined with attribute data

- Fop1990	Pop9 <u>0</u> sqm	Households	Males	Females	White	Black	<u>Ameri</u>
1380	33357.5	606	651	729	948	0	
555	8345.9	194	291	264	123	354	1
35	350000.0	0	16	19	16	12	
869	11488.6	303	430	439	290	473	
1245	26728.2	751	588	657	468	366	
990	23365.6	536	433	557	679	25	
1515	19453.0	657	669	846	1151	6	
2246	37203.9	952	1076	1170	1133	32	1
1525	20641.6	535	830	695	303	318	5
118	2220.1	69	19	99	72	39	
1738	38366.4	739	778	960	849	17	
656	37897.2	492	378	278	370	147	3
1243	36764.3	599	665	578	706	299	1
2813	48143.1	683	1485	1328		451	1

The attribute data is stored in tables with a number of rows equal to the number of features in the binary tables and joined by a common identifier.

Coverages can store topology.

Denver

Los Altos

Jacksonville FL

CO

CA

Introducing Relational Databases

Multiple users and fast response time to questions involving text, numbers, and dates

Colorado

California

Florida

80229

32256

94022

Introducing Spatially Enabled Databases

The late 1990's, 2000 and onward: The Geodatabase Data Model

This new data model lets you make the features in your GIS datasets smarter by endowing them with natural behaviors, and to allow any sort of relationship to be defined among features. Implementation happens not with code, but through domains, validation rules, and other functions provided by GIS manufacturers.

	shape	sec	0.041	-	surves	acreag	e pri	i lier,	tier,	ties,	rane		1 any	latitude	longitude	state *
1	2 POLVGON (-108.83959993 41.14291674, -108.83960649 41.1391	005	F	L	11	00038.460	0 06	013	0	м	101	0	w	41.141002000	108.831300000	wv -
2	2 POLVGON (-108.82899609 41.14279901, -108.82898972 41.1391	906	£	L	10	00043.070	0 06	013	0	N	101	0	w	41.140992000	108.826890000	WY
3	2 POLYGON ([+108.82420030-41.14278120; -108.82418789-41.1391	005	8	L	9	00043120	0 06	013	0	N	101	0	W	41.140981000	108-821900000	WY
4	2 POLYGON (-108.81940468-41.14276327, -108.81908791 41.1381	005	A.	L	8	00040170	0 06	013	0	N	101	0	w	41.140952000	108.817000000	WY
5	2 POLYGON [-100.01460089-41.14274499, -100.01460503-41.1391	005	F	L	0	00040.210	0 06	013	0	N	101	0	W	41.140941000	108/812200000	WY
6	2 POLYGON [-108.80981310 41.14272706, 108.80979912 41.1391	005	£	L	7	00040.250	0 06	613	0	N	101	ŵ	w	41.140945000	109.907400000	WY
7	2 POLYGON (-108.80501747 41.14270895, -108.804990: Cell V	-	Outp	out I	- 21C	1×127	0 06	013	0	54	101	0	w	41.140936000	108-802610000	WY
8	2 POLYGON ([+108.80022168 41.14263085, +168.800193'	6	01	M2		0.310	3 06	613	0	N	101	0	W	41.140892000	108 797820000	WY
3	2 POLY50N (+108.7954258941.14267274, 408.795428	100	1	10		0.28	3 06	613	0	N	101	0	w	41.140884000	108793020000	WY
10	2 POLYSION (-108.79063027 41.14265464, 108.790600' Data Typ	HK .	polyge	m		0.210	0 05	013	0	N	101	0	W	41.140912000	108 788220000	WY
11	2 POLYGON (-100.70503449 41.14263653, -109.705005 Call Carl	wite:				213	06	613	Q	N	101	ŵ.	w	41.140905000	108/703420000	WY
12	2 POLVGON (-108.781 03886 41.14261859, -108.781 013)					0.060	0 06	013	ō	84	101	0	w	41.140847000	108 778640000	W
13	2 POLVGON ([-108.77624307 41.14260032, -108.776267 2 POLY00 (1) 47782	N -1 20 - 30	68.82) 10:07/	\$2003 \$9795	0	206	06	013	0	м	101	0	w	41.140931000	108.773950000	WY
14	2 POLYGON ([-108.771 44728 41.14258238, -108.771 432 41.12919)	07.10	10:019	00794		013	0 06	013	0	N	101	0	W	41.140857000	108/769040000	WY
15	2 POLYGON # -108.76665166-41.14256411, -108.766644 41.1.29185	22, -10 22, -11	0.815	45458	1	0.210	0 06	013	0	N	101	0	W	41.140831000	108764250000	WY
16	2 POLYGON (-100.761 05507 41.14254617, -100.761 059; 41.142781	200	101061	2000		0.200	0 06	013	0	N	101	0	w	41.140763000	108,755470000	WY
17	2 POLVGON (-108.75706025 41.14252907, -108.757084'					0.310	0 06	013	Ô	N	101	ů.	w	41.140739000	108754670000	w
10	2 POLVGON (-108.75226448 41.14250996, 408.752296'					- 129	30 06	013	0	N	101	0	w	41.140759000	108749880000	WY
19	2 POLYGON (-100.74746067 41.14249106, -100.74750001 41.139C	002	F.	ι	6	00040.270	00 OG	013	0	N	101	0	w	41.140735000	108 745090000	WY
20	2 POLYGON (+108.74267304 41.14247375, 408.74271193 41.1385	002	A	L	5	00040.250	0 06	013	0	N	101	0	w	41.140681000	108740290000	WY
21	2 POLYGON (-108.73787725 41.14249565, -168.73790005 41.1386	001	F	L	8	00040.210	0 06	013	0	Ν	101	0	W	41.140653000	108735490000	WY =

Introducing Geographic Data Models

Using database triggers and procedures to enforce business rules and relationships

(Trigger) Whenever anyone INSERTS, UPDATES, or DELETES records in this table...

(Procedure) Also make a change to records, rows, or columns in the same table, other tables, or both.

Consider a real-world example:

(trigger)

Whenever a new student is added to the students table...

(procedure 1)

Geocode her address into the address-points table,

(procedure 2)

Calculate the distance between her address and the location of her department's main building in facilities table, (procedure 3

If the distance is greater half a mile, set the value of the "mail a bus brochure" field in the new students table to TRUE.