
IMS

Administration Guide:

Database Manager

Version 9

SC18-7806-00

���

IMS

Administration Guide:

Database Manager

Version 9

SC18-7806-00

���

Note

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

549.

First Edition (October 2004)

This edition applies to Version 9 of IMS (product number 5655-J38) and to all subsequent releases and modifications

until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1974, 2004. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures . vii

Tables . xv

About This Book . xvii

Prerequisite Knowledge . xvii

IBM Product Names Used in This Information xvii

How to Read Syntax Diagrams xviii

How to Send Your Comments xx

Summary of Changes . xxi

Changes to This Book for IMS Version 9 xxi

Library Changes for IMS Version 9 xxi

Part 1. General Information on IMS Database Administration 1

Chapter 1. Introduction to IMS Databases 3

Database Administration Overview 3

Open Database Access (ODBA) 4

Database Administration Tasks 4

Concepts and Terminology . 6

Optional Functions . 17

How to Define Your Database to IMS 18

How Application Programs View the Database 18

Chapter 2. Standards and Procedures 19

Establishing Standards and Procedures 19

Naming Conventions . 21

Chapter 3. Review Process . 25

The Design Review . 25

Design Review 1 . 26

Design Review 2 . 26

Design Review 3 . 27

Design Review 4 . 27

Code Inspection 1 . 28

Who Attends Code Inspection 1 28

Code Inspection 2 . 28

Security Inspection . 29

Post-Implementation Review . 29

Chapter 4. Security . 31

Restricting the Scope of Data Access 31

Restricting Processing Authority 31

Restricting Access by Non-IMS Programs 33

Using the Dictionary to Help Establish Security 34

Part 2. Administering IMS Databases . 35

Chapter 5. Analyzing Data Requirements 45

Local View . 45

Designing a Conceptual Data Structure 49

© Copyright IBM Corp. 1974, 2004 iii

Implementing the Structure with DL/I 51

Chapter 6. Choosing Full-Function Database Types 55

Sequential Storage Method . 56

Direct Storage Method . 56

Databases Supported with DBCTL 56

Databases Supported with DCCTL 57

Performance Considerations Overview 57

HSAM Databases . 60

HISAM Databases . 65

SHSAM, SHISAM and GSAM Databases 74

HDAM, PHDAM, HIDAM, and PHIDAM Databases 78

Managing I/O Errors . 107

Chapter 7. Choosing Fast Path Database Types 109

Data Entry Databases . 109

Main Storage Databases (MSDBs) 128

Fast Path Virtual Storage Option 135

Fast Path Synchronization Points 149

Managing I/O Errors and Long Wait Times 149

Registering Fast Path Databases in DBRC 150

Chapter 8. Choosing Optional Database Functions 151

Logical Relationships . 151

Secondary Indexes . 186

Choosing Secondary Indexes Versus Logical Relationships 208

Variable-Length Segments . 209

Segment Edit/Compression Exit Routine 212

Data Capture Exit Routines . 215

Field-Level Sensitivity . 220

Multiple Data Set Groups . 230

Block-Level Data Sharing and CI Reclaim 237

HALDB Single Partition Processing 237

Integrated HALDB Online Reorganization Function 238

Storing XML Data in IMS Databases 238

Chapter 9. Designing Full-Function Databases 241

Specifying Free Space (HDAM, PHDAM, HIDAM, and PHIDAM Only) 241

Estimating the Size of the Root Addressable Area (HDAM or PHDAM Only) 242

Determining Which Randomizing Module to Use (HDAM and PHDAM Only) 243

Choosing HDAM or PHDAM Options 244

Choosing a Logical Record Length for a HISAM Database 245

Choosing a Logical Record Length for HD Databases 248

Determining the Size of CIs and Blocks 248

Buffering Options . 249

OSAM Sequential Buffering . 253

VSAM Options . 260

OSAM Options . 265

Dump Option (DUMP Parameter) 265

Deciding Which FIELD Statements to Code in the DBD 265

Planning for Maintenance . 265

Chapter 10. Designing Fast Path Databases 267

Designing a Data Entry Database (DEDB) 267

Designing a Main Storage Database (MSDB) 273

High-Speed Sequential Processing (HSSP) 279

iv Administration Guide: Database Manager

||
||

Designing a DEDB or MSDB Buffer Pool 282

Designing a DEDB Buffer Pool in the DBCTL Environment 286

Chapter 11. Implementing Database Design 291

Coding Database Descriptions as Input for the DBDGEN Utility 291

Implementing HALDB Design 294

Coding Program Specification Blocks as Input to the PSBGEN Utility 301

Building the Application Control Blocks (ACBGEN) 304

Defining Generated Program Specification Blocks for SQL Applications 305

Chapter 12. Developing Test Databases 307

Test Requirements . 307

Designing, Creating, and Loading a Test Database 308

Chapter 13. Loading Databases 311

Estimating the Minimum Size of the Database 311

Allocating Data Sets . 318

Writing a Load Program . 320

Loading Fast Path Databases 331

Chapter 14. Monitoring Databases 335

IMS Monitor . 335

Monitoring Fast Path Systems 337

Chapter 15. Tuning Databases 341

Reorganizing the Database . 341

Reorganizing HALDBs . 358

Changing DL/I Access Methods 388

Changing the Hierarchic Structure 401

Changing Direct-Access Storage Devices 403

Tuning OSAM Sequential Buffering 403

Adjusting HDAM and PHDAM Options 404

Adjusting Buffers . 405

Adjusting VSAM Options . 408

Adjusting OSAM Options . 410

Changing the Amount of Space Allocated 410

Changing Operating System Access Methods 411

Changing the Number of Data Set Groups 411

Tuning Fast Path Systems . 415

Chapter 16. Modifying Databases 423

Adding Segment Types . 424

Deleting Segment Types . 425

Moving Segment Types . 426

Changing Segment Size . 426

Changing Data in a Segment (Except for Data at the End of a Segment) 427

Changing the Position of Data in a Segment 427

Adding Logical Relationships 427

Adding a Secondary Index . 445

Adding or Converting to Variable-Length Segments 445

Converting to the Segment Edit/Compression Exit Routine 446

Converting Databases for Data Capture Exit Routines and Asynchronous Data

Capture . 447

Converting a Logical Parent Concatenated Key from Virtual to Physical or

Physical to Virtual . 448

Using the Online Change Function 448

Contents v

||

||

Extending DEDB Independent Overflow Online 458

Part 3. Appendixes . 461

Appendix A. Meaning of Bits in the Delete Byte 463

Bits in the Delete Byte . 463

Bits in the Prefix Descriptor Byte 463

Appendix B. Insert, Delete, and Replace Rules for Logical Relationships 465

Specifying Rules in the Physical DBD 465

Insert Rules . 466

Replace Rules . 469

Using the DLET Call . 475

Appendix C. Using OSAM as the Access Method 507

Appendix D. Correcting Bad Pointers 509

Appendix E. HALDB Partition Definition utility 511

The Partitioned Databases Panel 512

Accessing Help Information . 513

Exiting the Utility . 513

Displaying the ISPF Member List 514

Opening HALDB Partitions . 515

Defining Data Set Group Information 527

Displaying the List of Defined Partitions 528

Opening Database Information 536

Deleting Database Information 537

Exporting Database Information 537

Importing Database Information 538

Displaying the IMS Concatenation 538

Selecting an IMS Configuration 539

Using Batch to Export or Import Partition Information 541

DSPXRUN Command Syntax 542

Appendix F. Output Data Set Requirements for HALDB Online

Reorganization . 545

HALDB Online Reorganization Requirements for Existing Output Data Sets 545

Attributes of Automatically-Created Output Data Sets 545

Notices . 549

Programming Interface Information 551

Trademarks . 552

Bibliography . 553

IMS Version 9 Library . 553

Supplementary Publications . 554

Publication Collections . 554

Accessibility Titles Cited in This Library 554

Index . 555

vi Administration Guide: Database Manager

|
||
||
||

Figures

 1. Segment Types in the School Database Record . 7

 2. Segment Occurrences in a School Database Record 8

 3. Hierarchic Sequence of Segment Types for School Database 9

 4. Hierarchic Sequence of Segment Occurrences for School Database 10

 5. Levels in the Database . 11

 6. An Example of a Medical Database Record . 12

 7. Example of Records That Can Be Stored in the School Database 13

 8. Records that Cannot be Stored in the School Database 13

 9. Format of Fixed-Length Segments . 14

 10. Format of Variable-Length Segments . 14

 11. Three Segment Occurrences and Three Data Elements of the STUDENT Segment 16

 12. Example of STUDENT Segments Stored in Alphabetic Order 16

 13. DBD for Payroll Database . 32

 14. Payroll Database Record without a Mask . 32

 15. PCB for Payroll Database . 32

 16. Payroll Database Record with SALARY Segment Masked 33

 17. Current Roster Conceptual Data Structure . 47

 18. Schedule of Classes Conceptual Data Structure 48

 19. Instructor Skills Report Conceptual Data Structure 48

 20. Instructor Schedules Conceptual Data Structure 49

 21. Education Data Structures . 51

 22. Education Hierarchies . 53

 23. Bidirectional Logical Relationships . 53

 24. Example HSAM Database . 62

 25. Example HSAM Database Stored in Blocks . 62

 26. GU Calls against an HSAM Database . 63

 27. Updating an HSAM Database . 64

 28. Example HISAM Database . 66

 29. Example HISAM Database in Storage . 67

 30. Format of a Logical Record in a HISAM Database 68

 31. Inserting a Root Segment into a HISAM Database (Free Logical Record Exists in the CI) 69

 32. Inserting a Root Segment into a HISAM Database (No Free Logical Record Exists in the CI) 70

 33. Inserting a Dependent Segment into a HISAM Database (Space Exists in the Logical Record) 71

 34. Inserting a Dependent Segment into a HISAM Database (No Space Exists in the Logical Record) 72

 35. The Hierarchic Segment Layout on the Database 73

 36. Accessing a HISAM Segment That Hierarchically Follows Deleted Segments 73

 37. A Logical View of an HDAM and a PHDAM Database 78

 38. A Logical View of a HIDAM and a PHIDAM . 79

 39. Example Database Record . 81

 40. Example Database Record for Illustrating Pointers 82

 41. Hierarchic Forward Pointers . 83

 42. Hierarchic Forward and Backward Pointers . 84

 43. Physical Child First Pointers . 85

 44. Physical Child First and Last Pointers . 86

 45. Specifying PCF and PCL Pointers . 87

 46. Physical Twin Forward Pointers . 88

 47. Physical Twin Forward and Backward Pointers . 88

 48. Mixing Pointers . 90

 49. Format of an HD Database and Special Fields in It 91

 50. Bit Map for HD Databases . 92

 51. An FSEAP . 93

 52. An FSE . 93

 53. An HDAM or PHDAM Anchor Point Area . 94

© Copyright IBM Corp. 1974, 2004 vii

54. Two Example HD Database Records . 94

 55. HDAM or PHDAM Database Records in Storage 95

 56. HIDAM or PHIDAM Database Records in Storage 97

 57. Format of an Index Segment . 98

 58. HIDAM or PHIDAM Index Databases . 98

 59. Specifying PTR=T or PTR=H for Root Segments in a HIDAM Database 99

 60. How Dependent Segments Are Found Using PCF and PTF Pointers 100

 61. Inserting a Root Segment into a HIDAM or PHIDAM Database 101

 62. Updating the Space Management Fields in an HDAM or PHDAM Database 102

 63. Defining a Variable-Length Segment . 116

 64. Defining a Fixed-Length Segment . 116

 65. Parts of a DEDB Area in Storage . 118

 66. CI Format . 119

 67. Root Segment Format (with Sequential and Direct Dependent Segments with Subset Pointers) 120

 68. Sequential Dependent Segment Format . 121

 69. Direct Dependent Segment Format . 121

 70. DEDB Structure Example . 124

 71. Extending a UOW to Use Independent Overflow 126

 72. MSDB Pointers . 129

 73. MSDBINIT Record Format . 130

 74. Sequence of the Four MSDB Organizations . 131

 75. ECNT and MSDB Storage Layout . 133

 76. Example of Updating a Policy with New Structures 140

 77. Defining a VSO Area Coupling Facility Structure Name in DBRC 141

 78. Examples of Defining Private Buffer Pools . 142

 79. A Simple Logical Relationship . 152

 80. Unidirectional Logical Relationship . 153

 81. Two Unidirectional Logical Relationships . 154

 82. Bidirectional Physically Paired Logical Relationship 154

 83. Bidirectionally Virtually Paired Logical Relationship 155

 84. Direct Logical Parent (LP) Pointer . 157

 85. Symbolic Logical Parent (LP) Pointer . 158

 86. Logical Child First (LCF) Pointer (Used in Virtual Pairing Only) 159

 87. Physical Parent (PP) Pointer . 160

 88. Logical Twin Forward (LTF) Pointer (Used in Virtual Pairing Only) 161

 89. Self-healing Pointers . 161

 90. Defining a Physical Parent to Logical Parent Path in a Logical Database 162

 91. Defining a Logical Parent to Physical Parent Path in a Logical Database 162

 92. Format of a Concatenated Segment Returned to User I/O Area 163

 93. Fixed Intersection Data . 165

 94. Variable Intersection Data . 166

 95. Model 1 Components and Subassemblies . 168

 96. Database Records for the Model 1 Bicycle . 169

 97. Extra Database Records Required for the Model 2 Bicycle 170

 98. Relationship of Control Blocks When a Logical Relationship Is Used 172

 99. Layouts of Segments Used in the Examples . 173

100. Physical DBDs for Unidirectional Relationship Using Symbolic Pointing 173

101. Logical Data Structure for a Unidirectional Relationship Using Symbolic Pointing 176

102. Definition of Crossing a Logical Relationship . 178

103. The First Logical Relationship Crossed in a Hierarchic Path of a Logical Database 179

104. Logical Database Hierarchy Enabled by Crossing the First Logical Relationship 180

105. Single Concatenated Segment Type Defined Multiple Times with Different Combinations of Key

and Data Sensitivity . 181

106. Example of the Replace, Insert, and Delete Rules 182

107. Example of the Replace, Insert, and Delete Rules: Before and After 182

108. Example of a Unidirectional Logical Relationship 185

viii Administration Guide: Database Manager

||

109. Example of a Logical Structure . 185

110. Database Record in Educational Database . 187

111. Example of a Database Record Unique Key Field 187

112. Segments Used for Secondary Indexes . 188

113. Format of Pointer Segments Contained in the Secondary Index Database 189

114. Education Database Record . 190

115. How a Segment Is Accessed Using a Secondary Index 190

116. Call Application Issues . 190

117. Physical Database Structure with Target Segment G 191

118. Secondary Index Structure Indexed in Secondary Index on Segment G 192

119. Examples of Source Segments for Each Student 193

120. Example of a Logical Record Containing a Pointer Segment 193

121. Secondary Index Entry for HALDB . 193

122. Examples of Several Source Segments for Each Student 194

123. Database Record Showing the Source and Target for Secondary Indexes 197

124. Concatenated Key of the STUDENT Segment 197

125. Databases for First Example of the INDICES= Parameter 202

126. PCB for the First Example of the INDICES= Parameter 202

127. Application Program Call Issued for the First Example of the INDICES= Parameter 202

128. Databases for Second Example of the INDICES= Parameter 203

129. PCB for the Second Example of the INDICES= Parameter 203

130. Application Program Call Issued for the Second Example of the INDICES= Parameter 204

131. Databases for Secondary Indexing Example . 207

132. EDUC DBD for Secondary Indexing . 207

133. SINDX DBD for Secondary Indexing . 207

134. Fields in the CUSTOMER Segment . 208

135. Assembly and Parts as Examples to Demonstrate Segments Logical Relationship 209

136. Example of a Segment That Appears to Have Two Parents 209

137. How Variable-Length Segments Are Specified . 210

138. Format of HISAM Variable-Length Segments . 210

139. Format of HDAM, PHDAM, HIDAM or PHIDAM Variable-Length Segments 211

140. DBD and PSB Coding for Field-Level Sensitivity 222

141. DBD Example for Field-Level Sensitivity . 222

142. PSB Example for Field-Level Sensitivity . 222

143. Example of a Retrieve Call . 223

144. Example of a REPL Call . 223

145. Example of an ISRT Call . 224

146. Example of a Missing Field on a Retrieve Call 226

147. DBD Example for Field-Level Sensitivity with Variable-Length Segments 226

148. PSB Example for Field-Level Sensitivity with Variable-Length Segments 226

149. First Example of a Missing Field on a Replace Call 227

150. Second Example of a Missing Field on a Replace Call 228

151. Example of a Missing Field on an Insert Call . 228

152. Example of a Partially Present Field on a Retrieval Call 229

153. Example of a Partially Present Field on a REPL Call 230

154. Hierarchy of Applications That Need to Access INSTR and LOC Segments 231

155. Database Record Split into Two Database Groups 232

156. Example of How to Divide an HD Database Record 233

157. Connecting Segments in Multiple Data Set Groups Using Physical Child First Pointers 233

158. HD Database Record in Storage When Multiple Data Set Groups Are Used 234

159. First Example of Data Set Groups . 235

160. HDAM DBD for First Example of Data Set Groups 235

161. PHDAM DBD for First Example of Data Set Groups 235

162. Second Example of Data Set Groups . 236

163. HDAM DBD for Second Example of Data Set Groups 236

164. PHDAM DBD for Second Example of Data Set Groups 236

Figures ix

||

165. Specifying the RMNAME keyword . 244

166. Database Record for Logical Record Examples 246

167. Short Logical Records . 246

168. Long Logical Records . 246

169. Database Record for Logical Records Example 247

170. Logical Records Example with Two Read Operations 247

171. Levels in a VSAM Index . 264

172. First Example MSDB Record Held in Exclusive Mode 277

173. Second Example MSDB Record Held in Exclusive Mode 277

174. The DBD Generation Process . 292

175. Structure of DBD Generation Input . 292

176. Example of a Date Field within a Segment Defined as Three 2–Byte Fields and One 6–Byte

Field . 293

177. Partition Default Information . 297

178. Change Partition Panel . 298

179. Sample Command to Define an ILDS . 301

180. The PSB Generation Process . 302

181. Structure of PSB Generation Input . 302

182. Example of a SENSEG Relationship . 303

183. The ACB Generation Process . 304

184. Segment Sizes and Average Segment Occurrences 313

185. JCL allocating an OSAM data set . 319

186. The Load Process . 322

187. Loading a Database Using Existing Files . 323

188. Basic Initial Load Program Logic . 325

189. Sample Load Program . 326

190. Restartable Initial Load Program Logic . 328

191. Sample Restartable Initial Load Program . 329

192. JCL used to initially load a database . 330

193. IMS Monitor Works . 336

194. Fast Path Transaction Event Timings . 338

195. Steps in Reorganizing When Logical Relationships or Secondary Indexes Exist 346

196. Steps for Reorganizing HALDB Partitions When Logical Relationships or Secondary Indexes

Exist . 347

197. HISAM Reorganization Unload Utility (DFSURUL0) 347

198. HISAM Reorganization Reload Utility (DFSURRL0) 348

199. HD Reorganization Unload Utility (DFSURGU0) 348

200. HD Reorganization Reload Utility (DFSURGL0) 349

201. Database Prereorganization Utility (DFSURPR0) 350

202. Database Scan Utility (DFSURGS0) . 351

203. Database Prefix Resolution Utility (DFSURG10) 352

204. Database Prefix Update Utility (DFSURGP0) . 353

205. HISAM Reorganization Unload and Reload Utilities Used for Create, Merge, or Replace

Secondary Indexing Operations . 354

206. HISAM Reorganization Unload Utility Used for Extract Secondary Indexing Operations 355

207. Database Surveyor Utility (DFSPRSUR) . 356

208. Partial Database Reorganization Utility (DFSPRCT1) 357

209. Offline Reorganization of a HALDB database . 360

210. Example: The HD Reorganization Unload Utility Control Statement to Unload One Partition 361

211. Example: The HD Reorganization Unload Utility Control Statement to Unload Multiple Partitions 361

212. Example: Sample JCL to Unload a HALDB Partition 362

213. Example: IEC161I message during reload . 362

214. Example: JCL to Reload a HALDB Partition . 363

215. Example RECON Listing: DB Record for a HALDB in Cursor-Active Status 366

216. The Relationship between Input Data Sets and Output Data Sets during the Online

Reorganization of a HALDB Partition . 367

x Administration Guide: Database Manager

||

|
||

||
||
||
||
||
||
||
|
||

217. Normal Processing Steps of HALDB Online Reorganization 369

218. Processing Steps for an Interrupted Online Reorganization of a HALDB Partition 376

219. HALDB Pointer Before a Reorganization . 383

220. HALDB Pointer After a Reorganization . 385

221. HALDB Pointer After the Self-Healing Process 386

222. HDAM and HIDAM Databases Before and After Changing to PHDAM and PHIDAM 395

223. Utility Sequence of Execution When Making Database Changes during Reorganization 413

224. Where Segment Types Can Be Added in a Database Record 424

225. DBX Exists, DBY Is to Be Added . 428

226. DBX and DBY Exist, DBZ Is to Be Added . 429

227. DBX and DBY Exist, DBZ Is to Be Added . 430

228. DBX and DBY Exist, DBZ Is to Be Added . 431

229. DBX Exists and DBY Is to Be Added . 431

230. DBX and DBY Exist, DBZ Is to Be Added . 432

231. DBX and DBY Exist, DBZ Is to Be Added . 434

232. DBX and DBY Exist, DBZ Is to Be Added . 436

233. DBY Exists, DBZ Is to Be Added . 436

234. DBY Exists, DBZ Is to Be Added . 437

235. DBX and DBY Exist, DBZ Is to Be Added . 437

236. DBX and DBY Exist, DBZ Is to Be Added . 438

237. DBX and DBY Exist, Segment Y and DBZ Are to Be Added 438

238. The Change in Pairing from Virtual to Physical 444

239. The Position Change of a Real Logical Child from One Logically Related Database to Another 444

240. Adding a Database Using Online Change . 455

241. Insert, Delete, and Replace Rules in the DBD . 465

242. Physical Insert Rule Example . 467

243. Paths for Physical Insert Rule Example . 467

244. ISRT and Status Codes for Physical Insert Rule Example 468

245. Logical Insert Rule Example . 468

246. ISRT and Status Codes for Logical Insert Rule Example 468

247. Virtual Insert Rule Example . 469

248. ISRT and Status Codes for Virtual Insert Rule Example 469

249. Physical Replace Rule Example . 470

250. Calls and Status Codes for Physical Replace Rule Example 471

251. Logical Replace Rule Example . 471

252. Calls and Status Codes for Logical Replace Rule Example 471

253. Virtual Replace Rule Example . 472

254. Calls and Status Codes for Virtual Replace Rule Example 472

255. Physical Databases for Replace Rules Tables . 473

256. Logical Views for Replace Rules Table . 473

257. Concatenated Segment Relationships . 476

258. Third Access Path Example . 476

259. Logical Parent, Virtual Pairing—Physical Delete Rule Example 479

260. Logical Parent, Physical Pairing—Physical Delete Rule Example: Before and After 480

261. Logical Parent, Physical Pairing—Physical Delete Rule Example: Database Calls 480

262. Logical Parent, Physical Pairing—Physical Delete Rule Example 480

263. Logical Parent, Physical Pairing—Physical Delete Rule Example: Before and After 481

264. Logical Parent, Physical Pairing—Physical Delete Rule Example: Calls and Status Codes 481

265. Logical Parent, Virtual Pairing—Logical Delete Rule Example 481

266. Logical Parent, Virtual Pairing—Logical Delete Rule Example: Before and After 482

267. Logical Parent, Virtual Pairing—Logical Delete Rule Example: Calls and Status Codes 482

268. Logical Parent, Physical Pairing—Logical Delete Rule Example 483

269. Logical Parent, Physical Pairing—Logical Delete Rule Example: Before and After 483

270. Logical Parent, Physical Pairing—Logical Delete Rule Example: Calls and Status Codes 483

271. Logical Parent, Virtual Pairing—Virtual Delete Rule Example 484

272. Logical Parent, Virtual Pairing—Virtual Delete Rule Example: Before and After 484

Figures xi

||
||
||
||
||

||

273. Logical Parent, Virtual Pairing—Virtual Delete Rule Example: Calls and Status Codes 484

274. Logical Parent, Physical Pairing—Virtual Delete Rule Example 485

275. Logical Parent, Physical Pairing—Virtual Delete Rule Example: Before and After 485

276. Logical Parent, Physical Pairing—Virtual Delete Rule Example: Calls and Status 485

277. Physical Parent, Virtual Pairing—Bidirectional Virtual Example 486

278. Physical Parent, Virtual Pairing—Bidirectional Virtual Example: Before and After 486

279. Deleting Last Logical Child Deletes Physical Parent 486

280. Logical Child, Virtual Pairing—Physical Delete Rule Example 487

281. Logical Child, Virtual Pairing—Physical Delete Rule Example: Deleting the Logical Child 487

282. Logical Child, Virtual Pairing—Physical Delete Rule Example: Before and After 488

283. Logical Child, Virtual Pairing—Logical Delete Rule Example 488

284. Logical Child, Virtual Pairing—Logical Delete Rule Example: Calls and Status 489

285. Logical Child, Virtual Pairing—Logical Delete Rule Example: Before and After 489

286. Logical Child, Physical Pairing—Physical or Logical Delete Rule Example 490

287. Logical Child, Physical Pairing—Physical or Logical Delete Rule Example: Calls and Status 490

288. Logical Child, Physical Pairing—Physical or Logical Delete Rule Example: Before and After 491

289. Logical Child, Virtual Pairing—Virtual Delete Rule Example 491

290. Logical Child, Virtual Pairing—Virtual Delete Rule Example: Calls and Status 492

291. Logical Child, Virtual Pairing—Virtual Delete Rule Example: Before and After 492

292. Logical Child, Physical Pairing—Virtual Delete Rule Example 493

293. Logical Child, Physical Pairing—Virtual Delete Rule Example: Calls and Status 493

294. Logical Child, Physical Pairing—Virtual Delete Rule Example: Before and After 494

295. (Part 1 of 5). Example of Deleted Segments Accessibility 495

296. (Part 2 of 5). Example of Deleted Segments Accessibility 496

297. (Part 3 of 5). Example of Deleted Segments Accessibility 496

298. (Part 4 of 5). Example of Deleted Segments Accessibility: Database Calls 497

299. (Part 5 of 5). Example of Deleted Segments Accessibility 497

300. Example of Abnormal Termination . 498

301. Example of Violation of the Physical Delete Rule 499

302. Example of Violation of the Physical Delete Rule: Database Calls 499

303. Example of Treating the Physical Delete Rule as Logical 500

304. Example of Treating the Physical Delete Rule as Logical: Database Calls 500

305. Insert, Delete, and Replace Rules Summary . 503

306. Partitioned Databases panel (DSPXPAA) . 512

307. Help Action Bar Choices . 513

308. Exit Confirmation Panel . 514

309. ISPF Member List Display (DSPXPAM) . 514

310. File Action Bar Choices . 515

311. Partitioned Database Information (DSPXPOA) 516

312. Partition Default Information (DSPXPCA) . 518

313. Automatic Definition Status . 522

314. Change Partition (DSPXPPA) . 524

315. Selection String Editor (DSPXPKE) . 526

316. Change Data Set Groups, Part 1 (DSPXPGA) 527

317. Change Data Set Groups, Part 2 (DSPXPGB) 528

318. Change a Data Set Group (DSPXPGC) . 528

319. Database Partitions Panel, Sorted by Partition ID (DSPXPLA) 529

320. Database Partitions Panel, Sorted by Key (DSPXPLB) 530

321. Database Partitions Panel, Sorted by Name (DSPXPLC) 531

322. File Action Bar Choices . 532

323. Edit Action Bar Choices . 533

324. Searching the Partition List . 534

325. View Action Bar Choices . 534

326. Change Partition Panel (DSPXPPB) . 535

327. Change Data Set Groups, Part 1 (DSPXPGA) 536

328. Partitioned Database Information (DSPXPOA) 536

xii Administration Guide: Database Manager

||

||
||

||
||

||

329. Delete a Database (DSPXPDA) . 537

330. Export a Database (DSPXPEA) . 537

331. Import a Database (DSPXPIA) . 538

332. The IMS Concatenation (ISRDDN) . 539

333. User Configurations (DSPXPMB) . 540

334. Configuration Details Panel (DSPXPMC) . 540

335. Sample JCL for Batch Import . 541

Figures xiii

||

xiv Administration Guide: Database Manager

Tables

 1. Licensed Program Full Names and Short Names xvii

 2. Types of IMS Databases and the z/OS Access Methods They Can Use 11

 3. Example of Naming Conventions . 22

 4. Suffixes for DD names . 23

 5. Combined Mappings for Local Views . 50

 6. Keys and Associated Data Elements . 51

 7. Summary of Database Characteristics and Options for Database Types 59

 8. Comparison of SHSAM, SHISAM, and GSAM Databases 77

 9. Maximum Sizes for HDAM, HIDAM, PHDAM, and PHIDAM Databases 79

10. CI Format . 120

11. Root Segment Format . 120

12. Sequential Dependent Segment Format . 121

13. Direct Dependent Segment Format . 121

14. MSDBINIT Record Format . 130

15. Required CFRM List Structure Storage Sizes . 150

16. Parts List for the Model 1 Bicycle Example . 167

17. Delete Rule Restrictions for Logically Related Databases Using Data Capture Exit Routines 220

18. Examples of Multiple Data Set Grouping . 232

19. Levels of Enqueue of an MSDB Record . 275

20. Example of MSDB Record Status: Shared (S) or Owned Exclusively (E) 275

21. File Names and Data Sets to Allocate . 295

22. Minimum and maximum number of data sets for HALDB partitions. 299

23. Required Fields and Pointers in a Segment’s Prefix 312

24. Calculating the Average Database Record Size 313

25. VSAM Control Fields . 314

26. Monitor Data for Fast Path Transactions . 339

27. IMS Versions that Can Access HALDBs that Are Capable of Being Reorganized Online 370

28. Data Set Name Examples for HALDB Online Reorganization 373

29. Mapping Startup Tasks to Commands for HALDB Online Reorganization 373

30. Mapping Monitoring Tasks to Commands for HALDB Online Reorganization 374

31. Mapping Modifying and Tuning Tasks to Commands for HALDB Online Reorganization 374

32. Steps in Reorganizing a Database to Add a Logical Relationship 441

33. Replace Rules for Logical View 1 . 473

34. Replace Rules for Logical View 2 . 474

35. Specifying Insert, Delete, and Replace Rules . 503

36. Length and Format of an OSAM DEB . 507

© Copyright IBM Corp. 1974, 2004 xv

||

||

||

||

||
||
||
||
||

||

xvi Administration Guide: Database Manager

About This Book

This information is available as part of the DB2® Information Management Software

Information Center for z/OS® Solutions. To view the information within the DB2

Information Management Software Information Center for z/OS Solutions, go to

http://publib.boulder.ibm.com/infocenter/dzichelp. This information is also available in

PDF and BookManager® formats. To get the most current versions of the PDF and

BookManager formats, go to the IMS™ Library page at

www.ibm.com/software/data/ims/library.html.

This book describes how to design, implement, and maintain different types of IMS

databases and is divided into two parts:

v Part 1, “General Information on IMS Database Administration,” on page 1

describes important concepts to keep in mind throughout the database

administration process.

v Part 2, “Administering IMS Databases,” on page 35 describes the steps in the

database administration process.

With IMS Version 9, you can reorganize HALDB partitions online, either by using

the integrated HALDB Online Reorganization function or by using an external

product. In this information, the term HALDB Online Reorganization refers to the

integrated HALDB Online Reorganization function that is part of IMS Version 9,

unless otherwise indicated.

Prerequisite Knowledge

Before using this book, you should understand basic IMS concepts and your

installation’s IMS system. IMS can run in the following environments: DB Batch,

DCCTL, TM Batch, DB/DC, DBCTL. You should understand the environments that

apply to your installation. The IMS concepts explained here pertain only to

administering the IMS database. You should know how to use DL/I calls and

languages such as assembler, COBOL, PL/I, and C.

IMS Version 9: Application Programming: Design Guide describes how to design

and code an application program.

For definitions of terms used in this manual and references to related information in

other IMS manuals, see IMS Version 9: Master Index and Glossary.

IBM Product Names Used in This Information

In this information, the licensed programs shown in Table 1 are referred to by their

short names.

 Table 1. Licensed Program Full Names and Short Names

Licensed program full name Licensed program short name

IBM® Application Recovery Tool for IMS and

DB2

Application Recovery Tool

IBM CICS® Transaction Server for OS/390® CICS

IBM CICS Transaction Server for z/OS CICS

IBM DB2 Universal Database™ DB2 Universal Database

IBM DB2 Universal Database for z/OS DB2 UDB for z/OS

© Copyright IBM Corp. 1974, 2004 xvii

Table 1. Licensed Program Full Names and Short Names (continued)

Licensed program full name Licensed program short name

IBM Enterprise COBOL for z/OS and OS/390 Enterprise COBOL

IBM Enterprise PL/I for z/OS and OS/390 Enterprise PL/I

IBM High Level Assembler for MVS™ & VM &

VSE

High Level Assembler

IBM IMS Advanced ACB Generator IMS Advanced ACB Generator

IBM IMS Batch Backout Manager IMS Batch Backout Manager

IBM IMS Batch Terminal Simulator IMS Batch Terminal Simulator

IBM IMS Buffer Pool Analyzer IMS Buffer Pool Analyzer

IBM IMS Command Control Facility for z/OS IMS Command Control Facility

IBM IMS Connect for z/OS IMS Connect

IBM IMS Connector for Java™ IMS Connector for Java

IBM IMS Database Control Suite IMS Database Control Suite

IBM IMS Database Recovery Facility for z/OS IMS Database Recovery Facility

IBM IMS Database Repair Facility IMS Database Repair Facility

IBM IMS DataPropagator™ for z/OS IMS DataPropagator

IBM IMS DEDB Fast Recovery IMS DEDB Fast Recovery

IBM IMS Extended Terminal Option Support IMS ETO Support

IBM IMS Fast Path Basic Tools IMS Fast Path Basic Tools

IBM IMS Fast Path Online Tools IMS Fast Path Online Tools

IBM IMS Hardware Data

Compression-Extended

IMS Hardware Data Compression-Extended

IBM IMS High Availability Large Database

(HALDB) Conversion Aid for z/OS

IBM IMS HALDB Conversion Aid

IBM IMS High Performance Change

Accumulation Utility for z/OS

IMS High Performance Change Accumulation

Utility

IBM IMS High Performance Load for z/OS IMS HP Load

IBM IMS High Performance Pointer Checker

for OS/390

IMS HP Pointer Checker

IBM IMS High Performance Prefix Resolution

for z/OS

IMS HP Prefix Resolution

IBM Tivoli® NetView® for z/OS Tivoli NetView for z/OS

IBM WebSphere® Application Server for z/OS

and OS/390

WebSphere Application Server for z/OS

IBM WebSphere MQ for z/OS WebSphere MQ

IBM WebSphere Studio Application Developer

Integration Edition

WebSphere Studio

IBM z/OS z/OS

How to Read Syntax Diagrams

The following rules apply to the syntax diagrams that are used in this information:

xviii Administration Guide: Database Manager

v Read the syntax diagrams from left to right, from top to bottom, following the path

of the line. The following conventions are used:

– The >>--- symbol indicates the beginning of a syntax diagram.

– The ---> symbol indicates that the syntax diagram is continued on the next

line.

– The >--- symbol indicates that a syntax diagram is continued from the

previous line.

– The --->< symbol indicates the end of a syntax diagram.

v Required items appear on the horizontal line (the main path).

�� required_item ��

v Optional items appear below the main path.

�� required_item

optional_item
 ��

If an optional item appears above the main path, that item has no effect on the

execution of the syntax element and is used only for readability.

��
 optional_item

required_item

��

v If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main

path.

�� required_item required_choice1

required_choice2
 ��

If choosing one of the items is optional, the entire stack appears below the main

path.

�� required_item

optional_choice1

optional_choice2

 ��

If one of the items is the default, it appears above the main path, and the

remaining choices are shown below.

��

required_item
 default_choice

optional_choice

optional_choice

��

v An arrow returning to the left, above the main line, indicates an item that can be

repeated.

��

required_item

�

repeatable_item

��

About This Book xix

If the repeat arrow contains a comma, you must separate repeated items with a

comma.

��

required_item

�

 ,

repeatable_item

��

A repeat arrow above a stack indicates that you can repeat the items in the

stack.

v Sometimes a diagram must be split into fragments. The syntax fragment is

shown separately from the main syntax diagram, but the contents of the fragment

should be read as if they are on the main path of the diagram.

�� required_item fragment-name ��

fragment-name:

 required_item

optional_item

v In IMS, a b symbol indicates one blank position.

v Keywords, and their minimum abbreviations if applicable, appear in uppercase.

They must be spelled exactly as shown. Variables appear in all lowercase italic

letters (for example, column-name). They represent user-supplied names or

values.

v Separate keywords and parameters by at least one space if no intervening

punctuation is shown in the diagram.

v Enter punctuation marks, parentheses, arithmetic operators, and other symbols,

exactly as shown in the diagram.

v Footnotes are shown by a number in parentheses, for example (1).

How to Send Your Comments

Your feedback is important in helping us provide the most accurate and highest

quality information. If you have any comments about this or any other IMS

information, you can take one of the following actions:

v Go to the IMS Library page at www.ibm.com/software/data/ims/library.html and

click the Library Feedback link, where you can enter and submit comments.

v Send your comments by e-mail to imspubs@us.ibm.com. Be sure to include the

title, the part number of the title, the version of IMS, and, if applicable, the

specific location of the text on which you are commenting (for example, a page

number in the PDF or a heading in the Information Center).

xx Administration Guide: Database Manager

Summary of Changes

Changes to This Book for IMS Version 9

This book contains new information on the following subjects:

v The topic “Fast Path Virtual Storage Option” on page 135 contains new

information about DEDB multi-area structures.

v The topic “Opening and Preopening DEDB Areas” on page 111 contains new

information about enhancements to your ability to control the opening of DEDB

areas during restart and after an IRLM reconnect.

v A new topic, “Reorganizing HALDBs” on page 358, discusses reorganizing

HALDBs online with the integrated HALDB Online Reorganization function. This

topic also includes additional information about reorganizing HALDBs offline.

v The existing topic Appendix E, “HALDB Partition Definition utility,” on page 511

has been updated to reflect the improvements that have been made to the

Partition Definition utility for IMS Version 9.

Library Changes for IMS Version 9

Changes to the IMS Library for IMS Version 9 include the addition of one title, a

change of one title, organizational changes, and a major terminology change.

Changes are indicated by a vertical bar (|) to the left of the changed text.

The IMS Version 9 information is now available in the DB2 Information Management

Software Information Center for z/OS Solutions, which is available at

http://publib.boulder.ibm.com/infocenter/dzichelp. The DB2 Information Management

Software Information Center for z/OS Solutions provides a graphical user interface

for centralized access to the product information for IMS, IMS Tools, DB2 Universal

Database (UDB) for z/OS, DB2 Tools, and DB2 Query Management Facility

(QMF™).

New and Revised Titles

The following list details the major changes to the IMS Version 9 library:

v IMS Version 9: IMS Connect Guide and Reference

The library includes new information: IMS Version 9: IMS Connect Guide and

Reference. This information is available in softcopy format only, as part of the

DB2 Information Management Software Information Center for z/OS Solutions,

and in PDF and BookManager formats.

IMS Version 9 provides an integrated IMS Connect function, which offers a

functional replacement for the IMS Connect tool (program number 5655-K52). In

this information, the term IMS Connect refers to the integrated IMS Connect

function that is part of IMS Version 9, unless otherwise indicated.

v The information formerly titled IMS Version 8: IMS Java User’s Guide is now

titled IMS Version 9: IMS Java Guide and Reference. This information is

available in softcopy format only, as part of the DB2 Information Management

Software Information Center for z/OS Solutions, and in PDF and BookManager

formats.

v To complement the IMS Version 9 library, a new book, An Introduction to IMS by

Dean H. Meltz, Rick Long, Mark Harrington, Robert Hain, and Geoff Nicholls

(ISBN # 0-13-185671-5), is available starting February 2005 from IBM Press. Go

to the IMS Web site at www.ibm.com/ims for details.

© Copyright IBM Corp. 1974, 2004 xxi

Organizational Changes

Organization changes to the IMS Version 9 library include changes to:

v IMS Version 9: IMS Java Guide and Reference

v IMS Version 9: Messages and Codes, Volume 1

v IMS Version 9: Utilities Reference: System

The chapter titled ″DLIModel Utility″ has moved from IMS Version 9: IMS Java

Guide and Reference to IMS Version 9: Utilities Reference: System.

The DLIModel utility messages that were in IMS Version 9: IMS Java Guide and

Reference have moved to IMS Version 9: Messages and Codes, Volume 1.

Terminology Changes

IMS Version 9 introduces new terminology for IMS commands:

type-1 command

A command, generally preceded by a leading slash character, that can be

entered from any valid IMS command source. In IMS Version 8, these

commands were called classic commands.

type-2 command

A command that is entered only through the OM API. Type-2 commands

are more flexible than type-2 commands and can have a broader scope. In

IMS Version 8, these commands were called IMSplex commands or

enhanced commands.

Accessibility Enhancements

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products. The major accessibility features

in z/OS products, including IMS, enable users to:

v Use assistive technologies such as screen readers and screen magnifier

software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

User Assistive Technologies

Assistive technology products, such as screen readers, function with the IMS user

interfaces. Consult the documentation of the assistive technology products for

specific information when you use assistive technology to access these interfaces.

Accessible Information

Online information for IMS Version 9 is available in BookManager format, which is

an accessible format. All BookManager functions can be accessed by using a

keyboard or keyboard shortcut keys. BookManager also allows you to use screen

readers and other assistive technologies. The BookManager READ/MVS product is

included with the z/OS base product, and the BookManager Softcopy Reader (for

workstations) is available on the IMS Licensed Product Kit (CD), which you can

download from the Web at www.ibm.com.

Keyboard Navigation of the User Interface

Users can access IMS user interfaces using TSO/E or ISPF. Refer to the z/OS

V1R1.0 TSO/E Primer, the z/OS V1R5.0 TSO/E User’s Guide, and the z/OS

V1R5.0 ISPF User’s Guide, Volume 1. These guides describe how to navigate each

xxii Administration Guide: Database Manager

interface, including the use of keyboard shortcuts or function keys (PF keys). Each

guide includes the default settings for the PF keys and explains how to modify their

functions.

Summary of Changes xxiii

xxiv Administration Guide: Database Manager

Part 1. General Information on IMS Database Administration

Chapter 1. Introduction to IMS Databases 3

Database Administration Overview 3

DL/I . 3

CICS . 3

DBCTL and DCCTL . 4

Open Database Access (ODBA) 4

Database Administration Tasks 4

Concepts and Terminology . 6

How Data Is Stored in a Database 6

The Hierarchy . 8

The Database . 11

The Database Record . 12

The Segment . 14

Optional Functions . 17

How to Define Your Database to IMS 18

How Application Programs View the Database 18

Chapter 2. Standards and Procedures 19

Establishing Standards and Procedures 19

Naming Conventions . 21

General Rules for Establishing Naming Conventions 21

HALDB Naming Conventions 22

Chapter 3. Review Process . 25

The Design Review . 25

Role of the Database Administrator 25

General Information about Reviews 25

Design Review 1 . 26

Design Review 2 . 26

Design Review 3 . 27

Design Review 4 . 27

Code Inspection 1 . 28

Who Attends Code Inspection 1 28

Code Inspection 2 . 28

Security Inspection . 29

Post-Implementation Review . 29

Chapter 4. Security . 31

Restricting the Scope of Data Access 31

Restricting Processing Authority 31

Restricting Access by Non-IMS Programs 33

Protecting Data with VSAM Passwords 33

Encrypting Your Database . 33

Using the Dictionary to Help Establish Security 34

© Copyright IBM Corp. 1974, 2004 1

2 Administration Guide: Database Manager

Chapter 1. Introduction to IMS Databases

This chapter describes the tasks of database administration and discusses the key

concepts and terms used when administering IMS Database Manager.

In this Chapter:

v “Database Administration Overview”

v “Open Database Access (ODBA)” on page 4

v “Database Administration Tasks” on page 4

v “Concepts and Terminology” on page 6

v “Optional Functions” on page 17

v “How to Define Your Database to IMS” on page 18

v “How Application Programs View the Database” on page 18

Database Administration Overview

The task of database administration is to design, implement, and maintain

databases. This book describes the tasks involved in administering the Information

Management System Database Manager (IMS DB). IMS is composed of two parts:

IMS Database Manager and IMS Transaction Manager. IMS Database Manager

manages the physical storage of records in the database. IMS Transaction Manager

manages the terminal network, the input and output of messages, and online

system resources. The administration of IMS Transaction Manager is covered in the

IMS Version 9: Administration Guide: System and the IMS Version 9: Administration

Guide: Transaction Manager.

This book presents the database administration tasks in the order in which you

normally perform the tasks. You perform some tasks in a specific sequence in the

database development process while other tasks are ongoing. It is important for you

to grasp not only what the tasks are (see “Database Administration Tasks” on page

4), but also how they interrelate.

This first part of the book provides important concepts and procedures for the entire

database administration process. The second part contains the chapters

corresponding to particular tasks of database administration.

DL/I

Data Language/I (DL/I) is the IMS data manipulation language, which is a common

high-level interface between a user application and IMS. DL/I calls are invoked from

application programs written in languages such as PL/I, COBOL, VS Pascal, C, and

Ada. It can also be invoked from assembler language application programs by

subroutine calls. IMS lets the user define data structures, relate structures to the

application, load structures, and reorganize structures.

Related Reading: For detailed information about how application programs use

DL/I, see IMS Version 9: Application Programming: Database Manager and IMS

Version 9: Application Programming: EXEC DLI Commands for CICS and IMS.

CICS

Customer Information Control System (CICS) accesses IMS databases through the

database resource adapter (DRA). CICS or other transaction management

© Copyright IBM Corp. 1974, 2004 3

|
|

|
|
|
|
|
|

subsystems (excluding IMS Transaction Manager) can access IMS full-function

databases and data entry databases (DEDBs) in a DB/DC or DBCTL environment

through the DRA.

Whenever tasks differ for CICS users, a brief description about the differences is

included.

DBCTL and DCCTL

Database Control (DBCTL) supports non-message-driven batch message

processing (BMP) programs. DBCTL has its own log and participates in database

recovery. Locking is provided by IMS program isolation (PI) or the internal resource

lock manager (IRLM).

Data Communications Control (DCCTL) is a transaction management subsystem

that does not support full-function DEDBs or MSDBs (main storage databases), but

does support GSAM databases in BMP regions. To access databases in a DCCTL

environment, DCCTL must connect to an external subsystem that provides

database support.

Open Database Access (ODBA)

Any program that runs in a z/OS address space can access IMS DB through the

Open Database Access (ODBA) callable interface. Any z/OS application program

running in a z/OS address space that is managed by the z/OS Resource Recovery

Service (RRS/MVS) can access IMS full-function databases and data entry

databases (DEDBs). z/OS application programs that use the ODBA interface are

called ODBA applications.

Related Reading: For a description of RRS and its uses, see the information on

RRS Distributed Sync Point in IMS Version 9: Administration Guide: Transaction

Manager.

From the perspective of IMS, the z/OS address space involved appears to be

another region called the z/OS application region.

Types of programs that can call the ODBA interface include:

v DB2 for z/OS stored procedures, including COBOL, PL/I, and Java procedures

v WebSphere for z/OS and OS/390 Enterprise Java Beans

v Other z/OS applications

Database Administration Tasks

 Participating in design reviews. Design reviews are a series of formal meetings

you attend in which the design and implementation of the database are

examined. Design reviews are an ongoing task during the design and

implementation of a database system. They are also held when new

applications are added to an existing system.

 Analyzing data requirements. After the users at your installation identify their

data processing requirements, you will construct data structures. These

structures show what data will be in your database and how it will be organized.

This task precedes the actual design of the database.

 Designing your database. After data structures are identified, the next step is to

design your database. Database design involves:

– Choosing how to physically organize your data

Database Administration Overview

4 Administration Guide: Database Manager

|
|
|
|

– Deciding which IMS processing options you need to use

– Making a series of decisions about design that determine how well your

database performs and uses available space

 Developing a test database. Before the applications that will use your database

are cut over to production status, they should be tested. Depending on the form

of your existing data, you can use one or more of the IMS Database Design

Aids to design, create, load, and test your test database.

 Implementing your database design. After your database is designed, implement

the design by describing the database’s characteristics and how application

programs will use it to IMS. This task consists of coding database descriptions

(DBDs) and program specification blocks (PSBs), both of which are a series of

macro statements. Another part of implementing the database design is

determining whether to have the application control blocks (ACBs) of the

database prebuilt or built dynamically.

 Loading your database. After database characteristics are defined, write an

initial load program to put your data into the database. After you load the

database, application programs can be run against it.

 Monitoring your database. When the database is running, routinely monitor its

performance. A variety of tools for monitoring the IMS system are available.

 Tuning your database. Tune your database when performance degrades or

utilization of external storage is not optimum. Routine monitoring helps you

determine when the system needs to be tuned and what type of tuning needs to

be done. Like monitoring, the task of tuning the database is ongoing.

 Modifying your database. As new applications are developed or the needs of

your users change, you might need to make changes to your database. For

example, you can change database organization, database hierarchies (or the

segments and fields within them), and you can add or delete one or more

partitions. Like monitoring and tuning, the task of modifying the database is

ongoing.

 Recovering your database. Database recovery involves restoring a database to

its original condition after it is rendered invalid by some failure. The task of

developing recovery procedures and performing recovery is an important one.

However, because it is difficult to separate data recovery from system recovery,

the task of recovery is treated separately in IMS Version 9: Operations Guide.

You can use Database Recovery Control (DBRC) in recovering your databases.

If your databases are registered in RECON, DBRC gains control during

execution of these IMS utilities:

– Database Image Copy

– Online Database Image Copy

– Database Image Copy 2

– Change Accumulation

– Database Recovery

– Log Recovery

– Log Archive

– DEDB area data set create

– HD and HISAM Reorganization Unload and Reload

– HALDB Index/ILDS Rebuild

You must ensure that all database recoveries use the current IMS utilities, rather

than those of earlier releases.

Database Administration Tasks

Chapter 1. Introduction to IMS Databases 5

Related Reading: For more information on using these database utilities, see

the IMS Version 9: Utilities Reference: System and the IMS Version 9: Utilities

Reference: Database and Transaction Manager.

 Establishing security. You can keep unauthorized persons from accessing the

data in your database by using program communication blocks (PCBs). With

PCBs, you can control how much of the database a given user can see, and

what can be done with that data. In addition, you can take steps to keep

non-IMS programs from accessing your database.

 Setting up standards and procedures. It is important to set standards and

procedures for application and database development. This is especially true in

an environment with multiple applications. If you have guidelines and standards,

you will save time in application development and avoid problems later on such

as inconsistent naming conventions or programming standards.

Concepts and Terminology

This topic discusses the terms and concepts you need to understand to perform the

administration tasks just outlined.

To understand this topic, you must know what a DL/I call is and how to code it. You

must understand function codes and Segment Search Arguments (SSAs) in DL/I

calls and know what is meant when a call is referred to as qualified or unqualified

(explained in IMS Version 9: Application Programming: Database Manager).

How Data Is Stored in a Database

The data in a database is grouped into a series of database records. Each

database record is composed of smaller groups of data called segments. A segment

is the smallest piece of data IMS can store. Segments, in turn, are made up of one

or more fields.

Figure 1 on page 7 shows a record in a school database. Each of the boxes is a

segment or separate group of data in the database record. The segments in the

database record contain the following information:

COURSE The name of the course

INSTR The name of the teacher of the course

REPORT A report the teacher needs at the end of the course

STUDENT The names of students in the course

GRADE The grade a student received in the course

PLACE The room in which the course is taught

Database Administration Tasks

6 Administration Guide: Database Manager

The segments within a database record exist in a hierarchy. A hierarchy is the order

in which segments are arranged. The order implies something. The school database

is storing data about courses that are taught. The COURSE segment is at the top

of the hierarchy. The other types of data in segments in the database record would

be meaningless if there was no COURSE.

Root Segment

The COURSE segment is called the root segment. Only one root segment exists

within a database record. All other segments in the database record (such as:

INSTR, REPORT, STUDENT, GRADE, and PLACE) are called dependent

segments. The existence of dependent segments hinges on the existence of a root

segment. For example, without the root segment COURSE, there would be no

reason for having a PLACE segment stating in which room the course was held.

The third level of dependent segments, REPORT and GRADE, is subject to the

existence of second level segments INSTR and STUDENT. For example, without

the second level segment STUDENT, there would be no reason for having a

GRADE segment indicating the grade the student received in the course.

Parent and Child Segment

Another set of words used to refer to how segments relate to each other in a

hierarchy is parent segment and child segment. A parent segment is any segment

that has a dependent segment beneath it in the hierarchy. COURSE is the parent of

INSTR, and INSTR is the parent of REPORT. A child segment is any segment that

is a dependent of another segment above it in the hierarchy. REPORT is the child

of INSTR, and INSTR is the child of COURSE. Note that INSTR is both a parent

segment in its relationship to REPORT and a child segment in its relationship to

COURSE.

Segment Type and Occurrence

The terms used to describe segments thus far (root, dependent, parent, and child)

describe the relationship between segments. The terms segment type and segment

occurrence, however, distinguish between a type of segment in the database (the

COURSE segment or the INSTR segment) and a specific segment (the course

segment for a math course).

The previous database is actually the design of the database. It shows the segment

types for the database. Figure 2 on page 8 shows the actual database record with

the segment occurrences.

Figure 1. Segment Types in the School Database Record

Concepts and Terminology

Chapter 1. Introduction to IMS Databases 7

A segment occurrence is a single specific segment. Math is a single occurrence of

the COURSE segment type. Baker and Coe are multiple occurrences of the

STUDENT segment type.

Relationship Between Segments

One final term for describing segments is twin segment. Twin (like root, dependent,

parent, and child) describes a relationship between segments. Twin segments are

multiple occurrences of the same segment type under a single parent. In Figure 2,

the segments Baker and Coe are twins. They have the same parent (Math), and

are of the same segment type (STUDENT). Pass and Inc are not twins. Although

Pass and Inc are the same segment type (GRADE), they do not have the same

parent. Pass is the child segment of Baker, and Inc is the child segment of Coe.

 The following topic discusses the hierarchy in more detail. Subsequent topics

describe the objects in a database, what they consist of and the rules governing

their existence and use. These objects are:

 The database record

 The segments in a database record

 The fields within a segment

The Hierarchy

A database is composed of a series of database records, records contain

segments, and segments are arranged in a hierarchy in the database record.

Numbering Sequence in a Hierarchy: Top to Bottom

When a database record is stored in the database, the hierarchic arrangement of

segments in the database record is the order in which segments are stored.

Starting at the top of a database record (at the root segment), segments are stored

in the database in the sequence shown by the numbers in Figure 3 on page 9.

The sequence goes from the top of the hierarchy to the bottom in the first (left

most) path or leg of the hierarchy. When the bottom of the database is reached, the

sequence is from left to right. When all segments have been stored in that path of

the hierarchy, the sequencing begins in the next path to the right, again proceeding

Figure 2. Segment Occurrences in a School Database Record

Concepts and Terminology

8 Administration Guide: Database Manager

from top to bottom and then left to right. (In the second leg of the hierarchy there is

nothing to go to at the right.) The sequence in which segments are stored is loosely

called “top to bottom, left to right.”

Figure 3 shows sequencing of segment types for the school database shown in

Figure 1 on page 7. The sequence of segment types are stored in the following

order:

1. COURSE (top to bottom)

2. INSTR

3. REPORT

4. STUDENT (left to right)

5. GRADE (top to bottom)

6. PLACE (left to right)

 Figure 4 on page 10 shows the segment occurrences for the school database

record as shown in Figure 2 on page 8. Because there are multiple occurrences of

segment types, segments are read ″front to back″ in addition to ″top to bottom, left

to right.″ The segment occurrences for the school database are stored in the

following order:

1. Math (top to bottom)

2. James

3. ReportA

4. ReportB (front to back)

5. Baker (left to right)

6. Pass (top to bottom)

7. Coe (front to back)

8. Inc (top to bottom)

9. Room2 (left to right)

Figure 3. Hierarchic Sequence of Segment Types for School Database

Concepts and Terminology

Chapter 1. Introduction to IMS Databases 9

Note that the numbering sequence is still initially from top to bottom. At the bottom

of the hierarchy, however, observe that there are two occurrences of the REPORT

segment.

Because you are at the bottom of the hierarchy, both segment occurrences are

picked up before you move to the right in this path of the hierarchy. Both reports

relate to the instructor segment James; therefore it makes sense to keep them

stored together in the database. In the second path of the hierarchy, there are also

two segment occurrences in the student segment. You are not at the bottom of the

hierarchic path until you reach the grade segment Pass. Therefore, sequencing is

not “interrupted” by the two occurrences of the student segment Baker and Coe.

This makes sense because you are keeping student and grade Baker and Pass

together.

Note that the grade Inc under student Coe is not considered another occurrence

under Baker. Coe and Inc become a separate path in the hierarchy. Only when you

reach the bottom of a hierarchic path is the “top to bottom, left to right” sequencing

interrupted to pick up multiple segment occurrences. You can refer to sequencing in

the hierarchy as “top to bottom, front to back, left to right”, but “front to back” only

occurs at the bottom of the hierarchy. Multiple occurrences of a segment at any

other level are sequenced as separate paths in the hierarchy.

As noted before, this numbering of segments represents the sequence in which

segments are stored in the database. If an application program requests all

segments in a database record in hierarchic sequence or issues Get-Next (GN)

calls, this is the order in which segments would be presented to the application

program.

Numbering Sequence in a Hierarchy: Movement and Position

Other terms that show the numbering sequence in a hierarchy are: movement and

position. When talking about movement through the hierarchy, it always means

moving in the sequence implied by the numbering scheme. Movement can be

forward or backward. When talking about position in the hierarchy, it means being

located (positioned) at a specific segment. The terms movement and position are

used when talking about how segments are accessed when an application program

issues a call.

Figure 4. Hierarchic Sequence of Segment Occurrences for School Database

Concepts and Terminology

10 Administration Guide: Database Manager

A segment is the smallest piece of data IMS can store. If an application program

issues a Get-Unique (GU) call for the student segment BAKER (see Figure 4 on

page 10), the current position is immediately after the BAKER segment occurrence.

If an application program then issues an unqualified GN call, IMS moves forward in

the database and returns the PASS segment occurrence.

Numbering Sequence in a Hierarchy: Level

A final term you need to know about hierarchies is: level. Level is the position of a

segment in the hierarchy in relation to the root segment. The root segment is

always on level one. Figure 5 illustrates levels of the database record shown in

Figure 2 on page 8.

The Database

IMS allows you to define many different database types. You define the database

type that best suits your application’s processing requirements. You need to know

that each IMS database has its own access method, because IMS runs under

control of the z/OS operating system. The operating system does not know what a

segment is because it processes logical records, not segments. IMS access

methods therefore manipulate segments in a database record. When a logical

record needs to be read, operating system access methods (or IMS) are used.

Table 2 lists the IMS database types you can define, the IMS access methods they

use and the operating system access methods you can use with them. Although

each type of database varies slightly in its access method, they all use database

records.

 Table 2. Types of IMS Databases and the z/OS Access Methods They Can Use

Type of IMS

Database Full Name of Database Type

IMS or Operating System

Access Methods that Can Be

Used

HSAM Hierarchical Sequential Access Method BSAM or QSAM

SHSAM Simple Hierarchical Sequential Access

Method

BSAM or QSAM

HISAM Hierarchical Indexed Sequential Access

Method

VSAM

Figure 5. Levels in the Database

Concepts and Terminology

Chapter 1. Introduction to IMS Databases 11

Table 2. Types of IMS Databases and the z/OS Access Methods They Can Use (continued)

Type of IMS

Database Full Name of Database Type

IMS or Operating System

Access Methods that Can Be

Used

SHISAM Simple Hierarchical Indexed Sequential

Access Method

VSAM

GSAM Generalized Sequential Access Method QSAM/BSAM or VSAM

HDAM Hierarchical Direct Access Method VSAM or OSAM

PHDAM Partitioned Hierarchical Direct Access

Method

VSAM or OSAM

HIDAM Hierarchical Indexed Direct Access

Method

VSAM or OSAM

PHIDAM Partitioned Hierarchical Indexed Direct

Access Method

VSAM or OSAM

DEDB

1 Data Entry Database Media Manager

MSDB

2 Main Storage Database N/A

Notes:

1. For DBCTL, only available to BMPs

2. Not applicable to DBCTL

The Database Record

A database consists of a series of database records, and a database record

consists of a series of segments. Another thing to understand is that a specific

database can only contain one kind of database record. In the school database, for

example, you can place as many school records as desired. You could not,

however, create a different type of database record, such as the medical database

record shown in Figure 6, and put it in the school database.

 The only other thing to understand is that a specific database record, when stored

in the database, does not need to contain all the segment types you originally

designed. To exist in a database, a database record need only contain an

occurrence of the root segment. In the school database, all four of the records

shown in Figure 7 on page 13 can be stored.

Figure 6. An Example of a Medical Database Record

Concepts and Terminology

12 Administration Guide: Database Manager

However, no segment can be stored unless its parent is also stored. For example,

you could not store the records shown in Figure 8.

 Occurrences of any of the segment types can later be added to or deleted from the

database.

Figure 7. Example of Records That Can Be Stored in the School Database

Figure 8. Records that Cannot be Stored in the School Database

Concepts and Terminology

Chapter 1. Introduction to IMS Databases 13

The Segment

A database record consists of one or more segments, and the segment is the

smallest piece of data IMS can store. Here are some additional facts you need to

know about segments:

v A database record can contain a maximum of 255 segment types. The space you

allocate for the database limits the number of segment occurrences.

v You determine the length of a segment; however, a segment cannot be larger

than the physical record length of the device on which it is stored.

v The length of segments is specified by segment type. A segment type can be

either variable or fixed in length.

Figure 9 shows the format of a fixed-length segment. Figure 10 shows the format of

a variable-length segment. Segments consist of two parts (a prefix and the data),

except when using a SHSAM or SHISAM database. In SHSAM and SHISAM

databases, the segment consists of only the data. In a GSAM database, segments

do not exist (see “GSAM Databases” on page 76 for more information about GSAM

databases).

 IMS uses the prefix portion of the segment to “manage” the segment. The prefix

portion of a segment consists of: segment code, delete byte, and in some

databases, a pointer and counter area. Application programs do not “see” the prefix

portion of a segment. The data portion of a segment contains your data, arranged

in one or more fields.

Related Reading: For information on MSDB and DEDB segments, see “Main

Storage Databases (MSDBs)” on page 128 and “Data Entry Databases” on page

109.

Segment Code

IMS needs a way to identify each segment type stored in a database. It uses the

segment code field for this purpose. When loading a segment type, IMS assigns it a

unique identifier (an integer from 1 to 255). IMS assigns numbers in ascending

sequence, starting with the root segment type (number 1) and continuing through all

dependent segment types in hierarchic sequence.

Figure 9. Format of Fixed-Length Segments

Figure 10. Format of Variable-Length Segments

Concepts and Terminology

14 Administration Guide: Database Manager

|
|
|
|
|
|

Delete Byte

When an application program deletes a segment from a database, the space it

occupies might or might not be immediately available to reuse. Deletion of a

segment is described in the discussions of the individual database types. For now,

know that IMS uses this prefix byte to track the status of a deleted segment.

Related Reading: For information on the meaning of each bit in the delete byte,

see Appendix A, “Meaning of Bits in the Delete Byte,” on page 463.

Pointer and Counter Area

The pointer and counter area exists in HDAM, PHDAM, HIDAM, and PHIDAM

databases, and, in some special circumstances, HISAM databases. The pointer and

counter area can contain two types of information:

v Pointer information consists of one or more addresses of segments to which a

segment points.

v Counter information is used when logical relationships, an optional function of

IMS, are defined.

The length of the pointer and counter area depends on how many addresses a

segment contains and whether logical relationships are used. These topics are

covered in more detail later in this book.

The Data Portion

The data portion of a segment contains one or more data elements. The data is

processed and unlike the prefix portion of the segment, seen by an application

program.

The application program accesses segments in a database using the name of the

segment type. If an application program needs to reference part of a segment, a

field name can be defined to IMS for that part of the segment. Field names are

used in segment search arguments (SSAs) to qualify calls. An application program

can see data even if you do not define it as a field. But an application program

cannot qualify an SSA on the data unless it is defined as a field.

The maximum number of fields that you can define for a segment type is 255. The

maximum number of fields that can be defined for a database is 1000. Note that

1000 refers to types of fields in a database, not occurrences. The number of

occurrences of fields in a database is limited only by the amount of storage you

have defined for your database.

The Three Data Portion Field Types

You can define three field types in the data portion of a segment: a sequence field,

data fields, and for variable-length segments, a size field stating the length of the

segment. The first two field types contain your data, and an application program

can use both to qualify its calls. However, the sequence field has some other uses

besides that of containing your data.

You can use a sequence field, often referred to as a key, to keep occurrences of a

segment type in key sequence under a given parent. For example, in the database

record shown in Figure 11 on page 16, there are three segment occurrences of the

STUDENT segment, and the STUDENT segment has three data elements.

Concepts and Terminology

Chapter 1. Introduction to IMS Databases 15

Suppose you need the STUDENT segment, when stored in the database, to be in

alphabetic order by student name. If you define a field on the NAME data as a

unique sequence field, IMS stores STUDENT segment occurrences in alphabetical

sequence. Figure 12 shows three occurrences of the STUDENT segment in

alphabetical sequence.

 When you define a sequence field in a root segment of a HISAM, HDAM, PHDAM,

HIDAM, or PHIDAM database, an application program can use it to access a

specific root segment, and thus a specific database record. By using a sequence

field, an application program does not need to search the database sequentially to

find a specific database record, but can retrieve records sequentially (for HISAM,

HIDAM, and PHIDAM databases).

You can also use a sequence field in other ways when using the IMS optional

functions of logical relationships or secondary indexing. These other uses are

discussed in detail later in this book.

The important things to know now about sequence fields are that:

v You do not always need to define a sequence field. This book describes cases

where a sequence field is necessary.

v The sequence field value can be defined as unique or non-unique.

v The data or value in the sequence field is called the “key” of the segment.

Figure 11. Three Segment Occurrences and Three Data Elements of the STUDENT Segment

Figure 12. Example of STUDENT Segments Stored in Alphabetic Order

Concepts and Terminology

16 Administration Guide: Database Manager

Optional Functions

IMS has several optional functions you can use for your database. These are

discussed briefly below and described in detail in Chapter 8, “Choosing Optional

Database Functions,” on page 151. You need a cursory understanding of these

functions before reading this book because they may be referred to before they are

actually described.

The functions are as follows:

 Logical relationships is a function you can use to let an application program

access a logical database record. A logical database record can consist of

segments from one or more physical database records. Physical database

records can be stored in one or more databases. Thus, a logical database

record lets an application program view a database structure that is different

from the physical database structure.

For example, if a logical data structure contains segments from two different

physical databases, a segment can be accessed from two different paths:

– A segment can be physically stored in the path where it is most frequently

used and where the most urgent response time is required.

– A pointer containing the location of the segment can be physically stored in

the alternate path needed by another application program.

 Secondary indexing is a function you can use to access segments in a database

in a sequence other than the one defined in the sequence field.

 Variable-length segments is a function you can use to make the data portion of

a segment type variable in length. Use variable-length segments when the size

of the data portion of a segment type varies greatly from one segment

occurrence to the next. With variable-length segments, you define the minimum

and maximum length of a segment type. Defining both minimum and maximum

length saves space in the database whenever a segment is shorter than the

maximum length.

 Field-level sensitivity is a function you can use to:

– Deny an application program access to selected fields in a segment for

security purposes.

– Allow an application program to use a subset of the fields that make up a

segment (and not process fields it does not use) or use fields in a segment in

a different order. Use field-level sensitivity in this way to accommodate the

differing needs of your application programs.

 Segment edit/compression is a function you can use with segments to:

– Encode or “scramble” segment data when it is on the device so only

application programs with access to the segment receive the data in decoded

form.

– Edit data so application programs can receive data in a format other than the

one in which it is stored.

– Compress data when writing a segment to the device, so the Direct Access

Storage Device (DASD) is better used.

 A Data Capture exit routine is used to capture segment data when an

application program updates IMS databases with an insert, replace, or delete

call. This is a synchronous activity that happens within the unit of work or

application update. Captured data is used for data propagation to DB2 UDB for

z/OS databases. You can also use Data Capture exit routines to perform tasks

other than data propagation.

Optional Functions

Chapter 1. Introduction to IMS Databases 17

Asynchronous Data Capture is a function you use to capture segment data

when an application program updates IMS databases with an insert, replace, or

delete call. This is an asynchronous activity that happens outside of the unit of

work or application update. Captured data is used for data propagation to DB2

UDB for z/OS databases asynchronously. You can also use Asynchronous Data

Capture to perform tasks other than data propagation.

IMS DataPropagator allows you to propagate the changed data to or from IMS

and DB2 UDB for z/OS both synchronously and asynchronously.

Related Reading: For more information on IMS DataPropagator see IMS

DataPropagator for z/OS: An Introduction.

 Multiple data set groups is a function you can use to put some segments in a

database record in data sets other than the primary data set. This can be done

without destroying the hierarchic sequence of segments in a database record.

One reason to use multiple data set groups is to accommodate the differing

needs of your applications. By using multiple data set groups, you can give an

application program fast access to the segments in which it is interested. The

application program simply bypasses the data sets containing unnecessary

segments. Another reason for using multiple data set groups is to improve

performance by, for example, separating high-use segments from low-use

segments. You might also use multiple data set groups to save space by putting

segment types whose size varies greatly from the average in a separate data

set group.

How to Define Your Database to IMS

Define the characteristics of your database to IMS by coding and generating a DBD

(database description). A DBD is a series of macro instructions that describes a

database’s organization and access method, the segments and fields in a database

record, and the relationship between types of segments.

If you have the IBM DB/DC (database/data communication) Data Dictionary, you

can use it to define your database (except for DEDBs and MSDBs). The DB/DC

Data Dictionary may contain all the information you need to produce a DBD.

How Application Programs View the Database

You control how an application program views your database. An application

program might not need use of all the segments or fields in a database record. And

an application program may not need access to specific segments for security or

integrity purposes. An application program may not need to perform certain types of

operations on some segments or fields. For example, an application program needs

read access to a SALARY segment but not update access. You control which

segments and fields an application can view and which operations it can perform on

a segment by coding and generating a PSB (program specification block).

A PSB is a series of macro instructions that describe an application program’s

access to segments in the database. A PSB consists of one or more program

communication blocks (PCB), and each PCB describes the application program’s

ability to read and use the database. For example, an application program can have

different views and uses of the same database. An application program can access

several different databases and can have several PCBs in its PSB.

If you have the IBM DB/DC Data Dictionary, you can use it to define an application

program’s access to the database. It can contain all the information needed to

produce a PSB.

Optional Functions

18 Administration Guide: Database Manager

Chapter 2. Standards and Procedures

This chapter examines the following areas:

v “Establishing Standards and Procedures”

v “Naming Conventions” on page 21

Establishing Standards and Procedures

You should give careful thought to developing standards and procedures for your

database system. Providing standards and procedures results in:

v Improved quality of application systems (because setting up and following

standards and procedures gives you greater control over your entire application

development process)

v Improved productivity in application and database design (because guidelines for

design decisions exist)

v Improved productivity of application coding (because coding standards and

procedures exist)

v Better communication between you and application developers (because both of

you have clearly defined responsibilities)

v Improved reliability and recoverability in operations (because you have clear and

well-understood operating procedures)

You must set up and test procedures and standards for database design,

application development, application programs’ use of the database, application

design, and for batch operation. These standards are guidelines that change when

installation requirements change.

In the area of database design, for example, you can establish standard practices

for handling the following items:

v Database structure and segmentation

 Number of segments within a database

 Placement of segments

 Size of segments

 Use of variable-length segments

 When to use segment edit/compression

 When to use secondary data set groups

 Number of databases within an application

 When and how to use field-level sensitivity

 Database size

v Access methods

 When to use HISAM

 Choice of record size for HISAM

 HISAM organization using VSAM

 When to use GSAM

 Use of physical child/physical twin pointers

 Use of twin backward pointers

 Use of child last pointers

 HIDAM or PHIDAM index organization using VSAM

© Copyright IBM Corp. 1974, 2004 19

HIDAM or PHIDAM pointer options at the root level

 Sequencing twin chains

 Use of HD free space

 When to use HDAM or PHDAM

 Processing an HDAM or a PHDAM database sequentially

 Use of the “byte limit count” for HDAM or PHDAM

 Use of twin backward pointer for HDAM or PHDAM roots

 Use of free space with HDAM or PHDAM

 When to use DEDBs

 Processing DEDBs sequentially

 Use of DEDB parameters

 Use of subset pointers

 Use of multiple area data sets

v Secondary indexing

 For sequential processing

 On volatile segments

 In HISAM databases

 Use of unique secondary indexes

 Use of sparse indexing

 Processing of the secondary index as a separate database

v Logical relationships

 Use of direct pointers versus symbolic pointers

 Avoidance of long logical twin chains

 Sequencing of the logical twin chain

 Placement of the real logical child segment

In the area of application programs use of the database, establish standards for the

following:

v Putting update and read functions in separate programs

v How many transaction types to allow per application program

v When applications are to issue a deliberate abnormal termination and the range

of abend codes permitted applications

v Whether application programs are permitted to issue messages to the master

terminal

v The method of referencing data in the IOAREA, and referencing IMS variables

(such as PCBs and SSAs)

v Use of predefined structures (PCB masks, SSAs, or database segment formats)

by applications

v Use of GU calls to the message queue

v Re-usability of MPP and BMP programs

v Use of qualified calls and SSAs

v Use of path calls

v Use of the CHANGE call

v Use of the “system” calls (PURG, LOG, STAT, SNAP, GCMD, and CMD)

In the area of application design, establish procedures to govern the following:

v The interaction between you and the application designer

Establishing Standards and Procedures

20 Administration Guide: Database Manager

v Use of the dictionary or COPY or STRUCTURE libraries for data elements and

structures

v The holding of design reviews and inspections

In the area of batch operations, you can consider developing:

v Procedures to limit access to computer facilities

v A control point to ensure that:

– Jobs contain complete and proper submittal documentation

– Jobs are executed successfully on schedule

– Correct input/output volumes are used, and output is properly distributed

– Test programs are executed only in accordance with a defined test plan

– An incident report is maintained to ensure all problems are recorded and

reported to the responsible parties

v Normal operating procedures. These operating procedures include operations

schedules, cold start, warm start, shutdown procedures, and scheduling and

execution of batch programs.

v Procedures for emergency situations. During an emergency, the environment is

one of stress. Documented procedures provide step-by-step guidance to resolve

such situations. These procedures should include emergency restart, database

backout, database recovery, log recovery, and batch program restart.

Related Reading: For a more complete treatment of recovery procedures, see

IMS Version 9: Operations Guide.

v A master terminal operator’s guide for the installation. This guide should be

supplemented by IMS Version 9: Command Reference.

v A master operations log. This log could contain a record of system availability,

time and type of failure, and cause of the failure, recovery steps taken, and type

of system termination if normal.

v A system maintenance log. This log could contain a record of all release and

modification levels, release dependencies, program temporary fixes (PTFs)

applied, status of APARs and date submitted, and bypass solutions.

Naming Conventions

This topic contains information about:

v “General Rules for Establishing Naming Conventions”

v “HALDB Naming Conventions” on page 22

General Rules for Establishing Naming Conventions

Good naming conventions are mandatory in a data processing project, especially in

an environment with multiple applications. Some general rules to follow in setting up

naming conventions are:

v Each name should be unique.

v Each name should be meaningful and identifiable. You should be able to identify

the type of thing being referred to by its name.

Table 3 on page 22 is an example of minimal naming conventions. They are

presented only as an example, and you can establish your own naming

conventions.

Establishing Standards and Procedures

Chapter 2. Standards and Procedures 21

Table 3. Example of Naming Conventions

CATEGORY CONVENTION

SYSTEM S as first letter

JOB J as first letter

PROGRAM P as first letter if IMS program (to match PSB)

G as first letter otherwise

MODULE M as first letter

COPY C as first letter for member containing the segment structure

A as first letter for member containing all the SSAs for the segment

Remainder must be the same as the segment name

TRANSACTION T as first letter

PSB P as first letter

PCB Same name as PSB

Note: Occurrence number indicates position in PSB

DATABASE Dtaaann

Where Indicates

t Database type. The database can be one of the following

types:

P Physical

L Logical

X Primary index

Y Secondary index

aaa A unique database identifier common to all logical and

index databases based on the same physical database

nn A unique identifier, if there are multiple logical or secondary

index databases

SEGMENT

Saaabbbb

aaa A unique database identifier; same as the physical

database in which the segment occurs

Note: Concatenated segments should have an

aaa value corresponding to the aaa of the logical

child segment.

bbbb An identifier for the user name

R First letter for 'segments' that are non-DL/I file record

definitions

O First letter for any other data areas, for example, terminal

I/O areas, control blocks, report lines, and so on.

ELEMENT E as first letter

HALDB Naming Conventions

Unique HALDB naming conventions are described in the following topics:

v Partition names

v DDNAMEs

v Data set names

Establishing Naming Conventions

22 Administration Guide: Database Manager

HALDB Partition Names

Each HALDB partition name is 1 to 7 bytes in length and must be unique among

the database names, DEDB names, Area names, and partition names in one

RECON data set. The HALDB partition names are used to represent specific

partitions and are used interchangeably with database names in commands.

HALDB DD names

IMS constructs the DD names for each partition by adding a 1-byte suffix to the

partition name for the data sets in that partition. The suffix for the first DD name is

A, the suffix for the second DD name is B, and so on up to J.

For a PSINDEX database, there is only one data set per partition, so only one DD

name with a suffix of A is required.

The resulting DD names with the suffix might match already existing DD names and

you must avoid duplication of DD names. The DD names are not case sensitive

and can result in JCL errors if specified in lower case in batch jobs.

Table 4 shows the suffixes for the different DD names.

 Table 4. Suffixes for DD names

Corresponding Data Set Suffix HALDB OLR Suffix

Primary data area A (first data set) through J

(last data set)

M (first data set) through V

(last data set)

Primary index (PHIDAM only) X Y

Indirect list data set (ILDS) L L (OLR uses the same ILDS)

Extended Naming Convention for DD Names When Using HALDB Online

Reorganization: When you reorganize either PHDAM or PHIDAM HALDB

partitions online, HALDB Online Reorganization (OLR) requires additional data sets

to hold the reorganized data. The additional data sets are equal in number to the

data sets being reorganized, excluding the ILDS.

In a PHDAM database, HALDB OLR increases the maximum number of data sets

associated with a partition to twenty-one. In a PHIDAM database, which includes a

primary index, HALDB OLR increases the maximum number of data sets

associated with a partition to twenty-three. In either case, HALDB OLR only needs

as many new data sets as exist in the partition at the time the reorganization

process begins.

Each additional data set requires an additional DD name. To distinguish between

the DD names for the data sets that HALDB OLR reorganizes and the DD names

for the data sets into which HALDB OLR moves the reorganized data, HALDB OLR

extends the HALDB naming convention to include the suffixes M through V for the

DD names of the primary data sets and the suffix Y for the DD name for the

additional primary index. The suffixes M through V and Y correspond in order to the

standard HALDB DD name suffixes A through J and X.

Related Reading: For more information on HALDB OLR, see “HALDB Online

Reorganization” on page 364.

HALDB Data Set Names

A HALDB partition uses a minimum of one, two, or three data sets and a maximum

of one, eleven, or thirteen data sets depending on the type of HALDB—PSINDEX,

Establishing Naming Conventions

Chapter 2. Standards and Procedures 23

|
|
|

|
|

|
|
|

||

|||

||
|
|
|

|||

|||
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

PHDAM, or PHIDAM—you are defining. The naming convention for HALDB data

sets within a partition is designed to simplify the naming of multiple data sets.

DL/I pointers within the segment prefix that point into another partition use a

halfword binary number as the target partition identification. DL/I must be able to

correlate this number to the correct partition. By using a data set naming

convention, DL/I can correlate the halfword binary number to the data set name for

the partition. You specify the base name and the suffix is assigned by DL/I.

DL/I assigns the following suffixes:

 .ANNNNN for the first data set

 .BNNNNN for the second data set

 ...

 ...

 .JNNNNN for the tenth data set

 .XNNNNN for the primary index data set

 .LNNNNN for the ILDS

Where NNNNN is the five-digit numerical partition identifier assigned to each

partition during partition definition. Note that this decimal number is not the

processing sequence of the database. The maximum value of the partition identifier

is 31 999.

Extended Naming Convention for Data Set When Using HALDB Online

Reorganization: To distinguish between the data sets that HALDB OLR

reorganizes and the data sets into which HALDB OLR moves the reorganized data,

HALDB OLR uses the same extended naming convention it uses for DD names: the

characters M through V for the primary data sets and the character Y for the

additional primary index. For data sets, IMS combines these characters with the

partition ID to form the suffix that uniquely identifies each HALDB data set.

Related Reading: For more information about HALDB OLR naming conventions,

see “Data Set Naming Conventions for HALDB Online Reorganization” on page

372.

Establishing Naming Conventions

24 Administration Guide: Database Manager

|
|

|

|

|
|
|
|
|
|
|

|
|
|

Chapter 3. Review Process

One of the best ways to make sure a good database design is developed and

effectively implemented is to review the design at various stages in its development.

The sections in this chapter describe the reviews typically conducted during

development of a database system. The types of reviews are:

 Design reviews 1, 2, 3, and 4

 Code inspections 1 and 2

 Security inspection

 Post-implementation review

In this chapter:

v “The Design Review”

v “Design Review 1” on page 26

v “Design Review 2” on page 26

v “Design Review 3” on page 27

v “Design Review 4” on page 27

v “Code Inspection 1” on page 28

v “Who Attends Code Inspection 1” on page 28

v “Code Inspection 2” on page 28

v “Security Inspection” on page 29

v “Post-Implementation Review” on page 29

The Design Review

Design Reviews ensure that the functions being developed are adequate, the

performance is acceptable, the installation standards met, and the project is

understood and under control. Hold reviews during development of the initial

database system and, afterward, whenever a program or set of programs is being

developed to run against it.

Role of the Database Administrator

The role of database administration in the review process is an important one.

Typically, a member of the database administration staff, someone not associated

with the specific system being developed, moderates the reviews. The moderator

does more than just conduct the meeting. The moderator also looks to see what

impact development of this system has on existing or future systems. You, the

database administrator responsible for developing the system, need to participate in

all reviews.

Your role in the review process is to ensure that a good database design is

developed and then effectively implemented. The role is ongoing and provides a

supporting framework for the other database administration tasks described in this

book.

General Information about Reviews

The sections of this chapter describe reviews typically held during system

development. (For purposes of simplicity, “system” describes the object under

review. In actuality, the “system” could be a program, set of programs, or an entire

database system.) The number of reviews, who attends them, and their specific role

© Copyright IBM Corp. 1974, 2004 25

in the review will differ slightly from one installation to the next. What you need to

understand is the importance of the reviews and the tasks performed at them. Here

is some general information about reviews:

v People attending all reviews (in addition to database administrators) include a

review team and the system designer. The review team generally has no

responsibility for developing the system. The review team consists of a small

group of people whose purpose is to ensure continuity and objectivity from one

review to the next. The system designer writes the initial functional specifications.

v At the end of each review, make a list of issues raised during the review. These

issues are generally change requirements. Assign each issue to a specific person

for resolution, and set a target date for resolution. If certain issues require major

changes to the system, schedule other reviews until you resolve all major issues.

v If you have a data dictionary, update it at the end of each review to reflect any

decisions that you made. The dictionary is an important aid in keeping

information current and available especially during the first four reviews when you

make design decisions.

Design Review 1

The first design review takes place after initial functional specifications for the

system are complete. Its purpose is to ensure that all user requirements have been

identified and that design assumptions are consistent with objectives. No detailed

design for the system is or should be available at this point. The review of the

specifications will determine whether the project is ready to proceed to a more

detailed design. When design review 1 concludes successfully, its output is an

approved set of initial functional specifications.

People who attend design review 1, in addition to the regular attendees, include

someone from the organization that developed the requirement and anyone

participating in the development of detailed design. You are at the review primarily

for information. You also look at:

 The relationship between data elements

 Whether any of the needed data already exists

Design Review 2

The second design review takes place after final functional specifications for the

system are complete. This means the overall logic for each program in the system

is defined, as well as the interface and interactions between programs. Audit and

security requirements are defined at this point, along with most data requirements.

When design review 2 is successfully concluded, its output is an approved set of

final functional specifications.

Everyone who attended design review 1 should attend design review 2. People

from test and maintenance groups attend as observers to begin getting information

for test case design and maintenance. Those concerned with auditing and security

can also attend.

Your role in this review is still primarily to gather information. You also look at:

v Whether the specifications meet user requirements

v Whether the relationship between data items is correct

v Whether any of the required data already exists

v Whether audit and security requirements are consistent with user requirements

The Design Review

26 Administration Guide: Database Manager

v Whether audit and security requirements can be implemented

Design Review 3

The third design review takes place after initial logic specifications for the system

are complete. At this point, high level pseudo code or flowcharts are complete.

These can only be considered complete when major decision points in the logic are

defined, calls or references to external data and modules are defined, and the

general logic flow is known. All modules and external interfaces are defined at this

point, definition of data requirements is complete, and database and data files are

designed. Initial test and recovery plans are available; however, no code has been

written. When design review 3 concludes successfully, its output is an approved set

of initial logic specifications.

Everyone who attended design review 2 should attend design review 3. If the

project is large, those developing detailed design need only be present during the

review of their portion of the project.

It is possible now that logic specifications are available.

Your role in this review is to ensure that the flow of transactions is consistent with

the database design you are creating.

At this point in the design review process, you are designing hierarchies and

starting to design the database. These tasks are described in Chapter 5, “Analyzing

Data Requirements,” on page 45, Chapter 6, “Choosing Full-Function Database

Types,” on page 55, Chapter 8, “Choosing Optional Database Functions,” on page

151, and Chapter 9, “Designing Full-Function Databases,” on page 241.

Design Review 4

The fourth design review takes place after design review 3 is completed and all

interested parties are satisfied that system design is essentially complete. No

special document is examined at this review, although final functional specifications

and either initial or final logic specifications are available. The primary objective of

this review is to make sure that system performance will be acceptable.

At this point in the development process, sufficient flexibility exists to make

necessary adjustments to the design, since no code exists but detailed design is

complete. Although some design changes undoubtedly occur once coding is begun;

these changes should not impact the entire system. Although no code exists at this

point, you can and should run tests to check that the database you have designed

will produce the results you expect.

When design review 4 concludes successfully, database design is considered

complete.

The people who attend all design reviews (moderator, review team, database

administrator, and system designer) should attend design review 4. Others attend

only as specific detail is required.

At this point in the review process, you are almost finished with the database

administration tasks along with designing and testing your database. These tasks

are described in Chapter 5, “Analyzing Data Requirements,” on page 45, Chapter 6,

“Choosing Full-Function Database Types,” on page 55, and Chapter 12,

“Developing Test Databases,” on page 307.

Design Review 2

Chapter 3. Review Process 27

Code Inspection 1

The first code inspection takes place after final logic specifications for the system

are complete.

At this point, no code is written but the final functional specifications have been

interpreted. Both pseudo code and flowcharts have a statement or logic box for

every 5 to 25 lines of assembler language code, 5 to 15 lines of COBOL code, or 5

to 15 lines of PL/I code that needs writing. In addition, module prologues are

written, and entry and exit logic along with all data areas are defined.

The objective of this review is to ensure that the correctly developed logic interprets

the functional specification. Code inspection 1 also provides an opportunity to

review the logic flow for any performance implications or problems. When code

inspection 1 successfully concludes, its output is an approved set of final logic

specifications.

Who Attends Code Inspection 1

Code inspection 1 is attended primarily by those doing the coding. People who

attend all design reviews (moderator, review team, database administrator, and

system designer) also attend the code inspection 1. Testing people present the test

cases that will be used to validate the code, while maintenance people are there to

learn and evaluate maintainability of the database.

Your role in this review is now a less active one than it has been. You are there to

ensure that everyone adheres to the use of data and access sequences defined in

the previous reviews.

At this point in the review process, you are starting the database administration

tasks defined in Chapter 12, “Developing Test Databases,” on page 307,

Chapter 11, “Implementing Database Design,” on page 291, and Chapter 13,

“Loading Databases,” on page 311.

Code Inspection 2

The code inspection 2 takes place after coding is complete and before testing by

the test organization begins. The objective of the second code inspection is to make

sure module logic matches pseudo code or flowcharts. Interface and register

conventions along with the general quality of the code are checked. Documentation

and maintainability of the code are evaluated.

Everyone who attended code inspection 1 should attend code inspection 2.

Your role in this review is the same as your role in code inspection 1.

At this point in the review process, you are almost finished with the database

administration tasks of developing a test database, implementing the database

design, and loading the database.

During your testing of the database, you should run the DB monitor (described in

Chapter 14, “Monitoring Databases,” on page 335) to make sure your database still

meets the performance expectations you have established.

Code Inspection 1

28 Administration Guide: Database Manager

Security Inspection

The security inspection is optional but highly recommended if security is a

significant concern. Security inspections can take place at any appropriate point in

the system development process. Define security strategy early, and check its

implementation during design reviews. This particular security inspection takes

place after all unit and integration testing is complete. The purpose of the review is

to look for any code that violates the security of system interfaces, secured

databases, tables, or other high-risk items.

People who attend the security inspection review include the moderator, system

designer, designated security officer, and database administrator. Because the

database administrator is responsible for implementing and monitoring the security

of the database, you might, in fact, be the designated security officer. If security is a

significant concern, you might prefer that the review team not attend this inspection.

During this and other security inspection, you are involved in the database

administration task of establishing security defined in Chapter 4, “Security,” on page

31.

Post-Implementation Review

It is highly recommended that you conduct a post-implementation review. The

post-implementation review is typically held about six months after the database

system is running. Its objective is to make sure the system is meeting user

requirements.

Everyone who has been involved in design and implementation of the database

system should attend the post-implementation review. If the system is not meeting

user requirements, the output of this review should be a plan to correct design or

performance problems to meet user requirements.

Security Inspection

Chapter 3. Review Process 29

Post-Implementation Review

30 Administration Guide: Database Manager

Chapter 4. Security

The two aspects of database security are as follows:

v User verification (how you establish that the person using an online database is

in fact the person you have authorized)

v User authority (once you have verified the user’s identity, how you control what is

seen—and what can be done with what is seen)

This chapter deals primarily with how you can control a user’s view of data and the

user’s actions with respect to the data.

This chapter examines the following areas:

v “Restricting the Scope of Data Access”

v “Restricting Processing Authority”

v “Restricting Access by Non-IMS Programs” on page 33

v “Using the Dictionary to Help Establish Security” on page 34

Related Reading: If you use CICS, see CICS RACF® Security Guide for

information on establishing security.

Restricting the Scope of Data Access

The PCB defines a program’s (and therefore the user’s) view of the database. The

PCB can be thought of as a “mask” over the data structure defined by the DBD,

hiding certain parts of it. Therefore, it is possible, simply by limiting the scope of the

PCB, to limit the user’s access to (and even knowledge of) elements of the

database you need to restrict.

Figure 14 on page 32 shows an example. The top of the figure shows the

hierarchical structure for a PAYROLL database as seen by you and defined by the

DBD. For certain applications, it is not necessary (nor desirable) to access the

SALARY segment. By omitting SENSEG statement in the DB PCB for the SALARY

segment, you can make it seem that this segment simply does not exist. By doing

this, you have denied unauthorized users access to the segment, and you have

denied users knowledge of its very existence.

For this method to be successful, the segment being masked off must not be in the

search path of an accessed segment. If it is, then the application is made aware of

at least the key of the segment to be “hidden.”

With field-level sensitivity, you can achieve the same masking effect at the field

level. If SALARY and NAME were in the same segment, you could still restrict

access to the SALARY field without denying access to other fields in the segment.

Restricting Processing Authority

After you have controlled the scope of data a user has access to, you can also

control authority within that scope. Controlling authority allows you to decide what

processing actions against the data a given user is permitted. For example, you

could give some application programs authority only to read segments in a

database, while you give others authority to update or delete segments. You can do

this through the PROCOPT parameter of the SENSEG statement and through the

© Copyright IBM Corp. 1974, 2004 31

PCB statement. The PROCOPT statement tells IMS what actions you will permit

against the database. A program can do what is declared in the PROCOPT.

In addition to restricting access and authority, the number of sensitive segments

and the processing option specified can have an impact on data availability. To

achieve maximum data availability, the PSB should be sensitive only to the

segments required and the processing option should be as restrictive as possible.

For example, the DBD in Figure 13 describes a payroll database that stores the

name, address, position, and salary of employees. The hierarchical structure of the

database record is shown in Figure 14.

 If an application needs access to the name, address, and position of employees,

but not the salary, use the SENSEG statement of the DB PCB to make the

application sensitive to only the name, address, and position segments. The

SENSEG statements on the DB PCB creates a mask over the database record

hiding segments from application. Figure 15 shows the DB PCB that masks the

SALARY segment of the payroll database from the application.

DBD NAME=PAYROLL,...

DATASET ...

SEGM NAME=NAME,PARENT=0...

FIELD NAME=

SEGM NAME=ADDRESS,PARENT=NAME,...

FIELD NAME=

SEGM NAME=POSITION,PARENT=NAME,...

FIELD NAME=

SEGM NAME=SALARY,PARENT=NAME,...

FIELD NAME= ...

Figure 13. DBD for Payroll Database

Figure 14. Payroll Database Record without a Mask

PCB TYPE=DB.DBDNAME=PAYROLL,...

SENSEG NAME=NAME,PARENT=0,...

SENSEG NAME=ADDRESS,PARENT=NAME,...

SENSEG NAME=POSITION,PARENT=NAME,... ...

Figure 15. PCB for Payroll Database

Restricting Processing Authority

32 Administration Guide: Database Manager

Figure 16 shows what the payroll database record looks like to the application

based on the DB PCB. It looks just like the database record in Figure 14 on page

32 except that the SALARY segment is hidden.

Restricting Access by Non-IMS Programs

One potential security exposure is from people attempting to access IMS data sets

with non-IMS programs. Two methods of protecting against this exposure are data

set password protection and database encryption.

Protecting Data with VSAM Passwords

You can take advantage of VSAM password protection to prevent non-IMS

programs from reading VSAM data sets on which you have your IMS databases. To

protect data with VSAM passwords, specify password protection for your VSAM

data sets and code PASSWD=YES on the DBD statement. IMS then passes the

DBD name as the password. If you specify PASSWD=NO on the DBD statement,

the console operator is prompted to provide a password to VSAM each time the

data set is opened.

This method is only useful in the batch environment, and VSAM password checking

is bypassed entirely in the online system. (If you have RACF installed, you can use

it to protect VSAM data sets.)

Details of the PASSWD parameter of the DBD statement can be found in IMS

Version 9: Utilities Reference: System.

Encrypting Your Database

Another precaution you can take against non-IMS programs reading DL/I databases

is to encrypt the databases. You can encrypt DL/I segments using your own

encryption routine, entered at the segment edit/compression exit. Before segments

are written on the database, IMS passes control to your routine, which encrypts

them. Then, each time they are retrieved, they are decrypted by your routine before

presentation to the application program.

Do not change the key or the location of the key field in index databases or in root

segments of HISAM data bases.

You can learn more about segment edit/compression routines in “Segment

Edit/Compression Exit Routine” on page 212.

Figure 16. Payroll Database Record with SALARY Segment Masked

Restricting Processing Authority

Chapter 4. Security 33

Using the Dictionary to Help Establish Security

The dictionary monitors relationships among entities in your computing environment

(such as, which programs use which data elements). This ability makes the

dictionary the ideal tool to administer security.

You can use the dictionary to define your authorization matrixes. Through the

extensibility feature, you can define terminals, programs, users, data, and their

relationships to each other. In this way, you can produce reports that show:

dangerous trends, who uses what from which terminal, and which user gets what

data. For each user, the dictionary could be used to list the following information:

v Programs that can be used

v Types of transactions that can be entered

v Data sets that can be read

v Data sets that can be modified

v Categories of data within a data set that can be read

v Categories of data that can be modified

Using the Dictionary to Help Establish Security

34 Administration Guide: Database Manager

Part 2. Administering IMS Databases

Chapter 5. Analyzing Data Requirements 45

Local View . 45

Local View 1. Current Roster 46

Local View 2. Schedule of Classes 47

Local View 3. Instructor Skills Report 48

Local View 4. Instructor Schedules 49

Designing a Conceptual Data Structure 49

Implementing the Structure with DL/I 51

Assigning Data Elements to Segments 51

Resolving Data Conflicts . 52

Chapter 6. Choosing Full-Function Database Types 55

Sequential Storage Method . 56

Direct Storage Method . 56

Databases Supported with DBCTL 56

Databases Supported with DCCTL 57

Performance Considerations Overview 57

HSAM Databases . 60

When to Use HSAM . 61

How an HSAM Record Is Stored 61

DL/I Calls against an HSAM Database 63

HISAM Databases . 65

When to Use HISAM . 65

How a HISAM Record is Stored 65

Accessing Segments . 68

Inserting Root Segments Using VSAM 68

Inserting Dependent Segments 70

Deleting Segments . 72

Replacing Segments . 74

Criteria for Selecting HISAM 74

SHSAM, SHISAM and GSAM Databases 74

Situation 1 - Converting from a non-database system to IMS 74

Situation 2 - Passing data . 75

SHSAM Databases . 75

SHISAM Databases . 75

SHISAM IMS Symbolic Checkpoint Call 76

GSAM Databases . 76

GSAM IMS Symbolic Checkpoint Call 76

HDAM, PHDAM, HIDAM, and PHIDAM Databases 78

Maximum Sizes of HD Databases 79

DL/I Calls Issuable Against HD Databases 80

When to Use HDAM and PHDAM 80

When to Use HIDAM and PHIDAM 81

What You Need to Know About HD Databases 81

General Format of HD Databases and Use of Special Fields 91

How HDAM and PHDAM Records Are Stored 94

When Not Enough Root Storage Room Exists 96

How HIDAM and PHIDAM Records Are Stored 96

Accessing Segments . 99

Inserting Root Segments . 100

Inserting Dependent Segments 102

Deleting Segments . 103

Replacing Segments . 103

© Copyright IBM Corp. 1974, 2004 35

How the HD Space Search Algorithm Works 103

Locking Protocols . 105

Managing I/O Errors . 107

Chapter 7. Choosing Fast Path Database Types 109

Data Entry Databases . 109

DEDB Functions . 110

DEDB Areas . 110

Fixed- and Variable-Length Segments in DEDBs 116

Parts of a DEDB Area . 117

Root Segment Storage . 122

Direct Dependent Segment Storage 122

Sequential Dependent Segment Storage 123

Enqueue Level of Segment CIs 123

DEDB Space Search Algorithm 125

DEDB Insert Algorithm . 125

DEDB Free Space Algorithm 126

Managing Unusable Space with IMS Tools 127

DL/I Calls against a DEDB 127

Mixed Mode Processing . 127

Main Storage Databases (MSDBs) 128

When to Use an MSDB . 129

MSDBs Storage . 129

MSDB Record Storage . 130

Saving MSDBs for Restart 131

DL/I Calls against an MSDB 131

Rules for Using an SSA . 131

Insertion and Deletion of Segments 132

Combination of Binary and Direct Access Methods 132

Position in an MSDB . 133

The Field Call . 134

Call Sequence Results . 134

Fast Path Virtual Storage Option 135

Restrictions Using VSO DEDB Areas 135

Defining a VSO DEDB Area 136

Sharing of VSO DEDB Areas 138

Defining a VSO Cache Structure Name 139

Acquiring and Accessing Data Spaces for VSO DEDB Areas 143

Resource Control and Locking 144

Preopen Areas and VSO Areas in a Data Sharing Environment 144

Input/Output Processing With VSO 145

Checkpoint Processing . 147

VSO Options Across IMS Restart 147

Emergency Restart Processing 147

VSO Options with XRF . 148

Fast Path Synchronization Points 149

Phase 1 - Build Log Record 149

Phase 2 - Write Record to System Log 149

Managing I/O Errors and Long Wait Times 149

Registering Fast Path Databases in DBRC 150

Chapter 8. Choosing Optional Database Functions 151

Logical Relationships . 151

Logical Relationship Types 152

Logical Relationship Pointer Types 156

Paths in Logical Relationships 162

36 Administration Guide: Database Manager

||

The Logical Child Segment 163

Segment Prefix Information for Logical Relationships 164

Intersection Data . 164

Recursive Structures: Same Database Logical Relationships 166

Defining Sequence Fields for Logical Relationships 170

Control Blocks for Logical Relationships 171

Specifying Logical Relationships in the Physical DBD 172

Specifying Logical Relationships in the Logical DBD 176

Choosing Replace, Insert, and Delete Rules for Logical Relationships . . . 181

Performance Considerations for Logical Relationships 183

Secondary Indexes . 186

Why Secondary Indexes? 186

Characteristics of Secondary Indexes 188

Segments Used for Secondary Indexes 188

How the Hierarchy Is Restructured 191

How a Secondary Index Is Stored 192

Format and Use of Fields in a Pointer Segment 193

Making Keys Unique Using System Related Fields 196

Suppressing Index Entries: Sparse Indexing 198

How the Secondary Index Is Maintained 199

Processing a Secondary Index as a Separate Database 200

Sharing Secondary Index Databases 201

Using the INDICES= Parameter 201

Using Secondary Indexes with Logical Relationships 203

Using Secondary Indexes with Variable-Length Segments 204

Considerations When Using Secondary Indexing 204

How to Specify Use of Secondary Indexing in the DBD 205

Choosing Secondary Indexes Versus Logical Relationships 208

When to Use a Secondary Index 208

When to Use a Logical Relationship 208

Variable-Length Segments . 209

How to Specify Variable-Length Segments 210

How Variable-Length Segments Are Stored and Processed 210

When to Use Variable-Length Segments 211

What Application Programmers Need to Know about Variable-Length

Segments . 212

Adding or Converting to Variable-Length Segments 212

Segment Edit/Compression Exit Routine 212

Things to Consider Before Using the Segment Edit/Compression Exit

Routine . 214

How to Specify the Segment Edit/Compression Exit Routine 215

Converting to the Segment Edit/Compression Exit Routine 215

Data Capture Exit Routines . 215

DBD Parameters for Data Capture Exit Routines 216

Call Sequence of Data Capture Exit Routines 217

Data Passed To and Captured By the Data Capture Exit Routine 218

Data Capture Call Functions 219

Cascade Delete When Crossing Logical Relationships 219

Data Capture Exit Routines and Logically Related Databases 219

Converting to Data Capture Exit Routines 220

Field-Level Sensitivity . 220

Using Field-Level Sensitivity as a Mapping Interface 221

Using Field-Level Sensitivity with Variable-Length Segments 221

How to Specify Use of Field-Level Sensitivity in the DBD and PSB 221

Retrieving Segments Using Field-Level Sensitivity 222

Replacing Segments Using Field-Level Sensitivity 223

Part 2. Administering IMS Databases 37

Inserting Segments Using Field-Level Sensitivity 223

Using Field-Level Sensitivity When Fields Overlap 224

Using Field-Level Sensitivity When Path Calls Are Issued 224

Using Field-Level Sensitivity with Logical Relationships 224

Using Field-Level Sensitivity with Variable-Length Segments 225

General Considerations for Using Field-Level Sensitivity 230

Multiple Data Set Groups . 230

Why Use Multiple Data Set Groups? 231

HD Databases Using Multiple Data Set Groups 232

Block-Level Data Sharing and CI Reclaim 237

HALDB Single Partition Processing 237

Logical Relationships in Single Partition Processing 237

Secondary Indexes in Single Partition Processing 237

Partition Selection . 237

Integrated HALDB Online Reorganization Function 238

Storing XML Data in IMS Databases 238

Chapter 9. Designing Full-Function Databases 241

Specifying Free Space (HDAM, PHDAM, HIDAM, and PHIDAM Only) 241

Estimating the Size of the Root Addressable Area (HDAM or PHDAM Only) 242

Determining Which Randomizing Module to Use (HDAM and PHDAM Only) 243

Write Your Own Randomizing Module 243

Assess the Effectiveness of the Randomizing Module 243

Choosing HDAM or PHDAM Options 244

Minimizing I/O Operations 244

Maximizing Packing Density 244

Choosing a Logical Record Length for a HISAM Database 245

Logical Record Length Considerations 245

Rules to Observe . 247

Calculating How Many Logical Records Are Needed to Hold a Database

Record . 248

Specifying Logical Record Length 248

Choosing a Logical Record Length for HD Databases 248

Determining the Size of CIs and Blocks 248

Buffering Options . 249

Multiple Buffers in Virtual Storage 249

″Use″ Chain . 249

The Buffer Handler . 249

Background Write Option . 250

Shared Resource Pools . 250

Using Separate Subpools 250

Hiperspace Buffering . 250

Buffer Size . 250

Buffer Numbers . 251

VSAM Buffer Sizes . 251

OSAM Buffer Sizes . 252

Specifying Buffers . 252

OSAM Sequential Buffering . 253

Sequential Buffering Introduction 253

Benefits of Sequential Buffering 254

Flexibility of SB Use . 255

How SB Buffers Data . 255

Virtual Storage Considerations for SB 256

How to Request the Use of SB 257

VSAM Options . 260

Optional Functions Specified in the OPTIONS Control Statement 260

38 Administration Guide: Database Manager

||
||

Optional Functions Specified in the POOLID, DBD, and VSRBF Control

Statements . 262

Optional Functions Specified in the Access Method Services DEFINE

CLUSTER Command . 263

OSAM Options . 265

Dump Option (DUMP Parameter) 265

Deciding Which FIELD Statements to Code in the DBD 265

Planning for Maintenance . 265

Chapter 10. Designing Fast Path Databases 267

Designing a Data Entry Database (DEDB) 267

DEDB Design Guidelines . 267

DEDB Area Design Guidelines 268

Determining the Size of the CI 269

Determining the Size of the UOW 270

SDEP CI Preallocation and Reporting 270

Processing Option P (PROCOPT=P) 271

DEDB Randomizing Routine Design 271

Multiple Copies of an Area Data Set 272

Record Deactivation . 273

Physical Child Last Pointers 273

Subset Pointers . 273

Designing a Main Storage Database (MSDB) 273

Calculating Virtual Storage Requirements for an MSDB 274

Understanding Resource Allocation, a Key to Performance 275

Designing to Minimize Resource Contention 276

Choosing MSDBs to Load and Page-Fix 277

Auxiliary Storage Requirements for an MSDB 279

High-Speed Sequential Processing (HSSP) 279

Why HSSP? . 280

Limitations and Restrictions When Using HSSP 280

Using HSSP . 281

HSSP Processing Option H (PROCOPT=H) 281

Image-Copy Option . 281

UOW Locking . 282

Private Buffer Pools . 282

Designing a DEDB or MSDB Buffer Pool 282

Buffer Requirements . 283

Normal Buffer Allocation (NBA) 283

Overflow Buffer Allocation (OBA) 283

Fast Path Buffer Allocation Algorithm 283

System Buffer Allocation (DBFX) 284

Determining the Fast Path Buffer Pool Size 284

Fast Path Buffer Performance Considerations 284

The NBA Limit and Sync Point 285

The DBFX Value and the Low Activity Environment 285

Designing a DEDB Buffer Pool in the DBCTL Environment 286

Buffer Requirements in a DBCTL Environment 286

Normal Buffer Allocation for BMPs 286

Normal Buffer Allocation for CCTL Regions and Threads 286

Overflow Buffer Allocation for BMPs 287

Overflow Buffer Allocation for CCTL Threads 287

Fast Path Buffer Allocation Algorithm for BMPs 287

Fast Path Buffer Allocation Algorithm for CCTL Threads 288

System Buffer Allocation (SBA) 288

Determining the Size of the Fast Path Buffer Pool for DBCTL 288

Part 2. Administering IMS Databases 39

Fast Path Buffer Performance Considerations for DBCTL 289

The NBA/FPB Limit and Sync Point in a DBCTL Environment 289

Low Activity and the DBFX Value in a DBCTL Environment 289

A Note on Fast Path Buffer Allocation in IMS Regions 290

Chapter 11. Implementing Database Design 291

Coding Database Descriptions as Input for the DBDGEN Utility 291

The DBD Statement . 292

The DATASET Statement 292

The SEGM Statement . 293

The FIELD Statement . 293

The LCHILD Statement . 293

The XDFLD Statement . 294

The DBDGEN and END Statements 294

Implementing HALDB Design 294

Creating HALDBs with the HALDB Partition Definition Utility 294

Allocating an ILDS . 300

Coding Program Specification Blocks as Input to the PSBGEN Utility 301

The Alternate PCB . 302

The Database PCB Statement 303

The SENSEG Statement . 303

The SENFLD Statement . 303

The PSBGEN Statement . 304

The END Statement . 304

Building the Application Control Blocks (ACBGEN) 304

Defining Generated Program Specification Blocks for SQL Applications 305

Chapter 12. Developing Test Databases 307

Test Requirements . 307

What Kind of Database? . 308

What Kind of Sample Data? 308

What Kind of Application Program? 308

Designing, Creating, and Loading a Test Database 308

Using Testing Standards . 308

Using IBM Programs to Develop a Test Database 309

Chapter 13. Loading Databases 311

Estimating the Minimum Size of the Database 311

Step 1. Calculate the Size of an Average Database Record 311

Step 2. Determine Overhead Needed for CI Resources 313

Step 3. Determine the Number of CIs or Blocks Needed 314

Step 4. Determine the Number of Blocks or CIs Needed for Free Space 317

Step 5. Determine the Amount of Space Needed for Bit Maps 317

Allocating Data Sets . 318

Allocating OSAM Data Sets 318

Example of Allocating an OSAM Data Set 319

Cautions When Allocating OSAM Data Sets 319

Writing a Load Program . 320

The Load Process . 320

Status Codes for Load Programs 321

Using SSAs in a Load Program 321

Loading a Sequence of Segments with the D Command Code 322

Loading a HISAM Database 331

Loading a SHISAM Database 331

Loading a GSAM Database 331

Loading an HDAM or a PHDAM Database 331

40 Administration Guide: Database Manager

||
||

Loading a HIDAM or a PHIDAM Database 331

Loading a Database with Logical Relationships or Secondary Indexes 331

Loading Fast Path Databases 331

Loading an MSDB . 331

Loading a DEDB . 332

Loading Sequential Dependent Segments 333

Chapter 14. Monitoring Databases 335

IMS Monitor . 335

Monitoring Fast Path Systems 337

Fast Path Log Analysis Utility 337

Interpreting Fast Path Analysis Reports 339

Chapter 15. Tuning Databases 341

Reorganizing the Database . 341

When You Should Reorganize 342

Reorganizing Databases Offline 342

Protecting Your Database During an Offline Reorganization 342

Offline Reorganization Utilities 343

Procedures for Offline Database Reorganizations 357

Reorganizing HALDBs . 358

HALDB Offline Reorganization 359

HALDB Online Reorganization 364

The HALDB Self-Healing Pointer Process 382

Changing DL/I Access Methods 388

Changing the DL/I Access Method From HISAM to HIDAM 389

Changing the DL/I Access Method From HISAM to HDAM 389

Changing the DL/I Access Method From HIDAM to HISAM 391

Changing the DL/I Access Method From HIDAM to HDAM 391

Changing the DL/I Access Method From HDAM to HISAM 392

Changing the DL/I Access Method From HDAM to HIDAM 393

Changing the DL/I Access Method From HDAM to PHDAM and HIDAM to

PHIDAM . 395

Changing HALDB Partition Definitions 398

Procedure for Changing to DEDBs 401

Changing the Hierarchic Structure 401

Changing the Sequence of Segment Types 401

Combining Segments . 402

Procedure for Changing the Hierarchic Structure 402

Changing Direct-Access Storage Devices 403

Tuning OSAM Sequential Buffering 403

Well-Organized Database 403

Badly-Organized Database 404

Ensuring a Well-Organized Database 404

Adjusting HDAM and PHDAM Options 404

Adjusting Buffers . 405

VSAM Buffers . 405

OSAM Buffers . 406

Procedure for Adjusting VSAM and OSAM Database Buffers 407

OSAM Sequential Buffering 407

Procedure for Adjusting Sequential Buffers 408

Adjusting VSAM Options . 408

Procedure for Adjusting VSAM Options Specified in the OPTIONS Control

Statement . 409

Procedures for Adjusting VSAM Options Specified in the Access Method

Service DEFINE CLUSTER Command 409

Part 2. Administering IMS Databases 41

||
||
||
||
||
||
||
||

||

Adjusting OSAM Options . 410

Changing the Amount of Space Allocated 410

Changing Operating System Access Methods 411

Changing the Number of Data Set Groups 411

Tuning Fast Path Systems . 415

Transaction Volume to a Particular Fast Path Application Program 416

DEDB Structure Considerations 416

Usage of Buffers from a Buffer Pool 416

Contention for DEDB Control Interval (CI) Resources 418

Exhaustion of DEDB DASD Space 418

Utilization of Available Real Storage 419

Synchronization Point Processing and Physical Logging 419

Contention for Output Threads 419

Overhead Resulting from Reprocessing 419

Dispatching Priority of Processor-Dominant and I/O-Dominant Tasks 420

DASD Contention Due to I/O on DEDBs 420

Resource Locking Considerations with Block Level Sharing 420

Resource Name Hash Routine 421

Chapter 16. Modifying Databases 423

Adding Segment Types . 424

Unloading and Reloading Using the Reorganization Utilities 424

Without Unloading or Reloading 425

Using Your Own Unload and Reload Program 425

Deleting Segment Types . 425

Moving Segment Types . 426

Changing Segment Size . 426

Changing Data in a Segment (Except for Data at the End of a Segment) 427

Changing the Position of Data in a Segment 427

Adding Logical Relationships 427

Example 1. DBX Exists, DBY Is to Be Added 428

Example 2. DBX and DBY Exist, DBZ Is to Be Added 429

Example 3. DBX and DBY Exist, DBZ Is to Be Added 430

Example 4. DBX and DBY Exist, DBZ Is to Be Added 430

Example 5. DBX Exists, DBY Is to Be Added 431

Example 6. DBX and DBY Exist, DBZ Is to Be Added 432

Example 7. DBX and DBY Exist, DBZ Is to Be Added 434

Example 8. DBX and DBY Exist, DBZ Is to Be Added 436

Example 9. DBY Exists, DBZ Is to Be Added 436

Example 10. DBY Exists, DBZ Is to Be Added 437

Example 11. DBX and DBY Exist, DBZ Is to Be Added 437

Example 12. DBX and DBY Exist, DBZ Is to Be Added 438

Example 13. DBX and DBY Exist, Segment Y and DBZ Are to Be Added 438

Steps in Reorganizing a Database to Add a Logical Relationship 439

Some Restrictions on Modifying Existing Logical Relationships 443

Summary on Use of Utilities When Adding Logical Relationships 444

Adding a Secondary Index . 445

Adding or Converting to Variable-Length Segments 445

Method 1. Converting Segments or a Database 445

Method 2. Converting Segments or a Database 446

Converting to the Segment Edit/Compression Exit Routine 446

Converting Databases for Data Capture Exit Routines and Asynchronous Data

Capture . 447

Converting a Logical Parent Concatenated Key from Virtual to Physical or

Physical to Virtual . 448

Using the Online Change Function 448

42 Administration Guide: Database Manager

Maintaining Continuous Availability of IFP and MPP Regions 449

Changing Randomizer and Exit Routines 451

Making Online Changes at the DEDB and Area Level 455

Extending DEDB Independent Overflow Online 458

Part 2. Administering IMS Databases 43

44 Administration Guide: Database Manager

Chapter 5. Analyzing Data Requirements

One of the early steps of database design is developing a conceptual data structure

that satisfies your end user’s processing requirements. So, before you can develop

a conceptual data structure, familiarize yourself with your end user’s processing and

data requirements.

Developing a data structure is a process of combining the data requirements of

each of the tasks to be performed, into one or more data structures that satisfy

those requirements. The method explained here describes how to use the local

views developed for each business process to develop a data structure.

A business process, in an application, is one of the tasks your end user needs

done. For example, in an education application, printing a class roster is a business

process.

A local view describes a conceptual data structure and the relationships between

the pieces of data in the structure for one business process.

To understand the method explained in this chapter, you need to be familiar with the

terminology and examples explained in the introductory chapter on application

design in IMS Version 9: Application Programming: Design Guide. The chapter of

the design guide explains how to develop local views for the business processes in

an application.

Included in this chapter are the following topics:

v “Local View,” which introduces you to the local view examples and explains the

information that makes up a local view.

v “Designing a Conceptual Data Structure” on page 49, which explains how you

can develop a conceptual data structure based on the local views for the

business processes in an application.

v “Implementing the Structure with DL/I” on page 51, which explains how you

implement the structure you have developed with DL/I. The considerations

explained are: assigning data elements to segments and resolving data conflicts

with DL/I.

Local View

Designing a structure that satisfies the data requirements of the business processes

in an application requires an understanding of the requirements for each of those

business processes. A local view of the business process describes these

requirements because the local view provides:

v A list of all the data elements the process requires and their controlling keys

v The conceptual data structure developed for each process, showing how the data

elements are grouped into data aggregates

v The mappings between the data aggregates in each process

This chapter uses a company that provides technical education to its customers as

an example. The education company has one headquarters, called HQ, and several

local education centers, called Ed Centers. HQ develops the courses offered at

each of the Ed Centers. Each Ed Center is responsible for scheduling classes it will

offer and for enrolling students for those classes.

© Copyright IBM Corp. 1974, 2004 45

|
|

|
|
|

|
|
|
|

A class is a single offering of a course on a specific date at an Ed Center. There

might be several offerings of one course at different Ed Centers, and each of these

offerings is a separate class.

The local views used in this chapter are for the following business processes in an

education application:

 Current Roster

 Schedule of Classes

 Instructor Skills Report

 Instructor Schedules

The information in the subtopics of this topic summarizes the local views developed

in the introductory chapter on application design in IMS Version 9: Application

Programming: Design Guide.

Notes for local views:

v The asterisks (*) in the data structures for each of the local views indicate the

data elements that identify the data aggregate. This is the data aggregate’s key;

some data aggregates require more than one data element to uniquely identify

them.

v The mappings between the data aggregates in each process are given in

mapping notation. A one-to-many mapping means for each A aggregate there are

one or more B aggregates; shown like this: �────────��

A many-to-many relationship means that for each A aggregate there are many B

aggregates, and for each B aggregate, there are many A aggregates; shown as

follows: ��────────��

Local View 1. Current Roster

This topic describes the elements, the data structure, the data aggregates, and the

mapping of the relationships between the data aggregates used to satisfy the data

requirements of the Current Roster business process.

List of Current Roster Data Elements

The following is a list of the data elements and their descriptions for our technical

education provider example.

Data Element Description

CRSNAME Course name

CRSCODE Course code

LENGTH Length of class

EDCNTR Ed Center offering class

DATE Date class is offered

CUST Customer that sent student

LOCTN Location of customer

STUSEQ# Student’s sequence number

STUNAME Student’s name

STATUS Student’s enrollment status

ABSENCE Student’s absences

Local View

46 Administration Guide: Database Manager

|
|
|

GRADE Student’s grade for class

INSTRS Instructors for class

Figure 17 shows the conceptual data structure for the current roster.

Current Roster Mappings

The mappings for the current roster are:

 Course �────────�� Class

 Class �────────�� Student

 Class �────────�� Instructor

 Customer/location�────────�� Student

Local View 2. Schedule of Classes

This topic describes the elements, the data structure, the data aggregates, and the

mapping of the relationships between the data aggregates used to satisfy the data

requirements of the Schedule of Classes business process.

List of Schedule of Classes Data Elements

The following is a list of the schedule of classes and their descriptions for our

example.

Data Element Description

CRSCODE Course code

CRSNAME Course name

LENGTH Length of course

PRICE Price of course

EDCNTR Ed Center where class is offered

DATE Dates when class is offered at a particular Ed

Center

Figure 17. Current Roster Conceptual Data Structure

Local View

Chapter 5. Analyzing Data Requirements 47

|
|
|

Figure 18 shows the conceptual data structure for the class schedule.

Schedule of Classes Mappings

The only mapping for this local view is:

 Course �────────�� Class

Local View 3. Instructor Skills Report

This topic describes the elements, the data structure, the data aggregates, and the

mapping of the relationships between the data aggregates used to satisfy the data

requirements of the Instructor Skills Report business process.

List of Instructor Skills Report Data Elements

The following is a list of the instructor skills report data elements and their

descriptions for our technical education provider example.

Data Element Description

INSTR Instructor

CRSCODE Course code

CRSNAME Course name

Figure 19 shows the conceptual data structure for the instructor skills report.

Instructor Skills Report Mappings

The only mapping for this local view is:

 Instructor �────────�� Course

Figure 18. Schedule of Classes Conceptual Data Structure

Figure 19. Instructor Skills Report Conceptual Data Structure

Local View

48 Administration Guide: Database Manager

|
|
|

Local View 4. Instructor Schedules

This topic describes the elements, the data structure, the data aggregates, and the

mapping of the relationships between the data aggregates used to satisfy the data

requirements of the Instructor Schedules business process.

List of Instructor Schedules Data Elements

The following is a list of the instructor schedules data elements and their

descriptions for our example.

Data Element Description

INSTR Instructor

CRSNAME Course name

CRSCODE Course code

EDCNTR Ed Center

DATE Date when class is offered

Figure 20 shows the conceptual data structure for the instructor schedules.

Instructor Schedules Mappings

The mappings for this local view are:

 Instructor �────────�� Course

 Course �────────�� Class

Designing a Conceptual Data Structure

Analyzing the mappings from all the local views is one of the first steps in designing

a conceptual data structure. Two kinds of mappings affect the segments:

one-to-many and many-to-many.

A one-to-many mapping means that for each segment A there are one or more

segment Bs; shown like this: A �────────�� B. For example, in the Current Roster

(Figure 17 on page 47), there is a one-to-many relationship between course and

class. For each course, there can be several classes scheduled, but a class is

Figure 20. Instructor Schedules Conceptual Data Structure

Local View

Chapter 5. Analyzing Data Requirements 49

|
|
|

associated with only one course. A one-to-many relationship can be represented as

a dependent relationship: In the course/class example, the classes are dependent

on a particular course.

A many-to-many mapping means that for each segment A there are many segment

Bs, and for each segment B there are many segment As. This is shown like this: A

��────────�� B. A many-to-many relationship is not a dependent relationship, since

it usually occurs between data aggregates in two separate data structures and

indicates a conflict in the way two business processes need to process that data.

When you implement a data structure with DL/I, there are three strategies you can

apply to solve data conflicts:

 Defining logical relationships

 Establishing secondary indexes

 Storing the data in two places (also known as carrying duplicate data).

Related Reading: “Resolving Data Conflicts” on page 52 explains the kinds of data

conflicts that secondary indexes and logical relationships can resolve.

The first step in designing a conceptual data structure is to combine the mappings

of all the local views. To do this, go through the mappings for each local view and

make a consolidated list of mappings (see Table 5). As you review the mappings:

v Do not record duplicate mappings. At this stage you need to cover each

variation, not each occurrence.

v If two data aggregates in different local views have opposite mappings, use the

more complex mapping. This will include both mappings when they are

combined. For example, if local view #1 has the mapping A �────────�� B, and

local view #2 has the mapping A ��────────� B, use a mapping that includes

both these mappings. In this case, this is A ��────────�� B.

 Table 5. Combined Mappings for Local Views

Mapping Local View

Course �────────�� Class 1, 2, 4

Class �────────�� Student 1

Class �────────�� Instructor 1

Customer/location �────────�� Student 1

Instructor �────────�� Course 3, 4

Using the combined mappings, you can construct the data structures shown in

Figure 21.

Designing a Conceptual Data Structure

50 Administration Guide: Database Manager

Two conflicts exist in these data structures. First, STUDENT is dependent on both

CUST and CLASS. Second, there is an opposite mapping between COURSE and

INSTR, and INSTR and COURSE. If you implemented these structures with DL/I,

you could use logical relationships to resolve the conflicts. “Analyzing Requirements

for Logical Relationships” on page 52 explains how.

Implementing the Structure with DL/I

When you implement a data structure with DL/I, you implement it as a hierarchy. A

hierarchy is made up of segments. In a hierarchy, a one-to-many relationship is

called a parent/child relationship. In a hierarchy, each segment can have one or

more children, but it can have only one parent.

When you use DL/I, consider how each of the data elements in the structure you

have developed should be grouped into segments. Also, consider how DL/I can

solve any existing data conflicts in the structure. The topics “Assigning Data

Elements to Segments” and “Resolving Data Conflicts” on page 52 in this chapter

explain how you assign data elements to segments, and how DL/I can resolve data

conflicts.

Assigning Data Elements to Segments

Once you determine how data elements are related in a hierarchy, associate each

of the data elements with a segment. To do this, construct a list of all the keys and

their associated data elements. If a key and its associated data element appear in

several local views, only record the association once.

List the data elements next to their keys, as shown in Table 6. The key and its

associated data elements become the segment content.

 Table 6. Keys and Associated Data Elements

Data Aggregate Key Data Elements

COURSE CRSCODE CRSNAME, LENGTH, PRICE

CUSTOMER/LOCATION CUST, LOCTN

CLASS EDCNTR, DATE

STUDENT STUSEQ# STUNAME, ABSENCE, STATUS,

GRADE

INSTRUCTOR INSTR

Figure 21. Education Data Structures

Designing a Conceptual Data Structure

Chapter 5. Analyzing Data Requirements 51

If a data element is associated with different keys in different local views, then you

must decide which segment will contain the data element. The other thing you can

do is to store duplicate data. To avoid doing this, store the data element with the

key that is highest in the hierarchy. For example, if the keys ALPHA and BETA were

both associated with the data element XYZ (one in local view 1 and one in local

view 2), and ALPHA were higher in the hierarchy, store XYZ with ALPHA to avoid

having to repeat it.

Resolving Data Conflicts

The data structure you design can fall short of the application’s processing

requirements. For example, one business process might need to retrieve a

particular segment by a field other than the one you have chosen as the key field.

Another business process might need to associate segments from two or more

different data structures. Once you have identified these kinds of conflicts in a data

structure and are using DL/I, you can look at two DL/I options that can help you

resolve the conflicts: secondary indexing and logical relationships.

Analyzing Requirements for Secondary Indexes

Secondary indexing allows a segment to be identified by a field other than its key

field.

Suppose that you are part of our technical education company and need to

determine (from a terminal) whether a particular student is enrolled in a class. If you

are unsure about the student’s enrollment status, you probably do not know the

student’s sequence number. The key of the STUDENT segment, however, is

STUSEQ#. Let’s say you issue a request for a STUDENT segment, and identify the

segment you need by the student’s name (STUNAME). Instead of the student’s

sequence number (STUSEQ#), IMS searches through all STUDENT segments to

find that one. Assuming the STUDENT segments are stored in order of student

sequence numbers, IMS has no way of knowing where the STUDENT segment is

just by having the STUNAME.

Using a secondary index in this example is like making STUNAME the key field of

the STUDENT segment for this business process. Other business processes can

still process this segment with STUSEQ# as the key.

To do this, you can index the STUDENT segment on STUNAME in the secondary

index. You can index any field in a segment. When you index a field, indicating to

IMS that you are using a secondary index for that segment, IMS processes the

segment as though the indexed field were the key.

Analyzing Requirements for Logical Relationships

When a business process needs to associate segments from different hierarchies,

logical relationships can make that possible.

Defining logical relationships lets you create a hierarchic structure that does not

exist in storage but can be processed as though it does. You can relate segments

in separate hierarchies. The data structure created from these logical relationships

is called a logical structure. To relate segments in separate hierarchies, store the

segment in the path by which it is accessed most frequently. Store a pointer to the

segment in the path where it is accessed less frequently.

In the hierarchy shown in Figure 21 on page 51, two possible parents exist for the

STUDENT segment. If the CUST segment is part of an existing database, you can

Implementing the Structure with DL/I

52 Administration Guide: Database Manager

define a logical relationship between the CUST segment and the STUDENT

segment. You would then have the hierarchies shown in Figure 22. The

CUST/STUDENT hierarchy would be a logical structure.

 This kind of logical relationship is called unidirectional, because the relationship is

“one way.”

The other conflict you can see in Figure 21 on page 51, is the one between

COURSE and INSTR. For one course there are several classes, and for one class

there are several instructors (COURSE �─────�� CLASS �─────�� INSTR), but

each instructor can teach several courses (INSTR �─────�� COURSE). You can

resolve this conflict by using a bidirectional logical relationship. You can store the

INSTR segment in a separate hierarchy, and store a pointer to it in the INSTR

segment in the course hierarchy. You can also store the COURSE segment in the

course hierarchy, and store a pointer to it in the COURSE segment in the INSTR

hierarchy. This bidirectional logical relationship would give you the two hierarchies

shown in Figure 23, eliminating the need to carry duplicate data.

Figure 22. Education Hierarchies

Figure 23. Bidirectional Logical Relationships

Implementing the Structure with DL/I

Chapter 5. Analyzing Data Requirements 53

Implementing the Structure with DL/I

54 Administration Guide: Database Manager

Chapter 6. Choosing Full-Function Database Types

IMS databases are hierarchic databases that are accessed through DL/I calls. IMS

makes it possible for application programs to retrieve, replace, delete, and add

segments to IMS databases.

IMS allows you to define twelve database types. Each type has different

organization processing characteristics. Except for DEDB and MSDB, all the

database types are discussed in this chapter.

In this chapter:

v “Sequential Storage Method” on page 56

v “Direct Storage Method” on page 56

v “Databases Supported with DBCTL” on page 56

v “Databases Supported with DCCTL” on page 57

v “Performance Considerations Overview” on page 57

v “HSAM Databases” on page 60

v “HISAM Databases” on page 65

v “SHSAM, SHISAM and GSAM Databases” on page 74

v “HDAM, PHDAM, HIDAM, and PHIDAM Databases” on page 78

v “Managing I/O Errors” on page 107

Related Reading: For information on DEDBs and MSDBs see, “Data Entry

Databases” on page 109 and “Main Storage Databases (MSDBs)” on page 128.

Understanding how the database types differ enables you to pick the type that best

suits your application’s processing requirements.

Each database type has its own access method. The following figure lists each type

and the access method it uses:

Type of Database Access Method

HSAM Hierarchical Sequential Access Method

HISAM Hierarchical Indexed Sequential Access Method

SHSAM Simple Hierarchical Sequential Access Method

SHISAM Simple Hierarchical Indexed Sequential Access

Method

GSAM Generalized Sequential Access Method

 Restriction: GSAM does not apply to CICS

applications.

HDAM Hierarchical Direct Access Method

PHDAM Partitioned Hierarchical Direct Access Method

HIDAM Hierarchical Indexed Direct Access Method

PHIDAM Partitioned Hierarchical Indexed Direct Access

Method

PSINDEX Partitioned Secondary Index Database

DEDB Data Entry Database (Hierarchical Direct Access)

© Copyright IBM Corp. 1974, 2004 55

MSDB Main Storage Database (Hierarchical Direct Access)

Based on the access method used, the various databases can be classified into two

groups: sequential storage and direct storage.

Sequential Storage Method

HSAM, HISAM, SHSAM, and SHISAM use the sequential method of accessing

data. With this method, the hierarchic sequence of segments in the database is

maintained by putting segments in storage locations that are physically adjacent to

each other. GSAM databases also use the sequential method of accessing data,

but no concept of hierarchy, database record, or segment exists in GSAM

databases.

Direct Storage Method

HDAM, PHDAM, HIDAM, DEDB, MSDB, and PHIDAM databases use the direct

method of accessing data. With this method, the hierarchic sequence of segments

is maintained by putting direct-address pointers in each segment’s prefix.

For quick reference, see Table 7 on page 59 for a summary of HSAM, HISAM,

HDAM, PHDAM, HIDAM, PHIDAM, DEDB, and MSDB database characteristics.

Databases Supported with DBCTL

Database Control (DBCTL) configuration of IMS supports all IMS full-function

databases:

 HSAM

 HISAM

 SHSAM

 SHISAM

 HDAM

 PHDAM

 HIDAM

 PHIDAM

 PSINDEX

Databases can be accessed through DBCTL from IMS BMP regions, as well as

from independent transaction-management subsystems. Only batch-oriented BMP

programs are supported because DBCTL provides no message or transaction

support.

CICS online programs can access the same IMS database concurrently; however,

an IMS batch program must have exclusive access to the database (if you are not

participating in IMS data sharing).

If you have batch jobs that currently access IMS databases through IMS data

sharing, you can convert them to run as BMPs directly accessing databases

through DBCTL, thereby improving performance. You can additionally convert

current batch programs to BMPs to access DEDBs.

56 Administration Guide: Database Manager

|
|

|

|

|

|

|

|

|

|

|

Related Reading: For more information on converting a batch job to a BMP, see

IMS Version 9: Application Programming: Design Guide and IMS Version 9:

Administration Guide: System.

Databases Supported with DCCTL

The DCCTL configuration of IMS supports the following database and dependent

region combinations:

v GSAM databases for BMP regions

v DB2 UDB for z/OS databases for BMP, MPP, and IFP regions through the

External Subsystem attachment facility (ESAF)

v DB2 UDB for z/OS databases for JMP and JBP regions through the DB2

Recoverable Resource Manager Services attachment facility (RRSAF)

Restriction: DCCTL does not support full-function or Fast Path databases.

Related Reading:

v For more information on ESAF, see IMS Version 9: Customization Guide

v For more information on RRSAF, see DB2 Universal Database for z/OS

Administration Guide

Performance Considerations Overview

All databases are not created equal. You will want to make an informed decision

regarding the type of database organizations which will best serve your purposes.

The following lists briefly summarize the performance characteristics of the various

database types, highlighting efficiencies and deficiencies of hierarchic sequential,

hierarchic direct and general sequential databases.

Related Reading: For information on DEDBs and MSDBs, see “Data Entry

Databases” on page 109 and “Main Storage Databases (MSDBs)” on page 128.

General Sequential (GSAM)

v Supported by DCCTL

v No hierarchy, database records, segments, or keys

v No DLET or REPL

v ISRT adds records at end of data set

v GN and GU processed in batch or BMP applications only

v Allows IMS symbolic checkpoint calls and restart from checkpoint (except

VSAM-loaded databases)

v Good for converting data to IMS and for passing data

v Not accessible from an MPP or JMP region

v Space efficient

v Not time efficient

VSAM

v Fixed- or variable-length records are usable

v VSAM ESDS DASD stored

v IMS symbolic checkpoint call allowed

v Restart from checkpoint not allowed

BSAM/QSAM

Databases Supported with DBCTL

Chapter 6. Choosing Full-Function Database Types 57

|
|

|

|
|

|
|

|

|

|
|

v Fixed-, variable-, or undefined-length records are usable

v BSAM/QSAM DS tape or DASD stored

v Allows IMS symbolic checkpoint calls and restart from checkpoint

Hierarchic Sequential

Segments are linked by physical contiguity

HSAM

v Supported by DBCTL

v Physical sequential access to roots and dependents stored on

tape or DASD

v ISRT allowed only when database is loaded

v GU, GN, and GNP allowed

v Database update done by merging databases and writing new

database

v QSAM and BSAM accessible

v Space efficient but not time efficient

v Sequential access

HISAM

v Supported by DBCTL

v Hierarchic indexed access to roots

v Sequential access to dependents

v Stored on DASD

v VSAM accessible

v All DL/I calls allowed

v Index is on root segment sequence field

v Good for databases not updated often

v Not space efficient with many updates

v Time efficient with SSA-qualified calls

SHSAM

v Supported by DBCTL

v Simple hierarchic sequential access method to root segments

only

v ISRT allowed only when database is loaded

v GU, GN, and GNP allowed

v Database update done by reloaded database

v QSAM and BSAM accessible

v Allows IMS symbolic checkpoint calls and restart from checkpoint

(except VSAM-loaded databases)

v Good for converting data to IMS and for passing data

v Not accessible from an MPP or JMP region

v Space efficient

v Not time efficient

SHISAM

v Supported by DBCTL

v Simple hierarchic indexed access to roots only

v Sequential access to dependents

Performance Considerations Overview

58 Administration Guide: Database Manager

v Stored on DASD

v VSAM accessible

v All DL/I calls allowed

v Good for converting data to IMS and for passing data

v Not space efficient

v Time efficient

Hierarchic Direct

Segments are linked by pointers

HDAM and PHDAM

v Supported by DBCTL

v Hashing access to roots

v Sequential access by secondary index to segments

v All DL/I calls allowed

v Stored on DASD in VSAM ESDS or OSAM data set

v Good for direct access to records

v Hierarchic pointers allowed

– Hierarchic sequential access to dependent segments

– Better performance than child and twin pointers

– Less space required than child and twin pointers

v Child and twin pointers allowed

– Direct access to pointers

– More space required by additional index VSAM ESDS

database

HIDAM and PHIDAM

v Supported by DBCTL

v Indexed access to roots

v Pointer access to dependent segments

v All DL/I calls allowed

v Stored on DASD in VSAM ESDS or OSAM data set

v Good for random and sequential access to records

v Good for random access to segment paths

v Hierarchic pointers allowed

– Hierarchic sequential access to dependent segments

– Better performance than child and twin pointers

– Less space required than child and twin pointers

v Child and twin pointers allowed

– Direct access to pointers

– More space required by additional index VSAM ESDS

database

 Table 7 gives a summary of database characteristics, functions, and options for the

different database types.

 Table 7. Summary of Database Characteristics and Options for Database Types

 Characteristic HSAM HISAM HDAM PHDAM HIDAM PHIDAM DEDB MSDB

Hierarchical Structures Y Y Y Y Y Y Y N

Performance Considerations Overview

Chapter 6. Choosing Full-Function Database Types 59

Table 7. Summary of Database Characteristics and Options for Database Types (continued)

 Characteristic HSAM HISAM HDAM PHDAM HIDAM PHIDAM DEDB MSDB

Direct Access Storage Y Y Y Y Y Y Y N

Multiple Data Set

Groups

N N Y Y Y Y N N

Logical Relationships N Y Y Y Y Y N N

Variable-Length

Segments

N Y Y Y Y Y Y N

Segment

Edit/Compression

N Y Y Y Y Y Y N

Data Capture Exit

Routines

N Y Y Y Y Y Y N

Field-Level Sensitivity Y Y Y Y Y Y N N

Primary Index N Y N N Y Y N N

Secondary Index N Y Y Y Y Y N N

Logging, Recovery,

Offline Reorganization

N Y Y Y Y Y Y Y

VSAM N Y Y Y Y Y Y N/A

OSAM N N Y Y Y Y N N/A

QSAM/BSAM Y N N N N N N N/A

Boolean Operators Y Y Y Y Y Y Y N

Command Codes Y Y Y Y Y Y Y N

Subset Pointers N N N N N N Y N

Uses Main Storage N N N N N N N Y

High Parallelism (field

call)

N N N N N N N Y

Compaction Y Y Y Y Y Y Y N

DBRC Support Y Y Y Y Y Y Y N/A

Partitioning Support N N N Y N Y Y N

Data Sharing Y Y Y Y Y Y Y N

Partition Sharing N N N Y N Y Y N

Block Level Sharing Y Y Y Y Y Y Y N

Area Sharing N/A N/A N/A N/A N/A N/A Y N/A

Record Deactivation N N N N N N Y N/A

Database Size med med med lg med lg lg sml

Online Utilities N N N N N N Y N

Online Reorganization N N N Y N Y Y N

Batch Y Y Y Y Y Y N N

HSAM Databases

Hierarchical sequential access method (HSAM) databases use the sequential

method of accessing data. All database records and all segments within each

database record are physically adjacent in storage. An HSAM database can be

stored on tape or on a direct-access storage device. They are processed using

Performance Considerations Overview

60 Administration Guide: Database Manager

|

|
|
|
|

either basic sequential access method (BSAM) or queued sequential access

method (QSAM) as the operating system access method. Specify your access

method on the PROCOPT= parameter in the PCB. If you specify PROCOPT=GS,

QSAM is always used. If you specify PROCOPT=G, BSAM is used.

HSAM data sets are loaded with root segments in ascending key sequence (if keys

exist for the root) and dependent segments in hierarchic sequence. You do not

need to define a key field in root segments. You must, however, present segments

to the load program in the order in which they must be loaded. HSAM data sets use

a fixed-length, unblocked record format (RECFM=F), which means that the logical

record length is the same as the physical block size.

HSAM databases can only be updated by rewriting them. Delete (DLET) and

replace (REPL) calls are not allowed, and insert (ISRT) calls are only allowed when

the database is being loaded. Although the field-level sensitivity option can be used

with HSAM databases the following options cannot be used with HSAM databases:

v Multiple data set groups

v Logical relationships

v Secondary indexing

v Variable-length segments

v Segment edit/compression facility

v Data Capture exit routines

v Asynchronous data capture

v Logging, recovery, or reorganization

Multiple positioning and multiple PCBs cannot be used in HSAM databases.

When to Use HSAM

Although the uses of HSAM are limited because of its processing characteristics, it

is used for applications requiring sequential processing only. Typically, HSAM is

used for low-use files. These are files containing, for example, audit trails, statistical

reports or files containing historical or archive data that has been purged from the

main database.

How an HSAM Record Is Stored

Segments in an HSAM database are loaded in the order in which you present them

to the load program. You should present all segments within a database record in

hierarchic sequence. If a sequence field has been defined for root segments, you

should present database records to the load program in ascending root key

sequence.

Figure 24 on page 62 shows an example HSAM database.

HSAM Databases

Chapter 6. Choosing Full-Function Database Types 61

|
|
|
|

Figure 25 shows how the example HSAM database, shown in Figure 24, would be

stored in blocks.

 In the data set, a database record is stored in one or more consecutive blocks. You

define what the block size will be. Each block is filled with segments of the

database record until there is not enough space left in the block to store the next

segment. When this happens, the remaining space in the block is padded with

zeros and the next segment is stored in the next consecutive block. When the last

segment of a database record has been stored in a block, any unused space, if

sufficient, is filled with segments from the next database record.

In storage, an HSAM segment consists of a 2-byte prefix followed by user data. The

first byte of the prefix is the segment code, which identifies the segment type to

IMS. This number can be from 1 to 255. The segment code is assigned to the

segment by IMS in ascending sequence, starting with the root segment and

Figure 24. Example HSAM Database

Figure 25. Example HSAM Database Stored in Blocks

HSAM Databases

62 Administration Guide: Database Manager

continuing through all dependents in hierarchic sequence. The second byte of the

prefix is the delete byte. Because DLET calls cannot be used against an HSAM

database, the second byte is not used.

DL/I Calls against an HSAM Database

Initial entry to an HSAM database is through GU or GN calls. When the first call is

issued, the search for the desired segment starts at the beginning of the database

and passes sequentially through all segments stored in the database until the

desired segment is reached. After the desired segment is reached, its position is

used as the starting position for any additional calls that process the database in a

forward direction.

After position in an HSAM database has been established, the way in which GU

calls are handled depends on whether a sequence field is defined for the root

segment and what processing options are in effect. Figure 26 shows a flow chart of

the actions taken based on whether a sequence field is defined and what

processing options are in effect.

 When a GU call is issued and the root segment sequence field is not defined,

search forward from beginning of database. If the sequence field is defined for the

root and the SSA key is less than the SAA® key on the last call, search forward

from the current position in the database. If the sequence field is defined for the

root and the SSA key is greater than the SSA key on the last call, the GU call is

Figure 26. GU Calls against an HSAM Database

HSAM Databases

Chapter 6. Choosing Full-Function Database Types 63

|
|
|
|
|

handled based on the PSB PROCOPT. If PROCOPT=GS, search forward from

beginning of database. If PROCOPT=G, Backspace two blocks and read forward

one block.

No Sequence Field Defined

If no sequence field has been defined, each GU call causes the search for the

desired segment to start at the beginning of the database regardless of current

position. This allows direct processing of the HSAM database. The processing,

however, is restricted to one volume.

Sequence Field Defined

If a sequence field has been defined and the GU call retrieves a segment that is

forward in the database, the search starts from the current position and moves

forward to the desired segment. If access to the desired segment requires

backward movement in the database, the PROCOPT= parameters G or GS

(specified during PSBGEN) determine how backward movement is accomplished. If

you specify PROCOPT=GS, (that is, the database is read using QSAM), the search

for the desired segment starts at the beginning of the database and moves forward.

If you specify PROCOPT=G, (that is, the database is read using BSAM), the search

moves backward in the database. This is accomplished by backspacing over the

block just read and the block previous to it, then reading this previous block forward

until the desired segment is found.

Because of the way in which segments are accessed in an HSAM database, it is

most practical to access root segments sequentially and dependent segments in

hierarchic sequence within a database record.Other methods of access, involving

backspacing, rewinding of the tape, or scanning the data set from the beginning,

can be time consuming.

As stated previously, DLET and REPL calls cannot be issued against an HSAM

database. ISRT calls are allowed only when the database is being loaded. To

update an HSAM database, you must write a program that merges the current

HSAM database and the update data. The update data can be in one or more files.

The output data set created by this process is the new updated HSAM database.

Figure 27 illustrates this process.

Figure 27. Updating an HSAM Database

HSAM Databases

64 Administration Guide: Database Manager

HISAM Databases

In a hierarchical indexed sequential access method (HISAM) database, as with an

HSAM database, segments in each database record are related through physical

adjacency in storage. Unlike HSAM, however, each HISAM database record is

indexed, allowing direct access to a database record. In defining a HISAM

database, you must define a unique sequence field in each root segment. These

sequence fields are then used to construct an index to root segments (and

therefore database records) in the database.

HISAM databases are stored on direct-access devices. They can be processed

using the virtual storage access method (VSAM) utility. Unlike HSAM, all DL/I calls

can be issued against a HISAM database. In addition, the following options are

available for HISAM databases:

v Logical relationships

v Secondary indexing

v Variable-length segments

v Segment edit/compression facility

v Data Capture exit routines

v Field-level sensitivity

v Logging, recovery, and reorganization

Except for logging and recovery, each of these options is discussed in detail in later

parts of this book. For detailed discussions of logging and recovery, see the IMS

Version 9: Database Recovery Control (DBRC) Guide and Reference.

When to Use HISAM

HISAM is typically used for databases that require direct access to database

records and sequential processing of segments in a database record. It is a good

candidate for databases with the following characteristics:

v Most database records are about the same size.

v The database does not consist of relatively few root segments and a large

number of dependent segments.

v Applications do not depend on a heavy volume of root segments being inserted

after the database is initially loaded.

v Deletion of database records is minimal.

More detailed information on the uses of HISAM, requiring a working knowledge of

how a HISAM database is organized and processed, is under “Variable-Length

Segments” on page 209.

How a HISAM Record is Stored

HISAM database records are stored in two data sets. The first data set, called the

primary data set, contains an index and all segments in a database record that can

fit in one logical record. The index provides direct access to the root segment (and

therefore to database records). The second data set, called the overflow data set,

contains all segments in the database record that cannot fit in the primary data set.

A key-sequenced data set (KSDS) is the primary data set and an entry-sequenced

data set (ESDS) is the overflow data set.

There are several things you need to know about storage of HISAM database

records:

HSAM Databases

Chapter 6. Choosing Full-Function Database Types 65

v You define the logical record length of both the primary and overflow data set

(subject to the rules listed in this chapter). The logical record length can be

different for each data set. This allows you to define the logical record length in

the primary data set as large enough to hold an “average” database record or the

most frequently accessed segments in the database record. Logical record length

in the overflow data set can then be defined (subject to some restrictions) as

whatever is most efficient given the characteristics of your database records.

v Logical records are grouped into control intervals (CIs). A control interval is the

unit of data transferred between an I/O device and storage. You define the size

of CIs.

v Each database record starts at the beginning of a logical record in the primary

data set. A database record can only occupy one logical record in the primary

data set, but overflow segments of the database record can occupy more than

one logical record in the overflow data set.

v Segments in a database record cannot be split and stored across two logical

records. Because of this and because each database record starts a new logical

record, unused space exists at the end of many logical records. When the

database is initially loaded, IMS inserts a root segment with a key of all X'FF's as

the last root segment in the database.

Figure 29 on page 67 shows four HISAM database records (shown in Figure 28) as

they are initially stored on the primary and overflow data sets.

 In storage, a HISAM segment (see Figure 29) consists of a 2-byte prefix followed by

user data. The first byte of the prefix is the segment code, which identifies the

segment type to IMS. This number can be from 1 to 255. The segment code is

assigned to the segment by IMS in ascending sequence, starting with the root

segment and continuing through all dependents in hierarchic sequence. The second

byte of the prefix is the delete byte.

Figure 28. Example HISAM Database

HSAM Databases

66 Administration Guide: Database Manager

Each logical record in the primary data set contains the root plus all dependents of

the root (in hierarchic sequence) for which there is enough space. The remaining

segments of the database record are put in the overflow data set (again in

hierarchic sequence). The two “parts” of the database record are chained together

with a direct-address pointer. When overflow segments in a database record use

more than one logical record in the overflow data set (the case for the first and

second database record in Figure 29), the logical records are also chained together

with a direct-address pointer. Note in the figure that HISAM indexes do not contain

a pointer to each root segment in the database. Rather, they point to the highest

root key in each block or CI.

Diagnosis, Modification or Tuning Information

Figure 30 on page 68 illustrates the following points regarding the structure of a

logical record in a HISAM database:

v In a logical record, the first 4 bytes are a direct-address pointer to the next logical

record in the database record. This pointer maintains all logical records in a

database record in correct sequence. The last logical record in a database record

contains zeros in this field.

v Following the pointer are one or more segments of the database record in

hierarchic sequence.

v Following the segments is a 1-byte segment code of 0. It says that the last

segment in the logical record has been reached.

Figure 29. Example HISAM Database in Storage

HSAM Databases

Chapter 6. Choosing Full-Function Database Types 67

End of Diagnosis, Modification or Tuning Information

Accessing Segments

In HISAM, when an application program issues a call with a segment search

argument (SSA) qualified on the key of the root segment, the segment is found by:

1. Searching the index for the first pointer with a value greater than or equal to the

specified root key (the index points to the highest root key in each CI)

2. Following the index pointer to the correct CI

3. Searching this CI for the correct logical record (the root key value is compared

with each root key in the CI)

4. When the correct logical record (and therefore database record) is found,

searching sequentially through it for the specified segment

If an application program issues a GU call with an unqualified SSA for a root

segment or with an SSA qualified on other than the root key, the HISAM index

cannot be used. The search for the segment starts at the beginning of the database

and proceeds sequentially until the specified segment is found.

Inserting Root Segments Using VSAM

After an initial load, root segments inserted into a HISAM database are stored in the

primary data set in ascending key sequence. The CI might or might not contain a

free logical record into which the new root can be inserted. Both situations are

described next.

A Free Logical Record Exists

Figure 31 on page 69 shows how insertion takes place when a free logical record

exists. The new root is inserted into the CI in root key sequence. If there are logical

records in the CI containing roots with higher keys, they are “pushed down” to

create space for the new logical record.

Figure 30. Format of a Logical Record in a HISAM Database

HSAM Databases

68 Administration Guide: Database Manager

No Free Logical Record Exists

Figure 32 on page 70 shows how insertion takes place when no free logical record

exists in the CI. The CI is split forming two new CIs, both equal in size to the

original one. Where the CI is split depends on what you have coded in the

INSERT=parameter on the OPTIONS statement for the DFSVSAMP data set.

Related Reading: For information on the OPTIONS statement, see IMS Version 9:

Installation Volume 2: System Definition and Tailoring and Chapter 9, “Designing

Full-Function Databases,” on page 241.

The split can occur at the point at which the root is inserted or midpoint in the CI.

After the CI is split, free logical records exist in each new CI and the new root is

inserted into the proper CI in root key sequence. If, as was the case in Figure 31,

logical records in the new CI contained roots with higher keys, those logical records

would be “pushed down” to create space for the new logical record.

Figure 31. Inserting a Root Segment into a HISAM Database (Free Logical Record Exists in

the CI)

HSAM Databases

Chapter 6. Choosing Full-Function Database Types 69

When adding new root segments to a HISAM database, performance can be

slightly improved if roots are added in ascending key sequence.

Inserting Dependent Segments

Dependent segments inserted into a HISAM database after initial load are inserted

in hierarchic sequence. IMS decides where in the appropriate logical record the new

dependent should be inserted. Two situations are possible. Either there is enough

space in the logical record for the new dependent or there is not.

Figure 33 on page 71 shows how segment insertion takes place when there is

enough space in the logical record. The new dependent is stored in its proper

hierarchic position in the logical record by shifting the segments that hierarchically

follow it to the right in the logical record.

Figure 32. Inserting a Root Segment into a HISAM Database (No Free Logical Record Exists

in the CI)

HSAM Databases

70 Administration Guide: Database Manager

Figure 34 on page 72 shows how segment insertion takes place when there is not

enough space in the logical record. As in the previous case, new dependents are

always stored in their proper hierarchic sequence in the logical record. However, all

segments to the right of the new segment are moved to the first empty logical

record in the overflow data set.

Figure 33. Inserting a Dependent Segment into a HISAM Database (Space Exists in the

Logical Record)

HSAM Databases

Chapter 6. Choosing Full-Function Database Types 71

Deleting Segments

When segments are deleted from a HISAM database, they are marked as deleted

in the delete byte in their prefix. They are not physically removed from the

database; the one exception to this is discussed later in this topic. Dependent

segments of the deleted segment are not marked as deleted, but because their

parent is, the dependent segments cannot be accessed. These unmarked segments

(as well as segments marked as deleted) are deleted when the database is

reorganized.

Figure 34. Inserting a Dependent Segment into a HISAM Database (No Space Exists in the

Logical Record)

HSAM Databases

72 Administration Guide: Database Manager

One thing you should note is that when a segment is accessed that hierarchically

follows deleted segments in a database record, the deleted segments must still be

“searched through”. This concept is shown in Figure 35 and in Figure 36.

Segment B2 is deleted from this database record. This means that segment B2 and

its dependents (C1, C2, and C3) can no longer be accessed, even though they still

exist in the database.

 A request to access segment D1 is made. Although segments B2, C1, C2, and C3

cannot be accessed, they still exist in the database. Therefore they must still be

“searched through” even though they are inaccessible as shown in Figure 36.

 In one situation, deleted segments are physically removed from the database. If the

deleted segment is a root, the logical record containing the root is erased, provided

neither the root nor any of its dependents is involved in a logical relationship. The

default is ERASE=YES, and no ″mark buffer altered″ takes place. Thus a

PROCOPT=G read job will not have to wait for locks after another job has set the

delete byte, and will return a segment not found condition. To be consistent with

other DB types, use ERASE=NO to cause a wait for physical delete prior to

attempted read.

Related Reading: For more information on the ERASE parameter of the DBD

statement, see the IMS Version 9: Installation Volume 2: System Definition and

Tailoring.

After the logical record is removed, its space is available for reuse. However, any

overflow logical record containing dependents of this root is not available for reuse.

Except for this special condition, you must unload and reload a HISAM database to

regain space occupied by deleted segments.

Figure 35. The Hierarchic Segment Layout on the Database

Figure 36. Accessing a HISAM Segment That Hierarchically Follows Deleted Segments

HSAM Databases

Chapter 6. Choosing Full-Function Database Types 73

Replacing Segments

Replacing segments in a HISAM database is straightforward as long as fixed length

segments are being used. The data in the segment, once changed, is returned to

its original location in storage. The key field in a segment cannot be changed.

The implications of replacing segments when variable-length segments are used is

discussed under “Variable-Length Segments” on page 209.

Criteria for Selecting HISAM

You should use HISAM when you need sequential or direct access to roots and

sequential processing of dependent segments in a database record. HISAM is a

good choice of data organization when your database has most, or all, of the

following characteristics.

v Each root has few dependents.

Root segment access is indexed, and is therefore fast. Dependent segment

access is sequential, and is therefore slower.

v You have a small number of delete operations against the database.

Except for deleting root segments, all delete operations result in the creation of

space that is unusable until the database is reorganized.

v Your applications depend on a small volume of root segments being inserted

within a narrow key range (VSAM).

Root segments inserted after initial load are inserted in root key sequence in the

appropriate CI in the KSDS. If many roots have keys within a narrow key range,

many CI splits can occur. This will degrade performance.

v Most of your database records are about the same size.

The similar sizes allow you to pick logical record lengths and CI sizes so most

database records fit on the primary data set. You want most database records to

fit on the primary data set, because additional read and seek operations are

required to access those parts of a database record on the overflow data set.

Additional reads and seeks degrade performance. If, however, most of the

processing you do against a database record occurs on segments in the primary

data set (in other words, your high-use segments fit on the primary data set),

these considerations might not be as important.

Having most of your database records the same size also saves space. Each

database record starts at the beginning of a logical record. All space in the

logical records not used by the database record is unusable. This is true of

logical records in both the primary and overflow data set. If the size of your

database records varies tremendously, large gaps of unused space can occur at

the end of many logical records.

SHSAM, SHISAM and GSAM Databases

You typically use simple hierarchical sequential access method (SHSAM), simple

hierarchical indexed sequential access method (SHISAM), and generalized

sequential access method (GSAM) databases in two situations.

Situation 1 - Converting from a non-database system to IMS

SHSAM, SHISAM, and GSAM databases allow existing programs, using z/OS

access methods, to remain usable during the conversion to IMS. This is possible

because the format of the data in these databases is the same as in the z/OS data

sets.

HSAM Databases

74 Administration Guide: Database Manager

Situation 2 - Passing data

When a database (or non-database) application program passes data to a database

(or non-database) application program, it first puts the data in a SHSAM, SHISAM,

or GSAM database. The database (or non-database) application program then

accesses the data from these databases.

The following topics describe each of the three database types:

v “SHSAM Databases”

v “SHISAM Databases”

v “GSAM Databases” on page 76

Table 8 on page 77 is a chart comparing SHSAM, SHISAM, and GSAM.

SHSAM Databases

A simple HSAM (SHSAM) database is an HSAM database containing only one type

of segment, a root segment. The segment has no prefix, because no need exists

for a segment code (there is only one segment type) or for a delete byte (deletes

are not allowed).

SHSAM databases can be accessed by z/OS BSAM and QSAM because SHSAM

segments contain user data only (no IMS prefixes). The ISRT, DLET, and REPL

calls cannot be used to update. However, ISRT can be used to load an SHSAM

database. Only GET calls are valid for processing an SHSAM database. These

allow retrieval only of segments from the database. To update an SHSAM database,

it must be reloaded. The situations in which SHSAM is typically used are explained

in the introduction to this topic. Before deciding to use SHSAM, read the topic on

GSAM databases, because GSAM has many of the same functions as SHSAM.

Unlike SHSAM, however, GSAM files cannot be accessed from a message

processing region. GSAM does allow you to take checkpoints and perform restart,

though.

Although SHSAM databases can use the field-level sensitivity option, they cannot

use any of the following options:

v Logical relationships

v Secondary indexing

v Multiple data set groups

v Variable-length segments

v Segment edit/compression facility

v Data Capture exit routines

v Logging, recovery, or reorganization

SHISAM Databases

A simple HISAM (SHISAM) database is a HISAM database containing only one type

of segment, a root segment. The segment has no prefix, because no need exists

for a segment code (there is only one segment type) or for a delete byte (deletes

are done using a VSAM erase operation). SHISAM databases must be KSDSs;

they are accessed through VSAM. Because SHISAM segments contain user data

only (no IMS prefixes), they can be accessed by VSAM macros and DL/I calls. All

the DL/I calls can be issued against SHISAM databases.

SHSAM, SHISAM, and GSAM Databases

Chapter 6. Choosing Full-Function Database Types 75

SHISAM IMS Symbolic Checkpoint Call

In addition to those situations described in the introduction to this topic, SHISAM is

useful if you need an application program that accesses z/OS data sets to use the

IMS symbolic checkpoint call.

The IMS symbolic checkpoint call makes restart easier than the z/OS basic

checkpoint call. If the z/OS data set the application program is using is converted to

a SHISAM database data set, the symbolic checkpoint call can be used. This allows

application programs to take checkpoints during processing and then restart their

programs from a checkpoint. The primary advantage of this is that, if the system

fails, application programs can recover from a checkpoint rather than lose all

processing that has been done. One exception applies to this: An application

program for initially loading a database that uses VSAM as the operating system

access method cannot be restarted from a checkpoint. Application programs using

GSAM databases can also issue symbolic checkpoint calls. Application programs

using SHSAM databases cannot.

Before deciding to use SHISAM, you should read the next topic on GSAM

databases. GSAM has many of the same functions as SHISAM. Unlike SHISAM,

however, GSAM files cannot be accessed from a message processing region.

SHISAM databases can use field-level sensitivity and Data Capture exit routines,

but they cannot use any of the following options:

v Logical relationships

v Secondary indexing

v Multiple data set groups

v Variable-length segments

v Segment edit/compression facility

GSAM Databases

GSAM databases are sequentially organized databases designed to be compatible

with z/OS data sets. GSAM databases can be on a data set previously created or

one later accessed by the z/OS access methods VSAM or QSAM/BSAM. GSAM

data sets can use fixed-length or variable-length records when VSAM is used, or

fixed-length, variable-length or undefined-length records when QSAM/BSAM is

used. If VSAM is used to process a GSAM database, the VSAM data set must be

entry sequenced and on a DASD. If QSAM/BSAM is used, the physical sequential

(DSORG=PS) data set can be placed on a DASD or tape unit. GSAM is designed

to be compatible with z/OS data sets. The GSAM database has no hierarchy,

database records, segments or keys.

GSAM IMS Symbolic Checkpoint Call

In addition to those situations described in the introduction to this topic, GSAM is

useful if you need an application program that accesses z/OS data sets to use the

IMS symbolic checkpoint call. The IMS symbolic checkpoint call makes restart

easier than the z/OS basic checkpoint call. This IMS symbolic checkpoint call allows

application programs to take checkpoints during processing, thereby allowing

programs to restart from a checkpoint. A checkpoint call forces any GSAM buffers

with inserted records to be written as short blocks. The primary advantage of taking

checkpoints is that, if the system fails, the application programs can recover from a

checkpoint rather than lose all your processed data. However, any application

program that uses VSAM as an operating system access method and initially loads

the database cannot be restarted from a checkpoint.

SHSAM, SHISAM, and GSAM Databases

76 Administration Guide: Database Manager

In general, always use DISP=OLD for GSAM data sets when restarting from a

checkpoint even if you used DISP=MOD on the original execution of the job step. If

you use DISP=OLD, the data set is positioned at its beginning. If you use

DISP=MOD, the data set is positioned at its end.

Because GSAM databases are supported in a DCCTL environment, you may use

them when you need to process sequential non-IMS data sets using a BMP

program.

GSAM databases are loaded in the order in which you present records to the load

program. You cannot issue DLET and REPL calls against GSAM databases;

however, you can issue ISRT calls after the database is loaded but only to add

records to the end of the data set. Records are not randomly added to a GSAM

data set.

Although random processing of GSAM and SHSAM databases is possible, random

processing of a GSAM database is done using a GU call qualified with a record

search argument (RSA). This processing is primarily useful for establishing position

in the database before issuing a series of GN calls.

Although SHSAM and SHISAM databases can be processed in any processing

region, GSAM databases can only be processed in a batch or batch message

processing region.

The following IMS options do not apply to GSAM databases:

v Logical relationships

v Secondary indexing

v Segment edit/compression facility

v Field-level sensitivity

v Data Capture exit routines

v Logging or reorganization

v Multiple data set groups

If you have application programs that need access to both IMS and z/OS data sets,

you can use SHSAM, SHISAM, or GSAM. Which one you use depends on what

functions you need. Table 8 compares the characteristics and functions available for

each of the three types of databases.

 Table 8. Comparison of SHSAM, SHISAM, and GSAM Databases

Characteristics and Functions SHSAM SHISAM GSAM

Hierarchic structure applicable? NO NO NO

Segment prefix exist? NO NO NO

Variable-length records used? NO NO YES

Checkpoint/restart possible? NO YES1 YES1

Compatible with non-IMS data sets? YES YES YES

Can VSAM be used as the operating system

access method?

NO YES YES

Can BSAM be used as the operating system

access method?

YES NO YES

Accessible from a batch region? YES YES YES

SHSAM, SHISAM, and GSAM Databases

Chapter 6. Choosing Full-Function Database Types 77

Table 8. Comparison of SHSAM, SHISAM, and GSAM Databases (continued)

Characteristics and Functions SHSAM SHISAM GSAM

Accessible from a batch message processing

region?

YES YES YES

Accessible from a message processing region? YES YES NO

Logging available? NO YES NO

GET calls allowed? YES YES YES

ISRT calls allowed? YES2 YES YES3

Supported for CICS-DBCTL? YES YES NO

Supported for DCCTL? NO NO YES

Note:

1. Using symbolic checkpoints

2. To load database only

3. Allowed only at the end of the data set

HDAM, PHDAM, HIDAM, and PHIDAM Databases

Hierarchical direct access method (HDAM) and hierarchical indexed direct access

method (HIDAM) databases, which have many similarities, are referred to as HD

databases. These HD databases can be partitioned using either the HALDB

Partition Definition utility (DSPXPDDU) or DBRC commands and are then described

as High Availability Large Databases (HALDBs). After you partition an HDAM

database, it becomes a partitioned hierarchical direct access method (PHDAM)

database. After you partition a HIDAM database, it becomes a partitioned

hierarchical indexed direct access method (PHIDAM) database. Figure 37 illustrates

a logical view of an HDAM and a PHDAM database.

 HD databases differ from sequentially organized databases in two important ways.

First, they use the direct method of storing data, and the hierarchic sequence of

segments in the database is maintained by having segments point to one another.

Except for a few special cases, each segment has one or more direct-address

pointers in its prefix. When direct-address pointers are used, database records and

segments can be stored anywhere in the database. Their position, once stored, is

fixed, and they do not “move around” in the database when subsequent processing

takes place. Instead, pointers are updated to reflect processing changes.

Figure 37. A Logical View of an HDAM and a PHDAM Database

SHSAM, SHISAM, and GSAM Databases

78 Administration Guide: Database Manager

HD databases also differ from sequentially organized ones in that space in HD

databases can be reused. If part or all of a database record is deleted, the deleted

space can be reused when new database records or segments are inserted.

HD databases are stored on direct-access devices in either a VSAM ESDS or an

OSAM data set. The storage organization in HDAM and HIDAM or PHDAM and

PHIDAM is basically the same. Their primary difference is in the way their root

segments are accessed. In HDAM or PHDAM, each root segment’s storage location

is found using a randomizing module. The randomizing module examines the root’s

key to determine the address of a pointer to the root segment. In HIDAM or

PHIDAM, each root segment’s storage location is found by searching an index. For

HIDAM, this index is a database that IMS loads and maintains. The advantage of

the HDAM randomizing module is that the I/O operations required to search an

index are eliminated.

Figure 38 illustrates a logical view of a HIDAM and a PHIDAM database.

Maximum Sizes of HD Databases

The maximum possible size of HDAM, PHDAM, HIDAM, and PHIDAM databases is

based on the number of data sets the database can hold and the size of the data

sets. The maximum possible size of a data set differs depending on whether VSAM

or OSAM is used and whether the database is partitioned. Table 9 lists the

maximum data set size, maximum number of data sets, and maximum database

size for HDAM, PHDAM, HIDAM, and PHIDAM databases.

 Table 9. Maximum Sizes for HDAM, HIDAM, PHDAM, and PHIDAM Databases

Data Set Type

Maximum Data Set

Size

Maximum Number of

Data Sets

Maximum Database

Size

OSAM HDAM or

HIDAM Database

8 GB 10 data sets 80 GB

VSAM HDAM or

HIDAM Database

4 GB 10 data sets 40 GB

OSAM PHDAM or

PHIDAM Database

4 GB 10 010 data sets (10

data sets per

partition; 1001

partitions per

database)

40 040 GB

Figure 38. A Logical View of a HIDAM and a PHIDAM

HDAM, PHDAM, HIDAM, and PHIDAM

Chapter 6. Choosing Full-Function Database Types 79

|
|
|
|
|
|

||

|
|
|
|
|
|
|

|
|
|||

|
|
|||

|
|
||
|
|
|
|

|

Table 9. Maximum Sizes for HDAM, HIDAM, PHDAM, and PHIDAM Databases (continued)

Data Set Type

Maximum Data Set

Size

Maximum Number of

Data Sets

Maximum Database

Size

VSAM PHDAM or

PHIDAM Database

4 GB 10 010 data sets (10

data sets per

partition; 1001

partitions per

database)

40 040 GB

Related Reading: For information on OSAM data sets, see Appendix C, “Using

OSAM as the Access Method,” on page 507.

DL/I Calls Issuable Against HD Databases

All DL/I calls can be issued against HD databases. In addition, the following options

are available:

v Multiple data set groups

v Logical relationships

v Secondary indexing

v Variable-length segments

v Segment edit/compression facility

v Data Capture exit routines

v Field-level sensitivity

v Logging, recovery, and offline reorganization

v Online reorganization for HALDB partitions

Related Reading:

v Except for logging and recovery, each of these options is discussed in detail in

the topics of this chapter. For information on logging and recovery, see IMS

Version 9: Operations Guide.

v For information on the online reorganization of HALDB partitions, see “HALDB

Online Reorganization” on page 364.

When to Use HDAM and PHDAM

HDAM and PHDAM databases are typically used for direct access to database

records. The randomizing module provides fast access to the root segment (and

therefore the database record). HDAM and PHDAM databases also give you fast

access to paths of segments as specified in the DBD in a database record. For

example, in Figure 39 on page 81, if physical child pointers are used, they can be

followed to reach segments B, C, D, or E. A hierarchic search of segments in the

database record is bypassed. Segment B does not need to be accessed to get to

segments C, D, or E. And segment D does not need to be accessed to get to

segment E. Only segment A must be accessed to get to segment B or C. And only

segments A and C must be accessed to get to segments D or E.

HDAM, PHDAM, HIDAM, and PHIDAM

80 Administration Guide: Database Manager

|

|
|
|
|
|
|
|

|
|
||
|
|
|
|

|

|

|
|

|

|

When to Use HIDAM and PHIDAM

HIDAM and PHIDAM databases are typically used when you need both random and

sequential access to database records and random access to paths of segment in a

database record. Access to root segments (and therefore database records) is not

as fast as with HDAM (or PHDAM), because the HIDAM (or PHIDAM) index

database has to be searched for a root segment’s address. However, because the

index keeps the address of root segments stored in key sequence, database

records can be processed sequentially.

What You Need to Know About HD Databases

Before looking in detail at how HD databases are stored and processed, you need

to become familiar with:

 The various types of pointers you can specify for a HD database

 The general format of the database

 The use of special fields in the database

Types of Pointers You Can Specify

The hierarchic sequence of segments in a database record using the sequential

access methods is maintained by keeping segments physically adjacent to each

other in storage. In the HD access methods, segments in a database record are

kept in hierarchic sequence using direct-address pointers. Except for a few special

cases, each prefix in an HD segment contains one or more pointers. Each pointer is

4 bytes long and consists of the relative byte address of the segment to which it

points. Relative, in this case, means relative to the beginning of the data set.

Several different types of direct-address pointers exist, and you will see how each

works in the topics that follow in this section. However, there are three basic types:

v Hierarchic pointers, which point from one segment to the next in either forward or

forward and backward hierarchic sequence

Figure 39. Example Database Record

HDAM, PHDAM, HIDAM, and PHIDAM

Chapter 6. Choosing Full-Function Database Types 81

v Physical child pointers, which point from a parent to each of its first or first and

last children, for each child segment type

v Physical twin pointers, which point forward or forward and backward from one

segment occurrence of a segment type to the next, under the same parent

When segments in a database record are typically processed in hierarchic

sequence, use hierarchic pointers. When segments in a database record are

typically processed randomly, use a combination of physical child and physical twin

pointers. One thing to keep in mind while reading about pointers is that the different

types, subject to some rules, can be mixed within a database record. However,

because pointers are specified by segment type, all occurrences of the same

segment type have the same type of pointer.

Each type of pointer is examined separately in this topic. The topic “Mixing

Pointers” on page 89, discusses how pointers can be mixed. In the subtopics in this

topic, each type of pointer is illustrated, and the database record on which each

illustration is based is shown in Figure 40.

Hierarchic Forward Pointers

With hierarchic forward (HF) pointers, each segment in a database record points to

the segment that follows it in the hierarchy.

Figure 41 on page 83 shows hierarchic forward pointers:

Figure 40. Example Database Record for Illustrating Pointers

HDAM, PHDAM, HIDAM, and PHIDAM

82 Administration Guide: Database Manager

When an application program issues a call for a segment, HF pointers are followed

until the specified segment is found. In this sense, the use of HF pointers in an HD

database is similar to using a sequentially organized database. In both, to reach a

dependent segment all segments that hierarchically precede it in the database

record must be examined. HF pointers should be used when segments in a

database record are typically processed in hierarchic sequence and processing

does not require a significant number of delete operations. If there are a lot of

delete operations, hierarchic forward and backward pointers (explained next) might

be a better choice.

Four bytes are needed in each dependent segment’s prefix for the HF pointer. Eight

bytes are needed in the root segment. More bytes are needed in the root segment

because the root points to both the next root segment and first dependent segment

in the database record. HF pointers are specified by coding PTR=H in the SEGM

statement in the DBD.

Restriction: HALDBs do not support HF pointers.

Hierarchic Forward and Backward Pointers

With hierarchic forward and backward pointers (HF and HB), each segment in a

database record points to both the segment that follows and the one that precedes

it in the hierarchy (except dependent segments do not point back to root segments).

HF and HB pointers must be used together, since you cannot use HB pointers

alone. Figure 42 on page 84 shows how HF and HB pointers work.

Figure 41. Hierarchic Forward Pointers

HDAM, PHDAM, HIDAM, and PHIDAM

Chapter 6. Choosing Full-Function Database Types 83

|

HF pointers work in the same way as the HF pointers described in “Hierarchic

Forward Pointers” on page 82.

HB pointers point from a segment to one immediately preceding it in the hierarchy.

In most cases, HB pointers are not required for delete processing. IMS saves the

location of the previous segment retrieved on the chain and uses this information

for delete processing. The backward pointers are useful for delete processing if the

previous segment on the chain has not been accessed. This happens when the

segment to be deleted is entered by a logical relationship.

The backward pointers are useful only when all of the following are true:

v Direct pointers from logical relationships or secondary indexes point to the

segment being deleted or one of its dependent segments.

v These pointers are used to access the segment.

v The segment is deleted.

Eight bytes are needed in each dependent segment’s prefix to contain HF and HB

pointers. Twelve bytes are needed in the root segment. More bytes are needed in

the root segment because the root points:

v Forward to a dependent segment

v Forward to the next root segment in the database

v Backward to the preceding root segment in the database

HF and HB pointers are specified by coding PTR=HB in the SEGM statement in the

DBD.

Restriction: HALDBs do not support HF and HB pointers.

Physical Child First Pointers

With physical child first (PCF) pointers, each parent segment in a database record

points to the first occurrence of each of its immediately dependent child segment

types. Figure 43 shows PCF pointers:

Figure 42. Hierarchic Forward and Backward Pointers

HDAM, PHDAM, HIDAM, and PHIDAM

84 Administration Guide: Database Manager

|

With PCF pointers, the hierarchy is only partly connected. No pointers exist to

connect occurrences of the same segment type under a parent. Physical twin

pointers (explained in “Types of Pointers You Can Specify” on page 81) can be

used to form this connection. Use PCF pointers when segments in a database

record are typically processed randomly and either sequence fields are defined for

the segment type, or if not defined, the insert rule is FIRST or HERE. If sequence

fields are not defined and new segments are inserted at the end of existing

segment occurrences, the combination of PCF and physical child last (PCL)

pointers (explained next) can be a better choice.

Related Reading:

v For more information on insert rules, see IMS Version 9: Application

Programming: Database Manager.

v For information on specifying insert rules using the RULES= parameter of the

SEGM segment definition statement, see IMS Version 9: Utilities Reference:

System.

Four bytes are needed in each parent segment for each PCF pointer. PCF pointers

are specified by coding PARENT=((name,SNGL)) in the SEGM statement in the

DBD. This is the SEGM statement for the child being pointed to, not the SEGM

statement for the parent. Note, however, that the pointer is stored in the parent

segment.

Physical Child First and Last Pointers

With physical child first and last pointers (PCF and PCL), each parent segment in a

database record points to both the first and last occurrence of its immediately

dependent child segment types. PCF and PCL pointers must be used together,

since you cannot use PCL pointers alone. Figure 44 shows PCF and PCL pointers:

Figure 43. Physical Child First Pointers

HDAM, PHDAM, HIDAM, and PHIDAM

Chapter 6. Choosing Full-Function Database Types 85

Note that if only one physical child of a particular parent segment exists, the PCF

and PCL pointers both point to the same segment. As with PCF pointers, PCF and

PCL pointers leave the hierarchy only partly connected, and no pointers exist to

connect occurrences of the same segment type under a parent. Physical twin

pointers (explained in “Types of Pointers You Can Specify” on page 81) can be

used to form this connection.

PCF and PCL pointers (as opposed to just PCF pointers) are typically used when:

v No sequence field is defined for the segment type.

v New segment occurrences of a segment type are inserted at the end of all

existing segment occurrences.

On insert operations, if the ISRT rule of LAST has been specified, segments are

inserted at the end of all existing segment occurrences for that segment type. When

PCL pointers are used, fast access to the place where the segment will be inserted

is possible. This is because there is no need to search forward through all segment

occurrences stored before the last occurrence. PCL pointers also give application

programs fast retrieval of the last segment in a chain of segment occurrences.

Application programs can issue calls to retrieve the last segment by using an

unqualified SSA with the command code L. When a PCL pointer is followed to get

the last segment occurrence, any further movement in the database is forward.

A PCL pointer does not enable you to search from the last to the first occurrence of

a series of dependent child segment occurrences.

Four bytes are needed in each parent segment for each PCF and PCL pointer. PCF

and PCL pointers are specified by coding the PARENT= operand in the SEGM

statement in the DBD as PARENT=((name,DBLE)). This is the SEGM statement for

the child being pointed to, not the SEGM statement for the parent. Note, however,

that the pointers are stored in the parent segment.

A parent segment can have SNGL specified on one immediately dependent child

segment type and DBLE specified on another.

Figure 45 on page 87 shows the result of specifying PCF and PCL pointers in the

following DBD.

Figure 44. Physical Child First and Last Pointers

HDAM, PHDAM, HIDAM, and PHIDAM

86 Administration Guide: Database Manager

DBD

 SEGM A

 SEGM B PARENT=((name.SNGL)) (specifies PCF pointer only)

 SEGM C PARENT=((name.DBLE)) (specified PCF and PCL pointers)

Physical Twin Forward Pointers

With physical twin forward (PTF) pointers, each segment occurrence of a given

segment type under the same parent points forward to the next segment

occurrence. Figure 46 on page 88 illustrates this.

Note that, except in PHIDAM databases, PTF pointers can be specified for root

segments. When this is done in an HDAM or PHDAM database, the root segment

points to the next root in the database chained off the same root anchor points

(RAP). If no more root segments are chained from this RAP, the PTF pointer is

zero.

Related Reading: For more information on RAPs, see “General Format of HD

Databases and Use of Special Fields” on page 91.

When PTF pointers are specified for root segments in a HIDAM database, the root

segment does not point to the next root in the database. For an explanation of

where the root segment points, see “Use of RAPs in a HIDAM Database” on page

98.

If you specify PTF pointers on a root segment in a HIDAM database, the HIDAM

index must be used for all sequential processing of root segments. Using only PTF

pointers increases access time. You can eliminate this overhead by specifying PTF

and physical twin backward (PTB) pointers (discussed in “Physical Twin Forward

and Backward Pointers” on page 88).

You cannot use PTF pointers for root segments in a PHIDAM database. PHIDAM

databases only support PTF pointers for dependent segments.

With PTF pointers, the hierarchy is only partly connected. No pointers exist to

connect parent and child segments. Physical child pointers can be used to form this

connection. PTF pointers should be used when segments in a database record are

typically processed randomly, and you do not need sequential processing of

database records.

Four bytes are needed for the PTF pointer in each segment occurrence of a given

segment type. PTF pointers are specified by coding PTR=T in the SEGM statement

in the DBD. This is the SEGM statement for the segment containing the pointer.

The combination of PCF and PTF pointers is used as the default when pointers are

not specified in the DBD. Figure 46 show PTF pointers:

Figure 45. Specifying PCF and PCL Pointers

HDAM, PHDAM, HIDAM, and PHIDAM

Chapter 6. Choosing Full-Function Database Types 87

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

Physical Twin Forward and Backward Pointers

With physical twin forward and backward (PTF and PTB) pointers, each segment

occurrence of a given segment type under the same parent points both forward to

the next segment occurrence and backward to the previous segment occurrence.

PTF and PTB pointers must be used together, since you cannot use PTB pointers

alone. Figure 47 illustrates how PTF and PTB pointers work.

 Note that PTF and PTB pointers can be specified for root segments. When this is

done, the root segment points to both the next and the previous root segment in the

database. As with PTF pointers, PTF and PTB pointers leave the hierarchy only

partly connected. No pointers exist to connect parent and child segments. Physical

child pointers (explained previously) can be used to form this connection.

Figure 46. Physical Twin Forward Pointers

Figure 47. Physical Twin Forward and Backward Pointers

HDAM, PHDAM, HIDAM, and PHIDAM

88 Administration Guide: Database Manager

PTF and PTB pointers (as opposed to just PTF pointers) should be used on the

root segment of a HIDAM or a PHIDAM database when you need fast sequential

processing of database records. By using PTB pointers in root segments, an

application program can sequentially process database records without IMS’ having

to refer to the HIDAM or PHIDAM index. For HIDAM databases, PTB pointers

improve performance when deleting a segment in a twin chain accessed by a

virtually paired logical relationship. Such twin-chain access occurs when a delete

from the logical access path causes DASD space to be released.

Eight bytes are needed for the PTF and PTB pointers in each segment occurrence

of a given segment type. PTF and PTB pointers are specified by coding PTR=TB in

the SEGM statement in the DBD.

Mixing Pointers

Because pointers are specified by segment type, the various types of pointers can

be mixed within a database record. However, only hierarchic or physical, but not

both, can be specified for a given segment type. The types of pointers that can be

specified for a segment type are:

HF Hierarchic forward

HF and HB Hierarchic forward and backward

PCF Physical child first

PCF and PCL Physical child first and last

PTF Physical twin forward

PTF and PTB Physical twin forward and backward

Figure 48 on page 90 shows a database record in which pointers have been mixed.

Note that, in some cases, for example, dependent segment B, many pointers exist

even though only one type of pointer is or can be specified. Also note that if a

segment is the last segment in a chain, its last pointer field is set to zero (the case

for segment E1, for instance). One exception is noted in the rules for mixing

pointers. Figure 48 has a legend that explains what specification in the PTR= or

PARENT= operand causes a particular pointer to be generated.

The rules for mixing pointers are:

v If PTR=H is specified for a segment, no PCF pointers can exist from that

segment to its children. For a segment to have PCF pointers to its children, you

must specify PTR=T or TB for the segment.

v If PTR=H or PTR=HB is specified for the root segment, the first child will

determine if an H or HB pointer is used. All other children must be of the same

type.

v If PTR=H is specified for a segment other than the root, PTR=TB and PTR=HB

cannot be specified for any of its children. If PTR=HB is specified for a segment

other than the root, PTR=T and PTR=H cannot be specified for any of its

children.

That is, the child of a segment that uses hierarchic pointers must contain the

same number of pointers (twin or hierarchic) as the parent segment.

v If PTR=T or TB is specified for a segment whose immediate parent used PTR=H

or PTR=HB, the last segment in the chain of twins does not contain a zero.

Instead, it points to the first occurrence of the segment type to its right on the

same level in the hierarchy of the database record. This is true even if no twin

chain yet exists, just a single segment for which PTR=T or TB is specified

(dependent segment B and E2 in the figure illustrate this rule).

HDAM, PHDAM, HIDAM, and PHIDAM

Chapter 6. Choosing Full-Function Database Types 89

v If PTR=H or HB is specified for a segment whose immediate parent used PTR=T

or TB, the last segment in the chain of twins contains a zero (dependent

segment C2 in the figure illustrates this rule).

Figure 48 shows an example of mixing pointers in a database record.

Notes for Figure:

1. These pointers are generated when you specify PTR=H on the root segment.

2. If you specify PTR=H, usage is hierarchical (H); otherwise usage is twin (T).

3. These pointers are generated when you specify PTR=T on segment type C and

PARENT=SNGL on segment type D

4. These pointers are generated when you specify PTR=T on segment type C and

PARENT=DBLE on segment type E

5. These pointers are generated when you specify PTR=T on this segment type

Sequence of Pointers in a Segment’s Prefix

When a segment contains more than one type of pointer, pointers are put in the

segment’s prefix in the following sequence:

1. HF

2. HB

Figure 48. Mixing Pointers

HDAM, PHDAM, HIDAM, and PHIDAM

90 Administration Guide: Database Manager

|

|

|

|
|

|
|

|

Or:

1. PF

2. PTB

3. PCF

4. PCL

General Format of HD Databases and Use of Special Fields

The way in which an HD database is organized is not particularly complex, but

some of the special fields in the database used for things like managing space

make HD databases seem quite different from sequentially organized databases.

This topic looks at the general layout of the database special fields.

The databases referred to here are the HDAM or PHDAM and the HIDAM or

PHIDAM databases. HIDAM and PHIDAM each have an additional database, the

primary index database; for HIDAM, you allocate it; for PHIDAM, IMS allocates it;

for both, IMS maintains the index. This topic examines the index database when

dealing with the storage of HIDAM records. Figure 49 shows the general format of

an HD database and some of the special fields used in it.

HD databases use a single data set, that is either a VSAM ESDS or an OSAM data

set. The data set contains one or more CIs (VSAM ESDS) or blocks (OSAM).

Database records in the data set are in unblocked format. Logical record length is

the same as the block size when OSAM is used. When VSAM is used, logical

record length is slightly less than CI size. (VSAM requires some extra control

information in the CI.) You can either specify logical record length yourself or have it

done by the Database Description Generation (DBDGEN) utility. The utility

generates logical record lengths equal to a quarter, third, half, or full track block.

All segments in HD Databases begin on a halfword boundary. If a segment’s total

length is an odd number, the space used in an HD database will be one byte longer

than the segment. The extra byte is called a “slack byte”.

Figure 49. Format of an HD Database and Special Fields in It

HDAM, PHDAM, HIDAM, and PHIDAM

Chapter 6. Choosing Full-Function Database Types 91

Note that the database in Figure 49 contains areas of free space. This free space

could be the result of delete or replace operations done on segments in the data

set. Remember, space can be reused in HD databases. Or it could be free space

you set aside when loading the database. HD databases allow you to set aside free

space by specifying that periodic blocks or CIs be left free or by specifying that a

percentage of space in each block or CI be left free.

Examine the four fields illustrated in Figure 49. Three of the fields are used to

manage space in the database. The remaining one, the anchor point area, contains

the addresses of root segments. The fields are:

v Bit map. Bit maps contain a string of bits. Each bit describes whether enough

space is available in a particular CI or block to hold an occurrence of the longest

segment defined in the data set group. The first bit says whether the CI or block

that the bit map is in has free space. Each consecutive bit says whether the next

consecutive CI or block has free space. When the bit value is one, it means the

CI or block has enough space to store an occurrence of the longest segment

type you have defined in the data set group. When the bit value is zero, not

enough space is available.

The first bit map in an OSAM data set is in the first block of the first extent of the

data set. In VSAM data sets, the second CI is used for the bit map and the first

CI is reserved. The first bit map in a data set contains n bits that describe space

availability in the next n-1 consecutive CIs or blocks in the data set. After the first

bit map, another bit map is stored at every nth CI or block to describe whether

space is available in the next group of CIs or blocks in the data set.

For a HALDB partition, the first bit map block stores the partition ID (2 bytes) and

the reorganization number (2 bytes). These are stored before the FSEAP at the

beginning of the block.

An example bit map is shown in Figure 50.

v Free space element anchor point (FSEAP). FSEAPs are made up of two 2-byte

fields. The first contains the offset, in bytes, to the first free space element (FSE)

in the CI or block. FSEs describe areas of free space in a block or CI. The

second field identifies whether this block or CI contains a bit map. If the block or

CI does not contain a bit map, the field is zeros. One FSEAP exists at the

beginning of every CI or block in the data set. IMS automatically generates and

maintains FSEAPs.

An FSEAP is shown in Figure 51 on page 93.

Figure 50. Bit Map for HD Databases

HDAM, PHDAM, HIDAM, and PHIDAM

92 Administration Guide: Database Manager

|
|
|

The FSEAP in the first bit map block in an OSAM data set has a special use. It

is used to contain the DBRC usage indicator for the database. The DBRC usage

indicator is used at database open time for update processing to verify usage of

the correct DBRC RECON data set.

v Free space element (FSE). An FSE describes each area of free space in a CI or

block that is 8 or more bytes in length. IMS automatically generates and

maintains FSEs. FSEs occupy the first 8 bytes of the area that is free space.

FSEs consist of three fields:

– Free space chain pointer (CP) field. This field contains, in bytes, the offset

from the beginning of this CI or block to the next FSE in the CI or block. This

field is 2 bytes long. The CP field is set to zero if this is the last FSE in the

block or CI.

– Available length (AL) field. This field contains, in bytes, the length of the free

space identified by this FSE. The value in this field includes the length of the

FSE itself. The AL field is 2 bytes long.

– Task ID (ID) field. This field contains the task ID of the program that freed the

space identified by the FSE. The task ID allows a given program to free and

reuse the same space during a given scheduling without contending for that

space with other programs. The ID field is 4 bytes long.

An FSE is shown in Figure 52.

v Anchor point area. The anchor point area is made up of one or more 4-byte root

anchor points (RAPs). Each RAP contains the address of a root segment. For

HDAM, you specify the number of RAPs you need on the RMNAME parameter in

the DBD statement. For PHDAM, you specify the number of RAPs you need on

the RMNAME parameter in the DBD statement, or by using the HALDB Partition

Definition utility, or on the DBRC INIT.PART command. For HIDAM (but not

PHIDAM), you specify whether RAPs exist by specifying PTR=T or PTR=H for a

root segment type. Only one RAP per block or CI is generated. How RAPs are

used in HDAM, PHDAM, and HIDAM differs. Therefore RAPs will be examined

further in the following topics:

Figure 51. An FSEAP

Figure 52. An FSE

HDAM, PHDAM, HIDAM, and PHIDAM

Chapter 6. Choosing Full-Function Database Types 93

– “How HDAM and PHDAM Records Are Stored”

– “How HIDAM and PHIDAM Records Are Stored” on page 96

An anchor point area in an HDAM or PHDAM database is shown in Figure 53.

How HDAM and PHDAM Records Are Stored

HDAM or PHDAM databases consist of two parts: a root addressable area and an

overflow area. The root addressable area contains root segments and is the primary

storage area for dependent segments in a database record. The overflow area is for

the storage of segments that do not fit in the root addressable area. You specify the

size of the root addressable area in the relative block number (RBN) operand of the

RMNAME parameter in the DBD statement. For PHDAM, you can also use the

HALDB Partition Definition utility to specify the size of the root addressable area.

You also specify the maximum number of bytes of a database record to be stored in

the root addressable area by using the BYTES operand of the RMNAME parameter

in the DBD statement. For PHDAM databases, you can use the HALDB Partition

Definition utility to specify the maximum number of bytes in the root addressable

area.

Figure 54 shows sample Skills database records. Figure 55 on page 95 shows how

these records are stored in a HDAM or HIDAM database.

Figure 53. An HDAM or PHDAM Anchor Point Area

Figure 54. Two Example HD Database Records

HDAM, PHDAM, HIDAM, and PHIDAM

94 Administration Guide: Database Manager

When the database is initially loaded, the root and each dependent segment are put

in the root addressable area until the next segment to be stored will cause the total

space used to exceed the amount of space you specified in the BYTES operand. At

this point, all remaining dependent segments in the database record are stored in

the overflow area.

In an HDAM or a PHDAM database, the order in which you load database records

does not matter. The user randomizing module determines where each root is

stored. However, as with all types of databases, when the database is loaded, all

dependents of a root must be loaded in hierarchic sequence following the root.

To store an HDAM or a PHDAM database record, the randomizing module takes

the root’s key and, by hashing or some other arithmetic technique, computes an

RBN or CI number and a RAP number within the block or CI. The module gives

these numbers to IMS, and IMS determines where in the root addressable area to

store the root. The RBN or CI tells IMS in which CI or block (relative to the

beginning of the data set) the RAP will be stored. The RAP number tells which RAP

in the CI or block will contain the address of the root. During load, IMS stores the

root and as many of its dependent segments that will fit (based on the bytes

operand) in the root addressable area.

When the database is initially loaded, it puts the root and segments in the first

available space in the specified CI or block, if this is possible. IMS then puts the

4-byte address of the root in the RAP of the CI or block designated by the

randomizing module. RAPs only exist in the root addressable area. If space is not

Figure 55. HDAM or PHDAM Database Records in Storage

HDAM, PHDAM, HIDAM, and PHIDAM

Chapter 6. Choosing Full-Function Database Types 95

available in the root addressable area for a root, it is put in the overflow area. The

root, however, is chained from a RAP in the root addressable area.

When Not Enough Root Storage Room Exists

If the CI or block specified by the randomizing module does not contain enough

room to store the root, IMS uses the HD space search algorithm to find space. This

algorithm is explained in “How the HD Space Search Algorithm Works” on page

103. When insufficient space exists in the specified CI or block to store the root, the

algorithm finds the closest available space to the specified CI or block. When space

is found, the address of the root is still stored in the specified RAP in the original

block or CI generated by the randomizing module.

If the randomizing module generates the same relative block and RAP number for

more than one root, the RAP points to a single root and all additional roots with the

same relative block and RAP number are chained to each other using physical twin

pointers. Roots are always chained in ascending key sequence. If non-unique keys

exist, the ISRT rules of FIRST, LAST, and HERE determine the sequence in which

roots are chained (These ISRT rules are explained in IMS Version 9: Application

Programming: Database Manager). All roots chained like this from a single anchor

point area are called synonyms.

Figure 55 on page 95 shows two HDAM or PHDAM database records and how they

appear in storage after initial load. In this example, enough space exists in the

specified block or CI to store the roots, and the unique relative block and RAP

numbers for each root generated by the randomizing module. The bytes parameter

specifies enough space for five segments of the database record to fit in the root

addressable area. All remaining segments are put in the overflow area. When

HDAM or PHDAM database records are initially loaded, dependent segments that

cannot fit in the root addressable area are simply put in the first available space in

the overflow area.

Note how segments in the database record are chained together. In this case,

hierarchic pointers are used instead of the combination of physical child/physical

twin pointers. Each segment points to the next segment in hierarchic sequence.

Also note that two RAPs were specified per CI or block and each of the roots

loaded is pointed to by a RAP. For simplicity, Figure 55 on page 95 does not show

the various space management fields.

An HDAM or PHDAM segment in storage (see Figure 55 on page 95) consists of a

prefix followed by user data. The first byte of the prefix is the segment code, which

identifies the segment type to IMS. This number can be from 1 to 255. The segment

code is assigned to the segment type by IMS in ascending sequence, starting with

the root segment and continuing through all dependents in hierarchic sequence.

The second byte of the prefix is the delete byte. The third field in the prefix contains

the one or more addresses of segments to which this segment is pointing. In this

example, hierarchic forward pointers are used. Therefore, the EXPR4 segment

contains only one address, the address of the NAME3 segment.

How HIDAM and PHIDAM Records Are Stored

A HIDAM database is actually composed of two databases. One database contains

the database records and the other database contains the HIDAM index. HIDAM

uses the index to get to a specific root segment rather than the root anchor points

that HDAM and PHDAM use.

HDAM, PHDAM, HIDAM, and PHIDAM

96 Administration Guide: Database Manager

Loading a HIDAM or PHIDAM Database

Root segments in a HIDAM or PHIDAM database must have a unique key field,

because an index entry exists for each root segment based on the root’s key. When

initially loading a HIDAM or a PHIDAM database, you should present all root

segments to the load program in ascending key sequence, with all dependents of a

root following in hierarchic sequence. Figure 56 shows how the two Skills database

records shown in Figure 54 on page 94 appear in storage after initial load. Note that

HIDAM or PHIDAM, unlike HDAM or PHDAM, have no root addressable or overflow

area, just a series of blocks or CIs. When database records are initially loaded, they

are simply loaded one after another in the order in which they are presented to the

load program. The space in Figure 56 at the end of each block or CI is free space

specified when the database was loaded. In this example, 30% free space per

block or CI was specified.

 Note how segments in a database record are chained together. In this case,

hierarchic pointers were used instead of the combination of physical child/physical

twin pointers. Each segment points to the next segment in hierarchic sequence. No

RAPs exist in Figure 56. Although HIDAM databases can have RAPs, you probably

do not need to use them. The reason for not using RAPs is explained in “Use of

RAPs in a HIDAM Database” on page 98.

In storage, a HIDAM or PHIDAM segment (see Figure 56) consists of a prefix

followed by user data. The first byte of the prefix is the segment code, which

identifies the segment type to IMS. This number can be from 1 to 255. The segment

code is assigned to the segment by IMS in ascending sequence, starting with the

root segment and continuing through all dependents in hierarchic sequence. The

second byte of the prefix is the delete byte. The third field in the prefix contains the

Figure 56. HIDAM or PHIDAM Database Records in Storage

HDAM, PHDAM, HIDAM, and PHIDAM

Chapter 6. Choosing Full-Function Database Types 97

one or more addresses of segments to which this segment is pointing. In this

example, hierarchic forward pointers are used. The EDUC6 segment contains only

one address, the address of the root segment of the next database record (not

shown here) in the database.

Creating an Index Segment

As each root is stored in a HIDAM or PHIDAM database, IMS creates an index

segment for the root and stores it in the index database or data set. The index

database consists of a VSAM KSDS. The KSDS contains an index segment for

each root in the database or HALDB partition. When initially loading a HIDAM or

PHIDAM database, IMS will insert a root segment with a key of all X'FF's as the

last root in the database or partition.

The format of an index segment is shown in Figure 57.

 The prefix portion of the index segment contains the delete byte and the root’s

address. The data portion of the index segment contains the key field of the root

being indexed. This key field identifies which root segment the index segment is for

and remains the reason why root segments in a HIDAM or PHIDAM database must

have unique sequence fields. Each index segment is a separate logical record.

Figure 58 shows the index database that IMS would generate when the two

database records in Figure 56 on page 97 were loaded.

Use of RAPs in a HIDAM Database

RAPs are used differently in HIDAM databases than they are in HDAM or PHDAM

databases. In HDAM or PHDAM, RAPs exist to point to root segments. When the

randomizing module generates roots with the same relative block and RAP number

(synonyms), the RAP points to one root and synonyms are chained together off that

root.

Figure 57. Format of an Index Segment

Figure 58. HIDAM or PHIDAM Index Databases

HDAM, PHDAM, HIDAM, and PHIDAM

98 Administration Guide: Database Manager

|
|
|
|
|
|

In HIDAM databases, RAPs are generated only if you specify PTR=T or PTR=H for

a root segment. When either of these is specified, one RAP is put at the beginning

of each CI or block, and root segments within the CI or block are chained from the

RAP in reverse order based on the time they were inserted. By this method, the

RAP points to the last root inserted into the block or CI, and the hierarchic or twin

forward pointer in the first root inserted into the block or CI is set to zero. The

hierarchic or twin forward pointer in each of the other root segments in the block

points to the previous root inserted in the block. Figure 59 shows what happens if

you specify PTR=T or PTR=H for root segments in a HIDAM database.

Figure 59 uses the following abbreviations:

FSE Free space element

RAP Root anchor point

SC Segment code

DB Delete byte

TF Twin forward

H Hierarchic forward

 Note that if you specify PTR=H for a PHIDAM root, you get an additional hierarchic

pointer to the first dependent in the hierarchy. In Figure 59, a “1” indicates where

this additional hierarchic pointer would appear.

The implication of using PTR=T or PTR=H is that the pointer from one root to the

next cannot be used to process roots sequentially. Instead, the HIDAM index must

be used for all sequential root processing, and this increases access time. Specify

PTR=TB or PTR=HB for root segments in a HIDAM database. Then no RAP is

generated, and GN calls against root segments proceed along the normal physical

twin forward chain. If no pointers are specified for HIDAM root segments, the

default is PTR=T.

Accessing Segments

The way in which a segment in an HD database is accessed depends on whether

the DL/I call for the segment is qualified or unqualified.

Qualified Calls

When a call is issued for a root segment and the call is qualified on the root

segment’s key, the way in which the database record containing the segment is

found depends on whether the database is HDAM, PHDAM, HIDAM, or PHIDAM. In

an HDAM or a PHDAM database, the randomizing module generates the root

Figure 59. Specifying PTR=T or PTR=H for Root Segments in a HIDAM Database

HDAM, PHDAM, HIDAM, and PHIDAM

Chapter 6. Choosing Full-Function Database Types 99

|
|
|
|
|
|
|
|
|

|

||

||

||

||

||

||

|
|
|

|
|
|
|
|
|
|

segment’s (and therefore the database record’s) location. In a HIDAM or a PHIDAM

database, the HIDAM or PHIDAM index is searched until the index segment

containing the root’s key is found.

Once the root segment is found, if the qualified call is for a dependent segment,

IMS searches for the dependent by following the pointers in each dependent

segment’s prefix. The exact way in which the search proceeds depends on the type

of pointers you are using. Figure 60 shows how a dependent segment is found

when PCF and PTF pointers are used.

Unqualified Calls

When an unqualified call is issued for a segment, the way in which the search

proceeds depends on:

v Whether the database is HDAM, PHDAM, HIDAM, or PHIDAM

v Whether a root or dependent segment is being accessed

v Where position in the database is currently established

v What type of pointers are being used

v Where parentage is set (if the call is a GNP)

Because of the many variables, it is not practical to generalize on how a segment is

accessed.

Inserting Root Segments

The way in which a root segment is inserted into an HD database depends on

whether the database is HDAM, PHDAM, HIDAM, or PHIDAM. For PHDAM or

PHIDAM databases, partition selection is first performed based on the key of the

root segment.

Inserting Root Segments into an HDAM or PHDAM Database

After initial load, root segments are inserted into an HDAM or PHDAM database in

exactly the same way they are inserted during initial load. This process is explained

in “How HDAM and PHDAM Records Are Stored” on page 94.

Inserting Root Segments Into a HIDAM or PHIDAM Database

After initial load, root segments are inserted into a HIDAM or PHIDAM database as

follows (see Figure 61 on page 101):

1. The HIDAM or PHIDAM index is searched for an index segment with a root key

greater than the key of the root to be inserted.

2. The new index segment is inserted in ascending root sequence.

Figure 60. How Dependent Segments Are Found Using PCF and PTF Pointers

HDAM, PHDAM, HIDAM, and PHIDAM

100 Administration Guide: Database Manager

3. Once the index segment is created, the root segment is stored in the database

at the location specified by the HD space search algorithm. How this algorithm

works is described in “How the HD Space Search Algorithm Works” on page

103.

Updating the Space Management Fields When a Root Segment Is

Inserted

When a root segment is inserted into an HD database, the space management

fields need to be updated. Figure 62 on page 102 illustrates this process. The figure

makes several assumptions so real values could be put in the space management

fields. These assumptions are:

v The database is HDAM or PHDAM (and therefore has a root addressable area).

v VSAM is the access method; therefore there are CIs (not blocks) in the

database. Because VSAM is used, each logical record has 7 bytes of control

information.

v Logical records are 512 bytes long.

v One RAP exists in each CI.

v The root segment to be inserted (SKILL1) is 32 bytes long.

The “before” picture shows the CI containing the bit map (in VSAM, the bit map is

always in the second CI in the database). The second bit in the bit map is set to 1,

which says there is free space in the next CI. In the next CI (CI #3):

v The FSEAP says there is an FSE (which describes an area of free space) 8

bytes from the beginning of this CI.

v The anchor point area (which has one RAP in this case) contains zeros because

no root segments are currently stored in this CI.

v The FSE AL field says there is 497 bytes of free space available starting at the

beginning of this FSE.

The SKILL1 root segment to be inserted is only 32 bytes long; therefore CI #3 has

plenty of space to store SKILL1.

The “after” picture shows how the space management fields in CI #3 are updated

when SKILL1 is inserted.

v The FSEAP now says there is an FSE 40 bytes from the beginning of this CI.

v The RAP points to SKILL1. The pointer value in the RAP is derived using the

following formula:

Pointer value = (CI size)*(CI number - 1) + Offset with the CI root segment

Figure 61. Inserting a Root Segment into a HIDAM or PHIDAM Database

HDAM, PHDAM, HIDAM, and PHIDAM

Chapter 6. Choosing Full-Function Database Types 101

In this case, the pointer value is 1032 (pointer value = 512 x 2 + 8).

v The FSE has been “moved” to the beginning of the remaining area of free space.

The FSE AL field says there is 465 bytes (497 - 32) of free space available,

starting at the beginning of this FSE.

Inserting Dependent Segments

After initial load, dependent segments are inserted into HD databases using the HD

space search algorithm. How this algorithm works is described in “How the HD

Space Search Algorithm Works” on page 103.

Figure 62. Updating the Space Management Fields in an HDAM or PHDAM Database

HDAM, PHDAM, HIDAM, and PHIDAM

102 Administration Guide: Database Manager

As with the insertion of root segments into an HD database, the various space

management fields in the database need to be updated (This process was

explained and illustrated in “Updating the Space Management Fields When a Root

Segment Is Inserted” on page 101).

Deleting Segments

When a segment is deleted in an HD database, it is physically removed from the

database. The space it occupied can be reused when new segments are inserted.

As with the insertion of segments into an HD database, the various space

management fields need to be updated (This process was explained and illustrated

in “Updating the Space Management Fields When a Root Segment Is Inserted” on

page 101).

v The bit map needs to be updated if the block or CI from which the segment is

deleted now contains enough space for a segment to be inserted. (Remember,

the bit map says whether enough space exists in the block or CI to hold a

segment of the longest type defined. Thus, if the deleted segment did not free up

enough space for the longest segment type defined, the bit map is not changed.)

v The FSEAP needs to be updated to show where the first FSE in the block or CI

is now located.

v When a segment is deleted, a new FSE might be created or the AL field value in

the FSE that immediately precedes the deleted segment might need to be

updated.

v If the deleted segment is a root segment in an HDAM or a PHDAM database, the

value in its PTF pointer is put in the RAP or in the PTF pointer that pointed to it.

This maintains the chain off the RAP and removes the deleted segment from the

chain.

If a deleted segment is next to an already available area of space, the two areas

are combined into one unless they are created by an online task that has not yet

reached a sync point.

Replacing Segments

Replacing segments in HD databases is straightforward as long as fixed-length

segments are used. The segment data, once changed, is simply returned to its

original location in storage. The key field in a segment cannot be replaced.

Provided sufficient adjacent space is available, the segment data is returned to its

original location when a variable-length segment is replaced with a longer segment.

If adjacent space is unavailable, space is obtained from the overflow area for the

lengthened data portion of the segment. This segment is referred to as a “separated

data segment.” It has a 2-byte prefix consisting of a 1-byte segment code and a

1-byte delete flag, followed by the segment data. The delete byte of the separated

data segment is set to X'FF', indicating that this is a separated data segment. A

pointer is built immediately following the original segment to point to the separated

data. Bit 4 of the delete byte of the original segment is set ON to indicate that the

data for this segment is separated. The unused remaining space in the original

segment is available for reuse.

How the HD Space Search Algorithm Works

The general rule for inserting a segment into an HD database is to store the

segment (whether root or dependent) in the most desirable block or CI.

HDAM, PHDAM, HIDAM, and PHIDAM

Chapter 6. Choosing Full-Function Database Types 103

Root Segment

The most desirable block depends on the access method. For HDAM or PHDAM

roots, the most desirable block is the one containing either the RAP or root

segment that will point to the root being inserted. For HIDAM or PHIDAM roots, if

the root does not have a twin backward pointer, the most desirable block is the one

containing the root with the next higher key. If the root has a twin backward pointer,

the most desirable block is the root with the next lower key.

Dependent Segment

The most desirable block is the one containing the segment that points to the

inserted segment. If both physical child and physical twin pointers are used, the

most desirable block is the one containing either the parent or the

immediately-preceding twin. If hierarchic pointers are used, the most desirable block

is the one containing the immediately-preceding segment in the hierarchy.

Second-Most Desirable Block

When it is not possible to store one or more segments in the most desirable block

(space is not available), the HD space search algorithm searches for the

second-most desirable block or CI. (This search is done only if the block is in the

buffer pool or contains free space according to the bit map). The second-most

desirable block or CI is a block or CI that was left free when the database was

loaded or reorganized. Every nth block or CI can be left free by specifying the

FRSPC= keyword in the DATASET macro of the DBDGEN utility. If you do not

specify in the FRSPC= keyword that every nth block or CI be left free, the HD

space search algorithm will not search for the second-most desirable block or CI.

Related Reading: For more information on the FRSPC= and SEARCHA=

keywords, see IMS Version 9: Utilities Reference: System.

All search ranges defined in the HD space search algorithm, excluding steps 9

through 11, are limited to the physical extent that includes the most desirable block.

When the most desirable block is in the overflow area, the search ranges, excluding

steps 9 through 11, are restricted to the overflow area.

The steps in the HD space search algorithm follow. They are arranged in the

sequence in which they are performed. The first time any one of the steps in the list

results in available space, the search is ended and the segment is stored.

Look for space:

 1. In the most desirable block (this block or CI is in the buffer pool).

 2. In the second-most desirable block or CI.

 3. In any block or CI in the buffer pool on the same cylinder.

 4. In any block or CI on the same track, as determined by consulting the bit map.

(The bit map says whether space is available for the longest segment type

defined.)

 5. In any block or CI on the same cylinder, as determined by consulting the bit

map.

 6. In any block or CI in the buffer pool within plus or minus n cylinders. Specify n

in the SCAN= keyword in the DATASET statement in the DBD.

 7. In any block or CI plus or minus n cylinders, as determined by consulting the

bit map.

 8. In any block or CI in the buffer pool at the end of the data set.

HDAM, PHDAM, HIDAM, and PHIDAM

104 Administration Guide: Database Manager

9. In any block or CI at the end of the data set, as determined by consulting the

bit map. The data sets will be extended as far as possible before going to the

next step.

10. In any block or CI in the data set where space exists, as determined by

consulting the bit map. (This step is not used when a HIDAM or PHIDAM

database is loaded.)

Some of the above steps are skipped in load mode processing.

If the dependent segment being inserted is at the highest level in a secondary data

set group, the place and the way in which space is found differ:

v First, if the segment has no twins, steps 1 through 8 in the HD space search

algorithm are skipped.

v Second, if the segment has a twin that precedes it in the twin chain, the most

desirable block is the one containing that twin.

v Third, if the segment has only twins that follow it in the twin chain, the most

desirable block is the one containing the twin to which the new segment is

chained.

Locking Protocols

IMS uses locks to isolate the database changes made by concurrently executing

programs. Locking is accomplished by using either the Program Isolation (PI) lock

manager or the IRLM. The PI lock manager provides only four locking levels and

the IRLM supports eleven lock states.

The IRLM also provides support for “feedback only” and “test” locking required, and

it supplies feedback on lock requests compatible with feedback supplied by the PI

lock manager.

Locking to Provide Program Isolation

For all database organizations, the basic item locked is the database record. The

database record is locked when position is first obtained in it. The item locked is the

root segment, or for HDAM or PHDAM, the anchor point. Therefore, for HDAM or

PHDAM, all database records chained from the anchor are locked. The processing

option of the PCB determines whether or not two programs can concurrently access

the same database record. If the processing option permits updates, then no other

program can concurrently access the database record. The database record is

locked until position is changed to a different database record or until the program

reaches a commit point.

When a program updates a segment with an INSERT, DELETE, or REPLACE call,

the segment, not the database record, is locked. On an INSERT or DELETE call, at

least one other segment is altered and locked.

Because data is always accessed hierarchically, when a lock on a root (or anchor)

is obtained, IMS determines if any programs hold locks on dependent segments. If

no program holds locks on dependent segments, it is not necessary to lock

dependent segments when they are accessed.

The following locking protocol allows IMS to make this determination. If a root

segment is updated, the root lock is held at update level until commit. If a

dependent segment is updated, it is locked at update level. When exiting the

database record, the root segment is demoted to read level. When a program

enters the database record and obtains the lock at either read or update level, the

lock manager provides feedback indicating whether or not another program has the

HDAM, PHDAM, HIDAM, and PHIDAM

Chapter 6. Choosing Full-Function Database Types 105

lock at read level. This determines if dependent segments will be locked when they

are accessed. For HISAM, the primary logical record is treated as the root, and the

overflow logical records are treated as dependent segments.

Related Reading: For a special case involving the HISAM delete byte with

parameter ERASE=YES, see “Deleting Segments” on page 72.

These lock protocols apply when the PI lock manager is used; however, if the IRLM

is used, no lock is obtained when a dependent segment is updated. Instead, the

root lock is held at single update level when exiting the database record. Therefore,

no additional locks are required if a dependent segment is inserted, deleted, or

replaced.

Locking for Q Command Codes

When a Q command code is issued for a root or dependent segment, a Q

command code lock at share level is obtained for the segment. This lock is not

released until a DEQ call with the same class is issued, or until commit time.

If a root segment is returned in hold status, the root lock obtained when entering

the database record prevents another user with update capability from entering the

database record. If a dependent segment is returned in hold status, a Q command

code test lock is required. An indicator is turned on whenever a Q command code

lock is issued for a database. This indicator is reset whenever the only application

scheduled against the database ends. If the indicator is not set, then no Q

command code locks are outstanding and no test lock is required to return a

dependent segment in hold status.

Resource Locking Considerations with Block Level Sharing

Resource locking can occur either locally in a non-sysplex environment or globally

in a sysplex environment.

In a non-sysplex environment, local locks can be granted in one of three ways:

v Immediately because of one of the following reasons:

 IMS was able to get the required IRLM locks, and there is no other interest

on this resource.

 The request is compatible with other holders or waiters.

v Asynchronously because the request could not get the required IRLM latches

and was suspended. (This can also occur in a sysplex environment.) The lock is

granted when latches become available and one of three conditions exist:

 No other holders exist.

 The request is compatible with other holders or waiters.

 The request is not compatible with the holders or waiters and was granted

after their interest was released. (This could also occur in a sysplex

environment.)

In a sysplex environment, global locks can be granted in one of three ways:

v Locally by the IRLM because of one of the following reasons:

 There is no other interest for this resource.

 This IRLM has the only interest, this request is compatible with the holders or

waiters on this system, and XES already knows about the resource.

v Synchronously on the XES CALL because of one of the following reasons:

 XES shows no other interest for this resource.

 XES shows only SHARE interest for the hash class.

HDAM, PHDAM, HIDAM, and PHIDAM

106 Administration Guide: Database Manager

v Asynchronously on the XES CALL because of one of three conditions:

 Either XES shows EXCLUSIVE interest on the hash class by an IRLM, but

the resource names do not match (FALSE CONTENTION by RMF™).

 Or XES shows EXCLUSIVE interest on the hash class by an IRLM and the

resource names match, but the IRLM CONTENTION EXIT grants it anyway

because the STATES are compatible (IRLM FALSE CONTENTION).

 Or the request is incompatible with the other HOLDERs and is granted by the

CONTENTION Exit after their interest is released (IRLM REAL

CONTENTION).

Data Sharing Impact on Locking

When you use block-level data sharing, the IRLM must obtain the concurrence of

the sharing system before granting global locks. Root locks are global locks, and

dependent segment locks are not. When you use block-level data sharing, locks

prevent the sharing systems from concurrently updating the same buffer. The buffer

is locked before making the update, and the lock is held until after the buffer is

written during commit processing. No buffer locks are obtained when a buffer is

read.

If a Q command code is issued on any segment, the buffer is locked. This prevents

the sharing system from updating the buffer until the Q command code lock is

released.

Locking in HDAM, PHDAM, HIDAM, and PHIDAM Databases

If you access a HIDAM or PHIDAM root through the index, a lock is obtained on the

index, using the RBA of the root segment as the resource name. Consequently, a

single lock request locks both the index and the root.

When NOTWIN pointers are specified on a PHIDAM root, a lock on the next higher

non-deleted root is required to provide data integrity. The additional lock is obtained

by reading the index until a non-deleted index entry is found and then locking the

RBA of the root segment as the resource name.

When you access an HDAM or a PHDAM database, the anchor of the desired root

segment is locked as long as position exists on any root chained from that anchor.

Therefore, if an update PCB has position on an HDAM or PHDAM root, no other

user can access that anchor. When a segment has been updated and the IRLM is

used, no other user can access the anchor until the user that is updating commits.

If the PI lock manager is used and an uncommitted unit of work holds the anchor,

locks are needed to access all root and dependent segments chained from the

anchor until the user that is updating commits.

Locking for Secondary Indexes

When a secondary index is inserted, deleted or replaced, it is locked with a root

segment lock. When the secondary index is used to access the target of the

secondary index, depending on what the index points to, it might be necessary to

lock the secondary index.

Managing I/O Errors

When a database I/O error occurs, IMS copies the buffer contents of the error

block/control interval (CI) to a virtual buffer. A subsequent DL/I request causes the

error block/CI to be read back into the buffer pool. The write error information and

buffers are maintained across restarts, deferring recovery to a convenient time. I/O

HDAM, PHDAM, HIDAM, and PHIDAM

Chapter 6. Choosing Full-Function Database Types 107

|
|
|
|

error retry is automatically performed at database close time. If the retry is

successful, the error condition no longer exists and recovery is not needed.

When a database I/O error occurs in a sysplex environment, the local system

maintains the buffer and informs all members of the data-sharing group with

registered interest in the database that the CI is unavailable. Subsequent DL/I

requests for that CI receive a failure return code as long as the I/O error persists.

Although you do not have to register your databases with DBRC for error handling

to work, registration is required for HALDBs and highly recommended for all other

full-function databases.

If an error occurs on a database registered with DBRC and the system stops, the

database could be damaged if the system is restarted and a /DBR command is not

issued prior to accessing the database. The restart causes the error buffers to be

restored as they were when the system stopped. If the same block had been

updated during the batch run, the batch update would be overlaid.

Managing I/O Errors

108 Administration Guide: Database Manager

Chapter 7. Choosing Fast Path Database Types

This chapter describes the characteristics and basic functions of Fast Path

databases to help you decide what type of database to use. Fast Path databases

include data entry databases (DEDBs) and main storage databases (MSDBs).

DEDBs provide efficient storage for and access to large volumes of data. DEDBs

also provide a high level of availability to that data. MSDBs store and provide

access to an installation’s most frequently used data.

Both DEDBs and MSDBs use the direct method of storing data. With the direct

method, the hierarchic sequence of segments is maintained by putting

direct-address pointers in each segment’s prefix.

Each IMS environment supports Fast Path databases as follows:

v DB/DC supports both DEDBs and MSDBs.

v DBCTL supports DEDBs, but does not support MSDBs.

v DCCTL does not support DEDBs or MSDBs.

For a summary of the different characteristics of all IMS database types, including

Fast Path databases, see Table 7 on page 59.

In this chapter:

v “Data Entry Databases”

v “Main Storage Databases (MSDBs)” on page 128

v “Fast Path Virtual Storage Option” on page 135

v “Fast Path Synchronization Points” on page 149

v “Managing I/O Errors and Long Wait Times” on page 149

Data Entry Databases

Data entry databases (DEDBs) provide efficient storage for and access to large

volumes of data. DEDBs also provide a high level of availability of that data.

Several characteristics of DEDBs also make DEDBs useful when you must gather

detailed and summary information. These characteristics include:

 Area format

 Area data set replication

 Record deactivation

 Non-recovery option

A DEDB is a hierarchical database that contains up to 127 segment types: a root

segment, an optional sequential dependent segment, and 0 to 126 direct dependent

segments. If an optional sequential dependent segment is defined, you can define

no more than 125 direct dependent segments. A DEDB structure can have as many

as 15 hierarchical levels. Instances of sequential dependent segments for an area

are stored in chronological order, regardless of the root on which they are

dependent. Direct dependent segments are stored hierarchically, which allows for

rapid retrieval.

Recommendation: Because ETO terminals cannot access terminal-related MSDBs,

you should develop any new Fast Path databases as DEDBs instead of as MSDBs.

You should also consider converting any of your existing non-terminal-related

© Copyright IBM Corp. 1974, 2004 109

|
|
|
|
|
|

|
|

|
|

|

|

|

|

|
|
|
|
|
|
|
|

|
|
|

MSDBs with non-terminal-related keys to VSO DEDBs. You can use the

MSDB-to-DEDB Conversion utility to do so.

Related Reading: For more information about the MSDB-to-DEDB Conversion

utility (DBFUCDB0), see IMS Version 9: Utilities Reference: Database and

Transaction Manager.

DEDB Functions

DEDBs and MSDBs have many similar functions, including:

v Virtual storage

v The field (FLD) call

v Fixed length segments

v MSDB or DEDB commit view

In addition, DEDBs have the following functions and support:

v Full DBRC support

v Block-level sharing of areas available to

– DBCTL

– LU 6.2 applications

– DB/DC applications

v RSR tracking

v HSSP support

v DEDB utilities

v Online database maintenance

v A full hierarchical model, including support of INSERT and DELETE calls

v A randomizer search technique

DEDB Areas

A DEDB can be organized into one or more data sets called areas. Areas increase

the efficiency, capacity, and flexibility of DEDBs. This topic discusses DEDB areas

and how to work with them.

Areas and the DEDB Format

The physical format of DEDBs makes the data they contain more readily available.

In a hierarchical IMS database that does not use areas, the logical data structure is

spread across the entire database. If multiple data sets are used, the data structure

is broken up on a segment basis. A DEDB can use multiple data sets, called areas,

with each area containing the entire data structure (see Figure 70 on page 124).

Each area in a DEDB is a VSAM data set. A DEDB record (a root and its

dependent segments) does not span areas. A DEDB can be divided into as many

as 2048 such areas. This organization is transparent to the application program.

The randomizing module is used to determine which records are placed in each

area. Because of the area concept, larger databases can exceed the limitation of

232 bytes for a single VSAM data set. Each area can have its own space

management parameters. You can choose these parameters according to the

message volume, which can vary from area to area. DEDB areas can be allocated

on different volume types.

Initialization, reorganization, and recovery of DEDBs are done on an area basis.

Resource allocation is done at the control interval (CI) level. Multiple programs,

Data Entry Databases

110 Administration Guide: Database Manager

|
|

|

|
|
|

optionally together with one online utility, can access an area concurrently within a

database, as long as they are using different CIs. CI sizes can be 512 bytes, 1K,

2K, 4K, and up to 28K in 4K increments. The media manager and Integrated

Catalog Facility catalog of Data Facility Storage Management Subsystem (DFSMS)

are required.

Opening and Preopening DEDB Areas

By default, IMS does not open a DEDB area until an eligible application accesses

the area. Although this prevents unneeded areas from being opened at startup, it

burdens the first application that accesses a DEDB area with some additional

processing overhead. Multiple calls to multiple areas immediately following a startup

process can increase this burden significantly.

You can limit the overhead of opening areas by preopening your DEDB areas. You

can also distribute this overhead between the startup process and online operation

by preopening only those areas that applications use the most and by leaving all

other areas closed until an application first accesses them.

You specify the preopen status of an area using the PREOPEN and NOPREO

parameters of the DBRC INIT.DBDS command or CHANGE.DBDS command.

By default IMS preopens all DEDB areas that have been assigned preopen status

during the startup process; however, preopening a large number of DEDB areas

during the startup process can delay data processing. To avoid this delay, you can

have IMS preopen DEDB areas after the startup process and asynchronously to the

execution of your application programs. In this case, if IMS has not preopened a

DEDB area when an application program attempts to access the area, IMS opens

the DEDB area at that time. You can specify this behavior by using the FPOPN=

keyword in the IMS and DBC startup procedures. Specifically, FPOPN=P causes

IMS to preopen DEDB areas after startup and asynchronous to application program

execution.

The FPOPN= keyword determines how IMS reopens DEDB areas for both normal

restarts (/NRE) and emergency restarts (/ERE).

Related Reading:

v For more information about the FPOPN= keyword and the IMS and DBC

procedures, see IMS Version 9: Installation Volume 2: System Definition and

Tailoring.

v For more information about DBRC and DBRC commands, see the IMS Version

9: Database Recovery Control (DBRC) Guide and Reference.

Reopening DEDB Areas During an Emergency Restart: You can specify how

IMS reopens DEDB areas during an emergency restart by using the FPOPN=

keyword in the IMS procedure or DBC procedure. The following list describes how

the FPOPN= keyword affects the reopening of DEDB areas during an emergency

restart:

FPOPN=N

During the startup process, IMS opens only those areas that have preopen

status. This is the default.

FPOPN=P

After the startup process completes and asynchronous to the resumption of

application processing, IMS opens only those areas that have preopen status.

Data Entry Databases

Chapter 7. Choosing Fast Path Database Types 111

|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|

|
|

|

|
|
|

|
|

|
|
|
|
|

|
|
|

|
|
|

FPOPN=R

After the startup process completes and asynchronous to the resumption of

application processing, IMS opens only those areas that were open prior to the

abnormal termination. All DEDB areas that were closed at the time of the

abnormal termination, including DEDB areas with a preopen status, will remain

closed when you restart IMS.

FPOPN=D

Suppresses the preopen process. DEDB areas that have a preopen status are

not preopened and remain closed until they are first accessed by an application

program or until they are manually opened with a /START AREA command.

 FPOPN=D overrides, but does not change, the preopen status of DEDB areas

as set by the PREOPEN parameter of the DBRC commands INIT.DBDS and

CHANGE.DBDS.

Related Reading: For more information about the FPOPN= keyword and the IMS

and DBC startup procedures, see IMS Version 9: Installation Volume 2: System

Definition and Tailoring.

Stopping and Starting DEDBs and DEDB Areas

You can prevent access to a DEDB by stopping it with the /STOP DATABASE

command. You can also prevent access to a single DEDB area by stopping it with

the /STOP AREA command. These commands do not affect application programs

currently scheduled against the DEDB, but prevent IMS from scheduling any new

application programs that need access to the stopped database or area.

You can resume access to a stopped DEDB by starting it with the /START DATABASE

command. You can also resume access to a stopped area by starting it with the

/START AREA command. The /START AREA command does not open areas unless

you have specified them as PREOPEN areas.

Restarting and Reopening Areas After an IRLM Failure

The internal resource lock manager (IRLM) ensures the integrity of databases in a

data sharing environment. To avoid compromising the integrity of the data in DEDB

areas when an IRLM fails, all DEDB areas under the control of the failed IRLM are

stopped. After you correct the failure and reconnect IRLM to the IMS system, you

must restart and reopen the DEDB areas that the IRLM controls.

You can specify how IMS restarts and reopens DEDB areas after the IRLM

reconnects, by using the FPRLM= keyword in the IMS and DBC procedures. The

following list describes how the FPRLM= keyword affects the reopening of DEDB

areas after an IRLM failure has been corrected:

FPRLM=N

All DEDB areas remain stopped and unopened until you issue a /START

DATABASE or /START AREA command. This is the default.

FPRLM=S

After IRLM reconnects, IMS restarts, but does not reopen, all areas that were

open at the time of the IRLM failure. IMS restarts the DEDB areas

asynchronously to the resumption of application processing.

FPRLM=R

After IRLM reconnects, IMS restores all DEDB areas to their state at the time of

the IRLM failure, restarting and reopening DEDB areas regardless of whether

the DEDB areas have preopen status. IMS restores the DEDB areas

asynchronously to the resumption of application processing.

Data Entry Databases

112 Administration Guide: Database Manager

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

FPRLM=A

After IRLM reconnects, IMS restarts and reopens all DEDB areas that were

open at the time of the IRLM failure and all DEDB areas that have a preopen

status, even if they were closed at the time of the IRLM failure. IMS restores

the DEDB areas asynchronously to the resumption of application processing.

Related Reading:

v For more information about the FPRLM= keyword and the IMS and DBC

procedures, see IMS Version 9: Installation Volume 2: System Definition and

Tailoring.

v For more information about IRLM, see:

– IMS Version 9: Operations Guide

– IMS Version 9: Administration Guide: System

Read and Write Errors in DEDB Areas

This topic describes how IMS handles read and write errors that occur in DEDB

areas.

Read Error: When a read error is detected in an area, the application program

receives an AO status code. An Error Queue Element (EQE) is created, but not

written to the second CI nor sent to the sharing system in a data sharing

environment. Application programs can continue to access that area; they are

prevented only from accessing the CI in error. After read errors on four different CIs,

the area data set (ADS) is stopped. The read errors must be consecutive; that is, if

there is an intervening write error, the read EQE count is cleared. This read error

processing only applies to a multiple area data set (MADS) environment.

Write Error: When a write error is detected in an area, an EQE is created and

application programs are allowed access to the area until the EQE count reaches

11. Even though part of a database might not be available (one or more areas are

stopped), the database is still logically available and transactions using that

database are still scheduled. If multiple data sets make up the area, chances are

that one copy of the data will always be available.

If your DEDB is nonrecoverable, write errors are handled differently, compared to

recoverable DEDBs. When there is a write error in an area, an EQE is created.

When there are 10 EQEs for an area, DBRC marks it ″Recovery Needed″ and IMS

stops the area. If the area is shared, then all IMSs in the sharing group are notified

and they also stop the area. When a DEDB is marked “Recovery Needed”, you

must restore it, such as from an image copy. Incorporate this recovery procedure

into your operational procedures.

When a write error occurs to a DEDB using MADS, an EQE is created for the ADS

that had the write error. In this environment, when the maximum of 10 EQEs is

reached, the ADS is stopped.

When a write error to a recoverable DEDB area using a single ADS occurs, IMS

invokes the I/O toleration (IOT) processing. IMS allocates a virtual buffer in ECSA

and copies the control interval in error from the Fast Path common buffer to the

virtual buffer. IMS records the creation of the virtual buffer with an X’26’ log record.

If the database is registered with DBRC, an Extended Error Queue Element (EEQE)

is created and registered in DBRC. The EEQE identifies the control interval in error.

In a data sharing environment using IRLM, all sharing partners are notified of the

creation of the EEQE.

Data Entry Databases

Chapter 7. Choosing Fast Path Database Types 113

|
|
|
|
|

|

|
|
|

|

|

|

|
|
|

The data that is tolerated is available to the IMS system that created the EEQE.

The sharing partner will get an ’AO’ status when it requests that CI because the

data is not available. When a request is made for a control interval that is tolerated,

the data is copied from the virtual buffer to a common buffer. When an update is

performed on the data, it is copied back to the virtual buffer. A standard X’5950’ log

record is generated for the update.

Every write error is represented by an EEQE on an area basis. The EEQEs are

maintained by DBRC and logged to the IMS log as X’26’ log records. There is no

logical limit to the number of EEQEs that can exist for an area. There is a physical

storage limitation in DBRC and ECSA for the number of EEQEs that can be

maintained. This limit is installation dependent. To make sure that we do not

overextend DBRC or ECSA usage, a limited number of EEQEs are allowed for a

DEDB. The limit is 100. After 100 EEQEs are created for an area, the area is

stopped.

During system checkpoint, /STO, and /VUN commands, IMS attempts to write back

the CIs in error. If the write is successful, the EEQE is removed. If the write is

unsuccessful, the EEQE remains.

Record Deactivation

If an error occurs while an application program is updating a DEDB, it is not

necessary to stop the database or even the area. IMS continues to allow application

programs to access that area. It only prevents them from accessing the control

interval in error by creating an EQE for the error CI. If there are multiple copies of

the area, chances are that one copy of the data will always be available. It is

unlikely that the same control interval will be in error in all copies of the area. IMS

automatically makes an area data set unavailable when a count of 11 errors has

been reached for that data set.

Record deactivation minimizes the effect of database failure and errors to the data

in these ways:

v If multiple copies of an area data set are used, and an error occurs while an

application program is trying to update that area, the error does not need to be

corrected immediately. Other application programs can continue to access the

data in that area through other available copies of that area.

v If a copy of an area has a number of I/O errors, you can create a new copy from

existing copies of the area using the DEDB Area Data Set Create utility. The

copy with the errors can then be destroyed.

Non-Recovery Option

By specifying a VSO or non-VSO DEDB as nonrecoverable, you can improve online

performance and reduce database change logging of your DEDBs. IMS does not

log any changes from a nonrecoverable DEDB, nor does it keep any updates in the

DBRC RECON data set. All areas are nonrecoverable in a nonrecoverable DEDB.

SDEPs are not supported for nonrecoverable DEDBs. After IMS calls DBRC to

authorize the areas, IMS checks for SDEPs. If IMS finds SDEPs, IMS calls DBRC

to unauthorize them and IMS stops them. You must remove the SDEP segment

type from the DEDB design before IMS will authorize the DEDB.

Unlike full-function nonrecoverable databases, which support backout,

nonrecoverable DEDBs are truly nonrecoverable and cannot REDO during restart or

XRF takeover. IMS writes a single log record, x’5951’, once for every area at each

sync point to indicate that nonrecoverable suppression has taken place. The x’5951’

log and DMAC flags determine the integrity of an area during an emergency restart

Data Entry Databases

114 Administration Guide: Database Manager

or XRF takeover. If there are errors found in a nonrecoverable DEDB during an

XRF takeover or an emergency restart, message DFS3711W is issued and the

DEDB is not stopped.

Related Reading: For information on how IMS handles nonrecoverable DEDB write

errors, which can happen during restart or XRF takeover, see “Write Error” on page

113.

Nonrecoverable DEDBs must register with DBRC. To define a DEDB as

nonrecoverable, use the command INIT.DB DBD() TYPEFP NONRECOV. The default is

RECOVABL for recoverable DEDB.

Before changing the recoverability of a DEDB, issue a /STOP DB, /STO AREA, or /DBR

DB command. To change a recoverable DEDB to a nonrecoverable DEDB, use the

DBRC command CHANGE.DB DBD() NONRECOV. To change nonrecoverable DEDB to a

recoverable DEDB, use the command CHANGE.DB DBD() RECOVABL.

To restore a nonrecoverable DEDB, use the GENJCL.RECOV RESTORE command. The

recovery utility restores the database to the last image copy taken. If the DEDB had

been changed from a recoverable DEDB to a nonrecoverable DEDB, the recovery

utility will apply any updates from the logs up to the point when the change was

made (if no image copy was made after the change to nonrecoverable).

Area Data Set Replication

A data set can be copied, or replicated, up to seven times, increasing the

availability of the data to application programs. The DEDB Area Data Set Create

utility (DBFUMRI0) produces one or more copies of a data set representing the

area without stopping the area. All copies of an area data set must have identical CI

sizes and spaces but can reside on different devices. The utility uses all the current

copies to complete its new data set, proceeding to another copy if it detects an I/O

error for a particular record. In this way, a clean copy is constructed from the

aggregate of the available data. Current updates to the new data set take effect

immediately.

The Create utility can create its new copy on a different device, as specified in its

job control language (JCL). If your installation was migrating data to other storage

devices, then this process could be carried out while the online system was still

executing, and the data would remain current.

To ensure all copies of a DEDB remain identical, IMS updates all copies when a

change is made to only one copy.

If an ADS fails open during normal open processing of a DEDB with multiple data

sets (MADS), none of the copies of the ADS can be allocated, and the area is

stopped. However, when open failure occurs during emergency restart, only the

failed ADS is unallocated and stopped. The other copies of the ADS remain

available for use.

DEDBs and Data Sharing

You can specify different levels of data sharing for DEDBs. The specifications you

make for a DEDB apply to all of the areas the DEDB contains.

If you specify that a DEDB does not allow data sharing, only one IMS system can

access a DEDB area at a time; however, other IMS systems can still access the

other areas the DEDB contains.

Data Entry Databases

Chapter 7. Choosing Fast Path Database Types 115

|
|
|

|
|
|

If you specify that a DEDB allows data sharing, multiple IMS systems can access

the same DEDB area at the same time. Sharing a single DEDB area is equivalent

to block-level sharing of full-function databases.

You can specify the level of data sharing that a DEDB allows by using the

SHARELVL parameter in the DBRC commands INIT.DB and CHANGE.DB. If any IMS

has already authorized the database, changing the SHARELVL does not modify the

database record. The SHARELVL parameter applies to all areas in a DEDB.

You can share DEDB areas directly from DASD or from a coupling facility structure

using the Virtual Storage Option (VSO).

Related Reading:

v For general information on VSO, including its benefits and use, see “Fast Path

Virtual Storage Option” on page 135.

v For specific information on sharing VSO DEDB areas, see “Sharing of VSO

DEDB Areas” on page 138.

v For more information on the SHARELVL parameter, see the IMS Version 9:

Database Recovery Control (DBRC) Guide and Reference.

v For general information on data sharing, see IMS Version 9: Administration

Guide: System.

Fixed- and Variable-Length Segments in DEDBs

DEDBs support fixed-length segments. Thus you can define fixed-length or

variable-length segments for your DEDBs. This support allows you to use MSDB

applications for your DEDBs.

To define fixed-length segments, specify a single value for the BYTES= parameter

during DBDGEN in the SEGM macro. To define variable-length segments, specify

two values for the BYTES= parameter during DBDGEN in the SEGM macro.

Application programs for fixed-length-segment DEDBs, like MSDBs, do not see the

length (LL) field at the beginning of each segment. Application programs for

variable-length-segment DEDBs do see the length (LL) field at the beginning of

each segment, and must use it to process the segment properly.

Fixed-length-segment application programs using REPL and ISRT calls can omit the

length (LL) field.

Examples of Defining Segments

Figure 63 and Figure 64 show examples of how to use the BYTES= parameter to

define variable-length or fixed-length segments.

ROOTSEG SEGM NAME=ROOTSEG1, C

 PARENT=0, C

 BYTES=(390,20)

Figure 63. Defining a Variable-Length Segment

ROOTSEG SEGM NAME=ROOTSEG1, C

 PARENT=0, C

 BYTES=(320)

Figure 64. Defining a Fixed-Length Segment

Data Entry Databases

116 Administration Guide: Database Manager

|
|
|

|
|
|
|

|
|

|

|
|

|
|

|
|

|
|

Parts of a DEDB Area

A DEDB area consists of three parts:

v Root addressable part

v Independent overflow part

v Sequential dependent part

Figure 65 on page 118 shows these parts of a DEDB area. Each part is described

in detail in the following topics:

v “Root Addressable Part” on page 119

v “Independent Overflow Part” on page 119

v “Sequential Dependent Part” on page 119

v “CI and Segment Formats” on page 119

Data Entry Databases

Chapter 7. Choosing Fast Path Database Types 117

When a DEDB data set is initialized by the DEDB initialization utility (DBFUMIN0),

additional CIs are created for internal use, so the DEDB area will actually contain

more CIs than are shown in Figure 65. These extra CIs were used for the DEDB

Direct Reorganization utility (DBFUMDR0), which went out service with IMS Version

5 and was replaced by the High-Speed DEDB Direct Reorganization utility

(DBFUHDR0). Although IMS does not use the extra CIs, DBFUMIN0 creates them

for compatibility purposes.

Figure 65. Parts of a DEDB Area in Storage

Data Entry Databases

118 Administration Guide: Database Manager

|
|
|
|
|
|
|

Root Addressable Part

The root addressable part is divided into units-of-work (UOW), which are the basic

elements of space allocation. A UOW consists of a user-specified number of CIs

located physically contiguous.

Each UOW in the root addressable part is further divided into a base section and

an overflow section. The base section contains CIs of a UOW that are addressed

by the randomizing module, whereas the overflow section of the UOW is used as a

logical extension of a CI within that UOW.

Root and direct dependent segments are stored in the base section. Both can be

stored in the overflow section if the base section is full.

Independent Overflow Part

The independent overflow part contains empty CIs that can be used by any UOW in

the area. When a UOW gets a CI from the independent overflow part, the CI can be

used only by that UOW. A CI in the independent overflow part can be considered an

extension of the overflow section in the root addressable part as soon as it is

allocated to a UOW. The independent overflow CI remains allocated to a specific

UOW unless, after a reorganization, it is no longer required, at which time it is

freed.

Sequential Dependent Part

The sequential dependent part holds sequential dependent segments from roots in

all UOWs in the area. Sequential dependent segments are stored in chronological

order without regard to the root or UOW that contains the root. When the sequential

dependent part is full, it is reused from the beginning. However, before the

sequential dependent part can be reused, you must use the Delete utility

DBFUMDLO to delete a contiguous portion, or all the sequential dependent

segments in that part.

CI and Segment Formats

This topic contains diagnosis, modification, or tuning information.

The following four diagrams—Figure 66, Figure 67 on page 120, Figure 68 on page

121, and Figure 69 on page 121—show the following formats:

v CI format

v Root segment format

v Sequential dependent segment format

v Direct dependent segment format

The tables that follow each figure—Table 10 on page 120, Table 11 on page 120,

Table 12 on page 121, and Table 13 on page 121, respectively—describe the

sections of the CI and segments in the order that the sections appear in the

graphic.

Figure 66. CI Format

Data Entry Databases

Chapter 7. Choosing Fast Path Database Types 119

Table 10. CI Format

CI

Section

Number of

Bytes Explanation

FSE AP 2 bytes Offset to the first free space element. These 2 bytes are unused

if the CI is in the sequential dependent part.

CI TYP 2 bytes Describes the use of this CI and the meaning of the next 4

bytes.

RAP 4 bytes Root anchor point if this CI belongs to the base section of the

root addressable area. All root segments randomizing to this CI

are chained off this RAP in ascending key sequence. Only one

RAP exists per CI.

Attention: In the dependent and independent overflow parts,

these 4 bytes are used by Fast Path control information. No

RAP exists in sequential dependent CIs.

CUSN 2 bytes CI Update Sequence Number (CUSN). A sequence number

maintained in each CI. It is increased with each update of the

particular CI during the synchronization process.

RBA 4 bytes Relative byte address of this CI.

RDF 3 bytes Record definition field (contains VSAM control information).

CIDF 4 bytes CI definition field (contains VSAM control information).

 Table 11. Root Segment Format

Segment

Section

Number of

Bytes Explanation

SC 1 byte Segment code.

PD 1 byte Prefix descriptor.

PTF 4 bytes Physical twin forward pointer. Contains the RBA of the next root

in key sequence.

SPCF 8 bytes Sequential physical child first pointer. Contains the cycle count

and RBA of the last inserted sequential dependent under this

root. This pointer will not exist if the sequential dependent

segment is not defined.

PCF 4 bytes Physical child first pointer. PCF points to the first occurrence of a

direct dependent segment type. There can be up to 126 PCF

pointers or 125 PCF pointers if there is a sequential dependent

segment. PCF pointers will not exist if direct dependent

segments are not defined.

PCL 4 bytes Physical child last pointer. PCL is an optional pointer that points

to the last physical child of a segment type. This pointer will not

exist if direct dependent segments are not defined.

Figure 67. Root Segment Format (with Sequential and Direct Dependent Segments with

Subset Pointers)

Data Entry Databases

120 Administration Guide: Database Manager

Table 11. Root Segment Format (continued)

Segment

Section

Number of

Bytes Explanation

SSP 4 bytes Subset pointer. For each child type of the parent, up to eight

optional subset pointers can exist.

LL 2 bytes Variable length of this segment.

 Table 12. Sequential Dependent Segment Format

Segment

Section

Number of

Bytes Explanation

SC 1 byte Segment code.

UN 1 byte Prefix descriptor.

SPTF 8 bytes Sequential physical twin forward pointer. Contains the cycle

count and the RBA of the immediately preceding sequential

dependent segment under the same root.

LL 2 bytes Variable length of this segment.

 Table 13. Direct Dependent Segment Format

Segment

Section

Number of

Bytes Explanation

SC 1 byte Segment code.

UN 1 byte Unused.

PTF 4 bytes Physical twin forward pointer. Contains the RBA of the next

occurrence of this direct dependent segment type.

PCF 4 bytes Physical child first pointer. PCF points to the first occurrence of

a direct dependent segment type. In a direct dependent

segment there can be up to 125 PCF pointers or 124 PCF

pointers if there is a sequential dependent segment. PCF

pointers will not exist if direct dependent segments are not

defined.

Figure 68. Sequential Dependent Segment Format

Figure 69. Direct Dependent Segment Format

Data Entry Databases

Chapter 7. Choosing Fast Path Database Types 121

Table 13. Direct Dependent Segment Format (continued)

Segment

Section

Number of

Bytes Explanation

PCL 4 bytes Physical child last pointer. PCL is an optional pointer that points

to the last physical child of a segment type. This pointer will not

exist if direct dependent segments are not defined.

SSP 4 bytes Subset pointer. For each child type of the parent, up to eight

optional subset pointers can exist.

LL 2 bytes Variable length of this segment.

Root Segment Storage

DEDB root segments are stored as prescribed by the randomizing routine, and are

chained in ascending key sequence from each anchor point.

Related Reading: For information on the system-supplied or user-supplied

randomizing module for DEDBs, see IMS Version 9: Customization Guide.

Each CI in the base section of a UOW in an area has a single anchor point.

Sequential processing using GN calls processes the roots in the following order:

1. Ascending area number

2. Ascending UOW

3. Ascending key in each anchor point chain

Each root segment contains, in ascending key sequence, a PTF pointer containing

the RBA of the next root.

Direct Dependent Segment Storage

The DEDB maintains processing efficiency while supporting a hierarchic physical

structure with direct dependent segment types. A maximum of 127 segment types

are supported (up to 126 direct dependent segment types, or 125 if a sequential

dependent segment is present).

Direct dependent (DDEP) segment types can be efficiently retrieved hierarchically,

and the user has complete online processing control over the segments. Supported

processing options are insert, get, delete, and replace. With the replace function,

users can alter the length of the segment. DEDB space management logic attempts

to store an inserted direct dependent in the same CI that contains its root segment.

If insufficient space is available in that CI, the root addressable overflow and then

the independent overflow portion of the area are searched.

DDEP segments can be defined with or without a unique sequence field, and are

stored in ascending key sequence.

Physical chaining of direct dependent segments consists of a physical child first

(PCF) pointer in the parent for each defined dependent segment type and a

physical twin forward (PTF) pointer in each dependent segment.

DEDBs allow a PCL pointer to be used. This pointer makes it possible to access

the last physical child of a segment type directly from the physical parent. The

INSERT rule LAST avoids the need to follow a potentially long physical child pointer

chain.

Data Entry Databases

122 Administration Guide: Database Manager

Subset pointers are a means of dividing a chain of segment occurrences under the

same parent into two or more groups, of subsets. You can define as many as eight

subset pointers for any segment type, dividing the chain into as many as nine

subsets. Each subset pointer points to the start of a new subset.

Related Reading: For more information on defining and using subset pointers, see

IMS Version 9: Application Programming: Database Manager.

Sequential Dependent Segment Storage

DEDB sequential dependent (SDEP) segments are stored in the sequential

dependent part of an area in the order of entry. SDEP segments chained from

different roots in an area are intermixed in the sequential part of an area without

regard to which roots are their parents. SDEP segments are specifically designed

for fast insert capability. However, online retrieval is not as efficient because

increased input operations can result.

If all SDEP dependents were chained from a single root segment, processing with

Get Next in Parent calls would result in a backward sequential order. (Some

applications are able to use this method.) Normally, SDEP segments are retrieved

sequentially only by using the DEDB Sequential Dependent Scan utility

(DBFUMSC0), described in IMS Version 9: Utilities Reference: Database and

Transaction Manager. SDEP segments are then processed by offline jobs.

SDEP segments are used for data collection, journaling, and auditing applications.

Enqueue Level of Segment CIs

Allocation of CIs involves three different enqueue levels.

v A NO ENQ level, which is typical of any SDEP CI. SDEP segments can never be

updated; therefore they can be accessed and shared by all regions at the same

time.

v A SHARED level, which means that the CI can be shared between non-update

transactions. A CI at the SHARED level delays requests from any update

transactions.

v An EXCLUSIVE level, which prevents contenders from acquiring the same

resource.

The level of enqueue at which ROOT and SDEP segment CIs are originally

acquired depends on the intent of the transaction. If the intent is update, all

acquired CIs (with the exception of SDEP CIs) are held at the EXCLUSIVE level. If

the intent is not update, they’re held at the SHARED level. Of course, there is the

potential for deadlock.

The level of enqueue, just described, is reexamined each time the buffer stealing

facility is invoked. The buffer stealing facility examines each buffer (and CI) that is

already allocated and updates its level of enqueue.

All other enqueued CIs are released and therefore can be allocated by other

regions.

Related Reading: For more information about the buffer stealing facility, see “Fast

Path Buffer Allocation Algorithm” on page 283.

Figure 70 on page 124 shows an example of DEDB structure.

Data Entry Databases

Chapter 7. Choosing Fast Path Database Types 123

Figure 70. DEDB Structure Example

Data Entry Databases

124 Administration Guide: Database Manager

DEDB Space Search Algorithm

This topic contains diagnosis, modification, or tuning information.

The general rule for inserting a segment into a DEDB is the same as it is for an HD

database. The rule is to store the segment (root and direct dependents) into the

most desirable block.

For root segments, the most desirable block is the RAP CI. For direct dependents,

the most desirable block is the root CI. When space for storing either roots or direct

dependents is not available in the most desirable block, the DEDB insert algorithm

(described next) searches for additional space. Space to store a segment could

exist:

v In the dependent overflow

v In an independent overflow CI currently owned by this UOW

Additional independent overflow CIs would be allocated if required.

This algorithm attempts to store the data in the minimum amount of CIs rather than

scatter database record segments across a greater number of RAP and overflow

CIs. The trade-off is improved performance for future database record access

versus optimum space utilization.

DEDB Insert Algorithm

This topic contains diagnosis, modification or tuning information.

The DEDB insert algorithm searches for additional space when space is not

available in the most desirable block. For root segments, if the RAP CI does not

have sufficient space to hold the entire record, it contains the root and as many

direct dependents as possible. Base CIs that are not randomizer targets go unused.

The algorithm next searches for space in the first dependent overflow CI for this

UOW. From the header of the first dependent overflow CI, a determination is made

whether space exists in that CI.

Related Reading: For information on DEDB CI format and allocation, see IMS

Version 9: Diagnosis Guide and Reference.

If the CI pointed to by the current overflow pointer does not have enough space, the

next dependent overflow CI (if one exists) is searched for space. The current

overflow pointer is updated to point to this dependent overflow CI. If no more

dependent overflow CIs are available, then the algorithm searches for space in the

independent overflow part.

When an independent overflow CI has been selected for storing data, it can be

considered a logical extension of the overflow part for the UOW that requested it.

Figure 71 on page 126 shows how a UOW is extended into independent overflow.

This UOW, defined as 10 CIs, includes 8 Base CIs and 2 dependent overflow CIs.

Additional space is needed to store the database records that randomize to this

UOW. Two independent overflow CIs have been acquired, extending the size of this

UOW to 12 CIs. The first dependent overflow CI has a pointer to the second

independent overflow CI indicating that CI is the next place to look for space.

Data Entry Databases

Chapter 7. Choosing Fast Path Database Types 125

DEDB Free Space Algorithm

This topic contains diagnosis, modification, or tuning information.

The DEDB free space algorithm is used to free dependent overflow and

independent overflow CIs. When a dependent overflow CI becomes entirely empty,

it becomes the CI pointed to by the current overflow pointer in the first dependent

overflow CI, indicating that this is the first overflow CI to use for overflow space if

the most desirable block is full. An independent overflow CI is owned by the UOW

to which it was allocated until every segment stored in it has been removed. When

the last segment in an independent overflow CI is deleted, the empty CI is made

available for reuse. When the last segment in a dependent overflow CI is deleted, it

can be reused as described at the beginning of this topic.

A dependent overflow or an independent overflow CI can be freed in two ways:

v Reorganization

v Segment deletion

Reorganization

During online reorganization, the segments within a UOW are read in GN order and

written to the reorganization UOW. This process inserts segments into the

reorganization UOW, eliminating embedded free space. If all the segments do not fit

into the reorganization UOW (RAP CI plus dependent overflow CIs), then new

independent overflow CIs are allocated as needed. When the data in the

reorganization UOW is copied back to the correct location, then:

v The newly acquired independent overflow CIs are retained.

v The old segments are deleted.

v Previously allocated independent overflow CIs are freed.

Figure 71. Extending a UOW to Use Independent Overflow

Data Entry Databases

126 Administration Guide: Database Manager

Segment Deletion

A segment is deleted either by an application DLET call or because a segment is

REPLaced with a different length. Segment REPLace can cause a segment to

move. Full Function handles segment length increases differently from DEDBs. In

Full Function, an increased segment length that does not fit into the available free

space is split, and the data is inserted away from the prefix. For DEDBs, if the

replaced segment is changed, it is first deleted and then reinserted. The insertion

process follows the normal space allocation rules.

The REPL call can cause a dependent overflow or an independent overflow CI to

be freed if the last segment is deleted from the CI.

Managing Unusable Space with IMS Tools

Space in a DEDB should be closely monitored to avoid out-of-space conditions for

an area. Products such as the IMS High Performance (HP) Pointer Checker, which

includes the Hierarchical Database (HD) Tuning Aid and Space Monitor tools, can

identify the different percentages of free space in the RAP, dependent overflow, and

independent overflow CIs. If a large amount of space exists in the RAP CIs or

dependent overflow CIs, and independent overflow has a high use percentage, a

reorganization can allow the data to be stored in the root addressable part, freeing

up independent overflow CIs for use by other UOWs. The IMS HP Pointer Checker

and the tools it includes can help you determine if the data distribution is

reasonable.

For more information on tuning DEDBs, see “Tuning Fast Path Systems” on page

415.

DL/I Calls against a DEDB

This topic contains diagnosis, modification, or tuning information.

DEDB processing uses the same call interface as DL/I processing. Therefore, any

DL/I call or calling sequence executed against a DEDB has the same logical result

as if executed against an HDAM or PHDAM database.

The SSA rules for DEDBs have the following restrictions:

v You cannot use the Q command code with DEDBs.

v IMS ignores command codes used with sequential dependent segments.

v If you use the D command code in a call to a DEDB, the P processing option

need not be specified in the PCB for the program. The P processing option has a

different meaning for DEDBs than for DL/I databases.

Related Reading: For more information on how DEDBs are processed, see IMS

Version 9: Application Programming: Database Manager.

Mixed Mode Processing

IMS application programs can run as message processing programs (MPPs), batch

message processing programs (BMPs), and Fast Path programs (IFPs). IFPs can

access full function databases. Similarly, MPPs and BMPs can access DEDBs and

MSDBs.

Because of differences in sync point processing, there are differences in the way

database updates are committed. IFPs that request full function resources, or MPPs

Data Entry Databases

Chapter 7. Choosing Fast Path Database Types 127

(or BMPs) that request DEDB (or MSDB) resources operate in “mixed mode”. The

performance and resource use implications are discussed in “Fast Path

Synchronization Points” on page 149.

Main Storage Databases (MSDBs)

The MSDB structure consists of fixed-length root segments only, although the root

segment length can vary between MSDBs. The maximum length of any segment is

32000 bytes with a maximum key length of 240 bytes. Additional prefix data

extends the maximum total record size to 32258 bytes.

The following options are not available for MSDBs:

v Multiple data set groups

v Logical relationships

v Secondary indexing

v Variable-length segments

v Field-level sensitivity

The MSDB family of databases consists of three types:

v Terminal-related fixed database

v Terminal-related dynamic database

v Non-terminal-related database without terminal keys

Recommendation: ETO terminals cannot access terminal-related MSDBs. IBM

recommends that any new Fast Path database that you develop be DEDBs instead

of MSDBs. Also, you should consider converting any of your existing

non-terminal-related MSDBs with non-terminal-related-keys to VSO DEDBs. You

can use the MSDB-to-DEDB Conversion utility.

An MSDB is defined in the DBD in the same way as any other IMS database, by

coding ACCESS=MSDB in the DBD statement. The REL keyword in the DATASET

statement selects one of the four MSDB types.

Both dynamic and fixed terminal-related MSDBs have the following characteristics:

v The record can be updated only through processing of messages issued from the

LTERM that owns the record. However, the record can be read using messages

from any LTERM.

v The name of the LTERM that owns a segment is the key of the segment. An

LTERM cannot own more than one segment in any one MSDB.

v The key does not reside in the stored segment.

v Each segment in a fixed terminal-related MSDB is assigned to and owned by a

different LTERM.

Non-terminal-related MSDBs have the following characteristics:

v No ownership of segments exists.

v No insert or delete calls are allowed.

v The key of segments can be an LTERM name or a field in the segment. As with

a terminal-related MSDB, if the key is an LTERM name, it does not reside in the

segment. If the key is not an LTERM name, it resides in the sequence field of the

segment. If the key resides in the segment, the segments must be loaded in key

sequence because, when a qualified SSA is issued on the key field, a binary

search is initiated.

Data Entry Databases

128 Administration Guide: Database Manager

When to Use an MSDB

MSDBs store and provide access to an installation’s most frequently used data. The

data in an MSDB is stored in segments, and each segment available to one or all

terminals.

MSDBs provide a high degree of parallelism and are suitable for applications in the

banking industry (such as general ledger). To provide fast access and allow

frequent update to this data, MSDBs reside in virtual storage during execution.

One use for a terminal-related fixed MSDB is in an application in which each

segment contains data associated with a logical terminal. In this type of application,

the application program can read the data (possibly for general reporting purposes)

but cannot update it.

Non-terminal-related MSDBs (without terminal-related keys) are typically used in

applications in which a large number of people need to update data at a high

transaction rate. An example of this is a real-time inventory control application, in

which reduction of inventory is noted from many cash registers.

MSDBs Storage

The MSDB Maintenance utility (DBFDBMA0) creates the MSDBINIT sequential data

set in physical ascending sequence (see Figure 73 on page 130). During a cold

start, or by operator request during a normal warm start, the sequential data set

MSDBINIT is read and the MSDBs are created in virtual storage (see Figure 72).

 During a warm start, the control program uses the current checkpoint data set for

initialization. The MSDB Maintenance utility can also modify the contents of an old

MSDBINIT data set. For warm start, the master terminal operator can request use

of the IMS.MSDBINIT, rather than a checkpoint data set.

Diagnosis, Modification or Tuning Information

Figure 73 shows the MSDBINIT record format. Table 14 on page 130 explains the

record parts.

Figure 72. MSDB Pointers

Main Storage Databases (MSDBs)

Chapter 7. Choosing Fast Path Database Types 129

Table 14. MSDBINIT Record Format

Record Part Bytes Explanation

LL 2 Record length (32,258 maximum)

X'00' 2 Always hexadecimal zeros

DBDname 8 DBD name

Count 4 Segment count

Type 1 MSDB type:

v X'11' non-related

v X'31' non-related with terminal keys

v X'33' fixed related

v X'37' dynamic related

KL 1 Key length (240 maximum)

Key varies Key or terminal name

MSDB segment varies MSDB segment (32,000 maximum)

End of Diagnosis, Modification or Tuning Information

MSDB Record Storage

This topic contains diagnosis, modification, or tuning information.

MSDB records contain no pointers except the forward chain pointer (FCP)

connecting free segment records in the terminal-related dynamic database.

Figure 74 on page 131 shows a high-level view of how MSDBs are arranged in

priority sequence.

Figure 73. MSDBINIT Record Format

Main Storage Databases (MSDBs)

130 Administration Guide: Database Manager

Saving MSDBs for Restart

At system checkpoint, a copy of all MSDBs is written alternately to one of the

MSDB checkpoint data sets—MSDBCP1 or MSDBCP2. During restart, the MSDBs

are reloaded from the most recent copy on MSDBCP1 or MSDBCP2. During an

emergency restart, the log is used to update the MSDB. During a normal restart,

the operator can reload from MSDBINIT using the MSDBLOAD parameter on the

restart command.

On a cold start (including /ERE CHKPT 0), MSDBs are loaded from the MSDBINIT

data set.

DL/I Calls against an MSDB

All DL/I database calls, except those that specify “within parent”, are valid with

MSDBs. Because an MSDB is a root-only database, a “within parent” call is

meaningless. Additionally, the DL/I call, FLD, exists that is applicable to all MSDBs.

The FLD call allows an application program to check and modify a single field in an

MSDB segment.

Rules for Using an SSA

MSDB processing imposes the following restrictions on the use of an SSA (segment

search argument):

 No boolean operator

 No command code

Even with the preceding restrictions, the result of a call to the database with no

SSA, an unqualified SSA, or a qualified SSA remains the same as a call to the

full-function database. For example, a retrieval call without an SSA returns the first

record of the MSDB or the full-function database, depending on the environment in

which you are working. The following list shows the type of compare or search

technique used for a qualified SSA.

Type of Compare

Figure 74. Sequence of the Four MSDB Organizations

Main Storage Databases (MSDBs)

Chapter 7. Choosing Fast Path Database Types 131

v Sequence field: logical

v Non-sequence arithmetic field: arithmetic

v Non-sequence non-arithmetic: logical

Type of Search

v Sequence field: binary if operator is = or >=, otherwise sequential

v Non-sequence arithmetic field: sequential

v Non-sequence non-arithmetic: sequential

Insertion and Deletion of Segments

The terminal-related dynamic database accepts ISRT and DLET calls, and the other

MSDB databases do not. Actual physical insertion and deletion of segments do not

occur in the dynamic database. Rather, a segment is assigned to an LTERM from a

pool of free segments by an ISRT call. The DLET call releases the segment back to

the free segment pool.

Figure 75 on page 133 shows a layout of the four MSDBs and the control blocks

and tables necessary to access them. The Extended Communications Node Table

(ECNT) is located by a pointer from the Extended System Contents Directory

(ESCD), which in turn is located by a pointer from the System Contents Directory

(SCD). The ESCD contains first and last header pointers to the MSDB header

queue. Each of the MSDB headers contains a pointer to the start of its respective

database area.

Combination of Binary and Direct Access Methods

A combination access technique works against the MSDB on a DL/I call. The

access technique combines a binary search and the direct access method. A binary

search of the ECNT table attempts to match the table LTERM names to the LTERM

name of the requesting terminal. When a match occurs, the application program

accesses the segment of the desired database using a direct pointer in the ECNT

table. Access to the non-terminal-related database segments without terminal keys

is accomplished by a binary search technique only, without using the ECNT.

Figure 75 on page 133 shows the ECNT and MSDB storage layout.

Main Storage Databases (MSDBs)

132 Administration Guide: Database Manager

Position in an MSDB

Issuing a DL/I call causes a position pointer to fix on the current segment. The

meaning of “next segment” depends on the key of the MSDB. The current segment

in a non-terminal-related database without LTERM keys is the physical segment

against which a call was issued. The next segment is the following physically

adjacent segment after the current segment. The other three databases, using

LTERM names as keys, have a current pointer fixed on a position in the ECNT

table. Each entry in the table represents one LTERM name and segment pointers to

every MSDB with which LTERM works. A zero entry indicates no association

between an LTERM and an MSDB segment. If nonzero, the next segment is the

next entry in the table. The zero entries are skipped until a nonzero entry is found.

Figure 75. ECNT and MSDB Storage Layout

Main Storage Databases (MSDBs)

Chapter 7. Choosing Fast Path Database Types 133

The Field Call

The DL/I FLD call is available to MSDBs and DEDB. It allows for the operation on a

field, rather than on an entire segment. Additionally, it allows conditional operation

on a field.

Modification is done with the CHANGE form of the FLD call. The value of a field

can be tested with the VERIFY form of the FLD call. These forms of the call allow

an application program to test a field value before applying the change. If a VERIFY

fails, all CHANGE requests in the same FLD call are denied. This call is described

in IMS Version 9: Application Programming: Database Manager.

Call Sequence Results

The same call sequence against MSDBs and other IMS databases might bring

different results. For parallel access to MSDB data, updates to MSDB records take

place during sync point processing. Changes are not reflected in those records until

the sync point is completed. For example, the sequence of calls GHU

(Get-Hold-Unique), REPL (Replace), and GU (Get-Unique) for the same database

record results in the same information in the I/O area for the GU call as that

returned for the GHU.

The postponement of an updated database record to the point of commitment is

also true of FLD/CHANGE calls, and affects FLD/VERIFY calls. You should watch

for multiple FLD/VERIFY and FLD/CHANGE calls on the same field of the same

segment. Such sequences can decrease performance because reprocessing

results.

For terminal-related dynamic MSDBs, the following examples of call sequences do

not have the same results as with other IMS databases or DEDBs:

v A GHU following an ISRT receives a 'segment not found' status code.

v An ISRT after a DLET receives a 'segment already exists' status code.

v No more than one ISRT or DLET is allowed for each MSDB in processing a

transaction.

The preceding differences become more critical when transactions update or refer

to both full function DL/I and MSDB data. Updates to full function DL/I databases

and DEDBs are immediately available while MSDB changes are not. For example, if

you issue a GHU and a REPL for a segment in an MSDB, then you issue another

get call for the same segment in the same commit interval, the segment IMS

returns to you is the “old” value, not the updated one.

If processing is not single mode, this difference can increase. In the case of multiple

mode processing, the sync point processing is not invoked for every transaction.

Your solution might be to ask for single mode processing when MSDB data is to be

updated.

Another consideration for MSDB processing is that terminal-related MSDB

segments can be updated only by transactions originating from the owners of the

segment, the LTERMs. Programs that are non-transaction-driven BMPs can only

update MSDBs that

Main Storage Databases (MSDBs)

134 Administration Guide: Database Manager

Fast Path Virtual Storage Option

The Fast Path Virtual Storage Option (VSO) allows you to map data into virtual

storage or a coupling facility structure. You can map one or more DEDB areas into

virtual storage or a coupling facility structure by defining the DEDB areas as VSO

areas.

For high-end performance applications with DEDBs, defining your DEDB areas as

VSO allows you to realize the following performance improvements:

v Reduced read I/O

After an IMS and VSAM control interval (CI) has been brought into virtual

storage, all subsequent I/O read requests read the data from virtual storage

rather than from DASD.

v Decreased locking contention

For VSO DEDBs, locks are released after both of the following:

– Logging is complete for the second phase of an application synchronization

(commit) point

– The data has been moved into virtual storage

For non-VSO DEDBs, locks are held at the VSAM CI-level and are released only

after the updated data has been written to DASD.

v Fewer writes to the area data set

Updated data buffers are not immediately written to DASD; instead they are kept

in the data space and written to DASD at system checkpoint or when a threshold

is reached.

In all other respects, VSO DEDBs are the same as non-VSO DEDBs. Therefore,

VSO DEDB areas are available for IMS DBCTL and LU 6.2 applications, as well as

other IMS DB or IMS TM applications. Use the DBRC commands INIT.DBDS and

CHANGE.DBDS to define VSO DEDB areas.

The virtual storage for VSO DEDB areas is housed differently depending on the

share level assigned to the area. VSO DEDB areas with share levels of 0 and 1 are

loaded into a z/OS data space. VSO DEDB areas with share levels of 2 and 3 are

loaded into a coupling facility cache structure.

Coupling facility cache structures are defined by the system administrator and can

accommodate either a single DEDB area or multiple DEDB areas. Cache structures

that support multiple DEDB areas are called multi-area structures. For more

information on multi-area structures, see IMS Version 9: Administration Guide:

System.

Recommendation: Terminal-related MSDBs and non-terminal-related MSDBs with

terminal-related keys are not supported in IMS Version 5 and later releases.

Non-terminal-related MSDBs without terminal-related keys are still supported.

Therefore, you should consider converting all your existing MSDBs to VSO DEDBs

or non-VSO DEDBs.

Restrictions Using VSO DEDB Areas

VSO DEDB areas have the following restrictions in their use:

v VSO DEDB areas must be registered with DBRC.

v The maximum allowable size for either a z/OS data space or a coupling facility

cache structure is 2 GB (2 147 483 648 bytes).

Fast Path Virtual Storage Option

Chapter 7. Choosing Fast Path Database Types 135

|
|
|
|

|
|
|

|
|
|
|
|

|
|

The actual size available for a VSO area is the maximum size (2 GB) minus

amounts used by z/OS (from 0 to 4 KB) and IMS Fast Path (approximately 100

KB). To see the size, usage, and other statistics for a VSO DEDB area, enter the

/DISPLAY FPVIRTUAL command.

v The DEDB Area Data Set Compare utility (DBFUMMH0) does not support VSO

DEDB areas.

Related Reading:

v See “Accessing a Data Space” on page 143 for more information on data

spaces.

v See IMS Version 9: Command Reference for more information on the /DISPLAY

commands.

Defining a VSO DEDB Area

All of the Virtual Storage Option (VSO) information for a DEDB is recorded in the

RECON data set. Use the following parameters of the DBRC INIT.DBDS and

CHANGE.DBDS commands to define your VSO DEDB Areas:

VSO Defines the area as a VSO area.

 When a CI is read for the first time, it will be copied into a z/OS data space

or a coupling facility structure. Data is read into a common buffer and is

then copied into the data space or structure. Subsequent access to the data

retrieves it from the data space or structure rather than from DASD.

 CIs that are not read are not copied into the data space or structure.

 All updates to the data are copied back to the data space or structure and

any locks held are released. Updated CIs are periodically written back to

DASD.

NOVSO

Defines the area as a non-VSO area. This is the default.

 You can use NOVSO to define a DEDB as non-VSO or to turn off the VSO

option for a given area. If the area is in virtual storage when it is redefined

as NOVSO, the area must be stopped (/STOP AREA or /DBR AREA) or

removed from virtual storage (/VUNLOAD) for the change to take effect.

PRELOAD

For VSO areas, this preloads the area into the data space or coupling

facility structure when the VSO area is opened. This keyword implies the

PREOPEN keyword, thus if PRELOAD is specified, then PREOPEN does

not have to be specified.

 The root addressable portion and the independent overflow portion of an

area are loaded into the data space or coupling facility structure at control

region initialization or during /START AREA processing. Data is then read

from the data space or coupling facility structure to a common buffer.

Updates are copied back to the data space or coupling facility structure and

any locks are released. Updated CIs are periodically written back to DASD.

NOPREL

Defines the area as load-on-demand. For VSO DEDBs areas, as CIs are

read from the data set, they are copied to the data space or coupling facility

structure. This is the default.

 To define an area with NOPREL gives you the ability to deactivate the preload

processing. The area is not preloaded into the data space or coupling

facility structure the next time that it is opened.

Fast Path Virtual Storage Option

136 Administration Guide: Database Manager

|
|
|
|

|
|

|
|
|

|
|
|
|

|

|
|
|

|
|
|
|
|
|

|
|
|

If you specify NOPREL, and you want the area to be preopened, you must

separately specify PREOPEN for the area.

CFSTR1

Defines the name of the cache structure in the primary coupling facility.

Cache structure names must follow z/OS coupling facility naming

conventions. CFSTR1 uses the name of the DEDB area as its default. This

parameter is valid only for VSO DEDB areas that are defined with

SHARELVL(2|3).

 Related Reading: For detailed information on coupling facility naming, see

“Coupling Facility Structure Naming Convention” on page 140.

CFSTR2

Defines the secondary coupling facility cache structure name when you use

IMS-managed duplexing of structures. The cache structure name must

follow z/OS coupling facility naming conventions. CFSTR2 does not provide

a default name. This parameter is valid only for VSO areas of DEDBs that

are defined with SHARELVL(2|3) and that are single-area structures. This

parameter cannot be used with multi-area structures, which use

system-managed duplexing.

 Related Reading:

v For detailed information on coupling facility naming, see “Coupling

Facility Structure Naming Convention” on page 140.

v For more information on multi-area structures, see IMS Version 9:

Administration Guide: System.

MAS Defines a VSO DEDB area as using a multi-area structure as opposed to a

single-area structure.

 Related Reading: For more information on multi-area structures, see IMS

Version 9: Administration Guide: System.

NOMAS

Defines a VSO DEDB area as using a single-area cache structure as

opposed to a multi-area structure. NOMAS is the default.

LKASID

Indicates that buffer lookaside is to be performed on read requests for this

area. For VSO DEDB areas that use a multi-area structure, lookaside can

also be specified using the DFSVSMxx PROCLIB member. If there is a

discrepancy between the specifications in DBRC and those in DFSVSMxx,

the specifications in DFSVSMxx are used.

 Related Reading: For additional information on defining private buffer

pools, see “Defining a Private Buffer Pool Using the DFSVSMxx

IMS.PROCLIB Member” on page 141.

NOLKASID

Indicates that buffer lookaside is not to be performed on read requests for

this area.

 Related Reading: For additional information on defining private buffer

pools, see “Defining a Private Buffer Pool Using the DFSVSMxx

IMS.PROCLIB Member” on page 141.

VSO DEDB Areas and the PREOPEN and NOPREO Keywords

The PREOPEN and NOPREO keywords of DBRC’s INIT.DBDS and CHANGE.DBDS

commands apply to both VSO DEDB areas and non-VSO DEDB areas.

Fast Path Virtual Storage Option

Chapter 7. Choosing Fast Path Database Types 137

|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

|

|
|

|
|

||
|

|
|

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

When a NOPREO area is also defined as shared VSO with a share level of 2 or 3,

you can open the area with the /START AREA command. This connects the area to

the VSO structures.

You can use the DBRC commands to define your VSO DEDB areas at any time; it

is not necessary that IMS be active. The keywords specified on these DBRC

commands go into effect at two different points in Fast Path processing:

v Control region startup

After the initial checkpoint following control region initialization, DBRC provides a

list of areas with any of the VSO options (VSO, NOVSO, PRELOAD, and

NOPREL) or either of the PREOPEN or NOPREO options. The options are then

maintained by IMS Fast Path.

v Command processing

When you use a /START AREA command, DBRC provides the VSO options or

PREOPEN|NOPREO options for the area. If the area needs to be preopened or

preloaded, it is done at this time.

When you use a /STOP AREA command, any necessary VSO processing is

performed.

Related Reading: See IMS Version 9: Command Reference for details on start

and stop processing.

Sharing of VSO DEDB Areas

Sharing of VSO DEDB areas allows multiple IMS systems to concurrently read and

update the same VSO DEDB area. The three main participants are the coupling

facility hardware, the coupling facility policy software, and the XES and z/OS

services.

The coupling facility hardware provides high-performance, random-access shared

storage in which IMS systems can share data in a sysplex environment. The shared

storage area in the coupling facility is divided into sections, called structures. For

VSO DEDB data, the structure type used is called a cache structure, as opposed to

a list structure or a lock structure. The cache structure is designed for

high-performance read reference reuse and deferred write of modified data. The

coupling facility and structures are defined in a common z/OS data set, the couple

data set (COUPLExx).

The coupling facility policy software and its cache structure services provide

interfaces and services to z/OS that allow sharing of VSO DEDB data in shared

storage. Shared storage controls VSO DEDB reads and writes:

v A read of a VSO CI brings the CI into the coupling facility from DASD.

v A write of an updated VSO CI copies the CI to the coupling facility from main

storage, and marks it as changed.

v Changed CI data is periodically written back to DASD.

The XES and z/OS services provide a way of manipulating the data within the

cache structures. They provide high performance, data integrity, and data

consistency for multiple IMS systems sharing data.

The Coupling Facility and Shared Storage

In the coupling facility shared storage, a cache structure can represent one or

multiple VSO DEDB areas; however, any given VSO DEDB area can be

represented by only one cache structure. Cache structures are not persistent. That

is, they are deleted after the last IMS system disconnects from the coupling facility.

Fast Path Virtual Storage Option

138 Administration Guide: Database Manager

|
|
|

|
|
|
|

|
|
|
|

Duplexing Structures

Duplexed structures are duplicate structures for the same area. Duplexing allows

you to have dual structure support for your VSO DEDB areas, which helps to

ensure the availability and recoverability of your data.

Structure duplexing can be either IMS-managed or system-managed. With

IMS-managed duplexing, you must define both the primary and the secondary

structures in DBRC and in the z/OS coupling facility resource management (CFRM)

policy. When you use system-managed duplexing, you have to define only the

primary structure. The duplexing operation is transparent to you, except that you

need to request duplex mode in your CFRM policy and allocate additional resources

for a secondary structure instance.

VSO multi-area structures require the use of system-managed duplexing.

Related Reading: For information about enabling and initiating system-managed

duplexing, see the chapter on data sharing in IMS Version 9: Administration Guide:

System.

Automatic Altering of Structure Size

z/OS can automatically expand or contract the size of a VSO structure in the

coupling facility if it needs storage space. Enabling this function for preloaded VSO

DEDBs can prevent wasted space; however, you must be careful with this function

when VSO DEDBs are loaded on demand.

If you have dual structures, IMS systems below Version 8 cannot connect to

structures with different sizes.

Related Reading: For information on the CFRM parameters to enable automatic

altering of structures, see the chapter on data sharing in IMS Version 9:

Administration Guide: System.

System-Managed Rebuild

You can reconfigure a coupling facility while keeping all VSO structures online by

copying the structures to another coupling facility. There is no change to the VSO

definition.

Related Reading: For information on enabling and allocating a system-managed

rebuild, allocating and populating a new structure, and managing the coupling

facility, see the chapter on data sharing in IMS Version 9: Administration Guide:

System.

Private Buffer Pools

IMS provides special private buffer pools for Shared VSO areas. Each pool can be

associated with an area, a DBD, or a specific group of areas. These private buffer

pools are only used for Shared VSO data. Using these private buffer pools, the

customer can request buffer lookaside for the data. The keywords LKASID or

NOLKASID, when specified on the DBRC commands INIT.DBDS or CHANGE.DBDS,

indicate whether to use this lookaside capability or not.

Defining a VSO Cache Structure Name

The system programmer defines all coupling facility structures, including VSO cache

structures, in the CFRM policy definition. In this policy definition, VSO structures are

defined as cache structures, as opposed to list structures (used by shared queues)

or lock structures (used by IRLM).

Fast Path Virtual Storage Option

Chapter 7. Choosing Fast Path Database Types 139

|
|
|

|
|
|
|
|
|
|

Coupling Facility Structure Naming Convention

The structure name is 16 characters long, padded on the right with blanks if

necessary. It can contain any of the following, but must begin with an uppercase,

alphabetic character:

 Uppercase alphabetic characters

 Numeric characters

 Special characters ($, @, and #)

 Underscore (_)

IBM names begin with:

 ’SYS’

 Letters ’A’ through ’I’ (uppercase)

 An IBM component prefix

Examples of Defining Coupling Facility Structures

Figure 76 shows how to define two structures in separate coupling facilities.

 In the example, the programmer defined one list structure (LIST01) and one cache

structure (CACHE01).

//UPDATE EXEC PGM=IXCL2FDA

//SYSPRINT DD SYSOUT=A

//*

//* THE FOLLOWING SYSIN WILL UPDATE THE POLICY DATA IN THE COUPLE

//* DATASET FOR CFRM (COUPLING FACILITY RESOURCE MANAGEMENT)

//*

//SYSIN DD *

 UPDATE DSN(IMS.DSHR.PRIME.FUNC) VOLSER(DSHR03)

 DEFINE POLICY(POLICY1)

 DEFINE CF(FACIL01)

 ND(123456)

 SIDE(0)

 ID(01)

 DUMPSPACE(2000)

 DEFINE CF(FACIL02)

 ND(123456)

 SIDE(1)

 ID(02)

 DUMPSPACE(2000)

 DEFINE STR(LIST01)

 SIZE(1000)

 PREFLIST(FACIL01,FACIL02)

 EXCLLIST(CACHE01)

 DEFINE STR(CACHE01)

 SIZE(1000)

 PREFLIST(FACIL02,FACIL01)

 EXCLLIST(LIST01)

/*

Figure 76. Example of Updating a Policy with New Structures

Fast Path Virtual Storage Option

140 Administration Guide: Database Manager

Attention: When defining a cache structure to DBRC, ensure that the name is

identical to the name used in the CFRM policy (see “Registering a

Cache Structure Name with DBRC”).

Registering a Cache Structure Name with DBRC

When you define DEDB areas to DBRC, use the same structure names defined in

the CFRM policy to specify the structures that each DEDB area will use. The DEDB

area definitions and the corresponding structure names are then stored in the

RECON data set. The structure names are entered in either the CFSTR1 or

CFSTR2 parameter of the INIT.DBDS or CHANGE.DBDS command. For more

information on defining DEDB areas, see “Defining a VSO DEDB Area” on page

136.

Restriction: The CFSTR2 parameter is not supported by multi-area structures. If

you specify both CFSTR2 and MAS in INIT.DBDS, or use CHANGE.DBDS

to apply CFSTR2 to DEDB area already defined by MAS, IMS will

reject the DBRC command with either a DSP0141I or DSP0144I error

message.

Figure 77 registers structure name TSTDEDBAR1.

Defining a Private Buffer Pool Using the DFSVSMxx

IMS.PROCLIB Member

Define a private buffer pool using the following format:

DEDB=(poolname,size,pbuf,sbuf,maxbuf,LKASID|NOLKASID,dbname)

where:

poolname 8 character name of the pool. Used in displays and reports.

size The buffer size of the pool. All the standard DEDB-supported buffer

sizes are supported.

pbuf The primary buffer allocation. The first allocation receives this

number of buffers. Maximum value is 99999.

sbuf The secondary buffer allocation. If the primary allocation starts to

run low, another allocation of buffers is made. This amount

indicates the secondary allocation amount. Maximum value is

99999.

maxbuf The maximum number of buffers allowed for this pool. It is a

combination of PBUF plus some iteration of SBUF. Maximum value

is 99999.

LKASID|NOLKASID

Indicates whether this pool is to be used as a local cache with

buffer lookaside capability. This value is cross-checked with the

DBRC specification of LKASID to determine which pool the area will

use. If there is an inconsistency between the DEDB statement and

DBRC, the DBRC value takes precedence.

dbname Association of the pool to a specific area or DBD. If the dbname is

an area name, then the pool is used only by that area. If the

INIT.DBDS DBD(DEDBFR01) AREA(DEDBAR1) VSO PRELOAD CFSTR1(TSTDEDBAR1)

Figure 77. Defining a VSO Area Coupling Facility Structure Name in DBRC

Fast Path Virtual Storage Option

Chapter 7. Choosing Fast Path Database Types 141

|
|
|
|
|
|
|

|
|

dbname specifies a DBD name, the pool is used by all areas in that

DBD. The dbname is first checked for an area name then for a

DBD name.

Figure 78 shows examples of how to define a private buffer pool.

 In this example, 2 private buffer pools are defined:

1. The first pool has a buffer size of 512, with an initial allocation of 400 buffers,

increasing by 50, as needed, to a maximum of 800. This pool will be used as a

local cache, and buffer lookaside will be performed for areas that share this

pool.

2. The second pool has a buffer size of 8K, with an initial allocation of 100 buffers,

increasing by 20, as needed, to a maximum of 400. This pool will be used in the

same fashion as the common buffer pool. There will be no lookaside performed.

If the customer does not define a private buffer pool, the default parameter values

are calculated as follows:

DEDB=(poolname,XXX,64,16,512)

where:

v XXX is the CI size of the area to be opened.

v The initial buffer allocation is 64.

v The secondary allocation is 16.

v The maximum number of buffers for the pool is 512.

v The LKASID option is specified if it is specified in DBRC for the area.

Defining a Private Buffer Pool for a Multi-Area Structure

You can define private buffer pools for multi-area structure using the DEDBMAS=

keyword in the DFSVSMxx PROCLIB member. The format is as follows:

DEDBMAS=(poolname,cisize,pbuf,sbuf,maxbuf,LKASID|NOLKASID,strname)

Except for the following parameters, the parameters for DEDBMAS are the same as

those in the DFSVSMxx DEDB= keyword:

cisize The control interval size of the area. All areas that share a

multi-area structure must have the same control interval size. If

there is a discrepancy between the control interval size of the area

used in creating the structure and the control interval size of the

area attempting to share the structure, the open process for the

area attempting to share the structure fails.

strname The required 1- to 16-character name of the primary coupling

facility structure. The installation must have defined the structure in

the CFRM administrative policy. The structure name must follow the

naming conventions of the CFRM. If the name has fewer than 16

characters, the system pads the name with blanks. The valid

characters are A–Z, 0–9, and the characters $, &, #, and _. Names

must be uppercase and start with alphabetic character.

DEDB=(POOL1,512,400,50,800,LKASID)

DEDB=(POOL2,8196,100,20,400,NOLKASID)

Figure 78. Examples of Defining Private Buffer Pools

Fast Path Virtual Storage Option

142 Administration Guide: Database Manager

|
|
|

|

|
|

||
|
|
|
|
|

||
|
|
|
|
|
|

Restriction: Do not begin structure names with the letters A-I, or

the character string SYS. IBM reserves these characters for its

structures.

Acquiring and Accessing Data Spaces for VSO DEDB Areas

IMS allocates data spaces to accommodate VSO DEDB areas. When a VSO DEDB

area CI is preloaded or read for the first time, it is copied into a data space (or a

coupling facility structure). Subsequent access to the data retrieves it from the data

space rather than from DASD.

Acquiring a Data Space

IMS acquires data spaces for VSO areas when the VSO areas first open, but not

before. The maximum size of any VSO area data space is two gigabytes. Data

spaces for preloaded VSO areas use the z/OS DREF (disabled reference) option.

Data spaces for non-preloaded VSO areas do not use the DREF option.

DREF data spaces use a combination of central storage and expanded storage, but

no auxiliary storage. Data spaces without the DREF option use central storage,

expanded storage, and auxiliary storage, if auxiliary storage is available.

IMS acquires additional data spaces for VSO areas, both with DREF and without,

as needed.

Accessing a Data Space

During IMS control region initialization, IMS calls DBRC to request a list of all the

areas that are defined as VSO. This list includes the PREOPEN or PRELOAD

status of each VSO area. If VSO areas exist, IMS acquires the appropriate data

spaces. Then IMS opens all areas defined with PREOPEN and opens and loads

areas defined with PRELOAD. During a normal or emergency restart, the opening

and loading of areas might occur after control region initialization, if you have

changed the specifications of the FPOPN parameter in the IMS procedure.

IMS assigns areas to data spaces using a “first fit” algorithm. The entire root

addressable portion of an area (including independent overflow) resides in the data

space. The sequential dependent portion does not reside in the data space.

The amount of space needed for an area in a data space is (CI size) × (number of

CIs per UOW) × ((number of UOWs in root addressable portion) + (number of

UOWs in independent overflow portion)) rounded to the next 4 KB.

Expressed in terms of the parameters of the DBDGEN AREA statement, this formula is

(SIZE parameter value) × (UOW parameter value) × (ROOT parameter value)

rounded to the next 4 KB.

The actual amount of space in a data space available for an area (or areas) is two

gigabytes (524,288 blocks, 4 KB each) minus an amount reserved by z/OS (from 0

to 4 KB) minus an amount used by IMS Fast Path (approximately 100 KB). You can

use the /DISPLAY FPVIRTUAL command to determine the actual storage usage of a

particular area.

Related Reading: For sample output from this command, see IMS Version 9:

Command Reference.

Fast Path Virtual Storage Option

Chapter 7. Choosing Fast Path Database Types 143

|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|

Resource Control and Locking

Using VSO can reduce the number and duration of DEDB resource locking

contentions by managing DEDB resource requests on a segment level and holding

locks only until updated segments are returned to the data space. Segment-level

resource control and locking applies only to Get and Replace calls.

Without VSO, the VSAM CI (physical block) is the smallest available resource for

DEDB resource request management and locking. If there is an update to any part

of the CI, the lock is held until the whole CI is rewritten to DASD. No other

requester is allowed access to any part of the CI until the first requester’s lock is

released.

With VSO, the database segment is the smallest available resource for DEDB

resource request management and locking. Segment-level locking is available only

for the root segment of a DEDB with a root-only structure, and when that root

segment is a fixed-length segment. If processing options R or G are specified in the

calling PCB, IMS can manage and control DEDB resource requests and serialize

change at the segment level; for other processing options, IMS maintains VSAM CI

locks. Segment locks are held only until the segment updates are applied to the CI

in the data space. Other requesters for different segments in the same CI are

allowed concurrent access.

A VSO DEDB resource request for a segment causes the entire CI to be copied

into a common buffer. VSO manages the segment request at a level of control

consistent with the request and its access intent. VSO also manages access to the

CI that contains the segment but at the share level in all cases. A different user’s

subsequent request for a segment in the same CI accesses the image of the CI

already in the buffer.

Updates to the data are applied directly to the CI in the buffer at the time of the

update. Segment-level resource control and serialization provide integrity among

multiple requesters. After an updated segment is committed and applied to the copy

of the CI in the data space, other requesters are allowed access to the updated

segment from the copy of the CI in the buffer.

If after a segment change the requester’s updates are not committed for any

reason, VSO copies the unchanged image of the segment from the data space to

the CI in the buffer. VSO does not allow other requesters to access the segment

until VSO completes the process of removing the uncommitted and cancelled

updates. Locking at the segment level is not supported for shared VSO areas. Only

CI locking is supported.

When a compression routine is defined on the root segment of a DEDB with a

root-only structure, and when that root segment is a fixed-length segment, its length

becomes variable after being compressed. Replacing a compressed segment then

requires a delete and an insert. In this case, segment level control and locking is

not available.

Preopen Areas and VSO Areas in a Data Sharing Environment

A VSO can be registered with any of the following share levels:

SHARELVL(0)

Exclusive access: in a data sharing environment, any SHARELVL(0) area

with the PREOPEN option (including VSO PREOPEN and VSO PRELOAD)

Fast Path Virtual Storage Option

144 Administration Guide: Database Manager

|

|
|
|

is opened by the first IMS system to complete its control region initialization.

IMS will not attempt to preopen the area for any other IMS.

SHARELVL(1)

One updater, many readers: in a data sharing environment, a

SHARELVL(1) area with the PREOPEN option is preopened by all sharing

IMS systems. The first IMS system to complete its control region

initialization has update authorization; all others have read authorization.

 If the SHARELVL(1) area is a VSO area, it is allocated to a data space by

any IMS that opens the area. If the area is defined as VSO PREOPEN or

VSO PRELOAD, it is allocated to a data space by all sharing IMS systems.

 If the area is defined as VSO NOPREO NOPREL, it is allocated to a data

space by all IMS systems, as each opens the area. The first IMS to access

the area has update authorization; all others have read authorization.

SHARELVL(2)

Block-level sharing: a SHARELVL(2) area with at least one coupling facility

structure name (CFSTR1) defined is shared at the block or control interval

(CI) level within the scope of a single IRLM. Multiple IMS systems can be

authorized for update or read processing if they are using the same IRLM.

SHARELVL(3)

Block-level sharing: a SHARELVL(3) area with at least one coupling facility

structure name (CFSTR1) defined is shared at the block or control interval

(CI) level within the scope of multiple IRLMs. Multiple IMS systems can be

authorized for nonexclusive access.

Attention: Be careful when registering a VSO area as SHARELVL(1). Those

systems that receive read-only authorization never see the updates

made by the read/write system because all reads come from the data

space (not from DASD, where updates are eventually written).

Input/Output Processing With VSO

This topic describes how IMS uses buffers, data spaces, and DASD in response to

read and update requests.

Input Processing

When an application program issues a read request to a VSO area, IMS checks to

see if the data is in the data space. If the data is in the data space, it is copied from

the data space into a common buffer and passed back to the application. If the data

is not in the data space, IMS reads the CI from the area data set on DASD into a

common buffer, copies the data into the data space, and passes the data back to

the application.

For SHARELVL(2|3) VSO areas, Fast Path uses private buffer pools. Buffer

lookaside is an option for these buffer pools. When a read request is issued against

a SHARELVL(2|3) VSO area using a lookaside pool, a check is made to see if the

requested data is in the pool. If the data is in the pool, a validity check to XES is

made. If the data is valid, it is passed back to the application from the local buffer. If

the data is not found in the local buffer pool or XES indicates that the data in the

pool is not valid, the data is read from the coupling facility structure and passed to

the application. When the buffer pool specifies the no-lookaside option, every

request for data goes to the coupling facility.

For those areas that are defined as load-on-demand (using the VSO and NOPREL

options), the first access to the CI is from DASD. The data is copied to the data

Fast Path Virtual Storage Option

Chapter 7. Choosing Fast Path Database Types 145

|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

space and then subsequent reads for this CI retrieve the data from the data space

rather than from DASD. For those areas that are defined using the VSO and PRELOAD

options, all access to CIs comes from the data space.

Whether the data comes from DASD or from the data space is transparent to the

processing done by application programs.

Output Processing

During phase 1 of synchronization point processing VSO data is treated the same

as non-VSO data. The use of VSO is transparent to logging.

During phase 2 of the synchronization point processing VSO and non-VSO data are

treated differently. For VSO data, the updated data is copied to the data space, the

lock is released and the buffer is returned to the available queue. The relative byte

address (RBA) of the updated CI is maintained in a bitmap. If the RBA is already in

the bitmap from a previous update, only one copy of the RBA is kept. At interval

timer, the updated CIs are written to DASD. This batching of updates reduces the

amount of output processing for CIs that are frequently updated. While the updates

are being written to DASD, they are still available for application programs to read

or update because copies of the data are made within the data space just before it

is written.

For SHARELVL(2|3) VSO areas, the output thread process is used to write updated

CIs to the coupling facility structures. When the write is complete, the lock is

released. XES maintains the updated status of the data in the directory entry for the

CI.

The PRELOAD Option

The loading of one area takes place asynchronously with the loading of any others.

The loading of an area is (or can be) concurrent with an application program’s

accesses to that area. If the CI requested by the application program has been

loaded into the data space, it is retrieved from the data space. If the requested CI

has not yet been loaded into the data space, it is obtained from DASD and UOW

locking is used to maintain data integrity.

The preload process for SHARELVL(2|3) VSO areas is similar to that of

SHARELVL(0|1). Multiple preloads can be run concurrently, and also concurrent

with application processing. The locking, however, is different. SHARELVL(2|3)

Areas that are loaded into coupling facility structures use CI locking instead of UOW

locking. The load process into the coupling facility is done one CI at a time.

If a read error occurs during preloading, an error message flags the error, but the

preload process continues. If a subsequent application program call accesses a CI

that was not loaded into the data space due to a read error, the CI request goes out

to DASD. If the read error occurs again, the application program receives an “A0”

status code, just as with non-VSO applications. If instead the access to DASD is

successful this time, the CI is loaded into the data space.

I/O Error Processing

Using VSO increases the availability of data when write errors occur. When a CI for

a VSO area has been put into a data space, the CI is available from that data

space as long as IMS is active, even if a write error occurs when an update to the

CI is being written to DASD.

Write Errors: When a write error occurs, IMS create an error queue element

(EQE) for the CI in error. For VSO areas, all read requests are satisfied by reading

Fast Path Virtual Storage Option

146 Administration Guide: Database Manager

the data from the data space. Therefore, as long as the area continues to reside in

the data space, the CI that had the write error continues to be available. When the

area is removed from the data space, the CI is no longer available and any request

for the CI receives an “AO” status code.

Read Errors: For VSO areas, the first access to a CI causes it to be read from

DASD and copied into the data space. From then on, all read requests are satisfied

from the data space. If there is a read error from the data space, z/OS abends.

For VSO areas that have been defined with the PRELOAD option, the data is

preloaded into the data space; therefore, all read requests are satisfied from the

data space.

Related Reading: See “The PRELOAD Option” on page 146 for a discussion of

read error handling during the preload process.

To provide for additional availability, SHARELVL(2|3) VSO areas support multiple

structures per area. If a read error occurs from one of the structures, the read is

attempted from the second structure. If there is only one structure defined and a

read error occurs, an AO status code is returned to the application.

There is a maximum of three read errors allowed from a structure. When the

maximum is reached and there is only one structure defined, the area is stopped

and the structure is disconnected.

When the maximum is reached and there are two structures defined, the structure

in error is disconnected. The one remaining structure is used. If a write error to a

structure occurs, the CI in error is deleted from the structure and written to DASD.

The delete of the CI is done from the sharing partners. If none of the sharers can

delete the CI from the structure, an EQE is generated and the CI is deactivated. A

maximum of three write errors are allowed to a structure. If there are two structures

defined and one of them reaches the maximum allowed, it is disconnected.

Checkpoint Processing

During a system checkpoint, all of the VSO area updates that are in the data space

are written to DASD. All of the updated CIs in the CF structures are also written to

DASD. Only CIs that have been updated are written. Also, all updates that are in

progress are allowed to complete before checkpoint processing continues.

VSO Options Across IMS Restart

For all types of IMS restart except XRF takeover (cold start, warm start, emergency

restart, COLDBASE, COLDCOMM and COLDSYS emergency restart), the VSO

options in effect after restart are those defined to DBRC. In the case of the XRF

takeover, the VSO options in effect after the takeover are the same as those in

effect for the active IMS prior to the failure that caused the XRF takeover.

Emergency Restart Processing

Recovery of VSO areas across IMS or z/OS failures is similar to recovery of

existing non-VSO areas. IMS examines the log records, from a previous system

checkpoint to the end of the log, to determine if there are any committed updates

that were not written to DASD before the failure. If any such committed updates are

found, IMS will REDO them (apply the update to the CI and write the updated CI to

DASD). Because VSO updates are batched together during normal processing,

VSO areas are likely to require more REDO processing than non-VSO areas.

Fast Path Virtual Storage Option

Chapter 7. Choosing Fast Path Database Types 147

During emergency restart log processing, IMS tracks VSO area updates differently

depending on the share level of the VSO area. For share levels 0 and 1, IMS uses

data spaces to track VSO area updates. For share levels 2 and 3, IMS uses a

buffer in memory to track VSO area updates.

IMS also obtains a single non-DREF data space which it releases at the end of

restart. If restart log processing is unable to get the data space or main storage

resources it needs to perform VSO REDO processing, the area is stopped and

marked as “recovery needed”.

By default, at the end of emergency restart, IMS opens areas defined with the

PREOPEN or PRELOAD options. IMS then loads areas with the PRELOAD option into a

data space or coupling facility structure. You can alter this behavior by using the

FPOPN keyword of the IMS procedure to have IMS restore all VSO DEDB areas to

their open or closed state at the time of the failure.

Related Reading: For more information on specifying how IMS reopens DEDB

areas during an emergency restart, see “Reopening DEDB Areas During an

Emergency Restart” on page 111.

VSO areas without the PREOPEN or PRELOAD options are assigned to a data space

during the first access following emergency restart.

After an emergency restart, the VSO options and PREOPEN|NOPREO options in

effect for an area are those that are defined to DBRC, which may not match those

in effect at the time of the failure. For example, a non-shared VSO area removed

from virtual storage by the /VUNLOAD command before the failure, is restored to the

data space after the emergency restart. For shared VSO areas, the area remains

unloaded until the next /STA AREA command is issued for it.

VSO Options with XRF

During the tracking and takeover phases on the alternate IMS, log records are

processed in the same manner as during active IMS emergency restart (from a

previous active system checkpoint to the end of the log). The alternate IMS uses

the log records to determine which areas have committed updates that were not

written to DASD before the failure of the active IMS. If any such committed updates

are found, the alternate will REDO them, following the same process as for active

IMS emergency restart.

Related Reading: See “Emergency Restart Processing” on page 147 for

information on restart and REDO.

During tracking, the alternate uses data spaces to track VSO area updates: in

addition to the data space resources used for VSO areas, the alternate obtains a

single non-DREF data space which it releases at the end of takeover. If XRF

tracking or takeover is unable to get the data space or main storage resources it

needs to perform VSO REDO processing, the area is stopped and marked

“recovery needed”.

Following an XRF takeover, areas that were open or in the data space remain open

or in the data space. The VSO options and PREOPEN|NOPREO options that were in

effect for the active IMS before the takeover remain in effect on the alternate (the

new active) after the takeover. Note that these options may not match those defined

to DBRC. For example, a VSO area removed from virtual storage by the /VUNLOAD

command before the takeover is not restored to the data space after the takeover.

Fast Path Virtual Storage Option

148 Administration Guide: Database Manager

|
|
|
|

|
|
|
|
|

|
|
|

|
|

VSO areas defined with the preload option are preloaded at the end of the XRF

takeover. In most cases, dependent regions can access the area before preloading

begins, but until preloading completes, some area read requests may have to be

retrieved from DASD.

Fast Path Synchronization Points

MSDBs and DEDBs are not updated during application program processing, but the

updates are kept in buffers until a sync point. Output messages are not sent until

the message response is logged. The Fast Path sync point is defined as the next

GU call for a message-driven program, or a SYNC or CHKP call for a BMP using

Fast Path facilities. Sync point processing occurs in two phases.

Phase 1 - Build Log Record

DEDB updates and verified MSDB records are written in system log records. All

DEDB updates for the current sync point are chained together as a series of log

records. Resource contentions, deadlocks, out-of-space conditions, and MSDB

verify failures are discovered here.

Phase 2 - Write Record to System Log

Database and message records are written to the IMS system log. After logging,

MSDB records are updated, the DEDB updates begin, and messages are sent to

the terminals. DEDB updates are applied with a type of asynchronous processing

called an output thread. Until the DEDB changes are made, any program that tries

to access unwritten segments is put in a wait state.

If, during application processing, a Fast Path program issues a call to a database

other than MSDB or DEDB, or to an alternate PCB, the processing is serialized with

full function events. This can affect the performance of the Fast Path program. In

the case of a BMP or MPP making a call to a Fast Path database, the Fast Path

resources are held, and the throughput for Fast Path programs needing these

resources can be affected.

Managing I/O Errors and Long Wait Times

When a database I/O error occurs in single area data sets (ADS), IMS copies the

buffer contents of the error control interval (CI) to a virtual buffer. A subsequent DL/I

request causes the error CI to be read back into the buffer pool. The write error

information and buffers are maintained across restarts, allowing recovery to be

deferred to a convenient time. I/O error retry is automatically performed at database

close time and at system checkpoint. If the retry is successful, the error condition

no longer exists and recovery is not needed.

Multiple Area Data Sets I/O Timing (MADSIOT) helps you avoid the excessively

long wait times (also known as a long busy) that can occur while a RAMAC® disk

array performs internal recovery processing.

Restriction: MADSIOT applies only to multiple area data sets (MADS). For single

area data sets (ADS), IMS treats the long busy condition as a permanent I/O error

handled by the Fast Path I/O toleration function. The MADSIOT function works only

on a system that supports the long busy state.

To invoke MADSIOT, you must define the MADSIOT keyword on the DFSVSMxx

PROCLIB member. The /STA MADSIOT and /DIS AREA MADSIOT commands serve to

start and monitor the MADSIOT function.

Fast Path Virtual Storage Option

Chapter 7. Choosing Fast Path Database Types 149

Additionally, MADSIOT requires the use of a Coupling Facility (CFLEVEL=1 or later)

list structure in a sysplex environment. MADSIOT uses this Coupling Facility to

store information required for DB recovery. You must use the CFRM policy to define

the list structure name, size, attributes, and location.

Table 15 shows the required CFRM list structure storage sizes when the number of

changed CIs is 1 000, 5 000, 20 000, and 30 000.

 Table 15. Required CFRM List Structure Storage Sizes

Altered number of CIs

(entrynum)

Required Storage Size (listheadernum=50)

1 000 1 792 KB

5 000 3 584 KB

20 000 11 008 KB

30 000 15 616 KB

Note: The values for Required Storage Size in Table 15 are for CF level 12 and

might change at higher CF levels.

The CFRM list structure sizes in Table 15 were estimated using the following

formula: storage size = 24576 + 712 * listheadernum + 107 * entrynum

Related Reading:

v For additional information on the MADSIOT keyword, see the topic on the

DFSVSMxx PROCLIB member in IMS Version 9: Installation Volume 2: System

Definition and Tailoring.

v For an example of defining CFRM policies, see the IMS Version 9: Common

Queue Server Guide and Reference.

v For information on the /STA MADSIOT and /DIS AREA MADSIOT commands, see the

IMS Version 9: Command Reference.

Registering Fast Path Databases in DBRC

Although databases need not be registered in DBRC in order for the error handling

to work, registration is highly recommended. If an error occurs on a database not

registered and the system stops, the database could be damaged if the system is

restarted and a /DBR command is not issued prior to accessing the database. The

restart causes the error buffers to be restored as they were when the system

stopped. If the same block had been updated during the batch run, the batch

update would be overlaid.

Managing I/O Errors and Long Wait Times

150 Administration Guide: Database Manager

|
|

||

|
|
|

||

||

||

||
|

|

Chapter 8. Choosing Optional Database Functions

After you have determined the type of database that best suits your application’s

processing requirements, you are ready to determine which additional IMS functions

you need to use.

This chapter explains the following functions and describes when and how to use

them:

v “Logical Relationships”

v “Secondary Indexes” on page 186

v “Variable-Length Segments” on page 209

v “Segment Edit/Compression Exit Routine” on page 212

v “Data Capture Exit Routines” on page 215

v “Field-Level Sensitivity” on page 220

v “Multiple Data Set Groups” on page 230

v “Block-Level Data Sharing and CI Reclaim” on page 237

v “HALDB Single Partition Processing” on page 237

v “Integrated HALDB Online Reorganization Function” on page 238

v “Storing XML Data in IMS Databases” on page 238

Notes:

1. These functions do not apply to GSAM, MSDB, HSAM, and SHSAM databases.

2. Only the variable-length segment function, the Segment Edit/Compression exit

routine, and the Data Capture exit routine apply to DEDBs.

Logical Relationships

The following database types support logical relationships:

v HISAM

v SHISAM

v HDAM

v PHDAM

v HIDAM

v PHIDAM

Logical relationships resolve conflicts in the way application programs need to view

segments in the database. With logical relationships, application programs can

access:

v Segment types in an order other than the one defined by the hierarchy

v A data structure that contains segments from more than one physical database.

An alternative to using logical relationships to resolve the different needs of

applications is to create separate databases or carry duplicate data in a single

database. However, in both cases this creates duplicate data. Avoid duplicate data

because:

v Extra maintenance is required when duplicate data exists because both sets of

data must be kept up to date. In addition, updates must be done simultaneously

to maintain data consistency.

v Extra space is required on DASD to hold duplicate data.

© Copyright IBM Corp. 1974, 2004 151

By establishing a path between two segment types, logical relationships eliminate

the need to store duplicate data. To establish a logical relationship, three segment

types are always defined:

 A physical parent

 A logical parent

 A logical child

Example: Two databases, one for orders that a customer has placed and one for

items that can be ordered, are called ORDER and ITEM. The ORDER database

contains information about customers, orders, and delivery. The ITEM database

contains information about inventory.

If an application program needs data from both databases, this can be done by

defining a logical relationship between the two databases. As shown in Figure 79, a

path can be established between the ORDER and ITEM databases using a

segment type, called a logical child segment, that points into the ITEM database.

Figure 79 is a simple implementation of a logical relationship. In this case, ORDER

is the physical parent of ORDITEM. ORDITEM is the physical child of ORDER and

the logical child of ITEM.

In a logical relationship, there is a logical parent segment type and it is the segment

type pointed to by the logical child. In this example, ITEM is the logical parent of

ORDITEM. ORDITEM establishes the path or connection between the two segment

types. If an application program now enters the ORDER database, it can access

data in the ITEM database by following the pointer in the logical child segment from

the ORDER to the ITEM database.

 The physical parent and logical parent are the two segment types between which

the path is established. The logical child is the segment type that establishes the

path. The path established by the logical child is created using pointers.

Logical Relationship Types

Three types of logical relationships are discussed in this topic:

 Unidirectional logical relationships

 Bidirectional physically paired logical relationships

 Bidirectional virtually paired logical relationships

Figure 79. A Simple Logical Relationship

Logical Relationships

152 Administration Guide: Database Manager

Unidirectional Logical Relationships

A unidirectional relationship links two segment types, a logical child and its logical

parent, in one direction. A one-way path is established using a pointer in the logical

child. Figure 80 shows a unidirectional relationship that has been established

between the ORDER and ITEM databases. A unidirectional relationship can be

established between two segment types in the same or different databases.

Typically, however, a unidirectional relationship is created between two segment

types in different databases. In the figure, the logical relationship can be used to

cross from the ORDER to the ITEM database. It cannot be used to cross from the

ITEM to the ORDER database, because the ITEM segment does not point to the

ORDER database.

 It is possible to establish two unidirectional relationships, as shown in Figure 81 on

page 154. Then either physical database can be entered and the logical child in

either can be used to cross to the other physical database. However, IMS treats

each unidirectional relationship as a one-way path. It does not maintain data on

both paths. If data in one database is inserted, deleted, or replaced, the

corresponding data in the other database is not updated. If, for example, DL/I

replaces ORDITEM-SCREWS under ORDER-578, ITEMORD-578 under

ITEM-SCREWS is not replaced. This maintenance problem does not exist in both

bidirectional physically paired-logical and bidirectional virtually paired-logical

relationships. Both relationship types are discussed next. IMS allows either physical

database to be entered and updated and automatically updates the corresponding

data in the other database.

Figure 80. Unidirectional Logical Relationship

Logical Relationships

Chapter 8. Choosing Optional Database Functions 153

Bidirectional Physically Paired Logical Relationship

A bidirectional physically paired relationship links two segment types, a logical child

and its logical parent, in two directions. A two-way path is established using pointers

in the logical child segments. Figure 82 shows a bidirectional physically paired

logical relationship that has been established between the ORDER and ITEM

databases.

 Like the other types of logical relationships, a physically paired relationship can be

established between two segment types in the same or different databases. The

relationship shown in Figure 82 allows either the ORDER or the ITEM database to

be entered. When either database is entered, a path exists using the logical child to

cross from one database to the other.

In a physically paired relationship, a logical child is stored in both databases.

However, if the logical child has dependents, they are only stored in one database.

For example, IMS maintains data in both paths in physically paired relationships. In

Figure 82 if ORDER 123 is deleted from the ORDER database, IMS deletes from

the ITEM database all ITEMORD segments that point to the ORDER 123 segment.

If data is changed in a logical child segment, IMS changes the data in its paired

Figure 81. Two Unidirectional Logical Relationships

Figure 82. Bidirectional Physically Paired Logical Relationship

Logical Relationships

154 Administration Guide: Database Manager

logical child segment. Or if a logical child segment is inserted into one database,

IMS inserts a paired logical child segment into the other database.

With physical pairing, the logical child is duplicate data, so there is some increase

in storage requirements. In addition, there is some extra maintenance required

because IMS maintains data on two paths. In the next type of logical relationship

examined, this extra space and maintenance do not exist; however, IMS still allows

you to enter either database. IMS also performs the maintenance for you.

Bidirectional Virtually Paired Logical Relationship

A bidirectional virtually paired relationship is like a bidirectional physically paired

relationship in that:

v It links two segment types, a logical child and its logical parent, in two directions,

establishing a two-way path.

v It can be established between two segment types in the same or different

databases.

Figure 83 shows a bidirectional virtually paired relationship between the ORDER

and ITEM databases. Note that although there is a two-way path, a logical child

segment exists only in the ORDER database. Going from the ORDER to the ITEM

database, IMS uses the pointer in the logical child segment. Going from the ITEM

to the ORDER database, IMS uses the pointer in the logical parent, as well as the

pointer in the logical child segment.

 To define a virtually paired relationship, two logical child segment types are defined

in the physical databases involved in the logical relationship. Only one logical child

is actually placed in storage. The logical child defined and put in storage is called

the real logical child. The logical child defined but not put in storage is called the

virtual logical child.

IMS maintains data in both paths in a virtually paired relationship. However,

because there is only one logical child segment, maintenance is simpler than it is in

a physically paired relationship. When, for instance, a new ORDER segment is

inserted, only one logical child segment has to be inserted. For a replace, the data

only has to be changed in one segment. For a delete, the logical child segment is

deleted from both paths.

Figure 83. Bidirectionally Virtually Paired Logical Relationship

Logical Relationships

Chapter 8. Choosing Optional Database Functions 155

Note the trade-off between physical and virtual pairing. With virtual pairing, there is

no duplicate logical child and maintenance of paired logical children. However,

virtual pairing requires the use and maintenance of additional pointers, called logical

twin pointers.

Logical Relationship Pointer Types

In all logical relationships the logical child establishes a path between two segment

types. The path is established by use of pointers. The following topics look at

pointing in logical relationships and the four types of pointers that you can specify

for logical relationships:

v “Logical Parent Pointer”

v “Logical Child Pointer” on page 158

v “Physical Parent Pointer” on page 159

v “Logical Twin Pointer” on page 160

For HALDBs, consider the following:

v Logical relationships are not allowed between HALDBs and non-HALDBs.

v Direct pointers and indirect pointers are used. See “Indirect Pointers” on page

161.

v Unidirectional relationships and bidirectional, physically paired relationships are

supported for HALDBs.

v Physical parent pointers are always present in PHDAM and PHIDAM segments.

Logical Parent Pointer

The pointer from the logical child to its logical parent is called a logical parent (LP)

pointer. This pointer must be a symbolic pointer when it is pointing into a HISAM

database. It can be either a direct or a symbolic pointer when it is pointing into an

HDAM or a HIDAM database. PHDAM or PHIDAM databases require direct

pointers.

A direct pointer consists of the direct address of the segment being pointed to, and

it can only be used to point into a database where a segment, once stored, is not

moved. This means the logical parent segment must be in an HD (HDAM, PHDAM,

HIDAM, or PHIDAM) database, since the logical child points to the logical parent

segment. The logical child segment, which contains the pointer, can be in a HISAM

or an HD database except in the case of HALDB. In the HALDB case, the logical

child segment must be in an HD (PHDAM or PHIDAM) database. A direct LP

pointer is stored in the logical child’s prefix, along with any other pointers, and is

four bytes long. Figure 84 on page 157 shows the use of a direct LP pointer. In a

HISAM database, pointers are not required between segments because they are

stored physically adjacent to each other in hierarchic sequence. Therefore, the only

time direct pointers will exist in a HISAM database is when there is a logical

relationship using direct pointers pointing into an HD database.

Logical Relationships

156 Administration Guide: Database Manager

|
|
|
|

|

|

|

|

|
|

|
|

In Figure 84, the direct LP pointer points from the logical child ORDITEM to the

logical parent ITEM. Because it is direct, the LP pointer can only point to an HD

database. However, the LP pointer can “exist” in a HISAM or an HD database. The

LP pointer is in the prefix of the logical child and consists of the 4-byte direct

address of the logical parent.

A symbolic LP pointer, which consists of the logical parent’s concatenated key

(LPCK), can be used to point into a HISAM or HD database. Figure 85 on page 158

illustrates how to use a symbolic LP pointer. The logical child ORDITEM points to

the ITEM segment for BOLT. BOLT is therefore stored in ORDITEM in the LPCK. A

symbolic LP pointer is stored in the first part of the data portion in the logical child

segment.

Note: The LPCK part of the logical child segment is considered non-replaceable

and is not checked to see whether the I/O area is changed. When the LPCK

is virtual, checking for a change in the I/O area causes a performance

problem. Changing the LPCK in the I/O area does not cause the REPL call

to fail. However, the LPCK is not changed in the logical child segment.

With symbolic pointers, if the database the logical parent is in is HISAM or HIDAM,

IMS uses the symbolic pointer to access the index to find the correct logical parent

segment. If the database containing the logical parent is HDAM, the symbolic

pointer must be changed by the randomizing module into a block and RAP address

to find the logical parent segment. IMS accesses a logical parent faster when direct

pointing is used.

Although the figures show the LP pointer in a unidirectional relationship, it works

exactly the same way in all three types of logical relationships.

Figure 85 on page 158 shows an example of a symbolic logical parent pointer.

Figure 84. Direct Logical Parent (LP) Pointer

Logical Relationships

Chapter 8. Choosing Optional Database Functions 157

In Figure 85, the symbolic LP pointer points from the logical child ORDITEM to the

logical parent ITEM. With symbolic pointing, the ORDER and ITEM databases can

be either HISAM or HD. The LPCK, which is in the first part of the data portion of

the logical child, functions as a pointer from the logical child to the logical parent,

and is the pointer used in the logical child.

Logical Child Pointer

Logical child pointers are only used in logical relationships with virtual pairing. When

virtual pairing is used, there is only one logical child on DASD, called the real

logical child. This logical child has an LP pointer. The LP pointer can be symbolic or

direct. In the ORDER and ITEM databases you have seen, the LP pointer allows

you to go from the database containing the logical child to the database containing

the logical parent. To enter either database and cross to the other with virtual

pairing, you use a logical child pointer in the logical parent. Two types of logical

child pointers can be used:

v Logical child first (LCF) pointers, or

v The combination of logical child first (LCF) and logical child last (LCL) pointers

The LCF pointer points from a logical parent to the first occurrence of each of its

logical child types. The LCL pointer points to the last occurrence of the logical child

segment type for which it is specified. A LCL pointer can only be specified in

conjunction with a LCF pointer. Figure 86 on page 159 shows the use of the LCF

pointer. These pointers allow you to cross from the ITEM database to the logical

child ORDITEM in the ORDER database. However, although you are able to cross

databases using the logical child pointer, you have only gone from ITEM to the

logical child ORDITEM. To go to the ORDER segment, use the physical parent

pointer explained in “Physical Parent Pointer” on page 159.

LCF and LCL pointers are direct pointers. They contain the 4-byte direct address of

the segment to which they point. This means the logical child segment, the segment

being pointed to, must be in an HD database. The logical parent can be in a HISAM

or HD database. If the logical parent is in a HISAM database, the logical child

segment must point to it using a symbolic pointer. LCF and LCL pointers are stored

in the logical parent’s prefix, along with any other pointers. Figure 86 shows a LCF

pointer.

Figure 85. Symbolic Logical Parent (LP) Pointer

Logical Relationships

158 Administration Guide: Database Manager

In Figure 86, the LCF pointer points from the logical parent ITEM to the logical child

ORDITEM. Because it is a direct pointer, it can only point to an HD database,

although, it can exist in a HISAM or an HD database. The LCF pointer is in the

prefix of the logical parent and consists of the 4-byte RBA of the logical child.

Physical Parent Pointer

Physical parent (PP) pointers point from a segment to its physical parent. They are

generated automatically by IMS for all HD databases involved in logical

relationships. PP pointers are put in the prefix of all logical child and logical parent

segments. They are also put in the prefix of all segments on which a logical child or

logical parent segment is dependent in its physical database. This creates a path

from a logical child or its logical parent back up to the root segment on which it is

dependent. Because all segments on which a logical child or logical parent is

dependent are chained together with PP pointers to a root, access to these

segments is possible in reverse of the usual order.

In Figure 86, you saw that you could cross from the ITEM to the ORDER database

when virtual pairing was used, and this was done using logical child pointers.

However, the logical child pointer only got you from ITEM to the logical child

ORDITEM. Figure 87 on page 160 shows how to get to ORDER. The PP pointer in

ORDITEM points to its physical parent ORDER. If ORDER and ITEM are in an HD

database but are not root segments, they (and all other segments in the path of the

root) would also contain PP pointers to their physical parents.

PP pointers are direct pointers. They contain the 4-byte direct address of the

segment to which they point. PP pointers are stored in a logical child or logical

parent’s prefix, along with any other pointers.

Figure 86. Logical Child First (LCF) Pointer (Used in Virtual Pairing Only)

Logical Relationships

Chapter 8. Choosing Optional Database Functions 159

In Figure 87, the PP pointer points from the logical child ORDITEM to its physical

parent ORDER. It is generated automatically by IMS for all logical child and logical

parent segments in HD databases. In addition, it is in the prefix of the segment that

contains it and consists of the 4-byte direct address of its physical parent. PP

pointers are generated in all segments from the logical child or logical parent back

up to the root.

Logical Twin Pointer

Logical twin pointers are used only in logical relationships with virtual pairing.

Logical twins are multiple logical child segments that point to the same occurrence

of a logical parent. Two types of logical twin pointers can be used:

v Logical twin forward (LTF) pointers, or

v The combination of logical twin forward (LTF) and logical twin backward (LTB)

pointers

An LTF pointer points from a specific logical twin to the logical twin stored after it.

An LTB pointer can only be specified in conjunction with an LTF pointer. When

specified, an LTB points from a given logical twin to the logical twin stored before it.

Logical twin pointers work in a similar way to the physical twin pointers used in HD

databases. As with physical twin backward pointers, LTB pointers improve

performance on delete operations. They do this when the delete that causes DASD

space release is a delete from the physical access path. Similarly, PTB pointers

improve performance when the delete that causes DASD space release is a delete

from the logical access path.

Figure 88 on page 161 shows use of the LTF pointer. In this example, ORDER 123

has two items: bolt and washer. The ITEMORD segments beneath the two ITEM

segments use LTF pointers. If the ORDER database is entered, it can be crossed to

the ITEMORD segment for bolts in the ITEM database. Then, to retrieve all items

for ORDER 123, the LTF pointers in the ITEMORD segment can be followed. In

Figure 88 only one other ITEMORD segment exists, and it is for washers. The LTF

pointer in this segment, because it is the last twin in the chain, contains zeros.

LTB pointers on dependent segments improve performance when deleting a real

logical child in a virtually paired logical relationship. This improvement occurs when

the delete is along the physical path.

Figure 87. Physical Parent (PP) Pointer

Logical Relationships

160 Administration Guide: Database Manager

LTF and LTB pointers are direct pointers. They contain the 4-byte direct address of

the segment to which they point. This means LTF and LTB pointers can only exist in

HD databases. Figure 88 shows a LTF pointer.

 In Figure 88, the LTF pointer points from a specific logical twin to the logical twin

stored after it. In this example, it points from the ITEMORD segment for bolts to the

ITEMORD segment for washers. Because it is a direct pointer, the LTF pointer can

only point to an HD database. The LTF pointer is in the prefix of a logical child

segment and consists of the 4-byte RBA of the logical twin stored after it.

Indirect Pointers

HALDBs (PHDAM, PHIDAM, and PSINDEX databases) use direct and indirect

pointers for pointing from one database record to another database record.

Figure 89 shows how indirect pointers are used.

 The use of indirect pointers prevents the problem of misdirected pointers that would

otherwise occur when a database is reorganized.

Figure 88. Logical Twin Forward (LTF) Pointer (Used in Virtual Pairing Only)

Figure 89. Self-healing Pointers

Logical Relationships

Chapter 8. Choosing Optional Database Functions 161

The repository for the indirect pointers is the indirect list data set. The misdirected

pointers after reorganization are self-healing using indirect pointers.

Related Reading: For a complete discussion of the self-healing pointer process,

see “The HALDB Self-Healing Pointer Process” on page 382.

Paths in Logical Relationships

The relationship between physical parent and logical child in a physical database

and the LP pointer in each logical child creates a physical parent to logical parent

path. To define use of the path, the logical child and logical parent are defined as a

concatenated segment type that is a physical child of the physical parent, as shown

in Figure 90. Definition of the path and the concatenated segment type is done in

what is called a logical database. The logical database is examined in “Specifying

Logical Relationships in the Logical DBD” on page 176 and elsewhere in this

chapter.

 In addition, when LC pointers are used in the logical parent and logical twin and PP

pointers are used in the logical child, a logical parent to physical parent path is

created. To define use of the path, the logical child and physical parent are defined

as one concatenated segment type that is a physical child of the logical parent, as

shown in Figure 91. Again, definition of the path is done in a logical database.

 When use of a physical parent to logical parent path is defined, the physical parent

is the parent of the concatenated segment type. When an application program

retrieves an occurrence of the concatenated segment type from a physical parent,

the logical child and its logical parent are concatenated and presented to the

application program as one segment. When use of a logical parent to physical

parent path is defined, the logical parent is the parent of the concatenated segment

type. When an application program retrieves an occurrence of the concatenated

Figure 90. Defining a Physical Parent to Logical Parent Path in a Logical Database

Figure 91. Defining a Logical Parent to Physical Parent Path in a Logical Database

Logical Relationships

162 Administration Guide: Database Manager

|
|

segment type from a logical parent, an occurrence of the logical child and its

physical parent are concatenated and presented to the application program as one

segment.

In both cases, the physical parent or logical parent segment included in the

concatenated segment is called the destination parent. For a physical parent to

logical parent path, the logical parent is the destination parent in the concatenated

segment. For a logical parent to physical parent path, the physical parent is the

destination parent in the concatenated segment.

The Logical Child Segment

When defining a logical child in its physical database, the length specified for it

must be large enough to contain the concatenated key of the logical parent. Any

length greater than that can be used for intersection data.

Related Reading For information about intersection data, see “Intersection Data” on

page 164.

To identify which logical parent is pointed to by a logical child, the concatenated key

of the logical parent must be present. Each logical child segment must be present

in the application program’s I/O area when the logical child is initially presented for

loading into the database. However, if the logical parent is in an HD database, its

concatenated key might not be written to storage when the logical child is loaded. If

the logical parent is in a HISAM database, a logical child in storage must contain

the concatenated key of its logical parent.

For logical child segments, you can define a special operand on the PARENT=

parameter of the SEGM statement. This operand determines whether a symbolic

pointer to the logical parent is stored as part of the logical child segment on the

storage device. If PHYSICAL is specified, the concatenated key of the logical parent

is stored with each logical child segment. If VIRTUAL is specified, only the

intersection data portion of each logical child segment is stored.

When a concatenated segment is retrieved through a logical database, it contains

the logical child segment, which consists of the concatenated key of the destination

parent, followed by any intersection data. In turn, this is followed by data in the

destination parent. Figure 92 shows the format of a retrieved concatenated segment

in the I/O area. The concatenated key of the destination parent is returned with

each concatenated segment to identify which destination parent was retrieved. IMS

gets the concatenated key from the logical child in the concatenated segment or by

constructing the concatenated key. If the destination parent is the logical parent and

its concatenated key has not been stored with the logical child, IMS constructs the

concatenated key and presents it to the application program. If the destination

parent is the physical parent, IMS must always construct its concatenated key.

Figure 92. Format of a Concatenated Segment Returned to User I/O Area

Logical Relationships

Chapter 8. Choosing Optional Database Functions 163

Segment Prefix Information for Logical Relationships

There are two things that you should be aware of regarding the prefix of a segment

involved in a logical relationship. First, IMS places pointers in the prefix in a specific

sequence and, second, IMS places a counter in the prefix for logical parents that do

not have logical child pointers.

Sequence of Pointers in a Segment’s Prefix

When a segment contains more than one type of pointer and is involved in a logical

relationship, pointers are put in the segment’s prefix in the following sequence:

1. HF

2. HB

3. PP

4. LTF

5. LTB

6. LP

Or:

1. TF

2. TB

3. PP

4. LTF

5. LTB

6. LP

7. PCF

8. PCL

Or:

1. TF

2. TB

3. PP

4. PCF

5. PCL

6. EPS

Multiple PCF and PCL pointers can exist in a segment type; however, more than

one of the other types of pointers can not.

Counter Used in Logical Relationships

IMS puts a 4-byte counter in all logical parents that do not have logical child

pointers. The counter is stored in the logical parent’s prefix and contains a count of

the number of logical children pointing to this logical parent. The counter is

maintained by IMS and is used to handle delete operations properly. If the count is

greater than zero, the logical parent cannot be deleted from the database because

there are still logical children pointing to it.

Intersection Data

When two segments are logically related, data can exist that is unique to only that

relationship. In Figure 93 on page 165, for example, one of the items ordered in

ORDER 123 is 5000 bolts. The quantity 5000 is specific to this order (ORDER 123)

and this item (bolts). It does not belong to either the order or item on its own.

Logical Relationships

164 Administration Guide: Database Manager

|
|
|
|

Similarly, in ORDER 123, 6000 washers are ordered. Again, this data is concerned

only with that particular order and item combination.

This type of data is called intersection data, since it has meaning only for the

specific logical relationship. The quantity of an item could not be stored in the

ORDER 123 segment, because different quantities are ordered for each item in

ORDER 123. Nor could it be stored in the ITEM segment, because for each item

there can be several orders, each requesting a different quantity. Because the

logical child segment links the ORDER and ITEM segments together, data that is

unique to the relationship between the two segments can be stored in the logical

child.

The two types of intersection data are: fixed intersection data (FID) and variable

intersection data (VID).

Fixed Intersection Data

Data stored in the logical child is called fixed intersection data (FID). When

symbolic pointing is used, it is stored in the data part of the logical child after the

LPCK. When direct pointing is used, it is the only data in the logical child segment.

Because symbolic pointing is used in Figure 93, BOLT and WASHER are the LPCK,

and the 5000 and 6000 are the FID. The FID can consist of several fields, all of

them residing in the logical child segment.

Variable Intersection Data

VID is used when you have data that is unique to a relationship, but several

occurrences of it exist. For example, suppose you cannot supply in one shipment

the total quantity of an item required for an order. You need to store delivery data

showing the quantity delivered on a specified date. The delivery date is not

dependent on either the order or item alone. It is dependent on a specific order-item

combination. Therefore, it is stored as a dependent of the logical child segment.

The data in this dependent of the logical child is called variable intersection data.

For each logical child occurrence, there can be as many occurrences of dependent

segments containing intersection data as you need.

Figure 94 on page 166 shows variable intersection data. In the ORDER 123

segment for the item BOLT, 3000 were delivered on March 2 and 1000 were

delivered on April 2. Because of this, two occurrences of the DELIVERY segment

Figure 93. Fixed Intersection Data

Logical Relationships

Chapter 8. Choosing Optional Database Functions 165

|
|
|

exist. Multiple segment types can contain intersection data for a single logical child

segment. In addition to the DELIVERY segment shown in the figure, note the

SCHEDULE segment type. This segment type shows the planned shipping date

and the number of items to be shipped. Segment types containing VID can all exist

at the same level in the hierarchy as shown in the figure, or they can be

dependents of each other.

FID, VID, and Physical Pairing

In the previous figures, intersection data has been stored in a unidirectional logical

relationship. It works exactly the same way in the two bidirectional logical

relationships. However, when physical pairing is used, VID can only be stored on

one side of the relationship. It does not matter on which side it is stored. An

application program can access it using either the ORDER or ITEM database. FID,

on the other hand, must be stored on both sides of the relationship when physical

pairing is used. IMS automatically maintains the FID on both sides of the

relationship when it is changed on one side. However, extra time is required for

maintenance, and extra space is required on DASD for FID in a physically paired

relationship.

Recursive Structures: Same Database Logical Relationships

Logical relationships can be established between segments in two or more physical

databases. Logical relationships can also be established between segments in the

same database. The logical data structure that results is called a recursive

structure.

Most often, recursive structures are defined in manufacturing for bill-of-materials

type applications. Suppose, for example, a company manufactures bicycles. The

Figure 94. Variable Intersection Data

Logical Relationships

166 Administration Guide: Database Manager

|
|
|
|
|
|

|

|

first model the manufacturer makes is Model 1, which is a boy’s bicycle. Table 16

lists the parts needed to manufacture this bicycle and the number of each part

needed to manufacture one Model 1 bicycle.

 Table 16. Parts List for the Model 1 Bicycle Example

Part Number Needed

21-inch boy’s frame 1

Handlebar 1

Seat 1

Chain 1

Front fender 1

Rear fender 1

Pedal 2

Crank 1

Front sprocket 1

26-inch tube and tire 2

26-inch rim 2

26-inch spoke 72

Front hub 1

Housing 1

Break 1

Rear sprocket 1

In manufacturing, it is necessary to know the steps that must be executed to

manufacture the end product. For each step, the parts needed must be available

and any subassemblies used in a step must have been assembled in previous

steps. Figure 95 on page 168 shows the steps required to manufacture the Model 1

bicycle. A housing, brake, and rear sprocket are needed to make the rear hub

assembly in step 2. Only then can the part of step 3 that involves building the rear

wheel assembly be executed. This part of step 3 also requires availability of a

26-inch tire, a rim, and 36 spokes.

The same company manufactures a Model 2 bicycle, which is for girls. The parts

and assembly steps for this bicycle are exactly the same, except that the bicycle

frame is a girl’s frame.

If the manufacturer stored all parts and subassemblies for both models as separate

segments in the database, a great deal of duplicate data would exist. Figure 95 on

page 168 shows the segments that must be stored just for the Model 1 bicycle. A

similar set of segments must be stored for the Model 2 bicycle, except that it has a

girl’s bicycle frame. As you can see, this leads to duplicate data and the associated

maintenance problems. The solution to this problem is to create a recursive

structure. Figure 96 on page 169 shows how this is done using the data for the

Model 1 bicycle.

Logical Relationships

Chapter 8. Choosing Optional Database Functions 167

Figure 95. Model 1 Components and Subassemblies

Logical Relationships

168 Administration Guide: Database Manager

In Figure 96, two types of segments exist: PART and COMPONENT segments. A

unidirectional logical relationship has been established between them. The PART

segment for Model 1 is a root segment. Beneath it are nine occurrences of

COMPONENT segments. Each of these is a logical child that points to another

PART root segment. (Only two of the pointers are actually shown to keep the figure

simple.) However, the other PART root segments show the parts required to build

the component.

For example, the pedal assembly component points to the PART root segment for

assembling the pedal. Stored beneath this segment are the following parts that

must be assembled: one front sprocket, one crank, and two pedals. With this

structure, much of the duplicate data otherwise stored for the Model 2 bicycle can

be eliminated.

Figure 97 on page 170 shows the segments, in addition to those in Figure 96, that

must be stored in the database record for the Model 2 bicycle. The logical children

in the figure, except the one for the unique component, a 21″ girl’s frame, can point

to the same PART segments as are shown in Figure 96. A separate PART segment

for the pedal assembly, for example, need not exist. The database record for both

Model 1 and 2 have the same pedal assembly, and by using the logical child, it can

point to the same PART segment for the pedal assembly.

Figure 96. Database Records for the Model 1 Bicycle

Logical Relationships

Chapter 8. Choosing Optional Database Functions 169

One thing to note about recursive structures is that the physical parent and the

logical parent of the logical child are the same segment type. For example, in

Figure 96 on page 169, the PART segment for Model 1 is the physical parent of the

COMPONENT segment for pedal assembly. The PART segment for pedal assembly

is the logical parent of the COMPONENT segment for pedal assembly.

Defining Sequence Fields for Logical Relationships

This topic discusses defining the following types of sequence fields:

v “Logical Parent Sequence Fields”

v “Real Logical Children Sequence Fields” on page 171

v “Virtual Logical Children Sequence Fields” on page 171

Logical Parent Sequence Fields

To avoid potential problems in processing databases using logical relationships,

unique sequence fields should be defined in all logical parent segments. In all

segments a logical parent is dependent on in its physical database. When unique

sequence fields are not defined in all segments on the path to and including a

logical parent, multiple logical parents in a database can have the same

concatenated key. When this happens, problems can arise during and after initial

database load when symbolic logical parent pointers in logical child segments are

used to establish position on a logical parent segment.

At initial database load time, if logical parents with non-unique concatenated keys

exist in a database, the resolution utilities (described in Chapter 15, “Tuning

Databases,” on page 341) attach all logical children with the same concatenated

key to the first logical parent in the database with that concatenated key.

When inserting or deleting a concatenated segment and position for the logical

parent, part of the concatenated segment is determined by the logical parent’s

concatenated key. Positioning for the logical parent starts at the root and stops on

Figure 97. Extra Database Records Required for the Model 2 Bicycle

Logical Relationships

170 Administration Guide: Database Manager

the first segment at each level of the logical parent’s database that satisfies the key

equal condition for that level. If a segment is missing on the path to the logical

parent being inserted, a GE status code is returned to the application program

when using this method to establish position in the logical parent’s database.

Real Logical Children Sequence Fields

If the sequence field of a real logical child consists of any part of the logical parent’s

concatenated key, PHYSICAL must be specified on the PARENT= parameter in the

SEGM statement for the logical child. This will cause the concatenated key of the

logical parent to be stored with the logical child segment.

Virtual Logical Children Sequence Fields

As a general rule, a segment can have only one sequence field. However, in the

case of virtual pairing, multiple FIELD statements can be used to define a logical

sequence field for the virtual logical child.

A sequence field must be specified for a virtual logical child if, when accessing it

from its logical parent, you need real logical child segments retrieved in an order

determined by data in a field of the virtual logical child as it could be seen in the

application program I/O area. This sequence field can include any part of the

segment as it appears when viewed from the logical parent (that is, the

concatenated key of the real logical child’s physical parent followed by any

intersection data). Because it can be necessary to describe the sequence field of a

logical child as accessed from its logical parent in non-contiguous pieces, multiple

FIELD statements with the SEQ parameter present are permitted. Each statement

must contain a unique fldname1 parameter.

Control Blocks for Logical Relationships

When a logical relationship is used, you must define the physical databases

involved in the relationship to IMS. This is done using a physical DBD. In addition,

many times you must define the logical structure of IMS since this is the structure

the application program perceives. This is done using a logical DBD. A logical DBD

is needed because the application program’s PCB references a DBD, and the

physical DBD does not reflect the logical data structure the application program

needs to access. Finally, the application program needs a PSB, consisting of one or

more PCBs. The PCB that is used when processing with a logical relationship

points to the logical DBD when one has been defined. This PCB indicates which

segments in the logical database the application program can process. It also

indicates what type of processing the application program can perform on each

segment.

Figure 98 on page 172 shows the relationship between these three control blocks. It

assumes that the logical relationship is established between two physical

databases. The following topics explain how the physical and logical DBD are

coded when a logical relationship is defined:

v “Specifying Logical Relationships in the Physical DBD” on page 172

v “Specifying Logical Relationships in the Logical DBD” on page 176

Logical Relationships

Chapter 8. Choosing Optional Database Functions 171

Specifying Logical Relationships in the Physical DBD

For each of the databases involved in a logical relationship, you must code a

physical DBD. All statements in the physical DBD are coded with the same format

used when a logical relationship is not defined, except for the SEGM and LCHILD

statements. The SEGM statement, which describes a segment and its length and

position in the database hierarchy, is expanded to include the new types of pointers.

The LCHILD statement is added to define the logical relationship between the two

segment types. Figure 100 on page 173 shows an example of how the physical

DBD is coded.

In the SEGM statements of the examples associated with Figure 99 on page 173

and Figure 100 on page 173, only the pointers required with logical relationships

are shown. No pointers required for use with HD databases are shown. When

actually coding a DBD, you must ask for these pointers in the PTR= parameter.

Otherwise, IMS will not generate them once another type of pointer is specified.

Figure 99 shows the layout of segments. Figure 100 on page 173 shows physical

DBDs for unidirectional relationships.

Figure 98. Relationship of Control Blocks When a Logical Relationship Is Used

Logical Relationships

172 Administration Guide: Database Manager

This is the hierarchic structure of the two databases involved in the logical

relationship. In this example, we are defining a unidirectional relationship using

symbolic pointing. ORDITEM has an LPCK and FID, and DELIVERY and

SCHEDULE are VID.

Figure 99. Layouts of Segments Used in the Examples

Figure 100. Physical DBDs for Unidirectional Relationship Using Symbolic Pointing

Logical Relationships

Chapter 8. Choosing Optional Database Functions 173

The following DBD is for the ORDER database:

DBD NAME=ORDDB

SEGM NAME=ORDER,BYTES=50,FREQ=28000,PARENT=0

FIELD NAME=(ORDKEY,SEQ),BYTES=10,START=1,TYPE=C

FIELD NAME=ORDATE,BYTES=6,START=41,TYPE=C

SEGM NAME=ORDITEM,BYTES=17,PARENT=((ORDER),(ITEM,P,ITEMDB))

FIELD NAME=(ITEMNO,SEQ),BYTES=8,START=1,TYPE=C

FIELD NAME=ORDITQTY,BYTES=9,START=9,TYPE=C,

SEGM NAME=DELIVERY,BYTES=50,PARENT=ORDITEM

FIELD NAME=(DELDAT,SEQ),BYTES=6,START=1,TYPE=C

SEGM NAME=SCHEDULE,BYTES=50,PARENT=ORDITEM

FIELD NAME=(SCHEDAT,SEQ),BYTES=6,START=1,TYPE=C

DBDGEN

FINISH

END

The following DBD is for the ITEM database:

DBD NAME=ITEMDB

SEGM NAME=ITEM,BYTES=60,FREQ=50000,PARENT=0

FIELD NAME=(ITEMKEY,SEQ),BYTES=8,START=1,TYPE=C

LCHILD NAME=(ORDITEM,ORDDB)

DBDGEN

FINISH

END

Notes to Figure 100:

In the ORDER database, the DBD coding that differs from normal DBD coding is

that for the logical child ORDITEM.

In the SEGM statement for ORDITEM:

1. The BYTES= parameter is 17. The length specified is the length of the LPCK,

plus the length of the FID. The LPCK is the key of the ITEM segment, which is

8 bytes long. The length of the FID is 9 bytes.

2. The PARENT= parameter has two parents specified. Two parents are specified

because ORDITEM is a logical child and therefore has both a physical and

logical parent. The physical parent is ORDER. The logical parent is ITEM,

specified after ORDER. Because ITEM exists in a different physical database

from ORDITEM, the name of its physical database, ITEMDB, must be specified.

Between the segment name ITEM and the database name ITEMDB is the letter

P. The letter P stands for physical. The letter P specifies that the LPCK is to be

stored on DASD as part of the logical child segment.

In the FIELD statements for ORDITEM:

1. ITEMNO is the sequence field of the ORDITEM segment and is 8 bytes long.

ITEMNO is the LPCK. The logical parent is ITEM, and if you look at the FIELD

statement for ITEM in the ITEM database, you will see ITEM’s sequence field is

ITEMKEY, which is 8 bytes long. Because ITEM is a root segment, the LPCK is

8 bytes long.

2. ORDITQTY is the FID and is coded normally.

In the ITEM database, the DBD coding that differs from normal DBD coding is that

an LCHILD statement has been added. This statement names the logical child

ORDITEM. Because the ORDITEM segment exists in a different physical database

from ITEM, the name of its physical database, ORDDB, must be specified.

Logical Relationships

174 Administration Guide: Database Manager

Specifying Bidirectional Logical Relationships

Figure 100 on page 173 shows the coding for a unidirectional relationship. When

defining a bidirectional relationship with physical pairing, you need to include an

LCHILD statement under both logical parents. In addition to other pointers, you

need to include the PAIRED operand on the POINTER= parameter of the SEGM

statements for both logical children.

When defining a bidirectional relationship with virtual pairing, you need to code an

LCHILD statement only for the real logical child. On the LCHILD statement, you

code POINTER=SNGL or DBLE to get logical child pointers. You code the PAIR=

operand to indicate the virtual logical child that is paired with the real logical child.

When you define the SEGM statement for the real logical child, the PARENT=

parameter identifies both the physical and logical parents. You should specify logical

twin pointers (in addition to any other pointers) on the POINTER= parameter. Also,

you should define a SEGM statement for the virtual logical child even though it

does not exist. On this SEGM statement, you specify PAIRED on the POINTER=

parameter. In addition, you specify a SOURCE= parameter. On the SOURCE=

parameter, you specify the SEGM name and DBD name of the real logical child.

DATA must always be specified when defining SOURCE= on a virtual logical child

SEGM statement.

Related Reading: For more information on coding logical relationships, see IMS

Version 9: Utilities Reference: Database and Transaction Manager.

Checklist of Rules for Defining Logical Relationships in Physical

Databases

This topic provides the list of rules that must be followed when defining logical

relationships in physical databases. In all cases, references are to segment types,

not occurrences.

Logical Child Rules:

v A logical child must have a physical and a logical parent.

v A logical child can have only one physical and one logical parent.

v A logical child is defined as a physical child in the physical database of its

physical parent.

v A logical child is always a dependent segment in a physical database, and can,

therefore, be defined at any level except the first level of a database.

v A logical child in its physical database cannot have a physical child defined at the

next lower level in the database that is also a logical child.

v A logical child can have a physical child. However, if a logical child is physically

paired with another logical child, only one of the paired segments can have

physical children.

Logical Parent Rules:

v A logical parent can be defined at any level in a physical database, including the

root level.

v A logical parent can have one or more logical children. Each logical child related

to the same logical parent defines a logical relationship.

v A segment in a physical database cannot be defined as both a logical parent and

a logical child.

v A logical parent can be defined in the same physical database as its logical child,

or in a different physical database.

Specifying Bidirectional Logical Relationships

Chapter 8. Choosing Optional Database Functions 175

Physical Parent Rules: A physical parent of a logical child cannot also be a

logical child.

Specifying Logical Relationships in the Logical DBD

To identify which segment types are used in a logical data structure, you must code

a logical DBD. Figure 101 shows an example of how the logical DBD is coded. The

example is a logical DBD for the same physical databases defined in “Specifying

Logical Relationships in the Physical DBD” on page 172.

When defining a segment in a logical database, you can specify whether the

segment is returned to the program’s I/O area by using the KEY or DATA operand

on the SOURCE= parameter of the SEGM statement. DATA returns both the key

and data portions of the segment to the I/O area. KEY returns only the key portion,

and not the data portion of the segment to the I/O area.

When the SOURCE= parameter is used on the SEGM statement of a concatenated

segment, the KEY and DATA parameters control which of the two segments, or

both, is put in the I/O area on retrieval calls. In other words, you define the

SOURCE= parameter twice for a concatenated segment type, once for the logical

child portion and once for the destination parent portion.

Figure 101 illustrates the logical data structure you need to create in the application

program. It is implemented with a unidirectional logical relationship using symbolic

pointing. The root segment is ORDER from the ORDER database. Dependent on

ORDER is ORDITEM, the logical child, concatenated with its logical parent ITEM.

The application program receives both segments in its I/O area when a single call is

issued for ORDIT. DELIVERY and SCHEDULE are VID.

 The following logical DBD is for the logical data structure shown in Figure 101:

DBD NAME=ORDLOG,ACCESS=LOGICAL

DATASET LOGICAL

SEGM NAME=ORDER,SOURCE=((ORDER,DATA,ORDDB))

SEGM NAME=ORDIT,PARENT=ORDER, X

 SOURCE=((ORDITEM,DATA,ORDDB),(ITEM,DATA,ITEMDB))

SEGM NAME=DELIVERY,PARENT=ORDIT,SOURCE=((DELIVERY,DATA,ORDDB))

SEGM NAME=SCHEDULE,PARENT=ORDIT,SOURCE=((SCHEDULE,DATA,ORDDB))

DBDGEN

FINISH

END

Figure 101. Logical Data Structure for a Unidirectional Relationship Using Symbolic Pointing

Rules for Defining Logical Relationships

176 Administration Guide: Database Manager

Notes to Figure 101:

1. The DBD statement has the name of the logical DBD, in this example

ORDLOG. As with physical DBDs, this name must be unique and must be the

same name as specified in the MBR operand of the DBDGEN procedure.

ACCESS=LOGICAL simply says this is a logical DBD.

2. The DATASET statement always says LOGICAL, meaning a logical DBD. No

other parameters can be specified on this statement; however, DDNAMEs for

data sets are all specified in the DATASET statements in the physical DBDs.

3. The SEGM statements show which segments are to be included in the logical

database. The only operands allowed on the SEGM statements for a logical

DBD are NAME=, PARENT=, and SOURCE=. All other information about the

segment is defined in the physical DBD.

v The first SEGM statement defines the root segment ORDER.

The NAME= operand specifies the name used in the PCB to refer to this

segment. This name is used by application programmers when coding SSAs.

In this example, the segment name is the same as the name used in the

physical DBD - ORDER. However, the segment could have a different name

from that specified in its physical DBD.

The SOURCE= operand tells IMS where the data for this segment is to come

from. First the name of the segment type appears in its physical database,

which is ORDER. DATA says that the data in this segment needs to be put in

the application program’s I/O area. ORDDB is the name of the physical

database in which the ORDER segment exists.

No FIELD statements are coded in the logical DBD. IMS picks the statements

up from the physical DBD, so when accessing the ORDER segment in this

logical data structure, the application program could have SSAs referring to

ORDKEY or ORDATE. These fields were defined for the ORDER segments in

its physical DBD, as shown in Figure 100 on page 173.

v The second SEGM statement is for the ORDIT segment. The ORDIT

segment is made up of the logical child ORDITEM, concatenated with its

logical parent ITEM. As you can see, the SOURCE= operand identifies both

the ORDITEM and ITEM segments in their different physical databases.

v The third and fourth SEGM statements are for the VID DELIVERY and

SCHEDULE. These SEGM statements must be placed in the logical DBD in

the same relative order they appear in the physical DBD. In the physical

DBD, DELIVERY is to the left of SCHEDULE.

Checklist of Rules for Defining Logical Databases

Before the rules for defining logical databases can be described, you need to know

the following definitions:

v Crossing a logical relationship

v The first and additional logical relationships crossed

Also, a logical DBD is needed only when an application program needs access to a

concatenated segment or needs to cross a logical relationship.

Definition of Crossing a Logical Relationship: A logical relationship is

considered crossed when it is used in a logical database to access a segment that

is:

v A physical parent of a destination parent in the destination parent’s database

v A physical dependent of a destination parent in the destination parent’s physical

database

Rules for Defining Logical Relationships

Chapter 8. Choosing Optional Database Functions 177

If a logical relationship is used in a logical database to access a destination parent

only, the logical relationship is not considered crossed.

In Figure 102, DBD1 and DBD2 are two physical databases with a logical

relationship defined between them. DBD3 through DBD6 are four logical databases

that can be defined from the logical relationship between DBD1 and DBD2. With

DBD3, no logical relationship is crossed, because no physical parent or physical

dependent of a destination parent is included in DBD3. With DBD4 through DBD6,

a logical relationship is crossed in each case, because each contains a physical

parent or physical dependent of the destination parent.

Definition of First and Additional Logical Relationships Crossed: More than

one logical relationship can be crossed in a hierarchic path in a logical database.

Figure 103 on page 179 shows three physical databases (DBD1, DBD2 and DBD3)

in which logical relationships have been defined. Also in the figure are two (of

many) logical databases (DBD4 and DBD5) that can be defined from the logical

Figure 102. Definition of Crossing a Logical Relationship

Rules for Defining Logical Relationships

178 Administration Guide: Database Manager

relationships in the physical databases. In DBD4, the two concatenated segments

BF and DI allow access to all segments in the hierarchic paths of their destination

parents. If either logical relationship or both is crossed, each is considered the first

logical relationship crossed. This is because each concatenated segment type is

reached by following the physical hierarchy of segment types in DBD1.

In DBD5 in Figure 103, an additional concatenated segment type GI, is defined that

was not included in DBD4. GI allows access to segments in the hierarchic path of

the destination parent if crossed. When the logical relationship made possible by

concatenated segment GI is crossed, this is an additional logical relationship

crossed. This is because, from the root of the logical database, the logical

relationship made possible by concatenated segment type BF must be crossed to

allow access to concatenated segment GI.

Figure 103. The First Logical Relationship Crossed in a Hierarchic Path of a Logical

Database

Rules for Defining Logical Relationships

Chapter 8. Choosing Optional Database Functions 179

When the first logical relationship is crossed in a hierarchic path of a logical

database, access to all segments in the hierarchic path of the destination parent is

made possible as follows:

v Parent segments of the destination parent are included in the logical database as

dependents of the destination parent in reverse order, as shown in Figure 104.

v Dependent segments of the destination parent are included in the logical

database as dependents of the destination parent without their order changed, as

shown in Figure 104.

When an additional logical relationship is crossed in a logical database, access to

all segments in the hierarchic path of the destination parent is made possible, just

as in the first crossing.

Rules for Defining Logical Databases:

v The root segment in a logical database must be the root segment in a physical

database.

Figure 104. Logical Database Hierarchy Enabled by Crossing the First Logical Relationship

Rules for Defining Logical Relationships

180 Administration Guide: Database Manager

v A logical database must use only those segments and physical and logical

relationship paths defined in the physical DBD referenced by the logical DBD.

v The path used to connect a parent and child in a logical database must be

defined as a physical relationship path or a logical relationship path in the

physical DBD referenced by the logical DBD.

v Physical and logical relationship paths can be mixed in a hierarchic segment path

in a logical database.

v Additional physical relationship paths, logical relationship paths, or both paths

can be included after a logical relationship is crossed in a hierarchic path in a

logical database. These paths are included by going in upward directions,

downward directions, or both directions, from the destination parent. When

proceeding downward along a physical relationship path from the destination

parent, direction cannot be changed except by crossing a logical relationship.

When proceeding upward along a physical relationship path from the destination

parent, direction can be changed.

v Dependents in a logical database must be in the same relative order as they are

under their parent in the physical database. If a segment in a logical database is

a concatenated segment, the physical children of the logical child and children of

the destination parent can be in any order. The relative order of the children or

the logical child and the relative order of the children of the destination parent

must remain unchanged.

v The same concatenated segment type can be defined multiple times with

different combinations of key and data sensitivity. Each must have a distinct

name for that view of the concatenated segment. Only one of the views can have

dependent segments. Figure 105 shows the four views of the same concatenated

segment that can be defined in a logical database. A PCB for the logical

database can be sensitive to only one of the views of the concatenated segment

type.

LC Logical child segment type

DP Destination parent segment type

K KEY sensitivity specified for the segment type

D DATA sensitivity specified for the segment type

Choosing Replace, Insert, and Delete Rules for Logical Relationships

You must establish insert, delete, and replace rules when a segment is involved in a

logical relationship, because such segments can be updated from two paths: a

physical path and a logical path.

Figure 105. Single Concatenated Segment Type Defined Multiple Times with Different

Combinations of Key and Data Sensitivity

Rules for Defining Logical Relationships

Chapter 8. Choosing Optional Database Functions 181

Figure 106 and Figure 107 show example insert, delete, and replace rules. Consider

the following questions:

1. Should the CUSTOMER segment in Figure 106 be able to be inserted by both

its physical and logical paths?

2. Should the BORROW segment be replaceable using only the physical path, or

using both the physical and logical paths?

3. If the LOANS segment is deleted using its physical path, should it be erased

from the database? Or should it be marked as physically deleted but remain

accessible using its logical path?

4. If the logical child segment BORROW or the concatenated segment

BORROW/LOANS is deleted from the physical path, should the logical path

CUST/CUSTOMER also be automatically deleted? Or should the logical path

remain?

Abbreviation Explanation

PP Physical parent segment type

LC Logical child segment type

LP Logical parent segment type

VLC Virtual logical child segment type

 The answer to these questions depends on the application. The enforcement of the

answer depends on your choosing the correct insert, delete, and replace rules for

Figure 106. Example of the Replace, Insert, and Delete Rules

Figure 107. Example of the Replace, Insert, and Delete Rules: Before and After

Rules for Defining Logical Relationships

182 Administration Guide: Database Manager

the logical child, logical parent, and physical parent segments. You must first

determine your application processing requirements and then the rules that support

those requirements.

For example, the answer to question 1 depends on whether the application requires

that a CUSTOMER segment be inserted into the database before accepting the

loan. An insert rule of physical (P) on the CUSTOMER segment prohibits insertion

of the CUSTOMER segment except by the physical path. An insert rule of virtual (V)

allows insertion of the CUSTOMER segment by either the physical or logical path. It

probably makes sense for a customer to be checked (past credit, time on current

job, and so on.) and the CUSTOMER segment inserted before approving the loan

and inserting the BORROW segment. Thus, the insert rule for the CUSTOMER

segment should be P to prevent the segment from being inserted logically. (Using

the insert rule in this example provides better control of the application.)

Or consider question 3. If it is possible for this loan institution to cancel a type of

loan (cancel 10% car loans, for instance, and create 12% car loans) before

everyone with a 10% loan has fully paid it, then it is possible for the LOANS

segment to be physically deleted and still be accessible from the logical path. This

can be done by specifying the delete rule for LOANS as either logical (L) or V, but

not as P.

The P delete rule prohibits physically deleting a logical parent segment before all its

logical children have been physically deleted. This means the logical path to the

logical parent is deleted first.

You need to examine all your application requirements and decide who can insert,

delete, and replace segments involved in logical relationships and how those

updates should be made (physical path only, or physical and logical path). The

insert, delete, and replace rules in the physical DBD and the PROCOPT=

parameter in the PCB are the means of control.

Related Reading: These rules are explained in detail in Appendix B, “Insert, Delete,

and Replace Rules for Logical Relationships,” on page 465.

Performance Considerations for Logical Relationships

If you are implementing a logical relationship, you make several choices that affect

the resources needed to process logically related segments. This topic explains

these choices.

Logical Parent Pointers

The logical child segment on DASD has a pointer to its logical parent. You choose

how this pointer is physically stored on external storage. Your choices are:

v Direct pointing (specified by coding POINTER=LPARNT in the SEGM statement

for the logical child)

v Symbolic pointing (specified by coding the PHYSICAL operand for the PARENT=

keyword in the SEGM statement for the logical child)

v Both direct and symbolic pointing

The advantages of direct pointers are:

v Because direct pointers are only 4 bytes long, they are usually shorter than

symbolic pointers. Therefore, less DASD space is generally required to store

direct pointers.

Rules for Defining Logical Relationships

Chapter 8. Choosing Optional Database Functions 183

v Direct pointers usually give faster access to logical parent segments, except

possibly HDAM or PHDAM logical parent segments, which are roots. Symbolic

pointers require extra resources to search an index for a HIDAM database. Also,

with symbolic pointers, DL/I has to navigate from the root to the logical parent if

the logical parent is not a root segment.

The advantages of symbolic pointers are:

v Symbolic pointers are stored as part of the logical child segment on DASD.

Having the symbolic key stored on DASD can save the resources required to

format a logical child segment in the user’s I/O area. Remember, the symbolic

key always appears in the I/O area as part of the logical child. When retrieving a

logical child, IMS has to construct the symbolic key if it is not stored on DASD.

v Logical parent databases can be reorganized without the logical child database

having to be reorganized. This applies to unidirectional and bidirectional

physically paired relationships (when symbolic pointing is used).

Symbolic pointing must be used:

v When pointing to a HISAM logical parent database

v If you need to sequence logical child segments (except virtual logical children) on

any part of the symbolic key

KEY/DATA Considerations

When you include a concatenated segment as part of a logical DBD, you control

how the concatenated segment appears in the user’s I/O area. You do this by

specifying either KEY or DATA on the SOURCE= keyword of the SEGM statement

for the concatenated segment. A concatenated segment consists of a logical child

followed by a logical (or destination) parent. You specify KEY or DATA for both

parts. For example, you can access a concatenated segment and ask to see the

following segment parts in the I/O area:

v The logical child part only

v The logical (or destination) parent part only

v Both parts

By carefully choosing KEY or DATA, you can retrieve a concatenated segment with

fewer processing and I/O resources. For example:

v Assume you have the unidirectional logical relationship shown in Figure 108 on

page 185.

Performance Considerations for Logical Relationships

184 Administration Guide: Database Manager

v Assume you have the logical structure shown in Figure 109.

v Finally, assume you only need to see the data for the LINEITEM part of the

concatenated segment.

You can avoid the extra processing and I/O required to access the MODEL part of

the concatenated segment if you:

v Code the SOURCE keyword of the concatenated segment’s SEGM statement as:

SOURCE=(lcsegname,DATA,lcdbname),(lpsegname,KEY,lpdbname)

v Store a symbolic logical parent pointer in LINEITEM. If you do not store the

symbolic pointer, DL/I must access MODEL and PRODUCT to construct it.

To summarize, do not automatically choose DATA sensitivity for both the logical

child and logical parent parts of a concatenated segment. If you do not need to see

the logical parent part, code KEY sensitivity for the logical parent and store the

symbolic logical parent pointer on DASD.

Sequencing Logical Twin Chains

With virtual pairing, it is possible to sequence the real logical child on physical twin

chains and the virtual logical child on logical twin chains. If possible, avoid

operations requiring that you sequence logical twins. When a logical twin chain is

Figure 108. Example of a Unidirectional Logical Relationship

Figure 109. Example of a Logical Structure

Performance Considerations for Logical Relationships

Chapter 8. Choosing Optional Database Functions 185

followed, DL/I usually has to access multiple database records. Accessing multiple

database records increases the resources required to process the call.

This problem of increased resource requirements to process calls is especially

severe when you sequence the logical twin chain on all or part of the symbolic

logical parent pointer. Because a virtual logical child is not stored, it is necessary to

construct the symbolic logical parent pointer to determine if a virtual logical child

satisfies the sequencing operation. DL/I must follow physical parent pointers to

construct the symbolic pointers. This process takes place for each virtual logical

child in the logical twin chain until the correct position is found for the sequencing

operation.

Placement of the Real Logical Child in a Virtually Paired

Relationship

In placing the real logical child in a virtually paired relationship, here are some

considerations:

v If you need the logical child sequenced in only one of the logically related

databases, put the real logical child in that database.

v If you must sequence the logical child in both logically related databases, put the

real logical child in the database from which it is most often retrieved.

v Try to place the real logical child so logical twin chains are as short as possible.

This placement decreases the number of database records that must be

examined to follow a logical twin chain.

Note: You cannot store a real logical child in a HISAM database, because you

cannot have logical child pointers (which are direct pointers) in a HISAM

database.

Secondary Indexes

The following database types support secondary indexes:

v HISAM

v SHISAM

v HDAM

v PHDAM

v HIDAM

v PHIDAM

Secondary indexes are indexes that allow you to process a segment type in a

sequence other than the one defined by the segment’s key. A secondary index can

also be used to process a segment type based on a qualification in a dependent

segment.

Why Secondary Indexes?

When you design your database records, you design them to meet the processing

requirements of many applications. You decide what segments will be in a database

record and what fields will be in a segment. You decide the order of segments in a

database record and fields within a segment. You also decide which field in the root

segment will be the key field, and whether the key field will be unique. All these

decisions are based on what works best for all your application’s processing

requirements. However, the choices you make might suit the processing

requirements of some applications better than others.

Performance Considerations for Logical Relationships

186 Administration Guide: Database Manager

Example: A database record in an educational database is shown in Figure 110.

 Figure 111, shows the root segment, COURSE, and the fields it contains. The

course number field is a unique key field.

 You chose COURSE as the root and course number as a unique key field partly

because most applications requested information based on course numbers. For

these applications, access to the information needed from the database record is

fast. For a few of your applications, however, the organization of the database

record does not provide such fast access. One application, for example, would be

to access the database by student name and then get a list of courses a student is

taking. Given the order in which the database record is now organized, access to

the courses a student is taking requires a sequential scan of the entire database.

Each database record has to be checked for an occurrence of the STUDENT

segment. When a database record for the specific student is found, then the

COURSE segment has to be referenced to get the name of the course the student

is taking. This type of access is relatively slow. In this situation, you can use a

secondary index that has a set of pointer segments for each student to all COURSE

segments for that student.

Another application would be to access COURSE segments by course name. In this

situation, you can use a secondary index that allows access to the database in

course name sequence (rather than by course number, which is the key field).

Secondary indexing is a solution to the different processing requirements of various

applications. It allows you to have an index based on any field in the database, and

not just the key field in the root segment.

Figure 110. Database Record in Educational Database

Figure 111. Example of a Database Record Unique Key Field

Secondary Indexes

Chapter 8. Choosing Optional Database Functions 187

|
|

Characteristics of Secondary Indexes

Secondary indexes can be used with HISAM, HDAM, PHDAM, HIDAM, and

PHIDAM databases. A secondary index is in its own separate database and must

use VSAM as its access method. Because a secondary index is in its own

database, it can be processed as a separate database.

Secondary indexes are invisible to the application program. When an application

program needs to do processing using the secondary index, this fact is

communicated to IMS by coding the PROCSEQ= parameter in the PCB. If an

application program needs to do processing using the regular processing sequence,

PROCSEQ= is simply not coded. If the application program needs to do processing

using both the regular processing sequence and the secondary index, the

application program’s PSB must contain two PCBs, one with PROCSEQ= coded

and one without.

When two PCBs are used, it enables an application program to use two paths into

the database and two sequence fields. One path and sequence field is provided by

the regular processing sequence, and one is provided by the secondary index. The

secondary index gives an application program both an alternative way to enter the

database and an alternative way to sequentially process database records.

A final characteristic of secondary indexes is that there can be 32 secondary

indexes for a segment type and a total of 1000 secondary indexes for a single

database.

Segments Used for Secondary Indexes

As shown in Figure 112, to set up a secondary index, three types of segments must

be defined to IMS. The three types of segments are pointer, target, and source

segments.

v Pointer Segment. The pointer segment is contained in the secondary index

database and is the only type of segment in the secondary index database. Its

format is shown in Figure 113 on page 189.

Figure 112. Segments Used for Secondary Indexes

Secondary Indexes

188 Administration Guide: Database Manager

The first field in the prefix is the delete byte. The second field is the address of

the segment the application program retrieves from the regular database. This

field is not present if the secondary index uses symbolic pointing. Symbolic

pointing is pointing to a segment using its concatenated key. HIDAM and HDAM

can use symbolic pointing; however, HISAM must use symbolic pointing.

Symbolic pointing is not supported for PHDAM and PHIDAM databases.

For a HALDB PSINDEX database, the segment prefix of pointer segments is

slightly different. The “RBA of the segment to be retrieved field” is part of an

Extended Pointer Set (EPS), which is longer than 4 bytes. Within the prefix the

EPS is followed by the key of the target’s root.

v Target Segment. The target segment is in the regular database, and it is the

segment the application program needs to retrieve. A target segment is the

segment to which the pointer segment points. The target segment can be at any

one of the 15 levels in the database, and it is accessed directly using the RBA or

symbolic pointer stored in the pointer segment. Physical parents of the target

segment are not examined to retrieve the target segment (except in one special

case discussed in “Concatenated Key Field” on page 195).

v Source Segment. The source segment is also in the regular database. The

source segment contains the field (or fields) that the pointer segment has as its

key field. Data is copied from the source segment and put in the pointer

segment’s key field. The source and the target segment can be the same

segment, or the source segment can be a dependent of the target segment. The

optional fields are also copied from the source segment with one exception,

which is discussed later in this topic.

Using the education database in Figure 114 on page 190, you can see how three

segments work together. In this example, the education database is a HIDAM

database that uses RBAs rather than symbolic pointers. Suppose an application

program needs to access the education database by student name and then list all

courses the student is taking:

v The segment the application is trying to retrieve is the COURSE segment,

because the segment contains the names of courses (COURSENM field).

Therefore, COURSE is the target segment, and needs retrieval.

v In this example, the application program is going to use the student’s name in its

DL/I call to retrieve the COURSE segment. The DL/I call is qualified using

student name as its qualifier. The source segment contains the fields used to

sequence the pointer segments in the secondary index. In this example, the

pointer segments must be sequenced by student name. The STUDENT segment

becomes the source segment. It is the fields in this segment that are copied into

the data portion of the pointer segment as the key field.

v The call from the application program invokes a search for a pointer segment

with a key field that matches the student name. Once the correct pointer

segment in the index is found, it contains the address of the COURSE segment

the application program is trying to retrieve.

Figure 113. Format of Pointer Segments Contained in the Secondary Index Database

Secondary Indexes

Chapter 8. Choosing Optional Database Functions 189

|
|
|
|
|
|
|

Figure 115 shows how the pointer, target, and source segments work together.

Figure 115 is the call the application program issues. XNAME is the from the NAME

parameter in the XFLD statement.

 COURSE is the target segment that the application program is trying to retrieve.

STUDENT is the source segment containing the one or more fields that the

application program uses as a qualifier in its call and that the data portion of a

pointer segment contains as a key.

The BAKER segment in the secondary index is the pointer segment, whose prefix

contains the address of the segment to be retrieved and whose data fields contain

the key the application program uses as a qualifier in its call.

Figure 114. Education Database Record

Figure 115. How a Segment Is Accessed Using a Secondary Index

GU COURSE (XNAME = BAKER ...)

Figure 116. Call Application Issues

Secondary Indexes

190 Administration Guide: Database Manager

How the Hierarchy Is Restructured

When the PROCSEQ= parameter in the PCB is coded (specifying that the

application program needs to do processing using the secondary index), the way in

which the application program perceives the database record changes.

If the target segment is the root segment in the database record, the structure the

application program perceives does not differ from the one it can access using the

regular processing sequence. However, if the target segment is not the root

segment, the hierarchy in the database record is conceptually restructured.

Figure 117 and Figure 118 on page 192 illustrate this concept.

The target segment (as shown in the figure) is segment G. Target segment G

becomes the root segment in the restructured hierarchy. All dependents of the

target segment (segments H, J, and I) remain dependents of the target segment.

However, all segments on which the target is dependent (segments D and A) and

their subordinates become dependents of the target and are put in the left most

positions of the restructured hierarchy. Their position in the restructured hierarchy is

the order of immediate dependency. D becomes an immediate dependent of G, and

A becomes an immediate dependent of D.

Figure 117. Physical Database Structure with Target Segment G

Secondary Indexes

Chapter 8. Choosing Optional Database Functions 191

Secondary Data Structure

This new structure is called a secondary data structure. A processing restriction

exists when using a secondary data structure, and the target segment and the

segments on which it was dependent (its physical parents, segments D and A)

cannot be inserted or deleted.

Secondary Processing Sequence

The restructuring of the hierarchy in the database record changes the way in which

the application program accesses segments. The new sequence in which segments

are accessed is called the secondary processing sequence. Figure 118 shows how

the application program perceives the database record.

If the same segment is referenced more than once (as shown in Figure 118), you

must use the DBDGEN utility to generate a logical DBD that assigns alternate

names to the additional segment references. If you do not generate the logical

DBD, the PSBGEN utility will issue the message “SEG150” for the duplicate

SENSEG names.

How a Secondary Index Is Stored

Secondary index databases contain root segments only. They are stored in a single

VSAM KSDS if the key in the pointer segment is unique. If keys are not unique, an

additional data set must be used (an ESDS) to store segments containing duplicate

keys. (KSDS data sets do not allow duplicate keys.) Duplicate keys exist when, for

example, a secondary index is used to retrieve courses based on student name. As

shown in Figure 119 on page 193, several source segments could exist for each

student.

Figure 118. Secondary Index Structure Indexed in Secondary Index on Segment G

Secondary Indexes

192 Administration Guide: Database Manager

Each pointer segment in a secondary index is stored in one logical record. A logical

record containing a pointer segment is shown in Figure 120.

 A HALDB secondary index entry is shown in Figure 121.

 The format of the logical record is the same in both a KSDS and ESDS data set.

The pointer field at the beginning of the logical record exists only when the key in

the data portion of the segment is not unique. If keys are not unique, some pointer

segments will contain duplicate keys. These pointer segments must be chained

together, and this is done using the pointer field at the beginning of the logical

record.

Pointer segments containing duplicate keys are stored in the ESDS in LIFO (last in,

first out) sequence. When the first duplicate key segment is inserted, it is written to

the ESDS, and the KSDS logical record containing the segment it is a duplicate of

points to it. When the second duplicate is inserted, it is inserted into the ESDS in

the next available location. The KSDS logical record is updated to point to the

second duplicate. The effect of inserting duplicate pointer segments into the ESDS

in LIFO sequence is that the original pointer segment (the one in the KSDS) is

retrieved last. This retrieval sequence should not be a problem, because duplicates,

by definition, have no special sequence.

Format and Use of Fields in a Pointer Segment

This topic contains diagnosis, modification, or tuning information.

Figure 122 on page 194 shows the fields in a pointer segment. Like all segments,

the pointer segment has a prefix and data portion. The prefix portion has a delete

byte, and when direct rather than symbolic pointing is used, it has the address of

the target segment (4 bytes). The data portion has a series of fields, and some of

them are optional. All fields in the data portion of a pointer segment contain data

Figure 119. Examples of Source Segments for Each Student

Figure 120. Example of a Logical Record Containing a Pointer Segment

Figure 121. Secondary Index Entry for HALDB

Secondary Indexes

Chapter 8. Choosing Optional Database Functions 193

|

|
|
|

taken from the source segment (with the exception of user data). These fields are

the constant field (optional), the search field, the subsequence field (optional), the

duplicate data field (optional), the concatenated key field (optional except for

HISAM), and then the data (optional).

Delete Byte

The delete byte is used by IMS to determine whether a segment has been deleted

from the database.

Pointer Field

This field, when present, contains the RBA of the target segment. The pointer field

exists when direct pointing is specified for an index pointing to an HD database.

Direct pointing is simply pointing to a segment using its actual address. The other

type of pointing that can be specified is symbolic pointing. Symbolic pointing, which

is explained under “Concatenated Key Field,” can be used to point to HD databases

and must be used to point to HISAM databases. If symbolic pointing is used, this

field does not exist.

Constant Field

This field, when present, contains a 1-byte constant. The constant is used when

more than one index is put in an index database (This topic is discussed under

“Sharing Secondary Index Databases” on page 201). The constant identifies all

pointer segments for a specific index in the shared index database. The value in the

constant field becomes part of the key.

Search Field

The data in the search field is the key of the pointer segment. All data in the search

field comes from data in the source segment. As many as five fields from the

source segment can be put in the search field. These fields do not need to be

contiguous fields in the source segment. When the fields are stored in the pointer

segment, they can be stored in any order. When stored, the fields are

concatenated. The data in the search field (the key) can be unique or non-unique.

IMS automatically maintains the search field in the pointer segment whenever a

source segment is modified.

Subsequence Field

The subsequence field, like the search field, contains from one to five fields of data

from the source segment. Subsequence fields are optional, and can be used if you

have non-unique keys. The subsequence field can make non-unique keys unique.

Making non-unique keys unique is desirable because of the many disadvantages of

non-unique keys. For example, non-unique keys require you to use an additional

data set, an ESDS, to store all index segments with duplicate keys. An ESDS

requires additional space. More important, the search for specific occurrences of

duplicates requires additional I/O operations that can decrease performance.

Figure 122. Examples of Several Source Segments for Each Student

Secondary Indexes

194 Administration Guide: Database Manager

When a subsequence field is used, the subsequence data is concatenated with the

data in the search field. These concatenated fields become the key of the pointer

segment. If properly chosen, the concatenated fields form a unique key. (It is not

always be possible to form a unique key using source data in the subsequence

field. Therefore, you can use system related fields, explained later in the chapter, to

form unique keys.)

One important thing to note about using subsequence fields is that if you use them,

the way in which an SSA is coded does not need to change. The SSA can still

specify what is in the search field, but it cannot specify what is in the search plus

the subsequence field. Subsequence fields are not seen by the application program

unless it is processing the secondary index as a separate database.

Up to five fields from the source segment can be put in the subsequence field.

These fields do not need to be contiguous fields in the source segment. When the

fields are stored in the pointer segment, they can be stored in any order. When

stored, they are concatenated.

IMS automatically maintains the subsequence field in the pointer segment whenever

a source segment is modified.

Duplicate Data Field

The duplicate data field, like the search field, contains from one to five fields of data

from the source segment. Duplicate data fields are optional. Use duplicate data

fields when you have applications that process the secondary index as a separate

database (This topic is discussed under “Processing a Secondary Index as a

Separate Database” on page 200). Like the subsequence field, the duplicate data

field is not seen by an application program unless it is processing the secondary

index as a separate database.

As many as five fields from the source segment can be put in the duplicate data

field. These fields do not need to be contiguous fields in the source segment. When

the fields are stored in the pointer segment, they can be stored in any order. When

stored, they are concatenated.

IMS automatically maintains the duplicate data field in the pointer segment

whenever a source segment is modified.

Concatenated Key Field

This field, when present, contains the concatenated key of the target segment. This

field exists when the pointer segment points to the target segment symbolically,

rather than directly. Direct pointing is simply pointing to a segment using its actual

address. Symbolic pointing is pointing to a segment by a means other than its

actual address. In a secondary index, the concatenated key of the target segment is

used as a symbolic pointer.

Segments in an HDAM or a HIDAM database being accessed using a secondary

index can be accessed using a symbolic pointer. Segments in a HISAM database

must be accessed using a symbolic pointer because segments in a HISAM

database can “move around,” and the maintenance of direct-address pointers could

be a large task. One of the implications of using symbolic pointers is that the

physical parents of the target segment must be accessed to get to the target

segment. Because of this extra access, retrieval of target segments using symbolic

pointing is not as fast as retrieval using direct pointing. Also, symbolic pointers

generally require more space in the pointer segment. When symbolic pointers are

Secondary Indexes

Chapter 8. Choosing Optional Database Functions 195

used, the pointer field (4 bytes long) in the prefix is not present, but the fully

concatenated key of the target segment is generally more than 4 bytes long.

IMS automatically generates the concatenated key field when symbolic pointing is

specified.

One situation exists in which symbolic pointing is specified and IMS does not

automatically generate the concatenated key field. This situation is caused by

specifying the system-related field /CK as a subsequence or duplicate data field in

such a way that the concatenated key is fully contained. In this situation, the

symbolic pointer portion of either the subsequence field or the duplicate data field is

used.

User Data in Pointer Segments

You can include any user data in the data portion of a pointer segment by

specifying a segment length long enough to hold it. You need user data when

applications process the secondary index as a separate database (This topic is

discussed under “Processing a Secondary Index as a Separate Database” on page

200). Like data in the subsequence and duplicate data fields, user data is never

seen by an application program unless it is processing the secondary index as a

separate database.

You must initially load user data. You must also maintain it. During reorganization of

a database that uses secondary indexes, the secondary index database is rebuilt by

IMS. During this process, all user data in the pointer segment is lost.

Making Keys Unique Using System Related Fields

You have already seen why it is desirable to have unique keys in the secondary

index. You have also seen one way to force unique keys using the subsequence

field in the pointer segment. If use of the subsequence field to contain additional

information from the source segment does not work for you, there are two other

ways to force unique keys. Both are done using an operand in the FIELD statement

of the source segment in the DBD. The FIELD statement defines fields within a

segment type.

Using the /SX Operand

For HD databases, you can code a FIELD statement with a NAME field that starts

with /SX. The /SX can be followed by any additional characters (up to five) that you

need. When you use this operand, the system generates (during segment insertion)

the RBA, or an 8-byte ILK for PHDAM or PHIDAM, of the source segment. The

system also puts the RBA or ILK in the subsequent field in the pointer segment,

thus ensuring that the key is unique. The FIELD statement in which /SX is coded is

the FIELD statement defining fields in the source segment. The /SX value is not,

however, put in the source segment. It is put in the pointer segment.

When you use the /SX operand, the XDFLD statement in the DBD must also

specify /SX (plus any of the additional characters added to the /SX operand). The

XDFLD statement, among other things, identifies fields from the source segment

that are to be put in the pointer segment. The /SX operand is specified in the

SUBSEQ= operand in the XDFLD statement.

Using the /CK Operand

The other way to force unique keys is to code a FIELD statement with a NAME

parameter that starts with /CK. When used as a subsequence field, /CK ensures

unique keys for pointer segments. You can use this operand for HISAM, HDAM,

PHDAM, HIDAM, or PHIDAM databases. The /CK can be followed by up to five

Secondary Indexes

196 Administration Guide: Database Manager

additional characters. The /CK operand works like the /SX operand except that the

concatenated key, rather than the RBA, of the source segment is used. Another

difference is that the concatenated key is put in the subsequence or duplicate data

field in the pointer segment. Where the concatenated key is put depends on where

you specify the /CK.

When using /CK, you can use a portion of the concatenated key of the source

segment (if some portion will make the key unique) or all of the concatenated key.

You use the BYTES= and START= operands in the FIELD statement to specify

what you need.

For example, suppose you are using the database record shown in Figure 123.

 The concatenated key of the STUDENT segment is shown in Figure 124.

 If you specify on the FIELD statement whose name begins with /CK BYTES=21,

START=1, the entire concatenated key of the source segment will be put in the

pointer segment. If you specify BYTES=6, START=16, only the last six bytes of the

concatenated key (CLASSNO and SEQ) will be put in the pointer segment. The

BYTES= operand tells the system how many bytes are to be taken from the

concatenated key of the source segment in the PCB key feedback area. The

START= operand tells the system the beginning position (relative to the beginning

of the concatenated key) of the information that needs to be taken. As with the /SX

operand, the XDFLD statement in the DBD must also specify /CK.

To summarize: /SX and /CK fields can be included on the SUBSEQ= parameter of

the XDFLD statement to make key fields unique. Making key fields unique avoids

the overhead of using an ESDS to hold duplicate keys. The /CK field can also be

specified on the DDATA= parameter of the XDFLD statement but the field will not

become part of the key field.

When making keys unique, unique sequence fields must be defined in the target

segment type, if symbolic pointing is used Also, unique sequence fields must be

defined in all segment types on which the target segment type is dependent (in the

physical rather than restructured hierarchy in the database).

Figure 123. Database Record Showing the Source and Target for Secondary Indexes

Figure 124. Concatenated Key of the STUDENT Segment

Secondary Indexes

Chapter 8. Choosing Optional Database Functions 197

Suppressing Index Entries: Sparse Indexing

When a source segment is loaded, inserted, or replaced in the database, DL/I

automatically creates or maintains the pointer segment in the index. This happens

automatically unless you have specified that you do not need certain pointer

segments built.

For example: suppose you have a secondary index for the education database at

which you have been previously looking. STUDENT is the source segment, and

COURSE is the target segment. You might need to create pointer segments for

students only if they are associated with a certain customer number. This could be

done using sparse indexing, a performance enhancement of secondary indexing.

Advantages of Sparse Indexing

Sparse indexing allows you to specify the conditions under which a pointer segment

is suppressed, not generated, and put in the index database. Sparse indexing has

two advantages. The primary one is that it reduces the size of the index, saving

space and decreasing maintenance of the index. By decreasing the size of the

index, performance is improved. The second advantage is that you do not need to.

generate unnecessary index entries.

How to Specify a Sparse Index

Sparse indexing can be specified in two ways:

v You can code a value in the NULLVAL= operand on the XDFLD statement in the

DBD that equals the condition under which you do not need a pointer segment

put in the index. You can put BLANK, ZERO, or any 1-byte value (for example,

X'10', C'Z', 5, or B'00101101') in the NULLVAL= operand.

– BLANK is the same as C ' ' or X'40'

– ZERO is the same as X'00' but not C'0'

When using the NULLVAL= operand, a pointer segment is suppressed if every

byte of the source field has the value you used in the operand.

v If the values you are allowed to code in the NULLVAL= operand do not work for

you, you can create an index maintenance exit routine that determines the

condition under which you do not need a pointer segment put in the index. If you

create your own index maintenance exit routine, you code its name in the

EXTRTN= operand on the XDFLD statement in the DBD. You can only have one

index maintenance exit routine for each secondary index. This exit routine,

however, can be a general purpose one that is used by more than one

secondary index.

The exit routine must be consistent in determining whether a particular pointer

segment needs to be put in the index. The exit routine cannot examine the same

pointer segment at two different times but only mark it for suppression once. Also,

user data cannot be used by your exit routine to determine whether a pointer

segment is to be put in the index. When a pointer segment needs to be inserted

into the index, your exit routine only sees the actual pointer segment just before

insertion. When a pointer segment is being replaced or deleted, only a prototype of

the pointer segment is seen by your exit routine. The prototype contains the

contents of the constant, search, subsequence, and duplicate data fields, plus the

symbolic pointer if there is one.

The information needed to code a secondary index maintenance exit routine is in

IMS Version 9: Customization Guide.

Secondary Indexes

198 Administration Guide: Database Manager

|
|
|
|
|

How the Secondary Index Is Maintained

When a source segment is inserted, deleted, or replaced in the database, IMS

keeps the index current regardless whether the application program performing the

update uses the secondary index.

The way in which IMS maintains the index depends on the operation being

performed. Regardless of the operation, IMS always begins index maintenance by

building a pointer segment from information in the source segment that is being

inserted, deleted, or replaced. (This pointer segment is built but not yet put in the

secondary index database.)

Inserting a Source Segment

When a source segment is inserted, DL/I determines whether the pointer segment

needs to be suppressed. If the pointer segment needs to be suppressed, it is not

put in the secondary index. If the pointer segment does not need to be suppressed,

it is put in the secondary index.

Deleting a Source Segment

When a source segment is deleted, IMS determines whether the pointer segment is

one that was suppressed. If so, IMS does not do any index maintenance. If the

segment is one that was suppressed, there should not be a corresponding pointer

segment in the index to delete. If the pointer segment is not one that was

suppressed, IMS finds the matching pointer segment in the index and deletes it.

Unless the segment contains a pointer to the ESDS data set, which can occur with

a non-unique secondary index, the logical record containing the deleted pointer

segment in a KSDS data set is erased.

Replacing a Source Segment

When a source segment is replaced, the pointer segment in the index might or

might not be affected. The pointer segment in the index might need to be replaced,

or it might need to be deleted. After replacement or deletion, a new pointer segment

is inserted. On the other hand, the pointer segment might need no changes. IMS

determines what needs to be done by comparing the pointer segment it built (the

new one) with the matching pointer segment in the secondary index (the old one).

v If both the new and the old pointer segments need to be suppressed, IMS does

not do anything (no pointer segment exists in the index).

v If the new pointer segment needs to be suppressed but the old one does not,

then the old pointer segment is deleted from the index.

v If the new pointer segment does not need to be suppressed but the old pointer

segment is suppressed, then the new pointer segment is inserted into the

secondary index.

v If neither the new or the old segment needs to be suppressed and:

– If there is no change to the old pointer segment, IMS does not do anything.

– If the non-key data portion in the new pointer segment is different from the old

one, the old pointer segment is replaced. User data in the index pointer

segment is preserved when the pointer segment is replaced.

– If the key portion in the new pointer segment is different from the old one, the

old pointer segment is deleted and the new pointer segment is inserted. User

data is not preserved when the index pointer segment is deleted and a new

one inserted.

If you reorganize your secondary index and it contains non-unique keys, the

resulting pointer segment order can be unpredictable.

Secondary Indexes

Chapter 8. Choosing Optional Database Functions 199

Processing a Secondary Index as a Separate Database

Because they are actual databases, secondary indexes can be processed

independently. A number of reasons exist why an application program might

process a secondary index as an independent database. For example, an

application program can use the secondary index to retrieve a small piece of data

from the database. If you put this piece of data in the pointer segment, the

application program can retrieve it without an I/O operation to the regular database.

You could put the piece of data in the duplicate data field in the pointer segment if

the data was in the source segment. Otherwise, you must carry the data as user

data in the pointer segment. (If you carry the data as user data, it is lost when the

primary database is reorganized and the secondary index is recreated.)

Another reason for processing a secondary index as a separate database is to

maintain it. You could, for example, scan the subsequence or duplicate data fields

to do logical comparisons or data reduction between two or more indexes. Or you

can add to or change the user data portion of the pointer segment. The only way an

application program can see user data or the contents of the duplicate data field is

by processing the secondary index as a separate database.

In processing a secondary index as a separate database, several processing

restrictions designed primarily to protect the secondary index database exist. The

restrictions are as follows:

v Segments cannot be inserted.

v Segments can be deleted. Note, however, that deleted segments can make your

secondary index invalid for use as an index.

v The key field in the pointer segment (which consists of the search field, and if

they exist, the constant and subsequence fields) cannot be replaced.

In addition to the restrictions imposed by the system to protect the secondary index

database, you can further protect it using the PROT operand in the DBD statement.

When PROT is specified, an application program can only replace user data in a

pointer segment. However, pointer segments can still be deleted when PROT is

specified. When a pointer segment is deleted, the source segment that caused the

pointer segment to be created is not deleted. Note the implication of this: IMS might

try to do maintenance on a pointer segment that has been deleted. When it finds no

pointer segment for an existing source segment, it will return an NE status code.

When NOPROT is specified, an application program can replace all fields in a

pointer segment except the constant, search, and subsequence fields. PROT is the

default for this parameter.

For an application program to process a secondary index as a separate database,

you merely code a PCB for the application program. This PCB must reference the

DBD for the secondary index. When an application program uses qualified SSAs to

process a secondary index database, the SSAs must use the complete key of the

pointer segment as the qualifier. The complete key consists of the search field and

the subsequence and constant fields (if these last two fields exist). The PCB key

feedback area in the application program will contain the entire key field.

If you are using a shared secondary index, calls issued by an application program

(for example, a series of GN calls) will not violate the boundaries of the secondary

index they are against. Each secondary index in a shared database has a unique

DBD name and root segment name.

Secondary Indexes

200 Administration Guide: Database Manager

Sharing Secondary Index Databases

As many as 16 secondary indexes can be put in a single index database. When

more than one secondary index is in the same database, the database is called a

shared index database.

HALDB does not support shared secondary indexes.

Although using a shared index database can save some main storage, the

disadvantages of using a shared index database generally outweigh the small

amount of space that is saved by its use. For example, performance can decrease

when more than one application program simultaneously uses the shared index

database. (Search time is increased because the arm must move back and forth

between more than one secondary index.) In addition, maintenance, recovery, and

reorganization of the shared index database can decrease performance because all

secondary indexes are, to some extent, affected if one is. For example, when a

database that is accessed using a secondary index is reorganized, IMS

automatically builds a new secondary index. This means all other indexes in the

shared database must be copied to the new shared index.

If you are using a shared index database, you need to know the following

information:

v A shared index database is created, accessed, and maintained just like an index

database with a single secondary index.

v The various secondary indexes in the shared index database do not need to

index the same database.

v One shared index database could contain all secondary indexes for your

installation (if the number of secondary indexes does not exceed 16).

In a shared index database:

v All index segments must be the same length.

v All keys must be the same length.

v The offset from the beginning of all segments to the search field must be the

same. This means all keys must be either unique or non-unique. With non-unique

keys, a pointer field exists in the target segment. With unique keys, it does not.

So the offset to the key field, if unique and non-unique keys were mixed, would

differ by 4 bytes.

If the search fields in your secondary indexes are not the same length, you might

be able to force key fields of equal length by using the subsequence field. You

can put the number of bytes you need to make each key field an equal length in

the subsequence field.

v Each shared secondary index requires a constant specified for it, a constant that

uniquely identifies it from other indexes in the secondary index database. IMS

puts this identifier in the constant field of each pointer segment in the secondary

index database. For shared indexes, the key is the constant, search, and (if

used) the subsequence field.

Using the INDICES= Parameter

In the PCB on a SENSEG statement, you can specify an INDICES= parameter.

This parameter is used to specify a secondary index that contains search fields

used to qualify SSAs for an indexed segment type. Figure 125, Figure 126 on page

202, and Figure 127 on page 202 illustrate the use of the INDICES=parameter.

Secondary Indexes

Chapter 8. Choosing Optional Database Functions 201

|
|
|
|

The use of the INDICES= parameter does not alter the processing sequence

selected for the PCB by the presence or absence of the PROCSEQ= parameter.

 When the call shown in Figure 127 is used, IMS gets the COURSE segment with a

number 12345. Then IMS gets a secondary index entry, one in which XSTUNM is

equal to JONES. IMS checks to see if the pointer in the secondary index points to

the COURSE segment with course number 12345. If it does, IMS returns the

COURSE segment to the application program’s I/O area. If the secondary index

pointer does not point to the COURSE segment with course number equal to

12345, IMS checks for other secondary index entries with XSTUNM equal to

JONES and repeats the compare.

If all secondary index entries with XSTUNM equal to JONES result in invalid

compares, no segment is returned to the application program. By doing this, IMS

need not search the STUDENT segments for a student with NAME equal to

JONES. This technique involving use of the INDICES= parameter is useful when

source and target segments are different.

Compare Process and Performance

Excluding COURSENM=12345 (in Figure 127) from a GU call, impacts

performance. IMS retrieves the first COURSE segment in the COURSE database,

and then a secondary index entry in which XSTUNM is equal to JONES. IMS

checks to see if the pointer in the secondary index points to the COURSE segment

just retrieved. If it does, IMS returns the COURSE segment to the application

program’s I/O area. If the secondary index pointer does not point to this COURSE

segment, IMS checks for other secondary index entries with XSTUNM equal to

JONES and repeats the compare. If all secondary index entries with XSTUNM

equal to JONES result in invalid compares, IMS retrieves the next COURSE

segment and the secondary index entries as before, then repeats the compare. If all

the COURSE segments result in invalid compares, no segment is returned to the

application program.

Figure 125. Databases for First Example of the INDICES= Parameter

PCB

SENSEG NAME=COURSE, INDICES=SIDBD1

SENSEG NAME=STUDENT

Figure 126. PCB for the First Example of the INDICES= Parameter

GU COURSE COURSENM=12345&.XSTUNM=JONES

Figure 127. Application Program Call Issued for the First Example of the INDICES=

Parameter

Secondary Indexes

202 Administration Guide: Database Manager

The INDICES= parameter can also be used to reference more than one secondary

index in the source call. Figure 130 on page 204 shows the use of

INDICES=parameter.

In the Figure 128, IMS uses the SIDBD2 secondary index to get the COURSE

segment for MATH. IMS then gets a COURSE segment using the SIDBD1. IMS can

then compare to see if the two course segments are the same. If they are, IMS

returns the COURSE segment to the application program’s I/O area. If the compare

is not equal, IMS looks for other SIDBD1 pointers to COURSE segments and

repeats the compare operations. If there are still no equal compares, IMS checks

for other SIDBD2 pointers to COURSE segments and looks for equal compares to

SIDBD1 pointers. If all possible compares result in unequal compares, no segment

is returned to the application program.

Note: This compare process can severely degrade performance.

Using Secondary Indexes with Logical Relationships

When creating or using a secondary index for a database that has logical

relationships, the following restrictions exist:

v A logical child segment or a dependent of a logical child cannot be a target

segment.

v A logical child cannot be used as a source segment; however, a dependent of a

logical child can.

v A concatenated segment or a dependent of a concatenated segment in a logical

database cannot be a target segment.

v When using logical relationships, no qualification on indexed fields is allowed in

the SSA for a concatenated segment. However, an SSA for any dependent of a

concatenated segment can be qualified on an indexed field.

Figure 128 shows the databases for the second example of the INDICES

parameter. Following the databases is the example PCB in Figure 129 and the

application programming call in Figure 130 on page 204.

Figure 128. Databases for Second Example of the INDICES= Parameter

PCB PROCSEQ=SIDBD2

SENSEG NAME=COURSE, INDICES=SIDBD1

SENSEG NAME=STUDENT

Figure 129. PCB for the Second Example of the INDICES= Parameter

Secondary Indexes

Chapter 8. Choosing Optional Database Functions 203

Using Secondary Indexes with Variable-Length Segments

If a variable-length segment is a source segment, when an occurrence of it is

inserted that does not have fields specified for use in the search, subsequence, or

duplicate data fields of the pointer segment, the following occurs:

v If the missing source segment data is used in the search field of the pointer

segment, no pointer segment is put in the index.

v If the missing source segment data is used in the subsequence or duplicate data

fields of the pointer segment, the pointer segment is put in the index. However,

the subsequence or duplicate data field will contain one of the three following

representations of zero:

 P = X'0F'

 X = X'00'

 C = C'0'

Which of these is used is determined by what is specified on the FIELD

statements in the DBD that defined the source segment field.

Considerations When Using Secondary Indexing

v When a source segment is inserted into or deleted from a database, an index

pointer segment is inserted into or deleted from the secondary index. This

maintenance always occurs regardless of whether the application program doing

the updating is using the secondary index.

v When an index pointer segment is deleted by a REPL or DLET call, position is

lost for all calls within the database record for which a PCB position was

established using the deleted index pointer segment.

v When replacing data in a source segment, if the data is used in the search,

subsequence, or duplicate data fields of a secondary index, the index is updated

to reflect the change as follows:

– If data used in the duplicate data field of the pointer segment is replaced in

the source segment, the pointer segment is updated with the new data.

– If data used in the search or subsequence fields of the pointer segment is

replaced in the source segment, the pointer segment is updated with the new

data. In addition, the position of the pointer segment in the index is changed,

because a change to the search or subsequence field of a pointer segment

changes the key of the pointer segment. The index is updated by deleting the

pointer segment from the position that was determined by the old key. The

pointer segment is then inserted in the position determined by the new key.

v The use of secondary indexes increases storage requirements for all calls made

within a specific PCB when the processing option allows the source segment to

be updated. Additional storage requirements for each secondary index database

range from 6K to 10K bytes. Part of this additional storage is fixed in real storage

by VSAM.

v You should always compare the use of secondary indexing with other ways of

achieving the same result. For example, to produce a report from an HDAM or

PHDAM database in root key sequence, you can use a secondary index.

However, in many cases, access to each root sequentially is a random operation.

GU COURSE SCRSNM=MATH&XSTUNM=JONES

Figure 130. Application Program Call Issued for the Second Example of the INDICES=

Parameter

Secondary Indexes

204 Administration Guide: Database Manager

It would be very time-consuming to fully scan a large database when access to

each root is random. It might be more efficient to scan the database in physical

sequence (using GN calls and no secondary index) and then sort the results by

root key to produce a final report in root key sequence.

v When calls for a target segment are qualified on the search field of a secondary

index, and the indexed database is not being processed using the secondary

index, additional I/O operations are required. Additional I/O operations are

required because the index must be accessed each time an occurrence of the

target segment is inspected. Because the data in the search field of a secondary

index is a duplication of data in a source segment, you should decide whether an

inspection of source segments might yield the same result faster.

v When using a secondary data structure, the target segment and the segments on

which it was dependent (its physical parents) cannot be inserted or deleted.

How to Specify Use of Secondary Indexing in the DBD

Figure 131 on page 207 shows the EDUC database and its secondary index.

Figure 132 on page 207 and Figure 133 on page 207 show the two DBDs required

for the databases. The secondary index in this example is used to retrieve

COURSE segments based on student names. The example uses direct, rather than

symbolic, pointers. The pointer segment in the secondary index contains a student

name in the search field and a system related field in the subsequence field. Both

of these fields are defined in the STUDENT segment. The STUDENT segment is

the source segment. The COURSE segment is the target segment.

The DBDs in Figure 132 on page 207 and Figure 133 on page 207 highlight the

statements and parameters coded when a secondary index is used. (Wherever

statements or parameters are omitted the parameter in the DBD is coded the same

regardless of whether secondary indexing is used.) “DBD for the EDUC Database”

and “DBD for the SINDX Database” on page 208 provide a summary of how the

statements and parameters in the DBDs in Figure 132 on page 207 and Figure 133

on page 207 are used.

DBD for the EDUC Database

An LCHILD and XDFLD statement are used to define the secondary index. These

statements are coded after the SEGM statement for the target segment.

v LCHILD statement. The LCHILD statement specifies the name of the secondary

index SEGM statement and the name of the secondary index database in the

NAME= parameter. The PTR= parameter is always PTR=INDX when a

secondary index is used.

v XDFLD statement. The XDFLD statement defines the contents of the pointer

segment and the options used in the secondary index. It must appear in the DBD

input deck after the LCHILD statement that references the pointer segment. The

meaning of the parameters in the XDFLD statement are as follows:

NAME=

This parameter specifies the name that can be used in the SSA to qualify a

DL/I call on the secondary processing sequence.

SEGMENT=

This parameter identifies the source segment, which in this example is

STUDENT. If this operand is omitted, the target segment is assumed to be

the same segment as the source segment. The remaining parameters in the

XDFLD statement describe information related to the source segment.

Secondary Indexes

Chapter 8. Choosing Optional Database Functions 205

CONSTANT=

This parameter (not used in the example) specifies the unique constant

required when a secondary index is part of a shared database.

SRCH=

This parameter specifies the one to five fields from the source segment that

are to be copied into the pointer segment’s search field. In this case, only

one field is being copied, the STUDNM field, which contains student names.

SUBSEQ=

This parameter specifies the one to five fields from the source segment that

are to be copied into the pointer segment’s subsequence field. These extra

fields can be used to make the key in the index unique. In this case, one

field is being copied, the /SX1 field, which contains a system-related field.

This parameter is optional.

DDATA=

This parameter (not used in the example) specifies the one to five fields from

the source segment that are to be copied into the pointer segment’s duplicate

data field. These fields can only be accessed when the secondary index is

processed as a separate database. This parameter is optional.

NULLVAL=

This parameter (not used in the example) contains a 1-byte value used to

suppress entries in the secondary index database. This parameter is

optional.

EXTRTN=

This parameter (not used in the example) specifies a user-exit routine. The

user routine gets control after a source segment is built. The routine is used

to suppress entries in the secondary index database when you cannot use

the values that can be specified in the NULLVAL= parameter. This parameter

is optional.

In the example, shown in Figure 131 on page 207, a system-related field (/SX1) is

used on the SUBSEQ parameter. System-related fields must also be coded on

FIELD statements after the SEGM for the source segment. For more details, see

“Making Keys Unique Using System Related Fields” on page 196.

Secondary Indexes

206 Administration Guide: Database Manager

Figure 132 shows the EDUC DBD for the example in Figure 131.

 Figure 133 shows the SINDX DBD for the example in Figure 131.

Figure 131. Databases for Secondary Indexing Example

DBD NAME=EDUC,ACCESS=HDAM,...

SEGM NAME=COURSE,...

FIELD NAME=(COURSECD,...

LCHILD NAME=(XSE,SINDX),PTR=INDX

XDFLD NAME=XSTUDENT,SEGMENT=STUDENT,SRCH=STUDNM,SUBSEQ=/SX1

SEGM NAME=CLASS,...

FIELD NAME=(EDCTR,...

SEGM NAME=INSTR,...

FILED NAME=(INSTNO,...

SEGM NAME=STUDENT,...

FIELD NAME=SEQ,...

FIELD NAME=STUDNM,BYTES=20,START=1

FIELD NAME=/SX1

DBDGEN

FINISH

END

Figure 132. EDUC DBD for Secondary Indexing

DBD NAME=SINDX,ACCESS=INDEX

SEGM NAME=XSEG,...

FIELD NAME=(XSEG,SEQ,U),BYTES=24,START=1

LCHILD NAME=(COURSE,EDUC),INDEX=XSTUDNT,PTR=SNGL

DBDGEN

FINISH

END

Figure 133. SINDX DBD for Secondary Indexing

Secondary Indexes

Chapter 8. Choosing Optional Database Functions 207

DBD for the SINDX Database

v DBD statement. The DBD statement specifies the name of the secondary index

database in the NAME= parameter. The ACCESS= parameter is always

ACCESS=INDEX for the secondary index DBD.

v SEGM statement. You choose what is used in the NAME= parameter. This value

is used when processing the secondary index as a separate database.

v FIELD statement. The NAME= parameter specifies the sequence field of the

secondary index. In this case, the sequence field is composed of both the search

and subsequence field data, the student name, and the system-related field

/SX1. You specify what is chosen by NAME=parameter.

v LCHILD statement. The LCHILD statement specifies the name of the target,

SEGM, and the name of the target database in the NAME= parameter. The

INDEX= parameter has the name on the XDFLD statement in the target

database. If the pointer segment contains a direct-address pointer to the target

segment, the PTR= parameter is PTR=SNGL. The PTR= parameter is

PTR=SYMB if the pointer segment contains a symbolic pointer to the target

segment.

Choosing Secondary Indexes Versus Logical Relationships

While learning about secondary indexes and logical relationships, you might have

noted that both options give you logical data structures. A logical data structure is a

hierarchic data structure different from the data structure represented by the

physical DBD. How, then, do you decide when to use a logical relationship and

when to use a secondary index? This decision is based primarily on how your

applications need to process the data.

When to Use a Secondary Index

In analyzing application requirements, if more than one candidate exists for the

sequence field of a segment, use a secondary index. Choose one sequence field to

be defined in the physical DBD. Then set up a secondary index to allow processing

of the same segment in another sequence. For the example shown in Figure 134,

access the customer segment that follows in both customer number (CUSTNO) and

customer name (CUSTNAME) sequence. To do this, define CUSTNO as the

sequence field in the physical DBD and then define a secondary index that

processes CUSTOMER segments in CUSTNAME sequence.

When to Use a Logical Relationship

If you have applications such as a bill-of-materials using a recursive structure, use a

logical relationship. A recursive structure exists when there is a many-to-many

association between two segments in the same physical hierarchy. For example, in

the segments shown in Figure 135 on page 209, the assembly “car” is composed of

many parts, one of which is an engine. However, the engine is itself an assembly

composed of many parts.

Figure 134. Fields in the CUSTOMER Segment

Secondary Indexes

208 Administration Guide: Database Manager

Related Reading: Recursive structure are explained in “Recursive Structures:

Same Database Logical Relationships” on page 166.

Finally, you can have application requirements that result in a segment that appears

to have two parents. In the example shown in Figure 136, the customer database

keeps track of orders (CUSTORDN). Each order can have one or more line items

(ORDLINE), with each line item specifying one product (PROD) and model

(MODEL). In the product database, many outstanding line item requests can exist

for a given model. This type of relationship is called a many-to-many relationship

and is handled in IMS through a logical relationship.

Variable-Length Segments

Database types that support variable-length segments:

v HISAM

v SHISAM

v HDAM

v PHIDAM

v HIDAM

v PHDAM

v DEDB

Variable-length segments are simply segments whose length can vary in occurrence

of some segment types. A database can contain both variable-length segment and

fixed-length segment types. Variable-length segments can be used for HISAM,

HDAM, PHDAM, HIDAM, and PHIDAM databases.

Figure 135. Assembly and Parts as Examples to Demonstrate Segments Logical Relationship

Figure 136. Example of a Segment That Appears to Have Two Parents

Secondary Indexes Versus Logical Relationships

Chapter 8. Choosing Optional Database Functions 209

How to Specify Variable-Length Segments

It is the data portion of a variable-length segment whose length varies. The data

portion varies between a minimum and a maximum number of bytes. As shown in

Figure 137, you specify minimum and maximum size in the BYTES= keyword in the

SEGM statement in the DBD. Because IMS needs to know the length of the data

portion of a variable-length segment, you include a 2-byte size field in each

segment when loading it. The size field is in the data portion of the segment. The

length of the data portion you specify must include the two bytes used for the size

field. If the segment type has a sequence field, the minimum length specified in the

size field must equal at least the size field and all data to the end of the sequence

field.

How Variable-Length Segments Are Stored and Processed

When a variable-length segment is initially loaded, the space used to store its data

portion is the length specified in the MINBYTES operand or the length specified in

the size field, whichever is larger. If the space in the MINBYTES operand is larger,

more space is allocated for the segment than is required. The additional space can

be used when existing data in the segment is replaced with data that is longer.

The prefix and data portion of HDAM, PHDAM, HIDAM, and PHIDAM

variable-length segments can be separated in storage when updates occur. When

this happens, the first four bytes following the prefix point to the separated data

portion of the segment.

Figure 138 shows the format of a HISAM variable-length segment. It is also the

format of an HDAM, PHDAM, HIDAM, or PHIDAM variable-length segment when

the prefix and data portion of the segment have not been separated in storage.

 Figure 139 on page 211 shows the format of an HDAM, PHDAM, HIDAM, or

PHIDAM variable-length segment when the prefix and data portion of the segment

have been separated in storage.

Figure 137. How Variable-Length Segments Are Specified

Figure 138. Format of HISAM Variable-Length Segments

Variable-Length Segments

210 Administration Guide: Database Manager

After a variable-length segment is loaded, replace operations can cause the size of

data in it to be either increased or decreased. When the length of data in an

existing HISAM segment is increased, the logical record containing the segment is

rewritten to acquire the additional space. Any segments displaced by the rewrite are

put in overflow storage. Displacement of segments to overflow storage can affect

performance. When the length of data in an existing HISAM segment is decreased,

the logical record is rewritten so all segments in it are physically adjacent.

When a replace operation causes the length of data in an existing HDAM, PHDAM,

HIDAM, or PHIDAM segment to be increased, one of two things can happen:

v If the space allocated for the existing segment is long enough for the new data,

the new data is simply placed in the segment. This is true regardless of whether

the prefix and data portions of the segment were previously separated in the data

set.

v If the space allocated for the existing segment is not long enough for the new

data, the prefix and data portions of the segment are separated in storage. IMS

puts the data portion of the segment as close to the prefix as possible. Once the

segment is separated, a pointer is placed in the first four bytes following the

prefix to point to the data portion of the segment. This separation increases the

amount of space needed for the segment, because, in addition to the pointer

kept with the prefix, a 1-byte segment code and 1-byte delete code are added to

the data portion of the segment (see Figure 138 on page 210). In addition, if

separation of the segment causes its two parts to be stored in different blocks,

two read operations will be required to access the segment.

When a replace operation causes the length of data in an existing HDAM, PHDAM,

HIDAM, or PHIDAM segment to be decreased, one of three things can happen:

v If prefix and data are not separated, the data in the existing segment is replaced

with the new, shorter data followed by free space.

v If prefix and data are separated but sufficient space is not available immediately

following the original prefix to recombine the segment, the data in the separated

data portion of the segment is replaced with the new, shorter data followed by

free space.

v If prefix and data are separated and sufficient space is available immediately

following the original prefix to recombine the segment, the new data is placed in

the original space, overlaying the data pointer. The old separated data portion of

the segment is then available as free space in HD databases.

When to Use Variable-Length Segments

Use variable-length segments when the length of data in your segment varies, for

example, with descriptive data. By using variable-length segments, you do not need

to make the data portion of your segment type as long as the longest piece of

Figure 139. Format of HDAM, PHDAM, HIDAM or PHIDAM Variable-Length Segments

Variable-Length Segments

Chapter 8. Choosing Optional Database Functions 211

descriptive data you have. This saves storage space. Note, however, that if you are

using HDAM, PHDAM, HIDAM, or PHIDAM databases and your segment data

characteristically grows in size over time, segments will split. If a segment split

causes the two parts of a segment to be put in different blocks, two read operations

will be required to access the segment until the database is reorganized. So

variable-length segments work well if segment size varies but is stable (as in an

address segment). Variable-length segments might not work well if segment size

typically grows (as in a segment type containing a cumulative list of sales

commissions).

What Application Programmers Need to Know about Variable-Length

Segments

If you are using variable-length segments in your database, you need to let

application programmers who will be using the database know this. They need to

know which of the segment types they have access to are variable in length and

the maximum size of each of these variable-length segment types. In calculating the

size of their I/O area, application programmers must use the maximum size of a

variable-length segment. In addition, they need to know that the first two bytes of

the data portion of a variable-length segment contain the length of the data portion

including the size field.

Working with the application programmer, you should devise a scheme for

accessing data in variable-length segments. You should devise a scheme because

if variable-length fields and fixed-length fields in a segment are mixed, the

application program has no way of knowing where specific fields begin. One way to

solve this problem is to put the size of a variable-length field at the beginning of the

variable-length field. If a segment has only one variable-length field, it can be made

the last field in the segment. If it is at all possible, the simplest scheme is to have

only one field in a variable-length segment.

Adding or Converting to Variable-Length Segments

Information on how to add variable-length segments to an existing database and

convert an entire database to variable-length segments is in Chapter 16, “Modifying

Databases,” on page 423.

Segment Edit/Compression Exit Routine

The following database types support the Segment Edit/Compression exit routine:

v HISAM

v HDAM

v PHDAM

v HIDAM

v PHIDAM

v DEDB

Detailed information on how the Segment Edit/Compression exit routine works and

how you use it is in IMS Version 9: Customization Guide. This topic introduces you

to the facility.

The Segment Edit/Compression exit routine allows you to encode, edit, or compress

the data portion of a segment. You can use this facility on segment data in full

function databases and Fast Path DEDBs. You write the routine (your edit routine)

that actually manipulates the data in the segment. The IMS code gives your edit

Variable-Length Segments

212 Administration Guide: Database Manager

|

|

|

|

|

|

|

routine information about the segment’s location and assists in moving the segment

back and forth between the buffer pool and the application program’s I/O area.

The Segment Edit/Compression exit routine lets you:

v Encode data for security purposes. Encoding data consists of “scrambling”

segment data when it is on the device so only programs with access to the edit

routine can see it in decoded form.

v Edit data. Editing data allows application programs to receive data in a format

other than the one in which it is stored. For example, an application program

might receive segment fields in an order other than the one in which they are

stored; an application program might require all blank space be removed from

descriptive data.

v Compress data. This allows better use of DASD storage because segments can

be compressed when written to the device and then expanded when passed

back to the application program. Segment data might be compressed, for

example, by removing all blanks and zeros.

v Expand Data. The DEDB Sequential Dependent Scan utility invokes the

Segment Edit/Compression exit routine (DFSCMPX0) to expand compressed

SDEP segments when you specify both SDEP segment compression in the DBD

and the DEDB Scan utility keyword, EXPANDSEG.

Related Reading: EXPANDSEG and the DEDB Scan utility are described in IMS

Version 9: Utilities Reference: Database and Transaction Manager. The segment

compression exit is described in IMS Version 9: Customization Guide.

Two types of segment manipulation are possible using the Segment

Edit/Compression exit routine:

v Data compression— movement or compression of data within a segment in a

manner that does not alter the content or position of the key field. Typically, this

involves compression of data from the end of the key field to the end of the

segment. When a fixed-length segment is compressed, a 2-byte field must be

added to the beginning of the data portion of the segment by the user data

compression routine. This field is used by IMS to determine secondary storage

requirements and is the only time that the location of the key field can be altered.

The segment size field of a variable-length segment cannot be compressed but

must be updated to reflect the length of the compressed segment.

v Key compression— movement or compression of any data within a segment in

a manner that can change the relative position, value, or length of the key field

and any other fields except the size field. The segment size field of a

variable-length segment must be updated by the compression routine to reflect

the length of the compressed segment.

Use of the segment edit/compression facility is specified by segment type. Any

segment type can be edited or compressed (using either data or key compression)

as long as the segment is:

v Not a logical child

v Not in an HSAM, SHISAM, or index database

The use of the segment edit/compression exit routine is defined in physical

database DBDs. This exit routine’s use cannot be defined in a logical database

DBD.

Data compression is allowed but key compression is not allowed when the segment

is:

Segment Edit/Compression Exit Routine

Chapter 8. Choosing Optional Database Functions 213

|
|
|
|

|
|
|

|
|
|

|

|

|
|
|

v A root segment in a HISAM database

v A segment in a DEDB database

Things to Consider Before Using the Segment Edit/Compression Exit

Routine

v Because your edit routine is executed as part of a DL/I call, if it abnormally

terminates so does the entire IMS region.

v Your routine cannot use the operating system macros LOAD, GETMAIN, SPIE or

STAE.

Related Reading: For alternatives to these macros, see IMS Version 9:

Customization Guide.

v Editing and compressing of each segment on its way to or from an application

program requires additional processor time.

Depending on the options you select, search time to locate a specific segment can

increase. If you are fully compressing the segment using key compression, every

segment type that is a candidate to satisfy either a fully qualified key or data field

request must be expanded or divided. IMS then examines the appropriate field. For

key field qualification, only those fields from the start of the segment through the

sequence field are expanded during the search. For data field qualification, the total

segment is expanded. In the case of data compression and a key field request, little

more processing is required to locate the segment than that of non-compressed

segments. Only the segment sequence field is used to determine if this segment

occurrence satisfies the qualification.

Other considerations can affect total system performance, especially in an online

environment. For example, being able to load an algorithm table into storage gives

the compression routine a large amount of flexibility. However, this can place the

entire IMS control region into a wait state until the requested member is present in

storage. It is suggested that all alternatives be explored to lessen the impact of

situations such as this.

Preventing Split Segments from Impacting Performance

When segments in a full-function database grow larger than the size of their current

location, replace calls can split the segments. When segments are split, their

prefixes remain in their existing location, but their data parts are stored in a new

location, possibly in another block or CI. Split segments can negatively affect

performance by requiring additional reads to retrieve both parts of the segments.

To prevent IMS from splitting compressed segments, you can specify a minimum

size for the segments that includes extra padded space. This gives the compressed

segment room to grow and decreases the chance that IMS will split the segment.

You specify the minimum size for fixed-length full-function segments differently than

you do for variable-length full-function segments:

v For fixed-length segments, specify the minimum size using both the fourth and

fifth subparameters on the COMPRTN= parameter of the SEGM statement. The

fourth subparameter, size, only defines the minimum size if you also specify the

fifth subparameter, PAD.

v For variable-length segments, specify the minimum size using the second

subparameter, min_bytes, of the BYTES= parameter of the SEGM statement.

Segment Edit/Compression Exit Routine

214 Administration Guide: Database Manager

|
|

|
|

|
|

|
|

|
|
|
|
|
|

|
|
|

|
|

|
|
|
|

|
|

Related Reading: For a complete description of the COMPRTN= and BYTES=

parameters of SEGM statements for full-function databases, see IMS Version 9:

Utilities Reference: System.

DEDB segments are never split by replace calls. If a DEDB segment grows beyond

the size of its current location, the entire segment, including its prefix, is moved to a

new location. For this reason, it is not necessary to pad compressed DEDB

segments.

How to Specify the Segment Edit/Compression Exit Routine

To specify the use of the segment edit/compression facility for a segment, use the

COMPRTN= keyword of the SEGM statement in the DBD.

Related Reading: For more information on using the COMPRTN= keyword to

specify the use of the segment edit/compression facility, see IMS Version 9: Utilities

Reference: System.

Converting to the Segment Edit/Compression Exit Routine

Information on how to convert an existing database so it can use the Segment

Edit/Compression exit routine (DFSCMPX0) is discussed in Chapter 16, “Modifying

Databases,” on page 423.

Data Capture Exit Routines

The following database types support data capture exit routines:

v HISAM

v SHISAM

v HDAM

v PHDAM

v HIDAM

v PHIDAM

v DEDB

The Data Capture exit routine is an installation-written exit routine. Data Capture

exit routines promote and enhance database coexistence. Data Capture exit

routines capture segment-level data from a DL/I database for propagation to DB2

UDB for z/OS databases. Installations running IMS and DB2 UDB for z/OS

databases can use Data Capture exit routines to exchange data across the two

database types.

Data Capture exit routines can be written in assembler language, C, VS COBOL II,

or PL/I. IMS Version 9: Customization Guide describes Data Capture exit routines in

detail.

Data Capture exit routines are supported by IMS Transaction Manager and

Database Manager. DBCTL support is for BMPs only.

Data Capture exit routines are compatible with the following physical database

structures:

 HDAM

 PHDAM

 HIDAM

Segment Edit/Compression Exit Routine

Chapter 8. Choosing Optional Database Functions 215

|
|
|

|
|
|
|

|
|

|
|
|

PHIDAM

 HISAM

 SHISAM

 DEDB

Data Capture exit routines do not support segments in secondary indexes.

A Data Capture exit routine is called based on segment-level specifications in the

DBD. When a Data Capture exit routine is specified on a database segment, it is

invoked by all application program activity on that segment, regardless of which

PSB is active. Therefore, Data Capture exit routines are global. Using a Data

Capture exit routine can have a performance impact across the entire database

system.

DBD Parameters for Data Capture Exit Routines

This topic contains programming interface information.

Using Data Capture exit routines requires specification of one or two DBD

parameters and subsequent DBDGEN. The EXIT= parameter identifies which Data

Capture exit routines will run against segments in a database. The VERSION=

parameter records important information about the DBD for use by Data Capture

exit routines.

The EXIT= Parameter

To use the Data Capture exit routine, you must use the optional EXIT= parameter.

You specify EXIT= on either the DBD or SEGM statements of physical database

definitions.

Specifying EXIT= on the DBD statement applies a Data Capture exit routine to all

segments within a database structure. Specifying EXIT= on the SEGM statement

applies a Data Capture exit routine to only that segment type.

You can override Data Capture exit routines specified on the DBD statement by

specifying EXIT= on a SEGM statement. EXIT=NONE on a SEGM statement

cancels all Data Capture exit routines specified on the DBD statement for that

segment type. A physical child does not inherit an EXIT= parameter specified on the

SEGM statement of its physical parent.

You can specify multiple Data Capture exit routines on a single DBD or SEGM

statement. For example, you might code a DBD statement as:

DBD EXIT=((EXIT1A),(EXIT1B))

The name of the Data Capture exit routine that you intend to use is the only

required operand for the EXIT= parameter. Exit names can have a maximum of

eight alphanumeric characters. For example, if you specify a Data Capture exit

routine with the name EXITA on a SEGM statement in a database, the EXIT=

parameter is coded as follows:

SEGM EXIT=(EXITA,KEY,DATA,NOPATH,(CASCADE,KEY,DATA,NOPATH))

KEY, NOPATH, DATA, CASCADE, KEY, DATA, and NOPATH are default operands.

These defaults define what data is captured by the exit routine when a segment is

updated by an application program.

Related Reading:

Data Capture Exit Routines

216 Administration Guide: Database Manager

|
|
|
|
|

|

v For more information about the Data Capture exit routine, see IMS Version 9:

Customization Guide.

v For a full description of the EXIT= parameter on both the DBD and SEGM

statements, see IMS Version 9: Utilities Reference: System.

The VERSION= Parameter

VERSION= is an optional parameter that supports Data Capture exit routines.

VERSION= is specified on the DBD statement as:

VERSION='character string'

The maximum length of the character string is 255 bytes. You can use VERSION=

to create a naming convention that denotes the database characteristics that affect

the proper functioning of Data Capture exit routines. You might use VERSION= to

flag DBDs containing logical relationships, or to indicate which data capture exit

routines are defined on the DBD or SEGM statements. VERSION= might be coded

as:

DBD VERSION=’DAL-&SYSDATE-&SYSTIME’

DAL, in this statement, tells you that Data Capture exit routine A is specified on the

DBD statement (D), and that the database contains logical relationships (L).

&SYSDATE and &SYSTIME tell you the date and time the DBD was generated.

If you do not specify a VERSION= parameter, DBDGEN generates a default

13-character date-time stamp. The default consists of an 8-byte date stamp and a

5-byte time stamp with the following format:

MM/DD/YYHH.MM

The default date-time stamp on VERSION= is identical to the DBDGEN date-time

stamp.

VERSION= is passed as a variable length character string with a 2-byte length of

the VERSION=, which does not include the length of the LL.

Call Sequence of Data Capture Exit Routines

This topic contains programming interface information.

A Data Capture exit routine is invoked once per segment update for each segment

for which the Data Capture exit routine is specified. Data Capture exit routines are

invoked multiple times for a single call under certain conditions. These conditions

include:

v Path updates.

v Cascade deletes when multiple segment types or multiple segment occurrences

are deleted.

v Updates on logical children.

v Updates on logical parents.

v Updates on a single segment when multiple Data Capture exit routines are

specified against that segment. Each exit is invoked once, in the order it is listed

on the DBD or SEGM statements.

When multiple segments are updated in a single application program call, Data

Capture exit routines are invoked in the same order in which IMS physically

updates the segments:

Data Capture Exit Routines

Chapter 8. Choosing Optional Database Functions 217

|
|
|
|

|

|
|

|

|

|
|
|

1. Path inserts are executed “top-down” in DL/I. Therefore, a Data Capture exit

routine for a parent segment is called before a Data Capture exit routine for that

parent’s dependent.

2. Cascade deletes are executed “bottom-up”. All dependent segments’ exits are

called before their respective parents’ exits on cascade deletes. IMS physically

deletes dependent segments on cascade deletes only after it has validated the

delete rules by following the hierarchy to the lowest level segment. After delete

rules are validated, IMS deletes segments starting with the lowest level segment

in a dependent chain and continuing up the chain, deleting the highest level

parent segment in the hierarchy last. Data Capture exit routines specified for

segments in a cascade delete are called in reverse hierarchical order.

3. Path replaces are performed “top-down” in IMS. In Data Capture exit routines

defined against segments in path replaces, parent segments are replaced first.

All of their descendents are then replaced in descending hierarchical order.

When an application program does a cascade delete on logically related segments,

Data Capture exit routines defined on the logical child are always called before

Data Capture exit routines defined on the logical parent. Data Capture exit routines

are called even if the logical child is higher in the physical hierarchy, except in

recursive structures where the delete results in the deletion of a parent of the

deleted segment.

Data Passed To and Captured By the Data Capture Exit Routine

This topic contains programming interface information.

Data is passed to Data Capture exit routines when an application program updates

IMS with a DL/I insert, delete, or replace call. Segment data passed to Data

Capture exit routines is always physical data. When the update involves logical

children, the data passed is physical data and the concatenated key of the logical

parent segment. For segments that use the Segment Edit/Compression exit routine

(DFSCMPX0), the data passed is expanded data.

When an application replaces a segment, both the existing and the replacement

physical data are captured. In general, segment data is captured even if the

application call does not change the data. However, for full-function databases, IMS

compares the before and after data. If the data has not changed, IMS does not

update the database or log the replace data. Because data is not replaced, Data

Capture exit routines specified for that segment are not called and the data is not

captured.

Data might be captured during replaces even if segment data does not change

when:

1. The application inserts a concatenation of a logical child and logical parent, IMS

replaces the logical parent, and the parent data does not change.

2. The application issues a replace for a segment in a DEDB database.

In each case, IMS updates the database without comparing the before and after

data, and therefore the data is captured even though it does not change.

The entire segment, before and after, is passed to Data Capture exit routines when

the application replaces a segment. When the exit routine is interested in only a few

fields, it is recommended that the SQL update request not be issued until after the

before and after replace data for those fields is compared to see if the fields were

changed.

Data Capture Exit Routines

218 Administration Guide: Database Manager

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

Data Capture Call Functions

This topic contains programming interface information.

Data Capture exit routines are called when segment data is updated by an

application program insert, replace, or delete call. Optionally, Data Capture exit

routines are called when DL/I deletes a dependent segment because the application

program deleted its parent segment, a process known as cascade delete. Data

Capture exit routines are passed two functions to identify the following:

1. The action performed by the application program

2. The action performed by IMS

The two functions that are passed to the Data Capture exit routines are:

v Call function. The DL/I call, ISRT, REPL, or DLET, that is issued by the

application program for the segment.

v Physical function. The physical action, ISRT, REPL, or DLET, performed by IMS

as a result of the call. The physical function is used to determine the type of SQL

request to issue when propagating data.

The call and physical functions passed to the exit routine are always the same for

replace calls. However, the functions passed might differ for delete or insert calls:

v For delete calls resulting in cascade deletes, the call function passed is CASC (to

indicate the cascade delete) and the physical function passed is DLET.

v For insert calls resulting in the insert of a logical child and the replace of a logical

parent (because the logical parent already exists), the call function passed is

ISRT and the physical function passed is REPL. IMS physically replaces the

logical parent with data inserted by the application program even if the parent

data does not change. Both call and physical functions are then used, based on

the data propagation requirements, to determine the SQL request to issue in the

Data Capture exit routine.

Cascade Delete When Crossing Logical Relationships

This topic contains programming interface information.

If the EXIT= options specify NOCASCADE, data is not captured for cascade

deletes. However, when a cascade delete crosses a logical relationship into another

physical database to delete dependent segments, a Data Capture exit routine

needs to be called in order to issue the SQL delete for the parent of the physical

structure in DB2 UDB for z/OS. Rather than requiring the EXIT= CASCADE option,

IMS always calls the exit routine for a segment when deleting the parent segment in

a physical database record with an exit routine defined, regardless of the

CASCADE/NOCASCADE option specified on the segment. IMS bypasses the

NOCASCADE option only when crossing logical relationships into another physical

database. As with all cascade deletes, the call function passed is CASC and the

physical function passed is DLET.

Data Capture Exit Routines and Logically Related Databases

This topic contains programming interface information.

Segment data passed to Data Capture exit routines is always physical data.

Consequently, you must place restrictions on delete rules in logically related

databases supporting Data Capture exit routines. Table 17 on page 220

summarizes which delete rules you can and cannot use in logically related

databases with Data Capture exit routines specified on their segments.

Data Capture Exit Routines

Chapter 8. Choosing Optional Database Functions 219

|
|
|
|
|

|

|

|

|
|

|
|
|

Table 17. Delete Rule Restrictions for Logically Related Databases Using Data Capture Exit

Routines

Segment Type Virtual Delete Rule

Logical Delete

Rule

Physical Delete

Rule

Logical Children Yes No No

Logical Parents No Yes Yes

When a logically related database has a delete rule violation on a logical child:

v The logical child cannot have a Data Capture exit routine specified.

v No ancestor of the logical child can have a Data Capture exit routine specified.

When a logically related database has a delete rule violation on a logical parent, the

logical parent cannot have a Data Capture exit routine specified. ACBGEN validates

logical delete rule restrictions and will not allow a PSB that refers to a database that

violates these restrictions to proceed.

Converting to Data Capture Exit Routines

Related Reading:

v For information on how to convert an existing database for Data Capture exit

routines, see “Converting Databases for Data Capture Exit Routines and

Asynchronous Data Capture” on page 447.

v For detailed information on coding the EXIT= and VERSION= parameters, see

IMS Version 9: Utilities Reference: Database and Transaction Manager.

Field-Level Sensitivity

The following database types support field-level sensitivity:

v HSAM

v HISAM

v SHISAM

v HDAM

v PHDAM

v HIDAM

v PHIDAM

Field-level sensitivity gives you an increased level of data independence by isolating

application programs from:

v Changes in the arrangement of fields within a segment

v Addition or deletion of data within a segment

In addition, field-level sensitivity enhances data security by limiting an application

program to a subset of fields within a segment, and controlling replace operations at

the field level.

Field-level sensitivity allows you to reformat a segment type. Reformatting a

segment type can be done without changing the application program’s view of the

segment data, provided fields have not been removed or altered in length or data

type. Fields can be added to or shifted within a segment in a manner transparent to

the application program. Field-level sensitivity gives applications a segment

organization that always conforms to what is specified in the SENFLD statements.

(SENFLD statements are described in “How to Specify Use of Field-Level

Data Capture Exit Routines

220 Administration Guide: Database Manager

Sensitivity in the DBD and PSB,” but basically they determine the order of fields in

a segment as seen by an application program.)

Using Field-Level Sensitivity as a Mapping Interface

Field-level sensitivity acts as a mapping interface by letting PSBGEN field locations

differ from DBDGEN field locations. Mapping is invoked after the segment edit

routine on input and before the segment edit routine on output. When creating a

sequential data set from database information (or creating database information

from a sequential data set), field-level sensitivity can reduce or eliminate the

amount of formatting an application program must do.

Using Field-Level Sensitivity with Variable-Length Segments

If field-level sensitivity is used with variable-length segments, you can add new

fields to a segment without reorganizing the database. FIELD definitions in a

DBDGEN allow you to enlarge segment types without affecting any previous users

of the segment. The DBDGEN FIELD statement lets you specify a field that doesn’t

yet exist in the physical segment but that will be dynamically created when the

segment is retrieved.

Field-level sensitivity can help in the transition of an application program from a

non-database environment to a database environment. Application programs that

formerly accessed z/OS files might be able to receive the same information in the

same format if the database was designed with conversion in mind.

Field-level sensitivity is not supported for DEDBs and MSDBs.

How to Specify Use of Field-Level Sensitivity in the DBD and PSB

An application program’s view of data is defined through the PSBGEN utility using

SENFLD statements following the SENSEG statement. In the SENFLD statement,

the NAME= parameter identifies a field that has been defined in the segment

through the DBDGEN utility.

The START= parameter defines the starting location of the field in the application

program’s I/O area. In the I/O area, fields do not need to be located in any

particular order, nor must they be contiguous. The end of the segment in the I/O

area is defined by the end of the right most field. All segments using field-level

sensitivity appear fixed in length in the I/O area. The length is determined by the

sum of the lengths of fields on SENFLD statements associated with a SENSEG

statement.

Figure 140 on page 222 is an example of field-level sensitivity. Following the figure

is information about coding field-level sensitivity.

Field-level sensitivity is used below to reposition three fields from a physical

segment in the application program’s I/O area.

Field-Level Sensitivity

Chapter 8. Choosing Optional Database Functions 221

Figure 141 shows the DBD for the example shown in Figure 140.

 Figure 142 shows the PSB for the figure shown in Figure 140.

v A SENFLD statement is coded for each field that can appear in the I/O area. A

maximum of 255 SENFLD statements can be coded for each SENSEG

statement, with a limit of 10000 SENFLD statements for a single PSB.

v The optional REPL= parameter on the SENFLD statement indicates whether

replace operations are allowed on the field. In the figure, replace is not allowed

for EMPNAME but is allowed for EMPNO and ADDRESS. If REPL= is not coded

on a SENFLD statement, the default is REPL=Y.

v The TYPE= parameter on FIELD statements in the DBD is used to determine fill

values on insert operations.

Retrieving Segments Using Field-Level Sensitivity

When you retrieve segments using field-level sensitivity, you should be aware of the

following information:

v Gaps between fields in the I/O area are set to blanks on a retrieve call.

v If an application program uses a field in an SSA, that field must be coded on a

SENFLD statement. This rule does not apply to sequence fields used in an SSA

on retrieve operations.

Figure 143 shows an example of a retrieve call based on the DBD and PSB in

Figure 140.

Figure 140. DBD and PSB Coding for Field-Level Sensitivity

SEGM NAME=EMPREC,BYTES=100

 FIELD NAME=(EMPNO,SEQ),BYTES=5,START=1,TYPE=C

 FIELD NAME=EMPNAME,BYTES=20,START=6,TYPE=C

 FIELD NAME=BIRTHD,BYTES=6,START=26,TYPE=C

 FIELD NAME=SAL,BYTES=3,START=32,TYPE=P

 FIELD NAME=ADDRESS,BYTES=60,START=41,TYPE=C

Figure 141. DBD Example for Field-Level Sensitivity

SENSEG NAME=EMPREC,PROCOPT=A

 SENFLD NAME=EMPNAME,START=1,REPL=N

 SENFLD NAME=EMPNO,START=25

 SENFLD NAME=ADDRESS,START=35,REPL=Y

Figure 142. PSB Example for Field-Level Sensitivity

Field-Level Sensitivity

222 Administration Guide: Database Manager

Replacing Segments Using Field-Level Sensitivity

The SENFLD statement must allow replace operations (REPL=Y) if the application

program is going to replace data in a segment. In Figure 140 on page 222, the

SENFLD statement for EMPNAME specifies REPL=N. A “DA” status code would be

returned if the application program tried to replace the EMPNAME field. Figure 144

shows an example of a REPL call based on the DBD and PSB in Figure 140.

Inserting Segments Using Field-Level Sensitivity

The TYPE= parameter on the SEGM statement of the DBD determines the fill value

in the physical segment when an application program is not sensitive to a field on

insert calls.

TYPE= Fill Value

X Binary Zeros

P Packed Decimal Zero

C Blanks

Figure 143. Example of a Retrieve Call

Figure 144. Example of a REPL Call

Field-Level Sensitivity

Chapter 8. Choosing Optional Database Functions 223

The fill value in the physical segment is binary zeros when:

v Space in a segment is not defined by a FIELD macro in the DBD

v A defined DBD field is not referenced on the insert operation

Figure 145 shows an example of an insert operation based on the DBD and PCB in

Figure 140 on page 222.

 Blanks are inserted in the BIRTHD field because its FIELD statement in the DBD

specifies TYPE=C. Packed decimal zero is inserted in the SAL field because its

FIELD statement in the DBD specifies TYPE=P. Binary zeros are inserted in

positions 35 to 40 because no FIELD statement was coded for this space in the

DBD.

Using Field-Level Sensitivity When Fields Overlap

On the SENFLD statement, you code the starting position of fields as they will

appear in the I/O area. If fields overlap in the I/O area, here are the rules you must

follow:

v Two different bytes of data cannot be moved to the same position in the I/O area

on input.

v The same data can be moved to different positions in the I/O area on retrieve

operations.

v Two bytes from different positions in the I/O area cannot be moved to the same

DBD field on output.

Using Field-Level Sensitivity When Path Calls Are Issued

If an application program issues path calls while using field level sensitivity, here

are the rules you must follow:

v You should not code SENFLD statements so that two fields from different

physical segments are in the same segment in the I/O area.

v PROCOPT=P is required on the PCB statement.

Using Field-Level Sensitivity with Logical Relationships

Here are the rules you must follow when using field-level sensitivity with segments

involved in a logical relationship:

v Application programs can not be insert sensitive to a logical child.

v The same field can be referenced in more than one SENFLD statement within a

SENSEG. If the duplicate field names are part of a concatenated segment and

Figure 145. Example of an ISRT Call

Field-Level Sensitivity

224 Administration Guide: Database Manager

the same field name appears in both parts of the concatenation, the first part

references the logical child. The second and all subsequent parts reference the

logical parent. This referencing sequence determines the order in which fields are

moved to the I/O area.

v When using field-level sensitivity with a virtual logical child, the field list of the

paired segment is searched after the field list of the virtual segment and before

the field list of the logical parent.

Using Field-Level Sensitivity with Variable-Length Segments

When field-level sensitivity is used with a variable-length segment, an application

program’s view of the segment is fixed in length and does not include the 2-byte

length field. This topic and its subtopics address special situations when field level

sensitivity is used with variable-length segments. First, however, here is some

general information about using field-level sensitivity with variable-length segments:

v When inserting a variable-length segment, the length used is the minimum length

needed to hold all sensitive fields.

v When replacing a variable-length segment, if the length has to be increased to

contain data an application program has modified, the length used is the

minimum length needed to hold the modified data.

v An application program cannot be sensitive to overlapping fields in a

variable-length segment with get or update sensitivity if the data type of any of

those fields is not character.

v Existing programs processing variable-length segments that use the length field

to determine the presence or absence of a field might need to be modified if

segments are inserted or updated by programs using field-level sensitivity.

When field-level sensitivity is used with variable-length segments, two situations

exist that you should know about. The first is when fields are missing. The second

is when fields are partially present. This topic examines the following information:

v Retrieving Missing Fields

v Replacing Missing Fields

v Inserting Missing Fields

v Retrieving Partially Present Fields

v Replacing Partially Present Fields

Retrieving Missing Fields

If a field does not exist in the physical variable-length segment at retrieval time, the

corresponding field in the application program’s I/O area is filled with a value based

on the data type specified in the DBD. Figure 146 is an example of a missing field

on a retrieve call based on the DBD and PSB in Figure 147 and Figure 148 on

page 226.

Field-Level Sensitivity

Chapter 8. Choosing Optional Database Functions 225

|
|
|
|
|

|
|

|
|
|

|
|
|

|
|
|

The length field is not present in the I/O area. Also, the address field is filled with

blanks, because TYPE=C is specified on the FIELD statement in the DBD.

Replacing Missing Fields

A missing field that is not replaced does not affect the physical variable-length

segment. Figure 149 is an example of a missing field on a replace call based on the

DBD and PSB in Figure 147.

Figure 146. Example of a Missing Field on a Retrieve Call

DBD

SEGM NAME=EMPREC,BYTES=(102,7)

FIELD NAME=(EMPNO,SEQ),BYTES=5,START=3,TYPE=C

FIELD NAME=EMPNAME,BYTES=20,START=8,TYPE=C

FIELD NAME=BIRTHD,BYTES=6,START=28,TYPE=C

FIELD NAME=ADDRESS,BYTES=60,START=43,TYPE=C

Figure 147. DBD Example for Field-Level Sensitivity with Variable-Length Segments

PSB

SENSEG NAME=EMPREC,PROCOPT=A

SENFLD NAME=EMPNAME,START=1,REPL=N

SENFLD NAME=EMPNO,START=25

SENFLD NAME=ADDRESS,START=35,REPLY=Y

Figure 148. PSB Example for Field-Level Sensitivity with Variable-Length Segments

Field-Level Sensitivity

226 Administration Guide: Database Manager

The length field, maintained by IMS, does not include room for the address field,

because the field was missing and not replaced.

On a replace call, if a field returned to the application program with a fill value is

changed to a non-fill value, the segment length is increased to the minimum size

needed to hold the modified field.

v The 'LL' field is updated to include the full length of the added field and all fields

up to the added field.

v The TYPE= parameter in the DBD (see Figure 147 on page 226) determines the

fill value for non-sensitive DBD fields up to the added field.

v Binary zero is the fill value for space up to the added field that is not defined by

a FIELD statement in the DBD.

Figure 150 is an example of a missing field on a replace call based on the DBD and

PSB in Figure 147 on page 226.

Figure 149. First Example of a Missing Field on a Replace Call

Field-Level Sensitivity

Chapter 8. Choosing Optional Database Functions 227

The 'LL' field is maintained by IMS to include the full length of the ADDRESS field

and all fields up to the ADDRESS field. BIRTHD is filled with blanks, because

TYPE=C is specified on the FIELD statement in the DBD. Positions 34 to 42 are set

to binary zeros, because the space was not defined by a FIELD statement in the

DBD.

Inserting Missing Fields

When a variable-length segment is inserted into the database, the length field is set

to the value of the minimum size needed to hold all sensitive fields.

v The 'LL' field is updated to include all sensitive fields.

v The TYPE= parameter on the DBD (see Figure 147 on page 226) determines the

fill value for non-sensitive DBD fields.

v Binary zero is the fill value for space not defined by a FIELD statement in the

DBD.

Figure 151 is an example of a missing field on an insert call using the DBD and

PSB in Figure 147 on page 226.

 The 'LL' field is maintained by IMS to include the full length of all sensitive fields up

to and including the ADDRESS field. BIRTHD is filled with blanks, because

Figure 150. Second Example of a Missing Field on a Replace Call

Figure 151. Example of a Missing Field on an Insert Call

Field-Level Sensitivity

228 Administration Guide: Database Manager

TYPE=C was specified on the FIELD statement in the DBD. Positions 34 to 42 are

set to binary zeros, because the space was not defined in a FIELD statement in the

DBD.

Retrieving Partially Present Fields

If the last field in the physical variable-length segment at retrieval time is only

partially present and if the data type is character (TYPE=C), data is returned to the

application program padded with blanks on the right. Otherwise, the field is returned

with a fill value based on the data type. Figure 152 is an example of a partially

present field on a retrieval call based on the DBD and PSB in Figure 147 on page

226.

 The ADDRESS field in the I/O area is padded with blanks to correspond to the

length defined on the SEGM statement in the DBD.

Replacing Partially Present Fields

You should know the following information about replacing partially present fields:

v If segment length is increased on a REPL call, the field returned to the

application program is written to the database if it has not been changed.

v If the data type of the field is character and the field is changed on a REPL call,

the segment length is increased if necessary to include all non-blank characters

in the changed data.

v If the data type is not character and the field is changed on a REPL call, the

segment length is increased to contain the entire field.

Figure 153 on page 230 is an example of a partially present field on a REPL call

based on the DBD and PSB in Figure 147 on page 226.

Figure 152. Example of a Partially Present Field on a Retrieval Call

Field-Level Sensitivity

Chapter 8. Choosing Optional Database Functions 229

The 'LL' field is changed from 50 to 52 by DL/I to accommodate the change in the

field length of ADDRESS.

General Considerations for Using Field-Level Sensitivity

v Field-level sensitivity is not supported for GSAM, MSDB, or DEDB databases.

v Fields referenced in PSBGEN with SENFLD statements must be defined in

DBDGEN with FIELD statements.

v The same DBD field can be referenced in more than one SENFLD statement.

v When using field-level sensitivity, the application program always sees a fixed

length segment for a given PCB, regardless of whether the segment is fixed or

variable.

v Application programs must be sensitive to any field referenced in an SSA, except

the sequence field.

v Application programs must be sensitive to the sequence field, if present, for

insert or load.

v Field-level sensitivity and segment level sensitivity can be mixed in the same

PCB.

v Non-referenced, non-defined fields are set to binary zeros as fill characters, when

required, during insert or replace operations.

v Using call/trace with the compare option increases the amount of storage

required in the PSB work pool.

Multiple Data Set Groups

The following database types support multiple data set groups:

v SHISAM

v HDAM

v PHDAM

v HIDAM

v PHIDAM

Figure 153. Example of a Partially Present Field on a REPL Call

Field-Level Sensitivity

230 Administration Guide: Database Manager

Although this book has explored storing a database on a single or a single pair of

data sets, HD databases can be stored on more than the one or two data sets

required for database storage. You have seen that an HD database is stored on an

ESDS, if VSAM is being used, or an OSAM data set, if OSAM is being used.

HD databases can be stored on multiple data sets. When storing a database on

multiple data sets, the terms primary and secondary data set group are used to

distinguish between the one or more data sets that must be specified for the

database (called the primary data set group) and the one or more data sets you are

allowed to specify for the database (called secondary data set groups).

In HD databases, a single data set is used for storage rather than a pair of data

sets. The primary data set group therefore consists of the ESDS (if VSAM is being

used) or OSAM data set (if OSAM is being used) on which you must specify

storage for your database. The secondary data set group is an additional ESDS or

OSAM data set on which you are allowed to store your database.

As many as ten data set groups can be used in HISAM and HD databases, that is,

one primary data set group and a maximum of nine secondary data set groups.

Why Use Multiple Data Set Groups?

When you design database records, you design them to meet the processing

requirements of many applications. You decide what segments will be in a database

record and their hierarchic sequence within a database record. These decisions are

based on what works best for all of your application program’s requirements.

However, the way in which you arranged segments in a database record no doubt

suits the processing requirements of some applications better than others. For

example, look at the two database records shown in Figure 154. Both of them

contain the same segments, but the hierarchic sequence of segments is different.

 The hierarchy on the left favors applications that need to access INSTR and LOC

segments. The hierarchy on the right favors applications that need to access

STUDENT and GRADE segments. (Favor, in this context, means that access to the

segments is faster.) If the applications that access the INSTR and LOC segments

are more important than the ones that access the STUDENT and GRADE

segments, you can use the database record on the left. But if both applications are

equally important, you can split the database record into different data set groups.

This will give both types of applications good access to the segments each needs.

Figure 154. Hierarchy of Applications That Need to Access INSTR and LOC Segments

Multiple Data Set Groups

Chapter 8. Choosing Optional Database Functions 231

To split the database record, you would use two data set groups. As shown in

Figure 155, the first data set group contains the COURSE, INSTR, REPORT, and

LOC segments. The second data set group contains the STUDENT and GRADE

segments.

 Other uses of multiple data set groups include:

v Separating infrequently-used segments from high-use segments.

v Separating segments that frequently have information added to them from those

that do not. For the former segments, you might specify additional free space so

conditions are optimum for additions.

v Separating segments that are added or deleted frequently from those that are

not. This can keep space from being fragmented in the main database.

v Separating segments whose size varies greatly from the average segment size.

This can improve use of space in the database. Remember, the bit map in an HD

database indicates whether space is available for the longest segment type

defined in the data set group. It does not keep track of smaller amounts of

space. If you have one or more segment types that are large, available space for

smaller segments will not be utilized, because the bit map does not track it.

HD Databases Using Multiple Data Set Groups

The following rules must be followed when using a multiple data set group in an HD

database:

v As many as ten data set groups can be defined.

v The root segment in a database record must be in the primary data set group.

In the database record shown in Figure 156 on page 233, segments COURSE (1),

INSTR (2), LOC (4), and STUDENT (5) could go in one data set group, while

segments REPORT (3) and GRADE (6) could go in a second data set group.

Examples of how this HD database record could be divided into three groups are in

Table 18.

 Table 18. Examples of Multiple Data Set Grouping

Data Set Group 1 Data Set Group 2 Data Set Group 3

Segment 1 Segments 2, 5, and 6 Segments 3 and 4

Segments 1, 3, and 6 Segments 2 and 5 Segment 3

Segments 1, 3, and 6 Segments 2 and 5 Segment 4

Figure 155. Database Record Split into Two Database Groups

Multiple Data Set Groups

232 Administration Guide: Database Manager

v Segments separated into different data set groups must be connected by

physical child first pointers. For example, in Figure 157 the INSTR segment in the

primary data set group must point to the first occurrence of its physical child

REPORT in the secondary data set group, and STUDENT must point to GRADE.

How HD Records Are Stored in Multiple Data Set Groups

Now that you have seen what segments can be stored in a single data set group in

an HD database, this topic looks at how segments are stored. Figure 158 on page

234 shows one database record:

v Stored in an HDAM or a PHDAM database using two data set groups

v Stored in a HIDAM or a PHIDAM database using two data set groups

Specify in the DBD which segment types need to be put in a data set group. Based

on that information, IMS automatically loads segments into the correct data set

group. In this example, the user specified that four segment types in the database

record were put in the primary data set group (COURSE, INSTR, LOC, STUDENT)

and two segment types were put in the secondary data set group (REPORT,

GRADE).

Figure 156. Example of How to Divide an HD Database Record

Figure 157. Connecting Segments in Multiple Data Set Groups Using Physical Child First

Pointers

Multiple Data Set Groups

Chapter 8. Choosing Optional Database Functions 233

In the HDAM or PHDAM database, note that only the primary data set group has a

root addressable area. The secondary data set group is additional overflow storage.

Specifying Use of Multiple Data Set Groups in HD and PHD

Databases

You can specify multiple data set groups to IMS in the DBD. For HDAM databases,

use the DATASET statement. For PHDAM databases, use the DSGROUP

parameter in the SEGM statement. You can group the segments any way, but you

still must list the segments in hierarchical sequence in the DBD.

The following examples use the database record used in “Why Use Multiple Data

Set Groups?” on page 231 and “HD Databases Using Multiple Data Set Groups” on

page 232. The first example, Figure 159, shows two groups: data set group A

contains COURSE and INSTR, data set group B contains all of the other segments.

The second example shows a different grouping. Note the differences in DBDs

when the groups are not in sequential hierarchical order of the segments.

Figure 158. HD Database Record in Storage When Multiple Data Set Groups Are Used

Multiple Data Set Groups

234 Administration Guide: Database Manager

Figure 160 is the HDAM DBD for the first example. Note that the segments are

grouped by the DATASET statements preceding the SEGM statements and that the

segments are listed in hierarchical order. In each DATASET statement, the DD1=

parameter names the VSAM ESDS or OSAM data set that will be used. Also, each

data set group can have its own characteristics, such as device type.

 Figure 161 shows the DBD for a PHDAM database. Instead of using the DATASET

statement, use the DSGROUP parameter in the SEGM statement. The first two

segments do not have DSGROUP parameters because it is assumed that they are

in the first group.

The second example, Figure 162 on page 236, differs from the first example in that

the groups do not follow the order of the hierarchical sequence. The segments must

be listed in the DBD in hierarchical sequence, so additional DATASET statements or

DSGROUP parameters are required.

Figure 159. First Example of Data Set Groups

 DBD NAME=HDMDSG,ACCESS=HDAM,RMNAME=(DFSHDC40,8,500)

 DSA DATASET DD1=DS1DD,

 SEGM NAME=COURSE,BYTES=50,PTR=T

 FIELD NAME=(CODCOURSE,SEQ),BYTES=10,START=1

 SEGM NAME=INSTR,BYTES=50,PTR=T,PARENT=((COURSE,SNGL))

 DSB DATASET DD1=DS2DD,DEVICE=2314

 SEGM NAME=REPORT,BYTES=50,PTR=T,PARENT=((INSTR,SNGL))

 SEGM NAME=LOC,BYTES=50,PTR=T,PARENT=((COURSE,SNGL))

 SEGM NAME=STUDENT,BYTES=50,PTR=T,PARENT=((COURSE,SNGL))

 SEGM NAME=GRADE,BYTES=50,PTR=T,PARENT=((STUDENT,SNGL))

 DBDGEN

Figure 160. HDAM DBD for First Example of Data Set Groups

DBD NAME=HDMDSG,ACCESS=PHDAM,RMNAME=(DFSHDC40,8,500)

SEGM NAME=COURSE,BYTES=50,PTR=T

FIELD NAME=(CODCOURSE,SEQ),BYTES=10,START=1

SEGM NAME=INSTR,BYTES=50,PTR=T,PARENT=((COURSE,SNGL))

SEGM NAME=REPORT,BYTES=50,PTR=T,PARENT=((INSTR,SNGL)),DSGROUP=B

SEGM NAME=LOC,BYTES=50,PTR=T,PARENT=((COURSE,SNGL)),DSGROUP=B

SEGM NAME=STUDENT,BYTES=50,PTR=T,PARENT=((COURSE,SNGL)),DSGROUP=B

SEGM NAME=GRADE,BYTES=50,PTR=T,PARENT=((STUDENT,SNGL)),DSGROUP=B

DBDGEN

Figure 161. PHDAM DBD for First Example of Data Set Groups

Multiple Data Set Groups

Chapter 8. Choosing Optional Database Functions 235

Figure 163 is the DBD for an HDAM database of the second example. It is similar

to the first example, except that because the sixth segment is part of the first group,

you need another DATASET statement before it with the DSA label. The additional

DATASET label groups the sixth segment with the first three.

 Figure 164 is the DBD for a PHDAM database of the second example. It is similar

to the first example, except that because the sixth segment is part of the first group,

you must explicitly group it with the first two segments by using the DSGROUP

parameter.

Figure 162. Second Example of Data Set Groups

DBD NAME=HDMDSG,ACCESS=HDAM,RMNAME=(DFSHDC40,8,500)

DSA DATASET DD1=DS1DD,

SEGM NAME=COURSE,BYTES=50,PTR=T

FIELD NAME=(CODCOURSE,SEQ),BYTES=10,START=1

SEGM NAME=INSTR,BYTES=50,PTR=T,PARENT=((COURSE,SNGL))

SEGM NAME=REPORT,BYTES=50,PTR=T,PARENT=((INSTR,SNGL))

DSB DATASET DD1=DS2DD,DEVICE=2314

SEGM NAME=LOC,BYTES=50,PTR=T,PARENT=((COURSE,SNGL))

SEGM NAME=STUDENT,BYTES=50,PTR=T,PARENT=((COURSE,SNGL))

DSA DATASET DD1=DS1DD

SEGM NAME=GRADE,BYTES=50,PTR=T,PARENT=((STUDENT,SNGL))

DBDGEN

Figure 163. HDAM DBD for Second Example of Data Set Groups

DBD NAME=HDMDSG,ACCESS=PHDAM,RMNAME=(DFSHDC40,8,500)

SEGM NAME=COURSE,BYTES=50,PTR=T

FIELD NAME=(CODCOURSE,SEQ),BYTES=10,START=1

SEGM NAME=INSTR,BYTES=50,PTR=T,PARENT=((COURSE,SNGL))

SEGM NAME=REPORT,BYTES=50,PTR=T,PARENT=((INSTR,SNGL)),

SEGM NAME=LOC,BYTES=50,PTR=T,PARENT=((COURSE,SNGL)),DSGROUP=B

SEGM NAME=STUDENT,BYTES=50,PTR=T,PARENT=((COURSE,SNGL)),DSGROUP=B

SEGM NAME=GRADE,BYTES=50,PTR=T,PARENT=((STUDENT,SNGL)),DSGROUP=A

DBDGEN

Figure 164. PHDAM DBD for Second Example of Data Set Groups

Multiple Data Set Groups

236 Administration Guide: Database Manager

Block-Level Data Sharing and CI Reclaim

IMS reclaims storage used for KSDS control intervals (CIs) whose erasure has

been committed in data-sharing or XRF environments. This feature is not, however,

a replacement for routine reorganization of KSDS data sets. VSAM CI space

reclamation enhances the performance of database GETS or INSERTS after mass

deletes occur in data-sharing or XRF environments.

Restriction: CI reclaim does not occur for SHISAM databases. When a large

number of records in a SHISAM database are deleted, particularly a large number

of consecutive records, serious performance degradation can occur. Eliminate

empty CIs and resolve the problem by using VSAM REPRO.

HALDB Single Partition Processing

BMP, JBP, and batch-processing applications can process a single partition of a

HALDB independent of rest of the HALDB. The partition independence is similar to

the independent processing of partitions by utilities. To restrict processing to a

single partition, restrict DB PCB usage by specifying the label name of the DB PCB

or the nth position of the DB PCB, and the partition name in the HALDB control

statements.

Related Reading: For information on specifying single partition processing, see

IMS Version 9: Installation Volume 2: System Definition and Tailoring.

Logical Relationships in Single Partition Processing

An application can process single partitions with logical relationships. If a logical

child is in the single partition that the application has access to, and its logical

parent is in another partition, the application can process the logical parent, even

though it is in another partition. Because of a logical relationship, an application with

restricted access can process a partition that it does not have direct access to.

Secondary Indexes in Single Partition Processing

An application can process single partitions with secondary indexes. If an

application inserts a segment into the partition that the application has access to,

the secondary index partition is updated with a new index entry as well. Even

though the application does not have access to the secondary index partition, that

partition is updated when the application inserts a segment.

Restriction: HALDB single partition processing is not allowed if an alternate

processing sequence is used.

Partition Selection

A partition is selected by using the root key for the DL/I call and the high key

defined for the partition. When access is restricted to a single partition and the root

key is outside the key range of the partition, status code FM or GE is returned.

If you use a partition selection exit routine, the routine is called when the DL/I call

provides a specific root key. The exit routine selects a partition based on the root

key given. If the partition selected is different than the one that the application has

access to, status code FM or GE is returned. The exit routine is not called to select

a first partition or next partition.

CI Reclaim

Chapter 8. Choosing Optional Database Functions 237

When access is restricted to a single partition, the first partition is always the

partition to which access is restricted, and the next partition does not exist.

Recommendation: If restricting processing to a single partition, the SSA should

include only the root keys that are in the key range of the partition.

Examples of Single Partition Processing

For the following examples, the DB PCB usage is restricted to HALDB partition 2,

which contains the records with root keys 201 through 400.

GU rootkey=110

The root key 110 is outside the range of root keys for the partition. FM

status code is returned.

GU rootkey=240 GN rootkey=110

Moves forward from root key 240 to find key equal to 110. Because 110 is

lower than 240, GE status code is returned.

GU rootkey=240 GN rootkey>=110

Moves forward from root key 240 to find key equal to or greater than 110. If

key not found before reaching end of partition, GB status code is returned.

GN rootkey>=110

Attempts to start search at key 110. Because key is outside root key range

of partition, FM status code is returned.

Integrated HALDB Online Reorganization Function

With the integrated HALDB Online Reorganization (OLR) function, you can

reorganize HALDB partitions online, improving database performance without

disrupting data availability. HALDB OLR can reorganize any number of partitions,

singly or in parallel.

Related Reading: For complete information on the online reorganization of

HALDBs, see “HALDB Online Reorganization” on page 364.

Storing XML Data in IMS Databases

You can store and retrieve XML documents in IMS databases using Java

application programs. When storing and retrieving XML documents, the XML

documents must be valid to XML schemas generated by the DLIModel utility. The

XML schemas must match the hierarchical structure of the IMS database.

XML documents can be stored in IMS databases using any combination of two

storage methods to best fit the structure of the XML document:

Decomposed XML storage

The XML tags are removed from the XML document and only the data is

extracted. The extracted data is converted into traditional IMS field types

and inserted into the database. Use this approach in the following

scenarios:

v XML applications and non-XML applications must access the same

database.

v Extensive searching of the database is needed.

v A strict XML schema is available.

Intact XML storage

The XML document is stored, with its XML structure and tags intact, in an

HALDB Single Partition Processing

238 Administration Guide: Database Manager

|

|
|
|
|

|
|

|

|
|
|
|

|
|

|
|
|
|
|

|
|

|

|

|
|

IMS database designed exclusively for storing intact XML documents. In

this case, only Java application programs can access the data in the

database. Because the XML document does not have to be regenerated

when the data is retrieved from the database, the retrieval of the XML data

is typically faster than when it is stored without its XML tagging. Use this

approach in the following scenarios:

v Faster storage and retrieval of XML documents are needed.

v Less searching of the database is required.

v The XML schema requires more flexibility.

Related Reading:

v For more information about the DLIModel utility, see IMS Version 9: Utilities

Reference: System.

v For more information about storing XML data in IMS databases, see IMS Version

9: IMS Java Guide and Reference.

Storing XML Data in IMS Databases

Chapter 8. Choosing Optional Database Functions 239

|
|
|
|
|
|

|

|

|

|

|
|

|
|

Storing XML Data in IMS Databases

240 Administration Guide: Database Manager

Chapter 9. Designing Full-Function Databases

After you determine the type of database and optional functions that best suit your

application’s processing requirements, you need to make a series of decisions

about database design and use of options. This set of decisions primarily

determines how well your database performs and how well it uses available space.

This series of decisions is made based on:

v The type of database and optional functions you have already chosen

v The performance requirements of your applications

v How much storage you have available for use online

In this chapter:

v “Specifying Free Space (HDAM, PHDAM, HIDAM, and PHIDAM Only)”

v “Estimating the Size of the Root Addressable Area (HDAM or PHDAM Only)” on

page 242

v “Determining Which Randomizing Module to Use (HDAM and PHDAM Only)” on

page 243

v “Choosing HDAM or PHDAM Options” on page 244

v “Choosing a Logical Record Length for a HISAM Database” on page 245

v “Choosing a Logical Record Length for HD Databases” on page 248

v “Determining the Size of CIs and Blocks” on page 248

v “Buffering Options” on page 249

v “OSAM Sequential Buffering” on page 253

v “VSAM Options” on page 260

v “OSAM Options” on page 265

v “Dump Option (DUMP Parameter)” on page 265

v “Deciding Which FIELD Statements to Code in the DBD” on page 265

v “Planning for Maintenance” on page 265

Specifying Free Space (HDAM, PHDAM, HIDAM, and PHIDAM Only)

As you have seen, dependent segments inserted after an HD database is loaded

are put as close as possible to the segments to which they are related. (When

segments are close to the segments that point to them, the I/O time needed to

retrieve a dependent segment is shorter. The I/O time is shorter because the seek

time and rotational delay time are shorter.) However, as the database grows and

available space decreases, dependent segments are increasingly put further from

their related segments. When this happens, performance decreases, a problem that

can only be eliminated by reorganizing the database.

To minimize the effect of insert operations after the database is loaded, allocate free

space in the database when it is initially loaded. Free space allocation in the

database will reduce the performance impact caused by insert operations, and

therefore, decrease the frequency with which HD databases must be reorganized.

For OSAM data sets and VSAM ESDS, free space is specified in the FRSPC=

keyword of the DATASET statement in the DBD. In the keyword, one or both of the

following operands can be specified:

v Free block frequency factor (fbff). The fbff specifies that every nth block or CI in a

data set group be left as free space when the database is loaded (where fbff=n).

© Copyright IBM Corp. 1974, 2004 241

The range of fbff includes all integer values from 0 to 100, except 1. Avoid

specifying fbff for HDAM or PHDAM databases. If you specify fbff for HDAM or

PHDAM databases and if at load time the randomizing module generates the

relative block or CI number of a block or CI marked as free space, the

randomizer must store the root segment in another block.

If you specify fbff, every nth block or CI will be considered a second-most

desirable block or CI by the HD Space Search Algorithm. This is true unless you

specify SEARCHA=1 in the DATASET macro of the DBDGEN utility. By

specifying SEARCHA=1, you are telling IMS not to search for space in the

second-most desirable block or CI.

Related Reading:

– For details on the HD Space Search Algorithm, see “How the HD Space

Search Algorithm Works” on page 103.

– For more information on the SEARCHA keyword, see IMS Version 9: Utilities

Reference: Database and Transaction Manager.

v Free space percentage factor (fspf). The fspf specifies the minimum percentage

of each block or CI in a data set group to be left as free space when the

database is loaded. The range of fspf is from 0 to 99.

Note: This free space applies to VSAM ESDS and OSAM data sets. It does not

apply to HIDAM or PHIDAM index databases or to DEDBs.

For VSAM KSDS, free space is specified in the FREESPACE parameter of the

DEFINE CLUSTER command. This VSAM parameter is disregarded for a VSAM ESDS

data set used for HIDAM, PHIDAM, HDAM, or PHDAM. This command is explained

in detail in DFSMS Access Method Services for Catalogs.

Estimating the Size of the Root Addressable Area (HDAM or PHDAM

Only)

To estimate the size of the root addressable area, use the following formula:

(A x B) / C = D

where:

A = the number of bytes of a database record to be stored in the root

addressable area

B = the expected number of database records

C = the number of bytes available for data in each CI or block CI or block size,

minus overhead)

D = the size you will need, in blocks or CIs, for the root addressable area.

If you have specified free space for the database, include it in your calculations for

determining the size of the root addressable area. Use the following formula to

accomplish this step:

(D x E x G) / F = H

where:

D = the size you calculated in the first formula (the necessary size of the root

addressable area in block or CIs)

E = how often you are leaving a block or CI in the database empty for free

space (what you specified in the fbff operand in the DBD)

Specifying Free Space (HDAM, PHDAM, HIDAM, and PHIDAM Only)

242 Administration Guide: Database Manager

F = (E-1) (fbff-1)

G = 100 100 - fspf The fspf is the minimum percentage of each block or

CI you are leaving as free space (what you specified in the fspf operand in

the DBD)

H = the total size you will need, in blocks or CIs

Specify the number of blocks or CIs you need in the root addressable area in the

RMNAME=rbn keyword in the DBD statement in the DBD.

Determining Which Randomizing Module to Use (HDAM and PHDAM

Only)

As you have seen, a randomizing module is required to store and access HDAM or

PHDAM database records. This module converts the key of a root segment to a

relative block number and RAP number. These numbers are then used to store or

access HDAM or PHDAM root segments. An HDAM database or a PHDAM partition

uses only one randomizing module, but several databases and partitions can share

the same module. Four randomizing modules are supplied with IMS.

Normally, one of the four randomizing modules supplied with the system will work

for your database. These modules, and the arithmetic techniques they use, are

described in detail in IMS Version 9: Customization Guide.

Partition selection is completed prior to invoking the randomizing module on

PHDAM databases. The randomizing module selects locations only within a

partition.

Write Your Own Randomizing Module

If, given your root key distribution, none of these randomizing modules works well

for you, write your own randomizing module. If you write your own randomizing

module, one of your goals is to have it distribute root segments so that, when

subsequently accessing them, only one read and one seek operation is required.

When a root key is given to the randomizing module, if the relative block number

the randomizer produces is the block actually containing the root, only one read and

seek operation is required (access is fast). The randomizing module you write

should allow you to vary the number of blocks and RAPs you specify, so blocks and

RAPs can be used for tuning the system. The randomizing module should also

distribute roots randomly, not randomize to bit map locations, and keep packing

density high. IMS Version 9: Customization Guide tells you what the interface to

your randomizing module should be.

Assess the Effectiveness of the Randomizing Module

One way to determine the effectiveness of a given randomizing module for your

database is to run the IMS High Performance Pointer Checker (HD Tuning Aid).

This tool produces a report in the form of a map showing how root segments are

stored in the database. It shows you root segment storage based on the number of

blocks or CIs you specified for the root addressable area and the number of RAPs

you specified for each block or CI. By running the HD Tuning Aid against the

various randomizing modules, you can see which module gives you the best

distribution of root keys in your database. In addition, by changing the number of

RAPs and blocks or CIs you specify, you can see (given a specific randomizing

module) which combination of RAPs and blocks or CIs produces the best root

segment distribution.

Sizing the Root Addressable Area

Chapter 9. Designing Full-Function Databases 243

|
|
|
|
|
|
|
|
|
|
|

Before choosing a randomizing module, read “Adjusting HDAM and PHDAM

Options” on page 404, which discusses how you can adjust HDAM or PHDAM

options, including the randomizing module, to tune your database after it is running.

Choosing HDAM or PHDAM Options

In an HDAM or a PHDAM database, the options you choose can greatly affect

performance. The options discussed here are those you specify in the RMNAME

keyword in the DBD statement or when using the HALDB Partition Definition utility.

Figure 165 shows the format for specifying the RMNAME parameter. The definition

list that follows explains the meaning of mod, anch, rbn, and bytes.

mod Name of the randomizing module you have chosen

anch Number of RAPs in a block or CI

rbn Number of blocks or CIs in the root addressable area

bytes Maximum number of bytes of a database record to be put in the root

addressable area when segments in the database records are inserted

consecutively (without intervening processing operations)

Minimizing I/O Operations

In choosing these HDAM or PHDAM options, your primary goal is to minimize the

number of I/O operations it takes to access a database record or segment. The

fewer I/O operations, the faster the access time. Performance is best when:

v The number of RAPs in a block or CI is equal to the number of roots in the block

or CI (block or CI space is not wasted on unused RAPs).

v Unique block and RAP numbers are generated for most root segments (thereby

eliminating long synonym chains).

v Root segments are stored in key sequence.

v All frequently used dependent segments are in the root addressable area (access

to the root addressable area is faster than access to the overflow area) and in

the same block or CI as the root.

Your choice of a randomizing module (discussed in “Determining Which

Randomizing Module to Use (HDAM and PHDAM Only)” on page 243) determines

how many addresses are unique for each root and whether roots are stored in key

sequence. In general, a randomizing module is considered efficient if roots are

distributed evenly in the root addressable area. You can experiment with different

randomizing modules. Try various combinations of the anch, rbn, and bytes

operands to see what effect they have on distribution of root segments.

Maximizing Packing Density

A secondary goal in choosing HDAM or PHDAM options is to maximize packing

density without adversely affecting performance. Packing density is the percentage

of space in the root addressable area being used for root segments and the

dependent segments associated with them. Packing density is determined as

follows:

RMNAME=(mod,anch,rbn,bytes)

Figure 165. Specifying the RMNAME keyword

Determining Which Randomizing Module To Use

244 Administration Guide: Database Manager

|
|
|

Packing density =

(Number of roots x root bytes) /

(Number of CIs in the root addressable area x Usable space in the CI)

root bytes

The average number of bytes in each root in the root addressable area.

Usable space in the CI

The CI or block size minus (as applicable) space for the FSEAP, RAPs,

VSAM CIDF, VSAM RDF, and free space.

 Packing density should be high, but, as the percentage of packing density

increases, the number of dependent segments put into overflow storage can

increase. In addition, performance for processing of dependent segments decreases

when they are in overflow storage. All of the operands you can specify in the

RMNAME= keyword affect packing density. So, to optimize packing density, try

different randomizing modules and various combinations of the anch, rbn, and bytes

operands.

Choosing a Logical Record Length for a HISAM Database

In a HISAM database, your choice of a logical record length is important because it

can affect both the access time and the use of space in the database. The relative

importance of each depends on your individual situation. To get the best possible

performance and an optimum balance between access time and the use of space,

plot several trial logical record lengths and test them before making a final choice.

Logical Record Length Considerations

The following should be considered:

v Only complete segments can be stored in a logical record. Therefore, the space

between the last segment that fit in the logical record and the end of the logical

record is unused.

v Each database record starts at the beginning of a logical record. The space

between the end of the database record and the end of the last logical record

containing it is unused. This unused space is relative to the average size of your

database records.

v Very short or very long logical records tend to increase wasted space. If logical

records are short, the number of areas of unused space increases. If logical

records are long, the size of areas of unused space increases. Figure 166 shows

why short or long logical records increase wasted space.

Choose a logical record length that minimizes the amount of unused space at the

end of logical records.

The database record shown in Figure 166 on page 246 is stored on three short

logical records in Figure 167 on page 246 and in two longer logical records in

Figure 168 on page 246. Note the three areas of unused space.

Choosing HDAM or PHDAM Options

Chapter 9. Designing Full-Function Databases 245

In Figure 167, note the three areas of unused space. In Figure 168, there are only

two areas of unused space, rather than three, but the total size of the areas is

larger.

 Segments in a database record that do not fit in the logical record in the primary

data set are put in one or more logical records in the overflow data set. More read

and seek operations, and therefore longer access time, are required to access

logical records in the overflow data set than in the primary data set. This is

especially true as the database grows in size and chains of overflow records

develop. Therefore, you should try to put the most-used segments in your database

record in the primary data set. When choosing a logical record length the primary

data set should be as close to average database record length as possible. This

results in a minimum of overflow logical records and thereby minimizes performance

problems. When you calculate the average record length, beware of unusually long

or short records that can skew the results.

A read operation reads one CI into the buffer pool. CIs contain one or more logical

records in a database record. Because of this, it takes as many read and seek

operations to access an entire database record as it takes CIs to contain it. In

Figure 170 on page 247, each CI contains two logical records, and two CIs are

required to contain the database record shown in Figure 169 on page 247.

Consequently, it takes two read operations to get these four logical records into the

buffer.

Figure 166. Database Record for Logical Record Examples

Figure 167. Short Logical Records

Figure 168. Long Logical Records

Choosing a Logical Record Length for a HISAM Database

246 Administration Guide: Database Manager

The number of read and seek operations required to access a database record

increases as the size of the logical record decreases. The question to consider is:

Do you often need access to the entire database record? If so, you should try to

choose a logical record size that will usually contain an entire database record. If,

however, you typically access only one or a few segments in a database record,

choice of a logical record size large enough to contain the average database record

is not as important.

Consider what will happen in the following setup example in which you need to read

database records, one after another:

v Your CI or block size is 2048 bytes.

v Your Logical record size is 512 bytes.

v Your Average database record size is 500 bytes.

v The range of your database record sizes is 300 to 700 bytes.

Because your logical and average database record sizes are about equal (512 and

500), approximately one of every two database records will be read into the buffer

pool with one read operation. (This assumption is based on the average size of

database records.) If, however, your logical record size were 650, you would access

most database records with a single read operation. An obvious trade-off exists

here, one you must consider in picking a logical record length for HISAM data sets.

If your logical record size were 650, much unused space would exist between the

end of an average database record and the last logical record containing it.

Rules to Observe

The following rules must be observed when choosing a logical record length for

HISAM data sets:

v Logical record size in the primary data set must be at least equal to the size of

the root segment, plus its prefix, plus overhead. If variable-length segments are

Figure 169. Database Record for Logical Records Example

Figure 170. Logical Records Example with Two Read Operations

Choosing a Logical Record Length for a HISAM Database

Chapter 9. Designing Full-Function Databases 247

used, logical record size must be at least equal to the size of the longest root

segment, plus its prefix, plus overhead. Five bytes of overhead is required for

VSAM.

v Logical record size in the overflow data set must be at least equal to the size of

the longest segment in the overflow data set, plus its prefix, plus overhead. Five

bytes of overhead is required for VSAM.

v Logical record lengths in the overflow data set must be equal to or greater than

logical record length in the primary data set.

v The maximum logical record size is 30720 bytes.

v Except for SHISAM databases, logical record lengths must be an even number.

Calculating How Many Logical Records Are Needed to Hold a

Database Record

Calculate the average size of a database record before plotting various logical

record sizes. By calculating the average size of a database record, given a specific

logical record size, you can see how many logical records it takes to hold a

database record (of average size).

Related Reading: To determine the average size of your database records, see

“Estimating the Minimum Size of the Database” on page 311.

Specifying Logical Record Length

Specify the length of the logical records in the RECORD= operand of the DATASET

statement in the DBD.

Choosing a Logical Record Length for HD Databases

In HD databases, the important choice is not logical record length but CI or block

size. Logical record length is the same as block size when VSAM is used. Logical

record size is equal to CI size, minus 7 bytes of overhead (4 bytes for a CIDF, 3

bytes for an RDF).

Related Reading: See “Determining the Size of CIs and Blocks” for information on

determining CI or block size.

As with HISAM databases, specify the length of the logical records in the

RECORD= operand of the DATASET statement in the DBD.

Determining the Size of CIs and Blocks

You can specify the DEDB CI resource size for your database. (If you do not

specify it, the DBDGEN utility will calculate it for you.) Based on CI size, VSAM

determines the size of physical blocks on a DASD track. VSAM always uses the

largest possible physical block size, because the largest block size best utilizes

space on the track. So your choice of a CI size is an important one. Your goal in

picking it is to keep a high percentage of space on the track for your data, rather

than for device overhead.

Track sizes vary from one device to another, and many different CI sizes you can

specify exist. Because you can specify different CI sizes, the physical block size

that VSAM picks varies and is based on device overhead factors. For information

about using VSAM data sets, refer to DFSMS Access Method Services for

Catalogs.

Choosing a Logical Record Length for a HISAM Database

248 Administration Guide: Database Manager

Buffering Options

Database buffers are defined areas in virtual storage. When an application program

processes a segment in the database, the entire block or CI containing the segment

is read from the database into a buffer. The application program processes the

segment while it is in the buffer. If the processing involves modifying any segments

in the buffer, the contents of the buffer must eventually be written back to the

database so the database is current.

You need to choose the size and number of buffers that give you the maximum

performance benefit. If your database uses OSAM, you might also decide to use

OSAM sequential buffering. The subtopics in this topic can help you with these

decisions.

Multiple Buffers in Virtual Storage

You can specify both the number of buffers needed in virtual storage and their size.

You can specify multiple buffers with different sizes. Because a complete block or

CI is read into a buffer, the buffer must be at least as large as the block or CI that is

read into it. For best performance, use multiple buffers in virtual storage. To

understand why, you need to understand the concept of buffers and how they are

used in virtual storage.

When the data an application program needs is already in a buffer, the data can be

used immediately. The application program is not forced to wait for the data to be

read from the database to the buffer. Because the application program does not

wait, performance is better. By having multiple buffers in virtual storage and by

making a buffer large enough to contain all the segments of a CI or block, you

increase the chance that the data needed by application programs is already in

virtual storage. Thus, the reason for having multiple buffers in virtual storage is to

eliminate some of an application program’s wait time.

In virtual storage, all buffers are put in a buffer pool. Separate buffer pools exist for

VSAM and OSAM. A buffer pool is divided into subpools. Each subpool is defined

with a subpool definition statement. Each subpool consists of a specified number of

buffers of the same size. With OSAM and VSAM you can specify multiple subpools

with buffers of the same size.

″Use″ Chain

In the subpool, buffers are chained together in the order in which they have been

used. This organization is called a “use chain.” The most recently used buffers are

at the top of the use chain and the least recently used buffers are at the bottom.

The Buffer Handler

When a buffer is needed, an internal component called the buffer handler selects

the buffer at the bottom of the use chain, because buffers that are least recently

used are less likely to contain data an application program needs to use again. If a

selected buffer contains data an application program has modified, the contents of

the buffer are written back to the database before the buffer is used. This causes

the application program wait time discussed earlier.

Buffering Options

Chapter 9. Designing Full-Function Databases 249

Background Write Option

If you use VSAM, you can reduce or eliminate wait time by using the background

write option. This option is discussed under “VSAM Options” on page 260.

Otherwise, you control and reduce wait time by carefully choosing of the number

and size of buffers.

Shared Resource Pools

You can define multiple VSAM local shared resource pools. Multiple local shared

resource pools allow you to specify multiple VSAM subpools of the same size. You

create multiple shared resource pools and then place in each one a VSAM subpool

that is the same size as other VSAM subpools in other local shared resource pools.

You can then assign a specific database data set to a specific subpool by assigning

the data set to a shared resource pool. The data set is directed to a specific

subpool within the assigned shared resource pool based on the data set’s control

interval size.

Using Separate Subpools

If you have many VSAM data sets with similar or equal control interval sizes, you

might get a performance advantage by replacing a single large subpool with

separate subpools of identically sized buffers. Creating separate subpools of the

same size for VSAM data sets offers benefits similar to OSAM multiple subpool

support.

You can also create separate subpools for VSAM KSDS index and data

components within a VSAM local shared resource pool. Creating separate subpools

can be advantageous because index and data components do not need to share

buffers or compete for buffers in the same subpool.

Hiperspace Buffering

Multiple VSAM local shared resource pools enhance the benefits provided by

Hiperspace™ buffering. Hiperspace buffering allows you to extend the buffering of

4K and multiples of 4K buffers to include buffers allocated in expanded storage in

addition to the buffers allocated in virtual storage. Using multiple local shared

resource pools and Hiperspace buffering allows data sets with certain reference

patterns (for example, a primary index data set) to be isolated to a subpool backed

by Hiperspace, which reduces the VSAM read I/O activity needed for database

processing.

Hiperspace buffering is activated at IMS initialization. In batch systems, you place

the necessary control statements in the DFSVSAMP data set. In online systems,

you place the control statements in the IMS.PROCLIB data set with the member

name DFSVSMnn. Hiperspace buffering is specified for VSAM buffers through one

or two optional parameters applied to the VSRBF subpool definition statement.

Related Reading: For a brief explanation of how to specify hiperspace buffering,

see “Hiperspace Buffering Parameters” on page 406.

Buffer Size

Pick buffer sizes that are equal to or larger than the size of the CIs and blocks that

are read into the buffer. A variety of valid buffer sizes exist. If you pick buffers larger

than your CI or block sizes, virtual storage is wasted.

Buffering Options

250 Administration Guide: Database Manager

For example, suppose your CI size is 1536 bytes. The smallest valid buffer size that

can hold your CI is 2048 bytes. This wastes 512 bytes (2048 - 1536) and is not a

good choice of CI and buffer size.

Buffer Numbers

Pick an appropriate number of buffers of each size so buffers are available for use

when they are needed, an optimum amount of data is kept in virtual storage during

application program processing, and application program wait time is minimized.

The trade-off in picking a number of buffers is that each buffer uses up virtual

storage.

When you initially choose buffer sizes and the number of buffers, you are making a

scientific guess based on what you know about the design of your database and

the processing requirements of your applications. After you choose and implement

buffer size and numbers, various monitoring tools are available to help you

determine how well your scientific guess worked. Monitoring is discussed in

Chapter 14, “Monitoring Databases,” on page 335.

Buffer size and number of buffers are specified when the system is initialized. Both

can be changed (tuned) for optimum performance at any time. Tuning is discussed

in Chapter 15, “Tuning Databases,” on page 341.

VSAM Buffer Sizes

The buffer sizes (in bytes) that you can choose when using VSAM as the access

method are:

 512

 1024

 2048

 4096

 8192

 12288

 16384

 20480

 24576

 28672

 32768

In order not to waste buffer space, choose a buffer size that is the same as a valid

CI size. Valid CI sizes for VSAM data clusters are:

v For data components up to 8192 bytes (or 8K bytes), the CI size must be a

multiple of 512.

v For data components over 8192 bytes (or 8K bytes), the CI size must be a

multiple of 2048 (up to a maximum of 32768 bytes).

Valid CI sizes (in bytes) for VSAM index clusters using VSAM catalogs are:

 512

 1024

 2048

 4096

Valid CI sizes for VSAM index clusters using integrated catalog facility catalogs are:

Buffering Options

Chapter 9. Designing Full-Function Databases 251

v For index components up to 8192 bytes (or 8K bytes), the CI size must be a

multiple of 512.

v For index components over 8192 bytes (or 8K bytes), the CI size must be a

multiple of 2048 (up to a maximum of 32768 bytes).

OSAM Buffer Sizes

The buffer sizes (in bytes) that you can choose when using OSAM as the access

method are:

 512

 1024

 2048

 Any multiple of 2048 up to a maximum of 32768

For OSAM data sets, choose a buffer size that is the same as a valid block size so

that buffer space is not wasted. Valid block sizes for OSAM data sets are any size

from 18 to 32768 bytes.

Restriction: When using sequential buffering and the coupling facility for OSAM

data caching, the OSAM database block size must be defined in multiples of 256

bytes (decimal). Failure to define the block size accordingly can result in

ABENDS0DB from the coupling facility. This condition exists even if the IMS system

is accessing the database in read-only mode.

Specifying Buffers

Specify the number of buffers and their size when the system is initialized. Your

specifications, which are given to the system in the form of control statements, are

put in the:

v DFSVSAMP data set in batch, utility.

v IMS.PROCLIB data set with the member name DFSVSMnn in IMS DCCTL and

DBCTL environments.

The following example shows the necessary control statements specifications:

v Four 2048-byte buffers for OSAM

v Four 2048-byte buffers and fifteen 1024-byte buffers for VSAM
 //DFSVSAMP DD *

 ...
 VSRBF=2048,4

 VSRBF=1024,15

 IOBF=(2048,4)

 /*

Detailed information on how to code these control statements is located in the IMS

Version 9: Installation Volume 2: System Definition and Tailoring.

OSAM buffers can be fixed in storage using the IOBF= parameter. In VSAM, buffers

are fixed using the VSAMFIX= parameter in the OPTIONS statement. This

parameter is described under “VSAM Options” on page 260. Performance is

generally improved if buffers are fixed in storage, then page faults do not occur. A

page fault occurs when an instruction needs a page (a specific piece of storage)

and the page is not in storage.

Buffering Options

252 Administration Guide: Database Manager

With OSAM, you can fix the buffers and their buffer prefixes, or the buffer prefixes

and the subpool header, in storage. In addition, you can selectively fix buffer

subpools, that is, you can choose to fix some buffer subpools and not others. Buffer

subpools are fixed using the IOBF= parameter. The format of this parameter is:

IOBF= (length,number,fix1,fix2,id)

where:

v length is the size of buffers in a subpool.

v number is the number of buffers in a subpool. If three or fewer are specified, IMS

gives you three; otherwise, it gives you the number specified. If you do not

specify a sufficient number of buffers, your application program calls could waste

time waiting for buffer space.

v fix1 is whether the buffers and buffer prefixes in this subpool need to be fixed

and is specified as Y or N (yes or no).

v fix2 is whether the buffer prefixes in this subpool and the subpool header need to

be fixed and is specified as Y or N (yes or no).

The default for the fix1 parameter is that buffers and their prefixes are not fixed.

The default for the fix2 parameter is that buffer prefixes and the subpool header

are not fixed.

v id is a parameter that specifies an identifier to be assigned to the subpool. It is

used in conjunction with the DBD statement to assign a specific subpool to a

given data set. This DBD statement is not the DBD statement used in a DBD

generation but one specified during execution, as described in IMS Version 9:

Installation Volume 2: System Definition and Tailoring. The id parameter allows

you to have more than one subpool with the same buffer size. You can use it to:

– Get better distribution of activity among subpools

– Direct new database applications to “private” subpools

– Control the contention between a BMP and MPPs for subpools

OSAM Sequential Buffering

Sequential Buffering (SB) is an extension of the normal buffering technique used for

OSAM database data sets. When SB is active, multiple consecutive blocks can be

read from your database with a single I/O operation. (SB does not enhance OSAM

write operations.) This technique can help reduce the elapsed time of many

programs and utilities that sequentially process your databases.

Sequential Buffering Introduction

The normal OSAM buffering method reads only one block with each I/O operation.

This method is known as a random read. Without SB, IMS must issue a random

read each time your program processes a block that is not already in the OSAM

buffer pool. For programs that process your databases sequentially, random reads

can be time-consuming because the DASD must rotate one revolution or more

between each read.

SB reduces the time needed for I/O read operations in three ways:

v By reading 10 consecutive blocks with a single I/O operation. This is called a

sequential read. Sequential reads reduce the number of I/O operations necessary

to sequentially process a database data set.

When a sequential read is issued, the block containing the segment your

program requested plus nine adjacent blocks are read from the database into an

Buffering Options

Chapter 9. Designing Full-Function Databases 253

SB buffer pool in virtual storage. When your program processes segments in any

of the other nine blocks, no I/O operations are required because the blocks are

already in the SB buffer pool.

Example: If your program sequentially processes an OSAM data set containing

100,000 consecutive blocks, 100,000 I/O operations are required using the

normal OSAM buffering method. SB can take as few as 10,000 I/O operations to

process the same data set.

v By monitoring the database I/O reference pattern and deciding if it is more

efficient to satisfy a particular I/O request with a sequential read or a random

read. This decision is made for each I/O request processed by SB.

v By overlapping sequential read I/O operations with CPC processing and other I/O

operations of the same application. When overlapped sequential reads are used,

SB anticipates future requests for blocks and reads those blocks into SB buffers

before they are actually needed by your application. (Overlapped I/O is supported

only for batch and BMP regions.)

Benefits of Sequential Buffering

By using SB, any application program or utility that sequentially processes OSAM

data sets can run faster. Because many other factors affect the elapsed time of a

job, the time savings is difficult to predict. You need to experiment with SB to

determine actual time savings.

Programs That Can Benefit from SB

Some of the programs, utilities, and functions that might benefit from the use of SB

are:

v IMS batch programs that sequentially process your databases.

v BMPs that sequentially process your databases.

v Any long-running MPP, Fast Path, and CICS programs that sequentially process

your databases.

Note: SB is possible but not recommended for short-running MPP, IFP, and

CICS programs. SB is not recommended for the short-running programs,

because SB has a high initialization overhead each time such online

programs are run.

v IMS utilities, including:

– Online Database Image Copy

– HD Reorganization Unload

– Partial Database Reorganization

– Surveyor

– Database Scan

– Database Prefix Update

– Batch Backout

v HALDB Online Reorganization function

Typical Productivity Benefits of SB

By using SB for programs and utilities that sequentially process your databases,

you might be able to:

v Run existing sequential application programs within decreasing “batch window

times.” For example, if the time you set aside to run batch application programs

is reduced by one hour, you might still be able to run all the programs you

normally run within this reduced time period.

OSAM Sequential Buffering

254 Administration Guide: Database Manager

|

v Run additional sequential application programs within the same time period.

v Run some sequential application programs more often.

v Make online image copies much faster.

v Reduce the time needed to reorganize your databases.

Flexibility of SB Use

IMS provides several methods for requesting SB. You can request the use of SB for

specific programs and utilities during PSBGEN or by using SB control statements.

You can also request the use of SB for all or some batch and BMP programs by

using an SB Initialization Exit Routine.

IMS also allows a system programmer or master terminal operator (MTO) to

override requests for the use of SB by disallowing its use. This is done by issuing

an SB MTO command or using an SB Initialization Exit Routine. The use of SB can

be disallowed during certain times of the day to avoid virtual or real storage

constraint problems.

These methods of controlling the use of SB are discussed in “How to Request the

Use of SB” on page 257.

How SB Buffers Data

This topic describes what happens when you request SB. You will learn what SB

buffers, how and when SB is activated, and what happens to the data that SB

buffers.

What SB Buffers

As discussed in Chapter 8, “Choosing Optional Database Functions,” on page 151,

HD databases can consist of multiple data set groups. A database PCB can

therefore refer to several data set groups. A database PCB can also refer to several

data set groups when the database referenced by the PCB is involved in logical

relationships. A particular database, and therefore a particular data set group, can

be referenced by multiple database PCBs. A specific data set group referenced by a

specific database PCB is referred to in the following discussion as a DB-PCB/DSG

pair.

When SB is activated, it buffers data from the OSAM data set associated with a

specific DB-PCB/DSG pair. SB can be active for several DB-PCB/DSG pairs at the

same time, but each pair requires a separate activation.

Conditional Activation and Periodical Evaluation of SB

IMS does not immediately activate SB when you request it. Instead, when SB is

requested for a program, IMS begins monitoring the I/O reference pattern and

activity rate for each DB-PCB/DSG pair used by the program. After awhile, IMS

performs the first of a series of periodical evaluations of the buffering process. IMS

performs these periodic evaluation for each DB-PCB/DSB pair. This periodical

evaluation determines if the use of SB would be beneficial for the DB-PCB/DSG

pair. If the use of SB would be beneficial, IMS activates SB for the DB-PCB/DSG

pair. This activation of SB is known as conditional activation.

After SB is activated, IMS continues to periodically evaluate the I/O reference

pattern and activity rate. Based on these evaluations, IMS can:

v Temporarily deactivate SB and continue to monitor the I/O reference pattern and

activity rate. Temporary deactivation is implemented to unfix and page-release

the SB buffers.

OSAM Sequential Buffering

Chapter 9. Designing Full-Function Databases 255

v Temporarily deactivate monitoring of the I/O reference pattern and activity rate.

This form of temporary deactivation is implemented only if SB has been

deactivated and IMS concludes from subsequent evaluations that use of SB

would still not be beneficial.

When SB is temporarily deactivated, it can be reactivated later based on the results

of subsequent evaluations.

Individual periodical evaluations are performed for each DB-PCB/DSG pair.

Therefore, IMS can deactivate SB for one DB-PCB/DSG pair while SB remains

active for other DB-PCB/DSG pairs.

Role of the SB Buffer Handler

When SB is activated for a DB-PCB/DSG pair, a pool of SB buffers is allocated to

the pair (SB buffers are also discussed in “Virtual Storage Considerations for SB”).

Each SB buffer pool consists of n buffer sets (the default is four) and each buffer

set contains 10 buffers. These buffers are used by an internal component called the

SB buffer handler to hold the sets of 10 consecutive blocks read with sequential

reads.

While SB is active, all requests for database blocks not found in the OSAM buffer

pool are sent to the SB buffer handler. The SB buffer handler responds to these

requests in the following way:

v If the requested block is already in an SB buffer, a copy of the block is put into

an OSAM buffer.

v If the requested block is not in an SB buffer, the SB buffer handler analyzes a

record of previous I/O requests and decides whether to issue a sequential read

or a random read. If it decides to issue a random read, the requested block is

read directly into an OSAM buffer. If it decides to issue a sequential read, the

requested block and nine adjacent blocks are read into an SB buffer set. When

the sequential read is complete, a copy of the requested block is put into an

OSAM buffer.

v The SB buffer handler also decides when to initiate overlapped sequential reads.

Note: When processing a request from an online program, the SB buffer handler

only searches the SB buffer pools allocated to that online program.

Related Reading: For information on how IMS invalidates SB buffers, see the

data-sharing chapter of IMS Version 9: Administration Guide: System.

Virtual Storage Considerations for SB

Each DB-PCB/DSG pair buffered by SB has its own SB buffer pool. By default,

each SB buffer pool contains four buffer sets (although IMS lets you change this

value). Ten buffers exist in each buffer set. Each buffer is large enough to hold one

OSAM data set block.

The total size of each SB buffer pool is:

 4 * 10 * block size

The SB buffers are page-fixed in storage to eliminate page faults, reduce the path

length of I/O operations, and increase performance. SB buffers are page-unfixed

and page-released when a periodical evaluation temporarily deactivates SB.

OSAM Sequential Buffering

256 Administration Guide: Database Manager

You must ensure that the batch, online or DBCTL region has enough virtual storage

to accommodate the SB buffer pools. This storage requirement can be

considerable, depending upon the block size and the number of programs using

SB.

SB is not recommended in real storage-constrained environments such as batch

and DB/TM.

Some systems are storage-constrained only during certain periods of time, such as

during online peak times. You can use an SB Initialization Exit Routine to control

the use of SB according to specific criteria (the time) of day.

Related Reading: For details on the SB Initialization User Exit Routine see IMS

Version 9: Customization Guide.

How to Request the Use of SB

IMS provides two methods for specifying which of your programs and databases

should use SB.

1. You can explicitly specify which programs and utilities should use SB during

PSB generation or by using SB control statements.

2. You can specify that by default all or a subset of your batch and BMP programs

and utilities should use SB by coding an SB exit routine or by using a sample

SB exit routine provided with IMS.

Determine which method you will use. Using the second method is easier because

you do not need to know which BMP and batch programs use sequential

processing. However, using SB by default can lead to an uncontrolled increase in

real and virtual storage use, which can impact system performance. Generally, if

you are running IMS in a storage-constrained z/OS environment, use the first

method. If you are running IMS in a non storage-constrained z/OS environment, use

the second method.

Requesting SB During PSB Generation

To request SB during PSB generation, specify SB=COND in the PCB macro

instruction of your application’s PSB. (This is not possible for IMS utilities that do

not use a PSB during execution.) You code this keyword for each database PCB

buffered with SB.

The following diagram shows the syntax of the SB keyword in the PCB statement.

�� PCB TYPE=DB, Other parameters

NO

SB=

COND

 ��

COND Specifies that SB should be conditionally activated for this PCB.

NO Specifies that SB should not be used for this PCB.

 If you do not include the SB keyword in your PCB, IMS defaults to NO

unless specified otherwise in the SB exit routine.

 The SB keyword value can be overridden by SB control statements. This option is

discussed in “Requesting SB With SB Control Statements” on page 258.

The following example shows a PCB statement coded to request conditional

activation of SB:

OSAM Sequential Buffering

Chapter 9. Designing Full-Function Databases 257

|
|
|
|

SKILLA PCB TYPE=DB,DBDNAME=SKILLDB,KEYLEN=100,

 PROCOPT=GR,SB=COND

Detailed instructions for coding PSB statements are contained in IMS Version 9:

Utilities Reference: System.

Requesting SB With SB Control Statements

You can put SBPARM control statements in the optional //DFSCTL file. This file is

defined by a //DFSCTL DD statement in the JCL of your batch, dependent, or online

region. You can use the SBPARM control statement to:

v Specify which database PCBs (and which data sets referenced by the database

PCB) should use SB

v Override the default number of buffer sets

This control statement allows you to override PSB specifications without requiring

you to regenerate the PSB.

You can specify keywords that request use of SB for all or specific DBD names, DD

names, PSB names, and PCB labels. You can also combine these keywords to

further restrict when SB is used.

By using the BUFSETS keyword of the SBPARM control statement, you can

change the number of buffer sets allocated to SB buffer pools. For details on the

SB buffer pools see “Virtual Storage Considerations for SB” on page 256. The

default number of buffer sets is four. Badly organized databases can require six or

more buffer sets for efficient sequential processing. Well-organized databases

require as few as two buffer sets. An indicator of how well-organized your database

is can be found in the optional //DFSSTAT reports.

Related Reading:

v For details on //DFSSTAT reports, see IMS Version 9: Utilities Reference:

Database and Transaction Manager.

v For information on tuning the number of buffer sets, see Chapter 15, “Tuning

Databases,” on page 341.

The example below shows the SBPARM control statement necessary to request

conditional activation of SB for all DBD names, DD names, PSB names, and PCBs.

SBPARM ACTIV=COND

The next example shows the parameters necessary to:

v Request conditional activation of SB for all PCBs that were coded with

'DBDNAME=SKILLDB' during PSB generation

v Set the number of buffer sets to 6
SBPARM ACTIV=COND,DB=SKILLDB,BUFSETS=6

Detailed instructions for coding the SBPARM control statement are contained in IMS

Version 9: Installation Volume 2: System Definition and Tailoring.

Requesting SB with an SB Initialization Exit Routine

You can use an SB Initialization Exit Routine to:

v Request conditional activation of SB for all or some batch and BMP programs

v Allow or disallow the use of SB

v Change the default number of buffer sets

OSAM Sequential Buffering

258 Administration Guide: Database Manager

You can do this by writing your own SB exit routine or by selecting a sample SB

exit routine and copying it under the name DFSSBUX0 into IMS.SDFSRESL. An SB

exit routine allows you to dynamically control the use of SB at application

scheduling time.

IMS supplies five sample SB exit routines in IMS.SDFSSRC and IMS.SDFSRESL.

Three of the sample routines request SB for various subsets of application

programs and utilities. One sample routine requests SB during certain times of the

day and another routine disallows use of SB. You can use these sample routines as

written or modify them to fit your needs.

Detailed instructions for the SB Initialization Exit Routine are in the IMS Version 9:

Customization Guide.

SB Options or Parameters Provided by Several Sources

If you provide the same SB option or parameter in more than one place, the

following priority list applies (item 1 having the highest priority):

1. SB control statement specifications (the nth control statement overrides the mth

control statement, where n>m)

2. PSB specifications

3. Defaults changed by the SB Initialization Exit Routine

4. IMS defaults

Using SB in an Online System

To allow the use of SB in an online IMS or DBCTL environment, an IMS system

programmer must explicitly request that IMS load the SB modules. This is done by

putting an SBONLINE control statement in the DFSVSMxx member. By default, IMS

does not load SB modules in an online environment. This helps avoid a noticeable

increase in virtual storage requirements.

The two forms of the SBONLINE control statement are:

SBONLINE

 or

SBONLINE,MAXSB=nnnnn

where nnnnn is the maximum storage (in kilobytes) that can be used for SB buffers.

When the MAXSB limit is reached, IMS stops allocating SB buffers to online

applications until terminating online programs release SB buffer space. By default, if

you do not specify the MAXSB= keyword, the maximum storage for SB buffers is

unlimited.

Detailed instructions for coding the SBONLINE control statement are contained in

IMS Version 9: Installation Volume 2: System Definition and Tailoring.

Disallowing the Use of SB

This topic describes how an IMS system programmer or MTO can disallow the use

of SB. When the use of SB has been disallowed, a request for conditional activation

of SB is ignored.

There are three ways to disallow the use of SB. The following list describes the

three methods:

OSAM Sequential Buffering

Chapter 9. Designing Full-Function Databases 259

1. An SB Initialization Exit Routine can be written (or a sample exit routine

adapted) that can dynamically disallow and allow use of SB. This method can

be used if you are using SB in an IMS batch, online, or DBCTL environment.

2. The MTO commands /STOP SB and /START SB can be issued to dynamically

disallow and allow use of SB within an IMS online subsystem.

Related Reading: For details on the /STOP SB and /START SB commands, see

IMS Version 9: Command Reference.

3. The SBONLINE control statement can be omitted from the DFSVSMxx member.

This will keep IMS from loading the SB modules into the online subsystem. No

program in the online subsystem will be able to use SB.

VSAM Options

Several types of options can be chosen for databases using VSAM. Specifying

options such as free space for the ESDS data set, logical record size, and CI size

are discussed in the preceding topics in this chapter. This topic describes these

optional functions:

1. Functions specified in the OPTIONS control statement when IMS is initialized.

2. Functions specified in the POOLID, VSRBF, and DBD control statements when

IMS is initialized.

3. Functions specified in the Access Method Services DEFINE CLUSTER

command when a data set is defined.

Optional Functions Specified in the OPTIONS Control Statement

Several options exist that can be chosen during IMS system initialization for

databases using VSAM. These options are specified in the OPTIONS control

statement. In a batch system, the options you specify are put in the data set with

the DDNAME DFSVSAMP. In an online system, they are put in the IMS.PROCLIB

data set with the member name DFSVSMnn. Your choice of VSAM options can

affect performance, use of space in the database, and recovery. This topic

describes each option and the implications of using it.

The OPTIONS statement is described in detail in the IMS Version 9: Installation

Volume 2: System Definition and Tailoring. The OPTIONS statement and all its

parameters are optional.

Using Background Write (BGWRT Parameter)

When an application program issues a call requiring that data be read from the

database, the data is read into a buffer. If the buffer the data is to be read into

contains altered data, the altered data must be written back to the database before

the buffer can be used. If the data was not written back to the database, the data

would be lost (overlaid) when new data was read into the buffer. Then there would

be no way to update the database.

For these reasons, when an application program needs data read into a buffer and

the buffer contains altered data, the application program waits while the buffer is

written to the database. This waiting time decreases performance. The application

program is ready to do processing, but the buffer is not available for use.

Background write is a function you can choose in the OPTIONS statement that

reduces the amount of wait time lost for this reason.

To understand how background write works, you need to know something about

how buffers are used in a subpool. You specify the number of buffers and their size.

All buffers of the same size are in the same subpool. Buffers in a subpool are on a

OSAM Sequential Buffering

260 Administration Guide: Database Manager

use chain, that is, they are chained together in the order in which they have been

most or least recently used. The most recently used buffers are at the top of the

use chain; least recently used buffers are at the bottom.

When a buffer is needed, the VSAM buffer manager selects the buffer at the bottom

of the use chain. The buffer at the bottom of the use chain is selected, because

buffers that have not been used recently are less likely to contain data that will be

used again. If the buffer the VSAM buffer handler picks contains altered data, the

data is written to the database before the buffer is used. It is during this step that

the application program is waiting.

Background write solves the following problem: when the VSAM buffer manager

gets a buffer in any subpool, it looks (when background write is used) at the next

buffer on the use chain. The next buffer on the use chain will be used next. If the

buffer contains altered data, IMS is notified so background write will be invoked.

Background write has VSAM write data to the database from some percentage of

the buffers at the bottom of the use chain. VSAM does this for all subpools. The

data that is written to the database still remains in the buffers so the application

program can still use any data in the buffers.

Background write is a very useful function when processing is done sequentially,

but it is not as important to use in online systems as in batch. This is because, in

online environments, IMS automatically writes buffers to the database at sync

points.

To use background write, specify BGWRT=YES,n on the OPTIONS statement,

where n is the percentage of buffers in each subpool to be written to the database.

If you do not code the BGWRT= parameter, the default is BGWRT=YES and the

default percentage is 34%. If an application program continually uses buffers but

does not reexamine the data in them, you can make n 99%. Then, a buffer will

normally be available when it is needed.

CICS does not support this function.

Choosing an Insert Strategy (INSERT Parameter)

Get free space in a CI in a KSDS is by specifying it in the DEFINE CLUSTER

command. (The DEFINE CLUSTER command is explained in “Specifying Free

Space for a KSDS (FREESPACE Parameter)” on page 263. Free space for a KSDS

cannot be specified using the FRSPC= keyword in the DBD.

To specify free space in the DEFINE CLUSTER command, you must decide:

v Whether free space you have specified is preserved or used when more than

one root segment is inserted at the same time into the KSDS.

v Whether to split the CI at the point where the root is inserted, or midway in the

CI, when a root that causes a CI split is inserted.

These choices are specified in the INSERT= parameter in the OPTIONS statement.

INSERT=SEQ preserves the free space and splits the CI at the point where the root

is inserted. INSERT=SKP does not preserve the free space and splits the CI

midway in the CI. In most cases, specify INSERT=SEQ so free space will be

available in the future when you insert root segments. Your application determines

which choice gives the best performance.

If you do not specify the INSERT= parameter, the default is INSERT=SKP.

VSAM Options

Chapter 9. Designing Full-Function Databases 261

|
|
|
|
|
|
|
|

Using the IMS Trace Parameters

The IMS trace parameters trace information that has proven valuable in solving

problems in the specific area of the trace. All traces share sequencing numbers so

that a general picture of the IMS environment can be obtained by looking at all the

traces.

ON is the default for the IMS DL/I, LOCK and retrieve traces. OFF is the default for

all other traces. The traces can be turned on at IMS initialization time. They can

also be started or stopped by the /TRACE command during IMS execution. Output

from long-running traces can be saved on the system log if requested.

Related Reading: For more information on the trace parameters, see IMS Version

9: Installation Volume 2: System Definition and Tailoring.

Determining Which Dump Option to Use (DUMP Parameter)

The dump option is a serviceability aid that has no impact on performance. It

merely describes the type of abend to take place if an abend occurs in the buffer

handler (an internal component). If DUMP=YES is specified, the control region will

abend when there is an abend in the buffer handler.

Deciding Whether to Fix VSAM Database Buffers and IOBs in

Storage (VSAMFIX Parameter)

Each VSAM subpool contains buffers and input/output control blocks (IOBs).

Performance is generally improved if these buffers and IOBs are fixed in storage.

Then, page faults do not occur. A page fault occurs when an instruction references

a page (a specific piece of storage) that is not in real storage.

You can specify whether buffers and IOBs are fixed in storage in the VSAMFIX=

parameter of the OPTIONS statement. If you have buffers or IOBs fixed, they are

fixed in all subpools. If you do not code the VSAMFIX= parameter, the default is

that buffers and IOBs are not fixed.

This parameter can be used in a CICS environment if the buffers were specified by

IMS.

Using Local Shared Resources (VSAMPLS Parameter)

Specifying VSAMPLS=LOCL in the OPTIONS statement is for local shared

resources (LSR). When you specify VSAMPLS=LOCL, VSAM control blocks and

subpools are put in the IMS control region. VSAMPLS=LOCL is the only valid

operand and the default.

Optional Functions Specified in the POOLID, DBD, and VSRBF Control

Statements

Options chosen during IMS initialization determine the size and structure of VSAM

local shared resource pools. In a batch environment, you specify these options in a

data set with the DDNAME DFSVSAMP. In online systems, you specify these

options in the IMS.PROCLIB data set with the member name DFSVSMnn.

With these options, you can enhance IMS performance by:

v Defining multiple local shared resource pools

v Dedicating subpools to a specific data set

v Defining separate subpools for index and data components of VSAM data sets

VSAM Options

262 Administration Guide: Database Manager

|
|
|
|

Related Reading: Implementing the POOLID, VSRBF, and DBD control statements

and their corresponding parameters is described in detail in IMS Version 9:

Installation Volume 2: System Definition and Tailoring.

Optional Functions Specified in the Access Method Services DEFINE

CLUSTER Command

There are several optional functions that affect performance that can be chosen

when you define your VSAM data sets. These functions are specified in the Access

Method Services DEFINE CLUSTER command. HALDBs require that the REUSE

parameter be specified on the DEFINE CLUSTER command. IMS Online Recovery

Services takes advantage of the REUSE parameter, if it is specified.

Related Reading: This command and all its parameters are described in detail in

DFSMS Access Method Services for Catalogs.

Specifying that ’Fuzzy’ Image Copies Can be Taken with the

Database Image Copy 2 (DFSUDMT0)

To establish that ’fuzzy’ image copies of KSDSs can be taken with the Database

Image Copy 2 (DFSUDMT0), specify the BWO(TYPEIMS) parameter. For this

option to take effect the following conditions must exist:

v The KSDS must be SMS-managed.

v All access to the KSDS, once this option is specified, is done under DFSMS 1.3

or later version (once the KSDS has been opened under DFSMS 1.3, attempts to

open it under an earlier version will fail).

Specifying Free Space for a KSDS (FREESPACE Parameter)

It get free space in a CI in a KSDS, specify it in the FREESPACE parameter in the

DEFINE CLUSTER command. Free space for a KSDS can not be specified using the

FRSPC= keyword in the DBD.

You specify free space in the FREESPACE parameter as a percentage. The format

of the parameter is FREESPACE(x,y) where:

x is the percentage of space in a CI left free when the database is loaded or

when a CI split occurs after initial load

y is the percentage of space in a control area (CA) left free when the

database is loaded or when a CA split occurs after initial load.

Free space is preserved when a CI or CA is split by coding INSERT=SEQ in the

OPTIONS control statement. INSERT=SEQ is explained in “Choosing an Insert

Strategy (INSERT Parameter)” on page 261.

If you do not specify the FREESPACE parameter, the default is that no free space

is reserved in the KSDS data set when the database is loaded.

Specifying Whether Data Set Space Is Pre-formatted for Initial

Load (SPEED | RECOVERY Parameter)

When initially loading a VSAM data set, you can specify whether you need the data

set pre-formatted in the SPEED | RECOVERY parameter. When SPEED is

specified, it says the data set should not be pre-formatted. An advantage of

pre-formatting a data set is; if initial load fails, you can recover and continue loading

database records after the last correctly-written record. However, IMS does not

support the RECOVERY option (except by use of the Utility Control Facility). So,

although you can specify it, you cannot perform recovery. Because you cannot take

VSAM Options

Chapter 9. Designing Full-Function Databases 263

advantage of recovery when you specify the RECOVERY parameter, you should

specify SPEED to improve performance during initial load.

To be able to recover your data set during load, you should load it under control of

the Utility Control Facility. This utility is described in IMS Version 9: Utilities

Reference: Database and Transaction Manager.

RECOVERY is the default for this parameter.

Specifying Whether Index Set Records Are Replicated

A VSAM KSDS cluster has a data component (where segments are stored in

HISAM, HIDAM, or PHIDAM databases) and an index component (called the VSAM

index in this discussion.) The VSAM index contains pointers to CIs in the KSDS

data component. When a specific key in a KSDS is requested, the VSAM index is

used to limit the search for the CI that contains the correct root segment. Without

the VSAM index, the entire KSDS data component could be searched to find the

correct CI. The VSAM index can be on either the same volume as the data

component or on another volume. It is the VSAM index whose options are of

concern here. You need to know some things about the VSAM index before the

options are described.

The VSAM index consists of one or more levels, as shown in Figure 171. The first

(lowest) level is called the sequence set level. All other levels are called index set

levels. The sequence set level has a sequence set record for each CA in the

database. Each sequence set record contains a pointer to each CI in a specific CA

and the highest root segment’s key in that CI.

 Index set records on the first index set level contain pointers to sequence set

records. Each pointer on the first index set level contains the address of a

sequence set record and the highest root segment key in the sequence set record

pointed to.

If no more room exists for new pointers in an index set record, a new index set

record is started on the same level. As soon as there are two index set records on

a level, a new index set record is started on the next higher level.

At the second and higher levels of the index set, the pointers are to index set

records at the next lowest level. Each pointer contains the address of an index set

record at the next lower level along with the highest key in the index set record

pointed to.

One option you can specify for the VSAM index that especially affects performance

is the REPLICATE | NOREPLICATE parameter in the DEFINE CLUSTER command. If

Figure 171. Levels in a VSAM Index

VSAM Options

264 Administration Guide: Database Manager

you specify REPLICATE, each record in the sequence set and the index set is

written as many times as it will fit on the track. Repeat records to reduce the delay

caused when the disk rotates. The repetition of records means the arm is almost

always close or over a record so very little disk rotation is necessary. Repeating

records also improves performance. Note, however, that the VSAM index, because

of the repetition, will probably require more direct-access space.

If you specify NOREPLICATE, records in the VSAM index are not repeated.

NOREPLICATE is the default for this parameter.

There is a new option that you must specify for KSDSs in order to take ’fuzzy’

image copies using the Database Image Copy 2 utility. BWO(TYPEIMS) is the

specification. The KSDS must be SMS-managed for BWO(TYPEIMS) to mean

anything. And, you should ensure that all access to the KSDS (once the

BWO(TYPEIMS) option has been specified) is under DFSMS 1.3 or higher.

OSAM Options

Two types of options are available for databases using OSAM:

1. Options specified in the DBD (free space, logical record size, CI size).

These options are covered in preceding sections in this chapter.

2. Options specified in the OPTIONS control statement when IMS is initialized.

In a batch system, the options are put in the data set with the DDNAME

DFSVSAMP. In an online system, they are put in the IMS.PROCLIB data set

with the member name DFSVSMnn. Your choice of OSAM options can affect

performance, recovery, and the use of space in the database.

The OPTIONS statement is described in detail in IMS Version 9: Installation

Volume 2: System Definition and Tailoring. The statement and all its parameters

are optional.

Dump Option (DUMP Parameter)

The dump option is a serviceability aid that has no impact on performance. It

merely describes the type of abnormal termination to take place when abnormal

termination occurs in the buffer handler (an internal component).

Deciding Which FIELD Statements to Code in the DBD

Chapter 2, “Standards and Procedures,” on page 19 describes the statements that

are coded in the DBD. One of those statements is the FIELD statement, which

defines a field within a segment type. An important thing to note about the FIELD

statement is that it has to be coded for sequence fields and for fields an application

program can refer to in the SSA of a call. A FIELD statement also has to be coded

if it is referenced by a SENFLD statement in any PSB. Because each FIELD

statement takes up storage in the DMB control block, do not generate FIELD

statements that are unnecessary.

Planning for Maintenance

In designing your database, remember to plan for maintenance. If your applications

require, for instance, that the database be available 16 hours a day, you do not

design a database that takes 10 hours to unload and reload. No guideline we can

give you for planning for maintenance exists, because all such plans are application

dependent. However, remember to plan for it.

VSAM Options

Chapter 9. Designing Full-Function Databases 265

A possible solution to the problem just described is to make three separate

databases and put them on different volumes. If the separate databases have

different key ranges, then application programs could include logic to determine

which database to process against. This solution would allow you to reorganize the

three databases at separate times, eliminating the need for a single 10-hour

reorganization. Another solution to the problem if your database uses HDAM or

HIDAM might be to do a partial reorganization using the Partial Database

Reorganization utility (described in Chapter 16, “Modifying Databases,” on page

423).

In the online environment, the Image Copy utilities allow you to do some

maintenance without taking the database offline. These utilities let you take image

copies of databases or partitions while they are allocated to and being used by an

online IMS system.

HALDB provides greatly improved availability for large databases. By partitioning

large databases, you can perform offline maintenance on a single partition, while

the remaining partitions remain available.

You can also reorganize HALDBs online, which improves the performance of your

HALDB without disrupting access to its data. If you plan to reorganize your HALDB

online, make sure that there is enough DASD space to accommodate the

reorganization process.

Related Reading: For information on reorganizing HALDBs online, see “HALDB

Online Reorganization” on page 364.

Planning for Maintenance

266 Administration Guide: Database Manager

|
|
|
|

Chapter 10. Designing Fast Path Databases

After you determine the type of database and optional functions that best suit your

application’s processing requirements, you need to make a series of decisions

about database design and the use of options. This set of decisions primarily

determines how well your database performs and how well it uses available space.

These decisions are based on:

 The type of database and optional functions you have already chosen

 The performance requirements of your applications

 How much storage you have available for use online

This chapter examines the following topics:

v “Designing a Data Entry Database (DEDB)”

v “Designing a Main Storage Database (MSDB)” on page 273

v “High-Speed Sequential Processing (HSSP)” on page 279

v “Designing a DEDB or MSDB Buffer Pool” on page 282

v “Designing a DEDB Buffer Pool in the DBCTL Environment” on page 286

Designing a Data Entry Database (DEDB)

This topic describes the choices you need to make in designing a DEDB and

proposes guidelines to help you make these choices.

To design a DEDB, you must know the following information:

v How the application fits the limitations imposed by the DEDB itself

v How the application can make optimum use of the area concept of a DEDB

v The size of the CI

v The size of the UOW

v The DEDB randomizing routine

v Record deactivation

v Multiple copies of an area data set

v PCL (physical child last pointer)

v Subset pointers

Related Reading: DEDBs can be shared. For information on DEDB data sharing,

see IMS Version 9: Administration Guide: System and IMS Version 9: Utilities

Reference: System.

DEDB Design Guidelines

The following list describes guidelines for designing DEDBs:

v Except for the relationship between a parent and its children, the logical structure

(defined by the PCB) does not need to follow the hierarchic order of segment

types defined by the DBD.

For example, SENSEG statements for DDEP segments can precede the

SENSEG statement for the SDEP segment. This implementation prevents

unqualified GN processing from retrieving all SDEP segments before accessing

the first DDEP segments.

© Copyright IBM Corp. 1974, 2004 267

v Most of the time, SDEP segments are retrieved all at once, using the DEDB

Sequential Dependent Scan utility. If you later must relate SDEP segments to

their roots, you must plan for root identification as part of the SDEP segment

data.

v A journal can be implemented by collecting data across transactions using a

DEDB. To minimize contention, you should plan for an area with more than one

root segment. For example, a root segment can be dedicated to a

transaction/region or to each terminal. To further control resource contention, you

should assign different CIs to these root segments, because the CI is the basic

unit of DEDB allocation.

v Following is a condition you might be confronted with and a way you might

resolve it. Assume that transactions against a DEDB record are recorded in a

journal using SDEP segments and that a requirement exists to interrogate the

last 20 or so of them.

SDEP segments have a fast insert capability, but on the average, one I/O

operation is needed for each retrieved segment. The additional I/O operations

could be avoided by inserting the journal data as both a SDEP segment and a

DDEP segment and by limiting the twin chain of DDEP segments to 20

occurrences. The replace or insert calls for DDEP segments does not necessarily

cause additional I/O, since they can fit in the root CI. The root CI is always

accessed even if the only call to the database is an insert of an SDEP segment.

The online retrieve requests for the journal items can then be responded to by

the DDEP segments instead of the SDEP segments.

v As physical DDEP twin chains build up, I/O activity increases. The SDEP

segment type can be of some help if the application allows it.

The design calls for DDEP segments of one type to be batched and inserted as

a single segment whenever their number reaches a certain limit. An identifier

helps differentiate them from the regular journal segments. This design prevents

updates after the data has been converted into SDEP segments.

DEDB Area Design Guidelines

The following are some reasons why DEDBs are divided into areas and some

related design considerations:

v DEDBs should be divided into areas in a way that makes sense for the

application programs.

Example: A service bureau organization makes a set of applications available to

its customers. The design calls for a common database to be used by all users

of this set of applications. The area concept fits this design because the

randomizing routine and record keys can be set so that data requests are

directed to the user’s area only. Furthermore, on the operational side, users can

be given specific time slots. Their areas are allocated and deallocated

dynamically without interrupting other services currently using the same DEDB.

National or international companies with business locations spanning multiple

time zones might take advantage of the partitioned database concept. Because

not all areas must be online all the time, data can be spread across areas by

time zone.

Preferential treatment for specific records (specific accounts, specific clients, and

so on.) can be implemented without using a new database, for example, by

keeping more sequential dependent segments online for certain records. By

putting together those records in one area, you can define a larger sequential

dependent segment part and control the retention period accordingly.

v The impact of permanent I/O errors and severe errors can be reduced using a

DEDB. DL/I requires that all database data sets, except for HALDBs, be available

Designing a Data Entry Database

268 Administration Guide: Database Manager

all the time. With a DEDB, the data not available is limited only to the area

affected by the failure. Because the DEDB utilities run at the level of the area,

the recovery of the failing area can be done while the rest of the database is

accessible to online processing. The currently allocated log volume must be freed

by a /DBR AREA command and used in the recovery operation. Track recovery is

also supported. The recovered area can then be dynamically allocated back to

the operational environment.

Related Reading: Make multiple copies of DEDB area data sets to make data

more available to application programs. See “Multiple Copies of an Area Data

Set” on page 272.

v Space management parameters can vary from one area to another. This

includes: CI size, UOW size, root addressable part, overflow part, and sequential

dependent part. Also, the device type can vary from one area to the other.

v It is feasible to define an area on more than one volume and have one volume

dedicated to the sequential dependent part. This implementation might save

some seek time as sequential dependent segments are continuously added at

the end of the sequential dependent part. The savings depends on the current

size of the sequential dependent part and the blocking factor used for sequential

dependent segments. If an area spans more than one volume, volumes must be

of the same type.

v Only the independent overflow part of a DEDB is extendable. Sufficient space

should be provided for all parts when DEDBs are designed. To extend the

independent overflow part of a DEDB, you must follow the procedures in

“Extending DEDB Independent Overflow Online” on page 458.

The /DISPLAY command and the POS call can help monitor the usage of auxiliary

space. Unused space in the root addressable and independent overflow parts

can be reclaimed through reorganization. It should be noted that, in the overflow

area, space is not automatically reused by ISRT calls. To be reused at call time,

the space must amount to an entire CI, which is then made available to the ISRT

space management algorithm. Local out-of-space conditions can occur, although

some available space exists in the database.

v Adding or removing an area from a DEDB requires a DBDGEN and an ACBGEN.

Database reload is required if areas are added or deleted in the middle of

existing areas. Areas added other than at the end changes the area sequence

number assigned to the areas. The subsequent log records written reflect this

number, which is then used for recovery purposes. If areas are added between

existing areas, prior log records will be invalid. Therefore, an image copy must be

made following the unload/reload. Be aware that the sequence of the AREA

statements in the DBD determines the sequence of the MRMB entries passed on

entry to the randomizing routine. An area does not need to be mounted if the

processing does not require it, so a DBDGEN/ACBGEN is not necessary to

logically remove an area from processing.

v Careful monitoring of the retention period of each log allows you to make an

image copy of one area at a time. Also, because the High-Speed DEDB Direct

Reorganization utility logs changes, you do not need to make an image copy

following a reorganization.

v The area concept allows randomizing at the area level, instead of randomizing

throughout the entire DEDB. This means the key might need to carry some

information to direct the randomizing routine to a specific area.

Determining the Size of the CI

The choice of a CI size depends on the following factors:

Designing a Data Entry Database

Chapter 10. Designing Fast Path Databases 269

v CI sizes of 512, 1 KB, 2 KB, 4 KB, and up to 28 KB in 4 KB increments are

supported.

v Only one RAP exists per CI. The average record length has to be considered. In

the base section of the root addressable part, a CI can be shared only by the

roots that randomize to its RAP and their DDEP segments.

v Track utilization according to the device type.

v SDEP segment writes. A larger CI requires a fewer number of I/Os to write the

same amount of SDEP segments.

v The maximum segment size, which is 28,552 bytes if using a 28 KB CI size.

Determining the Size of the UOW

The UOW is the unit of space allocation in which you specify the size of the root

addressable and independent overflow parts.

Three factors might affect the size of the UOW:

1. The High-Speed DEDB Direct Reorganization utility (DBFUHDR0) runs on a

UOW basis. Therefore, while the UOW is being reorganized, none of the CIs

and data they contain are available to other processing.

A large UOW can cause resource contention, resulting in increased response

time if the utility is run during the online period. A minor side effect of a large

UOW is the space reserved on DASD for the “reorganization UOW,” which is

used only by the utility.

A UOW that is too small can cause some overhead during reorganization as the

utility switches from one UOW to the next with very little useful work each time.

However, this might not matter so much if reorganization time is not critical.

2. The use of processing option P, (explained in “Processing Option P

(PROCOPT=P)” on page 271). This consideration pertains to sequential

processing using BMP regions. If the application program is coded to take

advantage of the 'GC' status code, this status code must be returned frequently

enough to fit in the planned sync interval.

Assume every root CI needs to be modified and that, for resource control

reasons, each sync interval is allowed to process sequentially no more than 20

CIs of data. The size of the UOW should not be set to more than 20 CIs.

Otherwise, the expected 'GC' status code would not be returned in time for the

application program to trigger a sync point, release the resources, and not lose

position in the database.

A UOW that is too small, such as the minimum of two CIs, can cause too many

‘unsuccessful database call’ conditions each time a UOW is crossed. On a 'GC'

status code, no segment is returned and the call must be reissued after an

optional SYNC or CHKP call.

3. The dependent overflow (DASD space) usage is more efficient with a large

UOW than a small UOW.

See “SDEP CI Preallocation and Reporting” for a discussion of how the size of the

UOW affects DEDB design.

SDEP CI Preallocation and Reporting

Because of data sharing, SDEP CIs cannot be allocated one at a time. Also, each

data sharing system requires its own current CI. Therefore, a set of SDEP CIs are

preallocated to each IMS on an allocation call. The number of CIs obtained by an

IMS is a function of the system’s insert rate. The insert process obtains the current

CI, not the area open process.

Designing a Data Entry Database

270 Administration Guide: Database Manager

|
|
|

Because the insert process obtains the current CI, space use and reporting is

complex. If a preallocation attempt cannot obtain the number of CIs requested, the

ISRT or sync point call receives status FS, even if there is enough space for that

particular call. The FS processing marks the area as full, and any subsequent

smaller inserts also fail.

When there are few available SDEP CIs in an area, the number that can actually be

used for SDEP inserts varies depending on the system’s insert rate. Also, the

command /DIS AREA calculates the number of SDEP CIs free as those available for

preallocation and any unused CIs preallocated to the IMS issuing the command.

Area close processing discards CIs preallocated to the IMS, and the unused CIs

are lost until the SDEP Delete utility is run. Therefore, the number of unused CIs

reported by the /DIS AREA command after area close processing is smaller because

the preallocated CIs are no longer available.

Processing Option P (PROCOPT=P)

The PROCOPT=P option is specified during the PCB generation in the PCB

statement or in the SENSEG statement for the root segment.

The option takes effect only if the region type is a BMP. If specified, it offers the

following advantage:

Whenever an attempt is made to retrieve or insert a DEDB segment that causes a

UOW boundary to be crossed, a 'GC' status code is set in the PCB but no segment

is returned or inserted. The only calls for which this takes place are: G(H)U, G(H)N,

POS, and ISRT.

Although crossing the UOW boundary has no particular significance for most

applications, the 'GC' status code that is returned indicates this could be a

convenient time to invoke sync point processing. This is because a UOW boundary

is also a CI boundary. As explained for sequential processing, a CI boundary is a

convenient place to request a sync point.

The sync point is invoked by either a SYNC or a CHKP call, but this normally

causes position on all currently accessed databases to be lost. The application

program then has to resume processing by reestablishing position first. This

situation is not always easy to solve, particularly for unqualified G(H)N processing.

An additional advantage with this processing option is, if a SYNC or CHKP call is

issued after a 'GC' status code, database position is kept. Database position is such

that an unqualified G(H)N call issued after a 'GC' status code returns the first root

segment of the next UOW. When a 'GC' status code is returned, no data is

presented or inserted. Therefore, the application program should, optionally, request

a sync point, reissue the database call that caused the 'GC' status code, and

proceed. The application program can ignore the 'GC' status code, and the next

database call will work as usual.

Database recovery and change accumulation processing must buffer all log records

written between sync points. Sync points must be taken at frequent intervals to

avoid exhausting available storage. If not, database recovery might not be possible.

DEDB Randomizing Routine Design

A DEDB randomizing module is required for placing root segments in a DEDB. The

randomizing module is also required for retrieving root segments from a DEDB. One

Designing a Data Entry Database

Chapter 10. Designing Fast Path Databases 271

or more such modules can be used with an IMS system. Only one randomizing

module can be associated with each DEDB.

Related Reading: Refer to IMS Version 9: Customization Guide for register usage

and a sample randomizing program exit (DBFHDC40).

The purpose of the randomizing module is the same as in HDAM processing. A root

search argument key field value is supplied by the application program and

converted into a relative root anchor point number. Because the entry and exit

interfaces are different, DEDB and HDAM randomizing routines are not object code

compatible. The main line randomizing logic of HDAM should not need modification

if randomizing through the whole DEDB.

Some additional differences between DEDB and HDAM randomizing routines are as

follows:

v The ISRT algorithm attempts to put the entire database record close to the root

segment (with the exception of SDEP segments). No BYTES parameter exists to

limit the size of the record portion to be inserted in the root addressable part.

v With the DEDB, only one RAP can be defined in each root addressable CI.

v CIs that are not randomized to are left empty.

Because of the area concept, some applications might decide to randomize in a

particular area rather than through all the DEDB as in HDAM processing. Therefore,

the expected output of such a randomizing module is made up of a relative root

anchor point number in an area and the address of the control block (DMAC)

representing the area selected.

Keys that randomize to the same RAP are chained in ascending key sequence.

DEDB logic runs in parallel, so DEDB randomizing routines must be reentrant. The

randomizing routines operate out of the common storage area (CSA). If they use

operating system services like LOAD, DELETE, GETMAIN, and FREEMAIN, the

routines must abide by the same rules as described in IMS Version 9:

Customization Guide.

Multiple Copies of an Area Data Set

The data in an area is in a VSAM data set called the area data set (ADS).

Installations can create as many as seven copies (multiple area data sets, MADS)

of each ADS, making the data more available to application programs.

Each copy of an ADS contains exactly the same user data. Fast Path maintains

data integrity by keeping identical data in the copies during application processing.

When an application program updates data in an area, Fast Path updates that data

in each copy of the ADS. When an application program reads data from an area,

Fast Path retrieves the requested data from any one of the available copies of the

ADS. All copies of an ADS must have the same definition but can reside on

different devices and on different device types. Using copies of ADS is also helpful

in direct access device migration; for example, from a 3380 device to a 3390

device.

If an ADS fails to open during normal open processing of a DEDB, none of the

copies of the ADS can be allocated, and the area is stopped. However, when open

failure occurs during emergency restart, only the failed ADS is deallocated and

stopped. The other copies of the ADS remain available for use.

Designing a Data Entry Database

272 Administration Guide: Database Manager

Record Deactivation

If an error occurs while an application program is updating a DEDB, it is not

necessary to stop the database or the area. IMS continues to allow application

programs to access that area, and it only prevents them from accessing the control

interval in error. If multiple copies of the ADS exist, one copy of the data is always

available. (It is unlikely that the same control interval is in error in seven copies of

the ADS.) IMS automatically deactivates a record when a count of 10 errors is

reached.

Record deactivation minimizes the effect of database failures and errors to the data

in these ways:

v If multiple copies of an area data set are used, and an error occurs while an

application program is trying to update that area, the error does not need

immediate correction. Other application programs can continue to access the

data in that area through other available copies of that area.

v If a copy of an area has errors, you can create a new copy from existing copies

of the ADS using the DEDB Data Set Create utility. The copy with the errors can

then be destroyed.

Physical Child Last Pointers

The PCL pointer makes it possible to access the last physical child of a segment

type directly from the physical parent. Using the INSERT rule LAST avoids the need

to follow a potentially long physical child pointer chain.

Subset Pointers

Subset pointers help you avoid unproductive get calls when you need to access the

last part of a long segment chain. These pointers divide a chain of segment

occurrences under the same parent into two or more groups, or subsets. You can

define as many as eight subset pointers for any segment type, dividing the chain

into as many as nine subsets. Each subset pointer points to the start of a new

subset.

Related Reading: For more information on defining and using subset pointers, see

the topic about Processing DEDBs with Subset Pointers in IMS Version 9:

Application Programming: Database Manager.

Restrictions: When you unload and reload a DEDB containing subset pointers,

IMS does not automatically retain the position of the subset pointers. When

unloading the DEDB, you must note the position of the subset pointers, storing the

information in a permanent place. (For example, you could append a field to each

segment, indicating which subset pointer, if any, points to that segment.) Or, if a

segment in a twin chain can be uniquely identified, identify the segment a subset

pointer is pointing to and add a temporary indication to the segment for reload.

When reloading the DEDB, you must redefine the subset pointers, setting them to

the segments to which they were previously set.

Designing a Main Storage Database (MSDB)

This topic describes the choices you might need to make in designing an MSDB

and proposes guidelines to help you make these choices.

Consider the following list of questions when designing an MSDB database:

v How are virtual storage requirements for the database calculated?

Designing a Data Entry Database

Chapter 10. Designing Fast Path Databases 273

v How are virtual storage requirements for the Fast Path buffer pool calculated?

v What are the storage requirements for the I/O area?

v Should FLD calls or other DL/I calls be used for improved MSDB and DEDB

performance?

v How can the difference in resource allocation between an MSDB and a DL/I

database be a key to good performance?

v What are the requirements in designing for minimum resource contention in a

mixed-mode environment?

v How is the number of MSDB segments loaded into virtual storage controlled?

v What are the auxiliary storage requirements for an MSDB?

v How can an MSDB be checkpointed?

Calculating Virtual Storage Requirements for an MSDB

You can calculate the storage requirements for an MSDB as follows:

(L + 4)S + C + 14F + X

 where:

 S = the number of segments in the MSDB as specified by the

 member DBFMSDBx in the IMS.PROCLIB

 L = the segment length as specified in the DBD member

 C = 80 for non-related MSDBs without a terminal-related key, or

 94 for the other types of MSDB

 F = the number of fields defined in the DBD member

 X = 2 if C + 14F is not a multiple of 4, OR

 0 if C + 14F is a multiple of 4

 MSDBs reside in the z/OS extended common storage area (ECSA).

Calculating Buffer Requirements

Details about calculating buffer requirements are in “Designing a DEDB or MSDB

Buffer Pool” on page 282, along with other Fast Path buffer requirements. The

following considerations apply during execution:

v Fast Path buffer requirements vary with the type of call to the MSDB.

v With a GHx/REPL call sequence, an entire segment is kept in the Fast Path

buffer until a sync point is reached. If the total size of a series of segments

exceeds the NBA (normal buffer allocation), the NBA parameter needs to be

adjusted rather than using the OBA (overflow buffer) on a regular basis. You

should accommodate the total number of segments used between sync points.

v When using a FLD call, the VERIFY and CHANGE logic reside in the Fast Path

buffer.

Calculating the Storage for an Application I/O Area

A GHx/REPL call requires an I/O area large enough to accommodate the largest

segment to be processed. The FLD call requires storage to accommodate the total

field search argument (FSA) requirements.

Designing a Main Storage Database

274 Administration Guide: Database Manager

Understanding Resource Allocation, a Key to Performance

The MSDB resource allocation scheme is different from that of DL/I. Since the

MSDB is a key to good performance, it is important to understand it.

1. An MSDB record can be shared (S) by multiple users or be owned exclusively

(E) by one user.

2. The same record can have both statuses (shared and exclusive) at the same

time.

3. Updates to MSDBs are applied during sync point processing. The resource is

always owned in exclusive mode for the duration of sync point processing.

The different enqueue levels of an MSDB record, when a record is enqueued, and

the duration are summarized in Table 19.

 Table 19. Levels of Enqueue of an MSDB Record

Enqueue Level When Duration

READ GH with no update intent VERIFY/get calls

From call time until sync point

(phase 1)¹

Call processing

HOLD GH with no update intent At sync point, to reapply VERIFYs

From call time until sync point

(phase 1)¹

Phase 1 of sync point processing,

then released

UPDATE² At sync point, to apply the results of

CHANGE, REPL, DLET, or ISRT

calls

Sync point processing, then

released

Notes:

1. If there was no FLD/VERIFY call against this resource or if this resource is not

going to be updated, it is released. Otherwise, if only FLD/VERIFY logic has to

be reapplied, the MSDB record is enqueued at the HOLD level. If the same

record is involved in an update operation, it is enqueued at the UPDATE level

as shown in the table above.

2. At DLET/REPL call time, no enqueue activity takes place because it is the prior

GH call that set up the enqueue level.

Table 20 shows that the status of an MSDB record depends on the enqueue level of

each program involved. Therefore, it is possible for an MSDB record to be

enqueued with the shared and exclusive statuses at the same time. For example,

such a record can be shared between program A (GH call for update) and program

B (GU call), but cannot be shared at the same time with a third program, C, which

is entering sync point with update on the record.

 Table 20. Example of MSDB Record Status: Shared (S) or Owned Exclusively (E)

Enqueue Level in

Program B

Enqueue Level in Program A

READ HOLD UPDATE

READ S S E

HOLD S E E

UPDATE E E E

Designing a Main Storage Database

Chapter 10. Designing Fast Path Databases 275

The FLD/CHANGE call does not participate in any allocation; therefore,

FLD/CHANGE calls can be executed even though the same database record is

being updated during sync point processing.

If FLD/CHANGE and FLD/VERIFY calls are mixed in the same FLD call, when the

first FLD/VERIFY call is encountered, the level of enqueue is set to READ for the

remainder of the FLD call.

Designing to Minimize Resource Contention

One reason to use an MSDB is its fast access to data and high availability for

processing. To maintain high availability, you should design to avoid the contention

for resources that is likely to happen in a high transaction rate environment.

The following is a list of performance-related considerations. Some of the

considerations do not apply exclusively to MSDBs, but they are listed to give a

better understanding of the operational environment.

v Access by Fast Path transactions to DL/I databases and use of the alternate

PCB should be kept to a minimum. Use of the alternate PCB should be kept to a

minimum because FP transactions must contend for resources with IMS

transactions (some of which could be long running). Also, common sync point

processing is invoked and entirely serialized in the IMS control region.

v To avoid resource contention when sharing MSDBs between Fast Path and DL/I

transactions, You should try to make commit processing often and to avoid

long-running scans.

v GH for read/update delays any sync point processing that intends to update the

same MSDB resource. Therefore, GH logic should be used only when you

assume the referenced segments will not be altered until completion of the

transaction. If the resource is being updated, release is at the completion of sync

point. Otherwise, the release is at entry to sync point.

v The following consideration deals with deadlock prevention. Deadlock can occur

if transactions attempt to acquire (GH calls) multiple MSDB resources.

Whenever a request for an MSDB resource exists that is already allocated and

the levels involved are HOLD or UPDATE, control is passed to IMS to detect a

potential deadlock situation. Increase in path length and response time results.

The latter can be significant if a deadlock occurs, thus requiring the pseudo

abend of the transaction.

In order to reduce the likelihood of deadlocks caused by resource contention,

sync point processing enqueues (UPDATE level) MSDB resources in a defined

sequence. This sequence is in ascending order of segment addresses. MSDB

segments are acquired in ascending order of keys within ascending order of

MSDB names, first the page-fixed ones then the pageable MSDBs.

The application programmer can eliminate potential deadlock situations at call

time by also acquiring (GH calls) MSDB resources using the same sequence.

v From the resource allocation scheme discussed earlier, you probably realize that

FLD logic should be used whenever possible instead of GH/REPL logic.

– The FLD/VERIFY call results in an enqueue at the READ level, and if no

other levels are involved, then control is not passed to IMS. This occurrence

results in a shorter path length.

– The FLD/CHANGE call, when not issued in connection with VERIFY logic

does not result in any enqueue within either Fast Path or IMS.

– FLD logic has a shorter path length through the Program Request Handler,

since only one call to process exists instead of two needed for GH/REPL

logic.

Designing a Main Storage Database

276 Administration Guide: Database Manager

– The FLD/CHANGE call never waits for any resource, even if that same

resource is being updated in sync point processing.

– The FLD/VERIFY call waits only for sync point processing during which the

same resource is being updated.

– With FLD logic, the resource is held in exclusive mode only during sync point

processing.

In summary, programming with FLD logic can contribute to higher transaction rates

and shorter response times.

The following examples, Figure 172 and Figure 173, show how the MSDB record is

held in exclusive mode:

 The following notes are for Figure 172:

1. MSDB record R1 is held in exclusive mode against:

v Any MSDB calls except CHANGE calls

v Any other sync point processing that intends to update the same record

2. MSDB record R1 is held in exclusive mode against:

v Any other GH for update

v Any other sync point processing that intends to update the same record

 The following notes are for Figure 173.

1. MSDB record R1 is held in exclusive mode against:

v Any MSDB calls except CHANGE calls

v Any other sync point processing that intends to update the same record

2. MSDB record is held in exclusive mode for the duration of the FLD call against

any other sync point processing that intends to update the same resource

Choosing MSDBs to Load and Page-Fix

Deciding which MSDBs to load and page-fix involves a trade-off between desired

application performance and the amount of real storage available. This decision is

made with total Fast Path application requirements in mind. IMS system initialization

requires additional information before MSDBs can be loaded and page fixed. This

information is specified in member DBFMSDBx of IMS.PROCLIB. This member is

Figure 172. First Example MSDB Record Held in Exclusive Mode

Figure 173. Second Example MSDB Record Held in Exclusive Mode

Designing a Main Storage Database

Chapter 10. Designing Fast Path Databases 277

called by executing the control region startup procedure IMS. The suffix 'x' matches

the parameter supplied in the MSDB keyword of the EXEC statement in procedure

IMS.

The control information that loads and page fixes MSDBs is in 80-character record

format in member DBFMSDBx. Either you supply this information or it can be

supplied by the output of the MSDB maintenance utility. When the /NRE command

requests MSDBLOAD, the definition of the databases to be loaded is found in the

DBFMSDBx procedure.

The definition in DBFMSDBx can represent a subset of the MSDBs currently on the

sequential data set identified by DD statement MSDBINIT. Explicitly state each

MSDB that you want IMS to load. If each MSDB is not explicitly stated, IMS

abends.

The format for DBFMSDBx is as follows:

�� DBD=dbd_name, NBSEGS=nnnnnnnn

,F
 ��

dbd_name

The DBD name as specified during DBDGEN.

nnnnnnnn

The number you specify of expected database segments for this MSDB.

This number must be equal to or great than the number of MSDB segments

loaded during restart.

 The NBRSEGS parameter is also used to reserve space for terminal-related

dynamic MSDBs for which no data has to be initially loaded.

F The optional page-fix indicator for this MSDB.

 If the MSDBs are so critical to your Fast Path applications that IMS should not run

without them, place a first card image at the beginning of the DBFMSDBx member.

For each card image, the characters “MSDBABND=n” must be typed without

blanks, and all characters must be within columns 1 and 72 of the card image. Four

possible card images exist, and each contains one of the following sets of

characters:

MSDBABND=Y

This card image causes the IMS control region to abend if an error occurs while

loading the MSDBs during system initialization. Errors include:

v Open failure on the MSDBINIT data set

v Error in the MSDB definition

v I/O error on the MSDBINIT data set

MSDBABND=C

This card image causes the IMS control region to abend if an error occurs while

writing the MSDBs to the MSDBCP1 or MSDBCP2 data set in the initial

checkpoint after IMS startup.

MSDBABND=I

This card image causes the IMS control region to abend if an error occurs

during the initial load of the MSDBs from the MSDBINIT data set, making one

or more of the MSDBs unusable. These errors include data errors in the

MSDBINIT data set, no segments in the MSDBINIT data set for a defined

MSDB, and those errors described under “MSDBABND=Y.”

Designing a Main Storage Database

278 Administration Guide: Database Manager

|
|
|
|

|

MSDBABND=A

This card image causes the IMS control region to abend if an error occurs

during the writing of the MSDBs to the MSDBCPn data set (described in

“MSDBABND=C”), or during the initial load of the MSDBs from the MSDBINIT

data set (described in “MSDBABND=I”).

MSDBABND=B

This card image causes the IMS control region to abend if an error occurs

during the writing of the MSDBs to the MSDBCPn data set (described in

“MSDBABND=C”), or during the loading of the MSDBs in system initialization

(described in “MSDBABND=Y”).

Auxiliary Storage Requirements for an MSDB

DASD space is needed to keep image copies of MSDBs when they are dumped at

system and shutdown checkpoints. The data sets involved are the MSDBCP1 and

MSDBCP2 data sets. The same calculations apply to the MSDBDUMP data set,

which contains a copy of the MSDBs following a /DBDUMP DATABASE MSDB command.

The data sets just discussed are written in 2K-byte blocks. Because only the first

extent is used, the allocation of space must be on cylinder boundaries and be

contiguous.

Space allocation is calculated like this:

SPACE=(2048,(R),,CONTIG,ROUND)

The calculation of the number of records (R) to be allocated can be derived from

the formula:

(E + P + 2047)/2048

 where:

 E = main storage required, in bytes, for the Fast Path extension of the

 CNTs (ECNTs)

 P = main storage required for all MSDBs as defined by

 the PROCLIB member DBFMSDBx

 E is determined by the following formula:

E = (20 + 4D)T

 where:

 D = number of MSDBs using logical terminal names as keys

 T = total number of logical terminal names defined

 in the system

High-Speed Sequential Processing (HSSP)

High-Speed Sequential Processing (HSSP) is a function of Fast Path that handles

sequential processing of DEDBs.

Designing a Main Storage Database

Chapter 10. Designing Fast Path Databases 279

Why HSSP?

Some reasons you may choose to use it are that, HSSP:

v Generally has a faster response time than regular batch processing.

v Optimizes sequential processing of DEDBs.

v Reduces program execution time.

v Typically produces less output than regular batch processing.

v Reduces DEDB updates and image copy operation times.

v Image copies can assist in database recovery.

v Locks at UOW level to ease “bottle-necking” of cross IRLM communication.

v Uses private buffer pools reducing impact on NBA/OBA buffers.

v Allows for execution in both a mixed mode environment, concurrently with other

programs, and in an IRLM-using global sharing environment.

v Optimizes database maintenance by allowing the use of the image-copy option

for an updated database.

More detailed information is included in the following topics on HSSP:

v “Limitations and Restrictions When Using HSSP”

v “Using HSSP” on page 281

v “HSSP Processing Option H (PROCOPT=H)” on page 281

Limitations and Restrictions When Using HSSP

Though HSSP can execute in a mixed-mode environment as well as concurrently

with other programs, and in an environment with global sharing using IRLM; a

program using HSSP can only execute as a non-message-driven BMP.

Other restrictions and limitations of HSSP include:

v Only one HSSP process can be active on an area at any given time. The /DIS

AREA command identifies the IMSID of any HSSP job processing an area.

v HSSP processing and online utilities cannot process on the same area

concurrently.

v Non-forward referencing while using HSSP is not allowed.

v Programs using HSSP must properly process the 'GC' status code by following it

with a commit process.

Restrictions and limitations involving image copies include:

v The image copy option is available only for HSSP processing.

v HSSP image copying is allowed only if PROCOPT = H.

v The image copy process can only be done if a database is registered with

DBRC. In addition, image copy data sets must be initialized in DBRC.

The following restrictions and limitations apply for PROCOPT=H:

v PROCOPT=H is allowed only for DEDBs.

v PROCOPT=H is not allowed on the segment level, only on the PCB level.

v Backward referencing while using HSSP is not allowed. You cannot use an

HSSP PCB to refer to a prior UOW in a DEDB.

v Only one PROCOPT=H PCB per database per PSB is allowed.

v A maximum of four PROCOPTs can be specified, including H.

High-Speed Sequential Processing (HSSP)

280 Administration Guide: Database Manager

|
|

v PROCOPT=H must be used with other Fast Path processing options, such as

GH and IH.

v When a GC status code is returned, the program must cause a commit process

before any other call can be made to that PCB.

v HSSP image copying is not allowed if PROCOPT ¬=H.

v An ACBGEN must be done to activate the PROCOPT=H.

v H is compatible with all other PROCOPTs except for PROCOPT=O.

Using HSSP

To use HSSP, you must specify a new PROCOPT option during PSBGEN, option

'H' see “HSSP Processing Option H (PROCOPT=H).” Additionally, you need to

make sure that the programs using HSSP properly process the 'GC' status code by

following it with a commit process.

HSSP includes the image-copy option and the ability to set area ranges. To use

these functions, you need one or more of the following:

v The SETR statement

v The SETO statement

v A DFSCTL data set for the dependent regions

v DBRC

v PROCOPT=H

Related Reading: For more information about the SETR and SETO control

statements, refer to IMS Version 9: Installation Volume 2: System Definition and

Tailoring.

HSSP Processing Option H (PROCOPT=H)

PROCOPT=H is a PSBGEN OPTION. It allows you to define whether processing,

with respect to a PCB, should be treated as an HSSP process. Its use provides

HSSP capability for the application program using this PSB. Following is an

example of macros and keywords for a PSBGEN using PROCOPT=H:

Label PCB TYPE = DB

 ,DBDNAME = name

 ,PROCOPT = AH

Label is an optional parameter of the PCB macro. It can be up to 8 characters long

and is identical to the label on the associated SETO or SETR statements. H is

compatible with any other Fast Path PROCOPT, except for PROCOPT=O, and

PROCOPT=H can be used in one or more PCBs.

Related Reading:

v For information on PROCOPT=H rules, see “Limitations and Restrictions When

Using HSSP” on page 280.

v For more information on H processing, see IMS Version 9: Installation Volume 2:

System Definition and Tailoring.

Image-Copy Option

Selecting the image-copy option with HSSP reduces the total elapsed times of

DEDB updates and subsequent image-copy operations.

High-Speed Sequential Processing (HSSP)

Chapter 10. Designing Fast Path Databases 281

As database administrator, you decide whether to make an image copy of a

database using HSSP. If you specify image copying, HSSP creates an

asynchronous copy that is similar to a concurrent image copy.

The image copy process can only be done if a database is registered with DBRC.

In addition, image copy data sets must be initialized in DBRC.

HSSP image copies can also be used for database recovery. However, the

Database Recovery Utility must know that an HSSP image copy is supplied.

Related Reading: For information on DBRC databases and HSSP, and on created

image copies, refer to the IMS Version 9: Operations Guide and the IMS Version 9:

Database Recovery Control (DBRC) Guide and Reference.

For information on image copies and recovery, refer to IMS Version 9: Utilities

Reference: System.

UOW Locking

In a globally shared environment, data is shared not only between IMS subsystems,

but also across central processor complexes (CPC). In such an environment,

communication between two IRLMs could potentially “bottleneck” and become

impeded. To ease this problem, HSSP locks at a UOW level in update mode,

reducing the locking overhead. Non-HSSP or DEDB online processing locks at a

UOW level in a shared mode. Otherwise, the locking for DEDB online processing is

at the CI level. For information on UOW locking, refer to IMS Version 9:

Administration Guide: System.

Private Buffer Pools

Private buffer pools for the HSSP area are used for HSSP updates and image

copies. HSSP does not impact NBA/OBA buffers. HSSP dynamically allocates up to

three times the number of CIs per area in one UOW. Each buffer is a CI in size.

The private buffer pools are located in ECSA/CSA.

HSSP jobs use a combination of both Private buffer pools and common buffers

(NBA/OBA). HSSP dynamically allocates up to three times the number of CIs per

area in one UOW, with each buffer being a CI in size. The private buffer pools are

located in ECSA/CSA.HSSP uses the private buffers for reading RAP CIs, and

common buffers for reading IOVF CIs. An FW status code may be received during

the run of an HSSP job when NBA has been exceeded just as in a non-HSSP job.

Designing a DEDB or MSDB Buffer Pool

Buffers needed to fulfill requests resulting from database calls are obtained from a

global pool called the Fast Path buffer pool. The characteristics of the pool are

defined at IMS definition time and can be overridden at IMS startup time.

Three parameters characterize the Fast Path buffer pool:

DBBF

Total number of buffers.

 The buffer pool is allocated at IMS startup in the ECSA or, if FPBUFF=LOCAL

is specified in DFSFDRxx, in the FDBR private region. During emergency

restart processing, the entire buffer pool can be briefly page-fixed. Consider the

amount of available real storage when setting the DBBF value. IMS writes the

total number of buffers to the X’5937’ log.

High-Speed Sequential Processing (HSSP)

282 Administration Guide: Database Manager

|
|
|
|
|

DBFX

System buffer allocation.

 This is a set of buffers in the Fast Path buffer pool that is page fixed at startup

of the first region with access to Fast Path resources.

BSIZ

Buffer size.

 The size must be larger than or equal to the size of the largest CI of any DEDB

to be processed. The buffer size can be up to 28 KB.

Buffer Requirements

Fast Path buffers are used to hold:

v Update information such as:

– MSDB FLD/VERIFY call logic

– MSDB FLD/CHANGE call logic

– MSDB updates (results of REPL, ISRT, and DLET calls)

– Inserted SDEP segments

v Referenced DEDB CIs from the root addressable part and the sequential

dependent part.

v Updated DEDB CIs from the root addressable part.

v SDEP segments that have gone through sync point. The SDEP segments are

collected in the current SDEP segment buffer. One such buffer allocated for each

area defined with the SDEP segment type exists. This allocation takes place at

area open time.

The number of buffers a transaction or a sync interval is allowed to use must be

specified for each region if Fast Path resources are likely to be accessed.

Normal Buffer Allocation (NBA)

Fast Path regions and IMS regions accessing Fast Path resources require that the

normal buffer allocation (NBA) be specified in the region startup procedure.

Because this allocation of buffers is used first, calculate them to accommodate most

of the transaction requirements. At the start of the region, the number of NBA

buffers is page fixed in the Fast Path buffer pool.

Overflow Buffer Allocation (OBA)

The overflow buffer allocation (OBA) is optional and is used for exceptional buffer

requirements when the normal buffer allocation (NBA) has been exhausted. Its use

is dependent on obtaining a latch that serializes all regions currently in an overflow

buffer state. If the latch is not available, the region has to wait until it is available.

After the latch has been obtained, the NBA value is increased by the OBA value

and normal processing resumes. The overflow buffer latch is released during sync

point processing. At any point in time, only the largest OBA request among all the

active regions is page fixed in the Fast Path buffer pool.

Fast Path Buffer Allocation Algorithm

Fast Path buffers are allocated on demand up to a limit specified at the start of the

region. Buffers so specified are called NBA to be used by one sync point interval.

Before satisfying any request from the NBA allocation, an attempt is made to reuse

any already allocated buffer containing an SDEP CI. This process goes on until the

Designing a DEDB or MSDB Buffer Pool

Chapter 10. Designing Fast Path Databases 283

NBA limit is reached. From that point on, a warning in the form of an 'FW' status

code returned to Fast Path database calls is sent to BMP regions. MD and MPP

regions do not get this warning.

The next request for an additional buffer causes the buffer stealing facility to be

invoked and then the algorithm examines each buffer and CI already allocated. As a

result, buffers containing CIs being released are sent to a local queue (SDEP buffer

chain) to be reused by this sync interval.

If, after invoking the buffer stealing facility, no available buffer is found, a request for

the overflow buffer latch is issued. The overflow buffer latch governs the use of an

additional buffer allocation called overflow buffer allocation (OBA). This allocation is

also specified as a parameter at region start time. From that point on, any time a

request cannot be satisfied locally, a buffer is acquired from the OBA allocation until

the OBA limit is reached. At that time, MD and BMP regions have their 'FW' status

code replaced by an 'FR' status code after an internal ROLB call is performed. In

MD and MPP regions, the transaction is abended and stopped.

System Buffer Allocation (DBFX)

The system buffer allocation (DBFX) is needed, because DEDB writes are deferred

until after sync point processing. The result of one transaction or sync interval is

written back by one output thread. These output threads run from the control region

in SRB mode. Buffers allocated to an output thread are therefore not available to

dependent regions until after the CI they contain is written back. If the Fast Path

buffer pool is defined exactly as the sum of all NBAs, dependent regions must wait

for the buffers to come back to the global pool. Fast Path regions can process the

next transaction as soon as the sync point completes. Sync point processing does

not wait for the output thread to complete. The DBFX allocation of buffers is page

fixed at the start of the first region specifying an NBA request.

Determining the Fast Path Buffer Pool Size

The number of fast path buffers (DBBFs) required is calculated using the following

formula:

DBBF ≥ A + N + OBA + DBFX

where:

v DBBF: Fast Path buffer pool size as specified

v A: Number of active areas that have SDEP segments

v NBA: Normal buffer allocation of each active region

v N: Total of all NBAs

v OBA: Largest overflow buffer allocation

v DBFX: System buffer allocation

Fast Path Buffer Performance Considerations

An incorrect specification of DBBF (too small) can result in the rejection of an area

open or a region initialization. The system calculates the size of the buffer pool in

accordance with the formula given in “Determining the Fast Path Buffer Pool Size”

and rejects the open or initialization if the actual DBBF value is smaller.

A DBFX value that is too small is likely to cause region waits and increase

response time.

Designing a DEDB or MSDB Buffer Pool

284 Administration Guide: Database Manager

An NBA value that is too small might cause the region processing to be serialized

through the overflow buffer latch and again cause delays.

An NBA value that is too large can increase the probability of contention (and

delays) for other transactions. All CIs can be acquired at the exclusive level and be

kept at that level until the buffer stealing facility is invoked. This occurrence

happens after the NBA limit is reached. Therefore, an NBA that is too large can

increase resource contention.

A (NBA + OBA) value that is too small might result in more frequent unsuccessful

processing. This means an 'FR' status code condition for BMP regions, or

transaction abend for MD and MPP regions.

Inquiry-only programs do not make use of an OBA specification, as buffers already

allocated are reused when the NBA limit is reached.

IMS logs information about buffers and their use to the X’5937’ log. This information

can be helpful in determining how efficiently the Fast Path buffers are being used.

The NBA Limit and Sync Point

In BMP regions, when the NBA limit is reached, an 'FW' status code is returned.

This status code is presented to every subsequent Fast Path database call until the

OBA limit condition is reached.

The first occurrence of the 'FW' status code indicates no more NBA buffers exist.

This occurrence is a convenient point at which to request a sync point. Fast Path

resources (and others) would be released and the next sync point interval would be

authorized to use a new set of NBA buffers. The overflow buffer latch serializes all

the regions in an overflow buffer state and therefore causes delays in their

processing.

If processing is primarily sequential, the sync point should be invoked on a UOW

boundary crossing.

Related Reading: See “Processing Option P (PROCOPT=P)” on page 271 for

details on what happens on a UOW boundary crossing.

The DBFX Value and the Low Activity Environment

If the IMS or Fast Path activity in the system is relatively low, log buffers are written

less often, and therefore output threads are scheduled or dispatched less

frequently. This situation is likely to result in many buffers waiting to be written and

therefore could cause wait-for-buffer conditions. Wait-for-buffer conditions could be

alleviated by specifying a larger DBFX value.

A special case to be considered is the BMP region loading or processing a DEDB

and being the only activity in the system. For example, assume an NBA of 20

buffers exists. To avoid a wait-for-buffer condition, the DBFX value must be

specified as between one or two times the NBA value. This can result in a DBBF

specification of three times the NBA number, which gives 60 buffers to the Fast

Path buffer pool.

Except for the following case, there is no buffer look-aside capability across

transactions or sync intervals (global buffer look-aside).

Designing a DEDB or MSDB Buffer Pool

Chapter 10. Designing Fast Path Databases 285

|
|

Assume that a region requests a DEDB CI resource that is currently being written

or is owned by another region that ends up being written (output thread

processing). Then, this CI and the buffer are passed to the requestor after the write

(no read required) completes successfully. Any other regions must read it from disk.

Designing a DEDB Buffer Pool in the DBCTL Environment

Buffers needed to fulfill requests from database calls are obtained from a global

pool called the Fast Path buffer pool. The characteristics of the pool are defined at

IMS definition time and can be overridden at IMS startup time.

Three parameters characterize the Fast Path buffer pool:

1. DBBF: Total number of buffers.

The buffer pool is allocated at IMS startup in the ECSA or, if FPBUFF=LOCAL is

specified in DFSFDRxx, in the FDBR private region. IMS writes the total number

of buffers to the X’5937’ log.

2. DBFX: System buffer allocation.

This is a set of buffers in the Fast Path buffer pool that is page fixed at startup

of the first region with access to Fast Path resources.

3. BSIZ: Buffer size.

The size must be larger than or equal to the size of the largest CI of any DEDB

to be processed. The buffer size can be up to 28 KB.

Buffer Requirements in a DBCTL Environment

Fast Path buffers are used to hold:

v Update information such as inserted SDEP segments.

v Referenced DEDB CIs from the root addressable part and the sequential

dependent part.

v Updated DEDB CIs from the root addressable part.

v SDEP segments that have gone through sync point. The segments are collected

in the current SDEP segment buffer. One buffer allocated for each area defined

with the SDEP segment type exists. This allocation takes place at area open

time.

The number of buffers a transaction or a sync interval is allowed to use must be

specified for each region if Fast Path resources are likely to be accessed.

Normal Buffer Allocation for BMPs

BMP regions accessing Fast Path resources require this allocation to be specified

in the region startup procedure. The startup parameter is already specified as NBA.

This allocation of buffers is used first and should be calculated to accommodate

most of the transaction requirements. At the start of the region, the number of NBA

buffers is page fixed in the Fast Path buffer pool.

Normal Buffer Allocation for CCTL Regions and Threads

CCTL (coordinator control) regions, requiring fast path resources, need the following

parameters specified in the DRA startup table:

v CNBA

v FPB

Designing a DEDB or MSDB Buffer Pool

286 Administration Guide: Database Manager

|
|
|

|
|

CNBA is the normal buffer allocation of each active CCTL region. FPB is the normal

buffer allocation for CCTL threads.

When the CCTL connects to DBCTL, the number of CNBA buffers is page fixed in

the fast path buffer pool. However, if CNBA buffers are not available, the connect

fails.

Each CCTL thread that requires DEDB buffers is assigned its fast path buffers

(FPB) out of the total number of CNBA buffers.

For more information about the CCTLNBA parameter, refer to IMS Version 9:

Administration Guide: System.

Overflow Buffer Allocation for BMPs

This buffer allocation is optional and is used for exceptional buffer requirements

when the NBA has been exhausted. Its use is dependent on obtaining a latch that

serializes all BMPs and CCTL threads currently in an overflow buffer state. If the

latch is not available, the region has to wait until it is available. After the latch has

been obtained, the NBA value is increased by the OBA value and normal

processing resumes. The overflow buffer latch is released during sync point

processing. At any point in time, only the largest OBA request among all the active

BMPs and CCTL threads is page fixed in the Fast Path buffer pool.

Overflow Buffer Allocation for CCTL Threads

OBA for CCTL threads is similar to that for BMPs. The OBA value used for each

thread is set with the FPOB parameter in the startup table. This buffer allocation is

optional and is used for exceptional buffer requirements when the FPB has been

exhausted. Its use is dependent on obtaining a latch that serializes all BMPs and

CCTL threads currently in an overflow buffer state. If the latch is not obtained, the

FPB value is increased by the FPOB value, and normal processing resumes. The

overflow buffer latch is released during sync point processing. At any point in time,

only the largest OBA/FPOB request among all the active BMPs and CCTL threads

is page fixed in the fast path buffer pool.

Fast Path Buffer Allocation Algorithm for BMPs

FPBs are allocated on demand up to a limit specified at the start of the region.

Buffers specified as NBAs are used by one sync point interval.

Before satisfying any request from the NBA allocation, an attempt is made to reuse

any already allocated buffer containing an SDEP CI. This process goes on until the

NBA limit is reached. From that point on, a warning in the form of an 'FW' status

code returned to Fast Path database calls is sent to BMP regions.

The next request for an additional buffer causes the buffer stealing facility to be

invoked and then the algorithm examines each buffer and CI already allocated. As a

result, buffers containing CIs being released are sent to a local queue (SDEP buffer

chain) to be reused by this sync interval.

If, after invoking the buffer stealing facility, no available buffer is found, a request for

the overflow buffer latch is issued. The overflow buffer latch governs the use of an

additional buffer allocation, OBA. This allocation is also specified as a parameter at

region start time. From that point on, any time a request cannot be satisfied locally,

Designing a DEDB Buffer Pool in the DBCTL Environment

Chapter 10. Designing Fast Path Databases 287

a buffer is acquired from the OBA allocation until the OBA limit is reached. At that

time, BMP regions have their 'FW' status code replaced by an 'FR' status code after

an internal ROLB call is performed.

Fast Path Buffer Allocation Algorithm for CCTL Threads

When a CCTL thread issues a schedule request using FPB, buffers are allocated

out of the CNBA total. If FPB cannot be satisfied out of CNBA, the schedule request

fails.

Before satisfying any request from the FPB allocation, an attempt is made to reuse

any already allocated buffer containing an SDEP CI. This process goes on until the

FPB limit is reached. From that point on, a warning in the form of an 'FW' status

code returned to Fast Path database calls is sent to the CCTL threads.

The next request for an additional buffer causes the buffer stealing facility to be

invoked, and then the algorithm examines each buffer and CI already allocated. As

a result, buffers containing CIs being released are sent to a local queue (SDEP

buffer chain) to be reused by this sync interval.

If, after invoking the buffer stealing facility, no available buffer is found, a request for

the overflow buffer latch is issued. The overflow buffer latch governs the use of an

additional buffer allocation, OBA (FPOB). From that point on, any time a request

cannot be satisfied locally, a buffer is acquired from the FPOB allocation until the

FPOB limit is reached. At that time, CCTL threads have their 'FW' status code

replaced by an 'FR' status code after an internal ROLB call is performed.

System Buffer Allocation (SBA)

The system buffer allocation (SBA) is needed because DEDB writes are deferred

until after sync point processing. The result of one sync interval is written back by

one output thread. These output threads run from the control region in SRB mode.

Buffers allocated to an output thread are therefore not available to BMPs and CCTL

threads until after the CI they contain is written back. If the Fast Path buffer pool is

defined exactly as the sum of all NBAs, BMPs and CCTL threads must wait for the

buffers to come back to the global pool. BMPs and CCTL threads can process the

next transaction as soon as the sync point completes. Sync point processing does

not wait for the output thread to complete. The DBFX allocation of buffers is page

fixed at the start of the first region specifying an NBA or FPB request.

Determining the Size of the Fast Path Buffer Pool for DBCTL

The number of buffers required is calculated using the following formula:

DBBF ≥ A + N + LO + DBFX + CN

Where the values are:

v DBBF: Fast Path buffer pool size as specified

v A: Number of active areas that have SDEP segments

v N: Total of all NBAs

v LO: Largest overflow buffer allocation among active BMPs and CCTL threads

v DBFX: System buffer allocation

v CN: Total of all CNBAs

Designing a DEDB Buffer Pool in the DBCTL Environment

288 Administration Guide: Database Manager

Fast Path Buffer Performance Considerations for DBCTL

An incorrect specification of DBBF (too small) can result in the rejection of an area

open or a region initialization. The system calculates the size of the buffer pool in

accordance with the formula given in “Determining the Size of the Fast Path Buffer

Pool for DBCTL” on page 288 and rejects the open or initialization if the actual

DBBF value is smaller.

A DBFX value that is too small is likely to cause region waits and increase

response time.

An NBA/FPB value that is too small might cause the region processing to be

serialized through the overflow buffer latch and again cause delays.

An NBA/FPB value that is too large can increase the probability of contention (and

delays) for other BMPs and CCTL threads. All CIs can be acquired at the exclusive

level and be kept at that level until the buffer stealing facility is invoked. This

happens after the NBA limit is reached. Therefore, an NBA/FPB that is too large

can increase resource contention. Also, an FPB value that is too large indicates that

fewer CCTL threads can concurrently schedule fast path PSBs.

A (NBA + OBA) value that is too small might result in more frequent unsuccessful

processing. This means an 'FR' status code condition for BMP regions and CCTL

threads.

Inquiry-only BMP or CCTL programs do not make use of the overflow buffer

specification logic, as buffers already allocated are reused when the NBA/FPB limit

is reached.

IMS logs information about buffers and their use to the X’5937’ log. This information

can be helpful in determining how efficiently the Fast Path buffers are being used.

The NBA/FPB Limit and Sync Point in a DBCTL Environment

In BMP regions and CCTL threads, when the NBA/FPB limit is reached, an 'FW'

status code is returned. This status code is presented to every subsequent Fast

Path database call until the OBA/FPOB limit condition is reached.

The first occurrence of the 'FW' status code indicates no more NBA/FPB buffers

exist. This occurrence is a convenient point at which to request a sync point. Fast

Path resources (and others) would be released and the next sync point interval

would be authorized to use a new set of NBA/FPB buffers. The overflow buffer latch

serializes all the regions in an overflow buffer state and therefore causes delays in

their processing.

Related Reading: See “Processing Option P (PROCOPT=P)” on page 271 for

benefits of using PROCOPT=P for BMP regions.

Low Activity and the DBFX Value in a DBCTL Environment

If the IMS or Fast Path activity in the system is relatively low, log buffers are written

less often and therefore output threads are scheduled or dispatched less frequently.

This situation is likely to result in many buffers waiting to be written and therefore

could cause wait-for-buffer conditions. This could be alleviated by specifying a

larger DBFX value.

Designing a DEDB Buffer Pool in the DBCTL Environment

Chapter 10. Designing Fast Path Databases 289

|
|

Consider the special case: The BMP region loads or processes a DEDB and is the

only activity in the system. For example, assume that an NBA of 20 buffers exists.

To avoid a wait-for-buffer condition, the DBFX value must be between once or twice

the NBA value. This can result in a DBBF specification of three times the NBA

number, giving 60 buffers to the Fast Path buffer pool.

Except for the following case, there is no buffer look-aside capability across BMP

regions and CCTL threads or sync intervals (global buffer look-aside).

Assume that a region requests a DEDB CI resource that is currently being written

or is owned by another region that ends up being written (output thread

processing). Then, this CI and the buffer are passed to the requestor after the

successful completion of the write (no read required). Any other BMP regions and

CCTL threads must read it from disk.

A Note on Fast Path Buffer Allocation in IMS Regions

IMS regions that access Fast Path resources must have the NBA and OBA

parameters specified in their startup procedures.

With MODE=MULT, these allocations must be large enough to accommodate all

buffer requirements for transactions processed between sync points.

With MODE=SNGL, transaction classes should be set up so transactions with

similar buffer requirements are run in the same region.

Designing a DEDB Buffer Pool in the DBCTL Environment

290 Administration Guide: Database Manager

Chapter 11. Implementing Database Design

After you have designed your databases and before application programs can use

them, you must tell IMS their physical and logical characteristics by coding and

generating a DBD (database description) for each database.

Before an application program can use the database, you must tell IMS the

application program’s characteristics and use of data and terminals. You tell IMS the

application program characteristics by coding and generating a PSB (program

specification block).

Finally, before an application program can be scheduled for execution, IMS needs

the PSB and DBD information for the application program available in a special

internal format called an ACB (application control block).

This chapter examines the following areas of implementing your database design:

v “Coding Database Descriptions as Input for the DBDGEN Utility”

v “Implementing HALDB Design” on page 294

v “Coding Program Specification Blocks as Input to the PSBGEN Utility” on page

301

v “Building the Application Control Blocks (ACBGEN)” on page 304

v “Defining Generated Program Specification Blocks for SQL Applications” on page

305

Coding Database Descriptions as Input for the DBDGEN Utility

A DBD is a series of macro instructions that describes such things as a database’s

organization and access method, the segments and fields in a database record, and

the relationships between types of segments. After you have coded the DBD macro

instructions, they are used as input to the DBDGEN utility. This utility is a macro

assembler that generates a DBD control block and stores it in the IMS.DBDLIB

library for subsequent use during database processing.

Figure 174 illustrates the DBD generation process. Figure 175 on page 292 shows

the input to the DBDGEN utility. Separate input is required for each database being

defined.

© Copyright IBM Corp. 1974, 2004 291

|

The DBD Statement

In the input, the DBD statement names the database being described and specifies

its organization. Only one DBD statement exists in the input deck.

The DATASET Statement

This statement defines the physical characteristics of the data sets to be used for

the database. At least one DATASET statement is required for each data set group

in the database. Depending on the type of database, up to 10 data set groups can

be defined. Each DATASET statement is followed by the SEGM statements for all

segments to be placed in that data set group.

The DATASET statement is not allowed for HALDBs. Use either the HALDB

Partition Definition utility to define HALDB partitions or the DBRC commands

INIT.DB and INIT.PART

Figure 174. The DBD Generation Process

//DBDGEN JOB MSGLEVEL=1

// EXEC DBDGEN,MBR=APPLPGM1

//C.SYSIN DD *

 DBD required for each DBD generation

 data set(or AREA) required for each data set group

 (or AREA in a Fast Path DEDB)

 SEGM required for each segment type

 FIELD required for each DBD generation

 LCHILD required for each secondary index or

 logical relationship

 XDFIELD required for each secondary index relationship

 .

 .

 .

 DBDGEN required for each DBD generation

 END required for each DBD generation

/*

Figure 175. Structure of DBD Generation Input

Coding DBDs for DBDGEN Utility

292 Administration Guide: Database Manager

If the database is a DEDB, the AREA statement is used instead of the DATASET

statement. The AREA statement defines an area in the DEDB. Up to 2048 AREA

statements can be used to define multiple areas in the database. All AREA

statements must be put between the DBD statement and the first SEGM statement.

The SEGM Statement

This statement defines a segment type in the database, its position in the hierarchy,

its physical characteristics, and its relationship to other segments. SEGM

statements are put in the input deck in hierarchic sequence, and a maximum of 15

hierarchic levels can be defined. The number of database statements allowed

depends on the type of database. SEGM statements must immediately follow the

data set or AREA statements to which they are related.

The FIELD Statement

This statement defines a field within a segment type. FIELD statements must

immediately follow the SEGM statement to which they are related. A FIELD

statement is required for all sequence fields in a segment and all fields the

application program can refer to in the SSA of a DL/I call. A FIELD statement is also

required for any fields referenced by a SENFLD statement in any PSB. To save

space, do not generate FIELD statements except in these circumstances. FIELD

statements can be put in the input deck in any order except that the sequence field,

if one is defined, must always be first. Up to 255 fields can be defined for each

segment type, and a maximum of 1000 fields can be defined for each database.

The definition of fields within a segment can overlap. For example, a date “field”

within a segment can be defined as three 2-byte fields and also as one 6-byte field

as shown in Figure 176.

 This technique allows application programs to access the same piece of data in a

variety of ways. To access the same piece of data in a variety of ways, you code a

separate FIELD statement for each field. For the example shown, you would code

four FIELD statements, one for the total 6-byte date and three for each 2-byte field

in the date.

The LCHILD Statement

The LCHILD statement defines a secondary index or logical relationship between

two segment types, or the relationship between a HIDAM (or PHIDAM) index

database and the root segment type in the HIDAM (or PHIDAM) database. LCHILD

Figure 176. Example of a Date Field within a Segment Defined as Three 2–Byte Fields and

One 6–Byte Field

Coding DBDs for DBDGEN Utility

Chapter 11. Implementing Database Design 293

statements immediately follow the SEGM, FIELD, or XDFLD statement of the

segment involved in the relationship. Up to 255 LCHILD statements can be defined

for each database.

Restriction: The LCHILD statement cannot be specified for the primary index of a

PHIDAM database because the primary index is automatically generated.

The XDFLD Statement

The XDFLD statement is used only when a secondary index exists. It is associated

with the target segment and specifies:

v The name of an indexed field

v The name of the source segment

v The field used to create the secondary index from the source segment

Up to 32 XDFLD statements can be defined per segment. However, the number of

XDFLD and FIELD statements combined cannot exceed 255 per segment or 1000

per database.

Restriction: The CONST parameter is not allowed for a HALDB. Shared secondary

indexes are not supported.

The DBDGEN and END Statements

One DBDGEN statement and one END statement is put at the end of each DBD

generation input deck. These specify:

v The end of the statements used to define the DBD (DBDGEN)

v The end of input statements to the assembler (END)

Related Reading: Detailed instructions for coding DBD statements and examples

of DBDs are contained in IMS Version 9: Utilities Reference: System.

Implementing HALDB Design

To define a HALDB, you define it to DBRC. You can do this using either DBRC

batch commands or using the Partition Definition utility. This topic discusses

defining HALDBs using the Partition Definition utility. This topic also discusses

“Allocating an ILDS” on page 300.

Related Reading: The Complete IMS HALDB Guide, published by IBM Redbooks™

for the Version 8 release of IMS, contains a comprehensive discussion of HALDBs.

Creating HALDBs with the HALDB Partition Definition Utility

The HALDB Partition Definition utility is an ISPF application that allows you to

manage IMS HALDB partitions.

The HALDB Partition Definition utility is accessed through ISPF panels in a TSO

session. You can perform the following tasks on the HALDB master and its

partitions:

v Register a new HALDB master database with DBRC.

v Add HALDB partitions to an existing HALDB.

v Find, view, sort, copy, modify, delete, and print HALDB partitions.

v Define and modify data set groups.

v Edit HALDB information.

Coding DBDs for DBDGEN Utility

294 Administration Guide: Database Manager

|

|
|
|
|

|
|

|

|

v Export HALDB definitions.

v Import HALDB definitions.

v View IMS DDNAME concatenations.

v Choose IMS RECON and DBDLIB libraries.

v Delete HALDB information.

Creating HALDB Partitions With the Partition Definition Utility

To create a HALDB, you first use the Database Description Generation (DBDGEN)

utility to create a master database and define it as a HALDB. After you have

defined a HALDB master database, use the Partition Definition utility to define the

partitions within the HALDB.

Related Reading: For information on using the DBDGEN utility to create a HALDB

master database, see:

v Figure 161 on page 235 for an example of the DBD for PHDAM

v “Coding Database Descriptions as Input for the DBDGEN Utility” on page 291

v IMS Version 9: Utilities Reference: System

When you define the first HALDB partition, you must also register the HALDB

master database in the DBRC RECON data set. You can use either the HALDB

Partition Definition utility or the DBRC INIT.DB and INIT.PART commands to do this.

The HALDB Partition Definition utility does not impact RECON data set contention

of online IMS subsystems. The RECON data set is reserved only for the time it

takes to process a DBRC request. It is not held for the duration of the utility

execution.

Related Reading: For additional information on HALDB and the RECON data set,

see IMS Version 9: Database Recovery Control (DBRC) Guide and Reference.

When defining HALDB partitions using the Partition Definition utility, you must

provide information such as the partition name, data set prefix name, and high key

value. Whenever possible, the Partition Definition utility provides default values for

required fields.

The steps for defining a new HALDB are as follows:

1. Use the DBDGEN process to define a HALDB master database. The HALDB

Partition Definition utility does not let you define HALDB partitions until the

DBDGEN process is performed.

2. Make the dialog data sets available to the TSO user. You can add the data sets

to a LOGON procedure or use TSO commands to allocate them. You can use

the TSOLIB command to add data sets to the STEPLIB. Table 21 shows which

file names and data sets need to be allocated. Be sure to use your own high

level qualifiers.

 Table 21. File Names and Data Sets to Allocate

File Name Sample Data Set Names Disposition

STEPLIB IVPEXE91.SDFSRESL N/A

SYSPROC IVPEXE91.SDFSEXEC SHR

ISPMLIB IVPEXE91.SDFSMLIB SHR

ISPPLIB IVPEXE91.SDFSPLIB SHR

ISPTLIB IVPEXE91.SDFSTLIB SHR

HALDB Partition Utility

Chapter 11. Implementing Database Design 295

|
|
|
|
|

|
|

|

|

|

|
|
|
|
|
|
|

Table 21. File Names and Data Sets to Allocate (continued)

File Name Sample Data Set Names Disposition

IMS IVPEXE91.DBDLIB SHR

If you use a logon procedure, you must log on again and specify logon with the

new procedure. If you use allocation commands, they must be issued outside of

ISPF. After you allocate the data sets and restart ISPF, restart the Install/IVP

dialog, return to this task description, and continue with the remaining steps.

3. Start the HALDB Partition Definition utility from the ISPF command line by

issuing the following command:

TSO %DFSHALDB

You can use the F2 key to split the screen and view these instructions online

while viewing the HALDB partition definition panels at the same time.

4. Specify the name of the database. Fill in the first partition name as shown in

Figure 177 on page 297. Fill in the data set name prefix using the data set

name for your data set instead of the high level qualifier shown in Figure 177 on

page 297. You should, however, specify the last qualifier as IVPDB1A to match

cluster names previously allocated.

Recommendation: When naming your partitions, use a naming sequence that

allows you to add new names later without disrupting the sequence. For

example, if you name your partitions xxxx010, xxxx020 and xxxx030 and then

later split partition xxxx020 because it has grown too large, you can name the

new partition xxxx025 without disrupting the order of your naming sequence.

HALDB Partition Utility

296 Administration Guide: Database Manager

|
|
|
|
|

5. Define your partitions in the Change Partition panel. Make sure that the name of

the partition and the data set name prefix are correct and then define a high key

for the partition.

The high key identifies the highest root key of any record that the partition can

contain and is represented by a hexadecimal value that you enter directly into

the Partition High Key field of the Change Partition panel. Press F5 to accept

the hexadecimal value and display its alphanumeric equivalent in the right

section of the Partition High Key field.

You can enter the partition high key value using alphanumeric characters by

pressing F5 before making any changes in the hexadecimal section of the

Partition High Key field. This displays the ISPF editing panel. The alphanumeric

input you enter in the editing panel displays in both hexadecimal and

alphanumeric formats in the Change Partition Panel when you press F3 to save

and exit the ISPF editor.

The last partition you define for a HALDB must have a high key value of X'FF'.

This ensures that the keys of all records entered into the HALDB will be lower

than the highest high key in the HALDB. The Partition Definition utility fills all

remaining bytes in the Partition High Key field with hexadecimal X'FF'.

When you finish defining the partition high key, press enter to create the

partition. The Change Partition panel remains active so that you can create

additional partitions. To create additional partitions, you must change the

partition name and the partition high key.

Figure 178 on page 298. is an example of the Change Partition panel. The

Partition High Key field includes sample input.

Help

 Partition Default Information

Type the field values. Then press Enter to continue.

Database Name IVPDB1

 Processing Options

Automatic DefinitionNo

Input data set

Use defaults for DS groups .No

 Defaults for Partitions

Partition NameIVPDB11

Data set name prefixIXUEXEHQ.IVPDB1A

Free Space

 Free block freq. factor . 0

 Free space percentage . . 0

 Defaults for data set groups

Block Size8192

DBRC options

 Max. image copies2

 Recovery period0

 Recovery utility JCL . . RECOVJCL

 Default JCL________

 Image Copy JCL ICJCL

 Online image copy JCL . .OICJCL

 Receive JCLRECVJCL

 Reusable?No

To exit the application, press F3

Command = = = >

Figure 177. Partition Default Information

HALDB Partition Utility

Chapter 11. Implementing Database Design 297

|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

6. When you finish defining partitions, press the cancel key (F12) to exit the

Change Partition panel. A list of partitions defined in the current session

displays.

To exit the HALDB Partition Definition utility entirely, press F12 again.

Automatic and Manual HALDB Partition Definition: You can choose either

automatic or manual partition definition by specifying Yes or No in the Automatic

Definition field in the Processing Options section of the Partition Default Information

panel.

Entering Yes in the Automatic Definition field specifies that the Partition Definition

utility automatically defines your HALDB partitions. You must have previously

created a data set and it must contain your HALDB partition selection strings.

Specify the name of the data set in the Input data set field.

Entering No in the Automatic Definition field specifies that you define your HALDB

partitions manually. “Creating HALDB Partitions With the Partition Definition Utility”

on page 295 explains this process. You can still use an input data set when you

define HALDB partitions manually.

Adding HALDB Partitions to an Existing HALDB

Related Reading: See Appendix E, “HALDB Partition Definition utility,” on page 511

for information on using the Partition Definition utility for adding HALDB partitions to

an existing HALDB.

Help

 Change Partition

Type the field values. Then press Enter.

Database name..........IVPDB1

Partition name.........IVPDB11

Partition ID...........1

Data set name prefix...IXUEXEHQ.IVPDB1A

Partition Status......._______

Partition High Key

 +00 57801850 00F7F4F2 40C5A585 99879985 | ...&.742 Evergre |

 +10 859540E3 85999981 | en Terra |

Free Space

 Free block freq. factor...0

 Free space percentage.....0

Attributes for data set group A

 Block Size................8192

DBRC options

 Max. image copies.........2

 Recovery period...........0

 Recovery utility JCL......_________

 Image copy JCL............ICJCL

 Online image copy JCL.....OICJCL

 Receive JCL...............RECVJCL

 Reusable?.................No

Command = = = >

Figure 178. Change Partition Panel

HALDB Partition Utility

298 Administration Guide: Database Manager

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|

|

|
|
|
|

|
|
|
|

Finding, Viewing, Sorting, Copying, Modifying, Deleting, and

Printing HALDB Partitions

Related Reading: See Appendix E, “HALDB Partition Definition utility,” on page 511

for information on the interfaces for finding, viewing, sorting, copying, modifying,

deleting, and printing HALDB partitions.

Defining and Modifying Data Set Groups

Related Reading: See Appendix E, “HALDB Partition Definition utility,” on page 511

for information on the interfaces for defining and modifying HALDB data set groups.

Number of Data Sets in a HALDB Partition

Table 22 lists the minimum and maximum number of data sets a partition can

contain for each type of HALDB.

 Table 22. Minimum and maximum number of data sets for HALDB partitions.

HALDB Type Minimum number of data sets Maximum number of data sets

PHDAM Two: an OSAM or VSAM

entry-sequenced data set (ESDS), and

a key-sequenced data set (KSDS) for

the ILDS

Eleven: ten OSAM or VSAM ESDS,

and one KSDS for the ILDS

PHIDAM Three: a OSAM or VSAM ESDS, a

KSDS for the ILDS, and a KSDS for

the primary index

Thirteen: ten OSAM or VSAM

ESDS, one KSDS for the ILDS, and

one KSDS for the primary index

PSINDEX One: a KSDS One: a KSDS

Exporting Database Definitions

Related Reading: See Appendix E, “HALDB Partition Definition utility,” on page 511

for information on the interfaces for exporting Database definitions.

Use the HALDB Partition Definition utility to export a HALDB definition. The

database information is stored in the partitioned data set that you specify as an

ISPF table and so must have the attributes of ISPTLIB data sets (record format =

fixed block, record length = 80, data set organization = PDS or PDS/E).

Importing Database Definitions

Only an exported ISPF table can be used for importing database definitions.

The output from the export of a HALDB is a member of a PDS. The information

about the HALDB is saved in the form of an ISPF table. The ISPF table becomes

input for the import process.

The import can be performed from the HALDB Partition Definition utility or a batch

job.

To import a database using a batch job, submit a batch ISPF job similar to the job

shown in Figure 335 on page 541. All ISPF DD names are required.

The batch job executes the standard ISPF command, ISPSTART, that sets up the

ISPF environment, and then starts the DSPXRUN command. The DSPXRUN command

identifies the database, the import file to use, and the processing options.

Related Reading: For more information on the DSPXRUN command, see

“DSPXRUN Command Syntax” on page 542.

HALDB Partition Utility

Chapter 11. Implementing Database Design 299

|
|

||

|||

||
|
|
|

|
|

||
|
|

|
|
|

|||
|

|

Viewing IMS DDNAME Concatenation

You can look at the concatenation of data sets that are allocated to the IMS

DDNAME. The data set is displayed using the ISRDDN command, which is part of

the ISPF product.

When you specify a generic database name and use options 1 through 5 from the

DFSHALDB panel, the viewing IMS DDNAME concatenation option only works if

you use 4 or fewer DBD data sets. If you specify option 7, the data sets

concatenated to the IMS DDNAME always display.

Use the help (F1) information provided by ISRDDN and ISPF to learn more about

the ISRDDN utility. When you exit the ISRDDN utility, you return to the HALDB

Partition Definition utility panels.

Choosing IMS RECON and DBDLIB Libraries

The HALDB Partition Definition utility menu contains an option to set IMS

configurations. The IMS configuration can consist of a combination of DBDLIB and

RECON data sets. You should use the same DBDLIB and RECON data sets that

IMS will use to access the database. You can specify one data set for RECON1,

RECON2, RECON3, and up to ten DBDLIB data sets for the IMS DDNAME.

You can control the RECON data sets in a configuration. If you have the IMS

DDNAME allocated from the logon procedure and the IMS.SDFSRESL libraries

allocated to the STEPLIB DDNAME, do not use the configuration option. If you

define and select a configuration, those data sets override the allocations from the

logon procedure.

The IMS DDNAME includes the data sets that contain the DBDLIB members. The

STEPLIB allocation contains the RECON1, RECON2, and RECON3 members that

name the actual RECON data sets. The RECON/DBDLIB Configurations option

re-allocates the IMS DDNAME and allocates RECON1, RECON2, and RECON3

DDNAMEs to specify the RECON data sets.

If you delete a configuration only, the configuration is deleted from the list, but the

data sets that are named in the configuration are not deleted.

Deleting Database Information

Use the HALDB Partition Definition utility to delete a database. Use the / (slash)

character to confirm that you want to delete the database. You may wish to perform

an export prior to deleting a database from the RECON data set.

 Attention: You cannot undo the delete of a HALDB database.

Allocating an ILDS

Partitioning a database can complicate the use of pointers between database

records because after a partition has been reorganized the following pointers may

become invalid:

v Pointers from other database records within this partition

v Pointers from other partitions that point to this partition

v Pointers from secondary indexes

The use of indirect pointers eliminates the need to update pointers throughout other

database records when a single partition is reorganized. The Indirect List data set

(ILDS) acts as a repository for the indirect pointers. There is one ILDS per partition

in PHDAM and PHIDAM databases.

HALDB Partition Utility

300 Administration Guide: Database Manager

|

The ILDS contains indirect list entries (ILEs). Each ILE in an ILDS has a 9-byte key

that is the indirect list key (ILK) of the target segment appended with the segment

code of the target segment. The ILK is a unique token that is assigned to segments

when the segments are created.

After a reorganization reload or a migration reload of segments involved in

inter-record pointing, the ILE is updated to reflect the changes in location of the

target segment of the ILE. Segments involved in inter-record pointing can be one of

the following types:

v Physically paired logical children

v Logical parents of unidirectional logical children

v Targets of secondary indexes

The sample command in Figure 179 defines an ILDS. Note that the key size is 9

bytes at offset 0 (zero) into the logical record. Also note that the record size is

specified as 50 bytes, the current length of an ILE.

To compute the size of an ILDS, multiply the size of an ILE by the total number of

physically paired logical children, logical parents of unidirectional relationships, and

secondary index targets.

Related Reading:

v For information about the role of ILDS in the HALDB self-healing pointer process,

see “The HALDB Self-Healing Pointer Process” on page 382.

v For information about initializing an ILDS, search for “Indirect List Data Set” in

IMS Version 9: Administration Guide: System.

Coding Program Specification Blocks as Input to the PSBGEN Utility

A PSB is a series of macro instructions that describes an application program’s

characteristics, its use of segments and fields within a database, and its use of

logical terminals. A PSB consists of one or more PCBs (program communication

blocks). Of the two types of PCBs, one is used for alternate message destinations,

the other, for application access and operation definitions.

DEFINE CLUSTER (-

 NAME (FFDBPRT1.XABCD01O.L00001) -

 TRK(2,1) -

 VOL(IMSQAV) -

 FREESPACE(80,10) -

 REUSE -

 SHAREOPTIONS(3,3) -

 SPEED) -

 DATA (-

 NAME(FFDBPRT1.XABCD01O.INDEXD) -

 CISZ(512) -

 KEYS(9,0) -

 RECSZ(50,50)) -

 INDEX (-

 NAME(FFDBPRT1.XABCD01O.INDEXS) -

 CISZ(2048))

Figure 179. Sample Command to Define an ILDS

Allocating an ILDS

Chapter 11. Implementing Database Design 301

|
|
|
|

|
|
|
|

|

|

|

|
|
|

|

|
|

|
|

After you code the PSB macro instructions, they are used as input to the PSBGEN

utility. This utility is a macro assembler that generates a PSB control block then

stores it in the IMS.PSBLIB library for subsequent use during database processing.

Figure 180 shows the PSB generation process.

 Figure 181 shows the structure of the deck used as input to the PSBGEN utility.

The Alternate PCB

Two types of PCB statements can be placed in the input deck. The first type, called

the alternate PCB, describes where a message can be sent when the message’s

destination differs from the place where it was entered. Alternate PCB statements

must be put at the beginning of the input deck. More information on alternate PCBs

is contained in IMS Version 9: Administration Guide: System.

Figure 180. The PSB Generation Process

//PSBGEN JOB MSGLEVEL=1

// EXEC PSBGEN,MBR=APPLPGM1

//C.SYSIN DD *

 PCB TYPE=TP required for output message destinations

 PCB TYPE=DB required for each database the application program

 can access

 SENSEG required for each segment in the database the

 application program can access

 SENFLD required for each field in a segment that

 the application program can access,

 when field-level sensitivity is specified

 PCB TYPE=GSAM

 ...
 PSBGEN required for each PSB generation

 END required for each PSB generation

/*

Figure 181. Structure of PSB Generation Input

Coding PSBs for the PSBGEN Utility

302 Administration Guide: Database Manager

The Database PCB Statement

The second type of PCB statement is called the database PCB statement.

Database PCB statements define the DBD of the database the application program

will access. The statements also define types of operations (such as get, insert, and

replace) that the application program can perform on segments in the database.

The database can be either physical or logical. A separate database PCB statement

is required for each database the application program accesses. In each PSB

generation, up to 255 database PCBs can be defined, minus the number of

alternate PCBs defined in the input deck. The other forms of statements that apply

to PSBs are SENSEG, SENFLD, PSBGEN, and END.

The SENSEG Statement

This statement defines a segment type in the database to which the application

program is sensitive. A separate SENSEG statement must exist for each segment

type. The segments can physically exist in one database or be derived from several

physical databases. If an application program is sensitive to a segment beneath the

root segment, it must also be sensitive to all segments in the path from the root

segment to the sensitive segment. For example, in Figure 182 if D is defined as a

sensitive segment for an application program, B and A must also be defined as

sensitive segments.

 An application program must be sensitive to all segments in the path to the

segment that you actually want to be sensitive. However, you can make the

application program sensitive to only the segment key in these other segments.

With this option, the application program does not have any access to the segments

other than the keys it needs to get to the sensitive segment. To make an application

sensitive to only the segment key of a segment, code PROCOPT=K in the

SENSEG statement. The application program will not be able to access any other

field in the segment other than the segment key. In the previous example, the

application program would be sensitive to the key of segment A and B but not

sensitive to A and B’s data.

SENSEG statements must immediately follow the PCB statement to which they are

related. Up to 30000 SENSEG statements can be defined for each PSB generation.

The SENFLD Statement

This statement is used only in parallel with field-level sensitivity. It defines the fields

in a segment type to which the application program is sensitive. This statement, in

conjunction with the SENSEG statement, helps you secure your data. Each

SENFLD statement must follow the SENSEG statement to which it is related. Up to

255 sensitive fields can be defined for a given segment type, and a maximum of

10000 can be defined for each PSB generation.

Figure 182. Example of a SENSEG Relationship

Coding PSBs for the PSBGEN Utility

Chapter 11. Implementing Database Design 303

The PSBGEN Statement

This statement names the PSB and specifies various characteristics of the

application program, such as the language it is written in and the size of the largest

I/O area it can use. The input deck can contain only one PSBGEN statement.

The END Statement

One END statement is placed at the end of each PSB generation input deck. The

END statement specifies the end of input statements to the assembler.

Detailed instructions for coding PSB statements and examples of PSBs are

contained in of IMS Version 9: Utilities Reference: System.

Building the Application Control Blocks (ACBGEN)

IMS builds the ACB with the ACBGEN utility by merging information from the PSB

and DBD. For execution in a batch environment, IMS can build ACBs either

dynamically (PARM=DLI), or it can prebuild them using the ACB maintenance utility

(PARM=DBB). ACBs must be prebuilt for use by online application programs. The

ACB generation process is shown in Figure 183.

ACBs cannot be prebuilt for GSAM DBDs. However, ACBs can be prebuilt for PSBs

that reference GSAM databases.

The ACB maintenance utility (ACBGEN), shown in Figure 183, gets the PSB and

DBD information it needs from IMS.PSBLIB and IMS.DBDLIB.

 You can have the utility prebuild ACBs for all PSBs in IMS.PSBLIB, for a specific

PSB, or for all PSBs that reference a particular DBD. Prebuilt ACBs are kept in the

IMS.ACBLIB library. (IMS.ACBLIB is not used if ACBs are not prebuilt.) When ACBs

are prebuilt and an application program is scheduled, the application program’s

ACB is read from IMS.ACBLIB directly into storage. This means that less time is

required to schedule an application program. In addition, less storage is used if

prebuilt ACBs are used. Another advantage of using the ACB maintenance utility is

Figure 183. The ACB Generation Process

Coding PSBs for the PSBGEN Utility

304 Administration Guide: Database Manager

the initial error checking it performs. It checks for errors in the names used in the

PSB and the DBDs associated with the PSB and, if erroneous cross-references are

found, prints appropriate error messages.

IMS.ACBLIB has to be used exclusively. Because of this, the ACB maintenance

utility can only be executed using an IMS.ACBLIB that is not currently allocated to

an active IMS system. Also, because IMS.ACBLIB is modified, it cannot be used for

any other purpose during execution of the ACB maintenance utility.

You can change ACBs or add ACBs in an “inactive” copy of ACBLIB and then make

the changed or new members available to an active IMS online system by using the

online change function. “Using the Online Change Function” in Chapter 16,

“Modifying Databases,” on page 423 describes how you effectively change ACBLIB

for an online system.

Detailed instructions for running the ACB maintenance utility and examples of its

use are contained in the IMS Version 9: Utilities Reference: System.

Defining Generated Program Specification Blocks for SQL Applications

Generated PSBs (GPSB) are a type of PSB that do not require a PSBGEN or

ACBGEN. A GPSB contains an I/O PCB and a single modifiable alternate PCB.

GPSBs are not defined through a PSBGEN. Instead, they are defined by the

system definition process through the APPLCTN macro. The GPSB parameter

indicates the use of a generated PSB and specifies the name to be associated with

it. The LANG parameter specifies the language format of the GPSB. For more

information on defining GPSBs refer to the APPLCTN macro topic of the IMS

Version 9: Installation Volume 2: System Definition and Tailoring.

The I/O PCB can be used by the application program to obtain input messages and

send output to the inputting terminal. The alternate PCB can be used by the

application program to send output to other terminals or programs.

Other than the I/O PCB, an application that makes only Structured Query Language

(SQL) calls does not require any PCBs. It does, however, need to define the

application program name and language type to IMS. A GPSB can be used for this

purpose.

Building ACBs

Chapter 11. Implementing Database Design 305

Generated Program Specification Blocks

306 Administration Guide: Database Manager

Chapter 12. Developing Test Databases

Before the application programs accessing your database are transferred to

production status, they must be tested. To avoid damaging a production database,

you need a test database.

IBM provides various programs that can help you develop your test database,

including the DL/I Test Program (DFSDDLT0). For more information on the available

IMS tools, go to www.ibm.com/ims and link to the IBM® DB2 and IMS Tools Web

site.

Related Reading:

v For guidance information about application program testing, see IMS Version 9:

Application Programming: Design Guide.

v For information about testing an online system, see IMS Version 9:

Administration Guide: System.

In this Chapter:

 “Test Requirements”

 “Designing, Creating, and Loading a Test Database” on page 308

Test Requirements

Depending on your system configuration, user requirements, and the design

characteristics of your database and data communication systems, test for the

following:

v That DL/I call sequences execute and the results are correct.

– This kind of test often requires only a few records, and you can use the DL/I

Test Program, DFSDDLT0, to produce these records.

– If this is part of a unit test, consider extracting records from your existing

database. To extract the necessary records, you can use programs such as

the IMS DataRefresher™.

v That calls execute through all possible application decision paths.

– You might need to approximate your production database. To do this, you can

use programs such as the IMS DataRefresher and other IMS tools.

v How performance compares with that of a model, for system test or regression

tests, for example.

– For this kind of test, you might need a copy of a subset of the production

database. You can use IMS tools to help you.

To test for these capabilities, you need a test database that approximates, as

closely as possible, the production database. To design such a test database, you

should understand the requirements of the database, the sample data, and the

application programs.

To protect your production databases, consider providing the test JCL procedures to

those who test application programs. Providing the test JCL helps ensure that the

correct libraries are used.

© Copyright IBM Corp. 1974, 2004 307

|
|
|

|
|
|
|

What Kind of Database?

Often, the test database can be a copy of a subset of the production database, or

in some other way, a replica of it. If you have designed the production database,

you should have firsthand knowledge of this requirement. Your DBDs for the

production database can provide the details. If you have your production database

defined in a data dictionary, that definition gives you much of the information you

need. The topics in this chapter describe some aids available to help you design

and generate your test database.

What Kind of Sample Data?

It is important for the sample data to approximate the real data, because you must

test that the system processes data with the same characteristics, such as the

range of field values. The kind of sample data needed depends on whether you are

testing calls or program logic.

v To test calls, you need values in only those fields that are sequence fields or

which are referenced in SSAs.

v To test program logic, you need data in all fields accessed in the program logic

such as adds or compares.

Again, you might use a copy of a subset of the real database. However, first

determine which fields contain sensitive data and therefore must use fictitious data

in the test database.

What Kind of Application Program?

In order to design a test database that effectively tests the operational application

programs being developed, you should know certain things about those programs.

Much of the information you need is in the application program design

documentation, the descriptors such as the PSBs, your project test plan, and in the

Data Dictionary.

Designing, Creating, and Loading a Test Database

You can develop a test database just as you would develop a production database.

With that approach, you perform the tasks described throughout the other chapters

of this manual, keeping in mind the special requirements for test databases. If your

installation has testing standards and procedures, you should follow them in

developing a test database.

Using Testing Standards

Testing standards and procedures help you avoid the same kinds of problems for

test database development as your IMS development standards do for production

databases. Some of the subjects that might be included in your test system

standards and that affect test database design are:

v Objectives of your test system

– What you test for and at what development stages do you test for it

– The kinds of testing—offline, online, integrated DB/DC or isolated

v Description of the test organization and definition of responsibilities of each group

v Relationship of test and production modes of operation

v How your test system development process deals with:

– DB/TM structures

– Development tools

Test Requirements

308 Administration Guide: Database Manager

– DB/TM features

– Backup and recovery

Related Reading: The IMS test system is discussed in IMS Version 9:

Administration Guide: System.

Using IBM Programs to Develop a Test Database

If you use the same development aids to develop the test database that you use to

develop your production databases, you will benefit from using familiar tools. Also,

you will avoid problems caused by differences between test and production

databases.

Using the Data Extraction, Processing, and Restructuring System

You can use this system (Program Number: 5796-PLH) to access a wide variety of

data and restructure it into a test database. By means of control statements, you

define the source and target files and specify the structure of the target files.

The data restructuring phase of the system allows you to:

v Combine components of different files to form new files

v Restructure a file to form different files

v Rearrange data within a file

v Alter values according to your needs

v Form hierarchies

v Decrease or increase the number of levels in a hierarchy

Details about using this system are in Data Extraction, Processing, and

Restructuring System, Program Description/Operations Manual.

Using the IMS Application Development Facility II

If your installation uses CSP/370AD to develop application programs, you can use it

to create a simple test database. The interactive nature of ADF enables you to

dynamically add segments to a database. By means of SEGM and FIELD

statements, you can define a test database and update it as needed.

Related Reading: For information on how to use CSP/370AD, see the Cross

System Product/370 Application Development Guide.

CSP/370AD supports both IMS and CICS.

Using the DL/I Test Program, DFSDDLT0

If you need a test database with relatively few database records, for example, you

can use DFSDDLT0 to test DL/I call sequences. If you have no machine-readable

database to begin with, you can define a PCB, then use DFSDDLT0 to insert

segments. This step eliminates the need for a load program to generate your test

database.

Related Reading: Information about this test program is in “Testing an Application

Program,” in IMS Version 9: Application Programming: Design Guide.

The DL/I Test Program cannot be used by CICS, but can be used for stand-alone

batch programs. If used for stand-alone batch programs, it is useful to interpret the

database performance as it might be implemented for online or shared database

programs.

Designing, Creating, and Loading a Test Database

Chapter 12. Developing Test Databases 309

Designing, Creating, and Loading a Test Database

310 Administration Guide: Database Manager

Chapter 13. Loading Databases

After you implement your database design, you are ready to write and load your

database. However, before writing a load program, you must estimate the minimum

size of the database and allocate data sets.

This chapter examines the following areas of loading a database:

v “Estimating the Minimum Size of the Database”

v “Allocating Data Sets” on page 318

v “Writing a Load Program” on page 320

v “Loading Fast Path Databases” on page 331

Estimating the Minimum Size of the Database

When you estimate the size of your database, you estimate how much space you

need to initially load your data. Unless you do not plan to insert segments into your

database after it is loaded, allocate more space for your database than you actually

estimate for the initial load.

This topic contains the step-by-step procedure for estimating minimum database

space. To estimate the minimum size needed for your database, you must already

have made certain design decisions about the physical implementation of your

database. Because these decisions are different for each DL/I access method, they

are discussed under the appropriate access method in step 3 of the procedure.

If you plan to reorganize your HALDBs online, consider the extra space

reorganization requires. Although online reorganization does not need any additional

space when you first load a HALDB, the process does require additional space at

the time of reorganization. For more information on HALDB online reorganization,

see “HALDB Online Reorganization” on page 364.

Step 1. Calculate the Size of an Average Database Record

First, determine the size, then the average number of occurrences of each segment

type in a database record. By multiplying these two numbers together, you get the

size of an average database record.

Determining Segment Size

Segment size here is physical segment size, and it includes both the prefix and

data portion of the segment. You define the size of the data portion. It can include

unused space for future use. The size of the data portion of the segment is the

number you specified in the BYTES= operand in the SEGM statement in the DBD.

The prefix portion of the segment depends on the segment type and on the options

you are using. Table 23 on page 312 helps you determine, by segment type, the

size of the prefix. Using the chart, add up the number of bytes required for

necessary prefix information and for extra fields and pointers generated in the prefix

for the options you have chosen. Segments can have more than one 4-byte pointer

in their prefix. You need to factor all extra pointers of this type into your calculations.

Related Reading: For rules on using mixed pointers, see “Mixing Pointers” on page

89.

© Copyright IBM Corp. 1974, 2004 311

|
|
|
|
|

Table 23. Required Fields and Pointers in a Segment’s Prefix

Type of Segment Fields and Pointers Used in the

Segment’s Prefix

Size of the Field or

Pointer (in Bytes)

All types Segment code (not present in a SHSAM,

SHISAM, GSAM, or secondary index pointer

segment)

1

Delete byte (not present in a SHSAM,

SHISAM, or GSAM segment)

1

HDAM, PHDAM,

HIDAM, and PHIDAM

PCF pointer 4

PCL pointer 4

PP pointer 4

PTF pointer 4

PTB pointer 4

HDAM and HIDAM

only

HF pointer 4

HB pointer 4

DEDB PCF pointer 4

PCL pointer 4

Subset pointer 4

Logical parent (for

HDAM and HIDAM)

LCF pointer 4

LCL pointer 4

Logical child counter 4

Logical parent (for

PHDAM and

PHIDAM)

Logical child counter (only present for

unidirectional logical parents)

4

Logical child LTF pointer 4

LTB pointer 4

LP pointer 4

Logical child (PHDAM

and PHIDAM)

EPS 28

Secondary index Symbolic or direct-address pointer to the

target segment

4

PSINDEX EPS plus the target segment root key 28 + length of the

target-segment root

key

All segments in

PHDAM and PHIDAM

ILK 8

Determining Segment Frequency

After you have determined the total size of a segment type, you need to determine

segment frequency. Segment frequency is the average number of occurrences of a

particular segment type in the database record. To determine segment frequency,

first determine the average number of times a segment occurs under its immediate

physical parent.

For example, in the database record in Figure 184 on page 313, the ITEMS

segment occurs an average of 10 times for each DEPOSITS segment. The

Estimating the Minimum Size of the Database

312 Administration Guide: Database Manager

|
|
|

|
|
|

DEPOSITS segment occurs an average of four times for each CUSTOMER root

segment. The frequency of a root segment is always one.

 To determine the average number of occurrences of a particular segment type in

the database record, multiply together the segment frequencies of each segment in

the path from the given segment back up to the root. For the ITEMS segment type,

the path includes the ITEMS segment and the DEPOSITS segment. The segment

frequency of ITEMS is 10, and the segment frequency of DEPOSITS is 4.

Therefore, the average number of occurrences of the ITEMS segment in the

database record is 40 (10 x 4). Another way of expressing this idea is that each

customer has an average of 4 DEPOSITS, and each DEPOSIT has an average of

10 ITEMS. Therefore, for each customer, an average of 40 (10 x 4) ITEMS exist in

the database record.

Determining Average Database Record Size

Now that you have determined segment size and segment frequency, you can

determine the average size of a database record. To determine average database

record size for a HISAM database, multiply segment size and segment frequency

together for each segment type in the database record, then add the results. For

example, for the database record in Figure 184, the average database record size

is calculated as shown in Table 24.

 Table 24. Calculating the Average Database Record Size

Segment Type Segment Size

Average

Occurrences Total Size

CUSTOMER 120 1 120

ADDRESS 30 4 120

CHECKS 30 8 240

DEPOSITS 10 4 40

ITEMS 20 40 (10x4) 800

MISC 10 1 10

REL ACCT 12 .5 6

Record Total 1336

Step 2. Determine Overhead Needed for CI Resources

If you are not using VSAM, you can skip this step. If you are using VSAM, you

need to determine how much overhead is needed for a CI before you can do the

remaining space calculations.

Figure 184. Segment Sizes and Average Segment Occurrences

Estimating the Minimum Size of the Database

Chapter 13. Loading Databases 313

Overhead is space used in a CI for two control fields. VSAM uses the control fields

to manage space in the CI. The control fields and their sizes are shown in Table 25.

 Table 25. VSAM Control Fields

Field Size in Bytes

CIDF (Control interval definition field) 4

RDF (Record definition field 3

If one logical record exists for each CI, CI overhead consists of one CIDF and one

RDF (for a total of 7 bytes). HDAM and HIDAM databases and PHDAM and

PHIDAM partitions use one logical record for each CI.

If more than one logical record exists for each CI, CI overhead consists of one

CIDF and two RDFs (for a total of 10 bytes). HISAM (KSDS and ESDS), HIDAM

and PHIDAM index, and secondary index databases can all use more than one

logical record for each CI.

Step 3 tells you when to factor CI overhead into your space calculations.

Step 3. Determine the Number of CIs or Blocks Needed

The calculations in this step are done by database type. To determine how many

CIs or blocks are needed to hold your database records, go to the topic in this step

that applies to the database type you are using. If you are using VSAM, the first CI

in the database is reserved for VSAM.

HISAM: Determining the Number of CIs or Blocks Needed

A CI in HISAM can contain one or more logical records. In the primary data set a

logical record can only contain one database record (or part of one database

record). In the overflow data set a logical record can only contain segments of the

same database record, but more than one logical record can be used for the

overflow segments of a single database record.

In HISAM, you should remember how logical records work, because you need to

factor logical record overhead into your calculations before you can determine how

many CIs (control intervals) are needed to hold your database records. Logical

record overhead is a combination of the overhead that is always required for a

logical record and the overhead that exists because of the way in which database

records are stored in logical records (that is, storage of segments almost always

results in residual or unused space).

Because some overhead is associated with each logical record, you need to

calculate the amount of space that is available after factoring in logical record

overhead. Once you know the amount of space in a logical record available for

data, you can determine how many logical records are needed to hold your

database records. If you know how many logical records are required, you can

determine how many CIs or blocks are needed.

For example, assume you need to load 500 database records using VSAM, and to

use a CI size of 2048 bytes for both the KSDS and ESDS. Also, assume you need

to store four logical records in each KSDS CI and two logical records in each ESDS

CI.

1. First factor in CI overhead by subtracting the overhead from the CI size: 2048 -

10 = 2038 bytes for both the KSDS and the ESDS. The 10 bytes of overhead

consists of a 4-byte CIDF and two 3-byte RDFs.

Estimating the Minimum Size of the Database

314 Administration Guide: Database Manager

2. Then, calculate logical record size by dividing the available CI space by the

number of logical records per CI: 2038/4 = 509 bytes for the KSDS and 2038/2

= 1019 bytes for the ESDS. Because logical record size in HISAM must be an

even value, use 508 bytes for the KSDS and 1018 bytes for the ESDS.

3. Finally, factor in logical record overhead by subtracting the overhead from

logical record size: 508 - 5 = 503 bytes for the KSDS and 1018 - 5 bytes for the

ESDS. HISAM logical record overhead consists of 5 bytes for VSAM (a 4-byte

RBA pointer for chaining logical records and a 1-byte end-of-data indicator).

This means if you specify a logical record size of 508 bytes for the KSDS, you

have 503 bytes available in it for storing data. If you specify a logical record size

of 1018 bytes for the ESDS, you have 1013 bytes available in it for storing data.

Refer to the previous example. Because the average size of a database record is

1336 bytes, the space available for data in the KSDS is not large enough to contain

it. It takes the available space in one KSDS logical record plus one ESDS logical

record to hold the average database record (503 + 1013 = 1516 bytes of available

space). This record size is greater than an average database record of 1336 bytes.

Because you need to load 500 database records, you need 500 logical records in

both the KSDS and ESDS.

v To store four logical records per CI in the KSDS, you need a minimum of 500/4 =

125 CIs of 2048 bytes each for the KSDS.

v To store two logical records per CI in the ESDS, you need a minimum of 500/2 =

250 CIs of 2048 bytes each for the ESDS.

HIDAM or PHIDAM: Determining the Number of CIs or Blocks

Needed

With HIDAM or PHIDAM, one VSAM logical record exists per CI or block. In this

context, logical record is the unit of transfer when invoking an access method (such

as VSAM), to get or put records. Logical record overhead consists of an FSEAP (4

bytes). If you are using RAPs (HIDAM only), the logical record overhead consists of

one RAP (4 bytes). For example, assume you need to load 500 database records

using VSAM and to use a CI size of 2048 bytes and no RAP (specify PTR=TB on

the root to suppress the RAP for HIDAM).

1. First, determine the size of a logical record by subtracting CI overhead from CI

size: 2048 - 7 = 2041 bytes for the ESDS logical record size. The 7 bytes of

overhead consists of a 4-byte CIDF and a 3-byte RDF.

2. Then, determine the amount of logical record space available for data by

factoring in logical record overhead. In this example, logical record overhead

consists of an FSEAP: 2041 - 4 = 2037 bytes. This means you have 2037 bytes

available to store data in each logical record.

HIDAM or PHIDAM Index: Calculating the Space Needed

Calculating space for a HIDAM or PHIDAM index is similar to calculating space for

a HISAM KSDS. The difference is that no logical record overhead exists. One index

record is stored in one logical record, and multiple logical records can be stored in

one CI or block.

HDAM or PHDAM: Determining the Amount of Space Needed

Because of the many variables in HDAM or PHDAM, no exact formula exists for

estimating database space requirements. Therefore, you should use a space

calculation aid to help determine the amount of space needed for HDAM or PHDAM

databases.

Estimating the Minimum Size of the Database

Chapter 13. Loading Databases 315

If you are using VSAM, and you decide to estimate, without use of an aid, the

amount of space to allocate for the database, the first CI in the database is

reserved for VSAM. Because of this, the bit map is in the second CI.

With HDAM or PHDAM, logical record overhead depends on the database design

options you have selected. You must choose the number of CIs or blocks in the root

addressable area and the number of RAPS for each CI or block. These choices are

based on your knowledge of the database.

A perfect randomizer requires as many RAPs as there are database records.

Because a perfect randomizer does not exist, plan for approximately 20% more

RAPs than you have database records. The extra RAPs reduces the likelihood of

synonym chains. For example, assume you need to store 500 database records.

Then, for the root addressable area, if you use:

v One RAP per CI or block, you need 600 CIs or blocks

v Two RAPs per CI or block, you need 300 CIs or blocks

v Three RAPs per CI or block, you need 200 CIs or blocks

Because of the way your randomizer works, you decide 300 CIs or blocks with two

RAPs each works best. Assume you need to store 500 database records using

VSAM, and you have chosen to use 300 CIs in the root addressable area and two

RAPs for each CI. This decision influences your choice of CI size. Because you are

using two RAPs per CI, you expect two database records to be stored in each CI.

You know that a 2048-byte CI is not large enough to hold two database records (2 x

1336 = 2672 bytes). And you know that a 3072-byte CI is too large for two

database records of average size. Therefore, you would probably use 2048-byte

CIs and the byte limit count to ensure that on average you would store two

database records in the CI.

To determine the byte limit count:

1. First, determine the size of a logical record by subtracting CI overhead from CI

size: 2048 - 7 = 2041 bytes for the ESDS logical record size.

2. Then, determine the amount of logical record space available for data by

factoring in logical record overhead. (Remember only one logical record exists

per CI in HDAM or PHDAM.) In this example, logical record overhead consists

of a 4-byte FSEAP and two 4-byte RAPs: 2041 - 4 - (2 x 4) = 2029 bytes. This

means you have 2029 bytes available for storing data in each logical record in

the root addressable area.

3. Finally, determine the available space per RAP by dividing the available logical

record space by the number of RAPs per CI: 2029/2 = 1014 bytes. Therefore,

you must use a byte limit count of about 1000 bytes.

Continuing our example, you know you need 300 CIs of 2048 bytes each in the root

addressable area. Now you need to calculate how many CIs you need in the

overflow area. To do this:

v Determine the average number of bytes that will not fit in the root addressable

area. Assume a byte limit count of 1000 bytes. Subtract the byte limit count from

the average database record size: 1336 - 1000 = 336 bytes. Multiply the average

number of overflow bytes by the number of database records: 500 x 336 =

168000 bytes needed in the non-root addressable area.

v Determine the number of CIs needed in the non-root addressable area by

dividing the number of overflow bytes by the bytes in a CI available for data.

Determine the bytes in a CI available for data by subtracting CI and logical

Estimating the Minimum Size of the Database

316 Administration Guide: Database Manager

record overhead from CI size: 2048 - 7 - 4 = 2037 (7 bytes of CI overhead and 4

bytes for the FSEAP). Overflow bytes divided by CI data bytes is 168000/2037 =

83 CIs for the overflow area.

You have estimated you need a minimum of 300 CIs in the root addressable area

and a minimum of 83 CIs in the non-root addressable area.

Secondary Index: Determining the Amount of Space Needed

Calculating space for a secondary index is similar to calculating space for a HISAM

KSDS. The difference is that no logical record overhead exists in which factor. One

index record is stored in one logical record, and multiple logical records can be

stored in one CI or block.

Step 4. Determine the Number of Blocks or CIs Needed for Free Space

In HDAM, HIDAM, PHDAM, and PHIDAM databases, you can allocate free space

when your database is initially loaded. Free space is explained in Chapter 6,

“Choosing Full-Function Database Types,” on page 55, “Specifying Free Space”.

Free space can only be allocated for an HD VSAM ESDS or OSAM data set. Do

not confuse the free space discussed here with the free space you can allocate for

a VSAM KSDS using the DEFINE CLUSTER command.

To calculate the total number of CIs or blocks you need to allocate in the database,

you can use the following formula:

A = B x (fbff / (fbff - 1)) x (100 / (100 - fspf))

Where the values are:

A The total number of CIs or blocks needed including free space.

B The number of blocks or CIs in your database.

fbff How often you are leaving a block or CI in the database empty for free

space (what you specified in fbff operand in the DBD).

fspf The minimum percentage of each block or CI you are leaving as free space

(what you specified in the fspf operand in the DBD).

Step 5. Determine the Amount of Space Needed for Bit Maps

In HDAM, HIDAM, PHDAM, and PHIDAM databases, you need to add the amount

of space required for bit maps to your calculations. Bit maps are explained in

“General Format of HD Databases and Use of Special Fields” on page 91. To

calculate the number of bytes needed for bit maps in your database, you can use

the following formula:

A = D / ((B - C) x 8)

Where the values are:

A The number of bit map blocks or CIs you need for the database.

B The CI or block size you have specified, in bytes, minus 4.

 Four is subtracted from the CI or block size because each CI or block has a

4-byte FSEAP.

C The number of RAPs you specified for a CI or block, times 4.

 The number of RAPs is multiplied by 4 because each RAP is four bytes

long. (B - C) is multiplied by 8 in the formula to arrive at the total number of

bits that will be available in the CI or block for the bit map.

Estimating the Minimum Size of the Database

Chapter 13. Loading Databases 317

D The number of CIs or blocks in your database.

You need to add the number of CIs or blocks needed for bit maps to your space

calculations.

Allocating Data Sets

Once you have determined how much space you will need for your database, you

can allocate data sets and then load your database. VSAM data sets can be

allocated using the DEFINE CLUSTER command. The REUSE parameter is required

for HALDB data sets. Use of this command is described in DFSMS Access Method

Services for Catalogs.

Attention: If you plan to use the Database Image Copy 2 utility to take image

copies of your database, the data sets must be allocated on hardware that supports

the DFSMS concurrent copy function.

When loading databases (excluding HALDB databases) that contain logical

relationships or secondary indexes, DL/I writes a control record to a work file

(DFSURWF1). This work file must also be allocated and in the JCL.

All other data sets are allocated using normal z/OS JCL. You can use the z/OS

program IEFBR14 to preallocate data sets, except when the database is an MSDB.

For MSDBs, you should use the z/OS program IEHPROGM.

Allocating OSAM Data Sets

For databases other than HALDBs, at the time the data set is loaded, you should

use JCL to allocate OSAM data sets. For HALDB OSAM data sets, the allocation

must be done before the load. This mode of allocation can be for single or multiple

volumes, using the SPACE parameter.

If the installation control of direct-access storage space and volumes require that

the OSAM data sets be pre-allocated, or if a message queue data set requires

more than one volume, the OSAM data sets might be pre-allocated.

Observe the following restrictions when you preallocate with any of the accepted

methods:

v DCB parameters should not be specified.

v Secondary allocation must be specified for all volumes if the data set will be

extended beyond the primary allocation.

v Secondary allocation must be specified for all volumes in order to write to

volumes pre-allocated but not written to by initial load or reload processing.

v Secondary allocation is not allowed for queue data sets because queue data sets

are not extended beyond their initial or pre-allocated space quantity. However,

queue data sets can have multivolume allocation.

v The secondary allocation size defined on the first volume will be used for all

secondary allocations on all volumes regardless of the secondary allocation size

specified on the other volumes. All volumes should be defined with the same

secondary allocation size to avoid confusion.

v If the OSAM data set will be cataloged, use IEHPROGM or Access Method

Services to ensure that all volumes are included in the catalog entry.

Estimating the Minimum Size of the Database

318 Administration Guide: Database Manager

When a multiple-volume data set is pre-allocated, you should allocate extents on all

the volumes to be used. The suggested method of allocation is to have one

IEFBR14 utility step for each volume on which space is desired.

Restrictions:

v Do not use IEFBR14 and specify a DD card with a multivolume data set,

because this allocates an extent on only the first volume.

v Do not use this technique to allocate multi-volume OSAM databases on which

you intend to use the Image Copy 2 Utility (DFSUDMT0). All multi-volume

databases on which the Image Copy 2 Utility will be used MUST be allocated

using the standard DFP techniques.

Example of Allocating an OSAM Data Set

The JCL in Figure 185 is an example of allocating an OSAM data set.

Cautions When Allocating OSAM Data Sets

1. Pre-allocating more volumes for OSAM data set extents than are used during

initial load or reload processing might cause an abend if you attempt to extend

the data set beyond the last volume written to at initial load or reload time under

the following circumstances: the initial load or reload step did not result in the

data being written to the last volume of the pre-allocated data set, and

secondary allocation was not specified during data set pre-allocation.

2. It is recommended that you not reuse multivolume OSAM data sets without first

scratching the data set and then reallocating the space. Failure to do this might

cause an invalid EOF mark to be left in the DSCB of the last volume of the data

set when the data set is:

a. First reused by an IMS utility (such as the Unload/Reload utility used in

database reorganization).

b. Then opened by OSAM for normal processing.

For example, a data set might initially be allocated on three volumes, with the

EOF mark on the third volume. However, after the reorganization utility is run,

the data set might need only the first two volumes. Therefore, the new EOF

mark is placed on the second volume. After reorganization, when the data set is

opened by OSAM for normal processing, OSAM checks the last volume’s DSCB

for an EOF mark. When OSAM finds the EOF in the third volume, it inserts new

//OSAMALLO JOB A,OSAMEXAMPLE

//S1 EXEC PGM=IEFBR14

//SYSPRINT DD SYSOUT=A

//EXTENT1 DD VOL=SER=AAAAAA,SPACE=(CYL,(20,5)),UNIT=3390,

// DSN=OSAM.SPACE,DISP=(,KEEP)

//S2 EXEC PGM=IEFBR14

//SYSPRINT DD SYSOUT=A

//EXTENT2 DD VOL=SER=BBBBBB,SPACE=(CYL,(30,5)),UNIT=3390,

// DSN=OSAM.SPACE,DISP=(,KEEP)

 .

 .

 .

//LAST EXEC PGM=IEFBR14

//SYSPRINT DD SYSOUT=A

//EXTENTL DD VOL=SER=LLLLLL,SPACE=(CYL,(30,5)),UNIT=3390,

// DSN=OSAM.SPACE,DISP=(,KEEP)

Figure 185. JCL allocating an OSAM data set

Allocating Data Sets

Chapter 13. Loading Databases 319

|
|
|
|
|
|

data after the old EOF mark in the third volume instead of inserting data after

the EOF mark created by the reorganization utility in the second volume.

Subsequent processing by another utility such as the Image Copy utility uses

the EOF mark set by the reorganization utility on the second volume and

ignores new data inserted by OSAM on volume three.

3. When loading this database, the order of the DD cards determines the order in

which the data is loaded.

4. If you intend to use the Image Copy 2 utility (DFSUDMT0) to back up and

restore multi-volume databases, they MUST be allocated using the standard

DFP techniques.

Writing a Load Program

After you have determined how much space your database requires and allocated

data sets for it, you can load the database.

The Load Process

Loading the database is done using an initial load program. Initial load programs

must be batch programs, since you cannot load a database with an online

application program. It is your responsibility to write this program.

Basically, an initial load program reads an existing file containing your database

records. Using the DBD, which defines the physical characteristics of the database,

and the load PSBs (see Figure 186 on page 322), the load program builds

segments for a database record and inserts them into the database in hierarchic

order. If the data to be loaded into the database already exists in one or more files

(see Figure 187 on page 323), merge and sort the data, if necessary, so that it is

presented to the load program in correct sequence. Also, if you plan to merge

existing files containing redundant data into one database, delete the redundant

data, if necessary, and correct any data that is wrong.

After you have defined the database, you load it by writing an application program

that uses the ISRT call. An initial load program builds each segment in the

program’s I/O area, then loads it into the database by issuing an ISRT call for it.

ISRT calls are the only DL/I requests allowed when you specify PROCOPT=L in the

PCB. The only time you use the “L” option is when you initially load a database.

This option is valid only for batch programs.

Recommendation: If a user load program using PROCOPT=L|LS is running in a

DLI or DBB region, DBRC authorization is required for all databases logically

related to the one being loaded. If DBRC is active when the database is loaded,

DBRC sets the image copy status for this database to IC NEEDED in the DBDS

record in the RECON data set.

The FIRST, LAST, and HERE insert rules do not apply when you are loading a

database, unless you are loading an HDAM database. When you are loading a

HDAM database, the rules determine how root segments with non-unique sequence

fields are ordered. If you are loading a database using HSAM, the same rules

apply.

Recommendation: Load programs do not need to issue checkpoints.

Most comprehensive databases are loaded in stages by segment type or by groups

of segment types. Because there are usually too many segments to load using only

one application program, you need several programs to do the loading. Each load

Allocating Data Sets

320 Administration Guide: Database Manager

|
|
|
|
|

program after the first load program is technically an “add” program, not a load

program. Do not specify “L” as the processing option in the PCB for add programs.

You should review any add type of load program written to load a database to

ensure that the program’s performance will be acceptable; it usually takes longer to

add a group of segments than to load them.

For HSAM, HISAM, HIDAM, and PHIDAM, the root segments that the application

program inserts must be pre-sorted by the key fields of the root segments. The

dependents of each root segment must follow the root segment in hierarchic

sequence, and must follow key values within segment types. In other words, you

insert the segments in the same sequence in which your program would retrieve

them if it retrieved in hierarchic sequence (children after their parents, database

records in order of their key fields).

If you are loading an HDAM or PHDAM database, you do not need to pre-sort root

segments by their key fields.

When you load a database:

v If a loaded segment has a key, the key value must be in the correct location in

the I/O area.

v When you load a logical child segment, the I/O area must contain the logical

parent’s concatenated key, followed by the logical child segment to be inserted.

v After issuing an ISRT call, the current position is just before the next available

space following the last segment successfully loaded. The next segment you load

will be placed in that space.

Recommendation: You should always create an image copy immediately after you

load, reload, or reorganize the database.

Status Codes for Load Programs

If the ISRT call is successful, DL/I returns a blank status code for the program. If

not, DL/I returns one of these status codes:

LB The segment you are trying to load already exists in the database. DL/I only

returns this status code for segments with key fields.

 In a call-level program, you should transfer control to an error routine.

LC The segment you are trying to load is out of key sequence.

LD No parent exists for this segment. This status code usually means that the

segment types you are loading are out of sequence.

LE In an ISRT call with multiple SSAs, the segments named in the SSAs are

not in their correct hierarchic sequence.

LF Initial load of PHDAM or PHIDAM attempted ISRT of a logical child

segment.

V1 You have supplied a variable-length segment whose length is invalid.

Using SSAs in a Load Program

When you are loading segments into the database, you do not need to worry about

position, because DL/I inserts one segment after another. The most important part

of loading a database is the order in which you build and insert the segments.

The only SSA you must supply is the unqualified SSA giving the name of the

segment type you are inserting.

Writing a Load Program

Chapter 13. Loading Databases 321

|
|

Because you do not need to worry about position, you need not use SSAs for the

parents of the segment you are inserting. If you do use them, be sure they contain

only the equal (EQ, =b, or b=) relational operator. You must also use the key field of

the segment as the comparative value.

For HISAM, HIDAM, and PHIDAM, the key X'FFFF' is reserved for IMS. IMS returns

a status code of LB if you try to insert a segment with this key.

Loading a Sequence of Segments with the D Command Code

You can load a sequence of segments in one call by concatenating the segments in

the I/O area and supplying DL/I with a list of unqualified SSAs. You must include

the D command code with the first SSA. The sequence that the SSAs define must

lead down the hierarchy, with each segment in the I/O area being the child of the

previous segment.

Two Types of Initial Load Program

Two types of initial load programs exist: basic and restartable. The basic program

must be restarted from the beginning if problems occur during execution. The

restartable program can be restarted at the last checkpoint taken before problems

occurred. Restartable load programs must be run under control of the Utility Control

Facility (UCF) and require VSAM as the access method. The following topics

describe both types of load programs:

v “Basic Initial Load Program” on page 323

v “Restartable Initial Load Program” on page 326

Figure 186 on page 322 shows the load process.

Figure 187 on page 323 illustrates loading a database using existing files.

Figure 186. The Load Process

Writing a Load Program

322 Administration Guide: Database Manager

Basic Initial Load Program

You should write a basic initial load program (one that is not restartable) when the

volume of data you need to load is not so great that you would be seriously set

back if problems occurred during program execution. If problems do occur, the

basic initial load program must be rerun from the beginning.

Figure 188 on page 325 shows the logic for developing a basic initial load program.

Following Figure 188 is a sample load program (Figure 189) that satisfies the basic

IMS database loading requirements. A sample program showing how this can be

done with the Utility Control Facility is also provided.

Fast Path Data Entry Databases (DEDBs) cannot be loaded in a batch job as can

DL/I databases. DEDBs are first initialized by the DEDB Initialization Utility and then

loaded by a user-written Fast Path application program that executes typically in a

BMP region.

Related Reading: See IMS Version 9: Utilities Reference: Database and

Transaction Manager for a description of how DEDBs are loaded.

Figure 187. Loading a Database Using Existing Files

Writing a Load Program

Chapter 13. Loading Databases 323

Fast Path Main Storage Databases (MSDBs) are not loaded until the IMS control

region is initialized. These databases are then loaded by the IMS start-up procedure

when the following requirements are met:

v The MSDB= parameter on the EXEC Statement of Member Name IMS specifies

a one-character suffix to DBFMSDB in IMS.PROCLIB.

v The member contains a record for each MSDB to be loaded.

The record contains a record for each MSDB, the number of segments to be

loaded, and an optional “F” which indicates that the MSDB is to be fixed in

storage.

Related Reading: For a description of the record format and the DBD keyword

parameters, see the topics about member name IMS in IMS Version 9:

Installation Volume 2: System Definition and Tailoring.

v A sequential data set, part of a generation data group (GDG) with dsname

IMS.MSDBINIT(0), is generated.

This data set can be created by a user-written program or by using the INSERT

function of the MSDB Maintenance utility. Records in the data set are sequenced

by MSDB name, and within MSDBs by key.

Related Reading: For a description of the record format and information on how

to use the MSDB Maintenance utility, see IMS Version 9: Utilities Reference:

Database and Transaction Manager.

Writing a Load Program

324 Administration Guide: Database Manager

Figure 188. Basic Initial Load Program Logic

Writing a Load Program

Chapter 13. Loading Databases 325

Restartable Initial Load Program

You should write a restartable initial load program (one that can be restarted from

the last checkpoint taken) when the volume of data you need to load is great

enough that you would be seriously set back if problems occurred during program

DLITCBL START

 PRINT NOGEN

 SAVE (14,12),,LOAD1.PROGRAM SAVE REGISTERS

 USING DLITCBL,10 DEFINE BASE REGISTER

 LR 10,15 LOAD BASE REGISTER

 LA 11,SAVEAREA PERFORM

 ST 13,4(11) SAVE

 ST 11,8(13) AREA

 LR 13,11 MAINT

 L 4,0(1) LOAD PCB BASE REGISTER

 STCM 4,7,PCBADDR+1 STORE PCB ADDRESS IN CALL LIST

 USING DLIPCB,4 DEFINE PCB BASE REGISTER

 OPEN (LOAD,(INPUT)) OPEN LOAD DATA SOURCE FILE

LOOP GET LOAD,CARDAREA GET SEGMENT TO BE INSERTED

INSERT CALL CBLTDLI,MF=(E,DLILINK) INSERT THE SEGMENT

 AP SEGCOUNT,=P’1’ INCREMENT SEGMENT COUNT

 CLC DLISTAT,=CL2’ ’ WAS COMPLETION NORMAL?

 BE LOOP YES - KEEP GOING

ABEND ABEND 8,DUMP INVALID STATUS

EOF WTO ’DATABASE 1 LOAD COMPLETED NORMALLY’

 UNPK COUNTMSG,SEGCOUNT UNPACK SEGMENT COUNT FOR WTO

 OI COUNTMSG+4,X’F0’ MAKE SIGN PRINTABLE

 WTO MF=(E,WTOLIST) WRITE SEGMENT COUNT

 CLOSE (LOAD) CLOSE INPUT FILE

 L 13,4(13) UNCHAIN SAVE AREA

 RETURN (14,12),RC=0 RETURN NORMALLY

 LTORG

SEGCOUNT DC PL3’0’

 DS 0F

WTOLIST DC AL2(LSTLENGT)

 DC AL2(0)

COUNTMSG DS CL5

 DC C’ SEGMENTS PROCESSED’

LSTLENGT EQU (*-WTOLIST)

DLIFUNC DC CL4’ISRT’ FUNCTION CODE

DLILINK DC A(DLIFUNC) DL/I CALL LIST

PCBADDR DC A(0)

 DC A(DATAAREA)

 DC X’80’,AL3(SEGNAME)

CARDAREA DS 0CL80 I/O AREA

SEGNAME DS CL9

SEGKEY DS 0CL4

DATAAREA DS CL71

SAVEAREA DC 18F’0’

LOAD DCB DDNAME=LOAD1,DSORG=PS,EODAD=EOF,MACRF=(GM),RECFM=FB

DLIPCB DSECT , DATABASE PCB

DLIDBNAM DS CL8

DLISGLEV DS CL2

DLISTAT DS CL2

DLIPROC DS CL4

DLIRESV DS F

DLISEGFB DS CL8

DLIKEYLN DS CL4

DLINUMSG DS CL4

DLIKEYFB DS CL12

 END

Figure 189. Sample Load Program

Writing a Load Program

326 Administration Guide: Database Manager

execution. If problems occur and your program is not restartable, the entire load

program has to be rerun from the beginning.

Restartable load programs differ from basic load programs in their logic. Figure 190

on page 328 shows the logic for developing a restartable initial load program. If you

already have a basic load program, usually only minor changes are required to

make it restartable. The basic program must be modified to recognize when restart

is taking place, when WTOR requests to stop processing have been made, and

when checkpoints have been taken.

Related Reading: Detailed guidance information on what must be done to run a

restartable load program under the control of UCF is contained in IMS Version 9:

Utilities Reference: Database and Transaction Manager.

To make your initial database load program restartable under UCF, consider the

following points when you are planning and writing the program:

v If a program is being restarted, the PCB status code will contain a UR prior to

the issuance of the first DL/I call. The key feedback area will contain the fully

concatenated key of the last segment inserted prior to the last UCF checkpoint

taken. (If no checkpoints were taken prior to the failure, this area will contain

binary zeros.)

v The UCF does not checkpoint or reposition user files. When restarting, it is the

user’s responsibility to reposition all such files.

v When restarting, the first DL/I call issued must be an insert of a root segment.

For HISAM and HIDAM Index databases, the restart will begin with a GN and a

VSAM ERASE sequence to reinsert the higher keys. The resume operation then

takes place. Space in the KSDS is reused (recovered) but not in the ESDS.

For HDAM, the data will be compared if the root sequence field is unique and a

root segment insert is done for a segment that already exists in the database

because of segments inserted after the checkpoint. If the segment data is the

same, the old segment will be overlaid and the dependent segments will be

dropped since they will be reinserted by a subsequent user/reload insert. This

occurs only until a non-duplicate root is found. Once a segment with a new key

or with different data is encountered, LB status codes will be returned for any

subsequent duplicates. Therefore, space is reused for the roots, but lost for the

dependent segments.

For HDAM with non-unique keys, any root segments that were inserted after the

checkpoint at which the restart was made will remain in the database. This is

also true for their dependent segments.

v When the stop request is received, UCF will take a checkpoint just prior to

inserting the next root. If the application program fails to terminate, it will be

presented the same status code at each of the following root inserts until normal

termination of the program.

v For HISAM databases, the RECOVERY option must be specified. For HD

organizations, either RECOVERY or SPEED can be defined to Access Method

Services.

v UCF checkpoints are taken when the checkpoint count (CKPNT=) has expired

and a root insert has been requested. The count refers to the number of root

segments inserted and the checkpoint is taken immediately prior to the insertion

of the root.

Writing a Load Program

Chapter 13. Loading Databases 327

|
|

The following lists explains the status codes shown in Figure 190:

UR Load program being restarted under control of UCF

UC Checkpoint record written to UCF journal data set

US Initial load program prepared to stop processing

UX Checkpoint record was written and processing stopped

Figure 190. Restartable Initial Load Program Logic

Writing a Load Program

328 Administration Guide: Database Manager

DLITCBL START

 PRINT NOGEN

 SAVE (14,12),,LOAD1.PROGRAM SAVE REGISTERS

 USING DLITCBL,10 DEFINE BASE REGISTER

 LR 10,15 LOAD BASE REGISTER

 LA 11,SAVEAREA PERFORM

 ST 13,4(11) SAVE

 ST 11,8(13) AREA

 LR 13,11 MAINT

 L 4,0(1) LOAD PCB BASE REGISTER

 STCM 4,7,PCBADDR+1 STORE PCB ADDRESS IN CALL LIST

 USING DLIPCB,4 DEFINE PCB BASE REGISTER

 OPEN (LOAD,(INPUT)) OPEN LOAD DATA SOURCE FILE

 CLC DLISTAT,=C’UR’ IS THIS A RESTART?

 BNE NORMAL NO - BRANCH

 CLC DLIKEYFB(4),=X’00000000’ IS KEY FEEDBACK AREA ZERO?

 BE NORMAL YES - BRANCH

RESTART WTO ’RESTART LOAD PROCESSING FOR DATABASE 1 IS IN PROCESS’

RLOOP GET LOAD,CARDAREA GET A LOAD RECORD

 CLC SEGNAME(8),=CL8’SEGMA’ IS THIS A ROOT SEGMENT RECORD?

 BNE RLOOP NO - KEEP LOOKING

 CLC DLIKEYFB(4),SEGKEY IS THIS THE LAST ROOT INSERTED?

 BNE RLOOP NO - KEEP LOOKING

 B INSERT GO DO IT

NORMAL WTO ’INITIAL LOAD PROCESSING FOR DATABASE 1 IS IN PROCESS’

LOOP GET LOAD,CARDAREA GET SEGMENT TO BE INSERTED

INSERT CALL CBLTDLI,MF=(E,DLILINK) INSERT THE SEGMENT

 AP SEGCOUNT,=P’1’ INCREMENT SEGMENT COUNT

 CLC DLISTAT,=CL2’ ’ WAS COMPLETION NORMAL?

 BE LOOP YES - KEEP GOING

 CLC DLISTAT,=CL2’UC’ HAS CHECKPOINT BEEN TAKEN?

 BNE POINT1 NO - KEEP CHECKING

POINT0 WTO ’UCF CHECKPOINT TAKEN FOR LOAD 1 PROGRAM’

 UNPK COUNTMSG,SEGCOUNT UNPACK SEGMENT COUNT FOR WTO

 OI COUNTMSG+4,X’F0’ MAKE SIGN PRINTABLE

 WTO MF=(E,WTOLIST) WRITE SEGMENT COUNT

 B LOOP NO - KEEP GOING

POINT1 CLC DLISTAT,=CL2’US’ HAS OPERATOR REQUESTED STOP?

 BNE POINT2 NO - KEEP CHECKING

 B LOOP KEEP GOING

POINT2 CLC DLISTAT,=CL2’UX’ COMBINED CHECKPOINT AND STOP?

 BNE ABEND NO - GIVE UP

 WTO ’LOAD1 PROGRAM STOPPING PER OPERATOR REQUEST’

 B RETURN8

ABEND ABEND 8,DUMP INVALID STATUS

EOF WTO ’DATABASE 1 LOAD COMPLETED NORMALLY’

 UNPK COUNTMSG,SEGCOUNT UNPACK SEGMENT COUNT FOR WTO

 OI COUNTMSG+4,X’F0’ BLAST SIGN

 WTO MF=(E,WTOLIST) WRITE SEGMENT COUNT

 CLOSE (LOAD) CLOSE INPUT FILE

 L 13,4(13) UNCHAIN SAVE AREA

 RETURN (14,12),RC=0 RETURN NORMALLY

RETURN8 WTO ’DATABASE 1 LOAD STOPPING FOR RESTART’

 UNPK COUNTMSG,SEGCOUNT UNPACK SEGMENT COUNT FOR WTO

 OI COUNTMSG+4,X’F0’ BLAST SIGN

 WTO MF=(E,WTOLIST) WRITE SEGMENT COUNT

 CLOSE (LOAD) CLOSE INPUT FILE

 L 13,4(13) UNCHAIN SAVE AREA

 RETURN (14,12),RC=8 RETURN AS RESTARTABLE

 LTORG

Figure 191. Sample Restartable Initial Load Program (Part 1 of 2)

Writing a Load Program

Chapter 13. Loading Databases 329

JCL for the Initial Load Program

Figure 192 shows the JCL you will need to initially load your database. The

//DFSURWF1 DD statement is present only if a logical relationship or secondary

index exists.

SEGCOUNT DC PL3’0’

 DS 0F

WTOLIST DC AL2(LSTLENGT)

 DC AL2(0)

COUNTMSG DS CL5

 DC C’ SEGMENTS PROCESSED’

LSTLENGT EQU (*-WTOLIST)

DLIFUNC DC CL4’ISRT’ FUNCTION CODE

DLILINK DC A(DLIFUNC) DL/I CALL LIST

PCBADDR DC A(0)

 DC A(DATAAREA)

 DC X’80’,A13(SEGNAME)

CARDAREA DS 0CL80 I/O AREA

SEGNAME DS CL9

SEGKEY DS 0CL4

DATAAREA DS CL71

SAVEAREA DC 18F’0’

STOPNDG DC X’00’

LOAD DCB DDNAME=LOAD1,DSORG=PS,EODAD=EOF,MACRF=(GM),RECFM=FB

DLIPCB DSECT DATABASE PCB

DLIDBNAM DS CL8

DLISGLEV DS CL2

DLISTAT DS CL2

DLIPROC DS CL4

DLIRESV DS F

DLISEGFB DS CL8

DLIKEYLN DS CL4

DLINUMSG DS CL4

DLIKEYFB DS CL12

 END

Figure 191. Sample Restartable Initial Load Program (Part 2 of 2)

// EXEC PGM=DFSRRC00,PARM=’DLI,your initial load program name,

// your PSB name’

//DFSRESLB DD references an authorized library that contains IMS

 SVC modules

//STEPLIB DD references library that contains your load program

// DD DSN=IMS.SDFSRESL

//IMS DD DSN=IMS.PSBLIB,DISP=SHR

// DD DSN=IMS.DBDLIB,DISP=SHR

//DFSURWF1 DD DCB=(RECFM=VB,LRECL=300,

// BLKSIZE=(you must specify),

// DSN=WF1,DISP=(MOD,PASS)

//DBNAME DD references the database data set to be

 initially loaded or referenced by

 the initial load program

//INPUT DD input to your initial load program

//DFSVSAMP DD input for VSAM and OSAM buffers and options ...
//*

Figure 192. JCL used to initially load a database

Writing a Load Program

330 Administration Guide: Database Manager

Loading a HISAM Database

Segments in a HISAM database are stored in the order in which you present them

to the load program. You must present all occurrences of the root segment in

ascending key sequence and all dependent segments of each root in hierarchic

sequence. PROCOPT=L (for load) must be specified in the PCB.

Loading a SHISAM Database

Segments in a SHISAM database are stored in the order in which you present them

to the load program. You must present all occurrences of the root segment in

ascending key sequence. PROCOPT=L (for load) must be specified in the PCB.

Loading a GSAM Database

GSAM databases use logical records, not segments or database records. GSAM

logical records are stored in the order in which you present them to the load

program.

Loading an HDAM or a PHDAM Database

In an HDAM or a PHDAM database, the user randomizing module determines

where a database record is stored, so the sequence in which root segments are

presented to the load program does not matter. All dependents of a root should

follow the root in hierarchic sequence. PROCOPT=L (for load) or PROCOPT=LS

(for load segments in ascending sequence) must be specified in the PCB.

Loading a HIDAM or a PHIDAM Database

To load a HIDAM or a PHIDAM database, you must present root segments in

ascending key sequence and all dependents of a root should follow the root in

hierarchic sequence. PROCOPT=LS (for load segments in ascending sequence)

must be specified in the PCB.

Loading a Database with Logical Relationships or Secondary Indexes

If you are loading a database with logical relationships or secondary indexes, you

will need to run, in addition to your load program, some combination of the

reorganization utilities. You need to run them to put the correct pointer information

in each segment’s prefix. These reorganization utilities are described in Chapter 15,

“Tuning Databases,” on page 341.

Loading Fast Path Databases

This topic describes how to load MSDBs, DEDBs, and sequential dependent

segments.

Loading an MSDB

Because MSDBs reside in main storage, you do not load them as you do other IMS

databases, that is, by means of a load program that you provide. Rather, they are

loaded during system initialization, when they are read from a data set. You first

build this data set either by using a program you provide or by running the MSDB

Maintenance utility.

Related Reading:

v See IMS Version 9: Utilities Reference: Database and Transaction Manager for

information on how to the MSDB Maintenance utility.

v See Figure 73 on page 130 for the record format of the MSDBINIT data set.

Writing a Load Program

Chapter 13. Loading Databases 331

Loading a DEDB

You load data into a DEDB database with a load program similar to that used for

loading other IMS databases. Unlike other load programs, this program runs as a

batch message program. The following five steps are necessary to load a DEDB:

1. Calculate space requirements.

The following example assures that root and sequential dependent segment

types are loaded in one area.

Assume all root segments are 200 bytes long (198 bytes of data plus 2 bytes

for the length field) and that there are 850 root segments in the area. On the

average, there are 30 SDEP segments per record. Each is 150 bytes long (148

bytes of data and a 2-byte length field). The CI size is 1024 bytes.

A. Calculate the minimum space required to hold root segments:

1024 CI length minus

 21 CI control fields

____ equals amount of space for root segments

1003 and their prefixes.

1003 / 214 = 4.6 Amount of root and root prefix space

 divided by length of one root with its

 prefix equals the number of segments

 that will fit in one CI.

 DEDB segments do not span CIs.

 Therefore, only four

 roots will fit in a CI.

 850 / 4 = 212.5 The minimum amount of space to hold

 the defined number of roots to be

 inserted in this area (850)

 requires 213 CIs.

After choosing a UOW size, you can determine the DBD specifications for the

root addressable and independent overflow parts using the result of the above

calculation as a base.

B. Calculate the minimum space required to hold the sequential dependent

segments:

1024 CI length minus

 17 CI control fields

____ equals amount of space for sequential

1007 dependents and their prefixes.

1007 / 160 = 6.2 Amount of sequential dependent and

 prefix space divided by length of one

 sequential dependent plus its prefix

 equals the number of segments that

 will fit in one CI.

 Six SDEP segments will fit in a

 CI.

30 / 6 = 5 CIs Minimum amount of space required to

 hold 30 sequential dependent

 segments from one root. For 850

 roots, the minimum amount of space

 required is 850 * 5 = 4250 CIs.

C. Factor into your calculations additional space to take into account:

v The “reorganization UOW”, which is the same size as a regular UOW

v Two control data CIs allocated at the beginning of the root addressable part

Loading Fast Path Databases

332 Administration Guide: Database Manager

v One control data CI for each 120 CIs in the independent overflow part

Assuming a UOW size of 20 CIs, the minimum amount of space to be

allocated is: 213 + 4250 + 20 + 2 + 1 = 4486 CIs.

2. Set up the DBD specifications according to the above results, and execute the

DBD generation.

3. Allocate the VSAM cluster using VSAM Access Method Services.

The following example shows how to allocate an area that would later be

referred to as AREA1 in a DBDGEN:

DEFINE -

 CLUSTER -

 (NAME (AREA1) -

 VOLUMES (SER123) -

 NONINDEXED -

 CYLINDERS (22) -

 CONTROLINTERVALSIZE (1024) -

 RECORDSIZE (1017) -

 SPEED) -

 DATA -

 (NAME(DATA1)) -

 CATALOG(USERCATLG)

The following keywords have special significance when defining an area:

NAME The name supplied for the cluster is the name

subsequently referred to as the area name. The

name for the data component is optional.

NONINDEXED DEDB areas are non-indexed clusters.

CONTROLINTERVALSIZE The value supplied, because of a VSAM ICIP

requirement, must be 512, 1024, 2048, or 4096.

RECORDSIZE The record size is 7 less than the CI size.

These 7 bytes are used for VSAM control

information at the end of each CI.

SPEED This keyword is recommended for performance

reasons.

CATALOG This optional parameter can be used to specify

a user catalog.

4. Run the DEDB initialization utility (DBFUMIN0).

This offline utility must be run to format each area to DBD specifications.

Root-addressable and independent-overflow parts are allocated accordingly. The

space left in the VSAM cluster is reserved for the sequential-dependent part. Up

to 2048 areas can be specified in one utility run; however, the area initializations

are serialized. After the run, check the statistical information report against the

space calculation results.

5. Run the user DEDB load program.

A BMP program is used to load the DEDB. The randomizing routine used during

the loading of the DEDB might have been tailored to direct specific ranges of

data to specific areas of the DEDB.

If the load operation fails, the area must be scratched, reallocated, and

initialized.

Loading Sequential Dependent Segments

If the order of sequential dependent segments is important, you must consider the

way sequential dependents might be loaded in a DEDB. The two alternatives are:

Loading Fast Path Databases

Chapter 13. Loading Databases 333

v Add a root and its sequential dependents.

All the sequential dependents of a root are physically written together, but their

physical order does not reflect the original data entry sequence. This reflection is

not necessarily the way the application needs to view the dependent segments if

they are being used primarily as a journal of transactions.

v Add all roots and then the sequential dependents.

This technique restores the SDEP segments to their original entry sequence

order. However, it requires a longer process, because the addition of each SDEP

segment causes the root to be accessed.

Loading Fast Path Databases

334 Administration Guide: Database Manager

Chapter 14. Monitoring Databases

This chapter describes a number of IMS tools you can use to monitor the

performance of your databases. Several tools this chapter does not discuss, but

which you can also use for monitoring purposes include:

v IMS Performance Analyzer

v IMS DB Control Suite (On-demand Space Monitor)

v IMS DB Tools Space Monitor Utilities

v DB Integrity Control Facility

Related Reading:

v For information about these and other IMS tools, go to www.ibm.com/ims and link

to the IBM DB2 and IMS Tools Web site.

v For information about using the IMS Monitor is found in IMS Version 9:

Administration Guide: System.

v Additional information about monitoring can also be found in the topic on data

sharing in IMS Version 9: Administration Guide: System.

In this chapter:

v “IMS Monitor”

v “Monitoring Fast Path Systems” on page 337

IMS Monitor

The IMS Monitor is a tool that records data about the performance of your DL/I

databases in a batch environment. The recorded data is produced in a variety of

reports. The monitor’s usefulness is twofold. First, when you run the monitor

routinely, it gives you performance data over time. By comparing this data, you can

determine whether the performance trend is acceptable. This helps you make

decisions about tuning your database and determining when it needs to be

reorganized.

The second use of the monitor is to assess how the changes you make effect

performance. Once you have accumulated reports describing normal database

processing, you can use them as a profile against which to compare the effect of

your changes. Examples of changes you might make (then test for performance)

include:

v Changes in the structure of your databases

v A change from one DL/I access method to another

v A change in database buffer pool number and size

v Changes in application program logic

In all these cases, your primary goal is probably to minimize the number of I/Os

required to perform an operation. The monitor helps you determine whether you

have met your objective.

The following example shows how to use the IMS Monitor: suppose you are

performing a final test on a new or revised application. The monitor reports show

that some DL/I calls in the program, which should have required a single I/O

retrieval, actually required a large database scan involving many I/Os. You might be

able to correct this problem by making changes in the application program logic.

© Copyright IBM Corp. 1974, 2004 335

The monitor itself is actually two programs, as shown in Figure 193.

v The IMS Monitor (DFSMNTR0)

v The IMS Monitor Report Print utility (DFSUTR20)

 The IMS Monitor collects data from IMS control blocks (when DL/I is operating) and

records the data either on an independent data set or in the IMS log. It collects data

with minimum interference to the system. The monitor runs in the same address

space as the IMS job, and it can be turned on or off with the MON= parameter in

the execution JCL.

The IMS Monitor Report Print utility is an offline program that produces reports

summarizing information collected by the IMS Monitor. It produces the following

reports:

v VSAM Buffer Pool report

v VSAM Statistics report

v Database Buffer Pool report

v Program I/O report

v DL/I Call Summary report

v Distribution Appendix report

v Monitor Overhead report

Example output of each of these reports is in the IMS Version 9: Utilities Reference:

System. Each field in the reports is explained, followed by a summary of how you

can use the report. Many of these reports are also provided by the IMS Monitor,

which is described in IMS Version 9: Administration Guide: System. Where the

same report is produced by both the DB and IMS Monitor, the description of the

report in the IMS Version 9: Utilities Reference: System is applicable for both.

Information on operating the IMS Monitor is contained in IMS Version 9: Operations

Guide.

When the IMS Monitor is on, it remains on until the batch execution ends, requiring

some overhead. It cannot be turned on and off from the system console. To

Figure 193. IMS Monitor Works

IMS Monitor

336 Administration Guide: Database Manager

minimize the monitor’s impact, use the IMS Monitor in a single-thread test

environment rather than multi-thread application environments.

This ensures that the data gathered by the IMS Monitor can be related to a

particular program.

Monitoring Fast Path Systems

The major emphasis for monitoring IMS online systems that include message-driven

Fast Path applications is the balance between rapid response and high transaction

rates. With Fast Path, performance data is made part of the system log information.

Because the bulk of the online traffic is expected to be handled by expedited

message handling and not be present on the message queues, the Fast Path Log

Analysis utility (DBFULTA0) is the prime tool for monitoring Fast Path applications.

The IMS Monitor can also be used to monitor Fast Path systems.

Related Reading: For information on using the IMS Monitor for Fast Path systems,

see IMS Version 9: Utilities Reference: System.

Use the Fast Path Log Analysis utility (DBFULTA0) to prepare statistical reports for

Fast Path based on data recorded on the IMS system log. This utility is offline and

produces five reports useful for system installation, tuning, and troubleshooting:

v A detailed listing of exception transactions

v A summary of exception detail by transaction code for MPP (message-processing

program) regions

v A summary by transaction code for MPP regions

v A summary of IFP, BMP, and CCTL transactions by PSB name or transaction

code

v A summary of the log analysis

Do not confuse this utility with the IMS Monitor or the IMS Log Transaction Analysis

utility.

Related Reading:

v For more information on CCTL transactions, see the IMS Version 9:

Customization Guide.

v For more detailed information on the Fast Path Log Analysis utility, see IMS

Version 9: Utilities Reference: System.

As an administrator in the Fast Path environment, you should perform tasks, like

establishing monitoring strategies, performance profiles, and analysis procedures.

This topic highlights how to use the Analysis utility to do these tasks, and suggests

some Areas where tuning activities might be valuable.

Fast Path Log Analysis Utility

The Fast Path Log Analysis utility gathers statistics of Fast Path exclusive and

potential transactions that are passed to Fast Path dependent regions. It reports

information for other PSBs (including Fast Path PCBs and the programs that enter

the sync point processing) and produces three types of output:

v Formatted summary and detail reports

v A data set of fixed format records for the total traffic of Fast Path transactions

extracted from the system logs that form the input to the utility

IMS Monitor

Chapter 14. Monitoring Databases 337

v A data set of records, in the same format, that are selected based on exception

conditions (such as those transactions that exceed a certain fixed response time)

The latter data sets can be analyzed in more detail by your installation’s programs.

They can also be sorted to group critical transactions or events. The details of the

record format and meaning of the fields are given in IMS Version 9: Utilities

Reference: System.

Fast Path Log Reduction

To reduce log volume you can use the LGNR parameter, which is specified during

IMS startup. LGNR indicates the maximum number of DEDB buffer alterations that

are held before the entire CI is logged.

Related Reading:

v Another way to reduce log volume is to designate the DEDB as nonrecoverable.

No changes to the database are logged and no record of database updates is

kept in the DBRC RECON data set. See “Non-Recovery Option” on page 114.

v For more information on log reduction and the LGNR parameter, see IMS Version

9: Utilities Reference: System.

Fast Path Transaction Timings

For each Fast Path transaction, four time intervals are separately calculated.

Figure 194 shows the boundary events and intervals.

 The following list describes the four intervals shown in Figure 194:

1. Input queue time: reflects the transaction input queuing within the balancing

group to distribute the work.

2. Process time: records the actual elapsed processing time for the individual

transaction.

3. Output queue time: shows the effect of sync point in delaying the output

message release until after logging.

4. Output message time: shows the line and device availability for receiving the

output message. If the transaction originated from a programmable controller,

the output time could reflect a delay in dequeue caused by the output not being

acknowledged until the next input.

The sum of the first three intervals is termed the transit time. This time is slightly

different from a response time, because it excludes the line activity for the

message, message formatting, and the input edit processing up to the time the

message segment leaves the exit routine.

Figure 194. Fast Path Transaction Event Timings

Monitoring Fast Path Systems

338 Administration Guide: Database Manager

Monitored Events for Fast Path

The control program automatically collects Fast Path event data during system

operation. Table 26 shows the information that is made part of the system log

records for each Fast Path transaction.

 Table 26. Monitor Data for Fast Path Transactions

 Monitored Data Message-Driven Region Other Region

Transit and Output Message Times x

LTERM Name x

Routing Code x

Balancing Group Queue Count x

Number of DEDB Calls x x

Number of I/O to DEDB x x

Number of MSDB Calls x x

Number of CI Contentions x x

Number of Buffers Allocated x x

Number of Waits for Buffer x x

Sync Point Failure Reason Code x x

Selecting Transactions

The analysis utility lets you select transactions to be reported in detail. You give the

transaction code and a transit time that each transaction is to exceed, up to a

maximum of 65.5 seconds. Several codes can be selected for each utility run.

There is also a way to ask for all transactions that exceed the given transit time. In

this case, the individual exception specification overrides the general one.

When you do not need to print all such occurrences of the exceptions, you can give

a maximum number of detail records to be printed. The default is 1000 individual

records, though you can specify up to 9999999 as the maximum number. When you

cut off the number of printed records, the data set for the exception records

contains all transactions that meet the selection criteria.

You can also specify a start time and end time for the transaction reporting interval.

The start time corresponds to the earliest transaction that satisfies the clock time

(format HH:MM:SS) specified by a utility input control statement. End time is set by

the latest transaction that enters the sync point processing before the ending clock

time that is specified on an input control statement.

Another selection technique that is available is to select only non-message-driven

transactions for reporting. Use this to look at the activity (occurring against MSDBs

or DEDBs) caused by calls from IMS programs or BMPs.

Interpreting Fast Path Analysis Reports

The analysis reports show the origin, database activity, and processing events for

each transaction code, although most reported items show average and maximum

values. The reports produced are:

v Overall summary by transaction

Summarized by transaction code, the transit times and input/output message

lengths are given. The database calls and buffer usage are also included.

v Exception detail

Monitoring Fast Path Systems

Chapter 14. Monitoring Databases 339

For those transactions selected, the terminal origin and routing code are given for

each individual occurrence of the transaction. The detail also includes the data

appearing in the overall summary.

v Summary of exception detail by transaction code

This report is based on the transactions in the exception report. The items

reported are the same as for the overall summary.

v Summary of transactions by PSB

All programs that are in non-message-driven regions, MPP regions, and BMP

regions that enter the sync point processing are reported. The items reported are

the same as the summary of exception detail.

v Recapitulation of the analysis

This is a documentation aid that gives the grand totals of transactions input to

the analysis, and the I/O for online utilities.

The combination of the interval covered by the system log input to the utility and the

exception criteria you define in the input control statements determines the content

of these reports.

Examples of the reports format and the definition of the items reported can be

found in IMS Version 9: Utilities Reference: System, within the description of the

Fast Path Log Analysis utility.

Following are some suggestions for interpreting the reported events:

v Examine the summary reports and investigate the reasons for sync point failure.

v Examine the summary report to see if buffer usage was consistently under the

NBA values. Check all negative differences that indicate the need for overflow

buffers to see that they were unusual occurrences.

v Compare the database call counts to those of the expected profile. Select those

transactions that show unusual patterns for a run to produce a detailed exception

report.

v Examine the balancing group queue counts to see if they are conforming with the

scheduling algorithm expectations.

Monitoring Fast Path Systems

340 Administration Guide: Database Manager

Chapter 15. Tuning Databases

Tune your database either to improve performance or to better use database space.

This chapter introduces the reorganization utilities, which you can use to tune your

database. The chapter also describes the various types of tuning changes you can

make with the reorganization utilities, and also when and how to make the changes.

This chapter examines the following aspects of database tuning:

v “Reorganizing the Database”

v “Reorganizing HALDBs” on page 358, including:

– “HALDB Offline Reorganization” on page 359

– “HALDB Online Reorganization” on page 364

v “Changing DL/I Access Methods” on page 388

v “Changing the Hierarchic Structure” on page 401

v “Changing Direct-Access Storage Devices” on page 403

v “Tuning OSAM Sequential Buffering” on page 403

v “Adjusting HDAM and PHDAM Options” on page 404

v “Adjusting Buffers” on page 405

v “Adjusting VSAM Options” on page 408

v “Adjusting OSAM Options” on page 410

v “Changing the Amount of Space Allocated” on page 410

v “Changing Operating System Access Methods” on page 411

v “Changing the Number of Data Set Groups” on page 411

v “Tuning Fast Path Systems” on page 415

Keep in mind that when you tune your database, you are often making more than a

simple change to it. For example, you might need to reorganize your database and

at the same time change operating system access methods. This chapter has

procedures to guide you through making each type of change. If you are making

more than one change at a time, you should look at the flowchart, Figure 223 on

page 413. When used in conjunction with the individual procedures in this chapter,

the flowchart guides you in making some types of multiple changes to the database.

Also, some of the tuning changes you make can affect the logic in application

programs. You can often use the dictionary to analyze the affect before making

changes. In addition, some changes require that you code new DBDs and PSBs. If

you initialize your changes in the dictionary, you can then use the dictionary to help

create new DBDs and PSBs.

If you are using data sharing, additional information about tuning is in IMS Version

9: Administration Guide: System.

Reorganizing the Database

Reorganizing a database means changing how the data in the database is

organized to improve performance. In some cases, reorganizing a database might

also refer to modifying the database’s structure or the structure of the records and

segments in the database. Although this chapter focuses on changing how data is

organized, you can use many of the reorganization utilities discussed here to make

structural changes as well.

© Copyright IBM Corp. 1974, 2004 341

|
|
|
|
|
|

Two database types, DEDB and HALDB, support online reorganization in addition to

the offline methods of reorganization discussed here. For more information on the

online reorganization of each of these types of databases, see:

v For HALDB, see “HALDB Online Reorganization” on page 364

v For DEDB, search for High-Speed DEDB Direct Reorganization utility

(DBFUHDR0) in IMS Version 9: Utilities Reference: Database and Transaction

Manager

Related Reading: See Chapter 16, “Modifying Databases,” on page 423, for

information on making structural changes to your database.

IMS reclaims storage used for KSDS control intervals (CIs) whose erasure has

been committed in data-sharing or XRF environments. This function is not, however,

a replacement for routine reorganization of KSDS data sets. VSAM CI space

reclamation enhances the performance of database GETS or INSERTS after mass

deletes occur in data-sharing or XRF environments.

Restriction: CI reclaim does not occur for SHISAM databases. When a large

number of records in a SHISAM database are deleted, particularly a large number

of consecutive records, serious performance degradation can occur. Eliminate

empty CIs and resolve the problem by using VSAM REPRO.

When You Should Reorganize

You should reorganize your database in the following circumstances:

v Database performance has deteriorated. This can happen either because

segments in a database record are stored across too many CIs or blocks, or

because you are running out of free space in your database.

v There is too much physical I/O to DASD.

v The database structure has changed. For example, you should reorganize a

HALDB partition after changing its boundaries or high key.

v The HDAM or PHDAM randomizer has changed.

v The HALDB Partitions Selection exit routine has changed.

The DB Monitor can aid in monitoring a database to help you determine when it is

time to reorganize your database. Information about the DB Monitor is found in

Chapter 14, “Monitoring Databases,” on page 335.

Reorganizing Databases Offline

You perform three basic steps when reorganizing a database offline (unless you are

not making structural changes to the database, in which case, seeChapter 16,

“Modifying Databases,” on page 423):

1. Unloading the existing database.

2. Deleting the old database space and defining new database space. (This

practice is always good, but it is only necessary if you have multiple extents or

volumes, or are using VSAM.) For VSAM, database space refers to the clusters

defined to VSAM for database data sets.

3. Reloading the database.

Protecting Your Database During an Offline Reorganization

When you reorganize your database offline, you delete it. Therefore, you should

protect it from system or reorganization failure. You can protect your existing

database by renaming the space it occupies and then defining new database

Reorganizing the Database

342 Administration Guide: Database Manager

|

|
|
|

|

|
|

|

|

|

|

space. You should take an image copy of your database as soon as it is reloaded

and before any application programs are run against it. Taking an image copy

provides you with a backup copy of the database and establishes a point of

recovery with DBRC in case of system failure. You can create image copies of your

database using the Database Image Copy utility or the Database Image Copy 2

utility, which are described in detail in IMS Version 9: Utilities Reference: Database

and Transaction Manager.

Offline Reorganization Utilities

IMS utilities can help you reorganize your database. This topic introduces you to

these utilities and explains how they work together.

Related Reading: For more information about reorganization utilities, see the IMS

Version 9: Utilities Reference: Database and Transaction Manager.

Note the following information about the utilities:

v You can use the following reorganization utilities with HALDB:

– HD Reorganization Unload utility (DFSURGU0)

– HD Reorganization Reload utility (DFSURGL0)

– Database Prereorganization utility (DFSURPR0)

– HALDB Partition Data Set Initialization utility (DFSUPNT0)

For HALDB, both the Database Prereorganization utility and the HALDB Partition

Data Set Initialization utility (DFSUPNT0) initialize partitions.

If you are migrating an HDAM or HIDAM database to HALDB, the

Prereorganization utility allows some reuse of your existing JCL by disabling

full-function database utilities, such as Scan, Prefix Resolution and Prefix Update,

in the DFSURCDS data set. After the database is migrated, you can use the

HALDB Partition Data Set Initialization utility, which has additional functions such

as unconditional specific partition initialization.

v The utilities cannot be used to reorganize HSAM, SHSAM, or GSAM databases.

To reorganize these databases, you must write a program to read the old

database and then create a new database.

v You are not required to use these reorganization utilities to reorganize your

database. You can write your own programs to unload and reload data. You need

to write your own programs only if you are making structural changes to your

database that cannot be done using these utilities. Information about when these

utilities can be used to make structural changes to a database is contained in

Chapter 16, “Modifying Databases,” on page 423.

v Several of the reorganization utilities can be used when initially loading a

database. They are not used to load the database but to collect and sort the

pointer information needed in a segment’s prefix. Therefore, as you read through

the utilities you will find some described as “used for initial load or

reorganization”.

The reorganization utilities can be classified into three groups, based on the type of

reorganization you plan to do:

v Partial reorganization

v Reorganization using UCF

v Reorganization without UCF

Reorganizing the Database

Chapter 15. Tuning Databases 343

|

|

|

|

|

|

|
|

|
|
|
|
|
|

Partial Offline Reorganization

If you are reorganizing an HD database, you can reorganize parts of it, rather than

the whole database. You would need to reorganize parts, rather than all of it, for

two reasons:

v Only parts of it need to be reorganized.

v By reorganizing only parts of it, you can break the amount of time it takes to do a

total reorganization into smaller pieces.

The utilities you use to do a partial reorganization are:

v The Database Surveyor utility, which helps you determine which parts of your

database to reorganize

v The Partial Database Reorganization utility, which does the actual reorganization

HALDB partitions do not support partial offline reorganization.

Offline Reorganization Using UCF

Reorganization can be done using a single program, called the Utility Control

Facility (UCF), or by using various combinations of utilities. When UCF is used, it

acts as a controller, determining which of the various reorganization utilities need to

be executed and then getting them executed. Using UCF reduces the number of

JCL statements you must create and eliminates the need to sequence the various

utilities for execution. It also reduces the number of decisions operations people

must make.

Offline Reorganization Without UCF

When you do not use UCF, reorganization of the database is done using a

combination of utilities. Which utilities you need to use, and how many, depends on

the type of database and whether it uses logical relationships or secondary indexes.

If your database does not use logical relationships or secondary indexes, you

simply run the appropriate unload and reload utilities, which are as follows:

v For HISAM databases, the HISAM Reorganization Unload utility and the HISAM

Reorganization Reload utility

v For HIDAM index databases (if reorganized separately from the HIDAM

database), the HISAM Reorganization Unload utility and the HISAM

Reorganization Reload utility

v For SHISAM, HDAM, and HIDAM databases, the HD Reorganization Unload

utility and the HD Reorganization Reload utility

If your database does use logical relationships or secondary indexes, you need to

run the HD Reorganization Unload and Reload utilities (even if it is a HISAM

database). In addition, you must run a variety of other utilities to collect, sort, and

restore pointer information from a segment’s prefix. Remember, when a database is

reorganized, the location of segments changes. If logical relationships or secondary

indexes are used, update prefixes to reflect new segment locations. The various

utilities involved in updating segment prefixes are:

v Database Prereorganization utility

v Database Scan utility

v Database Prefix Resolution utility

v Database Prefix Update utility

These utilities can also be used to resolve prefix information during initial load of

the database.

Reorganizing the Database

344 Administration Guide: Database Manager

|

|

|

|

In the discussion of the utilities in this section, the four unload and reload utilities

are discussed first. The four utilities used to resolve prefix information are then

discussed. When reading through the utilities for the first time, you need to

understand that, if logical relationships or secondary indexes exist (requiring use of

the latter four utilities), the sequence in which operations is as follows:

1. Unload

2. Collect more prefix information

3. Reload

4. Collect more prefix information

5. Updated prefixes

You will find, for instance, that the HD Reorganization Reload utility does not just

reload the database if a secondary index or logical relationship exists. It reloads the

database using one input as a data set containing some of the prefix information

that has been collected. It then produces a data set containing more prefix

information as output from the reload. When the various utilities do their processing,

they use data sets produced by previously executed utilities and produce data sets

for use by subsequently executed utilities. When reading through the utilities, watch

the input and output data set names, to understand what is happening.

Figure 195 shows you the sequence in which utilities are executed if logical

relationships or secondary indexes exist. Figure 196 on page 347 shows the

sequence for these utilities when using HALDB partitions.

Reorganizing the Database

Chapter 15. Tuning Databases 345

Figure 195. Steps in Reorganizing When Logical Relationships or Secondary Indexes Exist

Reorganizing the Database

346 Administration Guide: Database Manager

As an alternative, where Figure 196 calls for the Partition Initialization utility, you

can run the Prereorganization utility.

HISAM Reorganization Unload Utility (DFSURUL0)

Figure 197 shows the input to and output from the HISAM Reorganization Unload

utility.

 You use the HISAM Unload utility to unload a HISAM database or HIDAM index

database. (SHISAM databases are unloaded using the HD Reorganization Unload

utility.) If your database uses secondary indexes, you also use the HISAM Unload

utility (later in the reorganization process) to perform a variety of other operations

associated with secondary indexes.

Figure 196. Steps for Reorganizing HALDB Partitions When Logical Relationships or

Secondary Indexes Exist

Figure 197. HISAM Reorganization Unload Utility (DFSURUL0)

Reorganizing the Database

Chapter 15. Tuning Databases 347

|

|
|
|

|
|

HISAM Reorganization Reload Utility (DFSURRL0)

Figure 198 shows the input to and output from the HISAM Reorganization Reload

utility.

 You use the HISAM reload utility to reload a HISAM database. (SHISAM databases

are reloaded using the HD Reorganization Reload utility.) You also use the HISAM

reload utility to reload the primary index of a HIDAM database. If your databases

use secondary indexes, you use the HISAM reload utility (later in the reorganization

process) to perform a variety of other operations associated with secondary

indexes.

HD Reorganization Unload Utility (DFSURGU0)

Figure 199 shows the input to and output from the HD Reorganization Unload utility.

 You use the HD Reorganization Unload utility to unload:

v HDAM, HIDAM, or SHISAM databases

Figure 198. HISAM Reorganization Reload Utility (DFSURRL0)

Figure 199. HD Reorganization Unload Utility (DFSURGU0)

Reorganizing the Database

348 Administration Guide: Database Manager

v HISAM databases that use secondary indexes

v HISAM databases that use symbolic pointers in a logical relationship

v HISAM databases without segment/edit compression that are being converted to

HISAM databases with segment/edit compression.

v PHDAM databases or partitions

v PHIDAM databases or partitions

v PSINDEX databases or partitions

If you use the HD Reorganization Unload utility to unload a HALDB (a PHDAM,

PHIDAM, or PSINDEX database), you do not need to include DD statements for the

database data sets. The HD Reorganization Unload utility uses dynamic allocation

for HALDB data sets.

HD Reorganization Reload Utility (DFSURGL0)

Figure 200 shows the input to and output from the HD Reorganization Reload utility.

 You use the HD Reorganization Reload utility to reload:

v HDAM, HIDAM, PHDAM, PHIDAM, PSINDEX, or SHISAM databases

v HISAM databases that use logical relationships or secondary indexes

v HISAM databases without segment/edit compression that are being converted to

HISAM databases with segment/edit compression

If logical relationships or secondary indexes exist in the database being reloaded,

the DFSURCDS control data set created by the Prereorganization utility is used as

one input to the HD Reorganization Reload utility. The DFSURCDS control data set

contains information needed to resolve secondary index or logical relationship

pointers.

When logical relationships or secondary indexes exist, the HD Reorganization

Reload utility produces as output the DFSURWF1 work data set. DFSURCDS

identifies the information that will be collected on DFSURWF1.

The DFSURWF1 work data set will become input to the Database Prefix Resolution

utility. Note in Figure 200 that, if the database being reloaded has a primary index, it

Figure 200. HD Reorganization Reload Utility (DFSURGL0)

Reorganizing the Database

Chapter 15. Tuning Databases 349

|

|
|
|
|

|

is reloaded automatically when the main database is reloaded. A HIDAM index

database can also be reorganized as a separate operation using the HISAM unload

and reload utilities.

Exception: DFSURWF1 is not used for HALDBs.

Database Prereorganization Utility (DFSURPR0)

Figure 201 shows the input to and output from the Database Prereorganization

utility.

 You use the Database Prereorganization utility when:

v A database to be initially loaded or reorganized has secondary indexes or logical

relationships

v A database not being initially loaded or reorganized contains segments involved

in logical relationships with databases that are being loaded or reorganized

The Database Prereorganization utility produces the DFSURCDS control data set,

which contains information about what pointers need to be resolved later if

secondary indexing or logical relationships exist. The DFSURCDS control data set

produced by the Prereorganization utility is used as input to the following:

v The Database Scan utility, if that utility needs to be run

v The HD Reorganization Reload utility, if secondary indexing or logical

relationships exist

v The Database Prefix Resolution utility, after the database is loaded or reloaded

The Prereorganization utility also produces a list of which databases not being

initially loaded or reorganized contain segments involved in logical relationships with

the database that is being initially loaded or reorganized.

This utility is always run before the database is loaded (for initial load) or reloaded

(for reorganization).

Database Scan Utility (DFSURGS0)

Figure 202 shows the input to and output from the Database Scan utility.

Figure 201. Database Prereorganization Utility (DFSURPR0)

Reorganizing the Database

350 Administration Guide: Database Manager

You use the Database Scan utility to scan databases that are not being initially

loaded or reorganized but contain segments involved in logical relationships with

databases that are being initially loaded or reorganized. For input, the utility uses

the DFSURCDS control data set created by the Prereorganization utility. For output,

the utility produces the DFSURWF1 work data set, which contains prefix information

needed to resolve logical relationships. The DFSURWF1 work data set is used as

input to the Database Prefix Resolution utility.

This utility is always run before the database is loaded (for initial load) or reloaded

(for reorganization).

Database Prefix Resolution Utility (DFSURG10)

Figure 203 shows the input to and output from the Database Prefix Resolution

utility.

Figure 202. Database Scan Utility (DFSURGS0)

Reorganizing the Database

Chapter 15. Tuning Databases 351

You use the Prefix Resolution utility to accumulate and sort the information that has

been put on DFSURWF1 work data sets up to this point in the load or reload

process. The various work data sets that could be input to this utility are:

v The DFSURCDS control data set produced by the Prereorganization utility

v The DFSURWF1 work data set produced by the scan utility

v The DFSURWF1 work data set produced by the HD Reorganization Reload utility

The DFSURWF1 work data sets must be concatenated to form an input data set for

the Prefix Resolution utility. The name of the input data set is SORTIN.

The Prefix Resolution utility uses the z/OS sort/merge programs to sort the

information that has been accumulated. For output, the utility produces the

DFSURWF3 work data set, which contains the sorted prefix information needed to

resolve logical relationships. The DFSURWF3 data set will become input to the

Database Prefix Update utility.

If secondary indexes exist, the utility produces the DFSURIDX work data set, which

contains the information needed to create a new secondary index or update a

shared secondary index database. The DFSURIDX work data set is used as input

to the HISAM unload utility. The HISAM unload utility formats the secondary index

information before the HISAM reload utility creates a secondary index or updates a

shared secondary index database.

This utility is always run after the database is loaded (for initial load) or reloaded

(for reorganization).

Database Prefix Update Utility (DFSURGP0)

Figure 204 shows the input to and output from the Database Prefix Update utility.

Figure 203. Database Prefix Resolution Utility (DFSURG10)

Reorganizing the Database

352 Administration Guide: Database Manager

You use the Prefix Update utility to update the prefix of each segment whose prefix

was affected by the initial loading or reorganization of the database. The prefix

fields that are updated include the logical parent, logical twin, and logical child

pointer fields, and the counter fields for logical parents. The Prefix Update utility

uses as input the DFSURWF3 data set created by the Prefix Resolution utility.

This utility is always run after the database is loaded (for initial load) or reloaded

(for reorganization) and after the Prefix Resolution utility has been run.

Using HISAM Unload and Reload Utilities for Secondary Indexing

Operations

In addition to using the HISAM unload and reload utilities to unload and reload a

database, you can also use them to:

v Build a secondary index database

v Merge a secondary index into a shared secondary index database

v Replace a secondary index in a shared secondary index database

v Extract a secondary index from a shared secondary index database

Each of these operations is done separately. That is, none of them can be done in

conjunction with running the HISAM unload and reload utilities to unload or reload a

regular database.

Figure 205 on page 354 shows the input to and output from the HISAM unload and

reload utilities when performing the first three operations. The DFSURIDX work data

set used as input to the HISAM unload utility was created by the Prefix Resolution

utility. It contains the information needed to create or update a shared secondary

index database. The HISAM unload utility formats the secondary index information

for use by the HISAM reload utility. Note that the input control statement to the

HISAM unload utility has an X in position 1 when the utility is used for secondary

indexing operations rather than for unloading a regular database. Position 3

contains one of the following characters:

v M: means the operation is either to build a new secondary index database or

merge a secondary index into a shared secondary index database

v R: means the operation is to replace a secondary index into a shared secondary

index database

Figure 204. Database Prefix Update Utility (DFSURGP0)

Reorganizing the Database

Chapter 15. Tuning Databases 353

The HISAM reload utility uses the output from the HISAM unload utility to create the

new secondary index or merge or replace the secondary index in a shared

secondary index database.

Figure 206 on page 355 shows the input to and output from the HISAM unload

utility when an index is being extracted from a set of shared indexes. Note that the

input can be one of the following:

v The DFSURIDX work data set created by the Prefix Resolution utility

v The shared secondary index database

Again, position 1 in the input control statement contains an X. Position 3 contains

an E, which means the operation is to extract a secondary index.

Figure 205. HISAM Reorganization Unload and Reload Utilities Used for Create, Merge, or

Replace Secondary Indexing Operations

Reorganizing the Database

354 Administration Guide: Database Manager

Utility Control Facility (DFSUCF00)

The Utility Control Facility is a program that controls the execution of reorganization

and recovery utilities. Control here means that it generates many of the JCL

statements you must create and eliminates the need to sequence the various

utilities for execution. The only reorganization utilities that cannot be run under the

control of UCF are the Database Surveyor utility and the Partial Database

Reorganization utility. In addition to controlling the execution of other utilities, UCF

allows you to stop and then later restart a job.

Database Surveyor Utility (DFSPRSUR)

Figure 207 on page 356 shows the input to and output from the Database Surveyor

utility.

Figure 206. HISAM Reorganization Unload Utility Used for Extract Secondary Indexing

Operations

Reorganizing the Database

Chapter 15. Tuning Databases 355

Use the Surveyor utility to scan all or part of an HDAM or a HIDAM database to

determine whether a reorganization is needed. The Surveyor utility produces a

report describing the physical organization of the database. The report includes the

size and location of areas of free space. When you do a partial reorganization, you

will know where free space exists into which you can put your reorganized

database records.

Partial Database Reorganization Utility (DFSPRCT1)

Figure 208 on page 357 shows the input to and output from the Partial Database

Reorganization utility.

You would use the Partial Database Reorganization utility to reorganize parts of

your HD database. It can be used when HD databases use secondary indexes or

logical relationships. You tell the utility what range of records you need reorganized.

v In an HDAM database, a range is a group of database records with continuous

relative block numbers.

v In a HIDAM database, a range is a group of database records with continuous

key values.

Generally, before using the Partial Database Reorganization utility, you would run

the Database Surveyor utility (described in “Database Surveyor Utility

(DFSPRSUR)” on page 355). The Surveyor utility helps you determine whether a

reorganization is needed and find the location and size of areas of free space. You

need to know the location and size of areas of free space so you will know where

to put reorganized database records.

The Partial Database Reorganization utility reorganizes the database in two steps:

1. In the first step, the utility produces control tables for use in Step 2, which is

when the actual reorganization is done. As an option, the utility can produce

PSB source statements for creating a PSB for use in Step 2. The utility also

generates reports that show which logically related segments in logically related

Figure 207. Database Surveyor Utility (DFSPRSUR)

Reorganizing the Database

356 Administration Guide: Database Manager

databases must be scanned in Step 2, and which can be optionally scanned in

Step 2. (Some GSAM databases are involved in Step 2 for which a PSB is

needed.)

2. In the second step, the utility does the actual reorganization. The database

records you have specified are unloaded to a data set. The space they

occupied in the database is freed. Then database records are reloaded into the

database in the range of free space you specified. Finally, all pointers to

database records with new locations are changed to point to the new location. A

report is produced at the end of Step 2 to tell you what was done.

Procedures for Offline Database Reorganizations

This topic describes how to reorganize offline the following database and index

types:

v HISAM

v HD (HDAM or HIDAM)

Figure 208. Partial Database Reorganization Utility (DFSPRCT1)

Reorganizing the Database

Chapter 15. Tuning Databases 357

|

v Primary or Secondary Index

Reorganizing a HISAM Database (No Secondary Indexes)

To reorganize a HISAM database when it does not use logical relationships or

secondary indexes:

1. Unload the database using the HISAM Reorganization Unload utility.

2. Any time you unload a data set, you should delete and reallocate the data set

before reloading.

3. Reload the database using the HISAM Reorganization Reload utility. Make an

image copy of your database once it is reloaded.

Reorganizing an HD (HDAM or HIDAM) Database (No Logical

Relationships or Secondary Indexes)

To reorganize an HD database when it does not use logical relationships or

secondary indexes:

1. Unload the database using the HD Reorganization Unload utility.

2. Any time you unload a data set, you should delete and reallocate the data set

before reloading.

3. Reload the database using the HD Reorganization Reload utility. Make an

image copy of your database once it is reloaded.

Reorganizing a Primary or Secondary Index

HIDAM has a primary index. HISAM, HDAM, and HIDAM have separate secondary

index databases when secondary indexing is being used. Both index types are

reorganized in the same way:

1. Unload the index database using the HISAM Reorganization Unload utility.

2. Any time you unload a data set, you should delete and reallocate the data set

before reloading.

3. Reload the index database using the HISAM Reorganization Reload utility.

Make an image copy of your database as soon as it is reloaded.

Reorganizing HALDBs

One of the primary advantages of HALDB is its simplified and shortened

reorganization process and the ability to reorganize HALDB databases online using

the integrated HALDB Online Reorganization function.

Both PHDAM and PHIDAM HALDBs can be reorganized online or offline. A

PSINDEX HALDB can be reorganized only offline. Whether you are reorganizing

your HALDB online or offline, the reorganization process is different from the

reorganization processes used for other full-function databases.

Reorganizations of HALDBs with logical relationships and secondary indexes do not

require the execution of utilities to update these pointers. Instead, HALDB uses a

self-healing pointer process to correct these pointers when they are used.

These subjects are discussed in the following topics:

v “HALDB Offline Reorganization” on page 359

v “HALDB Online Reorganization” on page 364

v “The HALDB Self-Healing Pointer Process” on page 382

Reorganizing the Database

358 Administration Guide: Database Manager

|

|
|
|

|
|
|
|

|
|
|

|

|

|

|

HALDB Offline Reorganization

The offline reorganization processes for a HALDB database and other full-function

IMS databases are similar: they both consist of an unload and reload of the

database. The HALDB offline reorganization process has advantages over the

reorganization process of other full-function databases, such as:

v You can reorganize one HALDB partition at a time or reorganize multiple

partitions in parallel.

v The self-healing pointer process of HALDBs eliminates the need to manually

update logical relationships and secondary indexes after reorganizing a HALDB.

v You do not need to include DD statements for HALDB data sets when you

reorganize a HALDB. HALDB data sets are dynamically allocated.

Overview of HALDB Offline Reorganization

A offline reorganization of a HALDB database can be done with one or more

parallel processes. These processes unload one or more partitions and reload

them. If the database has secondary indexes or logical relationships, additional

steps are not required. The HALDB self-healing process makes updates of pointers

during the reorganization unnecessary. The amount of time required for a

reorganization depends on the sizes of the partitions. Smaller partitions reduce the

time. You can reduce your reorganization time by creating more partitions and

reorganizing them in parallel.

The basic steps involved in reorganizing a HALDB offline are:

1. Run the HD Reorganization Unload utility (DFSURGU0) to unload the entire

database, a range of partitions, or a single partition.

2. Optionally, initialize the partitions by running either of the following utilities:

v HALDB Partition Data Set Initialization utility (DFSUPNT0)

v Database Prereorganization utility (DFSURPR0)

3. Run the HD Reorganization Reload utility to reload the database or partitions.

4. Make image copies of all reloaded partition data sets.

Figure 209 on page 360 shows the offline processes used to reorganize a HALDB

database with logical relationships and secondary indexes. In this case, the

partitions are reorganized by parallel processes. Each partition can be unloaded

and reloaded in less time than unloading and reloading the entire database. This is

much faster than the process for a non-HALDB full-function database. Additionally,

no time is required for updating pointers in the logically related database or

rebuilding secondary indexes. This further shortens the process.

Reorganizing HALDBs

Chapter 15. Tuning Databases 359

|

|
|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|

|

|
|

|

|

|

|

|

|
|
|
|
|
|
|
|

Related Reading: To compare the HALDB reorganization process illustrated in

Figure 209 with the reorganization process for other full-function databases, see the

flow chart of the steps for reorganizing non-HALDB databases that use logical

relationships or secondary indexes in Figure 195 on page 346.

Options for Offline Reorganization of HALDBs

You have several options when reorganizing a HALDB database:

v You can reorganize any number of partitions. If you need to reorganize only one

partition, you can unload and reload it without processing other partitions.

v You can reorganize partitions in parallel or you can reorganize the database with

one process. The degree of parallelism is determined by the number of

reorganization jobs you run. Each job can process one or multiple partitions. To

increase the parallelism, you can increase the number of reorganization jobs and

decrease the number of partitions each job processes.

v You can reuse existing database data sets or you can delete them after they are

unloaded and allocate new data sets for the reload.

v You can add partitions, delete partitions, or change partition boundaries.

Related Reading:

Figure 209. Offline Reorganization of a HALDB database

Reorganizing HALDBs

360 Administration Guide: Database Manager

|

|
|
|
|
|
|
|

|
|

|
|

|
|
|
|
|

|
|

|

|

v For information on changing partition definitions, including partition boundaries,

see “Changing HALDB Partition Definitions” on page 398.

v For information on using the Partition Definition utility to change partition

definitions in DBRC, see “Creating HALDBs with the HALDB Partition Definition

Utility” on page 294.

Unloading HALDB Partitions and Databases for Offline

Reorganization

HALDB partitions or databases can be unloaded with the HD Reorganization

Unload utility (DFSURGU0).

To unload an entire HALDB database, do not include a SYSIN DD statement. To

unload any other number of partitions, you must include a control statement in your

SYSIN data set. The control statement identifies the name of the first partition to

unload and, if you are unloading more than one partition, the number of partitions to

unload.

Multiple partitions are unloaded consecutively. For key range partitioning,

consecutive partitions are determined by the high keys. If you are using a partition

selection exit routine, consecutive partitions are determined by the order assigned

by the exit routine.

Do not include DD statements for the HALDB database data sets. The HD

Reorganization Unload utility uses dynamic allocation for HALDB data sets. This is

not true for non-HALDB databases.

Requirement: You must supply buffer pools for all data sets in the partitions that

are unloaded. This includes the ILDSs.

Recommendation: Enable OSAM sequential buffering for databases that use

OSAM.

Figure 210 shows a control statement to unload one partition.

 Figure 211 shows a control statement to unload three partitions.

 Figure 212 on page 362 shows a sample job that unloads a HALDB partition.

SYSIN DD *

PARTITION=PEO02

Figure 210. Example: The HD Reorganization Unload Utility Control Statement to Unload

One Partition

SYSIN DD *

PARTITION=PEO04,NUMBER=3

Figure 211. Example: The HD Reorganization Unload Utility Control Statement to Unload

Multiple Partitions

Reorganizing HALDBs

Chapter 15. Tuning Databases 361

|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

The IMS High Performance Unload tool is an alternative to the HD Reorganization

Unload utility. You can use the High Performance Unload tool to unload any number

of partitions or the entire database.

Related Reading: For more information on the High Performance Unload tool, see

IBM DB2 and IMS Tools: IMS High Performance Unload for OS/390.

Reallocating HALDB Database Data Sets for Offline

Reorganization

You do not have to delete and redefine HALDB database data sets before you

reload them. This applies to both OSAM and VSAM data sets. VSAM data sets,

other than ILDSs, must be specified with the REUSE option. HALDB supports this

option.

If you delete and redefine partition data sets, but do not reload data into them, you

must initialize the partition data sets. If you reload data into the partition data sets

after deleting and redefining them, you do not need to initialize the partition data

sets.

If you delete and redefine VSAM data sets, you receive a z/OS IEC161I system

message when reloading a partition. This is not an error message. It indicates that

a VSAM data set was empty when it was opened. Figure 213 shows the message

for an ILDS.

 Related Reading: For more information on IEC system messages, see z/OS V1R4:

MVS System Messages, Vol 7 (IEB-IEE).

//JOUKO3C JOB (999,POK),JOUKO3,CLASS=A,NOTIFY=&SYSUID,

// MSGLEVEL=(1,1),MSGCLASS=X,REGION=0M

//JOBLIB DD DSN=IMSPSA.IMS0.SDFSRESL,DISP=SHR

// DD DSN=IMSPSA.IM0A.MDALIB,DISP=SHR

//***

//* HD UNLOAD FOR THE PARTITION PEO02 OF PEOPLE DATABASE

//***

//UNLOAD EXEC PGM=DFSRRC00,REGION=1024K,

// PARM=’ULU,DFSURGU0,PEOPLE,,,,,,,,,,,Y,N’

//DFSRESLB DD DSN=IMSPSA.IMS0.SDFSRESL,DISP=SHR

//IMS DD DISP=SHR,DSN=JOUKO3.HALDB.DBDLIB

//DFSURGU1 DD DSN=JOUKO3.UNLOAD.PEO02,UNIT=3390,VOL=SER=TOTIMN,

// SPACE=(CYL,(10,5),RLSE),DISP=(NEW,CATLG)

//DFSVSAMP DD *

IOBF=(4096,50)

VSRBF=8192,50

/*

//SYSPRINT DD SYSOUT=*

//DFSCTL DD *

SBPARM ACTIV=COND

/*

//SYSIN DD *

PARTITION=PEO02

/*

Figure 212. Example: Sample JCL to Unload a HALDB Partition

IEC161I 152-061,JOUKO3D,RELOAD,PEO01L,,,

IEC161I JOUKO3.HALDB.DB.PEOPLE.L00001,

IEC161I JOUKO3.HALDB.DB.PEOPLE.L00001.DATA,CATALOG.TOTICF2.VTOTCAT

Figure 213. Example: IEC161I message during reload

Reorganizing HALDBs

362 Administration Guide: Database Manager

|
|
|

|
|
|

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

Reloading HALDB Partitions and Databases for Offline

Reorganization

HALDB partitions and databases can be reloaded with the HD Reorganization

Reload utility (DFSURGL0). The HD Reorganization Reload utility reads the output

file from the HD Reorganization Unload utility. You do not specify the partitions to

be reloaded. They are determined by the records in the input file to the HD

Reorganization Reload utility.

Do not include DD statements for the HALDB database data sets. The HD

Reorganization Reload utility uses dynamic allocation for HALDB data sets. This is

not true for non-HALDB databases.

You must supply buffer pools for all data sets in the partitions that are reloaded.

This includes the ILDSs.

The HD Reorganization Reload utility sets the image copy needed flag for data sets

in partitions that it loads. You should image copy them as you would any database

data sets after they have been reloaded.

Figure 214 shows a sample job that reloads HALDB partitions. The partitions it

reloads depend on the records in the input file.

ILDS Reorganization Updates: The HD Reorganization Reload utility updates the

ILDS for partitions that contain targets of logical relationships or secondary indexes.

The utility has three options for updating ILDSs:

v No control statement

v NOILDS control statement

v ILDSMULTI control statement

If you do not specify a control statement in the SYSIN data for the HD

Reorganization Reload utility, an ILDS entry is updated or created when a target of

a secondary index or logical relationship is inserted in the partition. An entry exists if

a previous reorganization loaded the target segment in the partition. The updates to

the ILDS are done in VSAM update mode. When a CI or CA is filled, it must be split

by VSAM. Free space in the ILDS can help avoid these splits. Updates can be

random or sequential. This depends on the order in which these segments are

//JOUKO3D JOB (999,POK),JOUKO3,CLASS=A,NOTIFY=&SYSUID,

// MSGLEVEL=(1,1),MSGCLASS=X,REGION=0M

//JOBLIB DD DSN=IMSPSA.IMS0.SDFSRESL,DISP=SHR

// DD DSN=IMSPSA.IM0A.MDALIB,DISP=SHR

//***

//* HD RELOAD FOR THE PEOPLE DATABASE

//***

//RELOAD EXEC PGM=DFSRRC00,REGION=1024K,

// PARM=’ULU,DFSURGL0,PEOPLE,,,,,,,,,,,Y,N’

//DFSRESLB DD DSN=IMSPSA.IMS0.SDFSRESL,DISP=SHR

//IMS DD DISP=SHR,DSN=JOUKO3.HALDB.DBDLIB

//DFSUINPT DD DSN=JOUKO3.UNLOAD.PEOPLE,DISP=OLD

//DFSVSAMP DD *

VSRBF=8192,50

IOBF=(4096,50)

/*

//SYSPRINT DD SYSOUT=*

//DFSSTAT DD SYSOUT=*

Figure 214. Example: JCL to Reload a HALDB Partition

Reorganizing HALDBs

Chapter 15. Tuning Databases 363

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|

|
|

|
|
|

|
|
|

|
|
|

|

|

|

|
|
|
|
|
|
|

inserted and their ILKs. The ILDS keys are based on the ILK that is based on the

location of the target segment when it was created.

You can create free space in an ILDS by copying it using the VSAM REPRO

command. The REPRO command honors the free space parameters in the VSAM

DEFINE.

You can delete and redefine the ILDS before reloading. You might want to do this to

eliminate entries in the ILDS for target segments that are no longer in the partition.

The HD Reorganization Reload utility never deletes an entry in the ILDS. The only

way to delete these entries is to delete and redefine the ILDS. Alternately, an empty

ILDS contains no free space. A reload with a large number of target segments

might require a large number of CI and CA splits.

If you specify a NOILDS control statement in the SYSIN data, the HD

Reorganization Reload utility does not update or create entries in the ILDSs. They

must be created by a separate process using the HALDB Index/ILDS Rebuild utility

(DFSPREC0). Separate executions of DFSPREC0 are required for each partition.

These executions can be done in parallel and on different machines.

The ILDSMULTI option applies only to migration reloads. For more information

about ILDSMULTI, see the HD Reorganization Reload utility section of IMS Version

9: Utilities Reference: Database and Transaction Manager.

Reorganizing HALDB Partitioned Secondary Index Databases: You might need

to reorganize your partitioned secondary index (PSINDEX) database. Because the

reorganization of HALDBs does not require the recreation of their secondary

indexes, a PSINDEX database can become disorganized as entries are added to it

over time.

The HD Reorganization Unload utility and the HD Reorganization Reload utility can

be used to reorganize PSINDEX databases. The restrictions and recommendations

for reorganizing other HALDB databases also apply to PSINDEX databases with

one exception: HALDB secondary indexes have no ILDSs. The HD Reorganization

Reload utility control statements should not be used with secondary indexes.

The steps for reorganizing a PSINDEX database are the same as those for

reorganizing other types of HALDBs offline. See “Overview of HALDB Offline

Reorganization” on page 359 for a list of these steps.

HALDB Online Reorganization

Prior to IMS Version 9, you had to ensure that HALDB partitions were offline before

you could perform database reorganization for them. IMS Version 9 introduced an

integrated HALDB Online Reorganization function that allows HALDB partitions to

remain online and available for IMS application programs during a database

reorganization.

An online reorganization of a PHDAM or PHIDAM HALDB partition runs

non-disruptively, allowing concurrent IMS updates, including updates by

data-sharing IMS systems. The online reorganization is non-disruptive because IMS

copies small amounts of data from the partition’s original data sets (the input data

sets) to separate output data sets. IMS tracks which data has been copied so that

IMS applications can automatically retrieve or update data from the correct set of

data sets.

Reorganizing HALDBs

364 Administration Guide: Database Manager

|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|

As described in “Data Set Naming Conventions for HALDB Online Reorganization”

on page 372, HALDB Online Reorganization extends the established data definition

and data set naming convention for HALDBs. The data set groups in a HALDB

database use the characters A-through-J in the DDNAMEs and data set names of

the ten supported data set groups. The primary index for a PHIDAM database uses

the character X in these names. This data definition and data set naming

convention is extended so that IMS uses the characters M-through-V (and Y) for an

alternate set of data sets.

The initial load or offline reorganization reload of a HALDB partition always uses the

A-through-J (and X) data sets. Until the first time that you reorganize a HALDB

partition online, only the A-through-J (and X) data sets are used.

There are three phases of online reorganization for a HALDB partition:

1. The initialization phase, during which IMS prepares the output data sets and

updates the RECON data sets.

2. The copying phase, during which IMS performs the actual reorganization by

copying the data from the input data sets to the output data sets.

3. The termination phase, during which IMS closes the input data sets and

updates the RECON data sets.

The Initialization Phase for HALDB Online Reorganization

You start the online reorganization of a HALDB partition using the INITIATE OLREORG

command. See the IMS Version 9: Command Reference for more information about

this command.

During the initialization phase, IMS updates the RECON data sets to establish the

ownership of the online reorganization by the IMS system that is performing the

online reorganization. This ownership means that no other IMS system can perform

a reorganization of the HALDB partition until the current online reorganization is

complete or until ownership is transferred to another IMS system. IMS adds the

M-V (and Y) DBDSs to the RECON data sets if those DBDS records do not already

exist. IMS also adds the M-V (and Y) DBDSs to any existing change accumulation

groups and DBDS groups that include the corresponding A-J (and X) DBDSs.

Before online reorganization begins for a HALDB partition, there is a single set of

active data sets for the HALDB partition. These active data sets are the input data

sets for the copying phase. There might also be a set of inactive data sets from a

prior online reorganization that are not used by IMS application programs.

During the initialization phase, IMS evaluates each of the inactive data sets to

ensure that it meets the requirements for output data sets (see “HALDB Online

Reorganization Requirements for Existing Output Data Sets” on page 545). If any of

the output data sets does not exist, IMS creates it automatically during this phase.

At the end of the initialization phase, IMS treats the original active set of data sets

as the input set and the inactive data sets as the output set. This use of the input

and output sets of data sets is represented by the cursor-active status for the

partition, which is recorded in online reorganization records in the RECON data

sets. A listing of the partition’s database record in the RECON data sets shows

OLREORG CURSOR ACTIVE=YES. A listing of the partition also shows that both sets of

DBDSs are active: the first set of DBDSs listed is for the input data set and the

second set of DBDSs is for the output data set, for example, DBDS ACTIVE=A-J and

M-V. While the partition is in the cursor-active status, both sets of data sets must be

available for the partition to be processed by any application.

Reorganizing HALDBs

Chapter 15. Tuning Databases 365

|
|
|
|
|
|
|
|

|
|
|

|

|
|

|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

Figure 215 shows part of a listing of the RECON data sets for a HALDB partition

that has the cursor-active status.

 During the initialization phase, various error conditions, such as an unacceptable

preexisting data set or an insufficient amount of disk space for an automatically

created data set, can cause the initialization to fail. However, if an error occurs

during or after the data set creation and validation process, but before IMS records

the cursor-active status in the RECON data sets, any automatically created output

data sets are retained along with any preexisting ones.

Also during the initialization phase of an online reorganization, IMS dynamically

creates a program specification block (PSB) for the reorganization. The PSB name

is the 7-character HALDB partition name prefixed with the single character zero

(’0’). For example, a HALDB partition with the name SSN5603 has a dynamic PSB

with the name 0SSN5603 for the reorganization work. This PSB does not exist in

the PSBLIB or the ACBLIB, but the name can appear in a listing of RECON or in

output from utilities.

The Copying Phase for HALDB Online Reorganization

During the copying phase, the HALDB partition comprises the A-through-J (and X)

data sets and the M-through-V (and Y) data sets. During this phase, both sets of

data sets must be available in order for IMS applications to access the partition.

04.174 12:30:54.1 LISTING OF RECON PAGE 0003

 DB

 DBD=POHIDKA MASTER DB=DBOHIDK5 IRLMID=*NULL CHANGE#=2 TYPE=PART

 USID=0000000004 AUTHORIZED USID=0000000004 HARD USID=0000000004

 RECEIVE USID=0000000004 RECEIVE NEEDED USID=0000000000

 DBRCVGRP=**NULL**

 DSN PREFIX=IMSTESTS.DBOHIDK5 PARTITION ID=00001

 PREVIOUS PARTITION=**NULL** NEXT PARTITION=POHIDKB

 OLRIMSID=**NULL** ACTIVE DBDS=A-J and M-V

 FREE SPACE:

 FREE BLOCK FREQ FACTOR=0 FREE SPACE PERCENTAGE=0

 PARTITION HIGH KEY/STRING (CHAR): (LENGTH=5)

 K2000

 PARTITION HIGH KEY/STRING (HEX):

 D2F2F0F0F040

 OSAM BLOCK SIZE:

 A = 4096

 B = 4096

 FLAGS: COUNTERS:

 BACKOUT NEEDED =OFF RECOVERY NEEDED COUNT =0

 READ ONLY =OFF IMAGE COPY NEEDED COUNT =0

 PROHIBIT AUTHORIZATION=OFF AUTHORIZED SUBSYSTEMS =0

 HELD AUTHORIZATION STATE=0

 EEQE COUNT =0

 TRACKING SUSPENDED =NO RECEIVE REQUIRED COUNT =0

 OFR REQUIRED =NO OLR ACTIVE HARD COUNT =0

 PARTITION INIT NEEDED =NO OLR INACTIVE HARD COUNT =0

 OLREORG CURSOR ACTIVE =YES

 PARTITION DISABLED =NO

 ONLINE REORG CAPABLE =YES

Figure 215. Example RECON Listing: DB Record for a HALDB in Cursor-Active Status

Reorganizing HALDBs

366 Administration Guide: Database Manager

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

While IMS reorganizes a HALDB partition online, IMS applications can make

database updates to the partition. Some of the database updates are made to the

input data sets, while others are made to the output data sets, depending on which

data is updated by the application. Which data sets are updated is transparent to

the application program. Figure 216 illustrates the relationship between the input

and output data sets at a point during the online reorganization.

 Figure 216 shows two sets of database data sets for a HALDB partition, the input

data sets that have not been reorganized and the output data sets that have been

(at least partially) reorganized. The figure shows the reorganization as progressing

from left to right, from the input data sets above to the output data sets below. The

data sets in the figure are divided into four areas:

1. Data within the input data sets that has been copied to the output data sets.

This area reflects the old data organization (prior to the reorganization), and is

not used again by IMS applications until the data sets are reused as the output

data sets for a later online reorganization.

2. Data within the output data sets that has been copied from the input data sets.

This data in this area has been reorganized, and can be used by IMS

applications during the reorganization.

3. Data within both the input and output data sets that is locked and in the process

of being copied and reorganized from the input data sets to the output data

sets. This area of locked records is called a unit of reorganization. From a

recovery point of view, this unit of reorganization is equivalent to a unit of

recovery.

While IMS processes the current unit of reorganization, IMS applications that

access any of the locked data records must wait until IMS completes the

reorganization for those records. After the copying and reorganization completes

for the unit of reorganization, IMS commits the changes and unlocks the

records, thus making them available again for IMS applications.

4. Data within the input data sets that has not yet been copied to the output data

sets. This data has also not yet been reorganized, and can be used by IMS

applications during the reorganization.

As the online reorganization progresses, IMS uses a kind of pointer called a cursor

to mark the end point of those database records that have already been copied

from the input data sets to the output data sets. As the reorganization and copying

proceeds, this cursor moves through the partition (from left to right in Figure 216).

Figure 216. The Relationship between Input Data Sets and Output Data Sets during the

Online Reorganization of a HALDB Partition

Reorganizing HALDBs

Chapter 15. Tuning Databases 367

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

When an IMS application program accesses data from a HALDB partition that is

being reorganized online, IMS retrieves the data record:

v From the output data sets if the database record is located “at or before” the

cursor.

v From the input data sets if the database record is located “after” the cursor.

If the data record happens to fall within the unit of reorganization, IMS retries the

data access after the records are unlocked. An application program does not

receive an error status code for data within a unit of reorganization.

To allow recovery of either an input data set or an output data set, all database

changes are logged during the online reorganization, including the database records

that are copied from the input data set to the output data sets.

The Termination Phase for HALDB Online Reorganization

The online reorganization of a HALDB partition terminates after the end of the

copying phase, or when IMS encounters an error condition during the

reorganization. You can also stop the online reorganization of a HALDB partition

using the TERMINATE OLREORG command. See the IMS Version 9: Command

Reference for more information about this command.

After the copying phase is complete for a HALDB partition, the output data sets

become the active data sets, and the input data sets become the inactive data sets.

The active data sets are used for all data access by IMS application programs. The

inactive data sets are not used by application programs, but can be reused for a

subsequent online reorganization. Unless you perform an initial load or a batch

reorganization reload for the partition, successive online reorganizations for the

partition alternate between these two sets of data sets.

IMS updates the partition’s database record in the RECON data sets to reset the

cursor-active status for the partition to reflect that there is now just one set of data

sets. A listing of this record from the RECON data sets shows OLREORG CURSOR

ACTIVE=NO and the ACTIVE DBDS field shows the active (newly reorganized) data

sets. IMS also updates the online reorganization records in the RECON data sets

with the timestamp of when the reorganization completed.

If you specified the DEL keyword for the INITIATE OLREORG command (or the UPDATE

OLREORG command), IMS deletes the inactive data sets after resetting the

cursor-active status for the partition. Before deleting the inactive data sets, IMS

notifies all sharing IMS systems, including batch jobs, that the online reorganization

is complete and is recorded in the RECON data sets. The IMS system that is

performing the online reorganization waits until it receives an acknowledgement

from each of these sharing IMS systems that they have closed and deallocated the

now-inactive data sets, and then it deletes these data sets. However, if the

acknowledgements are not received within 4.5 minutes, the owning IMS system will

attempt to delete the inactive data sets anyway. Without the acknowledgements, the

deletion attempt is likely to fail.

Finally, at the end of the termination phase, IMS updates the RECON data sets to

reset the ownership of the online reorganization so that no IMS system has

ownership. This resetting of ownership means that any IMS system can perform a

subsequent reorganization of the HALDB.

Reorganizing HALDBs

368 Administration Guide: Database Manager

|
|

|
|

|

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

If online reorganization of a HALDB partition terminates prior to completion, either

because of an error or because you issued the TERMINATE OLREORG command, you

must restart the online reorganization or perform an offline reorganization for the

partition.

Figure 217 shows the normal processing steps of a successful online reorganization

of a HALDB partition. The columns represent the flow of control through the phases

of the online reorganization, from the user to IMS, and the status of the data sets

as the processing events occur.

Migration and Coexistence Considerations for HALDB Online

Reorganization

During migration from a prior IMS release to IMS Version 9, IMS marks the DB

records in the RECON data sets for all existing HALDBs to indicate that they cannot

be reorganized online. To allow online reorganization of a HALDB partition, use the

DBRC CHANGE.DB DBD(HALDB_master) OLRCAP command to change the status of the

HALDB and all of its partitions to allow online reorganization for those partitions.

You can also use the CHANGE.DB ALL OLRCAP command to enable online

reorganization for all of your HALDB databases.

Figure 217. Normal Processing Steps of HALDB Online Reorganization

Reorganizing HALDBs

Chapter 15. Tuning Databases 369

|
|
|
|

|
|
|
|
||

|
|
|
|
|
|
|
|
|

Table 27 shows the IMS versions that can access HALDBs that are capable of

being reorganized online.

 Table 27. IMS Versions that Can Access HALDBs that Are Capable of Being Reorganized

Online

IMS Version

Access to HALDB partitions that are

capable of being reorganized online?

IMS Version 7 No

IMS Version 8 No

IMS Version 8 with the OLR Coexistence

SPE

Yes

IMS Version 9 Yes

You must apply the IMS Version 8 OLR Coexistence SPE to allow full data sharing

between IMS Version 8 and IMS Version 9 systems that have HALDBs that are

capable of being reorganized online.

You must use the following IMS Version 9 (or later) utilities to process HALDBs that

are capable of being reorganized online:

v Database Recovery

v Database Image Copy

v Database Image Copy 2

v Database Change Accumulation

Fallback Considerations for HALDB Online Reorganization

For IMS Version 8 systems that have the OLR Coexistence SPE applied, you can

access or share data with all Version 9 HALDBs. However, if any M-through-V (and

Y) data sets are active, or if the HALDB Online Reorganization cursor is active for

any partitions, you must use IMS Version 9 utilities whenever those partitions are

processed, except for the Batch Backout, Log Recovery, and Log Archive utilities

which must be run on the release of IMS that created the logs.

For any partitions with M-through-V (and Y) data sets active, or for any partitions

with an active HALDB Online Reorganization cursor, you must run an offline

reorganization before you can fall back to using the IMS Version 8 utilities.

Should fallback to a prior version become necessary, you must define all the

HALDBs as no longer capable of being reorganized online. For IMS Version 7

systems and IMS Version 8 systems that do not have the OLR Coexistence SPE

applied, you can access only those HALDBs that are not capable of being

reorganized online. After fallback, HALDBs that are capable of being reorganized

online are unavailable until you complete the following actions:

1. Using the IMS Version 9 offline reorganization utility, reorganize all partitions

that have the M-through-V (and Y) data sets active; these data sets could be

active either because the partition has the cursor-active status or because these

are the only data sets for the partition.

2. Define the partitions as no longer capable of being reorganized online by using

the command CHANGE.DB DBD(HALDB_master) OLRNOCAP.

Restrictions for HALDB Online Reorganization

The following restrictions apply to HALDB Online Reorganization:

Reorganizing HALDBs

370 Administration Guide: Database Manager

|
|

||
|

|
|
|

||

||

|
|
|

||
|

|
|
|

|
|

|

|

|

|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|

|
|

v You can perform an online reorganization only for a HALDB that is defined in the

RECON data sets as capable of being reorganized online (OLRCAP). For more

information about the OLRCAP parameter, see the INIT.DB command or the

CHANGE.DB command in the IMS Version 9: Database Recovery Control (DBRC)

Guide and Reference.

v You cannot start an online reorganization for a partition if another IMS system

already owns an online reorganization for that partition.

v You cannot make data definitional changes during an online reorganization of a

partition. HALDB Online Reorganization provides only reclustering and space

distribution advantages.

v Image copy for a partition is not allowed if the partition is in the cursor-active

status. This restriction applies even if the online reorganization terminated before

the cursor-active status has been reset and the online reorganization for the

partition is not owned by any IMS.

v To backout in-flight work from an online reorganization, you must run a batch

backout using a DL/I region type.

v To use a type-2 command to start an online reorganization for a HALDB partition,

you must have an IMS Common Service Layer that includes the Operations

Manager and the Structured Call Interface. See the IMS Version 9: Common

Service Layer Guide and Reference for more information.

v HALDB Online Reorganization runs only in a local storage option-subordinate

(LSO=S) environment. IMS rejects attempts to initiate an online reorganization for

a HALDB partition in a local storage option-yes (LSO=Y) environments. For more

information about the LSO specification, see the IMS Version 9: Installation

Volume 2: System Definition and Tailoring.

v You cannot perform an online reorganization for a HALDB partition from an

alternate IMS system in an XRF complex. However, after an XRF takeover, the

new active IMS system will continue a reorganization that was active when the

takeover process began.

v You cannot perform an online reorganization for a HALDB partition from a

tracking IMS system in an RSR complex. However, for HALDBs that are

registered as DBTRACK at the tracking IMS system, IMS tracks the effects of an

online reorganization in the same way it tracks updates to any database. See

“IMS Remote Site Recovery Processing for HALDB Online Reorganization” on

page 378 for more information.

v You cannot issue the following commands for a HALDB partition while it is being

reorganized online:

– /START DATABASE or UPDATE DATABASE NAME(name) START(ACCESS)

– /DBRECOVERY DATABASE or UPDATE DATABASE NAME(name) STOP(ACCESS)

– /DBDUMP DATABASE or UPDATE DATABASE NAME(name) STOP(UPDATES)

– /STOP DATABASE or UPDATE DATABASE NAME(name) STOP(SCHD)

If you issue any of these commands for a HALDB partition that is actively being

reorganized online, IMS displays error message DFS0488I and does not process

the command for the named partition. For more information about these

commands, see the IMS Version 9: Command Reference. For more information

about message DFS0488I, see the IMS Version 9: Messages and Codes,

Volume 2.

v You cannot issue the following commands for a HALDB master while any of its

partitions is being reorganized online:

– /START DATABASE ACCESS UP or UPDATE DATABASE NAME(name) START(ACCESS)

– /DBRECOVERY DATABASE or UPDATE DATABASE NAME(name) STOP(ACCESS)

Reorganizing HALDBs

Chapter 15. Tuning Databases 371

|
|
|
|
|

|
|

|
|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|

|

|

|

|

|
|
|
|
|
|

|
|

|

|

– /DBDUMP DATABASE or UPDATE DATABASE NAME(name) STOP(UPDATES)

For more information about these commands, see the IMS Version 9: Command

Reference.

Data Set Naming Conventions for HALDB Online Reorganization

As described in “HALDB Naming Conventions” on page 22, the data sets for

HALDB partitions use a specified naming convention. HALDB Online

Reorganization extends this naming convention to include a second set of data

sets. Data sets for partitions that are involved in HALDB Online Reorganization use

the following naming convention: bbbbbbb.dppppp

bbbbbbb Represents a data set name prefix of up to 37 characters that you

defined using the HALDB Partition Definition utility or DBRC batch

command (INIT.DB, INIT.PART, CHANGE.DB, or CHANGE.PART). The

same data set base name is used for every data set within a

HALDB partition.

d Represents an IMS-assigned data set name type character that

uniquely identifies a specific data set for a HALDB partition. The

possible single-character values are:

A-through-J

“A” corresponds to the first, or possibly only, data set group

that is defined in the DBD, “B” corresponds to the second

data set group, and so on. The use of the characters

A-through-J applies generally to HALDB partitions,

regardless of whether they are capable of being

reorganized online.

M-through-V

“M” corresponds to the first, or possibly only, data set group

that is defined in the DBD, “N” corresponds to the second

data set group, and so on. The use of the characters

M-through-V applies only to HALDB partitions that are

capable of being reorganized online.

L The indirect list data set (ILDS). The online reorganization

process does not make a copy of this data set.

X The primary index of a PHIDAM database. This data set is

the index for the A-through-J data sets and is replaced by

the Y data set when the online reorganization process

copies the database records from the A-through-J and X

data sets into the M-through-V and Y data sets. The use of

the X character applies generally to HALDB partitions,

regardless of whether they are capable of being

reorganized online.

Y The primary index of a PHIDAM database. This data set is

the index for the M-through-V data sets and it is replaced

by the X data set when the online reorganization process

copies the database records from the M-through-V and Y

data sets into the A-through-J and X data sets. The use of

the Y character applies only to HALDB partitions that are

capable of being reorganized online.

ppppp Specifies the five-digit partition ID that is assigned by IMS.

Reorganizing HALDBs

372 Administration Guide: Database Manager

|

|
|

|
|
|
|
|
|

||
|
|
|
|

||
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

||
|

||
|
|
|
|
|
|
|

||
|
|
|
|
|
|

||

The data set names for the output data sets are identical to the names of the

corresponding input data sets, except for the IMS-assigned data set name type

character (A-through-J, M-through-V, X, or Y). Table 28 shows example data set

names.

 Table 28. Data Set Name Examples for HALDB Online Reorganization

Active Data Set Before

Online Reorganization

Data Set Group or

Index Partition ID Input Data Set Name Output Data Set Name

A-through-J (and X) 1 00003 DH41.A00003 DH41.M00003

A-through-J (and X) Index 00065 ACCT.X00065 ACCT.Y00065

M-through-V (and Y) 2 00005 PAY.MST.N00005 PAY.MST.B00005

M-through-V (and Y) 8 00001 PAY.EMP.T00001 PAY.EMP.H00001

Output Data Set Requirements for HALDB Online Reorganization

During the initialization phase for an online reorganization of a HALDB partition,

IMS creates any output data sets that do not already exist. For example, when the

input data sets are the A-through-J (and X) set, if the M and P output data sets

already exist, but the N and O output data sets do not, IMS creates the N and O

data sets and uses the existing M and P data sets.

Any existing output data sets must have the characteristics described in “HALDB

Online Reorganization Requirements for Existing Output Data Sets” on page 545.

Any data in the existing output data sets is overwritten during the copying phase of

an online reorganization. Output data sets that IMS creates for the online

reorganization have the characteristics described in “Attributes of

Automatically-Created Output Data Sets” on page 545.

Starting HALDB Online Reorganization

Table 29 describes the tasks and commands for starting or resuming an online

reorganization for a HALDB partition.

 Table 29. Mapping Startup Tasks to Commands for HALDB Online Reorganization

Task Command Command Type

Specify that a HALDB master is

capable of being reorganized online.

INIT.DB OLRCAP or CHANGE.DB

OLRCAP

DBRC

Begin HALDB Online Reorganization

for one or more partitions.

INITIATE OLREORG Type 2

Begin HALDB Online Reorganization

for one or more partitions.

/INITIATE OLREORG Type 1

Resume HALDB Online Reorganization

for one or more partitions.

INITIATE OLREORG Type 2

Resume HALDB Online Reorganization

for one or more partitions.

/INITIATE OLREORG Type 1

Set the RATE for a HALDB Online

Reorganization.

INITIATE OLREORG

SET(RATE(rate)) or UPDATE

OLREORG SET(RATE(rate))

Type 2

Set the RATE for a HALDB Online

Reorganization.

/INITIATE OLREORG

SET(RATE(rate)) or /UPDATE

OLREORG SET(RATE(rate))

Type 1

Related Reading:

Reorganizing HALDBs

Chapter 15. Tuning Databases 373

|
|
|
|

||

|
|
|
||||

|||||

|||||

|||||

|||||
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

||

|||

|
|
|
|
|

|
|
||

|
|
||

|
|
||

|
|
||

|
|
|
|
|

|

|
|
|
|
|

|

|

|

v For more information about the INITIATE OLREORG, /INITIATE OLREORG, UPDATE

OLREORG and /UPDATE OLREORG commands, see the IMS Version 9: Command

Reference.

v For more information about the CHANGE.DB and the INIT.DB commands, see the

IMS Version 9: Database Recovery Control (DBRC) Guide and Reference.

Monitoring HALDB Online Reorganization

Table 30 describes the tasks and commands for monitoring an online reorganization

for a HALDB partition.

 Table 30. Mapping Monitoring Tasks to Commands for HALDB Online Reorganization

Task Command Command Type

Display status and rate information

about HALDB Online Reorganizations

that are in progress.

QUERY OLREORG Type 2

Monitor and display the status of the

specified databases or partitions

(including those HALDB Online

Reorganizations that are in progress).

/DISPLAY DB OLR Type 1

Display HALDB Online Reorganization

status.

QUERY DB Type 2

List all of the databases for which

HALDB Online Reorganizations are in

progress.

QUERY DB STATUS(OLR) Type 2

Related Reading: For more information about the /DISPLAY DB, /DISPLAY DB OLR,

QUERY DB, and QUERY OLREORG commands, see the IMS Version 9: Command

Reference.

Modifying and Tuning HALDB Online Reorganization

Table 31 describes the tasks and commands for modifying and tuning an online

reorganization for a HALDB partition.

 Table 31. Mapping Modifying and Tuning Tasks to Commands for HALDB Online

Reorganization

Task Command Command Type

Stop HALDB Online Reorganization for

one or more partitions.

TERMINATE OLREORG Type 2

Stop HALDB Online Reorganization for

one or more partitions.

/TERMINATE OLREORG Type 1

Change the impact of HALDB Online

Reorganization on overall system

performance, for one or more

partitions.

UPDATE OLREORG

SET(RATE(rate))

Type 2

Change the impact of HALDB Online

Reorganization on overall system

performance, for one or more

partitions.

/UPDATE OLREORG

SET(RATE(rate))

Type 1

Specify whether to delete the inactive

data sets after the copying phase

completes.

UPDATE OLREORG OPTION(DEL |

NODEL)

Type 2

Reorganizing HALDBs

374 Administration Guide: Database Manager

|
|
|

|
|

|
|
|

||

|||

|
|
|

||

|
|
|
|

||

|
|
||

|
|
|

||

|

|
|
|

|
|
|

||
|

|||

|
|
||

|
|
||

|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

Table 31. Mapping Modifying and Tuning Tasks to Commands for HALDB Online

Reorganization (continued)

Task Command Command Type

Specify whether to delete the inactive

data sets after the copying phase

completes.

/UPDATE OLREORG OPTION(DEL |

NODEL)

Type 1

Related Reading: For more information about the TERMINATE OLREORG, /TERMINATE

OLREORG, UPDATE OLREORG, and /UPDATE OLREORG commands, see the IMS Version 9:

Command Reference.

Example: Figure 218 on page 376 shows the processing steps for an online

reorganization of a HALDB partition and how it is affected by a TERMINATE OLREORG

command that temporarily stops the reorganization:

v When you issue the TERMINATE OLREORG command, IMS terminates the

reorganization by entering the termination phase.

v Later, when you issue the INITIATE OLREORG command, IMS restarts the

reorganization from the initialization phase, then proceeds to the copying phase.

In the figure, the reorganization then completes successfully through the

termination phase.

Note that there are two sets of data sets for the second initialization phase because

the reorganization is not complete.

In the figure, the columns represent the flow of control through the phases of the

online reorganization, from the user to IMS, and the status of the data sets as the

processing events occur.

Reorganizing HALDBs

Chapter 15. Tuning Databases 375

|
|

|||

|
|
|

|
|
|

|

|
|
|

|
|
|

|
|

|
|
|
|

|
|

|
|
|
|

Figure 218. Processing Steps for an Interrupted Online Reorganization of a HALDB Partition

Reorganizing HALDBs

376 Administration Guide: Database Manager

|

How a HALDB Online Reorganization Impacts IMS Logging

The online reorganization of a HALDB partition generates X'50' database change

log records for all of the data in the partition. IMS also logs other HALDB Online

Reorganization information in a small number of X'29' log records. Thus, the total

amount of log data generated by a HALDB Online Reorganization is considerably

greater than the amount of data in the partition.

Reorganizing partitions online, especially reorganizing multiple partitions in parallel

on the same IMS system, can generate sufficient log data to impact normal

transaction processing. The large number of log records that are generated can

also affect the rate of OLDS switches and log archiving.

Controlling the Overall System Impact of a HALDB Online

Reorganization

An online reorganization of a HALDB partition can impact the overall system

performance of an IMS system, and likewise, other IMS work can affect the

performance of an online reorganization. You can use the RATE parameter of the

INITIATE OLREORG and UPDATE OLREORG commands to control the impact of an online

reorganization on your IMS system.

Depending on system resources, IMS requires a certain amount of time to process

a unit of reorganization. The value of the RATE parameter represents how much of

that time IMS spends actually copying and reorganizing the data and how much of

that time IMS spends in an intentionally introduced delay. You specify the RATE

value as a percentage, with values less than 100 representing the addition of an

intentionally introduced delay. Adding this delay to the copying process can help

minimize the online reorganization’s impact on other IMS work.

The default value for the RATE parameter is 100, which allows the online

reorganization to run as fast as possible, depending on system resources, system

contention, and log contention, with no intentionally introduced delay. However, if

you set the RATE value to 25, for example, IMS adds a delay to the reorganization

processing so that 25% of the total processing time for a unit of reorganization is

spent copying the data, and the remaining 75% is spent in an intentionally

introduced delay. Thus, RATE(25) would cause the online reorganization to take

approximately four times as long to run as it would have run with RATE(100).

You can change the RATE value at any time by issuing the UPDATE OLREORG

command.

IMS Restart and XRF Processing for HALDB Online

Reorganization

If you shut down IMS while any online reorganizations of HALDB partitions are

running, IMS suspends the reorganizations before completing the shutdown

checkpoint. After IMS restarts, IMS automatically resumes the online

reorganizations. IMS resumes the online reorganization even if you specified the

NOPDBO option in the DFSVSMxx member.

If IMS terminates abnormally while any online reorganizations are running, IMS

dynamically backs out all uncommitted changes for these reorganizations to the

most recent sync point. After IMS restarts, IMS automatically resumes the online

reorganizations.

Likewise, when an XRF takeover occurs, IMS automatically resumes the online

reorganizations on the new active IMS system.

Reorganizing HALDBs

Chapter 15. Tuning Databases 377

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|

|
|

IMS Restart and Fast Database Recovery Processing for HALDB

Online Reorganization

When an FDBR takeover occurs, IMS performs the following actions:

v Backs out all uncommitted changes for these reorganizations to the most recent

sync point

v Closes the partition

v Unauthorizes the partition

When you restart the IMS system, IMS does not resume the online reorganization

because the partitions are not authorized after the FDBR terminates.

IMS Remote Site Recovery Processing for HALDB Online

Reorganization

During Remote Site Recovery (RSR) tracking, IMS updates the tracking site

RECON data sets with information for HALDB Online Reorganization. For HALDB

partitions that are registered as database-level tracking (DBTRACK) at a Database

Level Tracking (DLT) tracking IMS system, IMS performs the following steps during

tracking of the online reorganization:

v Creates the output data sets for the shadow partition, as needed.

v Updates both the input and output data sets for the shadow partition.

v Marks the original input data sets as inactive, and marks the output data sets as

the active data sets at the completion of the tracking of the online reorganization.

v Deletes the inactive data sets if delete option is in effect. You specify this option

(or accept the default) by using the OPTION keyword of the INITIATE OLREORG

command at the active site.

IMS stops the shadow partition if errors occur during the validation or creation of

the output data sets. The tracked partition at the active site is unaffected by errors

at the tracking site. After you correct the problem that caused the error, restart the

shadow partition on the tracking IMS system to initiate online forward recovery for

the partition and to continue tracking.

If the output data sets for the online reorganization already exist at the tracking site

before tracking begins, ensure that these data sets have same characteristics (such

as block size, record size, and control interval size) as those at the active site. See

“HALDB Online Reorganization Requirements for Existing Output Data Sets” on

page 545 for the data set characteristics. If you change output data set

characteristics manually at the active site, you must make the same changes at the

tracking site.

After an RSR takeover, IMS stops all HALDB partitions, including those that had

online reorganizations in process. After you rebuild the primary index and indirect

list data sets using the HALDB Index/ILDS Rebuild utility (DFSPREC0) at the new

active site, issue the INITIATE OLREORG command to resume the online

reorganizations, if needed. The online reorganizations are not automatically

restarted after takeover.

Locking Impacts of HALDB Online Reorganization

An online reorganization for a HALDB partition uses the IRLM to request global

locks for each UOR to maintain partition integrity and recoverability. An online

reorganization that is running with the RATE(100) specification can incur a

significant number of IRLM lock structure accesses per second.

Recommendations:

Reorganizing HALDBs

378 Administration Guide: Database Manager

|
|
|

|
|

|

|

|
|

|
|
|
|
|
|
|

|

|

|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|

v Consider using a second subpool to relieve database buffer contention for more

than four concurrent online reorganizations.

v Use the IBM CFSizer to model the additional coupling facility activities to ensure

that your coupling facility configuration is capable of handling the extra load

introduced by the online reorganizations:

– For IRLM 2.1 with PC=NO specified, each additional 1000 concurrently held

locks requires 256 KB of ECSA storage.

– For IRLM 2.2, each additional 1000 concurrently held locks requires 540 KB

obtained from IRLM private storage. No increase in ECSA storage is

necessary.

v Review your LOGL latch contention rate, OLDS logging rate, IRLM lock structure

access, and DBBP (for OSAM) latch contention.

Using IMS Utilities with HALDB Online Reorganization

The following IMS utilities have special considerations when used with HALDB

Online Reorganization: Batch Backout (DFSBBO00), Database Change

Accumulation (DFSUCUM0), Database Image Copy (DFSUDMP0), Database

Recovery (DFSURDB0), and Primary Index and ILDS Rebuild (DFSPREC0).

Batch Backout (DFSBBO00)

If dynamic backout fails for a unit or reorganization, IMS creates a backout

record in the RECON data sets that contains the dynamic PSB name. Run

the Batch Backout utility (DFSBBO00) for the listed PSB name.

 If dynamic backout was not attempted, use the Log Recovery utility

(DFSULTR0) with the PSB option to list those PSBs that require backout. If

there is in-flight online reorganization work for a HALDB partition that

requires backout, the Log Recovery utility lists the dynamic PSB name. Run

the Batch Backout utility (DFSBBO00) for each of the listed PSB names.

Database Change Accumulation (DFSUCUM0)

You can use the Database Change Accumulation utility (DFSUCUM0) to

accumulate changes for HALDB partition A-through-J data sets and for the

M-through-V data sets. You need to specify the DB0 control statement so

that the Database Change Accumulation utility accumulates changes or

purges changes from before the online reorganization started.

 The Database Change Accumulation utility might create Database Change

Accumulation header records (type X'25' records) for a corresponding

A-through-J and M-through-V data set if the online reorganization

checkpoint is not complete at the start of the database change

accumulation.

Database Image Copy (DFSUDMP0)

You can use the Database Image Copy utility (DFSUDMP0) to copy the

currently active data set that is recorded in the RECON data sets. The

Database Image Copy utility also determines if it should copy the

M-through-V data sets or the A-through-J data sets. However, if a partition

is in the cursor-active status, you cannot run the Database Image Copy

utility for that partition.

 It is not necessary to code a DD statement in the JCL when copying

HALDB partition data sets, because they are dynamically allocated.

Database Recovery (DFSURDB0)

The Database Recovery utility (DFSURDB0) expects the utility output data

sets to exist, and makes no attempt to create them. See “Recovery for

HALDB Online Reorganization” on page 380.

Reorganizing HALDBs

Chapter 15. Tuning Databases 379

|
|

|
|
|

|
|

|
|
|

|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|

Primary Index and ILDS Rebuild (DFSPREC0)

You can use the HALDB Index/ILDS Rebuild utility (DFSPREC0) to recover

the primary index data set for both the input and output data sets. You can

also use the HALDB Index/ILDS Rebuild utility to recover both the X and Y

primary index data sets and the ILDS in a single run. You cannot specify a

particular input or output data set, but if the partition is in the cursor-active

status, the utility allocates and rebuilds all of the necessary data sets.

Related Reading: For more information about these utilities, see the IMS Version 9:

Utilities Reference: Database and Transaction Manager.

Recovery for HALDB Online Reorganization

After DBRC sets the cursor-active status for the partition in the RECON data sets,

and until the copying phase completes and DBRC resets the cursor-active status,

you can recover any of the input or output data sets using the Database Recovery

utility (DFSURDB0). To restore the output data sets, the Database Recovery utility

uses the database change records (type X'50' log records) and applies them to

empty output data sets.

Recommendation: Make an image copy of the output data sets as soon as

possible after the online reorganization completes. Recovering from this image copy

is faster than recovering from the database change records that are logged during

the online reorganization. However, you cannot make an image copy while the

partition is in cursor-active status.

To recover an output data set before the online reorganization completes, perform

the following tasks:

1. Stop the online reorganization by using the TERMINATE OLREORG command. If the

online reorganization encountered an abend, it is stopped automatically.

2. Issue the /DBR or the UPDATE DB command for the HALDB partition.

3. Run database change accumulation, as necessary. You can create the JCL by

issuing the GENJCL.CA command, or you can run the Database Change

Accumulation utility (DFSUCUM0) from your own JCL. The purge time for the

change accumulation must be equal to the time of the beginning of the online

reorganization to represent restoring from the initial empty state of the data set.

See “Specifying a Purge Time for the Database Change Accumulation Utility” on

page 381.

4. Create the output data set to be recovered, either by using a JCL DD statement

or by using Access Method Services, as appropriate.

5. Recover the database changes. You can create the JCL by issuing the

GENJCL.RECOV command. Alternatively, you can run the Database Recovery utility

(DFSURDB0) from your own JCL with the DD statement for DFSUDUMP

specified as DUMMY to indicate that there is no image copy from which to

restore.

6. Run the Batch Backout utility (DFSBBO00), because you might need to back

out uncommitted data.

7. After you have recovered, and possibly backed-out, all of the required data sets

of the HALDB partition, issue the /STA DB or the UPDATE DB command for the

HALDB partition.

8. Issue the INITIATE OLREORG command to resume the online reorganization.

You can also recover an output data set after the online reorganization completes

but before an image copy has been made. Follow the same steps as for recovering

Reorganizing HALDBs

380 Administration Guide: Database Manager

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|

|

|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|

|
|
|

|

|
|

an output data set before the online reorganization completes, except the steps for

stopping and restarting the online reorganization.

In addition, you can recover an output data set from a point other than the

beginning of the online reorganization, such as from a full dump of a DASD volume,

using existing procedures if the online reorganization is either completed or

terminated.

Specifying a Purge Time for the Database Change Accumulation Utility:

 When you run the Database Change Accumulation utility (DFSUCUM0) for one of

the output data sets, specify a purge time that is equal to the online reorganization

start time.

Specifying this purge time is necessary if change accumulation records (or an input

log) that involve the output data set span the time that a online reorganization was

started. Specifying the purge time eliminates database change records from before

this point in time and is analogous to eliminating database change records from

prior to the start time of an image copy.

Specifying a Starting Point for the GENJCL.CA and GENJCL.RECOV

Commands: Even if no image copy exists for the output data sets, the RECON

data sets reflect the beginning of the online reorganization as a starting point from

which you can perform forward recovery of one of these data sets, even after the

online reorganization is complete. Until you make an image copy of an output data

set, the GENJCL.CA command treats this starting point as though it were the most

recent image copy and causes changes to the output data set to be accumulated

from that point. Similarly, the GENJCL.RECOV command prepares recovery of an

output data set from this point, even if no physical image copy exists.

Specifying the Active Data Sets for the Database Image Copy Utilities: The

database image copy utilities always copy from the currently active data sets that

are recorded in the RECON data sets. Regardless of whether the A-through-J or

the M-through-V data sets are active, you do not need to change the JCL or control

statements for these utilities to specify which set of data sets to use.

On the utility control statement for the Database Image Copy utility (DFSUDMP0),

the DDNAME does not need to refer to the currently active data set. Regardless of

whether the A-through-J or the M-through-V data sets are active, the utility

automatically uses currently active data sets.

Example: Assume that the data set for a second data set group defined in the DBD

is to be copied, and that the partition name is PARTNO3. Regardless of which set

of data sets is active, you can code a DDNAME of either PARTNO3B or

PARTNO3N on the control statement. If the A-through-J data sets are active,

whether you specify PARTNO3B or PARTNO3N, the utility copies from PARTNO3B.

Likewise, if the M-through-V data sets are active, the utility copies from

PARTNO3N.

In the JCL statements for the Database Image Copy utility, you should omit the DD

statement that refers to the input data set. Based on whether the A-through-J or the

M-through-V data sets are active, the utility dynamically allocates the appropriate

data set. A DD statement that refers to a specific data set name can cause the

utility job to fail because of a “Data Set Not Found” condition during job-step

initiation. This condition occurs if an inactive data set name is coded in the JCL and

the data set does not exist.

Reorganizing HALDBs

Chapter 15. Tuning Databases 381

|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

Activating Sequential Buffering to Improve the Performance of

HALDB Online Reorganization

You can use sequential buffering to improve the performance of online

reorganization of OSAM databases by including the SBONLINE statement in the

IMS.PROCLIB data set member DFSVSMxx.

Using the SBONLINE statement causes IMS to load the sequential buffering

modules during initialization so that, whenever you start an online reorganization for

an OSAM partition, IMS activates sequential buffering immediately. If you do not

include the SBONLINE statement, IMS analyzes the DL/I calls to determine whether

sequential buffering is suited for processing the reorganization.

The two forms of the SBONLINE control statement are:

SBONLINE

SBONLINE,MAXSB=nnnnn

where nnnnn is the maximum amount of storage (in kilobytes) that can be allocated

to sequential buffers.

When the maximum amount of storage is reached, IMS stops allocating sequential

buffers to online applications (including HALDB Online Reorganization) until these

applications release sequential buffer space. If you do not specify the MAXSB=

keyword, the maximum amount of storage for sequential buffers is unlimited. For

more information about the SBONLINE control statement, see the IMS Version 9:

Installation Volume 2: System Definition and Tailoring.

The HALDB Self-Healing Pointer Process

Reorganizations of HALDBs with logical relationships and secondary indexes do not

require the execution of utilities to update pointers. Instead, HALDB uses a

self-healing pointer process to correct logical relationship and secondary index

pointers. This process is implemented by placing a target key and an extended

pointer set (EPS) in the secondary index or logically related database and by using

an indirect list data set (ILDS) in each partition of PHDAM and PHIDAM databases.

How the Self-Healing Pointer Process Works

The elements of the self-healing pointer process can be seen in Figure 219 on page

383, which shows the interrelationships between the elements prior to a database

reorganization.

Reorganizing HALDBs

382 Administration Guide: Database Manager

|
|
|
|
|

|
|
|
|
|

|

|

|

|
|

|
|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|
|

Each secondary index entry and each logical child segment contains the key of its

target record. For secondary indexes, the key of the target’s root segment is

included in the prefix. For logical child segments, the concatenated key of the

logical parent is included in the segment data.

Each segment in a PHDAM or PHIDAM database has an indirect list key (ILK). The

ILK is unique for the segment type across the entire database. It is composed of

the relative byte address (RBA), partition ID, and partition reorganization number of

the segment when it was first created. The ILK for a segment never changes. It is

maintained across reorganizations.

Each secondary index entry or logical child segment has an extended pointer set

(EPS). The EPS includes the ILK of its target segment. It also contains the RBA,

partition ID, and partition reorganization number for the target segment. These parts

of the EPS might not be accurate. That is, they might not reflect the current location

of the target segment or the current reorganization number of the target segment’s

partition. In Figure 219 they are accurate.

The target segment has an indirect list entry (ILE) in the ILDS for a partition. The

ILE contains accurate information about the target segment. This includes its

current RBA, the correct partition ID, and the current reorganization number for the

partition. The key of the ILE is composed of the ILK and the segment code of the

target segment.

Figure 219. HALDB Pointer Before a Reorganization

Reorganizing HALDBs

Chapter 15. Tuning Databases 383

|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

The reorganization number for a partition is physically stored in the partition’s first

database data set. This number is initialized by partition initialization or load, and

incremented with each reorganization that reloads segments in the partition.

Finding Target Segments

When IMS accesses the target segment from the secondary index entry or logical

child segment, it must first determine the partition in which the target resides. It

uses the key in the secondary index or logical child to determine the partition. Next

it must determine the location in the target partition database data set. It compares

the partition ID and reorganization number of the target partition with the partition ID

and reorganization number stored in the EPS. If they match, IMS uses the RBA in

the EPS to locate the target segment. If they do not match, the RBA in the EPS

cannot be used.

When the RBA in the EPS cannot be used, IMS uses the information in the ILE to

locate the target segment. The ILE key is found by using the ILK from the EPS and

the target’s segment code. The ILE is read from the ILDS of the partition

determined from the target’s key.

Figure 220 on page 385 illustrates a situation in which the RBA in the EPS cannot

be used. In the figure, the target partition has been reorganized three times since

the EPS was accurate. This has moved the target segment and updated the

reorganization number in the partition data set. The EPS still contains a

reorganization number of 5, but the reorganization number in the partition data set

is now 8. The information in the ILE has been updated by the HD Reorganization

Reload utility. IMS uses the ILK from the EPS to find the ILE and uses the RBA in

the ILE to find the target segment.

Reorganizing HALDBs

384 Administration Guide: Database Manager

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

Even though the retrieval is indirect, often the CI containing the ILE will already be

in IMS’s buffer pool.

Recommendation: If possible, avoid the indirect process of locating target

segments. Instead, get the target segment location from the EPS without reading

the ILE. The self-healing process allows IMS to limit the use of ILEs.

Healing Pointers

The self-healing process updates or corrects the information in EPSs. When the ILE

is used, the information about the current location of the segment in the ILE is

moved to the EPS. This allows IMS to avoid the indirect process if the EPS is used

for a later retrieval. This correction to the EPS in the database buffer pool is always

done.

Because of locking considerations, the update might not be written to the database

on DASD. The buffer containing the entry or segment with the updated EPS is

marked as altered if the application program is allowed to update the database. The

call must be done with a PCB allowing updates, and the IMS system must have an

access intent for the partition that allows updates. If updates are not allowed, the

buffer is not marked as altered.

When the application reaches a sync point, it does not write buffers to DASD if they

are not marked as altered. If the updated EPS is not written to DASD, the next time

it is retrieved from DASD and used to find its target, IMS must use the indirect

process. That is, IMS must read the ILE again.

Figure 220. HALDB Pointer After a Reorganization

Reorganizing HALDBs

Chapter 15. Tuning Databases 385

|

|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

Figure 221 shows the EPS after it has been healed. The RBA points to the current

location. The partition ID is correct. The partition reorganization number matches

the number stored in the partition database data set.

Performance of the Self-Healing Process

The performance of the self-healing process can be much more efficient than you

might anticipate.

Many pointers can be healed with a small number of ILDS reads. This is due to the

use of IMS database buffering. ILDSs are database data sets. They use database

buffer pools in the same way that other database data sets use them. If a CI is

already in its buffer pool, it does not have to be read from DASD.

Each ILE is 50 bytes. You specify the CI sizes for your ILDSs. An 8 KB ILDS CI

holds up to 163 ILEs and a 16 KB CI holds up to 327 ILEs, so a single CI can hold

many ILEs. After a reorganization, IMS might need to heal many pointers to the

reorganized partitions.

When there are frequent uses of the CIs in an ILDS, they tend to remain in their

buffer pool. One read of an ILDS CI might be sufficient to heal hundreds of pointers.

As with most IMS database tuning, having a large number of buffers for frequently

used data sets can be highly beneficial.

Another benefit of the self-healing process is that it does not waste resources

healing pointers that are not used. In many secondary indexes, only a small number

of entries are actually used. With a non-HALDB database, the entire index is rebuilt

Figure 221. HALDB Pointer After the Self-Healing Process

Reorganizing HALDBs

386 Administration Guide: Database Manager

|

|
|
|

|
|
|
||

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

every time the indexed database is reorganized. With HALDB, the index is not

rebuilt and only a small number of referenced index entries are updated. HALDB

does not use resources to update pointers that are never used.

When an EPS is updated, an application marks buffers as altered only if the

application is allowed to make updates. If updates are allowed and a block-level

data sharing environment is being used, a block lock is requested for the altered

block. Block level data sharing environments exist when the IRLM is used and the

share level for the database is either 2 or 3. The block locks are held until the

application program commits its unit of work, which could cause a performance

problem.

Optimizing Self-Healing Performance: Usually application programs with update

authority commit frequently. This is good programming practice. Occasionally, an

application program that is allowed to do updates does not actually do them. For

example, a program with a PCB specifying PROCOPT=A might only read. In this

case, it might not commit frequently. Because it only reads, it never holds many

locks. This could change with the implementation of HALDB. If the program runs in

a block level data sharing environment and invokes the healing process, it will hold

block locks until they are committed. This could cause two problems. First, it might

hold the locks for a long time and cause other programs to wait before they can

update the blocks. Second, it could hold many locks. This could cause a storage

shortage in the IRLM or a lock structure.

If you have a program that holds locks for a long time or that holds many locks

when performing the self-healing pointer process, you have four options:

v If the application program does not make updates, use PROCOPT=G.

v Have your program commit frequently.

v Invoke the pointer healing process before you run application programs that use

PROCOPT=A, but do not do any updates. Run another program or utility before

this type of application program. The HALDB Conversion and Maintenance Aid

tool supplies a pointer healing utility.

v Rebuild secondary indexes with an index builder, such as the IMS Index Builder

for z/OS. The IMS Index Builder for z/OS creates EPSs with accurate RBAs.

This scenario is not common. Most users can let the pointer healing process occur

without taking any special precautions.

Recommendation: Do not rebuild your secondary indexes after a reorganization.

Let the self-healing process of HALDB correct the pointers. This shortens the

outage for reorganizations and tends to minimize the use of resources.

Related Reading:

v For more information about the IMS High Availability Large Database Conversion

and Maintenance Aid, see the IMS High Availability Large Database Conversion

and Maintenance Aid for z/OS, User’s Guide.

v For more information about the IMS Index Builder, see the IMS Index Builder for

z/OS User’s Guide.

Reorganizing HALDBs

Chapter 15. Tuning Databases 387

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|

|

|

|
|
|
|

|
|

|
|

|
|
|

|

|
|
|

|
|

Changing DL/I Access Methods

When you originally chose a DL/I access method (or type of database), you chose it

based on such things as:

v The type of processing you needed to do (sequential, direct, or both)

v The volatility of your data

If the characteristics of your applications have changed over a period of time,

performance might be improved by changing to another DL/I access method.

Chapter 6, “Choosing Full-Function Database Types,” on page 55 describes which

type of DL/I access method to choose given your application’s characteristics.

Assuming that you have decided to change access methods, this topic tells you:

v Given your existing DL/I access method, what things you need to change to

convert to a different DL/I access method

v How to do the conversion

The reorganization utilities described earlier in this chapter can be used to change

DL/I access methods among the HISAM, HDAM, and HIDAM access methods. One

exception to this is that HDAM cannot be changed to HISAM or HIDAM unless

HDAM database physical records are in root key sequence. This exception exists

because HISAM and HIDAM databases must be loaded with database records in

root key sequence. When the HD Reorganization Unload utility unloads an HDAM

database, it unloads it using GN calls. GN calls against an HDAM database unload

the database records in the physical sequence in which they were stored by the

randomizing module. This will not be root key sequence unless you used a

sequential randomizing module (one that put the database records into the

database in physical root key sequence).

Related Reading: The procedures in this topic require you to reassess different

aspects of your databases. See the following related readings for information to

help you make the reassessments:

v For a description of free space and how it is specified, see “Specifying Free

Space (HDAM, PHDAM, HIDAM, and PHIDAM Only)” on page 241.

v For a description of types of pointers and how to specify them, see “Types of

Pointers You Can Specify” on page 81.

v For information about what to consider in choosing a logical record length and

how logical record lengths are specified, see “Choosing a Logical Record Length

for HD Databases” on page 248.

v For information about what to consider in choosing a CI or block size and how CI

and block size are specified, see “Determining the Size of CIs and Blocks” on

page 248.

v For information about what to consider in choosing buffer number and size and

how buffers are specified, see “Buffer Numbers” on page 251.

v For information about how to calculate database size, see “Estimating the

Minimum Size of the Database” on page 311.

v For information about choosing HDAM or PHDAM options, see “Choosing HDAM

or PHDAM Options” on page 244.

v For information about choosing and specifying a randomizing module, see

“Determining Which Randomizing Module to Use (HDAM and PHDAM Only)” on

page 243.

Changing DL/I Access Methods

388 Administration Guide: Database Manager

|
|
|

|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|

|
|
|

Changing the DL/I Access Method From HISAM to HIDAM

You need the following before changing your DL/I access method from HISAM to

HIDAM:

v Determine whether you are going to set aside free space in the HIDAM

database. (Free space is space into which database records are not loaded

when the database is initially loaded.)

Unlike HISAM, in a HIDAM database you can set aside periodic blocks or CIs of

free space or a percentage of free space in each block or CI (in the ESDS or

OSAM data set). This free space can then be used for inserting database

records or segments into the database after initial load.

v Determine what type of pointers you are going to use in the database. Unlike

HISAM, HIDAM uses direct-address pointers to point from one segment in the

database to the next.

v Reassess your choice of logical record size. A logical record in HISAM can only

contain segments from the same database record. In HIDAM, a logical record

can contain segments from more than one database record.

v Reassess your choice of CI or block size. In HISAM, your choice of CI or block

size should have been some multiple of the average size of a database record.

In HIDAM, the size should be chosen because of the characteristics of the device

and the type of processing you plan to do.

v Reassess your choice of database buffer sizes and the number of buffers you

have allocated. If you have changed your CI or block size, you need to allocate

buffers for the new size.

v Recalculate database space. You need to do this because the changes you are

making will result in different requirements for database space.

Once you have determined what changes you need to make, you are ready to

change your DL/I access method from HISAM to HIDAM. To do this:

1. Unload your database using the existing DBD and the HD Reorganization

Unload utility.

2. Code a new DBD that reflects the changes you need to make. You must also

code a DBD for the HIDAM index.

3. If you need to make change that are not specified in the DBD (such as

changing database buffer sizes or the amount of space allocated for the

database), make these changes.

4. For non-VSAM data sets, delete the old database space and define new

database space. For VSAM data sets, delete the space allocated for the old

clusters and define space for the new clusters.

5. Reload the database using the new DBD and the HD Reorganization Reload

utility. Remember to make an image copy of your database as soon as it is

reloaded.

If you are using logical relationships or secondary indexes, you will need to run

additional utilities immediately before and after reloading your database. The

flowchart in Figure 195 on page 346 tells you which utilities to use and the order

in which they must be run.

Changing the DL/I Access Method From HISAM to HDAM

You need to do the following before changing your DL/I access method from HISAM

to HDAM:

Changing DL/I Access Methods

Chapter 15. Tuning Databases 389

v Determine what type of pointers you are going to use in the database. Unlike

HISAM, HDAM uses direct-address pointers to point from one segment in the

database to the next.

v Determine which randomizing module you are going to use. Unlike HISAM,

HDAM uses a randomizing module. The randomizing module generates

information that determines where a database record will be stored.

v Determine which HDAM options you are going to use. Unlike HISAM, an HDAM

database is divided into two parts: a root addressable area and an overflow area.

The root addressable area contains all root segments and is the primary storage

area for dependent segments in a database record. The overflow area is for

storage of dependent segments that do not fit in the root addressable area. The

HDAM options here are the ones that pertain to choices you make about the root

addressable area. These are:

– The maximum number of bytes of a database record to be put in the root

addressable area when segments in the database record are inserted

consecutively (without intervening processing operations).

– The number of blocks or CIs in the root addressable area.

– The number of RAPS (root anchor points) in a block or CI in the root

addressable area. (A RAP is a field that points to a root segment.)

v Reassess your choice of logical record sizes. A logical record in HISAM can only

contain segments from the same database record. In HDAM, a logical record can

contain segments from more than one database record. In addition, HDAM

logical records contain RAPs and two space management fields (FSEs and

FSEAPs).

v Reassess your choice of CI or block size. In HISAM, your choice of CI or block

size should have been some multiple of the average size of a database record.

In HDAM, the size should be chosen because of the characteristics of the device

and the type of processing you plan to do.

v Reassess your choice of database buffer sizes and the number of buffers you

have allocated. If you have changed your CI or block size, you need to allocate

buffers for the new size.

v Recalculate database space. You need to do this because the changes you are

making will result in different requirements for database space.

Once you have determined what changes you need to make, you are ready to

change your DL/I access method from HISAM to HDAM. To do this:

1. Unload your database, using the existing DBD and the HD Reorganization

Unload utility.

2. Code a new DBD that reflects the changes you need to make.

3. If you need to make changes that are not specified in the DBD (such as

changing database buffer sizes or the amount of space allocated for the

database), make these changes. HDAM only requires one data set, whereas

HISAM requires two.

4. For non-VSAM data sets, delete the old database space and define new

database space. For VSAM data sets, delete the space allocated for the old

clusters and define space for the new clusters.

5. Reload the database using the new DBD and the HD Reorganization Reload

utility. Make an image copy of your database as soon as it is reloaded.

If you are using logical relationships or secondary indexes, you will need to run

additional utilities before reloading your database. The flowchart in Figure 195

on page 346 tells you which utilities to use and the order in which they must be

run.

Changing DL/I Access Methods

390 Administration Guide: Database Manager

Changing the DL/I Access Method From HIDAM to HISAM

You need to do the following before changing your DL/I access method from HIDAM

to HISAM:

v Reassess your choice of logical record size. A logical record in HISAM can only

contain segments from the same database record. In HIDAM, a logical record

can contain segments from more than one database record.

v Reassess your choice of CI or block size. In HIDAM, your choice of CI or block

size should be based on the characteristics of the device and the type of

processing you plan to do. In HISAM, the size should be some multiple of the

average size of a database record.

v Reassess your choice of database buffer sizes and the number of buffers you

have allocated. If you have changed your CI or block size, you need to allocate

buffers for the new size.

v Recalculate database space. You need to do this because the changes you are

making will result in different requirements for database space.

Once you have determined what changes you need to make, you are ready to

change your DL/I access method from HIDAM to HISAM. To do this:

1. Unload your database using the existing DBD and the HD Reorganization

Unload utility.

2. Code a new DBD that reflects the changes you need to make. You will not be

specifying direct-address pointers or free space in the DBD, because HISAM,

unlike HIDAM, does not allow use of these. Also, HISAM has only one DBD

whereas HIDAM had two.

3. If you need to make changes that are not specified in the DBD (such as

changing database buffer sizes or the amount of space allocated for the

database), make these changes.

4. For non-VSAM data sets, delete the old database space and define new

database space. For VSAM data sets, delete the space allocated for the old

clusters and define space for the new clusters.

5. Reload the database using the new DBD and the HD Reorganization Reload

utility. Remember to make an image copy of your database as soon as it is

reloaded.

If you are using logical relationships or secondary indexes, run additional utilities

right before and after reloading your database. The flowchart in Figure 195 on

page 346 tells you which utilities to use and the order in which they must be

run.

Changing the DL/I Access Method From HIDAM to HDAM

You need to do the following before changing your DL/I access method from HIDAM

to HDAM:

v Reassess your choice of direct-address pointers. Although both HIDAM and

HDAM use direct-address pointers, you might need to change the type of

direct-address pointer used:

– Because of the changing needs of your applications.

– Because pointers are partly chosen based on the type of database you are

using. For example, if you used physical twin backward pointers on root

segments in your HIDAM database to get fast sequential processing of roots,

they will not have any use in an HDAM database. See Chapter 6, “Choosing

Full-Function Database Types,” on page 55 under “Types of Pointers You Can

Specify” for a description of types of pointers, their uses, and how to specify

them.

Changing DL/I Access Methods

Chapter 15. Tuning Databases 391

v Determine which randomizing module you are going to use. Unlike HIDAM,

HDAM uses a randomizing module. The randomizing module generates

information that determines where a database record is to be stored.

v Determine which HDAM options you are going to use. Unlike HIDAM, an HDAM

database does not have a separate index database. Instead the database is

divided into two parts: a root addressable area and an overflow area. The root

addressable area contains all root segments and is the primary storage area for

dependent segments in a database record. The overflow area is for storage of

dependent segments that do not fit in the root addressable area. The HDAM

options here are the ones that pertain to choices you make about the root

addressable area. These are:

– The maximum number of bytes of a database record to be put in the root

addressable area when segments in the database record are inserted

consecutively (without intervening processing operations).

– The number of blocks or CIs in the root addressable area.

– The number of RAPs in a block or CI in the root addressable area.

v Reassess your choice of logical record size.

v Reassess your choice of CI or block size.

v Reassess your choice of database buffer sizes and the number of buffers you

have allocated. If you have changed your CI or block size, you need to allocate

buffers for the new size.

v Recalculate database space. You need to do this because the changes you are

making will result in different requirements for database space.

After you have determined what changes you need to make, you are ready to

change your DL/I access method from HIDAM to HDAM. To do this:

1. Unload your database using the existing DBD and the HD Reorganization

Unload utility.

2. Code a new DBD that reflects the changes you need to make. You probably will

not be specifying free space, but you will be specifying HDAM options. Note

also that you’ll need only one DBD for HDAM, whereas HIDAM required two

DBDs.

3. If you need to make changes that are not specified in the DBD (such as

changing database buffer sizes or the amount of space allocated for the

database), make these changes. HDAM only requires one data set, whereas

HIDAM requires two.

4. For non-VSAM data sets, delete the old database space and define new

database space. For VSAM data sets, delete the space allocated for the old

clusters and define space for the new clusters.

5. Reload the database using the new DBD and the HD Reorganization Reload

utility. Remember to make an image copy of your database as soon as it is

reloaded.

If you are using logical relationships or secondary indexes, you will need to run

additional utilities right before and after reloading your database. The flowchart

in Figure 195 on page 346 tells you which utilities to use and the order in which

they must be run.

Changing the DL/I Access Method From HDAM to HISAM

You need to do the following before changing your DL/I access method from HDAM

to HISAM:

Changing DL/I Access Methods

392 Administration Guide: Database Manager

v Reassess your choice of logical record size. A logical record in HISAM can only

contain segments from the same database record. In HISAM, a logical record

can contain segments from more than one database record.

v Reassess your choice of CI or block size. In HDAM, your choice of CI or block

size should be based on the characteristics of the device and the type of

processing you plan to do. In HISAM, the size should be some multiple of the

average size of a database record.

v Reassess your choice of database buffer sizes and the number of buffers you

have allocated. If you have changed your CI or block size, you need to allocate

buffers for the new size.

v Recalculate database space. You need to recalculate database space because

the changes you are making will result in different requirements for database

space.

After you have determined what changes you need to make, you are ready to

change your DL/I access method from HDAM to HISAM. Remember you must write

your own unload and reload programs unless database records in the HDAM

database are in physical root key sequence. In writing your own load program, if

your HDAM database uses logical relationships, you must preserve information in

the delete byte (for example, a segment that is logically deleted in the database

might not be physically deleted).

To change from HDAM to HISAM:

1. Unload your database using the existing DBD and one of the following:

v Your unload program

v The HD Reorganization Unload utility if database records are in physical root

key sequence

2. Code a new DBD that reflects the changes you need to make. You will not be

specifying direct-address pointers or HDAM options.

3. If you need to make changes that are not specified in the DBD (such as

changing database buffer sizes or the amount of space allocated for the

database), make these changes. HDAM only requires one data set, whereas

HISAM requires two.

4. For non-VSAM data sets, delete the old database space and define new

database space. For VSAM data sets, delete the space allocated for the old

clusters and define space for the new clusters.

5. Reload the database using the new DBD and:

v Your load program, or

v The HD Reorganization Reload utility if database records are in physical root

key sequences

Remember to make an image copy of your database as soon as it is

reloaded.

If you are using logical relationships or secondary indexes, you will need to run

additional utilities right before and after reloading your database. The flowchart

in Figure 195 on page 346 tells you which utilities to use and the order in which

they must be run.

Changing the DL/I Access Method From HDAM to HIDAM

You need to make the following changes before changing your DL/I access method

from HDAM to HIDAM:

v Determine whether you are going to set aside free space in the HIDAM

database. (Free space is space into which database records are not loaded

Changing DL/I Access Methods

Chapter 15. Tuning Databases 393

when the database is initially loaded.) In a HIDAM database, you can set aside

periodic blocks or CIs of free space or a percentage of free space in each block

or CI (in the ESDS or OSAM data set). This free space can then be used for

inserting database records or segments into the database after initial load. In an

HDAM database, you generally get the free space you need by careful choice of

HDAM options.

v Reassess your choice of direct-address pointers. Although both HIDAM and

HDAM use direct-address pointers, you might need to change the type of

direct-address pointer used:

– Because of the changing needs of your applications.

– Because pointers are partly chosen based on the type of database you are

using. For example, you can chose to use physical twin forward and backward

pointers on root segments in your HIDAM database to get fast sequential

processing of roots.

v Reassess your choice of logical record size.

v Reassess your choice of CI or block size.

v Reassess your choice of database buffer sizes and the number of buffers you

have allocated. If you have changed your CI or block size, you need to allocate

buffers for the new size.

v Recalculate database space. You need to recalculate database space because

the changes you are making will result in different requirements for database

space.

Once you have determined what changes you need to make, you are ready to

change your DL/I access method from HDAM to HIDAM. Remember you must write

your own unload and reload programs unless database records in the HDAM

database are in physical root key sequence. In writing your own load program, if

your HDAM database uses logical relationships, you must preserve information in

the delete byte (for example, a segment that is logically deleted in the database

might not be physically deleted).

To change from HDAM to HIDAM:

1. Unload your database using the existing DBD and one of the following:

v Your unload program

v The HD Reorganization Unload utility if database records are in physical root

key sequence

2. Code a new DBD that reflects the changes you need to make. You must also

code a DBD for the HIDAM index. You will not be specifying HDAM options but

you probably will be specifying free space.

3. If you need to make changes that are not specified in the DBD (such as

changing database buffer sizes or the amount of space allocated for the

database), make these changes. HDAM only requires one data set, whereas

HIDAM requires two.

4. For non-VSAM data sets, delete the old database space and define new

database space. For VSAM data sets, delete the space allocated for the old

clusters and define space for the new clusters.

5. Reload the database using the new DBD and one of the following:

v Your load program

v The HD Reorganization Reload utility if database records are in physical root

key sequence.

Remember to make an image copy of your database as soon as it is reloaded.

Changing DL/I Access Methods

394 Administration Guide: Database Manager

If you are using logical relationships or secondary indexes, you will need to run

additional utilities before reloading your database. The flowchart in Figure 195

on page 346 tells you which utilities to use and the order in which they must be

run.

Changing the DL/I Access Method From HDAM to PHDAM and HIDAM

to PHIDAM

For a logical view of HDAM and HIDAM databases before and after changing to

PHDAM and PHIDAM respectively, see Figure 222.

 Requirement: You must concurrently migrate all databases that are logically

related. All secondary indexes that point to these logically related databases must

be migrated at the same time the databases they point to are migrated.

Because non-keyed PHDAM root segments are not supported, you cannot migrate

an HDAM database with non-keyed roots to HALDB.

There are two methods for changing a HDAM or HIDAM database to PHDAM or

PHIDAM. The first method keeps the same database name. The second method

changes the name of the physical database and uses a logical database with the

old database name.

Secondary Index Considerations

Migration of secondary index databases with non-unique keys requires separate

JCL steps to sort and merge the unload records to create new /SX values prior to

inputting them into the HD Reorganization Reload utility. User data is lost.

Related Reading: For more information about the HD Reorganization Reload

Utility, see IMS Version 9: Utilities Reference: Database and Transaction Manager.

Secondary indexes targeting HDAM or HIDAM databases that are changing to

PHDAM or PHIDAM must be changed to PSINDEXs. The steps for doing this are

Figure 222. HDAM and HIDAM Databases Before and After Changing to PHDAM and

PHIDAM

Changing DL/I Access Methods

Chapter 15. Tuning Databases 395

the same as the steps for unload and reload. Run the HD Reorganization Unload

and Reload utilities against the secondary index. The user data is preserved in the

secondary index.

Determining the Database Name

When migrating a database to a HALDB format, you must decide whether to

change the database name.

If the new database is to have the same name as the old database:

1. Unload the old database with the migrate option before changing RECON or

DBDLIB.

2. Create a RECON list before deleting the records for the database.

3. Remove the information from the old database RECON and DBDLIB.

4. Delete all MDA members

5. Define the HALDB by using DBDGEN, ACBGEN, and either the HALDB

Partition Definition utility or the DBRC commands INIT.DB and INIT.PART.

After the definitions are complete, load the new database.

If the new database is to have a different name from the old database:

1. Create a RECON list before deleting the records for the database. The old

information is retained in RECON as long as necessary.

2. Unload the old database.

3. Remove the DBD from DBDLIB and ACBLIB.

4. Delete all MDA members that refer to the old database.

5. Perform a DBDGEN on the old database name as a logical database with the

source being the new HALDB.

6. Define the HALDB by using DBDGEN, ACBGEN, and either the HALDB

Partition Definition utility or the DBRC commands INIT.DB and INIT.PART.

Performing the Migration Unload

Use the HD Reorganization Unload utility (DFSURGU0) to unload the database.

Specify the migrate option to unload the database.

Performing the Migration Reload

To reload the database:

1. Run the DBDGEN utility for the new HALDB DBD.

2. Use either the HALDB Partition Definition utility or the DBRC commands

INIT.DB and INIT.PART to define the new HALDB partitions.

3. Run the HALDB Partition Data Set Initialization utility (DFSUPNT0) or the

Database Prereorganization utility (DFSURPR0).

4. Reload the database by using HD Reorganization Reload utility (DFSURGL0).

5. Make an image copy of all partitions.

The user data is preserved in the secondary index.

Changing the DL/I Access Method From PHDAM and PHIDAM to

HDAM and HIDAM

The process of restoring HDAM or HIDAM databases that were migrated to PHDAM

or PHIDAM is known as fallback. Fallback supports the following types of logical

relationships:

v Unidirectional HALDB to current unidirectional database

Changing DL/I Access Methods

396 Administration Guide: Database Manager

|
|

v Physically paired HALDBs to current physically paired databases

The order of physical twin segments is maintained when a fallback from HALDBs

occurs. This includes segments that are non-keyed and that have a non-unique key.

Primary indexes are recreated, not unloaded. Secondary indexes are recreated by

the reload utility process. User data is not preserved.

Requirements: The requirements for a fallback include:

v You must perform a concurrent fallback of all databases that are logically related.

v You must have prefix resolution and prefix update utilities, if logical children or

secondary indexes are present when a database falls back from HALDB.

v Before you use the database, but after you reload and perform any prefix

resolution or prefix update, take an image copy of all data sets, including the

prime index, by using one of the image copy utilities. The image copy utilities

invoke DBRC to validate input and record results, which ensures that you have a

backup copy of the database that can serve as an effective point of recovery in

case of failure.

v You must complete the fallback of all related databases and secondary index

databases before any database can be used.

Restriction: You cannot perform a fallback on physically paired HALDBs to current

virtually paired databases and preserve the logical sequence of the virtual logical

child. The step to accomplish this conversion are:

1. Perform a fallback on current physically paired databases.

2. Reorganize the current database.

3. Change the logical relationship to virtually paired databases.

The steps in the fallback process are:

1. Unload all related databases using the HD Reorganization Unload utility

(DFSURGLU0) with the FALLBACK option. DFSURGU0 locates the paired

logical children and saves information needed for fallback in the prefix of the

output data. The prefix created by DFSURGU0 contains the information required

to create the new segment prefix when the data is reloaded.

2. Perform DBDGENs to define the current format databases.

3. Re-register all databases to be controlled by DBRC. If keeping the same

database name, first use the HALDB partition Definition utility to delete the

HALDB.

4. Perform the prereorganization step with the databases listed as DBR.

5. Reload all the unloaded databases using the new definitions.

Logical children have some special considerations. There are three cases to

consider: unidirectional, virtually paired, and physically paired databases. Current

DL/I offers an option to not store the logical parent’s concatenated key in the logical

child (virtual key storage option); in normal retrieval the key is built and the user

application always sees the concatenated key in the data. For all logical children

unloaded, you must drop the logical parent’s concatenated key if the virtual key

storage option is chosen. The unloaded segments are reloaded as real segments

that are part of a physically paired relationship. This type of unload, dropping the

logical parent’s concatenated key, only occurs when DFSURGU0 performs a

fallback unload.

Changing DL/I Access Methods

Chapter 15. Tuning Databases 397

|
|
|
|
|
|

Changing HALDB Partition Definitions

HALDB partitions can require changing when they become too large, too small,

empty, obsolete, and so forth. In most cases, HALDB partitions can be added,

deleted, enabled, or disabled without requiring the whole database to be

unavailable. In other cases, you must take the entire HALDB offline to make

changes.

This topic discusses the following subjects:

v “Making Changes to a Single Partition”

v “Making Changes that Affect All of the Partitions in a HALDB”

v “Partition Structure Modification” on page 399

v “Changing Partition Boundaries” on page 400

Making Changes to a Single Partition

Certain characteristics of HALDBs are specific to each partition in the HALDB. To

change these characteristics, you do not need to take the entire HALDB offline; you

only need to take the partition in which you are making changes offline. Before

making changes to a partition, issue a /DBRECOVERY command or an UPDATE DB

STOP(ACCESS) command against the partition.

You can change the following characteristics of a single partition:

v DSN prefix

v Randomizing module name

v Number of root anchor points (RAPs)

v Bytes parameter

v OSAM block size

v VSAM CI size

For example, suppose a PHDAM partition has many roots that randomize to the

same root anchor point. This causes lock contention problems that negatively

impact performance. To remedy this problem, you can increase the number of

RAPs in the partition.

The following steps describe how to change the number of RAPs in a partition:

1. Issue the /DBRECOVERY command to take the partition offline.

2. Unload the data from the partition.

3. Use the Partition Definition utility or DBRC commands to change the number of

RAPs in the partition.

4. Reload the partition.

5. Take an image copy of the data sets for the partition.

6. Issue the /START DB command or the UPDATE DB command to make the partition

available again.

Making Changes that Affect All of the Partitions in a HALDB

Certain characteristics of HALDB partitions are common to all partitions in a

HALDB. Before you can change these characteristics, you must take all of the

partitions in the HALDB offline by issuing the /DBRECOVERY command.

You can change the following characteristics of HALDB partitions only after taking

all partitions offline:

v DBD definition

Changing DL/I Access Methods

398 Administration Guide: Database Manager

|

|
|
|
|
|

|

|

|

|

|

|
|
|
|
|
|

|

|

|

|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|
|

|
|
|
|

|
|

|

v The HALDB Partition Selection exit routine (DFSPSE00)

v Share level

v Nonrecoverable attribute status

v RSR GSG name or tracking level

For example, suppose a HALDB has an existing HALDB Partition Selection exit

routine that needs to be replaced with a HALDB Partition Selection exit routine that

selects partitions based on a new algorithm. This change requires the entire HALDB

to be offline.

The steps below describe how to change a HALDB Partition Selection exit routine:

1. Issue the /DBRECOVERY command to take the HALDB offline.

2. Unload the data from the HALDB using the existing HALDB Partition Selection

exit routine.

3. Use the Partition Definition utility or DBRC commands to change the HALDB

Partition Selection exit routine.

4. Reload the data from the HALDB using the new HALDB Partition Selection exit

routine.

5. Run Image Copy for the data sets for all partitions in the HALDB.

6. Issue the /START command or the UPDATE DB command to make the HALDB

available again.

Partition Structure Modification

When you modify a partition structure, IMS records the changes in the RECON and

increments the version number of the HALDB master that is used to track partition

definition changes.

Online change is not used for changing HALDB partition definitions. IMS recognizes

the version number differences and dynamically reflects the new definitions in the

online IMS system.

If you are using XRF, the alternate IMS system sees the dynamic change and

automatically updates the definitions in the alternate system, requiring no action

from you.

There are three cases when IMS verifies the HALDB partition structure:

v When a partition is authorized for use. This would detect a change in an existing

partition or in a partition which was not previously authorized. This occurs

commonly when a partition is taken offline, modified, and made available again.

The first use of the updated partition triggers partition structure rebuild.

v When an invalid key is detected by partition selection or by a Partition Selection

exit routine. This can occur, for example, when a new partition is added beyond

the high key of the last partition and all existing partitions are already authorized.

In this case, IMS partition selection or the Partition Selection exit routine detects

the new partition. Aftger the new partition is detected, IMS performs partition

structure rebuild automatically.

v When a /START DB HALDB_Master OPEN or UPDATE DB NAME(HALDB_Master)

OPTION(OPEN) command is issued. For example, if a new partition has been

added beyond the high key of the last partition and all existing partitions are

already authorized, these commands will initiate a partition structure rebuild. For

more details on the /START DB command and the UPDATE DB command, see IMS

Version 9: Command Reference.

Changing DL/I Access Methods

Chapter 15. Tuning Databases 399

|

|

|

|

|
|
|
|

|

|

|
|

|
|

|
|

|

|
|

|
|
|
|

|
|
|

|
|
|

|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

When making changes to HALDB partition definitions, consider the following points:

v If you use a HALDB Partition Selection exit routine, you must issue the

/DBRECOVERY command and then the /START command after making any structure

modifications to a partition. Issuing /DBRECOVERY and then /START registers the

changes with IMS. When the HALDB Partition Selection exit routine selects

HALDB partition membership, IMS is not aware of HALDB partition boundaries

and cannot automatically recognize changed definitions.

v If you are using a HALDB Partition Selection exit routine and IMS notifies you of

a structure modification, you might need the exit routine to select partitions

correctly based on the current partition structure.

v Issuing a /START DB command with the OPEN keyword might fail after the

definition of a partition structure has been changed. This is because structure

rebuild is needed. To invoke structure rebuild, an application program that uses

the partition must be run or the type-1 command /START DB HALDB_Master OPEN

must be issued.

v Newly added partitions will not be known by the online IMS system until partition

structure rebuild has been invoked and the new structure has been created.

Changing Partition Boundaries

Changes to partition boundaries can affect one or more partitions. If a change to

one partition causes records to be moved to or from any other partitions, the

change also affects those other partitions. If you use high keys for partition

selection, IMS automatically sets the initialization-required flag for the partitions

affected by a boundary change. If you use a HALDB Partition Selection exit routine,

you are responsible for flagging the partitions that are affected by a boundary

change as requiring initialization. In either case, before you change the partition

boundaries, you must issue the /DBR command against all of the partitions that will

be affected by the change.

For example, suppose a HALDB partition named PART200 has a key range from

101 up to a high key of 200 (KEY200). PART200 needs to be split into two HALDB

partitions so that a new partition named PART150 is added between another

partition, PART100, and PART200. PART150 will have a key range from 101 up to

a high key of 150 (KEY150), a key range that used to be included in PART200.

To create a new partition named PART150 by splitting PART200:

1. Take partition PART200 offline by issuing the /DBRECOVERY command.

2. Unload the data from PART200.

3. Define the new partition named PART150 with a high key of KEY150.

4. Physically allocate the necessary data sets for PART150.

5. Initialize partitions PART150 and PART200 by running either of the following

utilities:

v HALDB Partition Data Set Initialization utility (DFSUPNT0)

v Database Prereorganization utility (DFSURPR0)

6. Reload the PART200 data into the data sets that were allocated in step 4. IMS

uses the new HALDB partition definitions in DBRC to load the data into

PART150 and PART200. With the new definitions, the first root key higher than

KEY150 is the first record loaded into PART200.

7. Run an Image Copy utility for the data sets for both PART150 and PART200.

DBRC does not allow updates to the data after the image copy required flag is

set and before the image copies have been recorded in the RECON data sets.

8. Issue the /START command to PART200 to make it available again.

Changing DL/I Access Methods

400 Administration Guide: Database Manager

|

|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|

|

|

|

|
|

|

|

|
|
|
|

|
|
|

|

In this example, online IMS systems do not know of PART150 until one of the

following events occur:

v A /START DB HALDB_Master OPEN command is issued

v A UPDATE DB HALDB_Master OPEN command is issued

v A DL/I call causes an authorization call to DBRC for PART200. The first DL/I call

goes through HALDB partition selection again to properly select and authorize

either PART150 or PART200.

Procedure for Changing to DEDBs

If your database requires logical relationships, a secondary index, or fixed-length

segments, DEDBs cannot be used.

You need to do the following before changing your database to DEDBs:

v Determine whether or not your application programs can tolerate the FH (data

unavailable) status code.

v Determine whether or not your database can tolerate a randomizing routine

(might not be a problem when changing from HDAM).

v Recalculate database space, particularly when using DEDB features such as

partitioning and data set replication.

v Determine which pointers are available to use.

To change to DEDBs:

1. Unload your database using the existing DBD and one of the following:

v Your unload program

v The HD Reorganization Unload utility if database records are in physical root

key sequence

2. Code a new DBD for the DEDBs.

3. Execute the DBD generation.

4. For non-VSAM data sets, delete the old database space and define the new

database space. For VSAM data sets, delete the space allocated for the old

clusters and define space for the new clusters.

5. Run the DEDB initialization utility (DBFUMIN0).

6. Run the user DEDB load program.

Changing the Hierarchic Structure

There are two types of tuning changes you might need to make that involve

changes to the structure of your database record. The first is changing the

hierarchic sequence of segment types in your database record to improve

performance. The second is combining segments to maximize the use of space.

Changes involving adding and deleting segments in the hierarchy are covered in

Chapter 16, “Modifying Databases,” on page 423.

Changing the Sequence of Segment Types

In general, performance is best if frequently used dependent segments are close to

the root segment and infrequently used dependent segments are toward the end of

the database record. This arrangement maximizes performance because all types

of databases (except HSAM) have direct (therefore, fast) access to root segments.

But, after the root is located, dependent segments are found by one of the

following:

Changing DL/I Access Methods

Chapter 15. Tuning Databases 401

|
|

|

|

|
|
|

v Searching sequentially through the database record (HSAM and HISAM)

v Following pointers from the root segments to a dependent path and then

searching through twin chains until the correct segment is reached (HDAM,

HIDAM, PHDAM, and PHIDAM).

One way to determine whether the order of dependent segment types in your

hierarchy is an efficient one is to examine the IWAITS/CALL field on the DL/I Call

Summary report.

Related Reading: For detailed information on the DL/I Call Summary report, see

IMS Version 9: Utilities Reference: Database and Transaction Manager.

The IWAITS/CALL field tells you, by DL/I call against a specific segment, the

average number of times a segment had to wait for I/O operations to finish before

the segment could be processed. A high number (and high, of course, is relative to

the application) indicates that multiple I/O operations were required to process the

segment.

If the database does not need to be reorganized, the high number can mean this is

a frequently used segment type placed too far from the beginning of the database

record. If you determine this is the situation, you can change placement of the

segment type. The change can increase the value in the IWAITS/CALL field for

other segments.

To change the placement of a segment type, you must write a program to unload

segments from the database in the new hierarchic sequence. (The reorganization

utilities cannot be used to make such a change.) Then you need to load the

segments into a new database. Again, you must write a program to reload.

Combining Segments

The second type of change you might need to make in the structure of your

database record is combining segment types to maximize use of space. For

example, having two segment types, a dependent segment for college classes with

a dependent segment for instructors who teach the classes, is an inefficient use of

space if typically only one or two instructors teach a class. Rather than having a

separate instructor segment, you can combine the two segment types, thereby

saving space.

Combining segments also requires that you write an unload and reload program.

(The reorganization utilities cannot be used to make such a change.)

Procedure for Changing the Hierarchic Structure

To change the hierarchic structure, you need to:

1. Determine whether the change you are making will affect the code in any

application programs. If so, make sure the code gets changed.

2. Unload your database using your unload program and the existing DBD.

3. Code a new DBD.

4. If the change you are making affected the code in application programs, make

any necessary changes to the PSBs for those application programs. If you have

the DB/DC Data Dictionary, it can help you determine which application

programs and PCBs are affected by the DBD changes you have made.

Changing the Hierarchic Structure

402 Administration Guide: Database Manager

5. For non-VSAM data sets, delete the old database space and define new

database space. For VSAM data sets, delete the space allocated for the old

clusters and define space for the new clusters.

6. Reload your database using your load program and the new DBD. Remember

to make an image copy of your database as soon as it is reloaded.

7. If your database uses logical relationships or secondary indexes, you must run

some of the reorganization utilities before and after reloading to resolve prefix

information. The flowchart in Figure 195 on page 346 tells you which utilities to

use and the order in which they must be run.

Changing Direct-Access Storage Devices

Several situations might warrant tuning your database by changing DASDs

(direct-access storage devices). First, when application requirements change, you

might require a faster or slower device. Second, you might want to take advantage

of new devices offering better performance. Finally, you might need to change

devices to get database data sets on two different devices, so as to minimize

contention for device use.

You can change your database (or part of it) from one device to another using the

reorganization utilities. To change direct-access storage devices:

1. Unload your database using the existing DBD and the appropriate unload utility.

2. Recalculate CI or block size to maximize use of track space on the new device.

Information on calculating CI or block size is contained in Chapter 9, “Designing

Full-Function Databases,” on page 241 under “Determining the Size of CIs and

Blocks”.

3. Code a new DBD.

4. For non-VSAM data sets, delete the old database space and define new

database space. For VSAM data sets, delete the space allocated for the old

clusters and define space for the new clusters.

5. Reload your database, using the new DBD and the appropriate reload utility.

Remember to make an image copy of your database as soon as it is reloaded.

6. If your database uses logical relationships or secondary indexes, you must run

some of the reorganization utilities before and after reloading to resolve prefix

information. The flowchart in Figure 195 on page 346 tells you which utilities to

use and the order in which they must be run.

Tuning OSAM Sequential Buffering

If you are using OSAM Sequential Buffering, you can do two things to help ensure

that it processes your databases efficiently:

v Keep your databases well organized; that is, the logical (database record)

sequence is nearly the same as the physical (DASD block) sequence.

v Select the right number of SB buffer sets (Tuning of SB buffers is discussed

“OSAM Sequential Buffering” on page 407).

Well-Organized Database

Well-organized databases are by far the most important of these two factors. When

the databases SB processes are well organized, you note elapsed time

improvements. This is because your programs process IMS database segments

and records, and they do not process DASD blocks directly. Processing a

well-organized database in logical-record sequence results in an I/O reference

pattern that accesses most DASD blocks in physical sequence. SB can take

Changing the Hierarchic Structure

Chapter 15. Tuning Databases 403

advantage of these sequential I/O patterns by issuing many sequential reads.

Extensive use of sequential reads considerably reduces the elapsed time for your

job.

Badly-Organized Database

Processing a badly-organized database in logical-record sequence typically results

in an I/O reference pattern that accesses many DASD blocks in a random

sequence. This happens because many segments were stored in randomly

scattered blocks after the database was loaded or reorganized. When your

database is accessed in a predominantly random pattern, most I/O operations

issued by the SB buffer handler are random reads. SB is not able to issue many

sequential reads, and the elapsed time for your job is not considerably reduced.

You can use the SB buffering statistics in the optional //DFSSTAT reports to see if

your database is well-organized. Your database is likely to be badly organized if a

large percentage of the blocks were read with random reads during sequential

processing. You can monitor this percentage over a period of time to see if it

increases as the database ages.

Related Reading: For details on //DFSSTAT reports, see IMS Version 9: Utilities

Reference: System.

Ensuring a Well-Organized Database

You can ensure your databases are reasonably well-organized by:

v Providing enough embedded free space at database load or reorganization time.

IMS can then use this free space to insert new segments near their related

segments (segments in the same database record).

Related Reading: For details on how to provide enough embedded free space,

see “Specifying Free Space (HDAM, PHDAM, HIDAM, and PHIDAM Only)” on

page 241.

Tip: Choose the amount of free space based on the growth and performance

characteristics of your database. For new databases, use a value of 25% and

increase or decrease this value as needed. It is a good idea to schedule a

reorganization for the database when the reusable free space is less than 5%.

v Selecting an appropriate database reorganization frequency.

Related Reading: For more information on when and how to reorganize your

databases, see “Reorganizing the Database” on page 341.

v Using efficient HDAM and PHDAM randomizing modules and randomizing

parameters. Information on this can be found in “Determining Which

Randomizing Module to Use (HDAM and PHDAM Only)” on page 243.

Adjusting HDAM and PHDAM Options

To assess any design choices you have previously made or to improve

performance, read “Choosing HDAM or PHDAM Options” on page 244. This topic

discusses the HDAM and PHDAM options you can choose and the performance

implications each.

You can adjust HDAM and PHDAM options using the reorganization utilities:

1. Determine whether the change you are making will affect the code in any

application programs. It should only do so if you are changing to a sequential

randomizing module.

2. Unload your database, using the existing DBD and the appropriate unload utility.

Tuning OSAM Sequential Buffering

404 Administration Guide: Database Manager

3. Code a new DBD (for non-PHDAM) using the TSO Partition Definition Utility. If

you changed your CI or block size, you need to allocate buffers for the new

size.

Related Reading: See Chapter 9, “Designing Full-Function Databases,” on

page 241 for a discussion of what things to consider in choosing buffer number

and size and how they are specified.

4. If the change you are making affected the code in application programs, make

any necessary changes to the PSBs for those application programs. If you have

the DB/DC Data Dictionary, it can help you determine which application

programs and PCBs are affected by the DBD changes you have made.

5. Determine whether you need to recalculate database space.

Related Reading: See “Estimating the Minimum Size of the Database” on page

311 for a description of how to calculate space.

6. For non-VSAM data sets, delete the old database space and define new

database space. For VSAM data sets, delete the space allocated for the old

clusters and define space for the new clusters.

7. Reload your database or partition using the new DBD (if any) and the

appropriate reload utility. Make an image copy of your database as soon as it is

reloaded.

Adjusting Buffers

The size and number of buffers you can choose are described in “Multiple Buffers in

Virtual Storage” on page 249. This topic also discusses the performance

implications of choosing a buffer size and number. To improve performance, reread

that topic and reassess the original choices you made before you adjust your

buffers.

VSAM Buffers

This topic contains the following information about VSAM buffers:

v “Monitoring VSAM Buffers”

v “When to Adjust VSAM Buffers”

v “VSAM Buffer Adjustment Options”

Monitoring VSAM Buffers

If you are using VSAM, you can monitor buffers using the DB monitor reports

described in Chapter 14, “Monitoring Databases,” on page 335. For each buffer size

you define, a VSAM subpool report is produced. The VSAM Buffer Pool report tells

the number of buffers in the subpool and their size (in the SUBPOOL BUFFER

SIZE and TOTAL BUFFERS IN SUBPOOL fields).

When to Adjust VSAM Buffers

Adjust VSAM buffers when you see buffer performance begin to degrade, or if you

wish to add options to boost performance in anticipation of increased buffer activity.

VSAM Buffer Adjustment Options

1. If background write is turned on and the number in the NUMBER OF VSAM

WRITES TO MAKE SPACE IN THE POOL field is not zero, you probably do not

have enough buffers allocated in the subpool. Try allocating more buffers to

decrease the number or reduce it to zero.

2. If you need to improve performance for a specific application, you can reserve

subpools for certain data sets by:

v Defining multiple local shared resource pools.

Adjusting HDAM and PHDAM Options

Chapter 15. Tuning Databases 405

|

|

|

|

v Dedicating subpools to a specific data set.

v Defining separate subpools for index and data components of VSAM data

sets. IMS Version 9: Installation Volume 2: System Definition and Tailoring

tells you how to specify these options.

3. If sequential mode processing is not used, the number of VSAM buffers

specified in the DFSVSAMP DD statement can dramatically affect performance.

This problem occurs when the number of VSAM KSDS indexes that must be

read, plus one for the data portion, is equal to or greater than the number of

VSAM buffers allocated. This problem can be alleviated either by increasing the

number of buffers or by using sequential mode. With sequential mode, the need

to read indexes above the sequence set is reduced. However, sequential mode

can only be obtained in a batch environment with a DBD referenced by a single

PCB and with a processing option of LOAD or RETRIEVE only. Sequential

mode is not available in data sharing.

4. VSAM buffers can take advantage of z/OS Hiperspace buffering.

Hiperspace Buffering Parameters: To use Hiperspace buffering, you must

specify one or two optional parameters on the VSRBF subpool definition statement:

HSO|HSR

Specifies the action IMS takes if Hiperspace buffering requested for a

subpool is unavailable.

HSO Hiperspace buffering is optional. IMS continues to run.

HSR Hiperspace buffering is required. IMS terminates.

HSn Specifies the number of Hiperspace buffers to build for a subpool. The

number n is a 1- to 8-digit number.

Hiperspace parameters are valid only for buffer sizes of 4K or multiples of 4K.

Specifying Hiperspace parameters on buffers smaller than 4K causes an error. To

use Hiperspace buffering you might need to unload your database and then reload

it into 4K or multiples of 4K CI sizes to accommodate Hiperspace requirements.

If you decide to leave intact databases with CI sizes of less than 4K, do not allocate

any buffers less than 4K. The CIs that are less than 4K are placed in 4K or larger

buffer pools. However, the CIs compete with VSAM data sets already there. This

method might be expedient in the short term.

Related Reading:

v For more information on coding the HSO|HSR and HSn parameters to activate

Hiperspace buffering on VSAM buffers, see IMS Version 9: Installation Volume 2:

System Definition and Tailoring.

v For more information about VSAM buffers, including Hiperspace buffers, see

z/OS V1R4: DFSMS: Using Data Sets.

OSAM Buffers

If you are using OSAM, individual subpool buffer reports do exist. However, you can

monitor the number of buffers you are using by using the Enhanced OSAM Buffer

Subpool statistics function which supports the following values:

DBESF

Provides the full OSAM Subpool statistics in a formatted form.

DBESU

Provides the full OSAM Subpool statistics in an unformatted form.

Adjusting Buffers

406 Administration Guide: Database Manager

DBESS

Provides a summary of the OSAM database buffer pool statistics in a

formatted form.

DBESO

Provides a the full OSAM database buffer pool statistics in a formatted form

for online statistics returned as a result of a /DIS POOL command.

Related Reading: For detailed information on these values, see the IMS Version

9: Application Programming: Design Guide.

Another way to improve performance, this time for a specific application, is to

reserve subpools for use by certain data sets. For example, if you have an index

data set with a block size of 512 bytes, reserve a subpool for it that contains

512-byte buffers. You can do this by not defining 512-byte block sizes for any other

data sets in the database. (Remember, block sizes are specified by data set in the

BLOCK= operand in the DATASET statement in the DBD.) If you then allocate

enough 512-byte buffers to hold all the blocks in your index, all blocks read into the

buffer pool will remain in the buffer pool.

Performance can also be improved through the use of the co (caching option)

parameter of the IOBF control statement specified either in the DFSVSMxxx

member of IMS.PROCLIB or in DFSVSAMP.

Related Reading:

v For detailed information about the DB Monitor Database Buffer Pool report, see

the IMS Version 9: Utilities Reference: System.

v For more information on the co (caching option) parameter of the IOBF control

statement, OSAM buffer pools and the use of the coupling facility for OSAM data

caching see the IMS Version 9: Installation Volume 2: System Definition and

Tailoring.

Procedure for Adjusting VSAM and OSAM Database Buffers

To adjust VSAM and OSAM database buffers, change the control statements that

specify buffer size and number. Then put the new control statements in the:

v DFSVSAMP data set in batch and utility environments

v IMS.PROCLIB data set with the member name DFSVSMnn in IMS TM and

DBCTL environments

Related Reading: Detailed information on how to code these control statements is

in IMS Version 9: Installation Volume 2: System Definition and Tailoring.

OSAM Sequential Buffering

If you are using OSAM Sequential Buffering, you can use the Sequential Buffering

Summary report and the Sequential Buffering Detail report to see how the SB

buffers were used during a your program’s execution.

By default, four buffer sets exist in each SB buffer pool. If the reports indicate that a

large percentage of random read I/O operations were used, and you know that the

program was processing your database sequentially, increasing the number of

buffer sets to six or more can improve performance. By increasing the number of

buffer sets, it is more likely that a block is still in an SB buffer when requested, and

a read I/O operation is not necessary.

Adjusting Buffers

Chapter 15. Tuning Databases 407

If only a few random reads were used during your program’s execution, it indicates

that the database is very well organized and most requests were satisfied from the

SB buffer pool or with sequential reads. If this happens, you can save virtual

storage space by decreasing the number of buffer sets in each SB buffer pool to

two or three.

Procedure for Adjusting Sequential Buffers

You can change the number of buffer sets allocated to each SB buffer pool in two

ways:

v Coding an SBPARM control statement with the BUFSETS keyword.

v Using an SB Initialization Exit Routine.

Once you have changed the number of buffer sets, you can use the SB Test Utility

to reprocess the SB buffer handler call sequence that was issued during your

program’s execution. Then you can study the resulting //DFSSTAT reports to see

the impact of the change.

Related Reading:

v The Sequential Buffering Summary report and the Sequential Buffering Detail

reports are described and instructions on how to use the SB Test Utility are in the

IMS Version 9: Utilities Reference: Database and Transaction Manager.

v Detailed instructions on how to code an SBPARM control statement are in the

IMS Version 9: Installation Volume 2: System Definition and Tailoring.

v Details on the SB Initialization Exit Routine are in the IMS Version 9:

Customization Guide.

Adjusting VSAM Options

The VSAM options you can choose are described in “VSAM Options” on page 260.

In Chapter 6, “Choosing Full-Function Database Types,” on page 55, the

performance implications of each VSAM option are also discussed. To improve

performance, reread that topic and reassess the original choices you made.

The only VSAM option you can specifically monitor for is background write. If you

are not using background write, you can look at the VSAM Buffer Pool report

described in IMS Version 9: Utilities Reference: System. The report, in the Number

of VSAM Writes To Make Space in the Pool field, documents the number of times

data in a buffer had to be written to the database before the buffer could be used. If

you use background write, you might find that you are able to reduce this number

and therefore the size of the buffer pool.

If you are already using background write, the VSAM Buffer Pool report tells you

how many times background write is invoked in the Number of Times Background

Write Function Invoked field. The VSAM Statistics report (another report produced

by the DB monitor) tells you in the BKG WTS field if background write was invoked.

It also tells you, in the USR WRTS field, among other things, how many times

background write was invoked.

Two types of adjustable VSAM options exist:

v Options specified in the OPTIONS control statement

v Options specified in the Access Method Services DEFINE CLUSTER command

Adjusting Buffers

408 Administration Guide: Database Manager

Procedure for Adjusting VSAM Options Specified in the OPTIONS

Control Statement

To adjust these VSAM options, change the appropriate parameters in the OPTIONS

control statement. Then put the new control statement in the:

v DFSVSAMP data set in a batch system

v IMS.PROCLIB data set with the member name DFSVSMnn in an online system

Detailed information on how to code these control statements is in IMS Version 9:

Installation Volume 2: System Definition and Tailoring.

Procedures for Adjusting VSAM Options Specified in the Access

Method Service DEFINE CLUSTER Command

To adjust these VSAM options, change the appropriate parameters in the DEFINE

CLUSTER command. What additional things you must do depends on which VSAM

parameter you are changing, as described in this topic.

Changing the FREESPACE Parameter

You can use the reorganization utilities to change the use of free space or to

change the percent of free space you have specified. To make this change:

1. Unload your database using the existing DBD and the appropriate unload utility.

2. Recalculate database space. You need to do this because the change you are

making will result in different requirements for database space. See Chapter 13,

“Loading Databases,” on page 311, “Estimating the Minimum Size of the

Database” on page 311 for a description of how to calculate database space.

3. Delete the old database cluster and define the new database cluster with a

change to the FREESPACE parameter.

4. Reload your database, using either the existing DBD (if no changes were made

to the DBD) or the new DBD. Use the appropriate reload utility.

5. If the database being reorganized is a secondary index with direct pointers, you

must run some of the reorganization utilities before and after reloading to

resolve prefix information. The flowchart in Figure 195 on page 346 tells you

which utilities to use and the order in which they must be run.

Changing the SPEED / RECOVERY Parameter

Do not unload and reload your database merely to change the SPEED/RECOVERY

parameter. Rather, if you have RECOVERY specified, change the parameter to

SPEED to improve performance when the database is reloaded and restart of the

load program is not used. IMS does not support the RECOVERY parameter.

Recovery can only be done when the database load program is run under control of

UCF.

Because it is assumed you would only change the parameter when making other

database changes that require you to unload and reload your database, no

procedure for changing it is provided here.

Changing the REPLICATE / NOREPLICATE Parameter

You can use the reorganization utilities to change whatever you’ve specified for the

REPLICATE|NOREPLICATE parameters. To change them:

1. Unload your database, using the existing DBD and the appropriate unload utility.

2. Recalculate database space. You need to do this because the change you are

making will result in different requirements for database space.

Adjusting VSAM Options

Chapter 15. Tuning Databases 409

Related Reading: See Chapter 13, “Loading Databases,” on page 311,

“Estimating the Minimum Size of the Database” on page 311 for descriptions of

how to calculate database space.

3. Delete the old database cluster and define the new database cluster.

4. Reload your database using the existing DBD and the appropriate reload utility.

5. If your database uses logical relationships or secondary indexes, you must run

some of the reorganization utilities before and after reloading to resolve prefix

information. The flowchart in Figure 195 on page 346 tells you which utilities to

use and the order in which they must be run.

Adjusting OSAM Options

The OSAM options you can choose are described in “OSAM Options” on page 265.

Performance implications of each OSAM option are also discussed there. To

improve performance, reread that topic and reassess the original choices you

made.

You cannot specifically monitor any OSAM options. To adjust OSAM options,

change the appropriate parameters in the OPTIONS control statement. Then put

the new control statement in the:

v DFSVSAMP data set in a batch system

v IMS.PROCLIB data set with the member name DFSVSMnn in an online system

Detailed information on how to code these control statements is in IMS Version 9:

Installation Volume 1: Installation Verification.

Changing the Amount of Space Allocated

Change the amount of space allocated for your database in two situations. The first

is when you are running out of primary space. Do not use your secondary space

allocation because this can greatly decrease performance. Also change the amount

of space allocated for your database when the number of I/O operations required to

process a DL/I call is large enough to make performance unacceptable.

Performance can be unacceptable if data in the database is spread across too

much DASD space.

One way to routinely monitor use of space is by watching the IWAITS/CALL field in

the DL/I Call Summary report. The DL/I Call Summary report is described in IMS

Version 9: Utilities Reference: System. If the IWAITS/CALL field has a relatively

high number in it, the high number can be caused by space problems. If you

suspect space is the problem, you can verify such problems in two specific ways:

v For VSAM data sets, you can get a report from the VSAM catalog using the

LISTCAT command. In the report, check CI/CA splits, EXCPs, and EXTENTS

(LISTCAT ALL report is described in Chapter 14, “Monitoring Databases,” on

page 335).

v For non-VSAM data sets, you can get a report on the VTOC using the LISTVTOC

command. In the report, check the NOEXT field (LISTCAT ALL report is

described in Chapter 14, “Monitoring Databases,” on page 335).

If you decide to change the amount of space allocated for your database, do it with

JCL or with z/OS utilities. The reorganization utilities must be run to put the

database in its new space. The procedure for putting the database in its new space

is as follows:

1. Unload your database, using the existing DBD and the appropriate unload utility.

Adjusting VSAM Options

410 Administration Guide: Database Manager

2. Recalculate database space.

Related Reading: See “Estimating the Minimum Size of the Database” on page

311 for a description of how to calculate database space.

3. Delete the old database space for non-VSAM data sets and define new

database space. For VSAM data sets, delete the space allocated for the old

clusters and define space for the new clusters.

4. If you are changing the space in the root addressable area of an HDAM

database, you might need to adjust other HDAM parameters. In this case, you

must code a new DBD before reloading (a new DBD is not needed when a

PHDAM partition is changed). To change the space in the root addressable area

of a PHDAM partition, you must use the HALDB Partition Definition utility.

5. Reload your database, using either the existing DBD (if no changes were made

to the DBD) or the new DBD. Use the appropriate reload utility.

6. You must run some of the reorganization utilities before and after reloading to

resolve prefix information if your non-HALDB database uses logical relationships

or secondary indexes. The flowchart in Figure 195 on page 346 tells you which

utilities to use and the order in which they must be run.

Changing Operating System Access Methods

You can use the reorganization utilities to change access methods from OSAM to

VSAM, or from VSAM to OSAM.

To change access methods:

1. Unload the database.

2. Code a new DBD (unless you have already done this as described in Step 1).

3. Delete the old data sets and define the new clusters when changing from

non-VSAM to VSAM. Delete the old clusters and define new database data sets

when changing from VSAM to non-VSAM.

4. You need to change from OSAM options and buffers to VSAM options and

buffers or vice versa. These topics are covered in preceding sections of this

chapter:

 “Adjusting Buffers” on page 405

 “Adjusting VSAM Options” on page 408

 “Adjusting OSAM Options” on page 410

5. Reload your database, using the new DBD. Remember to make an image copy

of your database as soon as it is reloaded.

6. If your non-HALDB database uses logical relationships or secondary indexes,

you must run some of the reorganization utilities before and after loading to

resolve prefix information. The flowchart in Figure 195 on page 346 tells you

which utilities to use and the order in which they must be run.

Changing the Number of Data Set Groups

Normally, a database is physically stored on one data set or, as in HISAM, on a pair

of data sets. However, databases can be physically stored on more than one data

set or pair of data sets. If so, each data set or pair of data sets is called a data set

group. “Multiple Data Set Groups” on page 230 tells you:

v What data set groups are

v When they can be used

v What situations might prompt you to use them

Changing the Amount of Space Allocated

Chapter 15. Tuning Databases 411

v How they are specified in the DBD

You should be familiar with these topics. You should also have decided to change to

multiple data set groups to tune your database. It is not possible for you to

specifically monitor your database to determine whether multiple data set groups

will improve performance or better utilize space. Rather, knowledge of your

application’s requirements along with many types of statistics about database use

might help you make this decision.

To change the number of data set groups in your database, (see Figure 223 on

page 413) you:

1. Unload your database using the existing DBD.

2. If your database is PHDAM or PHIDAM, delete the database definition from the

DBRC RECON data sets using the HALDB Partition Definition Utility.

3. Code a new DBD.

4. Recalculate database space. You need to recalculate database space because

the change you are making will result in different requirements for database

space.

Related Reading: See “Estimating the Minimum Size of the Database” on page

311 for a description of how to calculate database space.

5. Delete the old database space and define new database space for non-VSAM

data sets. Delete the space allocated for the old clusters and define space for

the new clusters for VSAM data sets.

6. If your new database is PHDAM or PHIDAM, run the HALDB Partition Definition

utility to define the partition data sets for the database.

7. Reallocate data sets because the number and size of data sets you are using

will change.

Related Reading: See “Allocating Data Sets” on page 318 for information on

allocating data sets.

8. Reload your database using the new DBD. Take an image copy of your

database as soon as the database is reloaded.

9. Run some of the reorganization utilities before and after reloading to resolve

prefix information if your database uses logical relationships or secondary

indexes. The flowchart in Figure 195 on page 346 shows you which utilities to

use and the order in which they must be run.

Changing the Number of Data Set Groups

412 Administration Guide: Database Manager

Notes to Figure 223:

 1. You can use the database reorganization/load processing utilities (that is, the

HISAM Unload/Reload, HD Unload/Reload, Prefix Resolution and Prefix

Update utilities) to operate on one or more databases concurrently. For

Figure 223. Utility Sequence of Execution When Making Database Changes during Reorganization

Changing the Number of Data Set Groups

Chapter 15. Tuning Databases 413

example, you can reorganize one or more existing databases at the same time

that other databases are being initially loaded. Any or all of the databases

being operated on can be logically interrelated. A database operation is defined

as an initial database load, a database unload/reload (reorganization), or a

database scan.

 2. If one or more segments in any or all of the databases being operated upon is

involved in either a logical relationship or a secondary index relationship, the

YES branch must be taken. You can also use the Prereorganization utility to

determine which database operations must be performed.

 3. Based upon the information given to it on control statements, the database

Prereorganization utility provides a list of databases that must be initially

loaded, reorganized, or scanned. You must not change the number and

sequence of databases specified on the prereorganization control statement

between reload and prefix resolution.

 4. This area of the flowchart must be followed once for each database to be

operated upon, whether the operation consists of an initial load, reorganization,

or scan. The operations can be done for all databases concurrently, or one

database at a time. If the various database operations are performed

sequentially, work data set storage space can be saved and processing

efficiency increased if DISP=(MOD,KEEP) is specified for the DFSURWF1 DD

statement associated with each database operation. The attributes of the work

data set for the database initial load, reorganization, and scan programs must

be identical.

When using the HD Reorganization Reload utility, first do all unloads and

scans of logically related databases if logical parent concatenated keys are

defined as virtual in the logical child.

 5. You must ensure that all operations indicated by the Prereorganization utility (if

it was executed) are completed prior to taking the YES branch.

 6. If any work data sets were generated during any of the database operations

that were executed by you, the YES branch must be taken. The presence of a

logical relationship in a database does not guarantee that work data sets will

be generated during a database operation. The reorganization/load processing

utilities determine the need for work data sets dynamically, based upon the

actual segments presented during a database operation. If any segments that

participate in a logical relationship are loaded, work data sets will be generated

and the YES branch must be taken.

If for any specific database operation no work data set was generated for the

database, processing of that database is complete and ready to use.

When a HIDAM database is initially loaded or reorganized, its primary index

will be generated at database load time.

 7. You must run the DB Scan utility before a database is unloaded when logical

parent concatenated keys are defined as virtual in the logical child database to

be unloaded.

This program should be executed against each database listed in the output of

the Prereorganization utility. A work data set can be generated for each

database scanned by this utility. Databases for scanning are listed after the

characters “DBS=” in one or more output messages of the Prereorganization

utility.

 8. The HD Reorganization Reload utility can cause the generation of a work data

set to be later used by the Prefix Resolution utility. Databases to be

reorganized using the HD Reorganization Unload utility and the HD

Reorganization Reload utility are listed after the character “DBR=” in one or

more output messages of the Prereorganization utility.

Changing the Number of Data Set Groups

414 Administration Guide: Database Manager

9. The user-provided initial database load program can automatically cause the

generation of a work data set to be later used by the Prefix Resolution utility.

You do not need to add code to the initial load program for work data set

generation. Code is added automatically by IMS through the user program

issuing ISRT requests. You must, however, provide a DD statement for this

data set along with the other JCL statements necessary to execute the initial

load program. Databases for initial loading are listed after the characters

DBIL= in one or more output messages of the Prereorganization utility.

10. The database Prefix Resolution utility combines the workfile output from the

Database Scan utility, the HD Reorganization Reload utility, and the user’s

initial database load execution to create an output data set for use by the

Prefix Update utility. The Prefix Update utility then completes all logical

relationships defined for the databases that were operated upon.

11. This path must be taken for HISAM databases with logical relationships. This

path must also be taken if structural changes are required (for example,

HISAM to HDAM, pointer changes, additional segments, or adding a secondary

index).

12. If a secondary index needs to be created or if two secondary indexes need to

be combined, you must run the HISAM Unload/Reload utilities. After the

HISAM Unload/Reload utilities are run, if logical relationships exist in the

database, you must execute the Prefix Update utility before the reorganization

or load process is considered to be complete.

13. For information on scratching and allocating OSAM data sets, see the topic

about designing the IMS online system in IMS Version 9: Administration Guide:

System.

Tuning Fast Path Systems

Your objective in tuning the IMS online system when Fast Path applications are

present depends upon the importance of the message-driven programs and their

criteria for acceptable response time. The performance analysis studies that you

should undertake are:

v Examining the availability of sufficient real storage

v Checking the effectiveness of the balancing groups

v Investigating the number of Fast Path dependent regions and the possibility of

parallel processing

v Monitoring of the required frequency of DEDB reorganization to reduce

fragmented units of work

v Monitoring of the use of DEDB overflow buffers

v Monitoring the forced serialization of programs that concurrently need to use

overflow buffers specified by the EXEC statement DBFX parameter

v Examining the area key ranges and whether the randomizing algorithm can be

refined

v Reducing the amount of mixed mode processing

Fast Path performance can also be improved by eliminating unnecessary delays

caused by the following:

v Transaction volume to a particular Fast Path application program

v DEDB structure considerations

v Contention for DEDB Control Interval (CI) resources

v Exhaustion of DEDB DASD space

v Utilization of available real storage

Changing the Number of Data Set Groups

Chapter 15. Tuning Databases 415

v Sync point processing and physical logging

v Contention for output threads (OTHR)

v Overhead resulting from reprocessing

v Dispatching priority of processor-dominant and I/O-dominant tasks

v DASD contention caused by I/O on DEDBs

v Resource locking considerations with block level sharing

v Buffer pool usage and not grouping Fast Path application programs with similar

buffer use characteristics together into one or more message classes

Statistics on transaction processing and contention for CIs can be obtained from the

output of the Fast Path Log Analysis utility (DBFULTA0), which retrieves (from

system log input) data relating to the usage of Fast Path resources.

Related Reading: For information on the Fast Path Log Analysis utility, see IMS

Version 9: Utilities Reference: System.

Transaction Volume to a Particular Fast Path Application Program

If a disproportionately high number of transactions are queued to a particular

balancing group, consider increasing the number of regions associated with that

particular balancing group. The Fast Path Log Analysis report provides information

about balancing group queuing.

DEDB Structure Considerations

Several characteristics of DEDB usage affect an application’s response time:

v Data replication

v Subset pointers

v Number of areas

v Complexity of hierarchic structure

v Complexity of DL/I calls

v Use of sharing across IMS

v Last child pointers

v Recoverability

The first three characteristics are unique to DEDBs; the last five apply generally to

databases. Data replication allows up to seven data sets for an individual area.

When reading from an area represented by multiple data sets, performance is not

impacted, unless the CI is defective. When updating, up to seven additional writes

could be required. Although the physical write is performed asynchronously to

transaction processing, there could be delays caused by access paths to a variety

of DASD devices.

Up to eight subset pointers allow an application program to separate the children of

a parent into groups in a DEDB, with the subset pointer pointing to the start of each

group. Use of such pointers can help improve performance by reducing the time

needed to access segments whose position is significantly displaced in a chain of

sequential dependent segments.

Usage of Buffers from a Buffer Pool

The Fast Path buffer pool is used by all Fast Path programs except the DEDB

online utilities, which have their own buffer pool. The Fast Path buffer pool is used

to support the processing of MSDBs and DEDBs. The Fast Path buffer pool

Tuning Fast Path Systems

416 Administration Guide: Database Manager

comprises buffers of a size defined at system startup by the BSIZ parameter. The

buffer size selected must be capable of holding the largest CI from any DEDB area

that is to be opened. The number of buffers page-fixed is based upon the value of

supplied parameters:

v The normal buffer allocation (NBA) value causes the defined number of buffers to

be fixed in the buffer pool at startup of the dependent region. (This number can

be specified for the dependent region startup procedure using the NBA

parameter.) The application program in this dependent region is eligible to

receive up to this number of buffers within a given sync interval before one of the

following occurs:

– The buffer manager acquires unmodified buffers from the requesting

application program.

– No more buffers can be acquired on behalf of the requesting application

program (a number of buffers equal to NBA have been requested, received,

and modified). In this case, the buffer manager must acquire access to the

overflow buffer allocation (OBA) if this value was specified for this program. If

no OBA was specified, then all resources acquired for this program during

sync interval processing to date are released.

v The OBA value is the number of buffers that a program can serially acquire when

NBA is exceeded. (This number can be specified for the dependent region

startup procedure using the OBA parameter.) The overflow interlock function

serializes the overflow buffer access, and only one application program at a time

can gain access to the overflow buffer allocation. Therefore, the overflow buffer

can be involved in deadlocks.

v The DBFX value, which is a system startup parameter, defines a reserve of

buffers that are page-fixed upon start of the first Fast Path application program.

These buffers are used when asynchronous OTHREAD processing is not

releasing buffers quickly enough to support the requests made in sync interval

processing.

It follows that:

v BSIZ should be set equal to the largest DEDB CI that will be online. Because the

buffer manager does not split buffers to accommodate multiple control intervals,

making all DEDB CIs of a same size will provide more optimum use of storage.

Even though large block sizes (up to 28K) can be used, this would cause only

partial use of the buffer pool if there were many smaller CI sizes.

v The NBA value should be set approximately equal to the normal number of buffer

updates made during a sync interval. The NBA value for inquiry-only programs

should be small, because the buffers that are never modified can be reused and

will all be released at sync time.

v The OBA should be used only in relation to a limited proportion of sync intervals.

OBA is not required for inquiry-only programs. In general, the user should be

careful to use the OBA value as intended. It should be used to support sync

intervals where application program logic demands a variation in total modified

buffer needs, thereby requiring access to OBA on an exceptional basis. With

BMPs, OBA values greater than 1 should be unnecessary because the 'FW'

status code that is returned when the NBA allocation is exceeded can be used to

invoke a SYNC call. Invoking a SYNC call would then release all resources.

Such application design reduces the serialization and possible deadlocks

inherent in using the overflow interlock function.

v The DBFX value should be set, taking into account the total number of buffers

that are likely to be in OTHREAD processing at peak load time. If this value is

too low, an excessive number of wait-for-buffer conditions are reflected in the

IMS Fast Path Log Analysis report.

Tuning Fast Path Systems

Chapter 15. Tuning Databases 417

To optimize the buffer usage, group message processing application programs with

similar buffer use characteristics and assign them to a particular message class, so

that the applications share the region’s buffers.

Related Reading: See IMS Version 9: Installation Volume 2: System Definition and

Tailoring for details of APPLCTN and TRANSACT class specifications.

Contention for DEDB Control Interval (CI) Resources

Queuing takes place on the DEDB CI resource to maintain serialized access on

DEDB data. When two independent application programs concurrently request

access to a particular CI, one requestor is required to wait. When such a wait would

cause a deadlock, one of the application programs is selected to have its resources

released and its processing returned to the previous sync point. (It should be noted

that the overflow buffer interlock can also be involved in a deadlock). The rules for

selection of the program to be interrupted because of a deadlock are:

v If the deadlock involves one or more message-driven programs, one of the

programs is abnormally terminated, reinstated to its previous sync point, and

rescheduled.

v If a BMP deadlocks with another BMP, the BMP that went through sync point last

is abnormally terminated, has its resources released, is sent back to its previous

sync point, and is given a return code.

v If a deadlock involves a DEDB utility, the other program is terminated and

rescheduled. Two utilities cannot be involved in a deadlock, because two utilities

cannot concurrently access the same DEDB area.

The number of contention and deadlock situations can be decreased by taking the

following steps:

v Ensure that CIs contain no more segments than necessary. (CI size is specified

in the DBD.)

v Limit the use of the overflow buffer interlock, which, in conjunction with CI usage,

can be involved in a deadlock.

v Limit the value of NBA to the value necessary to cope with the majority of cases

and use OBA to deal with the exceptional conditions. When the full buffer

allocation (NBA or NBA and OBA) for a program has been exceeded, the buffer

manager can begin stealing unmodified buffers from this program. When all

buffers associated with a CI have been stolen, the CI can be released, providing

it is not currently in use by a PCB. The buffer stealing and associated CI

releasing is triggered by exceeding the full buffer allocation. Minimizing NBA and

OBA will assist the timely release of CIs, thereby reducing CI contention.

v Ensure that BMPs accessing DEDBs issue SYNC calls at frequent intervals.

(BMPs could be designed to issue many calls between sync points and so gain

exclusive control over a significant number of CIs.)

v BMPs that do physical-sequential processing through a DEDB should issue a

SYNC call when crossing a CI boundary (provided it is possible to calculate this

point). This ensures that the application program never holds more than a single

CI.

Reports produced by the Fast Path Log Analysis utility give statistics about CI

contention.

Exhaustion of DEDB DASD Space

An out-of-space condition (with consequent stoppage of the DEDB area) can occur

in the root addressable and sequential dependent portions of an area. Such

Tuning Fast Path Systems

418 Administration Guide: Database Manager

situations will affect the operation of the system as a whole and can necessitate

lengthy recovery procedures. The number of out-of-space conditions can be

decreased by:

v Attempting to restrict the number of uses of independent overflow CIs through

randomizing algorithm design or regular reorganization

v Deleting sequential dependent CIs on a regular basis

v Using display commands or DEDB POS calls to track space usage

An out-of-space condition can be relieved without bringing IMS down by following

the procedures in “Extending DEDB Independent Overflow Online” on page 458.

Utilization of Available Real Storage

The amount of page-fixed storage defined will be a significant consideration in

limited storage systems. The factors influencing real storage utilization are

summarized in Appendix B, “Insert, Delete, and Replace Rules for Logical

Relationships,” on page 465.

Synchronization Point Processing and Physical Logging

Some 'clustering' of output and release of updated CIs and buffers occurs because

DEDB updates are deferred until after physical logging is complete. In BMPs, it

helps to minimize the number of updates performed in any one sync interval,

particularly if the program is to be run concurrent with the main bulk of message

processing.

It is likely that, for performance reasons, the physical log record will be large, so

that the log record might not be written for some time during low logging activity.

However, IMS varies the interval between the periodic invoking of physical logging.

This interval is directly related to the total logging activity in the IMS system. (Low

activity causes a smaller interval to be set.)

The physical logging process can be relatively slow because of small physical log

buffers or channel or control unit contention for the WADS/OLDS data sets.

The Fast Path environment can have high transaction rates and logging activity.

Therefore, the physical configuration supporting the logging process must also be

analyzed and altered for optimum performance.

Contention for Output Threads

Each OTHR defined provides for the possibility of scheduling a separate service

request block (SRB) to control the writing of the modified buffers associated with a

particular sync interval. If the OTHR value is low, then queuing of write buffers

waiting for an output thread can occur. In general, it is probably best to have one

OTHR for each started dependent region that will cause modification of a DEDB.

Overhead Resulting from Reprocessing

Overhead will result from the necessity to perform reprocessing in either the

message-driven or non-message-driven environments. The following conditions will

necessitate reprocessing:

v Deadlocks involving CIs and (possibly) overflow interlock

v Verify failures at sync point time

v User-initiated rollback caused by such conditions as verify failure at call time

Tuning Fast Path Systems

Chapter 15. Tuning Databases 419

In the case of deadlocks, the application program is pseudo abended for dynamic

backout. The program controller subtask is detached, and subsequently, reattached.

For verify failures or rollback calls, rescheduling involves only the release of

resources held and returned to the application program.

Excessive incidence of the above conditions will add to response time and total

overhead. Conditions resulting in abend interception followed by dump and

application program reinstatement will add to overhead.

Dispatching Priority of Processor-Dominant and I/O-Dominant Tasks

Because MSDB processing within a sync interval is processor-dominant, application

programs processing solely or mainly MSDBs should be dispatched at a lower

priority than those programs processing solely or mainly DEDBs (I/O dominant).

DASD Contention Due to I/O on DEDBs

As always, I/O contention for DEDB Areas will act as a limitation upon performance.

To minimize this impact:

v Limit the number of heavily-used Areas per device.

v Limit the number of application programs accessing any one DEDB area. One

possibility here is to design the transaction, input edit/routing exit, and

randomizing algorithm combination so that the access to any one area is limited

to a particular application program or programs.

v Limit the incidence and effect of stealing unmodified buffers by appropriate

application program design. Buffer stealing can necessitate a second I/O to

recover the stolen buffer/control interval. This can happen if the logic of the

application program requires processing of a buffer when a significant number of

calls have been made following the first retrieval.

Resource Locking Considerations with Block Level Sharing

Resource locking can occur either locally in a non-sysplex environment or globally

in a sysplex environment.

In a non-sysplex environment, local locks can be granted in one of three ways:

v Immediately because of either of the following reasons:

 IMS was able to get the required IRLM latches, and there is no other interest

on this resource.

 The request is compatible with other holders or waiters.

v Asynchronously because the request could not get the required IRLM latches

and was suspended. (This can also occur in a sysplex environment.) The lock is

granted when latches become available and one of two conditions exist:

 No other holders exist.

 The request is compatible with other holders or waiters.

v Asynchronously because the request is not compatible with the holders or

waiters and was granted after their interest was released. (This could also occur

in a sysplex environment.)

In a sysplex environment, global locks can be granted in one of three ways:

v Locally by the IRLM because either of the following two reasons:

 There is no other interest for this resource.

 This IRLM has the only interest, this request is compatible with the holders or

waiters on this system, and XES already knows about the resource.

Tuning Fast Path Systems

420 Administration Guide: Database Manager

v Synchronously on the XES CALL because:

 Either XES shows no other interest for this resource.

 Or XES shows only SHARE interest for the hash class.

v Asynchronously on the XES CALL because of one of two conditions:

 Either XES shows EXCLUSIVE interest on the hash class by an IRLM, but

the resource names do not match (FALSE CONTENTION by RMF).

 Or the request is incompatible with the other HOLDERs and is granted by the

CONTENTION Exit after their interest is released (IRLM REAL

CONTENTION).

Resource Name Hash Routine

The Fast Path Resource Name Hash routine generates the hash value used by the

IRLM. You can specify the name of such a routine with the USRHASH parameter

on the FPCTRL macro, but it is ignored.

One technique used by the IMS-supplied Fast Path Resource Name Hash routine

(DBFLHSH0) increases the range of values implicit with the relative CI numbers by

combining parts of the 31-bit CI number with values derived from a database’s

DMCB number and its area number as follows: Bits 11 through 15 of DMCB

number are XOR’d with bits 7, 6, 5, 4, 3 of the area number to give a combination

5-bit position number. (Using the area number’s bits in reverse order helps make

both DMCB number and area number vary the combination value.)

For the relative CI number (bits 0 through 15 are not used):

v Bits 16 through 20 are XOR’d with the combination value.

v Bits 21 through 25 are XOR’d with the combination value.

v Bits 26 through 29 are used unchanged.

v Bits 30 and 31 are not used—thus a hashed CI number used as a GHT entry

represents four CIs.

For the hashed resource name:

v Bits 16 through 29 of the hashed relative CI become bits 18 through 31 of the

hash value that is passed to the IRLM.

v Bits 18 through 26 of the hash value are used as the displacement into the

resource hash table (RHT).

v Bits 18 through 31 are used as the displacement into the GHT.

Tuning Fast Path Systems

Chapter 15. Tuning Databases 421

Tuning Fast Path Systems

422 Administration Guide: Database Manager

Chapter 16. Modifying Databases

Under several circumstances, you must modify your database. Over time, user

requirements can change, necessitating changes in the database design. Or you

might choose to use new or different options or features. Or perhaps you have

simply found a more efficient way to structure the database. This chapter describes

the various types of structural changes you can make to your database and tells

you when and how you can make the changes using the reorganization utilities.

This chapter examines the following areas of modifying a database:

v “Adding Segment Types” on page 424

v “Deleting Segment Types” on page 425

v “Moving Segment Types” on page 426

v “Changing Segment Size” on page 426

v “Changing Data in a Segment (Except for Data at the End of a Segment)” on

page 427

v “Changing the Position of Data in a Segment” on page 427

v “Adding Logical Relationships” on page 427

v “Adding a Secondary Index” on page 445

v “Adding or Converting to Variable-Length Segments” on page 445

v “Converting to the Segment Edit/Compression Exit Routine” on page 446

v “Converting Databases for Data Capture Exit Routines and Asynchronous Data

Capture” on page 447

v “Converting a Logical Parent Concatenated Key from Virtual to Physical or

Physical to Virtual” on page 448

v “Using the Online Change Function” on page 448

v “Extending DEDB Independent Overflow Online” on page 458

When you modify your database, you often make more than a simple change to it.

For example, you might need to add a segment type and a secondary index. This

topic has procedures to guide you through making each type of change. If you

make more than one change at a time, you should look at Figure 223 on page 413.

The flowchart, when used with the individual procedures in this chapter, will guide

you in making some types of multiple changes to the database.

Attention: If the DBD for an existing MSDB is changed, the header information

(BHDR) might change, even though the database segments do not. In this case,

the headers in the MSDBCPx data sets are invalid or the wrong length. A change in

the MSDB headers causes message DFS2593I. If ABND=Y is specified in the

MSDB PROCLIB member, ABENDU1012 is also issued. Correct this problem by

using the MSDBLOAD option on a warm start or cold start to load the MSDBs from

an MSDBINIT data set.

Related Reading: If you share data, additional information about modifications is in

IMS Version 9: Administration Guide: System.

© Copyright IBM Corp. 1974, 2004 423

Adding Segment Types

There are three ways to add a segment type to a database:

v Unloading and reloading using the reorganization utilities

v Without unloading or reloading

v Using your own unload and reload program

Unloading and Reloading Using the Reorganization Utilities

You can add segment types to a database record using the reorganization utilities if:

v The segment type to be added is at the bottom level of a path in the hierarchy.

Figure 224 shows an existing database record (indicated by solid lines) and the

places where a new segment type can be added (indicated by dashed lines).

v The existing relative order of segments in the database record does not change.

In other words, the existing parent to child relationships cannot change.

v The existing segment names do not change.

 To use the reorganization utilities to add a segment type to the database:

 1. Determine if the change you are making affects the code in any application

programs. If the code is affected, make the necessary changes to the

application program.

 2. Unload your database, using the existing DBD.

 3. Code a new DBD. You need to add SEGM= statements to the DBD for the

new segment type. No database updates are allowed between unload and

reload.

 4. If the change you are making affects the code in application programs, make

any necessary changes to the PSBs for those application programs.

 5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.

 6. Recalculate database space. You need to do this because the change you are

making will result in different requirements for database space.

Related Reading: See “Estimating the Minimum Size of the Database” on

page 311 for a description of how to calculate database space.

Figure 224. Where Segment Types Can Be Added in a Database Record

Adding Segment Types

424 Administration Guide: Database Manager

7. For non-VSAM data sets, delete the old database space and define the new

database space. For VSAM data sets, delete the space allocated for the old

clusters and define space for the new clusters.

 8. Reload your database, using the new DBD. Make an image copy of your

database as soon as it is reloaded.

 9. If your database uses logical relationships or secondary indexes, run some of

the reorganization utilities before and after reloading to resolve prefix

information. The flowchart in Figure 195 on page 346 tells you which utilities to

use and the order in which they must be run.

10. Code and execute an application program to insert the new segment types into

the database.

Without Unloading or Reloading

You can add segment types to a database record without unloading the database

under the following circumstances:

v In a HISAM database, the segment type to be added must be the last segment in

the hierarchy. In addition, the segment type to be added must fit in the existing

logical record.

v In an HD database, the segment type to be added must also be the last segment

in the hierarchy. The parent of the new segment type must use hierarchic

pointers. Also, the segment type cannot be the largest segment type in the data

set group.

To add a segment type to the database without unloading and reloading:

1. Determine whether the change you are making affects the code in any

application programs. If the code is affected, make sure it gets changed.

2. Code a new DBD. You need to add a SEGM= statement to the DBD for the new

segment type.

3. If the change you are making affected the code in application programs, make

any necessary changes to the PSBs for those application programs. If you have

the DB/DC Data Dictionary, it can help you determine which application

programs and PCBs are affected by the DBD changes you have made.

4. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.

5. Code and execute an application program to insert the new segment type.

Using Your Own Unload and Reload Program

You must write your own unload and reload program to add a segment type to the

database, if the segment type does not meet the qualifications described in

“Unloading and Reloading Using the Reorganization Utilities” on page 424 and

“Without Unloading or Reloading.”

Deleting Segment Types

You can delete a segment type from a database by:

v Using the reorganization utilities

v Using your own unload and reload program

You can delete a segment type from a database, using the reorganization utilities, if:

v The existing relative order of segments in the database record does not change.

In other words, the existing parent to child relationships cannot change.

v The existing segment names do not change.

Adding Segment Types

Chapter 16. Modifying Databases 425

To use the reorganization utilities to delete a segment type from the database:

 1. Code and execute an application program to delete all occurrences of the

segment type being deleted. You must code and execute the application

program before the database is unloaded.

 2. Determine whether the change you are making affects the code in any

application programs. If the code is affected, make sure it gets changed.

 3. Unload your database, using the existing DBD.

 4. Code a new DBD. You need to remove SEGM= statements from the DBD for:

v The segment type being deleted

v The children of the deleted segment.

 5. If the change you are making affected the code in application programs, make

any necessary changes to the PSBs for those application programs. If you

have the DB/DC Data Dictionary, it can help you determine which application

programs and PCBs are affected by the DBD changes you have made.

 6. Recalculate database space. You need to do this because the change you are

making will result in different requirements for database space.

Related Reading: See “Estimating the Minimum Size of the Database” on

page 311 for a description of how to calculate database space.

 7. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.

 8. For non-VSAM data sets, delete the old database space and define new

database space. For VSAM data sets, delete the space allocated for the old

clusters and define space for the new clusters.

 9. Reload your database using the new DBD. Remember to make an image copy

of your database as soon as it is reloaded.

10. If your database uses logical relationships or secondary indexes, you must run

some of the reorganization utilities before and after reloading to resolve prefix

information. The flowchart in Figure 195 on page 346 tells you which utilities to

use and the order in which they must be run.

Moving Segment Types

Because segment types cannot be moved using the reorganization utilities, you

must write your own unload and reload program to move them.

Changing Segment Size

Using the reorganization utilities, you can increase or decrease segment size at the

end of a segment type. When increasing segment size, you are adding data to the

end of a segment. When decreasing segment size, IMS truncates data at the end of

a segment.

If you are increasing the size of a segment, you cannot predict what is at the end of

the segment when it is reloaded. Also, new data must be added to the end of a

segment using your own program after the database is reloaded.

To increase or decrease segment size:

1. Determine whether the change you are making affects the code in any

application programs. If the code is affected, make sure it gets changed.

2. Unload your database, using the existing DBD. If you are changing a HISAM

database, you must use the HD UNLOAD/RELOAD utility since the HISAM

utilities cannot be used to make structural changes.

Deleting Segment Types

426 Administration Guide: Database Manager

3. Code a new DBD. You need to change the BYTES= operand on the SEGM

statement in the DBD to reflect the new segment size. If you are eliminating

data from a segment for which FIELD statements are coded in the DBD, you

need to eliminate the FIELD statements. If you are adding data to a segment

and the data is referenced in the SSA in application programs, you need to

code FIELD statements. No database updates are allowed between unload and

reload.

4. If the change you are making affected the code in application programs, make

any necessary changes to the PSBs for those application programs. If you have

the DB/DC Data Dictionary, it can help you determine which application

programs and PCBs are affected by the DBD changes you have made.

5. Rebuild the ACB if you have ACBs prebuilt rather than build dynamically.

6. Recalculate database space. You need to do this because the change you are

making results in different requirements for database space.

Related Reading: See “Estimating the Minimum Size of the Database” on page

311 for a description of how to calculate database space.

7. For non-VSAM data sets, delete the old database space and define new

database space. For VSAM data sets, delete the space allocated for the old

clusters and define space for the new clusters.

8. Reload your database, using the new DBD. Make an image copy of your

database as soon as it is reloaded.

9. If your database uses logical relationships or secondary indexes, you must run

some of the reorganization utilities before and after reloading to resolve prefix

information. The flowchart in Figure 195 on page 346 tells you which utilities to

use and the order in which they must be run.

Changing Data in a Segment (Except for Data at the End of a Segment)

Data in a segment cannot be increased or decreased in size using the

reorganization utilities. To increase or decrease the size of fields, you must write

your own unload and reload programs.

Changing the Position of Data in a Segment

You cannot change the position of data in a segment using the reorganization

utilities. To make this kind of change, you must write your own unload and reload

program, use field-level sensitivity, or use the IMS System Utilities/Database Tools

(DBT) DB Segment Restructure Utility.

Related Reading: See “Field-Level Sensitivity” on page 220 for information on how

to use field-level sensitivity.

Adding Logical Relationships

Logical relationships are explained in detail in “Logical Relationships” on page 151.

This topic contains examples and procedures for adding a logically-related database

to an existing database. Not all situations in which you might need to add a logical

relationship are described in this topic. However, if the examples do not fit your

specific requirements, you should be able to gather enough information from them

to decide:

v If adding a logical relationship to your existing database is possible

v How to add the relationship

Changing Segment Size

Chapter 16. Modifying Databases 427

|
|
|
|

The examples in this topic are followed by Table 32 on page 441, which tells you

what to do when reorganizing a database to add a logical relationship. Following

the table, “Some Restrictions on Modifying Existing Logical Relationships” on page

443 discusses some restrictions on modifying existing logical relationships.

The examples in this topic show the logical parent as a root segment, although this

is not a requirement. The examples are still valid when the logical parent is at a

lower level in the hierarchy.

When adding logical relationships to existing databases, you should always make

the change on a test database. Thoroughly test the change before implementing it

using production databases.

In the following examples, these conventions are used:

v Existing databases are shown using solid lines.

v The database being added is shown using dashed lines.

v The logical parent and logical child relationship is labeled for the database being

added. They are labeled LP and LC.

v The terms DBX, DBY, and DBZ refer to database 1, database 2, and database 3.

Related Reading: For example procedures 1 through 13, the following related

readings provide more detailed information for some of the steps:

v See “Estimating the Minimum Size of the Database” on page 311 for a

description of how to calculate database space.

v See “Writing a Load Program” on page 320 for a description of how to write an

initial load program.

Example 1. DBX Exists, DBY Is to Be Added

Example 1 is shown in Figure 225.

 DBX must be reorganized to add the counter field to the segment prefix for A. DBIL

must be specified in the control statement for DBX. In the following “Example 1

Procedure,” the counter field for segment A is updated to show the number of C

segments because segment C is loaded with a user load program.

Example 1 Procedure

 1. Determine whether the change you are making affects the code in any

application programs. If the code is affected, make sure it gets changed.

 2. Unload DBX, using the existing DBD and the HD Unload utility.

Figure 225. DBX Exists, DBY Is to Be Added

Adding Logical Relationships

428 Administration Guide: Database Manager

|
|
|
|

|
|

|
|

|
|

3. Code a new DBD for DBX and DBY. “How to Specify Use of Logical

Relationships in the Logical DBD” in Chapter 8, “Choosing Optional Database

Functions,” on page 151, explains how the DBD is coded for logical

relationships.

 4. If the change you are making affected the code in application programs, make

any necessary changes to the PSBs for these application programs. If you

have the DB/DC Data Dictionary, it can help you determine which application

programs and PCBs are affected by the DBD changes you have made.

 5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.

 6. Recalculate database space for DBX and calculate space for DBY.

 7. For non-VSAM data sets, delete the old database space and define new

database space. For VSAM data sets, delete the space allocated for the old

clusters and define space for the new clusters.

 8. Run the Prereorganization utility, specifying DBIL in the control statements for

DBX and DBY.

 9. Reload DBX, using the new DBD and the HD Reload utility.

10. Load DBY, using an initial load program.

11. Run the Prefix Resolution utility, using the DFSURWF1 work files that are

output from Steps 9 and 10 as input.

12. Run the Prefix Update utility, using the DFSURWF3 work file that is output

from Step 11 as input.

13. Remember to make an image copy of both databases as soon as they are

loaded.

Example 2. DBX and DBY Exist, DBZ Is to Be Added

Example 2 is shown in Figure 226.

 In this example, the counter exists in the segment C prefix. DBX and DBY must be

reorganized to calculate the new value for the counter in the segment C prefix.

DBIL must be specified in the control statement for DBX and DBY. In the following

“Example 2 Procedure,” the segment A counter field is updated to show the number

of C segments because segment C is loaded with a user load program.

Example 2 Procedure

 1. Determine whether the change you are making affects the code in any

application programs. If the code is affected, make sure it gets changed.

 2. Unload DBX and DBY, using the existing DBDs and HD Unload utility.

Figure 226. DBX and DBY Exist, DBZ Is to Be Added

Adding Logical Relationships

Chapter 16. Modifying Databases 429

3. Code a new DBD for DBY and DBZ. “How to Specify Use of Logical

Relationships in the Logical DBD” in Chapter 8, “Choosing Optional Database

Functions,” on page 151 explains how the DBD is coded for logical

relationships.

 4. If the change you are making affected the code in application programs, make

any necessary changes to the PSBs for these application programs. If you

have the DB/DC Data Dictionary, it can help you determine which application

programs and PCBs are affected by the DBD changes you have made.

 5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.

 6. Recalculate database space for DBX and DBY, and calculate space for DBZ.

 7. For non-VSAM data sets, delete the old database space and define new

database space. For VSAM data sets, delete the space allocated for the old

clusters and define space for the new clusters.

 8. Run the Prereorganization utility, specifying DBIL in the control statements for

DBX, DBY and DBZ.

 9. Reload DBX and DBY, using the new DBDs and the HD Reload utility.

10. Load DBZ, using an initial load program.

11. Run the Prefix Resolution utility, using the DFSURWF1 work files that are

output from Steps 9 and 10 as input.

12. Run the Prefix Update utility, using the DFSURWF3 work file that is output

from Step 11 as input.

13. Remember to make an image copy of all three databases as soon as they are

loaded.

Example 3. DBX and DBY Exist, DBZ Is to Be Added

Example 3 is shown in Figure 227.

 DBY must be reorganized to add the counter field to the segment C prefix. DBIL

must be specified in the control statement for DBY. DBX must be reorganized

because an initial load (DBIL) of the logical parent (segment C) assumes an initial

load (DBIL of the logical child). The procedure for this example (and all conditions

and considerations) is exactly the same as example 2.

Example 4. DBX and DBY Exist, DBZ Is to Be Added

Example 4 is shown in Figure 228 on page 431.

Figure 227. DBX and DBY Exist, DBZ Is to Be Added

Adding Logical Relationships

430 Administration Guide: Database Manager

The procedure for this example (and all conditions and considerations) is exactly

the same as for example 2.

Example 5. DBX Exists, DBY Is to Be Added

Example 5 is shown in Figure 229.

 DBX must be reorganized to add the logical child pointers in the segment A prefix.

Procedure

 1. Determine whether the change you are making affects the code in any

application programs. If the code is affected, make sure it gets changed.

 2. Unload DBX, using the existing DBD and the HD Unload utility.

 3. Code a new DBD for DBX and DBY. “How to Specify Use of Logical

Relationships in the Logical DBD” in Chapter 8, “Choosing Optional Database

Functions,” on page 151 explains how the DBD is coded for logical

relationships.

 4. If the change you are making affected the code in application programs, make

any necessary changes to the PSBs for these application programs. If you

have the DB/DC Data Dictionary, it can help you determine which application

programs and PCBs are affected by the DBD changes you have made.

 5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.

 6. Recalculate database space for DBX, and calculate space for DBY.

 7. For non-VSAM data sets, delete the old database space and define new

database space. For VSAM data sets, delete the space allocated for the old

clusters and define space for the new clusters.

 8. Run the Prereorganization utility, specifying DBR in the control statement for

DBX, and DBIL in the control statement for DBY.

 9. Reload DBX, using the new DBD and the HD Reload utility.

10. Load DBY, using an initial load program.

Figure 228. DBX and DBY Exist, DBZ Is to Be Added

Figure 229. DBX Exists and DBY Is to Be Added

Adding Logical Relationships

Chapter 16. Modifying Databases 431

11. Run the Prefix Resolution utility, using the DFSURWF1 work files that are

output from Steps 9 and 10 as input.

12. Run the Prefix Update utility, using the DFSURWF3 work file that is output

from Step 11 as input.

13. Remember to make an image copy of both databases as soon as they are

loaded.

Example 6. DBX and DBY Exist, DBZ Is to Be Added

Example 6 is shown in Figure 230.

 DBY must be reorganized to add the logical child pointers to the segment C prefix.

One of the following three procedures should be used:

v “Procedure When Reorganizing DBY (Segment B Contains a Symbolic Pointer)”

v “Procedure When Reorganizing DBY and Scanning DBX (Segment B Contains a

Direct Pointer)” on page 433

v “Procedure When Reorganizing DBX and DBY” on page 433

Procedure When Reorganizing DBY (Segment B Contains a

Symbolic Pointer)

 1. Determine whether the change you are making affects the code in any

application programs. If the code is affected, make sure it gets changed.

 2. Unload DBY, using the existing DBD and HD Unload utility.

 3. Code a new DBD for DBY and DBZ. “How to Specify Use of Logical

Relationships in the Logical DBD” in Chapter 8, “Choosing Optional Database

Functions,” on page 151 explains how the DBD is coded for logical

relationships.

 4. If the change you are making affected the code in application programs, make

any necessary changes to the PSBs for these application programs. If you

have the DB/DC Data Dictionary, it can help you determine which application

programs and PCBs are affected by the DBD changes you have made.

 5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.

 6. Recalculate database space for DBY, and calculate space for DBZ.

 7. For non-VSAM data sets, delete the old database space and define new

database space. For VSAM data sets, delete the space allocated for the old

clusters and define space for the new clusters.

 8. Run the Prereorganization utility, specifying DBR in the control statement for

DBY, and DBIL in the control statement for DBZ. (The output from the

Prereorganization utility indicates that a scan of DBX is required.)

 9. Reload DBY, using the new DBD and the HD Reload utility.

10. Load DBZ, using an initial load program.

Figure 230. DBX and DBY Exist, DBZ Is to Be Added

Adding Logical Relationships

432 Administration Guide: Database Manager

11. Run the Prefix Resolution utility, using the DFSURWF1 work files that are

output from Steps 9 and 10 as input.

12. Run the Prefix Update utility, using the DFSURWF3 work file that is output

from Step 11 as input.

13. Remember to make an image copy of both databases as soon as they are

loaded.

When DBY is reloaded, two type 00 records are produced for each occurrence of

segment C. One contains a logical child database named DBZ and matches the

type 10 record produced for segment E. The other contains a logical child database

named DBX. Because a scan or reorganization of DBX was not done, a matching

10 record was not produced for segment B. The Prefix Resolution utility produces

message DFS878 when this occurs. The message can be ignored as long as the

printed 00 record refers to DBY and DBX. Any messages for DBY and DBZ should

be investigated.

Procedure When Reorganizing DBY and Scanning DBX (Segment

B Contains a Direct Pointer)

 1. Determine whether the change you are making affects the code in any

application programs. If the code is affected, make sure it gets changed.

 2. Unload DBY, using the existing DBD and HD Unload utility.

 3. Code a new DBD for DBY and DBZ. “How to Specify Use of Logical

Relationships in the Logical DBD” in Chapter 8, “Choosing Optional Database

Functions,” on page 151 explains how the DBD is coded for logical

relationships.

 4. If the change you are making affected the code in application programs, make

any necessary changes to the PSBs for these application programs. If you

have the DB/DC Data Dictionary, it can help you determine which application

programs and PCBs are affected by the DBD changes you have made.

 5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.

 6. Recalculate database space for DBY, and calculate space for DBZ.

 7. For non-VSAM data sets, delete the old database space and define new

database space. For VSAM data sets, delete the space allocated for the old

clusters and define space for the new clusters.

 8. Run the Prereorganization utility, specifying DBR in the control statement for

DBY, and DBIL in the control statement for DBZ. (The output from the

Prereorganization utility says that a scan of DBX is required.)

 9. Run the scan utility against DBX.

10. Reload DBY, using the new DBD and the HD Reload utility.

11. Load DBZ, using an initial load program.

12. Run the Prefix Resolution utility, using the DFSURWF1 work files that are

output from Steps 9, 10, and 11 as input.

13. Run the Prefix Update utility, using the DFSURWF3 work file that is output

from Step 12 as input.

14. Remember to make an image copy of both databases as soon as they are

loaded.

Procedure When Reorganizing DBX and DBY

 1. Determine whether the change you are making affects the code in any

application programs. If the code is affected, make sure it gets changed.

 2. Unload DBX and DBY, using the existing DBDs and HD Unload utility.

Adding Logical Relationships

Chapter 16. Modifying Databases 433

3. Code a new DBD for DBY and DBZ. “How to Specify Use of Logical

Relationships in the Logical DBD” in Chapter 8, “Choosing Optional Database

Functions,” on page 151 explains how the DBD is coded for logical

relationships.

 4. If the change you are making affected the code in application programs, make

any necessary changes to the PSBs for these application programs. If you

have the DB/DC Data Dictionary, it can help you determine which application

programs and PCBs are affected by the DBD changes you have made.

 5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.

 6. Recalculate database space for DBX and DBY, and calculate space for DBZ.

 7. For non-VSAM data sets, delete the old database space and define new

database space. For VSAM data sets, delete the space allocated for the old

clusters and define space for the new clusters.

 8. Run the Prereorganization utility, specifying DBR in the control statements for

DBX and DBY, and DBIL in the control statement for DBZ. (The output from

the Prereorganization utility says that a scan of DBX is required.)

 9. Reload DBX and DBY, using the new DBDs and the HD Reload utility.

10. Load DBZ, using an initial load program.

11. Run the Prefix Resolution utility, using the DFSURWF1 work files that are

output from Steps 9 and 10 as input.

12. Run the Prefix Update utility, using the DFSURWF3 work file that is output

from Step 11 as input.

13. Remember to make an image copy of all three databases as soon as they are

loaded.

Example 7. DBX and DBY Exist, DBZ Is to Be Added

Example 7 is shown in Figure 231.

 DBY must be reorganized to add the logical child pointers to the segment C prefix.

Logical child pointers from segment C to segment B are not unloaded, therefore,

DBX must be reorganized or scanned. DBX must be reorganized to add the logical

child pointers in the segment A prefix.

Procedure Using Scan

 1. Determine whether the change you are making affects the code in any

application programs. If the code is affected, make sure it gets changed.

 2. Unload DBY, using the existing DBD and HD Unload utility.

 3. Code a new DBD for DBY and DBZ. “How to Specify Use of Logical

Relationships in the Logical DBD” in Chapter 8, “Choosing Optional Database

Functions,” on page 151 explains how the DBD is coded for logical

relationships.

Figure 231. DBX and DBY Exist, DBZ Is to Be Added

Adding Logical Relationships

434 Administration Guide: Database Manager

4. If the change you are making affected the code in application programs, make

any necessary changes to the PSBs for these application programs. If you

have the DB/DC Data Dictionary, it can help you determine which application

programs and PCBs are affected by the DBD changes you have made.

 5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.

 6. Recalculate database space for DBY and calculate space for DBZ.

 7. For non-VSAM data sets, delete the old database space and define new

database space. For VSAM data sets, delete the space allocated for the old

clusters and define space for the new clusters.

 8. Run the Prereorganization utility, specifying DBR in the control statements for

DBY, and DBIL in the control statement for DBZ. (The output from the

Prereorganization utility indicates that a scan of DBX is required.)

 9. Run the scan utility against DBX.

10. Reload DBY, using the new DBDs and the HD Reload utility.

11. Load DBZ, using an initial load program.

12. Run the Prefix Resolution utility, using the DFSURWF1 work files that are

output from Steps 9, 10, and 11 as input.

13. Run the Prefix Update utility, using the DFSURWF3 work file that is output

from Step 12 as input.

14. Remember to make an image copy of both databases as soon as they are

loaded.

Procedure When Reorganizing DBX and DBY

 1. Determine whether the change you are making affects the code in any

application programs. If the code is affected, make sure it gets changed.

 2. Unload DBY and DBY using the existing DBDs and the HD Unload utility.

 3. Code a new DBD for DBY and DBZ. “How to Specify Use of Logical

Relationships in the Logical DBD” in Chapter 8, “Choosing Optional Database

Functions,” on page 151 explains how the DBD is coded for logical

relationships.

 4. If the change you are making affected the code in application programs, make

any necessary changes to the PSBs for these application programs. If you

have the DB/DC Data Dictionary, it can help you determine which application

programs and PCBs are affected by the DBD changes you have made.

 5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.

 6. Recalculate database space for DBX and DBY and calculate space for DBZ.

 7. For non-VSAM data sets, delete the old database space and define new

database space. For VSAM data sets, delete the space allocated for the old

clusters and define space for the new clusters.

 8. Run the Prereorganization utility, specifying DBR in the control statements for

DBX and DBY, and DBIL in the control statement for DBZ. (The output from

the Prereorganization utility indicates that a scan of DBX is required.)

 9. Reload DBX and DBY, using the new DBDs and the HD Reload utility.

10. Load DBZ, using an initial load program.

11. Run the Prefix Resolution utility, using the DFSURWF1 work files that are

output from Steps 9 and 10 input.

12. Run the Prefix Update utility, using the DFSURWF3 work file that is output

from Step 11 as input.

13. Remember to make an image copy of both databases as soon as they are

loaded.

Adding Logical Relationships

Chapter 16. Modifying Databases 435

Example 8. DBX and DBY Exist, DBZ Is to Be Added

Example 8 is shown in Figure 232.

 DBY must be reorganized to add the logical child pointers in the segment C prefix.

The procedure for this example (and all conditions and considerations) is exactly

the same as the procedures for example 6.

Example 9. DBY Exists, DBZ Is to Be Added

Example 9 is shown in Figure 233.

 DBY must be reorganized. DBZ must be loaded using an initial load program. DBIL

must be specified in the control statement for DBY. Do not specify DBR in the

control statement for DBY.

Procedure

 1. Determine whether the change you are making affects the code in any

application programs. If the code is affected, make sure it gets changed.

 2. Unload DBY, using the existing DBD and HD Unload utility.

 3. Code a new DBD for DBY and DBZ. “How to Specify Use of Logical

Relationships in the Logical DBD” in Chapter 8, “Choosing Optional Database

Functions,” on page 151 explains how the DBD is coded for logical

relationships.

 4. If the change you are making affected the code in application programs, make

any necessary changes to the PSBs for these application programs. If you

have the DB/DC Data Dictionary, it can help you determine which application

programs and PCBs are affected by the DBD changes you have made.

 5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.

 6. Recalculate database space for DBY and calculate space for DBZ.

 7. For non-VSAM data sets, delete the old database space and define new

database space. For VSAM data sets, delete the space allocated for the old

clusters and define space for the new clusters.

Figure 232. DBX and DBY Exist, DBZ Is to Be Added

Figure 233. DBY Exists, DBZ Is to Be Added

Adding Logical Relationships

436 Administration Guide: Database Manager

8. Run the Prereorganization utility, specifying DBIL in the control statements for

DBY and DBZ.

 9. Reload DBY, using the new DBDs and the HD Reload utility.

10. Load DBZ, using an initial load program.

11. Run the Prefix Resolution utility, using the DFSURWF1 work files that are

output from Steps 9 and 10 as input.

12. Run the Prefix Update utility, using the DFSURWF3 work file that is output

from Step 11 as input.

13. Remember to make an image copy of both databases as soon as they are

loaded.

Example 10. DBY Exists, DBZ Is to Be Added

Example 10 is shown in Figure 234.

 Segment X might be considered a logical child if the key of segment D is at the

correct location in segment X. DBY must be reorganized, because an initial load

(DBIL) of the logical parent (segment D) assumes an initial load (DBIL) of the

logical child.

In this example, you could use symbolic or direct pointers for segment X. Do not

under any circumstances specify DBR in the control statement for DBY. If you do,

the reload utility will not generate work records for segment D; the logical child

pointer in segment D would never be resolved. The procedure for this example (and

all conditions and considerations) is exactly the same as the procedures for

example 9.

Example 11. DBX and DBY Exist, DBZ Is to Be Added

Example 11 is shown in Figure 235.

 DBX and DBY must be reorganized. DBZ must be loaded using an initial load

program. Because you must specify DBIL in the control statement for DBZ (a logical

Figure 234. DBY Exists, DBZ Is to Be Added

Figure 235. DBX and DBY Exist, DBZ Is to Be Added

Adding Logical Relationships

Chapter 16. Modifying Databases 437

parent database), you must also specify DBIL for DBY (a logical child database).

DBY is also a logical parent database. Therefore, you must specify DBIL in the

control statement for DBX (a logical child database). The procedure for this

example (and all conditions and considerations) is exactly the same as for Example

2.

Example 12. DBX and DBY Exist, DBZ Is to Be Added

Example 12 is shown in Figure 236.

 In this example, segment B has a symbolic pointer. The procedure for this example

(and all conditions and considerations) is exactly the same as for example 2.

Example 13. DBX and DBY Exist, Segment Y and DBZ Are to Be Added

Example 13 is shown in Figure 237.

Procedure

 1. Determine whether the change you are making affects the code in any

application programs. If the code is affected, make sure it gets changed.

 2. Unload DBX, using the existing DBD and HD Unload utility.

Figure 236. DBX and DBY Exist, DBZ Is to Be Added

Figure 237. DBX and DBY Exist, Segment Y and DBZ Are to Be Added

Adding Logical Relationships

438 Administration Guide: Database Manager

3. Code a new DBD for DBY and DBZ. “How to Specify Use of Logical

Relationships in the Logical DBD” in Chapter 8, “Choosing Optional Database

Functions,” on page 151 explains how the DBD is coded for logical

relationships.

 4. If the change you are making affected the code in application programs, make

any necessary changes to the PSBs for these application programs. If you

have the DB/DC Data Dictionary, it can help you determine which application

programs and PCBs are affected by the DBD changes you have made.

 5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.

 6. Recalculate database space for DBX and DBY, and calculate space for DBZ.

 7. For non-VSAM data sets, delete the old database space and define new

database space. For VSAM data sets, delete the space allocated for the old

clusters and define space for the new clusters.

 8. Run the Prereorganization utility, specifying DBIL in the control statements for

DBX, DBY and DBZ.

 9. Reload DBX, using the new DBD and the HD Reload utility.

10. Load DBY and DBZ, using an initial load program.

11. Run the Prefix Resolution utility, using the DFSURWF1 work files that are

output from Steps 9 and 10 as input.

12. Run the Prefix Update utility, using the DFSURWF3 work file that is output

from Step 11 as input.

13. Remember to make an image copy of both databases as soon as they are

loaded.

Steps in Reorganizing a Database to Add a Logical Relationship

Table 32 on page 441 shows you:

v When a logically related database must be scanned

v When both sides of a logical relationship must be reorganized

v When the Prefix Resolution and Prefix Update utilities must be run

The figure applies to reorganizations only. When initially loading databases, you

must run the Prefix Resolution and Update utilities whenever work data sets are

generated.

Table 32 covers all reorganization situations, whether or not database pointers are

being changed. In using the figure, a bidirectional physically paired relationship

should be treated as two unidirectional relationships. Unless otherwise specified,

DBR should be specified for the reorganized databases when the Prereorganization

utility is run.

The following two examples guide you in use of the figure.

Example 1. How to use Table 32

Assume your database has unidirectional symbolic pointers and you are not

changing pointers. On the left side of Table 32, in the FROM column, find

unidirectional symbolic pointers. The follow across to the right in the TO row and

find unidirectional symbolic pointers. The figure tells you what you must do to

reorganize with one of the following:

v The database containing the logical parent

v The database containing the logical child

Adding Logical Relationships

Chapter 16. Modifying Databases 439

v Both databases, if necessary

In all three situations, it is not necessary to run the Prefix Resolution or Update

utilities (this is what is meant by “finished”).

Example 2. How to use Table 32

Assume your database has bidirectional symbolic pointers and you need to change

to bidirectional direct pointers. Table 32 shows that:

v Reorganizing only the logical parent database cannot be done, because a logical

parent pointer must be created in the logical child segment in the logical child

database.

v Reorganizing the logical child database can be done. To scan the logical child

database, you must scan the logical parent database. The control statements for

the Prereorganization utility must specify DBIL for the logical child database.

Also, the Prefix Resolution and Update utilities must be run.

v Reorganizing both databases can also be done. In this case, the control

statements for the Prereorganization utility must specify DBIL for the logical child

database and DBR for the logical parent database. Again, the Prefix Resolution

and Update utilities must be run.

Adding Logical Relationships

440 Administration Guide: Database Manager

Table 32. Steps in Reorganizing a Database to Add a Logical Relationship

Type of Database

Type of

Reorganization

What You Must Do to Reorganize When You Need:

Unidirectional

Symbolic

Pointers

Unidirectional

Direct Pointers

Bidirectional

Symbolic

Pointers

Bidirectional

Direct Pointers

Unidirectional with

symbolic pointers

Logical parent

database only

Finished1 Not valid,

because symbolic

LP pointers exist

now and direct LP

pointers must be

added to the

logical child

database.

1. Scan logical

child data base.

2. Run prefix

resolution and

update.

Note: Logical

child segment will

not contain LT

pointers unless it

is reorganized.

Not valid,

because direct LP

and LT pointers

must be put in the

logical child

database.

Logical child

database only

Finished 1. Scan logical

parent data base.

2. Run prefix

resolution and

update.

Specify DBIL for

the logical child

database.

Not valid,

because a

counter exists

now and LCF/LCL

pointers must be

put into the logical

parent database.

Not valid,

because a

counter exists

now and LCF/LCL

pointers must be

put into the logical

parent database.

Both databases Finished2 Run prefix

resolution and

update.

Specify DBIL for

the logical child

database and

DBR for the

logical parent

database.

Run prefix

resolution and

update.

Specify DBR for

both databases.

Run prefix

resolution and

update.

Specify DBIL for

the logical child

database and

DBR for the

logical parent

database.

Unidirectional with

direct pointers

Logical parent

database only

Not valid,

because a direct

LP pointer exists

now and symbolic

LP pointers must

be added to the

logical child

database.

1. Scan logical

child data base.

2. Run prefix

resolution and

update.

Not valid,

because a direct

LP pointer exists

now and symbolic

LP pointers must

be added to the

logical child

database. LT

pointers must also

be added to the

logical child

database.

1. Scan logical

child data base.

2. Run prefix

resolution and

update.

Note: Logical

child segment will

not contain LT

pointers unless

database is

reorganized.

Logical child

database only

Finished Finished Not valid,

because LCF/LCL

pointers must be

put in the logical

parent database.

Not valid,

because LCF/LCL

pointers must be

put in the logical

parent database.

Both databases Finished2 Run prefix

resolution and

update.

Run prefix

resolution and

update.

Run prefix

resolution and

update.

Adding Logical Relationships

Chapter 16. Modifying Databases 441

Table 32. Steps in Reorganizing a Database to Add a Logical Relationship (continued)

Type of Database

Type of

Reorganization

What You Must Do to Reorganize When You Need:

Unidirectional

Symbolic

Pointers

Unidirectional

Direct Pointers

Bidirectional

Symbolic

Pointers

Bidirectional

Direct Pointers

Bidirectional with

symbolic pointers

Logical parent

database only

Not valid,

because the

counter in the

logical parent

database will not

be resolved and

LT pointers exist

now in the logical

child database.

Not valid,

because symbolic

LP and LT

pointers exist now

and a direct LP

pointer must be

added to the

logical child

database.

1. Scan logical

child data base.

2. Run prefix

resolution and

update.

Note: LCF/LCL

pointers are not

unloaded and

reloaded.

Not valid,

because a

symbolic LP

pointer exists now

and a direct LP

pointer must be

added to the

logical child

database.

Logical child

database only

Not valid,

because LCF/LCL

pointers exist now

in the logical

parent database

and a counter

must be added to

the logical parent

database.

Not valid,

because LCF/LCL

pointers exist now

in the logical

parent database

and a counter

must be added to

the logical parent

database.

1. Scan logical

parent data base.

2. Run prefix

resolution and

update.

1. Scan logical

parent data base.

2. Run prefix

resolution and

update.

3. Specify DBIL

for the logical

child data base.

Both databases Run prefix

resolution and

update.

Specify DBIL for

the logical child

database and

DBR for the

logical parent

database.

Run prefix

resolution and

update.

Specify DBIL for

the logical child

database and

DBR for the

logical parent

database.

Run prefix

resolution and

update.

Run prefix

resolution and

update.

Specify DBIL for

the logical child

database and

DBR for the

logical parent

database.

Adding Logical Relationships

442 Administration Guide: Database Manager

Table 32. Steps in Reorganizing a Database to Add a Logical Relationship (continued)

Type of Database

Type of

Reorganization

What You Must Do to Reorganize When You Need:

Unidirectional

Symbolic

Pointers

Unidirectional

Direct Pointers

Bidirectional

Symbolic

Pointers

Bidirectional

Direct Pointers

Bidirectional with

direct pointers

Logical parent

database only

Not valid,

because direct LP

and LT pointers

exist in the logical

child database

and symbolic LP

pointers must be

added.

Not valid,

because the

counter in the

logical parent

database will not

be resolved and

LT pointers will

not be removed

from the logical

child database.

Not valid,

because a direct

LP pointer exists

in the logical child

database and the

change is to

symbolic LP

pointers.

1. Scan logical

child database.

2. Run prefix

resolution and

update.

Note: LCF/LCL

pointers are not

unloaded and

reloaded.

Logical child

database only

Not valid,

because LCF/LCL

pointers exists in

the logical parent

database and a

counter must be

added to the

logical parent

database.

Not valid,

because LCF/LCL

pointers exist now

in the logical

parent database

and a counter

must be added to

the logical parent

database.

1. Scan logical

parent data base.

2. Run prefix

resolution and

update.

1. Scan logical

parent data base.

2. Run prefix

resolution and

update.

Both databases Run prefix

resolution and

update.

Specify DBIL for

the logical child

database and

DBR for the

logical parent

database.

Run prefix

resolution and

update.

Specify DBIL for

the logical child

database and

DBR for the

logical parent

database.

Run prefix

resolution and

update.

Run prefix

resolution and

update.

Notes:

1. The Prereorganization utility says to scan the logical child database and the DFSURWF1 records will be produced

if scan is run.

2. DFSURWF1 records are produced; however, the prefix resolution and update utilities need not be run.

Some Restrictions on Modifying Existing Logical Relationships

In some cases, the IMS utilities cannot be used to modify an existing logical

relationship. When an existing logical relationship cannot be modified, you must

write your own program. Two examples are as follows:

Example 1: Changing from Bidirectional Virtual to Bidirectional

Physical Pairing

Figure 238 on page 444 shows the change in pairing from virtual to physical:

Adding Logical Relationships

Chapter 16. Modifying Databases 443

Example 2: Changing the Location of the Real Logical Child in a

Bidirectional Logical Relationship

Figure 239 shows the position change of a real logical child from one logically

related database to another:

 In both of these “before” examples, occurrences of segment B can exist that are

physically, but not logically, deleted. The logical child can be accessed from the

logical path but not the physical path. When unloading DBX, the HD Unload utility

cannot access occurrences of segment B that are physically, but not logically,

deleted. Therefore, you must write your own program to do this type of

reorganization.

Summary on Use of Utilities When Adding Logical Relationships

v Counters are increased by counting logical children loaded using an initial load

program or, when logically related databases are reorganized, by using DBIL in

the control statement.

v Counter problems can be corrected by reorganizing databases. When correcting

counter problems, DBIL must be specified in the control statement for the

databases involved.

v LCF and LCL pointers are not unloaded and reloaded. They must be recreated

by the Prefix Resolution and Update utilities.

v Unless DBIL is specified for all its logical child databases, never specify DBIL in

the control statement for a logical parent database.

v To change from symbolic to direct pointers, specify DBIL on the control statement

for the logical child database.

Figure 238. The Change in Pairing from Virtual to Physical

Figure 239. The Position Change of a Real Logical Child from One Logically Related

Database to Another

Adding Logical Relationships

444 Administration Guide: Database Manager

Adding a Secondary Index

Secondary indexes are explained in Chapter 8, “Choosing Optional Database

Functions,” on page 151. If you need to add a secondary index to your database:

 1. Determine whether the change you are making affects the code in any

application programs. If the code is affected, make sure it gets changed.

 2. Unload your database, using the existing DBD and the HD Unload utility.

 3. Code new DBDs. “How to Specify Use of Secondary Indexing in the DBD” in

Chapter 6, “Choosing Full-Function Database Types,” on page 55 explains how

the DBD is coded for secondary indexes. You need two new DBDs, one for the

existing database and one for the new secondary index database.

 4. If the change you are making affects the code in application programs, make

any necessary changes to the PSBs for those application programs. If you

have the DB/DC Data Dictionary, it can help you determine which application

programs and PCBs are affected by the DBD changes you have made.

 5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.

 6. Delete the old database space and define new database space (non-VSAM),

or delete the space allocated for the cluster and define space for the new

cluster. In addition, define space for the secondary index.

 7. Reload the database, using the new DBD and the HD Reload utility.

 8. Run the Prefix Resolution utility, using the DFSURWF1 work file that is output

from Step 7 as input.

 9. Run the HISAM unload utility, using the DFSURIDX work file that is output

from Step 8 as input. Be sure to indicate in the utility control statement that

HISAM unload is being used to build a secondary index.

10. Run the HISAM reload utility using as input the output from HISAM unload.

11. When you add a secondary index, remember to change your JCL. You need a

DD statement for the secondary index data set even when you are not using

the secondary index to process the main database. You also need to change

your reorganization procedures when adding a secondary index. Whenever

you reorganize the data set the secondary index points to, you must execute

the reorganization utilities to rebuild the secondary index.

Adding or Converting to Variable-Length Segments

Variable-length segments are explained in Chapter 8, “Choosing Optional Database

Functions,” on page 151. If you need to change selected segments in your

database from fixed to variable length—or convert the entire database to

variable-length segments—two ways exist to do it. Regardless of which way you

use, the object in conversion is to put a size field in the segment you need to make

variable length and then get the segment defined as variable length in the DBD.

Method 1. Converting Segments or a Database

To convert selected segments or the entire database this way, you must:

1. Determine whether the change you are making affects the code in any

application programs. If the code is affected, make sure it gets changed.

2. Code and generate a new DBD that identifies the segment types that will be

variable length, and their size.

3. If the change you are making affected the code in application programs, make

any necessary changes to the PSBs for those application programs. If you have

the DB/DC Data Dictionary, it can help you determine which application

programs and PCBs are affected by the DBD changes you have made.

Adding a Secondary Index

Chapter 16. Modifying Databases 445

4. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.

5. Write a program that sequentially retrieves from the database all segments that

are to be variable length. Your program must add the 2-byte size field to each

segment retrieved and then insert the segment back into the database.

Method 2. Converting Segments or a Database

To convert selected segments or the entire database this way, you must:

 1. Determine whether the change you are making affects the code in any

application programs. If the code is affected, make sure it gets changed.

 2. Unload your database, using the existing DBD.

 3. Code and generate a new (interim) DBD. This DBD should specify fixed-length

segments for all segments being converted to variable length. It should also

specify use of the segment edit/compression facility for each segment to be

converted. (The interim DBD is used, as explained in Step 9, to add a size

field to the existing fixed-length segments.)

 4. If the change you are making affected the code in application programs, make

any necessary changes to the PSBs for those application programs. If you

have the DB/DC Data Dictionary, it can help you determine which application

programs and PCBs are affected by the DBD changes you have made.

 5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.

 6. Recalculate database space if necessary. You need to do this when the

change you are making results in different requirements for database space.

 7. For non-VSAM data sets, delete the old database space and define new

database space. For VSAM data sets, delete the space allocated for the old

clusters and define space for the new clusters.

 8. Write an edit routine to which the segment edit/compression facility can exit.

Your edit routine should add a size field to each segment it receives.

(Information on the segment edit/compression facility and the edit routine you

must write is contained in Chapter 8, “Choosing Optional Database Functions,”

on page 151 under “Using the Segment Edit/Compression Facility”.)

 9. Reload the database, using the interim DBD. As each occurrence of a segment

type that needs to be converted is presented for loading, your edit routine gets

control and adds the size field to the segment. When your edit routine returns

control, the segment is loaded into the database. Remember to make an

image copy of your database as soon as it is loaded.

10. If your database uses logical relationships or secondary indexes, you must run

some of the reorganization utilities before and after reloading to resolve prefix

information. The flowchart in Figure 195 on page 346 tells you which utilities to

use and the order in which they must be run.

11. After the database is loaded, code and generate a new DBD that specifies the

segment types in the database that are variable, and their size.

Converting to the Segment Edit/Compression Exit Routine

You might need to make changes to your database before you can use the

Segment Edit/Compression exit routine (DFSCMPX0) with it.

To convert an existing database to support DFSCMPX0, follow these steps:

1. Determine whether the change you are making affects the code in any

application programs. If the code is affected, make sure it gets changed.

2. Unload your database, using the existing DBD and the HD Unload utility.

Adding or Converting to Variable-Length Segments

446 Administration Guide: Database Manager

|
|

3. Code a new DBD. The new DBD must specify the name of your edit routine for

the segment types you need edited.

4. If the change you are making affected the code in application programs, make

any necessary changes to the PSBs for those application programs. If you have

the DB/DC Data Dictionary, it can help you determine which application

programs and PCBs are affected by the DBD changes you have made.

5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.

6. Recalculate database space. You need to do this because the change you are

making results in different requirements for database space.

7. Delete the old database space and define new database space. If you are using

VSAM, use the Access Method Services DEFINE CLUSTER command to define

VSAM data sets.

8. Reload the database, using the new DBD. Remember to make an image copy

of your database as soon as it is reloaded.

9. If your database uses logical relationships or secondary indexes, you must run

some of the reorganization utilities before and after reloading to resolve prefix

information. Figure 195 on page 346 tells you which utilities to use and the

order in which they must be run.

Related Reading: For more information on the Segment Edit/Compression exit

routine (DFSCMPX0), see:

v “Segment Edit/Compression Exit Routine” on page 212

v IMS Version 9: Customization Guide

Converting Databases for Data Capture Exit Routines and

Asynchronous Data Capture

This topic contains general-use programming interface information.

Data Capture exit routines are explained in “Data Capture Exit Routines” on page

215. To convert an existing database for use with Data Capture exit routines or

Asynchronous Data Capture:

1. Determine whether the change requires revisions to the logical delete rules in a

database. If so, change the delete rules, which might require reorganizing your

database.

2. Code a new DBD. On the DBD or SEGM statements, specify the name of each

exit routine you need called against a segment in the database.

Related Reading:

v See IMS Version 9: Utilities Reference: System for details on the DBD

parameters required for Data Capture exit routines or Asynchronous Data

Capture.

v IMS Version 9: Customization Guide explains the exit routines in detail, how

to code them, and how they work.

3. Run DBDGEN.

4. If you use prebuilt ACBs rather than dynamically built ACBs, rebuild the ACB.

Converting to the Segment Edit/Compression Facility

Chapter 16. Modifying Databases 447

Converting a Logical Parent Concatenated Key from Virtual to Physical

or Physical to Virtual

You can convert a logical parent concatenated key from virtual to physical or from

physical to virtual by using DBDGEN and the HD reorganization utilities. To do this

conversion:

1. Unload your database, using the existing DBD.

2. Code a new DBD, changing the concatenated key physical/virtual specification.

3. If you use prebuilt ACBs rather than dynamically built ACBs, rebuild the ACB.

4. Recalculate the database space. You need to do this because the change you

are making changes database space requirements.

5. For non-VSAM data sets, delete the old database space and define new

database space. For VSAM data sets, delete the space allocated for the old

clusters and define space for the new clusters.

6. If your database uses logical relationships or secondary indexes, you must run

some of the reorganization utilities before and after reloading to resolve prefix

information. Figure 195 on page 346 tells you which utilities to use and the

order in which they must be run.

7. Reload your database using the new DBD. Remember to make an image copy

of your database as soon as it is reloaded.

8. If required, run reorganization utilities to resolve prefix information.

Using the Online Change Function

Adding, changing, and deleting databases (except MSDBs) online without stopping

IMS can be done using the online change function.

The online change function for DEDBs allows both database-level and area-level

changes. A database-level change affects the structure of the DEDB and includes

such changes as adding or deleting an area, adding a segment type, or changing

the randomizer routines. An area-level change involves increasing or decreasing the

size of an area (IOVF, DOVF, CI). An area-level change requires the user to stop

only that area with the /DBRECOVERY command; a database-level change requires

the user to stop all areas of the DEDB.

Unlike standard randomizers which distribute database records across the entire

DEDB, two-stage randomizers distribute database records within an area. By using

a two-stage randomizer, changes to an individual area’s root addressable allocation

are area-level changes, and only the areas affected need to be stopped.

To use online change, you must do the following:

 1. Allocate the required new data sets (see IMS Version 9: Installation Volume 1:

Installation Verification for planning these data sets).

 2. Run a MODBLKS system definition if additions, changes, or deletions to the

system definition DATABASE (and possibly APPLCTN) statements need to be

made (see IMS Version 9: Administration Guide: System for more information).

 3. Run the necessary DBDGEN (see IMS Version 9: Utilities Reference:

Database and Transaction Manager), PSBGEN, and ACBGEN (see IMS

Version 9: Utilities Reference: System).

Converting a Logical Parent Concatenated Key

448 Administration Guide: Database Manager

Note: All changes to ACBLIB members resulting from the ACBGEN execution

are available to the online system after the online change (provided that

the changed resources—PSBs and DBDs—are defined in the online

system).

 4. Update the security definitions of the IMS system’s security facilities to include

any new databases. Security facilities can include RACF, another external

security product, the IMS Security Maintenance utility, and exit routines. For

more information on IMS security, see IMS Version 9: Administration Guide:

System.

 5. Allocate the database data sets for databases to be added.

 6. Load your database.

 7. For Fast Path, online change must be completed before the database can be

loaded. Also, Fast Path can only load databases online; batch jobs cannot be

used.

 8. If dynamic allocation is used in a z/OS environment, run the dynamic allocation

utility.

 9. Use the online change utility to copy your updated staging libraries to the

inactive libraries (see IMS Version 9: Utilities Reference: System for

information on running this utility).

10. Issue the operator commands to cause your inactive libraries to become your

active libraries (see IMS Version 9: Command Reference for the commands

used).

If a database in a z/OS environment needs to be reorganized because of changes

to the active ACBLIB data set, /DBR must be issued to deallocate the database prior

to the /MODIFY COMMIT command that introduces the ACBGEN changes. The

commands /DBR, /DBD, or /STA DATABASE ACCESS= must be completed to take the

areas of the database to be changed or deleted offline prior to issuing the /MODIFY

COMMIT command.

Maintaining Continuous Availability of IFP and MPP Regions

Changes can be made to DEDBs using online change while maintaining the

availability of IFP and MPP regions that access the DEDBs. If database level

changes are made to the DEDB while an IFP/MPP is running, then the application

will pseudoabend and the PSB will be rescheduled on the next DL/I call to the

DEDB.

Two level changes can be made to DEDBs. The database level changes allow:

1. Add or Delete DEDBs.

2. Add or Delete segment types.

3. Add, Change, or Delete a segment and its fields.

4. Add, Change, or Delete segment compression routines.

5. Add, Change, or Delete data capture exit routines.

6. Change randomizers.

7. Add or Delete areas.

8. Change area RAP space allocation and the randomizer is not a 2-stage

randomizer.

The area level changes allow:

1. Change area RAP space allocation and the randomizer is a 2-stage randomizer.

2. Change DOVF or IOVF space allocation.

Using the Online Change Function

Chapter 16. Modifying Databases 449

|
|
|
|
|

3. Change SDEP space allocation.

4. Change CI size.

Area level changes and items 4 through 8 of the database level change require a

BUILD DBD (not a BUILD PSB). In this case, with exception to items 4 and 5 when

the defined PSB SENSEGs have reference to exit routines that are added or

deleted, the PSB does not change. Changes can be made to DEDBs using online

change while maintaining the availability of IFP and MPP regions that access the

DEDBs only if there is no change to the scheduled PSB. The application will then

pseudoabend with ABENDU0777 and the PSB will be rescheduled on the next DL/I

call to DEDB. The message DFS2834I is issued. Other changes to the PSBs such

as items 1 through 5 of the DEDB database changes, full-function database

changes, or PSB changes using online change require that the IFP and MPP

regions be brought down.

The following procedure describes the steps necessary to make database level

changes to a DEDB with an IFP / MPP running:

 1. Use a specific user-developed application program or OEM utility to unload the

DEDB through existing system definitions.

 2. DBDGEN, PSBGEN and ACBGEN to generate the application control blocks to

implement the DEDB structural changes. The changed or new application

control blocks must be built into the active IMS system’s staging copy of

ACBLIB, which is offline.

 3. Run the online change utility, DFSUOCU0, to move the changed ACBLIB from

the staging ACBLIB to the inactive (A or B) copy of the ACBLIB that is online

to the active IMS system.

 4. Enter the normal /DBR command sequence to remove access to the DEDB

from the active IMS system.

 5. Enter and follow the online change command sequence for PREPARE

processing for ACBLIB changes.

 6. Enter and follow the online change command sequence for COMMIT/ABORT

processing for ACBLIB changes. The online IMS system will switch from using

the active (A or B) copy of the ACBLIB to the inactive (A or B) copy.

 7. Delete, define and initialize all of the DEDB AREA data sets with the new

system definitions.

 8. Enter the normal /START DATABASE and /START AREA commands to make the

DEDB and its AREAs accessible to the active IMS system.

 9. Use a specific user-developed application program or OEM utility to reload the

DEDB through the change system definitions for the DEDB.

10. On the first access to the newly changed DEDB, the application will

pseudoabend and the PSB will be rescheduled. Message DFS2834I will be

displayed.

The transaction will be tried again for both IFPs and MPPs when the PSB is

rescheduled. If the application attempts to access the DEDB before commit

processing has completed, an ’FH’ status will be returned to the application.

The DEDB is inaccessible because the randomizer for the DEDB is unloaded

by the /DBR command.

If database level changes are made to DEDBs while a BMP or DBCTL thread is

active, then commit processing fails and the message DFS3452 is issued.

Related Reading: See the IMS Version 9: Messages and Codes, Volume 2 for

more information on message DFS3452 and other messages.

Using the Online Change Function

450 Administration Guide: Database Manager

If area level changes are made to DEDBs while a BMP or DBCTL thread is active,

then on the next access to the newly changed area, the application should continue

processing as usual.

Changing Randomizer and Exit Routines

Randomizer routines determine the location of database records by AREA within the

DEDB and by root anchor point (RAP) within the AREA. A change of the DEDB

randomizer is a database level change. A new randomizing routine affects the

location (AREA and RAP) of every database record within the DEDB. The

randomizer is defined for the DEDB in the DBD parameter: RMNAME=.

A randomizer change can involve introducing a brand new randomizer into the

active IMS system or changing an existing randomizer in use by one or more

DEDBs.

New Randomizer Routine

The name of the randomizer is specified in the DBD parameter: RMNAME=. If a

new randomizer is introduced for an existing DEDB, a DBDGEN and ACBGEN of

the database with the new randomizer name is required in addition to the following

procedural steps:

 1. Use a specific customer-developed application program or original equipment

manufacturer (OEM) utility to unload the DEDB with the current randomizer.

 2. Assemble and link edit the new randomizer into the IMS SDFSRESL or one of

the libraries in the IMS SDFSRESL STEPLIB concatenation.

 3. Run a DBDGEN for the DEDB with the new randomizer designated in the DBD

parameter: RMNAME=.

 4. ACBGEN is also needed to build the application control blocks to implement

the DEDB definition that includes the new randomizer. The changed or new

application control blocks must be built into the active IMS system’s staging

copy of ACBLIB, which is offline.

 5. ACBLIB Run the online change utility, DFSUOCU0, to move the changed

ACBLIB from the staging ACBLIB to the inactive (A or B) copy of the ACBLIB

that is online to the active IMS system.

 6. Enter the normal /DBR operator command sequence to remove access to the

DEDB from the active IMS system.

 7. Enter and follow the online change command sequence for PREPARE

processing for ACBLIB changes.

 8. Enter and follow the online change command sequence for COMMIT/ABORT

processing for ACBLIB changes. The online IMS system will switch from using

the active (A or B) copy of the ACBLIB to the inactive (A or B) copy.

 9. Delete, define and initialize all of the DEDB AREA data sets with the new

system definitions.

10. Enter the normal /START DATABASE and /START AREA commands to make the

DEDB and its areas accessible to the active IMS system.

11. Use a specific customer-developed application program or OEM utility to reload

the DEDB with the new randomizer routine in effect.

Changed Randomizer Routine

If a change is made to a randomizer already in use by one or more DEDBs, then all

of the DEDBs using the subject randomizer must be included in the change

process.

Using the Online Change Function

Chapter 16. Modifying Databases 451

The changed randomizer will not be introduced if an existing version is already

loaded for any DEDB in the active IMS system. You can determine that the existing

version is no longer used by locating the keyword GONE in message DFS2838I.

Also, you can determine that the randomizer module is brought from any library to

the storage by locating the keyword LOADED in the message DFS2842I.

Changing DEDB randomizers requires the procedures described below. Because

the name of the randomizer remains the same, DBDGEN, ACBGEN and the online

change command sequence are not applicable.

1. Use a specific customer-developed application program or OEM utility to unload

the DEDB with the existing randomizer. This should be done for all of the

DEDBs that use the randomizer to be changed.

2. Enter the normal /DBR DATABASE operator command sequence to remove access

to the DEDBs from the active IMS system. The /DBR DATABASE command

unloads the randomizer for the DEDBs designated as operands. When all the

DEDBs that reference the randomizer are stopped, the randomizer is removed

from the active IMS system. If a DEDB is not stopped and references a

randomizer that has been removed from the IMS system, then a U1021 abend

results on the next DL/I call.

3. Assemble and link edit the changed randomizer into the IMS SDFSRESL or one

of the libraries of the IMS SDFSRESL STEPLIB concatenation.

4. Delete, define and initialize all of the DEDB AREA data sets to prepare for

reloading the DEDB with the changed randomizer.

5. Enter the /START DATABASE command for each of the DEDBs that use the

changed randomizer. For DEDBs, the /START DATABASE command causes the

randomizer to be loaded.

6. Use a specific customer-developed application program or OEM utility to reload

the DEDB with the changed randomizer routine in effect.

Deleted Randomizer Routine

To delete a randomizer from the active IMS system, follow the procedural steps that

are documented under ″New Randomizer Routine″. Once all the DEDBs that were

using the old randomizer have been unloaded and had the /DBR command run

successfully against them, then the randomizer can be deleted. Customers with

data sharing IMS systems that do not share SDFSRESLs must be careful to delete

the randomizer from both systems. A message (DFS2838) is generated when the

randomizer is deleted.

Adding, Changing or Deleting Segment Compression Routines

Segment compression routines are segment specific and are defined for the DEDB

in the DBD SEGM parameter (″COMPRTN=″). Adding, changing or deleting

segment compression routines is procedurally the same and involves the same

restrictions as DEDB randomizer routines.

Adding, Changing or Deleting Data Capture Exit Routines

Data Capture exit routines can be defined for the DEDB on the DBD statement, for

a specific segment on the SEGM statement (″EXIT=″), or for both. Multiple exit

routines can be specified on a single DBD or SEGM statement.

Adding a New Data Capture Exit Routine: To add a new Data Capture exit

routine, follow the procedure below:

1. Assemble and link edit the new exit routine into the IMS.SDFSRESL or one of

the libraries in the IMS.SDFSRESL STEPLIB concatenation.

Using the Online Change Function

452 Administration Guide: Database Manager

2. Run a DBDGEN for the DEDB with the new exit routine designated in the DBD

or SEGM parameter: ″EXIT=″.

3. ACBGEN is also needed to build the application control blocks to implement the

DEDB definition that includes the new exit routine. The changed or new

application control blocks must be built into the active IMS system’s staging

copy of ACBLIB, which is offline.

4. Run the online change Utility, DFSUOCU0, to move the changed ACBLIB from

the staging ACBLIB to the inactive (A or B) copy of the ACBLIB that is online to

the active IMS system.

5. Enter the normal /DBR command sequence to remove access to the DEDB

from the active IMS system.

6. Enter and follow the online change command sequence for PREPARE

processing for ACBLIB changes.

7. Enter and follow the online change command sequence for COMMIT/ABORT

processing for ACBLIB changes. The online IMS system will switch from using

the active (A or B) copy of the ACBLIB to the inactive (A or B) copy.

8. Enter the normal /START DATABASE and /START AREA commands to make the

DEDB and its areas accessible to the active IMS system.

Changing an Existing Data Capture Exit Routine: To change an existing Data

Capture exit routine, follow these steps:

1. Allow the dependent regions that are accessing DEDBs with the particular Data

Capture exit to end normally.

2. Assemble and link edit the changed exit routine into the IMS SDFSRESL or one

of the libraries of the IMS SDFSRESL STEPLIB concatenation.

3. Start the dependent regions. Data Capture exits are loaded at dependent region

initialization time, so the new version of the exit will take effect when the region

is started. Data Capture exit routines that were linked as reentrant or reusable

are unloaded at dependent region termination time. Otherwise, they are

unloaded after every DL/I call.

Deleting a Data Capture Exit Routine: To delete a Data Capture exit routine,

execute the following steps:

1. Run a DBDGEN for the DEDB with the old exit routine omitted from the DBD or

SEGM statement.

2. ACBGEN is also needed to build the application control blocks to implement the

DEDB definition that excludes the old exit routine. The changed or new

application control blocks must be built into the active IMS system’s staging

copy of ACBLIB, which is offline.

3. Run the online change utility, DFSUOCU0, to move the changed ACBLIB from

the staging ACBLIB to the inactive (A or B) copy of the ACBLIB that is online to

the active IMS system.

4. Enter the normal /DBR command sequence to remove access to the DEDB

from the active IMS system.

5. Enter and follow the online change command sequence for PREPARE

processing for ACBLIB changes.

6. Enter and follow the online change command sequence for COMMIT/ABORT

processing for ACBLIB changes. The online IMS system will switch from using

the active (A or B) copy of the ACBLIB to the inactive (A or B) copy.

7. Enter the normal /START DATABASE and /START AREA commands to make

the DEDB and its areas accessible to the active IMS system.

Using the Online Change Function

Chapter 16. Modifying Databases 453

Changing Root Addressable Space with Two Stage Randomizer

The UOW structure and root addressable allocation is specific to each area within

each DEDB. However, a change to the number of root addressable CIs within one

area can affect the number of root anchor points within the whole DEDB. If the

DEDB uses a standard randomizing routine that randomly distributes database

records across the entire database, changes to the root addressable allocation are

Database Level changes and procedurally must be handled as such. This topic is

not applicable to such changes.

If, however, a ″Two Stage″ randomizer is used for the DEDB, a change to an

individual area UOW root addressable definition is an AREA Level change. A ″Two

Stage″ randomizer does not attempt to evenly distribute database records across all

areas based on the total number of root anchor points in the entire DEDB. A ″Two

Stage″ randomizer is designated in the DBDGEN by coding the randomizer name

as follows:

 RMNAME=(mmmmmmmm,2)

In prior releases of IMS, customers would get the following error message if a

DEDB DBD had more than one operand in the RMNAME parameter:

 8, DBD130 - RMNAME OPERAND IS OMITTED OR INVALID

The same message will appear for this release of IMS if anything but a two is

specified as the second operand of RMNAME. Customers can still specify

RMNAME=(mmmmmmmm) for standard randomizer routines.

Changing the DEDB AREA UOW Structural Definition

Changing the DEDB AREA UOW structural definition requires the following

procedural steps:

1. Use a specific customer-developed application program or original equipment

manufacturer (OEM) utility to unload the area through existing system

definitions.

2. DBDGEN, PSBGEN and ACBGEN to generate the application control blocks to

implement the DEDB structural changes. The ″UOW=(x,y)″ parameter on the

AREA DBDGEN macro statement defines the amount of space allocated to

overflow within a DEDB UOW. The ″ROOT=(nnn,mmm)″ parameter on the

AREA DBDGEN macro statement defines the amount of space allocated to

Independent Overflow.

The changed or new application control blocks must be built into the active IMS

system’s staging copy of ACBLIB, which is offline.

3. Run the online change utility, DFSUOCU0, to move the changed ACBLIB from

the staging ACBLIB to the inactive (A or B) copy of the ACBLIB that is online to

the active IMS system.

4. Enter the /DBR AREA command to remove access to the area from the active

IMS system.

5. Enter and follow the online change command sequence for PREPARE

processing for ACBLIB changes.

6. Enter and follow the online change command sequence for COMMIT/ABORT

processing for ACBLIB changes.

7. Delete, define and initialize the area with the new system definitions.

8. Enter the /START AREA command to make the area accessible to the active

IMS system.

9. Use a specific customer-developed application program or OEM utility to reload

the DEDB through the changed system definitions for the DEDB.

Using the Online Change Function

454 Administration Guide: Database Manager

Making Online Changes at the DEDB and Area Level

This topic contains the following information about making online changes to DEDB

and DEDB areas:

v “Adding or Deleting DEDBs”

v “Changing DEDBs by Adding or Deleting Segments” on page 456

v “Adding or Deleting DEDB Areas” on page 457

v “Changing Root Addressable Space Allocation” on page 457

v “Changing Dependent and Independent Overflow Space Allocation” on page 457

v “Changing CI Size” on page 458

Adding or Deleting DEDBs

Figure 240 shows the overall process for adding a database using online change.

 Adding or deleting a DEDB and implementing the change by means of the IMS

online change facility requires that you follow the steps described below. See

Figure 240 for an overall picture.

1. MODBLKs Level system definition (Stage 1 and Stage 2) to add or delete the

DEDB. The changed MODBLKs should be generated into the active IMS

system’s staging copy of MODBLKs, which is offline.

2. DBDGEN, PSBGEN and ACBGEN to generate the application control blocks to

add or delete the DEDB and PSBs that access it. The changed or new

application control blocks must be generated into the active IMS system’s

staging copy of ACBLIB, which is offline.

3. Run the online change utility, DFSUOCU0, to move the changed MODBLKs and

ACBLIB changes from the staging libraries to the inactive (A or B) copies of

these libraries that are online to the active IMS system.

4. Enter and follow the online change command sequence for PREPARE

processing. If a DEDB is being added to an IMS system that does not have

Fast Path installed, the DFS2833 error message will appear and the PREPARE

process will be aborted.

If a DEDB is added whose areas have CI sizes that exceed the system buffer

size (BSIZ=), then message DFS2832 will appears and the PREPARE process

aborts.

Finally, if a DEDB is added to an IMS system that was initialized without any

DEDBs, then message DFS2837 appears and the PREPARE process aborts.

Figure 240. Adding a Database Using Online Change

Using the Online Change Function

Chapter 16. Modifying Databases 455

|
|

|

|

|

|

|

|

Output threads are initialized during Fast Path initialization only if DEDBs are

currently generated in the system. In order for the user to be able to add

DEDBs with online change, IMS must be initialized with DEDBs to begin with.

5. If the DEDB is to be deleted, any BMP region or DBCTL thread scheduled for

access to the DEDB must first be stopped. Full function transactions scheduled

for access to the DEDB will be placed in a QSTOP state and as a result, MPP

or IFP dependent regions need not be stopped to implement the online change

to delete the DEDB.

6. If the DEDB is to be deleted, access to it from the active IMS system must be

removed by means of a /DBR DB command. The commit will fail with a

DFS3452 message if the DEDB has not had the /DBR command successfully

run against it beforehand.

7. Execute the online change command sequence for COMMIT/ABORT

processing.

8. If the DEDB is newly added, execute the following additional steps at any

appropriate time prior to making the DEDB generally available for normal user

access:

a. Execute the normal procedures for defining the new DEDB and its areas

and area data sets to DBRC and the RECON data sets.

b. Define and initialize all of the area data sets belonging to the new DEDB.

c. Execute the procedures to include the required Dynamic Allocation

definitions that will enable the DEDB and its areas to be allocated to the

active IMS system. Or register the DEDB and its areas to DBRC, and DBRC

will dynamically allocate them during IMS initialization.

d. Enter the /START DATABASE and /START AREA commands to make the DEDB

and its areas accessible to the active IMS system.

e. Run the necessary application load programs.

Related Reading: See the IMS Version 9: Messages and Codes, Volume 2 for

information on the types of messages you might receive while adding or deleting

DEDBs.

Changing DEDBs by Adding or Deleting Segments

Adding or deleting segment types or changing segment formats affects the structure

of a DEDB and constitutes a Database Level change. The addition or deletion of

segment types (including the DEDB Sequential Dependent Segment type) affects

the hierarchical structure and the segment prefix layout to implement this structure.

Similarly, the change of individual segment formats changes the structure of the

entire database and space allocations within each AREA of the DEDB.

To make structural changes to an existing DEDB, execute the procedural steps

described below.

1. Use a specific customer-developed application program or OEM utility to unload

the DEDB through existing system definitions.

2. DBDGEN, PSBGEN and ACBGEN to generate the application control blocks to

implement the DEDB structural changes. The changed or new application

control blocks must be built into the active IMS system staging copy of ACBLIB,

which is offline.

3. Run the online change utility, DFSUOCU0, to move the changed ACBLIB from

the staging ACBLIB to the inactive (A or B) copy of the ACBLIB that is online to

the active IMS system.

Using the Online Change Function

456 Administration Guide: Database Manager

4. Enter the normal /DBR command sequence to remove access to the DEDB

from the active IMS system. This command may be issued any time prior to the

/MODIFY COMMIT.

5. Enter and follow the online change command sequence for PREPARE

processing for ACBLIB changes.

6. Enter and follow the online change command sequence for COMMIT/ABORT

processing for ACBLIB changes.

7. Delete, define and initialize all of the AREA data sets belonging to the DEDB

with the new system definitions.

8. Enter the normal /START DATABASE and /START AREA commands to make the

DEDB and its areas accessible to the active IMS system.

9. Use a specific customer-developed application program or OEM utility to reload

the DEDB through the changed system definitions for the DEDB.

Adding or Deleting DEDB Areas

Adding or deleting an area can affect the location of every database record

throughout the DEDB. Changing the number of areas will alter the number of root

anchor points (RAPs) within the DEDB. DEDB randomizing routines attempt to

randomly distribute database records throughout the entire DEDB based first on the

area and then on the root anchor point (RAP) within the area.

Adding or deleting one or more areas to a DEDB constitutes a structural change

such as adding a segment type. The steps described in “Changing DEDBs by

Adding or Deleting Segments” on page 456 should be followed to change the

number of areas defined in the DEDB. If areas are newly added, the required

DBRC definitions for areas and area data sets must be processed and dynamic

allocation blocks must be prepared before the new areas can be accessed by the

active IMS system.

Changing Root Addressable Space Allocation

There are different implications depending on whether you randomly distribute

DEDB records or use a standard randomizer to evenly distribute DEDB records. In

either case, you can distribute DEDB records across an entire DEDB or just a

single DEDB area.

Random Distribution of DB Records Across All AREAs: Changes to the DEDB

unit of work (UOW) structure that affect the number of DEDB Control Intervals

defined to the Root Addressable portion impact the number of root anchor points

within the entire DEDB. This type of change potentially affects the location of every

database record within the DEDB.

Standard Randomizers: Standard DEDB randomizing routines attempt to evenly

distribute database records across all areas and within the selected AREA. Such

randomizers determine the record location based on the total number of root anchor

points in the entire DEDB.

A change to the UOW structure that changes the number of CIs defined to the root

addressable area constitutes Database Level change when a standard DEDB

randomizing routine is used. This type of change should be treated the same as a

DEDB structural change in terms of online change procedures.

Changing Dependent and Independent Overflow Space

Allocation

Starting in IMS Version 3, Fast Path has provided limited support for extending

DEDB AREA Independent Overflow space allocation. That support continues

Using the Online Change Function

Chapter 16. Modifying Databases 457

|
|
|
|

unchanged. Additionally, DEDB online change will allow changes to the overflow

space allocation both within each UOW (Dependent Overflow) and outside the root

addressable portion (Independent Overflow) of the AREA. Both Dependent and

Independent Overflow changes are considered to be Area-level changes. However,

such changes must not alter the number of CIs defined to the root addressable

portion. Changing the number of root addressable CIs will change the number of

root anchor points and could affect the DEDB randomizing routine in locating

database records.

Changing DEDB AREA overflow allocation requires the same procedural steps as

those defined for changing the root addressable area.

Related Reading: See “Changing the DEDB AREA UOW Structural Definition” on

page 454 for details on changing the DEDB AREA overflow.

Changing CI Size

DEDB online change can be used to change DEDB AREA control interval size.

However, CI size changes must not alter the number of CIs allocated to the root

addressable portion of an AREA because this could affect the DEDB randomizer in

locating database records across the DEDB. The SIZE= parameter on the AREA

statement of DBDGEN defines the CI size of the data set that constitutes the

AREA.

Extending DEDB Independent Overflow Online

You can extend the independent overflow (IOVF) portion of a DEDB area while IMS

is online by following the procedure described in this topic. The first time the area is

opened after this procedure is completed, a message is issued to verify that Fast

Path recognizes and accepts the change to the area and normal open processing

completes. You can also modify the IOVF portion of a DEDB using DEDB online

change.

You cannot decrease the size of the IOVF with this procedure. However, the size of

the sequential dependent part might increase or decrease depending on the total

amount of space allocated to the area. The steps in this procedure also reorganize

the area.

To increase the size of the IOVF portion of a DEDB online you must:

 1. Run the DBDGEN utility to obtain an updated DBD. Update only the following

operands on the ROOT= keyword of the AREA statement:

number

Specifies the total number of units of work (UOWs) allocated to the root

addressable and the IOVF parts of the area. Increase number to reflect

the number of UOWs you need to add to the IOVF.

overflow

Specifies the space reserved for the IOVF, expressed as the number of

UOWs. Increase the number on this operand by the same amount you

increase the number operand. For example, if the original values were

number=x and overflow=y, and if number is changed to x + 2, then

overflow must be changed to y + 2.

All other control statements must remain identical to those on the existing

DBD. Changing other control statements might damage data and create

unpredictable results.

Using the Online Change Function

458 Administration Guide: Database Manager

2. Run the ACBGEN utility using the updated DBD. You should run PSB=ALL to

create a new and complete ACBLIB with the new ROOT= parameters. The

output should be a different data set from the one currently used by the control

region. The new ACBLIB is identical to the old ACBLIB, except for the ROOT=

changes. You can use the staging ACBLIB, but do not switch with the online

change function.

 3. Ensure that the area is in good condition. The area must not have any

in-doubts, and must not be in a recovery-needed condition. Also, at least one

copy of the area (one area data set) must have no error queue elements

(EQEs). Use the /DIS AREA command to display EQEs and the condition. Use

the /DIS CCTL INDOUBT command to display all in-doubt threads. Eliminate

potential defects before continuing to the next step so that data is not lost or

damaged.

 4. Process SDEPs using the SDEP scan and delete utilities. This step is required

because the IOVF extension procedure requires an unload and load of the

area. Some unload and load utilities are unable to process SDEPs.

Unload/load utilities that do process SDEPs might reload them in root order

rather than time order, which can interfere with subsequent SDEP scan and

delete operations.

Related Reading:

v For more information on the DBRC definitions for the shared AREAs with

SDEP segments, see the IMS Version 9: Database Recovery Control

(DBRC) Guide and Reference.

v For more information on DEDB Sequential Dependent Scan utility keywords

and change boundaries, see the IMS Version 9: Utilities Reference:

Database and Transaction Manager.

v For more information on the DEDB Sequential Dependent Scan utility

user-written exit routine parameter interface, see the IMS Version 9:

Customization Guide.

 5. If multiple copies of the area (MADS) exist, stop all copies of the area except

one using the /STOP ADS command. Ensure that the remaining copy does not

have any EQEs and is not in a recovery-needed condition. Multiple ADSs must

be stopped to ensure that DBRC has accurate information when the area is

brought online after the IOVF is extended.

 6. Issue a /DBR or /STO AREA command against the area.

 7. Take an image copy of the area.

 8. If the area is registered with DBRC, set the recovery-needed flag on for the

area. This flag is required by the DEDB Initialization utility and can be set

using a CHANGE.DBDS RECOV command.

 9. Unload the area.

10. Execute the IDCAMS utility to delete and redefine the data set. The amount of

space you allocate for the area in the Define procedure should reflect the

increased size of the IOVF. The number of SDEP CIs in the area might change

because this number represents the difference between the total amount of

space allocated to the area and the amount used by the other parts. These

other parts are the root addressable part, the IOVF, the reorganization UOW,

and two control CIs.

Related Reading: See DFSMS Access Method Services for Catalogs for a

description of the IDCAMS Delete and Define functions.

11. Execute the Fast Path initialization utility against the new area using the new

ACBLIB.

12. Issue the /START AREA command to bring the area online.

Extending DEDB Independent Overflow Online

Chapter 16. Modifying Databases 459

13. Reload the area.

Note: It is recommended that you reload the area in batch. If you reload the

area using a BMP, the BMP might fail with message DFS3709A and

reason code 5. If this failure occurs, issue the CHANGE.DBDS command to

set ICOFF and restart the BMP.

IMS Version 9: Messages and Codes, Volume 2 explains message DFS3709A

and the reason for this failure.

14. Take an image copy of the area after the reload.

When the area is next accessed, message DFS3703I is issued. This message

alerts you that discrepancies were found during open processing. However, open

processing continues because the discrepancies indicate to IMS that you used an

accepted procedure to increase the size of the IOVF. DFS3703I is not issued during

subsequent opens of the area as long as IMS remains online. DFS3703I is also

issued by any sharing subsystem the first time the area is opened on that

subsystem after the IOVF is extended.

During emergency restart or extended recovery facility (XRF) takeover, the updated

area information is picked up from the log. Therefore, DFS3703I is not issued.

Use the new ACBLIB for any subsequent normal restarts of the online system.

Ensure that the new ACBLIB reflects only the changes made to the ROOT=

keyword. Any other changes you make might cause damage to the area. If you do

not use the new ACBLIB, open logic allows the discrepancy between information

from the old ACBLIB and information from the area data set, but issues message

DFS3703I each time the discrepancy is encountered.

Note: Remember that you cannot use the online change function to update the

ACBLIB with the altered ROOT= parameter.

Extending DEDB Independent Overflow Online

460 Administration Guide: Database Manager

Part 3. Appendixes

© Copyright IBM Corp. 1974, 2004 461

462 Administration Guide: Database Manager

Appendix A. Meaning of Bits in the Delete Byte

This appendix examines the meanings of:

v “Bits in the Delete Byte”

v “Bits in the Prefix Descriptor Byte”

Bits in the Delete Byte

This topic contain diagnosis, modification or tuning information.

The meaning of each bit in the delete byte, when turned on, is as follows:

Bit Meaning When Delete Byte is Turned On

0 Segment has been marked for deletion. This bit is used for segments in a

HISAM or secondary index database or segments in primary index.

1 Database record has been marked for deletion. This bit is used for

segments in a HISAM or secondary index database or segments in a

primary index.

2 Segment has been processed by the delete routine.

3 This bit is reserved.

4 Prefix and data portion of the segment are separated in storage. (The

delete byte preceding the separated data portion of the segment has all bits

turned on.)

5 Segment has been marked for deletion from a physical path. This bit is

called the PD (physical delete) bit.

6 Segment has been marked for deletion from a logical path. This bit is called

the LD (logical delete) bit.

7 Segment has been marked for removal from its logical twin chain. This bit

should only be set on if bits 5 and 6 are also on).

Bits in the Prefix Descriptor Byte

This topic contains diagnosis, modification, or tuning information.

The delete byte is also used for the root segment of a DEDB, only there it is called

a prefix descriptor byte. The meaning of each bit, when turned on, is as follows:

Bit Meaning When Root Segment Prefix Descriptor is Turned On

0 Sequential dependent segment is defined.

1-3 These bits are reserved.

4-7 If the number of defined segments is 8 or less, bits 4 through 7 contain the

highest defined segment code. Otherwise, the bits are set to 000.

Appendix B, “Insert, Delete, and Replace Rules for Logical Relationships,” on page

465, discusses replacing, inserting, and deleting rules for logical relationships,

which includes how to specify rules in a physical DBD and a rules summary.

© Copyright IBM Corp. 1974, 2004 463

Bits in the Prefix Descriptor Byte

464 Administration Guide: Database Manager

Appendix B. Insert, Delete, and Replace Rules for Logical

Relationships

You need to examine all your application requirements and decide who can insert,

delete, and replace segments involved in logical relationships and how those

updates are to be made (physical path only or physical and logical path). The

insert, delete, and replace rules in the physical DBD determine how updates apply

across logical relationships.

This appendix examines the following information on rules:

v “Specifying Rules in the Physical DBD”

v “Insert Rules” on page 466

v “Replace Rules” on page 469

v “Using the DLET Call” on page 475

This appendix contains general-use programming interface information.

Specifying Rules in the Physical DBD

Insert, delete, and replace rules are specified using the RULES= keyword of a

SEGM statement in the DBD for logical relationships. Figure 241 contains a

diagram of the RULES= keyword and its parameters.

 The valid parameters values for the RULES= keyword are:

B Specifies a bidirectional virtual delete rule. It is not a valid value for either the

first or last positional parameter of the RULES= keyword.

L Specifies a logical insert, delete, or replace rule.

P Specifies a physical insert, delete, or replace rule.

V Specifies a virtual insert, delete, or replace rule.

The RULES= keyword accepts three positional parameters:

v The first positional parameter sets the insert rule

v The second positional parameter sets the delete rule

v The third positional parameter sets the insert rule

For example, RULES=P,L,V says the insert rule is physical, the delete rule is

logical, and the replace rule is virtual. The B rule is only applicable for delete. In

general, the P rule is the most restrictive, the V rule is least restrictive, and the L

rule is somewhere in between.

The RULES= parameter is applicable only to segments involved in logical paths,

that is, the logical child, logical parent, and physical parent segments. The RULES=

parameter is not coded for the virtual logical child.

�� SEGM Other parameters RULES=(P , P , P)

L

L

L

V

V

V

B

 ��

Figure 241. Insert, Delete, and Replace Rules in the DBD

© Copyright IBM Corp. 1974, 2004 465

|||

|
|
|
|

|

|
|
|

|

||
|

||

||

||

|

|

|

|

Insert Rules

The insert rules apply to the destination parent segments, but not to the logical child

segment. A destination parent can be a logical or physical parent. The insert rule

has no meaning for the logical child segment except to satisfy the RULES= macro’s

coding scheme. Therefore, any insert rule (P, L, V) can be coded for a logical child.

A logical child can be inserted provided:

v The insert rule of the destination parent is not violated

v The logical child being inserted does not already exist (it cannot be a duplicate)

A description of how the insert rules work for the destination parent is a follows:

v When RULES=P is specified, the destination parent can be inserted only using

the physical path. This means the destination parent must exist before inserting a

logical path. A concatenated segment is not needed, and the logical child is

inserted by itself. Figure 242 on page 467 shows an example of the physical

insert rule.

v When RULES=L is specified, the destination parent can be inserted either using

the physical path or concatenated with the logical child and using the logical

path. When a logical child/destination parent concatenated segment is inserted,

the destination parent is inserted if it does not already exist and the I/O area key

check does not fail. If the destination parent does exist, it will remain unchanged

and the logical child will be connected to it. Figure 245 on page 468 shows an

example of the logical insert rule.

v When RULES=V is specified, the destination parent can be inserted either using

the physical path or concatenated with the logical child and using the logical

path. When a logical child/destination parent concatenated segment is inserted,

the destination parent is replaced if it already exists. If it does not already exist,

the destination parent is inserted. Figure 247 on page 469 shows an example of

the virtual insert rule.

The Logical Child Insert Call

To insert the logical child segment, the I/O area in an application program must

contain one of the following segments in accordance with the destination parent’s

insert rule:

v The logical child

v The logical child/destination parent concatenated segment

For all DL/I calls, either an error is detected and an error status code returned (in

which case no data is changed), or the required changes are made to all segments

effected by the call. Therefore, if the required function cannot be performed for both

parts of the concatenated segment, an error status code is returned, and no change

is made to either the logical child or the destination parent.

The insert operation is not affected by KEY or DATA sensitivity as specified in a

logical DBD or a PCB. This means that if a program is other than DATA sensitive to

both the logical child and destination parent of a concatenated segment, and if the

insert rules is L or V, the program must still supply both of them in the I/O area

when inserting using a logical path. Because of this, maintenance programs that

insert concatenated segments should be DATA sensitive to both segments in the

concatenation.

Insert Rules

466 Administration Guide: Database Manager

Status Codes

The nonblank status codes that can be returned to an application program after an

ISRT call are as follows:

v AM—An insert was attempted and PROCOPTI

v GE—The parent of the destination parent or logical child was not found

v II—An attempt was made to insert a duplicate segment

v IX—The rule specified was P, but the destination parent was not found

One reason for getting an IX status code is that the I/O area key check failed.

Concatenated segments must contain the destination parent’s key twice—once

as part of the logical child’s LPCK and once as a field in the parent. These keys

must be equal.

Figure 242, Figure 243, and Figure 244 on page 468 show a physical insert rule

example.

Figure 242. Physical Insert Rule Example

Figure 243. Paths for Physical Insert Rule Example

Insert Rules

Appendix B. Insert, Delete, and Replace Rules for Logical Relationships 467

Figure 245 and Figure 246 show a logical insert rule example.

 The IX status code shown in Figure 246 is the result of omitting the concatenated

segment CUST/CUSTOMER in the second call. IMS checked for the key of the

CUSTOMER segment (in the I/O area) and failed to find it. With the L insert rule,

the concatenated segment must be inserted to create a logical path.

Figure 247 on page 469 and Figure 248 on page 469 show a virtual insert rule

example.

 ISRT ’CUSTOMER’ STATUS CODE=’ ’

ISRT ’BORROW’ STATUS CODE=’ ’ (’IX’ if LOANS does not exist)

Figure 244. ISRT and Status Codes for Physical Insert Rule Example

Figure 245. Logical Insert Rule Example

ISRT ’LOANS’ STATUS CODE=’ ’

ISRT ’CUST’ STATUS CODE=’IX’

Figure 246. ISRT and Status Codes for Logical Insert Rule Example

Insert Rules

468 Administration Guide: Database Manager

The code shown in Figure 248 will replace the LOANS segment if present, and

insert the LOANS segment if not. The V insert rule is a powerful option.

Insert Rules Summary

Specifying the insert rule as P prevents inserting the destination parent as part of a

concatenated segment. A destination parent can only be inserted using the physical

path. If the insert creates a logical path, only the logical child needs to be inserted.

Specifying the insert rule as L on the logical and physical parent allows insertion

using either the physical path or the logical path as part of a concatenated

segment. When inserting a concatenated segment, if the destination parent already

exists it remains unchanged and the logical child is connected to it. If the

destination parent does not exist, it is inserted. In either case, the logical child is

inserted if it is not a duplicate, and the destination parent’s insert rule is not

violated.

The V insert rule is the most powerful of the three rules. The V insert rule is the

most powerful because it will insert the destination parent (inserted as a

concatenated segment using the logical path) if the parent did not previously exist,

or otherwise replace the existing destination parent with the inserted destination

parent.

Replace Rules

The replace rules are applicable to the physical parent, logical parent, and logical

child segments of a logical path. The following is a description of how the replace

rules work:

Figure 247. Virtual Insert Rule Example

ISRT ’CUSTOMER’ STATUS CODE=’ ’

ISRT ’BORROW/LOANS’ STATUS CODE=’ ’

Figure 248. ISRT and Status Codes for Virtual Insert Rule Example

Insert Rules

Appendix B. Insert, Delete, and Replace Rules for Logical Relationships 469

v When RULES=P is specified, the segment can only be replaced when retrieved

using a physical path. If this rule is violated, no data is replaced and an RX

status code is returned. Figure 249 shows an example of the physical replace

rule.

v When RULE=L is specified, the segment can only be replaced when retrieved

using a physical path. If this rule is violated, no data is replaced. However, no RX

status code is returned, and a blank status code is returned. Figure 251 on page

471 shows an example of the logical replace rule.

v When RULES=V is specified, the segment can be replaced when retrieved by

either a physical or logical path. Figure 253 on page 472 shows an example of

the virtual replace rule.

The Replace Call

A replace operation can be done only on that portion of a concatenated segment to

which an application program is data sensitive. If no data is changed in a segment,

no data is replaced. Therefore, no replace rule is violated. The replace rule is not

checked for a segment that is part of a concatenated segment but is not retrieved.

For all DL/I calls, either an error is detected and an error status code returned (in

which case no data is changed), or the required changes are made to all segments

affected by the call. Therefore, if the required function cannot be performed for both

parts of the concatenated segment, an error status code is returned, and no change

is made to either the logical child or the destination parent.

Status Codes

The status code returned to an application program indicates the first violation of

the replace rule that was detected. These status codes are as follows:

v AM—a replace was attempted and PROCOPTR

v DA—the key field of a segment or a non-replaceable field was changed

v RX—the replace rule was violated

Figure 249 and Figure 250 on page 471 show a physical replace rule example.

Figure 249. Physical Replace Rule Example

Replace Rules

470 Administration Guide: Database Manager

The P replace rule prevents replacing the LOANS segment as part of a

concatenated segment. Replacement must be done using the segment’s physical

path.

Figure 251 and Figure 252 show a logical replace rule example.

 As shown in Figure 251, the L replace rule prevents replacing the LOANS segment

as part of a concatenated segment. Replacement must be done using the

segment’s physical path. However, the status code returned is blank. The

BORROW segment, accessed by its physical path, is replaced. Because the logical

child is accessed by its physical path, it does not matter which replace rule is

selected.

The L replace rule allows replacing only the logical child half of the concatenation,

and the return of a blank status code.

Figure 253 on page 472 and Figure 254 on page 472 show a virtual replace rule

example.

GHU ’CUSTOMER’ STATUS CODE=’ ’

REPL STATUS CODE=’ ’

GHN ’BORROW/LOANS’ STATUS CODE=’ ’

REPL STATUS CODE=’RX’

Figure 250. Calls and Status Codes for Physical Replace Rule Example

Figure 251. Logical Replace Rule Example

GHU ’CUSTOMER’

 ’BORROW/LOANS’ STATUS CODE=’ ’

REPL STATUS CODE=’ ’

Figure 252. Calls and Status Codes for Logical Replace Rule Example

Replace Rules

Appendix B. Insert, Delete, and Replace Rules for Logical Relationships 471

As shown in Figure 254, the V replace rule allows replacing the CUSTOMER

segment using its logical path as part of a concatenated segment.

Replace Rules Summary

Specifying the replace rule as P, on any segment in a logical relationship, prevents

replacing that segment except when it is retrieved using its physical path. When the

replace rule for the logical parent is specified as L, IMS returns a blank status code

without replacing any data when the logical parent is accessed concatenated with

the logical child. Because the logical child has been accessed by its physical path,

its replace rule can be any of the three. So, using the replace rule allows the

selective replacement of the logical child half of the concatenation and a blank

status code. Specifying a replace rule of V, on any segment of a logical relationship,

allows replacing that segment by either its physical or logical path.

Table 33 on page 473 and Table 34 on page 474 show all of the possible

combinations of replace rules that can be specified. They show what actions take

place for each combination when a call is issued to replace a concatenated

segment in a logical database. Table 33 on page 473 and Table 34 on page 474 are

based on the databases and logical views shown in Figure 255 on page 473 and

Figure 256 on page 473.

Figure 253. Virtual Replace Rule Example

GHU ’LOANS’

 ’CUST/CUSTOMER’ STATUS CODE=’ ’

REPL STATUS CODE=’ ’

Figure 254. Calls and Status Codes for Virtual Replace Rule Example

Replace Rules

472 Administration Guide: Database Manager

Table 33. Replace Rules for Logical View 1

Replace Rule Specified

Segment Attempting

to Replace Status

Code

Data Replaced?

B C B C B C

P P X Y

P P X RX N

P P X X RX N N

P L X Y

P L X N

P L X X Y N

P V X Y

P V X Y

P V X X Y Y

L P X Y

L P X RX N

L P X X RX N N

L L X Y

L L X N

L L X X Y N

L V X Y

L V X Y

Figure 255. Physical Databases for Replace Rules Tables

Figure 256. Logical Views for Replace Rules Table

Replace Rules

Appendix B. Insert, Delete, and Replace Rules for Logical Relationships 473

Table 33. Replace Rules for Logical View 1 (continued)

Replace Rule Specified

Segment Attempting

to Replace Status

Code

Data Replaced?

B C B C B C

L V X X Y Y

V P X Y

V P X RX N

V P X X RX N N

V L X Y

V L X N

V L X X Y N

V V X RX Y

V V X RX Y

V V X X RX Y Y

 Table 34. Replace Rules for Logical View 2

Replace Rule Specified

Segment Attempting

to Replace Status

Code

Data Replaced?

B A B A B A

P P X RX Y

P P X N

P P X X RX N N

P L X RX Y

P L X N

P L X X RX Y N

P V X RX Y

P V X Y

P V X X RX Y Y

L P X Y

L P X RX N

L P X X RX N N

L L X Y

L L X N

L L X X Y N

L V X Y

L V X Y

L V X X Y Y

V P X RX Y

V P X RX N

V P X X N N

V L X Y

V L X N

V L X X Y N

Replace Rules

474 Administration Guide: Database Manager

Table 34. Replace Rules for Logical View 2 (continued)

Replace Rule Specified

Segment Attempting

to Replace Status

Code

Data Replaced?

B A B A B A

V V X Y

V V X Y

V V X X Y Y

Using the DLET Call

The DLET call is a request to delete a path of segments, not a request to release

the DASD space used by a segment. Delete rules are needed when a segment is

involved in a logical relationship, because that segment belongs to two paths: a

physical and a logical path. The selection of the delete rules for the logical child and

its logical and physical parent (or two logical parents if physical pairing is used)

determines whether one or two DLET calls are necessary to delete the two access

paths.

Physical and Logical Deletion

Physically deleting a segment prevents further access to that segment using its

physical parents. Physically deleting a segment also physically deletes its physical

dependents, however one exception to this exists: If one of the physical parents of

the physically deleted segment is a logical child that has been accessed from its

logical parent, then the physically deleted segment is accessible from that logical

child. The deleted segment is accessible from that logical child because the

physical dependents of a logical child are variable intersection data.

Logically deleting a logical child prevents further access to the logical child using its

logical parent. Unidirectional logical child segments are assumed to be logically

deleted. A logical parent is considered logically deleted when all its logical children

are physically deleted. For physically paired logical relationships, the physical child

paired to the logical child must also be physically deleted before the logical parent

is considered logically deleted.

Deleting Concatenated Segments

The following application program can be sensitive to either the concatenated

segment—SOURCE=(DATA/DATA), (DATA/KEY), (KEY/DATA)—or the logical child,

because it is the logical child that is either physically or logically deleted (depending

on the path accessed) in all cases. The concatenated segment relationships are

shown in Figure 257 on page 476.

Replace Rules

Appendix B. Insert, Delete, and Replace Rules for Logical Relationships 475

The Third Access Path

In Figure 258, three paths to the logical child segment SEG4 exist:

v The physical path from its physical parent SEG3

v The logical path from its logical parent SEG7

v A third path from SEG4’s physical dependents (SEG5 and SEG6) (because

segment SEG6 is a logical parent accessible from its logical child SEG2)

Related Reading: See “Possibility of Abnormal Termination” on page 497 for

more information on potential abends.

These paths are called “full-duplex” paths, which means accessibility to segments in

the paths is in two directions (up and down). Two delete bits that control access

along the paths exist, but they are “half-duplex,” which means they only block half

of each respective path. No bit that blocks the third path exists. If SEG4 were both

physically and logically deleted (in which case the PD and LD bits in SEG4 would

be set), SEG4 would still be accessible from the third path, and so would both of its

parents.

Neither physical nor logical deletion prevents access to a segment from its physical

or logical children. Logically deleting SEG4 prevents access to SEG4 from its

logical parent SEG7, and it does not prevent access from SEG4 to SEG7.

Physically deleting SEG4 prevents access to SEG4 from its physical parent SEG3,

but it does not prevent access from SEG4 to SEG3.

Figure 257. Concatenated Segment Relationships

Figure 258. Third Access Path Example

Delete Rules

476 Administration Guide: Database Manager

Use of the Delete Byte

The delete byte is used by IMS to maintain the delete status of segments within a

database. The meaning of each bit within the delete byte is in “Bits in the Delete

Byte” on page 463. The bit is only meaningful for logical child segments and their

logical parents. For segments involved in a logical relationship, the PD and LD bits

are set or assumed set as follows:

v If a segment is physically deleted (thereby preventing further access to it from its

physical parent), then delete processing scans downward from the deleted

segment through its dependents, turns upward, and either releases each

segment’s DASD space or sets the PD bit. HISAM is the one exception to this

process. In HISAM, the delete bit is set in the segment specified by the DLET

call and processing terminates.

v If the PD bit is set in a logical parent, the LD bit is set in all logical children that

can be reached from that logical parent.

v When physical pairing is used, if the PD bit is set in one of a pair of logical

children, the LD bit is set in its paired segment.

v When a virtually paired logical child is logically deleted (thereby preventing

further access to it from its logical parent), the LD bit is set in the logical child.

v The LD bit is assumed set in all logical children in unidirectional logical

relationships.

v If physical pairing is used, the LD bit is assumed set in a parent if all the paired

segments that are physical children of the parent have the PD bit set on.

Issuing the Delete Call

A DLET call can be issued against a segment defined in either a physical or logical

DBD. The call can be issued against either a physical segment or a concatenated

segment.

A DLET call issued against a concatenated segment requests deletion of the logical

child in the path that is accessed. If a concatenated segment or a logical child is

accessed from its logical parent, the DLET call requests logical deletion. In all other

cases, a delete call requests physical deletion.

Physical deletion of a segment generates a request for logical deletion of all the

segment’s logical children and generates a request for physical deletion of all the

segment’s physical children. Physical deletion of a segment also generates a

request to delete any index pointer segments for which the physically deleted

segment is the source segment.

Delete sensitivity must be specified in the PCB for each segment against which a

delete call can be issued. The call does not need to be specified for the physical

dependents of those segments. Delete operations are not affected by KEY or DATA

sensitivity as specified in either the PCB or logical DBD.

Status Codes

The nonblank status codes that can be returned to an application program after a

DLET call are as follows:

v DX—A delete rule was violated

v DA—The key was changed in the I/O area

v AM—The call function was not compatible with the processing option or segment

sensitivity

Delete Rules

Appendix B. Insert, Delete, and Replace Rules for Logical Relationships 477

DASD Space Release

The DLET call is not a request for release of DASD space. Depending on the

database organization, DASD space can or cannot be reused when it is released.

DASD space for a segment is released when the following conditions are met:

v Space has been released for all physical dependents of the segment.

v The segment is physically deleted (PD bit is set or being set on).

v If the segment is a logical child or logical parent, then it must be physically and

logically deleted (PD bit is set or being set on and LD bit is set or assumed set).

v If the segment is a dependent of a logical child (and is variable intersection data)

and the DLET call was issued against a physical parent of the logical child, the

logical child must be both physically and logically deleted.

v If the segment is a secondary index pointer segment, the space has been

released for its target segment.

Delete Rules

The following is a description of how the delete values work for the logical parent,

physical parent, and logical child.

Logical Parent

v When RULES=P is specified, the logical parent must be logically deleted before

a DLET call is effective against it or any of its physical parents. Otherwise, the

call results in a DX status code, and no segments are deleted. However, if a

delete request is made against a segment as a result of propagation across a

logical relationship, then the P rule acts like the L rule that follows.

v When RULES=L is specified, either physical or logical deletion can occur first.

When the logical parent is processed by a DLET call, all logical children are

logically deleted, but the logical parent remains accessible from its logical

children.

v When RULES=V is specified, a logical parent is deleted along its physical path

explicitly when deleted by a DLET call. All of its logical children are logically

deleted, although the logical parent remains accessible from these logical

children.

A logical parent is deleted along its physical path implicitly when it is no longer

involved in a logical relationship. A logical parent is no longer involved in a logical

relationship when:

– It has no logical children pointing to it (its logical child counter is zero, if it has

any)

– It points to no logical children (all of its logical child pointers are zero, if it has

any)

– It has no physical children that are also real logical children

Physical Parent (Virtual Pairing Only)

v PHYSICAL/LOGICAL/VIRTUAL is meaningless.

v BIDIRECTIONAL VIRTUAL means a physical parent is automatically deleted

along its physical path when it is no longer involved in a logical relationship. A

physical parent is no longer involved in a logical relationship when:

– It has no logical children pointing to it (its logical child counter is zero, if it has

one)

– It points to no logical children (all of its logical child pointers are zero, if it has

any)

– It has no physical children that are also real logical children

Delete Rules

478 Administration Guide: Database Manager

Logical Child

v When RULES=P is specified, the logical child segment must be logically deleted

first and physically deleted second. If physical deletion is attempted first, the

DLET call issued against the segment or any of its physical parents results in a

DX status code, and no segments are deleted. If a delete request is made

against the segment as a result of propagation across a logical relationship, or if

the segment is one of a physically paired set, then the rule acts like the L rule

that follows.

v When RULES=L is specified, deletion of a logical child is effective for the path for

which the delete was requested. Physical and logical deletion of the logical child

can be performed in any order. The logical child and any physical dependents

remain accessible from the non-deleted path.

v When RULES=V is specified, a logical child is both logically and physically

deleted when it is deleted through either its logical or physical path (setting either

the PD or LD bits sets both bits). If this rule is coded on only one logical child

segment of a physically paired set, it acts like the L rule.

Note: For logical children involved in unidirectional logical relationships, the

meaning of all three rules is the same, so any of the three rules can be

specified.

Examples Using the Delete Rules

Figure 259 through Figure 294 show the use of the delete rules for each of the

segment types for which the delete rule can be coded (logical and physical parents

and their logical children). Only the rule pertinent to the example is shown in each

figure. The explanation accompanying the example applies only to the specific

example.

Figure 259. Logical Parent, Virtual Pairing—Physical Delete Rule Example

Delete Rules

Appendix B. Insert, Delete, and Replace Rules for Logical Relationships 479

The physical delete rule requires that all logical children be previously physically

deleted. Physical dependents of the logical parent are physically deleted.

The DLET status code will be ’DX’ if all of the logical children were not previously

physically deleted. All logical children are logically deleted. The LD bit is set on in

the physical logical child BORROW.

Figure 260. Logical Parent, Physical Pairing—Physical Delete Rule Example: Before and

After

GHU ’LOANS’ STATUS=’ ’

DLET STATUS=’ ’

Figure 261. Logical Parent, Physical Pairing—Physical Delete Rule Example: Database Calls

Figure 262. Logical Parent, Physical Pairing—Physical Delete Rule Example

Delete Rules

480 Administration Guide: Database Manager

The physical delete rule requires that:

v All logical children be previously physically deleted.

v Physical children paired to the logical child be previously deleted.

CUSTOMER, the logical parent, has been physically deleted. Both the logical child

and its pair had previously been physically deleted. (The PD and LD bits are set on

the before figure of the BORROW/LOANS.)

Figure 263. Logical Parent, Physical Pairing—Physical Delete Rule Example: Before and

After

GHU ’CUSTOMER’ STATUS=’ ’

DLET STATUS=’ ’

Figure 264. Logical Parent, Physical Pairing—Physical Delete Rule Example: Calls and

Status Codes

Figure 265. Logical Parent, Virtual Pairing—Logical Delete Rule Example

Delete Rules

Appendix B. Insert, Delete, and Replace Rules for Logical Relationships 481

The logical delete rule allows either physical or logical deletion first; neither causes

the other. Physical dependents of the logical parent are physically deleted.

The logical parent LOANS remains accessible from its logical children. All logical

children are logically deleted. The LD bit is set on in the physical child BORROW.

The processing and results shown in Figure 265 on page 481 would be the same if

the logical parent LOANS delete rule were virtual instead of logical. The example

that follows is an additional one to explain the logical delete rule.

Figure 266. Logical Parent, Virtual Pairing—Logical Delete Rule Example: Before and After

GHU ’LOANS’ STATUS=’ ’

DLET STATUS=’ ’

Figure 267. Logical Parent, Virtual Pairing—Logical Delete Rule Example: Calls and Status

Codes

Delete Rules

482 Administration Guide: Database Manager

The logical delete rule allows either physical or logical deletion first; neither causes

the other. Physical dependents of the logical parent are physically deleted.

The logical parent LOANS remains accessible from its logical children. All physical

children are physically deleted. Paired logical children are logically deleted.

Figure 268. Logical Parent, Physical Pairing—Logical Delete Rule Example

Figure 269. Logical Parent, Physical Pairing—Logical Delete Rule Example: Before and After

GHU ’LOANS’ STATUS=’ ’

DLET STATUS=’ ’

Figure 270. Logical Parent, Physical Pairing—Logical Delete Rule Example: Calls and Status

Codes

Delete Rules

Appendix B. Insert, Delete, and Replace Rules for Logical Relationships 483

The processing and results shown in Figure 268 on page 483 would be the same if

the logical parent LOANS delete rule were virtual instead of logical. An additional

example to explain the virtual delete rule follows in Figure 271.

 The virtual delete rule allows explicit and implicit deletion. Explicit deletion is the

same as using the logical rule. Implicit deletion causes the logical parent to be

physically deleted when the last logical child is physically deleted.

Physical dependents of the logical child are physically deleted. The logical parent is

physically deleted. Physical dependents of the logical parent are physically deleted.

The LD bit is set on in the physical logical child BORROW.

Figure 271. Logical Parent, Virtual Pairing—Virtual Delete Rule Example

Figure 272. Logical Parent, Virtual Pairing—Virtual Delete Rule Example: Before and After

GHU ’CUSTOMER’

 ’BORROW/LOANS’ STATUS=’ ’

DLET STATUS=’ ’

Figure 273. Logical Parent, Virtual Pairing—Virtual Delete Rule Example: Calls and Status

Codes

Delete Rules

484 Administration Guide: Database Manager

The virtual delete rule allows explicit and implicit deletion. Explicit deletion is the

same as using the logical rule. Implicit deletion causes the logical parent to be

physically deleted when the last logical child is physically and logically deleted.

The logical parent is physically deleted. Any physical dependents of the logical

parent are physically deleted.

Note: The CUST segment must be physically deleted before the DLET call is

issued. The LD bit is set on in the BORROW segment.

Figure 274. Logical Parent, Physical Pairing—Virtual Delete Rule Example

Figure 275. Logical Parent, Physical Pairing—Virtual Delete Rule Example: Before and After

GHU ’CUSTOMER’

 ’BORROW/LOANS’ STATUS=’ ’

DLET STATUS=’ ’

Figure 276. Logical Parent, Physical Pairing—Virtual Delete Rule Example: Calls and Status

Delete Rules

Appendix B. Insert, Delete, and Replace Rules for Logical Relationships 485

The bidirectional virtual rule for the physical parent has the same effect as the

virtual rule for the logical parent.

When the last logical child is logically deleted, the physical parent is physically

deleted. The logical child (as a dependent of the physical parent) is physically

deleted. All physical dependents of the physical parent are physically deleted. That

is, ACCOUNTS (not shown), BORROW, and PAYMENT are physically deleted.

Figure 277. Physical Parent, Virtual Pairing—Bidirectional Virtual Example

Figure 278. Physical Parent, Virtual Pairing—Bidirectional Virtual Example: Before and After

GHU ’LOANS’

 ’CUSTOMER’ STATUS=’ ’

DLET STATUS=’ ’

Figure 279. Deleting Last Logical Child Deletes Physical Parent

Delete Rules

486 Administration Guide: Database Manager

The physical delete rule requires that the logical child be logically deleted first. The

LD bit is now set in the BORROW segment.

The logical child can be physically deleted only after being logically deleted. After

the second delete, the LD and PD bits are both set. The physical delete of the

logical child also physically deleted the physical dependents of the logical child. The

PD bit is set.

Figure 280. Logical Child, Virtual Pairing—Physical Delete Rule Example

GHU ’LOANS’ STATUS=’ ’

 ’CUST/CUSTOMER’

DLET STATUS=’ ’

GHU ’CUSTOMER’ STATUS=’ ’

 ’BORROW/LOANS’

DLET STATUS=’ ’

Figure 281. Logical Child, Virtual Pairing—Physical Delete Rule Example: Deleting the

Logical Child

Delete Rules

Appendix B. Insert, Delete, and Replace Rules for Logical Relationships 487

Figure 282. Logical Child, Virtual Pairing—Physical Delete Rule Example: Before and After

Figure 283. Logical Child, Virtual Pairing—Logical Delete Rule Example

Delete Rules

488 Administration Guide: Database Manager

The logical delete rule allows the logical child to be deleted physically or logically

first. Physical dependents of the logical child are physically deleted, but they remain

accessible from the logical path that is not logically deleted.

The delete of the virtual logical child sets the LD bit on in the physical logical child

BORROW (BORROW is logically deleted).

GHU ’CUSTOMER STATUS=’ ’

 ’BORROW/LOANS’

DLET STATUS=’ ’

GHU ’LOANS’ STATUS=’ ’

 ’CUST/CUSTOMER’

DLET STATUS=’ ’

Figure 284. Logical Child, Virtual Pairing—Logical Delete Rule Example: Calls and Status

Figure 285. Logical Child, Virtual Pairing—Logical Delete Rule Example: Before and After

Delete Rules

Appendix B. Insert, Delete, and Replace Rules for Logical Relationships 489

With the physical or logical delete rule, each logical child must be deleted from its

physical path. Physical dependents of the logical child are physically deleted, but

they remain accessible from the paired logical child that is not deleted.

Physically deleting BORROW sets the LD bit on in CUST. Physically deleting CUST

sets the LC bit on in the BORROW segment.

Figure 286. Logical Child, Physical Pairing—Physical or Logical Delete Rule Example

GHU ’CUSTOMER STATUS=’ ’

 ’BORROW/LOANS’

DLET STATUS=’ ’

GHU ’LOANS’ STATUS=’ ’

 ’CUST/CUSTOMER’

DLET STATUS=’ ’

Figure 287. Logical Child, Physical Pairing—Physical or Logical Delete Rule Example: Calls

and Status

Delete Rules

490 Administration Guide: Database Manager

Figure 288. Logical Child, Physical Pairing—Physical or Logical Delete Rule Example: Before

and After

Figure 289. Logical Child, Virtual Pairing—Virtual Delete Rule Example

Delete Rules

Appendix B. Insert, Delete, and Replace Rules for Logical Relationships 491

The virtual delete rule allows the logical child to be deleted physically and logically.

Deleting either path deletes both parts. Physical dependents of the logical child are

physically deleted.

The previous delete deleted both paths because the delete rule is virtual. Deleting

either path deletes both.

GHU ’CUSTOMER STATUS=’ ’

 ’BORROW/LOANS’

DLET STATUS=’ ’

GHU ’LOANS’ STATUS=’GE’

 ’CUST/CUSTOMER’

Figure 290. Logical Child, Virtual Pairing—Virtual Delete Rule Example: Calls and Status

Figure 291. Logical Child, Virtual Pairing—Virtual Delete Rule Example: Before and After

Delete Rules

492 Administration Guide: Database Manager

With the virtual delete rule, deleting either logical child deletes both paired logical

children. (Notice the PD and LD bit is set on in both.) Physical dependents of the

logical child are physically deleted.

Physical dependents of the logical child are physically deleted.

Figure 292. Logical Child, Physical Pairing—Virtual Delete Rule Example

GHU ’CUSTOMER STATUS=’ ’

DLET STATUS=’ ’

GHU ’LOANS’ STATUS=’GE’

 ’CUST/CUSTOMER’

Figure 293. Logical Child, Physical Pairing—Virtual Delete Rule Example: Calls and Status

Delete Rules

Appendix B. Insert, Delete, and Replace Rules for Logical Relationships 493

Accessibility of Deleted Segments

A physically deleted segment remains accessible under the following circumstances:

v A physical dependent of the deleted segment is a logical parent accessible from

its logical children.

v A physical dependent of the deleted segment is a logical child accessible from its

logical parent.

v A physical parent of the deleted segment is a logical child accessible from its

logical parent. The deleted segment in this case is variable intersection data in a

bidirectional logical relationship.

A logically deleted logical child cannot be accessed from its logical parent.

Neither physical or logical deletion prevents access to a segment from its physical

or logical children. Because logical relationships provide for inversion of the physical

structure, a segment can be physically or logically deleted or both, and still be

accessible from a dependent segment because of an active logical relationship. A

physically deleted root segment can be accessed when it is defined as a dependent

segment in a logical DBD. The logical DBD defines the inversion of the physical

DBD. Figure 295 shows the accessibility of deleted segments.‘

When the physical dependent of a deleted segment is a logical parent with logical

children that are not physically deleted, the logical parent and its physical parents

are accessible from those logical children.

Figure 294. Logical Child, Physical Pairing—Virtual Delete Rule Example: Before and After

Delete Rules

494 Administration Guide: Database Manager

The physical structure in Figure 295 shows that SEG3, SEG4, SEG5, and SEG6

have been physically deleted, probably by issuing a DLET call for SEG3. This

resulted in all of SEG3’s dependents being physically deleted. (SEG6’s delete rule

is not P, or a ’DX’ status code would be issued.)

SEG3, SEG4, SEG5, and SEG6 remain accessible from SEG2, the logical child of

SEG6. This is because SEG2 is not physically deleted. However, physical

dependents of SEG6 cannot be accessible, and their DASD space is released

unless an active logical relationship prohibits

When the physical dependent of a deleted segment is a logical child whose logical

parent is not physically deleted, the logical child, its physical parents, and its

physical dependents are accessible from the logical parent.

The logical child segment SEG4 remains accessible from its logical parent SEG7

(SEG7 is not physically deleted). Also accessible are SEG5 and SEG6, which are

variable intersection data. The physical parent of the logical child (SEG3) is also

accessible from the logical child (SEG4).

A physically and logically deleted logical child can be accessed from its physical

dependents (Figure 296 on page 496).

Figure 295. (Part 1 of 5). Example of Deleted Segments Accessibility

Delete Rules

Appendix B. Insert, Delete, and Replace Rules for Logical Relationships 495

The physical structure Figure 296 shows that logical child SEG4 is both physically

and logically deleted.

From a previous example (part 1 of 4), we know SEG6 (a logical parent) is

accessible from SEG2, if that segment (its logical child) is not physically deleted.

We also know that once we’ve accessed SEG6, its physical parents (SEG5, SEG4,

SEG3) are accessible. It doesn’t matter that the logical child is logically deleted

(which is the only difference between this example and that of part 1 of 4).

The third path cannot be blocked because no delete bit exists for this path.

Therefore, the logical child SEG4 is accessible from its dependents even though it

is been physically and logically deleted.

When a segment accessed by its third path is deleted, it is physically deleted in its

physical data base, but it remains accessible from its third path (Figure 297 and

Figure 298 on page 497).

Figure 296. (Part 2 of 5). Example of Deleted Segments Accessibility

Figure 297. (Part 3 of 5). Example of Deleted Segments Accessibility

Delete Rules

496 Administration Guide: Database Manager

SEG5 is physically deleted by the DLET call, and SEG 6 is physically deleted by

propagation. SEG2/SEG6 has unidirectional pointers, so SEG2 was considered

logically deleted before the DLET call was issued. The LD bit is only assumed to be

set on (Figure 299).

 The results are interesting. SEG5 is inaccessible from its physical parent path (from

SEG4) unless SEG4 is accessed by its logical parent SEG7 (SEG5 and SEG6 are

accessible as variable intersection data). SEG5 is still accessible from its third path

(from SEG6) because SEG6 is still accessible from its logical child. Thus, a

segment can be physically deleted by an application program and still be accessible

to that application program, using the same PCB used to delete the segment.

Possibility of Abnormal Termination

If a logical parent is physically and logically deleted, its DASD space is released.

For this to occur, all of its logical children must be physically and logically deleted.

However, the DASD space for these logical children cannot be released if the

logical children have physical dependents with active logical relationships.

Accessing such a logical child from its physical dependents (both the logical child

and logical parent have been physically and logically deleted) can result in a user

850 through 859 abnormal termination if one of the following occurs:

v The LPCK is not stored in the logical child

v The concatenation definition is data sensitive to the logical parent

Figure 300 shows an example of abnormal termination.

GHU ’SEG5’ STATUS=’ ’

DLET STATUS=’ ’

Figure 298. (Part 4 of 5). Example of Deleted Segments Accessibility: Database Calls

Figure 299. (Part 5 of 5). Example of Deleted Segments Accessibility

Delete Rules

Appendix B. Insert, Delete, and Replace Rules for Logical Relationships 497

The logical parent SEG7 has been physically and logically deleted (the LD bit is

never really set, but is assumed to be set. It is shown only for the purpose of

illustration.) All of the logical children of the logical parent have also been physically

and logically deleted. However, the logical parent has had its segment space

released, whereas the logical child (SEG4) still exists. The logical child still exists

because it has a physical dependent that has an active logical relationship that

precludes releasing its space.

If an application program accesses SEG4 from its dependents (SEG1 to

SEG2/SEG6 to SEG5), IMS must build the logical parent’s concatenated key if that

key is not stored in the logical child. When IMS attempts to access logical parent

SEG7, abnormal termination will occur. The 850 through 859 abnormal termination

codes are issued when a pointer is followed that doesn’t lead to the expected

segment.

Avoiding Abnormal Termination

You must avoid creating a physically deleted logical child that can be accessed from

below in the physical structure (using its third path). A logical child can be accessed

from below if any of its physical dependents are accessible through logical paths.

Two methods exist in avoiding this situation.

v Method 1

The first method requires that logical paths to dependents be broken before the

logical child is physically deleted. Breaking the logical path with method 1 is done

using a P rule for the dependents as long as no physical deletes are propagated

into the database. Therefore, no V rules on logical children can be allowed at or

above the logical child, because, with the V rule, a propagated logical delete

causes a physical delete without a P rule violation check. (For more information

on this, see “Detecting Physical Delete Rule Violations” on page 499.) The L rule

also causes propagation, if the PD bit is already set on, but the dependent’s P

rule will prevent that case. Similarly, no V rule can be allowed on any logical

parent above the logical child, because the logical delete condition would cause

the physical delete.

v Method 2

Figure 300. Example of Abnormal Termination

Delete Rules

498 Administration Guide: Database Manager

The second method requires breaking the logical path whenever the logical child

is physically deleted. Breaking the logical path with this method is done for

subordinate logical child segments using the V delete rule. Subordinate logical

parent segments need to have bidirectional logical children with the V rule (must

be able to reach the logical children) or physically paired logical children with the

V rule. This method will not work with subordinate logical parents pointed to by

unidirectional logical children.

Detecting Physical Delete Rule Violations

When a DLET call is issued, the delete routine scans the physical structure

containing the segment to be deleted. The delete routine scans the physical

structure to determine if any segment in it uses the physical delete rule and whether

that rule is being violated. Figure 301 and Figure 302 show an example of violating

the physical delete rule.

 SEG7 (the logical child of SEG2) uses the physical delete rule and has not been

logically deleted (the LD bit has not been set on). Therefore, the physical delete

rule is violated. A ’DX’ status code is returned to the application program, and no

segments are deleted.

Treating the Physical Delete Rule as Logical

If the delete routine determines that neither the segment specified in the DLET call

nor any physical dependent of that segment in the physical structure uses the

physical delete rule, any physical rule encountered later (logical deletion propagated

Figure 301. Example of Violation of the Physical Delete Rule

GHU ’SEG4’ STATUS=’ ’

DLET STATUS=’DX’

Figure 302. Example of Violation of the Physical Delete Rule: Database Calls

Delete Rules

Appendix B. Insert, Delete, and Replace Rules for Logical Relationships 499

to logical child or logical parent causing physical deletion—V rule—in another

database) is treated as a logical delete rule. Figure 303 and Figure 304 show an

example of treating the physical delete rule as logical.

 SEG8 and SEG9 are both physically deleted, and SEG9 is logically deleted (V rule).

SEG5 is physically and logically deleted because it is the physical pair to SEG9

(with physical pairing setting the LD bit in one set, the PID bit in the other, and vice

versa). Physically deleting SEG5 causes propagation of the physical delete to

SEG5’s physical dependents; therefore, SEG6 and SEG7 are physically deleted.

Note that the physical deletion of SEG7 is prevented if the physical deletion started

by issuing a DLET call for SEG4. But the physical rule of SEG7 is treated as logical

in this case.

Inserting Physically and Logically Deleted Segments

When a segment is inserted, a replace operation is performed (space is reused),

and existing dependents of the inserted segment remain if:

v The segment to be inserted already exists (same segment type and same key

field value for both the physical and logical sequencing)

v The delete bit is set on for that segment along the path of insertion

For HDAM and HIDAM databases, the logical twin chain is established as required,

and existing dependents of the inserted segment remain.

Figure 303. Example of Treating the Physical Delete Rule as Logical

GHU ’SEG8’ STATUS=’ ’

DLET STATUS=’ ’

Figure 304. Example of Treating the Physical Delete Rule as Logical: Database Calls

Delete Rules

500 Administration Guide: Database Manager

For HISAM databases, if the root segment is physically and logically deleted before

the insert is done, then the first logical record for that root in primary and secondary

data set groups is reused. Remaining logical records on any OSAM chain are

dropped.

Delete Rules Summary

The DLET Call

A DLET call issued against a concatenated segment (SOURCE=DATA/DATA,

DATA/KEY, KEY/DATA) is a DLET call against the logical child only.

 A DLET call against a logical child that has been accessed from its logical

parent is a request that the logical child be logically deleted.

 In all other cases, a DLET call issued against a segment is a request for that

segment to be physically deleted.

Physical Deletion

A physically deleted segment cannot be accessed from its physical path,

however, one exception exists: If one of the physical parents of the physically

deleted segment is a logical child that can be accessed from its logical parent,

then the physically deleted segment is accessible from that logical child. The

physically deleted segments is accessible because the physical dependents of

the logical child are variable intersection data.

Logical Deletion

By definition, a logically deleted logical child cannot be accessed from its logical

parent. Unidirectional logical child segments are assumed to be logically

deleted.

 By definition, a logical parent is considered logically deleted when all its logical

children are physically deleted and all its physical children that are part of a

physically paired set are physically deleted.

Access Paths

Neither physical nor logical deletion of a segment prevents access to the

segment from its physical or logical children, or from the segment to its physical

or logical parents. A physically deleted root segment can be accessed only from

its physical or logical children.

Propagation of Delete

In bidirectional physical pairing, physical deletion of one of the pair of logical

children causes logical deletion of its paired segment. Likewise, logical deletion

of one causes physical deletion of the other.

 Physical deletion of a segment propagates logical deletion requests to its

bidirectional logical children. Physical deletion of a segment propagates physical

deletion requests to its physical children and to any index pointer segments for

which it is the source segment.

Delete Rules

Further delete operations are governed by the following delete rules:

Logical Parent

When RULES=P is specified, if the segment is not already logically deleted,

a DLET call against the segment or any of its physical parents results in a

DX status code. No segments are deleted. If a request is made against the

segment as a result of propagation across a logical relationship, then the P

rule works like the L rule.

 When RULES=L is specified, either physical or logical deletion can occur

first, and neither causes the other to occur.

Delete Rules

Appendix B. Insert, Delete, and Replace Rules for Logical Relationships 501

When RULES=V is specified, either physical or logical deletion can occur

first. If the segment is logically deleted as the result of a DLET call, then it

is physically deleted also.

Physical Parent of a Virtually Paired Logical Child

RULES=P, L, or V is meaningless.

 When RULES=B is specified and all physical children that are virtually

paired logical children are logically deleted, the physical parent segment is

physically deleted.

Logical Child

When RULES=P is specified, if the segment is not already logically deleted,

then a DLET call requesting physical deletion of the segment or any of its

physical parents results in a DX status code. No segments are deleted. If a

delete request is made against the segment as a result of propagation

across a logical relationship or if the segment is one of a physically paired

set, then the rule works like the L rule.

 When RULES=L is specified, either physical or logical deletion can occur

first, and neither causes the other to occur.

 When RULES=V is specified, either physical or logical deletion can occur

first and either causes the other to occur. If this rule is used on only one

segment of a physically paired set, it works like the L rule.

Space Release

Depending on the database organization, DASD space can or cannot be

reused when it is released. DASD space for a segment is released when

the following conditions are met:

v Space has been released for all physical dependents of the segment.

v The segment is physically deleted.

v If the segment is a logical child or a logical parent, then it is physically

and logically deleted.

v If the segment is a dependent of a logical child (variable intersection

data) and the DLET call was issued against a physical parent of the

logical child, then the logical child is both physically and logically deleted.

v If the segment is a primary index pointer segment, the space is released

for its target segment.

Insert, Delete, and Replace Rules Summary

Figure 305 summarizes rules by stating a desired result and then indicating the rule

that can be used to obtain that result. Table 35 on page 503 lists the rules and how

to specify them.

Delete Rules

502 Administration Guide: Database Manager

Table 35. Specifying Insert, Delete, and Replace Rules

Rule RULES= Specification

physical insert rule RULES= (P,_,_)

logical insert rule RULES= (L,_,_)

virtual insert rule RULES= (V,_,_)

physical delete rule RULES= (_,P,_)

logical delete rule RULES= (_,L,_)

bidirectional virtual delete rule RULES= (_,B,_)

virtual delete rule RULES= (_,V,_)

physical replace rule RULES= (_,_,P)

logical replace rule RULES= (_,_,L)

virtual replace rule RULES= (_,_,V)

Insert Rules for Physical Parent Segment A: The insert rules for physical parent

(PP) segment A control the insert of PP A using the logical path to PP A. The rules

are as follows:

v To disallow the insert of PP A on its logical path, use the physical insert rule.

v To allow the insert of PP A on its logical path (concatenated with virtual logical

child segment A), use either the logical or virtual rule.

Where PP A is already present, a logical connection is established to the existing

PP A segment. The existing PP A can either be replaced or remain unchanged:

– If PP A is to remain unchanged by the insert call, use the logical insert rule.

– If PP A is to be replaced by the insert call, use the virtual insert rule.

Delete Rules for Physical Parent Segment A: The delete rules for PP segment

A control the deletion of PP A using the logical path to PP A. The rules are as

follows:

v To cause PP segment A to be deleted automatically when the last logical

connection (through real logical child segment B to PP segment A) is broken, use

the bidirectional virtual delete rule.

v The other delete rules for PP A are not meaningful.

Figure 305. Insert, Delete, and Replace Rules Summary

Delete Rules

Appendix B. Insert, Delete, and Replace Rules for Logical Relationships 503

||

||

||

||

||

||

||

||

||

||

||

||
|

|
|
|

|

|
|

|
|

|

|

|
|
|

|
|
|

|

Replace Rules for Physical Parent Segment A: The replace rules for PP

segment A control the replacement of PP A using the logical path to PP A. The rules

are as follows:

v To disallow the replacement of PP A on its logical path and receive an 'RX' status

code if the rule is violated by an attempt to replace PP A, use the physical

replace rule.

v To disregard the replacement of PP A on its logical path, use the logical replace

rule.

v To allow the replacement of PP A on its logical path, use the virtual replace rule.

Insert Rules for Logical Parent Segment B:

Note: These rules are identical to the insert rules for PP segment A.

The insert rules for logical parent (LP) segment B control the insert of LP B using

the logical path to LP B. The rules are as follows:

v To disallow the insert of LP B on its logical path, use the physical insert rule.

v To allow the insert of LP B on its logical path (concatenated with virtual segment

RLC B) use either the logical or virtual rule.

Where LP B is already present, a logical connection is established to the existing

LP B segment. The existing LP B can either be replaced or remain unchanged:

– If LP B is to remain unchanged by the insert call, use the logical insert rule.

– If LP B is to be replaced by the insert call, use the virtual insert rule.

Delete Rules for Logical Parent Segment B: The delete rules for segment LP B

control the deletion of LP B on its physical path. A delete call for a concatenated

segment is interpreted as a delete of the logical child only. The rules are as follows:

v To ensure that LP B remains accessible until the last logical relationship path to

that occurrence has been deleted, choose the physical delete rule. If an attempt

to delete LP B is made while there are occurrences of real logical child (RLC) B

pointing to LP B, a 'DX' status code is returned and no segment is deleted.

v To allow segment LP B to be deleted on its physical path, choose the logical

delete rule. When LP B is deleted, it is no longer accessible on its physical path.

It is still possible to access LP B from PP A through RLC B as long as RLC B

exists.

v Use the virtual delete rule to physically delete LP B when it has been explicitly

deleted by a delete call or implicitly deleted when all RLC Bs pointing to it have

been physically deleted.

Replace Rules for Logical Parent Segment B:

Note: These rules are identical to the replace rules for PP segment A.

The replace rules for LP segment B control the replacement of LP B using the

logical path to LP B. The rules are as follows:

v Use the physical replace rule to disallow the replacement of LP B on its logical

path and receive an 'RX' status code if the rule is violated by an attempt to

replace LP B.

v Use the logical replace rule to disregard the replacement of LP B on its logical

path.

v Use the virtual replace rule to allow the replacement of LP B on its logical path.

Delete Rules

504 Administration Guide: Database Manager

|
|
|

|
|
|

|
|

|

|

|

|
|

|

|
|

|
|

|

|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|

|

|
|

|
|
|

|
|

|

Insert Rules for Real Logical Child Segment B: The insert rules do not apply to

a logical child.

Delete Rules for Real Logical Child Segment B: The delete rules for RLC

segment B apply to delete calls using its logical or physical path. The rules are as

follows:

v Use the physical delete rule to control the sequence in which RLC B is deleted

on its logical and physical paths. The physical delete rule requires that it be

logically deleted before it is physically deleted. A violation results in a 'DX' status

code.

v Use the logical delete rule to allow either physical or logical deletes to be first.

v Use the virtual delete rule to use a single delete call from either the logical or

physical path to both logically and physically delete RLC B.

Replace Rules for Real Logical Child Segment B:

Note: These rules are identical to the replace rules for PP segment A.

The replace rules for LP B control the replacement of RLC B using the logical path

to RLC B. The rules are as follows:

v Use the physical replace rule to disallow the replacement of RLC B on its logical

path and receive an 'RX' status code if the rule is violated by an attempt to

replace RLC B.

v To disregard an attempt to replace RLC B on its logical path, use the logical

replace rule.

v To allow the replacement of RLC B on its logical path, use the virtual replace

rule.

Delete Rules

Appendix B. Insert, Delete, and Replace Rules for Logical Relationships 505

|
|

|
|
|

|
|
|
|

|

|
|

|

|

|
|

|
|
|

|
|

|
|

|

Delete Rules

506 Administration Guide: Database Manager

Appendix C. Using OSAM as the Access Method

This appendix contains product-sensitive programming interface information.

You need to know the following information about OSAM if your database is using

OSAM as an access method:

v OSAM is a special access method supplied with IMS.

v IMS communicates with OSAM using OPEN, CLOSE, READ, and WRITE

macros.

v OSAM communicates with the I/O supervisor using the I/O driver interface.

v An OSAM data set can be read using either the BSAM or QSAM access method.

v The number of extents in an OSAM data set is limited by:

– The maximum length of the data extent block (DEB)

– The length of the sector number table that is created for rotational position

sensing (RPS) devices

The length of a DEB is represented in a single byte that is expressed as the

number of double words. The sector number table exists only for RPS devices

and consists of a fixed area of eight bytes plus one byte for each block on a

track, rounded up to an even multiple of eight bytes. A minimum-sized sector

table (7 blocks per track) requires two double words. A maximum-sized sector

table (255 blocks per track) requires 33 double words.

In addition, for each extent area (two double words), OSAM requires a similar

area that contains device geometry data. Each extent requires a total of four

double words. The format and length (expressed in double words) of an OSAM

DEB are shown in Table 36.

 Table 36. Length and Format of an OSAM DEB

Format Length

Appendage sector table 5

Basic DEB 4

Access method dependent section 2

Subroutine name section 1

Standard DEB extents 120 (60 extents)

OSAM extent data 120

Minimum sector table 2

With a minimum-sized sector table, the DEB can reflect a maximum of 60 DASD

extents. With a maximum-sized sector table, the DEB can reflect a maximum of

52 DASD extents.

v An OSAM data set can be opened for update in place and extension to the end

through one data control block (DCB). The phrase “extension to the end” means

that records can be added to the end of the data set and that new direct-access

extents can be obtained.

v An OSAM data set does not need to be formatted before use.

v An OSAM data set can use fixed-length blocked or unblocked records.

v The maximum size of an OSAM data set depends on the block size of the data

set and whether it is a HALDB OSAM data set. The size limits for OSAM data

sets are:

– 8 GB for a non-HALDB OSAM data set that has an even-length block size

© Copyright IBM Corp. 1974, 2004 507

|
|
|

|

– 4 GB for a non-HALDB OSAM data set that has an odd-length block size

– 4 GB for a HALDB OSAM data set

v File mark definition is always used to define the current end of the data set.

When new blocks are added to the end of the data set, they replace dummy

pre-formatted (by OSAM) blocks that exist on a logical cylinder basis. A file mark

is written at the beginning of the next cylinder, if one exists, during a format

logical cylinder operation. This technique is used as a reliability aid while the

OSAM data set is open.

v OSAM EXCP counts are accumulated during OSAM End of Volume (EOV) and

close processing.

v Migrating OSAM data sets utilizing ADRDSSU and the DFSMSdss™ component

of z/OS DFSMS: DFSMSdss will migrate the tracks of a data set up to the last

block written value (DS1LSTAR) as specified by the DSCB for the volume being

migrated. If the OSAM data set spans multiple volumes that have not been

pre-allocated, the DS1LSTAR field for each DSCB will be valid and DFSMSdss

can correctly migrate the data.

If the OSAM data set spans multiple volumes that have been pre-allocated, the

DS1LSTAR field in the DSCB for each volume (except the last) can be zero. This

condition will occur during the loading operation of a pre-allocated, multi-volume

data set. The use of pre-allocated volumes precludes EOV processing when

moving from one volume to another, thereby allowing the DSCBs for these

volumes to not be updated. The DSCB for the last volume loaded is updated

during close processing of the data set.

DFSMSdss physical DUMP or RESTORE commands with the parameters ALLEXCP

or ALLDATA must be used when migrating OSAM data sets that span

pre-allocated, multi volumes. These parameters will allow DFSMSdss to correctly

migrate OSAM data sets.

Related Reading: For more information on the z/OS DFSMSdss component of

DFSMS and the ALLEXCP and ALLDATA parameters of the DUMP and RESTORE

commands, see the DFSMSdss Storage Administration Reference.

Other z/OS access methods (VSAM and SAM) are used in addition to OSAM for

physical storage of data.

Related Reading: For information about defining OSAM subpools, see IMS Version

9: Installation Volume 2: System Definition and Tailoring.

OSAM as the Access Method

508 Administration Guide: Database Manager

|

|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|

Appendix D. Correcting Bad Pointers

Ordinarily, bad pointers should not occur in your database. When they do, the

cause is typically:

v Failure to run database backout

v Failure to perform emergency restart

v Omitting a log during backout or recovery

The normal way to correct a bad pointer is to perform recovery. However, some

cases exist in which a bad pointer can be corrected through reorganization. A

description of the circumstances in which this can or cannot be done is as follows:

v PC/PT pointers. The HD Unload utility issues unqualified GN calls to read a

database. If the bad pointer is a PC or PT pointer, DL/I will follow the bad pointer

and the GN call will fail. Therefore, reorganization cannot be used to correct PC

or PT pointers.

v LP/LT pointers. LP and LT pointers are rebuilt during reorganization. However,

DL/I can follow the LP pointer during unload. If the logical child segment contains

a direct LP pointer and the logical parent’s concatenated key is not physically

stored in the logical child segment, DL/I follows the bad LP pointer to construct

the logical parent’s concatenated key. This causes an ABEND.

v LP pointer. When DBR= is specified for pre-reorganization and the database has

direct LP pointers, the HD Unload utility saves the old LP pointer. Bad LP

pointers produce an error message (DFS879) saying a logical child that has no

logical parent exists.

v LP pointer. When DBIL= is specified for pre-reorganization of a logical child or

parent database, the utilities that resolve LP pointers use concatenated keys to

match logical parent and logical child segments. New LP pointers are created.

© Copyright IBM Corp. 1974, 2004 509

510 Administration Guide: Database Manager

Appendix E. HALDB Partition Definition utility

The HALDB Partition Definition utility is an ISPF application that allows you to

manage the partitions of an IMS HALDB. This utility can be used in place of the

DBRC INIT.DB and INIT.PART commands to register the HALDB master in the

RECON data set. The HALDB master is registered at the time its first partition is

defined.

Related Reading: For more information on how HALDBs are maintained in the

RECON, see IMS Version 9: Database Recovery Control (DBRC) Guide and

Reference.

Important: The HALDB Partition Definition utility will not impact online IMS

subsystems with regard to RECON contention. The RECON is only reserved for the

time it takes to process a DBRC request. It is not held for the duration of the utility

execution.

To access the HALDB utility:

1. Log on to TSO.

2. Start ISPF.

3. From the ISPF command line, type: tso %dfshaldb and press Enter.

The utility consists of several panels and programs that perform various actions on

the HALDB and its partitions.

Important: The Panel IDs are shown enclosed in parentheses in the caption of

each panel image here. To enable Panel IDs to be displayed in the upper left corner

of each of your panels; enter panelid on the ISPF command line and press Enter.

In this appendix:

v “The Partitioned Databases Panel” on page 512

v “Accessing Help Information” on page 513

v “Exiting the Utility” on page 513

v “Displaying the ISPF Member List” on page 514

v “Opening HALDB Partitions” on page 515

v “Defining Data Set Group Information” on page 527

v “Displaying the List of Defined Partitions” on page 528

v “Opening Database Information” on page 536

v “Deleting Database Information” on page 537

v “Exporting Database Information” on page 537

v “Importing Database Information” on page 538

v “Displaying the IMS Concatenation” on page 538

v “Selecting an IMS Configuration” on page 539

v “Using Batch to Export or Import Partition Information” on page 541

v “DSPXRUN Command Syntax” on page 542

© Copyright IBM Corp. 1974, 2004 511

The Partitioned Databases Panel

You define the HALDB that you want to manipulate on the Partitioned Databases

panel. Here you specify the type of action to perform, for example: define, modify,

or view. The succeeding panels guide you through the processes.

The Partitioned Databases panel has point-and-shoot text fields (in turquoise by

default). To use the point-and-shoot fields, just position the cursor on the text and

press the enter key.

The Figure 306 on page 512 provides space for you to enter a HALDB name,

allowing HALDB to gather information about that HALDB. The information can be

retrieved from DBDLIB or from RECON depending on the option you select and the

current state of the partitions. Following Figure 306 on page 512 are descriptions of

the panel fields.

The options in Figure 306 allow you to perform the following actions:

1. Create or change HALDB partitions (see “Opening HALDB Partitions” on page

515 and “Displaying the List of Defined Partitions” on page 528).

2. View or change HALDB information (see “Opening Database Information” on

page 536).

3. Delete HALDB information (see “Deleting Database Information” on page 537).

4. Export HALDB information (see “Exporting Database Information” on page 537).

5. Import HALDB information (see “Importing Database Information” on page 538).

6. Show the IMS concatenation (see “Displaying the IMS Concatenation” on page

538).

7. Select an IMS configuration (see “Selecting an IMS Configuration” on page

539).

Configuration

The configuration is a name you have specified that identifies a set of DBD

libraries and a set of RECON data sets. If you already have the IMS DD

statement allocated from the logon procedure and if you have the

 Help

--

 Partitioned Databases

Type a database name and choose an option. Then press Enter.

To select a database from a list, type a filter (*) and press F4.

 Configuration . . : DEFAULT

 Database name . . . IVPDB1 +

 Option __ 1. OPEN DATABASE partitions

 2. Open database information

 3. Delete database information

 4. Export database definitions

 5. Import database definitions

 6. Show IMS DDname concatenation

 7. Select IMS RECON / DBDLIB libraries

 To exit the application, press F3.

Command ===>

 F1=Help F3=Exit F4=Prompt

Figure 306. Partitioned Databases panel (DSPXPAA)

Partitioned Databases Panel

512 Administration Guide: Database Manager

|
|
|

IMS.SDFSRESLs allocated to the STEPLIB DD statement, you do not need

to use the Configuration option. If you do define and select a

configuration, those data sets will override the allocations from the logon

procedure.

Database name

Enter up to 8 alphanumeric characters (the first character must be

alphabetic). The HALDB name must be a member from a DBDLIB data set.

DBDLIB data sets must be allocated under a DD name of IMS. The

database name that you specify is remembered across ISPF sessions.

 You can include an asterisk to indicate that you want a member list display.

The asterisk can appear alone or as part of the name to limit the list that is

displayed. (see “Displaying the ISPF Member List” on page 514)

 Important: When you include an asterisk as part of the member name, the

concatenation for the ’IMS’ DD name may contain only up to 4 data sets.

This is an ISPF restriction.

Option

A numeric value that indicates the type of processing to perform. The

number corresponds to one of the actions in the list.

Accessing Help Information

The Partitioned Databases panel has help information available from the action bar

(Figure 307). This information is available from other panels as well.

Help information can also be obtained by pressing the help key. The help displayed

depends on the circumstances and on the placement of the cursor when the help

key is pressed.

v If an error message is displayed, more information on the error might be

displayed.

v If the cursor is on an input field, information about the field is displayed,

otherwise information about the panel is displayed.

Important: The F1 key is set to invoke the Help dialogs.

Exiting the Utility

The panels in the HALDB Partition Definition utility support an exit key (F3) which

will return your session to a display of the Figure 306 on page 512. When you use

the exit key from Figure 306 your session will exit the HALDB Partition Definition

utility altogether. Since you can accidentally press the exit key, a confirmation panel,

shown in Figure 308 on page 514, will allow you to continue without losing unsaved

changes.

Figure 307. Help Action Bar Choices

Partitioned Databases Panel

Appendix E. HALDB Partition Definition utility 513

|
|
|
|

To exit pull-down panels press the cancel key (F12), then the exit key (F3) if you

wish to leave the HALDB Partition Definition utility panels altogether.

Displaying the ISPF Member List

When you include an asterisk in the database name field, a member list for the

members of the IMS DD name concatenation with a name that matches the filter is

displayed. A sample member list display is shown in Figure 309.

The member list originates from the PDS directories of the IMS concatenation. The

members that are displayed can be HALDB or non-HALDB. The member list is a

standard ISPF list so there is no IMS-specific information displayed.

From the member list, you can select the HALDB name to process by typing in the

far-left column. If the name selected is not for a partitioned database, an error

message is displayed. You can select a HALDB name with the slash (/) character

and the File action to select the type of actions to perform. The same actions that

are shown on Figure 306 on page 512 are available here.

If you specify an option on the Partitioned Databases panel (512), you do not need

to use the File Action bar; just press Enter. You can use the File Action bar to

override the option that you specified an option on the Partitioned Databases panel.

The list of HALDBs in the Member List panel can be manipulated by using the File

action bar (Figure 310 on page 515).

Figure 308. Exit Confirmation Panel

 File Help

 MEMBER LIST IMSIVP81.DBDLIB Row 00001 of 00011

 Name Size TTR Alias-of AC AM RM ---- Attributes ---

 . DBFSAMD1 00000158 00013B 00 24 24

 . DBFSAMD2 000001A0 000143 00 24 24

 . DBFSAMD3 000006E0 00014B 00 24 24

 . DBFSAMD4 000002C8 000207 00 24 24

 . DI21PART 00000230 000133 00 24 24

 . IVPDB1 00000138 000103 00 24 24

 . IVPDB1I 00000138 00010B 00 24 24

 . IVPDB2 00000130 000113 00 24 24

 . IVPDB3 00000188 00011B 00 24 24

 . IVPDB4 00000110 000123 00 24 24

 . IVPDB5 000000B0 00012B 00 24 24

 End

 Command ====> Scroll ===> CSR

 F1=Help F3=Exit F12=Cancel

Figure 309. ISPF Member List Display (DSPXPAM)

Exiting the Utility

514 Administration Guide: Database Manager

The options on the File Action bar allow you to perform the following actions:

v Create or change HALDB partitions (see “Opening HALDB Partitions” and

“Displaying the List of Defined Partitions” on page 528).

v View or change HALDB information (see “Opening Database Information” on

page 536).

v Delete HALDB information (see “Deleting Database Information” on page 537).

v Export HALDB information (see “Exporting Database Information” on page 537).

v Import HALDB information (see “Importing Database Information” on page 538).

Opening HALDB Partitions

Before you can define the partitions for a HALDB, you must use the DBDGEN

process to define the HALDB as a partitioned database.

The first time you choose a HALDB you must set values for the HALDB master; see

Figure 311 on page 516. When you press Enter to continue, you set the defaults for

the partitions, see Figure 312 on page 518. When you press Enter to continue

again, you define partitions using those defaults. You can modify each partition

uniquely as they are created or you can modify them later from the list of partitions.

Figure 314 on page 524 shows an example of the panel to specify the partition

information.

After the initial set of partitions is defined (and whenever you select that HALDB

again), you will see the Database Partitions display (see Figure 319 on page 529 in

Displaying the List of Defined Partitions).

Important: Most of the information initially displayed on the panel in Figure 311 on

page 516 is extracted from the DBDLIB member. You can change the displayed

information, but that information is not saved back into the DBDLIB member (the

definition is saved in the RECON data sets).

Each HALDB can support up to 1001 partitions.

Figure 310. File Action Bar Choices

Displaying the ISPF Member List

Appendix E. HALDB Partition Definition utility 515

|

The following are descriptions of the fields on the Partitioned Database information

screen:

Database name

Enter 1 to 8 alphanumeric characters. This is the name you selected from

the previous panel (see Figure 306 on page 512); it is the name of the

HALDB that you are defining.

Part. selection routine

Enter 1 to 8 alphanumeric characters (the first character must be

alphabetic). This is the name of the Partition Selection Exit Routine

provided by you.

RSR global service group

Enter 1 to 8 alphanumeric characters (the first character must be

alphabetic). This is an optional parameter used to specify the RSR global

service group that the HALDB is to be assigned to.

RSR tracking type

This is an optional parameter you use to specify the type of RSR tracking

(shadowing) for a partition assigned to a global service group. The type,

RCVTRACK or DBTRACK, cannot be specified without an RSR global

service group having been defined for the HALDB master.

 v DBTRACK- indicates HALDB readiness tracking is to be done.

v RCVTRACK- indicates recovery readiness tracking is to be done.

 DBTRACK is the default.

Share level

0, 1, 2, or 3. Share level is an optional parameter you use to specify the

level of data sharing that authorized subsystems can share a HALDB at.

 Share level 0 is the default.

Database organization

This field indicates the type of HALDB organization, you can specify either:

PSINDEX, PHIDAM, or PHDAM.

 Help

--

 Partitioned Database Information

 Type the field values. Then press Enter to continue.

 Database name : IVPDB1

 Master Database values

 Part. selection routine . . . DFSIVD1

 RSR global service group . . . BKUPGRP1

 RSR tracking type DBTRACK

 Share level 0

 Database organization . . . : PHDAM

 Recoverable? Yes

 Number of data set groups . : 10

 Online Reorganization Capable: Yes

 To exit the application, press F3.

Command ===>

 F1=Help F3=Exit F12=Cancel

Figure 311. Partitioned Database Information (DSPXPOA)

Opening HALDB Partitions

516 Administration Guide: Database Manager

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

Recoverable?

Yes indicates that the HALDB is recoverable. No indicates that the HALDB is

not recoverable. Yes is the default. If an RSR global service group is

specified, the recoverable field must be Yes.

 Related Reading: For more information on non-recoverable databases see

the IMS Version 9: Operations Guide.

Number of data set groups

This is the number of data sets in the groups that contain data as specified

in the DBDGEN.

Online Reorganization Capable

Yes specifies that this HALDB supports online reorganization. No specifies

that this HALDB does not support online reorganization. These

specifications are stored in the DBRC RECON data set.

 Related Reading:

v For more information on reorganizing HALDBs online, see “HALDB

Online Reorganization” on page 364.

v For more information on DBRC and the RECON data set, see IMS

Version 9: Database Recovery Control (DBRC) Guide and Reference.

 Figure 312 on page 518 shows the partition default information.

Opening HALDB Partitions

Appendix E. HALDB Partition Definition utility 517

|
|
|
|

|

|
|

|
|

Important:

v The Randomizer section is present only if the HALDB is PHDAM.

v The Defaults for data set groups section is present only if there is only one data

set group specified during DBDGEN. If there are multiple data set groups, use

F6=Groups to display all data set groups using the dialog described in “Defining

Data Set Group Information” on page 527.

The following are descriptions of the fields on the Partition Default Information

screen:

Database name

This is the name you selected from the previous panel (see Figure 306 on

page 512), it is the name of the HALDB that you are defining.

Automatic definition

The value can be Yes or No. Specifying yes will cause the partitions to be

defined automatically based on your choices for partition name (that must

 Help

--

 Partition Default Information

 Type the field values. Then press Enter to continue.

 Database name : IVPDB1

 Processing options

 Automatic definition No

 Input dataset ’IMS.IVPDB1.KEYS’

 Use defaults for DS groups. . No

 Defaults for partitions

 Partition name IVPD101

 Data set name prefix IMS.DB01.FINANCE.YEAR1998.CURR

 Randomizer

 Module name DD41DUP2

 Anchor 2

 High block number. 999

 Bytes 2000

 Free Space

 Free block freq. factor. . 0

 Free space percentage. . . 0

 Defaults for data set groups

 Block Size 8192

 DBRC options

 Max. image copies. 2

 Recovery period. 0

 Recovery utility JCL . . . RECOVJCL

 Default JCL. ________

 Image copy JCL ICJCL

 Online image copy JCL. . . OICJCL

 Receive JCL. RECVJCL

 Reusable? No

 To exit the application, press F3.

Command ===>

 F1=Help F3=Exit F6=Groups F12=Cancel

Figure 312. Partition Default Information (DSPXPCA)

Opening HALDB Partitions

518 Administration Guide: Database Manager

include percent sign characters for placeholders. see “Automatic Partition

Definition” on page 521) and input data set.

 Specifying No allows you to specify unique values for each partition.

 Yes is the default.

Input data set

Provide the name of a z/OS data set. Specify a member name if it is a

PDS. Each line of the data set must contain a partition selection string or

the high key value to be used during partition definition.

 Related Reading: See “Automatic Partition Definition” on page 521 and

“Manual Partition Definition” on page 522 for more details on defining

partitions.

Use defaults for DS groups

This value can be Yes or No. This option determines if all data set groups

are automatically set to the same defaults or if you are prompted to provide

values for each group. It can be left blank if automatic definition is set to

Yes.

Partition name

Enter 1 to 7 alphanumeric characters (the first character must be

alphabetic). The Partition name is used as a prefix to the DDNAMEs of its

data sets, and so it must be unique.

 Related Reading: For automatic definitions, you need to include percent

signs (%) as placeholders for an alphanumeric sequence number (A-Z,

0-9). See “Automatic Partition Definition” on page 521 for more details.

Data set name prefix

Any alphanumeric name that is valid in JCL with a maximum length of 37

characters.

Module name

Enter 1 to 8 alphanumeric characters (the first character must be

alphabetic). This is the name of the randomizing module. A randomizing

module controls root segment placement in, or retrieval from, the PHDAM

HALDB. This parameter is for PHDAM HALDBs only.

Anchor

1 to 3 numeric digits, with a range of 1 to 255. Specifies the number of root

anchor points desired in each control interval or block in the root

addressable area of a PHDAM HALDB. The anchor operand must be an

unsigned decimal integer and must not exceed a value of 255. Typical

values are from 1 to 5. This parameter is for PHDAM HALDBs only.

 The default value of this parameter is 1.

High block number

A numeric unsigned decimal integer value with a range of 0 to 2**24 - 1.

This value specifies the maximum relative block number value that the user

wishes to allow a randomizing module to produce for this HALDB. This

parameter is for PHDAM HALDBs only. This value determines the number

of control intervals or blocks in the root addressable area of an PHDAM

HALDB.

 A high block number of zero means that no upper limit check is performed

on the RBN created by the randomizing module. That is, it is all root

addressable area.

Bytes A numeric unsigned decimal integer value with a range of 1 to 2**24 - 1.

Opening HALDB Partitions

Appendix E. HALDB Partition Definition utility 519

|
|
|
|
|

|

This value specifies the maximum number of bytes of a HALDB record that

can be stored into the root addressable area in a series of inserts unbroken

by a call to another HALDB record.

 A value of 0 (zero) means that all bytes are addressable. It is equivalent to

omitting the bytes parameter from the RMNAME keyword in the DBD macro

statement in DBDGEN. This parameter is for PHDAM HALDBs only.

 Related Reading: For more information on the DBD macro statement in

DBDGEN, see IMS Version 9: Utilities Reference: System.

Free block freq. factor

A numeric unsigned decimal integer from 0 to 100, except 1. The free block

frequency factor (fbff) specifies that every nth control interval or block in this

data set group is left as free space during HALDB load or reorganization

(where fbff=n). The range of fbff includes all integer values from 0 to 100

except fbff=1. The default value for fbff is 0.

Free space percentage

Two numeric unsigned decimal integer digits with a range from 0 to 99. The

fspf is the free space percentage factor. It specifies the minimum

percentage of each control interval or block that is to be left as free space

in this data set group.

 The default value for fspf is 0.

Block size

A numeric unsigned even decimal integer with a range from 1 to 32,000.

The block size value is used by OSAM only. An initial value of 4096 is

displayed. If the HALDB is not OSAM, the block size field is not displayed.

 Related Reading: For more information on the INIT.DBDS command, see

IMS Version 9: Database Recovery Control (DBRC) Guide and Reference.

Max. image copies

A required parameter you use to specify the number of image copies that

DBRC maintains for the identified DBDS. The value must be a unsigned

decimal integer from 2 to 255.

Recovery period

An optional parameter you use to specify the recovery period of the image

copies for the specified DBDS.

 Specify an unsigned decimal integer from 0 to 999 that represents the

number of days that information about the image copies is kept in RECON.

If you specify 0, there is no recovery period. 0 is the default.

Recovery utility JCL

Enter 1 to 8 alphanumeric characters (the first character must be

alphabetic). This is an optional parameter you use to specify the name of a

member of a partitioned data set of skeletal JCL. When you issue the

GENJCL.RECOV command, DBRC uses this member to generate the JCL to

run the Database Recovery utility for the identified DBDS.

 RECOVJCL is the default member name.

Default JCL

Enter 1 to 8 alphanumeric characters (the first character must be

alphabetic). This is an optional parameter you use to specify an implicit

skeletal JCL default member for the DBDS. The specified member is used

by the GENJCL.IC, GENJCL.OIC, and GENJCL.RECOV commands to resolve

keywords that you have defined.

Opening HALDB Partitions

520 Administration Guide: Database Manager

|
|
|

|
|

Image copy JCL

Enter 1 to 8 alphanumeric characters (the first character must be

alphabetic). This is an optional parameter you use to specify the name of a

member of a partitioned data set that contains skeletal JCL. When you

issue the GENJCL.IC command, DBRC uses this member to generate the

JCL to run the Database Image Copy utility for the identified DBDS.

 ICJCL is the default member name.

Online image copy JCL

Enter 1 to 8 alphanumeric characters (the first character must be

alphabetic). This is an optional parameter you use to specify the name of a

member of a partitioned data set that contains skeletal JCL. DBRC uses

this member when you issue the GENJCL.OIC command to generate the JCL

to run the Online Database Image Copy utility for the identified DBDS.

 OICJCL is the default member name.

Receive JCL

Enter 1 to 8 alphanumeric characters (the first character must be

alphabetic). This is an optional parameter you use to specify the name of

the skeletal JCL member used by the GENJCL.RECEIVE command.

 RECVJCL is the default member name.

Reusable?

The value is either Yes or No. Specifies whether the Database Image Copy

utility, or the Online Database Image Copy utility are to reuse previously

defined image copy data sets.

 No is the default value.

Automatic Partition Definition

In the Partition Default Information panel (see Figure 312 on page 518) you can set

Automatic definition to yes and have your partitions defined without intervention.

You must have previously created a data set and it must contain your partition

selection strings. Specify the name of the data set in the input data set field of the

panel depicted in Figure 312 on page 518.

Each line of the input data set must contain a partition selection string or the high

key value to be used during partition definition. The file must contain only one value

on each line of the file, with the value left-justified. The length of the string is

determined by the last non-blank character. Each record must contain only one

string.

In the partition name field, include percent signs (%) as placeholders for an

alphanumeric sequence number (A-Z, 0-9). If you type a partition name like:

 Partition name IVPD1%%

The partitions are created in the following sequence:

 IVPD1AA

 IVPD1AB

 IVPD1AC

 .

 .

 IVPD1AZ

 IVPD1A0

 IVPD1A1

 IVPD1A2

 .

Opening HALDB Partitions

Appendix E. HALDB Partition Definition utility 521

.

 IVPD1A9

 IVPD1BA

 IVPD1BB

 IVPD1BC

 .

 .

When you press Enter, as many partitions as you have key values in the input data

set are automatically generated.

If you want to generate partition names that will allow you to preserve your naming

sequence when expanding your database in the future, you can specify a partition

name like IVP1%%A. The partitions would then be created in the following

sequence:

 IVP1AAA

 IVP1ABA

 .

 .

 IVP1AZA

 IVP1A0A

 IVP1A1A

 .

 .

 IVP1A9A

 IVP1BAA

 .

 .

When automatic definition is processing, a status panel is displayed (Figure 313 on

page 522). This automatic definition status panel is updated as new partitions are

defined.

After automatic definition is complete, in the Database Partitions panel (Figure 319

on page 529) you can see that the partition selection string is filled-in with

information from your input data set.

Manual Partition Definition

On the Partition Default Information panel (Figure 312 on page 518) you can set

Automatic definition to No so that you can define the partitions serially. You can

still use an input data set even though you set Automatic definition to No.

v If you specify an input data set, you must have previously created the data set

and it must contain your partition selection strings. The partition selection string

field (in Figure 314 on page 524) is primed from your input data set. For each

partition, the partition selection string is filled-in from a record of the input data

set. If you try to define more partitions than there are key values, the last key

value from the input data set is displayed on the Change Partition panel

(Figure 314 on page 524) and you will have to change it manually.

v If you do not specify an input data set to provide the partition high key values,

the partition high key values can be added manually for each partition.

Figure 313. Automatic Definition Status

Opening HALDB Partitions

522 Administration Guide: Database Manager

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

– If you did not specify a partition selection exit, the partition high key values

are required.

– If you did specify a partition selection exit, the partition selection string values

are optional.

After you set the defaults and press the enter key, the partition definition screen is

displayed. You can modify the fields and press the enter key to define the partition.

After you press the enter key, the partition is defined in RECON and the partition

definition panel is displayed again so that you can define more partitions. The

partition ID is incremented each time a partition is defined. Press the cancel key

(PF12) to prevent the displayed partition from being defined.

When you press PF12 to stop defining new partitions, the Partitioned Databases

panel (Figure 306 on page 512) is displayed again. You may also choose to stop

defining new partitions by pressing F11=List; a list of defined partitions (see

“Displaying the List of Defined Partitions” on page 528) is displayed.

Opening HALDB Partitions

Appendix E. HALDB Partition Definition utility 523

Important:

v The Randomizer section is present only if the HALDB is PHDAM.

v The data set group attributes section is present only if there is only one data set

group specified during DBDGEN. If there is more than one data set group, use

F6=Groups to display all data set groups using the dialog described in “Defining

Data Set Group Information” on page 527.

The following are descriptions of the fields on the Change Partition screen:

 Help

--

 Change Partition

 Type the field values. Then press Enter.

 Database name : IVPDB1

 Partition name IVPD101

 Partition ID. : 1

 Data set name prefix. IMS.DB01.FINANCE.YEAR1998.CURR

 Partition Status. _______

 Partition Selection String

 +00 F2F0F0F3 4BF2F2F4 40F1F77A F2F57AF0 | 2003.224 17:25:0 |

 +10 F94BF6F3 F3F12432 00000000 00001020 | 9.6331.......... |

 +20 A840C1A5 85404040 40E28195 40D196A2 | y Ave San Jos |

 +30 856B40C3 C14040F9 F5F1F4F1 00100020 | e, CA 95141.... |

 +40 00050000 40F0F34B F0F3F440 00000100 | 03.034 |

 +50 F1F8F0F0 C9C2D4E2 C5D9E540 40C9C2D4 | 1800IBMSERV IBM |

 +60 40C39699 974B4040 F5F5F540 C2818993 | Corp. 555 Bail |

 +70 A840C1A5 85404040 40E28195 40D196A2 | y Ave San Jos |

 +80 856B40C3 C14040F9 F5F1F4F1 00403010 | e, CA 95141. .. |

 +90 00010500 40F0F34B F2F4F340 00324020 | 03.243 .. . |

 +A0 9201913C D2FE933D 913C1F66 4360A005 | k.j.K.l.j....-.. |

 +B0 3233A200 D996A281 6BD785A3 85996B40 | ..s.Rosa,Peter, |

 +C0 000080D4 81A3A3F9 71C4C6F8 F1F4C6C2 | ...Matt9.DF814FB |

 +D0 9311913C F6F4F8F6 943C1F66 4360A005 | l.j.6486m....-.. |

 +E0 41E3453C 06000045 10110220 10416220 | .T.............. |

 +F0 FFFFF900 00004920 18007410 94000300 | ..9.........m... |

 Randomizer

 Module name DD41DUP2

 Anchor 2

 High block number. 999

 Bytes 2000

 Free Space

 Free block freq. factor. . 0

 Free space percentage. . . 0

 Attributes for data set group A

 Block Size 8192

 DBRC options

 Max. image copies. . . . 2

 Recovery period. 0

 Recovery utility JCL . . RECOVJCL

 Default JCL. ________

 Image copy JCL ICJCL

 Online image copy JCL. . OICJCL

 Receive JCL. RECVJCL

 Reusable? No

Command ===>

 F1=Help F3=Exit F5=String F6=Groups F12=Cancel

Figure 314. Change Partition (DSPXPPA)

Opening HALDB Partitions

524 Administration Guide: Database Manager

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

Partition ID

A numeric value between 1 and 32 767, but less than the current high

partition ID value for this HALDB. The Partition Definition utility generates

the partition ID for you, regardless of whether you create your partitions

manually or automatically. DBRC records this number in the RECON data

set. Data set names include the partition ID of the partition to which they

belong.

 After an ID is assigned to a partition, you cannot change it.

Partition Status

You can disable a partition by typing disable in the Partition Status field.

Usually, you would only disable a partition prior to deleting it.

 To enable a disabled partition, type enable in the Partition Status field.

Partition High Key

The Partition High Key field allows you to specify the highest database

record root key that a partition can contain. The partition high key is

determined by your installation. IMS treats the partition high key as a

hexadecimal value. You must enter a value in the Partition High Key field.

 The length of the Partition High Key field is determined by the root key

length you specify using the BYTES= parameter in the FIELD statement

during DBD definition. If the length of the partition high key you enter is

longer than the root key length, an error message displays and you must

reduce the length of the partition high key. If the partition high key length is

less than the defined root key length, the Partition Definition utility pads the

high key value with hex ’FF’s up to the defined root key length. The partition

high key values must be unique for each partition within a HALDB.

 The Partition High Key field consists of two sections: an editable section on

the left that displays the partition high key in hexadecimal format and a

view-only section on the right that displays the partition high key in

alphanumeric format.

 You can enter a hexadecimal value directly in the left section of the Partition

High Key field. The Partition Definition utility displays the alphanumeric

equivalent of this value in the right section of the Partition High Key field.

 You can enter an alphanumeric value directly by using the ISPF editor. To

access the ISPF editor, press F5 (If you have already entered something in

the hexadecimal section, press F5 twice). Once an alphanumeric value is

entered, its hexadecimal equivalent is displayed in the left section of the

Partition High Key field.

 An alphanumeric value can consist of any character information. If the

alphanumeric value contains non-display characters, you must identify

these characters using hexadecimal notation. In the ISPF editor, a

hexadecimal character string is enclosed by single quotation marks and

either prefixed or followed with an x, for example: X'c1f201ffff'.

Partition Selection String

The Change Partition panel displays the Partition Selection String field

only when you have specified a partition selection routine in the HALDB

master definition. A partition selection routine uses the partition selection

string in hexadecimal format to distribute records across the partitions in

your HALDB.

Opening HALDB Partitions

Appendix E. HALDB Partition Definition utility 525

|
|
|
|
|
|
|

|

|
|
|

|

|

|

|
|
|
|
|
|

Partition selection strings are 256 bytes long. If you enter a partition

selection string that is less than 256 bytes in length, the Partition Definition

utility fills the remaining bytes with X'00'.

 The Partition Selection String field consists of two sections: an editable

section on the left that displays the partition selection string in hexadecimal

format and a view-only section on the right that displays the partition

selection string in alphanumeric format.

 You can enter a hexadecimal value directly in the left section of the

Partition Selection String field. The Partition Definition utility displays the

alphanumeric equivalent of this value in the right section of the Partition

Selection String field.

 You can enter the partition selection string in an alphanumeric format by

using the ISPF editor. To access the ISPF editor, press F5 (If you have

already entered something in the hexadecimal section, press F5 twice).

After you enter an alphanumeric string, its hexadecimal equivalent is

displayed in the left section of the Partition Selection String field.

 An alphanumeric string can consist of any character information. If an

alphanumeric string contains non-display characters, you must identify

these characters using hexadecimal notation. In the ISPF editor, a

hexadecimal character string is enclosed by single quotation marks and

either prefixed or followed with an x, for example: X'c1f201ffff'.

F5=String

F5 performs two functions: first, when new data is entered into the

hexadecimal section of either the Partition High Key or the Partition

Selection String field, F5 enters the data into the Partition Definition utility

and displays the alphanumeric equivalent of the hexadecimal string in the

right section of the field. Second, if there is no uncommitted data in the

hexadecimal section, it displays the alphanumeric editor. Figure 315 is an

example of the editor panel that is displayed for the Partition Selection

String field.

F6=Groups

Pressing F6 allows you to display the Data set group dialog that is

discussed in “Defining Data Set Group Information” on page 527.

F11=List

Pressing F11 allows you to display the Database partitions panel that is

discussed in “Displaying the List of Defined Partitions” on page 528.

If your definition of the HALDB from DBDLIB only allows one data set group, the

Attributes for data set group A section is displayed. If multiple groups are

EDIT Partition Selection String

 Database name : IVPDB1

 Partition name : IVPD101

****** ***************************** Top of Data **********

=COLS> ----+----1----+----2----+----3----+----4----+----5---

000001 ’546787789af’x

****** **************************** Bottom of Data ********

Command ===>

 F1=Help F3=Exit

Figure 315. Selection String Editor (DSPXPKE)

Opening HALDB Partitions

526 Administration Guide: Database Manager

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

allowed, a reminder to press PF6 to work with the groups is displayed. The data set

groups dialog is discussed in “Defining Data Set Group Information” on page 527.

Related Reading: For a description of the fields shown in Figure 314 on page 524,

see the description for Figure 312 on page 518.

Defining Data Set Group Information

You can define data set group information by pressing F6 on the Change Partition

panel (see Figure 314 on page 524). This section describes how to define the data

set group information.

If you have multiple data set groups defined for your HALDB and you do not use

automatic definition, use the data set group list that is displayed in Figure 316 on

page 527 and Figure 317 on page 528.

From the data set groups list, you can change the attributes for each member by

typing over the values in the list column. There is a special row in the list that

allows you to make changes to an entire column of the list; the all row. When you

type a value in the all row and press Enter, the value you typed is propagated to all

of the members of the groups. After your changes are made, the all row is blanked

out.

Important: Press F9 to save your changes and then press F12 to return to the

previous panel.

The list contains an action column. The only action allowed is to display all

information for a particular group. Select the group by typing a slash (/) in the Act

column. Figure 318 on page 528 is where you can modify the values by typing over

the existing data and pressing enter.

 Help

 --

 Change Dataset Groups Row 1 to 11 of 11

 Select an item by pressing a ’/’ on the desired line then press Enter.

 Database name : IVPDB1

 Partition name : IVPD101

 Partition ID. : 1

 Data set name prefix. . . . : IMS.DB01.FINANCE.YEAR1998.CURR

 Block Max Image Recovery Recovery Default

 Act Group Size Copies Period Util. JCL JCL

 ___ All _____ __ ___ ________ ________

 ___ A 8192 2 0 RECOVJCL ________

 ___ B 8192 2 0 RECOVJCL ________

 ___ C 8192 2 0 RECOVJCL ________

 ___ D 8192 2 0 RECOVJCL ________

 ___ E 8192 2 0 RECOVJCL ________

 ___ F 8192 2 0 RECOVJCL ________

 ___ G 8192 2 0 RECOVJCL ________

 ___ H 8192 2 0 RECOVJCL ________

 ___ I 8192 2 0 RECOVJCL ________

 ___ J 8192 2 0 RECOVJCL ________

 Command ===>

 F1=Help F3=Exit F7=Backward F8=Forward F9=Save F11=Right F12=Cancel

Figure 316. Change Data Set Groups, Part 1 (DSPXPGA)

Opening HALDB Partitions

Appendix E. HALDB Partition Definition utility 527

Related Reading: For descriptions of the fields on the Change Data Set Groups

panels, see the field definitions for Figure 312 on page 518.

Displaying the List of Defined Partitions

When you choose Open database partitions from the Partitioned Databases panel

(Figure 306 on page 512), the Database Partitions list is displayed. The list is

displayed immediately if there are already partitions defined for the HALDB, or it is

displayed after you define partitions for HALDBs that do not already have partitions.

See Figure 319 on page 529 for an example of the Database Partitions list. The list

is displayed as a table that you can scroll up and down in.

 Help

 --

 Change Dataset Groups Row 1 to 11 of 11

 Select an item by pressing a ’/’ on the desired line then press Enter.

 Database name : IVPDB1

 Partition name : IVPD101

 Partition ID. : 1

 Data set name prefix. . . . : IMS.DB01.FINANCE.YEAR1998.CURR

 Image On. Image Receive

 Act Group Copy JCL Copy JCL JCL Reusable?

 ___ All ________ ________ ________ ___

 ___ A ICJCL OICJCL RECVJCL No

 ___ B ICJCL OICJCL RECVJCL No

 ___ C ICJCL OICJCL RECVJCL No

 ___ D ICJCL OICJCL RECVJCL No

 ___ E ICJCL OICJCL RECVJCL No

 ___ F ICJCL OICJCL RECVJCL No

 ___ G ICJCL OICJCL RECVJCL No

 ___ H ICJCL OICJCL RECVJCL No

 ___ I ICJCL OICJCL RECVJCL No

 ___ J ICJCL OICJCL RECVJCL No

 Command ===>

 F1=Help F3=Exit F7=Backward F8=Forward F9=Save F11=Right F12=Cancel

Figure 317. Change Data Set Groups, Part 2 (DSPXPGB)

 Help

--

 Change a Dataset Group

 Enter values, then press Enter.

 Attributes for data set group B

 Block size 8192

 DBRC options

 Max. image copies. . . . 2

 Recovery period. 0

 Recovery utility JCL . . RECOVJCL

 Default JCL. ________

 Image copy JCL ICJCL

 Online image copy JCL. . OICJCL

 Receive JCL. RECVJCL

 Reusable? No

Command ===>

 F1=Help F3=Exit F12=Cancel

Figure 318. Change a Data Set Group (DSPXPGC)

Defining Data Set Group Information

528 Administration Guide: Database Manager

The Database Partitions list panel has the HALDB name at the top and table

information below. Descriptions of the table columns are listed below.

Act This is the line command input field where you can invoke commands such

as open, copy, and the other commands listed in “The Partition List Line

Commands” on page 532.

Name The name column contains the partition name that was provided during the

definition of the partition. This is the initial sort sequence.

 Related Reading: For a more detailed description of the partition name,

see “Opening HALDB Partitions” on page 515.

Id This is the partition ID number. The number does not have to be sequential.

 Related Reading: For a more detailed description of the partition ID, see

“Displaying the List of Defined Partitions” on page 528.

Data set name prefix

The data set name prefix contains the name of the data set that was

provided during the definition of the partition.

 Related Reading: For a more detailed description of the data set name

prefix, see “Opening HALDB Partitions” on page 515.

Status A partition can be disabled by selecting a partition and typing ″disable″ in

the Partition status field of the Change Partition panel. When a partition is

disabled, ″Disabled″ appears in the Status column for that partition in the

Database Partitions panel. For enabled partitions, the column remains

blank.

From the Database Partitions list panel Figure 319, you can work with individual

partitions. To use the File Action bar, type a slash (/) in the Act line command

column for the partition you want to work with, then put the cursor on the File action

bar choice and press Enter. Select the action you want to perform by typing the

number or by positioning the cursor on the choice then pressing enter again.

 File Edit View Help

 --

 Database Partitions Row 1 to 15 of 166

 Select an item by pressing a ’/’ on the desired line then press Enter.

 Database name : IVPDB1

 Act Name Id Data set name prefix Status

 ___ IVPD101 1 IMS.DB01.FINANCE.YE2002

 ___ IVPD102 2 IMS.DB01.PAYROLL.YE2002

 ___ IVPD103 3 IMS.DB01.PAYROLL.YE2002

 ___ IVPD104 4 IMS.DB01.PAYROLL.YE2002

 ___ IVPD105 5 IMS.DB01.PAYROLL.YE2002

 ___ IVPD106 6 IMS.DB01.PAYROLL.YE2002

 ___ IVPD107 7 IMS.AB01.PAYROLL.YE2002

 ___ IVPD108 8 IMS.DB01.PAYROLL.YE2002

 ___ IVPD109 9 IMS.DB01.PAYROLL.YE2002

 ___ IVPD110 10 IMS.AB01.PAYROLL.YE2002 Disabled

 ___ IVPD111 11 IMS.DB01.PAYROLL.YE2002

 ___ IVPD112 12 IMS.DB01.PAYROLL.YE2002

 ___ IVPD113 13 IMS.TP01.PAYROLL.YE2002

 ___ IVPD114 14 IMS.DB01.PAYROLL.YE2002

 ___ IVPD115 15 IMS.DB01.FINANCE.YE2002

 Command ===>

 F1=Help F3=Exit F7=Backward F8=Forward F11=Right

Figure 319. Database Partitions Panel, Sorted by Partition ID (DSPXPLA)

Displaying Partitions List

Appendix E. HALDB Partition Definition utility 529

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

||
|
|
|
|

You can invoke the Database Partitions panel (Figure 320) to show the values by

pressing your PF11 key.

The Database Partitions list panel has the HALDB name at the top and table

information below. Descriptions of the table columns for Figure 320 on page 530 are

presented below.

Act This is the line command input field where you can invoke commands such

as open, copy, and the other commands listed on “The Partition List Line

Commands” on page 532.

Name The name column contains the partition name that was provided during the

definition of the partition. This is the initial sort sequence.

 Related Reading: For a more detailed description of the partition name,

see “Opening HALDB Partitions” on page 515.

Partition Selection String

The partition selection string is used by the partition selection routine.

 Related Reading: For a more detailed description of the partition selection

string, see “Opening HALDB Partitions” on page 515.

You can invoke the Database Partitions panel to show the Randomizer values by

pressing your PF11 key (Figure 321 on page 531).

 File Edit View Help

 --

 Database Partitions Row 1 to 4 of 166

 Select an item by pressing a ’/’ on the desired line then press Enter.

 Database name : IVPDB1

 Act Name

 Partition Selection String

____ IVPD001

 +00 F2F0F0F3 4BF2F2F4 40F1F77A F2F57AF0 | 2003.224 17:25:0 |

 +10 F94BF6F3 F3F12432 00000000 00001020 | 9.6331.......... |

 +20 A840C1A5 85404040 40E28195 40D196A2 | y Ave San Jos |

 +30 856B40C3 C14040F9 F5F1F4F1 00100020 | e, CA 95141.... |

 +40 00050000 40F0F34B F0F3F440 00000100 | 03.034 |

 +50 F1F8F0F0 C9C2D4E2 C5D9E540 40C9C2D4 | 1800IBMSERV IBM |

 +60 40C39699 974B4040 F5F5F540 C2818993 | Corp. 555 Bail |

 +70 A840C1A5 85404040 40E28195 40D196A2 | y Ave San Jos |

 +80 856B40C3 C14040F9 F5F1F4F1 00403010 | e, CA 95141. .. |

 +90 00010500 40F0F34B F2F4F340 00324020 | 03.243 .. . |

 +A0 9201913C D2FE933D 913C1F66 4360A005 | k.j.K.l.j....-.. |

 +B0 3233A200 D996A281 6BD785A3 85996B40 | ..s.Rosa,Peter, |

 +C0 000080D4 81A3A3F9 71C4C6F8 F1F4C6C2 | ...Matt9.DF814FB |

 +D0 9311913C F6F4F8F6 943C1F66 4360A005 | l.j.6486m....-.. |

 +E0 41E3453C 06000045 10110220 10416220 | .T.............. |

 +F0 FFFFF900 00004920 18007410 94000300 | ..9.........m... |

 ____ IVPD002

 +00 F2F0F0F3 4BF2F2F4 40F1F87A F1F27AF0 | 2003.224 18:12:0 |

 +10 F94BF6F3 F3F12432 00000000 00001020 | 9.6331.......... |

 Command ===>

 F1=Help F3=Exit F7=Backward F8=Forward F11=Right

Figure 320. Database Partitions Panel, Sorted by Key (DSPXPLB)

Displaying Partitions List

530 Administration Guide: Database Manager

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

Important: The Randomizer section is present only if the HALDB is PHDAM.

The Database Partitions list panel has the HALDB name at the top and table

information below. Descriptions of the table columns for Figure 321 on page 531 are

presented below.

Act This is the line command input field where you can invoke commands such

as open, copy, and the other commands listed in “The Partition List Line

Commands” on page 532.

Name The name column contains the partition name provided during the definition

of the partition. This is the initial sort sequence.

 Related Reading: For a more detailed description of the partition name,

see “Opening HALDB Partitions” on page 515.

Module

The module column contains the module name of the randomizing module.

 Related Reading: For a more detailed description of the module name see

Figure 312 on page 518.

Anchor

The anchor column contains the number of root anchor points.

 Related Reading: For a more detailed description of the anchor see

Figure 312 on page 518.

High block

The high block column contains the high block number.

 Related Reading: For a more detailed description of the high block number

see Figure 312 on page 518.

Bytes For a more detailed description of the bytes field see Figure 312 on page

518.

FBFF The FBFF column contains the free block frequency factor.

 File Edit View Help

 --

 Database Partitions Row 1 to 15 of 166

 Select an item by pressing a ’/’ on the desired line then press Enter.

 Database name : IVPDB1

 ------------- Randomizer -------------- - Free Space -

 Act Name Module Anchor High block Bytes FBFF FSPF

 ___ IVPD101 DD41DUP2 2 999 2000 0 0

 ___ IVPD102 DD41DUP2 2 999 2000 0 0

 ___ IVPD103 DD41DUP2 2 999 2000 0 0

 ___ IVPD104 DD41DUP2 2 999 2000 0 0

 ___ IVPD105 DD41DUP2 2 999 2000 0 0

 ___ IVPD106 DD41DUP2 2 999 2000 0 0

 ___ IVPD107 DD41DUP2 2 999 2000 0 0

 ___ IVPD108 DD41DUP2 2 999 2000 0 0

 ___ IVPD109 DD41DUP2 2 999 2000 0 0

 ___ IVPD110 DD41DUP2 2 999 2000 0 0

 ___ IVPD111 DD41DUP2 2 999 2000 0 0

 ___ IVPD112 DD41DUP2 2 999 2000 0 0

 ___ IVPD113 DD41DUP2 2 999 2000 0 0

 ___ IVPD114 DD41DUP2 2 999 2000 0 0

 ___ IVPD115 DD41DUP2 2 999 2000 0 0

 Command ===>

 F1=Help F3=Exit F7=Backward F8=Forward F11=Right

Figure 321. Database Partitions Panel, Sorted by Name (DSPXPLC)

Displaying Partitions List

Appendix E. HALDB Partition Definition utility 531

Related Reading: For a more detailed description of the free block

frequency factor in Figure 312 on page 518.

FSPF The FSPF column contains the free space percentage factor.

 Related Reading: For a more detailed description of the free space

percentage factor see Figure 312 on page 518.

To use line commands, type the command in the Act column to the right of the

partition you want to use. You can type multiple line commands (only one per

partition, though) on the Database Partitions panel: the commands are executed

serially starting from the top.

The Partition List Line Commands

Line commands will allow you to perform the following actions:

Delete a partition

Type a D in the line command field and press Enter. A delete confirmation

panel is displayed. Type a 1 in the option field and press Enter to confirm

the delete or press the cancel key to cancel the delete.

 If you are deleting several partitions at once, and wish to accept all of the

deletes, you can type a 2 in the option field. It is reset to blank each time

the partition list is displayed.

Copy a partition

Type a C in the line command field to define a new partition using the

attributes of the selected partition. The partition name must be unique. You

change the partition information using the Change Partition panel (see

Figure 314 on page 524).

Open a partition

Type an O in the line command field to open a partition. You can then

change partition information. The partition name and ID cannot be changed.

press Enter to commit or press the cancel key to discard your changes. You

change the partition information using the Change Partition panel (see

Figure 314 on page 524).

Print partition information

Type a P in the line command field to print partition information for the

selected partition. The information will not be routed to a printer

immediately; instead it is added to the ISPF list data set.

The Partition List Action Bar

The list of partitions in the Database Partitions panel can be manipulated with line

commands or by using the File action bar choices (Figure 322).

Figure 322. File Action Bar Choices

Displaying Partitions List

532 Administration Guide: Database Manager

New partition

You can create new partitions using the same panels that you used when

you initially created partitions. See Figure 312 on page 518.

Open partition

You can open the selected partitions and modify them as desired. See

Figure 314 on page 524.

Open data set groups

You can manipulate the data set group members using the panels

described in “Defining Data Set Group Information” on page 527.

Print partition information

Information about the selected partitions is written to the ISPF list data set.

Print partition view

The information in the currently-displayed view is written to the ISPF list

data set.

The list of partitions in the Database Partitions can be sorted in various ways using

the Edit action bar choice (Figure 323).

Copy partition...

Type a slash (/) in the line command field and use the Edit - Copy partition

pull-down panel to define a new partition using the attributes of the selected

partition. The partition name and the ID must be unique.

 The Change Partition panel is then displayed, see Figure 314 on page 524,

and you can create new partitions serially. The values shown in the panel

are filled-in using the attributes of the selected partition.

Delete partition

Type a slash (/) in the line command field and use the Edit - Delete a

partition pull-down panel to delete partitions. A delete confirmation panel is

displayed. You can press Enter to confirm delete or press the cancel key to

ignore the delete.

Find... You can search the partition list for a selected character string. Only simple

character values can be specified. The cursor is placed on the partition that

contains the search value.

 The search string is not case sensitive. It will search on any field, not just

the currently displayed fields on the Database Partitions panels (Figure 324

on page 534).

Figure 323. Edit Action Bar Choices

Displaying Partitions List

Appendix E. HALDB Partition Definition utility 533

Change all partitions...

Use the Edit - Change all partitions pull-down panel to change individual

fields for all of the partitions in the HALDB. The partition name and the ID

cannot be changed. See “Change All Partitions.”

Change selected partitions...

Type a slash (/) in the line command field to change a partition and use the

Edit - Change selected partitions pull-down panel to change individual fields

for the selected partitions. The partition name and the ID cannot be

changed. The process is the same as that described in “Change All

Partitions,” but only the selected partitions are changed.

The list of partitions in the Database Partitions can be sorted in various ways by

using the View action bar choice (Figure 325).

Help information is available using the Help action bar choice.

Change All Partitions

Figure 326 on page 535 is an example of the Change Partition panel. The entry

fields are blank. Make changes only to the fields that you want to change. The field

changes are applied to all of the partitions.

Important: The same process is used for Change selected partitions except that

the changes are only applied to the partitions selected from the list with a slash (/).

If you want to change a character field to blanks, type a single slash (/) character

so that it is the only character in the field.

Figure 324. Searching the Partition List

Figure 325. View Action Bar Choices

Displaying Partitions List

534 Administration Guide: Database Manager

Important:

v The Randomizer section is present only if the HALDB is PHDAM.

v The data set groups section is present only if there is only one data set group

specified during DBDGEN. If there is more than one data set group, use

F6=Groups to display all data set groups using the dialog described in “Defining

Data Set Group Information” on page 527.

Figure 327 on page 536 shows the Change Dataset Groups panel.

 Help

 --

 Change Partition

 Press Enter to continue.

 Database name. : IVPDB1

 Partition name :

 Partition ID :

 Data set name prefix _________________________________

 Status. _______

 Partition Selection String

 +00 ________ ________ ________ ________ | |

 +10 ________ ________ ________ ________ | |

 +20 ________ ________ ________ ________ | |

 +30 ________ ________ ________ ________ | |

 +40 ________ ________ ________ ________ | |

 +50 ________ ________ ________ ________ | |

 +60 ________ ________ ________ ________ | |

 +70 ________ ________ ________ ________ | |

 +80 ________ ________ ________ ________ | |

 +90 ________ ________ ________ ________ | |

 +A0 ________ ________ ________ ________ | |

 +B0 ________ ________ ________ ________ | |

 +C0 ________ ________ ________ ________ | |

 +D0 ________ ________ ________ ________ | |

 +E0 ________ ________ ________ ________ | |

 +F0 ________ ________ ________ ________ | |

 Randomizer

 Module name DD41MOD3

 Anchor ___

 High block number. ________

 Bytes ________

 Free Space

 Free block freq. factor. . ___

 Free space percentage. . . __

 Command ===>

 F1=Help F3=Exit F5=String F6=Groups F12=Cancel

Figure 326. Change Partition Panel (DSPXPPB)

Displaying Partitions List

Appendix E. HALDB Partition Definition utility 535

Related Reading: For a description of the fields not listed here, see the description

for Figure 311 on page 516.

Opening Database Information

When you choose Open database information from the Partitioned Databases panel

shown in Figure 306 on page 512, you are shown information about the HALDB

which was saved when you first defined partitions for the HALDB (Figure 328).

Related Reading: For a description of the fields shown in Figure 328, see the

description for Figure 311 on page 516.

 Help

 --

 Change Dataset Groups Row 1 to 10 of 10

 Select an item by pressing a ’/’ on the desired line then press Enter.

 Database name : IVPDB1

 Partition name : IVPD101

 Partition ID. : 1

 Data set name prefix. . . . : IMS.DB01.FINANCE.YEAR1998.CURR

 Block Max Image Recovery Recovery Default

 Act Group Size Copies Period Util. JCL JCL

 ___ All _____ __ ___ ________ ________

 ___ A _____ __ ___ ________ ________

 ___ B _____ __ ___ ________ ________

 ___ C _____ __ ___ ________ ________

 ___ D _____ __ ___ ________ ________

 ___ E _____ __ ___ ________ ________

 ___ F _____ __ ___ ________ ________

 ___ G _____ __ ___ ________ ________

 ___ H _____ __ ___ ________ ________

 ___ I _____ __ ___ ________ ________

 ___ J _____ __ ___ ________ ________

 Command ===>

 F1=Help F3=Exit F7=Backward F8=Forward F9=Save F11=Right F12=Cancel

Figure 327. Change Data Set Groups, Part 1 (DSPXPGA)

 Help

--

 Partitioned Database Information

 Type the field values. Then press Enter to continue.

 Database name : IVPDB1

 Master Database values

 Part. selection routine . . . DFSIVD1

 RSR global service group . . .

 RSR tracking type

 Share level 0

 Database organization . . . : PHDAM

 Recoverable? Yes

 Number of data set groups . : 1

 Online Reorganization Capable: Yes

 To exit the application, press F3.

Command ===>

 F1=Help F3=Exit F12=Cancel

Figure 328. Partitioned Database Information (DSPXPOA)

Displaying Partitions List

536 Administration Guide: Database Manager

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

You can modify the fields and press Enter to change the values in RECON. If you

press cancel or exit, any changes you entered on this panel are discarded.

Deleting Database Information

When you choose to delete database information from Figure 306 on page 512, you

are presented with the Delete a Database panel (see Figure 329). You must type a

slash (/) character and press Enter to confirm the delete. When you confirm it, the

information about the HALDB and about all of its partitions is deleted from RECON.

There is no way to undo the delete. You may wish to perform an export prior to

deleting a HALDB from RECON. See “Exporting Database Information” for

information about performing an export.

Exporting Database Information

When you choose to Export database information from Figure 306 on page 512, the

information is stored in the partitioned data set that you specify. It is saved as an

ISPF table and so must have the attributes of ISPTLIB data sets (record format =

fixed block, record length = 80, data set organization = PDS (or PDS/E)).

Figure 330 shows the Export a Database panel.

Field Description

Database name

The HALDB name that was specified in the primary panel.

 Help

--

 Delete Database Information

 Type ’/’ to confirm the delete of the database information from RECON.

 Then press Enter.

 Database name : IVPDB1

 Confirm database delete . __

Command ===>

 F1=Help F3=Exit F12=Cancel

Figure 329. Delete a Database (DSPXPDA)

 Help

--

 Export a Database

 Type a data set name. Then press Enter.

 Database Name : IVPDB1

 Output dataset name. ’TEST.RSR.PARTS’

 Output member name IVPDB1

 To exit the application, press F3.

Command ===>

 F1=Help F12=Cancel

Figure 330. Export a Database (DSPXPEA)

Opening Database Information

Appendix E. HALDB Partition Definition utility 537

Output data set name

The output data set name is the name of the data set that will contain the

partition information.

Importing Database Information

When you choose to Import database information from Figure 306 on page 512 you

can specify the name of the PDS or PDS/E that contains the information.

Important: Only an exported table can be used for the import.

After you press Enter, the table is read and each partition is defined.

Figure 331 shows the Import a Database panel.

Database name

The HALDB name that was specified on the primary panel.

Input data set name

The input data set name is the name of the data set that contains the

partition information. The data set must be partitioned.

Input member name

The input member name is the name of a member within the input data set.

The member must have been exported using the HALDB Partition Definition

utility .

Processing option

Each partition in the imported table can be defined in RECON. If there are

errors, you can choose to try the remaining partitions or to stop the

process.

Displaying the IMS Concatenation

You can look at the concatenation of data sets that are allocated to the IMS DD

name. The data sets are displayed using the ISRDDN command that is part of the

ISPF product (Figure 332 on page 539).

 Help

--

 Import a Database

 Type a dataset name. Then press Enter.

 Database name : IVPDB1

 Input dataset name. . . . ’PROD.RSR.PARTS’

 Input member name IVPDB1

 Processing option __ 1. Stop on first error

 2. Try all partitions

Command ===>

 F1=Help F3=Exit F12=Cancel

Figure 331. Import a Database (DSPXPIA)

Exporting Database Information

538 Administration Guide: Database Manager

Use the help (F1) information provided by ISRDDN and in the ISPF manuals to

learn more about the ISRDDN utility. When you exit the ISRDDN utility, the HALDB

Partition Definition utility panels are displayed again.

Selecting an IMS Configuration

You can control which RECON data set and which DBDLIB data sets are used. For

this purpose, a set of RECON and DBDLIB data sets are considered a

configuration.

The configuration is a name that you specify that identifies a set of DBD libraries

and a set of RECON data sets. If you already have the IMS DD name allocated

from the logon procedure and if you have the IMS.SDFSRESLs allocated to the

STEPLIB DD name, you do not need to use the Configuration option. If you do

define and select a configuration, those data sets will override the allocations from

the logon procedure.

1. IMS DD name

The IMS DD name includes the data sets that contain the DBDLIB members.

The RECON / DBDLIB Configurations panels re-allocate the IMS DD name.

2. RECON allocation

The STEPLIB allocation contains RECON1, RECON2, and RECON3 members

that name the actual RECON data sets. IMS uses those members to determine

which RECON data sets to use. There is an alternative to using a STEPLIB:

use the TSOLIB command to change the search order that TSO/E uses to find

commands and programs.

The RECON / DBDLIB Configurations panels re-allocates the IMS DD name

and will allocate the RECON1, RECON2, and RECON3 DDnames to explicitly

specify the RECON data sets. The STEPLIB concatenation is not modified.

Figure 333 on page 540 shows the RECON/DBDLIB Configurations panel.

 Current Data Set Allocations Line 1 of 2

 Volume Disposition Act DDname Data Set Name List Actions: B E V F C I Q

 SYS151 SHR,KEEP > _ IMS IMSIVP91.DBDLIB

 SYS335 SHR,KEEP > _ IMS91.SANJOSE.DBDLIB

-------------------------- End of Allocation List -----------------------------

Command ===> Scroll ===> CSR

Figure 332. The IMS Concatenation (ISRDDN)

Displaying the IMS Concatenation

Appendix E. HALDB Partition Definition utility 539

A list of configurations can be maintained when you select option 7 from the

Partitioned Databases panel. The list is initially empty and it can be added-to by

filling in the blank line. The active configuration is identified by an asterisk (*) in the

Current column. Figure 334 shows the Configurations Details panel.

Rows from the list can be deleted by using a line command of d. Only the

configuration is deleted from the list. The data sets that are named in the

configuration are not deleted.

The data sets named in the configuration are set or changed by using a line

command of o for open.

 RECON / DBDLIB Configurations Row 1 to 5 of 5

To create a new configuration, fill in the first line and press Enter.

Select a default by type ’/’ on the Act column then press Enter.

You can use ’O’ to open or ’D’ to delete a configuration.

Act Current Name Description

___ _______ __

___ * SDFSRESL IMS V9R1 datasets

___ TESTM Test IMS for Matt

___ TESTP Test IMS for Peter

___ TEST1 Test IMS

**************************** Bottom of data ****************************

Command ===>

F1=Help F3=Exit F7=Up F8=Down F12=Cancel

Figure 333. User Configurations (DSPXPMB)

 Configuration Details

Type in values in the fields and press Enter to continue.

Configuration name TEST1

Description Test IMS

RECON dataset names

 RECON1 dataset ’TEST.PARTS.RECON1’

 RECON2 dataset ’TEST.PARTS.RECON2’

 RECON3 dataset ______________________________

DBDLIB dataset names

 DBDLIB dataset 1 . . . ’TEST.PARTS.DBDLIB’

 DBDLIB dataset 2 . . . ______________________________

 DBDLIB dataset 3 . . . ______________________________

 DBDLIB dataset 4 . . . ______________________________

 DBDLIB dataset 5 . . . ______________________________

 DBDLIB dataset 6 . . . ______________________________

 DBDLIB dataset 7 . . . ______________________________

 DBDLIB dataset 8 . . . ______________________________

 DBDLIB dataset 9 . . . ______________________________

 DBDLIB dataset 10 . . . ______________________________

Command ===>

F13=Help F15=Exit F19=Up F20=Down F22=Actions

Figure 334. Configuration Details Panel (DSPXPMC)

Selecting an IMS Configuration

540 Administration Guide: Database Manager

The RECON data sets are separately allocated to the RECON1, RECON2, and

RECON3 file names.

The DBDLIB data sets are concatenated to the IMS file name.

Important: When you specify a generic HALDB name in the Partitioned Database

panel; option 6 will only work if you use four (4) or fewer DBD data sets. However,

for greater flexibility you can specify up to ten (10) data sets.

Using Batch to Export or Import Partition Information

The output from the export of a HALDB is a member of a PDS. The information

about the HALDB is saved in the form of an ISPF table. The ISPF table is used as

input for the import process. The import can be done from the ISPF panels or from

a batch job.

The batch import of a HALDB can be done by submitting a batch ISPF job similar

to the job shown in Figure 335. ISPF is invoked in batch, so all ISPF DDNAMES

are required.

The batch job executes the standard ISPF command ISPSTART that sets up the

ISPF environment then starts the DSPXRUN command. The DSPXRUN command

identifies the HALDB, the import file to use, and the processing options.

//DSPXRUN JOB ...

//*

//DSPXRUN EXEC PGM=IKJEFT01,DYNAMNBR=50,REGION=6M

//STEPLIB DD DSN=IMSIVP91.SDFSRESL,DISP=SHR /* IMS.SDFSRESL */

//SYSPROC DD DSN=IMSIVP91.SDFSEXEC,DISP=SHR /* IMS rexx execs */

//IMS DD DSN=your.local.DBDLIB,DISP=SHR

//RECON1 DD DSN=IMSIVP91.RECON1,DISP=SHR

//RECON2 DD DSN=IMSIVP91.RECON2,DISP=SHR

//RECON3 DD DSN=IMSIVP91.RECON3,DISP=SHR

//ISPPROF DD DSN=&&PROFILE;, /* dummy ISPF profile */

// UNIT=SYSDA,DISP=(NEW,DELETE),

// SPACE=(3200,(30,30,1)),DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)

//ISPPLIB DD DSN=IMSIVP91.SDFSPLIB,DISP=SHR /* IMS ISPF panels */

//ISPSLIB DD DSN=IMSIVP91.SDFSSLIB,DISP=SHR /* IMS ISPF skeletons */

//ISPMLIB DD DSN=IMSIVP91.SDFSMLIB,DISP=SHR /* IMS ISPF messages */

// DD DSN=ISP.ISPMLIB,DISP=SHR

//ISPTLIB DD DSN=IMSIVP91.SDFSTLIB,DISP=SHR /* IMS ISPF tables */

// DD DSN=ISP.ISPTLIB,DISP=SHR

//ISPLOG DD SYSOUT=*,DCB=(RECFM=VA,LRECL=125,BLKSIZE=129)

//SYSPRINT DD SYSOUT=*,DCB=(RECFM=VA,LRECL=125,BLKSIZE=129)

//SYSOUT DD SYSOUT=*

//PARTLOG DD SYSOUT=*

//SYSTSPRT DD SYSOUT=*,DCB=(RECFM=F,LRECL=255,BLKSIZE=255)

//SYSTSIN DD *

 ISPSTART CMD(+

 DSPXRUN IMPORT DSN(’PROD.RSR.PARTS’) +

 DBN(IVPDB1) MEM(IVPDB1) OPT(2))

/*

Figure 335. Sample JCL for Batch Import

Selecting an IMS Configuration

Appendix E. HALDB Partition Definition utility 541

|
|
|
|

DSPXRUN Command Syntax

The DSPXRUN command can be used to import HALDB information in a batch

environment.

The following diagram shows the syntax of the DSPXRUN command:

�� ISPSTART CMD (Command String) ��

Command String:

 DSPXRUN EXPORT

IMPORT
 DBN (database_name) DSN (dataset_name) �

� MEM (member_name) OPT (processing_option)

The values are essentially the same as the values required for the foreground

import (see “Importing Database Information” on page 538).

EXPORT

When you choose to export database information using a batch job, the

information is stored in the partitioned data set that you specify. The

information is saved as an ISPF table and so it must have the attributes of

ISPTLIB data sets: record format = fixed block, record length = 80, and

data set organization = PDS (or PDS/E).

 Related Reading: For more information on ISPTLIB data sets, see ISPF

User’s Guide, Volume 1.

IMPORT

When you choose to import database information using a batch job, the

partition information is read from a partitioned data set that you specify. The

partition information is defined to the RECON data sets.

database_name

The HALDB name that was specified on the primary panel.

dataset_name

The input data set name is the name of the data set that contains the

partition information. The data set must be partitioned.

member_name

The input member name is the name of a member within the input data set.

The member must have been exported using the HALDB Partition Definition

utility.

processing_option

The processing option field lets you determine what the Partition Definition

utility does in the event that an error occurs when it processes a partition

from the imported table. The Partition Definition utility records each partition

it imports in RECON. If there are errors, you can choose to try the

remaining partitions or to stop the process. The valid values are 1 or 2:

1 Stop on first error (prior imported partitions are retained)

2 Try all partitions

 The OPT parameter is ignored during export processing.

DSPXRUN Command Syntax

542 Administration Guide: Database Manager

|||||||||||||||||
|

|

|||||||||||||||||||||||
|

|
|||||||||||||
|

|
|

|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|

||

||

|

DSPXRUN EXPORT Sample Output

Exporting database IVPDB1 using JCL similar to Figure 335 on page 541 would

result in the following output:

DSPM142I Start export to MEM=IVPDB1 in DSN=’PROD.RSR.PARTS’

 from DBN=IVPDB1

DSPM143I The export file contains partition IVPDB11

DSPM143I The export file contains partition IVPDB12

DSPM143I The export file contains partition IVPDB13

DSPM219I Table IVPDB1 was created successfully to dataset

 ’PROD.RSR.PARTS’

DSPXRUN IMPORT Sample Output

Importing database IVPDB1 using JCL similar to Figure 335 on page 541 would

result in the following output:

DSPM283I Start Import to DBN=IVPDB1 from MEM=IVPDB1 in

 DSN=’PROD.RSR.PARTS’ Options=2

DSPM285I Imports start at 23/22/14 11:55

DSPM284I Import successful for partition IVPDB11

DSPM284I Import successful for partition IVPDB12

DSPM284I Import successful for partition IVPDB13

DSPM282I 3 of a total 3 partitions from table IVPDB1

 were imported to database successfully.

DSPXRUN Command Syntax

Appendix E. HALDB Partition Definition utility 543

|

|
|

|
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|
|
|

544 Administration Guide: Database Manager

Appendix F. Output Data Set Requirements for HALDB Online

Reorganization

This appendix describes the detailed requirements and attributes for the output data

sets used during online reorganization of HALDB partitions. These requirements are

described in the following topics:

v “HALDB Online Reorganization Requirements for Existing Output Data Sets”

v “Attributes of Automatically-Created Output Data Sets”

HALDB Online Reorganization Requirements for Existing Output Data

Sets

If an existing output data set does not meet the requirements described in this

section, IMS displays an error message and the online reorganization for the

HALDB partition does not begin.

An OSAM output data set has the following requirements:

v Must be cataloged

v Must be a DASD data set

v Must not be a VSAM data set, except for the primary index data set of a

PHIDAM database

v Must not be a PDS, PDSE, or a member of a PDS or PDSE

A VSAM output data set has the following requirements:

v Must be a VSAM entry-sequenced data set (ESDS), except for the primary index

data set of a PHIDAM database

v Must have the REUSE attribute

v Must have a fixed-length record length that is identical to that of the

corresponding input data set

v Must have a control interval size that is identical to that of the corresponding

input data set

v Must have a SHAREOPTIONS attribute value that is at least as high as that of

the corresponding input data set if the database is defined to DBRC with a

SHARELVL attribute value of 2 or 3

A primary index data set has the following requirements:

v Must be a VSAM key-sequenced data set (KSDS)

v Must have the same key offset and length as the corresponding input KSDS

v Must have the other required characteristics listed for VSAM output data sets

Attributes of Automatically-Created Output Data Sets

For those output data sets that do not already exist at the beginning of the

initialization phase of an online reorganization, IMS creates the data sets with the

following attributes:

Number of Volumes

If a particular input data set is SMS-managed, IMS creates the

corresponding output data set with the same number of volumes.

© Copyright IBM Corp. 1974, 2004 545

|

|

|

|
|
|

|

|

|
|

|

|
|
|

|

|

|

|
|

|

|

|
|

|

|
|

|
|

|
|
|

|

|

|

|

|
|

|
|
|

|
|
|

If the input data set is not SMS-managed, IMS automatically

creates the corresponding output data set only when the input data

set resides on a single volume. For a non-SMS-managed input data

set that resides on multiple volumes, you must create the

corresponding output data set before starting the online

reorganization.

Location of SMS-managed output data sets

If a particular input data set is SMS-managed, the corresponding

output data set is also SMS-managed, and uses the same storage

class as the input data set.

 Your site’s storage administrator must ensure that this storage class

refers to a storage group with sufficient space to hold the output

data set, or that the automatic class selection (ACS) routine selects

an appropriate storage class for the data set.

Location of non-SMS-managed, non-VSAM output data sets

Regardless of the type of DASD on which the input data set

resides, IMS creates the corresponding non-VSAM output data set

using the equivalent of a DD statement UNIT=SYSALLDA parameter.

 When it creates the output data set, IMS does not request any

specific volume serial number, thus allowing the data set to be

created on a storage volume or, if no storage volume is available,

on a public volume.

Location of non-SMS-managed, VSAM output data sets

IMS creates a VSAM output data set on the same volume as the

corresponding input data set. This restriction can limit the

usefulness of automatically creating a VSAM data set that is not

SMS-managed.

Size of output data sets on a single volume

When the input data set has extents on only one DASD volume,

IMS creates the output data set on a single volume using the

equivalent of a DD statement VOLUME=(,,,1) parameter.

 The amount of primary space for the output data set is derived from

the space allocation of the input data set:

v For a non-VSAM data set, the primary space is the total amount

of space in the first five extents on the volume.

v For a VSAM data set, the primary space is the primary space

allocation used when the input data set was created.

If you specified secondary space amount for the input data set, IMS

uses this same secondary amount for the output data set.

 To reserve approximately the same amount of space for the output

data set as was reserved for the input data set, regardless of the

DASD types involved, IMS requests the space for the output data

set as a number of OSAM blocks or VSAM records. For input data

sets that did not specify a number of OSAM blocks or VSAM

records, IMS converts the cylinder or track allocation to an

equivalent number of blocks or records.

 An automatically created output data set could have a considerably

different amount of available DASD space than was used for the

input data set. For example, for an input data set that used

546 Administration Guide: Database Manager

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|

|
|

|
|

|
|

|
|
|
|
|
|
|

|
|
|

secondary allocation, the automatic creation process reserves the

primary space for the output data set, but there might not be

enough space on the volume for secondary allocation either during

the online reorganization or during later database processing.

Size of output data sets on multiple volumes (SMS-managed only)

IMS automatically creates multiple-volume output data sets only

when the input data set (and, therefore, the output data set) is

SMS-managed. You can determine the storage class by examining

the input data set or the site’s ACS routine.

 Although it is not strictly a requirement for SMS-managed

multiple-volume output data sets, you should ensure that the

storage class specifies the guaranteed-space attribute. By

specifying the guaranteed-space attribute, you allow VSAM to use

the primary-space allocation for each of the volumes when it

creates the output data sets. Secondary space is used as needed.

However, even with the guaranteed-space attribute, the output data

sets might not have the same amount of space as the input data

sets, especially if secondary-space allocation was used for the input

data sets.

 The requested primary and secondary space is based on the input

data set’s space allocation on the first DASD volume.

Appendix F. Output Data Set Requirements for HALDB Online Reorganization 547

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

548 Administration Guide: Database Manager

Notices

This information was developed for products and services offered in the U.S.A. IBM

may not offer the products, services, or features discussed in this document in other

countries. Consult your local IBM representative for information on the products and

services currently available in your area. Any reference to an IBM product, program,

or service is not intended to state or imply that only that IBM product, program, or

service may be used. Any functionally equivalent product, program, or service that

does not infringe any IBM intellectual property right may be used instead. However,

it is the user’s responsibility to evaluate and verify the operation of any non-IBM

product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you any

license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply to

you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements and/or

changes in the product(s) and/or the program(s) described in this publication at any

time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for this

IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs

© Copyright IBM Corp. 1974, 2004 549

and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those

products, their published announcements or other publicly available sources. IBM

has not tested those products and cannot confirm the accuracy of performance,

compatibility or any other claims related to non-IBM products. Questions on the

capabilities of non-IBM products should be addressed to the suppliers of those

products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to IBM,

for the purposes of developing, using, marketing or distributing application programs

conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly

tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,

serviceability, or function of these programs. You may copy, modify, and distribute

these sample programs in any form without payment to IBM for the purposes of

developing, using, marketing, or distributing application programs conforming to

IBM’s application programming interfaces.

550 Administration Guide: Database Manager

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

If you are viewing this information softcopy, the photographs and color illustrations

may not appear.

Programming Interface Information

This book is intended to help the database administrator manage IMS databases.

This book also documents general-use interface and Associated Guidance

Information, Product-sensitive Programming Interface and Associated Guidance

Information, and diagnosis, modification or tuning Information provided by IMS.

General-use programming interfaces allow the customer to write programs that

obtain the services of IMS.

General-use Programming Interface and Associated Guidance Information is

identified where it occurs by an introductory statement to a chapter or section.

Product-sensitive programming interfaces allow the customer installation to perform

tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or tuning of

IMS. Use of such interfaces creates dependencies on the detailed design or

implementation of the IBM software product. Product-sensitive programming

interfaces should be used only for these specialized purposes. Because of their

dependencies on detailed design and implementation, it is to be expected that

programs written to such interfaces may need to be changed in order to run with

new product releases or versions, or as a result of service.

Product-sensitive Programming Interface and Associated Guidance Information is

identified where it occurs by an introductory statement to a chapter or section.

Diagnosis, modification or tuning information is provided to help the customer

diagnose, modify, or tune IMS.

Attention: Do not use this Diagnosis, Modification or Tuning Information as a

programming interface.

Notices 551

Trademarks

The following terms are trademarks of the IBM Corporation in the United States,

other countries, or both:

 BookManager

CICS

DataPropagator

DataRefresher

DB2

DB2 Universal Database

DFSMSdss

Hiperspace

IBM

IMS

MVS

NetView

OS/390

RACF

RAMAC

Redbooks

RMF

SAA

Tivoli

WebSphere

z/OS

Java and all Java-based trademarks and logos are trademarks or registered

trademarks of Sun Microsystems, Inc., in the United States, other countries, or both.

UNIX is a trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks

of others.

552 Administration Guide: Database Manager

Bibliography

This bibliography lists all of the information in the

IMS Version 9 library.

 CICS Transaction Server for z/OS V2.3: CICS

RACF Security Guide, SC34-6249

 Cross System Product/370 Runtime Services

Generating and Running IMS and MVS Batch

Applications, SH23-0514

 Data Extraction, Processing, and Restructuring

System Program Description/Operations

Manual, SH20-2177

 DB2 Universal Database for z/OS V8: DB2

Universal Database for z/OS Administration

Guide, SC26-9931

 IBM DB2 and IMS Tools: IMS DataPropagator

for z/OS: An Introduction, GC27-1211

 IBM DB2 and IMS Tools: IMS High Availability

Large Database Conversion and Maintenance

Aid for z/OS, User’s Guide, SC18-7249

 IBM DB2 and IMS Tools: IMS High

Performance Image Copy for z/OS User’s

Guide, SC18-7617

 IBM DB2 and IMS Tools: IMS High

Performance Load for OS/390 User’s Guide,

SC27-0938

 IBM DB2 and IMS Tools: IMS High

Performance Unload for OS/390, SC27-0936

 IBM DB2 and IMS Tools: IMS Index Builder for

z/OS User’s Guide, SC27-0930

 IBM Redbooks: The Complete IMS HALDB

Guide, SG24-6945

 z/OS V1R4: DFSMS Access Method Services

for Catalogs, SC26-7394

 z/OS V1R4: DFSMS: Using Data Sets,

SC26-7410

 z/OS V1R4: DFSMSdss Storage Administration

Reference, SC35-0424

 z/OS V1R4: MVS System Messages, Vol 7

(IEB-IEE), SA22-7637

IMS Version 9 Library

 Title Acronym Order

number

IMS Version 9: Administration

Guide: Database Manager

ADB SC18-7806

IMS Version 9: Administration

Guide: System

AS SC18-7807

IMS Version 9: Administration

Guide: Transaction Manager

ATM SC18-7808

Title Acronym Order

number

IMS Version 9: Application

Programming: Database

Manager

APDB SC18-7809

IMS Version 9: Application

Programming: Design Guide

APDG SC18-7810

IMS Version 9: Application

Programming: EXEC DLI

Commands for CICS and

IMS

APCICS SC18-7811

IMS Version 9: Application

Programming: Transaction

Manager

APTM SC18-7812

IMS Version 9: Base Primitive

Environment Guide and

Reference

BPE SC18-7813

IMS Version 9: Command

Reference

CR SC18-7814

IMS Version 9: Common

Queue Server Guide and

Reference

CQS SC18-7815

IMS Version 9: Common

Service Layer Guide and

Reference

CSL SC18-7816

IMS Version 9: Customization

Guide

CG SC18-7817

IMS Version 9: Database

Recovery Control (DBRC)

Guide and Reference

DBRC SC18-7818

IMS Version 9: Diagnosis

Guide and Reference

DGR LY37-3203

IMS Version 9: Failure

Analysis Structure Tables

(FAST) for Dump Analysis

FAST LY37-3204

IMS Version 9: IMS Connect

Guide and Reference

CT SC18-9287

IMS Version 9: IMS Java

Guide and Reference

JGR SC18-7821

IMS Version 9: Installation

Volume 1: Installation

Verification

IIV GC18-7822

IMS Version 9: Installation

Volume 2: System Definition

and Tailoring

ISDT GC18-7823

IMS Version 9: Master Index

and Glossary

MIG SC18-7826

IMS Version 9: Messages

and Codes, Volume 1

MC1 GC18-7827

IMS Version 9: Messages

and Codes, Volume 2

MC2 GC18-7828

IMS Version 9: Open

Transaction Manager Access

Guide and Reference

OTMA SC18-7829

© Copyright IBM Corp. 1974, 2004 553

Title Acronym Order

number

IMS Version 9: Operations

Guide

OG SC18-7830

IMS Version 9: Release

Planning Guide

RPG GC17-7831

IMS Version 9: Summary of

Operator Commands

SOC SC18-7832

IMS Version 9: Utilities

Reference: Database and

Transaction Manager

URDBTM SC18-7833

IMS Version 9: Utilities

Reference: System

URS SC18-7834

Supplementary Publications

 Title Order number

IMS Connector for Java 2.2.2 and

9.1.0.1 Online Documentation for

WebSphere Studio Application

Developer Integration Edition 5.1.1

SC09-7869

IMS Version 9 Fact Sheet GC18-7697

IMS Version 9: Licensed Program

Specifications

GC18-7825

Publication Collections

 Title Format Order

number

IMS Version 9 Softcopy Library CD LK3T-7213

IMS Favorites CD LK3T-7144

Licensed Bill of Forms (LBOF):

IMS Version 9 Hardcopy and

Softcopy Library

Hardcopy

and CD

LBOF-7789

Unlicensed Bill of Forms

(SBOF): IMS Version 9

Unlicensed Hardcopy Library

Hardcopy SBOF-7790

OS/390 Collection CD SK2T-6700

z/OS Software Products

Collection

CD SK3T-4270

z/OS and Software Products

DVD Collection

DVD SK3T-4271

Accessibility Titles Cited in This

Library

 Title Order number

z/OS V1R1.0 TSO Primer SA22-7787

z/OS V1R5.0 TSO/E User’s Guide SA22-7794

z/OS V1R5.0 ISPF User’s Guide,

Volume 1

SC34-4822

554 Administration Guide: Database Manager

Index

Special characters
/CK operand 196

/DBR AREA command 269

/DBR command
See /DBRECOVERY

/DBR command (/DBRECOVERY command) 451

/NRE command 278

/START AREA command 451, 453

/START AREA usage 453, 454

/START DATABASE command 112, 451, 453

/START DATABASE usage 452, 453

/STOP AREA command 112

/STOP DATABASE command 112

/SX operand 196

A
abnormal termination in logical relationships 497, 499

ACB (application control block)
building by IMS 304

maintenance utility (DFSUACB0) 305

ACBGEN (Application Control Block Generation)

utility 451, 453

ACBGEN description 304

ACBLIB
online change procedure 451, 453

ACBLIB library 305

access methods
BSAM (Basic Sequential Access Method) 507

changing DL/I access methods 388

HISAM 65

IMS access methods 11, 60

introduction 11

operating system access methods 11

OSAM (Overflow Sequential Access Method) 507

OSAM (overflow sequential access methods)
used by HD 91

QSAM (Queued Sequential Access Method) 507

VSAM
HISAM 65

z/OS access methods
used by HD 79

used by HSAM 61

accessing segments
HDAM (Hierarchical Direct Access Method) 99

HIDAM (Hierarchical Indexed Direct Access

Method) 99

HISAM (Hierarchical Indexed Sequential Access

Method) 68

HSAM (Hierarchical Sequential Access Method) 63

PHDAM (Partitioned Hierarchical Direct Access

Method) 99

PHIDAM (Partitioned Hierarchical Indexed Direct

Access Method) 99

add programs, use in loading a database 321

adding segments to change DEDBs 456

adjusting HDAM options 243

adjusting PHDAM options 243

administration
database

task description 3

aids
for test databases

Cross System Product/370 Application

Development (CSP/370AD) 309

Data Extraction, Processing and Restructuring

System 309

DL/I test program 309

AL (available length) field 93

algorithm
estimating CFRM list structure size 150

first fit
assigning VSO DEDB areas to data spaces 143

allocation
IMS data sets 318

OSAM data sets 318

alternate PCB 302

AM status code 470, 477

analyzing requirements for logical relationships 52

anchor point area 93

application control block (ACB) 304

application programs, loading 325

application requirements, analyzing 4, 45, 53

area
adding 457

DEDB
design guidelines 268

deleting 457

UOW structural definition 454

area data set replication 115

AREA statement 293

areas
DEDB

introduction 110

opening 111

preopening 111

reopening 111

starting 112

stopping 112

VSO DEDB
defining 135

Asynchronous Data Capture
description 18

procedure for adding 447

using 447

auxiliary storage requirements for MSDBs 279

available length (AL) field 93

B
background write 260

backspacing 64

basic initial load program, writing 323

Basic Sequential Access Method
See BSAM (Basic Sequential Access Method) 61

© Copyright IBM Corp. 1974, 2004 555

BGWRT parameter 260

bidirectional physically paired logical relationship 153

bidirectional virtually paired logical relationship 155

bit map block
HALDB partitions 92

bit maps
calculating space 317

description 92

bits in delete byte 463

block-level data sharing 107

CI reclaim 237, 342

SHISAM restriction 237, 342

blocks
calculating number needed 314

determining size 62

determining size of 248

HIDAM (Hierarchical Indexed Direct Access

Method) 97

HISAM (Hierarchical Indexed Sequential Access

Method) 66

PHIDAM 97

BMPs
and CCTL threads 287

batch message processing 127

data sharing 56

DBCTL environment 56

normal buffer allocation 286

OBA values 417

overflow buffer allocation 287

to access DEDBs 418

updates in a sync interval 419

BSAM (Basic Sequential Access Method)
access to GSAM databases 76

access to HSAM databases 61

access to OSAM databases 507

access to SHSAM databases 75

BSIZ parameter 283, 286

buffer handler 249

buffer pools
description 249

designing a Fast Path 282

Fast Path, use 416

in DBCTL environment 286

lookaside option 145

private
description 139

size determination for Fast Path 284

size for Fast Path determination 288

buffers
allocation in Fast Path 290

choosing options 249

description 274

description of 253

fast path buffer allocation algorithm
for CCTL threads 288

Fast Path buffer allocation algorithm 283

for BMPs 287

fixing in storage 252, 262

Hiperspace buffering for VSAM 250

OSAM buffer sizes 252

specifying 252

buffers (continued)
system buffer allocation 284, 288

VSAM buffer sizes 251

BWO(TYPEIMS) 263

KSDS 263

bytes operand 94

BYTES parameter 174, 197

C
cache structure

VSO DEDB areas 135

Cache Structure name
defining a VSO 139

registering with DBRC 141

calculating space
See space calculations

calls
See also DL/I calls

CHKP
benefits in GSAM databases 76

benefits in SHISAM databases 76

UOW size considerations 270

GU or GN
See DL/I calls

ROLB 284, 288

SYNC 270

CCTL, fast path buffer allocation algorithm 288

CFRM (coupling facility resource management)
estimating CFRM list structure size 150

CFRM policy for MADSIOT 149

CFSTR1|2 naming convention 140

changing
CI size 458

DEDBs by adding/deleting segments 456

exit routines 451

overflow space allocation 457

randomizer routines 451

changing the number of data set groups 411

child segment, definition 7

CHKP call
benefits in GSAM databases 76

benefits in SHISAM databases 76

UOW size considerations 270

CI (control interval)
calculating number needed 314

contention 418

DEDB (data entry database) 119

determining size of 248

HIDAM (Hierarchical Indexed Direct Access

Method) 97

HISAM (Hierarchical Indexed Sequential Access

Method) 66

number 95

overhead 313

PHIDAM (Partitioned Hierarchical Indexed Direct

Access Method) 97

SDEP 270

size determination in DEDB 269

size, changing 458

splits 69

556 Administration Guide: Database Manager

CI reclaim
block-level data sharing 237, 342

deleting records 237, 342

KSDS reorganization 237, 342

mass deletes 237, 342

SHISAM exclusion 237, 342

VSAM REPRO, using 237, 342

XRF environments 237, 342

CICS (Customer Information Control System)
background write 261

CSP/370AD 309

database types not supported 12, 56

DL/I Test Program 309

security 31

sequential buffering
benefits 254

SB Initialization exit routine 260

using 258, 259

virtual storage 257

tasks not supported 4

VSAM database buffers 262

CICS-DBCTL
GSAM 78

SHISAM 78

SHSAM 78

CIDF (control interval definition field) 314

code inspections 28

codes 470

coexistence considerations for HALDB Online

Reorganization 369

commands
/DBR AREA 269

/NRE 278

/STA DATABASE 449

/START DATABASE 112

/STOP AREA 112

/STOP DATABASE 112

DEFINE CLUSTER 263, 265, 318

GENJCL.CA 381

GENJCL.RECOV 381

modifying and tuning HALDB Online

Reorganization 374

monitoring HALDB Online Reorganization 374

starting HALDB Online Reorganization 373

common synchronization point process, 419

compressing segment data 213

compression facility
See segment edit/compression facility 17

COMPRTN parameter
DBD SEGM statement 452

concatenated key
converting 448

fields 195

in symbolic pointing 189

logical parent’s 157

concatenated segments 162, 171

configuration
HALDB (High Availability Large Database) 539

constant field 194

CONSTANT parameter 206

control interval
See CI (control interval) 66

control interval definition field (CIDF) 314

control interval update sequence number (CUSN) 119

conventions
naming

general rules 21

HALDB (High Availability Large Database) 22

HALDB data sets 23

conversion
See procedures, modifying a database

copying phase of HALDB Online Reorganization 366

counter
in logical relationships 164

introduction 15

coupling facility
cache structure 135

MADSIOT 149

structures 140

structures, naming convention 140

CP (free space chain pointer) field 93

Cross System Product/370 Application Development

(CSP/370AD) 309

crossing a logical relationship 177, 180

cursor
cursor-active status for HALDB Online

Reorganization 365

HALDB Online Reorganization 367

CUSN (control interval update sequence number) 119

Customer Information Control System (CICS)
See CICS (Customer Information Control System) 3

D
DA status code 470, 477

DASD
contention in Fast Path 416

out-of-space for DEDB 418

DASD space release 478

data
XML

overview of storing in IMS databases 238

Data Capture exit routine 452

adding 452

and logical databases 219

call functions 219

call sequence 217

changing 453

data capture exit routine 218

deleting 453

description 17, 215

function 215

specifying in DBD 216

using 216, 447

Data Dictionary
See DB/DC Data Dictionary 18

data elements in segment 15

data entry database
See DEDB (data entry database) 418

data extraction, processing, and restructuring

system 309

Index 557

data part of segment 14, 15

data requirements, analyzing 45, 53

data sensitivity 184

data set
OSAM

maximum size 79, 507

VSAM
maximum size 79

data set groups
See multiple data set groups 18

data set statement
description 292

HALDB (High Availability Large Database) 292

data sets
allocation 318

DFSVSAMP 69

ESDS in HD databases 91

ESDS in secondary indexes 192

HALDB Online Reorganization
naming conventions 372

output data sets 373, 545

HALDB partitions
maximum number of data sets 299

HISAM 65

KSDS in secondary indexes 192

MSDBCP1 and MSDBCP2 279

MSDBDUMP data set 279

naming convention
HALDB Online Reorganization overview 24

naming conventions
HALDB (High Availability Large Database) 23

HALDB Online Reorganization 372

PHDAM 23

PHIDAM 23

PSINDEX 23

OSAM in HD databases 91

pre-formatting space 263

data sharing
DEDB 115

VSO DEDB Areas 144

data space
z/OS

accessing for VSO DEDB areas 143

acquiring for VSO areas 143

data structures, developing 45, 53

database
application program’s view 18

CICS local-DL/I 56

DBCTL support 56

DEDB 115

DEDB description 109

definition 18

design
aids for testing 309

what it involves 4

design considerations 241, 267

DL/I 56

Fast Path types 115

GSAM description 76

HALDB (High Availability Large Database)

description 78

database (continued)
HD description 78

HSAM description 60

implementing 5, 291

introduction to 11

loading 5, 320

Local-DL/I support 56

logical 162

modifying 5, 423

monitoring 5, 335

MSDB description 128

MSDB, Areas in data sharing 115

multiple data set groups 234

protecting during reorganization 342

recovery 5

reorganizing 341

security
establishing 31

for application programs 18

introduction 6

SHISAM description 75

SHSAM description 75

standards and procedures 6

testing 5, 307

tuning 5, 341

database administration
task description 3

database definition
HALDB partitions 295

using the Partition Definition utility 295

database description
See DBD (database description) 18

database PCB 303

Database Prefix Resolution utility (DFSURG10) 351

Database Prefix Update utility (DFSURGP0) 352

Database Prereorganization utility (DFSURPR0) 350

database record
calculating size 311

definition 6

HDAM (Hierarchical Direct Access Method) 94

HIDAM 96

HISAM (Hierarchical Indexed Sequential Access

Method) 66

HSAM (Hierarchical Sequential Access Method) 61

introduction to 12

locking 105

MSDB (main storage database) 130

PHDAM (Partitioned Hierarchical Direct Access

Method) 94

PHIDAM 96

Database Scan utility (DFSURGS0) 350

Database Surveyor utility (DFSPRSUR) 355

databases
XML

overview of storing XML data 238

databases, loading
description 311

Fast Path initial loads 323

JCL 325

restartable load program, using UCF 326

558 Administration Guide: Database Manager

DATASET statement
example 235

in logical DBD 177

DB/DC Data Dictionary
establishing security 34

generating DBDs 18

generating PSBs 18

introduction 18

DBBF parameter
DEDB Buffer Pool in the DBCTL environment 286

DEDB or MSDB Buffer Pools 282

DBCTL
access from transaction management subsystems 3

CICS applications 56

DBBF parameter 286

designing DEDB buffer pools 286

DBD (database description)
coding 291

introduction 18

logical relationships 171

specifying use
Data Capture exit routine 216

field-level sensitivity 221

logical relationships 172, 175, 176, 177

multiple data set groups 234

secondary indexes 205

segment edit/compression facility 215

variable-length segments 210

using dictionary to generate 18

DBD statement 175, 292

DBDGEN (Database Description Generation)
utility 452, 453

DBDGEN (Database Description Generation)

utility 291

DBDLIB 291

HALDB (High Availability Large Database) 539

member 515

DBFDBMA0 (MSDB Maintenance utility) 129

DBFUHDR0 (High-Speed DEDB Direct Reorganization

utility) 270

DBFX parameter 282, 286

DBFX value 285, 289

DCCTL
data sharing 56

GSAM (Generalized Sequential Access Method) 78

SHISAM (Simple Hierarchical Indexed Sequential

Access Method) 78

SHSAM (Simple Hierarchical Sequential Access

Method) 78

DD name
naming convention

HALDB Online Reorganization overview 23

DDATA parameter 197

DDNAME
HALDB (High Availability Large Database) 300, 514

deactivation, record 114

decomposed storage of XML data
overview 238

DEDB (data entry database)
adding 455

adding areas 457

DEDB (data entry database) (continued)
and DBCTL 3

and segment edit/compression facility 213

area
design guidelines 268

area concept 110

buffer pools 286

calls against 127

changing by adding/deleting segments 456

CI resources 418

DBCTL support 56

deleting 455

deleting areas 457

description of 109

design considerations 267

extending IOVF online 458

Free space algorithm 126

functions 110

HSSP processing of 279

Insert algorithm 125

loading the database 332

performance considerations 416

SSA restrictions 127

storage of records 122

when to use 109

DEDB Area Data Set Create utility (DBFUMRI0) 115

DEDB AREA UOW structural definition, changing 454

DEDB areas
disabling preopen process 112

emergency restart
reopening 111

FPOPN= 111

opening 111

preopen
concurrent to operation 111

preopening 111

reopening
emergency restart 111

restarting
after IRLM failure 112

starting 112

stopping 112

DEDB CI resource
and DBFX value 286, 290

contention 418

determine resource size 248

Fast Path Performance 415

overhead needed 313

DEDB segments
segment growth 215

DEFINE CLUSTER command
for VSAM index option 265

HALDB (High Availability Large Database) 318

in access method services 263

REUSE parameter 318

VSAM data set allocation 318

defining data set groups
HALDB (High Availability Large Database) 299

delete byte
bits 463

description 15

Index 559

delete byte (continued)
HDAM 96

HISAM 66

HSAM 63

in logical relationships 477

in secondary indexes 194

PHDAM (Partitioned Hierarchical Direct Access

Method) 96

delete rules for logical relationships 182, 183, 475, 505

deleted randomizer routine 452

deleting segments
DEDBs 456

HD databases 103

HISAM databases 72

HSAM databases 64

dependent segment, definition 7

design aids
for test databases 309

design reviews
description of 25

introduction 4

destination parent 163, 184

determining VSAM options 260

DFPXPMB 539, 540

DFSCTL data set control statements
SB control statement 258

SBPARM control statement 258

DFSDDLT0 (DL/I test program) 309

DFSMNTB0 (DB Monitor program) 335

DFSPRCT1 (Partial Database Reorganization

utility) 356

DFSPRSUR (Database Surveyor utility) 355

DFSUOCU0 (Online Change utility) 451, 453

DFSURG10 (Database Prefix Resolution utility) 351

DFSURGL0 (HD Reorganization Reload utility) 349

DFSURGP0 (Database Prefix Update utility) 352

DFSURGS0 (Database Scan utility) 350

DFSURGU0 (HD Reorganization Unload utility) 348

DFSURPR0 (Database Prereorganization utility) 350

DFSURRL0 (HISAM Reorganization Reload utility) 348

DFSURUL0 (HISAM Reorganization Unload utility) 347

DFSVSAMP data set 69

DFSVSMxx member of IMS.PROCLIB
MADSIOT 149

dictionary
See DB/DC Data Dictionary

direct access methods
HDAM (Hierarchical Direct Access Method) 78

HIDAM (Hierarchical Indexed Direct Access

Method) 78

PHDAM (Partitioned Hierarchical Direct Access

Method) 78

PHIDAM (Partitioned Hierarchical Indexed Direct

Access Method) 78

direct address pointers 78, 81

direct dependent segment types (DDEP) 122

direct pointers
logical relationships 156, 158, 161, 183

secondary indexes 194, 195

direct storage method 56

DISP parameter 262

distribution of DB records, random 457

DL/I access methods
changing 388

from HDAM to PHDAM and HIDAM to

PHIDAM 395

from PHDAM and PHIDAM to HDAM and

HIDAM 396

HDAM to HIDAM 393

HDAM to HISAM 392

HIDAM to HDAM 391

HIDAM to HISAM 391

HISAM to HDAM 389

HISAM to HIDAM 389

DL/I and ACBs 304

DL/I Call Summary report 402

DL/I calls
DEDBs 127

HD databases 80

HISAM databases 68

HSAM databases 63

in logical relationships
delete call 477

logical child insert call 466

replace call 470

MSDB 131, 134

DL/I Databases 56

DL/I parameter 262

DL/I test program (DFSDDLT0) 309

DLIModel utility
storing XML data

overview 238

DLOG parameter 262

DREF (disabled reference) option
for VSO-area data spaces 143

DSPXPDA 537

DSPXPEA 537

database name 537

output data set name 538

DSPXPIA 538

database name 538

input data set name 538

input member name 538

processing option 538

DSPXPKE panel 526

DSPXPLA 529

act 529

data set name prefix 529

ID 529

name 529

DSPXPLB 530

DSPXPOA 536

DSPXRUN command 542

database_name 542

dataset_name 542

member_name 542

processing_option 542

dump option 262

DUMP parameter 262, 265

duplex paths 476

duplicate data field 195

duplicate data in logical relationships 151

560 Administration Guide: Database Manager

duplicate keys 192

DX status code 477

E
ECNT (extended communications node table) 132

edit/compression facility
See segment edit/compression facility

editing segment data 213

emergency restart
DEDB areas

reopening 111

encoding data
See segment edit/compression facility

encrypting data 33

END statement 294, 304

Error Queue Element (EQE) 113

ESAF
See external subsystem attach facility

ESCD (extended system contents directory) 132

ESDS (entry-sequenced data set)
HD databases 91

HISAM 65

secondary indexes 192

estimating minimum database size 248

example of initial load program 326

EXIT parameter 216

exit routines, changing 451

EXIT= parameter
SEGM statement 452

exporting database definitions
HALDB (High Availability Large Database) 299

extended communications node table (ECNT) 132

extended system contents directory (ESCD) 132

external subsystem attach facility 57

EXTRTN parameter 198, 206

F
fallback considerations for HALDB Online

Reorganization 370

Fast Path
access to DL/I databases 127

buffers 416

CI contention 339, 418

committing updates 149

common sync point processing 420

control interval 418

databases
DEDB 115

DEDB overview 109

MSDB overview 128

overview 109

environments 109

initial database load 323

interpreting analysis reports 339

loading the database 331

log analysis 337

log reduction 338

mixed mode 127

monitored events 339

Fast Path (continued)
monitoring and tuning 337

output thread 149

performance considerations 337

Resource Name Hash routine 421

selecting transactions 339

subset pointers 123, 273

synchronization point processing 149, 419

transaction timings 338

tuning Fast Path systems 415

user hash routine, programming considerations 421

using the Log Analysis utility (DBFULTA0) 337

Fast Path virtual storage option
See virtual storage option

fbff (free block frequency factor) 241

FCP (forward chain pointer) 130

FH status code 113

FID (fixed intersection data) 165

FIELD statement
definition 196

in secondary indexing 208

in the DBD 265

position in DBD 293

field-level sensitivity
description of 220

establishing security 31

inserting segments 223

introduction 17

overlapping paths 224

path calls 224

replacing segments 223

retrieving segments 222

specifying in DBD and PSB 221

use with variable-length segments 225

uses 220

using 220

fields 195

AL 93

constant 194

CP 93

definition 6

duplicate data 195

FSE 93

FSEAP 92

ID 93

in segment 15

pointer 194

search 194

subsequence 194

system related 196

File Action bar 514

FINISH statement 294

first fit algorithm to assign VSO DEDB areas to data

spaces 143

fixed intersection data (FID) 165

fixed-length segments
specifying minimum size 214

fixed-length segments, definition 14

FLD (Field) call 134

format
CI in DEDB 119

Index 561

format (continued)
DEDB segments 119

fixed-length segments 14

HD databases 91

HDAM segments 96

HIDAM index segment 98

HIDAM segments 97

HISAM segments 66

HSAM segments 62

PHDAM segments 96

PHIDAM index segment 98

PHIDAM segments 97

pointer segment 193

variable-length segments 14

formula
estimating CFRM list structure size 150

first fit algorithm 143

formulas for
calculating buffers for Fast Path 284, 288

calculating space for MSDBs 279

calculating storage for MSDB 274

size of root addressable area 242

forward chain pointer 130

FPOPN=
overview 111

FPRLM=
restarting DEDB areas 112

FR status code
for BMP regions 285

for CCTL threads 289

in fast path buffer allocation 284

in fast path buffer allocation for BMPs 288

free block frequency factor (fbff) 241

free logical record 68

free space
chain pointer (CP) field 93

element (FSE) 93

element anchor point (FSEAP) 92

HD (Hierarchical Direct) 92

HDAM (Hierarchical Direct Access Method) 241

HIDAM 241

HIDAM (Hierarchical Indexed Direct Access

Method) 97

KSDS 263

percentage factor 242

PHDAM (Partitioned Hierarchical Direct Access

Method) 241

PHIDAM 241

PHIDAM (Partitioned Hierarchical Indexed Direct

Access Method) 97

space calculations 317

FREESPACE parameter 263

FRSPC parameter 241

FS status code 271

FSE (free space element) 93

FSEAP (free space element anchor point) 92

fspf (free space percentage factor) 242

full-duplex paths 476

full-function segments
specifying minimum size 214

FW status code
for CCTL threads 289

in BMP regions 285

in fast path buffer allocation 284

in fast path buffer allocation for BMPs 288

G
GC status code 270, 281

GE status code 171

general format of HD databases and use of special

fields 317

Generalized Sequential Access Method (GSAM)
See GSAM (Generalized Sequential Access

Method) 74

GPSB (Generated PSB)
I/O PCB 305

modifiable alternate response PCB 305

GSAM (Generalized Sequential Access Method) 74,

76, 331

H
HALDB (High Availability Large Database) 78

adding partitions 298

automatic partition definition 298

automatic partition definition using Partition Definition

utility 521

batch import 299

bit map block for partition 92

Change Partition screen 524

F11 526

F5 526

F6 526

Partition high key 525

Partition ID field 525

Partition Selection String 525

changing 398

HALDB Partition Selection exit routine 399

overview 398

partition boundaries 400

partition key ranges 400

partition structure modification 399

single partitions 398

changing DL/I access methods
changing from HDAM to PHDAM and HIDAM to

PHIDAM 395

from PHDAM and PHIDAM to HDAM and

HIDAM 396

changing partitions using the PDU 297

configuration
list 540

copying partitions 299

creating HALDB (High Availability Large Database)

partitions 295

creating with the Partition Definition utility

(PDU) 295

data set naming conventions 23, 372

data set statement 292

data sets
maximum per partition 299

562 Administration Guide: Database Manager

HALDB (High Availability Large Database) (continued)
Database Partition list

act 531

anchor 531

bytes 531

FBFF 531

File action bar choice 529

FSFF 532

high block 531

module 531

name 531

Database Partitions list 528

displaying 528

DBDLIB 300, 539

DEFINE CLUSTER command 318

defining data set groups 299

defining data set groups using Partition Definition

utility 527

defining with the Partition Definition utility

(PDU) 295

definition process 295

Delete a Database panel using Partition Definition

utility 537

deleting a database 300

deleting partitions 299

DSPXPDA 537

DSPXPEA
See DSPXPEA 537

DSPXPGA 527

DSPXPGB 528

DSPXPGC 528

DSPXPIA
See DSPXPIA 538

DSPXPKE panel 526

DSPXPLA
See DSPXPLA 528

DSPXPLB 530

DSPXPOA 536

DSPXRUN command 542

exporting database definitions 299

fallback
to HDAM and HIDAM 396

File Action bar 514

actions 515

finding partitions 299

HALDB (High Availability Large Database),

defining 295

HALDB Online Reorganization 364

HALDB Partition Definition utility (%DFSHALDB)
accessing Help 513

exiting the utility 513

main panel 512

main screen 512

Partitioned Databases panel 512

using 511

HALDB Partition Definition utility (PDU) 295

HALDB Partition Selection exit routine (DFSPSE00)
changing 399

modifying 399

replacing 399

HALDB (High Availability Large Database) (continued)
ILDS, updating

offline reorganization 363

importing database definitions 299

importing database information using Partition

Definition utility 538

IMS concatenation
displaying using Partition Definition utility 538

IMS configuration 539

indirect list data set (ILDS)
allocating 300

indirect list entry (ILE)
description 301

indirect list key (ILK)
description 301

information
changing using Partition Definition utility 515

deleting using Partition Definition utility 515, 537

exporting using Partition Definition utility 515,

537

importing using Partition Definition utility 515,

538

opening using Partition Definition utility 536

viewing using Partition Definition utility 515

interfaces
HALDB Partition Definition utility

(%DFSHALDB) 511

ISRDDN 538

LCHILD statement 294

line commands 532

manual partition definition 298

manual partition definition using Partition Definition

utility 522

master
values 515

maximum size 79

migrating
fallback to HDAM and HIDAM 396

from HDAM to PHDAM and HIDAM to

PHIDAM 395

modifying 398

HALDB Partition Selection exit routine 399

overview 398

partition boundaries 400

partition key ranges 400

partition structure modification 399

single partitions 398

modifying data set groups 299

modifying partitions 299

naming conventions 22

offline reorganization 359

overview 359

reallocating data sets 362

reloading partitions 363

unloading partitions 361

updating ILDS 363

online reorganization 364

DD name naming convention overview 23

naming convention 372

naming convention overview 24

overview 78

Index 563

HALDB (High Availability Large Database) (continued)
partition bit map block 92

partition definition 295

Partition Definition utility 295, 523

accessing 511

high key value 522

impact on RECON 511

modifying fields 523

panels 511

Partition Definition utility (PDU) 294

Change Partition panel 297

partition high key 297

partition structure modification 399

partitions
changing 398

changing boundaries 400

changing key ranges 400

changing using Partition Definition utility 515

changing, overview 398

copying using Partition Definition utility 532

creating using Partition Definition utility 515

data sets, maximum 299

defining using Partition Definition utility 515

deleting using Partition Definition utility 532

manual definition using Partition Definition

utility 522

maximum number 515

modifying 398

modifying key ranges 400

modifying, overview 398

naming conventions 23

opening using Partition Definition utility 515, 532

printing information using Partition Definition

utility 532

pointers
self-healing pointer process 382

printing partitions 299

reallocating data sets
offline reorganization 362

RECON 300

RECON data set 539

reloading partitions
offline reorganization 363

reorganizing 358

offline 359

reallocating data sets 362

reloading partitions 363

secondary indexes 364

unloading partitions 361

updating ILDS 363

REUSE parameter 318

secondary indexes
reorganizing 364

self-healing pointer process 382

performance 386

sorting partitions 299

unloading partitions
offline reorganization 361

viewing DDNAME 300

viewing partitions 299

HALDB (High Availability Large Database) partition

definition utility
registering OLR capability with DBRC 517

HALDB Online Reorganization
coexistence considerations 369

copying phase 366

cursor 367

cursor-active status 365

Database Change Accumulation utility 381

DD name naming convention
overview 23

dynamic PSB 366

fallback considerations 370

FDBR 378

GENJCL.CA command 381

GENJCL.RECOV command 381

image copy utilities 381

initialization phase 365

locking 378

log impact 377

migration considerations 369

modifying 374

monitoring 374

naming convention
overview 24

output data set requirements 373, 545

overview 364

RATE parameter of INITIATE OLREORG

command 377

recovery 380

Remote Site Recovery (RSR) 378

requirements for output data sets 373, 545

restart 377, 378

restrictions 370

sequential buffering 382

starting 373

system impact 377

termination phase 368

tuning 374

unit of reorganization 367

utilities 379

XRF 377

HALDB Partition Definition utility (%DFSHALDB)
accessing Help 513

exiting the utility 513

main panel 512

options 512

main screen 512

options 512

Partitioned Databases panel 512

options 512

using 511

HALDB Partition Selection exit routine (DFSPSE00)
changing 399

modifying 399

replacing 399

half-duplex paths 476

HB (hierarchic backward) pointers 83

HD Reorganization Reload utility
ILDS

control statement specifications 363

564 Administration Guide: Database Manager

HD Reorganization Reload utility (continued)
ILDS (continued)

updating 363

HD Reorganization Reload utility (DFSURGL0) 349

HD Reorganization Unload utility (DFSURGU0) 348

HD space search algorithm 103

HD Tuning Aid 243

HDAM (Hierarchical Direct Access Method)
accessing segments 99

calls against 80

changing DL/I access methods
from HIDAM 391

from HISAM 389

from PHDAM 396

to HIDAM 393

to HISAM 392

to PHDAM 395

database records 96

database records, locking 105

deleting segments 103

description of 78

format of database 91

inserting segments 100

loading the database 331

locking 107

logical record length 248

maximum size 79

multiple data set groups 232

options available 80

OSAM (overflow sequential access methods)

used 91

overflow area 94

pointers in 81

randomizing module 243

root addressable area 94, 96

segment format 96

size of root addressable area 242

space calculations 311

specifying free space 241

storage of records 94

when to use 80

z/OS access methods used 79

HF (hierarchic forward) pointers
description 82

HIDAM (Hierarchical Direct Access Method)
calls against 80

HIDAM (Hierarchical Indexed Direct Access Method)
accessing segments 99

changing DL/I access methods
from HDAM 393

from HISAM 389

from PHIDAM 396

to HDAM 391

to HISAM 391

to PHIDAM 395

deleting segments 103

description of 78

format of database 91

index database 79, 96

index segment 98

inserting segments 100

HIDAM (Hierarchical Indexed Direct Access Method)

(continued)
loading the database 331

locking 107

logical record length 248

maximum size 79

multiple data set groups 232

options available 80

pointers in 81

RAPs, using 98

segment format 97

sequential root processing 99

space calculations 105, 311

specifying free space 241

storage of records 96

when to use 81

HIDAM (Partitioned Hierarchical Indexed Direct Access

Method)
deleting segments 103

hierarchic
backward pointers 83

hierarchic forward (HF) pointers
description 82

Hierarchical Direct Access Method
See HDAM (Hierarchical Direct Access

Method) 318

Hierarchical Indexed Direct Access Method
See HIDAM (Hierarchical Indexed Direct Access

Method) 318

Hierarchical Indexed Sequential Access Method
See HISAM (Hierarchical Indexed Sequential Access

Method) 318

Hierarchical Sequential Access Method
See HSAM (Hierarchical Sequential Access

Method) 318

hierarchy
concept explained 8

definition 7

restructuring of with secondary indexes 191

high key
of HALDB partitions 297

value, entering 297

High-Speed DEDB Direct Reorganization utility

(DBFUHDR0) 270

high-speed sequential processing (HSSP)
description 279

hiperspace buffering 406

HISAM (Hierarchical Indexed Sequential Access

Method)
access method 65

accessing segments 68

calls against 68

changing DL/I access methods
from HDAM 392

from HIDAM 391

to HDAM 389

to HIDAM 389

database reorganization procedures 358

deleting segments 72

description of 65

inserting segments 68

Index 565

HISAM (Hierarchical Indexed Sequential Access

Method) (continued)
loading the database 331

locking 106

logical record format 67

logical record length 245, 248

options available 65

performance 70, 74

pointers 67

replacing segments 74

segment format 66

space calculations 311

storage of records 65

when to use 65, 74

HISAM Reorganization Reload utility (DFSURRL0) 348

HISAM Reorganization Unload utility (DFSURUL0) 347

HSAM (Hierarchical Sequential Access Method)
accessing segments 63

calls against 63

deleting segments 64

description of 60

inserting segments 64

options available 61

performance 64

replacing segments 64

segment format 62

space calculations 311

storage of records 61

when to use 61

z/OS access methods used 61

HSSP (high-speed sequential processing)
description 279

for database recovery 282

image-copy option 281

limits and restrictions 280

private buffer pools 282

processing option H 281

reasons for choosing 280

SETO statement 281

SETR statement 281

UOW locking 282

using 281

I
I/O errors

ADS 149

MADS 149

I/O PCB 305

ID (task ID) field 93

IDP and Fast Path 337

IEFBR14 utility 318

IEHPROGM program 318

IFP and MPP regions
maintaining continuous availability of 449

ILDS
reorganization updates 363

ILDS (indirect list data set)
allocating 300

calculating size 301

defining 300

ILDS (indirect list data set) (continued)
sample JCL 300

size, calculating 301

ILE (indirect list entry) 301

ILK (indirect list key) 301

image-copy option 281

IMBED | NOIMBED parameter 264

implementing database design 5, 291

importing database definitions
HALDB (High Availability Large Database) 299

IMS Data Capture exit
See Data Capture exit routine

IMS High Performance Pointer Checker 243

IMS trace parameters 262

IMS.ACBLIB 305

IMS.DBDLIB 291

IMS.PSBLIB 302

in physical databases 176

in the physical DBD 175

independent overflow part of area (IOVF)
description 119

extending online 458

index maintenance exit routine 198

index segment 98

index set records 264

indexed databases 79

HIDAM 96

HISAM 65

PHIDAM 96

INDICES parameter 201

indirect list data set (ILDS)
allocating 300

calculating size 301

defining 300

sample JCL 300

size, calculating 301

indirect list entry (ILE) 301

indirect list key (ILK) 301

initial load program
basic 326

Fast Path 323

restartable, using UCF 326

writing 323

initialization phase of HALDB Online

Reorganization 365

input for DBDGEN utility
DBD 291

INSERT parameter
free space for a KSDS 261, 263

using in splitting CIs 69

insert rules for logical relationships 182, 183, 465, 469

insert strategy
choosing 261

inserting segments
DEDB SDEPs 271

HD databases 100

HISAM databases 68

HSAM databases 64

MSDB (main storage database) 132

inspections
code inspections 28

566 Administration Guide: Database Manager

inspections (continued)
security inspection 28

intact storage of XML data
overview 238

intersection data 164, 166

IOB (input/output block) 262

IOBF parameter 252

IOVF
See independent overflow part of Area

IRLM
failure

restarting DEDB areas 112

IRLM (internal resource lock manager)
block-level data sharing 107

failure
restarting DEDB areas 112

locking protocols 105

ISPF
batch job 541

ISPF member list 514

display 514

ISPF panels
HALDB Partition Definition utility

(%DFSHALDB) 512

ISPSTART 542

ISPTLIB 537

ISRDDN command 538

ISRT (insert), loading a database 320

IWAITS/CALL field 402

J
JCL (Job Control Language)

for allocating data sets 318

for initial load program 330

Job Control Language
See JCL (Job Control Language) 318

K
KEY sensitivity 184

keys
ascending sequence 61

concatenated 195

duplicate 192

unique in secondary indexes 196

KSDS (key-sequenced data set)
HISAM (Hierarchical Indexed Sequential Access

Method) 65

secondary indexes 192

specifying BWO(TYPEIMS) 263

specifying free space for 263

L
LATC parameter 262

LCF (logical child first) pointer 158

LCHILD statement
description 293

HALDB (High Availability Large Database) 294

in logical relationships 172, 175

LCHILD statement (continued)
in secondary indexing 205

LCL (logical child last) pointer 158

level in hierarchy 11

levels in VSAM index 264

LGNR 338

libraries
IMS.ACBLIB 305

IMS.DBDLIB 291

IMS.PSBLIB 302

list structure
defining 149

estimating size 150

LKASID
INIT.DBDS and INIT.CHANGE parameter 137

LOAD (load), description 320

load program, writing 320

loading databases
description 311

introduction 5

MSDB (main storage database) 277

sample programs 325, 326

local views, developing a data structure 45

LOCK parameter 262

locking impact of HALDB Online Reorganization 378

locking protocols 105

log analysis, Fast Path information 337

log facility, Fast Path performance 416

log impact of HALDB Online Reorganization 377

log reduction 338

logic
for initial load program 325

for restartable initial load program 327

logical child first (LCF) pointer 158

logical child in logical relationships 152, 156

logical child last (LCL) pointer 158

logical databases 162

logical DBD 176, 183

logical parent in logical relationships 152, 156

logical parent pointer
See LP (logical parent) pointer 156

logical parent’s concatenated key (LPCK) 157

logical records
HD (Hierarchical Direct) 91

HISAM 66, 245, 248

overhead 314

secondary indexes 193

logical relationships 52

analyzing requirements 53

and Data Capture exit routine 219

bidirectional physically paired 153

bidirectional virtually paired 155

comparison with secondary indexes 208

concatenated segments 163

counter 164

crossing 177, 180

delete rule restrictions 219

delete rules 182, 475, 505

description of 151, 183

DLET calls 477

establishing 166

Index 567

logical relationships (continued)
insert rules 182, 466, 469

intersection data 164, 166

ISRT call 466

loading databases 331

logical child 152, 156

logical parent 152, 156

paths 162, 163

performance considerations 183, 186

physical parent 152, 156

pointers 156, 161

procedures for adding to existing databases 427

REPL call 470

replace rules 182, 469, 473

restrictions on modifying 443

rules 505

rules for defining 175, 176, 177, 183

secondary indexes, with 203

sequence fields 170, 171

specifying in DBD 172, 175, 176, 177

uses 151

virtual logical children 171

logical twin backward (LTB) pointer 160

logical twin chains 185

logical twin forward (LTF) pointer 160

logical twin pointer 509

long busy 149

lookaside option
for buffer pools 145

lookaside option for buffer pools, description 145

lookaside, defining private buffer pools 141

LP (logical parent) pointer 156

correcting bad pointers 509

definition 156

performance considerations 183

LPCK (logical parent’s concatenated key) 157

LTB (logical twin backward) pointer 160

LTERM 128

LTF (logical twin forward) pointer 160

M
macros

PCB 291

PSB 291

MADSIOT (Multiple Area Data Set I/O Timing) 149

CFRM 149

coupling facility 149

long busy 149

main storage database
See MSDB (main storage database) 331

main storage utilization, Fast Path 419

maintenance
databases, planning 265

secondary indexes 199

maintenance utility (DFSUACB0) 304

making keys unique using system related fields 196

many-to-many mapping 46

mapping data aggregates 46

maximum size
HALDB (High Availability Large Database) 79

maximum size (continued)
HDAM database 79

HIDAM database 79

PHDAM database 79

PHIDAM database 79

MBR parameter 177

migrating
fallback

from HALDB 396

from PHDAM and PHIDAM 396

to HDAM and HIDAM 396

from HDAM to PHDAM and HIDAM to PHIDAM 395

to HALDB 395

migration considerations for HALDB Online

Reorganization 369

minimum size
specifying for full-function segments 214

mixed mode 127

mixing pointers 89

modifiable alternate response PCB 305

modifying a database
description of 423

introduction 5

modifying data set groups
HALDB (High Availability Large Database) 299

MON parameter 336

monitoring
and tuning Fast Path systems 337

description of 335

events for Fast Path 339

introduction 5

reports 335

movement in hierarchy 10

MSDB (main storage database)
calls against 131

deleting segments 132

description of 128

design considerations 273, 282

inserting segments 132

loading the database 331, 423

MSDB Maintenance utility (DBFDBMA0) 129

options available 128

page fixing 277

position 133

restrictions on changing DBD 423

storage of records 130

when to use 127, 129

MSDBCP1 data set 279

MSDBCP2 data set 279

MSDBDUMP data set 279

multi-area structure
duplexing 139

Multiple Area Data Set I/O Timing (MADSIOT) 149

multiple area data sets (MADS)
I/O errors 149

MADSIOT 149

multiple data set groups
description of 230

HD databases 232

introduction 18

specifying in DBD 234

568 Administration Guide: Database Manager

multiple data set groups (continued)
storage of records 233

uses 231

using 230

N
NAME parameter

in a DBD 177, 205

in the SENFLD statement 221

naming convention
examples of defining 140

naming convention, coupling facility structure 140

naming conventions 21

general rules 21

HALDB (High Availability Large Database) 22

HALDB data sets 23

HALDB online reorganization
DD name overview 23

overview 24

NBA (normal buffer allocation)
for CCTL 286

in DBCTL environment 286

limit 285

use of 283

NBA parameter 274

NBA/FPB limit 289

NBRSEGS parameter 278

NE status code 200

no free logical record 69

NOLKASID
INIT.DBDS and INIT.CHANGE parameter 137

non-terminal-related database 128

NOPROT parameter 200

normal buffer allocation (NBA)
for CCTL 286

in DBCTL environment 286

use of 283

NULLVAL parameter 198, 206

O
OBA (overflow buffer allocation)

for CCTL threads 287

in DBCTL environment 287

use of 283

OLR (online reorganization)
HALDB (High Availability Large Database)

registering OLR capability with DBRC using

PDU 517

one-to-many mapping 46

online change
databases 448

online reorganization
HALDB

data set naming convention overview 24

DD name naming convention overview 23

HALDB naming convention 372

HALDB Online Reorganization 364

online reorganization (OLR)
HALDB (High Availability Large Database)

registering OLR capability with DBRC using

PDU 517

opening
DEDB areas 111

operands
/CK 196

/SX 196

See parameters

optional functions
Data Capture exit routines 215

field-level sensitivity 220

GSAM databases 77

HD databases 80

HISAM databases 65

HSAM (Hierarchical Sequential Access Method) 61

logical relationships 151, 183

MSDB databases 128

multiple data set groups 230

secondary indexes 186

Segment Edit/Compression exit routine 212

SHISAM databases 76

SHSAM databases 75

variable-length segments 209

OPTIONS statement
fixing buffers in VSAM 252

for OSAM 265

for VSAM 260, 262

OSAM 265

use in splitting CIs 69

OSAM
data set

maximum size 79

OSAM (Overflow Sequential Access Method)
adjusting buffers 406

allocation of data sets 318

description 253, 507

options 265

track space used 248

used by HD 91

OSAM data set
maximum size 507

OSAM Sequential Buffering (SB)
See SB (OSAM Sequential Buffering) 253

output thread 149

overflow buffer allocation (OBA)
See OBA (overflow buffer allocation) 287

overflow data set 65

Overflow Sequential Access Method
See OSAM (Overflow Sequential Access

Method) 507

overflow space allocation, changing 457

overhead
DEDB CI resources 313

logical records 314

P
packing density 244

page fixing MSDBs 277

Index 569

parameters
BGWRT 260

BSIZ
in DB/TM environment 283

in the DBCTL environment 286

BWO(TYPEIMS) 263

BYTES 197

CNBA 287

CONSTANT 206

DB Monitor 336

DBBF
in DB/TM environment 282

in the DBCTL environment 286

DBFX
in DB/TM environment 282

in the DBCTL environment 286

DDATA 197

DISP 262

DL/I 262

DLOG 262

DUMP 262, 265

EXIT 216

EXTRTN 198, 206

FPB 287

FPOB 287

FREESPACE 263

FRSPC 241

IMBED | NOIMBED 264

INDICES 201

INSERT
free space for a KSDS 261, 263

using in splitting CIs 69

IOBF 252

LATC 262

LGNR 338

LOCK 262

MBR 177

MON 336

NAME
in a DBD 177, 205

in the SENFLD statement 221

NBA 274

NBRSEGS 278

NOPROT 200

NULLVAL 198, 206

PARENT 163, 177

in logical relationships 174, 177

to specify PCF and PCL pointers 86

to specify PCF pointers 85

PASSWD 33

POINTER 175

PROCOPT 32, 271

PROCSEQ 188, 191

PROT 200

RECORD 248

REPL 222

REPLICATE | NOREPLICATE 264

RMNAME 94

HDAM options 244

PHDAM options 244

specifying number of blocks or CIs 243

parameters (continued)
RMNAME (continued)

specifying number of RAPS 93

RULES 465, 505

SCHD 262

SEGMENT 205

SHARELVL 116

SOURCE 175, 184

SPEED | RECOVERY 263

SRCH 206

START 197

SUBS 262

SUBSEQ 196, 206

TYPE 222

VERSION 217

VSAMFIX 252, 262

VSAMPLS 262

PARENT parameter 85, 163, 174, 177

parent segment, definition 7

Partial Database Reorganization utility

(DFSPRCT1) 356

Partition Default information screen
anchor 519

automatic definition 518, 521

block size 520

bytes 519

data set name prefix 519

database name 518

default JCL 520

free block freq. factor 520

free space percentage 520

high block number 519

image copy JCL 521

input data set 519

max. image copies 520

module name 519

online image copy JCL 521

partition ID 519

receive JCL 521

recovery period 520

recovery utility JCL 520

reusable? 521

use defaults for DS groups 519

partition definition utility
HALDB (High Availability Large Database)

registering OLR capability with DBRC 517

Partition Definition utility (PDU)
changing partitions 297

creating HALDB partitions 295

HALDB functions 294

high key value, entering 297

partition definition steps 295

partition high key value, entering 297

partition high key 297

entering the high key value 297

partition structure modification 399

partitioned database 78

information screen
database name 516

database organization 516

number of data set groups 517

570 Administration Guide: Database Manager

partitioned database (continued)
information screen (continued)

part. selection routine 516

recoverable? 517

RSR global service group 516

RSR tracking type 516

share level 516

partitions
automatic definition 298

bit map block 92

changing 398

boundaries 400

key ranges 400

overview 398

partition structure modification 399

changing with the Partition Definition utility

(PDU) 297

creating with the Partition Definition utility

(PDU) 295

data sets, maximum 299

defining
automatically 298

manually 298

high key 297

high key value 297

manual definition 298

modifying 398

boundaries 400

key ranges 400

overview 398

partition structure modification 399

naming conventions 23

offline reorganization
reallocating data sets 362

reloading 363

unloading 361

updating ILDS 363

partition definition process 295

partition high key 297

reallocating data sets
offline reorganization 362

reloading
offline reorganization 363

unloading
offline reorganization 361

updating ILDS
offline reorganization 363

PASSWD parameter 33

password protection 33

paths
full duplex 476

half duplex 476

in hierarchy 8

in logical relationships 162

third access 476

PCB (program communication block)
coding 301

introduction 18

PCF (physical child first) pointers
correcting 509

description 84

PCL (physical child last) pointers
correcting 509

description 85

PDS directory 514

performance
avoiding split segments 214

comparison of databases 78

discussion 241, 267

HISAM 70, 74

HSAM 64

logical relationships 183

monitoring 335

tuning a database 341

PHDAM (partitioned Hierarchical Direct Access Method)
RAPs (root anchor points) 93

PHDAM (Partitioned Hierarchical Direct Access Method)
access methods 11

accessing segments 99

calls against 80

changing DL/I access methods
from HDAM 395

to HDAM 396

counters, introduction 15

data set naming conventions 23

database
reorganizing 358

database records 96

database records, locking 105

DBCTL support 56

deleting segments 103

description of 78

format of database 91

inserting segments 100

loading the database 331

locking 107

logical record length 248

multiple data set groups 232

options available 80

overflow area 94

pointers in 81

pointers, introduction 15

randomizing module 243

root addressable area 94, 96

segment format 96

size of root addressable area 242

space calculations 311

specifying free space 241

storage of records 94

z/OS access methods used 79

PHIDAM
access methods 11

PHIDAM (Partitioned Hierarchical Indexed Data Access

Method)
changing DL/I access methods

from HIDAM 395

to HIDAM 396

PHIDAM (Partitioned Hierarchical Indexed Direct Access

Method)
accessing segments 99

calls against 80

counters, introduction 15

Index 571

PHIDAM (Partitioned Hierarchical Indexed Direct Access

Method) (continued)
data set naming conventions 23

database
reorganizing 358

DBCTL support 56

description of 78

format of database 91

index database 79, 96

index segment 98

inserting segments 100

loading the database 331

locking 107

logical record length 248

maximum size 79

multiple data set groups 232

options available 80

pointers in 81

pointers, introduction 15

segment format 97

space calculations 105, 311

specifying free space 241

storage of records 96

when to use 81

physical block size 248

physical child first pointers 84, 509

physical child last pointers 85, 509

physical parent in logical relationships 152, 156

physical parent pointer
See PP (physical parent) pointer 159

physical twin backward pointers 88, 509

physical twin forward pointers 87, 509

physically adjacent 60, 65

PI (program isolation), lock protocols 105

pointer field 194

POINTER parameter 175

pointer segment 188, 193

pointers
correcting 509

direct-address 78

FCP (forward chain pointer) 130

HALDB self-healing pointer process 382

performance 386

HB (hierarchic backward) 83

HD 81

hierarchic forward (HF) 82

HISAM (Hierarchical Indexed Sequential Access

Method) 67

in logical relationships 161

in secondary indexes 194, 195

introduction 15

LCF 158

LCL 158

logical relationships 156

logical twin 509

LP (logical parent) 156, 509

LTB 160

LTF 160

mixing types 89

PCF (physical child first) 84

PCL (physical child last) 85

pointers (continued)
PP 159

PTB 88

PTF 87

self-healing pointer process 382

performance 386

sequence in a segment’s prefix 90, 164

symbolic 189, 194

types 391

position
hierarchy 10

MSDB 133

post-implementation review 29

PP (physical parent) pointer 159

pre-formatting data set space 263

preallocated CIs 270

prefix descriptor byte 463

prefix part of segment 14

Prefix Resolution utility (DFSURG10) 351

Prefix Update utility (DFSURGP0) 352

preopen
disabling for DEDB areas 112

preopening
DEDB areas 111

Prereorganization utility (DFSURPR0) 350

primary data set groups
See multiple data set groups

primary data set, defined 65

private buffer pool
description 139

procedures
adding a DEDB 455

adding logical relationships 427

adding secondary indexes 445

adding segment edit/compression facility 446

adding segment types 424

adding variable-length segments 445

adjusting HDAM options 404

adjusting PHDAM options 404

Asynchronous Data Capture 447

calculating database size 311

changing DASD 403

changing hierarchic structure
changing sequence of segment types 401

combining segments 402

changing segment size 426

converting concatenated keys 448

deleting a DEDB 455

deleting segment types 425

description of 19

extending DEDB IOVF online 458

introduction 6

modifying a database 423

reorganization
HD database 358

HISAM database 358

primary index 358

processing option H 281

processing option P
and NBA limit 285

and NBA/FPB limit 289

572 Administration Guide: Database Manager

processing option P (continued)
in determining the size of the UOW 271

processing, mixed mode 127

PROCOPT parameter
establishing security 32

in HSSP 281

option H 281

option K 303

option P 271

PROCSEQ parameter 188, 191

program communication block
See PCB (program communication block)

program isolation lock manager 105

program specification block
See PSB (program specification block)

programs
DB Monitor 335

DB Monitor Report print 335

DFSDDLT0 309

DL/I test 309

IEFBR14 utility 318

IEHPROGM program 318

running 327

writing a load program 320, 330

PROT parameter 200

PSB (program specification block)
as mask over data structure 31

coding 301

defined 18

using dictionary to generate 18

PSBGEN (Program Specification Block

Generation) 304

utilities 302, 454

PSBLIB library 302

PSINDEX
data set naming conventions 23

database
reorganizing 358

DDNAME requirements 23

PTB (physical twin backward) 509

PTB (physical twin backward) pointers 88

PTF (physical twin forward) 509

PTF (physical twin forward) pointers 87

Q
Q command codes, locking 106

QSAM (Queued Sequential Access Method)
access to GSAM databases 76

and OSAM data set 507

processing HSAM databases 61

processing SHSAM databases 75

R
random distribution of DB records 457

randomizer
exit routine 451

routine, changed 451

routine, deleted 452

routine, new 451

randomizer (continued)
standard 457

Two Stage 454

randomizer routines, changing 451

randomizer, deleted routine 452

randomizing module
DEDB design 271

in HDAM database records 243

in PHDAM database records 243

introduction 79

RAP (root anchor point) 451

RAPs (root anchor points)
explained 93

HIDAM 98

number 95

RATE parameter of INITIATE OLREORG

command 377

RDF (record definition field) 314

read errors
DEDB

VSO 147

real logical child 155, 158, 186

RECON data set
HALDB (High Availability Large Database) 539

record deactivation 114

Record Deactivation 114

record definition field (RDF) 314

RECORD parameter 248

record search argument (RSA) 76

Recoverable Resource Manager Services attachment

facility 57

recovery 5, 264

recovery for HALDB Online Reorganization 380

recursive structures 166, 170, 208

registering databases 150

relative block number 95

reload utility (DFSURGL0) 349

reload utility (DFSURRL0) 348

Remote Site Recovery (RSR)
DBTRACK 516

global service group
HALDB (High Availability Large Database) 516

HALDB Online Reorganization 378

RCVTRACK 516

shadowing
HALDB (High Availability Large Database) 516

tracking type
HALDB (High Availability Large Database) 516

reorganization 344

online
HALDB naming convention 372

reorganization utilities
See also utilities

introduction to reorganization utilities 343

reorganizing 341, 509

assessing need using Database Surveyor utility 355

Database Surveyor utility (DFSPRSUR) 355

HALDB (High Availability Large Database) 358

offline reorganization 359

overview of offline reorganization 359

reallocating data sets 362

Index 573

reorganizing (continued)
HALDB (High Availability Large Database)

(continued)
reloading partitions 363

secondary indexes 364

unloading partitions 361

updating ILDS 363

HALDB self-healing pointer process 382

offline reorganization
HALDB (High Availability Large Database) 359

reallocating data sets 362

reloading HALDB partitions 363

unloading HALDB partitions 361

updating ILDS 363

PHDAM database
overview of offline reorganization 359

PHDAM databases 358

PHIDAM database
overview of offline reorganization 359

PHIDAM databases 358

reloading HALDB partitions 363

secondary indexes
HALDB (High Availability Large Database) 364

self-healing pointer process for HALDBs 382

unloading HALDB partitions 361, 362

updating ILDS 363

REPL parameter 222

replace rules for logical relationships
choosing 183

description of 469, 473

replacing segments
HISAM databases 74

HSAM databases 64

REPLICATE | NOREPLICATE parameter 264

replication, area data set 115

reports
Fast Path Analysis 339

resolution utility (DFSURG10) 351

resolving data conflicts 52

resource allocation for MSDBs 275

resource contention 276

restart 76

emergency
reopening DEDB areas 111

HALDB Online Reorganization 377, 378

restrictions
HALDB Online Reorganization 370

HSSP, of 280

modifying existing logical relationships 443

segments 14

SSA rules for DEDBs 127

using secondary indexes with logical

relationships 203

reviews 25

RMNAME parameter 244

specifying number of blocks or CIs 243

specifying number of RAPS 93

usage 451

ROLB call 284, 288

root addressable area 94, 454

root addressable Area 119

root anchor point (RAP) 451

root anchor points
See RAPs (root anchor points) 93

root processing
sequential

HIDAM 99

root segment, definition 7

RRSAF
See Recoverable Resource Manager Services

attachment facility

RSA (record search argument) 76

rules
defining logical relationships 176

description of 465, 505

in logical databases 177, 183

in physical databases 175

fields in a segment 15

HD with data set groups 232

secondary indexes with logical relationships 203

segments 14

sequence fields 16

using an SSA 131

RULES parameter 465, 505

RX status code 470

S
SB (OSAM Sequential Buffering)

benefits 254

productivity 254

programs 254

utilities 254

buffer handler 256

buffer pools 256

buffer set 256

CICS 254

conditional activation 255

data set groups 255

DB-PCP/DSG pair 255

deactivation 255

description 253, 254

disallowing use 259

HALDB Online Reorganization 382

overlapped I/O 254, 256

periodical evaluation 255

random read 253

requesting use 257, 260

sequential read 253

virtual storage 256

scan utility (DFSURGS0) 350

SCD (system contents directory) 132

SCHD parameter 262

SDEP (sequential dependent)
CI preallocation 270

SDFSRESL 453

search field 194

secondary data set groups
See multiple data set groups 18

secondary data structure 192

574 Administration Guide: Database Manager

secondary indexes
HALDB (High Availability Large Database)

reorganizing 364

reorganizing
HALDB (High Availability Large Database) 364

secondary indexing
analyzing requirements 52

comparison with logical relationships 208

description of 186

index maintenance exit routine 198

INDICES parameter 201

introduction 17

loading databases 331

locking 107

maintenance 199

making keys unique 196

pointer segment 193

procedure for adding 445

processing as separate database 200

restructured hierarchy 191

segments 188

sharing 201

sparse indexing 198

specifying in DBD 205

storage 192

suppressing index entries 198

system related fields 196

use
logical relationships 203

variable-length segments 204

uses 186

utility unload 353

secondary processing sequence 192

security
establishing 31

field-level sensitivity 220

introduction 6, 18

security inspection 29

SEGM statement 175

description 293

example 177

in secondary indexing 208

in the physical DBD 172

specifying insert, delete, and replace rules 465

specifying variable-length segments 210

segment
data

compressing 213

editing 213

segment code
description 14

HDAM 96

HISAM 66

HSAM 62

PHDAM 96

Segment compression routine
adding 452

changing 452

deleting 452

segment deletion 127

segment edit/compression exit routine
avoiding split segments 214

specifying minimum segment size 214

Segment Edit/Compression exit routine
description of 212

uses 213

segment edit/compression facility
introduction 17

procedure for adding 446

specifying the use of 215

SEGMENT parameter 205

segment search argument
See SSA (segment search argument) 195

segments
accessing

HDAM databases 99

HIDAM databases 99

HISAM databases 68

HSAM databases 63

PHDAM databases 99

PHIDAM databases 99

calculating frequency 312

calculating size 311

changing position of data 427

changing size 426

child, definition 7

data elements 15

DEDB
segment growth 215

definition 6

deleting
HD databases 103

HISAM databases 72

HSAM databases 64

MSDB (main storage database) 132

dependent, definition 7

fields 15

fixed-length 14

fixed-length segments
specifying minimum size 214

full-function
avoiding split segments 214

specifying minimum size 214

inserting
HD databases 100

HISAM databases 68

HSAM databases 64

MSDB 132

introduction to 14

logical child 163

moving segment types 426

occurrence, definition 7

parent, definition 7

pointer 188

procedure for adding to database 424

procedure for deleting from database 425

replacing
HISAM databases 74

HSAM databases 64

root, definition 7

rules 14

Index 575

segments (continued)
source 189

target 189

twin, definition 8

type, definition 7

variable length 14

variable-length 209

variable-length segments
specifying minimum size 214

segments, adding to change DEDBs 456

segments, deleting to change DEDBs 456

self-healing pointer process 382

performance 386

SENFLD statement 220, 303

SENSEG statement
description 303

field-level sensitivity 221

restricting data access 31

sequence field
See also keys

HIDAM 97

HISAM 65

HSAM (Hierarchical Sequential Access Method) 61

introduction to 15

logical relationships 170, 171

PHIDAM (Partitioned Hierarchical Indexed Direct

Access Method) 97

unique, definition 16

sequence set records 264

sequencing in hierarchy 9

sequencing logical twin chains 185

sequential access methods
HISAM 65

HSAM 60

sequential buffering (SB)
See SB (OSAM Sequential Buffering) 253

sequential dependent part of Area 119

sequential randomizing module 243

sequential root processing
HIDAM 99

sequential storage method 56

SETO statement 281

SETR statement 281

shared secondary indexes 201

SHARELVL 116

SHISAM (Simple Hierarchical Indexed Sequential

Access Method) 74, 331

CI reclaim restriction 237, 342

VSAM REPRO, using 237, 342

SHSAM (Simple Hierarchical Sequential Access

Method) 74, 75

Simple Hierarchical Indexed Sequential Access Method

(SHISAM)
See SHISAM (Simple Hierarchical Indexed

Sequential Access Method) 74

Simple Hierarchical Sequential Access Method

(SHSAM)
See SHSAM (Simple Hierarchical Sequential Access

Method) 74

single area data sets (ADS)
Fast Path I/O toleration 149

single area data sets (ADS) (continued)
I/O errors 149

size
maximum

HALDB (High Availability Large Database) 79

HIDAM database 79

PHDAM database 79

PHIDAM database 79

size calculations
See space calculations 311

size field in variable-length segments 210

size of DEDB estimation 270

SOURCE parameter 175, 184

source segment 189

space calculations
CIs or blocks needed for database 314

database size 311

overhead for DEDB CI resources 313

space management fields, updating 101

space management in HD databases 91

space release in logical relationships 478

space search algorithm 103

sparse indexing 198

SPEED | RECOVERY parameter 263

SRCH parameter 206

SSA (segment search argument)
restrictions for DEDBs 127

secondary indexes 195

standards and procedures
description of 19

introduction 6

START parameter 197

starting
DEDB areas 112

statements
AREA 293

data set
description of 292

DATASET
example of 235

specifying DDNAMEs for data sets 177

DBD 208, 292

DBDGEN 294

END 294, 304

FIELD
definition of 196

in the DBD 265

position in DBD 293

FINISH 294

LCHILD in logical relationships 172, 175, 205, 293

OPTIONS
fixing buffers in VSAM 252

for OSAM 265

for VSAM 260, 262

OSAM 265

use in splitting CIs 69

PSBGEN 304

SEGM
description of 293

example of 177, 208

in secondary indexing 208

576 Administration Guide: Database Manager

statements (continued)
SEGM (continued)

in the physical DBD 172, 175

specifying insert, delete, and replace rules 465

specifying variable-length segments 210

SENFLD 220, 303

SENSEG
description of 303

field-level sensitivity 221

restricting data access 31

XDFLD
description of 196

in secondary indexing 205

restrictions in use 294

specifying sparse indexing 198

status codes
AM

in a delete call 477

in a replace call 470

in an insert call 467

DA 470, 477

DX 477

FH 113

FR
for BMP regions 285

for CCTL threads 289

in fast path buffer allocation 284

in fast path buffer allocation for BMPs 288

FW
for CCTL threads 289

in BMP regions 285

in fast path buffer allocation 284

in fast path buffer allocation for BMPs 288

GC 270

GE 171, 467

II 467

IX 467

NE 200

RX 470

stopping
DEDB areas 112

storage of data
DEDBs 122

HDAM databases 94

HIDAM databases 96

HISAM databases 65

HSAM databases 61

introduction 6

MSDB (main storage database) 130, 279

multiple data set groups 233

PHDAM databases 94

PHIDAM databases 96

variable-length segments 210

SUBS parameter 262

SUBSEQ parameter 196

subsequence field 194

subset pointers 123, 273

suppressing index entries 198

Surveyor utility (DFSPRSUR) 355

SX (/SX) operand 196

symbolic checkpoint call 76

symbolic pointers
logical relationships 157, 184

secondary indexes 189, 195

SYNC (Synchronization Point) call 270

sync point processing for Fast Path 149

synchronization point
Fast Path 149, 285, 289

output thread 149

processing 149, 419

synonyms 96

syntax diagram
how to read xviii

system contents directory (SCD) 132

system related fields 196

T
tape, magnetic 60

target segment 189

task ID field 93

terminal-related database 128

termination phase of HALDB Online

Reorganization 368

test database 307

testing a database
description of 307

introduction 5

testing, application programs 308

third access path 476

tools
Data Extraction, Processing, and Restructuring

System 309

for test databases 309

Cross System Product/370 Application

Development (CSP/370AD) 309

DL/I test program 309

trace parameters 262

track space used 248

transaction timings, Fast Path 338

tuning a database
description of 341

Fast Path 337

introduction 5

two stage randomizer, changing root addressable

space 454

TYPE parameter 222

U
UCF (utility control facility)

described 355

restartable initial database load program 326

running restartable load program under 327

unique sequence fields
HISAM (Hierarchical Indexed Sequential Access

Method) 65

introduction 16

unit of reorganization for HALDB Online

Reorganization 367

units of work (UOW) 119

Unload utility (DFSURGU0) 348

Index 577

unload utility (DFSURUL0) 347

UOW (unit of work) 119, 270

UOW locking 282

UOW structural definition 454

use chain 249

user data field in pointer segment 196

utilities
ACB maintenance 304

Database Change Accumulation 381

database image copy 381

Database Prefix Resolution utility (DFSURG10) 351

Database Prefix Update utility (DFSURGP0) 352

Database Prereorganization utility

(DFSURPR0) 350

Database Scan utility (DFSURGS0) 350

Database Surveyor (DFSPRSUR) 355

DBDGEN 291

DBFDBMA0 129

DBFUHDR0 270

DFSPRCT1 356

DFSPRSUR 355

DFSUCF00 355

DFSURG10 351

DFSURGL0 349

DFSURGP0 352

DFSURGS0 350

DFSURGU0 348

DFSURPR0 350

DFSURRL0 348

DFSURUL0 347

for unload and reloading secondary indexes 353

HALDB Online Reorganization 379

HD Reorganization Reload 349

HD Reorganization Unload 348

High-Speed DEDB Direct Reorganization

(DBFUHDR0) 270

HISAM Reorganization Reload 348

HISAM Reorganization Unload 347

MSDB Maintenance 129

Partial Database Reorganization 356

PSBGEN 302

reorganization 343

UCF 355

Unload 348

utility control facility
See UCF (utility control facility)

V
variable intersection data (VID) 165

variable-length segments
definition 14

description of 210

introduction 17

procedure for adding 445

replace operations 211

specifying in DBD 210

specifying minimum size 214

storage 210

use with secondary indexes 204

uses 211

variable-length segments (continued)
using 209

what application programmers need to know 212

VERSION parameter 217

VID (variable intersection data) 165

virtual logical child 155

Virtual Storage Access Method (VSAM)
HISAM databases 65

virtual storage option
introduction 135

VSAM
data set

maximum size 79

VSAM (Virtual Storage Access Method)
access to GSAM databases 76

adjusting buffers 405

adjusting options 409, 410

and Hiperspace buffering 250

changing access methods 411

changing space allocation 410

CIDF (control interval definition field) 314

ESDS in HD databases 91

HISAM databases 65

index 264

local shared resource pools
assigning data sets 262

defining 262

index and data subpools 262

subpools of same size 250

options 260, 265

passwords 33

RDF (record definition field) 314

storage of secondary indexes 192

track space used 248

VSAMFIX parameter 252, 262

VSAMPLS parameter 262

VSO DEDB (virtual storage option data entry database)
checkpoint processing 147

data sharing 144

defining a VSO Cache Structure Name 139

defining a VSO DEDB Area 136

emergency restart 147

I/O error processing 146

read errors 147

write errors 146

input processing 145

locking 144

options across restart 147

output processing 146

PRELOAD option 146

resource control 144

using data spaces 143

with XRF 148

VSO DEDB areas
block-level sharing of 138

defining
CHANGE.DBDS 135

INIT.DBDS 135

virtual storage
coupling facility cache structure 135

data space 135

578 Administration Guide: Database Manager

W
write errors, DEDB VSO 146

X
XDFLD statement

description 196

in secondary indexing 205

restrictions in use 294

specifying sparse indexing 198

XML
decomposed storage

overview 238

intact storage
overview 238

overview of storing in IMS databases 238

schema
overview of storing XML data 238

Z
z/OS access methods

used by HD 79

used by HSAM 61

Index 579

580 Administration Guide: Database Manager

����

Program Number: 5655-J38

Printed in USA

SC18-7806-00

Sp
in
e
in
fo
rm
at
io
n:

 �
�

�

IM
S

Ad
m

in
is

tr
at

io
n

G
ui

de
: D

at
ab

as
e

M
an

ag
er

Ve

rs
io

n
9

	Contents
	Figures
	Tables
	About This Book
	Prerequisite Knowledge
	IBM Product Names Used in This Information
	How to Read Syntax Diagrams
	How to Send Your Comments

	Summary of Changes
	Changes to This Book for IMS Version 9
	Library Changes for IMS Version 9
	New and Revised Titles
	Organizational Changes
	Terminology Changes
	Accessibility Enhancements

	Part 1. General Information on IMS Database Administration
	Chapter 1. Introduction to IMS Databases
	Database Administration Overview
	DL/I
	CICS
	DBCTL and DCCTL

	Open Database Access (ODBA)
	Database Administration Tasks
	Concepts and Terminology
	How Data Is Stored in a Database
	The Hierarchy
	The Database
	The Database Record
	The Segment

	Optional Functions
	How to Define Your Database to IMS
	How Application Programs View the Database

	Chapter 2. Standards and Procedures
	Establishing Standards and Procedures
	Naming Conventions
	General Rules for Establishing Naming Conventions
	HALDB Naming Conventions

	Chapter 3. Review Process
	The Design Review
	Role of the Database Administrator
	General Information about Reviews

	Design Review 1
	Design Review 2
	Design Review 3
	Design Review 4
	Code Inspection 1
	Who Attends Code Inspection 1
	Code Inspection 2
	Security Inspection
	Post-Implementation Review

	Chapter 4. Security
	Restricting the Scope of Data Access
	Restricting Processing Authority
	Restricting Access by Non-IMS Programs
	Protecting Data with VSAM Passwords
	Encrypting Your Database

	Using the Dictionary to Help Establish Security

	Part 2. Administering IMS Databases
	Chapter 5. Analyzing Data Requirements
	Local View
	Local View 1. Current Roster
	Local View 2. Schedule of Classes
	Local View 3. Instructor Skills Report
	Local View 4. Instructor Schedules

	Designing a Conceptual Data Structure
	Implementing the Structure with DL/I
	Assigning Data Elements to Segments
	Resolving Data Conflicts

	Chapter 6. Choosing Full-Function Database Types
	Sequential Storage Method
	Direct Storage Method
	Databases Supported with DBCTL
	Databases Supported with DCCTL
	Performance Considerations Overview
	HSAM Databases
	When to Use HSAM
	How an HSAM Record Is Stored
	DL/I Calls against an HSAM Database

	HISAM Databases
	When to Use HISAM
	How a HISAM Record is Stored
	Accessing Segments
	Inserting Root Segments Using VSAM
	Inserting Dependent Segments
	Deleting Segments
	Replacing Segments
	Criteria for Selecting HISAM

	SHSAM, SHISAM and GSAM Databases
	Situation 1 - Converting from a non-database system to IMS
	Situation 2 - Passing data
	SHSAM Databases
	SHISAM Databases
	SHISAM IMS Symbolic Checkpoint Call
	GSAM Databases
	GSAM IMS Symbolic Checkpoint Call

	HDAM, PHDAM, HIDAM, and PHIDAM Databases
	Maximum Sizes of HD Databases
	DL/I Calls Issuable Against HD Databases
	When to Use HDAM and PHDAM
	When to Use HIDAM and PHIDAM
	What You Need to Know About HD Databases
	General Format of HD Databases and Use of Special Fields
	How HDAM and PHDAM Records Are Stored
	When Not Enough Root Storage Room Exists
	How HIDAM and PHIDAM Records Are Stored
	Accessing Segments
	Inserting Root Segments
	Inserting Dependent Segments
	Deleting Segments
	Replacing Segments
	How the HD Space Search Algorithm Works
	Locking Protocols

	Managing I/O Errors

	Chapter 7. Choosing Fast Path Database Types
	Data Entry Databases
	DEDB Functions
	DEDB Areas
	Fixed- and Variable-Length Segments in DEDBs
	Parts of a DEDB Area
	Root Segment Storage
	Direct Dependent Segment Storage
	Sequential Dependent Segment Storage
	Enqueue Level of Segment CIs
	DEDB Space Search Algorithm
	DEDB Insert Algorithm
	DEDB Free Space Algorithm
	Managing Unusable Space with IMS Tools
	DL/I Calls against a DEDB
	Mixed Mode Processing

	Main Storage Databases (MSDBs)
	When to Use an MSDB
	MSDBs Storage
	MSDB Record Storage
	Saving MSDBs for Restart
	DL/I Calls against an MSDB
	Rules for Using an SSA
	Insertion and Deletion of Segments
	Combination of Binary and Direct Access Methods
	Position in an MSDB
	The Field Call
	Call Sequence Results

	Fast Path Virtual Storage Option
	Restrictions Using VSO DEDB Areas
	Defining a VSO DEDB Area
	Sharing of VSO DEDB Areas
	Defining a VSO Cache Structure Name
	Acquiring and Accessing Data Spaces for VSO DEDB Areas
	Resource Control and Locking
	Preopen Areas and VSO Areas in a Data Sharing Environment
	Input/Output Processing With VSO
	Checkpoint Processing
	VSO Options Across IMS Restart
	Emergency Restart Processing
	VSO Options with XRF

	Fast Path Synchronization Points
	Phase 1 - Build Log Record
	Phase 2 - Write Record to System Log

	Managing I/O Errors and Long Wait Times
	Registering Fast Path Databases in DBRC

	Chapter 8. Choosing Optional Database Functions
	Logical Relationships
	Logical Relationship Types
	Logical Relationship Pointer Types
	Paths in Logical Relationships
	The Logical Child Segment
	Segment Prefix Information for Logical Relationships
	Intersection Data
	Recursive Structures: Same Database Logical Relationships
	Defining Sequence Fields for Logical Relationships
	Control Blocks for Logical Relationships
	Specifying Logical Relationships in the Physical DBD
	Specifying Logical Relationships in the Logical DBD
	Choosing Replace, Insert, and Delete Rules for Logical Relationships
	Performance Considerations for Logical Relationships

	Secondary Indexes
	Why Secondary Indexes?
	Characteristics of Secondary Indexes
	Segments Used for Secondary Indexes
	How the Hierarchy Is Restructured
	How a Secondary Index Is Stored
	Format and Use of Fields in a Pointer Segment
	Making Keys Unique Using System Related Fields
	Suppressing Index Entries: Sparse Indexing
	How the Secondary Index Is Maintained
	Processing a Secondary Index as a Separate Database
	Sharing Secondary Index Databases
	Using the INDICES= Parameter
	Using Secondary Indexes with Logical Relationships
	Using Secondary Indexes with Variable-Length Segments
	Considerations When Using Secondary Indexing
	How to Specify Use of Secondary Indexing in the DBD

	Choosing Secondary Indexes Versus Logical Relationships
	When to Use a Secondary Index
	When to Use a Logical Relationship

	Variable-Length Segments
	How to Specify Variable-Length Segments
	How Variable-Length Segments Are Stored and Processed
	When to Use Variable-Length Segments
	What Application Programmers Need to Know about Variable-Length Segments
	Adding or Converting to Variable-Length Segments

	Segment Edit/Compression Exit Routine
	Things to Consider Before Using the Segment Edit/Compression Exit Routine
	How to Specify the Segment Edit/Compression Exit Routine
	Converting to the Segment Edit/Compression Exit Routine

	Data Capture Exit Routines
	DBD Parameters for Data Capture Exit Routines
	Call Sequence of Data Capture Exit Routines
	Data Passed To and Captured By the Data Capture Exit Routine
	Data Capture Call Functions
	Cascade Delete When Crossing Logical Relationships
	Data Capture Exit Routines and Logically Related Databases
	Converting to Data Capture Exit Routines

	Field-Level Sensitivity
	Using Field-Level Sensitivity as a Mapping Interface
	Using Field-Level Sensitivity with Variable-Length Segments
	How to Specify Use of Field-Level Sensitivity in the DBD and PSB
	Retrieving Segments Using Field-Level Sensitivity
	Replacing Segments Using Field-Level Sensitivity
	Inserting Segments Using Field-Level Sensitivity
	Using Field-Level Sensitivity When Fields Overlap
	Using Field-Level Sensitivity When Path Calls Are Issued
	Using Field-Level Sensitivity with Logical Relationships
	Using Field-Level Sensitivity with Variable-Length Segments
	General Considerations for Using Field-Level Sensitivity

	Multiple Data Set Groups
	Why Use Multiple Data Set Groups?
	HD Databases Using Multiple Data Set Groups

	Block-Level Data Sharing and CI Reclaim
	HALDB Single Partition Processing
	Logical Relationships in Single Partition Processing
	Secondary Indexes in Single Partition Processing
	Partition Selection

	Integrated HALDB Online Reorganization Function
	Storing XML Data in IMS Databases

	Chapter 9. Designing Full-Function Databases
	Specifying Free Space (HDAM, PHDAM, HIDAM, and PHIDAM Only)
	Estimating the Size of the Root Addressable Area (HDAM or PHDAM Only)
	Determining Which Randomizing Module to Use (HDAM and PHDAM Only)
	Write Your Own Randomizing Module
	Assess the Effectiveness of the Randomizing Module

	Choosing HDAM or PHDAM Options
	Minimizing I/O Operations
	Maximizing Packing Density

	Choosing a Logical Record Length for a HISAM Database
	Logical Record Length Considerations
	Rules to Observe
	Calculating How Many Logical Records Are Needed to Hold a Database Record
	Specifying Logical Record Length

	Choosing a Logical Record Length for HD Databases
	Determining the Size of CIs and Blocks
	Buffering Options
	Multiple Buffers in Virtual Storage
	"Use" Chain
	The Buffer Handler
	Background Write Option
	Shared Resource Pools
	Using Separate Subpools
	Hiperspace Buffering
	Buffer Size
	Buffer Numbers
	VSAM Buffer Sizes
	OSAM Buffer Sizes
	Specifying Buffers

	OSAM Sequential Buffering
	Sequential Buffering Introduction
	Benefits of Sequential Buffering
	Flexibility of SB Use
	How SB Buffers Data
	Virtual Storage Considerations for SB
	How to Request the Use of SB

	VSAM Options
	Optional Functions Specified in the OPTIONS Control Statement
	Optional Functions Specified in the POOLID, DBD, and VSRBF Control Statements
	Optional Functions Specified in the Access Method Services DEFINE CLUSTER Command

	OSAM Options
	Dump Option (DUMP Parameter)
	Deciding Which FIELD Statements to Code in the DBD
	Planning for Maintenance

	Chapter 10. Designing Fast Path Databases
	Designing a Data Entry Database (DEDB)
	DEDB Design Guidelines
	DEDB Area Design Guidelines
	Determining the Size of the CI
	Determining the Size of the UOW
	SDEP CI Preallocation and Reporting
	Processing Option P (PROCOPT=P)
	DEDB Randomizing Routine Design
	Multiple Copies of an Area Data Set
	Record Deactivation
	Physical Child Last Pointers
	Subset Pointers

	Designing a Main Storage Database (MSDB)
	Calculating Virtual Storage Requirements for an MSDB
	Understanding Resource Allocation, a Key to Performance
	Designing to Minimize Resource Contention
	Choosing MSDBs to Load and Page-Fix
	Auxiliary Storage Requirements for an MSDB

	High-Speed Sequential Processing (HSSP)
	Why HSSP?
	Limitations and Restrictions When Using HSSP
	Using HSSP
	HSSP Processing Option H (PROCOPT=H)
	Image-Copy Option
	UOW Locking
	Private Buffer Pools

	Designing a DEDB or MSDB Buffer Pool
	Buffer Requirements
	Normal Buffer Allocation (NBA)
	Overflow Buffer Allocation (OBA)
	Fast Path Buffer Allocation Algorithm
	System Buffer Allocation (DBFX)
	Determining the Fast Path Buffer Pool Size
	Fast Path Buffer Performance Considerations
	The NBA Limit and Sync Point
	The DBFX Value and the Low Activity Environment

	Designing a DEDB Buffer Pool in the DBCTL Environment
	Buffer Requirements in a DBCTL Environment
	Normal Buffer Allocation for BMPs
	Normal Buffer Allocation for CCTL Regions and Threads
	Overflow Buffer Allocation for BMPs
	Overflow Buffer Allocation for CCTL Threads
	Fast Path Buffer Allocation Algorithm for BMPs
	Fast Path Buffer Allocation Algorithm for CCTL Threads
	System Buffer Allocation (SBA)
	Determining the Size of the Fast Path Buffer Pool for DBCTL
	Fast Path Buffer Performance Considerations for DBCTL
	The NBA/FPB Limit and Sync Point in a DBCTL Environment
	Low Activity and the DBFX Value in a DBCTL Environment
	A Note on Fast Path Buffer Allocation in IMS Regions

	Chapter 11. Implementing Database Design
	Coding Database Descriptions as Input for the DBDGEN Utility
	The DBD Statement
	The DATASET Statement
	The SEGM Statement
	The FIELD Statement
	The LCHILD Statement
	The XDFLD Statement
	The DBDGEN and END Statements

	Implementing HALDB Design
	Creating HALDBs with the HALDB Partition Definition Utility
	Allocating an ILDS

	Coding Program Specification Blocks as Input to the PSBGEN Utility
	The Alternate PCB
	The Database PCB Statement
	The SENSEG Statement
	The SENFLD Statement
	The PSBGEN Statement
	The END Statement

	Building the Application Control Blocks (ACBGEN)
	Defining Generated Program Specification Blocks for SQL Applications

	Chapter 12. Developing Test Databases
	Test Requirements
	What Kind of Database?
	What Kind of Sample Data?
	What Kind of Application Program?

	Designing, Creating, and Loading a Test Database
	Using Testing Standards
	Using IBM Programs to Develop a Test Database

	Chapter 13. Loading Databases
	Estimating the Minimum Size of the Database
	Step 1. Calculate the Size of an Average Database Record
	Step 2. Determine Overhead Needed for CI Resources
	Step 3. Determine the Number of CIs or Blocks Needed
	Step 4. Determine the Number of Blocks or CIs Needed for Free Space
	Step 5. Determine the Amount of Space Needed for Bit Maps

	Allocating Data Sets
	Allocating OSAM Data Sets
	Example of Allocating an OSAM Data Set
	Cautions When Allocating OSAM Data Sets

	Writing a Load Program
	The Load Process
	Status Codes for Load Programs
	Using SSAs in a Load Program
	Loading a Sequence of Segments with the D Command Code
	Loading a HISAM Database
	Loading a SHISAM Database
	Loading a GSAM Database
	Loading an HDAM or a PHDAM Database
	Loading a HIDAM or a PHIDAM Database
	Loading a Database with Logical Relationships or Secondary Indexes

	Loading Fast Path Databases
	Loading an MSDB
	Loading a DEDB
	Loading Sequential Dependent Segments

	Chapter 14. Monitoring Databases
	IMS Monitor
	Monitoring Fast Path Systems
	Fast Path Log Analysis Utility
	Interpreting Fast Path Analysis Reports

	Chapter 15. Tuning Databases
	Reorganizing the Database
	When You Should Reorganize
	Reorganizing Databases Offline
	Protecting Your Database During an Offline Reorganization
	Offline Reorganization Utilities
	Procedures for Offline Database Reorganizations

	Reorganizing HALDBs
	HALDB Offline Reorganization
	HALDB Online Reorganization
	The HALDB Self-Healing Pointer Process

	Changing DL/I Access Methods
	Changing the DL/I Access Method From HISAM to HIDAM
	Changing the DL/I Access Method From HISAM to HDAM
	Changing the DL/I Access Method From HIDAM to HISAM
	Changing the DL/I Access Method From HIDAM to HDAM
	Changing the DL/I Access Method From HDAM to HISAM
	Changing the DL/I Access Method From HDAM to HIDAM
	Changing the DL/I Access Method From HDAM to PHDAM and HIDAM to PHIDAM
	Changing HALDB Partition Definitions
	Procedure for Changing to DEDBs

	Changing the Hierarchic Structure
	Changing the Sequence of Segment Types
	Combining Segments
	Procedure for Changing the Hierarchic Structure

	Changing Direct-Access Storage Devices
	Tuning OSAM Sequential Buffering
	Well-Organized Database
	Badly-Organized Database
	Ensuring a Well-Organized Database

	Adjusting HDAM and PHDAM Options
	Adjusting Buffers
	VSAM Buffers
	OSAM Buffers
	Procedure for Adjusting VSAM and OSAM Database Buffers
	OSAM Sequential Buffering
	Procedure for Adjusting Sequential Buffers

	Adjusting VSAM Options
	Procedure for Adjusting VSAM Options Specified in the OPTIONS Control Statement
	Procedures for Adjusting VSAM Options Specified in the Access Method Service DEFINE CLUSTER Command

	Adjusting OSAM Options
	Changing the Amount of Space Allocated
	Changing Operating System Access Methods
	Changing the Number of Data Set Groups
	Tuning Fast Path Systems
	Transaction Volume to a Particular Fast Path Application Program
	DEDB Structure Considerations
	Usage of Buffers from a Buffer Pool
	Contention for DEDB Control Interval (CI) Resources
	Exhaustion of DEDB DASD Space
	Utilization of Available Real Storage
	Synchronization Point Processing and Physical Logging
	Contention for Output Threads
	Overhead Resulting from Reprocessing
	Dispatching Priority of Processor-Dominant and I/O-Dominant Tasks
	DASD Contention Due to I/O on DEDBs
	Resource Locking Considerations with Block Level Sharing
	Resource Name Hash Routine

	Chapter 16. Modifying Databases
	Adding Segment Types
	Unloading and Reloading Using the Reorganization Utilities
	Without Unloading or Reloading
	Using Your Own Unload and Reload Program

	Deleting Segment Types
	Moving Segment Types
	Changing Segment Size
	Changing Data in a Segment (Except for Data at the End of a Segment)
	Changing the Position of Data in a Segment
	Adding Logical Relationships
	Example 1. DBX Exists, DBY Is to Be Added
	Example 2. DBX and DBY Exist, DBZ Is to Be Added
	Example 3. DBX and DBY Exist, DBZ Is to Be Added
	Example 4. DBX and DBY Exist, DBZ Is to Be Added
	Example 5. DBX Exists, DBY Is to Be Added
	Example 6. DBX and DBY Exist, DBZ Is to Be Added
	Example 7. DBX and DBY Exist, DBZ Is to Be Added
	Example 8. DBX and DBY Exist, DBZ Is to Be Added
	Example 9. DBY Exists, DBZ Is to Be Added
	Example 10. DBY Exists, DBZ Is to Be Added
	Example 11. DBX and DBY Exist, DBZ Is to Be Added
	Example 12. DBX and DBY Exist, DBZ Is to Be Added
	Example 13. DBX and DBY Exist, Segment Y and DBZ Are to Be Added
	Steps in Reorganizing a Database to Add a Logical Relationship
	Some Restrictions on Modifying Existing Logical Relationships
	Summary on Use of Utilities When Adding Logical Relationships

	Adding a Secondary Index
	Adding or Converting to Variable-Length Segments
	Method 1. Converting Segments or a Database
	Method 2. Converting Segments or a Database

	Converting to the Segment Edit/Compression Exit Routine
	Converting Databases for Data Capture Exit Routines and Asynchronous Data Capture
	Converting a Logical Parent Concatenated Key from Virtual to Physical or Physical to Virtual
	Using the Online Change Function
	Maintaining Continuous Availability of IFP and MPP Regions
	Changing Randomizer and Exit Routines
	Making Online Changes at the DEDB and Area Level

	Extending DEDB Independent Overflow Online

	Part 3. Appendixes
	Appendix A. Meaning of Bits in the Delete Byte
	Bits in the Delete Byte
	Bits in the Prefix Descriptor Byte

	Appendix B. Insert, Delete, and Replace Rules for Logical Relationships
	Specifying Rules in the Physical DBD
	Insert Rules
	The Logical Child Insert Call
	Status Codes
	Insert Rules Summary

	Replace Rules
	The Replace Call
	Status Codes
	Replace Rules Summary

	Using the DLET Call
	Physical and Logical Deletion
	Deleting Concatenated Segments
	The Third Access Path
	Use of the Delete Byte
	Issuing the Delete Call
	Status Codes
	DASD Space Release
	Delete Rules

	Appendix C. Using OSAM as the Access Method
	Appendix D. Correcting Bad Pointers
	Appendix E. HALDB Partition Definition utility
	The Partitioned Databases Panel
	Accessing Help Information
	Exiting the Utility
	Displaying the ISPF Member List
	Opening HALDB Partitions
	Automatic Partition Definition
	Manual Partition Definition

	Defining Data Set Group Information
	Displaying the List of Defined Partitions
	The Partition List Line Commands
	The Partition List Action Bar
	Change All Partitions

	Opening Database Information
	Deleting Database Information
	Exporting Database Information
	Importing Database Information
	Displaying the IMS Concatenation
	Selecting an IMS Configuration
	Using Batch to Export or Import Partition Information
	DSPXRUN Command Syntax
	DSPXRUN EXPORT Sample Output
	DSPXRUN IMPORT Sample Output

	Appendix F. Output Data Set Requirements for HALDB Online Reorganization
	HALDB Online Reorganization Requirements for Existing Output Data Sets
	Attributes of Automatically-Created Output Data Sets

	Notices
	Programming Interface Information
	Trademarks

	Bibliography
	IMS Version 9 Library
	Supplementary Publications
	Publication Collections
	Accessibility Titles Cited in This Library

	Index

