
IMS

Common

Queue

Server

Guide

and

Reference

Version

9

ZES1-2339-02IBM

Confidential

���

IMS

Common

Queue

Server

Guide

and

Reference

Version

9

ZES1-2339-02IBM

Confidential

���

Note

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

under

“Notices”

on

page

185.

Quality

Partnership

Program

(QPP)

Edition

(June

2004)

(Softcopy

Only)

This

QPP

edition

replaces

or

makes

obsolete

the

previous

edition,

ZES1-2339-01.

This

edition

is

available

in

softcopy

format

only.

The

technical

changes

for

this

version

are

summarized

under

“Summary

of

Changes”

on

page

xv.

©

Copyright

International

Business

Machines

Corporation

1997,

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

IBM

Confidential

Contents

Figures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

About

This

Book

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

Prerequisite

Knowledge

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

How

to

Read

Syntax

Diagrams

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

Syntax

Diagram

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xiii

How

to

Send

Your

Comments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xiii

Summary

of

Changes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xv

Changes

to

the

Current

Edition

of

This

Book

for

IMS

Version

9

.

.

.

.

.

.

. xv

Changes

to

This

Book

for

IMS

Version

9

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xv

Library

Changes

for

IMS

Version

9

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xv

New

and

Revised

Titles

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xv

Terminology

Changes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xv

Accessibility

Enhancements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xvi

Chapter

1.

Introduction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Common

Queue

Server

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

CQS

Benefits

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 2

CQS

Components

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 2

CQS

Functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Structures

Managed

by

CQS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

CQS

Structure

Functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

CQS

Recovery

Functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 5

CQS

Client

Requests

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 6

Planning

for

CQS

Hardware

and

Software

Requirements

.

.

.

.

.

.

.

.

.

. 6

Chapter

2.

CQS

Definition

and

Tailoring

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 7

CQS

As

Part

of

a

Sysplex

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 7

CQS

and

Defining

z/OS

Policies

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 7

CQS’s

Support

of

Multiple

Clients

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

Determining

Structure

Size

for

CQS

Connections

.

.

.

.

.

.

.

.

.

.

.

. 12

Preparing

to

Start

CQS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 12

Updating

z/OS

Program

Properties

Table

for

CQS

.

.

.

.

.

.

.

.

.

.

.

. 13

CQS

Execution

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 14

CQS

Initialization

Parameters

PROCLIB

Member

(CQSIPxxx)

.

.

.

.

.

.

. 16

CQS

Local

Structure

Definition

PROCLIB

Member

(CQSSLxxx)

.

.

.

.

.

.

. 17

CQS

Global

Structure

Definition

PROCLIB

Member

(CQSSGxxx)

.

.

.

.

.

. 19

CQS

Execution

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 24

CQS

System

Checkpoint

Data

Set

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 24

CQS

Structure

Recovery

Data

Sets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 25

Chapter

3.

CQS

Administration

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 27

Starting

CQS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 27

Recording

Information

Necessary

for

Starting

CQS

.

.

.

.

.

.

.

.

.

.

. 28

Restarting

CQS

Structures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

CQS

Structure

Allocation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

CQS

Structure

Warm

Start

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

CQS

Structure

Cold

Start

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 29

CQS

Structure

Recovery

for

Restarting

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 29

Restarting

CQS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 30

IBM

Confidential

©

Copyright

IBM

Corp.

1997,

2004

iii

||

CQS

Warm

Start

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 30

CQS

Cold

Start

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 31

Using

the

z/OS

Automatic

Restart

Manager

with

CQS

.

.

.

.

.

.

.

.

. 31

Restarting

CQS

After

CQS

Resource

Cleanup

Failures

.

.

.

.

.

.

.

.

. 32

Establishing

Client

Connection

to

CQS

During

Failed

Client

Takeover

.

.

.

.

. 32

Authorizing

Access

To

CQS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

Authorizing

CQS

Registration

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

Authorizing

Connections

to

CQS

Structures

.

.

.

.

.

.

.

.

.

.

.

.

. 33

Using

Structure

Alter

for

CQS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 34

Using

CQS

System

Checkpoint

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 34

CQS

Checkpoint

Data

Set

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

How

CQS

Restarts

after

System

Checkpoint

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Using

CQS

Structure

Checkpoint

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Preventing

CQS

Structure

Full

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 37

CQS

Structure

Overflow

Function

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 37

CQS

Structure

Full

Monitoring

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 38

Using

Structure

Full

Monitoring

with

CQS

Structure

Overflow

.

.

.

.

.

.

. 39

Rebuilding

Structures

in

CQS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 39

z/OS

System-Managed

Rebuild

and

CQS

.

.

.

.

.

.

.

.

.

.

.

.

.

. 39

CQS-Managed

Rebuild

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 40

Initiating

Structure

Rebuild

with

z/OS

and

CQS

.

.

.

.

.

.

.

.

.

.

.

. 40

CQS

Structure

Repopulation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 41

CQS

Structure

Recovery

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 41

CQS

Structure

Copy

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 42

z/OS

Structure

Duplexing

for

CQS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 42

Deleting

a

Structure

When

CQS

Is

Not

Connected

.

.

.

.

.

.

.

.

.

.

.

. 44

Shutting

Down

CQS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 44

Chapter

4.

CQS

User-Supplied

Exit

Routines

.

.

.

.

.

.

.

.

.

.

.

.

. 47

General

User-Supplied

Exit

Routine

Interface

Information

for

CQS

.

.

.

.

.

. 47

CQS

Initialization-Termination

User-Supplied

Exit

Routine

.

.

.

.

.

.

.

.

. 48

Contents

of

Registers

on

Entry

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 48

Contents

of

Registers

on

Exit

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 48

CQS

Initialization

and

Termination

Parameter

Lists

.

.

.

.

.

.

.

.

.

.

. 49

CQS

Client

Connection

User-Supplied

Exit

Routine

.

.

.

.

.

.

.

.

.

.

. 49

Contents

of

Registers

on

Entry

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

Contents

of

Registers

on

Exit

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 50

CQS

Client

Connection

and

Disconnect

Parameter

Lists

.

.

.

.

.

.

.

. 50

Queue

Overflow

User-Supplied

Exit

Routine

for

CQS

.

.

.

.

.

.

.

.

.

.

. 51

Contents

of

Registers

on

Entry

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 52

Contents

of

Registers

on

Exit

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 52

CQS

Queue

Overflow

Parameter

List

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 52

CQS

Structure

Statistics

User-Supplied

Exit

Routine

.

.

.

.

.

.

.

.

.

.

. 53

Contents

of

Registers

on

Entry

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 53

Contents

of

Registers

on

Exit

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 54

CQS

Structure

Statistics

User-Supplied

Exit

Routine

Parameter

List

.

.

.

. 54

CQS

Structure

Process

Statistics

Record

.

.

.

.

.

.

.

.

.

.

.

.

.

. 55

CQS

Request

Statistics

Record

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 55

Data

Object

Statistics

Record

for

CQS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 56

Queue

Name

Statistics

Record

for

CQS

.

.

.

.

.

.

.

.

.

.

.

.

.

. 57

z/OS

Request

Statistics

Record

for

CQS

.

.

.

.

.

.

.

.

.

.

.

.

.

. 57

Structure

Rebuild

Statistics

Record

for

CQS

.

.

.

.

.

.

.

.

.

.

.

.

. 58

Structure

Checkpoint

Statistics

Record

for

CQS

.

.

.

.

.

.

.

.

.

.

.

. 60

Structure

Checkpoint

Statistics

Gathered

by

CQS

.

.

.

.

.

.

.

.

.

.

. 61

CQS

Structure

Event

User-Supplied

Exit

Routine

.

.

.

.

.

.

.

.

.

.

.

. 62

Contents

of

Registers

on

Entry

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 63

IBM

Confidential

iv

Common

Queue

Server

Guide

and

Reference

Contents

of

Registers

on

Exit

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 63

Routine

Parameter

Lists

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 63

CQS

Structure

Event

Exit

Routine

Parameter

List

.

.

.

.

.

.

.

.

.

.

. 63

CQS

Structure

Event

Exit

Routine

Checkpoint

Parameter

List

.

.

.

.

.

.

. 64

CQS

Structure

Event

Exit

Routine

Rebuild

Parameter

List

.

.

.

.

.

.

.

. 65

CQS

Structure

Event

Exit

Routine

Overflow

Parameter

List

.

.

.

.

.

.

. 66

CQS

Structure

Event

Exit

Routine

Status

Change

Parameter

List

.

.

.

.

. 67

CQS

Statistics

Available

through

the

BPE

Statistics

User

Exit

.

.

.

.

.

.

. 67

Chapter

5.

Writing

a

CQS

Client

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 69

Introducing

CQS

Client

Requests

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 69

Sequence

of

CQS

Requests

Issued

by

a

Client

for

Queue

Structure

.

.

.

.

. 70

Coding

CQS

Requests

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 70

Authorization

for

CQS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 70

Environmental

Requirements

for

CQS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 71

Using

Registers

with

CQS

Requests

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 72

Coding

Parameters

for

CQS

Requests

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

Using

an

ECB

with

CQS

Requests

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 74

Using

Lists

in

the

CQS

Requests

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 75

Return

Codes

and

Reason

Codes

for

CQS

Requests

.

.

.

.

.

.

.

.

.

. 75

Assembling

a

Program

with

CQS

Requests

.

.

.

.

.

.

.

.

.

.

.

.

. 77

CQS

Clients

and

Handling

Special

Events

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 77

CQS

Cold

Start

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 77

Registering

Interest

in

Queues

with

CQSINFRM

.

.

.

.

.

.

.

.

.

.

.

. 78

Working

with

Objects

on

the

Cold

Queue

using

CQS

Requests

.

.

.

.

.

. 78

Initiating

Checkpoints

using

CQS

Requests

.

.

.

.

.

.

.

.

.

.

.

.

. 78

Shutting

Down

CQS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 78

Tuning

to

Improve

CQS

Performance

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 78

Chapter

6.

CQS

Client

Requests

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

Using

CQS

Client

Requests

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

CQSBRWSE

Request

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 80

CQSCONN

Request

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 90

CQSDEL

Request

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 96

CQSDEREG

Request

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 100

CQSDISC

Request

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 101

CQSINFRM

Request

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 106

CQSMOVE

Request

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 110

CQSPUT

Request

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 114

CQSQUERY

Request

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 121

CQSREAD

Request

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 130

CQSRECVR

Request

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 135

CQSREG

Request

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 140

CQSRSYNC

Request

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 142

CQSSHUT

Request

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 149

CQSUNLCK

Request

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 150

CQSUPD

Request

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 155

Example

of

Using

a

CQS

Request:

CQSREAD

.

.

.

.

.

.

.

.

.

.

.

. 159

Chapter

7.

CQS

Client

Exit

Routines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 165

Client

CQS

Event

Exit

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 165

Contents

of

Registers

on

Entry

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 165

Contents

of

Registers

on

Exit

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 166

CQS

Restart

Entry

Parameter

List

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 166

CQS

Abnormal

Termination

Parameter

List

.

.

.

.

.

.

.

.

.

.

.

.

. 166

Client

Processing

after

CQS

Abnormal

Termination

or

Restart

.

.

.

.

.

. 167

IBM

Confidential

Contents

v

CQS

Client

Structure

Event

Exit

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 167

Contents

of

Registers

on

Entry

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 168

Contents

of

Registers

on

Exit

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 168

Deferred

Resync

Complete

Parameter

List

for

CQS

Client

Structure

Event

169

CQS

Resync

Parameter

List

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 169

CQS

Resync

UOW

Entry

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 170

Checkpoint

Parameter

List

for

CQS

Client

Structure

Event

.

.

.

.

.

.

. 171

Structure

Rebuild

Parameter

List

for

CQS

Client

Structure

Event

.

.

.

.

. 172

Structure

Rebuild

Lost

UOWs

Parameter

List

for

CQS

Client

Structure

Event

172

Rebuild

Lost

UOW

Entry

for

CQS

Client

Structure

Event

.

.

.

.

.

.

.

. 173

Structure

Overflow

Parameter

List

for

CQS

Client

Structure

Event

.

.

.

. 174

Structure

Status

Change

Parameter

List

for

CQS

Client

Structure

Event

174

CQS

Client

Structure

Inform

Exit

Routine

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 175

Contents

of

Registers

on

Entry

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 176

Contents

of

Registers

on

Exit

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 176

Structure

Inform

Parameter

List

for

CQS

Client

Structure

Inform

.

.

.

.

. 176

Chapter

8.

CQS

Diagnosis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 179

CQS

Log

Records

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 179

Printing

CQS

Log

Records

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 181

DD

Statements

for

CQS

Diagnosis

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 181

Control

Statements

for

CQS

Diagnosis

.

.

.

.

.

.

.

.

.

.

.

.

.

. 181

Limiting

Log

Data

to

a

Specified

Time

Range

for

CQS

Diagnosis

.

.

.

.

. 182

Copying

CQS

Log

Records

for

Diagnostics

.

.

.

.

.

.

.

.

.

.

.

.

. 182

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 185

Programming

Interface

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 187

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 188

Bibliography

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 189

IMS

Version

9

Library

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 189

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 191

IBM

Confidential

vi

Common

Queue

Server

Guide

and

Reference

Figures

1.

Client

Systems,

CQS,

and

the

Coupling

Facility

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 2

2.

Defining

IMS

Resources

in

the

CFRM

Policy

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 10

3.

Defining

IMS

Resources

in

the

LOGR

Policy

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

4.

Defining

IMS

Resources

in

the

SFM

Policy

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

5.

Entry

to

Be

Added

to

the

z/OS

Program

Properties

Table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

6.

Specifying

IMS

and

CQS

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

7.

Sample

CQSIPxxx

PROCLIB

Member

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 16

8.

Sample

CQSSLxxx

PROCLIB

Member

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 18

9.

Sample

CQSSGxxx

PROCLIB

Member

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

10.

System

Checkpoint

Data

Set

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 25

11.

Structure

Recovery

Data

Set

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 26

12.

RACF

Commands

for

Authorizing

CQS

Registration

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 33

13.

RACF

Commands

to

Authorize

Connection

to

CQS

Structures

.

.

.

.

.

.

.

.

.

.

.

.

.

. 34

14.

Display

for

Structure

Full

Threshold

-

Example

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 38

15.

Display

for

Structure

Full

Threshold

-

Example

2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 38

16.

Display

for

Structure

Full

Threshold

-

Example

3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 38

17.

Passing

an

Address

for

Register

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

18.

Passing

a

value

for

register

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

19.

Passing

an

Address

for

Symbol

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

20.

Passing

a

Value

for

Symbol

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

21.

Passing

a

Value

for

Symbol

Value

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 74

22.

Passing

an

Equate

for

Symbol

Value

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 74

23.

Coding

CQSREAD

with

the

OPTWORD1

parameter

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 74

24.

STEPLIB

DD

Statement

to

Concatenate

IMS.SDFSRESL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 77

25.

Sample

for

CQSREAD

Request

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 160

26.

JCL

to

Print

CQS

Log

Records

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 181

27.

DD

Card

to

Limit

Log

Records

that

are

Printed

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 182

28.

DD

Card

to

Add

Local

Date

and

Time

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 182

29.

JCL

to

Copy

CQS

Records

from

a

Specific

Time

Period

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 183

IBM

Confidential

©

Copyright

IBM

Corp.

1997,

2004

vii

||

IBM

Confidential

viii

Common

Queue

Server

Guide

and

Reference

Tables

1.

How

to

Read

Syntax

Diagrams

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

2.

Private

Queue

Types

Managed

by

CQS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

3.

CQS

Init-Term

User-Supplied

Exit

Routine

Parameter

List:

CQS

Initialization

.

.

.

.

.

.

.

.

. 49

4.

CQS

Init-Term

User-Supplied

Exit

Routine

Parameter

List:

CQS

Termination

.

.

.

.

.

.

.

.

. 49

5.

CQS

Client

Connection

User-Supplied

Exit

Routine

Parameter

List:

Client

Connection

.

.

.

.

. 50

6.

CQS

Client

Connection

User-Supplied

Exit

Routine

Parameter

List:

Client

Disconnect

.

.

.

.

. 50

7.

CQS

Queue

Overflow

User-Supplied

Exit

Routine

Parameter

List

.

.

.

.

.

.

.

.

.

.

.

.

. 53

8.

CQS

Structure

Statistics

User-Supplied

Exit

Routine

Parameter

List

.

.

.

.

.

.

.

.

.

.

.

. 54

9.

CQS

Structure

Process

Statistics

Record

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 55

10.

CQS

Request

Statistics

Record

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 55

11.

Data

Object

Statistics

Record

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 56

12.

Queue

Name

Statistics

Record

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 57

13.

z/OS

Request

Statistics

Record

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 57

14.

Structure

Rebuild

Statistics

Record

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 58

15.

Structure

Checkpoint

Statistics

Record

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 60

16.

Structure

Checkpoint

Statistics

Entry

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 61

17.

CQS

Structure

Event

User-Supplied

Exit

Routine

Parameter

List:

Connect

.

.

.

.

.

.

.

.

. 63

18.

CQS

Structure

Event

User-Supplied

Exit

Routine

Parameter

List:

Checkpoint

.

.

.

.

.

.

.

. 64

19.

CQS

Structure

Event

User-Supplied

Exit

Routine

Parameter

List:

Rebuild

.

.

.

.

.

.

.

.

.

. 65

20.

CQS

Structure

Event

User-Supplied

Exit

Routine

Parameter

List:

Overflow

.

.

.

.

.

.

.

.

. 66

21.

CQS

Structure

Event

User-Supplied

Exit

Routine

Parameter

List:

Status

Change

.

.

.

.

.

.

. 67

22.

CQS

Statistics

Header

Data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 68

23.

Sequence

for

CQS

Requests

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 70

24.

Environment

for

CQS

Requests

(Excluding

CQSREG

and

CQSDEREG)

Using

the

Authorized

Interface

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 71

25.

Environment

for

CQS

Requests

(Excluding

CQSREG

and

CQSDEREG)

Using

the

Non-Authorized

Interface

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 71

26.

Environment

for

CQSREG

and

CQSDEREG

Requests

Using

the

Authorized

Interface

.

.

.

.

. 72

27.

Environment

for

CQSREG

and

CQSDEREG

Requests

Using

the

Non-Authorized

Interface

72

28.

Return

and

Reason

Codes

for

Errors

Detected

by

the

CQS

Interface

.

.

.

.

.

.

.

.

.

.

. 76

29.

CQSBRWSE

Return

and

Reason

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 86

30.

CQSCHKPT

Return

and

Reason

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 90

31.

CQSCONN

Return

and

Reason

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 95

32.

CQSDEL

Return

and

Reason

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 100

33.

CQSDEREG

Return

and

Reason

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 101

34.

CQSDISC

Return

and

Reason

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 105

35.

CQSINFRM

Return

and

Reason

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 110

36.

CQSMOVE

Return

and

Reason

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 113

37.

Actions

Taken

for

Data

Objects

as

a

Result

of

Failures

or

Structure

Activity

.

.

.

.

.

.

.

.

. 116

38.

CQSPUT

Return

and

Reason

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 120

39.

CQSQUERY

Return

and

Reason

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 129

40.

CQSREAD

Return

and

Reason

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 135

41.

CQSRECVR

Return

and

Reason

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 139

42.

CQSREG

Return

and

Reason

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 142

43.

UOW

Status

from

the

Client

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 145

44.

UOW

Status

from

CQS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 145

45.

CQSRSYNC

Return

and

Reason

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 147

46.

CQSSHUT

Return

and

Reason

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 150

47.

CQSUNLCK

Return

and

Reason

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 154

48.

CQSUPD

Return

and

Reason

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 159

49.

Client

CQS

Event

Exit

Routine

Parameter

List:

CQS

Restart

Entry

.

.

.

.

.

.

.

.

.

.

.

. 166

50.

Client

CQS

Event

Exit

Routine

Parameter

List:

CQS

Abnormal

Termination

.

.

.

.

.

.

.

.

. 167

51.

Client

Structure

Event

Exit

Routine

Parameter

List:

Deferred

Resync

Complete

.

.

.

.

.

.

. 169

IBM

Confidential

©

Copyright

IBM

Corp.

1997,

2004

ix

52.

Client

Structure

Event

Routine

Exit

Parameter

List:

CQS

Initiated

Resync

.

.

.

.

.

.

.

.

. 170

53.

CQS

Resync

UOW

Entry

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 170

54.

Client

Structure

Event

Exit

Routine

Parameter

List:

Checkpoint

.

.

.

.

.

.

.

.

.

.

.

.

. 171

55.

Client

Structure

Event

Exit

Routine

Parameter

List:

Structure

Rebuild

.

.

.

.

.

.

.

.

.

.

. 172

56.

Client

Structure

Event

Exit

Routine

Parameter

List:

Structure

Rebuild

Lost

UOWs

.

.

.

.

.

. 173

57.

CQS

Rebuild

Lost

UOW

Entry

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 173

58.

Client

Structure

Event

Exit

Routine

Parameter

List:

Structure

Overflow

.

.

.

.

.

.

.

.

.

. 174

59.

Client

Structure

Event

Exit

Routine

Parameter

List:

Structure

Status

Change

.

.

.

.

.

.

.

. 174

60.

Client

Structure

Inform

Exit

Routine

Parameter

List

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 176

61.

CQS

Log

Records

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 179

IBM

Confidential

x

Common

Queue

Server

Guide

and

Reference

About

This

Book

This

information

is

available

in

PDF

and

BookManager

formats,

and

also

as

part

of

the

IMS

Version

9

QPP

Information

Center.

To

get

the

most

current

versions

of

the

PDF

and

BookManager

formats,

go

to

the

IMS

Library

page

at

www.ibm.com/software/data/ims/library.html.

To

get

the

most

current

versions

of

these

books

for

the

information

center,

go

to

the

IMS

V9

Vendor

and

Quality

Partnership

Program

Library

page

at

www6.software.ibm.com/dl/ims02/imsv9lib-p,

where

you

can

find

updated

plug-ins

and

instructions

on

how

to

install

them

in

your

IMS

Version

9

QPP

Information

Center.

This

book

is

designed

to

help

programmers,

operators,

and

system

support

personnel

perform

these

tasks:

v

Plan

for

and

design

the

installation

of

Common

Queue

Server

(CQS).

v

Install

and

operate

CQS.

v

Diagnose

and

recover

from

CQS

system

problems.

v

Write

a

CQS

client.

Prerequisite

Knowledge

Before

using

this

book,

you

should

understand:

v

Basic

IMS

concepts

v

The

IMS

environment

v

Coupling

Facility

configuration

concepts

v

Sysplex

configuration

concepts

For

a

list

of

references

to

related

publications,

refer

to

“Bibliography”

on

page

189.

Related

Reading:

For

definitions

of

terminology

specific

to

CQS

and

used

in

this

manual,

see

Chapter

1,

“Introduction,”

on

page

1.

Other

terms

are

defined

in

the

IMS

Version

9:

Master

Index

and

Glossary.

How

to

Read

Syntax

Diagrams

Each

syntax

diagram

in

this

book

begins

with

a

double

right

arrow

and

ends

with

a

right

and

left

arrow

pair.

Lines

that

begin

with

a

single

right

arrow

are

continuation

lines.

You

read

a

syntax

diagram

from

left

to

right

and

from

top

to

bottom,

following

the

direction

of

the

arrows.

Table

1

describes

the

conventions

that

are

used

in

syntax

diagrams

in

this

information:

Table

1.

How

to

Read

Syntax

Diagrams

Convention

Meaning

��

A

B

C

��

You

must

specify

values

A,

B,

and

C.

Required

values

are

shown

on

the

main

path

of

a

syntax

diagram.

��

A

B

C

��

You

must

specify

value

A,

B,

or

C.

IBM

Confidential

©

Copyright

IBM

Corp.

1997,

2004

xi

Table

1.

How

to

Read

Syntax

Diagrams

(continued)

Convention

Meaning

��

A

��

You

have

the

option

to

specify

value

A.

Optional

values

are

shown

below

the

main

path

of

a

syntax

diagram.

��

A

B

C

��

You

have

the

option

to

specify

A,

B,

C,

or

none

of

these

values.

��

A

B

C

��

You

have

the

option

to

specify

A,

B,

C,

or

none

of

these

values.

If

you

don’t

specify

a

value,

A

is

the

default.

��

�

,

A

B

C

��

You

have

the

option

to

specify

one,

more

than

one,

or

none

of

the

values

A,

B,

or

C.

Any

required

separator

for

multiple

or

repeated

values

(in

this

example,

the

comma)

is

shown

on

the

arrow.

��

�

,

A

��

You

have

the

option

to

specify

value

A

multiple

times.

The

separator

in

this

example

is

optional.

��

Name

��

Name:

A

B

Sometimes

a

diagram

must

be

split

into

fragments.

The

syntax

fragment

is

shown

separately

from

the

main

syntax

diagram,

but

the

contents

of

the

fragment

should

be

read

as

if

they

are

on

the

main

path

of

the

diagram.

Punctuation

marks

and

numbers

Enter

punctuation

marks

(slashes,

commas,

periods,

parentheses,

quotation

marks,

equal

signs)

and

numbers

exactly

as

shown.

Uppercase

values

Keywords,

their

allowable

synonyms,

and

reserved

parameters

appear

in

uppercase

letters

for

z/OS.

Enter

these

values

exactly

as

shown.

Lowercase

values

Keywords,

their

allowable

synonyms,

and

reserved

parameters

appear

in

lowercase

letters

for

UNIX.

Enter

these

values

exactly

as

shown.

Lowercase

values

in

italic

(for

example,

name)

Supply

your

own

text

or

value

in

place

of

the

name

variable.

�

A

�

symbol

indicates

one

blank

position.

IBM

Confidential

xii

Common

Queue

Server

Guide

and

Reference

Other

syntax

conventions

include

the

following:

v

When

you

enter

commands,

separate

parameters

and

keywords

by

at

least

one

blank

if

there

is

no

intervening

punctuation.

v

Footnotes

are

shown

by

a

number

in

parentheses,

for

example,

(1).

v

Parameters

with

number

values

end

with

the

symbol

#.

v

Parameters

that

are

names

end

with

’name’.

v

Parameters

that

can

be

generic

end

with

the

symbol

*.

Syntax

Diagram

Example

Here

is

an

example

syntax

diagram

that

describes

the

hello

command.

��

hello

Name

Greeting

��

Name:

�

,

(1)

name

Greeting:

(2)

,

your_greeting

Notes:

1 You

can

code

up

to

three

names.

2 Compose

and

add

your

own

greeting

(for

example,

how

are

you?).

According

to

the

syntax

diagram,

these

commands

are

all

valid

versions

of

the

hello

command:

hello

hello

name

hello

name,

name

hello

name,

name,

name

hello,

your_greeting

hello

name,

your_greeting

hello

name,

name,

your_greeting

hello

name,

name,

name,

your_greeting

The

space

before

the

name

value

is

significant.

If

you

do

not

code

name,

you

must

still

code

the

comma

before

your_greeting.

How

to

Send

Your

Comments

Your

feedback

is

important

in

helping

us

provide

the

most

accurate

and

highest

quality

information.

If

you

have

any

comments

about

this

or

any

other

IMS

information,

you

can

do

one

of

the

following:

v

Go

to

the

IMS

Library

page

at

www.ibm.com/software/data/ims/library.html

and

click

the

Library

Feedback

link,

where

you

can

enter

and

submit

comments.

IBM

Confidential

About

This

Book

xiii

v

Send

your

comments

by

e-mail

to

imspubs@us.ibm.com.

Be

sure

to

include

the

title,

the

part

number

of

the

title,

the

version

of

IMS,

and,

if

applicable,

the

specific

location

of

the

text

you

are

commenting

on

(for

example,

a

page

number

in

the

PDF

or

a

heading

in

the

Information

Center).

IBM

Confidential

xiv

Common

Queue

Server

Guide

and

Reference

Summary

of

Changes

Changes

to

the

Current

Edition

of

This

Book

for

IMS

Version

9

This

edition

contains

editorial

changes.

In

addition,

the

Glossary

formerly

located

in

Chapter

1,

“Introduction,”

on

page

1

has

been

removed.

Refer

to

IMS

Version

9

Master

Index

and

Glossary

for

definitions

of

the

terms

previously

defined

in

this

book.

Changes

to

This

Book

for

IMS

Version

9

This

edition

is

a

draft

version

of

the

book

intended

for

use

during

the

Quality

Partnership

Program

(QPP).

Contents

of

this

book

are

preliminary

and

under

development.

New

information

on

the

following

enhancements

is

included:

v

Optional

EMHQ

Structure

for

Shared

Queues:

see

“CQS

Local

Structure

Definition

PROCLIB

Member

(CQSSLxxx)”

on

page

17

and

“CQS

Global

Structure

Definition

PROCLIB

Member

(CQSSGxxx)”

on

page

19.

In

addition,

the

index

has

been

expanded

for

enhanced

retrievability.

Library

Changes

for

IMS

Version

9

Changes

to

the

IMS

Library

for

IMS

Version

9

include

the

addition

of

new

titles,

the

change

of

one

title,

and

a

major

terminology

change.

Changes

are

indicated

by

a

vertical

bar

(|)

to

the

left

of

the

changed

text.

New

and

Revised

Titles

The

following

list

details

the

major

changes

to

the

IMS

Version

9

library:

v

IMS

Version

9:

HALDB

Online

Reorganization

Guide

The

library

includes

new

information:

IMS

Version

9:

HALDB

Online

Reorganization

Guide.

This

information

is

available

only

in

PDF

and

BookManager

formats.

v

IMS

Version

9:

An

Introduction

to

IMS

The

library

includes

new

information:

IMS

Version

9:

An

Introduction

to

IMS.

v

The

information

formerly

titled

IMS

Version

8:

IMS

Java

User’s

Guide

is

now

titled

IMS

Version

9:

IMS

Java

Guide

and

Reference.

v

The

library

includes

new

information:

IMS

Version

9:

IMS

Connect

Guide

and

Reference.

This

information

is

available

only

in

PDF

and

BookManager

formats.

Terminology

Changes

IMS

Version

9

introduces

new

terminology

for

IMS

commands:

type-1

command

A

command,

generally

preceded

by

a

leading

slash

character,

that

can

be

entered

from

any

valid

IMS

command

source.

In

IMS

Version

8,

these

commands

were

called

classic

commands.

type-2

command

A

command

that

is

entered

only

through

the

OM

API.

Type-2

commands

IBM

Confidential

©

Copyright

IBM

Corp.

1997,

2004

xv

|
|
|
|

|

|
|
|

|

|
|
|

|

are

more

flexible

and

can

have

a

broader

scope

than

type-1

commands.

In

IMS

Version

8,

these

commands

were

called

IMSplex

commands

or

enhanced

commands.

Accessibility

Enhancements

Accessibility

features

help

a

user

who

has

a

physical

disability,

such

as

restricted

mobility

or

limited

vision,

to

use

software

products.

The

major

accessibility

features

in

z/OS

products,

including

IMS,

enable

users

to:

v

Use

assistive

technologies

such

as

screen

readers

and

screen

magnifier

software

v

Operate

specific

or

equivalent

features

using

only

the

keyboard

v

Customize

display

attributes

such

as

color,

contrast,

and

font

size

User

Assistive

Technologies

Assistive

technology

products,

such

as

screen

readers,

function

with

the

IMS

user

interfaces.

Consult

the

documentation

of

the

assistive

technology

products

for

specific

information

when

you

use

assistive

technology

to

access

these

interfaces.

Accessible

Information

Online

information

for

IMS

Version

9

is

available

in

BookManager

format,

which

is

an

accessible

format.

All

BookManager

functions

can

be

accessed

by

using

a

keyboard

or

keyboard

shortcut

keys.

BookManager

also

allows

you

to

use

screen

readers

and

other

assistive

technologies.

The

BookManager

READ/MVS

product

is

included

with

the

z/OS

base

product,

and

the

BookManager

Softcopy

Reader

(for

workstations)

is

available

on

the

IMS

Licensed

Product

Kit

(CD),

which

you

can

download

from

the

Web

at

www.ibm.com.

Keyboard

Navigation

of

the

User

Interface

Users

can

access

IMS

user

interfaces

using

TSO/E

or

ISPF.

Refer

to

the

z/OS

V1R1.0

TSO/E

Primer,

the

z/OS

V1R1.0

TSO/E

User’s

Guide,

and

the

z/OS

V1R1.0

ISPF

User’s

Guide,

Volume

1.

These

guides

describe

how

to

navigate

each

interface,

including

the

use

of

keyboard

shortcuts

or

function

keys

(PF

keys).

Each

guide

includes

the

default

settings

for

the

PF

keys

and

explains

how

to

modify

their

functions.

IBM

Confidential

xvi

Common

Queue

Server

Guide

and

Reference

Chapter

1.

Introduction

The

Common

Queue

Server

Guide

and

Reference

is

designed

to

help

programmers,

operators,

and

system

support

personnel

perform

these

tasks:

v

Plan

for

and

design

the

installation

of

Common

Queue

Server

(CQS)

v

Install

and

operate

CQS

v

Diagnose

and

recover

from

CQS

system

problems

v

Write

a

CQS

client

In

this

Chapter:

v

“Common

Queue

Server

Overview”

v

“Planning

for

CQS

Hardware

and

Software

Requirements”

on

page

6

This

section

contains

General-Use

Programming

Interface

information.

Common

Queue

Server

Overview

Common

Queue

Server

(CQS)

is

a

generalized

server

that

manages

data

objects

on

a

coupling

facility

list

structure,

such

as

a

queue

structure

or

a

resource

structure,

on

behalf

of

multiple

clients.

CQS

receives,

maintains,

and

distributes

data

objects

from

shared

queues

on

behalf

of

multiple

clients.

Each

client

has

its

own

CQS

access

the

data

objects

on

the

coupling

facility

list

structure.

IMS

is

one

example

of

a

CQS

client

that

uses

CQS

to

manage

both

its

shared

queues

and

shared

resources.

Related

Reading:

See

z/OS

MVS

Setting

Up

a

Sysplex

for

complete

details

about

setting

up

a

sysplex.

CQS

runs

on

a

z/OS®

operating

system.

The

CQS

client

must

also

run

under

the

same

z/OS

operating

system.

CQS

runs

in

a

separate

address

space

that

can

be

started

by

the

client.

CQS

uses

the

z/OS

coupling

facility

as

a

repository

for

data

objects.

Storage

in

a

coupling

facility

is

divided

into

distinct

objects

called

structures.

Authorized

programs

use

structures

to

implement

data

sharing

and

high-speed

serialization.

The

coupling

facility

stores

and

arranges

the

data

according

to

list

structures.

Queue

structures

contain

collections

of

data

objects

that

share

the

same

name,

known

as

queues.

Resource

structures

contain

data

objects

organized

as

uniquely

named

resources.

Clients

communicate

with

CQS

using

CQS

requests

that

are

supported

by

CQS

macro

statements.

Using

these

macros,

CQS

clients

can

communicate

with

CQS

and

manipulate

client

data

on

shared

coupling

facility

structures.

Figure

1

on

page

2

shows

the

communications

and

the

relationship

between

clients,

CQSs,

and

the

coupling

facility.

IBM

Confidential

©

Copyright

IBM

Corp.

1997,

2004

1

Related

Reading:

CQS

requests

are

described

in

Chapter

6,

“CQS

Client

Requests,”

on

page

79.

CQS

Benefits

CQS

enables

users

to

take

advantage

of

the

benefits

of

a

Parallel

Sysplex®

environment.

These

benefits

include:

v

Automatic

work

load

balancing

CQS

places

data

objects

on

shared

queues

where

they

can

be

processed

by

any

participating

client

system.

Any

participating

client

system

can

use

CQS

to

retrieve

a

data

object

from

the

shared

queues.

v

Incremental

growth

Customers

can

add

new

systems

as

workload

increases.

v

Reliability

For

both

shared

queues

and

resources,

if

one

client

system

fails,

the

remaining

client

systems

process

the

work.

CQS

Components

CQS

maintains

the

following

components:

v

Primary

structure

A

z/OS

coupling

facility

list

structure

that

contains

shared

queues.

v

Resource

structure

A

z/OS

coupling

facility

list

structure

that

contains

uniquely

named

resources.

v

Overflow

structure

A

z/OS

coupling

facility

list

structure

that

contains

shared

queues

when

the

primary

structure

reaches

an

installation-specified

overflow

threshold.

The

overflow

structure

is

optional.

v

z/OS

log

stream

A

shared

z/OS

log

stream

that

contains

all

CQS

log

records

from

all

CQSs

connected

to

a

structure

pair.

This

log

stream

is

important

for

recovery

of

shared

queues,

if

necessary.

Each

structure

pair

has

an

associated

log

stream.

v

Checkpoint

data

set

A

local

data

set

that

contains

CQS

system

checkpoint

information.

Figure

1.

Client

Systems,

CQS,

and

the

Coupling

Facility

CQS

Overview IBM

Confidential

2

Common

Queue

Server

Guide

and

Reference

|
|
|

v

Structure

recovery

data

sets

(SRDS)

Shared

data

sets

that

contain

structure

checkpoint

information

for

shared

queues

on

a

structure

pair.

Each

structure

pair

has

two

associated

SRDSs.

CQS

Functions

CQS

provides

the

following

functions:

v

CQS

requests

An

architected

interface

that

clients

use

to

access

CQS

or

data

objects

on

a

queue

structure

or

a

resource

structure.

v

Notification

of

work

on

a

queue

Clients

register

interest

in

the

shared

queues.

If

an

empty

queue

becomes

non-empty,

CQS

notifies

its

registered

clients.

v

Records

restart

and

recovery

information

CQS

records

all

the

information

necessary

for

restart

and

recovery

in

the

z/OS

system

logger.

v

CQS

system

checkpoint

CQS

system

checkpoint

writes

log

records

relating

to

a

particular

CQS

to

the

CQS

log.

The

log

records

contain

information

necessary

for

CQS

to

restart

and

recover

work.

v

Structure

checkpoint

The

structure

checkpoint

copies

the

queues

from

a

structure

pair

into

an

SRDS

for

recovery

purposes.

v

Structure

rebuild

Structure

rebuild

is

a

z/OS

process

that

allows

another

instance

of

a

structure

to

be

allocated

with

the

same

name

and

data

reconstructed

from

the

initial

structure

instance.

v

Overflow

processing

CQS

provides

an

overflow

option

to

help

prevent

a

queue

full

condition.

When

the

primary

list

structure

reaches

the

overflow

threshold

value,

CQS

attempts

to

dynamically

increase

the

size

of

the

primary

structure,

offload

selected

queues

to

an

overflow

structure,

or

reject

requests

for

selected

queues.

Structures

Managed

by

CQS

CQS

can

manage

queue

structures,

resource

structures,

or

both

types

of

structures.

Queue

Structures

A

queue

structure

is

a

coupling

facility

list

structure

that

contains

a

collection

of

data

objects,

some

of

which

might

have

the

same

name.

Data

objects

that

have

the

same

name

are

considered

to

be

on

the

same

queue.

Queue

structures

support

structure

overflow,

in

which

an

associated

overflow

structure

can

be

allocated

to

prevent

the

queue

structure

from

becoming

full.

A

primary

queue

structure

and

its

associated

overflow

structure

are

known

as

a

structure

pair.

CQS

physically

divides

the

queue

structure

list

headers

into

11

private

queue

types

for

CQS

use

and

11

client

queue

types

for

client

use.

Client

queue

types

are

defined

by

the

client.

A

client

can

group

queues

associated

with

a

type

of

work,

such

as

transactions.

A

queue

type

can

have

a

value

of

1

to

255.

Any

queue

type

over

11

is

mapped

into

one

of

the

physical

queue

types.

CQS

OverviewIBM

Confidential

Chapter

1.

Introduction

3

|
|
|

CQS

manages

private

queues

and

client

queues

on

queue

structures.

CQS

uses

the

private

queue

types

to

manipulate

client

data

objects

for

CQS

requests.

Each

client

queue

type

can

be

used

by

a

client

for

a

different

type

of

work.

A

client

registers

interest

in

only

those

queue

types

that

it

can

process,

based

on

the

types

of

work

you

define

for

it.

Five

of

the

private

queue

types,

and

the

work

that

a

client

processes

on

them,

are

shown

in

Table

2.

Table

2.

Private

Queue

Types

Managed

by

CQS

Queue

Type

Description

Cold

queue

Contains

data

objects

that

are

in

doubt

for

a

client

or

for

a

CQS

that

cold

started

Control

queue

Contains

control

list

entries

that

CQS

uses

to

manage

list

structures

and

control

processes

(such

as

structure

checkpoint

and

structure

recovery)

Delete

queue

Intermediate

queue

used

for

CQSDEL

request

processing

Lock

queue

Contains

data

objects

that

are

locked

by

the

CQSREAD

request

Move

queue

Intermediate

queue

used

for

CQSMOVE

request

processing

Resource

Structures

A

resource

structure

is

a

coupling

facility

list

structure,

used

by

the

Common

Service

Layer’s

Resource

Manager

and

managed

by

CQS,

that

contains

uniquely

named

resources.

This

structure

is

typically

used

to

maintain

global

resource

information

when

multiple

Resource

Managers

exist

in

an

IMSplex.

Resource

structures

enable

CQS

to

perform

resource

management

in

an

IMSplex.

CQS

physically

divides

the

resource

structure

list

headers

into

11

private

resource

types

for

CQS

use

and

11

client

resource

types

for

client

use.

Client

resource

types

are

defined

by

the

client.

A

resource

type

can

have

a

value

of

1

to

255.

Any

resource

type

over

11

is

mapped

into

one

of

the

physical

resource

types.

Clients

can

use

the

resource

structure

to

share

resource

information,

control

block

information,

and

other

types

of

information.

The

resource

name

is

unique

within

the

structure.

Resources

can

be

updated,

queried,

or

deleted.

A

primary

coupling

facility

list

structure

is

used

to

contain

the

resources.

CQS

Structure

Functions

CQS

provides

functions

for

monitoring

structure

status

and

capacity,

and

enabling

structure

recovery.

Some

of

these

functions

are

built-in

and

do

not

require

intervention.

Other

functions

are

optional,

and

can

be

set

up

or

initiated

as

your

installation

needs

them.

Structure

Overflow

CQS

provides

a

structure

overflow

function

that

automatically

warns

you

when

a

queue

structure

is

approaching

full

and

takes

action

to

prevent

a

full

structure.

When

the

usage

of

a

structure

reaches

the

overflow

threshold,

CQS

attempts

to

make

the

structure

larger

by

initiating

a

structure

alter.

If

the

alter

fails,

CQS

either

allocates

an

overflow

structure

and

moves

selected

queues

to

the

overflow

structure

(if

you

define

an

overflow

structure),

or

prevents

new

data

objects

from

being

put

on

the

selected

queues.

Important:

Overflow

processing

is

not

supported

for

resource

structures.

CQS

Overview IBM

Confidential

4

Common

Queue

Server

Guide

and

Reference

Related

Reading:

For

detailed

information

about

monitoring

queue

structure

sizes

and

customizing

CQS

behavior

in

an

overflow

situation,

see

“Preventing

CQS

Structure

Full”

on

page

37.

Structure

Rebuild

Structure

rebuild

is

a

z/OS

process

that

allows

another

instance

of

a

structure

to

be

allocated

with

the

same

name

and

contain

data

reconstructed

from

the

initial

structure

instance.

z/OS

supports

system-managed

rebuild,

in

which

case

z/OS

rebuilds

the

structure.

z/OS

also

supports

user-managed

rebuild;

the

user

rebuilds

the

structure.

Structure

rebuild

can

be

initiated

manually

by

using

an

operator

command,

or

automatically

by

CQS

or

z/OS.

CQS

allows

system-managed

rebuild

for

queue

structures

and

resource

structures.

CQS

provides

user-managed

rebuild

to

support

a

structure

copy

function

and

a

structure

recovery

function.

Structure

copy

copies

the

contents

of

a

structure

to

another

structure

for

planned

reconfiguration.

Structure

copy

is

supported

for

resource

structures

and

queue

structures.

Structure

recovery

recovers

a

structure

from

the

structure

checkpoint

data

set

and

the

CQS

log

after

a

structure

failure.

Structure

recovery

is

supported

for

queue

structures.

Related

Reading:

For

more

information

about

rebuilding

structures,

see

“Rebuilding

Structures

in

CQS”

on

page

39.

Structure

Duplexing

CQS

can

use

the

duplexing

capabilities

of

z/OS

Version

1

Release

2

or

subsequent

versions,

releases,

and

modification

levels.

Duplexing

occurs

when

the

operating

system

creates

a

duplex

(backup)

copy

of

a

structure,

then

maintains

the

two

structures

during

normal

mainline

operation.

If

a

structure

fails,

or

a

connection

to

a

structure

is

lost,

the

operating

system

switches

to

the

unaffected

structure

instance.

Structure

duplexing

requires

z/OS

Version

1

Release

2

or

subsequent

versions,

releases,

and

modification

levels.

Related

Reading:

Refer

to

Chapter

3,

“CQS

Administration,”

on

page

27

for

more

information

about

setting

up

and

using

structure

duplexing.

CQS

Recovery

Functions

CQS

provides

functions

for

recovering

work-in-progress,

queues,

and

resources

in

case

of

system

shutdown

or

failure.

Some

of

these

recovery

functions

are

built-in

and

do

not

require

intervention.

Other

functions

are

optional

and

can

be

set

up

or

initiated

as

you

need

them.

System

Checkpoint

To

enable

CQS

restart

in

the

event

of

failure,

CQS

periodically

takes

a

”snapshot”

of

all

control

blocks

and

tables,

and

writes

that

information

to

the

z/OS

log.

That

process

is

called

system

checkpoint.

System

checkpoint

can

be

initiated

by

CQS,

the

client,

or

manually

with

an

IMS

command.

Related

Reading:

See

“Using

CQS

System

Checkpoint”

on

page

34

and

“CQS

Structure

Event

User-Supplied

Exit

Routine”

on

page

62

for

detailed

information

about

when

system

checkpoint

occurs,

the

specific

data

that

gets

collected,

and

how

that

data

is

used

during

recovery.

CQS

OverviewIBM

Confidential

Chapter

1.

Introduction

5

CQS

Logging

and

the

z/OS

System

Logger

CQS

always

uses

the

z/OS

system

logger

to

record

information

necessary

for

CQS

to

recover

queue

structures

and

restart.

CQS

writes

log

records

for

each

coupling

facility

list

structure

pair

that

it

uses

to

a

separate

log

stream.

The

log

stream

is

shared

among

all

CQS

address

spaces

that

share

the

structure.

The

system

logger

provides

a

merged

log

for

all

CQS

address

spaces

that

are

sharing

queues

on

a

coupling

facility

list

structure.

Important:

Changes

to

resource

structures

are

not

logged.

Related

Reading:

For

more

information

about

logging,

see

“Recording

Information

Necessary

for

Starting

CQS”

on

page

28.

Structure

Checkpoint

To

enable

queue

structure

recovery

in

case

of

failure,

CQS

periodically

takes

a

”snapshot”

of

the

queues

on

all

queue

structures.

That

process

is

called

structure

checkpoint.

Structure

checkpoint

can

be

initiated

by

CQS,

the

client,

or

manually

with

an

IMS

command.

Important:

Structure

checkpoint

is

not

supported

for

resource

structures.

Related

Reading:

See

“Using

CQS

Structure

Checkpoint”

on

page

35

and

“CQS

Structure

Statistics

User-Supplied

Exit

Routine”

on

page

53

for

detailed

information

about

when

structure

checkpoint

occurs,

what

data

gets

collected,

and

how

that

data

is

used

during

recovery.

CQS

Client

Requests

CQS

client

systems

communicate

with

CQS

using

a

general

use

interface

consisting

of

CQS

requests.

CQS

requests

are

described

in

Chapter

6,

“CQS

Client

Requests,”

on

page

79.

Planning

for

CQS

Hardware

and

Software

Requirements

Refer

to

the

IMS

Version

9:

Release

Planning

Guide

for

complete

information

about

the

minimum

hardware

and

software

requirements,

including

operating

system

requirements,

for

setting

up

and

running

a

CQS.

Related

Reading:

See

OS/390

Parallel

Sysplex

Hardware

and

Software

Migration

for

more

information

on:

v

The

planning

required

to

migrate

to

a

sysplex

that

uses

a

coupling

facility

v

Hardware

configurations

of

a

sysplex

v

The

software

products

that

can

use

the

coupling

facility

v

The

tasks

for

migrating

to

a

coupling

environment

v

Checklists

for

installing

the

sysplex

hardware

and

software

CQS

Overview IBM

Confidential

6

Common

Queue

Server

Guide

and

Reference

Chapter

2.

CQS

Definition

and

Tailoring

This

section

describes

the

tasks

of

defining

and

tailoring

CQS.

It

provides

detailed

descriptions

of

macros,

procedures,

and

other

system-oriented

information.

In

this

section:

“CQS

As

Part

of

a

Sysplex”

“CQS

and

Defining

z/OS

Policies”

“CQS’s

Support

of

Multiple

Clients”

on

page

11

“Preparing

to

Start

CQS”

on

page

12

“Updating

z/OS

Program

Properties

Table

for

CQS”

on

page

13

“CQS

Execution

Parameters”

on

page

14

“CQS

Initialization

Parameters

PROCLIB

Member

(CQSIPxxx)”

on

page

16

“CQS

Local

Structure

Definition

PROCLIB

Member

(CQSSLxxx)”

on

page

17

“CQS

Global

Structure

Definition

PROCLIB

Member

(CQSSGxxx)”

on

page

19

“CQS

Execution

Data

Sets”

on

page

24

“CQS

System

Checkpoint

Data

Set”

on

page

24

“CQS

Structure

Recovery

Data

Sets”

on

page

25

This

section

contains

Product-sensitive

Programming

Interface

information.

CQS

As

Part

of

a

Sysplex

An

IMS

sysplex

typically

consists

of

the

following

software,

hardware,

and

z/OS

policies:

v

CQS

for

managing

shared

queues

and

resources

v

CQS

clients

v

z/OS

Operating

System

v

Signaling

paths

between

systems

v

Sysplex

Couple

Data

Set

that

contains

z/OS

information

related

to

the

sysplex

v

Sysplex

Failure

Management

(SFM)

policy

v

Automatic

Restart

Management

(ARM)

policy

v

System

Logger

(LOGR)

policy

v

Coupling

facility

to

contain

CQS

structures

“CQS

and

Defining

z/OS

Policies,”

provides

guidance

on

how

to

define

the

coupling

facility

resource

management

(CFRM),

SFM,

and

LOGR

policies

for

a

typical

IMS

sysplex

using

CQS.

“CQS

Execution

Data

Sets”

on

page

24

and

“Using

the

z/OS

Automatic

Restart

Manager

with

CQS”

on

page

31

provide

guidance

on

using

the

Automatic

Restart

Manager

with

CQS.

Related

Reading:

For

detailed

information

about

setting

up

and

configuring

a

sysplex,

refer

to

z/OS

MVS

Setting

Up

a

Sysplex.

CQS

and

Defining

z/OS

Policies

CQS

is

a

component

of

IMS.

Before

you

enable

a

CQS,

however,

you

must

define

how

the

CQS

is

to

use

certain

z/OS

services.

The

definitions

are

specified

in

policies.

IBM

Confidential

©

Copyright

IBM

Corp.

1997,

2004

7

Definition:

A

policy

is

a

set

of

rules

and

actions

that

systems

in

a

sysplex

must

follow

when

using

certain

z/OS

services.

A

policy

allows

z/OS

to

manage

specific

resources

in

compliance

with

your

system

and

resource

requirements,

but

with

little

operator

intervention.

A

policy

can

be

set

up

to

govern

all

systems

in

the

sysplex

or

only

selected

systems.

You

might

need

to

define

more

than

one

policy

to

allow

for

varying

workloads,

configurations,

or

other

installation

requirements

at

different

times.

For

example,

you

might

need

to

define

one

policy

for

your

prime

shift

operations

and

another

policy

for

other

shifts.

Although

you

can

define

more

than

one

policy

of

each

type

(except

for

system

logger)

only

one

policy

of

each

type

can

be

active

at

a

time.

For

system

logger,

only

one

LOGR

policy

is

in

the

sysplex.

The

following

policies

are

used

by

z/OS

for

systems

management

in

a

sysplex

environment

and

are

required

for

the

CQS:

v

The

automatic

restart

management

(ARM)

policy

defines

how

z/OS

is

to

manage

restarts

for

specific

z/OS

jobs

and

started

tasks

that

are

registered

as

elements

of

automatic

restart

management.

v

The

coupling

facility

resource

management

(CFRM)

policy

allows

you

to

define

how

z/OS

manages

coupling

facility

resources.

One

of

the

definitions

in

the

CFRM

policy

is

the

coupling

facility

structure

sizes.

For

more

information

on

determining

these

sizes,

see

“Determining

Structure

Size

for

CQS

Connections”

on

page

12.

Users

who

do

not

intend

to

use

Shared

Expedited

Message

Handler

(Shared

EMH)

processing

in

a

sysplex

can

disable

the

EMH

queue

(EMHQ).

In

a

CQS

environment,

you

must

modify

the

CQSSLxxx

and

CQSSGxxx

PROCLIB

members

to

disable

EMHQ

usage.

See

“CQS

Local

Structure

Definition

PROCLIB

Member

(CQSSLxxx)”

on

page

17

and

“CQS

Global

Structure

Definition

PROCLIB

Member

(CQSSGxxx)”

on

page

19

for

additional

information.

v

The

system

logger

policy

(LOGR)

allows

you

to

define,

update,

or

delete

structure

or

log

stream

definitions.

You

must

specify

the

MAXBUFSIZE

parameter

in

the

LOGR

policy

with

a

value

that

is

large

enough

to

contain

the

largest

log

record

written

by

CQS.

Recommendation:

Specify

the

MAXBUFSIZE

parameter

as

65

272

bytes.

v

The

sysplex

failure

management

(SFM)

policy

allows

you

to

define

responses

for

system

failures,

signalling-connectivity

failures

in

the

sysplex

and

reconfiguring

systems

in

a

Processor

Resource/Systems

Manager™

(PR/SM™)

environment.

The

SFM

policy

is

optional.

Figure

2

on

page

10

shows

an

example

of

a

CFRM

policy

that

defines

the

following

IMS

resources:

v

EMHQ

primary

structure

v

EMHQ

overflow

structure

v

EMHQ

log

structure

v

v

Message

queue

(MSGQ)

primary

structure

v

MSGQ

overflow

structure

v

MSGQ

log

structure

v

Resource

structure

Figure

3

on

page

11

shows

an

example

of

how

the

LOGR

policy

can

be

defined.

Figure

4

on

page

11

shows

an

example

of

how

the

SFM

policy

can

be

defined.

Defining

MVS

Policies IBM

Confidential

8

Common

Queue

Server

Guide

and

Reference

|
|
|
|
|
|

Requirement:

Run

each

policy

that

you

create

as

a

separate

job.

If

you

attempt

to

run

all

policies

together

as

one

job,

the

job

will

fail.

Related

Reading:

For

information

on

defining

and

activating

policies,

see:

v

z/OS

MVS

Setting

Up

a

Sysplex

for

the

CFRM,

SFM,

LOGR,

and

ARM

policies

v

z/OS

MVS

Programming:

Assembler

Services

Guide

for

the

LOGR

policy.

The

example

in

Figure

2

on

page

10

shows

you

how

to

define

IMS

resources

in

the

CFRM

policy.

Defining

MVS

PoliciesIBM

Confidential

Chapter

2.

CQS

Definition

and

Tailoring

9

//CFRMPLCY

JOB

MSGCLASS=A,REGION=2000K,CLASS=K

//

MSGLEVEL=(1,1)

//***

//*

This

JCL

is

used

for

configuration.

INITSIZE

is

*

//*

used

for

the

primary

MSGQ

and

EMHQ

structures.

*

//***

//*

2

CF

*

//***

//POLICY

EXEC

PGM=IXCM2APU

//STEPLIB

DD

DSN=SYS1.MIGLIB,DISP=SHR

//SYSPRINT

DD

SYSOUT=A

//SYSIN

DD

*

DATA

TYPE(CFRM)

DEFINE

POLICY

NAME(CONFIG01)

REPLACE(YES)

CF

NAME

(CF01)

TYPE(nnnnnn)

MFG(aa)

PLANT(nn)

SEQUENCE(nnnnnnnnnnnn)

PARTITION(n)

CPCID(nn)

CF

NAME

(CF02)

TYPE(nnnnnn)

MFG(aa)

PLANT(nn)

SEQUENCE(nnnnnnnnnnnn)

PARTITION(n)

CPCID(nn)

.

.

.

STRUCTURE

NAME(QMSGIMS01)

SIZE(16000)

INITSIZE(8000)

PREFLIST(CF01,CF02)

REBUILDPERCENT(1)

STRUCTURE

NAME(QMSGIMS01OFLW)

SIZE(8000)

PREFLIST(CF01,CF02)

REBUILDPERCENT(1)

STRUCTURE

NAME(QEMHIMS01)

SIZE(16000)

INITSIZE(10000)

PREFLIST(CF01,CF02)

REBUILDPERCENT(1)

STRUCTURE

NAME(QEMHIMS01OFLW)

SIZE(8000)

PREFLIST(CF01,CF02)

REBUILDPERCENT(1)

Figure

2.

Defining

IMS

Resources

in

the

CFRM

Policy

(Part

1

of

2)

Defining

MVS

Policies IBM

Confidential

10

Common

Queue

Server

Guide

and

Reference

The

example

in

Figure

3

shows

you

how

to

define

IMS

resources

in

the

LOGR

policy.

The

example

in

Figure

4

shows

you

how

to

define

IMS

resources

in

the

SFM

policy.

CQS’s

Support

of

Multiple

Clients

You

can

use

one

CQS

address

space

to

support

multiple

clients.

Examples

of

clients

are

IMS

and

RM.

As

many

as

32

different

clients

on

the

same

z/OS

image

can

connect

to

coupling

facility

structures

through

a

single

CQS

by

using

the

CQSCONN

request.

For

example,

as

many

as

32

different

IMS

control

regions

can

specify

the

same

STRUCTURE

NAME(MVSLOGQMSG01)

SIZE(16000)

INITSIZE(11000)

PREFLIST(CF01,CF02)

STRUCTURE

NAME(MVSLOGQEMH01)

SIZE(4000)

PREFLIST(CF01,

CF02)

REBUILDPERCENT(1)

STRUCTURE

NAME(QRSCIMS01)

SIZE(16000)

INITSIZE(8000)

ALLOWAUTOALT(YES)

FULLTHRESHOLD(60)

DUPLEX(ALLOWED)

PREFLIST(CF01,CF02)

.

.

.

Figure

2.

Defining

IMS

Resources

in

the

CFRM

Policy

(Part

2

of

2)

DATA

TYPE(LOGR)

DEFINE

STRUCTURE

NAME(MVSLOGQMSG01)

LOGSNUM(1)

AVGBUFSIZE(4096)

MAXBUFSIZE(65272)

DEFINE

LOGSTREAM

NAME

(SYSLOG.QMSG01.LOG)

STRUCTNAME(MVSLOGQMSG01)

LS_MGMTCLAS(aaa)

HLQ(IXGLOGR)

LS_SIZE(nnn)

Figure

3.

Defining

IMS

Resources

in

the

LOGR

Policy

DATA

TYPE(SFM)

DEFINE

POLICY

NAME(SFMPOL)

REPLACE(YES)

CONNFAIL(YES)

SYSTEM

NAME

(*)

WEIGHT(10)

ISOLATETIME(5)

/*

Figure

4.

Defining

IMS

Resources

in

the

SFM

Policy

Defining

MVS

PoliciesIBM

Confidential

Chapter

2.

CQS

Definition

and

Tailoring

11

CQS=xxx

parameter

in

the

DFSSQxx

PROCLIB

member.

IMS

starts

the

CQS

address

space

if

it

is

not

currently

active.

If

CQS

is

already

active,

IMS

registers

with

the

active

CQS

address

space

and

does

not

start

an

additional

CQS

address

space.

Be

sure

that

not

more

than

32

IMSs

or

RMs

specify

the

same

CQS.

Determining

Structure

Size

for

CQS

Connections

The

size

of

the

structures

to

which

CQS

connects

is

defined

in

the

CFRM

policy

by

defining

the

INITSIZE

(initial

size

of

the

structure)

and

SIZE

(maximum

size

of

the

structure)

parameters.

The

initial

size

of

a

structure

on

the

coupling

facility

is

determined

by

the

value

of

the

INITSIZE

parameter

in

the

CFRM

policy.

When

the

first

CQS

connects

to

a

structure,

the

size

of

that

structure

is

the

value

specified

for

INITSIZE.

If

enough

free

space

does

not

exist

for

this

INITSIZE

value,

the

size

of

the

structure

becomes

that

of

the

available

space

in

the

coupling

facility.

To

determine

what

structure

size

to

define

in

the

CFRM

policy,

you

can

use

the

S/390®

Coupling

Facility

Structure

Sizer

Tool

(CFSizer).

CFSizer

is

a

Web-based

application

that

calculates

the

structure

size

based

on

the

input

data

you

provide.

The

CFSizer

tool

is

available

at:

www.ibm.com/servers/eserver/zseries/cfsizer.

You

can

use

structure

alter

to

change

the

structure

size

or

to

redistribute

the

objects

within

the

structure

after

it

has

been

defined.

For

information,

see

“Using

Structure

Alter

for

CQS”

on

page

34.

Preparing

to

Start

CQS

Because

they

are

a

part

of

IMS,

CQS

and

Base

Primitive

Environment

(BPE)

are

automatically

linked

into

IMS.SDFSRESL

when

you

run

the

JCLIN

jobstream.

Before

you

start

CQS,

complete

the

following

tasks:

1.

Create

a

coupling

facility

resource

management

(CFRM)

policy

that

defines

the

structures

to

which

you

want

CQS

to

connect.

The

CFRM

policy

specifies

the

name,

size,

attributes,

and

location

that

the

structure

is

to

be

assigned

when

it

is

allocated.

2.

Define

the

following

z/OS

policies:

Sysplex

failure

management

(SFM)

policy

–

Optional

System

logger

(LOGR)

policy

Automatic

restart

management

(ARM)

policy

–

Optional

3.

Activate

the

CFRM

policy

using

the

following

command:

SETXCF

START,POLICY,TYPE=CFRM,POLNAME=CONFIG01

The

structure

is

then

allocated

when

the

first

CQS

connects

to

it.

4.

If

you

are

using

the

SFM

policy,

activate

it

using

the

following

command:

SETXCF

START,POLICY,TYPE=SFM,POLNAME=SFMPOL

5.

Create

the

CQS

and

BPE

PROCLIB

members.

For

information

on

creating

BPE

PROCLIB

members,

see

IMS

Version

9:

Base

Primitive

Environment

Guide

and

Reference.

6.

Define

all

CQS

execution

data

sets.

7.

Customize

your

CQS

environment;

determine

which

exits

you

want

to

use

and

then

write

the

exits.

8.

Authorize

connections

to

CQS

structures.

9.

Update

the

z/OS

program

properties

table.

Defining

MVS

Policies IBM

Confidential

12

Common

Queue

Server

Guide

and

Reference

10.

Plan

security.

You

must

define

parameters

before

the

CQS

address

space

is

started.

These

parameters

can

be

either:

v

In

the

CQSIPxxx

PROCLIB

member

v

CQS

execution

parameters

To

customize

and

monitor

your

CQS

environment,

you

can

use

any

of

the

following

user

exit

routines:

v

CQS

Initialization/Termination

v

CQS

Client

Connection

v

CQS

Queue

Overflow

v

CQS

Structure

Statistics

v

CQS

Structure

Event

v

BPE

Statistics

Related

Reading:

v

For

more

information

on

defining

z/OS

policies,

see

“CQS

and

Defining

z/OS

Policies”

on

page

7.

v

For

more

information

on

the

CQS

initialization

parameters,

see

“CQS

Initialization

Parameters

PROCLIB

Member

(CQSIPxxx)”

on

page

16.

v

For

more

information

on

the

CQS

user

exit

routines,

see

Chapter

4,

“CQS

User-Supplied

Exit

Routines,”

on

page

47.

v

For

more

information

on

BPE

user

exit

routines,

see

the

IMS

Version

9:

Base

Primitive

Environment

Guide

and

Reference.

Updating

z/OS

Program

Properties

Table

for

CQS

You

must

add

an

entry

in

the

z/OS

program

properties

table

(PPT)

for

CQS.

The

steps

for

doing

this

are:

1.

Edit

the

SCHEDxx

member

of

the

SYS1.PARMLIB

data

set.

2.

Add

the

entry

shown

in

Figure

5

to

the

SCHEDxx

member:

3.

Take

one

of

the

following

actions

to

make

the

SCHEDxx

changes

effective:

v

Re-IPL

the

z/OS

system.

v

Issue

the

z/OS

SET

SCH=

command.

Related

Reading:

For

additional

reading

about

updating

the

program

properties

table,

see

z/OS

MVS

Initialization

and

Tuning

Reference.

PPT

PGMNAME(CQSINIT0)

/*

PROGRAM

NAME

=

CQSINIT0

*/

CANCEL

/*

PROGRAM

CAN

BE

CANCELED

*/

KEY(7)

/*

PROTECT

KEY

ASSIGNED

IS

7

*/

NOSWAP

/*

PROGRAM

IS

NON-SWAPPABLE

*/

NOPRIV

/*

PROGRAM

IS

NOT

PRIVILEGED

*/

DSI

/*

REQUIRES

DATA

SET

INTEGRITY

*/

PASS

/*

CANNOT

BYPASS

PASSWORD

PROTECTION

*/

SYST

/*

PROGRAM

IS

A

SYSTEM

TASK

*/

AFF(NONE)

/*

NO

CPU

AFFINITY

*/

NOPREF

/*

NO

PREFERRED

STORAGE

FRAMES

*/

Figure

5.

Entry

to

Be

Added

to

the

z/OS

Program

Properties

Table

Preparing

to

Start

CQSIBM

Confidential

Chapter

2.

CQS

Definition

and

Tailoring

13

CQS

Execution

Parameters

You

can

specify

the

following

execution

parameters

on

the

CQS

startup

procedure.

Read

the

descriptions

of

the

parameters

to

determine

whether

you

want

to

accept

the

system

defaults

or

to

tailor

the

system

to

fit

the

requirements

of

your

environment.

ARMRST=

Y

|

N

Specifies

whether

the

z/OS

Automatic

Restart

Manager

(ARM)

is

to

be

used

to

restart

the

CQS

address

space

after

an

abend.

If

you

specify

Y

(yes),

ARM

restarts

the

CQS

address

space

after

most

system

failures.

If

you

specify

N

(no),

ARM

does

not

restart

the

CQS

address

space

after

any

system

failure.

ARM

does

not

restart

the

CQS

address

space

if

the

CQS

abends

before

restart

is

complete.

To

restart

CQS

when

it

has

been

cancelled

by

z/OS,

you

must

specify

the

ARMRESTART

option

of

either

the

z/OS

CANCEL

or

FORCE

command.

Related

Reading:

For

information

on

the

CANCEL

and

FORCE

commands,

see

z/OS

MVS

System

Commands.

If

you

specify

this

optional

parameter,

it

overrides

the

value

you

specified

in

the

CQSIPxxx

PROCLIB

member.

BPECFG=

Specifies

the

8-character

name

of

the

BPE

configuration

PROCLIB

member.

You

can

specify

this

parameter

only

as

an

execution

parameter.

CQSGROUP=

Specifies

a

1-

to

5-character

identifier.

CQS

concatenates

this

identifier

to

the

characters

CQS

to

create

the

cross-system

coupling

facility

(XCF)

CQS

group

name.

You

must

use

the

same

identifier

for

all

CQS

address

spaces

that

share

the

same

set

of

structures.

You

can

also

use

the

same

identifier

for

the

SQGROUP=

parameter

in

the

DFSSQxxx

PROCLIB

member.

If

you

specify

this

optional

parameter,

it

overrides

the

value

specified

in

the

CQSIPxxx

PROCLIB

member.

You

must

specify

this

parameter

either

as

an

execution

parameter

or

in

the

CQSIPxxx

PROCLIB

member.

CQSINIT=

Specifies

the

3-character

suffix

for

the

CQS

initialization

parameters

PROCLIB

member,

CQSIPxxx.

You

can

specify

this

parameter

only

as

an

execution

parameter.

The

default

suffix

is

000.

SSN=

Specifies

the

name

for

the

CQS

address

space.

The

value

must

be

1

to

4

alphanumeric

characters.

If

you

specify

this

optional

parameter,

it

overrides

the

value

specified

in

the

CQSIPxxx

PROCLIB

member.

You

must

specify

this

parameter

either

as

an

execution

parameter

or

in

the

CQSIPxxx

PROCLIB

member.

This

name

is

also

used

to

create

the

CQSID,

which

is

used

in

CQS

processing.

The

CQSID

is

the

SSN

followed

by

the

characters

CQS.

Example:

If

SSN=ABC,

CQSID=ABCCQS.

Trailing

blanks

are

deleted

and

the

CQSID

is

padded

with

blanks.

STRDEFG=

Specifies

a

3-character

suffix

for

the

CQS

global

structure

definition

PROCLIB

member,

CQSSGxxx.

This

member

contains

the

parameters

related

to

the

coupling

facility

structures

that

are

common

to

all

CQS

address

spaces

that

are

CQS

Execution

Parameters IBM

Confidential

14

Common

Queue

Server

Guide

and

Reference

|
|
|
|
|
|

|

|

sharing

the

queues.

If

you

specify

this

optional

parameter,

it

overrides

the

value

specified

in

the

CQSIPxxx

PROCLIB

member.

The

default

suffix

is

000.

STRDEFL=

Specifies

a

3-character

suffix

for

the

CQS

local

structure

definition

PROCLIB

member,

CQSSLxxx.

This

member

contains

the

parameters

that

are

related

to

the

coupling

facility

structures

and

that

are

unique

to

an

individual

CQS

address

space.

If

you

specify

this

optional

parameter,

it

overrides

the

value

specified

in

the

CQSIPxxx

PROCLIB

member.

The

default

suffix

is

000.

Related

Reading:

See

information

in

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring

to

see

the

relationship

of

IMS

PROCLIB

members

and

CQS

PROCLIB

members.

Figure

6

shows

the

general

relationship

between

execution

parameters

and

PROCLIB

members.

In

the

figure,

CQSSL001

and

CQSSL002

contain

structure

definition

parameters

that

are

unique

to

each

CQS.

CQSSG00A

contains

the

structure

definition

parameters

that

are

shared

by

all

CQS

address

spaces

connected

to

the

shared

queues.

Figure

6.

Specifying

IMS

and

CQS

Parameters

CQS

Execution

ParametersIBM

Confidential

Chapter

2.

CQS

Definition

and

Tailoring

15

|

|
|
|

CQS

Initialization

Parameters

PROCLIB

Member

(CQSIPxxx)

Use

the

CQSIPxxx

PROCLIB

member

to

specify

parameters

that

are

related

to

initialization

of

the

CQS

address

space.

You

can

use

CQS

execution

parameters

to

override

certain

parameters

within

CQSIPxxx.

The

following

rules

apply

to

the

format

of

the

CQSIPxxx

member:

v

The

execution

member

consists

of

one

or

more

fixed-length

character

records.

(The

configuration

data

set

can

be

of

any

logical

record

length

(LRECL)

greater

than

eight,

but

it

must

be

of

fixed-record

format.)

v

The

rightmost

eight

columns

of

each

record

are

ignored

and

you

can

use

them

for

sequence

numbers

or

any

other

notation.

In

the

remaining

columns,

you

code

the

keyword

parameters.

For

example,

if

your

record

size

is

80,

you

use

columns

1

through

72

for

your

configuration

data.

You

can

use

columns

73

through

80

for

sequence

numbers.

v

Keywords

can

contain

leading

and

trailing

blanks.

v

Each

record

can

contain

multiple

keywords.

v

Use

commas

or

spaces

to

delimit

keywords.

v

Use

an

asterisk

(*)

or

pound

sign

(#)

in

column

one

to

begin

a

comment.

You

can

include

a

comment

anywhere

within

a

statement

by

enclosing

it

between

a

slash-asterisk

and

an

asterisk-slash

pair.

/*This

is

an

example

of

a

comment

within

a

statement*/

v

Values

coded

in

this

PROCLIB

member

are

case-sensitive.

A

sample

CQSIPxxx

PROCLIB

member

is

shown

in

Figure

7:

ARMRST=

Y

|

N

Specifies

whether

the

z/OS

Automatic

Restart

Manager

(ARM)

is

used

to

restart

the

CQS

address

space

after

an

abend.

If

you

specify

Y

(yes),

ARM

restarts

the

CQS

address

space

after

most

system

failures.

If

you

specify

N

(no),

ARM

does

not

restart

the

CQS

address

space

after

any

system

failure.

ARM

does

not

restart

the

CQS

address

space

if

the

CQS

abends

before

restart

is

complete.

To

restart

the

CQS

when

it

has

been

cancelled

by

z/OS,

you

must

specify

the

ARMRESTART

option

of

either

the

z/OS

CANCEL

or

FORCE

command.

Related

Reading:

For

information

on

the

CANCEL

and

FORCE

commands,

see

z/OS

MVS

System

Commands.

This

parameter

can

be

specified

as

an

execution

parameter

on

the

CQS

procedure

to

override

the

value

in

CQSIPxxx.

**

*

CQS

INITIALIZATION

PROCLIB

MEMBER

*

**

ARMRST=Y

/*

ARM

SHOULD

RESTART

CQS

ON

FAILURE

*/

CQSGROUP=GRUP1

/*

GROUP

NAME

(XCF

GROUP

=

GRUP1CQS)

*/

SSN=CQS1

/*

CQS

ADDRESS

SPACE

(CQSID

=

CQS1CQS)

*/

STRDEFG=190

/*

GLOBAL

STR

DEFINITION

MEMBER

=

CQSSG190

*/

STRDEFL=191

/*

LOCAL

STR

DEFINITION

MEMBER

=

CQSSL191

*/

IMSPLEX(NAME=PLEX1)

/*

IMSPLEX

NAME(CSLPLEX1)

*/

Figure

7.

Sample

CQSIPxxx

PROCLIB

Member

CQSIPxxx IBM

Confidential

16

Common

Queue

Server

Guide

and

Reference

CQSGROUP=

Specifies

a

1-

to

5-character

identifier.

CQS

concatenates

this

identifier

to

the

characters

CQS

to

create

the

group

name

of

the

XCF

CQS

shared

queues.

You

must

use

the

same

identifier

for

all

CQS

address

spaces

that

share

the

same

set

of

structures.

You

can

also

use

the

same

identifier

for

the

SQGROUP=

parameter

in

the

DFSSQxxx

PROCLIB

member.

This

parameter

can

be

specified

as

an

execution

parameter

on

the

CQS

procedure

to

override

the

value

in

CQSIPxxx.

IMSPLEX()

Specifies

the

IMSplex

to

which

CQS

joins.

IMSPLEX

is

an

optional

parameter.

IMSPLEX

does

not

have

a

default

value.

Only

one

IMSPLEX

keyword

can

be

specified.

The

IMSPLEX

definition

parameter

follows:

NAME=

A

1-

to

5-character

identifier

that

specifies

the

XCF

CSL

IMSplex

group

name.

CQS

concatenates

this

identifier

to

CSL

to

create

the

XCF

CSL

IMSplex

group

name.

All

OM,

RM,

SCI,

IMS,

CQS

and

similar

address

spaces

must

specify

the

same

to

be

part

of

the

same

IMSPlex.

The

same

identifier

must

also

be

used

for

the

IMSPLEX=

parameter

in

the

CSLSIxxx,

CSLOIxxx,

CSLRIxxx

and

DFSCGxxx

PROCLIB

members.

SSN=

Specifies

the

name

for

the

CQS

address

space.

The

value

must

be

1

to

4

alphanumeric

characters.

If

you

specify

this

optional

parameter,

it

overrides

the

value

specified

in

the

CQSIPxxx

PROCLIB

member.

You

must

specify

this

parameter

either

as

an

execution

parameter

or

in

the

CQSIPxxx

PROCLIB

member.

This

name

is

also

used

to

create

the

CQSID,

which

is

used

in

CQS

processing.

The

CQSID

is

the

SSN

followed

by

the

characters

CQS.

Example:

If

SSN=ABC,

CQSID=ABCCQS.

Trailing

blanks

are

deleted

and

the

CQSID

is

padded

with

blanks.

STRDEFG=

Specifies

a

3-character

suffix

for

the

CQS

global

structure

definition

PROCLIB

member,

CQSSGxxx.

This

member

contains

the

parameters

related

to

the

coupling

facility

structures

that

are

common

to

all

CQS

address

spaces

that

are

sharing

the

queues.

If

you

specify

this

optional

parameter,

it

overrides

the

value

specified

in

the

CQSIPxxx

PROCLIB

member.

The

default

suffix

is

000.

STRDEFL=

Specifies

a

3-character

suffix

for

the

CQS

local

structure

definition

PROCLIB

member,

CQSSLxxx.

This

member

contains

the

parameters

that

are

related

to

the

coupling

facility

structures

and

that

are

unique

to

an

individual

CQS

address

space.

If

you

specify

this

optional

parameter,

it

overrides

the

value

specified

in

the

CQSIPxxx

PROCLIB

member.

The

default

suffix

is

000.

CQS

Local

Structure

Definition

PROCLIB

Member

(CQSSLxxx)

Use

the

CQSSLxxx

PROCLIB

member

to

define

local

CQS

parameters

that

are

related

to

one

or

more

coupling

facility

structures.

Each

CQS

should

point

to

a

different

CQSSLxxx

member.

CQS

connects

to

each

defined

structure

in

the

member.

The

structures

defined

in

the

CQSSLxxx

member

must

also

be

defined

in

the

CQSSGxxx

PROCLIB

member.

Important:

The

CQSSLxxx

PROCLIB

member

applies

to

queue

structures

only,

not

resource

structures.

If

you

do

not

define

queue

structures,

you

do

not

need

to

define

the

CQSSLxxx

PROCLIB

member.

CQSIPxxxIBM

Confidential

Chapter

2.

CQS

Definition

and

Tailoring

17

|
|
|
|
|
|

|

|

The

following

rules

apply

to

the

format

of

the

CQSSLxxx

member:

v

The

execution

member

consists

of

one

or

more

fixed-length

character

records.

(The

configuration

data

set

can

be

of

any

LRECL

greater

than

eight,

but

it

must

be

of

fixed-record

format.)

v

The

rightmost

eight

columns

of

each

record

are

ignored

and

can

be

used

for

sequence

numbers

or

any

other

notation.

In

the

remaining

columns,

you

code

the

keyword

parameters.

For

example,

if

your

record

size

is

80,

you

use

columns

1

through

72

for

your

configuration

data.

You

can

use

columns

73

through

80

for

sequence

numbers.

v

Keywords

can

contain

leading

and

trailing

blanks.

v

Each

record

can

contain

multiple

keywords.

v

Commas

or

spaces

delimit

keywords.

v

A

comment

begins

with

an

asterisk

(*)

or

pound

sign

(#)

in

column

one.

You

can

include

a

comment

anywhere

within

a

statement

by

enclosing

it

between

a

slash-asterisk

and

an

asterisk-slash

pair.

/*This

is

an

example

of

a

comment

within

a

statement*/

v

Values

coded

in

this

PROCLIB

member

are

case-sensitive.

If

the

STRUCTURE

statement

for

an

EMHQ

structure

is

deleted

from

the

CQSSLxxx

PROCLIB

member,

resources

for

the

EMHQ

structure

and

its

associated

CQS

data

sets

are

not

allocated.

Use

the

following

keyword

parameters

to

define

a

structure

to

CQS.

The

structure

definition

parameters

must

be

enclosed

within

parentheses.

The

STRUCTURE

keyword

must

precede

the

left

parenthesis.

Example:

STRUCTURE

(STRNAME=strname,

CHKPTDSN=chkptdsn,

...)

STRNAME=

The

required

1-

to

16-character

name

of

the

primary

coupling

facility

structure

to

which

CQS

connects.

The

installation

must

have

defined

the

structure

in

the

coupling

facility

resource

management

(CFRM)

administrative

policy.

The

structure

name

must

follow

the

naming

rules

of

the

CFRM.

If

the

name

has

fewer

than

16

characters,

CQS

pads

the

name

with

blanks.

The

valid

characters

are

A-Z,

0-9,

and

the

characters

$,

&,

#

and

_.

Names

must

be

uppercase

and

start

with

an

alphabetic

character.

**

*

LOCAL

STRUCTURE

DEFINITION

PROCLIB

MEMBER

*

**

*

DEFINITION

FOR

IMS

MESSAGE

QUEUE

STRUCTURE

*

STRUCTURE

(

STRNAME=QMSGIMS01,

CHKPTDSN=CQSA.QMSG.IMS01.CHKPT,

SYSCHKPT=50000)

*

DEFINITION

FOR

IMS

EMH

QUEUE

STRUCTURE

*

STRUCTURE

(

STRNAME=QEMHIMS01,

CHKPTDSN=CQSA.QEMH.IMS01.CHKPT,

SYSCHKPT=50000)

Figure

8.

Sample

CQSSLxxx

PROCLIB

Member

CQSSLxxx IBM

Confidential

18

Common

Queue

Server

Guide

and

Reference

|
|
|

Restriction:

Avoid

using

names

IBM®

uses

for

its

structures.

Do

not

begin

structure

names

with

the

letters

A-I,

or

the

character

string

SYS.

CHKPTDSN=

The

required

1-

to

44-character

data

set

name

of

the

cataloged

VSAM

data

set

that

is

used

for

the

checkpoint

data

set

for

the

indicated

structure.

The

data

set

is

dynamically

allocated

by

CQS

during

CQS

initialization.

Each

structure

defined

in

CQSSLxxx

must

have

a

unique

CHKPTDSN.

SYSCHKPT=

Specifies

the

number

of

log

records

CQS

writes

between

system

checkpoints.

This

value

can

be

from

200

to

2

147

483

647.

Each

CQS

address

space

that

is

connected

to

a

queue

structure

can

specify

a

different

system

checkpoint

log

record

count.

This

value

is

not

shared

between

CQS

address

spaces.

This

parameter

has

no

default.

If

you

do

not

specify

a

value,

automatic

system

checkpoints

are

only

taken

during

restart,

normal

shutdown,

and

after

a

structure

checkpoint.

CQS

Global

Structure

Definition

PROCLIB

Member

(CQSSGxxx)

The

CQSSGxxx

PROCLIB

member

defines

global

CQS

parameters

that

are

related

to

one

or

more

coupling

facility

structures.

These

parameters

are

shared

by

all

CQS

address

spaces

that

share

the

structures.

A

particular

CQS

can

support

queue

structures,

resource

structures,

or

a

combination

of

both

queue

structures

and

resource

structures.

Each

CQS

sharing

a

structure

must

point

to

a

CQSSGxxx

member

containing

identical

structure

definition

parameters.

Recommendations:

v

Point

all

CQSs

to

the

same

CQSSGxxx

member

to

avoid

parameter

mismatches.

CQS

connects

to

each

structure

that

is

defined

in

the

member.

The

structures

defined

in

the

CQSSGxxx

member

must

also

be

defined

in

the

CQSSLxxx

PROCLIB

member.

v

If

you

are

using

queue

structures,

define

an

overflow

structure

name

OVFLWSTR=

if

there

is

a

possibility

that

you

will

use

an

overflow

structure.

If

you

have

to

add

an

overflow

structure

later,

the

structure

and

all

CQSs

must

be

cold

started.

The

following

rules

apply

to

the

format

of

the

CQSSGxxx

member:

v

The

execution

member

consists

of

one

or

more

fixed-length

character

records.

(The

configuration

data

set

can

be

of

any

LRECL

greater

than

eight,

but

it

must

be

of

fixed-record

format.)

v

The

rightmost

eight

columns

of

each

record

are

ignored

and

can

be

used

for

sequence

numbers

or

any

other

notation.

In

the

remaining

columns,

you

code

the

keyword

parameters.

For

example,

if

your

record

size

is

80,

you

use

columns

1

through

72

for

your

configuration

data.

You

can

use

columns

73

through

80

for

sequence

numbers.

v

Keywords

can

contain

leading

and

trailing

blanks.

v

Each

record

can

contain

multiple

keywords.

v

Commas

or

spaces

delimit

keywords.

v

A

comment

begins

with

an

asterisk

(*)

or

pound

sign

(#)

in

column

one.

You

can

include

a

comment

anywhere

within

a

statement

by

enclosing

it

between

a

slash-asterisk

and

an

asterisk-slash

pair.

/*This

is

an

example

of

a

comment

within

a

statement*/

v

Values

coded

in

this

PROCLIB

member

are

case-sensitive.

CQSSLxxxIBM

Confidential

Chapter

2.

CQS

Definition

and

Tailoring

19

|
|
|

If

the

STRUCTURE

statement

for

an

EMHQ

structure

is

deleted

from

the

CQSSGxxx

PROCLIB

member,

resources

for

the

EMHQ

structure

are

not

allocated.

These

resources

include

the

EMHQ

structure’s

associated

overflow

structure,

structure

recovery

data

sets,

and

CQS

log.

A

sample

CQSSGxxx

PROCLIB

member

that

defines

both

message

queue

and

resource

structures

is

shown

in

Figure

9:

Use

the

following

keywords

to

define

a

structure

to

CQS.

At

least

one

STRUCTURE

or

RSRCSTRUCTURE

definition

is

required.

STRUCTURE=

Defines

a

queue

structure

to

CQS.

This

keyword

can

be

repeated.

Keyword

parameters

must

be

enclosed

within

parentheses.

Example:

STRUCTURE

(STRNAME=strname,

SRDSDSN1=srsdsn1,

...)

The

following

keyword

parameters

are

available

to

the

STRUCTURE

definition:

STRNAME=

The

required

1-

to

16-character

name

of

the

primary

coupling

facility

structure

to

which

CQS

connects.

The

installation

must

have

defined

the

structure

name

in

the

CFRM

administrative

policy.

The

structure

name

must

follow

the

naming

rules

of

the

CFRM.

For

names

with

fewer

than

16

characters,

CQS

pads

the

name

with

blanks.

The

valid

characters

are

A-Z,

0-9,

and

the

characters

$,

&,

#

and

_.

Names

must

be

uppercase

and

start

with

an

alphabetic

character.

Restriction:

Avoid

using

names

IBM

uses

for

its

structures.

Do

not

begin

structure

names

with

the

letters

A-I,

or

with

the

character

string

SYS.

**

*

GLOBAL

STRUCTURE

DEFINITION

PROCLIB

MEMBER

**

*

DEFINITION

FOR

IMS

MESSAGE

QUEUE

STRUCTURES

*

STRUCTURE

(

STRNAME=QMSGIMS01,

OVFLWSTR=QMSGIMS01OFLW,

SRDSDSN1=CQS.QMSG.IMS01.SRDS1

SRDSDSN2=CQS.QMSG.IMS01.SRDS2,

LOGNAME=SYSLOG.QMSG01.LOG

OBJAVGSZ=1024)

*

DEFINITION

FOR

IMS

EMH

QUEUE

STRUCTURES

*

STRUCTURE

(

STRNAME=QEMHIMS01,

OVFLWSTR=QEMHIMS01OFLW,

SRDSDSN1=CQS.QEMH.IMS01.SRDS1,

SRDSDSN2=CQS.QEMH.IMS01.SRDS2,

LOGNAME=SYSLOG.QEMH01.LOG

OBJAVGSZ=1024)

*

DEFINITION

FOR

IMS

RESOURCE

STRUCTURE

*

RSRCSTRUCTURE

(STRNAME=QRSCIMS01)

Figure

9.

Sample

CQSSGxxx

PROCLIB

Member

CQSSGxxx IBM

Confidential

20

Common

Queue

Server

Guide

and

Reference

|
|
|
|

SRDSDSN1=

Is

a

required

1-

to

44-character

data

set

name

of

the

cataloged

VSAM

data

set

that

is

used

for

the

first

structure

recovery

data

set.

The

data

set

name

is

used

to

dynamically

allocate

the

data

set

when

a

structure

checkpoint

is

requested.

For

a

given

structure

checkpoint

request,

CQS

uses

either

structure

recovery

data

set

1

or

data

set

2.

CQS

alternates

between

the

two

data

sets

for

structure

checkpoint

processing.

All

CQS

address

spaces

that

connect

to

a

queue

structure

must

use

the

same

value

for

this

parameter.

The

value

specified

by

the

CQS

that

initially

allocates

the

structure

is

the

value

that

is

used

for

the

life

of

the

structure.

SRDSDSN2=

Is

a

required

1-

to

44-character

data

set

name

for

the

cataloged

VSAM

data

set

that

is

used

for

the

second

structure

recovery

data

set.

The

data

set

name

is

used

to

dynamically

allocate

the

data

set

when

a

structure

checkpoint

is

requested.

For

a

given

structure

checkpoint

request,

CQS

uses

either

structure

recovery

data

set

1

or

data

set

2.

CQS

alternates

between

the

two

data

sets

for

structure

checkpoint

processing.

All

CQS

address

spaces

that

connect

to

a

queue

structure

must

use

the

same

value

for

this

parameter.

The

value

specified

by

the

CQS

that

initially

allocates

the

structure

is

the

value

that

is

used

for

the

life

of

the

structure.

LOGNAME=

Is

the

required

1-

to

26-character

name

of

the

z/OS

log

stream

that

CQS

uses

to

record

all

information

related

to

the

structure.

The

installation

must

have

previously

defined

this

name

to

the

z/OS

system

logger.

All

CQS

address

spaces

that

connect

to

a

queue

structure

must

use

the

same

value

for

this

parameter.

The

value

specified

by

the

CQS

that

initially

allocates

the

structure

is

the

value

that

is

used

for

the

life

of

the

structure.

OBJAVGSZ=

Specifies

the

average

size

of

a

data

object

that

is

written

to

a

queue

on

this

structure.

This

value

can

range

from

128

bytes

to

61312

bytes

or

from

1K

to

59K.

The

following

list

defines

some

IMS

object

sizes:

IMS

client

The

object

size

is

the

size

of

the

IMS

message

plus

some

control

information.

IMS

queue

manager

messages

If

the

user

message

and

the

message

queue

prefix

both

fit

completely

into

one

queue

buffer,

the

object

size

is

the

sum

of

the

user

message

and

the

message

queue

prefix.

If

both

parts

do

not

completely

fit

into

one

queue

buffer,

the

object

size

is

the

size

of

the

portion

of

the

message

and

the

message

queue

prefix

that

do

fit

into

one

queue

buffer.

The

size

of

an

IMS

message

queue

buffer

is

specified

to

the

IMS

control

region

by

the

QBUFSZ

execution

parameter.

IMS

expedited

message

handler

messages

The

object

size

is

the

size

of

the

user

message

plus

240

bytes

(the

size

of

the

EMHB

global

header).

Recommendation:

Specify

the

OBJAVGSZ

to

be

the

average

of

the

sizes

of

all

the

objects

passed

to

CQS

by

a

CQSPUT

request.

CQS

adds

its

own

prefix

containing

control

information

to

every

object

placed

on

the

structure.

CQS

adds

the

length

of

its

prefix

to

the

OBJAVGSZ

value

that

you

specify

to

get

the

true

average

object

size.

Therefore,

OBJAVGSZ

should

reflect

CQSSGxxxIBM

Confidential

Chapter

2.

CQS

Definition

and

Tailoring

21

|
|
|

only

the

average

size

of

the

objects

as

they

are

passed

to

CQS,

not

the

average

size

of

the

object

on

the

coupling

facility.

If

the

OBJAVGSZ

is

too

small,

too

much

space

in

the

structure

is

allocated

for

control

information.

The

structure

becomes

full

when

all

of

the

space

for

data

is

used

up,

even

though

space

for

control

information

is

still

available.

If

the

OBJAVGSZ

is

too

large,

too

much

space

in

the

structure

is

allocated

for

data.

The

structure

becomes

full

when

all

of

the

control

space

is

used

up,

even

though

space

for

data

is

still

available.

Example:

Five

objects

are

put

on

the

structure

by

a

CQSPUT

request.

The

sizes

of

the

objects

are:

object

1

134

bytes

object

2

1066

bytes

object

3

3200

bytes

object

4

172

bytes

object

5

345

bytes

The

average

object

size

is

calculated

to

be

983

bytes.

(134

+

1066

+

3200

+

172

+

345)/5

=

983

OVFLWMAX=

Specifies

the

maximum

threshold

percentage

for

overflow

processing.

This

value

indicates

the

percentage

of

the

structure

that

must

be

in

use

before

CQS

goes

into

overflow

mode.

This

value

can

be

from

50

to

100.

For

example,

if

OVFLWMAX=75,

the

structure

is

put

into

overflow

mode

when

the

structure

usage

reaches

75%

of

the

structure

size.

The

default

is

70%.

The

value

specified

by

the

CQS

that

initially

allocates

the

structure

is

used

for

the

life

of

the

structure.

OVFLWSTR=

Is

the

1-

to

16-character

name

of

the

optional

coupling

facility

structure

to

which

CQS

connects

for

structure

overflow

processing.

The

name

must

follow

the

same

naming

convention

as

the

structure

name

specified

by

the

STRNAME=

parameter.

When

CQS

is

processing

in

overflow

mode,

selected

queues

are

written

to

this

structure

instead

of

to

the

primary

structure.

If

an

overflow

structure

is

not

specified

and

an

overflow

condition

is

detected,

CQS

rejects

requests

to

add

data

objects

to

those

queues

that

were

selected

for

overflow.

If

an

overflow

structure

is

specified,

CQS

connects

to

the

overflow

structure

during

CQS

initialization

and

then

again

during

phase

one

of

overflow

threshold

processing.

If

CQS

detects

that

the

overflow

structure

size

is

less

than

30%

of

the

primary

structure

size,

the

overflow

structure

is

considered

to

be

too

small

and

CQS

issues

the

CQS0268I

message.

CQS

is

allowed

to

initialize

even

though

the

overflow

structure

is

too

small.

CQS

disconnects

from

and

deletes

the

overflow

structure

at

the

end

of

CQS

initialization.

CQS

does

not

attempt

to

connect

to

the

overflow

structure

again

until

the

overflow

threshold

is

reached.

If

at

that

time

the

overflow

structure

size

is

still

less

than

30%

of

the

primary

structure

size,

CQS

again

issues

the

CQS0268I

message.

CQS

goes

into

overflow

mode,

but

the

overflow

structure

is

not

used.

Requests

to

add

data

objects

to

those

queues

that

were

selected

for

overflow

are

rejected.

CQSSGxxx IBM

Confidential

22

Common

Queue

Server

Guide

and

Reference

Recommendation:

Define

the

size

of

the

overflow

structure

in

the

CFRM

policy

to

be

at

least

X%

of

the

primary

structure

size,

where

X

is

the

value

specified

for

the

OVFLWMAX=

parameter.

The

value

specified

for

the

OVFLWMAX=

parameter

indicates

the

percentage

of

the

primary

structure

that

must

be

in

use

before

CQS

goes

into

overflow

mode,

the

overflow

threshold.

For

example,

if

the

overflow

threshold

was

defined

with

the

OVFLWMAX=

parameter

to

be

75%

of

the

primary

structure

size,

the

size

of

the

overflow

structure

should

be

at

least

75%

of

the

primary

structure

size.

If

a

value

is

not

specified

for

the

OVFLWMAX=

parameter,

the

overflow

threshold

defaults

to

70%

and

the

size

of

the

overflow

structure

should

be

at

least

70%

of

the

primary

structure

size.

An

overflow

structure

name

can

be

defined

only

when

the

structure

is

cold

started.

Once

structures

have

been

allocated,

an

overflow

structure

cannot

be

added

unless

the

structure

and

all

CQSs

are

cold

started.

All

CQS

address

spaces

that

connect

to

a

queue

structure

must

use

the

same

value

for

this

parameter.

The

value

specified

by

the

CQS

that

initially

allocates

the

structure

is

used

for

the

life

of

the

structure.

STRMIN=

Specifies

the

value

for

the

minimum

primary

structure

size

to

which

CQS

can

connect.

This

value

is

specified

in

units

of

4

KB

blocks

and

can

be

any

value

from

0

to

the

maximum

structure

size

of

524288

(a

2-GB

structure).

The

default

value

is

0,

indicating

that

CQS

accepts

the

size

as

allocated

by

the

coupling

facility.

If

the

coupling

facility

is

constrained,

the

structure

can

be

allocated

to

something

smaller

than

that

defined

by

the

CFRM

policy.

Depending

on

the

size,

the

structure

might

overflow

sooner

than

expected.

Recommendation:

Specify

a

value

for

STRMIN=

that

is

less

than

the

structure

size

that

is

defined

in

the

policy.

The

value

specified

by

the

CQS

that

initially

allocates

the

structure

is

used

for

the

life

of

the

structure.

When

the

first

CQS

connects

to

an

empty

structure,

that

structure

is

allocated

on

the

coupling

facility.

After

it

is

allocated,

the

structure

remains

on

the

coupling

facility

regardless

of

whether

a

CQS

is

connected

to

it.

If,

during

connection

to

a

structure,

CQS

determines

that

the

size

of

the

structure

is

smaller

than

the

minimum

size

and

the

structure

is

empty,

CQS

terminates.

In

this

case,

the

installation

needs

to

redefine

the

use

of

the

coupling

facility

to

ensure

that

the

required

size

can

be

allocated.

If

CQS

connects

to

a

structure

that

is

smaller

than

the

minimum

size,

but

the

structure

contains

data

objects,

CQS

does

not

terminate.

CQS

attempts

to

use

the

smaller

structure

because

it

already

contains

data.

In

this

case,

CQS

issues

a

message

that

allows

an

operator

to

initiate

a

structure

rebuild

in

order

to

increase

the

structure

size.

RSRCSTRUCTURE=

Defines

a

resource

structure

to

CQS.

An

IMSplex

can

define

only

one

resource

structure;

name

uniqueness

is

within

one

resource

structure.

Keyword

parameters

must

be

enclosed

within

parentheses.

Example:

RSRCSTRUCTURE

(STRNAME=strname)

The

following

keyword

parameter

is

available:

STRNAME=

The

required

1-

to

16-character

name

of

the

coupling

facility

list

structure

to

CQSSGxxxIBM

Confidential

Chapter

2.

CQS

Definition

and

Tailoring

23

|
|
|
|

which

CQS

connects.

This

parameter

defines

the

name

of

the

resource

structure

used

by

RM

to

keep

IMS

resource

information.

The

installation

must

have

defined

the

structure

name

in

the

CFRM

administrative

policy.

The

structure

name

must

follow

the

naming

rules

of

the

CFRM.

For

names

with

fewer

than

16

characters,

CQS

pads

the

name

with

blanks.

The

valid

characters

are

A-Z,

0-9,

and

the

characters

$,

&,

#

and

_.

Names

must

be

uppercase

and

start

with

an

alphabetic

character.

Restriction:

Avoid

using

names

IBM

uses

for

its

structures.

Do

not

begin

structure

names

with

the

letters

A-I,

or

with

the

character

string

SYS.

CQS

Execution

Data

Sets

CQS

uses

two

types

of

data

sets,

the

system

checkpoint

data

set

and

the

structure

recovery

data

set.

Both

of

these

data

sets

must

be

VSAM

entry-sequenced

data

sets

(ESDSs).

These

data

sets

are

user

data

sets

(and

are

not

known

to

SMP/E).

CQS

System

Checkpoint

Data

Set

Each

CQS

address

space

that

is

connected

to

a

queue

structure

maintains

a

system

checkpoint

data

set

for

each

structure

pair.

Neither

CQS

address

spaces

nor

queue

structures

share

the

system

checkpoint

data

set.

The

CQS

initialization

process

dynamically

allocates

the

system

checkpoint

data

set.

Use

the

MVS/DFP™

DEFINE

CLUSTER

functional

command

to

define

the

data

set

to

the

installation.

Related

Reading:

For

a

description

of

the

DEFINE

CLUSTER

function

command

and

its

parameters,

see

z/OS

DFSMS

Access

Method

Services

for

Catalogs.

Requirement:

When

you

use

the

DEFINE

CLUSTER

functional

command

to

define

the

system

checkpoint

data

set,

you

must

specify

the

following

parameters:

NAME

Specifies

the

same

name

that

you

specify

using

the

CHKPTDSN=

parameter

of

the

CQS

local

structure

definition

PROCLIB

member.

NONINDEXED

Specifies

that

the

data

set

is

to

be

an

ESDS.

NONSPANNED

Specifies

that

the

records

must

be

contained

in

a

single

control

interval.

SHAREOPTIONS

Specifies

how

a

cluster

can

be

shared

among

users.

Requirement:

You

must

specify

SHAREOPTIONS

(2,3).

REUSE

Specifies

that

the

cluster

can

be

reused.

Recommendation:

The

following

parameters

are

recommended

when

you

specify

the

DEFINE

CLUSTER

functional

command:

RECORDSIZE

Specifies

the

average

and

maximum

length

in

bytes

for

the

records

in

the

cluster.

Recommendation:

Both

the

maximum

and

minimum

length

of

the

RECORDSIZE

should

be

7

bytes

less

than

the

CONTROLINTERVALSIZE.

CQSSGxxx IBM

Confidential

24

Common

Queue

Server

Guide

and

Reference

|
|
|
|

CONTROLINTERVALSIZE

Specifies

the

size

of

the

control

interval

for

the

cluster.

Requirement:

The

recommended

CONTROLINTERVALSIZE

is

512;

it

must

be

a

multiple

of

512.

Example:

An

example

of

the

system

checkpoint

data

set

is

shown

in

Figure

10:

CQS

Structure

Recovery

Data

Sets

CQS

uses

two

structure

recovery

data

sets

per

structure

pair

for

its

structure

checkpoint

processing.

Structure

recovery

data

sets

are

not

used

for

the

resource

structure.

When

a

structure

checkpoint

is

requested,

CQS

dynamically

allocates

the

structure

recovery

data

sets.

Structure

checkpoint

requests

alternate

between

the

two

structure

recovery

data

sets.

During

structure

checkpoint

processing

all

recoverable

data

objects

on

a

structure

are

written

to

the

structure

recovery

data

sets.

Thus,

the

size

of

each

data

set

should

be

approximately

the

size

of

the

primary

structure

plus

the

overflow

structure

to

ensure

that

the

entire

structure

fits

in

the

data

set.

Use

the

MVS/DFP

DEFINE

CLUSTER

functional

command

to

define

the

data

set

to

the

installation.

Related

Reading:

For

a

description

of

the

DEFINE

CLUSTER

function

command

and

its

parameters,

see

z/OS

DFSMS

Access

Method

Services

for

Catalogs.

Requirement:

When

you

use

the

DEFINE

CLUSTER

functional

command

to

define

the

structure

recovery

data

set,

you

must

specify

the

following

parameters.

NAME

Specify

the

same

name

you

specify

in

the

CQS

global

structure

definition

PROCLIB

member

using

the

SRSDSDSN1=

and

the

SRSDSDSN2=

parameters.

NONINDEXED

Specifies

that

the

data

set

is

to

be

an

ESDS.

NONSPANNED

Specifies

that

the

records

must

be

contained

in

a

single

control

interval.

SHAREOPTIONS

Specifies

how

a

cluster

can

be

shared

among

users.

Requirement:

You

must

specify

SHAREOPTIONS

(2,3).

REUSE

Specifies

that

the

cluster

can

be

reused.

Recommendation:

The

following

parameters

are

recommended

when

you

specify

the

DEFINE

CLUSTER

functional

command:

DEFINE

CLUSTER

-

(NAME

(MSGQ.CHKPT)

-

TRK(2,2)

VOL

(IMSQAV)

NONINDEXED

SHAREOPTIONS

(2,3)

-

RECSZ(505,505)

REUSE

CISZ

(512))

Figure

10.

System

Checkpoint

Data

Set

Example

Execution

Data

SetsIBM

Confidential

Chapter

2.

CQS

Definition

and

Tailoring

25

RECORDSIZE

Specifies

the

average

and

maximum

length

in

bytes

for

the

records

in

the

cluster.

Recommendation:

Both

the

maximum

and

minimum

length

of

the

RECORDSIZE

should

be

7

bytes

less

than

the

CONTROLINTERVALSIZE.

CONTROLINTERVALSIZE

Specifies

the

size

of

the

control

interval

for

the

cluster.

Requirement:

The

recommended

control

interval

size

is

32

768;

it

must

be

a

multiple

of

512.

Example:

An

example

of

the

structure

recovery

data

set

is

shown

in

Figure

11:

DEFINE

CLUSTER

-

(NAME

(MSGQ.SRDS1)

-

TRK(45,5)

VOL

(DSHR03)

NONINDEXED

SHAREOPTIONS

(2,3)

-

RECSZ(32761,32761)

REUSE

CISZ

(32768)

Figure

11.

Structure

Recovery

Data

Set

Example

Execution

Data

Sets IBM

Confidential

26

Common

Queue

Server

Guide

and

Reference

Chapter

3.

CQS

Administration

This

section

describes

the

system

administration

tasks

associated

with

using

the

Common

Queue

Server.

In

this

section:

“Starting

CQS”

“Recording

Information

Necessary

for

Starting

CQS”

on

page

28

“Restarting

CQS”

on

page

30

“Restarting

CQS

Structures”

on

page

28

“Establishing

Client

Connection

to

CQS

During

Failed

Client

Takeover”

on

page

32

“Authorizing

Access

To

CQS”

on

page

33

“Using

Structure

Alter

for

CQS”

on

page

34

“Using

CQS

System

Checkpoint”

on

page

34

“Using

CQS

Structure

Checkpoint”

on

page

35

“Preventing

CQS

Structure

Full”

on

page

37

“Rebuilding

Structures

in

CQS”

on

page

39

“Deleting

a

Structure

When

CQS

Is

Not

Connected”

on

page

44

“Shutting

Down

CQS”

on

page

44

This

section

contains

Product-sensitive

Programming

Interface

information.

Starting

CQS

You

can

start

CQS

in

one

of

three

ways:

v

As

a

z/OS

task,

using

the

z/OS

START

command

v

As

a

z/OS

batch

job

v

As

a

client

task

—

Some

clients

(such

as

IMS)

automatically

start

CQS,

when

appropriate

Example:

If

IMS

is

the

client,

define

the

CQS

name

in

the

DFSSQxxx

PROCLIB

member

and

specify

the

CQS

name

on

the

SHAREDQ

parameter

of

the

IMS

procedure.

IMS

doesn’t

start

CQS

if

the

CQS

is

needed

only

to

manage

a

resource

structure.

A

CQS

that

supports

only

a

resource

structure

must

be

started

manually

because

IMS

does

not

start

this

CQS.

Related

Reading:

v

For

information

on

defining

IMS

procedures,

see

DCC

Procedures

and

DFSSQxxx

PROCLIB

member

in

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

v

For

information

on

defining

z/OS

policies,

see

“CQS

and

Defining

z/OS

Policies”

on

page

7.

v

For

information

on

the

CQS

initialization

parameters,

see

“CQS

Initialization

Parameters

PROCLIB

Member

(CQSIPxxx)”

on

page

16.

IBM

Confidential

©

Copyright

IBM

Corp.

1997,

2004

27

Recording

Information

Necessary

for

Starting

CQS

CQS

uses

the

z/OS

system

logger

to

record

all

information

necessary

for

CQS

to

recover

queue

structures

and

restart.

CQS

writes

log

records

for

each

coupling

facility

list

structure

pair

that

it

uses

to

a

separate

log

stream.

The

log

stream

is

shared

among

all

CQS

address

spaces

that

share

the

queue

structure.

The

z/OS

system

logger

provides

a

merged

log

for

all

CQS

address

spaces

that

are

sharing

queues

on

a

coupling

facility

list

structure.

Important:

Changes

to

resource

structures

are

not

logged.

For

CQS

to

use

a

z/OS

system

log,

you

must

first

define

the

log

stream

and

associated

resources

to

z/OS.

CQS

also

provides

a

File

Select

and

Formatting

Print

utility

to

print

the

log

records.

Related

Reading:

For

more

information

on

defining

the

log

stream,

see

z/OS

MVS

Setting

Up

a

Sysplex.

For

more

information

on

the

File

Select

and

Formatting

Print

utility,

see

“Printing

CQS

Log

Records”

on

page

181.

Restarting

CQS

Structures

Restarting

structures

involves

restarting

a

structure

pair.

The

structure

restart

function

ensures

that

the

data

in

the

structure

is

correct.

Structure

restart

deals

only

with

the

status

of

data

in

a

specific

coupling

facility

structure,

not

units

of

work

specific

to

a

given

CQS.

Before

CQS

can

restart,

CQS

must

recover

each

queue

structure

defined

to

CQS,

if

needed.

CQS

connects

to

both

the

primary

and

the

overflow

queue

structures

for

each

structure

pair

defined.

CQS

determines

whether

the

structures

need

to

be

warm

or

cold

started

and

performs

the

necessary

recovery

functions.

If

more

than

one

structure

pair

is

defined

to

CQS,

one

structure

pair

can

be

warm

started

and

another

can

be

cold

started.

CQS

Structure

Allocation

A

structure

is

allocated

the

first

time

a

CQS

connects

to

it.

The

structure

is

persistent.

It

remains

allocated

until

you

explicitly

delete

it

using

the

z/OS

SETXCF

command.

When

a

CQS

connects

to

a

structure,

the

structure

might

be

empty,

that

is,

it

might

contain

no

data,

might

contain

only

CQS

control

information,

or

it

might

contain

client

data.

The

structure

can

be

empty

if:

v

This

is

the

first

time

a

CQS

is

accessing

the

structure.

v

You

scratched

the

structure

to

perform

a

structure

cold

start.

v

A

structure

failure

occurred

and

the

structure

must

be

recovered.

CQS

Structure

Warm

Start

CQS

warm

starts

both

a

primary

structure

and

its

overflow

structure,

if

the

primary

structure

contains

data

or

if

one

SRDS

contains

valid

structure

checkpoint

data

and

the

CQS

log

contains

valid

data.

Starting

CQS IBM

Confidential

28

Common

Queue

Server

Guide

and

Reference

During

a

structure

warm

start,

CQS

determines

the

status

of

the

structure

and

initiates

a

structure

recovery

if

necessary.

If

a

structure

recovery

is

needed,

CQS

allocates

the

structure

and

repopulates

it

from

either

the

SRDS,

that

contains

valid

client

data

from

a

previous

checkpoint,

and

the

CQS

log

or

from

the

CQS

log

by

itself.

After

a

structure

warm

start

has

completed,

CQS

determines

whether

a

future

recovery

is

possible

based

on

the

status

of

the

structure

recovery

data

sets

and

the

log

stream.

If

the

primary

structure

contains

client

data,

but

neither

the

SRDS

nor

the

log

can

be

used

for

future

recovery,

CQS

issues

a

CQS0009W

message.

Recommendation:

If

CQS

issues

a

CQS0009W

message,

initiate

a

structure

checkpoint

as

soon

as

possible.

If

a

structure

checkpoint

does

not

complete

successfully

and

the

structure

fails,

CQS

cannot

recover

the

structure.

After

a

structure

warm

start,

CQS

can

be

cold

started

or

warm

started.

If

the

log

records

needed

for

the

CQS

restart

have

been

deleted,

you

might

have

to

cold

start

the

CQS.

CQS

Structure

Cold

Start

CQS

cold

starts

both

a

primary

structure

and

its

overflow

structure,

if

the

primary

structure

is

empty

and

both

of

the

structure

recovery

data

sets

are

empty.

During

a

structure

cold

start,

CQS

deletes:

v

The

overflow

structure

v

All

the

log

records

in

the

log

stream

for

the

structure

To

cold

start

a

structure,

you

must:

1.

Ensure

that

all

CQSs

are

disconnected

from

the

structure.

2.

Delete

the

primary

and

overflow

structures

on

the

coupling

facility.

3.

Scratch

both

structure

recovery

data

sets

(SRDS

1

and

2)

for

the

structure.

When

structure

cold

start

completes,

CQS

automatically

performs

cold

start

restart

processing.

CQS

Structure

Recovery

for

Restarting

A

structure

might

need

to

be

recovered

if

the

structure

is

empty

or

if

it

contains

only

CQS

control

information.

Data

from

the

last

structure

checkpoint

and

the

z/OS

log

stream

are

used

to

recover

a

structure.

First

the

structure

is

repopulated

with

data

objects

from

the

structure

recovery

data

sets.

CQS

then

reads

the

log,

starting

at

the

time

of

the

structure

checkpoint,

and

updates

the

structure

with

changes

that

occurred

after

the

structure

checkpoint.

If

the

primary

structure

is

empty

and

neither

SRDS

contains

valid

structure

checkpoint

data,

CQS

determines

whether

it

can

use

just

the

CQS

log

for

recovery.

If

the

first

log

record

in

the

log

stream

is

the

Beginning

of

Log

record,

the

log

stream

contains

all

the

log

records

required

for

recovery

and

CQS

can

use

the

log

records

to

complete

the

structure

recovery.

If

CQS

finds

that

a

previous

structure

rebuild

did

not

complete

successfully,

it

initiates

another

rebuild.

RestartingIBM

Confidential

Chapter

3.

CQS

Administration

29

If

the

primary

structure

contains

only

CQS

control

information

and

the

first

CQS

that

connected

to

the

structure

(the

one

that

allocated

the

structure)

is

not

able

to

determine

whether

a

rebuild

is

needed,

CQS

initiates

a

rebuild

if

either

SRDS

is

valid

or

if

all

the

log

records

are

available.

If

neither

SRDS

is

valid

and

the

log

records

have

been

deleted

by

a

previous

structure

checkpoint,

CQS

cannot

rebuild

the

structure.

When

this

happens

and

a

rebuild

is

necessary,

CQS

issues

write-to-operator-with-reply

(WTOR)

CQS0034A

message

asking

what

you

want

to

do.

You

can

cold

start

the

structure

or

cancel

this

CQS.

For

more

information

on

structure

recovery,

see

“CQS

Structure

Recovery”

on

page

41.

Restarting

CQS

After

CQS

completes

the

structure

initialization,

it

continues

with

the

restart.

CQS

can

either

do

a

cold

restart

or

a

warm

restart.

Restarting

CQS

affects

only

the

units

of

work

that

this

CQS

manages.

Restarting

does

not

back

out

or

restore

any

units

of

work

owned

by

another

CQS.

When

you

have

completed

restarting

all

structure

pairs

for

a

particular

CQS,

the

CQS

ready

message

is

issued

(CQS0020I).

Since

changes

to

resource

structures

are

not

check

pointed

or

logged,

restarting

CQS

does

not

affect

units

of

work

for

resource

structures.

The

frequency

of

system

checkpoints

affects

restart.

CQS

must

read

more

log

records

when

checkpoints

are

infrequent

than

when

checkpoints

occur

more

often.

Also,

the

amount

of

logging

that

one

CQS

performs

can

affect

another

CQS

during

restart.

All

CQSs

write

to

the

same

log,

so

a

CQS

restarting

must

read

all

log

records

written

by

all

CQSs.

CQS

takes

an

initial

system

checkpoint

at

the

end

of

a

restart.

CQS

Warm

Start

During

a

warm

start,

CQS

reads

the

log

records

from

the

last

system

checkpoint,

restores

the

environment

for

committed

data

objects,

and

backs

out

uncommitted

data

objects.

Doing

so

prepares

CQS

to

regain

synchronization

with

the

client

and

resume

processing.

Normally,

CQS

warm

start

is

automatic

and

you

do

not

need

to

take

any

action.

When

CQS

warm

starts,

it

reads

the

checkpoint

data

set

to

find

the

log

token

representing

the

last

system

checkpoint.

When

CQS

finds

this

log

token,

it

initiates

a

warm

start.

If

CQS

fails

to

find

this

log

token

in

the

checkpoint

data

set,

it

reads

the

log

token

from

the

structure.

If

CQS

finds

the

log

token,

CQS

issues

WTOR

CQS0031A

to

allow

you

to

confirm

the

use

of

this

token.

At

this

point,

you

can

do

one

of

the

following:

v

Confirm

the

log

token.

v

Cold

start

CQS.

v

Cancel

CQS.

v

Specify

a

new

log

token.

If

you

specify

a

new

log

token

and

CQS

fails

to

find

this

log

token,

CQS

issues

WTOR

CQS0032A.

At

this

point,

you

can

do

one

of

the

following:

v

Cold

start

CQS.

Restarting IBM

Confidential

30

Common

Queue

Server

Guide

and

Reference

|
|

v

Cancel

CQS.

v

Specify

a

new

log

token.

Sometimes

CQS

purges

log

records

that

are

required

for

restart.

CQS

purges

log

records

in

the

following

situations:

v

During

a

structure

checkpoint

v

When

the

log

becomes

full

and

no

more

data

sets

are

available

for

logging

Related

Reading:

See

“Using

CQS

Structure

Checkpoint”

on

page

35

for

more

details

on

structure

checkpoint

and

the

purging

of

log

records.

Important:

CQS

might

not

have

any

log

records

if

it

is

only

managing

resource

structures.

Recommendation:

If

a

CQS

does

not

accept

a

log

token

during

CQS

restart,

cold

start

the

CQS.

In

cases

where

multiple

CQSs

are

running,

it

is

possible

that

log

records

for

a

CQS

that

previously

failed

and

was

not

restarted

are

purged

while

another

CQS

performs

a

structure

checkpoint.

CQS

Cold

Start

When

CQS

restarts

after

a

structure

cold

start,

CQS

cold

start

processing

is

automatic.

You

do

not

need

to

take

any

action.

CQS

takes

a

system

checkpoint

and

then

CQS

restart

is

complete.

When

CQS

cold

starts

after

a

structure

warm

start

or

a

structure

recovery,

CQS

reads

the

structure

to

find

unresolved

work.

CQS

backs

out

requests

to

move

data

but

completes

requests

to

delete

data.

CQS

performs

a

system

checkpoint

and

restart

is

complete.

No

log

records

are

read

or

processed

when

CQS

is

cold

started.

To

cold

start

CQS,

you

must:

1.

Scratch

the

CQS

system

checkpoint

data

set

for

the

structure.

2.

Reply

″COLD″

to

the

CQS0031A

WTOR.

Using

the

z/OS

Automatic

Restart

Manager

with

CQS

CQS,

if

requested,

can

register

with

the

z/OS

Automatic

Restart

Manager.

The

Automatic

Restart

Manager

(ARM)

is

a

z/OS

recovery

function

that

can

improve

the

availability

of

started

tasks.

When

a

task

fails

or

the

system

on

which

it

is

running

fails,

the

ARM

can

restart

the

task

without

operator

intervention.

Recommendation:

Register

with

the

z/OS

ARM

regardless

of

the

types

of

structures

CQS

is

using.

To

enable

the

ARM,

you

can

specify

ARMRST=Y

in

one

of

two

ways:

v

In

the

CQSIPxxx

PROCLIB

member

v

As

an

execution

parameter

An

abend

table

exists

in

module

CQSARM10.

The

table

lists

the

CQS

abends

for

which

the

ARM

does

not

restart

CQS

after

the

abend

occurs.

You

can

modify

this

table.

RestartingIBM

Confidential

Chapter

3.

CQS

Administration

31

IBM

provides

policy

defaults

for

automatic

restart

management.

You

can

use

these

defaults

or

define

an

ARM

policy

to

specify

how

CQS

should

be

restarted.

The

policy

can

specify

different

actions

to

be

taken

when

the

system

fails

and

when

CQS

fails.

When

ARM

is

enabled,

CQS

registers

to

ARM

with

an

ARM

element

name

of

CQS

+

cqsssn

+

CQS.

Use

this

ARM

element

name

in

the

ARM

policy

to

define

the

ARM

policy

for

CQS.

cqsssn

is

the

CQS

name

defined

either

as

a

CQS

execute

parameter,

or

in

the

CQSIPxxx

PROCLIB

member

with

the

SSN=

parameter.

For

example,

if

SSN=CQSA,

then

the

ARM

element

name

is

CQSCQSACQS.

Related

Reading:

For

more

information

on

using

the

z/OS

ARM

with

CQS,

see

“CQS

Execution

Parameters”

on

page

14.

See

z/OS

MVS

Setting

Up

a

Sysplex,

GC28-1779

for

OS/390®

or

SA22-7625

for

z/OS,

for

details

on

z/OS

ARM

policy.

Restarting

CQS

After

CQS

Resource

Cleanup

Failures

If

CQS

abends

and

you

receive

message

CQS0102E

with

module

CQSRSM00,

log

records

might

be

missing

from

the

CQS

log.

Message

CQS0102E

indicates

that

a

failure

occurred

during

CQS

resource

cleanup.

This

failure

might

prevent

CQS

log

records

in

internal

buffers

from

being

externalized

to

the

CQS

log.

If

this

situation

occurs,

perform

one

of

the

following

actions:

v

If

the

terminating

CQS

is

the

only

CQS

running

for

its

set

of

structures,

restart

the

CQS

immediately.

v

If

other

CQSs

are

running,

either

immediately

restart

the

terminated

CQS

or

initiate

a

structure

checkpoint

on

one

of

the

surviving

CQSs.

For

more

information,

see

the

/CQCHKPT

SHAREDQ

command

in

IMS

Version

9:

Command

Reference.

Successfully

restarting

the

failed

CQS

or

taking

a

structure

checkpoint

is

necessary

to

preserve

the

state

of

the

data

on

the

shared

queues

in

the

event

that

a

structure

rebuild

is

needed.

Establishing

Client

Connection

to

CQS

During

Failed

Client

Takeover

When

the

client

(such

as

IMS)

supports

XRF

takeover

capability,

one

client

must

take

over

the

work

for

a

failed

client.

The

CQS

connected

to

this

failed

client

might

not

be

active.

Therefore,

during

the

takeover

process,

the

client

taking

over

work

from

a

failed

client

must

connect

to

a

different

CQS

and

indicate

that

it

is

taking

over

work

from

another

client.

At

this

point,

CQS

must

perform

a

process

similar

to

CQS

restart,

using

the

log

records

from

the

CQS

connected

to

the

failed

client.

Normally,

CQS

failed

client

connection

restart

(warm

start)

is

automatic

and

you

do

not

need

to

take

any

action.

During

a

failed

client

connection,

CQS

reads

the

log

token

from

the

structure

for

the

CQS

connected

to

the

failed

client.

v

If

CQS

finds

the

log

token,

CQS

performs

warm

start

processing

for

the

failed

client.

v

If

CQS

does

not

find

the

log

token,

CQS

issues

WTOR

CQS0033A.

At

this

point,

you

can

do

one

of

the

following:

–

Cold

start

the

client

connection.

–

Reject

the

client

connection

request.

–

Specify

a

new

log

token.

Restarting IBM

Confidential

32

Common

Queue

Server

Guide

and

Reference

|
|
|

|
|
|

|

|
|
|
|

|

|
|

|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|

|
|

|
|

|
|

|

|

|

Recommendation:

If

a

CQS

does

not

accept

a

log

token

during

failed

client

connection

restart,

cold

start

the

connection.

If

multiple

CQSs

are

running,

one

CQS

structure

checkpoint

might

purge

the

log

records

for

another

CQS

that

previously

failed

and

was

not

restarted.

Authorizing

Access

To

CQS

If

RACF®

or

another

security

product

is

installed

at

your

installation,

the

security

administrator

can

define

profiles

that

control

the

ability

of

clients

to

connect

to

and

access

CQS

structures.

Authorizing

CQS

Registration

When

a

client

issues

the

CQSREG

request

to

register

with

CQS,

CQS

issues

a

RACROUTE

REQUEST=AUTH

call

to

determine

whether

the

client

is

authorized

to

register

with

CQS.

RACF

checks

the

user

ID

of

the

client

that

issued

the

CQSREG

request.

This

user

ID

must

have

at

least

UPDATE

authority

to

register

with

CQS.

The

RACF

security

administrator

can

define

profiles

in

the

FACILITY

class

to

control

registration

with

CQS.

The

profile

names

must

be

of

the

form

CQS.cqs_id,

where

cqs_id

is

the

ID

of

the

CQS

that

is

to

be

protected.

The

cqs_id

value

is

the

subsystem

name

(SSN)

as

defined

in

the

CQSIPxxx

PROCLIB

member,

followed

by

the

characters

CQS.

For

example,

if

the

SSN

is

ABC,

the

cqs_id

value

is

ABCCQS.

Example:

To

define

a

profile

for

CQS

to

prevent

users

other

than

CQSUSER1

and

CQSUSER2

from

registering,

issue

the

RACF

commands

shown

in

Figure

12:

Authorizing

Connections

to

CQS

Structures

When

a

client

issues

the

CQSCONN

request

to

connect

to

a

CQS

structure,

CQS

issues

a

RACROUTE

REQUEST=AUTH

call

to

determine

whether

the

client

is

authorized

to

access

the

structure.

RACF

checks

the

user

ID

of

the

client

that

issued

the

CQSCONN

request.

This

user

ID

must

have

at

least

UPDATE

authority

to

connect

to

the

structure

through

CQS.

The

RACF

security

administrator

should

define

profiles

in

the

FACILITY

class

to

control

the

connection

to

CQS

structures.

The

profile

names

must

be

of

the

form

CQSSTR.structure_name,

where

structure_name

is

the

name

of

the

primary

CQS

structure

that

is

to

be

protected.

Use

the

same

structure

name

that

you

define

in

the

CQSSGxxx

and

CQSSLxxx

PROCLIB

members.

The

CQSSTR.structure_name

profiles

only

control

access

to

the

specified

structures

through

CQS;

they

do

not

control

direct

access

to

the

structures

using

IXL

macros.

You

can

provide

control

over

direct

structure

access

by

defining

RACF

profiles

of

the

form

IXLSTR.structure_name.

If

you

create

such

profiles,

you

must

give

the

user

IDs

under

which

you

run

CQS

access

to

the

structures.

Related

Reading:

For

information

on

protecting

direct

access

to

coupling

facility

structures,

see

″Authorizing

Coupling

Facility

Requests″

in

the

z/OS

MVS

Programming:

Sysplex

Services

Guide.

RDEFINE

FACILITY

CQS.ABCCQS

UACC(NONE)

PERMIT

CQS.ABCCQS

CLASS(FACILITY)

ID(CQSUSER1)

ACCESS(UPDATE)

PERMIT

CQS.ABCCQS

CLASS(FACILITY)

ID(CQSUSER2)

ACCESS(UPDATE)

SETROPTS

CLASSACT(FACILITY)

Figure

12.

RACF

Commands

for

Authorizing

CQS

Registration

RestartingIBM

Confidential

Chapter

3.

CQS

Administration

33

|
|
|
|

|
|

|
|
|

|

|
|
|
|

|
|
|
|

For

more

information

on

defining

structure

names,

see

“CQS

Global

Structure

Definition

PROCLIB

Member

(CQSSGxxx)”

on

page

19

and

“CQS

Local

Structure

Definition

PROCLIB

Member

(CQSSLxxx)”

on

page

17.

CQS

does

not

perform

a

separate

check

on

the

overflow

structure

name,

because

the

primary

and

overflow

structures

are

considered

one

unit.

Example:

To

define

a

profile

for

a

CQS

primary

structure

named

IMSMSGQ01,

and

to

allow

only

user

CQSUSER

to

connect

to

it,

issue

the

RACF

commands

shown

in

Figure

13:

If

you

do

not

define

a

profile

for

a

particular

CQS

structure,

the

structure

is

not

protected,

and

any

user

ID

can

issue

a

CQSCONN

request

to

access

the

structure.

Using

Structure

Alter

for

CQS

Structure

alter

is

a

z/OS

process

supported

by

CQS

that

can

be

used

to

alter

the

structure

size

or

to

redistribute

the

objects

within

the

structure.

CQS

supports

structure

alter

for

primary

queue

structures,

overflow

queue

structures,

and

resource

structures.

CQS

allows

you

to

dynamically

change

the

size

of

a

primary

or

overflow

structure.

To

enable

structure

alter,

activate

a

CFRM

policy

and

define

the

INITSIZE

and

SIZE

parameters

in

this

policy.

For

information

on

structure

size,

see

“Determining

Structure

Size

for

CQS

Connections”

on

page

12.

To

initiate

the

structure

size

change,

enter

the

following

XES

command:

SETXCF

START,ALTER,STRNAME=strname,SIZE=size

The

value

of

size

must

be

within

the

range

of

values

between

INITSIZE

and

SIZE

in

the

CFRM

policy.

Automatic

structure

alter

is

a

z/OS

function

that

can

automatically

alter

the

structure

size

or

the

element

to

entry

ratio

when

the

structure

full

threshold

is

reached.

CQS

supports

automatic

structure

alter

for

queue

structures

and

resource

structures.

To

enable

automatic

structure

alter,

activate

a

CFRM

policy

defined

with

INITSIZE,

SIZE,

ALLOWAUTOALT(YES).

Important:

A

structure

enabled

with

automatic

structure

alter

is

a

candidate

to

be

contracted

in

size

by

z/OS,

if

the

coupling

facility

storage

becomes

constrained.

Be

careful

when

enabling

automatic

structure

alter

for

queue

structures.

If

z/OS

contracts

the

queue

structure

size,

it

might

cause

the

queue

structure

to

go

into

overflow

unnecessarily.

To

prevent

this

happening,

define

the

CFRM

policy

with

a

MINSIZE

(minimum

size),

below

which

z/OS

will

not

contract

the

structure.

Using

CQS

System

Checkpoint

This

section

introduces

CQS

system

checkpoint,

the

checkpoint

data

sets

that

are

used

for

recovery,

and

how

CQS

restarts

after

system

checkpoint.

RDEFINE

FACILITY

CQSSTR.IMSMSGQ01

UACC(NONE)

PERMIT

CQSSTR.IMSMSGQ01

CLASS(FACILITY)

ID(CQSUSER)

ACCESS(UPDATE)

SETROPTS

CLASSACT(FACILITY)

Figure

13.

RACF

Commands

to

Authorize

Connection

to

CQS

Structures

Authorizing

Access IBM

Confidential

34

Common

Queue

Server

Guide

and

Reference

System

checkpoint

applies

to

a

CQS

if

it

manages

at

least

one

queue

structure.

If

a

CQS

manages

only

a

resource

structure,

system

checkpoint

does

not

apply.

At

a

system

checkpoint

for

recovering

CQS

information,

CQS

writes

log

records

that

contain

restart

and

recovery

information

to

the

CQS

log.

CQS

does

not

stop

activity

while

the

checkpoint

is

in

progress.

CQS

performs

a

system

checkpoint

in

each

of

the

following

situations:

v

When

a

client

issues

a

CQSCHKPT

FUNC=CHKPTSYS

request

v

When

the

number

of

log

records

that

CQS

writes

reaches

the

value

specified

on

the

SYSCHKPT=

parameter

in

the

CQSSLxxx

PROCLIB

member

v

When

the

client

is

IMS

and

you

enter

the

/CQCHKPT

SYSTEM

command

v

When

a

client

RESYNC

ends

v

When

structure

checkpoint

ends

successfully

v

At

the

end

of

a

restart

In

addition,

CQS

takes

system

checkpoints

during

significant

events,

such

as

a

shutdown.

CQS

Checkpoint

Data

Set

For

each

structure

pair,

CQS

maintains

a

checkpoint

data

set.

CQS

writes

to

its

checkpoint

data

set

and

uses

it

during

restart.

The

checkpoint

data

set

is

dynamically

allocated

during

CQS

initialization.

You

define

the

checkpoint

data

set

DSNAME

for

a

structure

using

the

CHKPTDSN=

parameter

in

PROCLIB

member

CQSSLxxx.

How

CQS

Restarts

after

System

Checkpoint

During

CQS

restart,

CQS

reads

the

log

records

from

the

last

system

checkpoint

and

restores

the

environment

for

committed

data

objects

and

backs

out

uncommitted

data

objects

on

queue

structures.

The

frequency

of

system

checkpoint

affects

this

restart.

CQS

must

read

more

log

records

when

checkpoints

are

infrequent

than

when

the

checkpoints

occur

more

often.

Because

the

CQS

log

is

shared

by

multiple

CQSs,

CQS

restart

time

is

affected

by

the

number

of

log

records

written

by

the

multiple

CQSs,

not

just

the

CQS

that

is

being

restarted.

CQS

takes

an

initial

system

checkpoint

at

the

end

of

a

restart.

Using

CQS

Structure

Checkpoint

Structure

checkpoint

takes

a

snapshot

of

the

shared

queues

on

a

queue

structure

and

writes

the

data

to

the

structure

recovery

data

set

(SRDS)

so

that

CQS

can

recover

the

queues

after

a

structure

failure.

Structure

checkpoint

processing

copies

all

recoverable

data

objects

from

a

structure

pair

to

a

SRDS.

For

nonrecoverable

data

objects,

the

queue

name,

and

UOW

are

copied,

but

not

the

actual

data

object.

The

client

specifies

whether

or

not

a

data

object

is

recoverable

when

the

CQSPUT

FUNC=PUT

request

is

issued

to

insert

the

data

object

onto

the

shared

queues.

For

example,

when

IMS

is

the

client,

all

data

objects

are

marked

as

recoverable,

except

for

Fast

Path

input

messages.

Important:

Structure

checkpoint

is

not

supported

for

resource

structures.

It

supports

queue

structures

only.

Using

CheckpointIBM

Confidential

Chapter

3.

CQS

Administration

35

When

it

performs

the

copy

operation,

CQS

stops

all

activity

against

the

structure

to

ensure

that

the

structure

does

not

change

while

the

checkpoint

is

being

taken.

If

CQS

receives

a

request

to

process

work

when

a

structure

checkpoint

is

in

progress,

the

request

is

held

until

after

the

structure

checkpoint

is

complete.

Recommendation:

Because

no

other

work

for

a

structure

can

be

processed

while

CQS

is

taking

a

checkpoint,

consider

processing

structure

checkpoints

during

non-peak

hours.

After

all

shared

queues

are

copied

to

the

SRDS,

each

CQS

performs

a

system

checkpoint

to

ensure

its

restart

checkpoint

has

a

time

stamp

that

is

more

recent

than

the

current

structure

checkpoint.

The

structure

checkpoint

process

then

deletes

all

log

records

that

are

not

needed

for

structure

recovery,

allowing

the

logger

to

reclaim

space

in

the

CQS

log

and

preventing

the

log

from

becoming

full.

After

log

records

are

deleted,

CQS

cannot

access

these

log

records

and,

therefore,

cannot

use

these

records

for

structure

recovery

or

CQS

restart.

If

only

one

SRDS

contains

valid

structure

checkpoint

data,

all

log

records

that

were

written

prior

to

that

structure

checkpoint

are

deleted.

If

both

SRDSs

contain

valid

structure

checkpoint

data,

all

log

records

that

were

written

prior

to

the

oldest

structure

checkpoint

are

deleted.

If

a

CQS

was

not

active

at

the

time

of

a

structure

checkpoint,

it

cannot

initiate

a

system

checkpoint,

meaning

that

its

restart

checkpoint

is

older

than

at

least

one

structure

checkpoint.

If

both

SRDSs

contain

valid

structure

checkpoint

data,

no

problem

exists

(because

the

CQS

restart

checkpoint

is

still

more

recent

than

the

oldest

structure

checkpoint,

so

its

restart

log

records

are

not

deleted).

However,

if

this

is

the

first

or

only

valid

structure

checkpoint,

or

a

CQS

was

down

across

two

structure

checkpoints,

the

log

records

needed

for

that

CQS

to

restart

are

deleted.

In

this

case,

that

CQS

might

need

a

cold

start

to

restart.

Recommendation:

Initiate

a

structure

checkpoint

after

a

structure

cold

start,

or

anytime

the

SRDSs

are

deleted

and

redefined.

The

structure

checkpoint

should

start

after

all

CQSs

that

share

the

structure

are

started.

This

provides

the

SRDS

with

an

initial

structure

checkpoint.

Also,

to

update

the

snapshot

of

the

shared

queues

and

to

periodically

delete

log

records,

initiate

a

structure

checkpoint

at

regular

intervals.

When

a

structure

recovery

is

required,

the

SRDS

and

the

CQS

log

are

used

to

recover

the

shared

queues.

CQS

first

repopulates

the

new

structure

from

the

SRDS.

CQS

then

reads

all

log

records

from

the

time

the

structure

checkpoint

completed.

The

length

of

time

to

read

the

log

records

is

dependent

on

how

many

log

records

are

in

the

log.

More

frequent

structure

checkpoints

reduce

the

number

of

log

records

that

must

be

read

during

a

structure

recovery.

Deleting

the

log

records

also

helps

prevent

the

log

from

becoming

full.

When

a

log

stream

becomes

full,

CQS

deletes

all

log

records

older

than

the

oldest

structure

checkpoint

or

CQS

system

checkpoint.

CQS

then

takes

a

structure

checkpoint.

CQS

performs

structure

checkpoints

in

each

of

the

following

situations:

v

When

the

z/OS

log

becomes

full

or

approaches

full.

v

After

a

successful

structure

recovery.

v

After

a

successful

overflow

threshold

process.

v

When

a

client

issues

the

CQSCHKPT

FUNC=CHKPTSTR

request.

v

When

the

client

is

IMS,

and

you

enter

the

/CQCHKPT

SHAREDQ

command.

Recovering

CQS

and

Structures IBM

Confidential

36

Common

Queue

Server

Guide

and

Reference

v

During

CQS

normal

termination

when

the

client

requests

it

on

the

CQSDISC

request.

When

the

client

is

IMS,

you

can

request

a

structure

checkpoint

at

CQS

termination

by

entering

the

/CQSET

SHUTDOWN

SHAREDQ

command.

IMS

then

passes

this

request

to

CQS

when

IMS

terminates

normally

with

a

/CHECKPOINT

FREEZE|DUMPQ|PURGE

command.

Preventing

CQS

Structure

Full

You

should

manage

structure

usage

to

avoid

a

structure

full

condition.

If

a

resource

structure

or

queue

structure

becomes

full,

CQS

issues

message

CQS0205E.

There

are

two

ways

to

prevent

a

structure

full

condition:

v

CQS

structure

overflow

function

for

queue

structures

v

z/OS

structure

full

monitoring

capability,

used

with

CQS,

for

queue

structures

and

resource

structures

Use

these

mechanisms

to

warn

when

a

structure

full

condition

is

approaching

and

to

take

action

to

prevent

a

full

structure.

CQS

Structure

Overflow

Function

CQS

provides

a

structure

overflow

function

that

automatically

warns

you

when

a

queue

structure

is

approaching

full

and

takes

action

to

prevent

a

full

structure.

When

the

usage

of

a

structure

reaches

the

overflow

threshold,

CQS

attempts

to

make

the

structure

larger

by

initiating

a

structure

alter.

If

the

alter

fails,

CQS

either

allocates

an

overflow

structure

and

moves

selected

queues

to

the

overflow

structure

(if

you

define

an

overflow

structure)

or

rejects

data

objects

from

being

put

on

the

selected

queues.

CQS

stops

all

activity

against

the

structure

during

this

processing.

Definition:

The

overflow

threshold

is

the

percentage

of

the

primary

structure

that

must

be

in

use

before

CQS

goes

into

overflow

mode.

The

default

overflow

threshold

is

70%,

but

you

can

change

the

default

by

defining

the

OVFLWMAX

parameter

in

the

CQSSGxxx

PROCLIB

member.

Important:

Structure

overflow

is

not

supported

for

resource

structures.

If

CQS

does

not

succeed

in

altering

a

structure’s

size,

the

structure

goes

into

overflow

mode.

In

overflow

mode,

CQS

selects

queues

using

the

most

space

on

the

structure

as

candidates

for

overflow

processing.

CQS

stops

selecting

queues

when

enough

queues

have

been

selected

to

cause

the

primary

structure

usage

to

fall

20%

below

the

overflow

threshold.

Activity

against

the

structure

is

temporarily

stopped

while

queues

are

being

selected

for

overflow.

CQS

drives

the

Queue

Overflow

User-Supplied

exit

routine

with

the

candidate

queue

names,

which

the

exit

then

approves

or

rejects

for

overflow

processing.

Queues

that

get

approved

are

placed

into

overflow

mode.

If

an

overflow

structure

is

defined,

CQS

allocates

the

overflow

structure

and

moves

the

approved

queues

to

the

overflow

structure.

If

an

overflow

structure

is

not

defined,

CQS

rejects

CQSPUT

requests

for

the

approved

queues.

Overflow

structures

can

be

defined

in

the

CQSSGxxx

PROCLIB

member,

using

the

OVFLWSTR

parameter.

CQS

exits

overflow

mode

either

after

all

of

the

queues

have

been

removed

from

the

overflow

structure

(if

an

overflow

structure

gets

allocated),

or

when

the

primary

structure

usage

has

gone

20%

below

the

overflow

threshold

(if

there

is

no

overflow

structure).

Recovering

CQS

and

StructuresIBM

Confidential

Chapter

3.

CQS

Administration

37

|
|
|

|

|
|

CQS

Structure

Full

Monitoring

The

z/OS

structure

full

monitoring

capability

can

be

used

for

queue

structures

and

resource

structures

to

warn

you

when

a

structure

is

approaching

full

and

to

prevent

a

full

structure.

If

structure

full

monitoring

is

enabled,

z/OS

monitors

structure

usage.

When

the

number

of

entries

or

elements

in

use

reaches

the

structure

full

threshold,

z/OS

issues

a

highlighted

IXC585E

message

to

warn

the

system

programmer

that

a

structure

full

condition

is

imminent.

If

automatic

altering

is

enabled,

z/OS

automatically

initiates

a

structure

alter

to

increase

the

structure

size

or

change

the

element

to

entry

ratio.

Structure

full

monitoring

is

automatically

enabled

with

a

default

threshold

of

80%.

Define

a

different

threshold

with

the

CFRM

policy

FULLTHRESHOLD

parameter.

Define

the

CFRM

policy

with

FULLTHRESHOLD(0)

to

disable

structure

full

monitoring.

When

the

structure

usage

goes

below

the

threshold,

z/OS

issues

an

IXC586I

message.

The

following

command

displays

the

structure

full

threshold

that

is

in

effect:

D

XCF,STRUCTURE,STRNAME=strname

Examples

In

the

example

display

shown

in

Figure

14,

the

command

D

XCF,STRUCTURE,STRNAME=IMSRSRC01

is

issued

and

the

structure

full

threshold

is

80%.

Figure

15

shows

the

IXC585E

message,

indicating

the

structure

is

full

because

all

of

the

entries

are

in

use:

Figure

16

shows

the

IXC586I

message:

STRNAME:

IMSRSRC01

STATUS:

NOT

ALLOCATED

POLICY

SIZE

:

4096

K

POLICY

INITSIZE

:

N/A

FULLTHRESHOLD

:

80

REBUILD

PERCENT

:

N/A

DUPLEX

:

DISABLED

PREFERENCE

LIST

:

LF03

ENFORCEORDER

:

NO

EXCLUSION

LIST

IS

EMPTY

Figure

14.

Display

for

Structure

Full

Threshold

-

Example

1

*IXC585E

STRUCTURE

IMSRSRC01

IN

COUPLING

FACILITY

LF03,

725

PHYSICAL

STRUCTURE

VERSION

B4704775

92D95302,

IS

AT

OR

ABOVE

STRUCTURE

FULL

MONITORING

THRESHOLD

OF

80%.

ENTRIES:

IN

USE:

4874

TOTAL:

4874,

100%

FULL

ELEMENTS:

IN

USE:

19

TOTAL:

4872,

0%

FULL

Figure

15.

Display

for

Structure

Full

Threshold

-

Example

2

IXC586I

STRUCTURE

IMSRSRC01

IN

COUPLING

FACILITY

LF03,

772

PHYSICAL

STRUCTURE

VERSION

B4704775

92D95302,

IS

NOW

BELOW

STRUCTURE

FULL

MONITORING

THRESHOLD.

Figure

16.

Display

for

Structure

Full

Threshold

-

Example

3

Structure

Full IBM

Confidential

38

Common

Queue

Server

Guide

and

Reference

|
|
|
|
|
|

|

Related

Reading:

For

more

details

on

structure

full

monitoring

and

the

FULLTHRESHOLD

and

ALLOWAUTOALT

keywords

in

the

CFRM

policy,

see

z/OS

MVS

Setting

Up

a

Sysplex.

Using

Structure

Full

Monitoring

with

CQS

Structure

Overflow

You

can

use

the

structure

full

monitoring

function

(a

z/OS

function)

with

the

structure

overflow

function

(a

CQS

function)

for

queue

structures.

The

overflow

threshold

is

a

value

defined

to

CQS.

The

structure

full

threshold

is

a

value

defined

to

z/OS.

If

the

overflow

threshold

is

close

to

the

structure

full

threshold

and

automatic

altering

is

enabled,

CQS

and

z/OS

might

both

try

to

initiate

a

structure

alter

at

the

same

time

to

prevent

the

structure

from

becoming

full.

If

a

CQS-initiated

structure

alter

is

in

progress

when

z/OS

detects

the

structure

full

threshold

has

been

reached,

z/OS

stops

the

CQS-initiated

structure

alter

and

initiates

its

own

structure

alter.

When

CQS

detects

that

its

structure

alter

has

failed,

CQS

goes

into

overflow

mode,

even

if

the

z/OS-initiated

structure

alter

reduces

the

structure

usage

below

the

overflow

threshold.

Recommendation:

Consider

your

structure

full

threshold

when

deciding

what

overflow

threshold

to

define,

so

that

you

control

when

a

structure

goes

into

overflow

mode.

If

you

use

structure

full

threshold,

define

it

to

be

lower

than

the

overflow

threshold

to

avoid

going

into

overflow

mode

unnecessarily.

If

the

structure

full

threshold

is

lower

than

the

overflow

threshold,

z/OS

can

attempt

structure

full

threshold

processing

before

the

structure

goes

into

overflow

mode.

Related

Reading:

v

For

detailed

information

about

the

CQSSGxxx

PROCLIB

member,

see

“CQS

Global

Structure

Definition

PROCLIB

Member

(CQSSGxxx)”

on

page

19.

v

For

detailed

information

about

the

Queue

Overflow

User-Supplied

exit

routine,

see

“Queue

Overflow

User-Supplied

Exit

Routine

for

CQS”

on

page

51.

v

For

detailed

information

about

the

CQSPUT

request,

see

“CQSPUT

Request”

on

page

114.

Rebuilding

Structures

in

CQS

Structure

rebuild

is

a

z/OS

process

that

allows

another

instance

of

a

structure

to

be

allocated

with

the

same

name

and

data

reconstructed

from

the

initial

structure

instance.

z/OS

supports

system-managed

rebuild,

CQS-managed

rebuild,

and

structure

duplexing.

CQS

supports

system-managed

rebuild

and

CQS-managed

rebuild

for

queue

structures

and

resource

structures.

Note

that

CQS

stops

all

activity

against

the

structure

during

structure

rebuild.

z/OS

System-Managed

Rebuild

and

CQS

System-managed

rebuild

is

a

z/OS

process

by

which

z/OS

rebuilds

the

structure.

z/OS

copies

the

structure

contents

to

a

new

structure.

System-managed

rebuild

is

supported

for

queue

structures

and

resource

structures.

System-managed

rebuild

is

only

done

if

no

CQS

is

up.

If

a

CQS

is

up,

the

CQS

performs

a

user-managed

rebuild

and

does

the

structure

copy.

Use

system-managed

rebuild

primarily

for

planned

reconfiguration.

If

the

rebuild

is

initiated

with

the

SETXCF

START,REBUILD

command

and

no

CQS

is

available

to

perform

the

structure

copy,

z/OS

performs

the

structure

copy.

Structure

FullIBM

Confidential

Chapter

3.

CQS

Administration

39

Restrictions:

System-managed

rebuild

does

not

address

coupling

facility

failures,

structure

failures,

or

loss

of

connectivity.

CQS-managed

rebuild

is

required

to

handle

such

failures.

To

enable

a

structure

for

system-managed

rebuild,

add

the

following

parameter

to

your

CFRM

couple

data

set

utility

job,

then

run

the

job

control

language

(JCL)

to

format

the

CFRM

couple

data

set

with

system-managed

rebuild

capability.

ITEM

NAME(SMREBLD)

NUMBER(1)

CQS-Managed

Rebuild

CQS-managed

rebuild

is

a

process

by

which

CQS

manages

structure

rebuild.

CQS

supports

two

variations

of

CQS-managed

rebuild:

structure

copy

and

structure

recovery.

Structure

copy

copies

the

contents

of

the

structure

to

another

structure,

for

a

planned

reconfiguration

or

connectivity

loss.

Structure

copy

can

also

be

used

to

activate

new

CFRM

policy

attributes.

Structure

recovery

recovers

a

structure

from

the

SRDS

and

the

z/OS

log

after

a

structure

failure.

If

one

CQS

loses

connectivity

to

a

structure

and

another

CQS

still

has

connectivity

to

that

structure,

CQS

manages

the

structure

rebuild

and

performs

a

structure

copy.

If

all

CQSs

lose

connectivity

to

a

resource

structure,

structure

recovery

is

attempted,

but

fails

because

structure

recovery

is

not

supported

for

resource

structures.

If

a

coupling

facility

or

queue

structure

fails,

CQS

performs

a

structure

recovery.

If

a

resource

structure

fails,

it

is

lost

and

structure

rebuild

is

not

performed.

CQS

is

not

able

to

perform

structure

recovery

because

resource

structures

do

not

support

checkpoint

and

logging.

CQS

clients

can

repopulate

the

failed

resource

structure.

CQS

attempts

to

allocate

a

new

resource

structure.

If

a

new

structure

is

successfully

allocated,

CQS

drives

the

client

structure

event

exit

with

the

repopulate

structure

event.

The

CQS

client

or

clients

must

then

repopulate

the

structure.

If

a

new

structure

is

not

successfully

allocated,

CQS

drives

the

structure

exit

event

with

the

structure

failed

event.

The

structure

is

not

accessible

for

repopulation.

Correct

the

environmental

problem

that

caused

the

structure

allocate

to

fail

so

that

the

structure

can

be

allocated

and

repopulated.

Initiating

Structure

Rebuild

with

z/OS

and

CQS

A

structure

rebuild

can

be

initiated

by

a

z/OS

operator,

by

CQS,

or

by

z/OS:

v

A

z/OS

operator

can

initiate

a

structure

rebuild

to

copy

or

recover

queues

using

the

following

command:

SETXCF

START,REBUILD,STRNAME=strname,LOCATION=NORMAL/OTHER

v

CQS

initiates

a

structure

rebuild

if,

during

CQS

initialization,

it

detects

an

empty

structure

and

a

valid

SRDS

(indicating

a

valid

structure

checkpoint

in

the

SRDS).

If

CQS

detects

an

empty

structure

and

a

valid

SRDS,

it

also

initiates

a

structure

rebuild

during

event

notification

facility

(ENF)

35

event

processing.

v

z/OS

initiates

a

structure

rebuild

if

the

rebuild

threshold

for

loss

of

connectivity

is

reached.

The

rebuild

threshold

for

loss

of

connectivity

is

defined

with

the

CFRM

policy

REBUILDPERCENT

keyword.

The

REBUILDPERCENT

default

is

1.

If

the

system

programmer

does

not

define

REBUILDPERCENT,

z/OS

initiates

a

rebuild

if

any

CQS

loses

connectivity

to

the

structure.

v

If

structure

copy

aborts

because

of

a

CQS

failure

and

no

other

CQS

can

determine

if

the

failed

CQS

is

the

master,

then

the

rebuild

starts

over

as

a

structure

recovery.

Rebuilding

Structures IBM

Confidential

40

Common

Queue

Server

Guide

and

Reference

CQS

Structure

Repopulation

Structure

repopulation

is

a

process

by

which

CQS

clients

repopulate

a

failed

resource

structure.

CQS

does

not

support

structure

recovery

for

resource

structures

because

CQS

does

not

log

or

checkpoint

resource

updates.

If

a

resource

structure

and

its

duplex

fail,

the

CQS

clients

can

repopulate

the

resource

structure.

CQS

attempts

to

allocate

a

new

structure.

If

this

allocation

is

successful,

CQS

notifies

its

clients

to

repopulate.

The

CQS

client

or

clients

must

then

repopulate

the

structure.

Any

resources

that

were

kept

only

on

the

resource

structure

are

lost.

If

CQS

fails

to

allocate

a

new

structure,

CQS

notifies

the

client

that

the

structure

failed.

If

the

sysplex

environment

changes

later

and

CQS

is

eventually

able

to

allocate

a

new

resource

structure,

CQS

notifies

the

client

to

repopulate

at

that

time.

Alternately,

correct

the

environmental

problem

that

caused

the

structure

allocate

to

fail

so

that

the

structure

can

be

allocated

and

repopulated.

CQS

does

not

coordinate

resource

structure

repopulation

between

CQS

clients;

clients

must

synchronize

resource

structure

repopulation

if

desired.

Structure

repopulation

does

not

guarantee

the

restoration

of

all

objects;

some

objects

may

be

lost.

CQS

Structure

Recovery

The

structure

recovery

function

recovers

the

data

objects

on

a

structure

from

the

SRDS

and

the

z/OS

logs

after

a

structure

failure.

Important:

Structure

recovery

is

not

supported

for

resource

structures.

After

a

structure

failure,

the

structure

might

need

to

be

recovered

if

it

is

empty

or

contains

only

CQS

control

information.

During

structure

recovery,

CQS

allocates

a

structure

and

repopulates

it

from

either

the

SRDS

(containing

valid

client

data

from

a

previous

checkpoint)

and

the

CQS

log

or

the

CQS

log

by

itself.

When

CQS

recovers

the

structure

from

a

structure

checkpoint,

it

repopulates

the

structure

with

the

data

objects

from

the

structure

recovery

data

set.

CQS

reads

the

log

starting

at

the

time

of

the

structure

checkpoint

to

update

the

structure

with

changes

that

occurred

after

the

structure

checkpoint.

If

the

primary

structure

is

empty

and

neither

SRDS

contains

valid

structure

checkpoint

data,

CQS

determines

whether

it

can

use

just

the

CQS

log

for

recovery.

If

the

first

log

record

in

the

log

stream

is

the

Beginning

of

Log

log

record,

the

log

stream

contains

all

of

the

log

records

required

for

recovery

and

CQS

can

use

the

log

record

to

complete

the

structure

recovery.

If

CQS

finds

that

a

previous

structure

rebuild

did

not

complete

successfully,

it

initiates

another

rebuild.

If

the

primary

structure

contains

only

CQS

control

information

and

the

CQS

that

allocated

the

structure

is

not

able

to

determine

if

a

rebuild

is

necessary,

CQS

initiates

a

rebuild

if

either

SRDS

is

valid

or

all

log

records

are

available.

If

neither

SRDS

is

valid

and

the

log

records

are

deleted

by

a

previous

structure

checkpoint,

CQS

cannot

rebuild

the

structure.

In

this

case,

if

rebuild

is

necessary,

CQS

issues

WTOR

CQS0034A

to

ask

you

what

to

do.

You

can

cold

start

the

structure

or

cancel

this

CQS.

Rebuilding

StructuresIBM

Confidential

Chapter

3.

CQS

Administration

41

If

no

CQS

has

access

to

the

structure

when

structure

rebuild

is

initiated,

the

structure

is

recovered

from

the

SRDS

and

the

CQS

log.

Nonrecoverable

data

objects

(such

as

IMS

Fast

Path

input

messages)

are

lost.

Data

objects

are

read

from

the

SRDS

and

copied

into

a

new

structure.

CQS

then

reads

the

log

to

bring

the

structure

back

to

the

point

of

currency.

The

log

contains

all

the

records

necessary

for

structure

recovery

if

no

structure

checkpoint

was

ever

initiated.

In

this

case,

the

structure

is

recovered

from

just

the

CQS

log.

A

client

can

use

the

CQSCONN

request

to

specify

whether

work

can

be

performed

while

a

structure

is

being

rebuilt.

While

structure

recovery

is

in

progress,

CQS

stops

all

activity

against

the

structure.

This

means

that

CQS

requests

are

held

until

the

structure

recovery

is

complete.

You

can

allow

CQS

requests

to

continue

during

structure

rebuild

by

specifying

WAITRBLD=NO

when

connecting

to

the

structure

with

the

CQSCONN

request.

In

this

case,

structure

recovery

stops

structure

activity

for

some

time,

but

the

structure

becomes

available

much

sooner.

CQS

Structure

Copy

The

structure

copy

function

copies

all

of

the

data

objects

(both

recoverable

and

nonrecoverable)

from

the

structure

to

a

new

structure

for

a

planned

reconfiguration

or

unplanned

activity

such

as

loss

of

connectivity.

Structure

copy

can

be

used

to

change

the

location

of

the

structure

or

any

other

attribute

defined

in

the

CFRM

policy,

such

as

SIZE,

INITSIZE,

and

PREFLIST.

When

a

structure

rebuild

is

initiated,

at

least

one

CQS

must

have

access

to

the

structure

for

structure

copy

to

be

performed.

z/OS

Structure

Duplexing

for

CQS

Structure

duplexing

is

an

optional

z/OS-managed

process

for

failure

recovery

of

queue

structures

and

resource

structures.

In

this

process,

z/OS

creates

a

duplex

copy

of

a

structure

in

advance

of

a

failure,

then

maintains

the

structures

in

a

duplexed

state

during

normal

operation.

If

a

queue

structure

fails

and

duplexing

is

enabled,

z/OS

switches

to

the

unaffected

structure

instance.

If

a

queue

structure

fails

and

duplexing

is

not

enabled,

CQS

rebuilds

the

structure

based

on

data

from

the

most

recent

checkpoint

and

z/OS

log

entries.

The

advantage

of

duplexing

queue

structures

in

the

event

of

a

failure

is

in

avoiding

the

overhead

of

a

CQS-managed

structure

rebuild.

If

duplexing

is

enabled

and

a

resource

structure

fails,

z/OS

switches

to

the

unaffected

structure

instance.

If

duplexing

is

not

enabled

and

a

resource

structure

fails,

the

data

objects

are

lost

because

resource

structures

do

not

support

checkpoint

or

logging.

CQS

repopulates

the

resource

structure

with

control

information.

CQS

notifies

its

clients

to

repopulate

the

structure.

It

is

up

to

the

clients

to

repopulate

the

resource

structure

if

necessary.

Recommendation:

Enable

structure

duplexing

for

resource

structures.

If

both

instances

of

a

structure

fail

at

the

same

time,

structure

duplexing

does

not

work

and

all

data

objects

are

lost.

If

the

failed

structure

is

a

resource

structure,

the

CQS

client

must

repopulate

it.

If

the

failed

structure

is

a

queue

structure,

CQS

recovers

the

structure

using

structure

rebuild.

Structure

duplexing

is

optional.

To

use

it,

you

must

enable

the

z/OS

1.2

duplexing

function.

Perform

the

following

steps

to

enable

this

function:

1.

Ensure

that

the

sysplex

is

defined

as

duplexing

capable.

Rebuilding

Structures IBM

Confidential

42

Common

Queue

Server

Guide

and

Reference

2.

Add

the

following

parameter

to

your

CFRM

couple

data

set

format

utility:

ITEM

NAME(SMDUPLEX)

NUMBER(1)

3.

Migrate

to

an

environment

in

which

system-managed

duplexing

is

enabled

from

a

CFRM

standpoint.

A

nondisruptive

migration

of

CFRM

couple

data

sets

is

required.

Only

z/OS

systems

at

a

level

that

supports

system-managed

duplexing

are

capable

of

using

system-managed

CFRM

couple

data

sets

that

are

duplexing-capable.

Therefore,

take

the

following

steps:

a.

Incrementally

migrate

all

systems

in

the

sysplex

that

are

using

CFRM

to

the

z/OS

level

that

supports

system-managed

duplexing.

b.

Format

system-managed

duplexing-capable

CFRM

couple

data

sets

and

bring

them

into

use

as

the

primary

and

alternate

CFRM

couple

data

sets

for

the

configuration.

Important:

After

you

enable

z/OS

1.2

duplexing,

you

cannot

return

to

downlevel

CFRM

couple

data

sets

(ones

that

are

not

system-managed

duplexing-capable)

without

disruption.

Doing

so

requires

a

sysplex-wide

IPL

of

all

systems

using

the

system-managed

duplexing-capable

data

sets.

After

an

uplevel

CFRM

couple

data

set

is

in

use

in

the

sysplex,

system-managed

duplexing

can

be

started

and

stopped

in

a

nondisruptive

manner.

To

turn

this

function

on

or

off,

even

while

the

CFRM

couple

data

set

is

in

use,

modify

the

CFRM

policy

DUPLEX

parameter

or

use

the

SETXCF

START/STOP,REBUILD,DUPLEX

operator

command.

To

enable

system-managed

duplexing

for

a

particular

structure,

the

structure

must

be

defined

as

duplexing-capable.

Defining

a

structure

as

duplexing

capable

also

defines

it

as

system-managed

rebuild-capable.

Add

the

following

parameter

to

your

CFRM

active

policy:

DUPLEX

(ENABLED)

or

DUPLEX(ALLOWED)

If

DUPLEX(ENABLED)

is

defined

in

the

CFRM

active

policy,

the

system

programmer

or

z/OS

internally

can

initiate

the

duplexing

rebuild.

z/OS

triggers

the

start

of

duplexing

rebuild

based

on

a

timer

or

upon

detection

of

certain

events

(such

as

connect,

disconnect,

and

policy

change).

When

CQS

initializes

and

connects

to

a

structure

defined

with

DUPLEX(ENABLED),

z/OS

starts

a

duplexing

rebuild.

If

DUPLEX(ALLOWED)

is

defined

in

the

CFRM

active

policy,

the

duplexing

rebuild

must

be

initialized

by

the

system

programmer

using

the

following

command:

SETXCF

START,REBUILD,DUPLEX,STRNAME=strname

Important:

If

you

define

overflow

structures

with

DUPLEX(ENABLED),

IMS

initialization

allocates

the

overflow

structure

and

duplexing

begins.

If

IMS

initialization

determines

that

the

overflow

structure

is

not

needed,

it

deletes

it

and

duplexing

terminates.

If

you

want

to

avoid

this

unnecessary

overhead,

during

CQS

initialization

define

the

overflow

structure

with

DUPLEX(ALLOWED)

and

initiate

duplexing

with

a

SETXCF

command

when

the

structure

goes

into

overflow

mode.

Once

duplexing

is

established,

the

structure

remains

in

that

state

indefinitely.

Duplexing

can

be

stopped

internally

by

z/OS

if

an

error

occurs

(such

as

link

failure,

structure

failure,

and

CFRM

policy

change).

The

system

programmer

can

explicitly

stop

duplexing

using

the

following

command:

Rebuilding

StructuresIBM

Confidential

Chapter

3.

CQS

Administration

43

SETXCF

STOP,REBUILD,DUPLEX,STRNAME=strname,KEEP=OLD/NEW

where

you

specify

KEEP=OLD

to

keep

the

old

structure

and

KEEP=NEW

to

keep

the

new

structure.

Planned

reconfiguration

(such

as

a

CFRM

policy

change

or

taking

a

coupling

facility

offline

for

maintenance)

is

supported.

Structure

rebuild

is

not

permitted

for

a

structure

that

has

established

duplexing,

so

the

duplexing

must

be

stopped

first.

Perform

the

following

steps:

1.

Stop

duplexing.

Stop

duplexing

and

switch

the

structure

to

simplex

mode

by

issuing

the

following

command:

SETXCF

STOP,REBUILD,DUPLEX,STRNAME=strname,KEEP=OLD/NEW

2.

Reconfigure.

Make

the

change

required

for

planned

reconfiguration.

3.

Initiate

duplexing

rebuild.

Initiate

a

new

duplexing

rebuild

by

issuing

the

following

command:

SETXCF

START,REBUILD,DUPLEX,STRNAME=strname

Deleting

a

Structure

When

CQS

Is

Not

Connected

You

can

delete

a

structure

when

no

CQS

is

connected

to

it.

To

delete

a

structure:

1.

Shut

down

all

CQSs

connected

to

the

structure.

2.

If

there

are

any

failed

persistent

connections,

then

they

must

be

deleted

before

the

structure

can

be

deleted.

Enter

the

SETXCF

FORCE,CONNECTION,STRNAME=strname,CONNAME=ALL

command.

Attention:

When

a

CQS

fails

while

connected

to

a

structure,

it

should

be

allowed

to

restart

so

it

can

clean

up

any

work

that

was

in

process

at

the

time

it

failed.

This

command

can

be

used

to

terminate

the

failed

connections

when

you

have

to

delete

the

structure.

If

this

command

is

used

incorrectly,

the

queues

or

resources

may

be

lost.

3.

Enter

the

SETXCF

FORCE,STRUCTURE,STRNAME=strname

command.

Ensure

that

the

strname

in

this

command

is

the

same

as

the

strname

specified

in

the

CQS

global

structure

definition

PROCLIB

member

and

the

CQS

local

structure

definition

PROCLIB

member.

Shutting

Down

CQS

A

CQS

client

can

use

the

CQSSHUT

request,

the

CQSDISC

with

the

CQSSHUT=YES

parameter

to

shut

down

CQS,

or

you

can

issue

the

z/OS

STOP

command

to

shut

down

CQS.

Related

Reading:

See

“Shutting

Down

CQS”

on

page

78

for

information

on

how

the

client

can

shut

down

CQS.

Normally,

when

a

client

disconnects

from

CQS

using

the

CQSDISC

request

and

specifying

CQSSHUT=YES,

CQS

shuts

down

after

no

clients

are

connected

to

it.

In

some

cases,

however,

the

CQS

address

space

remains

active,

even

when

no

clients

are

connected

to

it.

This

can

happen

under

any

of

the

following

conditions:

v

No

client

is

connected

to

CQS

when

CQS

is

started.

Rebuilding

Structures IBM

Confidential

44

Common

Queue

Server

Guide

and

Reference

v

A

client

that

had

been

connected

to

CQS

terminates

abnormally,

without

issuing

a

CQSDISC

request

to

disconnect

from

CQS,

or

issues

a

CQSDISC

request

with

CQSSHUT=NO

specified.

You

can

shut

down

a

CQS

address

space

that

has

no

clients

connected

to

it

by

issuing

the

z/OS

STOP

command,

specifying

the

job

name

of

the

CQS

address

space.

Example:

P

cqsjobname

cqsjobname

is

the

job

name

of

the

CQS

address

space

you

want

to

stop.

If

no

clients

are

connected

to

a

CQS,

that

CQS

shuts

down.

If

clients

are

connected

to

the

CQS,

the

stop

command

is

rejected,

and

message

CQS0300I

is

issued.

Shutting

Down

CQSIBM

Confidential

Chapter

3.

CQS

Administration

45

IBM

Confidential

46

Common

Queue

Server

Guide

and

Reference

Chapter

4.

CQS

User-Supplied

Exit

Routines

Note:

Throughout

this

section

the

term

“user

exit

routine”

means

“user-supplied

exit

routine.”

This

section

describes

the

following

CQS

user

exit

routines:

“General

User-Supplied

Exit

Routine

Interface

Information

for

CQS”

“CQS

Initialization-Termination

User-Supplied

Exit

Routine”

on

page

48

“CQS

Client

Connection

User-Supplied

Exit

Routine”

on

page

49

“Queue

Overflow

User-Supplied

Exit

Routine

for

CQS”

on

page

51

“CQS

Structure

Statistics

User-Supplied

Exit

Routine”

on

page

53

“CQS

Structure

Event

User-Supplied

Exit

Routine”

on

page

62

“CQS

Statistics

Available

through

the

BPE

Statistics

User

Exit”

on

page

67

This

section

contains

Product-sensitive

Programming

Interface

information.

CQS

user

exit

routines

enable

you

to

customize

and

monitor

your

CQS

environment.

You

write

these

exit

routines,

no

samples

are

provided.

The

CQS

user

exit

routines

receive

control

in

the

CQS

address

space

in

an

authorized

state.

CQS

uses

Base

Primitive

Environment

(BPE)

services

to

call

and

manage

the

CQS

user

exit

routines.

A

list

of

the

user

exit

routines

and

their

functions

follows:

CQS

Initialization-Termination

Called

during

CQS

initialization

and

CQS

normal

termination.

CQS

Client

Connection

Called

when

a

client

connects

to

or

disconnects

from

a

structure.

CQS

Queue

Overflow

Called

during

overflow

processing

to

verify

queue

name

eligibility

for

overflow

processing.

CQS

Structure

Statistics

Called

at

the

end

of

CQS

system

checkpoint

to

allow

structure-related

statistics

gathering.

CQS

Structure

Event

Called

during

processing

for

structure

processing-related

event

notification.

In

addition,

you

can

use

the

BPE

Statistics

User

exit

to

gather

CQS

statistics;

for

more

information

see

“CQS

Statistics

Available

through

the

BPE

Statistics

User

Exit”

on

page

67

General

User-Supplied

Exit

Routine

Interface

Information

for

CQS

CQS

uses

BPE

services

to

call

and

manage

its

user

exit

routines.

BPE

allows

you

to

externally

specify

the

user

exit

routine

modules

to

be

called

for

a

particular

exit

routine

type

using

EXITDEF=

statements

in

BPE

user

exit

PROCLIB

members.

BPE

also

provides

a

common

user

exit

routine

execution

environment.

This

environment

includes:

v

Standard

BPE

user

exit

parameter

list

v

Static

work

areas

for

the

routines

v

Dynamic

work

areas

for

the

routines

IBM

Confidential

©

Copyright

IBM

Corp.

1997,

2004

47

v

Callable

services

for

the

routines

v

A

recovery

environment

to

protect

against

abends

in

the

user

exit

routines

Recommendation:

Write

CQS

user

exit

routines

in

assembler,

not

in

a

high

level

language.

CQS

does

not

support

exit

routines

running

under

Language

Environment®

for

z/OS.

If

you

write

an

exit

routine

in

a

high

level

language,

and

that

routine

is

executing

in

the

Language

Environment

for

z/OS,

you

might

have

abends

or

performance

problems.

Language

Environment

for

z/OS

is

designed

for

applications

running

in

key

8,

problem

program

state.

CQS

user

exit

routines

execute

in

key

7

supervisor

state.

Related

Reading

v

For

complete

information

about

displaying

and

refreshing

user

exits,

see

IMS

Version

9:

Base

Primitive

Environment

Guide

and

Reference.

v

For

complete

information

about

BPE

interfaces

and

services

that

are

available

to

user

exits,

see

IMS

Version

9:

Base

Primitive

Environment

Guide

and

Reference.

CQS

Initialization-Termination

User-Supplied

Exit

Routine

The

Initialization-Termination

(Init-Term)

exit

routine

is

called

during

CQS

initialization

and

CQS

normal

termination.

The

Init-Term

exit

routine

is

not

called

during

CQS

abnormal

termination.

This

exit

routine

is

optional.

The

CQS

Init-Term

user

exit

routine

is

driven

for

the

following

events:

v

CQS

initialization;

after

CQS

has

completed

its

initial

processing,

but

before

it

connects

to

any

structures.

v

CQS

normal

termination,

during

CQS

address

space

termination,

after

CQS

has

disconnected

from

all

structures.

The

Init-Term

exit

routine

is

defined

as

TYPE=INITTERM

in

the

EXITDEF

statement

in

the

BPE

user

exit

PROCLIB

member.

You

can

specify

one

or

more

user

exit

routines

of

this

type.

When

this

exit

routine

is

invoked,

the

exit

routines

are

driven

in

the

order

they

are

specified

by

the

EXITS=

keyword.

Recommendation:

Write

the

Init-Term

exit

routine

so

that

it

is

reentrant.

It

is

invoked

AMODE

31.

Contents

of

Registers

on

Entry

Register

Contents

1

Address

of

Standard

BPE

user

exit

parameter

list

(mapped

by

the

BPEUXPL

macro).

See

IMS

Version

9:

Base

Primitive

Environment

Guide

and

Reference

for

more

information.

13

Address

of

two

pre-chained

save

areas.

The

first

save

area

can

be

used

by

the

exit

routine

to

save

registers

on

entry.

The

second

save

area

can

be

used

by

routines

that

are

called

from

the

user

exit

routine.

14

Return

address.

15

Entry

point

of

the

exit

routine.

Contents

of

Registers

on

Exit

Register

Contents

General

Interface

Info IBM

Confidential

48

Common

Queue

Server

Guide

and

Reference

15

Return

code

0

Always

set

this

to

zero.

All

other

registers

must

be

restored.

CQS

Initialization

and

Termination

Parameter

Lists

On

entry

to

the

Init-Term

exit

routine

R1

points

to

a

Standard

BPE

user

exit

parameter

list.

The

field

UXPL_EXITPLP

in

this

list

contains

the

address

of

the

Init-Term

user

exit

routine

parameter

lists

(mapped

by

the

CQSINTMX

macro).

The

parameters

are

described

in

Table

3

and

in

Table

4.

Table

3.

CQS

Init-Term

User-Supplied

Exit

Routine

Parameter

List:

CQS

Initialization

Field

Name

Offset

Length

Field

Usage

Description

ITXPVSN

X'00'

X'04'

Input

Parameter

List

Version

Number

(00000001)

ITXFUNC

X'04'

X'04'

Input

Function

code

1

CQS

Initialization

(ITXFINIT)

ITXCQSID

X'08'

X'08'

Input

CQS

identifier

ITXCQSVN

X'10'

X'04'

Input

CQS

version

number

Table

4.

CQS

Init-Term

User-Supplied

Exit

Routine

Parameter

List:

CQS

Termination

Field

Name

Offset

Length

Field

Usage

Description

ITXPVSN

X'00'

X'04'

Input

Parameter

List

Version

Number

(00000001)

ITXFUNC

X'04'

X'04'

Input

Function

code

2

CQS

Normal

Termination

(ITXFNTRM)

ITXCQSID

X'08'

X'08'

Input

CQS

identifier

ITXCQSVN

X'10'

X'04'

Input

CQS

version

number

CQS

Client

Connection

User-Supplied

Exit

Routine

This

exit

routine

is

called

when

a

client

connects

to

or

disconnects

from

a

structure.

This

exit

routine

is

optional.

The

Client

Connection

exit

routine

is

driven

for

the

following

events:

v

Client

connect;

after

a

client

successfully

connects

to

one

or

more

structures.

v

Client

disconnect;

after

a

client

disconnects

normally

or

abnormally

from

one

or

more

structures.

The

Client

Connection

exit

routine

is

defined

as

TYPE=CLNTCONN

in

the

EXITDEF

statement

in

the

BPE

user

exit

PROCLIB

member.

You

can

specify

one

or

more

user

exit

routines

of

this

type.

When

this

exit

routine

is

invoked,

all

user

exit

routines

of

this

type

are

driven

in

the

order

specified

by

the

EXITS=

keyword.

Recommendation:

Write

the

Client

Connection

exit

routine

so

that

it

is

reentrant.

It

is

invoked

AMODE

31.

Contents

of

Registers

on

Entry

Register

Contents

1

Address

of

Standard

BPE

user

exit

parameter

list

(mapped

by

the

Init-Term

User

ExitIBM

Confidential

Chapter

4.

CQS

User-Supplied

Exit

Routines

49

BPEUXPL

macro).

See

IMS

Version

9:

Base

Primitive

Environment

Guide

and

Reference

for

more

information.

13

Address

of

two

pre-chained

save

areas.

The

first

save

area

can

be

used

by

the

exit

routine

to

save

registers

on

entry.

The

second

save

area

can

be

used

by

routines

that

are

called

from

the

user

exit

routine.

14

Return

address.

15

Entry

point

of

the

exit

routine.

Contents

of

Registers

on

Exit

Register

Contents

15

Return

code

0

Always

set

this

to

zero.

All

other

registers

must

be

restored.

CQS

Client

Connection

and

Disconnect

Parameter

Lists

On

entry

to

the

Client

Connection

exit

routine,

R1

points

to

a

Standard

BPE

user

exit

parameter

list.

The

field

UXPL_EXITPLP

in

this

list

contains

the

address

of

the

Client

Connection

user

exit

routine

parameter

list

(mapped

by

the

CQSCLNCX

macro).

The

parameters

for

client

connection

are

described

in

Table

5.

The

parameters

for

client

disconnect

are

described

in

Table

6.

Table

5.

CQS

Client

Connection

User-Supplied

Exit

Routine

Parameter

List:

Client

Connection

Field

Name

Offset

Length

Field

Usage

Description

CCXPVSN

X'00'

X'04'

Input

Parameter

List

Version

Number

(00000001).

CCXFUNC

X'04'

X'04'

Input

Function

code

1

Client

Connect

(CCXFCONN).

CCXCQSID

X'08'

X'08'

Input

CQS

identifier.

CCXCQSVN

X'10'

X'04'

Input

CQS

version

number.

CCXCLNNM

X'14'

X'08'

Input

Client

name.

CCXCSNUM

X'1C'

X'04'

Input

Number

of

structure

name

entries

in

the

list.

CCXCSENL

X'20'

X'04'

Input

Length

of

each

structure

name

list

entry.

CCXCSLST

X'24'

X'04'

Input

Address

of

first

structure

name

entry.

Each

entry

contains

the

16-byte

name

of

a

structure

that

the

client

connected

to.

Table

6.

CQS

Client

Connection

User-Supplied

Exit

Routine

Parameter

List:

Client

Disconnect

Field

Name

Offset

Length

Field

Usage

Description

CCXPVSN

X'00'

X'04'

Input

Parameter

List

Version

Number

(00000001).

CCXFUNC

X'04'

X'04'

Input

Function

code

2

Client

Disconnect

(CCXFDISC).

CCXCQSID

X'08'

X'08'

Input

CQS

identifier.

CCXCQSVN

X'10'

X'04'

Input

CQS

version

number.

CCXCLNNM

X'14'

X'08'

Input

Client

name.

CCXDFLG1

X'1C'

X'01'

Input

Flag

byte

indicates

whether

the

client

disconnect

is

abnormal

X'80'

Client

disconnect

is

abnormal

(CCXDABND).

Client

Connection

User

Exit IBM

Confidential

50

Common

Queue

Server

Guide

and

Reference

Table

6.

CQS

Client

Connection

User-Supplied

Exit

Routine

Parameter

List:

Client

Disconnect

(continued)

Field

Name

Offset

Length

Field

Usage

Description

N/A

X'1D'

X'03'

Reserved.

CCXDSNUM

X'20'

X'04'

Input

Number

of

structure

name

entries

in

the

list.

CCXDSENL

X'24'

X'04'

Input

Length

of

each

structure

name

list

entry.

CCXDSLST

X'28'

X'04'

Input

Address

of

first

structure

name

entry.

Each

entry

contains

the

16-byte

name

of

a

structure

that

the

client

disconnected

from.

Queue

Overflow

User-Supplied

Exit

Routine

for

CQS

The

Queue

Overflow

exit

routine

is

called

during

overflow

queue

selection

processing

to

approve

or

veto

a

queue

name

for

overflow

processing.

This

exit

routine

is

optional.

During

overflow

processing

the

Queue

Overflow

exit

routine

is

called

to

verify

that

a

queue

name

selected

by

CQS

is

eligible

for

overflow

processing.

When

CQS

determines

that

the

structure

has

reached

its

overflow

threshold,

overflow

threshold

processing

begins.

Then

CQS

determines

which

queues

are

using

the

most

storage

in

the

structure.

The

queues

using

the

most

storage

in

the

structure

become

candidates

for

overflow

and

are

moved

to

the

overflow

structure.

Or,

if

no

overflow

structure

is

defined,

the

queues

using

the

most

storage

in

the

structure

no

longer

allow

CQSPUT

requests

for

the

queue.

Restriction:

The

queue

overflow

user

exit

does

not

apply

to

the

resource

structure.

During

queue

selection

processing

the

Queue

Overflow

exit

routine

is

invoked

once

per

selected

queue

name

to

approve

or

veto

the

queue

name

for

overflow

processing.

If

the

exit

routine

approves

the

move

or

the

exit

routine

is

not

specified,

all

data

objects

for

that

queue

(such

as

IMS

messages

for

that

destination)

are

moved

to

the

overflow

structure.

All

additional

processing

for

that

queue

name

is

done

in

the

overflow

structure,

if

the

overflow

structure

exists.

If

no

overflow

structure

exists,

CQSPUT

requests

to

the

queue

are

rejected.

If

the

move

is

vetoed,

the

queue

name

is

removed

from

the

overflow

candidate

list,

and

another

queue

name

is

selected.

The

Queue

Overflow

exit

routine

is

defined

as

TYPE=OVERFLOW

in

the

EXITDEF

statement

in

the

BPE

user

exit

PROCLIB

member.

You

can

specify

one

or

more

user

exit

routines

of

this

type.

When

this

exit

routine

is

invoked,

all

such

routines

are

driven

in

the

order

specified

by

the

EXITS=

keyword.

Because

multiple

overflow

exit

routines

might

exist,

the

last

exit

routine

called

is

the

one

that

determines

whether

the

queue

name

is

selected

for

overflow.

If

an

exit

routine

accepts

a

queue

name

as

one

that

is

valid

for

overflow

processing

or

does

not

recognize

the

name,

the

exit

routine

must

set

R15

to

0

and

specify

that

the

next

exit

in

the

list

should

be

called.

This

allows

the

next

exit

routine

to

have

a

chance

to

veto

the

name

selection.

If

an

exit

routine

determines

that

a

queue

name

is

ineligible

as

a

candidate

for

overflow

processing,

the

exit

routine

must

set

R15

to

4

and

specify

that

no

more

exit

routines

are

to

be

called.

Within

the

Standard

BPE

user

exit

parameter

list

is

the

field

UXPL_CALLNEXTP,

which

is

a

pointer

to

a

byte

of

storage

which

is

set

by

the

exit

routine

to

indicate

whether

the

next

exit

routine

in

the

list

is

to

be

called.

When

the

byte

of

storage

is

Client

Connection

User

ExitIBM

Confidential

Chapter

4.

CQS

User-Supplied

Exit

Routines

51

set

to

UXPL_CALLNEXTYES,

the

next

exit

is

called

(if

one

exists).

When

the

byte

of

storage

is

set

to

UXPL_CALLNEXTNO,

no

more

exits

are

called

for

this

queue

name.

If

a

Queue

Overflow

exit

routine

determines

that

a

queue

name

is

not

a

candidate

for

overflow,

the

exit

routine

can

set

the

byte

pointed

to

by

field

UXPL_CALLNEXTP

to

the

value

of

UXPL_CALLNEXTNO

(X'04')

so

that

no

other

exit

routines

are

called

for

the

queue

name.

Recommendation:

Write

the

Queue

Overflow

exit

routine

so

that

it

is

reentrant.

It

is

invoked

AMODE

31.

Contents

of

Registers

on

Entry

Register

Contents

1

Address

of

Standard

BPE

user

exit

parameter

list

(mapped

by

the

BPEUXPL

macro).

See

IMS

Version

9:

Base

Primitive

Environment

Guide

and

Reference

for

more

information.

13

Address

of

two

pre-chained

save

areas.

The

first

save

area

can

be

used

by

the

exit

routine

to

save

registers

on

entry.

The

second

save

area

can

be

used

by

routines

that

are

called

from

the

user

exit

routine.

14

Return

address.

15

Entry

point

of

the

exit

routine.

Contents

of

Registers

on

Exit

Register

Contents

15

Return

code

0

Allow

queue

to

be

moved

to

overflow

structure.

4

Do

not

move

queue

to

overflow

structure;

select

another

candidate.

Attention:

This

return

code

is

ignored

unless

the

exit

routine

is

the

last

overflow

user

exit

called

for

the

queue

name.

An

exit

routine

is

considered

the

last

one

called

when

either

of

the

following

are

true:

1.

The

exit

routine

is

the

last

routine

defined

in

the

exit

list

for

the

overflow

queue.

2.

The

exit

routine

sets

the

byte

pointed

to

by

UXPL_CALLNEXTP

to

the

value

UXPL_CALLNEXTNO.

All

other

registers

must

be

restored.

CQS

Queue

Overflow

Parameter

List

On

entry

to

the

Queue

Overflow

exit

routine,

R1

points

to

a

Standard

BPE

user

exit

parameter

list.

The

field

UXPL_EXITPLP

in

this

list

contains

the

address

of

the

CQS

Queue

Overflow

user

exit

routine

parameter

list

(mapped

by

the

CQSQOFLX

macro).

The

parameters

are

described

in

detail

in

Table

7

on

page

53.

Queue

Overflow

User

Exit IBM

Confidential

52

Common

Queue

Server

Guide

and

Reference

Table

7.

CQS

Queue

Overflow

User-Supplied

Exit

Routine

Parameter

List

Field

Name

Offset

Length

Field

Usage

Description

QOXPVSN

X'00'

X'04'

Input

Parameter

List

Version

Number

(00000001).

QOXFUNC

X'04'

X'04'

Input

Function

code

1

Queue

Name

Selection

(QOXFQOFL).

QOXQOFL1

X'08'

X'01'

Input

Flag

byte

indicating

whether

this

is

the

first

overflow

exit

call

for

this

overflow

threshold

process.

The

exit

routine

is

called

once

per

selected

queue

name

for

each

occurrence

of

overflow

threshold

processing.

This

bit

will

be

on

for

the

first

queue

name

for

an

occurrence

of

overflow

threshold

processing.

X'80'

This

is

the

initial

entry

for

this

overflow

threshold

process

(QOXQ11ST)

N/A

X'09'

X'03'

Reserved.

QOXCQSID

X'0C'

X'08'

Input

CQS

identifier.

QOXCQSVN

X'14'

X'04'

Input

CQS

version

number.

QOXSTRNM

X'18'

X'10'

Input

Structure

Name.

QOXQNAME

X'28'

X'10'

Input

Queue

name

selected

for

overflow

processing.

QOXDOBJN

X'38'

X'04'

Input

Number

of

data

objects

on

the

selected

queue

name.

CQS

Structure

Statistics

User-Supplied

Exit

Routine

The

CQS

Structure

Statistics

user

exit

routine

enables

you

to

gather

statistics

related

to

the

structure.

This

exit

routine

is

optional.

The

exit

routine

is

driven

at

the

end

of

a

successful

system

checkpoint.

All

statistical

data

that

CQS

gathers,

including

rebuild

statistics

and

checkpoint

statistics,

are

passed

to

the

Structure

Statistics

user

exit

at

the

end

of

each

successful

system

checkpoint.

All

statistical

data

is

logged

in

the

Structure

Statistics

log

record.

You

can

also

obtain

this

same

statistical

data

with

the

CQSQUERY

FUNC=STRSTAT

request.

Recommendation:

Some

statistics

about

resource

structures

are

passed

in

the

structure

statistics.

CQS

system

checkpoint

does

not

apply

to

resource

structures.

Use

the

STATINV

parameter

in

the

BPE

configuration

PROCLIB

member

to

define

the

time

interval

so

that

BPE

regularly

drives

CQS’s

statistics

user

exit.

See

the

IMS

Version

9:

Base

Primitive

Environment

Guide

and

Reference

for

more

information

about

the

BPE

configuration

PROCLIB

member.

The

CQS

Structure

Statistics

user

exit

routine

is

defined

as

TYPE

=

STRSTAT

in

the

EXITDEF

statement

in

the

BPE

user

exit

PROCLIB

member.

You

can

specify

one

or

more

user

exit

routines

of

this

type.

When

this

exit

routine

is

invoked,

all

routines

of

this

type

are

driven

in

the

order

specified

by

the

EXITS=

keyword.

Recommendation:

Write

the

CQS

Structure

Statistics

exit

routine

so

that

it

is

reentrant.

It

is

invoked

AMODE

31.

Contents

of

Registers

on

Entry

Register

Contents

1

Address

of

Standard

BPE

user

exit

parameter

list

(mapped

by

the

BPEUXPL

macro).

See

IMS

Version

9:

Base

Primitive

Environment

Guide

and

Reference

for

more

information.

Queue

Overflow

User

ExitIBM

Confidential

Chapter

4.

CQS

User-Supplied

Exit

Routines

53

13

Address

of

two

pre-chained

save

areas.

The

first

save

area

can

be

used

by

the

exit

routine

to

save

registers

on

entry.

The

second

save

area

can

be

used

by

routines

that

are

called

from

the

user

exit

routine.

14

Return

address.

15

Entry

point

of

the

exit

routine.

Contents

of

Registers

on

Exit

Register

Contents

15

Return

code

0

Always

set

this

to

zero.

All

other

registers

must

be

restored.

CQS

Structure

Statistics

User-Supplied

Exit

Routine

Parameter

List

On

entry

to

the

Structure

Statistics

exit

routine,

R1

points

to

a

Standard

BPE

user

exit

parameter

list.

The

field

UXPL_EXITPLP

in

this

list

contains

the

address

of

the

CQS

Structure

Statistics

user

exit

routine

parameter

list

(mapped

by

the

CQSSTATX

macro).

The

parameters

are

described

in

Table

8.

Table

8.

CQS

Structure

Statistics

User-Supplied

Exit

Routine

Parameter

List

Field

Name

Offset

Length

Field

Usage

Description

SAXPVSN

X'00'

X'04'

Input

Parameter

List

Version

Number

(00000001).

SAXFUNC

X'04'

X'04'

Input

Function

code

1

System

Checkpoint

(SAXFCSYS).

SAXCQSID

X'08'

X'08'

Input

CQS

identifier.

SAXCQSVN

X'10'

X'04'

Input

CQS

version

number.

SAXSTRNM

X'14'

X'10'

Input

Structure

name.

SAXSSTT1

X'24'

X'04'

Input

Address

of

structure

process

statistics

record

for

activity

performed

by

CQS

processes

on

this

structure

for

all

clients

since

restart

or

the

last

successful

structure

checkpoint

(mapped

by

the

CQSSSTT1

macro).

See

Table

9

on

page

55

for

a

description

of

the

process

statistics

record.

SAXSSTT2

X'28'

X'04'

Input

Address

of

CQS

request

statistics

record

for

activity

performed

for

CQS

requests

for

this

structure

for

all

clients

since

restart

or

the

last

successful

structure

checkpoint

(mapped

by

the

CQSSSTT2

macro).

See

Table

10

on

page

55

for

a

description

of

the

request

statistics

record.

SAXSSTT3

X'2C'

X'04'

Input

Address

of

data

object

statistics

record

for

activity

performed

on

data

objects

in

this

structure

for

all

clients

since

restart

or

the

last

successful

structure

checkpoint

(mapped

by

the

CQSSSTT3

macro).

See

Table

11

on

page

56

for

a

description

of

the

object

statistics

record.

SAXSSTT4

X'30'

X'04'

Input

Address

of

queue

name

statistics

record

for

activity

performed

on

queue

names

in

this

structure

for

all

clients

since

restart

or

the

last

successful

structure

checkpoint

(mapped

by

the

CQSSSTT4

macro).

See

Table

12

on

page

57

for

a

description

of

the

queue

name

statistics

record.

SAXSSTT5

X'34'

X'04'

Input

Address

of

z/OS

request

statistics

record

for

activity

performed

by

CQS

processes

on

this

structure

for

all

clients

since

restart

or

the

last

successful

structure

checkpoint

(mapped

by

the

CQSSSTT5

macro).

See

Table

13

on

page

57

for

a

description

of

the

z/OS

request

statistics

record.

Structure

Statistics

User

Exit IBM

Confidential

54

Common

Queue

Server

Guide

and

Reference

Table

8.

CQS

Structure

Statistics

User-Supplied

Exit

Routine

Parameter

List

(continued)

Field

Name

Offset

Length

Field

Usage

Description

SAXSSTT6

X'38'

X'04'

Input

Address

of

rebuild

statistics

record

containing

data

from

the

last

rebuild

in

which

this

CQS

acted

as

master

(mapped

by

the

CQSSSTT6

macro).

See

Table

14

on

page

58

for

a

description

of

the

rebuild

statistics

record.

SAXSSTT7

X'3C'

X'04'

Input

Address

of

structure

checkpoint

statistics

record

containing

data

from

the

last

three

structure

checkpoints

in

which

this

CQS

acted

as

master

(mapped

by

the

CQSSSTT7

macro).

See

Table

15

on

page

60

for

a

description

of

the

structure

checkpoint

statistics

record.

CQS

Structure

Process

Statistics

Record

Table

9

describes

the

CQS

Structure

Statistics

user

exit

routine

structure

process

statistics

record.

Table

9.

CQS

Structure

Process

Statistics

Record

Field

Name

Offset

Length

Field

Usage

Description

SS1ID

X'00'

X'08'

Input

Eyecatcher

CQSSSTT1

SS1LN

X'08'

X'04'

Input

Length

of

valid

data

SS1PVSN

X'0C'

X'04'

Input

Parameter

List

Version

Number

(00000002)

SS1STATS

X'10'

X'04'

Input

Number

of

times

CQS

successfully

performed

system

checkpoint

processing

for

the

structure

SS1TCHKP

X'14'

X'04'

Input

Number

of

times

CQS

successfully

performed

structure

checkpoint

processing

for

the

structure

SS1RBLD

X'18'

X'04'

Input

Number

of

times

CQS

successfully

performed

rebuild

processing

for

the

structure

SS1DUPLX

X'20'

X'04'

Input

Number

of

times

CQS

successfully

established

a

duplexing

rebuild

SS1OFLWT

X'1C'

X'04'

Input

Number

of

times

CQS

performed

overflow

threshold

processing

for

the

structure

CQS

Request

Statistics

Record

Table

10

describes

the

Structure

Statistics

user

exit

routine

CQS

request

statistics

record.

Table

10.

CQS

Request

Statistics

Record

Field

Name

Offset

Length

Field

Usage

Description

SS2ID

X'00'

X'08'

Input

Eyecatcher

CQSSSTT2

SS2LN

X'08'

X'04'

Input

Length

of

valid

data

SS2PVSN

X'0C'

X'04'

Input

Parameter

List

Version

Number

(00000002)

SS2BRWSE

X'10'

X'04'

Input

Number

of

CQSBRWSE

requests

for

this

structure

SS2CHKPT

X'14'

X'04'

Input

Number

of

CQSCHKPT

requests

for

this

structure

SS2CONN

X'18'

X'04'

Input

Number

of

CQSCONN

requests

for

this

structure

SS2DEL

X'1C'

X'04'

Input

Number

of

CQSDEL

requests

for

this

structure

SS2DISC

X'20'

X'04'

Input

Number

of

CQSDISC

requests

for

this

structure

SS2INFRM

X'24'

X'04'

Input

Number

of

CQSINFRM

requests

for

this

structure

SS2MOVE

X'28'

X'04'

Input

Number

of

CQSMOVE

requests

for

this

structure

SS2PUT

X'2C'

X'04'

Input

Number

of

CQSPUT

requests

for

this

structure

SS2QUERY

X'30'

X'04'

Input

Number

of

CQSQUERY

requests

for

this

structure

Structure

Statistics

User

ExitIBM

Confidential

Chapter

4.

CQS

User-Supplied

Exit

Routines

55

Table

10.

CQS

Request

Statistics

Record

(continued)

Field

Name

Offset

Length

Field

Usage

Description

SS2READ

X'34'

X'04'

Input

Number

of

CQSREAD

requests

for

this

structure

SS2RECVR

X'38'

X'04'

Input

Number

of

CQSRECVR

requests

for

this

structure

SS2RSYNC

X'3C'

X'04'

Input

Number

of

CQSRSYNC

requests

for

this

structure

SS2UNLCK

X'40'

X'04'

Input

Number

of

CQSUNLCK

requests

for

this

structure

SS2UPD

X'44'

X'04'

Input

Number

of

CQSUPD

requests

for

this

structure

Data

Object

Statistics

Record

for

CQS

Table

11

describes

the

Structure

Statistics

user

exit

routine

data

object

statistics

record.

Table

11.

Data

Object

Statistics

Record

Field

Name

Offset

Length

Field

Usage

Description

SS3ID

X'00'

X'08'

Input

Eyecatcher

CQSSSTT3.

SS3LN

X'08'

X'04'

Input

Length

of

valid

data.

SS3PVSN

X'0C'

X'04'

Input

Parameter

List

Version

Number

(00000002).

SS3PTOBJ

X'10'

X'04'

Input

Number

of

data

objects

added

to

the

structure

with

COMMIT

=

NO.

This

count

does

not

include

data

objects

added

with

COMMIT

=

YES

or

RECOVERABLE

=

NO.

SS3PTCMT

X'14'

X'04'

Input

Number

of

data

objects

added

to

the

structure

with

COMMIT

=

YES.

This

count

indicates

the

number

of

recoverable

UOWs

added

to

the

structure.

This

count

plus

the

number

of

data

objects

that

are

added

with

COMMIT

=

NO

is

the

total

number

of

recoverable

data

objects

added

to

the

structure.

SS3PTNRO

X'18'

X'04'

Input

Number

of

data

objects

added

to

the

structure

with

RECOVERABLE

=

NO.

This

count

indicates

the

number

of

nonrecoverable

UOWs

added

to

the

structure.

This

count

plus

the

number

of

data

objects

that

are

added

with

COMMIT

=

YES

is

the

total

number

of

UOWs

that

were

added

to

the

structure.

SS3RDOBJ

X'1C'

X'04'

Input

Number

of

data

objects

read

from

the

structure.

SS3MVOBJ

X'20'

X'04'

Input

Number

of

data

objects

moved

from

one

queue

to

another

on

the

structure.

SS3ULOBJ

X'24'

X'04'

Input

Number

of

data

objects

unlocked

on

the

structure.

SS3ENTAL

X'30'

X'04'

Input

Number

of

data

entries

allocated

on

the

structure.

Compare

the

data

entry

in

use

field

to

the

data

entry

allocated

field

to

determine

how

close

the

structure

is

to

becoming

full.

SS3ENTIN

X'34'

X'04'

Input

Number

of

data

entries

in

use

on

the

structure.

Compare

the

data

entry

in

use

field

to

the

data

entry

allocated

field

to

determine

how

close

the

structure

is

to

becoming

full.

SS3ENTHI

X'38'

X'04'

Input

High

water

mark

for

number

of

data

entries

on

the

structure.

Compare

the

data

entry

in

use

field

to

the

data

entry

allocated

field

to

determine

how

close

the

structure

is

to

becoming

full.

SS3ENTTM

X'3C'

X'08'

Input

Timestamp

representing

the

time

the

data

entry

high

water

mark

was

reached

for

the

structure

(in

STCK

format).

SS3ELMAL

X'44'

X'04'

Input

Number

of

data

elements

allocated

on

the

structure.

Compare

the

data

entry

in

use

field

to

the

data

entry

allocated

field

to

determine

how

close

the

structure

is

to

becoming

full.

SS3ELMIN

X'48'

X'04'

Input

Number

of

data

elements

in

use

on

the

structure.

Compare

the

data

entry

in

use

field

to

the

data

entry

allocated

field

to

determine

how

close

the

structure

is

to

becoming

full.

Structure

Statistics

User

Exit IBM

Confidential

56

Common

Queue

Server

Guide

and

Reference

Table

11.

Data

Object

Statistics

Record

(continued)

Field

Name

Offset

Length

Field

Usage

Description

SS3ELMHI

X'4C'

X'04'

Input

High

water

mark

for

number

of

data

elements

on

the

structure.

Compare

the

data

element

high

water

mark

field

to

the

data

element

allocated

field

to

determine

the

closest

the

structure

came

to

becoming

full.

SS3ELMTM

X'50'

X'04'

Input

Timestamp

representing

the

time

the

data

element

high

water

mark

was

reached

for

the

structure

(in

STCK

format).

Reserved

X'58'

X'04'

Input

Reserved

X'5C'

X'04'

Input

Queue

Name

Statistics

Record

for

CQS

Table

12

describes

the

Structure

Statistics

user

exit

routine

queue

name

statistics

record.

Restriction:

The

queue

name

statistics

record

does

not

apply

to

resource

structures.

Table

12.

Queue

Name

Statistics

Record

Field

Name

Offset

Length

Field

Usage

Description

SS4ID

X'00'

X'08'

Input

Eyecatcher

CQSSSTT4

SS4LN

X'08'

X'04'

Input

Length

of

valid

data

SS4PVSN

X'0C'

X'04'

Input

Parameter

List

Version

Number

(00000001)

SS4INFQN

X'10'

X'04'

Input

Number

of

queue

names

for

which

an

inform

was

performed

SS4UNFQN

X'14'

X'04'

Input

Number

of

queue

names

for

which

an

uninform

was

performed

SS4NFYQN

X'18'

X'04'

Input

Number

of

queue

name

notifications

(when

a

queue

goes

from

empty

to

non-empty)

z/OS

Request

Statistics

Record

for

CQS

Table

13

describes

the

Structure

Statistics

user

exit

routine

z/OS

request

statistics

record.

Table

13.

z/OS

Request

Statistics

Record

Field

Name

Offset

Length

Field

Usage

Description

SS5ID

X'00'

X'08'

Input

Eyecatcher

CQSSSTT5.

SS5LN

X'08'

X'04'

Input

Length

of

valid

data.

SS5PVSN

X'0C'

X'04'

Input

Parameter

List

Version

Number

(00000002).

SS5IXGWR

X'10'

X'04'

Input

Number

of

IXGWRITE

requests

for

the

structure.

This

represents

the

number

of

log

records

written

during

processing

on

the

structure.

SS5IXGBR

X'14'

X'04'

Input

Number

of

IXGBRWSE

requests

for

the

structure.

SS5IXLDQ

X'18'

X'04'

Input

Number

of

IXLLIST

DEQ_EVENTQ

requests

for

the

structure.

SS5IXLWR

X'1C'

X'04'

Input

Number

of

IXLLIST

WRITE

requests

for

the

structure.

SS5IXLRD

X'20'

X'04'

Input

Number

of

IXLLIST

READ

requests

for

the

structure.

SS5IXLMV

X'24'

X'04'

Input

Number

of

IXLLIST

MOVE

requests

for

the

structure.

SS5IXLDL

X'28'

X'04'

Input

Number

of

IXLLIST

DELETE

requests

for

the

structure.

SS5IXLMG

X'2C'

X'04'

Input

Number

of

IXLMG

requests

for

the

structure.

SS5IXLUS

X'30'

X'04'

Input

Number

of

IXLUSYNC

requests

for

the

structure.

SS5IXEWR

X'34'

X'04'

Input

Number

of

IXLLSTE

WRITE

requests

for

the

structure.

Structure

Statistics

User

ExitIBM

Confidential

Chapter

4.

CQS

User-Supplied

Exit

Routines

57

Table

13.

z/OS

Request

Statistics

Record

(continued)

Field

Name

Offset

Length

Field

Usage

Description

SS5IXERD

X'38'

X'04'

Input

Number

of

IXLLSTE

READ

requests

for

the

structure.

SS5IXMRL

X'3C'

X'04'

Input

Number

of

IXLLSTM

READ_LIST

requests

for

the

structure.

SS5IXEDL

X'40'

X'04'

Input

Number

of

IXLLSTE

DELETE

requests

for

the

structure.

SS5IXMDL

X'44'

X'04'

Input

Number

of

IXLLSTM

DELETE_ENTRYLIST

requests

for

the

structure.

Structure

Rebuild

Statistics

Record

for

CQS

Structure

rebuild

statistics

are

gathered

only

by

the

CQS

that

is

the

master

of

the

structure

rebuild

process.

A

CQS

has

access

only

to

the

data

it

gathers.

Each

CQS

keeps

structure

rebuild

statistics

for

the

last

rebuild

for

which

it

was

the

master.

Table

14

describes

the

Structure

Statistics

user

exit

routine

structure

rebuild

statistics

record.

Table

14.

Structure

Rebuild

Statistics

Record

Field

Name

Offset

Length

Field

Usage

Description

SS6ID

X'00'

X'08'

Input

Eyecatcher

CQSSSTT6.

SS6LN

X'08'

X'04'

Input

Length

of

valid

data.

SS6PVSN

X'0C'

X'04'

Input

Parameter

List

Version

Number

(00000003).

SS6ELMIO

X'10'

X'04'

Input

Data

elements

in

use

on

old

structure.

SS6ELMAO

X'14'

X'04'

Input

Data

elements

allocated

on

old

structure.

SS6ENTIO

X'18'

X'04'

Input

Data

entries

in

use

on

old

structure

(data

object

count).

SS6ENTAO

X'1C'

X'04'

Input

Data

entries

allocated

on

old

structure.

SS6MCIO

X'20'

X'04'

Input

Event

monitoring

controls

(EMCs)

in

use

on

old

structure

(active

informs).

SS6EMCAO

X'24'

X'04'

Input

EMCs

in

use

on

old

structure

(active

informs).

SS6SIZEO

X'28'

X'04'

Input

Old

structure

size

in

4K

blocks.

SS6CFTO

X'2C'

X'04'

Input

Old

CF

total

space

in

4K

blocks.

SS6CFFO

X'30'

X'04'

Input

Old

CF

free

space

in

4K

blocks.

SS6CFNMO

X'34'

X'08'

Input

Old

CF

name

in

which

structure

was

allocated

before

rebuild.

X'3C'

X'04'

Unused.

SS6ELMIN

X'40'

X'04'

Input

Data

elements

in

use

on

new

structure.

SS6ELMAN

X'44'

X'04'

Input

Data

elements

allocated

on

new

structure.

SS6ENTIN

X'48'

X'04'

Input

Data

entries

in

use

on

new

structure

(data

object

count).

SS6ENTAN

X'4C'

X'04'

Input

Data

entries

allocated

on

new

structure.

SS6EMCIN

X'50'

X'04'

Input

EMCs

in

use

on

new

structure

(active

informs).

SS6EMCAN

X'54'

X'04'

Input

EMCs

in

use

on

new

structure

(active

informs).

SS6SIZEN

X'58'

X'04'

Input

New

structure

size

in

4K

blocks.

SS6CFTN

X'5C'

X'04'

Input

New

CF

total

space

in

4K

blocks.

SS6CFFN

X'60'

X'04'

Input

New

CF

free

space

in

4K

blocks.

SS6CFNMN

X'64'

X'08'

Input

New

CF

name

in

which

structure

is

allocated

after

rebuild.

X'6C'

X'04'

Unused.

SS6RBTIM

X'70'

X'08'

Input

Rebuild

timestamp

(STCK).

SS6POPCT

X'78'

X'04'

Input

Repopulation

from

SRDS

count

(RCVRY)

or

objects

copied

count

(COPY).

SS6MVQCT

X'7C'

X'04'

Input

Entries

moved

to

moveq

during

phase

2

count.

Structure

Statistics

User

Exit IBM

Confidential

58

Common

Queue

Server

Guide

and

Reference

Table

14.

Structure

Rebuild

Statistics

Record

(continued)

Field

Name

Offset

Length

Field

Usage

Description

SS6PUTCT

X'80'

X'04'

Input

Entries

written

during

phase

3

count.

SS6MOVCT

X'84'

X'04'

Input

Entries

moved

during

phase

3

count.

SS6OBJCT

X'88'

X'04'

Input

Data

objects

affected

by

recovery

count

(recoverable

and

nonrecoverable).

SS6UOWCT

X'8C'

X'04'

Input

UOWs

affected

by

recovery

count

(recoverable

and

nonrecoverable).

SS6FLAG1

X'90'

X'01'

Input

Flag

byte.

X'80'

These

statistics

are

for

the

last

rebuild

performed

for

the

structure.

SS6FLAG2

X'91'

X'01'

Input

Rebuild

flag.

Indicates

the

last

rebuild

or

duplexing

rebuild

event

received

that

updated

these

rebuild

statistics:

1

Structure

rebuild

statistics.

2

Duplexing

started

statistics.

3

Duplexing

ended

statistics

and

z/OS

switched

to

simplex

structure

(either

old

or

new

structure).

X'91'

X'03'

Unused.

The

remaining

fields

of

this

table

apply

to

rebuild

failures.

The

CQS0242E

message

identifies

the

rebuild

failure

reason.

The

following

fields

apply

to

rebuild

failures

that

occurred

while

rebuild

was

processing

a

CQS

log

record.

Use

this

information

to

locate

the

log

record

in

the

CQS

log

to

give

to

an

IBM

service

representative.

SS6LGTYP

X'94'

X'01'

Input

Log

record

type

of

log

record

being

processed

when

rebuild

failure

occurred.

SS6LGSUB

X'95'

X'01'

Input

Log

record

subtype

of

log

record

being

processed

when

rebuild

failure

occurred.

SS6STYPE

X'96'

X'01'

Input

Structure

type

of

log

record

being

processed

when

rebuild

failure

occurred.

X'97'

X'01'

Unused.

SS6LGTIM

X'98'

X'08'

Input

Log

record

time

stamp

of

log

record

being

processed

when

rebuild

failure

occurred.

SS6CQSID

X'A0'

X'08'

Input

CQS

ID

associated

with

log

record

being

processed

when

rebuild

failure

occurred.

SS6CLNTN

X'A8'

X'08'

Input

Client

name

associated

with

log

record

being

processed

when

rebuild

failure

occurred.

SS6SRCQ

X'B0'

X'10'

Input

Source

client

or

private

queue

name

associated

with

log

record

being

processed

when

rebuild

failure

occurred.

SS6DSTQ

X'C0'

X'10'

Input

Destination

queue

name

associated

with

log

record

being

processed

when

rebuild

failure

occurred.

SS6UOW

X'B0'

X'20'

Input

UOW

associated

with

log

record

being

processed

when

rebuild

failure

occurred.

SS6UNIQ1

X'F0'

X'04'

Input

Information

unique

to

log

record

or

rebuild

data

object

entry

when

rebuild

failure

occurred.

SS6UNIQ2

X'F4'

X'04'

Input

Information

unique

to

log

record

or

rebuild

data

object

entry

when

rebuild

failure

occurred.

SS6UNIQ3

X'F8'

X'04'

Input

Information

unique

to

log

record

or

rebuild

data

object

entry

when

rebuild

failure

occurred.

The

following

fields

apply

to

rebuild

failures

that

occurred

while

rebuild

was

processing

an

IXL

request

to

access

the

structure.

SS6IXLMC

X'FC'

X'01'

Input

IXL

macro

that

failed

and

caused

rebuild

to

fail.

See

CQSTRACE

macro

for

IXL

macro

type.

SS6IXLRQ

X'FD'

X'01'

Input

IXL

request

that

failed

and

caused

the

rebuild

to

fail.

X'FE'

X'02'

Unused.

Structure

Statistics

User

ExitIBM

Confidential

Chapter

4.

CQS

User-Supplied

Exit

Routines

59

Table

14.

Structure

Rebuild

Statistics

Record

(continued)

Field

Name

Offset

Length

Field

Usage

Description

SS6IXLRC

X'100'

X'04'

Input

IXL

return

code

returned

by

IXL

request

that

caused

rebuild

to

fail.

SS6IXLRN

X'104'

X'04'

Input

IXL

reason

code

returned

by

IXL

request

that

caused

rebuild

to

fail.

SS6SRVRC

X'108'

X'04'

Input

This

field

applies

to

rebuild

failures

that

occurred

while

rebuild

was

processing

a

service

(for

example,

CQSTBL,

BPELAGET,

BPECBGET).

It

provides

the

return

code

of

the

service

that

failed.

X'10C'

X'04'

Unused.

SS6VRSNO

X'110'

X'08'

Input

Old

structure

version

(rebuild)

or

primary

structure

version

(duplexing

rebuild).

SS6VRSNN

X'118'

X'08'

Input

New

structure

version

(rebuild)

or

secondary

structure

version

(duplexing

rebuild).

SS6CFLVO

X'120'

X'04'

Input

Old

structure

CF

level

(rebuild)

or

primary

structure

CF

level

(duplexing

rebuild).

For

a

primary

structure

CF

level,

this

can

be

a

composite

CF

level,

which

is

at

least

as

high

as

a

CF

level

as

that

which

has

been

previously

reported

back

to

any

CQS

as

the

primary

structure

CF

level.

SS6CFLVN

X'124'

X'04'

Input

New

structure

CF

level

(rebuild)

or

secondary

structure

CF

level

(duplexing

rebuild).

For

a

secondary

structure

CF

level,

this

can

be

a

composite

CF

level,

which

is

at

least

as

high

as

a

CF

level

as

that

which

has

been

previously

reported

back

to

any

CQS

as

the

primary

structure

CF

level.

SS6CFNMS

X'128'

X'04'

Input

CF

name

in

which

simplex

structure

is

located

(z/OS

switched

to

simplex

structure).

SS6VALFL

X'12C'

X'02'

Input

Validity

flags

(EEPLSSCVALIDITYFLAGS).

X'12E'

X'02'

Input

Not

used

SS6DUPST

X'130'

X'08'

Input

Last

duplexing

rebuild

start

time

(STCK).

The

last

duplexing

rebuild

for

this

structure

was

initiated

at

this

time.

SS6DUPET

X'138'

X'08'

Input

Last

duplexing

rebuild

end

time

(STCK).

The

last

duplexing

rebuild

stopped

for

this

structure

occurred

at

this

time.

SS6UNAVT

X'140'

X'08'

Input

Last

structure

temporarily

unavailable

time

(STCK).

The

structure

becomes

temporarily

unavailable

because

a

system-managed

rebuild

has

been

initiated,

a

duplexing

rebuild

has

been

initiated,

or

a

duplexing

rebuild

has

stopped.

SS6AVT

X'148'

X'08'

Input

Last

structure

available

time

(STCK).

The

structure

last

became

available

at

this

time,

after

initiation

of

a

system-managed

rebuild,

initiation

of

a

duplexing

rebuild,

or

stopping

of

a

duplexing

rebuild.

X'150'

X'38'

Input

Unused

Structure

Checkpoint

Statistics

Record

for

CQS

Structure

checkpoint

statistics

are

gathered

only

by

the

CQS

that

is

the

master

of

the

structure

checkpoint

process.

A

CQS

has

access

only

to

the

data

it

gathers.

Each

CQS

keeps

structure

checkpoint

statistics

for

the

last

three

checkpoints

for

which

it

was

the

master.

Structure

checkpoint

data

is

not

reset

at

the

end

of

a

structure

checkpoint.

Table

15

describes

the

Structure

Statistics

user

exit

routine

structure

checkpoint

statistics

record.

Table

15.

Structure

Checkpoint

Statistics

Record

Field

Name

Offset

Length

Field

Usage

Description

SS7ID

X'00'

X'08'

Input

Eyecatcher

CQSSSTT7.

SS7LN

X'08'

X'04'

Input

Length

of

valid

data.

Structure

Statistics

User

Exit IBM

Confidential

60

Common

Queue

Server

Guide

and

Reference

Table

15.

Structure

Checkpoint

Statistics

Record

(continued)

Field

Name

Offset

Length

Field

Usage

Description

SS7PVSN

X'0C'

X'04'

Input

Parameter

List

Version

Number.

SS7FLAG1

X'10'

X'01'

Input

Flag

byte.

X'80'

These

statistics

are

from

last

attempted

structure

checkpoint

taken

for

the

structure.

X'40'

Structure

Checkpoint

is

in

progress.

X'11'

X'03'

Unused.

SS7ENCNT

X'14'

X'04'

Input

Number

of

structure

checkpoint

statistics

entries

in

record.

SS7ENLEN

X'18'

X'04'

Input

Length

of

structure

checkpoint

statistics

entry

SS7CUR

X'1C'

X'04'

Input

Offset

to

current

structure

checkpoint

statistics

entry.

SS7STATS

X'20'

X''

Start

of

structure

checkpoint

statistics

entries.

See

Table

16

on

page

61

for

a

description

of

the

structure

checkpoint

statistics

entry.

Structure

Checkpoint

Statistics

Gathered

by

CQS

Structure

checkpoint

statistics

are

gathered

only

by

the

CQS

that

is

the

master

of

the

structure

checkpoint

process.

A

CQS

has

access

only

to

the

data

it

gathers.

Each

CQS

keeps

structure

checkpoint

statistics

for

the

last

three

checkpoints

for

which

it

was

the

master.

Structure

checkpoint

data

is

not

reset

at

the

end

of

a

structure

checkpoint.

Table

16

describes

the

Structure

Statistics

user

exit

routine

structure

checkpoint

statistics

entry.

Table

16.

Structure

Checkpoint

Statistics

Entry

Field

Name

Offset

Length

Field

Usage

Description

SS7RETCD

X'00'

X'08'

Input

Return

Code

for

this

Structure

Checkpoint

SS7QSCB

X'08'

X'08'

Input

Structure

quiesce

start

time

in

STCK

format

SS7QSCE

X'10'

X'08'

Input

Structure

quiesce

complete

time

in

STCK

format

SS7DSPB

X'18'

X'08'

Input

Start

data

space/data

set

capture

time

in

STCK

format

SS7DSPE

X'20'

X'08'

Input

End

data

space

capture

time

in

STCK

format

SS7RSMB

X'28'

X'08'

Input

Structure

resume

start

time

in

STCK

format

SS7DSE

X'30'

X'08'

Input

End

data

set

capture

time

in

STCK

format

SS7CHKE

X'38'

X'08'

Input

Time

when

all

system

checkpoints

completed

in

STCK

format

SS7PELA

X'3C'

X'04'

Input

Number

of

allocated

elements

on

primary

structure

SS7PELU

X'40'

X'04'

Input

Number

of

elements

in

use

on

primary

structure

SS7OELA

X'44'

X'04'

Input

Number

of

allocated

elements

on

overflow

structure

SS7PLEA

X'4C'

X'04'

Input

Number

of

allocated

list

entries

on

primary

structure

SS7PLEU

X'50'

X'04'

Input

Number

of

list

entries

in

use

on

primary

structure

SS7OLEA

X'54'

X'04'

Input

Number

of

allocated

list

entries

on

overflow

structure

SS7OLEU

X'58'

X'04'

Input

Number

of

list

entries

in

use

on

overflow

structure

SS7WRTS

X'5C'

X'04'

Input

Number

of

SRDS

writes

required

SS70ELU

X'48'

X'04'

Input

Number

of

elements

in

use

on

overflow

structure

Structure

Statistics

User

ExitIBM

Confidential

Chapter

4.

CQS

User-Supplied

Exit

Routines

61

CQS

Structure

Event

User-Supplied

Exit

Routine

The

CQS

Structure

Event

user

exit

routine

is

called

during

CQS

processing

to

notify

you

of

an

event

related

to

structure

processing.

For

certain

events,

it

also

allows

you

to

gather

statistics

related

to

the

structure.

This

exit

routine

is

optional.

The

Structure

Event

user

exit

routine

applies

to

both

resource

and

queue

structures,

but

not

all

events

are

applicable

to

resource

structures.

The

CQS

Structure

Event

exit

routine

is

driven

for

the

following

events:

v

Structure

Connection

–

When

structure

connect

occurs,

after

CQS

connects

to

a

structure,

but

before

rebuild

or

restart

is

performed

for

the

structure.

–

At

structure

disconnect;

after

CQS

disconnects

from

a

structure.

v

Checkpoint

–

When

a

system

checkpoint

begin,

end,

or

failure

occurs.

–

When

a

structure

checkpoint

begin,

end,

or

failure

occurs.

Restriction:

The

Checkpoint

event

does

not

apply

to

resource

structures.

v

Structure

Rebuild

–

When

a

structure

copy

(rebuild)

begin,

end,

or

failure

occurs.

–

When

a

structure

recovery

(rebuild)

begin,

end,

or

failure

occurs.

Attention:

The

structure

failure

event

for

a

resource

structure

(only)

means

that

the

structure

has

failed

and

a

new

structure

could

not

be

reallocated.

No

structure

recovery

is

done,

because

resource

structures

do

not

support

structure

recovery.

v

Structure

Overflow

–

When

one

or

more

queues

moved

to

the

overflow

structure.

–

When

one

or

more

queues

moved

from

the

overflow

structure

back

to

the

primary

structure.

This

event

also

indicates

when

the

structure

is

no

longer

in

overflow

mode.

Restriction:

The

Structure

Overflow

event

does

not

apply

to

resource

structures.

v

Structure

Status

Change

–

When

the

structure

is

available

again

after

a

loss.

–

When

the

structure

fails.

–

When

CQS

loses

its

connection

to

the

structure.

–

When

a

resource

structure

fails

and

is

able

to

allocate

a

new

resource

structure.

–

When

the

log

stream

becomes

available,

making

the

structure

available.

v

Structure

Repopulation

–

When

the

structure

fails

and

CQS

is

able

to

allocate

a

new

resource

structure.

The

Structure

Repopulation

event

does

not

apply

to

queue

structures.

The

client

can

repopulate

the

new

resource

structure

with

the

resource

data.

The

exit

routine

is

defined

as

TYPE=STREVENT

in

the

EXITDEF

statement

in

the

BPE

user

exit

PROCLIB

member.

You

can

specify

one

or

more

exit

routines

of

this

type.

When

this

exit

routine

is

invoked,

all

routines

of

this

type

are

driven

in

the

order

specified

by

the

EXITS=

keyword.

Recommendation:

Write

the

CQS

Structure

Event

exit

routine

so

that

it

is

reentrant.

It

is

invoked

AMODE

31.

Structure

Event

User

Exit IBM

Confidential

62

Common

Queue

Server

Guide

and

Reference

Contents

of

Registers

on

Entry

Register

Contents

1

Address

of

BPE

user

exit

parameter

list

(mapped

by

the

BPEUXPL

macro).

See

IMS

Version

9:

Base

Primitive

Environment

Guide

and

Reference

for

more

information.

13

Address

of

two

pre-chained

save

areas.

The

first

save

area

can

be

used

by

the

exit

routine

to

save

registers

on

entry.

The

second

save

area

can

be

used

by

routines

that

are

called

from

the

user

exit

routine.

14

Return

address.

15

Entry

point

of

the

exit

routine.

Contents

of

Registers

on

Exit

Register

Contents

15

Return

code

0

Always

set

this

to

zero.

All

other

registers

must

be

restored.

Routine

Parameter

Lists

On

entry

to

the

Structure

Event

exit

routine,

R1

points

to

a

Standard

BPE

user

exit

parameter

list.

Field

UXPL_EXITPLP

in

this

list

contains

the

address

of

the

CQS

Structure

Event

user

exit

routine

parameter

list

(mapped

by

the

CQSSTREX

macro).

CQS

Structure

Event

Exit

Routine

Parameter

List

Table

17

describes

the

Structure

Event

user

exit

routine

connect

parameter

list.

Table

17.

CQS

Structure

Event

User-Supplied

Exit

Routine

Parameter

List:

Connect

Field

Name

Offset

Length

Field

Usage

Description

STXPVSN

X'00'

X'04'

Input

Parameter

List

Version

Number

(00000001).

STXEVENT

X'04'

X'04'

Input

Function

code

1

Connect

Event

(STXCONDS).

STXSCODE

X'08'

X'04'

Input

Event

Subcode

1

Structure

connect

(STXCONN).

2

Structure

disconnect

(STXDISC).

STXCQSID

X'0C'

X'08'

Input

CQS

identifier.

STXCQSVN

X'14'

X'04'

Input

CQS

version

number.

STXSTRNM

X'18'

X'10'

Input

Structure

name.

STXSTRVN

X'28'

X'08'

Input

Structure

version

number

(mapped

by

the

CQSSTREX

macro).

STXDSTT1

X'34'

X'04'

Input

Address

of

structure

process

statistics

record

for

activity

performed

by

CQS

processes

on

this

structure

for

all

clients

since

restart

or

the

last

successful

structure

checkpoint

(mapped

by

the

CQSSSTT1

macro).

See

Table

9

on

page

55

for

a

description

of

the

structure

process

statistics.

For

structure

disconnect

only.

Structure

Event

User

ExitIBM

Confidential

Chapter

4.

CQS

User-Supplied

Exit

Routines

63

Table

17.

CQS

Structure

Event

User-Supplied

Exit

Routine

Parameter

List:

Connect

(continued)

Field

Name

Offset

Length

Field

Usage

Description

STXDSTT2

X'38'

X'04'

Input

Address

of

CQS

request

statistics

record

for

activity

performed

for

CQS

processes

on

this

structure

for

all

clients

since

restart

or

the

last

successful

structure

checkpoint

(mapped

by

the

CQSSSTT2

macro).

See

Table

10

on

page

55

for

a

description

of

the

CQS

request

statistics

record.

For

structure

disconnect

only.

STXDSTT3

X'3C'

X'04'

Input

Address

of

data

object

statistics

record

for

activity

performed

on

data

objects

in

this

structure

for

all

clients

since

restart

or

the

last

successful

structure

checkpoint

(mapped

by

the

CQSSSTT3

macro).

See

Table

11

on

page

56

for

a

description

of

the

data

object

statistics

record.

For

structure

disconnect

only.

STXDSTT4

X'40'

X'04'

Input

Address

of

queue

name

statistics

record

for

activity

performed

on

queue

names

in

this

structure

for

all

clients

since

restart

or

the

last

successful

structure

checkpoint

(mapped

by

the

CQSSSTT4

macro).

See

Table

12

on

page

57

for

a

description

of

the

queue

name

statistics

record.

For

structure

disconnect

only.

STXDSTT5

X'44'

X'04'

Input

Address

of

z/OS

request

statistics

record

for

activity

performed

by

CQS

processes

on

this

structure

for

all

clients

since

restart

or

the

last

successful

structure

checkpoint

(mapped

by

the

CQSSSTT5

macro).

See

Table

13

on

page

57

for

a

description

of

the

z/OS

request

statistics

record.

For

structure

disconnect

only.

STXDSTT6

X'48'

X'04'

Input

Address

of

rebuild

statistics

record

containing

data

from

the

last

rebuild

in

which

this

CQS

acted

as

master

(mapped

by

the

CQSSSTT6

macro).

See

Table

14

on

page

58

for

a

description

of

the

rebuild

statistics

record.

For

structure

disconnect

only.

STXDSTT7

X'4C'

X'04'

Input

Address

of

structure

checkpoint

statistics

record

containing

data

from

the

last

three

structure

checkpoints

in

which

this

CQS

acted

as

master

(mapped

by

the

CQSSSTT7

macro).

See

Table

15

on

page

60

for

a

description

of

the

structure

checkpoint

statistics

record.

For

structure

disconnect

only.

CQS

Structure

Event

Exit

Routine

Checkpoint

Parameter

List

Table

18

describes

the

Structure

Event

user

exit

routine

checkpoint

parameter

list.

Table

18.

CQS

Structure

Event

User-Supplied

Exit

Routine

Parameter

List:

Checkpoint

Field

Name

Offset

Length

Field

Usage

Description

STXPVSN

X'00'

X'04'

Input

Parameter

List

Version

Number

(00000001).

STXEVENT

X'04'

X'04'

Input

Structure

Event

Code

2

Checkpoint

Event

(STXCHKPT).

STXSCODE

X'08'

X'04'

Input

Structure

Event

Subcode

1

Structure

checkpoint

begin

(STXCSTRB).

2

Structure

checkpoint

end

(STXCSTRE).

3

Structure

checkpoint

failure

(STXCSTRF).

4

System

checkpoint

begin

(STXCSYSB).

5

System

checkpoint

end

(STXCSYSE).

6

System

checkpoint

failure

(STXCSYSF).

STXCQSID

X'0C'

X'08'

Input

CQS

identifier.

STXCQSVN

X'14'

X'04'

Input

CQS

version

number.

STXSTRNM

X'18'

X'10'

Input

Structure

Name.

STXCMCQS

X'28'

X'08'

Input

CQS

identifier

of

the

master

CQS

performing

the

checkpoint

process.

For

system

checkpoint,

this

is

the

same

as

the

CQS

identifier.

Structure

Event

User

Exit IBM

Confidential

64

Common

Queue

Server

Guide

and

Reference

Table

18.

CQS

Structure

Event

User-Supplied

Exit

Routine

Parameter

List:

Checkpoint

(continued)

Field

Name

Offset

Length

Field

Usage

Description

STXCFLG1

X'30'

X'01'

Input

Flag

byte

X'80'

This

CQS

is

the

master

of

the

process.

The

CQS

identifier

and

master

CQS

identifier

are

the

same

(STXC1MST).

N/A

X'31'

X'03'

Input

Reserved.

STXCSTT1

X'34'

X'04'

Input

Address

of

structure

process

statistics

record

for

activity

performed

by

CQS

processes

on

this

structure

for

all

clients

since

restart

or

the

last

successful

structure

checkpoint

(mapped

by

the

CQSSSTT1

macro).

See

Table

9

on

page

55

for

a

description

of

the

process

statistics

record.

For

system

checkpoint

end

and

structure

checkpoint

end

only.

STXCSTT2

X'38'

X'04'

Input

Address

of

CQS

request

statistics

record

for

activity

performed

for

CQS

requests

on

this

structure

for

all

clients

since

restart

or

the

last

successful

structure

checkpoint

(mapped

by

the

CQSSSTT2

macro).

See

Table

10

on

page

55

for

a

description

of

the

CQS

request

statistics

record.

For

system

checkpoint

end

and

structure

checkpoint

end

only.

STXCSTT3

X'3C'

X'04'

Input

Address

of

data

object

statistics

record

for

activity

performed

on

data

objects

in

this

structure

for

all

clients

since

restart

or

the

last

successful

structure

checkpoint

(mapped

by

the

CQSSSTT3

macro).

See

Table

11

on

page

56

for

a

description

of

the

data

object

statistics

record.

For

system

checkpoint

end

and

structure

checkpoint

end

only.

STXCSTT4

X'40'

X'04'

Input

Address

of

queue

name

statistics

record

for

activity

performed

on

queue

names

in

this

structure

for

all

clients

since

restart

or

the

last

successful

structure

checkpoint

(mapped

by

the

CQSSSTT4

macro).

See

Table

12

on

page

57

for

a

description

of

the

queue

name

statistics

record.

For

system

checkpoint

end

and

structure

checkpoint

end

only.

STXCSTT5

X'44'

X'04'

Input

Address

of

z/OS

request

statistics

record

for

activity

performed

by

CQS

processes

on

this

structure

for

all

clients

since

restart

or

the

last

successful

structure

checkpoint

(mapped

by

the

CQSSSTT5

macro).

See

Table

13

on

page

57

for

a

description

of

the

z/OS

request

statistics

record.

For

system

checkpoint

end

and

structure

checkpoint

end

only.

STXCSTT6

X'48'

X'04'

Input

Address

of

rebuild

statistics

record

containing

data

from

the

last

rebuild

in

which

this

CQS

acted

as

master

(mapped

by

the

CQSSSTT6

macro).

See

Table

14

on

page

58

for

a

description

of

the

rebuild

statistics

record.

For

system

checkpoint

end

and

structure

checkpoint

end

only.

STXCSTT7

X'4C'

X'04'

Input

Address

of

structure

checkpoint

statistics

record

containing

data

from

the

last

three

structure

checkpoints

in

which

this

CQS

acted

as

master

(mapped

by

the

CQSSSTT7

macro).

See

Table

15

on

page

60

for

a

description

of

the

structure

checkpoint

statistics

record.

For

system

checkpoint

end

and

structure

checkpoint

end

only.

CQS

Structure

Event

Exit

Routine

Rebuild

Parameter

List

Table

19

describes

the

Structure

Event

user

exit

routine

rebuild

parameter

list.

Table

19.

CQS

Structure

Event

User-Supplied

Exit

Routine

Parameter

List:

Rebuild

Field

Name

Offset

Length

Field

Usage

Description

STXPVSN

X'00'

X'04'

Input

Parameter

List

Version

Number

(00000001).

STXEVENT

X'04'

X'04'

Input

Structure

Event

Code

3

Structure

Rebuild

Event

(STXRBLD).

Structure

Event

User

ExitIBM

Confidential

Chapter

4.

CQS

User-Supplied

Exit

Routines

65

Table

19.

CQS

Structure

Event

User-Supplied

Exit

Routine

Parameter

List:

Rebuild

(continued)

Field

Name

Offset

Length

Field

Usage

Description

STXSCODE

X'08'

X'04'

Input

Structure

EventSubcode

1

Structure

rebuild

begin

(STXRBLB).

2

Structure

rebuild

(copy)

end

(STXCPYE).

3

Structure

rebuild

(copy)

failure

(STXCPYF).

4

Structure

rebuild

failure

(STXRBLF).

5

Structure

rebuild

(recovery)

end

(STXRCOVE).

6

Structure

rebuild

(recovery)

failure

(STXRCOVF).

STXCQSID

X'0C'

X'08'

Input

CQS

identifier.

STXCQSVN

X'14'

X'04'

Input

CQS

version

number.

STXSTRNM

X'18'

X'10'

Input

Structure

Name.

STXRMCQS

X'28'

X'08'

Input

CQS

identifier

of

the

master

CQS

performing

the

rebuild

process.

STXRFLG1

X'30'

X'01'

Input

Flag

byte

X'80'

This

CQS

is

the

master

of

the

process.

The

CQS

identifier

and

master

CQS

identifier

are

the

same

(STXR1MST).

N/A

X'31'

X'03'

Input

Reserved.

CQS

Structure

Event

Exit

Routine

Overflow

Parameter

List

Table

20

describes

the

Structure

Event

user

exit

routine

overflow

parameter

list.

Table

20.

CQS

Structure

Event

User-Supplied

Exit

Routine

Parameter

List:

Overflow

Field

Name

Offset

Length

Field

Usage

Description

STXPVSN

X'00'

X'04'

Input

Parameter

List

Version

Number

(00000001).

STXEVENT

X'04'

X'04'

Input

Structure

Event

Code

4

Structure

Overflow

Event

(STXOVFLW).

STXSCODE

X'08'

X'04'

Input

Structure

Event

Subcode.

1

Move

queues

to

overflow.

One

or

more

queues

were

selected

as

candidates

to

be

moved

to

the

overflow

structure

and

were

approved

by

the

Queue

Overflow

user

exit

routine

(STXTOOFL).

2

Move

queues

from

overflow.

One

or

more

queues

moved

from

the

overflow

structure

back

to

the

primary

structure,

because

the

queues

were

drained

on

the

overflow

structure.

New

work

for

these

queues

is

placed

on

the

primary

structure

(STXFROFL).

STXCQSID

X'0C'

X'08'

Input

CQS

identifier.

STXCQSVN

X'14'

X'04'

Input

CQS

version

number.

STXSTRNM

X'18'

X'10'

Input

Structure

Name.

STXOMCQS

X'28'

X'08'

Input

CQS

identifier

of

the

master

CQS

performing

the

overflow

process.

STXOFLG1

X'30'

X'01'

Input

Flag

byte

X'80'

This

CQS

is

the

master

of

the

process.

The

CQS

identifier

and

master

CQS

identifier

are

the

same

(STX01MST).

X'40'

The

structure

is

no

longer

in

overflow

mode.

This

applies

only

to

subcode

2

(STX01END).

Structure

Event

User

Exit IBM

Confidential

66

Common

Queue

Server

Guide

and

Reference

Table

20.

CQS

Structure

Event

User-Supplied

Exit

Routine

Parameter

List:

Overflow

(continued)

Field

Name

Offset

Length

Field

Usage

Description

N/A

X'31'

X'03'

Input

Reserved.

STXOLSTN

X'34'

X'04'

Input

Number

of

Queue

Names

entries

in

the

list.

STXOLSTE

X'38'

X'04'

Input

Length

of

each

Queue

Name

list

entry.

STXOLSTA

X'3C'

X'04'

Input

Address

of

Queue

Name

list.

Each

Queue

Name

list

entry

contains

the

16-byte

name

of

a

queue

that

is

being

moved

to

or

from

the

overflow

structure.

CQS

Structure

Event

Exit

Routine

Status

Change

Parameter

List

Table

21

describes

the

Structure

Event

user

exit

routine

status

change

parameter

list.

Table

21.

CQS

Structure

Event

User-Supplied

Exit

Routine

Parameter

List:

Status

Change

Field

Name

Offset

Length

Field

Usage

Description

STXPVSN

X'00'

X'04'

Input

Parameter

List

Version

Number

(00000003).

STXEVENT

X'04'

X'04'

Input

Structure

Event

Code

5

Structure

Status

Change

Event

(STXSCHNG).

STXSCODE

X'08'

X'04'

Input

Structure

Event

Subcode

1

Structure

available

again

after

a

loss

(STXAVAIL).

2

The

structure

failed

(STXFAIL).

3

CQS

lost

its

connection

to

the

structure

(STXLCONN).

4

The

log

stream

is

becoming

available,

making

the

structure

available

(STXAVLOG).

Important:

This

subcode

applies

only

to

queue

structures.

5

The

log

stream

is

becoming

available,

making

the

structure

available

(STXFLOG).

Important:

This

subcode

applies

only

to

queue

structures.

6

The

structure

failed.

It

needs

to

be

repopulated

because

this

structure

does

not

support

structure

recovery

(STXREPOP).

Important:

This

subcode

applies

only

to

resource

structures.

STXCQSID

X'0C'

X'08'

Input

CQS

identifier.

STXCQSVN

X'14'

X'04'

Input

CQS

version

number.

STXSTRNM

X'18'

X'10'

Input

Structure

Name.

STXSTYPE

X'28'

X'01'

Input

Input

structure

type

(1

queue

structure,

2

resource

structures).

STXRSTVN

X'40'

X'08'

Input

Input

structure

version.

CQS

Statistics

Available

through

the

BPE

Statistics

User

Exit

You

can

use

the

BPE

Statistics

user

exit

to

gather

both

BPE

and

CQS

statistics.

When

the

BPE

Statistics

user

exit

is

driven,

field

BPESTXP_COMPSTATS_PTR

in

the

BPE

Statistics

user-supplied

exit

parameter

list,

BPESTXP,

contains

the

pointer

to

the

CQS

statistics

header.

Structure

Event

User

ExitIBM

Confidential

Chapter

4.

CQS

User-Supplied

Exit

Routines

67

See

the

IMS

Version

9:

Base

Primitive

Environment

Guide

and

Reference

for

detailed

information

about

the

BPE

Statistics

user

exit

and

when

it

is

driven.

Table

22

describes

the

contents

of

the

CQS

Statistics

header.

The

statistics

header

is

mapped

by

CQSSSTTX.

Table

22.

CQS

Statistics

Header

Data

Offset

Length

Field

Usage

Description

X'00'

X'08'

Input

Eyecatcher

″CQSSTTX″

X'08'

X'04'

Input

Length

of

header

X'0C'

X'04'

Input

Header

version

number

(00000001)

X'10'

X'04'

Input

Number

of

structures

for

which

statistics

are

available

X'14'

X'04'

Input

Number

of

statistics

areas

available

for

each

structure

X'18'

X'04'

Input

Length

of

all

statistics

areas

for

each

structure

X'1C'

X'04'

Input

Offset

to

statistics

area

for

first

structure

(offset

from

CQSSSTTX)

X'20'

X'04'

Input

CQSSSTAT

offset

within

the

statistics

area

for

each

structure

X'24'

X'04'

Input

CQSSSTTI

offset

within

the

statistics

area

for

each

structure

X'28'

X'04'

Input

CQSSSTT2

offset

within

the

statistics

area

for

each

structure

X'2C'

X'04'

Input

CQSSSTT3

offset

within

the

statistics

area

for

each

structure

X'30'

X'04'

Input

CQSSSTT4

offset

within

the

statistics

area

for

each

structure

X'34'

X'04'

Input

CQSSSTT5

offset

within

the

statistics

area

for

each

structure

X'38'

X'04'

Input

CQSSSTT6

offset

within

the

statistics

area

for

each

structure

X'3C'

X'04'

Input

CQSSSTT7

offset

within

the

statistics

area

for

each

structure

X'40'

X'04'

Input

Reserved

X'44'

X'04'

Input

Reserved

X'48'

X'04'

Input

Reserved

X'4C'

X'04'

Input

Reserved

Structure

Event

User

Exit IBM

Confidential

68

Common

Queue

Server

Guide

and

Reference

Chapter

5.

Writing

a

CQS

Client

If

you

want

to

use

CQS

to

manage

resource

and

queues

structures

for

your

own

product

or

service,

you

must

write

one

or

more

CQS

clients.

A

CQS

client

uses

CQS

requests

to

communicate

with

CQS.

See

Chapter

6,

“CQS

Client

Requests,”

on

page

79

for

a

complete

description

of

all

the

CQS

requests.

This

section

explains

some

of

the

things

you

must

consider

when

writing

a

CQS

client.

The

information

in

this

section

is

written

for

the

programmer

who

will

write

the

client,

but

a

CQS

administrator

or

system

programmer

should

also

read

this

section

to

become

aware

of

some

of

the

issues

involved

in

designing

and

writing

a

CQS

client.

In

this

section:

v

“Introducing

CQS

Client

Requests”

v

“Sequence

of

CQS

Requests

Issued

by

a

Client

for

Queue

Structure”

on

page

70

v

“Coding

CQS

Requests”

on

page

70

v

“CQS

Clients

and

Handling

Special

Events”

on

page

77

This

section

contains

General-Use

Programming

Interface

information.

Introducing

CQS

Client

Requests

Your

primary

tool

for

writing

a

CQS

client

is

the

set

of

client

request

macros

that

CQS

provides.

These

requests

allow

a

client

to

access

CQS

or

the

shared

queues

on

coupling

facility

list

structures.

The

following

list

summarizes

the

CQS

requests:

CQSBRWSE

Retrieves

a

copy

of

a

data

object

from

a

queue

CQSCHKPT

Takes

a

checkpoint

of

internal

tables

or

of

all

data

objects

on

a

structure

CQSCONN

Connects

a

client

to

one

or

more

structures

CQSDEL

Deletes

one

or

more

data

objects

from

a

queue

CQSDEREG

Deregisters

a

client

from

its

CQS,

terminating

communication

with

it

CQSDISC

Disconnects

a

client

from

one

or

more

structures

CQSINFRM

Registers

client

interest

in

one

or

more

queues,

notifying

the

client

when

work

exists

on

the

queue

CQSMOVE

Moves

one

or

more

data

objects

from

one

queue

to

another

CQSPUT

Places

a

data

object

on

a

queue

CQSQUERY

Requests

information

about

a

queue

or

a

structure

CQSREAD

Retrieves

and

locks

a

copy

of

a

data

object

from

a

queue

CQSRECVR

Recovers

data

objects

that

were

moved

to

the

cold

queue

after

a

client

or

CQS

cold

starts

CQSREG

Registers

a

client

with

a

CQS,

establishing

communication

CQSRSYNC

Resynchronizes

in-doubt

data

between

the

client

and

its

CQS

after

a

failure

CQSSHUT

Shuts

down

a

CQS

CQSUNLCK

Unlocks

a

data

object,

making

it

available

to

any

client

IBM

Confidential

©

Copyright

IBM

Corp.

1997,

2004

69

CQSUPD

Updates

one

or

more

uniquely

named

resources

on

a

resource

structure

Important:

Some

of

the

requests

support

either

queue

or

resource

structures

only.

For

detailed

information

on

the

CQS

client

requests,

see

Chapter

6,

“CQS

Client

Requests,”

on

page

79.

Sequence

of

CQS

Requests

Issued

by

a

Client

for

Queue

Structure

A

client

uses

CQS

requests

to

make

use

of

CQS

services

and

resources.

There

are

certain

requests

the

client

must

issue

to

request

CQS

services,

and

some

of

the

requests

must

come

in

a

particular

sequence;

the

sequence

of

CQS

requests

is

shown

in

Table

23.

Other

requests

can

be

issued

multiple

times,

in

any

order,

based

on

the

processing

requirements

of

the

client.

Table

23.

Sequence

for

CQS

Requests

Order

Request

Use

this

request

...

1

CQSREG

To

establish

communications

with

CQS.

2

CQSCONN

To

connect

to

a

particular

structure.

3

CQSRSYNC

To

resolve

indoubt

work

with

CQS.

4

CQSRECVR1

After

a

CQS

cold

start

to

recover

specific

data

objects.

5

CQSINFRM

To

register

interest

in

specific

queue

names.

6

Other

CQS

requests

To

process

work.

Examples

of

these

other

requests

are:

CQSBRWSE,

CQSPUT,

and

CQSREAD.

7

CQSDISC

To

disconnect

from

a

structure.

8

CQSSHUT

To

request

CQS

to

shutdown.

The

client

could

also

use

CQSDISC

...

CQSSHUT=YES

to

disconnect

from

a

structure

and

request

a

CQS

shutdown,

rather

than

issuing

just

the

CQSSHUT

request.

9

CQSDEREG

To

end

communications

with

CQS.

Note:

1.

A

client

can

issue

the

CQSRECVR

and

CQSINFRM

requests

in

any

order

and

at

any

time

following

the

CQSRSYNC

request.

The

client

should,

however,

issue

both

of

these

requests

before

starting

any

real

work

with

CQS.

Coding

CQS

Requests

The

usage

section

for

each

request

(see

Chapter

6,

“CQS

Client

Requests,”

on

page

79)

describes

the

detail

for

each

of

the

keywords,

parameters,

and

variables

for

the

CQS

requests,

but

there

are

a

few

subjects

that

apply

to

all

of

the

requests.

These

global

usage

considerations

are

described

in

this

section,

and

are

not

described

in

each

request’s

usage

section.

Authorization

for

CQS

CQS

provides

two

interfaces

for

its

clients:

the

authorized

interface

and

the

non-authorized

interface.

CQS

automatically

selects

and

initializes

the

correct

interface

environment

based

on

the

client’s

state

when

the

client

issues

a

CQSREG

request.

If

client

is

authorized

(in

supervisor

state

with

PSW

key

0

to

7),

CQS

Introducing

CQS

Client

Requests IBM

Confidential

70

Common

Queue

Server

Guide

and

Reference

initializes

the

authorized

interface

environment.

If

client

is

not

authorized

(in

problem

state

with

key

8

or

greater),

CQS

initializes

the

non-authorized

interface

environment.

Which

interface

CQS

assigns

to

the

client

determines

the

allowed

environments

for

all

subsequent

CQS

requests

and

all

client

exit

routines

driven

by

CQS.

In

general,

when

a

client

makes

a

CQS

request,

its

PSW

state

and

key

must

be

the

same

as

they

were

when

it

issued

the

CQSREG

request.

Environmental

Requirements

for

CQS

For

CQS

requests

(other

than

CQSREG

and

CQSDEREG),

the

environmental

requirements

depend

on

the

CQS

interface

assigned

to

the

client.

Table

24

shows

the

environment

for

clients

using

the

authorized

CQS

interface:

Table

24.

Environment

for

CQS

Requests

(Excluding

CQSREG

and

CQSDEREG)

Using

the

Authorized

Interface

Environment

State

Authorization

Supervisor

state

and

PSW

key

0-7

(PSW

key

must

match

the

PSW

key

when

the

CQSREG

request

was

issued)

Dispatchable

unit

mode

Task

Cross

memory

mode

Any,

however,

PASN

must

equal

the

primary

address

space

in

which

the

CQSREG

request

was

issued

AMODE

31

ASC

Mode

Primary

Home

address

space

Any

Locks

No

locks

held

Interrupt

status

Enabled

for

interrupts

Control

parameters

In

primary

address

space

Table

25

shows

the

environment

for

clients

using

the

non-authorized

CQS

interface:

Table

25.

Environment

for

CQS

Requests

(Excluding

CQSREG

and

CQSDEREG)

Using

the

Non-Authorized

Interface

Environment

Aspect

State

Authorization

Problem

state

or

PSW

key

8

(PSW

key

must

match

the

PSW

key

when

the

CQSREG

request

was

issued)

Dispatchable

unit

mode

Task

Cross

memory

mode

None

(PASN=SASN=HASN)

AMODE

31

ASC

Mode

Primary

Home

address

space

Address

space

in

which

CQSREG

was

issued

Locks

No

locks

held

Interrupt

status

Enabled

for

interrupts

Control

parameters

In

primary

address

space

Coding

CQS

RequestsIBM

Confidential

Chapter

5.

Writing

a

CQS

Client

71

The

environmental

requirements

for

the

CQS

register

and

deregister

requests

(CQSREG

and

CQSDEREG)

are

different

from

all

of

the

other

CQS

requests.

Authorized

clients

must

issue

CQSREG

and

CQSDEREG

requests

in

the

environment

shown

in

Table

26.

Table

26.

Environment

for

CQSREG

and

CQSDEREG

Requests

Using

the

Authorized

Interface

Environment

Aspect

State

Authorization

Supervisor

state

and

PSW

key

0-7

Dispatchable

unit

mode

Task

Cross

memory

mode

None

(PASN=SASN=HASN)

AMODE

31

ASC

Mode

Primary

Locks

No

locks

held

Interrupt

status

Enabled

for

interrupts

Control

parameters

In

primary

address

space

Non-authorized

clients

must

issue

CQSREG

and

CQSDEREG

requests

in

the

environment

shown

in

Table

27.

Table

27.

Environment

for

CQSREG

and

CQSDEREG

Requests

Using

the

Non-Authorized

Interface

Environment

Aspect

State

Authorization

Problem

state

or

PSW

key

8

Dispatchable

unit

mode

Task

Cross

memory

mode

None

(PASN=SASN=HASN)

AMODE

31

ASC

Mode

Primary

Locks

No

locks

held

Interrupt

status

Enabled

for

interrupts

Control

parameters

In

primary

address

space

Using

Registers

with

CQS

Requests

All

CQS

requests

use

registers

R0,

R1,

R14,

and

R15

as

work

registers.

When

a

CQS

request

returns

control

to

the

caller,

the

contents

of

these

registers

are

not

the

same

as

they

were

before

the

macro

call.

R15

contains

a

return

code,

and

R0

contains

a

reason

code

from

the

CQS

interface

(see

“Return

Codes

and

Reason

Codes

for

CQS

Requests”

on

page

75).

The

contents

of

registers

R2

through

R13

remain

unchanged

after

a

CQS

request,

except

for

registers

specified

as

output

parameters

for

the

particular

request.

All

CQS

requests

require

register

R13

to

point

to

a

standard

72-byte

save

area.

No

other

registers

are

required

to

contain

any

particular

value

when

a

CQS

request

is

issued,

except

for

registers

specified

as

input

parameters

for

the

particular

request.

Coding

CQS

Requests IBM

Confidential

72

Common

Queue

Server

Guide

and

Reference

Coding

Parameters

for

CQS

Requests

For

all

of

the

parameters

(shown

in

the

syntax

diagrams

as,

for

example,

parameter)

that

are

not

literals,

CQS

expects

either

an

address

or

a

value.

For

example,

for

the

cqstoken

on

a

CQSREAD

request,

CQS

expects

the

address

of

the

16-byte

CQS

token,

but

for

the

buffersize,

CQS

expects

a

4-byte

buffer

size.

To

pass

an

address

or

a

parameter

value

to

CQS,

you

can

code

the

parameter

for

the

CQS

request

in

one

of

three

ways:

1.

Use

a

register

To

use

a

register,

you

must

load

the

address

or

the

parameter

value

into

one

of

the

general

purpose

registers,

then

use

that

register

(enclosed

in

parentheses)

for

the

parameter

in

the

CQS

request.

2.

Use

a

symbol

To

use

a

symbol

name,

you

must

define

a

symbol

that

contains

the

address

or

the

parameter

value,

then

use

that

symbol

for

the

parameter

in

the

CQS

request.

3.

Use

a

symbol

value

To

use

a

symbol

value,

you

must

define

a

symbol

or

an

equate

that

contains

the

parameter

value,

then

use

that

symbol

(preceded

by

the

at-sign,

@,

and

enclosed

in

parentheses)

for

the

parameter

in

the

CQS

request.

LA

5,TOKEN

CQSREAD

FUNC=READ,CQSTOKEN=(5),...

...
TOKEN

DS

XL16

Figure

17.

Passing

an

Address

for

Register

L

4,MYBUFLEN

CQSREAD

FUNC=READ,BUFSIZE=(4),...

...
MYBUFLEN

DC

F’00000024’

Figure

18.

Passing

a

value

for

register

CQSREAD

FUNC=READ,CQSTOKEN=TOKENADR,...

...

TOKENADR

DC

A(TOKEN)

TOKEN

DS

XL16

Figure

19.

Passing

an

Address

for

Symbol

CQSREAD

FUNC=READ,BUFSIZE=MYBUFLEN,...

...

MYBUFLEN

DC

F’00000024’

Figure

20.

Passing

a

Value

for

Symbol

Coding

CQS

RequestsIBM

Confidential

Chapter

5.

Writing

a

CQS

Client

73

Coding

Literals

for

CQS

Requests

A

number

of

CQS

request

macros

have

parameters

that

use

a

literal

(for

example,

the

LOCAL

parameter

on

the

CQSREAD

request

macro).

A

macro

invocation

can

use

either

combinations

of

literal

parameters

or

the

OPTWORD1

parameter

to

pass

4

bytes

containing

flags

that

represent

the

literals.

When

you

use

the

OPTWORD1

parameter,

you

obtain

the

literal

equates

by

using

the

DSECT

function

of

each

request

macro.

The

equates

that

represent

the

literal

values

are

added

together

in

a

regular

storage

location.

Requirement:

A

macro

invocation

can

use

either

the

literal

parameters

or

the

OPTWORD1

parameter,

not

both.

When

a

macro

invocation

includes

the

OPTWORD1

parameter,

the

value

passed

on

this

parameter

must

include

one

equate

for

each

literal

parameter

supported

by

the

macro.

For

example,

the

CQSREAD

request

has

three

literal

parameters:

LOCAL,

PARTIAL,

and

QPOS.

The

value

you

pass

on

the

OPTWORD1

parameter

must

include

one

equate

for

the

LOCAL

parameter,

one

equate

for

the

PARTIAL

parameter,

and

one

equate

for

the

QPOS

parameter.

To

code

a

CQSREAD

request

using

a

series

of

literal

parameters,

use

CQSREAD

FUNC=READ,...,QPOS=FIRST,LOCAL=YES....

To

code

the

same

CQSREAD

request

using

the

OPTWORD1

parameter,

use

the

example

shown

in

Figure

23:

Using

an

ECB

with

CQS

Requests

Some

requests

allow

you

to

use

a

z/OS

event

control

block

(ECB).

If

you

specify

an

ECB

(ECB=ecbaddress),

the

client

immediately

receives

control

after

issuing

the

request,

but

must

at

some

time

be

sure

to

wait

for

the

request

to

post

the

ECB.

If

you

do

not

specify

an

ECB,

CQS

does

not

return

control

to

the

client

until

CQS

completes

its

processing

for

the

request.

CQSREAD

FUNC=READ,CQSTOKEN=@(TOKEN),...

...

TOKEN

DC

XL16’0000A765B55CFF00’

Figure

21.

Passing

a

Value

for

Symbol

Value

CQSREAD

FUNC=READ,BUFSIZE=@(MYBUFLEN),...

...

MYBUFLEN

EQU

24

Figure

22.

Passing

an

Equate

for

Symbol

Value

L

R2,=A(CQSREAD_QPOSF+CQSREAD_LCLY+CQSREAD_PRTLY)

CQSREAD

FUNC=READ,...,OPTWORD1=(R2),...

.

.

.

.

CQSREAD

FUNC=DSECT

GENERATE

CQSREAD

EQUs

Figure

23.

Coding

CQSREAD

with

the

OPTWORD1

parameter

Coding

CQS

Requests IBM

Confidential

74

Common

Queue

Server

Guide

and

Reference

Related

Reading:

For

information

on

using

an

ECB,

see

the

z/OS

MVS

Programming:

Authorized

Assembler

Services

Guide.

Using

Lists

in

the

CQS

Requests

Some

of

the

CQS

requests

have

a

LIST

keyword,

which

specifies

the

address

of

a

parameter

list

entry.

This

keyword

specifies

the

address

of

the

first

list

entry.

If

you

want

to

pass

multiple

list

entries,

you

must

ensure

that

they

all

reside

in

contiguous

storage,

that

is,

the

next

entry

must

begin

at

the

first

byte

following

the

current

entry.

All

lists

must

be

contiguous,

even

if

they

are

not

aligned

on

word

or

fullword

boundaries.

Return

Codes

and

Reason

Codes

for

CQS

Requests

With

the

exception

of

CQSREG

and

CQSDEREG,

each

CQS

request

returns

two

sets

of

return

and

reason

codes.

One

set

is

returned

by

the

CQS

interface,

and

indicates

the

success

or

failure

of

sending

the

request

to

the

CQS

address

space

(these

are

returned

in

R15

and

R0).

The

other

set

is

returned

by

the

CQS

address

space,

and

reflects

the

success

or

failure

of

the

particular

CQS

request

being

made

(these

are

returned

in

the

fields

indicated

by

the

RETCODE

and

RSNCODE

parameters

on

the

CQS

request

macro).

When

you

make

a

CQS

request,

the

request

must

travel

through

the

CQS

interface

from

the

client

address

space

to

the

CQS

address

space.

The

CQS

interface

returns

information

about

the

success

or

failure

of

the

sending

of

the

request

in

registers

R15

and

R0.

After

issuing

a

CQS

request

macro,

have

your

code

check

the

value

in

R15

first.

If

the

value

in

R15

is

zero,

then

the

CQS

interface

successfully

sent

the

request

to

the

CQS

address

space.

If

R15

is

not

zero,

the

CQS

interface

was

unable

to

send

the

request

to

the

CQS

address

space,

and

R0

contains

a

reason

code

that

explains

the

error.

The

return

and

reason

codes

from

the

CQS

request

itself

are

returned

in

the

fields

specified

with

the

RETCODE

and

RSNCODE

parameters

coded

on

the

CQS

request

macro.

The

values

returned

in

these

fields

are

valid

only

if

the

CQS

interface

return

code

(R15)

is

zero.

If

the

interface

return

code

in

R15

is

not

zero

after

you

issue

a

CQS

request

macro,

then

the

values

in

the

RETCODE

and

RSNCODE

fields

are

not

predictable,

and

you

should

not

use

them.

For

synchronous

requests

(that

is,

requests

in

which

the

ECB

parameter

was

not

coded),

the

RETCODE

and

RSNCODE

fields

are

set

after

your

module

receives

control

back

from

the

request

macro,

and

you

can

use

them

immediately.

For

asynchronous

requests

(that

is,

requests

in

which

the

ECB

parameter

was

coded),

the

RETCODE

and

RSNCODE

fields

are

set

only

after

the

ECB

is

POSTed

by

CQS.

Do

not

check

the

RETCODE

and

RSNCODE

fields

until

you

have

issued

a

WAIT

on

the

ECB

you

specified

on

the

request,

and

that

WAIT

has

returned.

The

CQSREG

and

CQSDEREG

requests

are

exceptions

to

this.

CQSREG

and

CQSDEREG

register

and

deregister

a

client

with

the

CQS

interface,

but

do

not

actually

send

a

request

across

the

interface

to

the

CQS

address

space.

CQSREG

and

CQSDEREG

have

only

a

single

set

of

return

and

reason

codes,

and

these

are

immediately

available

upon

return

from

the

register

or

deregister

request.

The

return

code

is

set

both

in

register

15

and

in

the

field

specified

by

RETCODE

on

the

request

macro.

The

reason

code

is

set

both

in

register

0

and

in

the

field

specified

by

RSNCODE

on

the

request

macro.

The

CQS

interface

issues

the

return

and

reason

codes

shown

in

Table

28

on

page

76.

Any

CQS

request

can

receive

these

return

and

reason

codes.

Because

the

Coding

CQS

RequestsIBM

Confidential

Chapter

5.

Writing

a

CQS

Client

75

CQS

interface

performs

more

extensive

checking

for

non-authorized

clients,

some

of

the

following

return

and

reason

codes

can

only

be

received

if

the

client

is

a

non-authorized

client.

Table

28.

Return

and

Reason

Codes

for

Errors

Detected

by

the

CQS

Interface

Return

Code

Reason

Code

Meaning

X'00000008'

X'00000210'

The

cqstoken

is

invalid.

X'00000008'

X'00000214'

The

connecttoken

is

invalid.

X'00000010'

X'00000430'

The

CQS

address

space

is

not

available.

X'00000014'

X'00000600'

The

CQS

interface

is

unable

to

access

internal

blocks.

X'00000014'

X'00000604'

The

client

is

running

in

problem

state

or

is

using

an

incorrect

PSW

key.

X'00000014'

X'00000608'

The

client

passed

an

invalid

function

code

to

the

CQS

interface.

X'00000014'

X'0000060C'

The

client

specified

an

invalid

CQS

request

type.

X'00000014'

X'00000610'

CQS

was

unable

to

allocate

storage

to

copy

the

request

parameters.

X'00000014'

X'00000614'

The

total

length

of

all

request

parameters

passed

was

less

than

the

sum

of

all

parameter

lengths.

X'00000014'

X'00000618'

The

value

passed

to

the

interface

for

the

total

length

of

all

parameters

was

either

zero

or

negative.

X'00000014'

X'0000061C'

The

value

passed

to

the

interface

for

the

total

parameter

count

was

either

zero

or

negative.

X'00000014'

X'00000620'

The

length

of

one

of

the

request’s

parameters

was

negative.

X'00000014'

X'00000624'

The

length

passed

for

the

structure-call

parameter

list

was

invalid.

X'00000014'

X'00000628'

Invalid

request

function

code.

X'00000014'

X'0000062C'

Invalid

request

parameter

list

version

number.

X'00000014'

X'00000630'

An

incorrect

number

of

parameters

was

passed

for

the

requested

function.

X'00000014'

X'00000634'

A

parameter

was

passed

with

an

incorrect

length.

X'00000014'

X'00000638'

A

parameter

was

passed

by

value

instead

of

by

address.

X'00000014'

X'0000063C'

A

parameter

was

passed

by

address

instead

of

by

value.

X'00000014'

X'00000640'

The

CQS

request

abended

before

being

sent

to

the

CQS.

X'00000014'

X'00000644'

The

CQS

request

abended

while

CQS

was

copying

the

request

parameters.

This

error

is

usually

caused

by

the

client’s

passing

bad

parameter

data.

X'00000014'

X'00000648'

The

interface

parameter

list

version

passed

by

the

CQS

request

macro

was

not

valid.

This

error

is

probably

caused

by

a

difference

in

versions

between

the

CQS

client

and

the

CQS

address

space

the

client

is

trying

to

use.

Coding

CQS

Requests IBM

Confidential

76

Common

Queue

Server

Guide

and

Reference

All

CQS

requests

have

a

DSECT

function

that

you

can

use

to

include

equate

statements

in

your

program

for

all

the

return

and

reason

codes

for

the

request.

Recommendation:

Write

a

program

that

specifies

FUNC=DSECT

for

all

CQS

requests

so

you

can

determine

symbolic

variable

names

to

use

for

the

return

and

reason

code

values.

Assembling

a

Program

with

CQS

Requests

The

CQS

request

macros

are

shipped

with

IMS

and

are

included

in

the

IMS.ADFSMAC

data

set.

When

you

assemble

a

program

that

includes

CQS

request

macros,

you

must

tell

the

assembler

to

look

for

the

macros

in

this

data

set.

You

can

also

copy

the

members

from

the

IMS

data

set

to

another

data

set,

as

necessary.

There

are

no

special

requirements

for

link

editing

a

program

that

includes

CQS

requests,

but

you

do

have

to

ensure

that

the

IMS.SDFSRESL

data

set

is

concatenated

with

your

JOB

or

STEPLIB

DD

statement

for

the

client

job.

Example:

To

concatenate

the

IMS.SDFSRESL

data

set

after

your

MYPROGS.SDFSRESL

data

set,

code

your

STEPLIB

DD

statement

as

shown

in

Figure

24:

Clients

assembled

using

IMS

Version

6

request

macros

can

register

with

either

an

IMS

Version

6

or

IMS

Version

7

CQS.

Attention:

Clients

assembled

using

IMS

Version

7

macros

can

only

register

with

an

IMS

Version

7

CQS.

CQS

Clients

and

Handling

Special

Events

A

CQS

client

must

be

able

either

to

initiate

or

to

participate

in

many

different

types

of

events.

This

section

describes

some

of

these

special

events

and

what

the

CQS

client

can

or

must

do

about

them.

CQS

Cold

Start

When

CQS

cold

starts

after

connecting

to

a

structure

that

contains

data,

CQS

looks

for

unresolved

work

from

CQSMOVE

or

CQSDEL

requests.

CQS

backs

out

CQSMOVE

requests

and

completes

CQSDEL

requests.

CQS

then

performs

a

system

checkpoint,

and

restart

is

complete.

CQS

does

not

resolve

work

that

is

initiated

using

a

CQSREAD

request.

As

a

result,

data

objects

might

remain

on

the

queues.

The

client

can

issue

the

CQSRSYNC

request

to

have

CQS

move

these

data

objects

to

the

cold

queue

and

notify

the

client

that

they

exist.

The

client

can

then

issue

a

CQSRECVR

request

to

access

these

data

objects.

Recommendation:

Complete

all

work

initiated

using

CQSPUT

requests

because

CQS

is

not

aware

of

these

data

objects.

STEPLIB

DD

DSN=MYPROGS.SDFSRESL,DISP=SHR

DSN=IMS.SDFSRESL,DISP=SHR

Figure

24.

STEPLIB

DD

Statement

to

Concatenate

IMS.SDFSRESL

Coding

CQS

RequestsIBM

Confidential

Chapter

5.

Writing

a

CQS

Client

77

Registering

Interest

in

Queues

with

CQSINFRM

Use

the

CQSINFRM

request

to

allow

CQS

to

notify

the

client

when

a

data

object

exists

on

a

queue

or

when

the

queue

becomes

non-empty.

The

client

must

register

interest

in

a

queue

before

it

will

be

notified

of

work

on

that

queue.

Working

with

Objects

on

the

Cold

Queue

using

CQS

Requests

CQS

places

objects

on

the

cold

queue

when

either

CQS

or

the

client

is

cold

started

while

there

are

objects

in

active

structures.

A

client

can

use

the

CQSBRWSE

request

to

examine

objects

on

the

cold

queue,

and

then,

using

the

cold-queue

token

and

UOW

returned

by

this

request,

the

client

can

use

a

CQSRECVR

request

to

retrieve

or

delete

objects

from

the

cold

queue.

When

writing

a

CQS

client,

you

can

use

the

following

request

to

obtain

information

about

objects

on

the

cold

queue,

including

the

qnames,

data

object

count,

oldest

data

object

timestamp,

and

newest

data

object

timestamp:

CQSQUERY

FUNC=QTYPE,QTYPENM=COLDQ

Initiating

Checkpoints

using

CQS

Requests

A

CQS

client

can

initiate

a

system

checkpoint

by

issuing

a

CQSCHKPT

FUNC=CHKPTSYS

request.

See

“Using

CQS

System

Checkpoint”

on

page

34

for

more

information

on

system

checkpoints.

A

CQS

client

can

initiate

a

structure

checkpoint

by

issuing

a

CQSCHKPT

FUNC=CHKPTSTR

request.

See

“Using

CQS

Structure

Checkpoint”

on

page

35

for

more

information

on

structure

checkpoints.

Shutting

Down

CQS

To

shut

down

CQS,

clients

can

either

issue

the

CQSSHUT

request

or

the

CQSDISC

request

with

CQSSHUT=YES

specified.

In

either

case,

CQS

terminates

when

there

are

no

more

structure

connections.

CQS

continues

to

accept

input

and

output

requests

so

that

in-progress

work

can

complete.

Structure

checkpoints

are

allowed

to

be

issued.

New

connections

are

allowed

if

the

CQSDISC

request

is

issued

with

CQSSHUT=YES,

but

they

are

not

allowed

if

the

CQSSHUT

request

is

issued.

Related

Reading:

v

For

more

information

on

the

CQSDISC

request,

see

“CQSDISC

Request”

on

page

101.

v

For

more

information

on

the

CQSSHUT

request,

see

“CQSSHUT

Request”

on

page

149.

Tuning

to

Improve

CQS

Performance

You

can

improve

CQS

performance

by

carefully

selecting

the

parameters

you

use

with

the

CQSQUERY,

CQSDEL,

and

CQSINFRM

requests.

Related

Reading:

For

more

information

on

these

tuning

recommendations,

see

“CQSQUERY

Request”

on

page

121,

see

“CQSDEL

Request”

on

page

96,

and

see

“CQSINFRM

Request”

on

page

106.

Handling

Special

Events IBM

Confidential

78

Common

Queue

Server

Guide

and

Reference

Chapter

6.

CQS

Client

Requests

This

section

describes

the

format,

usage,

parameters,

and

return

and

reason

codes

of

the

CQS

client

requests:

v

“CQSBRWSE

Request”

on

page

80

v

“CQSCHKPT

Request”

on

page

87

v

“CQSCONN

Request”

on

page

90

v

“CQSDEL

Request”

on

page

96

v

“CQSDEREG

Request”

on

page

100

v

“CQSDISC

Request”

on

page

101

v

“CQSINFRM

Request”

on

page

106

v

“CQSMOVE

Request”

on

page

110

v

“CQSPUT

Request”

on

page

114

v

“CQSQUERY

Request”

on

page

121

v

“CQSREAD

Request”

on

page

130

v

“CQSRECVR

Request”

on

page

135

v

“CQSREG

Request”

on

page

140

v

“CQSRSYNC

Request”

on

page

142

v

“CQSSHUT

Request”

on

page

149

v

“CQSUNLCK

Request”

on

page

150

v

“CQSUPD

Request”

on

page

155

This

section

contains

General-Use

Programming

Interface

information.

Using

CQS

Client

Requests

CQS

clients

communicate

with

the

CQS

address

space

using

a

general-use

interface

consisting

of

a

number

of

S/390

assembler

macros,

called

CQS

requests.

Using

these

requests,

CQS

clients

can

communicate

with

the

CQS

and

manipulate

client

data

on

shared

coupling

facility

structures.

Use

these

requests

if

you

are

writing

or

maintaining

a

CQS

client.

You

do

not

need

to

use

them

if

you

are

using

an

IBM-supplied

client,

such

as

an

IMS

control

region.

Some

CQS

requests

support

wildcard

parameters.

Wildcard

parameters

allow

you

to

specify

multiple

resources

whose

names

match

the

wildcard

parameter

mask.

The

size

of

a

wildcard

parameter

can

be

from

one

character

to

the

maximum

number

of

characters

supported

for

the

resource.

The

alphanumeric

name

can

include

one

or

more

specialized

characters

and

an

asterisk

or

percent

sign.

An

asterisk

can

be

replaced

by

zero,

one,

or

more

characters

to

create

a

valid

resource

name.

A

percent

sign

can

be

replaced

by

exactly

one

character

to

create

a

valid

resource

name.

The

wildcard

parameter

asterisk

(*)

represents

’ALL’.

However,

depending

on

the

installation,

other

wildcard

parameters

can

mean

all.

For

example,

the

wildcard

parameter

%%%%

means

ALL

to

an

installation

whose

resource

names

are

all

4

characters

long.

IBM

Confidential

©

Copyright

IBM

Corp.

1997,

2004

79

CQSBRWSE

Request

Format

for

CQSBRWSE

BROWSE

Function

of

CQSBRWSE:

Use

the

BROWSE

function

of

a

CQSBRWSE

request

to

retrieve

a

copy

of

a

data

object

from

a

specific

queue.

BRWSOBJS

Function

of

CQSBRWSE:

Use

the

BRWSOBJS

function

of

a

CQSBRWSE

request

to

browse

one

or

more

resource

data

objects

of

a

specified

type

from

a

resource

structure.

COMPLETE

Function

of

CQSBRWSE:

Use

the

COMPLETE

function

of

a

CQSBRWSE

request

to

indicate

to

CQS

that

a

CQSBRWSE

request

associated

with

a

particular

browse

token

is

complete.

��

CQSBRWSE

FUNC=BROWSE

CQSTOKEN=cqstokenaddress

�

�

CONTOKEN=connecttokenaddress

PARM=parmaddress

BRWTOKEN=browsetokenaddress

�

�

QNAME=queuenameaddress

A

BUFFER=bufferaddress

BUFSIZE=buffersize

�

�

OBJSIZE=dataobjectsizeaddress

UOW=uowaddress

�

�

TIMESTAMP=timestampaddress

ECB=ecbaddress

�

�

RETCODE=returncodeaddress

RSNCODE=reasoncodeaddress

��

A:

QTYPE=COLD

CLDTOKEN=coldqueuetokenaddress

QNAME=queuenameaddress

�

�

CLIENT=clientnameaddress

��

CQSBRWSE

FUNC=BRWSOBJS

CQSTOKEN=cqstokenaddress

�

�

CONTOKEN=connecttokenaddress

PARM=parmaddress

BRWTOKEN=browsetokenaddress

�

�

LIST=resourcelistaddress

COUNT=resourcelistcount

LISTVER=1

LISTVER=listversion

�

�

BUFFER=bufferaddress

BUFSIZE=buffersize

OBJSIZE=dataobjectsizeaddress

�

�

RETCODE=returncodeaddress

RSNCODE=reasoncodeaddress

ECB=ecbaddress

��

CQSBRWSE IBM

Confidential

80

Common

Queue

Server

Guide

and

Reference

CONTINUE

Function

of

CQSBRWSE:

Use

the

CONTINUE

function

of

a

CQSBRWSE

request

if

a

previous

CQSBRWSE

request

retrieved

partial

data

and

you

want

to

retrieve

the

rest

of

the

data

object.

DSECT

Function

of

CQSBRWSE:

Use

the

DSECT

function

of

a

CQSBRWSE

request

to

include

equate

(EQU)

statements

in

your

program

for

the

CQSBRWSE

parameter

list

length

and

CQSBRWSE

return

and

reason

codes.

Usage

of

CQSBRWSE

A

CQSBRWSE

FUNC=BROWSE

request

retrieves

a

copy

of

a

data

object

from

a

specific

queue

on

a

queue

structure.

The

first

CQSBRWSE

FUNC=BROWSE

request

takes

a

snapshot

of

the

data

objects

meeting

the

selection

criteria

and

passes

back

a

copy

of

the

first

data

object.

The

data

object

is

neither

deleted

nor

locked.

It

can

be

accessed

by

any

subsequent

CQS

request.

Each

subsequent

CQSBRWSE

FUNC=BROWSE

request

retrieves

a

copy

of

the

next

data

object.

The

data

object

is

returned

in

the

client

buffer

provided

on

the

CQSBRWSE

request.

The

size

of

the

data

object

is

passed

to

the

client.

A

browse

token

maintains

the

cursor

position

of

the

data

objects

being

browsed.

A

CQSBRWSE

FUNC=BROWSE

request

with

a

zero

browse

token

passes

back

the

first

data

object.

A

CQSBRWSE

FUNC=BROWSE

request

with

a

non-zero

browse

token

retrieves

the

next

data

object

on

the

queue

associated

with

the

browse

token.

If

the

data

object

returned

is

the

last

data

object

on

the

queue,

CQS

invalidates

the

browse

token

and

frees

any

data

structures

associated

with

that

browse

token.

A

CQSBRWSE

FUNC=BRWSOBJS

request

retrieves

information

on

one

or

more

data

objects

from

a

resource

structure.

The

first

CQSBRWSE

FUNC=BRWSOBJS

request

takes

a

snapshot

of

the

data

objects

meeting

the

selection

criteria

and

passes

back

information

on

one

or

more

of

those

data

objects.

As

many

data

object

entries

as

fit

are

returned

in

the

client

buffer

provided

on

the

CQSBRWSE

request.

Each

subsequent

CQSBRWSE

FUNC=BRWSOBJS

request

retrieves

the

next

set

of

data

object

entries.

A

browse

token

maintains

the

cursor

position

of

the

data

objects

being

browsed.

A

CQSBRWSE

FUNC=BRWSOBJS

request

with

a

zero

browse

token

retrieves

information

on

as

many

data

objects

as

fit

in

the

buffer.

A

CQSBRWSE

FUNC=BRWSOBJS

request

with

a

non-zero

browse

token

retrieves

the

next

group

of

data

object

entries.

If

the

buffer

contains

information

on

the

last

��

CQSBRWSE

FUNC=COMPLETE

CQSTOKEN=cqstokenaddress

�

�

CONTOKEN=connecttokenaddress

PARM=parmaddress

BRWTOKEN=browsetokenaddress

�

�

ECB=ecbaddress

RETCODE=returncodeaddress

RSNCODE=reasoncodeaddress

��

��

CQSBRWSE

FUNC=CONTINUE

CQSTOKEN=cqstokenaddress

�

�

CONTOKEN=connecttokenaddress

PARM=parmaddress

BRWTOKEN=browsetokenaddress

�

�

BUFFER=bufferaddress

BUFSIZE=buffersize

OBJSIZE=dataobjectsizeaddress

�

�

ECB=ecbaddress

RETCODE=returncodeaddress

RSNCODE=reasoncodeaddress

��

��

CQSBRWSE

FUNC=DSECT

��

CQSBRWSEIBM

Confidential

Chapter

6.

CQS

Client

Requests

81

data

object

being

browsed,

CQS

invalidates

the

browse

token

and

frees

any

data

structures

associated

with

the

browse

token.

When

a

CQSBRWSE

FUNC=BROWSE

request

is

issued

and

the

buffer

passed

is

not

large

enough

to

hold

the

next

data

object,

partial

data

is

returned.

The

buffer

is

filled

with

as

much

of

the

data

object

as

can

fit.

The

CQSBRWSE

FUNC=CONTINUE

request

retrieves

the

rest

of

the

data

object.

Partial

data

is

not

returned

on

a

CQSBRWSE

FUNC=BRWSOBJS

request.

The

CQSBRWSE

FUNC=CONTINUE

request

is

not

supported

for

a

resource

structure

because

CQSBRWSE

FUNC=BRWSOBJS

does

not

return

partial

data.

A

CQSBRWSE

FUNC=COMPLETE

request

indicates

to

CQS

that

the

CQSBRWSE

request

associated

with

the

browse

token

is

complete.

The

browse

token

from

the

prior

CQSBRWSE

request

is

required.

CQS

invalidates

the

browse

token

and

frees

any

data

structures

associated

with

it.

The

client

should

issue

a

CQSBRWSE

FUNC=COMPLETE

request

if

it

is

not

retrieving

all

of

the

data

objects

on

the

specified

queue.

Attention:

The

cursor

position

of

a

CQSBRWSE

FUNC=BROWSE

or

CQSBRWSE

FUNC=CONTINUE

request

can

be

lost

due

to

a

CQS

restart,

a

client

restart,

structure

recovery,

structure

copy,

or

the

browse

table

timing

out.

The

browse

table

times

out

after

approximately

one

hour.

A

CQSBRWSE

request

is

not

recoverable

across

a

CQS

or

client

failure.

The

client

must

reissue

the

CQSBRWSE

request

after

such

a

failure.

The

data

object

is

not

locked

on

a

CQSBRWSE

request,

so

it

is

possible

that

one

or

more

of

the

objects

snapped

by

the

first

CQSBRWSE

FUNC=BROWSE

request

are

no

longer

available

because

of

another

CQSREAD,

CQSDEL,

CQSMOVE

request,

or

overflow

threshold

processing.

CQSBRWSE

FUNC=BROWSE

simply

skips

objects

that

are

no

longer

available.

If

overflow

threshold

processing

occurs

after

the

initial

CQSBRWSE

FUNC=BROWSE

request

and

the

queue

is

moved

to

the

overflow

structure,

any

subsequent

CQSBRWSE

FUNC=BROWSE

request

with

browse

token

results

in

an

error

that

indicates

no

objects

found.

Reissue

the

CQSBRWSE

FUNC=BROWSE

request

with

a

browse

token

of

zeroes,

so

that

CQS

can

take

a

snapshot

of

the

queue

on

the

overflow

structure.

If

the

current

position

is

lost

because

a

browse

table

timed

out,

a

CQSBRWSE

FUNC=CONTINUE

request

is

rejected.

Parameter

Description:

BRWTOKEN=browsetokenaddress

Input

and

output

parameter

that

specifies

the

address

of

the

16-byte

browse

token.

The

browse

token

is

used

to

maintain

the

cursor

position

of

the

data

object

or

objects

being

browsed.

The

browse

token

should

be

set

to

zero

on

the

initial

CQSBRWSE

request.

The

browse

token

returned

by

CQS

on

a

CQSBRWSE

FUNC=BROWSE

or

FUNC=BRWSOBJS

request

should

be

passed

as

input

on

a

subsequent

CQSBRWSE=BROWSE,

CONTINUE,

COMPLETE,

or

BRWSOBJS

request.

On

output,

the

browse

token

uniquely

identifies

the

current

data

object

being

browsed,

which

is

returned

in

the

buffer

identified

by

BUFFER.

For

a

CQSBRWSE

FUNC=CONTINUE,

a

CQSBRWSE

FUNC=COMPLETE,

or

a

subsequent

CQSBRWSE

FUNC=BROWSE

request,

BRWTOKEN

is

an

input

parameter

that

specifies

the

browse

token

returned

by

CQS

on

the

prior

CQSBRWSE

FUNC=BROWSE

request.

CQSBRWSE IBM

Confidential

82

Common

Queue

Server

Guide

and

Reference

BUFFER=bufferaddress

Four-byte

input

parameter

that

specifies

the

address

of

a

client

buffer

that

holds

information

retrieved

about

one

or

more

data

objects.

For

CQSBRWSE

FUNC=BROWSE,

the

client

buffer

contains

a

copy

of

the

data

object

retrieved

from

the

queue

on

a

queue

structure.

For

CQSBRWSE

FUNC=BRWSOBJS,

the

client

buffer

contains

the

count

of

data

object

entries

and

one

or

more

data

object

entries.

Each

data

object

entry

contains

information

about

one

resource

data

object

retrieved

from

the

resource

structure.

The

buffer

is

filled

with

as

many

data

object

entries

as

can

fit

in

the

buffer.

Each

data

object

entry

contains

information

about

a

browsed

data

object

such

as

the

resourceid,

the

completion

code,

resourceid

status,

version,

owner,

client

data1,

optional

client

data2,

and

user

data

that

was

passed

in

the

input

list.

If

the

size

of

the

information

is

greater

than

the

buffer

size

passed

by

the

client,

the

buffer

is

filled

with

as

many

resource

entries

as

can

fit.

The

BUFFER

is

mapped

by

the

CQSBRWSB

DSECT.

The

resourceid

status

indicates

how

the

resourceid

in

the

data

object

entry

is

associated

with

the

input

parameter.

With

this

information,

you

can

tie

the

input

parameter

to

the

data

object

entries

that

are

generated

in

the

output

buffer.

The

following

are

possible

resourceid

status:

v

Specific

parameter

A

specific

resourceid.

This

data

object

entry

contains

the

resourceid

that

matches

the

input

parameter.

v

Wildcard

parameter

A

wildcard

parameter

was

specified.

This

data

object

entry

contains

the

wildcard

parameter

and

a

completion

code.

This

data

object

entry

does

not

contain

information

about

a

specific

resourceid.

If

the

completion

code

is

zero,

one

or

more

wildcard

match

list

entries

follow.

v

Wildcard

match

A

wildcard

parameter

was

specified.

This

data

object

contains

information

about

one

resourceid

that

matches

the

input

wildcard

parameter.

All

wildcard

match

list

entries

follow

contiguously

after

a

wildcard

parameter

list

entry.

The

following

are

possible

completion

codes:

X’00000000’

Request

completed

successfully.

X’00000020’

Resourceid

is

invalid.

The

name

type

must

be

a

decimal

number

from

1

to

255.

X’00000024’

CQS

internal

error.

X’00000040’

No

resources

matching

either

resourceid,

resource

type,

owner,

or

some

combination

of

these,

were

found.

BUFSIZE=buffersize

Four-byte

input

parameter

that

specifies

the

size

of

the

client

buffer.

CQSBRWSEIBM

Confidential

Chapter

6.

CQS

Client

Requests

83

CLDTOKEN=coldqueuetokenaddress

Output

parameter

that

specifies

the

address

of

the

16-byte

cold-queue

token

for

the

data

object,

which,

along

with

the

UOW,

identifies

an

object

on

the

cold

queue.

You

can

use

the

cold-queue

token

and

UOW

on

a

CQSRECVR

request

to

retrieve

or

delete

objects

on

the

cold

queue.

CLIENT=clientnameaddress

Four-byte

output

parameter

that

specifies

the

address

of

an

8-byte

field

to

contain

the

name

of

the

client

that

locked

the

data

object

with

a

CQSREAD

request.

This

parameter

is

valid

only

when

QTYPE=COLD

is

specified.

CONTOKEN=connecttokenaddress

Input

parameter

that

specifies

the

address

of

the

16-byte

connect

token

that

uniquely

identifies

the

client’s

connection

to

a

particular

coupling

facility

structure

managed

by

this

CQS.

The

connect

token

is

returned

by

the

CQSCONN

request.

CQSTOKEN=cqstokenaddress

Input

parameter

that

specifies

the

address

of

the

16-byte

CQS

registration

token

that

uniquely

identifies

the

client’s

connection

to

CQS.

The

registration

token

is

returned

by

the

CQSREG

request.

COUNT=resourcelistcount

Four-byte

input

parameter

that

specifies

the

number

of

entries

in

the

resource

list.

ECB=ecbaddress

Four-byte

input

parameter

that

specifies

the

address

of

the

z/OS

event

control

block

(ECB)

used

for

asynchronous

requests.

If

ECB

is

specified,

the

request

is

processed

asynchronously;

otherwise

it

is

processed

synchronously.

LIST=resourcelistaddress

Address

of

a

variable

size

input

parameter

that

specifies

a

resource

list

containing

one

or

more

entries.

Each

entry

is

a

separate

browse

request.

The

client

must

initialize

some

fields

in

each

entry

prior

to

the

CQSBRWSE

request.

Other

fields

are

returned

by

CQS

upon

completion

of

the

request.

The

CQSBRWSL

list

entry

DSECT

maps

the

list

entries

and

can

be

used

by

the

client.

Multiple

list

entries

must

reside

in

contiguous

storage.

Each

list

entry

contains

the

following:

resourceid

Twelve-byte

input

field

that

contains

the

unique

identifier

of

the

resource(s)

to

be

browsed.

The

resourceid

can

be

a

wildcard

parameter.

The

resourceid

is

unique

in

the

IMSplex.

The

resourceid

consists

of

a

1-byte

name

type

followed

by

an

11-byte

client-defined

name.

The

name

type

ensures

uniqueness

of

client-defined

names

for

resources

with

the

same

name

type.

Resources

of

different

resource

types

may

have

the

same

name

type.

A

valid

value

for

the

name

type

is

a

decimal

number

from

1

to

255.

The

client-defined

name

has

meaning

to

the

client

and

consists

of

alphanumeric

characters.

If

you

use

a

wildcard

parameter

to

specify

the

resourceid,

you

should

also

specify

the

resource

type

to

enhance

performance.

You

must

specify

the

resourceid,

resource

type,

or

both.

resourcetype

One-byte

input

field

that

specifies

the

resource

type.

The

resource

type

CQSBRWSE IBM

Confidential

84

Common

Queue

Server

Guide

and

Reference

is

a

client-defined

physical

grouping

of

resources

on

the

resource

structure.

Valid

values

for

the

resource

type

are

decimal

numbers

from

1

to

255.

If

the

resource

type

is

greater

than

the

maximum

number

of

resource

types

defined

by

CQS

(11),

it

is

folded

into

one

of

the

existing

resource

types.

You

must

specify

the

resource

type,

resourceid,

or

both.

reserved

Three-byte

reserved

field.

owner

Eight-byte

input

parameter

that

identifies

the

owner

of

the

resource

data

objects

to

be

browsed.

The

CQSBRWSE

request

returns

only

those

resource

data

objects

that

are

owned

by

the

specific

owner.

Owner

is

an

optional

parameter.

options

Four-byte

input

parameter

that

specifies

browse

options.

Possible

options

are:

X’80000000’

Return

data2

for

the

browsed

data

object(s).

userdata

Four-byte

input

parameter

that

specifies

user

data.

This

user

data

is

passed

on

output

for

each

data

object

that

matches

the

input

resourceid

parameter.

LISTVER=1

|

listversion

Input

parameter

that

specifies

an

equate

for

the

list

version.

The

default

value

is

1.

Use

the

DSECT

function

of

a

CQSBRWSE

request

to

include

equate

(EQU)

statements

in

your

program

for

the

CQSBRWSE

list

versions.

OBJSIZE=dataobjectsizeaddress

Output

parameter

that

specifies

the

address

of

a

4-byte

area

to

hold

the

size

of

a

data

object

or

data

object

entry.

If

a

CQSBRWSE

FUNC=BROWSE

request

is

issued

and

the

size

of

the

data

object

is

greater

than

the

buffer

size

passed

by

the

client,

the

buffer

is

filled

with

as

much

of

the

data

object

as

fits.

The

request

receives

a

return

and

reason

code

indicating

partial

data

returned.

The

size

of

the

data

object

is

returned

in

the

location

specified

by

the

OBJSIZE

parameter.

If

the

size

of

the

data

object

is

less

than

or

equal

to

the

size

of

the

buffer,

the

data

object

is

moved

into

the

buffer

and

the

remainder

of

the

buffer

is

not

changed.

If

a

CQSBRWSE

FUNC=BRWSOBJS

request

is

issued,

as

many

data

object

entries

as

can

fit

are

moved

into

the

buffer.

The

client

must

then

issue

a

subsequent

CQSBRWSE

FUNC=BRWSOBJS

request

to

retrieve

the

next

data

object

entries.

If

the

buffer

is

not

large

enough

to

hold

the

next

data

object

entry,

the

request

receives

a

return

and

reason

code

indicating

the

buffer

is

too

small.

The

size

of

the

next

data

object

entry

to

be

returned

is

saved

in

the

location

specified

by

the

OBJSIZE

parameter.

PARM=parmaddress

Four-byte

input

parameter

that

specifies

the

address

of

a

parameter

list

used

by

the

request

to

pass

parameters

to

CQS.

The

length

of

the

storage

area

must

be

at

least

equal

to

the

EQU

value

CQSBRWSE_PARM_LEN

(defined

using

the

FUNC=DSECT

request).

CQSBRWSEIBM

Confidential

Chapter

6.

CQS

Client

Requests

85

QNAME=queuenameaddress

Four-byte

output

parameter

that

specifies

the

address

of

a

16-byte

queue

name

field.

For

a

CQSBRWSE

request

that

specifies

QTYPE=COLD

and

CLDTOKEN,

the

queue

name

field

is

an

output

field

to

contain

the

original

client

queue

name

for

the

data

object

being

returned.

This

client

queue

name

contained

the

data

object

before

it

was

moved

to

the

cold

queue.

For

all

other

CQSBRWSE

requests,

the

queue

name

field

is

an

input

field

that

specifies

the

queue

name

from

which

the

data

object

is

retrieved

for

all

CQSBRWSE

requests.

QTYPE=COLD

Input

parameter

that

specifies

the

queue

type

from

which

the

data

object

is

to

be

retrieved.

COLD

Indicates

the

data

object

is

to

be

retrieved

from

the

cold

queue.

RETCODE=returncodeaddress

Output

parameter

that

specifies

the

address

of

a

4-byte

field

to

contain

the

CQSBRWSE

return

code.

If

the

return

code

in

register

15

is

nonzero,

the

values

in

the

return

and

reason

code

fields

are

invalid,

because

the

CQS

interface

detected

an

error

and

was

unable

to

send

the

request

to

CQS.

RSNCODE=reasoncodeaddress

Output

parameter

that

specifies

the

address

of

a

4-byte

field

to

contain

the

CQSBRWSE

reason

code.

TIMESTAMP=timestampaddress

Four-byte

output

parameter

that

specifies

the

address

of

an

8-byte

field

to

contain

the

timestamp

of

when

the

data

object

was

placed

on

the

queues.

UOW=uowaddress

Output

parameter

that

specifies

the

address

of

a

32-byte

area

to

hold

the

unit

of

work

(UOW)

of

the

data

object

retrieved

from

the

queue.

The

UOW

is

a

unique

identifier

generated

by

the

client

that

stored

the

data

object

on

the

queue

(CQSPUT

request).

Return

and

Reason

Codes

for

CQSBRWSE

Table

29

lists

the

return

and

reason

code

combinations

that

can

be

returned

for

CQSBRWSE

requests.

Use

a

CQSBRWSE

FUNC=DSECT

request

to

include

equate

statements

in

your

program

for

the

return

and

reason

codes.

Table

29.

CQSBRWSE

Return

and

Reason

Codes

Return

Code

Reason

Code

Meaning

X'00000000'

X'00000000'

Request

completed

successfully.

X'00000004'

X'00000120'

The

buffer

size

(buffersize)

is

less

than

the

data

object

size

(dataobjectsize).

Partial

data

is

returned.

X'00000004'

X'00000124'

The

buffer

size

(buffersize)

is

too

small

to

contain

the

next

resource

data

object

entry.

No

partial

data

is

returned.

X'00000004'

X'00000128'

No

data

object

to

retrieve

on

queue

name

(queuename)

specified.

X'00000004'

X'0000012C'

No

partial

data

to

return.

X'00000004'

X'00000138'

Request

complete

and

the

last

data

object

is

returned.

CQSBRWSE IBM

Confidential

86

Common

Queue

Server

Guide

and

Reference

|

Table

29.

CQSBRWSE

Return

and

Reason

Codes

(continued)

Return

Code

Reason

Code

Meaning

X'00000004'

X'0000013C'

No

more

data

objects

to

return.

X'00000008'

X'00000210'

cqstoken

is

invalid.

X'00000008'

X'00000214'

connecttoken

is

invalid.

X'00000008'

X'00000218'

FUNC

is

invalid.

X'00000008'

X'0000021C'

browsetoken

is

invalid.

X'00000008'

X'00000220'

queuename

is

invalid.

X'00000008'

X'00000224'

buffer

is

invalid.

X'00000008'

X'00000228'

buffersize

is

invalid.

X'00000008'

X'0000022C'

dataobjectsize

is

invalid.

X'00000008'

X'00000230'

uow

is

invalid.

X'00000008'

X'00000234'

browsetoken

is

invalid.

X'00000008'

X'00000250'

Count

is

invalid.

X'00000008'

X'00000254'

List

address

is

invalid.

X'00000008'

X'0000027C'

CQSBRWSE

FUNC=BROWSE

is

not

allowed

for

a

resource

structure.

CQSBRWSE

FUNC=CONTINUE

is

not

allowed

for

a

resource

structure.

No

partial

data

is

returned

from

a

resource

structure.

X'00000008'

X'00000280'

CQSBRWSE

FUNC=BRWSOBJS

is

not

allowed

for

a

queue

structure.

X'00000008'

X'00000284'

Parmlist

version

is

invalid.

X'00000008'

X'00000288'

List

version

is

invalid.

X'00000010'

X'00000400'

A

CQSRSYNC

is

required

for

this

structure.

X'00000010'

X'00000404'

Structure

is

inaccessible.

Retry

request

later.

X'00000010'

X'00000408'

Current

position

lost,

reissue

CQSBRWSE

request.

X'00000010'

X'00000430'

No

CQS

address

space.

X'00000014'

X'00000500'

CQS

internal

error.

CQSCHKPT

Request

Format

for

CQSCHKPT:

CHKPTSTR

Function

of

CQSCHKPT:

Use

the

CHKPTSTR

function

of

a

CQSCHKPT

request

to

initiate

a

CQS

structure

checkpoint

for

a

queue

structure.

Structure

checkpoint

is

not

supported

for

a

resource

structure.

CQSBRWSEIBM

Confidential

Chapter

6.

CQS

Client

Requests

87

CHKPTSYS

Function

of

CQSCHKPT:

Use

the

CHKPTSYS

function

of

a

CQSCHKPT

request

to

initiate

a

CQS

system

checkpoint.

DSECT

Function

of

CQSCHKPT:

Use

the

DSECT

function

of

a

CQSCHKPT

request

to

include

equate

(EQU)

statements

in

your

program

for

the

CQSCHKPT

parameter

list

length

and

CQSCHKPT

return

and

reason

codes.

Usage

of

CQSCHKPT:

A

CQS

client

can

use

a

CQSCHKPT

request

to

initiate

either

a

CQS

system

checkpoint

or

a

structure

checkpoint.

��

CQSCHKPT

FUNC=CHKPTSTR

CQSTOKEN=cqstokenaddress

PARM=parmaddress

�

�

COUNT=count

LIST=listaddress

ECB=ecbaddress

RETCODE=returncodeaddress

�

�

RSNCODE=reasoncodeaddress

CQSCHKPT

FUNC=CHKPTSTR

CQSTOKEN=cqstokenaddress

�

�

PARM=parmaddress

COUNT=count

LIST=listaddress

ECB=ecbaddress

�

�

RETCODE=returncodeaddress

RSNCODE=reasoncodeaddress

�

�

LISTVER=1

LISTVER=listversion

��

��

CQSCHKPT

FUNC=CHKPTSYS

CQSTOKEN=cqstokenaddress

PARM=parmaddress

�

�

COUNT=count

LIST=listaddress

ECB=ecbaddress

RETCODE=returncodeaddress

�

�

RSNCODE=reasoncodeaddress

CQSCHKPT

FUNC=CHKPTSYS

CQSTOKEN=cqstokenaddress

�

�

PARM=parmaddress

COUNT=count

LIST=listaddress

ECB=ecbaddress

�

�

RETCODE=returncodeaddress

RSNCODE=reasoncodeaddress

�

�

LISTVER=1

LISTVER=listversion

��

��

CQSCHKPT

FUNC=DSECT

��

CQSCHKPT IBM

Confidential

88

Common

Queue

Server

Guide

and

Reference

For

a

structure

checkpoint,

CQS

dumps

the

queues

to

DASD

for

each

structure

specified

in

the

checkpoint

list.

If

the

structure

is

currently

in

overflow

mode,

the

overflow

structure

is

also

dumped

to

DASD.

For

a

system

checkpoint,

CQS

logs

the

internal

tables

for

each

structure

specified

in

the

checkpoint

list.

If

the

structure

is

currently

in

overflow

mode,

CQS

also

logs

the

internal

tables

for

the

overflow

structure.

Parameter

Description:

COUNT=count

Four-byte

input

parameter

that

specifies

the

number

of

entries

in

the

checkpoint

list.

CQSTOKEN=cqstokenaddress

Input

parameter

that

specifies

the

address

of

the

16-byte

CQS

registration

token

that

uniquely

identifies

the

client’s

connection

to

CQS.

The

registration

token

is

returned

by

the

CQSREG

request.

ECB=ecbaddress

Four-byte

input

parameter

that

specifies

the

address

of

the

z/OS

event

control

block

(ECB)

used

for

asynchronous

requests.

If

ECB

is

specified,

the

request

is

processed

asynchronously;

otherwise

it

is

processed

synchronously.

LIST=listaddress

Four-byte

input

parameter

that

specifies

the

address

of

the

checkpoint

list.

The

checkpoint

list

should

contain

an

entry

for

each

of

the

structures

for

which

the

client

requests

a

checkpoint.

The

CQSCHKPL

list

entry

DSECT

maps

the

list

entries

and

can

be

used

by

the

client.

Multiple

list

entries

must

reside

in

contiguous

storage.

Each

list

entry

contains

the

following:

connecttoken

Sixteen-byte

input

parameter

that

specifies

the

connect

token

returned

by

the

CQSCONN

request.

The

connect

token

uniquely

identifies

the

client’s

connection

to

a

particular

coupling

facility

structure

managed

by

this

CQS.

This

parameter

is

required.

compcode

Four-byte

output

field

to

receive

the

completion

code

from

the

request.

Possible

completion

codes

are:

X'00000000'

Completed

successfully.

X'00000004'

Connect

token

is

invalid.

X'00000008'

CQS

checkpoint

request

not

allowed

until

CQS

restart

has

successfully

completed

a

system

checkpoint.

X'0000000C'

A

CQSRSYNC

is

required

for

this

structure.

X'00000010'

Checkpoint

already

in

progress

for

structure.

X'00000014'

Structure

is

inaccessible.

Retry

request

later.

X'00000018'

CQS

internal

error.

X'00000020'

CQSCHKPT

FUNC=CHKPTSTR

is

invalid

for

a

resource

structure.

CQSCHKPTIBM

Confidential

Chapter

6.

CQS

Client

Requests

89

LISTVER=1

|

listversion

Input

parameter

that

specifies

an

equate

for

the

list

version.

Use

the

DSECT

function

of

a

CQSCHKPT

request

to

include

equate

(EQU)

statements

in

your

program

for

the

CQSCHKPT

list

versions.

PARM=parmaddress

Four-byte

input

parameter

that

specifies

the

address

of

a

parameter

list

used

by

the

request

to

pass

parameters

to

CQS.

The

length

of

the

storage

area

must

be

at

least

equal

to

the

EQU

value

CQSCHKPT_PARM_LEN

(defined

using

the

FUNC=DSECT

request).

RETCODE=returncodeaddress

Output

parameter

that

specifies

the

address

of

a

4-byte

field

to

contain

the

CQSCHKPT

return

code.

If

the

return

code

in

register

15

is

nonzero,

the

values

in

the

return

and

reason

code

fields

are

invalid,

because

the

CQS

interface

detected

an

error

and

was

unable

to

send

the

request

to

CQS.

RSNCODE=reasoncodeaddress

Output

parameter

that

specifies

the

address

of

a

4-byte

field

to

contain

the

CQSCHKPT

reason

code.

Return

and

Reason

Codes

for

CQSCHKPT:

Table

30

lists

the

return

and

reason

code

combinations

that

can

be

returned

for

CQSCHKPT

requests.

Use

a

CQSCHKPT

FUNC=DSECT

request

to

include

equate

statements

in

your

program

for

the

return

and

reason

codes.

Table

30.

CQSCHKPT

Return

and

Reason

Codes

Return

Code

Reason

Code

Meaning

X'00000000'

X'00000000'

Request

completed

successfully.

X'00000008'

X'00000210'

cqstoken

is

invalid.

X'00000008'

X'00000218'

FUNC

is

invalid.

X'00000008'

X'00000250'

count

is

invalid.

X'00000008'

X'00000254'

listaddress

is

invalid.

X'00000008'

X'00000284'

Parmlist

version

is

invalid.

X'00000008'

X'00000288'

List

version

is

invalid.

X'0000000C'

X'00000300'

Request

succeeded

for

at

least

one,

but

not

all,

list

entries.

See

compcode

for

individual

errors.

X'0000000C'

X'00000304'

Request

failed

for

all

list

entries.

See

compcode

for

individual

errors.

X'00000010'

X'0000040C'

CQS

shutdown

is

pending.

Client-initiated

checkpoint

requests

are

not

allowed.

X'00000010'

X'00000430'

No

CQS

address

space.

CQSCONN

Request

Format

for

CQSCONN

CONNECT

Function

of

CQSCONN:

Use

the

CONNECT

function

of

a

CQSCONN

request

to

connect

to

one

or

more

coupling

facility

structures.

The

coupling

facility

structures

can

be

queue

structures

or

resource

structures.

CQSCHKPT IBM

Confidential

90

Common

Queue

Server

Guide

and

Reference

DSECT

Function

of

CQSCONN:

Use

the

DSECT

function

of

a

CQSCONN

request

to

include

equate

(EQU)

statements

in

your

program

for

the

CQSCONN

parameter

list

length

and

CQSCONN

return

and

reason

codes.

Usage

of

CQSCONN

The

CQSCONN

request

connects

a

client

to

one

or

more

coupling

facility

structures.

The

client

specifies

a

connect

list

containing

one

or

more

list

entries,

for

which

each

entry

is

a

separate

connect

request.

If

the

connection

to

a

structure

is

successful,

a

connect

token

is

returned

to

the

client,

representing

the

connection

to

the

structure.

The

client

must

specify

this

token

on

all

subsequent

CQS

requests

for

that

structure.

A

maximum

of

32

clients

can

use

a

CQS

address

space

to

connect

to

a

coupling

facility

structure.

Restriction:

The

CQSCONN

request

is

not

logged

for

resource

structures

and

does

not

support

the

FCCQSSSN

keyword.

The

CQSCONN

request

does

not

support

the

following

connect

list

parameters

for

a

resource

structure:

v

structureattributes

v

overflowstructurename

v

structureinformexit

v

structureinformparm

v

qtypecnt

v

qtypelist

A

CQSCONN

FUNC=CONNECT

request

must

be

issued

after

a

CQSREG

FUNC=REGISTER

request

and

before

any

other

CQS

requests.

Also,

after

a

CQS

abnormal

termination

and

restart,

and

after

the

client

has

reregistered

with

CQS,

a

CQSCONN

FUNC=CONNECT

request

is

required

before

the

client

can

issue

any

other

CQS

requests.

Parameter

Description:

COUNT=count

Four-byte

input

parameter

that

specifies

the

number

of

list

entries

in

the

connect

list.

CQSTOKEN=cqstokenaddress

Input

parameter

that

specifies

the

address

of

the

16-byte

CQS

registration

��

CQSCONN

FUNC=CONNECT

CQSTOKEN=cqstokenaddress

PARM=parmaddress

�

�

FCCQSSSN=fccqsssnaddress

COUNT=count

LISTSIZE=listsize

�

�

LIST=listaddress

ECB=ecbaddress

RETCODE=returncodeaddress

�

�

RSNCODE=reasoncodeaddress

LISTVER=1

LISTVER=listversion

��

��

CQSCONN

FUNC=DSECT

��

CQSCONNIBM

Confidential

Chapter

6.

CQS

Client

Requests

91

token

that

uniquely

identifies

the

client’s

connection

to

CQS.

The

registration

token

is

returned

by

the

CQSREG

request.

ECB=ecbaddress

Four-byte

input

parameter

that

specifies

the

address

of

the

z/OS

event

control

block

(ECB)

used

for

asynchronous

requests.

If

ECB

is

specified,

the

request

is

processed

asynchronously;

otherwise

it

is

processed

synchronously.

FCCQSSSN=fccqsssnaddress

Four-byte

input

parameter

that

specifies

the

address

of

the

failed

client

CQS

subsystem.

When

one

client

takes

over

for

another

client,

this

is

the

SSN

of

the

CQS

that

was

connected

to

the

failed

client.

This

keyword

is

not

applicable

to

a

resource

structure.

LIST=listaddress

Four-byte

input

parameter

that

specifies

the

address

of

a

connect

list

containing

one

or

more

entries.

Each

entry

is

a

separate

request

to

connect

a

client

to

a

coupling

facility

structure.

Some

fields

for

each

entry

must

be

initialized

by

the

client

prior

to

the

CQSCONN

request.

Other

fields

are

returned

by

CQS

upon

completion

of

the

CQSCONN

request.

The

CQSCONNL

list

entry

DSECT

maps

the

list

entries

and

can

be

used

by

the

client.

Multiple

list

entries

must

reside

in

contiguous

storage.

Each

list

entry

contains

the

following:

compcode

Four-byte

output

field

to

receive

the

completion

code

from

the

request.

Possible

completion

codes

are:

X'00000000'

Client

connection

successful.

A

connect

token

is

returned

to

the

client.

X'00000004'

The

client

is

already

connected

to

the

structure

through

this

CQS.

A

connect

token

is

returned

to

the

client.

X'00000008'

structurename

is

invalid.

X'0000000C'

The

Structure

Event

exit

routine

address

was

not

specified.

X'00000010'

The

client

is

already

connected

to

the

structure

through

another

CQS.

A

client

can

only

be

connected

to

a

given

structure

through

one

CQS.

The

client

is

not

connected

to

the

structure

through

this

CQS.

This

does

not

affect

the

status

of

a

client

connection

with

another

CQS.

X'00000014'

CQS

internal

error.

X'00000018'

The

client

specified

the

FCCQSSSN=

parameter

to

connect

to

the

structure

to

take

over

work

for

a

failed

client.

CQS

could

not

find

a

valid

system-checkpoint

log

token

for

the

CQS

that

was

connected

to

the

failed

client.

CQS

issued

message

CQS0033A,

to

which

the

operator

replied

REJECT.

X'0000001C'

The

user

ID

of

the

client

address

space

is

not

authorized

to

connect

to

the

structure.

CQSCONN IBM

Confidential

92

Common

Queue

Server

Guide

and

Reference

X'00000020'

structureinformexit

was

specified

but

is

not

allowed

for

a

resource

structure.

X'00000024'

structureinformparm

was

specified

but

is

not

allowed

for

a

resource

structure.

X'0000002C'

structureattributes

was

specified

but

is

not

allowed

for

a

resource

structure.

X'00000030'

Qtype

was

specified

but

is

not

allowed

for

a

resource

structure.

X'00000034'

FCCQSSSN

was

specified

but

is

not

allowed

for

a

resource

structure.

structureattributes

Four-byte

input

and

output

parameter

field

that

contains

the

structure

attributes.

+0

Flag

byte

1,

with

the

following

bits

defined:

X'80'

Indicates

the

specification

of

the

structure

“wait

for

rebuild”

attribute.

The

first

client

in

the

sysplex

to

connect

to

a

structure

defines

this

attribute

for

all

clients.

It

is

returned

on

the

connect

request

to

allow

clients

to

verify

that

the

attribute

is

set

correctly

for

their

needs

because

it

might

have

been

set

by

a

prior

client

connection.

The

value

specified

for

structureattributes

remains

in

effect

for

the

life

of

the

structure,

and

cannot

be

changed.

When

set

to

0,

indicates

that

client

requests

to

write

and

retrieve

data

objects

from

the

structure

do

not

wait

for

a

rebuild

to

complete.

When

set

to

1,

indicates

that

client

requests

to

write

and

retrieve

data

objects

from

the

structure

must

wait

for

a

rebuild

to

complete.

The

remaining

bits

in

this

byte

are

not

used,

and

must

be

set

to

zero.

+1

The

next

3

bytes

are

not

used,

and

must

be

set

to

zero.

structuretype

One-byte

output

parameter

field

that

specifies

the

structure

type

as

either

a

queue

structure

or

a

resource

structure.

structureversion

Eight-byte

output

parameter

field

that

specifies

the

structure

version

of

the

structure

to

which

the

client

just

connected.

structurename

Sixteen-byte

input

parameter

field

that

contains

the

name

of

the

structure

to

which

the

client

wants

to

connect.

This

parameter

is

required.

overflowstructurename

Sixteen-byte

output

parameter

field

to

receive

the

name

of

the

CQSCONNIBM

Confidential

Chapter

6.

CQS

Client

Requests

93

overflow

structure,

if

one

was

defined

to

CQS

in

the

CQS

Global

Structure

Definition

PROCLIB

member,

CQSSGxxx.

This

parameter

is

not

applicable

to

a

resource

structure.

connecttoken

Sixteen-byte

output

parameter

field

to

receive

the

connect

token

that

uniquely

identifies

the

client’s

connection

to

a

particular

coupling

facility

structure

managed

by

this

CQS.

structureeventexit

Four-byte

input

parameter

field

that

contains

the

Structure

Event

exit

routine

address.

This

parameter

is

required.

structureeventparm

Four-byte

input

parameter

field

that

contains

client

data

that

CQS

passes

to

the

Structure

Event

exit

routine

every

time

the

exit

is

called.

This

parameter

is

optional;

set

it

to

zero

if

you

do

not

want

to

pass

any

data

to

the

exit

routine.

structureinformexit

Four-byte

input

parameter

field

that

contains

the

Structure

Inform

exit

routine

address.

This

parameter

is

optional;

set

it

to

zero

if

you

do

not

have

a

Structure

Inform

exit

routine.

This

parameter

is

not

applicable

to

a

resource

structure.

structureinformparm

Four-byte

input

parameter

field

that

contains

client

data

that

CQS

passes

to

the

Structure

Inform

exit

routine

every

time

the

exit

is

called.

This

parameter

is

optional;

set

it

to

zero

if

you

do

not

want

to

pass

any

data

to

the

exit

routine.

This

parameter

is

not

applicable

to

a

resource

structure.

qtypecnt

Four-byte

input

parameter

field

that

contains

the

number

of

queue

type

entries

in

the

queue

type

list.

This

parameter

is

optional;

set

it

to

zero

if

you

do

not

have

any

entries

in

the

queue

type

list.

This

parameter

is

not

applicable

to

a

resource

structure.

qtypelst

Variable

length

input

area

for

the

queue

type

list.

This

parameter

is

not

applicable

to

a

resource

structure.

The

length

of

this

area

is

equal

to

the

value

specified

for

qtypecnt.

Each

queue

type

entry

is

a

1-byte

value

of

a

queue

type

that

should

not

be

moved

to

the

overflow

structure

if

the

primary

structure

goes

into

overflow

mode.

This

parameter

is

optional.

After

a

queue

type

is

defined,

it

remains

in

effect

for

the

life

of

the

structure,

and

is

not

moved

to

the

overflow

structure.

If

no

queue

types

are

listed,

the

default

is

for

all

queue

types

to

be

eligible

for

overflow.

This

list

should

only

be

included

if

there

are

certain

queue

types

the

client

knows

should

not

be

moved

(perhaps

based

on

the

client’s

use

of

the

queue

types).

Recommendation:

Clients

should

exclude

from

processing

those

queue

types

that

allow

multiple

objects

with

the

same

queue

name

CQSCONN IBM

Confidential

94

Common

Queue

Server

Guide

and

Reference

and

UOW.

CQS

cannot

recover

multiple

objects

with

the

same

queue

name

and

UOW

that

are

allowed

to

be

moved

to

the

overflow

structure.

LISTSIZE=listsize

Four-byte

input

parameter

that

specifies

the

size

of

the

connect

list.

listsize

specifies

the

total

length

of

all

entries

in

the

list,

not

the

length

of

a

single

entry.

LISTVER=1

|

listversion

Input

parameter

that

specifies

an

equate

for

the

list

version.

Use

the

DSECT

function

of

a

CQSCONN

request

to

include

equate

(EQU)

statements

in

your

program

for

the

CQSCONN

list

versions.

PARM=parmaddress

Four-byte

input

parameter

that

specifies

the

address

of

a

parameter

list

used

by

the

request

to

pass

parameters

to

CQS.

The

length

of

the

storage

area

must

be

at

least

equal

to

the

EQU

value

CQSCONN_PARM_LEN

(defined

using

the

FUNC=DSECT

request).

RETCODE=returncodeaddress

Output

parameter

that

specifies

the

address

of

a

4-byte

field

to

contain

the

CQSCONN

return

code.

If

the

return

code

in

register

15

is

nonzero,

the

values

in

the

return

and

reason

code

fields

are

invalid,

because

the

CQS

interface

detected

an

error

and

was

unable

to

send

the

request

to

CQS.

RSNCODE=reasoncodeaddress

Output

parameter

that

specifies

the

address

of

a

4-byte

field

to

contain

the

CQSCONN

reason

code.

Return

and

Reason

Codes

for

CQSCONN

Table

31

lists

the

return

and

reason

code

combinations

that

can

be

returned

for

CQSCONN

requests.

Use

a

CQSCONN

FUNC=DSECT

request

to

include

equate

statements

in

your

program

for

the

return

and

reason

codes.

Table

31.

CQSCONN

Return

and

Reason

Codes

Return

Code

Reason

Code

Meaning

X'00000000'

X'00000000'

Request

completed

successfully.

X'00000004'

X'00000100'

The

client

was

previously

connected

to

one

or

more

of

the

specified

structures

through

this

CQS.

Client

is

connected

to

all

structures.

X'00000008'

X'00000210'

cqstoken

is

invalid.

X'00000008'

X'00000218'

FUNC

is

invalid.

X'00000008'

X'00000250'

count

is

invalid.

X'00000008'

X'00000254'

listaddress

is

invalid.

X'00000008'

X'00000258'

listsize

is

invalid.

X'00000008'

X'00000284'

Parmlist

version

is

invalid.

X'00000008'

X'00000288'

List

version

is

invalid.

X'0000000C'

X'00000300'

Request

succeeded

for

one

but

not

all

list

entries.

See

compcode

for

individual

errors.

X'0000000C'

X'00000304'

Request

failed

for

all

list

entries.

See

compcode

for

individual

errors.

CQSCONNIBM

Confidential

Chapter

6.

CQS

Client

Requests

95

Table

31.

CQSCONN

Return

and

Reason

Codes

(continued)

Return

Code

Reason

Code

Meaning

X'00000010'

X'0000040C'

CQS

shutdown

in

progress

(CQSSHUT).

CQS

is

waiting

for

all

clients

to

disconnect,

and

no

new

client

connections

are

allowed.

X'00000010'

X'00000410'

The

maximum

number

of

clients

are

connected

to

this

CQS.

This

request

would

exceed

the

client

connection

limit.

No

further

client

connections

are

allowed.

X'00000010'

X'00000430'

No

CQS

address

space.

X'00000014'

X'00000500'

CQS

internal

error.

CQSDEL

Request

Format

for

CQSDEL

DELETE

Function

of

CQSDEL:

Use

the

DELETE

function

of

a

CQSDEL

request

to

delete

one

or

more

data

objects

from

a

queue

structure

or

a

resource

structure.

DSECT

Function

of

CQSDEL:

Use

the

DSECT

function

of

a

CQSDEL

request

to

include

equate

(EQU)

statements

in

your

program

for

the

CQSDEL

parameter

list

length

and

CQSDEL

return

and

reason

codes.

Usage

of

CQSDEL

A

CQSDEL

request

deletes

one

or

more

data

objects

from

a

queue

structure

or

a

resource

structure.

The

client

specifies

a

delete

list

containing

one

or

more

list

entries,

for

which

each

list

entry

is

a

separate

delete

request

(either

by

lock

token,

by

queue

name,

by

queue

name

and

UOW,

by

resourceid,

or

by

resource

type

and

owner).

Each

list

entry

is

processed

separately

and

receives

its

own

completion

code.

Parameter

Description:

CONTOKEN=connecttokenaddress

Input

parameter

that

specifies

the

address

of

the

16-byte

connect

token

that

uniquely

identifies

the

client’s

connection

to

a

particular

coupling

facility

structure

managed

by

this

CQS.

The

connect

token

is

returned

by

the

CQSCONN

request.

��

CQSDELL

FUNC=DELETE

CQSTOKEN=cqstokenaddress

�

�

CONTOKEN=connecttokenaddress

PARM=parmaddress

COUNT=count

�

�

LIST=listaddress

ECB=ecbaddress

RETCODE=returncodeaddress

�

�

RSNCODE=reasoncodeaddress

LISTVER=1

LISTVER=listversion

��

��

CQSDELL

FUNC=DSECT

��

CQSCONN IBM

Confidential

96

Common

Queue

Server

Guide

and

Reference

COUNT=count

Four-byte

input

parameter

that

specifies

the

number

of

list

entries

in

the

delete

list.

CQSTOKEN=cqstokenaddress

Input

parameter

that

specifies

the

address

of

the

16-byte

CQS

registration

token

that

uniquely

identifies

the

client’s

connection

to

CQS.

The

registration

token

is

returned

by

the

CQSREG

request.

ECB=ecbaddress

Four-byte

input

parameter

that

specifies

the

address

of

the

z/OS

event

control

block

(ECB)

used

for

asynchronous

requests.

If

ECB

is

specified,

the

request

is

processed

asynchronously;

otherwise,

it

is

processed

synchronously.

LIST=listaddress

Four-byte

input

parameter

that

specifies

the

address

of

a

delete

list

containing

one

or

more

entries.

Each

entry

is

a

separate

delete

request.

Some

fields

in

each

entry

must

be

initialized

by

the

client

prior

to

the

CQSDEL

request.

Other

fields

are

returned

by

CQS

upon

completion

of

the

request.

The

CQSDELL

list

entry

DSECT

maps

the

list

entries

and

can

be

used

by

the

client.

Multiple

list

entries

must

reside

in

contiguous

storage.

Each

list

entry

contains

the

following:

deletetype

One-byte

input

parameter

field

that

contains

the

delete

type.

This

is

a

required

parameter.

deletetype

can

be

one

of

the

following:

1

Delete

by

lock

token.

2

Delete

by

queue

name.

3

Delete

by

queue

name

and

unit

of

work.

4

Delete

by

resourceid

and

version.

5

Delete

by

resource

type

with

the

specified

owner.

Recommendation:

For

better

performance,

use

delete

type

1

or

delete

type

2

because

they

are

more

efficient

than

delete

type

3.

deleteqpos

One-byte

input

parameter

field

that

specifies

either

that

all

data

objects

are

to

be

deleted

or

the

position

on

the

queue

of

data

objects

to

be

deleted.

This

parameter

is

only

used

for

delete

type

2.

deleteqpos

can

be

one

of

the

following:

1

Delete

all

data

objects

on

the

queue.

2

Delete

the

first

data

object

on

the

queue.

3

Delete

the

last

data

object

on

the

queue.

The

locktoken,

deleteqpos,

and

uow

fields

are

mutually

exclusive.

reserved

Two-byte

reserved

field.

objdelcnt

Four-byte

output

parameter

field

to

receive

the

number

of

data

objects

deleted.

CQSDELIBM

Confidential

Chapter

6.

CQS

Client

Requests

97

compcode

Four-byte

output

field

to

receive

the

completion

code

from

the

request.

Possible

completion

codes

are:

X'00000000'

Request

completed

successfully.

X'00000004'

Invalid

deleteqpos

(Delete

type

2).

X'00000008'

Invalid

deletetype.

X'0000000C'

Invalid

locktoken

(Delete

type

1).

X'00000010'

Invalid

queuename

(Delete

type

2

or

type

3).

X'00000014'

Invalid

uow

(Delete

type

3).

X'0000001C'

Structure

is

inaccessible.

Retry

request

later.

X'00000020'

CQS

internal

error.

X'00000024'

Data

object

not

found

on

queue

(Delete

type

2)

or

on

queuename

for

UOW

(Delete

type

3),

or

on

resource

structure

(Delete

type

4).

It

is

up

to

the

client

to

determine

whether

this

case

should

be

treated

as

an

error

or

not.

X'00000028'

Delete

type

1,

2,

or

3

is

invalid

for

a

resource

structure.

X'0000002C'

Delete

type

4

or

5

is

invalid

for

a

queue

structure.

X'00000030'

Resourceid

is

invalid.

The

name

type

must

be

a

decimal

number

from

1

to

255.

X'00000034'

Version

does

not

match

that

of

an

existing

resource.

X'00000038'

Resourcetype

is

invalid.

The

resource

type

must

be

a

decimal

number

from

1

to

255.

X'0000003C'

Owner

is

invalid.

The

owner

is

required

for

delete

type

5.

X'00000040'

Version

is

invalid.

The

version

must

be

a

number

greater

than

zero.

locktoken

Sixteen-byte

input

parameter

field

that

contains

the

lock

token.

The

lock

token

is

returned

by

the

CQSREAD

request.

This

parameter

is

only

used

for

delete

type

1.

The

locktoken,

deleteqpos,

and

uow

fields

are

mutually

exclusive.

The

locktoken

and

queuename

fields

are

also

mutually

exclusive.

queuename

Sixteen-byte

input

parameter

field

that

contains

the

queue

name.

This

parameter

is

only

used

for

delete

types

2

and

3.

The

locktoken

and

queuename

fields

are

mutually

exclusive.

uow

Thirty-two-byte

input

parameter

that

contains

the

unit

of

work.

This

parameter

is

only

used

for

delete

type

3.

The

locktoken,

deleteqpos,

and

uow

fields

are

mutually

exclusive.

resourceid

Twelve-byte

input

parameter

that

contains

the

unique

identifier

of

CQSDEL IBM

Confidential

98

Common

Queue

Server

Guide

and

Reference

the

resource

data

object

to

delete.

This

parameter

is

required

for

delete

type

4.

The

resourceid,

locktoken,

queuename,

and

resourceytpe

fields

are

mutually

exclusive.

version

Eight-byte

input

and

output

parameter

that

contains

the

version

of

the

resource

to

be

deleted.

The

version

specified

must

match

the

version

of

the

resource

for

the

delete

request

to

succeed.

The

version

is

a

count

of

the

number

of

times

the

resource

has

been

updated.

This

parameter

is

required

for

delete

type

4.

If

the

delete

fails

because

of

version

mismatch,

the

version

is

returned

as

output.

resourcetype

One-byte

input

parameter

that

contains

the

resource

type.

The

resource

type

is

a

client-defined

physical

grouping

of

resources

on

the

resource

structure.

Valid

values

for

the

resource

type

are

decimal

numbers

from

1

to

255.

If

the

resource

type

is

greater

than

the

maximum

number

of

resource

types

defined

by

CQS

(11),

it

is

folded

into

one

of

the

existing

resource

types.

This

parameter

is

required

for

delete

types

4

and

5.

Specify

zero

to

delete

all

resources

of

a

resource

type

that

are

not

owned.

reserved

Three-byte

reserved

field.

owner

Eight-byte

input

parameter

that

specifies

the

owner

for

which

to

delete

resources

of

the

specified

resource

type.

This

parameter

is

required

for

delete

type

5.

LISTVER=1

|

listversion

Input

parameter

that

specifies

an

equate

for

the

list

version.

Use

the

DSECT

function

of

a

CQSDEL

request

to

include

equate

(EQU)

statements

in

your

program

for

the

CQSDEL

list

versions.

PARM=parmaddress

Four-byte

input

parameter

that

specifies

the

address

of

a

parameter

list

used

by

the

request

to

pass

parameters

to

CQS.

The

length

of

the

storage

area

must

be

at

least

equal

to

the

EQU

value

CQSDEL_PARM_LEN

(defined

using

the

FUNC=DSECT

request).

RETCODE=returncodeaddress

Output

parameter

that

specifies

the

address

of

a

4-byte

field

to

contain

the

CQSDEL

return

code.

If

the

return

code

in

register

15

is

nonzero,

the

values

in

the

return

and

reason

code

fields

are

invalid,

because

the

CQS

interface

detected

an

error

and

was

unable

to

send

the

request

to

CQS.

RSNCODE=reasoncodeaddress

Output

parameter

that

specifies

the

address

of

a

4-byte

field

to

contain

the

CQSDEL

reason

code.

Return

and

Reason

Codes

for

CQSDEL

Table

32

on

page

100

lists

the

return

and

reason

code

combinations

that

can

be

returned

for

CQSDEL

requests.

Use

a

CQSDEL

FUNC=DSECT

request

to

include

equate

statements

in

your

program

for

the

return

and

reason

codes.

CQSDELIBM

Confidential

Chapter

6.

CQS

Client

Requests

99

Table

32.

CQSDEL

Return

and

Reason

Codes

Return

Code

Reason

Code

Meaning

X'00000000'

X'00000000'

Request

completed

successfully.

X'00000008'

X'00000210'

cqstoken

is

invalid.

X'00000008'

X'00000214'

connecttoken

is

invalid.

X'00000008'

X'00000218'

FUNC

is

invalid.

X'00000008'

X'00000250'

count

is

invalid.

X'00000008'

X'00000254'

listaddress

is

invalid.

X'00000008'

X'00000284'

Parmlist

version

is

invalid.

X'00000008'

X'00000288'

List

version

is

invalid.

X'0000000C'

X'00000300'

Request

succeeded

for

at

least

one,

but

not

all,

list

entries.

See

compcode

for

individual

errors.

X'0000000C'

X'00000304'

Request

failed

for

all

list

entries.

See

compcode

for

individual

errors.

X'00000010'

X'00000400'

A

CQSRSYNC

is

required

for

this

structure.

X'00000010'

X'00000430'

No

CQS

address

space.

X'00000014'

X'00000500'

CQS

internal

error.

CQSDEREG

Request

Format

for

CQSDEREG

DEREGISTER

Function

of

CQSDEREG:

Use

the

DEREGISTER

function

of

a

CQSDEREG

request

to

deregister

a

client

from

CQS

and

invalidate

the

CQS

token.

DSECT

Function

of

CQSDEREG:

Use

the

DSECT

function

of

a

CQSDEREG

request

to

include

equate

(EQU)

statements

in

your

program

for

the

CQSDEREG

parameter

list

length

and

CQSDEREG

return

and

reason

codes.

Usage

of

CQSDEREG

The

CQSDEREG

request

deregisters

a

client

from

CQS

and

invalidates

the

CQSTOKEN.

Prior

to

issuing

this

request,

the

client

should

issue

the

CQSDISC

request

to

disconnect

from

all

structures

to

which

the

client

has

a

connection.

When

this

request

is

successfully

completed,

no

subsequent

requests

can

be

made

to

CQS

until

a

CQSREG

request

has

been

made

to

get

a

new

CQSTOKEN.

Parameter

Description:

CQSTOKEN=cqstokenaddress

Input

parameter

that

specifies

the

address

of

the

16-byte

CQS

registration

token

that

uniquely

identifies

the

client’s

connection

to

CQS.

The

registration

token

is

returned

by

the

CQSREG

request.

��

CQSDEREG

FUNC=DEREGISTER

CQSTOKEN=cqstokenaddress

PARM=parmaddress

�

�

RETCODE=returncodeaddress

RSNCODE=reasoncodeaddress

��

��

CQSDEREG

FUNC=DSECT

��

CQSDEL IBM

Confidential

100

Common

Queue

Server

Guide

and

Reference

PARM=parmaddress

Four-byte

input

parameter

that

specifies

the

address

of

a

parameter

list

used

by

the

request

to

pass

parameters

to

CQS.

The

length

of

the

storage

area

must

be

at

least

equal

to

the

EQU

value

CQSDEREG_PARM_LEN

(defined

using

the

FUNC=DSECT

request).

RETCODE=returncodeaddress

Output

parameter

that

specifies

the

address

of

a

4-byte

field

to

contain

the

CQSDEREG

return

code.

The

CQSDEREG

return

code

is

returned

both

in

this

field

and

in

register

15.

RSNCODE=reasoncodeaddress

Output

parameter

that

specifies

the

address

of

a

4-byte

field

to

contain

the

CQSDEREG

reason

code.

The

CQSDEREG

reason

code

is

returned

both

in

this

field

and

in

register

0.

Return

and

Reason

Codes

for

CQSDEREG

Table

33

lists

the

return

and

reason

code

combinations

that

can

be

returned

for

CQSDEREG

requests.

Table

33.

CQSDEREG

Return

and

Reason

Codes

Return

Code

Reason

Code

Meaning

X'00000000'

X'00000000'

Request

completed

successfully.

X'00000004'

X'00000104'

Unable

to

free

CQS’s

storage

in

client’s

address

space.

The

cqstoken

is

now

invalid.

X'00000004'

X'00000108'

Unable

to

delete

z/OS

Resource

Manager

routine.

The

cqstoken

is

now

invalid.

X'00000008'

X'00000210'

cqstoken

is

invalid.

X'00000008'

X'00000248'

The

CQSDEREG

parameter

list

version

is

invalid.

This

error

is

probably

caused

by

a

difference

in

versions

between

the

CQS

client

and

the

CQS

address

space

the

client

is

trying

to

use.

X'00000008'

X'00000284'

Parmlist

version

is

invalid.

X'00000010'

X'00000434'

Request

is

active.

X'00000014'

X'00000500'

CQS

internal

error.

The

cqstoken

is

now

invalid.

X'00000014'

X'00000504'

Storage

allocation

error

for

work

area.

X'00000014'

X'00000518'

CQS

internal

error

(unable

to

create

ESTAE).

CQSDISC

Request

Format

for

CQSDISC

DISCABND

Function

of

CQSDISC:

Use

the

DISCABND

function

of

a

CQSDISC

request

while

the

client

is

terminating

abnormally

to

terminate

client

connections

to

all

coupling

facility

structures.

CQSDEREGIBM

Confidential

Chapter

6.

CQS

Client

Requests

101

DISCNORM

Function

of

CQSDISC:

Use

the

DISCNORM

function

of

a

CQSDISC

request

while

the

client

is

terminating

normally

to

terminate

client

connections

to

one

or

more

coupling

facility

structures.

DSECT

Function

of

CQSDISC:

Use

the

DSECT

function

of

a

CQSDISC

request

to

include

equate

(EQU)

statements

in

your

program

for

the

CQSDISC

parameter

list

length,

CQSDISC

return

and

reason

codes,

and

literals

that

can

be

used

to

build

the

OPTWORD1

parameter.

Usage

of

CQSDISC

Restriction:

The

CQSDISC

request

does

not

support

structure

attributes

for

resource

structures.

��

CQSDISC

FUNC=DISCABND

CQSTOKEN=cqstokenaddress

PARM=parmaddress

�

�

A

OPTWORD1=optionwordvalue

ECB=ecbaddress

�

�

RETCODE=returncodeaddress

RSNCODE=reasoncodeaddress

LISTVER=1

��

A:

CQSSHUT=YES

CQSSHUT=NO

��

CQSDISC

FUNC=DISCNORM

CQSTOKEN=cqstokenaddress

PARM=parmaddress

�

�

COUNT=count

LIST=listaddress

A

OPTWORD1=optionwordvalue

�

�

ECB=ecbaddress

RETCODE=returncodeaddress

RSNCODE=reasoncodeaddress

�

�

LISTVER=1

��

A:

CQSSHUT=YES

CQSSHUT=NO

��

CQSDISC

FUNC=DSECT

��

CQSDISC IBM

Confidential

102

Common

Queue

Server

Guide

and

Reference

The

CQSDISC

request

allows

a

client

to

disconnect

from

one

or

more

coupling

facility

structures.

CQS

disconnects

client

resources

associated

with

the

structures.

The

client

needs

to

issue

a

CQSDEREG

request

to

completely

disconnect

from

CQS.

A

CQSDISC

FUNC=DISCABND

request,

used

when

the

client

is

terminating

abnormally,

terminates

client

connections

to

all

coupling

facility

structures.

A

CQSDISC

FUNC=DISCNORM,

used

when

the

client

is

terminating

normally,

terminates

client

connections

to

one

or

more

coupling

facility

structures.

The

client

specifies

a

disconnect

list

containing

one

or

more

list

entries,

for

which

each

entry

is

a

separate

disconnect

request.

As

each

structure

disconnect

is

completed,

the

connect

token

for

that

structure

is

invalidated

and

can

no

longer

be

used

by

the

client.

Parameter

Description:

COUNT=count

Four-byte

input

parameter

that

specifies

the

number

of

list

entries

in

the

disconnect

list.

CQSSHUT=YES

|

NO

Input

parameter

that

indicates

whether

or

not

the

CQS

address

space

should

be

shut

down

after

all

clients

have

disconnected.

If

CQSSHUT=YES

is

specified,

new

clients

continue

to

be

allowed

to

issue

CQSCONN

requests.

The

CQSSHUT

FUNC=QUIESCE

request

can

be

used

to

prevent

new

clients

from

issuing

CQSCONN

requests.

The

CQSSHUT

parameter

cannot

be

used

when

the

OPTWORD1

parameter

is

specified.

If

you

specify

OPTWORD1

instead

of

CQSSHUT,

you

can

use

the

following

equate

(EQU)

symbols

to

generate

the

value

for

the

OPTWORD1

parameter:

CQSDISC_SHUTYEQX

CQSSHUT=YES

CQSDISC_SHUTNEQX

CQSSHUT=NO

CQSTOKEN=cqstokenaddress

Input

parameter

that

specifies

the

address

of

the

16-byte

CQS

registration

token

that

uniquely

identifies

the

client’s

connection

to

CQS.

The

registration

token

is

returned

by

the

CQSREG

request.

ECB=ecbaddress

Four-byte

input

parameter

that

specifies

the

address

of

the

z/OS

event

control

block

(ECB)

used

for

asynchronous

requests.

If

ECB

is

specified,

the

request

is

processed

asynchronously;

otherwise

it

is

processed

synchronously.

LIST=listaddress

Four-byte

input

parameter

that

specifies

the

address

of

a

disconnect

list

containing

one

or

more

entries.

Each

entry

is

a

separate

request

to

disconnect

a

client

from

a

coupling

facility

structure.

Some

fields

in

each

entry

must

be

initialized

by

the

client

prior

to

the

CQSDISC

request.

Other

fields

are

returned

by

CQS

upon

completion

of

the

CQSDISC

request.

The

CQSDISCL

list

entry

DSECT

maps

the

list

entries

and

can

be

used

by

the

client.

Multiple

list

entries

must

reside

in

contiguous

storage.

Each

list

entry

contains

the

following:

connecttoken

Sixteen-byte

input

parameter

that

specifies

the

connect

token

that

CQSDISCIBM

Confidential

Chapter

6.

CQS

Client

Requests

103

uniquely

identifies

the

client’s

connection

to

a

particular

coupling

facility

structure

managed

by

this

CQS.

The

connect

token

is

returned

by

the

CQSCONN

request.

This

parameter

is

required.

structureattributes

Four-byte

input

parameter

field

that

contains

the

structure

attributes.

+0

Flag

byte

1,

with

the

following

bits

defined:

X'80'

When

set

to

0,

indicates

that

CQS

should

not

perform

a

structure

checkpoint

for

the

structure.

When

set

to

1,

indicates

that

CQS

should

perform

a

structure

checkpoint

for

the

structure.

X'40'

When

set

to

0,

indicates

that

CQS

should

not

perform

disconnect

processing

for

the

structure

if

there

is

any

inflight

work

(locked

objects)

on

the

structure.

If

inflight

work

is

found,

CQS

will

set

completion

code

X'00000008'

in

the

compcode

field,

and

will

return

a

return

code

of

X'0000000C',

and

a

reason

code

of

either

X'00000300'

or

X'00000304'

for

the

request.

When

set

to

1,

indicates

that

CQS

should

disconnect

from

the

structure,

even

if

there

is

inflight

work

(locked

objects)

on

the

structure.

If

inflight

work

is

found,

CQS

will

set

completion

code

X'00000008'

in

the

compcode

field,

and

will

return

a

return

code

of

X'00000004',

and

a

reason

code

of

X'00000140'

for

the

request,

if

no

other

errors

in

disconnect

processing

occur.

Note

that

the

return

and

reason

code

is

a

warning

only;

the

disconnect

processing

is

still

performed.

The

remaining

bits

in

this

byte

are

not

used,

and

must

be

set

to

zero.

+1

The

next

3

bytes

are

not

used,

and

must

be

set

to

zero.

compcode

Four-byte

output

field

to

receive

the

completion

code

from

the

request.

Possible

completion

codes

are:

X'00000000'

Request

completed

successfully.

X'00000004'

connecttoken

is

invalid.

X'00000008'

The

client

has

inflight

work

for

the

structure.

If

the

X'40'

bit

in

the

first

byte

of

the

structureattributes

parameter

was

set

to

one,

the

disconnect

processing

was

successful

for

the

structure,

and

this

completion

code

is

informational.

CQSDISC IBM

Confidential

104

Common

Queue

Server

Guide

and

Reference

If

the

X'40'

bit

was

zero,

the

disconnect

processing

was

not

done

for

this

structure,

and

the

CQS

client

should

complete

the

inflight

work

before

continuing.

X'0000000C'

Structure

attributes

are

not

allowed

for

a

resource

structure.

LISTVER=1

|

listversion

Input

parameter

that

specifies

an

equate

for

the

list

version.

Use

the

DSECT

function

of

a

CQSDISC

request

to

include

equate

(EQU)

statements

in

your

program

for

the

CQSDISC

list

versions.

OPTWORD1=optionwordvalue

Four-byte

input

parameter

that

specifies

the

literals

for

this

request.

This

parameter

can

be

used

instead

of

CQSSHUT.

Equate

(EQU)

statements

for

the

literal

values

are

listed

under

the

description

of

the

CQSSHUT

parameter.

Equate

statements

can

also

be

generated

by

using

the

DSECT

function.

The

OPTWORD1

parameter

cannot

be

used

if

CQSSHUT

is

specified.

Requirement:

If

you

code

the

OPTWORD1

parameter,

you

must

pass

a

value

that

is

composed

of

one

equate

value

for

each

literal

value

supported

by

this

macro.

PARM=parmaddress

Four-byte

input

parameter

that

specifies

the

address

of

a

parameter

list

used

by

the

request

to

pass

parameters

to

CQS.

The

length

of

the

storage

area

must

be

at

least

equal

to

the

EQU

value

CQSDISC_PARM_LEN

(defined

using

the

FUNC=DSECT

request).

RETCODE=returncodeaddress

Output

parameter

that

specifies

the

address

of

a

4-byte

field

to

contain

the

CQSDISC

return

code.

If

the

return

code

in

register

15

is

nonzero,

the

values

in

the

return

and

reason

code

fields

are

invalid,

because

the

CQS

interface

detected

an

error

and

was

unable

to

send

the

request

to

CQS.

RSNCODE=reasoncodeaddress

Output

parameter

that

specifies

the

address

of

a

4-byte

field

to

contain

the

CQSDISC

reason

code.

Return

and

Reason

Codes

for

CQSDISC

Table

34

lists

the

return

and

reason

code

combinations

that

can

be

returned

for

CQSDISC

requests.

Use

a

CQSDISC

FUNC=DSECT

request

to

include

equate

statements

in

your

program

for

the

return

and

reason

codes.

Table

34.

CQSDISC

Return

and

Reason

Codes

Return

Code

Reason

Code

Meaning

X'00000000'

X'00000000'

Request

completed

successfully.

X'00000004'

X'00000130'

Request

completed

successfully

for

the

requested

structures.

Client

is

still

connected

to

additional

coupling

facility

structures.

X'00000004'

X'00000140'

Request

completed

successfully

for

the

requested

structures.

At

least

one

structure

had

inflight

work

for

this

client,

but

the

client

indicated

that

disconnect

processing

was

allowed

with

inflight

work

at

CQSDISC.

The

completion

code

field

for

those

structures

contains

X'00000008'.

CQSDISCIBM

Confidential

Chapter

6.

CQS

Client

Requests

105

Table

34.

CQSDISC

Return

and

Reason

Codes

(continued)

Return

Code

Reason

Code

Meaning

X'00000008'

X'00000210'

cqstoken

is

invalid.

X'00000008'

X'00000218'

FUNC

is

invalid.

X'00000008'

X'00000250'

count

is

invalid.

X'00000008'

X'00000254'

listaddress

is

invalid.

X'00000008'

X'00000284'

Parmlist

version

is

invalid.

X'00000008'

X'00000288'

List

version

is

invalid.

X'0000000C'

X'00000300'

Request

succeeded

for

at

least

one

but

not

all

list

entries.

See

compcode

for

individual

errors.

X'0000000C'

X'00000304'

Request

failed

for

all

list

entries.

See

compcode

for

individual

errors.

X'00000010'

X'00000430'

No

CQS

address

space.

CQSINFRM

Request

Format

for

CQSINFRM

DSECT

Function

of

CQSINFRM:

Use

the

DSECT

function

of

a

CQSINFRM

request

to

include

equate

(EQU)

statements

in

your

program

for

the

CQSINFRM

parameter

list

length

and

CQSINFRM

return

and

reason

codes.

INFORM

Function

of

CQSINFRM:

Use

the

INFORM

function

of

a

CQSINFRM

request

to

register

a

client’s

interest

in

one

or

more

queues

on

a

specific

coupling

facility

structure.

UNINFORM

Function

of

CQSINFRM:

Use

the

UNINFORM

function

of

a

CQSINFRM

request

to

deregister

a

client’s

interest

in

one

or

more

queues

on

a

specific

coupling

facility

structure

it

previously

registered

interest

for.

��

CQSINFRM

FUNC=DSECT

��

��

CQSINFRM

FUNC=INFORM

CQSTOKEN=cqstokenaddress

PARM=parmaddress

�

�

COUNT=count

LISTSIZE=listsize

LIST=listaddress

ECB=ecbaddress

�

�

RETCODE=returncodeaddress

RSNCODE=reasoncodeaddress

�

�

LISTVER=1

LISTVER=listversion

��

CQSDISC IBM

Confidential

106

Common

Queue

Server

Guide

and

Reference

Usage

of

CQSINFRM

A

client

uses

a

CQSINFRM

request

to

register

or

deregister

interest

for

one

or

more

queues

on

a

specific

coupling

facility

structure.

When

a

queue

goes

from

empty

to

non-empty,

CQS

notifies

all

clients

that

registered

interest

for

the

queue

of

the

change

in

status

by

scheduling

the

Structure

Inform

Client

exit

routine.

Restriction:

The

CQSINFRM

request

is

not

supported

for

resource

structures.

Related

Reading:

For

more

information

on

the

Structure

Inform

Client

exit

routine,

see

“CQS

Client

Structure

Inform

Exit

Routine”

on

page

175.

The

client

can

issue

CQSREAD

or

CQSBRWSE

requests

to

retrieve

data

from

a

queue.

A

client

can

make

data

objects

available

on

a

queue

using

CQSPUT,

CQSMOVE,

or

CQSUNLCK

requests.

A

client

that

has

registered

interest

in

a

queue

is

only

notified

when

the

queue

goes

from

empty

to

non-empty,

or

if

a

data

object

is

available

on

the

queue

when

the

CQSINFRM

request

is

issued.

The

client

does

not

receive

notification

when

additional

data

objects

are

placed

on

a

non-empty

queue.

After

a

client

deregisters

interest

in

a

queue,

it

is

no

longer

notified

when

one

of

the

queues

goes

from

empty

to

non-empty.

Because

client

notifications

occur

asynchronously

with

CQSINFRM

requests,

the

client

should

expect

to

be

notified

about

new

data

objects

that

arrive

between

the

time

the

client

issues

the

CQSINFRM

FUNC=UNINFORM

request

and

the

time

CQS

processes

the

request.

Parameter

Description:

COUNT=count

Four-byte

input

parameter

that

specifies

the

number

of

structure

list

entries

in

the

structure

list.

CQSTOKEN=cqstokenaddress

Input

parameter

that

specifies

the

address

of

the

16-byte

CQS

registration

token

that

uniquely

identifies

the

client’s

connection

to

CQS.

The

registration

token

is

returned

by

the

CQSREG

request.

ECB=ecbaddress

Four-byte

input

parameter

that

specifies

the

address

of

the

z/OS

event

control

block

(ECB)

used

for

asynchronous

requests.

If

ECB

is

specified,

the

request

is

processed

asynchronously;

otherwise

it

is

processed

synchronously.

��

CQSINFRM

FUNC=UNINFORM

CQSTOKEN=cqstokenaddress

PARM=parmaddress

�

�

COUNT=count

LISTSIZE=listsize

LIST=listaddress

ECB=ecbaddress

�

�

RETCODE=returncodeaddress

RSNCODE=reasoncodeaddress

�

�

LISTVER=1

LISTVER=listversion

��

CQSINFRMIBM

Confidential

Chapter

6.

CQS

Client

Requests

107

LIST=listaddress

Four-byte

input

parameter

that

specifies

the

address

of

the

structure

list.

The

structure

list

is

built

in

contiguous

storage,

and

the

size

of

the

list

must

be

specified

using

the

LISTSIZE

parameter.

The

structure

list

should

contain

an

entry

for

each

coupling

facility

structure

for

which

the

client

will

register

or

deregister

interest.

Each

structure

list

entry

must

contain

a

list

of

the

queues

for

which

the

client

will

register

or

deregister

interest.

Each

connect

token

in

a

structure

list

entry

and

queue

name

in

the

queue

list

entry

must

be

initialized

prior

to

the

request.

Upon

completion

of

the

request,

CQS

returns

the

structure

completion

code

for

the

structure

list

and

the

queue

completion

code

for

the

queue

list.

The

CQSINFL

list

entry

DSECT

maps

the

queue

and

structure

list

entries

and

can

be

used

by

the

client.

Multiple

list

entries

must

reside

in

contiguous

storage.

Each

structure

list

entry

contains

the

following:

connecttoken

Sixteen-byte

input

parameter

that

specifies

the

connect

token

that

uniquely

identifies

the

client’s

connection

to

CQS

and

a

specific

coupling

facility

structure.

The

connect

token

is

returned

by

the

CQSCONN

request.

This

parameter

is

required.

structurecompletioncode

Four-byte

output

field

to

receive

the

completion

code

for

the

CQSINFRM

request

for

the

structure.

Possible

structure

completion

codes

are:

X'00000000'

Request

completed

successfully.

X'00000004'

Request

completed

successfully

for

all

queues.

At

least

one

queue

has

work

on

it.

See

the

queue

completion

code

to

determine

which

queues

have

work

on

them.

X'00000010'

connecttoken

is

invalid.

X'00000014'

queuelistcount

is

invalid.

X'00000018'

Inform

exit

routine

does

not

exist.

The

Structure

Inform

exit

routine

was

not

specified

on

CQSCONN

request

for

structure.

X'00000020'

Request

completed

successfully

for

at

least

one,

but

not

all

queues

in

queuelist.

See

queuecompletioncode

for

individual

errors.

X'00000024'

Request

failed

for

all

queues

in

queuelist.

See

queuecompletioncode

for

individual

errors

or

successes.

X'00000030'

A

CQSRSYNC

is

required

for

this

structure.

X'00000034'

CQSINFRM

is

not

allowed

for

a

resource

structure.

queuelistcount

Four-byte

input

parameter

that

specifies

the

number

of

queues

in

the

queue

list.

This

parameter

is

required.

Recommendation:

For

optimum

performance,

a

client

that

registers

interest

in

many

queues

should

issue

multiple

CQSINFRM

requests,

in

which

each

request

lists

no

more

than

1024

queues.

CQSINFRM IBM

Confidential

108

Common

Queue

Server

Guide

and

Reference

queuelist

Variable

length

input

area

that

contains

one

or

more

queue

lists.

A

queue

list,

built

by

the

client,

should

contain

an

entry

for

each

queue

on

the

structure

for

which

the

client

will

register

or

deregister

interest.

The

queue

names

must

be

initialized

prior

to

the

request.

This

parameter

is

required.

Each

queue

list

entry

contains

the

following:

queuename

Sixteen-byte

input

field

that

contains

the

name

of

the

queue

for

which

the

client

is

registering

interest.

This

parameter

is

required.

queuerequestflag

One-byte

input

field

that

contains

flags

specific

to

this

queue

that

can

be

set

for

this

CQSINFRM

request.

X'80'

Call

the

client

Inform

exit

routine

if

there

are

data

objects

on

the

queue

at

the

time

the

client

issues

the

CQSINFRM

FUNC=INFORM

request.

Applies

only

to

CQSINFRM

FUNC=INFORM

requests.

queuecompletioncode

Four-byte

output

field

to

receive

the

completion

code

for

the

specified

queue.

Possible

completion

codes

are:

X'00000000'

Request

completed

successfully.

X'00000040'

Work

exists

on

queue.

X'00000044'

queuename

is

invalid.

X'00000048'

CQS

internal

error.

X'00000050'

Structure

is

full.

No

more

event

monitoring

controls

(EMC)s

are

available

for

queue

registration.

X'00000054'

Structure

is

inaccessible.

Retry

request.

LISTSIZE=listsize

Four-byte

input

parameter

that

specifies

the

size

of

the

structure

list.

The

client

builds

the

structure

list

and

must

specify

the

size

of

the

structure

list

in

this

field.

LISTVER=1

|

listversion

Input

parameter

that

specifies

an

equate

for

the

list

version.

Use

the

DSECT

function

of

a

CQSINFRM

request

to

include

equate

(EQU)

statements

in

your

program

for

the

CQSINFRM

list

versions.

PARM=parmaddress

Four-byte

input

parameter

that

specifies

the

address

of

a

parameter

list

used

by

the

request

to

pass

parameters

to

CQS.

The

length

of

the

storage

area

must

be

at

least

equal

to

the

EQU

value

CQSINFRM_PARM_LEN

(defined

using

the

FUNC=DSECT

request).

RETCODE=returncodeaddress

Output

parameter

that

specifies

the

address

of

a

4-byte

field

to

contain

the

CQSINFRM

return

code.

CQSINFRMIBM

Confidential

Chapter

6.

CQS

Client

Requests

109

If

the

return

code

in

register

15

is

nonzero,

the

values

in

the

return

and

reason

code

fields

are

invalid,

because

the

CQS

interface

detected

an

error

and

was

unable

to

send

the

request

to

CQS.

RSNCODE=reasoncodeaddress

Output

parameter

that

specifies

the

address

of

a

4-byte

field

to

contain

the

CQSINFRM

reason

code.

Return

and

Reason

Codes

for

CQSINFRM

Table

35

lists

the

return

and

reason

code

combinations

that

can

be

returned

for

CQSINFRM

requests.

Use

a

CQSINFRM

FUNC=DSECT

request

to

include

equate

statements

in

your

program

for

the

return

and

reason

codes.

Table

35.

CQSINFRM

Return

and

Reason

Codes

Return

Code

Reason

Code

Meaning

X'00000000'

X'00000000'

Request

completed

successfully.

X'00000004'

X'00000134'

Request

completed

successfully.

One

or

more

queues

have

work.

X'00000008'

X'00000210'

cqstoken

is

invalid.

X'00000008'

X'00000218'

FUNC

is

invalid.

X'00000008'

X'00000250'

count

is

invalid.

X'00000008'

X'00000254'

listaddress

is

invalid.

X'00000008'

X'00000258'

listsize

is

invalid.

X'00000008'

X'00000284'

Parmlist

version

is

invalid.

X'00000008'

X'00000288'

List

version

is

invalid.

X'0000000C'

X'00000300'

Request

succeeded

for

at

least

one,

but

not

all,

list

entries.

Check

structurecompletioncode

for

individual

errors

or

successes.

X'0000000C'

X'00000304'

Request

failed

for

all

list

entries.

See

structurecompletioncode

for

individual

errors.

X'00000010'

X'00000430'

No

CQS

address

space.

CQSMOVE

Request

Format

for

CQSMOVE

DSECT

Function

of

CQSMOVE:

Use

the

DSECT

function

of

a

CQSMOVE

request

to

include

equate

(EQU)

statements

in

your

program

for

the

CQSMOVE

parameter

list

length,

CQSMOVE

return

and

reason

codes,

and

literals

that

can

be

used

to

build

the

OPTWORD1

parameter.

MOVE

Function

of

CQSMOVE:

Use

the

MOVE

function

of

a

CQSMOVE

request

to

move

one

or

all

data

objects

from

one

queue

to

another.

You

must

code

a

macro

invocation

for

each

combination

of

literal

parameters.

��

CQSMOVE

FUNC=DSECT

��

CQSINFRM IBM

Confidential

110

Common

Queue

Server

Guide

and

Reference

You

can

use

the

OPTWORD1

parameter

to

code

a

single

invocation

of

the

macro

and

set

the

options

at

runtime.

However,

you

cannot

use

the

COUNT,

NEWQPOS,

and

OLDQPOS

parameters

if

you

use

the

OPTWORD1

parameter.

Usage

of

CQSMOVE

Restriction:

The

CQSMOVE

request

is

not

supported

for

resource

structures.

A

CQSMOVE

request

moves

one

or

all

client

data

objects

from

one

queue

to

another.

Data

objects

can

be

moved

from

the

first

or

last

position

of

the

old

queue

to

the

first

or

last

position

on

the

new

queue.

The

client

identifies

the

data

objects

to

be

moved

either

by

the

old

queue

name

and

queue

position,

or

by

the

lock

token.

Do

not

move

multiple

objects

with

the

same

queue

name

and

UOW;

otherwise

CQS

cannot

recover

the

objects.

If

CQS

or

the

client

fails

before

CQS

responds

to

the

client,

the

CQSMOVE

request

might

not

complete.

The

client

must

reconnect

to

CQS

after

the

failure

and

may

have

to

issue

the

CQSMOVE

request

again,

in

case

the

failure

occurred

before

the

move

was

committed,

or

to

resume

a

move

with

COUNT=ALL.

MOVE

Function

of

CQSMOVE

using

Literal

Parameters

��

CQSMOVE

FUNC=MOVE

CQSTOKEN=cqstokenaddress

CONTOKEN=connecttokenaddress

�

�

PARM=parmaddress

OLDQPOS=FIRST

OLDQ=oldqueuenameaddress

A

OLDQPOS=LAST

LCKTOKEN=locktokenaddress

�

�

NEWQPOS=LAST

NEWQ=newqueuenameaddress

NEWQPOS=FIRST

ECB=ecbaddress

�

�

RETCODE=returncodeaddress

RSNCODE=reasoncodeaddress

��

A:

COUNT=ONE

COUNT=ALL

MVCNT=movecountaddress

MOVE

Function

of

CQSMOVE

using

OPTWORD1

Parameter

��

CQSMOVE

FUNC=MOVE

CQSTOKEN=cqstokenaddress

CONTOKEN=connecttokenaddress

�

�

PARM=parmaddress

OLDQ=oldqueuenameaddress

MVCNT=movecountaddress

LCKTOKEN=locktokenaddress

�

�

NEWQ=newqueuenameaddress

OPTWORD1=optionwordvalue

ECB=ecbaddress

�

�

RETCODE=returncodeaddress

RSNCODE=reasoncodeaddress

��

CQSMOVEIBM

Confidential

Chapter

6.

CQS

Client

Requests

111

Parameter

Description:

CONTOKEN=connecttokenaddress

Input

parameter

that

specifies

the

address

of

the

16-byte

connect

token

that

uniquely

identifies

the

client’s

connection

to

a

particular

coupling

facility

structure

managed

by

this

CQS.

The

connect

token

is

returned

by

the

CQSCONN

request.

COUNT=ONE

|

ALL

Input

parameter

that

specifies

the

number

of

data

objects

on

the

old

queue

to

be

moved;

the

client

can

move

either

one

or

all

of

them.

The

COUNT

parameter

cannot

be

used

when

the

OPTWORD1

parameter

is

specified.

If

you

specify

the

OPTWORD1

parameter

instead

of

the

COUNT

parameter,

you

can

use

the

following

equate

(EQU)

symbols

to

generate

the

value

for

the

OPTWORD1

parameter:

CQSMOVE_CNT1EQUX

COUNT=ONE

CQSMOVE_CNT1EQUX

COUNT=ALL

CQSTOKEN=cqstokenaddress

Input

parameter

that

specifies

the

address

of

the

16-byte

CQS

registration

token

that

uniquely

identifies

the

client’s

connection

to

CQS.

The

registration

token

is

returned

by

the

CQSREG

request.

ECB=ecbaddress

Four-byte

input

parameter

that

specifies

the

address

of

the

z/OS

event

control

block

(ECB)

used

for

asynchronous

requests.

If

ECB

is

specified,

the

request

is

processed

asynchronously;

otherwise

it

is

processed

synchronously.

LCKTOKEN=locktokenaddress

Input

parameter

that

specifies

the

address

of

the

16-byte

lock

token

for

the

locked

data

object

to

be

moved.

The

lock

token

uniquely

identifies

a

data

object

locked

by

a

CQSREAD

request.

MVCNT=movecountaddress

Output

parameter

that

specifies

the

address

of

a

4-byte

field

to

receive

the

number

of

data

objects

that

were

moved.

Even

when

the

return

or

reason

code

is

non-zero,

it

is

possible

that

CQS

moved

some

data

objects.

NEWQ=newqueuenameaddress

Input

parameter

that

specifies

the

address

of

the

16-byte

name

of

the

new

queue

to

which

the

data

object

is

to

be

moved.

NEWQPOS=FIRST

|

LAST

Input

parameter

that

specifies

the

position

on

the

new

queue

to

which

data

objects

are

moved,

either

first

or

last.

The

NEWQPOS

parameter

cannot

be

used

when

the

OPTWORD1

parameter

is

specified.

If

the

OPTWORD1

parameter

is

specified

instead

of

NEWQPOS,

you

can

use

the

following

equate

(EQU)

statements

to

generate

the

value

for

the

OPTWORD1

parameter:

CQSMOVE_NEWQFEQUX

NEWQPOS=FIRST

CQSMOVE_NEWQLEQUX

NEWQPOS=LAST

OLDQ=oldqueuenameaddress

Input

parameter

that

specifies

the

address

of

the

16-byte

name

of

the

old

queue

from

which

the

data

object

is

to

be

moved.

OLDQPOS=FIRST

|

LAST

Input

parameter

that

specifies

the

position

on

the

old

queue

from

which

data

objects

are

to

be

moved,

either

first

or

last.

CQSMOVE IBM

Confidential

112

Common

Queue

Server

Guide

and

Reference

The

OLDQPOS

parameter

cannot

be

used

when

the

OPTWORD1

parameter

is

specified.

If

the

OPTWORD1

parameter

is

specified

instead

of

OLDQPOS,

you

can

use

the

following

equate

(EQU)

statements

to

generate

the

value

for

the

OPTWORD1

parameter:

CQSMOVE_OLDQFEQUX

OLDQPOS=FIRST

CQSMOVE_OLDQLEQUX

OLDQPOS=LAST

OPTWORD1=optionwordvalue

Four-byte

input

parameter

that

specifies

the

literals

for

this

request.

This

parameter

can

be

used

instead

of

COUNT,

NEWQPOS,

and

OLDQPOS.

Equate

(EQU)

statements

for

the

literal

values

are

listed

under

the

COUNT,

NEWQPOS,

and

OLDQPOS

parameter

descriptions.

Equate

statements

can

also

be

generated

by

using

the

DSECT

function.

The

OPTWORD1

parameter

cannot

be

used

if

COUNT,

NEWQPOS,

or

OLDQPOS

is

specified.

Requirement:

If

you

code

the

OPTWORD1

parameter,

you

must

pass

a

value

that

is

composed

of

one

equate

value

for

each

literal

value

supported

by

this

macro.

PARM=parmaddress

Four-byte

input

parameter

that

specifies

the

address

of

a

parameter

list

used

by

the

request

to

pass

parameters

to

CQS.

The

length

of

the

storage

area

must

be

at

least

equal

to

the

EQU

value

CQSMOVE_PARM_LEN

(defined

using

the

FUNC=DSECT

request).

RETCODE=returncodeaddress

Output

parameter

that

specifies

the

address

of

a

4-byte

field

to

contain

the

CQSMOVE

return

code.

If

the

return

code

in

register

15

is

nonzero,

the

values

in

the

return

and

reason

code

fields

are

invalid,

because

the

CQS

interface

detected

an

error

and

was

unable

to

send

the

request

to

CQS.

RSNCODE=reasoncodeaddress

Output

parameter

that

specifies

the

address

of

a

4-byte

field

to

contain

the

CQSMOVE

reason

code.

Return

and

Reason

Codes

for

CQSMOVE

Table

36

lists

the

return

and

reason

code

combinations

that

can

be

returned

for

CQSMOVE

requests.

Use

a

CQSMOVE

FUNC=DSECT

request

to

include

equate

statements

in

your

program

for

the

return

and

reason

codes.

Table

36.

CQSMOVE

Return

and

Reason

Codes

Return

Code

Reason

Code

Meaning

X'00000000'

X'00000000'

Request

completed

successfully.

X'00000004'

X'00000128'

No

data

object

to

move

for

queue

name

specified.

X'00000008'

X'00000210'

cqstoken

is

invalid.

X'00000008'

X'00000214'

connecttoken

is

invalid.

X'00000008'

X'00000218'

FUNC

is

invalid.

X'00000008'

X'0000021C'

locktoken

is

invalid.

X'00000008'

X'00000220'

Queue

name

is

invalid.

X'00000008'

X'00000224'

Buffer

address

is

invalid.

X'00000008'

X'0000027C'

CQSMOVE

is

not

allowed

for

a

resource

structure.

X'00000008'

X'00000284'

Parmlist

version

is

invalid.

CQSMOVEIBM

Confidential

Chapter

6.

CQS

Client

Requests

113

Table

36.

CQSMOVE

Return

and

Reason

Codes

(continued)

Return

Code

Reason

Code

Meaning

X'00000010'

X'00000400'

A

CQSRSYNC

is

required

for

this

structure.

X'00000010'

X'00000404'

Structure

is

inaccessible.

Retry

request

later.

X'00000010'

X'00000414'

Unable

to

move

the

data

object

because

the

destination

queue

is

full.

CQSMOVE

requests

for

other

queues

are

allowed.

X'00000010'

X'0000041C'

Request

pending.

A

structure

recovery

or

CQS

restart

might

be

required

to

complete.

X'00000010'

X'00000430'

No

CQS

address

space.

X'00000010'

X'00000440'

Locked

(nonrecoverable)

data

object

lost

due

to

rebuild.

X'00000014'

X'00000500'

CQS

internal

error.

CQSPUT

Request

Format

for

CQSPUT

ABORT

Function

of

CQSPUT:

Use

the

ABORT

function

of

a

CQSPUT

request

to

remove

from

the

queues

all

uncommitted

data

objects

associated

with

a

recoverable

unit

of

work.

DSECT

Function

of

CQSPUT:

Use

the

DSECT

function

of

a

CQSPUT

request

to

include

equate

(EQU)

statements

in

your

program

for

the

CQSPUT

parameter

list

length,

CQSPUT

return

and

reason

codes,

and

literals

that

can

be

used

to

build

the

OPTWORD1

parameter.

FORGET

Function

of

CQSPUT:

Use

the

FORGET

function

of

a

CQSPUT

request

to

discard

any

information

CQS

has

on

a

committed

unit

of

work.

PUT

Function

of

CQSPUT:

Use

the

PUT

function

of

a

CQSPUT

request

to

place

a

data

object

on

a

queue.

��

CQSPUT

FUNC=ABORT

CQSTOKEN=cqstokenaddress

CONTOKEN=connecttokenaddress

�

�

PARM=parmaddress

PUTTOKEN=puttokenaddress

ECB=ecbaddress

�

�

RETCODE=returncodeaddress

RSNCODE=reasoncodeaddress

��

��

CQSPUT

FUNC=DSECT

��

��

CQSPUT

FUNC=FORGET

CQSTOKEN=cqstokenaddress

�

�

CONTOKEN=connecttokenaddress

PARM=parmaddress

PUTTOKEN=puttokenaddress

�

�

ECB=ecbaddress

RETCODE=returncodeaddress

RSNCODE=reasoncodeaddress

��

CQSMOVE IBM

Confidential

114

Common

Queue

Server

Guide

and

Reference

Usage

of

CQSPUT

Restriction:

The

CQSPUT

request

is

not

supported

for

resource

structures.

A

CQSPUT

request

allows

a

client

to

place

a

data

object

on

a

queue.

The

data

object

can

be

either

the

only

one

for

a

unit

of

work,

or

it

can

be

one

in

a

series

for

a

unit

of

work.

The

data

object

can

be

added

to

the

beginning

or

to

the

end

of

the

queue.

After

the

data

object

is

on

the

queue,

it

is

available

to

any

client

that

has

access

to

that

queue.

��

CQSPUT

FUNC=PUT

CQSTOKEN=cqstokenaddress

CONTOKEN=connecttokenaddress

�

�

PARM=parmaddress

PUTTOKEN=puttokenaddress

UOW=uowaddress

�

�

QNAME=queuenameaddress

A

OPTWORD1=optionwordvalue

�

�

DATAOBJ=dataobjectaddress

OBJSIZE=dataobjectsizeaddress

�

�

TIMESTAMP=timestampaddress

ECB=ecbaddress

�

�

RETCODE=returncodeaddress

RSNCODE=reasoncodeaddress

��

A:

QPOS=LAST

QPOS=FIRST

B

B:

RECOVERABLE=YES

C

RECOVERABLE=NO

C:

COMMIT=YES

D

COMMIT=NO

D:

LOCAL=NO

LOCAL=YES

CQSPUTIBM

Confidential

Chapter

6.

CQS

Client

Requests

115

You

can

put

multiple

objects

on

the

same

queue

for

unit

of

work.

Do

not

move

these

objects

(CQSMOVE

request)

or

allow

these

objects

to

be

moved

to

the

overflow

structure

(CQSCONN

request);

otherwise,

CQS

cannot

recover

the

objects.

If

a

unit

of

work

consists

of

multiple

data

objects,

and

they

are

all

on

the

same

queue,

then

when

CQS

places

the

first

data

object

on

the

queue,

it

notifies

other

clients

that

have

registered

interest

in

the

queue,

even

though

not

all

of

the

data

objects

for

the

UOW

are

on

the

queue

yet

and

the

UOW

has

not

yet

been

committed.

Recommendation:

To

ensure

that

a

client

does

not

retrieve

incomplete

data,

place

the

last

data

object

for

a

UOW

on

a

different

queue

than

any

of

the

previous

data

objects

for

the

unit

of

work,

and

ensure

the

client

only

registers

interest

in

that

queue.

The

first

request

that

places

a

data

object

on

a

queue

for

a

unit

of

work

determines

whether

that

unit

of

work

is

recoverable

or

nonrecoverable.

The

actions

taken

for

a

data

object

when

a

client

fails,

CQS

fails,

a

structure

is

copied,

or

a

structure

is

recovered

depend

on

whether

the

unit

of

work

is

recoverable

and,

if

so,

whether

it

has

been

committed.

Table

37

shows

the

actions

taken

for

each

case.

When

a

data

object

is

put

on

a

queue,

a

timestamp

is

stored

with

the

data

object.

The

source

of

the

timestamp

is

based

on

whether

TIMESTAMP=

is

used

on

the

CQSPUT=

request.

If

TIMESTAMP=

is

specified

on

the

CQSPUT

request,

the

value

specified

for

TIMESTAMP=

is

stored

with

the

data

object.

If

TIMESTAMP=

is

not

specified

on

the

CQSPUT

request,

a

timestamp

representing

the

current

time

is

generated

and

stored

with

the

data

object.

The

timestamp

is

returned

on

the

CQSQUERY

FUNC=QTYPE

request

if

it

is

associated

with

the

oldest

data

object

on

the

queue

or

the

newest

data

object

on

the

queue.

Table

37.

Actions

Taken

for

Data

Objects

as

a

Result

of

Failures

or

Structure

Activity

Nonrecoverable

Recoverable

and

Uncommitted

Recoverable

and

Committed

Client

Failure

All

data

objects

on

the

queues

for

nonrecoverable

units

of

work

are

left

on

the

queues.

All

data

objects

on

the

queues

that

belong

to

uncommitted

units

of

work

are

deleted

when

the

client

terminates.

All

data

objects

on

the

queues

for

the

unit

of

work

remain

on

the

queues.

CQS

Failure

Any

data

objects

for

non-recoverable

units

of

work

that

were

placed

on

the

queues

successfully

are

left

on

the

queues.

If

CQS

was

in

the

process

of

placing

a

data

object

on

a

queue

when

the

failure

occurred,

that

data

object

is

not

recovered

when

CQS

restarts.

All

data

objects

on

the

queues

that

belong

to

uncommitted

units

of

work

are

deleted

when

CQS

restarts.

All

data

objects

on

the

queues

that

belong

to

committed

units

of

work

remain

on

the

queues.

If

CQS

was

in

the

process

of

placing

the

final

data

object

for

the

unit

of

work

on

the

queues

when

the

failure

occurred,

CQS

restart

ensures

the

data

object

is

on

the

queues.

Structure

Copy

Data

objects

for

non-recoverable

units

of

work

are

copied

to

the

new

structure.

All

data

objects

for

recoverable

units

of

work

are

copied

to

the

new

structure

whether

the

unit

of

work

is

committed

or

not.

All

data

objects

for

recoverable

units

of

work

are

copied

to

the

new

structure.

Structure

Recovery

Data

objects

placed

on

the

queues

for

nonrecoverable

units

of

work

are

not

recovered

to

the

new

structure.

All

data

objects

that

were

placed

on

the

queues

for

recoverable

units

of

work

are

recovered

to

the

new

structure

whether

or

not

the

unit

of

work

was

committed.

All

data

objects

that

were

placed

on

the

queues

for

recoverable

units

of

work

are

recovered

to

the

new

structure.

CQSPUT IBM

Confidential

116

Common

Queue

Server

Guide

and

Reference

|
|
|
|
|
|
|
|

A

CQSPUT

FUNC=FORGET

request

terminates

any

CQSPUT

FUNC=PUT

requests,

and

causes

CQS

to

discard

internal

information

CQS

has

about

the

unit

of

work.

The

unit

of

work

is

identified

by

the

put

token.

The

client

should

make

this

request

after

receiving

a

response

from

the

final

CQSPUT

FUNC=PUT

request

issued

for

the

unit

of

work.

The

CQSPUT

FUNC=FORGET

request

is

rejected

if

the

unit

of

work

is

recoverable

but

not

committed.

A

CQSPUT

FUNC=ABORT

request

removes

from

the

queues

all

uncommitted

data

objects

associated

with

a

recoverable

unit

of

work.

The

unit

of

work

is

identified

by

the

put

token.

The

request

is

rejected

if

the

unit

of

work

is

nonrecoverable

or

if

the

unit

of

work

is

recoverable,

but

already

committed.

Examples:

To

put

a

single

object

for

a

unit

of

work

on

the

queues,

issue

the

following

requests:

CQSPUT

FUNC=PUT,COMMIT=YES,...

...
CQSPUT

FUNC=FORGET,...

To

put

multiple

objects

for

a

unit

of

work

on

the

queues,

issue

the

following

requests:

CQSPUT

FUNC=PUT,COMMIT=NO,...

...
CQSPUT

FUNC=PUT,COMMIT=NO,...

...
CQSPUT

FUNC=PUT,COMMIT=YES,...

...
CQSPUT

FUNC=FORGET,...

Parameter

Description:

COMMIT=YES

|

NO

Input

parameter

that

indicates

whether

to

commit

a

recoverable

unit

of

work.

One

or

more

data

objects

can

be

placed

on

the

queues

for

a

recoverable

unit

of

work.

The

COMMIT=

parameter

applies

only

to

recoverable

units

of

work

and

is

only

valid

if

RECOVERABLE=YES

is

specified.

The

parameter

is

ignored

if

RECOVERABLE=NO

is

specified.

COMMIT=YES

must

be

specified

(either

by

itself

or

as

part

of

OPTWORD1)

for

the

final

(or

only)

CQSPUT

FUNC=PUT

request

issued

for

a

unit

of

work.

If

more

than

one

data

object

is

placed

on

the

queues

for

a

unit

of

work,

COMMIT=NO

must

be

specified

on

all

except

the

final

CQSPUT

FUNC=PUT

request

of

the

series.

COMMIT=YES

must

be

specified

on

the

final

CQSPUT

FUNC=PUT

request.

The

COMMIT

parameter

cannot

be

used

if

the

OPTWORD1

parameter

is

specified.

If

the

OPTWORD1

parameter

is

used

instead

of

COMMIT,

you

can

use

the

following

equate

(EQU)

statements

to

generate

the

value

for

the

OPTWORD1

parameter:

CQSPUT_CMTYEQUX

COMMIT=YES

CQSPUT_CMTNEQUX

COMMIT=NO

CONTOKEN=connecttokenaddress

Input

parameter

that

specifies

the

address

of

the

16-byte

connect

token

that

uniquely

identifies

the

client’s

connection

to

a

particular

coupling

facility

structure

managed

by

this

CQS.

The

connect

token

is

returned

by

the

CQSCONN

request.

CQSPUTIBM

Confidential

Chapter

6.

CQS

Client

Requests

117

CQSTOKEN=cqstokenaddress

Input

parameter

that

specifies

the

address

of

the

16-byte

CQS

registration

token

that

uniquely

identifies

the

client’s

connection

to

CQS.

The

registration

token

is

returned

by

the

CQSREG

request.

DATAOBJ=dataobjectaddress

Four-byte

input

parameter

that

specifies

the

address

of

the

client

data

object

to

be

placed

on

the

specified

queue.

ECB=ecbaddress

Four-byte

input

parameter

that

specifies

the

address

of

the

z/OS

event

control

block

(ECB)

used

for

asynchronous

requests.

If

ECB

is

specified,

the

request

is

processed

asynchronously;

otherwise

it

is

processed

synchronously.

LOCAL=NO

|

N

|

YES

|

Y

Input

parameter

that

indicates

whether

the

client

should

keep

a

local

copy

of

the

data.

NO

Indicates

the

client

wants

CQS

to

place

the

data

object

on

the

specified

client

queue

and

make

the

object

available

to

other

CQSs.

YES

Indicates

that

the

client

wants

CQS

to

place

the

data

object

on

the

shared

queues

and

to

lock

the

object.

LOCAL=YES

also

indicates

that

the

client

will

keep

a

local

copy

of

the

data

object

in

a

local

buffer.

By

keeping

a

local

copy

of

the

data

object,

the

client

can

reduce

the

performance

overhead

of

using

shared

queues.

By

keeping

the

data

object

on

the

shared

queues,

it

can

be

recovered

if

the

client

fails.

By

locking

the

data

object,

it

is

not

available

to

any

other

client.

The

client

must

issue

the

CQSREAD

LOCAL=YES

request

to

process

the

data

(retrieve

the

lock

token

for

the

data

object

and

inform

CQS

that

the

client

is

processing

the

data).

The

data

object

is

not

returned

to

the

client

on

a

CQSREAD

request

because

the

client

has

the

local

copy.

If

the

client

does

not

issue

the

CQSREAD

LOCAL=YES

request

and

the

connection

between

the

client

and

CQS

is

lost,

CQS

unlocks

the

data

object

and

makes

it

available

to

any

client.

The

LOCAL

parameter

cannot

be

used

if

the

OPTWORD1

parameter

is

specified.

If

the

OPTWORD1

parameter

is

used

instead

of

LOCAL,

you

can

use

the

following

equate

(EQU)

statements

to

generate

the

value

for

the

OPTWORD1

parameter:

CQSPUT_LCLYEQUX

LOCAL=YES

CQSPUT_LCLNEQUX

LOCAL=NO

OBJSIZE=dataobjectsizeaddress

Input

parameter

that

specifies

the

address

of

a

4-byte

area

to

hold

the

size

of

the

client

data

object

to

be

placed

on

the

queue.

The

maximum

size

that

can

be

specified

is

61312

bytes

(X'EF80').

OPTWORD1=optionwordvalue

Four-byte

input

parameter

that

specifies

the

literals

for

this

request.

This

parameter

can

be

used

instead

of

COMMIT,

LOCAL,

QPOS,

and

RECOVERABLE.

Equate

(EQU)

statements

for

the

literal

values

are

listed

under

the

descriptions

of

the

COMMIT,

LOCAL,

QPOS,

and

RECOVERABLE

parameters.

Equate

statements

can

be

also

generated

by

CQSPUT IBM

Confidential

118

Common

Queue

Server

Guide

and

Reference

using

the

DSECT

function.

The

OPTWORD1

parameter

cannot

be

used

if

COMMIT,

LOCAL,

QPOS

or

RECOVERABLE

is

specified.

Requirement:

If

you

code

the

OPTWORD1

parameter,

you

must

pass

a

value

that

is

composed

of

one

equate

value

for

each

literal

value

supported

by

this

macro.

PARM=parmaddress

Four-byte

input

parameter

that

specifies

the

address

of

a

parameter

list

used

by

the

request

to

pass

parameters

to

CQS.

The

length

of

the

storage

area

must

be

at

least

equal

to

the

EQU

value

CQSPUT_PARM_LEN

(defined

using

the

FUNC=DSECT

request).

PUTTOKEN=puttokenaddress

Four-byte

input

and

output

parameter

that

specifies

the

address

of

a

16-byte

token

to

be

used

by

CQS

to

relate

a

series

of

CQSPUT

requests

for

a

unit

of

work.

The

token

must

be

zero

for

the

initial

CQSPUT

request

of

a

series.

An

updated

token

is

returned

by

CQS

for

each

CQSPUT

request.

The

updated

token

must

be

returned

to

CQS

on

the

next

CQSPUT

request

for

the

unit

of

work.

The

puttoken

must

also

be

returned

to

CQS

for

any

CQSPUT

FUNC=FORGET

or

CQSPUT

FUNC=ABORT

requests.

QNAME=queuenameaddress

Input

parameter

that

specifies

the

address

of

the

16-byte

name

of

the

queue

on

which

the

data

object

is

to

be

placed.

The

first

byte

of

the

queue

name

cannot

be

zero;

it

is

used

to

determine

the

queue

type.

If

the

value

in

the

first

byte

is

greater

than

the

maximum

number

of

queue

types

defined

by

CQS,

it

is

folded

into

one

of

the

existing

queue

types.

If

the

last

data

object

for

a

unit

of

work

is

being

put

on

the

structure,

the

data

object

must

be

put

on

a

different

queue

than

any

of

the

previous

data

objects

for

that

unit

of

work.

QPOS=LAST

|

FIRST

Input

parameter

that

specifies

the

position

on

the

queue

at

which

to

place

the

client

data

object.

FIRST

The

data

object

is

added

to

the

beginning

of

the

queue.

LAST

The

data

object

is

added

to

the

end

of

the

queue.

The

QPOS

parameter

cannot

be

used

if

the

OPTWORD1

parameter

is

specified.

If

the

OPTWORD1

parameter

is

specified

instead

of

QPOS,

you

can

use

the

following

equate

(EQU)

statements

to

generate

the

value

for

the

OPTWORD1

parameter:

CQSPUT_QPOSFEQUX

QPOS=FIRST

CQSPUT_QPOSLEQUX

QPOS=LAST

RECOVERABLE=YES

|

NO

Input

parameter

that

specifies

whether

the

unit

of

work

is

recoverable

by

CQS.

RECOVERABLE=NO

indicates

the

unit

of

work

is

nonrecoverable.

Only

one

data

object

can

be

placed

on

the

queues

for

a

nonrecoverable

unit

of

work.

RECOVERABLE=YES

indicates

the

unit

of

work

is

recoverable.

One

or

more

data

objects

can

be

placed

on

the

queues

for

a

recoverable

unit

of

work.

The

RECOVERABLE=YES

parameter

must

be

specified

for

each

CQSPUT

FUNC=PUT

request

issued

for

the

unit

of

work.

The

unit

of

work

is

not

committed

until

the

final

(or

only)

data

object

for

the

series

is

placed

on

the

queues

(COMMIT=YES

specified).

CQSPUTIBM

Confidential

Chapter

6.

CQS

Client

Requests

119

The

RECOVERABLE

parameter

cannot

be

used

if

the

OPTWORD1

parameter

is

specified.

If

the

OPTWORD1

parameter

is

specified

instead

of

RECOVERABLE,

you

can

use

the

following

equate

(EQU)

statements

to

generate

the

value

for

the

OPTWORD1

parameter:

CQSPUT_RECVYEQUX

RECOVERABLE=YES

CQSPUT_RECVNEQUX

RECOVERABLE=NO

RETCODE=returncodeaddress

Output

parameter

that

specifies

the

address

of

a

4-byte

field

to

contain

the

CQSPUT

return

code.

If

the

return

code

in

register

15

is

nonzero,

the

values

in

the

return

and

reason

code

fields

are

invalid,

because

the

CQS

interface

detected

an

error

and

was

unable

to

send

the

request

to

CQS.

RSNCODE=reasoncodeaddress

Output

parameter

that

specifies

the

address

of

a

4-byte

field

to

contain

the

CQSPUT

reason

code.

TIMESTAMP=timestampaddress

Four-byte

input

parameter

that

specifies

the

address

of

an

8-byte

STCK

value

that

is

stored

with

the

data

object

as

the

time

the

data

object

was

placed

on

the

queue.

If

the

TIMESTAMP

parameter

is

omitted,

the

current

time

is

stored

with

the

data

object.

UOW=uowaddress

Input

parameter

that

specifies

the

address

of

a

32-byte

area

to

hold

the

unit

of

work.

This

parameter

is

required

for

the

initial

(or

only)

CQSPUT

FUNC=PUT

request

issued

for

a

unit

of

work.

It

is

ignored

for

all

subsequent

CQSPUT

FUNC=PUT

requests

issued

for

that

unit

of

work.

When

a

value

is

specified

for

the

UOW=

parameter,

PUTTOKEN=0

must

also

be

specified.

The

value

specified

for

the

UOW=

parameter

cannot

be

all

zeroes,

and

must

be

unique

within

the

shared

queues.

The

client

is

responsible

for

ensuring

that

the

value

is

unique.

Return

and

Reason

Codes

for

CQSPUT

Table

38

lists

the

return

and

reason

code

combinations

that

can

be

returned

for

CQSPUT

requests.

Use

a

CQSPUT

FUNC=DSECT

request

to

include

equate

statements

in

your

program

for

the

return

and

reason

codes.

Table

38.

CQSPUT

Return

and

Reason

Codes

Return

Code

Reason

Code

Meaning

X'00000000'

X'00000000'

Request

completed

successfully.

X'00000008'

X'00000210'

cqstoken

is

invalid.

X'00000008'

X'00000214'

connecttoken

is

invalid.

X'00000008'

X'00000218'

FUNC

is

invalid.

X'00000008'

X'0000021C'

puttoken

is

invalid.

X'00000008'

X'00000220'

queuename

is

invalid.

X'00000008'

X'00000224'

dataobject

is

invalid.

X'00000008'

X'00000228'

dataobjectsize

is

invalid.

X'00000008'

X'00000230'

uow

is

invalid.

X'00000008'

X'00000238'

The

queue

name

is

not

unique.

If

more

than

one

data

object

is

placed

on

the

queues

for

a

unit

of

work,

the

queue

name

assigned

to

the

last

data

object

must

be

unique

for

that

unit

of

work.

CQSPUT IBM

Confidential

120

Common

Queue

Server

Guide

and

Reference

Table

38.

CQSPUT

Return

and

Reason

Codes

(continued)

Return

Code

Reason

Code

Meaning

X'00000008'

X'00000260'

A

CQSPUT

FUNC=PUT

request

was

issued,

but

the

unit

of

work

was

already

committed.

X'00000008'

X'00000264'

A

CQSPUT

FUNC=FORGET

request

was

issued

for

a

recoverable

unit

of

work,

but

the

unit

of

work

was

not

committed.

X'00000008'

X'00000268'

A

CQSPUT

FUNC=ABORT

request

was

issued

for

a

nonrecoverable

unit

of

work.

X'00000008'

X'0000026C'

A

CQSPUT

FUNC=ABORT

request

was

issued

for

a

recoverable

unit

of

work

but

the

unit

of

work

was

already

committed.

X'00000008'

X'00000270'

A

subsequent

CQSPUT

FUNC=PUT

request

was

issued

for

a

unit

of

work

already

known

to

CQS

as

non-recoverable.

Only

one

data

object

can

be

placed

on

the

queues

for

a

nonrecoverable

unit

of

work.

X'00000008'

X'00000274'

RECOVERABLE=NO

was

specified

for

a

unit

of

work

that

was

indicated

as

recoverable

on

a

previous

CQSPUT

FUNC=PUT

request.

X'00000008'

X'0000027C'

CQSPUT

is

not

allowed

for

a

resource

structure.

X'00000008'

X'00000284'

Parmlist

version

is

invalid.

X'00000010'

X'00000400'

A

CQSRSYNC

is

required

for

this

structure.

X'00000010'

X'00000404'

Structure

inaccessible.

Retry

request

later.

X'00000010'

X'00000414'

Queue

for

queuename

is

full.

No

more

data

objects

can

be

inserted

to

the

structure

for

this

queue

name.

CQSPUT

requests

for

other

queue

names

are

still

allowed.

X'00000010'

X'00000418'

Structure

is

full.

All

CQSPUT

requests

are

rejected.

X'00000010'

X'00000430'

No

CQS

address

space.

X'00000014'

X'00000500'

CQS

internal

error.

CQSQUERY

Request

Format

for

CQSQUERY

DSECT

Function

of

CQSQUERY:

Use

the

DSECT

function

of

a

CQSQUERY

request

to

include

equate

(EQU)

statements

in

your

program

for

the

CQSQUERY

parameter

list

length

and

CQSQUERY

return

and

reason

codes.

QNAME

Function

of

CQSQUERY:

Use

the

QNAME

function

of

a

CQSQUERY

request

to

retrieve

information

about

a

specific

queue

managed

by

CQS.

��

CQSQUERY

FUNC=DSECT

��

CQSPUTIBM

Confidential

Chapter

6.

CQS

Client

Requests

121

QRYOBJS

Function

of

CQSQUERY:

Use

the

QRYOBJS

function

of

a

CQSQUERY

request

to

retrieve

the

queue

counts

for

a

specified

list

of

queue

names.

QTYPE

Function

of

CQSQUERY:

Use

the

QTYPE

function

of

a

CQSQUERY

request

to

retrieve

information

about

all

or

some

of

the

queues

within

the

specified

queue

type.

��

CQSQUERY

FUNC=QNAME

CQSTOKEN=cqstokenaddress

�

�

CONTOKEN=connecttokenaddress

PARM=parmaddress

COUNT=count

�

�

LIST=listaddress

ECB=ecbaddress

RETCODE=returncodeaddress

�

�

RSNCODE=reasoncodeaddress

LISTVER=1

��

��

CQSQUERY

FUNC=QRYOBJS

CQSTOKEN=cqstokenaddress

�

�

CONTOKEN=connecttokenaddress

PARM=parmaddress

COUNT=count

�

�

LIST=listaddress

BUFFER=bufferaddress

BUFSIZE=buffersize

�

�

QDATASZ=querydatasizeaddress

ECB=ecbaddress

RETCODE=returncodeaddress

�

�

RSNCODE=reasoncodeaddress

LISTVER=1

LISTVER=listversion

��

��

CQSQUERY

FUNC=QTYPE

CQSTOKEN=cqstokenaddress

�

�

CONTOKEN=connecttokenaddress

PARM=parmaddress

QTYPE=queuetypeaddress

QTYPENM=COLDQ

�

�

BUFFER=bufferaddress

BUFSIZE=buffersize

QAGE=queueagevalue

�

�

QDATASZ=querydatasizeaddress

ECB=ecbaddress

RETCODE=returncodeaddress

�

�

RSNCODE=reasoncodeaddress

LISTVER=1

LISTVER=listversion

��

CQSQUERY IBM

Confidential

122

Common

Queue

Server

Guide

and

Reference

STATISTICS

Function

of

CQSQUERY:

Use

the

STATISTICS

function

of

a

CQSQUERY

request

to

retrieve

status

information

on

all

the

queues

managed

by

CQS.

STRSTAT

Function

of

CQSQUERY:

Use

the

STRSTAT

function

of

the

CQSQUERY

request

to

retrieve

structure

related

statistics.

The

STRSTAT

function

returns

the

same

statistics

data

that

is

given

to

the

Structure

Statistics

user

exit

routine.

Attention:

If

the

CQS

that

is

processing

the

request

is

in

the

middle

of

a

structure

checkpoint,

the

data

returned

for

the

current

structure

checkpoint

might

be

incomplete.

Usage

of

CQSQUERY

The

CQSQUERY

request

retrieves

information

or

status

about

one

or

more

of

the

structures

managed

by

CQS.

A

CQSQUERY

FUNC=QNAME

request

retrieves

information

about

one

or

more

specific

queues

managed

by

CQS.

A

CQSQUERY

FUNC=QRYOBJS

request

retrieves

the

queue

counts

for

one

or

more

specific

queues

or

queues

whose

names

match

a

wildcard

parameter.

A

CQSQUERY

FUNC=QTYPE

request

retrieves

information

about

all

or

some

of

the

queues

within

the

specified

queue

type.

A

CQSQUERY

FUNC=STATISTICS

request

retrieves

status

information

for

all

queues

managed

by

CQS.

A

CQSQUERY

��

CQSQUERY

FUNC=STATISTICS

CQSTOKEN=cqstokenaddress

PARM=parmaddress

�

�

COUNT=count

LIST=listaddress

BUFFER=bufferaddress

BUFSIZE=buffersize

�

�

STATSZAR=statisticssizeaddress

ECB=ecbaddress

�

�

RETCODE=returncodeaddress

RSNCODE=reasoncodeaddress

�

�

LISTVER=1

LISTVER=listversion

��

��

CQSQUERY

FUNC=STRSTAT

CQSTOKEN=cqstokenaddress

�

�

CONTOKEN=connecttokenaddress

PARM=parmaddress

BUFFER=bufferaddress

�

�

BUFSIZE=buffersize

QDATASZ=querydatasizeaddress

ECB=ecbaddress

�

�

RETCODE=returncodeaddress

RSNCODE=reasoncodeaddress

�

�

LISTVER=1

LISTVER=listversion

��

CQSQUERYIBM

Confidential

Chapter

6.

CQS

Client

Requests

123

FUNC=STRSTAT

request

retrieves

structure

statistics,

such

as

checkpoint

and

rebuild,

without

having

to

code

a

user

exit.

Restriction:

The

CQSQUERY

FUNC=QNAME,

CQSQUERY

FUNC=QRYOBJS,

and

CQSQUERY

FUNC=QTYPE

requests

are

not

supported

for

resource

structures.

CQSQUERY

FUNC=QNAME:

For

CQSQUERY

FUNC=QNAME,

the

number

of

data

objects

for

the

queuename

specified

in

LIST=

is

returned.

If

the

QAGE

parameter

is

specified,

only

information

for

queues

older

than

the

specified

queue

age

is

returned.

If

you

are

only

interested

in

queue

counts,

you

can

omit

the

QAGE

parameter

for

better

performance

of

the

CQSQUERY

request.

CQSQUERY

FUNC=QRYOBJS:

For

CQSQUERY

FUNC=QRYOBJS,

the

number

of

data

objects

for

the

queuename

specified

in

LIST=

is

returned.

Each

queue

name

in

the

list

can

be

up

to

16

bytes

long.

The

first

byte

of

the

qname

is

treated

as

the

QTYPE.

The

input

list

for

each

qname

also

has

8

bytes

of

user

data

that

are

copied

to

the

output

for

each

entry

that

is

a

match

for

the

input

queue

name.

The

CQSQUERY

FUNC=QRYOBJS

output

is

returned

both

in

the

input

list

and

the

output

buffer.

The

input

list

has

the

completion

code

for

the

queue

name.

If

the

completion

code

is

0,

then

the

queue

names

that

match

the

input

queue

name

and

their

queue

counts

are

returned

in

the

output

buffer.

If

the

completion

code

is

non-zero,

no

data

is

passed

for

that

queue

name

in

the

output

buffer.

The

input

list

has

the

total

queue

count

found

for

the

queue

name.

If

the

queue

name

is

a

wildcard

parameter,

this

queue

count

is

the

total

queue

counts

of

all

the

queue

names

that

match

the

wildcard

parameter.

An

entry

for

each

queue

name

that

is

a

match

is

passed

in

the

output

buffer

along

with

the

queue

count

for

the

queue

name.

If

the

buffer

size

specified

is

too

small,

the

data

that

fits

in

the

buffer

is

passed

back,

and

the

actual

length

required

is

passed

back

in

the

QDATASZ

field.

Recommendation:

Use

the

CQSQUERY

FUNC=QRYOBJS

request

carefully,

because

it

causes

CQS

to

read

every

data

object

on

the

queue

type,

and

thus

could

have

a

significant

performance

impact.

CQSQUERY

FUNC=QTYPE:

For

CQSQUERY

FUNC=QTYPE,

information

about

all

the

queues

in

the

queue

type

is

returned,

including

the

queue

name,

data

object

count,

oldest

data

object

time

stamp,

and

newest

data

object

time

stamp.

Recommendation:

Use

the

CQSQUERY

FUNC=QTYPE

request

carefully,

because

it

causes

CQS

to

read

every

data

object

on

the

queue

type,

and

thus

could

have

a

significant

performance

impact.

For

CQSQUERY

FUNC=QTYPE,

CQS

does

the

following

if

the

buffer

area

is

not

large

enough

to

hold

all

of

the

requested

data:

v

Returns

as

many

complete

records

that

can

fit

into

the

buffer

area

v

Sets

QDATASZ

to

the

length

that

is

needed

to

contain

the

statistics

data

in

its

entirety

v

Sets

the

reason

code

for

’Partial

Data

Returned’

The

client

program

can

then

make

another

request

with

a

larger

buffer.

CQSQUERY

FUNC=STATISTICS:

For

CQSQUERY

FUNC=STATISTICS,

CQS

returns

the

following

information

in

the

client

buffer:

v

Status

on

the

current

capacity

of

the

primary

structure

CQSQUERY IBM

Confidential

124

Common

Queue

Server

Guide

and

Reference

v

Maximum

capacity

of

the

primary

structure

(if

XES

dynamic

reconfiguration

is

available)

v

Current

operation

mode

(normal,

overflow,

or

rebuild)

v

Elements-to-entries

ratio

(returned

in

the

buffer

passed

by

the

client

for

this

request)

If

an

overflow

structure

is

defined

and

the

current

operation

mode

for

the

primary

structure

is

overflow

mode,

CQS

also

returns

the

current

and

maximum

capacity

for

the

associated

overflow

structure.

If

the

primary

structure

is

not

in

overflow

mode

and

an

overflow

structure

is

defined,

CQS

returns

the

overflow

structure

name

and

a

status

indicating

that

the

overflow

structure

is

not

in

use.

If

the

buffer

area

is

not

large

enough

to

contain

the

statistics

data

for

all

of

the

requested

structures,

CQSQUERY

FUNC=STATISTICS

sets

the

STATSZAR

field

to

be

the

length

of

a

single

statistics

entry,

and

sets

the

reason

code

to

’Buffer

Size

Too

Small.’

The

size

of

the

buffer

that

is

required

to

complete

the

request

can

be

obtained

by

multiplying

the

value

returned

in

STATSZAR

by

the

number

of

list

entries

specified

in

the

request.

CQSQUERY

FUNC=STRSTAT:

For

CQSQUERY

FUNC=STRSTAT,

CQS

returns

the

following

information:

v

Structure

process

statistics

v

CQS

request

statistics

v

Data

object

statistics

v

Queue

name

statistics

v

z/OS

request

statistics

v

Structure

rebuild

statistics

v

Structure

checkpoint

statistics

For

this

function,

CQS

does

the

following

if

the

buffer

area

is

not

large

enough

to

hold

all

of

the

requested

data:

v

Returns

as

many

complete

records

that

can

fit

into

the

buffer

area

v

Sets

QDATASZ

to

the

length

that

is

needed

to

contain

the

statistics

data

in

its

entirety

v

Sets

the

reason

code

for

’Partial

Data

Returned’

The

client

program

can

then

make

another

request

with

a

larger

buffer.

The

following

keywords

apply

to

the

CQSQUERY

macro.

Note

that

some

of

the

information

provided

here

applies

to

specific

CQSQUERY

functions.

BUFFER=bufferaddress

Four-byte

input

parameter

that

specifies

the

address

of

the

buffer

to

hold

information

passed

to

the

client.

For

CQSQUERY

FUNC=QTYPE,

the

buffer

is

mapped

by

the

CQSQRYQT

DSECT.

For

CQSQUERY

FUNC=STATISTICS,

the

buffer

is

mapped

by

the

CQSQRYST

DSECT.

For

CQSQUERY

FUNC=STRSTAT,

the

buffer

is

mapped

by

the

CQSQSTAT

DSECT.

For

CQSQUERY

FUNC=QRYOBJS,

the

buffer

is

mapped

by

the

CQSQRYQO

DSECT.

BUFSIZE=buffersize

Four-byte

input

parameter

that

specifies

the

size

of

the

buffer

passed

by

the

client.

CQSQUERYIBM

Confidential

Chapter

6.

CQS

Client

Requests

125

CONTOKEN=connecttokenaddress

Input

parameter

that

specifies

the

address

of

the

16-byte

connect

token

that

uniquely

identifies

the

client’s

connection

to

a

particular

coupling

facility

structure

managed

by

this

CQS.

The

connect

token

is

returned

by

the

CQSCONN

request.

COUNT=count

Four-byte

input

parameter

that

specifies

the

number

of

entries

in

the

list.

CQSTOKEN=cqstokenaddress

Input

parameter

that

specifies

the

address

of

the

16-byte

CQS

registration

token

that

uniquely

identifies

the

client’s

connection

to

CQS.

The

registration

token

is

returned

by

the

CQSREG

request.

ECB=ecbaddress

Four-byte

input

parameter

that

specifies

the

address

of

the

z/OS

event

control

block

(ECB)

used

for

asynchronous

requests.

If

ECB

is

specified,

the

request

is

processed

asynchronously;

otherwise

it

is

processed

synchronously.

LIST=listaddress

Four-byte

input

parameter

that

specifies

the

address

of

a

list

containing

one

or

more

entries.

For

the

CQSQUERY

FUNC=QNAME

and

CQSQUERY

FUNC=QRYOBJS

requests,

this

list

contains

queue

names

for

which

to

retrieve

information.

The

list

consists

of

input

and

output

parameters.

At

least

one

list

item

is

required.

The

CQSQRYL

list

entry

DSECT

maps

the

list

entries

and

can

be

used

by

the

client.

Multiple

list

entries

must

reside

in

contiguous

storage.

For

a

CQSQUERY

FUNC=QNAME

request,

each

list

entry

contains

the

following:

compcode

Four-byte

output

field

to

receive

the

completion

code

from

the

request.

Possible

completion

codes

are:

X'00000000'

Request

completed

successfully.

X'00000004'

queuename

is

invalid.

X'00000020'

Structure

is

inaccessible.

Retry

request.

X'00000024'

CQS

internal

error.

clientdata

Eight-byte

input

parameter

that

specifies

the

client

data

field.

This

parameter

is

optional.

CQS

does

not

use

data

stored

in

this

entry.

queuename

Sixteen-byte

input

parameter

that

specifies

the

queue

name

for

which

data

object

count

information

is

to

be

retrieved.

This

parameter

is

required.

qcnt

Four-byte

output

parameter

that

specifies

a

field

to

contain

the

data

object

count

for

the

queue

name

specified.

For

a

CQSQUERY

FUNC=STATISTICS

request,

each

list

entry

contains

the

following:

compcode

Four-byte

output

field

to

receive

the

completion

code

from

the

request.

Possible

completion

codes

are:

CQSQUERY IBM

Confidential

126

Common

Queue

Server

Guide

and

Reference

X'00000000'

Request

completed

successfully.

X'00000008'

connecttoken

is

invalid.

X'0000000C'

A

CQSRSYNC

is

required

for

this

structure.

X'00000020'

Structure

is

inaccessible.

Retry

request.

X'00000024'

CQS

internal

error.

clientdata

Eight-byte

input

parameter

that

specifies

the

client

data

field.

This

parameter

is

optional.

CQS

does

not

use

data

stored

in

this

entry.

connecttoken

Sixteen-byte

input

parameter

that

specifies

the

connect

token

that

uniquely

identifies

the

client’s

connection

to

a

particular

coupling

facility

structure

managed

by

this

CQS.

The

connect

token

is

returned

by

the

CQSCONN

request.

This

parameter

is

required.

outputoffset

Four-byte

output

parameter

that

specifies

the

offset

of

the

output

data

area

for

this

entry

in

the

output

buffer.

For

a

CQSQUERY

FUNC=QRYOBJS

request,

each

list

entry

contains

the

following:

compcode

Four-byte

output

field

to

receive

the

completion

code

from

the

request.

Possible

completion

codes

are:

X'0000'

Request

completed

successfully.

A

list

of

resources

that

match

the

qname

and

their

queue

counts

are

returned

in

the

output

buffer.

X'0004'

qname

is

invalid.

X'0010'

qname

does

not

have

any

objects.

The

queue

count

is

zero.

X'0020'

Retry

error

for

the

qname.

Retry

the

CQSQUERY

FUNC=QRYOBJS

to

obtain

the

queue

counts.

The

output

returned

in

the

output

buffer

might

be

invalid.

X'0024'

CQS

internal

error.

Retry

the

CQSQUERY

FUNC=QRYOBJS

to

obtain

the

queue

counts.

The

output

returned

in

the

output

buffer

might

be

invalid.

clientdata

Eight-byte

input

parameter

that

specifies

the

client

data

field.

This

parameter

is

optional.

CQS

does

not

use

data

stored

in

this

entry.

queuename

Sixteen-byte

input

parameter

that

specifies

the

queue

name

for

which

data

object

count

information

is

to

be

retrieved.

This

parameter

is

required.

The

queuename

can

be

a

wildcard

parameter.

qcnt

Four-byte

output

parameter

that

specifies

a

field

to

contain

the

data

object

count

for

the

queue

name

specified.

If

the

queuename

is

a

wildcard

parameter,

this

parameter

specifies

a

field

to

contain

the

total

queue

counts

of

all

qnames

that

match

the

wildcard

parameter.

CQSQUERYIBM

Confidential

Chapter

6.

CQS

Client

Requests

127

LISTVER=1

|

listversion

Input

parameter

that

specifies

an

equate

for

the

list

version.

Use

the

DSECT

function

of

a

CQSQUERY

request

to

include

equate

(EQU)

statements

in

your

program

for

the

CQSQUERY

list

versions.

PARM=parmaddress

Four-byte

input

parameter

that

specifies

the

address

of

a

parameter

list

used

by

the

request

to

pass

parameters

to

CQS.

The

length

of

the

storage

area

must

be

at

least

equal

to

the

EQU

value

CQSQUERY_PARM_LEN

(defined

using

the

FUNC=DSECT

request).

QAGE=queueageaddress

Input

parameter

that

specifies

the

address

of

a

4-byte

field

to

contain

the

queue

age

in

days.

Valid

values

for

queueage

are

from

X'0'

to

X'16D'

(0

to

365

in

decimal).

Definition:

The

queue

age

is

determined

by

the

age

of

its

oldest

message,

in

number

of

days.

This

parameter

is

used

as

a

filter

for

determining

which

queues

the

CQSQUERY

FUNC=QTYPE

request

will

process.

The

CQSQUERY

request

returns

information

for

queues

containing

data

objects

that

are

older

than

the

specified

queueage.

If

you

specify

0

for

queueage,

or

omit

the

QAGE

parameter,

the

CQSQUERY

request

processes

all

queues

for

the

queue

type.

Important:

Specifying

QAGE

causes

all

the

data

objects

in

the

queue

to

be

read,

which

incurs

additional

performance

overhead.

QDATASZ=querydatasizeaddress

Output

parameter

that

specifies

the

address

of

a

4-byte

field

to

contain

the

size

of

the

information

returned

to

the

client.

If

partial

data

is

returned

in

the

buffer,

this

field

contains

the

actual

buffer

size

needed

to

hold

the

information.

QTYPE=queuetypeaddress

Input

parameter

that

specifies

the

address

of

a

4-byte

field

that

contains

the

queue

type.

Valid

values

for

the

queue

type

are

from

1

to

255

(decimal).

QTYPENM=COLDQ

Input

parameter

that

indicates

that

the

CQSQUERY

request

is

for

information

about

the

COLDQ.

This

parameter

enables

a

client

to

obtain

the

same

type

of

information

for

the

cold

queue

as

can

be

obtained

for

a

client

queue

using

the

CQSQUERY

FUNC=QTYPE

request

with

QTYPE=queuetypeaddress

specified.

RETCODE=returncodeaddress

Output

parameter

that

specifies

the

address

of

a

4-byte

field

to

contain

the

CQSQUERY

return

code.

If

the

return

code

in

register

15

is

nonzero,

the

values

in

the

return

and

reason

code

fields

are

invalid,

because

the

CQS

interface

detected

an

error

and

was

unable

to

send

the

request

to

CQS.

RSNCODE=reasoncodeaddress

Output

parameter

that

specifies

the

address

of

a

4-byte

field

to

contain

the

CQSQUERY

reason

code.

STATSZAR=statisticssizeaddress

Output

parameter

that

specifies

the

address

of

a

4-byte

field

to

contain

the

CQSQUERY IBM

Confidential

128

Common

Queue

Server

Guide

and

Reference

length

of

a

single

statistics

entry

returned

in

the

output

buffer

for

a

CQSQUERY

FUNC=STATISTICS

request.

If

partial

data

is

returned,

the

size

of

the

required

buffer

can

be

obtained

by

multiplying

the

value

returned

in

this

field

by

the

number

of

list

entries

specified.

Return

and

Reason

Codes

for

CQSQUERY

Table

39

lists

the

return

and

reason

code

combinations

that

can

be

returned

for

CQSQUERY

requests.

Use

a

CQSQUERY

FUNC=DSECT

request

to

include

equate

statements

in

your

program

for

the

return

and

reason

codes.

Table

39.

CQSQUERY

Return

and

Reason

Codes

Return

Code

Reason

Code

Meaning

X'00000000'

X'00000000'

Request

completed

successfully.

X'00000004'

X'00000120'

The

buffer

size

(buffersize)

is

less

than

the

query-data

size

(querydatasize).

Partial

data

is

returned.

querydatasize

points

to

the

actual

buffer

size

needed

to

contain

all

the

data.

X'00000004'

X'00000124'

buffersize

is

too

small

to

contain

data

for

number

of

entries

specified

in

list.

X'00000004'

X'00000128'

No

data

objects

on

queue

type.

X'00000008'

X'00000210'

cqstoken

is

invalid.

X'00000008'

X'00000214'

connecttoken

is

invalid.

X'00000008'

X'00000218'

FUNC

is

invalid.

X'00000008'

X'00000224'

bufferaddress

is

invalid.

X'00000008'

X'00000228'

buffersize

is

invalid.

X'00000008'

X'0000022C'

statisticssize

or

querydatasize

is

invalid.

X'00000008'

X'0000023C'

queueage

is

invalid.

X'00000008'

X'00000240'

queuetype

is

invalid.

X'00000008'

X'00000250'

count

is

invalid.

X'00000008'

X'00000254'

listaddress

is

invalid.

X'00000008'

X'0000027C'

CQSQUERY

FUNC=QNAME,

CQSQUERY

FUNC=QTYPE,

or

CQSQUERY

FUNC=QOBJS

is

not

allowed

for

a

resource

structure.

X'00000008'

X'00000284'

Parmlist

version

is

invalid.

X'00000008'

X'00000288'

List

version

is

invalid.

X'0000000C'

X'00000300'

Request

completed

successfully

for

at

least

one,

but

not

all,

list

entries.

See

compcode

for

individual

errors.

X'0000000C'

X'00000304'

Request

failed

for

all

list

entries.

See

compcode

for

individual

errors.

X'00000010'

X'00000400'

A

CQSRSYNC

is

required

for

this

structure.

X'00000010'

X'00000404'

Structure

inaccessible.

Retry

request

later.

X'00000010'

X'00000430'

No

CQS

address

space.

X'00000014'

X'00000500'

CQS

internal

error.

CQSQUERYIBM

Confidential

Chapter

6.

CQS

Client

Requests

129

CQSREAD

Request

Format

for

CQSREAD

CONTINUE

Function

of

CQSREAD:

Use

the

CONTINUE

function

of

a

CQSREAD

request

to

retrieve

the

rest

of

a

data

object

after

partial

data

is

returned

for

a

prior

CQSREAD

request.

DSECT

Function

of

CQSREAD:

Use

the

DSECT

function

of

a

CQSREAD

request

to

include

equate

(EQU)

statements

in

your

program

for

the

CQSREAD

parameter

list

length,

CQSREAD

return

and

reason

codes,

and

literals

that

can

be

used

to

build

the

OPTWORD1

parameter.

READ

Function

of

CQSREAD

with

LOCAL=NO:

Use

the

CQSREAD

request

with

the

LOCAL=NO

parameter

to

retrieve

a

copy

of

the

client

data

object

from

a

specific

queue

and

lock

it.

��

CQSREAD

FUNC=CONTINUE

CQSTOKEN=cqstokenaddress

�

�

CONTOKEN=connecttokenaddress

PARM=parmaddress

LCKTOKEN=locktokenaddress

�

�

BUFFER=bufferaddress

BUFSIZE=buffersize

OBJSIZE=dataobjectsizeaddress

�

�

ECB=ecbaddress

RETCODE=returncodeaddress

RSNCODE=reasoncodeaddress

��

��

CQSREAD

FUNC=DSECT

��

��

CQSREAD

FUNC=READ

CQSTOKEN=cqstokenaddress

CONTOKEN=connecttokenaddress

�

�

PARM=parmaddress

LCKTOKEN=locktokenaddress

QNAME=queuenameaddress

�

�

A

OPTWORD1=optionwordvalue

BUFFER=bufferaddress

BUFSIZE=buffersize

�

�

OBJSIZE=dataobjectsizeaddress

UOW=uowaddress

�

�

TIMESTAMP=timestampaddress

ECB=ecbaddress

�

�

RETCODE=returncodeaddress

RSNCODE=reasoncodeaddress

��

A:

QPOS=FIRST

QPOST=LAST

PARTIAL=YES

PARTIAL=NO

LOCAL=NO

CQSREAD IBM

Confidential

130

Common

Queue

Server

Guide

and

Reference

READ

Function

of

CQSREAD

with

LOCAL=YES:

Use

the

CQSREAD

request

with

the

LOCAL=YES

parameter

to

retrieve

the

lock

token

of

a

data

object

previously

stored

on

the

shared

queues

by

a

CQSPUT

LOCAL=YES

request.

Using

this

request

ensures

that

the

data

object

remains

locked,

even

in

the

event

of

client

failure,

structure

rebuild,

or

CQS

restart.

REREAD

Function

of

CQSREAD:

Use

the

REREAD

function

of

a

CQSREAD

request

to

re-read

a

locked

data

object

that

was

read

and

locked

on

a

prior

CQSREAD

FUNC=READ

request.

Usage

of

CQSREAD

A

CQSREAD

request

retrieves

a

copy

of

the

client

data

object

from

a

specific

queue.

The

data

object

is

not

deleted

from

the

queue,

but

for

a

CQSREAD

FUNC=READ

request

it

is

locked,

which

prevents

the

data

object

from

being

accessed

by

subsequent

CQS

requests

(except

ones

using

the

proper

lock

token).

The

data

object

can

be

retrieved

from

the

beginning

or

from

the

end

of

the

queue.

The

data

object

is

returned

in

the

client

buffer

provided

for

the

CQSREAD

request.

Restriction:

The

CQSREAD

request

is

not

supported

for

resource

structures.

A

lock

token

is

returned

to

the

client

and

identifies

the

data

object.

This

token

must

be

passed

to

CQS

for

any

requests

that

act

on

the

locked

data

object

(for

example,

CQSDEL,

CQSMOVE,

CQSREAD,

or

CQSUNLCK).

If

the

size

of

the

data

object

retrieved

is

greater

than

the

size

of

the

client

buffer

and

PARTIAL=YES

is

specified,

the

amount

of

data

that

fits

in

the

client

buffer

is

returned

to

the

client.

A

return

or

reason

code

is

also

returned,

indicating

a

partial

data

object

is

returned,

as

is

the

actual

data

object

size.

If

the

size

of

the

data

object

retrieved

is

greater

than

the

size

of

the

client

buffer

and

PARTIAL=NO

is

specified,

no

data

object

is

returned.

A

return

and

reason

code

is

returned,

indicating

that

no

data

object

is

returned

because

the

client

buffer

size

is

too

small.

The

actual

data

object

size

is

also

returned

to

the

client.

If

the

size

of

the

data

object

retrieved

is

the

same

size

as

or

smaller

than

the

client

buffer,

the

complete

data

object

is

moved

into

the

buffer,

and

the

rest

of

the

buffer

is

not

changed.

The

data

object

size

is

also

returned

to

the

client.

��

CQSREAD

FUNC=READ

CQSTOKEN=cqstokenaddress

CONTOKEN=connecttokenaddress

�

�

PARM=parmaddress

LCKTOKEN=locktokenaddress

QNAME=queuenameaddress

�

�

UOW=uowaddress

LOCAL=YES

OPTWORD1=optionwordvalue

ECB=ecbaddress

�

�

RETCODE=returncodeaddress

RSNCODE=reasoncodeaddress

��

��

CQSREAD

FUNC=REREAD

CQSTOKEN=cqstokenaddress

�

�

CONTOKEN=connecttokenaddress

PARM=parmaddress

LCKTOKEN=locktokenaddress

�

�

BUFFER=bufferaddress

BUFSIZE=buffersize

OBJSIZE=dataobjectsizeaddress

�

�

ECB=ecbaddress

RETCODE=returncodeaddress

RSNCODE=reasoncodeaddress

��

CQSREADIBM

Confidential

Chapter

6.

CQS

Client

Requests

131

A

CQSREAD

FUNC=CONTINUE

request

retrieves

the

rest

of

the

data

object

when

partial

data

is

returned

on

a

prior

CQSREAD

request.

Attention:

This

request

could

result

in

an

error

after

a

CQS

restart

because

the

current

position

might

be

lost

across

CQS

restart.

A

CQSREAD

FUNC=REREAD

request

re-reads

a

locked

data

object

that

was

previously

read

and

locked

(a

prior

CQSREAD

FUNC=READ

request).

The

data

object

remains

locked.

Related

Reading:

See

“Example

of

Using

a

CQS

Request:

CQSREAD”

on

page

159

for

an

example

of

how

to

use

a

CQSREAD

request

for

a

CQS

client.

Parameter

Description:

BUFFER=bufferaddress

Four-byte

input

parameter

that

specifies

the

address

of

the

client

buffer

that

will

hold

the

data

object

retrieved

from

the

queue.

BUFSIZE=buffersize

Four-byte

input

parameter

that

specifies

the

size

of

the

client

buffer.

CONTOKEN=connecttokenaddress

Input

parameter

that

specifies

the

address

of

the

16-byte

connect

token

that

uniquely

identifies

the

client’s

connection

to

a

particular

coupling

facility

structure

managed

by

this

CQS.

The

connect

token

is

returned

by

the

CQSCONN

request.

CQSTOKEN=cqstokenaddress

Input

parameter

that

specifies

the

address

of

the

16-byte

CQS

registration

token

that

uniquely

identifies

the

client’s

connection

to

CQS.

The

registration

token

is

returned

by

the

CQSREG

request.

ECB=ecbaddress

Four-byte

input

parameter

that

specifies

the

address

of

the

z/OS

event

control

block

(ECB)

used

for

asynchronous

requests.

If

ECB

is

specified,

the

request

is

processed

asynchronously;

otherwise

it

is

processed

synchronously.

LCKTOKEN=locktokenaddress

Input

and

output

parameter

that

specifies

the

address

of

the

16-byte

lock

token

for

the

data

object

that

was

locked

by

the

CQSREAD

request.

For

a

CQSREAD

FUNC=READ

request,

the

lock

token

is

zero

on

input.

It

is

also

used

as

an

output

area

to

hold

the

lock

token

returned

to

the

client.

For

a

CQSREAD

FUNC=REREAD

or

FUNC=CONTINUE

request,

this

field

is

an

input

area

that

contains

the

lock

token

returned

on

a

prior

CQSREAD

request.

LOCAL=NO

|

YES

Input

parameter

that

indicates

whether

or

not

the

client

should

process

a

local

copy

of

the

data

object

from

the

client

address

space.

NO

Indicates

the

client

wants

CQS

to

return

the

data

object

from

the

specified

client

queue

and

lock

the

data

object.

This

causes

CQS

to

access

the

coupling

facility

to

retrieve

the

data

object.

YES

Indicates

that

the

client

is

processing

a

local

copy

of

a

data

object

from

its

local

buffers.

This

request

returns

the

lock

token

of

the

data

object

CQSREAD IBM

Confidential

132

Common

Queue

Server

Guide

and

Reference

which

the

client

can

use

to

access

the

copy

of

the

data

object

on

the

shared

queues.

The

data

object

was

placed

on

the

shared

queues

by

a

CQSPUT

LOCAL=YES

request.

By

using

a

local

copy

of

the

data

object,

the

client

can

reduce

the

performance

overhead

of

using

shared

queues.

As

long

as

the

data

object

is

on

the

shared

queues,

it

can

be

recovered

if

the

client

fails.

As

long

as

the

data

object

remains

locked,

it

is

not

available

to

any

other

client.

The

data

object

is

not

returned

to

the

client

on

a

CQSREAD

request

because

the

client

has

the

local

copy.

If

the

client

does

not

issue

the

CQSREAD

LOCAL=YES

request

and

the

connection

between

the

client

and

CQS

is

lost,

CQS

unlocks

the

data

object

and

makes

it

available

to

any

client.

Restriction:

If

you

specify

LOCAL=YES,

you

cannot

use

the

TIMESTAMP

parameter.

The

LOCAL

parameter

cannot

be

used

when

the

OPTWORD1

parameter

is

specified.

If

the

OPTWORD1

parameter

is

specified

instead

of

LOCAL,

you

can

use

the

following

equate

(EQU)

statements

to

generate

the

value

for

the

OPTWORD1

parameter:

CQSREAD_LCLYEQUX

LOCAL=YES

CQSREAD_LCLNEQUX

LOCAL=NO

OBJSIZE=dataobjectsizeaddress

Output

parameter

to

receive

the

address

of

a

4-byte

field

that

holds

the

size

of

the

data

object.

If

the

data

object

size

is

greater

than

the

client

buffer

size,

this

field

contains

the

actual

data

object

size.

If

partial

data

is

returned,

the

size

of

the

data

object

returned

is

the

size

of

the

client

buffer

specified.

OPTWORD1=optionwordvalue

Four-byte

input

parameter

that

specifies

the

literals

for

this

request.

This

parameter

can

be

used

instead

of

LOCAL,

PARTIAL,

and

QPOS.

Equate

(EQU)

statements

for

the

literal

values

are

listed

in

the

descriptions

for

the

LOCAL,

PARTIAL,

and

QPOS

parameters.

Equate

statements

can

also

be

generated

by

using

the

DSECT

function.

The

OPTWORD1

parameter

cannot

be

used

if

LOCAL,

PARTIAL,

or

QPOS

is

specified.

Requirement:

If

you

code

the

OPTWORD1

parameter,

you

must

pass

a

value

that

is

composed

of

one

equate

value

for

each

literal

value

supported

by

this

macro.

PARM=parmaddress

Four-byte

input

parameter

that

specifies

the

address

of

a

parameter

list

used

by

the

request

to

pass

parameters

to

CQS.

The

length

of

the

storage

area

must

be

at

least

equal

to

the

EQU

value

CQSREAD_PARM_LEN

(defined

using

the

FUNC=DSECT

request).

PARTIAL=YES

|

NO

Input

parameter

that

specifies

whether

partial

data

is

to

be

retrieved,

and

whether

the

data

object

is

to

be

locked

if

the

data

object

size

is

greater

than

the

client

buffer

size.

YES

If

the

data

object

size

is

greater

than

the

client

buffer

size,

the

data

object

is

locked

and

partial

data

is

returned

in

the

client

buffer.

The

actual

size

of

the

data

object

is

returned

in

dataobjectsize.

NO

If

the

data

object

size

is

greater

than

the

client

buffer

size,

the

data

CQSREADIBM

Confidential

Chapter

6.

CQS

Client

Requests

133

object

is

neither

locked

nor

retrieved.

The

actual

size

of

the

data

object

is

returned

in

dataobjectsize.

The

PARTIAL

parameter

cannot

be

used

when

the

OPTWORD1

parameter

is

specified.

If

the

OPTWORD1

parameter

is

specified

instead

of

PARTIAL,

you

can

use

the

following

equate

(EQU)

statements

to

generate

the

value

for

the

OPTWORD1

parameter:

CQSREAD_PRTLNEQUX

PARTIAL=NO

CQSREAD_PRTLYEQUX

PARTIAL=YES

QNAME=queuenameaddress

Input

parameter

that

specifies

the

address

of

the

16-byte

queue

name

from

which

the

data

object

is

to

be

retrieved.

The

first

byte

of

the

queue

name

identifies

the

queue

type.

QPOS=FIRST

|

LAST

Input

parameter

that

specifies

the

position

on

the

queue

from

which

the

data

object

is

to

be

retrieved.

FIRST

The

data

object

is

retrieved

from

the

beginning

of

the

queue.

LAST

The

data

object

is

retrieved

from

the

end

of

the

queue.

The

QPOS

parameter

cannot

be

used

when

the

OPTWORD1

parameter

is

specified.

If

the

OPTWORD1

parameter

is

specified

instead

of

QPOS,

you

can

use

the

following

equate

(EQU)

statements

to

generate

the

value

for

the

OPTWORD1

parameter:

CQSREAD_QPOSLEQUX

QPOS=LAST

CQSREAD_QPOSFEQUX

QPOS=FIRST

RETCODE=returncodeaddress

Output

parameter

that

specifies

the

address

of

a

4-byte

field

to

contain

the

CQSREAD

return

code.

If

the

return

code

in

register

15

is

nonzero,

the

values

in

the

return

and

reason

code

fields

are

invalid,

because

the

CQS

interface

detected

an

error

and

was

unable

to

send

the

request

to

CQS.

RSNCODE=reasoncodeaddress

Output

parameter

that

specifies

the

address

of

a

4-byte

field

to

contain

the

CQSREAD

reason

code.

TIMESTAMP=timestampaddress

Four-byte

output

parameter

that

specifies

the

address

of

an

eight-byte

field

to

contain

the

timestamp

of

when

the

data

object

was

placed

on

the

queues.

Attention:

If

LOCAL=YES

is

specified,

CQS

does

not

read

the

data

object

from

the

structure,

and

the

timestamp

cannot

be

obtained.

UOW=uowaddress

Output

parameter

that

specifies

the

address

of

a

32-byte

area

to

hold

the

unit

of

work

(UOW)

of

the

data

object

retrieved

from

the

queue.

The

UOW

was

generated

by

the

client

that

put

the

data

object

on

the

queue

using

a

CQSPUT

request.

Return

and

Reason

Codes

for

CQSREAD

Table

40

on

page

135

lists

the

return

and

reason

code

combinations

that

can

be

returned

for

CQSREAD

requests.

Use

a

CQSREAD

FUNC=DSECT

request

to

include

equate

statements

in

your

program

for

the

return

and

reason

codes.

CQSREAD IBM

Confidential

134

Common

Queue

Server

Guide

and

Reference

Table

40.

CQSREAD

Return

and

Reason

Codes

Return

Code

Reason

Code

Meaning

X'00000000'

X'00000000'

Request

completed

successfully.

X'00000004'

X'00000120'

The

buffer

size

(buffersize)

is

less

than

the

data

object

size

(dataobjectsize).

Partial

data

is

returned.

dataobjectsize

contains

the

address

of

the

actual

data

object

size.

X'00000004'

X'00000124'

The

buffer

size

(buffersize)

is

less

than

the

data

object

size

(dataobjectsize).

No

data

is

returned

because

PARTIAL=NO

was

specified.

dataobjectsize

contains

the

address

of

the

actual

data

object

size.

X'00000004'

X'00000128'

No

data

object

to

retrieve

on

queue

name

specified.

X'00000004'

X'0000012C'

No

partial

data

to

return.

X'00000008'

X'00000210'

cqstoken

is

invalid.

X'00000008'

X'00000214'

connecttoken

is

invalid.

X'00000008'

X'00000218'

FUNC

is

invalid.

X'00000008'

X'0000021C'

locktoken

is

invalid.

X'00000008'

X'00000220'

queuename

is

invalid.

X'00000008'

X'00000224'

bufferaddress

is

invalid.

X'00000008'

X'00000228'

buffersize

is

invalid.

X'00000008'

X'0000022C'

dataobjectsize

is

invalid.

X'00000008'

X'00000230'

uow

is

invalid.

X'00000008'

X'00000234'

Lock

token

address

is

invalid.

X'00000008'

X'00000278'

The

request

specified

LOCAL=YES,

but

the

requested

object

was

placed

on

the

structure

using

LOCAL=NO.

X'00000008'

X'0000027C'

CQSREAD

is

not

allowed

for

a

resource

structure.

X'00000008'

X'00000284'

Parmlist

version

is

invalid.

X'00000010'

X'00000400'

A

CQSRSYNC

is

required

for

this

structure.

X'00000010'

X'00000404'

Structure

inaccessible.

Retry

request

later.

X'00000010'

X'00000408'

Current

position

lost;

cannot

process

CQSREAD

FUNC=CONTINUE

request.

X'00000010'

X'00000430'

No

CQS

address

space.

X'00000010'

X'00000440'

Object

lost

because

of

rebuild.

X'00000014'

X'00000500'

CQS

internal

error.

CQSRECVR

Request

Format

for

CQSRECVR

DELETE

Function

of

CQSRECVR:

Use

the

DELETE

function

of

a

CQSRECVR

request

to

delete

one

data

object

associated

with

a

UOW

from

the

cold

queue.

CQSREADIBM

Confidential

Chapter

6.

CQS

Client

Requests

135

DSECT

Function

of

CQSRECVR:

Use

the

DSECT

function

of

a

CQSRECVR

request

to

include

equate

(EQU)

statements

in

your

program

for

the

CQSRECVR

parameter

list

length,

CQSRECVR

return

and

reason

codes,

and

literals

that

can

be

used

to

build

the

OPTWORD1

parameter.

RETRIEVE

Function

of

CQSRECVR:

Use

the

RETRIEVE

function

of

a

CQSRECVR

request

to

retrieve

a

copy

of

a

data

object

associated

with

a

UOW

from

the

cold

queue.

UNLOCK

Function

of

CQSRECVR:

Use

the

UNLOCK

function

of

a

CQSRECVR

request

to

unlock

a

data

object

associated

with

a

UOW

on

the

cold

queue.

��

CQSRECVR

FUNC=DELETE

CQSTOKEN=cqstokenaddress

�

�

CONTOKEN=connecttokenaddress

PARM=parmaddress

�

�

CLDTOKEN=coldqueuetokenaddress

UOW=uowaddressaddress

ECB=ecbaddress

�

�

RETCODE=returncodeaddress

RSNCODE=reasoncodeaddress

��

��

CQSRECVR

FUNC=DSECT

��

��

CQSRECVR

FUNC=RETRIEVE

CQSTOKEN=cqstokenaddress

�

�

CONTOKEN=connecttokenaddress

PARM=parmaddress

�

�

CLDTOKEN=coldqueuetokenaddress

UOW=uowaddress

BUFFER=bufferaddress

�

�

BUFSIZE=buffersize

OBJSIZE=dataobjectsizeaddress

ECB=ecbaddress

�

�

RETCODE=returncodeaddress

RSNCODE=reasoncodeaddress

��

CQSRECVR IBM

Confidential

136

Common

Queue

Server

Guide

and

Reference

Usage

of

CQSRECVR

The

CQSRECVR

request

allows

a

client

to

recover

locked

data

objects

that

were

moved

to

the

CQS

cold

queue

(a

CQS

private

queue)

because

CQS

or

the

client

was

cold

started.

Restriction:

The

CQSRECVR

request

is

not

supported

for

resource

structures.

A

CQSRECVR

FUNC=DELETE

request

deletes

a

data

object

associated

with

a

UOW

from

the

cold

queue.

Only

one

data

object

is

deleted.

A

CQSRECVR

FUNC=RETRIEVE

request

retrieves

a

copy

of

the

data

object

associated

with

a

UOW

from

the

cold

queue.

The

data

object

remains

on

the

cold

queue,

and

is

available

for

other

CQSRECVR

requests.

The

data

object

is

returned

in

the

client

buffer

specified

for

the

CQSRECVR

FUNC=RETRIEVE

request.

If

the

data

object

is

the

same

size

as

or

smaller

than

the

client

buffer

provided,

the

data

object

is

returned

in

the

buffer,

and

the

rest

of

the

buffer

is

not

changed.

The

size

of

the

data

object

is

returned

to

the

client.

If

the

size

of

the

data

object

is

greater

than

the

size

of

the

client

buffer,

the

data

object

is

not

returned.

The

size

of

the

data

object

is

returned

to

the

client.

A

CQSRECVR

FUNC=UNLOCK

request

unlocks

a

data

object

associated

with

a

UOW

on

the

cold

queue.

The

data

object

is

moved

from

the

cold

queue

to

the

original

client

queue,

and

is

available

for

other

CQS

requests.

The

position

to

which

the

data

object

should

be

moved

can

be

specified

by

the

client.

Parameter

Description:

BUFFER=bufferaddress

Four-byte

input

parameter

that

specifies

the

address

of

the

client

buffer

that

will

hold

the

data

object

retrieved

from

the

queue.

��

CQSRECVR

FUNC=UNLOCK

CQSTOKEN=cqstokenaddress

�

�

CONTOKEN=connecttokenaddress

PARM=parmaddress

�

�

CLDTOKEN=coldqueuetokenaddress

UOW=uowaddress

A

OPTWORD1=optionwordvalue

�

�

ECB=ecbaddress

RETCODE=returncodeaddress

RSNCODE=reasoncodeaddress

��

A:

QPOS=SYSTEM

QPOS=FIRST

QPOS=LAST

CQSRECVRIBM

Confidential

Chapter

6.

CQS

Client

Requests

137

BUFSIZE=buffersize

Four-byte

input

parameter

that

specifies

the

size

of

the

client

buffer.

CLDTOKEN=coldqueuetokenaddress

Input

parameter

that

specifies

the

address

of

a

16-byte

cold-queue

token,

which

along

with

the

UOW

identifies

the

data

object

that

is

to

be

recovered

from

the

CQS

cold

queue

(COLDQ).

The

cold-queue

token

is

passed

to

the

client

in

the

SEVX_RETOKEN

field

of

the

Resync

entry

in

the

CQS

Structure

Event

exit

routine.

This

exit

routine

is

called

for

a

CQS-initiated

resynchronization

when

the

UOW

status

is

COLD.

CONTOKEN=connecttokenaddress

Input

parameter

that

specifies

the

address

of

a

16-byte

connect

token

that

uniquely

identifies

the

client’s

connection

to

a

particular

coupling

facility

structure

managed

by

this

CQS.

The

connect

token

is

returned

by

the

CQSCONN

request.

CQSTOKEN=cqstokenaddress

Input

parameter

that

specifies

address

of

the

16-byte

CQS

registration

token

that

uniquely

identifies

the

client’s

connection

to

CQS.

The

registration

token

is

returned

by

the

CQSREG

request.

ECB=ecbaddress

Four-byte

input

parameter

that

specifies

the

address

of

the

z/OS

event

control

block

(ECB)

used

for

asynchronous

requests.

If

ECB

is

specified,

the

request

is

processed

asynchronously;

otherwise

it

is

processed

synchronously.

OBJSIZE=dataobjectsizeaddress

Output

parameter

that

specifies

the

address

of

a

4-byte

area

to

hold

the

size

of

the

data

object.

If

the

data

object

size

is

greater

than

the

client

buffer

size,

this

field

contains

the

actual

data

object

size.

If

partial

data

is

returned,

the

data

object

returned

is

the

size

of

the

client

buffer

specified.

OPTWORD1=optionwordvalue

Four-byte

input

parameter

that

specifies

the

literals

for

this

request.

This

parameter

can

be

used

instead

of

QPOS.

Equate

(EQU)

statements

for

the

literal

values

are

listed

in

the

description

of

the

QPOS

parameter.

Equate

statements

can

also

be

generated

by

using

the

DSECT

function.

The

OPTWORD1

parameter

cannot

be

used

if

QPOS

is

specified.

Requirement:

If

you

code

the

OPTWORD1

parameter,

you

must

pass

a

value

that

is

composed

of

one

equate

value

for

each

literal

value

supported

by

this

macro.

PARM=parmaddress

Four-byte

input

parameter

that

specifies

the

address

of

a

parameter

list

used

by

the

request

to

pass

parameters

to

CQS.

The

length

of

the

storage

area

must

be

at

least

equal

to

the

EQU

value

CQSRECVR_PARM_LEN

(defined

using

the

FUNC=DSECT

request).

QPOS=SYSTEM

|

FIRST

|

LAST

Input

parameter

that

specifies

the

position

on

the

queue

to

which

the

unlocked

data

object

is

to

be

added.

The

default

is

SYSTEM.

FIRST

Indicates

the

data

object

is

unlocked

and

added

to

the

beginning

of

the

queue.

LAST

Indicates

the

data

object

is

unlocked

and

added

to

the

end

of

the

queue.

CQSRECVR IBM

Confidential

138

Common

Queue

Server

Guide

and

Reference

SYSTEM

Indicates

the

data

object

is

unlocked

and

added

to

either

the

beginning

or

the

end

of

the

queue,

depending

on

its

original

position.

If

the

CQSREAD

request

that

locked

this

data

object

obtained

the

data

object

from

the

beginning

of

the

queue,

the

data

object

is

unlocked

and

added

to

the

beginning

of

the

queue.

If

the

CQSREAD

request

obtained

the

data

object

from

the

end

of

the

queue,

the

data

object

is

unlocked

and

added

to

the

end

of

the

queue.

The

QPOS

parameter

cannot

be

used

when

the

OPTWORD1

parameter

is

specified.

If

the

OPTWORD1

parameter

is

specified

instead

of

QPOS,

you

can

use

the

following

equate

(EQU)

statements

to

generate

the

value

for

the

OPTWORD1

parameter:

CQSRECVR_QPOSSEQUX

QPOS=SYSTEM

CQSRECVR_QPOSFEQUX

QPOS=FIRST

CQSRECVR_QPOSLEQUX

QPOS=LAST

RETCODE=returncodeaddress

Output

parameter

that

specifies

the

address

of

a

4-byte

field

to

contain

the

CQSRECVR

return

code.

If

the

return

code

in

register

15

is

nonzero,

the

values

in

the

return

and

reason

code

fields

are

invalid,

because

the

CQS

interface

detected

an

error

and

was

unable

to

send

the

request

to

CQS.

RSNCODE=reasoncodeaddress

Output

parameter

that

specifies

the

address

of

a

4-byte

field

to

contain

the

CQSRECVR

reason

code.

UOW=uowaddress

Input

parameter

that

specifies

the

address

of

a

32-byte

area

to

hold

the

unit

of

work

(UOW)

of

a

data

object.

The

UOW,

together

with

the

coldqueuetoken,

identifies

the

data

object

to

be

recovered

from

the

cold

queue.

The

UOW

is

passed

to

the

client

in

the

SEVX_REUOW

field

of

the

Resync

entry

in

the

CQS

Structure

Event

exit

routine.

This

exit

routine

is

called

for

a

CQS-initiated

resynchronization

when

the

UOW

status

is

COLD.

Return

and

Reason

Codes

for

CQSRECVR

Table

41

lists

the

return

and

reason

code

combinations

that

can

be

returned

for

CQSRECVR

requests.

Use

a

CQSRECVR

FUNC=DSECT

request

to

include

equate

statements

in

your

program

for

the

return

and

reason

codes.

Table

41.

CQSRECVR

Return

and

Reason

Codes

Return

Code

Reason

Code

Meaning

X'00000000'

X'00000000'

Request

completed

successfully.

X'00000004'

X'00000124'

buffersize

is

too

small.

X'00000004'

X'00000128'

Data

object

for

UOW

not

found

on

cold

queue.

X'00000008'

X'00000210'

cqstoken

is

invalid.

X'00000008'

X'00000214'

connecttoken

is

invalid.

X'00000008'

X'00000218'

FUNC

is

invalid.

X'00000008'

X'00000224'

bufferaddress

is

invalid.

X'00000008'

X'00000228'

buffersize

is

invalid.

CQSRECVRIBM

Confidential

Chapter

6.

CQS

Client

Requests

139

Table

41.

CQSRECVR

Return

and

Reason

Codes

(continued)

Return

Code

Reason

Code

Meaning

X'00000008'

X'0000022C'

dataobjectsize

is

invalid.

X'00000008'

X'00000230'

uow

is

invalid.

X'00000008'

X'00000234'

coldqueuetoken

is

invalid.

X'00000008'

X'0000027C'

CQSRECVR

is

not

allowed

for

a

resource

structure.

X'00000008'

X'00000284'

Parmlist

version

is

invalid.

X'00000010'

X'00000400'

A

CQSRSYNC

is

required

for

this

structure.

X'00000010'

X'00000404'

Structure

is

inaccessible.

Retry

request

later.

X'00000010'

X'00000414'

Unable

to

unlock

the

data

object

because

the

original

queue

is

full.

No

more

data

objects

can

be

moved

to

this

queue.

CQSRECVR

FUNC=UNLOCK

requests

for

other

queues

are

allowed.

X'00000010'

X'00000430'

No

CQS

address

space.

X'00000014'

X'00000500'

CQS

internal

error.

CQSREG

Request

Format

for

CQSREG

DSECT

Function

of

CQSREG:

Use

the

DSECT

function

of

a

CQSREG

request

to

include

equate

(EQU)

statements

in

your

program

for

the

CQSREG

parameter

list

length

and

CQSREG

return

and

reason

codes.

REGISTER

Function

of

CQSREG:

Use

the

REGISTER

function

of

a

CQSREG

request

to

register

a

client

with

a

CQS.

Usage

of

CQSREG

A

CQSREG

request

registers

a

client

to

CQS.

If

the

registration

is

successful,

a

CQS

token

is

returned.

This

token

represents

the

client’s

registration

with

CQS

and

must

be

used

with

all

subsequent

CQS

requests

to

identify

the

client.

A

CQSREG

FUNC=REGISTER

request

must

be

the

first

CQS

request

a

client

makes.

Also,

after

a

CQS

abnormal

termination

and

restart,

a

CQSREG

FUNC=REGISTER

request

is

required

before

the

client

can

resume

issuing

CQS

requests.

Parameter

Description:

��

CQSREG

FUNC=DSECT

��

��

CQSREG

FUNC=REGISTER

PARM=parmaddress

CQSSSN=cqssubsystemnameaddress

�

�

CLIENT=clientnameaddress

EVENT=cqseventexit

EVENTPARM=eventparmaddress

�

�

CQSTOKEN=cqstokenaddress

VERSION=cqsversionaddress

�

�

RETCODE=returncodeaddress

RSNCODE=reasoncodeaddress

��

CQSRECVR IBM

Confidential

140

Common

Queue

Server

Guide

and

Reference

CLIENT=clientnameaddress

Input

parameter

that

specifies

the

address

of

the

8-byte

name

of

the

client

registering

to

CQS.

The

client

name

must

be

unique

among

all

clients

that

are

registered

to

the

same

CQS

and

to

all

the

CQSs

that

are

sharing

the

same

queues.

CQSTOKEN=cqstokenaddress

Output

parameter

that

specifies

the

address

of

a

16-byte

area

to

receive

the

CQS

registration

token

that

uniquely

identifies

the

client’s

connection

to

CQS.

The

registration

token

is

returned

by

a

successful

CQSREG

request.

CQSSSN=cqssubsystemnameaddress

Input

parameter

that

specifies

the

address

of

the

4-byte

subsystem

name

of

the

CQS

to

which

the

client

would

like

to

connect.

This

parameter

should

match

the

SSN=

parameter

of

the

CQSIPxxx

PROCLIB

member

for

the

CQS

to

which

the

client

would

like

to

connect.

EVENT=cqseventexit

Four-byte

input

parameter

that

specifies

the

CQS

Event

exit

routine

address.

EVENTPARM=eventparmaddress

Input

parameter

that

specifies

the

address

of

a

4-byte

area

that

contains

client

data

that

CQS

passes

to

the

CQS

Event

exit

routine

every

time

the

exit

is

called.

PARM=parmaddress

Four-byte

input

parameter

that

specifies

the

address

of

a

parameter

list

used

by

the

request

to

pass

parameters

to

CQS.

The

length

of

the

storage

area

must

be

at

least

equal

to

the

EQU

value

CQSREG_PARM_LEN

(defined

using

the

FUNC=DSECT

request).

RETCODE=returncodeaddress

Output

parameter

that

specifies

the

address

of

a

4-byte

field

to

contain

the

CQSREG

return

code.

The

CQSREG

return

code

is

returned

both

in

this

field

and

in

register

15.

RSNCODE=reasoncodeaddress

Output

parameter

that

specifies

the

address

of

a

4-byte

field

to

contain

the

CQSREG

reason

code.

The

CQSREG

reason

code

is

returned

both

in

this

field

and

in

register

0.

VERSION=cqsversionaddress

Output

parameter

that

specifies

the

address

of

a

4-byte

area

to

receive

the

CQS

version

number.

The

version

number

has

the

following

format:

00vvrrmm.

00

This

byte

is

reserved

for

future

use.

Currently,

it

is

always

00.

vv

Version

number.

rr

Release

number.

mm

Modification

level

or

sub-release

number.

Example:

CQS

version

1.1.0

is

shown

as

X'00010100'.

Return

and

Reason

Codes

for

CQSREG

Table

42

on

page

142

lists

the

return

and

reason

code

combinations

that

can

be

returned

for

CQSREG

requests.

CQSREGIBM

Confidential

Chapter

6.

CQS

Client

Requests

141

Table

42.

CQSREG

Return

and

Reason

Codes

Return

Code

Reason

Code

Meaning

X'00000000'

X'00000000'

Request

completed

successfully.

X'00000004'

X'00000100'

Client

is

already

registered

to

CQS.

X'00000008'

X'00000244'

clientname

is

invalid.

X'00000008'

X'00000248'

The

CQSREG

parameter

list

version

is

invalid.

This

error

is

probably

caused

by

a

difference

in

versions

between

the

CQS

client

and

the

CQS

address

space

the

client

is

trying

to

use.

X'00000010'

X'0000040C'

CQS

shutdown

is

pending.

X'00000010'

X'00000430'

The

CQS

address

space

is

not

active.

The

CQS

address

space

must

be

started.

X'00000010'

X'00000438'

Another

address

space

is

already

registered

with

CQS

using

the

client

ID

(passed

on

a

CQSREG

request).

X'00000010'

X'00000440'

The

user

ID

of

the

client

address

space

is

not

authorized

to

register

with

this

CQS.

X'00000014'

X'00000500'

CQS

internal

error.

X'00000014'

X'00000504'

Unable

to

obtain

storage

in

client’s

address

space

for

CQS’s

use.

X'00000014'

X'00000508'

Unable

to

obtain

storage

(CCIB).

X'00000014'

X'0000050C'

Unable

to

obtain

storage

(CRET).

X'00000014'

X'00000510'

CQS

internal

error

(Loc

ASCB).

X'00000014'

X'00000514'

Unable

to

establish

z/OS

Resource

Manager

routine

to

monitor

CQS

for

the

registering

client.

X'00000014'

X'00000518'

CQS

internal

error

(ESTAE

add).

X'00000014'

X'0000051C'

CQS

internal

error

(NmTkn

Retrv).

X'00000014'

X'00000520'

CQS

internal

error

(CGCT

error).

X'00000014'

X'00000524'

CQS

internal

error

(TTKN

error).

X'00000014'

X'00000528'

CQS

internal

error

(ALESERV

error).

X'00000014'

X'0000052C'

CQS

internal

error

(BPESVC

error).

X'00000014'

X'00000530'

Unable

to

establish

z/OS

Resource

Manager

routine

to

monitor

the

client

for

CQS.

X'00000014'

X'00000534'

An

abend

occurred

during

CQSREG

processing.

CQSRSYNC

Request

Format

for

CQSRSYNC

DSECT

Function

of

CQSRSYNC:

Use

the

DSECT

function

of

a

CQSRSYNC

request

to

include

equate

(EQU)

statements

in

your

program

for

the

CQSRSYNC

parameter

list

length

and

CQSRSYNC

return

and

reason

codes.

��

CQSRSYNC

FUNC=DSECT

��

CQSREG IBM

Confidential

142

Common

Queue

Server

Guide

and

Reference

RSYNCCOLD

Function

of

CQSRSYNC:

Use

the

RSYNCCOLD

function

of

a

CQSRSYNC

request

when

the

client

is

performing

a

cold

start

and

does

not

have

information

on

unresolved

UOWs.

RSYNCWARM

Function

of

CQSRSYNC:

Use

the

RSYNCWARM

function

of

a

CQSRSYNC

request

when

the

client

is

performing

a

warm

or

emergency

restart

and

has

information

on

unresolved

UOWs

that

need

to

be

resolved

with

CQS.

Usage

of

CQSRSYNC

A

CQSRSYNC

request

allows

a

client

to

resynchronize

indoubt

data

for

one

structure

with

CQS.

This

request

must

be

the

first

request

the

client

issues

following

a

CQSCONN

request.

Restriction:

The

CQSRSYNC

request

is

not

supported

for

resource

structures.

A

CQSRSYNC

request

is

required

even

if

the

client

does

not

have

any

indoubt

units

of

work

(UOWs)

to

resolve,

for

example

when

the

client

performs

a

cold

start

or

a

warm

start

after

a

normal

termination.

This

request

is

required

because

CQS

might

have

information

about

a

connection

and

have

unresolved

UOWs

to

process.

If

there

are

unresolved

UOWs,

CQS

calls

the

client’s

Structure

Event

exit

routine

as

part

of

resynchronization.

CQS

calls

the

routine

to

inform

the

client

of

UOWs

that

CQS

knows

about

and

that

the

client

did

not

pass

on

the

CQSRSYNC

request.

This

process

is

referred

to

as

CQS-initiated

resynchronization.

The

exit

routine

is

called

during

client

cold

start

or

restart

only

if

CQS

has

unresolved

UOWs.

The

Structure

Event

exit

routine

can

be

called

more

than

once

��

CQSRSYNC

FUNC=RSYNCCOLD

CQSTOKEN=cqstokenaddress

�

�

CONTOKEN=connecttokenaddress

PARM=parmaddress

ECB=ecbaddress

�

�

RETCODE=returncodeaddress

RSNCODE=reasoncodeaddress

�

�

LISTVER=1

LISTVER=listversion

��

��

CQSRSYNC

FUNC=RSYNCWARM

CQSTOKEN=cqstokenaddress

�

�

CONTOKEN=connecttokenaddress

PARM=parmaddress

COUNT=count

�

�

LIST=listaddress

ECB=ecbaddress

RETCODE=returncodeaddress

�

�

RSNCODE=reasoncodeaddress

LISTVER=1

LISTVER=listversion

��

CQSRSYNCIBM

Confidential

Chapter

6.

CQS

Client

Requests

143

for

CQS-initiated

resynchronization.

For

each

UOW

passed

to

the

exit

routine,

the

client

is

responsible

for

taking

the

correct

action

to

resolve

the

UOW

based

on

the

status

returned

by

CQS.

If

CQS

cold

started,

CQS

has

no

knowledge

of

client

UOWs.

In

this

case,

the

resynchronization

list

is

not

processed.

CQS

looks

for

CQSREAD

requests

that

were

incomplete

at

the

time

CQS

terminated.

If

there

is

incomplete

work,

the

data

objects

are

moved

to

the

cold

queue

and

the

Structure

Event

exit

routine

is

called

to

inform

the

client

of

the

unresolved

UOWs

for

the

data

objects.

After

the

CQSRSYNC

request

completes,

some

UOWs

might

have

a

deferred

resynchronization

status.

This

status

indicates

that

CQS

is

still

resynchronizing

the

UOW.

When

CQS

completes

resynchronization,

the

Structure

Event

exit

routine

is

called

to

indicate

the

state

of

the

UOW.

Deferred

resynchronization

only

applies

to

UOWs

that

CQS

cannot

resynchronize

during

the

CQSRSYNC

request,

and

does

not

occur

for

a

client

cold

start.

The

exit

routine

is

called

once

for

each

deferred

UOW,

and

so

the

exit

routine

can

be

called

multiple

times

for

deferred

resynchronization.

Parameter

Description:

CONTOKEN=connecttokenaddress

Input

parameter

that

specifies

the

address

of

the

16-byte

connect

token

that

uniquely

identifies

the

client’s

connection

to

a

particular

coupling

facility

structure

managed

by

this

CQS.

The

connect

token

is

returned

by

the

CQSCONN

request.

COUNT=count

Four-byte

input

parameter

that

specifies

the

number

of

entries

in

the

resync

list.

CQSTOKEN=cqstokenaddress

Input

parameter

that

specifies

the

address

of

the

16-byte

CQS

registration

token

that

uniquely

identifies

the

client’s

connection

to

CQS.

The

registration

token

is

returned

by

the

CQSREG

request.

ECB=ecbaddress

Four-byte

input

parameter

that

specifies

the

address

of

the

z/OS

event

control

block

(ECB)

used

for

asynchronous

requests.

If

ECB

is

specified,

the

request

is

processed

asynchronously;

otherwise

it

is

processed

synchronously.

LIST=listaddress

Four-byte

input

parameter

that

specifies

the

address

of

the

resync

list.

Each

entry

contains

an

indoubt

UOW

that

the

client

needs

to

resolve.

Some

fields

in

each

entry

must

be

initialized

by

the

client

prior

to

the

CQSRSYNC

request.

Other

fields

are

returned

by

CQS

upon

completion

of

the

CQSRSYNC

request.

The

CQSRSYNL

list

entry

DSECT

maps

the

list

entries

and

can

be

used

by

the

client.

Multiple

list

entries

must

reside

in

contiguous

storage.

Each

list

entry

contains

the

following:

clientdata

Four-byte

input

parameter

that

specifies

the

client

data

field.

This

parameter

is

optional.

CQS

does

not

use

data

stored

in

this

entry.

uow

Thirty-two-byte

input

parameter

that

specifies

the

unit

of

work

CQSRSYNC IBM

Confidential

144

Common

Queue

Server

Guide

and

Reference

identifier

for

the

queue.

This

parameter

is

required

and

must

be

initialized

by

the

client

prior

to

the

CQSRSYNC

request.

clientstatus

Two-byte

input

parameter

that

contains

the

status

of

the

UOW.

This

status

represents

the

last

action

the

client

performed

for

this

UOW.

This

parameter

is

required

and

must

be

initialized

by

the

client

prior

to

the

CQSRSYNC

request.

Possible

values

for

the

status

are

shown

in

Table

43.

Table

43.

UOW

Status

from

the

Client

Status

Meaning

X'0010'

Put

Complete

The

last

(or

only)

CQSPUT

request

in

a

series

of

CQSPUT

requests

has

been

issued

for

the

UOW.

All

data

objects

for

the

UOW

are

assumed

to

be

on

the

coupling

facility.

X'0020'

Read

The

data

object

for

the

UOW

is

assumed

to

be

locked

on

the

coupling

facility.

X'0030'

Unlock

A

CQSUNLCK

request

with

lock

token

was

issued

for

the

UOW.

The

data

object

is

assumed

to

have

been

unlocked

and

made

available

on

the

work

queue

on

the

coupling

facility.

X'0040'

Move

A

CQSMOVE

request

with

lock

token

was

issued

for

the

UOW.

The

data

object

is

assumed

to

have

been

moved

to

a

new

queue

on

the

coupling

facility.

X'0050'

Delete

A

CQSDEL

request

with

lock

token

was

issued

for

the

UOW.

The

data

object

is

assumed

to

have

been

deleted

from

the

coupling

facility.

cqsstate

Two-byte

output

parameter

to

receive

the

resulting

state

of

the

UOW

from

CQS.

This

parameter

is

returned

by

CQS

as

a

result

of

the

CQSRSYNC

request.

Possible

values

for

the

status

are

shown

in

Table

44.

Table

44.

UOW

Status

from

CQS

Status

Meaning

X'0010'

Put

Insync

Client

status

is

Put

Complete.

CQS

status

is

Put

Complete.

CQS

knows

about

the

UOW

and

all

data

objects

for

the

UOW

are

out

on

the

coupling

facility.

A

put

token

is

returned

for

the

UOW.

The

client

should

use

the

put

token

to

issue

a

CQSPUT

FUNC=FORGET

request.

CQSRSYNCIBM

Confidential

Chapter

6.

CQS

Client

Requests

145

Table

44.

UOW

Status

from

CQS

(continued)

Status

Meaning

X'0012'

Resync

Deferred

Client

status

is

Put

Complete.

CQS

status

is

Indoubt.

This

status

is

only

returned

for

recoverable

UOWs.

CQS

knows

about

the

UOW

but

is

still

in

the

process

of

determining

its

status.

The

client

should

wait

until

its

Structure

Event

exit

routine

is

called

by

CQS.

CQS

will

post

the

client’s

Structure

Event

exit

routine,

passing

the

UOW

and

a

status

for

the

UOW.

If

the

status

is

PUT

Insync,

a

put

token

for

the

UOW

is

also

returned.

The

client

should

use

the

put

token

to

issue

a

CQSPUT

FUNC=FORGET

request.

If

the

status

is

PUT

Failed,

the

client

must

reissue

the

CQSPUT

FUNC=PUT

request.

If

the

status

is

Unknown,

the

data

object

might

or

might

not

be

on

the

coupling

facility.

X'0020'

Read

Insync

Client

status

is

Read.

CQS

status

is

Read

Complete.

CQS

found

the

data

object

for

the

UOW

to

be

locked.

A

lock

token

is

returned

for

the

UOW.

The

client

should

use

this

lock

token

on

subsequent

CQS

requests

for

the

data

object

with

this

UOW.

X'0030'

Unlock

Insync

Client

status

is

Read

Unlock.

CQS

status

is

Unlock

Insync.

CQS

found

the

data

object

for

the

UOW

to

be

locked,

and

unlocked

it.

No

further

action

is

required

by

the

client.

X'0050'

Delete

Insync

Client

status

is

Delete.

CQS

status

is

Delete

Insync.

CQS

found

the

data

object

for

the

UOW

to

be

locked

and

deleted

it.

No

further

action

is

required

by

the

client.

X'00F1'

Locked

One

of

the

following

conditions

exists:

v

Client

status

is

Delete.

CQS

status

is

Locked.

CQS

found

the

UOW

to

be

locked,

but

could

not

delete

the

data

object

from

the

structure.

The

data

object

remains

locked.

A

lock

token

is

returned

for

the

UOW.

The

client

should

use

this

lock

token

and

reissue

the

CQSDEL

request.

v

Client

status

is

Move.

CQS

status

is

Locked.

CQS

found

the

data

object

for

UOW

in

Locked

state.

The

CQSMOVE

could

not

be

completed

because

the

new

queue

name

is

not

available.

A

lock

token

is

returned

for

the

UOW.

The

client

should

use

this

lock

token

and

reissue

the

CQSMOVE

request.

v

Client

status

is

Unlock.

CQS

status

is

Locked.

CQS

found

the

UOW

to

be

locked,

but

could

not

unlock

the

data

object.

The

data

object

remains

locked.

A

lock

token

is

returned

for

the

UOW.

The

client

should

use

this

lock

token

and

reissue

the

CQSUNLCK

request.

X'00F2'

Unknown

Client

status

is

any

valid

client

status.

The

UOW

is

unknown

to

CQS.

If

the

client

believes

the

UOW

to

be

in

PUT

Complete

status,

the

client

must

determine

whether

or

not

to

reissue

the

CQSPUT

request.

If

the

client

believes

the

UOW

to

have

a

status

of

Delete,

Move,

Read,

or

Unlock,

the

prior

request

could

have

completed.

resynctoken

Sixteen-byte

output

parameter

to

receive

a

token

that

the

client

CQSRSYNC IBM

Confidential

146

Common

Queue

Server

Guide

and

Reference

uses

to

complete

processing

for

the

UOW.

When

the

state

is

Put

Insync,

this

field

contains

the

put

token.

When

the

state

is

Locked,

this

field

contains

the

lock

token.

This

field

is

returned

by

CQS

as

a

result

of

the

CQSRSYNC

request.

compcode

Four-byte

output

field

to

receive

the

completion

code

from

the

request.

Possible

completion

codes

are:

X'00000000'

CQS

successfully

processed

this

UOW.

Client

and

CQS

are

in

sync

for

this

UOW.

An

Insync

state

is

returned

for

this

UOW.

X'00000004'

CQS

successfully

processed

this

UOW.

Client

and

CQS

are

not

in

sync

for

this

UOW.

CQS

returns

its

known

state

for

this

UOW.

X'00000008'

clientstatus

is

invalid.

CQS

could

not

resynchronize

this

UOW.

The

cqsstate

is

not

returned.

X'0000000C'

uow

is

invalid.

CQS

could

not

resynchronize

this

UOW.

The

cqsstate

is

not

returned.

X'00000010'

CQS

internal

error.

CQS

could

not

resynchronize

this

UOW.

The

cqsstate

is

not

returned.

LISTVER=1

|

listversion

Input

parameter

that

specifies

an

equate

for

the

list

version.

Use

the

DSECT

function

of

a

CQSRSYNC

request

to

include

equate

(EQU)

statements

in

your

program

for

the

CQSRSYNC

list

versions.

PARM=parmaddress

Four-byte

input

parameter

that

specifies

the

address

of

a

parameter

list

used

by

the

request

to

pass

parameters

to

CQS.

The

length

of

the

storage

area

must

be

at

least

equal

to

the

EQU

value

CQSRSYNC_PARM_LEN

(defined

using

the

FUNC=DSECT

request).

RETCODE=returncodeaddress

Output

parameter

that

specifies

the

address

of

a

4-byte

field

to

contain

the

CQSRSYNC

return

code.

If

the

return

code

in

register

15

is

nonzero,

the

values

in

the

return

and

reason

code

fields

are

invalid,

because

the

CQS

interface

detected

an

error

and

was

unable

to

send

the

request

to

CQS.

RSNCODE=reasoncodeaddress

Output

parameter

that

specifies

the

address

of

a

4-byte

field

to

contain

the

CQSRSYNC

reason

code.

Return

and

Reason

Codes

for

CQSRSYNC

Table

45

lists

the

return

and

reason

code

combinations

that

can

be

returned

for

CQSRSYNC

requests.

Use

a

CQSRSYNC

FUNC=DSECT

request

to

include

equate

statements

in

your

program

for

the

return

and

reason

codes.

Table

45.

CQSRSYNC

Return

and

Reason

Codes

Return

Code

Reason

Code

Meaning

X'00000000'

X'00000000'

Request

completed

successfully

and

all

list

entries

are

in

sync.

The

Structure

Event

exit

routine

is

called

for

CQS

resync.

The

client

can

now

issue

CQS

requests

to

write

or

retrieve

data

for

this

structure.

CQSRSYNCIBM

Confidential

Chapter

6.

CQS

Client

Requests

147

Table

45.

CQSRSYNC

Return

and

Reason

Codes

(continued)

Return

Code

Reason

Code

Meaning

X'00000004'

X'00000110'

CQS

was

cold

started.

No

list

entries

were

processed.

CQS

did

not

find

any

unresolved

UOWs.

The

Structure

Event

exit

routine

is

not

called.

The

client

can

now

issue

CQS

requests

to

write

or

retrieve

data

for

this

structure.

X'00000004'

X'00000114'

Client

was

cold

started.

CQS

did

not

find

any

unresolved

UOWs.

The

Structure

Event

exit

routine

is

not

called.

The

client

can

now

issue

CQS

requests

to

write

or

retrieve

data

for

this

structure.

X'00000004'

X'00000118'

CQS

was

cold

started.

No

list

entries

were

processed.

CQS

did

find

some

unresolved

UOWs

and

marked

them

as

being

in

cold

status.

The

Structure

Event

exit

routine

is

called

to

inform

the

client

of

the

unresolved

UOWs.

The

client

can

now

issue

CQS

requests

to

write

or

retrieve

data

for

this

structure.

X'00000004'

X'0000011C'

Client

was

cold

started.

CQS

did

find

some

unresolved

UOWs.

The

Structure

Event

exit

routine

is

called

to

inform

the

client

of

the

unresolved

UOWs.

The

client

can

now

issue

CQS

requests

to

write

or

retrieve

data

for

this

structure.

X'00000008'

X'00000210'

cqstoken

is

invalid.

No

list

entries

were

processed.

The

Structure

Event

exit

routine

is

not

called.

The

client

must

reissue

the

CQSRSYNC

request.

X'00000008'

X'00000214'

connecttoken

is

invalid.

No

list

entries

were

processed.

The

Structure

Event

exit

routine

is

not

called.

The

client

must

reissue

the

CQSRSYNC

request.

X'00000008'

X'00000218'

FUNC

is

invalid.

The

client

must

reissue

the

CQSRSYNC

request.

X'00000008'

X'00000254'

listaddress

is

invalid.

No

list

entries

were

processed.

The

Structure

Event

exit

routine

is

not

called.

The

client

must

reissue

the

CQSRSYNC

request.

X'00000008'

X'0000027C'

CQSRSYNC

is

not

allowed

for

a

resource

structure.

X'00000008'

X'00000284'

Parmlist

version

is

invalid.

X'00000008'

X'00000288'

List

version

is

invalid.

X'0000000C'

X'00000300'

Request

succeeded

for

at

least

one,

but

not

all,

list

entries.

At

least

one

list

entry

is

in

sync.

See

compcode

in

each

list

entry

for

individual

errors.

The

Structure

Event

exit

routine

is

called

for

CQS

resync.

The

client

can

now

issue

CQS

requests

to

write

or

retrieve

data

for

this

structure.

X'0000000C'

X'00000304'

Request

failed

for

all

list

entries.

None

of

the

list

entries

are

in

sync.

See

compcode

in

each

list

entry

for

individual

errors.

The

Structure

Event

exit

routine

is

called

for

CQS

resync.

The

client

can

now

issue

CQS

requests

to

write

or

retrieve

data

for

this

structure.

X'00000010'

X'00000430'

No

CQS

address

space.

X'00000014'

X'00000500'

CQS

internal

error.

CQSRSYNC IBM

Confidential

148

Common

Queue

Server

Guide

and

Reference

CQSSHUT

Request

Format

for

CQSSHUT

DSECT

Function

of

CQSSHUT:

Use

the

DSECT

function

of

a

CQSSHUT

request

to

include

equate

(EQU)

statements

in

your

program

for

the

CQSSHUT

parameter

list

length

and

CQSSHUT

return

and

reason

codes.

QUIESCE

Function

of

CQSSHUT:

Use

the

QUIESCE

function

of

a

CQSSHUT

request

to

terminate

CQS.

Usage

of

CQSSHUT

A

CQSSHUT

request

notifies

CQS

to

terminate

after

all

clients

have

disconnected.

After

the

CQSSHUT

request

is

issued,

CQS

stops

accepting

CQSCONN

requests.

CQS

continues

to

accept

input

or

output

requests,

so

that

clients

can

complete

work

in

progress.

In

order

to

complete

the

shutdown

process,

clients

must

stop

working

and

issue

CQSDISC

requests

to

disconnect

from

CQS.

After

all

clients

have

disconnected,

CQS

terminates

all

tasks

and

returns

control

to

z/OS.

Parameter

Description:

CQSTOKEN=cqstokenaddress

Input

parameter

that

specifies

the

address

of

the

16-byte

CQS

registration

token

that

uniquely

identifies

the

client’s

connection

to

CQS.

The

registration

token

is

returned

by

the

CQSREG

request.

ECB=ecbaddress

Four-byte

input

parameter

that

specifies

the

address

of

the

z/OS

event

control

block

(ECB)

used

for

asynchronous

requests.

If

ECB

is

specified,

the

request

is

processed

asynchronously;

otherwise,

it

is

processed

synchronously.

PARM=parmaddress

Four-byte

input

parameter

that

specifies

the

address

of

a

parameter

list

used

by

the

request

to

pass

parameters

to

CQS.

The

length

of

the

storage

area

must

be

at

least

equal

to

the

EQU

value

CQSSHUT_PARM_LEN

(defined

using

the

FUNC=DSECT

request).

RETCODE=returncodeaddress

Output

parameter

that

specifies

the

address

of

a

4-byte

field

to

contain

the

CQSSHUT

return

code.

If

the

return

code

in

register

15

is

nonzero,

the

values

in

the

return

and

reason

code

fields

are

invalid,

because

the

CQS

interface

detected

an

error

and

was

unable

to

send

the

request

to

CQS.

RSNCODE=reasoncodeaddress

Four-byte

output

parameter

that

specifies

the

address

of

a

field

to

contain

the

CQSSHUT

reason

code.

��

CQSSHUT

FUNC=DSECT

��

��

CQSSHUT

FUNC=QUIESCE

CQSTOKEN=cqstokenaddress

PARM=parmaddress

�

�

ECB=ecbaddress

RETCODE=returncodeaddress

RSNCODE=reasoncodeaddress

��

CQSSHUTIBM

Confidential

Chapter

6.

CQS

Client

Requests

149

Return

and

Reason

Codes

for

CQSSHUT

Table

46

lists

the

return

and

reason

code

combinations

that

can

be

returned

for

CQSSHUT

requests.

Use

a

CQSSHUT

FUNC=DSECT

request

to

include

equate

statements

in

your

program

for

the

return

and

reason

codes.

Table

46.

CQSSHUT

Return

and

Reason

Codes

Return

Code

Reason

Code

Meaning

X'00000000'

X'00000000'

Request

completed

successfully.

X'00000008'

X'00000210'

cqstoken

is

invalid.

X'00000008'

X'00000218'

FUNC

is

invalid.

X'00000008'

X'00000284'

Parmlist

version

is

invalid.

X'00000010'

X'00000444'

CQS

initialization

is

in

progress.

Reissue

the

CQSSHUT

request

after

initialization

is

complete.

CQSUNLCK

Request

Format

for

CQSUNLCK

DSECT

Function

of

CQSUNLCK:

Use

the

DSECT

function

of

a

CQSUNLCK

request

to

include

equate

(EQU)

statements

in

your

program

for

the

CQSUNLCK

parameter

list

length

and

CQSUNLCK

return

and

reason

codes.

UNLOCK

Function

of

CQSUNLCK:

Use

the

UNLOCK

function

of

a

CQSUNLCK

request

to

unlock

one

or

more

data

objects

and

move

them

to

the

end

or

beginning

of

the

queue.

FORCE

Function

of

CQSUNLCK:

Use

the

FORCE

function

of

a

CQSUNLCK

request

to

forcibly

unlock

data

objects

read

from

the

specified

queue

type

by

the

specified

failed

CQS

client

and

clean

up

CQS’s

knowledge

of

the

data

objects.

��

CQSUNLCK

FUNC=DSECT

��

��

CQSUNLCK

FUNC=UNLOCK

CQSTOKEN=cqstokenaddress

�

�

CONTOKEN=connecttokenaddress

PARM=parmaddress

COUNT=count

�

�

LIST=listaddress

LISTVER=1

LISTVER=listversion

ECB=ecbaddress

�

�

RETCODE=returncodeaddress

RSNCODE=reasoncodeaddress

��

CQSSHUT IBM

Confidential

150

Common

Queue

Server

Guide

and

Reference

||

Usage

of

CQSUNLCK

Restriction:

The

CQSUNLCK

request

is

not

supported

for

resource

structures.

A

CQSUNLCK

FUNC=UNLOCK

request

unlocks

one

or

more

data

objects

and

moves

them

into

the

first

or

last

position

on

the

queue.

The

client

passes

an

unlock

list

that

contains

one

or

more

list

entries,

where

each

entry

is

a

separate

unlock

request.

A

successful

CQSUNLCK

request

invalidates

the

lock

token

and

makes

the

data

object

available

to

any

client

for

a

CQSBRWSE,

CQSDEL,

CQSMOVE,

or

CQSREAD

request.

The

CQSUNLCK

FUNC=FORCE

request

enables

a

CQS

client

to

forcibly

unlock

data

objects

read

from

the

specified

queue

type

by

the

specified

failed

CQS

client,

so

that

the

data

objects

don’t

remain

on

the

LOCKQ

until

the

failed

CQS

client

restarts.

Force

unlock

also

removes

the

CQS’s

knowledge

of

locked

data

objects,

if

this

CQS

processed

the

CQSREAD

requests

that

locked

the

data

objects.

When

a

CQS

client

fails,

its

locked

data

objects

remain

on

the

LOCKQ

until

the

CQS

client

restarts,

resyncs

with

CQS,

and

decides

what

to

do

with

the

locked

data

objects,

or

until

a

CQS

client

forcibly

unlocks

the

data

objects.

Locked

data

objects

are

not

accessible

by

other

CQS

clients.

Attention:

CQS

clients

should

use

the

CQSUNLCK

FUNC=FORCE

request

with

caution.

The

CQS

clients

in

an

IMSplex

must

apply

the

following

force

unlock

rules

consistently.

If

not

used

consistently,

the

CQSRSYNC

request

might

fail,

data

objects

might

remain

on

the

lock

queue,

read

tables

might

remain

in

CQS,

or

data

objects

might

be

moved

to

the

COLDQ.

When

using

CQSUNLCK

FUNC=FORCE,

apply

the

following

rules:

v

Define

IMSplex

with

CSL.

The

IMSplex

must

be

defined

with

a

Common

Service

Layer,

so

that

CQS

clients

are

notified

when

a

CQS

client

fails.

v

Select

queue

type

candidates.

Select

one

or

more

queue

types

whose

data

objects

are

candidates

to

be

forcibly

unlocked.

All

of

the

data

objects

with

the

specified

queue

type

are

candidates.

There

is

no

way

to

select

specific

data

objects

of

a

queue

type

to

be

forcibly

unlocked.

v

Forcibly

unlock

another

CQS

client’s

data

objects

when

CQS

client

fails.

When

a

CQS

client

fails,

it

may

leave

locked

data

objects

on

the

LOCKQ.

Another

CQS

client

should

issue

the

CQSUNLCK

FUNC=FORCE

request,

so

that

data

objects

don’t

remain

on

the

LOCKQ

until

the

failed

CQS

client

restarts.

Issue

a

CQSUNLCK

FUNC=FORCE

request

only

to

forcibly

unlock

data

objects

of

a

CQS

client

that

is

currently

not

active.

It

is

up

to

the

CQS

client

issuing

the

CQSUNLCK

FUNC=FORCE

request

to

insure

that

the

target

CQS

client

is

not

active.

��

CQSUNLCK

FUNC=FORCE

CQSTOKEN=cqstokenaddress

�

�

CONTOKEN=connecttokenaddress

PARM=parmaddress

CLIENT=clientnameaddress

�

�

COUNT=count

QTYPE=queuetype

ECB=ecbaddress

RETCODE=returncodeaddress

�

�

RSNCODE=reasoncodeaddress

��

CQSUNLCKIBM

Confidential

Chapter

6.

CQS

Client

Requests

151

|

|

It

is

up

to

the

CQS

clients

in

the

IMSplex

to

ensure

that

only

one

CQS

client

issues

the

CQSUNLCK

FUNC=FORCE

request.

All

members

in

an

IMSplex

defined

with

a

CSL

are

notified

when

a

member

fails.

Multiple

CQSUNLCK

FUNC=FORCE

requests

may

have

the

following

undesirable

results:

–

Unnecessary

CF

accesses.

The

CQSUNLCK

FUNC=FORCE

request

incurs

multiple

CF

accesses

to

look

at

data

objects

on

the

candidate

queue

type.

If

multiple

CQSUNLCK

FUNC=FORCE

requests

are

issued,

each

request

makes

the

same

numerous

CF

accesses.

These

extra

CF

accesses

are

unneccessary

and

incur

additional

performance

overhead.

If

the

performance

overhead

of

unnecessary

CF

accesses

is

unacceptable,

it

is

up

to

the

CQS

clients

in

the

IMSplex

to

ensure

that

only

one

CQS

client

issues

the

CQSUNLCK

FUNC=FORCE.

It

is

up

to

the

CQS

clients

in

the

IMSplex

to

insure

that

exactly

one

CQS

client

issues

the

CQSUNLCK

FUNC=FORCE

request

successfully.

If

a

CQS

client

issues

the

CQSUNLCK

FUNC=FORCE

request

and

a

failure

occurs,

such

as

CQSUNLCK

error,

structure

failure,

loss

of

link,

and

so

on,

then

the

CQS

clients

in

the

IMSplex

must

insure

that

the

CQSUNLCK

FUNC=FORCE

request

is

issued

successfully

after

the

error

is

corrected.

–

Data

objects

incorrectly

unlocked.

If

a

failed

CQS

client

initializes

right

away,

it

might

forcibly

unlock

its

own

data

objects,

resync

with

CQS,

and

put

new

data

objects

on

the

queue

structure,

before

another

CQS

client

attempts

to

forcibly

unlock

the

failed

CQS

client’s

data

objects.

The

other

CQS

client

could

incorrectly

unlock

data

objects

for

UOWs

that

are

in

flight.

It

is

up

to

the

CQS

clients

in

the

IMSplex

to

insure

that

exactly

one

CQS

client

forcibly

unlocks

data

objects

for

the

specified

client.

v

Forcibly

unlock

CQS

client’s

own

data

objects

when

CQS

client

initializes.

When

a

CQS

client

initializes,

it

should

forcibly

unlock

its

own

data

objects

before

issuing

CQSRSYNC.

This

insures

that

the

CQS

client’s

data

objects

are

unlocked

before

resync,

in

case

no

other

CQS

client

was

available

at

failure

time

to

do

the

force

unlock.

Force

unlock

also

cleans

up

CQS’s

knowledge

of

the

IMS

client’s

locked

data

objects,

since

this

CQS

processed

the

CQSREAD

request

that

locked

the

data

objects.

v

Resync

with

CQS,

handling

UOW’s

that

are

candidates

for

unlock

force.

When

building

the

resync

list

to

pass

to

CQS

on

the

CQSRSYNC

request,

mark

all

candidates

for

the

UNLOCK

FORCE

with

a

CQS

client

status

of

forced.

CQS

resync

checks

for

the

client

status

of

forced

and

sets

the

UOWs

to

a

CQS

status

of

unlock

in

sync.

v

Forcibly

unlock

other

failed

CQS

clients’

data

objects

when

CQS

client

initializes.

When

a

CQS

client

initializes,

it

should

forcibly

unlock

the

data

objects

of

failed

CQS

clients,

in

case

no

other

CQS

client

was

available

to

do

the

force

unlock

when

the

CQS

clients

failed.

After

an

initializing

CQS

client

resyncs

with

CQS,

it

should

issue

one

CQSUNLCK

FUNC=FORCE

request

per

failed

CQS

client,

to

forcibly

unlock

data

objects

on

the

candidate

queue

types.

Parameter

Description:

CLIENT=clientnameaddress

Eight-byte

input

field

that

specifies

the

CQS

client

for

which

to

forcibly

unlock

data

objects.

The

client

name

is

the

same

name

specified

on

the

CQSREG

request

when

the

client

registered

to

CQS.

A

CQS

client

can

forcibly

unlock

its

own

locked

data

objects

before

issuing

the

CQSRSYNC

request.

A

CQS

client

can

forcibly

unlock

another

CQS

client’s

locked

data

objects

after

issuing

the

CQSRSYNC

request.

CQSUNLCK IBM

Confidential

152

Common

Queue

Server

Guide

and

Reference

CONTOKEN=connecttokenaddress

Input

parameter

that

specifies

the

address

of

the

16-byte

connect

token

that

uniquely

identifies

the

client’s

connection

to

a

particular

coupling

facility

structure

managed

by

this

CQS.

The

connect

token

is

returned

by

the

CQSCONN

request.

COUNT=count

Four-byte

input

parameter

that

specifies

the

number

of

list

entries

in

the

unlock

list

or

four-byte

output

parameter

to

receive

the

count

of

data

objects

that

were

forcibly

unlocked.

CQSTOKEN=cqstokenaddress

Input

parameter

that

specifies

the

address

of

the

16-byte

CQS

registration

token

that

uniquely

identifies

the

client’s

connection

to

CQS.

The

registration

token

is

returned

by

the

CQSREG

request.

ECB=ecbaddress

Four-byte

input

parameter

that

specifies

the

address

of

the

z/OS

event

control

block

(ECB)

used

for

asynchronous

requests.

If

ECB

is

specified,

the

request

is

processed

asynchronously;

otherwise

it

is

processed

synchronously.

LIST=listaddress

Four-byte

input

parameter

that

specifies

the

address

of

the

unlock

list.

Each

entry

is

a

separate

CQSUNLCK

request.

Some

fields

in

each

entry

must

be

initialized

by

the

client

prior

to

the

CQSUNLCK

request.

Other

fields

are

returned

by

CQS

upon

completion

of

the

CQSUNLCK

request.

The

CQSUNLL

list

entry

DSECT

maps

the

list

entries

and

can

be

used

by

the

client.

Multiple

list

entries

must

reside

in

contiguous

storage.

Each

list

entry

contains

the

following:

compcode

Four-byte

output

field

to

receive

the

completion

code

from

the

request.

Possible

completion

codes

are:

X'00000000'

Request

completed

successfully.

X'00000004'

locktoken

is

invalid.

X'00000008'

Structure

inaccessible.

X'0000000C'

Unable

to

unlock

the

data

object,

because

the

original

queue

for

the

data

object

is

full.

No

data

objects

can

be

moved

to

the

named

queue,

but

CQSUNLCK

requests

for

other

queues

are

allowed.

X'00000010'

CQS

internal

error

X'00000014'

Data

object

was

lost

because

the

structure

was

rebuilt.

The

data

object

was

nonrecoverable

and

a

rebuild

occurred

after

the

data

object

was

locked.

The

data

object

is

now

lost.

qpos

One-byte

input

parameter

that

indicates

the

position

on

the

queue

to

which

the

unlocked

element

is

to

be

added.

X'00'

Original

client

queue

position.

If

the

CQSREAD

request

that

CQSUNLCKIBM

Confidential

Chapter

6.

CQS

Client

Requests

153

locked

this

data

object

read

the

first

data

object,

this

request

unlocks

the

data

object

and

adds

it

to

beginning

of

the

queue.

If

the

CQSREAD

request

read

the

last

data

object,

this

request

unlocks

the

data

object

and

adds

it

to

the

end

of

the

queue.

X'01'

End

of

queue.

X'02'

Beginning

of

queue.

locktoken

Sixteen-byte

input

parameter

that

specifies

the

lock

token

that

uniquely

identifies

the

data

object

locked

by

a

CQSREAD

request.

This

parameter

is

required.

LISTVER=1

|

listversion

Input

parameter

that

specifies

an

equate

for

the

list

version.

Use

the

DSECT

function

of

a

CQSUNLCK

request

to

include

equate

(EQU)

statements

in

your

program

for

the

CQSUNLCK

list

versions.

PARM=parmaddress

Four-byte

input

parameter

that

specifies

the

address

of

a

parameter

list

used

by

the

request

to

pass

parameters

to

CQS.

The

length

of

the

storage

area

must

be

at

least

equal

to

the

EQU

value

CQSUNLCK_PARM_LEN

(defined

using

the

FUNC=DSECT

request).

QTYPE=queuetype

Four-byte

input

parameter

that

specifies

the

queue

type

from

which

the

locked

data

objects

were

read.

Valid

values

for

the

queue

type

are

from

1

to

255

(decimal).

RETCODE=returncodeaddress

Output

parameter

that

specifies

the

address

of

a

4-byte

field

to

contain

the

CQSUNLCK

request

return

code.

If

the

return

code

in

register

15

is

nonzero,

the

values

in

the

return

and

reason

code

fields

are

invalid,

because

the

CQS

interface

detected

an

error

and

was

unable

to

send

the

request

to

CQS.

RSNCODE=reasoncodeaddress

Output

parameter

that

specifies

the

address

of

a

4-byte

field

to

contain

the

CQSUNLCK

request

reason

code.

Return

and

Reason

Codes

for

CQSUNLCK

Table

47

lists

the

return

and

reason

code

combinations

that

can

be

returned

for

CQSUNLCK

requests.

Use

a

CQSUNLCK

FUNC=DSECT

request

to

include

equate

statements

in

your

program

for

the

return

and

reason

codes.

Table

47.

CQSUNLCK

Return

and

Reason

Codes

Return

Code

Reason

Code

Meaning

X'00000000'

X'00000000'

Request

completed

successfully.

X'00000008'

X'00000210'

cqstoken

is

invalid.

X'00000008'

X'00000214'

connecttoken

is

invalid.

X'00000008'

X'00000218'

FUNC

is

invalid.

X'00000008'

X'00000240'

queuetype

is

invalid.

X'00000008'

X'00000244'

clientname

is

invalid.

X'00000008'

X'00000250'

count

is

invalid.

X'00000008'

X'00000254'

listaddress

is

invalid.

CQSUNLCK IBM

Confidential

154

Common

Queue

Server

Guide

and

Reference

Table

47.

CQSUNLCK

Return

and

Reason

Codes

(continued)

Return

Code

Reason

Code

Meaning

X'00000008'

X'0000027C'

CQSUNLCK

is

not

allowed

for

a

resource

structure.

X'00000008'

X'00000284'

Parmlist

version

is

invalid.

X'00000008'

X'00000288'

List

version

is

invalid.

X'0000000C'

X'00000300'

Request

succeeded

for

at

least

one

but

not

all

list

entries.

See

compcode

for

individual

errors.

X'0000000C'

X'00000304'

Request

failed

for

all

list

entries.

See

compcode

for

individual

errors.

X'00000010'

X'00000400'

A

CQSRSYNC

is

required

for

this

structure.

X'00000010'

X'00000430'

No

CQS

address

space.

CQSUPD

Request

Format

for

CQSUPD

DSECT

Function

of

CQSUPD:

Use

the

DSECT

function

of

a

CQSUPD

request

to

include

equate

(EQU)

statements

in

your

program

for

the

CQSUPD

parameter

list

length,

the

CQSUPD

return

and

reason

codes,

the

CQSUPD

parmlist

version,

and

the

CQSUPD

list

version.

UPDATE

Function

of

CQSUPD:

Use

the

UPDATE

function

of

a

CQSUPD

request

to

create

or

update

one

or

more

uniquely

named

resources

on

a

resource

structure.

Each

resource

can

optionally

include

a

small

client

data

area

(DATA1)

or

a

large

client

data

area

(DATA2).

Usage

of

CQSUPD

A

CQSUPD

creates

or

updates

one

or

more

uniquely

named

resources

on

a

resource

structure.

CQSUPD

creates

a

resource

if

it

does

not

exist,

or

updates

a

resource

if

it

does

exist.

A

resource

can

be

created

or

updated

with

or

without

client

data.

Examples

of

resources

include

transactions

and

control

blocks.

Parameter

Description:

CONTOKEN=connecttokenaddress

Address

of

a

16-byte

input

parameter

that

specifies

the

connect

token

that

��

CQSUPD

FUNC=DSECT

��

��

CQSUPD

FUNC=UPDATE

CQSTOKEN=cqstokenaddress

�

�

CONTOKEN=connecttokenaddress

PARM=parmaddress

LIST=resourcelistaddress

�

�

LISTSIZE=listsize

LISTVER=1

COUNT=resourcelistcount

�

�

ECB=ecbaddress

RETCODE=returncodeaddress

RSNCODE=reasoncodeaddress

��

CQSUNLCKIBM

Confidential

Chapter

6.

CQS

Client

Requests

155

uniquely

identifies

the

client’s

connection

to

a

particular

coupling

facility

structure

managed

by

CQS.

The

connect

token

is

returned

by

the

CQSCONN

request.

COUNT=resourcelistcount

Four-byte

input

parameter

that

specifies

the

number

of

entries

in

the

list.

CQSTOKEN=cqstokenaddress

Address

of

a

16-byte

input

parameter

that

specifies

the

CQS

registration

token

that

uniquely

identifies

the

client’s

connection

to

CQS.

The

registration

token

is

returned

by

the

CQSREG

request.

ECB=ecbaddress

Address

of

a

4-byte

input

parameter

that

specifies

the

z/OS

event

control

block

(ECB)

used

for

asynchronous

requests.

If

ECB

is

specified,

the

request

is

processed

asynchronously;

otherwise,

it

is

processed

synchronously.

LISTSIZE=resourcelistsize

Four-byte

input

parameter

that

specifies

the

size

of

the

resource

list.

The

list

size

must

be

specified

because

each

entry

in

the

list

might

have

a

variable

length.

LISTVER=1

|

listversion

Input

parameter

that

specifies

an

equate

for

the

list

version.

Use

the

DSECT

function

of

a

CQSUPD

request

to

include

equate

(EQU)

statements

in

your

program

for

the

CQSUPD

list

versions.

LIST=resourcelistaddress

Address

of

an

input

parameter

that

specifies

a

variable

size

resource

list

containing

one

or

more

entries.

Each

entry

is

a

separate

update

request.

Some

fields

in

each

entry

must

be

initialized

by

the

client

prior

to

the

CQSUPD

request.

Other

fields

are

returned

by

CQS

upon

completion

of

the

request.

The

CQSUPDL

list

entry

DSECT

maps

the

list

entries

and

can

be

used

by

the

client.

Multiple

list

entries

must

reside

in

contiguous

storage.

Each

list

entry

contains

the

following

fields:

listentrylength

Four-byte

input

field

that

specifies

the

length

of

the

list

entry.

The

list

entry

length

is

variable,

depending

upon

the

data2

length,

if

specified.

This

parameter

is

required.

resourceid

Twelve-byte

input

field

that

contains

the

unique

identifier

of

the

resource

to

be

created

or

updated

on

the

resource

structure.

The

resource

identifier

is

unique

in

the

IMSplex.

The

resource

identifier

consists

of

a

1-byte

name

type

followed

by

an

11-byte

client-defined

resource

name.

The

name

type

ensures

uniqueness

of

client-defined

names

for

resources

with

the

same

name

type.

Resources

of

different

resource

types

can

have

the

same

name

type.

Valid

values

for

the

name

type

are

decimal

numbers

from

1

to

255.

The

client-defined

name

has

meaning

to

the

client

and

consists

of

alphanumeric

characters.

This

parameter

is

required.

resourcetype

One-byte

field

that

specifies

the

resource

type.

The

resource

type

is

a

client-defined

physical

grouping

of

resources

on

the

resource

structure.

Valid

values

for

the

resource

type

are

decimal

numbers

from

1

to

255.

If

CQSUPD IBM

Confidential

156

Common

Queue

Server

Guide

and

Reference

the

resource

type

is

greater

than

the

maximum

number

of

resource

types

defined

by

CQS

(11),

it

is

folded

into

one

of

the

existing

resource

types.

This

parameter

is

required.

reserved

Three-byte

reserved

field.

options

Four-byte

input

field

that

specifies

update

options.

This

parameter

is

optional.

Possible

options

are:

X'80000000'

Return

data1

and

owner,

if

update

fails

because

of

a

version

mismatch.

This

incurs

the

performance

overhead

of

an

additional

CF

access.

X'40000000'

Return

data2,

data1,

and

owner

if

update

fails

because

of

version

mismatch.

The

data2

is

returned

if

data2buffer

and

data2buffersize

are

specified.

This

incurs

the

performance

overhead

of

an

additional

CF

access.

X'20000000'

Delete

data2.

compcode

Four-byte

output

field

to

receive

the

completion

code

from

the

request.

Possible

completion

codes

are:

X'00000000'

Request

completed

successfully.

X'00000004'

Request

succeeded

successfully,

but

only

partial

data

returned

in

data2buffer.

X'00000020'

Resourceid

is

invalid.

The

name

type

must

be

a

decimal

number

from

1

to

255.

X'00000024'

CQS

internal

error.

X'00000028'

Version

doesn’t

match

that

of

existing

resource.

X'00000030'

Resource

already

exists

as

a

different

name

type.

X'00000034'

Structure

is

full.

X'00000038'

Resourcetype

is

invalid.

The

resource

type

must

be

a

decimal

number

from

1

to

255.

X'0000003C'

Listentrylength

is

invalid.

The

list

entry

length

must

be

a

non-zero

number

greater

than

or

equal

to

the

minimum

list

entry

length.

See

the

CQSUPDL

DSECT.

X'00000040'

Structure

is

inaccessible.

CQSUPDIBM

Confidential

Chapter

6.

CQS

Client

Requests

157

X'00000044'

No

CQS

address

space.

version

Eight-byte

input

and

output

field

that

specifies

the

version

of

a

resource.

The

version

is

the

number

of

times

the

resource

has

been

updated.

For

the

initial

CQSUPD

request

to

create

the

resource,

version

must

be

zero

on

input.

For

a

subsequent

CQSUPD

request

to

update

an

existing

resource,

version

must

match

the

existing

resource’s

version.

The

CQSUPD

request

increments

the

version

by

1,

updates

the

resource

with

the

new

version,

and

returns

the

new

version

as

output.

If

a

CQSUPD

request

to

update

an

existing

resource

fails

because

of

a

version

mismatch,

CQS

returns

the

correct

version

to

the

client

as

output.

This

parameter

is

required.

If

the

data

object

is

created,

version

is

ignored

on

input

and

a

version

of

1

is

returned

as

output.

owner

Eight-byte

input

and

output

field

that

specifies

the

owner

of

a

resource.

On

input,

owner

is

set

for

the

resource.

Specify

zeroes

to

set

no

owner

of

a

resource.

Only

one

owner

is

permitted.

If

the

update

request

fails

because

of

a

version

mismatch

and

the

option

to

return

the

owner

is

specified,

the

owner

of

the

existing

resource

is

returned

as

output.

This

parameter

is

required.

data1

Twenty-four-byte

input

and

output

field

that

specifies

data1,

a

small

piece

of

client

data

for

the

resource

to

be

updated.

Specify

zeroes

to

set

no

client

data

in

data1.

If

the

CQSUPD

request

fails

because

of

a

version

mismatch

and

the

option

to

return

data1

is

specified,

data1

of

the

existing

resource

is

returned

as

output.

The

performance

of

accessing

the

client

data

specified

by

data1

is

faster

than

accessing

client

data

specified

by

data2.

This

parameter

is

required.

data2size

Four-byte

input

and

output

field

that

specifies

the

size

of

client

data

data2

in

data2buffer

for

the

resource

to

be

updated.

Specify

zero

on

input,

if

there

is

no

data2

to

update.

If

the

CQSUPD

request

fails

because

of

a

version

mismatch

and

the

option

to

return

data2

is

set,

the

data2

size

of

the

existing

resource

is

returned

as

output.

This

parameter

is

optional.

data2buffersize

Four-byte

input

field

that

specifies

the

size

of

the

data2buffer

containing

the

client

data

data2

for

the

resource

to

be

updated

or

returned

as

output.

The

maximum

size

that

can

be

specified

is

61312

bytes

(X'EF80').

Specify

zero

if

data2

does

not

need

to

be

updated

or

returned

as

output.

This

parameter

is

optional.

data2buffer

Variable

size

input

and

output

buffer

that

specifies

data2,

a

large

piece

of

client

data

for

the

resource

to

be

updated.

If

the

CQSUPD

request

fails

because

of

a

version

mismatch

and

the

option

to

return

data2

is

specified,

data2

of

the

existing

resource

is

returned,

as

much

as

fits

into

the

data2buffer.

This

parameter

is

optional.

PARM=parmaddress

Address

of

an

input

parameter

list

used

by

the

request

to

pass

parameters

to

CQS.

The

length

of

the

storage

area

must

be

at

least

equal

to

the

EQU

value

CQSUPD_PARM_LEN

(defined

using

the

FUNC=DSECT

request).

RETCODE=returncodeaddress

Address

of

a

4-byte

output

field

to

contain

the

CQSUPD

return

code.

If

the

CQSUPD IBM

Confidential

158

Common

Queue

Server

Guide

and

Reference

return

code

in

register

15

is

non-zero,

the

values

returned

for

returncodeaddress

and

reasoncodeaddress

are

not

valid

because

CQS

detected

an

error

and

did

not

process

the

request.

RSNCODE=reasoncodeaddress

Address

of

a

4-byte

output

field

to

contain

the

CQSUPD

reason

code.

Return

and

Reason

Codes

for

CQSUPD

Table

48

table

lists

the

return

and

reason

codes

that

can

be

returned

for

CQSUPD

requests.

Use

a

CQSUPD=DSECT

request

to

include

equate

statements

in

your

program

for

the

return

and

reason

codes.

Table

48.

CQSUPD

Return

and

Reason

Codes

Return

Code

Reason

Code

Meaning

X'00000000'

X'00000000'

Request

completed

successfully.

X'00000008'

X'00000210'

cqstoken

is

invalid.

X'00000008'

X'00000214'

contoken

is

invalid.

X'00000008'

X'00000218'

FUNC

is

invalid.

X'00000008'

X'00000250'

resourcelistcount

is

invalid.

X'00000008'

X'00000254'

listaddress

is

invalid.

X'00000008'

X'00000280'

Request

not

allowed

for

a

queue

structure.

X'00000008'

X'00000284'

Parmlist

version

is

invalid.

X'00000008'

X'00000288'

List

version

is

invalid.

X'0000000C'

X'00000300'

Request

succeeded

for

at

least

one

but

not

all

list

entries.

See

compcode

for

individual

errors.

X'0000000C'

X'00000304'

Request

failed

for

all

entries.

See

compcode

for

individual

errors.

X'0000000C'

X'00000308'

Request

failed

for

one

or

more

list

entries

because

of

version

mismatch.

Those

resources

already

exist

as

the

resourcetype

specified.

All

other

entries

were

successful.

X'00000010'

X'00000430'

No

CQS

address

space.

X'00000014'

X'00000500'

Internal

error.

Example

of

Using

a

CQS

Request:

CQSREAD

Figure

25

on

page

160

shows

how

you

can

use

a

CQSREAD

request

for

a

client

subsystem.

CQSUPDIBM

Confidential

Chapter

6.

CQS

Client

Requests

159

*

FUNCTION:

USE

CQSREAD

REQUEST

TO

RETRIEVE

A

MESSAGE

FROM

SHARED

*

*

QUEUES.

*

*

*

*

THE

CALLER

OF

THIS

MODULE

PASSES

THE

ADDRESS

AND

SIZE

OF

*

*

A

BUFFER.

IF

THIS

MODULE

ENDS

WITH

RC=0,

THAT

BUFFER

*

*

HOLDS

THE

DATA

OBJECT

OR

PARTIAL

DATA.

IF

THIS

MODULE

*

*

ENDS

WITH

A

NON-ZERO

RC,

THE

BUFFER’S

CONTENTS

ARE

*

*

UNPREDICTABLE.

*

*

*

*

REGISTERS

ON

ENTRY:

*

*

*

*

R2

-

READ

OBJECT

BUFFER

ADDRESS

(BUFFER

TO

READ

OBJECT

INTO)

*

*

R3

-

SIZE

OF

READ

OBJECT

BUFFER

*

*

R4

-

CQS

REGISTRATION

TOKEN

ADDRESS

*

*

R5

-

CQS

CONNECT

TOKEN

ADDRESS

*

*

R9

-

ECB

ADDRESS

*

*

R13

-

SAVE

AREA

ADDRESS

*

*

R14

-

RETURN

ADDRESS

*

*

R15

-

GETDOBJ

ENTRY

POINT

ADDRESS

*

*

*

*

REGISTERS

DURING

EXECUTION:

*

*

*

*

R0

-

WORK

REGISTER

*

*

R1

-

WORK

REGISTER

*

*

R2

-

CQSREAD

PARMLIST

AREA

ADDRESS

*

*

R3

-

WORK

REGISTER

*

*

R4

-

WORK

REGISTER

*

*

R5

-

WORK

REGISTER

*

*

R6

-

WORK

REGISTER

*

*

R7

-

WORK

REGISTER

*

*

R8

-

WORK

REGISTER

*

*

R9

-

ECB

ADDRESS

*

*

R10

-

WORK

REGISTER

*

*

R11

-

WORK

REGISTER

*

*

R12

-

BASE

REGISTER

*

*

R13

-

SAVE

AREA

ADDRESS

*

*

R14

-

WORK

REGISTER

*

*

R15

-

WORK

REGISTER

*

*

*

*

MACROS

REFERENCED:

*

*

WAIT

*

*

CQSREAD

*

*

*

*

RETURN

CODES:

*

*

R15

-

RETURN

CODE

*

*

X’00’

CQSREAD

SUCCESSFUL/PARTIAL

DATA

RETURNED

*

*

X’08’

INTERFACE

PROBLEM

*

*

X’0C’

NO

MESSAGE

FOR

QNAME

*

*

X’10’

REQUEST

IS

UNSUCCESSFUL,

UNEXPECTED

RETURN

OR

REASON

*

*

CODE

*

*

*

Figure

25.

Sample

for

CQSREAD

Request

(Part

1

of

4)

Example IBM

Confidential

160

Common

Queue

Server

Guide

and

Reference

GETDOBJ

CSECT

STM

R14,R12,12(R13)

SAVE

THE

REGS

LR

R12,R15

R12

=

PROGRAM

BASE

REGISTER

USING

GETDOBJ,R12

LA

R14,SAVEAREA

CHAIN

SAVE

AREAS

ST

R13,4(,R14)

THIS

SAVEAREA

BACKWARD

PTR

ST

R14,8(,R13)

LAST

SAVEAREA

FORWARD

PTR

LA

R13,SAVEAREA

THIS

ROUTINE’S

SAVEAREA

ST

R2,RDRBUFA

SAVE

A(BUFFER

TO

READ

INTO)

ST

R3,RDRBUFSZ

SAVE

READ

BUFFER

SIZE

MVC

RDRRQTK,0(R4)

SAVE

CQS

REGISTRATION

TOKEN

MVC

RDRCONTK,0(R5)

SAVE

CQS

CONNECT

TOKEN

ST

R9,RDRECBA

SAVE

A(ECB)

LA

R2,RDRPARM

LOAD

A(PARAMETER

AREA)

INTO

R2

XC

RDRLCKTK,RDRLCKTK

LOCKTOKEN=0

FOR

FIRST

CQSREAD

XC

0(4,R9),0(R9)

CLEAR

CALLER’S

ECB

*

RETRIEVE

RECORD

FROM

IMS

SHARED

QUEUES

CQSREAD

FUNC=READ,

X

CQSTOKEN=@(RDRRQTK),

A(REGISTRATION

TOKEN)

X

PARM=(R2),

A(CQSREAD

PARMLIST

AREA)

X

CONTOKEN=@(RDRCONTK),

A(CONNECT

TOKEN)

X

ECB=RDRECBA,

A(ECB)

X

LCKTOKEN=@(RDRLCKTK),

A(LOCK

TOKEN)

-

RETURNED

X

UOW=@(RDRUOW),

A(UOW)

-

RETURNED

X

LOCAL=NO,

READ

OBJECT

FROM

SHARED

QUEUE

X

QNAME=@(RDRQNAME),

A(QUEUE

NAME)

X

QPOS=FIRST,

READ

FIRST

OBJECT

ON

QUEUE

X

OBJSIZE=@(RDROBJSZ),

A(DATA

OBJECT

SIZE)

-

RETURNED

X

RSNCODE=@(RDRRSN),

A(REASON

CODE)

-

RETURNED

X

RETCODE=@(RDRRC),

A(RETURN

CODE)

-

RETURNED

X

BUFFER=RDRBUFA,

A(CLIENT’S

READ

BUFFER)

X

BUFSIZE=@(RDRBUFSZ)

CLIENT’S

READ

BUFFER

SIZE

LTR

R15,R15

TEST

RETURN

CODE

FROM

CQS

INTERFACE

BZ

CHECKRC

ZERO

-

CQSREAD

OK

*

OTHER

-

RETURN

R0,

R15

IN

PARM

LIST

LA

R15,RC08

CQS

INTERFACE

PROBLEM

B

GOEXIT

RETURN

TO

CALLER

*

CHECK

CQSREAD

RETURN

CODE

CHECKRC

DS

0H

WAIT

ECB=(R9)

WAIT

FOR

CQSREAD

TO

COMPLETE

L

R15,RDRRC

RETURN

CODE

LTR

R15,R15

CQSREAD

REQUEST

SUCCESSFUL?

BZ

GOEXIT

YES

-

RETURN

TO

CALLER

Figure

25.

Sample

for

CQSREAD

Request

(Part

2

of

4)

ExampleIBM

Confidential

Chapter

6.

CQS

Client

Requests

161

*

CHECK

FOR

CQS

WARNING

RETURN

CODE

CLC

RDRRC,=AL4(RQRCWARN)

CQSREAD

WARNING?

BNE

UNEXPECT

NO

-

SET

RC

AND

RETURN

TO

CALLER

*

CQSREAD:

WARNING

RETURN

CODE

-

CHECK

WARNING

REASON

CODE

*

CHECK

FOR

DATA

OBJECT

CLC

RDRRSN,=AL4(RRDNOOBJ)

NO

DATA

OBJECT?

BNE

PARTIAL

NO,

CHECK

NEXT

REASON

CODE

LA

R15,RC0C

SET

NO

DATA

OBJECT

RETURN

CODE

B

GOEXIT

RETURN

TO

CALLER

*

CHECK

PARTIAL

DATA

RETURNED

*

PARTIAL

DATA

RETURNED

-

RETURN

DATA

OBJECT

-

RETURN

CODE

0

PARTIAL

DS

0H

CLC

RDRRSN,=AL4(RRDPARTL)

PARTIAL

DATA

RETURNED?

BNE

UNEXPECT

NO

-

SET

RC

AND

RETURN

TO

CALLER

LA

R15,RC00

SET

RETURN

CODE

B

GOEXIT

RETURN

TO

CALLER

*

UNEXPECTED

RETURN

OR

REASON

CODE

UNEXPECT

DS

0H

LA

R15,RC10

UNEXPECTED

RETURN

OR

REASON

CODE

B

GOEXIT

RETURN

TO

CALLER

*

STANDARD

EXIT

*

GOEXIT

DS

0H

L

13,4(,13)

GET

PREVIOUS

SAVE

LEVEL

L

14,12(13)

A(RETURN-TO-CALLER)

LM

0,12,20(13)

RESTORE

REGS

OI

15(13),X’01’

SET

RETURN

FLAG

IN

CALLER

SAVE

AREA

BR

14

RETURN

TO

CALLER

*

CONSTANTS

*

*

*

GETDOBJ

RETURN

CODES

*

RC00

EQU

0

CQSREAD

SUCCESSFUL

-

RC08

EQU

8

INTERFACE

PROBLEM

RC0C

EQU

12

NO

MESSAGE

FOR

QNAME

RC10

EQU

16

UNEXPECTED

RETURN

CODE

Figure

25.

Sample

for

CQSREAD

Request

(Part

3

of

4)

Example IBM

Confidential

162

Common

Queue

Server

Guide

and

Reference

*

*

REGISTER

EQUATES

*

R0

EQU

0

R1

EQU

1

R2

EQU

2

R3

EQU

3

R4

EQU

4

R5

EQU

5

R6

EQU

6

R7

EQU

7

R8

EQU

8

R9

EQU

9

R10

EQU

10

R11

EQU

11

R12

EQU

12

R13

EQU

13

R14

EQU

14

R15

EQU

15

*

VARIABLES

*

DS

0F

SAVEAREA

DS

18F

DS

0D

RDRRQTK

DS

XL16

CQS

REGISTRATION

TOKEN

RDRCONTK

DS

XL16

CQS

CONNECT

TOKEN

RDRLCKTK

DS

XL16

LOCKTOKEN

(RETURNED)

RDRUOW

DS

XL32

UOW

(RETURNED)

RDRQNAME

DS

0XL16

QUEUE

NAME

DC

X’05’

CLIENT

QUEUE

TYPE

5

DC

CL15’FFSTR01CF02CQ04’

RDROBJSZ

DS

F

OBJECT

SIZE

(RETURNED)

RDRRSN

DS

F

CQSREAD

REASON

CODE

(RETURNED)

RDRRC

DS

F

CQSREAD

RETURN

CODE

(RETURNED)

RDRBUFA

DS

A

A(READ

OBJECT

BUFFER)

RDRBUFSZ

DS

F

SIZE

OF

READ

OBJECT

BUFFER

RDRECBA

DS

A

A(ECB)

RDRPARM

DS

XL(CQSREAD_PARM_LEN)

CQSREAD

PARMLIST

*

LITERALS

*

LTORG

CQSREAD

FUNC=DSECT

CQSREAD

DSECTS

&

EQUATES

END

GETDOBJ

Figure

25.

Sample

for

CQSREAD

Request

(Part

4

of

4)

ExampleIBM

Confidential

Chapter

6.

CQS

Client

Requests

163

Example IBM

Confidential

164

Common

Queue

Server

Guide

and

Reference

Chapter

7.

CQS

Client

Exit

Routines

This

section

describes

the

Common

Queue

Server

(CQS)

client

exit

routines.

In

this

section:

“Client

CQS

Event

Exit

Routine”

“CQS

Client

Structure

Event

Exit

Routine”

on

page

167

“CQS

Client

Structure

Inform

Exit

Routine”

on

page

175

This

section

contains

Product-sensitive

Programming

Interface

information.

CQS

client

exit

routines

allow

a

CQS

client

to

monitor

the

CQS

environment.

They

are

written

and

supplied

by

a

client

(such

as

IMS).

Each

client

must

write

its

own

exit

routines

tailored

to

the

needs

of

that

client

product,

to

be

supplied

as

part

of

the

product.

No

sample

CQS

client

exit

routines

are

provided.

The

exit

routines

are

given

control

in

the

client’s

address

space

in

one

of

these

two

ways:

v

For

authorized

clients

(those

running

in

supervisor

state,

key

0-7),

the

exits

receive

control

in

service

request

block

(SRB)

mode.

v

For

non-authorized

clients

(those

running

in

problem

state

or

non-key

0-7),

the

exits

receive

control

as

an

interrupt

request

block

(IRB)

under

the

client

task

control

block

(TCB)

that

owns

the

cross

memory

resources

for

the

address

space

(the

TCB

pointed

to

by

ASCBXTCB).

Because

each

call

to

a

client

exit

routine

runs

under

its

own

SRB,

the

order

in

which

the

exits

are

driven

is

not

guaranteed.

It

is

possible

for

client

exit

routines

to

be

driven

out

of

order

(different

from

the

order

from

which

CQS

scheduled

them).

Your

exit

routines

must

be

able

to

tolerate

events

that

are

received

out

of

order.

All

client

exit

routine

parameter

lists

contain

an

8-byte

time

stamp

in

STCK

format

that

is

the

time

when

CQS

scheduled

the

SRB

for

the

exit

routine.

This

time

stamp

can

be

used

to

help

determine

the

original

order

of

events.

Client

CQS

Event

Exit

Routine

The

CQS

Event

exit

routine

is

driven

when

an

event

occurs

in

CQS

that

is

related

to

CQS

itself

and

might

require

some

action

to

be

taken

by

the

client.

The

client

loads

the

exit

routine

and

passes

the

exit

routine

address

on

the

CQSREG

request.

This

exit

routine

is

driven

in

the

client

address

space,

either

as

an

SRB

(for

authorized

clients),

or

as

an

IRB

(for

non-authorized

clients).

The

CQS

Event

exit

routine

is

required.

The

following

CQS

events

drive

the

CQS

Event

exit

routine:

v

CQS

initialization

-

client

can

reconnect

to

CQS

v

CQS

termination

-

abnormal

termination

Contents

of

Registers

on

Entry

Register

Contents

0

Length

in

bytes

of

the

parameter

list

pointed

to

by

R1.

1

Address

of

CQS

Event

Exit

Parameter

List

(mapped

by

macro

CQSCEVX).

IBM

Confidential

©

Copyright

IBM

Corp.

1997,

2004

165

13

Address

of

a

standard

18-word

save

area,

immediately

followed

by

an

18-word

work

area

that

is

available

for

the

exit

routine’s

use.

The

save

area

and

the

work

area

are

not

chained

together.

The

save

area

or

work

area

storage

is

not

cleared

on

entry

to

the

CQS

Event

exit

routine.

14

Return

address.

15

Entry

point

of

exit

routine.

Restriction:

All

addresses

passed

to

the

CQS

Event

Exit

routine

are

valid

only

until

the

exit

routine

returns

to

its

caller.

These

addresses

should

never

be

stored

and

used

after

the

CQS

Event

exit

routine

has

returned.

Doing

so

can

cause

unpredictable

results,

because

the

storage

pointed

to

by

the

addresses

might

have

changed,

or

it

might

have

been

freed.

Contents

of

Registers

on

Exit

The

CQS

Event

exit

routine

must

preserve

the

contents

of

R13;

it

does

not

need

to

preserve

any

other

register’s

contents.

Therefore,

it

is

free

to

use

the

save

area

pointed

to

by

R13

for

any

calls

to

other

services

as

needed

(it

can

also

use

the

18-word

area

following

the

save

area

for

additional

save

area

or

work

area

storage).

Register

Contents

13

The

same

value

it

had

on

entry

to

the

CQS

Event

exit

routine.

15

Return

code

0

Always

set

this

to

zero.

CQS

Restart

Entry

Parameter

List

Table

49

describes

the

CQS

restart

entry

parameters

for

the

Client

CQS

Event

exit

routine.

Table

49.

Client

CQS

Event

Exit

Routine

Parameter

List:

CQS

Restart

Entry

Field

Name

Offset

Length

Description

CEVX_PVSN

X'00'

X'04'

Parameter

List

Version

Number

(00000001).

CEVX_EVENT

X'04'

X'04'

CQS

Event

Code

1

CQS

Initialization

Event

(CEVX_INIT).

CEVX_SCODE

X'08'

X'04'

CQS

Event

Subcode

1

Client

can

re-register

and

reconnect

to

CQS

(CEVX_RESTART).

CEVX_DATA

X'0C'

X'04'

Event

exit

routine

client

data

that

was

passed

to

CQS

on

the

CQSREG

request.

CEVX_CQSID

X'10'

X'08'

CQS

identifier.

CEVX_CQSVER

X'18'

X'04'

CQS

version

number.

CEVX_TSTMP

X'1C'

X'08'

Time

stamp

representing

the

time

the

exit

routine

was

scheduled

(in

STCK

format).

CQS

Abnormal

Termination

Parameter

List

Table

50

on

page

167

describes

the

CQS

abnormal

termination

parameters

for

the

Client

CQS

Event

exit

routine.

CQS

Event

Client

Exit IBM

Confidential

166

Common

Queue

Server

Guide

and

Reference

Table

50.

Client

CQS

Event

Exit

Routine

Parameter

List:

CQS

Abnormal

Termination

Offset

Length

Description

X'00'

X'04'

Parameter

List

Version

Number

(00000001).

X'04'

X'04'

CQS

Event

Code

2

CQS

Termination

Event.

X'08'

X'04'

CQS

Event

Subcode

1

CQS

abnormal

termination

entry.

The

CQS

address

space

is

terminating

abnormally.

X'0C'

X'04'

Event

exit

routine

client

data

that

was

passed

to

CQS

on

the

CQSREG

request.

X'10'

X'08'

CQS

identifier.

X'18'

X'04'

CQS

version

number.

X'1C'

X'08'

Time

stamp

representing

the

time

the

exit

routine

was

scheduled

(in

STCK

format).

X'24'

X'04'

Abnormal

Termination

reason

code.

(CQS

abend

code)

Client

Processing

after

CQS

Abnormal

Termination

or

Restart

If

a

client

is

registered

with

CQS

and

CQS

terminates

abnormally,

the

client’s

CQS

Event

exit

routine

is

called

with

a

CQS

abnormal

termination

event.

The

client

can

choose

to

wait

for

CQS

to

be

restarted,

at

which

time

the

client’s

CQS

Event

exit

routine

is

scheduled

for

a

CQS

restart

event.

When

the

CQS

restart

event

is

received,

the

client

must

perform

the

following

steps

before

it

can

resume

making

CQS

requests:

1.

The

client

must

reregister

with

CQS

using

the

CQSREG

macro.

This

step

is

necessary

to

reestablish

the

cross-memory

connections

between

the

client

and

CQS.

Failure

to

reregister

can

result

in

an

S0D6

abend

when

the

next

CQS

request

is

issued.

2.

The

client

must

reconnect,

using

the

CQSCONN

macro,

to

any

structures

it

was

using

prior

to

the

CQS

failure.

3.

The

client

must

resync

indoubt

UOWs

with

CQS,

using

the

CQSRSYNC

macro.

4.

The

client

must

register

interest

in

queues,

using

the

CQSINFRM

request.

If

CQS

terminated

abnormally,

it

lost

all

previous

client

registration

information.

CQS

Client

Structure

Event

Exit

Routine

The

Client

Structure

Event

exit

routine

is

driven

when

an

event

occurs

concerning

a

CQS-managed

structure

that

might

require

some

action

to

be

taken

by

the

client.

The

client

loads

the

exit

routine

and

passes

the

address

of

the

exit

routine

on

the

CQSCONN

request.

This

exit

routine

is

driven

in

the

client

address

space,

either

as

an

SRB

(for

authorized

clients),

or

as

an

IRB

(for

non-authorized

clients).

This

exit

routine

is

required,

and

applies

both

to

resource

and

queue

structures.

The

following

structure

events

drive

the

Client

Structure

Event

exit

routine:

v

Resync

UOW

Processing

–

When

CQS

Resync

processing

completes

for

an

individual

UOW,

which

had

been

deferred.

–

When

CQS

Resync

processing

occurs

for

the

list

of

client

UOWs

that

were

not

passed

during

the

CQS

Resync

request.

CQS

Event

Client

ExitIBM

Confidential

Chapter

7.

CQS

Client

Exit

Routines

167

–

Important:

Resync

UOW

Processing

only

applies

to

queue

structures.

v

Checkpoint

Event

–

When

structure

checkpoint

begin,

end,

or

failure

occurs.

–

Important:

The

Checkpoint

event

only

applies

to

queue

structures.

v

Structure

Rebuild

Event

–

When

structure

copy

(rebuild)

begin,

end,

or

failure

occurs.

–

When

structure

recovery

(rebuild)

begin,

end,

or

failure

occurs.

–

When

structure

recovery

lost

UOWs

occurs.

v

Structure

Overflow

Event

–

When

one

or

more

queues

move

to

the

overflow

structure.

–

When

one

or

more

queues

move

from

the

overflow

structure.

This

event

also

indicates

when

the

structure

is

no

longer

in

overflow

mode.

–

Important:

The

Structure

Overflow

event

only

applies

to

queue

structures.

v

Structure

Status

Change

Event

–

When

the

structure

is

available

again

after

a

loss.

–

When

the

structure

fails.

For

resource

structures

only,

failure

means

that

CQS

cannot

allocate

a

new

resource

structure.

–

When

CQS

is

able

to

repopulate

(allocate)

a

new

resource

structure.

–

When

CQS

loses

its

connection

to

the

structure.

–

When

the

log

stream

becomes

available,

making

the

structure

available.

Contents

of

Registers

on

Entry

Register

Contents

0

Length

in

bytes

of

the

parameter

list

pointed

to

by

R1.

1

Address

of

Client

Structure

Event

exit

routine

parameter

list

(mapped

by

macro

CQSSEVX).

13

Address

of

a

standard

18-word

save

area,

immediately

followed

by

an

18-word

work

area

that

is

available

for

use

by

the

exit

routine.

The

save

area

and

the

work

area

are

not

chained

together.

The

save

area

or

work

area

storage

is

not

cleared

on

entry

to

the

Client

Structure

Event

exit

routine.

14

Return

address.

15

Entry

point

of

exit

routine.

Restriction:

All

addresses

that

are

passed

to

the

Client

Structure

Event

exit

routine

are

valid

only

until

the

exit

routine

returns

to

its

caller.

These

addresses

should

never

be

stored

and

used

after

the

CQS

Client

Structure

Event

exit

routine

has

returned.

Doing

so

can

cause

unpredictable

results,

because

the

storage

pointed

to

by

the

addresses

might

have

changed,

or

it

might

have

been

freed.

Contents

of

Registers

on

Exit

The

Client

Structure

Event

exit

routine

must

preserve

the

contents

of

R13;

it

does

not

need

to

preserve

any

other

register

contents.

Therefore,

it

is

free

to

use

the

save

area

pointed

to

by

R13

for

any

calls

to

other

services

as

needed.

The

exit

routine

can

also

use

the

18-word

area

following

the

save

area

for

additional

save

area

or

work

area

storage.

Register

Contents

Structure

Event

Client

Exit IBM

Confidential

168

Common

Queue

Server

Guide

and

Reference

13

The

same

value

it

had

on

entry

to

the

Client

Structure

Event

exit

routine.

15

Return

code

0

Always

set

this

to

zero.

Deferred

Resync

Complete

Parameter

List

for

CQS

Client

Structure

Event

Table

51

describes

the

deferred

resync

complete

parameters

for

the

Client

Structure

Event

exit

routine.

Table

51.

Client

Structure

Event

Exit

Routine

Parameter

List:

Deferred

Resync

Complete

Offset

Length

Description

X'00'

X'04'

Parameter

List

Version

Number

(00000001).

X'04'

X'04'

Structure

Event

Code

1

Resync

UOW

Event.

X'08'

X'04'

Structure

Event

Subcode

1

Deferred

Resync

complete.

X'0C'

X'04'

Structure

Event

exit

routine

client

data

that

was

passed

to

CQS

on

the

CQSCONN

request.

X'10'

X'08'

CQS

identifier.

X'18'

X'04'

CQS

version

number.

X'1C'

X'10'

Structure

Name.

X'2C'

X'08'

Time

stamp

representing

the

time

the

exit

routine

was

scheduled

(in

STCK

format).

X'34'

X'20'

Unit

of

work

(UOW)

identifier.

X'54'

X'10'

Queue

Name.

X'64'

X'10'

Deferred

Resync

token.

This

is

the

Put

token

that

is

used

for

Put

Forget

processing.

X'74'

X'02'

CQS

UOW

State

X'0010'

Put

Insync

Client

status

is

Put

Complete.

CQS

status

is

Put

Complete.

CQS

knows

about

the

UOW

and

all

data

objects

for

the

UOW

are

out

on

the

coupling

facility.

A

PUT

token

is

returned

for

the

UOW.

The

client

should

use

the

PUT

token

to

issue

the

CQSPUT

FUNC=FORGET

request.

X'00F2'

Unknown

Client

status

is

Put

Complete.

CQS

has

no

knowledge

of

the

UOW.

If

the

client

believes

the

UOW

is

in

Put

Complete

status,

the

client

must

determine

whether

to

reissue

the

CQSPUT

requests.

X'76'

X'02'

Reserved.

CQS

Resync

Parameter

List

Table

52

on

page

170

describes

the

CQS

initiated

resync

parameters

for

the

Client

Structure

Event

exit

routine.

Structure

Event

Client

ExitIBM

Confidential

Chapter

7.

CQS

Client

Exit

Routines

169

Table

52.

Client

Structure

Event

Routine

Exit

Parameter

List:

CQS

Initiated

Resync

Offset

Length

Description

X'00'

X'04'

Parameter

List

Version

Number

(00000001).

X'04'

X'04'

Structure

Event

Code

1

Resync

UOW

Event.

X'08'

X'04'

Structure

Event

Subcode

2

CQS

Initiated

Resync

processing.

X'0C'

X'04'

Structure

Event

exit

routine

client

data

that

was

passed

to

CQS

on

the

CQSCONN

request.

X'10'

X'08'

CQS

identifier.

X'18'

X'04'

CQS

version

number.

X'1C'

X'10'

Structure

Name.

X'2C'

X'08'

Time

stamp

representing

the

time

the

exit

routine

was

scheduled

(in

STCK

format).

X'34'

X'04'

Number

of

unit

of

work

(UOW)

list

entries.

X'38'

X'04'

Length

of

each

UOW

list

entry.

X'3C'

X'04'

Offset

into

parmlist

of

start

of

UOW

list.

The

parmlist

is

one

contiguous

piece

of

storage,

including

the

UOW

list.

CQS

Resync

UOW

Entry

Table

53

describes

the

CQS

resync

UOW

entry

parameters

for

the

Client

Structure

Event

exit

routine.

Table

53.

CQS

Resync

UOW

Entry

Parameters

Offset

Length

Description

X'00'

X'20'

Unit

of

work

(UOW)

identifier.

X'20'

X'10'

Queue

name.

X'30'

X'10'

Resync

token.

v

If

the

CQS

UOW

status

is

locked,

this

field

contains

a

lock

token.

This

lock

token

is

to

be

used

on

subsequent

requests,

such

as

CQSREAD

and

CQSUNLCK

to

process

the

locked

data

object.

v

If

the

CQS

UOW

status

is

COLD

QUEUE,

this

field

contains

a

cold

queue

token.

This

cold

queue

token

is

to

be

used

along

with

the

UOW

on

a

CQSRECVR

request

to

recover

the

data

object

on

the

cold

queue.

Structure

Event

Client

Exit IBM

Confidential

170

Common

Queue

Server

Guide

and

Reference

Table

53.

CQS

Resync

UOW

Entry

Parameters

(continued)

Offset

Length

Description

X'40'

X'02'

CQS

UOW

Status

X'00F1'

Locked.

This

data

object

is

locked.

A

lock

token

is

passed

back

to

the

client

in

the

Resync

token

field.

This

token

field

is

required

on

subsequent

requests

to

process

the

locked

data

object.

X'00F3'

Cold

Queue:

CQS-Client

Cold

Start.

This

data

object

is

on

the

cold

queue

because

of

either

a

CQS

cold

start

or

client

cold

start.

A

cold

queue

token

is

passed

back

to

the

client

in

the

Resync

token

field.

This

token

field

is

required

on

a

subsequent

CQSRECVR

request

to

process

the

data

object

on

the

cold

queue.

X'00F4'

Cold

Queue:

Unknown.

This

data

object

is

on

the

cold

queue.

CQS

warm

started

after

a

structure

rebuild

from

the

log

took

place

and

the

object

was

found

locked

by

CQS.

A

cold

queue

token

is

passed

back

to

the

client

in

the

Resync

token

field.

This

token

field

is

required

on

a

subsequent

CQSRECVR

request

to

process

the

data

object

on

the

cold

queue.

X'42'

X'02'

Reserved.

Checkpoint

Parameter

List

for

CQS

Client

Structure

Event

Table

54

describes

the

checkpoint

parameters

for

the

Client

Structure

Event

exit

routine.

Table

54.

Client

Structure

Event

Exit

Routine

Parameter

List:

Checkpoint

Offset

Length

Description

X'00'

X'04'

Parameter

List

Version

Number

(00000001).

X'04'

X'04'

Structure

Event

Code

2

Checkpoint

Event.

X'08'

X'04'

Structure

Event

Subcode

1

Structure

checkpoint

begin.

2

Structure

checkpoint

end.

3

Structure

checkpoint

failure.

X'0C'

X'04'

Structure

Event

exit

routine

client

data

that

was

passed

to

CQS

on

the

CQSCONN

request.

X'10'

X'08'

CQS

identifier.

X'18'

X'04'

CQS

version

number.

X'1C'

X'10'

Structure

Name.

X'2C'

X'08'

Time

stamp

representing

the

time

the

exit

routine

was

scheduled

(in

STCK

format).

X'34'

X'08'

CQS

identifier

of

the

master

CQS

performing

the

checkpoint

process.

Structure

Event

Client

ExitIBM

Confidential

Chapter

7.

CQS

Client

Exit

Routines

171

Table

54.

Client

Structure

Event

Exit

Routine

Parameter

List:

Checkpoint

(continued)

Offset

Length

Description

X'3C'

X'01'

Flag

byte.

X'80'

This

CQS

is

the

master

of

the

process.

The

CQS

identifier

and

master

CQS

identifier

are

the

same.

X'3D'

X'03'

Reserved.

Structure

Rebuild

Parameter

List

for

CQS

Client

Structure

Event

Table

55

describes

the

structure

rebuild

parameters

for

the

Client

Structure

Event

exit

routine.

Table

55.

Client

Structure

Event

Exit

Routine

Parameter

List:

Structure

Rebuild

Offset

Length

Description

X'00'

X'04'

Parameter

List

Version

Number

(00000001).

X'04'

X'04'

Structure

Event

Code

3

Structure

Rebuild

Event.

X'08'

X'04'

Structure

Event

Subcode

1

Structure

rebuild

begin.

2

Structure

rebuild

(copy)

end.

3

Structure

rebuild

(copy)

failure.

4

Structure

rebuild

failure.

5

Structure

rebuild

(recovery)

end.

6

Structure

rebuild

(recovery)

failure.

X'0C'

X'04'

Structure

Event

exit

routine

client

data

that

was

passed

to

CQS

on

the

CQSCONN

request.

X'10'

X'08'

CQS

identifier.

X'18'

X'04'

CQS

version

number.

X'1C'

X'10'

Structure

Name.

X'2C'

X'08'

Time

stamp

representing

the

time

the

exit

routine

was

scheduled

(in

STCK

format).

X'34'

X'08'

CQS

identifier

of

the

master

CQS

performing

the

rebuild

process.

X'3C'

X'01'

Flag

byte.

X'80'

This

CQS

is

the

master

of

the

process.

The

CQS

identifier

and

master

CQS

identifier

are

the

same.

X'3D'

X'03'

Reserved.

Structure

Rebuild

Lost

UOWs

Parameter

List

for

CQS

Client

Structure

Event

Table

56

on

page

173

describes

the

structure

rebuild

lost

UOW

parameters

for

the

Client

Structure

Event

exit

routine.

These

UOWs

are

nonrecoverable

and

were

lost

by

the

last

structure

recovery.

Some

of

the

UOWs

in

the

list

might

belong

to

other

clients

if

the

structure

recovery

occurred

while

CQS

was

down.

Structure

Event

Client

Exit IBM

Confidential

172

Common

Queue

Server

Guide

and

Reference

Table

56.

Client

Structure

Event

Exit

Routine

Parameter

List:

Structure

Rebuild

Lost

UOWs

Offset

Length

Description

X'00'

X'04'

Parameter

List

Version

Number

(00000001).

X'04'

X'04'

Structure

Event

Code

3

Structure

Rebuild

Event.

X'08'

X'04'

Structure

Event

Subcode

7

Structure

recovery

lost

UOWs.

Important:

This

subcode

applies

only

to

queue

structures.

X'0C'

X'04'

Structure

Event

exit

routine

client

data

that

was

passed

to

CQS

on

the

CQSCONN

request.

X'10'

X'08'

CQS

identifier.

X'18'

X'04'

CQS

version

number.

X'1C'

X'10'

Structure

Name.

X'2C'

X'08'

Time

stamp

representing

the

time

the

exit

routine

was

scheduled

(in

STCK

format).

X'34'

X'08'

CQS

identifier

of

the

master

CQS

performing

the

rebuild

process.

X'3C'

X'01'

Flag

byte.

X'80'

This

CQS

is

the

master

of

the

process.

The

CQS

identifier

and

master

CQS

identifier

are

the

same.

X'3D'

X'03'

Reserved.

X'40'

X'04'

Number

of

Lost

UOW

list

entries.

X'44'

X'04'

Length

of

each

Lost

UOW

list

entry.

X'48'

X'04'

Offset

into

parmlist

of

start

of

Lost

UOW

list.

The

parmlist

is

one

contiguous

piece

of

storage,

including

the

Lost

UOW

list.

Rebuild

Lost

UOW

Entry

for

CQS

Client

Structure

Event

Table

57

describes

the

CQS

rebuild

lost

UOW

entry

parameters

for

the

Client

Structure

Event

exit

routine.

Table

57.

CQS

Rebuild

Lost

UOW

Entry

Parameters

Offset

Length

Description

X'00'

X'20'

Unit

of

work

(UOW)

identifier.

X'20'

X'10'

Client

Queue

Name.

X'30'

X'1'

Lost

UOW

status.

X'80'

Lost

UOW

was

on

client

queue.

X'40'

Lost

UOW

was

locked.

X'20'

Lost

UOW

was

on

COLDQ.

X'10'

Lost

UOW

was

on

CQS

private

queue.

X'31'

X'3'

Reserved.

Structure

Event

Client

ExitIBM

Confidential

Chapter

7.

CQS

Client

Exit

Routines

173

Structure

Overflow

Parameter

List

for

CQS

Client

Structure

Event

Table

58

describes

the

structure

overflow

parameters

for

the

Client

Structure

Event

exit

routine.

Table

58.

Client

Structure

Event

Exit

Routine

Parameter

List:

Structure

Overflow

Offset

Length

Description

X'00'

X'04'

Parameter

List

Version

Number

(00000001).

X'04'

X'04'

Structure

Event

Code

4

Structure

Overflow

Event.

X'08'

X'04'

Structure

Event

Subcode

1

Move

queues

to

overflow.

One

or

more

queues

was

selected

as

candidates

to

be

moved

to

the

overflow

structure

and

was

approved

by

the

Queue

Overflow

user

exit

routine.

2

Move

queues

from

overflow.

One

or

more

queues

moved

from

the

overflow

structure

back

to

the

primary

structure,

because

the

queues

were

drained

on

the

overflow

structure.

New

work

for

these

queues

is

placed

on

the

primary

structure.

X'0C'

X'04'

Structure

Event

exit

routine

client

data

that

was

passed

to

CQS

on

the

CQSCONN

request.

X'10'

X'08'

CQS

identifier.

X'18'

X'04'

CQS

version

number.

X'1C'

X'10'

Structure

Name.

X'2C'

X'08'

Time

stamp

representing

the

time

the

exit

routine

was

scheduled

(in

STCK

format).

X'34'

X'08'

CQS

identifier

of

the

master

CQS

performing

the

overflow

process.

X'3C'

X'01'

Flag

byte.

X'80'

This

CQS

is

the

master

of

the

process.

The

CQS

identifier

and

master

CQS

identifier

are

the

same.

X'40'

The

structure

is

no

longer

in

overflow

mode.

This

value

applies

only

to

subcode

2.

X'3D'

X'03'

Reserved.

X'40'

X'04'

Number

of

Queue

Name

entries

in

the

list.

X'44'

X'04'

Length

of

each

Queue

Name

list

entry.

X'48'

X'04'

Offset

into

parmlist

of

start

of

Queue

Name

list.

Each

Queue

Name

list

entry

contains

the

16-byte

queue

name

of

a

queue

that

is

being

moved

to

the

overflow

structure.

The

parmlist

is

one

contiguous

piece

of

storage,

including

the

Queue

Name

list.

Structure

Status

Change

Parameter

List

for

CQS

Client

Structure

Event

Table

59

describes

the

structure

status

change

parameters

for

the

Client

Structure

Event

exit

routine.

Table

59.

Client

Structure

Event

Exit

Routine

Parameter

List:

Structure

Status

Change

Offset

Length

Description

X'00'

X'04'

Parameter

List

Version

Number

(00000002).

Structure

Event

Client

Exit IBM

Confidential

174

Common

Queue

Server

Guide

and

Reference

Table

59.

Client

Structure

Event

Exit

Routine

Parameter

List:

Structure

Status

Change

(continued)

Offset

Length

Description

X'04'

X'04'

Structure

Event

Code.

5

Structure

Status

Change

Event.

X'08'

X'04'

Structure

Event

Subcode

1

Structure

available

again

after

a

loss.

2

The

structure

failed.

3

CQS

lost

its

connection

to

the

structure

(STXLCONN).

4

The

log

stream

is

becoming

available,

making

the

structure

available

(STXAVLOG).

Important:

This

subcode

applies

only

to

queue

structures.

5

The

log

stream

is

becoming

unavailable,

making

the

structure

unavailable

(STXFLOG).

Important:

This

subcode

applies

only

to

queue

structures.

6

Structure

repopulation

required

due

to

structure

failure.

X'0C'

X'04'

Structure

Event

exit

routine

client

data

that

was

passed

to

CQS

on

the

CQSCONN

request.

X'10'

X'08'

CQS

identifier.

X'18'

X'04'

CQS

version

number.

X'1C'

X'10'

Structure

Name.

X'2C'

X'08'

Time

stamp

representing

the

time

the

exit

routine

was

scheduled

(in

STCK

format).

X'34'

X'01'

Structure

type

1

Queue

structure

2

Resource

structure

X'38'

X'18'

Not

used.

X'50'

X'08'

Structure

version

of

new

structure

that

requires

repopulation,

because

old

structure

failed.

CQS

Client

Structure

Inform

Exit

Routine

The

Structure

Inform

exit

routine

is

scheduled

when

work

is

placed

on

a

queue

for

which

the

client

has

registered

interest

with

a

CQSINFRM

request

and

when

a

CQSINFRM

request

is

issued

specifying

that

the

exit

routine

be

driven

if

there

is

work

on

the

queue.

The

exit

routine

is

also

scheduled

whenever

a

queue

goes

from

an

empty

to

non-empty

state

(when

the

first

data

object

for

a

queue

is

written

to

the

structure).

If

additional

data

objects

are

added

to

the

queue,

the

inform

exit

routine,

which

has

already

been

run

once,

is

not

notified

again

while

there

are

still

data

objects

on

the

queue.

The

client

loads

the

exit

routine

and

passes

the

address

of

the

exit

routine

on

the

CQSCONN

request.

This

exit

routine

is

driven

in

the

client

address

space,

either

as

an

SRB

(for

authorized

clients),

or

as

an

IRB

(for

non-authorized

clients).

Structure

Event

Client

ExitIBM

Confidential

Chapter

7.

CQS

Client

Exit

Routines

175

Restriction:

This

exit

routine

does

not

apply

to

resource

structures.

Important:

This

exit

routine

is

optional;

however,

if

it

is

not

supplied,

the

client

is

not

notified

when

work

is

placed

on

the

queues.

Contents

of

Registers

on

Entry

Register

Contents

0

Length

in

bytes

of

the

parameter

list

pointed

to

by

R1.

1

Address

of

CQS

Structure

Inform

Exit

Parameter

List

(mapped

by

macro

CQSINFX).

13

Address

of

a

standard

18-word

save

area,

immediately

followed

by

an

18-word

work

area

available

for

use

by

the

exit

routine.

The

save

area

and

the

work

area

are

not

chained

together.

The

save

area

or

work

area

storage

is

not

cleared

on

entry

to

the

Structure

Inform

Exit

routine.

14

Return

address.

15

Entry

point

of

exit

routine.

Restriction:

All

addresses

that

are

passed

to

the

CQS

Structure

Inform

exit

routine

are

valid

only

until

the

exit

routine

returns

to

its

caller.

These

addresses

should

never

be

stored

and

used

after

the

CQS

Structure

Inform

exit

routine

has

returned.

Doing

so

can

cause

unpredictable

results,

because

the

storage

pointed

to

by

the

addresses

might

have

changed,

or

it

might

have

been

freed.

Contents

of

Registers

on

Exit

The

CQS

Structure

Inform

exit

routine

must

preserve

the

contents

of

R13

and

it

does

not

need

to

preserve

any

other

register’s

contents.

Therefore,

it

is

free

to

use

the

save

area

pointed

to

by

R13

for

any

calls

to

other

services

as

needed.

It

might

also

use

the

18-word

area

following

the

save

area

for

additional

save

area

or

work

area

storage.

Register

Contents

13

Same

value

as

it

had

on

entry

to

the

CQS

Structure

Inform

exit

routine.

15

Return

code

0

Always

set

this

to

zero.

Structure

Inform

Parameter

List

for

CQS

Client

Structure

Inform

Table

60

describes

the

parameters

for

the

Client

Structure

Inform

exit

routine.

Table

60.

Client

Structure

Inform

Exit

Routine

Parameter

List

Offset

Length

Description

X'00'

X'04'

Parameter

List

Version

Number

(00000001).

X'04'

X'04'

Structure

Inform

exit

routine

client

data

that

was

passed

to

CQS

on

the

CQSCONN

request.

X'08'

X'08'

CQS

identifier.

X'10'

X'04'

CQS

version

number.

X'14'

X'10'

Structure

Name.

Structure

Inform

Client

Exit IBM

Confidential

176

Common

Queue

Server

Guide

and

Reference

Table

60.

Client

Structure

Inform

Exit

Routine

Parameter

List

(continued)

Offset

Length

Description

X'24'

X'08'

Time

stamp

representing

the

time

the

exit

routine

was

scheduled

(in

STCK

format).

X'2C'

X'04'

Number

of

Queue

Names

entries

in

the

list.

X'30'

X'04'

Length

of

each

Queue

Name

list

entry.

X'34'

X'04'

Offset

into

parmlist

of

start

of

Queue

Name

list.

Each

Queue

Name

entry

in

the

list

contains

the

16-byte

queue

name

for

which

a

message

has

been

queued.

The

parmlist

is

one

contiguous

piece

of

storage,

including

the

Queue

Name

list.

Structure

Inform

Client

ExitIBM

Confidential

Chapter

7.

CQS

Client

Exit

Routines

177

Structure

Inform

Client

Exit IBM

Confidential

178

Common

Queue

Server

Guide

and

Reference

Chapter

8.

CQS

Diagnosis

This

section

describes

diagnostic

information

that

helps

you

analyze

problems

in

CQS.

In

this

section:

“CQS

Log

Records”

“Printing

CQS

Log

Records”

on

page

181

CQS

Log

Records

CQS

writes

records

to

the

z/OS

log

stream

that

contains

all

CQS

log

records

from

all

CQSs

that

are

connected

to

a

structure

pair.

You

can

use

the

log

records

to:

v

Diagnose

problems

related

to

the

CQS

address

space.

For

CQS

internal

errors,

The

IBM

support

representative

will

direct

you

to

print

the

appropriate

log

records.

You

can

sometimes

use

information

in

the

log

records

to

set

up

a

keyword

string

to

search

APAR

descriptions

and

compare

them

to

your

own

problem.

v

Generate

various

reports

related

to

the

CQS

address

space,

such

as

statistics

about

the

number

of

requests.

By

knowing

the

content

and

format

of

the

log

records,

you

can

set

up

a

DFSERA10

job

to

format

and

print

the

specific

log

records

you

want.

v

Restart

CQS

and

recover

shared

queues,

if

necessary

Each

CQS

log

record

contains

a

log

record

prefix,

followed

by

data

that

is

unique

to

the

record.

Macro

CQSLGRFX

maps

the

log

record

prefix.

You

can

view

the

CQS

log

record

formats

by

assembling

mapping

macro

CQSLGREC

with

TYPE=ALL.

Table

61

shows

the

CQS

log

records.

For

each

CQS

log

record,

the

table

lists:

v

The

log

record

type

and

subtype

v

The

macro

that

maps

the

record

v

The

events

that

cause

the

record

to

be

written

Table

61.

CQS

Log

Records

Type

Subtype

Mapping

Macro

Conditions

for

Writing

the

Log

Record

X'03'

X'01'

CQSLGCON

CQSCONN

request:

The

client

connect

to

a

structure

completed.

X'04'

X'01'

CQSLGDSC

CQSDISC

request:

The

client

disconnect

from

a

structure

completed.

X'07'

X'01'

X'02'

X'03'

X'04'

X'05'

X'06'

X'07'

X'08'

CQSLGPUT

CQSPUT

OBJECT

request

completed.

CQSPUT

COMMIT

request

completed.

CQSPUT

START

request

completed.

CQSPUT

FORGET

request

completed.

CQSPUT

ABORT

request

completed.

CQSPUT

request

failed.

CQSPUT

system

checkpoint

record

was

written.

CQSPUT

FORGET

request

completed.

This

is

a

batched

log

record.

X'08'

X'01'

X'02'

X'03'

CQSLGRD

CQSREAD

request

completed.

CQSREAD

request

failed.

CQSREAD

system

checkpoint

record

was

written.

IBM

Confidential

©

Copyright

IBM

Corp.

1997,

2004

179

Table

61.

CQS

Log

Records

(continued)

Type

Subtype

Mapping

Macro

Conditions

for

Writing

the

Log

Record

CQSLGCHD

This

system

checkpoint

header

record

is

not

a

complete

log

record,

but

it

is

used

in

CQSLGPUT

and

CQSLGRD

system

checkpoint

log

records.

X'0B'

X'01'

X'02'

X'03'

CQSLGMOV

CQSMOVE

or

CQSUNLCK

request

completed.

CQSMOVE

or

CQSUNLCK

request

failed.

CQSMOVE

or

CQSUNLCK

request

moved

an

object

between

the

primary

and

overflow

structure.

X'0D'

X'01'

X'02'

X'03'

X'04'

CQSLGDEL

CQSDEL

request:

Delete-type

1

(delete

by

token)

completed.

CQSDEL

request:

Delete-type

2

(delete

by

queue

name)

completed.

CQSDEL

request:

Delete-type

3

(delete

by

queue

name

and

UOW)

completed.

CQSDEL

request:

Delete-type

1

(delete

by

token)

completed.

This

is

a

batched

log

record.

CQSLGBHD

This

batched

log

record

header

record

is

not

a

complete

log

record,

but

is

used

in

CQSLGPUT

and

CQSLGDEL

batched

log

records.

X'10'

X'01'

CQSLGSHT

CQSSHUT

request

completed.

X'32'

X'01'

X'02'

X'03'

CQSLGYCH

System

checkpoint

started.

System

checkpoint

ended.

System

checkpoint

failed.

X'40'

X'01'

CQSLGIST

Beginning

of

log

stream.

X'42'

X'01'

X'02'

X'03'

CQSLGTCH

Structure

checkpoint

started.

Structure

checkpoint

ended.

Structure

checkpoint

failed.

X'43'

X'01'

X'02'

X'03'

X'04'

CQSLGRBL

Structure

rebuild

started.

Statistics

about

the

old

structure,

the

rebuild

structure,

and

rebuild

failure

are

mapped

by

CQSSSTT6.

Structure

rebuild

ended.

Statistics

about

the

old

structure,

the

rebuild

structure,

and

rebuild

failure

are

mapped

by

CQSSSTT6.

Structure

rebuild

failed.

Statistics

about

the

old

structure,

the

rebuild

structure,

and

rebuild

failure

are

mapped

by

CQSSSTT6.

Structure

rebuild

resulted

in

a

lost

UOW

list.

This

record

lists

the

lost

UOWs.

X'44'

X'01'

X'02'

X'03'

X'04'

X'06'

X'07'

X'08'

X'09'

X'0A'

X'0B'

X'0C'

CQSLGOFL

Overflow

threshold

began.

Overflow

threshold

ended.

Overflow

threshold

failed.

Overflow

mode

ended.

Qnames

were

moved

to

overflow.

Qnames

were

removed

from

overflow.

CQSOVERFLOWQNMR,

a

control

list

entry

containing

the

list

of

queue

names

deleted

from

overflow,

was

deleted.

Overflow

Scan

Begin.

Overflow

Scan

End.

Private

Queue

Scan

Begin.

Structure

to

be

deleted.

CQS

Log

Records IBM

Confidential

180

Common

Queue

Server

Guide

and

Reference

Table

61.

CQS

Log

Records

(continued)

Type

Subtype

Mapping

Macro

Conditions

for

Writing

the

Log

Record

X'60'

X'01'

X'C0'

CQSLGSTT

BPESSTA

Structure

statistics

were

written

at

the

end

of

system

checkpoint.

Internal

BPE

service

statistics

were

also

written

at

the

end

of

system

checkpoint.

Printing

CQS

Log

Records

To

print

the

CQS

log

records

from

the

z/OS

system

log,

use

the

IMS

File

Select

and

Formatting

Print

utility

(DFSERA10)

with

exit

routine

CQSERA30.

The

following

example

shows

the

required

JCL

to

print

the

log

records

from

a

z/OS

system

log.

This

JCL

causes

the

z/OS

logger

to

invoke

the

default

log

stream

subsystem

exit

routine,

IXGSEXIT,

to

copy

the

log

records.

The

exit

routine

returns

a

maximum

of

32

760

bytes

of

data

for

each

log

record

even

though

CQS

supports

larger

log

records.

You

can

specify

the

name

of

a

different

exit

routine,

if

necessary.

Example:

Use

the

JCL

shown

in

Figure

26

to

print

the

CQS

log

records:

DD

Statements

for

CQS

Diagnosis

STEPLIB

DSN=

points

to

IMS.SDFSRESL,

which

contains

the

IMS

File

Select

and

Formatting

Print

utility,

DFSERA10.

SYSUT1

DSN=

points

to

the

CQS

log

stream

name

that

was

specified

in

the

LOGNAME=

parameter

in

the

CQSSGxxx

PROCLIB

member.

Control

Statements

for

CQS

Diagnosis

H=

Specifies

the

number

of

log

records

to

print.

H=EOF

prints

all

log

records.

EXITR=CQSERA30

The

CQS

log

record

routine

that

is

called

to

format

each

log

record.

This

routine

prints

the

record

type

and

time-stamp

information

for

each

record,

and

dumps

the

contents

of

the

record

(up

to

a

maximum

of

32

760

bytes

(X'7FF8')).

//CQSERA10

JOB

MSGLEVEL=1,MSGCLASS=A,CLASS=K

//STEP1

EXEC

PGM=DFSERA10

//STEPLIB

DD

DISP=SHR,DSN=IMS.SDFSRESL

//SYSPRINT

DD

SYSOUT=A

//SYSUT1

DD

DSN=SYSLOG.MSGQ01.LOG,

//

SUBSYS=(LOGR,IXGSEXIT),

//

DCB=(BLKSIZE=32760)

//SYSIN

DD

*

CONTROL

CNTL

H=EOF

OPTION

PRINT

EXITR=CQSERA30

END

//

Figure

26.

JCL

to

Print

CQS

Log

Records

CQS

Log

RecordsIBM

Confidential

Chapter

8.

CQS

Diagnosis

181

Related

Reading:

For

a

complete

description

of

the

IMS

File

Select

and

Formatting

Print

utility,

see

IMS

Version

9:

Utilities

Reference:

System.

For

a

complete

description

of

the

z/OS

logger

subsystem

exit

(IXGSEXIT)

usage

and

parameters,

see

OS/390

MVS

Diagnosis:

Tools

and

Service

Aids,

GA22-7589.

Limiting

Log

Data

to

a

Specified

Time

Range

for

CQS

Diagnosis

You

can

limit

the

log

records

you

print

to

those

in

a

particular

interval

of

time

using

the

FROM

and

TO

parameters

on

the

SUBSYS

statement.

The

DD

card

in

Figure

27

illustrates

this:

The

DD

card

in

Figure

27

would

pass

only

log

records

from

11:00

to

12:00

on

day

42

of

the

year

2001

to

the

DFSERA10

program.

Dates

and

times

specified

in

this

manner

are

in

GMT

(Greenwich

Mean

Time).

The

seconds

field

of

the

time

values

is

optional.

If

you

want

to

use

local

dates

and

times,

add

the

LOCAL

keyword

to

the

statement,

as

shown

in

Figure

28:

Copying

CQS

Log

Records

for

Diagnostics

IBM

service

sometimes

requires

a

copy

of

a

range

of

CQS

log

records

for

problem

determination.

You

can

use

the

IEBGENER

utility

program

to

copy

some

or

all

of

the

CQS

log

for

a

structure

to

a

BSAM

data

set

to

send

to

IBM

service.

The

copy

made

by

IEBGENER

is

a

binary

image

of

the

log

records.

The

JCL

in

Figure

29

on

page

183

copies

CQS

log

records

between

15:10

and

15:30

local

time

on

day

89

of

2001

to

a

data

set

named

CQS.LOG.COPY:

//SYSUT1

DD

DSN=SYSLOG.MSGQ01.LOG,

//

SUBSYS=(LOGR,IXGSEXIT,

//

’FROM=(2001/042,11:00:00),TO=(2001/042,12:00:00)’),

//

DCB=(BLKSIZE=32760)

Figure

27.

DD

Card

to

Limit

Log

Records

that

are

Printed

//SYSUT1

DD

DSN=SYSLOG.MSGQ01.LOG,

//

SUBSYS=(LOGR,IXGSEXIT,

//

’FROM=(2001/042,11:00:00),TO=(2001/042,12:00:00),LOCAL’),

//

DCB=(BLKSIZE=32760)

Figure

28.

DD

Card

to

Add

Local

Date

and

Time

Printing

CQS

Log

Records IBM

Confidential

182

Common

Queue

Server

Guide

and

Reference

If

you

copy

CQS

log

records

using

IEBGENER,

be

aware

of

the

following:

v

The

copied

records

cannot

be

used

by

CQS

in

any

way

(such

as

restart

or

recovery).

They

are

for

diagnostic

purposes

only.

v

CQS

log

records

that

are

greater

than

32K

bytes

in

length

will

be

truncated.

The

SUBSYS

exit

supports

a

maximum

of

a

32K

record

size.

//CQSCPYLG

JOB

MSGLEVEL=1,CLASS=K

//***

//*

THIS

JOB

COPIES

A

CQS

LOG

STREAM

TO

A

DATASET

(MAX

32K

/

RECORD)

*

//***

//STEP1

EXEC

PGM=IEBGENER

//SYSPRINT

DD

SYSOUT=*

//SYSUDUMP

DD

SYSOUT=*

//SYSIN

DD

DUMMY

//SYSUT1

DD

DSN=SYSLOG.MSGQ01.LOG,

//

SUBSYS=(LOGR,IXGSEXIT,

//

’FROM=(2001/089,15:10),TO=(2001/089,15:30),LOCAL’),

//

DCB=(BLKSIZE=32760)

//SYSUT2

DD

DSN=CQS.LOG.COPY,

//

DISP=(NEW,KEEP,DELETE),

//

VOL=SER=EDSDMP,

//

SPACE=(CYL,(10,10)),

//

UNIT=SYSDA

Figure

29.

JCL

to

Copy

CQS

Records

from

a

Specific

Time

Period

Printing

CQS

Log

RecordsIBM

Confidential

Chapter

8.

CQS

Diagnosis

183

IBM

Confidential

184

Common

Queue

Server

Guide

and

Reference

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

IBM

Confidential

©

Copyright

IBM

Corp.

1997,

2004

185

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Corporation

J46A/G4

555

Bailey

Avenue

San

Jose,

CA

95141-1003

U.S.A.

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

information

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurement

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

This

information

is

for

planning

purposes

only.

The

information

herein

is

subject

to

change

before

the

products

described

become

available.

This

information

contains

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

contains

sample

application

programs

in

source

language,

which

illustrates

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM,

for

the

purposes

of

developing,

using,

marketing

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

IBM’s

application

programming

interfaces.

IBM

Confidential

186

Common

Queue

Server

Guide

and

Reference

Each

copy

or

any

portion

of

these

sample

programs

or

any

derivative

work,

must

include

a

copyright

notice

as

follows:

©

(your

company

name)

(year).

Portions

of

this

code

are

derived

from

IBM

Corp.

Sample

Programs.

©

Copyright

IBM

Corp.

_enter

the

year

or

years_.

All

rights

reserved.

If

you

are

viewing

this

information

softcopy,

the

photographs

and

color

illustrations

may

not

appear.

Programming

Interface

Information

This

publication

is

intended

to

help

the

customer

perform

the

following

tasks:

v

Plan

for

and

design

the

installation

of

Common

Queue

Server

(CQS).

v

Install

and

operate

CQS.

v

Diagnose

and

recover

from

CQS

system

problems.

v

Write

a

CQS

client.

The

IMS

Version

9:

Common

Queue

Server

Guide

and

Reference

primarily

documents

Product-sensitive

Programming

Interface

and

Associated

Guidance

Information

provided

by

IMS™.

Product-sensitive

programming

interfaces

allow

the

customer

installation

to

perform

tasks

such

as

diagnosing,

modifying,

monitoring,

repairing,

tailoring,

or

tuning

of

IMS.

Use

of

such

interfaces

creates

dependencies

on

the

detailed

design

or

implementation

of

the

IBM

software

product.

Product-sensitive

programming

interfaces

should

be

used

only

for

these

specialized

purposes.

Because

of

their

dependencies

on

detailed

design

and

implementation,

it

is

to

be

expected

that

programs

written

to

such

interfaces

may

need

to

be

changed

in

order

to

run

with

new

product

releases

or

versions,

or

as

a

result

of

service.

However,

the

Common

Queue

Server

Guide

and

Reference

also

documents

General-use

Programming

Interface

and

Associated

Guidance

Information

and

Diagnosis,

Modification

or

Tuning

Information

provided

by

IMS.

General-use

programming

interfaces

allow

the

customer

to

write

programs

that

obtain

the

services

of

IMS.

General-use

Programming

Interface

and

Associated

Guidance

Information

is

identified

where

it

occurs,

either

by

an

introductory

statement

to

a

section

or

by

the

following

marking:

General-use

Programming

Interface

and

Associated

Guidance

Information....

Diagnosis,

Modification

or

Tuning

Information

is

provided

to

help

the

customer

diagnose,

modify,

or

tune

IMS.

Attention:

Do

not

use

this

Diagnosis,

Modification

or

Tuning

Information

as

a

programming

interface.

Diagnosis,

Modification

or

Tuning

Information

is

identified

where

it

occurs,

either

by

an

introductory

statement

to

a

section

or

by

the

following

marking:

Diagnosis,

Modification

or

Tuning

Information....

IBM

Confidential

Notices

187

Trademarks

The

following

terms

are

trademarks

of

the

IBM

Corporation

in

the

United

States

or

other

countries

or

both:

BookManager

OS/390

CICS

Parallel

Sysplex

IBM

Processor

Resource/Systems

Manager

IMS

PR/SM

Language

Environment

RACF

MVS

S/390

MVS/DFP

System/390

MVS/ESA

z/OS

Java

and

all

Java-based

trademarks

are

trademarks

of

Sun

Microsystems,

Inc.,

in

the

United

States,

other

countries,

or

both.

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Other

company,

product,

and

service

names

may

be

trademarks

or

service

marks

of

others.

IBM

Confidential

188

Common

Queue

Server

Guide

and

Reference

Bibliography

This

bibliography

lists

all

of

the

information

in

the

IMS

Version

9

library.

v

External

Security

Interface

(RACROUTE)

Macro

Reference,

GC28-1366

v

z/OS

DFSMS

Access

Method

Services

for

Catalogs,

SC26-7394

v

z/OS

MVS

Initialization

and

Tuning

Reference,

SA22-7592

v

MVS

Programming:

Authorized

Assembler

Services

Guide,

SA22-7608

v

MVS

Programming:

Sysplex

Services

Guide,

SA22-7617

v

z/OS

MVS

System

Commands,

SA22-7627

v

z/OS

MVS

Programming:

Assembler

Services

Guide,

SA22-7605

v

z/OS

MVS

Setting

Up

a

Sysplex,

SA22-7625

v

System/390®

MVS:

Sysplex

Hardware

and

Software

Migration,

GC28-1210

IMS

Version

9

Library

ZES1-2330

ADB

IMS

Version

9:

Administration

Guide:

Database

Manager

ZES1-2331

AS

IMS

Version

9:

Administration

Guide:

System

ZES1-2332

ATM

IMS

Version

9:

Administration

Guide:

Transaction

Manager

ZES1-2333

APDB

IMS

Version

9:

Application

Programming:

Database

Manager

ZES1-2334

APDG

IMS

Version

9:

Application

Programming:

Design

Guide

ZES1-2335

APCICS

IMS

Version

9:

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

ZES1-2336

APTM

IMS

Version

9:

Application

Programming:

Transaction

Manager

ZES1-2337

BPE

IMS

Version

9:

Base

Primitive

Environment

Guide

and

Reference

ZES1-2338

CR

IMS

Version

9:

Command

Reference

ZES1-2339

CQS

IMS

Version

9:

Common

Queue

Server

Guide

and

Reference

ZES1-2340

CSL

IMS

Version

9:

Common

Service

Layer

Guide

and

Reference

ZES1-2341

CG

IMS

Version

9:

Customization

Guide

ZES1-2342

DBRC

IMS

Version

9:

DBRC

Guide

and

Reference

ZES1-2343

DGR

IMS

Version

9:

Diagnosis

Guide

and

Reference

ZES1-2344

FAST

IMS

Version

9:

Failure

Analysis

Structure

Tables

(FAST)

for

Dump

Analysis

ZES1-2346

OLR

IMS

Version

9:

HALDB

Online

Reorganization

Guide

ZES1–2380

CT

IMS

Version

9:

IMS

Connect

Guide

and

Reference

ZES1-2347

JGR

IMS

Version

9:

IMS

Java

Guide

and

Reference

ZES1-2348

IIV

IMS

Version

9:

Installation

Volume

1:

Installation

Verification

ZES1-2349

ISDT

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring

ZES1-2350

INTRO

IMS

Version

9:

An

Introduction

to

IMS

ZES1-2351

MIG

IMS

Version

9:

Master

Index

and

Glossary

ZES1-2352

MC1

IMS

Version

9:

Messages

and

Codes,

Volume

1

ZES1-2353

MC2

IMS

Version

9:

Messages

and

Codes,

Volume

2

ZES1-2354

OTMA

IMS

Version

9:

Open

Transaction

Manager

Access

Guide

and

Reference

ZES1-2355

OG

IMS

Version

9:

Operations

Guide

GC17-7831

RPG

IMS

Version

9:

Release

Planning

Guide

ZES1-2358

URDBTM

IMS

Version

9:

Utilities

Reference:

Database

and

Transaction

Manager

ZES1-2359

URS

IMS

Version

9:

Utilities

Reference:

System

Supplementary

Publications

GC17-7825

LPS

IMS

Version

9:

Licensed

Program

Specifications

ZES1-2357

SOC

IMS

Version

9:

Summary

of

Operator

Commands

Publication

Collections

LK3T-7213

CD

IMS

Version

9

Softcopy

Library

LK3T-7144

CD

IMS

Favorites

IBM

Confidential

©

Copyright

IBM

Corp.

1997,

2004

189

Publication

Collections

LBOF-7789

Hardcopy

and

CD

Licensed

Bill

of

Forms

(LBOF):

IMS

Version

9

Hardcopy

and

Softcopy

Library

SBOF-7790

Hardcopy

Unlicensed

Bill

of

Forms

(SBOF):

IMS

Version

9

Unlicensed

Hardcopy

Library

SK2T-6700

CD

OS/390

Collection

SK3T-4270

CD

z/OS

Software

Products

Collection

SK3T-4271

DVD

z/OS

and

Software

Products

DVD

Collection

Accessibility

Titles

Cited

in

this

Book

SA22-7787

z/OS

V1R1.0

TSO

Primer

SA22-7794

z/OS

V1R1.0

TSO/E

User’s

Guide

SC34-4822

z/OS

V1R1.0

ISPF

User’s

Guide,

Volume

1

IBM

Confidential

190

Common

Queue

Server

Guide

and

Reference

Index

A
abnormal

termination

or

restart,

client

processing

after

167

altering

structures

34

assembling

a

client

program

77

authorization
requests

70

authorizing

CQS
connections

33

registration

33

Automatic

Restart

Manager
policy

32

using

31

B
benefits

of

using

CQS

2

BPE

(Base

Primitive

Environment)
common

user

exit

routine

execution

environment

47

defining

12

BPE

Statistics

user

exit

67

C
CFRM

(coupling

facility

resource

management)
couple

data

set

format

utility

43

policy

8

policy,

defining

12,

34

CFSizer

12

checkpoint
client

initiating

78

data

set

35

structure,

initiating

35

system,

initiating

34

cleanup

failure

32

client
exit

routines

(CQS)

165

Event

165

Structure

Event

167

Structure

Inform

175

interface
authorized

70

non-authorized

70

queue

type

3

requests

6

Client

Connection

user-supplied

exit

routine,

CQS

49

client

program
assembling

77

writing

69

client

requests
assembling

a

program

77

authorization

70

coding

70

CQSBRWSE

80

CQSCHKPT

87

CQSDEL

96

CQSDEREG

100

client

requests

(continued)
CQSDISC

101

CQSINFRM

106

CQSMOVE

110

CQSPUT

114

CQSQUERY

121

CQSREAD

130

CQSRECVR

135

CQSREG

140

CQSRSYNC

142

CQSSHUT

149

CQSUNLCK

150

CQSUPD

155

ECB,

using

74

environmental

requirements

71

introduction

69

lists,

using

75

literals,

coding

74

parameters,

coding

73

requests
CQSCONN

90

return

and

reason

codes

75

sequence

of

70

Client

Structure

Event

exit

167

parameters

169

Client

Structure

Inform

exit

175

parameters

176

coding

requests

70

cold

start

31

structures

29

components

of

a

CQS

2

copy
structures

42

copying

log

records

182

couple

data

set

format

utility

43

CQS

(Common

Queue

Server)

7

administering

27

authorization

33

benefits

2

automatic

work

load

balancing

2

incremental

growth

2

reliability

2

client

connection
establishing

32

client

exit

routines
Event

165

Structure

Event

167

Structure

Inform

175

client

failure

32

clients

79

components

2

checkpoint

data

set

2

overflow

structure

2

primary

structure

2

resource

structure

2

structure

recovery

data

set

3

z/OS

log

stream

2

customizing

13

IBM

Confidential

©

Copyright

IBM

Corp.

1997,

2004

191

CQS

(Common

Queue

Server)

(continued)
data

sets

24

defining

7,

12

diagnosis

179

diagram

of

client

systems

and

coupling

facility

1

execution

data

sets

24

structure

recovery

data

set

25

system

checkpoint

data

set

24

execution

parameters
specifying

14

exit

routines.
See

CQS

user-supplied

exit

routines

failure

32

functions

3

overflow

processing

3

records

restart

3

requests

3

structure

checkpoint

3

structure

rebuild

3

system

checkpoint

3

global

structure

definition

PROCLIB

member
keywords

19

information

for

restart

28

initialization

parameters

PROCLIB

member
specifying

16

JCL

for

printing

log

records

181

local

structure

definition

PROCLIB

member
specifying

17

log

records

179

logging

6

monitoring

13

multiple

clients

11

notification

of

work

3

operating

system

requirements

1

overview

1

parameters
CQS

PROCLIB

16

execution

14

preparing

to

start

12

printing

log

records

181

rebuilding

structures

39

recovering

39

restarting

32

cold

start

31

description

30

warm

start

30

restarting

information

28

restarting

structures

28

allocation

28

restating

after

system

checkpoint

35

shutting

down

44

starting

27

starting

manually

27

structure

cold

start

29

structure

overflow

function

37

structure

types

managed

3

structure

warm

start

28

tailoring

7

CQS

Event

exit

165

abnormal

termination

167

parameters

166

CQS

Event

exit

(continued)
parameters,

abnormal

termination

166

CQS

statistics
using

BPE

Statistics

user

exit

67

CQS

user-supplied

exit

routine
writing

in

assembler

48

CQS

user-supplied

exit

routines

47

Client

Connection
general

49

parameters

50

register

contents

49

general

information

47

Initialization-Termination

(Init-Term)
general

48

parameters

49

register

contents

48

Queue

Overflow
general

51

parameters

52

register

contents

52

Structure

Event
checkpoint

parameters

64

connection

parameters

63

general

62

overflow

parameters

66

rebuild

parameters

65

register

contents

63

routine

parameters

63

status

change

parameters

67

Structure

Statistics
CQS

request

statistics

record

55

data

object

statistics

record

56

general

53

parameters

54

queue

name

statistics

record

57

register

contents

53

structure

checkpoint

statistics

entry

61

structure

checkpoint

statistics

record

60

structure

process

statistics

record

55

structure

rebuild

statistics

record

58

z/OS

request

statistics

record

57

CQS-managed

rebuild

40

CQSBRWSE

request

80

BROWSE

function

80

BRWSOBJS

function

80

COMPLETE

function

80

CONTINUE

function

81

DSECT

function

81

functions

80

parameters

82

return

and

reason

codes

86

syntax

80

usage

81

CQSCHKPT

request
CHKPTSTR

function

87

CHKPTSYS

function

88

DSECT

function

88

format

87

parameters

89

return

and

reason

codes

90

syntax

87

IBM

Confidential

192

Common

Queue

Server

Guide

and

Reference

CQSCHKPT

request

(continued)
usage

88

CQSCONN

request
CONNECT

function

90

DSECT

function

91

format

90

parameters

91

restrictions

91

return

and

reason

codes

95

syntax

90

usage

91

CQSDEL

request
DELETE

function

96

DSECT

function

96

format

96

parameter

96

return

and

reason

codes

99

syntax

96

usage

96

CQSDEREG

request
DEREGISTER

function

100

DSECT

function

100

format

100

parameters

100

return

and

reason

codes

101

syntax

100

usage

100

CQSDISC

request
DISCABND

function

101

DISCNORM

function

102

DSECT

function

102

format

101

parameters

103

return

and

reason

codes

105

syntax

101

usage

102

CQSINFRM

request
DSECT

function

106

format

106

INFORM

function

106

parameters

107

return

and

reason

codes

110

syntax

106

UNINFORM

function

106

usage

107

CQSIPxxx
format

rules

16

overview

16

sample

PROCLIB

member

16

CQSMOVE

request
DSECT

function

110

format

110

MOVE

function

110

parameters

112

return

and

reason

codes

113

syntax

110

usage

111

CQSPUT

request
ABORT

function

114

actions

116

DSECT

function

114

CQSPUT

request

(continued)
FORGET

function

114

format

114

parameters

117

PUT

function

114

return

and

reason

codes

120

syntax

114

usage

115

CQSQUERY

request
DSECT

function

121

format

121

parameters

125

QNAME

function

121

QRYOBJS

function

122

QTYPE

function

122

return

and

reason

codes

129

STATISTICS

function

123

STRSTAT

function

123

syntax

121

usage

123

CQSREAD

request
CONTINUE

function

130

DSECT

function

130

example

159

format

130

functions

130

parameters

132

READ

function

130

REREAD

function

131

return

and

reason

codes

134

syntax

130

usage

131

CQSRECVR

request
DELETE

function

135

DSECT

function

136

format

135

functions

135

parameters

137

RETRIEVE

function

136

return

and

reason

codes

139

syntax

135

UNLOCK

function

136

usage

137

CQSREG

request
DSECT

function

140

functions

140

parameters

140

REGISTER

function

140

return

and

reason

codes

141

syntax

140

usage

140

CQSRSYNC

request
DSECT

function

142

format

142

functions

142

parameters

144

return

and

reason

codes

147

RSYNCCOLD

function

143

RSYNCWARM

function

143

syntax

142

usage

143

IBM

Confidential

Index

193

CQSSGxxx
formatting

rules

19

overview

19

sample

PROCLIB

member

20

CQSSHUT

request
DSECT

function

149

format

149

functions

149

parameters

149

QUIESCE

function

149

return

and

reason

codes

150

syntax

149

usage

149

CQSSLxxx
formatting

rules

18

overview

17

sample

PROCLIB

member

18

CQSUNLCK

request
DSECT

function

150

FORCE

function

150

format

150

functions

150

parameters

152

return

and

reason

codes

154

syntax

150

UNLOCK

function

150

usage

151

CQSUPD

request
DSECT

function

155

format

155

functions

155

parameters

155

return

and

reason

codes

159

syntax

155

UPDATE

function

155

usage

155

cross-system

coupling

facility

14

D
data

sets
CQS

execution

24

entry-sequenced

24

IMS.ADFSMAC

77

structure

recovery

25

system

checkpoint

24

defining
BPE

12

CQS

12

policies

8

z/OS

policies

7

deleting

structures

44

DFSERA10

181

diagnosis

179

CQS

log

records

179

printing

log

records

181

display

for

structure

full

threshold

38

duplexing
explicitly

stopping

43

structure

5,

42

unnecessary

overhead

43

E
ECB

(z/OS

event

control

block),

using

with

client

request

74

EMHQ
disabling

20

EMHQ

structures

8

disabling

18

ENF

40

entry-sequenced

data

set

24

environment
CQS

deregister

request

72

CQS

register

request

72

CQS

requests,

authorized

interface

71

CQS

requests,

non-authorized

interface

71

environments
client

requests

71

ESDS

24

event

notification

facility

40

events,

handling

77

cold

start

77

registering

interest

in

queues

78

shutting

down

CQS

78

tuning

for

performance

78

example
coding

CQSREAD

with

OPTWORD1

74

CQSIPxxx

PROCLIB

member

16

CQSREAD

request

159

CQSSGxxx

PROCLIB

member

20

CQSSLxxx

sample

PROCLIB

member

18

DD

card

to

add

local

time

and

date

182

DD

card

to

limit

log

records

printed

182

defining

IMS

resources
in

the

CFRM

policy

11

in

the

LOGR

policy

11

in

the

SFM

policy

11

display

for

structure

full

threshold

38

explicitly

stopping

duplexing

43

JCL

to

copy

CQS

records

from

specific

time

period

183

JCL

to

print

CQS

log

records

181

OBJAVGSZ

calculation

22

passing

a

value
for

register

73

for

symbol

73

for

symbol

value

74

passing

an

address
for

register

73

for

symbol

73

passing

an

equate

for

symbol

value

74

program

properties

table

13

RACF

commands

for

authorizing

CQS

registration

33

RACF

commands

to

authorize

connection

to

CQS

structures

34

RSRCSTRUCTURE=

parameter

23

SSN=

parameter

14,

17

starting

CQS

27

STEPLIB

DD

statement

to

concatenate

IMS.SDFSRESL

77

structure

recovery

data

set

26

system

checkpoint

data

set

25

IBM

Confidential

194

Common

Queue

Server

Guide

and

Reference

exit

routines
client

165

Event

165

user-supplied,

CQS

47

F
file

select

utility

28

formatting

print

utility

28

functions

of

CQS

3

H
hardware

requirements

6

I
IMS

parameters,

specifying

15

IMS.ADFSMAC

data

set

77

Initialization-Termination

(Init-Term)

user-supplied

exit

routine
CQS

48

interface
authorization

70

interrupt

request

block

165

IRB

165

L
limiting

log

data

182

lists,

using

with

client

request

75

literals

74

using

74

log

records
control

statements

for

printing

181

copying

182

DD

statements

for

printing

181

description

179

JCL

for

printing

181

limiting

log

data

182

printing

181

table

179

types

179

viewing

format

179

logging

6

logical

record

length

16

LOGR

(system

logger)

policy

8

LRECL

16

M
managing

structure

usage

37

MAXBUFSIZE

parameter

8

message
CQS0009W

29

CQS0020I

30

CQS0031A

30

CQS0032A

30

CQS0033A

32,

92

message

(continued)
CQS0034A

30,

41

CQS0102E

32

CQS0205E

37

CQS0242E

59

CQS0268I

22

CQS0300I

45

IXC585E

38

IXC586I

38

WTOR

30

message

queue

8

MSGQ

structures

8

O
OPTWORD1

parameter

74

overflow
mode

37

processing

37

threshold

37

overflow

processing

4

P
parameter

OPTWORD1

74

parameter

lists
abnormal

termination

166

Client

Connection

user

exit

50

Client

Disconnect

user

exit

50

Initialization

user

exit

49

Queue

Overflow

user

exit

52

restart

entry

166

Structure

Event

exit

routine
checkpoint

171

Deferred

Resync

Complete

169

resync,

CQS

169

structure

overflow

174

structure

rebuild

172

structure

rebuild

lost

UOWs

172

structure

status

change

174

Structure

Event

user

exit

63

checkpoint

64

connect

63

overflow

66

Rebuild

65

status

change

67

Structure

Inform

exit

routine

176

Structure

Statistics

user

exit

54

Termination

user

exit

49

passing

a

value
for

register

73

for

symbol

73

for

symbol

value

74

passing

an

address
for

register

73

for

symbol

73

passing

an

equate

for

symbol

value

74

performance

tuning

78

planning

for

CQS
hardware

requirements

6

IBM

Confidential

Index

195

planning

for

CQS

(continued)
software

requirements

6

policies
ARM

8

CFRM

8

defined

7

defining

8

failing

9

LOGR

8

SFM

8

preventing

structure

full

37

private

queue

types

managed

by

CQS

4

program

properties

table

13

program,

assembling

77

Q
queue

cold

4

control

4

delete

4

lock

4

move

4

structure

3

type
client

4

private

4

private,

managed

by

CQS

4

values

3

Queue

Overflow

user-supplied

exit

routine
CQS

51

queues
object

on

the

cold

queue

78

registering

interest

in

78

R
RACF

33

commands

for

authorizing

CQS

registration

33

commands

to

authorize

connection

to

CQS

structures

34

FACILITY

class

33

rebuild

lost

UOW

entry,

CQS

173

rebuilding

structures

39

records

restart

3

recovery
functions

5

information

3

recovering

CQS

39

structures

41

structures,

for

restart

29

register
contents

Client

Connection

user

exit

49,

50

Client

Structure

Event

exit

168

Client

Structure

Inform

exit

176

CQS

Event

exit

165,

166

Initialization-Termination

user

exit

48

Queue

Overflow

user

exit

52

Structure

Event

user

exit

63

Structure

Statistics

user

exit

53,

54

registers
client

requests

72

using

72,

73

registration,

authorizing

33

requests

69

assembling

a

program

77

authorization

70

coding

70

CQSBRWSE

80

CQSCHKPT

87

CQSCONN

90

CQSDEL

96

CQSDEREG

100

CQSDISC

101

CQSINFRM

106

CQSMOVE

110

CQSPUT

114

CQSQUERY

121

CQSREAD

130

CQSRECVR

135

CQSREG

140

CQSRSYNC

142

CQSSHUT

149

CQSUNLCK

150

CQSUPD

155

DSECTs,

using

77

ECB,

using

74

environmental

requirements

71

example

159

introduction

69

lists,

using

75

literals,

coding

74

literals,

using

74

parameters,

coding

73

register,

using

73

return

and

reason

codes

75

sample

159

sequence

of

70

symbol

name,

using

73

symbol

value,

using

73

requirements
hardware

6

software

6

resource
cleanup

failure

32

structure
changes

logged

28

recovery

41

structures

4

structures,

and

overflow

processing

4

restart
structure

recovery

29

z/OS

Automatic

Restart

Manager

31

restarting

CQS
cold

start

31

description

30

structure

initialization

28

warm

start

30

resync

UOW

entry,

CQS

170

return

and

reason

codes
client

requests

75

IBM

Confidential

196

Common

Queue

Server

Guide

and

Reference

return

and

reason

codes

(continued)
CQSBRWSE

request

86

CQSCHKPT

request

90

CQSCONN

request

95

CQSDEL

request

99

CQSDEREG

request

101

CQSDISC

request

105

CQSINFRM

request

110

CQSMOVE

request

113

CQSPUT

request

120

CQSQUERY

request

129

CQSREAD

request

134

CQSRECVR

request

139

CQSREG

request

141

CQSRSYNC

request

147

CQSSHUT

request

150

CQSUNLCK

request

154

CQSUPD

request

159

routines
client

165

user-supplied,

CQS

47

S
sequence

of

requests

70

setting

up

a

sysplex

7

SFM

(sysplex

failure

management)

policy

8

shutting

down

CQS

44,

78

software

requirements

6

special

events,

handling.
See

events,

handling

starting

CQS

12,

27

statistic

records
CQS

request

57

data

object

56

queue

name

57

request

55

structure

checkpoint

60

structure

checkpoint

entry

61

structure

process

55

structure

rebuild

58

z/OS

request

57

STEPLIB

DD

statement

to

concatenate

IMS.SDFSRESL

77

structure
alter

34

authorizing

connections

to

33

checkpoint,

initiating

35

cold

start

29

copy

42

deleting

44

duplexing

5,

42

enabling

43

EMHQ
CQSSGxxx

20

CQSSLxxx

18

disabling

18,

20

empty

28

full,

monitoring

38

functions

4

initialization

28

structure

(continued)
overflow

4,

39

function

37

structure

full

monitoring

39

pair

3

rebuild

5

initiating

40

recovery

41

recovery

data

set,

example

26

recovery

for

restart

29

repopulation

41

restarting

CQS

28

size

12,

34

types

3

warm

start

28

Structure

Event

user-supplied

exit

routine

62

structure

full
managing

37

Structure

Statistics

user-supplied

exit

routine

53

structure

usage
managing

37

structures
resource

4

supporting

multiple

clients

11

symbol

name,

using

73

symbol

value,

using

73

sysplex
setting

up

7

system

checkpoint

data

set

example

25

system

checkpoint,

initiating

34

system-managed

rebuild

39

U
user

exits

(CQS).
See

CQS

user-supplied

exit

routines

user-managed

rebuild

40

user-supplied

exit

routines.
See

CQS

user-supplied

exit

routines

utilities
DFSERA10

181

file

select

28

formatting

print

28

IEBGENER

182

IXGSEXIT

182

printing

log

records

181

z/OS

logger

subsystem

exit

182

UXPL_EXITPLP
Client

Connections

exit

50

Init-Term

exit

49

Queue

Overflow

exit

52

Structure

Statistics

exit

54

W
warm

start

30

warm

starting

structures

28

writing

a

CQS

client

69

WTOR

30

IBM

Confidential

Index

197

X
XCF

14

Z
z/OS

defining

policies

7

program

properties

table

13

adding

CQSINIT0

13

updating

13

z/OS

Automatic

Restart

Manger

31

IBM

Confidential

198

Common

Queue

Server

Guide

and

Reference

����

Program

Number:

5655-J38

IBM

Confidential

Printed

in

USA

ZES1-2339-02

Sp
in
e

in
fo
rm
at
io
n:

 �
�

�

IM
S

Co
m

m
on

Q
ue

ue

Se
rv

er

G
ui

de

an
d

R
ef

er
en

ce

Ve
rs

io
n

9

	Contents
	Figures
	Tables
	About This Book
	Prerequisite Knowledge
	How to Read Syntax Diagrams
	Syntax Diagram Example

	How to Send Your Comments

	Summary of Changes
	Changes to the Current Edition of This Book for IMS Version 9
	Changes to This Book for IMS Version 9
	Library Changes for IMS Version 9
	New and Revised Titles
	Terminology Changes
	Accessibility Enhancements
	User Assistive Technologies
	Accessible Information
	Keyboard Navigation of the User Interface

	Chapter 1. Introduction
	Common Queue Server Overview
	CQS Benefits
	CQS Components
	CQS Functions
	Structures Managed by CQS
	Queue Structures
	Resource Structures

	CQS Structure Functions
	Structure Overflow
	Structure Rebuild
	Structure Duplexing

	CQS Recovery Functions
	System Checkpoint
	CQS Logging and the z/OS System Logger
	Structure Checkpoint

	CQS Client Requests

	Planning for CQS Hardware and Software Requirements

	Chapter 2. CQS Definition and Tailoring
	CQS As Part of a Sysplex
	CQS and Defining z/OS Policies
	CQS’s Support of Multiple Clients
	Determining Structure Size for CQS Connections
	Preparing to Start CQS
	Updating z/OS Program Properties Table for CQS
	CQS Execution Parameters
	CQS Initialization Parameters PROCLIB Member (CQSIPxxx)
	CQS Local Structure Definition PROCLIB Member (CQSSLxxx)
	CQS Global Structure Definition PROCLIB Member (CQSSGxxx)
	CQS Execution Data Sets
	CQS System Checkpoint Data Set
	CQS Structure Recovery Data Sets

	Chapter 3. CQS Administration
	Starting CQS
	Recording Information Necessary for Starting CQS
	Restarting CQS Structures
	CQS Structure Allocation
	CQS Structure Warm Start
	CQS Structure Cold Start
	CQS Structure Recovery for Restarting

	Restarting CQS
	CQS Warm Start
	CQS Cold Start
	Using the z/OS Automatic Restart Manager with CQS
	Restarting CQS After CQS Resource Cleanup Failures

	Establishing Client Connection to CQS During Failed Client Takeover
	Authorizing Access To CQS
	Authorizing CQS Registration
	Authorizing Connections to CQS Structures

	Using Structure Alter for CQS
	Using CQS System Checkpoint
	CQS Checkpoint Data Set
	How CQS Restarts after System Checkpoint

	Using CQS Structure Checkpoint
	Preventing CQS Structure Full
	CQS Structure Overflow Function
	CQS Structure Full Monitoring
	Using Structure Full Monitoring with CQS Structure Overflow

	Rebuilding Structures in CQS
	z/OS System-Managed Rebuild and CQS
	CQS-Managed Rebuild
	Initiating Structure Rebuild with z/OS and CQS
	CQS Structure Repopulation
	CQS Structure Recovery
	CQS Structure Copy
	z/OS Structure Duplexing for CQS

	Deleting a Structure When CQS Is Not Connected
	Shutting Down CQS

	Chapter 4. CQS User-Supplied Exit Routines
	General User-Supplied Exit Routine Interface Information for CQS
	CQS Initialization-Termination User-Supplied Exit Routine
	Contents of Registers on Entry
	Contents of Registers on Exit
	CQS Initialization and Termination Parameter Lists

	CQS Client Connection User-Supplied Exit Routine
	Contents of Registers on Entry
	Contents of Registers on Exit
	CQS Client Connection and Disconnect Parameter Lists

	Queue Overflow User-Supplied Exit Routine for CQS
	Contents of Registers on Entry
	Contents of Registers on Exit
	CQS Queue Overflow Parameter List

	CQS Structure Statistics User-Supplied Exit Routine
	Contents of Registers on Entry
	Contents of Registers on Exit
	CQS Structure Statistics User-Supplied Exit Routine Parameter List
	CQS Structure Process Statistics Record
	CQS Request Statistics Record
	Data Object Statistics Record for CQS
	Queue Name Statistics Record for CQS
	z/OS Request Statistics Record for CQS
	Structure Rebuild Statistics Record for CQS
	Structure Checkpoint Statistics Record for CQS
	Structure Checkpoint Statistics Gathered by CQS

	CQS Structure Event User-Supplied Exit Routine
	Contents of Registers on Entry
	Contents of Registers on Exit
	Routine Parameter Lists
	CQS Structure Event Exit Routine Parameter List
	CQS Structure Event Exit Routine Checkpoint Parameter List
	CQS Structure Event Exit Routine Rebuild Parameter List
	CQS Structure Event Exit Routine Overflow Parameter List
	CQS Structure Event Exit Routine Status Change Parameter List
	CQS Statistics Available through the BPE Statistics User Exit

	Chapter 5. Writing a CQS Client
	Introducing CQS Client Requests
	Sequence of CQS Requests Issued by a Client for Queue Structure
	Coding CQS Requests
	Authorization for CQS
	Environmental Requirements for CQS
	Using Registers with CQS Requests
	Coding Parameters for CQS Requests
	Coding Literals for CQS Requests

	Using an ECB with CQS Requests
	Using Lists in the CQS Requests
	Return Codes and Reason Codes for CQS Requests
	Assembling a Program with CQS Requests

	CQS Clients and Handling Special Events
	CQS Cold Start
	Registering Interest in Queues with CQSINFRM
	Working with Objects on the Cold Queue using CQS Requests
	Initiating Checkpoints using CQS Requests
	Shutting Down CQS
	Tuning to Improve CQS Performance

	Chapter 6. CQS Client Requests
	Using CQS Client Requests
	CQSBRWSE Request
	Format for CQSBRWSE
	Usage of CQSBRWSE
	Return and Reason Codes for CQSBRWSE
	CQSCHKPT Request

	CQSCONN Request
	Format for CQSCONN
	Usage of CQSCONN
	Return and Reason Codes for CQSCONN

	CQSDEL Request
	Format for CQSDEL
	Usage of CQSDEL
	Return and Reason Codes for CQSDEL

	CQSDEREG Request
	Format for CQSDEREG
	Usage of CQSDEREG
	Return and Reason Codes for CQSDEREG

	CQSDISC Request
	Format for CQSDISC
	Usage of CQSDISC
	Return and Reason Codes for CQSDISC

	CQSINFRM Request
	Format for CQSINFRM
	Usage of CQSINFRM
	Return and Reason Codes for CQSINFRM

	CQSMOVE Request
	Format for CQSMOVE
	Usage of CQSMOVE
	Return and Reason Codes for CQSMOVE

	CQSPUT Request
	Format for CQSPUT
	Usage of CQSPUT
	Return and Reason Codes for CQSPUT

	CQSQUERY Request
	Format for CQSQUERY
	Usage of CQSQUERY
	Return and Reason Codes for CQSQUERY

	CQSREAD Request
	Format for CQSREAD
	Usage of CQSREAD
	Return and Reason Codes for CQSREAD

	CQSRECVR Request
	Format for CQSRECVR
	Usage of CQSRECVR
	Return and Reason Codes for CQSRECVR

	CQSREG Request
	Format for CQSREG
	Usage of CQSREG
	Return and Reason Codes for CQSREG

	CQSRSYNC Request
	Format for CQSRSYNC
	Usage of CQSRSYNC
	Return and Reason Codes for CQSRSYNC

	CQSSHUT Request
	Format for CQSSHUT
	Usage of CQSSHUT
	Return and Reason Codes for CQSSHUT

	CQSUNLCK Request
	Format for CQSUNLCK
	Usage of CQSUNLCK
	Return and Reason Codes for CQSUNLCK

	CQSUPD Request
	Format for CQSUPD
	Usage of CQSUPD
	Return and Reason Codes for CQSUPD

	Example of Using a CQS Request: CQSREAD

	Chapter 7. CQS Client Exit Routines
	Client CQS Event Exit Routine
	Contents of Registers on Entry
	Contents of Registers on Exit
	CQS Restart Entry Parameter List
	CQS Abnormal Termination Parameter List
	Client Processing after CQS Abnormal Termination or Restart

	CQS Client Structure Event Exit Routine
	Contents of Registers on Entry
	Contents of Registers on Exit
	Deferred Resync Complete Parameter List for CQS Client Structure Event
	CQS Resync Parameter List
	CQS Resync UOW Entry
	Checkpoint Parameter List for CQS Client Structure Event
	Structure Rebuild Parameter List for CQS Client Structure Event
	Structure Rebuild Lost UOWs Parameter List for CQS Client Structure Event
	Rebuild Lost UOW Entry for CQS Client Structure Event
	Structure Overflow Parameter List for CQS Client Structure Event
	Structure Status Change Parameter List for CQS Client Structure Event

	CQS Client Structure Inform Exit Routine
	Contents of Registers on Entry
	Contents of Registers on Exit
	Structure Inform Parameter List for CQS Client Structure Inform

	Chapter 8. CQS Diagnosis
	CQS Log Records
	Printing CQS Log Records
	DD Statements for CQS Diagnosis
	Control Statements for CQS Diagnosis
	Limiting Log Data to a Specified Time Range for CQS Diagnosis
	Copying CQS Log Records for Diagnostics

	Notices
	Programming Interface Information
	Trademarks

	Bibliography
	IMS Version 9 Library

	Index

