
Who are the top five athlete's from any
country to have won more than one Gold
Medal?”

DB2 Universal Database’s Business Intelligence
Functions assist in the Sydney 2000 Olympic Games

Dan Gibson
IBM Canada Lab

DGIBSON@CA.IBM.COM

1

Introduction

The Olympic Cauldron is lit on September 15th and the Closing Ceremonies take place on
October 1st. During this brief 17 day period, the Sydney 2000 Olympic Games will be the focus of
the world as each country cheers on their representative athletes to award winning performances.

The IBM data management family of products are a major part of making the Sydney 2000
Olympic Games a success:

DB2 on an OS/390 is the major repository for the Games. Here the Central Results System stores
the results received from all sports venues. In addition, all of the World New Press Agencies
receive the data needed to deliver information worldwide to their various clients from this same
repository.

DB2 Universal Database is the database management product behind the INFO kiosks. This
system is responsible for providing members of the Olympic Family comprehensive information
such as results, events schedules, athletes results, and athlete biographies, and news.

The Official Sydney 2000 Games Web site uses DB2 Universal Database to collect and manage
live results data during the games. In addition to live results, information such as event ticket sales
and games merchandise is also available.

DB2 Universal Database supplies a variety of built-in Business Intelligence functions that perform
functions such as ranking, statistical analysis, as well as multi-dimensional analysis - all using just
SQL. These Business Intelligence functions allow for users to answer questions like, “How many
suits have we sold in California and Arizona during the last two quarters?” Or, “What are the top
25 bestsellers being ordered in the northeastern part of the United States?” And of course, “Who
are the top five athlete’s from any country to have won more than one gold medal?”

This paper presents examples of how the built in Business Intelligence Functions of DB2
Universal Database can assist in the development and implementation of the IBM Olympic
Games System at the Sydney 2000 Olympic Games.

2

Athlete Ranking (or Who’s number one?)

The ranking of athletes is used in almost every sport to provide a means of presenting the order of
completion that an athlete finished a competition in. In DB2 Universal Database, two ranking
functions are provided. These are the RANK and the DENSERANK functions.

When the RANK function is specified, the rank of a row is defined as “1 plus the number of
rows that strictly precede the row.” Thus if two or more rows are not distinct with respect to the
ordering, there will be one or more gaps in the sequential rank numbering.

If the DENSERANK function is specified, the rank of a row is defined as “1 plus the number of
rows preceding the row that are distinct with respect to the ordering.” Therefore, there will be no
gaps in the sequential rank numbering.

Let’s start with a simple example. Suppose for a single event (diving) you wanted to rank the
athletes from first place onward. Assume the following table is used:

9.5PerthBobDiving
9.0PerthEdDiving
7.0MelbourneLeonDiving
9.9MelbourneGeneDiving
9.7MelbourneGrantDiving
9.8SydneyRobDiving
9.9SydneyDaveDiving
10.0SydneyDanDiving

ScoreCityAthleteEvent

The following query ranks the above athletes by their score:

SELECT event, firstname, score, city,
 rank over (order by score desc) as Rank -- Rank by score
FROM medals
ORDER BY Rank;

Below are the results:

3

--Dave and Gene are
--correctly ranked 2nd
-- Rob should be 3rd

8Melbourne7.0LeonDiving
7Perth9.0EdDiving
6Perth9.5BobDiving
5Melbourne9.7GrantDiving
4Sydney9.8RobDiving
2Sydney 9.9GeneDiving
2Melbourne9.9DaveDiving
1Sydney10.0DanDiving

RankCityScoreFirstnameEvent

In this example notice that both Dave and Gene are tied for 2nd. However, Rob is ranked 4th as
opposed to 3rd. This is because when using the rank function, the rank of a row is defined as 1
plus the number of rows that strictly precede the row. Therefore if two or more rows are not
distinct with respect to the ordering, there will be one or more gaps in the sequential rank
numbering. To achieve proper ranking in the above example, the denserank function must be
used.

Here is the same query using denserank instead:

SELECT event, firstname, score, city,
 denserank over (order by score desc) as Rank --Rank by score
 FROM medals
ORDER BY Rank;

Here is the output using denserank:

7Melbourne7.0LeonDiving
6Perth9.0EdDiving
5Perth9.5BobDiving
4Melbourne9.7GrantDiving
3Sydney9.8RobDiving
2Sydney 9.9GeneDiving
2Melbourne9.9DaveDiving
1Sydney10.0DanDiving

RankCityScoreFirstnameEvent

Notice that using the denserank function Rob is ranked correctly (3rd) as well as the other
athletes.

For all examples that involve ranking, the function denserank will be used.

4

 Which athletes won the Gold, Silver, and Bronze?

While the above query provides the correct ranking of every athlete, the query does not tell you
who won a medal. Displaying which athlete won which medal can be easily accomplished using
the CASE expression:

SELECT event, firstname, score, city,
 denserank() over (order by score desc) as Rank,
 CASE denserank() over (order by score desc) --Obtain the rank of the Athlete
 WHEN 1 then 'Gold' --and based the value
 WHEN 2 then 'Silver' --return Gold, Silver or Bronze
 WHEN 3 then 'Bronze'
 END as Medal
 FROM medals
ORDER BY Rank;

This returns:

---------7Melbourne7.0LeonDiving
---------6Perth9.0EdDiving
---------5Perth9.5BobDiving
---------4Melbourne9.7GrantDiving
Bronze3Sydney9.8RobDiving

Silver2Sydney

9.9DaveDiving
Silver2Melbourne9.9GeneDiving
Gold1Sydney10.0DanDiving

MedalRankCityScoreFirstnameEvent

Which athlete from each city has the highest score?

So far we have been returning all rows of the table. But suppose we wanted to know “Which
person from each city has the highest score?”. To do this we would need to order by score within
each city. That is we would partition by city, order by score:

Select firstname, score, city, rank from
(
SELECT event, firstname, score, city,
 denserank() over (partition by city --Within each city
 order by score desc) as Rank -- Order by Score
 FROM medals
) as nested_medals

5

Where rank = 1 --But only return those ranked
ORDER BY Rank; --Number one in each city

Here is the result of the above query:

1Melbourne9.9Gene
1Sydney10.0Dan
1Perth9.5Bob

RankCityScoreFirstname

Notice that in addition to the use of the denserank() function, the clause partition by is also used.
The expression specified defines the partition within which the ranking or numbering is applied.

The above query uses what is called a nested table expression. A nested table expression is a
temporary view where the definition is nested (defined directly) in the FROM clause of the main
query. Table expressions are temporary and are only valid for the life of the SQL statement; they
cannot be shared, but they allow more flexibility than views.

DB2 Universal Database also supports another type of table expressions called Common Table
Expressions. A common table expression is a named result table that is defined using the WITH
keyword prior to the beginning of a fullselect. Repeated references to a common table expression
use the same result set. By comparison, if you used nested table expressions or views, the result
set would be regenerated each time, with possibly different results.

Here is the above query rewritten using a common table expression:

WITH Country_First (firstname, score, city, event, rank)

AS

(
SELECT firstname, score, city, event,
denserank() over (partition by city --Within each city
 order by score desc) as Rank -- Order by Score
FROM medals
)

Select firstname, score, city
from Country_First
Where rank = 1 --But only return those ranked
ORDER BY Rank; --Number one in each city

6

By city, by event, by day

The queries posed so far have only involved a single sport. But suppose you wanted to view
multiple sports by various categories? For example, suppose you wanted to know the total
number of medals that each city has won each day, and the total number of medals awarded so
far? Or even better - how many Gold, Silver, and Bronze medals were awarded each day, to each
city, as well as the total number of medals awarded each day to each city? Notice that these
questions are asking information from various categories (medals, city, and day). These categories
are commonly referred to as dimensions.

Dimensions allow for the organizing of data in such a manner that the above questions Can easily
be answered. For example, using the above dimensions this "cube" depicts the intersection of
three axes: Product (medals), Geography (city), and Time (day), enabling users to answer
questions like, “How many medals has each city won by day?”

The phrase Online Analytical Processing (OLAP) is often used to describe the above type of
queries. DB2 Universal Database easily supports answering these types of complex queries thru
the use of it’s built-in OLAP capability. This capability has been implemented in DB2 Universal
Database by extending the GROUP BY clause. Below is a very brief explanation of those
extensions:

The GROUP BY clause has been extended to support "super groups". One type of super group is
a " ROLLUP group"; a result set that contains "sub-total" and "overall total" rows in addition to
the regular grouped rows. Another type of super group is a "CUBE group"; a result set that
contains "cross-tabulation" rows in addition to all the rows that would be in a ROLLUP group for
the same columns.

The table below contains the two sporting events diving and gymnastics:

10.0MelbourneBillGymnastics
9.0SydneyTimGymnastics
9.8SydneyChrisGymnastics
8.0SydneyJackGymnastics

9.5PerthBobDiving
9.0PerthEdDiving
7.0MelbourneLeonDiving
9.9MelbourneGeneDiving
9.7MelbourneGrantDiving
9.8SydneyRobDiving
9.8SydneyDaveDiving
10.0SydneyDanDiving

ScoreCityAthleteEvent

7

9.5PerthGaryGymnastics
9.8PerthTerryGymnastics
7.0MelbournePhilGymnastics
9.9MelbourneGeorgeGymnastics

Suppose you wanted to answer the question “What are the total number of medals each city has
won?” The query would be:

WITH MEDAL_INFO (day, score, city, event, medal)
AS
(
SELECT day, score, city, event,
 CASE denserank() over (partition by event order by score desc) -- By event, order by

 WHEN 1 then 'Gold' --score, assign medals
 WHEN 2 then 'Silver'
 WHEN 3 then 'Bronze'
 END as Medal
 FROM medals)

Select day, city, count(medal) -- and count medals by
from medal_info where medal is not null -- city
group by (day, city)
order by day, city;

Below is the result:

2MelbourneTue
1SydneyTue
1PerthTue
1MelbourneMon
3SydneyMon

CountCITYDAY

The above query shows the total number of medals won by each city. But suppose you wanted to
answer the question “What are the total number of medals each city has won each day as well as
the total number of medals awarded so far ?” In order to include these sub-totals (by day) as well
as the final total, the ROLLUP function Can be used:

 WITH MEDAL_INFO (day, score, city, event, medal)
AS
(

8

SELECT day, score, city, event,
 CASE denserank() over (partition by event order by score desc) -- By event, order by

 WHEN 1 then 'Gold' -- score, assign medals
 WHEN 2 then 'Silver'
 WHEN 3 then 'Bronze'
 END as Medal
 FROM medals)

Select day, city, count(medal) as COUNT -- count medals by
from medal_info where medal is not null -- city
group by ROLLUP (day, city) -- and include sub-totals
order by day, city;

In addition to the rows returned in the first query, notice the additional rows returned:

--- Total number of medals awarded8-----
--- Subtotal of medals for Tuesday4--Tue

2MelbourneTue
1SydneyTue
1PerthTue

--- Subtotal of medals for Monday4--Mon
1MelbourneMon
3SydneyMon

COUNTCITYDAY

Observe what happens if the same query is executed but instead of grouping by
ROLLUP(day, city), ROLLUP(city,day) was used:

WITH MEDAL_INFO (day, score, city, event, medal)
AS
(
SELECT day, score, city, event,
 CASE denserank() over (partition by event order by score desc) -- By event, order by

 WHEN 1 then 'Gold' -- score, assign medals
 WHEN 2 then 'Silver'
 WHEN 3 then 'Bronze'
 END as Medal
 FROM medals)

Select day, city, count(medal) as COUNT -- count medals by
from medal_info where medal is not null -- city

9

group by ROLLUP (city, day) -- and include sub-totals
order by day, city;

Notice how now totals by city are returned versus totals by day:

--- Grand Total medal count8----
--- Total medals for Melbourne3Melbourne--
--- Total medals for Sydney4Sydney--
--- Total medals for Perth1Perth--

2MelbourneTue
1SydneyTue
1PerthTue
1MelbourneMon
3SydneyMon

COUNTCITYDAY

Below are a few more examples. The underlined portion of each query shows what has been
added to the query from the previous one.

Query:

Show by day how many Gold, Silver, and Bronze medals each city has won
and the total number of medals awarded each day.

WITH MEDAL_INFO (day, score, city, event, medal)
AS
(
SELECT day, score, city, event,
 CASE denserank() over (partition by event order by score desc)
 WHEN 1 then 'Gold'
 WHEN 2 then 'Silver'
 WHEN 3 then 'Bronze'
 END as Medal
 FROM medals)

Select day, city, medal , count(medal) as Count
from medal_info where medal is not null
group by rollup(day,(city,medal))
order by day,city;

COUNTMEDALCITYDAY

10

8------
-- Total awarded Tuesday4----Tue

1SilverMelbourneTue
1GoldMelbourneTue
1BronzeSydneyTue
1BronzePerthTue

-- Total awarded Monday4----Mon
1SilverMelbourneMon
1GoldSydneyMon
2BronzeSydneyMon

Query:

Show by day how many Gold, Silver, and Bronze medals each city has won, the total number of
medals awarded each day and the total number of medals each city has won overall.

WITH MEDAL_INFO (day, score, city, event, medal)
AS
(
SELECT day, score, city, event,
 CASE denserank() over (partition by event order by score desc)
 WHEN 1 then 'Gold'
 WHEN 2 then 'Silver'
 WHEN 3 then 'Bronze'
 END as Medal
 FROM medals)

Select day, city, medal, count(medal) as Count
from medal_info where medal is not null
group by cube(day,(city,medal))
order by day,city;

1BronzePerthTue
4----Mon
1SilverMelbourneMon
1GoldSydneyMon
2BronzeSydneyMon

COUNTMEDALCITYDAY

11

8------
2SilverMelbourne--
1GoldMelbourne--
1GoldSydney--
3BronzeSydney--
1BronzePerth--
4----Tue
1SilverMelbourneTue
1GoldMelbourneTue
1BronzeSydneyTue

Conclusion

Business Intelligence means using your data assets to make better business decisions. Using the
built-in Business Intelligence functionality of DB2 Universal Database allows the user to have
easier access to these data assets allowing for faster analysis of one’s data to gain a competitive
advantage.

12

