
IBM Informix

Dynamic Server 11

The Next Generation in OLTP Data Server Technology

Carlton Doe

MC Press Online, LP

Lewisville, TX 75077

IBM Informix Dynamic Server 11

The Next Generation in OLTP Data Server Technology

Carlton Doe

First Edition

First Printing—June 2007

© Copyright MC Press Online, LP 2007

Every attempt has been made to provide correct information. However, IBM, the publisher,

nor the author guarantee the accuracy of the book and do not assume responsibility for infor-

mation included in or omitted from it.

The following terms are trademarks or registered trademarks of International Business Ma-

chines Corporation in the United States, other countries, or both: DB2, Informix, Informix Dy-

namic Server, Informix Dynamic Scalable Architecture, Informix DataBlade, Informix

TimeSeries Real-Time Loader, IBM, and the IBM logo. Java and all Java-based trademarks

are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of the Microsoft

Corporation in the United States, other countries, or both. Linux is a registered trademark of

Linus Torvalds. Intel, Intel Inside (logo), MMX, and Pentium are trademarks of Intel Corpora-

tion in the United States, other countries, or both. OSF/1 and UNIX are registered trademarks

and The Open Group is a trademark of The Open Group in the United States and other coun-

tries. Other company, product, or service names mentioned herein may be trademarks or ser-

vice marks their respective owners.

Printed in Canada. All rights reserved. This publication is protected by copyright, and permis-

sion mut be obtained from the publisher prior to any prohibited reproduction, storage in a re-

trieval system, or transmission in any form or by any means, electronic, mechanical,

photocopying, recording, or likewise.

MC Press offers excellent discounts on this book when ordered in quantity for bulk purchases

or special sales, which may include custom covers and content particular to your business,

training goals, marketing focus, and branding interest.

Product feature and technology names mentioned herein are as they existed at the time the

book was written. IBM reserves the right to modify and change them prior to the general re-

lease of the product.

For information regarding permissions or special orders, please contact:

MC Press

Corporate Offices

125 N. Woodland Trail

Lewisville, TX 75077 USA

For information regarding sales and/or customer service, please contact:

MC Press

P.O. Box 4300

Big Sandy, TX 75755-4300 USA

ISBN: 1-58347-075-1

To Catherine and my children,
Thank you for your continuing support

To the IDS development teams,
I couldn’t be more proud to represent your

work in IDS 11. Well, well done.

Acknowledgments

A book like this doesn’t get created out of thin air. Many people had a hand in
bringing it to you. At the risk of missing someone, here they are:

● The IDS development teams for creating the technology, letting me crawl
through the internal specifications and design documentation, responding to
my questions, and making sure I had continuing access to the latest product
builds to test and play with.

● Jerry Keesee, Kevin Brown, Jonathan Leffler, Alan Caldera, Keshava
Murthy, Mahesh Dashora, David Desautels, Guy Bowerman, Joseph
Veleeparambil, Karen Qualley, Robert Uleman, Inge Halilovic, and Hon
Cheong for their technical reviews to help keep me out of the technical tar
pits.

● Susan Visser, Cathy Elliott, and Pat Moffatt for getting the IBM machinery to
publish the book.

● Katie Tipton for catching and correcting all the text warts in what I wrote.
● Merrikay Lee for putting up with all the hassles and working so hard to get

this published on time.

To anyone I’ve missed, I’m sorry but thank you very much for your help and support.

Contents

Chapter 1: Introduction to Informix Dynamic Server 1
Overview of the Informix Dynamic Scalable Architecture. 2

DSA Components: Processor 3
DSA Components: Dynamic Shared Memory 7
DSA Components: Intelligent Data Fragmentation. 8
Leveraging the Strengths of DSA 10
An Introduction to IDS Extensibility 14

Informix Dynamic Server Editions and Functionality 22
Conclusion . 24

Chapter 2: Security and Regulatory Compliance 25
Label-Based Access Control . 25
Common Criteria Certification 30
Encryption in an HA Environment 32
sysdbopen and sysdbclose Functions 33
Backup and Restore Filters . 33

Chapter 3: Relieving the Load on the IDS Administrator. 35
New Administration API . 35
Database Scheduler . 36
Granular Installation and the Silent Installer 37
Backup and Restore Enhancements 40

Full Backup Parallelism . 40
dbspace Ordering . 41
On-Bar Performance and Monitoring Tool 42
Backup to Directories . 43
Unattended ontape Backup and Restore 45
Backup and Restore Filters 45

OpenAdmin Tool for IDS . 46
Automated and Improved Statistics Gathering 51
Recovery Time Objective and Interval Checkpoints 55

v

Modifying the Physical Log . 57
sysdbopen/sysdbclose Functions 57
Direct I/O with Cooked Spaces 58
Instance Administration Mode 59
Private VP Memory Cache . 60

Chapter 4: Better Business Continuity Using IDS 61
IDS Replication Technologies. 61
Enhancements to Enterprise Replication 64

Support for Renaming Objects. 65
Dynamic ER Configuration 65
Truncate Table Support . 65
Optional Trigger Execution During Synchronization Operations. 65

Enhancements to HDR . 66
New Components to Support HDR Enhancements 66
Continuous Log Restore Servers 67
Remote Standby Secondary Servers 69
Shared Disk Secondary Servers 71
Putting It All Together . 74

Chapter 5: Easing Application Development 79
Pulling the Trigger, Multiple Times 79
XML in IDS . 82
DataBlade Integration . 83

Binary . 84
Basic Text Search . 85
Geospatial . 86
Node . 86

Concurrency and Optimization Enhancements 87
Concurrent Optimization . 87
Directives for ANSI-Compliant Syntax 89

ISTAR Extended Type Support 89
Derived Tables. . 90
Common Application API . 90
Web Feature Service. . 90
Index Self-Join Access Method 91
Named Parameters . 93
Auto Re-Optimization of Prepared Statements and Stored Procedures. 94
Competitive Stored Procedure Support 94
Conclusion . 97

vi

Contents

Introduction to

Informix Dynamic Server

There’s no denying the similarity between the watchwords for businesses today
and the Olympic motto, Citius, Altius, Fortius — that is, “Faster, Higher,

Stronger.” Companies today are under pressure to scope, design, and bring products
and services to market before their competition. Marketing messages must create an
immediate impact to drive demand, and costs and inefficiencies must be reduced to
the bare minimum. All-out commitment to the business or product strategy is ex-
pected — unless the strategy doesn’t appear to be working; in that case, the business
(and its employees) must immediately change course, adopt a new strategy, and push
forward with the new approach.

IBM Informix® Dynamic Server™ 11 (IDS) — code-named “Cheetah” — con-
tinues a longstanding tradition within IBM and Informix of delivering first-in-class
data servers. IDS combines the robustness, high performance, availability, and
scalability that today’s modern businesses need.

Complex, mission-critical data management applications typically require a com-
bination of online transaction processing (OLTP), batch, and decision-support opera-
tions, including online analytical processing (OLAP). Meeting these needs demands
a data server that can scale in performance as well as in functionality. It must dynam-
ically adjust to changing requirements — the accumulation of larger amounts of data,
changes in SQL operations, or increasing numbers of concurrent users. The technol-
ogy should be designed to efficiently use all the capabilities of the existing hardware
and software configuration, including single- and multiprocessor architectures. Last,
the data server must satisfy users’ demands for more complex application support,
which often uses nontraditional or “rich” data types that can’t be stored in simple
character or numeric form.

Built on the IBM Informix Dynamic Scalable Architecture™ (DSA), IDS pro-
vides one of the most effective solutions available: a next-generation parallel data-
base architecture that delivers mainframe-caliber scalability, manageability, and
performance along with minimal operating system overhead, automatic distribution

1

1

of workload, and the capability to extend the server to handle new types of data.
With Version 11, IDS increases its lead over the data server landscape with even
faster performance, major reductions and improvements to an already practically
hands-free self-administrating data server, significant enhancements to its unmatched
business-continuity functionality, XML support, expansion of its geospatial capabili-
ties, new application development, integration features, and more.

IDS delivers proven technology that efficiently integrates new and complex data
directly into the database so that data can be modeled as the business uses it. With
these expanded modeling options, data becomes information.

IDS handles time-series, spatial, geodetic, Extensible Markup Language (XML),
video, image, and other user-defined data side by side with traditional legacy data to
meet today’s most rigorous data and business demands. IDS helps you and your
business lower its total cost of ownership (TCO) by leveraging IDS’s well-regarded
general ease of use and administration as well as its support of existing standards for
development tools and systems infrastructure. A development-neutral environment,
IDS supports a comprehensive array of application development tools for rapid de-
ployment of applications under Linux, Microsoft® Windows®, and UNIX® operat-
ing environments.

The maturity and success of IDS is built on more than 14 years of widespread use
in critical business operations, a track record that attests to IDS’s stability, perfor-
mance, and usability. IDS 11 moves this already highly successful enterprise rela-
tional database to a new level.

This book briefly introduces the technological architecture that supports all ver-
sions of IDS and then describes in greater detail some of the new features available
in the latest release. IDS begins with many features and capabilities that are unique
in the industry and unavailable in any other data server. With Version 11, IDS con-
tinues to maintain and accelerate its lead over other data servers on the market today,
enabling customers to use information in new and more efficient ways to create busi-
ness advantages.

Overview of the Informix Dynamic Scalable Architecture
High system performance is essential for maintaining maximum throughput. IBM
Informix Dynamic Server maintains industry-leading performance levels through
multiprocessor features, shared memory management, efficient data access, and
cost-based query optimization. IDS is available on the broadest set of hardware plat-
forms of all servers in the IBM Information Management family. Because the under-
lying platform is transparent to applications, the data server can migrate easily to
more powerful computing environments as needs change. This transparency enables
your developers to take advantage of high-end symmetric multiprocessing (SMP)
systems with little or no need to modify application code.

Data server architecture is a significant differentiator and contributor to perfor-
mance, scalability, and the ability to support new data types and processing

2

CHAPTER 1: Introduction to Informix Dynamic Server

requirements. Almost all data servers available today use an older technological de-
sign that requires each database operation for an individual user (read, sort, write,
communication, and so on) to invoke a separate operating-system process. This ar-
chitecture worked well when database sizes and user counts were relatively small.
Today, these types of servers spawn many hundreds and even thousands of individ-
ual processes that the operating system must create, queue, schedule, manage/con-
trol, and then terminate when they’re no longer needed. Given the fact that, generally
speaking, any individual system CPU can work on only one thing at a time — and
the operating system works through each of the processes before returning to the top
of the queue — this data server architecture creates an environment in which individ-
ual database operations must wait for one or more passes through the queue to com-
plete their task. With this type of architecture, scalability has nothing to do with the
software; it depends entirely on the speed of the processor — how fast it can work
through the queue before it starts over again.

IDS’s architecture is based on advanced technology that efficiently uses virtually
all of today’s hardware and software resources. Called the Dynamic Scalable Archi-
tecture, it fully exploits the processing power available in SMP environments by per-
forming similar types of database activities (e.g., I/O, complex queries, index builds,
log recovery, inserts, and backups/restores) in parallelized groups rather than as dis-
crete operations. The DSA design architecture includes built-in light-weight
multithreading and parallel processing capabilities, dynamic and self-tuning shared
memory components, and intelligent logical data storage capabilities, supporting the
most efficient use of all available system resources.

In effect, what happens is that the DSA creates a separate virtual database operating
system that leverages the resources of the physical server. Because this system was
written with a single focus, it is highly optimized and efficient in its execution of data
server operations. This optimization translates to reduced hardware and administrative
expenses, enabling you to do more with less. It’s not uncommon for customers like you
to reduce their planned hardware expenditures when deciding to move to IDS. In some
cases, customers buy no new hardware at all; they can continue to use existing systems
because IDS provides more than acceptable performance even on “older, less power-
ful” systems. The following sections discuss each component of DSA.

DSA Components: Processor

IDS provides the unique ability to scale the database system by using a dynamically
configurable pool of database server processes called virtual processors (VPs). Each
database operation, such as a sorted data query, is broken into task-oriented subtasks
(data read, join, group, and sort, for example) for rapid processing by virtual proces-
sors that specialize in that type of subtask. Virtual processors mimic the functionality
of the hardware CPUs in that they schedule and manage user requests using multiple,
concurrent threads. Figure 1.1 illustrates this functionality.

3

Overview of the Informix Dynamic Scalable Architecture

A thread represents a discrete task within a data server process, and many threads
may execute simultaneously, and in parallel, across the pool of virtual processors.
Unlike a CPU process-based (or single-threaded) engine, which leaves tasks on the
system CPU for its given unit of time (even if no work can be done, thus wasting
processing time), virtual processors are light-weight and multithreaded. As a conse-
quence, when a thread is either waiting for a resource or has completed its task, a
thread switch will occur and the virtual processor will immediately work on another
thread. As a result, not only is precious CPU saved but it is also used to satisfy as
many user requests as possible in the given amount of time. Figure 1.2 illustrates this
type of processing, known as fan-in parallelism.

Not only can one virtual processor respond to multiple user requests in any given
unit of time, but one user request can also be distributed across multiple virtual pro-
cessors. For example, with a processing-intensive request such as a multi-table join,
the data server divides the task into multiple subtasks and then spreads these subtasks
across all available virtual processors. With the ability to distribute tasks, the request
is completed more quickly. Figure 1.3 illustrates this type of processing, referred to
as fan-out parallelism.

4

CHAPTER 1: Introduction to Informix Dynamic Server

Figure 1.1: IDS has a pool of virtual processors (VPs) that divide operations into discrete
tasks and execute them in parallel.

5

Overview of the Informix Dynamic Scalable Architecture

Figure 1.2: IDS VPs employ fan-in parallelism to efficiently use hardware resources to com-
plete more operations in shorter amounts of time.

Figure 1.3: Fan-out parallelism uses many VPs to process a single SQL operation.

Together with fan-in parallelism, the net effect is more work being accomplished
more quickly than with single-threaded architectures; in other words, the data server
is faster.

Dynamic load balancing occurs within IDS because threads aren’t statically as-
signed to virtual processors. The first available VP services outstanding requests,
balancing the workload across all available resources. For efficient execution and
versatile tuning, VPs can be grouped into classes, each optimized for a particular
function, such as CPU operations, disk I/O, communications, and administrative
tasks. Figure 1.4 illustrates this type of configuration. You can configure the IDS in-
stance with the appropriate number of virtual processors in each class to handle the
workload. You can make adjustments, if necessary, while the instance is online with-
out interrupting database operations to handle occasional periods of heavy activity or
different load mixes.

In Linux and Unix systems, the use of multithreaded VPs significantly reduces the
number of Linux/Unix processes, and, as a result, less context switching is required.
In Windows systems, VPs are implemented as threads to take advantage of the oper-
ating system’s inherent multithreading capability. Because IDS includes its own
threading capability for servicing client requests, the actual number of Windows

6

CHAPTER 1: Introduction to Informix Dynamic Server

Figure 1.4: VPs are grouped into classes optimized for specific functions. An IDS instance
is configured with the number of VPs in each class to handle the expected workload.

threads is decreased — reducing the system thread-scheduling overhead and provid-
ing better throughput.

That IDS employs a light-weight threading model is significant. As I mentioned
earlier, the DSA creates a type of data server operating system. As the sole
owner-operator, the DSA controls all aspects of the data server’s operations, includ-
ing when thread switches occur and how memory is used. This is not the case with
heavy-weight threaded applications built using Posix or other threading libraries. Al-
though Posix provides a fairly easy facility to use to thread an application, Posix
threads operate under the constraints and direction of the physical server’s operating
system. As a result, the operating system regularly preempts these threads based on
what it thinks is excessive processing time and other conditions. In addition, these
threads may be further constrained by having to use O/S interfaces to devices as op-
posed to the direct device support built into IDS. The net effect is that, although
better than a single-threaded environment, a heavy-weight threading model is not as
efficient or powerful as the bespoke libraries for IDS.

In fully utilizing the hardware processing cycles, the IDS data server requires less
hardware power to achieve performance comparable to or better than other data serv-
ers. In fact, real-world tests and customer experiences indicate that IDS needs only
35 percent to 50 percent of the hardware resources to meet or exceed the perfor-
mance characteristics of single-threaded or process-based database servers. With this
kind of efficiency, you can extend the life of your existing systems, defer costly ex-
penditures, avoid migration-oriented outages and work, and, most important, contrib-
ute directly to the bottom line of your company’s financials.

DSA Components: Dynamic Shared Memory
All memory used by IDS is shared among the pool of virtual processors. Beyond a
small initial allocation of memory for instance-level management, usually a single
shared memory portion is created and used by the VPs for all data operations. This
portion contains the buffers of queried and modified data; sort, join, and group ta-
bles; lock pointers; and so on. What is unique to IDS is that should database opera-
tions require more (or less) shared memory, additional segments will be dynamically
added to (or dropped from) the portion without interrupting user activities. You can
also make similar changes manually while the instance is running to prepare for an
imminent processing spike. When a user session terminates its connection to the data
server, the thread-specific memory for that session is freed within the memory por-
tion and is reused by another session.

The buffer pool is used to hold data from the data server disk supply during pro-
cessing. When users request data, the data server first tries to locate the data in the
buffer pool to avoid unnecessary disk I/O. Depending on the characteristics of the in-
stance workload, increasing the size of the buffer pool can significantly reduce the
number of disk accesses, which can substantially improve performance, particularly
for OLTP applications.

7

Overview of the Informix Dynamic Scalable Architecture

The buffer pool holds frequently used table or index data using a scorecard sys-
tem. As each element is used, its score increases. A portion of the buffer system
holds these high-score elements, while the remainder holds less frequently used data.
This segmentation of high- and low-use data is completely transparent to the applica-
tion; it receives in-memory response times regardless of which portion of the buffer
pool contains the requested element. As data elements are used less often, they are
migrated from the high-use to the low-use portion. Data buffers in this area are
flushed and reused via a first-in, first-out (FIFO) process.

Included in the memory structures for an instance are cached disk-access plans for
the IDS cost-based optimizer. In most OLTP environments, the same SQL operations
are executed throughout the processing day, albeit with slightly different variable
conditions (such as “customer number,” “invoice number,” and so on). Each time an
SQL operation is executed, the data server optimizer must determine the fastest way
to access the data. Obviously, if the data is already cached in the memory buffers, it
is retrieved from there; otherwise, disk access is required. When this occurs, the
optimizer has to decide on the quickest way to get the requested data. It must evalu-
ate whether an index exists pointing directly to the requested data or whether the data
has been intelligently fragmented on disk, restricting the possible number of
dbspaces to look through (we’ll talk more about dbspaces in a moment). When join-
ing data from several tables, the optimizer evaluates which table will provide the
data the others will join to, and so on. Although not really noticeable to end users,
these tasks take time to execute and affect response time.

IDS provides a caching mechanism whereby data I/O plans can be stored for reuse
by subsequent executions of the same operation. Called, appropriately enough, the
SQL Statement Cache, this allocation of instance memory stores the SQL statement
and the optimizer’s determination of the fastest way to execute the operation. You
can configure the size of this cache as well as when an individual SQL operation is
cached. Generally speaking, most administrators choose to cache operations after
they’ve been executed three or more times to prevent filling the cache with sin-
gle-use operations. You can flush the cache so it is refreshed on an as-needed basis
without interrupting transaction processing.

With dynamic reconfiguration of memory allocations, intelligent buffer manage-
ment, caching of SQL access plans, and a number of other technologies, Informix
Dynamic Server provides unmatched efficiency and scalability of system memory
resources.

DSA Components: Intelligent Data Fragmentation
The parallelism and scalability of the DSA processor and memory components are

supported by the ability to perform asynchronous I/O across database tables and in-
dexes that have been logically partitioned. To speed up what is typically the slowest
component of database processing, IDS uses its own asynchronous I/O (AIO) feature
or the operating system’s kernel AIO, when available. Because I/O requests are

8

CHAPTER 1: Introduction to Informix Dynamic Server

serviced asynchronously, virtual processors don’t have to wait for one I/O operation
to be completed before starting work on another request. To ensure requests are pri-
oritized appropriately, four specific classes of VPs are available to service I/O re-
quests: logical log I/O, physical log I/O, asynchronous I/O, and kernel asynchronous
I/O (KAIO). With this separation, you can create additional virtual processors to ser-
vice specific types of I/O to alleviate any bottlenecks that might occur.

The read-ahead feature enables IDS to asynchronously cache several data pages
from disk while the server processes the current set of pages retrieved into memory.
This feature significantly improves the throughput of sequential table or index scans;
end-user applications spend less time waiting for disk accesses to be completed.

Data Partitioning

You can logically divide table and index data into partitions, or fragments, using one
or more partitioning schemes to improve the ability to access several data elements
within the table or index in parallel as well as to increase and manage data availabil-
ity and currency. For example, if a sequential read of a partitioned table were re-
quired, it would be completed more quickly because the partitions would be scanned
simultaneously rather than each disk section being read serially from the top to the
bottom. With a partitioned table, you can move, associate, or disassociate partitions
to easily migrate old or new data into the table without tying up table access with
mass inserts or deletes.

IDS has two major partitioning schemes that define how data is spread across the
fragments. Regardless of the partitioning scheme chosen, or even if none is used at
all, the effects are transparent to end users and their applications. Table partitions can
be set and altered without bringing down the instance and, in some cases, without in-
terrupting user activity within the table. When partitioning a table, you can specify
either of two schemes:

● Round robin — Data is evenly distributed across each partition, with each
new row going to the next partition sequentially.

● Expression-based — Data is distributed into the partitions based on one or
more sets of logical rules applied to values within the data. Rules can be
range-based, using operators such as =, >, <, <=, MATCHES, IN, and their
inverses, or hash-based, where the SQL mod operator is used in an algorithm
to distribute data.

Depending on the data types used in the table, individual data columns can be
stored in a different kind of data storage space, called a smart BLOBspace, from the
rest of the table’s “regular” data (stored in dbspaces). These columns, primarily data
types referred to as smart large objects, or smart LOBs, can have their own unique
partitioning strategy to distribute the values across one or more smart BLOBspaces
in addition to the partitioning scheme applied to the rest of the table. Another type of
large object, called simple LOBs, can and should be fragmented into simple

9

Overview of the Informix Dynamic Scalable Architecture

BLOBspaces. Be aware, though: these types are black-box objects as far as the in-
stance is concerned, so no further fragmentation options are possible.

You can also partition indexes using an expression-based partitioning scheme. A
table’s index partitioning scheme need not be the same as the table’s data partition
scheme. Partitioned indexes can be placed on a different physical disk than the data,
resulting in optimum parallel-processing performance. Partitioning tables and in-
dexes improves the performance of data-loading and index-building operations.

With expression-based partitioning, the IDS cost-based SQL optimizer can create
more efficient and quicker plans using partition elimination to access only those ta-
ble/index partitions where the data is known to reside or should be placed. The bene-
fit is that multiple operations can be executing simultaneously on the same table,
each in its unique partition, resulting in greater system performance than is available
with other data servers.

Depending on the operating system used, you can configure unformatted disk par-
titions, or “raw” space, for the data server to use when creating spaces to store table
or index data. When you employ raw disk space, IDS uses its own data storage sys-
tem to allocate contiguous disk pages. Contiguous disk pages reduce latency from
spindle-arm movement to find the next data element. When using raw disk space,
IDS can use direct memory access to manage write operations. This capability is par-
ticularly valuable when kernel asynchronous I/O is available in the O/S. With the ex-
ception of Windows platforms, where standard file system space should be used,
historically Unix/Linux raw-disk-based dbspaces have provided a measurable perfor-
mance benefit. IDS 11 provides new technology that significantly improves perfor-
mance for file system-based dbspaces.

Leveraging the Strengths of DSA

With an architecture as robust and efficient as IDS’s, the data server provides several
performance features that other servers cannot match.

High Performance Loader (HPL)

The High-Performance Loader (HPL) utility loads data into tables very quickly be-
cause it can read from multiple data sources (e.g., tapes, disk files, pipes, or other ta-
bles) and load the data in parallel. As the HPL reads from the data sources, it can
execute data manipulation operations, such as converting from EBCDIC to ASCII,
masking or changing data values, or converting data to the local environment based
on Global Language Support (GLS) requirements. You can configure an HPL job so
that normal load tasks, such as referential integrity checking, logging, and index
builds, are performed during the load or afterward, which speeds up the load time.
You can also use the HPL to extract data from one or more tables for output to one
or more target locations. Data manipulation similar to that performed in a load job
can be performed during an unload job.

10

CHAPTER 1: Introduction to Informix Dynamic Server

Parallel Data Query (PDQ) and Memory Grant Manager (MGM)

IDS response to a data operation can vary depending on the amount of data being
manipulated and the database’s design. While many simple OLTP operations, such
as single row inserts/updates/deletes, can be executed without straining the system, a
properly designed database can leverage IDS features such as parallel data query,
parallel scan, sort, join, group, and data aggregation for larger, more complex
operations.

The Parallel Data Query (PDQ) feature takes advantage of the CPU power pro-
vided by SMP systems and the IDS virtual processors to execute fan-out parallelism.
PDQ is of greatest benefit to more complex SQL operations that are more analytical
(or OLAP-oriented) than operational (or OLTP-oriented). With PDQ enabled, not
only is a complex SQL operation divided into a number of subtasks, but the subtasks
are given higher or lower priority for execution within the data server’s resources
based on the overall “PDQ-priority” level requested by the operation.

The Memory Grant Manager (MGM) works with PDQ to control the degree of
parallelism by balancing the priority of OLAP-oriented user requests with available
system resources, such as memory, virtual processor capacity, and disk scan threads.
Each OLAP query can be constructed to request a percentage of data server re-
sources for execution by setting the operation’s PDQ_PRIORITY value. You can set
query type priorities, adjust the number of queries allowed to run concurrently, and
change the maximum amount of memory used for PDQ-type queries. The MGM en-
forces the rules by releasing queries for execution when the proper amounts of sys-
tem resources are available.

Full Parallelism

The parallel scan feature takes advantage of table partitioning in two ways. First, if
the SQL optimizer determines that each partition must be accessed, a scan thread for
each partition will be executed in parallel with the other threads to bring the re-
quested data out as quickly as possible. Second, if the access plan calls for only “1”
to “N–1” of the partitions to be accessed, another access operation can be executed
on the remaining partitions so that two (or more) operations can be active on the ta-
ble or index at the same time. Because disk I/O is the slowest element of database
operations, scanning in parallel or having multiple operations executing simulta-
neously across the table/index can boost performance significantly.

As data is being retrieved from disk or from memory buffers, the IDS parallel sort
and join technology takes the incoming data stream and begins the join and sorting
process immediately rather than waiting for the scan to be completed. If several join
levels are required, higher-level joins are immediately fed results from lower-level
joins as they occur, as Figure 1.5 illustrates.

11

Overview of the Informix Dynamic Scalable Architecture

Similarly, if SQL aggregate functions such as sum, avg, min, or max need to be
executed on the data, or if a group by SQL operator is present, these functions exe-
cute in real time and in parallel with the disk scan, join, and sort operations. As a
consequence, a final result can often be returned to the requester as soon as the disk
scan is completed.

Like the parallel scan, a parallel insert takes advantage of table partitioning, letting
multiple virtual processors and update threads insert records into the target table (or
tables) in parallel. This technique can yield performance gains proportional to the
number of disks on which the table was fragmented.

With single-threaded data servers, index building can be a time-consuming pro-
cess. IDS uses parallelized index-building technology to significantly reduce the time
needed to build indexes. During the build process, data is sampled to determine the
number of scan threads to allocate. The data is then scanned in parallel (using
read-ahead I/O where possible), sorted in parallel, and then merged into the final in-
dex as illustrated in Figure 1.6.

In Version 11, IDS takes this efficiency one step further. During the index build,
as the key values are being scanned to create the index, the optimizer traps distribu-
tion and other statistical information about the leading keys in the index. With this
information, the index can be used in optimizer calculations immediately after its
creation. You no longer have to execute a separate statistic-gathering operation,
which puts an additional load on the system and delays use of the index.

12

CHAPTER 1: Introduction to Informix Dynamic Server

Figure 1.5: With full, integrated parallelism, IDS can simultaneously execute several tasks
required to satisfy an SQL operation.

As with other I/O operations I’ve already mentioned, everything occurs in paral-
lel; the sort threads don’t need to wait for the scan threads to be completed, and the
index builds don’t wait for the sorts. This parallelization dramatically increases in-
dex-build performance compared with serial index builds.

IDS Cost-Based Optimizer

IDS uses a cost-based optimizer to determine the fastest way to retrieve data from
database tables and/or indexes based on detailed statistical information about the data
within the database generated by the update statistics SQL command. This statisti-
cal information includes more than just the number of rows in the table; the maxi-
mum and minimum values for selected columns, value granularity and skew, index
depth, and more are captured and recorded in overhead structures for the optimizer.
The optimizer uses this information to pick the access plan that will provide the

13

Overview of the Informix Dynamic Scalable Architecture

Figure 1.6: An example of how IDS uses parallelism to dramatically reduce index build and
maintenance time

quickest access to the data while trying to minimize the impact on system resources.
The optimizer’s plan is built using estimates of I/O and CPU costs in its calculations.

Access plan information is available for review through several management in-
terfaces so you and your developers can evaluate the effectiveness of application
and/or database design. The SQL operation (or operations) under review doesn’t
need to actually be executed for you to obtain the plan information. When you set an
environment variable, execute a separate SQL command, or embed an instruction in
the SQL operation, the operation will stop after being “prepared,” and the access
plan information will be output for review. With this functionality, you can test ap-
plication logic and database design for efficiency without having to constantly re-
build data back to a known “good” state.

In this release of IDS, IBM has significantly expanded the access plan information
available for review. This information now includes estimated as well as actual costs
if the operation was allowed to execute, the capture of information for PDQ-enabled
operations, and separate iterator-level statistics so you can analyze each component
of the operation, not just the overall operation.

In some rare cases, the optimizer may not choose the best plan for accessing data.
This result can happen when, for example, the operation is extremely complex or
when insufficient statistical information is available about the table’s data. In these
situations, after careful review and consideration, you or your developer can influ-
ence the plan by including optimizer directives (also known as optimizer hints) in the
SQL statement. You can set optimizer directives to use or exclude specific indexes,
specify the join order of tables, or indicate the join type to be used when the opera-
tion is executed. You can also set an optimizer directive to optimize a query to re-
trieve only “N” rows of the possible result set. IBM has enhanced this functionality
to include registering of optimizer directives for SQL operations whose source code
is unavailable. This feature lets you enhance or modify data access operations that
are executed by third-party applications that you’ve purchased and are delivered as
compiled binaries.

An Introduction to IDS Extensibility
IDS provides a complete set of object-oriented technology to extend the data server
and the databases it contains, including support for new data types, routines, aggre-
gates, and access methods. With this technology, in addition to recognizing and stor-
ing standard character and numeric-based information, the data server can, with the
appropriate access and manipulation routines, manage nontraditional data structures
that are either modeled more like the business environment or contain new types of
information never before available for business application processing. Although the
data may be considered “nonstandard,” and some types can be table-like in and of
themselves, it is stored in a relational manner using tables, columns, and rows. In ad-
dition, all data, data structures created through Data Definition Language (DDL)
commands, and access routines recognize objected-oriented behaviors such as

14

CHAPTER 1: Introduction to Informix Dynamic Server

overloading, inheritance, and polymorphism. This combination of object-oriented
and relational capabilities, referred to as object-relational extensibility, supports
transactional consistency and data integrity while simplifying database optimization
and administration.

Other data servers rely on middleware to link multiple add-on servers, each man-
aging different data types, to make it look as if there is a single processing environ-
ment. This approach compromises not only performance but also transactional
consistency and integrity because problems with the network can corrupt the data.
Still other data servers simply create a view that looks like an object, but in fact the
“object” is a standard relational table, and “object indexes” are themselves tables that
are sequentially scanned. This is not the case with IDS. Its object-relational technol-
ogy is built into the DSA core, and you can use it, or not, at will within the context of
a single database environment.

IDS Extensibility: Data Types

IDS uses a wide range of data types to store and retrieve data, as Figure 1.7 illus-
trates. The breadth and depth of the data types available to your database administra-
tors and application developers is significant, letting them truly define data structures
and rules that accurately mirror the business environment rather than trying to ap-
proximate it through normalized database design and access constraints.

Some types, referred to as built-in types, include standard data representations
such as character(n), decimal, integer, serial, varchar(n), date, and datetime; alias

15

Overview of the Informix Dynamic Scalable Architecture

Figure 1.7: The IDS data type tree

types such as money; and simple large objects (LOBs). Recent releases of IDS have
provided additional built-in types, including boolean, int8, serial8, and an even lon-
ger variable-length character string, the lvarchar.

Extended data types themselves are of two classes, including

● supersets of built-in data types with enhanced functionality

● types that weren’t originally built into the IDS data server but that, once
defined, can be used to intelligently model data objects to meet business
needs

You use the collection type to store repeating sets of values within one row of one
column that normally would require multiple rows or redundant columns in one or
more tables in a traditional relational database design. The three collection types en-
force rules about whether duplicate values or data order is significant. Collection
data types can be nested and can contain almost any type, built-in or extended.

With row data types, you can build a new data type composed of other data types.
The format of a row type is similar to that used when defining columns to build a ta-
ble — an attribute name and a data type. Once defined, row types can be used as col-
umns within a table or as a table in and of themselves. With certain restrictions, a
row type can be dynamically defined on the fly as a table is being created or can be
inherited into other tables, as the examples in Figure 1.8 illustrate.

A distinct data type is an alias for an existing data type. A newly defined distinct
data type inherits all the properties of its parent type (for example, a type defined us-
ing a float parent will inherit the elements of precision before and after the decimal
point), but because it is a unique type, you can’t combine its values with any other
data type but its own without either “casting” the value or using a user-defined
routine.

Last, opaque data types are those created by developers in C or Java™; they can
be used to represent any data structure that needs to be stored in the database. When
you use opaque data types, as opposed to the other types already mentioned, the data
server is completely dependent on the type’s creator to define all access methods that
might be required for the type, including insert, query, modify, and delete operations.

Extended data types can be used in queries or function calls, passed as arguments
to database functions, and indexed and optimized in the same way as the core built-in
data types. Because any data that can be represented in C or Java can be natively
stored and processed by the data server, IDS can encapsulate applications that have
already implemented data types as C or Java structures. Because the definition and
use of extended data types is built into the DSA architecture, specialized access rou-
tines support high performance. The access routines are fully and automatically re-
coverable, and they benefit from the proven manageability and integrity of the IDS
data server architecture.

16

CHAPTER 1: Introduction to Informix Dynamic Server

IDS Extensibility: Data Type Casting

With the enormous flexibility and capability that both built-in and extended data
types provide to create a database environment that accurately matches the business
environment, you’ll need to use the types together fairly often. Doing so requires
functionality to convert values between types. You generally accomplish this through
the use of casts, and quite often the casting process will use user-defined functions
(UDFs).

Casts enable you to manipulate values of different data types together or to substi-
tute the value of one type in the place of another. While casts, as an identifiable func-
tion, have only recently been added to the SQL syntax, IDS administrators and
developers have been using casts for some time; however, casts have been hidden in
the data server’s functionality. For example, to store the value of the integer “12” in

17

Overview of the Informix Dynamic Scalable Architecture

Named row type:
create row type name_t

(fname char(20),
lname char(20));

create row type address_t
(street_1 char(20),
street_2 char(20),
city char(20),
state char(2),
zip char(9));

create table student
(student_id serial,
name name_t,
address address_t,
company char(30));

Unnamed row type:
ROW (a int, b char (10))

–which is equal to–

ROW(x int, y char(10))

create table part
(part_id serial,
cost decimal,
part_dimensions row
(length decimal,
width decimal,
height decimal,
weight decimal));

Figure 1.8: Examples of “named” and “unnamed” row types and their use

a table’s character field requires casting the integer value to its character equivalent,
and the data server performs this action on behalf of the user. The inverse cannot be
done because no appropriate cast is available to represent a character (such as an “a”)
in a numeric field.

When you use user-defined types (UDTs), you must create casts to change values
between the source type and each of the expected target data types. For some types,
such as collections, LOBs, and unnamed row types, casts cannot be created due to
the unique nature of these types. You can define casts as either explicit or implicit.
For example, with an implicit cast, you can create a routine that adds values of type
“a” to the value of type “b” by first converting the value of one type to the other type
and then adding the values together. The result can either remain in that type or be
converted back into the other type before being returned. Any time an SQL operation
requires this operation to occur, this cast is automatically invoked behind the scenes
and a result returned. An explicit cast, while it may perform the exact same task as
an implicit cast, is executed only when it is specifically called to manipulate the val-
ues of the two data types. Although using explicit casts requires a little more devel-
oper effort, more program options are available with their use based on the desired
output type.

IDS Extensibility: User-Defined Routines, Aggregates, and Access Methods

In earlier versions of IDS, if you wanted to capture application logic that manipu-
lated data and have it execute within the data server, you had only stored procedures
to work with. Although stored procedures have an adequate amount of functionality,
they may not be the best solution from a performance perspective. IDS now provides
the ability to create significantly more robust and better-performing application or
data manipulation logic in the data server, where it can benefit from the processing
power of the physical server and the DSA.

A user-defined routine (UDR) is a collection of program statements that — when
invoked from an SQL statement, a trigger, or another UDR — perform new do-
main-specific operations, such as searching geographic data or collecting data from
Web site visitors. UDRs are most commonly used to execute logic in the data server
— either generally useful algorithms or business-specific rules — reducing the time
it takes to develop applications and increasing application speed. UDRs can be func-
tions that return values or procedures that do not. They can be written in IBM
Informix Stored Procedure Language (SPL), C, or Java. SPL routines contain SQL
statements that are parsed, optimized, and stored in the system catalog tables in exe-
cutable format — making SPL ideal for SQL-intensive tasks. Because C and Java are
powerful, full-function development languages, routines you write in these languages
can carry out much more complicated tasks than SPL routines. C routines are stored
outside the data server with the path name to the shared library file registered as the
UDR. Java routines are first collected into “jar” files, which are stored inside the

18

CHAPTER 1: Introduction to Informix Dynamic Server

database server as smart large objects (SLOs). Regardless of their storage location,
your C and Java routines are executed as if they were a built-in component of IDS.

A user-defined aggregate (UDA) is a UDR that can either extend the functionality
of an existing built-in aggregate (e.g., SUM or AVG) or provide new functionality that
wasn’t previously available. In general, aggregates return summarized results from
one or more queries. For example, the built-in SUM aggregate adds values of certain
built-in data types from a query result set and returns their total. You can, for exam-
ple, create an extension of the SUM aggregate to include user-defined data types, en-
abling the reuse of existing client application code without requiring new SQL
syntax to handle the functionality of new data types within the application. To do so,
using the example of the SUM aggregate, would require you to create (and register) a
user-defined function that would overload the PLUS function and take the
user-defined data types that needed to be added together as input parameters.

To create a completely new user-defined aggregate, you need to create and regis-
ter two to four functions to perform the following tasks:

1. Initialize the data working space.

2. Merge a partial existing result set with the result of the current iteration.

3. Merge all the partial result sets.

4. Return the final result set with the associated closure and release of sys-
tem resources to generate the aggregate.

In defining the ability to work with partial result sets, UDAs can, like built-in ag-
gregates, execute in parallel. Functions created and registered for UDAs can be writ-
ten in SPL, C, or Java. As with built-in aggregates, the data server wholly manages a
UDA once it’s registered (as either an extended or a user-defined aggregate).

IDS provides primary and secondary access methods to access and manipulate
data stored in tables and indexes. Primary access methods, used with built-in data
types, provide functionality for table use. Secondary access methods are specifically
targeted to indexes and include B-tree and R-tree indexing technologies as well as
the CopperEye Indexing DataBlade module, which significantly reduces the creation
and maintenance of indexes on extremely large data sets. You can create additional
user-defined access methods to access other data sources. IDS has methods that pro-
vide SQL access to data in a heterogeneous data server table, in an external sequen-
tial file, or to other nonstandard data stored anywhere on the network. Secondary
access methods can be defined to index any data, as can alternative strategies to ac-
cess SLOs. You can create these access methods using the Virtual Table Interface
(VTI) and the Virtual Index Interface (VII) server APIs.

IDS Extensibility: DataBlades

IBM Informix DataBlade™ modules bring additional business functionality to the
data server through specialized user-defined data types, routines, and access meth-
ods. Your developers can use these new data types and routines to more easily create

19

Overview of the Informix Dynamic Scalable Architecture

and deploy richer applications that better address your company’s business needs.
IDS provides the same level of support to DataBlade functionality that is accorded to
built-in or other user-defined types/routines. With IBM Informix DataBlade mod-
ules, almost any kind of information you need to work with can be easily managed as
a data type within the data server.

With this release of IDS, several Blades have been bundled into the data server for
your use. The IBM Informix Basic Text Search DataBlade gives you the ability to
perform word or phrase searching through the use of a text search index. This Blade
works against text stored in CHAR, VARCHAR, LVARCHAR, BLOB, or CLOB data types
and searches based on a predicate containing a single word, a phrase, single or multi-
ple wildcards, or Boolean operators. It can execute exact, fuzzy, or proximity
searches.

The IBM Informix Node DataBlade enables you to model data that is hierarchical
in nature. It’s impossible, for example, to accurately model an organization chart or
your genealogy in a relational data server. The closest you can come is a table with
keys that refer back to the same table. Processing of operations on this type of table
is difficult and complex to write and manage. It involves either recursive program-
ming or set-processing routines, neither of which is very fast. In simple tests using
less than 100 MB of data, there was a 40X performance decrease when compared
with data modeled using this Blade’s technology. I’m sure the performance delta be-
tween the two would increase significantly as the amount of data grew.

A growing portfolio of “for purchase” third-party DataBlade modules is also
available. Or your developers can use the IBM Informix DataBlade Developer’s Kit
(DBDK) to create specialized Blades for your particular business needs. The follow-
ing is a partial list of available IBM Informix DataBlade technologies (for a current
list, visit http://www.ibm.com/informix):

● IBM Informix TimeSeries DataBlade — This DataBlade gives you a better
way to organize and manipulate any form of realtime, timestamped data.
Applications that use large amounts of timestamped data, such as network
analysis, manufacturing throughput monitoring, scientific or medical
instrument monitoring, or financial ticker data analysis can provide
measurably better performance and reduced data storage requirements with
this DataBlade than you can achieve using traditional relational database
design, storage, and manipulation technologies.

● IBM Informix TimeSeries Real-Time Loader® — A companion piece to the
IBM Informix TimeSeries DataBlade, the TimeSeries Real-Time Loader is
specifically designed to load timestamped data and make it available to
queries in real time. Many customers use this Blade for streaming data loads
in situations where the data must be available for use in a table less than one
second after being presented to the server.

● IBM Informix Geodetic DataBlade and IBM Informix Spatial DataBlade —
These two DataBlades give you the functionality to intelligently manage

20

CHAPTER 1: Introduction to Informix Dynamic Server

complex geospatial information
within the efficiency of an
object-relational database
model. The Geodetic DataBlade
stores and manipulates objects
from a “whole-earth”
perspective using four
dimensions — latitude,
longitude, altitude, and time. It’s
designed to manage
spatio-temporal data in a global
context, such as satellite
imagery and related metadata,
or through trajectory tracking in
an airline, cruise, or military
environment. The Spatial
DataBlade is a set of routines
written to the open-GIS
(Geographic Information
System) Simple Features for
SQL specification. It takes a
“flat-earth” perspective to
mapping geospatial data points.
Based on ESRI technology
(http://www.esri.com), routines,
and utilities, this DataBlade is better-suited to answering questions such as
“How many grocery stores are within n miles of point X?” or “What’s the
most efficient route from point A to point B?” All IBM Informix
geo-oriented DataBlades take advantage of the built-in IBM Informix R-tree
multidimensional index technology, resulting in industry-leading spatial
query performance. While the Geodetic DataBlade is a for-charge item, the
Spatial DataBlade is available at no charge to all licensees beginning with
this release; previously, only Enterprise Edition licensees could use its
functionality without an additional license fee.

● IBM Informix Excalibur Text DataBlade — Using this DataBlade, you can
perform full-featured text searches of documents stored in database tables. It
supports any language, word, or phrase that can be expressed in an eight-bit,
single-byte character set. This Blade provides significantly greater
functionality than the Basic Text Search DataBlade in that the Excalibur
Blade understands document formats such as Adobe PDF or Microsoft
PowerPoint and can search inside documents of these types (and many more)
stored in databases in the data server.

21

Overview of the Informix Dynamic Scalable Architecture

● IBM Informix Video Foundation DataBlade — This Blade lets strategic
third-party development partners incorporate specific video technologies,
such as video servers, external control devices, codecs, or cataloging tools,
into your data server. It also provides the ability to manage video content and
video metadata regardless of the content’s location.

● IBM Informix Image Foundation DataBlade — The Image Foundation
DataBlade provides functionality for you to store, retrieve, transform, and
convert the format of image-based data and metadata. While this DataBlade
supplies basic imaging functionality, third-party development partners can
also use it as a base for new DataBlade modules to give you new
functionality, such as support for new image formats, new image-processing
functions, and content-driven searches.

● IBM Informix C-ISAM DataBlade — The C-ISAM DataBlade provides two
separate pieces of functionality to the storage and use of Indexed Sequential
Access Method (ISAM)–based data. If you have an environment with native
ISAM flat-file data, the DataBlade provides data server–based SQL access to
the data. From a user or application developer perspective, it’s as if the data
resided in one of IDS’s database tables. The second element of functionality
enables you to store/retrieve ISAM data in/from IDS database tables while
preserving the native C-ISAM application access interface. From your
C-ISAM developer’s perspective, it’s as if the data continues to reside in its
native flat-file format; however, with the data stored in a full-functioned data
server environment, transactional integrity can be added to C-ISAM
applications. Another benefit to storing C-ISAM data in the data server is the
more comprehensive backup and recovery routines provided by IDS.

The IBM Informix DataBlade Developer’s Kit is a single development kit for C-,
Java-, and SPL-based DataBlades and the DataBlade API. The API is a server-side C
API for adding functionality to the data server as well as for managing database con-
nections, server events, errors, and memory and processing query results. Additional
support for your DataBlade module developers includes the IBM Informix Devel-
oper Zone, available at http://www7b.boulder.ibm.com/dmdd/zones/informix. There,
developers can interact with peers, exchange information and expertise, and discuss
new development trends, strategies, and products. Examples of DataBlades and
Bladelets, indexes, and access methods are available for downloading and use. On-
line documentation for the DBDK and other IBM Informix products is available at
http://www.ibm.com/informix/pubs/library.

Informix Dynamic Server Editions and Functionality
With data server technology as dynamic and flexible as the DSA, it’s only natural to
assume that you can buy just the level of IDS functionality you need. IBM has pack-
aged Informix Dynamic Server into three “editions,” each tailored from a price and

22

CHAPTER 1: Introduction to Informix Dynamic Server

functionality perspective to a specific market segment. Regardless of the edition pur-
chased, IDS comes with the full implementation of DSA and its unmatched perfor-
mance, reliability, ease of use, and availability. Pricing varies based on licensing
and/or connection and scalability restrictions. Below is a brief comparison of the
three editions and their feature sets.

● IBM Informix Dynamic Server Express Edition — Targeted to small- to
medium-sized businesses requiring enterprise-class OLTP performance
without all the extra features and price tag. This edition is licensed on either a
per-processor or a “server plus authorized user” basis. It is limited to using no
more than two system processors and 4 GB of RAM and is available only for
Linux and Windows. You can upgrade IDS-Express directly to any other
edition simply by installing the new data server binaries.

● IBM Informix Dynamic Server Workgroup Edition — Stakes out the middle
ground for midsized companies or departmental servers in a much larger
enterprise deployment. Available on all supported operating systems, this
edition has higher hardware limits than IDS-Express: four system CPUs and
8 GB of RAM. IDS Workgroup’s licensing model is slightly different,
though. While it can be licensed per CPU for applications with large user
counts, IDS Workgroup also has a “server plus concurrent session” model.
With this approach, you buy a license for the data server plus the anticipated
concurrent sessions. This scheme is a departure from earlier IDS licensing,
which was user-based. Under the new model, pricing is determined by the
number of concurrent sessions the data server is supporting, regardless of
whether they come from just you or from 500 other people. You can’t hide
behind transaction concentrators, either; you’re responsible for the full
concurrent session count as seen by the concentrator.

IDS Workgroup Edition gives you additional data server functionality,
with the ability to configure and use Parallel Data Query metrics to reserve
data server resources for complex SQL operations. You can also use the High
Performance Loader and the parallel backup and restore options in the ON-Bar

utility suite. An IDS Workgroup instance can be a leaf node (or target) in an
Enterprise Replication (ER) cluster receiving data updates from other nodes
in the clusters. Last, you can buy an optional license and use
High-Availability Data Replication (HDR) to instantiate a disaster-recovery,
hot-site failover node.

● IBM Informix Dynamic Server Enterprise Edition — Includes all the features
of IDS Workgroup with unlimited scalability required for the highest OLTP
performance. This edition can be purchased on a system CPU or concurrent
session basis. With this edition, full HDR and ER functionality is included,
along with all the bundled DataBlades, such as the geospatial, node, and basic
text search. New to Version 11 is the ability to buy optional packages to add

23

Informix Dynamic Server Editions and Functionality

the discrete units of functionality you need. See your authorized IDS reseller
for a list of these options.

Conclusion
In these few short pages, I’ve tried to give you a basic understanding of what the
Informix Dynamic Server data server is, how it compares with other data servers,
and some of the unique and market-leading features and functionality it provides.
There’s no way I can explain everything or describe how to set up and administer an
IDS environment here; you’ll need to buy my other books to get that information!�
By now, though, you should realize that, at a high level, IDS is a very powerful and
easy-to-use data server — one I hope you’ll consider using for your next project if
you’re not already.

From this point forward, we’ll discuss in greater detail the new features in Version
11. We’ll begin in Chapter 2 by looking at technologies that can help you achieve se-
curity and regulatory compliance objectives, be they internal or externally mandated.

24

CHAPTER 1: Introduction to Informix Dynamic Server

Security and Regulatory Compliance

If there’s one area in computing infrastructure or requirements that has experi-
enced great activity and pressure in the past few years, it has been all aspects of

data security and historical auditability. Driven by new and ever-changing regulatory
compliance requirements to trace actions and patterns in order to discourage illegal
activity, today’s businesses are creating an avalanche of new data along with the re-
quirement to protect that data from anyone inside or outside the company who
shouldn’t see it.

In Informix Dynamic Server Version 10, IBM added on-disk column-level en-
cryption, giving customers the option of using several ciphers to encrypt data as it
flowed in or out of the data server to or from rest on-disk. With IDS 11, additional
functionality helps you and your business comply with new security and audit com-
pliance rules. This chapter discusses the highlights of these features.

Label-Based Access Control
IDS 11’s Label-Based Access Control (LBAC) facility uses a set of security poli-

cies and labels to control the ability of any user to read, write, delete, or update data
in a database. You use labels to enforce security policies defined in the database that
govern data access to the selected tables. The facility enforces these policies regard-
less of the method used to access the data, be it application-based SQL operations,
utility-based operations such as load or unload, or jobs using dbexport/dbimport or
dbschema operations. Operations executed through the High-Performance Loader
(HPL) utility or the onload/unload utilities are also possible, although the user ID
executing them must hold the credentials to bypass LBAC control.

Table 2.1 illustrates how you can control access using LBAC. In this example, the
table policy specifies three levels of security, with level_1 having the broadest privi-
lege level and level_3 being the most restrictive, or limited, in terms of access. If a
user has level_3 security, he or she can see only rows 1, 3, 7, and 9. Someone with
level_2 privileges can see those rows plus rows 2, 5, and 8, and so on.

25

2

Table 2.1: Controlling access through LBAC

Row # Security label Columns 1, 2, 3,

1 level_3 Data . . .

2 level_2 Data . . .

3 level_3 Data . . .

4 level_1 Data . . .

5 level_2 Data . . .

6 level_1 Data . . .

7 level_3 Data . . .

8 level_2 Data . . .

9 level_3 Data . . .

Using LBAC requires the creation and use of a new data server-based role,
DBSECADM. Membership in this role can be granted only by a member of the DBSA

group. DBSECADM is a data server–level role and is the only role that can create,
drop, or rename security policies, security labels, or the label elements that make up
the security label itself. A member of the DBSECADM role can attach or detach poli-
cies to or from tables as well as grant label privileges to the other user IDs accessing
the instance. This new role helps with aspects of government-oriented security re-
quirements by removing the need to use the root and/or Informix user IDs to manage
certain aspects of the data server. Because only a member of the DBSA group can
grant this role to a user ID, you must carefully control who is a member of the DBSA

group. User Informix does not have the DBSECADM role by default and cannot grant
the role to user Informix; however, user Informix can grant the role to another user.

The basic rules of label-based access control are patterned after the Bell-LaPadula
security model. (For details about this model, including the 1976 paper that defines
it, see http://en.wikipedia.org/wiki/Bell-LaPadula_model.) A security administrator
assigns security labels to users, and the system assigns labels to data objects (in a da-
tabase, rows of data) on behalf of the users that create those objects. The system en-
forces rules so that no user sees data that he or she isn’t allowed to see and so that no
user creates data with a label that permits others to see data they shouldn’t see. If a
user has a high security clearance (label) for read access, that user can read data pro-
tected with the same label or with a less secure label. The user’s read label must
“dominate” the data’s label. Similarly, any data written on behalf of that user will
have an appropriate high security clearance so that other people with lower-security
clearances won’t be able to see the data generated by that user. This security ap-
proach is called “no read up, no write down”; a user can’t read material classified at
a higher level than his or her access permits and can’t write to a lower classification

26

CHAPTER 2: Security and Regulatory Compliance

level than his or her access permits. There is also a system of exemptions that can be
granted (temporarily) to let authorized users bypass the controls. The LBAC system
of protections is more complex than the plain Bell-LaPadula model because it per-
mits compartmentalization of data within security levels (or compartmentalization
instead of security levels).

A security policy is defined as a set of security components from which the label
definitions are drawn. A simple policy might use just one security label component,
but LBAC permits you to use as many as 16 components if you really want or need
to assert that much access control. As you might expect, systems with that many
components are difficult to understand and manage. Comprehensible systems will
use at most three components. Although from a design perspective you would take a
different approach, construction of the security policy pieces begins with the security
components, followed by policy and then labels.

A simple policy will consist of one security component and will have very simple
labels, too:

create security label component secrecy array [‘secret’,
‘confidential’, ‘public’];
create security policy example_com component secrecy;
create security label example_com.secret component secrecy
‘secret’;
create security label example_com.confidential component secrecy
‘confidential’;
create security label example_com.public component secrecy
‘public’;

Now you can apply the policy to tables and grant labels to users:

alter table product_plans add (rowsec idssecuritylabel) add
security policy example_com;

grant label example_com.public to public;
grant label example_com.secret to insider;
grant label example_com.confidential to minion;

The special built-in type IDSSECURITYLABEL means that each row in the
product_plans table must have a security label. You can also apply labels to col-
umns. If you do so, a user’s label must dominate the column’s label if the user is to
read the column at all. Separately, the user’s read label must dominate the row label
if both row and column labels exist on the table.

You can build more complex policies from more components or from different
types of components. You can define components using one of three models: array,
set, or tree. An array component (the type you saw in the example above) is the sim-
plest and, as the name implies, consists of an ordered list of elements, highest prior-
ity/privilege first. You can define up to 64 “elements” in an array component.

27

Label-Based Access Control

create security label component personnel_level array [‘Board’,
‘Executive’, ‘Director’, ‘Manager’];

You can read only data that is equal to or less than your level in the array. Writing
data is a little different; you can write only at your own level.

A set component is an unordered group. You can define one or more of these
components for each policy, up to a limit of 64:

create security label component department set {‘Marketing’,
‘Sales’, ‘Support’, ‘Distribution’, ‘Development’, ‘Personnel’};

When a policy uses set components, your label must include all the components
defined for a given row in order to read from or write to the row.

The last component model, the tree, is a hierarchical model. Like the others, it is
limited to 64 elements, but this model understands levels, relationships between lev-
els, and level memberships.

create security label component region tree (‘Corp_wide’ root,
‘East’ under ‘Corp_wide’, ‘West’ under ‘Corp_wide’, ‘Central’
under ‘Corp_wide’, ‘Southern_California’ under ‘West’ . . .);

You can access data under a tree component model if your label contains any of
these components or the ancestor of a component.

The policy is the name of the security policy protecting the table; it consists of one
or more security label components. For example, the statement

create security policy my_co components personnel_level,
department, region;

creates a security policy with three areas of finer segregation. You can define up
to 16 security label components within each policy.

To actually create a label and implement the policy, you can combine several
pieces together. For example:

create security label my_co.top_executive
component level ‘Board’,
component department ‘Marketing’, ‘Sales’, ‘Support’,
‘Distribution’, ‘Development’,
component region ‘Corp_wide’;

create security label my_co.IT_Development
component department ‘Development’;

28

CHAPTER 2: Security and Regulatory Compliance

Once you’ve created a label, you can “grant” it to one or more users as well as use
it to protect either rows or columns within database tables. Protecting rows in a table
requires you to define a column with the new IDSSECURITYLABEL data type as shown
in Figure 2.1.

Not all tables and columns can be protected with LBAC labels. Tables created
through inheriting a named row type, explicitly created temp tables, tables that are
hierarchical in nature, tables built using the Virtual Table Interface (VTI), or those
that use the Virtual Index Interface (VII) cannot support LBAC security policies.
Columns that are used for keys (primary or foreign) or that have a check constraint
or a unique constraint defined on them cannot support column-level policies.

A set of read functions and a set of write functions enforce the LBAC “no read
up” and “no write down” policies. In normal operation, you don’t need to know the
names of these functions or invoke them explicitly; the system simply enforces the
rules. However, a user with DBSECADM authority might temporarily grant another
user an exemption from the normal rules to let that user do something that otherwise
would be prohibited. The three read functions are IDSLBACREADARRAY,
IDSLBACREADSET, and IDSLBACREADTREE; they control what happens when a user
tries to execute select, update, or delete operations to ensure the user’s individual
security label contains the required elements to access the data. The
IDSLBACWRITEARRAY, IDSLBACWRITESET, and IDSLBACWRITETREE functions

29

Label-Based Access Control

create table my_tab
(col1 idssecuritylabel,

col2 serial,
col3 name_t,
col4 address_t
.
.
);

create table my_tab_2
(col1 int,

col2 char(10) column secured with my_co.top_executive,
col3 smallint,
.
.
);

alter table my_tab_3 add (col_14 idssecuritylabel) add security
policy DB_Development;

alter table my_tab_4 modify (col_3 char(15) column secured with
SoCal_Sales;

Figure 2.1: Syntax examples of LBAC policy implementations

execute on insert, update, and delete operations to enforce the “write down” rules.
Users will have a read and a write label for each security policy of which they are a
member. The read permissions must always be greater than the write permissions.

Three other functions are available for use in select, update, and insert operations
to either populate or convert label permissions on data secured with a label. The
SECLABEL_BY_COMP function provides a row’s security label during an insert or
update operation based on the security components passed into the function as part
of the operation. The SECLABEL_BY_NAME function provides labels to inserted or up-
dated rows based on the component name. The SECLABEL_TO_CHAR function re-
trieves the security label of a queried row. Figure 2.2 shows syntax examples for
these functions.

Users with DBA permissions in the database who are required to execute certain
database maintenance operations can, with direct SQL access, change their identity
and access level by using the set session authorization SQL command. Although
they may be able to make changes to the database, they shouldn’t be able to see data
outside their “real” policy level. A new privilege, SETSESSIONAUTH, has been cre-
ated to limit those who can successfully execute the set session authorization

command.

Common Criteria Certification
Common Criteria certification isn’t a “feature” in the sense of new functionality;
rather, it is the vetting, or verification, of IDS’s compliance with an internationally
recognized security standardization structure. According to the Common Criteria or-
ganization (http://www.commoncriteriaportal.org), Common Criteria grew out of the
U.S. Department of Defense Orange Book and other standards to define what a se-
cure computing environment was from hardware, operating system, software, and
other perspectives. As other countries began developing their own criteria — particu-
larly Canada and the European ITSEC — it became clear that a single international
standard (ISO xxxxx-x:200x) would help companies more efficiently design, certify,
and sell solutions needed around the world.

30

CHAPTER 2: Security and Regulatory Compliance

insert into my_tab_1 values (seclabel_by_comp(‘my_co’,
‘Marketing:West’), 2345, “abc”);

update my_table_89 set col_12 = seclabel_by_name(‘my_co’,
‘DB_Development’);

select seclabel_to_char(‘my_co’, col_1), col_2, col_4
from my_table_89;

Figure 2.2: Using the LABC built-in functions to select, insert, or update data

Version 2.0 of the Common Criteria is now in use and is used to define Protection
Profiles (PPs), or a set of standards and practices that must be met. The PPs are eval-
uated for compliance against a Target of Evaluation (TOE) through various methods,
depending on the target. If discrepancies are found, the system developer must make
changes to comply with the PP.

Eleven areas of functional components can be tested under the Common Criteria.
Although not all the areas apply to data servers, it’s interesting to note how compre-
hensive they are:

● FAU (Audit) — recognizing, recording, storing, and providing a way to
analyze data related to security and security actions

● FCO (Communications) — identity validation of both the sender and the
receiver of traffic

● FDP (User Data Protection) — protection of user information at all times,
including at rest and in transit via import and export

● FIA (Identification and Authentication) — the unambiguous identification of
all parties and the correct association of privileges based on their identity

● FCS (Cryptographic Support) — the implementation of cryptographic
functionality in the system

● FRU (Resource Utilization) — fault tolerance, resource allocation, and
prioritization of tasks in the system’s processing and storage capacities

● FPR (Privacy) — protection of the user and the user identify against
discovery and misuse

● FPT (Protection of Target of Evaluation Functions) — protection of data in
the TOE security systems (as opposed to user data)

● FMT (Security Management) — management of the TOE’s security
functions, including attributes, functions, and data

● FTP (Path/Channels) — building trusted communications channels between
all entities in the secured TOE, including users and TOEs

● FTA (TOE Access) — requirements in addition to those of the FIA for the
beginning of a user session on a TOE, including access histories, changes to
access parameters, permissions, scope, and other limits

A series of assurance classes in the evaluation process of these components look
at everything from development of the specification to documentation, object cre-
ation, asset protection, system tests, threat assessments, and ongoing support and en-
hancements.

Validation against the standards proceeds on a seven-step gradient of increasing
severity, as described in Table 2.2.

31

Common Criteria Certification

Table 2.2: Common Criteria security levels

Common criteria Description

EAL 1 Functionally tested

EAL 2 Structurally tested; controls user access to data

EAL 3 Methodically tested and checked; validates user
accountability features such as logins

EAL 4 Methodically designed, tested. And reviewed;
validates security policies and labeled data

EAL 5 Semi-formally designed and tested; validates more
explicit and formalized security policies

EAL 6 Semi-formally verified design and tested; stringent
engineering and monitoring controls; highly secured
systems

EAL 7 Formally verified design and tested; tests no
additional functions over EAL 6, but subjects the
functions to a formalized functional analysis to ensure
compliance and security

With Version 11, IDS development is pursuing the highest level of certification
for a data server, the EAL 4 rating. Testing for certification cannot proceed until IDS
11 is publicly available; IBM is highly confident that IDS will achieve certification
shortly thereafter.

Encryption in an HA Environment
For more than 10 years, IDS has provided customers like you with unmatched repli-
cation functionality to create a highly available data server environment that can not
only survive a server outage but also distribute data through your environment based
on rules you set without having to change your applications. Recently, other IBM
data servers have adopted some of this technology to offer the same level of protec-
tion to a larger population of IBM customers.

One of the key technologies in this area is called High-Availability Data Replica-
tion (HDR). HDR is designed to provide hot-site failover in the event of a data server
outage for any reason. IDS 11 includes three major enhancements to this technology,
one of them in the area of security.

The underlying architecture of HDR involves transferring logical log records of
data, index, and schema change events between the primary server and its secondary.
Until IDS 11, these records were transmitted in the clear; now, you have the ability
to encrypt the communications between the servers. HDR encryption uses the same
facilities as Enterprise Replication encryption, which was available in IDS 10. With

32

CHAPTER 2: Security and Regulatory Compliance

the new release, the encryption “engine” has been changed to IBM Crypto for C, a
Federal Information Processing Standards (FIPS) 140-2 certified technology.

Enabling HDR encryption occurs in the $ONCONFIG file with a new
ENCRYPT_HDR parameter. By default, HDR encryption is turned off; if it is enabled,
the instance (or instances) must be restarted because the parameter is read only dur-
ing instance startup. Once enabled, four other $ONCONFIG parameters —
ENCRYPT_CIPHERS, ENCRYPT_MAC, ENCRYPT_MACFILE, and ENCRYPT_SWITCH —
are used to define the cipher and message authentication code (MAC) level. These
parameters, too, are read only at instance startup. It should go without saying that all
servers involved in encrypted HDR communications should have the same values for
these parameters. For example:

ENCRYPT_HDR 1
ENCRYPT_CIPHERS aes:cbc
ENCRYPT_MAC high
ENCRYPT_MACFILE $INFORMIXDIR/etc/mac.myserver
ENCRYPT_SWITCH 10,10

These are the only parameters and/or changes required for HDR encryption. En-
crypted HDR communication occurs over the same standard network instance alias
defined for unencrypted HDR communication. With that in mind, if you plan to en-
crypt client/server traffic, you’ll need to define an additional network instance alias
in $ONCONFIG, $INFORMIXSQLHOSTS, and /etc/services for this communication to
occur through an encryption Communication Support Module.

sysdbopen and sysdbclose Functions
Although the description of sysdbopen and sysdbclose could fit here as a security
enhancement, these two functions also are administrative aids. For the purposes of
this book, I’ve included them in the next chapter, which covers administrative
enhancements.

Backup and Restore Filters
Similarly, the description of IDS’s backup and restore filters could be covered here
as a security enhancement, but these functions also constitute a significant enhance-
ment to IDS’s backup and recovery facilities. For the purposes of this book, I’ve in-
cluded them in the next chapter as well.

33

sysdbopen and sysdbclose Functions

Relieving the Load

on the IDS Administrator

In this chapter, we look at some enhancements that make an Informix Dynamic
Server administrator’s job easier. This assignment is a tough one because, unlike

other data servers, IDS requires little to no ongoing care and feeding. With its exten-
sible and dynamic architecture, IDS is smart enough to handle nearly all situations
on its own. That said, IDS 11 does provide new functionality in this area that will be
of benefit to you.

New Administration API
One of the few complaints new administrators make about IDS is that it’s “difficult”
to understand the IDS command-line utilities. As a data server deeply rooted in the
Unix world, IDS’s primary administrative interface has been a series of com-
mand-line interface (CLI) tools. Only recently have graphical utilities been created
for IDS — because many people felt they weren’t needed! As a long-time IDS ad-
ministrator myself (before “crossing over to the dark side” and becoming the ven-
dor), I (and my peers) used to laugh at graphical utilities: “We don’t need no stinkin’
GUI to run IDS! We can do everything with a couple of parameters from the com-
mand line.”

Well, your mileage may vary on this issue, but if you really can’t live without
graphical tools, you’ll be glad to know they exist. But IDS 11 provides a new way to
administer IDS that requires neither the GUI nor learning the intricacies of the
onspaces or onparams CLI: the SQL Administration API.

Built on top of the sysadmin database, a new instance-level database, and about
16 new tables in the sysmaster database, the SQL Administration API gives mem-
bers of the DBSA group access to a broad range of functionality, including alerts, per-
formance monitoring, and baseline generation as well as instance maintenance.
Because the API is SQL-based, you can execute commands from any machine with
connectivity to the network — there’s no need to have the overhead of a Web server
or a heavy-weight client application.

35

3

Focusing on the administration part for the moment, the API provides a set of
functions to manage storage spaces, instance configuration, and validation as well as
perform routine operations. Executed commands and their results are captured for fo-
rensic purposes should the need arise to review what’s changed in the instance.

The API’s task function accepts a series of string fields that indicate the task to
perform and any parameters for the task. The function returns plain text indicating
whether the command succeeded. For example:

execute function task(‘add log’, ‘logs_space’, ‘10 MB’);
(expression) created logical log number 15 in logs_space

execute function task(‘archive fake’);
(expression) backup complete

The API’s admin function accepts the same set of parameters but returns an inte-
ger based on the success or failure of the command. If the returned value is positive,
the command succeeded and the returned value represents the serial number value of
the command in the history table. If the function returns 0 (zero), the command suc-
ceeded, but the data server wasn’t able to insert a new row into the history table
(time to check your free space!). If the returned value is a negative number, the com-
mand failed. Here are a couple admin examples:

execute function admin (‘create dbspace’,
‘/opt/IBM/Informix/devices/tagus/data_1’, ‘tagus_data_1’,
‘300 MB’, ‘0’);
(expression) 234

execute function admin (‘shutdown’);
(expression) 400

To minimize the amount of typing, path names can start with an environment vari-
able provided the variable exists in the target server’s environment. You can also use
“real” units for sizes (KB, MB, GB, and so on) as opposed to trying to remember
whether the IDS CLI utilities want units in pages or kilobytes.

All told, you can execute about 80 operations or tasks through the SQL Adminis-
tration API, making it a serious contender for my preferred IDS administration tool!
I discuss other parts of the API in other sections of this chapter.

Database Scheduler
In highly segregated IT departments, a series of Maginot Lines surround each area of
specialization. Many Unix administrators don’t work with data server administrators
or give them “super” privileges to execute O/S operations such as creating directo-
ries or changing permissions. Storage array administrators tell both Unix and data

36

CHAPTER 3: Relieving the Load on the IDS Administrator

server administrators to mind their own business; the array they configure will elimi-
nate all contention yet save the company money on disk space used. And heaven for-
bid you cross a network administrator; you’ll never get the port upgrade or
replication subnet you’re looking for. Although each person is just trying to do his or
her job, nothing in system administration is ever clear-cut enough to fall into just one
domain.

An issue IDS administrators have faced in the past is getting crontab command
entries created for tasks that must be executed on a regular basis. Super-user–level
permissions or a super-user–entitled user was required to create the entries, and most
IDS administrators in larger enterprises have never had that access level. With the
SQL Administration API comes a new, built-in database scheduler that can execute a
broad range of functionality from the data server without requiring super-user access
to operating system schedulers.

With the database scheduler, you can create “jobs” in four categories:

● Tasks — work that needs to occur when triggered

● Sensors — information gathering

● Startup tasks — work that must be performed on instance start

● Startup sensors — tasks that collect and store information at instance start

Tasks can be simple or complex SQL statements or a user-defined routine (UDR)
written in C or Java or as a stored procedure. A sensor is a task whose function is to
gather and save information automatically. For example, you can build a sensor to
capture virtual processor (VP) and I/O activity at regular intervals so you can do a
historical trend analysis; then after tuning, the sensor can capture more results to
measure the impact of the changes.

All jobs to be executed through the database scheduler are created using SQL to
insert a string and variables into the appropriate sysadmin table.

Granular Installation and the Silent Installer
One of the great things about IDS customers is the variety of ways in which they use
the technology. The uses range from what some might consider “basic” online trans-
action processing (OLTP) applications except that they run against very, very large
data sets to applications that push the performance characteristics to the utmost.
Some customers use replication to protect against failures; others just need to get
data from Server A to Server B on a timely basis. Still others need and use sophisti-
cated data models with complex relationships between attributes in the database. The
point is that no two customers are alike, and because each has different requirements,
they should be able to tailor the functionality and installed footprint of the data
server to match those needs.

With IDS’s new deployment wizard and its associated silent installer, you now
have the ability to tailor which components of IDS are installed to suit your situation.

37

Granular Installation and the Silent Installer

With this capability, you can install just the base server functionality with its 63 to
112 MB footprint (operating system and hardware dependent) or all options, requir-
ing close to 290 MB. When you select components to install, the wizard displays the
storage space required for each option. In addition, the look and feel of the installa-
tion process has been standardized for all ports of IDS.

You can invoke the Java-based installer in one of three modes:

● Silent — This mode runs completely unattended, without any administrative
intervention to manage. There is no ability to configure the installation as it
occurs. You can use a control .ini file to “replay” a desired installation
footprint.

● Console — This mode provides a command-line–driven interface with
multiple interactions, letting you configure the installation as it occurs. Figure
3.1 shows the console interface.

● Graphical — This mode uses a graphical interface to manage administrative
interaction to configure the installation.

You can install IDS components using any of these three modes at two levels:
bundle and product. A bundle install is one in which, with one command (ids_install

for Unix/Linux or setup.exe for Windows), all products are installed (IDS data
server, Client Software Development Kit, ICONNECT, and so on). At this time, you
can’t “record” this installation to replay via the silent install mode. On a product
level, you install each product individually; so you would execute installserver to in-
stall IDS, execute installclientsdk for the CSDK, and so on.

38

CHAPTER 3: Relieving the Load on the IDS Administrator

Figure 3.1: Console interface to the IDS deployment wizard

In the graphical or console mode of a product-level installation, an optional pa-
rameter can “record” all actions taken into a separate configuration file for each
product. Once you have these files, you can include them with the distribution of the
data server and “replay” the install on any number of servers to faithfully re-create
the installation wherever necessary without any local interaction. This method re-
quires you to execute separate installs for each product, however.

It’s possible to create a bundle-level configuration file, but the process isn’t auto-
mated at this time. You’d need to copy the bundle.ini file found in the top level of
the expanded IDS distribution and then modify the copied file, turning on or off op-
tions as needed. For the most part, each option is controlled with a binary response.
For example, the commands

-P csdk.active=false
-SP SERVER/IIF.jar IDS-EASTEURO.active=true

turn off the installation of the CSDK but do install the Eastern European language li-
braries for Global Language Support (GLS). Each option in the bundle.ini file is
briefly explained so you know what you’re turning on or off from an installation per-
spective. Once all the products are installed (whether via a bundle- or product-level
installation), additional unattended configuration can occur using scripts provided as
part of the application installation.

As I mentioned previously, the wizard provides the ability to customize which
components are installed, as shown in Figure 3.2.

39

Granular Installation and the Silent Installer

Figure 3.2: Graphical interface to the deployment wizard

If you don’t require functionality such as Enterprise Replication or the ability to cre-
ate a demonstration database, you can use the deployment wizard to remove these fea-
tures from the installation, as shown in the figure. Many options permit even finer
levels of granularity, as evidenced by the “twisties” on the left side of the selection list.

As the installation is executed, the install process creates a manifest file of all in-
stalled modules. You can add or subtract modules at any time, and the wizard will
use the manifest to determine which modules need to be installed or removed with-
out affecting the rest of the installation. The manifest is also used to validate package
dependencies and verify that uninstallation occurs as it should.

Backup and Restore Enhancements

IDS provides two backup and recovery utilities. The first, ontape, is the workhorse
of IDS environments around the world. An administrative-directed, tape-oriented
utility, ontape is simple to configure and use, with very few options. The second util-
ity suite, ON-Bar, includes the ON-Bar API (IDS’s implementation of the X/Open
Backup Services API, XBSA) and a limited-functionality tape management system.
You’re not required to use the bundled storage library with the ON-Bar API; you can
schedule and manage regular and logical log backups from an enterprise storage
management package such as Tivoli StorageManager. This section discusses en-
hancements made to both backup and restore utilities to improve their functionality
for today’s needs.

Full Backup Parallelism

Full backup parallelism is an enhancement to backups created through the ON-Bar

API to either the bundled storage manager or a third-party manager.

Before starting an ontape or ON-Bar backup, a checkpoint flushes all dirty pages
to disk so the databases are logically consistent. Using comparisons between the
backup timestamp and page timestamps, the data server streams the appropriate
pages from disk to the backup utility. Ontape backups are serial in nature, starting
with chunk 0 (the root dbspace) and proceeding through the rest of the chunks in
chunk creation order.

With ON-Bar, you can create backups either serially or “in parallel.” When exe-
cuted serially, the backups behave the same way as an ontape backup. When they’re
created in parallel, the utility creates a backup timestamp for each chunk as it’s
streamed to disk. This feature permits multiple chunks to be backed up simulta-
neously across several backup devices without excessive interference from check-
points. A side effect of this process is the requirement to have all applicable logical

40

CHAPTER 3: Relieving the Load on the IDS Administrator

logs available during recovery operations. The logs are necessary to roll forward all
chunks to a single point of logical consistency because each chunk will have an ear-
lier or later backup timestamp, reflecting different moments of consistency. This log-
ical roll-forward operation could take some time, depending on the number of logs
that needed to be replayed.

In IDS 11, IBM has improved the backup algorithm for parallel ON-Bar backups
so that parallel backups are executed with a single timestamp for all chunks. With
this single timestamp, full recovery doesn’t require logical log roll-forward opera-
tions. As a result, you can use as many backup devices as you’d like to back up your
IDS environments and be able to get online more quickly should you ever require a
full instance recovery.

dbspace Ordering

In another enhancement to the ON-Bar utility, if enabled the data server will intelli-
gently order the dbspaces sent to the backup devices in an effort to reduce the total
time required to back up (and conversely restore) an entire instance.

IDS has always supported “hot” backups while its instances have been online pro-
cessing user operations, but there was some cost to this process in terms of I/O.
Granted, the impact was minor, but it was there. In some customer operations, the
volume and response-time requirements are such that even the little impact of a
backup operation could affect the operational requirements. As a result, such custom-
ers have conducted their backups during lower-use periods to minimize the impact of
a backup. With today’s business environment operating all day, every day, finding an
“off-hours” period is getting harder. Backups need to be executed more quickly to
further reduce any impact, even the most minimal, on instance operations.

As with ontape operations, ON-Bar used to start parallel backups at chunk 0 (zero)
and move through the chunks in creation order. If three backup devices were config-
ured, three chunks at a time were backed up at the same time. If you had a mixture of
small and large chunks, it was entirely possible for the operation to back up two or
more larger chunks at once, causing all the others to wait.

With the new version of the server, you can set the BAR_MAX_BACKUP parameter
to a value greater than 0 (zero), and the instance will reorder how chunks are sent to
the backup devices to reduce the total time of the backup operation. For the ordering
to be as effective as possible, the value of this parameter should correspond to the
number of available backup devices. If you neglect to specify a value here, the sys-
tem default of 4 is used.

Figure 3.3 illustrates how this new feature will be of value.

41

Backup and Restore Enhancements

In this rather simple example, there are seven spaces to back up. Without ordering,
the spaces are spooled in creation order with a large space at the end. With ordering,
the largest spaces are backed up first (after the rootdbs, which is always backed up
first) followed by the smaller spaces. In this case, the backup operation is completed
10 minutes faster. As the number of spaces and the size of the spaces increases, reor-
dering the dbspaces will yield greater and greater dividends.

On-Bar Performance and Monitoring Tool

ON-Bar, as I mentioned, includes an API and the bundled storage manager. With it,
you have the flexibility to use almost any major third-party backup management sys-
tem to back up your instances and logical logs. Although the utility has provided
some limited debugging functionality, it was assumed you’d use tools that accompa-
nied your backup management software to resolve any issues that arose. Although
those tools worked, they couldn’t give you any information about what was happen-
ing inside the data server when a backup or restore operation was occurring.

In IDS 11, the new BAR_PERFORMANCE $ONCONFIG parameter enables capturing
the following information:

42

CHAPTER 3: Relieving the Load on the IDS Administrator

Figure 3.3: An example of dbspace ordering during backup

● total time spent in XBSA calls

● total time spent in archive API calls

● time spent transferring data from/to the XBSA API

● time spent transferring from/to ON-Bar to IDS

● amount of data transferred through the XBSA API

● amount of data transferred to/from ON-Bar and IDS

With this information, you’ll be able to monitor and isolate any perceived perfor-
mance problems when using ON-Bar and your storage manager.

There’s more to this feature, though, because early in IDS 7, when On-Bar was first
released, the utility suite included an undocumented “null” XBSA storage facility. It
was used as a debugging tool for IDS development during the creation of IDS’s imple-
mentation of the XBSA specifications. I found out about this facility back in the dark
ages when I first tried to implement ON-Bar at the company I was working for. I could-
n’t get IDS and the third-party backup management system to connect and work to-
gether. IDS advanced support showed me how to use the functionality; with it, I was
able to isolate a bug in the backup software that the vendor then fixed.

In IDS 11, the null facility is being documented and made available for your use.
With it, you can create a “fake” backup to test the speed at which data flows through
the XBSA interface to the backup management system. This technique differs from
the onbar –b –F option, which sets some flags in the instance’s reserved pages. When
you use the null facility, a backup will be executed with whatever conditions you set
— backup level, serialized, parallel, all spaces, or a subset thereof. Data will be read
from disk and passed through the entire ON-Bar path until it gets passed out the XBSA

API. At this point, the data will be routed to a /dev/null equivalent. With this func-
tionality, you can determine how long the data server portion and the backup man-
agement system take to execute a backup.

The last part of this enhancement is the ability to transfer objects to and from the
backup management system and the data server using the new onbar –S (capital “s”)
command option. For more information about this flag and the objects you can trans-
fer between the backup management system and the data server, consult the IBM
Informix Backup and Restore Guide.

Backup to Directories
As I mentioned in the introduction to this section, the ontape utility has been around
since the beginning of the IDS data server. It was designed to write directly to tape
and assumed full control over the tape device. Administrator interaction was required
to regularly change tape cartridges and respond to ontape’s prompts.

In today’s environment, where disk drives are so inexpensive, many customers are
now directing their ontape backups to directory rather than tape. This approach re-
quires managing file names and ensuring previous backups aren’t overwritten.

43

Backup and Restore Enhancements

Enhancements in IDS 10 — specifically, the ability to output to standard I/O (STDIO)
— made backing up to disk easier to manage. You could, for example, output the
backup to STDIO and then use O/S “pipes” to send the backup to a compression util-
ity and then through another pipe to an archive utility such as tar or cpio with intelli-
gently generated file names. Even with this functionality, more could be done to
make the process of handling ontape backups easier.

With the latest version of IDS, ontape now explicitly supports backups to a direc-
tory and will dynamically manage file naming for you. Figure 3.4 shows the default
behavior for this type of backup.

In the figure, you can see a series of Level 0 and Level 1 backup images created on a
physical server named “nichole.” The first numeric value after the physical server
name is the SERVERNUM of the instance. In this case, two instances are backed up to
this directory, one with a SERVERNUM of 1 and the other with a SERVERNUM of 4.

This functionality intelligently handles renaming existing backup file images as
new images are created. The latest backup for each level contains the server name,
SERVERNUM, and the level number (e.g., nichole_1_L0). As a new backup image for
that level is created, the previous image is renamed to include a date and timestamp
indicating when that image was created. With this support, you can select any previ-
ous image, rename it, and use it to restore from.

You can also back up logical logs to a directory, as shown in Figure 3.5.

You can override the stem of the file name with the IFX_ONTAPE_FILE_PREFIX en-
vironment parameter to meet your company’s naming conventions. With this sup-
port, your backup directory could contain files named as shown in Figure 3.6.

44

CHAPTER 3: Relieving the Load on the IDS Administrator

nichole_1_L0
nichole_1_20070315_173223_L0
nichole_1_20070316_173244_L0
nichole_1_20070317_173413_L0

nichole_1_L1
nichole_1_20070318_173502_L1

nichole_4_L0

Figure 3.4: Default file-name convention for ontape instance backups to directory

nichole_4_Log0000000006
nichole_4_Log0000000007
nichole_4_Log0000000008
nichole_4_Log0000000009

Figure 3.5: Default file-name convention for ontape logical log backups to directory

Best practices demand a different prefix for each instance, so the SERVERNUM

isn’t included in the file names.

Unattended ontape Backup and Restore
If you use ontape to back up or restore to or from a directory, you can now eliminate
the “Press return to continue” administrative prompts and have the utility execute in
hands-free, near-silent mode. I say “near-silent” because it will still output the usual
status messages as the backup is executed.

During a restore operation, ontape isn’t silent, nor is it completely hands-free. Al-
though many of the default prompts are answered automatically, you’ll need to inter-
act with the utility to indicate whether you want to salvage the logical logs, specify
which logs to salvage, and so on. As with backups, the utility displays the full set of
status messages during a restore. Because of the need to respond to the prompts, it
wouldn’t be prudent to redirect the output of a restore operation to /dev/null.

Backup and Restore Filters
This feature applies to both ontape and ON-Bar and is part of the groundwork being
laid for more extensive on-disk encryption functionality to follow in the future.

Most encryption systems work as close to the data as possible. As data flows in
and out of the data server, functions are executed to make the necessary transforma-
tions. One side effect of this architecture is that data passed to utilities such as
ontape and ON-Bar has been decrypted. As a result, backups are created and stored
“in the clear,” which for many industries does not comply with security or other
regulations.

With this release, you can use encryption or compression “filter plugins,” which
execute inline between the data server and your backup utility of choice. You can
think of this feature as the Communication Support Module (CSM) equivalent for
backups. Several releases ago, you could use CSMs to encrypt communications be-
tween the data server and client applications to prevent network sniffers from captur-
ing sensitive data as it moved back and forth. The backup plugins perform the same
functionality for ontape and the ON-Bar API.

45

Backup and Restore Enhancements

tagus_L0
tagus_20070315_173223_L0
tagus_20070316_173244_L0
tagus_20070317_173413_L0

tagus_L1
tagus_20070318_173502_L1

odra_L0

Figure 3.6: Impact of the IFX_ONTAPE_FILE_PREFIX parameter on instance backups to di-
rectory

Four new $ONCONFIG parameters have been added to support this functionality:
BACKUP_FILTER and RESTORE_FILTER point to the executable to be used during
backup or restore operations. BACKUP_FILTER_OPTION and
RESTORE_FILTER_OPTION are used to pass any program options to the executables.
Possible options could include encryption key(s), block size, and other values.

As a side note, although the primary function of this feature is to provide encryp-
tion, you can use a compression filter instead to reduce the amount of media required
to create your backups.

For more information about the new parameters and how to implement this fea-
ture, see the IBM Informix Backup and Restore Guide.

OpenAdmin Tool for IDS (previously known as IDSAdmin)
Building on functionality provided by the SQL-based administration interface, a

new graphical administration console has been developed and is included with this
port of IDS. Called OpenAdmin Tool for IDS, the console was written in PHP (PHP:
Hypertext Preprocessor), and plans are to provide hooks so you can add modules or
functionality as your environment requires. Before covering this new tool, let’s take
a look at the administration utilities currently available with IDS.

As I noted at the beginning of this chapter, the heritage of the IDS data server is
distinctly Unix-oriented, and, as a result, most administration utilities have been and
continue to be command-line oriented. They include

● onparams — Used to add or remove logical logs, resize and/or relocate the
physical log, and create or change buffer pool settings.

● onspaces — Focuses (as the name implies) on data storage space
administration, including creation and deletion of chunks, dbspaces, and
BLOBspaces (both smart and simple); starting and stopping IDS-based
mirroring; and so on.

● oninit — Used to initialize and/or start the instance from an offline mode or
to switch operating modes while the instance is operational.

● onmode — Used to shut down an operating instance or to change the
operating mode if the instance is already partially shut down; also used to
instantiate and manage High-Availability Data Replication (HDR)–based
replication and related functionality and to manage shared memory changes.

● oncheck — Used to check and verify the consistency of table and index data
pages.

● onstat — The queen of all IDS utilities, onstat can be used to interrogate
almost anything happening in the instance at any moment in time. It feels as
if there are 500 command flags for this utility, which enables you to debug
and troubleshoot any problem in the instance.

Unfortunately, some people can’t manage an environment without some sort of
graphical interface, so several utilities have been created. AGS, Ltd., an IBM IDS

46

CHAPTER 3: Relieving the Load on the IDS Administrator

partner, created ServerStudio Java Edition (SSJE) and continues to enhance and add
functionality to this utility on a regular basis. Figure 3.7 shows two sample screens
presented by this tool.

47

OpenAdmin Tool for IDS

Figure 3.7: Two screen shots from the ServerStudio Java Edition utility

Originally designed as a database administration tool, SSJE now contains func-
tionality to manage the instance as well as generate performance and other historical
data. While the base functionality of SSJE is bundled with the data server, access to
more advanced functionality — such as schema comparisons and debugging, schema
version control, dependency analysis, entity relationship diagraming, Stored Proce-
dure Language (SPL) debugging, performance statistics gathering, and histogram
generation — requires purchasing a license for that module from an authorized re-
seller. It would serve you well to look at the additional functionality available for
purchase. It is very good.

Another relatively new tool, called DBSonar, is produced by Cobrasonic, another
IBM IDS partner. At present, DBSonar focuses on performance management and
provides many powerful features, enabling you to isolate potential areas of concern
within your system. Plans call for a broader range of functionality, so you’d be wise
to examine this product as well. Unlike SSJE, no part of DBSonar is included as part
of the IDS distribution, but you can buy the tool from an authorized reseller.

With that background, let’s look at the OpenAdmin Tool for IDS utility. Ori-
ginally developed as a skunk-works project, OpenAdmin Tool for IDS was designed
to help database administrators (DBAs) answer the most commonly asked questions
and perform the most commonly executed tasks. Written in PHP and working in con-
junction with an Apache (or similar) Web server, a single install of OpenAdmin Tool
for IDS can administer as many instances as you’d like. No client-side (instance
level) installation is required. It supports full globalization, and the default modules
can easily be converted to your or another native language through the use of transla-
tion tables. Finally, in a first for an IDS utility, OpenAdmin Tool for IDS has an RSS
plug-in that can feed you realtime updates based on rules you set in the utility.

Given the flexibility of the PHP-based architecture, you can add quite a bit of ad-
ditional functionality. As Figure 3.8 illustrates, you can even create objects such as
map mashups to identify all your instances and their locations. The status of each in-
stance can be identified with a color code that indicates the overall health and wel-
fare of the instance, letting you tell at a glance whether you need to examine an
instance. As a side note, both AGS and Cobrasonic plan to leverage this flexibility
and the administration API mentioned earlier in this chapter to quickly and easily
add more functionality to their products.

The OpenAdmin Tool for IDS utility contains tasks and sensors to gather and dis-
play information as well as execute jobs. Figure 3.9 shows part of the OpenAdmin
Tool for IDS tasks and sensors functionality.

As the name implies, a task is a specific job executed at a specific time. A task can
be a simple or compound SQL statement or a UDR written in C, Java, or SPL. Some
tasks, called sensors, can collect information. Sensors assist the DBA because he or
she simply needs to set up the sensor once; it will continue to gather information at
the requested intervals without further intervention.

48

CHAPTER 3: Relieving the Load on the IDS Administrator

You can set up some tasks and sensors to execute on instance events, such as
startup or shutdown. Other tasks can be configured to execute in response to an in-
stance condition, such as when all logical logs are full or a dbspace runs out of room.

49

OpenAdmin Tool for IDS

Figure 3.9: Part of the IDSAdmin tasks and sensors functionality

Figure 3.8: Opening screen of the IDSAdmin utility

Given this capability, you can use OpenAdmin Tool for IDS as a partial replacement
for ALARMPROGRAM functionality.

A variety of tasks and sensors are bundled into OpenAdmin Tool for IDS, giving
you a broad range of functionality. You can also use the prebuilt tasks and sensors as
templates to create your own tasks and sensors. These functions

● manage the command history table

● capture and save any changes made to the instance’s $ONCONFIG file

● can save all $ONCONFIG files for all managed instances so you can restore
any instance in the event of corruption or loss

● collect virtual processor timings and usage statistics

● collect checkpoint information

● collect information about all users who connect to the instance

● check to ensure backups are executed on a regular basis

● collect table name and profile information

Additional functionality includes a Health Center with alert information
color-coded to indicate the severity of the alarm or alert, along with recommenda-
tions on resolving the issue. The Logs area lets you view instance and ON-Bar logs to
check for error reports. The Space section of the utility provides dbspace and table
usage information at a much more granular level than provided by the previous
IDS-developed graphical utility. Figure 3.10 shows one of the many OpenAdmin
Tool for IDS snapshot screens.

The Performance section is quite rich; you can set up sensors to build comprehen-
sive performance histograms to evaluate the need for additional instance tuning.

50

CHAPTER 3: Relieving the Load on the IDS Administrator

Figure 3.10: One of the many IDSAdmin snapshot screens

After making changes, you can monitor their impact on instance operations. You can
track memory and disk statistics as well as lock waits and other conditions. In con-
junction with the SQL Toolbox section, you can capture information about the most
commonly executed or most expensive SQL operations. You can use the SQL
drill-down functionality, illustrated in Figure 3.11, to look at each part of an SQL op-
eration and determine where and why it may be performing poorly.

Automated and Improved Statistics Gathering
From the beginning, IDS has used a cost-based SQL optimizer to determine data ac-
cess plans. One disadvantage of this type of optimizer is that its plans can vary from
perfect to slightly off to horribly wrong if statistical information about the data in the
database (or databases) isn’t gathered on a regular basis. To determine how requested
data should be queried, joined, or otherwise manipulated to return the desired result,
the optimizer needs to know the number of rows in each table, what indexes exist
and on which columns, what the data distribution cardinality is, and the number of
rows for each set of unique values.

Gathering this statistical information has always been a manual task. Any IDS ad-
ministrator or DBA knows that the first question asked when trying to help an IDS
administrator with a performance problem is always, “When was the last time you
ran the update statistics command and what options did you use when you ran it?”
Recommendations about when to run this command and which options to use have
circulated and been updated in the IDS support groups since the data server’s begin-
ning in an attempt to help administrators keep the optimizer “properly nourished.”

51

Automated and Improved Statistics Gathering

Figure 3.11: The SQL drill-down functionality of the IDSAdmin utility

To assist you and other administrators with this task, this release of IDS provides
several improvements as to when and how the statistical gathering process works.

First, when an index is created on a table, rather than require you to execute a sta-
tistics-gathering operation on the new index, branch and leaf node information is fed
to the optimizer during the index build as data is scanned. As a result, when the in-
dex build is completed, the optimizer will already have accurate information about
the index that it can immediately and efficiently use in creating access plans. The
gathered statistics reflect what normally would have been created by executing the
update statistics medium and update statistics high commands on the lead column
of the index and executing an update statistics low command on the rest of the in-
dex. IDS 11 extends this functionality to indexes created on explicitly created tempo-
rary tables as well.

As with almost anything, there is the exception that proves the rule, and so there
are a couple of cases where automated statistics gathering does not occur. There is an
undocumented environment variable, which I won’t give you, that forces a top-down
index build. With this type of build, it’s not possible to properly gather the statistical
information as the index is built. Other cases where full automated statistic gathering
during an index build is turned off are

● if the lead column in the index is a user-defined type (UDT), because this
also forces a top-down index build

● if a table contains less than two rows — because it’s a little hard to generate
statistics on an empty table!

● if the index is created using the data server’s Virtual Index Interface (VII) to
access non-relational or non-IDS–managed data such as that stored in smart
BLOBspaces or in flat files outside the instance

● if a functional index is created using the results returned from a function

Index statistical information is updated automatically when an index is created on
a table with fragmentation and the fragmentation scheme is changed or when a
unique index is “promoted” to a primary key or unique constraint. See my other pub-
lications for information about the behavioral differences between a unique index
and a unique constraint or a primary key and why it’s much better to build indexes
that you then promote to the final desired state.

The next improvement to the update statistics process is the ability to more pre-
cisely define the sampling size when executing an update statistics medium com-
mand. When you use the medium level, not only does the command capture the
number of rows in the table (or index); it also gathers information about the distribu-
tion of data, including the range of values and the approximate row count within
each range. In IDS 10 and earlier, not every row in a table was read to generate this
distribution information; instead, a statistically random number of rows was used. As
a result, the returned values could vary from one execution to another depending on
which rows were sampled.

52

CHAPTER 3: Relieving the Load on the IDS Administrator

You could change two parameters, resolution and/or confidence, to modify the
number of sampled rows to increase or decrease the accuracy of the distribution set.
Although this step helped, you still didn’t have full control over the process. That
notwithstanding, the defaults were pretty good; they generated an approximate statis-
tical accuracy of 80 percent compared with that generated when each row is read, as
happens when an update statistics high is executed.

As you might expect, generating statistics with the medium or high option re-
quires more time than the low option. Although constant improvements have been
made to the update statistics command over the years, many customers wanted
more control over the sample size and the corresponding creation time required to
generate optimizer statistics. In response, a new “sample size value” option has been
added to the update statistics medium syntax, as shown in Figure 3.12.

The figure shows several examples of how to use the sampling size syntax. The
value immediately following the new syntax determines the minimum number of
rows to sample. The number of rows sampled is either a percentage of total rows or
an actual row count as follows:

● If the value is greater than 1 (one), it is interpreted as the number of rows to
be sampled. In the second and third commands shown in the figure, that
means 5,000 and 10,000 rows, respectively.

● If the value is less than or equal to 1 (one), it is interpreted as the percentage
of rows (up to 100 percent) to be read to generate the statistical information.
In the first command shown, 75 percent of the rows are to be sampled.

Following the sampling size option, you can still include resolution and
confidence parameters to further refine the result set if you desire. Without these pa-
rameters, the default statistical accuracy is still 80 percent. As a result, if the 5,000
rows to be sampled aren’t enough to meet the minimum accuracy measurement,
more will automatically be read. If 5,000 is more than enough to meet the objective,
5,000 rows will still be read because the optimizer assumes you want a higher degree
of accuracy based on your explicit setting of the rows to be read.

With the resolution and confidence values in the third command string of the fig-
ure, the administrator is specifying that at least 10,000 rows must be read to achieve

53

Automated and Improved Statistics Gathering

update statistics medium for table my_tab (col1, col2)
sampling size .75 distributions only;

update statistics medium for table my_tab_2 (col4)
sampling size 5000;

update statistics medium for table my_tab_3 (col1)
sampling size 10000 resolution 1 0.95;

Figure 3.12: Examples of the new update statistics medium syntax

an accuracy percentage of 95 percent. At least 100 ranges (or statistical “buckets”)
are to be created in which row counts are stored.

Information about the sampling size, as well as when and how update statistics

commands have been run, is now stored in new columns and tables in the sysmaster

database. Consult the data server documentation for more information about this data.
The next enhancement to the statistics-gathering process focuses on temporary ta-

bles. From an optimizer perspective, these tables have always been treated like regu-
lar tables. Once a temporary table is created and populated, you need to execute an
update statistics operation on the table for the optimizer have the information it
needs to build access plans using the temporary table. This fact required application
developers to include these commands whenever they explicitly created temporary
tables. Because developers are, for the most part, not as versed in data server opera-
tions as a DBA or an IDS administrator, they commonly forgot this step. Perfor-
mance suffered when these tables were used. Invariably, the data server was blamed
and, unless the DBA or IDS administrator performed a code walkthrough, the prob-
lem was rarely found or fixed.

The IDS 11 release remedies this problem. Now, the number of rows and pages
(the equivalent of an update statistics low command) are updated whenever the
temp table is accessed. As I already mentioned in this section, when an index is cre-
ated on a temp table, statistical information will be gathered as the index is built,
similarly to indexes built on “regular” tables, provided the indexed columns don’t
fall into the exclusion list given earlier.

The last improvement in statistics management occurs when you execute the
dbschema or dbexport utility. Previously, when you used the –hd flag in invoking
dbschema, only the resolution and confidence values were returned. Now, the results
include the sampling size parameter, as you can see near the top of Figure 3.13.

54

CHAPTER 3: Relieving the Load on the IDS Administrator

DBSCHEMA Schema Utility INFORMIX-SQL Version 11.UC1
Distribution for informix.customer.customer_num
.
.
Constructed on 2007-03-22 18:03:39.00000
Medium Mode, 0.250000 Sampling Size, 2.500000 Resolution,
0.800000 Confidence

{ DATABASE stores delimiter | }
grant dba to “Informix”;
grant connect to “public”;
.
.
update statistics medium for table stock (description,
manu_code, stock_num, unit, unit_descr, unit_price)
sampling size .25 resolution 2.50000 0.80000 ;

Figure 3.13: New information in the dbexport and dbschema utilities

In the second example in the figure, you can see that when exporting a database
using the –ss flag to the dbexport utility, full statistical information is published, in-
cluding the sampling size.

Recovery Time Objective and Interval Checkpoints
Although they are two unique new features, the subjects of this section work together
to provide some very powerful functionality and help extend IDS’s lead in the mar-
ketplace where autonomic management is concerned.

IDS administrators have traditionally had to work around two issues they couldn’t
control well: how long it takes an instance to restart if shut down abnormally and the
length of time the instance suspends operations during a checkpoint. During the
course of normal instance operations, IDS persists a lot of “state” information to disk
about ongoing transactions. When an IDS instance isn’t shut down properly — for
example, if the physical server experiences a failure or an administrator kills the
wrong Unix process — this transaction state information is used to recover the in-
stance to logical consistency as close to the failure time as possible. This process,
called “fast recovery,” involves replacing data pages on disk with “before” images
kept in the physical log. Once this step takes place, transactions are replayed based
on logical log entries from the last checkpoint to the failure point. Transactions that
were started but never completed are reversed so that by the end of the fast recovery
operation, all committed transactions are properly written to disk and the database
(or databases) are in a consistent state.

The amount of time required for the fast recovery to be completed depends on
how long the instance operated after the last checkpoint before the failure occurred
and on the volume of transactions recorded in that period of time. The greater the
volume of transactions, the longer the time to recover — potentially lasting well into
the minutes. If the system didn’t have HDR or some other failover mechanism
instantiated, user operations were affected even if the failure was transient and the
physical server and instance could be immediately restarted.

Looking at checkpoints and their duration for a moment, checkpointing is the pro-
cess wherein all committed data is persisted to disk to clear dirty memory buffers
and to increase recoverability in the event of uncontrolled shutdown. Currently, dur-
ing a checkpoint, insert, update, and delete operations are temporarily suspended
while this flush occurs. Although this is the most efficient of IDS’s mechanisms to
write to disk, user operations could be affected for up to a minute or more depending
on the volume of data to be written. Depending on the types of operations being exe-
cuted when a checkpoint occurs, some users might notice more than others. Those
executing read-intensive operations wouldn’t see much, if any, impact, but those
changing data would have to wait for the checkpoint to be completed before receiv-
ing a confirmation of their transaction and beginning the next unit of work. It would
appear as though the system “was hung.”

55

Recovery Time Objective and Interval Checkpoints

From an administrative perspective, IDS administrators have been trying to miti-
gate the impact of transactions in several ways. Some decrease the time interval be-
tween mandated checkpoints so that instead of the default five minutes, the
checkpoints occur every three minutes or so. Others modify the LRU_MIN_DIRTY and
LRU_MAX_DIRTY configuration parameters, which start and stop the trickle write of
data from memory to disk based on the percentage of clean and dirty buffers in the
Least Recently Used (LRU) queues.

In IDS 9.4, the LRU_MIN/MAX_DIRTY parameters could include a fractional value,
so it was possible for an administrator to set LRU_MAX_DIRTY to 4 and
LRU_MIN_DIRTY to 2.5. The instance would begin flushing buffers when 4 percent
were dirty and would stop when only 2.5 percent were dirty. Due to playing with the
amount of clean and dirty buffers, when a checkpoint occurred there were fewer
buffers to flush, and the checkpoint was completed more quickly. Unfortunately,
writes based on LRU dirty values aren’t as efficiently organized as checkpoint writes
and, as a result, have a performance overhead that had to be accounted for in se-
verely constrained systems.

Other options for mitigating the impact of checkpoints included changing the size of
the physical and logical log buffers, increasing the number or size of the LRU queues,
and so on. For all of these options, a number of conflicting results had to be balanced.

With IDS 11, an improved checkpoint algorithm has been implemented. You can
also set an instance recovery time objective, or the maximum amount of time the in-
stance will require to start or restart after a controlled or uncontrolled shutdown. The
implementation of both features will remove the last of the “real” IDS tunable pa-
rameters from your plate, letting you focus on more important tasks.

Looking first at the recovery time objective, you can set a time value in seconds (1
to 30 minutes) either in $ONCONFIG or dynamically using the onmode utility. When
you set this value, the data server will automatically manage several previously
hand-tuned parameters, including the checkpoint interval, LRU_MIN/MAX_DIRTY, the
number of asynchronous I/O (AIO) VPs, and so on. The data server will constantly
monitor activity in the instance and, as activity fluctuates, will make sure the proper
amount of dirty pages are flushed to disk so that in the event of a shutdown and re-
start, the logical roll-forward operation is small enough to be completed in the de-
sired recovery time objective.

As part of this process, two other parameters, RAS_PLOG_SPEED and
RAS_LLOG_SPEED, have been added to $ONCONFIG. These values control the volume
of transactions that can be processed through the logical and physical logs. Default
values are set by the server and are constantly being updated based on real-life in-
stance operations. They are not to be manually changed under any circumstances.

A key component to achieving the recovery time objective is the use of an im-
proved checkpoint algorithm, the “interval” checkpoint. Automatically activated
when the recovery time objective has been set, the new algorithm combines some of
the features of the now deprecated “fuzzy” checkpoint with the original “sync”
checkpoint.

56

CHAPTER 3: Relieving the Load on the IDS Administrator

When an interval checkpoint is triggered, a checkpoint record is generated. Part of
this record is the buffer addresses of all dirty buffers containing committed data to be
flushed to disk. The gathering of these addresses is the only “blocking” action in the
new checkpoint algorithm. Because it occurs in memory, the block and list generation
should not be noticeable at all to end-user operations; the instance is already tracking
these buffers. Once the list is generated, insert, update, and delete operations continue
processing while the dirty buffers are flushed to disk. Once all the buffers in the list are
written to disk, a formal checkpoint record is entered into the instance’s reserved
pages, and the physical log is purged of the associated “before” images.

One impact of this checkpoint algorithm is that there will be more activity than be-
fore in the physical log, and the log will hold more records for a longer period of time.
As a result, you’d be wise to increase the size of the physical log. For instances where
the buffer pool is relatively small, you should size the physical log to almost 110 per-
cent of the buffer pool. Remember, the actual amount used will be affected by the time
set for the recovery objective. As instance operations ebb and flow, the instance will
constantly monitor and adjust checkpoint operations, which will clear the buffer pool
(or pools) and the physical log. But, as a “belt and suspenders” DBA, I recommend
you size the physical log as large as is practical so that the increased activity doesn’t
trigger a checkpoint due to the fact that the physical log is 75 percent full.

Three other new $ONCONFIG parameters affect the new checkpoint algorithm and
the recovery time objective: AUTO_LRU_TUNING, AUTO_AIOVPS, and AUTO_CKPTS.
You can set or change each of these after instance startup if you desire with onmode

–wm or onmode –wf. For more information about these options and the parameter
ranges, check the data server documentation.

Modifying the Physical Log
With the increased activity in the physical log, it’s important to manage the log size
and location as quickly and as easily as possible. Previously, any changes to the
physical log required an instance outage. The instance had to be brought to quiescent
mode to change the storage dbspace for, or the size of, the physical log. That is no
longer necessary.

You can now make changes to the physical log with the instance online and pro-
cessing end-user operations using either the onparams or onmonitor utility or the
SQL API. Once the “new” physical log is built, it is immediately activated for use. I
strongly suggest you immediately create a full instance backup after making any
change to the physical log.

sysdbopen/sysdbclose Functions
As I mentioned at the end of the previous chapter, the sysdbopen and sysdbclose

functions can serve several purposes. The primary intent of the feature, as I under-
stand it, was as more of an administrative aid than for security purposes, but you can
certainly use the functions for security-oriented operations.

57

Modifying the Physical Log

When a session connects to an instance, unless the DBA has used new functional-
ity introduced in IDS 10, all sessions have identical access permissions. The setting
of database “roles” must be executed as part of the application, which is problematic
to enforce for sessions that connect directly through an SQL reporting tool (e.g.,
Crystal Reports, Microsoft Excel). With IDS 10, the DBA could create a default role
for each user, which helped, but many customers required more functionality for
their applications as well as for security reasons.

You can now write a series of UDRs that are executed when a user session con-
nects and disconnects from the instance. These routines can perform any functional-
ity, including setting roles, specifying session operating parameters such as
PDQPRIORITY, setting the isolation level or the output location of optimizer reports
(a.k.a. sqexplain.out files), turning on (or off) monitoring functionality, and sending
an alert — in short, whatever you need to do. Unlike other UDRs, you can’t call an-
other function, so all required functionality must be completely contained in the open
and/or close function.

You can create customized open and close functions for each user and/or the
PUBLIC group. The default behavior is that they’ll be executed when the user con-
nects to or disconnects from the instance. If the IFX_NODBPROC environment vari-
able is set to any value (including 0 (zero)) before connecting to the instance, these
functions won’t be executed. You can use this feature to write and test the function
(or functions). Simply write one or more UDRs, set the environment variable, and
then connect to the instance to register the function(s). Test the function by calling it
via a standard SQL function call. If the function works as needed, unset the environ-
ment variable, and the UDR(s) will execute for all future sessions.

Direct I/O with Cooked Spaces

If you’ve been around the IDS data server for any amount of time, you’ve undoubt-
edly participated in or followed one of the endless discussions about which disk for-
mat is “better” for an IDS environment: raw (unformatted disk partitions) or cooked
(O/S-formatted partitions with flat files). On one side of the discussion are those who
(correctly) state that there is somewhere around a 10 percent to 15 percent perfor-
mance increase (or better) with raw space, possibly more if kernel asynchronous I/O
(KAIO) is used. The fact that you must be O/S-knowledgeable to create the parti-
tions (or be able to arm-wrestle into submission the storage administrators to create
them for you) is a minor inconvenience.

On the other side of the discussion, flat files to support chunks and dbspaces are
easy to create, require no special dispensation from the storage team, and can be
backed up with the rest of the system files using a single backup routine (provided
the instance is shut down). Add to this the fact that operating systems are getting
better at speeding up flat-file throughput, and the arguments on this side of the dis-
cussion are becoming compelling as well.

58

CHAPTER 3: Relieving the Load on the IDS Administrator

IDS 11 adds a new $ONCONFIG parameter, DIRECT_IO, that enables the data
server to bypass O/S buffers and write directly to flat files used to create chunks and
dbspaces. With this feature enabled, you can approach the same performance metrics
using cooked space as you can with raw space. The feature is O/S-dependent, so con-
sult the release notes that accompany your distribution of the data server to see
whether this enhancement is available for your port.

Instance Administration Mode
When IBM released IDS 10, a huge cheer erupted from IDS administrators around
the world — finally, a single user instance operating mode! The feature prevented
general end-user access to the instance but provided full connectivity to the Informix

user ID and members of the DBSA group for executing instance or database mainte-
nance tasks. Administrators no longer had to put the instance in online mode, open
all the sessions they needed, execute a shutdown to quiescent mode, and then go
through killing user sessions that managed to connect. The –j flag was added to the
oninit and onmode utilities, which transitioned the instance to this operating mode.

With ever-increasing pressures from the security and regulatory environment,
companies are now restricting the access and use of the Informix user ID. As a result,
a new administration and mechanism is needed. IDS 11 introduces the administrative
operating mode, which replaces single-user mode and gives you the ability to define
a limited number of user IDs that can access the instance in the new mode.

You have two ways to define user access while in administrative mode. The new
ADMIN_MODE_USERS $ONCONFIG parameter permits continual access. Flags have
been added to the oninit and onmode utilities, but their definitions are limited to a
single instance startup/shutdown cycle.

The –j flag for oninit and onmode will transition the instance to this new operating
mode. A –U (capital “u”) flag has been added to the oninit utility to define the user
IDs that can continue to access the instance in administrative mode. For example, the
command

oninit –U jerry,fred,cindy

gives the three named user IDs access to the instance if it should be transitioned to
administrative mode. The scope of this command operation is just for this startup of
the instance, though; once the instance has been completely shut down, the definition
is lost.

The –U flag to define user IDs has been added to the onmode utility as well. When
you use it with the –j flag, all user sessions except those defined with the –U flag are
disconnected from the instance and are prevented from reconnecting until the in-
stance is brought back into online mode.

You can execute the onmode utility as many times as you need to with these flags,
varying the user IDs that are permitted to connect to the instance. The actions are

59

Instance Administration Mode

subtractive rather than cumulative, though. For example, if you execute the com-
mand four times with different user IDs over a period of time, at the end of each exe-
cution only those IDs defined as a part of the command string will be allowed access
to the instance. Any other previously permitted user IDs will be disconnected.

Private VP Memory Cache
This feature doesn’t really fall into the category of “easing an administrator’s bur-
den,” but it doesn’t really fit in the other chapters either, so I’ve included it here.

In Chapter 1, I discussed the unique aspects of the Dynamic Scalable Architecture
(DSA), including a self-managing shared-memory component. A major element in
this memory allocation are the buffers used to hold data that is queried from disk or
is in-flight to disk as a result of an insert or update operation.

Depending on the individual operation being executed, virtual processors must
find available space in the buffers to host the data. This process is partially assisted
by the FIFO and LRU mechanisms, which are responsible for ensuring data that’s
not being used is flushed from the buffers so space is available to support ongoing
tasks. When a VP tries to allocate buffer space, it must first execute a bitwise search
to locate one or more memory locations large (or small enough) to support the opera-
tion’s data. Although this action occurs so rapidly that end-user operations aren’t af-
fected, in large physical servers with many physical CPUs being used to support IDS
instances, the overhead of supporting many concurrent bitwise searches can begin to
affect total instance performance as the number of VPs increases.

IDS 11 provides the ability to create “private” memory allocations from within the
instance’s shared memory structures for each VP. These allocations are managed by
the VP and, as a result, greatly reduce the need to execute bitwise searches. Using
the new VP_MEMORY_CACHE_KB $ONCONFIG parameter, you can set a cache value
in KB to be allocated to each VP.

You need to exercise care and caution when using this functionality, however. The
total VP cache allocated is bounded by the SHMTOTAL $ONCONFIG parameter. De-
pending on the number of VPs and the cache allocation value, you could easily use
all your memory for VP caching, leaving nothing for instance operations. You could
also starve other VPs of memory if you have several VPs that are, for the most part,
idle. Each VP receives the full cache allocation whether it needs it or not for opera-
tions. VPs that are frequently idle consume memory that might be better used in the
general instance pool. Generally speaking, IDS development recommends no more
than 40 percent of SHMTOTAL be used for VP private caches. Their guidance is that
much less should be used for this feature.

You’re not required to establish a private VP memory cache. Setting the
$ONCONFIG parameter to 0 (zero) disables the feature. If you choose to use the fea-
ture, you can monitor the cache’s effectiveness with the onstat –g vpcache

command.

60

CHAPTER 3: Relieving the Load on the IDS Administrator

Better Business Continuity Using IDS

In a release packed with a number of fairly new and significant features, none
stand taller, in my opinion, than the changes and enhancements to IDS’s business

continuity features. IDS has led the market in this area for years, and no other data
server comes close in terms of functionality and performance. The changes made in
Version 11 increase this lead and should further solidify IDS’s position as the data
server on which to bet your business.

IDS Replication Technologies
IDS has had two replication technologies for years. Each is designed to meet a differ-
ent objective, and, as a result, each has different configuration and management re-
quirements. High Availability Data Replication (HDR) should be used for disaster
tolerance and high availability requirements. Until this release, this technology was
fairly simple to understand: a “primary” instance is mirrored, usually in realtime, to a
“secondary” instance so that if the primary fails, the secondary can immediately take
over the processing requirements. Figure 4.1 depicts this replication scenario.

61

4

Figure 4.1: High Availability Data Replication (HDR) in IDS

One of the significant differentiators of the IDS HDR secondary instance, when
compared with all other technologies, is that it can be used for query operations
while still participating in replication activities. Other data servers either can’t sup-
port this functionality or require breaking replication to the secondary, effectively
creating a data silo with out-of-date information.

Setting up HDR is simple and easy to execute. I usually tell customers that if their
administrators can’t get HDR instantiated in less than a half hour, they ought to con-
sider a different line of work. It’s that simple. There are only three decisions to make:

● Which physical server will host the secondary instance?

● Do you want synchronous (strongly recommended) or asynchronous transfers
to the secondary?

● Do you want to automate failover to the secondary (my opinion: not
recommended)?

Note that the recommendation against automated failover is a personal one on my
part and doesn’t reflect a weakness in IDS technology. Rather, it is based on real-life
experience in which the combination of network conditions and automated failover
caused data to be lost. What happened is that the network link between the instances
failed. Because the instances couldn’t communicate with each other, each (correctly)
assumed the other was off-line. The secondary was configured to automatically con-
vert and process transactions, which happened. When the network link was
re-established, each instance thought the other should accept its transactions. I had to
shut one down and lose its changes.

If you can positively, absolutely, without-a-doubt guarantee that the network will
never go down, then you can use automated HDR failover and it will work perfectly.

Enterprise Replication (ER), illustrated in Figure 4.2, is the other IDS replication
technology. Its design is focused on data distribution and consolidation throughout
the enterprise.

With this technology, using basic SQL statements, you can define rules about
which data objects are replicated, when replication occurs, and under what condi-
tions. The figure depicts a topology in which users anywhere on the network can up-
date their local copy of the data, which is, in turn, replicated to all other nodes,
including several standby nodes.

Replication topologies can vary depending on your needs, as illustrated in Figure 4.3.

62

CHAPTER 4: Better Business Continuity Using IDS

Note: IBM has published a Redbook titled
(SG24-7319). This

book covers the differences between the two replication technologies and
describes how to instantiate and manage their use on an ongoing basis.
Therefore, I don’t include that information here. To download your copy of
this publication, visit http://www.redbooks.ibm.com.

63

IDS Replication Technologies

Figure 4.2: Enterprise Replication (ER) in IDS

Figure 4.3: ER topologies

You can define rules so that certain data is always pushed in one direction, such as
replicating pricing changes from corporate to retail locations while copying sales ag-
gregations for the day back to the central server. You can define other rules such that
some or all data is shared with the closest nodes, either geographically or from a
business perspective, while some of the same or perhaps other data is shared with
other nodes. You are not locked in to one topology, though, for your environment.
You can decide what you need for each data element and build the rules accordingly.

As if having two different replication technologies to solve different needs wasn’t
enough, you can use both HDR and ER together, as shown in Figure 4.4.

Depending on the business needs, any IDS instance can be protected against fail-
ure through HDR while participating in an ER replicate with one or more other in-
stances on the network. No other data server has this depth and breadth of offerings.
I feel a little like a TV knife salesman, but in this release, there’s more — a lot more!

Enhancements to Enterprise Replication
The past several IDS releases have provided a number of functional and speed en-
hancements to Enterprise Replication. In this and the next release of IDS, the atten-
tion has shifted to HDR. That said, IDS 11 does include a few nice enhancements
to ER.

64

CHAPTER 4: Better Business Continuity Using IDS

Figure 4.4: Using ER and HDR together

Support for Renaming Objects

One longstanding limitation of ER replicates, whether master replicates or not, was
that you couldn’t rename a database, table, or column. You can do so now, but you
must execute the command(s) on each instance in the replicate set. Although you can
make the changes from one instance through a distributed transaction, executing the
transaction on all nodes could take some time.

Better yet, you should use master replicates introduced in IDS 10, make the
change in the master, and then have the ER mechanism push the change(s) out to all
members of the replicate set.

Dynamic ER Configuration

All ER configuration parameters are defined in the $ONCONFIG file, and, to date,
they’ve been read only at instance start. If you wanted to make a change, you had to
restart the instance.

IDS 11 adds new options to the cdr utility that let you change any ER parameter
already set as well as add or delete many parameters that either weren’t set at in-
stance start or need to be removed. With the functionality introduced in Version 10
to verify and resynchronize schemas and data without interrupting user operations,
ER has become completely autonomic.

Truncate Table Support

An extension to the first ER enhancement, the truncate table SQL command is now
replicated and executed within replicate sets while the set is active.

Optional Trigger Execution During Synchronization Operations

By default, when you define a replicate set, triggers on target tables are not executed
when data is received as part of a standard replication operation. The assumption is
that data changes that occur as a result of a trigger on the source table(s) will also be
replicated to all target servers also receiving the triggering data change. If you need
to, you can change this behavior using the –firetrigger flag in the replicate definition.

With the resynchronization functionality added in IDS 10, there were some cases
where target triggers needed to fire as part of the operation and others where custom-
ers wanted to tightly control the synchronized data and avoid all triggers. IDS 11
adds the –firetrigger option to the synchronization commands as well, letting you set
all triggers to always fire, to fire only if the –firetrigger option is part of the replicate
definition, or to never fire.

65

Enhancements to Enterprise Replication

Enhancements to HDR
Okay, this is where it gets really exciting. In IDS 11, IBM has extended HDR func-
tionality to include the ability to have more than one secondary server, to have multi-
ple backup instances share the same physical disk, and to create and maintain
near-line copies of the data.

All at the same time.
With seamless failover.
And this is just the beginning of what will be happening with HDR!

New Components to Support HDR Enhancements
Radical and market-changing enhancements such as those available with this IDS re-
lease often require additional changes and enhancements to the data server. Let’s look
at two new parts of IDS’s plumbing that make HDR’s expanded functionality possible.

The first part is a new communications protocol called the Server Multiplexer
(SMX). As the name implies, the SMX acts as a communications bridge between
two or more data servers. It uses a “multiple-in, single-out” protocol to intelligently
manage and distribute multiple simultaneous communications requests in a very effi-
cient manner.

The SMX uses a full-duplex communications protocol, which means that mes-
sages are sent without waiting for an acknowledgment of receipt from the target.
Lest you think this is a severe flaw or weakness, the replication systems that sit on
top of this protocol do monitor for returned acknowledgments to make sure the data
communicated to the target(s) is being received. If a target falls too far behind in its
acknowledgments, that server is removed from the replication set.

The SMX also supports data encryption, so if your environment requires strong
encryption of all data traffic, even between the failover instances, you can enable it
as discussed in Chapter 2.

As befits IDS and its legendary reputation for ease of use, no administrative input
is required to instantiate the SMX protocol unless you want to use encryption be-
tween the nodes. It just runs on its own.

You can view and analyze threads associated with the SMX protocol using the onstat

utility. Flag options to this utility for SMX activity include –g smx and –g smx ses.
When the SMX protocol is being used to send or receive data, a “send” and “receive”
thread is created for each defined instance as a part of the new HDR functionality.

The second change in IDS’s plumbing relates to the way index creation is logged
and transmitted to the secondary instance(s). Currently, when an index is created on an
HDR primary instance, the secondary instance must be online and available to receive
the updates created as part of the index creation. With Continuous Log Restore (CLR)
and other new features, the target instance(s) might not be active, a circumstance that
would prevent you from making necessary changes to the production instance.

For this reason, the logging of index creation in an HDR environment has changed
to break the creation into multiple “transactions” as far as the logical logs are

66

CHAPTER 4: Better Business Continuity Using IDS

concerned. Each “index transaction” is logged independently of user transactions.
The full content of the created index pages is included in the logical log(s), which is
also different. As a result, when the logical log(s) are rolled forward on the CLR and
other secondary instances, the index is completely re-created.

A new $ONCONFIG parameter, LOG_INDEX_BUILDS, controls whether index log-
ging occurs. You can either set this value in the file before starting the instance or
dynamically activate it and update the $ONCONFIG file using the onmode utility.

You should be aware that when index logging is turned on, it is used for all in-
stances in an HDR cluster, including overloading the index transfer used for the
HDR secondary. Depending on the size of the index created, there is likely to be a
significant increase in logical log usage and volume. You’d be wise to ensure that
your log backup mechanism is working properly and that you have a sufficient num-
ber, and size, of logical logs created so that some logs can be archived off and don’t
all fill while you’re trying to back up the first log. If that happens, the instance will
either suspend operations or begin to dynamically create numerous new logical logs,
which you’ll need to drop after the build is completed and the log records have been
transferred to necessary target instances.

Continuous Log Restore Servers
The easiest way to describe Continuous Log Restore servers is to say that they use

log shipping from the primary to the CLR instance, establishing a near-line replica-
tion environment as shown in Figure 4.5.

This functionality is actually an enhancement to the ontape and ON-Bar utilities
that permits an instance to remain in a perpetual log roll-forward state and to apply
new logical logs on demand.

The major application of this feature is rather straightforward. We have a number
of customers with IDS instances deployed in areas of the world where the telecom-
munications infrastructure is not completely reliable. They cannot rely on constant
network availability to build an offsite failover location as required by a “regular”

67

Enhancements to HDR

Figure 4.5: Conceptual drawing of CLR functionality

HDR secondary. These customers still want to provide a measure of failover and di-
saster recovery protection. CLR instances enable them to do so.

Other customers with high network availability can use CLR to create a fourth
layer of failover redundancy through the creation of a “bunker” backup. You’re al-
ready familiar with the first layer: the HDR secondary. The second and third layers
are new, and I’ll explain them in the sections that follow.

From an implementation perspective, as the primary backs up full logical logs,
these logs are copied to the CLR instance(s). The assumption is that log backups will
occur to disk because such backups are easier to access and transfer to the remote
physical servers, but the logs can certainly be extracted from tape; it’s just harder.

The instance(s) on the remote physical server(s) don’t have to be active to partici-
pate as CLR instances. Once the logs are on the remote physical server(s), they can
either be applied to active CLR instances in recovery mode or just left in place on
disk to be applied in the event that a failure occurs and the CLR instance(s) need to
be activated. If the instance(s) are active, though, you use the new –C (capital “c”)
flag to apply the logs and leave the instance in roll-forward mode, as illustrated in
Figure 4.6.

68

CHAPTER 4: Better Business Continuity Using IDS

IBM Informix Dynamic Server Version 11.10.UC1 — Fast Recovery
(CKPT REQ) Blocked:CKPT

CLR1: ontape -l -C

Roll forward should start with log number 6
Rollforward log file
/opt/IBM/Informix/backups/nichole_4_Log0000000006 ...

Program over.

CLR1: ontape -l -C

Roll forward should start with log number 7
Rollforward log file
/opt/IBM/Informix/backups/nichole_4_Log0000000007 ...

Program over.

CLR1: ontape -l -C

Roll forward should start with log number 8
Rollforward log file
/opt/IBM/Informix/backups/nichole_4_Log0000000008 ...
Rollforward log file
/opt/IBM/Informix/backups/nichole_4_Log0000000009 ...

Program over.

Figure 4.6: Logical logs being rolled forward on a CLR server

In the figure, the logs are being applied manually, but this process could be easily
automated by the database scheduler discussed in Chapter 3.

At any time, you can transition a CLR server from roll-forward mode to a stan-
dard operating mode by using the new –X (capital “x”) flag:

Clr1: ontape -l -X
Program over.

Clr1: onstat -
IBM Informix Dynamic Server Version 11.10.UC1 – Quiescent

Remote Standby Secondary Servers

Remote Standby Secondary (RSS) servers are like having additional HDR secondary
instances, as Figure 4.7 illustrates.

This feature is not just 1 to N HDR secondary, though. An RSS instance behaves
slightly differently from the “regular” HDR secondary instance. First, you can have
as many RSS instances as you like. Because RSS works on top of the SMX commu-
nications protocol, it uses full-duplex asynchronous protocols as opposed to synchro-
nous protocols for an HDR secondary. A side effect of this communications protocol
is that an RSS instance cannot be promoted to become an HDR primary. It can, how-
ever, become an HDR secondary. Finally, RSS instances don’t recognize the value of
the DRAUTO parameter. As a result, RSS servers should be considered disaster re-
covery instances, not high availability (HA) instances.

RSS instances are similar to an HDR secondary in that they maintain a complete
and full copy of the source instance. You can use them for read-only operations

69

Enhancements to HDR

Figure 4.7: Conceptual drawing of RSS functionality

provided there is some flexibility in time. Because of the asynchronous nature of the
SMX protocol, there might be a slight lag between data being committed on the pri-
mary and it appearing on the RSS instance(s). Because an RSS instance can be pro-
moted to an HDR secondary, it makes sense that an HDR secondary can be
converted to an RSS instance.

There are several business cases for using RSS instance(s). The first is to expand
the realtime failover capability of an HDR environment. You can create an HDR sec-
ondary and host its physical server in close proximity to the primary to cover hard-
ware and other transient failures while maintaining one or more realtime RSS copies
well off-site for disaster tolerance and eventual failover.

You can also use an RSS instance as opposed to an HDR secondary in environ-
ments where network connectivity is stable but throughput is poor. For example, a
distant regional instance might be serviced only by a low-bandwidth connection — a
dial-up line, perhaps. In this case, the network latency would be too great to support
the synchronous requirements of an HDR secondary, but an RSS instance would be
unaffected.

A third application would be to provide complete redundancy in the event that the
primary instance fails, as illustrated in Figure 4.8.

In this example, a primary is communicating to a secondary and an RSS instance.
When the primary fails, the secondary becomes the HDR primary, and the RSS

70

CHAPTER 4: Better Business Continuity Using IDS

Figure 4.8: Using RSS functionality to provide redundancy when the primary fails

instance becomes the HDR secondary. In this way, even the loss of an instance does-
n’t compromise the failover and redundancy capability of the data server
environment.

Instantiating an RSS instance differs little from instantiating an HDR secondary.
You need to turn on the index logging facility, as I mentioned in the beginning of
this section. A backup from the primary is restored to the RSS instance(s), and an
onmode command is issued on both the primary and the RSS instance(s) to link
them together. In an interesting twist, you can use an optional password when estab-
lishing the RSS connection so you don’t have a random server trying to connect to
your primary instance and copy your data.

Once an RSS instance is operational, it looks and behaves much like an HDR sec-
ondary. Figure 4.9 shows a screen shot of an onstat –d command executed on an
RSS instance.

There are some new flags marking each space, and the space’s status is “inconsis-
tent”; otherwise, the instance looks more or less the same as a “regular” instance. An
onstat –u shows a number of additional active sessions; they are used to manage rep-
lication. Other onstat options display the number of log pages sent and received,
where the RSS instance(s) are as far as responding back to the primary, SMX infor-
mation, and more.

Shared Disk Secondary Servers
Shared Disk Secondary (SDS) servers are mirror instances that share the same disk
devices as the primary instance. Figure 4.10 depicts the SDS server environment.

71

Enhancements to HDR

Figure 4.9: Output from an RSS server onstat command

You can use this functionality to provide availability and failover options where
the storage devices are network-mounted — the physical server(s) hosting the SDS
instance(s) can be anywhere on the network and provide failover and redundancy ca-
pabilities. The weakness to an SDS instance is that it doesn’t protect against disk
failure if the mounted devices fail. You’d be
wise to use a combination of SDS and RSS
technology to build a highly fault-tolerant
environment.

Because the SDS instance(s) share the same
devices as the primary instance, almost no setup
is required to instantiate the SDS instance(s):

1. Tell the primary there will be SDS serv-
ers.

2. Copy the $ONCONFIG file from the primary to the physical server(s)
hosting the SDS instances.

3. Change the name(s) of the instance and the instance number in the SDS
$ONCONFIG.

4. Set the three SDS-specific $ONCONFIG parameters.

5. Turn the instance on.

72

CHAPTER 4: Better Business Continuity Using IDS

Figure 4.10: A conceptual view of an SDS server environment

Note: Because the SDS
instances share the same disks
as the primary, it obviously
wouldn’t be wise to use the
“initialize” flag when starting
the instance!

Because SDS instances are read-only, they cannot use the same temporary
dbspace(s) for implicit or explicit temporary tables to support SQL operations. One
of the SDS-specific parameters you must set is a “local” temporary dbspace. This lo-
cal temporary dbspace is visible only to the SDS node, as the output of an onstat –d

command illustrates in Figure 4.11. Compare this output with that in Figure 4.9,
which accurately reflects what the primary instance sees as configured dbspaces and
devices.

With the SDS instance(s) instantiated, the primary uses the SMX protocol to send
log information to the SDS instance(s). Included with the log information is the Log
Sequence Number (LSN), which the primary and SDS instance(s) use to verify
shared memory consistency.

When the SDS instance(s) receive log records, they use the records to update the
buffer cache so it reflects the cache as it exists on the primary. When a checkpoint
occurs on the primary, its buffers are flushed to disk, but the instance will retain any
buffers that SDS instance(s) have not acknowledged as having applied to its cache.
SDS instance caches are cleared when the instance receives the checkpoint record
with its accompanying LSN and determines that all previous LSN records have been
applied. The SDS instance communicates this fact to the primary, which releases any
remaining buffers flushed as part of the checkpoint.

From a recovery and failover perspective, an SDS instance should be the
“lead-with” instance to promote when a failure occurs. You could then follow with
the HDR secondary and then any RSS instances after the RSS instance has been

73

Enhancements to HDR

Figure 4.11: dbspace output from an SDS instance

promoted to HDR secondary. You can, in fact, promote any SDS instance to be the
primary while the cluster is online and functioning. All the other instances will auto-
matically adjust and reconnect to the new primary. It’s pretty cool to watch happen!
If you don’t want to fail over to an SDS instance, you should know that using the
DRAUTO parameter to automatically switch to the HDR secondary in the event of a
failure will automatically shut down the SDS instances.

You can monitor SDS instances just like RSS instance(s), by using onstat flags
that show SMX activity and statistics as well as SDS-specific information. The pri-
mary instance will show a heavier session load, with six sessions specifically dedi-
cated to SDS administration in addition to SMX and other new overhead.

Putting It All Together
So how does all this work together, and what can you do with it? As Fred Barnard

is alleged to have said, “A picture is worth a thousand words.”
Figure 4.12 shows users connected to the primary instance executing transactions.

Other users could be connected to the other instances, but to keep the diagram some-
what easy to read, I haven’t shown them.

Location A has sets of rack servers along with the main network-attached storage
array. The storage array is mirrored using array-based functionality. The primary is
also publishing updates to an HDR secondary and an RSS instance at remote
locations.

Imagine that a failure occurs, shutting down half of the equipment at Location A.
The cluster automatically reconfigures as shown in Figure 4.13. Applications recon-
nect automatically and continue processing.

74

CHAPTER 4: Better Business Continuity Using IDS

75

Enhancements to HDR

Figure 4.13: The first failure occurs, and the cluster reconfigures.

Figure 4.12: Original data server processing environment

Unfortunately, it’s not your day, and Location A next goes completely offline. Not
to worry! In this adjustment, notice that additional SDS instances have been manu-
ally added at Location B, and the instance at Location C has been promoted to HDR
secondary.

While you’re working to get Location A back up and running, an event occurs at
Location B that takes it offline. Once again, the cluster reconfigures and work con-
tinues as shown in Figure 4.15.

76

CHAPTER 4: Better Business Continuity Using IDS

Figure 4.14: The second failure occurs, and the cluster reconfigures again.

Figure 4.15: Another failure occurs, and the cluster reconfigures.

But that’s not all. What I haven’t shown is the possibility that you also could have
set up one or more CLR instances and could have been copying the logical logs to
them. In that case, you could bring at least one of these online and convert it into an
HDR secondary instance, thus continuing to provide robust business continuity in the
face of almost any kind of failure!

77

Enhancements to HDR

Easing Application Development

Well, your tour of new IDS functionality is almost over! I hope by now
you’ve realized that this is no small release from a performance, adminis-

trative, security, and availability perspective. Like the animal this release is
code-named after, IDS 11 is blazingly fast and out to hunt all competitors!

In this last chapter, we look at the enhancements aimed at application developers.
I’ll be honest; this is perhaps my weakest area of data server knowledge. It’s not that
I haven’t written end-user applications; I have. But I used the Informix-4GL pro-
gramming language, a remarkably easy and powerful fourth-generation language.
Although procedural in nature, it let you do almost anything you wanted to do — ex-
cept deploy in a point-and-click, graphical environment! Compilers were (and are)
available for 4GL source code to create a Windows or more O/S-portable graphical
implementation of the application, but I didn’t use them. My applications were
text-oriented, and having to use a mouse to change fields or move to the next screen
would have slowed users down too much.

Regardless of which programming language you use, IDS has significant, broad,
and deep application development support. Let’s look at some of the new features in-
cluded in Version 11 that continue IDS’s tradition of easing application
development.

Pulling the Trigger, Multiple Times
In building applications, there are two schools of thought. The first is to put all busi-
ness logic in the application; the data server is considered just a storage repository. I
don’t think I’d be too far wrong to say that most application developers think this
way. The second perspective to application development puts as much business logic
into the data server as possible. With this approach, all operations of the same kind
execute identically regardless of the application executing them, and a single set of
business rules verifies all data. Most data manipulation occurs in the data server
rather than large quantities of intermittent result-set data being pushed across the net-
work to the lower-powered client.

79

5

If you couldn’t tell, I support the second school of thought more than the first. I
don’t think the matter is exactly black and white, though; there are times when some
work should be executed on the client. But if most business logic and rules will be
executed in the data server, you’ll most likely need to have things happen automati-
cally when data is entered, deleted, changed, or even queried. This behavior is typi-
cally accomplished using triggers.

In IDS, you can create triggers on the usual SQL operations (insert, update,
delete, and select) and can call user-defined routines (UDRs) written in C, Java, or
Stored Procedure Language (SPL). IDS 10 introduced a feature called trigger intro-
spection, which permits interrogation of data within the triggered UDRs. With this
feature, you can trap error codes and conditions as well as return interim variable
values, such as the serial or sequence number for a newly inserted row so it can be
used in another part of the UDR.

Until now, the number and types of triggers you could create on a table have had
some limitations. Although you could create multiple select and update triggers
(provided the update triggers referenced different columns), you could have only
one insert and delete trigger. In IDS 11, you now have the ability to define multiple
triggers for all triggering actions, including instead of triggers on views as shown in
Figure 5.1. (This figure was extracted from the cr_trig.sql example file in the IDS
distribution.)

80

CHAPTER 5: Easing Application Development

— Multiple triggers on the same Insert event on manufact table

create trigger manu_ins_trig1 insert on manufact
before

(insert into manu_operations_summary values (“New Manufacturer”))
for each row

(execute procedure manu_proc() with trigger references);

create trigger manu_ins_trig2 insert on manufact referencing NEW as new
for each row
(insert into manu_log values (new.manu_code,new.manu_account,"INSERT"));

—- Multiple triggers on the same Update event on manufact table

create trigger manu_upd_trig1 update on manufact
before
(insert into manu_operations_summary values (“Manufacturer info

changed”))
for each row
(execute procedure manu_proc() with trigger references);

create trigger manu_upd_trig2 update on manufact
referencing OLD as old New as new
for each row
(insert into manu_log values (new.manu_code,new.manu_account,"UPDATE"));

Figure 5.1: Examples of creating multiple triggers on the same triggering event

Inside the trigger body, you can have before, for each row, and after actions as
well as old and new variables. When multiple triggers are defined for the same trig-
gering event, all before actions of the appropriate triggers are executed first, fol-
lowed by for each row actions. Last, the after actions are executed. This process
ensures there are no out-of-sequence execution issues if you need to drop, modify,
and re-create one or more triggers.

You can use new Boolean operators with case or if constructs in UDRs called by
triggers to manipulate values, particularly variables defined as new. Figure 5.2 shows
examples (taken from IDS development documentation) of the new operators in use.

There are several new pieces of syntax in this figure. The inserting, deleting,
selecting, and updating keywords are the new Boolean functions. You can access

81

Pulling the Trigger, Multiple Times

create procedure proc1()
referencing OLD as o NEW as n for tab1; — new syntax.

if (INSERTING) then — INSERTING new boolean function
n.col1 = ncol1 + 1; — You can modify the new values.
insert into temptab1 values(0,n.col1,0,n.col2);

end if

if (UPDATING) then — UPDATING new boolean function
insert into temptab1 values(o.col1,n.col1,o.col2,n.col2);

end if

if (SELECTING) then — SELECTING new boolean function
— you can access relevant old and new values.

insert into temptab1 values (o.col1,0,o.col2,0);
end if

if (DELETING) then — DELETING new boolean function
delete from temptab1 where temptab1.col1 = o.col1;

end if

end procedure;

create procedure proc2()
referencing OLD as o NEW as n for tab2
returning int;

LET n.col1 = n.col1 * 1.1 ; — increment the inserted value by 1

end procedure;

create trigger trig_tab1 INSERT on tab1 referencing new as post
for each row(execute procedure proc1() with trigger references);

create trigger trig_tab1 INSERT on tab2 referencing new as n
for each row (execute procedure proc2() with trigger references);

Figure 5.2: New Boolean operators in UDRs called by triggers

and change the value of the new variables in the triggered UDRs. And, finally, the
with trigger references phrase enables you to work through the trigger to get to the
values.

XML in IDS

You’d have to have been living under a rock in the middle of the deepest ocean
trench to have missed the fact that XML has emerged as the lingua franca of the Ser-
vice Oriented Architecture (SOA). IBM released a significant enhancement to DB2 9
called “pureXML” that enables users to manipulate XML documents inside the data
server in their native format. The documents are inserted and stored as an XML data
type, operated on using XPath parameters and operations, and more. The technology
enables businesses to satisfy regulatory compliance rules for saving all documents in
their native and unaltered format.

There are, however, two approaches to XML and its use. The “document-centric”
approach (implemented in DB2 9), treats XML data as a single object, while the
“data-centric” approach breaks (or shreds) the XML document into its component
parts and stores each part separately. IDS is taking a data-centric approach and lever-
aging several extensible data types to store XML in its native hierarchical format.
For some customers, this path may be acceptable from a compliance perspective;
others will also need to store the XML document in a BLOB column, effectively
storing the data twice.

With IDS 11, you can publish the results of SQL operations in properly formatted
XML through functions provided as part of the GenXML library. You can parse the
data, serialize it, or even operate on it to determine whether specific components exist.
Using the included Extensible Stylesheet Transformation (XSLT) functions, you’ll be
able to transform the XML document into other formats if necessary. Figure 5.3 illus-
trates some of the XML functionality available with the GenXML libraries.

82

CHAPTER 5: Easing Application Development

SELECT First_name, extract(fname, ‘/amateur/call_sign‘,
‘/amateur/license_class’) “Call_Sign”, “License Class”
FROM ares_pool
WHERE is_active IS true;

First_name Call_Sign License Class

——————————— ————————— ———————————————

Craig <call_sign>N5XKB</call_sign> <license_class>Extra</license_class>

Ron <call_sign>W5BRK</call_sign> <license_class>Extra</license_class>

Carlton <call_sign>W3DOE</call_sign> <license_class>Extra</license_class>

Glen <call_sign>KE5HEU</call_sign> <license_class>Technician</license_class>

Figure 5.3: Examples of some supported XML syntax and results (part 1 of 2)

Use of this XML functionality requires the creation of a specific user-defined vir-
tual processor (UDVP) named idsxmlvp. If you forget to define this virtual processor
in the $ONCONFIG file or you don’t add it dynamically after the instance starts, an er-
ror message will be recorded in the $MSGPATH file when you try to use GenXML li-
brary functionality.

Although it is difficult to predict what will be in a future release of a product, it
would be reasonable to assume that you’ll see more IDS XML functionality in the
near future.

DataBlade Integration

As I mentioned in Chapter 1, one of the greatest things about the IDS data server is
its ability to adapt and manage work the way you need, rather than according to
static design theory created to help manage-lower functionality data servers. You can
add data and processing functionality to IDS through the use of new data types and
functions created to execute specific tasks. You can either build your own or pur-
chase the functionality you need from any IBM IDS authorized reseller.

83

DataBlade Integration

SELECT genxmlelemclob(ares_pool, “ares_pool”) FROM ares_pool;

<ares_pool>
<givenname>John</givenname>
<familyname>Doe</familyname>
<address>
<address1>1234 Main Street</address1>
<city>Anytown</city>
<state/>TX</state>
<zipcode>75234</zipcode>
</address>
<phone>972-555-1212</phone>
<call_sign>KE5JR</call_sign>
</ares_pool>
.
.

SELECT idsxmlparse(‘<purchaseOrder poNo="124356">
<customerName>ABC Enterprises</customerName>
<itemNo>F123456</itemNo> </purchaseOrder>’)
AS PO FROM systables where tabid = 1;

<purchaseOrder poNo="124356">
<customerName>ABC Enterprises</customerName>
<itemNo>F123456</itemNo>
</purchaseOrder>

Figure 5.3: Examples of some supported XML syntax and results (part 2 of 2)

In earlier releases of the server, all DataBlades were for-charge products requiring
an additional license fee and installation for their use. This policy had one exception:
The Spatial DataBlade was included with Enterprise Edition licenses. With this re-
lease, though, several other DataBlades are included with the server. This section
briefly covers the bundled Blades and their functionality. Contact your authorized
IDS reseller to find out about any additional license fees that may be due for using
this functionality.

Binary

When I first saw this item on the feature sheet I was excited — bitmapped indexes in
IDS? Sweet! Alas, I was mistaken. This DataBlade provides the ability to create
indexable data types using small opaque binary–encoded strings.

As I explained in Chapter 1, IDS has long supported the ability to store “nonstan-
dard” data either as black-box data streams (in the form of a simple BLOB) or as in-
telligently parsable data types stored in smart BLOBspaces. Unfortunately, most of
these types can’t support indexes, and they require the use of metadata for direct ac-
cess. With the Binary DataBlade, you can create columns using two new data types,
store them in-table, and create indexes on their contents for fast access.

The binary18 data type is a fixed-length data type holding 18 bytes. Because this
data type is fixed in length, unused space will be right-padded with zeros until the
column length reaches 18. The binaryvar data type is a variable-length type that can
hold up to 255 bytes of information.

Because they are binary types, there are some rules about the data these new types
can contain. The data

● must be represented in an even-numbered byte length

● can use only standard ASCII character codes

● must conform to the hexadecimal range of values (0 to F)

create table my_binary_tab
(col1 smallint,
col2 binaryvar);

insert into my_binary_tab values (1, ‘0X3031dd33e4353a3738e9’);
insert into my_binary_tab values (2, ‘90312a34f4353b4938c0’);

Once you’ve created and populated columns with these types, you can use func-
tions provided by the Blade to execute bitwise and, or, xor, and complement (a.k.a.
not) operations as well as standard count, distinct, max, and min operations. Charac-
ter-oriented operations such as like or matches are not supported, though.

84

CHAPTER 5: Easing Application Development

Basic Text Search

Text operations in SQL are expensive and hard to construct properly to catch all
the possible string variations. Comparison operators are also very limited, using only
like and matches. Building a search string that will find the desired result set be-
comes less and less likely as the length of the text to search increases.

With this release, IDS is including the Basic Text Search DataBlade (BTS) as an
interim step between the limited SQL functionality and the full-featured, for-charge
Excalibur Text Search DataBlade. You invoke BTS functionality through a function
call to the text search “engine,” which is running on its own VP. For example, the
query

select employee_num
from employee
where bts_contains(first_name, ‘C*n’)

returns the employee numbers of all those whose first name begins with “C” and
ends with “n.” The query

select address_info
from property
where bts_contains(property_condition, ‘delap~’)

performs a fuzzy search using “delap” as the search root. You can execute proximity
searches to determine whether key words are within a specified distance from each
other by structuring the predicate to look like this:

select address_info
from property
where bts_contains(description, ‘ “mountain cabin”~10 ‘)

In this example, the result set will include property information where “mountain”
and “cabin” are within 10 words of each other.

There’s more to the BTS than the three examples shown here. It contains other
functions you can use to conduct other kinds of searches.

At present, the Basic Text Search DataBlade supports only ASCII characters
stored in the char, (l)varchar, clob, and blob data types. Unicode characters are not
supported in this release. The DataBlade uses an overloaded index that must be cre-
ated on each column on which you want to execute Blade functionality. Because of
its structure, this index must be stored in an external dbspace. The IDS documenta-
tion explains in greater detail the functionality, requirements, and limitations of this
Blade. I encourage you to read through this information to fully appreciate what the
BTS Blade can do.

85

DataBlade Integration

Geospatial

The Spatial DataBlade has been available for several years, and, as I mentioned at
the beginning of this section, customers with IDS Enterprise Edition licenses have
been able to use it without an additional license fee since IDS 9.4. In Version 11, all
IDS customers, regardless of licensed edition, can use this Blade without an addi-
tional license fee. This DataBlade enables analysis based on location and proximity
using the industry’s fastest access method: the R-tree (Region Tree) index.

As businesses like yours look into expanding markets or solidify those they have,
every relationship becomes important. Geography is an important part of any rela-
tionship. Without the Spatial Blade, it’s impossible to ask a standard data server
questions such as, “Show me all rooms available for the next five days within 45
miles of the patient’s location equipped with a defibrillator.” Standard SQL can’t de-
scribe a circle or a radius, its ability to evaluate time is limited, and, as I’ve just ex-
plained, searching text is extremely hard. With IDS’s object-relational capabilities,
you can extend the data server’s functionality with this Blade to handle all these
types and relationships easily. In fact, the SQL statement to ask the earlier question
is trivial, as Figure 5.4 shows.

Node

The Node DataBlade is a fully supported version of technology that’s been available
on the International Informix Users Group (IIUG; http://www.iiug.org) and IBM
DeveloperWorks (http://www-128.ibm.com/developerworks) Web sites for quite a
while. This Blade provides the ability to accurately model hierarchical data in its na-
tive format. XML is one example of a hierarchical data stream, but so are objects
such as your company’s organizational chart, network designs, biological kingdoms,
fabric classification systems, and more.

86

CHAPTER 5: Easing Application Development

create table HospitalRooms (
name varchar(128) not null,
equipment document not null
where st_point not null,
occupied set(period not null));

select h.name
from HospitalRooms h, patients p
where st_within (h.where, st_buffer(p.location,’45 Miles’))

and p.Name = ‘Jane Doe’
and DocContains(H.Equipment, “defibrillator”)
and not booked (h.bookings, period(today,today+5));

Figure 5.4: Using the IDS Spatial DataBlade to easily solve a complex question

A design such as the one shown in Figure
5.5 is impossible to model in a standard rela-
tional data server. The closest such a server
can come requires self-referencing tables
and either set processing or highly recursive
SQL operations to find and return data. Both
options become exponentially more difficult
to implement and expensive to execute as
the hierarchy expands in depth or width. The
node data type that this DataBlade contains
“understands” data point interrelationships
from a lateral and horizontal perspective.

The Node Blade provides functions such
as depth, compare, ancestors, getmember,
and others, giving you direct access to the
data you need instead of convoluted recur-
sive or set processing. For example, obtain-
ing the name of an employee’s manager is as simple as

select fname
from employee
where emp_id = getparent(‘1.3.5.3.7’);

If you reorganize and move an employee (1.3.5.2) from her manager (1.3.5) to a
new department and manager (1.6.1), you can “graft” the employee or even an entire
branch of the hierarchy with a simple function call:

execute function graft (“1.3.5", ”1.6.1", “1.3.5.2")
(expression) 1.6.1.7

Columns defined as a node data type are limited to 256 bytes but are replicated
through IDS’s replication mechanisms.

Concurrency and Optimization Enhancements
IDS 11 offers several new functional enhancements in this area. Perhaps the greatest
is the addition of a new transaction isolation level; it will help prevent sessions that
are changing data from blocking sessions that are reading data, and vice versa.

Concurrent Optimization
The default isolation level for a logged database is currently committed read. This
level ensures that rows read and returned to a session have been committed to disk.

87

Concurrency and Optimization Enhancements

Figure 5.5: A hierarchical data model

The instance checks to see whether a shared lock could be placed on the row in ques-
tion before it is returned. It doesn’t actually lock the row, so it acts like a dirty read
in terms of speed. Committed read isolation does not prevent queried data from be-
ing changed by another process, even if the query is executed as part of an explicit
transaction. It does, however, prevent the return of data locked for update, insert, or
deletion by another session before the query is executed.

When this happens, the query must wait for the SQL Data Manipulation Language
(DML) operation to commit or roll back before it can continue. From an end-user
perspective, the database will appear to be hung or nonresponsive, and, depending on
the length of time required to commit or roll back, an application or data server time-
out may occur. The query will have to be re-executed, wasting time.

IDS 11 provides an enhancement that lets applications query committed data that
another session could potentially change. The mechanism is a new last committed

keyword option on the committed read and other isolation levels.

When last committed is active, if a query tries to read a row that’s been locked for
an SQL DML operation, the previously committed version of the row will be re-
turned to the query. Transactional integrity is preserved because the returned value(s)
haven’t been changed; it’s just possible they might change. Even if a change has oc-
curred, the change hasn’t been committed, so it’s possible that the change could be
rolled back. This behavior differs from the standard dirty read isolation level, which
returns the current value of data regardless of its transaction state. As a result, que-
ries can receive interim values that are not finally committed but are rolled back. At
this point, the query result set contains “bad” data.

You can extend the last committed functionality to the dirty read isolation level
as well. You enable the option either through the last committed SQL syntax or by
using the USELASTCOMMITTED $ONCONFIG parameter (or an environment variable
of the same name). When set through the $ONCONFIG file, the parameter overrides
any session-specific setting.

IDS supports this functionality for operations against almost any data and index
type other than collection data types and external tables created through the Virtual
Table Interface (VTI). Obviously, you need to enable transaction support or a log-
ging mode on the database and table (remember, you can have non-logged tables in a
logged database) to return a previous view of a row.

A few restrictions apply to this functionality. For example, it isn’t supported for
operations against tables using page-level locking, tables locked in exclusive mode,
or tables accessed through an R-tree index. It won’t work in operations executed
against a High Availability Data Replication (HDR) secondary or against Remote
Standby Secondary (RSS) or Shared Disk Secondary (SDS) instance(s) because all
they have is fully committed data.

Nor does the functionality work in distributed SQL operations or on operations
executed against Enterprise Replication (ER) replicates. The onstat utility has been
enhanced to show last committed values as well as the full isolation level.

88

CHAPTER 5: Easing Application Development

Directives for ANSI-Compliant Syntax

Before Version 11, the use of optimizer join directives was restricted to operations
using IDS-specific syntax or extensions. If an operation was written in strict adher-
ence to ANSI syntax, directives weren’t supported. Now, your application develop-
ers can use the following classes of directives:

● Optimization goal — all_rows or first_rows

● Access method — avoid_index_sj, avoid_full, avoid_index, and so on

● Explain — explain and avoid_execute

● Order — for left outer and inner joins only

Several ANSI join methods aren’t currently supported, including use_nl, avoid_nl,
and hash directives such as whether or not to use a hash join and which are the build

and probe tables.

ISTAR Extended Type Support
ISTAR is the name of the server-side connectivity libraries facilitating client/server
and instance-to-instance communications. Years ago, ISTAR (along with
ICONNECT, the client-side libraries) was separately licensed and installed. Now, the
server-side libraries are bundled with the data server, and you can select which cli-
ent-side libraries you want through the Client Software Development Kit (CSDK),
Java Database Connectivity (JDBC), or other drivers.

There were limitations on which servers could communicate with each other
through ISTAR. For example Informix Extended Parallel Server (XPS), the Informix
shared-nothing architecture data server, didn’t support connectivity to IDS until re-
cently. Although IDS-to-IDS instance communications was always supported, a few
restrictions applied with respect to the types and functions you could use when exe-
cuting operations to “remote” instances. All the basic built-in data types and standard
SQL functions were supported, of course, and IDS 10 added support for most of the
extended data types. With IDS 11, several additional types are now supported:

● lvarchar

● boolean

● distinct of boolean

● distinct of lvarchar

● distinct of non-opaque built-in types

Columns defined as blob or clob data types cannot participate, however. You also
can’t implicitly or explicitly cast a UDT to a supported type to execute a
cross-database/instance operation.

89

ISTAR Extended Type Support

This release also provides support for the execution of all kinds of UDRs in a
cross-instance operation, not just those built using SPL. You can’t, however, call a
UDR with an explicit out parameter.

Derived Tables
Generally speaking, when an SQL operation is created, the from clause indicates the
table, view, or iterator function that’s the data source for the operation. IDS now sup-
ports the ANSI-standard syntax to use the results of an encapsulated select statement
in the from clause as shown in Figure 5.6.

With this functionality, your application developers may no longer need to create
and populate temporary tables. The encapsulated select statement can execute almost
everything a “normal” select statement can, including aggregation, sorting, grouping,
and so on. You can create simple or more complex join conditions as part of the encap-
sulated select, including union and outer. This functionality should make it easier for
partners and others to migrate their applications to IDS because this commonly used
syntax no longer needs altering to run natively on the IDS data server.

Common Application API
One of IBM’s goals is to ease the development burden for those creating applications
for its data servers. To that end, IBM is developing a Common Client API for all its
tier 1 data servers. With this API, developers can create their application once and be
able to deploy against any of the supported IBM data servers. Obviously, the applica-
tion must not use server-specific syntax to access functionality exclusive to one
server because it won’t work with another data server. Check the machine and re-
lease notes that accompany your distribution of IDS 11 to see which components of
the API are available in this release.

Web Feature Service
Upon first glancing at this section title, you might think to yourself, “What, hasn’t IDS
supported Web browser syntax and Web publishing until now?” As the wise Master Po
might gently counsel his protégé, “Grasshopper, you do not see clearly yet.”

90

CHAPTER 5: Easing Application Development

select sum(col_1) as sum_col1, col2
from
(select col_a, col_b from my_tab)
as virt_tab(virt_col1, virt_col2)

group by virt_col2;

Figure 5.6: Support for the ANSI select in the from clause syntax

In this case, the “feature” being referred to is a geospatial object, such as a lake,
mountain, or road, that has a name and a shape associated with it. This new data
server functionality is an implementation of the Open GeoSpatial Consortium (OGC)
Specification 1.1 of the Web Feature Service Implementation. In effect, an interface
has been created that permits Web-based requests for geographical features to occur
using platform-independent calls.

This functionality has been added to both the Geospatial and Geodetic DataBlades
and incorporates XML with Geographic Markup Language (GML) extensions to en-
code the features being requested for transport to the calling function. Using these
two DataBlades, you can now build database-driven services that can feed either
flat-earth or round-earth (with a time dimension) data directly out of the data server
into a Web-based or other graphical application for use with text or numeric data.

Index Self-Join Access Method
As I began to learn about this new feature, I thought this was really cool stuff! As
you know, indexes permit relatively fast access to data based on discrete and ordered
values. Indexes are most efficient when they contain only a few columns and the val-
ues in the columns are reasonably unique, especially in the first two to three columns
of a composite index.

When indexed data values are not reasonably unique (e.g., male vs. female), a sig-
nificant portion of the table’s contents will be returned, necessitating additional pro-
cessing either by the application or by other data server function calls. This new
feature leverages the data server’s query rewrite functionality to logically join the ta-
ble to itself to create unique combinations of indexed values, resulting in extremely
fast access to the needed data. In effect, a series of mini-index reads are consolidated
to create the result set, as the next few figures illustrate.

First, consider the following SQL operation on a table with an index on columns
c1, c2, and c3:

select * from tab
where c1 >= 1 and c1 <= 3
and c2 >= 10 and c2 <= 11
and c3 >= 100 and c3 <= 102;

In IDS 10 and earlier versions, because of the highly duplicate values in c1 and
c2, the optimizer wasn’t able to discard very many rows based on index values, as
shown in Figure 5.7.

91

Index Self-Join Access Method

In IDS 10.xC4, the optimizer was able to somewhat intelligently apply an upper

filter based on the original value ranges, which helped decrease the search range
somewhat, as illustrated in Figure 5.8.

In IDS 11, improvements to the optimizer enable it to intelligently rewrite the
predicate clause into a series of scans joined through a left outer join as follows from
the earlier example:

92

CHAPTER 5: Easing Application Development

Figure 5.8: Upper boundary exclusion available with IDS 10.xC4

Figure 5.7: IDS 10 and earlier index exclusion based on highly duplicated index values

1. An index scan for unique combinations of c1 and c2 is made.

2. For each unique pair, an inner index scan is executed using the follow-
ing filters:

» c1 = c1

» c2 = c2

» c3 > 100

» c3 < 102

The result, as Figure 5.9 shows, is a drastically reduced range of possible matches
that are returned at index, rather than near sequential scan, speeds without the cre-
ation of implicit or explicit temporary tables.

Named Parameters
In a function, you can reference input parameters in two ways: either by their ordinal
value (first, second, third parameter passed) or by an identifier such as “cust_num,”
“amt_sold,” and so on. Depending on which programming language you use when
creating IDS-oriented applications, you have to know which language and interface
supports which input-referencing method. For example, if you use Java, you have to
use ordinal values.

IDS 11 supports the JDBC 3.0 specification permitting named parameters. With
named parameters, your application developers can, based on the function, pass in
only those parameter values that matter, leaving others empty to be filled with de-
fault values, or they can pass in parameters in any order.

93

Named Parameters

Figure 5.9: Data exclusion based on index self-join functionality

Auto Re-Optimization of Prepared Statements and Stored
Procedures

Before this release, UDRs written in SPL were parsed and optimized at creation
time. Their SQL access plans remained static unless you executed an update

statistics operation with the appropriate options to force the re-optimization of the
procedures. If you didn’t update the statistics regularly and the structure of the table
changed, when the UDR was called, it would abort with a –710 SQL error code.

IDS 11 checks and, where possible, re-prepares a UDR written in SPL if there are
changes to the table’s schema. Under some conditions, the –710 error will still be re-
turned — for example, on select * from . . . operations or where the data type of a
column changes. The error is returned as a safety precaution to the calling operation
because the column count is different and/or the data type has changed, and the call-
ing operation may not be prepared to receive these changes.

You can turn on this functionality through the AUTO_REPREPARE $ONCONFIG pa-
rameter or the similarly named parameter to the set environment SQL command. If
errors occur during the re-optimization process, they will be returned to the calling
operation.

Competitive Stored Procedure Support

For me, there’s nothing better than taking business away from a particular data
server competitor. It’s so easy from a data server perspective. This competitor has an
antiquated architecture that can’t scale and a horrendous ownership cost because of
all the administrators needed to keep the data server running on a daily basis, not to
mention the huge hardware bill required to get any performance. Their server has
limited business-continuity functionality, and their main product actually decreases
overall throughput as you add to the “cluster.” From a technical perspective, I can
walk over this one in my sleep.

They do have commanding mindshare, though, and many applications have been
written that execute against their data server. IBM has a Migration Toolkit (MTK),
downloadable for free from the IBM IDS Web site, that can easily move a database
and its data from that source data server into IDS. What the toolkit has been lacking,
though, is the ability to migrate stored procedures written in the data server’s propri-
etary SQL syntax. This shortcoming has hampered the ability to migrate applications
because most of them use stored procedures written in that language.

IDS 11 begins the process of including new functional extensions to the IDS SPL
to provide similar functionality to the most commonly used competitive syntax. In
addition, several keywords are being added to comply with ANSI SQL92 and later
requirements.

94

CHAPTER 5: Easing Application Development

This release adds the following functionality:
● Labeled statements and the goto operator — IDS 11 provides the ability to

branch to a specific labeled area inside the SPL block, as shown in the first
example in Figure 5.10. Some restrictions apply as to where the labeled
statement may be and what its scope can include, so check the documentation
for more information.

● loop statements with exit and continue keywords — To date, the procedural
constructs in IDS SPL have been relatively limited, supporting just if and
case statements. Now, you can create statement blocks that loop until or
while a specific condition exists and then exit, as shown in the second set of
examples in Figure 5.10. You can start the loops with the loop, while, or for

keyword. A bit of a warning, though, on using this new functionality:
Without careful debugging, you can create an infinite loop that never returns.

● Labeled loop statements — You can attach an identifier to a loop block, as
illustrated in the third set of examples in Figure 5.10. This ability is supported
only for loops constructed with the while and for keywords. You can use it to
exit nested loop statements.

● Conditional labeled loop exits — Like the capability described in the
previous bullet, with this support not only can you label a loop block, but you
can also continue or exit from the loop based on a variable condition inside
the loop, as shown in the last example set of Figure 5.10. Without this
functionality, you’d have to write additional procedural steps to verify the
variable’s value and then take the appropriate action. The new support
provides the same functionality with fewer steps. Like the previous
capability, you can use it to exit from nested loop statement blocks.

95

Competitive Stored Procedure Support

Example 1:
define my_counter integer;

let my_counter = 0;
begin

<the_beginning>
begin

let my_counter = my_counter + 1;
end;
if my_counter < 10 then

goto the_beginning;
end if;

end;
end procedure;

Figure 5.10: Examples of new SPL procedural syntax

96

CHAPTER 5: Easing Application Development

Example set 2:
loop

if pressure is null then
continue;

if pressure >= 3 then
exit; — exit loop immediately

end if;
end loop;

while (i < 10) loop
let i = i + 1;
if i < 4 then

continue;
if i > 5 then

exit;
end if;

end if;

for i in (1 TO 5) loop
let i = i +1 ;
if i < 5 then

continue;
if i > 5 then

exit;
end if;

end if;

Example set 3:
<get_bigger>
while (i < 10)

i = i +1 ;
end while get_bigger;

<<get_bigger2>
for i in 1..5

i = i +1 ;
end for get_bigger2;

Example set 4:
while (my_count > 0) loop
let my_count = my_count + 1;

exit when my_count = 4;
end loop;

<outer>
loop
let x = x + 1;
<inner>
while (i > 0) loop
let x = x + 1;
exit inner when x = 4;
exit outer when x > 7;

end loop inner;
let x = x+1;
end loop outer;

Figure 5.10: Examples of new SPL procedural syntax

Conclusion
Thank you for taking the time to read through this short introduction to Informix Dy-
namic Server 11. I hope you now understand how this data server is unique and un-
matched in the marketplace in terms of functionality, ease of use, and performance.
With it, you can build richer data processing functionality easily. Its business conti-
nuity features are deeper and broader and perform better than any other offering. The
data server takes care of itself, letting you use hardware and personnel for other
things that create greater business value.

IDS is, as the Olympic motto states, Citius, Altius, Fortius.

97

Conclusion

