<|lI!

IMS

Administration Guide: System

Version 9

SC18-7807-00






<|lI!

IMS

Administration Guide: System

Version 9

SC18-7807-00



Note
Before using this information and the product it supports, be sure to read the general information under [‘Notices” on page|

First Edition (October 2004)
This edition applies to Version 9 of IMS (product number 5655-J38) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1974, 2004. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.



Contents

Figures . Vi
Tables . iX
About This Book . . Xi
Prerequisite Knowledge . . Xi
How to Use This Book X
IBM Product Names Used in ThIS Informat|on . Xii
How to Read Syntax Diagrams . . Xiii
How to Send Your Comments . Xiv
Summary of Changes . . . Xvii
Changes to This Book for IMS Versmn 9 . . XVii
Library Changes for IMS Version 9 . . XViii
Part 1. System Planning and Definition. .1
Chapter 1. Introduction to IMS System Administration .5
Overview of Administrative Activities .5
The IMS Environments . .7
Concepts for the System Adm|n|strator . .21
Chapter 2. Documenting Your IMS System. . 35
Extracting Requirements for Your IMS System . 35
Participating in Design Reviews. . 36
Establishing Naming Conventions . . 37
Using a Data Dictionary . . 38
Documenting Your System Characterlst|cs . 39
Chapter 3. Defining Your System .41
How System Definition Is Related to Installanon .41
Managing System Definition . . 43
Defining Online Applications with System Defmmon Macros . 53
Defining IMS Terminals . . 69
Assigning System Resource Optlons 73
Administering IMS System Data Sets. . 80
Tailoring the IMS Procedure Library . . 89
Specifying EXEC Statement Parameters . . 93
Satisfying System Requirements for Data Propagatlon in DB/DC and DBCTL
Environments . Ce e . 109
Chapter 4. IMS Security. . 113
Overview of DB/DC and DCCTL Secunty . 113
Designing Security for IMS DB/DC and DCCTL . . . 116
Activating IMS Security for DB/DC and DCCTL Envwonments . . 146
Controlling Security During System Startup For DB/DC and DCCTL . . 153
Implementing Security Changes Online in DB/DC and DCCTL Environments 156
Controlling Security Violations in DB/DC and DCCTL Environments . . 157
Considering Other Access Control Methods . . 158
An Alternative to Access Control: Encryption . 160
Security Considerations for a DBCTL Environment . . 161

© Copyright IBM Corp. 1974, 2004



Part 2. System Management. . . . . . . . . . . . . .. ... ... ....171

Chapter 5. Testing Your System . . . . . . . . . . . . . . . . .173
The Need for a Test System . . . . . . . . . . . . . . . . . . .174
Ensuring Network Readiness . . . . . . . . . . . . . . . . . . .176
IMS TestingAids. . . . . . . . . . . . . . . . . . . . . . . .178
Chapter 6. Monitoring Your System . . . . . . . . . . . . . . . .183
Establishing Monitoring Procedures . . . . . . . . 183
Monitoring Multiple Systems in DB/DC and DCCTL Enwronments .. . . .19
Coordinating Performance Information in an MSC Network . . . . . . . . 190
Monitoring Fast Path Systems in DB/DC and DCCTL Environments . . . . . 190
Transaction Flow in DB/DC and DCCTL Environments. . . . . . . . . . 191
The IMS Monitor in DB/DC and DCCTL Environments . . . . . . . . . . 195
Monitoring Procedures in a DBCTL Environment . . . . . . . . . . . . 195
Chapter 7. Tuning Your System. . . . . . . . . . . . . . . . . .201
Managing Performance . . . 4 O i §
Initializing z/OS and IMS Parameters for Tunlng .o .. . .. . 204
Planning for Performance in a Shared-Queues Envwonment .. . . . . . 220
Identifying and Correcting Performance Problems . . . . . . . . . . . 220
Chapter 8. Modifying Your System Design . . . . . . . . . . . . .23
Assessing Application Changes . . . 2 ) |
Introducing Changed Applications in an Actlve IMS System AV
Planning for System Definition Changes . . . . . . . . . . . . . . . 235
Making System Tuning Changes . . . . e .. .. ... . . . .236
Managing Online System Definition Changes e e o237
Performing Capacity Planning . . . . . . . . . . . . . . . . . . .240
Chapter 9. Printing Output with IMS SpoolAPI . . . . . . . . . . .24
Design and Operational Considerations . . . . . . . . . . . . . . .24
The IMS Spool APl as a Data Manager . . . . . . . . . . . . . . .243
Print Data Set Characteristics . . . . . . . . . . . . . . . . . . . 244
Writing Data to the IMS Spool API . . . . . . . . . . . . . . . . .246
Special Considerations—Descriptors Allowed . . . . . . . . . . . . . 247
Understanding Allocation Errors . . . . . . . . . . . . . . . . . .248
Part 3. System Recovery . . . . . . . . . . . . . . ... ... ... ...251
Chapter 10. Extended Recovery Facility . . . . . . . . . . . . . . 253
Installation Types That Benefit from XRF. . . . . . . . . . . . . . . 254
XRF Concepts and Terminology . . . . . . . . . . . . . . . . . .254
XRF Complex Overview . . . . . . . . . . . . . . . . . . . . .257
XRF Takeover. . . . . . . . . . . . . . . . . . . . . . .. .25
XRF Requirements . . . . C e . . . . . . . . . . . . .263
Component Roles in the XRF Process e e . . . . . . . . . . . . .265
Establishing Surveillance for XRF . . . . . . . . . . . . . . . . .274
Phases of the XRF Process. . . . . . . . . . . . . . . . . . . .276
Organization of XRF Complexes . . . . . . . . . . . . . . . . . .29
Planning an XRF Complex . . . . . . . . . . . . . . . . . . . .29
z/OS Planning Considerations . . . . . . . . . . . . .308
Planning for VTAM Ownership of Class 1 Termlnals N ¥ K
NCP Planning Considerations for XRF with USERVAR. . . . . . . . . .31
Preparing the System for XRF. . . . . . . . . . . . . . . . . . .31

iV Administration Guide: System



Chapter 11. Remote Site Recovery . . . . . . . . . . . . . . . .329

RSR Overview . . . N At |
Requirements for Using RSR P X 0]
Basic Componentsof RSR . . . . . . . . . . . . . . . . . . . .33
RSR Processing . . . G X Y
Determining the Extent of Recovery N K v 4
XRF and RSR. . . . < S 1)
Defining an RSR Envwonment W|th XRF N 1e
Data Sharingand RSR . . . . . . . . . . . . . . . . . . .. .34
Tracking an IMSplex . . . . . . . . . . . . . . . . . . . . . .342
RSR Log Management . . . . . . . . . . . . . . . . . . . . .342
Example of an RSR Complex . . . P 7 X
Coordinated IMS and DB2 UDB for z/OS Recovery Support .. . . . . .345
General RSR Functions . . . . . . . . . . . N 7
InstalingRSR. . . . . . . . . . . . . . . . . . . . . . . . .348
Initializing RSR . . . . e e . . . ... ... . . . . . . . .353
IMS Error Handling for RSR S o X A
Establishing IMS Security forRSR . . . . . . . . . . . . . . . . . 366
Part 4. IMSplex Administration . . . . . . . . . . . ... ... ... ...367
Chapter 12. Data Sharing in DB/DC and DBCTL Environments . . . . . 369
Data Sharing Concepts and Terminology . . . . . . . . . . . . . . . 369
How Applications Share Data (Process Option) . . . N Y4
How IMS Systems Share Databases (Access Management) .. . . .. .37
Examples of Data-Sharing Configurations . . . . . . . . . . . . . . 375
Data-Sharing Administration Activites . . . . . . . . . . . . . . . . 378
Tailoring IMS systems That Share bData . . . . . . . . . . . . . . .379
Tailoring ExecutionJCL . . . . . . . . . . . . . . . . . . . . .382
Tailoring the Operating System . . . . . . . . . . . . . . . . . .38
Monitoring and Tuning Considerations. . . . . . . . . . . . . . . . 383
Administering Sysplex Data Sharing . . . . . . . . . . . . . . . .385
Setting Up IRLM Procedures . . . . . . . . . . . . . . . . . . .404
For More Information . . . . . . . . . . . . . . . . . . . . . .408
Chapter 13. IMSplex withCSL . . . . . . . . . . . . . . . . . .409
IMSplex Overview . . . - 0 [
Common Service Layer Overwew e A R
IMSplex Functions Overview . . . . . . . . . . . . . . . . . . .415
Configuring an IMSplexwithCSL. . . . . . . . . . . . . . . . . .419
Defining and Tailoring an IMSplex . . . . . . . . . . . . . . . . .421
Establishing IMSplex Security . . . . s A
Starting and Stopping an IMSplex and CSL Y 24 s
Administering IMSplex Functions. . . AT
Issuing Commands Through the OM API e e o432
Monitoring an IMSplex. . . . . . . . . . . . . . . . . . . . . .433
RecoveryinanIMSplex . . . . . . . . . . . . . . . . . . . . .433
Notices . . . . . . . . . . . . . . . . . . . . . . .. . . .435
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . .437
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . .439
IMS Version 9 Library . . . . . . . . . . . . . . . . . . . . . .439
Supplementary Publications. . . . . . . . . . . . . . . . . . . .440
Publication Collections . . e ¥ ¢
Accessibility Titles Cited in ThIS L|brary e ¥ 10)

Contents V



Index. . . . . . . . . . . L L. L. 4

Vi  Administration Guide: System



Figures

©CoNO WD

Chart of IMS System Administration Activities .

Example of a DB/DC Environment .

Example of a DBCTL Environment .

Example of a DCCTL Environment and Attached Subsystem

Example of a DB Batch Environment

Summary of the Two Stages of System Deflnltlon Processmg

Example: Input required for AGN security

Example: Input required for RAS security

Example: Input required for AGN security

Example: Input required for RAS security

Example: Input required for AGN security

Input required for RAS security .

Assigning Importance using the WLM ISPF panel Mod|fy a SerV|ce Class
Processing Events during Transaction Flow through IMS. .
Activity Cycle for IMS Performance Management

Relative Dispatching Priority (Column DP) Displayed in the WLM ISPF Panel .

Calculation of the Number of Required Regions .

IMS Environment without Spool API

IMS Environment with Spool API

The XRF Complex before a Takeover.

The XRF Complex during a Takeover .

The XRF Complex after a Takeover

Surveillance Options .

The Interpret and USERVAR Tables .

VTAM Processing of the Logon in an XRF Complex that uses USERVAR

VTAM Processing of the Logon in an XRF Complex That Uses MNPS, Part 1.
VTAM Processing of the Logon in an XRF Complex That Uses MNPS, Part 2 .

XRF Initialization Phase .

XRF Synchronization Phase .

XRF Takeover Phase.

Two Data-Sharing XRF Complexes

XRF Post-Takeover Phase .

XRF Termination Phase . .

One XRF Complex in One CPC.

One XRF Complex in Two CPCs

One XRF Complex in Two CPCs and a Non XRF IMS

Two XRF Complexes in Three CPCs .

Two XRF Complexes in Four CPCs

ISC Link Options .

Recommended Data Set Placement .

Marooned Log Data .

RSR Service Groups and Global Serwce Groups .
Defining an XRF/RSR Environment: Active IMS and Actlve Slte .
Defining an XRF/RSR Environment: Alternate IMS and Active Site .
Defining an XRF/RSR Environment: Tracking IMS and Remote Site
Data Sharing in an RSR Complex . .
Example of an RSR Complex with XRF and Data Shanng .
Example of an RSR Complex with XRC Tracking

IMS and DB2 Log Transmission to a Remote Site .

Sample of Transport Manager Subsystem Start Commands

Master Terminal Configuration

Database-Level Sharing. .
Example of Data Sharing at the Database Level Wlth Update Access .

© Copyright IBM Corp. 1974, 2004

.14

.17

. 20
. .44
. 118
. 119
. 119
. 120
. 120
. 120
. 186
. 192
. 202
. 206
. 210
. 242
. 243
. 260
. 261
. 261
. 267
. 269
. 270
. 272
. 273
. 277
. 278
. 282
. 286
. 289
. 290
. 292
. 293
. 294
. 295
. 296
. 298
. 325
. 334
. 336
. 340
. 340
. 340
. 341
. 344
. 345
. 346
. 354
. 357
. 374
. 376

Vii



54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.

68.
69.
70.
71.

viii

Example of Data Sharing at the Database Level with Read Access .

Example of Data Sharing at the Block Level with Update Access.

Sample Data-Sharing Group .

FDBR Basic Elements .

Coupling Facility Shared Storage .

Three Structures on One Coupling Facility .

Three Structures on Two Coupling Facilities

Three Structures on One Coupling Facility with Backup Couplrng Facrlrty .

Three Structures on One Coupling Facility with Backup Coupling Facility (XRF Envrronment)
One Structure on One Coupling Facility (Results in Sysplex Data Sharing) . .
Complex Management of an IMSplex without CSL . Coe

Simplified Management of an IMSplex with CSL .

A Single-System IMSplex: All CSL Managers are on One Operatlng System

An IMSplex with the Minimum CSL Managers for Three IMS systems on Three Operatrng
Systems

A DBCTL IMSpIex Only one RM and No Resource Structure

Recommended IMSplex: One OM, RM, and SCI on Each Operating System

Example: Authorizing Users to Commands in an IMSplex

Example: Using RACF Groups and the OPERCMDS Class for IMSpIex Command Securrty

Administration Guide: System

. 377
. 378
. 387
. 389
. 391
. 396
. 397
. 397

398

. 398
. 410
. 410
. 412

. 412
. 413
. 413
. 427

427



Tables

©CoNO WD

Licensed Program Full Names and Short Names .

IMS Online Environments .

Administration’s Use of Design Rewews

Examples of Naming Conventions

System Definition Macros for Defining Appllcat|ons

Example of Transaction Grouping. .

Matrix for Message Classes and Priorities

List of Online IMS Data Sets

Tailoring Actions for Fast Path Procedures

Tailoring Actions for Fast Path Procedures in a DBCTL Enwronment

Categories and Purpose of Fast Path Control Region Parameters for DCCTL and DB/DC .

Categories and Purpose of Fast Path Control Region Parameters for DBCTL
Fast Path Dependent Region Parameters for DCCTL and DB/DC

Fast Path Dependent Region Parameters for DBCTL .

Generated Values and Purposes for FPUTIL Procedure Parameters

Data Space Characteristics (Data Capture Exit Routine and Asynchronous Data Capture)
DB/DC and DCCTL Resources and the Facilities to Protect Them .
RACF Replacements for SMU Functions.

Example Terminal-User Profile

Designing an LTERM Profile .

Example of Matching LTERM to Proﬁles

SECURITY Macro Keywords .

Resource Class Assignments. .

EXEC Parameters to Control IMS Securlty

EXEC Parameters and the SECURITY Macro Parameters They Overrlde .
DBCTL Resources, Security Options, and the Security Facilities to Protect Them.
Resource Class Assignments for DBCTL . .

The ISIS= Keyword and the SECURITY Macro Parameters It Overrldes .
Administration Tasks Related to Testing Phases .

Assigning WLM Importance to IMS Address Spaces

Application Change Control Assessment.

System Definition Resource Modifications Allowed for Onl|ne Change

Results of PURG Call .

Surveillance Options on Parameters .

Class Eligibility for Various Devices

Terminal Capabilities of Owning VTAM during and after a Takeover

XRF System Definition Macro Keywords for VTAM-Controlled Terminals .

XRF System Definition Macro Keywords for BTAM-Controlled Terminals .
Informing the Alternate IMS of Events in the Active IMS .

Additional Data Sets Required by XRF . .

Comparison of Recovery Functions Provided by XRF and RSR .
Combinations of IMS Types in an RSR Environment

Relationship between IMS DC System Definition and IMS Procedures for RSR
IMS, XRF, and RSR Configurations . -
Installation Steps with Additional Data- Shanng Act|V|ty

SHAREOPTIONS Parameter Specifications

Categories and Purpose of IRLM Region Parameters

© Copyright IBM Corp. 1974, 2004

. Xii
. 36
. 37
. 53
. 60
. 61
. 82
. 92
. 92
. 94

. . 96
. 107
. 108
. 109

110

. 115
. 118
. 125
. 126
. 126
. 129
. 152
. 154
. 155
. 162
. 168
. 169
. 173
. 186
. 232
. 238
. 247
. 274
. 302
. 307
. 314
. 314
. 318
. 325
. 339
. 348
. 356
. 358
. 379
. 383
. 404



X  Administration Guide: System



About This Book

This book is a guide to administering IMS™, which comprises the IMS Database
Manager, the IMS Transaction Manager, or both.

This information is available as part of the DB2® Information Management Software
Information Center for z/OS® Solutions. To view the information within the DB2
Information Management Software Information Center for z/OS Solutions, go to
http://publib.boulder.ibm.com/infocenter/dzichelp. This information is also available in
PDF and BookManager® formats. To get the most current versions of the PDF and
BookManager formats, go to the IMS Library page at
www.ibm.com/software/data/ims/library.html.

Prerequisite Knowledge

IBM offers a wide variety of classroom and self-study courses to help you learn
IMS. For a complete list, see the IMS home page on the World Wide Web at
www.ibm.com/ims.

Before using this book, you should have a good understanding of the IMS
environment (DB/DC, DBCTL, or DCCTL) that you are managing. You should also
have a basic understanding of database processing and the access methods used
by DL/I. It is helpful to know the purpose of the different types of DL/I calls, the IMS
application program structure, and the tasks associated with application program
design.

For information about this release of IMS, see [IMS Version 9: Release Planning|
. Establishing operating procedures presumes an understanding of IMS
commands. This information is in IMS Version 9: Operations Guidd

How to Use This Book

Use this book in conjunction with|IMS Version 9: Installation Volume 1: Installatior]
Verification|and |IMS Version 9: Installation Volume 2: System Definition and
Tailoring{ to help coordinate the design, installation, definition, and modification of an
IMS system. See|IMS Version 9: Installation Volume 1: Installation Verificatior]
when you need details for installing an IMS. See [IMS Version 9: Installation]
[Volume 2: System Definition and Tailoring when you need details for designing,
defining, or modifying an IMS.

You can also use this book as an information source for monitoring and tuning IMS;
it explains the use of the IMS Monitor and other utilities.

This book describes the environments available with IMS Database Manager and
with IMS Transaction Manager. Some sections of this book apply only to specific
environments. A table at the beginning of each of these sections denotes the
applicable environments for that section. No environments table appears in sections
that apply to all environments.

With IMS Version 9, you can reorganize HALDB patrtitions online, either by using
the integrated HALDB Online Reorganization function or by using an external
product. In this information, the term HALDB Online Reorganization refers to the
integrated HALDB Online Reorganization function that is part of IMS Version 9,
unless otherwise indicated.

© Copyright IBM Corp. 1974, 2004 Xi



IBM Product Names Used in This Information

In this information, the licensed programs shown in are referred to by their
short names.

Table 1. Licensed Program Full Names and Short Names

Licensed program full name Licensed program short name
IBM® Application Recovery Tool for IMS and  Application Recovery Tool
DB2

IBM CICS® Transaction Server for 0S/390®  CICS

IBM CICS Transaction Server for z/OS CICs

IBM DB2 Universal Database™ DB2 Universal Database

IBM DB2 Universal Database for z/OS DB2 UDB for z/OS

IBM Enterprise COBOL for z/OS and OS/390 Enterprise COBOL

IBM Enterprise PL/I for z/OS and OS/390 Enterprise PL/I

IBM High Level Assembler for MVS™ & VM & High Level Assembler

VSE

IBM IMS Advanced ACB Generator IMS Advanced ACB Generator
IBM IMS Batch Backout Manager IMS Batch Backout Manager
IBM IMS Batch Terminal Simulator IMS Batch Terminal Simulator
IBM IMS Buffer Pool Analyzer IMS Buffer Pool Analyzer

IBM IMS Command Control Facility for zZOS  IMS Command Control Facility
IBM IMS Connect for z/OS IMS Connect

IBM IMS Connector for Java™ IMS Connector for Java

IBM IMS Database Control Suite IMS Database Control Suite

IBM IMS Database Recovery Facility for z7OS IMS Database Recovery Facility

IBM IMS Database Repair Facility IMS Database Repair Facility

IBM IMS DataPropagator™ for z/OS IMS DataPropagator

IBM IMS DEDB Fast Recovery IMS DEDB Fast Recovery

IBM IMS Extended Terminal Option Support  IMS ETO Support

IBM IMS Fast Path Basic Tools IMS Fast Path Basic Tools

IBM IMS Fast Path Online Tools IMS Fast Path Online Tools

IBM IMS Hardware Data IMS Hardware Data Compression-Extended
Compression-Extended

IBM IMS High Availability Large Database IBM IMS HALDB Conversion Aid

(HALDB) Conversion Aid for z/OS

IBM IMS High Performance Change IMS High Performance Change Accumulation
Accumulation Utility for z/OS Utility

IBM IMS High Performance Load for z/OS IMS HP Load

IBM IMS High Performance Pointer Checker  IMS HP Pointer Checker

for OS/390

IBM IMS High Performance Prefix Resolution IMS HP Prefix Resolution
for z/OS

IBM Tivoli® NetView® for z/OS Tivoli NetView for z/OS

IBM WebSphere® Application Server for z/OS WebSphere Application Server for z/OS
and OS/390

Xii  Administration Guide: System



Table 1. Licensed Program Full Names and Short Names (continued)

Licensed program full name Licensed program short name
IBM WebSphere MQ for z/OS WehbhSphere MQ

IBM WebSphere Studio Application Developer WebSphere Studio
Integration Edition

IBM z/OS z/0S

How to Read Syntax Diagrams

The following rules apply to the syntax diagrams that are used in this information:

* Read the syntax diagrams from left to right, from top to bottom, following the path
of the line. The following conventions are used:

— The >>--- symbol indicates the beginning of a syntax diagram.

— The ---> symbol indicates that the syntax diagram is continued on the next
line.

— The >--- symbol indicates that a syntax diagram is continued from the
previous line.

— The --->< symbol indicates the end of a syntax diagram.
* Required items appear on the horizontal line (the main path).

»>—required _item

v
A

* Optional items appear below the main path.

»>—required _item |_ <
optional_i temJ

If an optional item appears above the main path, that item has no effect on the
execution of the syntax element and is used only for readability.

optional_ite
»>—required_item |_ m—l

A\
A

» If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

»>—required i tem—Er'equ ired choicel ><
requi red_(:hoiceZ—|

If choosing one of the items is optional, the entire stack appears below the main
path.

v
A

»>—required _item
i:optional_choice]:‘
optional_choiceZ

If one of the items is the default, it appears above the main path, and the
remaining choices are shown below.

About This Book  Xiil



|—de fault_choi ce—l

»>—required_item ii

optional_choice:‘
optional_choice

* An arrow returning to the left, above the main line, indicates an item that can be
repeated.

»>—required_item——repeatable_item

A\
A

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

»—required_item——repeatable_item ><

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

* Sometimes a diagram must be split into fragments. The syntax fragment is
shown separately from the main syntax diagram, but the contents of the fragment
should be read as if they are on the main path of the diagram.

»—r‘equired_item—| fragment-name i ><

fragment-name:

—required_item |
I—optional_item—l

* In IMS, a b symbol indicates one blank position.

» Keywords, and their minimum abbreviations if applicable, appear in uppercase.
They must be spelled exactly as shown. Variables appear in all lowercase italic
letters (for example, column-name). They represent user-supplied names or
values.

* Separate keywords and parameters by at least one space if no intervening
punctuation is shown in the diagram.

* Enter punctuation marks, parentheses, arithmetic operators, and other symbols,
exactly as shown in the diagram.

* Footnotes are shown by a number in parentheses, for example (1).

How to Send Your Comments

Your feedback is important in helping us provide the most accurate and highest
quality information. If you have any comments about this or any other IMS
information, you can take one of the following actions:

* Go to the IMS Library page at www.ibm.com/software/data/ims/library.html and
click the Library Feedback link, where you can enter and submit comments.

* Send your comments by e-mail to imspubs@us.ibm.com. Be sure to include the
title, the part number of the title, the version of IMS, and, if applicable, the

XiV  Administration Guide: System



specific location of the text on which you are commenting (for example, a page
number in the PDF or a heading in the Information Center).

About This Book XV



XVi  Administration Guide: System



Summary of Changes

Changes to This Book for IMS Version 9

In addition to editorial changes, this book contains new technical information for the
following IMS Version 9 enhancements:

* The type-2 command environment: For installations that do not use an IMSplex
or share resources, you can now install CSL without RM to take advantage of
type-2 commands. See [‘Type-2 Command Environment” on page 21| for an
overview of type-2 commands and the type-2 command environment.

* RACF enhancements providing equivalent security functions to those formerly
provided only by SMU and AGN security. New information has been added
throughout [Chapter 4, “IMS Security,” on page 113.|

* Enhancements to the XRF system, introducing MNPS as an alternative to
USERVAR as a means of session management. New information has been
added throughout|Chapter 10, “Extended Recovery Facility,” on page 253.|

* Enhancements allowing multiple DEDB areas to share a single cache structure.
See [‘Multi-Area Cache Structures for VSO DEDB Areas” on page 391

This book has the following new sections:
* [“Type-2 Command Environment” on page 21|

* |"Migrating from SMU to RACF-Managed Security with IMS Version 9” on page|
117

+ [“Security in MSC and Shared-Queues Environments” on page 137|

+ [“Securing Dependent Regions Using Resource Access Security” on page 143
+ [‘Resource Access Security Exit Routine” on page 150

[*XRF Variations: MNPS and USERVAR” on page 256|

['VTAM operations in an XRF Complex That Uses MNPS” on page 271
[‘Network Changes in an XRF Complex That Uses MNPS” on page 284
[‘Class-1 Terminals in an XRF Complex That Uses MNPS” on page 299
[‘XRF Parameters in DFSDCxxx” on page 316|

[‘Multi-Area Cache Structures for VSO DEDB Areas” on page 391|
[‘Private Buffer Pools for Multi-Area Structures” on page 395

['REXX SPOC API Overview” on page 416

[Chapter 13, “IMSplex with CSL,” on page 409

« ['Defining a Simplified IMSplex for the Type-2 Command Environment” on page|
422

Significant changes have been made to sections in the following chapters:
« [Chapter 1, “Introduction to IMS System Administration,” on page 5}
— [‘Fast DB Recovery Region in DB/DC” on page 12|
— [‘Fast DB Recovery Region in DBCTL” on page 15
— [*Security for Dependent Region Processing” on page 24|
« [Chapter 3, “Defining Your System,” on page 41}
— [‘Building ETO Descriptors in Large System Definitions” on page 48|
— ['security Options” on page 78|
— |'Preparing PROCLIB Member DFSPBxxx” on page 91|
— ['Security-Related EXEC Parameters for the Control Region” on page 10:Ij

© Copyright IBM Corp. 1974, 2004 Xvii



— [‘Security-Related EXEC Parameters for Message Processing Regions” on

page 10§|

— [‘Security-Related EXEC Parameters for BMPs” on page 106]|
« [Chapter 4, “IMS Security,” on page 113]
. |Chapter 8, “Modifying Your System Design,” on page ZSJJ:
— [‘Assessing Application Changes” on page 231|
- |“Deciding If System Modifications Can Use Online Change” on page 237|
+ |Chapter 10, “Extended Recovery Facility,” on page 253
« [Chapter 11, “Remote Site Recovery,” on page 329
- |“Configuring the System Definition for RSR” on page 355|
. |Chapter 12, “Data Sharing in DB/DC and DBCTL Environments,” on page 369|:
— [‘Coupling Facility” on page 38§
— [‘The Coupling Facility, Shared Storage, and Sharing VSO DEDB Areas” on|

page 399]

+ [Chapter 13, “IMSplex with CSL,” on page 409}
— [‘Defining Automatic RECON Loss Notification” on page 423
— |‘Defining Global Online Change” on page 423

Library Changes for IMS Version 9

Changes to the IMS Library for IMS Version 9 include the addition of one title, a
change of one title, organizational changes, and a major terminology change.
Changes are indicated by a vertical bar (|) to the left of the changed text.

The IMS Version 9 information is now available in the DB2 Information Management
Software Information Center for z/OS Solutions, which is available at
http://publib.boulder.ibm.com/infocenter/dzichelp. The DB2 Information Management
Software Information Center for z/OS Solutions provides a graphical user interface
for centralized access to the product information for IMS, IMS Tools, DB2 Universal
Database (UDB) for z/OS, DB2 Tools, and DB2 Query Management Facility

(QMF™).

New and Revised Titles
The following list details the major changes to the IMS Version 9 library:
* [IMS Version 9: IMS Connect Guide and Reference

The library includes new information: [[MS Version 9: IMS Connect Guide and
[Referencd This information is available in softcopy format only, as part of the
DB2 Information Management Software Information Center for z/OS Solutions,
and in PDF and BookManager formats.

IMS Version 9 provides an integrated IMS Connect function, which offers a
functional replacement for the IMS Connect tool (program number 5655-K52). In
this information, the term IMS Connect refers to the integrated IMS Connect
function that is part of IMS Version 9, unless otherwise indicated.

* The information formerly titled IMS Version 8: IMS Java User’s Guide is now
titled [IMS Version 9: IMS Java Guide and Reference. This information is
available in softcopy format only, as part of the DB2 Information Management
Software Information Center for z/OS Solutions, and in PDF and BookManager
formats.

* To complement the IMS Version 9 library, a new book, An Introduction to IMS by
Dean H. Meltz, Rick Long, Mark Harrington, Robert Hain, and Geoff Nicholls

XViii  Administration Guide: System



(ISBN # 0-13-185671-5), is available starting February 2005 from IBM Press. Go
to the IMS Web site at www.ibm.com/ims for details.

Organizational Changes
Organization changes to the IMS Version 9 library include changes to:
« |IMS Version 9: IMS Java Guide and Reference|
» |IMS Version 9: Messages and Codes, Volume 1|
« |IMS Version 9: Utilities Reference: System|

The chapter titled "DLIModel Utility” has moved from |IMS Version 9: IMS Java|
|Guide and Referencelto|IMS Version 9: Utilities Reference: System]

The DLIModel utility messages that were in [IMS Version 9: IMS Java Guide and
have moved to [IMS Version 9: Messages and Codes, Volume 1|

Terminology Changes
IMS Version 9 introduces new terminology for IMS commands:

type-1 command
A command, generally preceded by a leading slash character, that can be
entered from any valid IMS command source. In IMS Version 8, these
commands were called classic commands.

type-2 command
A command that is entered only through the OM API. Type-2 commands
are more flexible than type-2 commands and can have a broader scope. In
IMS Version 8, these commands were called /IMSplex commands or
enhanced commands.

Accessibility Enhancements

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products. The major accessibility features
in z/OS products, including IMS, enable users to:

» Use assistive technologies such as screen readers and screen magnifier
software

» Operate specific or equivalent features using only the keyboard
» Customize display attributes such as color, contrast, and font size

User Assistive Technologies

Assistive technology products, such as screen readers, function with the IMS user
interfaces. Consult the documentation of the assistive technology products for
specific information when you use assistive technology to access these interfaces.

Accessible Information

Online information for IMS Version 9 is available in BookManager format, which is
an accessible format. All BookManager functions can be accessed by using a
keyboard or keyboard shortcut keys. BookManager also allows you to use screen
readers and other assistive technologies. The BookManager READ/MVS product is
included with the z/OS base product, and the BookManager Softcopy Reader (for
workstations) is available on the IMS Licensed Product Kit (CD), which you can
download from the Web at www.ibm.com.

Summary of Changes  XiX



Keyboard Navigation of the User Interface

Users can access IMS user interfaces using TSO/E or ISPF. Refer to the zZ0OS
V1R1.0 TSO/E Primer, the z/OS V1R5.0 TSO/E User’s Guide, and the z/OS
V1R5.0 ISPF User’s Guide, Volume 1. These guides describe how to navigate each
interface, including the use of keyboard shortcuts or function keys (PF keys). Each
guide includes the default settings for the PF keys and explains how to modify their

functions.

XX  Administration Guide: System



Part 1. System Planning and Definition

Chapter 1. Introduction to IMS System Administration
Overview of Administrative Activities
The IMS Environments
The DB/DC Environment.
The DBCTL Environment .
The DCCTL Environment .
The Batch Environment. .
Concepts for the System Admrnrstrator .
Dynamic Allocation with IMS .
Type-2 Command Environment .
Extended Terminal Option .
APPC .
Security for Dependent Regron Processrng
MPP Scheduling in DB/DC and DCCTL Envrronments

Scheduling Application Programs Against Unavailable Data

Fast Path .

Automated Operator Appllcatlon Programs
System Logging and Processing Continuity
Checkpointing .

Locking Mechanisms and Database Integnty In DB/DC and DCCTL

Data Capture Exit Routines
The z/OS Automatic Restart Manager (ARM)
HALDB Partition Selection Exit Routines

Chapter 2. Documenting Your IMS System.
Extracting Requirements for Your IMS System
Participating in Design Reviews.
Establishing Naming Conventions .
Using a Data Dictionary .
Documenting Your System Characterlst|cs
IMS System Definition .
IMS Network in DB/DC and DCCTL Envrronments
Terminal Profiles in DB/DC and DCCTL Environments
Transaction Profile Names for APPC/IMS .
Configuration of Production System

Chapter 3. Defining Your System
How System Definition Is Related to Installat|on
Managing System Definition .
Structuring Stage 1 Definitions .
Coordinating System Definition Input Data
Verifying the Stage 1 Input
Planning for Different Types of System Defrnrtron
Large System Definition
Including Fast Path in DCCTL or DB/DC
Including Fast Path in DBCTL
Extended Terminal Option Descriptors
LU 6.2 Descriptors

Defining Online Applications wrth System Def|n|t|on Macros .
Declaring Online Databases in DB/DC and DBCTL Environments .

Declaring Message Processing Programs .
Declaring Fast Path Application Programs .

Defining IMS Transactions in DB/DC and DCCTL Enwronments

© Copyright IBM Corp. 1974, 2004



Defining Fast Path Transactions
Planning a Scheduling Algorithm
Defining IMS Terminals . .
Defining Extended Terminal Optlon Termlnals in DB/DC and DCCTL .
Defining Static VTAM Terminals at System Definition in DB/DC and DCCTL
Defining Non-VTAM Terminals in DB/DC and DCCTL.
Specifying the Master Terminal .
Defining Switched Devices .
Allocating Message Format Buffer Pool Space .
Assigning System Resource Options .
Choosing the Number of Regions .
Defining a Fast DB Recovery Region.
Setting a Checkpoint Frequency
Selecting an IMS Lock Manager in DB/DC and DBCTL EnV|ronments
Specifying Enqueue/Dequeue Requirements .
Selecting the DL/l Separate Address Space in DB/DC and DBCTL
Environments e
Security Options
Administering IMS System Data Sets
IMS System Data Sets for Online Change .
IMS Online Data Sets
Initializing System Data Sets When Not Usmg Onllne Change
Specifying the IMS System Log. e
Tuning the System Log Block Size . .
Message Queue Data Set Allocation in DB/DC and DCCTL Envrronments
Restart Data Set Allocation
Defining Spooled SYSOUT Data Sets in DB/DC and DCCTL Envrronments
Initializing the RECON Data Set for DBRC.
HALDB Indirect List Data Set
Tailoring the IMS Procedure Library . .
IMS.PROCLIB Members Generated by System Deflnltlon .
Controlling the IMS Procedure Library .
Specifying EXEC Statement Parameters
Control Region Parameters
Message Processing Region Parameters in DB/DC and DCCTL
Environments .
Batch Message Processing Reg|on Parameters
Fast Path Dependent Region Parameters in DCCTL or DB/DC
Fast Path Parameters in BMP and CCTL Regions in DBCTL .
Online DEDB Utility Region Parameters in DCCTL, DBCTL, or DB/DC
Satisfying System Requirements for Data Propagatlon in DB/DC and DBCTL
Environments . . .
Defining the Data Capture Exrt Routrne
Running the Data Capture Exit Routine
Storage Requirements for Data Capture .
Storage Failure

Chapter 4. IMS Security.

Overview of DB/DC and DCCTL Secunty
DB/DC and DCCTL Resources That Can Be Protected
Defining Security During DB/DC and DCCTL System Definition.
Security Facilities for DB/DC and DCCTL Resources

Designing Security for IMS DB/DC and DCCTL
Migrating from SMU to RACF-Managed Security with IMS Versron 9
Limiting Access from a Terminal . e
Authorizing Transactions and Commands

2  Administration Guide: System

. 58
. 59
. 69
. 69

70

. 70
. 70
.71
.72
. 73
. 73
. 73
. 74
. 75
. 75

. 76
. 78
. 80
. 80
. 81
. 83
. 83
. 83

84

. 86

86

. 87
. 88
. 89
. 89
. 89
. 93
. 93

. 102
. 104
. 106
. 108

108

. 109
. 110
. 110
. 110
111

. 113
. 113
. 113
. 114
. 115
. 116
. 117
. 120
. 123



Using RACF to Protect Physical Terminals .

Implementing LTERM Security Using SMU .

Security Considerations for the Master Terminal

Security for AO Application Programs .

Security for Time-Controlled Operations .

Security for Fast Path Application Programs.

Security and CPI-C Driven Application Programs .

Security for ODBA Application Programs .

Use of the RACF Data Space .

Security in MSC and Shared-Queues Enwronments

Security for APPC/IMS

Security for ETO Terminals .

Securing DB/DC and DCCTL Dependent Reglons and Thelr Resources
Activating IMS Security for DB/DC and DCCTL Environments .

Defining the SECURITY Macro for DB/DC and DCCTL Enwronments

Preparing to Use SMU

Preparing Security Exit Routines .

Preparing a RACF Security Plan .

Enabling and Disabling APSB SAF Secunty
Controlling Security During System Startup For DB/DC and DCCTL
Implementing Security Changes Online in DB/DC and DCCTL Environments

Implementing SMU Changes Online

Implementing RACF Changes Online . .
Controlling Security Violations in DB/DC and DCCTL Envwonments :
Considering Other Access Control Methods .

Physical Security.

Using Display Bypass and Password Maskmg in DB/DC and DCCTL

Protecting Your Resources . e
An Alternative to Access Control: Encryptlon

Additional Cryptographic Support. .

Using the Segment Edit/Compression Exit Routme (not DCCTL)

Using the ICSF/CCA Interface . Coe
Security Considerations for a DBCTL Envwonment

DBCTL Resources That Can Be Protected . .

DBCTL Security Choices Made during System Def|n|t|on .

Deciding Which Security Facilities to Use for DBCTL

Design Considerations for DBCTL Security .

Activating IMS DBCTL Security

Controlling System Startup for DBCTL Secunty

Implementing DBCTL Security Changes Online

Controlling DBCTL Security Violations .

Part 1. System Planning and Definition

. 125
. 125
. 128
. 129
. 136
. 136
. 136
. 137
. 137
. 137
. 141
. 141

142

. 146
. 146
. 148
. 149
. 151
. 153
. 153

156

. 156
. 157
. 157
. 158
. 158
. 158
. 158
. 160
. 160
. 160
. 161
. 161
. 161
. 162
. 162
. 163
. 165
. 168
. 169
. 170

3



4  Administration Guide: System



Chapter 1. Introduction to IMS System Administration

This chapter outlines the administrative activities for an IMS system. It also
introduces the concepts that are central to administering an IMS system.

In this chapter:

+ [‘Overview of Administrative Activities’|

« [‘The IMS Environments” on page 7|

+ [‘Concepts for the System Administrator” on page 21|

I Overview of Administrative Activities

The areas of responsibility associated with administering online IMS systems are:
» Designing an IMS online system

» Establishing operating procedures that meet application requirements

» Maintaining a production system that is responsive to end users

* Integrating new applications or major design changes into the current system

To meet these responsibilities, you must coordinate many activities that occur
during an application development cycle. Performance of these activities results in:

* Documentation of the IMS network

» Specifications for IMS system definition and execution control parameters
* Procedural controls for operation

» Strategies for monitoring and audit trails

After entry into production mode, your ongoing activities support:

» Auditing operations and end user service

* Monitoring and gathering production statistics

» Establishing procedures to control changes to the online system design
» Testing the online system after application and IMS changes

[Figure 1 on page 7|is an overview of the administration activities. The activities in
the first column of the figure take place during the design phase, the second
column’s activities occur during development of application code, and those in the
third column occur during test. The vertical center line marks the transition to
production mode.

Before the start of production mode, administration activities lead to two major
activities:

* Generating the system and preparing JCL (job control language)

» Developing operations procedures

The items to the right of the center line in [Figure 1 on page 7| reflect the ongoing
system administration activities. The column headed by PRODUCTION emphasizes
awareness of the day-to-day operation and performance of the system. The next
column’s activities are concerned with maintenance. Minor application design
changes, problem resolution, and any IMS maintenance are included in this
category. The column on the far right identifies the activities needed to integrate
additional applications or implement an application package. For a major addition,
activities are similar to those on the left-hand side of the figure. Other design

© Copyright IBM Corp. 1974, 2004



Planning Administration

changes that do not involve terminal or network modifications can be handled
without shutting down the IMS. For these simple design changes, the associated
activities lead to a revision of operating procedures in maintenance mode.

After startup, revisions of IMS system definition and operating procedures become
key activities. In this context, you might decide to change applications during online
operation. The interpretation of system performance then becomes an important
activity, supported by monitoring and performance analysis.

Each row in|Figure 1 on page 7| represents a set of activities, each having its own
characteristics:

Analyzing user requirements involves examining the application documentation
for the IMS function required and the expected workload.

Collecting online requirements concerns specifications for IMS system definition,
system data set allocation, and initial JCL.

Preparing the IMS network involves interaction with system and network
generation activities.

Establishing security procedures encompasses the design and implementation of
a security strategy.

Developing an operations plan produces operations control documents and
provides for audit of the control of production cycles.

Forming a monitoring strategy results in monitoring the system and gathering
performance data.

Establishing criteria for performance leads to performance analysis and tuning
activities.

Related Reading: This publication does not address the detailed planning needed

to establish operating procedures. For information on establishing operating
procedures, see the [[IMS Version 9: Operations Guidd.

6  Administration Guide: System



Analysis

Definition

Network

Security

Operations

Monitoring

Performance

IMS Environments

Pre-Production Production
DESIGN DEVELOPMENT TEST ‘ ‘ PRODUCTION MAINTENANCE APPLICATION
MODIFICATIONS
Analyze Finalize Assessand
I A
Application Workload Schedule |r§;zzts
Package and Function Changes
v v
Gather Generate Verify Revise Redesi
Design —» Systemand |4— Online System < ed$s'gt”
Requirements Prepare JCL Design Definition anda’tes
A A
Plan Coordinate Verify Change Review
Network » Network Network Network Network
Requirements Generation Availability Configuration Configuration
v v
Analyze Establish Verify Audit Maintain Addto
Protection Security < System Security »  Security < Security
Requirements Procedures Access Problems Design Design
v
Analyze Develop Test Audit Revise Analyze
Operations —» Operations  |€— Operations/ Operations —¥®  Operations |<— Operations
Requirements Procedures Recovery and Service Procedures Requirements
Develop Monitor Monitor Revise
Monitoring During and Gather [« Monitoring
Strategy Test Statistics Strategy
A
v
: Establish Test Interpret Apply
Predict o .
» Response Critical System —»{ Tuning
Workload o
Criteria Responses Performance Changes

Figure 1. Chart of IMS System Administration Activities

The IMS Environments

IMS contains two major components that can be used together or separately: the
IMS Database Manager (DB) and the IMS Transaction Manager (TM). When you
use them together, they constitute the DB/DC environment. Using the Database
Manager alone, you can generate the batch environment and the database control

Chapter 1. Introduction to IMS System Administration

7



IMS Environments

(DBCTL) environment. Using the Transaction Manager alone, you can generate the
data communication control (DCCTL) environment. *

The DB/DC, DCCTL, and DBCTL environments are all considered online IMS
systems.

Each of the IMS environments is a distinct combination of hardware and programs
that supports distinct processing goals. The online environments and the goals they
support are shown in[Table 2|.

Table 2. IMS Online Environments

Environments Data Processing Goals

DBCTL (See [The] . process network transactions without the Transaction Manager—that

DBC_:T - is, use the Database Manager with a transaction management
EnV|roln3ment on subsystem (for example, CICS).
age

* Run batch application programs using DB batch at certain intervals (for
example, process a payroll or produce an inventory report).

* Run database utilities using DB batch.

DB/DC (See |‘The| * Enable terminal users to retrieve data and modify the database with
DB/ Pc ' satisfactory real-time performance. (Some typical applications are
Environment banking, airline reservations, and sales orders.)

* Ensure that retrieved data is current.

» Distribute transaction processing among multiple CPUs in a
communications network.

* Run batch application programs using DB batch at certain intervals (for
example, process a payroll or produce an inventory report).

* Run database utilities using DB batch.

DCCTL (See[The] . process network transactions without the Database Manager by using
the Transaction Manager with an external database management
subsystem.

* Maintain system log information for restart by using DBRC.

* Run batch application programs in a TM batch region by using the
Transaction Manager to do batch processing with DB2 UDB for z/OS.

The following topics describe the hardware and programs for each environment.
They also explain the requirements, options, and limitations that are characteristic
of each environment:

+ [The DB/DC Environment’|

+ [“The DBCTL Environment” on page 13
+ [“The DCCTL Environment” on page 15|
+ [“The Batch Environment” on page 20|

The DB/DC Environment

In the DB/DC environment, data is centrally managed for applications that are being
executed concurrently and made available to terminal users. Database Recovery
Control (DBRC) facilities help to manage database availability, data sharing, and
system logging.

1. Data sharing and the Extended Recovery Facility (XRF) are often considered environments, but they are really special cases of the
three environments listed here.

8 Administration Guide: System



IMS Environments

Transactions

To understand the DB/DC Environment and how it works, it is important to
understand the transaction. The basic unit of work in a DB/DC environment is the
transaction. Transaction processing consists of:

* Receiving a request for work that has been entered at a terminal. The request is
in the form of a transaction code, which identifies the kind of work to be
performed and the data needed to do it.

* Invoking a program to do the work, and preparing a response for the terminal
operator (for example, an acknowledgment of work performed or an answer to an
inquiry).

» Transmitting the response to the terminal that requested the work.

The simplest kind of transaction involves two messages: an input message from the

terminal user and an output message in return. Application programs can also send

messages to terminals other than the input source, and they can generate
transactions.

Figure 2| shows an example DB/DC environment.

Dependent Regions

Start Control
Region DRA

Control MPP BMP IFP JMP JBP DBRC

Dependents Region Region Region Region Region Region Region

CCTL

Transactions

-

Log Databases Report

Figure 2. Example of a DB/DC Environment

Control Region

The IMS control region holds the control program, which continuously runs in the
control region address space and controls the processing in other regions. The IMS
control region services all DL/I calls either directly or through the DL/I separate
address space (DLISAS). The IMS control region owns all the databases that can
be accessed by online application programs and is responsible for all physical
input/output to the databases. The IMS control region supervises the processing of
messages and all the communication traffic for the connected terminals. The IMS
control region also manages information for restart and recovery purposes and
operates the IMS system log.

The IMS control region is normally started by using the z/OS START command. The
IMS control region then automatically initiates the DBRC address space.

DL/I
In[Figure 2] DL/l is shown as part of the control region, but it does not need to run
there. You can run DL/I in its own address space.

Chapter 1. Introduction to IMS System Administration 9



IMS Environments

Database Recovery Control Facility

The Database Recovery Control facility (DBRC) helps you control log and database
recovery. It also controls the data sharing environment by allowing or preventing
access to databases by the IMS systems that share those databases.

DBRC runs in its own address space, but is subordinate to the IMS control region.
DBRC is required by all online IMS systems and any system that uses data sharing.

Dependent Regions

The dependent regions are separate address spaces from the control region, which
are dependent on IMS and in which IMS schedules the applications that process
transactions. Dependent regions are initiated by a z/OS START command or by a
/START REGION command from the IMS master terminal.

The following are different types of dependent regions:

* Message Processing Program (MPP) Region. See ['MPP Regions.]]

+ Batch Message Processing (BMP) region. See ['BMP Regions.”|

+ IMS Fast Path (IFP) region. See ['IFP Regions.’]

+ Java Message Processing (JMP) region. See ['JMP Regions” on page 11|
+ Java Batch Processing (JBP) region. See ['JBP Regions” on page 11

MPP Regions: MPP regions are started either by the master terminal operator or
by JCL if the control program is running. The control program schedules application
programs within the MPP regions. The application programs then run, accessing the
online databases and obtaining their transaction input from the message queues.
The application programs cannot access z/OS files or issue z/OS checkpoints. The
application program output messages can be directed to LTERMs or to other
application programs. An application program can remain scheduled in an MPP
region even when there is no work to process for that region. The MPP region
remains in a wait-state (wait-for-input mode) until there is more work for the region
to process.

BMP Regions: z/OS schedules the BMP regions. The application programs in
those regions are determined by the JCL used to start each region, not by the
control region. These application programs can access databases owned by the
control region and z/OS data sets owned by their BMP regions. z/OS data sets
include data entry databases (DEDBs) and main storage databases (MSDBS).

Application programs in BMP regions can access input and output message
queues; they can also execute in wait-for-input mode. To access the input message
queues, you specify, in the JCL for a BMP region, a transaction code you want to
access. Specifying this transaction code also gives you access to the output
message queues using terminal program communications blocks (PCBs) in the
application program’s specification block (PSB). Even without access to input
message queues, if you specify an output LTERM or transaction code in the JCL for
the region, the application program can issue output messages.

IFP Regions: Two types of programs run in IFP regions:

» Application programs for processing Fast Path messages; these are called
message-driven programs.

» Utilities that process DEDBS; these are BMPs.

10 Administration Guide: System



IMS Environments

Related Reading: For more information on the types of Fast Path processing and
the administration of a DB/DC environment that includes Fast Path, see the [IMS
[Version 9: Administration Guide: Database Managet,

JMP Regions: JMP regions process messages with either applications written in
Java or applications written in both Java and OO COBOL.

JBP Regions: JBP regions process batch operations with either applications
written in Java or applications written in both Java and OO COBOL.

Related Reading: For more information on both JMP and JBP regions, see
[Version 9: IMS Java Guide and Reference,

The Master Terminal

The master terminal is the control center of the DB/DC environment. The Master
Terminal Operator (MTO) must know all the operating aspects of the system and be
familiar with the purpose and action of all the IMS commands that are entered.
Some characteristics of the master terminal are:

* Itis used to enter commands that start, stop, and restart the system.
* As a logical terminal, it receives system messages.

* The primary control of the network and connecting terminals is performed
through the master terminal. It can start and stop communication lines and
assign logical terminals to physical terminal destinations.

* The status of the system can be displayed from the master terminal. Such items
as the number of transactions to be processed, the number of programs and
databases that are active, and the status of communication lines can be
requested.

» |If a program or database error occurs, commands can be entered from the
master terminal to prevent further processing against the affected resource and
to prevent input or output activity for terminals. These recovery actions can also
apply to a recovery of the entire system after an abnormal termination occurs.

» If an exception condition occurs, the status of the Online Log Data Set (OLDS)
can be displayed, and the function of the OLDS can be controlled from the
master terminal.

If the master terminal becomes inoperable, the operating system console can be
used as a backup. The MTO can either operate the IMS from the system console or
assign the master terminal LTERM (logical terminal) to an alternate terminal.
Messages continue to be routed to the old master terminal LTERM until the LTERM
is assigned to the system console. 2 If the system console is used to continue
operation, terminal security is identical to that of the master terminal.

IMS Commands

IMS commands are messages that are entered by the operator and sent to the
control region. IMS commands are identified by a slash (/) as the first character.
They consist of a verb, optional password, and keywords. Values can be entered
with each keyword. This command, for example, might be used to start a message
region:

/START(MT0005)  REGION  MSGREG1

verb password keyword value

2. The address of the system console is LINE 1 PTERM 1.

Chapter 1. Introduction to IMS System Administration 11



IMS Environments

IMS commands can start, stop, add, change, delete, and display the status of
resources. They can also assign relationships and values; for example, they can
connect logical terminals to non-switched physical terminals, direct transactions to
classes and classes to regions, and alter the priorities of transactions.

Related Reading: For more information on IMS commands, see the IMS Version 9;
[Command Referencel

Databases Supported
The DB/DC environment supports all full-function databases (HSAM, SHSAM,
HISAM, SHISAM, HDAM, PHDAM, HIDAM, PHIDAM, and PSINDEX).

Note: PHDAM, PHIDAM, and PSINDEX are database types added for High
Availability Large Database (HALDB). They are partitioned equivalents of
HDAM, HIDAM, and secondary indexes, respectively.

BMP regions in a DB/DC environment can access GSAM databases. BMP regions
can also access external subsystems (for example, DB2 UDB for z/OS), because
DB/DC supports the external subsystem interface.

Fast Path data entry databases (DEDBs) and main storage databases (MSDBs) are
also supported.

Utilities Supported
The following utilities can be run in BMP regions:

* Online Change utility

* Online Database Image Copy (OLIC) utility
» Batch Backout utility

* PSBGEN utility

» DBDGEN utility

* ACBGEN utility

Fast DB Recovery Region in DB/DC

The Fast DB Recovery region is a separate IMS control region that monitors an
IMS, detects failure, and recovers any IMS-owned database resources that are
locked by the failed IMS, making them available for other IMS systems without
having to wait for the next full restart. For database resources that are not IMS
owned, such as DB2 UDB for z/OS databases, the Fast DB Recovery region
provides an optional exit routine, ESAF Indoubt Notification exit routine
(DFSFIDNO), for this purpose.

The Fast DB Recovery region is executed by the cataloged procedure supplied by
IMS system definition. You must start the Fast DB Recovery region after you start
the IMS that it tracks.

To enable a DB/DC IMS for Fast DB Recovery, you specify the FDRMBR parameter
in the IMS procedure. The FDRMBR parameter defines the DB/DC system as Fast
DB Recovery-capable.

Data Sharing

Data can be shared among dependent regions and with other IMS systems. The
other systems can be DB/DC or DBCTL. If you intend to share data at the block
level, the Internal Resource Lock Manager (IRLM) must be present in every
environment that participates. IRLM runs in its own address space.

12  Administration Guide: System



IMS Environments

Running the Extended Recovery Facility

The Extended Recovery Facility (XRF) is a combination of programs that includes
two DB/DC environments to provide a high level of IMS availability to end users.
One environment is active and is called the active system. The other environment
continuously tracks the processing of the first and is called the alternate system.
The alternate system is ready to take over if the active system fails, or if a planned
takeover is initiated (to perform maintenance, for example).

Related Reading:
« For more information on XRF, see |[Chapter 10, “Extended Recovery Facility,” on|

* For more information on Remote Site Recovery (RSR), see |Chapter 11, “Remotel
[Site Recovery,” on page 329

The RSR Environment

The remote site recovery (RSR) environment allows you to recover quickly from an
interruption of computer services at a primary site. IMS database and online
transaction information is continuously transmitted to a secondary site. In the event
of a service interruption at the active site, this secondary site is ready to take over
the work from the active site.

Related Reading: For more information on RSR, see [Chapter 11, “Remote Site]
[Recovery,” on page 329

The DBCTL Environment

The DBCTL environment is similar to the DB/DC environment; a DL/I region owns
the databases to be processed. DL/I also exists in the DBCTL environment,
although DL/I must run in its own address space. Database Recovery Control
(DBRC) facilities, required for DBCTL, help to manage database availability, data
sharing, system logging, and database recovery.

The greatest dissimilarity between DBCTL and DB/DC is that DBCTL does not
support user terminals, a master terminal, or message handling. Therefore, no MPP
regions exist. The BMP region is used only by batch applications and utilities.
External program subsystems can, however, use an interface that does handle
messages—a coordinator controller (CCTL). * The interface between the CCTL and
the control region is the database resource adapter (DRA). The DRA resides in the
same address space as the CCTL.

The CCTL handles message traffic and schedules application programs, all outside
the DBCTL environment. It passes database calls through the interface to the
control region, which sends the calls to DL/l and passes results back through the
interface to the CCTL.

The information in this book that describes the IMS online system applies to both
DB/DC and DBCTL. Exceptions are noted as not applicable to DBCTL.

[Figure 3 on page 14|shows an example of the DBCTL environment.

3. The same interface exists in the DB/DC control region, so it is possible to use a CCTL with a DB/DC environment.

Chapter 1. Introduction to IMS System Administration 13



IMS Environments

MVS Control BMP | DLISAS | DBRC DRA
Console Region | Dependent
Region
(no terminal
support)  E—
CCTL
v
S - ? | \
Log Report  Database

Figure 3. Example of a DBCTL Environment

Even though the DBCTL environment includes no master terminal, you can still
control the environment with IMS commands. The commands and command
functions that control message processing are not operable here, but the remainder
are. They can be entered through the MVS console or a secondary console. The
control region recognizes commands by their first character, a slash (/). You can
choose a different first character during system definition, or as an execution
parameter.

Note: References to the master terminal operator (MTO) in this book refer to either
the DB/DC MTO or to the DBCTL operator.

Output messages from a command are sent to the console that entered the
command. You can also specify other consoles to receive unsolicited output. These
consoles are those that fall into the category you define using the IMS-generating
macro, IMSCTRL.

Databases Supported
The DBCTL environment supports all full-function databases (HSAM, SHSAM,
HISAM, SHISAM, HDAM, PHDAM, HIDAM, PHIDAM, and PSINDEX).

Note: PHDAM, PHIDAM, and PSINDEX are database types added for High
Availability Large Database (HALDB). They are partitioned equivalents of
HDAM, HIDAM, and secondary indexes, respectively.

BMP regions in a DBCTL environment can access GSAM databases. BMP regions
can also access external subsystems (for example, DB2 UDB for z/OS), because
DBCTL supports the external subsystem interface.

The DBCTL environment supports Fast Path data entry databases (DEDBS).

Utilities Supported
The following utilities can be run in BMP regions:

* Online Change utility
* Online Database Image Copy (OLIC) utility

14  Administration Guide: System



IMS Environments

» Batch Backout utility
* PSBGEN utility
+ DBDGEN utility
* ACBGEN utility

Fast DB Recovery Region in DBCTL

The Fast DB Recovery region is a separate IMS control region that monitors an
IMS, detects failure, and recovers any IMS-owned database resources that are
locked by the failed IMS, making them available for other IMS systems without
having to wait for the next full restart. For database resources that are not IMS
owned, such as DB2 UDB for z/OS, the Fast DB Recovery region provides the
optional ESAF Indoubt Notification exit routine (DFSFIDNO) for this purpose.

The Fast DB Recovery region is executed by the cataloged procedure supplied by
IMS system definition. You must start the Fast DB Recovery region after you start
the IMS that it tracks.

To enable a DBCTL subsystem for Fast DB Recovery, you specify the FDRMBR
parameter in the DBC procedure. The FDRMBR parameter defines the DBCTL
system as Fast DB Recovery-capable.

Data Sharing

As in the DB/DC environment, data can be shared between dependent regions and
with other IMS systems. The other systems can be either DB/DC or DBCTL
environments. If you intend to share data at the block level, IRLM must be present
in every environment that participates.

Alternate DBCTL Environment

You cannot have XRF in a DBCTL environment, but you can still run two DBCTL
environments—an active and an alternate—and thereby increase system
availability. However, the alternate DBCTL environment does not track the
processing of the active environment. The console operator must use the
emergency restart command (/ERESTART) against the alternate system in order to
make it the active environment.

The DCCTL Environment

DCCTL is an IMS Transaction Manager subsystem that has no database
components. A DCCTL environment is similar to the DB/DC environment. The
primary difference is that a DCCTL control region owns no databases and does not
service DL/l database calls.

DCCTL, in conjunction with the IMS External Subsystem Attach Facility (ESAF),
provides a Transaction Manager facility to external subsystems (for example, DB2
UDB for z/OS). In a DCCTL environment, transaction processing and terminal
management is identical to transaction processing and terminal management in a
DB/DC environment. DCCTL contains the programming support necessary for:

* Master terminal support

» Terminal network support

» Data communication

* Message handling

» Transaction processing

* Application program execution
* IMS command execution

Chapter 1. Introduction to IMS System Administration 15



IMS Environments

DCCTL also supports online change, Message Format Service (MFS), Multiple
Systems Coupling (MSC), and Database Recovery Control (DBRC).

DBRC is required, and is used to maintain system log information for restart. DBRC
in a DCCTL environment maintains logs only for transactions. External database
subsystems must maintain their own database logs.

DCCTL consists of three address space types:
» Control region

e DBRC

* Dependent regions (up to 999)

Dependent regions and DBRC are subordinate to the control region.

The DCCTL control region contains three structural components:

* A data communication manager, which controls terminal states and input/output
message traffic. It also contains security controls that prevent unauthorized
access to DC resources.

* A message manager, which is the read/write and 1/O interface between terminal
input from the data communication manager and the scheduling services of the
Transaction Manager.

* A Transaction Manager, which manages MPPs, BMPs, and IFPs, schedules
application programs in those dependent regions, and owns and responds to the
application programming interface (API).

Each manager (data communication manager, Transaction Manager, and message
manager) controls the use of its resources and the recoverability of its resources
during a system failure. Like DB/DC dependent regions, MPP, BMP, IFP, JMP, and
JBP dependent regions are used by the Transaction Manager to schedule
application programs.

[Figure 4 on page 17|represents a DCCTL environment that is attached to an
external subsystem.

16  Administration Guide: System



IMS Environments

Control DBRC BMP MPP IFP JMP JBP
Region Region Region Region Region Region Region

=]

Data
Communication
Manager

Terminal

A

A

Message
Manager

A

A

Transaction Application
Manager Program
y

7

External
Subsystem

Figure 4. Example of a DCCTL Environment and Attached Subsystem

DCCTL coordinates the sync point recovery process with the connected external
subsystems. DCCTL ensures that database updates and terminal messages are
committed when an application program reaches a sync point.

Two methods exist for connecting a DCCTL control region to another subsystem.
You can have DCCTL use the control region EXEC parameter, SSM, to select the
PROCLIB member. Or, you can use the /START SUBSYSTEM SSM command, which
allows DCCTL to SUBSYSTEM SSM command connect to other subsystems even
though you did not request this option when you started IMS.

You can also specify the dependent region EXEC parameter, SSM, for dependent
regions. The control region SSM member definition allows the dependent region to
select one or more external subsystem connections. The SSM member can contain
no definitions (null members) to prevent a connection to an external subsystem.

Related Reading: For more information on how to use the ESAF interface, see the
IMS Version 9: Customization Guide,

After you use the /START SUBSYSTEM SSM command, you must stop active dependent
regions and then restart them if they require an external subsystem connection.

Related Reading: For more information on using the /START SUBSYSTEM SSM
command, see the [IMS Version 9: Command Reference,

After IMS has established a connection between the dependent region and the
external subsystem, a thread is created between the connected regions. The thread
is used for subsequent application program calls, committing the data, or in failure
situations, backing out the data.

The application programs managed by DCCTL are identical to those managed by
the DC manager and TM manager in the DB/DC environment.

Chapter 1. Introduction to IMS System Administration 17



IMS Environments

Databases Supported By DCCTL

The DCCTL configuration of IMS supports and is a compatible communications
front end for the following database and dependent region combinations:

* GSAM databases for BMP regions

- DB2 UDB for z/OS databases for BMP, MPP, and IFP regions through ESAF

» DB2 UDB for z/OS databases for JMP and JBP regions through the DB2
Recoverable Resource Manager Services attachment facility (RRSAF)

Restriction: DCCTL does not support full-function or Fast Path databases.

With GSAM databases, DCCTL uses sequential, non-IMS data sets with a BMP.
Application programs can also issue symbolic checkpoint (CHKP) and extended
restart (XRST) calls against a GSAM data set using the I/O PCB. The ability to
issue CHKP and XRST calls allows data set repositioning.

When DCCTL accesses DB2 UDB for z/OS databases through ESAF or RRSAF,
the control region initiates contact with other subsystems. The other subsystems
that DCCTL can access are defined in an IMS.PROCLIB member. You need to
provide an IMS.PROCLIB member for DCCTL defining all other subsystems that
can be accessed by DCCTL. The subsystem definition contains the information
DCCTL uses to communicate with the other subsystem.

Related Reading:

* For more information on ESAF and on defining IMS.PROCLIB members, see the
[IMS Version 9: Customization Guide,

* For more information on RRSAF, see DB2 UDB for O5/390 and z/OS: Application
Programming and SQL Guide.

DCCTL handles transaction management for online IMS applications that need to
access external subsystems.

Commands Supported
All IMS commands are supported in a DCCTL environment except database
commands and database-related keywords.

Related Reading: For a complete listing of valid DCCTL commands and keywords,
see the |IMS Version 9: Command Referencel

Utilities Supported
These utilities can be run in DCCTL regions:

* Online Change utility
* Log Archive utility

* Log Recovery utility
* PSBGEN utility

+ DBDGEN utility

DCCTL Compared to DB/DC

DCCTL and the TM part of a DC/DB environment are very similar. Similarities
include:

» Control region and dependent region initialization and termination
» System definition and generation
* Restart

18 Administration Guide: System



IMS Environments

+ Stage 1 input without removing the database definitions *
» Diagnosis

Data Communication Calls: The following data communication calls are available
to application programs in a DCCTL environment:

* AUTH
* CHNG
e CMD

* GCMD
* GN

- GU

* ISRT

* PURG
« SETO

System Service Calls: The following system service calls are available to
application programs in a DCCTL environment:

- APSB
« CHKP
- DPSB
< INIT

« INQY
. LOG

- ROLB
« ROLL
« ROLS
. SETS
- SETU
- SYNC
« XRST

Status AD: Application program calls passed to DCCTL receive an AD status
code if the call function is not supported or if a database PCB is passed as part of
the call list.

Related Reading: For more information on application programming in a DCCTL
environment, see |IMS Version 9: Application Programming: Transaction Managet,

Exit Routines: You do not need to change your IMS exit routines or your existing
IMS application programs that access other subsystem resources in a DCCTL
environment. However, application programs that contain a mixture of calls that
access other subsystems and IMS databases require changes. All DL/I calls that
use a database PCB receive status code AD.

4. You will need to make some changes to define a DCCTL system. See the [IMS Version 9: Installation Volume 2: System Definition|
for more information about analyzing macros for system definition.

Chapter 1. Introduction to IMS System Administration 19




IMS Environments

Automated Operator Transactions: Automated operator transactions are started
the same way as IMS transactions are started. Automated operator transactions run
as IMS application programs with the authority to issue a subset of DCCTL
commands using DL/I calls.

The Batch Environment

The batch environment consists of a batch region—one address space—where an
application program and DL/l routines reside. The batch job that runs here is
initiated with JCL, like any operating-system job.

represents a batch environment in which the batch job is submitted
through a TSO terminal, and an application program is run in order to read from an
update file, write to a database, and produce a report. For example, an inventory
application might be run—one that reads sales records (inventory reductions) and
supply records (inventory increases), updates a database accordingly, and prints an
inventory sales report.

Batch Region

o

Application —

TSO Terminal Program

v

Submit Job

A

) & B

Update Database Log
Data

Figure 5. Example of a DB Batch Environment

TM Batch

IMS TM supports a batch region for running application programs. IMS applications
cannot use the ESAF to issue SQL calls in batch. This support is provided by an
external subsystem.

Related Reading: If your external subsystem is DB2 UDB for z/OS, see the DB2
UDB for OS/390 and z/OS: Application Programming and SQL Guide for a
description of the steps required to allow batch programs to issue SQL calls.

You can connect DB2 UDB for z/OS in an IMS TM batch environment in one of two
ways. You can use the SSM parameter on the TM batch-region execution JCL and
specify the actual name of the batch program on the MBR parameter. Alternatively,
you can code the DDITV02 DD statement on the batch-region execution JCL and
specify the name of the DB2 UDB for z/OS module, DSNMTV01, on the MBR
parameter.

Related Reading: For additional options or requirements, see the |IMS Version 9;
[installation Volume 2: System Definition and Tailoring

20 Administration Guide: System



IMS Environments

Valid TM batch region types are DBB, DLI, or UPB. All other region types are not
applicable to the TM batch environment.

You specify generated program specification blocks (GPSBs) for a TM batch
environment using the PSB parameter in the DBBBATCH and DLIBATCH
procedures.

Concepts for the System Administrator

The remainder of this chapter presents concepts that are central to controlling the
resources of an IMS. The remaining chapters of this book assume a thorough
understanding of these concepts.

Dynamic Allocation with IMS

If data sets that belong to databases (or an IMS Monitor data set) are specified with
JCL in a control region procedure, they are initially allocated when the control
region starts up. You can specify that these database data sets be dynamically
allocated when needed and deallocated when no longer in use.

Using the IMS macro DFSMDA, you declare those data sets that are subject to
dynamic allocation and deallocation.

» Database data sets can be dynamically allocated explicitly with the /START
command or implicitly when an application program is scheduled. Database data
sets can be deallocated with the /DBRECOVERY command.

» For DEDB area data sets, an implicit allocation occurs at first access by an
application program; the /STOP command also deallocates the data set.

* An IMS Monitor data set can be dynamically allocated at the time the IMS
Monitor is started with the /TRACE SET ON command and deallocated by the
/TRACE SET OFF command.

* RECON data sets, online log data sets (OLDSSs), write-ahead data sets
(WADSS), and system log data sets (SLDSs) that are required as input to restart
can be dynamically allocated.

» For High Availability Large Databases (HALDBs), dynamic allocation allocates
only the DBRC registered data sets. Allocation does not look for or process any
DFSMDA members. The ddnames allocated for HALDBs contain the letters A
through J, X, or L, suffixed to the 7-byte HALDB partition name.

If an allocation already exists with a ddname that matches the HALDB partition
ddname generated, the data set name is compared to the DBRC registered data
set name in online IMS environments. If the data set names do not match, an
allocation failure occurs.

All data sets using dynamic allocation must be cataloged, except an IMS Monitor
data set, which must not be cataloged. A data set that is initially allocated with JCL
can be dynamically deallocated and reallocated during the execution of the control
region.

Related Reading: For more information on the IMS macro DFSMDA, see the
[Version 9: Utilities Reference: Systerm,

| Type-2 Command Environment

I This topic provides an overview of type-2 commands and the type-2 command
| environment that you are required to define to use them.

Chapter 1. Introduction to IMS System Administration 21



System Administrator Concepts

Comparing Type-1 and Type-2 Commands
IMS supports two types of commands: type-1 and type-2.

Type-1 commands have the following characteristics:
* They start with a command-recognition character, such as a forward slash (/).

* They require IMS to reserve keywords that might conflict with user-defined
resource names.

* They are limited in scope to a single, local IMS system.

* They can be issued from a system console, a master terminal, an end user
terminal, a DL/I call, the OTMA interface, or the OM API.

* The command responses are returned as messages.

Type-2 commands have the following characteristics:
* They do not start with a command-recognition character.
* They do not conflict with user-defined resource names.

* They are issued from a single point of control (SPOC) application, such as the
IMS Control Center.

* The command responses are returned as tables.
* They require that you define the type-2 command environment.

Type-2 commands allow you to take advantage of the IMS Operations Manager
(OM).

Related Reading: For detailed information about all IMS commands, see the
|Version 9: Command Referencd,

Overview of the Type-2 Command Environment

The type-2 command environment requires a Common Service Layer (CSL) with
OM and the Structured Call Interface (SCI). A Resource Manager (RM) is not
required. Any IMSplex with CSL constitutes a type-2 command environment.

The type-2 command environment can include a single, standalone IMS system,
multiple IMS systems that do not share resources, or a full-feature IMSplex that
includes RM. The type-2 command environment can also be used with DB/DC,
DCCTL, and DBCTL environments.

With a type-2 command environment, you can also use OM command security. You

might also need to consider SCI security in a type-2 command environment.

Related Reading:

» For more information about IMSplexes, CSL, and SPOC applications, see:
— [Chapter 13, “IMSplex with CSL,” on page 409
— The|IMS Version 9: Common Service Layer Guide and Reference|

* For more information on type-2 command environment security see:
— [‘Establishing IMSplex Security” on page 425|

— “CSL OM Command Security” and “CSL SCI Security” in [IMS Version 9:

[Common Service Layer Guide and Reference]

Issuing Type-2 Commands
Type-2 commands are entered through a SPOC application and passed through
OM. OM, through SCI, routes the type-2 commands to the appropriate IMS

22 Administration Guide: System



System Administrator Concepts

systems. As OM receives the responses from the IMS systems, it consolidates them
before returning them to the originating terminal or other destination.

The benefits of using type-2 instead of type-1 commands include:

» Eliminating conflicts between user-defined resource names and the reserved
keywords of type-1 commands

* Improving command syntax checking

» Simplifying the set of command verbs

» Enabling parallel command processing

» Using filters and wild cards for resource name selection

 Filtering and displaying of only selected output fields for QUERY command output
* Accessing global information from a single IMS by using CSL

The type-2 command format is based on simplified Base Primitive Environment
(BPE) parse rules and can be entered only through the OM API. As a result, you
cannot use a system console, a master terminal, an end user terminal, a DL/I call,
or the OTMA interface to enter type-2 commands.

The command format with common keywords is as follows:

»»—/ERB—RESOURCETYPE—Y ><

\\ (1) F J
KEYWORD——— (— parameter—_|——)
parameterx

Notes:

1 For some commands, KEYWORD is required, not optional.

Related Reading:

» For more information about IMSplexes, CSL, and SPOC applications, see:
— [Chapter 13, “IMSplex with CSL,” on page 409|
— The [IMS Version 9: Common Service Layer Guide and Reference]

e For detailed information about all IMS commands, see the |IMS Version 9:

[Command Reference]

Extended Terminal Option

The Extended Terminal Option (ETO) is a function of IMS TM that can be included
at system definition. With ETO:

+ You can add VTAM® terminals to IMS without redefining the system.

* You can dynamically add user LTERMs and remote LTERMs (for MSC links) to
IMS.

* You cannot define the master terminal using ETO.
* You cannot use the XRF surveillance link with ETO.

* You must install ETO as a function of IMS and must specify it as part of the
system definition in the IMSCTRL macro.

Related Reading:

Chapter 1. Introduction to IMS System Administration 23



System Administrator Concepts

* For more information on specifying ETO at system definition, see |Chapter 3,
[‘Defining Your System,” on page 41|

« For information on ETO system security features, see|Chapter 4, “IMS Security,’|

on page 113.

APPC

IMS supports advanced program-to-program communication (APPC) conversations
in two scenarios:

* APPC/IMS
* The explicit CPI-C driven interface

The two scenarios differ in the subsystem that manages the updating and
synchronization of protected resources that the application program accesses.

In the APPC/IMS scenario, when SYNCLVL = NONE or SYNCLVL = CONFIRM,
IMS is the synchronization-point manager. When SYNCLVL = SYNCPT, RRS / z/OS
is the synchronization-point manager.

In the CPI-C driven scenario:

* The sync point manager is the Resource Recovery Service / MVS (RRS / MVS)
function of z/OS.

* The resource manager is IMS.

* The program that accesses and updates the protected resources is the
APPC/MVS application program.

APPC/IMS defines the formats and protocols for program-to-program
communication. APPC/IMS enables applications to be distributed throughout the
network and to communicate with each other regardless of the underlying hardware
architectures and software environments. APPC/IMS provides a facility for
implementing logical unit type 6.2 (LU 6.2) support.

APPC/MVS is used for all interaction with remote LU 6.2 devices or subsystems.
IMS accesses the session through APPC/MVS services. Using APPC/IMS, IMS and
LU 6.2 devices access each other without requiring coding changes to existing
application programs. With slight modifications to IMS application programs,
Common Programming Interface (CPl) communications-driven application programs
can communicate with IMS application programs (and can execute as IMS
application programs).

A restriction exists, however, on LU 6.2 synchronous conversations with implicit
transactions. If a transaction spawns more than one daughter transaction, which, in
turn, might spawn other transactions, and one of the daughter transactions provides
the response, then the result is unpredictable. In some cases, depending on the
execution sequence of the transactions, the LU receives a DFS2082 message and
the response is sent to the default TP nhame DFSASYNC. In other cases, the LU
receives the response and no DFS2082 message is issued.

Related Reading: For more information on APPC/IMS, see the IMS Version 9
|[Administration Guide: Transaction Manager,

Security for Dependent Region Processing

Although security checking can be carried out by terminal, transaction, command,
and other types of authorization, you can also implement security by limiting the

24  Administration Guide: System



System Administrator Concepts

resources that application programs that are scheduled in dependent regions can
access. There are two ways you can do this: using resource access security (RAS),
or using application group name (AGN) security.

RAS uses RACF®®, RACF security classes, and user IDs to define resources and
the dependent regions that can use those resources. To implement RAS security,
you must define in the RACF security classes resource profiles for the transactions,
PSBs, and LTERMs that you want to protect. You must also specify in the resource
profiles the user IDs of each dependent region that you want to allow to use each
resource.

When an application program executing in a dependent region attempts to access a
resource, RACF checks the resource’s security class profile to see if the user ID of
the dependent region in which the application resides is authorized for that
resource. If the resource profile lists that user ID, RACF allows access; if not, RACF
denies access.

AGN security uses the IMS Security Maintenance utility (SMU). AGN security
authorizes a region to process a group of transactions identified by an AGN table.
AGN access profiles can include the PSBs, transactions, and output LTERMSs that
are valid for the AGN. The valid resources are declared in the input for SMU.

Note: IMS will not support SMU or AGN security after Version 9. For this reason,
security functions that formerly required the use of SMU can now be
performed using RACF, RAS, and exit routines. For more information, see
[Chapter 4, “IMS Security,” on page 113

You can also use exit routines, such as the Resource Access Security exit routine
(DFSRASO00) with RAS, or the AGN Security exit routine (DFSISIS0) with AGN
security. These exit routines allow you to customize the security checking for
dependent region processing.

| MPP Scheduling in DB/DC and DCCTL Environments

When an MPP region has been initialized, it can execute an application program
within its virtual storage. By using the scheduling algorithm, the control program
selects a message for processing. Using the transaction code, the appropriate
application program is loaded into dependent region storage from the IMS.PGMLIB
data set. The application program is identified by the PSB name that was declared
in system definition to be associated with that transaction code. The convention
used by IMS TM for MPPs is that the application program name is the same as the
PSB name. The first message segment is then made available from the message
queue, and control is passed to the application program.

The scheduling algorithm also controls the amount of processing performed by the
application program. You can specify a limit to the number of messages processed
in the scheduling of one program. When this number is reached, IMS TM does the
following:

» If any equal or higher priority transactions are queued, IMS TM terminates the
application program. The region becomes available for another program to be
scheduled into its storage. IMS uses the scheduling algorithm to choose the
program to schedule.

5. RACF is an external security product to IMS, accessed by IMS using the Security Access Facility (SAF). RACF is licensed with the
IBM z/OS Security Server. Where this information directs you to use RACF, you can use a different, equivalent security product if

Chapter 1. Introduction to IMS System Administration 25



System Administrator Concepts

» If no equal or higher priority transactions are queued and messages are still
gueued for the current application program, the region goes through quick
reschedule and returns the next message to the application program.

* If no more messages exist for the scheduled transaction, IMS TM determines if
other work for the region is ready to be processed.

» If no additional work is ready to be processed, IMS TM determines if the region
can become pseudo wait-for-input (pseudo WFI). This determination causes one
of the following actions:

— If the region is eligible for pseudo WFI, the region remains scheduled for the
transaction and waits until another message is entered for the region. If the
next message is for the scheduled transaction, the message is passed to the
application program. If the next message is for a different transaction, IMS TM
terminates the application program and schedules a new application program
to process the new message.

— If the region is not eligible to become a pseudo WFI, IMS TM tells the
application program that no more messages exist, and the application
program terminates.

The master terminal operator directly schedules batch message programs by the
entry of the JCL to start the batch message region. The program and PSB to be
used are explicitly given in the EXEC statement.

| Scheduling Application Programs Against Unavailable Data

IMS Transaction Manager schedules an application program even when some of
the full-function databases that the application program can access are not
available. When dealing with unavailable data, the application program can be
sensitive or insensitive to data unavailability.

Application programs that are sensitive to unavailable data issue an INIT call when
IMS schedules the applications. The INIT call tells IMS to return a status code in
the PCB when the data that the application program requires is not available. The
program can then take the appropriate action.

Application programs that are insensitive to unavailable data do not issue an INIT
call. If an application program that is insensitive to unavailable data attempts to
access data that is not available, IMS terminates the application program with a
user abend code 3303 and backs out any updates that the application program has
made. If an application program generates ten 3303 abends, IMS prevents further
rescheduling of the application program by stopping its PSB.

If an application program terminates as a result of unavailable data, IMS places the
input message that the application program was processing on the suspend queue.
A separate suspend queue exists for each transaction type. Serial transactions are
not placed on the suspend queue, but rather are returned to the normal queue as
the next message to be processed and are USTOPPED.

If IMS determines that most messages are failing and being placed on the suspend
queue, IMS stops processing that transaction type. When the transaction is started,
or when a database used in processing the transaction is started, the messages on
the appropriate suspend queues are transferred to the normal queue, and another
attempt is made to process the message.

Related Reading:

26 Administration Guide: System



Fast Path

System Administrator Concepts

» For additional information on scheduling application programs against unavailable
data, see [‘Processing Transactions Against Unavailable Data in DB/DC and|
[DBCTL Environments” on page 64

 For more information on the suspend queue, see [‘Scheduling Transactions Using|
[the Suspend Queue” on page 65

Use Fast Path to improve performance for simple transactions. When data
communication requirements are for a high transaction volume with rapid database
updates and inquiries, the Fast Path facilities offer several advantages over
full-function DL/I processing. Examples of application programs with these
requirements are the teller transactions in banking and point-of-sale transactions
(inventory update) in retail marketing. Fast Path input and output messages use
expedited message handling, bypass message queuing, and priority scheduling.
Most terminals have Fast Path execution potential. However, terminals that cannot
run in response mode do not have Fast Path potential.

For a DB/DC environment, Fast Path requires the Database Manager and
Transaction Manager and becomes an integral part of the IMS online system. The
control program manages concurrent processing of Fast Path and DL/l programs.

The DCCTL environment supports Fast Path processing and transactions, but not
Fast Path databases.

Related Reading:

» For more information on the design, definition, initialization, monitoring, or tuning
of databases used with Fast Path, see the|IMS Version 9: Administration Guide]
[Database Manager

» For information on Fast Path application programming, see the |[IMS Version 9:
[Application Programming: Database Manager

Fast Path Databases

In addition to DL/I databases, two other database types are available with Fast
Path: the main storage database (MSDB) and the data entry database (DEDB).
These databases are designed for the kinds of application programs that require
high availability. The two types offer a choice of either rapid response within high
activity or partitioned access within a large volume of data.

Related Reading: For a detailed description of the design advantages and

implementation of these Fast Path databases, see the [IMS Version 9

lAdministration Guide: Database Manager

Dependent Region Use for Fast Path

The majority of Fast Path processing programs are similar in function to message
processing programs (MPPs). Message-driven programs correspond to MPPs, and
execute in a Fast Path dependent region (IFP region). These programs execute in
wait-for-input mode, so that the program execution is equivalent to a dependent
region operation. Parallel scheduling is supported, so that another copy of the
program can execute in another dependent region.

Because of the ability to perform much of the data entry database maintenance

online, such as reorganization and recovery-related functions, your IMS online
system should allow for the scheduling of a Fast Path utility region.

Chapter 1. Introduction to IMS System Administration 27



System Administrator Concepts

Fast Path application programs and utilities can be active concurrently with
message processing programs or BMPs. An IMS online system that is using
Multiple Systems Coupling (MSC) can also be processing Fast Path transactions.
However, message input received through MSC links cannot be directed to a Fast
Path application program, nor can they be passed to the Fast Path input exit
routine. This restriction does not apply to message input received using Intersystem
Communication (ISC) connections.

Fast Path Transactions

A Fast Path application program is driven by transactions that bypass IMS input
message queue handling. A transaction can be declared to be Fast Path exclusive.
After initial edit, the input message is passed to an exit routine. This routine helps
determine the dependent region in which the transaction is executed. The message
is added to a Fast Path message-handling area in the program’s storage, and then
the transaction is made available to the message-driven program without I/O to the
message queues.

A transaction can also be declared as having Fast Path potential. After entry, the
transaction is also passed to the user exit routine, which decides whether the
transaction should pass directly to the message-holding area in the control
program’s storage, or whether it should be routed to IMS for normal message
queue handling. The queue bypass again leads to the transaction being presented
to a message-driven program.

The control of Fast Path messages within the control program’s storage is called
expedited message handling (EMH). One of the checks it performs is to ensure that
messages meet the restriction that they use single-segment input and output
messages. The Expedited Message Handler Input Routing exit routine is
DBFHAGUO. IMS can use EMH buffers for complete input editing of both Fast Path
and full-function transactions.

Related Reading: For more information on DBFHAGUQ, see|IMS Version 9.]
Administration Guide: Transaction Manager and [IMS Version 9: Customization|

Guidg.

Fast Path in a DBCTL Environment

In a DBCTL environment, Fast Path provides improved performance and data
availability to programs that can use data entry databases (DEDBs). A DBCTL
environment supports only the Fast Path facilities that are related to DEDBs. You
cannot run main storage database (MSDB) facilities.

Dependent Region Use for Fast Path: BMPs or CCTL threads can schedule a
PSB to access DEDBs. Parallel scheduling is supported; another copy of the PSB
can execute in another BMP or CCTL thread. Fast Path application programs and
utilities can be active concurrently with BMPs.

Because much of the DEDB maintenance (such as reorganization and
recovery-related functions) can be performed online, your IMS DBCTL environment
should allow for the scheduling of a Fast Path utility region.

Automated Operator Application Programs

An application program that can issue a subset of IMS operator commands using
the DL/I CMD or ICMD calls is called an automated operator (AO) application
program.

28 Administration Guide: System



System Administrator Concepts

AO application programs can use the CMD call in only the DB/DC and DCCTL
environments.

AO application programs can use the ICMD call in all environments.

When the CMD or ICMD call is issued, the operator command is executed and the
first segment of the command response is put in the AO application program’s 1/O
area. Subsequent parts of the response are obtained by GCMD (if CMD is issued)
or RCMD (if ICMD is issued) calls.

To maintain security, you need to decide which AO application programs can issue
operator commands and which commands they can issue. An AO application
program can issue a single command or a series of commands.

Related Reading:

« For information on securing the CMD and ICMD calls, see [Chapter 4, “IMS|
[Security,” on page 113}

» For more information on automated operator (AO) application programs, see the
[IMS Version 9: Customization Guidel

When using an AO application program it is also possible to automate the recovery
of databases and areas by using the IMS AO facility in conjunction with a database
recovery service. One way that you can control recovery is by using the ICMD call
to issue /RECOVER commands in a type 2 AO application program.

Related Reading: For more information on the /RECOVER commands, see the
[Version 9: Database Recovery Control (DBRC) Guide and Reference,

System Logging and Processing Continuity

To protect the integrity of the data, the online IMS uses both external security
checking and various internal techniques to record the transactions entered into the
system and the database update activity. The principal tool for recording online
system activity is IMS system logging. Data stored on various logging data sets
contains information used for restart, recovery, statistics, and audit purposes.

IMS log data is recorded in four kinds of data sets:
* Online log data set (OLDS)

* Write ahead data set (WADS)

* Restart data set (RDS)

» System log data set (SLDS)

The online system uses a minimum of three OLDSs, one WADS, and a single RDS,
all residing only on DASD. When one or more online log data sets are filled, you
can archive them to system log data sets using the IMS Log Archive utility. DASD
or tape media can be used for SLDSs. Batch systems use system log data sets and
are able to log to either tape or DASD.

The online system uses the OLDSs in wrap-around fashion. If dual logging of the
OLDSs is an installation requirement, a pair of data sets (primary and secondary)
must be assigned. The ddnames for the OLDSs begin with the character string
DFSOLP for the primary data set and DFSOLS for the secondary data set. A unique
suffix (00 through 99), called an “OLDS identifier,” completes the 8-character

Chapter 1. Introduction to IMS System Administration 29



System Administrator Concepts

ddname. Either single logging or dual logging is performed, as determined by DD
statements during system initialization or by instructions included in the DFSVSMxx
IMS.PROCLIB member.

A WADS is a small data set containing a copy of log records that are in OLDS
buffers but have not yet been written to the OLDSs. When logging to DASD
(required for online processing), fixed-length blocks make direct retrieval easier. A
WADS allows large fixed-length blocks (in variable blocked format) to be written to
the OLDSs without the requirement to rewrite blocks. When log data has been
written to the OLDSs, the WADS is reused.

If a system failure occurs, the log data in the WADS is used to close the OLDSs.
The close process occurs as part of an emergency restart or as an option of the
Log Recovery utility.

Write-ahead support is provided for a spare WADS. When a write error is detected,
a spare WADS replaces the WADS that encountered the error. Dual WADS logging
is also supported if it is required to have backup in the event of a read error while
closing the OLDSs from the WADS.

The online IMS system controls the log data sets that are used for startup. It makes
use of entries in the checkpoint identification table written on the restart data set,
and of log data set information recorded in the DBRC RECON data set. If you are
using automatic restart, the /START IMS command issued from the system console
causes the appropriate kind of restart. Normally, this restart results in the use of
OLDSs records and in a normal restart that completes without the use of prior
system logs. If restart processing abnormally terminates before the initial
checkpoint, the appropriate restart for automatic restart is the same type (/NRESTART
or /ERESTART) as the aborted restart.

Checkpointing
Checkpointing is the primary technique that IMS uses to record information that can
be used to restart an interrupted operation. Using the status information recorded
during a checkpoint, IMS restores the contents of the message queues and
database changes. Checkpoints are an integral part of system shutdown and
startup. Also, the amount of reprocessing, back from the point of system interruption
and forward to a continuation point, is reduced when checkpointing is reasonably
frequent. Some processing overhead is associated with checkpoint information, but
this is an acceptable trade-off for the efficient restart of the system.

In an XRF complex, SNAPQ checkpoint records taken on the active IMS system
are used to build control blocks on the alternate IMS system during the
synchronization phase.

IMS internal checkpoints are scheduled to occur automatically at predetermined
intervals. The interval is specified in terms of an increment to the number of system
log records created. As the online IMS events are logged with individual log record
types, a count is maintained. When the increment exceeds the specified value,
checkpoint processing is invoked. IMS checkpoints can also be invoked explicitly by
the master terminal operator and by application programs that have been
authorized to issue the /CHECKPOINT command.

Fast DB Recovery regions monitor checkpoint records on IMS systems, and uses
them during database resource recovery.

30 Administration Guide: System



System Administrator Concepts

| Locking Mechanisms and Database Integrity In DB/DC and DCCTL

IMS offers a choice of locking; you can use program isolation (PI) locking or the
services of the Internal Resource Lock Manager (IRLM). The IRLM component is
used as an integral part of data sharing, as described in|[Chapter 12, “Data Sharing|
|in DB/DC and DBCTL Environments,” on page 369.| With program isolation, all
activity (modifying the database and creating messages) of an application program
that is active in the DB/DC environment is isolated from any other application
programs that are active in the system. The isolation persists until that application
program confirms, by reaching a synchronization point, that the data it has modified
or created is valid.

The locking mechanisms are also used to:

» Remove the effects of an abnormally terminated application program
» Perform the processing required for a ROLL, ROLB, or ROLS call

* Resolve deadlock situations

For all the above processing, the removal of database updates and held output
messages is done from the previous synchronization point up to the current status.
A synchronization point is defined as the point at which an application program can
be restarted. The first such point for an application program is its initial scheduling.
The most common synchronization point is when a GU to the message queue
occurs. By issuing a call for the next message, a program in single message mode
is indicating the start of a cycle of processing and the completion of any previous
work. At this time, any output messages that are queued to a temporary destination
are sent to their final destination, and database updates are committed.

An application program can also issue a CHKP call, which forces a synchronization
point. For application programs executing in multiple message mode, or BMPs that
are not transaction driven, the synchronization point is the time of either the initial
scheduling or the last CHKP call.

Another aspect of program isolation is the control of database updates at the
segment occurrence level. During the scheduling process, IMS analyzes the intent
of an application program toward the database it uses. If a conflict exists with the
database usage of a currently scheduled transaction and a candidate for scheduling
because an application program needs exclusive use of the database, the
scheduling process must select another transaction code and try again. If exclusive
intent is not a factor (this is usually the case), application programs are scheduled
concurrently. IMS controls the interleaved ownership of database segments with a
locking mechanism. As application programs execute, they enqueue on the
database records and release those resources, either after update or when the
application program reaches a synchronization point.

Possible deadlock situations are resolved in a manner transparent to application
programs and terminal operators. When IMS detects a deadlock situation, one of
the application programs involved in the deadlock is abnormally terminated with a
special abnormal termination code. The abnormal termination causes the activity of
the terminated program to be dynamically backed out to a previous synchronization
point. Its held resources are released. This allows other application programs to
complete their processing. The special code causes the transaction that was being
processed to be saved. The application program is rescheduled.

In DBCTL, if a deadlock situation forces an abnormal termination of a CCTL thread,
that thread is not saved or retried by DBCTL. The CCTL, upon receiving certain
deadlock termination codes, retries its transaction.

Chapter 1. Introduction to IMS System Administration 31



System Administrator Concepts

If a BMP is selected to be dynamically backed out, it cannot be rescheduled and
terminates at its latest synchronization point. If the BMP did not access the
message queues for input or issue CHKP calls, the BMP terminates during
scheduling and all the BMP database update activity is nullified.

If an ODBA thread is active when IMS DB shuts down or terminates abnormally, the
ODBA application thread is terminated. The ODBA application program is not
terminated, but is no longer able to make calls on the thread.

Data Capture Exit Routines

If your installation contains both IMS DB and DB2 UDB for z/OS databases,
duplicating data in IMS DL/I and DB2 UDB for z/OS relational databases might be
required. For example, your DB2 UDB for z/OS application programs, written in
Structured Query Language (SQL), might require data from the IMS DB database.
You might be converting your site to DB2 UDB for z/OS on a gradual basis, or you
might want to take advantage of the relational technology of DB2 UDB for z/OS for
some of your IMS data.

To duplicate data between the two types of databases, you must ensure that each
update to data segments occurs in both databases in a timely manner. The process
of duplicating updates from an IMS DB database to a DB2 UDB for z/OS database
is known as data propagation.

The two ways to propagate data from IMS DB to DB2 UDB for z/OS are:

* IMS DataPropagator, an IBM licensed program that provides support for data
propagation and for exit routines.

» Data Capture exit routine. This is an exit routine that you write to establish a
routine for data propagation. It can be written in assembler language, C
language, COBOL, or PL/I, and it is called by an application program that
requires data propagation.

Note: The Data Capture exit routine is not available to CICS. DBCTL can use the
exit routine, but only for BMPs.

Related Reading:

» For information about system requirements for data propagation, see |“Satisfyina
System Requirements for Data Propagation in DB/DC and DBCTL Environments’|

on page 109.|

» For information on the database considerations associated with the Data Capture
exit routine, see [IMS Version 9: Application Programming: Database Manager|

» For information on writing a Data Capture exit routine, see the [IMS Version 9,
[Customization Guide,

* For more information about IMS DataPropagator, see:
— IBM DB2 and IMS Tools: IMS DataPropagator for z/OS, An Introduction
— IBM DB2 and IMS Tools: IMS DataPropagator for z/OS, Concepts

The z/OS Automatic Restart Manager (ARM)

The z/OS Automatic Restart Manager (ARM) restarts a subsystem (or job) after a
z/OS hardware or software failure.

You can also use ARM to define restart groups. In addition, in the event of a z/0OS
hardware or software failure that requires you to move a subsystem from one z/OS

32 Administration Guide: System



System Administrator Concepts

system to another, ARM will move all the subsystems defined in the same restart
group as a group to a remaining z/OS system.

IMS supports ARM in these environments:
« TM-DB

« DCCTL

« DBCTL

« XRF

* FDBR

DL/I, DBB, and IMS utilities are not supported. The IMS control region is the only
region restarted by ARM.

Attention: The DL/I SAS and DBRC regions are started internally by the IMS
control region. IMS dependent regions are not automatically restarted, because they
are normally restarted after the IMS control region has restarted.

The element name that IMS uses on the registration call to ARM is the IMSID. The
element type is SYSIMS. Duplicate element names are not allowed by ARM. When
ARM is used, the IMSIDs of online systems and FDBR systems must be unique.

ARM provides a default ARM level of 1 for SYSIMS.

The IMSID must be unique across the sysplex. ARM tries to move IMS to a
surviving z/OS if a failure occurs on the z/OS or the CPC on which the IMS is
executing. If the IMSID is not unique, ARM might move the IMS from the failing
CPC to one that already has an IMS with the same IMSID.

If IMS is canceled by z/OS, IMS is only automatically restarted by ARM if the
ARMRESTART option is specified on the CANCEL or FORCE command.

IMS maintains the following user abend table and de-registers from ARM any time
one of these abends occurs:

U0020: USER 20 - MODIFY

U0028: USER 28 - /CHE ABDUMP
U0604: USER 604 - /SWITCH

U0758: USER 758 - QUEUES FULL
U0759: USER 759 - QUEUE I/0 ERROR
U2476: USER 2476 - CICS TAKEOVER

o s wDhPRE

The first three of these abends are the result of operator intervention. The last three
abends require some external changes before IMS can be restarted.

HALDB Partition Selection Exit Routines

Any installation-defined High Availability Large Database (HALDB) Partition
Selection exit routines must be assembled and link-edited into a load library. The
library you choose needs to be part of the IMS SDFSRESL concatenation. Also, all
HALDB Partition Selection exit routines must be linked as re-entrant.

There are two ways that you can define a HALDB Partition Selection exit routine:

» during HALDB partition definition processing using either the HALDB Partition
Definition utility, or the DBRC INIT.PART command, or

Chapter 1. Introduction to IMS System Administration 33



System Administrator Concepts

* during DBDGEN processing

If a HALDB Partition Selection exit routine is defined, you must also consider the
Partition String Value parameter defined by the HALDB Partitioned Definition utility
or the KEYSTRNG parameter on the DBRC INIT.PART command. This parameter
provides the user exit routine with optional data that can be used for HALDB
partition selection. The parameter is not required and may be omitted.

34 Administration Guide: System



Chapter 2. Documenting Your IMS System

When planning to support the administration of an online IMS system, you must
consider several responsibilities that involve documentation. Reviewing this
documentation for application requirements is a necessary task when you are
designing the IMS online system or responding to required changes in that design.

In this chapter:

« [‘Extracting Requirements for Your IMS System”|

« ['Participating in Design Reviews” on page 36|
[‘Establishing Naming Conventions” on page 37|

« [‘Using a Data Dictionary” on page 3§|

» |'Documenting Your System Characteristics” on page 39|

Extracting Requirements for Your IMS System

Analysis of the scope and impact of an application in the online environment occurs
during the design phase, as well as when application changes are proposed. You
must assess the detail of the application requirements by reviewing the following
sources:

* Program specifications and logic

* Implementation plan

* Summary of business requirements
» Design change requests

When you examine application documents, you must extract several kinds of
information:

* Requirements for IMS function

» Database requirements

» Predictions of the application workload
* Network definition requirements

» Security considerations

* Operating requirements

» Audit and history recommendations

» Performance factors

* Terminal requirements

* FPBUF requirements

If your system must use intelligent remote stations, you must:

» Select features of IMS that can be used to support distributed application
processing (for example, ISC, MSC, LU 6.2).

 Identify the terminal support provided by IMS (including ETO).
* Identify the Fast Path requirements of your system.

» Evaluate the off-loading of application requirements to intelligent remote stations
and the use of special components or screen formatting.

» Assist in the design of programs that reside in intelligent remote stations and
communicate with IMS; identify the Systems Network Architecture (SNA) protocol
to be used by IMS and the intelligent remote station.

© Copyright IBM Corp. 1974, 2004 35



Participating in Design Reviews

Participating in Design Reviews

As the development of an application package progresses, reviews of the design

should be held.

As the administrator of the online IMS system, you are concerned with adequate
detail in the specifications. You need to plan for, and subsequently specify, the

online system.

summarizes the kind of information that you must gather and

how that information relates to system administration tasks.

In addition to application design specifications, the application development team
might maintain a controlling document for schedules and responsibilities. You must
contribute to this plan with your own requirements and milestones, such as
completion dates and testing dates for the operating procedures.

Table 3. Administration’s Use of Design Reviews

Design Stage Information Needed

Administrative Tasks

Design Review 1 - Scope of project

* Hardware and software
requirements

* End-user and development
contacts

Analyze IMS function requirements
Contribute to documentation plans
Check standards compliance
Assess network impact

Assess DP operations impact
Make workload predictions

Design Review 2 . yse of MFS and screen usage
characteristics

» Elements of end-user control

* Network planning

» Pointers for operator control

* Transaction workload

Establish MFS library control, identify format names
Coordinate dictionary use

Check naming standards

Track network requirements

Plan security strategy

Begin RTO and MTO procedures

Predict processing workload

Design Review 3 . \jessage definition

« Conversational attributes

» Databases and programs

* System resource requirements
* Need for message edit

* Recovery considerations

» Security and audit

Calculate message queues

Calculate SPA data

Specify system and JCL

Finalize system requirements and hardware plan
Specify message edit coding

Begin recovery procedures

Develop security design

Database .
Application
Design Review

Database maintenance

» Database sharing

» Validation and acceptance plans
» Performance predictions

* Monitor plans

Document online databases and image copy
requirements

Choose system integrity options
Establish system availability
Establish performance criteria and plan monitoring

Logic Review + Monitor pointers

* Program preload
* Virtual storage needs

» Database processing intent
conflicts

Develop a monitoring strategy

Plan dependent regions

Develop scheduling algorithm

Estimate buffer pool and system data set resources

36 Administration Guide: System



Participating in Design Reviews

Related Reading: For more information on the purpose and scope of design
reviews, see [IMS Version 9: Administration Guide: Database Managel]

Establishing Naming Conventions

A critical part of the application specification and the control of the IMS online
system design is maintaining naming conventions for your resources. When you
define a large system that has many resources, the ability to recognize the
characteristics of the resource by its name has many advantages:

» The system definition input is easier to check, and the identification of changes is
easier.

* The MTO control is more effective and efficient and less prone to error.

* The modification of the application design can more easily recognize already
defined resources rather than creating ambiguous or unnecessary additional
resources.

You should establish naming conventions, in cooperation with database
administrators, for at least the following resources:

« Databases, their ddnames and data set names

* Image copy and change accumulation data set names
* Segment and field names

* PSB and program names

* Transaction codes

* MFS format names

* LTERM and node names

* ETO terminal and user names

* LU 6.2 descriptor names

* Online log data set names

» System log data set names

* IMS Monitor output data set names

* Link names and IMS system IDs (for Multiple Systems Coupling)
» Fast DB Recovery region names

* High Availability Large Databases (HALDBs), and HALDB patrtitions, ddnames,
and data set names.

shows some examples of naming conventions that can be applied to
resources controlled by IMS for online applications.

Table 4. Examples of Naming Conventions

Resource Naming Description
Convention
Transaction Taaatsss T Transaction
aaa Application identifier
t U for update, or R for inquiry transactions
sss Transaction sequence

Chapter 2. Documenting Your IMS System 37



Establishing Naming Conventions

Table 4. Examples of Naming Conventions (continued)

Resource Naming Description
Convention
LTERM name cnnxi c L for local, S for switched, N for

non-switched
nn A 2-character code for terminal type

X A 1-character attribute indicating the screen
size, printer, or component

iiii A 4-character identifier

MFS aaai aaa Application identifier
(MSG name) iiii A 4-character identifier
(MID and MOD)
MFS aaall aaa Application identifier
(FMT name) iii A 3-character format identifier
(DIF and DOF)
Module name Maaaiiii M Module name
aaa Application identifier
iiii A 4-character identifier
Job name Jaaannnn J Job name
aaa Application identifier

nnnn A 4-character job identifier

More information on naming conventions is available as follows:

« |IMS Version 9: Administration Guide: Database Manage| for recommendations
for naming conventions for databases, PSBs, programs, and HALDBSs.

« [IMS Version 9: Installation Volume 2: System Definition and Tailoring for a list of
restricted names.

« [IMS Version 9: Administration Guide: Transaction Manager for specific naming
conventions for ETO.

Using a Data Dictionary

If you use the IBM DB/DC Data Dictionary licensed program (program number
5740-XXF), you can use several of its features to assist in system and network
documentation. The product supports interactive processing, enabling you to use a
terminal to create the documentation at your convenience.

The product provides standard categories for databases, segments, fields, PSBs,
PCBs, transactions, programs, and the system. You can use these categories to
build up detailed descriptions of the online IMS system resources. Procedures and
execution JCL can also be recorded (as User Data). Three of the stage 1
macros—APPLCTN, DATABASE, and TRANSACT—can be produced as card
output.

38 Administration Guide: System



Using a Data Dictionary

You can use the Extensibility Feature to define terminal subjects and specify a
selection of attributes to record for each terminal. With the Description and User
Data segments, other free-form text can be associated with the terminal subjects.

Related Reading: For more information about the IBM DB/DC Data Dictionary, see
IBM DB/DC Data Dictionary Administration and Customization Guide.

Documenting Your System Characteristics

You must create an independent body of information that documents the design and
operation of the production system. This material is derived from the application
requirements and includes the intended use of IMS facilities. The remainder of this
chapter describes documentation activities for the following:

* ['IMS System Definition’|

+ [IMS Network in DB/DC and DCCTL Environments’|

+ [“Terminal Profiles in DB/DC and DCCTL Environments” on page 40|
« [“Transaction Profile Names for APPC/IMS” on page 40|

« [“Configuration of Production System” on page 40|

IMS System Definition

The detail of your design for an IMS online system is reflected in the system
definition macro specifications. The input to the first stage of system definition
processing can be used as a major documentation tool. Including comments on the
choice of parameters should help you control definition changes.

Related Reading: For more information on commenting on parameters, see
['Managing System Definition” on page 43|

The IMSCTRL macro statement offers an ETO option that creates a report of
current ETO descriptors in the network. You can use the ETO descriptor report to
monitor your current network definition.

Related Reading: For more information on the IMSCTRL macro, see|IMS Versio
[9: Installation Volume 2: System Definition and Tailoring}

IMS Network in DB/DC and DCCTL Environments

Within the broader scope of system documentation, you need to document the
details of the IMS network. Start this documentation as soon as initial plans for an
application system become available. The advantage to starting early is that you
can become familiar with the physical network and the way it will logically be used
by IMS connections. When your online IMS system uses terminals that are part of a
network defined to VTAM, you might be able to use some of the documentation
developed by the system programming staff.

Documenting in detail allows you to:
» Familiarize yourself with the features and operation of the terminal devices

* Find out if the application is going to use the terminal in an unusual way and, if
so, research the potential problems

* Prepare for IMS system definition stage 1 input
* Prepare ETO descriptors

* Prepare LU 6.2 descriptors

» Plan for the installation and network generations

Chapter 2. Documenting Your IMS System 39



Documenting Your System Characteristics

» Understand the operational aspects of subsets of the total configuration

Terminal Profiles in DB/DC and DCCTL Environments

One way to document the required network, after the major design is stable, is to
record the intended use and characteristics of each terminal. You construct a profile
that contains:

* The terminal type, its required features, and the type of connection it is to use
* What options were chosen for the device and the reason for the choice
* The characteristics of how the terminal is to be used by the application

* The proposed LTERM names that can be associated with the terminal or the
user

* If a VTAM-supported device, the node name and transmission characteristics

* The extent of the proposed usage and whether the device is to be shared with
non-IMS users

* The diagnostic procedures that are appropriate for the device
» User profiles and user profile security

For dynamic terminals, you should maintain a record of the characteristics of
dynamic terminals and users to make future changes easier.

Transaction Profile Names for APPC/IMS

Definitions of transaction program names (TPNs) are contained in the APPC/MVS
resource, TP_Profile. Within TP_Profile, TP profile data sets provide attribute
information for each TPN. You can define TPNs that have different characteristics
for each LU name with which they are associated.

Related Reading: For more information on TP names, see |[IMS Version 9:

|[Administration Guide: Transaction Managet,

Configuration of Production System

You should create a configuration map showing how individual terminals and
clusters of terminals are to be connected in the network. This gives you some
insight as to how to specify the network control to the MTO. Having the
configuration map is also an aid when you interact with various technical specialists.
The map should show:

* Processors or host computers

* Channels and lines (including the type of line)

* Communication controllers

» Control units and the terminal attachments

* VTAM node names

* For XRF systems, USERVAR or MNPS ACB name
» Alternative connections or configurations

To solve problems that might arise, you must be able to identify the terminal or
control unit that has the problem. You can assist both end users and service
personnel by placing identifying labels on the devices. In addition to the IMS
address or node name and the LTERMs appropriate for that terminal, include the
hardware address, circuit identification, and other data that might be necessary.

40 Administration Guide: System



Chapter 3. Defining Your System

This chapter describes the system definition macros and their required and optional
control parameters.

In this chapter:

+ ['How System Definition Is Related to Installation’

« [‘Managing System Definition” on page 43

« ['Defining Online Applications with System Definition Macros” on page 53|
« ['Defining IMS Terminals” on page 69

When you design an IMS online system to meet the requirements of application
programs, you must specify IMS control information. Do this by:

» Using system definition macro statements to specify IMS online functions and
system control options

* Tailoring a set of execution JCL
 Tailoring virtual storage

The total of these specifications represents the overall design and control of the
IMS online system. This chapter describes the system definition macros and their
required and optional control parameters, in the context of:

* Managing the system definition process

» Declaring what application programs and transactions can operate
» Describing the physical communication network

» Deciding which control and integrity factors to use

 Initializing IMS system data sets

* Tailoring initial JCL procedures

» Specifying IMS execution parameters

Each decision contributes to the overall design. Many of the parameters are
dependent on the IMS functions required by the application programs, and more
particularly on the projected workload. The decisions you make are made in
conjunction with design decisions made for databases and applications.

How System Definition Is Related to Installation

System definition and JCL preparation are only a part of the total installation
planning process.

Related Reading: For step-by-step instructions on installing an IMS system, see
[IMS Version 9: Installation Volume 1: Installation Verification|

A full installation process includes:

Building IMS system libraries

Allocating and cataloging IMS data sets

Defining the IMS system

Preparing the operating system for IMS, including:
* VTAM

* RACF

A wbdpE

© Copyright IBM Corp. 1974, 2004 41



System Definition and Installation

* APPC/MVS

Installing IMS exit routines

Tailoring IMS buffers and certain performance options

Defining terminals (VTAM and non-VTAM)

Updating MFS device characteristics table and MFS default formats
Defining LU 6.2 descriptors

10. Defining ETO descriptors

11. Building IMS.DBDLIB

12. Building IMS.PSBLIB

13. Building IMS.ACBLIB

14. Preparing for dynamic allocation of databases and related system data sets
15. Compiling message format descriptions

16. Loading application programs

17. Initial loading of databases

18. Establishing IMS security

19. Initializing IMS.MODSTAT

20. Copying staging libraries to active libraries

© 0N oo

This chapter provides information on the following topics from the previous list:
. Allocating and cataloging IMS data sets

. Defining the IMS system

. Installing IMS exit routines

Related Reading:

» For information about building database and PSB libraries, and for dynamic
allocation preparation (items through [14), see [IMS Version 9: Utilitied
[Reference: System|

» For the design and definition of message formats, together with details of the
iupporting utilities (item , see|IMS Version 9: Messages and Codes, Volume

* For guidance on loading databases (item , see [IMS Version 9: Administration
|Guide: Database Managet.

* For information on defining LU 6.2 descriptors and ETO descriptors (items|§|and
, see |IMS Version 9: Administration Guide: Transaction Manager,

» For the design of IMS security (item , see|Chapter 4, “IMS Security,” on page|

* For the remaining items and the detailed specification of system definition as
they pertain to preparing the z/OS system and initial library build, see |/Ma
|Version 9: Installation Volume 2: System Definition and Tailorin

+ For additional specifications for Multiple Systems Coupling, see [I[MS Version 9.]
[Administration Guide: Transaction Manager|

+ For information on IMS XRF systems, see [Chapter 10, “Extended Recoveny]
[Facility,” on page 253

* For information on macros or system data set references that apply to these
facilities, see [IMS Version 9: Installation Volume 2: System Definition and
|Tailoring|

* For information on planning for the design, installation, and system definition
requirements for IMS systems that are to share access to databases, see
[Chapter 12, “Data Sharing in DB/DC and DBCTL Environments,” on page 369.|

42 Administration Guide: System



Managing System Definition

Managing System Definition

Whether you are preparing an initial definition of an IMS online system, integrating
additional application programs, or making minor alterations to an existing design,
the major control point is the system definition source material. The application
requirements and your system control options should be organized in a logical
sequence that parallels the structure of the system definition structure.

System definition is a two-stage process. Stage 1 checks your input specifications
and generates a series of z/OS job steps for stage 2. Stage 2 builds IMS system
libraries, execution procedures, and the IMS online control program.
illustrates the two stages of the system definition process. Also included in
the figure is a preprocessor stage of the system definition. The preprocessor scans

the stage 1 input and performs name checking, which maintains the integrity of the
stage 1 input stream.

Stage 1 takes your IMS Macro statements and the IMS.ADFSMAC data set and
outputs the stage 2 input, a listing of stage 1 input and errors, and a stage 2 job
stream list.

Stage 2 takes the output from stage 1 and the IMS and OS libraries and defines the
IMS system, including the following formats, modules, and data sets:

* MFS Formats

* IMS.SDFSRESL

* IMS.MODBLKS

* IMS.ADFSMAC

* IMS.OPTIONS members:
— IMSPS
— DFSVTAM
— DFSFP

* IMS.PROCLIB

* IMS.OBJDSET

In an XRF environment, system definition of the active and alternate IMS systems
must be identical, although two separate system definitions can be performed.

Related Reading: For information on defining an XRF system, see|Chapter 10,
['Extended Recovery Facility,” on page 253.|

Chapter 3. Defining Your System 43



Managing System Definition

IMS System Definition: Preprocessor

IMS Macro R Listing of
Statements [ | Run IMS > Input and
Preprocessor Errors
Stage 1 Input

IMS System Definition: Stage 1

- _L‘
1 Run - Listing of
E-l Assembler " :;put and
Program rrors
IMS.ADFSMAC
4T > B Stage 2
Job stream
v List
IMS Macro Stage 1
Statements Output Deck
Stage 1 Input Stage 2 Input
IMS System Definition: Stage 2
= —
— ——— IMS.OPTIONS members
1 N 1 IMSPS
E-I E-I DFSVTAM
DFSFP
Run IMS Defined ~—
IMS Libraries Stage2 | IMS —
O/S Libraries Job Stream System 1 S
* E-| PROCLIB
~_
S —
M~ —
Loadfl Binder - IMS.
IMS. Default Load E-I1 OBJDSET
ADFSMAC Formats Modules —
Y
IMS.REFERAL
IMS.FORMAT
IMS.TFORMAT E-I E-I E-I
MFS IMS. IMS.

FORMATS SDFSRESL MODBLKS

Figure 6. Summary of the Two Stages of System Definition Processing

Structuring Stage 1 Definitions

You use the system definition process to customize the control program to your
requirements. The control program is then loaded during the initialization of the IMS
online system using a set of macro source statements. Each statement is coded
with its own parameters. The composite of all the macro statements is called stage
1 input. Some macros are only coded when special support is required, such as
that for an IBM 3275 configuration or an attached System/3. Six sets, or groupings,
of macro statements make up the content of the stage 1 input. Within each
grouping, individual macros specify data to a required function or to a part of the
total physical online configuration.

44 Administration Guide: System



Managing System Definition

You can view these groupings of macros as a type of hierarchic structure, as shown
in [IMS Version 9: Installation Volume 2: System Definition and Tailoring}

Coordinating System Definition Input Data

The system definition input data you need to coordinate can be organized so that it
parallels the sets of macro definitions. Separate macro subsets define the following:

* IMS system environment

» Databases and programs

* Use of non-VTAM terminals and devices
* MSC configuration

» Use of static VTAM terminals

Although the initial installation of an IMS online system establishes relatively stable
libraries and z/OS operating system options, the system definition portion is subject
to change and tuning actions. The stage 1 data set becomes the master control for
system definition maintenance. The data set should contain comment statements
declaring why certain options are chosen.

Related Reading: For information on the system definition macros and their input
data, see |IMS Version 9: Installation Volume 2: System Definition and Tailoring.

Verifying the Stage 1 Input

The stage 1 input contains a structured definition of many resources to be used by
the IMS online control program. It is important that you verify the content of the
stage 1 input and the accuracy of the macro statement coding. The two kinds of
verification are:

* Appropriate uniqueness of resource names
» Consistent and correct macro statement usage

The following topics discuss various aspects of stage 1 input verification:
+ ['Resource Name Checking’]

+ [‘Performing Stage 1 as a Separate Step’]

« ['Using the System Definition Preprocessor” on page 46|

Resource Name Checking

The names of resources are important not only from a documentation standpoint
(conformance to nhaming conventions), but also from an operational standpoint. An
LTERM name could be explicitly used by the MTO or it can be coded in an
application program. As such, the resource names must be unique. Also, IMS
reserves the use of certain resource names.

Related Reading: For a list of the naming rules and reserved names, see
[Version 9: Installation Volume 2: System Definition and Tailoring|

Stage 1 verifies that resource names are valid and appropriately unique. A benefit
of this checking is to ensure that conflicts between resource definitions are detected
before the control block building that takes place in stage 2. Some installations
regularly execute stage 1 to perform this checking.

Performing Stage 1 as a Separate Step

Because definite sequence requirements and dependencies exist between the
parameter specifications, the macro statement checking performed in stage 1 is
also valuable.

Chapter 3. Defining Your System 45



Managing System Definition

An option is available to help you make efficient use of the stage 1 processing. The
NAMECHK parameter on the IMSCTRL macro lets you bypass name
checking—assuming you have made sure that no invalid or duplicate resource
names exist. If your installation has made use of the optional preprocessor and you
are checking a sizeable stage 1 input, specifying NAMECHK=NO can reduce the
processing performed by stage 1. You can also specify that the sort not be
performed in stage 1. (Specify S2 as the second value for the NAMECHK
parameter.) When you perform the system definition and execute both stage 1 and
stage 2, the default of NAMECHK=(YES,S1) is recommended so that full checking
is part of the definition process.

You should track the progress of the stage 1 runs and, if necessary, investigate any
detected problems.

Using the System Definition Preprocessor

IMS provides a preprocessor that scans the stage 1 input to assist with the
necessary name checking. The preprocessor checks for duplicate names among
the names you have defined and ensures that they are of the correct length and
format. Assigned names are checked across resource types, too, so that transaction
codes, LTERMs, and IMS system names (used for multiple systems coupling) do
not contain duplications. The preprocessor helps maintain the integrity of the stage
1 input stream.

You can develop exit routines that gain control during the execution of the

preprocessor. You can use one or both of the following exit routines:

» Exit DFSPREG60
This routine gains control after each record in the stage 1 input is read, but
before any other processing takes place. It can modify the contents of the record
and can even submit further statements to the preprocessor for checking. Any
changes made by this routine are not permanent, nor are these changes
automatically passed to stage 1.

* Exit DFSPRE70
This routine gains control when all cross-checking has been completed. It has
access to all the tables of resource names. The routine can then format these
tables as part of a documentation effort.

Related Reading: For a description of the coding requirements, see |IMS Version 9:
[Customization Guidel

Planning for Different Types of System Definition

You do not have to perform a complete system definition each time a parameter
value changes. Many changes that result from tuning activities can be achieved by
using JCL parameters. However, if you add application programs (excluding
APPC/IMS), databases, or physical changes (excluding ETO) to the network,
redefinition of the IMS system is required. The SYSTEM keyword of the IMSCTRL
macro selects different types of system definition.

These three topics describe activities involved in system definition:

» [Choosing a System Definition Class and Type” on page 47|

* |“Specifying Alternative Versions of an Online System” on page 47|
» [‘Controlling System Definition Output” on page 47|

46 Administration Guide: System



Managing System Definition

Choosing a System Definition Class and Type

The system definition includes a class and a type. The class and type are specified
with the IMSCTRL macro and determine the IMS system to be built. The system
definition classes are DB/DC, DCCTL, and DBCTL. The DB/DC class builds the
standard IMS system. The DBCTL and DCCTL classes build only the subsystem
specified.

Related Reading: For more information about the types of system definition
specified by the IMSCTRL macro, their typical use, and the resulting effect, see
|Version 9: Installation Volume 2: System Definition and Tailoring

Following your initial system definition, use the ONLINE, CTLBLKS, and NUCLEUS
types of generation to implement most of the required changes. These generations
require a cold start of the IMS online system for the changes to take effect.

For certain modifications and additions, you can take advantage of the online
change method using the MODBLKS generation. The changes are made active
during the execution of the online system and do not require a restart operation.
Managing this kind of change is described in[Chapter 8, “Modifying Your System|
[Design,” on page 231)

Specifying Alternative Versions of an Online System

You can define different configurations of the IMS online system. The control
modules in the nucleus and control blocks carry a 1-character suffix. You specify
this suffix with the SUFFIX= keyword on the IMSGEN macro. The default value is 0
(zero). The value specified for the control region parameter SUF= controls which
IMS configuration is to be executed.

After all changes to the system definition, you can optionally run the Security
Maintenance utility (SMU) if you are using it in your system. The EXEC statement
for SMU must specify or accept the default to UPDATE and include the 1-character
nucleus suffix so that the security matrix tables are merged into the corresponding
regenerated nucleus.

Controlling System Definition Output
The SYSTEM keyword on the IMSCTRL macro determines the extent of stage 2
processing. You can use the SYSTEM keyword when you are using ETO.

A successful stage 1 execution generates an output deck that consists of an
extensive series of self-contained jobs. Warning messages are also embedded
within a listing of your input source. A trailer to this listing contains instructions on
the content and execution of the stage 2 job stream. Stage 2 processing builds a
control program, or nucleus, which is tailored to your required IMS function. The
control program, along with most of the internal control blocks, is placed in the
IMS.SDFSRESL data set.

Because the amount of stage 2 processing time is significant, you should review the
stage 1 messages carefully. A misplaced NAME macro or misspelled LTERM name
can cause service to be unavailable to an end user and require an additional stage
2 execution.

Large System Definition

If you need to define an IMS system with resources that will require more than 9
MB of private storage during stage 1 processing, specify a large system definition
using the LGEN parameter of the SYSTEM= keyword in the IMSCTRL system

Chapter 3. Defining Your System 47



Managing System Definition

definition macro. A large system definition provides more storage for IMS system
resources and requires two additional data sets: LGENIN and LGENOUT.

Related Reading: For more information about the LGENIN and LGENOUT data
sets required by large system definitions, see [‘Defining Large Systems.’]

Building ETO Descriptors in Large System Definitions

Large systems defined using the LGEN parameter do not support the building of
ETO descriptors. If you need to build ETO descriptors in a large system, run system
definition with the LGEN parameter specified first (stage 1 and stage 2). Then, run
a standard CTLBLKS system definition and specify ETOFEAT=(,,ONLY) in the
IMSCTRL macro.

Online Change and Large System Definition

You can use online change with large system definitions if you include the online
change specifications during large system definition. You can use online change to
incorporate the LGENIN and LGENOUT data sets required by large system
definitions. If you do not specify online change during system definition, you must
shut down and restart IMS to incorporate any changes.

Related Reading:

* For more information about the LGENIN and LGENOUT data sets required by
large system definitions, see [‘Defining Large Systems’]

+ For more information about online change, see |[Chapter 8, “Modifying Your|
[System Design,” on page 231|

Defining Large Systems
Two additional steps are required when performing a large system definition:

1. Specify LGEN as the fourth subparameter of the SYSTEM keyword in the
IMSCTRL macro. Define all other system definition macros as you would for any
other type of system definition.

2. Allocate and catalog two additional data sets for the stage 1 processing of the
large system definition. By default, these data sets are named LGENIN and
LGENOUT.

Related Reading: For more information about defining large systems and the
LGENIN and LGENOUT data sets, see |IMS Version 9: Installation Volume 2]
[System Definition and Tailoring.

Stage 1 Processing for Large System Definitions

The stage 1 processing for an LGEN-specified large system definition is different
than a normal system definition. You must execute the preprocessor to assemble a
large system definition. A stand-alone assembly of a large system definition causes
an error.

In turn, the preprocessor performs the necessary resource name checking. The
preprocessor uses storage above the 16 MB line, assembling the generation in
cycles. This ensures that the application program requires only 4 MB of private
storage. You receive two reports from the stage 1 processing: a summary of return
codes for each assembly and a summary of error messages.

The result of the assembly cycles is the job stream that creates members of a
partitioned data set (PDS). These members are held in the LGENIN data set and
are used as input to the Sort/Split utility program. The Sort/Split utility sorts all the
PDS members for a given resource type and then splits them into parts that

48 Administration Guide: System



Including Fast

Managing System Definition

assemble in a 4 MB region. Each part becomes a member of a PDS, stored in the
LGENOUT data set. The Sort/Split utility then supplies you with a report about its
processing.

The Sort/Split utility processes each resource type individually and includes both
standard and customized resources. Customized, or user-defined, resources are
normally created by modifying stage 1 macros. A control record is required for each
user-defined resource in the Resource Information file member. This record tells the
Sort/Split utility to process the resource.

Related Reading: For more information about customized resources and the
Sort/Split utility, see IMS Version 9: Customization Guide,

LGEN Stage 2 Processing

The stage 1 processing for a large system definition creates altered job steps for
stage 2 processing. But the effect of this is transparent to the user and to IMS
function.

Path in DCCTL or DB/DC

The primary tasks for system administrators when Fast Path application programs
are to be part of the IMS online system are the same as those described in
[Chapter 1, “Introduction to IMS System Administration,” on page 5| The major
additional consideration is the priority that the Fast Path processing is to have over
other work. Fast Path is designed to drive relatively simple transaction and
database processing through the system at high transaction rates. You must assess
whether the combination of Fast Path regions and other regions, as well as the
increased requirement for control program storage, can be supported.

The subtopics in this topic describe activities associated with including Fast Path
application programs in your IMS online system.

Note: The DCCTL environment does not support Fast Path databases. It does
support Fast Path processing and transactions.

Gathering Information for Fast Path Execution
When Fast Path application programs are to be part of the IMS online system, you
should:

» Gather the application program and Fast Path dependent region requirements.
» Identify the messages and routing codes for message-driven programs.
* Document the MSDB initialization and LTERM ownership details.

* Document the DEDB areas, the data sets associated with each area, and the
requirements for online replication and maintenance.

* Obtain the Input Routing exit routine (DBFHAGUO) and document the routing
function.

* Prepare the system definition information for the application programs.
» Tailor the online procedures and JCL for Fast Path operation.

* Modify operational procedures for startup, control, and recovery of Fast Path
resources.

» Assess the extent of mixed mode and plan a monitoring strategy that includes
both Fast Path and DL/l performance data.

Chapter 3. Defining Your System 49



Managing System Definition

Criteria for Fast Path Application Programs
Application programs that use the Expedited Message Handler must meet the
following criteria:

» Each transaction is initiated by a single-segment response-type message.

» Each input message requires only one response, a single-segment message, or
no response.

» IMS conversational processing is not supported.

» Fast Path programs cannot act as automated operator programs, nor can they
issue IMS commands.

» Fast Path transactions cannot be sent over any of the four types of Multiple
Systems Coupling (MSC) physical links for processing in another IMS system.

» ETO does not support terminal-related or non-terminal-related LTERM key
MSDBs.

e LU 6.2 devices cannot access terminal-related MSDBs. LU 6.2 devices can
access dynamic MSDBs, but only in read-only mode.

Including Fast Path in DB/DC and DCCTL System Definitions

Note: The DCCTL environment does not support Fast Path databases. It does
support Fast Path processing and transactions.

The Fast Path application programs are described within the body of the system
definition input. They require the presence of the following macros:

FPCTRL To include Fast Path facilities
APPLCTN To declare the application programs
RTCODE To direct input messages to Fast Path programs

TRANSACT  To declare the transaction code and processing characteristics

You use a system environment macro to specify Fast Path control program facilities
in an IMS online system in the same way that you use macros to specify options
and buffer sizes.

The FPCTRL macro includes Fast Path facilities in the IMS online system and
reserves certain resources for Fast Path. In DCCTL, you need to include the
FPCTRL macro in the system definition in order to support Fast Path processing
and transactions. However, you do not need to include FPCTRL macro parameters,
because these parameters only apply to Fast Path databases.

Related Reading: For more information about the FPCTRL macro, see|IMS
|Version 9: Installation Volume 2: System Definition and Tailorind.

In DB/DC, you can specify the following parameters:

OTHREAD
Keyword specifying how many output threads (1 to 255) are to be used for
the asynchronous DEDB update processing. The default is 2.

BFALLOC
Keyword controlling the buffer pool characteristics.

DBFX Keyword specifying the number of buffers to be set aside for DEDB updates
used by sync point processing. These buffers are part of the total number
given for DBBF.

50 Administration Guide: System



Managing System Definition

DBBF Keyword specifying the maximum number of buffers available to the online
system for MSDB and DEDB processing. The range for both numbers is 1
to 99999. The default values are 4 for MSDBs and 10 for DEDBs.

BSIZ Keyword specifying the actual size of an individual buffer. The control
interval size is 512 bytes, 1KB, 2KB, 4KB, or a multiple of 4 KB (up to 28
KB), depending on the size of the largest control interval (Cl) used for
DEDB processing.

Determining EMHB Size for Fast Path
Consider several factors when determining Expedited Message Handler Buffer
(EMHB) size:

 EPSESRT size
« EMHB default size
< EMHB allocation

EPSESRT Size Determination: The EPSESRT buffer holds the input message in
the IMS Fast Path (IFP) dependent region. One extended program specification
table (EPST) exists for each IFP.

The size of the EPSESRT must be equal to the largest of the following:

* The EMHL parameter, if specified. The EMHL parameter can be specified on the
EXEC statement of the IMS procedure or on the DFSPBxxx parameter block.

* The largest FPATH value specified on a TRANSACT or APPLCTN macro in the
system definition.

* The largest FPBUF value specified on a TERMINAL macro in the system
definition.

If none of these is specified, the default size of the EPSESRT is 2KB.

EMHB Default Size Determination at Initialization: The EMHL execution

parameter defines the default size of the EMHB. At initialization the default size of

the EMHL execution parameter is determined as follows:

» EMHL startup parameter, if specified.

» |If the EMHL parameter is not specified, the size of the EPSESRT determines the
default size. The determination of the EPSESRT size is explained in["EPSESR
[Size Determination.’]

EMHB Allocation during Normal Transaction Processing: The first time that
IMS schedules a Fast Path transaction for a terminal, it allocates an EMHB for the
terminal based on the following factors:

* The EMHB is the larger of:
— The default EMHB length specified by the EMHL execution parameter.
— TRANSACT (SMB) specific EMHB length. If an FPATH EMHB size is specified

on both the APPLCTN and the TRANSACT macros for the transaction, the
transaction-specific size is used.

* A session (except LU 6.2) keeps its EMHB until the session is ended (through
logoff or CLSDST, for example). A terminal that has processed one Fast Path
transaction is likely to process others.

» During normal processing, if a session needs a larger EMHB for a specific
transaction, it increases the size of the EMHB to the larger transaction-specific
size. It keeps the larger EMHB until session end.

Chapter 3. Defining Your System 51



Managing System Definition

Special Considerations for EMHB Size: If the input message is too large to fit
into the default EMHB length or transaction-specific EMHB length, whichever is
larger, the input message is rejected with message DFS444.

If the correct size for the EMHB cannot be obtained for the terminal, the input
message is rejected with message DFS3971.

Including Fast Path in DBCTL

The following Fast Path information applies to a DBCTL environment:
* Analyzing requirements
* Including Fast Path in the system definition

Related Reading:

» For information on Fast Path EXEC statement parameters for the control region
and dependent regions, see |“Specifying EXEC Statement Parameters” on page|

» For information on tailoring execution procedures for Fast Path, see |‘Tailoring the
[IMS Procedure Library” on page 89

Analyzing Fast Path Requirements

The primary tasks for system administrators when Fast Path application programs
are to be part of the IMS DBCTL environment are the same as those described in
[Chapter 1, “Introduction to IMS System Administration,” on page 5.|The major
additional consideration is the buffer requests.

Special actions for Fast Path are:
» Gather the application requirements for DEDB use.

* Document the DEDB areas, the data sets associated with each area, and the
requirements for online replication and maintenance.

* Prepare the system definition information for the application programs.
» Tailor the online procedures and JCL for Fast Path operation.

* Modify operational procedures for startup, control, and recovery of Fast Path
resources.

» Assess the extent of mixed mode and plan a monitoring strategy that includes
both Fast Path and DL/l performance data.

Including a Fast Path Environment
The Fast Path application programs are described within the body of the system
definition input. They require the presence of the following macros:

FPCTRL To include Fast Path facilities
APPLCTN To declare the application programs

You use a system environment macro to specify Fast Path control program facilities
in an IMS DBCTL environment in the same way that you use macros to specify
options and buffer sizes.

The FPCTRL macro causes Fast Path facilities to be included in the IMS online
system and reserves certain resources for Fast Path. The OTHREAD keyword

specifies how many output threads are to be used for the asynchronous DEDB
update processing. Specify a number from 1 to 255. The default is 2.

52 Administration Guide: System



Managing System Definition

The BFALLOC keyword controls the buffer pool characteristics. Using the DBFX
parameter, you specify the number of buffers to be set aside for DEDB updates
used by sync point processing. These buffers are part of the total number given for
the next parameter, DBBF. This parameter is used to specify the maximum number
of buffers available to the online system for DEDB processing. Specify a number
from 1 to 99999. The default value is 10. The actual size of an individual buffer is
specified by the BSIZ parameter. The control interval size is 512 bytes, 1 KB, 2 KB,
4 KB, or a multiple of 4 KB (up to 28 KB), depending on the size of the largest ClI
used for DEDB processing.

Extended Terminal Option Descriptors

An installation can use Extended Terminal Option (ETO) descriptors to migrate
quickly from static-system definition to dynamic-terminal definition. Logon
descriptors contain information relating to the physical characteristics of terminals.
User descriptors are necessary for the creation of user control blocks; they contain
information about user options and message queue names. MSC descriptors
identify the remote LTERMSs that are associated with MSC links. Descriptors can be
added, deleted, or updated at initialization.

Related Reading: For more information about ETO descriptors, see |IMS Version 9:
|[Administration Guide: Transaction Manage,

LU 6.2 Descriptors

LU 6.2 descriptors provide information about each LU 6.2 device. Descriptors are
built during IMS initialization.

LU 6.2 descriptors provide information required to dynamically create queue control
blocks and to set processing options. With user descriptors, you can optionally
specify an LTERM that associates an output destination with an LU 6.2 device. You
can change application programs using alternate PCBs to use LU 6.2 devices
without application program coding changes or application program awareness of
the LU 6.2 device type. LU 6.2 descriptor LTERMs are output-only. They are never
used by IMS as an LTERM name that is associated with an input message.

Related Reading: For more information about LU 6.2 descriptors, see |IMS Versio
[9: Administration Guide: Transaction Manage

Defining Online Applications with System Definition Macros

IMS online applications consist of individual programs scheduled to process
transactions when they are entered into the predefined network. (Scheduling must
be invoked by JCL for batch message programs.) You must tell the control program
which programs are potentially available and the transactions they process. The
order in which the transactions are handled is determined by the scheduling
function. You must also identify all the databases; this is the cumulative set of
databases that could be referred to by the programs. Declarations are made by
coding corresponding system definition macros as shown in .

Table 5. System Definition Macros for Defining Applications

Resource Identification Macro Number Coded
Databases Physical DBD name DATABASE 1 or more

Programs PSB name APPLCTN 1 per PSB

Transactions Transaction codes TRANSACT 1 or more per APPLCTN

0 for non-message BMP

Chapter 3. Defining Your System 53



Defining Online Applications

For a DBCTL environment, you define application programs only for BMP regions,
using the APPLCTN macro. For a CCTL region, you define the PSB names that the
CCTL applications require, using APPLCTN. The TRANSACT macro is not used in
defining a DBCTL environment.

For a DCCTL environment, you define application programs for BMP and MPP
regions using the APPLCTN macro and the TRANSACT macro. The DATABASE
macro is not used in DCCTL.

Declaring Online Databases in DB/DC and DBCTL Environments

The IMS control region responds to the database access requirements of
application programs scheduled for execution and provides DL/I call services. You
need to define a list of all the physical databases that could be used by the
programs. You do this by including DATABASE macro statements in the system
definition stage 1 input. You need separate statements for the index and data
portions of a HIDAM database. You also need statements for any secondary index
database that refers to any database defined elsewhere in the set of DATABASE
macro statements.

Another attribute of a database is specified with the ACCESS keyword. The default
value (EX) specifies that the database is for exclusive use by this online system. If
you plan to allow concurrent use by other IMS systems, see [‘Establishing Database]
|Access” on page 371|for an explanation of the other values for the ACCESS
keyword.

Declaring Message Processing Programs

The online system identifies an application program by a unique PSB name. The
same PSB name is used as the name of the message processing program. The
PSB name is coded in the APPLCTN macro. Inherent in the PSB is the access to
the message input queue and the declaration of any alternative destinations, other
than the input source, for messages sent by the program. The major portion of the
PSB defines a complete list of database access intentions (down to the segment
level, or to the field within segment). The online system expects this control block to
have been predefined. The PSB is prepared for access as a member of
IMS.ACBLIB.

Declaring Program Characteristics
You must declare the program to be online or batch message.

Design of the application can result in a program that requires a large amount of
virtual storage. If the processing follows a sequence or is staged, the program
design can use overlay. You must declare this as one of the PGMTYPE parameters.

You can specify the transaction class for the messages the application program
receives, rather than coding it on subsequent TRANSACT macros. Assigning
classes is described in|“PIanning a Scheduling Algorithm” on page 59.|

In the APPLCTN macro, you must also specify whether the application program can
be scheduled in only one region or concurrently in multiple dependent regions.
Remember that scheduling two copies of the same application program to execute
in parallel requires that processing be truly independent. Several implications for the
use of system resources are:

» Each schedule requires its own section of any shared pools.

54  Administration Guide: System



Defining Online Applications

* Program isolation activity might increase if the processing has the potential to
perform updates in the same database record.

* You cannot control the ultimate processing sequence for transactions of the same
type.

Related Reading: For more information about declaring program characteristics,
see [IMS Version 9: Installation Volume 2: System Definition and Tailoring|

Choosing PSB Performance Options
The RESIDENT option of the APPLCTN macro allows you to specify whether or not
the PSB is resident.

Using the RESIDENT option eliminates I/O to ACBLIB when the PSB is scheduled.
No storage fragmentation exists in the resident PSB space as there is in the PSB
pool, and the result is a more efficient use of storage.

The decision to use the RESIDENT option should be based on the frequency with
which the PSB is used. If the frequency of use causes at least one copy of the PSB
to normally be in the pool even if it is not defined as resident, it should be declared
resident. If the PSB is used only occasionally, do not declare it as resident, so that
its space in the PSB pool can be released when the PSB is not being used.

Related Reading: For more information about PSB options, see|IMS Version 9
[Installation Volume 2: System Definition and Tailoring

Using a Dynamic PSB

When you specify the dynamic PSB option, using the DOPT parameter on the
APPLCTN macro, the PSB is read from the active ACBLIB library each time the
program is scheduled. This allows an ACBGEN for a PSB to be performed while the
online IMS system is running. The result of that ACBGEN can be reflected in the
next scheduling of the program that uses that PSB.

DOPT can be applicable in a test environment or it can provide a PSB to be used
with the Online Database Image Copy utility.

The following restrictions apply for a DOPT PSB:
* A dynamic PSB cannot be made resident.

* A program using a dynamic PSB cannot be scheduled in parallel with other
programs.

* An MPP scheduled against a dynamic PSB is not eligible to go through quick
reschedule or to become a pseudo WFI.

» All databases referenced by the dynamic PSB must have been defined to the
system and be present in ACBLIB at system initialization or after the last online
change was performed. This is because a corresponding option does not exist
for DMBs, even though the PSB is dynamic.

* The current ACBLIB must consist of two or more concatenated data sets, and the
dynamic PSB must reside in any data set in the concatenation other than the
first. The concatenated data sets must be of the same format and contain the
output from an ACBGEN.

Declaring Batch Message Programs

You must describe a BMP as batch on the PGMTYPE keyword. Each BMP is
included as a separate application program with its own APPLCTN macro. You
declare the BMP program by its use of a PSB, even though the batch JCL allows
you to specify a program name that is different from the PSB name.

Chapter 3. Defining Your System 55



Defining Online Applications

If a generalized BMP can execute with different PSBs, you must include the
APPLCTN macros for all of them. A choice of PSB usually involves several queues
that can be processed by the one program. At execution, you use the IN=
parameter to match the transaction queue to the PSB.

Generated Program Specification Blocks

A generated program specification block (GPSB) allows the scheduling function of
DB/DC, DBCTL, or DCCTL to generate an I/O PCB and a modifiable alternate PCB,
each of which is used for the duration of a single application program execution,
and terminated when the application program terminates. GPSBs eliminate the
need to do PSB generation and ACB generation for a PSB that contains no
database PCBs or alternate PCBs.

You specify GPSBs for an online environment using the GPSB= parameter on the
APPLCTN system definition macro.

Restriction: GPSBs are not available in DB batch environments.

Related Reading: For instructions on implementing these parameters, see
[Version 9: Installation Volume 2: System Definition and Tailoring.

Declaring Fast Path Application Programs

You use the APPLCTN macro to declare the Fast Path application program name
and whether it is a message-driven program. The PSB keyword is used to specify
the PSB name, which is the same name as that of the message-driven program.

Declaring Program Processing

When you specify the PGMTYPE keyword value as TP, you designate the
application program as message-driven. At the same time, you can specify
FPATH=YES or FPATH=SIZE if you are certain the application program is always to
be executed under Fast Path control. FPATH=SIZE establishes an Expedited
Message Handler Buffer (EMHB) size for the application program. Specify
FPATH=SIZE for the application program if its input or output message
requirements are larger than the system default.

Related Reading: For more information about the FPATH parameter, see|IMS
[Version 9: Installation Volume 2: System Definition and Tailoring.

One special effect of explicitly declaring the application program to be a
message-driven Fast Path program is that the subsequent TRANSACT macro
automatically specifies the transaction to be Fast Path exclusive. The sequence of
APPLCTN and TRANSACT macros also causes a routing code, with the same
value as the transaction code, to be automatically generated in a routing code table;
the routing code indicates that this is for a Fast Path-exclusive transaction.

If you do not explicitly declare the application program to be Fast Path, the
sequence of APPLCTN and TRANSACT macros (when FPATH=SIZE or
FPATH=YES is specified on the TRANSACT macro) identifies a Fast Path-potential
transaction.

Most of the other APPLCTN keywords have the same use as for DL/l application
programs. However, for the PGMTYPE keyword, the value of BATCH is not used
for Fast Path programs. Also, the OVLY parameter and the option to declare a
message class are not valid for Fast Path application programs. Parallel scheduling

56 Administration Guide: System



Defining Online Applications

is specified with the keyword value SCHDTYP=PARALLEL if the message-driven
program is to occupy more than one Fast Path dependent region for a balancing

group.

Adding Routing Codes

You use the RTCODE macro to declare any routing codes that are to be associated
with the program specified in the preceding APPLCTN macro statement. You need
one RTCODE statement for each routing code. The name can be from 1 to 8
alphanumeric characters. It can be a duplicate of a transaction code or an LTERM
name, but each routing code must be unique. These routing codes are in addition
to those automatically generated by the APPLCTN-TRANSACT macro sequence.

You use the INQUIRY keyword to specify that, when this routing code is used to
send a transaction to a balancing group, the program must use inquiry-only
processing. INQUIRY=YES should be specified only for those transactions that do
not cause a change to any database.

Defining IMS Transactions in DB/DC and DCCTL Environments

The TRANSACT macro influences the overall online IMS system response to
incoming messages. You relate one or more transaction codes to the PSB named in
the prior APPLCTN macro using the TRANSACT macro.

Related Reading:

» For more information about the transaction characteristics declared in the
TRANSACT macro, see|IMS Version 9: Installation Volume 2: System Definition|

» For the characteristics that govern the scheduling of the programs to process the
transactions, see ['Planning a Scheduling Algorithm” on page 59/

Analyzing Transaction Information

Analyze the application program to extract the details of how a transaction is to be
processed and how the transaction looks to the end user. This information assists
you when analyzing the specifications for transactions and determining the
following:

» Specify the wait-for-input keyword, WFI, if a program must be continuously
available and not reloaded each time it is scheduled.

» Specify YES as the first parameter of the INQ keyword if the transaction is only
an inquiry and its database processing does not cause any updates. You
probably do not require these to be recovered at system restart and can specify
NORECOQV as the second parameter of the INQ keyword.

If update processing might occur, you must specify INQ=(NO,RECOVER) to
request a recoverable transaction. When the current transaction processing is
interrupted by an abnormal termination, the database changes are backed out
and the input message is restored to the queue for reprocessing.

* When you are assessing input actions, determine if the response to an input
message should be the next event rather than allowing multiple message input
actions. The second parameter on the MSGTYPE keyword controls this response
Or no response:

— The RESPONSE value inhibits further input.

— The NONRESPONSE value allows multiple message input actions.
The design of the transaction’s use of the input terminal determines the
specifications for the MSGTYPE keyword. The expected input message
characteristic can be a single segment, as indicated by an end-of-segment

Chapter 3. Defining Your System 57



Defining Online Applications

character, or it can be multiple segments. Scheduling for a multi-segment
transaction cannot begin until the end-of-message character has been received.

» Specify the MODE keyword. Online processing works most efficiently with
independent transactions specified as MODE=SNGL. Conversational or WFI
transactions must be MODE=SNGL. For a dependent region to be eligible for
quick reschedule or to become a pseudo WFI, transactions must be
MODE=SNGL.

If a group of transactions must be processed together, MODE=MULT ensures
that database updates and output messages are kept together and are only
committed to the database and output message queues when all of the
transactions have been processed. The effect is that emergency restart
processing backs out any database changes and reprocesses the whole group.

» Declare the transaction to be conversational by including the SPA keyword value;
this value specifies the scratchpad area (SPA) size in bytes.

» Declare the presence of an input message edit routine with the EDIT keyword.
Give the name of the routine as the member name of the link-edited module in
IMS.USERLIB (or the equivalent library). The module must be present in the
library before stage 2 of system definition processing. If the input is to be
translated to uppercase before it is presented to the program, specify UC as the
first subparameter value.

» Specify the parameters for output limits as a form of protection for your output
message queues:

— The SEGSIZE keyword causes a test of the size of an output segment.

— The SEGEND keyword causes a test of the number of segments issued per
transaction processed.

These tests prevent exceptional output, probably in error, from entering the
queues.

Application Program Output Limits

By establishing program output limits during system definition, you can safeguard
the number and size of the output segments from the application program to the
message queues. You use the SEGNO keyword to set the maximum number of
output message segments allowed for each input message processed by the
scheduled program. This gives you a way to protect available message queue
space from being used up by a program output loop.

When an application program exceeds the output limits, a status code is returned
indicating an error. Any further attempt by the application program to exceed the
limits results in abnormal termination of the program. You can prevent abnormal
terminations by having the program itself check the number and size of application
program segments. This process of checking helps prevent IMS system abnormal
terminations that occur when application programs loop while inserting messages or
segments into the message queues, or when they inadvertently insert segments of
invalid lengths.

Defining Fast Path Transactions

The TRANSACT macro is used to identify the transaction code and processing
characteristics for a Fast Path transaction. The code is specified with the CODE
keyword, and, even though the scheduling of Fast Path programs uses the routing
code for its queue selection, the code must be a unique name among the set of
transactions, LTERMSs, and link names.

58 Administration Guide: System



Defining Online Applications

You use the FPATH keyword to signify that this transaction is Fast Path potential.
You specify a parameter value of YES. You only need to do this when the preceding
APPLCTN macro does not use a FPATH=SIZE parameter value. The FPATH
operand is ignored if your preceding APPLCTN macro explicitly specifies a
message-driven application program. This parameter generates a routing code in a
table identical to the transaction code and marks it as Fast Path potential.

The following keywords for the TRANSACT macro differ slightly in specification from
DL/l transactions:

MSGTYPE Specifies a single- or multiple-segment message and its processing
mode. Use parameter values SNGLSEG and RESPONSE, because
Fast Path transactions must be single segment and response
mode.

INQUIRY Specifies an inquiry transaction. You must use the default
parameter value RECOVER, because these transactions are
processed in the same way as other Fast Path transactions.

EDIT Specifies translation to uppercase and the presence of an input
message edit routine. The latter option is not valid for Fast
Path-exclusive transactions. For Fast Path-potential transactions,
the edit routine is only invoked if the transaction is routed to IMS.

PROCLIM Specifies the maximum processing time. For message-driven
programs, PROCLIM is the limit for one transaction and uses the
real elapsed time, because the terminal is in response mode. The
count parameter is ignored.

FPBUF Specifies the Expedited Message Handler Buffer (EMHB) size for
transactions.

Planning a Scheduling Algorithm

The basic approach to controlling an online IMS system with loaded queues is to let
the demand control the scheduling of programs into a reasonable number of
message regions.

The strategy for defining a scheduling algorithm is explained in the following topics:
. Elrouping Application Transactions in DB/DC and DCCTL Environments” on page|
6

- ['Assigning Message Class and Initializing a Region in DB/DC and DCCTL” on|
page 61|

« [‘Message Priorities within Message Classes in DB/DC and DCCTL” on page 61
« [‘Selection Priorities for Transactions in DB/DC and DCCTL Environments” on|
page 61]

. Elrocessing Limits for Messages in DB/DC and DCCTL Environments” on page|
6

* |"Quick Reschedule for Regions in DB/DC and DCCTL Environments” on page 63|
* [‘Pseudo WFI Option for MPP Regions in DB/DC and DCCTL Environments” on|
page 64

» |‘Processing Transactions Against Unavailable Data in DB/DC and DBCTL]
Environments” on page 64|

» ["Scheduling Transactions Using the Suspend Queue” on page 65|

+ [“Parallel Scheduling” on page 67|

Chapter 3. Defining Your System 59



Defining Online Applications

« [*Alternative Scheduling Options for Messages in DB/DC and DCCTL]
Environments” on page 68|

[‘'Scheduling for BMP Processing” on page 68|
« [*Assigning Priorities for Programs with Exclusive Intent” on page 68|
|“Schedu|ing for CPI-Communications-Driven Programs” on page 69|

You specify a working set of application dependent regions that can execute
concurrently with the first parameter of the MAXREGN keyword on the IMSCTRL
macro. The MTO can use the /START command to dynamically allocate other
dependent regions. Up to 999 dependent regions (the maximum allowable number
permitted by IMS) can be allocated. For a DBCTL environment, the MAXREGN
keyword defines a working set of BMPs, JBPs, and CCTL region threads, or
application programs, that can run concurrently. Other BMP and JBP regions can be
dynamically started, up to the maximum allowable number, using the /START
command. The DBCTL environment does not have any transactions, so information
about transactions does not apply to DBCTL.

Related Reading: For more information about planning a scheduling algorithm, see
fAssigning System Resource Options” on page 73

Grouping Application Transactions in DB/DC and DCCTL
Environments

You must associate different groups of transactions with a particular message class
that can be assigned to a region. (Batch message programs are allocated in their
own region.) Criteria might be the virtual storage the message processing programs
require, the PSB characteristics they share, or the priority of service for the end
user. Lay out the transactions in a summary matrix. An example of this information
summary for a vehicle routing application is shown in |iable 6

Table 6. Example of Transaction Grouping

Transaction Transaction Transaction Processing
Group Code Rate Program Preload REGN Mode
Driver log TRLOG 1000 PGMA - 520 KB SINGLE

/day
Driver changes TRCHG 300/hr PGMB PRLD 200 KB MULTIPLE
Enter load or job TRLOAD 50/hr PGMC - 520 KB CONVERSATION
Status of job TRSTAT 20/hr PGMD - 520 KB SINGLE
Optimize route TROPT 10/day PGME - 400 KB (SINGLE) BMP
Get driver route TRROUT 50/hr PGMF - 100 KB SINGLE

One solution for this group of transactions is to define a message class for TRLOG,
TRLOAD, and TRSTAT, which seem to be frequently used, and assign them to a
message region. The BMP has its own region. The driver control transactions,
TRCHG and TRROUT, can be assigned to another message class, because they
have similar virtual storage requirements and one of them needs the program
preload function specified on the region JCL.

The process of grouping transactions becomes more complex when you have
competing application programs. An additional factor to consider is the database
processing intent. You should attempt to combine compatible application programs
(such as application programs that are inquiry only) into groups before assigning
them a message class and individual priorities.

60 Administration Guide: System



Defining Online Applications

Assigning Message Class and Initializing a Region in DB/DC and
DCCTL

Each message (transaction code) is assigned a class using the third parameter of
the MSGTYPE keyword on the TRANSACT macro. If not specified this way, the
value on the PGMTYPE keyword of the APPLCTN macro is applied. This class
assignment determines into which message region an application program is
loaded. When the IMS message regions are started, they are assigned from one to
four message classes. When a message region is assigned more than one class,
the scheduling algorithm treats the first class specified as the highest priority class,
and each succeeding class is treated as a lower-priority class.

If more than one class is specified, message selection is processed as follows. The
first class specified is scanned, in transaction-priority sequence, for waiting
messages. If no messages are waiting for the first class, the second and following
classes are also scanned in priority sequence. If messages are waiting in the first
class, the highest-priority message is selected for scheduling.

Message Priorities within Message Classes in DB/DC and DCCTL
To develop your scheduling algorithm, draw a matrix that lists each priority and
transaction code. Group together all those transactions that belong to a class. You
can then test the contents by setting up test levels of queue loading and apply the
class and priority algorithms. Such a matrix is illustrated in

Table 7. Matrix for Message Classes and Priorities

Transaction PSB
Class Priority Code Name
001 5 TRANX PGMX
3 TRAND PGMD
2 TRANA PGMA
003 10 TRANY PGMY
005 10 TRANC PGMC
5 TRANB PGMB

If an available region specifies a message class priority of 1, 5, 3 and if two
transactions are in each queue, PGMX is scheduled first and both TRANXs are
processed. If no other transactions are received, the order of processing is TRAND,
TRANA, TRANC, TRANB, and TRANY.

Notice how the order of message class prioritizing (specified in the region JCL)
causes class 3 to be processed last.

If another message region specifying message classes 1, 5, 3 is started during the
processing of TRAND, the region begins processing with PGMA. Whichever region
completes message class 1 transactions first schedules PGMC.

Selection Priorities for Transactions in DB/DC and DCCTL
Environments

When more than one transaction of a given type is waiting to be scheduled, the
specified transaction scheduling priority determines which transaction code is
selected. It does not determine which transaction is actually scheduled. Only the
tests of the transaction’s readiness for scheduling, which occur after selection,
determine if the transaction queue is allocated to an application program. The

Chapter 3. Defining Your System 61



Defining Online Applications

selection priorities are useful for influencing the response time to input transactions
and for load balancing. Two priorities can be specified:

* Normal priority
e Limit priority

Related to the normal and limit priorities is the limit count. When the number of
input messages of a specific transaction type waiting to be scheduled is equal to or
greater than the limit count, the normal priority is reset to the limit priority value.

The priority of a transaction code causes it to be selected either before or after
other transaction codes. You specify the numeric priority with the PRTY keyword of
the TRANSACT macro. Values can be selected in the range 0 to 14; a value of 0
specifies the transaction is not eligible for automatic scheduling. If multiple
transaction codes are at the same priority, they are selected on a first-in/first-out
basis. So, if multiple transaction codes are at the same priority and class, with
many messages already enqueued for each transaction code, the first scheduled
transaction code will process all of its messages before the next, equal priority and
class transaction code is scheduled.

You can raise the priority normally used for a transaction after a certain level of the
queue is reached. In this way, you can give the transaction an increased chance of
being scheduled. Another case occurs when a program requires significant program
loading time or initialization and is then followed by a batch-like processing of a
group of transactions.

Suppose the transaction TRANB in|Table 7 on page 61|is assigned a limit priority of
14 if the number of queued transactions rises to 10. When message class 5 is
available for scheduling and the queue counts for TRANC and TRANB are 18 and
10, respectively, the first program scheduled is PGMB. The processing of TRANB
stays at priority 14 until all 10 transactions, and any others added to the queue, are
processed. Then TRANB reverts back to a normal priority of 5.

It is possible that more messages will be added to the queue while the transaction
is waiting or in process at the limit priority. The normal priority is not restored until
all messages enqueued on the transaction code are processed. The priorities are
selection priorities, not execution priorities. After a transaction has been selected for
scheduling, the selection priorities have no influence until it is again recognized to
be waiting for scheduling.

Limit priority can be in the range 0 to 14. Limit count has a default of 65535 and a
valid range of 1 to 65535. You specify limit priority and the queue count as the
second and third parameters of the PRTY keyword on the TRANSACT macro. If
you do not require this priority override technique, code the limit priority equal to the
normal priority, and code the limit count as 65535.

Another way to use the selection priorities is to declare a normal priority value of
zero. Zero priority is a null or “not eligible for scheduling” level. Messages
accumulate until the limit count is reached; at this point, limit priority takes effect
and the message is eligible for scheduling. This technique is called batching
messages.

The effectiveness of the selection priority assignments is related to how frequently
the selection process occurs.

62 Administration Guide: System



Defining Online Applications

Processing Limits for Messages in DB/DC and DCCTL
Environments

By setting processing limits, you can influence the frequency with which scheduling
selection occurs. During the time between each scheduling, processing continues in
the message regions. Meanwhile, messages are accumulating in the message
queues. As messages accumulate, the interactive effects introduced by new
message types and the changing of selection priorities are rearranging the order of
waiting transaction codes. Conceivably, while a large queue of messages is being
processed, important activity assigned to a high-priority transaction code is waiting.

When the program processes a large queue of messages and updates database
segments, other application programs trying to access an updated segment are
placed into a wait state. The length of time that the other application programs must
wait depends on whether the updating program is processing its queue in multiple-
or single-message mode.

To allow controlled reentry to the message scheduling selection process, specify a
processing limit count for each transaction code. Each time a scheduled
(processing) program requests a new message, the limit count is checked. When
the number of requests exceeds the limit count, IMS determines if the region is
eligible for quick reschedule.

 If the region is not eligible for quick reschedule, the application program
completes its processing. If the current transaction code is at the same priority
level as other queued transaction codes, the current code is placed last in the
list.

 If the region is eligible for quick reschedule, the application program remains
active and the next message is returned to the application program for
processing.

Quick Reschedule for Regions in DB/DC and DCCTL
Environments

Quick reschedule allows application programs to process more than the processing
limit of messages for each physical schedule. Quick reschedule eliminates
processing overhead caused by unnecessary rescheduling and reloading of
application programs.

When a region undergoes quick reschedule, the message count that is compared
with the processing limit count is reset, the accounting (X'07") and scheduling (X'08")
log records are written, and the next message is returned to the application
program for processing.

A region can undergo quick reschedule only when:
* No other work of equal or higher priority exists for the region to process

* The same transaction would be scheduled if the application program terminated
and the dependent region went through rescheduling.

* The region is an MPP processing a MODE=SNGL transaction
* The processing limit count is greater than zero
* The PSB is not allocated with the dynamic PSB option (DOPT)

Flags in the accounting and scheduling records written during a quick reschedule
indicate that the records do not include actual program termination and scheduling
times. These records are written for accounting purposes only. Restart and backout
do not use these records.

Chapter 3. Defining Your System 63



Defining Online Applications

Pseudo WFI Option for MPP Regions in DB/DC and DCCTL
Environments

The pseudo WFI (pseudo wait-for-input) option allows an MPP region to remain
scheduled until another input message appears. With pseudo WFI, unnecessary
application program termination and rescheduling can be eliminated.

Normally, if an MPP region is scheduled for a transaction and no more messages
for that transaction exist, the application program terminates. Frequently, another
message appears for the same transaction after the program is terminated.
Processing overhead is increased because of unnecessary termination and
rescheduling of that application program.

Pseudo WFI is specified with the PWFI= parameter on the MPP region startup
procedure. When PWFI=Y is specified, the processing limit count is greater than 0,
and no more messages are queued for the current MODE=SNGL transaction, IMS
checks for other work for the region to process. If no other work is available, the
region waits until another input message appears. This is wait-for-input mode.

When the next input message is for the currently scheduled transaction, the
message is returned to the application program with a status code of “blank-blank”.

When the next message is not for the currently scheduled transaction, termination
and rescheduling occur.

Certain circumstances cause regions that are in wait-for-input mode to be posted
and a QC status code to be returned to the application program. These
circumstances include commands that involve stopping, starting, locking, unlocking,
purging, and assigning a database, region, transaction, or class. Regions that
cannot be scheduled because of a lack of pool space can also post regions
currently in pseudo WFI in an attempt to terminate them. This frees pool space so
that the failing region can schedule.

Processing Transactions Against Unavailable Data in DB/DC and
DBCTL Environments

IMS schedules an application program even if that application program might try to
access an unavailable database. The application program can be sensitive or
insensitive to unavailable data. To be sensitive, it must issue the INIT call. This
requests that a status code be returned in the PSB if a subsequent call requires
access to data that is unavailable. If the application program has not issued the
INIT call and a call requires access to unavailable data, IMS issues user abend
code 3303, terminates the application program, and backs out any updates it has
made. If an application program generates ten 3303 abends, IMS prevents further
rescheduling of the application program by stopping its PSB.

The disposition of the transaction depends on whether it is serial or not. Serial
transactions are those that must be processed in the order of arrival. If it is serial,
the processing of any transaction of its type is stopped. If it is not serial, only the
processing of this particular transaction is stopped.

Data can be unavailable for these reasons:
* The database is stopped, locked, or unavailable for update.

* Alock cannot be obtained, because it is held by a failing component in a data
sharing environment.

* In an XRF environment with block-level data sharing, the takeover system
initiated new work before the data sharing configuration is revalidated.

64 Administration Guide: System



Defining Online Applications

IMS tries to resume transaction processing when any of these events occurs:
* A /DEQ SUSPEND command is issued.

* A /START TRAN command is issued for a transaction type that is stopped or that
has stopped messages.

* A /START DATABASE command is issued for a database that is unavailable and in
the intent list of the program requesting the transaction.

» A failing IRLM is reconnected.

* An emergency restart completes.

* An XRF takeover completes.

* A sharing IMS system completes a batch backout.

Scheduling Transactions Using the Suspend Queue
The operation of the suspend queue is documented by describing the specific
elements of its operation. You must describe the following:

* The conditions that result in messages being placed in or removed from the
suspend queue

* The conditions that result in setting or resetting the transaction stopped because
of unavailable data (USTOPPED)

When Messages Are Placed in the Suspend Queue: |If the program processing
the message attempts to access data in a database that is unavailable, and the
program has not issued the INIT call indicating that it can accept a status code that
data is not available, the program is pseudoabended with abend U3303. The
disposition of the message in process at the time of abend U3303 depends on
whether the transaction type being processed requires serial processing. If the
transaction type does not require serial processing, the failed message is placed in
the suspend queue. If the transaction requires serial processing, the message is
returned to the normal queue and the transaction is USTOPPED.

Data might be unavailable for any of the following reasons:
* The database is stopped, locked, or not available for update.

Programs are scheduled even when full-function databases are not available, or
when they are available as read only. If a program issues a DL/I call that requires
access to one of these databases, the program encounters unavailable data.

¢ Alock on the data cannot be obtained because it is held in retained state.

In a block-level data sharing environment, it might not be possible to
communicate with the sharing system because the sharing IMS has failed, the
sharing IRLM has failed, or communication with the sharing IRLM has failed. The
IRLM being used by the surviving IMS system retains knowledge of the locks that
were held by the IMS system with which communication is temporarily
unavailable. These locks are held in retained state. A similar condition can exist
in a DBCTL environment when a thread failure occurs.

* In an XRF and block-level data sharing environment, the takeover system
initiates new work before the data sharing configuration is revalidated.

At the time of an XRF takeover, databases that can be shared at the block level
are temporarily made unavailable until the data sharing configuration has been
revalidated. If programs attempt to access these databases before the
revalidation completes, they encounter unavailable data.

When Messages Are Removed from the Suspend Queue: A separate suspend

gqueue exists for each transaction type. Messages are never scheduled for
processing from the suspend queue. To be scheduled, the message must be

Chapter 3. Defining Your System 65



Defining Online Applications

transferred to its normal queue. Some conditions cause the messages on suspend
queues for all transaction types to be transferred to their normal queues. Other
conditions cause the messages for specific transaction types to be transferred to
their normal queue.

The conditions that trigger the transfer of all messages from the suspend queues,
and the rationale for transferring the messages when that condition occurs, are:

* The /DEQ SUSPEND command is issued.
The operator requested it.
* IMS emergency restart is completed.

While the IMS system is down, a sharing IMS might notify the system to drain its
suspend queues.

* A sharing IMS system natifies the system that the sharing IMS system has
completed an emergency restart or a batch backout.

Messages are transferred for the same reason as when these conditions occur
on the local system.

¢ |IRLM is reconnected.

When the IRLM failed, messages that were in process at the time of failure were
abended with abend U3303. Attempts to access data that the failing IRLM locked
also result in abend U3303. When the IRLM is reconnected, these messages are
scheduled again.

* XRF takeover has completed.

While the takeover is in process, a notification from a sharing IMS might have
been missed, and databases that can be shared at the block level are
temporarily unavailable until the reverification to DBRC has completed.

The following conditions trigger the transfer of messages for specific transactions to
the normal queue:

* A /START TRAN command is issued. This causes the messages for the started
transaction to be transferred to the normal queue from the suspend queue.

* A /START DATABASE command is issued. This causes the transfer of messages for
transactions in which the program processing the transaction has access to the
started database.

Setting the Transaction USTOPPED Because of Unavailable Data: |MS stops
the transaction type if most messages being processed are failing because they are
encountering unavailable data. One abort is counted each time the program aborts
due to abend U3303 and the message in process has not previously been placed
on the suspend queue. Two aborts are subtracted each time a program goes
through commit processing. However, if this results in a negative number, two
aborts are not subtracted. If the total number of aborts exceeds 10, the transaction
is stopped with a USTOPPED condition.

The transaction is stopped by USTOPPED if abend U3303 occurs while processing
the message and SERIAL=YES is specified for the TRANSACT macro.

When the transaction is stopped by USTOPPED, messages from this queue are not
scheduled for processing. Incoming messages continue to be queued on the normal
queue.

Resetting the Transaction Stopped Because of Unavailable Data: The
USTOPPED condition is reset under the following conditions:

66 Administration Guide: System



Defining Online Applications

* A /START DATABASE command resets the USTOPPED condition for all transaction
types when the program that processes this transaction has access to the started
database.

e A /START TRAN command resets the USTOPPED condition for that transaction
type.

e A /PURGE TRAN command resets the USTOPPED condition for that transaction
type.

Parallel Scheduling

IMS can schedule the same application program and the same transaction in
multiple message regions. Designate the application program and the transaction
for parallel scheduling using the SCHDTYP keyword on the APPLCTN macro. You
must designate the application program as a parallel-scheduled application program
so that any transaction processed by that program can be scheduled in multiple
regions.

When a transaction is available for scheduling but is already scheduled in another
region, IMS checks whether the transaction can be scheduled in parallel. The
PARLIM value of the TRANSACT macro specifies the number of messages that
should be enqueued before another region is scheduled. This value is multiplied by
the number of regions already scheduled for this transaction. If the result is less
than the number of messages enqueued, another region is scheduled for the
transaction unless MAXRGN is exceeded. If the region cannot be scheduled for
internal reasons (database intent), the next transaction within the class is
scheduled.

If scheduling fails for intent conflicts for a SCHD=1 or SCHD=2 transaction, the next
logical transaction is selected based on the SCHD= parameter of the transaction
that failed. If the scheduler fails to schedule any transaction for intent 5 times, the
next class of transactions is selected.

This method of processing can cause messages in the current class to be delayed.
For example, a long running BMP has update intents on a database. Several
transactions that have update intent on the same database with SCHD=1 are
entered into the IMS system. More transactions that do not reference the database
but have the same class are also entered into the system. These transactions might
not be scheduled until the BMP terminates, if the first group of transactions fails for
intent. When transactions from the first group fail for intent a total of 5 times,
scheduling is attempted for the next class. This bypasses the group of transactions
that do not reference the database.

To avoid such delays, the second group of transactions should be placed into a
separate class, or the BMP job should be run at a different time.

If the PARLIM value is zero and more messages are in the queue, another region
can be scheduled. To prevent one transaction from monopolizing all available
regions, use the MAXRGN= parameter on the TRANSACT macro. A non-zero value
for MAXRGN specifies the number of MPP regions that can be scheduled. In
addition, you can use the SERIAL option of the TRANSACT macro to process
transactions in the order they arrive. IMS limits the processing to this time
sequence. If data required by the transaction is unavailable, this causes IMS to stop
scheduling this transaction type.

For a DBCTL environment, BMP regions and CCTL threads can schedule a PSB
simultaneously when the APPLCTN macro's SCHDTYP keyword is defined as

Chapter 3. Defining Your System 67



Defining Online Applications

PARALLEL. If a PSB is not defined as PARALLEL and is already scheduled by a
BMP or CCTL thread, new schedule requests for that PSB fail.

Alternative Scheduling Options for Messages in DB/DC and
DCCTL Environments

If a message cannot be scheduled for external reasons (for example, the master
terminal operator stopped a program or transaction), the next message of equal or
lower priority in that class, or the highest-priority message in a lower class, is
selected for scheduling. If the highest-priority message in the first class cannot be
scheduled for internal reasons (database intent, no more space in PSB pool, or
DMB pool to bring in needed blocks), the scheduling option of the transaction
specifies the criteria to be used to select the next transaction to be scheduled. The
SCHD keyword of the option is specified at system definition by the TRANSACT
macro. The options are:

» Schedule only transactions of equal or higher priority in the selected class. This
is the default option.

» Schedule higher-priority transactions in the selected class.
* Schedule any transaction in the selected class.

» Skip to the next class and attempt to schedule the highest-priority transaction in
that class.

These scheduling options are specified for each transaction; therefore, if the
algorithms are different for transactions within the same class, each attempt to
schedule a different transaction might change the algorithm.

Message region class assignments and transaction class assignments are assigned
at region initialization through the EXEC JCL statement. The assignments can be
modified at execution time by the operator.

If multiple message regions process the same message class and a conflict in
database processing intent occurs, the highest-priority transactions scheduled
against a database are not necessarily processed before lower-priority transactions
scheduled against the same database. If you want to process all higher-priority
transactions before processing any lower-priority transactions, specify no processing
limit for the higher-priority transactions. Using only one message region to process
that message class achieves the same result.

Scheduling for BMP Processing

Because BMP regions are scheduled manually, the input transactions to a batch
message program do not need to be assigned a competitive priority. Specify a
priority value of zero for both normal and limit priority, and coordinate a message
class designation with the BMP region JCL.

Assigning Priorities for Programs with Exclusive Intent

When a program’s PSB includes exclusive use of a segment type, the program is
not scheduled concurrently with any other program that is sensitive to the same
segment type. Similarly, when a program executes with exclusive use of segment
types, other programs that include sensitivity to any of those segments are not
scheduled concurrently. Exclusive intent does not use enqueue/dequeue
serialization. (Programs have exclusive intent declared by PROCOPT=E on a
SENSEG or program communication block, or PCB, statement within the PSB
generation—if the option K, for key sensitivity, is not appended.) Conflicting actions
occur only if the same segment type is declared by at least one of two programs
intending to reference a segment exclusively.

68 Administration Guide: System



Defining Online Applications

One case in which programs require exclusive intent occurs when a program that
uses HSAM in its PSB is scheduled.

Use care when assigning priorities for programs with exclusive intent. Even if a
program is selected for execution, a conflict with its processing intent and that of an
already-executing program causes the transaction to drop out of the selection
process until the next program termination or region start event.

Exceptions to the use of program isolation are programs that use the
PROCOPT=GO option. These programs can retrieve segments that have been
altered or modified by programs that are still active. Those changes might be
subject to backout. The programs might not update the segments, and there is no
enqueue on the segments when the programs retrieve them.

Scheduling for CPI-Communications-Driven Programs

Scheduling information for LU 6.2 CPI-Communications-driven application programs
is defined in a TP_Profile entry managed by APPC/MVS. When APPC/IMS
recognizes a CPI-Communications-driven application program for the first time after
restart, it dynamically builds an IMS transaction. IMS dynamically builds the
definition for CPI-Communications-driven application programs when a transaction
is presented for scheduling by APPC/MVS, based on the APPC/MVS TP_Profile
definition after IMS restart. A dynamically-built transaction is not checkpointed
unless SYNCLVL=SYNCPT and IMS is participating in a protected conversation.

Related Reading: For more information about CPI-Communications-driven
application programs, see |IMS Version 9: Administration Guide: Transaction]

Defining IMS Terminals

Most of the system definition stage 1 input is made up of declarations that define
terminals to be attached to the online IMS system. You can use the detailed
information collected in the terminal profiles and configuration diagrams for this
information. Each terminal type and hardware option has its equivalent parameter in
one or more of the terminal-related macros in the stage 1 input. Four sets of
macros are defined in the following order:

1. BTAM-, BSAM-, GAM-, and ARAM-supported devices
2. Switched communication devices

3. MSC communication links

4. VTAM-supported terminals

VTAM terminals can be introduced in three ways:

« At system definition, using a set of macro statements

* At any time, using the Extended Terminal Option (ETO)
* At any time, using LU 6.2

Related Reading: For information on the attributes specified for Multiple Systems
Coupling (MSC), see |IMS Version 9: Administration Guide: Transaction Manage/l

Defining Extended Terminal Option Terminals in DB/DC and DCCTL

ETO allows VTAM terminals and LTERMs (logical terminal users) to be added to
IMS without redefining the system. ETO must be installed with the IMSCTRL macro
and activated using the ETO=YES execution parameter. However, you can still
override the initialization of ETO by using the Initialization exit routine (DFSINTXO).

Chapter 3. Defining Your System 69



Defining IMS Terminals

Related Reading: For more information about this exit routine, see |IMS Version 9]
[Customization Guid

ETO descriptors are templates that provide information about:
» Physical characteristics of terminals

* User options and message queue (LTERM) names

* Remote LTERM locations associated with MSC links

An optional starter set of ETO descriptors can be provided at system definition. You
can begin with the starter set and expand on it as necessary. You can also install
ETO exit routines that allow IMS to dynamically create LTERMs, even when the
specified descriptors do not contain LTERM-created data.

Terminals defined with ETO are described with parameters similar to
system-defined terminals. However, several keywords for these parameters are not
applicable to ETO, and must not be specified. In addition, the master terminal and
the XRF surveillance link cannot be defined with ETO.

Related Reading: For more information about ETO, see IMS Version 9
|Administration Guide: Transaction Manager

Defining Static VTAM Terminals at System Definition in DB/DC and

DCCTL

In a set of macro statements, you specify all the VTAM-supported terminals that
operate in the IMS online system.

Related Reading: For more information about specifying VTAM-supported
terminals, see |IMS Version 9: Installation Volume 2: System Definition and|

|Tailoring[

Defining Non-VTAM Terminals in DB/DC and DCCTL

Specifying the

You specify all BTAM, BSAM, or ARAM devices that are to operate in the IMS
online system in a set of macro statements. You follow this with a set of statements
that describe all switched devices.

Related Reading: For more information about specifying non-VTAM terminals, see
[IMS Version 9: Installation Volume 2: System Definition and Tailoring.

Master Terminal

The key control point for IMS online operations is the master terminal if you are not
using the Common Service Layer and a single point of control (SPOC). You should
probably choose a screen device because of the advantages of convenient data
entry and output response. However, you need printed copy of many of the
responses to commands, as well as a record of the system messages sent to the
master terminal. You can specify a secondary master terminal to use for print
output.

You can also specify secondary system consoles for database operator
communication within DBCTL. Consoles with the proper matching characteristics
receive unsolicited messages from the system.

70 Administration Guide: System



Defining IMS Terminals

Related Reading: For more information about specifying secondary system
consoles, see WQS Version 9: Installation Volume 2: System Definition ana|

|Tailoring,

Choosing Master Terminal Devices

Some restrictions exist in the device type for primary and secondary master
terminals. Your choice for secondary master depends on the expected amount of
output and the promptness of printing. Primary and secondary master terminals
cannot be defined with ETO or LU 6.2. In addition, FINANCE, LUP, and ISC
terminals cannot be master terminals.

The /ASSIGN command can be used to switch the secondary master console to
another destination such as a spool SYSOUT line group.

Choosing the Extent of Secondary Master Logging

To provide for automatic copying of the entry and response of key system control
commands, you can specify, on the COMM macro, values for the COPYLOG
keyword to cause the command activity to be copied when issued by the master
terminal (or by any terminal). Your safest choice is to specify ALL, unless terminals
other than the master terminal will be issuing many commands. The choice of
NONE or NOMASTER is not recommended, because the printed log of activity
provides a valuable audit mechanism.

Defining Switched Devices

The subtopics within this topic highlight the use of special system definition macros
when you plan to use switched devices in your IMS network.

Related Reading: For examples of the macro coding and representative
configurations, see [IMS Version 9: Installation Volume 2: System Definition and

Defining Switched 3275 Devices

If you plan to use switched 3275 devices, you must specify the configuration.
Choose a line group and follow the LINEGRP data with details of the hardware
options indicated by CONFIG macro keywords. 3275 hardware includes a security
option in that each 3275 carries a physical identification number as part of its
circuitry. The last three bytes, together with a unique configuration name (the label
on the CONFIG macro), constitute the IMS identification. List all authorized
identifications for a line group on an IDLIST macro. Subsequent LINE macros
coded for 3275 devices can point to these lists.

Defining LTERM Names for Switched Devices

If you have switched communication devices in your requirements, you relate them
to a previously defined line group and include the macro specifications POOL,
USER, and NAME.

Related Reading: For more information about these specifications, see
[Version 9: Installation Volume 2: System Definition and Tailoring,

Defining System/3 and System/7 Stations

If you plan to include remote intelligent stations in the IMS network, you must
specify the station’s physical and logical characteristics on a STATION macro. Set
aside one or more line groups, and then add the characteristics of one or more
System/3 or System/7 stations. A station is primarily identified by its assigned
LTERM name. IMS assigns default LTERM names as it encounters STATION
macros—RSTSnnnn, where nnnn is a sequence number incremented from 0001.

Chapter 3. Defining Your System 71



Defining IMS Terminals

The specifications for the LINEGRP macro allow you to declare a System/7 line to
operate as a polled line or in contention mode. You also declare whether the
transmission is to be binary synchronous or start-stop.

The terminals that are attached to a System/3 or System/7 are able to transmit
messages through to IMS. However, the transmission block formats and protocols
have to coincide with those defined for IMS intelligent remote station support
(IRSS). Each terminal is assigned an LTERM name and can be restricted to input
data only. Conversational processing as well as preset output destination is
available.

Allocating Message Format Buffer Pool Space

The IMS online system reserves storage for the message format buffer pool. The
amount of storage required depends primarily upon how much concurrent use of
message format blocks is expected and how many lines are active.

Defining Pool Space for MFS Devices

Using the BUFPOOLS macro, you can control the size of the message format
buffer pool and the number of fetch request elements (FRE). One FRE is required
to control each active block; without a FRE, space cannot be assigned from the
message format buffer pool. In estimating the number of FRES, be sure to add 10
or more to allow for system message activity. This is especially true if you anticipate
status inquiries (/DISPLAY command) being made by MFS-supported terminal
operators and do not want to have the possibility of delayed response to other
terminals. If pre-allocated FREs are not available, a dynamic FRE is allocated from
the general area of the pool. However, you should avoid using dynamic FREs,
because they cause fragmentation of the pool.

For the message format buffer pool, compile a list of the MFS blocks, arranging
them in DIF/MID and DOF/MOD pairs. Next, record the sizes and whether they are
used according to their priority, their quick-response transactions, or their frequency.
Allow space for input/output pairs to be in the pool. Watch for large messages or
those with multiple segments, because these can preempt small, frequent
messages from finding space for their format blocks in the pool. This situation
directly affects the response time of the small messages.

If your IMS system is generated for z/OS, the message format buffer pool resides in
extended private storage.

Message Format Indexing

You can use the MFS utility to build an index of the DASD addresses; the index
resides in the message format buffer pool during online execution. Building the
index saves an I/O to the active IMS.FORMATA/B library directory to look up the
physical address of the required block. (Each index entry requires 14 bytes.) You
might not want to index all format blocks if they are especially numerous, but you
should plan to index those that are frequently referenced. You specify selected
index entries and the building of an index as part of the input control statements to
the MFS utility.

Related Reading: For more information about building this index, see|IMS Versio
9: Utilities Reference: Database and Transaction Manager,

The index entries become part of an MFS dynamic directory that resides in
extended private storage. Entries are added, if not found in the current index. The
directory can be reset to its state at initialization by using an option provided with
the /CHANGE command.

72 Administration Guide: System



System Resource Options

Assigning System Resource Options

A group of parameters within the system environment macro set relates to the
integrity of the online IMS system. These parameters specify resources available for
checkpoints and program isolation. The allocation of system data sets and control
program storage depends on the expected processing load and the strategy for
recovery of the online IMS system.

This topic describes the following information:

+ |“Choosing the Number of Regions”|

» |"Defining a Fast DB Recovery Region”|

» |"Setting a Checkpoint Frequency” on page 74|

» |'Selecting an IMS Lock Manager in DB/DC and DBCTL Environments” on page|
E

* |"Specifying Enqueue/Dequeue Requirements” on page 75|

+ [“Selecting the DL/I Separate Address Space in DB/DC and DBCTL]
Environments” on page 76|

[‘Security Options” on page 78|

Choosing the Number of Regions

Overall throughput is conditional on the number of active dependent regions and
the availability of shared resources for database processing. A processing program
must have an available message region before it can enter the scheduling selection
logic.

You specify a working set of BMP and message regions with the MAXREGN
keyword on the IMSCTRL macro. Additional dependent regions (up to the maximum
of 999) can be dynamically allocated by the MTO using the /START command.
CCTL threads can be allocated up to the number specified at system definition.

Related Reading: For more information about allocating CCTL threads, see
[Version 9: Customization Guide,

Your operations procedure stipulates how many, and when, regions are active. The
scheduling algorithm controls the actual programs that execute in the regions in
response to enqueued messages.

Defining a Fast DB Recovery Region

I
I The FDRMBR= keyword in the DBC and IMS startup procedures identifies the Fast
I DB Recovery region to IMS.PROCLIB with a two-digit suffix (FDRMBR=xx). The

| IMS.PROCLIB member is DFSFDRxXx.

I The FDR procedure executes a Fast DB Recovery region. The FDR procedure is

| similar to those used to define IMS systems (for example, the DBC procedure).

Two parameters, CSAPSB and DLIPSB, in the FDR procedure have a different
result than when they are specified for the IMS and DBC procedures. When the
FDR procedure specifies CSAPSB and DLIPSB, the sum of their values defines the
PSB pool size. When PSB is also specified, the larger value (PSB or the sum of
CSAPSB and DLIPSB) is used.

Chapter 3. Defining Your System 73



System Resource Options

Related Reading: For a description of the DBC, IMS, and FDR procedures,
including descriptions of the parameters they contain, see[IMS Version 9]
[Installation Volume 2: System Definition and Tailoring

Enabling a DB/DC Subsystem for Fast DB Recovery

To enable a DB/DC subsystem for Fast DB Recovery, specify the FDRMBR=
keyword in the IMS procedure. The FDRMBR= keyword defines the DB/DC system
as Fast DB Recovery-capable.

Note the IMSID of the IMS system that Fast DB Recovery is to track. Specify this
IMSID in the control statement for the DFSFDRxx IMS.PROCLIB member. Match
the IMSID to the ID that is specified for the IMSID EXEC parameter.

Restriction: If both FDRMBR= and HSBID= (XRF configuration) keywords are
specified in the IMS procedure, the FDRMBR= keyword is ignored.

Enabling a DBCTL Subsystem for Fast DB Recovery

To enable a DBCTL subsystem for Fast DB Recovery, specify the FDRMBR=
keyword in the DBC procedure. The FDRMBR= keyword defines the DBCTL system
as Fast DB Recovery-capable.

Note the IMSID of the IMS system that Fast DB Recovery is to track. Specify this
IMSID in the control statement for the DFSFDRxx IMS.PROCLIB member. Match
the IMSID to the ID that is specified for the IMSID EXEC parameter.

Restriction: If both FDRMBR= and DBRSE= (DBCTL standby configuration)
keywords are specified in the DBC procedure, the FDRMBR= keyword is ignored.

Setting a Checkpoint Frequency

The primary tool that IMS uses to record information for restarting interrupted
operation is checkpointing. Using the status information captured during checkpoint,
the content of the message queues and database changes can be restored.
Checkpoints are an integral part of system shutdown and startup. The amount of
reprocessing, back from the point of system interruption and forward to a
continuation point, is minimized when checkpointing is reasonably frequent. Your
trade-off is between efficient restart and processing overhead for the checkpoint
information.

It is necessary to begin a restart at the current checkpoint minus one. This applies
to restarts from all checkpoints except for RESTART, SNAPQ, and SHUTDOWN.
For this reason, it is strongly recommended that you review your checkpoint
frequency and perhaps take more frequent checkpoints in order to minimize the
amount of time it takes to do the restart.

System service interruptions that can be caused by extensive checkpoint
processing have been minimized. This situation makes it possible for you to take
more frequent checkpoints and, at the same time, enhance restart performance.

You control the frequency of IMS internal checkpoints with the CPLOG keyword on
the IMSCTF macro. The decision to invoke a checkpoint is based on an increment
to the number of system log records created. You specify a number of records; the
default is 1000. As the online IMS events are logged with individual record types, a
count is maintained. When the increment exceeds the CPLOG value, checkpoint
processing is invoked. IMS system checkpoints can also be invoked explicitly by the
master terminal operator and by application programs that have been authorized to
enter the /CHECKPOINT command.

74  Administration Guide: System



System Resource Options

Your interval should be large enough to extend beyond the estimated response time
for at least one of the longest-running transactions.

You can adjust the frequency after observing the stability of the online IMS system.
You can use the IMS Monitor reports to assess the processing overhead. The
Region Summary report shows the total elapsed time and average elapsed time
taken for checkpoints in the trace interval.

Selecting an IMS Lock Manager in DB/DC and DBCTL Environments

To protect database integrity, an IMS system serializes requests for database
resources so that application programs are prevented from updating a database
segment until a current owner of that segment has indicated that any changes it
made are completed. The process of controlling concurrent requests is called lock
management. Choose one of two managers to control the stored information about
the requests: a program isolation lock manager or an Internal Resource Lock
Manager (IRLM) component. The program isolation lock manager can control lock
requests for only a single IMS system, which is called local locking. The IRLM can
control lock requests both for multiple IMS systems, which is called global locking,
and for single IMS systems. The IRLM is required if the IMS online system is to
take part in block-level sharing.

If you select program isolation to manage locks, you have the advantage of not
needing to plan any special operating and recovery procedures, as is necessary for
the IRLM. Also, monitoring program isolation activity is an integral part of the IMS
Monitor, invoked with the /TRACE command by the MTO. There is also a separate
program isolation trace that can be used in performance analysis. System definition
requirements related to program isolation locking are explained in
[Enqueue/Dequeue Requirements.]

Your choice of lock manager is not necessarily fixed. Using parameters on the
EXEC statement for the control region, you can override the use of program
isolation locking. In this way, you can allow for the IMS online system to take part in
block-level data sharing. For details of how to initialize and plan operating
procedures for an IRLM, see [Chapter 12, “Data Sharing in DB/DC and DBCTL]
[Environments,” on page 369

Even if you plan to use only IRLM for lock management, you must specify a
minimal amount of enqueue/dequeue storage (a maximum of two isolated locks for

each partition specification table, or PST) as described in ['Specifying
[Enqueue/Dequeue Requirements.’] IMS uses this storage internally.

Specifying Enqueue/Dequeue Requirements

The online IMS system protects the integrity of the database when concurrently
running programs are updating the same database record. A record of the
inter-level update events is maintained for program isolation in tables defined in the
control program storage. These are termed enqueue/dequeue tables and consist of
24-byte entries in a z/OS system. As programs reach synchronization points, the
entries are freed and the storage can be reused. You need to estimate the number
of events that might be recorded for concurrent execution of programs that might
process against the same segment type.

The storage is allocated above the 16 MB line.

Chapter 3. Defining Your System 75



System Resource Options

Selecting the DL/l Separate Address Space in DB/DC and DBCTL

Environments

You have the option of using a DL/l separate address space (DLISAS) to contain
code, control blocks, and buffers for full-function databases. You do this by using
the local storage option (LSO). You specify LSO=S as an EXEC parameter for the
control region. Throughout this topic, the term LSO=S is used to indicate the choice
of a DL/I address space.

For DBCTL, the DLISAS is required. Therefore, the LSO parameter is not used. For
a DB/DC environment running a DBCTL function, you must specify LSO=S.

The IMS control program automatically initiates the DL/l address space. If either the
control or DL/I address space terminates, the other is automatically terminated.

z/OS cross-memory services are used to process an application program database
call. Because of the frequency with which cross memory operations are used,
appropriate hardware support is recommended.

IMS restart procedures are insensitive to the LSO specification. For example, an
LSO=S system can be terminated and IMS restart procedures can be performed on
a system specifying LSO=Y.

DLISAS Procedure Modifications
You need to be aware of the following possible modifications required to the DL/I
address space procedure:

* Ensure that the JCL DD statements for the full-function databases are in the DL/I
address space procedure and not in the IMS procedure. JCL DD statements for
Fast Path databases and the IMS system data sets remain in the IMS procedure.

* You do not need to make changes to the dynamic allocation parameter lists in
IMS.SDFSRESL.

» Ensure that the specification of the active and inactive ACBLIBs are identical in
both the IMS procedure and the DLISAS procedure. (Both the control region and
the DL/l address space read ACBLIB.) The data sets used must have disposition
SHR, and the concatenation order must be identical.

* Ensure that IMS.PROCLIB is defined in both the IMS and DLISAS procedures.

» For the DLISAS procedure, you only need to pass the region type (DLS)
parameter and, optionally, the IMSID of the control program to which you want to
connect. When IMSID is specified on startup parameters, the IMSID is passed on
to the DBRC and DLISAS started tasks. Pool sizes and database buffering
options are specified on the IMS start procedure.

Related Reading: For more information about DLISAS, see IMS Version 9]
[installation Volume 2: System Definition and Tailoring|

DL/I Exit Routine Modifications for DLISAS
In an LSO=S system, the DL/I exit routines are entered in cross-memory mode and
certain operating system restrictions apply to this environment:

* The DL/l exit routines cannot address storage in the control address space.

» If the DL/I exit routines use the IMS ISWITCH service, they must be changed to
function correctly in an LSO=S system. On ISWITCH, you must give the macro
specification TO=DLI, not TO=CTL. The TO=DLI specification functions correctly
in all IMS environments.

76  Administration Guide: System



System Resource Options

DLISAS Storage Considerations
The LSO=S option moves the following major storage to the DLISAS private area:

* DL/I code

« Database buffers

* DMB pool, both resident and nonresident

* DMB work pool

* Most of the PSB pool, both resident and nonresident
* PI ENQ/DEQ tables for non-Fast Path systems

For an LSO=S system, the following storage is in the z/OS common area:
* OSAM code
* Resident intent lists

The resident intent lists are in the control region private area for LSO=Y.

DLISAS and PSB Pool Definition

In an LSO=S system, two PSB pools exist: one in the z/OS common area (DLMP)
and one in the DL/I region private area (DPSB). The output of the ACBGEN utility
indicates, for a given PSB, the amount of space required in each pool.

The sizes of these pools are specified with the SASPSB parameter on the
BUFPOOLS system definition macro. You can override these sizes with the
CSAPSB and DLIPSB parameters on the procedure used to start the online IMS
system.

If LSO=S is not being used, a single PSB pool exists in the z/OS common area. In
this case, the PSB parameter on BUFPOOLS and on the IMS start procedure is
used to specify the size of this pool.

The DPSB pool contains the DL/I control blocks associated with a full-function
database PCB (for example, the JCB or Level Table). The DLMP pool contains the
communications PCBs, Fast Path PCBs, and the key feedback area of the
full-function PCBs.

The ACBGEN utility organizes the PSB so that all data for the DLMP pool precedes
all data for the DPSB pool. This new organization applies to all IMS environments.

Accounting Procedures with an LSO=Y System

Accounting procedures based on the IMS system log, Resource Measurement
Facility (RMF™), and System Management Facility (SMF) are affected when LSO=Y
is specified since DL/I time is counted under the IMS control region address space.
The CPUTIME value recorded in the IMS system log is affected by the LSO option
specified. If LSO=Y is specified, only application program processing time is
recorded in the type07 log record; most DL/l processing time is not included.

For some applications, DL/I processing time can represent a large percentage of
the total processing time. If LSO=S is specified, DL/l processing time is included in
CPUTIME. Because the IMS system log does not indicate which LSO option is
specified, CPUTIME values should not be used for accounting or comparison
purposes when switching options.

DLISAS Security Considerations
If the full-function databases are RACF protected, the DLISAS procedure must be
authorized to access these resources.

Chapter 3. Defining Your System 77



System Resource Options

DLISAS Tuning Considerations
Tuning procedures must allow for the fact that the IMS control program consists of
more than one address space.

To perform a HALDB online reorganization, you must specify LSO=S.

Related Reading: For information about reorganizing HALDBs online, see the
[Version 9: Administration Guide: Database Manager,

The output of the ACBGEN utility indicates, for a given PSB, the amount of space
required in each PSB pool. An out-of-space condition in the DPSB pool or a
wait-for-storage condition is reflected in output reports of the IMS Monitor. In these
reports, DLMP and DPSB represent the CSA PSB pool and the DLS PSB pool,
respectively.

The command /DISPLAY POOL PSBP displays usage information for both PSB pools
in an LSO=S system.

To page fix the PSB pool, specify POOLS=DLMP and POOLS=DPSB in the
DFSFIXxx member in IMS.PROCLIB. To fix the resident PSB pool, the module
names DFSPSBRS and DFSDLIRS should be included in this member.

Security Options

IMS provides limited default security. You need to protect IMS and its resources by
implementing some type of security.

To implement security beyond the limited default security that IMS provides, you
can use either the IMS Security Maintenance utility (SMU), an external security
product such as the z/OS Resource Access Control Facility (RACF), which is
accessed through the z/OS System Authorization Facility (SAF), or user-defined exit
routines. Each of these security facilities, particularly when used together, provide
robust security for IMS; however, each implements security using different methods
and, depending on your needs, might have advantages or disadvantages over the
other.

Note: IMS Version 9 is the last version of IMS that will support SMU. See ['Limited
[[MS Support for SMU” on page 79|for more information.

SMU bases its security implementation on authorization tables that are stored in the
SMU IMS.MATRIX data set. For each IMS resource, you define a profile that lists
the resource name and the other IMS resources that are allowed to use that
resource. For example, for a given command, you can define a list of the
transactions that are allowed to issue that command. Then, when a transaction
issues the command, SMU checks its authorization tables to see if the transaction
is listed in the command’s profile. If it is not, the command request is denied.

Note: SMU does not support ETO or LU 6.2 devices. To secure these devices, use
RACF and exit routines. See I‘Limited IMS Support for SMU” on page 79| for
more information.

RACF bases its security implementation on user IDs and access privileges that are
defined in RACF resource classes. For each IMS resource, you define a profile in a
resource class that lists the authorized user IDs for the resource.

78  Administration Guide: System



System Resource Options

Resource classes can be for individual resources or for groups of resources. You
can assign user IDs to most IMS resources: terminal users, terminals, transactions,
dependent regions, and others. For example, if a transaction attempts to issue a
command, RACF checks the resource class profile for the command to see if the
user ID of the transaction is authorized to issue that command. If it is not, the
command request is denied.

Exit routines customize, refine, and enhance the security checking that is provided
by IMS, RACF, and SMU. You can write your own exit routines or use those
provided by IMS. Some of the exit routines IMS provides include the RAS exit
routine and the AGN Security exit routine.

The resources you need to protect include terminals, transactions, commands,
PSBs, dependent regions, and databases. Each of these resources has different
aspects of security you need to consider. For example, consider implementing
signon verification security for terminals. For a complete list of the resources you
need to protect, see [Chapter 4, “IMS Security,” on page 113

Dependent regions in particular require special consideration, because of the
application programs that execute in them. You need to protect IMS resources from
unauthorized actions taken by these programs.

Specifying Security Options

You make security choices at various stages of the IMS life cycle. During system
definition, use the SECURITY macro for general implementation decisions. You can
also use the IMSGEN and COMM macros to define security options; however, the
SECURITY macro definitions take precedence.

The TERMINAL and TRANSACT macros allow you to make resource-specific
security decisions. You can also specify certain general security decisions using
keyword parameters such as I1SIS=, RCF=, SGN=, TRN=, and others in the startup
procedures. You can make other security decisions using the DFSDCxxx PROCLIB
members.

The TYPE= keyword of the SECURITY macro allows you to specify the security
facilities—RACF, SMU, or exit routines—that you want to use for security checking
for dependent regions, transactions, commands, and signon. You can also specify
whether the master terminal operator can override the security matrix status at
restart time. This keyword also defines the flexibility the MTO possesses for
invoking or overriding the type of security checking that is to be active while IMS is
running.

The security options that you specify must be a part of the overall security design.
|Chapter 4, “IMS Security,” on page 113| discusses how to implement security for
IMS, including what you need to do to use RACF, SMU, and security exit routines.

Limited IMS Support for SMU

Because of limitations inherent in SMU and to simplify the general administration of
IMS security, IMS will not support SMU or AGN security after Version 9 of IMS. You
can now use RACF, RAS, and exit routines to protect any resource that previously
required SMU or AGN security for protection.

To ease the transition from security implemented with SMU to security implemented
with RACF and exit routines, IMS Version 9 continues to support SMU and has
enhanced RACF security to include:

* RAS security using RACF security profiles and exit routines

Chapter 3. Defining Your System 79



System Resource Options

* RACF support for signon verification security

* RACF support for terminal security when using TCO scripts

* RACF support for AO applications that use the CMD call

* RACF support for non-direct routed transactions received from an MSC link

Related Reading: For more information about replacing SMU and AGN security
implementations with RACF, see:

* |"“Migrating from SMU to RACF-Managed Security with IMS Version 9” on page|
117,

* The [IMS Version 9: Release Planning Guide|

Administering IMS System Data Sets

When installing a DB/DC environment, you must allocate and catalog IMS system
libraries and online data sets. Although this activity is done independently of the
actual system definition processing, you need to coordinate this activity with several
parts of system definition stage 1 input.

Planning for the definition of IMS data sets requires you to predict the direct access
storage to be allocated based on your anticipated application program work load.
Some of the data sets you estimate are affected by the design decisions made for
system definition. Most of these data sets are automatically generated as DD
statements within the members of IMS.PROCLIB.

Related Reading: For more information about the data set allocation, see
|Version 9: Installation Volume 1: Installation Verification]

IMS System Data Sets for Online Change

Online change enables you to add, delete, and replace IMS databases, programs,
transactions, and MFS formats online without having to bring down your IMS
system.

Adding, deleting, or changing the IMS resources involves changes to the control
blocks set up for these resources. If your system uses the online change facility of
IMS, it can require a special kind of system definition, a MODBLKS generation.
Within this system definition, you specify appropriate changes to keyword
parameters on the DATABASE, APPLCTN, TRANSACT, and RTCODE macro
statements.® A MODBLKS system definition generates the control block members
for resources that are to be added or changed online. These control blocks, stored
in the library IMS.MODBLKS, are used by the IMS control region, SMU, and the
MSC Verification utility when an online change to your IMS system is requested.

When installing the IMS online change function, you must create three copies of
each of the following libraries:

* IMS.MODBLKS—the library that contains the control blocks to support online
change of databases, programs, transactions, and MFS formats

* IMS.MATRIX—the library that contains your system’s security tables
* IMS.ACBLIB—the library that contains database and program descriptors

6. When designing a DBCTL or DCCTL environment, use the information in this topic as it applies to your system. For a DBCTL
environment, no MFS facility exists, and the TRANSACT and RTCODE macros do not apply. A DCCTL environment has no
database facilities; therefore, the DATABASE keyword does not apply.

80 Administration Guide: System



Administering IMS System Data Sets

* IMS.FORMAT—the library that contains your MFS maps produced by the MFS
Language and Service utilities

These libraries are for the exclusive use of IMS offline functions and are called the
staging libraries. For each library, a copy is made to produce a data set with a data
set name suffixed with an A and a B, for example, IMS.FORMATA and
IMS.FORMATB. These two copies of each library are used by the IMS online
system.

At initial installation, the staging libraries and the IMS A libraries are identical. At this
time, the A libraries are referred to as the active libraries. They are the libraries from
which IMS draws its execution information. The B libraries are not used at this time
and are referred to as the inactive libraries.

The online change function libraries work as follows:
1. You apply changes to the staging libraries.

2. The staging libraries are subsequently copied to the inactive (B) libraries using
the Online Change utility.

3. Operator commands are issued to cause the B libraries to become the active
ones; the old active (A) libraries become the inactive ones.

When you wish to add, replace, or delete any of the IMS resources previously
mentioned, you apply your changes to the offline staging libraries by running:

* A MODBLKS system definition—if you have added, changed, or deleted
applications, programs, full-function databases, or routing codes

* An ACBGEN—if you have added or changed any databases or programs

* The MFS Language and Service utilities—if you have added or changed any
MFS format definitions

* SMU—if you have added, changed, or deleted resources

You can apply changes to IMS.FORMAT, IMS.ACBLIB, or IMS.MATRIX
independently or in combination. IMS.MODBLKS is changed by the MODBLKS
system definition. If the security tables are changed, the suffix of the inactive library
must match that of the inactive IMS.MODBLKS library.

After issuing the sequence of commands (/MODIFY) to cause the previously inactive
libraries to become the active libraries, your previously active libraries become the
inactive libraries. They are not destroyed until overwritten by the next online change
sequence. This has the advantage of permitting you to return to this set of libraries
if backup and recovery are necessary or if an incorrect definition occurs during your
online change run. Additionally, IMS monitors for you which set of libraries is
currently active. This information is kept in a status data set, IMS.MODSTAT.

After an online change is successfully completed, it persists across all types of IMS
restarts. Additionally, the new resources can be easily maintained by running an
SMP JCLIN against the stage 1 output stream produced by your MODBLKS system
definition to record the contents of the new system definition in your SMP control
data set. This ensures that any maintenance applied to your IMS system is applied
to the currently active system.

IMS Online Data Sets

The online IMS data sets you need to define are shown in(Table 8 on page 82}

Chapter 3. Defining Your System 81



Administering IMS System Data Sets

Table 8. List of Online IMS Data Sets

ddname Data Set/Content Prerequisite

IEFRDER IMS.JOBS (PDS) Use of IMSRDR to start regions

STEPLIB IMS.SDFSRESL (PDS) APF library authorization

DFSESL Optional use for external APF library authorization

subsystems

PROCLIB IMS.PROCLIB (PDS) Procedures and initialization, use of DL/I
address space

MODBLKSA/B From staging IMS.MODBLKS Modified for online change

MODSTAT Active library list INITMOD procedure, Online Change utility

DFSOLPnrE Online log data set (primary) Archiving, dynamic allocation

DFSOLSnri Online log data set (dual) Archiving, dual logging

DFSTRANN External Trace

DFSWADSH WADS data set and spares Dual WADS logging, dynamic allocation

QBLK Message queue blocks Transaction traffic

SHMSGE Short message Message sizes

LGMSd2 Long message Message sizes

IMSACBA/B From staging IMS.ACBLIB ACBGEN procedure execution, Online Change
utility, use of DL/I address space

msDBCP1IBE Fast Path MSDB checkpoint Size of MSDBs

MsDBcPBE Fast Path MSDB checkpoint Size of MSDBs

MSDBDUMAZE Fast Path MSDB output Size of MSDBs and operations

MSDBINITE E Fast Path MSDB input MSDB Maintenance utility

FORMATA/BZ From staging Format library MFSUTL procedure execution, Online Change
utility

IMSTFMTA/BE Test message formats (PDS) MFSTEST procedure execution, Online
Change utility

IMSRDS Restart data set IMSCTF macro

MATRIXA/B From staging security tables SMU execution, Online Change utility

Comm Lines® BTAM terminal addresses LINEGRP, LINE macros

DatabasesH Bl Database data sets DATABASE macro, ACBLIB content, use of
DL/l address space

IMSMONZ IMS Monitor output IMSCTF macro

Spool names2 Spool output (IMS.SYSOnNNnN) LINEGRP macro

PRINTDD System output Installation standards

DUMP Diagnostic storage dump Installation standards

Notes:

1. This ddname is not required if dynamic allocation macros are coded.
2. This ddname does not apply to DBCTL.
3. This ddname does not apply to DCCTL.

82 Administration Guide: System



Administering IMS System Data Sets

Initializing System Data Sets When Not Using Online Change

If you do not plan to use the online change function, you do not need to maintain
the full set of staging, active, and inactive libraries. You only need to manage the
staging libraries. You do not need to make copies for the active data sets—which
would have exactly the same contents.

Specifying the IMS System Log

A series of DFSOLPnn DD statements specifies the IMS system log on which
current activity for the IMS system is written. Each DD statement specifies an online
log data set (OLDS). Instead of using DD statements, you can define some or all of
the OLDS for dynamic allocation by using z/OS and the IMS DFSMDA procedure.
With this method, you have the option of setting aside spare OLDS to be
dynamically allocated by the master terminal operator (using the /START command).
Whether you use JCL statements or dynamic allocation, you must declare the list of
numeric suffixes (nn), or OLDS identifiers, that are to be initially used by IMS. You
do this with an OLDSDEF statement in the DFSVSMxx member of IMS.PROCLIB.

For write-ahead data sets (WADSSs), you make preparations similar to those for
OLDSs. You can use DD statements (DFSWADSnN) or DFSMDA for dynamic
allocation. With the latter, the master terminal operator can start and stop an
individual WADS. For initial use by the IMS online system, you must define the
WADS numeric suffixes in a WADSDEF statement in the DFSVSMxx member.

If you plan to use the additional integrity afforded to recovery operations when a
duplicate system log is available, you need to include a second series of DD
statements, DFSOLSnNN, or define them with the DFSMDA macro. Also, specify
MODE=DUAL on the OLDSDEF statement. For restart situations, dynamic backout,
OLDS archiving, and BMP restart, IMS automatically switches to the secondary log
if an 1/0 error is detected on the primary.

Related Reading: For more information about the system log strategy and its use
in the IMS online system operation and recovery, see [[MS Version 9: Operations]

[Guidd,

Tuning the System Log Block Size

The online log data sets (OLDSs) corresponding to the DFSOLPnn and DFSOLSnn
DD statements must be pre-allocated. Your installation chooses the value for the
block size. The value must be a multiple of 2048 bytes. The specification uses
fixed-blocked records. For the number of 1/0O buffers, you specify the BUFNO
parameter on the OLDSDEF statement in the DFSVSMxx member of
IMS.PROCLIB. The default number of buffers is 5. The OLDS block size must be
the same for all data sets and must be specified in the pre-allocation step. (The DD
statements that are generated for the IMS procedure that executes the control
region use default DCB parameters.)

The OLDS block size should be relatively large and chosen to take advantage of
the physical DASD device characteristics.

Related Reading: For more information about OLDS block size, see IMS Version 9:

installation Volume 1: Installation Verificatior}

If the active subsystem is being tracked by an RSR (Remote Site Recovery)
tracking subsystem, the OLDS block size should not be larger than 32708 bytes. If
the OLDS block size is larger, then log data is not sent to the tracking subsystem at

Chapter 3. Defining Your System 83



Administering IMS System Data Sets

the time that this data is written by the active subsystem. Instead, this log data is
sent at a later time by the isolated log sender (ILS).

Related Reading: For more information about RSR processing, see|Chapter 11,
['Remote Site Recovery,” on page 329.

Message Queue Data Set Allocation in DB/DC and DCCTL

Environments

The amount of direct access storage space allocated to the message queue data
sets depends on how many transaction codes and logical terminal names are
specified during system definition, and how many messages, both short and long,
are to be held by the system during any period of time.

The amount of direct access storage space allocated to the message queue data
sets can be changed prior to a cold start of IMS. Reallocation of the message
queue data sets with a warm-start requires the use of the FORMAT and BUILDQ
parameters with either the /NRESTART or /ERESTART command. Allocating less space
(than in the previous execution) prior to a /NRESTART or /ERESTART BUILDQ might
cause the restart to abend.

You can allocate up to 10 data sets for the long message queue and 10 data sets
for the short message queue. Each data set requires an additional DD statement.

Ensure that all data sets of a given message queue type are the same size. If the
data sets have different sizes, the smallest size is used for all. This can reduce the
available space of a message queue.

If you change the number of data sets, or if you rename any of the message queue
data sets, you must restart the system.

The Queue Manager Concurrent I/O component provides multiple normal short and
long message queue data sets. This facility is optional, and you can invoke it by
providing 1 to 10 DD cards for the normal short and long message queue data sets.

The normal short and long message queues allow only one DD card for each.

In order to provide Queue Manager Concurrent I/O:

* IMS initialization allows multiple physical data sets to be viewed as one logical
data set.

* You can view both the physical data set and the logical structure.

The Queue Manager Concurrent 1/O component provides a performance
enhancement by allowing the Queue Manager to perform parallel 1/0 on the
message queues.

To prevent message queue overflow due to looping application programs, the
Queue Manager and the Queue Space Notification exit routine (DFSQSPCO)
monitor the number of buffers assigned to each unit of work (UOW). When a UOW
exceeds its buffer limit, the Queue Space Natification exit routine takes action to
prevent further inserts by that UOW, and an 'A7' status code is returned to the
application program.

Related Reading:

84 Administration Guide: System



Administering IMS System Data Sets

* For more information about multiple message queue data sets, see |IMS Versioﬂ
9: Installation Volume 1: Installation Verificatior] or IMS Version 9: Installatior}
Volume 2: System Definition and Tailoring}

 For more information about the 'A7" status code, see [IMS Version 9: Application|
[Programming: Database Manager|

Monitoring and Controlling High Message Queue Users with the
Queue Control Facility

You can monitor and take action to prevent high message queue users. Use the
User Queue Space Notification exit routine (IQMRHO linked as DFSQMRHO0) and
the QCF ISPF interface. Using this exit routine helps prevent queue usage from
reaching critical thresholds.

Related Reading: For more information about the User Queue Space Notification
exit routine, see the IMS Queue Control Facility for z/0S User’s Guide.

Additional Restrictions in an XRF Environment
Message queue data sets in an XRF environment have two additional restrictions:

* The number of data sets allocated for the short and long message queues must
be the same on the primary and the alternate subsystems.

* The names for the message queue data sets must be different on the primary
and alternate subsystems. These data sets cannot be shared between
subsystems.

Message Queue Data Set Secondary Allocation

Several factors affect the usage of IMS.QBLKS records. For example, the
requirement for multiple temporary destinations when using program isolation can
cause an increase in the space requirements. The space requirements for the
IMS.QBLKS data set depend on your installation.

The amount of direct access space required for the IMS.SHMSG and IMS.LGMSG
data sets is dependent on message throughput. The disk space is reusable as soon
as the message to which it was allocated has been processed and it is no longer
required for recovery.

Message queue data set space should be allocated in terms of contiguous cylinders
for most efficient operation. Secondary allocation is ignored unless the secondary
space has been preallocated (that is, multiple volume data set with preallocated
space on both volumes). Allocate each message queue data set on a separate
direct access device or next to each other, with IMS.QBLKS in the center, on the
same direct access device.

Allocation for OSAM Data Sets

The recommended method of allocation for single or multiple volumes is through
the use of JCL at the time the data set is loaded using the SPACE parameter.

If your installation control of DASD storage and volumes is such that the OSAM
data sets must be reserved ahead of time, or if you decide that a message queue
data set requires more than one volume, the OSAM data sets can be preallocated.

Pre-allocation has the following restrictions:
» DCB parameters should not be specified.

» If the data set is to be expanded beyond the preallocate space, a secondary
guantity must be specified during pre-allocation. Queue data sets are constrained
to only that space that is preallocated.

Chapter 3. Defining Your System 85



Administering IMS System Data Sets

When a multiple-volume data set is preallocated, the method of allocation should
allocate extents on all volumes to be used. The end of the data set must be
correctly indicated in the DSCB on the last volume.

Related Reading: For more information about OSAM data sets, see IMS Version 9:

installation Volume 1: Installation Verificatior]

Message Queue Data Set Allocation Restrictions

If emergency restart procedures using BUILDQ are to be used, you must carefully
reallocate logical record and data set spaces. The BUILDQ procedure always
restores the message queue entries to the relative position in the respective queue
data sets they had at the time they were saved. If the logical record or data set size
has been decreased, it might be impossible to perform the restart.

Related Reading: For more information about these situations, see |IMS Version 9:

|Operations Guideg,

Migrating IMS Messages to a Different Release or Configuration
of IMS

You can use the Queue Control Facility (QCF) to migrate messages from one
release of IMS to another. QCF is also used after a cold start to migrate messages
either to a new configuration or after maintenance.

Related Reading: For more information about the Queue Control Facility, see the
IBM Queue Control Facility for IMS User’s Guide.

Restart Data Set Allocation

The restart data set is required. A minimum of 5 tracks must be allocated to the
restart data set because it contains the checkpoint-ID table and other control
information.

Defining Spooled SYSOUT Data Sets in DB/DC and DCCTL

Environments

Message processing programs can require their own printed output to be separate
from any system-wide SYSPRINT output. IMS provides for spooled output data
sets, as well as a print utility (DFSUPRTO), which can be scheduled during
execution of the online system.

You need to perform several definition steps to respond to the application and
operational requirements, as described in the subtopics within this topic.

Isolating the Spooled SYSOUT Requirements

You need to determine the LTERM names that the application programs will use.
There might be output that is unique to a particular program or an agreement
among several programs to use the LTERM for their online printed output.

You also need to obtain estimates of the volume of output so that you can make
appropriate space allocations for the DASD data sets. Also, you need to assess the
maximum output buffer size to handle the output without unnecessary buildup.

You should obtain some indication of the turnaround requirements for the output
and whether the output is to be accumulated or produced in small batches. This
information helps you decide how many data sets are needed to support the
operation of each group of output (at least two data sets are recommended) and
how to schedule the printing operation.

86 Administration Guide: System



Administering IMS System Data Sets

Allocating Required IMS.SYSnn Data Sets

You allocate 1 to 99 DASD data sets with appropriate space specifications. One of
the factors that determines the availability of the data set for printing is the
end-of-volume condition. You can either allocate sufficient primary space with any
additional output planned to spill to alternative data sets, or you can allocate
secondary space for unusual amounts of output.

Allocate and catalog these data sets along with your other online system data sets.
The data set names are in the form IMS.SYSnn, beginning with IMS.SYSO0L1.

Related Reading: For more information about IMS.SYSnn data sets, see
[Version 9: Installation Volume 1: Installation Verification|

Defining Spool Line Groups in System Definition

In system definition, you specify a LINEGRP macro dedicated to SPOOL output.
Associated with the LINEGRP macro are LINE, TERMINAL, and NAME macro
specifications.

Related Reading: For more information about defining spool line groups, see
[Version 9: Installation Volume 1: Installation Verification]

Initializing the RECON Data Set for DBRC

A necessary step in preparing for online operation is to ensure that the RECON

data set, in which system log and database status is recorded, is ready. This part of

installation should be coordinated with database administration personnel. The

installation steps are:

1. Define two RECON data sets (named RECON1 and RECON2) and a spare
data set (hamed RECONB3).

2. ldentify the database data sets to be tracked.
3. Record a starting set of data set levels.

Access Method Services parameters define the VSAM KSDS data sets referenced
as RECON1, RECON2, and RECON3. Then the INIT.RECON command is used to
write the required header record.

Related Reading: For more information about the allocation parameters, see
[Version 9: Database Recovery Control (DBRC) Guide and Reference, All three
RECON data sets can be dynamically allocated.

A separate record is required for each data set of the databases that are to be
controlled. The image copy, reorganization, and recovery operations call upon the
current information in the RECON data set records. Using the INIT.DBDS command,

you specify:
* The database name, the data set ddname, and the relevant data set names

* The number and reuse characteristics of image-copy data sets that are to be
maintained

* Indicators of how the data sets are to be allocated by the IMS system
* The member names of procedures to execute database utilities

Using other commands in the INIT group creates other records for initial change

accumulation, image copy, and system log data set names. INIT.DB is used to
specify the share level for a database.

Chapter 3. Defining Your System 87



Administering IMS System Data Sets

Related Reading: For more information about using the RECON data set for
recovery, see W?S Version 9: Operations Guide,

For system definition purposes you need to coordinate the entries on DATABASE
macro statements, the online JCL requirements, and the database maintenance
procedures.

DBRC RECON data sets from prior IMS releases must be upgraded to the IMS
Version 9 format with the RECON Upgrade utility.

Restriction: The DBRC skeletal JCL members supplied with IMS Version 9 are
not downward compatible.

Related Reading: For information on the RECON Upgrade utility and the DBRC
related commands, see |IMS Version 9: Database Recovery Control (DBRC) Guide

HALDB Indirect List Data Set

The use of logical relationships or secondary indexing presents challenges in High
Availability Large Database (HALDB) reorganization processing. After a HALDB
partition is reorganized, the change in segment locations in the reorganized partition
potentially invalidates all of the pointers to those segments, whether or not the
pointers are from other database records within the same HALDB patrtition, other
HALDB partitions, or HALDB secondary indexes. In order to eliminate the need to
update pointers throughout other database records when a single HALDB patrtition
is reorganized, HALDB introduces the use of indirect pointers.

After a reorganization, direct pointers that have become invalid are updated by
using the indirect pointers upon the first reference to the segments that have
moved. A new system index data set, which serves as a repository for indirect
pointers, is introduced for HALDB. This system index data set is called the Indirect
List Data Set (ILDS).

The ILDS is a VSAM KSDS with a 9-byte key. There is one ILDS per partition in a
PHDAM, or PHIDAM database. During a reorganization reload or migration reload
of segments involved in inter-record pointing, an entry called Indirect List Entry (ILE)
is created in the ILDS for each of these segments that is reloaded. Each ILE is 50
bytes in length and contains pointers and control information. The following is a
sample of IDCAMS input that is used for defining an ILDS.

DEFINE CLUSTER ( -

NAME (FFDBPRT1.XABCD010.L00001) -
TRK (2,1) -
VOL (IMSQAV) -
FREESPACE (80,10) -
KEYS (9,0) -
RECSZ (50,50) -
REUSE -
SHAREOPTIONS (3,3) -
SPEED ) -

DATA ( -
CISZ (512) ) -

INDEX ( -
CISZ (2048) )

NAME Defines the HALDB Partition Base Name (FFDBPRT1.XABCD010), ILDS
reference (.L), and HALDB Partition ID (00001).

88 Administration Guide: System



Administering IMS System Data Sets

KEYS A required parameter value. Specifies a key size of 9 bytes at offset 0 into
the LRECL.

RECSZ
A required parameter value. Specifies a record size of 50 bytes, the length
of an ILE. REUSE must be specified for all HALDB VSAM data sets.

FREESPACE
Provides for free space on initial loads and after Cl and CA splits.

To compute the size of an ILDS, multiply the size of an ILE with the total number of
physically paired logical children, logical parents of unidirectional relationships, and
secondary index target segments.

Tailoring the IMS Procedure Library

This topic addresses another part of the task of preparing the IMS online system for
execution. The system requires not only control blocks built by the system definition
process and suitably defined system data sets, but also a set of control parameters
specified on the EXEC JCL statements of both the control region and each
dependent region.

Part of the result of performing stage 1 of system definition is a set of updates to
IMS.PROCLIB; these updates are listed in the stage 1 output. Stage 2 applies
these updates to the library. You can tailor the contents of the members either
before stage 2 or by direct maintenance against IMS.PROCLIB. Remember that you
can set up default values for the parameters, but they can be re-specified at region
startup with the use of the symbolic parameters. Initially, these parameters use
values preset by system definition, but individual region control or tuning
recommendations can override the initial or default values.

IMS.PROCLIB Members Generated by System Definition

The generated members of IMS.PROCLIB fall into several categories depending on
their use. Generated IMS.PROCLIB members can be used for:

* Online operation

* Online initialization

* Online preparation and maintenance
» Batch operation

» Alternative batch execution

» Database definition and access

* Application program preparation

Related Reading: For information on specific PROCLIB members, see [[IMS Versio
9: Installation Volume 2: System Definition and Tailoringj

Controlling the IMS Procedure Library

Although many of the procedures generated in IMS.PROCLIB require alteration
before they can be used in direct execution of the online system, they do provide a
convenient start to the task of defining execution JCL. Many of the members have
content that directly indicates the options you specified in the system definition
stage 1 input. For example, the online execution member IMS includes a DD
statement for IMSMON if the IMSCTF macro specifies LOG=MONITOR.

Chapter 3. Defining Your System 89



Procedure Library

You should carefully examine the procedures generated as a result of your system
definition.

Related Reading: For information on the differences from the listed procedures,
and some explanatory notes about the JCL statements for several procedures that
might apply to your generated library, see |IMS Version 9: Installation Volume 2.1
[System Definition and Tailorind,

This topic describes the following information:

» ["Assigning Procedure Names’1

« [Initializing Your Procedure Library’|

* |"Preparing for IMS Job Execution” on page 91|

* ['Preparing PROCLIB Member DFSPBxxx” on page 91|

* |"Creating PROCLIB Member DFSFDRxx" on page 91|

» [‘Tailoring Fast Path Execution Procedures in DB/DC or DCCTL” on page 91|
« [“Tailoring Fast Path Execution Procedures in DBCTL” on page 92

« [“Controlling Procedure Library Modifications” on page 92|

Assigning Procedure Names

You rename the IMS.PROCLIB members according to your installation’s
requirements. The names can follow a convention that suggests ownership by a
particular application system or a convention that has an implied sequence. For

example:

IMSIMAG Initial procedure for image copies of database
IMSCTL Control region startup (IMS renamed)

IMSTXLD BMP to preload a transaction queue (IMSBATCH)
IMSMSG1 Message region startup (IMSMSG)

IMSBCH1 Low-priority BMP (IMSBATCH)

IMSMSG2 Second message region when required (IMSMSG)
IMSWT000 Spool output print procedure (named by IMS)

The procedure names are used by the system operator or master terminal operator
to invoke the z/OS job execution.

To develop these members, you need to either rename the members in
IMS.PROCLIB or create new members. In some installations, the procedures are
added to SYS1.PROCLIB. One option of the NODE keyword on the IMSGEN macro
allows you to substitute an alternative library naming convention, so that your base
procedure library can be named LEGAL.PROCLIB.

Initializing Your Procedure Library

Given your requirements for the members of the procedure library, you now need to
adjust the exact JCL content. The updates you apply follow naming conventions for
your installation as well as the required DD statements. In all procedures, you can
add JCL comment statements for additional documentation.

Related Reading: For more information about the tailoring actions of each
PROCLIB member, see [IMS Version 9: Installation Volume 2: System Definition|

90 Administration Guide: System



Procedure Library

Preparing for IMS Job Execution

In preparation for executing the IMS procedure as a system task, the members
IMS, IMSRDR, DBC, DCC, DBRC, and DLISAS are moved to SYS1.PROCLIB.
Additional generated members of IMS.PROCLIB, especially IMSMSG and the set of
IMSWTnnn members for spool output, need to be tailored to satisfy your
installation’s requirements. IMSMSG invokes the procedure DFSMPR, and the
IMSWTnnn members invoke DFSWTnnn. To enable message region and spool
output jobs to be started with IMS commands or from the system console, these
members, after tailoring, are moved to the IMS.JOBS data set, which is
concatenated with SYS1.PROCLIB.

Preparing PROCLIB Member DFSPBxxx

PROCLIB member DFSPBxxx contains IMS control region execution parameters.
However, the values specified on the EXEC statement override (but do not nullify)
any parameters specified in DFSPBxxx.

To build or update a DFSPBxxx member, use the IMS Syntax Checker. IMS Syntax
Checker is an ISPF application that helps you manage parameters for the
DFSPBxxx, DFSDCxxx, and DFSSQxxx PROCLIB members. For all currently
supported IMS versions, the IMS Syntax Checker displays new parameters,
identifies obsolete ones, and provides default parameter values. IMS Syntax
Checker validates and saves to the PROCLIB member any changes you make to
parameter values.

IMS also creates sample DFSPBxxx PROCLIB members during system definition.
The sample members are as follows:

* DFSPBIMS for IMS DB/DC
* DFSPBDBC for DBCTL
* DFSPBDCC for DCCTL

These samples contain all the valid parameters for the specified IMS control region.

To use the DFSPBxxx member, code RGSUF=xxx on the invocation of the IMS
procedure.

Related Reading: For more information about the DFSPBxxx member and the IMS
procedure, see [IMS Version 9: Installation Volume 2: System Definition and

Creating PROCLIB Member DFSFDRxx

PROCLIB member DFSFDRxx specifies the options that Fast DB Recovery uses.
You can specify multiple instances of DFSFDRxx in IMS.PROCLIB, but each
DFSFDRxx member must have a unique, two-digit suffix. Fast DB Recovery, IMS,
or DBC procedures identify which DFSFDRxx member to use.

Related Reading: For more information about the DESFDRxx member and Fast
DB Recovery, IMS, and DBC procedures, see |IMS Version 9: Installation Volume 2.1
[System Definition and Tailorind,

Tailoring Fast Path Execution Procedures in DB/DC or DCCTL
As a result of defining Fast Path application programs in system definition macros,
the contents of IMS.PROCLIB include two procedures for executing Fast Path
dependent regions in a DB/DC or DCCTL environment:

IMSFP To execute a region containing a Fast Path application program
FPUTIL To execute online DEDB utilities

Chapter 3. Defining Your System 91



Procedure Library

You must tailor both of these procedures to the requirements of individual programs.
Also, several of the other members of the procedure library have EXEC statement
parameters that specifically apply to Fast Path or need to reflect Fast Path
requirements. The additional tailoring actions are summarized in

Table 9. Tailoring Actions for Fast Path Procedures

PROCLIB Member Tailoring Action

IMS Specify buffering and output thread limits
Re-specify region size
Add appropriate DEDB DD statements
Allocate MSDB initialization data set

DFSMPR Specify buffering reserved for this region

IMSBATCH Specify buffering reserved for this region

IMSFP Specify the application program and region size
Specify buffering reserved for this region

FPUTIL Specify the DEDB name and restart indicator
Provide the utility control statements

DFSFIXxx Page fix list for Fast Path control blocks

DBFMSDBx List of MSDBs and segments to be loaded

Related Reading: For more information about each of these PROCLIB members,
see [IMS Version 9: Installation Volume 2: System Definition and Tailoring|

Tailoring Fast Path Execution Procedures in DBCTL

After defining Fast Path application programs in system definition macros, the
contents of IMS.PROCLIB in a DBCTL environment include FPUTIL, a procedure
that executes online DEDB utilities.

This procedure must be tailored to the requirements of individual programs. Also,
several of the other members of the procedure library have EXEC statement
parameters that specifically apply to Fast Path or need to reflect Fast Path
requirements. The additional tailoring actions are summarized in .

Table 10. Tailoring Actions for Fast Path Procedures in a DBCTL Environment

PROCLIB Member Tailoring Action

DBC Specify buffering and output thread limits
Re-specify region size
Add appropriate DEDB DD statements

IMSBATCH Specify buffering reserved for this region

FPUTIL Specify the DEDB name and restart indicator
Provide the utility control statements

DFSFIXxx Page fix list for Fast Path control blocks

Related Reading: For more information about each of these PROCLIB members,
see |IMS Version 9: Installation Volume 2: System Definition and Tailoring|

Controlling Procedure Library Modifications

Using operator commands keeps the initial operating instructions simple and avoids
complex symbolic parameter data entry. However, you must control the exact
content of the JCL residing in IMS.PROCLIB. For example, the master terminal
operator enters:

92 Administration Guide: System



Procedure Library

/START REGION IMSBCH1

The procedure IMSBCH1 must be correctly coordinated to a known BMP,
appropriate PSB and transaction queue, other system options, and identifying
parameters.

Your control responsibilities can include auxiliary procedures for database
reorganization, recovery, or system output control. Further, the modification level of
each procedure must be coordinated to the actual production environment. For
example, if an application program is modified and requires more dependent region
storage, you must coordinate the program library and IMS.PROCLIB changes. One
technique is to include JCL comment statements that document the date and the
reason for the change.

Take special care to check the physical changes you make in procedure library
members. Many of the DD statements extend over several input records and
involve positional parameters, so you need to make more than a cursory
examination of a change. You can use a data dictionary to record and maintain the
procedure library members. Changes can then be checked at the terminal or by
reviewing listings of the changed members.

Specifying EXEC Statement Parameters

The EXEC statement parameter categories are:
» Database and PSBs

« Data communications

» System control and performance

* Recovery and restart

* Security options

The EXEC statement parameters are presented as they relate to the following
topics:

+ [‘Control Region Parameters’

+ [‘Message Processing Region Parameters in DB/DC and DCCTL Environments’|

on page 102|

[‘Batch Message Processing Region Parameters” on page 104
[‘Fast Path Dependent Region Parameters in DCCTL or DB/DC” on page 106|
[‘Fast Path Parameters in BMP and CCTL Regions in DBCTL” on page 108

« ['Online DEDB Utility Region Parameters in DCCTL, DBCTL, or DB/DC” on page]
108

Related Reading: For more information about these parameters, see [IMS Versio
9: Installation Volume 2: System Definition and Tailoring{

Control Region Parameters

Use the PARM1= and PARM2= parameters on the EXEC statements for the control
region to specify the JCL for IMS online execution. For optimal performance, it is
recommended that you use PARM1= and PARM2= parameters rather than creating
your own JCL. These parameters are specified symbolically for the control region.

Chapter 3. Defining Your System 93



EXEC Statement Parameters

EXEC Parameters for Database Buffers

The VSPEC parameter enables you to point to member DFSVSMxx in
IMS.PROCLIB; this member predefines the buffer pool requirements for databases
that use OSAM or VSAM as the access method.

Related Reading: For more information about the specification for the subpool
sizes, see [IMS Version 9: Installation Volume 2: System Definition and Tailoring}

EXEC Parameters for DMB and PSB Buffers

Several parameters enable you to override the size of buffer pools to hold DMBs
and PSBs that were predefined during system definition. Performance analysis
often results in a request to increase DMB or PSB buffer space. To change DMB or
PSB buffer space, you can override the system definition values.

Related Reading: For more information about overriding these values, see
[Version 9: Installation Volume 2: System Definition and Tailoring

Fast Path EXEC Parameters in DCCTL or DB/DC

Note: The DCCTL environment does not support Fast Path databases. It does
support Fast Path processing and transactions.

The PARM1= and PARM2= positional parameters for the control region’s EXEC
statement can also be used to specify the Fast Path parameters shown in[Table 11

The parameters determine:
* MSDB load requirements
» Overrides of buffer sizes
» DEDB options

Table 11. Categories and Purpose of Fast Path Control Region Parameters for DCCTL and

DB/DC
Category Parameter Purpose
MSDB load MSDB Specify the DBFMSDBXx suffix
Database buffer sizes BSIZ Specify the common size of a buffer
DBBF Specify the maximum number of buffers
DBFX Specify system buffer allocation
DEDB options OTHR Specify the number of DEDB updates that
can be concurrently waiting for 1/0 after sync
point
LGNR Specify the maximum DEDB buffer
alterations before ClI logging
EPCB EPCB Specify the size of the EPCB pool
EMHL EMHL Specify the size of the EMHL buffer

When an emergency restart is performed, the values specified for the EXEC
parameters MSDB, BSIZ, DBBF, OTHR, and LGNR, and the contents of the
member DBFMSDBX, must remain unchanged from the last normal start. (These
values are used when reestablishing buffer contents from checkpoint records.)

MSDB Loading: The MSDB parameter enables you to control which MSDBs must
be loaded for the current online session and how many segments each MSDB

94  Administration Guide: System



EXEC Statement Parameters

requires. The parameter is generated with a null value, implying that the MSDBs
are loaded directly from a Fast Path system data set. You specify a 1-character
suffix that points to an IMS.PROCLIB member, DBFMSDBX, containing the detailed
requirements.

If the MSDB requirements for an online session are a subset of the MSDBs, or if
the number of segments for any MSDB is to be increased to reserve space for
dynamic terminal-related MSDBs, you must coordinate the content of the
DBFMSDBx member and the MSDB parameter value. The control statements in the
DBFMSDBx member must explicitly name all MSDBs required to be loaded. The
control statements also enable you to individually select MSDBs for page fixing.

LU 6.2 devices allow read-only access to dynamic MSDBs. LU 6.2 devices cannot
access terminal-related MSDBs.

Terminals defined dynamically with ETO are not available to terminal-related
MSDBs.

Database Buffers: Using the DBBF and BSIZ parameters, you declare the total
buffers available for the IMS online system’s processing of MSDB and DEDB
activity. Dependent regions then claim portions of this allocation. The parameters
have the following characteristics:

DBBF
Specifies the maximum number of these buffers, from 1 to 9999. The storage is
obtained as needed from the extended common storage area (ECSA). You
might need to adjust the ECSA or region due to your requirements.

Your DBBF value adjusts the second subparameter value specified for the
BFALLOC keyword in the system definition FPCTRL macro. A null value is
generated for the IMS procedure, so that the number of buffers is set to the
default FPCTRL value. If you override, you must adjust for any change in DBFX
specification.

BSIZ
Specifies buffer size in bytes. Choose a value corresponding to the largest
DEDB control interval size. BSIZ is generated as a null value to invoke the
system definition default value. The default value is usually sufficient, because
your largest DEDB CI size is likely to be unchanged.

DBFX
Reserves a subset of the total Fast Path buffers for general system use. The
parameter specifies the number of buffers to be page fixed when the first Fast
Path dependent region is started. A null value is generated to invoke the system
definition default, specified as the first parameter value for the BFALLOC
keyword on the FPCTRL macro.

DEDB Options: The OTHR parameter specifies the number of asynchronous
output threads. You can revise the estimate of DEDB updates that occupies buffer
space while they are waiting to be committed to the area data sets after sync point
logging. Your revision overrides the value given for the OTHREAD keyword on the
FPCTRL macro, and can range from 1 to 255 but cannot be more than the
specified value of the MAXPST parameter on the IMS procedure.

The LGNR parameter determines a maximum number of individually logged DEDB
alterations made in a buffer. Above that number, the whole control interval (Cl) is

Chapter 3. Defining Your System 95



EXEC Statement Parameters

logged. The default value is 7, and you can specify a number from 7 to 99. If the
application program is using large Cls, the LGNR value can be increased to
economize on the system log activity.

Fast Path EXEC Parameters in DBCTL

The PARM1= and PARM2= positional parameters for the control region’s EXEC
statement that are additionally specified for Fast Path are shown in [Table 12|

The parameters determine:
» Overrides of buffer sizes
« DEDB options

Table 12. Categories and Purpose of Fast Path Control Region Parameters for DBCTL

Category Parameter Purpose
Database buffer sizes BSIZ Specify the common size of a buffer
DBBF Specify the maximum number of buffers
DBFX Specify system buffer allocation
DEDB options OTHR Specify the number of DEDB updates that
can be concurrently waiting for 1/O after sync
point
LGNR Specify the maximum DEDB buffer
alterations before Cl logging
EPCB EPCB Specify the size of the EPCB pool

When an emergency restart is performed, the values specified for the EXEC
parameters BSIZ, DBBF, OTHR, and LGNR must remain unchanged from the last
normal start. (These values are used when reestablishing buffer contents from
checkpoint records.)

Database Buffers: Using the DBBF and BSIZ parameters, you declare the total
buffers available for the IMS online system’s processing of DEDB activity.
Dependent regions then claim portions of this allocation. The parameters have the
following characteristics:

DBBF
Specifies the maximum number of these buffers, from 1 to 9999. The storage is
obtained as needed from the extended common storage area (ECSA) or, if
FPBUFF=LOCAL is specified in DFSFDRxx, from the FDBR private region. You
might have to adjust the ECSA or region due to your requirements.

Your DBBF value can adjust the second subparameter value specified for the
BFALLOC keyword in the system definition FPCTRL macro. A null value is
generated for the IMS procedure, so that the number of buffers is set to the
default FPCTRL value. If you override, remember to adjust for any change in
DBFX specification.

BSIZ
Specifies the buffer size in bytes. Choose a value corresponding to the largest
DEDB control interval size. BSIZ is generated as a null value to invoke the
system definition default value. The default value is usually sufficient, because
your largest DEDB CI size is likely to be unchanged.

DBFX
Reserves a subset of the total Fast Path buffers for general system use. The
parameter specifies the number of buffers to be page fixed when the first Fast

96 Administration Guide: System



EXEC Statement Parameters

Path dependent region is started. A null value is generated to invoke the system
definition default, specified as the first parameter value for the BFALLOC
keyword on the FPCTRL macro.

DEDB Options: The OTHR parameter specifies the number of asynchronous
output threads. It allows you to revise the estimate of DEDB updates occupying
buffer space while waiting to be committed to the area data sets after sync point
logging. Your revision overrides the value given for the OTHREAD keyword on the
FPCTRL macro, and can range from 1 to 255 but cannot be more than the
specified value of the MAXPST parameter on the DBC procedure.

The LGNR parameter determines a maximum for the number of DEDB alterations
made in a buffer that are individually logged. Above that number, the whole control
interval (Cl) is logged. The default value is 7, and you can specify a number from 7
to 99. If the application program is using large Cls, the LGNR value can be
increased to economize on the system log activity.

Other Database Performance Options

Use the system definition to specify individual database DMBs and PSBs to be
resident. You can override this specification with the parameter RES. When you
execute a test system or if storage is temporarily constrained, it might be useful to
specify RES=N so that all the control blocks are not made resident.

Data Communications EXEC Parameters

The set of parameters in the IMS procedure that are related to data
communications are:

» Overrides of predefined parameters

* ETO parameters

* Performance options

Overrides of Predefined Parameters (FBP, QBUF, SAV, EMHL, RECASZ,

RECA) Monitoring communication traffic often results in a decision to
increase buffer space or the number of buffers. The following
execution parameters are provided to override the size and number
of some of the buffer pools predefined at system definition:

FBP
Overrides the size specified on the FORMAT(sizel) keyword of
the BUFPOOLS macro.

QBUF
Message queue buffer. Adjusts the size of the message queue
buffer pool. QBUF enables you to override the number of
blocks to hold messages in the control program’s storage. By
increasing the number of buffers used for the message queue
data sets, you can reduce the frequency of I/Os. The default
number of buffers is specified in the MSGQUEUE macro.

EMHL
Specifies the EMH buffer length for Fast Path transactions.

RECASZ
Specifies the size of the Receive Any buffer.

RECA
Overrides the number of Receive Any buffers predefined in
system definition by the RECANY keyword of the COMM
macro.

Chapter 3. Defining Your System 97



EXEC Statement Parameters

98

SAV
Specifies the allowed maximum number of concurrently active
device 1/Os.

ETO Parameters (ALOT, ASOT, LHTS, NHTS, UHTS, DLQT, ETO, DSCT)
Use the following parameters to define ETO options:

ALOT
Specifies the amount of time allotted before a terminal in
session is automatically logged off if no user successfully signs
on.

ASOT
Specifies the amount of time allotted before a signed-on user is
automatically signed off if no input or output activity occurs.

LHTS
Specifies the number of slots for the CNT/LNB/RCNT hash
table.

NHTS
Specifies the number of slots for the VTCB hash table.

UHTS
Specifies the number of slots for the SPQB hash table.

DLQT
Specifies the number of days allotted before a queue containing
data that has not been allocated is classified as a potential
dead-letter queue.

ETO
Specifies whether terminals and queues that are not defined to
IMS are to be supported.

DSCT
Specifies the suffix of the descriptor member DFSDSCTy.

Performance Options (VAUT, NLXB, FESTIM)
Use the following parameters to define performance options:

VAUT
Specifies the use of VTAM-Authorized Path.

NLXB
Specifies that parallel sessions are added during system
startup.

FESTIM
Overrides the timeout value for Front End Switching; this value
is predefined during system definition.

System Control and Performance EXEC Parameters

The second parameter in the control region procedure, RGSUF, becomes a
3-character suffix for a DFSPBxxx member in IMS.PROCLIB. You can define all
online parameter default values in that member rather than individually setting
symbolic parameter values on the EXEC statement in the control region procedure.

Note: Any parameter that can have a null value and is defined in DFSPBxxx with a

non-null value cannot be later nullified by a null value specified in the EXEC
statement.

Administration Guide: System



EXEC Statement Parameters

Related Reading: For more information about control region parameters in the
procedures and in DEFSPBxxx members, see|IMS Version 9: Installation Volume 2]
[System Definition and Tailoring.

The remaining positional parameters affect control of the system resources as
follows:

Identification of nucleus (SUF)
You must specify the SUF control region parameter to specify which IMS
configuration is to be executed. The default value is 0 (zero).

Number of active regions (PST)
Use the PST parameter to override the expected number of regions that are
in operation during the online execution. Additional regions can be
dynamically allocated, up to the maximum allowable number permitted by
your operating system.

Performance-related options (FIX, PRLD, EXVR)

Three parameters contribute to general performance strategy. The FIX
parameter allows you to point to the members DFSFIXxx and DFSDRFxx in
IMS.PROCLIB. All modules and control blocks that are to be page fixed and
put into DREF strings are described with these members. Similarly, the
PRLD parameter points to member DFSMPLxx, where a list of all preloaded
modules is given. The EXVR parameter allows you to page fix buffers used
for the management of message queues.

z/0S dependent options (SRCH, LSO=Y)
Several parameters apply only to the z/OS operating system. The SRCH
parameter allows you to take advantage of any special library structure to
optimize the search for loaded modules. You can override the default with a
value of 1 if you want the z/OS job pack area (JPA) and link pack area
(LPA) to be searched before IMS program libraries.

To reduce the amount of CSA storage available to IMS running under z/OS,
override the null value generated for the LSO parameter by specifying
LSO=Y. This causes some IMS DL/l processing modules and some control
blocks to be loaded into the private storage of the control region.

Inclusion of the DL/I address space (LSO=S, SOD)
A further variation of the local storage option is to use the DL/I separate
address space. You do this by specifying LSO=S. This address space
contains most of the DL/l code, control blocks, and database buffers for
full-function databases. z/OS cross memory services are used.

In the area of operations for z/OS, you can specify the output class of a
spin-off dump using the SOD parameter. You must override the null value
generated for the IMS procedure. This should be standard practice for z/OS
installations, because it allows the analysis in hardcopy form of the status of
real storage immediately after abnormal termination of the control region or
dependent regions.

Abnormal termination output (FMTO)
In an online environment, you can request the following types of dumps for
errors that terminate IMS: SDUMP, SYSMDUMP, SYSABEND, or
SYSUDUMP. You do this by using the FMTO startup parameter in
combination with z/OS dump DD statements.

Chapter 3. Defining Your System 99



EXEC Statement Parameters

You can also choose whether dumps are produced for some errors that do

not terminate IMS. This choice depends on the type of failure as well as the
FMTO parameter option and IMS spin-off and z/OS DD statements that are
selected.

Related Reading: For more information about the FMTO parameter and on
using dumps in these situations, see|/MS Version 9: Installation Volume 2.|
ISystem Definition and Tailoring,

For SYSMDUMP, you must establish operational procedures for saving and
formatting dumps because of the risk of overlaying a SYSMDUMP if IMS is
restarted before the previous SYSMDUMP is transferred.

Inclusion of an Internal Resource Lock Manager (IRLM, IRLMNM, UHASH)

If an IMS online system uses IRLM as the lock manager or participates in
block-level sharing, you request the use of an IRLM subsystem by coding
IRLM=YES.

Related Reading:

» For more information about IRLM requirements, see [Tailoring Execution|
[1CL” on page 382

+ For the naming convention for IRLM, see ['ldentifying IRLM” on page 405

If your online system includes Fast Path, a related parameter, UHASH, is
used in connection with the IRLM lock manager. This parameter specifies
the name of an alternative hashing module. If you did not use the default
name of DBFLHSHO in the system definition, the appropriate name must be
specified. This name cannot be changed across a restart. If multiple IMS
systems are taking part in data sharing and are using this option, the
module name must be identical in all systems.

Identification of external subsystems that can be attached (SSM)

Modifyi

100 Administration Guide: System

The SSM parameter is used to reference a member in IMS.PROCLIB; the
member identifies the external subsystems (DB2 UDB for z/OS, for
example) that can be accessed from application programs executing in
dependent regions. Specify a suffix that, together with the currently
assigned name for IMSID, forms the member name. The member contains
entries, each identifying an external subsystem by its z/OS system name.
All external subsystems that might be accessed from programs executing in
dependent regions must have an entry.

The SSM parameter for each dependent region need not be coded to work
with the IMS control region member. To prevent a region from having
access to all the subsystems identified to the IMS control region, specify the
name of a null member (no entries). To allow access to one or more
particular external subsystems, the dependent region SSM parameter
needs to point to a member containing only those specific entries.

ng Storage Pool Definitions for the Storage Manager

You can set an upper expansion limit for the HIOP, CIOP, SPAP, LUMP,
LUMC, FPWP, and EMHB storage manager pools by using the appropriate
execution parameters. IMS establishes these storage pool definitions
without an upper expansion limit, because they are dynamic storage pools
that expand and contract as needed during execution.

Use caution in specifying upper expansion limits. If an upper limit is too low,
IMS might abend. Under normal circumstances, a pool should never reach
its upper limit. The intent of the upper limit is to keep pools from consuming
so much storage that an out-of-storage condition occurs.



EXEC Statement Parameters

Use the SPM=nn parameter to specify the suffix for DFSPMnn. DFSPMnn
identifies the IMS.PROCLIB member that overrides the storage pool
definitions established by IMS.

Related Reading: For more information about specifying the individual
entries and constructing the IMS.PROCLIB member, see|IMS Version 9]
installation Volume 2: System Definition and Tailoring|

Recovery-Related EXEC Parameters

The WADS parameter indicates whether a single write-ahead data set (WADS) is to
be used by the IMS online system, or whether dual data sets are to be used. Using
dual data sets helps protect the integrity of the online logging.

Use the ARC parameter to specify whether automatic archiving of the online log
data sets (OLDS) is to be performed. Automatic archiving is recommended,
although your installation can arrange for the MTO to monitor the availability of
OLDS and perform archiving when necessary. You need to coordinate this
parameter with your installation’s operating procedures.

The DBRCNM parameter is used to specify an alternative name for the DBRC
region start procedure.

Use the AUTO parameter to specify automatic restart for the IMS online system.

For non-shared queues environments, use the QTU and QTL parameters to adjust
the upper and lower limits in the Queue Space Notification exit routine
(DFSQSPCO0). For shared queues environments, use the QTU and the QTL
parameters to adjust the upper and lower DRRN in-use-count limits.

Related Reading: For more information about the IBM-supplied Queue Space
Notification exit routine, see |IMS Version 9: Customization Guidel

Security-Related EXEC Parameters for the Control Region

The EXEC parameters for the control region include a way to control the kind of
security checking that is done during the current execution. The parameters act as
switches for different types of security. They also determine what flexibility the MTO
has to override the choice of security checking. You must coordinate the setting of
these switches with both overall security design and operational procedures. The
parameters are TRN, SGN, RCF, ISIS, AOI1, AOIS, and TCORACF.

The default values generated for the IMS procedure all specify no security. You
need to reset them to match the security design your installation requires. The
parameter values and their meanings are given in [‘Controlling Security During|
|System Startup For DB/DC and DCCTL” on page 153

You also need to coordinate the level of the security tables with the suffix identifier
for the nucleus. Additional operational restrictions for the master terminal operator
are explained in|“Security Considerations for the Master Terminal” on page 128.|

The IMSID parameter is related to both security and operations. The parameter
value uniquely identifies the control region. Dependent regions that are to execute
under control of this nucleus must specify the same identifier. The generation
default is IMSA.

The name chosen should be unique to other subsystems executing in the z/OS
system, including any batch executions, and it should not be the same as the
procedure name. Selecting a uniqgue name is recommended because any message

Chapter 3. Defining Your System 101



EXEC Statement Parameters

to the console originating from subsystem execution is identified by that name. This
unique name helps avoid confusion as to the source of the message.

Message Processing Region Parameters in DB/DC and DCCTL

Environments

Use the PARM= positional parameters for the message processing region's EXEC
statement to control:

» Database and PSB

» Data communication

* Region control and performance
* Recovery and restart

» Security options

Related Reading: For more information about the positional parameters, see
[Version 9: Installation Volume 2: System Definition and Tailoring.

PSB-Related EXEC Parameter

Use the PCB parameter to specify the size of the buffer used by inter-region
communication to hold a copy of the user's PCBs. The IMSMSG procedure
assumes that the default buffer size, an area equal to the largest PCB contained in
any PSB in the active IMS.ACBLIBA/B library, is to be allocated.

The VALCK parameter default signifies that address validity checking is not to be
performed for DL/I calls issued by the application programs in this region. (An
address is invalid if it is either lower than the lowest address not in the z/OS
nucleus or higher than the highest address in virtual storage.) With adequate testing
of, and controls over, the DL/I call parameter coding, address validity checking
should not be necessary.

Data Communication EXEC Parameter

The set of 4 parameters, CL1, CL2, CL3, CL4 is required for a message region.
You specify 4 transaction classes, each expressed as a 3-digit number. The first
message class for the region causes all messages assigned to that class to be
selected first as eligible for scheduling. Only when all possibility of scheduling a
transaction in that class has been exhausted does scheduling begin for the second
message class. Priorities determine the order that programs are to be selected for
scheduling into the region. The message classes you specify need to be
coordinated with your transaction scheduling rules and the numbers entered with
the PRTY keyword on the TRANSACT macro.

Region Control EXEC Parameters

The first positional parameter is coded MSG for a message processing region.
Programs are scheduled in these regions automatically when transactions are
encountered on the queue, if the message class priority is suitable.

The parameter OPT helps you control the region startup. If the control region is
terminating or not active when the MPP region is invoked, you can have the master
terminal operator decide whether to start the MPP region again (the default), let it
wait until the control region is ready, or cancel it. With good operator control, the
operator’s response should be adequate.

Use the STIMER parameter to invoke timer facilities. The default is to record
processor time for the duration of program execution, including DL/l processing

102 Administration Guide: System



EXEC Statement Parameters

time. Because a timeout of a message region causes an abnormal termination of
the message region, a better strategy is to have processing limits coded within the
application program.

Use the SSM parameter to point to a member in IMS.PROCLIB that identifies the
external subsystems (for example, DB2 UDB for z/OS) that can be accessed from
this MPP region. To prevent any access to subsystems from an MPP scheduled into
this region, use the name of a null member (a member that has no entries). The
default, a null value, allows the MPP region to attach to any of the subsystems that
are declared to the IMS control region. If necessary, coordinate this parameter with
the corresponding SSM parameter in the IMS procedure.

Related Reading: For a description of SSM, see [‘System Control and Performance]
[EXEC Parameters” on page 98]

Use the APARM parameter to specify execution time parameters that are unique to
this dependent region. This parameter specifies a character string for the
application program or Data Capture exit routine.

To print out the storage dump immediately after the abend of a message region,
specify the correct output class for the SOD parameter.

Performance-Related EXEC Parameters

Performance-related parameters for a message region include OVLA, DBLDL,
PRLD, PREINIT, and PWFI. You can choose options with these parameters to
improve system performance.

Related Reading:
* For more information about each of these parameters, see |IMS Version 9.1
[Installation Volume 2: System Definition and Tailoring]

« For more information about improving your system’s performance, see [Chapter 7,
[‘Tuning Your System,” on page 201

Recovery-Related EXEC Parameters

The TLIM parameter addresses a problem with an application program that causes
an abnormal termination. Because the program might be scheduled many times into
a region due to transactions in the queue, you need to be able to stop the operation
of this region. The value for TLIM is the maximum number of abnormal terminations
permitted.

In the case where the application program has a SPIE in effect, the SPIE option
allows it to remain on during the DL/I call or for it to be turned off during the DL/I
call and reinstated when returning to the application program. For performance
reasons, it is undesirable to turn the SPIE option on and off for each DL/I call. With
PL/I Release 5, you can use the PL/I SPIE facility without having IMS reset the
SPIE on each DL/I call.

Security-Related EXEC Parameters for Message Processing
Regions

The AGN= parameter allows you to specify the application group name (AGN); the
default is no AGN. The AGN is associated with a set of transactions, PSBs, or
LTERMSs that are authorized to be used by the message processing region. The
authorization is made by declaring these resources and the AGN in the input for
SMU. You include the same AGN to invoke IMS AGN for the message processing
region. The DFSMPR procedure generates this as a null parameter. If other regions

Chapter 3. Defining Your System 103



EXEC Statement Parameters

are being controlled through the use of AGNs, and if you omit this parameter, you
risk permitting unauthorized access by programs executing in this region.

The parameter IMSID is related to operations. You specify the identifier for the
name of the control region (the name given for the IMSID parameter). If the value
does not match any current IMSID of an operating control region, the message
region is not scheduled.

Batch Message Processing Region Parameters

Use the PARM= positional parameters for the BMP region’s EXEC statement to
control:

» Database and PSB

» Data communications

* Region control and performance
* Recovery and restart

» Security options

PSB-Related EXEC Parameters

The MBR parameter is required. It specifies the name of the program and is often
the same as the PSB name. The BMP has flexibility in using a program and PSB
combination. This combination allows you to test modifications of the BMP using a
temporary program name. You can also use a different PSB with the same
program.

The PSB parameter is optional if it matches the MBR name. an APPLCTN macro
has been included for the PSB specifying BATCH as the program type. You should
identify application programs that have the ability to These programs often require
larger amounts of virtual storage and you might need to adjust the size of the
region.

The TEST parameter is required, but the IMSBATCH procedure generates a 0
(zero) to specify that validity checking of the addresses in a DL/I call is not
performed. (An address is invalid if it is either lower than the lowest address not in
the z/OS nucleus or higher than the highest address in virtual storage.) Adequate
testing of the program, and controls over the DL/I call parameter list coding, should
make the generated option—no validity checking—acceptable.

Data Communication EXEC Parameters

For the batch message program, you have the flexibility of declaring that the input
transaction queue is to be made available to the program at execution time. You do
this by specifying one transaction code as the value for the IN parameter.

Some BMP programs do not access a message queue but do have a requirement
to send output to a terminal or to generate transactions to be processed by other
application programs. You specify the LTERM name or transaction code, as
appropriate, on the OUT parameter. accessing message queues. When you specify
the transaction code for the IN parameter, the program has no restrictions on
generated transactions or output messages.

Region Control EXEC Parameters

The first positional parameter is coded BMP for a batch message processing
region. These regions are not scheduled automatically, but must be invoked by the
operator.

104 Administration Guide: System



EXEC Statement Parameters

The OPT parameter is required. It helps you control the start of a batch message
region. If the control region is not active when the BMP region is invoked, you can
decide to let the control region wait, cancel the control region, or ask the operator to
make the decision. You can make these decisions about the control region when
JCL (in the z/OS job stream for the BMP region) is submitted before the control
region has completed its initialization or is terminating. There is a risk in specifying
‘wait’ because the z/OS resource is reserved until the control region resumes. If you
are starting the region from the master terminal, the default generated for the
IMSBATCH procedure is satisfactory.

Use the PRLD= parameter to specify the suffix for the IMS.PROCLIB member,
DFSMPLxx, which lists the preloaded modules. No performance improvement is
provided for BMP regions that do not have other programs scheduled in them.

Use the PREINIT parameter to specify the suffix of the IMS.PROCLIB member,
DFSINTXxX.

The STIMER and CPUTIME parameters are optional; they are generated as null
parameters, and the default is no use of the timer. The parameters are used
together. If you want to limit the duration of processor time the batch message
program can run, you specify STIMER=1 and give CPUTIME a value equal to a
number of minutes. The measured time includes any DL/l processing performed in
the region. You should use this technique to limit the batch message execution in
preference to a time limit on the job card. This is because an abnormal termination
in the dependent region, caused by excessive processor time, can also terminate
the control region. Excessive processor time causes a user abnormal termination
(U0240) for only the dependent region.

The PARDLI parameter is optional; the IMSBATCH procedure generates it as a null
parameter. The default value causes DL/I processing to be executed in the
dependent region. You might want to specify that the control region does all DL/I
processing for the program (PARDLI=1). This gives the program DL/I service at a
higher priority, although other DL/I service times could be adversely affected.
Setting the PARDLI parameter also affects the BMP region and timing out (system
X22 abends). By specifying PARDLI=1, you can prevent a corresponding control
region system 113 abend.

The DIRCA parameter is required. It specifies the number of blocks of 1024 bytes
that must be reserved for inter-region communication. You base the size calculation
on the number of bytes required to hold the largest PCB contained in the PSB. The
IMSBATCH procedure generates a default value of 000, which causes an area
equal to the largest PCB in any PSB in the active IMS.ACBLIBA/B library to be
used. You might prefer to adjust the size downward.

Use the SSM parameter to reference a member in IMS.PROCLIB that identifies the
external subsystems (for example, DB2 UDB for z/OS) that can be accessed from
this BMP region. To prevent any access to subsystems from the BMP, use the
name of a null member (a member that has no entries). The default, a null value,
allows the BMP region to attach to any of the subsystems that are declared to the
IMS control region. If necessary, coordinate this parameter with the corresponding
SSM parameter in the IMS procedure.

Related Reading: Fore more information on the SSM parameter, see
[Control and Performance EXEC Parameters” on page 98|

Chapter 3. Defining Your System 105



EXEC Statement Parameters

The FMTO parameter and the type of the z/OS dump DD statements selected
determine whether IMS dumps are formatted online or offline.

Use the APARM parameter to specify execution time parameters that are unique to
this dependent region. This parameter specifies a character string for the
application program or Data Capture exit routine.

Related Reading: For more information about the region control EXEC parameters,
see the[IMS Version 9: Installation Volume 2: System Definition and Tailoring

Recovery-Related EXEC Parameters

For a BMP program, you can use the CKPTID parameter as a restart position for
the program processing. The IMSBATCH procedure generates CKPTID as a null
parameter. To invoke the restart, you need to create a special version of the
procedure containing the exact checkpoint identification.

Related Reading: For more information about invoking the restart, see |IMS Versio
[9: Installation Volume 2: System Definition and Tailoring|

In any case, the restart design must allow for restart and such things as z/OS file
positioning that you do not control.

Related Reading: For more information about restart for BMPs that use extended
checkpoint, see [IMS Version 9: Operations Guide

If the application program has a SPIE in effect, the SPIE option allows it to remain
on during the DL/I call, or to be turned off during the DL/I call and reinstated when
returning to the application program. For performance reasons, it is undesirable to
turn the SPIE option on and off for each DL/I call. With PL/I Release 5, you can use
the PL/I SPIE facility without having IMS reset the SPIE on each DL/I call.

Security-Related EXEC Parameters for BMPs

The AGN parameter allows you to specify the AGN; the default is no AGN. The
AGN is associated with a set of transactions, PSBs, or LTERMSs that are authorized
to be used by this region. The authorization is made by declaring these resources
and the AGN in the input for SMU. You include the same name to invoke IMS AGN
security for this region. The IMSBATCH procedure generates this as a null
parameter. If other regions are being controlled through the use of application group
names, you risk permitting unauthorized access by this batch message program if
you omit the AGN parameter.

The parameter IMSID is related to operations. If this parameter does not match the

current IMSID of any operating control region, the batch message region is not
scheduled.

Fast Path Dependent Region Parameters in DCCTL or DB/DC

Note: The DCCTL environment does not support Fast Path databases. It does
support Fast Path processing and transactions.

The PARM= positional parameters for Fast Path dependent region’s EXEC
statements are shown in [Table 13 on page 107}

106 Administration Guide: System



EXEC Statement Parameters

Table 13. Fast Path Dependent Region Parameters for DCCTL and DB/DC
Category Parameter

Database and PSB NBA
OBA
MBR
PSB

Data communications none

Region control and performance IFP
OPT
PRLD
PREINIT
STIMER
DIRCA
CPUTIME
DBLDL
SSM
ALTID
PARDLI

Recovery and restart TLIM
SOD

Security options AGN
IMSID

The EXEC statement's first positional parameter, IFP, causes this region to be
active for Fast Path processing only. The MBR parameter specifies the name of the
message-driven application program.

Two database-related parameters, NBA and OBA, control how many of the total
Fast Path buffers this region can appropriate for its use.

The NBA parameter specifies how many buffers are reserved for DEDB and MSDB
processing by this region. This normal allotment is obtained at region startup and
must be available from the total number specified for the control region. Although
you can specify a number from 1 to 999, you coordinate the value across all
regions that are to be concurrently active, so that the total can be specified by the
DBBF parameter for the control region. If too few buffers are available from the
DBBF total, the dependent region abends.

The OBA parameter specifies how many buffers are requested from the control
region as overflow when the normal allotment is used up. The control region page
fixes the largest number of overflow buffers specified for all active dependent
regions and makes these available to only one program at a time.

Both the NBA and OBA parameters are generated with a O (zero) value so that you
must re-specify the individual values.

Related Reading:

» For more information about DEDB buffer considerations in a DBCTL
environment, see |IMS Version 9: Administration Guide: Database Managet.

» For more information about Fast Path dependent region parameters, see
[Version 9: Installation Volume 2: System Definition and Tailoringl

Chapter 3. Defining Your System 107



EXEC Statement Parameters

Fast Path Parameters in BMP and CCTL Regions in DBCTL

The PARM1= and PARM2= positional parameters for a BMP region’s EXEC
statements are shown in [Table 14] Also shown are the Fast Path parameters in the
DRA startup table that the CCTL must use when it connects to a DBCTL
environment.

Table 14. Fast Path Dependent Region Parameters for DBCTL

Category Parameter Purpose
Database and PSB  NBA Specifies the number of database buffers
OBA Specifies the number of overflow buffers
MBR Specifies name of message-driven program
PSB Specifies PSB name
CCTL CNBA Total number of buffers for this CCTL
FPB Number of database buffers each thread uses (from

the CNBA total)

FPOB Number of overflow buffers each thread might need

Two database-related parameters, NBA and OBA, control how many of the total
Fast Path buffers this region can appropriate for its use.

The NBA or CNBA parameter specifies how many buffers are reserved for DEDB
processing. This normal allotment is obtained at region startup and must be
available from the total number specified for the control region. Although you can
specify a number from 1 to 999, you coordinate the value across all BMPs and
CCTLs that are to be concurrently active, so that the total can be specified by the
DBBF parameter for the control region. If not enough buffers are available from the
DBBF total, the BMP or CCTL cannot connect to the DBCTL environment.

After a CCTL is connected, each CCTL thread request for Fast Path PSBs receives
an allotment of buffers.

The OBA or FPOB parameter specifies how many buffers are requested from the
control region as overflow when the normal allotment (NBA, FPB) is depleted. The
control region page fixes the largest number of overflow buffers specified for all
active BMPs and CCTL threads and makes these available to only one program at
a time. Choose a value from 1 to 999 that is a suitable common value for all
regions.

Both the NBA and OBA parameters are generated with a O (zero) value so that you
must re-specify the individual values.

Related Reading: For more information about DEDB buffer considerations in a
DBCTL environment, see [IMS Version 9: Administration Guide: Database Managet.

Online DEDB Utility Region Parameters in DCCTL, DBCTL, or DB/DC

The procedure FPUTIL uses the first few positional parameters defined for the
IMSFP procedure, but interprets several of the parameters as control for the online
DEDB utilities. [Table 15 on page 109|shows these parameters.

108 Administration Guide: System



EXEC Statement Parameters

Table 15. Generated Values and Purposes for FPUTIL Procedure Parameters

FPUTIL Parameter Generated Value Purpose

IFP IFP Specifies Fast Path region
DBD N/A Specifies the DEDB name
N/A DBF#FPUO Utility program name
REST 00 Restart indicator

N/A 00 No overflow buffers

N/A Null Default startup, ask operator
N/A 1 Allows one abend

DIRCA 02 2 KB block for PCB

PRLD Null No preload

N/A 0 No time limit

The function performed by the utility depends on the input control statements. A
series of DEDB areas can be scanned, have dependent segments deleted, or have
the units of work reorganized. If the utility is to be restarted, the REST parameter is
coded nonzero.

Satisfying System Requirements for Data Propagation in DB/DC and
DBCTL Environments

Note: The Data Capture exit routine is not available to CICS. DBCTL can use the
exit routine, but only for BMPs.

If your installation contains both IMS DL/I and DB2 UDB for z/OS relational
databases, you can use the Data Capture exit routine to duplicate data between the
two types of databases.

You can also use the IMS DataPropagator IBM licensed program to propagate data.
If you use IMS DataPropagator, see the product documentation for details.

The Data Capture exit routine supports most IMS DB database structures,
including:

« HDAM

*+ PHDAM

* HIDAM

* PHIDAM

* HISAM

* SHISAM

+ DEDB

* PSINDEX

Use of the Data Capture exit routine with these databases places some restrictions
on the delete rules for logical-child segments.

Related Reading:

» For more information about the Data Capture exit routine, see [IMS Version 9;

[Customization Guidd

Chapter 3. Defining Your System 109



Propagating Data

 For more information about delete rules, see [IMS Version 9: Administration|
|Guide: Database Managet

Defining the Data Capture Exit Routine

The Data Capture exit routine is defined in the DBD for the application program that
requires data propagation. You must specify the exit routine name, exit routine data
options, and the DBD source statements used to build the DBD execution-time
blocks with the DBD Generation utility (DBDGEN).

Related Reading: For more information about DBDGEN, see|IMS Version 9;

[Utilities Reference: System,

You must also specify DB2 UDB for z/OS on the SSM= execution parameter for
batch and online regions that contain application programs that make use of data
propagation. You can do this at system definition or with JCL statements for batch
application programs.

Running the Data Capture Exit Routine

The Data Capture exit routine is called when data segments are updated by an
application program. Because the exit routine is defined for the DBD, it is called
whenever a segment associated with the DBD is updated, regardless of the
application program that updates the segment.

Your exit routine can be used to perform other database management functions, but
if you update segments from within the exit routine, the changes are not propagated
to DB2 UDB for z/OS. The exit routine cannot call itself.

When the exit routine propagates data to DB2 UDB for z/OS, the segments must be
available in both the IMS and DB2 UDB for z/OS databases for the updates to be
completed successfully. If any database segment is unavailable, a status code is
returned to the 1/0 area of the DL/I call that attempted the update. You can use the
inquiry (INQY) call to determine the system status while the application program is
running.

Related Reading: For more information about the INQY call, see [[MS Version 9.

lApplication Programming: Database Managei|

Storage Requirements for Data Capture

As your application program issues a DL/I call to update the database, the updates

are stored as required for use by the Data Capture exit routine or the Asynchronous
Data Capture. Because the amount of storage required can be significant for update
functions like a cascade delete, a data space is acquired for each dependent region
that uses the exit routine. The attributes of the data space vary for online and batch
dependent regions, as illustrated in .

Table 16. Data Space Characteristics (Data Capture Exit Routine and Asynchronous Data Capture)

Attribute Online Dependent Region Batch Dependent Region
Number of data spaces 1 per dependent region 1

Data space name SYSDFS01 @SYSDFS1

Storage key Key 7, not fetch protected to allow access from Key 8

dependent region in key 8

110 Administration Guide: System



Propagating Data

Table 16. Data Space Characteristics (Data Capture Exit Routine and Asynchronous Data Capture) (continued)

Attribute

Online Dependent Region Batch Dependent Region

Storage size

By region controller By region controller. Default
size used if space requested
violates total size of key 8
data spaces.

Storage obtained

During region initialization During region initialization if
exit routines are defined

Storage owned

By region controller TCB By batch TCB

Added to access list

Dependent region address space, for access by program Batch TCB
controller TCB in message regions. Control regions SAS

address space for access by DL/I in an IMS DB/DC

system when data capture is required. DEDB capture

runs under program controller TCB.

Deleted from access list

Dependent region always accessed. Deleted from control Not deleted
region SAS access list during thread termination if added
to access list by data capture.

Data space cleared

During normal thread termination for message regions if  Not cleared
data space storage was referenced.

Data space deleted

At region termination. At z/OS job termination

You can control the use of data spaces with the SMF IEFUSI Step Initiation exit
routine for key 8 batch regions. This exit routine determines the number and size of
the data space available for key 8. If you have batch application programs that call
the Data Capture exit routine, the data space specified for key 8 must be large
enough to accommodate the data space requirements of data capture.

Related Reading: For more information about the IEFUSI Step Initiation exit
routine, see z/0OS V1R4: MVS Installation EXxits.

Storage Failure

The two types of storage failure for data capture are:

» Data space not obtained. This type of error occurs in batch regions when a data
space is not specified for each region. Online dependent regions can always
obtain data space.

 Insufficient storage in the data space. In online dependent regions, storage space
is specified by the region controller. Some database functions, such as cascade
delete, require more than the space allocated for successful completion. Batch
dependent regions can be limited in data space size. You must specify a data
space large enough for data capture to complete successfully.

Either type of storage failure terminates the region with a U814 abend.

Related Reading: For more information about storage failure, see|IMS Version 9.1
|Failure Analysis Structure Tables (FAST) for Dump Analysis,

Chapter 3. Defining Your System 111



Propagating Data

112  Administration Guide: System



Chapter 4. IMS Security

This chapter provides information to help you establish resource security for the
IMS online system. The chapter identifies the resources that can be protected and
the facilities available to protect them, provides design considerations, and
describes the steps that you need to take to activate security.

Although there are many similarities and overlaps, the security for the DB/DC and
DCCTL environments is discussed separately from the security for the DBCTL
environment. For DBCTL security see, [*Security Considerations for a DBCTL|
[Environment” on page 161.|

In this chapter:

« [‘Overview of DB/DC and DCCTL Security’]

 |'Designing Security for IMS DB/DC and DCCTL” on page 116|

* [*Activating IMS Security for DB/DC and DCCTL Environments” on page 146|

» |“Controlling Security During System Startup For DB/DC and DCCTL" on page|
153

* |'Implementing Security Changes Online in DB/DC and DCCTL Environments” on|
page 156

» |“Controlling Security Violations in DB/DC and DCCTL Environments” on page|
157

» ["Considering Other Access Control Methods” on page 158|
+ [*An Alternative to Access Control: Encryption” on page 160|
[‘Security Considerations for a DBCTL Environment” on page 161|

| Overview of DB/DC and DCCTL Security

When you initiate security safeguards, you must balance requirements between
those responsible for the security of resources and those users who legitimately
need access to those resources. Because the person who is assigned to resource
security is held responsible for resources that might be compromised, that person
should not allow easy access to dominate protection measures. On the other hand,
users performing their assigned tasks need convenient access to the resources.
The users and the security specialist should work out a balanced approach between
the ease of resource access and the complexity of protecting that resource.

In an IMS system, two types of security exist. You can address one or both types:

» Securing the kind of resource to which a user has access. For example, a user
might be allowed access to the Part database but not to the Customer Order
database.

» Securing what the user can do to the resource after that user has access to it.
For example, a user might be allowed to read a file but not to update it.

i DB/DC and DCCTL Resources That Can Be Protected

Before you decide what security facilities to use in designing a secure IMS system,
you should know which resources within the system need protection. In other
words, you should decide what to protect before you decide how to protect it.

| The following resources can be protected in the DB/DC and DCCTL environments:
I * IMS control region

© Copyright IBM Corp. 1974, 2004 113



Overview of DB/DC and DCCTL Security

e IMS online system

* IMS system data sets

* Transactions

* Commands

» Program specification blocks (PSBs)

* Online application programs

» Databases

* Dependent regions

* Terminals
— Logical terminals (LTERMS)
— Physical terminals (PTERMS)
— Master terminals

Defining Security During DB/DC and DCCTL System Definition

You can make IMS security choices in three system definition macros: SECURITY,
COMM, and IMSGEN. These macros let you choose the type of security that is
active during online execution. You can make other security choices, including
which resources you want to protect, by using the Resource Access Control Facility
(RACF) and the Security Maintenance utility (SMU). You can also specify security
choices using the security parameters in the IMS and DCC startup procedures.

If you do not specify any security in any of the three system definition macros, IMS
provides a basic level of resource security called default terminal security. For a
brief description of default terminal security, see ['Default Terminal Security.’|

All security specifications are consolidated in the SECURITY macro. However, you
can also specify some security options in the COMM or IMSGEN macros. The
security-related parameters from these three macros are accepted hierarchically in
the following order:

1. SECURITY
2. COMM
3. IMSGEN

Specifications that are coded in the SECURITY macro override security
specifications that are coded in the COMM and IMSGEN macros.

Using the COMM or IMSGEN Macros for Security Options

The IMSGEN macro controls options of the password and terminal security
functions of SMU. The macro options permit the master terminal operator (MTO) to
override the password and terminal security functions when restarting the IMS
system using the /NRESTART command.

The COMM macro and its keyword options control the same security functions as
the IMSGEN macro.

The MTO should be aware that any security specifications made using the
SECURITY macro override specifications made in the COMM or IMSGEN macros,
potentially compromising resource protection.

Default Terminal Security
Default terminal security prohibits the entry of certain commands from any terminal
other than the master terminal. This basic security function is activated upon

114  Administration Guide: System



Overview of DB/DC and DCCTL Security

completion of stage 2 of IMS system definition. When you implement input-access
security with RACF or LTERM security with SMU, IMS removes the default terminal

security restrictions.

Default terminal security applies only to statically defined terminals. Terminals that
are defined by using ETO are automatically governed by an identical level of default
security. When you modify and use the Command Authorization exit routine
(DFSCCMDO), IMS removes the default security for dynamically defined terminals.

Security Facilities for DB/DC and DCCTL Resources

summarizes the resources you can protect, the types of security that you
can use to protect the resources, and the security facilities that you can use to
implement each type of security. When choosing which security facilities to use,
also consider your installation’s security standards and operating procedures.

Table 17. DB/DC and DCCTL Resources and the Facilities to Protect Them

Resource Type of Security Security Facility
IMS control region Extended resource protection (using RACF
and online system APPL resource class)
System data set z/OS password protection z/0S
Data set protection (VSAM) RACF
Database Segment sensitivity PSBGEN
RACF
Field sensitivity PSBGEN
RACF
Password security (for the /LOCK and SMU or RACF
/UNLOCK commands)
PTERME Signon verification security SMU with exit routine
or
RACF with exit routine
Terminal-user security RACF
Password security (for the /IAM, /LOCK, SMU or RACF
and /UNLOCK commands)
LTERME Password security (for the /IAM, /LOCK, SMU or RACF
and /UNLOCK commands)
Application group name security SMU with exit routine or
SMU with RACF
Resource Access Security RACF
Terminal Signon verification security RACF and exit routine
defined - . .
with ETO Input access security RACF and exit routine
LU 6.2 inbound and Allocate verification security RACF and exit routine
IMS-managed
outbound Input access security RACF and exit routine
conversations
PSB Application group name security SMU with exit routine or

SMU with RACF

Resource Access Security

RACF

APSB SAF security

RACHZ

Chapter 4. IMS Security 115



Overview of DB/DC and DCCTL Security

Table 17. DB/DC and DCCTL Resources and the Facilities to Protect Them (continued)

Resource

Type of Security

Security Facility

Transaction

LTERM security®

SMU

Application group name security

SMU with exit routine or
SMU with RACF

Input access security RACF
Resource Access Security RACF
Password securit (for the /LOCK and SMU or RACF

/UNLOCK commands)

Command

Default terminal security

System definition

LTERM securit)EI

SMU

Password securit

SMU

Transaction command security for
automated operator (AO) commands

SMU, RACF, or Command
Authorization exit routine

Input access security

RACF

type-2 command security

RACF

DBRC command authorizatior®

RACF or exit routine

Type-1 Automated
Operator Interface
applications

Transaction command security

SMU, RACF, or Command
Authorization exit routine

Type-2 Automated
Operator Interface
applications

Transaction command security

RACF or Command
Authorization exit routine

Online application
program

Password security (for the /IAM, /LOCK, SMU or RACF
and /UNLOCK commands)
Extended resource protection (using RACF

APPL keyword)

Dependent region

Application group name security

SMU with exit routine or
SMU with RACF

APSB SAF security

RACF

Resource Access Security

RACF

Notes:

1. Applicable only to static terminals. Not applicable to ETO-defined terminals.

2. Using RACF to secure APSBs applies only to CPI-C driven applications.

3. DBRC command authorization is an additional command security option that applies only
to DBRC commands. DBRC commands are also subject to any other command security
options that are active in the IMS system.

Designing Security for IMS DB/DC and DCCTL

This topic explains how the various types of IMS security can be used. When you
are considering each part of your security design, consider the physical actions that
a user must take to obtain access to the system. You probably will use more than
one type of security checking.

This topic assumes the following control points for security:
* User identifications
» Logical terminals as a control point

116  Administration Guide: System



Designing Security for IMS DB/DC and DCCTL

* The master terminal
+ Automated operator programs
* The use of regions

This chapter also assumes that you will use the Resource Access Control Facility
(RACF) security product, which is licensed with the z/OS operating system. RACF
is external to IMS.

The following topics provide additional information about designing security:
* ["Migrating from SMU to RACF-Managed Security with IMS Version 9”|
 |'Limiting Access from a Terminal” on page 120|

* |"Authorizing Transactions and Commands” on page 123|

* ['Using RACF to Protect Physical Terminals” on page 125|

* |'ilmplementing LTERM Security Using SMU” on page 125|

« [“Security Considerations for the Master Terminal” on page 128
[‘Security for AO Application Programs” on page 129

+ [“Security for Time-Controlled Operations” on page 136

[‘Security for Fast Path Application Programs” on page 136

[‘Security and CPI-C Driven Application Programs” on page 136
[‘Security for ODBA Application Programs” on page 137

[‘Use of the RACF Data Space” on page 137|

+ [“Security in MSC and Shared-Queues Environments” on page 137|
[‘Security for APPC/IMS” on page 141

[‘Security for ETO Terminals” on page 141

+ [*Securing DB/DC and DCCTL Dependent Regions and Their Resources” on page]
142

Migrating from SMU to RACF-Managed Security with IMS Version 9

After IMS Version 9, IMS will not support SMU and AGN security. To prepare for
this, IMS Version 9 allows you to use RACF (through the SAF interface), user exit
routines, and RACF-driven resource access security (RAS) to implement security
functions that previously required the use of SMU.

The use of SMU requires you to maintain two security packages, one for SMU and
one for RACF. In many cases, this also means that you must split security
administration between two groups of people, such as a technical support group for
SMU and a security group for RACF. You can consolidate security administration
into a single group by migrating from SMU to RACF.

The IMS Version 9 security enhancements also eliminate the 65 535 terminal limit
of SMU-defined signon verification security. There is no limit to the number of
terminals you can secure with RACF.

SMU to RACF Migration considerations
The principle security enhancements introduced in IMS Version 9 and the SMU
security functions they replace are shown in h’able 18 on page 118|.

Chapter 4. IMS Security 117



Designing Security for IMS DB/DC and DCCTL

Table 18. RACF Replacements for SMU Functions

SMU Function Replacement

AGN security for dependent regions RAS security for dependent regions
implemented by RACF security profiles and
exit routines

Signon verification security Signon verification security that is defined in
the system definition macros

LTERM security of TCO-script-issued RACF security of TCO-script-issued

commands commands

CMD call security RACF security

MSC link security for transactions RACF and exit-routine security for both direct

and non-direct routed transactions that are
received from an MSC link

Cross-Version IMSplex Considerations

If you are introducing IMS Version 9 into an IMSplex that includes IMS systems of
Version 8 or earlier and do not intend to use SMU in the IMS Version 9 system, you
should disable resource consistency checking for the MATRIX data set. To disable
resource consistency checking for the MATRIX data set, specify MODBLKS in the
NORSCCC= keyword of the DFSCGxxx PROCLIB member. This disables resource
consistency checking for both the MATRIX and MODBLKS data sets.

Converting AGN tables to RACF Resource Classes

The majority of SMU AGN definitions have equivalent RACF definitions. To move
from a security system implemented using SMU to a security system implemented
using RACF, translate your SMU AGN definitions into RACF resource group
profiles. The following series of examples list AGN definitions with their RACF
equivalents for a BMP region.

provides an example of the SMU and RACF input that is required to
implement AGN security. The figure is in two parts. The top half is SMU input that
defines the AGN table IMSDGRP. The bottom half is RACF input. The SMU input
specifies the resources to be protected: two PSBs, two transactions, and two
LTERMs. The RACF input lists the users authorized to use those resources.

SMU input

)( AGN IMSDGRP
AGPSB  DEBS
AGPSB  APOL1
AGTRAN  DEBSTRN1
AGTRAN APOL12
AGLTERM IMSUS02
AGLTERM T3270LD

RACF input
ADDUSER BMPUSER1 PASSWORD (BMPPW1)
RDEFINE AIMS IMSDGRP OWNER(IMSADMIN) UACC(NONE)
PERMIT IMSDGRP CLASS(AIMS) ID(BMPUSER1) ACCESS(READ)
SETROPTS CLASSACT (AIMS)

Figure 7. Example: Input required for AGN security

|Figure 8 on page 119 shows the RACF-only definition that is equivalent to the
definitions shown in [Figure 7l The first three lines define the RACF user-group class
IMSDGRP and the user BMPUSER1 with password BMPPW1, and then adds the

118 Administration Guide: System



Designing Security for IMS DB/DC and DCCTL

user to IMSDGRP. The rest of the example creates the RACF resource classes
RASPGRP, RASTGRP, and RASLGRP. The example uses the JIMS resource-group
class for the PSBs, the GIMS resource-group class for the transactions, and the
MIMS resource-group class for the LTERMs. For each resource-group class,
IMSDGRP is added as an authorized user with READ access.

RACF input
ADDGROUP IMSDGRP OWNER(IMSADMIN)
ADDUSER BMPUSER1 PASSWORD (BMPPW1)
CONNECT BMPUSER1 GROUP (IMSDGRP)
RDEFINE JIMS RASPGRP ADDMEM(DEBS,APOL1) UACC(NONE)
PERMIT RASPGRP CLASS(JIMS) ID(IMSDGRP) ACCESS(READ)
RDEFINE GIMS RASTGRP ADDMEM(DEBSTRN1,APOL12) UACC(NONE)
PERMIT RASTGRP CLASS(GIMS) ID(IMSDGRP) ACCESS(READ)
RDEFINE MIMS RASLGRP ADDMEM(IMSUS02,T3270LD) UACC(NONE)
PERMIT RASLGRP CLASS(MIMS) ID(IMSDGRP) ACCESS(READ)

Figure 8. Example: Input required for RAS security

defines an AGN table named IMSDGRP2. The resources AGPSB,
AGTRAN, and AGLTERM represent all instances of their respective resource types
in the IMS system. The RACF input in the bottom half of the example gives
BMPUSER2 READ access to all of the resource types that are listed in the AGN
table IMSDGRP2.

SMU input
)( AGN IMSDGRP2
AGPSB  ALL
AGTRAN  ALL
AGLTERM  ALL
RACF input

ADDUSER BMPUSER2 PASSWORD (BMPPW2)

RDEFINE AIMS IMSDGRP2 OWNER(IMSADMIN) UACC (NONE)
PERMIT IMSDGRP2 CLASS(AIMS) ID(BMPUSER2) ACCESS(READ)
RDEFINE IIMS ## UACC(NONE)

PERMIT #* CLASS(IIMS) ID(IMSDGRP2) ACCESS(READ)
SETROPTS CLASSACT (AIMS)

Figure 9. Example: Input required for AGN security

[Figure 10 on page 120|shows the RACF-only definition that is equivalent to the
definition shown in|Figure 9} The first three lines specify a RACF user-group and
user as in|Figure 8[ The rest of the example creates the generic RACF resource
classes by using ** (two asterisks) instead of a name for the class. Because the
resource-group class IMSDGRP2 is added to each of these generic resource-group
classes, IMSDGRP2 has READ access to all resources of that type.

Chapter 4. IMS Security 119



Designing Security for IMS DB/DC and DCCTL

RACF input

ADDGROUP IMSDGRP2 OWNER (IMSADMIN)

ADDUSER BMPUSER2 PASSWORD (BMPPW2)

CONNECT BMPUSER2 GROUP (IMSDGRP2)

RDEFINE IIMS =% UACC(NONE)

PERMIT #% CLASS(IIMS) ID(IMSDGRP2) ACCESS(READ)
RDEFINE TIMS =% UACC(NONE)

PERMIT #* CLASS(TIMS) ID(IMSDGRP2) ACCESS(READ)
RDEFINE LIMS =% UACC(NONE)

PERMIT * CLASS(LIMS) ID(IMSDGRP2) ACCESS(READ)

Figure 10. Example: Input required for RAS security

Figure 11]is a combination of the examples in [Figure 7 on page 118 and [Figure 9 on|
age 119 It defines specific and generic resources for an MPP in the same

statement. The RACF input defines user MPPUSER3 as having READ access to all

LTERMs and to only two specific transactions, DEBSTRN1 and CDEBTRNZ2.

SMU input
)( AGN IMSDGRP3
AGTRAN DEBSTRN1
AGTRAN CDEBTRN2
AGLTERM ALL

RACF input
ADDUSER MPPUSER3 PASSWORD (MPPPW3)
RDEFINE AIMS IMSDGRP3 OWNER(IMSADMIN) UACC(NONE)
PERMIT IMSDGRP3 CLASS(AIMS) ID(MPPUSER3) ACCESS(READ)
SETROPTS CLASSACT (AIMS)

Figure 11. Example: Input required for AGN security

shows the RACF-only definition that is equivalent to the definitions shown
in [Figure 11} The first three lines specify a user group and user as in
lbage 119 and|Figure 10l The rest of the example creates a RACF group-resource
class for the transactions named DEBSTRN1 and CDEBTRN2 and then a generic
resource class for all LTERMs. In this case, the user-group named IMSDGRP3 and
the user named MPPUSERS3 have READ access to all LTERMs and only the two
specified transactions.

RACF input
ADDGROUP IMSDGRP3 OWNER(IMSADMIN)
ADDUSER MPPUSER3 PASSWORD (MPPPW3)
CONNECT MPPUSER3 GROUP (IMSDGRP3)
RDEFINE GIMS RASTGRP ADDMEM(DEBSTRN1,CDEBTRN2) UACC(NONE)
PERMIT RASTGRP CLASS(GIMS) ID(IMSDGRP3) ACCESS(READ)
RDEFINE LIMS =+ UACC(NONE)
PERMIT =% CLASS(LIMS) ID(IMSDGRP3) ACCESS(READ)

Figure 12. Input required for RAS security

Limiting Access from a Terminal

Two approaches to access control for a terminal control point are:

» Have the end users identify themselves each time they use a terminal and
authorize the set of transactions and commands each user needs.

¢ Associate with each LTERM in the network a list of transactions or commands
eligible for entry.

120 Administration Guide: System



Designing Security for IMS DB/DC and DCCTL

Controlling Access by Signon Verification
Signon verification security requires the entry of a user ID as a parameter on a
/SIGN ON command at all terminals or a subset of the terminals.

To implement signon verification for statically defined VTAM terminals, set the
OPTIONS= keyword to SIGNON in the TYPE or TERMINAL system definition
macro. The specifications in the TERMINAL macro override those set in the TYPE
macro. The default for OPTIONS= in the TYPE macro is NOSIGNON.

To implement signon verification for statically defined BTAM terminals, set the
OPTIONS= keyword to SIGNON in the TERMINAL system definition macro. The
default for OPTIONS= in the TERMINAL macro is NOSIGNON.

To avoid setting the OPTIONS= keyword in multiple system definition macros when
you want all of your static terminals to sign on, specify SIGNON=ALL in the
DFSDCxxx PROCLIB member. This requires all terminals to sign on except MTO,
LUG6.1, 3284/3286, and SLU1 printer-only devices.

Signon verification is done by RACF, an exit routine, or both. If you are using RACF,
RACF checks for user ID, password, and group. If you are using an exit routine to
implement signon verification, the exit routine can check for user ID and password.

The exit routines that you might use to verify user IDs and passwords include the
Sign On/Off Security exit routine (DFSCSGNO). For ETO terminals, you might also
use the Sign-On exit routine (DFSSGNX0). DFSCSGNO is described in more detail
in [/SIGN ON/OFF Security Exit Routine” on page 150

Related Reading: For more information about these and other security exit
routines, see the—UMS Version 9: Customization Guidd.

Implementing Signon Verification using SMU

Using SMU and AGN security, the user ID entered at signon can also be associated
with transactions and commands authorized to be issued from that terminal. To
check signon verification as well as transaction and command verification, you can
use the RACF licensed program, an exit routine, or both.

At system definition you specify, in the SECURITY macro, no signon verification,
signon verification alone, or signon verification with transaction and command
authorization. You can override these specifications with IMS procedure parameters,
the /NRESTART command, or the /ERESTART COLDSYS command. You identify physical
terminals that require signon verification using SMU. Users who are defined through
ETO are required to use signon verification. Because ETO is not supported by
SMU, signon verification can be performed through RACF or an equivalent security
product, or through exit routines.

Note: Default terminal security with SMU does not apply to ETO. An equivalent
level of security is provided for ETO terminals if DFSCCMDO is not used for
security or if the DFSCCMDO sample exit routine is used unmodified.

Signon verification checks user IDs and passwords through the /SIGN command. It
associates the user ID to the physical terminal from the time the /SIGN ON
command is entered until the /SIGN OFF command is entered. Also, the user ID is
included on all database update records on the system log caused by the
processing invoked from the user’s terminal.

Chapter 4. IMS Security 121



Designing Security for IMS DB/DC and DCCTL

Verification is done by RACF, by an exit routine, or by both. If you are using RACF,
it checks for user ID, password, and group. If you are using an exit routine to
implement signon verification, it can check for user ID and password.

You might decide to use only signon verification security, without RACF, to provide
the basis for user accountability of database changes. In this case, the signon
requirement should be defined for all terminals. In addition, you must provide a
signon exit routine that has access to a list of all current user IDs.

The signon verification exit routine (DFSCSGNO) is described in|“/SIGN ON/OFF|
[Security Exit Routine” on page 150

Example of PTERM protection using SMU

This example and the following transaction and command protection example show
how you might decide which security facilities to use and how you could protect
them.

Assume your situation is as described in[Table 17 on page 115} and that you have
decided to limit the use of terminals A1, B1, and C1 to a subset of users by using
signon verification. The user IDs and passwords are authorized by SMU and an exit
routine.

You use the following SMU control and data statements to define this set of
terminals (nodes) requiring signon verification:
) (SIGN

STERM Al

STERM B1
STERM C1

Unless specified by additional Security Maintenance control and data statements,
no other terminals are protected.

After defining which PTERMSs require access, code a table of user IDs and
passwords. This table can be link-edited into the IMS nucleus.

The Signon Verification exit routine, written by your installation, addresses this table
for a match between the table and the user requesting access. An unmatched
condition rejects the user.

Using RACF PassTickets

A RACF PassTicket is a one-time-only password that is generated by a requesting
product or function. The PassTicket is an alternative to the RACF password and
removes the need to send RACF passwords across the network in clear text.
PassTickets also make it possible to move the authentication of a mainframe
application user ID from RACF to one of these alternatives:

* Another authorized function executing on the host system
* The workstation local area network (LAN) environment

PassTickets are resistant to reuse because they only give one user access to a
specific application for approximately 10 minutes. For most applications, once a
particular PassTicket is used, the same user cannot use it again for the same
application during the same 10-minute interval.

Creating a RACF PassTicket: \When you call RACF, a general PassTicket
generator algorithm uses special input information to create a unique PassTicket.

122 Administration Guide: System



Designing Security for IMS DB/DC and DCCTL

The PassTicket is an 8-character alphanumeric string that contains the characters A
through Z and 0 through 9. The algorithm generates a PassTicket using the
following four input values:

* A RACF host user ID
* The PTKTDATA class profile name (also known as the application id)

* The RACF Secured Signon application key, which is contained in the PTKTDATA
profile

* The required time and date input data from the application that is providing the
logon function

Requirement: For RACF to properly evaluate PassTickets, the TOD clock must
be set to GMT rather than local time.

IMS Usage of PassTickets: When a/SIGN ON command is received by IMS that
contains a PassTicket instead of a password, the signon process fails, unless the
PassTicket was created using the IMSID as the application name (hame of the
PTKTDATA profile). Because the IMSID may not be known to other systems that
might enter the signon command, flexibility is provided to allow for the use of other
names as application names when creating PassTickets. The keyword APPL in the
/SIGN ON command allows the end-user or program to specify another name (such
as the IMS VTAM application name) rather than the IMSID when creating the
PassTicket.

In a VTAM generic resource (VGR) environment, the remote end-user does not
know which IMS will be chosen for the connection. The DFSDCxxx PROCLIB
member provides a system-wide default application name (replacing IMSID) for all
the IMS systems in a generic group. With the use of this replacement name for the
application name, the creator of the PassTicket doesn’t have to know which IMS
system will be the recipient of the IMS terminal session.

Related Reading:

» For more information on creating PassTickets, see the Security Server RACF
Macros and Interfaces.

» For more information on enabling the use of PassTickets, see the Security Server
RACF Security Administrator’s Guide.

Authorizing Transactions and Commands

This topic describes transactions and commands, and explains how to authorize
them.

Authorizing Transactions

Transaction authorization determines if a user ID is permitted to use a certain
transaction. You can use an exit routine, RACF, or both to perform the transaction
authorization. To gradually phase in RACF as your installation’s transaction
authorization method, use the Transaction Authorization exit routine (DFSCTRNO).
This routine can reject the transaction if the transaction is entered by an ETO
terminal but is protected by SMU LTERM and password security. If you use both
DFSCTRNO and RACF, DFSCTRNO is effective only after RACF has authorized the
transaction or when the transaction is not defined to RACF. DESCTRNO is
described under [‘Transaction Authorization Exit Routine” on page 150.|

If you specify the REVERIFY option to RACF, the user must reenter the signon
password with each transaction code. However, if you use the REVERIFY option
and IMS password security on the same transaction, the RACF user password and
the IMS password must be ide