
IMS

Application

Programming:

Database

Manager

Version

9

ZES1-2333-00IBM

Confidential

���

IMS

Application

Programming:

Database

Manager

Version

9

ZES1-2333-00IBM

Confidential

���

Note

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

under

“Notices”

on

page

383

Quality

Partnership

Program

(QPP)

Edition

(December

2003)

(Softcopy

Only)

This

QPP

edition

applies

to

Version

9

of

IMS

(product

number

5655-J38)

and

to

all

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

©

Copyright

International

Business

Machines

Corporation

1974,

2003.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

IBM

Confidential

Contents

Figures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

About

This

Book

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

Summary

of

Contents

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

Prerequisite

Knowledge

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xi

How

to

Use

This

Book

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xii

Terminology

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xii

How

to

Read

Syntax

Diagrams

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xii

How

to

Send

Your

Comments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xv

Change

Indicators

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xv

Summary

of

Changes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xvii

Changes

to

the

Current

Edition

of

This

Book

for

IMS

Version

9

.

.

.

.

.

.

. xvii

Changes

to

This

Book

for

IMS

Version

9

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xvii

Library

Changes

for

IMS

Version

9

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xvii

Part

1.

Writing

Application

Programs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Chapter

1.

How

Application

Programs

Work

with

the

IMS

Database

Manager

9

Application

Program

Environments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 9

The

Application

Programming

Interface

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 9

Getting

Started

with

DL/I

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 12

Getting

Started

with

DL/I

(for

CICS

Online

Users)

.

.

.

.

.

.

.

.

.

.

.

. 13

Getting

Started

with

DL/I

using

the

ODBA

Interface

.

.

.

.

.

.

.

.

.

.

. 15

DL/I

Calls

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 16

Sample

Hierarchies

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

SSA

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 24

Command

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

IVP

Sample

Application

Program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 45

Chapter

2.

Writing

Your

Application

Programs

.

.

.

.

.

.

.

.

.

.

.

. 47

Programming

Guidelines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 47

Coding

DL/I

Calls

and

Data

Areas

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 48

Preparing

to

Run

Your

CICS

DL/I

Call

Program

.

.

.

.

.

.

.

.

.

.

.

.

. 49

Sample

Programs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

Chapter

3.

Defining

Application

Program

Elements

.

.

.

.

.

.

.

.

.

. 77

Formatting

DL/I

Calls

for

Language

Interfaces

.

.

.

.

.

.

.

.

.

.

.

.

. 77

Application

Programming

for

Assembler

Language

.

.

.

.

.

.

.

.

.

.

.

. 78

Application

Programming

for

C

Language

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 80

Application

Programming

for

COBOL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 83

Application

Programming

for

Pascal

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 86

Application

Programming

for

PL/I

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 88

Relationship

of

Calls

to

PCBs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 91

Specifying

the

I/O

PCB

Mask

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 92

Specifying

the

DB

PCB

Mask

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 95

Specifying

the

AIB

Mask

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 98

Specifying

the

AIB

Mask

for

ODBA

Applications

.

.

.

.

.

.

.

.

.

.

.

.

. 99

Specifying

the

UIB

(CICS

Online

Programs

Only)

.

.

.

.

.

.

.

.

.

.

.

. 102

Specifying

the

I/O

Areas

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 105

Segment

Search

Arguments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 106

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

iii

GSAM

Data

Areas

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

The

AIBTDLI

Interface

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

Specifying

the

Language

Specific

Entry

Point

.

.

.

.

.

.

.

.

.

.

.

.

. 112

PCB

Lists

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 115

The

AERTLDI

interface

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 116

Language

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 117

Special

DL/I

Situations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 118

Chapter

4.

Writing

DL/I

Calls

for

Database

Management

.

.

.

.

.

.

.

. 121

CIMS

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 121

CLSE

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 123

DEQ

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 123

DLET

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 125

FLD

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 126

GN/GHN

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 128

GNP/GHNP

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 132

GU/GHU

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 135

ISRT

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 138

OPEN

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 141

POS

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 142

REPL

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 145

Chapter

5.

Writing

DL/I

Calls

for

System

Services

.

.

.

.

.

.

.

.

.

. 149

APSB

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 150

CHKP

(Basic)

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 150

CHKP

(Symbolic)

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 151

DPSB

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 153

GMSG

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 154

GSCD

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 156

ICMD

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 157

INIT

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 159

INQY

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 163

LOG

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 169

PCB

Call

(CICS

Online

Programs

Only)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 171

RCMD

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 172

ROLB

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 173

ROLL

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 174

ROLS

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 175

SETS/SETU

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 176

SNAP

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 177

STAT

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 180

SYNC

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 182

TERM

Call

(CICS

Online

Programs

Only)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 183

XRST

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 184

Chapter

6.

Monitoring

Your

Position

in

the

Database

.

.

.

.

.

.

.

.

. 189

Understanding

Current

Position

in

the

Database

.

.

.

.

.

.

.

.

.

.

.

. 189

Current

Position

after

Unsuccessful

Calls

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 194

Chapter

7.

Multiple

Qualification

Statements

.

.

.

.

.

.

.

.

.

.

.

. 199

Overview

of

Multiple

Qualification

Statements

.

.

.

.

.

.

.

.

.

.

.

.

. 199

Example

using

Multiple

Qualification

Statements

.

.

.

.

.

.

.

.

.

.

.

. 200

Multiple

Qualification

Statements

for

HDAM,

PHDAM,

or

DEDB

.

.

.

.

.

. 201

Chapter

8.

Multiple

Processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 203

Multiple

Positioning

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 203

IBM

Confidential

iv

Application

Programming:

Database

Manager

Advantages

of

Using

Multiple

Positioning

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 206

Using

Multiple

DB

PCBs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 208

Chapter

9.

Secondary

Indexing

and

Logical

Relationships

.

.

.

.

.

.

. 211

How

Secondary

Indexing

Affects

Your

Program

.

.

.

.

.

.

.

.

.

.

.

. 211

Processing

Segments

in

Logical

Relationships

.

.

.

.

.

.

.

.

.

.

.

.

. 214

Chapter

10.

Processing

GSAM

Databases

.

.

.

.

.

.

.

.

.

.

.

.

. 219

Accessing

GSAM

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 219

GSAM

Record

Formats

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 222

GSAM

I/O

Areas

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 223

GSAM

Status

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 223

Symbolic

CHKP

and

XRST

with

GSAM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 224

GSAM

Coding

Considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 224

Origin

of

GSAM

Data

Set

Characteristics

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 225

Chapter

11.

Processing

Fast

Path

Databases

.

.

.

.

.

.

.

.

.

.

.

. 229

Fast

Path

Database

Calls

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 229

MSDBs

and

DEDBs:

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 230

Processing

MSDBs

and

DEDBs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 231

Restrictions

on

Using

Calls

for

MSDBs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 237

Processing

DEDBs

(IMS,

CICS

with

DBCTL)

.

.

.

.

.

.

.

.

.

.

.

.

. 238

Restrictions

on

Using

Calls

for

DEDBs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 246

Fast

Path

Coding

Considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 247

Chapter

12.

Recovering

Databases

and

Maintaining

Database

Integrity

249

Issuing

Checkpoints

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 249

Restarting

Your

Program

and

Checking

for

Position

.

.

.

.

.

.

.

.

.

.

. 249

Maintaining

Database

Integrity

(IMS

Batch,

BMP,

and

IMS

Online

Regions)

250

Reserving

Segments

for

the

Exclusive

Use

of

Your

Program

.

.

.

.

.

.

.

. 256

Part

2.

IMS

Adapter

for

REXX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 259

Chapter

13.

IMS

Adapter

for

REXX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 261

Addressing

Other

Environments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 262

REXX

Transaction

Programs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 262

REXXTDLI

Commands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 266

REXXTDLI

Calls

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 267

REXXIMS

Extended

Commands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 270

Chapter

14.

Sample

Execs

Using

REXXTDLI

.

.

.

.

.

.

.

.

.

.

.

. 283

SAY

Exec:

For

Expression

Evaluation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 283

PCBINFO

Exec:

Display

PCBs

Available

in

Current

PSB

.

.

.

.

.

.

.

.

. 284

PART

Execs:

Database

Access

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 286

DOCMD:

IMS

Commands

Front

End

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 289

IVPREXX:

MPP/IFP

Front

End

for

General

Exec

Execution

.

.

.

.

.

.

.

. 293

Part

3.

Reference

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 295

Chapter

15.

Summary

of

DM

and

System

Service

Calls

.

.

.

.

.

.

.

. 297

Database

Management

Call

Summary

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 297

System

Service

Call

Summary

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 298

Chapter

16.

Command

Codes

Reference

.

.

.

.

.

.

.

.

.

.

.

.

.

. 301

IBM

Confidential

Contents

v

Chapter

17.

CICS-DL/I

User

Interface

Block

Return

Codes

.

.

.

.

.

.

. 303

Not-Open

Conditions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 304

Invalid

Request

Conditions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 304

Part

4.

Appendixes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 305

Appendix

A.

Sample

Exit

Routine

(DFSREXXU)

.

.

.

.

.

.

.

.

.

.

. 307

Appendix

B.

The

DL/I

Test

Program

(DFSDDLT0)

.

.

.

.

.

.

.

.

.

.

. 309

Control

Statements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 309

Planning

the

Control

Statement

Order

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 311

ABEND

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 311

CALL

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 312

COMMENT

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 332

COMPARE

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 333

IGNORE

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 339

OPTION

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 339

PUNCH

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 340

STATUS

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 342

WTO

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 345

WTOR

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 346

JCL

Requirements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 346

Execution

of

DFSDDLT0

in

IMS

Regions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 350

Explanation

of

DFSDDLT0

Return

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 351

Hints

on

Using

DFSDDLT0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 351

Appendix

C.

The

Database

Resource

Adapter

(DRA)

.

.

.

.

.

.

.

.

. 355

Thread

Concepts

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 355

Sync

Points

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 358

The

DRA

Startup

Table

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 362

Enabling

the

DRA

for

a

CCTL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 363

Enabling

the

DRA

for

the

ODBA

Interface

.

.

.

.

.

.

.

.

.

.

.

.

.

. 364

Processing

CCTL

DRA

Requests

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 365

Processing

ODBA

Calls

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 366

CCTL-Initiated

DRA

Function

Requests

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 366

PAPL

Mapping

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 375

Terminating

the

DRA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 375

Designing

the

CCTL

Recovery

Process

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 375

CCTL

Performance—Monitoring

DRA

Thread

TCBs

.

.

.

.

.

.

.

.

.

.

. 376

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 383

Programming

Interface

Information

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 385

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 385

Product

Names

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 386

Bibliography

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 387

IMS

Version

9

Library

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 387

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 389

IBM

Confidential

vi

Application

Programming:

Database

Manager

Figures

1.

Hierarchical

Relationship

of

Application

Programming

Books

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xii

2.

Application

View

of

DB/DC

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 10

3.

Application

View

of

DBCTL

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

4.

DL/I

Program

Elements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 12

5.

The

Structure

of

a

Call-Level

CICS

Online

Program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 14

6.

Normal

Relationship

between

Programs,

PSBs,

PCBs,

DBDs,

and

Databases

.

.

.

.

.

.

.

. 19

7.

Relationship

between

Programs

and

Multiple

PCBs

(Concurrent

Processing)

.

.

.

.

.

.

.

.

. 19

8.

Medical

Hierarchy

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

9.

Segment

with

a

Noncontiguous

Sequence

Field

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 26

10.

D

Command

Code

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 27

11.

U

Command

Code

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 37

12.

Processing

for

the

Passbook

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 40

13.

Moving

the

Subset

Pointer

to

the

Next

Segment

after

Your

Current

Position

.

.

.

.

.

.

.

.

. 41

14.

Retrieving

the

First

Segment

in

a

Chain

of

Segments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 42

15.

Unconditionally

Setting

the

Subset

Pointer

to

Your

Current

Position

.

.

.

.

.

.

.

.

.

.

.

. 43

16.

Conditionally

Setting

the

Subset

Pointer

to

Your

Current

Position

.

.

.

.

.

.

.

.

.

.

.

.

. 44

17.

Sample

Assembler

Language

Program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

18.

Sample

Call-Level

Assembler

Language

Program

(CICS

Online)

.

.

.

.

.

.

.

.

.

.

.

.

. 54

19.

Sample

C

Language

Program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 57

20.

Sample

COBOL

Program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 61

21.

Sample

Call-Level

OS/V

COBOL

program

(CICS

Online)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 66

22.

Sample

Pascal

Program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 69

23.

Sample

PL/I

Program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 71

24.

Sample

Call-Level

PL/I

Program

(CICS

Online)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 75

25.

Defining

the

UIB,

PCB

Address

List,

and

the

PCB

Mask

for

VS

COBOL

II

.

.

.

.

.

.

.

.

. 103

26.

Defining

the

UIB,

PCB

Address

List,

and

the

PCB

Mask

for

OS/VS

COBOL

.

.

.

.

.

.

.

. 104

27.

The

COBOL

DLIUIB

Copy

Book

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 104

28.

Defining

the

UIB,

PCB

Address

List,

and

the

PCB

Mask

for

PL/I

.

.

.

.

.

.

.

.

.

.

.

.

. 105

29.

Defining

the

UIB,

PCB

Address

List,

and

the

PCB

Mask

for

Assembler

Language

.

.

.

.

.

. 105

30.

Example

Code:

*

CONSTANT

AREA

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 108

31.

Qualified

SSA

without

Command

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 110

32.

Hierarchic

Sequence

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 130

33.

I/O

Area

for

SNAP

Operation

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 178

34.

Current

Position

Hierarchy

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 190

35.

Example

Code:

Deleting

Segment

C11

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 191

36.

Hierarchy

after

Deleting

a

Segment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 192

37.

Hierarchy

after

Deleting

a

Segment

and

Dependents

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 192

38.

Hierarchy

after

Adding

New

Segments

and

Dependents

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 194

39.

DL/I

Positions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 195

40.

Multiple

Processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 203

41.

Multiple

Positioning

Hierarchy

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 204

42.

Single

and

Multiple

Positioning

Hierarchy

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 205

43.

Example

of

Using

the

Dependent

AND

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 213

44.

Example

of

Using

the

Independent

AND

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 213

45.

Patient

and

Item

Hierarchies

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 215

46.

Concatenated

Segment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 216

47.

//IMS

DD

Statement

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 228

48.

Sample

PCB

Specifying

View=MSDB

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 236

49.

Processing

a

Long

Chain

of

Segment

Occurrences

with

Subset

Pointers

.

.

.

.

.

.

.

.

.

. 238

50.

Examples

of

Setting

Subset

Pointers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 239

51.

Additional

Examples

of

Setting

Subset

Pointers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 239

52.

How

Subset

Pointers

Divide

a

Chain

into

Subsets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 240

53.

SETS

and

ROLS

Calls

Working

Together

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 254

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

vii

54.

JCL

Code

Used

to

Run

the

IVPREXX

Sample

Exec

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 264

55.

IMS

Adapter

for

REXX

Logical

Overview

Diagram

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 265

56.

Exec

To

Do

Calculations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 283

57.

PDF

EDIT

Session

on

the

SAY

Exec

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 284

58.

Example

Output

from

the

SAY

Exec

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 284

59.

Example

Output

of

PCBINFO

Exec

on

a

PSB

without

Database

PCBs.

.

.

.

.

.

.

.

.

.

. 284

60.

Example

Output

of

PCBINFO

Exec

on

a

PSB

with

a

Database

PCB.

.

.

.

.

.

.

.

.

.

.

. 284

61.

PCBINFO

Exec

Listing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 285

62.

Example

Output

of

PARTNUM

Exec

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 286

63.

Example

Output

of

PARTNAME

Exec

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 286

64.

PARTNUM

Exec:

Show

Set

of

Parts

Near

a

Specified

Number

.

.

.

.

.

.

.

.

.

.

.

.

. 287

65.

PARTNAME

Exec:

Show

Parts

with

Similar

Names

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 288

66.

Output

from

=

>

DOCMD

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 289

67.

Output

from

=

>

DOCMD

/DIS

NODE

ALL;?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 289

68.

Output

from

=

>

DOCMD

/DIS

NODE

ALL;CID>0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 289

69.

Output

from

=

>

DOCMD

/DIS

NODE

ALL;TYPE=SLU2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 290

70.

Output

from

=

>

DOCMD

/DIS

TRAN

ALL;ENQCT>0

&

RECTYPE=’T02’

.

.

.

.

.

.

.

.

.

. 290

71.

Output

from

=

>

DOCMD

/DIS

LTERM

ALL;ENQCT>0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 290

72.

DOCMD

Exec:

Process

an

IMS

Command

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 291

73.

Example

JCL

Code

for

DD

Statement

Definition

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 347

74.

Example

JCL

Code

for

DFSDDLT0

in

a

BMP

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 347

75.

ODBA

Two-Phase

Sync

Point

Processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 361

76.

DRA

Component

Structure

with

the

ODBA

Interface

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 365

IBM

Confidential

viii

Application

Programming:

Database

Manager

Tables

1.

How

to

Read

Syntax

Diagrams

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. xiii

2.

PATIENT

Segment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

3.

ILLNESS

Segment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

4.

TREATMNT

Segment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

5.

BILLING

Segment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

6.

PAYMENT

Segment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

7.

HOUSEHOLD

Segment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 22

8.

Teller

Segment

in

a

Fixed

Related

MSDB

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 22

9.

Branch

Summary

Segment

in

a

Dynamic

Related

MSDB

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 23

10.

Account

Segment

in

a

Nonrelated

MSDB

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 23

11.

Qualified

SSA

Structure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 24

12.

Unqualified

SSA

with

Command

Code

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 27

13.

Qualified

SSA

with

Command

Code

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

14.

Command

Codes

for

DL/I

Calls

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

15.

Call

Relationship

to

PCBs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 91

16.

I/O

PCB

Mask

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 92

17.

DB

PCB

Mask

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 95

18.

AIB

Fields

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 98

19.

AIB

Fields

for

ODBA

Applications’

Use

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 99

20.

Relational

Operators

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 107

21.

I/O

PCB

and

Alternate

PCB

Information

Summary

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 116

22.

Using

LANG=

Option

in

a

Language

Environment

for

PL/I

Compatibility

.

.

.

.

.

.

.

.

.

. 118

23.

Unqualified

POS

Call:

Keywords

and

Map

of

the

I/O

Area

Returned

.

.

.

.

.

.

.

.

.

.

. 143

24.

GMSG

Support

by

Application

Region

Type

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 156

25.

ICMD

Support

by

Application

Region

Type

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 158

26.

INIT

DBQUERY:

Examples

for

ASMTDLI,

CBLTDLI,

CTDLI,

and

PASTDLI

.

.

.

.

.

.

.

.

. 160

27.

INIT

DBQUERY:

I/O

Area

Example

for

PLITDLI

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 160

28.

INIT

I/O

Area

Examples

for

ASMTDLI,

CBLTDLI,

CTDLI,

and

PASTDLI

.

.

.

.

.

.

.

.

.

. 161

29.

INIT

I/O

Area

Examples

for

PLITDLI

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 161

30.

INIT

I/O

Area

Examples

for

ASMTDLI,

CBLTDLI,

CTDLI,

and

PASTDLI

.

.

.

.

.

.

.

.

.

. 162

31.

INIT

I/O

Area

Examples

for

PLITDLI

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 162

32.

INQY

ENVIRON

Data

Output

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 166

33.

Subfunction,

PCB,

and

I/O

Area

Combinations

for

the

INQY

Call

.

.

.

.

.

.

.

.

.

.

.

.

. 169

34.

Log

Record

Formats

for

COBOL,

C,

Assembler,

Pascal,

and

PL/I

Programs

for

the

AIBTDLI,

ASMTDLI,

CBLTDLI,

CEETDLI,

CTDLI,

and

PASTDLI

Interfaces

.

.

.

.

.

.

.

.

.

.

.

.

. 170

35.

Log

Record

Formats

for

COBOL,

C,

Assembler,

Pascal,

and

PL/I

Programs

for

the

PLITDLI

Interface

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 170

36.

RCMD

Support

by

Application

Region

Type

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 173

37.

SNAP

Operation

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 179

38.

Results

of

Single

and

Multiple

Positioning

with

DL/I

Calls

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 205

39.

GSAM

DB

PCB

Mask

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 220

40.

Summary

of

GSAM

Calls

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 225

41.

Summary

of

Fast

Path

Database

Calls

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 229

42.

Subset

Pointer

Command

Codes

and

Calls

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 230

43.

FSA

Structure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 232

44.

Unqualified

SSA

with

Subset

Pointer

Command

Code

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 241

45.

Qualified

SSA

with

Subset

Pointer

Command

Code

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 241

46.

Qualified

POS

Call:

Keywords

and

Map

of

I/O

Area

Returned

.

.

.

.

.

.

.

.

.

.

.

.

.

. 243

47.

Comparison

of

ROLB,

ROLL,

and

ROLS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 251

48.

IMS

Adapter

for

REXX

Parameter

Types

and

Definitions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 268

49.

REXXIMS

Extended

Commands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 270

50.

Summary

of

DB

Calls

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 297

51.

Summary

of

System

Service

Calls

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 298

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

ix

52.

Summary

of

Command

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 301

53.

Command

Codes

and

Calls

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 301

54.

Return

Codes

in

UIBFCTR

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 303

55.

Return

Codes

in

UIBDLTR

if

UIBFCTR='0C'

(NOTOPEN)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 303

56.

Return

Codes

in

UIBDLTR

if

UIBFCTR='08'

(INVREQ)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 303

57.

Summary

of

DFSDDLT0

Control

Statements

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 309

58.

ABEND

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 311

59.

CALL

FUNCTION

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 312

60.

CALL

DATA

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 315

61.

OPTION

DATA

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 317

62.

FEEDBACK

DATA

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 317

63.

DL/I

Call

Functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 318

64.

CALL

FUNCTION

Statement

(Column-Specific

SSAs)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 329

65.

CALL

FUNCTION

Statement

with

DFSDDLT0

Call

Functions

.

.

.

.

.

.

.

.

.

.

.

.

.

. 331

66.

COMMENT

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 332

67.

COMPARE

DATA

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 333

68.

COMPARE

AIB

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 335

69.

COMPARE

PCB

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 335

70.

IGNORE

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 339

71.

OPTION

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 339

72.

PUNCH

CTL

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 340

73.

STATUS

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 342

74.

WTO

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 345

75.

WTOR

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 346

76.

Example

of

Events

in

a

Multithreading

System

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 357

77.

CCTL

Single-Phase

Sync

Point

Processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 360

78.

CCTL

Two-Phase

Sync

Point

Processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 360

79.

Information

Provided

for

the

Schedule

Process:

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 377

80.

Information

Provided

at

UOR

Termination:

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 377

IBM

Confidential

x

Application

Programming:

Database

Manager

About

This

Book

This

softcopy

book

is

available

only

in

PDF

and

BookManager®

formats.

This

book

is

available

on

the

IMS

Version

9

Licensed

Product

Kit

(LK3T-7213).

To

get

the

most

current

versions

of

the

PDF

and

BookManager

formats,

go

to

the

IMS

Web

site

at

www.ibm.com/ims

and

link

to

the

Library

page.

This

book

is

a

guide

to

application

programming

in

an

IMS™

Database

Manager

(IMS

DB)

environment.

It

covers

basic

information

on

coding

DL/I

calls

for

DB

programs.

The

book

is

designed

to

provide

guidance

for

application

programmers

who

use

the

IMS

DB

environment

to

create

and

run

application

programs.

Portions

of

this

book

are

for

programmers

who

use

IMS

from

a

Customer

Information

Control

System

(CICS®)

environment.

This

book

also

contains

information

on

the

DBCTL

environment.

DBCTL

is

generated

by

IMS

DB,

contains

no

data

communication

components,

and

is

designed

to

function

as

a

database

manager

for

non-IMS

transaction

management

systems.

Summary

of

Contents

This

book

has

four

parts:

v

Part

1,

“Writing

Application

Programs,”

on

page

1

provides

basic

information

on

coding

DL/I

calls

for

IMS

DB

programs.

v

Part

2,

“IMS

Adapter

for

REXX,”

on

page

259

provides

information

that

you

can

use

to

interactively

develop

REXX

EXECs

under

TSO/E

and

execute

them

in

IMS

MPPs,

BMPs,

IFPs,

or

batch

regions.

v

Part

3,

“Reference,”

on

page

295

provides

additional

information

you

need

to

write

your

application

program.

v

Part

4,

″Appendixes″

contains

appendixes

on

several

subjects

including

sample

exit

routines,

sample

applications,

and

use

of

the

DL/I

test

program

(DFSDDLT0).

Prerequisite

Knowledge

IBM®

offers

a

wide

variety

of

classroom

and

self-study

courses

to

help

you

learn

IMS.

For

a

complete

list,

see

the

IMS

home

page

on

the

World

Wide

Web

at:

www.ibm.com/ims.

Before

using

this

book,

you

should

understand

the

concepts

of

application

design

presented

in

IMS

Version

9:

Application

Programming:

Design

Guide,

which

assumes

you

understand

basic

IMS

concepts

and

the

various

environments.

This

book

is

an

extension

to

IMS

Version

9:

Application

Programming:

Design

Guide.

The

IMS

concepts

explained

in

this

manual

are

limited

to

those

concepts

that

are

pertinent

to

developing

and

coding

application

programs.

You

should

also

know

how

to

use

assembler

language,

C

language,

COBOL,

Pascal,

or

PL/I.

CICS

programs

can

be

written

in

assembler

language,

C

language,

COBOL,

PL/I,

and

C++.

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

xi

How

to

Use

This

Book

This

book

is

one

of

several

books

documenting

the

IMS

application

programming

task.

The

complete

package

of

application

programming

materials

is

as

follows:

v

IMS

Version

9:

Application

Programming:

Design

Guide

(APDG),

is

the

introductory

application

programming

book

and

is

also

the

place

to

find

information

common

to

all

of

the

application

programming

environments.

v

IMS

Version

9:

Application

Programming:

Database

Manager

(APDB)

describes

how

to

write

an

application

program

to

process

a

database

using

DL/I

calls.

This

book

applies

to

both

IMS

and

CICS

environments.

v

IMS

Version

9:

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

(APCICS)

describes

how

to

write

an

application

program

to

process

the

database

using

EXEC

DLI

commands.

v

IMS

Version

9:

Application

Programming:

Transaction

Manager

(APTM)

describes

how

to

write

an

application

program

to

process

messages

using

DC

calls.

For

definitions

of

terms

used

in

this

manual

and

references

to

related

information

in

other

manuals,

see

the

IMS

Version

9:

Master

Index

and

Glossary.

Terminology

In

this

manual,

the

term

external

subsystems

refers

to

subsystems

that

are

not

CCTL

subsystems,

unless

indicated

otherwise.

One

example

of

an

external

subsystem

is

DB2®.

For

definitions

of

terminology

used

in

this

manual

and

references

to

related

information

in

other

manuals,

see

IMS

Version

9:

Master

Index

and

Glossary.

How

to

Read

Syntax

Diagrams

Each

syntax

diagram

in

this

book

begins

with

a

double

right

arrow

and

ends

with

a

right

and

left

arrow

pair.

Lines

that

begin

with

a

single

right

arrow

are

continuation

lines.

You

read

a

syntax

diagram

from

left

to

right

and

from

top

to

bottom,

following

the

direction

of

the

arrows.

Figure

1.

Hierarchical

Relationship

of

Application

Programming

Books

IBM

Confidential

xii

Application

Programming:

Database

Manager

Conventions

used

in

syntax

diagrams

are

described

in

Table

1:

Table

1.

How

to

Read

Syntax

Diagrams

Convention

Meaning

��

A

B

C

��

You

must

specify

values

A,

B,

and

C.

Required

values

are

shown

on

the

main

path

of

a

syntax

diagram.

��

A

��

You

have

the

option

to

specify

value

A.

Optional

values

are

shown

below

the

main

path

of

a

syntax

diagram.

��

A

B

C

��

You

must

specify

value

A,

B,

or

C.

��

A

B

C

��

You

have

the

option

to

specify

A,

B,

C,

or

none

of

these

values.

��

A

B

C

��

You

have

the

option

to

specify

A,

B,

C,

or

none

of

these

values.

If

you

don’t

specify

a

value,

A

is

the

default.

��

�

,

A

B

C

��

You

have

the

option

to

specify

one,

more

than

one,

or

none

of

the

values

A,

B,

or

C.

Any

required

separator

for

multiple

or

repeated

values

(in

this

example,

the

comma)

is

shown

on

the

arrow.

��

�

,

A

��

You

have

the

option

to

specify

value

A

multiple

times.

The

separator

in

this

example

is

optional.

��

Name

��

Name:

A

B

Sometimes

a

diagram

must

be

split

into

fragments.

The

syntax

fragment

is

shown

separately

from

the

main

syntax

diagram,

but

the

contents

of

the

fragment

should

be

read

as

if

they

are

on

the

main

path

of

the

diagram.

IBM

Confidential

About

This

Book

xiii

Table

1.

How

to

Read

Syntax

Diagrams

(continued)

Convention

Meaning

Punctuation

marks

and

numbers

Enter

punctuation

marks

(slashes,

commas,

periods,

parentheses,

quotation

marks,

equal

signs)

and

numbers

exactly

as

shown.

Uppercase

values

Keywords,

their

allowable

synonyms,

and

reserved

parameters,

appear

in

uppercase

letters

for

z/OS.

Enter

these

values

exactly

as

shown.

Lowercase

values

without

italics

Keywords,

their

allowable

synonyms,

and

reserved

parameters,

appear

in

lowercase

letters

for

UNIX.

Enter

these

values

exactly

as

shown.

Lowercase

values

in

italics

(for

example,

name)

Supply

your

own

text

or

value

in

place

of

the

name

variable.

�

A

�

symbol

indicates

one

blank

position.

Other

conventions

include

the

following:

v

When

entering

commands,

separate

parameters

and

keywords

by

at

least

one

blank

if

there

is

no

intervening

punctuation.

v

Footnotes

are

shown

by

a

number

in

parentheses,

for

example,

(1).

v

Parameters

with

number

values

end

with

the

symbol

#.

v

Parameters

that

are

names

end

with

’name’.

v

Parameters

that

can

be

generic

end

with

the

symbol

*.

Syntax

Diagram

Example

Here

is

an

example

syntax

diagram

that

describes

the

hello

command.

��

hello

Name

Greeting

��

Name:

�

,

(1)

name

Greeting:

(2)

,

your_greeting

Notes:

1 You

can

code

up

to

three

names.

2 Compose

and

add

your

own

greeting

(for

example,

how

are

you?).

According

to

the

syntax

diagram,

these

are

all

valid

versions

of

the

hello

command:

IBM

Confidential

xiv

Application

Programming:

Database

Manager

hello

hello

name

hello

name,

name

hello

name,

name,

name

hello,

your_greeting

hello

name,

your_greeting

hello

name,

name,

your_greeting

hello

name,

name,

name,

your_greeting

The

space

before

the

name

value

is

significant.

If

you

do

not

code

name,

you

must

still

code

the

comma

before

your_greeting.

How

to

Send

Your

Comments

Your

feedback

is

important

in

helping

us

provide

the

most

accurate

and

highest

quality

information.

If

you

have

any

comments

about

this

book

or

any

other

IMS

documentation,

you

can

do

one

of

the

following:

v

Go

to

the

IMS

home

page

at:

www.ibm.com/ims.

There

you

will

find

an

online

feedback

page

where

you

can

enter

and

submit

comments.

v

Send

your

comments

by

e-mail

to

imspubs@us.ibm.com.

Be

sure

to

include

the

name

of

the

book,

the

part

number

of

the

book,

the

version

of

IMS,

and,

if

applicable,

the

specific

location

of

the

text

you

are

commenting

on

(for

example,

a

page

number

or

table

number).

Change

Indicators

Symbols

or

numbers

that

appear

to

the

left

of

the

text

are

change

indicators,

which

identify

technical

information

that

has

changed

between

publication

releases.

The

change

indicators

in

this

book

identify

changes

as

follows:

|

Technical

changes

are

indicated

in

this

publication

by

a

vertical

bar

(|)

to

the

left

of

the

changed

text.

IBM

Confidential

About

This

Book

xv

IBM

Confidential

xvi

Application

Programming:

Database

Manager

Summary

of

Changes

Changes

to

the

Current

Edition

of

This

Book

for

IMS

Version

9

Changes

to

This

Book

for

IMS

Version

9

This

edition

is

a

draft

version

of

this

book

intended

for

use

during

the

Quality

Partnership

Program

(QPP).

Contents

of

this

book

are

preliminary

and

under

development.

This

book

contains

new

technical

information

for

IMS

Version

9,

as

well

as

editorial

changes.

This

book

contains

new

information

about:

v

Coding

a

batch

program

in

COBOL

v

Issuing

a

DL/I

POS

call

Library

Changes

for

IMS

Version

9

Changes

to

the

IMS

Library

for

IMS

Version

9

include

the

addition

of

new

titles,

the

change

of

one

title,

and

a

major

terminology

change.

New

and

Revised

Titles

The

following

list

details

the

major

changes

to

the

IMS

Version

9

library:

v

IMS

Version

9:

HALDB

Online

Reorganization

Guide

and

Reference

The

library

includes

a

new

book:

IMS

Version

9:

HALDB

Online

Reorganization

Guide

and

Reference.

This

information

is

available

only

in

PDF

and

BookManager

formats.

v

IMS

Version

9:

An

Introduction

to

IMS

The

library

includes

a

new

book:

IMS

Version

9:

An

Introduction

to

IMS.

v

The

book

formerly

titled

IMS

Version

8:

IMS

Java

User’s

Guide

is

now

titled

IMS

Version

9:

IMS

Java

Guide

and

Reference.

Terminology

Changes

IMS

Version

9

introduces

new

terminology

for

IMS

commands:

type-1

command

A

command,

generally

preceded

by

a

leading

slash

character,

that

can

be

entered

from

any

valid

IMS

command

source.

In

IMS

Version

8,

these

commands

were

called

classic

commands.

type-2

command

A

command

that

is

entered

only

through

the

OM

API.

Type-2

commands

are

more

flexible

and

can

have

a

broader

scope

than

type-1

commands.

In

IMS

Version

8,

these

commands

were

called

IMSplex

commands

or

enhanced

commands.

Accessibility

Enhancements

Accessibility

features

help

a

user

who

has

a

physical

disability,

such

as

restricted

mobility

or

limited

vision,

to

use

software

products.

The

major

accessibility

features

in

z/OS

products,

including

IMS,

enable

users

to:

v

Use

assistive

technologies

such

as

screen

readers

and

screen

magnifier

software

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

xvii

v

Operate

specific

or

equivalent

features

using

only

the

keyboard

v

Customize

display

attributes

such

as

color,

contrast,

and

font

size

User

Assistive

Technologies

Assistive

technology

products,

such

as

screen

readers,

function

with

the

IMS

user

interfaces.

Consult

the

documentation

of

the

assistive

technology

products

for

specific

information

when

you

use

assistive

technology

to

access

these

interfaces.

Accessible

Documentation

Online

information

for

IMS

Version

9

is

available

in

BookManager

format,

which

is

an

accessible

format.

All

BookManager

functions

can

be

accessed

by

using

a

keyboard

or

keyboard

shortcut

keys.

BookManager

also

allows

you

to

use

screen

readers

and

other

assistive

technologies.

The

BookManager

READ/MVS

product

is

included

with

the

z/OS

base

product,

and

the

BookManager

Softcopy

Reader

(for

workstations)

is

available

on

the

IMS

Licensed

Product

Kit

(CD),

which

you

can

download

from

the

Web

at

www.ibm.com.

Keyboard

Navigation

of

the

User

Interface

Users

can

access

IMS

user

interfaces

using

TSO/E

or

ISPF.

Refer

to

the

z/OS

V1R1.0

TSO/E

Primer,

the

z/OS

V1R1.0

TSO/E

User’s

Guide,

and

the

z/OS

V1R1.0

ISPF

User’s

Guide,

Volume

1.

These

guides

describe

how

to

navigate

each

interface,

including

the

use

of

keyboard

shortcuts

or

function

keys

(PF

keys).

Each

guide

includes

the

default

settings

for

the

PF

keys

and

explains

how

to

modify

their

functions.

IBM

Confidential

xviii

Application

Programming:

Database

Manager

Part

1.

Writing

Application

Programs

Chapter

1.

How

Application

Programs

Work

with

the

IMS

Database

Manager

9

Application

Program

Environments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 9

The

Application

Programming

Interface

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 9

The

DB/DC

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 10

The

DBCTL

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 10

The

DB

Batch

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 12

Getting

Started

with

DL/I

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 12

Getting

Started

with

DL/I

(for

CICS

Online

Users)

.

.

.

.

.

.

.

.

.

.

.

. 13

Getting

Started

with

DL/I

using

the

ODBA

Interface

.

.

.

.

.

.

.

.

.

.

. 15

Common

Logic

Flow

for

SRMS

and

MRMS

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Logic

Flow

for

SRMS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Logic

Flow

for

MRMS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 16

DL/I

Calls

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 16

DB

Call

Functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 16

System

Service

Call

Functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 16

Status

Codes,

Return

Codes,

and

Reason

Codes

.

.

.

.

.

.

.

.

.

.

. 17

Exceptional

Conditions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 18

High

Availability

Large

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 18

Error

Routines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 18

DL/I

and

Your

Application

Program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 18

DBDs

and

PSBs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 18

SSAs

and

Command

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

Sample

Hierarchies

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

Medical

Database

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 20

Bank

Account

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 22

SSA

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 24

Unqualified

SSAs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 24

Qualified

SSAs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 24

Guidelines

for

Using

SSAs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 26

SSAs

and

Command

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 27

Command

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

General

Command

Codes

for

DL/I

Calls

.

.

.

.

.

.

.

.

.

.

.

.

.

. 29

DEDB

Command

Codes

for

DL/I

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 39

IVP

Sample

Application

Program

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 45

Chapter

2.

Writing

Your

Application

Programs

.

.

.

.

.

.

.

.

.

.

.

. 47

Programming

Guidelines

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 47

Coding

DL/I

Calls

and

Data

Areas

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 48

Program

Design

Considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 48

Checkpoint

Considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

Segment

Considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

Data

Structure

Considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

Preparing

to

Run

Your

CICS

DL/I

Call

Program

.

.

.

.

.

.

.

.

.

.

.

.

. 49

Sample

Programs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

Coding

a

Batch

Program

in

Assembler

Language

.

.

.

.

.

.

.

.

.

.

. 50

Coding

a

CICS

Online

Program

in

Assembler

Language

.

.

.

.

.

.

.

.

. 53

Coding

a

Batch

Program

in

C

Language

.

.

.

.

.

.

.

.

.

.

.

.

.

. 56

Coding

a

Batch

Program

in

COBOL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 60

Coding

a

CICS

Online

Program

in

COBOL

.

.

.

.

.

.

.

.

.

.

.

.

. 63

Coding

a

Batch

Program

in

Pascal

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 68

Coding

a

Batch

Program

in

PL/I

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 71

Coding

a

CICS

Online

Program

in

PL/I

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 74

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

1

Chapter

3.

Defining

Application

Program

Elements

.

.

.

.

.

.

.

.

.

. 77

Formatting

DL/I

Calls

for

Language

Interfaces

.

.

.

.

.

.

.

.

.

.

.

.

. 77

Application

Programming

for

Assembler

Language

.

.

.

.

.

.

.

.

.

.

.

. 78

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 78

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 79

Example

DL/I

Call

Formats

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 80

Application

Programming

for

C

Language

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 80

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 80

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 81

I/O

Area

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 83

Example

DL/I

Call

Formats

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 83

Application

Programming

for

COBOL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 83

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 83

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 84

Example

DL/I

Call

Formats

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 85

Application

Programming

for

Pascal

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 86

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 86

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 87

Example

DL/I

Call

Formats

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 88

Application

Programming

for

PL/I

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 88

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 88

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 89

Example

DL/I

Call

Formats

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 90

Relationship

of

Calls

to

PCBs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 91

Specifying

the

I/O

PCB

Mask

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 92

Specifying

the

DB

PCB

Mask

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 95

Specifying

the

AIB

Mask

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 98

Specifying

the

AIB

Mask

for

ODBA

Applications

.

.

.

.

.

.

.

.

.

.

.

.

. 99

AIB

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 101

Specifying

the

UIB

(CICS

Online

Programs

Only)

.

.

.

.

.

.

.

.

.

.

.

. 102

Specifying

the

I/O

Areas

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 105

Segment

Search

Arguments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 106

SSA

Coding

Rules

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 106

SSA

Coding

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 107

SSA

Coding

Formats

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 107

GSAM

Data

Areas

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

GSAM

DB

PCB

Masks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

GSAM

RSAs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

The

AIBTDLI

Interface

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

Defining

Storage

for

the

AIB

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 112

Specifying

the

Language

Specific

Entry

Point

.

.

.

.

.

.

.

.

.

.

.

.

. 112

Assembler

Language

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 112

C

Language

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 113

COBOL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 113

Pascal

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 114

PL/I

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 114

Interface

Considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 114

PCB

Lists

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 115

Format

of

a

PCB

List

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 115

Format

of

a

GPSB

PCB

List

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 115

PCB

Summary

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 115

The

AERTLDI

interface

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 116

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 116

Defining

Storage

for

the

AIB

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 117

Language

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 117

IBM

Confidential

2

Application

Programming:

Database

Manager

The

CEETDLI

interface

to

IMS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 118

LANG=

Option

on

PSBGEN

for

PL/I

Compatibility

with

Language

Environment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 118

Special

DL/I

Situations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 118

Application

Program

Scheduling

against

HALDBs

.

.

.

.

.

.

.

.

.

.

. 119

Mixed-Language

Programming

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 119

Language

Environment

Routine

Retention

.

.

.

.

.

.

.

.

.

.

.

.

. 120

Extended

Addressing

Capabilities

of

MVS/ESA

.

.

.

.

.

.

.

.

.

.

. 120

Preloaded

Programs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 120

Chapter

4.

Writing

DL/I

Calls

for

Database

Management

.

.

.

.

.

.

.

. 121

CIMS

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 121

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 121

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 122

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 122

CLSE

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 123

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 123

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 123

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 123

DEQ

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 123

Format

(Full

Function)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 123

Format

(Fast

Path

DEDB)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 124

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 124

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 124

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 125

DLET

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 125

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 125

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 125

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 126

FLD

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 126

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 126

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 126

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 127

FSAs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 127

GN/GHN

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 128

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 128

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 129

Usage,

Get

Next

(GN)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 130

Usage,

Get

Hold

Next

(GHN)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 131

Usage,

HDAM,

PHDAM,

or

DEDB

Database

with

GN

.

.

.

.

.

.

.

.

. 132

Restriction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 132

GNP/GHNP

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 132

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 133

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 133

Usage,

Get

Next

in

Parent

(GNP)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 133

Usage,

Get

Hold

Next

in

Parent

(GHNP)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 135

GU/GHU

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 135

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 135

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 136

Usage,

Get

Unique

(GU)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 136

Usage,

Get

Hold

Unique

(GHU)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 137

Restriction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 138

ISRT

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 138

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 138

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 138

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 139

IBM

Confidential

Part

1.

Writing

Application

Programs

3

OPEN

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 141

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 141

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 141

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 142

POS

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 142

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 142

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 142

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 145

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 145

REPL

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 145

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 145

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 146

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 146

Chapter

5.

Writing

DL/I

Calls

for

System

Services

.

.

.

.

.

.

.

.

.

. 149

APSB

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 150

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 150

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 150

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 150

CHKP

(Basic)

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 150

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 151

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 151

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 151

CHKP

(Symbolic)

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 151

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 151

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 152

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 153

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 153

DPSB

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 153

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 153

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 153

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 153

GMSG

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 154

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 154

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 154

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 155

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 156

GSCD

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 156

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 156

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 156

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 157

Restriction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 157

ICMD

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 157

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 157

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 157

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 158

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 159

INIT

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 159

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 159

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 159

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 159

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 163

INQY

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 163

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 164

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 164

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 164

IBM

Confidential

4

Application

Programming:

Database

Manager

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 169

LOG

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 169

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 169

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 169

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 170

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 171

PCB

Call

(CICS

Online

Programs

Only)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 171

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 171

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 171

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 171

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 172

RCMD

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 172

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 172

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 172

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 173

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 173

ROLB

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 173

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 173

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 173

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 174

ROLL

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 174

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 174

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 174

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 174

Restriction

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 174

ROLS

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 175

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 175

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 175

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 175

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 176

SETS/SETU

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 176

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 176

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 176

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 177

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 177

SNAP

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 177

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 177

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 177

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 180

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 180

STAT

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 180

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 180

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 181

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 182

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 182

SYNC

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 182

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 182

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 183

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 183

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 183

TERM

Call

(CICS

Online

Programs

Only)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 183

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 183

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 183

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 184

XRST

Call

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 184

Format

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 184

IBM

Confidential

Part

1.

Writing

Application

Programs

5

Parameters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 184

Usage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 185

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 187

Chapter

6.

Monitoring

Your

Position

in

the

Database

.

.

.

.

.

.

.

.

. 189

Understanding

Current

Position

in

the

Database

.

.

.

.

.

.

.

.

.

.

.

. 189

Position

after

Retrieval

Calls

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 190

Position

after

DLET

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 191

Position

after

REPL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 193

Position

after

ISRT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 193

Current

Position

after

Unsuccessful

Calls

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 194

Position

after

an

Unsuccessful

DLET

or

REPL

Call

.

.

.

.

.

.

.

.

.

. 194

Position

after

an

Unsuccessful

Retrieval

or

ISRT

Call

.

.

.

.

.

.

.

.

. 195

Chapter

7.

Multiple

Qualification

Statements

.

.

.

.

.

.

.

.

.

.

.

. 199

Overview

of

Multiple

Qualification

Statements

.

.

.

.

.

.

.

.

.

.

.

.

. 199

Example

using

Multiple

Qualification

Statements

.

.

.

.

.

.

.

.

.

.

.

. 200

Multiple

Qualification

Statements

for

HDAM,

PHDAM,

or

DEDB

.

.

.

.

.

. 201

Chapter

8.

Multiple

Processing

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 203

Multiple

Positioning

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 203

Advantages

of

Using

Multiple

Positioning

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 206

How

Multiple

Positioning

Affects

Your

Program

.

.

.

.

.

.

.

.

.

.

.

. 206

Resetting

Position

with

Multiple

Positioning

.

.

.

.

.

.

.

.

.

.

.

.

. 208

Using

Multiple

DB

PCBs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 208

Chapter

9.

Secondary

Indexing

and

Logical

Relationships

.

.

.

.

.

.

. 211

How

Secondary

Indexing

Affects

Your

Program

.

.

.

.

.

.

.

.

.

.

.

. 211

SSAs

with

Secondary

Indexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 211

Multiple

Qualification

Statements

with

Secondary

Indexes

.

.

.

.

.

.

. 212

What

DL/I

Returns

with

a

Secondary

Index

.

.

.

.

.

.

.

.

.

.

.

.

. 214

Status

Codes

for

Secondary

Indexes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 214

Processing

Segments

in

Logical

Relationships

.

.

.

.

.

.

.

.

.

.

.

.

. 214

How

Logical

Relationships

Affect

Your

Programming

.

.

.

.

.

.

.

.

. 216

Status

Codes

for

Logical

Relationships

.

.

.

.

.

.

.

.

.

.

.

.

.

. 217

Chapter

10.

Processing

GSAM

Databases

.

.

.

.

.

.

.

.

.

.

.

.

. 219

Accessing

GSAM

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 219

PCB

Masks

for

GSAM

Databases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 219

Retrieving

and

Inserting

GSAM

Records

.

.

.

.

.

.

.

.

.

.

.

.

.

. 221

Explicitly

Opening

and

Closing

a

GSAM

Database

.

.

.

.

.

.

.

.

.

. 222

GSAM

Record

Formats

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 222

GSAM

I/O

Areas

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 223

GSAM

Status

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 223

Symbolic

CHKP

and

XRST

with

GSAM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 224

GSAM

Coding

Considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 224

Origin

of

GSAM

Data

Set

Characteristics

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 225

DD

Statement

DISP

Parameter

for

GSAM

Data

Sets

.

.

.

.

.

.

.

.

. 226

Using

Extended

Checkpoint

Restart

for

GSAM

Data

Sets

.

.

.

.

.

.

.

. 226

Use

of

Concatenated

Data

Sets

by

GSAM

.

.

.

.

.

.

.

.

.

.

.

.

. 227

Suggested

Method

for

Specifying

GSAM

Data

Set

Attributes

.

.

.

.

.

. 227

DLI

or

DBB

Region

Types

and

GSAM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 227

Chapter

11.

Processing

Fast

Path

Databases

.

.

.

.

.

.

.

.

.

.

.

. 229

Fast

Path

Database

Calls

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 229

MSDBs

and

DEDBs:

Overview

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 230

IBM

Confidential

6

Application

Programming:

Database

Manager

MSDBs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 230

DEDBs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 231

Processing

MSDBs

and

DEDBs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 231

Updating

Segments

in

an

MSDB

or

DEDB:

REPL,

DLET,

ISRT,

and

FLD

231

Commit-Point

Processing

in

MSDBs

and

DEDBs

.

.

.

.

.

.

.

.

.

.

. 235

VSO

Considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 236

Data

Locking

for

MSDBs

and

DEDBs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 236

Restrictions

on

Using

Calls

for

MSDBs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 237

Processing

DEDBs

(IMS,

CICS

with

DBCTL)

.

.

.

.

.

.

.

.

.

.

.

.

. 238

Processing

DEDBs

with

Subset

Pointers

.

.

.

.

.

.

.

.

.

.

.

.

.

. 238

Retrieving

Location

with

the

POS

Call

(for

DEDB

Only)

.

.

.

.

.

.

.

. 242

Commit-Point

Processing

in

a

DEDB

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 245

Crossing

a

UOW

Boundary

(P

Processing

Option)

.

.

.

.

.

.

.

.

.

. 245

Crossing

the

UOW

Boundary

(H

Processing

Option)

.

.

.

.

.

.

.

.

. 245

Data

Locking

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 246

Restrictions

on

Using

Calls

for

DEDBs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 246

Direct

Dependent

Segments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 246

Sequential

Dependent

Segments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 247

Fast

Path

Coding

Considerations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 247

Chapter

12.

Recovering

Databases

and

Maintaining

Database

Integrity

249

Issuing

Checkpoints

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 249

Restarting

Your

Program

and

Checking

for

Position

.

.

.

.

.

.

.

.

.

.

. 249

Maintaining

Database

Integrity

(IMS

Batch,

BMP,

and

IMS

Online

Regions)

250

Backing

Out

to

a

Prior

Commit

Point:

ROLL,

ROLB,

and

ROLS

.

.

.

.

. 250

Backing

Out

to

an

Intermediate

Backout

Point:

SETS,

SETU,

and

ROLS

254

Reserving

Segments

for

the

Exclusive

Use

of

Your

Program

.

.

.

.

.

.

.

. 256

Resource

Lock

Management

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 257

IBM

Confidential

Part

1.

Writing

Application

Programs

7

IBM

Confidential

8

Application

Programming:

Database

Manager

Chapter

1.

How

Application

Programs

Work

with

the

IMS

Database

Manager

Your

application

program

uses

Data

Language

I

(DL/I)

to

communicate

with

the

IMS

Database

Manager

(IMS

DB).

This

section

provides

an

overview

of

the

database

management

process.

In

this

Chapter:

v

“Application

Program

Environments”

v

“The

Application

Programming

Interface”

on

page

9

v

“Getting

Started

with

DL/I”

on

page

12

v

“Getting

Started

with

DL/I

(for

CICS

Online

Users)”

on

page

13

v

“Getting

Started

with

DL/I

using

the

ODBA

Interface”

on

page

15

v

“DL/I

Calls”

on

page

16

v

“High

Availability

Large

Databases”

on

page

18

v

“Sample

Hierarchies”

on

page

19

v

“SSA

Overview”

on

page

24

v

“Command

Codes”

on

page

28

v

“IVP

Sample

Application

Program”

on

page

45

Application

programming

techniques

and

the

application

programming

interface

are

explained

here

as

they

apply

to

the

IMS

DB.

Related

Reading:

v

If

your

installation

uses

the

IMS

Transaction

Manager

(IMS

TM),

refer

to

the

IMS

Version

9:

Application

Programming:

Transaction

Manager

for

information

on

transaction

management

functions.

v

Information

on

DL/I

EXEC

commands

is

in

the

IMS

Version

9:

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS.

Application

Program

Environments

Your

application

program

can

execute

in

different

IMS

environments.

The

three

online

environments

are

DB/DC,

DBCTL,

and

DCCTL.

The

two

batch

environments

are:

v

DB

batch,

which

is

generated

from

DB/DC

and

DBCTL

class

system

generations.

v

TM

batch,

which

is

generated

from

DCCTL

class

system

generations.

This

book

describes

applications

that

execute

in

DB/DC,

DBCTL,

and

DB

Batch

environments.

Related

Reading:

For

information

on

DCCTL

and

TM

Batch

environments,

see

IMS

Version

9:

Application

Programming:

Transaction

Manager.

The

Application

Programming

Interface

The

information

in

this

section

provides

an

overview

of

the

role

your

application

program

plays

in

the

IMS

DB

system.

The

IMS

environments

described

within

this

subtopic

are

DB/DC,

DBCTL,

and

DB

Batch.

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

9

Related

Reading:

For

additional

system-level

information

on

IMS

DB,

see

IMS

Version

9:

Administration

Guide:

Database

Manager.

The

DB/DC

Environment

The

DB/DC

environment

is

composed

of

a

control

region

and

dependent

regions.

The

dependent

regions

might

include

Message

Processing

Program

(MPP),

Batch

Message

Processing

Program

(BMP),

and

IMS

Fast

Path

Program

(IFP)

regions.

Application

programs

can

reside

in

any

dependent

region.

Messages

and

database

calls

from

application

programs,

and

messages

and

commands

from

terminals

are

sent

to

and

processed

by

the

control

region.

The

IMS

control

region

retrieves

and

processes

the

needed

information

and

returns

it

to

the

application

program

or

terminal.

However,

only

application

programs

residing

in

the

BMP

region

can

access

GSAM

databases.

These

calls

are

not

processed

by

the

IMS

control

region,

but

are

passed

directly

through

the

BMP

region.

Figure

2

shows

how

an

application

program

can

be

positioned

in

a

DB/DC

environment.

The

online

environment

can

be

used

to

access

other

types

of

external

subsystems

using

the

External

Subsystem

Attach

facility

(ESAF).

It

lets

application

programs

obtain

data

from

external

subsystems

such

as

DB2.

All

DL/I

database

management

calls

and

most

system

service

calls

are

supported

in

DB/DC.

For

more

information

on

calls

supported

in

DB/DC,

see

Chapter

15,

“Summary

of

DM

and

System

Service

Calls,”

on

page

297.

The

IMS

DB

portion

of

the

IMS

DB/DC

environment

can

be

used

separately

to

provide

database

management

capabilities

for

coordinator

controllers

(CCTLs).

The

IMS

DB

portion

is

called

the

DBCTL

environment.

Related

Reading:

For

more

information

on

IMS

DB/DC

environments,

refer

to

IMS

Version

9:

Administration

Guide:

Database

Manager

or

IMS

Version

9:

Administration

Guide:

System.

The

DBCTL

Environment

DBCTL

behaves

in

the

same

manner

as

IMS

DB

in

a

DB/DC

environment,

but

it

does

not

support

user

terminals,

a

master

terminal,

or

message

handling.

One

interface

to

DBCTL

is

the

Database

Resource

Adapter

(DRA).

The

DRA

can

be

used

in

two

scenarios:

Figure

2.

Application

View

of

DB/DC

Environment

The

Application

Programming

Interface IBM

Confidential

10

Application

Programming:

Database

Manager

v

If

communications

and

transaction

management

services

are

needed,

they

are

provided

by

a

Coordinator

Controller

(CCTL).

A

CCTL

consists

of

the

DRA

and

a

transaction

management

subsystem,

such

as

CICS.

The

DRA

resides

in

the

same

address

space

as

the

transaction

management

subsystem,

thus

enabling

communication

between

the

IMS

DB

environment

and

the

“connected”

transaction

management

subsystem.

The

CCTL

handles

message

traffic,

schedules

applications

outside

the

IMS

DB

environment,

and

passes

database

calls

through

the

DRA

to

IMS

DB.

IMS

DB

processes

the

DL/I

call

and

returns

the

information

to

the

CCTL

through

the

DRA.

See

Figure

3

for

an

illustration

of

the

IMS

DB

environment

with

a

CCTL.

v

A

z/OS

application

program

can

use

the

Open

Database

Access

(ODBA)

callable

interface

to

access

databases

managed

by

an

IMS

DB

subsystem.

Internally,

ODBA

uses

the

DRA

to

establish

a

connection

to

the

IMS

subsystem

specified

by

the

IMSID.

Most

DL/I

database

management

calls

and

system

service

calls

are

supported

in

DBCTL.

They

are

listed

in

Chapter

15,

“Summary

of

DM

and

System

Service

Calls,”

on

page

297.

IMS

application

programs

in

the

DBCTL

environment

can

run

in

non-message-driven

BMP

regions.

Application

programs

for

DBCTL

are

the

same

as

IMS

DB

application

programs.

However,

DBCTL

application

programs

cannot

issue

DL/I

calls

for

communications

or

access

MSDBs.

DBCTL

BMPs

can

access

DL/I,

DEDB,

and

GSAM

databases.

The

DBCTL

environment

can

also

be

used

to

attach

to

an

external

subsystem,

such

as

DB2,

using

the

External

Subsystem

Attach

facility

(ESAF).

The

DBCTL

environment’s

ability

to

attach

to

external

subsystems

provides

a

BMP

access

to

DB2

databases.

Application

programs

running

under

a

CCTL

do

not

have

access

to

external

subsystems

or

GSAM

through

the

DRA

interface.

Related

Reading:

For

more

information

on

IMS

DBCTL

environments,

refer

to

IMS

Version

9:

Administration

Guide:

Database

Manager

and

IMS

Version

9:

Administration

Guide:

System.

Figure

3.

Application

View

of

DBCTL

Environment

The

Application

Programming

InterfaceIBM

Confidential

Chapter

1.

How

Application

Programs

Work

with

the

IMS

Database

Manager

11

The

DB

Batch

Environment

DB

Batch

is

the

batch

environment

that

is

generated

during

DB/DC

or

DBCTL

system

generations.

The

DB

Batch

environment

has

a

single

address

space

that

contains

both

IMS

code

and

the

application

program.

DB

Batch

application

programs

have

access

to

DL/I

and

GSAM

databases.

Related

Reading:

For

more

information

on

IMS

DB

Batch

environments,

refer

to

IMS

Version

9:

Administration

Guide:

Database

Manager

and

IMS

Version

9:

Administration

Guide:

System.

Getting

Started

with

DL/I

The

information

in

this

section

applies

to

all

application

programs

that

run

in

IMS.

The

main

elements

in

an

IMS

application

program

consist

of

the

following:

v

Program

entry

v

Program

Communication

Block

(PCB)

or

Application

Interface

Block

(AIB)

definition

v

I/O

area

definition

v

DL/I

calls

v

Program

termination

Figure

4

shows

how

these

elements

relate

to

each

other.

The

numbers

on

the

right

in

Figure

4

refer

to

the

notes

that

follow.

Notes

to

Figure

4:

1.

Program

entry.

IMS

passes

control

to

the

application

program

with

a

list

of

associated

PCBs.

2.

PCB

or

AIB.

IMS

describes

the

results

of

each

DL/I

call

using

the

AIBTDLI

interface

in

the

application

interface

block

(AIB)

and,

when

applicable,

the

Figure

4.

DL/I

Program

Elements

The

Application

Programming

Interface IBM

Confidential

12

Application

Programming:

Database

Manager

program

communication

block

(PCB).

To

find

the

results

of

a

DL/I

call,

your

program

must

use

the

PCB

that

is

referenced

in

the

call.

To

find

the

results

of

the

call

using

the

AIBTDLI

interface,

your

program

must

use

the

AIB.

Your

application

program

can

use

the

PCB

address

that

is

returned

in

the

AIB

to

find

the

results

of

the

call.

To

use

the

PCB,

the

program

defines

a

mask

of

the

PCB

and

can

then

reference

the

PCB

after

each

call

to

determine

the

success

or

failure

of

the

call.

An

application

program

cannot

change

the

fields

in

a

PCB;

it

can

only

check

the

PCB

to

determine

what

happened

when

the

call

was

completed.

3.

Input/output

(I/O)

area.

IMS

passes

segments

to

and

from

the

program

in

the

program’s

I/O

area.

4.

DL/I

calls.

The

program

issues

DL/I

calls

to

perform

the

requested

function.

5.

Program

Termination.

The

program

returns

control

to

IMS

DB

when

it

has

finished

processing.

In

a

batch

program,

your

program

can

set

the

return

code

and

pass

it

to

the

next

step

in

the

job.

Recommendation:

If

your

program

does

not

use

the

return

code

in

this

way,

it

is

a

good

idea

to

set

it

to

0

as

a

programming

convention.

Your

program

can

use

the

return

code

for

this

same

purpose

in

BMPs.

(MPPs

cannot

pass

return

codes.)

Getting

Started

with

DL/I

(for

CICS

Online

Users)

The

information

here

applies

to

call-level

CICS

programs

that

use

Database

Control

(DBCTL).

DBCTL

provides

a

database

subsystem

that

runs

in

its

own

address

space

and

gives

one

or

more

CICS/ESA®

systems

access

to

IMS

DL/I

full-function

databases

and

DEDBs.

Figure

5

on

page

14

shows

the

structure

of

a

call-level

CICS

online

program.

A

few

differences

exist

between

CICS

online

and

batch

programs.

For

example,

in

a

CICS

online

program,

you

must

issue

a

call

to

schedule

a

program

specification

block

(PSB).

See

Figure

5

on

page

14

notes

for

a

description

of

each

program

element

depicted

in

the

figure.

Getting

Started

with

DL/IIBM

Confidential

Chapter

1.

How

Application

Programs

Work

with

the

IMS

Database

Manager

13

Notes

to

Figure

5:

1.

I/O

area.

IMS

passes

segments

to

and

from

the

program

in

the

program’s

I/O

area.

2.

PCB.

IMS

describes

the

results

of

each

DL/I

call

in

the

database

PCB

mask.

3.

User

Interface

Block

(UIB).

The

UIB

provides

the

program

with

addresses

of

the

PCBs

and

return

codes

from

the

CICS-DL/I

interface.

The

horizontal

line

between

number

3

(User

Interface

Block

(UIB))

and

number

4

(Program

entry)

in

Figure

5,

represents

the

end

of

the

declarations

section

and

the

start

of

the

executable

code

section

of

the

program.

4.

Program

entry.

CICS

passes

control

to

the

application

program

during

program

entry.

Do

not

use

an

ENTRY

statement

as

you

would

in

a

batch

program.

5.

Schedule

the

PSB.

This

identifies

the

PSB

your

program

is

to

use

and

passes

the

address

of

the

UIB

to

your

program.

6.

Issue

DL/I

Calls.

You

issue

DL/I

calls

to

read

and

update

the

database.

7.

Check

the

return

code

in

the

UIB.

You

should

check

the

return

code

after

issuing

any

DL/I

call

for

database

processing,

including

the

PCB

or

TERM

call.

Do

this

before

checking

the

status

code

in

the

PCB.

8.

Check

the

status

code

in

the

PCB.

You

should

check

the

status

code

after

issuing

any

DL/I

call

for

database

processing.

The

code

gives

you

the

results

of

your

DL/I

call.

9.

Terminate

the

PSB.

This

terminates

the

PSB

and

commits

database

changes.

PSB

termination

is

optional,

and

if

it

is

not

done,

the

PSB

is

released

when

your

program

returns

control

to

CICS.

Figure

5.

The

Structure

of

a

Call-Level

CICS

Online

Program

Getting

Started

with

DL/I

(for

CICS

Online

Users) IBM

Confidential

14

Application

Programming:

Database

Manager

10.

Return

to

CICS.

This

returns

control

to

either

CICS

or

the

linking

program.

If

control

is

returned

to

CICS,

database

changes

are

committed,

and

the

PSB

is

terminated.

Getting

Started

with

DL/I

using

the

ODBA

Interface

This

section

applies

to

z/OS

application

programs

that

use

database

resources

that

are

managed

by

IMS

DB.

Open

Database

Access

(ODBA)

is

an

interface

that

enables

the

z/OS

application

programs

to

access

IMS

DL/I

full-function

databases

and

data

entry

databases

(DEDBs).

This

section

has

three

parts.

v

“Common

Logic

Flow

for

SRMS

and

MRMS”

describes

the

common

logic

flow

for

both

single

resource

manager

scenarios

(SRMS)

and

multiple

resource

manager

scenarios

(MRMS).

v

“Logic

Flow

for

SRMS”

describes

how

the

programmer

commits

changes

for

SRMS.

The

programmer

commits

changes

in

step

one

of

this

part.

v

“Logic

Flow

for

MRMS”

on

page

16

describes

how

the

programmer

commits

changes

in

MRMS.

The

programmer

can

commit

changes

anytime

after

step

1

of

this

part.

Common

Logic

Flow

for

SRMS

and

MRMS

The

common

logic

flow

for

SRMS

and

MRMS

is

described

in

steps

one

through

nine.

The

logic

flow

differences

for

SRMS

and

MRMS

are

described

in

“Logic

Flow

for

SRMS”and

“Logic

Flow

for

MRMS”

on

page

16.

1.

I/O

area.

IMS

passes

segments

to

and

from

the

application

program

in

the

its

I/O

area.

2.

PCB.

IMS

describes

the

results

of

each

DL/I

call

in

the

database

PCB

mask.

3.

Application

Interface

Block

(AIB).

The

AIB

provides

the

program

with

addresses

of

the

PCBs

and

return

codes

from

the

ODBA-DL/I

interface.

4.

Program

entry.

Obtain

and

initialize

the

AIB.

5.

Initialize

the

ODBA

interface.

6.

Schedule

the

PSB.

This

step

identifies

the

PSB

that

your

program

is

to

use

and

also

provides

a

place

for

IMS

to

keep

internal

tokens.

7.

Issue

DL/I

Calls.

You

issue

DL/I

calls

to

read

and

update

the

database.

The

following

calls

are

available:

v

Retrieve

v

Replace

v

Delete

v

Insert

8.

Check

the

return

code

in

the

AIB.

You

should

check

the

return

code

after

issuing

any

DL/I

call

for

database

processing.

Do

this

before

checking

the

status

code

in

the

PCB.

9.

Check

the

status

code

in

the

PCB.

If

the

AIB

return

code

indicates

(Return

Code

X'900'),

then

you

should

check

the

status

code

after

issuing

any

DL/I

call

for

database

processing.

The

code

gives

you

the

results

of

your

DL/I

call.

Logic

Flow

for

SRMS

1.

Commit

database

changes.

No

DL/I

calls,

including

system

service

calls

such

as

LOG

or

STAT,

can

be

made

between

the

commit

and

the

termination

of

the

DPSB.

Getting

Started

with

DL/I

(for

CICS

Online

Users)IBM

Confidential

Chapter

1.

How

Application

Programs

Work

with

the

IMS

Database

Manager

15

2.

Terminate

the

DPSB.

3.

Terminate

the

ODBA

interface.

4.

Return

to

environment

that

initialized

the

application

program.

Logic

Flow

for

MRMS

1.

Terminate

the

PSB.

2.

Terminate

the

ODBA

interface.

3.

Commit

changes.

4.

Return

to

environment

that

initialized

the

application

program.

DL/I

Calls

A

DL/I

call

consists

of

a

call

statement

and

a

list

of

parameters.

The

parameters

provide

information

that

IMS

needs

to

execute

the

call.

This

information

consists

of

the

call

function,

the

name

of

the

data

structure

that

IMS

uses

for

the

call,

the

data

area

in

the

program

into

which

IMS

returns

data,

and

any

condition

that

the

retrieved

data

must

meet.

You

can

issue

calls

to

perform

database

management

(DB

calls)

and

to

obtain

IMS

DB

system

service

(system

service

calls):

DB

Call

Functions

The

DL/I

calls

for

database

management

are:

CLSE

GSAM

Close

DEQ

Dequeue

DLET

Delete

FLD

Field

GHN

Get

Hold

Next

GHNP

Get

Hold

Next

in

Parent

GHU

Get

Hold

Unique

GN

Get

Next

GNP

Get

Next

in

Parent

GU

Get

Unique

ISRT

Insert

OPEN

GSAM

Open

POS

Position

REPL

Replace

System

Service

Call

Functions

The

DL/I

calls

for

system

service

are:

APSB

Allocate

PSB

CHKP

Basic

Checkpoint

CHKP

Symbolic

Checkpoint

CIMS

ODBA

Function

Getting

Started

with

DL/I

via

the

ODBA

Interface IBM

Confidential

16

Application

Programming:

Database

Manager

DPSB

Deallocate

PSB

GMSG

Get

Message

GSCD

Get

Address

of

System

Contents

Directory

ICMD

Issue

Command

INIT

Initialize

INQY

Inquiry

LOG

Log

PCB

Specify

and

Schedule

a

PCB

RCMD

Retrieve

Command

ROLB

Roll

Back

ROLL

Roll

ROLS

Roll

Back

to

SETS

SETS

Set

a

Backout

Point

SETU

SET

Unconditional

SNAP

Collects

diagnostic

information

STAT

Statistics

SYNC

Synchronization

TERM

Terminate

XRST

Extended

Restart

Related

Reading:

v

DL/I

calls

are

described

in

detail

in

Chapter

4,

“Writing

DL/I

Calls

for

Database

Management,”

on

page

121

and

Chapter

5,

“Writing

DL/I

Calls

for

System

Services,”

on

page

149.

v

Reference

tables

for

the

calls

appear

in

Chapter

15,

“Summary

of

DM

and

System

Service

Calls,”

on

page

297

and

“System

Service

Call

Summary”

on

page

298.

Status

Codes,

Return

Codes,

and

Reason

Codes

To

give

information

about

the

results

of

each

call,

IMS

places

a

two-character

status

code

in

the

PCB

after

each

IMS

call

your

program

issues.

Your

program

should

check

the

status

code

after

every

IMS

call.

If

it

does

not

check

the

status

code,

the

program

might

continue

processing

even

though

the

previous

call

caused

an

error.

The

status

codes

your

program

should

test

for

are

those

that

indicate

exceptional

but

valid

conditions.

IMS

Version

9:

Messages

and

Codes,

Volume

1

lists

the

status

codes

that

may

be

returned

by

each

call

type

and

indicates

the

level

of

success

for

each

call.

Your

program

should

check

for

status

codes

which

indicate

the

call

was

successful,

such

as

blanks.

If

IMS

returns

a

status

code

that

you

did

not

expect,

your

program

should

branch

to

an

error

routine.

Information

for

your

calls

is

supplied

in

status

codes

that

are

returned

in

the

PCB,

return

and

reason

codes

that

are

returned

in

the

AIB,

or

both.

DL/I

CallsIBM

Confidential

Chapter

1.

How

Application

Programs

Work

with

the

IMS

Database

Manager

17

Exceptional

Conditions

Some

status

codes

do

not

mean

that

your

call

was

successful

or

unsuccessful;

they

just

give

information

about

the

results

of

the

call.

Your

program

uses

this

information

to

determine

what

to

do

next.

The

meanings

of

these

status

codes

depend

on

the

call.

In

a

typical

program,

status

codes

that

you

should

test

for

apply

to

the

get

calls.

Some

status

codes

indicate

exceptional

conditions

for

other

calls,

and

you

should

provide

routines

other

than

error

routines

for

these

situations.

For

example,

AH

means

that

a

required

SSA

is

missing,

and

AT

means

that

the

user

I/O

area

is

too

long.

High

Availability

Large

Databases

You

need

to

be

aware

that

the

feedback

on

data

availability

at

PSB

schedule

time

shows

the

availability

of

only

the

High

Availability

Large

Database

(HALDB)

master,

not

of

the

HALDB

partitions.

However,

the

error

settings

for

data

unavailability

of

a

HALDB

partition

are

the

same

as

those

of

a

non-HALDB

database,

namely

status

code

’BA’

or

pseudo

abend

U3303.

Also

note

that

logical

child

segments

cannot

be

loaded

into

a

HALDB

PHDAM

or

PHIDAM

database.

Logical

child

segments

must

be

inserted

later

in

an

update

run.

Any

attempt

to

load

a

logical

child

segment

in

either

a

PHDAM

or

PHIDAM

database

results

in

status

code

LF.

Error

Routines

If

your

program

detects

an

error

after

checking

for

blanks

and

exceptional

conditions

in

the

status

code,

it

should

branch

to

an

error

routine

and

print

as

much

information

as

possible

about

the

error

before

terminating.

Determining

which

call

was

being

executed

when

the

error

occurred,

what

parameters

were

on

the

IMS

call,

and

the

contents

of

the

PCB

will

be

helpful

in

understanding

the

error.

Print

the

status

code

to

help

with

problem

determination.

Two

kinds

of

errors

can

occur

in

your

program:

programming

errors

and

system

or

I/O

errors.

Programming

errors,

are

usually

your

responsibility

to

find

and

fix.

These

errors

are

caused

by

things

like

an

invalid

parameter,

an

invalid

call,

or

an

I/O

area

that

is

too

long.

System

or

I/O

errors

are

usually

resolved

by

the

system

programmer

or

the

equivalent

specialist

at

your

installation.

Because

every

application

program

should

have

an

error

routine,

and

because

each

installation

has

its

own

ways

of

finding

and

debugging

program

errors,

you

probably

have

your

own

standard

error

routines.

DL/I

and

Your

Application

Program

When

an

application

program

call

is

issued

to

IMS,

control

passes

to

IMS

from

the

application

program.

Standard

subroutine

linkage

and

parameter

lists

link

IMS

to

your

application

program.

After

control

is

passed,

IMS

examines

the

input

parameters,

which

perform

the

request

functions.

DBDs

and

PSBs

Application

programs

can

communicate

with

databases

without

being

aware

of

the

physical

location

of

the

data

they

possess.

To

do

this,

database

descriptors

(DBDs)

and

program

specification

blocks

(PSBs)

are

used.

DL/I

Calls IBM

Confidential

18

Application

Programming:

Database

Manager

A

DBD

describes

the

content

and

hierarchic

structure

of

the

physical

or

logical

database.

DBDs

also

supply

information

to

IMS

to

help

in

locating

segments.

A

PSB

specifies

the

database

segments

an

application

program

can

access

and

the

functions

it

can

perform

on

the

data,

such

as

read

only,

update,

or

delete.

Because

an

application

program

can

access

multiple

databases,

PSBs

are

composed

of

one

or

more

program

control

blocks

(PCBs).

The

PSB

describes

the

way

a

database

is

viewed

by

your

application

program.

Figure

6

shows

the

normal

relationship

between

application

programs,

PSBs,

PCBs,

DBDs,

and

databases.

Figure

7

shows

concurrent

processing,

which

uses

multiple

PCBs

for

the

same

database.

SSAs

and

Command

Codes

Segment

search

arguments

(SSAs)

are

specific

arguments

that

describe

the

segments

that

you

are

looking

for.

Calls

can

be

qualified

or

unqualified.

A

qualified

call

uses

SSAs

to

form

a

complete

path

to

the

segment.

An

unqualified

call

does

not

use

SSAs

at

all.

See

“SSA

Overview”

on

page

24

for

more

information.

Command

codes

enhance

your

application

program

by

requesting

a

number

of

IMS

DB

functions

that

save

programming

and

processing

time.

Table

14

on

page

28

shows

the

command

codes

used

for

application

programming.

Sample

Hierarchies

The

examples

in

this

information

use

the

medical

hierarchy

shown

in

Figure

8

on

page

20

and

the

bank

hierarchies

shown

in

Table

8

on

page

22,

Table

9

on

page

23,

and

Table

10

on

page

23.

The

medical

hierarchy

is

used

with

full-function

databases

and

Fast

Path

DEDBs.

The

bank

hierarchies

are

an

example

of

an

Figure

6.

Normal

Relationship

between

Programs,

PSBs,

PCBs,

DBDs,

and

Databases

Figure

7.

Relationship

between

Programs

and

Multiple

PCBs

(Concurrent

Processing)

High

Availability

Large

DatabaseIBM

Confidential

Chapter

1.

How

Application

Programs

Work

with

the

IMS

Database

Manager

19

application

program

used

with

main

storage

databases

(MSDBs).

To

understand

these

examples,

familiarize

yourself

with

the

hierarchies

and

segments

that

each

hierarchy

contains.

Medical

Database

Example

The

medical

database

shown

in

Figure

8

contains

information

that

a

medical

clinic

keeps

about

its

patients.

The

tables

that

follow

show

the

layouts

of

each

segment

in

the

hierarchy.

The

segment’s

field

contents

are

in

the

first

row

of

each

table.

The

number

below

each

field

contents

is

the

length

in

bytes

that

has

been

defined

for

that

field.

v

PATIENT

Segment

Table

2

shows

the

PATIENT

segment.

It

has

three

fields:

–

The

patient’s

number

(PATNO)

–

The

patient’s

name

(NAME)

–

The

patient’s

address

(ADDR)

PATIENT

has

a

unique

key

field:

PATNO.

PATIENT

segments

are

stored

in

ascending

order

of

their

patient

numbers.

The

lowest

patient

number

in

the

database

is

00001

and

the

highest

is

10500.

Table

2.

PATIENT

Segment

Field

Contents

PATNO

NAME

ADDR

Bytes

5

10

30

v

ILLNESS

Segment

Table

3

on

page

21

shows

the

ILLNESS

segment.

It

has

two

fields:

–

The

date

when

the

patient

came

to

the

clinic

with

the

illness

(ILLDATE)

–

The

name

of

the

illness

(ILLNAME)

The

key

field

is

ILLDATE.

Because

it

is

possible

for

a

patient

to

come

to

the

clinic

with

more

than

one

illness

on

the

same

date,

this

key

field

is

non

unique,

that

is,

there

may

be

more

than

one

ILLNESS

segment

with

the

same

(an

equal)

key

field

value.

Usually

during

installation,

the

database

administrator

(DBA)

decides

the

order

in

which

to

place

the

database

segments

with

equal

or

no

keys.

The

DBA

can

use

the

RULES

keyword

of

the

SEGM

statement

of

the

DBD

to

specify

the

order

of

the

segments.

Figure

8.

Medical

Hierarchy

Sample

Hierarchies IBM

Confidential

20

Application

Programming:

Database

Manager

For

segments

with

equal

keys

or

no

keys,

RULES

determines

where

the

segment

is

inserted.

Where

RULES=LAST,

ILLNESS

segments

that

have

equal

keys

are

stored

on

a

first-in-first-out

basis

among

those

with

equal

keys.

ILLNESS

segments

with

unique

keys

are

stored

in

ascending

order

on

the

date

field,

regardless

of

RULES.

ILLDATE

is

specified

in

the

format

YYYYMMDD.

Table

3.

ILLNESS

Segment

Field

Contents

ILLDATE

ILLNAME

Bytes

8

10

v

TREATMNT

Segment

Table

4

shows

the

TREATMNT

segment.

It

contains

four

fields:

–

The

date

of

the

treatment

(DATE)

–

The

medicine

that

was

given

to

the

patient

(MEDICINE)

–

The

quantity

of

the

medicine

that

the

patient

received

(QUANTITY)

–

The

name

of

the

doctor

who

prescribed

the

treatment

(DOCTOR)

The

TREATMNT

segment’s

key

field

is

DATE.

Because

a

patient

may

receive

more

than

one

treatment

on

the

same

date,

DATE

is

a

non

unique

key

field.

TREATMNT,

like

ILLNESS,

has

been

specified

as

having

RULES=LAST.

TREATMNT

segments

are

also

stored

on

a

first-in-first-out

basis.

DATE

is

specified

in

the

same

format

as

ILLDATE—YYYYMMDD.

Table

4.

TREATMNT

Segment

Field

Contents

DATE

MEDICINE

QUANTITY

DOCTOR

Bytes

8

10

4

10

v

BILLING

Segment

Table

5

shows

the

BILLING

segment.

It

has

only

one

field:

the

amount

of

the

current

bill.

BILLING

has

no

key

field.

Table

5.

BILLING

Segment

Field

Contents

BILLING

Bytes

6

v

PAYMENT

Segment

Table

6

shows

the

PAYMENT

segment.

It

has

only

one

field:

the

amount

of

payments

for

the

month.

The

PAYMENT

segment

has

no

key

field.

Table

6.

PAYMENT

Segment

Field

Contents

PAYMENT

Bytes

6

v

HOUSHOLD

Segment

Table

7

on

page

22

shows

the

HOUSHOLD

segment.

It

contains

two

fields:

–

The

names

of

the

members

of

the

patient’s

household

(RELNAME)

–

How

each

member

of

the

household

is

related

to

the

patient

(RELATN)

Sample

HierarchiesIBM

Confidential

Chapter

1.

How

Application

Programs

Work

with

the

IMS

Database

Manager

21

The

HOUSEHOLD

segment’s

key

field

is

RELNAME.

Table

7.

HOUSEHOLD

Segment

Field

Contents

RELNAME

RELATN

Bytes

10

8

Bank

Account

Example

The

bank

account

hierarchy

is

an

example

of

an

application

program

that

is

used

with

main

storage

databases

(MSDBs).

In

the

medical

hierarchy

example,

the

database

record

for

a

particular

patient

comprises

the

PATIENT

segment

and

all

of

the

segments

underneath

the

PATIENT

segment.

In

an

MSDB,

such

as

the

one

in

the

bank

account

example,

the

segment

is

the

whole

database

record.

The

database

record

contains

only

the

fields

that

the

segment

contains.

The

two

types

of

MSDBs

are

related

and

nonrelated.

In

related

MSDBs,

each

segment

is

“owned”

by

one

logical

terminal.

The

″owned″

segment

can

only

be

updated

by

the

terminal

that

owns

it.

In

nonrelated

MSDBs,

the

segments

are

not

owned

by

logical

terminals.

“Related

MSDBs”

and

“Nonrelated

MSDBs”

on

page

23

illustrate

the

differences

between

these

types

of

databases.

Additional

information

on

how

related

and

nonrelated

MSDBs

differ

is

provided

under

“Processing

MSDBs

and

DEDBs”

on

page

231.

Related

MSDBs

Related

MSDBs

can

be

fixed

or

dynamic.

In

a

fixed

related

MSDB,

you

can

store

summary

data

about

a

particular

teller

at

a

bank.

For

example,

you

can

have

an

identification

code

for

the

teller’s

terminal.

Then

you

can

keep

a

count

of

that

teller’s

transactions

and

balance

for

the

day.

This

type

of

application

requires

a

segment

with

three

fields:

TELLERID

A

two-character

code

that

identifies

the

teller

TRANCNT

The

number

of

transactions

the

teller

has

processed

TELLBAL

The

balance

for

the

teller

Table

8

shows

what

the

segment

for

this

type

of

application

program

looks

like.

Table

8.

Teller

Segment

in

a

Fixed

Related

MSDB

TELLERID

TRANCNT

TELLBAL

Some

of

the

characteristics

of

fixed

related

MSDBs

include:

v

You

can

only

read

and

replace

segments.

You

cannot

delete

or

insert

segments.

In

the

bank

teller

example,

the

teller

can

change

the

number

of

transactions

processed,

but

you

cannot

add

or

delete

any

segments.

You

never

need

to

add

or

delete

segments.

v

Each

segment

is

assigned

to

one

logical

terminal.

Only

the

owning

terminal

can

change

a

segment,

but

other

terminals

can

read

the

segment.

In

the

bank

teller

example,

you

do

not

want

tellers

to

update

the

information

about

other

tellers,

but

you

allow

the

tellers

to

view

each

other’s

information.

Tellers

are

responsible

for

their

own

transactions.

v

The

name

of

the

logical

terminal

that

owns

the

segment

is

the

segment’s

key.

Unlike

non-MSDB

segments,

the

MSDB

key

is

not

a

field

of

the

segment.

It

is

used

as

a

means

of

storing

and

accessing

segments.

v

A

logical

terminal

can

only

own

one

segment

in

any

one

MSDB.

Sample

Hierarchies IBM

Confidential

22

Application

Programming:

Database

Manager

In

a

dynamic

related

MSDB,

you

can

store

data

summarizing

the

activity

of

all

bank

tellers

at

a

single

branch.

For

example,

this

segment

contains:

BRANCHNO

The

identification

number

for

the

branch

TOTAL

The

bank

branch’s

current

balance

TRANCNT

The

number

of

transactions

for

the

branch

on

that

day

DEPBAL

The

deposit

balance,

giving

the

total

dollar

amount

of

deposits

for

the

branch

WTHBAL

The

withdrawal

balance,

giving

the

dollar

amount

of

the

withdrawals

for

the

branch

Table

9

shows

what

the

branch

summary

segment

looks

like

in

a

dynamic

related

MSDB.

Table

9.

Branch

Summary

Segment

in

a

Dynamic

Related

MSDB

BRANCHNO

TOTAL

TRANCNT

DEPBAL

WTHBAL

How

dynamic

related

MSDBs

differ

from

fixed

related

MSDBs:

v

The

owning

logical

terminal

can

delete

and

insert

segments

in

a

dynamic

related

MSDB.

v

The

MSDB

can

have

a

pool

of

unassigned

segments.

This

kind

of

segment

is

assigned

to

a

logical

terminal

when

the

logical

terminal

inserts

it,

and

is

returned

to

the

pool

when

the

logical

terminal

deletes

it.

Nonrelated

MSDBs

A

nonrelated

MSDB

is

used

to

store

data

that

is

updated

by

several

terminals

during

the

same

time

period.

For

example,

you

might

store

data

about

an

individuals’

bank

accounts

in

a

nonrelated

MSDB

segment,

so

that

the

information

can

be

updated

by

a

teller

at

any

terminal.

Your

program

might

need

to

access

the

data

in

the

following

segment

fields:

ACCNTNO

The

account

number

BRANCH

The

name

of

the

branch

where

the

account

is

TRANCNT

The

number

of

transactions

for

this

account

this

month

BALANCE

The

current

balance

Table

10

shows

what

the

account

segment

in

a

nonrelated

MSDB

application

program

looks

like.

Table

10.

Account

Segment

in

a

Nonrelated

MSDB

ACCNTNO

BRANCH

TRANCNT

BALANCE

The

characteristics

of

nonrelated

MSDBs

include:

v

Segments

are

not

owned

by

terminals

as

they

are

in

related

MSDBs.

Therefore,

IMS

programs

and

Fast

Path

programs

can

update

these

segments.

Updating

segments

is

not

restricted

to

the

owning

logical

terminal.

v

Your

program

cannot

delete

or

insert

segments.

v

Segment

keys

can

be

the

name

of

a

logical

terminal.

A

nonrelated

MSDB

exists

with

terminal-related

keys.

The

segments

are

not

owned

by

the

logical

terminals,

and

the

logical

terminal

name

is

used

to

identify

the

segment.

Sample

HierarchiesIBM

Confidential

Chapter

1.

How

Application

Programs

Work

with

the

IMS

Database

Manager

23

v

If

the

key

is

not

the

name

of

a

logical

terminal,

it

can

be

any

value,

and

it

is

in

the

first

field

of

the

segment.

Segments

are

loaded

in

key

sequence.

SSA

Overview

Segment

Search

Arguments

(SSAs)

specify

information

for

IMS

to

use

in

processing

a

DL/I

call.

A

DL/I

call

with

one

or

more

SSAs

is

a

qualified

call,

and

a

DL/I

call

without

SSAs

is

an

unqualified

call.

Definitions:

Unqualified

SSA

Contains

only

a

segment

name.

Qualified

SSA

Includes

one

or

more

qualification

statements

that

name

a

segment

occurrence.

The

C

command

and

a

segment

occurrence’s

concatenated

key

can

be

substituted

for

a

qualification

statement.

You

can

use

SSAs

to

select

segments

by

name

and

to

specify

search

criteria

for

specific

segments.

Specific

segments

are

described

by

adding

qualification

statements

to

the

DL/I

call.

You

can

further

qualify

your

calls

by

using

command

codes.

Table

11

shows

the

structure

of

a

qualified

SSA.

Table

12

on

page

27

shows

the

structure

of

an

unqualified

SSA

using

command

codes.

Finally,

Table

13

on

page

28

shows

the

structure

of

a

qualified

SSA

that

uses

command

codes.

Unqualified

SSAs

An

unqualified

SSA

gives

the

name

of

the

segment

type

that

you

want

to

access.

In

an

unqualified

SSA,

the

segment

name

field

is

8

bytes

and

must

be

followed

by

a

1-byte

blank.

If

the

actual

segment

name

is

fewer

than

8

bytes

long,

it

must

be

padded

to

the

right

with

blanks.

An

example

of

an

unqualified

SSA

follows:

PATIENT��

Qualified

SSAs

To

qualify

an

SSA,

you

can

use

either

a

field

or

the

sequence

field

of

a

virtual

child.

A

qualified

SSA

describes

the

segment

occurrence

that

you

want

to

access.

This

description

is

called

a

qualification

statement

and

has

three

parts.

Table

11

shows

the

structure

of

a

qualified

SSA.

Table

11.

Qualified

SSA

Structure

Seg

Name

(

Fld

Name

R.O.

Fld

Value

)

8

1

8

2

Variable

1

Using

a

qualification

statement

enables

you

to

give

IMS

information

about

the

particular

segment

occurrence

that

you

are

looking

for.

You

do

this

by

giving

IMS

the

name

of

a

field

within

the

segment

and

the

value

of

the

field

you

are

looking

for.

The

field

and

the

value

are

connected

by

a

relational

operator

(R.O.

in

Table

11)

which

tells

IMS

how

you

want

the

two

compared.

For

example,

to

access

the

PATIENT

segment

with

the

value

10460

in

the

PATNO

field,

you

could

use

this

SSA:

PATIENT�(PATNO���=�10460)

Sample

Hierarchies IBM

Confidential

24

Application

Programming:

Database

Manager

The

qualification

statement

is

enclosed

in

parentheses.

The

first

field

contains

the

name

of

the

field

(Fld

Name

in

Table

11

on

page

24)

that

you

want

IMS

to

use

in

searching

for

the

segment.

The

second

field

contains

a

relational

operator.

The

relational

operator

can

be

any

one

of

the

following:

v

Equal,

represented

as

=�

�=

EQ

v

Greater

than,

represented

as

>�

�>

GT

v

Less

than,

represented

as

<�

�<

LT

v

Greater

than

or

equal

to,

represented

as

>=

=>

GE

v

Less

than

or

equal

to,

represented

as

<=

=<

LE

v

Not

equal

to,

represented

as

¬=

=¬

NE

The

third

field

(Fld

Value

in

Table

11

on

page

24)

contains

the

value

that

you

want

IMS

to

use

as

the

comparative

value.

The

length

of

Fld

Value

must

be

the

same

length

as

the

field

specified

by

Fld

Name.

You

can

use

more

than

one

qualification

statement

in

an

SSA.

Special

cases

exist,

such

as

in

a

virtual

logical

child

segment

when

the

sequence

field

consists

of

multiple

fields.

Related

Reading:

For

more

information

on

multiple

qualification

statements,

see

Chapter

7,

“Multiple

Qualification

Statements,”

on

page

199.

Using

the

Sequence

Field

of

a

Virtual

Logical

Child

As

a

general

rule,

a

segment

can

have

only

one

sequence

field.

However,

in

the

case

of

the

virtual

logical-child

segment

type,

multiple

FIELD

statements

can

be

used

to

define

a

noncontiguous

sequence

field.

When

specifying

the

sequence

field

for

a

virtual

logical

child

segment,

if

the

field

is

not

contiguous,

the

length

of

the

field

named

in

the

SSA

is

the

concatenated

length

of

the

specified

field

plus

all

succeeding

sequence

fields.

Figure

9

on

page

26

shows

a

segment

with

a

noncontiguous

sequence

field.

SSA

OverviewIBM

Confidential

Chapter

1.

How

Application

Programs

Work

with

the

IMS

Database

Manager

25

If

the

first

sequence

field

is

not

included

in

a

“scattered”

sequence

field

in

an

SSA,

IMS

treats

the

argument

as

a

data

field

specification,

rather

than

as

a

sequence

field.

Related

Reading:

For

more

information

on

the

virtual

logical

child

segment,

refer

to

IMS

Version

9:

Administration

Guide:

Database

Manager.

Guidelines

for

Using

SSAs

Using

SSAs

can

simplify

your

programming,

because

the

more

information

you

can

give

IMS

to

do

the

searching

for

you,

the

less

program

logic

you

need

to

analyze

and

compare

segments

in

your

program.

Using

SSAs

does

not

necessarily

reduce

system

overhead,

such

as

internal

logic

and

I/Os,

required

to

obtain

a

specific

segment.

To

locate

a

particular

segment

without

using

SSAs,

you

can

issue

DL/I

calls

and

include

program

logic

to

examine

key

fields

until

you

find

the

segment

you

want.

By

using

SSAs

in

your

DL/I

calls,

you

can

reduce

the

number

of

DL/I

calls

that

are

issued

and

the

program

logic

needed

to

examine

key

fields.

When

you

use

SSAs,

IMS

does

this

work

for

you.

Recommendations:

v

Use

qualified

calls

with

qualified

SSAs

whenever

possible.

SSAs

act

as

filters,

returning

only

the

segments

your

program

requires.

This

reduces

the

number

of

calls

your

program

makes,

which

provides

better

performance.

It

also

provides

better

documentation

of

your

program.

Qualified

SSAs

are

particularly

useful

when

adding

segments

with

insert

calls.

They

ensure

that

the

segments

are

inserted

where

you

want

them

to

go.

v

For

the

root

segment,

specify

the

key

field

and

an

equal

relational

operator,

if

possible.

Using

a

key

field

with

an

equal-to,

equal-to-or-greater-than,

or

greater-than

operator

lets

IMS

go

directly

to

the

root

segment.

v

For

dependent

segments,

it

is

desirable

to

use

the

key

field

in

the

SSA,

although

it

is

not

as

important

as

at

the

root

level.

Using

the

key

field

and

an

equal-to

operator

lets

IMS

stop

the

search

at

that

level

when

a

higher

key

value

is

encountered.

Otherwise

IMS

must

search

through

all

occurrences

of

the

segment

type

under

its

established

parent

in

order

to

determine

whether

a

particular

segment

exists.

v

If

you

often

must

search

for

a

segment

using

a

field

other

than

the

key

field,

consider

putting

a

secondary

index

on

the

field.

For

more

information

on

secondary

indexing,

see

Chapter

9,

“Secondary

Indexing

and

Logical

Relationships,”

on

page

211.

Example:

Suppose

you

want

to

find

the

record

for

a

patient

by

the

name

of

Ellen

Carter.

As

a

reminder,

the

patient

segment

in

the

examples

contains

three

fields:

the

patient

number,

which

is

the

key

field;

the

patient

name;

and

the

patient

address.

The

fact

that

patient

number

is

the

key

field

means

that

IMS

stores

the

Figure

9.

Segment

with

a

Noncontiguous

Sequence

Field

SSA

Overview IBM

Confidential

26

Application

Programming:

Database

Manager

patient

segments

in

order

of

their

patient

numbers.

The

best

way

to

get

the

record

for

Ellen

Carter

is

to

supply

her

patient

number

in

the

SSA.

If

her

number

is

09000,

your

program

uses

this

call

and

SSA:

GU&$tab;PATIENT�(PATNO���=�09000)

If

your

program

supplies

an

invalid

number,

or

if

someone

has

deleted

Ellen

Carter’s

record

from

the

database,

IMS

does

not

need

to

search

through

all

the

PATIENT

occurrences

to

determine

that

the

segment

does

not

exist.

However,

if

your

program

does

not

have

the

number

and

must

give

the

name

instead,

IMS

must

search

through

all

the

patient

segments

and

read

each

patient

name

field

until

it

finds

Ellen

Carter

or

until

it

reaches

the

end

of

the

patient

segments.

SSAs

and

Command

Codes

SSAs

can

also

include

one

or

more

command

codes,

which

can

change

and

extend

the

functions

of

DL/I

calls.

For

information

on

command

codes,

see

“Command

Codes”

on

page

28.

IMS

always

returns

the

lowest

segment

in

the

path

to

your

I/O

area.

If

your

program

codes

a

D

command

code

in

an

SSA,

IMS

also

returns

the

segment

described

by

that

SSA.

A

call

that

uses

the

D

command

code

is

called

a

path

call.

Example:

Suppose

your

program

codes

a

D

command

code

on

a

GU

call

that

retrieves

segment

F

and

all

segments

in

the

path

to

F

in

the

hierarchy

shown

in

Figure

10.

The

call

function

and

the

SSAs

for

the

call

look

like

this:

GU

A�������*D

C�������*D

E�������*D

F��������

A

command

code

consists

of

one

letter.

Code

the

command

codes

in

the

SSA

after

the

segment

name

field.

Separate

the

segment

name

field

and

the

command

code

with

an

asterisk,

as

shown

in

Table

12.

Table

12.

Unqualified

SSA

with

Command

Code

Seg

Name

*

Cmd

Code

b

8

1

Variable

1

Figure

10.

D

Command

Code

Example

SSA

OverviewIBM

Confidential

Chapter

1.

How

Application

Programs

Work

with

the

IMS

Database

Manager

27

Your

program

can

use

command

codes

in

both

qualified

and

unqualified

SSAs.

However,

command

codes

cannot

be

used

by

MSDB

calls.

If

the

command

codes

are

not

followed

by

qualification

statements,

they

must

each

be

followed

by

a

1-byte

blank.

If

the

command

codes

are

followed

by

qualification

statements,

do

not

use

the

blank.

The

left

parenthesis

of

the

qualification

statement

follows

the

command

code

instead,

as

indicated

in

Table

13.

Table

13.

Qualified

SSA

with

Command

Code

Seg

Name

*

Cmd

Code

(

Fld

Name

R.O.

Fld

Value

)

8

1

Variable

1

8

2

Variable

1

If

your

program

uses

command

codes

to

manage

subset

pointers

in

a

DEDB,

enter

the

number

of

the

subset

pointer

immediately

after

the

command

code.

Subset

pointers

are

a

means

of

dividing

a

chain

of

segment

occurrences

under

the

same

parent

into

two

or

more

groups

or

subsets.

Your

program

can

define

as

many

as

eight

subset

pointers

for

any

segment

type.

Using

an

application

program,

your

program

can

then

manage

these

subset

pointers.

This

process

is

described

in

detail

in

“Processing

DEDBs

with

Subset

Pointers”

on

page

238.

Command

Codes

This

section

describes

the

command

codes

used

for

DL/I

calls

and

it

is

divided

into

two

subtopics.

v

“General

Command

Codes

for

DL/I

Calls”

on

page

29

covers

the

C,

D,

F,

L,

N,

P,

Q,

U,

V,

and

null

command

codes,

which

are

used

with

full-function

databases

and

DEDBs.

v

“DEDB

Command

Codes

for

DL/I”

on

page

39

covers

the

M,

R,

S,

W,

and

Z

command

codes,

which

are

used

only

with

DEDBs.

See

Table

14

for

all

the

command

codes

and

their

usage.

Restriction:

Command

codes

cannot

be

used

by

MSDB

calls.

Table

14.

Command

Codes

for

DL/I

Calls

Command

Code

Usage

C

Supplies

concatenated

key

in

SSA

D

Retrieves

or

inserts

a

sequence

of

segments

F

Starts

search

with

first

occurrence

L

Locates

last

occurrence

M1

Moves

subset

pointer

forward

to

the

next

segment

N

Prevents

replacement

of

a

segment

on

a

path

call

P

Establishes

parentage

of

present

level

Q

Enqueues

segment

R1

Retrieves

first

segment

in

the

subset

S1

Sets

subset

pointer

unconditionally

U

Maintains

current

position

V

Maintains

current

position

at

present

level

and

higher

W1

Sets

subset

pointer

conditionally

SSA

Overview IBM

Confidential

28

Application

Programming:

Database

Manager

Table

14.

Command

Codes

for

DL/I

Calls

(continued)

Command

Code

Usage

Z1

Sets

subset

pointer

to

0

-

(null)

Reserves

storage

positions

for

program

command

codes

in

SSA

Note:

1.

This

command

code

is

used

only

with

DEDBs.

General

Command

Codes

for

DL/I

Calls

This

section

has

descriptions

and

examples

for

the

C,

D,

F,

L,

N,

P,

Q,

U,

V,

and

null

command

codes.

The

C

Command

Code

You

can

use

the

C

command

code

to

indicate

to

IMS

that

(instead

of

supplying

a

qualification

statement)

you

are

supplying

the

segment’s

concatenated

key

as

a

means

of

identifying

it.

You

can

use

either

the

C

command

code

or

a

qualification

statement,

but

not

both.

You

can

use

the

C

command

code

for

all

Get

calls

and

for

the

ISRT

call.

When

you

code

the

concatenated

key,

enclose

it

in

parentheses

following

the

*C,

and

place

it

in

the

same

position

that

would

otherwise

contain

the

qualification

statement.

Example:

Suppose

you

wanted

to

satisfy

the

following

request:

Did

Joan

Carter

visit

the

clinic

on

March

3,

1993?

Her

patient

number

is

07755.

The

PATIENT

segment’s

key

field

is

the

patient

number,

and

the

ILLNESS

segment’s

key

field

is

the

date

field,

so

the

concatenated

key

is

0775519930303.

This

number

is

comprised

of

four

digits

for

the

year,

followed

by

two

digits

for

both

the

month

and

the

day.You

issue

a

GU

call

with

the

following

SSA

to

satisfy

the

request:

GU

ILLNESS�*C(0775519930303)

Using

the

C

command

code

is

sometimes

more

convenient

than

a

qualification

statement

because

it

is

easier

to

use

the

concatenated

key

than

to

move

each

part

of

the

qualification

statement

to

the

SSA

area

during

program

execution.

Using

the

segment’s

concatenated

key

is

the

equivalent

of

giving

all

the

SSAs

in

the

path

to

the

segment

qualified

on

their

keys.

Example:

Suppose

that

you

wanted

to

answer

the

following

request:

What

treatment

did

Joan

Carter,

patient

number

07755,

receive

on

March

3,

1993?

Using

qualification

statements,

you

would

specify

the

following

SSAs

with

a

GU

call:

GU

PATIENT�(PATNO���EQ07755)

ILLNESS�(ILLDATE�EQ19930303)

TREATMNT�

Using

a

C

command

code,

you

can

satisfy

the

previous

request

by

specifying

the

following

SSAs

on

a

GU

call:

Command

CodesIBM

Confidential

Chapter

1.

How

Application

Programs

Work

with

the

IMS

Database

Manager

29

GU

ILLNESS�*C(0775519930303)

TREATMNT�

If

you

need

to

qualify

a

segment

by

using

a

field

other

than

the

key

field,

use

a

qualification

statement

instead

of

the

C

command

code.

Only

one

SSA

with

a

concatenated

key

is

allowed

for

each

call.

To

return

segments

to

your

program

in

the

path

to

the

segment

specified

by

the

concatenated

key,

you

can

use

unqualified

SSAs

containing

the

D

command

code.

Example:

If

you

want

to

return

the

PATIENT

segment

for

Joan

Carter

to

your

I/O

area,

in

addition

to

the

ILLNESS

segment,

use

the

following

call:

GU

PATIENT�*D�

ILLNESS�*C(0775519930303)

You

can

use

the

C

command

code

with

the

object

segment

for

a

Get

call,

but

not

for

an

ISRT

call.

The

object

segment

for

an

ISRT

call

must

be

unqualified.

The

D

Command

Code

You

can

use

the

D

command

code

to

retrieve

or

insert

a

sequence

of

segments

in

a

hierarchic

path

with

one

call

rather

than

retrieving

or

inserting

each

segment

with

a

separate

call.

A

call

that

uses

the

D

command

code

is

called

a

path

call.

For

your

program

to

use

the

D

command

code,

the

P

processing

option

must

be

specified

in

the

PCB,

unless

your

program

uses

command

code

D

when

processing

DEDBs.

Related

Reading:

For

more

information

on

using

the

P

processing

option,

see

the

description

of

PSB

generation

in

IMS

Version

9:

Utilities

Reference:

System.

Retrieving

a

Sequence

of

Segments:

When

you

use

the

D

command

code

with

retrieval

calls,

IMS

places

the

segments

in

your

I/O

area.

The

segments

in

the

I/O

area

are

placed

one

after

the

other,

left

to

right,

starting

with

the

first

SSA

you

supplied.

To

have

IMS

return

each

segment

in

the

path,

you

must

include

the

D

command

code

in

each

SSA.

You

can,

however,

include

intervening

SSAs

without

the

D

command

code.

You

do

not

need

to

include

the

D

command

code

on

the

last

segment

in

the

path,

because

IMS

always

returns

the

last

segment

in

the

path

to

your

I/O

area.

The

D

command

code

has

no

effect

on

IMS’s

retrieval

logic.

The

only

thing

it

does

is

cause

each

segment

to

be

moved

to

your

I/O

area.

The

segment

name

in

the

PCB

is

the

lowest-level

segment

that

is

retrieved

or

the

last

level

that

is

satisfied

in

the

call

in

the

case

of

a

GE

(not-found)

status

code.

Higher-level

segments

with

the

D

command

code

are

placed

in

the

I/O

area.

If

IMS

is

unable

to

find

the

lowest

segment

your

program

has

requested,

it

returns

a

GE

(not-found)

status

code,

just

as

it

does

if

your

program

does

not

use

the

D

command

code

and

IMS

is

unable

to

find

the

segment

your

program

has

requested.

This

is

true

even

if

IMS

reaches

the

end

of

the

database

before

finding

the

lowest

segment

your

program

requested.

If

IMS

reaches

the

end

of

the

database

without

satisfying

any

levels

of

a

path

call,

it

returns

a

GB

(end

of

database)

status

code.

However,

if

IMS

returns

one

or

more

segments

to

your

I/O

area

(new

segments

for

which

there

was

no

current

position

at

the

start

of

the

current

call),

and

if

IMS

is

unable

to

find

the

lowest

requested

segment,

IMS

returns

a

GE

status

code,

even

if

it

has

reached

the

end

of

the

database.

Command

Codes IBM

Confidential

30

Application

Programming:

Database

Manager

The

advantages

of

using

the

D

command

code

are

significant

even

if

your

program

is

not

sure

that

it

will

need

the

dependent

segment

returned

by

D.

For

example,

suppose

that

after

examining

the

dependent

segment,

your

program

still

needs

to

use

it.

Using

the

D

command,

your

program

has

the

segment

if

you

need

it,

and

your

program

is

not

required

to

issue

another

call

for

the

segment.

Example:

As

an

example

of

the

D

command

code,

suppose

your

program

has

this

request:

Compute

the

balance

due

for

each

of

the

clinic’s

patients

by

subtracting

the

payments

received

from

the

amount

billed;

print

bills

to

be

mailed

to

each

patient.

To

process

this

request

for

each

patient,

your

program

needs

to

know

the

patient’s

name

and

address,

what

the

charges

are

for

the

patient,

and

the

amount

of

payment

the

patient

has

made.

Issue

this

call

until

your

program

receives

a

GE

status

code

indicating

that

no

more

patient

segments

exist:

GN

PATIENT�*D

BILLING�*D

PAYMENT��

Each

time

you

issue

this

call,

your

I/O

area

contains

the

patient

segment,

the

billing

segment,

and

the

payment

segment

for

a

particular

person.

Inserting

a

Sequence

of

Segments:

With

ISRT

calls,

your

program

can

use

the

D

command

code

to

insert

a

path

of

segments

simultaneously.

Your

program

need

not

include

D

for

each

SSA

in

the

path.

Your

program

just

specifies

D

on

the

first

segment

that

you

want

IMS

to

insert.

IMS

inserts

the

segments

in

the

path

that

follow.

Example:

Suppose

your

program

has

the

following

request:

Judy

Jennison

visited

the

clinic

for

the

first

time.

Add

a

record

that

includes

PATIENT,

ILLNESS,

and

TREATMNT

segments.

After

building

the

segments

in

your

I/O

area,

issue

an

ISRT

call

with

the

following

SSAs:

ISRT

PATIENT�*D�

ILLNESS��

TREATMNT�

Not

only

is

the

PATIENT

segment

added,

but

the

segments

following

the

PATIENT

segment,

ILLNESS

and

TREATMNT,

are

also

added

to

the

database.

You

cannot

use

the

D

command

code

to

insert

segments

if

a

logical

child

segment

in

the

path

exists.

The

F

Command

Code

You

can

use

the

F

command

code

to

start

the

search

with

the

first

occurrence

of

a

certain

segment

type

or

to

insert

a

new

segment

as

the

first

occurrence

in

a

chain

of

segments.

Retrieving

a

Segment

as

the

First

Occurrence:

You

can

use

the

F

command

code

for

GN

and

GNP

calls.

Using

it

with

GU

calls

is

redundant

(and

is

disregarded)

because

GU

calls

can

already

back

up

in

the

database.

When

you

use

F,

you

indicate

that

you

want

the

search

to

start

with

the

first

occurrence

of

the

segment

type

you

indicate

under

its

parent

in

attempting

to

satisfy

this

level

of

the

call.

Command

CodesIBM

Confidential

Chapter

1.

How

Application

Programs

Work

with

the

IMS

Database

Manager

31

You

can

use

the

F

command

code

for

GN

and

GNP

calls

to

back

up

in

the

database.

You

can

back

up

to

the

first

occurrence

of

the

segment

type

that

has

current

position,

or

you

can

back

up

to

a

segment

type

that

is

before

current

position

in

the

hierarchy.

Restriction:

The

parent

of

the

segment

that

you

are

backing

up

from

must

be

in

the

same

hierarchic

path

as

the

segment

you

are

backing

up

to.

IMS

disregards

F

when

you

supply

it

at

the

root

level

or

with

a

GU

or

GHU.

The

search

must

start

with

the

first

occurrence

of

the

segment

type

that

you

indicate

under

the

parent.

When

the

search

at

that

level

is

satisfied,

that

level

is

treated

as

though

a

new

occurrence

of

a

segment

has

satisfied

the

search.

This

is

true

even

when

the

segment

that

satisfies

an

SSA

where

F

command

code

is

specified

is

the

same

segment

occurrence

on

which

DL/I

was

positioned

before

the

call

was

processed.

When

a

new

segment

occurrence

satisfies

an

SSA,

the

position

of

all

dependent

segments

is

reset.

New

searches

for

dependent

segments

then

start

with

the

first

occurrence

of

that

segment

type

under

its

parent.

Inserting

a

Segment

as

the

First

Occurrence:

When

you

use

F

with

an

ISRT

call,

you

are

indicating

that

you

want

IMS

to

insert

the

segment

you

have

supplied

as

the

first

segment

occurrence

of

its

segment

type.

Use

F

with

segments

that

have

either

no

key

at

all

or

a

non

unique

key,

and

that

have

HERE

specified

on

the

RULES

operand

of

the

SEGM

statement

in

the

DBD.

If

you

specify

HERE

in

the

DBD,

the

F

command

code

overrides

this,

and

IMS

inserts

the

new

segment

occurrence

as

the

first

occurrence

of

that

segment

type.

Using

the

F

command

code

to

override

the

RULES

specification

on

the

DBD

applies

only

to

the

path

(either

logical

or

physical)

that

you

are

using

to

access

the

segment

for

the

ISRT

call.

For

example,

if

you

are

using

the

physical

path

to

access

the

segment,

the

command

code

applies

to

the

physical

path

but

not

to

the

logical

path.

For

clarification

of

using

command

codes

with

the

RULES

specification,

ask

the

database

administrator

at

your

installation.

Example:

Suppose

that

you

specified

RULES=HERE

in

the

DBD

for

the

TREATMNT

segment.

You

want

to

satisfy

the

following

request:

Mary

Martin

visited

the

clinic

today

and

visited

a

number

of

different

doctors.

Add

the

TREATMNT

segment

for

Dr.

Smith

as

the

first

TREATMNT

segment

for

the

most

recent

illness.

First

you

build

a

TREATMNT

segment

in

your

I/O

area:

19930302ESEDRIX���0040SMITH�����

Then

you

issue

an

ISRT

call

with

the

following

SSAs.

This

adds

a

new

occurrence

of

the

TREATMNT

segment

as

the

first

occurrence

of

the

TREATMNT

segment

type

among

those

with

equal

keys.

ISRT

PATIENT�(PATNO���=�06439)

ILLNESS�*L

TREATMNT*F

This

example

applies

to

HDAM

or

PHDAM

root

segments

and

to

dependent

segments

for

any

type

of

database.

Command

Codes IBM

Confidential

32

Application

Programming:

Database

Manager

The

L

Command

Code

You

can

use

the

L

command

code

to

retrieve

the

last

occurrence

of

a

particular

segment

type

or

to

insert

a

segment

as

the

last

occurrence

of

a

segment

type.

Retrieving

a

Segment

as

the

Last

Occurrence:

The

L

command

code

indicates

that

you

want

to

retrieve

the

last

segment

occurrence

that

satisfies

the

SSA,

or

that

you

want

to

insert

the

segment

occurrence

you

are

supplying

as

the

last

occurrence

of

that

segment

type.

Like

F,

L

simplifies

your

programming

because

you

can

go

directly

to

the

last

occurrence

of

a

segment

type

without

having

to

examine

the

previous

occurrences

with

program

logic,

if

you

know

that

it

is

the

last

segment

occurrence

that

you

want.

L

can

be

used

with

GU

or

GHU,

because

IMS

normally

returns

the

first

occurrence

when

you

use

a

GU

call.

IMS

disregards

L

at

the

root

level.

Using

L

with

GU,

GN,

and

GNP

indicates

to

IMS

that

you

want

the

last

occurrence

of

the

segment

type

that

satisfies

the

qualification

you

have

provided.

The

qualification

is

the

segment

type

or

the

qualification

statement

of

the

SSA.

If

you

have

supplied

just

the

segment

type

(an

unqualified

SSA),

IMS

retrieves

the

last

occurrence

of

this

segment

type

under

its

parent.

Example:

Suppose

you

have

this

request

using

the

medical

hierarchy:

What

was

the

illness

that

brought

Jennifer

Thompson,

patient

number

10345,

to

the

clinic

most

recently?

In

this

example,

assume

that

RULES=LAST

is

specified

in

the

DBD

for

the

database

on

ILLNESS.

Issue

this

call

to

retrieve

this

information:

GU

PATIENT�(PATNO���=�10345)

ILLNESS�*L

The

first

SSA

gives

IMS

the

number

of

the

particular

patient.

The

second

SSA

asks

for

the

last

occurrence

(in

this

case,

the

first

occurrence

chronologically)

of

the

ILLNESS

segment

for

this

patient.

Inserting

a

Segment

as

the

Last

Occurrence:

Use

L

with

ISRT

only

when

the

segment

has

no

key

or

a

non

unique

key,

and

the

insert

rule

for

the

segment

is

either

FIRST

or

HERE.

Using

the

L

command

code

overrides

both

FIRST

and

HERE

for

HDAM

or

PHDAM

root

segments

and

dependent

segments

in

any

type

of

database.

Using

the

L

command

code

to

override

the

RULES

specification

on

the

DBD

applies

only

to

the

path

(either

logical

or

physical)

that

you

are

using

to

access

the

segment

for

the

ISRT

call.

For

example,

if

you

are

using

the

physical

path

to

access

the

segment,

the

command

code

applies

to

the

physical

path

but

not

to

the

logical

path.

For

clarification

of

using

command

codes

with

the

RULES

specification,

ask

your

database

administrator.

The

N

Command

Code

The

N

command

code

prevents

you

from

replacing

a

segment

on

a

path

call.

In

conjunction

with

the

D

command

code,

it

lets

the

application

program

to

process

multiple

segments

using

one

call.

Alone,

the

D

command

code

retrieves

a

path

of

segments

in

your

I/O

area.

With

the

N

command

code,

the

D

command

code

lets

you

distinguish

which

segments

you

want

to

replace.

Example:

The

following

code

only

replaces

the

TREATMNT

segment.

Command

CodesIBM

Confidential

Chapter

1.

How

Application

Programs

Work

with

the

IMS

Database

Manager

33

GHU

PATIENT*D(PATNO���=�06439)

ILLNESS�*D(ILLDATE�=19930301)

TREATMNT

REPL

PATIENT*N(PATNO���=�06439)

ILLNESS�*N(ILLDATE�=19930301)

TREATMNT

Restriction:

If

you

use

D

and

N

command

codes

together,

IMS

retrieves

the

segment

but

does

not

replace

it.

The

N

command

code

applies

only

to

REPL

calls,

and

IMS

ignores

it

if

you

include

the

code

in

any

other

call.

The

P

Command

Code

Ordinarily,

IMS

sets

parentage

at

the

level

of

the

lowest

segment

that

is

accessed

during

a

call.

To

set

parentage

at

a

higher

level,

you

can

use

the

P

command

code

in

a

GU,

GN,

or

GNP

call.

The

parentage

that

you

set

with

P

works

just

like

the

parentage

that

IMS

sets:

it

remains

in

effect

for

subsequent

GNP

calls,

and

is

not

affected

by

ISRT,

DLET,

or

REPL

calls.

It

is

only

affected

by

GNP

if

you

use

the

P

command

code

in

the

GNP

call.

Parentage

is

canceled

by

a

subsequent

GU,

GHU,

GN,

or

GHN.

Use

the

P

command

code

at

only

one

level

of

the

call.

If

you

mistakenly

use

P

in

multiple

levels

of

a

call,

IMS

sets

parentage

at

the

lowest

level

of

the

call

that

includes

P.

If

IMS

cannot

fully

satisfy

the

call

that

uses

P

(for

example,

IMS

returns

a

GE

status

code),

but

the

level

that

includes

P

is

satisfied,

P

is

still

valid.

If

IMS

cannot

fully

satisfy

the

call

including

the

level

that

contains

P,

IMS

does

not

set

any

parentage.

You

would

receive

a

GP

(no

parentage

established)

if

you

then

issued

a

GNP.

If

you

use

P

with

a

GNP

call,

IMS

processes

the

GNP

call

with

the

parentage

that

was

already

set

by

preceding

calls.

IMS

then

resets

parentage

with

the

parentage

you

specified

using

P

after

processing

the

GNP

call.

Example:

If

you

want

to

send

a

current

bill

to

all

of

the

patients

seen

during

the

month,

the

determining

value

is

in

the

ILLNESS

segment.

You

want

to

look

at

only

patients

whose

ILLNESS

segments

have

dates

after

the

first

of

the

month.

For

patients

who

have

been

to

the

clinic

during

the

month,

you

need

to

look

at

their

addresses

and

the

amount

of

charges

in

the

BILLING

segment

so

that

you

can

print

a

bill.

For

this

example,

assume

the

date

is

March

31,

1993.

Issue

these

two

calls

to

process

this

information:

GN

PATIENT�*PD

ILLNESS�(ILLDATE�>=19930301)

GNP

BILLING��

After

you

locate

a

patient

who

has

been

to

the

clinic

during

the

month,

you

issue

the

GNP

call

to

retrieve

that

patient’s

BILLING

segment.

Then

you

repeat

the

GN

call

to

find

each

patient

who

has

been

to

the

clinic

during

the

month,

until

IMS

returns

a

GB

status

code.

The

Q

Command

Code

Use

the

Q

command

code

if

you

want

to

prevent

another

program

from

updating

a

segment

until

your

program

reaches

a

commit

point.

The

Q

command

code

tells

IMS

that

your

application

program

needs

to

work

with

a

segment

and

that

no

other

tasks

can

be

allowed

to

modify

the

segment

until

the

program

has

finished.

This

Command

Codes IBM

Confidential

34

Application

Programming:

Database

Manager

means

that

you

can

retrieve

segments

using

the

Q

command

code,

then

retrieve

them

again

later,

knowing

that

they

have

not

been

altered

by

another

program.

(You

should

be

aware,

however,

that

reserving

segments

for

the

exclusive

use

of

your

program

can

affect

system

performance.)

You

can

use

the

Q

command

code

in

batch

programs

in

a

data-sharing

environment

and

in

CICS

and

IMS

online

programs.

IMS

ignores

Q

in

non-data

sharing

batch

programs.

Limiting

the

Number

of

Database

Calls:

For

full

function,

before

you

use

the

Q

command

code

in

your

program,

you

must

specify

a

MAXQ

value

during

PSBGEN.

This

establishes

the

maximum

number

of

database

calls

(with

Q

command

codes)

that

you

can

make

between

sync

points.

Related

Reading:

For

information

on

PSBGEN,

see

IMS

Version

9:

Utilities

Reference:

System.

Fast

Path

does

not

support

the

MAXQ

parameter.

Consequently

in

Fast

Path,

you

can

issue

as

many

database

calls

with

Q

command

codes

as

you

want.

Using

Segment

Lock

Class:

For

full

function,

when

you

use

the

Q

command

code

to

retrieve

a

segment,

you

specify

the

letter

Q

followed

by

a

letter

(A-J),

designating

the

lock

class

of

that

segment

(for

example,

QA).

If

the

lock

class

is

not

a

letter

(A-J),

IMS

returns

the

status

code

GL.

Fast

Path

supports

the

Q

command

code

alone,

without

a

letter

designating

the

lock

class.

However,

for

consistency

between

Fast

Path

and

full

function,

Fast

Path

treats

the

Q

command

code

as

a

2-byte

string,

where

the

second

byte

must

be

a

letter

(A-J).

If

the

second

byte

is

not

a

letter

(A-J),

IMS

returns

the

status

code

AJ.

Example:

Suppose

a

customer

wants

to

place

an

order

for

items

1,

2,

and

3,

but

only

if

50

item

1’s,

75

item

2’s,

and

100

item

3’s

are

available.

Before

placing

this

order,

the

program

must

examine

all

three

item

segments

to

determine

whether

an

adequate

number

of

each

item

is

available.

You

do

not

want

other

application

programs

to

change

any

of

the

segments

until

your

program

has

determined

this

and,

if

possible,

placed

the

order.

To

process

this

request

for

full

function,

your

program

uses

the

Q

command

code

when

it

issues

the

Get

calls

for

the

item

segments.

When

you

use

the

Q

command

code

in

the

SSA,

you

assign

a

lock

class

immediately

following

the

command

code

in

the

SSA.

GU

PART

X

ITEM

1

*QA

GU

PART

X

ITEM

2

*QA

GU

PART

X

ITEM

3

*QA

Exception:

For

Fast

Path,

the

second

byte

of

the

lock

class

is

not

interpreted

as

lock

class

’A’.

After

retrieving

the

item

segments,

your

program

can

examine

them

to

determine

whether

an

adequate

number

of

each

item

are

on

hand

to

place

the

order.

Assume

100

of

each

item

are

on

hand.

Your

program

then

places

the

order

and

updates

the

database

accordingly.

To

update

the

segment,

your

program

issues

a

GHU

call

for

each

segment

and

follows

it

immediately

with

a

REPL

call:

Command

CodesIBM

Confidential

Chapter

1.

How

Application

Programs

Work

with

the

IMS

Database

Manager

35

GHU

ITEM

1

REPL

ITEM

1

with

the

value

50

GHU

ITEM

2

REPL

ITEM

2

with

the

value

25

GHU

ITEM

3

REPL

ITEM

3

with

the

value

0

Using

the

DEQ

Call

with

the

Q

Command

Code:

When

you

use

the

Q

command

code

and

the

DEQ

call,

you

reserve

and

release

segments.

For

full

function,

to

issue

a

DEQ

call

against

an

I/O

PCB

to

release

a

segment,

you

place

the

letter

designating

the

segment’s

lock

class

in

the

first

byte

of

an

I/O

area.

Then,

you

issue

the

DEQ

call

with

the

name

of

the

I/O

area

that

contains

the

letter.

A

DEDB

DEQ

call

is

issued

against

a

DEDB

PCB.

Because

Fast

Path

does

not

support

lock

class,

a

DEDBDEQ

call

does

not

require

that

a

lock

class

be

specified

in

the

I/O

area.

Restriction:

The

EXEC

DL/I

interface

does

not

support

DEDB

DEQ

calls,

because

EXEC

DL/I

disallows

a

PCB

for

DEQ

calls.

Retrieving

Segments

with

Full-Function

DEQ

Calls:

The

DEQ

call

releases

all

segments

that

are

retrieved

using

the

Q

command

code,

except:

v

Segments

modified

by

your

program,

until

your

program

reaches

a

commit

point

v

Segments

required

to

keep

your

position

in

the

hierarchy,

until

your

program

moves

to

another

database

record

v

A

class

of

segments

that

has

been

locked

again

as

another

class

If

your

program

only

reads

segments,

it

can

release

them

by

issuing

a

DEQ

call.

If

your

program

does

not

issue

a

DEQ

call,

IMS

releases

the

reserved

segments

when

your

program

reaches

a

commit

point.

By

releasing

them

with

a

DEQ

call

before

your

program

reaches

a

commit

point,

you

make

them

available

to

other

programs

more

quickly.

Retrieving

Buffers

with

Fast

Path

DEQ

Calls:

DEQ

calls

cause

Fast

Path

to

release

a

buffer

that

satisfies

one

of

the

following

conditions:

v

The

buffer

has

not

been

modified,

or

the

buffer

does

not

protect

a

valid

root

position.

v

The

buffer

has

been

protected

by

a

Q

command

code.

Fast

Path

returns

an

FW

status

code

when

no

buffers

can

be

released

for

a

DEQ

call.

Any

CI

locking

or

segment-level

locking

performed

with

a

Q

command

code

is

protected

from

other

application

programs

until

a

DEQ

call

is

issued

or

a

commit

point

is

reached.

Considerations

for

Root

and

Dependent

Segments

(Full

Function

Only):

If

you

use

the

Q

command

code

on

a

root

segment,

other

programs

in

which

the

PCB

does

not

have

update

capability

can

access

the

database

record.

Programs

in

which

the

PCB

has

update

capability

cannot

access

any

of

the

segments

in

that

database

record.

If

you

use

the

Q

command

code

on

a

dependent

segment,

other

programs

can

read

the

segment

using

one

of

the

Get

calls

without

the

hold.

If

your

program

accesses

shared

databases,

and

if

any

of

the

segments

in

that

block

are

reserved

with

the

Q

command

code,

application

programs

in

other

IMS

systems

Command

Codes IBM

Confidential

36

Application

Programming:

Database

Manager

cannot

update

anything

in

that

block.

The

Q

command

code

does

not

hold

segments

from

one

step

of

a

conversation

to

another.

Related

Reading:

For

more

information

on

the

relationship

between

the

Q

command

code

and

the

DEQ

call,

see

“Reserving

Segments

for

the

Exclusive

Use

of

Your

Program”

on

page

256.

The

U

Command

Code

As

IMS

satisfies

each

level

in

a

retrieval

or

ISRT

call,

a

position

on

the

segment

occurrence

that

satisfies

that

level

is

established.

The

U

command

code

prevents

position

from

being

moved

from

a

segment

during

a

search

of

its

hierarchic

dependents.

If

the

segment

has

a

unique

sequence

field,

using

this

code

is

equivalent

to

qualifying

the

SSA

so

that

it

is

equal

to

the

current

value

of

the

key

field.

When

a

call

is

being

satisfied,

if

position

is

moved

to

a

level

above

that

at

which

the

U

code

was

issued,

the

code

has

no

effect

for

the

segment

type

whose

parent

changed

position.

U

is

especially

useful

when

unkeyed

dependents

or

non

unique

keyed

segments

are

being

processed.

The

position

on

a

specific

occurrence

of

an

unkeyed

or

non

unique

keyed

segment

can

be

held

by

using

this

code.

Example:

Suppose

you

want

to

find

out

about

the

illness

that

brought

a

patient

named

Mary

Warren

to

the

clinic

most

recently,

and

about

the

treatments

she

received

for

that

illness.

Figure

11

shows

the

PATIENT,

ILLNESS,

and

TREATMNT

segments

for

Mary

Warren.

To

retrieve

this

information,

retrieve

the

first

ILLNESS

segment

and

the

TREATMNT

segments

associated

with

that

ILLNESS

segment.

To

retrieve

the

most

recent

ILLNESS

segment,

you

can

issue

the

following

GU

call:

GU

PATIENT�(PATNO���=�05810

ILLNESS�*L

After

this

call,

IMS

establishes

a

position

at

the

root

level

on

the

PATIENT

segment

with

the

key

05810

and

on

the

last

ILLNESS

segment.

Because

other

ILLNESS

segments

with

the

key

19860412

may

exist,

you

can

think

of

this

one

as

the

most

recent

ILLNESS

segment.

You

might

want

to

retrieve

the

TREATMNT

segment

occurrences

that

are

associated

with

that

ILLNESS

segment.

You

can

do

this

by

issuing

the

GN

call

below

with

the

U

command

code:

GN

PATIENT�*U

ILLNESS�*U

TREATMNT

Figure

11.

U

Command

Code

Example

Command

CodesIBM

Confidential

Chapter

1.

How

Application

Programs

Work

with

the

IMS

Database

Manager

37

In

this

example,

the

U

command

code

indicates

to

IMS

that

you

want

only

TREATMNT

segments

that

are

dependents

of

the

ILLNESS

and

PATIENT

segments

on

which

IMS

has

established

position.

Issuing

the

above

GN

call

the

first

time

retrieves

the

TREATMNT

segment

with

the

key

of

19860412.

Issuing

the

GN

call

the

second

time

retrieves

the

TREATMNT

segment

with

the

key

19860418.

If

you

issue

the

call

a

third

time,

IMS

returns

a

not-found

status

code.

The

U

command

code

tells

IMS

that,

if

it

does

not

find

a

segment

that

satisfies

the

lower

qualification

under

this

parent,

it

cannot

continue

looking

under

other

parents.

If

the

U

command

code

was

not

in

the

PATIENT

SSA,

the

third

GN

call

causes

IMS

to

move

forward

at

the

root

level

in

an

attempt

to

satisfy

the

call.

If

you

supply

a

U

command

code

for

a

qualified

SSA,

IMS

ignores

the

U.

If

used

in

conjunction

with

command

code

F

or

L,

the

U

command

code

is

disregarded

at

the

level

and

all

lower

levels

of

SSAs

for

that

call.

The

V

Command

Code

Using

the

V

command

code

on

an

SSA

is

similar

to

using

a

U

command

code

in

that

SSA

and

all

preceding

SSAs.

Specifying

the

V

command

code

for

a

segment

level

tells

IMS

that

you

want

to

use

the

position

that

is

established

at

that

level

and

above

as

qualification

for

the

call.

Using

the

V

command

code

is

analogous

to

qualifying

your

request

with

a

qualified

SSA

that

specifies

the

current

IMS

position.

Example:

Suppose

that

you

wanted

to

answer

the

following

request:

Did

Joan

Carter,

patient

number

07755,

receive

any

treatment

on

March

3,

1993?

Using

qualified

SSAs,

specify

the

following

call:

GU

PATIENT�(PATNO���=�07755)

ILLNESS�(ILLDATE�=19930303)

TREATMNT

If

you

have

position

established

on

the

PATIENT

segment

for

patient

number

07755

and

on

the

ILLNESS

segment

for

March

3,

1993,

you

can

use

your

position

to

retrieve

the

TREATMNT

segments

in

which

you

are

interested.

You

do

this

by

specifying

the

V

command

code

as

follows:

GN

PATIENT��

ILLNESS�*V

TREATMNT

Using

the

V

command

code

for

a

call

is

like

establishing

parentage

and

issuing

a

subsequent

GNP

call,

except

that

the

V

command

code

sets

the

parentage

for

the

call

it

is

used

with,

not

for

subsequent

calls.

For

example,

to

satisfy

the

previous

request,

you

could

have

set

parentage

at

the

ILLNESS

segment

level

and

issued

a

GNP

to

retrieve

any

TREATMNT

segments

under

that

parent.

With

the

V

command

code,

you

specify

that

you

want

the

ILLNESS

segment

to

be

used

as

parentage

for

that

call.

You

can

specify

the

V

command

code

for

any

parent

segment.

If

you

use

the

V

command

code

with

a

qualified

SSA,

it

is

ignored

for

that

level

and

for

any

higher

level

that

contains

a

qualified

SSA.

Command

Codes IBM

Confidential

38

Application

Programming:

Database

Manager

The

NULL

Command

Code

The

null

command

code

(-)

enables

you

to

reserve

one

or

more

positions

in

an

SSA

in

which

a

program

can

store

command

codes,

if

they

are

needed

during

program

execution.

Example:

Reserve

position

for

two

command

codes

as

follows:

GU

PATIENT�*--(PATNO���=�07755)

ILLNESS�(ILLDATE�=19930303)

TREATMNT

Using

the

null

command

code

lets

you

use

the

same

set

of

SSAs

for

more

than

one

purpose.

However,

dynamically

modifying

SSAs

makes

debugging

more

difficult.

DEDB

Command

Codes

for

DL/I

The

M,

R,

S,

W,

and

Z

command

codes

are

only

used

with

a

DEDB.

The

examples

in

this

subtopic

are

based

on

the

following

scenario.

Sample

Application

Program

The

examples

in

this

section

are

based

on

one

sample

application

program—the

recording

of

banking

transactions

for

a

passbook

(savings

account)

account.

The

transactions

are

written

to

a

database

as

either

posted

or

unposted,

depending

on

whether

they

were

posted

to

the

customer’s

passbook.

For

example,

when

Bob

Emery

does

business

with

the

bank

but

forgets

to

bring

in

his

passbook,

an

application

program

writes

the

transactions

to

the

database

as

unposted.

The

application

program

sets

a

subset

pointer

to

the

first

unposted

transaction,

so

it

can

be

easily

accessed

later.

The

next

time

Bob

remembers

to

bring

in

his

passbook,

a

program

posts

the

transactions.

The

program

can

directly

retrieve

the

first

unposted

transaction

using

the

subset

pointer

that

was

previously

set.

After

the

program

has

posted

the

transactions,

it

sets

the

subset

pointer

to

0.

An

application

program

that

updates

the

database

later

will

be

able

to

tell

that

no

unposted

transactions

exist.

Figure

12

summarizes

the

processing

that

is

performed

when

the

passbook

is

unavailable

and

when

it

is

available.

Command

CodesIBM

Confidential

Chapter

1.

How

Application

Programs

Work

with

the

IMS

Database

Manager

39

The

M

Command

Code

To

move

the

subset

pointer

forward

to

the

next

segment

after

your

current

position,

your

program

issues

a

call

with

the

M

command

code.

Using

the

passbook

account

example,

suppose

that

you

want

to

post

some,

but

not

all,

of

the

transactions,

and

that

you

want

the

subset

pointer

to

be

set

to

the

first

unposted

transaction.

The

following

command

sets

subset

pointer

1

to

segment

B6,

as

shown

in

Figure

13.

GU

A�������(AKEY���

B�������*R1M1

If

the

current

segment

is

the

last

in

the

chain,

and

you

use

an

M

command

code,

IMS

sets

the

pointer

to

0.

Figure

12.

Processing

for

the

Passbook

Example

Command

Codes IBM

Confidential

40

Application

Programming:

Database

Manager

The

R

Command

Code

To

retrieve

the

first

segment

occurrence

in

the

subset,

your

program

issues

a

Get

call

with

the

R

command

code.

The

R

command

code

does

not

set

or

move

the

pointer.

It

indicates

to

IMS

that

you

want

to

establish

position

on

the

first

segment

occurrence

in

the

subset.

The

R

command

code

is

like

the

F

command

code,

except

that

the

R

command

code

applies

to

the

subset

instead

of

to

the

entire

segment

chain.

Using

the

passbook

account

example,

suppose

that

Bob

Emery

visits

the

bank

and

brings

his

passbook;

you

want

to

post

all

of

the

unposted

transactions.

Because

subset

pointer

1

was

previously

set

to

the

first

unposted

transaction,

your

program

uses

the

following

call

to

retrieve

that

transaction:

GU

A�������(AKEY����=�A1)

B�������*R1

As

shown

by

Figure

14

on

page

42,

this

call

retrieves

segment

B5.

To

continue

processing

segments

in

the

chain,

you

can

issue

GN

calls

as

you

would

if

you

were

not

using

subset

pointers.

If

the

subset

does

not

exist

(subset

pointer

1

has

been

set

to

0),

IMS

returns

a

GE

status

code,

and

your

position

in

the

database

will

be

immediately

following

the

last

Figure

13.

Moving

the

Subset

Pointer

to

the

Next

Segment

after

Your

Current

Position

Command

CodesIBM

Confidential

Chapter

1.

How

Application

Programs

Work

with

the

IMS

Database

Manager

41

segment

in

the

chain.

Using

the

passbook

example,

the

GE

status

code

tells

you

that

no

unposted

transactions

exist.

You

can

specify

only

one

R

command

code

for

each

SSA.

If

you

use

more

than

one

R

in

an

SSA,

IMS

returns

an

AJ

status

code

to

your

program.

You

can

use

R

with

other

command

codes,

except

F

and

Q.

Other

command

codes

in

an

SSA

take

effect

after

the

R

command

code

has

been

processed,

and

after

position

has

been

successfully

established

on

the

first

segment

in

the

subset.

If

you

use

the

L

and

R

command

codes

together,

the

last

segment

in

the

segment

chain

is

retrieved.

(If

the

subset

pointer

that

was

specified

with

the

R

command

code,

IMS

returns

a

GE

status

code

instead

of

the

last

segment

in

the

segment

chain.)

Do

not

use

the

R

and

F

command

codes

together.

If

you

do,

you

will

receive

an

AJ

status

code.

The

R

command

code

overrides

all

insert

rules,

including

LAST.

The

S

Command

Code

To

set

a

subset

pointer

unconditionally,

regardless

of

whether

it

is

already

set,

your

program

issues

a

call

with

the

S

command

code.

“The

W

Command

Code”

on

page

43

describes

how

to

set

a

subset

pointer

only

if

it

is

not

already

set.

When

your

program

issues

a

call

that

includes

the

S

command

code,

IMS

sets

the

pointer

to

your

current

position.

Example:

To

retrieve

the

first

B

segment

occurrence

in

the

subset

defined

by

subset

pointer

1

and

to

reset

pointer

1

at

the

next

B

segment

occurrence,

you

would

issue

the

following

commands:

GU

A�������(AKEY����=�B1)

B�������*R1

GN

B�������*S1

After

you

issue

this

call,

instead

of

pointing

to

segment

B5,

subset

pointer

1

points

to

segment

B6,

as

shown

in

Figure

15

on

page

43.

Figure

14.

Retrieving

the

First

Segment

in

a

Chain

of

Segments

Command

Codes IBM

Confidential

42

Application

Programming:

Database

Manager

The

W

Command

Code

Like

the

S

command

code,

the

W

command

code

sets

the

subset

pointer

conditionally.

Unlike

the

S

command

code,

the

W

command

code

updates

the

subset

pointer

only

if

the

subset

pointer

is

not

already

set

to

a

segment.

Example:

Using

the

passbook

example,

suppose

that

Bob

Emery

visits

the

bank

and

forgets

to

bring

his

passbook.

You

add

the

unposted

transactions

to

the

database.

You

want

to

set

the

pointer

to

the

first

unposted

transaction,

so

that

later,

when

you

post

the

transactions,

you

can

immediately

access

the

first

one.

The

following

call

sets

the

subset

pointer

to

the

transaction

you

are

inserting

if

it

is

the

first

unposted

one.

ISRT

A�������(AKEY����=�A1)

B�������*W1

Figure

15.

Unconditionally

Setting

the

Subset

Pointer

to

Your

Current

Position

Command

CodesIBM

Confidential

Chapter

1.

How

Application

Programs

Work

with

the

IMS

Database

Manager

43

As

shown

by

Figure

16,

this

call

sets

subset

pointer

1

to

segment

B5.

If

unposted

transactions

already

exist,

the

subset

pointer

is

not

changed.

The

Z

Command

Code

The

Z

command

code

sets

the

value

of

the

subset

pointer

to

0.

After

your

program

issues

a

call

with

the

Z

command

code,

the

pointer

is

no

longer

set

to

a

segment,

and

the

subset

defined

by

that

pointer

no

longer

exists.

(IMS

returns

a

status

code

of

GE

to

your

program

if

you

try

to

use

a

subset

pointer

having

a

value

of

0.)

Example:

Using

the

passbook

example,

suppose

that

you

used

the

R

command

code

to

retrieve

the

first

unposted

transaction.

You

then

process

the

chain

of

segments,

posting

the

transactions.

After

posting

the

transactions

and

inserting

any

new

ones

into

the

chain,

use

the

Z

command

code

to

set

the

subset

pointer

to

0

as

shown

in

the

following

call:

ISRT

A�������(AKEY����=�A1)

B�������*Z1

After

this

call,

subset

pointer

1

is

set

to

0,

which

indicates

to

a

program

that

subsequently

updates

the

database

that

no

unposted

transactions

exist.

Figure

16.

Conditionally

Setting

the

Subset

Pointer

to

Your

Current

Position

Command

Codes IBM

Confidential

44

Application

Programming:

Database

Manager

IVP

Sample

Application

Program

The

IVP

sample

application

program

is

a

very

simple

phone

book

application.

Each

of

the

application

programs

performs

the

same

add,

change,

delete,

and

display

functions.

The

source

for

the

IVP

Sample

Application

is

in

the

IMS.SDFSISRC

(SMP/E

target)

library.

Two

programs

are

provided

in

several

different

languages.

The

two

programs

are:

DFSIVA3

A

Conversational

MPP

that

accesses

an

HDAM/VSAM

database.

Transaction

input

and

output

is

through

MFS

screens.

DFSIVA6

A

Batch

or

BMP

program

that

accesses

a

HIDAM/OSAM

database.

The

program

uses

GSAM

to

receive

its

transaction

input

and

to

display

its

transaction

output.

These

programs

are

fully

installed

and

executed

by

the

IVP.

The

IMS

EXEC

library

also

includes

the

REXX

exec

named

DFSSUT04

EXEC.

Use

this

exec

to

process

any

unexpected

return

codes

or

status

codes.

Related

Reading:

A

full

description

of

the

IVP

Sample

Application

is

in

the

IMS

Version

9:

Installation

Volume

1:

Installation

Verification.

Command

CodesIBM

Confidential

Chapter

1.

How

Application

Programs

Work

with

the

IMS

Database

Manager

45

Command

Codes IBM

Confidential

46

Application

Programming:

Database

Manager

Chapter

2.

Writing

Your

Application

Programs

This

section

contains

suggestions

for

writing

a

more

efficient

application

program,

a

checklist

of

coding

considerations,

and

skeleton

programs

in

assembler

language,

C

language,

COBOL,

Pascal,

and

PL/I.

In

this

Chapter:

v

“Programming

Guidelines”

v

“Coding

DL/I

Calls

and

Data

Areas”

on

page

48

v

“Preparing

to

Run

Your

CICS

DL/I

Call

Program”

on

page

49

v

“Sample

Programs”

on

page

49

Programming

Guidelines

The

number,

type,

and

sequence

of

the

IMS

requests

your

program

issues

affects

the

efficiency

of

your

program.

A

program

that

is

poorly

designed

can

still

run

if

it

is

coded

correctly.

IMS

will

not

find

design

errors

for

you.

The

suggestions

that

follow

will

help

you

develop

the

most

efficient

design

possible

for

your

application

program.

When

you

have

a

general

sequence

of

calls

mapped

out

for

your

program,

look

over

the

guidelines

on

sequence

to

see

if

you

can

improve

it.

An

efficient

sequence

of

requests

results

in

efficient

internal

IMS

processing.

As

you

write

your

program,

keep

in

mind

the

guidelines

explained

in

this

section.

The

following

list

offers

programming

guidelines

that

will

help

you

write

efficient

and

error-free

programs.

v

Use

the

most

simple

call.

Qualify

your

requests

to

narrow

the

search

for

IMS.

v

Use

the

request

or

sequence

of

requests

that

will

give

IMS

the

shortest

path

to

the

segment

you

want.

v

Use

as

few

requests

as

possible.

Each

DL/I

call

your

program

issues

uses

system

time

and

resources.

You

may

be

able

to

eliminate

unnecessary

calls

by:

–

Using

path

requests

when

you

are

replacing,

retrieving,

or

inserting

more

than

one

segment

in

the

same

path.

If

you

are

using

more

than

one

request

to

do

this,

you

are

issuing

unnecessary

requests.

–

Changing

the

sequence

so

that

your

program

saves

the

segment

in

a

separate

I/O

area,

and

then

gets

it

from

that

I/O

area

the

subsequent

times

it

needs

the

segment.

If

your

program

retrieves

the

same

segment

more

than

once

during

program

execution,

you

are

issuing

unnecessary

requests.

–

Anticipating

and

eliminating

needless

and

nonproductive

requests,

such

as

requests

that

result

in

GB,

GE,

and

II

status

codes.

For

example,

if

you

are

issuing

GN

calls

for

a

particular

segment

type,

and

you

know

how

many

occurrences

of

that

segment

type

exist,

do

not

issue

the

GN

that

results

in

a

GE

status

code.

Keep

track

of

the

number

of

occurrences

your

program

retrieves,

and

then

continue

with

other

processing

when

you

know

you

have

retrieved

all

the

occurrences

of

that

segment

type.

–

Issuing

an

insert

request

with

a

qualification

for

each

parent,

rather

than

issuing

Get

requests

for

the

parents

to

make

sure

that

they

exist.

If

IMS

returns

a

GE

status

code,

at

least

one

of

the

parents

does

not

exist.

When

you

are

inserting

segments,

you

cannot

insert

dependent

segments

unless

the

parent

segments

exist.

v

Keep

the

main

section

of

the

program

logic

together.

For

example,

branch

to

conditional

routines,

such

as

error

and

print

routines

in

other

parts

of

the

program,

instead

of

branching

around

them

to

continue

normal

processing.

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

47

v

Use

call

sequences

that

make

good

use

of

the

physical

placement

of

the

data.

Access

segments

in

hierarchic

sequence

as

often

as

possible,

and

avoid

moving

backward

in

the

hierarchy.

v

Process

database

records

in

order

of

the

key

field

of

the

root

segments.

(For

HDAM

and

PHDAM

databases,

this

order

depends

on

the

randomizing

routine

that

is

used.

Check

with

your

DBA

for

this

information.)

v

Avoid

constructing

the

logic

of

the

program

and

the

structure

of

commands

or

calls

in

a

way

that

depends

heavily

on

the

database

structure.

Depending

on

the

current

structure

of

the

hierarchy

reduces

the

program’s

flexibility.

v

Minimize

the

number

of

segments

your

program

locks.

You

may

need

to

take

checkpoints

to

release

the

locks

on

updated

segments

and

the

lock

on

the

current

database

record

for

each

PCB

your

program

uses.

Each

PCB

used

by

your

program

has

the

current

database

record

locked

at

share

or

update

level.

If

this

lock

is

no

longer

required,

issuing

the

GU

call,

qualified

at

the

root

level

with

a

greater-than

operator

for

a

key

of

X'FF'

(high

values),

releases

the

current

lock

without

acquiring

a

new

lock.

Using

PCBs

with

a

processing

option

of

get

(G)

results

in

locks

for

the

PCB

at

share

level.

This

allows

other

programs

that

use

the

get

processing

option

to

concurrently

access

the

same

database

record.

Using

a

PCB

with

a

processing

option

that

allows

updates

(I,

R,

or

D)

results

in

locks

for

the

PCB

at

update

level.

This

does

not

allow

any

other

program

to

concurrently

access

the

same

database

record.

Related

Reading:

For

more

information

about

segment

locking,

see

“Reserving

Segments

for

the

Exclusive

Use

of

Your

Program”

on

page

256.

Coding

DL/I

Calls

and

Data

Areas

If

you

have

made

all

the

design

decisions

about

your

program,

coding

the

program

is

a

matter

of

implementing

the

decisions

that

you

have

made.

Before

you

start

coding,

make

sure

you

have

the

information

described

in

this

section.

In

addition

to

knowing

the

design

and

processing

logic

for

your

program,

you

need

to

know

about

the

data

that

your

program

is

processing,

the

PCBs

it

references,

and

the

segment

formats

in

the

hierarchies

your

program

processes.

You

can

use

the

following

list

as

a

checklist

to

make

sure

you

are

not

missing

any

information.

If

you

are

missing

information

about

data,

IMS

options

being

used

in

the

application

program,

or

segment

layouts

and

the

application

program’s

data

structures,

obtain

this

information

from

the

DBA

or

the

equivalent

specialist

at

your

installation.

Be

aware

of

the

programming

standards

and

conventions

that

have

been

established

at

your

installation.

Program

Design

Considerations

v

The

sequence

of

calls

for

your

program.

v

The

format

of

each

call:

–

Does

the

call

include

any

SSAs?

–

If

so,

are

they

qualified

or

unqualified?

–

Does

the

call

contain

any

command

codes?

v

The

processing

logic

for

the

program.

v

The

routine

the

program

is

uses

to

check

the

status

code

after

each

call.

v

The

error

routine

the

program

uses.

Programming

Guidelines IBM

Confidential

48

Application

Programming:

Database

Manager

Checkpoint

Considerations

v

The

type

of

checkpoint

call

to

use

(basic

or

symbolic).

v

The

identification

to

assign

to

each

checkpoint

call,

regardless

of

whether

the

Checkpoint

call

is

basic

or

symbolic.

v

If

you

are

going

to

use

the

symbolic

checkpoint

call,

which

areas

of

your

program

to

checkpoint.

Segment

Considerations

v

Whether

the

segment

is

fixed

length

or

variable

length.

v

The

length

of

the

segment

(the

maximum

length,

if

the

segment

is

variable

length).

v

The

names

of

the

fields

that

each

segment

contains.

v

Whether

the

segment

has

a

key

field.

If

it

does,

is

the

key

field

unique

or

non

unique?

If

it

does

not,

what

sequencing

rule

has

been

defined

for

it?

(A

segment’s

key

field

is

defined

in

the

SEQ

keyword

of

the

FIELD

statement

in

the

DBD.

The

sequencing

rule

is

defined

in

the

RULES

keyword

of

the

SEGM

statement

in

the

DBD.)

v

The

segment’s

field

layouts:

–

The

byte

location

of

each

field.

–

The

length

of

each

field.

–

The

format

of

each

field.

Data

Structure

Considerations

v

Each

data

structure

your

program

processes

has

been

defined

in

a

DB

PCB.

All

of

the

PCBs

your

program

references

are

part

of

a

PSB

for

your

application

program.

You

need

to

know

the

order

in

which

the

PCBs

are

defined

in

the

PSB.

v

The

layout

of

each

of

the

data

structures

your

program

processes.

v

Whether

multiple

or

single

positioning

has

been

specified

for

each

data

structure.

This

is

specified

in

the

POS

keyword

of

the

PCB

statement

during

PSB

generation.

v

Whether

any

data

structures

use

multiple

DB

PCBs.

Preparing

to

Run

Your

CICS

DL/I

Call

Program

You

must

perform

several

steps

before

you

run

your

CICS

DL/I

call

program.

Refer

to

the

appropriate

CICS

reference

information.

v

For

information

on

translating,

compiling,

and

link-editing

your

CICS

online

program,

see

the

description

of

installing

application

programs

in

CICS/ESA

System

Definition

Guide.

v

For

information

on

which

compiler

options

should

be

used

for

a

CICS

online

program,

as

well

as

for

CICS

considerations

when

converting

a

CICS

online

COBOL

program

with

DL/I

calls

to

IBM

COBOL

for

z/OS™

&

VM

or

VS

COBOL

II,

see

CICS/ESA

Application

Programming

Guide.

Sample

Programs

This

section

contains

sample

programs

written

in

assembler

language,

C

language,

COBOL,

Pascal,

and

PL/I.

The

programs

are

examples

of

how

to

code

DL/I

calls

and

data

areas.

They

are

not

complete

programs.

Before

running

them,

you

must

modify

them

to

suit

the

requirements

of

your

installation.

Coding

DL/I

Calls

and

Data

AreasIBM

Confidential

Chapter

2.

Writing

Your

Application

Programs

49

Coding

a

Batch

Program

in

Assembler

Language

Figure

17

on

page

51

is

a

skeleton

program

that

shows

how

the

parts

of

an

IMS

program

written

in

assembler

language

fit

together.

The

numbers

to

the

right

of

the

program

refer

to

the

notes

that

follow

the

program.

This

kind

of

program

can

run

as

a

batch

program

or

as

a

batch-oriented

BMP.

Sample

Programs

in

Assembler

Language IBM

Confidential

50

Application

Programming:

Database

Manager

PGMSTART

C

NOTES

*

EQUATE

REGISTERS

1

*

USEAGE

OF

REGISTERS

R1

EQU

1

ORIGINAL

PCBLIST

ADDRESS

R2

EQU

2

PCBLIST

ADDRESS1

R5

EQU

5

PCB

ADDRESSS

R12

EQU

12

BASE

ADDRESS

R13

EQU

13

SAVE

AREA

ADDRESS

R14

EQU

14

R15

EQU

15

*

USING

PGMSTART,R12

BASE

REGISTER

ESTABLISHED

2

SAVE

(14,12)

SAVE

REGISTERS

LR

12,15

LOAD

REGISTERS

ST

R13,SAVEAREA+4

SAVE

AREA

CHAINING

LA

R13,SAVEAREA

NEW

SAVE

AREA

USING

PCBLIST,R2

MAP

INPUT

PARAMETER

LIST

USING

PCBNAME,R5

MAP

DB

PCB

LR

R2,R1

SAVE

INPUT

PCB

LIST

IN

REG

2

L

R5,PCBDETA

LOAD

DETAIL

PCB

ADDRESS

LA

R5,0(R5)

REMOVE

HIGH

ORDER

END

OF

LIST

FLAG

3

CALL

ASMTDLI,(GU,(R5),DETSEGIO,SSANAME),VL

4

*

*

L

R5,PCBMSTA

LOAD

MASTER

PCB

ADDRESS

CALL

ASMTDLI,(GHU,(R5),MSTSEGIO,SSAU),VL

5

*

*

CALL

ASMTDLI,(GHN,(R5),MSTSEGIO),VL

6

*

*

CALL

ASMTDLI,(REPL,(R5),MSTSEGIO),VL

*

*

L

R13,4(R13)

RESTORE

SAVE

AREA

RETURN

(14,12)

RETURN

BACK

7

*

*

FUNCTION

CODES

USED

*

GU

DC

CL4’GU’

GHU

DC

CL4’GHU’

GHN

DC

CL4’GHN’

REPL

DC

CL4’REPL’

8

*

*

SSAS

*

SSANAME

DS

0C

DC

CL8’ROOTDET’

DC

CL1’(’

DC

CL8’KEYDET’

9

DC

CL2’

=’

NAME

DC

CL5’

’

DC

C’)’

*

Figure

17.

Sample

Assembler

Language

Program

(Part

1

of

2)

Sample

Programs

in

Assembler

LanguageIBM

Confidential

Chapter

2.

Writing

Your

Application

Programs

51

Notes

to

Figure

17

on

page

51:

1.

The

entry

point

to

an

assembler

language

program

can

have

any

name.

Also,

you

can

substitute

CBLTDLI

for

ASMTDLI

in

any

of

the

calls.

2.

When

IMS

passes

control

to

the

application

program,

register

1

contains

the

address

of

a

variable-length

fullword

parameter

list.

Each

word

in

this

list

contains

the

address

of

a

PCB

that

the

application

program

must

save.

The

high-order

byte

of

the

last

word

in

the

parameter

list

has

the

0

bit

set

to

a

value

of

1

which

indicates

the

end

of

the

list.

The

application

program

subsequently

uses

these

addresses

when

it

executes

DL/I

calls.

3.

The

program

loads

the

address

of

the

DETAIL

DB

PCB.

4.

The

program

issues

a

GU

call

to

the

DETAIL

database

using

a

qualified

SSA

(SSANAME).

5.

The

program

loads

the

address

of

the

HALDB

master

PCB.

6.

The

next

three

calls

that

the

program

issues

are

to

the

HALDB

master.

The

first

is

a

GHU

call

that

uses

an

unqualified

SSA.

The

second

is

an

unqualified

GHN

call.

The

REPL

call

replaces

the

segment

retrieved

using

the

GHN

call

with

the

segment

in

the

MSTSEGIO

area.

You

can

use

the

parmcount

parameter

in

DL/I

calls

in

assembler

language

instead

of

the

VL

parameter,

except

for

in

the

call

to

the

sample

status-code

error

routine.

7.

The

RETURN

statement

loads

IMS

registers

and

returns

control

to

IMS.

8.

The

call

functions

are

defined

as

four-character

constants.

9.

The

program

defines

each

part

of

the

SSA

separately

so

that

it

can

modify

the

SSA’s

fields.

10.

The

program

must

define

an

I/O

area

that

is

large

enough

to

contain

the

largest

segment

it

is

to

retrieve

or

insert

(or

the

largest

path

of

segments

if

the

program

uses

the

D

command

code).

This

program’s

I/O

areas

are

100

bytes

each.

SSAU

DC

CL9’ROOTMST’*

MSTSEGIO

DC

CL100’

’

DETSEGIO

DC

CL100’

’

SAVEAREA

DC

18F’0’

*

10

PCBLIST

DSECT

PCBIO

DS

A

ADDRESS

OF

I/O

PCB

PCBMSTA

DS

A

ADDRESS

OF

MASTER

PCB

PCBDETA

DS

A

ADDRESS

OF

DETAIL

PCB

11

*

PCBNAME

DSECT

DBPCBDBD

DS

CL8

DBD

NAME

DBPCBLEV

DS

CL2

LEVEL

FEEDBACK

DBPCBSTC

DS

CL2

STATUS

CODES

DBPCBPRO

DS

CL4

PROC

OPTIONS

DBPCBRSV

DS

F

RESERVED

DBPCBSFD

DS

CL8

SEGMENT

NAME

FEEDBACK

DBPCBMKL

DS

F

LENGTH

OF

KEY

FEEDBACK

DBPCBNSS

DS

F

NUMBER

OF

SENSITIVE

SEGMENTS

IN

PCB

DBPCBKFD

DS

C

KEY

FEEDBACK

AREA

END

PGMSTART

ASSEMBLER

LANGUAGE

INTERFACE

12

Figure

17.

Sample

Assembler

Language

Program

(Part

2

of

2)

Sample

Programs

in

Assembler

Language IBM

Confidential

52

Application

Programming:

Database

Manager

11.

A

fullword

must

be

defined

for

each

PCB.

The

assembler

language

program

can

access

status

codes

after

a

DL/I

call

by

using

the

DB

PCB

base

addresses.

This

example

assumes

that

an

I/O

PCB

was

passed

to

the

application

program.

If

the

program

is

a

batch

program,

CMPAT=YES

must

be

specified

on

the

PSBGEN

statement

of

PSBGEN

so

that

the

I/O

PCB

is

included.

Because

the

I/O

PCB

is

required

for

a

batch

program

to

make

system

service

calls,

CMPAT=YES

should

always

be

specified.

12.

The

IMS-supplied

language

interface

module

(DFSLI000)

must

be

link-edited

with

the

compiled

assembler

language

program.

Related

Reading:

For

more

information

on

installing

CICS

application

programs,

see

CICS/MVS

Installation

Guide.

Coding

a

CICS

Online

Program

in

Assembler

Language

Figure

18

on

page

54

is

a

skeleton

program

in

assembler

language.

It

shows

how

you

define

and

establish

addressability

to

the

UIB.

The

numbers

to

the

right

of

the

program

refer

to

the

notes

that

follow

the

program.

This

program

can

run

in

a

CICS

environment

using

DBCTL.

Sample

Programs

in

Assembler

LanguageIBM

Confidential

Chapter

2.

Writing

Your

Application

Programs

53

PGMSTART

DSECT

NOTES

UIBPTR

DS

F

IOAREA

DS

0CL40

1

AREA1

DS

CL3

AREA2

DS

CL37

DLIUIB

USING

UIB,8

2

PCBPTRS

DSECT

*

PSB

ADDRESS

LIST

PCB1PTR

DS

F

PCB1

DSECT

USING

PCB1,6

3

DBPC1DBD

DS

CL8

DBPC1LEV

DS

CL2

DBPC1STC

DS

CL2

DBPC1PRO

DS

CL4

DBPC1RSV

DS

F

DBPC1SFD

DS

CL8

DBPC1MKL

DS

F

DBPC1NSS

DS

F

DBPC1KFD

DS

0CL256

DBPC1NM

DS

0CL12

DBPC1NMA

DS

0CL14

DBPC1NMP

DS

CL17

ASMUIB

CSECT

B

SKIP

PSBNAME

DC

CL8’ASMPSB’

PCBFUN

DC

CL4’PCB’

REPLFUN

DC

CL4’REPL’

TERMFUN

DC

CL4’TERM’

GHUFUN

DC

CL4’GHU’

SSA1

DC

CL9’AAAA4444’

GOODRC

DC

XL1’00’

GOODSC

DC

CL2’

’

SKIP

DS

0H

4

*

SCHEDULE

PSB

AND

OBTAIN

PCB

ADDRESSES

Figure

18.

Sample

Call-Level

Assembler

Language

Program

(CICS

Online)

(Part

1

of

2)

Sample

Programs

in

Assembler

Language IBM

Confidential

54

Application

Programming:

Database

Manager

Notes

to

the

example:

1.

The

program

must

define

an

I/O

area

that

is

large

enough

to

contain

the

largest

segment

it

is

to

retrieve

or

insert

(or

the

largest

path

of

segments

if

the

program

uses

the

D

command

code).

2.

The

DLIUIB

statement

copies

the

UIB

DSECT,

which

is

expanded

as

shown

under

“Specifying

the

UIB

(CICS

Online

Programs

Only)”

on

page

102.

3.

A

fullword

must

be

defined

for

each

DB

PCB.

The

assembler

language

program

can

access

status

codes

after

a

DL/I

call

by

using

the

DB

PCB

base

addresses.

4.

This

is

an

unqualified

SSA.

For

qualified

SSAs,

define

each

part

of

the

SSA

separately

so

that

the

program

can

modify

the

SSA’s

fields.

CALLDLI

ASMTDLI,(PCBFUN,PSBNAME,UIBPTR)

L

8,UIBPTR

5

CLC

UIBFCTR,X’00’

BNE

ERROR1

*

GET

PSB

ADDRESS

LIST

L

4,UIBPCBAL

USING

PCBPTRS,4

*

GET

ADDRESS

OF

FIRST

PCB

IN

LIST

L

6,PCB1PTR

*

ISSUE

DL/I

CALL:

GET

A

UNIQUE

SEGMENT

CALLDLI

ASMTDLI,(GHUFUN,PCB1,IOAREA,SSA1)

6

CLC

UIBFCTR,GOODRC

BNE

ERROR2

CLC

DBPC1STC,GOODSC

BNE

ERROR3

7

*

PERFORM

SEGMENT

UPDATE

ACTIVITY

MVC

AREA1,.......

MVC

AREA2,.......

*

ISSUE

DL/I

CALL:

REPLACE

SEGMENT

AT

CURRENT

POSITION

CALLDLI

ASMTDLI,(REPLFUN,PCB1,IOAREA,SSA1)

8

CLC

UIBFCTR,GOODRC

BNE

ERROR4

CLC

DBPC1STC,GOODSC

B

TERM

ERROR1

DS

0H

*

INSERT

ERROR

DIAGNOSTIC

CODE

B

TERM

ERROR2

DS

0H

*

INSERT

ERROR

DIAGNOSTIC

CODE

B

TERM

ERROR3

DS

0H

*

INSERT

ERROR

DIAGNOSTIC

CODE

B

TERM

ERROR4

DS

0H

*

INSERT

ERROR

DIAGNOSTIC

CODE

ERROR5

DS

0H

*

INSERT

ERROR

DIAGNOSTIC

CODE

B

TERM

TERM

DS

0H

*

RELEASE

THE

PSB

CALLDLI

ASMDLI,

(TERMFUN)

EXEC

CICS

RETURN

END

ASMUIB

9,10

Figure

18.

Sample

Call-Level

Assembler

Language

Program

(CICS

Online)

(Part

2

of

2)

Sample

Programs

in

Assembler

LanguageIBM

Confidential

Chapter

2.

Writing

Your

Application

Programs

55

5.

This

call

schedules

the

PSB

and

obtains

the

PSB

address.

6.

This

call

retrieves

a

segment

from

the

database.

CICS

online

assembler

language

programs

use

the

CALLDLI

macro,

instead

of

the

call

statement,

to

access

DL/I

databases.

This

macro

is

similar

to

the

call

statement.

It

looks

like

this:

CALLDLI

ASMTDLI,(function,PCB-name,ioarea,

SSA1,...SSAn),VL

7.

CICS

online

programs

must

check

the

return

code

in

the

UIB

before

checking

the

status

code

in

the

DB

PCB.

8.

The

REPL

call

replaces

the

data

in

the

segment

that

was

retrieved

by

the

most

recent

Get

Hold

call.

The

data

is

replaced

by

the

contents

of

the

I/O

area

referenced

in

the

call.

9.

This

call

releases

the

PSB.

10.

The

RETURN

statement

loads

IMS

registers

and

returns

control

to

IMS.

Coding

a

Batch

Program

in

C

Language

Figure

19

on

page

57

is

a

skeleton

batch

program

that

shows

you

how

the

parts

of

an

IMS

program

that

is

written

in

C

fit

together.

The

numbers

to

the

right

of

the

program

refer

to

the

notes

that

follow

the

program.

Sample

Programs

in

Assembler

Language IBM

Confidential

56

Application

Programming:

Database

Manager

#pragma

runopts(env(IMS),plist(IMS))

NOTES

#include

<ims.h>

#include

<stdio.h>

1

main()

{

2

/*

*/

/*

descriptive

statements

*/

/*

*/

IO_PCB_TYPE

*IO_PCB

=

(IO_PCB_TYPE*)PCBLIST[0];

struct

{PCB_STRUCT(10)}

*mast_PCB

=

__pcblist[1];

struct

{PCB_STRUCT(20)}

*detail_PCB

=

__pcblist[2];

3

const

static

char

func_GU[4]

=

"GU

";

const

static

char

func_GN[4]

=

"GN

";

const

static

char

func_GHU[4]

=

"GHU

";

const

static

char

func_GHN[4]

=

"GHN

";

const

static

char

func_GNP[4]

=

"GNP

";

4

const

static

char

func_GHNP[4]

=

"GHNP";

const

static

char

func_ISRT[4]

=

"ISRT";

const

static

char

func_REPL[4]

=

"REPL";

const

static

char

func_DLET[4]

=

"DLET";

char

qual_ssa[8+1+8+2+6+1+1];

/*

initialized

by

sprintf

5

/*below.

See

the

*/

/*explanation

for

*/

/*sprintf

in

note

7

for

the

*/

/*meanings

of

8,1,8,2,6,1

——*/

/*the

final

1

is

for

the

*/

/*trailing

’\0’

of

string

*/

static

const

char

unqual_ssa[]=

"NAME

");

/*

12345678_

*/

struct

{

———

———

———

}

mast_seg_io_area;

struct

{

———

———

6

———

}

det_seg_io_area;

Figure

19.

Sample

C

Language

Program

(Part

1

of

2)

Sample

Programs

in

C

LanguageIBM

Confidential

Chapter

2.

Writing

Your

Application

Programs

57

Notes

to

Figure

19:

1.

The

env(IMS)

establishes

the

correct

operating

environment

and

the

plist(IMS)

establishes

the

correct

parameter

list

when

invoked

under

IMS.

The

ims.h

header

file

contains

declarations

for

PCB

layouts,

__pcblist,

and

the

ctdli

routine.

The

PCB

layouts

define

masks

for

the

PCBs

that

the

program

uses

as

structures.

These

definitions

make

it

possible

for

the

program

to

check

fields

in

the

PCBs.

The

stdio.h

header

file

contains

declarations

for

sprintf

(used

to

build

up

the

SSA).

2.

After

IMS

has

loaded

the

application

program’s

PSB,

IMS

gives

control

to

the

application

program

through

this

entry

point.

3.

The

C

run-time

sets

up

the

__pcblist

values.

The

order

in

which

you

refer

to

the

PCBs

must

be

the

same

order

in

which

they

have

been

defined

in

the

PSB.

(Values

other

than

“10”

and

“20”

can

be

used,

according

to

the

actual

key

lengths

needed.)

These

declarations

can

be

done

using

macros,

such

as:

#define

IO_PCB

(IO_PCB_TYPE

*)

(__pcblist[0])

#define

mast_PCB

(__pcblist[1])

#define

detail_PCB

(__pcblist[2])

This

example

assumes

that

an

I/O

PCB

was

passed

to

the

application

program.

When

the

program

is

a

batch

program,

CMPAT=YES

must

be

specified

on

the

PSBGEN

statement

of

PSBGEN

so

that

the

I/O

PCB

is

included.

Because

the

I/O

PCB

is

required

for

a

batch

program

to

make

system

service

calls,

CMPAT=YES

should

always

be

specified

for

batch

programs.

4.

Each

of

these

areas

defines

one

of

the

call

functions

used

by

the

batch

program.

Each

character

string

is

defined

as

four

alphanumeric

characters,

/*

*/

/*

Initialize

the

qualifier

*/

/*

*/

sprintf(qual_ssa,

"%—8.8s(%—8.8s%2.2s%—6.6s)",

"ROOT",

"KEY",

"=",

"vvvvv");

7

/*

*/

/*

Main

part

of

C

batch

program

*/

/*

*/

ctdli(func_GU,

detail_PCB,

&det_seg_io_area,qual_ssa);

8

ctdli(func_GHU,

mast_PCB,

&mast_seg_io_area,qual_ssa);

9

ctdli(func_GHN,

mast_PCB,

&mast_seg_io_area);

10

ctdli(func_REPL,

mast_PCB,

&mast_seg_io_area;

11

}

12

C

LANGUAGE

INTERFACE

13

Figure

19.

Sample

C

Language

Program

(Part

2

of

2)

Sample

Programs

in

C

Language IBM

Confidential

58

Application

Programming:

Database

Manager

with

a

value

assigned

for

each

function.

(If

the

[4]s

had

been

left

out,

5

bytes

would

have

been

reserved

for

each

constant.)

You

can

define

other

constants

in

the

same

way.

Also,

you

can

store

standard

definitions

in

a

source

library

and

include

them

by

using

a

#include

directive.

Instead,

you

can

define

these

by

macros,

although

each

string

would

have

a

trailing

null

(’\0’).

5.

The

SSA

is

put

into

a

string

(see

note

7).

You

can

define

a

structure,

as

in

COBOL,

PL/I,

or

Pascal,

but

using

sprintf

is

more

convenient.

(Remember

that

C

strings

have

trailing

nulls

that

cannot

be

passed

to

IMS.)

Note

that

the

string

is

1

byte

longer

than

required

by

IMS

to

contain

the

trailing

null,

which

is

ignored

by

IMS.

Note

also

that

the

numbers

in

brackets

assume

that

six

fields

in

the

SSA

are

equal

to

these

lengths.

6.

The

I/O

areas

that

will

be

used

to

pass

segments

to

and

from

the

database

are

defined

as

structures.

7.

The

sprintf

function

is

used

to

fill

in

the

SSA.

The

“%-8.8s”

format

means

“a

left-justified

string

of

exactly

eight

positions”.

The

“%2.2s”

format

means

“a

right-justified

string

of

exactly

two

positions”.

Because

the

ROOT

and

KEY

parts

do

not

change,

this

can

also

be

coded:

sprintf(qual_ssa,

"ROOT

(KEY

=%-6.6s)",

"vvvvv");

/*

12345678

12345678

*/

8.

This

call

retrieves

data

from

the

database.

It

contains

a

qualified

SSA.

Before

you

can

issue

a

call

that

uses

a

qualified

SSA,

initialize

the

data

field

of

the

SSA.

Before

you

can

issue

a

call

that

uses

an

unqualified

SSA,

initialize

the

segment

name

field.

Unlike

the

COBOL,

PL/I,

and

Pascal

interface

routines,

ctdli

also

returns

the

status

code

as

its

result.

(Blank

is

translated

to

0.)

So,

you

can

code:

switch

(ctdli(....))

{

case

0:

...

/*

everything

ok

*/

break;

case

’AB’:

....

break;

case

’IX’:

...

break;

default:

}

You

can

pass

only

the

PCB

pointer

for

DL/I

calls

in

a

C

program.

9.

This

is

another

call

with

a

qualified

SSA.

10.

This

call

is

an

unqualified

call

that

retrieves

data

from

the

database.

Because

it

is

a

Get

Hold

call,

it

can

be

followed

by

REPL

or

DLET.

11.

The

REPL

call

replaces

the

data

in

the

segment

that

was

retrieved

by

the

most

recent

Get

Hold

call.

The

data

is

replaced

by

the

contents

of

the

I/O

area

that

is

referenced

in

the

call.

12.

The

end

of

the

main

routine

(which

can

be

done

by

a

return

statement

or

exit

call)

returns

control

to

IMS.

13.

IMS

provides

a

language

interface

module

(DFSLI000),

which

gives

a

common

interface

to

IMS.

This

module

must

be

made

available

to

the

application

program

at

link-edit

time.

Sample

Programs

in

C

LanguageIBM

Confidential

Chapter

2.

Writing

Your

Application

Programs

59

Coding

a

Batch

Program

in

COBOL

The

program

in

Figure

20

is

a

skeleton

batch

program

that

shows

you

how

the

parts

of

an

IMS

program,

written

in

COBOL,

fit

together.

The

numbers

to

the

right

of

the

program

refer

to

the

notes

that

follow

the

program.

This

kind

of

program

can

run

as

a

batch

program

or

as

a

batch-oriented

BMP.

Sample

Programs

in

COBOL IBM

Confidential

60

Application

Programming:

Database

Manager

ENVIRONMENT

DIVISION.

NOTES

.

1

.

DATA

DIVISION.

WORKING—STORAGE

SECTION.

77

FUNC—GU

PICTURE

XXXX

VALUE

’GU

’.

77

FUNC—GHU

PICTURE

XXXX

VALUE

’GHU

’.

77

FUNC—GN

PICTURE

XXXX

VALUE

’GHN

’.

77

FUNC—GHN

PICTURE

XXXX

VALUE

’GHN

’.

77

FUNC—GNP

PICTURE

XXXX

VALUE

’GNP

’.

77

FUNC—GHNP

PICTURE

XXXX

VALUE

’GHNP’.

77

FUNC—REPL

PICTURE

XXXX

VALUE

’REPL’.

77

FUNC—ISRT

PICTURE

XXXX

VALUE

’ISRT’.

77

FUNC—DLET

PICTURE

XXXX

VALUE

’DLET’.

77

COUNT

PICTURE

S9(5)VALUE

+4

COMPUTATIONAL.

01

UNQUAL—SSA.

02

SEG—NAME

PICTURE

X(08)

VALUE

’

’.

02

FILLER

PICTURE

X

VALUE

’

’.

2

01

QUAL—SSA—MAST.

02

SEG—NAME—M

PICTURE

X(08)

VALUE

’ROOTMAST’.

02

BEGIN—PAREN—M

PICTURE

X

VALUE

’(’.

02

KEY—NAME—M

PICTURE

X(08)

VALUE

’KEYMAST

’.

02

REL—OPER—M

PICTURE

X(02)

VALUE

’

=’.

02

KEY—VALUE—M

PICTURE

X(06)

VALUE

’vvvvvv’.

02

END—PAREN—M

PICTURE

X

VALUE

’)’.

3

01

QUAL—SSA—DET.

02

SEG—NAME—D

PICTURE

X(08)

VALUE

’ROOTDET

’.

02

BEGIN—PAREN—D

PICTURE

X

VALUE

’(’.

02

KEY—NAME—D

PICTURE

X(08)

VALUE

’KEYDET

’.

02

REL—OPER—D

PICTURE

X(02)

VALUE

’

=’.

02

KEY—VALUE—D

PICTURE

X(06)

VALUE

’vvvvvv’.

02

END—PAREN—D

PICTURE

X

VALUE

’)’.

01

DET—SEG—IN.

02

——

02

——

01

MAST—SEG—IN.

4

02

——

02

——

LINKAGE

SECTION.

01

IO—PCB.

02

FILLER

PICTURE

X(10).

02

IO—STAT—CODE

PICTURE

XX.

02

FILLER

PICTURE

X(20).

01

DB—PCB—MAST.

02

MAST—DBD—NAME

PICTURE

X(8).

02

MAST—SEG—LEVEL

PICTURE

XX.

5

02

MAST—STAT—CODE

PICTURE

XX.

02

MAST—PROC—OPT

PICTURE

XXXX.

02

FILLER

PICTURE

S9(5)

COMPUTATIONAL.

02

MAST—SEG—NAME

PICTURE

X(8).

02

MAST—LEN—KFB

PICTURE

S9(5)

COMPUTATIONAL.

02

MAST—NU—SENSEG

PICTURE

S9(5)

COMPUTATIONAL.

02

MAST—KEY—FB

PICTURE

X———X.

01

DB—PCB—DETAIL.

02

DET—DBD—NAME

PICTURE

X(8).

02

DET—SEG—LEVEL

PICTURE

XX.

02

DET—STAT—CODE

PICTURE

XX.

02

DET—PROC—OPT

PICTURE

XXXX.

02

FILLER

PICTURE

S9(5)

COMPUTATIONAL.

02

DET—SEG—NAME

PICTURE

X(8).

02

DET—LEN—KFB

PICTURE

S9(5)

COMPUTATIONAL.

02

DET—NU—SENSEG

PICTURE

S9(5)

COMPUTATIONAL.

02

DET—KEY—FB

PICTURE

X———X.

Figure

20.

Sample

COBOL

Program

(Part

1

of

2)

Sample

Programs

in

COBOLIBM

Confidential

Chapter

2.

Writing

Your

Application

Programs

61

Notes

to

Figure

20:

1.

You

define

each

of

the

DL/I

call

functions

the

program

uses

with

a

77-level

or

01-level

working

storage

entry.

Each

picture

clause

is

defined

as

four

alphanumeric

characters

and

has

a

value

assigned

for

each

function.

If

you

want

to

include

the

optional

parmcount

field,

you

can

initialize

count

values

for

each

type

of

call.

You

can

also

use

a

COBOL

COPY

statement

to

include

these

standard

descriptions

in

the

program.

2.

A

9-byte

area

is

set

up

for

an

unqualified

SSA.

Before

the

program

issues

a

call

that

requires

an

unqualified

SSA,

it

moves

the

segment

name

to

this

area.

If

a

call

requires

two

or

more

SSAs,

you

may

need

to

define

additional

areas.

3.

A

01-level

working

storage

entry

defines

each

qualified

SSA

that

the

application

program

uses.

Qualified

SSAs

must

be

defined

separately,

because

the

values

of

the

fields

are

different.

4.

A

01-level

working

storage

entry

defines

I/O

areas

that

are

used

for

passing

segments

to

and

from

the

database.

You

can

further

define

I/O

areas

with

02-level

entries.

You

can

use

separate

I/O

areas

for

each

segment

type,

or

you

can

define

one

I/O

area

that

you

use

for

all

segments.

5.

A

01-level

linkage

section

entry

defines

a

mask

for

each

of

the

PCBs

that

the

program

requires.

The

DB

PCBs

represent

both

input

and

output

databases.

After

issuing

each

DL/I

call,

the

program

checks

the

status

code

through

this

linkage.

You

define

each

field

in

the

DB

PCB

so

that

you

can

reference

it

in

the

program.

6.

This

is

the

standard

procedure

division

statement

of

a

batch

program.

After

IMS

has

loaded

the

PSB

for

the

program,

IMS

passes

control

to

the

PROCEDURE

DIVISION

USING

IO—PCB,

DB—PCB—MAST,

DB—PCB—DETAIL

ENTRY

’DLITCBL’

6

.

.

.

.

CALL

’CBLTDLI’

USING

FUNC—GU,

DB—PCB—DETAIL,

DET—SEG—IN,

QUAL—SSA—DET.

7

.

.

CALL

’CBLTDLI’

USING

COUNT,

FUNC—GHU,

DB—PCB—MAST,

MAST—SEG—IN,

QUAL—SSA—MAST.

8

.

.

CALL

’CBLTDLI’

USING

FUNC—GHN,

DB—PCB—MAST,

MAST—SEG—IN.

9

.

.

CALL

’CBLTDLI’

USING

FUNC—REPL,

DB—PCB—MAST,

MAST—SEG—IN.

10

.

.

GOBACK.

11

COBOL

LANGUAGE

INTERFACE

12

Figure

20.

Sample

COBOL

Program

(Part

2

of

2)

Sample

Programs

in

COBOL IBM

Confidential

62

Application

Programming:

Database

Manager

application

program.

The

PSB

contains

all

the

PCBs

that

are

defined

in

the

PSB.

The

coding

of

USING

on

the

procedure

division

statement

references

each

of

the

PCBs

by

the

names

that

the

program

has

used

to

define

the

PCB

masks

in

the

linkage

section.

The

PCBs

must

be

listed

in

the

order

in

which

they

are

defined

in

the

PSB.

The

example

in

Figure

20

assumes

that

an

I/O

PCB

was

passed

to

the

application

program.

When

the

program

is

a

batch

program,

CMPAT=YES

must

be

specified

on

the

PSBGEN

statement

of

PSBGEN

so

that

the

I/O

PCB

is

included.

Because

the

I/O

PCB

is

required

for

a

batch

program

to

make

system

service

calls,

CMPAT=YES

should

always

be

specified

for

batch

programs.

The

entry

DLITCBL

statement

is

only

used

in

the

main

program.

Do

not

use

it

in

called

programs.

7.

This

call

retrieves

data

from

the

database

by

using

a

qualified

SSA.

Before

issuing

the

call,

the

program

must

initialize

the

key

or

data

value

of

the

SSA

so

that

it

specifies

the

particular

segment

to

be

retrieved.

The

program

should

test

the

status

code

in

the

DB

PCB

that

was

referenced

in

the

call

immediately

after

issuing

the

call.

You

can

include

the

parmcount

parameter

in

DL/I

calls

in

COBOL

programs,

except

in

the

call

to

the

sample

status-code

error

routine.

It

is

never

required

in

COBOL.

8.

This

is

another

retrieval

call

that

contains

a

qualified

SSA.

9.

This

is

an

unqualified

retrieval

call.

10.

The

REPL

call

replaces

the

segment

that

was

retrieved

in

the

most

recent

Get

Hold

call.

The

segment

is

replaced

with

the

contents

of

the

I/O

area

that

is

referenced

in

the

call

(MAST-SEG-IN).

11.

The

program

issues

the

GOBACK

statement

when

it

has

finished

processing.

12.

IMS

supplies

a

language

interface

module

(DFSLI000).

This

module

must

be

link-edited

to

the

batch

program

after

the

program

has

been

compiled.

It

gives

a

common

interface

to

IMS.

If

you

use

the

IMS-supplied

procedures

(IMSCOBOL

or

IMSCOBGO),

IMS

link-edits

the

language

interface

with

the

application

program.

IMSCOBOL

is

a

two-step

procedure

that

compiles

and

link-edits

your

program.

IMSCOBGO

is

a

three-step

procedure

that

compiles,

link-edits,

and

executes

your

program

in

an

IMS

batch

region.

Related

Reading:

For

information

on

how

to

use

these

procedures,

see

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

If

you

are

using

CICS,

see

CICS/MVS

Installation

Guide

for

more

about

installing

application

programs.

Coding

a

CICS

Online

Program

in

COBOL

The

programs

in

this

section

are

skeleton

online

programs

in

IBM

COBOL

for

z/OS

&

VM

(or

VS

COBOL

II)

and

OS/VS

COBOL.

They

show

examples

of

how

to

define

and

set

up

addressability

to

the

UIB.

The

numbers

to

the

right

of

the

programs

refer

to

the

notes

that

follow

them.

This

kind

of

program

can

run

in

a

CICS

environment

using

DBCTL.

CBL

APOST

NOTES

IDENTIFICATION

DIVISION.

PROGRAM—ID.

CBLUIB.

ENVIRONMENT

DIVISION.

DATA

DIVISION.

WORKING—STORAGE

SECTION.

77

PSB—NAME

PIC

X(8)

VALUE

’CBLPSB

’.

77

PCB—FUNCTION

PIC

X(4)

VALUE

’PCB

’.

Sample

Programs

in

COBOLIBM

Confidential

Chapter

2.

Writing

Your

Application

Programs

63

77

TERM—FUNCTION

PIC

X(4)

VALUE

’TERM’.

1

77

GHU—FUNCTION

PIC

X(4)

VALUE

’GHU

’.

77

REPL—FUNCTION

PIC

X(4)

VALUE

’REPL’.

77

SSA1

PIC

X(9)

VALUE

’AAAA4444

’.

77

SUCCESS—MESSAGE

PIC

X(40).

77

GOOD—STATUS—CODE

PIC

XX

VALUE

’

’.

2

77

GOOD—RETURN—CODE

PIC

X

VALUE

LOW—VALUE.

01

MESSAGE0.

02

MESSAGE1

PIC

X(38).

3

02

MESSAGE2

PIC

XX.

01

DLI—IO—AREA.

02

AREA1

PIC

X(3).

02

AREA2

PIC

X(37).

LINKAGE

SECTION.

COPY

DLIUIB.

4,5

01

OVERLAY—DLIUIB

REDEFINES

DLIUIB.

02

PCBADDR

USAGE

IS

POINTER.

02

FILLER

PIC

XX.

01

PCB—ADDRESSES.

02

PCB—ADDRESS—LIST

USAGE

IS

POINTER

OCCURS

10

TIMES.

01

PCB1.

02

PCB1—DBD—NAME

PIC

X(8).

02

PCB1—SEG—LEVEL

PIC

XX.

02

PCB1—STATUS—CODE

PIC

XX.

02

PCB1—PROC—OPT

PIC

XXXX.

6

02

FILLER

PIC

S9(5)

COMP.

02

PCB1—SEG—NAME

PIC

X(8).

02

PCB1—LEN—KFB

PIC

S9(5)

COMP.

02

PCB1—NU—SENSEG

PIC

S9(5)

COMP.

02

PCB1—KEY—FB

PIC

X(256).

PROCEDURE

DIVISION.

*

SCHEDULE

THE

PSB

AND

ADDRESS

THE

UIB.

CALL

’CBLTDLI’

USING

PCB—FUNCTION,

PSB—NAME,

7

ADDRESS

OF

DLIUIB.

IF

UIBFCTR

IS

NOT

EQUAL

LOW—VALUES

THEN

*

INSERT

ERROR

DIAGNOSTIC

CODE.

EXEC

CICS

RETURN

END—EXEC.

SET

ADDRESS

OF

PCB—ADDRESSES

TO

PCBADDR.

*

ISSUE

DL/I

CALL:

GET

A

UNIQUE

SEGMENT

SET

ADDRESS

OF

PCB1

TO

PCB—ADDRESS—LIST(1).

CALL

’CBLTDLI’

USING

GHU—FUNCTION,

PCB1,

8

DLI—IO—AREA,

SSA1.

IF

UIBFCTR

IS

NOT

EQUAL

GOOD—RETURN—CODE

THEN

*

INSERT

ERROR

DIAGNOSTIC

CODE

EXEC

CICS

RETURN

END—EXEC.

IF

PCB1—STATUS—CODE

IS

NOT

EQUAL

GOOD—STATUS—CODE

THEN

*

INSERT

ERROR

DIAGNOSTIC

CODE

9

EXEC

CICS

RETURN

END—EXEC.

*

PERFORM

SEGMENT

UPDATE

ACTIVITY

MOVE

......

TO

AREA1.

MOVE

......

TO

AREA2.

*

ISSUE

DL/I

CALL:

REPLACE

SEGMENT

AT

CURRENT

POSITION

10

CALL

’CBLTDLI’

USING

REPL—FUNCTION,

PCB1,

DLI—IO—AREA,

SSA1.

IF

UIBFCTR

IS

NOT

EQUAL

GOOD—RETURN—CODE

THEN

*

INSERT

ERROR

DIAGNOSTIC

CODE

EXEC

CICS

RETURN

END—EXEC.

Sample

Programs

in

COBOL IBM

Confidential

64

Application

Programming:

Database

Manager

IF

PCB1—STATUS—CODE

IS

NOT

EQUAL

GOOD—STATUS—CODE

THEN

*

INSERT

ERROR

DIAGNOSTIC

CODE

EXEC

CICS

RETURN

END—EXEC.

*

RELEASE

THE

PSB

CALL

’CBLTDLI’

USING

TERM—FUNCTION.

*

OTHER

APPLICATION

FUNCTION

11,12

EXEC

CICS

RETURN

END—EXEC.

GOBACK.

Notes

to

example:

1.

You

define

each

of

the

DL/I

call

functions

the

program

uses

with

a

77-level

or

01-level

working

storage

entry.

Each

picture

clause

is

defined

as

four

alphanumeric

characters

and

has

a

value

assigned

for

each

function.

If

you

want

to

include

the

optional

parmcount

field,

initialize

count

values

for

each

type

of

call.

You

can

also

use

the

COBOL

COPY

statement

to

include

these

standard

descriptions

in

the

program.

2.

A

9-byte

area

is

set

up

for

an

unqualified

SSA.

Before

the

program

issues

a

call

that

requires

an

unqualified

SSA,

it

can

either

initialize

this

area

with

the

segment

name

or

move

the

segment

name

to

this

area.

If

a

call

requires

two

or

more

SSAs,

you

may

need

to

define

additional

areas.

3.

An

01-level

working

storage

entry

defines

I/O

areas

that

are

used

for

passing

segments

to

and

from

the

database.

You

can

further

define

I/O

areas

with

02-level

entries.

You

can

use

separate

I/O

areas

for

each

segment

type,

or

you

can

define

one

I/O

area

that

you

use

for

all

segments.

4.

The

linkage

section

does

not

contain

BLLCELLS

with

IBM

COBOL

for

z/OS

&

VM

(or

VS

COBOL

II).

5.

The

COPY

DLIUIB

statement

will

be

expanded

as

shown

in

Figure

27

on

page

104.

6.

The

field

UIBPCBAL

is

redefined

as

a

pointer

variable

in

order

to

address

the

special

register

of

IBM

COBOL

for

z/OS

&

VM

(or

VS

COBOL

II).

This

field

contains

the

address

of

an

area

containing

the

PCB

addresses.

Do

not

alter

the

addresses

in

the

area.

7.

One

PCB

layout

is

defined

in

the

linkage

section.

The

PCB-ADDRESS-LIST

occurs

n

times,

where

n

is

greater

than

or

equal

to

the

number

of

PCBs

in

the

PSB.

8.

The

PCB

call

schedules

a

PSB

for

your

program

to

use.

The

address

of

the

DLIUIB

parameter

returns

the

address

of

DLIUIB.

9.

This

unqualified

GHU

call

retrieves

a

segment

from

the

database

and

places

it

in

the

I/O

area

that

is

referenced

by

the

call.

Before

issuing

the

call,

the

program

must

initialize

the

key

or

data

value

of

the

SSA

so

that

it

specifies

the

particular

segment

to

be

retrieved.

10.

CICS

online

programs

should

test

the

return

code

in

the

UIB

before

testing

the

status

code

in

the

DB

PCB.

11.

The

REPL

call

replaces

the

segment

that

was

retrieved

in

the

most

recent

Get

Hold

call

with

the

data

that

the

program

has

placed

in

the

I/O

area.

12.

The

TERM

call

terminates

the

PSB

the

program

scheduled

earlier.

This

call

is

optional

and

is

only

issued

if

a

sync

point

is

desired

prior

to

continued

processing.

The

program

issues

the

EXEC

CICS

RETURN

statement

when

it

has

finished

its

processing.

If

this

is

a

RETURN

from

the

highest-level

CICS

program,

a

TERM

call

and

sync

point

are

internally

generated

by

CICS.

Sample

Programs

in

COBOLIBM

Confidential

Chapter

2.

Writing

Your

Application

Programs

65

IDENTIFICATION

DIVISION.

NOTES

PROGRAM—ID.

’CBLUIB’.

ENVIRONMENT

DIVISION.

DATA

DIVISION.

WORKING—STORAGE

SECTION.

77

PSB—NAME

PIC

X(8)

VALUE

’CBLPSB

’.

1

77

PCB—FUNCTION

PIC

X(4)

VALUE

’PCB

’.

77

TERM—FUNCTION

PIC

X(4)

VALUE

’TERM’.

77

GHU—FUNCTION

PIC

X(4)

VALUE

’GHU

’.

77

REPL—FUNCTION

PIC

X(4)

VALUE

’REPL’.

77

SSA1

PIC

X(9)

VALUE

’AAAA4444

’.

2

77

SUCCESS—MESSAGE

PIC

X(40).

77

GOOD—STATUS—CODE

PIC

XX

VALUE

’

’.

77

GOOD—RETURN—CODE

PIC

X

VALUE

LOW—VALUE.

01

MESSAGE.

02

MESSAGE1

PIC

X(38).

02

MESSAGE2

PIC

XX.

01

DLI—IO—AREA.

3

02

AREA1

PIC

X(3).

02

AREA2

PIC

X(37).

LINKAGE

SECTION.

4

01

BLLCELLS.

02

FILLER

PIC

S9(8)

COMP.

02

UIB—PTR

PIC

S9(8)

COMP.

02

B—PCB—PTRS

PIC

S9(8)

COMP.

02

PCB1—PTR

PIC

S9(8)

COMP.

COPY

DLIUIB.

5,6

01

PCB—PTRS.

02

B—PCB1—PTR

PIC

9(8)

COMP.

01

PCB1.

7

02

PCB1—DBD—NAME

PIC

X(8).

02

PCB1—SEG—LEVEL

PIC

XX.

02

PCB1—STATUS—CODE

PIC

XX.

02

PCB1—PROC—OPT

PIC

XXXX.

02

FILLER

PIC

S9(5)

COMP.

02

PCB1—SEG—NAME

PIC

X(8).

02

PCB1—LEN—KFB

PIC

S9(5)

COMP.

02

PCB1—NU——ENSEG

PIC

S9(5)

COMP.

02

PCB1—KEY—FB

PIC

X(256).

PROCEDURE

DIVISION.

8

CALL

’CBLTDLI’

USING

PCB—FUNCTION,

PSB—NAME,

UIB—PTR

IF

UIBFCTR

IS

NOT

EQUAL

LOW—VALUES

THEN

INSERT

ERROR

DIAGNOSTIC

CODE

EXEC

CICS

RETURN

END—EXEC.

MOVE

UIBPCBAL

TO

B—PCB—PTRS.

MOVE

B—PCB1—PTR

TO

PCB1—PTR.

*

ISSUE

DL/I

CALL:

GET

A

UNIQUE

SEGMENT

9

CALL

’CBLTDLI’

USING

GHU—FUNCTION,

PCB1,

DLI—IO—AREA,

SSA1.

SERVICE

RELOAD

UIB—PTR

IF

UIBFCTR

IS

NOT

EQUAL

GOOD—RETURN—CODE

THEN

10

*

INSERT

ERROR

DIAGNOSTIC

CODE

EXEC

CICS

RETURN

END—EXEC.

Figure

21.

Sample

Call-Level

OS/V

COBOL

program

(CICS

Online)

(Part

1

of

2)

Sample

Programs

in

COBOL IBM

Confidential

66

Application

Programming:

Database

Manager

Notes

to

Figure

21:

1.

You

define

each

of

the

DL/I

call

functions

the

program

uses

with

a

77-level

or

01-level

working

storage

entry.

Each

picture

clause

is

defined

as

four

alphanumeric

characters

and

has

a

value

assigned

for

each

function.

If

you

want

to

include

the

optional

parmcount

field,

you

can

initialize

count

values

for

each

type

of

call.

You

can

also

use

the

COBOL

COPY

statement

to

include

these

standard

descriptions

in

the

program.

2.

A

9-byte

area

is

set

up

for

an

unqualified

SSA.

Before

the

program

issues

a

call

that

requires

an

unqualified

SSA,

it

can

either

initialize

this

area

with

the

segment

name

or

move

the

segment

name

to

this

area.

If

a

call

requires

two

or

more

SSAs,

you

may

need

to

define

additional

areas.

3.

An

01-level

working

storage

entry

defines

I/O

areas

that

are

used

for

passing

segments

to

and

from

the

database.

You

can

further

define

I/O

areas

with

02-level

entries.

You

can

use

separate

I/O

areas

for

each

segment

type,

or

you

can

define

one

I/O

area

to

use

for

all

segments.

4.

The

linkage

section

must

start

with

a

definition

of

this

type

to

provide

addressability

to

a

parameter

list

that

will

contain

the

addresses

of

storage

that

is

outside

the

working

storage

of

the

application

program.

The

first

02-level

definition

is

used

by

CICS

to

provide

addressability

to

the

other

fields

in

the

list.

A

one-to-one

correspondence

exists

between

the

other

02-level

names

and

the

01-level

data

definitions

in

the

linkage

section.

5.

The

COPY

DLIUIB

statement

will

be

expanded

as

shown

in

Figure

27

on

page

104.

6.

The

UIB

returns

the

address

of

an

area

that

contains

the

PCB

addresses.

The

definition

of

PCB

pointers

is

necessary

to

obtain

the

actual

PCB

addresses.

Do

not

alter

the

addresses

in

the

area.

7.

The

PCBs

are

defined

in

the

linkage

section.

8.

The

PCB

call

schedules

a

PSB

for

your

program

to

use.

9.

This

unqualified

GHU

call

retrieves

a

segment

from

the

database

and

places

it

in

the

I/O

area

that

is

referenced

by

the

call.

Before

issuing

the

call,

the

program

must

initialize

the

key

or

data

value

of

the

SSA

so

that

it

specifies

the

particular

segment

to

be

retrieved.

IF

PCB1—STATUS—CODE

IS

NOT

EQUAL

GOOD—STATUS—CODE

THEN

*

INSERT

ERROR

DIAGNOSTIC

CODE

EXEC

CICS

RETURN

END—EXEC.

*

PERFORM

SEGMENT

UPDATE

ACTIVITY

MOVE

.......

TO

AREA1.

MOVE

.......

TO

AREA2.

*

ISSUE

DL/I

CALL:

REPLACE

SEGMENT

AT

CURRENT

POSITION

11

CALL

’CBLTDLI’

USING

REPL—FUNCTION,

PCB1,

DLI—IO—AREA,

SSA1.

IF

UIBFCTR

IS

NOT

EQUAL

GOOD—RETURN—CODE

THEN

*

INSERT

ERROR

DIAGNOSTIC

CODE

EXEC

CICS

RETURN

END—EXEC.

IF

PCB1—STATUS—CODE

IS

NOT

EQUAL

GOOD—STATUS—CODE

THEN

*

INSERT

ERROR

DIAGNOSTIC

CODE

EXEC

CICS

RETURN

END—EXEC.

RELEASE

THE

PSB

CALL

’CBLTDLI’

USING

TERM—FUNCTION.

12,13

EXEC

CICS

RETURN

END—EXEC.

Figure

21.

Sample

Call-Level

OS/V

COBOL

program

(CICS

Online)

(Part

2

of

2)

Sample

Programs

in

COBOLIBM

Confidential

Chapter

2.

Writing

Your

Application

Programs

67

10.

CICS

online

programs

should

test

the

return

code

in

the

UIB

before

testing

the

status

code

in

the

DB

PCB.

11.

The

REPL

call

replaces

the

segment

that

was

retrieved

in

the

most

recent

Get

Hold

call

with

the

data

that

the

program

has

placed

in

the

I/O

area.

12.

The

TERM

call

terminates

the

PSB

that

the

program

scheduled

earlier.

This

call

is

optional

and

is

only

issued

if

a

sync

point

is

desired

prior

to

continued

processing.

13.

The

program

issues

the

EXEC

CICS

RETURN

statement

when

it

has

finished

its

processing.

If

this

is

a

return

from

the

highest-level

CICS

program,

a

TERM

call

and

sync

point

are

internally

generated

by

CICS.

Establishing

Addressability

in

a

COBOL

Program:

The

Optimization

Feature

(CICS

Online

Only)

If

you

use

the

OS/VS

COBOL

compiler

(5740-CB1)

with

the

OPTIMIZE

feature,

you

must

use

the

SERVICE

RELOAD

compiler

control

statement

in

your

program

to

ensure

addressability

to

areas

that

are

defined

in

the

LINKAGE

SECTION.

If

you

use

the

IBM

COBOL

for

z/OS

&

VM

(or

VS

COBOL

II)

compiler,

the

SERVICE

RELOAD

statement

is

not

required.

The

format

of

the

SERVICE

RELOAD

statement

is:

SERVICE

RELOAD

fieldname

fieldname

is

the

name

of

a

storage

area

defined

in

a

01-level

statement

in

the

LINKAGE

SECTION.

Use

the

SERVICE

RELOAD

statement

after

each

statement

that

modifies

addressability

to

an

area

in

the

LINKAGE

SECTION.

Include

the

SERVICE

RELOAD

statement

after

the

label

if

the

statement

might

cause

a

branch

to

another

label.

If

you

specify

NOOPTIMIZE

when

compiling

your

program,

you

do

not

need

to

use

the

SERVICE

RELOAD

statement.

However,

use

this

statement

to

ensure

that

the

program

will

execute

correctly

if

it

is

compiled

using

the

OPTIMIZE

option.

For

more

information

on

using

the

SERVICE

RELOAD

statement,

see

CICS/ESA

Application

Programmer’s

Reference.

Coding

a

Batch

Program

in

Pascal

Figure

22

on

page

69

is

a

skeleton

batch

program

in

Pascal.

It

shows

you

how

the

parts

of

an

IMS

program

that

is

written

in

Pascal

fit

together.

The

numbers

to

the

right

of

the

program

refer

to

the

notes

that

follow

the

program.

Restriction:

Pascal

is

not

supported

by

CICS.

Sample

Programs

in

COBOL IBM

Confidential

68

Application

Programming:

Database

Manager

segment

PASCIMS;

NOTES

1

type

2

CHAR2

=

packed

array

[1..2]

of

CHAR;

CHAR4

=

packed

array

[1..4]

of

CHAR;

CHAR6

=

packed

array

[1..6]

of

CHAR;

CHARn

=

packed

array

[1..n]

of

CHAR;

DB_PCB_TYPE

=

record

3

DB_NAME

:

ALFA;

DB_SEG_LEVEL

:

CHAR2;

DB_STAT_CODE

:

CHAR2;

DB_PROC_OPT

:

CHAR4;

FILLER

:

INTEGER;

DB_SEG_NAME

:

ALFA;

DB_LEN_KFB

:

INTEGER;

DB_NO_SENSEG

:

INTEGER;

DB_KEY_FB

:

CHARn;

end;

procedure

PASCIMS

(var

SAVE:

INTEGER;

4

var

DB_PCB_MAST:

DB_PCB_TYPE;

var

DB_PCB_DETAIL

:

DB_PCB_TYPE);

REENTRANT;

procedure

PASCIMS;

type

5

QUAL_SSA_TYPE

=

record

SEG_NAME

:

ALFA;

SEQ_QUAL

:

CHAR;

SEG_KEY_NAME

:

ALFA;

SEG_OPR

:

CHAR2;

SEG_KEY_VALUE:

CHAR6;

SEG_END_CHAR

:

CHAR;

end;

MAST_SEG_IO_AREA_TYPE

=

record

(*

Field

declarations

*)

end;

DET_SEG_IO_AREA_TYPE

=

record

(*

Field

declarations

*)

end;

var

6

MAST_SEG_IO_AREA

:

MAST_SEG_IO_AREA_TYPE;

DET_SEG_IO_AREA

:

DET_SEG_IO_AREA_TYPE;

const

7

GU

=

’GU

’;

GN

=

’GN

’;

GHU

=

’GHU

’;

GHN

=

’GHN

’;

GHNP

=

’GHNP’;

ISRT

=

’ISRT’;

REPL

=

’REPL’;

DLET

=

’DLET’;

QUAL_SSA

=

QUAL_SSA_TYPE(’ROOT’,’(’,’KEY’,’

=’,

’vvvvv’,’)’);

UNQUAL_SSA

=

’NAME

’;

procedure

PASTDLI;

GENERIC;

8

begin

Figure

22.

Sample

Pascal

Program

(Part

1

of

2)

Sample

Programs

in

PascalIBM

Confidential

Chapter

2.

Writing

Your

Application

Programs

69

Notes

to

Figure

22:

1.

Define

the

name

of

the

Pascal

compile

unit.

2.

Define

the

data

types

that

are

needed

for

the

PCBs

used

in

your

program.

3.

Define

the

PCB

data

type

that

is

used

in

your

program.

4.

Declare

the

procedure

heading

for

the

REENTRANT

procedure

that

is

called

by

IMS.

The

first

word

in

the

parameter

list

should

be

an

INTEGER,

which

is

reserved

for

VS

Pascal’s

usage.

The

rest

of

the

parameters

are

the

addresses

of

the

PCBs

that

are

received

from

IMS.

5.

Define

the

data

types

that

are

needed

for

the

SSAs

and

I/O

areas.

6.

Declare

the

variables

used

for

the

I/O

areas.

7.

Define

the

constants,

such

as

function

codes

and

SSAs

that

are

used

in

the

PASTDLI

DL/I

calls.

8.

Declare

the

IMS

interface

routine

by

using

the

GENERIC

directive.

GENERIC

identifies

external

routines

that

allow

multiple

parameter

list

formats.

A

GENERIC

routine’s

parameters

are

“declared”

only

when

the

routine

is

called.

9.

This

call

retrieves

data

from

the

database.

It

contains

a

qualified

SSA.

Before

you

can

issue

a

call

that

uses

a

qualified

SSA,

you

must

initialize

the

data

field

of

the

SSA.

Before

you

can

issue

a

call

that

uses

an

unqualified

SSA,

you

must

initialize

the

segment

name

field.

10.

This

is

another

call

that

has

a

qualified

SSA.

11.

This

call

is

an

unqualified

call

that

retrieves

data

from

the

database.

Because

it

is

a

Get

Hold

call,

it

can

be

followed

by

a

REPL

or

DLET

call.

12.

The

REPL

call

replaces

the

data

in

the

segment

that

was

retrieved

by

the

most

recent

Get

Hold

call;

the

data

is

replaced

by

the

contents

of

the

I/O

area

that

is

referenced

in

the

call.

13.

You

return

control

to

IMS

by

exiting

from

the

PASCIMS

procedure.

You

can

also

code

a

RETURN

statement

to

exit

at

another

point.

14.

You

must

link-edit

your

program

to

the

IMS

language

interface

module,

DFSLI000,

after

compiling

your

program.

PASTDLI(cons

9

var

DB_PCB_DETAIL;

var

DET_SEG_IO_AREA;

const

QUAL_SSA);

PASTDLI(const

GHU,

10

var

DB_PCB_MAST,

var

MAST_SEG_IO_AREA,

const

QUAL_SSA);

PASTDLI(const

GHN,

11

var

DB_PCB_MAST,

var

MAST_SEG_IO_AREA);

PASTDLI(const

REPL,

12

var

DB_PCB_MAST,

var

MAST_SEG_IO_AREA);

end;

13

PASCAL

LANGUAGE

INTERFACE

14

Figure

22.

Sample

Pascal

Program

(Part

2

of

2)

Sample

Programs

in

Pascal IBM

Confidential

70

Application

Programming:

Database

Manager

Coding

a

Batch

Program

in

PL/I

Figure

23

is

a

skeleton

batch

program

in

PL/I.

It

shows

you

how

the

parts

of

an

IMS

program

that

is

written

in

PL/I

fit

together.

The

numbers

to

the

right

of

the

program

refer

to

the

notes

that

follow.

This

kind

of

program

can

run

as

a

batch

program

or

as

a

batch-oriented

BMP.

Restriction:

IMS

application

programs

cannot

use

PL/I

multitasking.

This

is

because

all

tasks

operate

as

subtasks

of

a

PL/I

control

task

when

you

use

multitasking.

/*

*/

NOTES

/*

ENTRY

POINT

*/

/*

*/

DLITPLI:

PROCEDURE

(IO_PTR_PCB,DB_PTR_MAST,DB_PTR_DETAIL)

1

OPTIONS

(MAIN);

/*

*/

/*

DESCRIPTIVE

STATEMENTS

*/

/*

*/

DCL

IO_PTR_PCB

POINTER;

DCL

DB_PTR_MAST

POINTER;

DCL

DB_PTR_DETAIL

POINTER;

DCL

FUNC_GU

CHAR(4)

INIT(’GU

’);

2

DCL

FUNC_GN

CHAR(4)

INIT(’GN

’);

DCL

FUNC_GHU

CHAR(4)

INIT(’GHU

’);

DCL

FUNC_GHN

CHAR(4)

INIT(’GHN

’);

DCL

FUNC_GNP

CHAR(4)

INIT(’GNP

’);

DCL

FUNC_GHNP

CHAR(4)

INIT(’GHNP’);

DCL

FUNC_ISRT

CHAR(4)

INIT(’ISRT’);

DCL

FUNC_REPL

CHAR(4)

INIT(’REPL’);

DCL

FUNC_DLET

CHAR(4)

INIT(’DLET’);

DCL

1

QUAL_SSA

STATIC

UNALIGNED,

3

2

SEG_NAME

CHAR(8)

INIT(’ROOT

’),

2

SEG_QUAL

CHAR(1)

INIT(’(’),

2

SEG_KEY_NAME

CHAR(8)

INIT(’KEY

’),

2

SEG_OPR

CHAR(2)

INIT(’

=’),

2

SEG_KEY_VALUE

CHAR(6)

INIT(’vvvvv’),

2

SEG_END_CHAR

CHAR(1)

INIT(’)’);

DCL

1

UNQUAL

SSA

STATIC

UNALIGNED,

2

SEG_NAME_U

CHAR(8)

INIT(’NAME

’),

2

BLANK

CHAR(1)

INIT(’

’);

DCL

1

MAST_SEG_IO_AREA,

4

2

———

2

———

2

———

DCL

1

DET_SEG_IO_AREA,

2

———

2

———

2

———

DCL

1

IO_PCB

BASED

(IO_PTR_PCB),

5

2

FILLER

CHAR(10),

2

STAT

CHAR(2);

Figure

23.

Sample

PL/I

Program

(Part

1

of

2)

Sample

Programs

in

PL/IIBM

Confidential

Chapter

2.

Writing

Your

Application

Programs

71

Notes

to

Figure

23:

1.

After

IMS

has

loaded

the

application

program’s

PSB,

IMS

gives

control

to

the

application

program

through

this

entry

point.

PL/I

programs

must

pass

the

pointers

to

the

PCBs,

not

the

names,

in

the

entry

statement.

The

entry

statement

lists

the

PCBs

that

the

program

uses

by

the

names

that

it

has

assigned

to

the

definitions

for

the

PCB

masks.

The

order

in

which

you

refer

to

the

PCBs

in

the

entry

statement

must

be

the

same

order

in

which

they

have

been

defined

in

the

PSB.

The

example

in

Figure

23

on

page

71

assumes

that

an

I/O

PCB

was

passed

to

the

application

program.

When

the

program

is

a

batch

program,

CMPAT=YES

must

be

specified

on

the

PSBGEN

statement

of

PSBGEN

so

DCL

1

DB_PCB_MAST

BASED

(DB_PTR_MAST),

2

MAST_DB_NAME

CHAR(8),

2

MAST_SEG_LEVEL

CHAR(2),

2

MAST_STAT_CODE

CHAR(2),

2

MAST_PROC_OPT

CHAR(4),

2

FILLER

FIXED

BINARY

(31,0),

2

MAST_SEG_NAME

CHAR(8),

2

MAST_LEN_KFB

FIXED

BINARY

(31,0),

2

MAST_NO_SENSEG

FIXED

BINARY

(31,0),

2

MAST_KEY_FB

CHAR(*);

DCL

1

DB_PCB_DETAIL

BASE

(DB_PTR_DETAIL),

2

DET_DB_NAME

CHAR(8),

2

DET_SEG_LEVEL

CHAR(2),

2

DET_STAT_CODE

CHAR(2),

2

DET_PROC_OPT

CHAR(4),

2

FILLER

FIXED

BINARY

(31,0),

2

DET_SEG_NAME

CHAR(8),

2

DET_LEN_KFB

FIXED

BINARY

(31,0),

2

DET_NO_SENSEG

FIXED

BINARY

(31,0),

2

DET_KEY_FB

CHAR(*);

DCL

THREE

FIXED

BINARY

(31,0)

INITIAL(3);

6

DCL

FOUR

FIXED

BINARY

(31,0)

INITIAL(4);

DCL

FIVE

FIXED

BINARY

(31,0)

INITIAL(5);

DCL

SIX

FIXED

BINARY

(31,0)

INITIAL(6);

/*

*/

/*

MAIN

PART

OF

PL/I

BATCH

PROGRAM

*/

/*

*/

CALL

PLITDLI(FOUR,FUNC_GU,DB_PCB_DETAIL,

7

DET_SEG_IO_AREA,QUAL_SSA);

.

CALL

PLITDLI(FOUR,FUNC_GHU,DB_PCB_MAST,

8

MAST_SEG_IO_AREA,QUAL_SSA);

.

CALL

PLITDLI(THREE,FUNC_GHN,DB_PCB_MAST,

9

MAST_SEG_IO_AREA);

.

CALL

PLITDLI(THREE,FUNC_REPL,DB_PCB_MAST,

10

MAST_SEG_IO_AREA);

.

RETURN

11

END

DLITPLI;

PL/I

LANGUAGE

INTERFACE

12

Figure

23.

Sample

PL/I

Program

(Part

2

of

2)

Sample

Programs

in

PL/I IBM

Confidential

72

Application

Programming:

Database

Manager

that

the

I/O

PCB

is

included.

Because

the

I/O

PCB

is

required

for

a

batch

program

to

make

system

service

calls,

CMPAT=YES

should

always

be

specified

for

batch

programs.

2.

Each

of

these

areas

defines

one

of

the

call

functions

used

by

the

batch

program.

Each

character

string

is

defined

as

four

alphanumeric

characters,

with

a

value

assigned

for

each

function.

You

can

define

other

constants

in

the

same

way.

Also,

you

can

store

standard

definitions

in

a

source

library

and

include

them

by

using

a

%INCLUDE

statement.

3.

A

structure

definition

defines

each

SSA

the

program

uses.

The

unaligned

attribute

is

required

for

SSAs.

The

SSA

character

string

must

reside

contiguously

in

storage.

You

should

define

a

separate

structure

for

each

qualified

SSA,

because

the

value

of

each

SSA’s

data

field

is

different.

4.

The

I/O

areas

that

are

used

to

pass

segments

to

and

from

the

database

are

defined

as

structures.

5.

Level-01

declaratives

define

masks

for

the

PCBs

that

the

program

uses

as

structures.

These

definitions

make

it

possible

for

the

program

to

check

fields

in

the

PCBs.

6.

This

statement

defines

the

parmcount

that

is

required

in

DL/I

calls

that

are

issued

from

PL/I

programs

(except

for

the

call

to

the

sample

status-code

error

routine,

where

it

is

not

allowed).

The

parmcount

is

the

address

of

a

4-byte

field

that

contains

the

number

of

subsequent

parameters

in

the

call.

The

parmcount

is

required

only

in

PL/I

programs.

It

is

optional

in

the

other

languages.

The

value

in

parmcount

is

binary.

The

example

below

shows

how

you

can

code

the

parmcount

parameter

when

three

parameters

follow

in

the

call:

DCL

THREE

FIXED

BINARY

(31,0)

INITIAL(3);

7.

This

call

retrieves

data

from

the

database.

It

contains

a

qualified

SSA.

Before

you

can

issue

a

call

that

uses

a

qualified

SSA,

initialize

the

data

field

of

the

SSA.

Before

you

can

issue

a

call

that

uses

an

unqualified

SSA,

initialize

the

segment

name

field.

Check

the

status

code

after

each

DL/I

call

that

you

issue.

Although

you

must

declare

the

PCB

parameters

that

are

listed

in

the

entry

statement

to

a

PL/I

program

as

POINTER

data

types,

you

can

pass

either

the

PCB

name

or

the

PCB

pointer

in

DL/I

calls

in

a

PL/I

program.

8.

This

is

another

call

that

has

a

qualified

SSA.

9.

This

is

an

unqualified

call

that

retrieves

data

from

the

database.

Because

it

is

a

Get

Hold

call,

it

can

be

followed

by

REPL

or

DLET.

10.

The

REPL

call

replaces

the

data

in

the

segment

that

was

retrieved

by

the

most

recent

Get

Hold

call;

the

data

is

replaced

by

the

contents

of

the

I/O

area

referenced

in

the

call.

11.

The

RETURN

statement

returns

control

to

IMS.

12.

IMS

provides

a

language

interface

module

(DFSLI000)

which

gives

a

common

interface

to

IMS.

This

module

must

be

link-edited

to

the

program.

If

you

use

the

IMS-supplied

procedures

(IMSPLI

or

IMSPLIGO),

IMS

link-edits

the

language

interface

module

to

the

application

program.

IMSPLI

is

a

two-step

procedure

that

compiles

and

links

your

program.

IMSPLIGO

is

a

three-step

procedure

that

compiles,

link-edits,

and

executes

your

program

in

a

DL/I

batch

region.

For

information

on

how

to

use

these

procedures,

see

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

Related

Reading:

For

more

information

on

installing

CICS

application

programs,

see

CICS/MVS

Installation

Guide.

Sample

Programs

in

PL/IIBM

Confidential

Chapter

2.

Writing

Your

Application

Programs

73

Coding

a

CICS

Online

Program

in

PL/I

The

program

in

Figure

24

is

a

skeleton

CICS

online

program

in

PL/I.

It

shows

you

how

to

define

and

establish

addressability

to

the

UIB.

The

numbers

to

the

right

of

the

program

refer

to

the

notes

that

follow.

This

kind

of

program

can

run

in

a

CICS

environment

using

DBCTL.

Sample

Programs

in

PL/I IBM

Confidential

74

Application

Programming:

Database

Manager

PLIUIB:

PROC

OPTIONS(MAIN);

DCL

PSB_NAME

CHAR(8)

STATIC

INIT(’PLIPSB

’);

1

DCL

PCB_FUNCTION

CHAR(4)

STATIC

INIT(’PCB

’);

DCL

TERM_FUNCTION

CHAR(4)

STATIC

INIT(’TERM’);

DCL

GHU_FUNCTION

CHAR(4)

STATIC

INIT(’GHU

’);

DCL

REPL_FUNCTION

CHAR(4)

STATIC

INIT(’REPL’);

DCL

SSA1

CHAR(9)

STATIC

INIT(’AAAA4444

’);

2

DCL

PARM_CT_1

FIXED

BIN(31)

STATIC

INIT(1);

DCL

PARM_CT_3

FIXED

BIN(31)

STATIC

INIT(3);

DCL

PARM_CT_4

FIXED

BIN(31)

STATIC

INIT(4);

DCL

GOOD_RETURN_CODE

BIT(8)

STATIC

INIT(’0’B);

DCL

GOOD_STATUS_CODE

CHAR(2)

STATIC

INIT(’

’);

%INCLUDE

DLIUIB;

3

DCL

1

PCB_POINTERS

BASED(UIBPCBAL),

4

2

PCB1_PTR

POINTER;

DCL

1

DLI_IO_AREA,

5

2

AREA1

CHAR(3),

2

AREA2

CHAR(37);

DCL

1

PCB1

BASED(PCB1_PTR),

6

2

PCB1_DBD_NAME

CHAR(8),

2

PCB1_SEG_LEVEL

CHAR(2),

2

PCB1_STATUS_CODE

CHAR(2),

2

PCB1_PROC_OPTIONS

CHAR(4),

2

PCB1_RESERVE_DLI

FIXED

BIN

(31,0),

2

PCB1_SEGNAME_FB

CHAR(8),

2

PCB1_LENGTH_FB_KEY

FIXED

BIN(31,0),

2

PCB1_NUMB_SENS_SEGS

FIXED

BIN(31,0),

2

PCB1_KEY_FB_AREA

CHAR(17);

/*

SCHEDULE

PSB

AND

OBTAIN

PCB

ADDRESSES

*/

CALL

PLITDLI(PARM_CT_3,PCB_FUNCTION,

7

PSB_NAME,UIBPTR;

IF

UIBFCTR™=GOOD_RETURN_CODE

THEN

DO;

/*

ISSUE

DL/I

CALL:

GET

A

UNIQUE

SEGMENT

*/

END;

CALL

PLITDLI(PARM_CT_4,GHU_FUNCTION,PCB1,

8

DLI_IO_AREA,SSA1;

IF

UIBFCTR™=GOOD_RETURN_CODE

THEN

9

IF

PCB1_STATUS_CODE=GOOD

STATUS

CODE

THEN

DO;

/*

PERFORM

SEGMENT

UPDATE

ACTIVITY

*/

/*

INSERT

ERROR

DIAGNOSTIC

CODE

*/

END;

IF

PCB1_STATUS_CODE™=GOOD_STATUS_CODE

THEN

DO;

/*

INSERT

ERROR

DIAGNOSTIC

CODE

*/

AREA1=.......;

AREA2=.......;

/*

ISSUE

DL/I:

REPLACE

SEGMENT

AT

CURRENT

POSITION

*/

CALL

PLITDLI(PARM_CT_4,REPL_FUNCTION,PCB1,

10

DLI_IO_AREA,SSA1);

END;

END;

IF

UIBFCTR™=GOOD_RETURN_CODE

THEN

DO;

/*

ANALYZE

UIB

PROBLEM

*/

.

.

/*

ISSUE

DIAGNOSTIC

MESSAGE

*/

END;

Figure

24.

Sample

Call-Level

PL/I

Program

(CICS

Online)

(Part

1

of

2)

Sample

Programs

in

PL/IIBM

Confidential

Chapter

2.

Writing

Your

Application

Programs

75

Notes

to

Figure

24:

1.

Each

of

these

areas

defines

the

DL/I

call

functions

the

program

uses.

Each

character

string

is

defined

as

four

alphanumeric

characters

and

has

a

value

assigned

for

each

function.

You

can

define

other

constants

in

the

same

way.

You

can

store

standard

definitions

in

a

source

library

and

include

them

by

using

a

%INCLUDE

statement.

2.

A

structure

definition

defines

each

SSA

the

program

uses.

The

unaligned

attribute

is

required

for

SSAs.

The

SSA

character

string

must

reside

contiguously

in

storage.

If

a

call

requires

two

or

more

SSAs,

you

may

need

to

define

additional

areas.

3.

The

%INCLUDE

DLIUIB

statement

will

be

expanded

as

shown

in

Figure

27

on

page

104.

4.

The

UIB

returns

the

address

of

an

area

containing

the

PCB

addresses.

The

definition

of

PCB

pointers

is

necessary

to

obtain

the

actual

PCB

addresses.

Do

not

alter

the

addresses

in

the

area.

5.

The

I/O

areas

that

are

used

to

pass

segments

to

and

from

the

database

are

defined

as

structures.

6.

The

PCBs

are

defined

based

on

the

addresses

that

are

passed

in

the

UIB.

7.

The

PCB

call

schedules

a

PSB

for

your

program

to

use.

8.

This

unqualified

GHU

call

retrieves

a

segment

from

the

database.

The

segment

is

placed

in

the

I/O

area

that

is

referenced

in

the

call.

Before

issuing

the

call,

the

program

must

initialize

the

key

or

data

value

of

the

SSA

so

that

it

specifies

the

particular

segment

to

be

retrieved.

9.

CICS

online

programs

must

test

the

return

code

in

the

UIB

before

testing

the

status

code

in

the

DB

PCB.

10.

The

REPL

call

replaces

the

segment

that

was

retrieved

in

the

most

recent

Get

Hold

call.

The

I/O

area

that

is

referenced

in

the

call

contains

the

segment

to

be

replaced.

11.

The

TERM

call

terminates

the

PSB

that

the

program

scheduled

earlier.

12.

The

program

issues

the

EXEC

CICS

RETURN

statement

when

it

has

finished

processing.

ELSE

IF

PCB1_STATUS_CODE™=GOOD_STATUS_CODE

THEN

DO;

/*

EXAMINE

PCB1_STATUS_CODE

*/

.

.

/*

ISSUE

DIAGNOSTIC

MESSAGE

*/

END;

/*

RELEASE

THE

PSB

*/

CALL

PLITDLI(PARM_CT_1,TERM_FUNCTION);

11

EXEC

CICS

RETURN;

12

END

PLIUIB;

Figure

24.

Sample

Call-Level

PL/I

Program

(CICS

Online)

(Part

2

of

2)

Sample

Programs

in

PL/I IBM

Confidential

76

Application

Programming:

Database

Manager

Chapter

3.

Defining

Application

Program

Elements

This

section

describes

the

elements

of

your

application

program

that

are

used

with

IMS.

Your

application

program

must

define

these

elements.

This

section

describes

formatting

DL/I

calls

for

language

interfaces

and

provides

language

calls

information

for

assembler

language,

C

language,

COBOL,

Pascal,

and

PL/I.

In

this

Chapter:

v

“Formatting

DL/I

Calls

for

Language

Interfaces”

v

“Application

Programming

for

Assembler

Language”

on

page

78

v

“Application

Programming

for

C

Language”

on

page

80

v

“Application

Programming

for

COBOL”

on

page

83

v

“Application

Programming

for

Pascal”

on

page

86

v

“Application

Programming

for

PL/I”

on

page

88

v

“Relationship

of

Calls

to

PCBs”

on

page

91

v

“Specifying

the

I/O

PCB

Mask”

on

page

92

v

“Specifying

the

DB

PCB

Mask”

on

page

95

v

“Specifying

the

AIB

Mask”

on

page

98

v

“Specifying

the

AIB

Mask

for

ODBA

Applications”

on

page

99

v

“Specifying

the

UIB

(CICS

Online

Programs

Only)”

on

page

102

v

“Specifying

the

I/O

Areas”

on

page

105

v

“Segment

Search

Arguments”

on

page

106

v

“GSAM

Data

Areas”

on

page

111

v

“The

AIBTDLI

Interface”

on

page

111

v

“Specifying

the

Language

Specific

Entry

Point”

on

page

112

v

“PCB

Lists”

on

page

115

v

“The

AERTLDI

interface”

on

page

116

v

“Language

Environment”

on

page

117

v

“Special

DL/I

Situations”

on

page

118

Related

Reading:

For

detailed

information

on

specific

parameters

for

the

DL/I

calls,

see

Chapter

4,

“Writing

DL/I

Calls

for

Database

Management,”

on

page

121

and

Chapter

5,

“Writing

DL/I

Calls

for

System

Services,”

on

page

149.

Formatting

DL/I

Calls

for

Language

Interfaces

When

you

use

DL/I

calls

in

a

programming

language

supported

by

IMS

(Assembler,

C

language,

COBOL,

Pascal,

and

PL/I),

you

must

call

the

DL/I

language

interface

to

initiate

the

functions

specified

with

the

DL/I

calls.

IMS

offers

several

interfaces

for

DL/I

calls:

v

A

language-independent

interface

for

any

programs

that

are

Language

Environment®

conforming

(CEETDLI)

v

A

nonspecific

language

interface

for

all

supported

languages

(AIBTDLI)

v

Language-specific

interfaces

for

all

supported

languages

(xxxTDLI)

Because

each

programming

language

uses

a

different

syntax,

the

format

for

calling

the

language

interfaces

varies.

The

following

sections

describe

the

detailed

format

for

each

supported

language.

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

77

Related

Reading:

Not

every

DL/I

call

uses

all

the

parameters

shown.

For

descriptions

of

the

call

functions

and

the

parameters

they

use,

see

Chapter

4,

“Writing

DL/I

Calls

for

Database

Management,”

on

page

121

or

Chapter

5,

“Writing

DL/I

Calls

for

System

Services,”

on

page

149.

Application

Programming

for

Assembler

Language

This

sectioncontains

the

format,

parameters,

and

DL/I

call

sample

formats

for

IMS

application

programs

in

assembler

language.

In

such

programs,

all

DL/I

call

parameters

that

are

passed

as

addresses

can

be

passed

in

a

register

which,

if

used,

must

be

enclosed

in

parentheses.

Format

��

CALL

�

�

(2)

ASMTDLI,(

function

(1)

,db

pcb

A

parmcount,

,tp

pcb

A

B

C

(2)

AIBTDLI,(

function,

aib

(1)

A

parmcount,

B

�

�

(1)

)

,VL

��

A:

�

,i/o

area

,

,ssa

,token

,stat

function

,rsa

,rootssa

B:

�

,i/o

area

length,

i/o

area

,

,area

length,area

C:

,psb

name,

uibptr

,sysserve

Formatting

DL/I

Calls

for

Language

Interfaces IBM

Confidential

78

Application

Programming:

Database

Manager

Notes:

1 Assembler

language

must

use

either

parmcount

or

VL.

2 See

Chapter

4,

“Writing

DL/I

Calls

for

Database

Management,”

on

page

121

and

Chapter

5,

“Writing

DL/I

Calls

for

System

Services,”

on

page

149

for

descriptions

of

call

functions

and

parameters.

Parameters

parmcount

Specifies

the

address

of

a

4-byte

field

in

user-defined

storage

that

contains

the

number

of

parameters

in

the

parameter

list

that

follows

parmcount.

Assembler

language

application

programs

must

use

either

parmcount

or

VL.

function

Specifies

the

address

of

a

4-byte

field

in

user-defined

storage

that

contains

the

call

function.

The

call

function

must

be

left-justified

and

padded

with

blanks

(such

as

GU��).

db

pcb

Specifies

the

address

of

the

database

PCB

to

be

used

for

the

call.

The

PCB

address

must

be

one

of

the

PCB

addresses

passed

on

entry

to

the

application

program

in

the

PCB

list.

tp

pcb

Specifies

the

address

of

the

I/O

PCB

or

alternate

PCB

to

be

used

for

the

call.

The

PCB

address

must

be

one

of

the

PCB

addresses

passed

on

entry

to

the

application

program

in

the

PCB

list.

aib

Specifies

the

address

of

the

application

interface

block

(AIB)

in

user-defined

storage.

For

more

information

on

AIB,

see

“The

AIBTDLI

Interface”

on

page

111.

i/o

area

Specifies

the

address

of

the

I/O

area

in

user-defined

storage

that

is

used

for

the

call.

The

I/O

area

must

be

large

enough

to

contain

the

returned

data.

i/o

area

length

Specifies

the

address

of

a

4-byte

field

in

user-defined

storage

that

contains

the

I/O

area

length

(specified

in

binary).

area

length

Specifies

the

address

of

a

4-byte

field

in

user-defined

storage

that

contains

the

length

(specified

in

binary)

of

the

area

immediately

following

it

in

the

parameter

list.

Up

to

seven

area

lengths

or

area

pairs

can

be

specified.

area

Specifies

the

address

of

the

area

in

user-defined

storage

to

be

checkpointed.

Up

to

seven

area

lengths

or

area

pairs

can

be

specified.

token

Specifies

the

address

of

a

4-byte

field

in

user-defined

storage

that

contains

a

user

token.

stat

function

Specifies

the

address

of

a

9-byte

field

in

user-defined

storage

that

contains

the

stat

function

to

be

performed.

ssa

Specifies

the

address

in

user-defined

storage

that

contains

the

SSAs

to

be

used

for

the

call.

Up

to

15

SSAs

can

be

specified,

one

of

which

is

rootssa.

Application

Programming

for

Assembler

LanguageIBM

Confidential

Chapter

3.

Defining

Application

Program

Elements

79

rootssa

Specifies

the

address

of

a

root

segment

search

argument

in

user-defined

storage.

rsa

Specifies

the

address

of

the

area

in

user-defined

storage

that

contains

the

record

search

argument.

psb

name

Specifies

the

address

in

user-defined

storage

of

an

8-byte

PSB

name

to

be

used

for

the

call.

uibptr

Specifies

the

address

in

user-defined

storage

of

the

user

interface

block

(UIB).

sysserve

Specifies

the

address

of

an

8-byte

field

in

user-defined

storage

to

be

used

for

the

call.

VL

Signifies

the

end

of

the

parameter

list.

Assembler

language

programs

must

use

either

parmcount

or

VL.

Example

DL/I

Call

Formats

Using

the

DL/I

AIBTDLI

interface:

CALL

AIBTDLI,(function,aib,i/o

area,ssa1),VL

Using

the

DL/I

language-specific

interface:

CALL

ASMTDLI,(function,db

pcb,i/o

area,ssa1),VL

Application

Programming

for

C

Language

This

section

contains

the

format,

parameters,

and

DL/I

sample

call

formats

for

IMS

application

programs

in

C

language.

Format

��

(1)

rc=CTDLI(

function

parmcount,

,db

pcb

A

,tp

pcb

A

B

C

(2)

(1)

rc=AIBTDLI(

parmcount

,

function,

aib

A

B

(1)

CEETDLI(

function

parmcount,

,db

pcb

A

,i/o

pcb

A

B

,aib

A

B

);

��

Application

Programming

for

Assembler

Language IBM

Confidential

80

Application

Programming:

Database

Manager

A:

�

,i/o

area

,

,ssa

,token

,stat

function

,rsa

,rootssa

B:

�

,i/o

area

length,

i/o

area

,

,area

length,area

C:

,psb

name,

uibptr

,sysserve

Notes:

1 See

Chapter

4,

“Writing

DL/I

Calls

for

Database

Management,”

on

page

121

and

Chapter

5,

“Writing

DL/I

Calls

for

System

Services,”

on

page

149

for

descriptions

of

call

functions

and

parameters.

2 For

AIBTDLI,

parmcount

is

required

for

C

applications.

Parameters

rc

This

parameter

receives

the

DL/I

status

or

return

code.

It

is

a

two-character

field

shifted

into

the

2

low-order

bytes

of

an

integer

variable

(int).

If

the

status

code

is

two

blanks,

0

is

placed

in

the

field.

You

can

test

the

rc

parameter

with

an

if

statement.

For

example,

if

(rc

==

'IX').

You

can

also

use

rc

in

a

switch

statement.

You

can

choose

to

ignore

the

value

placed

in

rc

and

use

the

status

code

returned

in

the

PCB

instead.

parmcount

Specifies

the

name

of

a

fixed

binary

(31)

variable

in

user-defined

storage

that

contains

the

number

of

parameters

in

the

parameter

list

that

follows

parmcount.

function

Specifies

the

name

of

a

character

(4)

variable,

left

justified

in

user-defined

storage,

that

contains

the

call

function

to

be

used.

The

call

function

must

be

left-justified

and

padded

with

blanks

(such

as

GU��).

db

pcb

Specifies

the

name

of

a

pointer

variable

that

contains

the

address

of

the

database

to

be

used

for

the

call.

The

PCB

address

must

be

one

of

the

PCB

addresses

passed

on

entry

to

the

application

program

in

the

PCB

list.

tp

pcb

Specifies

the

name

of

a

pointer

variable

that

contains

the

address

of

the

I/O

PCB

or

alternate

PCB

to

be

used

for

the

call.

The

PCB

address

must

be

one

of

the

PCB

addressed

passed

on

entry

to

the

application

program

in

the

PCB

list.

Application

Programming

for

C

LanguageIBM

Confidential

Chapter

3.

Defining

Application

Program

Elements

81

aib

Specifies

the

name

of

the

pointer

variable

that

contains

the

address

of

the

structure

that

defines

the

application

interface

block

(AIB)

in

user-defined

storage.

For

more

information

on

the

AIB,

see

“The

AIBTDLI

Interface”

on

page

111.

i/o

area

Specifies

the

name

of

a

pointer

variable

to

a

major

structure,

array,

or

character

string

that

defines

the

I/O

area

in

user-defined

storage

used

for

the

call.

The

I/O

area

must

be

large

enough

to

contain

all

of

the

returned

data.

i/o

area

length

Specifies

the

name

of

a

fixed

binary

(31)

variable

in

user-defined

storage

that

contains

the

I/O

area

length.

area

length

Specifies

the

name

of

a

fixed

binary

(31)

variable

in

user-defined

storage

that

contains

the

length

of

the

area

immediately

following

it

in

the

parameter

list.

Up

to

seven

area

lengths

or

area

pairs

can

be

specified.

area

Specifies

the

name

of

the

pointer

variable

that

contains

the

address

of

the

structure

that

defines

the

user-defined

storage

to

be

checkpointed.

Up

to

seven

area

lengths

or

area

pairs

can

be

specified.

token

Specifies

the

name

of

a

character

(4)

variable

in

user-defined

storage

that

contains

a

user

token.

stat

function

Specifies

the

name

of

a

character

(9)

variable

in

user-defined

storage

that

contains

the

stat

function

to

be

performed.

ssa

Specifies

the

name

of

a

character

variable

in

user-defined

storage

that

contains

the

SSAs

to

be

used

for

the

call.

Up

to

15

SSAs

can

be

specified,

one

of

which

is

rootssa.

rootssa

Specifies

the

name

of

a

character

variable

that

defines

the

root

segment

search

argument

in

user-defined

storage.

rsa

Specifies

the

name

of

a

character

variable

that

contains

the

record

search

argument

for

a

GU

call

or

where

IMS

should

return

the

rsa

for

an

ISRT

or

GN

call.

psb

name

Specifies

the

name

of

a

character

(8)

variable

containing

the

PSB

name

to

be

used

for

the

call.

uibptr

Specifies

the

name

of

a

pointer

variable

that

contains

the

address

of

the

structure

that

defines

the

user

interface

block

(UIB)

that

is

used

in

user-defined

storage.

sysserve

Specifies

the

name

of

a

character

(8)

variable

string

in

user-defined

storage

to

be

used

for

the

call.

Application

Programming

for

C

Language IBM

Confidential

82

Application

Programming:

Database

Manager

I/O

Area

In

C,

the

I/O

area

can

be

of

any

type,

including

structures

or

arrays.

The

ctdli

declarations

in

ims.h

do

not

have

any

prototype

information,

so

no

type

checking

of

the

parameters

is

done.

The

area

may

be

auto,

static,

or

allocated

(with

malloc

or

calloc).

You

need

to

give

special

consideration

to

C-strings

because

DL/I

does

not

recognize

the

C

convention

of

terminating

strings

with

nulls

('\0')

Instead

of

the

usual

strcpy

and

strcmp

functions,

you

may

want

to

use

memcpy

and

memcmp.

Example

DL/I

Call

Formats

Using

the

DL/I

CEETDLI

interface:

#include

<leawi.h>

...
CEETDLI

(function,db

pcb,i/o

area,ssa1);

Using

the

DL/I

AIBTDLI

interface:

int

rc;

...
rc=AIBTDLI

(parmcount,function,aib,i/o

area,ssa1);

Using

the

DL/I

language-specific

interface:

#include

<ims.h>

int

rc;

...
rc=CTDLI

(function,db

pcb,i/o

area,ssa1);

Application

Programming

for

COBOL

This

section

contains

the

format,

parameters,

and

DL/I

sample

call

formats

for

IMS

application

programs

in

COBOL.

Format

��

CALL

�

�

(1)

'CBLTDLI'

USING

function

parmcount,

,db

pcb

A

,tp

pcb

A

B

C

(1)

'AIBTDLI'

USING

function,

aib

parmcount,

A

B

(1)

'CEETDLI'

USING

function

parmcount,

,db

pcb

A

,tp

pcb

A

B

,aib

A

B

.

��

Application

Programming

for

C

LanguageIBM

Confidential

Chapter

3.

Defining

Application

Program

Elements

83

A:

�

,i/o

area

,

,ssa

,token

,stat

function

,rsa

,rootssa

B:

�

,i/o

area

length,

i/o

area

,

,area

length,area

C:

,psb

name,

uibptr

,sysserve

Notes:

1 See

Chapter

4,

“Writing

DL/I

Calls

for

Database

Management,”

on

page

121

and

Chapter

5,

“Writing

DL/I

Calls

for

System

Services,”

on

page

149

for

descriptions

of

call

functions

and

parameters.

Parameters

parmcount

Specifies

the

identifier

of

a

usage

binary

(4)

byte

data

item

in

user-defined

storage

that

contains

the

number

of

parameters

in

the

parameter

list

that

follows

parmcount.

function

Specifies

the

identifier

of

a

usage

display

(4)

byte

data

item,

left

justified

in

user-defined

storage

that

contains

the

call

function

to

be

used.

The

call

function

must

be

left-justified

and

padded

with

blanks

(such

as

GU��).

db

pcb

Specifies

the

identifier

of

the

database

PCB

group

item

from

the

PCB

list

that

is

passed

to

the

application

program

on

entry.

This

identifier

will

be

used

for

the

call.

tp

pcb

Specifies

the

identifier

of

the

I/O

PCB

or

alternate

PCB

group

item

from

the

PCB

list

that

is

passed

to

the

application

program

on

entry.

This

identifier

will

be

used

for

the

call.

aib

Specifies

the

identifier

of

the

group

item

that

defines

the

application

interface

block

(AIB)

in

user-defined

storage.

For

more

information

on

the

AIB,

see

“The

AIBTDLI

Interface”

on

page

111.

i/o

area

Specifies

the

identifier

of

a

major

group

item,

table,

or

usage

display

data

item

Application

Programming

for

COBOL IBM

Confidential

84

Application

Programming:

Database

Manager

that

defines

the

I/O

area

length

in

user-defined

storage

used

for

the

call.

The

I/O

area

must

be

large

enough

to

contain

all

of

the

returned

data.

i/o

area

length

Specifies

the

identifier

of

a

usage

binary

(4)

byte

data

item

in

user-defined

storage

that

contains

the

I/O

area

length

(specified

in

binary).

area

length

Specifies

the

identifier

of

a

usage

binary

(4)

byte

data

item

in

user-defined

storage

that

contains

the

length

(specified

in

binary)

of

the

area

immediately

following

it

in

the

parameter

list.

Up

to

seven

area

lengths

or

area

pairs

can

be

specified.

area

Specifies

the

identifier

of

the

group

item

that

defines

the

user-defined

storage

to

be

checkpointed.

Up

to

seven

area

lengths

or

area

pairs

can

be

specified.

token

Specifies

the

identifier

of

a

usage

display

(4)

byte

data

item

in

user-defined

storage

that

contains

a

user

token.

stat

function

Specifies

the

identifier

of

a

usage

display

(9)

byte

data

item

in

user-defined

storage

that

contains

the

stat

function

to

be

performed.

ssa

Specifies

the

identifier

of

a

usage

display

data

item

in

user-defined

storage

that

contains

the

SSAs

to

be

used

for

the

call.

Up

to

15

SSAs

can

be

specified,

one

of

which

is

rootssa.

rootssa

Specifies

the

identifier

of

a

usage

display

data

item

that

defines

the

root

segment

search

argument

in

user-defined

storage.

rsa

Specifies

the

identifier

of

a

usage

display

data

item

that

contains

the

record

search

argument.

psb

name

Specifies

the

identifier

of

a

usage

display

(8)

byte

data

item

containing

the

PSB

name

to

be

used

for

the

call.

uibptr

Specifies

the

identifier

of

the

group

item

that

defines

the

user

interface

block

(UIB)

that

is

used

in

user-defined

storage.

sysserve

Specifies

the

identifier

of

a

usage

display

(8)

byte

data

item

in

user-defined

storage

to

be

used

for

the

call.

Example

DL/I

Call

Formats

Using

the

DL/I

CEETDLI

interface:

CALL

'CEETDLI'

USING

function,db

pcb,i/o

area,ssa1.

Using

the

DL/I

AIBTDLI

interface:

CALL

'AIBTDLI'

USING

function,aib,i/o

area,ssa1.

Using

the

DL/I

language-specific

interface:

CALL

'CBLTDLI'

USING

function,db

pcb,i/o

area,ssa1.

Application

Programming

for

COBOLIBM

Confidential

Chapter

3.

Defining

Application

Program

Elements

85

Application

Programming

for

Pascal

Thissection

contains

the

format,

parameters,

and

DL/I

sample

call

formats

for

IMS

application

programs

in

Pascal.

Format

��

PASTDLI

(

A

,VAR

db

pcb

B

,VAR

tp

pcb

B

C

D

AIBTDLI

(

A

,

VAR

aib,

B

C

);

��

A:

(1)

CONST

function

CONST

parmcount

,

B:

�

,VAR

i/o

area

,

,VAR

ssa

,CONST

token

,CONST

stat

function

,VAR

rsa

,VAR

rootssa

C:

�

,VAR

i/o

area

length,

VAR

i/o

area

,

,VAR

area

length,VAR

area

D:

,VAR

psb

name,

VAR

uibptr

,VAR

sysserve

Notes:

1 See

Chapter

4,

“Writing

DL/I

Calls

for

Database

Management,”

on

page

121

and

Chapter

5,

“Writing

DL/I

Calls

for

System

Services,”

on

page

149

for

descriptions

of

call

functions

and

parameters.

Application

Programming

for

Pascal IBM

Confidential

86

Application

Programming:

Database

Manager

Parameters

parmcount

Specifies

the

name

of

a

fixed

binary

(31)

variable

in

user-defined

storage

that

contains

the

number

of

parameters

in

the

parameter

list

that

follows

parmcount.

function

Specifies

the

name

of

a

character

(4)

variable,

left

justified

in

user-defined

storage,

that

contains

the

call

function

to

be

used.

The

call

function

must

be

left-justified

and

padded

with

blanks

(such

as

GU��).

db

pcb

Specifies

the

name

of

a

pointer

variable

that

contains

the

address

of

the

database

PCB

defined

in

the

call

procedure

statement.

tp

pcb

Specifies

the

name

of

a

pointer

variable

that

contains

the

address

of

the

I/O

PCB

or

alternate

PCB

defined

in

the

call

procedure

statement.

aib

Specifies

the

name

of

the

pointer

variable

that

contains

the

address

of

the

structure

that

defines

the

application

interface

block

(AIB)

in

user-defined

storage.

For

more

information

on

the

AIB,

see

“The

AIBTDLI

Interface”

on

page

111.

i/o

area

Specifies

the

name

of

a

pointer

variable

to

a

major

structure,

array,

or

character

string

that

defines

the

I/O

area

in

user-defined

storage

used

for

the

call.

The

I/O

area

must

be

large

enough

to

contain

all

of

the

returned

data.

i/o

area

length

Specifies

the

name

of

a

fixed

binary

(31)

variable

in

user-defined

storage

that

contains

the

I/O

area

length.

area

length

Specifies

the

name

of

a

fixed

binary

(31)

variable

in

user-defined

storage

that

contains

the

length

of

the

area

immediately

following

it

in

the

parameter

list.

Up

to

seven

area

lengths

or

area

pairs

can

be

specified.

area

Specifies

the

name

of

the

pointer

variable

that

contains

the

address

of

the

structure

that

defines

the

user-defined

storage

to

be

checkpointed.

Up

to

seven

area

lengths

or

area

pairs

can

be

specified.

token

Specifies

the

name

of

a

character

(4)

variable

in

user-defined

storage

that

contains

a

user

token.

stat

function

Specifies

the

name

of

a

character

(9)

variable

in

user-defined

storage

that

contains

the

stat

function

to

be

performed.

ssa

Specifies

the

name

of

a

character

variable

in

user-defined

storage

that

contains

the

SSAs

to

be

used

for

the

call.

Up

to

15

SSAs

can

be

specified,

one

of

which

is

rootssa.

rootssa

Specifies

the

name

of

a

character

variable

that

defines

the

root

segment

search

argument

in

user-defined

storage.

Application

Programming

for

PascalIBM

Confidential

Chapter

3.

Defining

Application

Program

Elements

87

rsa

Specifies

the

name

of

a

character

variable

that

contains

the

record

search

argument.

psb

name

Specifies

the

name

of

a

character

(8)

variable

containing

the

PSB

name

to

be

used

for

the

call.

uibptr

Specifies

the

name

of

a

pointer

variable

that

contains

the

address

of

the

structure

that

defines

the

user

interface

block

(UIB)

that

is

used

in

user-defined

storage.

sysserve

Specifies

the

name

of

a

character

(8)

variable

string

in

user-defined

storage

to

be

used

for

the

call.

Example

DL/I

Call

Formats

Using

the

DL/I

AIBTDLI

interface:

AIBTDLI(CONST

function,

VAR

aib,

VAR

i/o

area,

VAR

ssa1);

Using

the

DL/I

language-specific

interface:

PASTDLI(CONST

function,

VAR

db

pcb,

VAR

i/o

area,

VAR

ssa1);

Application

Programming

for

PL/I

This

section

contains

the

format,

parameters,

and

DL/I

sample

call

formats

for

IMS

application

programs

in

PL/I.

Exception:

For

the

PLITDLI

interface,

all

parameters

except

parmcount

are

indirect

pointers;

for

the

AIBTDLI

interface,

all

parameters

are

direct

pointers.

Format

��

CALL

PLITDLI

(

parmcount,

function

,db

pcb

A

,tp

pcb

A

B

C

AIBTDLI

(

parmcount,

function,

aib

A

B

(1)

CEETDLI

(

parmcount,

function

,db

pcb

A

,tp

pcb

A

B

,aib

A

B

�

Application

Programming

for

Pascal IBM

Confidential

88

Application

Programming:

Database

Manager

�

);

��

A:

�

,i/o

area

,

,ssa

,token

,stat

function

,rsa

,rootssa

B:

�

,i/o

area

length,

i/o

area

,

,area

length,area

C:

,psb

name,

uibptr

,sysserve

Notes:

1 See

Chapter

4,

“Writing

DL/I

Calls

for

Database

Management,”

on

page

121

and

Chapter

5,

“Writing

DL/I

Calls

for

System

Services,”

on

page

149

for

descriptions

of

call

functions

and

parameters.

Parameters

parmcount

Specifies

the

name

of

a

fixed

binary

(31-byte)

variable

that

contains

the

number

of

arguments

that

follow

parmcount.

function

Specifies

the

name

of

a

fixed-character

(4-byte)

variable

left-justified,

blank

padded

character

string

containing

the

call

function

to

be

used

(such

as

GU��).

db

pcb

Specifies

the

structure

associated

with

the

database

PCB

to

be

used

for

the

call.

This

structure

is

based

on

a

PCB

address

that

must

be

one

of

the

PCB

addresses

passed

on

entry

to

the

application

program.

tp

pcb

Specifies

the

structure

associated

with

the

I/O

PCB

or

alternate

PCB

to

be

used

for

the

call.

aib

Specifies

the

name

of

the

structure

that

defines

the

AIB

in

your

application

program.

For

more

information

on

the

AIB,

see

“The

AIBTDLI

Interface”

on

page

111.

Application

Programming

for

PL/IIBM

Confidential

Chapter

3.

Defining

Application

Program

Elements

89

i/o

area

Specifies

the

name

of

the

I/O

area

used

for

the

call.

The

I/O

area

must

be

large

enough

to

contain

all

the

returned

data.

i/o

area

length

Specifies

the

name

of

a

fixed

binary

(31)

variable

that

contains

the

I/O

area

length.

area

length

Specifies

the

name

of

a

fixed

binary

(31)

variable

that

contains

the

length

of

the

area

immediately

following

it

in

the

parameter

list.

Up

to

seven

area

lengths

or

area

pairs

can

be

specified.

area

Specifies

the

name

of

the

area

to

be

checkpointed.

Up

to

seven

area

lengths

or

area

pairs

can

be

specified.

token

Specifies

the

name

of

a

character

(4)

variable

that

contains

a

user

token.

stat

function

Specifies

the

name

of

a

character

(9)

variable

string

containing

the

stat

function

to

be

performed.

ssa

Specifies

the

name

of

a

character

variable

that

contains

the

SSAs

to

be

used

for

the

call.

Up

to

15

SSAs

can

be

specified,

one

of

which

is

rootssa.

rootssa

Specifies

the

name

of

a

character

variable

that

contains

a

root

segment

search

argument.

rsa

Specifies

the

name

of

a

character

variable

that

contains

the

record

search

argument.

psb

name

Specifies

the

name

of

a

character

(8)

containing

the

PSB

name

to

be

used

for

the

call.

uibptr

Specifies

the

name

of

the

user

interface

block

(UIB).

sysserve

Specifies

the

name

of

a

character

(8)

variable

character

string

to

be

used

for

the

call.

Example

DL/I

Call

Formats

Using

the

DL/I

CEETDLI

interface:

CALL

CEETDLI

(parmcount,function,db

pcb,i/o

area,ssa1);

Using

the

DL/I

AIBTDLI

interface:

CALL

AIBTDLI

(parmcount,function,aib,i/o

area,ssa1);

Using

the

DL/I

language-specific

interface:

%INCLUDE

CEEIBMAW;

CALL

PLITDLI

(parmcount,function,db

pcb,i/o

area,ssa1);

Application

Programming

for

PL/I IBM

Confidential

90

Application

Programming:

Database

Manager

Relationship

of

Calls

to

PCBs

Table

15

shows

the

relationship

of

calls

to

full

function

(FF),

main

storage

database

(MSDB),

data

entry

database

(DEDB),

I/O,

and

general

sequential

access

method

(GSAM)

PCBs.

Table

15.

Call

Relationship

to

PCBs

CALL

FF

PCBs

MSDB

PCBs

DEDB

PCBs

I/O

PCBs

GSAM

PCBs

CHKP

X

CLSE

X

DEQ

X

X

DLET

X

X

X

FLD

X

X

GHN

X

X

X

GHNP

X

X

X

GHU

X

X

X

GN

X

X

X

X

X

GNP

X

X

X

GSCD1

X

X

X

X

GU

X

X

X

X

X

INIT

X

INQY

X

X

X

X

X

ISRT

X

X

X

X

X

LOG

X

OPEN

X

PCB2

POS

X

REPL

X

X

X

ROLB

X

ROLL2

ROLS

X

SETS/SETU

X

SNAP3

X

X

X

X

STAT3

X

SYNC

X

TERM2

XRST

X

Note:

1.

GSCD

is

a

Product-sensitive

programming

interface.

2.

The

PCB,

ROLL,

and

TERM

calls

do

not

have

an

associated

PCB.

3.

SNAP

is

a

Product-sensitive

programming

interface.

4.

STAT

is

a

Product-sensitive

programming

interface.

Relationship

of

Calls

to

PCBsIBM

Confidential

Chapter

3.

Defining

Application

Program

Elements

91

Specifying

the

I/O

PCB

Mask

After

your

program

issues

a

call

with

the

I/O

Program

Communications

Block

(I/O

PCB),

IMS

returns

information

about

the

results

of

the

call

to

the

I/O

PCB.

To

determine

the

results

of

the

call,

your

program

must

check

the

information

that

IMS

returns.

Issuing

a

system

service

call

requires

an

I/O

PCB.

Because

the

I/O

PCB

resides

outside

your

program,

you

must

define

a

mask

of

the

PCB

in

your

program

to

check

the

results

of

IMS

calls.

The

mask

must

contain

the

same

fields,

in

the

same

order,

as

the

I/O

PCB.

Your

program

can

then

refer

to

the

fields

in

the

PCB

through

the

PCB

mask.

Table

16

shows

the

fields

that

the

I/O

PCB

contains,

their

lengths,

and

the

applicable

environment

for

each

field.

Table

16.

I/O

PCB

Mask

Descriptor

Byte

Length

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

Logical

terminal

name

1

8

X

X

Reserved

for

IMS

2

2

X

X

Status

code

3

2

X

X

X

X

X

4-Byte

Local

date

and

time

4

Date

2

X

X

Time

2

X

X

Input

message

sequence

number

5

4

X

X

Message

output

descriptor

name

6

8

X

X

Userid

7

8

X

X

Group

name

8

8

X

X

12-Byte

Time

Stamp

9

Date

4

X

X

Time

6

X

X

UTC

Offset

2

X

X

Userid

Indicator10

1

X

X

Reserved

for

IMS2

3

Notes:

1.

Logical

Terminal

Name

This

field

contains

the

name

of

the

terminal

that

sent

the

message.

When

your

program

retrieves

an

input

message,

IMS

places

the

name

of

the

logical

terminal

that

sent

the

message

in

this

field.

When

you

want

to

send

a

message

back

to

this

terminal,

you

refer

to

the

I/O

PCB

when

you

issue

the

ISRT

call,

and

IMS

takes

the

name

of

the

logical

terminal

from

the

I/O

PCB

as

the

destination.

2.

Reserved

for

IMS

These

fields

are

reserved.

I/O

PCB

Mask IBM

Confidential

92

Application

Programming:

Database

Manager

3.

Status

Code

IMS

places

the

status

code

describing

the

result

of

the

DL/I

call

in

this

field.

IMS

updates

the

status

code

after

each

DL/I

call

that

the

program

issues.

Your

program

should

always

test

the

status

code

after

issuing

a

DL/I

call.

The

three

status

code

categories

are:

v

Successful

status

codes

or

status

codes

with

exceptional

but

valid

conditions.

This

category

does

not

contain

errors.

If

the

call

was

completely

successful,

this

field

contains

blanks.

Many

of

the

codes

in

this

category

are

for

information

only.

For

example,

a

QC

status

code

means

that

no

more

messages

exist

in

the

message

queue

for

the

program.

When

your

program

receives

this

status

code,

it

should

terminate.

v

Programming

errors.

The

errors

in

this

category

are

usually

ones

that

you

can

correct.

For

example,

an

AD

status

code

indicates

an

invalid

function

code.

v

I/O

or

system

errors.

For

the

second

and

third

categories,

your

program

should

have

an

error

routine

that

prints

information

about

the

last

call

that

was

issued

before

program

termination.

Most

installations

have

a

standard

error

routine

that

all

application

programs

at

the

installation

use.

4.

Local

Date

and

Time

The

current

local

date

and

time

are

in

the

prefix

of

all

input

messages

except

those

originating

from

non-message-driven

BMPs.

The

local

date

is

a

packed-decimal,

right-aligned

date,

in

the

format

yyddd.

The

local

time

is

a

packed-decimal

time

in

the

format

hhmmsst.

The

current

local

date

and

time

indicate

when

IMS

received

the

entire

message

and

enqueued

it

as

input

for

the

program,

rather

than

the

time

that

the

application

program

received

the

message.

To

obtain

the

application

processing

time,

you

must

use

the

time

facility

of

the

programming

language

you

are

using.

For

a

conversation,

for

an

input

message

originating

from

a

program,

or

for

a

message

received

using

Multiple

System

Coupling

(MSC),

the

time

and

date

indicate

when

the

original

message

was

received

from

the

terminal.

5.

Input

Message

Sequence

Number

The

input

message

sequence

number

is

in

the

prefix

of

all

input

messages

except

those

originating

from

non-message-driven

BMPs.

This

field

contains

the

sequence

number

IMS

assigned

to

the

input

message.

The

number

is

binary.

IMS

assigns

sequence

numbers

by

physical

terminal,

which

are

continuous

since

the

time

of

the

most

recent

IMS

startup.

6.

Message

Output

Descriptor

Name

You

only

use

this

field

when

you

use

MFS.

When

you

issue

a

GU

call

with

a

message

output

descriptor

(MOD),

IMS

places

its

name

in

this

area.

If

your

program

encounters

an

error,

it

can

change

the

format

of

the

screen

and

send

an

error

message

to

the

terminal

by

using

this

field.

To

do

this,

the

program

must

change

the

MOD

name

by

including

the

MOD

name

parameter

on

an

ISRT

or

PURG

call.

Although

MFS

does

not

support

APPC,

LU

6.2

programs

can

use

an

interface

to

emulate

MFS.

For

example,

the

application

program

can

use

the

MOD

name

to

communicate

with

IMS

to

specify

how

an

error

message

is

to

be

formatted.

Related

Reading:

For

more

information

on

the

MOD

name

and

the

LTERM

interface,

see

IMS

Version

9:

Administration

Guide:

Transaction

Manager.

7.

Userid

I/O

PCB

MaskIBM

Confidential

Chapter

3.

Defining

Application

Program

Elements

93

The

use

of

this

field

is

connected

with

RACF®

signon

security.

If

signon

is

not

active

in

the

system,

this

field

contains

blanks.

If

signon

is

active

in

the

system,

the

field

contains

one

of

the

following:

v

The

user’s

identification

from

the

source

terminal.

v

The

LTERM

name

of

the

source

terminal

if

signon

is

not

active

for

that

terminal.

v

The

authorization

ID.

For

batch-oriented

BMPs,

the

authorization

ID

is

dependent

on

the

value

specified

for

the

BMPUSID=

keyword

in

the

DFSDCxxx

PROCLIB

member:

–

If

BMPUSID=USERID

is

specified,

the

value

from

the

USER=

keyword

on

the

JOB

statement

is

used.

–

If

USER=

is

not

specified

on

the

JOB

statement,

the

program’s

PSB

name

is

used.

–

If

BMPUSID=PSBNAME

is

specified,

or

if

BMPUSID=

is

not

specified

at

all,

the

program’s

PSB

name

is

used.

8.

Group

Name

The

group

name,

which

is

used

by

DB2

to

provide

security

for

SQL

calls,

is

created

through

IMS

transactions.

Three

instances

that

apply

to

the

group

name

are:

v

If

you

use

RACF

and

SIGNON

on

your

IMS

system,

the

RACROUTE

SAF

(extract)

call

returns

an

eight-character

group

name.

v

If

you

use

your

own

security

package

on

your

IMS

system,

the

RACROUTE

SAF

call

returns

any

eight-character

name

from

the

package

and

treats

it

as

a

group

name.

If

the

RACROUTE

SAF

call

returns

a

return

code

of

4

or

8,

a

group

name

was

not

returned,

and

IMS

blanks

out

the

group

name

field.

v

If

you

use

LU

6.2,

the

transaction

header

can

contain

a

group

name.

Related

Reading:

For

more

information

about

LU

6.2,

see

IMS

Version

9:

Administration

Guide:

Transaction

Manager.

9.

12-Byte

Time

Stamp

This

field

contains

the

current

date

and

time

fields,

but

in

the

IMS

internal

packed-decimal

format.

The

time

stamp

has

the

following

parts:

Date

yyyydddf

This

packed-decimal

date

contains

the

year

(yyyy),

day

of

the

year

(ddd),

and

a

valid

packed-decimal

+

sign

such

as

(f).

Time

hhmmssthmiju

This

packed-decimal

time

consists

of

hours,

minutes,

and

seconds

(hhmmss)

and

fractions

of

the

second

to

the

microsecond

(thmiju).

No

packed-decimal

sign

is

affixed

to

this

part

of

the

time

stamp.

UTC

Offset

aqq$

The

packed-decimal

UTC

offset

is

prefixed

by

4

bits

of

attributes

(a).

If

the

4th

bit

of

(a)

is

0,

the

time

stamp

is

UTC;

otherwise,

the

time

stamp

is

local

time.

The

control

region

parameter,

TSR=(U/L),

specified

in

the

DFSPBxxx

PROCLIB

member,

controls

the

representation

of

the

time

stamp

with

respect

to

local

time

versus

UTC

time.

I/O

PCB

Mask IBM

Confidential

94

Application

Programming:

Database

Manager

The

offset

value

(qq$)

is

the

number

of

quarter

hours

of

offset

to

be

added

to

UTC

or

local

time

to

convert

to

local

or

UTC

time

respectively.

The

offset

sign

($)

follows

the

convention

for

a

packed-decimal

plus

or

minus

sign.

Field

4

on

page

93

always

contains

the

local

date

and

time.

Related

Reading:

For

a

more

detailed

description

of

the

internal

packed-decimal

time-format,

see

IMS

Version

9:

DBRC

Guide

and

Reference.

10.

Userid

Indicator

The

Userid

Indicator

is

provided

in

the

I/O

PCB

and

in

the

response

to

the

INQY

call.

The

Userid

Indicator

contains

one

of

the

following:

v

U

-

The

user’s

identification

from

the

source

terminal

during

signon

v

L

-

The

LTERM

name

of

the

source

terminal

if

signon

is

not

active

v

P

-

The

PSBNAME

of

the

source

BMP

or

transaction

v

O

-

Other

name

The

value

contained

in

the

Userid

Indicator

field

indicates

the

contents

of

the

userid

field.

Specifying

the

DB

PCB

Mask

IMS

describes

the

results

of

the

calls

your

program

issues

in

the

DB

PCB

that

is

referenced

in

the

call.

To

determine

the

success

or

failure

of

the

DL/I

call,

the

application

program

includes

a

mask

of

the

DB

PCB

and

then

references

the

fields

of

the

DB

PCB

through

the

mask.

A

DB

PCB

mask

must

contain

the

fields

shown

in

Table

17.

(Your

program

can

look

at,

but

not

change,

the

fields

in

the

DB

PCB.)

The

fields

in

your

DB

PCB

mask

must

be

defined

in

the

same

order

and

with

the

same

length

as

the

fields

shown

here.

When

you

code

the

DB

PCB

mask,

you

also

give

it

a

name,

but

the

name

is

not

part

of

the

mask.

You

use

the

name

(or

the

pointer,

for

PL/I)

when

you

reference

each

of

the

PCBs

your

program

processes.

A

GSAM

DB

PCB

mask

is

slightly

different

from

other

DB

PCB

masks.

Related

Reading:

For

more

information

about

GSAM

DB

PCB

Masks,

see

“GSAM

DB

PCB

Masks”

on

page

111.

Of

the

nine

fields,

only

five

are

important

to

you

as

you

construct

the

program.

These

are

the

fields

that

give

information

about

the

results

of

the

call.

They

are

the

segment

level

number,

status

code,

segment

name,

length

of

the

key

feedback

area,

and

key

feedback

area.

The

status

code

is

the

field

your

program

uses

most

often

to

find

out

whether

the

call

was

successful.

The

key

feedback

area

contains

the

data

from

the

segments

you

have

specified;

the

level

number

and

segment

name

help

you

determine

the

segment

type

you

retrieved

after

an

unqualified

GN

or

GNP

call,

or

they

help

you

determine

your

position

in

the

database

after

an

error

or

unsuccessful

call.

Table

17.

DB

PCB

Mask

Descriptor

Byte

Length

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

Database

name

1

8

X

X

X

I/O

PCB

MaskIBM

Confidential

Chapter

3.

Defining

Application

Program

Elements

95

Table

17.

DB

PCB

Mask

(continued)

Descriptor

Byte

Length

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

Segment

level

number

2

on

page

96

2

X

X

X

Status

code

3

2

X

X

X

Processing

options

4

4

X

X

X

Reserved

for

IMS

5

4

X

X

X

Segment

name

6

8

X

X

X

Length

of

key

feedback

area

7

4

X

X

X

Number

of

sensitive

segments

8

4

X

X

X

Key

feedback

area

9

var

length

X

X

X

Notes:

1.

Database

Name

This

contains

the

name

of

the

database.

This

field

is

8

bytes

long

and

contains

character

data.

2.

Segment

Level

Number

This

field

contains

numeric

character

data.

It

is

2

bytes

long

and

right-justified.

When

IMS

retrieves

the

segment

you

have

requested,

IMS

places

the

level

number

of

that

segment

in

this

field.

If

you

are

retrieving

several

segments

in

a

hierarchic

path

with

one

call,

IMS

places

the

number

of

the

lowest-level

segment

retrieved.

If

IMS

is

unable

to

find

the

segment

that

you

request,

it

gives

you

the

level

number

of

the

last

segment

it

encounters

that

satisfied

your

call.

3.

Status

Code

After

each

DL/I

call,

this

field

contains

the

two-character

status

code

that

describes

the

results

of

the

DL/I

call.

IMS

updates

this

field

after

each

call

and

does

not

clear

it

between

calls.

The

application

program

should

test

this

field

after

each

call

to

find

out

whether

the

call

was

successful.

When

the

program

is

initially

scheduled,

this

field

contains

a

data-availability

status

code,

which

indicates

any

possible

access

constraint

based

on

segment

sensitivity

and

processing

options.

Related

Reading:

For

more

information

on

these

status

codes,

see“INIT

Call”

on

page

159.

During

normal

processing,

four

categories

of

status

codes

exist:

v

Successful

or

exceptional

but

valid

conditions.

If

the

call

was

completely

successful,

this

field

contains

blanks.

Many

of

the

codes

in

this

category

are

for

information

only.

For

example,

GB

means

that

IMS

has

reached

the

end

of

the

database

without

satisfying

the

call.

This

situation

is

expected

in

sequential

processing

and

is

not

usually

the

result

of

an

error.

v

Errors

in

the

program.

For

example,

AK

means

that

you

have

included

an

invalid

field

name

in

a

segment

search

argument

(SSA).

Your

program

should

have

error

routines

available

for

these

status

codes.

If

IMS

returns

an

error

status

code

to

your

program,

your

program

should

terminate.

You

can

then

find

the

problem,

correct

it,

and

restart

your

program.

v

I/O

or

system

error.

For

example,

an

AO

status

code

means

that

there

has

been

an

I/O

error

concerning

OSAM,

BSAM,

or

VSAM.

If

your

program

encounters

a

status

code

in

this

category,

it

should

terminate

immediately.

Specifying

the

DB

PCB

Mask IBM

Confidential

96

Application

Programming:

Database

Manager

This

type

of

error

cannot

normally

be

fixed

without

a

system

programmer,

database

administrator,

or

system

administrator.

v

Data-availability

status

codes.

These

are

returned

only

if

your

program

has

issued

the

INIT

call

indicating

that

it

is

prepared

to

handle

such

status

codes.

“Status

Code

Explanations”

in

IMS

Version

9:

Messages

and

Codes,

Volume

1

describes

possible

causes

and

corrections

in

more

detail.

4.

Processing

Options

This

is

a

4-byte

field

containing

a

code

that

tells

IMS

what

type

of

calls

this

program

can

issue.

It

is

a

security

mechanism

in

that

it

can

prevent

a

particular

program

from

updating

the

database,

even

though

the

program

can

read

the

database.

This

value

is

coded

in

the

PROCOPT

parameter

of

the

PCB

statement

when

the

PSB

for

the

application

program

is

generated.

The

value

does

not

change.

5.

Reserved

for

IMS

This

4-byte

field

is

used

by

IMS

for

internal

linkage.

It

is

not

used

by

the

application

program.

6.

Segment

Name

After

each

successful

call,

IMS

places

in

this

field

the

name

of

the

last

segment

that

satisfied

the

call.

When

a

retrieval

is

successful,

this

field

contains

the

name

of

the

retrieved

segment.

When

a

retrieval

is

unsuccessful,

this

field

contains

the

last

segment

along

the

path

to

the

requested

segment

that

would

satisfy

the

call.

The

segment

name

field

is

8

bytes

long.

When

a

program

is

initially

scheduled,

the

name

of

the

database

type

is

put

in

the

SEGNAME

field.

For

example,

the

field

contains

DEDB

when

the

database

type

is

DEDB;

GSAM

when

the

database

type

is

GSAM;

HDAM,

or

PHDAM

when

the

database

type

is

HDAM

or

PHDAM.

7.

Length

of

Key

Feedback

Area

This

is

a

4-byte

binary

field

that

gives

the

current

length

of

the

key

feedback

area.

Because

the

key

feedback

area

is

not

usually

cleared

between

calls,

the

program

needs

to

use

this

length

to

determine

the

length

of

the

relevant

current

concatenated

key

in

the

key

feedback

area.

8.

Number

of

Sensitive

Segments

This

is

a

4-byte

binary

field

that

contains

the

number

of

segment

types

in

the

database

to

which

the

application

program

is

sensitive.

9.

Key

Feedback

Area

At

the

completion

of

a

retrieval

or

ISRT

call,

IMS

places

the

concatenated

key

of

the

retrieved

segment

in

this

field.

The

length

of

the

key

for

this

request

is

given

in

the

4-byte

Length

of

Key

Feedback

Area

field

(as

described

earlier

in

these

notes).

If

IMS

is

unable

to

satisfy

the

call,

the

key

feedback

area

contains

the

key

of

the

segment

at

the

last

level

that

was

satisfied.

A

segment’s

concatenated

key

is

made

up

of

the

keys

of

each

of

its

parents

and

its

own

key.

Keys

are

positioned

left

to

right,

starting

with

the

key

of

the

root

segment

and

following

the

hierarchic

path.

IMS

does

not

normally

clear

the

key

feedback

area.

IMS

sets

the

length

of

the

key

feedback

area

described

above

to

indicate

the

portion

of

the

area

that

is

valid

at

the

completion

of

each

call.

Your

program

should

not

use

the

content

of

the

key

feedback

area

that

is

not

included

in

the

key

feedback

area

length.

Specifying

the

DB

PCB

MaskIBM

Confidential

Chapter

3.

Defining

Application

Program

Elements

97

Specifying

the

AIB

Mask

The

AIB

is

used

by

your

program

to

communicate

with

IMS,

when

your

application

does

not

have

a

PCB

address

or

the

call

function

does

not

use

a

PCB.

The

AIB

mask

enables

your

program

to

interpret

the

control

block

defined.

The

AIB

structure

must

be

defined

in

working

storage,

on

a

fullword

boundary,

and

initialized

according

to

the

order

and

byte

length

of

the

fields

as

shown

in

Table

18.

The

table’s

notes

describe

the

contents

of

each

field.

Table

18.

AIB

Fields

Descriptor

Byte

Length

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

AIB

identifier

1

8

X

X

X

X

X

DFSAIB

allocated

length

2

4

X

X

X

X

X

Subfunction

code

3

8

X

X

X

X

X

Resource

name

4

8

X

X

X

X

X

Reserved

5

16

Maximum

output

area

length

6

4

X

X

X

X

X

Output

area

length

used

7

4

X

X

X

X

X

Reserved

8

12

Return

code

9

4

X

X

X

X

X

Reason

code

10

4

X

X

X

X

X

Error

code

extension

11

4

X

X

Resource

address

12

4

X

X

X

X

X

Reserved

13

48

Notes:

1.

AIB

Identifier

(AIBID)

This

8-byte

field

contains

the

AIB

identifier.

You

must

initialize

AIBID

in

your

application

program

to

the

value

DFSAIB��

before

you

issue

DL/I

calls.

This

field

is

required.

When

the

call

is

completed,

the

information

returned

in

this

field

is

unchanged.

2.

DFSAIB

Allocated

Length

(AIBLEN)

This

field

contains

the

actual

4-byte

length

of

the

AIB

as

defined

by

your

program.

You

must

initialize

AIBLEN

in

your

application

program

before

you

issue

DL/I

calls.

The

minimum

length

required

is

128

bytes.

When

the

call

is

completed,

the

information

returned

in

this

field

is

unchanged.

This

field

is

required.

3.

Subfunction

Code

(AIBSFUNC)

This

8-byte

field

contains

the

subfunction

code

for

those

calls

that

use

a

subfunction.

You

must

initialize

AIBSFUNC

in

your

application

program

before

you

issue

DL/I

calls.

When

the

call

is

completed,

the

information

returned

in

this

field

is

unchanged.

4.

Resource

Name

(AIBRSNM1)

This

8-byte

field

contains

the

name

of

a

resource.

The

resource

varies

depending

on

the

call.

You

must

initialize

AIBRSNM1

in

your

application

Specifying

the

AIB

Mask IBM

Confidential

98

Application

Programming:

Database

Manager

program

before

you

issue

DL/I

calls.

When

the

call

is

complete,

the

information

returned

in

this

field

is

unchanged.

This

field

is

required.

For

PCB

related

calls

where

the

AIB

is

used

to

pass

the

PCB

name

instead

of

passing

the

PCB

address

in

the

call

list,

this

field

contains

the

PCB

name.

The

PCB

name

for

the

I/O

PCB

is

IOPCB��.

The

PCB

name

for

other

types

of

PCBs

is

defined

in

the

PCBNAME=

parameter

in

PSBGEN.

5.

Reserved

This

16-byte

field

is

reserved.

6.

Maximum

Output

Area

Length

(AIBOALEN)

This

4-byte

field

contains

the

length

of

the

output

area

in

bytes

that

was

specified

in

the

call

list.

You

must

initialize

AIBOALEN

in

your

application

program

for

all

calls

that

return

data

to

the

output

area.

When

the

call

is

completed,

the

information

returned

in

this

area

is

unchanged.

7.

Used

Output

Area

Length

(AIBOAUSE)

This

4-byte

field

contains

the

length

of

the

data

returned

by

IMS

for

all

calls

that

return

data

to

the

output

area.

When

the

call

is

completed

this

field

contains

the

length

of

the

I/O

area

used

for

this

call.

8.

Reserved

This

12-byte

field

is

reserved.

9.

Return

code

(AIBRETRN)

When

the

call

is

completed,

this

4-byte

field

contains

the

return

code.

10.

Reason

Code

(AIBREASN)

When

the

call

is

completed,

this

4-byte

field

contains

the

reason

code.

11.

Error

Code

Extension

(AIBERRXT)

This

4-byte

field

contains

additional

error

information

depending

on

the

return

code

in

AIBRETRN

and

the

reason

code

in

AIBREASN.

12.

Resource

Address

(AIBRSA1)

When

the

call

is

completed,

this

4-byte

field

contains

call-specific

information.

For

PCB

related

calls

where

the

AIB

is

used

to

pass

the

PCB

name

instead

of

passing

the

PCB

address

in

the

call

list,

this

field

returns

the

PCB

address.

13.

Reserved

This

48-byte

field

is

reserved.

The

application

program

can

use

the

returned

PCB

address,

when

available,

to

inspect

the

status

code

in

the

PCB

and

to

obtain

any

other

information

needed

by

the

application

program.

Related

Reading:

For

more

information

about

the

return

and

reason

codes,

see

IMS

Version

9:

Messages

and

Codes,

Volume

1.

Specifying

the

AIB

Mask

for

ODBA

Applications

Table

19

describes

the

fields

for

specifying

the

AIB

mask

for

ODBA

applications.

The

notes

below

the

table

describe

the

contents

of

each

field.

Table

19.

AIB

Fields

for

ODBA

Applications’

Use

Description

Byte

Length

DB/DC

IMS

DB

DCCTL

DB

Batch

TM

Batch

AIB

identifier¹

8

X

X

X

X

X

DFSAIB

allocated

length²

4

X

X

X

X

X

Specifying

the

AIB

MaskIBM

Confidential

Chapter

3.

Defining

Application

Program

Elements

99

Table

19.

AIB

Fields

for

ODBA

Applications’

Use

(continued)

Description

Byte

Length

DB/DC

IMS

DB

DCCTL

DB

Batch

TM

Batch

Subfunction

code³

8

X

X

X

X

X

Resource

name

#1⁴

8

X

X

X

X

X

Resource

name

#2⁵

8

Reserved⁶

8

X

Maximum

output

area

length⁷

4

X

X

X

X

X

Output

area

length

used⁸

4

X

X

X

X

X

Reserved⁹

12

Return

code¹⁰

4

X

X

X

X

X

Reason

code¹¹

4

X

X

X

X

X

Error

code

extension¹²

4

X

Resource

address

#1

¹³

4

X

X

X

X

X

Resource

address

#2¹⁴

4

Resource

address

#3¹⁵

4

Reserved¹⁶

40

Reserved

for

ODBA¹⁷

136

Notes:

1.

AIB

Identifier

(AIBID)

This

8-byte

field

contains

the

AIB

identifier.

You

must

initialize

AIBID

in

your

application

program

to

the

value

DFSAIB��

before

you

issue

DL/I

calls.

This

field

is

required.

When

the

call

is

completed,

the

information

returned

in

this

field

is

unchanged.

2.

DFSAIB

Allocated

Length

(AIBLEN)

This

field

contains

the

actual

4-byte

length

of

the

AIB

as

defined

by

your

program.

You

must

initialize

AIBLEN

in

your

application

program

before

you

issue

DL/I

calls.

The

minimum

length

required

is

264

bytes

for

ODBA.

When

the

call

is

completed,

the

information

returned

in

this

field

is

unchanged.

This

field

is

required.

3.

Subfunction

Code

(AIBSFUNC)

This

8-byte

field

contains

the

subfunction

code

for

those

calls

that

use

a

subfunction.

You

must

initialize

AIBSFUNC

in

your

application

program

before

you

issue

DL/I

calls.

When

the

call

is

completed,

the

information

returned

in

this

field

is

unchanged.

4.

Resource

Name

(AIBRSNM1)

#1

This

8-byte

field

contains

the

name

of

a

resource.

The

resource

varies

depending

on

the

call.

You

must

initialize

AIBRSNM1

in

your

application

program

before

you

issue

DL/I

calls.

When

the

call

is

complete,

the

information

returned

in

this

field

is

unchanged.

This

field

is

required.

For

PCB

related

calls

where

the

AIB

is

used

to

pass

the

PCB

name

instead

of

passing

the

PCB

address

in

the

call

list,

this

field

contains

the

PCB

name.

The

PCB

name

for

the

I/O

PCB

is

IOPCB��.

The

PCB

name

for

other

types

of

PCBs

is

defined

in

the

PCBNAME=

parameter

in

PSBGEN.

5.

Resource

Name

(AIBRSNM2)

#2

Specifying

the

AIB

Mask IBM

Confidential

100

Application

Programming:

Database

Manager

Specify

a

4-character

ID

of

ODBA

startup

table

DFSxxxx0,

where

xxxx

is

a

four-character

ID.

6.

Reserved

This

8-byte

field

is

reserved.

7.

Maximum

Output

Area

Length

(AIBOALEN)

This

4-byte

field

contains

the

length

of

the

output

area

in

bytes

that

was

specified

in

the

call

list.

You

must

initialize

AIBOALEN

in

your

application

program

for

all

calls

that

return

data

to

the

output

area.

When

the

call

is

completed,

the

information

returned

in

this

area

is

unchanged.

8.

Used

Output

Area

Length

(AIBOAUSE)

This

4-byte

field

contains

the

length

of

the

data

returned

by

IMS

for

all

calls

that

return

data

to

the

output

area.

When

the

call

is

completed

this

field

contains

the

length

of

the

I/O

area

used

for

this

call.

9.

Reserved

This

12-byte

field

is

reserved.

10.

Return

code

(AIBRETRN)

When

the

call

is

completed,

this

4-byte

field

contains

the

return

code.

11.

Reason

Code

(AIBREASN)

When

the

call

is

completed,

this

4-byte

field

contains

the

reason

code.

12.

Error

Code

Extension

(AIBERRXT)

This

4-byte

field

contains

additional

error

information

depending

on

the

return

code

in

AIBRETRN

and

the

reason

code

in

AIBREASN.

13.

Resource

Address

(AIBRSA1)

#1

When

the

call

is

completed,

this

4-byte

field

contains

call-specific

information.

For

PCB

related

calls

where

the

AIB

is

used

to

pass

the

PCB

name

instead

of

passing

the

PCB

address

in

the

call

list,

this

field

returns

the

PCB

address.

14.

Resource

Address

(AIBRSA2)

#2

This

4-byte

field

is

reserved

for

ODBA.

15.

Resource

Address

(AIBRSA3)

#3

This

4-byte

token,

returned

on

the

APSB

call,

is

required

for

subsequent

DLI

calls

and

the

DPSB

call

related

to

this

thread.

16.

Reserved

This

40-byte

field

is

reserved.

17.

Reserved

for

ODBA

This

136-byte

field

is

reserved

for

ODBA

The

application

program

can

use

the

returned

PCB

address,

when

available,

to

inspect

the

status

code

in

the

PCB

and

to

obtain

any

other

information

needed

by

the

application

program.

AIB

Examples

COBOL

AIB

Example

01

AIB

02

AIBRID

PIC

x(8).

02

AIBRLEN

PIC

9(9)

USAGE

BINARY.

02

AIBRSFUNC

PIC

x(8).

02

AIBRSNM1

PIC

x(8).

02

AIBRSNM2

PIC

x(8).

02

AIBRESV1

PIC

x(8).

02

AIBOALEN

PIC

9(9)

USAGE

BINARY.

Specifying

the

AIB

MaskIBM

Confidential

Chapter

3.

Defining

Application

Program

Elements

101

02

AIBOAUSE

PIC

9(9)

USAGE

BINARY.

02

AIBRESV2

PIC

x(12).

02

AIBRETRN

PIC

9(9)

USAGE

BINARY.

02

AIBREASN

PIC

9(9)

USAGE

BINARY.

02

AIBERRXT

PIC

9(9)

USAGE

BINARY.

02

AIBRESA1

USAGE

POINTER.

02

AIBRESA2

USAGE

POINTER.

02

AIBRESA3

USAGE

POINTER.

02

AIBRESV4

PIC

x(40).

02

AIBRSAVE

OCCURS

18

TIMES

USAGE

POINTER.

02

AIBRTOKN

OCCURS

6

TIMES

USAGE

POINTER.

02

AIBRTOKC

PIC

x(16).

02

AIBRTOKV

PIC

x(16).

02

AIBRTOKA

OCCURS

2

TIMES

PIC

9(9)

USAGE

BINARY.

Assembler

AIB

Example

DFSAIB

DSECT

AIBID

DS

CL8’DFSAIB’

AIBLEN

DS

F

AIBSFUNC

DS

CL8

AIBRSNM1

DS

CL8

AIBRSVM2

DS

CL8

DS

2F

AIBOALEN

DS

F

AIBOAUSE

DS

F

DS

2F

DS

H

DS

H

AIBRETRN

DS

F

AIBREASN

DS

F

AIBRRXT

DS

F

AIBRSA1

DS

A

AIBRSA2

DS

A

AIBRSA3

DS

A

DS

10F

AIBLL

EQU

*-DFSAIB

AIBSAVE

DS

18F

AIBTOKN

DS

6F

AIBTOKC

DS

CL16

AIBTOKV

DS

XL16

AIBTOKA

DS

2F

AIBAERL

EQU

*-DFSAIB

Specifying

the

UIB

(CICS

Online

Programs

Only)

The

interface

between

your

CICS

online

program

and

DL/I

passes

additional

information

to

your

program

in

a

user

interface

block

(UIB).

The

UIB

contains

the

address

of

the

PCB

list

and

any

return

codes

your

program

must

examine

before

checking

the

status

code

in

the

DB

PCB.

When

you

issue

the

PCB

call

to

obtain

a

PSB

for

your

program,

a

UIB

is

created

for

your

program.

As

with

any

area

outside

your

program,

you

must

include

a

definition

of

the

UIB

and

establish

addressability

to

it.

CICS

provides

a

definition

of

the

UIB

for

all

programming

languages:

v

In

COBOL

programs,

use

the

COPY

DLIUIB

statement

(Figure

25

on

page

103

for

VS

COBOL

II,

or

Figure

26

for

OS/VS

COBOL).

“Coding

a

CICS

Online

Program

in

COBOL”

on

page

63

shows

how

to

establish

addressability

to

the

UIB.

Figure

27

on

page

104

shows

the

fields

defined

when

you

use

the

COBOL

COPY

DLIUIB

statement.

v

In

PL/I

programs,

use

a

%INCLUDE

DLIUIB

statement

(Figure

28

on

page

105).

“Coding

a

CICS

Online

Program

in

PL/I”

on

page

74

shows

how

to

establish

addressability

to

the

UIB.

Specifying

the

AIB

Mask IBM

Confidential

102

Application

Programming:

Database

Manager

v

In

assembler

language

programs,

use

the

DLIUIB

macro

(Figure

29

on

page

105).

“Coding

a

CICS

Online

Program

in

Assembler

Language”

on

page

53

shows

how

to

establish

addressability

to

the

UIB.

Three

fields

in

the

UIB

are

important

to

your

program:

UIBPCBAL,

UIBFCTR,

and

UIBDLTR.

UIBPCBAL

contains

the

address

of

the

PCB

address

list.

Through

it

you

can

obtain

the

address

of

the

PCB

you

want

to

use.

Your

program

must

check

the

return

code

in

UIBFCTR

(and

possibly

UIBDLTR)

before

checking

the

status

code

in

the

DB

PCB.

If

the

contents

of

UIBFCTR

and

UIBDLTR

are

not

null,

the

content

of

the

status

code

field

in

the

DB

PCB

is

not

meaningful.

The

return

codes

are

described

in

Chapter

17,

“CICS-DL/I

User

Interface

Block

Return

Codes,”

on

page

303.

Immediately

after

the

statement

that

defines

the

UIB

in

your

program,

you

must

define

the

PCB

address

list

and

the

PCB

mask.

Figure

25

provides

an

example

of

using

the

COPY

DLIUIB

statement

in

a

VS

COBOL

II

program:

Figure

26

provides

an

example

of

using

the

COPY

DLIUIB

statement

in

an

OS/VS

COBOL

program.

LINKAGE

SECTION.

COPY

DLIUIB.

01

OVERLAY-DLIUIB

REDEFINES

DLIUIB.

02

PCBADDR

USAGE

IS

POINTER.

02

FILLER

PIC

XX.

01

PCB-ADDRESSES.

02

PCB-ADDRESS-LIST

USAGE

IS

POINTER

OCCURS

10

TIMES.

01

PCB1.

02

PCB1-DBD-NAME

PIC

X(8).

02

PCB1-SEG-LEVEL

PIC

XX.

.

.

.

Figure

25.

Defining

the

UIB,

PCB

Address

List,

and

the

PCB

Mask

for

VS

COBOL

II

Specifying

the

UIB

(CICS

Online

Programs

Only)IBM

Confidential

Chapter

3.

Defining

Application

Program

Elements

103

Figure

27

provides

an

example

of

using

the

COBOL

COPY

DLIUIB

statement.

The

values

placed

in

level

88

entries

are

not

printable.

They

are

described

in

Chapter

17,

“CICS-DL/I

User

Interface

Block

Return

Codes,”

on

page

303.

The

meanings

of

the

field

names

and

their

hexadecimal

values

are

shown

below:

FCNORESP

Normal

response

X'00'

FCNOTOPEN

Not

open

X'0C'

FCINVREQ

Invalid

request

X'08'

FCINVPCB

Invalid

PCB

X'10'

LINKAGE

SECTION.

01

BLL

CELLS.

02

FILLER

PIC

S9(8)

COMP.

02

UIB-PTR

PIC

S9(8)

COMP.

02

PCB-LIST-PTR

PIC

S9(8)

COMP.

02

PCB1-PTR

PIC

S9(8)

COMP.

COPY

DLIUIB.

01

PCB-ADDRESS-LIST.

02

PCB1-LIST-PTR

PIC

S9(8)

COMP.

01

PCB1.

02

PCB1-DBD-NAME

PIC

X(8).

02

PCB1-SEG-LEVEL

PIC

XX.

.

.

.

Figure

26.

Defining

the

UIB,

PCB

Address

List,

and

the

PCB

Mask

for

OS/VS

COBOL

01

DLIUIB.

*

Address

of

the

PCB

addr

list

02

UIBPCBAL

PIC

S9(8)

COMP.

*

DL/I

return

codes

02

UIBRCODE.

*

Return

codes

03

UIBFCTR

PIC

X.

88

FCNORESP

VALUE

’

’.

88

FCNOTOPEN

VALUE

’

’.

88

FCINVREQ

VALUE

’

’.

88

FCINVPCB

VALUE

’

’.

*

Additional

information

03

UIBDLTR

PIC

X.

88

DLPSBNF

VALUE

’

’.

88

DLTASKNA

VALUE

’

’.

88

DLPSBSCH

VALUE

’

’.

88

DLLANGCON

VALUE

’

’.

88

DLPSBFAIL

VALUE

’

’.

88

DLPSBNA

VALUE

’

’.

88

DLTERMNS

VALUE

’

’.

88

DLFUNCNS

VALUE

’

’.

88

DLINA

VALUE

’

’.

Figure

27.

The

COBOL

DLIUIB

Copy

Book

Specifying

the

UIB

(CICS

Online

Programs

Only) IBM

Confidential

104

Application

Programming:

Database

Manager

DLPSBNF

PSB

not

found

X'01'

DLTASKNA

Task

not

authorized

X'02'

DLPSBSCH

PSB

already

scheduled

X'03'

DLLANGCON

Language

conflict

X'04'

DLPSBFAIL

PSB

initialization

failed

X'05'

DLPSBNA

PSB

not

authorized

X'06'

DLTERMNS

Termination

not

successful

X'07'

DLFUNCNS

Function

unscheduled

X'08'

DLINA

DL/I

not

active

X'FF'

Figure

28

shows

you

how

to

define

the

UIB,

PCB

address

list,

and

PCB

mask

for

PL/I.

Figure

29

shows

you

how

to

define

the

UIB,

PCB

address

list,

and

PCB

mask

for

assembler

language.

Specifying

the

I/O

Areas

Use

an

I/O

area

to

pass

segments

between

your

program

and

IMS.

What

the

I/O

area

contains

depends

on

the

type

of

call

you

are

issuing:

v

When

you

retrieve

a

segment,

IMS

DB

places

the

segment

you

requested

in

the

I/O

area.

DCL

UIBPTR

PTR;

/*

POINTER

TO

UIB

*/

DCL

1

DLIUIB

UNALIGNED

BASED(UIBPTR),

/*

EXTENDED

CALL

USER

INTFC

BLK*/

2

UIBPCBAL

PTR,

/*

PCB

ADDRESS

LIST

*/

2

UIBRCODE,

/*

DL/I

RETURN

CODES

*/

3

UIBFCTR

BIT(8)

ALIGNED,

/*

RETURN

CODES

*/

3

UIBDLTR

BIT(8)

ALIGNED;

/*

ADDITIONAL

INFORMATION

*/

Figure

28.

Defining

the

UIB,

PCB

Address

List,

and

the

PCB

Mask

for

PL/I

DLIUIB

DSECT

UIB

DS

0F

EXTENDED

CALL

USER

INTFC

BLK

UIBPCBAL

DS

A

PCB

ADDRESS

LIST

UIBRCODE

DS

0XL2

DL/I

RETURN

CODES

UIBFCTR

DS

X

RETURN

CODE

UIBDLTR

DS

X

ADDITIONAL

INFORMATION

DS

2X

RESERVED

DS

0F

LENGTH

IS

FULLWORD

MULTIPLE

UIBLEN

EQU

*-UIB

LENGTH

OF

UIB

Figure

29.

Defining

the

UIB,

PCB

Address

List,

and

the

PCB

Mask

for

Assembler

Language

Specifying

the

UIB

(CICS

Online

Programs

Only)IBM

Confidential

Chapter

3.

Defining

Application

Program

Elements

105

v

When

you

add

a

new

segment,

you

first

build

the

new

segment

in

the

I/O

area.

v

Before

modifying

a

segment,

your

program

must

first

retrieve

it.

When

you

retrieve

the

segment,

IMS

DB

places

the

segment

in

an

I/O

area.

The

format

of

the

record

segments

you

pass

between

your

program

and

IMS

can

be

fixed

length

or

variable

length.

Only

one

difference

is

important

to

the

application

program:

a

message

segment

containing

a

2-byte

length

field

(or

4

bytes

for

the

PLITDLI

interface)

at

the

beginning

of

the

data

area

of

the

segment.

The

I/O

area

for

IMS

calls

must

be

large

enough

to

hold

the

largest

segment

your

program

retrieves

from

or

adds

to

the

database.

If

your

program

issues

any

Get

or

ISRT

calls

that

use

the

D

command

code,

the

I/O

area

must

be

large

enough

to

hold

the

largest

path

of

segments

that

the

program

retrieves

or

inserts.

Segment

Search

Arguments

This

section

describes

the

coding

rules

and

provides

coding

formats

and

examples

for

defining

SSAs

in

Assembler

language,

C

language,

COBOL,

Pascal,

and

PL/I.

SSA

Coding

Rules

The

rules

for

coding

an

SSA

are

as

follows:

v

Define

the

SSA

in

the

data

area

of

your

program.

v

The

segment

name

field

must:

–

Be

8

bytes

long.

If

the

name

of

the

segment

you

are

specifying

is

less

than

8

bytes

long,

it

should

be

left

justified

and

padded

on

the

right

with

blanks.

–

Contain

a

segment

name

that

has

been

defined

in

the

DBD

that

your

application

program

uses.

In

other

words,

make

sure

you

use

the

exact

segment

name,

or

your

SSA

will

be

invalid.

v

If

the

SSA

contains

only

the

segment

name,

byte

9

must

contain

a

blank.

v

If

the

SSA

contains

one

or

more

command

codes:

–

Byte

9

must

contain

an

asterisk

(*).

–

The

last

command

code

must

be

followed

by

a

blank

unless

the

SSA

contains

a

qualification

statement.

If

the

SSA

contains

a

qualification

statement,

the

command

code

must

be

followed

by

the

left

parenthesis

of

the

qualification

statement.

v

If

the

SSA

contains

a

qualification

statement:

–

The

qualification

statement

must

begin

with

a

left

parenthesis

and

end

with

a

right

parenthesis.

–

There

must

not

be

any

blanks

between

the

segment

name

or

command

codes,

if

used,

and

the

left

parenthesis.

–

The

field

name

must

be

8

bytes

long.

If

the

field

name

is

less

than

8

bytes,

it

must

be

left

justified

and

padded

on

the

right

with

blanks.

The

field

name

must

have

been

defined

for

the

specified

segment

type

in

the

DBD

the

application

program

is

using.

–

The

relational

operator

follows

the

field

name.

It

must

be

2

bytes

long

and

can

be

represented

alphabetically

or

symbolically.

Table

20

on

page

107

lists

the

relational

operators.

Specifying

the

I/O

Areas IBM

Confidential

106

Application

Programming:

Database

Manager

Table

20.

Relational

Operators

Symbolic

Alphabetic

Meaning

=�

or

�=

EQ

Equal

to

>=

or

=>

GE

Greater

than

or

equal

to

<=

or

=<

LE

Less

than

or

equal

to

>�

or

�>

GT

Greater

than

<�

or

�<

LT

Less

than

¬=

or

=¬

NE

Not

equal

to

–

The

comparative

value

follows

the

relational

operator.

The

length

of

this

value

must

be

equal

to

the

length

of

the

field

that

you

specified

in

the

field

name.

This

length

is

defined

in

the

DBD.

The

comparative

value

must

include

leading

zeros

for

numeric

values

or

trailing

blanks

for

alphabetic

values

as

necessary.

v

If

you

are

using

multiple

qualification

statements

within

one

SSA

(Boolean

qualification

statements),

the

qualification

statements

must

be

separated

by

one

of

these

symbols:

*

or

&

Dependent

AND

+

or

|

Logical

OR

#

Independent

AND

One

of

these

symbols

must

appear

between

the

qualification

statements

that

the

symbol

connects.

v

The

last

qualification

statement

must

be

followed

by

a

right

parenthesis.

SSA

Coding

Restrictions

The

SSA

created

by

the

application

program

must

not

exceed

the

space

allocated

for

the

SSA

in

the

PSB.

Related

Reading:

For

additional

information

about

defining

the

PSB

SSA

size,

see

the

explanation

of

the

PSBGEN

statement

in

IMS

Version

9:

Utilities

Reference:

Database

and

Transaction

Manager.

SSA

Coding

Formats

This

section

shows

examples

of

coding

formats

for

assembler

language,

C

language,

COBOL,

Pascal,

and

PL/I.

Assembler

Language

SSA

Definition

Examples

Figure

30

on

page

108

shows

how

you

would

define

a

qualified

SSA

without

command

codes.

If

you

want

to

use

command

codes

with

this

SSA,

code

the

asterisk

(*)

and

command

codes

between

the

8-byte

segment

name

field

and

the

left

parenthesis

that

begins

the

qualification

statement.

Segment

Search

ArgumentsIBM

Confidential

Chapter

3.

Defining

Application

Program

Elements

107

This

SSA

looks

like

this:

ROOT����(KEY������=vv...v)

C

Language

SSA

Definition

Examples

An

unqualified

SSA

that

does

not

use

command

codes

looks

like

this

in

C:

const

struct

{

char

seg_name_u[8];

char

blank[1];

}

unqual_ssa

=

{"NAME

",

"

"};

You

can

use

an

SSA

that

is

coded

like

this

for

each

DL/I

call

that

needs

an

unqualified

SSA

by

supplying

the

name

of

the

segment

type

you

want

during

program

execution.

Note

that

the

string

size

declarations

are

such

that

the

C

null

terminators

do

not

appear

within

the

structure.

You

can,

of

course,

declare

this

as

a

single

string:

const

char

unqual_ssa[]

=

"NAME

";

/*

8

chars

+

1

blank

*/

DL/I

ignores

the

trailing

null

characters.

You

can

define

SSAs

in

any

of

the

ways

explained

for

the

I/O

area.

The

easiest

way

to

create

a

qualified

SSA

is

using

the

sprintf

function.

However,

you

can

also

define

it

using

a

method

similar

to

that

used

by

COBOL

or

PL/I.

The

following

is

an

example

of

a

qualified

SSA

without

command

codes.

To

use

command

codes

with

this

SSA,

code

the

asterisk

(*)

and

command

codes

between

the

8-byte

segment

name

field

and

the

left

parenthesis

that

begins

the

qualification

statement.

struct

{

seg_name

char[8];

seg_qual

char[1];

seg_key_name

char[8];

seg_opr

char[2];

seg_key_value

char[n];

seg_end_char

char[1];

}

qual_ssa

=

{"ROOT

",

"(",

"KEY

",

"

=",

"vv...vv",

")"};

Another

way

is

to

define

the

SSA

as

a

string,

using

sprintf.

Remember

to

use

the

preprocessor

directive

#include

<stdio.h>.

char

qual_ssa[8+1+8+2+6+1+1];

/*

the

final

1

is

for

the

*/

/*

trailing

’\0’

of

string

*/

sprintf(qual_ssa,

"%-8.8s(%-8.8s%2.2s%-6.6s)",

"ROOT",

"KEY",

"=",

"vvvvv");

*

CONSTANT

AREA

...
SSANAME

DS

0CL26

ROOT

DC

CL8'ROOT

'

DC

CL1'('

DC

CL8'KEY

'

DC

CL2'

='

NAME

DC

CLn'vv...v'

DC

CL1')'

Figure

30.

Example

Code:

*

CONSTANT

AREA

Segment

Search

Arguments IBM

Confidential

108

Application

Programming:

Database

Manager

Alternatively,

if

only

the

value

were

changing,

the

sprintf

call

can

be:

sprintf(qual_ssa,

"ROOT

(KEY

=%-6.6s)",

"vvvvv");

/*

12345678

12345678

*/

In

both

cases,

the

SSA

looks

like

this:

ROOT����(KEY������=vv...v)

These

SSAs

are

both

taken

from

the

C

skeleton

program

shown

in

Figure

19

on

page

57.

To

see

how

the

SSAs

are

used

in

DL/I

calls,

refer

to

that

program.

COBOL

SSA

Definition

Examples

An

unqualified

SSA

without

command

codes

looks

like

this

in

COBOL:

DATA

DIVISION.

WORKING-STORAGE

SECTION.

...
01

UNQUAL-SSA.

02

SEG-NAME

PICTURE

X(08)

VALUE

'........'.

02

FILLER

PICTURE

X

VALUE

'

'.

By

supplying

the

name

of

the

segment

type

you

want

during

program

execution,

you

can

use

an

SSA

coded

like

the

one

in

this

example

for

each

DL/I

call

that

needs

an

unqualified

SSA.

Use

a

01

level

working

storage

entry

to

define

each

SSA

that

the

program

is

to

use.

Then

use

the

name

you

have

given

the

SSA

as

the

parameter

in

the

DL/I

call,

in

this

case:

UNQUAL-SSA,

The

following

SSA

is

an

example

of

a

qualified

SSA

that

does

not

use

command

codes.

If

you

use

command

codes

in

this

SSA,

code

the

asterisk

(*)

and

the

command

code

between

the

8-byte

segment

name

field

and

the

left

parenthesis

that

begins

the

qualification

statement.

DATA

DIVISION.

WORKING-STORAGE

SECTION.

...
01

QUAL-SSA-MAST.

02

SEG-NAME-M

PICTURE

X(08)

VALUE

'ROOT

'.

02

BEGIN-PAREN-M

PICTURE

X

VALUE

'('.

02

KEY-NAME-M

PICTURE

X(08)

VALUE

'KEY

'.

02

REL-OPER-M

PICTURE

X(02)

VALUE

'

='.

02

KEY-VALUE-M

PICTURE

X(n)

VALUE

'vv...v'.

02

END-PAREN-M

PICTURE

X

VALUE

')'.

The

SSA

looks

like

this:

ROOT����(KEY������=vv...v)

These

SSAs

are

both

taken

from

the

COBOL

skeleton

program

in

Figure

20

on

page

61.

To

see

how

they

are

used

in

a

DL/I

call,

refer

to

that

program.

Pascal

SSA

Definition

Examples

An

unqualified

SSA

without

command

codes

looks

like

this

in

Pascal:

type

STRUCT

=

record

SEG_NAME

:

ALFA;

BLANK

:

CHAR;

end;

const

UNQUAL_SSA

=

STRUCT('NAME','

');

Segment

Search

ArgumentsIBM

Confidential

Chapter

3.

Defining

Application

Program

Elements

109

You

can,

of

course,

declare

this

as

a

single

string:

const

UNQUAL_SSA

=

'NAME

';

The

SSA

shown

in

Figure

31

is

an

example

of

a

qualified

SSA

that

does

not

use

command

codes.

If

you

use

command

codes

in

this

SSA,

code

the

asterisk

(*)

and

the

command

code

between

the

8-byte

segment

name

field

and

the

left

parenthesis

that

begins

the

qualification

statement.

This

SSA

looks

like

this:

ROOT����(KEY������=vv...v)

PL/I

SSA

Definition

Examples

An

unqualified

SSA

that

does

not

use

command

codes

looks

like

this

in

PL/I:

DCL

1

UNQUAL_SSA

STATIC

UNALIGNED,

2

SEG_NAME_U

CHAR(8)

INIT('NAME

'),

2

BLANK

CHAR(1)

INIT('

');

You

can

use

an

SSA

that

is

coded

like

this

for

each

DL/I

call

that

needs

an

unqualified

SSA

by

supplying

the

name

of

the

segment

type

you

want

during

program

execution.

In

PL/I

you

define

SSAs

in

structure

declarations.

The

unaligned

attribute

is

required

for

SSA

data

interchange

with

IMS.

The

SSA

character

string

must

reside

contiguously

in

storage.

For

example,

assignment

of

variable

key

values

might

cause

IMS

to

construct

an

invalid

SSA

if

the

key

value

has

changed

the

aligned

attribute.

A

separate

SSA

structure

is

required

for

each

segment

type

that

the

program

accesses

because

the

value

of

the

key

fields

differs

among

segment

types.

After

you

have

initialized

the

fields

(other

than

the

key

values),

you

should

not

need

to

change

the

SSAs

again.

You

can

define

SSAs

in

any

of

the

ways

explained

for

the

I/O

area.

The

following

is

an

example

of

a

qualified

SSA

without

command

codes.

If

you

use

command

codes

in

this

SSA,

code

the

asterisk

(*)

and

command

codes

between

the

8-byte

segment

name

field

and

the

left

parenthesis

that

begins

the

qualification

statement.

DCL

1

QUAL_SSA

STATIC

UNALIGNED,

2

SEG_NAME

CHAR(8)

INIT('ROOT

'),

2

SEG_QUAL

CHAR(1)

INIT('('),

2

SEG_KEY_NAME

CHAR(8)

INIT('KEY

'),

type

STRUCT

=

record

SEG_NAME

:

ALFA;

SEG_QUAL

:

CHAR;

SEG_KEY_NAME

:

ALFA;

SEG_OPR

:

CHAR;

SEG_KEY_VALUE

:

packed

array[1..n]

of

CHAR;

SEG_END_CHAR

:

CHAR;

end;

const

QUAL_SSA

=

STRUCT('ROOT','(','KEY','

=','vv...v',')');

Figure

31.

Qualified

SSA

without

Command

Codes

Segment

Search

Arguments IBM

Confidential

110

Application

Programming:

Database

Manager

2

SEG_OPR

CHAR(2)

INIT('

='),

2

SEG_KEY_VALUE

CHAR(n)

INIT('vv...v'),

2

SEG_END_CHAR

CHAR(1)

INIT(')');

This

SSA

looks

like

this:

ROOT����(KEY������=vv...v)

Both

of

these

SSAs

are

taken

from

the

PL/I

skeleton

program

shown

in

Figure

23

on

page

71.

To

see

how

they

are

used

in

DL/I

calls,

refer

to

that

program.

GSAM

Data

Areas

Thissection

shows

how

to

code

GSAM

data

areas.

GSAM

applies

only

to

batch

and

BMPs.

The

PCB

mask

and

the

RSA

that

you

use

in

a

GSAM

call

have

special

formats.

GSAM

DB

PCB

Masks

GSAM

DB

PCB

masks

are

slightly

different

from

other

DB

PCB

masks.

The

fields

that

are

different

are

the

length

of

the

key

feedback

area

and

the

key

feedback

area.

Also,

an

additional

field

exists

that

gives

the

length

of

the

record

being

retrieved

or

inserted

when

using

undefined-length

records.

Related

Reading:

For

more

information

on

GSAM,

see

Chapter

10,

“Processing

GSAM

Databases,”

on

page

219.

GSAM

RSAs

The

RSA

(record

search

argument)

is

an

8-byte

token

that

can

be

returned

on

GN

and

ISRT

calls.

The

application

program

can

save

the

RSA

for

use

in

a

subsequent

GU

call.

Related

Reading:

For

more

information

on

RSAs

for

GSAM,

see

Chapter

10,

“Processing

GSAM

Databases,”

on

page

219.

The

AIBTDLI

Interface

This

section

explains

how

to

use

the

application

interface

block

(AIB),

an

interface

between

your

application

program

and

IMS.

Restriction:

No

fields

in

the

AIB

can

be

used

by

the

application

program

except

as

defined

by

IMS.

Overview

When

you

use

the

AIBTDLI

interface,

you

specify

the

PCB

that

is

requested

for

the

call

by

placing

the

PCB

name

(as

defined

by

PSBGEN)

in

the

resource

name

field

of

the

AIB.

You

do

not

specify

the

PCB

address.

Because

the

AIB

contains

the

PCB

name,

your

application

can

refer

to

the

PCB

name

rather

than

to

the

PCB

address.

The

AIBTDLI

call

allows

you

to

select

PCBs

directly

by

name

rather

than

by

a

pointer

to

the

PCB.

At

completion

of

the

call,

the

AIB

returns

the

PCB

address

that

corresponds

to

the

PCB

name

that

is

passed

by

the

application

program.

For

PCBs

to

be

used

in

a

AIBTDLI

call,

you

must

assign

a

name

in

PSBGEN,

either

with

PCBNAME=

or

with

the

name

as

a

label

on

the

PCB

statement.

PCBs

that

have

assigned

names

are

also

included

in

the

positional

pointer

list,

unless

you

specify

LIST=NO.

During

PSBGEN,

you

define

the

names

of

the

DB

PCBs

and

alternate

PCBs.

All

I/O

PCBs

are

generated

with

the

PCB

name

IOPCB���.

For

a

Segment

Search

ArgumentsIBM

Confidential

Chapter

3.

Defining

Application

Program

Elements

111

generated

program

specification

block

(GPSB),

the

I/O

PCB

is

generated

with

the

PCB

name

IOPCB���,

and

the

modifiable

alternate

PCB

is

generated

with

the

PCB

name

TPPCB1�.

Because

you

can

pass

the

PCB

name,

you

do

not

need

to

know

the

relative

PCB

number

in

the

PCB

list.

In

addition,

the

AIBTDLI

interface

enables

your

application

program

to

make

calls

on

PCBs

that

do

not

reside

in

the

PCB

list.

The

LIST=

keyword,

which

is

defined

in

the

PCB

macro

during

PSBGEN,

controls

whether

the

PCB

is

included

in

the

PCB

list.

Related

Reading:

For

more

information

about

PSBGEN,

see

IMS

Version

9:

Utilities

Reference:

System.

Defining

Storage

for

the

AIB

The

AIB

resides

in

user-defined

storage

that

is

passed

to

IMS

for

DL/I

calls

that

use

the

AIBTDLI

interface.

When

the

call

is

completed,

the

AIB

is

updated

by

IMS.

Recommendation:

Allocate

at

least

128

bytes

of

storage

for

the

AIB.

Specifying

the

Language

Specific

Entry

Point

IMS

gives

control

to

an

application

program

through

an

entry

point.

The

formats

for

coding

entry

statements

in

Assembler

language,

C

language,

COBOL,

Pascal,

and

PL/I

are

shown

in

these

sections:

“Assembler

Language,”

“C

Language”

on

page

113,

“COBOL”

on

page

113,

“Pascal”

on

page

114,

and

“PL/I”

on

page

114.

Your

entry

point

must

refer

to

the

PCBs

in

the

order

in

which

they

have

been

defined

in

the

PSB.

IMS

passes

the

PCB

pointers

to

a

PL/I

program

differently

than

it

passes

them

to

assembler

language,

C

language,

COBOL,

or

Pascal

programs.

In

addition,

Pascal

requires

that

IMS

pass

an

integer

before

passing

the

PCB

pointers.

IMS

uses

the

LANG

keyword

or

the

PSBGEN

statement

of

PSBGEN

to

determine

the

type

of

program

to

which

it

is

passing

control.

Therefore,

you

must

be

sure

that

the

language

that

is

specified

during

PSBGEN

is

consistent

with

the

language

of

the

program.

When

you

code

each

DL/I

call,

you

must

provide

the

PCB

you

want

to

use

for

that

call.

In

all

cases

except

CICS

online,

the

list

of

PCBs

that

the

program

can

access

is

passed

to

the

program

at

its

entry

point.

For

CICS

online,

you

must

first

schedule

a

PSB

as

described

in

“PCB

Call

(CICS

Online

Programs

Only)”

on

page

171.

Application

interfaces

that

use

the

AIB

structure

(AIBTDLI

or

CEETDLI)

use

the

PCB

name

rather

than

the

PCB

structure,

and

they

do

not

require

the

PCB

list

to

be

passed

at

entry

to

the

application.

In

a

CICS

online

program,

you

do

not

obtain

the

address

of

the

PCBs

through

an

entry

statement,

but

through

the

user

interface

block

(UIB).

For

more

information,

see

“Specifying

the

UIB

(CICS

Online

Programs

Only)”

on

page

102.

Assembler

Language

You

can

use

any

name

for

the

entry

statement

to

an

assembler

language

DL/I

program.

When

IMS

passes

control

to

the

application

program,

register

1

contains

the

address

of

a

variable-length

fullword

parameter

list.

Each

word

in

the

list

contains

the

address

of

a

PCB.

Save

the

content

of

register

1

before

you

overwrite

AIBTDLI

Interface IBM

Confidential

112

Application

Programming:

Database

Manager

it.

IMS

sets

the

high-order

byte

of

the

last

fullword

in

the

list

to

X'80'

to

indicate

the

end

of

the

list.

Use

standard

z/OS

linkage

conventions

with

forward

and

backward

chaining.

C

Language

When

IMS

passes

control

to

your

program,

it

passes

the

addresses,

in

the

form

of

pointers,

for

each

of

the

PCBs

that

your

program

uses.

The

usual

argc

and

argv

arguments

are

not

available

to

a

program

that

is

invoked

by

IMS.

The

IMS

parameter

list

is

made

accessible

by

using

the

__pcblist

macro.

You

can

directly

reference

the

PCBs

by

__pcblist[0],

__pcblist[1],

or

you

can

define

macros

to

give

these

more

meaningful

names.

Note

that

I/O

PCBs

must

be

cast

to

get

the

proper

type:

(IO_PCB_TYPE

*)(__pcblist[0])

The

entry

statement

for

a

C

language

program

is

the

main

statement.

#pragma

runopts(env(IMS),plist(IMS))

#include

<ims.h>

main()

{

...
}

The

env

option

specifies

the

operating

environment

in

which

your

C

language

program

is

to

run.

For

example,

if

your

C

language

program

is

invoked

under

IMS

and

uses

IMS

facilities,

specify

env(IMS).

The

plist

option

specifies

the

format

of

the

invocation

parameters

that

is

received

by

your

C

language

program

when

it

is

invoked.

When

your

program

is

invoked

by

a

system

support

services

program,

the

format

of

the

parameters

passed

to

your

main

program

must

be

converted

into

the

C

language

format:

argv,

argc,

and

envp.

To

do

this

conversion,

you

must

specify

the

format

of

the

parameter

list

that

is

received

by

your

C

language

program.

The

ims.h

include

file

contains

declarations

for

PCB

masks.

You

can

finish

in

three

ways:

v

End

the

main

procedure

without

an

explicit

return

statement.

v

Execute

a

return

statement

from

main.

v

Execute

an

exit

or

an

abort

call

from

anywhere,

or

alternatively

issue

a

longjmp

back

to

main,

and

then

do

a

normal

return.

One

C

language

program

can

pass

control

to

another

by

using

the

system

function.

The

normal

rules

for

passing

parameters

apply;

in

this

case,

the

argc

and

argv

arguments

can

be

used

to

pass

information.

The

initial

__pcblist

is

made

available

to

the

invoked

program.

COBOL

The

procedure

statement

must

refer

to

the

I/O

PCB

first,

then

to

any

alternate

PCB

it

uses,

and

finally

to

the

DB

PCBs

it

uses.

The

alternate

PCBs

and

DB

PCBs

must

be

listed

in

the

order

in

which

they

are

defined

in

the

PSB.

PROCEDURE

DIVISION

USING

PCB-NAME-1

[,...,PCB-NAME-N]

In

previous

versions

of

IMS,

USING

might

be

coded

on

the

entry

statement

to

reference

PCBs.

However,

IMS

continues

to

accept

such

coding

on

the

entry

statement.

Specifying

the

Language

Specific

Entry

PointIBM

Confidential

Chapter

3.

Defining

Application

Program

Elements

113

Recommendation:

Use

the

procedure

statement

rather

than

the

entry

statement

to

reference

the

PCBs.

Pascal

The

entry

point

must

be

declared

as

a

REENTRANT

procedure.

When

IMS

passes

control

to

a

Pascal

procedure,

the

first

address

in

the

parameter

list

is

reserved

for

Pascal’s

use,

and

the

other

addresses

are

the

PCBs

the

program

uses.

The

PCB

types

must

be

defined

before

this

entry

statement.

The

IMS

interface

routine

PASTDLI

must

be

declared

with

the

GENERIC

directive.

procedure

ANYNAME(var

SAVE:

INTEGER;

var

pcb1-name:

pcb1-name-type[;

...

var

pcbn-name:

pcbn-name-type]);

REENTRANT;

procedure

ANYNAME;

(*

Any

local

declarations

*)

procedure

PASTDLI;

GENERIC;

begin

(*

Code

for

ANYNAME

*)

end;

PL/I

The

entry

statement

must

appear

as

the

first

executable

statement

in

the

program.

When

IMS

passes

control

to

your

program,

it

passes

the

addresses

of

each

of

the

PCBs

your

program

uses

in

the

form

of

pointers.

When

you

code

the

entry

statement,

make

sure

you

code

the

parameters

of

this

statement

as

pointers

to

the

PCBs,

and

not

the

PCB

names.

anyname:

PROCEDURE

(pcb1_ptr

[,...,

pcbn_ptr])

OPTIONS

(MAIN);

...
RETURN;

The

entry

statement

can

be

any

valid

PL/I

name.

Interface

Considerations

This

section

explains

the

interfaces:

CEETDLI

and

AIBTDLI,

and

AERTDLI.

CEETDLI

The

considerations

are:

v

For

PL/I

programs,

the

CEETDLI

entry

point

is

defined

in

the

CEEIBMAW

include

file.

Alternatively,

you

can

declare

it

yourself,

but

it

must

be

declared

as

an

assembler

language

entry

(DCL

CEETDLI

OPTIONS(ASM);).

v

For

C

language

application

programs,

you

must

specify

env(IMS)

and

plist(IMS);

these

specifications

enable

the

application

program

to

accept

the

PCB

list

of

arguments.

The

CEETDLI

function

is

defined

in

<leawi.h>;

the

CTDLI

function

is

defined

in

<ims.h>.

AIBTDLI

The

considerations

are:

v

When

using

the

AIBTDLI

interface

for

C/MVS™,

COBOL,

or

PL/I

language

application

programs,

the

language

run-time

options

for

suppressing

abend

interception

(that

is,

NOSPIE

and

NOSTAE)

must

be

specified.

However,

for

Language

Environment-conforming

application

programs,

the

NOSPIE

and

NOSTAE

restriction

is

removed.

v

The

AIBTDLI

entry

point

for

PL/I

programs

must

be

declared

as

an

assembler

language

entry

(DCL

AIBTDLI

OPTIONS(ASM);).

Specifying

the

Language

Specific

Entry

Point IBM

Confidential

114

Application

Programming:

Database

Manager

v

For

C

language

applications,

you

must

specify

env(IMS)

and

plist(IMS);

these

specifications

enable

the

application

program

to

accept

the

PCB

list

of

arguments.

AERTDLI

The

considerations

are:

v

When

using

the

AERTDLI

interface

for

C/MVS,

COBOL,

or

PL/I

language

application

programs,

the

language

run-time

options

for

suppressing

abend

interception

(that

is,

NOSPIE

and

NOSTAE)

must

be

specified.

However,

for

Language

Environment-conforming

application

programs,

the

NOSPIE

and

NOSTAE

restriction

is

removed.

v

The

AERTDLI

entry

point

for

PL/I

programs

must

be

declared

as

an

assembler

language

entry

(DCL

AERTDLI

OPTIONS(ASM);).

v

For

C

language

applications,

you

must

specify

env(IMS)

and

plis(IMS).

These

specifications

enable

the

application

program

to

accept

the

PCB

list

of

arguments.

v

AERTDLI

must

receive

control

with

31

bit

addressability.

PCB

Lists

This

section

describes

the

formats

of

PCB

lists

and

GPSB

PCB

lists,

and

provides

a

description

of

PCBs

in

various

types

of

application

programs.

Format

of

a

PCB

List

The

following

example

shows

the

general

format

of

a

PCB

list.

[IOPCB]

[Alternate

PCB

...

Alternate

PCB]

[DB

PCB

...

DB

PCB]

[GSAM

PCB

...

GSAM

PCB]

Each

PSB

must

contain

at

least

one

PCB.

An

I/O

PCB

is

required

for

most

system

service

calls.

An

I/O

PCB

or

alternate

PCB

is

required

for

transaction

management

calls.

(Alternate

PCBs

can

exist

in

IMS

TM.)

DB

PCBs

for

DL/I

databases

are

used

only

with

the

IMS

Database

Manager

under

DCCTL.

GSAM

PCBs

can

be

used

with

DCCTL.

Format

of

a

GPSB

PCB

List

A

generated

program

specification

block

(GPSB)

has

the

following

format:

[IOPCB]

[Alternate

PCB]

A

GPSB

contains

only

an

I/O

PCB

and

one

modifiable

alternate

PCB.

(A

modifiable

alternate

PCB

enables

you

to

change

the

destination

of

the

alternate

PCB

while

the

program

is

running.)A

GPSB

can

be

used

by

all

transaction

management

application

programs,

and

permits

access

to

the

specified

PCBs

without

the

need

for

a

specific

PSB

for

the

application

program.

The

PCBs

in

a

GPSB

have

predefined

PCB

names.

The

name

of

the

I/O

PCB

is

IOPCB��.

The

name

of

the

alternate

PCB

is

TPPCB1��.

PCB

Summary

This

section

summarizes

the

information

concerning

I/O

PCBs

and

alternate

PCBs

in

various

types

of

application

programs.

You

should

read

this

section

if

you

intend

to

issue

system

service

requests.

Specifying

the

Language

Specific

Entry

PointIBM

Confidential

Chapter

3.

Defining

Application

Program

Elements

115

DB

Batch

Programs

If

CMPAT=Y

is

specified

in

PSBGEN,

the

I/O

PCB

is

present

in

the

PCB

list;

otherwise,

the

I/O

PCB

is

not

present,

and

the

program

cannot

issue

system

service

calls.

Alternate

PCBs

are

always

included

in

the

list

of

PCBs

that

IMS

supplies

to

the

program.

BMPs,

MPPs,

and

IFPs

The

I/O

PCB

and

alternate

PCBs

are

always

passed

to

BMPs,

MPPs,

and

IFPs.

The

PCB

list

always

contains

the

address

of

the

I/O

PCB,

followed

by

the

addresses

of

any

alternate

PCBs,

followed

by

the

addresses

of

the

DB

PCBs.

CICS

Online

Programs

with

DBCTL

If

you

specify

the

IOPCB

option

on

the

PCB

call,

the

first

PCB

address

in

your

PCB

list

is

the

I/O

PCB,

followed

by

any

alternate

PCBs,

followed

by

the

addresses

of

the

DB

PCBs.

If

you

do

not

specify

the

I/O

PCB

option,

the

first

PCB

address

in

your

PCB

list

points

to

the

first

DB

PCB.

Table

21

summarizes

the

I/O

PCB

and

alternate

PCB

information.

Table

21.

I/O

PCB

and

Alternate

PCB

Information

Summary

Environment

CALL

DL/I

I/O

PCB

address

in

PCB

list

Alternate

PCB

address

in

PCB

list

MPP

Yes

Yes

IFP

Yes

Yes

BMP

Yes

Yes

DB

Batch1

No

Yes

DB

Batch2

Yes

Yes

TM

Batch3

Yes

Yes

CICS

DBCTL4

No

No

CICS

DBCTL5

Yes

Yes

Notes:

1.

CMPAT

=

N

specified.

2.

CMPAT

=

Y

specified.

3.

CMPAT

=

Option.

Default

is

always

to

Y,

even

when

CMPAT

=

N

is

specified.

4.

SCHD

request

issued

without

the

IOPCB

or

SYSSERVE

option.

5.

SCHD

request

issued

with

the

IOPCB

or

SYSSERVE

for

a

CICS

DBCTL

request

or

for

a

function-shipped

request

which

is

satisfied

by

a

CICS

system

using

DBCTL.

The

AERTLDI

interface

This

section

explains

how

to

use

the

AIB

with

ODBA

applications.

Overview

When

you

use

the

AERTDLI

interface,

the

AIB

used

for

database

calls

must

be

the

same

AIB

as

used

for

the

APSB

call.

Specify

the

PCB

that

is

requested

for

the

call

by

placing

the

PCB

name

(as

defined

by

PSBGEN)

in

the

resource

name

field

of

PCB

Lists IBM

Confidential

116

Application

Programming:

Database

Manager

the

AIB.

You

do

not

specify

the

PCB

address.

Because

the

AIB

contains

the

PCB

name,

your

application

can

refer

to

the

PCB

name

rather

than

to

the

PCB

address.

The

AERTDLI

call

allows

you

to

select

PCBs

directly

by

name

rather

than

by

a

pointer

to

the

PCB.

At

completion

of

the

call,

the

AIB

returns

the

PCB

address

that

corresponds

to

the

PCB

name

that

is

passed

by

the

application

program.

For

PCBs

to

be

used

in

a

AERTDLI

call,

you

must

assign

a

name

in

PSBGEN,

either

with

PCBNAME=

or

with

the

name

as

a

label

on

the

PCB

statement.

PCBs

that

have

assigned

names

are

also

included

in

the

positional

pointer

list,

unless

you

specify

LIST=NO.

During

PSBGEN,

you

define

the

names

of

the

DB

PCBs

and

alternate

PCBs.

All

I/O

PCBs

are

generated

with

the

PCB

name

IOPCB���.

Because

you

pass

the

PCB

name,

you

do

not

need

to

know

the

relative

PCB

number

in

the

PCB

list.

In

addition,

the

AERTDLI

interface

enables

your

application

program

to

make

calls

on

PCBs

that

do

not

reside

in

the

PCB

list.

The

LIST=

keyword,

which

is

defined

in

the

PCB

macro

during

PSBGEN,

controls

whether

the

PCB

is

included

in

the

PCB

list.

Defining

Storage

for

the

AIB

The

AIB

resides

in

user-defined

storage

that

is

passed

to

IMS

for

DL/I

calls

that

use

the

AERTDLI

interface.

When

the

call

is

completed,

the

AIB

is

updated

by

IMS.

Because

some

of

the

fields

in

the

AIB

are

used

internally

by

IMS,

the

same

APSB

AIB

must

be

used

for

all

subsequent

calls

for

that

PSB.

Requirement:

Allocate

264

bytes

of

storage

for

the

AIB.

Language

Environment

IBM

Language

Environment

for

MVS

and

VM

provides

the

strategic

execution

environment

for

running

your

application

programs

written

in

one

or

more

high-level

languages.

It

provides

not

only

language-specific

run-time

support,

but

also

cross-language

run-time

services

for

your

application

programs,

such

as

support

for

initialization,

termination,

message

handling,

condition

handling,

storage

management,

and

National

Language

Support.

Many

of

Language

Environment’s

services

are

accessible

explicitly

through

a

set

of

Language

Environment

interfaces

that

are

common

across

programming

languages;

these

services

are

accessible

from

any

Language

Environment-conforming

program.

Language

Environment-conforming

programs

can

be

compiled

with

the

following

compilers:

v

IBM

C/C++

for

MVS/ESA™

v

IBM

COBOL

for

MVS

and

VM

v

IBM

PL/I

for

MVS

and

VM

These

programs

can

be

produced

by

programs

coded

in

Assembler.

All

these

programs

can

use

CEETDLI,

the

Language

Environment-provided

language-independent

interface

to

IMS,

as

well

as

older

language-dependent

interfaces

to

IMS,

such

as

CTDLI,

CBLTDLI,

and

PLITDLI.

Although

they

do

not

conform

to

Language

Environment,

programs

that

are

compiled

with

the

following

older

compilers

can

run

under

Language

Environment:

v

IBM

C/370™

v

IBM

VS

COBOL

II

v

IBM

OS

PL/I

PCB

ListsIBM

Confidential

Chapter

3.

Defining

Application

Program

Elements

117

These

programs

cannot

use

CEETDLI,

but

they

can

use

the

older

language-dependent

interfaces

to

IMS.

Related

Reading:

For

more

information

about

Language

Environment,

see

IBM

Language

Environment

for

MVS

and

VM

Programming

Guide.

The

CEETDLI

interface

to

IMS

The

language-independent

CEETDLI

interface

to

IMS

is

provided

by

Language

Environment.

It

is

the

only

IMS

interface

that

supports

the

advanced

error

handling

capabilities

that

Language

Environment

provides.

The

CEETDLI

interface

supports

the

same

functionality

as

the

other

IMS

application

interfaces,

and

it

has

the

following

characteristics:

v

The

parmcount

variable

is

optional.

v

Length

fields

are

2

bytes

long.

v

Direct

pointers

are

used.

Related

Reading:

For

more

information

about

Language

Environment,

see

IBM

Language

Environment

for

MVS

and

VM

Programming

Guide

and

Language

Environment

for

MVS

&

VM

Installation

and

Customization.

LANG=

Option

on

PSBGEN

for

PL/I

Compatibility

with

Language

Environment

For

IMS

PL/I

applications

running

in

a

compatibility

mode

that

uses

the

PLICALLA

entry

point,

you

must

specify

LANG=PLI

on

the

PSBGEN,

or

you

can

change

the

entry

point

and

add

SYSTEM(IMS)

to

the

EXEC

PARM

of

the

compile

step

so

that

you

can

specify

LANG=blank

or

LANG=PLI

on

the

PSBGEN.

Table

22

summarizes

when

you

can

use

LANG=�

and

LANG=PLI.

Table

22.

Using

LANG=

Option

in

a

Language

Environment

for

PL/I

Compatibility

Compile

EXEC

statement

is

PARM=(...,SYSTEM(IMS)...

and

entry

point

name

is

PLICALLA

Then

LANG=

is

as

stated

below:

Yes

Yes

LANG=PLI

Yes

No

LANG=�

or

LANG=PLI

No

No

Not

valid

for

IMS

PL/I

applications

No

Yes

LANG=PLI

Restriction:

PLICALLA

is

only

valid

for

PL/I

compatibility

with

Language

Environment.

If

a

PL/I

application

program

using

PLICALLA

entry

at

link-edit

time

is

link-edited

using

Language

Environment

with

the

PLICALLA

entry,

the

link-edit

will

work;

however,

you

must

use

LANG=PLI.

If

the

application

program

is

re-compiled

using

PL/I

for

z/OS

&

VM

Version

1

Release

1,

and

then

link-edited

using

Language

Environment

Version

1

Release

2

or

later,

the

link-edit

will

fail.

You

must

remove

the

PLICALLA

entry

statement

from

the

link-edit.

Special

DL/I

Situations

This

sectioncontains

information

on:

v

Application

programs

scheduled

against

HALDBs

v

Mixed-language

programming

using

the

extended

addressing

capabilities

of

MVS/ESA

v

Preloaded

programs

using

COBOL

compiler

options

Language

Environment IBM

Confidential

118

Application

Programming:

Database

Manager

Application

Program

Scheduling

against

HALDBs

Application

programs

are

scheduled

against

HALDBs

the

same

way

they

are

against

non-HALDBs.

Scheduling

is

based

on

the

availability

status

of

the

HALDB

master

and

is

not

affected

by

individual

partition

access

and

status.

The

application

programmer

needs

to

be

aware

of

changes

to

the

handling

of

unavailable

data

for

HALDBs.

The

feedback

on

data

availability

at

PSB

schedule

time

shows

the

availability

of

the

HALDB

master,

not

of

the

partitions.

However,

the

error

settings

for

data

unavailability

of

a

partition

at

the

first

reference

to

the

partition

during

the

processing

of

a

DL/I

call

are

the

same

as

those

of

a

non-HALDB,

namely

status

code

BA

or

pseudo

ABENDU3303.

Example:

If

you

issue

the

IMS

/DBR

command

to

half

of

the

partitions

to

take

them

offline,

the

remaining

partitions

are

available

to

the

programs.

Initial

Load

of

HALDBs

If

you

load

a

new

HALDB

that

contains

logical

relationships,

the

logical

child

segments

are

not

loaded

as

part

of

the

load

step.

Add

logical

children

through

normal

update

processing

after

the

database

is

loaded.

When

a

program

accesses

a

partition

for

the

first

time,

an

indicator

records

that

the

PSB

accessed

the

partition.

Commands

can

operate

against

a

partition

currently

not

in

use.

A

DFS05651

message

results

if

a

BMP

uses

a

partition

and

the

command

was

against

that

partition.

If

an

application

attempts

to

access

data

from

a

stopped

partition,

a

pseudo

abend

results

or

the

application

receives

a

BA

status

code.

If

the

partition

starts

before

the

application

attempts

to

access

data

in

that

partition

again,

the

DL/I

call

succeeds.

Mixed-Language

Programming

When

an

application

program

uses

the

Language

Environment

language-independent

interface,

CEETDLI,

IMS

does

not

need

to

know

the

language

of

the

calling

program.

When

the

application

program

calls

IMS

in

a

language-dependent

interface,

IMS

determines

the

language

of

the

calling

program

according

to

the

entry

name

that

is

specified

in

the

CALL

statement.

That

is,

IMS

assumes

that

the

program

is:

v

Assembler

language

when

the

application

program

uses

CALL

ASMTDLI

v

C

language

when

the

application

program

uses

rc=CTDLI

v

COBOL

when

the

application

program

uses

CALL

CBLTDLI

v

Pascal

when

the

application

program

uses

CALL

PASTDLI

v

PL/I

when

the

application

program

uses

CALL

PLITDLI

For

example,

if

a

PL/I

program

calls

an

assembler

language

subroutine

and

the

assembler

language

subroutine

makes

DL/I

calls

by

using

CALL

ASMTDLI,

the

assembler

language

subroutine

should

use

the

assembler

language

calling

convention,

not

the

PL/I

convention.

In

this

situation,

where

the

I/O

area

uses

the

LLZZ

format,

LL

is

a

halfword,

not

the

fullword

that

is

used

for

PL/I.

Special

DL/I

SituationsIBM

Confidential

Chapter

3.

Defining

Application

Program

Elements

119

Language

Environment

Routine

Retention

If

you

run

programs

in

an

IMS

TM

dependent

region

that

requires

Language

Environment

(such

as

an

IMS

message

processing

region),

you

can

improve

performance

if

you

use

Language

Environment

library

routine

retention

along

with

the

existing

PREINIT

feature

of

IMS

TM.

Related

Reading:

For

more

information

about

Language

Environment

routine

retention,

see

IBM

Language

Environment

for

MVS

&

VM

Programming

Guide

and

IBM

Language

Environment

for

MVS

&

VM

Installation

and

Customization.

Extended

Addressing

Capabilities

of

MVS/ESA

The

two

modes

in

MVS/ESA

with

extended

addressing

capabilities

are:

the

addressing

mode

(AMODE)

and

the

residency

mode

(RMODE).

IMS

places

no

constraints

on

the

RMODE

and

AMODE

of

an

application

program.

The

program

can

reside

in

the

extended

virtual

storage

area.

The

parameters

that

are

referenced

in

the

call

can

also

be

in

the

extended

virtual

storage

area.

Preloaded

Programs

If

you

compile

your

COBOL

program

with

the

COBOL

for

z/OS

&

VM

compiler

and

preload

it,

you

must

use

the

COBOL

compiler

option,

RENT.

If

you

compile

your

COBOL

program

with

the

VS

COBOL

II

compiler

and

preload

it,

you

must

use

the

COBOL

compiler

options,

RES

and

RENT.

Special

DL/I

Situations IBM

Confidential

120

Application

Programming:

Database

Manager

Chapter

4.

Writing

DL/I

Calls

for

Database

Management

This

chapter

describes

the

calls

you

can

use

with

IMS

DB

to

perform

database

management

functions

in

your

application

program.

Calls

within

this

section

are

in

alphabetical

order.

Each

call

description

contains:

v

A

syntax

diagram

v

Definitions

for

parameters

that

are

available

to

the

call

v

Details

on

how

to

use

the

call

in

your

application

program

v

Restrictions

on

call

usage,

where

applicable

Each

parameter

is

described

as

an

input

parameter

or

output

parameter.

“Input”

refers

to

input

to

IMS

from

the

application

program.

“Output”

refers

to

output

from

IMS

to

the

application

program.

Database

management

calls

must

use

either

db

pcb

or

aib

parameters.

The

syntax

diagrams

for

these

calls

begin

with

the

function

parameter.

The

call,

call

interface

(xxxTDLI),

and

parmcount

(if

it

is

required)

are

not

included

in

the

syntax

diagrams.

In

this

Chapter:

v

“CIMS

Call”

v

“CLSE

Call”

on

page

123

v

“DEQ

Call”

on

page

123

v

“DLET

Call”

on

page

125

v

“FLD

Call”

on

page

126

v

“GN/GHN

Call”

on

page

128

v

“GNP/GHNP

Call”

on

page

132

v

“GU/GHU

Call”

on

page

135

v

“ISRT

Call”

on

page

138

v

“OPEN

Call”

on

page

141

v

“POS

Call”

on

page

142

v

“REPL

Call”

on

page

145

Related

Reading:

For

specific

information

about

coding

your

program

in

assembler

language,

C

language,

COBOL,

Pascal,

and

PL/I,

see

Chapter

3,

“Defining

Application

Program

Elements,”

on

page

77.

For

information

on

the

DL/I

calls

used

for

transaction

management

and

EXEC

DLI

commands

used

in

CICS,

see

IMS

Version

9:

Application

Programming:

Transaction

Manager

and

IMS

Version

9:

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS.

CIMS

Call

The

CIMS

call

is

used

to

initialize

and

terminate

the

ODBA

interface

in

an

z/OS

application

region.

Format

��

CIMS

aib

��

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

121

Call

Name

DB/DC

IMS

DB

DCCTL

DB

Batch

TM

Batch

CIMS

X

X

Parameters

aib

Specifies

the

application

interface

block

(AIB)

that

is

used

for

the

call.

This

parameter

is

an

input

and

output

parameter.

The

following

fields

must

be

initialized

in

the

AIB:

AIBID

Eye-catcher.

This

8-byte

field

must

contain

DFSAIB��.

AIBLEN

AIB

lengths.

This

field

must

contain

the

actual

length

of

the

AIB

that

the

application

program

obtained.

AIBRSNM1

Character

value.

This

field

is

optional.

AIBSFUNC

Subfunction

code.

This

field

must

contain

one

of

the

8-byte

subfunction

codes

as

follows:

INIT

AIBRSNM2.

A

four-character

ID

of

the

ODBA

startup

table

(optional).

TERM

AIBRSNM2.

A

four-character

ID

of

the

ODBA

startup

table

representing

the

IMS

connection

that

is

to

be

terminated.

TALL

Terminate

all

IMS

connections.

Usage

The

CIMS

call

is

used

by

an

application

program

that

is

running

in

an

application

address

space

to

establish/terminate

the

ODBA

environment.

INITbbbb

The

CIMS

subfunction

INIT

must

be

issued

by

the

application

to

establish

the

ODBA

environment

in

the

z/OS

application

address

space.

Optionally,

AIBRSNM2

can

specify

the

4-character

ID

of

the

ODBA

Startup

table

member.

This

is

the

member

named

DFSxxxx0

where

xxxx

is

equal

to

the

4-character

ID.

If

AIBRSNM2

is

specified,

ODBA

will

attempt

to

establish

a

connection

to

the

IMS

specified

in

the

DFSxxxx0

member

after

the

ODBA

environment

has

been

initialized

in

the

z/OS

application

address

space.

TERMbbbb

The

CIMS

subfunction

TERM

can

be

issued

to

terminate

one

and

only

one

IMS

connection.

AIBRSNM2

specifies

the

4-character

ID

of

the

startup

table

member

representing

the

IMS

connection

to

be

terminated.

Upon

completion

of

the

TERM

subfunction

the

ODBA

environment

will

remain

intact

in

the

z/OS

application

address

space.

Note:

If

the

application

that

issued

CIMS

INIT

chooses

to

return

to

the

operating

system

following

completion

of

the

CIMS

TERM,

the

address

space

will

experience

a

system

abend

A03.

This

can

be

avoided

by

issuing

the

CIMS

TALL

prior

to

returning

to

the

operating

system

Writing

DL/I

Calls

for

Database

Management IBM

Confidential

122

Application

Programming:

Database

Manager

TALLbbbb

The

CIMS

subfunction

TALL

must

be

issued

to

terminate

all

IMS

connections

and

terminate

the

ODBA

environment

in

the

application

address

space.

CLSE

Call

The

close

(CLSE)

call

is

used

to

explicitly

close

a

GSAM

database.

For

more

information

on

GSAM,

see

Chapter

10,

“Processing

GSAM

Databases,”

on

page

219.

Format

��

CLSE

gsam

pcb

aib

��

Call

Name

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

For

GSAM:

CLSE

X

X

X

X

X

Parameters

gsam

pcb

Specifies

the

GSAM

PCB

for

the

call.

This

parameter

is

an

input

and

output

parameter.

aib

Specifies

the

AIB

for

the

call.

This

parameter

is

an

input

and

output

parameter.

The

following

fields

must

be

initialized

in

the

AIB:

AIBID

Eye

catcher.

This

8-byte

field

must

contain

DFSAIB��.

AIBLEN

AIB

length.

This

field

must

contain

the

actual

length

of

the

AIB

that

the

application

program

obtained.

AIBRSNM1

Resource

name.

This

8-byte,

left-justified

field

must

contain

the

name

of

a

GSAM

PCB.

Usage

For

information

on

using

CLSE,

see

“Explicitly

Opening

and

Closing

a

GSAM

Database”

on

page

222.

DEQ

Call

The

Dequeue

(DEQ)

call

is

used

to

release

a

segment

that

is

retrieved

using

the

Q

command

code.

Format

(Full

Function)

��

DEQ

i/o

pcb

aib

i/o

area

��

Writing

DL/I

Calls

for

Database

ManagementIBM

Confidential

Chapter

4.

Writing

DL/I

Calls

for

Database

Management

123

Format

(Fast

Path

DEDB)

��

DEQ

DEDB

pcb

aib

��

Call

Name

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

For

Full-Function

and

DEDB:

DEQ

X

X

X

Parameters

DEDB

pcb

(Fast

Path

only)

Specifies

any

DEDB

PCB

for

the

call.

i/o

pcb

(full

function

only)

Specifies

the

I/O

PCB

for

the

DEQ

call.

This

is

an

input

and

output

parameter.

aib

Specifies

the

AIB

for

the

call.

This

is

an

input

and

output

parameter.

The

following

fields

must

be

initialized

in

the

AIB:

AIBID

Eye

catcher.

This

8-byte

field

must

contain

DFSAIB��.

AIBLEN

AIB

lengths.

This

field

must

contain

the

actual

length

of

the

AIB

that

the

application

program

obtained.

AIBRSNM1

Resource

name.

This

8-byte,

left-justified

field

must

contain

the

PCB

name

IOPCB���.

AIBOALEN

I/O

area

length.

This

field

must

contain

the

length

of

the

I/O

area

specified

in

the

call

list.

i/o

area

(full

function

only)

Specifies

the

1-byte

area

containing

a

letter

(A-J),

which

represents

the

lock

class

of

the

locks

to

be

released.

This

is

a

mandatory

input

parameter.

Usage

The

DEQ

call

releases

all

segments

that

are

retrieved

using

the

Q

command

code,

except:

v

Segments

modified

by

your

program,

until

your

program

reaches

a

commit

point

v

Segments

required

to

keep

your

position

in

the

hierarchy,

until

your

program

moves

to

another

database

record

v

A

class

of

segments

that

has

been

locked

using

a

different

lock

class

If

your

program

only

reads

segments,

it

can

release

them

by

issuing

a

DEQ

call.

If

your

program

does

not

issue

a

DEQ

call,

IMS

releases

the

reserved

segments

when

your

program

reaches

a

commit

point.

By

releasing

the

segments

with

a

DEQ

call

before

your

program

reaches

a

commit

point,

you

make

them

available

to

other

programs

more

quickly.

For

more

information

on

the

relationship

between

the

DEQ

call

and

the

Q

command

code,

see

“Reserving

Segments

for

the

Exclusive

Use

of

Your

Program”

on

page

256.

DB

Call:

DEQ IBM

Confidential

124

Application

Programming:

Database

Manager

Restrictions

In

a

CICS

DL/I

environment,

calls

made

from

one

CICS

(DBCTL)

system

are

supported

in

a

remote

CICS

DL/I

environment,

if

the

remote

environment

is

also

CICS

(DBCTL).

DLET

Call

The

Delete

(DLET)

call

is

used

to

remove

a

segment

and

its

dependents

from

the

database.

Format

��

DLET

db

pcb

aib

i/o

area

�

ssa

��

Call

Name

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

For

Full-Function:

DLET

X

X

X

For

DEDB:

DLET

X

X

For

MSDB:

DLET

X

Parameters

db

pcb

Specifies

the

DB

PCB

for

the

call.

This

parameter

is

an

input

and

output

parameter.

aib

Specifies

the

AIB

for

the

call.

This

parameter

is

an

input

and

output

parameter.

The

following

fields

must

be

initialized

in

the

AIB:

AIBID

Eye

catcher.

This

8-byte

field

must

contain

DFSAIB��.

AIBLEN

AIB

lengths.

This

field

must

contain

the

actual

length

of

the

AIB

that

the

application

program

obtained.

AIBRSNM1

Resource

name.

This

8-byte,

left-justified

field

must

contain

the

name

of

a

DB

PCB.

AIBOALEN

I/O

area

length.

This

field

must

contain

the

length

of

the

I/O

area

specified

in

the

call

list.

i/o

area

Specifies

the

I/O

area

in

your

program

that

communicates

with

IMS.

This

parameter

is

an

input

parameter.

Before

deleting

a

segment,

you

must

first

issue

a

Get

Hold

call

to

place

the

segment

in

the

I/O

area.

You

can

then

issue

the

DLET

call

to

delete

the

segment

and

its

dependents

in

the

database.

ssa

Specifies

the

SSAs,

if

any,

to

be

used

in

the

call.

This

parameter

is

an

input

parameter.

The

SSAs

you

supply

in

the

call

point

to

data

areas

in

your

program

DB

Call:

DEQIBM

Confidential

Chapter

4.

Writing

DL/I

Calls

for

Database

Management

125

in

which

you

have

defined

the

SSAs

for

the

call.

You

can

use

only

one

SSA

in

the

parameter.

This

parameter

is

optional

for

the

DLET

call.

Usage

The

DLET

call

must

be

preceded

by

one

of

the

three

Get

Hold

calls.

When

you

issue

the

DLET

call,

IMS

deletes

the

held

segment,

along

with

all

its

physical

dependents

from

the

database,

regardless

of

whether

your

program

is

sensitive

to

all

of

these

segments.

IMS

rejects

the

DLET

call

if

the

preceding

call

for

the

PCB

was

not

a

Get

Hold,

REPL,

or

DLET

call.

If

the

DLET

call

is

successful,

the

previously

retrieved

segment

and

all

of

its

dependents

are

removed

from

the

database

and

cannot

be

retrieved

again.

If

the

Get

Hold

call

that

precedes

the

DLET

call

is

a

path

call,

and

you

do

not

want

to

delete

all

the

retrieved

segments,

you

must

indicate

to

IMS

which

of

the

retrieved

segments

(and

its

dependents,

if

any)

you

want

deleted;

to

do

this,

specify

an

unqualified

SSA

for

that

segment.

Deleting

a

segment

this

way

automatically

deletes

all

dependents

of

the

segment.

Only

one

SSA

is

allowed

in

the

DLET

call,

and

this

is

the

only

time

an

SSA

is

applicable

in

a

DLET

call.

No

command

codes

apply

to

the

DLET

call.

If

you

use

a

command

code

in

a

DLET

call,

IMS

disregards

the

command

code.

FLD

Call

The

Field

(FLD)

call

is

used

to

access

a

field

within

a

segment

for

MSDBs

or

DEDBs.

Format

��

FLD

db

pcb

aib

i/o

area

�

ssa

��

Call

Name

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

For

MSDB:

FLD

X

For

DEDB:

FLD

X

X

Parameters

db

pcb

Specifies

the

DB

PCB

for

the

call.

This

parameter

is

an

input

and

output

parameter.

aib

Specifies

the

AIB

for

the

call.

This

parameter

is

an

input

and

output

parameter.

The

following

fields

must

be

initialized

in

the

AIB:

AIBID

Eye

catcher.

This

8-byte

field

must

contain

DFSAIB��.

AIBLEN

AIB

lengths.

This

field

must

contain

the

actual

length

of

the

AIB

that

the

application

program

obtained.

DB

Call:

DLET IBM

Confidential

126

Application

Programming:

Database

Manager

AIBRSNM1

Resource

name.

This

8-byte,

left-justified

field

must

contain

the

name

of

a

DB

PCB.

AIBOALEN

I/O

area

length.

This

field

must

contain

the

length

of

the

I/O

area

specified

in

the

call

list.

i/o

area

Specifies

your

program’s

I/O

area,

which

contains

the

field

search

argument

(FSA)

for

this

call.

This

parameter

is

an

input

parameter.

ssa

Specifies

the

SSAs,

if

any,

that

you

want

to

use

in

this

call.

You

can

use

up

to

15

SSAs

in

this

input

parameter.

The

SSAs

that

you

supply

will

point

to

those

data

areas

that

you

have

defined

for

the

call.

This

parameter

is

optional

for

the

FLD

call.

Usage

Use

the

FLD

call

to

access

and

change

the

contents

of

a

field

within

a

segment.

The

FLD

call

does

two

things

for

you:

it

compares

the

value

of

a

field

to

the

value

you

supply

(FLD/VERIFY),

and

it

changes

the

value

of

the

field

in

the

way

that

you

specify

(FLD/CHANGE).

All

DL/I

command

codes

are

available

to

DEDBs,

using

the

FLD

call.

The

FLD

call

formats

for

DEDBs

are

the

same

as

for

other

DL/I

calls.

So,

if

your

MSDBs

have

been

converted

to

DEDBs,

you

do

not

need

to

change

application

programs

that

use

the

FLD

call.

For

more

information

on

the

FLD

call,

see

“Updating

Segments

in

an

MSDB

or

DEDB:

REPL,

DLET,

ISRT,

and

FLD”

on

page

231.

You

can

also

use

the

FLD

call

in

application

programs

for

DEDBs,

instead

of

the

combination

of

GHU,

REPL,

and

DL/I

calls.

FSAs

The

field

search

argument

(FSA)

is

equivalent

to

the

I/O

area

that

is

used

by

other

DL/I

database

calls.

For

a

FLD

call,

data

is

not

moved

into

the

I/O

area;

rather,

the

FSAs

are

moved

into

the

I/O

area.

Multiple

FSAs

are

allowed

on

one

FLD

call.

This

is

specified

in

the

FSA’s

connector

field.

Each

FSA

can

operate

on

either

the

same

or

different

fields

within

the

target

segment.

The

FSA

that

you

reference

in

a

FLD

call

contains

five

fields.

The

rules

for

coding

these

fields

are

as

follows:

Field

name

This

field

must

be

8

bytes

long.

If

the

field

name

you

are

using

is

less

than

8

bytes,

the

name

must

be

left-justified

and

padded

on

the

right

with

blanks.

FSA

status

code

This

field

is

1

byte.

IMS

returns

one

of

the

following

status

codes

to

this

area

after

a

FLD

call:

�

Successful

A

Invalid

operation

B

Operand

length

invalid

FLD

Call:

FLDIBM

Confidential

Chapter

4.

Writing

DL/I

Calls

for

Database

Management

127

C

Invalid

call—program

tried

to

change

key

field

D

Verify

check

was

unsuccessful

E

Packed

decimal

or

hexadecimal

field

is

invalid

F

Program

tried

to

change

an

unowned

segment

G

Arithmetic

overflow

H

Field

not

found

in

segment

Op

code

This

1-byte

field

contains

one

of

the

following

operators

for

a

change

operation:

+

To

add

the

operand

to

the

field

value

−

To

subtract

the

operand

from

the

field

value

=

To

set

the

field

value

to

the

value

of

the

operand

For

a

verify

operation,

this

field

must

contain

one

of

the

following:

E

Verify

that

the

field

value

and

the

operand

are

equal.

G

Verify

that

the

field

value

is

greater

than

the

operand.

H

Verify

that

the

field

value

is

greater

than

or

equal

to

the

operand.

L

Verify

that

the

field

value

is

less

than

the

operand.

M

Verify

that

the

field

value

is

less

than

or

equal

to

the

operand.

N

Verify

that

the

field

value

is

not

equal

to

the

operand.

Operand

This

variable

length

field

contains

the

value

that

you

want

to

test

the

field

value

against.

The

data

in

this

field

must

be

the

same

type

as

the

data

in

the

segment

field.

(You

define

this

in

the

DBD.)

If

the

data

is

hexadecimal,

the

value

in

the

operand

is

twice

as

long

as

the

field

in

the

database.

If

the

data

is

packed

decimal,

the

operand

does

not

contain

leading

zeros,

so

the

operand

length

might

be

shorter

than

the

actual

field.

For

other

types

of

data,

the

lengths

must

be

equal.

Connector

This

1-byte

field

must

contain

a

blank

if

this

is

the

last

or

only

FSA,

or

an

asterisk

(*)

if

another

FSA

follows

this

one.

The

format

of

SSAs

in

FLD

calls

is

the

same

as

the

format

of

SSAs

in

DL/I

calls.

If

no

SSA

exists,

the

first

segment

in

the

MSDB

or

DEDB

is

retrieved.

For

more

information

on

the

FLD

call

and

some

examples,

see

“Processing

MSDBs

and

DEDBs”

on

page

231.

GN/GHN

Call

The

Get

Next

(GN)

call

is

used

to

retrieve

segments

sequentially

from

the

database.

The

Get

Hold

Next

(GHN)

is

the

hold

form

for

a

GN

call.

Format

FLD

Call:

FLD IBM

Confidential

128

Application

Programming:

Database

Manager

��

GN

db

pcb

i/o

area

aib

ssa

rsa

GHN

db

pcb

i/o

area

aib

ssa

��

Call

Name

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

For

Full-Function:

GN/GHN

X

X

X

For

GSAM:

GN

X

X

X

X

X

For

DEDB:

GN

X

X

X

For

MSDB:

GN

X

Parameters

db

pcb

Specifies

the

DB

PCB

for

the

call.

This

parameter

is

an

input

and

output

parameter.

aib

Specifies

the

AIB

for

the

call.

This

parameter

is

an

input

and

output

parameter.

The

following

fields

must

be

initialized

in

the

AIB:

AIBID

Eye

catcher.

This

8-byte

field

must

contain

DFSAIB��.

AIBLEN

AIB

lengths.

This

field

must

contain

the

actual

length

of

the

AIB

that

the

application

program

obtained.

AIBRSNM1

Resource

name.

This

8-byte,

left-justified

field

must

contain

the

name

of

a

DB

PCB.

AIBOALEN

I/O

area

length.

This

field

must

contain

the

length

of

the

I/O

area

specified

in

the

call

list.

i/o

area

Specifies

the

I/O

area.

This

parameter

is

an

output

parameter.

When

you

issue

one

of

the

Get

calls

successfully,

IMS

returns

the

requested

segment

to

this

area.

If

your

program

issues

any

path

calls,

the

I/O

area

must

be

long

enough

to

hold

the

longest

path

of

concatenated

segments

following

a

path

call.

This

area

always

contains

left-justified

segment

data.

The

I/O

area

points

to

the

first

byte

of

this

area.

When

you

use

the

GN

call

with

GSAM,

the

area

named

by

the

i/o

area

parameter

contains

the

record

you

are

retrieving.

ssa

Specifies

the

SSAs,

if

any,

to

be

used

in

the

call.

This

parameter

is

an

input

parameter.

The

SSAs

you

supply

in

the

call

point

to

data

areas

in

your

program

in

which

you

have

defined

the

SSAs

for

the

call.

You

can

use

up

to

15

SSAs

in

the

parameter.

This

parameter

is

optional

for

the

GN

call.

rsa

Specifies

the

area

in

your

program

where

the

RSA

for

the

record

should

be

returned.

This

output

parameter

is

used

for

GSAM

only

and

is

optional.

See

“GSAM

RSAs”

on

page

111

for

more

information

on

RSAs.

DB

Call:

GN/GHNIBM

Confidential

Chapter

4.

Writing

DL/I

Calls

for

Database

Management

129

Usage,

Get

Next

(GN)

A

Get

Next

(GN)

call

is

a

request

for

a

segment,

as

described

by

the

SSAs

you

supply,

that

is

linked

to

the

call

that

was

issued

prior

to

the

GN

call.

IMS

starts

its

search

at

the

current

position.

When

you

use

theGN

call:

v

Processing

moves

forward

from

current

position

(unless

the

call

includes

the

F

command

code).

v

IMS

uses

the

current

position

(that

was

set

by

the

previous

call)

as

the

search

starting

point.

v

The

segment

retrieved

is

determined

by

a

combination

of

the

next

sequential

position

in

the

hierarchy

and

the

SSAs

included

in

the

call.

v

Be

careful

when

you

use

GN,

because

it

is

possible

to

use

SSAs

that

force

IMS

to

search

to

the

end

of

the

database

without

retrieving

a

segment.

This

is

particularly

true

with

the

“not

equal”

or

“greater

than”

relational

operators.

A

GN

call

retrieves

the

next

segment

in

the

hierarchy

that

satisfies

the

SSAs

that

you

supplied.

Because

the

segment

retrieved

by

a

GN

call

depends

on

the

current

position

in

the

hierarchy,

GN

is

often

issued

after

a

GU

call.

If

no

position

has

been

established

in

the

hierarchy,

GN

retrieves

the

first

segment

in

the

database.

A

GN

call

retrieves

a

segment

or

path

of

segments

by

moving

forward

from

the

current

position

in

the

database.

As

processing

continues,

IMS

looks

for

segments

at

each

level

to

satisfy

the

call.

Example:Sequential

retrieval

in

a

hierarchy

is

always

top

to

bottom

and

left

to

right.

For

example,

if

you

repeatedly

issue

unqualified

GN

calls

against

the

hierarchy

in

Figure

32,

IMS

returns

the

segment

occurrences

in

the

database

record

in

this

order:

1.

A1

(the

root

segment)

2.

B1

and

its

dependents

(C1,D1,F1,D2,D3,E1,E2,

and

G1)

3.

H1

and

its

dependents

(I1,I2,J1,

and

K1).

If

you

issue

an

unqualified

GN

again,

after

IMS

has

returned

K1,

IMS

returns

the

root

segment

occurrence

whose

key

follows

segment

A1

in

the

database.

A

GN

call

that

is

qualified

with

the

segment

type

can

retrieve

all

the

occurrences

of

a

particular

segment

type

in

the

database.

Figure

32.

Hierarchic

Sequence

DB

Call:

GN/GHN IBM

Confidential

130

Application

Programming:

Database

Manager

Example:

If

you

issue

a

GN

call

with

qualified

SSAs

for

segments

A1

and

B1,

and

an

unqualified

SSA

for

segment

type

D,

IMS

returns

segment

D1

the

first

time

you

issue

the

call,

segment

D2

the

second

time

you

issue

the

call,

and

segment

D3

the

third

time

you

issue

the

call.

If

you

issue

the

call

a

fourth

time,

IMS

returns

a

status

code

of

GE,

which

means

that

IMS

could

not

find

the

segment

you

requested.

You

can

use

unqualified

GN

calls

to

retrieve

all

of

the

occurrences

of

a

segment

in

a

hierarchy,

in

their

hierarchic

sequence,

starting

at

the

current

position.

Each

unqualified

GN

call

retrieves

the

next

sequential

segment

forward

from

the

current

position.

For

example,

to

answer

the

processing

request:

Print

out

the

entire

medical

database.

You

would

issue

an

unqualified

GN

call

repeatedly

until

IMS

returned

a

GB

status

code,

indicating

that

it

had

reached

the

end

of

the

database

without

being

able

to

satisfy

your

call.

If

you

issued

the

GN

again

after

the

GB

status

code,

IMS

would

return

the

first

segment

occurrence

in

the

database.

Like

GU,

a

GN

call

can

have

as

many

SSAs

as

the

hierarchy

has

levels.

Using

fully

qualified

SSAs

with

GN

calls

clearly

identifies

the

hierarchic

path

and

the

segment

you

want,

thus

making

it

useful

in

documenting

the

call.

A

GN

call

with

an

unqualified

SSA

retrieves

the

next

occurrence

of

that

segment

type

by

going

forward

from

the

current

position.

GN

with

a

qualified

SSA

retrieves

the

next

occurrence

of

the

specified

segment

type

that

satisfies

the

SSA.

When

you

specify

a

GN

that

has

multiple

SSAs,

the

presence

or

absence

of

unqualified

SSAs

in

the

call

has

no

effect

on

the

operation

unless

you

use

command

codes

on

the

unqualified

SSAs.

IMS

uses

only

qualified

SSAs

plus

the

last

SSA

to

determine

the

path

and

retrieve

the

segment.

Unspecified

or

unqualified

SSAs

for

higher-level

segments

in

the

hierarchy

mean

that

any

high-level

segment

that

is

the

parent

of

the

correct

lower-level,

specified

or

qualified

segment

will

satisfy

the

call.

A

GN

call

with

an

SSA

that

is

qualified

on

the

key

of

the

root

can

produce

different

results

from

a

GU

with

the

same

SSA,

depending

on

the

position

in

the

database

and

the

sequence

of

keys

in

the

database.

If

the

current

position

in

the

database

is

beyond

a

segment

that

would

satisfy

the

SSA,

the

segment

is

not

retrieved

by

the

GN.

GN

returns

the

GE

status

code

if

both

the

following

conditions

are

met:

v

The

value

of

the

key

in

the

SSA

has

an

upper

limit

that

is

set,

for

example,

to

less-than-or-equal-to

the

value.

v

A

segment

with

a

key

greater

than

the

value

in

the

SSA

is

found

in

a

sequential

search

before

the

specified

segment

is

found.

GN

returns

the

GE

status

code,

even

though

the

specified

segment

exists

and

would

be

retrieved

by

a

GU

call.

Usage,

Get

Hold

Next

(GHN)

Before

your

program

can

delete

or

replace

a

segment,

it

must

retrieve

the

segment

and

indicate

to

IMS

that

it

is

going

to

change

the

segment

in

some

way.

The

program

does

this

by

issuing

a

Get

call

with

a

“hold”

before

deleting

or

replacing

DB

Call:

GN/GHNIBM

Confidential

Chapter

4.

Writing

DL/I

Calls

for

Database

Management

131

the

segment.

When

the

program

has

successfully

retrieved

the

segment

with

a

Get

Hold

call,

it

can

delete

the

segment

or

change

one

or

more

fields

(except

the

key

field)

in

the

segment.

The

only

difference

between

Get

calls

with

a

hold

and

Get

calls

without

a

hold

is

that

the

hold

calls

can

be

followed

by

REPL

or

DLET.

The

hold

status

on

the

retrieved

segment

is

canceled

and

must

be

reestablished

before

you

reissue

the

DLET

or

REPL

call.

After

issuing

a

Get

Hold

call,

you

can

issue

more

than

one

REPL

or

DLET

call

to

the

segment

if

you

do

not

issue

intervening

calls

to

the

same

PCB.

After

issuing

a

Get

Hold

call,

if

you

find

out

that

you

do

not

need

to

update

it

after

all,

you

can

continue

with

other

processing

without

releasing

the

segment.

The

segment

is

freed

as

soon

as

the

current

position

changes—when

you

issue

another

call

to

the

same

PCB

that

you

used

for

the

Get

Hold

call.

In

other

words,

a

Get

Hold

call

must

precede

a

REPL

or

DLET

call.

However,

issuing

a

Get

Hold

call

does

not

require

you

to

replace

or

delete

the

segment.

Usage,

HDAM,

PHDAM,

or

DEDB

Database

with

GN

For

database

organizations

other

than

HDAM,

PHDAM,

and

DEDB,

processing

the

database

sequentially

using

GN

calls

returns

the

root

segments

in

ascending

key

sequence.

However,

the

order

of

the

root

segments

for

a

HDAM,

PHDAM,

or

DEDB

database

depends

on

the

randomizing

routine

that

is

specified

for

that

database.

Unless

a

sequential

randomizing

routine

was

specified,

the

order

of

the

root

segments

in

the

database

is

not

in

ascending

key

sequence.

For

a

hierarchic

direct

access

method

(HDAM,

PHDAM)

or

a

DEDB

database,

a

series

of

unqualified

GN

calls

or

GN

calls

that

are

qualified

only

on

the

root

segment:

1.

Returns

all

the

roots

from

one

anchor

point

2.

Moves

to

the

next

anchor

point

3.

Returns

the

roots

from

the

anchor

point

Unless

a

sequential

randomizing

routine

was

specified,

the

roots

on

successive

anchor

points

are

not

in

ascending

key

sequence.

One

situation

to

consider

for

HDAM,

PHDAM,

and

DEDB

organizations

is

when

a

GN

call

is

qualified

on

the

key

field

of

the

root

segment

with

an

equal-to

operator

or

an

equal-to-or-greater-than

operator.

If

IMS

has

an

existing

position

in

the

database,

it

checks

to

ensure

that

the

requested

key

is

equal

to

or

greater

than

the

key

of

the

current

root.

If

it

is

not,

a

GE

status

code

is

returned.

If

it

is

equal

to

or

greater

than

the

current

key

and

is

not

satisfied

using

the

current

position,

IMS

calls

the

randomizing

routine

to

determine

the

anchor

point

for

that

key.

IMS

tries

to

satisfy

the

call

starting

with

the

first

root

of

the

selected

anchor.

Restriction

You

can

use

GN

to

retrieve

the

next

record

of

a

GSAM

database,

but

GHN

is

not

valid

for

GSAM.

GNP/GHNP

Call

The

Get

Next

in

Parent

(GNP)

call

is

used

to

retrieve

dependents

sequentially.

The

Get

Hold

Next

in

Parent

(GHNP)

call

is

the

hold

form

for

the

GNP

call.

DB

Call:

GN/GHN IBM

Confidential

132

Application

Programming:

Database

Manager

Format

��

GNP

GHNP

db

pcb

aib

i/o

area

�

ssa

��

Call

Name

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

For

Full-Function:

GNP/GHNP

X

X

X

For

DEDB:

GNP/GHNP

X

X

X

For

MSDB:

GNP/GHNP

X

Parameters

db

pcb

Specifies

the

DB

PCB

for

the

call.

This

parameter

is

an

input

and

output

parameter.

aib

Specifies

the

AIB

for

the

call.

This

parameter

is

an

input

and

output

parameter.

The

following

fields

must

be

initialized

in

the

AIB:

AIBID

Eye

catcher.

This

8-byte

field

must

contain

DFSAIB��.

AIBLEN

AIB

lengths.

This

field

must

contain

the

actual

length

of

the

AIB

that

the

application

program

obtained.

AIBRSNM1

Resource

name.

This

8-byte,

left-justified

field

must

contain

the

name

of

a

DB

PCB.

AIBOALEN

I/O

area

length.

This

field

must

contain

the

length

of

the

I/O

area

specified

in

the

call

list.

i/o

area

Specifies

the

I/O

area.

This

parameter

is

an

output

parameter.

When

you

issue

the

Get

call

successfully,

IMS

returns

the

requested

segment

to

this

area.

If

your

program

issues

any

path

calls,

the

I/O

area

must

be

long

enough

to

hold

the

longest

path

of

concatenated

segments

following

a

path

call.

The

segment

data

that

this

area

contains

is

always

left-justified.

The

I/O

area

points

to

the

first

byte

of

this

area.

ssa

Specifies

the

SSAs,

if

any,

to

be

used

in

the

call.

This

parameter

is

an

input

parameter.

The

SSAs

you

supply

in

the

call

point

to

data

areas

in

your

program

in

which

you

have

defined

the

SSAs

for

the

call.

You

can

use

up

to

15

SSAs

for

this

parameter.

This

parameter

is

optional

for

the

GNP

call.

Usage,

Get

Next

in

Parent

(GNP)

A

GNP

call

retrieves

segments

sequentially.

The

difference

between

a

GN

and

a

GNP

is

that

GNP

limits

the

segments

that

can

satisfy

the

call

to

the

dependent

segments

of

the

established

parent.

DB

Call:

GNP/GHNPIBM

Confidential

Chapter

4.

Writing

DL/I

Calls

for

Database

Management

133

An

unqualified

GNP

retrieves

the

first

dependent

segment

occurrence

under

the

current

parent.

If

your

current

position

is

already

on

a

dependent

of

the

current

parent,

an

unqualified

GNP

retrieves

the

next

segment

occurrence.

If

you

are

moving

forward

in

the

database,

even

if

you

are

not

retrieving

every

segment

in

the

database,

you

can

use

GNP

to

restrict

the

returned

segments

to

only

those

children

of

a

specific

segment.

Linking

with

Previous

DL/I

Calls

A

GNP

call

is

linked

to

the

previous

DL/I

calls

that

were

issued

by

your

program

in

two

ways:

v

Current

position:

The

search

for

the

requested

segment

starts

at

the

current

position

established

by

the

preceding

GU,

GN,

or

GNP

call.

v

Parentage:

The

search

for

the

requested

segment

is

limited

to

the

dependents

of

the

lowest-level

segment

most

recently

accessed

by

a

GU

or

GN

call.

Parentage

determines

the

end

of

the

search

and

is

in

effect

only

following

a

successful

GU

or

GN

call.

Processing

with

Parentage

You

can

set

parentage

in

two

ways:

v

By

issuing

a

successful

GU

or

GN

call.

When

you

issue

a

successful

GU

or

GN

call,

IMS

sets

parentage

at

the

lowest-level

segment

returned

by

the

call.

Issuing

another

GU

or

GN

call

(but

against

a

different

PCB)

does

not

affect

the

parentage

that

you

set

using

the

first

PCB

in

the

previous

call.

An

unsuccessful

GU

or

GN

call

cancels

parentage.

v

By

using

the

P

command

code

with

a

GU,

GN,

or

GNP

call,

you

can

set

parentage

at

any

level.

How

DL/I

Calls

Affect

Parentage

A

GNP

call

does

not

affect

parentage

unless

it

includes

the

P

command

code.

Unless

you

are

using

a

secondary

index,

REPL

does

not

affect

parentage.

If

you

are

using

a

secondary

index,

and

you

replace

the

indexed

segment,

parentage

is

lost.

For

more

information,

see

“How

Secondary

Indexing

Affects

Your

Program”

on

page

211.

A

DLET

call

does

not

affect

parentage

unless

you

delete

the

established

parent.

If

you

do

delete

the

established

parent,

you

must

reset

parentage

before

issuing

a

GNP

call.

ISRT

affects

parentage

only

when

you

insert

a

segment

that

is

not

a

dependent

of

the

established

parent.

In

this

case,

ISRT

cancels

parentage.

If

the

segment

you

are

inserting

is

a

dependent

at

some

level

of

the

established

parent,

parentage

is

unaffected.

For

example,

in

Figure

38

on

page

194,

assume

segment

B11

is

the

established

parent.

Neither

of

these

two

ISRT

calls

would

affect

parentage:

ISRT

A�������(AKEY����=�A1)

B�������(BKEY����=�B11)

C��������

ISRT

A�������(AKEY����=�A1)

B�������(BKEY����=�B11)

C�������(CKEY����=�C111)

D��������

The

following

ISRT

call

would

cancel

parentage,

because

the

F

segment

is

not

a

direct

dependent

of

B,

the

established

parent:

DB

Call:

GNP/GHNP IBM

Confidential

134

Application

Programming:

Database

Manager

ISRT

A�������(AKEY����=�A1)

F��������

You

can

include

one

or

more

SSAs

in

a

GNP

call.

The

SSAs

can

be

qualified

or

unqualified.

Without

SSAs,

a

GNP

call

retrieves

the

next

sequential

dependent

of

the

established

parent.

The

advantage

of

using

SSAs

with

GNP

is

that

they

allow

you

to

point

IMS

to

a

specific

dependent

or

dependent

type

of

the

established

parent.

A

GNP

with

an

unqualified

SSA

sequentially

retrieves

the

dependent

segment

occurrences

of

the

segment

type

you

have

specified

under

the

established

parent.

A

GNP

with

a

qualified

SSA

describes

to

IMS

the

segment

you

want

retrieved

or

the

segment

that

is

to

become

part

of

the

hierarchic

path

to

the

segment

you

want

retrieved.

A

qualified

GNP

describes

a

unique

segment

only

if

it

is

qualified

on

a

unique

key

field

and

not

a

data

field

or

a

non

unique

key

field.

A

GNP

with

multiple

SSAs

defines

the

hierarchic

path

to

the

segment

you

want.

If

you

specify

SSAs

for

segments

at

levels

above

the

established

parent

level,

those

SSAs

must

be

satisfied

by

the

current

position

at

that

level.

If

they

cannot

be

satisfied

using

the

current

position,

a

GE

status

code

is

returned

and

the

existing

position

remains

unchanged.

The

last

SSA

must

be

for

a

segment

that

is

below

the

established

parent

level.

If

it

is

not,

a

GP

status

code

is

returned.

Multiple

unqualified

SSAs

establish

the

first

occurrence

of

the

specified

segment

type

as

part

of

the

path

you

want.

If

some

SSAs

between

the

parent

and

the

requested

segment

in

a

GNP

call

are

missing,

they

are

generated

internally

as

unqualified

SSAs.

This

means

that

IMS

includes

the

first

occurrence

of

the

segment

from

the

missing

SSA

as

part

of

the

hierarchic

path

to

the

segment

you

have

requested.

Usage,

Get

Hold

Next

in

Parent

(GHNP)

Retrieval

for

the

GHNP

call

is

the

same

as

for

the

GHN

call.

For

more

information,

see

“Usage,

Get

Hold

Next

(GHN)”

on

page

131.

GU/GHU

Call

The

Get

Unique

(GU)

call

is

used

to

directly

retrieve

segments

and

to

establish

a

starting

position

in

the

database

for

sequential

processing.

The

Get

Hold

Unique

(GHU)

is

the

hold

form

for

a

GU

call.

Format

��

�

�

GU

db

pcb

i/o

area

aib

ssa

rsa

GHU

db

pcb

i/o

area

aib

ssa

��

Call

Name

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

For

Full-Function:

GU/GHU

X

X

X

For

GSAM:

GU

X

X

X

X

X

DB

Call:

GNP/GHNPIBM

Confidential

Chapter

4.

Writing

DL/I

Calls

for

Database

Management

135

Call

Name

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

For

DEDB:

GU

X

X

X

For

MSDB:

GU

X

Parameters

db

pcb

Specifies

the

DB

PCB

for

the

call.

This

parameter

is

an

input

and

output

parameter.

aib

Specifies

the

AIB

for

the

call.

This

parameter

is

an

input

and

output

parameter.

The

following

fields

must

be

initialized

in

the

AIB:

AIBID

Eye

catcher.

This

8-byte

field

must

contain

DFSAIB��.

AIBLEN

AIB

lengths.

This

field

must

contain

the

actual

length

of

the

AIB

that

the

application

program

obtained.

AIBRSNM1

Resource

name.

This

8-byte,

left-justified

field

must

contain

the

name

of

a

DB

PCB.

AIBOALEN

I/O

area

length.

This

field

must

contain

the

length

of

the

I/O

area

specified

in

the

call

list.

i/o

area

Specifies

the

I/O

area.

This

parameter

is

an

output

parameter.

When

you

issue

one

of

the

Get

calls

successfully,

IMS

returns

the

requested

segment

to

this

area.

If

your

program

issues

any

path

calls,

the

I/O

area

must

be

long

enough

to

hold

the

longest

path

of

concatenated

segments

following

a

path

call.

The

segment

data

that

this

area

contains

is

always

left-justified.

The

I/O

area

points

to

the

first

byte

of

this

area.

When

you

use

the

GU

call

with

GSAM,

the

area

named

by

the

i/o

area

parameter

contains

the

record

you

are

retrieving.

ssa

Specifies

the

SSAs,

if

any,

to

be

used

in

the

call.

This

parameter

is

an

input

parameter.

The

SSAs

you

supply

in

the

call

point

to

data

areas

in

your

program

in

which

you

have

defined

the

SSAs

for

the

call.

You

can

use

up

to

15

SSAs

for

the

parameter.

This

parameter

is

optional

for

the

GU

call.

rsa

Specifies

the

area

in

your

program

that

contains

the

record

search

argument.

This

required

input

parameter

is

only

used

for

GSAM.

See

“GSAM

RSAs”

on

page

111

for

more

information

on

RSAs.

Usage,

Get

Unique

(GU)

GU

is

a

request

for

a

segment,

as

described

by

the

SSAs

you

supply.

You

use

it

when

you

want

a

specific

segment.

You

can

also

use

it

to

establish

your

position

in

the

database.

The

GU

call

is

the

only

call

that

can

establish

position

backward

in

the

database.

(The

GN

and

GNP

calls,

when

used

with

the

F

command

code,

can

back

up

in

the

DB

Call:

GU/GHU IBM

Confidential

136

Application

Programming:

Database

Manager

database,

but

with

limitations.

“The

F

Command

Code”

on

page

31

explains

this.)

Unlike

GN

and

GNP,

a

GU

call

does

not

move

forward

in

the

database

automatically.

If

you

issue

the

same

GU

call

repeatedly,

IMS

retrieves

the

same

segment

each

time

you

issue

the

call.

If

you

want

to

retrieve

only

particular

segments,

use

fully

qualified

GUs

for

these

segments

instead

of

GNs.

If

you

want

to

retrieve

a

specific

segment

occurrence

or

obtain

a

specific

position

within

the

database,

use

GU.

If

you

want

to

retrieve

a

specific

segment

or

to

set

your

position

in

the

database

to

a

specific

place,

you

generally

use

qualified

GU

calls.

A

GU

call

can

have

the

same

number

of

SSAs

as

the

hierarchy

has

levels,

as

defined

by

the

DB

PCB.

If

the

segment

you

want

is

on

the

fourth

level

of

the

hierarchy,

you

can

use

four

SSAs

to

retrieve

the

segment.

(No

reason

would

ever

exist

to

use

more

SSAs

than

levels

in

the

hierarchy.

If

your

hierarchy

has

only

three

levels,

you

would

never

need

to

locate

a

segment

lower

than

the

third

level.)

The

following

is

additional

information

for

using

the

GU

call

with

the

SSA:

v

A

GU

call

with

an

unqualified

SSA

at

the

root

level

attempts

to

satisfy

the

call

by

starting

at

the

beginning

of

the

database.

If

the

SSA

at

the

root

level

is

the

only

SSA,

IMS

retrieves

the

first

segment

in

the

database.

v

A

GU

call

with

a

qualified

SSA

can

retrieve

the

segment

described

in

the

SSA,

regardless

of

that

segment’s

location

relative

to

current

position.

v

When

you

issue

a

GU

that

mixes

qualified

and

unqualified

SSAs

at

each

level,

IMS

retrieves

the

first

occurrence

of

the

segment

type

that

satisfies

the

call.

v

If

you

leave

out

an

SSA

for

one

of

the

levels

in

a

GU

call

that

has

multiple

SSAs,

IMS

assumes

an

SSA

for

that

level.

The

SSA

that

IMS

assumes

depends

on

current

position:

–

If

IMS

has

a

position

established

at

the

missing

level,

the

SSA

that

IMS

uses

is

derived

from

that

position,

as

reflected

in

the

DB

PCB.

–

If

IMS

does

not

have

a

position

established

at

the

missing

level,

IMS

assumes

an

unqualified

SSA

for

that

level.

–

If

IMS

moves

forward

from

a

position

established

at

a

higher

level,

IMS

assumes

an

unqualified

SSA

for

that

level.

–

If

the

SSA

for

the

root

level

is

missing,

and

IMS

has

position

established

on

a

root,

IMS

does

not

move

from

that

root

when

trying

to

satisfy

the

call.

Usage,

Get

Hold

Unique

(GHU)

Before

your

program

can

delete

or

replace

a

segment,

it

must

retrieve

the

segment

and

indicate

to

IMS

that

it

is

going

to

change

the

segment

in

some

way.

The

program

does

this

by

issuing

a

Get

call

with

a

“hold”

before

deleting

or

replacing

the

segment.

Once

the

program

has

successfully

retrieved

the

segment

with

a

Get

Hold

call,

it

can

delete

the

segment

or

change

one

or

more

fields

(except

the

key

field)

in

the

segment.

The

only

difference

between

Get

calls

with

a

hold

and

without

a

hold

is

that

the

hold

calls

can

be

followed

by

a

REPL

or

DLET

call.

The

hold

status

on

the

retrieved

segment

is

canceled

and

must

be

reestablished

before

you

reissue

the

DLET

or

REPL

call.

After

issuing

a

Get

Hold

call,

you

can

issue

more

than

one

REPL

or

DLET

call

to

the

segment

if

you

do

not

issue

intervening

calls

to

the

same

PCB.

After

issuing

a

Get

Hold

call,

if

you

find

out

that

you

do

not

need

to

update

it

after

all,

you

can

continue

with

other

processing

without

releasing

the

segment.

The

DB

Call:

GU/GHUIBM

Confidential

Chapter

4.

Writing

DL/I

Calls

for

Database

Management

137

segment

is

freed

as

soon

as

the

current

position

changes—when

you

issue

another

call

to

the

same

PCB

you

used

for

the

Get

Hold

call.

In

other

words,

a

Get

Hold

call

must

precede

a

REPL

or

DLET

call.

However,

issuing

a

Get

Hold

call

does

not

require

you

to

replace

or

delete

the

segment.

Restriction

You

can

use

GU

to

retrieve

the

record

with

the

RSA

you

provide

with

a

GSAM

database,

but

GHU

is

not

valid

for

GSAM.

ISRT

Call

The

Insert

(ISRT)

call

is

used

to

load

a

database

and

to

add

one

or

more

segments

to

the

database.

You

can

use

ISRT

to

add

a

record

to

the

end

of

a

GSAM

database

or

for

an

alternate

PCB

that

is

set

up

for

IAFP

processing.

Format

��

ISRT

db

pcb

aib

i/o

area

�

ssa

rsa

��

Call

Name

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

For

Full-Function:

ISRT

X

X

X

For

GSAM:

ISRT

X

X

X

X

X

For

DEDB:

ISRT

X

X

X

For

MSDB:

ISRT

X

Parameters

db

pcb

Specifies

the

DB

PCB

for

the

call.

This

parameter

is

an

input

and

output

parameter.

aib

Specifies

the

AIB

for

the

call.

This

parameter

is

an

input

and

output

parameter.

The

following

fields

must

be

initialized

in

the

AIB:

AIBID

Eye

catcher.

This

8-byte

field

must

contain

DFSAIB��.

AIBLEN

AIB

lengths.

This

field

must

contain

the

actual

length

of

the

AIB

that

the

application

program

obtained.

AIBRSNM1

Resource

name.

This

8-byte,

left-justified

field

must

contain

the

name

of

a

DB

PCB.

AIBOALEN

I/O

area

length.

This

field

must

contain

the

length

of

the

I/O

area

specified

in

the

call

list.

DB

Call:

GU/GHU IBM

Confidential

138

Application

Programming:

Database

Manager

i/o

area

Specifies

the

I/O

area.

This

parameter

is

an

input

parameter.

When

you

want

to

add

a

new

segment

to

the

database,

you

place

the

new

segment

in

this

area

before

issuing

the

ISRT

call.

This

area

must

be

long

enough

to

hold

the

longest

segment

that

IMS

returns

to

this

area.

For

example,

if

none

of

the

segments

your

program

retrieves

or

updates

is

longer

than

48

bytes,

your

I/O

area

should

be

48

bytes.

If

your

program

issues

any

path

calls,

the

I/O

area

must

be

long

enough

to

hold

the

longest

concatenated

segment

following

a

path

call.

The

segment

data

that

this

area

contains

is

always

left-justified.

The

I/O

area

points

to

the

first

byte

of

this

area.

When

you

use

the

ISRT

call

with

GSAM,

the

area

named

by

the

i/o

area

parameter

contains

the

record

you

want

to

add.

The

area

must

be

long

enough

to

hold

these

records.

ssa

Specifies

the

SSAs,

if

any,

to

be

used

in

the

call.

This

parameter

is

an

input

parameter.

The

SSAs

you

supply

in

the

call

point

to

data

areas

in

your

program

in

which

you

have

defined

the

SSAs

for

the

call.

You

can

use

up

to

15

SSAs

on

the

call.

This

parameter

is

required.

rsa

Specifies

the

area

in

your

program

where

the

RSA

should

be

returned

by

DL/I.

This

output

parameter

is

used

for

GSAM

only

and

is

optional.

See

“GSAM

RSAs”

on

page

111

for

more

information

on

RSAs.

Usage

Your

program

uses

the

ISRT

call

to

initially

load

a

database

and

to

add

information

to

an

existing

one.

The

call

looks

the

same

in

either

case.

However,

the

way

it

is

used

is

determined

by

the

processing

option

in

the

PCB.

This

section

explains

how

you

use

ISRT

to

add

segments

to

an

existing

database.

ISRT

can

add

new

occurrences

of

an

existing

segment

type

to

a

HIDAM,

PHIDAM,

HISAM,

HDAM,

PHDAM,

DEDB,

or

MSDB

database.

Restriction:

New

segments

cannot

be

added

to

a

HSAM

database

unless

you

reprocess

the

whole

database

or

add

the

new

segments

to

the

end

of

the

database.

Before

you

issue

the

ISRT

call,

build

the

new

segment

in

the

I/O

area.

The

new

segment

fields

must

be

in

the

same

order

and

of

the

same

length

as

defined

for

the

segment.

(If

field

sensitivity

is

used,

they

must

be

in

the

order

defined

for

the

application

program’s

view

of

the

segment.)

The

DBD

defines

the

fields

that

a

segment

contains

and

the

order

in

which

they

appear

in

the

segment.

Root

Segment

Occurrence

If

you

are

adding

a

root

segment

occurrence,

IMS

places

it

in

the

correct

sequence

in

the

database

by

using

the

key

you

supply

in

the

I/O

area.

If

the

segment

you

are

inserting

is

not

a

root,

but

you

have

just

inserted

its

parent,

you

can

insert

the

child

segment

by

issuing

an

ISRT

call

with

an

unqualified

SSA.

You

must

build

the

new

segment

in

your

I/O

area

before

you

issue

the

ISRT

call.

Also,

you

use

an

unqualified

SSA

when

you

insert

a

root.

When

you

are

adding

new

segment

occurrences

to

an

existing

database,

the

segment

type

must

have

been

defined

in

the

DBD.

You

can

add

new

segment

occurrences

directly

or

sequentially

after

you

have

built

them

in

the

program’s

I/O

area.

At

least

one

SSA

is

required

in

an

ISRT

DB

Calls:

ISRTIBM

Confidential

Chapter

4.

Writing

DL/I

Calls

for

Database

Management

139

call;

the

last

(or

only)

SSA

specifies

the

segment

being

inserted.

To

insert

a

path

of

segments,

you

can

set

the

D

command

code

for

the

highest-level

segment

in

the

path.

Insert

Rules

If

the

segment

type

you

are

inserting

has

a

unique

key

field,

the

place

where

IMS

adds

the

new

segment

occurrence

depends

on

the

value

of

its

key

field.

If

the

segment

does

not

have

a

key

field,

or

if

the

key

is

not

unique,

you

can

control

where

the

new

segment

occurrence

is

added

by

specifying

either

the

FIRST,

LAST,

or

HERE

insert

rule.

Specify

the

rules

on

the

RULES

parameter

of

the

SEGM

statement

of

DBDGEN

for

this

database.

Related

Reading:

For

information

on

performing

a

DBDGEN,

see

IMS

Version

9:

Utilities

Reference:

Database

and

Transaction

Manager.

The

rules

on

the

RULES

parameter

are

as

follows:

FIRST

IMS

inserts

the

new

segment

occurrence

before

the

first

existing

occurrence

of

this

segment

type.

If

this

segment

has

a

nonunique

key,

IMS

inserts

the

new

occurrence

before

all

existing

occurrences

of

that

segment

that

have

the

same

key

field.

LAST

IMS

inserts

the

new

occurrence

after

the

last

existing

occurrence

of

the

segment

type.

If

the

segment

occurrence

has

a

nonunique

key,

IMS

inserts

the

new

occurrence

after

all

existing

occurrences

of

that

segment

type

that

have

the

same

key.

HERE

IMS

assumes

you

have

a

position

on

the

segment

type

from

a

previous

IMS

call.

IMS

places

the

new

occurrence

before

the

segment

occurrence

that

was

retrieved

or

deleted

by

the

last

call,

which

is

immediately

before

current

position.

If

current

position

is

not

within

the

occurrences

of

the

segment

type

being

inserted,

IMS

adds

the

new

occurrence

before

all

existing

occurrences

of

that

segment

type.

If

the

segment

has

a

nonunique

key

and

the

current

position

is

not

within

the

occurrences

of

the

segment

type

with

equal

key

value,

IMS

adds

the

new

occurrence

before

all

existing

occurrences

that

have

equal

key

fields.

You

can

override

the

insert

rule

of

FIRST

with

the

L

command

code.

You

can

override

the

insert

rule

of

HERE

with

either

the

F

or

L

command

code.

This

is

true

for

HDAM

and

PHDAM

root

segments

and

for

dependent

segments

in

any

type

of

database

that

have

either

nonunique

keys

or

no

keys

at

all.

An

ISRT

call

must

have

at

least

one

unqualified

SSA

for

each

segment

that

is

added

to

the

database.

Unless

the

ISRT

is

a

path

call,

the

lowest-level

SSA

specifies

the

segment

being

inserted.

This

SSA

must

be

unqualified.

If

you

use

the

D

command

code,

all

the

SSAs

below

and

including

the

SSA

containing

the

D

command

code

must

be

unqualified.

Provide

qualified

SSAs

for

higher

levels

to

establish

the

position

of

the

segment

being

inserted.

Qualified

and

unqualified

SSAs

can

be

used

to

specify

the

path

to

the

segment,

but

the

last

SSA

must

be

unqualified.

This

final

SSA

names

the

segment

type

to

be

inserted.

If

you

supply

only

one

unqualified

SSA

for

the

new

segment

occurrence,

you

must

be

sure

that

current

position

is

at

the

correct

place

in

the

database

to

insert

that

segment.

DB

Calls:

ISRT IBM

Confidential

140

Application

Programming:

Database

Manager

Mix

Qualified

and

Unqualified

SSAs

You

can

mix

qualified

and

unqualified

SSAs,

but

the

last

SSA

must

be

unqualified.

If

the

SSAs

are

unqualified,

IMS

satisfies

each

unqualified

SSA

with

the

first

occurrence

of

the

segment

type,

assuming

that

the

path

is

correct.

If

you

leave

out

an

SSA

for

one

of

the

levels

in

an

ISRT

with

multiple

SSAs,

IMS

assumes

an

SSA

for

that

level.

The

SSA

that

IMS

assumes

depends

on

current

position:

v

If

IMS

has

a

position

established

at

the

missing

level,

the

SSA

that

IMS

uses

is

derived

from

that

position,

as

reflected

in

the

DB

PCB.

v

If

IMS

does

not

have

a

position

established

at

the

missing

level,

IMS

assumes

an

unqualified

SSA

for

that

level.

v

If

IMS

moves

forward

from

a

position

established

at

a

higher

level,

IMS

assumes

an

unqualified

SSA

for

that

level.

v

If

the

SSA

for

the

root

level

is

missing,

and

IMS

has

position

established

on

a

root,

IMS

does

not

move

from

that

root

when

trying

to

satisfy

the

call.

Using

SSAs

with

the

ISRT

Call

Using

SSAs

with

ISRT

is

a

good

way

to

check

for

the

parent

segments

of

the

segment

you

want

to

insert.

You

cannot

add

a

segment

unless

its

parent

segments

exist

in

the

database.

Instead

of

issuing

Get

calls

for

the

parents,

you

can

define

a

fully

qualified

set

of

SSAs

for

all

the

parents

and

issue

the

ISRT

call

for

the

new

segment.

If

IMS

returns

a

GE

status

code,

at

least

one

of

the

parents

does

not

exist.

You

can

then

check

the

segment

level

number

in

the

DB

PCB

to

find

out

which

parent

is

missing.

If

the

level

number

in

the

DB

PCB

is

00,

IMS

did

not

find

any

of

the

segments

you

specified.

A

01

means

that

IMS

found

only

the

root

segment;

a

02

means

that

the

lowest-level

segment

that

IMS

found

was

at

the

second

level;

and

so

on.

OPEN

Call

The

OPEN

call

is

used

to

explicitly

open

a

GSAM

database.

Format

��

OPEN

gsam

pcb

aib

i/o

area

��

Call

Name

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

For

GSAM:

OPEN

X

X

X

X

X

Parameters

gsam

pcb

Specifies

the

GSAM

PCB

for

the

call.

This

parameter

is

an

input

and

output

parameter.

aib

Specifies

the

AIB

for

the

call.

This

parameter

is

an

input

and

output

parameter.

The

following

fields

must

be

initialized

in

the

AIB:

AIBID

Eye

catcher.

This

8-byte

field

must

contain

DFSAIB��.

DB

Calls:

ISRTIBM

Confidential

Chapter

4.

Writing

DL/I

Calls

for

Database

Management

141

AIBLEN

AIB

lengths.

This

field

must

contain

the

actual

length

of

the

AIB

that

the

application

program

obtained.

AIBRSNM1

Resource

name.

This

8-byte,

left-justified

field

must

contain

the

PCB

name

of

a

GSAM

PCB.

AIBOALEN

I/O

area

length.

This

field

must

contain

the

length

of

the

I/O

area

specified

in

the

call

list.

i/o

area

Specifies

the

kind

of

data

set

you

are

opening.

This

parameter

is

an

input

parameter.

Usage

For

more

information,

see

“Explicitly

Opening

and

Closing

a

GSAM

Database”

on

page

222.

POS

Call

A

qualified

Position

(POS)

call

is

used

to

retrieve

the

location

of

a

specific

sequential

dependent

segment.

In

addition

to

location,

a

qualified

POS

call

using

an

SSA

for

a

committed

segment

will

return

the

sequential

dependent

segment

(SDEP)

time

stamp

and

the

ID

of

the

IMS

owner

that

inserted

it.

For

more

information

about

the

qualified

POS

call,

see

“Locating

the

Last

Inserted

Sequential

Dependent

Segment”

on

page

243.

An

unqualified

POS

points

to

the

logical

end

of

the

sequential

dependent

segment

(SDEP)

data.

By

default,

an

unqualified

POS

call

returns

the

DMACNXTS

value,

which

is

the

next

SDEP

CI

to

be

allocated.

Because

this

CI

has

not

been

allocated,

its

specification

without

the

EXCLUDE

keyword

will

often

result

in

a

DFS2664A

message

from

the

SDEP

utilities.

Format

��

POS

db

pcb

aib

i/o

area

ssa

��

Call

Name

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

For

DEDB:

POS

X

X

Parameters

db

pcb

Specifies

the

DB

PCB

for

the

DEDB

that

you

are

using

for

this

call.

This

parameter

is

an

input

and

output

parameter.

aib

Specifies

the

AIB

for

the

DEDB

that

you

are

using

for

this

call.

This

parameter

is

an

input

and

output

parameter.

The

following

fields

must

be

initialized

in

the

AIB:

AIBID

Eye

catcher.

This

8-byte

field

must

contain

DFSAIB��.

DB

Call:

OPEN IBM

Confidential

142

Application

Programming:

Database

Manager

AIBLEN

AIB

lengths.

This

field

must

contain

the

actual

length

of

the

AIB

that

the

application

program

obtained.

AIBRSNM1

Resource

name.

This

8-byte,

left-justified

field

must

contain

the

name

of

a

DB

PCB.

AIBOALEN

I/O

area

length.

This

field

must

contain

the

length

of

the

I/O

area

specified

in

the

call

list.

i/o

area

Specifies

the

I/O

area

in

your

program

that

you

want

to

contain

the

positioning

information

that

is

returned

by

a

successful

POS

call.

This

parameter

is

an

output

parameter.

The

I/O

area

should

be

long

enough

to

contain

all

entries

returned.

IMS

returns

an

entry

for

each

area

in

the

DEDB.

The

I/O

area

on

a

POS

call

contains

six

words

with

nine

potential

fields

of

data

for

each

entry

returned.

Each

word

is

four

bytes

and

each

field

is

eight

bytes.

When

the

successful

POS

is

an

unqualified

call,

the

I/O

area

contains

the

length

(LL),

followed

by

as

many

entries

as

existing

areas

within

the

database.

You

provide

one

of

the

five

keywords

in

position

one

(word

0

word

1)

of

the

I/O

area,

which

determines

what

data

is

returned

in

the

I/O

area.

Table

23

lists

the

five

keywords

and

the

data

that

an

unqualifed

POS

call

returns

based

on

the

keyword

you

choose

for

position

one.

Table

23.

Unqualified

POS

Call:

Keywords

and

Map

of

the

I/O

Area

Returned

Keyword

word

0

word

1

word

2

word

3

word

4

word

5

<null>

Field

1

Field

2

Field

4

Field

5

V5SEGRBA

Field

1

Field

3

<null>

PCSEGRTS

Field

1

Field

3

Field

6

PSSEGHWM

Field

1

Field

3

Field

7

PCHSEGTS

Field

1

Field

8

Field

6

PCLBTSGTS

Field

1

Field

9

Field

6

Field

1

Area

name

Field

2

Sequential

dependent

next

to

allocate

CI

Field

3

Local

sequential

dependent

next

segment

Field

4

Unused

CIs

in

sequential

dependent

part

Field

5

Unused

CIs

in

independent

overflow

part

Field

6

Highest

committed

SDEP

segment

time

stamp

Field

7

Sequential

dependent

High

Water

Mark

DB

Call:

POSIBM

Confidential

Chapter

4.

Writing

DL/I

Calls

for

Database

Management

143

Field

8

Highest

committed

SDEP

segment

Field

9

Logical

begin

time

stamp

The

following

describes

the

contents

of

each

of

the

nine

fields

in

the

table.

Length

(LL)

(not

shown

in

table)

After

a

successful

POS

call,

IMS

places

the

length

of

the

data

area

for

this

call

in

this

2-byte

field.

(Field

1)

Area

name

This

8-byte

field

contains

the

ddname

from

the

AREA

statement.

Position

IMS

places

two

pieces

of

data

in

this

8-byte

field

after

a

successful

POS

call.

The

first

4

bytes

contain

the

cycle

count,

and

the

second

4

bytes

contain

the

VSAM

RBA.

These

two

fields

uniquely

identify

a

sequential

dependent

segment

during

the

life

of

an

area.

If

the

sequential

dependent

segment

that

is

the

target

of

the

POS

call

is

inserted

in

the

same

synchronization

interval,

no

position

information

is

returned.

Bytes

11-18

contain

X'FF'.

Other

fields

contain

normal

data.

(Field

2)

Sequential

dependent

next

to

allocate

CI

This

is

the

default

if

no

keyword

is

specified

as

input

in

position

one

of

the

I/O

area.

The

data

returned

is

the

8-byte

cycle

count

and

RBA

(CC+RBA)

acquired

from

the

global

DMACNXTS

field.

This

represents

the

next

to

be

pre-allocated

CI

as

a

CI

boundary.

(Field

3)

Local

sequential

dependent

next

segment

The

data

returned

is

the

8-byte

CC+RBA

of

a

segment

boundary

where

the

next

SDEP

to

be

inserted

will

be

placed.

This

data

is

specific

to

only

the

IMS

that

executes

the

POS

call.

Its

scope

is

for

local

IMS

use

only.

(Field

4)

Unused

CIs

in

sequential

dependent

part

This

4-byte

field

contains

the

number

of

unused

control

intervals

in

the

sequential

dependent

part.

(Field

5)

Unused

CIs

in

independent

overflow

part

This

4-byte

field

contains

the

number

of

unused

control

intervals

in

the

independent

overflow

part.

(Field

6)

Highest

committed

SDEP

segment

time

stamp

The

data

returned

is

the

8-byte

time

stamp

of

the

highest

committed

SDEP

segment

across

partners,

or

for

a

local

IMS,

the

time

stamp

of

the

pre-allocated

SDEP

dummy

segment.

If

the

area

(either

local

or

shared)

has

not

been

opened,

or

a

/DBR

was

performed

without

any

subsequent

SDEP

segment

inserts,

the

current

time

is

returned.

DB

Call:

POS IBM

Confidential

144

Application

Programming:

Database

Manager

(Field

7)

Sequential

dependent

High

Water

Mark

This

8-byte

field

contains

the

cycle

count

plus

RBA

(CC+RBA)

of

the

last

pre-allocated

CI

which

is

the

High

Water

Mark

(HWM)

CI.

(Field

8)

Highest

committed

SDEP

segment

The

data

returned

is

the

8-byte

cycle

count

plus

RBA

(CC+RBA)

for

the

highest

committed

SDEP

segment

across

partners,

or

for

a

local

IMS,

the

CC+RBA

of

the

highest

committed

SDEP

segment.

If

the

area

(either

local

or

shared)

has

not

been

opened,

or

a

/DBR

was

performed

without

any

subsequent

SDEP

segment

inserts,

the

HWM

CI

is

returned.

(Field

9)

Logical

begin

time

stamp

This

8-byte

field

contains

the

logical

begin

time

stamp

from

the

DMACLBTS

field.

ssa

Specifies

the

SSA

that

you

want

to

use

in

this

call.

This

parameter

is

an

input

parameter.

The

format

of

SSAs

in

POS

calls

is

the

same

as

the

format

of

SSAs

in

DL/I

calls.

You

can

use

only

one

SSA

in

this

parameter.

This

parameter

is

optional

for

the

POS

call.

Usage

The

POS

call:

v

Retrieves

the

location

of

a

specific

sequential

dependent

segment.

v

Retrieves

the

location

of

last-inserted

sequential

dependent

segment,

its

time

stamp,

and

the

IMS

ID.

v

Retrieves

the

time

stamp

of

a

sequential

dependent

segment

or

Logical

Begin.

v

Tells

you

the

amount

of

unused

space

within

each

DEDB

area.

For

example,

you

can

use

the

information

that

IMS

returns

for

a

POS

call

to

scan

or

delete

the

sequential

dependent

segments

for

a

particular

time

period.

If

the

area

which

the

POS

call

specifies

is

unavailable,

the

I/O

area

is

unchanged,

and

the

status

code

FH

is

returned.

Restrictions

You

can

only

use

the

POS

call

with

a

DEDB.

REPL

Call

The

Replace

(REPL)

call

is

used

to

change

the

values

of

one

or

more

fields

in

a

segment.

Format

��

REPL

db

pcb

aib

i/o

area

�

ssa

��

DB

Call:

POSIBM

Confidential

Chapter

4.

Writing

DL/I

Calls

for

Database

Management

145

Call

Name

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

For

Full-Function:

REPL

X

X

X

For

DEDB:

REPL

X

X

For

MSDB:

REPL

X

Parameters

db

pcb

Specifies

the

DB

PCB

for

the

call.

This

parameter

is

an

input

and

output

parameter.

aib

Specifies

the

AIB

for

the

call.

This

parameter

is

an

input

and

output

parameter.

The

following

fields

must

be

initialized

in

the

AIB:

AIBID

Eye

catcher.

This

8-byte

field

must

contain

DFSAIB��.

AIBLEN

AIB

lengths.

This

field

must

contain

the

actual

length

of

the

AIB

that

the

application

program

obtained.

AIBRSNM1

Resource

name.

This

8-byte,

left-justified

field

must

contain

the

name

of

a

DB

PCB.

AIBOALEN

I/O

area

length.

This

field

must

contain

the

length

of

the

I/O

area

specified

in

the

call

list.

i/o

area

Specifies

the

area

in

your

program

that

communicates

with

IMS.

This

parameter

is

an

input

parameter.

When

you

want

to

replace

an

existing

segment

in

the

database

with

a

new

segment,

you

first

issue

a

Get

Hold

call

to

place

the

new

segment

in

the

I/O

area.

You

can

modify

the

data

in

the

I/O

area,

and

then

issue

the

REPL

call

to

replace

the

segment

in

the

database.

ssa

Specifies

the

SSAs,

if

any,

to

be

used

in

the

call.

This

parameter

is

an

input

parameter.

The

SSAs

you

supply

in

the

call

point

to

data

areas

in

your

program

in

which

you

have

defined

the

SSAs

for

the

call.

You

can

use

up

to

15

SSAs

in

this

parameter.

This

parameter

is

optional

for

the

REPL

call.

Usage

A

REPL

call

must

be

preceded

by

one

of

the

three

Get

Hold

calls.

After

you

retrieve

the

segment,

you

modify

it

in

the

I/O

area,

and

then

issue

a

REPL

call

to

replace

it

in

the

database.

IMS

replaces

the

segment

in

the

database

with

the

segment

you

modify

in

the

I/O

area.

You

cannot

change

the

field

lengths

of

the

segments

in

the

I/O

area

before

you

issue

the

REPL

call.

For

example,

if

you

do

not

change

one

or

more

segments

that

are

returned

on

a

Get

Hold

call,

or

if

you

change

the

segment

in

the

I/O

area

but

do

not

want

the

change

reflected

in

the

database,

you

can

inform

IMS

not

to

replace

the

segment.

Specify

an

unqualified

SSA

with

an

N

command

code

for

that

segment,

which

tells

IMS

not

to

replace

the

segment.

DB

Call:

REPL IBM

Confidential

146

Application

Programming:

Database

Manager

The

N

command

enables

you

to

tell

IMS

not

to

replace

one

or

more

of

the

multiple

segments

that

were

returned

using

the

D

command

code.

However,

you

can

specify

an

N

command

code

even

if

there

were

no

D

command

codes

on

the

preceding

Get

Hold

call.

You

should

not

include

a

qualified

SSA

on

a

REPL

call.

If

you

do,

you

receive

an

AJ

status

code.

For

your

program

to

successfully

replace

a

segment,

the

segment

must

have

been

previously

defined

as

replace-sensitive

by

PROCOPT=A

or

PROCOPT=R

on

the

SENSEG

statement

in

the

PCB.

Related

Reading:

For

more

information

on

the

PROCOPT

option,

see

IMS

Version

9:

Utilities

Reference:

Database

and

Transaction

Manager.

If

your

program

attempts

to

do

a

path

replace

of

a

segment

where

it

does

not

have

replace

sensitivity,

and

command

code

N

is

not

specified,

the

data

for

the

segment

in

the

I/O

area

for

the

REPL

call

must

be

the

same

as

the

segment

returned

on

the

preceding

Get

Hold

call.

If

the

data

changes

in

this

situation,

your

program

receives

the

status

code,

AM,

and

data

does

not

change

as

a

result

of

the

REPL

call.

DB

Call:

REPLIBM

Confidential

Chapter

4.

Writing

DL/I

Calls

for

Database

Management

147

IBM

Confidential

148

Application

Programming:

Database

Manager

Chapter

5.

Writing

DL/I

Calls

for

System

Services

This

chapter

describes

the

calls

you

can

use

to

obtain

IMS

DB

system

services

for

use

in

each

type

of

application

program,

and

the

parameters

for

each

call.

Each

call

description

contains:

v

A

syntax

diagram

v

Definitions

for

parameters

that

are

available

to

the

call

v

Details

on

how

to

use

the

call

in

your

application

program

v

Restrictions

on

call

usage,

where

applicable

Each

parameter

is

described

as

an

input

parameter

or

output

parameter.

“Input”

refers

to

input

to

IMS

from

the

application

program.

“Output”

refers

to

output

from

IMS

to

the

application

program.

Syntax

diagrams

for

these

calls

begin

with

the

function

parameter.

The

call

interface

(xxxTDLI)

and

parmcount

(if

it

is

required)

are

not

included

in

the

syntax

diagrams.

In

this

Chapter:

v

“APSB

Call”

on

page

150

v

“CHKP

(Basic)

Call”

on

page

150

v

“CHKP

(Symbolic)

Call”

on

page

151

v

“DPSB

Call”

on

page

153

v

“GMSG

Call”

on

page

154

v

“GSCD

Call”

on

page

156

v

“ICMD

Call”

on

page

157

v

“INIT

Call”

on

page

159

v

“INQY

Call”

on

page

163

v

“LOG

Call”

on

page

169

v

“PCB

Call

(CICS

Online

Programs

Only)”

on

page

171

v

“RCMD

Call”

on

page

172

v

“ROLB

Call”

on

page

173

v

“ROLL

Call”

on

page

174

v

“ROLS

Call”

on

page

175

v

“SETS/SETU

Call”

on

page

176

v

“SNAP

Call”

on

page

177

v

“STAT

Call”

on

page

180

v

“SYNC

Call”

on

page

182

v

“TERM

Call

(CICS

Online

Programs

Only)”

on

page

183

v

“XRST

Call”

on

page

184

Related

Reading:

For

specific

information

about

coding

your

program

in

assembler

language,

C

language,

COBOL,

Pascal,

and

PL/I,

see

Chapter

3,

“Defining

Application

Program

Elements,”

on

page

77

for

the

complete

structure.

For

information

on

calls

that

apply

to

TM,

see

IMS

Version

9:

Application

Programming:

Transaction

Manager.

Calls

within

the

section

are

in

alphabetic

order.

For

information

on

DL/I

calls

used

for

transaction

management

and

EXEC

DLI

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

149

commands

used

in

CICS,

see

IMS

Version

9:

Application

Programming:

Transaction

Manager

and

IMS

Version

9:

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS.

APSB

Call

The

Allocate

PSB

(APSB)

calls

are

used

to

allocate

a

PSB

for

an

ODBA

application.

Format

��

APSB

aib

��

Call

Name

DB/DC

IMS

DB

DCCTL

DB

Batch

TM

Batch

APSB

X

X

Parameters

aib

Specifies

the

application

interface

block

(AIB)

that

is

used

for

the

call.

This

parameter

is

an

input

and

output

parameter.

The

following

fields

must

be

initialized

in

the

AIB:

AIBID

Eye

catcher.

This

8-byte

field

must

contain

DFSAIB��.

AIBLEN

AIB

lengths.

This

field

must

contain

the

actual

length

of

the

AIB

that

the

application

program

obtained.

AIBRSNM1

Resource

name.

This

8-byte,

left-justified

field

must

contain

the

PSB

name.

AIBRSNM2

This

is

the

4-character

ID

of

ODBA

startup

table

representing

the

target

IMS

of

the

APSB.

Usage

The

ODBA

application

must

load

or

be

link

edited

with

the

ODBA

application

interface

AERTDLI.

The

APSB

call

must

be

issued

prior

to

any

DLI

calls.

The

APSB

call

uses

the

AIB

to

allocate

a

PSB

for

ODBA

application

programs.

RRS/MVS

must

be

active

at

the

time

of

the

APSB

call.

If

RRS/MVS

is

not

active,

the

APSB

call

will

fail

and

the

application

will

receive:

AIBRETRN

=

X'00000108'

AIBREASN

=

X'00000548'

CHKP

(Basic)

Call

A

basic

Checkpoint

(CHKP)

call

is

used

for

recovery

purposes.

The

ODBA

interface

does

not

support

this

call.

IBM

Confidential

150

Application

Programming:

Database

Manager

Format

��

CHKP

i/o

pcb

aib

i/o

area

��

Call

Name

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

CHKP

X

X

X

X

X

Parameters

i/o

pcb

Specifies

the

I/O

PCB

for

the

call.

A

basic

CHKP

call

must

refer

to

the

I/O

PCB.

This

parameter

is

an

input

and

output

parameter.

aib

Specifies

the

AIB

for

the

call.

This

parameter

is

an

input

and

output

parameter.

The

following

fields

must

be

initialized

in

the

AIB:

AIBID

Eye

catcher.

This

8-byte

field

must

contain

DFSAIB��.

AIBLEN

AIB

lengths.

This

field

must

contain

the

actual

length

of

the

AIB

that

the

application

program

obtained.

AIBRSNM1

Resource

name.

This

8-byte,

left-justified

field

must

contain

the

PCB

name,

IOPCB���.

AIBOALEN

I/O

area

length.

This

field

must

contain

the

length

of

the

I/O

area

specified

in

the

call

list.

i/o

area

Specifies

your

program’s

I/O

area

that

contains

the

8-byte

checkpoint

ID.

This

parameter

is

an

input

parameter.

If

the

program

is

an

MPP

or

a

message-driven

BMP,

the

CHKP

call

implicitly

returns

the

next

input

message

to

this

I/O

area.

Therefore,

the

area

must

be

large

enough

to

hold

the

longest

returned

message.

Usage

Basic

CHKP

commits

the

changes

your

program

has

made

to

the

database

and

establishes

places

in

your

program

from

which

you

can

restart

your

program,

if

it

terminates

abnormally.

CHKP

(Symbolic)

Call

A

symbolic

Checkpoint

(CHKP)

call

is

used

for

recovery

purposes.

If

you

use

the

symbolic

Checkpoint

call

in

your

program,

you

also

must

use

the

XRST

call.

The

ODBA

interface

does

not

support

this

call.

Format

System

Service

Call:

CHKP

(Basic)IBM

Confidential

Chapter

5.

Writing

DL/I

Calls

for

System

Services

151

��

CHKP

i/o

pcb

aib

i/o

area

length

i/o

area

�

area

length

area

��

Call

Name

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

CHKP

X

X

X

X

X

Parameters

i/o

pcb

Specifies

the

I/O

PCB

for

the

call.

This

parameter

is

an

input

and

output

parameter.

A

symbolic

CHKP

call

must

refer

to

the

I/O

PCB.

aib

Specifies

the

AIB

for

the

call.

This

parameter

is

an

input

and

output

parameter.

The

following

fields

must

be

initialized

in

the

AIB:

AIBID

Eye

catcher.

This

8-byte

field

must

contain

DFSAIB��.

AIBLEN

AIB

lengths.

This

field

must

contain

the

actual

length

of

the

AIB

that

the

application

program

obtained.

AIBRSNM1

Resource

name.

This

8-byte,

left-justified

field

must

contain

the

PCB

name,

IOPCB���.

AIBOALEN

I/O

area

length.

This

field

must

contain

the

length

of

the

I/O

area

specified

in

the

call

list.

i/o

area

length

This

parameter

is

no

longer

used

by

IMS.

For

compatibility

reasons,

this

parameter

must

be

included

in

the

call,

and

it

must

contain

a

valid

address.

You

can

get

a

valid

address

by

specifying

the

name

of

any

area

in

your

program.

i/o

area

Specifies

the

I/O

area

in

your

program

that

contains

the

8-byte

ID

for

this

checkpoint.

This

parameter

is

an

input

parameter.

If

the

program

is

a

message-driven

BMP,

the

CHKP

call

implicitly

returns

the

next

input

message

into

this

I/O

area.

Therefore,

the

area

must

be

large

enough

to

hold

the

longest

returned

message.

area

length

Specifies

a

4-byte

field

in

your

program

that

contains

the

length

(in

binary)

of

the

area

to

checkpoint.

This

parameter

is

an

input

parameter.

You

can

specify

up

to

seven

area

lengths.

For

each

area

length,

you

must

also

specify

the

area

parameter.

All

seven

area

parameters

(and

corresponding

length

parameters)

are

optional.

When

you

restart

the

program,

IMS

restores

only

the

areas

you

specified

in

the

CHKP

call.

area

Specifies

the

area

in

your

program

that

you

want

IMS

to

checkpoint.

This

parameter

is

an

input

parameter.

You

can

specify

up

to

seven

areas.

Each

area

specified

must

be

preceded

by

an

area

length

parameter.

System

Service

Call:

CHKP

(Symbolic)

Call IBM

Confidential

152

Application

Programming:

Database

Manager

Usage

The

symbolic

CHKP

call

commits

the

changes

your

program

has

made

to

the

database

and

establishes

places

in

your

program

from

which

you

can

restart

your

program,

if

it

terminates

abnormally.

In

addition,

the

CHKP

call:

v

Works

with

the

Extended

Restart

(XRST)

call

to

restart

your

program

if

it

terminates

abnormally

v

Enables

you

to

save

as

many

as

seven

data

areas

in

your

program,

which

are

restored

when

your

program

is

restarted

An

XRST

call

is

required

before

a

CHKP

call

to

indicate

to

IMS

that

symbolic

check

points

are

being

taken.

The

XRST

call

must

specify

a

checkpoint

ID

of

blanks.

For

more

information,

see

“XRST

Call”

on

page

184.

Restrictions

The

Symbolic

CHKP

call

is

allowed

only

from

batch

and

BMP

applications.

DPSB

Call

The

DPSB

call

is

used

to

deallocate

IMS

DB

resources.

Format

��

DPSB

aib

��

Call

Name

DB/DC

IMS

DB

DCCTL

DB

Batch

TM

Batch

DPSB

X

X

Parameters

aib

Specifies

the

application

interface

block

(AIB)

that

is

used

for

the

call.

This

parameter

is

an

input

and

output

parameter.

The

following

fields

must

be

initialized

in

the

AIB:

AIBID

Eye

catcher.

This

8-byte

field

must

contain

DFSAIB��.

AIBLEN

AIB

lengths.

This

field

must

contain

the

actual

length

of

the

AIB

that

the

application

program

obtained.

AIBRSNM1

Resource

name.

This

8-byte,

left-justified

field

must

contain

the

PSB

name.

AIBSFUNC

Subfunction

code.

This

field

must

contain

one

of

the

8-byte

subfunction

codes

as

follows:

bbbbbbbb

(Null)

PREPbbbb

Usage

The

DPSB

call

is

used

by

an

application

running

in

a

z/OS

application

region

to

deallocate

a

PSB.

If

the

PREP

subfunction

is

not

used,

the

application

must

System

Service

Call:

CHKP

(Symbolic)

CallIBM

Confidential

Chapter

5.

Writing

DL/I

Calls

for

System

Services

153

activate

sync-point

processing

prior

to

issuing

the

DPSB.

Use

the

RRS/MVS

SRRCMIT/ATRCMIT

calls

to

activate

the

sync-point

process.

Refer

to

MVS

Programming:

Resource

Recovery

for

more

information

on

these

calls.

If

the

DPSB

is

issued

before

changes

are

committed,

and,

or

locks

released,

the

application

will

receive:

AIBRETRN

=

X'00000104'

AIBREASN

=

X'00000490'

The

thread

will

not

be

terminated.

The

application

should

issue

a

SRRCMIT

or

SRRBACK

call,

and

retry

the

DPSB.

The

PREP

sub-function

allows

the

application

to

issue

the

DPSB

prior

to

activating

the

sync-point

process.

The

sync-point

activation

can

occur

at

a

later

time,

but

still

must

be

issued.

GMSG

Call

A

Get

Message

(GMSG)

call

is

used

in

an

automated

operator

(AO)

application

program

to

retrieve

a

message

from

the

AO

exit

routine

DFSAOE00.

Format

��

GMSG

aib

i/o

area

��

Parameters

aib

Specifies

the

application

interface

block

(AIB)

to

be

used

for

this

call.

This

parameter

is

an

input

and

output

parameter.

You

must

initialize

the

following

fields

in

the

AIB:

AIBID

Eye

catcher.

This

8-byte

field

must

contain

DFSAIB��.

AIBLEN

AIB

lengths.

This

field

must

contain

the

length

of

the

AIB

the

application

actually

obtained.

AIBSFUNC

Subfunction

code.

This

field

must

contain

one

of

the

following

8-byte

subfunction

codes:

8-blanks

(null)

When

coded

with

an

AOI

token

in

the

AIBRSNM1

field,

indicates

IMS

is

to

return

when

no

AOI

message

is

available

for

the

application

program.

WAITAOI

When

coded

with

an

AOI

token

in

the

AIBRSNM1

field,

WAITAOI

indicates

IMS

is

to

wait

for

an

AOI

message

when

none

is

currently

available

for

the

application

program.

This

subfunction

value

is

invalid

if

an

AOI

token

is

not

coded

in

AIBRSNM1.

In

this

case,

error

return

and

reason

codes

are

returned

in

the

AIB.

The

value

WAITAOI

must

be

left

justified

and

padded

on

the

right

with

a

blank

character.

System

Service

Call:

CHKP

(Symbolic)

Call IBM

Confidential

154

Application

Programming:

Database

Manager

AIBRSNM1

Resource

name.

This

field

must

contain

the

AOI

token

or

blanks.

The

AOI

token

identifies

the

message

the

AO

application

is

to

retrieve.

The

token

is

supplied

for

the

first

segment

of

a

message.

If

the

message

is

a

multisegment

message,

set

this

field

to

blanks

to

retrieve

the

second

through

the

last

segment.

AIBRSNM1

is

an

8-byte

alphanumeric

left-justified

field

that

is

padded

on

the

right

with

blanks.

AIBOALEN

I/O

area

length.

This

field

must

contain

the

length

of

the

I/O

area

specified

in

the

call

list.

This

field

is

not

changed

by

IMS.

AIBOAUSE

Length

of

the

data

returned

in

the

I/O

area.

This

parameter

is

an

output

parameter.

When

partial

data

is

returned

because

the

I/O

area

is

not

large

enough,

AIBOAUSE

contains

the

length

required

to

receive

all

of

the

data,

and

AIBOALEN

contains

the

actual

length

of

the

data.

i/o

area

Specifies

the

I/O

area

to

use

for

this

call.

This

parameter

is

an

output

parameter.

The

I/O

area

should

be

large

enough

to

hold

the

largest

segment

that

is

passed

from

IMS

to

the

AO

application

program.

If

the

I/O

area

is

not

large

enough

to

contain

all

the

data,

IMS

returns

partial

data.

Usage

GMSG

is

used

in

an

AO

application

program

to

retrieve

a

message

associated

with

an

AOI

token.

The

AO

application

program

must

pass

an

8-byte

AOI

token

to

IMS

in

order

to

retrieve

the

first

segment

of

the

message.

IMS

uses

the

AOI

token

to

associate

messages

from

AO

exit

routine

DFSAOE00

with

the

GMSG

call

from

an

AO

application

program.

IMS

returns

to

the

application

program

only

those

messages

associated

with

the

AOI

token.

By

using

different

AOI

tokens,

DFSAOE00

can

direct

messages

to

different

AO

application

programs.

Note

that

your

installation

defines

the

AOI

token.

Related

Reading:

For

more

information

on

the

AOI

exits,

see

IMS

Version

9:

Customization

Guide.

To

retrieve

the

second

through

the

last

segments

of

a

multisegment

message,

issue

GMSG

calls

with

no

token

specified

(set

the

token

to

blanks).

If

you

want

to

retrieve

all

segments

of

a

message,

you

must

issue

GMSG

calls

until

all

segments

are

retrieved.

IMS

discards

all

nonretrieved

segments

of

a

multisegment

message

when

a

new

GMSG

call

that

specifies

an

AOI

token

is

issued.

Your

AO

application

program

can

specify

a

wait

on

the

GMSG

call.

If

no

messages

are

currently

available

for

the

associated

AOI

token,

your

AO

application

program

waits

until

a

message

is

available.

The

decision

to

wait

is

specified

by

the

AO

application

program,

unlike

a

WFI

transaction

where

the

wait

is

specified

in

the

transaction

definition.

The

wait

is

done

on

a

call

basis;

that

is,

within

a

single

application

program

some

GMSG

calls

can

specify

waits,

while

others

do

not.

Table

24

shows,

by

IMS

environment,

the

types

of

AO

application

programs

that

can

issue

GMSG.

GMSG

is

also

supported

from

a

CPI-C

driven

program.

System

Service

Call:

GMSGIBM

Confidential

Chapter

5.

Writing

DL/I

Calls

for

System

Services

155

Table

24.

GMSG

Support

by

Application

Region

Type

Application

Region

Type

IMS

Environment

DBCTL

DB/DC

DCCTL

DRA

thread

Yes

Yes

N/A

BMP

(nonmessage-driven)

Yes

Yes

Yes

BMP

(message-driven)

N/A

Yes

Yes

MPP

N/A

Yes

Yes

IFP

N/A

Yes

Yes

Restrictions

A

CPI-C

driven

program

must

issue

an

allocate

PSB

(APSB)

call

before

issuing

GMSG.

GSCD

Call

This

sectioncontains

product-sensitive

programming

interface

information.

A

Get

System

Contents

Directory

(GSCD)

call

retrieves

the

address

of

the

IMS

system

contents

directory

for

batch

programs.

The

ODBA

interface

does

not

support

this

call.

Format

��

GSCD

db

pcb

i/o

pcb

aib

i/o

area

��

Call

Name

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

GSCD

X

X

Parameters

db

pcb

Specifies

the

DB

PCB

for

the

call.

This

parameter

is

an

input

and

output

parameter.

i/o

pcb

Specifies

the

I/O

PCB

for

the

call.

This

parameter

is

an

input

and

output

parameter.

aib

Specifies

the

AIB

for

the

call.

This

parameter

is

an

input

and

output

parameter.

The

following

fields

must

be

initialized

in

the

AIB:

AIBID

Eye

catcher.

This

8-byte

field

must

contain

DFSAIB��.

AIBLEN

AIB

lengths.

This

field

must

contain

the

actual

length

of

the

AIB

that

the

application

program

obtained.

System

Service

Call:

GMSG IBM

Confidential

156

Application

Programming:

Database

Manager

AIBRSNM1

Resource

name.

This

8-byte,

left-justified

field

must

contain

the

PCB

name,

IOPCB���

(if

the

I/O

PCB

is

used),

or

the

name

of

a

DB

PCB

(if

a

DB

PCB

is

used).

AIBOALEN

I/O

area

length.

This

field

must

contain

the

length

of

the

I/O

area

specified

in

the

call

list.

i/o

area

Specifies

the

I/O

area,

which

must

be

8

bytes

long.

IMS

places

the

address

of

the

system

contents

directory

(SCD)

in

the

first

4

bytes

and

the

address

of

the

program

specification

table

(PST)

in

the

second

4

bytes.

This

parameter

is

an

output

parameter.

Usage

IMS

does

not

return

a

status

code

to

a

program

after

it

issues

a

successful

GSCD

call.

The

status

code

from

the

previous

call

that

used

the

same

PCB

remains

unchanged

in

the

PCB.

For

more

information

on

GSCD,

see

IMS

Version

9:

Application

Programming:

Design

Guide.

Restriction

The

GSCD

call

can

be

issued

only

from

batch

application

programs.

ICMD

Call

An

Issue

Command

(ICMD)

call

enables

an

automated

operator

(AO)

application

program

to

issue

an

IMS

command

and

retrieve

the

first

command

response

segment.

Format

��

ICMD

aib

i/o

area

��

Parameters

aib

Specifies

the

application

interface

block

(AIB)

for

this

call.

This

parameter

is

an

input

and

output

parameter.

The

following

fields

must

be

initialized

in

the

AIB:

AIBID

Eye

catcher.

This

8-byte

field

must

contain

DFSAIB��.

AIBLEN

AIB

lengths.

This

field

must

contain

the

actual

length

of

the

AIB

that

the

application

program

obtained.

AIBOALEN

I/O

area

length.

This

field

must

contain

the

length

of

the

I/O

area

specified

in

the

call

list.

This

field

is

not

changed

by

IMS.

AIBOAUSE

Length

of

data

returned

in

the

I/O

area.

This

parameter

is

an

output

parameter.

System

Service

Call:

GSCDIBM

Confidential

Chapter

5.

Writing

DL/I

Calls

for

System

Services

157

Your

program

must

check

this

field

to

determine

whether

the

ICMD

call

returned

data

to

the

I/O

area.

When

the

only

response

to

the

command

is

a

DFS058

message

indicating

that

the

command

is

either

in

progress

or

complete,

the

response

is

not

returned.

When

partial

data

is

returned

because

the

I/O

area

is

not

large

enough,

AIBOAUSE

contains

the

length

required

to

receive

all

of

the

data,

and

AIBOALEN

contains

the

actual

length

of

the

data.

i/o

area

Specifies

the

I/O

area

to

use

for

this

call.

This

parameter

is

an

input

and

output

parameter.

The

I/O

area

should

be

large

enough

to

hold

the

largest

command

that

is

passed

from

the

AO

application

program

to

IMS,

or

the

largest

command

response

segment

that

is

passed

from

IMS

to

the

AO

application

program.

If

the

I/O

area

is

not

large

enough

to

contain

all

the

data,

IMS

returns

partial

data.

Usage

ICMD

enables

an

AO

application

to

issue

an

IMS

command

and

retrieve

the

first

command

response

segment.

When

using

ICMD,

put

the

IMS

command

that

is

to

be

issued

in

your

application

program’s

I/O

area.

After

IMS

has

processed

the

command,

it

returns

the

first

segment

of

the

response

message

to

your

AO

application

program’s

I/O

area.

To

retrieve

subsequent

segments

(one

segment

at

a

time)

use

the

RCMD

call.

Some

IMS

commands

that

complete

successfully

result

in

a

DFS058

message

indicating

that

the

command

is

complete.

Some

IMS

commands

that

are

processed

asynchronously

result

in

a

DFS058

message

indicating

that

the

command

is

in

progress.

For

a

command

entered

on

an

ICMD

call,

neither

DFS058

message

is

returned

to

the

AO

application

program.

In

this

case,

the

AIBOAUSE

field

is

set

to

0

to

indicate

that

no

segment

was

returned.

So,

your

AO

application

program

must

check

the

AIBOAUSE

field

along

with

the

return

and

reason

codes

to

determine

if

a

response

was

returned.

Related

Reading:

For

more

information

on

the

AOI

exits,

see

IMS

Version

9:

Customization

Guide.

Table

25

shows,

by

IMS

environment,

the

types

of

AO

application

programs

that

can

issue

ICMD.

ICMD

is

also

supported

from

a

CPI-C

driven

program.

Table

25.

ICMD

Support

by

Application

Region

Type

Application

Region

Type

IMS

Environment

DBCTL

DB/DC

DCCTL

DRA

thread

Yes

Yes

N/A

BMP

(nonmessage-driven)

Yes

Yes

Yes

BMP

(message-driven)

N/A

Yes

Yes

MPP

N/A

Yes

Yes

IFP

N/A

Yes

Yes

See

IMS

Version

9:

Command

Reference

for

a

list

of

commands

that

can

be

issued

using

the

ICMD

call.

System

Service

Call:

ICMD IBM

Confidential

158

Application

Programming:

Database

Manager

Restrictions

Before

issuing

ICMD,

a

CPI-C

driven

program

must

issue

an

allocate

PSB

(APSB)

call.

INIT

Call

The

Initialize

(INIT)

call

allows

an

application

to

receive

status

codes

regarding

deadlock

occurrences

and

data

availability

(by

checking

each

DB

PCB).

Format

��

INIT

i/o

pcb

aib

i/o

area

��

Call

Name

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

INIT

X

X

X

X

X

Parameters

i/o

pcb

Specifies

the

I/O

PCB

for

the

call.

INIT

must

refer

to

the

I/O

PCB.

This

parameter

is

an

input

and

output

parameter.

aib

Specifies

the

AIB

for

the

call.

This

parameter

is

an

input

and

output

parameter.

The

following

fields

must

be

initialized

in

the

AIB:

AIBID

Eye

catcher.

This

8-byte

field

must

contain

DFSAIB��.

AIBLEN

AIB

lengths.

This

field

must

contain

the

actual

length

of

the

AIB

that

the

application

program

obtained.

AIBRSNM1

Resource

name.

This

8-byte,

left-justified

field

must

contain

the

PCB

name,

IOPCB���.

AIBOALEN

I/O

area

length.

This

field

must

contain

the

length

of

the

I/O

area

specified

in

the

call

list.

i/o

area

Specifies

the

I/O

area

in

your

program

that

contains

the

character

string

or

strings

indicating

which

INIT

functions

are

requested.

This

parameter

is

an

input

parameter.

INIT

function

character

strings

include

DB

QUERY,

STATUS

GROUPA,

and

STATUS

GROUPB.

Usage

You

can

use

the

call

in

any

application

program,

including

IMS

batch

in

a

sharing

environment.

Specify

the

function

in

your

application

program

with

a

character

string

in

the

I/O

area.

System

Service

Call:

ICMDIBM

Confidential

Chapter

5.

Writing

DL/I

Calls

for

System

Services

159

Example:

Use

the

format

LLZZCharacter-String,

where

LL

is

the

length

of

the

character

string

including

the

length

of

the

LLZZ

portion;

ZZ

must

be

binary

0.

For

PL/I,

you

must

define

the

LL

field

as

a

fullword;

the

value

is

the

length

of

the

character

string

including

the

length

of

the

LLZZ

portion,

minus

2.

If

the

I/O

area

is

invalid,

an

AJ

status

code

is

returned.

Table

28

on

page

161

and

Table

29

on

page

161

contain

sample

I/O

areas

for

INIT

when

it

is

used

with

assembler

language,

COBOL,

C

language,

Pascal,

and

PL/I.

Determining

Database

Availability:

INIT

DBQUERY

When

the

INIT

call

is

issued

with

the

DBQUERY

character

string

in

the

I/O

area,

the

application

program

can

obtain

information

regarding

the

availability

of

data

for

each

PCB.

Table

26

contains

a

sample

I/O

area

for

the

INIT

call

with

DBQUERY

for

assembler

language,

COBOL,

C

language,

and

Pascal.

Table

26.

INIT

DBQUERY:

Examples

for

ASMTDLI,

CBLTDLI,

CTDLI,

and

PASTDLI

L

L

Z

Z

Character

String

00

0B

00

00

DBQUERY

Note:

The

LL

value

of

X'0B'

is

a

hexadecimal

representation

of

decimal

11.

ZZ

fields

are

binary.

Table

27

contains

a

sample

I/O

area

for

the

INIT

call

with

DBQUERY

for

PL/I.

Table

27.

INIT

DBQUERY:

I/O

Area

Example

for

PLITDLI

L

L

L

L

Z

Z

Character

String

00

00

00

0B

00

00

DBQUERY

Note:

The

LL

value

of

X'0B'

is

a

hexadecimal

representation

of

decimal

11.

ZZ

fields

are

binary.

LL

or

LLLL

A

2-byte

field

that

contains

the

length

of

the

character

string,

plus

two

bytes

for

LL.

For

the

PLITDLI

interface,

use

the

4-byte

field

LLLL.

When

you

use

the

AIB

interface

(AIBTDLI),

PL/I

programs

require

only

a

2-byte

field.

ZZ

A

2-byte

field

of

binary

zeros.

One

of

the

following

status

codes

is

returned

for

each

database

PCB:

NA

At

least

one

of

the

databases

that

can

be

accessed

using

this

PCB

is

not

available.

A

call

made

using

this

PCB

probably

results

in

a

BA

or

BB

status

code

if

the

INIT

STATUS

GROUPA

call

has

been

issued,

or

in

a

DFS3303I

message

and

3303

pseudoabend

if

it

has

not.

An

exception

is

when

the

database

is

not

available

because

dynamic

allocation

failed.

In

this

case,

a

call

results

in

an

AI

(unable

to

open)

status

code.

In

a

DCCTL

environment,

the

status

code

is

always

NA.

NU

At

least

one

of

the

databases

that

can

be

updated

using

this

PCB

is

unavailable

for

update.

An

ISRT,

DLET,

or

REPL

call

using

this

PCB

might

result

in

a

BA

status

code

if

the

INIT

STATUS

GROUPA

call

has

been

issued,

or

in

a

DFS3303I

message

and

3303

pseudoabend

if

it

has

not.

The

database

that

caused

the

NU

status

code

might

be

required

only

for

delete

processing.

In

that

case,

DLET

calls

fail,

but

ISRT

and

REPL

calls

succeed.

��

The

data

that

can

be

accessed

with

this

PCB

can

be

used

for

all

functions

that

the

PCB

allows.

DEDBs

and

MSDBs

always

have

the

��

status

code.

System

Service

Call:

INIT IBM

Confidential

160

Application

Programming:

Database

Manager

In

addition

to

data

availability

status,

the

name

of

the

database

organization

of

the

root

segment

is

returned

in

the

segment

name

field

of

the

PCB.

The

segment

name

field

contains

one

of

the

following

database

organizations:

DEDB,

MSDB,

GSAM,

HDAM,

PHDAM,

HIDAM,

PHIDAM,

HISAM,

HSAM,

INDEX,

SHSAM,

or

SHISAM.

For

a

DCCTL

environment,

the

database

organization

is

UNKNOWN.

Important:

If

you

are

working

with

a

High

Availability

Large

Database

(HALDB),

you

need

to

be

aware

that

the

feedback

on

data

availability

at

PSB

schedule

time

only

shows

the

availability

of

the

HALDB

master,

not

of

the

HALDB

partitions.

However,

the

error

settings

for

data

unavailability

of

a

HALDB

partition

are

the

same

as

those

of

a

non-HALDB

database,

namely

status

code

’BA’

or

pseudo

abend

U3303.

Related

Reading:

For

more

information

on

HALDB,

see

“High

Availability

Large

Databases”

on

page

18.

Automatic

INIT

DBQUERY

When

the

program

is

initially

scheduled,

the

status

code

in

the

database

PCBs

is

initialized

as

if

the

INIT

DBQUERY

call

were

issued.

The

application

program

can

therefore

determine

database

availability

without

issuing

the

INIT

call.

For

a

DCCTL

environment,

the

status

code

is

NA.

Performance

Considerations

for

the

INIT

Call

(IMS

Online

Only)

For

performance

reasons,

the

INIT

call

should

not

be

issued

before

the

first

GU

call

to

the

I/O

PCB.

If

the

INIT

call

is

issued

first,

the

GU

call

is

not

processed

as

efficiently.

Enabling

Data

Availability

Status

Codes:

INIT

STATUS

GROUPA

Table

28

contains

a

sample

I/O

area

for

the

INIT

call

for

assembler

language,

COBOL,

C

language,

and

Pascal.

Table

28.

INIT

I/O

Area

Examples

for

ASMTDLI,

CBLTDLI,

CTDLI,

and

PASTDLI

L

L

Z

Z

Character

String

00

11

00

00

STATUS

GROUPA

Note:

The

LL

value

of

X'11'

is

a

hexadecimal

representation

of

decimal

17.

ZZ

fields

are

binary.

Table

29

contains

a

sample

I/O

area

for

the

INIT

call

for

PL/I.

Table

29.

INIT

I/O

Area

Examples

for

PLITDLI

L

L

L

L

Z

Z

Character

String

00

00

00

11

00

00

STATUS

GROUPA

Note:

The

LL

value

of

X'11'

is

a

hexadecimal

representation

of

decimal

17.

ZZ

fields

are

binary.

LL

or

LLLL

LL

is

a

halfword-length

field.

For

non-PLITDLI

calls,

LLLL

is

a

fullword-length

field

for

PLITDLI.

ZZ

A

2-byte

field

of

binary

zeros.

The

value

for

LLZZ

data

or

LLLLZZ

data

is

always

4

bytes

(for

LLZZ

or

LLLLZZ),

plus

data

length.

System

Service

Call:

INITIBM

Confidential

Chapter

5.

Writing

DL/I

Calls

for

System

Services

161

Recommendation:

You

should

be

familiar

with

data

availability.

Related

Reading:

For

more

information

about

data

availability,

see

IMS

Version

9:

Application

Programming:

Design

Guide.

When

the

INIT

call

is

issued

with

the

character

string

STATUS

GROUPA

in

the

I/O

area,

the

application

program

informs

IMS

that

it

is

prepared

to

accept

status

codes

regarding

data

unavailability.

IMS

then

returns

a

status

code

rather

than

a

resultant

pseudoabend

if

a

subsequent

call

requires

access

to

unavailable

data.

The

status

codes

that

are

returned

when

IMS

encounters

unavailable

data

are

BA

and

BB.

Status

codes

BA

and

BB

both

indicate

that

the

call

could

not

be

completed

because

it

required

access

to

data

that

was

not

available.

DEDBs

can

receive

the

BA

or

BB

status

code.

In

response

to

status

code

BA,

the

system

backs

out

only

the

updates

that

were

done

for

the

current

call

before

it

encountered

the

unavailable

data.

If

changes

have

been

made

by

a

previous

call,

the

application

must

decide

to

commit

or

not

commit

to

these

changes.

The

state

of

the

database

is

left

as

it

was

before

the

failing

call

was

issued.

If

the

call

was

a

REPL

or

DLET

call,

the

PCB

position

is

unchanged.

If

the

call

is

a

Get

type

or

ISRT

call,

the

PCB

position

is

unpredictable.

In

response

to

status

code

BB,

the

system

backs

out

all

database

updates

that

the

program

made

since

the

last

commit

point

and

cancels

all

nonexpress

messages

that

were

sent

since

the

last

commit

point.

The

PCB

position

for

all

PCBs

is

at

the

start

of

the

database.

Enabling

Deadlock

Occurrence

Status

Codes:

INIT

STATUS

GROUPB

Table

30

contains

a

sample

I/O

area

for

the

INIT

call

for

assembler

language,

COBOL,

C

language,

and

Pascal.

Table

30.

INIT

I/O

Area

Examples

for

ASMTDLI,

CBLTDLI,

CTDLI,

and

PASTDLI

L

L

Z

Z

Character

String

00

11

00

00

STATUS

GROUPB

Note:

The

LL

value

of

X'11'

is

a

hexadecimal

representation

of

decimal

17.

ZZ

fields

are

binary.

Table

31

contains

a

sample

I/O

area

for

the

INIT

call

for

PL/I.

Table

31.

INIT

I/O

Area

Examples

for

PLITDLI

L

L

L

L

Z

Z

Character

String

00

00

00

11

00

00

STATUS

GROUPB

Note:

The

LL

value

of

X'11'

is

a

hexadecimal

representation

of

decimal

17.

ZZ

fields

are

binary.

LL

or

LLLL

LL

is

a

halfword-length

field.

For

non-PLITDLI

calls,

LLLL

is

a

fullword-length

field

for

PLITDLI.

ZZ

A

2-byte

field

of

binary

zeros.

The

value

for

LLZZ

data

or

LLLLZZ

data

is

always

four

bytes

(for

LLZZ

or

LLLLZZ),

plus

data

length.

System

Service

Call:

INIT IBM

Confidential

162

Application

Programming:

Database

Manager

When

the

INIT

call

is

issued

with

the

character

string

STATUS

GROUPB

in

the

I/O

area,

the

application

program

informs

IMS

that

it

is

prepared

to

accept

status

codes

regarding

data

unavailability

and

deadlock

occurrences.

The

status

codes

for

data

unavailability

are

BA

and

BB,

as

described

under

“Enabling

Data

Availability

Status

Codes:

INIT

STATUS

GROUPA”

on

page

161.

When

a

deadlock

occurs

in

batch

and

the

INITSTATUS

GROUPB

call

has

been

issued,

the

following

occurs:

v

If

no

changes

were

made

to

the

database,

the

BC

status

code

is

returned.

v

If

updates

were

made

to

the

database,

and

if

a

datalog

exists

and

BKO=YES

is

specified,

the

BC

status

code

is

returned.

v

If

changes

were

made

to

the

database,

and

a

disklog

does

not

exist

or

BKO=YES

is

not

specified,

a

777

pseudoabend

occurs.

When

the

application

program

encounters

a

deadlock

occurrence,

IMS:

v

Backs

out

all

database

resources

(with

the

exception

of

GSAM

and

DB2)

to

the

last

commit

point.

Although

GSAM

PCBs

can

be

defined

for

pure

batch

or

BMP

environments,

GSAM

changes

are

not

backed

out.

Database

resources

are

backed

out

for

DB2

only

when

IMS

is

the

sync-point

coordinator.

When

you

use

INIT

STATUS

GROUPB

in

a

pure

batch

environment,

you

must

specify

the

DISKLOG

and

BACKOUT

options.

v

Backs

out

all

output

messages

to

the

last

commit

point.

v

Requeues

all

input

messages

as

follows:

Environment

Action

MPP

and

BMP

All

input

messages

are

returned

to

the

message

queue.

The

application

program

no

longer

controls

its

input

messages.

IFP

All

input

messages

are

returned

to

IMS

Fast

Path

(IFP)

balancing

group

queues

(BALGRP),

making

them

available

to

any

other

IFP

region

on

the

BALGRP.

The

IFP

that

is

involved

in

the

deadlock

receives

the

next

transaction

or

message

that

is

available

on

the

BALGRP.

DBCTL

Action

is

limited

to

resources

that

are

managed

by

DBCTL,

for

example,

database

updates.

v

Returns

a

BC

status

code

to

the

program

in

the

database

PCB.

Restrictions

For

function

shipping

in

the

CICS

environment,

the

local

and

remote

CICS

must

both

be

DBCTL.

You

should

be

familiar

with

deadlock

occurrences

as

described

in

IMS

Version

9:

Administration

Guide:

System.

INQY

Call

The

Inquiry

(INQY)

call

is

used

to

request

information

regarding

execution

environment,

destination

type

and

status,

and

session

status.

INQY

is

valid

only

when

using

the

AIB

interface.

System

Service

Call:

INITIBM

Confidential

Chapter

5.

Writing

DL/I

Calls

for

System

Services

163

Format

��

INQY

aib

i/o

area

��

Call

Name

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

INQY

X

X

X

X

X

Parameters

aib

Specifies

the

address

of

the

application

interface

block

(DFSAIB)

for

the

call.

This

parameter

is

an

input

and

output

parameter.

The

following

fields

must

be

initialized

in

the

AIB:

AIBID

Eye

catcher.

This

8-byte

field

must

contain

DFSAIB��.

AIBLEN

AIB

lengths.

This

field

must

contain

the

actual

length

of

the

AIB

that

the

application

program

obtained.

AIBSFUNC

Subfunction

code.

This

field

must

contain

one

of

the

8-byte

subfunction

codes

as

follows:

v

DBQUERY�

v

ENVIRON�

v

FIND����

v

LERUNOPT

v

PROGRAM�

Not

supported

with

the

ODBA

interface.

AIBRSNM1

Resource

name.

This

8-byte,

left-justified

field

must

contain

the

name

of

any

named

PCB

in

the

PSB.

AIBOALEN

I/O

area

length.

This

field

must

contain

the

length

of

the

I/O

area

specified

in

the

call

list.

This

field

is

not

changed

by

IMS.

i/o

area

Specifies

the

data

output

area

to

use

with

the

call.

This

parameter

is

an

output

parameter.

An

I/O

area

is

required

for

INQY

subfunctions

ENVIRON�

and

PROGRAM�.

It

is

not

required

for

subfunctions

DBQUERY�

and

FIND����.

Usage

The

INQY

call

operates

in

both

batch

and

online

IMS

environments.

IMS

application

programs

can

use

the

INQY

call

to

request

information

regarding

the

output

destination,

the

session

status,

the

current

execution

environment,

the

availability

of

databases,

and

the

PCB

address,

which

is

based

on

the

PCB

name.

You

must

use

the

AIB

when

issuing

an

INQY

call.

Before

you

can

issue

an

INQY

call,

initialize

the

fields

of

the

AIB.

For

more

information

on

initializing

AIBs,

see

“The

AIBTDLI

Interface”

on

page

111.

System

Service

Call:

INQY IBM

Confidential

164

Application

Programming:

Database

Manager

When

you

use

the

INQY

call,

specify

an

8-byte

subfunction

code,

which

is

passed

in

the

AIB.

The

INQY

subfunction

determines

the

information

that

the

application

program

receives.

For

a

summary

of

PCB

type

and

I/O

area

use

for

each

subfunction,

see

Table

33

on

page

169.

The

INQY

call

returns

information

to

the

caller’s

I/O

area.

The

length

of

the

data

that

is

returned

from

the

INQY

call

is

passed

back

to

the

application

program

in

the

AIB

field,

AIBOAUSE.

You

specify

the

size

of

the

I/O

area

in

the

AIB

field,

AIBOALEN.

The

INQY

call

returns

only

as

much

data

as

the

area

can

hold

in

one

call.

If

the

area

is

not

large

enough

for

all

the

information,

an

AG

status

code

is

returned,

and

partial

data

is

returned

in

the

I/O

area.

In

this

case,

the

AIB

field

AIBOALEN

contains

the

actual

length

of

the

data

returned

to

the

I/O

area,

and

the

AIBOAUSE

field

contains

the

output

area

length

that

would

be

required

to

receive

all

the

data.

Querying

Data

Availability:

INQY

DBQUERY

When

the

INQY

call

is

issued

with

the

DBQUERY

subfunction,

the

application

program

obtains

information

regarding

the

data

for

each

PCB.

The

only

valid

PCB

name

that

can

be

passed

in

AIBRSNM1

is

IOPCB���.

The

INQY

DBQUERY

call

is

similar

to

the

INITDBQUERY

call.

The

INIT

DBQUERY

call

does

not

return

information

in

the

I/O

area,

but

like

the

INIT

DBQUERY

call,

it

updates

status

codes

in

the

database

PCBs.

In

addition

to

the

INIT

DBQUERY

status

codes,

the

INQY

DBQUERY

call

returns

these

status

codes

in

the

I/O

PCB:

��

The

call

is

successful

and

all

databases

are

available.

BJ

None

of

the

databases

in

the

PSB

are

available,

or

no

PCBs

exist

in

the

PSB.

All

database

PCBs

(excluding

GSAM)

contain

an

NA

status

code

as

the

result

of

processing

the

INQY

DBQUERY

call.

BK

At

least

one

of

the

databases

in

the

PSB

is

not

available

or

availability

is

limited.

At

least

one

database

PCB

contains

an

NA

or

NU

status

code

as

the

result

of

processing

the

INQY

DBQUERY

call.

The

INQY

call

returns

the

following

status

codes

in

each

DB

PCB:

NA

At

least

one

of

the

databases

that

can

be

accessed

using

this

PCB

is

not

available.

A

call

that

is

made

using

this

PCB

probably

results

in

a

BA

or

BB

status

code

if

the

INIT

STATUS

GROUPA

call

has

been

issued,

or

in

a

DFS3303I

message

and

3303

pseudoabend

if

the

call

has

not

been

issued.

An

exception

is

when

the

database

is

not

available

because

dynamic

allocation

failed.

In

this

case,

a

call

results

in

an

AI

(unable

to

open)

status

code.

In

a

DCCTL

environment,

the

status

code

is

always

NA.

NU

At

least

one

of

the

databases

that

can

be

updated

using

this

PCB

is

unavailable

for

update.

An

ISRT,

DLET,

or

REPL

call

using

this

PCB

might

result

in

a

BA

status

code

if

the

INIT

STATUS

GROUPA

call

has

been

issued,

or

in

a

DFS3303I

message

and

3303

pseudoabend

if

it

has

not

been

issued.

The

database

that

caused

the

NU

status

code

might

be

required

only

for

delete

processing.

In

that

case,

DLET

calls

fail,

but

ISRT

and

REPL

calls

succeed.

��

The

data

that

can

be

accessed

with

this

PCB

can

be

used

for

all

functions

the

PCB

allows.

DEDBs

and

MSDBs

always

have

the

��

status

code.

System

Service

Call:

INQYIBM

Confidential

Chapter

5.

Writing

DL/I

Calls

for

System

Services

165

Querying

the

Environment:

INQY

ENVIRON

When

the

INQY

call

is

issued

with

the

ENVIRON

subfunction,

the

application

program

obtains

information

regarding

the

current

execution

environment.

The

only

valid

PCB

name

that

can

be

passed

in

AIBRSNM1

is

IOPCB���.

This

includes

the

IMS

identifier,

release,

region,

and

region

type.

The

INQY

ENVIRON

call

returns

character-string

data.

The

output

is

left

justified

and

padded

with

blanks

on

the

right.

Recommendation:

To

receive

the

following

data

and

to

account

for

expansion,

define

the

I/O

area

length

to

be

larger

than

152

bytes.

If

you

define

the

I/O

area

length

to

be

exactly

152

bytes

and

the

I/O

area

is

expanded

in

future

releases,

you

will

receive

an

AG

status

code.

100

bytes

INQY

ENVIRON

data

2

bytes

Length

field

for

Recovery

Token

section

(18

bytes)

16

bytes

Recovery

Token

2

bytes

Length

field

for

APARM

section

(maximum

of

34

bytes)

32

bytes

APARM

data

152

bytes

Total

I/O

area

length

Table

32

lists

the

output

that

is

returned

from

the

INQY

ENVIRON

call.

Included

with

the

information

returned

is

the

output’s

byte

length,

the

actual

value,

and

an

explanation.

Table

32.

INQY

ENVIRON

Data

Output

Information

Returned

Length

in

Bytes

Actual

Value

Explanation

IMS

Identifier

8

Provides

the

identifier

from

the

execution

parameters.

IMS

Release

Level

4

Provides

the

release

level

for

IMS.

For

example,

X'00000410'.

IMS

Control

Region

Type

8

BATCH

Indicates

that

an

IMS

batch

region

is

active.

DB

Indicates

that

only

the

IMS

Database

Manager

is

active.

(DBCTL

system)

TM

Indicates

that

only

the

IMS

Transaction

Manager

is

active.

(DCCTL

system)

DB/DC

Indicates

that

both

the

IMS

Database

and

Transaction

managers

are

active.

(DBDC

system)

IMS

Application

Region

Type

8

BATCH

Indicates

that

the

IMS

Batch

region

is

active.

BMP

Indicates

that

the

Batch

Message

Processing

region

is

active.

DRA

Indicates

that

the

Database

Resource

Adapter

Thread

region

is

active.

IFP

Indicates

that

the

IMS

Fast

Path

region

is

active.

MPP

Indicates

that

the

Message

Processing

region

is

active.

Region

Identifier

4

Provides

the

region

identifier.

For

example,

X'00000001'.

Application

Program

Name

8

Provides

the

name

of

the

application

program

being

run.

PSB

Name

(currently

allocated)

8

Provides

the

name

of

the

PSB

currently

allocated.

Transaction

Name

8

Provides

the

name

of

the

transaction.

�

Indicates

that

no

associated

transaction

exists.

System

Service

Call:

INQY IBM

Confidential

166

Application

Programming:

Database

Manager

Table

32.

INQY

ENVIRON

Data

Output

(continued)

Information

Returned

Length

in

Bytes

Actual

Value

Explanation

User

Identifier1

8

Provides

the

user

ID.

�

Indicates

that

the

user

ID

is

unavailable.

Group

Name

8

Provides

the

group

name.

�

Indicates

that

the

group

name

is

unavailable.

Status

Group

Indicator

4

A

Indicates

an

INIT

STATUS

GROUPA

call

is

issued.

B

Indicates

an

INIT

STATUS

GROUPB

call

is

issued.

�

Indicates

that

a

status

group

is

not

initialized.

Address

of

Recovery

Token

2

4

Provides

the

address

of

the

LL

field,

followed

by

the

recovery

token.

Address

of

the

Application

Parameter

String

2

4

Provides

the

address

of

the

LL

field,

followed

by

the

application

program

parameter

string.

0

Indicates

that

the

APARM=

parameter

is

not

coded

in

the

execution

parameters

of

the

dependent

region

JCL.

Shared

Queues

Indicator

4

Indicates

IMS

is

not

using

Shared

Queues.

SHRQ

Indicates

IMS

is

using

Shared

Queues.

Userid

of

Address

Space

8

Userid

of

dependent

address

space.

Userid

Indicator

1

The

Userid

Indicator

field

has

one

of

four

possible

values.

This

value

indicates

the

contents

of

the

userid

field.

U

Indicates

the

user’s

identification

from

the

source

terminal

during

sign-on.

L

Indicates

the

LTERM

name

of

the

source

terminal

in

sign-on

is

not

active.

P

Indicates

the

PSBNAME

of

the

source

BMP

or

transaction.

O

Indicates

some

other

name.

3

Reserved

for

IMS.

RRS

Indicator

3

�

Indicates

IMS

has

not

expressed

interest

in

the

UR

with

RRS.

Therefore,

the

application

should

refrain

from

performing

any

work

that

causes

RRS

to

become

the

syncpoint

manager

for

the

UR

because

IMS

will

not

be

involved

in

the

commit

scope.

For

example,

the

application

should

not

issue

any

outbound

protected

conversations.

RRS

Indicates

IMS

has

expressed

interest

in

the

UR

with

RRS.

Therefore,

IMS

will

be

involved

in

the

commit

scope

if

RRS

is

the

syncpoint

manager

for

the

UR.

Notes:

1.

The

user

ID

is

derived

from

the

PSTUSID

field

of

the

PST

that

represents

the

region

making

the

INQY

ENVIRON

call.

The

PSTUSID

field

is

one

of

the

following:

v

For

message-driven

BMP

regions

that

have

not

completed

successful

GU

calls

to

the

IMS

message

queue

and

for

non-message-driven

BMP

regions,

the

PSTUSID

field

is

derived

from

the

name

of

the

PSB

that

is

currently

scheduled

into

the

BMP

region.

v

For

message-driven

BMP

regions

that

have

completed

a

successful

GU

call

and

for

any

MPP

region,

the

PSTUSID

field

is

derived

which

is

usually

the

input

terminal’s

RACF

ID.

If

the

terminal

has

not

signed

on

to

RACF,

the

ID

is

the

input

terminal’s

LTERM.

2.

The

pointer

identifies

a

length

field

(LL)

that

contains

the

length

of

the

recovery

token

or

application

program

parameter

string

in

binary,

including

the

two

bytes

required

for

LL.

System

Service

Call:

INQYIBM

Confidential

Chapter

5.

Writing

DL/I

Calls

for

System

Services

167

||||
|
|
|
|
|

Querying

the

PCB:

INQY

FIND

When

the

INQY

call

is

issued

with

the

FIND

subfunction,

the

application

program

is

returned

with

the

PCB

address

of

the

requested

PCB

name.

The

only

valid

PCB

names

that

can

be

passed

in

AIBRSNM1

are

IOPCB���

or

the

name

of

an

alternate

PCB

or

DB

PCB,

as

defined

in

the

PSB.

On

a

FIND

subfunction,

the

requested

PCB

remains

unmodified,

and

no

information

is

returned

in

an

I/O

area.

The

FIND

subfunction

is

used

to

get

a

PCB

address

following

an

INQY

DBQUERY

call.

This

process

allows

the

application

program

to

analyze

the

PCB

status

code

to

determine

if

either

an

NA

or

NU

status

code

is

set

in

the

PCB.

Querying

for

LE

Overrides:

INQY

LERUNOPT

When

the

LERUNOPT

call

is

issued

with

the

LERUNOPT

subfunction,

IMS

determines

if

LE

overrides

are

allowed

based

on

the

LEOPT

system

parameter.

The

LE

override

parameters

are

defined

to

IMS

through

the

UPDATE

LE

command.

IMS

checks

to

see

if

there

are

any

overrides

applicable

to

the

caller

based

on

the

specific

combinations

of

transaction

name,

lterm

name,

userid,

or

program

name

in

the

caller’s

environment.

IMS

will

return

the

address

of

the

string

to

the

caller

if

an

override

parameter

is

found.

The

LE

overrides

are

used

by

the

IMS

supplied

CEEBXITA

exit,

DFSBXITA,

to

allow

dynamic

overrides

for

LE

runtime

parameters.

Related

Reading:

v

For

more

information

about

the

UPDATE

LE

command,

see

IMS

Version

9:

Command

Reference.

v

For

more

information

about

the

IMS

supplied

CEEBXITA,

DFSBXITA,

see

IMS

Version

9:

Customization

Guide.

The

call

string

must

contain

the

function

code

and

the

AIB

address.

The

I/O

area

is

not

a

required

parameter

and

will

be

ignored

if

specified.

The

only

valid

PCB

name

that

can

be

passed

in

AIBRSNM1

is

IOPCB.

The

AIBOALEN

and

AIBOAUSE

fields

are

not

used.

The

rules

for

matching

an

entry

that

results

in

it

being

returned

on

a

DL/I

INQY

LERUNOPT

call

are:

v

An

MPP

or

JMP

region

uses

transaction

name,

lterm,

userid,

and

program

to

match

with

each

entry.

v

An

IFB,

JBP,

or

non-message

driven

BMP

uses

program

name

to

match

with

each

entry.

If

an

entry

has

a

defined

filter

for

transaction

name,

lterm,

or

userid,

it

does

not

match.

Message

driven

BMPs

also

use

transaction

name.

v

The

entries

are

scanned

to

find

the

entry

with

the

most

filter

matches.

The

first

entry

in

the

list

with

the

most

exact

filter

matches

is

selected.

The

scan

stops

with

an

entry

found

with

all

of

the

filters

matching

the

entry.

Note:

Searching

table

entries

may

cause

user

confusion

because

of

the

way

entries

are

built

and

searched.

For

example,

assume

there

are

two

entries

in

the

table

that

match

on

the

filters

specified

on

the

DL/I

INQY

call.

The

first

transaction

matches

on

transaction

name

and

lterm

name.

The

second

entry

matches

on

transaction

name

and

program

name.

IMS

chooses

the

first

entry

because

it

was

the

first

entry

encountered

with

highest

number

of

filter

matches.

If

the

second

entry

is

now

updated

with

a

longer

parameter

string,

which

causes

a

new

entry

to

be

built,

it

will

be

added

to

the

head

of

the

queue.

The

next

search

would

result

in

the

entry

System

Service

Call:

INQY IBM

Confidential

168

Application

Programming:

Database

Manager

with

transaction

name

and

program

name

being

selected.

This

could

result

in

a

set

of

runtime

options

being

selected

that

were

not

expected

by

the

user.

Querying

the

Program

Name:

INQY

PROGRAM

When

you

issue

the

INQY

call

with

the

PROGRAM

subfunction,

the

application

program

name

is

returned

in

the

first

8

bytes

of

the

I/O

area.

The

only

valid

PCB

name

that

can

be

passed

in

AIBRSNM1

is

IOPCB���.

INQY

Return

Codes

and

Reason

Codes

When

you

issue

the

INQY

call,

return

and

reason

codes

are

returned

to

the

AIB.

Status

codes

can

be

returned

to

the

PCB.

If

return

and

reason

codes

other

than

those

that

apply

to

INQY

are

returned,

your

application

should

examine

the

PCB

to

see

what

status

codes

are

found.

Map

of

INQY

Subfunction

to

PCB

Type

Table

33.

Subfunction,

PCB,

and

I/O

Area

Combinations

for

the

INQY

Call

Subfunction

I/O

PCB

Alternate

PCB

DB

PCB

I/O

Area

Required

FIND

OK

OK

OK

NO

ENVIRON

OK

NO

NO

YES

DBQUERY

OK

NO

NO

NO

LERUNOPT

OK

NO

NO

NO

PROGRAM

OK

NO

NO

YES

Restrictions

The

INQY

call

is

valid

only

when

using

the

AIB.

An

INQY

call

issued

through

the

PCB

interface

is

rejected

with

an

AD

status

code.

LOG

Call

The

Log

(LOG)

call

is

used

to

send

and

write

information

to

the

IMS

system

log.

Format

��

LOG

io

pcb

aib

i/o

area

��

Call

Name

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

LOG

X

X

X

X

X

Parameters

i/o

pcb

Specifies

the

I/O

PCB

for

the

call.

This

parameter

is

an

input

and

output

parameter.

aib

Specifies

the

AIB

for

the

call.

This

parameter

is

an

input

and

output

parameter.

The

following

fields

must

be

initialized

in

the

AIB:

System

Service

Call:

INQYIBM

Confidential

Chapter

5.

Writing

DL/I

Calls

for

System

Services

169

AIBID

Eye

catcher.

This

8-byte

field

must

contain

DFSAIB��.

AIBLEN

AIB

lengths.

This

field

must

contain

the

actual

length

of

the

AIB

that

the

application

program

obtained.

AIBRSNM1

Resource

name.

This

8-byte,

left-justified

field

must

contain

the

PCB

name,

IOPCB���.

AIBOALEN

I/O

area

length.

This

field

must

contain

the

length

of

the

I/O

area

specified

in

the

call

list.

i/o

area

Specifies

the

area

in

your

program

that

contains

the

record

that

you

want

to

write

to

the

system

log.

This

is

an

input

parameter.

This

record

must

follow

the

format

shown

in

Table

34and

Table

35.

The

format

of

this

record

is

described

in

more

detail

following

the

tables.

Table

34.

Log

Record

Formats

for

COBOL,

C,

Assembler,

Pascal,

and

PL/I

Programs

for

the

AIBTDLI,

ASMTDLI,

CBLTDLI,

CEETDLI,

CTDLI,

and

PASTDLI

Interfaces

LL

ZZ

C

Text

2

2

1

Variable

Table

35.

Log

Record

Formats

for

COBOL,

C,

Assembler,

Pascal,

and

PL/I

Programs

for

the

PLITDLI

Interface

LLLL

ZZ

C

Text

4

2

1

Variable

The

fields

must

be:

LL

or

LLLL

Specifies

a

2-byte

field

(or,

for

PL/I,

a

4-byte-long

field)

to

contain

the

length

of

the

record.

The

length

of

the

record

is

equal

to

LL

+

ZZ

+

C

+

text

of

the

record.

When

you

calculate

the

length

of

the

log

record,

you

must

account

for

all

fields.

The

total

length

you

specify

includes:

v

2

bytes

for

LL

or

LLLL.

(For

PL/I,

include

the

length

as

2,

even

though

LLLL

is

a

4-byte

field.)

v

2

bytes

for

the

ZZ

field.

v

1

byte

for

the

C

field.

v

n

bytes

for

the

length

of

the

record

itself.

If

you

are

using

the

PLITDLI

interface,

your

program

must

define

the

length

field

as

a

binary

fullword.

ZZ

Specifies

a

2-byte

field

of

binary

zeros.

C

Specifies

a

1-byte

field

containing

a

log

code,

which

must

be

equal

to

or

greater

than

X'A0'.

Text

Specifies

any

data

to

be

logged.

Usage

An

application

program

can

write

a

record

to

the

system

log

by

issuing

the

LOG

call.

When

you

issue

the

LOG

call,

specify

the

I/O

area

that

contains

the

record

you

want

System

Service

Call:

LOG IBM

Confidential

170

Application

Programming:

Database

Manager

written

to

the

system

log.

You

can

write

any

information

to

the

log,

and

you

can

use

different

log

codes

to

distinguish

between

different

types

of

information.

You

can

issue

the

LOG

call:

v

In

a

batch

program,

and

the

record

is

written

to

the

IMS

log

v

In

an

online

program

in

the

DBCTL

environment,

and

the

record

is

written

to

the

DBCTL

log

v

In

the

IMS

DB/DC

environment,

and

the

record

is

written

to

the

IMS

log

Restrictions

The

length

of

the

I/O

area

(including

all

fields)

cannot

be

larger

than

the

logical

record

length

(LRECL)

for

the

system

log

data

set,

minus

four

bytes,

or

the

I/O

area

specified

in

the

IOASIZE

keyword

of

the

PSBGEN

statement

of

the

PSB.

For

function

shipping

in

the

CICS

environment,

the

local

and

remote

CICS

must

both

be

DBCTL.

PCB

Call

(CICS

Online

Programs

Only)

The

PCB

call

is

used

to

schedule

a

PSB

call.

The

ODBA

interface

does

not

support

this

call.

Format

��

PCB

psb

name

uibptr

sysserve

��

Call

Name

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

PCB

X

X

Parameters

The

AIB

is

not

valid

for

PCB

calls.

psb

name

Specifies

the

PSB.

An

asterisk

can

be

used

for

the

parameter

to

indicate

the

default.

This

parameter

is

an

input

parameter.

uibptr

Specifies

a

pointer,

which

is

set

to

the

address

of

the

UIB

after

the

call.

This

parameter

is

an

output

parameter.

sysserve

Specifies

an

optional

8-byte

field

that

contains

either

IOPCB

or

NOIOPCB.

This

parameter

is

an

input

parameter.

Usage

Before

a

CICS

online

program

can

issue

any

DL/I

calls,

it

must

indicate

to

DL/I

its

intent

to

use

a

particular

PSB.

A

PCB

call

accomplishes

this

and

also

obtains

the

address

of

the

PCB

list

in

the

PSB.

When

you

issue

a

PCB

call,

specify

the

following:

v

The

call

function:

PCB�

System

Service

Call:

LOGIBM

Confidential

Chapter

5.

Writing

DL/I

Calls

for

System

Services

171

v

The

PSB

you

want

to

use,

or

an

asterisk

to

indicate

that

you

want

to

use

the

default

name.

The

default

PSB

name

is

not

necessarily

the

name

of

the

program

issuing

the

PCB

call,

because

that

program

could

have

been

called

by

another

program.

v

A

pointer,

which

is

set

to

the

address

of

the

UIB

after

the

call.

For

more

information

on

defining

and

establishing

addressability

to

the

UIB,

see

“Specifying

the

UIB

(CICS

Online

Programs

Only)”

on

page

102.

v

The

system

service

call

parameter

that

names

an

optional

8-byte

field

that

contains

either

IOPCB

or

NOIOPCB.

Restrictions

For

function

shipping

in

the

CICS

environment,

the

local

and

remote

CICS

must

both

be

DBCTL.

RCMD

Call

A

Retrieve

Command

(RCMD)

call

enables

an

automated

operator

(AO)

application

program

retrieve

the

second

and

subsequent

command

response

segments

after

an

ICMD

call.

Format

��

RCMD

aib

i/o

area

��

Parameters

aib

Specifies

the

application

interface

block

(AIB)

used

for

this

call.

This

parameter

is

an

input

and

output

parameter.

The

following

fields

must

be

initialized

in

the

AIB:

AIBID

Eye

catcher.

This

8-byte

field

must

contain

DFSAIB��.

AIBLEN

AIB

lengths.

This

field

must

contain

the

actual

length

of

the

AIB

that

the

application

program

obtained.

AIBOALEN

I/O

area

length.

This

field

must

contain

the

length

of

the

I/O

area

specified

in

the

call

list.

This

field

is

not

changed

by

IMS.

AIBOAUSE

Length

of

data

returned

in

the

I/O

area.

This

parameter

is

an

output

parameter.

When

partial

data

is

returned

because

the

I/O

area

is

not

large

enough,

AIBOAUSE

contains

the

length

required

to

receive

all

of

the

data,

and

AIBOALEN

contains

the

actual

length

of

the

data.

i/o

area

Specifies

the

I/O

area

to

use

for

this

call.

This

parameter

is

an

output

parameter.

The

I/O

area

should

be

large

enough

to

hold

the

largest

command

response

segment

that

is

passed

from

IMS

to

the

AO

application

program.

If

the

I/O

area

is

not

large

enough

for

all

of

the

information,

partial

data

is

returned

in

the

I/O

area.

System

Service

Call:

PCB IBM

Confidential

172

Application

Programming:

Database

Manager

Usage

RCMD

lets

an

AO

application

program

retrieve

the

second

and

subsequent

command

response

segments

resulting

from

an

ICMD

call.

Related

Reading

For

more

information

on

the

AOI

exits,

see

IMS

Version

9:

Customization

Guide.

Table

36

shows,

by

IMS

environment,

the

types

of

AO

application

programs

that

can

issue

RCMD.

RCMD

is

also

supported

from

a

CPI-C

driven

program.

Table

36.

RCMD

Support

by

Application

Region

Type

Application

Region

Type

IMS

Environment

DBCTL

DB/DC

DCCTL

DRA

thread

Yes

Yes

N/A

BMP

(nonmessage-driven)

Yes

Yes

Yes

BMP

(message-driven)

N/A

Yes

Yes

MPP

N/A

Yes

Yes

IFP

N/A

Yes

Yes

RCMD

retrieves

only

one

response

segment

at

a

time.

If

you

need

additional

response

segments,

you

must

issue

RCMD

one

time

for

each

response

segment

that

is

issued

by

IMS.

Restrictions

An

ICMD

call

must

be

issued

before

an

RCMD

call.

ROLB

Call

The

Roll

Back

(ROLB)

call

is

used

to

dynamically

back

out

database

changes

and

return

control

to

your

program.

For

more

information

on

the

ROLB

call,

see

“Maintaining

Database

Integrity

(IMS

Batch,

BMP,

and

IMS

Online

Regions)”

on

page

250.

The

ODBA

interface

does

not

support

this

call.

Format

��

ROLB

i/o

pcb

aib

i/o

area

��

Call

Name

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

ROLB

X

X

X

X

X

Parameters

i/o

pcb

Specifies

the

I/O

PCB

for

the

call.

This

parameter

is

an

input

and

output

parameter.

System

Service

Call:

RCMDIBM

Confidential

Chapter

5.

Writing

DL/I

Calls

for

System

Services

173

aib

Specifies

the

AIB

for

the

call.

This

parameter

is

an

input

and

output

parameter.

The

following

fields

must

be

initialized

in

the

AIB:

AIBID

Eye

catcher.

This

8-byte

field

must

contain

DFSAIB��.

AIBLEN

AIB

lengths.

This

field

must

contain

the

actual

length

of

the

AIB

that

the

application

program

obtained.

AIBRSNM1

Resource

name.

This

8-byte,

left-justified

field

must

contain

the

PCB

name,

IOPCB���.

AIBOALEN

I/O

area

length.

This

field

must

contain

the

length

of

the

I/O

area

specified

in

the

call

list.

i/o

area

Specifies

the

area

in

your

program

where

IMS

returns

the

first

message

segment.

This

parameter

is

an

output

parameter.

Restrictions

The

AIB

must

specify

the

I/O

PCB

for

this

call.

ROLL

Call

The

Roll

(ROLL)

call

is

used

to

abnormally

terminate

your

program

and

to

dynamically

back

out

database

changes.

For

more

information

on

the

ROLL

call,

see

“Maintaining

Database

Integrity

(IMS

Batch,

BMP,

and

IMS

Online

Regions)”

on

page

250.

The

ODBA

interface

does

not

support

this

call.

Format

��

ROLL

��

Call

Name

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

ROLL

X

X

X

X

X

Parameters

The

only

parameter

required

for

the

ROLL

call

is

the

call

function.

Usage

When

you

issue

a

ROLL

call,

IMS

terminates

the

application

program

with

a

U0778

abend.

Restriction

Unlike

the

ROLB

call,

the

ROLL

call

does

not

return

control

to

the

program.

System

Service

Call:

ROLB IBM

Confidential

174

Application

Programming:

Database

Manager

ROLS

Call

The

Roll

Back

to

SETS

(ROLS)

call

is

used

to

back

out

to

a

processing

point

set

by

a

prior

SETS

or

SETU

call.

For

more

information

on

the

ROLS

call,

see

“Maintaining

Database

Integrity

(IMS

Batch,

BMP,

and

IMS

Online

Regions)”

on

page

250.

Format

��

ROLS

i/o

pcb

aib

db

pcb

i/o

area

token

��

Call

Name

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

ROLS

X

X

X

X

X

Parameters

db

pcb

Specifies

the

DB

PCB

for

the

call.

This

parameter

is

an

input

and

output

parameter.

i/o

pcb

Specifies

the

I/O

PCB

for

the

call.

This

parameter

is

an

input

and

output

parameter.

aib

Specifies

the

AIB

for

the

call.

This

parameter

is

an

input

and

output

parameter.

The

following

fields

must

be

initialized

in

the

AIB:

AIBID

Eye

catcher.

This

8-byte

field

must

contain

DFSAIB��.

AIBLEN

AIB

lengths.

This

field

must

contain

the

actual

length

of

the

AIB

that

the

application

program

obtained.

AIBRSNM1

Resource

name.

This

8-byte,

left-justified

field

must

contain

the

PCB

name,

IOPCB���,

or

the

name

of

a

DB

PCB.

AIBOALEN

I/O

area

length.

This

field

must

contain

the

length

of

the

I/O

area

specified

in

the

call

list.

i/o

area

Specifies

the

I/O

area

has

the

same

format

as

the

I/O

area

supplied

on

the

SETS

call.

This

parameter

is

an

output

parameter.

token

Specifies

the

area

in

your

program

that

contains

a

4-byte

identifier.

This

parameter

is

an

input

parameter.

Usage

When

you

use

the

Roll

Back

to

SETS

(ROLS)

call

to

back

out

to

a

processing

point

set

by

a

prior

SETS

or

SETU,

the

ROLS

enables

you

to

continue

processing

or

to

back

out

to

the

prior

commit

point

and

place

the

input

message

on

the

suspend

queue

for

later

processing.

System

Service

Call:

ROLSIBM

Confidential

Chapter

5.

Writing

DL/I

Calls

for

System

Services

175

Issuing

a

ROLS

call

for

a

DB

PCB

can

result

in

the

user

abend

code

3303.

Restrictions

For

function

shipping

in

the

CICS

environment,

the

local

and

remote

CICS

must

both

be

DBCTL.

The

ROLS

call

is

not

valid

when

the

PSB

contains

a

DEDB

or

MSDB

PCB,

or

when

the

call

is

made

to

a

DB2

database.

SETS/SETU

Call

The

Set

a

Backout

Point

(SETS)

call

is

used

to

set

an

intermediate

backout

point

or

to

cancel

all

existing

backout

points.

The

SET

Unconditional

(SETU)

call

operates

like

the

SETS

call,

except

that

the

SETU

call

is

accepted

even

if

unsupported

PCBs

exist

or

an

external

subsystem

is

used.

For

more

information

on

the

SETS

and

SETU

calls,

see

“Maintaining

Database

Integrity

(IMS

Batch,

BMP,

and

IMS

Online

Regions)”

on

page

250.

Format

��

SETS

SETU

i/o

pcb

aib

i/o

area

token

��

Call

Name

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

SETS/SETU

X

X

X

X

X

Parameters

i/o

pcb

Specifies

the

I/O

PCB

for

the

call.

SETS

and

SETU

must

refer

to

the

I/O

PCB.

This

parameter

is

an

input

and

output

parameter.

aib

Specifies

the

AIB

for

the

call.

This

parameter

is

an

input

and

output

parameter.

The

following

fields

must

be

initialized

in

the

AIB:

AIBID

Eye

catcher.

This

8-byte

field

must

contain

DFSAIB��.

AIBLEN

AIB

lengths.

This

field

must

contain

the

actual

length

of

the

AIB

that

the

application

program

obtained.

AIBRSNM1

Resource

name.

This

8-byte,

left-justified

field

must

contain

the

PCB

name,

IOPCB���.

AIBOALEN

I/O

area

length.

This

field

must

contain

the

length

of

the

I/O

area

specified

in

the

call

list.

i/o

area

Specifies

the

area

in

your

program

that

contains

the

data

to

be

returned

on

the

corresponding

ROLS

call.

This

parameter

is

an

input

parameter.

System

Service

Call:

ROLS IBM

Confidential

176

Application

Programming:

Database

Manager

token

Specifies

the

area

in

your

program

that

contains

a

4-byte

identifier.

This

parameter

is

an

input

parameter.

Usage

The

SETS

and

SETU

format

and

parameters

are

the

same,

except

for

the

call

functions,

SETS

and

SETU.

The

SETS

and

SETU

calls

provide

the

backout

points

that

IMS

uses

in

the

ROLS

call.

The

ROLS

call

operates

with

the

SETS

and

SETU

call

backout

points.

The

meaning

of

the

SC

status

code

for

SETS

and

SETU

is

as

follows:

SETS

The

SETS

call

is

rejected.

The

SC

status

code

in

the

I/O

PCB

indicates

that

either

the

PSB

contains

unsupported

options

or

the

application

program

made

calls

to

an

external

subsystem.

SETU

The

SETU

call

is

not

rejected.

The

SC

status

code

indicates

either

that

unsupported

PCBs

exist

in

the

PSB

or

the

application

program

made

calls

to

an

external

subsystem.

Restrictions

For

function

shipping

in

the

CICS

environment,

the

local

and

remote

CICS

must

both

be

DBCTL.

The

SETS

call

is

not

valid

when

the

PSB

contains

a

DEDB

or

MSDB

PCB,

or

when

the

call

is

made

to

a

DB2

database.

The

SETU

call

is

valid,

but

not

functional,

if

unsupported

PCBs

exist

in

the

PSB

or

if

the

program

uses

an

external

subsystem.

SNAP

Call

This

section

contains

product-sensitive

programming

interface

information.

The

SNAP

call

is

used

to

collect

diagnostic

information.

Format

��

SNAP

db

pcb

aib

i/o

area

��

Call

Name

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

SNAP

X

X

X

Parameters

db

pcb

Specifies

the

address

that

refers

to

a

full-function

PCB

that

is

defined

in

a

calling

program

PSB.

This

parameter

is

an

input

and

output

parameter.

aib

Specifies

the

AIB

for

the

call.

This

parameter

is

an

input

and

output

parameter.

The

following

fields

must

be

initialized

in

the

AIB:

System

Service

Call:

SETS/SETUIBM

Confidential

Chapter

5.

Writing

DL/I

Calls

for

System

Services

177

AIBID

Eye

catcher.

This

8-byte

field

must

contain

DFSAIB��.

AIBLEN

AIB

lengths.

This

field

must

contain

the

actual

length

of

the

AIB

that

the

application

program

obtained.

AIBRSNM1

Resource

name.

This

8-byte,

left-justified

field

must

contain

the

name

of

a

full-function

DB

PCB.

AIBOALEN

I/O

area

length.

This

field

must

contain

the

length

of

the

I/O

area

specified

in

the

call

list.

i/o

area

Specifies

the

area

in

your

program

that

contains

SNAP

operation

parameters.

This

parameter

is

an

input

parameter.

Figure

33

shows

the

SNAP

operation

parameters

you

specify,

including:

v

Length

for

bytes

1

through

2

v

Destination

for

bytes

3

through

10

v

Identification

for

bytes

11

through

18

v

SNAP

options

for

bytes

19

through

22

Figure

33.

I/O

Area

for

SNAP

Operation

Parameters

System

Service

Call:

SNAP IBM

Confidential

178

Application

Programming:

Database

Manager

Table

37

explains

the

values

that

you

can

specify.

Table

37.

SNAP

Operation

Parameters

Byte

Value

Meaning

1-2

xx

This

2-byte

binary

field

specifies

the

length

of

the

SNAP

operation

parameters.

The

length

must

include

this

2-byte

length

field.

When

you

do

not

specify

operation

parameters,

IMS

uses

default

values.

The

following

chart

lists

the

lengths

that

result

from

your

parameter

specifications.

If

you

supply

values

for:

And

IMS

supplies

default

values

for:

Then

the

length

(in

hexadecimal)

is:

Destination,

Identification,

SNAP

options

16

Destination,

Identification

SNAP

options

12

Destination

Identification,

SNAP

options

10

Destination,

Identification,

SNAP

options

2

If

you

specify

another

length,

IMS

uses

default

values

for

the

destination,

identification,

and

SNAP

operation

parameters.

3-10

This

8-byte

field

tells

IMS

where

to

send

SNAP

output.

You

can

direct

output

to

the

IMS

log

by

specifying

one

of

the

following

values:

LOG�����

Directs

the

output

to

the

IMS

log.

This

is

the

default

destination.

dcbaddr

Directs

the

output

to

the

data

set

defined

by

this

DCB

address.

The

application

program

must

open

the

data

set

before

the

SNAP

call

refers

to

it.

This

option

is

valid

only

in

a

batch

environment.

The

output

data

set

must

conform

to

the

rules

for

a

z/OS

SNAP

data

set.

ddname

Directs

the

output

to

the

data

set

defined

by

the

corresponding

DD

statement.

The

DD

statement

must

conform

to

the

rules

for

a

z/OS

SNAP

data

set.

The

data

set

specified

by

ddname

is

opened

and

closed

for

this

SNAP

request.

In

a

DB/DC

environment,

you

must

supply

the

DD

statement

in

the

JCL

for

the

control

region.

If

the

destination

is

invalid,

IMS

directs

output

to

the

IMS

log.

11-18

cccccccc

This

is

an

eight-character

name

you

can

supply

to

identify

the

SNAP.

If

you

do

not

supply

a

name,

IMS

uses

the

default

value,

NOTGIVEN.

19-22

cccc

This

four-character

field

identifies

which

data

elements

you

want

the

SNAP

output

to

include.

YYYN

is

the

default.

19

Buffer

Pool:

Y

Dump

all

buffer

pools

and

sequential

buffering

control

blocks

with

a

SNAP

call.

N

Do

not

dump

buffer

pools

or

sequential

buffering

control

blocks

with

a

SNAP

call.

System

Service

Call:

SNAPIBM

Confidential

Chapter

5.

Writing

DL/I

Calls

for

System

Services

179

Table

37.

SNAP

Operation

Parameters

(continued)

Byte

Value

Meaning

20

Control

Blocks:

Y

Dump

control

blocks

related

to

the

current

DB

PCB

with

a

SNAP

call.

N

Do

not

dump

control

blocks

related

to

the

current

DB

PCB

with

a

SNAP

call.

21

Y

Dump

all

control

blocks

for

this

PSB

with

a

SNAP

call.

Specifying

Y

in

byte

21

produces

a

snap

dump

for

the

current

DB

PCB

request

in

byte

20

to

Y,

regardless

of

the

current

value.

N

Do

not

dump

all

control

blocks

for

this

PSB

with

a

SNAP

call.

In

this

case,

the

current

DB

PCB

SNAP

request

in

position

20

is

used

as

specified.

19-21

ALL

This

is

equivalent

to

specifying

YYY

in

positions

19-21.

22

Region:

Y

Dump

the

entire

region

on

the

DCB

address

or

data

set

ddname

that

you

supplied

in

bytes

3-10

with

a

SNAP

call.

IMS

processes

this

request

before

it

acts

on

any

SNAP

requests

made

in

bytes

19-21.

If

the

destination

is

the

IMS

log,

IMS

does

not

dump

the

entire

region.

Instead,

it

processes

the

request

as

if

you

had

specified

ALL.

N

Do

not

dump

the

entire

region

with

a

SNAP

call.

S

Dump

subpools

0-127

with

a

SNAP

call.

After

the

SNAP

call,

IMS

can

return

the

AB,

AD,

or

��

(blank)

status

code.

For

a

description

of

these

codes

and

the

response

required,

see

IMS

Version

9:

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS.

Usage

Any

application

program

can

issue

this

call.

Restrictions

For

function

shipping

in

the

CICS

environment,

the

local

and

remote

CICS

must

both

be

DBCTL.

STAT

Call

This

sectioncontains

product-sensitive

programming

interface

information.

The

Statistics

(STAT)

call

is

used

in

a

CICS,

IMS

online,

or

batch

program

to

obtain

database

statistics

that

might

be

useful

for

performance

monitoring.

Format

��

STAT

db

pcb

aib

i/o

area

stat

function

��

Call

Name

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

STAT

X

X

X

System

Service

Call:

SNAP IBM

Confidential

180

Application

Programming:

Database

Manager

Parameters

db

pcb

Specifies

the

DB

PCB

used

to

pass

status

information

to

the

application

program.

The

VSAM

statistics

used

by

the

data

sets

associated

with

this

PCB

are

not

related

to

the

type

of

statistics

that

is

returned

from

the

STAT

call.

This

PCB

must

reference

a

full-function

database.

This

parameter

is

an

input

and

output

parameter.

aib

Specifies

the

AIB

for

the

call.

This

parameter

is

an

input

and

output

parameter.

The

following

fields

must

be

initialized

in

the

AIB:

AIBID

Eye

catcher.

This

8-byte

field

must

contain

DFSAIB��.

AIBLEN

AIB

lengths.

This

field

must

contain

the

actual

length

of

the

AIB

that

the

application

program

obtained.

AIBRSNM1

Resource

name.

This

8-byte,

left-justified

field

must

contain

the

name

of

a

full-function

DB

PCB.

AIBOALEN

I/O

area

length.

This

field

must

contain

the

length

of

the

I/O

area

specified

in

the

call

list.

i/o

area

Specifies

an

area

in

the

application

program

that

is

large

enough

to

hold

the

requested

statistics.

This

parameter

is

an

output

parameter.

In

PL/I,

this

parameter

should

be

specified

as

a

pointer

to

a

major

structure,

array,

or

character

string.

stat

function

Specifies

a

9-byte

area

whose

content

describes

the

type

and

format

of

the

statistics

required.

The

first

4

bytes

define

the

type

of

statistics

requested

and

byte

5

defines

the

format

to

be

provided.

The

remaining

4

bytes

contain

EBCDIC

blanks.

If

the

stat

function

that

is

provided

is

not

one

of

the

defined

functions,

an

AC

status

code

is

returned.

This

parameter

is

an

input

parameter.

The

9-byte

field

contains

the

following

information:

v

4

bytes

that

define

the

type

of

statistics

you

want:

DBAS

OSAM

database

buffer

pool

statistics

DBES

OSAM

database

buffer

pool

statistics,

enhanced

or

extended

VBAS

VSAM

database

subpool

statistics

VBES

VSAM

database

subpool

statistics,

enhanced

or

extended

v

1

byte

that

gives

the

format

of

the

statistics:

F

Full

statistics

to

be

formatted.

If

you

specify

F,

your

I/O

area

must

be

at

least

360

bytes

for

DBAS

or

VBAS

and

600

bytes

for

DBES

or

VBES.

O

Full

OSAM

database

subpool

statistics

in

a

formatted

form.

If

you

specify

O,

your

I/O

area

must

be

at

least

360

bytes.

S

Summary

of

the

statistics

to

be

formatted.

If

you

specify

S,

your

I/O

area

must

be

at

least

120

bytes

for

DBAS

or

VBAS

and

360

bytes

for

DBES

or

VBES.

System

Service

Call:

STATIBM

Confidential

Chapter

5.

Writing

DL/I

Calls

for

System

Services

181

U

Full

statistics

to

be

unformatted.

If

you

specify

U,

your

I/O

area

must

be

at

least

72

bytes.

v

4

bytes

of

EBCDIC

blanks

for

normal

or

enhanced

STAT

call,

or

�E1�,

for

extended

STAT

call.

Restriction:

The

extended

format

parameter

is

supported

by

the

DBESO,

DBESU,

and

DBESF

functions

only.

Extended

OSAM

buffer

pool

statistics

can

be

retrieved

by

including

the

parameter

�E1�

following

the

enhanced

call

function.

The

extended

STAT

call

returns

all

of

the

statistics

returned

with

the

enhanced

call,

plus

the

statistics

on

the

coupling

facility

buffer

invalidates,

OSAM

caching,

and

sequential

buffering

IMMED

and

SYNC

read

counts.

Usage

The

STAT

call

can

be

helpful

in

debugging

because

it

retrieves

IMS

database

statistics.

It

is

also

helpful

in

monitoring

and

tuning

for

performance.

The

STAT

call

retrieves

OSAM

database

buffer

pool

statistics

and

VSAM

database

buffer

supports.

When

you

request

VSAM

statistics,

each

issued

STAT

call

retrieves

the

statistics

for

a

subpool.

Statistics

are

retrieved

for

all

VSAM

local

shared

resource

pools

in

the

order

in

which

they

are

defined.

For

each

local

shared

resource

pool,

statistics

are

retrieved

in

ascending

order

based

on

buffer

size.

Statistics

for

index

subpools

always

follow

those

for

data

subpools

if

any

index

subpool

exists

in

the

shared

resource

pool.

The

index

subpools

are

also

retrieved

in

ascending

order

based

on

buffer

size.

For

more

information

on

the

STAT

call,

see

IMS

Version

9:

Application

Programming:

Design

Guide.

Restrictions

For

function

shipping

in

the

CICS

environment,

the

local

and

remote

CICS

must

both

be

DBCTL.

SYNC

Call

The

Synchronization

Point

(SYNC)

call

is

used

to

release

resources

that

IMS

has

locked

for

the

application

program.

The

ODBA

interface

does

not

support

this

call.

Format

��

SYNC

i/o

pcb

aib

��

Call

Name

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

SYNC

X

X

X

System

Service

Call:

STAT IBM

Confidential

182

Application

Programming:

Database

Manager

Parameters

i/o

pcb

Specifies

the

IO

PCB

for

the

call.

This

parameter

is

an

input

and

output

parameter.

aib

Specifies

the

AIB

for

the

call.

This

parameter

is

an

input

and

output

parameter.

The

following

fields

must

be

initialized

in

the

AIB:

AIBID

Eye

catcher.

This

8-byte

field

must

contain

DFSAIB��.

AIBLEN

AIB

lengths.

This

field

must

contain

the

actual

length

of

the

AIB

that

the

application

program

obtained.

AIBRSNM1

Resource

name.

This

8-byte,

left-justified

field

must

contain

the

PCB

name,

IOPCB���.

Usage

SYNC

commits

the

changes

your

program

has

made

to

the

database,

and

establishes

places

in

your

program

from

which

you

can

restart,

if

your

program

terminates

abnormally.

Restrictions

The

SYNC

call

is

valid

only

in

non-message

driven

BMPs;

you

cannot

issue

a

SYNC

call

from

an

CPI-C

driven

application

program.

For

important

considerations

about

using

the

SYNC

call,

see

IMS

Version

9:

Administration

Guide:

Database

Manager.

TERM

Call

(CICS

Online

Programs

Only)

The

Terminate

(TERM)

call

is

used

to

terminate

a

PSB

in

a

CICS

online

program.

The

ODBA

interface

does

not

support

this

call.

Format

��

TERM

��

Call

Name

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

TERM

X

X

Usage

If

your

program

needs

to

use

more

than

one

PSB,

you

must

issue

a

TERM

call

to

release

the

first

PSB

it

uses

and

then

issue

a

second

PCB

call

to

schedule

the

second

PSB.

The

TERM

call

also

commits

database

changes.

The

only

parameter

in

the

TERM

call

is

the

call

function:

TERM

or

T���.

When

your

program

issues

the

call,

CICS

terminates

the

scheduled

PSB,

causes

a

CICS

sync

point,

commits

changes,

and

frees

resources

for

other

tasks.

System

Service

Call:

SYNCIBM

Confidential

Chapter

5.

Writing

DL/I

Calls

for

System

Services

183

Restrictions

For

function

shipping

in

the

CICS

environment,

the

local

and

remote

CICS

must

both

be

DBCTL.

XRST

Call

The

Extended

Restart

(XRST)

call

is

used

to

restart

your

program.

If

you

use

the

symbolic

Checkpoint

call

in

your

program,

you

must

precede

it

with

an

XRST

call

that

specifies

checkpoint

data

of

blanks.

The

ODBA

interface

does

not

support

this

call.

Format

��

XRST

i/o

pcb

aib

i/o

area

length

i/o

area

�

area

length

area

��

Call

Name

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

XRST

X

X

X

X

X

Parameters

i/o

pcb

Specifies

the

I/O

PCB

for

the

call.

XRST

must

refer

to

the

I/O

PCB.

This

parameter

is

an

input

and

output

parameter.

aib

Specifies

the

AIB

for

the

call.

This

parameter

is

an

input

and

output

parameter.

The

following

fields

must

be

initialized

in

the

AIB:

AIBID

Eye

catcher.

This

8-byte

field

must

contain

DFSAIB��.

AIBLEN

AIB

lengths.

This

field

must

contain

the

actual

length

of

the

AIB

that

the

application

program

obtained.

AIBRSNM1

Resource

name.

This

8-byte,

left-justified

field

must

contain

the

PCB

name,

IOPCB���.

AIBOALEN

I/O

area

length.

This

field

must

contain

the

length

of

the

I/O

area

specified

in

the

call

list.

This

parameter

is

not

used

during

the

XRST

call.

For

compatibility

reasons,

this

parameter

must

still

be

coded.

i/o

area

length

This

parameter

is

no

longer

used

by

IMS.

For

compatibility

reasons,

this

parameter

must

still

be

included

in

the

call,

and

it

must

contain

a

valid

address.

You

can

get

a

valid

address

by

specifying

the

name

of

any

area

in

your

program.

System

Service

Call:

TERM IBM

Confidential

184

Application

Programming:

Database

Manager

i/o

area

Specifies

a

14-byte

area

in

your

program.

This

area

must

be

either

set

to

blanks

if

starting

your

program

normally

or,

if

performing

an

extended

restart,

have

a

checkpoint

ID.

area

length

Specifies

a

4-byte

field

in

your

program

that

contains

the

length

(in

binary)

of

the

area

to

restore.

This

parameter

is

an

input

parameter.

You

can

specify

up

to

seven

area

lengths.

For

each

area

length,

you

must

specify

the

area

parameter.

All

seven

area

parameters

(and

corresponding

area

length

parameters)

are

optional.

When

you

restart

the

program,

IMS

restores

only

the

areas

specified

on

the

CHKP

call.

The

number

of

areas

you

specify

on

an

XRST

call

must

be

less

than

or

equal

to

the

number

of

areas

you

specify

on

a

CHKP

call.

area

Specifies

the

area

in

your

program

that

you

want

IMS

to

restore.

You

can

specify

up

to

seven

areas.

Each

area

specified

must

be

preceded

by

an

area

length.

This

is

an

input

parameter.

Usage

Programs

that

wish

to

issue

Symbolic

Checkpoint

calls

(CHKP)

must

also

issue

the

Extended

Restart

call

(XRST).

The

XRST

call

must

be

issued

only

once

and

should

be

issued

early

in

the

execution

of

the

program.

It

does

not

need

to

be

the

first

call

in

the

program.

However,

it

must

precede

any

CHKP

call.

Any

Database

calls

issued

before

the

XRST

call

are

not

within

the

scope

of

a

restart.

To

determine

whether

to

perform

a

normal

start

or

a

restart,

IMS

evaluates

the

I/O

area

provided

by

the

XRST

call

or

CKPTID=

value

in

the

PARM

field

on

the

EXEC

statement

in

your

program’s

JCL.

Starting

Your

Program

Normally

When

you

are

starting

your

program

normally,

the

I/O

area

pointed

to

in

the

XRST

call

must

contain

blanks

and

the

CKPTID=

value

in

the

PARM

field

must

be

nulls.

This

indicates

to

IMS

that

subsequent

CHKP

calls

are

symbolic

checkpoints

rather

than

basic

checkpoints.

Your

program

should

test

the

I/O

area

after

issuing

the

XRST

call.

IMS

does

not

change

the

area

when

you

are

starting

the

program

normally.

However,

an

altered

I/O

area

indicates

that

you

are

restarting

your

program.

Consequently,

your

program

must

handle

the

specified

data

areas

that

were

previously

saved

and

that

are

now

restored.

Restarting

Your

Program

You

can

restart

the

program

from

a

symbolic

checkpoint

taken

during

a

previous

execution

of

the

program.

The

checkpoint

used

to

perform

the

restart

can

be

identified

by

entering

the

checkpoint

ID

either

in

the

I/O

area

pointed

to

by

the

XRST

call

(left-most

justified,

with

the

rest

of

the

area

containing

blanks)

or

by

specifying

the

ID

in

the

CKPTID=

field

of

the

PARM=

parameter

on

the

EXEC

statement

in

your

program’s

JCL.

(If

you

supply

both,

IMS

uses

the

CKPTID=

value

specified

in

the

parm

field

of

the

EXEC

statement.)

The

ID

specified

can

be:

v

A

1

to

8-character

extended

checkpoint

ID

v

A

14-character

″time

stamp″

ID

from

message

DFS0540I,

where:

–

IIII

is

the

region

ID

–

DDD

is

the

day

of

the

year

System

Service

Call:

XRSTIBM

Confidential

Chapter

5.

Writing

DL/I

Calls

for

System

Services

185

–

HHMMSST

is

the

time

in

hours,

minutes,

seconds,

and

tenth

of

a

second

v

The

4-character

constant

″LAST″.

(BMPs

only:

this

indicates

to

IMS

that

the

last

completed

checkpoint

issued

by

the

BMP

will

be

used

for

restarting

the

program)

The

system

message

DFS0540I

supplies

the

checkpoint

ID

and

the

time

stamp.

The

system

message

DFS682I

supplies

the

checkpoint

ID

of

the

last

completed

checkpoint

which

can

be

used

to

restart

a

batch

program

or

batch

message

processing

program

(BMP)

that

was

abnormally

terminated.

If

the

program

being

restarted

is

in

either

a

batch

region

or

a

BMP

region,

and

the

checkpoint

log

records

no

longer

reside

on

the

Online

Log

Data

Set

(OLDS)

or

System

Log

Data

Set

(SLDS),

the

//IMSLOGR

DD

defining

the

log

data

set

must

be

supplied

in

the

JCL

for

the

BATCH

or

BMP

region.

IMS

reads

these

data

sets

and

searches

for

the

checkpoint

records

with

the

ID

that

was

specified.

Restriction:

To

issue

a

checkpoint

restart

from

a

batch

job,

you

must

use

the

original

job

name,

or

IMS

cannot

locate

the

checkpoint

and

the

job

fails

with

a

U0102.

At

completion

of

the

XRST

call

the

I/O

area

always

contains

the

8-character

checkpoint

ID

used

for

the

restart.

An

exception

exists

when

the

checkpoint

ID

is

equal

to

8

blank

characters;

the

I/O

area

then

contains

a

14-character

time

stamp

(IIIIDDDHHMMSST).

Also

check

the

status

code

in

the

I/O

PCB.

The

only

successful

status

code

for

an

XRST

call

are

blanks.

Position

in

the

Database

after

Issuing

XRST

The

XRST

call

attempts

to

reposition

all

databases

to

the

position

that

was

held

when

the

last

checkpoint

was

taken.

This

is

done

by

including

each

PCB

and

PCB

key

feedback

area

in

the

checkpoint

record.

Issuing

XRST

causes

the

key

feedback

area

from

the

PCB

in

the

checkpoint

record

to

be

moved

to

the

corresponding

PCB

in

the

PSB

that

is

being

restarted.

Then

IMS

issues

a

GU

call,

qualified

with

the

concatenated

key

(using

the

C

command

code),

for

each

PCB

that

held

a

position

when

the

checkpoint

was

taken.

After

the

XRST

call,

the

PCB

reflects

the

results

of

the

GU

repositioning

call,

not

the

value

that

was

present

when

the

checkpoint

was

taken.

The

GU

call

is

not

made

if

the

PCB

did

not

hold

a

position

on

a

root

or

lower-level

segment

when

the

checkpoint

was

taken.

A

GE

status

code

in

the

PCB

means

that

the

GU

for

the

concatenated

key

was

not

fully

satisfied.

The

segment

name,

segment

level,

and

key

feedback

length

in

the

PCB

reflect

the

last

level

that

was

satisfied

on

the

GU

call.

A

GE

status

code

can

occur

because

IMS

is

unable

to

find

a

segment

that

satisfies

the

segment

search

argument

that

is

associated

with

a

Get

call

for

one

of

the

following

reasons:

v

The

call

preceding

the

checkpoint

call

was

a

DLET

call

issued

against

the

same

PCB.

In

this

case,

the

position

is

correct

because

the

not-found

position

is

the

same

position

that

would

exist

following

the

DLET

call.

Restriction:

Avoid

taking

a

checkpoint

immediately

after

a

DLET

call.

v

The

segment

was

deleted

by

another

application

program

between

the

time

your

program

terminated

abnormally

and

the

time

you

restarted

your

program.

A

GN

call

issued

after

the

restart

returns

the

first

segment

that

follows

the

deleted

segment

or

segments.

System

Service

Call:

XRST IBM

Confidential

186

Application

Programming:

Database

Manager

The

above

explanation

assumes

that

position

at

the

time

of

checkpoint

was

on

a

segment

with

a

unique

key.

XRST

cannot

reposition

to

a

segment

if

that

segment

or

any

of

its

parents

have

a

non

unique

key.

For

a

DEDB,

the

GC

status

code

is

received

when

position

is

not

on

a

segment

but

at

a

unit-of-work

(UOW)

boundary.

Because

the

XRST

call

attempts

to

reestablish

position

on

the

segment

where

the

PCB

was

positioned

when

the

symbolic

checkpoint

was

taken,

the

XRST

call

does

not

reestablish

position

on

a

PCB

if

the

symbolic

checkpoint

is

taken

when

the

PCB

contains

a

GC

status

code.

If

your

program

accesses

GSAM

databases,

the

XRST

call

also

repositions

these

databases.

For

more

information

on

processing

GSAM

databases,

see

Chapter

10,

“Processing

GSAM

Databases,”

on

page

219.

Restrictions

If

your

program

is

being

started

normally,

the

first

5

bytes

of

the

I/O

area

must

be

set

to

blanks.

If

your

program

is

restarted

and

the

CKPTID=

value

in

the

PARM

field

of

the

EXEC

statement

is

not

used,

then

the

right-most

bytes

beyond

the

checkpoint

ID

being

used

in

the

I/O

area

must

be

set

to

blanks.

The

XRST

call

is

allowed

only

from

Batch

and

BMP

application

programs.

System

Service

Call:

XRSTIBM

Confidential

Chapter

5.

Writing

DL/I

Calls

for

System

Services

187

System

Service

Call:

XRST IBM

Confidential

188

Application

Programming:

Database

Manager

Chapter

6.

Monitoring

Your

Position

in

the

Database

Positioning

means

that

DL/I

tracks

your

place

in

the

database

after

each

call

that

you

issue.

By

tracking

your

position

in

the

database,

DL/I

enables

you

to

process

the

database

sequentially.

In

this

Chapter:

v

“Understanding

Current

Position

in

the

Database”

v

“Current

Position

after

Unsuccessful

Calls”

on

page

194

Understanding

Current

Position

in

the

Database

Position

is

important

when

you

process

the

database

sequentially

by

issuing

GN,

GNP,

GHN,

and

GHNP

calls.

Current

position

is

where

IMS

starts

its

search

for

the

segments

that

you

specify

in

the

calls.

This

section

explains

current

position

for

successful

calls.

Current

position

is

also

affected

by

an

unsuccessful

retrieval

or

ISRT

call.

“Current

Position

after

Unsuccessful

Calls”

on

page

194

explains

current

position

in

the

database

after

an

unsuccessful

call.

Before

you

issue

the

first

call

to

the

database,

the

current

position

is

the

place

immediately

before

the

first

root

segment

occurrence

in

the

database.

This

means

that

if

you

issue

an

unqualified

GN

call,

IMS

retrieves

the

first

root

segment

occurrence.

It

is

the

next

segment

occurrence

in

the

hierarchy

that

is

defined

by

the

DB

PCB

that

you

referenced.

Certain

calls

cancel

your

position

in

the

database.

You

can

reestablish

this

position

with

the

GU

call.

Because

the

CHKP

and

SYNC

(commit

point)

calls

cancel

position,

follow

either

of

these

calls

with

a

GU

call.

The

ROLS

and

ROLB

calls

also

cancel

your

position

in

the

database.

When

you

issue

a

GU

call,

your

current

position

in

the

database

does

not

affect

the

way

that

you

code

the

GU

call

or

the

SSAs

you

use.

If

you

issue

the

same

GU

call

at

different

points

during

program

execution

(when

you

have

different

positions

established),

you

will

receive

the

same

results

each

time

you

issue

the

call.

If

you

have

coded

the

call

correctly,

IMS

returns

the

segment

occurrence

you

requested

regardless

of

whether

the

segment

is

before

or

after

current

position.

Exception:

If

a

GU

call

does

not

have

SSAs

for

each

level

in

the

call,

it

is

possible

for

IMS

to

return

a

different

segment

at

different

points

in

your

program.

This

is

based

on

the

position

at

each

level.

Example:

Suppose

you

issue

the

following

call

against

the

data

structure

shown

in

Figure

34

on

page

190.

GU

A�������(AKEY����=�A1)

B�������(BKEY����=�B11)

D�������(DKEY����=�D111)

The

structure

in

the

figure

contains

six

segment

types:

A,

B,

C,

D,

E,

and

F.

Figure

34

on

page

190

shows

one

database

record,

the

root

of

which

is

A1.

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

189

When

you

issue

this

call,

IMS

returns

the

D

segment

with

the

key

D111,

regardless

of

where

your

position

is

when

you

issue

the

call.

If

this

is

the

first

call

your

program

issues

(and

if

this

is

the

first

database

record

in

the

database),

current

position

before

you

issue

the

call

is

immediately

before

the

first

segment

occurrence

in

the

database—just

before

the

A

segment

with

the

key

of

A1.

Even

if

current

position

is

past

segment

D111

when

you

issue

the

call

(for

example,

just

before

segment

F111),

IMS

still

returns

the

segment

D111

to

your

program.

This

is

also

true

if

the

current

position

is

in

a

different

database

record.

When

you

issue

GN

and

GNP

calls,

current

position

in

the

database

affects

the

way

that

you

code

the

call

and

the

SSAs.

That

is

because

when

IMS

searches

for

a

segment

described

in

a

GN

or

GNP

call,

it

starts

the

search

from

current

position

and

can

only

search

forward

in

the

database.

IMS

cannot

look

behind

that

segment

occurrence

to

satisfy

a

GN

or

GNP.

These

calls

can

only

move

forward

in

the

database

when

trying

to

satisfy

your

call,

unless

you

use

the

F

command

code,

the

use

of

which

is

described

in

“The

F

Command

Code”

on

page

31.

If

you

issue

a

GN

call

for

a

segment

occurrence

that

you

have

already

passed,

IMS

starts

searching

at

the

current

position

and

stops

searching

when

it

reaches

the

end

of

the

database

(resulting

in

a

GB

status

code),

or

when

it

determines

from

your

SSAs

that

it

cannot

find

the

segment

you

have

requested

(GE

status

code).

“Current

Position

after

Unsuccessful

Calls”

on

page

194

explains

where

your

position

is

when

you

receive

a

GE

status

code.

Current

position

affects

ISRT

calls

when

you

do

not

supply

qualified

SSAs

for

the

parents

of

the

segment

occurrence

that

you

are

inserting.

If

you

supply

only

the

unqualified

SSA

for

the

segment

occurrence,

you

must

be

sure

that

your

position

in

the

database

is

where

you

want

the

segment

occurrence

to

be

inserted.

Position

after

Retrieval

Calls

After

you

issue

any

kind

of

successful

retrieval

call,

position

is

immediately

after

the

segment

occurrence

you

just

retrieved—or

the

lowest

segment

occurrence

in

the

Figure

34.

Current

Position

Hierarchy

Understanding

Current

Position

in

the

Database IBM

Confidential

190

Application

Programming:

Database

Manager

path

if

you

retrieved

several

segment

occurrences

using

the

D

command

code.

When

you

use

the

D

command

code

in

a

retrieval

call,

a

successful

call

is

one

that

IMS

completely

satisfies.

Example:

If

you

issue

the

following

call

against

the

database

shown

in

Figure

34

on

page

190,

IMS

returns

the

C

segment

occurrence

with

the

key

of

C111.

Current

position

is

immediately

after

C111.

If

you

then

issue

an

unqualified

GN

call,

IMS

returns

the

C112

segment

to

your

program.

GU

A�������(AKEY����=�A1)

B�������(BKEY����=�B11)

C�������(CKEY����=�C111)

Your

current

position

is

the

same

after

retrieving

segment

C111,

whether

you

retrieve

it

with

GU,

GN,

GNP,

or

any

of

the

Get

Hold

calls.

If

you

retrieve

several

segment

occurrences

by

issuing

a

Get

call

with

the

D

command

code,

current

position

is

immediately

after

the

lowest

segment

occurrence

that

you

retrieved.

If

you

issue

the

GU

call

that

was

shown

above

but

include

the

D

command

code

in

the

SSAs

for

segments

A

and

B,

current

position

is

still

immediately

after

segment

C111.

C111

is

the

last

segment

that

IMS

retrieves

for

this

call.

With

the

D

command

code,

the

call

looks

like

this:

GU

A�������*D(AKEY����=�A1)

B�������*D(BKEY����=�B11)

C�������(CKEY����=�C111)

You

do

not

need

the

D

command

code

on

the

SSA

for

the

C

segment

because

IMS

always

returns

to

your

I/O

area

the

segment

occurrence

that

is

described

in

the

last

SSA.

Position

after

DLET

After

a

successful

DLET

call,

position

is

immediately

after

the

segment

occurrence

you

deleted.

This

is

true

when

you

delete

a

segment

occurrence

with

or

without

dependents.

Example:

If

you

issue

the

call

shown

Figure

35

to

delete

segment

C111,

current

position

is

immediately

after

segment

C111.

Then,

if

you

issue

an

unqualified

GN

call,

IMS

returns

segment

C112.

Figure

36

on

page

192

shows

what

the

hierarchy

looks

like

after

this

call.

The

successful

DLETcall

has

deleted

segment

C111.

GHU

A�������(AKEY����=�A1)

B�������(BKEY����=�B11)

C�������(CKEY����=�C111)

DLET

Figure

35.

Example

Code:

Deleting

Segment

C11

Understanding

Current

Position

in

the

DatabaseIBM

Confidential

Chapter

6.

Monitoring

Your

Position

in

the

Database

191

When

you

issue

a

successful

DLET

call

for

a

segment

occurrence

that

has

dependents,

IMS

deletes

the

dependents,

and

the

segment

occurrence.

Current

position

is

still

immediately

after

the

segment

occurrence

you

deleted.

An

unqualified

GN

call

returns

the

segment

occurrence

that

followed

the

segment

you

deleted.

Example:

If

you

delete

segment

B11

in

the

hierarchy

shown

in

Figure

36,

IMS

deletes

its

dependent

segments,

C112

and

D111,

as

well.

Current

position

is

immediately

after

segment

B11,

just

before

segment

B12.

If

you

then

issue

an

unqualified

GN

call,

IMS

returns

segment

B12.

Figure

37

shows

what

the

hierarchy

looks

like

after

you

issued

this

call.

Because

IMS

deletes

the

segment’s

dependents,

you

can

think

of

current

position

as

being

immediately

after

the

last

(lowest,

right-most)

dependent.

In

the

example

in

Figure

36,

this

is

immediately

after

segment

D111.

But

if

you

then

issue

an

Figure

36.

Hierarchy

after

Deleting

a

Segment

Figure

37.

Hierarchy

after

Deleting

a

Segment

and

Dependents

Understanding

Current

Position

in

the

Database IBM

Confidential

192

Application

Programming:

Database

Manager

unqualified

GN

call,

IMS

still

returns

segment

B12.

You

can

think

of

position

in

either

place—the

results

are

the

same

either

way.

An

exception

to

this

can

occur

for

a

DLET

that

follows

a

GU

path

call,

which

returned

a

GE

status

code.

See

“Current

Position

after

Unsuccessful

Calls”

on

page

194

regarding

position

after

unsuccessful

calls.

Position

after

REPL

A

successful

REPL

call

does

not

change

your

position

in

the

database.

Current

position

is

just

where

it

was

before

you

issued

the

REPL

call.

It

is

immediately

after

the

lowest

segment

that

is

retrieved

by

the

Get

Hold

call

that

you

issued

before

the

REPL

call.

Example:

If

you

retrieve

segment

B13

in

Figure

37

on

page

192

using

a

GHU

instead

of

a

GU

call,

change

the

segment

in

the

I/O

area,

and

then

issue

a

REPL

call,

current

position

is

immediately

after

segment

B13.

Position

after

ISRT

After

you

add

a

new

segment

occurrence

to

the

database,

current

position

is

immediately

after

the

new

segment

occurrence.

Example:

In

Figure

38

on

page

194,

if

you

issue

the

following

call

to

add

segment

C113

to

the

database,

current

position

is

immediately

following

segment

C113.

An

unqualified

GN

call

would

retrieve

segment

D111.

ISRT

A�������(AKEY����=�A1)

B�������(BKEY����=�B11)

C��������

If

you

are

inserting

a

segment

that

has

a

unique

key,

IMS

places

the

new

segment

in

key

sequence.

If

you

are

inserting

a

segment

that

has

either

a

non

unique

key

or

no

key

at

all,

IMS

places

the

segment

according

to

the

rules

parameter

of

the

SEGM

statement

of

the

DBD

for

the

database.

“ISRT

Call”

on

page

138

explains

these

rules.

If

you

insert

several

segment

occurrences

using

the

D

command

code,

current

position

is

immediately

after

the

lowest

segment

occurrence

that

is

inserted.

Example:

Suppose

you

insert

a

new

segment

B

(this

would

be

B14),

and

a

new

C

segment

occurrence

(C141),

which

is

a

dependent

of

B14.

Figure

38

on

page

194

shows

what

the

hierarchy

looks

like

after

you

insert

these

segment

occurrences.

The

call

to

do

this

looks

like

this:

ISRT

A�������(AKEY����=�A1)

B�������*D

C��������

You

do

not

need

the

D

command

code

in

the

SSA

for

the

C

segment.

On

ISRT

calls,

you

must

include

the

D

command

code

in

the

SSA

for

the

only

first

segment

you

are

inserting.

After

you

issue

this

call,

position

is

immediately

after

the

C

segment

occurrence

with

the

key

of

C141.

Then,

if

you

issue

an

unqualified

GN

call,

IMS

returns

segment

E11.

If

your

program

receives

an

II

status

code

as

a

result

of

an

ISRT

call

(which

means

that

the

segment

you

tried

to

insert

already

exists

in

the

database),

current

position

is

just

before

the

duplicate

of

the

segment

that

you

tried

to

insert.

Understanding

Current

Position

in

the

DatabaseIBM

Confidential

Chapter

6.

Monitoring

Your

Position

in

the

Database

193

Current

Position

after

Unsuccessful

Calls

IMS

establishes

another

kind

of

position

when

you

issue

retrieval

and

ISRT

calls.

This

is

position

on

one

segment

occurrence

at

each

hierarchic

level

in

the

path

to

the

segment

that

you

are

retrieving

or

inserting.

You

need

to

know

how

IMS

establishes

this

position

to

understand

the

U

and

V

command

codes

described

in

“Command

Codes”

on

page

28.

Also,

you

need

to

understand

where

your

position

in

the

database

is

when

IMS

returns

a

not-found

status

code

to

a

retrieval

or

ISRT

call.

In

“Understanding

Current

Position

in

the

Database”

on

page

189

you

saw

what

current

position

is,

why

and

when

it

is

important,

and

how

successful

DL/I

calls

affect

it.

But

chances

are

that

not

every

DL/I

call

that

your

program

issues

will

be

completely

successful.

When

a

call

is

unsuccessful,

you

should

understand

how

to

determine

where

your

position

in

the

database

is

after

that

call.

Position

after

an

Unsuccessful

DLET

or

REPL

Call

DLET

and

REPL

calls

do

not

affect

current

position.

Your

position

in

the

database

is

the

same

as

it

was

before

you

issued

the

call.

However,

an

unsuccessful

Get

call

or

ISRT

call

does

affect

your

current

position.

To

understand

where

your

position

is

in

the

database

when

IMS

cannot

find

the

segment

you

have

requested,

you

need

to

understand

how

DL/I

determines

that

it

cannot

find

your

segment.

In

addition

to

establishing

current

position

after

the

lowest

segment

that

is

retrieved

or

inserted,

IMS

maintains

a

second

type

of

position

on

one

segment

occurrence

at

each

hierarchic

level

in

the

path

to

the

segment

you

are

retrieving

or

inserting.

Example:

In

Figure

39

on

page

195,

if

you

had

just

successfully

issued

the

GU

call

with

the

SSAs

shown

below,

IMS

has

a

position

established

at

each

hierarchic

level.

Figure

38.

Hierarchy

after

Adding

New

Segments

and

Dependents

Current

Position

After

Unsuccessful

Calls IBM

Confidential

194

Application

Programming:

Database

Manager

GU

A�������(AKEY����=�A1)

B�������(BKEY����=�B11)

C�������(CKEY����=�C111)

Now

DL/I

has

three

positions,

one

on

each

hierarchic

level

in

the

call:

v

One

on

the

A

segment

with

the

key

A1

v

One

on

the

B

segment

with

the

key

B11

v

One

on

the

C

segment

with

the

key

C111

When

IMS

searches

for

a

segment

occurrence,

it

accepts

the

first

segment

occurrence

it

encounters

that

satisfies

the

call.

As

it

does

so,

IMS

stores

the

key

of

that

segment

occurrence

in

the

key

feedback

area.

Position

after

an

Unsuccessful

Retrieval

or

ISRT

Call

Current

position

after

a

retrieval

or

ISRT

call

that

receives

a

GE

status

code

depends

on

how

far

IMS

got

in

trying

to

satisfy

the

SSAs

in

the

call.

When

IMS

processes

an

ISRT

call,

it

checks

for

each

of

the

parents

of

the

segment

occurrence

you

are

inserting.

An

ISRT

call

is

similar

to

a

retrieval

call,

because

IMS

processes

the

call

level

by

level,

trying

to

find

segment

occurrences

to

satisfy

each

level

of

the

call.

When

IMS

returns

a

GE

status

code

on

a

retrieval

call,

it

means

that

IMS

was

unable

to

find

a

segment

occurrence

to

satisfy

one

of

the

levels

in

the

call.

When

IMS

returns

a

GE

status

code

on

an

ISRT

call,

it

means

that

IMS

was

unable

to

find

one

of

the

parents

of

the

segment

occurrence

you

are

inserting.

These

are

called

not-found

calls.

When

IMS

processes

retrieval

and

ISRT

calls,

it

tries

to

satisfy

your

call

until

it

determines

that

it

cannot.

When

IMS

first

tries

to

find

a

segment

matching

the

description

you

have

given

in

the

SSA

and

none

exists

under

the

first

parent,

IMS

tries

to

search

for

your

segment

under

another

parent.

The

way

that

you

code

the

SSAs

in

the

call

determines

whether

IMS

can

move

forward

and

try

again

under

another

parent.

Figure

39.

DL/I

Positions

Current

Position

After

Unsuccessful

CallsIBM

Confidential

Chapter

6.

Monitoring

Your

Position

in

the

Database

195

Example:

Suppose

you

issue

the

following

GN

call

to

retrieve

the

C

segment

with

the

key

of

C113

in

the

hierarchy

shown

in

Figure

39

on

page

195.

GN

A�������(AKEY����=�A1)

B�������(BKEY����=�B11)

C�������(CKEY����=�C113)

When

IMS

processes

this

call,

it

searches

for

a

C

segment

with

the

key

equal

to

C113.

IMS

can

only

look

at

C

segments

whose

parents

meet

the

qualifications

for

the

A

and

B

segments.

The

B

segment

that

is

part

of

the

path

must

have

a

key

equal

to

B11,

and

the

A

segment

that

is

part

of

the

path

must

have

a

key

equal

to

A1.

IMS

then

looks

at

the

first

C

segment.

Its

key

is

C111.

The

next

C

segment

has

a

key

of

C112.

IMS

looks

for

a

third

C

segment

occurrence

under

the

B11

segment

occurrence.

No

more

C

segment

occurrences

exist

under

B11.

Because

you

have

specified

in

the

SSAs

that

the

A

and

B

segment

occurrences

in

C’s

path

must

be

equal

to

certain

values,

IMS

cannot

look

for

a

C

segment

occurrence

with

a

key

of

C113

under

any

other

A

or

B

segment

occurrence.

No

more

C

segment

occurrences

exist

under

the

parent

B11;

the

parent

of

C

must

be

B11,

and

the

parent

of

B11

must

be

A1.

IMS

determines

that

the

segment

you

have

specified

does

not

exist

and

returns

a

not-found

(GE)

status

code.

When

you

receive

the

GE

status

code

on

this

call,

you

can

determine

where

your

position

is

from

the

key

feedback

area,

which

reflects

the

positions

that

IMS

has

at

the

levels

it

was

able

to

satisfy—in

this

case,

A1

and

B11.

After

this

call,

current

position

is

immediately

after

the

last

segment

occurrence

that

IMS

examined

in

trying

to

satisfy

your

call—in

this

case,

C112.

Then,

if

you

issue

an

unqualified

GN

call,

IMS

returns

D111.

Current

position

after

this

call

is

different

if

A

and

B

have

non

unique

keys.

Suppose

A’s

key

is

unique

and

B’s

is

non

unique.

After

IMS

searches

for

a

C113

segment

under

B11

and

is

unable

to

find

one,

IMS

moves

forward

from

B11

to

look

for

another

B

segment

with

a

key

of

B11.

When

IMS

does

not

find

one,

DL/I

returns

a

GE

status

code.

Current

position

is

further

in

the

database

than

it

was

when

both

keys

were

unique.

Current

position

is

immediately

after

segment

B11.

An

unqualified

GN

call

would

return

B12.

If

A

and

B

both

have

non

unique

keys,

current

position

after

the

previous

call

is

immediately

after

segment

A1.

Assuming

no

more

segment

A1s

exist,

an

unqualified

GN

call

would

return

segment

A2.

If

other

A1s

exist,

IMS

tries

to

find

a

segment

C113

under

the

other

A1s.

But

suppose

you

issue

the

same

call

with

a

greater-than-or-equal-to

relational

operator

in

the

SSA

for

segment

B:

GU

A�������(AKEY����=�A1)

B�������(BKEY����>=B11)

C�������(CKEY����=�C113)

IMS

establishes

position

on

segment

A1

and

segment

B11.

Because

A1

and

B11

satisfy

the

first

two

SSAs

in

the

call,

IMS

stores

their

keys

in

the

key

feedback

area.

IMS

searches

for

a

segment

C113

under

segment

B11.

None

is

found.

But

this

time,

IMS

can

continue

searching,

because

the

key

of

the

B

parent

can

be

greater

than

or

equal

to

B11.

The

next

segment

is

B12.

Because

B12

satisfies

the

qualification

for

segment

B,

IMS

places

B12’s

key

in

the

key

feedback

area.

IMS

Current

Position

After

Unsuccessful

Calls IBM

Confidential

196

Application

Programming:

Database

Manager

then

looks

for

a

C113

under

B12

and

does

not

find

one.

The

same

thing

happens

for

B13:

IMS

places

the

key

of

B13

in

the

key

feedback

area

and

looks

for

a

C113

under

B13.

When

IMS

finds

no

more

B

segments

under

A1,

it

again

tries

to

move

forward

to

look

for

B

and

C

segments

that

satisfy

the

call

under

another

A

parent.

But

this

time

it

cannot;

the

SSA

for

the

A

segment

specifies

that

the

A

segment

must

be

equal

to

A1.

(If

the

keys

were

non

unique,

IMS

could

look

for

another

A1

segment.)

IMS

then

knows

that

it

cannot

find

a

C113

under

the

parents

you

have

specified

and

returns

a

GE

status

code

to

your

program.

In

this

example,

you

have

not

limited

IMS’s

search

for

segment

C113

to

only

one

B

segment,

because

you

have

used

the

greater-than-or-equal-to

operator.

IMS’s

position

is

further

than

you

might

have

expected,

but

you

can

tell

what

the

position

is

from

the

key

feedback

area.

The

last

key

in

the

key

feedback

area

is

the

key

of

segment

B13;

IMS’s

current

position

is

immediately

following

segment

B13.

If

you

then

issue

an

unqualified

GN

call,

IMS

returns

segment

E11.

Each

of

the

B

segments

that

IMS

examines

for

this

call

satisfies

the

SSA

for

the

B

segment,

so

IMS

places

the

key

of

each

in

the

key

feedback

area.

But

if

one

or

more

of

the

segments

IMS

examines

does

not

satisfy

the

call,

IMS

does

not

place

the

key

of

that

segment

in

the

key

feedback

area.

This

means

that

IMS’s

position

in

the

database

might

be

further

than

the

position

reflected

by

the

key

feedback

area.

For

example,

suppose

you

issue

the

same

call,

but

you

qualify

segment

B

on

a

data

field

in

addition

to

the

key

field.

To

do

this,

you

use

multiple

qualification

statements

for

segment

B.

Assume

the

data

field

you

are

qualifying

the

call

on

is

called

BDATA.

Assume

the

value

you

want

is

14,

but

that

only

one

of

the

segments,

B11,

contains

a

value

in

BDATA

of

14:

GN

A�������(AKEY����=�A1)

B�������(BKEY����>=B11*BDATA���=�14)

C�������(CKEY����=�C113)

After

you

issue

this

call,

the

key

feedback

area

contains

the

key

for

segment

B11.

If

you

continue

issuing

this

call

until

you

receive

a

GE

status

code,

IMS’s

current

position

is

immediately

after

segment

B13,

but

the

key

feedback

area

still

contains

only

the

key

for

segment

B11.

Of

the

B

segments

IMS

examines,

only

one

of

them

(B11)

satisfies

the

SSA

in

the

call.

When

you

use

a

greater-than

or

greater-than-or-equal-to

relational

operator,

you

do

not

limit

IMS’s

search.

If

you

get

a

GE

status

code

on

this

kind

of

call,

and

if

one

or

more

of

the

segments

IMS

examines

does

not

satisfy

an

SSA,

IMS’s

position

in

the

database

may

be

further

than

the

position

reflected

in

the

key

feedback

area.

If,

when

you

issue

the

next

GN

or

GNP

call,

you

want

IMS

to

start

searching

from

the

position

reflected

in

the

key

feedback

area

instead

of

from

its

“real”

position,

you

can

either:

v

Issue

a

fully

qualified

GU

call

to

reestablish

position

to

where

you

want

it.

v

Issue

a

GN

or

GNP

call

with

the

U

command

code.

Including

a

U

command

code

on

an

SSA

tells

IMS

to

use

the

first

position

it

established

at

that

level

as

qualification

for

the

call.

This

is

like

supplying

an

equal-to

relational

operator

for

the

segment

occurrence

that

IMS

has

positioned

on

at

that

level.

Example:

Suppose

that

you

first

issue

the

GU

call

with

the

greater-than-or-equal-to

relational

operator

in

the

SSA

for

segment

B,

and

then

you

issue

this

GN

call:

Current

Position

After

Unsuccessful

CallsIBM

Confidential

Chapter

6.

Monitoring

Your

Position

in

the

Database

197

GN

A�������*U

B�������*U

C��������

The

U

command

code

tells

IMS

to

use

segment

A1

as

the

A

parent,

and

segment

B11

as

the

B

parent.

IMS

returns

segment

C111.

But

if

you

issue

the

same

call

without

the

U

command

code,

IMS

starts

searching

from

segment

B13

and

moves

forward

to

the

next

database

record

until

it

encounters

a

B

segment.

IMS

returns

the

first

B

segment

it

encounters.

Current

Position

After

Unsuccessful

Calls IBM

Confidential

198

Application

Programming:

Database

Manager

Chapter

7.

Multiple

Qualification

Statements

When

you

use

a

qualification

statement,

you

can

do

more

than

give

IMS

a

field

value

with

which

to

compare

the

fields

of

segments

in

the

database.

You

can

give

several

field

values

to

establish

limits

for

the

fields

you

want

IMS

to

compare.

In

this

Chapter:

v

“Overview

of

Multiple

Qualification

Statements”

v

“Example

using

Multiple

Qualification

Statements”

on

page

200

v

“Multiple

Qualification

Statements

for

HDAM,

PHDAM,

or

DEDB”

on

page

201

Overview

of

Multiple

Qualification

Statements

You

can

use

a

maximum

of

1024

qualification

statements

on

a

call.

Connect

the

qualification

statements

with

one

of

the

Boolean

operators.

You

can

indicate

to

IMS

that

you

are

looking

for

a

value

that,

for

example,

is

greater

than

A

and

less

than

B,

or

you

can

indicate

that

you

are

looking

for

a

value

that

is

equal

to

A

or

greater

than

B.

The

Boolean

operators

are:

Logical

AND

For

a

segment

to

satisfy

this

request,

the

segment

must

satisfy

both

qualification

statements

that

are

connected

with

the

logical

AND

(coded

*

or

&).

Logical

OR

For

a

segment

to

satisfy

this

request,

the

segment

can

satisfy

either

of

the

qualification

statements

that

are

connected

with

the

logical

OR

(coded

+

or

|).

One

more

Boolean

operator

exists

and

is

called

the

independent

AND.

Use

it

only

with

secondary

indexes.

“Multiple

Qualification

Statements

with

Secondary

Indexes”

on

page

212

describes

its

use.

For

a

segment

to

satisfy

multiple

qualification

statements,

the

segment

must

satisfy

a

set

of

qualification

statements.

A

set

is

a

number

of

qualification

statements

that

are

joined

by

an

AND.

To

satisfy

a

set,

a

segment

must

satisfy

each

of

the

qualification

statements

within

that

set.

Each

OR

starts

a

new

set

of

qualification

statements.

When

processing

multiple

qualification

statements,

IMS

reads

them

left

to

right

and

processes

them

in

that

order.

When

you

include

multiple

qualification

statements

for

a

root

segment,

the

fields

you

name

in

the

qualification

statements

affect

the

range

of

roots

that

IMS

examines

to

satisfy

the

call.

DL/I

examines

the

qualification

statements

to

determine

the

minimum

acceptable

key

value.

If

one

or

more

of

the

sets

do

not

include

at

least

one

statement

that

is

qualified

on

the

key

field

with

an

operator

of

equal-to,

greater-than,

or

equal-to-or-greater-than,

IMS

starts

at

the

first

root

of

the

database

and

searches

for

a

root

that

meets

the

qualification.

If

each

set

contains

at

least

one

statement

that

is

qualified

on

the

key

field

with

an

equal-to,

greater-than,

or

equal-to-or-greater-than

operator,

IMS

uses

the

lowest

of

these

keys

as

the

starting

place

for

its

search.

After

establishing

the

starting

position

for

the

search,

IMS

processes

the

call

by

searching

forward

sequentially

in

the

database,

similar

to

the

way

it

processes

GN

calls.

IMS

examines

each

root

it

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

199

encounters

to

determine

whether

the

root

satisfies

a

set

of

qualification

statements.

IMS

also

examines

the

qualification

statements

to

determine

the

maximum

acceptable

key

value.

If

one

or

more

of

the

sets

do

not

include

at

least

one

statement

that

is

qualified

on

the

key

field

with

an

operator

of

equal-to,

less-than-or-equal-to,

or

less-than,

IMS

determines

that

no

maximum

key

value

exists.

If

each

set

contains

at

least

one

statement

that

is

qualified

on

the

key

field

with

an

equal-to,

less-than,

or

equal-to-or-less-than

operator,

IMS

uses

the

maximum

of

these

keys

to

determine

when

the

search

stops.

IMS

continues

the

search

until

it

satisfies

the

call,

encounters

the

end

of

the

database,

or

finds

a

key

value

that

exceeds

the

maximum.

If

no

maximum

key

value

is

found,

the

search

continues

until

IMS

satisfies

the

call

or

encounters

the

end

of

the

database.

Examples:

Shown

below

are

cases

of

SSAs

used

at

the

root

level:

ROOTKEY�=�10&FIELDB��=XYZ+ROOTKEY��=10&FIELDB��=ABC

In

this

case,

the

minimum

and

maximum

key

is

10.

This

means

that

IMS

starts

searching

with

key

10

and

stops

when

it

encounters

the

first

key

greater

than

10.

To

satisfy

the

SSA,

the

ROOTKEY

field

must

be

equal

to

10,

and

FIELDB

must

be

equal

to

either

ABC

or

XYZ.

ROOTKEY�=>10&ROOTKEY�=<20

In

this

case,

the

minimum

key

is

10

and

the

maximum

key

is

20.

Keys

in

the

range

of

10

to

20

satisfy

the

SSA.

IMS

stops

the

search

when

it

encounters

the

first

key

greater

than

20.

ROOTKEY�=>10&ROOTKEY�=<20+ROOTKEY�=>110&ROOTKEY�=<120

In

this

case,

the

minimum

key

is

10

and

the

maximum

key

is

120.

Keys

in

the

range

of

10

to

20

and

110

to

120

satisfy

the

call.

IMS

stops

the

search

when

it

encounters

the

first

key

greater

than

120.

IMS

does

not

scan

from

20

to

110

but

skips

forward

(using

the

index

for

HIDAM

or

PHIDAM)

from

20

to

110.

Because

of

this,

you

can

use

ranges

for

more

efficient

program

operation.

When

you

use

multiple

qualification

statement

segments

that

are

part

of

logical

relationships,

additional

considerations

exist.

See

“How

Logical

Relationships

Affect

Your

Programming”

on

page

216

for

more

information

about

these

considerations.

Example

using

Multiple

Qualification

Statements

The

easiest

way

to

understand

multiple

qualification

statements

is

to

look

at

an

example:

Did

we

see

patient

number

04120

during

1992?

To

find

the

answer

to

this

question,

you

need

to

give

IMS

more

than

the

patient’s

name;

you

want

IMS

to

search

through

the

ILLNESS

segments

for

that

patient,

read

each

one,

and

return

any

that

have

a

date

in

1992.

The

call

you

would

issue

to

do

this

is:

GU

PATIENT�(PATNO���EQ04120)

ILLNESS�(ILLDATE�>=19920101&ILLDATE�<=19921231)

Multiple

Qualification

Statements IBM

Confidential

200

Application

Programming:

Database

Manager

In

other

words,

you

want

IMS

to

return

any

ILLNESS

segment

occurrences

under

patient

number

04120

that

have

a

date

after

or

equal

to

January

1,

1992,

and

before

or

equal

to

December

31,

1992,

joined

with

an

AND

connector.

Suppose

you

wanted

to

answer

the

following

request:

Did

we

see

Judy

Jennison

during

January

of

1992,

or

during

July

of

1992?

Her

patient

number

is

05682.

You

could

issue

a

GU

call

with

the

following

SSAs:

GU

PATIENT�(PATNO���EQ05682)

ILLNESS�(ILLDATE�>=19920101&ILLDATE�<=19920131|

ILLDATE�>=19920701&ILLDATE�<=19920731)

To

satisfy

this

request,

the

value

for

ILLDATE

must

satisfy

either

of

the

two

sets.

IMS

returns

any

ILLNESS

segment

occurrences

for

the

month

of

January

1992,

or

for

the

month

of

July

1992.

Multiple

Qualification

Statements

for

HDAM,

PHDAM,

or

DEDB

For

HDAM,

PHDAM,

or

DEDB

organizations,

a

randomizing

exit

routine

usually

does

not

store

the

root

keys

in

ascending

key

sequence.

For

these

organizations,

IMS

determines

the

minimum

and

maximum

key

values.

The

minimum

key

value

is

passed

to

the

randomizing

exit

routine,

which

determines

the

starting

anchor

point.

The

first

root

off

this

anchor

is

the

starting

point

for

the

search.

When

IMS

encounters

a

key

that

exceeds

the

maximum

key

value,

IMS

terminates

the

search

with

a

GE

status

code.

If

the

randomizing

routine

randomized

so

that

the

keys

are

stored

in

ascending

key

sequence,

a

call

for

a

range

of

keys

will

return

all

of

the

keys

in

the

range.

However,

if

the

randomizing

routine

did

not

randomize

into

key

sequence,

the

call

does

not

return

all

keys

in

the

requested

range.

Therefore,

use

calls

for

a

range

of

key

values

only

when

the

keys

are

in

ascending

sequence

(when

the

organization

is

HDAM,

PHDAM,

or

DEDB).

Recommendation:

When

the

organization

is

HDAM

or

DEDB,

do

not

use

calls

that

allow

a

range

of

values

at

the

root

level.

For

more

details

about

HDAM

or

PHDAM

databases,

see

IMS

Version

9:

Administration

Guide:

Database

Manager.

Multiple

Qualification

StatementsIBM

Confidential

Chapter

7.

Multiple

Qualification

Statements

201

IBM

Confidential

202

Application

Programming:

Database

Manager

Chapter

8.

Multiple

Processing

The

order

in

which

an

application

program

accesses

segments

in

a

hierarchy

depends

on

the

purpose

of

the

application

program.

Some

programs

access

segments

directly,

others

sequentially.

Some

application

programs

require

that

the

program

process

segments

in

different

hierarchic

paths,

or

in

different

database

records,

in

parallel.

If

your

program

must

process

segments

from

different

hierarchic

paths

or

from

different

database

records

in

parallel,

using

multiple

positioning

or

multiple

PCBs

can

simplify

the

program’s

processing.

For

example:

v

Suppose

your

program

must

retrieve

segments

from

different

hierarchic

paths

alternately:

for

example,

in

Figure

40,

it

might

retrieve

B11,

then

C11,

then

B12,

then

C12,

and

so

on.

If

your

program

uses

multiple

positioning,

IMS

maintains

positions

in

both

hierarchic

paths.

Then

the

program

is

not

required

to

issue

GU

calls

to

reset

position

each

time

it

needs

to

retrieve

a

segment

from

a

different

path.

v

Suppose

your

program

must

retrieve

segments

from

different

database

records

alternately:

for

example,

it

might

retrieve

a

B

segment

under

A1,

and

then

a

B

segment

under

another

A

root

segment.

If

your

program

uses

multiple

PCBs,

IMS

maintains

positions

in

both

database

records.

Then

the

program

does

not

have

to

issue

GU

calls

to

reset

position

each

time

it

needs

to

access

a

different

database

record.

In

this

Chapter:

v

“Multiple

Positioning”

v

“Advantages

of

Using

Multiple

Positioning”

on

page

206

v

“Using

Multiple

DB

PCBs”

on

page

208

Multiple

Positioning

When

you

define

the

PSB

for

your

application

program,

you

have

a

choice

about

the

kind

of

positioning

you

want

to

use:

single

or

multiple.

All

of

the

examples

used

so

far,

and

the

explanations

about

current

position,

have

used

single

positioning.

This

section

explains

what

multiple

positioning

is,

why

it

is

useful,

and

how

it

affects

your

programming.

Specify

the

kind

of

position

you

want

to

use

for

each

PCB

on

the

PCB

statement

when

you

define

the

PSB.

The

POS

operand

for

a

DEDB

is

disregarded.

DEDBs

support

multiple

positioning

only.

Definitions:

Figure

40.

Multiple

Processing

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

203

v

Single

positioning

means

that

IMS

maintains

position

in

one

hierarchic

path

for

the

hierarchy

that

is

defined

by

that

PCB.

When

you

retrieve

a

segment,

IMS

clears

position

for

all

dependents

and

all

segments

on

the

same

level.

v

Multiple

positioning

means

that

IMS

maintains

position

in

each

hierarchic

path

in

the

database

record

that

is

being

accessed.

When

you

retrieve

a

segment,

IMS

clears

position

for

all

dependents

but

keeps

position

for

segments

at

the

same

level.

Example:

Suppose

you

issue

these

two

calls

using

the

hierarchy

shown

in

Figure

41:

GU

A�������(AKEY����=�A1)

B�������(BKEY����=�B11)

C�������(CKEY����=�C111)

GN

E�������(EKEY����=�E11)

After

issuing

the

first

call

with

single

positioning,

IMS

has

three

positions

established:

one

on

A1,

one

on

B11,

and

one

on

C111.

After

issuing

the

second

call,

the

positions

on

B11

and

C111

are

canceled.

Then

IMS

establishes

positions

on

A1

and

E11.

After

issuing

the

first

call

with

single

and

multiple

positioning,

IMS

has

three

positions

established:

one

on

A1,

one

on

B11,

and

one

on

C111.

However,

after

issuing

the

second

call,

single

positioning

cancels

positions

on

B11

and

C111

while

multiple

positioning

retains

positions

on

B11

and

C111.

IMS

then

establishes

positions

on

segments

A1

and

E11

for

both

single

and

multiple

positioning.

After

issuing

the

first

call

with

multiple

positioning,

IMS

has

three

positions

established

(just

as

with

single

positioning):

one

on

A1,

one

on

B11,

and

one

on

C111.

But

after

issuing

the

second

call,

the

positions

on

B11

and

C111

are

retained.

In

addition

to

these

positions,

IMS

establishes

position

on

segments

A1

and

E11.

Figure

41.

Multiple

Positioning

Hierarchy

Multiple

Positioning IBM

Confidential

204

Application

Programming:

Database

Manager

The

examples

that

follow

compare

the

results

of

single

and

multiple

positioning

using

the

hierarchy

in

Figure

42.

Table

38.

Results

of

Single

and

Multiple

Positioning

with

DL/I

Calls

Sequence

Result

of

Single

Positioning

Result

of

Multiple

Positioning

Example

1

GU

(where

AKEY

equals

A1)

A1

A1

GNP

B

B11

B11

GNP

C

C11

C11

GNP

B

Not

found

B12

GNP

C

C12

C12

GNP

B

Not

found

Not

found

GNP

C

C13

C13

GNP

B

Not

found

Not

found

GNP

C

Not

found

Not

found

Example

2

GU

A

(where

AKEY

equals

A1)

A1

A1

GN

B

B11

B11

GN

C

C11

C11

GN

B

B21

B12

GN

C

C21

C12

Example

3

GU

A

(where

AKEY

equals

A1)

A1

A1

GN

C

C11

C11

GN

B

B21

B11

GN

B

B22

B12

GN

C

C21

C12

Example

4

GU

A

(where

AKEY

equals

A1)

A1

A1

GN

B

B11

B11

GN

C

C11

C11

GN

D

D111

D111

GN

E

E111

E111

GN

B

B21

B12

GN

D

D221

D112

GN

C

C

under

next

A

C12

GN

E

E

under

next

A

E121

Figure

42.

Single

and

Multiple

Positioning

Hierarchy

Multiple

PositioningIBM

Confidential

Chapter

8.

Multiple

Processing

205

Multiple

positioning

is

useful

when

you

want

to

examine

or

compare

segments

in

two

hierarchic

paths.

It

lets

you

process

different

segment

types

under

the

same

parent

in

parallel.

Without

multiple

positioning,

you

would

have

to

issue

GU

calls

to

reestablish

position

in

each

path.

Advantages

of

Using

Multiple

Positioning

The

advantages

of

using

multiple

positioning

are:

v

You

might

be

able

to

design

your

program

with

greater

data

independence

than

you

would

using

single

positioning.

You

can

write

application

programs

that

use

GN

and

GNP

calls,

and

GU

and

ISRT

calls

with

missing

levels

in

their

SSAs,

independent

of

the

relative

order

of

the

segment

types

being

processed.

If

you

improve

your

program’s

performance

by

changing

the

relative

order

of

segment

types

and

all

of

the

application

programs

that

access

those

segment

types

use

multiple

positioning,

you

could

make

the

change

without

affecting

existing

application

programs.

To

do

this

without

multiple

positioning,

the

program

would

have

to

use

GN

and

GNP

calls,

and

GU

and

ISRT

calls

with

incompletely

specified

SSAs.

v

Your

program

can

process

dependent

segment

types

in

parallel

(it

can

switch

back

and

forth

between

hierarchic

paths

without

reissuing

GU

calls

to

reset

position)

more

efficiently

than

is

possible

with

single

positioning.

You

indicate

to

IMS

the

hierarchic

path

that

contains

the

segments

you

want

in

your

SSAs

in

the

call.

IMS

uses

the

position

established

in

that

hierarchic

path

to

satisfy

your

call.

The

control

blocks

that

IMS

builds

for

each

kind

of

positioning

are

the

same.

Multiple

positioning

does

not

require

more

storage,

nor

does

it

have

a

big

impact

on

performance.

Keep

in

mind

that

multiple

positioning

might

use

more

processor

time

than

single

positioning,

and

that

multiple

positioning

cannot

be

used

with

HSAM

databases.

How

Multiple

Positioning

Affects

Your

Program

Multiple

positioning

affects

the

order

and

structure

of

your

DL/I

calls.

Using

GU

and

ISRT

The

only

time

multiple

positioning

affects

GU

and

ISRT

calls

is

when

you

issue

these

calls

with

missing

SSAs

in

the

hierarchic

path.

When

you

issue

a

GU

or

ISRT

call

that

does

not

contain

an

SSA

for

each

level

in

the

hierarchic

path,

IMS

builds

the

SSAs

for

the

missing

levels

according

to

the

current

position:

v

If

IMS

has

a

position

established

at

the

missing

level,

the

qualification

IMS

uses

is

derived

from

that

position,

as

reflected

in

the

DB

PCB.

v

If

no

position

is

established

at

the

missing

level,

IMS

assumes

a

segment

type

for

that

level.

v

If

IMS

moves

forward

from

a

position

that

is

established

at

a

higher

level,

it

assumes

a

segment

type

for

that

level.

Because

IMS

builds

the

missing

qualification

based

on

current

position,

multiple

positioning

makes

it

possible

for

IMS

to

complete

the

qualification

independent

of

current

positions

that

are

established

for

other

segment

types

under

the

same

parent

occurrence.

Using

DLET

and

REPL

with

Multiple

Positioning

Multiple

positioning

does

not

affect

DLET

or

REPL

calls;

it

only

affects

the

Get

Hold

calls

that

precede

them.

Multiple

Positioning IBM

Confidential

206

Application

Programming:

Database

Manager

Using

Qualified

GN

and

GNP

Calls

When

your

program

issues

a

GN

or

GNP

call,

IMS

tries

to

satisfy

the

call

by

moving

forward

from

current

position.

When

you

use

multiple

positioning,

more

than

one

current

position

exist:

IMS

maintains

a

position

at

each

level

in

all

hierarchic

paths,

instead

of

at

each

level

in

one

hierarchic

path.

To

satisfy

GN

and

GNP

calls

with

multiple

positioning,

IMS

moves

forward

from

the

current

position

in

the

path

that

is

referred

to

in

the

SSAs.

Mixing

Qualified

and

Unqualified

GN

and

GNP

Calls

Although

multiple

positioning

is

intended

to

be

used

with

qualified

calls

for

parallel

processing

and

data

independence,

you

may

occasionally

want

to

use

unqualified

calls

with

multiple

positioning.

For

example,

you

may

want

to

sequentially

retrieve

all

of

the

segment

occurrences

in

a

hierarchy,

regardless

of

segment

type.

Recommendation:

Limit

unqualified

calls

to

GNP

calls

in

order

to

avoid

inconsistent

results.

Mixing

qualified

and

unqualified

SSAs

may

be

valid

for

parallel

processing,

but

doing

so

might

also

decrease

the

program’s

data

independence.

There

are

three

rules

that

apply

to

mixing

qualified

and

unqualified

GN

and

GNP

calls:

1.

When

you

issue

an

unqualified

GN

or

GNP,

IMS

uses

the

position

that

is

established

by

the

preceding

call

to

satisfy

the

GN

or

GNP

call.

For

example:

Your

program

issues

these

calls:

DL/I

returns

these

segments:

GU

A

(where

AKEY

=

A1)

A1

GN

B

B11

GN

E

E11

GN

F111

When

your

program

issues

the

unqualified

GN

call,

IMS

uses

the

position

that

is

established

by

the

last

call,

the

call

for

the

E

segment,

to

satisfy

the

unqualified

call.

2.

After

you

successfully

retrieve

a

segment

with

an

unqualified

GN

or

GNP,

IMS

establishes

position

in

only

one

hierarchic

path:

the

path

containing

the

segment

just

retrieved.

IMS

cancels

positions

in

other

hierarchic

paths.

IMS

establishes

current

position

on

the

segment

that

is

retrieved

and

sets

parentage

on

the

parent

of

the

segment

that

is

retrieved.

If,

after

issuing

an

unqualified

call,

you

issue

a

qualified

call

for

a

segment

in

a

different

hierarchic

path,

the

results

are

unpredictable.

For

example:

Your

program

issues

these

calls:

DL/I

returns

these

segments:

GU

A

(where

AKEY

=

A1)

A1

GN

B

B11

GN

E

E11

GN

F111

GN

B

unpredictable

When

you

issue

the

unqualified

GN

call,

IMS

no

longer

maintains

a

position

in

the

other

hierarchic

path,

so

the

results

of

the

GN

call

for

the

B

segment

are

unpredictable.

3.

If

you

issue

an

unqualified

GN

or

GNP

call

and

IMS

has

a

position

established

on

a

segment

that

the

unqualified

call

might

encounter,

the

results

of

the

call

are

Multiple

PositioningIBM

Confidential

Chapter

8.

Multiple

Processing

207

unpredictable.

Also,

when

you

issue

an

unqualified

call

and

you

have

established

position

on

the

segment

that

the

call

“should”

retrieve,

the

results

are

unpredictable.

For

example:

Your

program

issues

these

calls:

DL/I

returns

these

segments:

GU

A

(where

AKEY

=

A1)

A1

GN

E

E11

GN

D

D111

GN

B

B12

GN

B

B13

GN

E11

(The

only

position

IMS

has

is

the

one

established

by

the

GN

call.)

In

this

example,

IMS

has

a

position

established

on

E11.

An

unqualified

GN

call

moves

forward

from

the

position

that

is

established

by

the

previous

call.

Multiple

positions

are

lost;

the

only

position

IMS

has

is

the

position

that

is

established

by

the

GN

call.

To

summarize

these

rules:

1.

To

satisfy

an

unqualified

GN

or

GNP

call,

IMS

uses

the

position

established

in

the

last

call

for

that

PCB.

2.

If

an

unqualified

GN

or

GNP

call

is

successful,

IMS

cancels

positions

in

all

other

hierarchic

paths.

Position

is

maintained

only

within

the

path

of

the

segment

retrieved.

Resetting

Position

with

Multiple

Positioning

To

reset

position,

your

program

issues

a

GU

call

for

a

root

segment.

If

you

want

to

reset

position

in

the

database

record

you

are

currently

processing,

you

can

issue

a

GU

call

for

that

root

segment,

but

the

GU

call

cannot

be

a

path

call.

Example:

Suppose

you

have

positions

established

on

segments

B11

and

E11.

Your

program

can

issue

one

of

the

calls

below

to

reset

position

on

the

next

database

record.

Issuing

this

call

causes

IMS

to

cancel

all

positions

in

database

record

A1:

GU

A�������(AKEY����=�A2)

Or,

if

you

wanted

to

continue

processing

segments

in

record

A1,

you

issue

this

call

to

cancel

all

positions

in

record

A1:

GU

A�������(AKEY����=�A1)

Issuing

this

call

as

a

path

call

does

not

cancel

position.

Using

Multiple

DB

PCBs

When

a

program

has

multiple

PCBs,

it

usually

means

that

you

are

defining

views

of

several

databases,

but

this

also

can

mean

that

you

need

several

positions

in

one

database

record.

Defining

multiple

PCBs

for

the

same

hierarchic

view

of

a

database

is

another

way

to

maintain

more

than

one

position

in

a

database

record.

Using

Multiple

Positioning IBM

Confidential

208

Application

Programming:

Database

Manager

multiple

PCBs

also

extends

what

multiple

positioning

does,

because

with

multiple

PCBs

you

can

maintain

positions

in

two

or

more

database

records

and

within

two

or

more

hierarchic

paths

in

the

same

record.

Example:

Suppose

you

were

processing

the

database

record

for

Patient

A.

Then

you

wanted

to

look

at

the

record

for

Patient

B

and

also

be

able

to

come

back

to

your

position

for

Patient

A.

If

your

program

uses

multiple

PCBs

for

the

medical

hierarchy,

you

issue

the

first

call

for

Patient

A

using

PCB1

and

then

issue

the

next

call,

for

Patient

B,

using

PCB2.

To

return

to

Patient

A’s

record,

you

issue

the

next

call

using

PCB1,

and

you

are

back

where

you

left

off

in

that

database

record.

Using

multiple

PCBs

can

decrease

the

number

of

Get

calls

required

to

maintain

position

and

can

sometimes

improve

performance.

Multiple

PCBs

are

particularly

useful

when

you

want

to

compare

information

from

segments

in

two

or

more

database

records.

On

the

other

hand,

the

internal

control

block

requirements

increase

with

each

PCB

that

you

define.

You

can

use

the

AIBTDLI

interface

with

multiple

PCBs

by

assigning

different

PCBNAMEs

to

the

PCBs

during

PSB

generation.

Just

as

multiple

PCBs

must

have

different

addresses

in

the

PSB

PCBLIST,

multiple

PCBs

must

have

different

PCBNAMEs

when

using

the

AIBTDLI

interface.

For

example,

if

your

application

program

issues

DL/I

calls

against

two

different

PCBs

in

a

list

that

identifies

the

same

database,

you

achieve

the

same

effect

with

the

AIBTDLI

interface

by

using

different

PCBNAMEs

on

the

two

PCBs

at

PSB

generation

time.

Using

Multiple

DB

PCBsIBM

Confidential

Chapter

8.

Multiple

Processing

209

IBM

Confidential

210

Application

Programming:

Database

Manager

Chapter

9.

Secondary

Indexing

and

Logical

Relationships

This

chapter

describes

two

ways

in

which

IMS

can

provide

flexibility

in

how

your

program

views

the

data.

Secondary

indexing

and

logical

relationships

are

techniques

that

can

change

your

application

program’s

view

of

the

data.

The

DBA

makes

the

decision

about

whether

to

use

these

options.

Examples

of

when

you

use

these

techniques

are:

v

If

an

application

program

must

access

a

segment

type

in

a

sequence

other

than

the

sequence

specified

by

the

key

field,

secondary

indexing

can

be

used.

Secondary

indexing

also

can

change

the

application

program’s

access

to

or

view

of

the

data

based

on

a

condition

in

a

dependent

segment.

v

If

an

application

program

requires

a

logical

structure

that

contains

segments

from

different

databases,

logical

relationships

are

used.

In

this

Chapter:

v

“How

Secondary

Indexing

Affects

Your

Program”

v

“Processing

Segments

in

Logical

Relationships”

on

page

214

How

Secondary

Indexing

Affects

Your

Program

One

instance

of

using

a

secondary

index

occurs

when

an

application

program

needs

to

select

database

records

in

a

sequence

other

than

that

defined

by

the

root

key.

IMS

stores

root

segments

in

the

sequence

of

their

key

fields.

A

program

that

accesses

root

segments

out

of

the

order

of

their

key

fields

cannot

operate

efficiently.

You

can

index

any

field

in

a

segment

by

defining

an

XDFLD

statement

for

the

field

in

the

DBD

for

the

database.

If

the

Get

call

is

not

qualified

on

the

key

but

uses

some

other

field,

IMS

must

search

all

the

database

records

to

find

the

correct

record.

With

secondary

indexing,

IMS

can

go

directly

to

a

record

based

on

a

field

value

that

is

not

in

the

key

field.

This

section

explains

how

secondary

indexing

affects

your

programming.

For

more

information

about

secondary

indexes

and

examples,

see

IMS

Version

9:

Application

Programming:

Design

Guide.

SSAs

with

Secondary

Indexes

If

your

program

uses

a

secondary

index,

you

can

use

the

name

of

an

indexed

field

in

your

SSAs.

When

you

do

this,

IMS

goes

directly

to

the

secondary

index

and

finds

the

pointer

segment

with

the

value

you

specify.

Then

IMS

locates

the

segment

that

the

index

segment

points

to

in

the

database

and

returns

the

segment

to

your

program.

To

use

an

indexed

field

name

in

the

SSA,

follow

these

guidelines:

v

Define

the

indexed

field,

using

the

XDFLD

statement,

in

the

DBD

for

the

primary

database

during

DBD

generation.

v

Use

the

name

that

was

given

on

the

XDFLD

statement

as

the

field

name

in

the

qualification

statement.

v

Specify

the

secondary

index

as

the

processing

sequence

during

PSB

generation.

Do

this

by

specifying

the

name

of

the

secondary

index

database

on

the

PROCSEQ

parameter

on

the

PCB

during

PSB

generation.

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

211

Related

Reading:

For

more

detailed

information

about

generating

a

DBD

and

a

PSB,

refer

to

the

IMS

Version

9:

Utilities

Reference:

System.

If

you

modify

the

XDFLD

of

the

indexed

segment

(using

the

REPL

call),

you

lose

any

parentage

that

you

had

established

before

issuing

the

REPL

call.

The

key

feedback

area

is

no

longer

valid

after

a

successful

REPL

call.

Example:

For

you

to

index

the

PATIENT

segment

on

the

NAME

field,

the

segment

must

have

been

defined

on

the

XDFLD

statement

in

the

DBD

for

the

medical

database.

If

the

name

of

the

secondary

index

database

is

INDEX,

you

specify

PROCSEQ=INDEX

in

the

PCB.

To

issue

a

qualification

that

identifies

a

PATIENT

by

the

NAME

field

instead

of

by

PATNO,

use

the

name

that

you

specified

on

the

XDFLD

statement.

If

the

name

of

the

XDFLD

is

XNAME,

use

XNAME

in

the

SSA,

as

follows:

In

the

DBD:

XDFLD

NAME=XNAME

In

the

PSB:

PROCSEQ=INDEX

In

the

program:

GU

PATIENT�(XNAME���=�JBBROKE���)

Multiple

Qualification

Statements

with

Secondary

Indexes

When

you

qualify

a

call

using

the

name

of

an

indexed

field,

you

can

include

multiple

qualification

statements.

You

can

use

two

AND

operators

to

connect

the

qualification

statements:

*

or

&

When

used

with

secondary

indexing,

this

AND

is

called

the

dependent

AND.

To

satisfy

the

call,

IMS

scans

the

index

once

and

searches

for

one

pointer

segment

in

the

index

that

satisfies

both

qualification

statements.

#

This

is

called

the

independent

AND.

You

use

it

only

with

secondary

indexing.

When

you

use

the

independent

AND

to

satisfy

the

call,

IMS

scans

the

index

twice

and

searches

for

two

or

more

different

pointer

segments

in

the

index

that

point

to

the

same

target

segment.

The

distinction

between

the

two

ANDs

applies

only

when

the

indexed

field

(the

one

defined

as

XDFLD

in

the

DBD)

is

used

in

all

qualifications.

If

one

of

the

qualification

statements

uses

another

field,

both

ANDs

work

like

the

dependent

AND.

The

next

two

sections

give

examples

of

the

dependent

and

independent

AND.

Although

the

examples

show

only

two

qualification

statements

in

the

SSA,

you

can

use

more

than

two.

No

set

limit

exists

for

the

number

of

qualification

statements

you

can

include

in

an

SSA,

but

a

limit

on

the

maximum

size

of

the

SSA

does

exist.

You

specify

this

size

on

the

SSASIZE

parameter

of

the

PSBGEN

statement.

For

information

on

this

parameter,

see

IMS

Version

9:

Utilities

Reference:

System.

The

Dependent

AND

When

you

use

the

dependent

AND,

IMS

scans

the

index

only

once.

To

satisfy

the

call,

it

must

find

one

pointer

segment

that

satisfies

both

qualification

statements.

Example:

Suppose

you

want

to

list

patients

whose

bills

are

between

$500

and

$1000.

To

do

this,

you

index

the

PATIENT

segment

on

the

BILLING

segment,

and

specify

that

you

want

IMS

to

use

the

secondary

index

as

the

processing

sequence.

Figure

43

on

page

213

shows

the

three

secondary

indexing

segments.

Secondary

Indexing

Affects

Your

Program IBM

Confidential

212

Application

Programming:

Database

Manager

You

then

use

this

call:

GU

PATIENT

(XBILLING>=00500*XBILLING<=01000)

To

satisfy

this

call,

IMS

searches

for

one

pointer

segment

with

a

value

between

500

and

1000.

IMS

returns

the

PATIENT

segment

that

is

pointed

to

by

that

segment.

The

Independent

AND

Example:

Suppose

you

want

a

list

of

the

patients

who

have

had

both

tonsillitis

and

strep

throat.

To

get

this

information,

you

index

the

PATIENT

segment

on

the

ILLNAME

field

in

the

ILLNESS

segment,

and

specify

that

you

want

IMS

to

use

the

secondary

index

as

the

processing

sequence.

In

this

example,

you

retrieve

the

PARENT

segments

based

on

a

dependent’s

(the

ILLNESS

segment’s)

qualification.

Figure

44

shows

the

four

secondary

indexing

segments.

You

want

IMS

to

find

two

pointer

segments

in

the

index

that

point

to

the

same

PATIENT

segment,

one

with

ILLNAME

equal

to

TONSILLITIS

and

one

with

ILLNAME

equal

to

STREPTHRT.

Use

this

call:

GU

PATIENT�(XILLNAME=TONSILITIS#XILLNAME=�STREPTHRT)

This

call

retrieves

the

first

PATIENT

segment

with

ILLNESS

segments

of

strep

throat

and

tonsillitis.

When

you

issue

the

call,

IMS

searches

for

an

index

entry

for

tonsillitis.

Then

it

searches

for

an

index

entry

for

strep

throat

that

points

to

the

same

PATIENT

segment.

When

you

use

the

independent

AND

with

GN

and

GNP

calls,

a

special

situation

can

occur.

If

you

repeat

a

GN

or

a

GNP

call

using

the

same

qualification,

it

is

possible

for

Figure

43.

Example

of

Using

the

Dependent

AND

Figure

44.

Example

of

Using

the

Independent

AND

Secondary

Indexing

Affects

Your

ProgramIBM

Confidential

Chapter

9.

Secondary

Indexing

and

Logical

Relationships

213

IMS

to

return

the

same

segment

to

your

program

more

than

once.

You

can

check

to

find

out

whether

IMS

has

already

returned

a

segment

to

you

by

checking

the

key

feedback

area.

If

you

continue

issuing

a

GN

call

until

you

receive

a

not-found

(GE)

status

code,

IMS

returns

a

segment

occurrence

once

for

each

independent

AND

group.

When

IMS

returns

a

segment

that

is

identical

to

one

that

was

already

returned,

the

PCB

key

feedback

area

is

different.

What

DL/I

Returns

with

a

Secondary

Index

The

PATIENT

segment

that

IMS

returns

to

the

application

program’s

I/O

area

looks

just

as

it

would

if

you

had

not

used

secondary

indexing.

The

key

feedback

area,

however,

contains

something

different.

The

concatenated

key

that

IMS

returns

is

the

same,

except

that,

instead

of

giving

you

the

key

for

the

segment

you

requested

(the

key

for

the

PATIENT

segment),

IMS

gives

you

the

search

portion

of

the

key

of

the

secondary

index

(the

key

for

the

segment

in

the

INDEX

database).

The

term

“key

of

the

pointer

segment”

refers

to

the

key

as

perceived

by

the

application

program.

That

is,

the

key

does

not

include

subsequent

fields.

IMS

places

this

key

in

the

position

where

the

root

key

would

be

located

if

you

had

not

used

a

secondary

index—in

the

left-most

bytes

of

the

key

feedback

area.

The

IMS

Version

9:

Application

Programming:

Design

Guide

gives

some

examples

of

this.

If

you

try

to

insert

or

replace

a

segment

that

contains

a

secondary

index

source

field

that

is

a

duplicate

of

one

that

is

already

reflected

in

the

secondary

index,

IMS

returns

an

NI

status

code.

An

NI

status

code

is

returned

only

for

batch

programs

that

log

to

direct-access

storage.

Otherwise,

the

application

program

is

abnormally

terminated.

You

can

avoid

having

your

program

terminated

by

making

sure

a

duplicate

index

source

field

does

not

exist.

Before

inserting

a

segment,

try

to

retrieve

the

segment

using

the

secondary

index

source

field

as

qualification.

Status

Codes

for

Secondary

Indexes

If

a

secondary

index

is

defined

for

a

segment

and

if

the

definition

specifies

a

unique

key

for

the

secondary

index

(most

secondary

indexes

allow

duplicate

keys),

your

application

program

might

receive

the

NI

status

code

in

addition

to

regular

status

codes.

This

status

code

can

be

received

for

a

PCB

that

either

uses

or

does

not

use

the

secondary

index

as

a

processing

sequence.

See

IMS

Version

9:

Messages

and

Codes,

Volume

1

for

additional

information

about

the

NI

status

code.

Processing

Segments

in

Logical

Relationships

Sometimes

an

application

program

needs

to

process

a

hierarchy

that

is

made

up

of

segments

that

already

exist

in

two

or

more

separate

database

hierarchies.

Logical

relationships

make

it

possible

to

establish

hierarchic

relationships

between

these

segments.

When

you

use

logical

relationships,

the

result

is

a

new

hierarchy—one

that

does

not

exist

in

physical

storage

but

that

can

be

processed

by

application

programs

as

though

it

does

exist.

This

type

of

hierarchy

is

called

a

logical

structure.

One

advantage

of

using

logical

relationships

is

that

programs

can

access

the

data

as

though

it

exists

in

more

than

one

hierarchy,

even

though

it

is

only

stored

in

one

place.

When

two

application

programs

need

to

access

the

same

segment

through

different

paths,

an

alternative

to

using

logical

relationships

is

to

store

the

segment

in

both

hierarchies.

The

problem

with

this

approach

is

that

you

must

update

the

data

in

two

places

to

keep

it

current.

Secondary

Indexing

Affects

Your

Program IBM

Confidential

214

Application

Programming:

Database

Manager

Processing

segments

in

logical

relationships

is

not

very

different

from

processing

other

segments.

This

section

uses

the

example

about

an

inventory

application

program

that

processes

data

in

a

purchasing

database,

but

which

also

needs

access

to

a

segment

in

a

patient

database.

Related

Reading:

v

For

more

information

about

application

programming

requirements

that

logical

relationships

can

satisfy,

see

IMS

Version

9:

Application

Programming:

Design

Guide.

v

For

a

full

description

of

the

inventory

application

program

example,

see

IMS

Version

9:

Application

Programming:

Design

Guide.

Example:

The

hierarchy

that

an

inventory

application

program

needs

to

process

contains

four

segment

types:

v

An

ITEM

segment

containing

the

name

and

an

identification

number

of

a

medication

that

is

used

at

a

medical

clinic

v

A

VENDOR

segment

that

contains

the

name

and

address

of

the

vendor

who

supplies

the

item

v

A

SHIPMENT

segment

that

contains

information

such

as

quantity

and

date

for

each

shipment

of

the

item

that

the

clinic

receives

v

A

DISBURSE

segment

that

contains

information

about

the

disbursement

of

the

item

at

the

clinic,

such

as

the

quantity,

the

date,

and

the

doctor

who

prescribed

it

The

TREATMNT

segment

in

the

medical

database

used

throughout

this

section

contains

the

same

information

that

the

inventory

application

program

needs

to

process

in

the

DISBURSE

segment.

Rather

than

store

this

information

in

both

hierarchies,

you

can

store

the

information

in

the

TREATMNT

segment,

and

define

a

logical

relationship

between

the

DISBURSE

segment

in

the

item

hierarchy

and

the

TREATMNT

segment

in

the

patient

hierarchy.

Doing

this

makes

it

possible

to

process

the

TREATMNT

segment

through

the

item

hierarchy

as

though

it

is

a

child

of

SHIPMENT.

DISBURSE

then

has

two

parents:

SHIPMENT

is

DISBURSE’s

physical

parent,

and

TREATMNT

is

DISBURSE’s

logical

parent.

Three

segments

are

involved

in

this

logical

relationship:

DISBURSE,

SHIPMENT,

and

TREATMNT.

Figure

45

shows

the

item

hierarchy

on

the

right.

The

DISBURSE

segment

points

to

the

TREATMNT

segment

in

the

patient

hierarchy

shown

on

the

left.

(The

patient

hierarchy

is

part

of

the

medical

database.)

Three

types

of

segments

are

found

in

a

logical

relationship:

v

TREATMNT

is

called

the

logical

parent

segment.

It

is

a

physical

dependent

of

ILLNESS,

but

it

can

be

processed

through

the

item

hierarchy

because

a

path

is

established

by

the

logical

child

segment

DISBURSE.

The

logical

parent

segment

can

be

accessed

through

both

hierarchies,

but

it

is

stored

in

only

one

place.

Figure

45.

Patient

and

Item

Hierarchies

Processing

Segments

in

Logical

RelationshipsIBM

Confidential

Chapter

9.

Secondary

Indexing

and

Logical

Relationships

215

v

SHIPMENT

is

called

a

physical

parent

segment.

The

physical

parent

is

the

parent

of

the

logical

child

in

the

physical

database

hierarchy.

v

DISBURSE

is

called

a

logical

child

segment.

It

establishes

a

path

to

the

TREATMNT

segment

in

the

PATIENT

hierarchy

from

the

SHIPMENT

segment

in

the

ITEM

hierarchy.

Because

a

logical

child

segment

points

to

its

logical

parent,

two

paths

exist

through

which

a

program

can

access

the

logical

parent

segment:

v

When

a

program

accesses

the

logical

parent

segment

through

the

physical

path,

it

reaches

this

logical

parent

segment

through

the

segment’s

physical

parent.

Accessing

the

TREATMNT

segment

through

ILLNESS

is

accessing

the

logical

parent

segment

through

its

physical

path.

v

When

a

program

accesses

the

logical

parent

segment

through

the

logical

path,

it

reaches

this

logical

parent

segment

through

the

segment’s

logical

child.

Accessing

the

TREATMNT

segment

through

SHIPMENT

is

accessing

the

logical

parent

segment

through

its

logical

path.

When

a

logical

parent

segment

is

accessed

through

the

logical

child,

the

logical

child

is

concatenated

with

both

the

data

from

its

logical

parent

segment

and

any

data

the

user

has

chosen

to

associate

with

this

pairing

(intersection

data)

in

a

single

segment

I/O

area,

like

this:

LL

is

the

length

field

of

the

logical

parent

if

this

segment

is

a

variable-length

segment.

How

Logical

Relationships

Affect

Your

Programming

The

calls

you

issue

to

process

segments

in

logical

relationships

are

the

same

calls

that

you

use

to

process

other

segments.

However,

the

processing

is

different

in

the

following

ways:

how

the

logical

segment

looks

in

your

I/O

area,

what

the

DB

PCB

mask

contains

after

a

retrieve

call,

and

how

you

can

replace,

delete,

and

insert

physical

and

logical

parent

segments.

Because

it

is

possible

to

access

segments

in

logical

relationships

through

the

logical

path

or

the

physical

path,

the

segments

must

be

protected

from

being

updated

by

unauthorized

programs.

When

DBAs

define

logical

relationships,

they

define

a

set

of

rules

that

determine

how

the

segments

can

be

deleted,

replaced,

and

inserted.

Defining

these

rules

is

a

database

design

decision.

If

your

program

processes

segments

in

logical

relationships,

you

should

have

the

following

information

from

the

DBA

(or

the

person

at

your

installation

responsible

for

database

design):

v

What

segments

look

like

in

your

I/O

area

when

you

retrieve

them

v

Whether

your

program

is

allowed

to

update

and

insert

segments

v

What

to

do

if

you

receive

a

DX,

IX,

or

RX

status

code

Inserting

a

logical

child

segment

has

the

following

requirements:

Figure

46.

Concatenated

Segment

Processing

Segments

in

Logical

Relationships IBM

Confidential

216

Application

Programming:

Database

Manager

v

In

load

mode,

the

logical

child

can

be

inserted

only

under

its

physical

parent.

You

do

not

supply

the

logical

parent

in

the

I/O

area.

v

In

update

mode,

the

format

of

the

logical

child

is

different,

depending

on

whether

it

is

accessed

from

its

physical

parent

or

from

its

logical

parent.

–

If

accessed

from

its

physical

parent,

the

logical

child’s

format

is

the

concatenated

key

of

the

logical

parent

followed

by

intersection

data.

–

If

accessed

from

its

logical

parent,

the

logical

child’s

format

is

the

concatenated

key

of

the

physical

parent,

followed

by

intersection

data.

v

The

logical

child

can

be

inserted

or

replaced,

depending

on

the

insert

rule

for

the

logical

or

physical

parent.

Unless

the

insert

rule

of

the

logical

or

physical

parent

is

PHYSICAL,

the

logical

or

physical

parent

must

be

supplied

in

the

I/O

area

following

the

logical

child,

as

illustrated

in

Figure

46

on

page

216.

Status

Codes

for

Logical

Relationships

The

following

status

codes

apply

specifically

to

segments

that

are

involved

in

logical

relationships.

These

are

not

all

of

the

status

codes

that

you

can

receive

when

processing

a

logical

child

segment

or

a

physical

or

logical

parent.

If

you

receive

one

of

these

status

codes,

it

means

that

you

are

trying

to

update

the

database

in

a

way

that

you

are

not

allowed

to.

Check

with

the

DBA

or

person

responsible

for

implementing

logical

relationships

at

your

installation

to

find

out

what

the

problem

is.

DX

IMS

did

not

delete

the

segment

because

the

physical

delete

rule

was

violated.

If

the

segment

is

a

logical

parent,

it

still

has

active

logical

children.

If

the

segment

is

a

logical

child,

it

has

not

been

deleted

through

its

logical

path.

IX

You

tried

to

insert

either

a

logical

child

segment

or

a

concatenated

segment.

If

it

was

a

logical

child

segment,

the

corresponding

logical

or

physical

parent

segment

does

not

exist.

If

it

was

a

concatenated

segment,

either

the

insert

rule

was

physical

and

the

logical

or

physical

parent

does

not

exist,

or

the

insert

rule

is

virtual

and

the

key

of

the

logical

or

physical

parent

in

the

I/O

area

does

not

match

the

concatenated

key

of

the

logical

or

physical

parent.

RX

The

physical

replace

rule

has

been

violated.

The

physical

replace

rule

was

specified

for

the

destination

parent,

and

an

attempt

was

made

to

change

its

data.

When

a

destination

parent

has

the

physical

replace

rule,

it

can

be

replaced

only

through

the

physical

path.

Processing

Segments

in

Logical

RelationshipsIBM

Confidential

Chapter

9.

Secondary

Indexing

and

Logical

Relationships

217

Processing

Segments

in

Logical

Relationships IBM

Confidential

218

Application

Programming:

Database

Manager

Chapter

10.

Processing

GSAM

Databases

GSAM

databases

are

available

to

application

programs

that

can

run

as

batch

programs,

batch-oriented

BMPs,

or

transaction-oriented

BMPs.

If

your

program

accesses

GSAM

databases,

you

need

to

consider

the

following

points

as

you

design

your

program:

v

An

IMS

program

can

retrieve

records

and

add

records

to

the

end

of

the

GSAM

database,

but

the

program

cannot

delete

or

replace

records

in

the

database.

v

You

use

separate

calls

to

access

GSAM

databases.

(Additional

checkpoint

and

restart

considerations

are

involved

in

using

GSAM.)

v

Your

program

must

use

symbolic

CHKP

and

XRST

calls

if

it

uses

GSAM.

Basic

CHKP

calls

cannot

checkpoint

GSAM

databases.

v

When

an

IMS

program

uses

a

GSAM

data

set,

the

program

treats

it

like

a

sequential

nonhierarchic

database.

The

MVS

access

methods

that

GSAM

can

use

are

BSAM

on

direct

access,

unit

record,

and

tape

devices;

and

VSAM

on

direct-access

storage.

VSAM

data

sets

must

be

nonkeyed,

non

indexed,

entry-sequenced

data

sets

(ESDS)

and

must

reside

on

DASD.

VSAM

does

not

support

temporary,

SYSIN,

SYSOUT,

and

unit-record

files.

v

Because

GSAM

is

a

sequential

nonhierarchic

database,

it

has

no

segments,

no

keys,

and

no

parentage.

In

this

Chapter:

v

“Accessing

GSAM

Databases”

v

“GSAM

Record

Formats”

on

page

222

v

“GSAM

I/O

Areas”

on

page

223

v

“GSAM

Status

Codes”

on

page

223

v

“Symbolic

CHKP

and

XRST

with

GSAM”

on

page

224

v

“GSAM

Coding

Considerations”

on

page

224

v

“Origin

of

GSAM

Data

Set

Characteristics”

on

page

225

Accessing

GSAM

Databases

The

calls

you

use

to

access

GSAM

databases

are

different

from

those

you

use

to

access

other

IMS

databases,

and

you

can

use

GSAM

databases

for

input

and

output.

For

example,

your

program

can

read

input

from

a

GSAM

database

sequentially

and

then

load

another

GSAM

database

with

the

output

data.

Programs

that

retrieve

input

from

a

GSAM

database

usually

retrieve

GSAM

records

sequentially

and

then

process

them.

Programs

that

send

output

to

a

GSAM

database

must

add

output

records

to

the

end

of

the

database

as

the

program

processes

the

records.

You

cannot

delete

or

replace

records

in

a

GSAM

database,

and

any

records

that

you

add

must

go

at

the

end

of

the

database.

PCB

Masks

for

GSAM

Databases

For

the

most

part,

you

process

GSAM

databases

in

the

same

way

that

you

process

other

IMS

databases.

You

use

calls

that

are

very

similar

to

DL/I

calls

to

communicate

your

requests.

GSAM

describes

the

results

of

those

calls

in

a

GSAM

DB

PCB.

Calls

to

GSAM

databases

can

use

either

the

AIBTDLI

or

the

PCB

interface.

For

information

on

the

AIBTDLI

interface,

see

“The

AIBTDLI

Interface”

on

page

111.

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

219

The

DB

PCB

mask

for

a

GSAM

database

serves

the

same

purpose

as

it

does

for

other

IMS

databases.

The

program

references

the

fields

of

the

DB

PCB

through

the

GSAM

DB

PCB

mask.

The

GSAM

DB

PCB

mask

must

contain

the

same

fields

as

the

GSAM

DB

PCB

and

must

be

of

the

same

length.

Some

differences

exist

between

a

DB

PCB

for

a

GSAM

database

and

one

for

other

IMS

databases.

Some

of

the

fields

are

different,

and

the

GSAM

DB

PCB

has

one

field

that

the

other

PCBs

do

not.

Table

39

on

page

220

shows

the

order

and

lengths

of

these

fields.

Because

GSAM

is

not

a

hierarchic

database,

some

fields

in

a

PCB

mask

for

other

IMS

databases

do

not

have

meanings

in

a

GSAM

PCB

mask.

The

fields

that

are

not

used

when

you

access

GSAM

databases

are:

the

second

field

(segment

level

number),

the

sixth

field

(segment

name),

and

the

eighth

field

(number

of

sensitive

segments).

Even

though

GSAM

does

not

use

these

fields,

you

need

to

define

them

in

the

order

and

length

shown

in

Table

39

in

the

GSAM

DB

PCB

mask.

When

you

code

the

fields

in

a

DB

PCB

mask,

name

the

area

that

contains

all

the

fields,

as

you

do

for

a

DB

PCB.

The

entry

statement

associates

each

DB

PCB

mask

in

your

program

with

a

DB

PCB

in

your

program’s

PSB,

based

on

the

order

of

the

PCBs

in

the

PSB.

The

entry

statement

refers

to

the

DB

PCB

mask

in

your

program

by

the

name

of

the

mask

or

by

a

pointer.

Consider

the

following

points

about

the

entry

statement:

v

When

you

code

the

entry

statement

in

COBOL,

Pascal,

C,

and

assembler

language

programs,

it

must

list

the

names

of

the

DB

PCB

masks

in

your

program.

v

When

you

code

the

entry

statement

in

PL/I

programs,

it

must

list

the

pointers

to

the

DB

PCB

masks

in

your

program.

The

first

PCB

name

or

pointer

in

the

entry

statement

corresponds

to

the

first

PCB.

The

second

name

or

pointer

in

the

entry

statement

corresponds

to

the

second

PCB,

and

so

on.

Table

39.

GSAM

DB

PCB

Mask

Descriptor

Byte

Length

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

Database

name1

8

X

X

X

X

X

Segment

level

number2

2

N/A

N/A

N/A

N/A

N/A

Status

code3

2

X

X

X

X

X

Processing

options4

4

X

X

X

X

X

Reserved

for

IMS5

4

X

X

X

X

X

Segment

name6

8

N/A

N/A

N/A

N/A

N/A

Length

of

key

feedback

area

and

undefined-length

records

area7

4

X

X

X

X

X

Number

of

sensitive

segments8

4

N/A

N/A

N/A

N/A

N/A

Key

feedback

area9

8

X

X

X

X

X

Length

of

undefined-length

records10

4

X

X

X

X

X

Accessing

GSAM

Databases IBM

Confidential

220

Application

Programming:

Database

Manager

Notes:

1.

Database

Name.

The

name

of

the

GSAM

DBD.

This

field

is

8

bytes

and

contains

character

data.

2.

Segment

Level

Number.

Not

used

by

GSAM,

but

you

must

code

it.

It

is

2

bytes.

3.

Status

Code.

IMS

places

a

two-character

status

code

in

this

field

after

each

call

to

a

GSAM

database.

This

code

describes

the

results

of

the

call.

IMS

updates

this

field

after

each

call

and

does

not

clear

it

between

calls.

The

application

program

should

test

this

field

after

each

call

to

find

out

whether

the

call

was

successful.

If

the

call

was

completed

successfully,

this

field

contains

blanks.

4.

Processing

Options.

This

is

a

4-byte

field

containing

a

code

that

tells

IMS

the

types

of

calls

this

program

can

issue.

It

is

a

security

mechanism

in

that

it

can

prevent

a

particular

program

from

updating

the

database,

even

though

the

program

can

read

the

database.

This

value

is

coded

in

the

PROCOPT

parameter

of

the

PCB

statement

when

generating

the

PSB

for

the

application

program.

The

value

does

not

change.

For

GSAM,

the

values

are

G,

GS,

L,

or

LS.

5.

Reserved

for

IMS.

This

4-byte

field

is

used

by

IMS

for

internal

linkage.

It

is

not

used

by

the

application

program.

6.

Segment

Name.

This

field

is

not

used

by

GSAM,

but

it

must

be

coded

as

part

of

the

GSAM

DB

PCB

mask.

It

is

8

bytes.

7.

Length

of

Key

Feedback

Area

and

Undefined-Length

Records

Area.

This

is

a

4-byte

field

that

contains

the

decimal

value

of

12.

This

is

the

sum

of

the

lengths

of

the

key

feedback

and

the

undefined-length

record

areas

described

below.

8.

Number

of

Sensitive

Segments.

This

field

is

not

used

by

GSAM,

but

it

should

be

coded

as

part

of

the

GSAM

DB

PCB

mask.

This

field

is

4

bytes.

9.

Key

Feedback

Area.

After

a

successful

retrieval

call,

GSAM

places

the

address

of

the

record

that

is

returned

to

your

program

in

this

field.

This

is

called

a

record

search

argument

(RSA).

You

can

use

it

later

if

you

want

to

retrieve

that

record

directly

by

including

it

as

one

of

the

parameters

on

a

GU

call.

This

field

is

8

bytes.

10.

Undefined-Length

Records

Area.

If

you

use

undefined-length

records

(RECFM=U),

the

length

in

binary

of

the

record

you

are

processing

is

passed

between

your

program

and

GSAM

in

this

field.

This

field

is

4

bytes

long.

When

you

issue

a

GU

or

GN

call,

GSAM

places

the

binary

length

of

the

retrieved

record

in

this

field.

When

you

issue

an

ISRT

call,

put

the

binary

length

of

the

record

you

are

inserting

in

this

field

before

issuing

the

ISRT

call.

Retrieving

and

Inserting

GSAM

Records

To

retrieve

GSAM

records

sequentially,

use

the

GN

call.

The

only

required

parameters

are

the

GSAM

PCB

and

the

I/O

area

for

the

segment.

To

process

the

whole

database,

issue

the

GN

call

until

you

get

a

GB

status

code

in

the

GSAM

PCB.

This

means

that

you

have

reached

the

end

of

the

database.

GSAM

automatically

closes

the

database

when

you

reach

the

end

of

it.

To

create

a

new

data

set

or

to

add

new

records

to

the

end

of

the

database,

use

the

ISRT

call.

GSAM

adds

the

records

sequentially

in

the

order

in

which

you

supply

them.

You

can

retrieve

records

directly

from

a

GSAM

database,

but

you

must

supply

the

record’s

address.

To

do

this,

use

a

record

search

argument

(RSA).

An

RSA

is

similar

to

an

SSA,

but

it

contains

the

exact

address

of

the

record

that

you

want

to

retrieve.

The

specific

contents

and

format

of

the

RSA

depend

on

the

access

method

Accessing

GSAM

DatabasesIBM

Confidential

Chapter

10.

Processing

GSAM

Databases

221

GSAM

is

using.

For

BSAM

tape

data

sets

and

VSAM

data

sets,

the

RSA

contains

the

relative

byte

address

(RBA).

For

BSAM

disk

data

sets,

the

RSA

contains

the

disk

address

in

the

TTR

track

record)

format.

Before

you

can

give

GSAM

the

RSA,

you

must

know

the

RSA

yourself.

To

do

this,

you

must

know

in

advance

what

records

you

want

to

retrieve

at

a

later

time.

When

you

are

retrieving

records

sequentially

or

adding

records

to

the

end

of

the

GSAM

database,

you

can

include

a

parameter

on

the

GN

or

ISRT

call

that

tells

GSAM

to

return

the

address

of

that

record

to

a

certain

area

in

your

program,

as

shown

in

Table

40

on

page

225.

Save

this

address

until

you

want

to

retrieve

that

particular

record.

At

that

time,

you

issue

a

GU

call

for

the

record

and

give

the

address

of

its

RSA

as

a

parameter

of

the

GU

call.

GSAM

returns

the

record

to

the

I/O

area

that

you

named

as

one

of

the

call

parameters.

Do

this

on

DASD

only.

When

using

buffered

I/O,

this

may

degrade

performance

for

output

PCBs.

You

can

also

use

a

GU

call

and

an

RSA

to

position

yourself

at

a

certain

place

in

the

GSAM

database.

If

you

place

a

doubleword,

consisting

of

a

fullword

containing

the

binary

value

“1”

followed

by

a

fullword

containing

the

binary

value

“0”,

in

the

RSA

and

issue

a

GU

call

using

that

RSA,

GSAM

repositions

you

to

the

first

record

in

the

database.

Explicitly

Opening

and

Closing

a

GSAM

Database

IMS

opens

the

GSAM

data

set

when

the

first

call

is

made

and

closes

the

data

set

when

the

application

program

terminates.

Therefore,

the

application

program

does

not

usually

need

to

make

explicit

open

or

close

calls

to

GSAM.

However,

explicit

OPEN

and

CLSE

calls

are

useful

in

the

following

two

situations:

v

If

the

application

program

loads

a

GSAM

data

set,

and

then

in

the

same

step

reads

the

data

set

using

GSAM

(for

example,

to

sort

the

data

set).

The

application

program

should

issue

the

GSAM

CLSE

call

after

the

load

is

complete.

v

If

the

GSAM

data

set

is

an

output

data

set,

and

it

is

possible

that

when

the

program

executes

it

does

not

make

GSAM

ISRT

calls.

A

data

set

is

not

created.

Subsequent

attempts

to

read

the

nonexistent

data

set

(using

GSAM

or

not)

will

likely

result

in

an

error.

To

avoid

this

situation,

explicitly

open

the

data

set.

DL/I

closes

the

data

set

when

the

step

terminates.

Closing

the

data

set

prevents

the

possibility

of

attempting

to

read

an

empty

data

set.

The

explicit

OPEN

or

CLSE

call

need

not

include

an

I/O

area

parameter.

Depending

on

the

processing

option

of

the

PCB,

the

data

set

is

opened

for

input

or

output.

You

can

specify

that

an

output

data

set

contain

either

ASA

or

machine

control

characters.

Including

an

I/O

area

parameter

in

the

call

and

specifying

OUTA

in

the

I/O

area

indicates

ASA

control

characters.

Specifying

OUTM

specifies

machine

control

characters.

GSAM

Record

Formats

GSAM

records

are

nonkeyed.

For

variable-length

records

you

must

include

the

record

length

as

the

first

2

bytes

of

the

record.

Undefined-length

records,

like

fixed-length

records,

contain

only

data

(and

control

characters,

if

needed).

If

you

use

undefined-length

records,

record

length

is

passed

between

your

program

and

GSAM

in

the

4-byte

field

that

follows

the

key

feedback

area

of

the

GSAM

DB

PCB.

This

is

the

tenth

field

in

Table

39

on

page

220.

It

is

called

the

undefined-length

records

area.

When

you

issue

an

ISRT

call,

supply

the

length.

When

you

issue

a

GN

or

GU

call,

GSAM

places

the

length

of

the

returned

record

in

this

field.

The

advantage

of

using

undefined-length

records

is

that

you

do

not

need

to

include

the

record

length

at

the

beginning

of

the

record,

and

records

do

not

need

to

be

of

fixed

Accessing

GSAM

Databases IBM

Confidential

222

Application

Programming:

Database

Manager

length.

The

length

of

any

record

must

be

less

than

or

equal

to

the

block

size

(BLKSIZE)

and

greater

than

11

bytes

(an

MVS

convention).

If

you

are

using

VSAM,

you

can

use

blocked

or

unblocked

fixed-length

or

variable-length

records.

If

you

are

using

BSAM,

you

can

use

blocked

or

unblocked

fixed-length,

variable-length,

or

undefined-length

records.

Whichever

you

use,

be

sure

to

specify

this

on

the

RECFM

keyword

in

the

DATASET

statement

of

the

GSAM

DBD.

You

can

override

this

in

the

RECFM

statement

of

the

DCB

parameter

in

the

JCL.

You

can

also

include

carriage

control

characters

in

the

JCL

for

all

formats.

“Origin

of

GSAM

Data

Set

Characteristics”

on

page

225

explains

what

you

can

use

to

override

each

type

of

record

format.

GSAM

I/O

Areas

If

you

provide

an

optional

I/O

area,

it

must

contain

one

of

these

values:

v

INP

for

an

input

data

set

v

OUT

for

an

output

data

set

v

OUTA

for

an

output

data

set

with

ASA

control

characters

v

OUTM

for

an

output

data

set

with

machine

control

characters

For

GN,

ISRT,

and

GU

calls,

the

format

of

the

I/O

area

depends

on

whether

the

record

is

fixed-length,

undefined-length

(valid

only

for

BSAM),

or

variable-length.

For

each

kind

of

record,

you

have

the

option

of

using

control

characters.

The

formats

of

an

I/O

area

for

fixed-length

or

undefined-length

records

are:

v

With

no

control

characters,

the

I/O

area

contains

only

data.

The

data

begins

in

byte

0.

v

With

control

characters,

the

control

characters

are

in

byte

0

and

the

data

begins

in

byte

1.

If

you

are

using

undefined-length

records,

the

record

length

is

passed

between

your

program

and

GSAM

in

the

PCB

field

that

follows

the

key

feedback

area.

When

you

are

issuing

an

ISRT

call,

supply

the

length.

When

you

are

issuing

a

GN

or

GU

call,

GSAM

places

the

length

of

the

returned

record

in

this

field.

This

length

field

is

4

bytes

long.

The

formats

for

variable-length

records

differ

because

variable-length

records

include

a

length

field,

which

other

records

do

not

have.

The

length

field

is

2

bytes.

Variable-length

I/O

areas,

like

fixed-length

and

undefined-length

I/O

areas,

can

have

control

characters.

v

Without

control

characters,

bytes

0

and

1

contain

the

2-byte

length

field,

and

the

data

begins

in

byte

2.

v

With

control

characters,

bytes

0

and

1

still

contain

the

length

field,

but

byte

2

contains

the

control

characters,

and

the

data

starts

in

byte

3.

GSAM

Status

Codes

Your

program

should

test

for

status

codes

after

each

GSAM

call,

just

as

it

does

after

each

DL/I

or

system

service

call.

If,

after

checking

the

status

codes,

you

find

that

you

have

an

error

and

terminate

your

program,

be

sure

to

note

the

PCB

in

error

before

you

terminate.

The

GSAM

GSAM

Record

FormatsIBM

Confidential

Chapter

10.

Processing

GSAM

Databases

223

PCB

address

is

helpful

in

determining

problems.

When

a

program

that

uses

GSAM

terminates

abnormally,

GSAM

issues

PURGE

and

CLSE

calls

internally,

which

changes

the

PCB

information.

Status

codes

that

have

specific

meanings

for

GSAM

are:

AF

GSAM

detected

a

BSAM

variable-length

record

with

an

invalid

format.

Terminate

your

program.

AH

You

have

not

supplied

an

RSA

for

a

GU

call.

AI

There

has

been

a

data

management

OPEN

error.

AJ

One

of

the

parameters

on

the

RSA

that

you

supplied

is

invalid.

AM

You

have

issued

an

invalid

request

against

a

GSAM

database.

AO

An

I/O

error

occurred

when

the

data

set

was

accessed

or

closed.

GB

You

reached

the

end

of

the

database,

and

GSAM

has

closed

the

database.

The

next

position

is

the

beginning

of

the

database.

IX

You

issued

an

ISRT

call

after

receiving

an

AI

or

AO

status

code.

Terminate

your

program.

Symbolic

CHKP

and

XRST

with

GSAM

To

checkpoint

GSAM

databases,

use

symbolic

CHKP

and

XRST

calls.

By

using

GSAM

to

read

or

write

the

data

set,

symbolic

CHKP

and

XRST

calls

can

be

used

to

reposition

the

data

set

at

the

time

of

restart,

enabling

you

to

make

your

program

restartable.

When

you

use

an

XRST

call,

IMS

repositions

GSAM

databases

for

processing.

CHKP

and

XRST

calls

are

available

to

application

programs

that

can

run

as

batch

programs,

batch-oriented

BMPs,

or

transaction-oriented

BMPs.

Restriction:

When

restarting

GSAM

databases:

v

You

cannot

use

temporary

data

sets

with

a

symbolic

CHKP

or

XRST

call.

v

A

SYSOUT

data

set

at

restart

time

may

give

duplicate

output

data.

v

You

cannot

restart

a

program

that

is

loading

a

GSAM

or

VSAM

database.

When

IMS

restores

the

data

areas

specified

in

the

XRST

call,

it

also

repositions

any

GSAM

databases

that

your

program

was

using

when

it

issued

the

symbolic

CHKP

call.

If

your

program

was

loading

GSAM

databases

when

the

symbolic

CHKP

call

was

issued,

IMS

repositions

them

(if

they

are

accessed

by

BSAM).

If

you

make

a

copy

of

the

GSAM

data

set

for

use

as

input

to

the

restart

process,

ensure

that

the

short

blocks

are

written

to

the

new

data

set

as

short

blocks,

for

example,

using

IEBGENER

with

RECFM=U

for

SYSUT1.

You

can

also

do

the

restart

using

the

original

GSAM

data

set.

GSAM

Coding

Considerations

The

calls

your

program

uses

to

access

GSAM

databases

are

not

the

same

as

the

DL/I

calls.

This

section

tells

how

to

code

GSAM

calls

and

GSAM

data

areas.

The

system

service

calls

that

you

can

use

with

GSAM

are

symbolic

CHKP

and

XRST.

Table

40

summarizes

GSAM

database

calls.

The

five

calls

you

can

use

to

process

GSAM

databases

are:

CLSE,

GN,

GU,

ISRT,

and

OPEN.

The

COBOL,

PL/I,

Pascal,

C,

and

assembler

call

formats

and

parameters

for

these

calls

are

the

same

and

are

described

in

Table

40

on

page

225.

GSAM

calls

do

not

differ

significantly

from

DL/I

calls,

but

GSAM

calls

must

reference

the

GSAM

PCB,

and

they

do

not

use

SSAs.

GSAM

Status

Codes IBM

Confidential

224

Application

Programming:

Database

Manager

Table

40.

Summary

of

GSAM

Calls

Call

Formats

Meaning

Use

Options

Parameters

CLSE

Close

Explicitly

closes

GSAM

database

None

function,

gsam

pcb

GN��

Get

Next

Retrieves

next

sequential

record

Can

supply

address

for

RSA

to

be

returned

function,

gsam

pcb,

i/o

area

[,rsa

name]

GU��

Get

Unique

Establishes

position

in

database

or

retrieves

a

unique

record

None

function,

gsam

pcb,

i/o

area,

rsa

name

ISRT

Insert

Adds

new

record

at

end

of

database

Can

supply

address

for

RSA

to

be

returned

function,

gsam

pcb,

i/o

area

[,rsa

name]

OPEN

Open

Explicitly

opens

GSAM

database

Can

specify

printer

or

punch

control

characters

function,

gsam

pcb

[,

open

option]

Origin

of

GSAM

Data

Set

Characteristics

For

an

input

data

set,

the

record

format

(RECFM),

logical

record

length

(LRECL),

and

block

size

(BLKSIZE)

are

based

on

the

input

data

set

label.

If

this

information

is

not

provided

by

a

data

set

label,

the

DD

statement

or

the

DBD

specifications

are

used.

The

DD

statement

has

priority.

An

output

data

set

can

have

the

following

characteristics:

v

Record

format

v

Logical

record

length

v

Block

size

v

Other

JCL

DCB

parameters

Specify

the

record

format

on

the

DATASET

statement

of

the

GSAM

DBD.

The

options

are:

v

V

for

variable

v

VB

for

variable

blocked

v

F

for

fixed

v

FB

for

fixed

blocked

v

U

for

undefined

The

V,

F,

or

U

definition

applies

and

is

not

overridden

by

the

DCB=RECFM=

specification

on

the

DD

statement.

However,

if

the

DD

RECFM

indicates

blocked

and

the

DBD

does

not,

RECFM

is

set

to

blocked.

If

the

DD

RECFM

of

A

or

M

control

character

is

specified,

it

applies

as

well.

Unless

an

undefined

record

format

is

used,

specify

the

logical

record

using

the

RECORD=

parameter

of

the

DATASET

statement

of

DBDGEN,

or

use

DCB=LRECL=xxx

on

the

DD

statement.

If

the

logical

record

is

specified

on

both,

the

DD

statement

has

priority.

Specify

block

size

using

the

BLOCK=

or

SIZE=

parameter

of

the

DATASET

statement

of

DBDGEN,

or

use

DCB=BLKSIZE=xxx

on

the

DD

statement.

If

block

size

is

specified

on

both,

the

DD

statement

has

priority.

If

the

block

size

is

not

GSAM

Coding

ConsiderationsIBM

Confidential

Chapter

10.

Processing

GSAM

Databases

225

specified

by

the

DBD

or

the

DD

statement,

the

system

determines

the

size

based

on

the

device

type,

unless

the

undefined

record

format

is

used.

The

other

JCL

DCB

parameters

that

can

be

used,

include:

v

CODE

v

DEN

v

TRTCH

v

MODE

v

STACK

v

PRTSP,

which

can

be

used

if

RECFM

does

not

include

A

or

M

v

DCB=BUFNO=X,

which,

when

used,

causes

GSAM

to

use

X

number

of

buffers

Restriction:

Do

not

use

BFALN,

BUFL,

BUFOFF,

FUNC,

NCP,

and

KEYLEN.

DD

Statement

DISP

Parameter

for

GSAM

Data

Sets

The

DD

statement

DISP

parameter

varies,

depending

on

whether

you

are

creating

input

or

output

data

sets

and

how

you

plan

to

use

the

data

sets:

v

For

input

data

sets,

use

DISP=OLD.

v

For

output

data

sets,

you

have

a

number

of

options:

–

If

you

are

creating

an

output

data

set

allocated

by

the

DD

statement,

use

DISP=NEW.

–

To

create

an

output

data

set

that

was

previously

cataloged,

but

is

now

empty,

use

DISP=MOD.

–

When

restarting

the

step,

use

DISP=OLD.

–

Finally,

to

add

new

records

to

the

end

of

an

existing

data

set,

use

DISP=MOD.

Using

Extended

Checkpoint

Restart

for

GSAM

Data

Sets

Recommendation:

If

you

are

using

extended

checkpoint

restart

for

GSAM

data

sets:

v

Do

not

use

passed

data

sets.

v

Do

not

use

backward

references

to

data

sets

in

previous

steps.

v

Do

not

use

DISP=MOD

to

add

records

to

an

existing

tape

data

set.

v

Do

not

use

DISP=DELETE

or

DISP=UNCATLG.

v

Additionally,

keep

in

mind

the

following

points:

–

If

the

PSB

contains

an

open

GSAM

VSAM

output

data

set

when

the

symbolic

checkpoint

call

is

issued,

the

system

returns

an

AM

status

code

in

the

database

PCB

as

a

warning.

This

means

that

the

data

set

is

not

repositioned

at

restart,

but,

in

all

other

respects,

the

checkpoint

has

completed

normally.

–

No

attempt

is

made

to

reposition

a

SYSIN,

SYSOUT,

or

temporary

data

set.

–

No

attempt

is

made

to

reposition

any

of

the

concatenated

data

sets

for

a

concatenated

DD

statement

if

any

of

the

data

sets

are

a

SYSIN

or

SYSOUT.

–

If

you

are

using

concatenated

data

sets,

specify

the

same

number

and

sequence

of

data

sets

at

restart

and

checkpoint

time.

–

GSAM

uses

the

relative

track

and

record

(TTR)

on

the

volume

to

position

GSAM

DASD

data

sets

when

restarting.

For

a

tape

data

set,

the

relative

record

on

the

volume

is

used.

If

a

data

set

is

copied

between

checkpoint

and

restart,

the

TTR

on

the

volume

for

DASD

or

the

relative

record

on

the

volume

cannot

be

changed.

To

avoid

this

problem,

do

the

following:

GSAM

Data

Set

Characteristics IBM

Confidential

226

Application

Programming:

Database

Manager

1.

Copy

the

data

set

to

the

same

device

type.

2.

Use

RECFM=U

for

both

the

input

and

the

output

data

set

to

avoid

any

reblocking.

3.

Be

sure

that

each

copied

volume

contains

the

same

number

of

records

as

the

original

volumes

when

copying

a

multivolume

data

set.

Use

of

Concatenated

Data

Sets

by

GSAM

GSAM

can

use

concatenated

data

sets,

which

may

be

on

unlike

device

types,

such

as

DASD

and

tape,

or

on

different

DASD

devices.

Logical

record

lengths

and

block

sizes

can

differ,

and

it

is

not

required

that

the

data

set

with

the

largest

block

size

be

concatenated

first.

The

maximum

number

of

concatenated

data

sets

for

a

single

DD

statement

is

255.

The

number

of

buffers

determined

for

the

first

of

the

concatenated

data

sets

is

used

for

all

succeeding

data

sets.

Generation

data

groups

can

result

in

concatenated

data

sets.

Suggested

Method

for

Specifying

GSAM

Data

Set

Attributes

Recommendation:

When

specifying

GSAM

data

set

attributes:

v

On

the

DBD,

specify

RECFM.

(It

is

required.)

v

On

the

DATASET

statement,

specify

the

logical

record

length

using

RECORD=.

v

On

the

DD

statement,

do

not

specify

LRECL,

RECFM,

or

BLKSIZE.

The

system

determines

block

size,

with

the

exception

of

RECFM=U.

The

system

determines

logical

record

length

from

the

DBD.

v

For

the

PSB,

specify

PROCOPT=LS

for

output

and

GS

for

input.

If

you

include

S,

GSAM

uses

multiple

buffers

instead

of

a

single

buffer

for

improved

performance.

IMS

will

add

2

bytes

to

the

record

length

value

specified

in

the

DBD

in

order

to

accommodate

the

ZZ

field

that

is

needed

to

make

up

the

BSAM

RDW.

Whenever

the

database

is

GSAM

or

BSAM

and

the

records

are

variable

(V

or

VB),

IMS

adds

2

bytes.

The

record

size

of

the

GSAM

database

is

2

bytes

greater

than

the

longest

segment

that

is

passed

to

IMS

by

the

application

program.

DLI

or

DBB

Region

Types

and

GSAM

The

two

kinds

of

batch

regions

are

the

DLI

batch

region

and

the

DBB

batch

region.

The

only

difference

between

them

is

the

source

for

DLI

control

blocks.

For

a

DLI

region,

the

source

for

control

blocks

is

PSBLIB

and

DBDLIB.

For

a

DBB

region,

the

source

for

control

blocks

is

the

ACBLIB,

as

identified

by

the

//IMSACB

DD

statement.

When

you

initialize

a

DLI,

DBB

or

BMP

region

using

GSAM,

you

must

include

an

//IMS

DD

statement

and

GSAM

database

DD

statements.

Note

that

when

DBB

or

BMP

regions

are

not

using

GSAM,

no

//IMS

DD

statement

is

required.

The

//IMS

DD

statements

are

required

for

loading

PSBs

and

DBDs,

and

for

building

GSAM

control

blocks.

GSAM

does

not

obtain

PSB

and

DBD

information

from

ACBLIB.

GSAM

Data

Set

CharacteristicsIBM

Confidential

Chapter

10.

Processing

GSAM

Databases

227

//STEP

EXEC

PGM=DFSRRC00,PARM=[BMP|DBB|DLI],...’

//STEPLIB

DD

DSN=executionlibrary-name,DISP=SHR

//

DD

DSN=pgmlib-name,DISP=SHR

//IMS

DD

DSN=psblib-name,DISP=SHR

//

DD

DSN=dbdlib-name,DISP=SHR

//IMSACB

DD

DSN=acblib-name,disp=shr

(required

for

DBB)

//SYSPRINT

DD

SYSOUT=A

//SYSUDUMP

DD

SYSOUT=A

//ddnamex

DD

(add

DD

statements

for

required

GSAM

databases)

//ddnamex

DD

(add

DD

statements

for

non-GSAM

IMS

databases

for

DLI/DBB)

.

.

.

/*

Figure

47.

//IMS

DD

Statement

Example

IBM

Confidential

228

Application

Programming:

Database

Manager

Chapter

11.

Processing

Fast

Path

Databases

This

chapter

contains

information

on

Fast

Path

database

calls

and

MSDB

and

DEBD

information

that

is

required

by

Fast

Path

calls.

Fast

Path

message

calls

appear

in

IMS

Version

9:

Application

Programming:

Transaction

Manager

manual.

Restriction:

This

DEDB

information

applies

to

CICS

users

with

DBCTL.

MSDBs

and

cannot

be

accessed

through

CICS

and

DBCTL.

The

two

kinds

of

Fast

Path

databases

are:

v

Main

storage

databases

(MSDBs)

are

available

in

a

DB/DC

environment,

and

contain

only

root

segments

in

which

you

store

data

that

you

access

most

frequently.

v

Data

entry

databases

(DEDBs)

are

hierarchic

databases

that

can

have

as

many

as

15

hierarchic

levels

and

as

many

as

127

segment

types.

DEDBs

are

available

to

both

IMS

users

and

CICS

users

with

DBCTL.

In

this

Chapter:

v

“Fast

Path

Database

Calls”

v

“MSDBs

and

DEDBs:

Overview”

on

page

230

v

“Processing

MSDBs

and

DEDBs”

on

page

231

v

“Restrictions

on

Using

Calls

for

MSDBs”

on

page

237

v

“Processing

DEDBs

(IMS,

CICS

with

DBCTL)”

on

page

238

v

“Restrictions

on

Using

Calls

for

DEDBs”

on

page

246

v

“Fast

Path

Coding

Considerations”

on

page

247

Related

Reading:

For

more

information

on

the

types

of

processing

requirements

the

two

types

of

Fast

Path

databases

satisfy,

see

IMS

Version

9:

Administration

Guide:

Database

Manager.

This

section

contains

information

on

how

to

write

programs

to

access

data

in

MSDBs

and

DEDBs.

Fast

Path

Database

Calls

Table

41

summarizes

the

database

calls

you

can

use

with

Fast

Path

databases.

Table

41.

Summary

of

Fast

Path

Database

Calls

Function

Code

Types

of

MSDBs:

DEDBs

Nonterminal-

Related

Terminal-

Related

Fixed

Terminal-

Related

Dynamic

DEQ

X

FLD

X

X

X

X

GU,

GHU

X

X

X

X

GN,

GHN

X

X

X

X

GNP,

GHNP

DLET

X

X

ISRT

X

X

POS

X

REPL

X

X

X

X

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

229

DL/I

calls

to

DEDBs

can

include

the

same

number

of

SSAs

as

existing

levels

in

the

hierarchy

(a

maximum

of

15).

They

can

also

include

command

codes

and

multiple

qualification

statements.

Restriction:

v

Fast

Path

ignores

command

codes

that

are

used

with

sequential

dependent

segments.

v

If

you

use

a

command

code

that

does

not

apply

to

the

call

you

are

using,

Fast

Path

ignores

the

command

code.

v

If

you

use

F

or

L

in

an

SSA

for

a

level

above

the

established

parent,

Fast

Path

ignores

the

F

or

L

command

code.

v

DL/I

calls

to

DEDBs

cannot

include

the

independent

AND,

which

is

used

only

with

secondary

indexing.

Calls

to

DEDBs

can

use

all

command

codes.

Only

calls

to

DEDBs

that

use

subset

pointers

can

use

the

R,

S,

Z,

W,

and

M

command

codes.

Table

42

shows

which

calls

you

can

use

with

these

command

codes.

Table

42.

Subset

Pointer

Command

Codes

and

Calls

Command

Code

DLET

GU

GHU

GN

GHN

GNP

GHNP

ISRT

REPL

M

X

X

X

X

X

R

X

X

X

X

S

X

X

X

X

X

W

X

X

X

X

X

X

X

X

X

X

X

X

MSDBs

and

DEDBs:

Overview

This

section

briefly

introduces

the

two

Fast

Path

database

types:

MSDBs

and

DEDBs.

MSDBs

MSDBs

contain

only

root

segments.

Each

segment

is

like

a

database

record,

because

the

segment

contains

all

of

the

information

about

a

particular

subject.

In

a

DL/I

hierarchy,

a

database

record

is

made

up

of

a

root

segment

and

all

its

dependents.

For

example,

in

the

medical

hierarchy,

a

particular

PATIENT

segment

and

all

the

segments

underneath

that

PATIENT

segment

comprise

the

database

record

for

that

patient.

In

an

MSDB,

the

segment

is

the

whole

database

record.

The

database

record

contains

only

the

fields

that

the

segment

contains.

MSDB

segments

are

fixed

length.

Types

of

MSDBs

The

two

kinds

of

MSDBs

are

terminal

related

and

non-terminal

related.

In

terminal-related

MSDBs,

each

segment

is

owned

by

one

logical

terminal.

The

segment

that

is

owned

can

be

updated

only

by

that

terminal.

Related

MSDBs

can

be

fixed

or

dynamic.

You

can

add

segments

to

and

delete

segments

from

dynamic

related

MSDBs.

You

cannot

add

segments

to

or

delete

segments

from

fixed

related

MSDBs.

In

the

second

kind

of

MSDB,

called

non-terminal

related

(or

nonrelated)

MSDBs,

the

segments

are

not

owned

by

logical

terminals.

One

way

to

understand

the

Fast

Path

Database

Calls IBM

Confidential

230

Application

Programming:

Database

Manager

differences

between

these

types

of

databases

and

why

you

would

use

each

one,

is

to

look

at

the

examples

of

each

in

“Bank

Account

Example”

on

page

22.

DEDBs

A

DEDB

contains

a

root

segment

and

as

many

as

127

dependent

segment

types.

One

of

these

can

be

a

sequential

dependent;

the

other

126

are

direct

dependents.

Sequential

dependent

segments

are

stored

in

chronological

order.

Direct

dependent

segments

are

stored

hierarchically.

DEDBs

can

provide

high

data

availability.

Each

DEDB

can

be

partitioned,

or

divided

into

multiple

areas.

Each

area

contains

a

different

collection

of

database

records.

In

addition,

you

can

make

as

many

as

seven

copies

of

each

area

data

set.

If

an

error

exists

in

one

copy

of

an

area,

application

programs

continue

to

access

the

data

by

using

another

copy

of

that

area.

Use

of

the

copy

of

an

area

is

transparent

to

the

application

program.

When

an

error

occurs

to

data

in

a

DEDB,

IMS

does

not

stop

the

database.

IMS

makes

the

data

in

error

unavailable

but

continues

to

schedule

and

process

application

programs.

Programs

that

do

not

need

the

data

in

error

are

unaffected.

DEDBs

can

be

shared

among

application

programs

in

separate

IMS

systems.

Sharing

DEDBs

is

virtually

the

same

as

sharing

full-function

databases,

and

most

of

the

same

rules

apply.

IMS

systems

can

share

DEDBs

at

the

area

level

(instead

of

at

the

database

level

as

with

full-function

databases),

or

at

the

block

level.

Related

Reading:

For

more

information

on

DEDB

data

sharing,

see

the

explanation

of

administering

IMS

systems

that

share

data

in

IMS

Version

9:

Administration

Guide:

System.

Processing

MSDBs

and

DEDBs

This

section

describes

update

calls,

commit

point

processing,

and

data

locking

for

MSDBs

and

DEDBs.

Updating

Segments

in

an

MSDB

or

DEDB:

REPL,

DLET,

ISRT,

and

FLD

Three

of

the

calls

that

you

can

use

to

update

an

MSDB

or

DEDB

are

the

same

ones

that

you

use

to

update

other

IMS

databases:

REPL,

DLET,

and

ISRT.

You

can

issue

a

REPL

call

to

a

related

MSDB

or

nonrelated

MSDB,

and

you

can

issue

any

of

the

three

calls

for

non-terminal-related

MSDBs

(without

terminal-related

keys)

or

DEDBs.

When

you

issue

REPL

or

DLET

calls

against

an

MSDB

or

DEDB,

you

must

first

issue

a

Get

Hold

call

for

the

segment

you

want

to

update,

just

as

you

do

when

you

replace

or

delete

segments

in

other

IMS

databases.

One

call

that

you

can

use

against

MSDBs

and

DEDBs

that

you

cannot

use

against

other

types

of

IMS

databases

is

the

Field

(FLD)

call,

which

enables

you

to

access

and

change

the

contents

of

a

field

within

a

segment.

The

FLD

call

has

two

types:

v

FLD/VERIFY

This

type

of

call

compares

the

value

of

the

field

in

the

target

segment

to

the

value

you

supply

in

the

FSA.

v

FLD/CHANGE

This

type

of

call

changes

the

value

of

the

field

in

the

target

segment

in

the

way

that

you

specify

in

the

FSA.

A

FLD/CHANGE

call

is

only

successful

if

the

previous

FLD/VERIFY

call

is

successful.

MSDBs

and

DEDBs:

OverviewIBM

Confidential

Chapter

11.

Processing

Fast

Path

Databases

231

The

FLD

call

does

in

one

call

what

a

Get

Hold

call

and

a

REPL

call

do

in

two

calls.

For

example,

using

the

ACCOUNT

segment

shown

in

Table

10

on

page

23

a

bank

would

need

to

perform

the

following

processing

to

find

out

whether

a

customer

could

withdraw

a

certain

amount

of

money

from

a

bank

account:

1.

Retrieve

the

segment

for

the

customer’s

account.

2.

Verify

that

the

balance

in

the

account

is

more

than

the

amount

that

the

customer

wants

to

withdraw.

3.

Update

the

balance

to

reflect

the

withdrawal

if

the

amount

of

the

balance

is

more

than

the

amount

of

the

withdrawal.

Without

using

the

FLD

call,

a

program

would

issue

a

GU

call

to

retrieve

the

segment,

then

verify

its

contents

with

program

logic,

and

finally

issue

a

REPL

call

to

update

the

balance

to

reflect

the

withdrawal.

If

you

use

the

FLD

call

with

a

root

SSA,

you

can

retrieve

the

desired

segment.

The

FLD

call

has

the

same

format

as

SSAs

for

other

calls.

If

no

SSA

exists,

the

first

segment

in

the

MSDB

or

DEDB

is

retrieved.

You

use

the

FLD/VERIFY

to

compare

the

BALANCE

field

to

the

amount

of

the

withdrawal.

A

FLD/CHANGE

call

can

update

the

BALANCE

field

if

the

comparison

is

satisfactory.

The

segment

retrieved

by

a

FLD

call

is

the

same

as

can

be

retrieved

by

a

GHU

call.

After

the

FLD

call,

the

position

is

lost.

An

unqualified

GN

call

after

a

FLD

call

returns

the

next

segment

in

the

current

area.

Checking

a

Field’s

Contents:

FLD/VERIFY

A

FLD/VERIFY

call

compares

the

contents

of

a

specified

field

in

a

segment

to

the

value

that

you

supply.

The

way

that

a

FLD/VERIFY

call

compares

the

two

depends

on

the

operator

you

supply.

When

you

supply

the

name

of

a

field

and

a

value

for

comparison,

you

can

determine

if

the

value

in

the

field

is:

v

Equal

to

the

value

you

have

supplied

v

Greater

than

the

value

you

have

supplied

v

Greater

than

or

equal

to

the

value

you

have

supplied

v

Less

than

the

value

you

have

supplied

v

Less

than

or

equal

to

the

value

you

have

supplied

v

Not

equal

to

the

value

you

have

supplied

After

IMS

performs

the

comparison

that

you

have

asked

for,

it

returns

a

status

code

(in

addition

to

the

status

code

in

the

PCB)

to

tell

you

the

results

of

the

comparison.

You

specify

the

name

of

the

field

and

the

value

that

you

want

its

value

compared

to

in

a

field

search

argument,

or

FSA.

The

FSA

is

also

where

IMS

returns

the

status

code.

You

place

the

FSA

in

an

I/O

area

before

you

issue

a

FLD

call,

and

then

you

reference

that

I/O

area

in

the

call—just

as

you

do

for

an

SSA

in

a

DL/I

call.

An

FSA

is

similar

to

an

SSA

in

that

you

use

it

to

give

information

to

IMS

about

the

information

you

want

to

retrieve

from

the

database.

An

FSA,

however,

contains

more

information

than

an

SSA.

Table

43

shows

the

structure

and

format

of

an

FSA.

Table

43.

FSA

Structure

FLD

NAME

SC

OP

FLD

VALUE

CON

8

1

1

Variable

1

The

five

fields

in

an

FSA

are:

Processing

MSDBs

and

DEDBs IBM

Confidential

232

Application

Programming:

Database

Manager

Field

Name

(FLD

Name)

This

is

the

name

of

the

field

that

you

want

to

update.

The

field

must

be

defined

in

the

DBD.

Status

Code

(SC)

This

is

where

IMS

returns

the

status

code

for

this

FSA.

If

IMS

successfully

processes

the

FSA,

it

returns

a

blank

status

code.

If

not,

you

receive

one

of

the

status

codes

listed

below.

If

IMS

returns

a

nonblank

status

code

in

the

FSA,

it

returns

an

FE

status

code

to

the

PCB

to

indicate

this.

The

FSA

status

codes

that

IMS

might

return

to

you

on

a

FLD/VERIFY

call

are:

B

The

length

of

the

data

supplied

in

the

field

value

is

invalid.

D

The

verify

check

is

unsuccessful.

In

other

words,

the

answer

to

your

query

is

no.

E

The

field

value

contains

invalid

data.

The

data

you

supplied

in

this

field

is

not

the

same

type

of

data

that

is

defined

for

this

field

in

the

DBD.

H

The

requested

field

is

not

found

in

the

segment.

Operator

(OP)

This

tells

IMS

how

you

want

the

two

values

compared.

For

a

FLD/VERIFY

call,

you

can

specify:

E

Verify

that

the

value

in

the

field

is

equal

to

the

value

you

have

supplied

in

the

FSA.

G

Verify

that

the

value

in

the

field

is

greater

than

the

value

you

have

supplied

in

the

FSA.

H

Verify

that

the

value

in

the

field

is

greater

than

or

equal

to

the

value

you

have

supplied

in

the

FSA.

L

Verify

that

the

value

in

the

field

is

less

than

the

value

you

have

supplied

in

the

FSA.

M

Verify

that

the

value

in

the

field

is

less

than

or

equal

to

the

value

you

have

supplied

in

the

FSA.

N

Verify

that

the

value

in

the

field

is

not

equal

to

the

value

you

have

supplied

in

the

FSA.

Field

Value

(FLD

Value)

This

area

contains

the

value

that

you

want

IMS

to

compare

to

the

value

in

the

segment

field.

The

data

that

you

supply

in

this

area

must

be

the

same

type

of

data

in

the

field

you

have

named

in

the

first

field

of

the

FSA.

The

five

types

of

data

are:

hexadecimal,

packed

decimal,

alphanumeric

(or

a

combination

of

data

types),

binary

fullword,

and

binary

halfword.

The

length

of

the

data

in

this

area

must

be

the

same

as

the

length

that

is

defined

for

this

field

in

the

DBD.

Exceptions:

v

If

you

are

processing

hexadecimal

data,

the

data

in

the

FSA

must

be

in

hexadecimal.

This

means

that

the

length

of

the

data

in

the

FSA

is

twice

the

length

of

the

data

in

the

field

in

the

database.

IMS

checks

the

characters

in

hexadecimal

fields

for

validity

before

that

data

is

translated

to

database

format.

(Only

0

to

9

and

A

to

F

are

valid

characters.)

v

For

packed-decimal

data,

you

do

not

need

to

supply

the

leading

zeros

in

the

field

value.

This

means

that

the

number

of

digits

in

the

FSA

might

be

less

than

the

number

of

digits

in

the

corresponding

database

field.

The

data

that

you

supply

in

this

field

must

be

in

a

valid

packed-decimal

format

and

must

end

in

a

sign

digit.

Processing

MSDBs

and

DEDBsIBM

Confidential

Chapter

11.

Processing

Fast

Path

Databases

233

When

IMS

processes

the

FSA,

it

does

logical

comparisons

for

alphanumeric

and

hexadecimal

fields;

it

does

arithmetic

comparisons

for

packed

decimal

and

binary

fields.

Connector

(CON)

If

this

is

the

only

or

last

FSA

in

this

call,

this

area

contains

a

blank.

If

another

FSA

follows

this

one,

this

area

contains

an

asterisk

(*).

You

can

include

several

FSAs

in

one

FLD

call,

if

all

the

fields

that

the

FSAs

reference

are

in

the

same

segment.

If

you

get

an

error

status

code

for

a

FLD

call,

check

the

status

codes

for

each

of

the

FSAs

in

the

FLD

call

to

determine

where

the

error

is.

When

you

have

verified

the

contents

of

a

field

in

the

database,

you

can

change

the

contents

of

that

field

in

the

same

call.

To

do

this,

supply

an

FSA

that

specifies

a

change

operation

for

that

field.

Changing

a

Field’s

Contents:

FLD/CHANGE

To

indicate

to

IMS

that

you

want

to

change

the

contents

of

a

particular

field,

use

an

FSA,

just

as

you

do

in

a

FLD/VERIFY

call.

The

difference

is

in

the

operators

that

you

can

specify

and

the

FSA

status

codes

that

IMS

can

return

to

you

after

the

call.

Using

Table

43

on

page

232

FLD/CHANGE

works

like

this:

v

You

specify

the

name

of

the

field

that

you

want

to

change

in

the

first

field

of

the

FSA

(Field

Name).

v

You

specify

an

operator

in

the

third

field

of

the

FSA

(Operator),

which

indicates

to

IMS

how

you

want

to

change

that

field.

v

You

specify

the

value

that

IMS

must

use

to

change

the

field

in

the

last

area

of

the

FSA

(Field

Value).

By

specifying

different

operators

in

a

FLD/CHANGE

call,

you

change

the

field

in

the

database

in

these

ways:

v

Add

the

value

supplied

in

the

FSA

to

the

value

in

the

field.

v

Subtract

the

value

supplied

in

the

FSA

from

the

value

in

the

field.

v

Set

the

value

in

the

database

field

to

the

value

supplied

in

the

FSA.

You

code

these

operators

in

the

FSA

with

these

symbols:

v

To

add:

+

v

To

subtract:

−

v

To

set

the

field

equal

to

the

new

value:

=

You

can

add

and

subtract

values

only

when

the

field

in

the

database

contains

arithmetic

(packed-decimal,

binary-fullword,

or

binary-halfword)

data.

The

status

codes

you

can

receive

in

a

FLD/CHANGE

FSA

are:

A

Invalid

operation;

for

example,

you

specified

the

+

operator

for

a

field

that

contains

character

data.

B

Invalid

data

length.

The

data

you

supplied

in

the

FSA

is

not

the

length

that

is

defined

for

that

field

in

the

DBD.

C

You

attempted

to

change

the

key

field

in

the

segment.

Changing

the

key

field

is

not

allowed.

E

Invalid

data

in

the

FSA.

The

data

that

you

supplied

in

the

FSA

is

not

the

type

of

data

that

is

defined

for

this

field

in

the

DBD.

F

You

tried

to

change

an

unowned

segment.

This

status

code

applies

only

to

related

MSDBs.

Processing

MSDBs

and

DEDBs IBM

Confidential

234

Application

Programming:

Database

Manager

G

An

arithmetic

overflow

occurred

when

you

changed

the

data

field.

H

The

requested

field

was

not

found

in

the

segment.

An

Example

of

Using

FLD/VERIFY

and

FLD/CHANGE

The

example

in

this

section

uses

the

bank

account

segment

shown

in

Table

10

on

page

23

Assume

that

a

customer

wants

to

withdraw

$100

from

a

checking

account.

The

checking

account

number

is

24056772.

To

find

out

whether

the

customer

can

withdraw

this

amount,

you

must

check

the

current

balance.

If

the

current

balance

is

greater

than

$100,

you

want

to

subtract

$100

from

the

balance,

and

add

1

to

the

transaction

count

in

the

segment.

You

can

do

all

of

this

processing

by

using

one

FLD

call

and

three

FSAs.

The

following

list

describes

each

of

the

three

FSAs:

1.

Verify

that

the

value

in

the

BALANCE

field

is

greater

than

or

equal

to

$100.

For

this

verification,

you

specify

the

BALANCE

field,

the

H

operator

for

greater

than

or

equal

to,

and

the

amount.

The

amount

is

specified

without

a

decimal

point.

Field

names

less

than

eight

characters

long

must

be

padded

with

trailing

blanks

to

equal

eight

characters.

You

also

have

to

leave

a

blank

between

the

field

name

and

the

operator

for

the

FSA

status

code.

This

FSA

looks

like

this:

BALANCE��H10000*

The

last

character

in

the

FSA

is

an

asterisk,

because

this

FSA

will

be

followed

by

other

FSAs.

2.

Subtract

$100

from

the

value

in

the

BALANCE

field

if

the

first

FSA

is

successful.

If

the

first

FSA

is

unsuccessful,

IMS

does

not

continue

processing.

To

subtract

the

amount

of

the

withdrawal

from

the

amount

of

the

balance,

you

use

this

FSA:

BALANCE��-10000*

Again,

the

last

character

in

the

FSA

is

an

asterisk,

because

this

FSA

is

followed

by

a

third

FSA.

3.

Add

1

to

the

transaction

count

for

the

account.

To

do

this,

use

this

FSA:

TRANCNT��+001�

In

this

FSA,

the

last

character

is

a

blank

(�),

because

this

is

the

last

FSA

for

this

call.

When

you

issue

the

FLD

call,

you

do

not

reference

each

FSA

individually;

you

reference

the

I/O

area

that

contains

all

of

them.

Commit-Point

Processing

in

MSDBs

and

DEDBs

This

section

describes

the

MSDB

commit

view

and

DEDBs

with

an

MSDB

commit

view.

(The

following

explanation

assumes

that

you

are

already

familiar

with

the

concepts

of

commit

point

processing,

as

described

in

IMS

Version

9:

Application

Programming:

Design

Guide.)

MSDB

Commit

View

When

you

update

a

segment

in

an

MSDB,

IMS

does

not

apply

your

updates

immediately.

Updates

do

not

go

into

effect

until

your

program

reaches

a

commit

point.

As

a

result

of

the

way

updates

are

handled,

you

can

receive

different

results

if

you

issue

the

same

call

sequence

against

a

full-function

database

or

a

DEDB

and

an

MSDB.

For

example,

if

you

issue

GHU

and

REPL

calls

for

a

segment

in

an

MSDB,

and

then

issue

another

Get

call

for

the

same

segment

in

the

same

commit

interval,

Processing

MSDBs

and

DEDBsIBM

Confidential

Chapter

11.

Processing

Fast

Path

Databases

235

the

segment

that

IMS

returns

to

you

is

the

“old”

value,

not

the

updated

one.

If,

on

the

other

hand,

you

issue

the

same

call

sequence

for

a

segment

in

a

full-function

database

or

DEDB,

the

second

Get

call

returns

the

updated

segment.

When

the

program

reaches

a

commit

point,

IMS

also

reprocesses

the

FLD

VERIFY/CHANGE

call.

If

the

VERIFY

test

passes,

the

change

is

applied

to

the

database.

If

the

VERIFY

test

fails,

the

changes

made

since

the

previous

commit

point

are

undone,

and

the

transaction

is

reprocessed.

DEDBs

with

MSDB

Commit

View

Your

existing

application

programs

can

use

either

the

MSDB

commit

view

or

the

default

DEDB

commit

view.

To

use

the

MSDB

commit

view

for

DEDBs,

specify

VIEW=MSDB

on

the

PCB

statement;

if

you

do

not

specify

VIEW=MSDB,

the

DEDB

uses

the

default

DEDB

commit

view.

So

no

changes

to

any

existing

application

programs

are

required

in

order

to

migrate

your

MSDBs

to

DEDBs.

Assume

that

you

specify

VIEW=MSDB

in

the

PCB

and

an

application

program

issues

GHU

and

REPL

calls

to

a

DEDB

followed

by

another

GHU

call

for

the

segment

in

the

same

commit

interval.

Then

the

application

program

receives

the

old

value

of

the

data

and

not

the

new

value

from

the

REPL

call.

If

you

do

not

specify

VIEW=MSDB,

your

application

program

receives

the

new

updated

values

of

the

data,

just

as

you

expect

for

a

DEDB

or

other

DL/I

database.

You

can

specify

VIEW=MSDB

for

any

DEDB

PCB.

If

it

is

specified

for

a

non-DEDB

database,

you

receive

message

DFS0904

during

ACBGEN.

If

you

issue

a

REPL

call

with

a

PCB

that

specifies

VIEW=MSDB,

the

segment

must

have

a

key.

This

requirement

applies

to

any

segment

in

a

path

if

command

code

’D’

is

specified.

Otherwise,

the

AM

status

code

is

returned.

See

IMS

Version

9:

Messages

and

Codes,

Volume

1

for

information

about

that

status

code.

Figure

48

shows

an

example

of

a

PCB

that

specifies

the

VIEW

option.

VSO

Considerations

VSO

is

transparent

to

the

processing

of

an

application.

Where

the

data

resides

is

immaterial

to

the

application.

Data

Locking

for

MSDBs

and

DEDBs

All

MSDB

calls,

including

the

FLD

call,

can

lock

the

data

at

the

segment

level.

The

lock

is

acquired

at

the

time

the

call

is

processed

and

is

released

at

the

end

of

the

call.

All

DEDB

calls,

with

the

exception

of

HSSP

calls,

are

locked

at

the

VSAM

CI

level.

For

single-segment,

root-only,

fixed-length

VSO

areas,

if

you

specify

PROCOPT

R

or

G,

the

application

program

can

obtain

segment-level

locks

for

all

calls.

If

you

specify

any

other

PROCOPT,

the

application

program

obtains

VSAM

CI

locks.

PCB

,

*00000100

TYPE=DB,

*00000200

NAME=DEDBJN21,

*00000300

PROCOPT=A,

*00000400

KEYLEN=30,

*00000500

VIEW=MSDB,

*00000600

POS=M

00000700

Figure

48.

Sample

PCB

Specifying

View=MSDB

Processing

MSDBs

and

DEDBs IBM

Confidential

236

Application

Programming:

Database

Manager

Related

Reading:

For

more

information

on

HSSP,

see

IMS

Version

9:

Administration

Guide:

Database

Manager.

Segment-level

locking

(SLL)

provides

a

two-tier

locking

scheme.

First,

a

share

(SHR)

lock

is

obtained

for

the

entire

CI.

Then,

an

exclusive

(EXCL)

segment

lock

is

obtained

for

the

requested

segment.

This

scheme

allows

for

contention

detection

between

SLL

users

of

the

CI

and

EXCL

requestors

of

the

CI.

When

contention

occurs

between

an

existing

EXCL

CI

lock

user

and

a

SHR

CI

lock

requestor,

the

SHR

CI

lock

is

upgraded

to

an

EXCL

CI

lock.

During

the

time

that

this

EXCL

CI

lock

is

held,

subsequent

SHR

CI

lock

requests

must

wait

until

the

EXCL

CI

is

released

at

the

next

commit

point.

DEDB

FLD

calls

are

not

locked

at

call

time.

Instead,

the

lock

is

acquired

at

a

commit

point.

During

sync-point

processing,

the

lock

is

re-acquired

(if

not

already

held),

and

the

changes

are

verified.

Verification

failure

results

in

the

message

being

reprocessed

(for

message-driven

applications)

or

an

FE

status

code

(for

non-message-driven

applications).

Verification

can

fail

if

the

segment

used

by

the

FLD

call

has

been

deleted

or

replaced

before

a

sync-point.

Segment

retrieval

for

a

FLD

call

is

the

same

as

for

a

GU

call.

An

unqualified

FLD

call

returns

the

first

segment

in

the

current

area,

just

as

an

unqualified

GU

call

does.

After

the

FLD

call

is

processed,

all

locks

for

the

current

CI

are

released

if

the

current

CI

is

unmodified

by

any

previous

call.

When

a

compression

routine

is

defined

on

the

root

segment

of

a

DEDB

with

a

root-only

structure,

and

when

that

root

segment

is

a

fixed-length

segment,

its

length

becomes

variable

after

being

compressed.

To

replace

a

compressed

segment,

you

must

perform

a

delete

and

an

insert.

In

this

case,

segment

level

control

and

locking

will

not

be

available.

Restrictions

on

Using

Calls

for

MSDBs

To

retrieve

segments

from

an

MSDB

1,

you

can

issue

Get

calls

just

as

you

do

to

retrieve

segments

from

other

IMS

databases.

Because

MSDBs

contain

only

root

segments,

you

only

use

GU

and

GN

calls

(and

GHU

and

GHN

calls

when

you

plan

to

update

a

segment).

If

the

segment

name

field

in

the

SSA

contains

*MYLTERM,

the

GU,

GHU,

and

FLD

calls

return

the

LTERM-owned

segment,

and

the

remainder

of

the

SSA

is

ignored.

When

you

are

processing

MSDBs,

you

should

keep

in

mind

the

following

differences

between

calls

to

MSDBs

and

to

other

IMS

databases:

v

You

can

use

only

one

SSA

in

a

call

to

an

MSDB.

v

MSDB

calls

cannot

use

command

codes.

v

MSDB

calls

cannot

use

multiple

qualification

statements

(Boolean

operators).

v

The

maximum

length

for

an

MSDB

segment

key

is

240

bytes

(not

255

bytes,

as

in

other

IMS

databases).

v

If

the

SSA

names

an

arithmetic

field

(types

P,

H,

or

F)

as

specified

in

the

database

description

(DBD),

the

database

search

is

performed

using

arithmetic

comparisons

(rather

than

the

logical

comparisons

that

are

used

for

DL/I

calls).

1. This

section

does

not

apply

to

CICS

users.

Processing

MSDBs

and

DEDBsIBM

Confidential

Chapter

11.

Processing

Fast

Path

Databases

237

v

If

a

hexadecimal

field

is

specified,

each

byte

in

the

database

field

is

represented

in

the

SSA

by

its

two-character

hexadecimal

representation.

This

representation

makes

the

search

argument

twice

as

long

as

the

database

field.

Characters

in

hexadecimal-type

SSA

qualification

statements

are

tested

for

validity

before

translation

to

the

database

format.

Only

numerals

0

through

9

and

letters

A

through

F

are

accepted.

v

Terminal-related

and

non-terminal-related

LTERM-keyed

MSDBs

are

not

supported

for

ETO

or

LU

6.2

terminals.

Attempted

access

results

in

no

data

being

retrieved

and

an

AM

status

code.

See

IMS

Version

9:

Administration

Guide:

Transaction

Manager

for

more

information

on

ETO

and

LU

6.2.

v

MSDBs

cannot

be

shared

among

IMS

subsystems

in

a

sysplex

group.

When

using

the

Fastpath

Expedited

Message

Handler

(EMH),

terminal

related

and

non—terminal

related

with

terminal

key

MSDBs

can

only

be

accessed

by

static

terminals.

These

static

terminals

run

transactions

with

Sysplex

Processing

Code

(SPC)

of

Locals

Only

as

specified

in

DBFHAGU0

(Input

Edit

Router

Exit).

Processing

DEDBs

(IMS,

CICS

with

DBCTL)

This

section

explains

subset

pointers,

the

POS

call,

data

locking,

and

the

P

and

H

processing

options.

Processing

DEDBs

with

Subset

Pointers

Subset

pointers

and

the

command

codes

you

use

with

them

are

optimization

tools

that

significantly

improve

the

efficiency

of

your

program

when

you

need

to

process

long

segment

chains.

Subset

pointers

are

a

means

of

dividing

a

chain

of

segment

occurrences

under

the

same

parent

into

two

or

more

groups

or

subsets.

You

can

define

as

many

as

eight

subset

pointers

for

any

segment

type.

You

then

define

the

subset

pointers

from

within

an

application

program.

(This

is

described

later

in

“Using

Subset

Pointers”.)

Each

subset

pointer

points

to

the

start

of

a

new

subset.

For

example,

in

Figure

49,

suppose

you

define

one

subset

pointer

that

divides

the

last

three

segment

occurrences

from

the

first

four.

Your

program

can

then

refer

to

that

subset

pointer

through

command

codes

and

directly

retrieve

the

last

three

segment

occurrences.

You

can

use

subset

pointers

at

any

level

of

the

database

hierarchy,

except

at

the

root

level.

If

you

try

to

use

subset

pointers

at

the

root

level,

they

are

ignored.

Figure

49.

Processing

a

Long

Chain

of

Segment

Occurrences

with

Subset

Pointers

Restrictions

on

Using

Calls

for

MSDBs IBM

Confidential

238

Application

Programming:

Database

Manager

Figure

50

and

Figure

51show

some

of

the

ways

you

can

set

subset

pointers.

Subset

pointers

are

independent

of

one

another,

which

means

that

you

can

set

one

or

more

pointers

to

any

segment

in

the

chain.

For

example,

you

can

set

more

than

one

subset

pointer

to

a

segment,

as

shown

in

Figure

50.

You

can

also

define

a

one-to-one

relationship

between

the

pointers

and

the

segments,

as

shown

inFigure

51.

Figure

52

on

page

240

shows

how

the

use

of

subset

pointers

divides

a

chain

of

segment

occurrences

under

the

same

parent

into

subsets.

Each

subset

ends

with

the

last

segment

in

the

entire

chain.

For

example,

the

last

segment

in

the

subset

that

is

defined

by

subset

pointer

1

is

B7.

Figure

50.

Examples

of

Setting

Subset

Pointers

Figure

51.

Additional

Examples

of

Setting

Subset

Pointers

Processing

DEDBs

(IMS,

CICS

with

DBCTL)IBM

Confidential

Chapter

11.

Processing

Fast

Path

Databases

239

Before

You

Use

Subset

Pointers

For

your

program

to

use

subset

pointers,

the

pointers

must

be

defined

in

the

DBD

for

the

DEDB

and

in

your

program’s

PSB:

v

In

the

DBD,

you

specify

the

number

of

pointers

for

a

segment

chain.

You

can

specify

as

many

as

eight

pointers

for

any

segment

chain.

v

In

the

PSB,

you

specify

which

pointers

your

program

is

to

use.

Define

this

on

the

SENSEG

statement.

(Each

pointer

is

defined

as

an

integer

from

1

to

8.)

Also,

indicate

on

the

SENSEG

statement

whether

your

program

can

set

the

pointers

it

uses.

If

your

program

has

read

sensitivity,

it

cannot

set

pointers

but

can

only

retrieve

segments

using

subset

pointers

that

are

already

set.

If

your

program

has

update

sensitivity,

it

can

also

update

subset

pointers

by

using

the

S,

W,

M,

and

Z

command

codes.

After

the

pointers

are

defined

in

the

DBD

and

the

PSB,

an

application

program

can

set

the

pointers

to

segments

in

a

chain.

When

an

application

program

finishes

executing,

the

subset

pointers

used

by

that

program

remain

as

they

were

set

by

the

program;

they

are

not

reset.

Designating

Subset

Pointers

To

use

subset

pointers

in

your

program,

you

must

know

the

numbers

for

the

pointers

as

they

were

defined

in

the

PSB.

When

you

use

the

subset

pointer

command

codes,

specify

the

number

of

each

subset

pointer

you

want

to

use

followed

by

the

command

code.

For

example,

you

use

R3

to

indicate

that

you

want

to

retrieve

the

first

segment

occurrence

in

the

subset

defined

by

subset

pointer

3.

No

default

exists,

so

if

you

do

not

include

a

number

between

1

and

8,

IMS

considers

your

SSA

invalid

and

returns

an

AJ

status

code.

Using

Subset

Pointers

To

take

advantage

of

subsets,

application

programs

use

five

command

codes.

The

R

command

code

retrieves

the

first

segment

in

a

subset.

The

following

4

command

codes,

which

are

explained

in

“Command

Codes”

on

page

28,

redefine

subsets

by

modifying

the

subset

pointers:

Z

Sets

a

subset

pointer

to

0.

M

Sets

a

subset

pointer

to

the

segment

following

the

current

segment.

S

Unconditionally

sets

a

subset

pointer

to

the

current

segment.

W

Conditionally

sets

a

subset

pointer

to

the

current

segment.

Figure

52.

How

Subset

Pointers

Divide

a

Chain

into

Subsets

Processing

DEDBs

(IMS,

CICS

with

DBCTL) IBM

Confidential

240

Application

Programming:

Database

Manager

Before

your

program

can

set

a

subset

pointer,

it

must

establish

a

position

in

the

database.

A

call

must

be

fully

satisfied

before

a

subset

pointer

is

set.

The

segment

a

pointer

is

set

to

depends

on

your

current

position

at

the

completion

of

the

call.

If

a

call

to

retrieve

a

segment

is

not

completely

satisfied

and

a

position

is

not

established,

the

subset

pointers

remain

as

they

were

before

the

call

was

made.

You

can

use

subset

pointer

command

codes

in

either

an

unqualified

SSA

or

a

qualified

SSA.

To

use

a

command

code

in

a

call

with

an

unqualified

SSA,

use

the

command

code

along

with

the

number

of

the

subset

pointer

you

want,

after

the

segment

name.

This

is

shown

in

Table

44.

Table

44.

Unqualified

SSA

with

Subset

Pointer

Command

Code

Seg

Name

*

Cmd

Code

Ssptr.

�

8

1

Variable

Variable

1

To

use

a

subset

pointer

command

code

with

a

qualified

SSA,

use

the

command

code

and

subset

pointer

number

immediately

before

the

left

parenthesis

of

the

qualification

statement,

as

shown

in

Table

45.

Table

45.

Qualified

SSA

with

Subset

Pointer

Command

Code

Seg

Name

*

Cmd

Code

Ssptr.

(

Fld

Name

R.O.

Fld

Value

)

8

1

Variable

Variable

1

8

2

Variable

1

The

examples

in

this

section

use

calls

with

unqualified

SSAs.

The

examples

are

based

on

Sample

Application

Program,

which

is

described

in

“Fast

Path

Coding

Considerations”

on

page

247.

Inserting

Segments

in

a

Subset:

When

you

use

the

R

command

code

to

insert

an

unkeyed

segment

in

a

subset,

the

new

segment

is

inserted

before

the

first

segment

occurrence

in

the

subset.

However,

the

subset

pointer

is

not

automatically

set

to

the

new

segment

occurrence.

Example:

The

following

call

inserts

a

new

B

segment

occurrence

in

front

of

segment

B5,

but

does

not

set

subset

pointer

1

to

point

to

the

new

B

segment

occurrence:

ISRT

A�������(Akey����=�A1)

B�������*R1

To

set

subset

pointer

1

to

the

new

segment,

you

use

the

S

command

code

along

with

the

R

command

code,

as

shown

in

the

following

example:

ISRT

A�������(Akey����=�A1)

B�������*R1S1

If

the

subset

does

not

exist

(subset

pointer

1

is

set

to

0),

the

segment

is

added

to

the

end

of

the

segment

chain.

Deleting

the

Segment

Pointed

to

by

a

Subset

Pointer:

If

you

delete

the

segment

pointed

to

by

a

subset

pointer,

the

subset

pointer

points

to

the

next

segment

occurrence

in

the

chain.

If

the

segment

you

delete

is

the

last

segment

in

the

chain,

the

subset

pointer

is

set

to

0.

Combining

Command

Codes:

You

can

use

the

S,

M,

and

W

command

codes

with

other

command

codes,

and

you

can

combine

subset

pointer

command

codes

with

each

other,

as

long

as

they

do

not

conflict.

For

example,

you

can

use

R

and

S

Processing

DEDBs

(IMS,

CICS

with

DBCTL)IBM

Confidential

Chapter

11.

Processing

Fast

Path

Databases

241

together,

but

you

cannot

use

S

and

Z

together

because

their

functions

conflict.

If

you

combine

command

codes

that

conflict,

IMS

returns

an

AJ

status

code

to

your

program.

You

can

use

one

R

command

code

for

each

SSA

and

one

update

command

code

(Z,

M,

S,

or

W)

for

each

subset

pointer.

Subset

Pointer

Status

Codes

If

you

make

an

error

in

an

SSA

that

contains

subset

pointer

command

codes,

IMS

can

return

either

of

these

status

codes

to

your

program:

AJ

The

SSA

used

an

R,

S,

Z,

W,

or

M

command

code

for

a

segment

that

does

not

have

subset

pointers

defined

in

the

DBD.

The

subset

command

codes

included

in

the

SSA

are

in

conflict.

For

example,

if

one

SSA

contains

an

S

command

code

and

a

Z

command

code

for

the

same

subset

pointer,

IMS

returns

an

AJ

status

code.

S

indicates

that

you

want

to

set

the

pointer

to

current

position;

Z

indicates

that

you

want

to

set

the

pointer

to

0.

You

cannot

use

these

command

codes

in

one

SSA.

The

SSA

includes

more

than

one

R

command

code.

The

pointer

number

following

a

subset

pointer

command

code

is

invalid.

You

either

did

not

include

a

number,

or

you

included

an

invalid

character.

The

number

following

the

command

code

must

be

between

1

and

8.

AM

The

subset

pointer

referenced

in

the

SSA

is

not

specified

in

the

program’s

PSB.

For

example,

if

your

program’s

PSB

specifies

that

your

program

can

use

subset

pointers

1

and

4,

and

your

SSA

references

subset

pointer

5,

IMS

returns

an

AM

status

code.

Your

program

tried

to

use

a

command

code

that

updates

the

pointer

(S,

W,

or

M),

but

the

program’s

PSB

did

not

specify

pointer-update

sensitivity.

Retrieving

Location

with

the

POS

Call

(for

DEDB

Only)

With

the

POS

(Position)

call,

you

can:

v

Retrieve

the

location

of

a

specific

sequential

dependent

segment.

v

Retrieve

the

location

of

the

last-inserted

sequential

dependent

segment,

its

time

stamp,

and

the

IMS

ID.

v

Retrieve

the

time

stamp

of

a

sequential

dependent

or

Logical

Begin.

v

Tell

the

amount

of

unused

space

within

each

DEDB

area.

For

example,

you

can

use

the

information

that

IMS

returns

for

a

POS

call

to

scan

or

delete

the

sequential

dependent

segments

for

a

particular

time

period.

“POS

Call”

on

page

142

explains

how

you

code

the

POS

call

and

what

the

I/O

area

for

the

POS

call

looks

like.

If

the

area

that

the

POS

call

specifies

is

unavailable,

the

I/O

area

is

unchanged,

and

the

FH

status

code

is

returned.

Locating

a

Specific

Sequential

Dependent

When

you

have

position

on

a

particular

root

segment,

you

can

retrieve

the

position

information

and

the

area

name

of

a

specific

sequential

dependent

of

that

root.

If

you

have

a

position

established

on

a

sequential

dependent

segment,

the

search

starts

from

that

position.

IMS

returns

the

position

information

for

the

first

sequential

dependent

segment

that

satisfies

the

call.

To

retrieve

this

information,

issue

a

POS

call

with

a

qualified

or

unqualified

SSA

containing

the

segment

name

of

the

sequential

dependent.

Current

position

after

this

kind

of

POS

call

is

the

same

place

that

it

would

be

after

a

GNP

call.

Processing

DEDBs

(IMS,

CICS

with

DBCTL) IBM

Confidential

242

Application

Programming:

Database

Manager

After

a

successful

POS

call,

the

I/O

area

contains:

LL

A

2-byte

field

giving

the

total

length

of

the

data

in

the

I/O

area,

in

binary.

Area

Name

An

8-byte

field

giving

the

ddname

from

the

AREA

statement.

Position

An

8-byte

field

containing

the

position

information

for

the

requested

segment.

Exception:

If

the

sequential

dependent

segment

that

is

the

target

of

the

POS

call

is

inserted

in

the

same

synchronization

interval,

no

position

information

is

returned.

Bytes

11-18

contain

X'FF'.

Other

fields

contain

normal

data.

Unused

CIs

A

4-byte

field

containing

the

number

of

unused

CIs

in

the

sequential

dependent

part.

Unused

CIs

A

4-byte

field

containing

the

number

of

unused

CIs

in

the

independent

overflow

part.

Locating

the

Last

Inserted

Sequential

Dependent

Segment

You

can

also

retrieve

the

position

information

for

the

most

recently

inserted

sequential

dependent

segment

of

a

given

root

segment.

To

do

this,

you

issue

a

POS

call

with

an

unqualified

or

qualified

SSA

containing

the

root

segment

as

the

segment

name.

Current

position

after

this

type

of

call

follows

the

same

rules

as

position

after

a

GU

call.

You

can

also

retrieve

the

position

of

the

SDEP,

its

time

stamp,

and

the

ID

of

the

IMS

that

owns

the

segment.

To

do

this,

you

issue

a

POS

call

with

a

qualified

SSA

and

provide

the

keyword

PCSEGTSP

in

position

one

of

the

I/O

area

as

input

to

the

POS

call.

The

keyword

requests

the

POS

call

to

return

the

position

of

the

SDEP,

its

time

stamp,

and

the

ID

of

the

IMS

that

owns

the

segment.

Requirement:

The

I/O

area

must

be

increased

in

size

to

42

bytes

to

allow

for

the

added

data

being

returned.

The

I/O

area

includes

a

2-byte

LL

field

that

is

not

shown

in

Table

46.

This

LL

field

is

described

after

Table

46.

Table

46.

Qualified

POS

Call:

Keywords

and

Map

of

I/O

Area

Returned

Keyword

word

0

word

1

word

2

word

3

word

4

word

5

word

6

word

7

word

8

word

9

<null>

Field

1

Field

2

Field

3

Field

4

N/A

N/A

PCSEGTSP

Field

1

Field

2

Field

5

Field

6

Field

7

Field

1

Area

name

Field

2

Sequential

dependent

location

from

qualified

SSA

Field

3

Unused

CIs

in

sequential

dependent

part

Field

4

Unused

CIs

in

independent

overflow

part

Field

5

Committed

sequential

dependent

segment

time

stamp

Field

6

IMS

ID

Field

7

Pad

After

a

successful

POS

call,

the

I/O

area

contains:

LL

(Not

shown

in

table)

A

2-byte

field,

in

binary,

containing

the

total

length

of

the

data

in

the

I/O

area.

Processing

DEDBs

(IMS,

CICS

with

DBCTL)IBM

Confidential

Chapter

11.

Processing

Fast

Path

Databases

243

(Field

1)

Area

Name

An

8-byte

field

giving

the

ddname

from

the

AREA

statement.

(Field

2)

Position

An

8-byte

field

containing

the

position

information

for

the

most

recently

inserted

sequential

dependent

segment.

This

field

contains

zeros

if

no

sequential

dependent

exists

for

this

root.

Sequential

dependent

location

from

qualified

SSA

IMS

places

two

pieces

of

data

in

this

8-byte

field

after

a

successful

POS

call.

The

first

4

bytes

contain

the

cycle

count,

and

the

second

4

bytes

contain

the

VSAM

RBA.

If

the

sequential

dependent

segment

that

is

the

target

of

the

POS

call

is

inserted

in

the

same

synchronization

interval,

no

position

information

is

returned.

Bytes

11-18

contain

X'FF'.

Other

fields

contain

normal

data.

(Field

3)

Unused

CIs

in

sequential

dependent

part

A

4-byte

field

containing

the

number

of

unused

control

intervals

in

the

sequential

dependent

part.

(Field

4)

Unused

CIs

in

independent

overflow

part

A

4-byte

field

containing

the

number

of

unused

control

intervals

in

the

independent

overflow

part.

(Field

5)

Committed

Sequential

Dependent

Segment

Time

Stamp

An

8-byte

field

containing

the

time

stamp

that

corresponds

to

the

SDEP

segment

located

by

the

qualified

POS

call.

(Field

6)

IMS

ID

Identifies

the

IMS

that

owns

the

CI

where

the

SDEP

segment

was

located.

(Field

7)

Pad

An

8-byte

pad

area

to

align

the

I/O

area

on

a

double

word

boundary.

No

data

is

returned

to

this

field.

Identifying

Free

Space

To

retrieve

the

area

name

and

the

next

available

position

within

the

sequential

dependent

part

from

all

online

areas,

you

can

issue

an

unqualified

POS

call.

This

type

of

call

also

retrieves

the

unused

space

in

the

independent

overflow

and

sequential

dependent

parts.

After

a

unsuccessful

unqualified

POS

call,

the

I/O

area

contains

the

length

(LL),

followed

by

the

same

number

of

entries

as

existing

areas

within

the

database.

Each

entry

contains

the

fields

shown

below:

Area

Name

An

8-byte

field

giving

the

ddname

from

the

AREA.

Processing

DEDBs

(IMS,

CICS

with

DBCTL) IBM

Confidential

244

Application

Programming:

Database

Manager

Position

An

8-byte

field

with

binary

zeros.

Unused

SDEP

CIs

A

4-byte

field

with

binary

zeros.

Unused

IOV

CIs

A

4-byte

field

with

two

binary

zeros

followed

by

a

bad

status

code.

Commit-Point

Processing

in

a

DEDB

IMS

retains

database

updates

in

processor

storage

until

the

program

reaches

a

commit

point.

IMS

saves

updates

to

a

DEDB

in

Fast

Path

buffers.

The

database

updates

are

not

applied

to

the

DEDB

until

after

the

program

has

successfully

completed

commit-point

processing.

Unlike

Get

calls

to

an

MSDB,

however,

a

Get

call

to

an

updated

segment

in

a

DEDB

returns

the

updated

value,

even

if

a

commit

point

has

not

occurred.

When

a

BMP

is

processing

DEDBs,

it

must

issue

a

CHKP

or

SYNC

call

to

do

commit-point

processing

before

it

terminates.

Otherwise,

the

BMP

abnormally

terminates

with

abend

U1008.

If

you

want

a

DEDB

to

have

an

MSDB

commit

view,

refer

to

“Commit-Point

Processing

in

MSDBs

and

DEDBs”

on

page

235.

Crossing

a

UOW

Boundary

(P

Processing

Option)

If

the

P

processing

option

is

specified

in

the

PCB

for

your

program,

a

GC

status

code

is

returned

to

your

program

whenever

a

call

to

retrieve

or

insert

a

segment

causes

a

unit

of

work

(UOW)

boundary

to

be

crossed.

Related

Reading:

For

more

information

on

the

UOW

for

DEDBs,

see

IMS

Version

9:

Administration

Guide:

Database

Manager.

Although

crossing

the

UOW

boundary

probably

has

no

particular

significance

for

your

program,

the

GC

status

code

indicates

that

this

is

a

good

time

to

issue

either

a

SYNC

or

CHKP

call.

The

advantages

of

issuing

a

SYNC

or

CHKP

call

after

your

program

receives

a

GC

status

code

are:

v

Your

position

in

the

database

is

retained.

Issuing

a

SYNC

or

CHKP

call

normally

causes

position

in

the

database

to

be

lost,

and

the

application

program

must

reestablish

position

before

it

can

resume

processing.

v

Commit

points

occur

at

regular

intervals.

When

a

GC

status

code

is

returned,

no

data

is

retrieved

or

inserted.

In

your

program,

you

can

either:

v

Issue

a

SYNC

or

CHKP

call,

and

resume

database

processing

by

reissuing

the

call

that

caused

the

GC

status

code.

v

Ignore

the

GC

status

code,

and

resume

database

processing

by

reissuing

the

call

that

caused

the

status

code.

Crossing

the

UOW

Boundary

(H

Processing

Option)

If

the

H

processing

option

has

been

specified

in

the

PCB

for

your

call

program,

a

GC

status

code

is

returned

whenever

a

call

to

retrieve

or

insert

a

segment

causes

a

unit

of

work

(UOW)

or

an

area

boundary

to

be

crossed.

The

program

must

cause

a

commit

process

before

any

other

calls

can

be

issued

to

that

PCB.

Processing

DEDBs

(IMS,

CICS

with

DBCTL)IBM

Confidential

Chapter

11.

Processing

Fast

Path

Databases

245

If

a

commit

process

is

not

caused,

an

FR

status

code

results

(total

buffer

allocation

exceeded),

and

all

database

changes

for

this

synchronization

interval

are

“washed”

(sync-point

failure).

A

GC

status

code

is

returned

when

crossing

the

area

boundary

so

that

the

application

program

can

issue

a

SYNC

or

CHKP

call

to

force

cleanup

of

resources

(such

as

buffers)

that

were

obtained

in

processing

the

previous

area.

This

cleanup

might

cause

successive

returns

of

a

GC

status

code

for

a

GN

or

GHN

call,

even

if

a

SYNC

or

CHKP

call

is

issued

appropriately

for

the

previous

GC

status

code.

When

an

application

is

running

HSSP

and

proceeding

through

the

DEDB

AREA

sequentially,

a

buffer

shortage

condition

may

occur

due

to

large

IOV

chains.

In

this

case,

a

FW

status

code

is

returned

to

the

application.

Usually,

the

application

issues

a

commit

request

and

position

is

set

to

the

next

UOW.

However,

this

does

not

allow

the

previous

UOW

to

finish

processing.

In

order

to

finish

processing

the

previous

UOW,

you

can

issue

a

commit

request

after

the

FW

status

code

is

received

and

set

the

position

to

remain

in

the

same

UOW.

You

must

also

reposition

the

application

to

the

position

that

gave

the

FW

status

code.

The

following

shows

an

example

of

the

command

sequence

and

corresponding

application

responses.

GN

root1

GN

root2

GN

root3

GN

root4

/*FW

status

code

received*/

CHKP

GN

SSA=(root4)

root4

/*User

reposition

prior

to

CHKP*/

GN

root5

Data

Locking

For

information

on

how

data

locking

is

handled

for

DEDBs,

see

“Data

Locking

for

MSDBs

and

DEDBs”

on

page

236.

Restrictions

on

Using

Calls

for

DEDBs

This

section

provides

information

on

which

calls

you

can

use

with

direct

and

sequential

dependent

segments

for

DEDBs.

The

DL/I

calls

that

you

can

issue

against

a

root

segment

are:

GU,

GN

(GNP

has

no

meaning

for

a

root

segment),

DLET,

ISRT,

and

REPL.

You

can

issue

all

DL/I

calls

against

a

direct

dependent

segment,

and

you

can

issue

Get

and

ISRT

calls

against

sequential

dependents

segments.

Direct

Dependent

Segments

DL/I

calls

to

direct

dependents

include

the

same

number

of

SSAs

as

existing

levels

in

the

hierarchy

(a

maximum

of

15).

They

can

also

include

command

codes

and

multiple

qualification

statements.

The

same

rules

apply

to

using

command

codes

on

DL/I

calls

to

DEDBs

as

to

full-function

databases.

Exception:

v

If

you

use

the

D

command

code

in

a

call

to

a

DEDB,

the

P

processing

option

need

not

be

specified

in

the

PCB

for

the

program.

The

P

processing

option

has

a

different

meaning

for

DEDBs

than

for

full-function

databases.

(See

“Crossing

a

UOW

Boundary

(P

Processing

Option)”

on

page

245.)

Some

special

command

codes

can

be

used

only

with

DEDBs

that

use

subset

pointers.

Your

program

uses

these

command

codes

to

read

and

update

the

subset

pointers.

Subset

pointers

are

explained

in

“Processing

DEDBs

with

Subset

Pointers”

on

page

238.

Processing

DEDBs

(IMS,

CICS

with

DBCTL) IBM

Confidential

246

Application

Programming:

Database

Manager

Sequential

Dependent

Segments

Because

sequential

dependents

are

stored

in

chronological

order,

they

are

useful

in

journaling,

data

collection,

and

auditing

application

programs.

You

can

access

sequential

dependents

directly.

However,

sequential

dependents

are

normally

retrieved

sequentially

using

the

Database

Scan

utility.

Restriction:

When

processing

sequential

dependent

segments:

v

You

can

only

use

the

F

command

code

with

sequential

dependents;

IMS

ignores

all

other

command

codes.

v

You

cannot

use

Boolean

operators

in

calls

to

sequential

dependents.

Related

Reading:

For

more

information

about

the

utility,

see

IMS

Version

9:

Utilities

Reference:

Database

and

Transaction

Manager.

Fast

Path

Coding

Considerations

You

can

use

DL/I

calls

to

access

Fast

Path

databases.

You

can

also

use

two

additional

calls:

FLD

and

POS.

The

type

of

Fast

Path

database

that

you

are

processing

determines

when

you

can

use

each

of

these

calls.

You

can

use

the

following

calls

to

process

MSDBs:

v

For

nonterminal-related

MSDBs:

FLD

GU

and

GHU

GN

and

GHN

REPL

v

For

terminal-related,

fixed

MSDBs:

FLD

GU

and

GHU

GN

and

GHN

REPL

v

For

terminal-related,

dynamic

MSDBs:

DLET

FLD

GU

and

GHU

GN

and

GHN

ISRT

REPL

You

can

use

the

following

calls

to

process

a

DEDB:

v

DEQ

v

DLET

v

FLD

v

GU

and

GHU

v

GN

and

GHN

v

GNP

and

GHNP

v

ISRT

v

POS

Restrictions

on

Using

Calls

for

DEDBsIBM

Confidential

Chapter

11.

Processing

Fast

Path

Databases

247

v

REPL

Fast

Path

Coding

Considerations IBM

Confidential

248

Application

Programming:

Database

Manager

Chapter

12.

Recovering

Databases

and

Maintaining

Database

Integrity

This

chapter

describes

the

programming

tasks

of

issuing

checkpoints,

restarting

programs,

and

maintaining

database

integrity.

In

this

Chapter:

v

“Issuing

Checkpoints”

v

“Restarting

Your

Program

and

Checking

for

Position”

v

“Maintaining

Database

Integrity

(IMS

Batch,

BMP,

and

IMS

Online

Regions)”

on

page

250

v

“Reserving

Segments

for

the

Exclusive

Use

of

Your

Program”

on

page

256

Issuing

Checkpoints

Two

kinds

of

checkpoint

(CHKP)

calls

exist:

the

basic

CHKP

and

the

symbolic

CHKP.

All

IMS

programs

and

CICS

shared

database

programs

can

issue

the

basic

CHKP

call;

only

BMPs

and

batch

programs

can

use

either

call.

IMS

Version

9:

Application

Programming:

Design

Guide

explains

when

and

why

you

should

issue

checkpoints

in

your

program.

Both

checkpoint

calls

cause

a

loss

of

database

position

when

the

call

is

issued,

so

you

must

reestablish

position

with

a

GU

call

or

some

other

method.

You

cannot

reestablish

position

in

the

middle

of

non

unique

keys

or

nonkeyed

segments.

Restriction:

You

must

not

specify

CHKPT=EOV

on

any

DD

statement

to

take

an

IMS

checkpoint.

Some

differences

exist

if

you

issue

the

same

call

sequence

against

a

full-function

database

or

a

DEDB,

and

an

MSDB.

For

more

information

about

the

differences,

see

“Commit-Point

Processing

in

MSDBs

and

DEDBs”

on

page

235.

Depending

on

the

database

organization,

a

CHKP

call

can

result

in

the

database

position

for

the

PCB

being

reset.

When

the

CHKP

call

is

issued,

the

locks

held

by

the

program

are

released.

Therefore,

if

locks

are

necessary

for

maintaining

your

database

position,

the

position

is

reset

by

the

CHKP

call.

Position

is

reset

in

all

cases

except

those

in

which

the

organization

is

either

GSAM

(locks

are

not

used)

or

DEDB,

and

the

CHKP

call

is

issued

following

a

GC

status

code.

For

a

DEDB,

the

position

is

maintained

at

the

unit-of-work

boundary.

Issuing

a

CHKP

resets

the

destination

of

the

modifiable

alternate

PCB.

Related

Reading:

For

more

information

on

CHKP

calls,

see

“CHKP

(Basic)

Call”

on

page

150

and

“CHKP

(Symbolic)

Call”

on

page

151.

Restarting

Your

Program

and

Checking

for

Position

If

you

use

basic

checkpoints

instead

of

symbolic

checkpoints,

provide

the

necessary

code

to

restart

the

program

from

the

latest

checkpoint

if

the

program

terminates

abnormally.

One

way

to

restart

the

program

from

the

latest

checkpoint

is

to

store

repositioning

information

in

a

HDAM

or

PHDAM

database.

With

this

method,

your

program

writes

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

249

a

database

record

containing

repositioning

information

to

the

database

each

time

a

checkpoint

is

issued.

Before

your

program

terminates,

it

should

delete

the

database

record.

For

more

information

on

the

XRST

call,

see

“XRST

Call”

on

page

184.

Maintaining

Database

Integrity

(IMS

Batch,

BMP,

and

IMS

Online

Regions)

IMS

uses

the

following

DL/I

calls

to

back

out

database

updates:

ROLB,

ROLL,

ROLS,

SETS,

and

SETU.

The

ROLB

and

ROLS

calls

can

back

out

the

database

updates

or

cancel

the

output

messages

that

the

program

has

created

since

the

program’s

most

recent

commit

point.

A

ROLL

call

backs

out

the

database

updates

and

cancels

any

non-express

output

messages

the

program

has

created

since

the

last

commit

point.

It

also

deletes

the

current

input

message.

SETS

allows

multiple

intermediate

backout

points

to

be

noted

during

application

program

processing.

SETU

operates

like

SETS

except

that

it

is

not

rejected

by

unsupported

PCBs

in

the

PSB.

If

your

program

issues

a

subsequent

ROLS

call

specifying

one

of

these

points,

database

updates

and

message

activity

performed

since

that

point

are

backed

out.

CICS

online

programs

with

DBCTL

can

use

the

ROLS

and

SETS

or

SETU

DL/I

calls

to

back

out

database

changes

to

a

previous

commit

point

or

to

an

intermediate

backout

point.

Backing

Out

to

a

Prior

Commit

Point:

ROLL,

ROLB,

and

ROLS

When

a

program

determines

that

some

of

its

processing

is

invalid,

some

calls

enable

the

program

to

remove

the

effects

of

its

incorrect

processing.

These

are

the

Roll

Back

calls:

ROLL,

ROLS

using

a

DB

PCB

(or

ROLS

without

an

I/O

area

or

token),

and

ROLB.

When

you

issue

one

of

these

calls,

IMS:

v

Backs

out

the

database

updates

that

the

program

has

made

since

the

program’s

most

recent

commit

point.

v

Cancels

the

non-express

output

messages

that

the

program

has

created

since

the

program’s

most

recent

commit

point.

The

main

difference

between

these

calls

is

that

ROLB

returns

control

to

the

application

program

after

backing

out

updates

and

canceling

output

messages,

ROLS

does

not

return

control

to

the

application

program,

and

ROLL

terminates

the

program

with

an

abend

code

of

U0778.

ROLB

can

return

the

first

message

segment

to

the

program

since

the

most

recent

commit

point,

but

ROLL

and

ROLS

cannot.

The

ROLL

and

ROLB

calls,

and

the

ROLS

call

without

a

specified

token,

are

valid

when

the

PSB

contains

PCBs

for

GSAM

data

sets.

However,

segments

inserted

in

the

GSAM

data

sets

since

the

last

commit

point

are

not

backed

out

by

these

calls.

An

extended

checkpoint-restart

can

be

used

to

reposition

the

GSAM

data

sets

when

restarting.

You

can

use

a

ROLS

call

either

to

back

out

to

the

prior

commit

point

or

to

back

out

to

an

intermediate

backout

point

that

was

established

by

a

prior

SETS

call.

This

section

refers

only

to

the

form

of

the

ROLS

call

that

backs

out

to

the

prior

commit

point.

For

information

about

the

other

form

of

ROLS,

see

“Backing

Out

to

an

Intermediate

Backout

Point:

SETS,

SETU,

and

ROLS”

on

page

254.

Table

47

summarizes

the

similarities

and

the

differences

between

the

ROLB,

ROLL,

and

ROLS

calls.

Restarting

Your

Program

and

Checking

for

Position IBM

Confidential

250

Application

Programming:

Database

Manager

Table

47.

Comparison

of

ROLB,

ROLL,

and

ROLS

Actions

Taken:

ROLB

ROLL

ROLS

Back

out

database

updates

since

the

last

commit

point.

X

X

X

Cancel

output

messages

created

since

the

last

commit

point.

X1

X1

X1

Delete

from

the

queue

the

message

in

process.

Previous

messages

(if

any)

processed

since

the

last

commit

point

are

returned

to

the

queue

to

be

reprocessed.

X

Return

the

first

segment

of

the

first

input

message

issued

since

the

most

recent

commit

point.

X2

U3303

abnormal

termination.

Returns

the

processed

input

messages

to

the

message

queue.

X3

U0778

abnormal

termination.

No

dump.

X

No

abend.

Program

continues

processing.

X

Notes:

1.

ROLB,

ROLL,

or

ROLS

calls

cancel

output

messages

that

are

sent

with

an

express

PCB

unless

the

program

issued

a

PURG.

For

example,

if

the

program

issues

the

call

sequence

that

follows,

MSG1

would

be

sent

to

its

destination

because

PURG

tells

IMS

that

MSG1

is

complete

and

the

I/O

area

now

contains

the

first

segment

of

the

next

message

(which

in

this

example

is

MSG2).

MSG2,

however,

would

be

canceled.

ISRT

EXPRESS

PCB,

MSG1

PURG

EXPRESS

PCB,

MSG2

ROLB

I/O

PCB

Because

IMS

has

the

complete

message

(MSG1)

and

because

an

express

PCB

is

being

used,

the

message

can

be

sent

before

a

commit

point.

2.

Returned

only

if

you

supply

the

address

of

an

I/O

area

as

one

of

the

call

parameters.

3.

The

transaction

is

suspended

and

requeued

for

subsequent

processing.

Using

ROLL

A

ROLL

call

backs

out

the

database

updates

and

cancels

any

non-express

output

messages

the

program

has

created

since

the

last

commit

point.

It

also

deletes

the

current

input

message.

Any

other

input

messages

that

were

processed

since

the

last

commit

point

are

returned

to

the

queue

to

be

reprocessed.

IMS

then

terminates

the

program

with

an

abend

code

U0778.

This

type

of

abnormal

termination

terminates

the

program

without

a

storage

dump.

When

you

issue

a

ROLL

call,

the

only

parameter

you

supply

is

the

call

function,

ROLL.

You

can

use

the

ROLL

call

in

a

batch

program.

If

your

system

log

is

on

DASD,

and

if

dynamic

backout

has

been

specified

through

the

use

of

the

BKO

execution

parameter,

database

changes

made

since

the

last

commit

point

will

be

backed

out;

otherwise

they

will

not.

One

reason

for

issuing

ROLL

in

a

batch

program

is

for

compatibility.

After

backout

is

complete,

the

original

transaction

is

discarded

if

it

can

be,

and

it

is

not

re-executed.

IMS

issues

the

APPC/MVS

verb,

ATBCMTP

TYPE(ABEND),

specifying

the

TPI

to

notify

remote

transaction

programs.

Issuing

the

APPC/MVS

verb

causes

all

active

conversations

(including

any

that

are

spawned

by

the

application

program)

to

be

DEALLOCATED

TYP(ABEND_SVC).

Maintaining

Database

IntegrityIBM

Confidential

Chapter

12.

Recovering

Databases

and

Maintaining

Database

Integrity

251

Using

ROLB

The

advantage

of

using

a

ROLB

call

is

that

IMS

returns

control

to

the

program

after

executing

a

ROLB

call,

so

the

program

can

continue

processing.

The

parameters

for

the

ROLB

call

are:

v

The

call

function,

ROLB

v

The

name

of

the

I/O

PCB

or

AIB

The

total

effect

of

the

ROLB

call

depends

on

the

type

of

IMS

application

program

that

issued

it.

v

For

current

IMS

application

programs:

After

IMS

backout

is

complete,

the

original

transaction

is

represented

to

the

IMS

application

program.

Any

resources

that

cannot

be

rolled

back

by

IMS

are

ignored;

for

example,

output

that

is

sent

to

an

express

alternate

PCB

and

a

PURG

call

that

is

issued

before

the

ROLB

call.

v

For

modified

IMS

application

programs:

The

same

consideration

for

the

current

IMS

application

program

applies.

The

application

program

must

notify

any

spawned

conversations

that

a

ROLB

was

issued.

v

For

CPI-C

driven

IMS

application

programs:

Only

IMS

resources

are

affected.

All

database

changes

are

backed

out.

Any

messages

that

are

inserted

to

non-express

alternate

PCBs

are

discarded.

Also,

any

messages

that

are

inserted

to

express

PCBs

that

have

not

had

a

PURG

call

are

discarded.

The

application

program

must

notify

the

originating

remote

program

and

any

spawned

conversations

that

a

ROLB

call

was

issued.

In

MPPs

and

Transaction-Oriented

BMPs:

If

the

program

supplies

the

address

of

an

I/O

area

as

one

of

the

ROLB

parameters,

the

ROLB

call

acts

as

a

message

retrieval

call

and

returns

the

first

segment

of

the

first

input

message

issued

since

the

most

recent

commit

point.

This

is

true

only

if

the

program

has

issued

a

GU

call

to

the

message

queue

since

the

last

commit

point;

it

if

has

not,

it

was

not

processing

a

message

when

it

issued

the

ROLB

call.

If

the

program

issues

GN

call

to

the

message

queue

after

issuing

a

ROLB

call,

IMS

returns

the

next

segment

of

the

message

that

was

being

processed

when

the

ROLB

call

was

issued.

If

no

more

segments

exist

for

that

message,

IMS

returns

a

QD

status

code.

If

the

program

issues

a

GU

call

to

the

message

queue

after

the

ROLB

call,

IMS

returns

the

first

segment

of

the

next

message

to

the

application

program.

If

no

more

messages

exist

on

the

message

queue

for

the

program

to

process,

IMS

returns

a

QC

status

code.

If

you

include

the

I/O

area

parameter,

but

you

have

not

issued

a

successful

GU

call

to

the

message

queue

since

the

last

commit

point,

IMS

returns

a

QE

status

code

to

your

program.

If

you

do

not

include

the

address

of

an

I/O

area

in

the

ROLB

call,

IMS

does

the

same

thing

for

you.

If

the

program

has

issued

a

successful

GU

call

in

the

commit

interval

and

then

issues

a

GN

call,

IMS

returns

a

QD

status

code.

If

the

program

issues

a

GU

call

after

the

ROLB

call,

IMS

returns

the

first

segment

of

the

next

message

or

a

QC

status

code,

if

no

more

messages

exist

for

the

program.

Maintaining

Database

Integrity IBM

Confidential

252

Application

Programming:

Database

Manager

If

you

have

not

issued

a

successful

GU

call

since

the

last

commit

point,

and

you

do

not

include

an

I/O

area

parameter

on

the

ROLB

call,

IMS

backs

out

the

database

updates

and

cancels

the

output

messages

that

were

created

since

the

last

commit

point.

In

Batch

Programs:

If

your

system

log

is

on

DASD,

and

if

dynamic

backout

has

been

specified

through

the

use

of

the

BKO

execution

parameter,

you

can

use

the

ROLB

call

in

a

batch

program.

The

ROLB

call

does

not

process

messages

as

it

does

for

MPPs;

it

backs

out

the

database

updates

made

since

the

last

commit

point

and

returns

control

to

your

program.

You

cannot

specify

the

address

of

an

I/O

area

as

one

of

the

parameters

on

the

call;

if

you

do,

an

AD

status

code

is

returned

to

your

program.

You

must,

however,

have

an

I/O

PCB

for

your

program.

Specify

CMPAT=YES

on

the

CMPAT

keyword

in

the

PSBGEN

statement

for

your

program’s

PSB.

Related

Reading:

For

more

information

on

using

the

CMPAT

keyword,

see

IMS

Version

9:

Utilities

Reference:

System.

For

information

on

coding

the

ROLB

call,

see

“ROLB

Call”

on

page

173.

Using

ROLS

You

can

use

the

ROLS

call

in

two

ways

to

back

out

to

the

prior

commit

point

and

return

the

processed

input

messages

to

IMS

for

later

reprocessing:

v

Have

your

program

issue

the

ROLS

call

using

the

I/O

PCB

but

without

an

I/O

area

or

token

in

the

call.

The

parameters

for

this

form

of

the

ROLS

call

are:

The

call

function,

ROLS

The

name

of

the

I/O

PCB

or

AIB

v

Have

your

program

issue

the

ROLS

call

using

a

database

PCB

that

has

received

one

of

the

data-unavailable

status

codes.

This

has

the

same

result

as

if

unavailable

data

were

encountered

and

the

INIT

call

was

not

issued.

A

ROLS

call

must

be

the

next

call

for

that

PCB.

Intervening

calls

using

other

PCBs

are

permitted.

On

a

ROLS

call

with

a

TOKEN,

message

queue

repositioning

can

occur

for

all

non-express

messages,

including

all

messages

processed

by

IMS.

The

processing

uses

APPC/MVS

calls,

and

includes

the

initial

message

segments.

The

original

input

transaction

can

be

represented

to

the

IMS

application

program.

Input

and

output

positioning

is

determined

by

the

SETS

call.

This

positioning

applies

to

current

and

modified

IMS

application

programs

but

does

not

apply

to

CPI-C

driven

IMS

programs.

The

IMS

application

program

must

notify

all

remote

transaction

programs

of

the

ROLS.

On

a

ROLS

call

without

a

TOKEN,

IMS

issues

the

APPC/MVS

verb,

ATBCMTP

TYPE(ABEND),

specifying

the

TPI.

Issuing

this

verb

causes

all

conversations

associated

with

the

application

program

to

be

DEALLOCATED

TYPE(ABEND_SVC).

If

the

original

transaction

is

entered

from

an

LU

6.2

device

and

IMS

receives

the

message

from

APPC/MVS,

a

discardable

transaction

is

discarded

rather

than

being

placed

on

the

suspend

queue

like

a

non-discardable

transaction.

See

IMS

Version

9:

Administration

Guide:

Transaction

Manager

for

more

information

on

LU

6.2.

The

parameters

for

this

form

of

the

ROLS

call

are:

v

The

call

function,

ROLS

v

The

name

of

the

DB

PCB

that

received

the

BA

or

BB

status

code

Maintaining

Database

IntegrityIBM

Confidential

Chapter

12.

Recovering

Databases

and

Maintaining

Database

Integrity

253

In

both

of

the

these

parameters,

the

ROLS

call

causes

a

U3303

abnormal

termination

and

does

not

return

control

to

the

application

program.

IMS

keeps

the

input

message

for

future

processing.

Backing

Out

to

an

Intermediate

Backout

Point:

SETS,

SETU,

and

ROLS

You

can

use

a

ROLS

call

either

to

back

out

to

an

intermediate

backout

point

that

was

established

by

a

prior

SETS

or

SETU

call,

or

to

back

out

to

the

prior

commit

point.

This

section

refers

only

to

the

form

of

ROLS

that

backs

out

to

the

intermediate

backout

point.

For

information

about

the

other

form

of

ROLS,

see

“Backing

Out

to

a

Prior

Commit

Point:

ROLL,

ROLB,

and

ROLS”

on

page

250.

The

ROLS

call

that

backs

out

to

an

intermediate

point

backs

out

only

DL/I

changes.

This

version

of

the

ROLS

call

does

not

affect

CICS

changes

that

use

CICS

file

control

or

CICS

transient

data.

The

SETS

and

ROLS

calls

set

intermediate

backout

points

within

the

call

processing

of

the

application

program

and

then

backout

database

changes

to

any

of

these

points.

Up

to

nine

intermediate

backout

points

can

be

set.

The

SETS

call

specifies

a

token

for

each

point.

IMS

then

associates

this

token

with

the

current

processing

point.

A

subsequent

ROLS

call

using

the

same

token

backs

out

all

database

changes

and

discards

all

non-express

messages

that

were

performed

following

the

SETS

call

with

the

same

token.

Figure

53

shows

how

the

SETS

and

ROLS

calls

work

together.

In

addition,

to

assist

the

application

program

in

managing

other

variables

that

it

may

wish

to

reestablish

following

a

ROLS

call,

user

data

can

be

included

in

the

I/O

area

of

the

SETS

call.

This

data

is

then

returned

when

the

ROLS

call

is

issued

with

the

same

token.

Using

SETS

and

SETU

Calls

The

SETS

call

sets

up

to

nine

intermediate

backout

points

or

cancels

all

existing

backout

points.

With

the

SETS

call,

you

can

back

out

pieces

of

work.

If

the

Figure

53.

SETS

and

ROLS

Calls

Working

Together

Maintaining

Database

Integrity IBM

Confidential

254

Application

Programming:

Database

Manager

necessary

data

to

complete

one

piece

of

work

is

unavailable,

you

can

complete

a

different

piece

of

work

and

then

return

to

the

former

piece.

To

set

an

intermediate

backout

point,

issue

the

call

using

the

I/O

PCB,

and

include

an

I/O

area

and

a

token.

The

I/O

area

has

the

format

LLZZuser-data,

where

LL

is

the

length

of

the

data

in

the

I/O

area

including

the

length

of

the

LLZZ

portion.

The

ZZ

field

must

contain

binary

zeros.

The

data

in

the

I/O

area

is

returned

to

the

application

program

on

the

related

ROLS

call.

If

you

do

not

want

to

save

some

of

the

data

that

is

to

be

returned

on

the

ROLS

call,

set

the

LL

that

defines

the

length

of

the

I/O

area

to

4.

For

PLITDLI,

you

must

define

the

LL

field

as

a

fullword

rather

than

a

halfword,

as

it

is

for

the

other

languages.

The

content

of

the

LL

field

for

PLITDLI

is

consistent

with

the

I/O

area

for

other

calls

using

the

LLZZ

format.

The

content

is

the

total

length

of

the

area,

including

the

length

of

the

4-byte

LL

field,

minus

2.

A

4-byte

token

associated

with

the

current

processing

point

is

also

required.

This

token

can

be

a

new

token

for

this

program

execution,

or

it

can

match

a

token

that

was

issued

by

a

preceding

SETS

call.

If

the

token

is

new,

no

preceding

SETS

calls

are

canceled.

If

the

token

matches

the

token

of

a

preceding

SETS

call,

the

current

SETS

call

assumes

that

position.

In

this

case,

all

SETS

calls

that

were

issued

subsequent

to

the

SETS

call

with

the

matching

token

are

canceled.

The

parameters

for

this

form

of

the

SETS

call

are:

v

The

call

function,

SETS

v

The

name

of

the

I/O

PCB

or

AIB

v

The

name

of

the

I/O

area

containing

the

user

data

v

The

name

of

an

area

containing

the

token

For

the

SETS

call

format,

see

“SETS/SETU

Call”

on

page

176.

To

cancel

all

previous

backout

points,

the

call

is

issued

using

the

I/O

PCB

but

does

not

include

an

I/O

area

or

a

token.

When

an

I/O

area

is

not

included

in

the

call,

all

intermediate

backout

points

that

were

set

by

prior

SETS

calls

are

canceled.

The

parameters

for

this

form

of

the

SETS

call

are:

v

The

call

function,

SETS

v

The

name

of

the

I/O

PCB

or

AIB

Because

it

is

not

possible

to

back

out

committed

data,

commit-point

processing

causes

all

outstanding

SETS

to

be

canceled.

If

PCBs

for

DEDB,

MSDB,

and

GSAM

organizations

are

in

the

PSB,

or

if

the

program

accesses

an

attached

subsystem,

a

partial

backout

is

not

possible.

In

that

case,

the

SETS

call

is

rejected

with

an

SC

status

code.

If

the

SETU

call

is

used

instead,

it

is

not

rejected

because

of

unsupported

PCBs,

but

will

return

an

SC

status

code

as

a

warning

that

the

PSB

contains

unsupported

PCBs

and

that

the

function

is

not

applicable

to

these

unsupported

PCBs.

Related

Reading:

For

status

codes

that

are

returned

after

the

SETS

call,

see

IMS

Version

9:

Messages

and

Codes,

Volume

1.

For

explanations

of

those

status

codes

and

the

response

required,

see

IMS

Version

9:

Messages

and

Codes,

Volume

1.

Maintaining

Database

IntegrityIBM

Confidential

Chapter

12.

Recovering

Databases

and

Maintaining

Database

Integrity

255

Using

ROLS

The

ROLS

call

backs

out

database

changes

to

a

processing

point

set

by

a

previous

SETS

or

SETU

call,

or

to

the

prior

commit

point.

The

ROLS

call

then

returns

the

processed

input

messages

to

the

message

queue.

To

back

out

database

changes

and

message

activity

that

have

occurred

since

a

prior

SETS

call,

issue

the

ROLS

call

using

the

I/O

PCB,

and

specify

an

I/O

area

and

token

in

the

call.

If

the

token

does

not

match

a

token

that

was

set

by

a

preceding

SETS

call,

an

error

status

is

returned.

If

the

token

matches

the

token

of

a

preceding

SETS

call,

the

database

updates

made

since

this

corresponding

SETS

call

are

backed

out,

and

all

non-express

messages

that

were

inserted

since

the

corresponding

SETS

are

discarded.

SETS

that

are

issued

as

part

of

processing

that

was

backed

out

are

canceled.

The

existing

database

positions

for

all

supported

PCBs

are

reset.

If

a

ROLS

call

is

in

response

to

a

SETU

call,

and

if

there

are

unsupported

PCBs

(DEDB,

MSDB,

or

GSAM)

in

the

PSB,

the

position

of

the

PCBs

is

not

affected.

The

token

specified

by

the

ROLS

call

can

be

set

by

either

a

SETS

or

SETU

call.

If

no

unsupported

PCBs

exist

in

the

PSB,

and

if

the

program

has

not

used

an

attached

subsystem,

the

function

of

the

ROLS

call

is

the

same

regardless

of

whether

the

token

was

set

by

a

SETS

or

SETU

call.

If

the

ROLS

call

is

in

response

to

a

SETS

call,

and

if

unsupported

PCBs

exist

in

the

PSB

or

the

program

used

an

attached

subsystem

when

the

preceding

SETS

call

was

issued,

the

SETS

call

is

rejected

with

an

SC

status

code.

The

subsequent

ROLS

call

is

either

rejected

with

an

RC

status

code,

indicating

unsupported

options,

or

it

is

rejected

with

an

RA

status

code,

indicating

that

a

matching

token

that

was

set

by

a

preceding

successful

SETS

call

does

not

exist.

If

the

ROLS

call

is

in

response

to

a

SETU

call,

the

call

is

not

rejected

because

of

unsupported

options.

If

unsupported

PCBs

exist

in

the

PSB,

this

is

not

reflected

with

a

status

code

on

the

ROLS

call.

If

the

program

is

using

an

attached

subsystem,

the

ROLS

call

is

processed,

but

an

RC

status

is

returned

as

a

warning

indicating

that

if

changes

were

made

using

the

attached

subsystem,

those

changes

were

not

backed

out.

The

parameters

for

this

form

of

the

ROLS

call

are:

v

The

call

function,

ROLS

v

The

name

of

the

I/O

PCB

or

AIB

v

The

name

of

the

I/O

area

to

receive

the

user

data

v

The

name

of

an

area

containing

the

4-byte

token

Related

Reading:

For

status

codes

that

are

returned

after

the

ROLS

call,

see

IMS

Version

9:

Messages

and

Codes,

Volume

1.

For

explanations

of

those

status

codes

and

the

response

required,

see

IMS

Version

9:

Messages

and

Codes,

Volume

1.

Reserving

Segments

for

the

Exclusive

Use

of

Your

Program

You

may

want

to

reserve

a

segment

and

prohibit

other

programs

from

updating

the

segment

while

you

are

using

it.

To

some

extent,

IMS

does

this

for

you

through

resource

lock

management.

The

Q

command

code

lets

you

reserve

segments

in

a

different

way.

Restriction:

The

Q

command

code

is

not

supported

for

MSDB

organizations

or

for

a

secondary

index

that

is

processed

as

a

database.

Maintaining

Database

Integrity IBM

Confidential

256

Application

Programming:

Database

Manager

Resource

lock

management

and

the

Q

command

code

both

reserve

segments

for

your

program’s

use,

but

they

work

differently

and

are

independent

of

each

other.

To

understand

how

and

when

to

use

the

Q

command

code

and

the

DEQ

call,

you

must

understand

resource

lock

management.

Resource

Lock

Management

The

function

of

resource

lock

management

is

to

prevent

one

program

from

accessing

data

that

another

program

has

altered

until

the

altering

program

reaches

a

commit

point.

Therefore,

you

know

that

if

you

have

altered

a

segment,

no

other

program

(except

those

using

the

GO

processing

option)

can

access

that

segment

until

your

program

reaches

a

commit

point.

For

database

organizations

that

support

the

Q

command

code,

if

the

PCB

processing

option

allows

updates

and

the

PCB

holds

position

in

a

database

record,

no

other

program

can

access

the

database

record.

The

Q

command

code

allows

you

to

prevent

other

programs

from

updating

a

segment

that

you

have

accessed,

even

when

the

PCB

that

accessed

the

segment

moves

to

another

database

record.

Related

Reading:

For

more

information

on

the

Q

command

code,

see

“The

Q

Command

Code”

on

page

34.

Reserving

SegmentsIBM

Confidential

Chapter

12.

Recovering

Databases

and

Maintaining

Database

Integrity

257

Reserving

Segments IBM

Confidential

258

Application

Programming:

Database

Manager

Part

2.

IMS

Adapter

for

REXX

Chapter

13.

IMS

Adapter

for

REXX

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 261

Addressing

Other

Environments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 262

REXX

Transaction

Programs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 262

IMS

Adapter

for

REXX

Overview

Diagram

.

.

.

.

.

.

.

.

.

.

.

.

. 264

IVPREXX

Sample

Application

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 265

REXXTDLI

Commands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 266

Addressable

Environments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 267

REXXTDLI

Calls

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 267

Return

Codes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 267

Parameter

Handling

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 268

Example

DL/I

Calls

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 269

REXXIMS

Extended

Commands

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 270

DLIINFO

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 271

IMSRXTRC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 272

MAPDEF

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 272

MAPGET

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 274

MAPPUT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 275

SET

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 276

SRRBACK

and

SRRCMIT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 277

STORAGE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 278

WTO,

WTP,

and

WTL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 279

WTOR

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 279

IMSQUERY

Extended

Functions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 280

Chapter

14.

Sample

Execs

Using

REXXTDLI

.

.

.

.

.

.

.

.

.

.

.

. 283

SAY

Exec:

For

Expression

Evaluation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 283

PCBINFO

Exec:

Display

PCBs

Available

in

Current

PSB

.

.

.

.

.

.

.

.

. 284

PART

Execs:

Database

Access

Example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 286

PARTNUM

Exec:

Show

Set

of

Parts

Near

a

Specified

Number

.

.

.

.

.

. 287

PARTNAME

Exec:

Show

a

Set

of

Parts

with

a

Similar

Name

.

.

.

.

.

. 287

DFSSAM01

Exec:

Load

the

Parts

Database

.

.

.

.

.

.

.

.

.

.

.

.

. 288

DOCMD:

IMS

Commands

Front

End

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 289

IVPREXX:

MPP/IFP

Front

End

for

General

Exec

Execution

.

.

.

.

.

.

.

. 293

These

topics

help

you

use

the

IMS

Adapter

for

REXX

and

describe

addressable

environments,

REXX

transaction

programs,

REXXTDLI

commands

and

calls,

and

REXXIMS

extended

commands.

The

topics

also

provide

sample

EXECS

using

REXXTDLI.

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

259

IBM

Confidential

260

Application

Programming:

Database

Manager

Chapter

13.

IMS

Adapter

for

REXX

The

IMS

adapter

for

REXX

(REXXTDLI)

provides

an

environment

in

which

IMS

users

can

interactively

develop

REXX

EXECs

under

TSO/E

(time-sharing

option

extensions)

and

execute

them

in

IMS

MPPs,

BMPs,

IFPs,

or

Batch

regions.

This

product

does

not

compete

with

DFSDDLT0

but

is

used

as

an

adjunct.

The

IMS

adapter

for

REXX

provides

an

application

programming

environment

for

prototyping

or

writing

low-volume

transaction

programs.

The

REXX

environment

executing

under

IMS

has

the

same

abilities

and

restrictions

as

those

documented

in

the

IBM

TSO

Extensions

for

MVS/REXX

Reference.

These

few

restrictions

pertain

to

the

absence

of

the

TSO,

ISPEXEC,

and

ISREDIT

environments,

and

to

the

absence

of

TSO-specific

functions

such

as

LISTDS.

You

can

add

your

own

external

functions

to

the

environment

as

documented

in

the

IBM

TSO

Extensions

for

MVS/REXX

Reference.

IMS

calls

the

REXX

EXEC

using

IRXJCL.

When

this

method

is

used,

Return

Code

20

(RC20)

is

a

restricted

return

code.

Return

Code

20

is

returned

to

the

caller

of

IRXJCL

when

processing

was

not

successful,

and

the

EXEC

was

not

processed.

A

REXX

EXEC

runs

as

an

IMS

application

and

has

characteristics

similar

to

other

IMS-supported

programming

languages,

such

as

COBOL.

Programming

language

usage

(REXX

and

other

supported

languages)

can

be

mixed

in

MPP

regions.

For

example,

a

COBOL

transaction

can

be

executed

after

a

REXX

transaction

is

completed,

or

vice

versa.

REXX

flexibility

is

provided

by

the

following:

v

REXX

is

an

easy-to-use

interpretive

language.

v

REXX

does

not

require

a

special

PSB

generation

to

add

an

EXEC

and

run

it

because

EXECs

can

run

under

a

standard

PSB

(IVPREXX

or

one

that

is

established

by

the

user).

v

The

REXX

interface

supports

DL/I

calls

and

provides

the

following

functions:

–

Call

tracing

of

DL/I

calls,

status,

and

parameters

–

Inquiry

of

last

DL/I

call

–

Extensive

data

mapping

–

PCB

specification

by

name

or

offset

–

Obtaining

and

releasing

storage

–

Messaging

through

WTO,

WTP,

WTL,

and

WTOR

The

following

system

environment

conditions

are

necessary

to

run

REXX

EXECs:

v

DFSREXX0

and

DFSREXX1

must

be

in

a

load

library

accessible

to

your

IMS

dependent

or

batch

region;

for

example,

STEPLIB.

v

DFSREXX0

is

stand-alone

and

must

have

the

RENT

option

specified.

v

DFSREXX1

must

be

link-edited

with

DFSLI000

and

DFSCPIR0

(for

SRRCMIT

and

SRRBACK)

and

optionally,

DFSREXXU.

The

options

must

be

REUS,

not

RENT.

v

IVPREXX

(copy

of

DFSREXX0

program)

must

be

installed

as

an

IMS

transaction

program.

IVP

(Installation

Verification

Program)

installs

the

program.

For

more

information,

see

“REXX

Transaction

Programs”

on

page

262.

v

The

PSB

must

be

defined

as

assembler

language

or

COBOL.

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

261

v

SYSEXEC

DD

points

to

a

list

of

data

sets

containing

the

REXX

EXECs

that

will

be

run

in

IMS.

You

must

put

this

DD

in

your

IMS

dependent

or

batch

region

JCL.

v

SYSTSPRT

DD

is

used

for

REXX

output,

for

example

tracing,

errors,

and

SAY

instructions.

SYSTSPRT

DD

is

usually

allocated

as

SYSOUT=A

or

another

class,

depending

on

installation,

and

must

be

put

in

the

IMS

dependent

or

batch

region

JCL.

v

SYSTSIN

DD

is

used

for

REXX

input

because

no

console

exists

in

an

IMS

dependent

region,

as

under

TSO.

The

REXX

PULL

statement

is

the

most

common

use

of

SYSTSIN.

In

this

Chapter:

v

“Addressing

Other

Environments”

v

“REXX

Transaction

Programs”

v

“REXXTDLI

Commands”

on

page

266

v

“REXXTDLI

Calls”

on

page

267

v

“REXXIMS

Extended

Commands”

on

page

270

Related

Reading:

For

more

information

on

SYSTSPRT

and

SYSTSIN,

see

IBM

TSO

Extensions

for

MVS/REXX

Reference.

Addressing

Other

Environments

Use

the

REXX

ADDRESS

instruction

to

change

the

destination

of

commands.

The

IMS

Adapter

for

REXX

functions

through

two

host

command

environments:

REXXTDLI

and

REXXIMS.

These

environments

are

discussed

in

“Addressable

Environments”

on

page

267.

Other

host

command

environments

can

be

accessed

with

an

IMS

EXEC

as

well.

The

z/OS

environment

is

provided

by

TSO

in

both

TSO

and

non-TSO

address

spaces.

It

is

used

to

run

other

programs

such

as

EXECIO

for

file

I/O.

IMS

does

not

manage

the

z/OS

EXECIO

resources.

An

IMS

COMMIT

or

BACKOUT,

therefore,

has

no

effect

on

these

resources.

Because

EXECIO

is

not

an

IMS-controlled

resource,

no

integrity

is

maintained.

If

integrity

is

an

issue

for

flat

file

I/O,

use

IMS

GSAM,

which

ensures

IMS-provided

integrity.

If

APPC/MVS

is

available

(MVS

4.2

or

higher),

other

environments

can

be

used.

The

environments

are:

APPCMVS

Used

for

MVS-specific

APPC

interfacing

CPICOMM

Used

for

CPI

Communications

LU62

Used

for

MVS-specific

APPC

interfacing

Related

Reading:

For

more

information

on

addressing

environments,

see

IBM

TSO

Extensions

for

MVS/REXX

Reference.

REXX

Transaction

Programs

A

REXX

transaction

program

can

use

any

PSB

definition.

The

definition

set

up

by

the

IVP

for

testing

is

named

IVPREXX.

A

section

of

the

IMS

stage

1

definition

is

shown

in

the

following

example:

IMS

Adapter

for

REXX IBM

Confidential

262

Application

Programming:

Database

Manager

This

example

uses

a

GPSB,

but

you

could

use

any

PSB

that

you

have

defined.

The

GPSB

provides

a

generic

PSB

that

has

an

IOPCB

and

a

modifiable

alternate

PCB.

It

does

not

have

any

database

PCBs.

The

language

type

of

ASSEM

is

specified

because

no

specific

language

type

exists

for

a

REXX

application.

Recommendation:

For

a

REXX

application,

specify

either

Assembler

language

or

COBOL.

IMS

schedules

transactions

using

a

load

module

name

that

is

the

same

as

the

PSB

name

being

used

for

MPP

regions

or

the

PGM

name

for

other

region

types.

You

must

use

this

load

module

even

though

your

application

program

consists

of

the

REXX

EXEC.

The

IMS

adapter

for

REXX

provides

a

load

module

for

you

to

use.

This

module

is

called

DFSREXX0.

You

can

use

it

in

one

of

the

following

ways:

v

Copy

to

a

steplib

data

set

with

the

same

name

as

the

application

PSB

name.

Use

either

a

standard

utility

intended

for

copying

load

modules

(such

as

IEBCOPY

or

SAS),

or

the

Linkage

Editor.

v

Use

the

Linkage

Editor

to

define

an

alias

for

DFSREXX0

that

is

the

same

as

the

application

PGM

name.

Example:

Shown

below

is

a

section

from

the

PGM

setup

job.

It

uses

the

linkage

editor

to

perform

the

copy

function

to

the

name

IVPREXX.

The

example

uses

the

IVP.

When

IMS

schedules

an

application

transaction,

the

load

module

is

loaded

and

given

control.

The

load

module

establishes

the

REXX

EXEC

name

as

the

PGM

name

with

an

argument

of

the

Transaction

Code

(if

applicable).

The

module

calls

a

user

exit

routine

(DFSREXXU)

if

it

is

available.

The

user

exit

routine

selects

the

REXX

EXEC

(or

a

different

EXEC

to

run)

and

can

change

the

EXEC

arguments,

or

do

any

other

desired

processing.

Related

Reading:

For

more

information

on

the

IMS

adapter

for

REXX

exit

routine,

see

IMS

Version

9:

Customization

Guide.

Upon

return

from

the

user

exit

routine,

the

action

requested

by

the

routine

is

performed.

This

action

normally

involves

calling

the

REXX

EXEC.

The

EXEC

load

occurs

using

the

SYSEXEC

DD

allocation.

This

allocation

must

point

to

one

or

**

*

IVP

APPLICATIONS

DEFINITION

FOR

DB/DC,

DCCTL

*

**

APPLCTN

GPSB=IVPREXX,PGMTYPE=TP,LANG=ASSEM

REXXTDLI

SAMPLE

TRANSACT

CODE=IVPREXX,MODE=SNGL,

X

MSGTYPE=(SNGLSEG,NONRESPONSE,1)

//*

REXXTDLI

SAMPLE

-

GENERIC

APPLICATION

DRIVER

//*

//LINK

EXEC

PGM=IEWL,

//

PARM=’XREF,LIST,LET,SIZE=(192K,64K)’

//SYSPRINT

DD

SYSOUT=*

//SDFSRESL

DD

DISP=SHR,DSN=IMS.SDFSRESL

//SYSLMOD

DD

DISP=SHR,DSN=IMS1.PGMLIB

//SYSUT1

DD

UNIT=(SYSALLDA,SEP=(SYSLMOD,SYSLIN)),

//

DISP=(,DELETE,DELETE),SPACE=(CYL,(1,1))

//SYSLIN

DD

*

INCLUDE

SDFSRESL(DFSREXX0)

ENTRY

DFSREXX0

NAME

IVPREXX(R)

/*

REXX

Transaction

ProgramsIBM

Confidential

Chapter

13.

IMS

Adapter

for

REXX

263

more

partitioned

data

sets

containing

the

IMS

REXX

application

programs

that

will

be

run

as

well

as

any

functions

written

in

REXX

that

are

used

by

the

programs.

Standard

REXX

output,

such

as

SAY

statements

and

tracing,

is

sent

to

SYSTSPRT.

This

DD

is

required

and

can

be

set

to

SYSOUT=A.

When

the

stack

is

empty,

the

REXX

PULL

statement

reads

from

the

SYSTSIN

DD.

In

this

way,

you

can

conveniently

provide

batch

input

data

to

a

BMP

or

batch

region.

SYSTSIN

is

optional;

however,

you

will

receive

an

error

message

if

you

issue

a

PULL

from

an

empty

stack

and

SYSTSIN

is

not

allocated.

Figure

54

shows

the

JCL

necessary

for

MPP

region

that

runs

the

IVPREXX

sample

EXEC.

IMS

Adapter

for

REXX

Overview

Diagram

Figure

55

on

page

265

shows

the

IMS

adapter

for

REXX

environment

at

a

high

level.

This

figure

shows

how

the

environment

is

structured

under

the

IMS

program

controller,

and

some

of

the

paths

of

interaction

between

the

components

of

the

environment.

//IVP32M11

EXEC

PROC=DFSMPR,TIME=(1440),

//

AGN=IVP,

AGN

NAME

//

NBA=6,

//

OBA=5,

//

SOUT=’*’,

SYSOUT

CLASS

//

CL1=001,

TRANSACTION

CLASS

1

//

CL2=000,

TRANSACTION

CLASS

2

//

CL3=000,

TRANSACTION

CLASS

3

//

CL4=000,

TRANSACTION

CLASS

4

//

TLIM=10,

MPR

TERMINATION

LIMIT

//

SOD=,

SPIN-OFF

DUMP

CLASS

//

IMSID=IVP1,

IMSID

OF

IMS

CONTROL

REGION

//

PREINIT=DC,

PROCLIB

DFSINTXX

MEMBER

//

PWFI=Y

PSEUDO=WFI

//*

//*

ADDITIONAL

DD

STATEMENTS

//*

//DFSCTL

DD

DISP=SHR,

//

DSN=IVPSYS32.PROCLIB(DFSSBPRM)

//DFSSTAT

DD

SYSOUT=*

//*

REXX

EXEC

SOURCE

LOCATION

//SYSEXEC

DD

DISP=SHR,

//

DSN=IVPIVP32.INSTALIB

//

DD

DISP=SHR,

//

DSN=IVPSYS32.SDFSEXEC

//*

REXX

INPUT

LOCATION

WHEN

STACK

IS

EMPTY

//SYSTSIN

DD

*

/*

//*

REXX

OUTPUT

LOCATION

//SYSTSPRT

DD

SYSOUT=*

//*

COBOL

OUTPUT

LOCATION

//SYSOUT

DD

SYSOUT=*

Figure

54.

JCL

Code

Used

to

Run

the

IVPREXX

Sample

Exec

REXX

Transaction

Programs IBM

Confidential

264

Application

Programming:

Database

Manager

IVPREXX

Sample

Application

Figure

54

on

page

264

shows

the

JCL

needed

to

use

IVPREXX

from

an

MPP

region.

This

EXEC

can

also

be

run

from

message-driven

BMPs

or

IFP

regions.

To

use

the

IVPREXX

driver

sample

program

in

a

message-driven

BMP

or

IFP

environment,

specify

IVPREXX

as

the

program

name

and

PSB

name

in

the

IMS

region

program’s

parameter

list.

Specifying

IVPREXX

loads

the

IVPREXX

load

module,

which

is

a

copy

of

the

DFSREXX0

front-end

program.

The

IVPREXX

program

loads

and

runs

an

EXEC

named

IVPREXX

that

uses

message

segments

sent

to

the

transaction

as

arguments

to

derive

the

EXEC

to

call

or

the

function

to

perform.

Interactions

with

IVPREXX

from

an

IMS

terminal

are

shown

in

the

following

examples:

IVPREXX

Example

1

Entry:

IVPREXX

execname

or

IVPREXX

execname

arguments

Response:

EXEC

execname

ended

with

RC=

x

IVPREXX

Example

2

Entry:

IVPREXX

LEAVE

Response:

Transaction

IVPREXX

leaving

dependent

region.

Figure

55.

IMS

Adapter

for

REXX

Logical

Overview

Diagram

REXX

Transaction

ProgramsIBM

Confidential

Chapter

13.

IMS

Adapter

for

REXX

265

IVPREXX

Example

3

Entry:

IVPREXX

HELLOHELLO

Response:

One-to-eight

character

EXEC

name

must

be

specified.

IVPREXX

Example

4

Entry:

IVPREXX

or

IVPREXX

?

Response:

TRANCODE

EXECNAME

<Arguments>

Run

specified

EXEC

TRANCODE

LEAVE

Leave

Dependent

Region

TRANCODE

TRACE

level

0=None,1=Some,2=More,3=Full

TRANCODE

ROLL

Issue

ROLL

call

When

an

EXEC

name

is

supplied,

all

of

the

segments

it

inserts

to

the

I/O

PCB

are

returned

before

the

completion

message

is

returned.

REXX

return

codes

(RC)

in

the

range

of

20000

to

20999

are

usually

syntax

or

other

REXX

errors,

and

you

should

check

the

z/OS

system

console

or

region

output

for

more

details.

Related

Reading:

For

more

information

on

REXX

errors

and

messages,

see

IBM

TSO

Extensions

for

MVS/REXX

Reference.

Stopping

an

Infinite

Loop:

To

stop

an

EXEC

that

is

in

an

infinite

loop,

you

can

enter

either

of

the

following

IMS

commands

from

the

master

terminal

or

system

console:

/STO

REGION

p1

ABDUMP

p2

/STO

REGION

p1

CANCEL

In

these

examples,

p1

is

the

region

number

and

p2

is

the

TRANCODE

that

the

EXEC

is

running

under.

Use

the

/DISPLAY

ACTIVE

command

to

find

the

region

number.

This

technique

is

not

specific

to

REXX

EXECs

and

can

be

used

on

any

transaction

that

is

caught

in

an

infinite

loop.

Related

Reading:

For

more

information

about

these

commands

and

others

to

help

in

this

situation,

see

IMS

Version

9:

Command

Reference.

REXXTDLI

Commands

The

following

section

contains

REXX

commands

and

describes

how

they

apply

to

DL/I

calls.

The

terms

command

and

call

can

be

used

interchangeably

when

explaining

the

REXXTDLI

environment.

However,

the

term

command

is

used

exclusively

when

explaining

the

REXXIMS

environment.

For

consistency,

call

is

used

when

explaining

DL/I,

and

command

is

used

when

explaining

REXX.

REXX

Transaction

Programs IBM

Confidential

266

Application

Programming:

Database

Manager

Addressable

Environments

To

issue

commands

in

the

IMS

adapter

for

REXX

environment,

you

must

first

address

the

correct

environment.

Two

addressable

environments

are

provided

with

the

IMS

adapter

for

REXX.

The

environments

are

as

follows:

REXXTDLI

Used

for

standard

DL/I

calls,

for

example

GU

and

ISRT.

The

REXXTDLI

interface

environment

is

used

for

all

standard

DL/I

calls

and

cannot

be

used

with

REXX-specific

commands.

All

commands

issued

to

this

environment

are

considered

to

be

standard

DL/I

calls

and

are

processed

appropriately.

A

GU

call

for

this

environment

could

look

like

this:

Address

REXXTDLI

"GU

MYPCB

DataSeg"

REXXIMS

Used

to

access

REXX-specific

commands

(for

example,

WTO

and

MAPDEF)

in

the

IMS

adapter

for

REXX

environment.

The

REXXIMS

interface

environment

is

used

for

both

DL/I

calls

and

REXX-specific

commands.

When

a

command

is

issued

to

this

environment,

IMS

checks

to

see

if

it

is

REXX-specific.

If

the

command

is

not

REXX-specific,

IMS

checks

to

see

if

it

is

a

standard

DL/I

call.

The

command

is

processed

appropriately.

The

REXX-specific

commands,

also

called

extended

commands,

are

REXX

extensions

added

by

the

IMS

adapter

for

the

REXX

interface.

A

WTO

call

for

this

environment

could

look

like

this:

Address

REXXIMS

"WTO

Message"

On

entry

to

the

scheduled

EXEC,

the

default

environment

is

z/OS.

Consequently,

you

must

either

use

ADDRESS

REXXTDLI

or

ADDRESS

REXXIMS

to

issue

the

IMS

adapter

for

REXX

calls.

Related

Reading:

For

general

information

on

addressing

environments,

see

IBM

TSO

Extensions

for

MVS/REXX

Reference.

REXXTDLI

Calls

��

dlicall

parm1

parm2

...

��

The

format

of

a

DL/I

call

varies

depending

on

call

type.

The

parameter

formats

for

supported

DL/I

calls

are

shown

in

previous

sections

of

this

information.

The

parameters

for

the

calls

are

case-independent,

separated

by

one

or

more

blanks,

and

are

generally

REXX

variables.

See

“Parameter

Handling”

on

page

268

for

detailed

descriptions.

Return

Codes

If

you

use

the

AIBTDLI

interface,

the

REXX

RC

variable

is

set

to

the

return

code

from

the

AIB

on

the

DL/I

call.

If

you

do

not

use

the

AIBTDLI

interface,

a

simulated

return

code

is

returned.

This

simulated

return

code

is

set

to

zero

if

the

PCB

status

code

was

GA,

GK,

or

��.

If

the

status

code

had

any

other

value,

the

simulated

return

code

is

X'900'

or

decimal

2304.

REXXTDLI

Commands

and

CallsIBM

Confidential

Chapter

13.

IMS

Adapter

for

REXX

267

Parameter

Handling

The

IMS

adapter

for

REXX

performs

some

parameter

setup

for

application

programs

in

a

REXX

environment.

This

setup

occurs

when

the

application

program

uses

variables

or

maps

as

the

parameters.

When

the

application

uses

storage

tokens,

REXX

does

not

perform

this

setup.

The

application

program

must

provide

the

token

and

parse

the

results

just

as

a

non-REXX

application

would.

For

a

list

of

parameter

types

and

definitions,

see

Table

48.

The

REXXTDLI

interface

performs

the

following

setup:

v

The

I/O

area

retrieval

for

the

I/O

PCB

is

parsed.

The

LL

field

is

removed,

and

the

ZZ

field

is

removed

and

made

available

by

means

of

the

REXXIMS(’ZZ’)

function

call.

The

rest

of

the

data

is

placed

in

the

specified

variable

or

map.

Use

the

REXX

LENGTH()

function

to

find

the

length

of

the

returned

data.

v

The

I/O

area

building

for

the

I/O

PCB

or

alternate

PCB

is

done

as

follows:

–

The

appropriate

LL

field.

–

The

ZZ

field

from

a

preceding

SET

ZZ

command

or

X'0000'

if

the

command

was

not

used.

–

The

data

specified

in

the

passed

variable

or

map.

v

The

I/O

area

processing

for

the

SPA

is

similar

to

the

first

two

items,

except

that

the

ZZ

field

is

4

bytes

long.

v

The

feedback

area

on

the

CHNG

and

SETO

calls

is

parsed.

The

LLZZLL

fields

are

removed,

and

the

remaining

data

is

returned

with

the

appropriate

length.

v

The

parameters

that

have

the

LLZZ

as

part

of

their

format

receive

special

treatment.

These

parameters

occur

on

the

AUTH,

CHNG,

INIT,

ROLS,

SETO,

and

SETS

calls.

The

LLZZ

fields

are

removed

when

IMS

returns

data

to

you

and

added

(ZZ

is

always

X'0000')

when

IMS

retrieves

data

from

you.

In

effect,

your

application

ignores

the

LLZZ

field

and

works

only

with

the

data

following

it.

v

The

numeric

parameters

on

XRST

and

symbolic

CHKP

are

converted

between

decimal

and

a

32-bit

number

(fullword)

as

required.

Table

48.

IMS

Adapter

for

REXX

Parameter

Types

and

Definitions

Type1

Parameter

Definition

PCB

PCB

Identifier

specified

as

a

variable

containing

one

of

the

following:

v

PCB

name

as

defined

in

the

PSB

generation

on

the

PCBNAME=

parameter.

See

IMS

Version

9:

Utilities

Reference:

System

for

more

information

on

defining

PCB

names.

The

name

can

be

from

1

to

8

characters

long

and

does

not

have

to

be

padded

with

blanks.

If

this

name

is

given,

the

AIBTDLI

interface

is

used,

and

the

return

codes

and

reason

codes

are

acquired

from

that

interface.

v

An

AIB

block

formatted

to

DFSAIB

specifications.

This

variable

is

returned

with

an

updated

AIB.

v

A

#

followed

by

PCB

offset

number

(#1=first

PCB).

Example

settings

are:

–

IOPCB=:"#1"

–

ALTPCB=:"#2"

–

DBPCB=:"#3"

The

IOAREA

length

returned

by

a

database

DL/I

call

defaults

to

4096

if

this

notation

is

used.

The

correct

length

is

available

only

when

the

AIBTDLI

interface

is

used.

REXXTDLI

Commands

and

Calls IBM

Confidential

268

Application

Programming:

Database

Manager

Table

48.

IMS

Adapter

for

REXX

Parameter

Types

and

Definitions

(continued)

Type1

Parameter

Definition

In

Input

variable.

It

can

be

specified

as

a

constant,

variable,

*mapname2,

or

!token3.

SSA

Input

variable

with

an

SSA

(segment

search

argument).

It

can

be

specified

as

a

constant,

variable,

*mapname2,

or

!token3.

Out

Output

variable

to

store

a

result

after

a

successful

command.

It

can

be

specified

as

a

variable,

*mapname2,

or

!token3.

In/Out

Variable

that

contains

input

on

entry

and

contains

a

result

after

a

successful

command.

It

can

be

specified

as

a

variable,

*mapname2,

or

!token3.

Const

Input

constant.

This

command

argument

must

be

the

actual

value,

not

a

variable

containing

the

value.

Note:

1.

The

parameter

types

listed

in

Table

48

on

page

268

correspond

to

the

types

shown

(earlier

in

this

information)

under

the

specific

DL/I

calls,

as

well

as

to

those

shown

in

Table

49

on

page

270..

All

parameters

specified

on

DL/I

calls

are

case

independent

except

for

the

values

associated

with

the

STEM

portion

of

the

compound

variable

(REXX

terminology

for

an

array-like

structure).

A

period

(.)

can

be

used

in

place

of

any

parameter

and

is

read

as

a

NULL

(zero

length

string)

and

written

as

a

void

(place

holder).

Using

a

period

in

place

of

a

parameter

is

useful

when

you

want

to

skip

optional

parameters.

2.

For

more

information

on

*mapname,

see

“MAPGET”

on

page

274

and

“MAPPUT”

on

page

275..

3.

For

more

information

on

!token,

see

“STORAGE”

on

page

278.

Example

DL/I

Calls

The

following

example

shows

an

ISRT

call

issued

against

the

I/O

PCB.

It

writes

the

message

“Hello

World.”

IO

=

"IOPCB"

/*

IMS

Name

for

I/O

PCB

*/

OutMsg="Hello

World"

Address

REXXTDLI

"ISRT

IO

OutMsg"

If

RC¬=0

Then

Exit

12

In

this

example,

IO

is

a

variable

that

contains

the

PCB

name,

which

is

the

constant

“IOPCB”

for

the

I/O

PCB.

If

a

non-zero

return

code

(RC)

is

received,

the

EXEC

ends

(Exit)

with

a

return

code

of

12.

You

can

do

other

processing

here.

The

next

example

gets

a

part

from

the

IMS

sample

parts

database.

The

part

number

is

"250239".

The

actual

part

keys

have

a

"02"

prefix

and

the

key

length

defined

in

the

DBD

is

17

bytes.

The

following

example

puts

the

segment

into

the

variable

called

Part_Segment.

PartNum

=

"250239"

DB

=

"DBPCB01"

SSA

=

’PARTROOT(PARTKEY

=

’||Left(’02’||PartNum,17)||’)’

Address

REXXTDLI

"GU

DB

Part_Segment

SSA"

Notes:

v

In

a

real

EXEC,

you

would

probably

find

the

value

for

PartNum

from

an

argument

and

would

have

to

check

the

return

code

after

the

call.

REXXTDLI

Commands

and

CallsIBM

Confidential

Chapter

13.

IMS

Adapter

for

REXX

269

v

The

LEFT

function

used

here

is

a

built-in

REXX

function.

These

built-in

functions

are

available

to

any

IMS

REXX

EXEC.

For

more

information

on

functions,

see

IBM

TSO

Extensions

for

MVS/REXX

Reference.

v

The

single

quote

(')

and

double

quote

(")

are

interchangeable

in

REXX,

as

long

as

they

are

matched.

The

IMS.SDFSISRC

library

includes

the

DFSSUT04

EXEC.

You

can

use

this

EXEC

to

process

any

unexpected

return

codes

or

status

codes.

To

acquire

the

status

code

from

the

last

DL/I

call

issued,

you

must

execute

the

IMSQUERY('STATUS')

function.

It

returns

the

two

character

status

code.

Environment

Determination

If

you

use

an

EXEC

that

runs

in

both

IMS

and

non-IMS

environments,

check

to

see

if

the

IMS

environment

is

available.

You

can

check

to

see

if

the

IMS

environment

is

available

in

two

ways:

v

Use

the

z/OS

SUBCOM

command

and

specify

either

the

REXXTDLI

or

REXXIMS

environments.

The

code

looks

like

this:

Address

z/OS

’SUBCOM

REXXTDLI’

If

RC=0

Then

Say

"IMS

Environment

is

Available."

Else

Say

"Sorry,

no

IMS

Environment

here."

v

Use

the

PARSE

SOURCE

instruction

of

REXX

to

examine

the

address

space

name

(the

8th

word).

If

it

is

running

in

an

IMS

environment,

the

token

will

have

the

value

IMS.

The

code

looks

like

this:

Parse

Source

.

.

.

.

.

.

.

Token

.

If

Token=’IMS’

Then

Say

"IMS

Environment

is

Available."

Else

Say

"Sorry,

no

IMS

Environment

here."

REXXIMS

Extended

Commands

The

IMS

adapter

for

REXX

gives

access

to

the

standard

DL/I

calls

and

it

supplies

a

set

of

extended

commands

for

the

REXX

environment.

These

commands

are

listed

in

Table

49

and

are

available

when

you

ADDRESS

REXXIMS.

DL/I

calls

are

also

available

when

you

address

the

REXXIMS

environment.

Table

49

shows

the

extended

commands.

The

following

pages

contain

detailed

descriptions

of

each

command.

Table

49.

REXXIMS

Extended

Commands

Command

Parameter

Types

1

DLIINFO

Out

[PCB]

IMSRXTRC

In

MAPDEF

Const

In

[Const]

MAPGET

Const

In

MAPPUT

Const

Out

SET

Const

In

SRRBACK

Out

SRRCMIT

Out

STORAGE

Const

Const

[In

[Const]

]

WTO

In

WTP

In

WTL

In

REXXTDLI

Commands

and

Calls IBM

Confidential

270

Application

Programming:

Database

Manager

Table

49.

REXXIMS

Extended

Commands

(continued)

Command

Parameter

Types

1

WTOR

In

Out

Note:

1.

The

parameter

types

listed

correspond

to

the

types

shown

in

Table

48

on

page

268.

All

parameters

specified

on

DL/I

calls

are

case-independent

except

for

the

values

associated

with

the

STEM

portion

of

the

compound

variable

(REXX

terminology

for

an

array-like

structure).

A

period

(.)

can

be

used

in

place

of

any

parameter

and

has

the

effect

of

a

NULL

(zero

length

string)

if

read

and

a

void

(place

holder)

if

written.

Use

a

period

in

place

of

a

parameter

to

skip

optional

parameters.

DLIINFO

The

DLIINFO

call

requests

information

from

the

last

DL/I

call

or

on

a

specific

PCB.

Format

��

DLIINFO

infoout

pcbid

��

Call

Name

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

DLIINFO

X

X

X

X

X

Usage

The

infoout

variable

name

is

a

REXX

variable

that

is

assigned

the

DL/I

information.

The

pcbid

variable

name,

when

specified

as

described

in

“Parameter

Handling”

on

page

268,

returns

the

addresses

associated

with

the

specified

PCB

and

its

last

status

code.

The

format

of

the

returned

information

is

as

follows:

Word

Description

1

Last

DL/I

call

('.'

if

N/A)

2

Last

DL/I

PCB

name

(name

or

#number,

'.'

if

N/A)

3

Last

DL/I

AIB

address

in

hexadecimal

(00000000

if

N/A)

4

Last

DL/I

PCB

address

in

hexadecimal

(00000000

if

N/A)

5

Last

DL/I

return

code

(0

if

N/A)

6

Last

DL/I

reason

code

(0

if

N/A)

7

Last

DL/I

call

status

('.'

if

blank

or

N/A)

Example

Address

REXXIMS

’DLIINFO

MyInfo’

/*

Get

Info

*/

Parse

Var

MyInfo

DLI_Cmd

DLI_PCB

DLI_AIB_Addr

DLI_PCB_Addr,

DLI_RC

DLI_Reason

DLI_Status

.

Always

code

a

period

after

the

status

code

(seventh

word

returned)

when

parsing

to

allow

for

transparent

additions

in

the

future

if

needed.

Words

3,

4,

and

7

can

be

used

when

a

pcbid

is

specified

on

the

DLIINFO

call.

REXXIMS

Extended

CommandsIBM

Confidential

Chapter

13.

IMS

Adapter

for

REXX

271

IMSRXTRC

The

IMSRXTRC

command

is

used

primarily

for

debugging.

It

controls

the

tracing

action

taken

(that

is,

how

much

trace

output

through

SYSTSPRT

is

sent

to

the

user)

while

running

a

REXX

program.

Format

��

IMSRXTRC

level

��

Call

Name

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

IMSRXTRC

X

X

X

X

X

Usage

The

level

variable

name

can

be

a

REXX

variable

or

a

digit,

and

valid

values

are

from

0

to

9.

The

initial

value

at

EXEC

start-up

is

1

unless

it

is

overridden

by

the

user

Exit.

Traced

output

is

sent

to

the

DDNAME

SYSTSPRT.

See

IMS

Version

9:

Customization

Guide

for

more

information

on

the

IMS

adapter

for

REXX

exit

routine.

The

IMSRXTRC

command

can

be

used

in

conjunction

with

or

as

a

replacement

for

normal

REXX

tracing

(TRACE).

Level

Description

0

Trace

errors

only.

1

The

previous

level

and

trace

DL/I

calls,

their

return

codes,

and

environment

status

(useful

for

flow

analysis).

2

All

the

previous

levels

and

variable

sets.

3

All

the

previous

levels

and

variable

fetches

(useful

when

diagnosing

problems).

4-7

All

previous

levels.

8

All

previous

levels

and

parameter

list

to/from

standard

IMS

language

interface.

See

message

DFS3179

in

IMS

Version

9:

Messages

and

Codes,

Volume

1.

9

All

previous

levels.

Example

Address

REXXIMS

’IMSRXTRC

3’

IMSRXTRC

is

independent

of

the

REXX

TRACE

instruction.

MAPDEF

The

MAPDEF

command

makes

a

request

to

define

a

data

mapping.

Format

��

MAPDEF

mapname

A

REPLACE

��

REXXIMS

Extended

Commands IBM

Confidential

272

Application

Programming:

Database

Manager

A:

�

:

variable

C

length

V

*

startpos

B

P

.digitlength

Z

.

C

length

*

:

Call

Name

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

MAPDEF

X

X

X

X

X

Usage

Data

mapping

is

an

enhancement

added

to

the

REXXIMS

interface.

Because

REXX

does

not

offer

variable

structures,

parsing

the

fields

from

your

database

segments

or

MFS

output

maps

can

be

time

consuming,

especially

when

data

conversion

is

necessary.

The

MAPDEF,

MAPGET,

and

MAPPUT

commands

allow

simple

extraction

of

most

formatted

data.

v

mapname

is

a

1-

to

16-character

case-independent

name.

v

definition

(A)

is

a

variable

containing

the

map

definition.

v

REPLACE,

if

specified,

indicates

that

a

replacement

of

an

existing

map

name

is

allowed.

If

not

specified

and

the

map

name

is

already

defined,

an

error

occurs

and

message

DFS3171E

is

sent

to

the

SYSTPRT.

The

map

definition

has

a

format

similar

to

data

declarations

in

other

languages,

with

simplifications

for

REXX.

In

this

definition,

you

must

declare

all

variables

that

you

want

to

be

parsed

with

their

appropriate

data

types.

The

format

is

shown

in

A

in

the

syntax

diagram.

Variable

name:

The

variable

name

variable

is

a

REXX

variable

used

to

contain

the

parsed

information.

Variable

names

are

case-independent.

If

you

use

a

STEM

(REXX

terminology

for

an

array-like

structure)

variable,

it

is

resolved

at

the

time

of

use

(at

the

explicit

or

implicit

MAPGET

or

MAPPUT

call

time),

and

this

can

be

very

powerful.

If

you

use

an

index

type

variable

as

the

STEM

portion

of

a

compound

variable,

you

can

load

many

records

into

an

array

simply

by

changing

the

index

variable.

Map

names

or

tokens

cannot

be

substituted

for

variable

names

inside

a

map

definition.

Repositioning

the

internal

cursor:

A

period

(.)

can

be

used

as

a

variable

place

holder

for

repositioning

the

internal

cursor

position.

In

this

case,

the

data

type

must

be

C,

and

the

length

can

be

negative,

positive,

or

zero.

Use

positive

values

to

skip

over

fields

of

no

interest.

Use

negative

lengths

to

redefine

fields

in

the

middle

of

a

map

without

using

absolute

positioning.

The

data

type

values

are:

C

Character

V

Variable

B

Binary

(numeric)

Z

Zoned

Decimal

(numeric)

REXXIMS

Extended

CommandsIBM

Confidential

Chapter

13.

IMS

Adapter

for

REXX

273

P

Packed

Decimal

(numeric)

All

numeric

data

types

can

have

a

period

and

a

number

next

to

them.

The

number

indicates

the

number

of

digits

to

the

right

of

a

decimal

point

when

converting

the

number.

Length

value:

The

length

value

can

be

a

number

or

an

asterisk

(*),

which

indicates

that

the

rest

of

the

buffer

will

be

used.

You

can

only

specify

the

length

value

for

data

types

C

and

V.

Data

type

V

maps

a

2-byte

length

field

preceding

the

data

string,

such

that

a

when

the

declared

length

is

2,

it

takes

4

bytes.

Valid

lengths

for

data

types

are:

C

1

to

32767

bytes

or

*

V

1

to

32765

bytes

or

*

B

1

to

4

bytes

Z

1

to

12

bytes

P

1

to

6

bytes

If

a

value

other

than

asterisk

(*)

is

given,

the

cursor

position

is

moved

by

that

value.

The

startpos

value

resets

the

parsing

position

to

a

fixed

location.

If

startpos

is

omitted,

the

column

to

the

right

of

the

previous

map

variable

definition

(cursor

position)

is

used.

If

it

is

the

first

variable

definition,

column

1

is

used.

Note:

A

length

of

asterisk

(*)

does

not

move

the

cursor

position,

so

a

variable

declared

after

one

with

a

length

of

asterisk

(*)

without

specifying

a

start

column

overlays

the

same

definition.

Example

This

example

defines

a

map

named

DBMAP,

which

is

used

implicitly

on

a

GU

call

by

placing

an

asterisk

(*)

in

front

of

the

map

name.

DBMapDef

=

’RECORD

C

*

:’,

/*

Pick

up

entire

record

*/

’NAME

C

10

:’,

/*

Cols

1-10

hold

the

name

*/

’PRICE

Z.2

6

:’,

/*

Cols

11-16

hold

the

price

*/

’CODE

C

2

:’,

/*

Cols

11-16

hold

the

code

*/

’.

C

25

:’,

/*

Skip

25

columns

*/

’CATEGORY

B

1’

/*

Col

42

holds

category

*/

Address

REXXIMS

’MAPDEF

DBMAP

DBMapDef’

...
Address

REXXTDLI

’GU

DBPCB

*DBMAP’

/*

Read

and

decode

a

segment

*/

If

RC¬=0

Then

Signal

BadCall

/*

Check

for

failure

*/

Say

CODE

/*

Can

now

access

any

Map

Variable*/

The

entire

segment

retrieved

on

the

GU

call

is

placed

in

RECORD.

The

first

10

characters

are

placed

in

NAME,

and

the

next

6

are

converted

from

zoned

decimal

to

EBCDIC

with

two

digits

to

the

right

of

the

decimal

place

and

placed

in

PRICE.

The

next

2

characters

are

placed

in

CODE,

the

next

25

are

skipped,

and

the

next

character

is

converted

from

binary

to

EBCDIC

and

placed

in

CATEGORY.

The

25

characters

that

are

skipped

are

present

in

the

RECORD

variable.

MAPGET

The

MAPGET

command

is

a

request

to

parse

or

convert

a

buffer

into

a

specified

data

mapping

previously

defined

with

the

MAPDEF

command.

REXXIMS

Extended

Commands IBM

Confidential

274

Application

Programming:

Database

Manager

Format

��

MAPGET

mapname

buffer

��

Call

Name

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

MAPGET

X

X

X

X

X

Usage

The

mapname

variable

name

specifies

the

data

mapping

to

use.

It

is

a

1-

to

16-character

case-independent

name.

The

buffer

variable

name

is

the

REXX

variable

containing

the

data

to

parse.

Map

names

can

also

be

specified

in

the

REXXTDLI

calls

in

place

of

variable

names

to

be

set

or

written.

This

step

is

called

an

implicit

MAPGET.

Thus,

the

explicit

(or

variable

dependent)

MAPGET

call

can

be

avoided.

To

indicate

that

a

Map

name

is

being

passed

in

place

of

a

variable

in

the

DL/I

call,

precede

the

name

with

an

asterisk

(*),

for

example,

’GU

IOPCB

*INMAP’.

Examples

This

example

uses

explicit

support.

Address

REXXTDLI

’GU

DBPCB

SegVar’

If

RC=0

Then

Signal

BadCall

/*

Check

for

failure

*/

Address

REXXIMS

’MAPGET

DBMAP

SegVar’/*

Decode

Segment

*/

Say

VAR_CODE

/*Can

now

access

any

Map

Variable

*/

This

example

uses

implicit

support.

Address

REXXTDLI

’GU

DBPCB

*DBMAP’

/*

Read

and

decode

segment

if

read*/

If

RC=0

Then

Signal

BadCall

/*

Check

for

failure

*/

Say

VAR_CODE

/*

Can

now

access

any

Map

Variable*/

If

an

error

occurs

during

a

MAPGET,

message

DFS3172I

is

issued.

An

error

could

occur

when

a

Map

is

defined

that

is

larger

than

the

input

segment

to

be

decoded

or

during

a

data

conversion

error

from

packed

or

zoned

decimal

format.

The

program

continues,

and

an

explicit

MAPGET

receives

a

return

code

4.

However,

an

implicit

MAPGET

(on

a

REXXTDLI

call,

for

example)

does

not

have

its

return

code

affected.

Either

way,

the

failing

variable’s

value

is

dropped

by

REXX.

MAPPUT

This

MAPPUT

command

makes

a

request

to

pack

or

concatenate

variables

from

a

specified

Data

Mapping,

defined

by

the

MAPDEF

command,

into

a

single

variable.

Format

��

MAPPUT

mapname

buffer

��

Call

Name

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

MAPPUT

X

X

X

X

X

Usage

The

mapname

variable

name

specifies

the

data

mapping

to

use,

a

1-

to

16-character

case-independent

name.

The

buffer

variable

name

is

the

REXX

variable

that

will

contain

the

resulting

value.

REXXIMS

Extended

CommandsIBM

Confidential

Chapter

13.

IMS

Adapter

for

REXX

275

Map

names

can

also

be

specified

in

the

REXXTDLI

call

in

place

of

variable

names

to

be

fetched

or

read.

This

step

is

called

an

implicit

MAPPUT

and

lets

you

avoid

the

explicit

MAPPUT

call.

To

indicate

that

a

Map

name

is

being

passed

in

the

DL/I

call,

precede

the

name

with

an

asterisk

(*),

for

example,

’ISRT

IOPCB

*OUTMAP’.

Note:

If

the

data

mapping

is

only

partial

and

some

fields

in

the

record

are

not

mapped

to

REXX

variables,

then

the

first

field

in

the

mapping

should

be

a

character

type

of

length

asterisk

(*),

as

shown

in

the

“Example”

on

page

274.

This

step

is

the

only

way

to

ensure

that

non-mapped

(skipped)

fields

are

not

lost

between

the

MAPGET

and

MAPPUT

calls,

whether

they

be

explicit

or

implicit.

Examples

This

example

uses

explicit

support.

Address

REXXTDLI

’GHU

DBPCB

SegVar

SSA1’

/*

Read

segment

*/

If

RC¬=0

Then

Signal

BadCall

/*

Check

for

failure

*/

Address

REXXIMS

’MAPGET

DBMAP

SegVar’

/*

Decode

Segment

*/

DBM_Total

=

DBM_Total

+

Deposit_Amount

/*

Adjust

Mapped

Variable

*/

Address

REXXIMS

’MAPPUT

DBMAP

SegVar’

/*

Encode

Segment

*/

’REPL

DBPCB

SegVar’

/*

Update

Database

*/

If

RC¬=0

Then

Signal

BadCall

/*

Check

for

failure

*/

This

example

uses

implicit

support.

Address

REXXTDLI

’GHU

DBPCB

*DBMAP

SSA1’

/*

Read

and

decode

segment

if

read

*/

If

RC¬=0

Then

Signal

BadCall

/*

Check

for

failure

*/

DBM_Total

=

DBM_Total

+

Deposit_Amount

/*

Adjust

Mapped

Variable

*/

’REPL

DBPCB

*DBMAP’

/*

Update

Database

*/

If

RC¬=0

Then

Signal

BadCall

/*

Check

for

failure

*/

If

an

error

occurs

during

a

MAPPUT,

such

as

a

Map

field

defined

larger

than

the

variable’s

contents,

then

the

field

is

truncated.

If

the

variable’s

contents

are

shorter

than

the

field,

the

variable

is

padded:

Character

(C)

Padded

on

right

with

blanks

Character

(V)

Padded

on

right

with

zeros

Numeric

(B,Z,P)

Padded

on

the

left

with

zeros

If

a

MAP

variable

does

not

exist

when

a

MAPPUT

is

processed,

the

variable

and

its

position

are

skipped.

All

undefined

and

skipped

fields

default

to

binary

zeros.

A

null

parameter

is

parsed

normally.

Conversion

of

non-numeric

or

null

fields

to

numeric

field

results

in

a

value

of

0

being

used

and

no

error.

SET

The

SET

command

resets

AIB

subfunction

values

and

ZZ

values

before

you

issue

a

DL/I

call.

Format

��

SET

SUBFUNC

variable

ZZ

variable

��

Call

Name

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

SET

X

X

X

X

X

REXXIMS

Extended

Commands IBM

Confidential

276

Application

Programming:

Database

Manager

Usage

The

SET

SUBFUNC

command

sets

the

AIB

subfunction

used

on

the

next

DL/I

call.

This

value

is

used

only

if

the

next

REXXTDLI

call

passes

a

PCB

name.

If

the

call

does

pass

a

PCB

name,

the

IMS

adapter

for

REXX

places

the

subfunction

name

(1

to

8

characters

or

blank)

in

the

AIB

before

the

call

is

issued.

This

value

initially

defaults

to

blanks

and

is

reset

to

blanks

on

completion

of

any

REXXTDLI

DL/I

call.

For

more

information

on

subfunctions,

see

the

appropriate

sections

in

this

information.

The

SET

ZZ

command

is

used

to

set

the

ZZ

value

used

on

a

subsequent

DL/I

call.

This

command

is

most

commonly

used

in

IMS

conversational

transactions

and

terminal

dependent

applications

to

set

the

ZZ

field

to

something

other

than

the

default

of

binary

zeros.

Use

the

SET

command

before

an

ISRT

call

that

requires

other

than

the

default

ZZ

value.

For

more

explanation

on

ZZ

processing,

see

“Parameter

Handling”

on

page

268.

Examples

This

example

shows

the

SET

SUBFUNC

command

used

with

the

INQY

call

to

get

environment

information.

IO="IOPCB"

Func

=

"ENVIRON"

/*

Sub-Function

Value

*/

Address

REXXIMS

"SET

SUBFUNC

Func"

/*

Set

the

value

*/

Address

REXXTDLI

"INQY

IO

EnviData"

/*

Make

the

DL/I

Call

*/

IMS_Identifier

=

Substr(EnviData,1,8)

/*

Get

IMS

System

Name*/

This

example

shows

the

SET

ZZ

command

used

with

a

conversational

transaction

for

SPA

processing.

Address

REXXTDLI

’GU

IOPCB

SPA’

/*

Get

first

Segment

*/

Hold_ZZ

=

IMSQUERY(’ZZ’)

/*

Get

ZZ

Field

(4

bytes)

*/

...
Address

REXXIMS

’SET

ZZ

Hold_ZZ’

/*

Set

ZZ

for

SPA

ISRT

*/

Address

REXXTDLI

’ISRT

IOPCB

SPA’

/*

ISRT

the

SPA

*/

This

example

shows

the

SET

ZZ

command

used

for

setting

3270

Device

Characteristics

Flags.

Bell_ZZ

=

’0040’X

/*

ZZ

to

Ring

Bell

on

Term

*/

Address

REXXIMS

’SET

ZZ

Bell_ZZ’

/*

Set

ZZ

for

SPA

ISRT

*/

Address

REXXTDLI

’ISRT

IOPCB

Msg’

/*

ISRT

the

Message

*/

SRRBACK

and

SRRCMIT

The

Common

Programming

Interface

Resource

Recovery

(CPI-RR)

commands

allow

an

interface

to

use

the

SAA®

resource

recovery

interface

facilities

for

back-out

and

commit

processing.

Format

��

SRRBACK

return_code

SRRCMIT

return_code

��

Call

Name

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

SRRBACK,

SRRCMIT

X

X

REXXIMS

Extended

CommandsIBM

Confidential

Chapter

13.

IMS

Adapter

for

REXX

277

Usage

The

return

code

from

the

SRR

command

is

returned

and

placed

in

the

return_code

variable

name

as

well

as

the

REXX

variable

RC.

For

more

information

on

SRRBACK

and

SRRCMIT,

see

IMS

Version

9:

Administration

Guide:

Transaction

Manager

and

System

Application

Architecture

Common

Programming

Interface:

Resource

Recovery

Reference.

STORAGE

The

STORAGE

command

allows

the

acquisition

of

system

storage

that

can

be

used

in

place

of

variables

for

parameters

to

REXXTDLI

and

REXXIMS

calls.

Format

��

STORAGE

OBTAIN

!token

length

KEEP

BELOW

RELEASE

!token

��

Call

Name

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

STORAGE

X

X

X

X

X

Usage

Although

REXX

allows

variables

to

start

with

characters

(!)

and

(#),

these

characters

have

special

meanings

on

some

commands.

When

using

the

REXXTDLI

interface,

you

must

not

use

these

characters

as

the

starting

characters

of

variables.

The

!token

variable

name

identifies

the

storage,

and

it

consists

of

an

exclamation

mark

followed

by

a

1-

to

16-character

case-independent

token

name.

The

length

variable

name

is

a

number

or

variable

containing

size

in

decimal

to

OBTAIN

in

the

range

4

to

16777216

bytes

(16

MB).

The

storage

class

has

two

possible

override

values,

BELOW

and

KEEP,

of

which

only

one

can

be

specified

for

any

particular

token.

The

BELOW

function

acquires

the

private

storage

below

the

16

MB

line.

The

KEEP

function

marks

the

token

to

be

kept

after

this

EXEC

is

terminated.

The

default

action

gets

the

storage

in

any

location

and

frees

the

token

when

the

EXEC

is

terminated.

Use

the

STORAGE

command

to

get

storage

to

use

on

DL/I

calls

when

the

I/O

area

must

remain

in

a

fixed

location

(for

example,

Spool

API)

or

when

it

is

not

desirable

to

have

the

LLZZ

processing.

For

more

information

on

LLZZ

processing,

see

“Parameter

Handling”

on

page

268.

Once

a

token

is

allocated,

you

can

use

it

in

REXXTDLI

DL/I

calls

or

on

the

STORAGE

RELEASE

command.

Note

the

following

when

using

STORAGE:

v

When

used

on

DL/I

calls,

none

of

the

setup

for

LLZZ

fields

takes

place.

You

must

fill

the

token

in

and

parse

the

results

from

it

just

as

required

by

a

non-REXX

application.

v

You

cannot

specify

both

KEEP

and

BELOW

on

a

single

STORAGE

command.

v

The

RELEASE

function

is

only

necessary

for

tokens

marked

KEEP.

All

tokens

not

marked

KEEP

and

not

explicitly

released

by

the

time

the

EXEC

ends

are

released

automatically

by

the

IMS

adapter

for

REXX.

v

When

you

use

OBTAIN,

the

entire

storage

block

is

initialized

to

0.

REXXIMS

Extended

Commands IBM

Confidential

278

Application

Programming:

Database

Manager

v

The

starting

address

of

the

storage

received

is

always

on

the

boundary

of

a

double

word.

v

You

cannot

re-obtain

a

token

until

RELEASE

is

used

or

the

EXEC

that

obtained

it,

non-KEEP,

terminates.

If

you

try,

a

return

code

of

-9

is

given

and

the

error

message

DFS3169

is

issued.

v

When

KEEP

is

specified

for

the

storage

token,

it

can

be

accessed

again

when

this

EXEC

or

another

EXEC

knowing

the

token’s

name

is

started

in

the

same

IMS

region.

v

Tokens

marked

KEEP

are

not

retained

when

an

ABEND

occurs

or

some

other

incident

occurs

that

causes

region

storage

to

be

cleared.

It

is

simple

to

check

if

the

block

exists

on

entry

with

the

IMSQUERY(!token)

function.

For

more

information,

see

“IMSQUERY

Extended

Functions”

on

page

280.

Example

This

example

shows

how

to

use

the

STORAGE

command

with

Spool

API.

/*

Get

4K

Buffer

below

the

line

for

Spool

API

Usage

*/

Address

REXXIMS

’STORAGE

OBTAIN

!MYTOKEN

4096

BELOW’

/*

Get

Address

and

length

(if

curious)

*/

Parse

Value

IMSQUERY(’!MYTOKEN’)

With

My_Token_Addr

My_Token_Len.

Address

REXXIMS

’SETO

ALTPCB

!MYTOKEN

SETOPARMS

SETOFB’

...
Address

REXXIMS

’STORAGE

RELEASE

!MYTOKEN’

WTO,

WTP,

and

WTL

The

WTO

command

is

used

to

write

a

message

to

the

operator.

The

WTP

command

is

used

to

write

a

message

to

the

program

(WTO

ROUTCDE=11).

The

WTL

command

is

used

to

write

a

message

to

the

console

log.

Format

��

WTO

message

WTP

message

WTL

message

��

Call

Name

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

WTO,

WTP,

WTL

X

X

X

X

X

Usage

The

message

variable

name

is

a

REXX

variable

containing

the

text

that

is

stored

displayed

in

the

appropriate

place.

Example

This

example

shows

how

to

write

a

simple

message

stored

the

REXX

variable

MSG.

Msg

=

’Sample

output

message.’

/*

Build

Message

*/

Address

REXXIMS

’WTO

Msg’

/*

Tell

Operator

*/

Address

REXXIMS

’WTP

Msg’

/*

Tell

Programmer

*/

Address

REXXIMS

’WTL

Msg’

/*

Log

It

*/

WTOR

The

WTOR

command

requests

input

or

response

from

the

z/OS

system

operator.

REXXIMS

Extended

CommandsIBM

Confidential

Chapter

13.

IMS

Adapter

for

REXX

279

Format

��

WTOR

message

response

��

Call

Name

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

WTOR

X

X

X

X

X

Usage

The

message

variable

name

is

a

REXX

variable

containing

the

text

that

will

be

displayed

on

the

z/OS

console.

The

operator's

response

is

placed

in

the

REXX

variable

signified

by

the

response

variable

name.

Attention:

This

command

hangs

the

IMS

region

in

which

it

is

running

until

the

operator

responds.

Example

This

example

prompts

the

operator

to

enter

ROLL

or

CONT

on

the

z/OS

master

or

alternate

console.

Once

the

WTOR

is

answered,

the

response

is

placed

in

the

REXX

variable

name

response,

and

the

EXEC

will

process

the

IF

statement

appropriately.

Msg

=

’Should

I

ROLL

or

Continue.

Reply

"ROLL"

or

"CONT"’

Address

REXXIMS

’WTOR

Msg

Resp’

/*

Ask

Operator

*/

If

Resp

=

’ROLL’

Then

/*

Tell

Programmer

*/

Address

REXXTDLI

’ROLL’

/*

Roll

Out

of

this

*/

IMSQUERY

Extended

Functions

The

IMSQUERY

function

is

available

to

query

certain

IMS

information

either

on

the

environment

or

on

the

prior

DL/I

call.

Format

��

IMSQUERY

(

FEEDBACK

IMSRXTRC

REASON

SEGLEVEL

SEGNAME

STATUS

TRANCODE

USERID

ZZ

!token

)

��

Call

Name

DB/DC

DBCTL

DCCTL

DB

Batch

TM

Batch

IMSQUERY

X

X

X

X

X

Usage

The

format

of

the

function

call

is:

IMSQUERY(’Argument’)

where

Argument

is

one

of

the

following

values:

Argument

Description

of

Data

Returned

FEEDBACK

FEEDBACK

area

from

current

PCB.

IMSRXTRC

Current

IMSRXTRC

trace

level

#.

REXXIMS

Extended

Commands IBM

Confidential

280

Application

Programming:

Database

Manager

REASON

Reason

code

from

last

call

(from

AIB

if

used

on

last

REXXTDLI

type

call).

SEGLEVEL

Segment

level

from

current

PCB

(Last

REXXTDLI

call

must

be

against

a

DB

PCB,

or

null

is

returned).

SEGNAME

Segment

name

from

current

PCB

(Last

REXXTDLI

call

must

be

against

a

DB

PCB,

or

null

is

returned).

STATUS

IMS

status

code

from

last

executed

REXXTDLIcall

(DL/I

call).

This

argument

is

the

two

character

status

code

from

the

PCB.

TRANCODE

Current

transaction

code

being

processed,

if

available.

USERID

Input

terminal’s

user

ID,

if

available.

If

running

in

a

non-message-driven

region,

the

value

is

dependent

on

the

specification

of

the

BMPUSID=

keyword

in

the

DFSDCxxx

PROCLIB

member:

v

If

BMPUSID=USERID

is

specified,

the

value

from

the

USER=

keyword

on

the

JOB

statement

is

used.

v

If

USER=

is

not

specified

on

the

JOB

statement,

the

program’s

PSB

name

is

used.

v

If

BMPUSID=PSBNAME

is

specified,

or

if

BMPUSID=

is

not

specified

at

all,

the

program’s

PSB

name

is

used.

ZZ

ZZ

(of

LLZZ)

from

last

REXXTDLI

command.

This

argument

can

be

used

to

save

the

ZZ

value

after

you

issue

a

GU

call

to

the

I/O

PCB

when

the

transaction

is

conversational.

!token

Address

(in

hexadecimal)

and

length

of

specified

token

(in

decimal),

separated

by

a

blank.

This

value

can

be

placed

in

a

variable

or

resolved

from

an

expression.

In

these

cases,

the

quotation

marks

should

be

omitted

as

shown

below:

Token_Name="!MY_TOKEN"

AddrInfo=IMSQUERY(Token_Name)

/*

or

*/

AddrInfo=IMSQUERY("!MY_TOKEN")

Although

the

function

argument

is

case-independent,

no

blanks

are

allowed

within

the

function

argument.

You

can

use

the

REXX

STRIP

function

on

the

argument,

if

necessary.

IMSQUERY

is

the

preferred

syntax,

however

REXXIMS

is

supported

and

can

be

used,

as

well.

Example

If

REXXIMS(’STATUS’)=’GB’

Then

Signal

End_Of_DB

...
Hold_ZZ

=

IMSQUERY(’ZZ’)

/*

Get

current

ZZ

field*/

...
Parse

Value

IMSQUERY(’!MYTOKEN’)

With

My_Token_Addr

My_Token_Len

.

Related

Reading:

For

information

on

the

IMS

adapter

for

REXX

exit

routine,

see

IMS

Version

9:

Customization

Guide.

REXXIMS

Extended

CommandsIBM

Confidential

Chapter

13.

IMS

Adapter

for

REXX

281

IBM

Confidential

282

Application

Programming:

Database

Manager

Chapter

14.

Sample

Execs

Using

REXXTDLI

This

chapter

shows

samples

of

REXX

execs

that

use

REXXTDLI

to

access

IMS

services.

The

example

sets

are

designed

to

highlight

various

features

of

writing

IMS

applications

in

REXX.

The

samples

in

this

section

are

simplified

and

might

not

reflect

actual

usage

(for

example,

they

do

not

use

databases).

The

PART

exec

database

access

example

is

a

set

of

three

execs

that

access

the

PART

database,

which

is

built

by

the

IMS

installation

verification

program

(IVP).

The

first

two

execs

in

this

example,

PARTNUM

and

PARTNAME,

are

extensions

of

the

PART

transaction

that

runs

the

program

DFSSAM02,

which

is

supplied

with

IMS

as

part

of

IVP.

The

third

exec

is

the

DFSSAM01

exec

supplied

with

IMS

and

is

an

example

of

the

use

of

EXECIO

within

an

exec.

In

this

Chapter:

v

“SAY

Exec:

For

Expression

Evaluation”

v

“PCBINFO

Exec:

Display

PCBs

Available

in

Current

PSB”

on

page

284

v

“PART

Execs:

Database

Access

Example”

on

page

286

v

“DOCMD:

IMS

Commands

Front

End”

on

page

289

v

“IVPREXX:

MPP/IFP

Front

End

for

General

Exec

Execution”

on

page

293

SAY

Exec:

For

Expression

Evaluation

Figure

56

is

a

listing

of

the

SAY

exec.

SAY

evaluates

an

expression

supplied

as

an

argument

and

displays

the

results.

The

REXX

command

INTERPRET

is

used

to

evaluate

the

supplied

expression

and

assign

it

to

a

variable.

Then

that

variable

is

used

in

a

formatted

reply

message.

This

exec

shows

an

example

of

developing

applications

with

IMS

Adapter

for

REXX.

It

also

shows

the

advantages

of

REXX,

such

as

dynamic

interpretation,

which

is

the

ability

to

evaluate

a

mathematical

expression

at

run-time.

A

PDF

EDIT

session

is

shown

in

Figure

57

on

page

284.

This

figure

shows

how

you

can

enter

a

new

exec

to

be

executed

under

IMS.

/*

EXEC

TO

DO

CALCULATIONS

*/

Address

REXXTDLI

Arg

Args

If

Args=’’

Then

Msg=’SUPPLY

EXPRESSION

AFTER

EXEC

NAME.’

Else

Do

Interpret

’X=’Args

/*

Evaluate

Expression

*/

Msg=’EXPRESSION:’

Args

’=’

X

End

’ISRT

IOPCB

MSG’

Exit

RC

Figure

56.

Exec

To

Do

Calculations

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

283

To

execute

the

SAY

exec,

use

IVPREXX

and

supply

an

expression

such

as:

IVPREXX

SAY

5*5+7

This

expression

produces

the

output

shown

in

Figure

58.

PCBINFO

Exec:

Display

PCBs

Available

in

Current

PSB

The

PCB

exec

maps

the

PCBs

available

to

the

exec,

which

are

the

PCBs

for

the

executing

PSB.

The

mapping

consists

of

displaying

the

type

of

PCB

(IO,

TP,

or

DB),

the

LTERM

or

DBD

name

that

is

associated,

and

other

useful

information.

Mapping

displays

this

information

by

using

the

PCB

function

described

in

“DLIINFO”

on

page

271.

Example

output

screens

are

shown

in

Figure

59

and

Figure

60.

The

listing

is

shown

in

Figure

61

on

page

285.

PCB

mappings

are

created

by

placing

DFSREXX0

in

an

early

concatenation

library

and

renaming

it

to

an

existing

application

with

a

PSB/DBD

generation.

EDIT

USER.PRIVATE.PROCLIB(SAY)

-

01.03

COLUMNS

001

072

COMMAND

===>

SCROLL

===>

PAGE

TOP

OF

DATA

000001

/*

EXEC

TO

DO

CALCULATIONS

*/

000002

Address

REXXTDLI

000003

Arg

Args

000004

If

Args=’’

Then

000005

Msg=’SUPPLY

EXPRESSION

AFTER

EXEC

NAME.’

000006

Else

Do

000007

Interpret

’X=’Args

/*

Evaluate

Expression

*/

000008

Msg=’EXPRESSION:’

Args

’=’

X

000009

End

000010

000011

’ISRT

IOPCB

MSG’

000012

Exit

RC

BOTTOM

OF

DATA

Figure

57.

PDF

EDIT

Session

on

the

SAY

Exec

EXPRESSION:

5*5+7

=

32

EXEC

SAY

ended

with

RC=

0

Figure

58.

Example

Output

from

the

SAY

Exec

IMS

PCB

System

Information

Exec:

PCBINFO

System

Date:

09/26/92

Time:

15:52:15

PCB

#

1:

Type=IO,

LTERM=T3270LC

Status=

UserID=

OutDesc=DFSMO2

Date=91269

Time=1552155

PCB

#

2:

Type=TP,

LTERM=*

NONE

*

Status=AD

PCB

#

3:

Type=TP,

LTERM=*

NONE

*

Status=

PCB

#

4:

Type=TP,

LTERM=CTRL

Status=

PCB

#

5:

Type=TP,

LTERM=T3275

Status=

EXEC

PCBINFO

ended

with

RC=

0

Figure

59.

Example

Output

of

PCBINFO

Exec

on

a

PSB

without

Database

PCBs.

IMS

PCB

System

Information

Exec:

PCBINFO

System

Date:

09/26/92

Time:

15:53:34

PCB

#

1:

Type=IO,

LTERM=T3270LC

Status=

UserID=

OutDesc=DFSMO2

Date=89320

Time=1553243

PCB

#

2:

Type=DB,

DBD

=DI21PART

Status=

Level=00

Opt=G

EXEC

PCBINFO

ended

with

RC=

0

Figure

60.

Example

Output

of

PCBINFO

Exec

on

a

PSB

with

a

Database

PCB.

SAY

Exec IBM

Confidential

284

Application

Programming:

Database

Manager

/*

REXX

EXEC

TO

SHOW

SYSTEM

LEVEL

INFO

*/

Address

REXXTDLI

Arg

Dest

.

WTO=(Dest=’WTO’)

Call

SayIt

’IMS

PCB

System

Information

Exec:

PCBINFO’

Call

SayIt

’System

Date:’

Date(’U’)

’

Time:’

Time()

Call

Sayit

’

’

/*

A

DFS3162

message

is

given

when

this

exec

is

run

because

it

does

*/

/*

not

know

how

many

PCBs

are

in

the

list

and

it

runs

until

it

gets

*/

/*

an

error

return

code.

Note

this

does

not

show

PCBs

that

are

*/

/*

available

to

the

PSB

by

name

only,

that

is,

not

in

the

PCB

list.

*/

Msg=’PCBINFO:

Error

message

normal

on

DLIINFO.’

’WTP

MSG’

Do

i=1

by

1

until

Result=’LAST’

Call

SayPCB

i

End

Exit

0

SayPCB:

Procedure

Expose

WTO

Arg

PCB

’DLIINFO

DLIINFO

#’PCB

/*

Get

PCB

Address

*/

If

rc<0

Then

Return

’LAST’

/*

Invalid

PCB

Number

*/

Parse

Var

DLIInfo

.

.

AIBAddr

PCBAddr

.

PCBINFO=Storage(PCBAddr,255)

/*

Read

PCB

*/

DCPCB=(Substr(PCBInfo,13,1)=’00’x)

/*

Date

Field,

must

be

DC

PCB

*/

If

DCPCB

then

Do

Parse

Value

PCBInfo

with,

LTERM

9

.

11

StatCode

13

CurrDate

17

CurrTime

21,

InputSeq

25

OutDesc

33

UserID

41

If

LTERM=’’

then

LTERM=’*

NONE

*’

CurrDate=Substr(c2x(CurrDate),3,5)

CurrTime=Substr(c2x(CurrTime),1,7)

If

CurrDate¬=’000000’

then

Do

Call

SayIt

’PCB

#’Right(PCB,2)’:

Type=IO,

LTERM=’LTERM,

’Status=’StatCode

’UserID=’UserID

’OutDesc=’OutDesc

Call

SayIt

’

Date=’CurrDate

’Time=’CurrTime

End

Else

Call

SayIt

’PCB

#’Right(PCB,2)’:

Type=TP,

LTERM=’LTERM,

’Status=’StatCode

End

Else

Do

Parse

Value

PCBInfo

with,

DBDName

9

SEGLev

11

StatCode

13

ProcOpt

17

.

21

Segname

.

29,

KeyLen

33

NumSens

37

KeyLen

=

c2d(KeyLen)

NumSens=

c2d(NumSens)

Call

SayIt

’PCB

#’Right(PCB,2)’:

Type=DB,

DBD

=’DBDName,

’Status=’StatCode

’Level=’SegLev

’Opt=’ProcOpt

End

Return

’

SayIt:

Procedure

Expose

WTO

Parse

Arg

Msg

If

WTO

Then

’WTO

MSG’

Else

’ISRT

IOPCB

MSG’

Return

Figure

61.

PCBINFO

Exec

Listing

PCBINFO

ExecIBM

Confidential

Chapter

14.

Sample

Execs

Using

REXXTDLI

285

PART

Execs:

Database

Access

Example

This

set

of

execs

accesses

the

PART

database

shipped

with

IMS.

These

execs

demonstrate

fixed-record

database

reading,

SSAs,

and

many

REXX

functions.

The

PART

database

execs

(PARTNUM,

PARTNAME,

and

DFSSAM01)

are

described

in

this

section.

The

PARTNUM

exec

is

used

to

show

part

numbers

that

begin

with

a

number

equal

to

or

greater

than

the

number

you

specify.

An

example

output

screen

is

shown

in

Figure

62.

To

list

part

numbers

beginning

with

the

number

“300”

or

greater,

enter

the

command:

PARTNUM

300

All

part

numbers

that

begin

with

a

300

or

larger

numbers

are

listed.

The

listing

is

shown

in

Figure

64

on

page

287.

PARTNAME

is

used

to

show

part

names

that

begin

with

a

specific

string

of

characters.

To

list

part

names

beginning

with

“TRAN”,

enter

the

command:

PARTNAME

TRAN

All

part

names

that

begin

with

“TRAN”

are

listed

on

the

screen.

The

screen

is

shown

in

Figure

63.

The

listing

is

shown

in

Figure

65

on

page

288.

The

DFSSAM01

exec

is

used

to

load

the

parts

database.

This

exec

is

executed

in

batch,

is

part

of

the

IVP,

and

provides

an

example

of

EXECIO

usage

in

an

exec.

Related

Reading:

For

details,

see

IMS

Version

9:

Installation

Volume

1:

Installation

Verification.

IMS

Parts

DATABASE

Transaction

System

Date:

02/16/92

Time:

23:28:41

Request:

Display

5

Parts

with

Part_Number

>=

300

1

Part=3003802

Desc=CHASSIS

2

Part=3003806

Desc=SWITCH

3

Part=3007228

Desc=HOUSING

4

Part=3008027

Desc=CARD

FRONT

5

Part=3009228

Desc=CAPACITOR

EXEC

PARTNUM

ended

with

RC=

0

Figure

62.

Example

Output

of

PARTNUM

Exec

IMS

Parts

DATABASE

Transaction

System

Date:

02/16/92

Time:

23:30:09

Request:

Display

5

Parts

with

Part

Name

like

TRAN

1

Part=250239

Desc=TRANSISTOR

2

Part=7736847P001

Desc=TRANSFORMER

3

Part=975105-001

Desc=TRANSFORMER

4

Part=989036-001

Desc=TRANSFORMER

End

of

DataBase

reached

before

5

records

shown.

EXEC

PARTNAME

ended

with

RC=

0

Figure

63.

Example

Output

of

PARTNAME

Exec

PART

Execs IBM

Confidential

286

Application

Programming:

Database

Manager

PARTNUM

Exec:

Show

Set

of

Parts

Near

a

Specified

Number

Requirement:

The

following

REXX

exec

is

designed

to

be

run

by

the

IVPREXX

exec

with

PSB=DFSSAM02.

PARTNAME

Exec:

Show

a

Set

of

Parts

with

a

Similar

Name

Requirement:

The

following

REXX

exec

is

designed

to

be

run

by

the

IVPREXX

exec

with

PSB=DFSSAM02.

/*

REXX

EXEC

TO

SHOW

A

SET

OF

PARTS

NEAR

A

SPECIFIED

NUMBER

*/

/*

Designed

to

be

run

by

the

IVPREXX

exec

with

PSB=DFSSAM02

*/

/*

Syntax:

IVPREXX

PARTNUM

string

<start#>

*/

Address

REXXTDLI

IOPCB=’IOPCB’

/*

PCB

Name

*/

DataBase=’#2’

/*

PCB

#

*/

RootSeg_Map

=

’PNUM

C

15

3

:

DESCRIPTION

C

20

27’

’MAPDEF

ROOTSEG

ROOTSEG_MAP’

Call

SayIt

’IMS

Parts

DATABASE

Transaction’

Call

SayIt

’System

Date:’

Date(’U’)

’

Time:’

Time()

Call

Sayit

’

’

Arg

PartNum

Segs

.

If

¬DataType(Segs,’W’)

then

Segs=5

/*

default

view

amount

*/

PartNum=Left(PartNum,15)

/*

Pad

to

15

with

Blanks

*/

If

PartNum=’’

then

Call

Sayit

’Request:

Display

first’

Segs

’Parts

in

the

DataBase’

Else

Call

Sayit

’Request:

Display’

Segs

’Parts

with

Part_Number

>=’

PartNum

SSA1=’PARTROOT(PARTKEY

>=02’PartNum’)’

’GU

DATABASE

*ROOTSEG

SSA1’

Status=IMSQUERY(’STATUS’)

If

Status=’GE’

then

Do

/*

Segment

Not

Found

*/

Call

Sayit

’No

parts

found

with

larger

Part_Number’

Exit

0

End

Do

i=1

to

Segs

While

Status=’

’

Call

Sayit

Right(i,2)

’Part=’PNum

’

Desc=’Description

’GN

DATABASE

*ROOTSEG

SSA1’

Status=IMSQUERY(’STATUS’)

End

If

Status=’GB’

then

Call

SayIt

’End

of

DataBase

reached

before’

Segs

’records

shown.’

Else

If

Status¬=’

’

then

Signal

BadCall

Call

Sayit

’

’

Exit

0

SayIt:

Procedure

Expose

IOPCB

Parse

Arg

Msg

’ISRT

IOPCB

MSG’

If

RC¬=0

then

Signal

BadCall

Return

BadCall:

’DLIINFO

INFO’

Parse

Var

Info

Call

PCB

.

.

.

.

Status

.

Msg

=

’Unresolved

Status

Code’

Status,

’on’

Call

’on

PCB’

PCB

’ISRT

IOPCB

MSG’

Exit

99

Figure

64.

PARTNUM

Exec:

Show

Set

of

Parts

Near

a

Specified

Number

PART

ExecsIBM

Confidential

Chapter

14.

Sample

Execs

Using

REXXTDLI

287

DFSSAM01

Exec:

Load

the

Parts

Database

For

the

latest

version

of

the

DFSSAM01

source

code,

see

the

IMS.ADFSEXEC

distribution

library;

member

name

is

DFSSAM01.

/*

REXX

EXEC

TO

SHOW

ALL

PARTS

WITH

A

NAME

CONTAINING

A

STRING

*/

/*

Designed

to

be

run

by

the

IVPREXX

exec

with

PSB=DFSSAM02

*/

/*

Syntax:

IVPREXX

PARTNAME

string

<#parts>

*/

Arg

PartName

Segs

.

Address

REXXIMS

Term

=’IOPCB’

/*

PCB

Name

*/

DataBase=’DBPCB01’

/*

PCB

Name

for

Parts

Database

*/

Call

SayIt

’IMS

Parts

DATABASE

Transaction’

Call

SayIt

’System

Date:’

Date(’U’)

’

Time:’

Time()

Call

Sayit

’

’

If

¬DataType(Segs,’W’)

&

Segs¬=’*’

then

Segs=5

If

PartName=’’

then

Do

Call

Sayit

’Please

supply

the

first

few

characters

of

the

part

name’

Exit

0

End

Call

Sayit

’Request:

Display’

Segs

’Parts

with

Part

Name

like’

PartName

SSA1=’PARTROOT

’

’GU

DATABASE

ROOT_SEG

SSA1’

Status=REXXIMS(’STATUS’)

i=0

Do

While

RC=0

&

(i<Segs

|

Segs=’*’)

Parse

Var

Root_Seg

3

PNum

18

27

Description

47

’GN

DATABASE

ROOT_SEG

SSA1’

Status=REXXIMS(’STATUS’)

If

RC¬=0

&

Status¬=’GB’

Then

Leave

If

Index(Description,PartName)=0

then

Iterate

i=i+1

Call

Sayit

Right(i,2)’)

Part=’PNum

’

Desc=’Description

End

If

RC¬=0

&

Status¬=’GB’

Then

Signal

BadCall

If

i<Segs

&

Segs¬=’*’

then

Call

SayIt

’End

of

DataBase

reached

before’

Segs

’records

shown.’

Call

Sayit

’

’

Exit

0

SayIt:

Procedure

Expose

Term

Parse

Arg

Msg

’ISRT

Term

MSG’

If

RC¬=0

then

Signal

BadCall

Return

BadCall:

Call

"DFSSUT04"

Term

Exit

99

Figure

65.

PARTNAME

Exec:

Show

Parts

with

Similar

Names

PART

Execs IBM

Confidential

288

Application

Programming:

Database

Manager

DOCMD:

IMS

Commands

Front

End

DOCMD

is

an

automatic

operator

interface

(AOI)

transaction

program

that

issues

IMS

commands

and

allows

dynamic

filtering

of

their

output.

The

term

“dynamic”

means

that

you

use

the

headers

for

the

command

as

the

selectors

(variable

names)

in

the

filter

expression

(Boolean

expression

resulting

in

1

if

line

is

to

be

displayed

and

0

if

it

is

not).

This

listing

is

shown

in

Figure

72

on

page

291.

Not

all

commands

are

allowed

through

transaction

AOI,

and

some

setup

needs

to

be

done

to

use

this

AOI.

Related

Reading:

See

“Security

Considerations

for

Automated

Operator

Commands”

in

IMS

Version

9:

Administration

Guide:

System

for

more

information.

Some

examples

of

DOCMD

are

given

in

Figure

66,

Figure

67,

Figure

68,

Figure

69

on

page

290,

Figure

70

on

page

290,

and

Figure

71

on

page

290.

Please

supply

an

IMS

Command

to

execute.

EXEC

DOCMD

ended

with

RC=

0

Figure

66.

Output

from

=

>

DOCMD

Headers

being

shown

for

command:

/DIS

NODE

ALL

Variable

(header)

#1

=

RECTYPE

Variable

(header)

#2

=

NODE_SUB

Variable

(header)

#3

=

TYPE

Variable

(header)

#4

=

CID

Variable

(header)

#5

=

RECD

Variable

(header)

#6

=

ENQCT

Variable

(header)

#7

=

DEQCT

Variable

(header)

#8

=

QCT

Variable

(header)

#9

=

SENT

EXEC

DOCMD

ended

with

RC=

0

Figure

67.

Output

from

=

>

DOCMD

/DIS

NODE

ALL;?

Selection

criteria

=>CID>0<=

Command:

/DIS

NODE

ALL

NODE_SUB

TYPE

CID

RECD

ENQCT

DEQCT

QCT

SENT

L3270A

3277

01000004

5

19

19

0

26

IDLE

CON

L3270C

3277

01000005

116

115

115

0

122

CON

Selected

2

lines

from

396

lines.

DOCMD

Executed

402

DL/I

calls

in

2.096787

seconds.

EXEC

DOCMD

ended

with

RC=

0

Figure

68.

Output

from

=

>

DOCMD

/DIS

NODE

ALL;CID>0

DOCMDIBM

Confidential

Chapter

14.

Sample

Execs

Using

REXXTDLI

289

The

source

code

for

the

DOCMD

exec

is

shown

in

Figure

72

on

page

291.

Selection

criteria

=>TYPE=SLU2<=

Command:

/DIS

NODE

ALL

NODE_SUB

TYPE

CID

RECD

ENQCT

DEQCT

QCT

SENT

WRIGHT

SLU2

00000000

0

0

0

0

0

IDLE

Q3290A

SLU2

00000000

0

0

0

0

0

IDLE

Q3290B

SLU2

00000000

0

0

0

0

0

IDLE

Q3290C

SLU2

00000000

0

0

0

0

0

IDLE

Q3290D

SLU2

00000000

0

0

0

0

0

IDLE

V3290A

SLU2

00000000

0

0

0

0

0

IDLE

V3290B

SLU2

00000000

0

0

0

0

0

IDLE

H3290A

SLU2

00000000

0

0

0

0

0

IDLE

H3290B

SLU2

00000000

0

0

0

0

0

IDLE

E32701

SLU2

00000000

0

0

0

0

0

IDLE

E32702

SLU2

00000000

0

0

0

0

0

IDLE

E32703

SLU2

00000000

0

0

0

0

0

IDLE

E32704

SLU2

00000000

0

0

0

0

0

IDLE

E32705

SLU2

00000000

0

0

0

0

0

IDLE

ADLU2A

SLU2

00000000

0

0

0

0

0

IDLE

ADLU2B

SLU2

00000000

0

0

0

0

0

IDLE

ADLU2C

SLU2

00000000

0

0

0

0

0

IDLE

ADLU2D

SLU2

00000000

0

0

0

0

0

IDLE

ADLU2E

SLU2

00000000

0

0

0

0

0

IDLE

ADLU2F

SLU2

00000000

0

0

0

0

0

IDLE

ADLU2X

SLU2

00000000

0

0

0

0

0

IDLE

ENDS01

SLU2

00000000

0

0

0

0

0

IDLE

ENDS02

SLU2

00000000

0

0

0

0

0

IDLE

ENDS03

SLU2

00000000

0

0

0

0

0

IDLE

ENDS04

SLU2

00000000

0

0

0

0

0

IDLE

ENDS05

SLU2

00000000

0

0

0

0

0

IDLE

ENDS06

SLU2

00000000

0

0

0

0

0

IDLE

NDSLU2A1

SLU2

00000000

0

0

0

0

0

ASR

IDLE

NDSLU2A2

SLU2

00000000

0

0

0

0

0

ASR

IDLE

NDSLU2A3

SLU2

00000000

0

0

0

0

0

ASR

IDLE

NDSLU2A4

SLU2

00000000

0

0

0

0

0

ASR

IDLE

NDSLU2A5

SLU2

00000000

0

0

0

0

0

IDLE

NDSLU2A6

SLU2

00000000

0

0

0

0

0

ASR

IDLE

OMSSLU2A

SLU2

00000000

0

0

0

0

0

IDLE

Selected

34

lines

from

396

lines.

DOCMD

Executed

435

DL/I

calls

in

1.602206

seconds.

EXEC

DOCMD

ended

with

RC=

0

Figure

69.

Output

from

=

>

DOCMD

/DIS

NODE

ALL;TYPE=SLU2

Selection

criteria

=>ENQCT>0

&

RECTYPE=’T02’<=

Command:

/DIS

TRAN

ALL

TRAN

CLS

ENQCT

QCT

LCT

PLCT

CP

NP

LP

SEGSZ

SEGNO

PARLM

RC

TACP18

1

119

0

65535

65535

1

1

1

0

0

NONE

1

Selected

1

lines

from

1104

lines.

DOCMD

Executed

1152

DL/I

calls

in

5.780977

seconds.

EXEC

DOCMD

ended

with

RC=

0

Figure

70.

Output

from

=

>

DOCMD

/DIS

TRAN

ALL;ENQCT>0

&

RECTYPE=’T02’

Selection

criteria

=>ENQCT>0<=

Command:

/DIS

LTERM

ALL

LTERM

ENQCT

DEQCT

QCT

CTRL

19

19

0

T3270LC

119

119

0

Selected

2

lines

from

678

lines.

DOCMD

Executed

681

DL/I

calls

in

1.967670

seconds.

EXEC

DOCMD

ended

with

RC=

0

Figure

71.

Output

from

=

>

DOCMD

/DIS

LTERM

ALL;ENQCT>0

DOCMD IBM

Confidential

290

Application

Programming:

Database

Manager

/***/

/*

A

REXX

exec

that

executes

an

IMS

command

and

parses

the

*/

/*

output

by

a

user

supplied

criteria.

*/

/*

*/

/***/

/*

Format:

tranname

DOCMD

IMS-Command;Expression

*/

/*

Where:

*/

/*

tranname

is

the

tranname

of

a

command

capable

transaction

that

*/

/*

will

run

the

IVPREXX

program.

*/

/*

IMS-Command

is

any

valid

IMS

command

that

generates

a

table

of

*/

/*

output

like

/DIS

NODE

ALL

or

/DIS

TRAN

ALL

*/

/*

Expression

is

any

valid

REXX

expression,

using

the

header

names*/

/*

as

the

variables,

like

CID>0

or

SEND=0

or

more

*/

/*

complex

like

CID>0

&

TYPE=SLU2

*/

/*

Example:

TACP18

DOCMD

DIS

A

Display

active

*/

/*

TACP18

DOCMD

DIS

NODE

ALL;?

See

headers

of

DIS

NODE

*/

/*

TACP18

DOCMD

DIS

NODE

ALL;CID>0

Show

active

Nodes

*/

/*

TACP18

DOCMD

DIS

NODE

ALL;CID>0

&

TYPE=’SLU2’

*/

/***/

Address

REXXTDLI

Parse

Upper

Arg

Cmd

’;’

Expression

Cmd=Strip(Cmd);

Expression=Strip(Expression)

If

Cmd=’’

Then

Do

Call

SayIt

’Please

supply

an

IMS

Command

to

execute.’

Exit

0

End

AllOpt=

(Expression=’ALL’)

If

AllOpt

then

Expression=’

If

Left(Cmd,1)¬=’/’

then

Cmd=’/’Cmd

/*

Add

a

slash

if

necessary

*/

If

Expression=’’

Then

Call

SayIt

’No

Expression

supplied,

all

output

shown’,

’from:’

Cmd

Else

If

Expression=’?’

Then

Call

SayIt

’Headers

being

shown

for

command:’

Cmd

Else

Call

SayIt

’Selection

criteria

=>’Expression’<=’,

’Command:’

Cmd

x=Time(’R’);

Calls=0

ExitRC=

ParseHeader(Cmd,Expression)

If

ExitRC¬=0

then

Exit

ExitRC

If

Expression=’?’

Then

Do

Do

i=1

to

Vars.0

Call

SayIt

’Variable

(header)

#’i

’=’

Vars.i

Calls=Calls+1

End

End

Figure

72.

DOCMD

Exec:

Process

an

IMS

Command

(Part

1

of

3)

DOCMDIBM

Confidential

Chapter

14.

Sample

Execs

Using

REXXTDLI

291

Else

Do

Call

ParseCmd

Expression

Do

i=1

to

Line.0

If

AllOpt

then

Line=Line.i

Else

Line=Substr(Line.i,5)

Call

SayIt

Line

Calls=Calls+1

End

If

Expression¬=’’

then

Call

SayIt

’Selected’

Line.0-1

’lines

from’,

LinesAvail

’lines.’

Else

Call

SayIt

’Total

lines

of

output:’

Line.0-1

Call

SayIt

’DOCMD

Executed’

Calls

’DL/I

calls

in’,

Time(’E’)

’seconds.’

End

Exit

0

ParseHeader:

CurrCmd=Arg(1)

CmdCnt=0

’CMD

IOPCB

CURRCMD’

CmdS=

IMSQUERY(’STATUS’)

Calls=Calls+1

If

CmdS=’

’

then

Do

Call

SayIt

’Command

Executed,

No

output

available.’

Return

4

End

Else

If

CmdS¬=’CC’

then

Do

Call

SayIt

’Error

Executing

Command,

Status=’CmdS

Return

16

End

CurrCmd=Translate(CurrCmd,’

’,’15’x)

/*

Drop

special

characters

*/

CurrCmd=Translate(CurrCmd,’__’,’-/’)

/*

Drop

special

characters

*/

CmdCnt=CmdCnt+1

Interpret

’LINE.’||CmdCnt

’=

Strip(CurrCmd)’

Parse

Var

CurrCmd

RecType

Header

If

Expression=’’

then

Nop

Else

If

Right(RecType,2)=’70’

then

Do

Vars.0=Words(Header)+1

Vars.1

=

"RECTYPE"

Do

i=

2

to

Vars.0

Interpret

’VARS.’i

’=

"’Word(CurrCmd,i)’"’

End

End

Else

Do

Call

SayIt

’Command

did

not

produce

a

header’,

’record,

first

record’s

type=’RecType

Return

12

End

Return

0

Figure

72.

DOCMD

Exec:

Process

an

IMS

Command

(Part

2

of

3)

DOCMD IBM

Confidential

292

Application

Programming:

Database

Manager

IVPREXX:

MPP/IFP

Front

End

for

General

Exec

Execution

The

IVPREXX

exec

is

a

front-end

generic

exec

that

is

shipped

with

IMS

as

part

of

the

IVP.

It

runs

other

execs

by

passing

the

exec

name

to

execute

after

the

TRANCODE

(IVPREXX).

For

further

details

on

IVPREXX,

see

“IVPREXX

Sample

Application”

on

page

265.

For

the

latest

version

of

the

IVPREXX

source

code,

see

the

IMS.ADFSEXEC

distribution

library;

member

name

is

IVPREXX.

ParseCmd:

LinesAvail=0

CurrExp=Arg(1)

Do

Forever

’GCMD

IOPCB

CURRCMD’

CmdS=

IMSQUERY(’STATUS’)

Calls=Calls+1

If

CmdS¬=’

’

then

Leave

/*

Skip

Time

Stamps

*/

If

Word(CurrCmd,1)=’X99’

&

Expression¬=’’

then

Iterate

LinesAvail=LinesAvail+1

CurrCmd=Translate(CurrCmd,’

’,’15’x)/*

Drop

special

characters

*/

If

Expression=’’

then

OK=1

Else

Do

Do

i=

1

to

Vars.0

Interpret

Vars.i

’=

"’Word(CurrCmd,i)’"’

End

Interpret

’OK=’Expression

End

If

OK

then

Do

CmdCnt=CmdCnt+1

Interpret

’LINE.’||CmdCnt

’=

Strip(CurrCmd)’

End

End

Line.0

=

CmdCnt

If

CmdS¬=’QD’

Then

Call

SayIt

’Error

Executing

Command:’,

Arg(1)

’Stat=’CmdS

Return

SayIt:

Procedure

Parse

Arg

Line

’ISRT

IOPCB

LINE’

Return

RC

Figure

72.

DOCMD

Exec:

Process

an

IMS

Command

(Part

3

of

3)

IVPREXXIBM

Confidential

Chapter

14.

Sample

Execs

Using

REXXTDLI

293

IBM

Confidential

294

Application

Programming:

Database

Manager

Part

3.

Reference

Chapter

15.

Summary

of

DM

and

System

Service

Calls

.

.

.

.

.

.

.

. 297

Database

Management

Call

Summary

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 297

System

Service

Call

Summary

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 298

Chapter

16.

Command

Codes

Reference

.

.

.

.

.

.

.

.

.

.

.

.

.

. 301

Chapter

17.

CICS-DL/I

User

Interface

Block

Return

Codes

.

.

.

.

.

.

. 303

Not-Open

Conditions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 304

Invalid

Request

Conditions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 304

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

295

IBM

Confidential

296

Application

Programming:

Database

Manager

Chapter

15.

Summary

of

DM

and

System

Service

Calls

This

chapter

contains

tables

that

summarize

the

database

management

and

system

service

calls.

In

this

Chapter:

v

“Database

Management

Call

Summary”

v

“System

Service

Call

Summary”

on

page

298

Related

Reading:

For

detailed

information

on

a

specific

call,

see

Chapter

4,

“Writing

DL/I

Calls

for

Database

Management,”

on

page

121

or

Chapter

5,

“Writing

DL/I

Calls

for

System

Services,”

on

page

149.

For

information

on

the

use

of

calls

with

programming

language

interfaces,

see

Chapter

3,

“Defining

Application

Program

Elements,”

on

page

77.

Database

Management

Call

Summary

Table

50

shows

the

parameters

that

are

valid

for

each

database

management

call.

Optional

parameters

are

enclosed

in

brackets

([

]).

Restriction:

Language-dependent

parameters

are

not

shown

here.

The

variable

parmcount

is

required

for

all

PLITDLI

calls.

Either

parmcount

or

VL

is

required

for

assembler

language

calls.

Parmcount

is

optional

in

COBOL,

C,

and

Pascal

programs.

Related

Reading:

For

more

information

on

language-dependent

application

elements,

see

Chapter

3,

“Defining

Application

Program

Elements,”

on

page

77.

Table

50.

Summary

of

DB

Calls

Function

Code

Meaning

and

Use

Options

Parameters

Valid

for

CLSE

Close

Closes

a

GSAM

database

explicitly

function,

gsam

pcb

or

aib

DB/DC,

DBCTL,

DB

batch,

ODBA

DEQ�

Dequeue

Releases

segments

reserved

by

Q

command

code

function,

i/o

pcb

(full

function

only),

or

aib,

i/o

area

(full

function

only)

DB

batch,

BMP,

MPP,

IFP,

DBCTL,

ODBA

DLET

Delete

Removes

a

segment

and

its

dependents

from

the

database

function,

db

pcb

or

aib,

i/o

area,

[ssa]

DB/DC,

DBCTL,

DB

batch,

ODBA

FLD�

Field

Accesses

a

field

within

a

segment

function,

db

pcb

or

aib,

i/o

area,

rootssa

DB/DC,

ODBA

GHN�

Get

Hold

Next

Retrieves

subsequent

message

segments

function,

db

pcb

or

aib,

i/o

area,

[ssa]

DB/DC,

DBCTL,

DB

batch,

ODBA

GHNP

Get

Hold

Next

in

Parent

Retrieves

dependents

sequentially

function,

db

pcb

or

aib,

i/o

area,

[ssa]

DB/DC,

DBCTL,

DB

batch,

ODBA

GHU�

Get

Hold

Unique

Retrieves

segments

and

establishes

a

starting

position

in

the

database

function,

db

pcb

or

aib,

i/o

area,

[ssa]

DB/DC,

DBCTL,

DB

batch,

ODBA

GN��

Get

Next

Retrieves

subsequent

message

segments

function,

db

pcb

or

aib,

i/o

area,

[ssa

or

rsa]

DB/DC,

DBCTL,

DB

batch,

ODBA

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

297

Table

50.

Summary

of

DB

Calls

(continued)

Function

Code

Meaning

and

Use

Options

Parameters

Valid

for

GNP�

Get

Hold

Next

in

Parent

Retrieves

dependents

sequentially

function,

db

pcb

or

aib,

i/o

area,

[ssa]

DB/DC,

DBCTL,

DB

batch,

ODBA

GU��

Get

Unique

Retrieves

segments

and

establishes

a

starting

position

in

the

database

function,

db

pcb

or

aib,

i/o

area,

[ssa

or

rsa]

DB/DC,

DBCTL,

DB

batch,

ODBA

ISRT

Insert

Loads

and

adds

one

or

more

segments

to

the

database

function,

db

pcb

or

aib,

i/o

area,

[ssa

or

rsa]

DB/DC,

DCCTL,

DB

batch,

ODBA

OPEN

Open

Opens

a

GSAM

database

explicitly

function,

gsam

pcb

or

aib,

[i/o

area]

DB/DC,

DBCTL,

DB

batch,

ODBA

POS�

Position

Retrieves

the

location

of

a

specific

dependent

or

last-inserted

sequential

dependent

segment

function,

db

pcb

or

aib,

i/o

area,

[ssa]

DB/DC,

DBCTL,

DB

batch,

ODBA

REPL

Replace

Changes

values

of

one

or

more

fields

in

a

segment

function,

db

pcb

or

aib,

i/o

area,

[ssa]

DB/DC,

DBCTL,

DB

batch,

ODBA

System

Service

Call

Summary

Table

51

summarizes

which

system

service

calls

you

can

use

in

each

type

of

IMS

DB

application

program

and

the

parameters

for

each

call.

Optional

parameters

are

enclosed

in

brackets

([

]).

Exception:

Language-dependent

parameters

are

not

shown

here.

For

more

information

on

language-dependent

application

elements,

see

Chapter

3,

“Defining

Application

Program

Elements,”

on

page

77.

Table

51.

Summary

of

System

Service

Calls

Function

Code

Meaning

and

Use

Options

Parameters

Valid

for

CHKP

(Basic)

Basic

checkpoint;

prepares

for

recovery

None

function,

i/o

pcb

or

aib,

i/o

area

DB

batch,

TM

batch,

BMP,

MPP,

IFP

CHKP

(Symbolic)

Symbolic

checkpoint;

prepares

for

recovery

Specifies

up

to

seven

program

areas

to

be

saved

function,

i/o

pcb

or

aib,

i/o

area

len,

i/o

area[,

area

len,

area]

DB

batch,

TM

batch,

BMP

GMSG

Retrieves

a

message

from

the

AO

exit

routine

Waits

for

an

AOI

message

when

none

is

available

function,

aib,

i/o

area

DB/DC

and

DCCTL

(BMP,

MPP,

IFP),

DB/DC

and

DBCTL

(DRA

thread),

DBCTL

(BMP

non-message

driven),

ODBA

GSCD1

Gets

address

of

system

contents

directory

None

function,

db

pcb,

i/o

pcb

or

aib,

i/o

area

DB

Batch,

TM

Batch

Summary

of

Database

Management

Calls IBM

Confidential

298

Application

Programming:

Database

Manager

Table

51.

Summary

of

System

Service

Calls

(continued)

Function

Code

Meaning

and

Use

Options

Parameters

Valid

for

ICMD

Issues

an

IMS

command

and

retrieves

the

first

command

response

segment

None

function,

aib,

i/o

area

DB/DC

and

DCCTL

(BMP,

MPP,

IFP),

DB/DC

and

DBCTL

(DRA

thread),

DBCTL

(BMP

non-message

driven),

ODBA

INIT

Initialize;

application

receives

data

availability

and

deadlock

occurrence

status

codes

Checks

each

PCB

database

for

data

availability

function,

i/o

pcb

or

aib,

i/o

area

DB

batch,

TM

batch,

BMP,

MPP,

IFP,

DBCTL,

ODBA

INQY

Inquiry;

returns

information

and

status

codes

about

I/O

or

alternate

PCB

destination

type,

location,

and

session

status

Checks

each

PCB

database

for

data

availability;

returns

information

and

status

codes

about

the

current

execution

environment

function,

aib,

i/o

area,

AIBFUNC=FIND|

DBQUERY|

ENVIRON

DB

batch,

TM

batch,

BMP,

MPP,

IFP,

ODBA

LOG�

Log;

writes

a

message

to

the

system

log

None

function,

i/o

pcb

or

aib,

i/o

area

DB

batch,

TM

batch,

BMP,

MPP,

IFP,

DBCTL,

ODBA

PCB�

Specifies

and

schedules

another

PSB

None

function,

psb

name,

uibptr,

[,sysserve]

CICS

(DBCTL

or

DB/DC)

RCMD

Retrieves

the

second

and

subsequent

command

response

segments

resulting

from

an

ICMD

call

None

function,

aib,

i/o

area

DB/DC

and

DCCTL

(BMP,

MPP,

IFP),

DB/DC

and

DBCTL

(DRA

thread),

DBCTL

(BMP

non-message

driven),

ODBA

ROLB

Roll

back;

eliminates

database

updates

Returns

last

message

to

i/o

area

function,

i/o

pcb

or

aib,

i/o

area

DB

batch,

TM

batch,

BMP,

MPP,

IFP

ROLL

Roll;

eliminates

database

updates;

abend

None

function

DB

batch,

TM

batch,

BMP,

MPP,

IFP

ROLS

Roll

back

to

SETS;

backs

out

database

changes

to

SETS

points

Issues

call

using

name

of

DB

PCB

or

i/o

PCB

function,

db

pcb,

i/o

pcb

or

aib,

i/o

area,

token

DB

batch,

TM

batch,

BMP,

MPP,

IFP,

DBCTL,

ODBA

SETS/SETU

Set

a

backout

point;

establishes

as

many

as

nine

intermediate

backout

points

Cancels

all

existing

backout

points

function,

i/o

pcb

or

aib,

i/o

area,

token

DB

batch,

TM

batch,

BMP,

MPP,

IFP,

DBCTL,

ODBA

SNAP2

Collects

diagnostic

information

Choose

SNAP

options

function,

db

pcb

or

aib,

i/o

area

DB

batch,

BMP,

MPP,

IFP,

CICS

(DBCTL

or

DB/DC),

ODBA

STAT3

Statistics;

retrieves

IMS

system

statistics

Choose

type

and

format

function,

db

pcb

or

aib,

i/o

area,

stat

function

DB

batch,

BMP,

MPP,

IFP,

DBCTL,

ODBA

SYNC

Synchronization;

releases

locked

resources

Requests

commit-point

processing

function,

i/o

pcb

or

aib

BMP

Summary

of

System

Service

CallsIBM

Confidential

Chapter

15.

Summary

of

DM

and

System

Service

Calls

299

Table

51.

Summary

of

System

Service

Calls

(continued)

Function

Code

Meaning

and

Use

Options

Parameters

Valid

for

TERM

Terminate;

releases

a

PSB

so

another

can

be

scheduled;

commit

database

changes

None

function

CICS

(DBCTL

or

DB/DC)

XRST

Extended

restart;

works

with

symbolic

checkpoint

to

restart

application

program

Specifies

up

to

seven

areas

to

be

saved

function,

i/o

pcb

or

aib,

i/o

area

len,

i/o

area[,

area

len,

area]

DB

batch,

TM

batch,

BMP

Note:

1.

GSCD

is

a

Product-sensitive

programming

interface.

2.

SNAP

is

a

Product-sensitive

programming

interface.

3.

STAT

is

a

Product-sensitive

programming

interface.

Summary

of

System

Service

Calls IBM

Confidential

300

Application

Programming:

Database

Manager

Chapter

16.

Command

Codes

Reference

This

chapter

contains

the

following

reference

information

on

all

of

the

command

codes:

v

A

brief

description

of

each

command

code

(see

Table

52)

v

A

list

of

the

calls

you

can

use

with

each

command

code

(see

Table

53)

Table

52.

Summary

of

Command

Codes

Command

Code

Allows

You

to...

C

Use

the

concatenated

key

of

a

segment

to

identify

the

segment.

D

Retrieve

or

insert

a

sequence

of

segments

in

a

hierarchic

path

using

only

one

call,

instead

of

having

to

use

a

separate

(path)

call

for

each

segment.

F

Back

up

to

the

first

occurrence

of

a

segment

under

its

parent

when

searching

for

a

particular

segment

occurrence.

Disregarded

for

a

root

segment.

L

Retrieve

the

last

occurrence

of

a

segment

under

its

parent.

M

Move

a

subset

pointer

to

the

next

segment

occurrence

after

your

current

position.

(Used

with

DEDBs

only.)

N

Designate

segments

that

you

do

not

want

replaced

when

replacing

segments

after

a

Get

Hold

call.

Usually

used

when

replacing

a

path

of

segments.

P

Set

parentage

at

a

higher

level

than

what

it

usually

is

(the

lowest-level

SSA

of

the

call).

Q

Reserve

a

segment

so

that

other

programs

will

not

be

able

to

update

it

until

you

have

finished

processing

and

updating

it.

R

Retrieve

the

first

segment

occurrence

in

a

subset.

(Used

with

DEDBs

only.)

S

Unconditionally

set

a

subset

pointer

to

the

current

position.

(Used

with

DEDBs

only.)

U

Limit

the

search

for

a

segment

to

the

dependents

of

the

segment

occurrence

on

which

position

is

established.

V

Use

the

current

position

at

this

hierarchic

level

and

above

as

qualification

for

the

segment.

W

Set

a

subset

pointer

to

your

current

position,

if

the

subset

pointer

is

not

already

set.

(Used

with

DEDBs

only.)

Z

Set

a

subset

pointer

to

0,

so

it

can

be

reused.

(Used

with

DEDBs

only.)

-

Null.

Use

an

SSA

in

command

code

format

without

specifying

the

command

code.

Can

be

replaced

during

execution

with

the

command

codes

that

you

want.

Table

53

shows

the

list

of

command

codes

with

applicable

calls.

Table

53.

Command

Codes

and

Calls

Command

Code

GU

GHU

GN

GHN

GNP

GHNP

REPL

ISRT

DLET

C

X

X

X

X

D

X

X

X

X

F

X

X

X

X

L

X

X

X

X

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

301

Table

53.

Command

Codes

and

Calls

(continued)

Command

Code

GU

GHU

GN

GHN

GNP

GHNP

REPL

ISRT

DLET

M

X

X

X

X

X

N

X

P

X

X

X

X

Q

X

X

X

X

R

X

X

X

X

S

X

X

X

X

X

U

X

X

X

X

V

X

X

X

X

W

X

X

X

X

X

Z

X

X

X

X

X

X

-

X

X

X

X

X

X

Command

Codes IBM

Confidential

302

Application

Programming:

Database

Manager

Chapter

17.

CICS-DL/I

User

Interface

Block

Return

Codes

After

issuing

any

kind

of

a

DL/I

call,

CICS

online

programs

must

check

the

return

code

in

the

UIB

before

checking

the

DL/I

status

code.

If

the

value

in

UIBRCODE

is

not

null,

the

contents

of

the

PCB

status

code

are

not

meaningful.

For

more

information

on

defining

and

addressing

a

UIB,

see

“Specifying

the

UIB

(CICS

Online

Programs

Only)”

on

page

102.

The

UIBRCODE

contains

two

bytes,

UIBFCTR

and

UIBDLTR.

You

should

first

check

the

contents

of

UIBFCTR;

the

contents

of

UIBDLTR

are

meaningful

only

if

UIBFCTR

indicates

a

NOTOPEN

or

INVREQ

condition.

Table

54,,

Table

55,,

and

Table

56

show

the

return

codes

from

the

CICS-DL/I

interface.

Table

54.

Return

Codes

in

UIBFCTR

Condition

ASM

COBOL

PL/I

NORESP

(normal

response)

X'00'

LOW-VALUES

00000

000

NOTOPEN

(not

open)

X'0C'

12-4-8-9

00001

100

INVREQ

(invalid

request)

X'08'

12-8-9

00001

000

Table

55.

Return

Codes

in

UIBDLTR

if

UIBFCTR='0C'

(NOTOPEN)

Condition

ASM

COBOL

PL/I

Database

not

open

X'00'

LOW-VALUES

00000

000

Intent

scheduling

conflict

X'02'

12-2-9

00000

010

Table

56.

Return

Codes

in

UIBDLTR

if

UIBFCTR='08'

(INVREQ)

Condition

ASM

COBOL

PL/I

Invalid

argument

passed

to

DL/I

X'00'

LOW-VALUES

00000

000

PSBNF

(PSB

not

found)

X'01'

12-1-9

00000

001

PSBSCH

(PSB

already

scheduled)

X'03'

12-3-9

00000

011

NOTDONE

(request

not

executed)

X'04'

12-4-9

00000

100

PSBFAIL

(PSB

initialization

failed)

X'05'

12-5-9

00000

101

TERMNS

(termination

not

successful)

X'07'

12-7-9

00000

111

FUNCNS

(function

unscheduled)

X'08'

12-8-9

00001

000

INVPSB

(invalid

PSB)

X'10'

12-10-9

00010

000

DLINA

(DL/I

not

active)

X'FF'

12-11-0-7-8-9

11111

111

If

these

codes

do

not

appear

to

be

due

to

programming

errors,

they

may

be

caused

by

not-open

or

invalid-request

conditions.

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

303

Not-Open

Conditions

A

NOTOPEN

condition

is

indicated

if

UIBFCTR

contains

X'0C'

UIBDLTR='00'

Explanation:

This

is

returned

on

a

database

call

if

the

database

was

stopped

after

scheduling

of

the

PSB.

UIBDLTR='02'

Explanation:

This

indicates

that

an

intent-scheduling

conflict

exists.

This

condition

does

not

occur

if

you

are

using

IMS

program

isolation.

Invalid

Request

Conditions

An

invalid

request

is

indicated

by

UIBFCTR=X'08'

UIBDLTR='00'

(INVARG)

Explanation:

An

invalid

argument

was

passed

to

DL/I

indicating

one

of

these

problems:

v

Count

argument

exists,

but

count

is

too

high.

v

I/O

area

is

missing.

v

Received

data

length

is

greater

than

65520.

v

Call

type

is

invalid.

UIBDLTR='01'

(PSBNF)

Explanation:

This

is

returned

after

a

scheduling

call;

it

indicates

that

the

PSB

to

be

scheduled

was

not

defined

in

the

PSB

directory

(PDIR).

UIBDLTR='03'

(PSBSCH)

Explanation:

This

PSB

has

already

been

scheduled.

UIBDLTR='04'

(NOTDONE)

Explanation:

The

XDLIPRE

exit

routine

indicates

that

a

DL/I

request

should

not

be

issued.

UIBDLTR='05'

(PSBFAIL)

Explanation:

The

PSB

could

not

be

scheduled,

possibly

because:

v

The

database

has

been

stopped.

v

The

master

terminal

operator

has

entered

a

DUMPDB

command.

This

command

sets

the

read-only

flag

in

the

DMB

directory

(DDIR).

You

will

not

be

able

to

schedule

any

PSBs

with

update

intent.

v

The

master

terminal

operator

has

entered

a

RECOVERDB

command.

This

command

sets

the

do-not-schedule-flag

in

the

DDIR.

You

will

not

be

able

to

schedule

any

PSB

that

references

the

database.

v

The

END

statement

in

the

PDIR

generation

stream

did

not

specify

the

DFSIDIR0

operand.

The

trace

entry,

which

contains

the

PCB

status,

gives

you

the

reason

for

the

scheduling

failure.

UIBDLTR='07'

(TERMNS)

Explanation:

A

terminate

request

was

issued,

but

no

PSB

was

currently

scheduled.

It

could

indicate

that

the

PSB

has

already

taken

place

because

of

a

terminate

request

or

CICS

sync

point.

UIBDLTR='08'

(FUNCNS)

Explanation:

A

database

call

was

issued

when

the

PSB

was

not

scheduled.

UIBDLTR='10'

(INVPSB)

Explanation:

SYSSERVE

IOPCB

specified

for

local

DL/I.

UIBDLTR='FF'

(DLINA)

Explanation:

DLI=NO

has

been

specified

in

the

system

initialization

table

(SIT).

Not

Open

Conditions IBM

Confidential

304

Application

Programming:

Database

Manager

Part

4.

Appendixes

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

305

IBM

Confidential

306

Application

Programming:

Database

Manager

Appendix

A.

Sample

Exit

Routine

(DFSREXXU)

IMS

provides

a

sample

user

exit

routine

that

is

used

with

the

IMS

Adapter

for

REXX.

For

a

description

of

how

to

write

the

user

exit

routine

see

IMS

Version

9:

Customization

Guide.

The

sample

user

exit

routine

checks

to

see

if

it

is

being

called

on

entry.

If

so,

the

user

exit

routine

sets

the

parameter

list

to

be

the

transaction

code

with

no

arguments

and

sets

the

start-up

IMSRXTRC

level

to

2.

The

return

code

is

set

to

0.

For

the

latest

version

of

the

DFSREXXU

source

code,

see

the

IMS.SVSOURCE

distribution

library;

member

name

is

DFSREXXU.

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

307

IBM

Confidential

308

Application

Programming:

Database

Manager

Appendix

B.

The

DL/I

Test

Program

(DFSDDLT0)

DFSDDLT0

is

an

IMS

application

program

test

tool

that

issues

calls

to

IMS

based

on

control

statement

information.

You

can

use

it

to

verify

and

debug

DL/I

calls

independently

of

application

programs.

You

can

run

DFSDDLT0

using

any

PSB,

including

those

that

use

an

IMS-supported

language.

You

can

also

use

DFSDDLT0

as

a

general-purpose

database

utility

program.

The

functions

that

DFSDDLT0

provides

include:

v

Issuing

any

valid

DL/I

call

against

any

database

using:

–

Any

segment

search

argument

(SSA)

or

PCB,

or

both

–

Any

SSA

or

AIB,

or

both

v

Comparing

the

results

of

a

call

to

expected

results.

This

includes

the

contents

of

selected

PCB

fields,

the

data

returned

in

the

I/O

area,

or

both.

v

Printing

the

control

statements,

the

results

of

calls,

and

the

results

of

comparisons

only

when

the

output

is

useful,

such

as

after

an

unequal

compare.

v

Dumping

DL/I

control

blocks,

the

I/O

buffer

pool,

or

the

entire

batch

region.

v

Punching

selected

control

statements

into

an

output

file

to

create

new

test

data

sets.

This

simplifies

the

construction

of

new

test

cases.

v

Merging

multiple

input

data

sets

into

a

single

input

data

set

using

a

SYSIN2

DD

statement

in

the

JCL.

You

can

specify

the

final

order

of

the

merged

statements

in

columns

73

to

80

of

the

DFSDDLT0

control

statements.

v

Sending

messages

to

the

z/OS

system

console

(with

or

without

waiting

for

a

reply).

v

Repeating

each

call

up

to

9,999

times.

Control

Statements

DFSDDLT0

processes

control

statements

to

control

the

test

environment.

DFSDDLT0

can

issue

calls

to

IMS

full-function

databases

and

Fast

Path

databases,

as

well

as

DC

calls.

Table

57

gives

an

alphabetical

summary

of

the

types

of

control

statements

DFSDDLT0

uses.

A

detailed

description

of

each

type

of

statement

follows.

Table

57.

Summary

of

DFSDDLT0

Control

Statements

Control

Statement

Code

Description

ABEND1

ABEND

Causes

user

abend

252.

CALL

There

are

two

types

of

CALL

statements:

L

CALL

FUNCTION

identifies

the

type

of

IMS

call

function

to

be

made

and

supplies

information

to

be

used

by

the

call.

CALL

DATA

provides

IMS

with

additional

information.

COMMENT

There

are

two

types

of

COMMENT

statements:

T

Conditional

allows

a

limited

number

of

comments

that

are

printed

or

not

depending

on

how

the

STATUS

statement

is

coded

and

the

results

of

the

PCB

or

DATA

COMPARE.

U1

Unconditional

allows

an

unlimited

number

of

comments,

all

of

which

are

printed.

COMPARE

There

are

three

types

of

COMPARE

statements:

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

309

Table

57.

Summary

of

DFSDDLT0

Control

Statements

(continued)

Control

Statement

Code

Description

E

COMPARE

DATA

verifies

that

the

correct

segment

was

retrieved

by

comparing

the

segment

returned

by

IMS

with

data

in

this

statement.

COMPARE

AIB

compares

values

that

IMS

returns

to

the

AIB.

COMPARE

PCB

checks

fields

in

the

PCB

and

calls

for

a

snap

dump

of

the

DL/I

blocks,

the

I/O

buffer

pool,

or

the

batch

region

if

the

compare

is

unequal.

IGNORE

N

or

.

The

program

ignores

statements

that

contain

an

N

or

.

(period)

in

column

1.

OPTION1

O

Shows

which

control

blocks

are

to

be

dumped,

the

number

of

unequal

comparisons

allowed,

whether

dumps

are

produced,

number

of

lines

printed

per

page,

and

the

SPA

size.

PUNCH1

CTL

PUNCH

CTL

produces

an

output

data

set

consisting

of

the

COMPARE

PCB

statements,

the

COMPARE

AIB

statements,

the

DATA

statements,

and

all

other

control

statements

read.

STATUS1

S

Establishes

print

options

and

selects

the

PCB

or

AIB

against

which

subsequent

calls

are

to

be

issued.

WTO1

WTO

Sends

a

message

to

the

z/OS

console

without

waiting

for

reply.

WTOR1

WTOR

Sends

a

message

to

the

z/OS

console

and

waits

for

a

reply

before

proceeding.

Note:

1.

These

control

statements

are

acted

on

immediately

when

encountered

in

an

input

stream.

Do

not

code

them

where

they

will

interrupt

call

sequences.

(See

“Planning

the

Control

Statement

Order”

on

page

311.)

The

control

statements

are

further

described

below:

v

The

CALL

statement

is

the

central

DFSDDLT0

statement.

The

CALL

statement

has

two

parts:

CALL

FUNCTION

and

CALL

DATA.

CALL

FUNCTION

identifies

the

type

of

IMS

call

function

and

supplies

information

about

segment

search

arguments

(SSAs).

CALL

DATA

provides

more

information

required

for

the

type

of

call

identified

by

CALL

FUNCTION.

v

The

STATUS

statement

controls

the

PCB,

AIB,

and

handling

of

output.

v

The

three

types

of

COMPARE

statements,

DATA,

PCB,

and

AIB,

compare

different

values:

–

If

you

want

specific

data

from

a

call,

use

COMPARE

DATA

to

check

the

segment

data

for

mismatches

when

the

call

is

made.

–

Use

COMPARE

PCB

to

check

status

codes,

segment

levels,

and

feedback

keys.

It

also

indicates

mismatches

when

you

specify

output.

–

Use

COMPARE

AIB

to

compare

values

that

IMS

returns

to

the

AIB.

v

The

two

COMMENT

statements,

Conditional

and

Unconditional,

allow

you

to

set

limits

on

the

number

of

comments

on

the

DFSDDLT0

job

stream

and

to

specify

whether

you

want

the

comments

printed.

v

The

OPTION

statement

controls

several

overall

functions

such

as

the

number

of

unequal

comparisons

allowed

and

the

number

of

lines

printed

per

page.

v

The

remaining

statements,

ABEND,

IGNORE,

CTL,

WTO

and

WTOR,

are

not

as

important

as

the

others

at

first.

Read

the

sections

describing

these

statements

so

that

you

can

become

familiar

with

the

functions

they

offer.

When

you

are

coding

the

DFSDDLT0

control

statements,

keep

the

following

items

in

mind:

Control

Statements IBM

Confidential

310

Application

Programming:

Database

Manager

v

If

you

need

to

temporarily

override

certain

control

statements

in

the

DFSDDLT0

streams,

go

to

the

JCL

requirements

section

and

read

about

SYSIN/SYSIN2

processing

under

“SYSIN2

DD

Statement”

on

page

348.

v

You

must

fill

in

column

1

of

each

control

statement.

If

column

1

is

blank,

the

statement

type

defaults

to

the

prior

statement

type.

DFSDDLT0

attempts

to

use

any

remaining

characters

as

it

would

for

the

prior

statement

type.

v

Use

of

reserved

fields

can

produce

invalid

output

and

unpredictable

results.

v

Statement

continuations

are

important,

especially

for

the

CALL

statement.

v

Sequence

numbers

are

not

required,

but

they

can

be

very

useful

for

some

DFSDDLT0

functions.

To

understand

how

to

use

sequence

numbers,

see

“PUNCH

Statement”

on

page

340,

“SYSIN

DD

Statement”

on

page

347

and

“SYSIN2

DD

Statement”

on

page

348.

v

All

codes

and

fields

in

the

DFSDDLTO

statements

must

be

left

justified

followed

by

blanks,

unless

otherwise

specified.

Planning

the

Control

Statement

Order

The

order

of

control

statements

is

critical

in

constructing

a

successful

call.

To

avoid

unpredictable

results,

follow

these

guidelines:

1.

If

you

are

using

STATUS

and

OPTION

statements,

place

them

somewhere

before

the

calls

that

are

to

use

them.

2.

Both

types

of

COMMENT

statements

are

optional

but,

if

present,

must

appear

before

the

call

they

document.

3.

You

must

code

CALL

FUNCTION

statements

and

any

required

SSAs

consecutively

without

interruption.

4.

CALL

DATA

statements

must

immediately

follow

the

last

continuation,

if

any,

of

the

CALL

FUNCTION

statements.

5.

COMPARE

statements

are

optional

but

must

follow

the

last

CALL

(FUNCTION

or

DATA)

statement.

6.

When

CALL

FUNCTION

statements,

CALL

DATA

statements,

COMPARE

DATA

statements,

COMPARE

PCB

statements,

and

COMPARE

AIB

statements

are

coded

together,

they

form

a

call

sequence.

Do

not

interrupt

call

sequences

with

other

DFSDDLT0

control

statements.

Exception:

IGNORE

statements

are

the

only

exception

to

this

rule.

7.

Use

IGNORE

statements

(N

or

.)

to

override

any

statement,

regardless

of

its

position

in

the

input

stream.

You

can

use

IGNORE

statements

in

either

SYSIN

or

SYSIN2

input

streams.

ABEND

Statement

The

ABEND

statement

causes

IMS

to

issue

an

abend

and

terminate

DFSDDLT0.

Table

58

shows

the

format

of

the

ABEND

statement.

Table

58.

ABEND

Statement

Column

Function

Code

Description

1-5

Identifies

control

statement

ABEND

Issues

abend

U252.

(No

dump

is

produced

unless

you

code

DUMP

on

the

OPTION

statement.)

6-72

Reserved

�

73-80

Sequence

indication

nnnnnnnn

For

SYSIN2

statement

override.

Control

StatementsIBM

Confidential

Appendix

B.

The

DL/I

Test

Program

(DFSDDLT0)

311

Examples

of

ABEND

Statement

If

you

use

ABEND

in

the

input

stream

and

want

a

dump,

you

must

specify

DUMP

on

the

OPTION

statement.

The

default

on

the

OPTION

statement

is

NODUMP.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

ABEND

22100010

Dump

will

be

produced;

OPTION

statement

provided

requests

dump.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

O

DUMP

22100010

No

dump

will

be

produced;

OPTION

statement

provided

requests

NODUMP.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

O

NODUMP

22100010

CALL

Statement

The

CALL

control

statement

has

two

parts:

CALL

FUNCTION

and

CALL

DATA.

v

The

CALL

FUNCTION

statement

supplies

the

DL/I

call

function,

the

segment

search

arguments

(SSAs),

and

the

number

of

times

to

repeat

the

call.

SSAs

are

coded

according

to

IMS

standards.

v

The

CALL

DATA

statement

provides

any

data

(database

segments,

z/OS

commands,

checkpoint

IDs)

required

by

the

DL/I

call

specified

in

the

CALL

FUNCTION

statement.

See

“CALL

DATA

Statement”

on

page

315.

CALL

FUNCTION

Statement

Table

59

gives

the

format

for

CALL

FUNCTION

statements,

including

the

column

number,

function,

code,

and

description.

This

is

the

preferred

format

when

you

are

not

working

with

column-specific

SSAs.

Table

59.

CALL

FUNCTION

Statement

Column

Function

Code

Description

1

Identifies

control

statement

L

Issues

an

IMS

call

2

Reserved

�

3

SSA

level

�

SSA

level

(optional)

n

Range

of

hexadecimal

characters

allowed

is

1-F

4

Reserved

�

5-8

Repeat

count

����

If

blank,

repeat

count

defaults

to

1.

nnnn

'nnnn'

is

the

number

of

times

to

repeat

this

call.

Range

is

1

to

9999,

right-justified,

with

or

without

leading

zeros.

9

Reserved

�

10-13

Identifies

DL/I

call

function

����

If

blank,

use

function

from

previous

CALL

statement.

xxxx

'xxxx'

is

a

DL/I

call

function.

ABEND

Statement IBM

Confidential

312

Application

Programming:

Database

Manager

Table

59.

CALL

FUNCTION

Statement

(continued)

Column

Function

Code

Description

Continue

SSA

CONT

Continuation

indicator

for

SSAs

too

long

for

a

single

CALL

FUNCTION

statement.

Column

72

of

the

preceding

CALL

FUNCTION

statement

must

have

an

entry.

The

next

CALL

statement

should

have

CONT

in

columns

10

-

13

and

the

SSA

should

continue

in

column

16.

14-15

Reserved

�

16-23

or

SSA

name

xxxxxxxx

Must

be

left-justified.

16-23

or

Token

xxxxxxxx

Token

name

(SETS/ROLS).

16-23

or

MOD

name

xxxxxxxx

Modname

(PURG+ISRT).

16-23

or

Subfunction

xxxxxxxx

nulls,

DBQUERY,

FIND,

ENVIRON,

PROGRAM

(INQY).

16-19

and

Statistics

type

xxxx

DBAS/DBES-OSAM

or

VBAS/VBES-VSAM

(STAT).2

20

or

Statistics

format

x

F

-

Formatted

U-

Unformatted

S

-

Summary.

16–19

SETO

ID1

SETx

Where

x

is

1,

2,

or

3.

Specified

on

SETO

and

CHNG

calls

as

defined

in

Note.

21-24

SETO

IOAREA

SIZE

nnnn

Value

of

0000

to

8192.

If

a

value

greater

than

8192

is

specified,

it

defaults

to

8192.

If

no

value

is

specified,

the

call

is

made

with

no

SETO

size

specified.

24–71

Remainder

of

SSA

Unqualified

SSAs

must

be

blank.

Qualified

search

arguments

should

have

either

an

'*'

or

a

'('

in

column

24

and

follow

IMS

SSA

coding

conventions.

72

Continuation

column

�

No

continuations

for

this

statement.

x

Alone,

it

indicates

multiple

SSAs

each

beginning

in

column

16

of

successive

statements.

With

CONT

in

columns

10-13

of

the

next

statement,

indicates

a

single

SSA

that

is

continued

beginning

in

column

16

of

the

following

statement.

73-80

Sequence

indication

nnnnnnnn

For

SYSIN2

statement

override.

CALL

StatementIBM

Confidential

Appendix

B.

The

DL/I

Test

Program

(DFSDDLT0)

313

Table

59.

CALL

FUNCTION

Statement

(continued)

Column

Function

Code

Description

Note:

1.

SETO

CALL:

The

SETO

ID

(SET1,

SET2,

or

SET3)

is

required

on

the

SETO

call

if

DFSDDLT0

is

to

keep

track

of

the

text

unit

address

returned

on

the

SETO

call

that

would

be

passed

on

the

CHNG

call

for

option

parameter

TXTU.

If

the

SETO

ID

is

omitted

on

the

SETO

call,

DFSDDLT0

does

not

keep

track

of

the

data

returned

and

is

unable

to

reference

it

on

a

CHNG

call.

CHNG

CALL:

The

SETO

ID

(SET1,

SET2,

or

SET3)

is

required

on

the

CHNG

call

if

DFSDDLT0

is

to

place

the

address

of

the

SETO

ID

I/O

area

returned

on

the

SETO

call.

This

is

the

SETO

call

of

the

text

unit

returned

on

the

SETO

call

with

a

matching

SETO

ID

for

this

CHNG

call

into

the

“TXTU=ADDR”

field

of

the

option

parameter

in

the

CHNG

call.

When

the

SETO

ID

is

specified

on

the

CHNG

call,

DFSDDLT0

moves

the

address

of

that

text

unit

returned

on

the

SETO

call

using

the

same

SETO

ID.

Code

the

OPTION

statement

parameter

TXTU

as

follows:

TXTU=xxxx

where

xxxx

is

any

valid

non-blank

character.

It

cannot

be

a

single

quote

character.

Suggested

value

for

xxxx

could

be

SET1,

SET2,

or

SET3.

This

value

is

not

used

by

DFSDDLT0.

2.

STAT

is

a

Product-sensitive

programming

interface.

The

following

information

applies

to

different

types

of

continuations:

v

Column

3,

the

SSA

level,

is

usually

blank.

If

it

is

blank,

the

first

CALL

FUNCTION

statement

fills

SSA

1,

and

each

following

CALL

FUNCTION

statement

fills

the

next

lower

SSA.

If

column

3

is

not

blank,

the

statement

fills

the

SSA

at

that

level,

and

the

following

CALL

FUNCTION

statement

fills

the

next

lower

one.

v

Columns

5

through

8

are

usually

blank,

but

if

used,

must

be

right

justified.

The

same

call

is

repeated

as

specified

by

the

repeat

call

function.

v

Columns

10

through

13

contain

the

DL/I

call

function.

The

call

function

is

required

only

for

the

first

CALL

FUNCTION

statement

when

multiple

SSAs

are

in

a

call.

If

left

blank,

the

call

function

from

the

previous

CALL

FUNCTION

statement

is

used.

v

Columns

16

through

23

contain

the

segment

name

if

the

call

uses

an

SSA.

v

If

the

DL/I

call

contains

multiple

SSAs,

the

statement

must

have

a

nonblank

character

in

column

72,

and

the

next

SSA

must

start

in

column

16

of

the

next

statement.

The

data

in

columns

1

and

10

through

13

are

blank

for

the

second

through

last

SSAs.

Restriction:

On

ISRT

calls,

the

last

SSA

can

have

only

the

segment

name

with

no

qualification

or

continuation.

v

If

a

field

value

extends

past

column

71,

put

a

nonblank

character

in

column

72.

(This

character

is

not

read

as

part

of

the

field

value,

only

as

a

continuation

character.)

In

the

next

statement

insert

the

keyword

CONT

in

columns

10

through

13

and

continue

the

field

value

starting

at

column

16.

v

Maximum

length

for

the

field

value

is

256

bytes,

maximum

size

for

an

SSA

is

290

bytes,

and

the

maximum

number

of

SSAs

for

this

program

is

15,

which

is

the

same

as

the

IMS

limit.

v

If

columns

5

through

8

in

the

CALL

FUNCTION

statement

contain

a

repeat

count

for

the

call,

the

call

will

terminate

when

reaching

that

count,

unless

it

first

encounters

a

GB

status

code.

Related

Reading:

See

“CALL

FUNCTION

Statement

with

Column-Specific

SSAs”

on

page

329

for

another

format

supported

by

DFSDDLT0.

CALL

Statement IBM

Confidential

314

Application

Programming:

Database

Manager

CALL

DATA

Statement

CALL

DATA

statements

provide

IMS

with

information

normally

supplied

in

the

I/O

area

for

that

type

of

call

function.

CALL

DATA

statements

must

follow

the

last

CALL

FUNCTION

statement.

You

must

enter

an

L

in

column

1,

the

keyword

DATA

in

columns

10

through

13,

and

code

the

necessary

data

in

columns

16

through

71.

You

can

continue

data

by

entering

a

nonblank

character

in

column

72.

On

the

continuation

statement,

columns

1

through

15

are

blank

and

the

data

resumes

in

column

16.

Table

60

shows

the

format

for

a

CALL

DATA

statement.

Table

60.

CALL

DATA

Statement

Column

Function

Code

Description

1

Identifies

control

statement

L

CALL

DATA

statement.

2

Increase

segment

length

K

Adds

2500

bytes

to

the

length

of

data

defined

in

columns

5

through

8.

3

Propagate

remaining

I/O

indicator

P

Causes

50

bytes

(columns

16

through

65)

to

be

propagated

through

remaining

I/O

area.

Note:

This

must

be

the

last

data

statement

and

cannot

be

continued.

4

Format

options

�

Not

a

variable-length

segment.

V

For

the

first

statement

describing

the

only

variable-length

segment

or

the

first

variable-length

segment

of

multiple

variable-length

segments,

LL

field

is

added

before

the

segment

data.

M

For

statements

describing

the

second

through

the

last

variable-length

segments,

LL

field

is

added

before

the

segment

data.

P

For

the

first

statement

describing

a

fixed-length

segment

in

a

path

call.

Z

For

message

segment,

LLZZ

field

is

added

before

the

data.

U

Undefined

record

format

for

GSAM

records.

The

length

of

segment

for

an

ISRT

is

placed

in

the

DB

PCB

key

feedback

area.

5-8

Length

of

data

in

segment

nnnn

This

value

must

be

right

justified

but

need

not

contain

leading

zeros.

If

you

do

not

specify

a

length,

DFSDDLT0

will

use

the

number

of

DATA

statements

read

multiplied

by

56

to

derive

the

length.

9

Reserved

�

10-13

Identifies

CALL

DATA

statement

DATA

Identifies

this

as

a

DATA

statement.

14-15

Reserved

�

16-71

or

Data

area

xxxx

Data

that

goes

in

the

I/O

area.

16-23

or

Checkpoint

ID

Checkpoint

ID

(SYNC).

CALL

StatementIBM

Confidential

Appendix

B.

The

DL/I

Test

Program

(DFSDDLT0)

315

Table

60.

CALL

DATA

Statement

(continued)

Column

Function

Code

Description

16-23

or

Destination

name

Destination

name

(CHNG).

16

DEQ

option

DEQ

options

(A,B,C,D,E,F,G,H,I,

or

J).

72

Continuation

column

�

If

no

more

continuations

for

this

segment.

x

If

more

data

for

this

segment

or

more

segments.

73-80

Sequence

indication

nnnnnnnn

For

SYSIN2

statement

override.

When

inserting

variable-length

segments

or

including

variable-length

data

for

a

CHKP

or

LOG

call:

v

You

must

use

a

V

or

M

in

column

4

of

the

CALL

DATA

statement.

v

Use

V

if

only

one

variable-length

segment

is

being

processed.

v

You

must

enter

the

length

of

the

data

with

leading

zeros,

right

justified,

in

columns

5

through

8.

The

value

is

converted

to

binary

and

becomes

the

first

2

bytes

of

the

segment

data.

v

You

can

continue

a

CALL

DATA

statement

into

the

next

CALL

DATA

statement

by

entering

a

nonblank

character

in

column

72.

For

subsequent

statements,

leave

columns

1

through

15

blank,

and

start

the

data

in

column

16.

If

multiple

variable-length

segments

are

required

(that

is,

concatenated

logical

child/logical

parent

segments,

both

of

which

are

variable-length)

for

the

first

segment:

v

You

must

enter

a

V

in

column

4.

v

You

must

enter

the

length

of

the

first

segment

in

columns

5

through

8.

v

If

the

first

segment

is

longer

than

56

bytes,

continue

the

data

as

described

for

inserting

variable-length

segments.

Exceptions:

–

The

last

CALL

DATA

statement

to

contain

data

for

this

segment

must

have

a

nonblank

character

in

column

72.

–

The

next

CALL

DATA

statement

applies

to

the

next

variable-length

statement

and

must

contain

an

M

in

column

4

and

the

length

of

the

segment

in

columns

5

through

8.

You

can

concatenate

any

number

of

variable-length

segments

in

this

manner.

Enter

M

or

V

and

the

length

(only

in

CALL

DATA

statements

that

begin

data

for

a

variable-length

segment).

When

a

program

is

inserting

or

replacing

through

path

calls:

v

Enter

a

P

in

column

4

to

specify

that

the

length

field

is

to

be

used

as

the

length

the

segment

will

occupy

in

the

user

I/O

area.

v

You

only

need

to

use

P

in

the

first

statement

of

fixed-length-segment

CALL

DATA

statements

in

path

calls

that

contain

both

variable-

and

fixed-length

segments.

v

You

can

use

V,

M,

and

P

in

successive

CALL

DATA

statements.

For

INIT,

SETS,

ROLS,

and

LOG

calls:

v

The

format

of

the

I/O

area

is

LLZZuser-data

CALL

Statement IBM

Confidential

316

Application

Programming:

Database

Manager

where

LL

is

the

length

of

the

data

in

the

I/O

area,

including

the

length

of

the

LLZZ

portion.

v

If

you

want

the

program

to

use

this

format

for

the

I/O

area,

enter

a

Z

in

column

4

and

the

length

of

the

data

in

columns

5

through

8.

The

length

in

columns

5

through

8

is

the

length

of

the

data,

not

including

the

4-byte

length

of

LLZZ.

OPTION

DATA

Statement

The

OPTION

DATA

statement

contains

options

as

required

for

SETO

and

CHNG

calls.

Table

61

shows

the

format

for

an

OPTION

DATA

statement,

including

the

column

number,

function,

code,

and

description.

Table

61.

OPTION

DATA

Statement

Column

Function

Code

Description

1

Identifies

control

statement

L

OPTION

statement.

2-9

Reserved

�

10-13

Identifies

OPT

Identifies

this

as

OPTION

statement.

CONT

Identifies

this

as

a

continuation

of

an

option

input.

14-15

Reserved

�

16-71

Option

area

xxxx

Options

as

defined

for

SETO

and

CHNG

call.

72

Continuation

column

�

If

no

more

continuations

for

options.

x

If

more

option

data

exists

in

following

statement.

73-80

Sequence

number

nnnnnnnn

For

SYSIN2

statement

override.

FEEDBACK

DATA

Statement

The

FEEDBACK

DATA

statement

defines

an

area

to

contain

feedback

data.

The

FEEDBACK

DATA

statement

is

optional.

However,

if

the

FEEDBACK

DATA

statement

is

used,

an

OPTION

DATA

statement

is

required.

Table

62

shows

the

format

for

a

FEEDBACK

DATA

statement,

including

the

column

number,

function,

code,

and

description.

Table

62.

FEEDBACK

DATA

Statement

Column

Function

Code

Description

1

Identifies

control

statement

L

FEEDBACK

statement.

2-3

Reserved

�

4

Format

option

�

Feedback

area

contains

LLZZ.

Z

Length

of

feedback

area

will

be

computed

and

the

LLZZ

will

be

added

to

the

feedback

area.

5-8

Length

of

feedback

area

nnnn

This

value

must

be

right

justified

but

need

not

contain

leading

zeros.

If

you

do

not

specify

a

length,

DFSDDLT0

uses

the

number

of

FDBK

inputs

read

multiplied

by

56

to

derive

the

length.

2-9

Reserved

�

CALL

StatementIBM

Confidential

Appendix

B.

The

DL/I

Test

Program

(DFSDDLT0)

317

Table

62.

FEEDBACK

DATA

Statement

(continued)

Column

Function

Code

Description

10-13

Identifies

FDBK

Identifies

this

as

feedback

statement

and

continuation

of

feedback

statement.

14-15

Reserved

�

16-71

Feedback

area

xxxx

Contains

user

pre-defined

initialized

area.

72

Continuation

column

�

If

no

more

continuations

for

feedback.

x

If

more

feedback

data

exists

in

following

statement.

73-80

Sequence

number

nnnnnnnn

For

SYSIN2

statement

override.

Call

Functions

DL/I

Call

Functions

Table

63

shows

the

DL/I

call

functions

supported

in

DFSDDLT0

and

which

ones

require

data

statements.

Table

63.

DL/I

Call

Functions

Call

AIB

Support

PCB

Support

Data

Stmt

1

Description

CHKP

yes

yes

R

Checkpoint.

CHNG

yes

yes

R

Change

alternate

PCB.

R

Contains

the

alternate

PCB

name

option

statement

and

feedback

statement

optional.

CMD

yes

yes

R

Issue

IMS

command.

This

call

defaults

to

I/O

PCB.

DEQ

yes

yes

R

Dequeue

segments

locked

with

the

Q

command

code.

For

full

function,

this

call

defaults

to

the

I/O

PCB,

provided

a

DATA

statement

containing

the

class

to

dequeue

immediately

follows

the

call.

For

Fast

Path,

the

call

is

issued

against

a

DEDB

PCB.

Do

not

include

a

DATA

statement

immediately

following

the

DEQ

call.

DLET

yes

yes

O

Delete.

If

the

data

statement

is

present,

it

is

used.

If

not,

the

call

uses

the

data

from

the

previous

Get

Hold

Unique

(GHU).

FLD

yes

yes

R

Field—for

Fast

Path

MSDB

calls

using

FSAs.

This

call

references

MSDBs

only.

If

there

is

more

than

one

FSA,

put

a

nonblank

character

in

column

34,

and

put

the

next

FSA

in

columns

16-34

of

the

next

statement.

A

DATA

statement

containing

FSA

is

required.

GCMD

yes

yes

N

Get

command

response.

This

call

defaults

to

I/O

PCB.

GHN

yes

yes

O2

Get

Hold

Next.

GHNP

yes

yes

O2

Get

Hold

Next

in

Parent.

GHU

yes

yes

O2

Get

Hold

Unique.

GMSG3

yes

no

R

Get

Message

is

used

in

an

automated

operator

(AO)

application

program

to

retrieve

a

message

from

AO

exit

routine

DFSAOE00.

The

DATA

statement

is

required

to

allow

for

area

in

which

to

return

data.

The

area

must

be

large

enough

to

hold

this

returned

data.

GN

yes

yes

O2

Get

Next

segment.

GNP

yes

yes

O2

Get

Next

in

Parent.

CALL

Statement IBM

Confidential

318

Application

Programming:

Database

Manager

Table

63.

DL/I

Call

Functions

(continued)

Call

AIB

Support

PCB

Support

Data

Stmt

1

Description

GU

yes

yes

O2

Get

Unique

segment.

ICMD3

yes

no

R

Issue

Command

enables

an

automated

operator

(AO)

application

program

to

issue

an

IMS

command

and

retrieve

the

first

command

response

segment.

The

DATA

statement

is

required

to

contain

the

input

command

and

to

allow

for

area

in

which

to

return

data.

The

area

must

be

large

enough

to

hold

this

returned

data.

INIT

yes

yes

R

Initialization

This

call

defaults

to

I/O

PCB.

A

DATA

statement

is

required.

Use

the

LLZZ

format.

INQY3

yes

no

R

Request

environment

information

using

the

AIB

and

the

ENVIRON

subfunction.

The

DATA

statement

is

required

to

allow

for

area

in

which

to

return

data.

The

area

must

be

large

enough

to

hold

this

returned

data.

R

Request

database

information

using

the

AIB

and

the

DBQUERY

subfunction,

which

is

equivalent

to

the

INIT

DBQUERY

call.

The

DATA

statement

is

required

to

allow

for

area

in

which

to

return

data.

The

area

must

be

large

enough

to

hold

this

returned

data.

ISRT

yes

yes

Insert.

R

DB

PCB,

DATA

statement

required.

O

I/O

PCB

using

I/O

area

with

MOD

name,

if

any,

in

columns

16-23.

R

Alt

PCB.

LOG

yes

yes

R

Log

system

request.

This

call

defaults

to

I/O

PCB.

DATA

statement

is

required

and

can

be

specified

in

one

of

two

ways.

POS

yes

yes

N

Position

-

for

DEDBs

to

determine

a

segment

location.

This

call

references

DEDBs

only.

PURG

yes

yes

Purge.

R

This

call

defaults

to

use

I/O

PCB.

If

column

16

is

not

blank,

MOD

(message

output

descriptor)

name

is

used

and

a

DATA

statement

is

required.

O

If

column

16

is

blank,

the

DATA

statement

is

optional.

RCMD3

yes

no

R

Retrieve

Command

enables

an

automated

operator

(AO)

application

program

to

retrieve

the

second

and

subsequent

command

response

segments

after

an

ICMD

call.

The

DATA

statement

is

required

to

allow

for

area

in

which

to

return

data.

The

area

must

be

large

enough

to

hold

this

returned

data.

REPL

yes

yes

R

Replace—This

call

references

DB

PCBs

only.

The

DATA

statement

is

required.

ROLB

yes

yes

O

Roll

Back

call.

ROLL

no

yes

O

Roll

Back

call

and

issue

U778

abend.

CALL

StatementIBM

Confidential

Appendix

B.

The

DL/I

Test

Program

(DFSDDLT0)

319

Table

63.

DL/I

Call

Functions

(continued)

Call

AIB

Support

PCB

Support

Data

Stmt

1

Description

ROLS

yes

yes

O

Back

out

updates

and

issue

3303

abend.

Uses

the

I/O

PCB.

Can

be

used

with

the

SETS

call

function.

To

issue

a

ROLS

with

an

I/O

area

and

token

as

the

fourth

parameter,

specify

the

4-byte

token

in

column

16

of

the

CALL

statement.

Leaving

columns

16-19

blank

will

cause

the

call

to

be

made

without

the

I/O

area

and

the

token.

(To

issue

a

ROLS

using

the

current

DB

PCB,

use

ROLX.)

ROLX

yes

yes

O

Roll

call

against

the

DB

PCB

(DFSDDLT0

call

function).

This

call

is

used

to

request

a

Roll

Back

call

to

DB

PCB,

and

is

changed

to

ROLS

call

when

making

the

DL/I

call.

SETO

yes

yes

N

Set

options.

OPTION

statement

required.

FEEDBACK

statement

optional.

SETS/SETU

yes

yes

O

Create

or

cancel

intermediate

backout

points.

Uses

I/O

PCB.

To

issue

a

SETS

with

an

I/O

area

and

token

as

the

fourth

parameter,

specify

the

four-byte

token

in

column

16

of

the

CALL

statement

and

include

a

DATA

statement.

Leaving

columns

16-19

blank

will

cause

the

call

to

be

made

without

the

I/O

area

and

the

token.

SNAP4

yes

yes

O

Sets

the

identification

and

destination

for

snap

dumps.

If

a

SNAP

call

is

issued

without

a

CALL

DATA

statement,

a

snap

of

the

I/O

buffer

pools

and

control

blocks

will

be

taken

and

sent

to

LOG

if

online

and

to

PRINTDD

DCB

if

batch.

The

SNAP

ID

will

default

to

SNAPxxxx

where

xxxx

starts

at

0000

and

is

incremented

by

1

for

every

SNAP

call

without

a

DATA

statement.

The

SNAP

options

default

to

YYYN.

If

a

CALL

DATA

statement

is

used,

columns

16-23

specify

the

SNAP

destination,

columns

24-31

specify

the

SNAP

identification,

and

columns

32-35

specify

the

SNAP

options.

SNAP

options

are

coded

using

‘Y’

to

request

a

snap

dump

and

‘N’

to

prevent

it.

Column

32

snaps

the

I/O

buffer

pools,

columns

33

and

34

snap

the

IMS

control

blocks

and

column

35

snaps

the

entire

region.

The

SNAP

call

function

is

only

supported

for

full-function

database

PCB.

STAT5

yes

yes

O

The

STAT

call

retrieves

statistics

on

the

IMS

system.

This

call

must

reference

only

full-function

DB

PCBs.

See

the

examples

on

329.

Statistics

type

is

coded

in

columns

16-19

of

the

CALL

FUNCTION

statement.

DBAS

For

OSAM

database

buffer

pool

statistics.

VBAS

For

VSAM

database

subpool

statistics.
Statistics

format

is

coded

in

column

20

of

the

CALL

FUNCTION

statement.

F

For

the

full

statistics

to

be

formatted

if

F

is

specified,

the

I/O

area

must

be

at

least

360

bytes.

U

For

the

full

statistics

to

be

unformatted

if

U

is

specified,

the

I/O

area

must

be

at

least

72

bytes.

S

For

a

summary

of

the

statistics

to

be

formatted

if

S

is

specified,

the

I/O

area

must

be

at

least

120

bytes.

SYNC

yes

yes

R

Synchronization.

XRST

yes

yes

R

Restart.

CALL

Statement IBM

Confidential

320

Application

Programming:

Database

Manager

Table

63.

DL/I

Call

Functions

(continued)

Call

AIB

Support

PCB

Support

Data

Stmt

1

Description

Notes:

1.

R

=

required;

O

=

optional;

N

=

none

2.

The

data

statement

is

required

on

the

AIB

interface.

3.

Valid

only

on

the

AIB

interface.

4.

SNAP

is

a

Product-sensitive

programming

interface.

5.

STAT

is

a

Product-sensitive

programming

interface.

Examples

of

DL/I

Call

Functions

Basic

CHKP

Call:

Use

a

CALL

FUNCTION

statement

to

contain

the

CHKP

function

and

a

CALL

DATA

statement

to

contain

the

checkpoint

ID.

Symbolic

CHKP

Call

with

Two

Data

Areas

to

Checkpoint:

Use

a

CALL

FUNCTION

statement

to

contain

the

CHKP

function,

a

CALL

DATA

statement

to

contain

the

checkpoint

ID

data,

and

two

CALL

DATA

statements

to

contain

the

data

that

you

want

to

checkpoint.

You

also

need

to

use

an

XRST

call

when

you

use

the

symbolic

CHKP

call.

Prior

usage

of

an

XRST

call

is

required

when

using

the

symbolic

CHKP

call,

as

the

CHKP

call

keys

on

the

XRST

call

for

symbolic

CHKP.

Recommendation:

Issue

an

XRST

call

as

the

first

call

in

the

application

program.

CHNG

Call:

Use

a

CALL

FUNCTION

statement

to

contain

the

CHNG

function

and

a

CALL

DATA

statement

to

contain

the

new

logical

terminal

name.

The

following

is

an

example

of

a

CHNG

statement

using

SETO

ID

SET2,

OPTION

statement,

DATA

statement

with

MODNAME,

and

FDBK

statement.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

CHKP

10101400

L

DATA

TESTCKPT

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

XRST

L

.

L

.

L

.

L

CHKP

L

DATA

TSTCHKP2

X

L

8

DATA

STRING2-

X

L

16

DATA

STRING2-STRING2-

U

EIGHT

BYTES

OF

DATA

(STRING2-)

IS

CHECKPOINTED

AND

U

SIXTEEN

BYTES

OF

DATA

(STRING2-STRING2-)

IS

CHECKPOINTED

ALSO

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

CHNG

SET1

L

OPT

IAFP=A1M,PRTO=LLOPTION1,OPTION2,

L

CONT

OPTION4

L

Z0023

DATA

DESTNAME

LL

is

the

hex

value

of

the

length

of

LLOPTION,.........OPTION4.

CALL

StatementIBM

Confidential

Appendix

B.

The

DL/I

Test

Program

(DFSDDLT0)

321

CMD

Call:

Use

a

CALL

FUNCTION

statement

to

contain

the

CMD

function

and

a

CALL

DATA

statement

to

contain

the

Command

data.

DEQ

Call:

For

full

function,

use

a

CALL

FUNCTION

statement

to

contain

the

DEQ

function

and

a

CALL

DATA

statement

to

contain

the

DEQ

value

(A,B,C,D,E,F,G,H,I

or

J).

For

Fast

Path,

use

a

CALL

FUNCTION

statement

to

contain

the

DEQ

function.

DLET

Call:

Use

a

CALL

FUNCTION

statement

to

contain

the

DLET

function.

The

data

statement

is

optional.

If

there

are

intervening

calls

to

other

PCBs

between

the

Get

Hold

call

and

the

DLET

call,

you

must

use

a

data

statement

to

refresh

the

I/O

area

with

the

segment

to

be

deleted.

FLD

Call:

Use

a

CALL

FUNCTION

statement

to

contain

the

FLD

function

and

ROOTSSA,

and

a

CALL

DATA

statement

to

contain

the

FSAs.

GCMD

Call:

Use

a

CALL

FUNCTION

statement

to

contain

the

GCMD

function;

no

CALL

DATA

statement

is

required.

GHN

Call:

Use

a

CALL

FUNCTION

statement

to

contain

the

GHN

function;

no

CALL

DATA

statement

is

required.

GHNP

Call:

Use

a

CALL

FUNCTION

statement

to

contain

the

GHNP

function;

no

CALL

DATA

statement

is

required.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

CHNG

SET2

L

OPT

IAFP=A1M,TXTU=SET2

L

Z0023

DATA

DESTNAME

L

Z0095

FDBK

FEEDBACK

AREA

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

CMD

L

ZXXXX

DATA

COMMAND

DATA

WHERE

XXXX

=

THE

LENGTH

OF

THE

COMMAND

DATA

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

DEQ

L

DATA

A

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

DEQ

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

DLET

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

FLD

ROOTA

(KEYA

=ROOTA)

L

DATA

???????

X

L

DATA

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

GCMD

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

GHN

10103210

CALL

Statement IBM

Confidential

322

Application

Programming:

Database

Manager

GHU

Call

with

a

Continued

SSA:

Use

two

CALL

FUNCTION

statements

to

contain

the

single

SSA.

GMSG

Call:

Use

a

CALL

FUNCTION

statement

to

contain

the

GMSG

function.

Use

a

CALL

DATA

statement

to

retrieve

messages

from

AO

exit

routine.

GN

Call:

Use

a

CALL

FUNCTION

statement

to

contain

the

GN

function;

no

CALL

DATA

statement

is

required.

GNP

Call:

Use

a

CALL

FUNCTION

statement

to

contain

the

GNP

function;

no

CALL

DATA

statement

is

required.

GU

Call

with

a

Single

SSA

and

a

Relational

Operator:

Use

a

CALL

FUNCTION

statement

to

contain

the

GU

function;

no

CALL

DATA

statement

is

required.

The

qualified

SSA

begins

in

column

24

and

is

contained

in

parentheses.

GU

Call

with

a

Single

SSA

and

a

Relational

Operator

Extended

Across

Multiple

Inputs

with

Boolean

Operators:

Use

a

CALL

FUNCTION

statement

to

contain

the

GU

function

and

three

additional

continuation

of

CALL

FUNCTION

input

to

continue

with

Boolean

operators.

No

CALL

DATA

statement

is

required.

The

qualified

SSA

begins

in

column

24

and

is

contained

in

parentheses.

This

type

of

SSA

can

continue

over

several

statements.

GU

Path

Call:

Use

a

CALL

FUNCTION

statement

to

contain

the

GU

function

and

three

additional

continuation

of

CALL

function

input

to

continue

with

two

additional

SSAs.

No

CALL

DATA

statement

is

required.

The

call

uses

command

codes

in

columns

24

and

25

to

construct

the

path

call.

This

type

of

call

cannot

be

made

with

the

column-specific

SSA

format.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

GHNP

10103210

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

GHU

SEGG

(FILLRG

=

G131G131G131G131G131G131G131G131G131G*

CONT

131G131G131G131G131G131G131

)

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

GMSG

TOKEN111

WAITAOI

L

Z0132

DATA

L

GMSG

L

Z0132

DATA

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

GN

10103210

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

GNP

10103210

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

GU

SEGF

(KEYF

>

F131*KEYF

<

F400)

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

GU

SEGG

(FILLRG

>

G131G131G131G131G131G131G131G131G131G*

CONT

131G131G131G131G131G131G131

&FILLRG

<

G400G400G4*

CONT

00G400G400G400G400G400G400G400G400G400G400G400G400G400

*

CONT

)

CALL

StatementIBM

Confidential

Appendix

B.

The

DL/I

Test

Program

(DFSDDLT0)

323

ICMD

Call:

Use

a

CALL

FUNCTION

statement

to

contain

the

ICMD

function.

Use

a

CALL

DATA

statement

to

contain

the

command.

INIT

Call:

Use

a

CALL

FUNCTION

statement

to

contain

the

INIT

call

and

a

CALL

DATA

statement

to

contain

the

INIT

function

DBQUERY,

STATUS

GROUPA,

or

STATUS

GROUPB.

INQY

Call:

Use

a

CALL

FUNCTION

statement

to

contain

the

INQY

call

and

either

the

DBQUERY

or

ENVIRON

subfunction.

The

subfunctions

are

in

the

call

input

rather

than

the

data

input

as

in

the

INIT

call.

ISRT

Call:

Use

two

CALL

FUNCTION

statements

to

contain

the

multiple

SSAs

and

a

CALL

DATA

statement

to

contain

the

segment

data.

ISRT

Containing

Only

One

Fixed-Length

Segment:

Use

a

CALL

FUNCTION

statement

to

contain

the

ISRT

function

and

segment

name,

and

two

CALL

DATA

statements

to

contain

the

fixed-length

segment.

When

inserting

only

one

fixed-length

segment,

leave

columns

4

through

8

blank

and

put

data

in

columns

16

through

71.

To

continue

data,

put

a

nonblank

character

in

column

72,

and

the

continued

data

in

columns

16

through

71

of

the

next

statement.

ISRT

Containing

Only

One

Variable-Length

Segment:

Use

a

CALL

FUNCTION

statement

to

contain

the

ISRT

function

and

segment

name,

and

two

CALL

DATA

statements

to

contain

the

variable-length

segment.

When

only

one

segment

of

variable-length

is

being

processed,

you

must

enter

a

V

in

column

4,

and

columns

5

through

8

must

contain

the

length

of

the

segment

data.

The

length

in

columns

5

through

8

is

converted

to

binary

and

becomes

the

first

two

bytes

of

the

segment

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

GU

SEGA

*D(KEYA

=

A200)

*

SEGF

*D(KEYF

=

F250)

*

SEGG

*D(KEYG

=

G251)

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

ICMD

L

Z0132

DATA

/DIS

ACTIVE

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

INIT

10103210

L

Z0011

DATA

DBQUERY

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

INQY

ENVIRON

10103210

L

V0256

DATA

10103211

L

10103212

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

INQY

DBQUERY

10103210

L

V0088

DATA

10103211

L

10103212

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

ISRT

STOCKSEG(NUMFIELD

=20011)

X10103210

ITEMSSEG

10103211

L

V0018

DATA

3002222222222222

10103212

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

ISRT

JOKESSEG

10103210

L

DATA

THEQUICKBLACKDOGJUMPEDONTOTHECRAZYFOXOOPSTHEQUICKBROWNFO*10103211

XJUMPEDOVERTHELAZYDOGSIR

10103212

CALL

Statement IBM

Confidential

324

Application

Programming:

Database

Manager

data.

To

continue

data,

put

a

nonblank

character

in

column

72,

and

the

continued

data

in

columns

16

through

71

of

the

next

statement.

ISRT

Containing

Multiple

Variable-Length

Segments:

Use

a

CALL

FUNCTION

statement

to

contain

the

ISRT

function

and

segment

name,

and

four

CALL

DATA

statements

to

contain

the

variable-length

segments.

For

the

first

segment,

you

must

enter

a

V

in

column

4

and

the

length

of

the

segment

data

in

columns

5

through

8.

If

the

segment

is

longer

than

56

bytes,

put

a

nonblank

character

in

column

72,

and

continue

data

on

the

next

statement

as

described

above.

The

last

statement

to

contain

data

for

this

segment

must

have

a

nonblank

character

in

column

72.

The

next

DATA

statement

applies

to

the

next

variable-length

segment

and

it

must

contain

an

M

in

column

4,

the

length

of

the

new

segment

in

columns

5

through

8,

and

data

starting

in

column

16.

Any

number

of

variable-length

segments

can

be

concatenated

in

this

manner.

If

column

72

is

blank,

the

next

statement

must

have

the

following:

v

An

L

in

column

1

v

An

M

in

column

4

v

The

length

of

the

new

segment

in

columns

5

through

8

v

The

keyword

DATA

in

columns

10

through

13

v

Data

starting

in

column

16

ISRT

Containing

Multiple

Segments

in

a

PATH

CALL:

Use

a

CALL

FUNCTION

statement

to

contain

the

ISRT

function

and

segment

name,

and

seven

CALL

DATA

statements

to

contain

the

multiple

segments

in

the

PATH

CALL.

When

DFSDDLT0

is

inserting

or

replacing

segments

through

path

calls,

you

can

use

V

and

P

in

successive

statements.

The

same

rules

apply

for

coding

multiple

variable-length

segments,

but

fixed-length

segments

must

have

a

P

in

column

4

of

the

DATA

statement.

This

causes

the

length

field

in

columns

5

through

8

to

be

used

as

the

length

of

the

segment,

and

causes

the

data

to

be

concatenated

in

the

I/O

area

without

including

the

LL

field.

Rules

for

continuing

data

in

the

same

segment

or

starting

a

new

segment

in

the

next

statement

are

the

same

as

those

applied

to

the

variable-length

segment.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

ISRT

JOKESSEG

10103210

L

V0080

DATA

THEQUICKBLACKDOGJUMPEDONTOTHECRAZYFOXOOPSTHEQUICKBROWNFO*10103211

XJUMPEDOVERTHELAZYDOGSIR

10103212

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

ISRT

AAAAASEG

10103210

L

V0080

DATA

THEQUICKBLACKDOGJUMPEDONTOTHECRAZYFOXOOPSTHEQUICKBROWNFO*10103211

XJUMPEDOVERTHELAZYDOGSIR

*10103212

M0107

DATA

NOWISTHETIMEFORALLGOODMENTOCOMETOTHEAIDOFTHEIRCOUNTRYNOW*10103213

ISTHETIMEFORALLGOODMENTOCOMETOTHEAIDOFTHEIRCOUNTRY

10103214

CALL

StatementIBM

Confidential

Appendix

B.

The

DL/I

Test

Program

(DFSDDLT0)

325

LOG

Call

Using

an

LLZZ

Format:

Use

a

CALL

FUNCTION

statement

to

contain

the

LOG

function

and

a

CALL

DATA

statement

to

contain

the

LLZZ

format

of

data

to

be

logged.

When

you

put

a

Z

in

column

4,

the

first

word

of

the

record

is

not

coded

in

the

DATA

statement.

The

length

specified

in

columns

5

through

8

must

include

the

4

bytes

for

the

LLZZ

field

that

is

not

in

the

DATA

statement.

The

A

in

column

16

becomes

the

log

record

ID.

POS

Call:

Use

a

CALL

FUNCTION

statement

to

contain

the

POS

function

and

SSA;

CALL

DATA

statement

is

optional.

PURG

Call

with

MODNAME

and

Data:

Use

a

CALL

FUNCTION

statement

to

contain

the

PURG

function

and

MOD

name.

Use

the

CALL

DATA

statement

to

contain

the

message

data.

If

MOD

name

is

provided,

a

DATA

statement

is

required.

PURG

Call

with

Data

and

no

MODNAME:

Use

a

CALL

FUNCTION

statement

to

contain

the

PURG

function;

a

DATA

statement

is

optional.

PURG

Call

without

MODNAME

or

Data:

Use

a

CALL

FUNCTION

statement

to

contain

the

PURG

function;

CALL

DATA

statement

is

optional.

RCMD

Call:

Use

a

CALL

FUNCTION

statement

to

contain

the

RCMD

function.

Use

a

CALL

DATA

statement

to

retrieve

second

and

subsequent

command

response

segments

resulting

from

an

ICMD

call.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

ISRT

LEV01SEG*D

*10103210

LEV02SEG

*10103211

LEV03SEG

*10103212

LEV04SEG

10103213

L

V0080

DATA

THEQUICKBLACKDOGJUMPEDONTOTHECRAZYFOXOOPSTHEQUICKBROWNFO*10103214

XJUMPEDOVERTHELAZYDOGSIR

*10103215

M0107

DATA

NOWISTHETIMEFORALLGOODMENTOCOMETOTHEAIDOFTHEIRCOUNTRYNOW*10103216

ISTHETIMEFORALLGOODMENTOCOMETOTHEAIDOFTHEIRCOUNTRY

*10103217

L

P0039

DATA

THEQUICKBROWNFOXJUMPEDOVERTHELAZYDOGSIR

*10103218

L

M0107

DATA

NOWISTHETIMEFORALLGOODMENTOCOMETOTHEAIDOFTHEIRCOUNTRYNOW*10103219

ISTHETIMEFORALLGOODMENTOCOMETOTHEAIDOFTHEIRCOUNTRY

10103220

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

LOG

10103210

L

Z0016

DATA

ASEGMENT

ONE

10103211

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

POS

SEGA

(KEYA

=A300)

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

PURG

MODNAME1

L

DATA

FIRST

SEGMENT

OF

NEW

MESSAGE

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

PURG

L

DATA

FIRST

SEGMENT

OF

NEW

MESSAGE

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

PURG

CALL

Statement IBM

Confidential

326

Application

Programming:

Database

Manager

REPL

Call:

Use

a

CALL

FUNCTION

statement

to

contain

the

REPL

function.

Use

a

CALL

DATA

statement

to

contain

the

replacement

data.

ROLB

Call

Requesting

Return

of

First

Segment

of

Current

Message:

Use

a

CALL

FUNCTION

statement

to

contain

the

ROLB

function.

Use

the

CALL

DATA

statement

to

request

first

segment

of

current

message.

ROLB

Call

Not

Requesting

Return

of

First

Segment

of

Current

Message:

Use

a

CALL

FUNCTION

statement

to

contain

the

ROLB

function.

The

CALL

DATA

statement

is

optional.

ROLL

Call:

Use

a

CALL

FUNCTION

statement

to

contain

the

ROLL

function.

The

CALL

DATA

statement

is

optional.

ROLS

Call

with

a

Token:

Use

a

CALL

FUNCTION

statement

to

contain

the

ROLS

function

and

token,

and

the

CALL

DATA

statement

to

provide

the

data

area

that

will

be

overlaid

by

the

data

from

the

SETS

call.

ROLS

Call

without

a

Token:

Use

a

CALL

FUNCTION

statement

to

contain

the

ROLS

function.

The

CALL

DATA

statement

is

optional.

ROLX

Call:

Use

a

CALL

FUNCTION

statement

to

contain

the

ROLX

function.

The

CALL

DATA

statement

is

optional.

The

ROLX

function

is

treated

as

a

ROLS

call

with

no

token.

SETO

Call:

Use

a

CALL

FUNCTION

statement

to

contain

the

SETO

function.

The

DATA

statement

is

optional;

however,

if

an

OPTION

statement

is

passed

on

the

call,

the

DATA

statement

is

required.

Also,

if

a

FEEDBACK

statement

is

passed

on

the

call,

then

both

the

DATA

and

OPTION

statements

are

required.

The

following

is

an

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

RCMD

L

Z0132

DATA

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

REPL

L

V0028

DATA

THIS

IS

THE

REPLACEMENT

DATA

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

ROLB

L

DATA

THIS

WILL

BE

OVERLAID

WITH

FIRST

SEGMENT

OF

MESSAGE

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

ROLB

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

ROLL

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

ROLS

TOKEN1

L

Z0046

DATA

THIS

WILL

BE

OVERLAID

WITH

DATA

FROM

SETS

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

ROLS

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

ROLX

CALL

StatementIBM

Confidential

Appendix

B.

The

DL/I

Test

Program

(DFSDDLT0)

327

example

of

a

SETO

statement

using

the

OPTION

statement

and

SETO

token

of

SET1.

11

is

the

hex

value

of

the

length

of

11OPTION,.........OPTION4.

The

following

is

an

example

of

a

SETO

statement

using

the

OPTION

statement

and

SETO

token

of

SET1.

11

is

the

hex

value

of

the

length

of

11OPTION,.........OPTION4.

The

following

is

an

example

of

a

SETO

statement

using

the

OPTION

statement

and

SETO

token

of

SET2

and

FDBK

statement.

11

is

the

hex

value

of

the

length

of

11OPTION,.........OPTION4.

SETS

Call

with

a

Token:

Use

a

CALL

FUNCTION

statement

to

contain

the

SETS

function

and

token;

use

the

CALL

DATA

statement

to

provide

the

data

that

is

to

be

returned

to

ROLS

call.

SETS

Call

without

a

Token:

Use

a

CALL

FUNCTION

statement

to

contain

the

SETS

function;

CALL

DATA

statement

is

optional.

This

section

(SNAP

call)

contains

product-sensitive

programming

interface

information.

SNAP

Call:

Use

a

CALL

FUNCTION

statement

to

contain

the

SNAP

function

and

a

CALL

DATA

statement

to

contain

the

SNAP

data.

This

section

(STAT

call)

contains

product-sensitive

programming

interface

information.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

SETO

SET1

5000

L

OPT

PRTO=11OPTION1,OPTION2,

L

CONT

OPTION3,

L

CONT

OPTION4

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

SETO

SET1

7000

L

OPT

PRTO=11OPTION1,OPTION2,OPTION3,OPTION4

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

SETO

SET2

5500

L

OPT

PRTO=11OPTION1,OPTION2,OPTION3,OPTION4

L

Z0099

FDBK

OPTION

ERROR

FEEDBACK

AREA

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

SETS

TOKEN1

L

Z0033

DATA

RETURN

THIS

DATA

ON

THE

ROLS

CALL

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

SETS

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

SNAP

10103210

L

V0022

DATA

PRINTDD

22222222

10103212

CALL

Statement IBM

Confidential

328

Application

Programming:

Database

Manager

STAT

Call:

OSAM

statistics

require

only

one

STAT

call.

STAT

calls

for

VSAM

statistics

retrieve

only

one

subpool

at

a

time,

starting

with

the

smallest.

See

IMS

Version

9:

Application

Programming:

Design

Guide

for

further

information

about

the

statistics

returned

by

STAT.

SYNC

Call:

Use

a

CALL

FUNCTION

statement

to

contain

the

SYNC

function.

The

CALL

DATA

statement

is

optional.

Initial

XRST

Call:

Use

a

CALL

FUNCTION

statement

to

contain

the

XRST

FUNCTION

and

a

CALL

DATA

statement

that

contains

a

checkpoint

ID

of

blanks

to

indicate

that

you

are

normally

starting

a

program

that

uses

symbolic

checkpoints.

Basic

XRST

Call:

Use

a

CALL

FUNCTION

statement

to

contain

the

XRST

function

and

a

CALL

DATA

statement

to

contain

the

checkpoint

ID.

Symbolic

XRST

Call:

Use

a

CALL

FUNCTION

statement

to

contain

the

XRST

function,

a

CALL

DATA

statement

to

contain

the

checkpoint

ID

data,

and

one

or

more

CALL

DATA

statements

where

the

data

is

to

be

returned.

The

XRST

call

is

used

with

the

symbolic

CHKP

call.

CALL

FUNCTION

Statement

with

Column-Specific

SSAs

In

this

format,

the

SSA

has

intervening

blanks

between

fields.

Columns

24,

34,

and

37

must

contain

blanks.

Command

codes

are

not

permitted.

Table

64

gives

the

format

for

the

CALL

FUNCTION

statement

with

column-specific

SSAs.

Table

64.

CALL

FUNCTION

Statement

(Column-Specific

SSAs)

Column

Function

Code

Description

1

Identifies

control

statement

L

Call

statement

(see

columns

10-13).

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

STAT

DBASF

L

STAT

VBASS

L

STAT

VBASS

L

STAT

VBASS

L

STAT

VBASS

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

SYNC

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

XRST

10101400

L

DATA

L

CKPT

L

DATA

YOURID01

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

XRST

10101400

L

DATA

TESTCKPT

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

XRST

L

DATA

TSTCHKP2

X

L

8

DATA

OVERLAY2

X

L

16

DATA

OVERLAY2OVERLAY2

U

EIGHT

BYTES

OF

DATA

(OVERLAY2)

SHOULD

BE

OVERLAID

WITH

CHECKPOINTED

DATA

U

SIXTEEN

BYTES

OF

DATA

(OVERLAY2OVERLAY2)

IS

OVERLAID

ALSO

CALL

StatementIBM

Confidential

Appendix

B.

The

DL/I

Test

Program

(DFSDDLT0)

329

Table

64.

CALL

FUNCTION

Statement

(Column-Specific

SSAs)

(continued)

Column

Function

Code

Description

2

Reserved

�

3

Reserved

�

4

Reserved

�

5-8

Repeat

Count

�

If

blank,

repeat

count

defaults

to

1.

nnnn

'nnnn'

is

the

number

of

times

to

repeat

this

call.

Range

1

to

9999,

right-justified

but

need

not

contain

leading

zeros.

10-13

Identifies

DL/I

call

function

�

If

blank,

use

function

from

previous

CALL

statement.

xxxx

'xxxx'

is

a

DL/I

call

function.

CONT

Continuation

indicator

for

SSAs

too

long

for

a

single

CALL

FUNCTION

statement.

Column

72

of

preceding

CALL

FUNCTION

statement

must

contain

a

nonblank

character.

The

next

CALL

statement

should

have

CONT

in

columns

10

through

13

and

the

SSA

should

continue

in

column

16.

14-15

Reserved

�

16-23

SSA

name

s-name

Required

if

call

contains

SSA.

24

Reserved

�

Separator

field.

25

Start

character

for

SSA

(

Required

if

segment

is

qualified.

26-33

SSA

field

name

f-name

Required

if

segment

is

qualified.

34

Reserved

�

Separator

field.

35-36

DL/I

call

operator(s)

name

Required

if

segment

is

qualified.

37

Reserved

�

Separator

field.

38-nn

Field

value

nnnnn

Required

if

segment

is

qualified.

Note:

Do

not

use

'5D'

or

')'

in

field

value.

nn+1

End

character

for

SSA

)

Required

if

segment

is

qualified.

72

Continuation

column

�

No

continuations

for

this

statement.

x

Alone,

it

indicates

multiple

SSAs

each

beginning

in

column

16

of

successive

statements.

With

CONT

in

columns

10-13

of

the

next

statement,

indicates

a

single

SSA

that

is

continued

beginning

in

column

16

of

the

following

statement

73-80

Sequence

indication

nnnnnnnn

For

SYSIN2

statement

override.

If

a

CALL

FUNCTION

statement

contains

multiple

SSAs,

the

statement

must

have

a

nonblank

character

in

column

72

and

the

next

SSA

must

start

in

column

16

of

the

next

statement.

If

a

field

value

extends

past

column

71,

put

a

nonblank

character

in

column

72.

In

the

next

statement

insert

the

keyword

CONT

in

columns

10

through

13

and

continue

the

field

value

starting

at

column

16.

Maximum

length

for

field

value

is

256

bytes,

maximum

size

for

an

SSA

is

290

bytes,

and

the

maximum

number

of

SSAs

for

this

program

is

15,

which

is

the

same

as

the

IMS

limit.

DFSDDLT0

Call

Functions

The

DFSDDLT0

call

functions

were

created

for

DFSDDLT0.

They

do

not

represent

“valid”

IMS

calls

and

are

not

punched

as

output

if

DFSDDLT0

encounters

them

while

a

CTL

(PUNCH)

statement

is

active.

Table

65

on

page

331

shows

the

special

call

functions

of

the

CALL

FUNCTION

statement.

Descriptions

and

examples

of

these

special

functions

follow.

CALL

Statement IBM

Confidential

330

Application

Programming:

Database

Manager

Table

65.

CALL

FUNCTION

Statement

with

DFSDDLT0

Call

Functions

Column

Function

Code

Description

1

Identifies

control

statement

L

Call

statement.

2-4

Reserved

�

5-8

Repeat

count

�

If

blank,

repeat

count

defaults

to

1.

nnnn

'nnnn'

is

the

number

of

times

to

repeat

this

call.

Range

is

1

to

9999,

right-justified

but

need

not

contain

leading

zeros.

9

Reserved

�

10-15

Special

call

function

STAK�

Stack

control

statements

for

later

execution.

END��

Stop

stacking

and

begin

execution.

SKIP�

Skip

statements

until

START

function

is

encountered.

START

Start

processing

statements

again.

73-80

Sequence

indication

nnnnnnnn

For

SYSIN2

statement

override.

STAK/END

(stacking)

Control

Statements

With

the

STAK

statement,

you

repeat

a

series

of

statements

that

were

read

from

SYSIN

and

held

in

memory.

All

control

statements

between

the

STAK

statement

and

the

END

statement

are

read

and

saved.

When

DFSDDLT0

encounters

the

END

statement,

it

executes

the

series

of

calls

as

many

times

as

specified

in

columns

5

through

8

of

the

STAK

statement.

STAK

calls

imbedded

within

another

STAK

cause

the

outer

STAK

call

to

be

abnormally

terminated.

SKIP/START

(skipping)

Control

Statements

With

the

SKIP

and

START

statements,

you

identify

groups

of

statements

that

you

do

not

want

DFSDDLT0

to

process.

These

functions

are

normally

read

from

SYSIN2

and

provide

a

temporary

override

to

an

established

SYSIN

input

stream.

DFSDDLT0

reads

all

control

statements

occurring

between

the

SKIP

and

START

statements,

but

takes

no

action.

When

DFSDDLT0

encounters

the

START

statement,

it

reads

and

processes

the

next

statement

normally.

Examples

of

DFSDDLT0

Call

Functions

STAK/END

Call:

The

following

example

shows

the

STAK

and

END

call

functions.

SKIP/START

Call:

The

following

example

demonstrates

the

use

of

the

SKIP

and

START

call

functions

in

SYSIN2

to

override

and

stop

the

processing

of

the

STAK

//BATCH.SYSIN

DD

*

10000700

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

O

SNAP=

,ABORT=0

10000800

S

1

1

1

1

1

10001000

L

GU

SEGA

(KEYA

=A300)

10001100

L

0003

STAK

10001150

WTO

THIS

IS

PART

OF

THE

STAK

10001200

T

THIS

COMMENT

IS

PART

OF

THE

STAK

10001300

L

GN

10001400

L

END

10001450

U

THIS

COMMENT

SHOULD

GET

PRINTED

AFTER

THE

STAK

IS

DONE

3

TIMES

10001500

L

0020

GN

10001600

/*

CALL

StatementIBM

Confidential

Appendix

B.

The

DL/I

Test

Program

(DFSDDLT0)

331

and

END

call

functions

in

SYSIN.

DFSDDLT0

executes

the

GU

call

function

in

SYSIN,

skips

the

processing

of

STACK,

WTO,

T

comment,

GN,

and

END

in

SYSIN,

and

goes

to

the

COMMENT.

COMMENT

Statement

Use

the

COMMENT

statement

to

print

comments

in

the

output

data.

The

two

types

of

COMMENT

statements,

conditional

and

unconditional,

are

described

below.

Table

66

shows

the

format

of

the

COMMENT

statement.

Conditional

COMMENT

Statement

You

can

use

up

to

five

conditional

COMMENT

statements

per

call;

no

continuation

mark

is

required

in

column

72.

Code

the

statements

in

the

DFSDDLT0

stream

before

the

call

they

are

to

document.

Conditional

COMMENTS

are

read

and

held

until

a

CALL

is

read

and

executed.

(If

a

COMPARE

statement

follows

the

CALL,

conditional

COMMENTS

are

held

until

after

the

comparison

is

completed.)

You

control

whether

the

conditional

comments

are

printed

with

column

3

of

the

STATUS

statement.

DFSDDLT0

prints

the

statements

according

to

the

STATUS

statement

in

the

following

order:

conditional

COMMENTS,

the

CALL,

and

the

COMPARE(s).

The

time

and

date

are

also

printed

with

each

conditional

COMMENT

statement.

Unconditional

COMMENT

Statement

You

can

use

any

number

of

unconditional

COMMENT

statements.

Code

them

in

the

DFSDDLT0

stream

before

the

call

they

are

to

document.

The

time

and

date

are

printed

with

each

unconditional

COMMENT

statement.

Table

66

lists

the

column

number,

function,

code,

and

description

Table

66.

COMMENT

Statement

Column

Function

Code

Description

1

Identifies

control

statement

T

Conditional

comment

statement.

U

Unconditional

comment

statement.

2-72

Comment

data

Any

relevant

comment.

73-80

Sequence

indication

nnnnnnnn

For

SYSIN2

statement

override.

//BATCH.SYSIN

DD

*

10000700

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

O

SNAP=

,ABORT=0

10000800

S

1

1

1

1

1

10001000

L

GU

SEGA

(KEYA

=A300)

10001100

L

0003

STAK

10001150

WTO

THIS

IS

PART

OF

THE

STAK

10001200

T

THIS

COMMENT

IS

PART

OF

THE

STAK

10001300

L

GN

10001400

L

END

10001450

U

THIS

COMMENT

SHOULD

GET

PRINTED

AFTER

THE

STAK

IS

DONE

3

TIMES

10001500

L

0020

GN

10001600

/*

//BATCH.SYSIN2

DD

*

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

SKIP

10001150

L

START

10001450

U

THIS

COMMENT

SHOULD

REPLACE

THE

STAK

COMMENT

10001500

U

********THIS

COMMENT

SHOULD

GET

PRINTED

BECAUSE

OF

SYSIN2*********

10001650

/*

CALL

Statement IBM

Confidential

332

Application

Programming:

Database

Manager

Example

of

COMMENT

Statement

T/U

Comment

Calls:

The

following

example

shows

the

T

and

U

comment

calls.

COMPARE

Statement

The

COMPARE

statement

compares

the

actual

results

of

a

call

with

the

expected

results.

The

three

types

of

COMPARE

statements

are

the

COMPARE

PCB,

COMPARE

DATA,

and

COMPARE

AIB.

When

you

use

the

COMPARE

PCB,

COMPARE

DATA,

and

COMPARE

AIB

statements

you

must:

v

Code

COMPARE

statements

in

the

DFSDDLT0

stream

immediately

after

either

the

last

continuation,

if

any,

of

the

CALL

DATA

statement

or

another

COMPARE

statement.

v

Specify

the

print

option

for

the

COMPARE

statements

in

column

7

of

the

STATUS

statement.

For

all

three

COMPARE

statements:

v

The

condition

code

returned

for

a

COMPARE

gives

the

total

number

of

unequal

comparisons.

v

For

single

fixed-length

segments,

DFSDDLT0

uses

the

comparison

length

to

perform

comparisons

if

you

provide

a

length.

The

length

comparison

option

(column

3)

is

not

applicable.

When

you

use

the

COMPARE

PCB

statement

and

you

want

a

snap

dump

when

there

is

an

unequal

comparison,

request

it

on

the

COMPARE

PCB

statement.

A

snap

dump

to

a

log

with

SNAP

ID

COMPxxxx

is

issued

along

with

the

snap

dump

options

specified

in

column

3

of

the

COMPARE

PCB

statement.

The

numeric

part

of

the

SNAP

ID

is

initially

set

to

0000

and

is

incremented

by

1

for

each

SNAP

resulting

from

an

unequal

comparison.

COMPARE

DATA

Statement

The

COMPARE

DATA

statement

is

optional.

It

compares

the

segment

returned

by

IMS

to

the

data

in

the

statement

to

verify

that

the

correct

segment

was

retrieved.

Table

67

gives

the

format

of

the

COMPARE

DATA

statement.

Table

67.

COMPARE

DATA

Statement

Column

Function

Code

Description

1

Identifies

control

statement

E

COMPARE

statement.

2

Reserved

�

//BATCH.SYSIN

DD

*

10000700

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

O

SNAP=

,ABORT=0

10000800

S

1

1

1

1

1

10001000

L

GU

SEGB

(KEYA

=A400)

10001100

T

THIS

COMMENT

IS

A

CONDITIONAL

COMMENT

FOR

THE

FIRST

GN

10001300

L

GN

10001400

U

THIS

COMMENT

IS

AN

UNCONDITIONAL

COMMENT

FOR

THE

SECOND

GN

10001500

L

0020

GN

10001600

/*

COMMENT

StatementIBM

Confidential

Appendix

B.

The

DL/I

Test

Program

(DFSDDLT0)

333

Table

67.

COMPARE

DATA

Statement

(continued)

Column

Function

Code

Description

3

Length

comparison

option

�

For

fixed-length

segments

or

if

the

LL

field

of

the

segment

is

not

included

in

the

comparison;

only

the

data

is

compared.

L

The

length

in

columns

5-8

is

converted

to

binary

and

compared

against

the

LL

field

of

the

segment.

4

Segment

length

option

�

V

For

a

variable-length

segment

only,

or

for

the

first

variable-length

segment

of

multiple

variable-length

segments

in

a

path

call,

or

for

a

concatenated

logical

child/logical

parent

segment.

M

For

the

second

or

subsequent

variable-length

segment

of

a

path

call,

or

for

a

concatenated

logical

child/logical

parent

segment.

P

For

fixed-length

segments

in

path

calls.

Z

For

message

segment.

5-8

Comparison

length

nnnn

Length

to

be

used

for

comparison.

(Required

for

length

options

V,

M,

and

P

if

L

is

coded

in

column

3.)

9

Reserved

�

10-13

Identifies

type

of

statement

DATA

Required

for

the

first

I/O

COMPARE

statement

and

the

first

statement

of

a

new

segment

if

data

from

previous

I/O

COMPARE

statement

is

not

continued.

14-15

Reserved

�

16-71

String

of

data

Data

against

which

the

segment

in

the

I/O

area

is

to

be

compared.

72

Continuation

column

�

If

blank,

data

is

NOT

continued.

x

If

not

blank,

data

will

be

continued,

starting

in

columns

16-71

of

the

subsequent

statements

for

a

maximum

of

3840

bytes.

73-80

Sequence

indication

nnnnnnnn

For

SYSIN2

statement

override.

Notes:

v

If

you

code

an

L

in

column

3,

the

value

in

columns

5

through

8

is

converted

to

binary

and

compared

against

the

LL

field

of

the

returned

segment.

If

you

leave

column

3

blank

and

the

segment

is

not

in

a

path

call,

then

the

value

in

columns

5

through

8

is

used

as

the

length

of

the

comparison.

v

If

you

code

column

4

with

a

V,

P,

or

M,

you

must

enter

a

value

in

columns

5

through

8.

v

If

this

is

a

path

call

comparison,

code

a

P

in

column

4.

The

value

in

columns

5

through

8

must

be

the

exact

length

of

the

fixed

segment

used

in

the

path

call.

v

If

you

specify

the

length

of

the

segment,

this

length

is

used

in

the

COMPARE

and

in

the

display.

If

you

do

not

specify

a

length,

DFSDDLT0

uses

the

shorter

of

the

following

for

the

length

of

the

comparison

and

display:

–

The

length

of

data

supplied

in

the

I/O

area

by

IMS

–

The

number

of

DATA

statements

read

times

56

COMPARE

Statement IBM

Confidential

334

Application

Programming:

Database

Manager

COMPARE

AIB

Statement

The

COMPARE

AIB

statement

is

optional.

You

can

use

it

to

compare

values

returned

to

the

AIB

by

IMS.

Table

68

shows

the

format

of

the

COMPARE

AIB

statement.

Table

68.

COMPARE

AIB

Statement

Column

Function

Code

Description

1

Identifies

control

statement

E

COMPARE

statement.

2

Hold

compare

option

H

Hold

COMPARE

statement;

see

the

paragraph

below

for

details.

�

Reset

hold

condition

for

a

single

COMPARE

statement.

3

Reserved

�

4-6

AIB

compare

AIB

Identifies

an

AIB

compare.

7

Reserved

�

8-11

Return

code

xxxx

Allow

specified

return

code

only.

12

Reserved

13-16

Reason

code

xxxx

Allow

specified

reason

code

only.

17-72

Reserved

�

�

73-80

Sequence

indication

nnnnnnnn

For

SYSIN2

statement

override.

To

execute

the

same

COMPARE

AIB

after

a

series

of

calls,

put

an

H

in

column

2.

When

you

specify

an

H,

the

COMPARE

statement

executes

after

each

call.

The

H

COMPARE

statement

is

particularly

useful

when

comparing

with

the

same

status

code

on

repeated

calls.

The

H

COMPARE

statement

stays

in

effect

until

another

COMPARE

AIB

statement

is

read.

COMPARE

PCB

Statement

The

COMPARE

PCB

statement

is

optional.

You

can

use

it

to

compare

values

returned

to

the

PCB

by

IMS

or

to

print

blocks

or

buffer

pool.

Table

69

shows

the

format

of

the

COMPARE

PCB

statement.

Table

69.

COMPARE

PCB

Statement

Column

Function

Code

Description

1

Identifies

control

statement

E

COMPARE

statement.

2

Hold

compare

option

H

Hold

compare

statement.

�

Reset

hold

condition

for

a

single

COMPARE

statement.

3

Snap

dump

options

(if

compare

was

unequal)

�

Use

default

value.

(You

can

change

the

default

value

or

turn

off

the

option

by

coding

the

value

in

an

OPTION

statement.)

1

The

complete

I/O

buffer

pool.

2

The

entire

region

(batch

regions

only).

4

The

DL/I

blocks.

8

Terminate

the

job

step

on

miscompare

of

DATA

or

PCB.

COMPARE

StatementIBM

Confidential

Appendix

B.

The

DL/I

Test

Program

(DFSDDLT0)

335

Table

69.

COMPARE

PCB

Statement

(continued)

Column

Function

Code

Description

S

To

SNAP

subpools

0

through

127.

Requests

for

multiple

SNAP

dump

options

can

be

obtained

by

summing

their

respective

hexadecimal

values.

If

anything

other

than

a

blank,

1-9,

A-F,

or

S

is

coded

in

column

3,

the

SNAP

dump

option

is

ignored.

4

Extended

SNAP1

options

�

Ignore

extended

option.

P

SNAP

the

complete

buffer

pool

(batch).

S

SNAP

subpools

0

through

127

(batch).

An

area

is

never

snapped

twice.

The

SNAP

option

is

a

combination

of

columns

3

(SNAP

dump

option)

and

4

(extended

SNAP

option).

5-6

Segment

level

nn

'nn'

is

the

segment

level

for

COMPARE

PCB.

A

leading

zero

is

required.

7

Reserved

�

8-9

Status

code

�

Allow

blank

status

code

only.

xx

Allow

specified

status

code

only.

XX

Do

not

check

status

code.

OK

Allow

the

following:

blank,

GA,

GC,

or

GK.

10

Reserved

�

11-18

Segment

name

User

Identification

xxxxxxxx

Segment

name

for

DB

PCB

compare.

Logical

terminal

for

I/O.

Destination

for

ALT

PCB.

19

Reserved

�

20-23

Length

of

key

nnnn

'nnnn'

is

length

of

the

feedback

key.

24-71

or

Concatenated

key

Concatenated

key

feedback

for

DB

PCB

compare.

24-31

User

ID

User

identification

for

TP

PCB.

72

Continuation

column

�

If

blank,

key

feedback

is

not

continued.

x

If

not

blank,

key

feedback

is

continued,

starting

in

columns

16-71

of

subsequent

statements.

73-80

Sequence

indication

nnnnnnnn

For

SYSIN2

statement

override.

Note:

1.

SNAP

is

a

Product-sensitive

programming

interface.

Blank

fields

are

not

compared

to

the

corresponding

field

in

the

PCB,

except

for

the

status

code

field.

(Blanks

represent

a

valid

status

code.)

To

accept

the

status

codes

blank,

GA,

GC,

or

GK

as

a

group,

put

OK

in

columns

8

and

9.

To

stop

comparisons

of

status

codes,

put

XX

in

columns

8

and

9.

To

execute

the

same

compare

after

a

series

of

calls,

put

an

H

in

column

2.

This

executes

the

COMPARE

statement

after

each

call.

This

is

particularly

useful

to

compare

to

a

blank

status

code

only

when

loading

a

database.

The

H

COMPARE

statement

stays

in

effect

until

another

COMPARE

PCB

statement

is

read.

COMPARE

Statement IBM

Confidential

336

Application

Programming:

Database

Manager

Examples

of

COMPARE

DATA

and

PCB

Statements

COMPARE

PCB

Statement

for

Blank

Status

Code:

The

COMPARE

PCB

statement

is

coded

blank.

It

checks

a

blank

status

code

for

the

GU.

COMPARE

PCB

Statement

for

SSA

Level,

Status

Code,

Segment

Name,

Concatenated

Key

Length,

and

Concatenated

Key:

The

COMPARE

PCB

statement

is

a

request

to

compare

the

SSA

level,

a

status

code

of

OK

(which

includes

blank,

GA,

GC,

and

GK),

segment

name

of

SEGA,

concatenated

key

length

of

0004,

and

a

concatenated

key

of

A100.

COMPARE

PCB

Statement

for

SSA

Level,

Status

Code,

Segment

Name,

Concatenated

Key

Length,

and

Concatenated

Key:

The

COMPARE

PCB

statement

causes

the

job

step

to

terminate

based

on

the

8

in

column

3

when

any

of

the

fields

in

the

COMPARE

PCB

statement

are

not

equal

to

the

corresponding

field

in

the

PCB.

COMPARE

PCB

Statement

for

Status

Code

with

Hold

Compare:

The

COMPARE

PCB

statement

is

a

request

to

compare

the

status

code

of

OK

(which

includes

blank,

GA,

GC,

and

GK)

and

hold

that

compare

until

the

next

COMPARE

PCB

statement.

The

compare

of

OK

is

used

on

GN

following

GU

and

is

also

used

on

a

GN

that

has

a

request

to

be

repeated

six

times.

COMPARE

DATA

Statement

for

Fixed-Length

Segment:

The

COMPARE

DATA

statement

is

a

request

to

compare

the

data

returned.

72

bytes

of

data

are

compared.

COMPARE

DATA

Statement

for

Fixed-Length

Data

for

64

Bytes:

The

COMPARE

DATA

statement

is

a

request

to

compare

64

bytes

of

the

data

against

the

data

returned.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

GU

10101100

E

10101200

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

GU

E

01

OK

SEGA

0004A100

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

GU

10105100

E

8

01

OK

SEGK

0004A100

10105200

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

GU

SEGA

(KEYA

=

A300)

20201100

L

GN

20201300

EH

OK

20201400

L

0006

GN

20201500

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

GU

E

DATA

A100A100A100A100A100A100A100A100A100A100A100A100A100A100X10102200

E

A100A100A100A100

10102300

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

GU

10101600

E

0064

DATA

A100A100A100A100A100A100A100A100A100A100A100A100A100A100X10101700

E

A100A100B111B111

10101800

COMPARE

StatementIBM

Confidential

Appendix

B.

The

DL/I

Test

Program

(DFSDDLT0)

337

COMPARE

DATA

Statement

for

Fixed-Length

Data

for

72

Bytes:

The

COMPARE

DATA

statement

is

a

request

to

compare

72

bytes

of

the

data

against

the

data

returned.

COMPARE

DATA

Statement

for

Variable-Length

Data

of

Multiple-Segments

Data

and

Length

Fields:

The

COMPARE

DATA

statement

is

a

request

to

compare

36

bytes

of

the

data

against

the

data

returned

for

segment

1

and

16

bytes

of

data

for

segment

2.

It

compares

the

length

fields

of

both

segments.

COMPARE

DATA

Statement

for

Variable-Length

Data

of

Multiple

Segments

with

no

Length

Field

COMPARE:

The

COMPARE

DATA

statement

is

a

request

to

compare

36

bytes

of

the

data

against

the

data

returned

for

segment

1

and

16

bytes

of

data

for

segment

2

with

no

length

field

compares

of

either

segment.

COMPARE

DATA

Statement

for

Variable-Length

Data

of

Multiple

Segments

and

One

Length

Field

COMPARE:

The

COMPARE

DATA

statement

is

a

request

to

compare

36

bytes

of

the

data

against

the

data

returned

for

segment

1

and

16

bytes

of

data

for

segment

2.

It

compares

the

length

field

of

segment

1

only.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

GU

10103900

E

LP0072

DATA

A100A100A100A100A100A100A100A100A100A100A100A100A100A100X10104000

E

A100A100A100A100

10104100

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

ISRT

D

(DSS

=

DSS01)

X38005500

L

DJ

(DJSS

=

DJSS01)

X38005600

L

QAJAXQAJ

38005700

L

V0036

DATA

QSS02QASS02QAJSS01QAJASS97*IQAJA**

*38005800

L

M0016

DATA

QAJSS01*IQAJ**

38005850

L

GHU

D

(DSS

=

DSS01)

X38006000

DJ

(DJSS

=

DJSS01)

X38006100

QAJAXQAJ

(QAJASS

=

QAJASS97)

38006200

E

LV0036

DATA

QSS02QASS02QAJSS01QAJASS97*IQAJA**

*38006300

E

LM0016

DATA

QAJSS01*2QAJ**

38006350

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

ISRT

D

(DSS

=

DSS01)

X38005500

L

DJ

(DJSS

=

DJSS01)

X38005600

L

QAJAXQAJ

38005700

L

V0036

DATA

QSS02QASS02QAJSS01QAJASS97*IQAJA**

*38005800

L

M0016

DATA

QAJSS01*IQAJ**

38005850

L

GHU

D

(DSS

=

DSS01)

X38006000

DJ

(DJSS

=

DJSS01)

X38006100

QAJAXQAJ

(QAJASS

=

QAJASS97)

38006200

E

V0036

DATA

QSS02QASS02QAJSS01QAJASS97*IQAJA**

*38006300

M0016

DATA

QAJSS01*2QAJ**

38006350

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

L

ISRT

D

(DSS

=

DSS01)

X38005500

L

DJ

(DJSS

=

DJSS01)

X38005600

L

QAJAXQAJ

38005700

L

V0036

DATA

QSS02QASS02QAJSS01QAJASS97*IQAJA**

*38005800

L

M0016

DATA

QAJSS01*IQAJ**

38005850

L

GHU

D

(DSS

=

DSS01)

X38006000

DJ

(DJSS

=

DJSS01)

X38006100

QAJAXQAJ

(QAJASS

=

QAJASS97)

38006200

E

LV0036

DATA

QSS02QASS02QAJSS01QAJASS97*IQAJA**

*38006300

M0016

DATA

QAJSS01*2QAJ**

38006350

COMPARE

Statement IBM

Confidential

338

Application

Programming:

Database

Manager

IGNORE

Statement

DFSDDLT0

ignores

any

statement

with

an

N

or

a

period

(.)

in

column

1.

You

can

use

the

N

or

.

(period)

to

comment

out

a

statement

in

either

the

SYSIN

or

SYSIN2

input

streams.

Using

an

N

or

.

(period)

in

a

SYSIN2

input

stream

causes

the

SYSIN

input

stream

to

be

ignored

as

well.

See

“SYSIN2

DD

Statement”

on

page

348

for

information

on

how

to

override

SYSIN

input.

Table

70

gives

the

format

of

the

IGNORE

statement.

An

example

of

the

statement

follows.

Table

70.

IGNORE

Statement

Column

Function

Code

Description

1

Identifies

control

statement

N

or

.

IGNORE

statement.

2-72

Ignored

73-80

Sequence

indication

nnnnnnnn

For

SYSIN2

statement

override.

Example

of

IGNORE

(N

or

.)

OPTION

Statement

Use

the

OPTION

statement

to

override

various

default

options.

Use

multiple

OPTION

statements

if

you

cannot

fit

all

the

options

you

want

in

one

statement.

No

continuation

character

is

necessary.

Once

you

set

an

option,

it

remains

in

effect

until

you

specify

another

OPTION

statement

to

change

the

first

parameter.

Table

71

shows

the

format

of

the

OPTION

statement.

An

example

follows.

Table

71.

OPTION

Statement

Column

Function

Code

Description

1

Identifies

control

statement

O

OPTION

statement

(free-form

parameter

fields).

2

Reserved

�

�

3-72

Keyword

parameters:

ABORT=

v

0

v

1

to

9999

v

Turns

the

ABORT

parameter

off.

v

Number

of

unequal

compares

before

aborting

job.

Initial

default

is

5.

LINECNT=

10

to

99

Number

of

lines

printed

per

page.

Must

be

filled

with

zeros.

Initial

default

54.

SNAP1

x

SNAP

option

default,

when

results

of

compare

are

unequal.

To

turn

the

SNAP

option

off,

code

'SNAP='.

See

“COMPARE

PCB

Statement”

on

page

335

for

the

appropriate

values

for

this

parameter.

(Initial

default

is

5

if

this

option

is

not

coded.

This

causes

the

I/O

buffer

pool

and

the

DL/I

blocks

to

be

dumped

with

a

SNAP

call.)

DUMP/NODUMP

Produce/do

not

produce

dump

if

job

abends.

Default

is

NODUMP.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

.

NOTHING

IN

THIS

AREA

WILL

BE

PROCESSED.

ONLY

THE

SEQUENCE

NUMBER

67101010

N

WILL

BE

USED

IF

READ

FROM

SYSIN2

OR

SYSIN.

67101020

IGNORE

StatementIBM

Confidential

Appendix

B.

The

DL/I

Test

Program

(DFSDDLT0)

339

Table

71.

OPTION

Statement

(continued)

Column

Function

Code

Description

LCASE=

v

H

v

C

v

Hexadecimal

representation

for

lower

case

characters.

This

is

the

initial

default.

v

Character

representation

for

lower

case

characters.

STATCD/NOSTATCD

Issue/do

not

issue

an

error

message

for

the

internal,

end-of-job

stat

call

that

does

not

receive

a

blank

or

GA

status

code.

NOSTATCD

is

the

default.

ABU249/NOABU249

Issue/do

not

issue

a

DFSDDLT0

ABENDU0249

when

an

invalid

status

code

is

returned

for

any

of

the

internal

end-of-job

stat

calls

in

a

batch

environment.

NOABU249

is

the

default.

73

-

80

Sequence

indication

nnnnnnnn

For

SYSIN2

statement

override.

Note:

1.

SNAP

is

a

Product-sensitive

programming

interface.

OPTION

statement

parameters

can

be

separated

by

commas.

Example

of

OPTION

Control

Statement

PUNCH

Statement

The

PUNCH

CTL

statement

allows

you

to

produce

an

output

data

set

consisting

of

COMPARE

PCB

statements,

COMPARE

DATA

statements,

COMPARE

AIB

statements,

other

control

statements

(with

the

exceptions

noted

below),

or

combinations

of

the

above.

Table

72

shows

the

format

and

keyword

parameters

for

the

PUNCH

CTL

statement.

Table

72.

PUNCH

CTL

Statement

Column

Function

Code

Description

1-3

Identifies

control

statement

CTL

PUNCH

statement.

4-9

Reserved

�

10-13

Punch

control

PUNC

Begin

punching

(no

default

values).

NPUN

Stop

punching

(default

value).

14-15

Reserved

�

16-72

Keyword

parameters:

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

O

ABORT=5,DUMP,LINECNT=54,SPA=4096,SNAP=5

67101010

OPTION

Statement IBM

Confidential

340

Application

Programming:

Database

Manager

Table

72.

PUNCH

CTL

Statement

(continued)

Column

Function

Code

Description

OTHER

Reproduces

all

input

control

statements

except:

v

CTL

(PUNCH)

statements.

v

N

or

.

(IGNORE)

statements.

v

COMPARE

statements.

v

CALL

statements

with

functions

of

SKIP

and

START.

Any

control

statements

that

appear

between

SKIP

and

START

CALLs

are

not

punched.

(See

“SKIP/START

(skipping)

Control

Statements”

on

page

331).

v

CALL

statements

with

functions

of

STAK

and

END.

Control

statements

that

appear

between

STAK

and

END

CALLS

are

saved

and

then

punched

the

number

of

times

indicated

in

the

STAK

CALL.

(See

“STAK/END

(stacking)

Control

Statements”

on

page

331).

DATAL

Create

a

full

data

COMPARE

using

all

of

the

data

returned

to

the

I/O

area.

Multiple

COMPARE

statements

and

continuations

are

produced

as

needed.

DATAS

Create

a

single

data

COMPARE

statement

using

only

the

first

56

bytes

of

data

returned

to

the

I/O

area.

PCBL

Create

a

full

PCB

COMPARE

using

the

complete

key

feedback

area

returned

in

the

PCB.

Multiple

COMPARE

statements

and

continuations

are

produced

as

needed.

PCBS

Create

a

single

PCB

COMPARE

statement

using

only

the

first

48

bytes

of

the

key

feedback

area

returned

in

the

PCB.

SYNC/NOSYNC

If

a

GB

status

code

is

returned

on

a

Fast

Path

call

while

in

STAK,

but

prior

to

exiting

STAK,

this

function

issues

or

does

not

issue

SYNC.

START=

00000001

to

99999999.

This

is

the

starting

sequence

number

to

be

used

for

the

punched

statements.

Eight

numeric

bytes

must

be

coded.

INCR=

1

to

9999.

Increment

the

sequence

number

of

each

punched

statement

by

this

value.

Leading

zeros

are

not

required.

AIB

Create

an

AIB

COMPARE

statement.

73-80

Sequence

indication

nnnnnnnn

For

SYSIN2

statement

override.

To

change

the

punch

control

options

while

processing

a

single

DFSDDLT0

input

stream,

always

use

PUNCH

CTL

statements

in

pairs

of

PUNC

and

NPUN.

PUNCH

StatementIBM

Confidential

Appendix

B.

The

DL/I

Test

Program

(DFSDDLT0)

341

One

way

to

use

the

PUNCH

CTL

statement

is

as

follows:

1.

Code

only

the

CALL

statements

for

a

new

test.

Do

not

code

the

COMPARE

statements.

2.

Verify

that

each

call

was

executed

correctly.

3.

Make

another

run

using

the

PUNCH

CTL

statement

to

have

DFSDDLT0merge

the

proper

COMPARE

statements

and

produce

a

new

output

data

set

that

can

be

used

as

input

for

subsequent

regression

tests.

You

can

also

use

PUNCH

CTL

if

segments

in

an

existing

database

are

changed.

The

control

statement

causes

DFSDDLT0

to

produce

a

new

test

data

set

that

has

the

correct

COMPARE

statements

rather

than

you

having

to

manually

change

the

COMPARE

statements.

Parameters

in

the

CTL

statement

must

be

the

same

length

as

described

in

Table

72,

and

they

must

be

separated

by

commas.

Example

of

PUNCH

CTL

Statement

The

DD

statement

for

the

output

data

set

is

labeled

PUNCHDD.

The

data

sets

are

fixed

block

with

LRECL=80.

Block

size

as

specified

on

the

DD

statement

is

used.

If

not

specified,

the

block

size

is

set

to

80.

If

the

program

is

unable

to

open

PUNCHDD,

DFSDDLT0

issues

abend

251.

Example

of

PUNCH

CTL

Statement

for

All

Parameters

STATUS

Statement

With

the

STATUS

statement,

you

establish

print

options

and

name

the

PCB

that

you

want

subsequent

calls

to

be

issued

against.

Table

73

shows

the

format

of

the

STATUS

statement.

Table

73.

STATUS

Statement

Column

Function

Code

Description

1

Identifies

control

statement

S

STATUS

statement.

2

Output

device

option

�

Use

PRINTDD

when

in

a

DL/I

region;

use

I/O

PCB

in

MPP

region.

1

Use

PRINTDD

in

MPP

region

if

DD

statement

is

provided;

otherwise,

use

I/O

PCB.

A

Same

as

if

1,

and

disregard

all

other

fields

in

this

STATUS

statement.

3

Print

comment

option

�

Do

not

print.

1

Print

for

each

call.

2

Print

only

if

compare

done

and

unequal.

4

Print

AIB

option

�

Do

not

print.

1

Print

for

each

call.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

CTL

PUNC

PCBS,DATAS,OTHER,START=00000010,INCR=0010

33212010

CTL

NPUN

33212020

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

CTL

PUNC

OTHER,DATAL,PCBL,START=00000001,INCR=1000,AIB

33212010

PUNCH

Statement IBM

Confidential

342

Application

Programming:

Database

Manager

Table

73.

STATUS

Statement

(continued)

Column

Function

Code

Description

2

Print

only

if

compare

done

and

unequal.

5

Print

call

option

�

Do

not

print.

1

Print

for

each

call.

2

Print

only

if

compare

done

and

unequal.

6

Reserved

�

7

Print

compare

option

�

Do

not

print.

1

Print

for

each

call.

2

Print

only

if

compare

done

and

unequal.

8

Reserved

�

9

Print

PCB

option

�

Do

not

print.

1

Print

for

each

call.

2

Print

only

if

compare

done

and

unequal.

10

Reserved

�

11

Print

segment

option

�

Do

not

print.

1

Print

for

each

call.

2

Print

only

if

compare

done

and

unequal.

12

Set

task

and

real

time

�

Do

not

time

1

Time

each

call.

2

Time

each

call

if

compare

done

and

unequal.

13-14

Reserved

�

15

PCB

selection

option

1

PCB

name

passed

in

columns

16-23

(use

option

1).

2

DBD

name

passed

in

columns

16-23

(use

option

2).

3

Relative

DB

PCB

passed

in

columns

16-23

(use

option

3).

4

Relative

PCB

passed

in

columns

16-23

(use

option

4).

5

$LISTALL

passed

in

columns

16-23

(use

option

5).

�

If

column

15

is

blank,

DFSDDLT0

selects

options

2

through

5

based

on

content

of

columns

16-23.

Opt.

1

16-23

PCB

selection

PCB

name

alpha

These

columns

must

contain

the

name

of

the

label

on

the

PCB

at

PSBGEN,

or

the

name

specified

on

the

PCBNAME=

operand

for

the

PCB

at

PSBGEN

time.

Opt.

2

16-23

PCB

selection

DBD

name

�

alpha

The

default

PCB

is

the

first

database

PCB

in

the

PSB.

If

columns

16-23

are

blank,

current

PCB

is

used.

If

DBD

name

is

specified,

this

must

be

the

name

of

a

database

DBD

in

the

PSB.

Opt.

3

16-18

19-23

PCB

selection

Relative

position

of

PCB

in

PSB

�

numeric

When

columns

16

through

18

are

blank,

columns

(19-23)

of

this

field

are

interpreted

as

the

relative

number

of

the

DB

PCB

in

the

PSB.

This

number

must

be

right-justified

to

column

23,

but

need

not

contain

leading

zeros.

STATUS

StatementIBM

Confidential

Appendix

B.

The

DL/I

Test

Program

(DFSDDLT0)

343

Table

73.

STATUS

Statement

(continued)

Column

Function

Code

Description

Opt.

4

16-18

19-23

PCB

selection

I/O

PCB

Relative

position

of

PCB

in

PSB

TP�

numeric

When

columns

16

through

18

=

'TP�',

columns

(19-23)

of

this

field

are

interpreted

as

the

relative

number

of

the

PCB

from

the

start

of

the

PCB

list.

This

number

must

be

right-justified

to

column

23,

but

need

not

contain

leading

zeros.

I/O

PCB

is

always

the

first

PCB

in

the

PCB

list

in

this

program.

Opt.

5

16-23

List

all

PCBs

in

the

PSB

$LISTALL

Prints

out

all

PCBs

in

the

PSB

for

test

script.

24

Print

status

option

�

Use

print

options

to

print

this

STATUS

statement.

1

Do

not

use

print

options

in

this

statement;

print

this

STATUS

statement.

2

Do

not

print

this

STATUS

statement

but

use

print

options

in

this

statement.

3

Do

not

print

this

STATUS

statement

and

do

not

use

print

options

in

this

statement.

25-28

PCB

processing

option

xxxx

This

is

optional

and

is

only

used

when

two

PCBs

have

the

same

name

but

different

processing

options.

If

not

blank,

it

is

used

in

addition

to

the

PCB

name

in

columns

16

through

23

to

select

which

PCB

in

the

PSB

to

use.

29

Reserved

�

30-32

AIB

interface

AIB

Indicates

that

the

AIB

interface

is

used

and

the

AIB

is

passed

rather

than

passing

the

PCB.

(Passing

the

PCB

is

the

default.)

Note:

When

the

AIB

interface

is

used,

the

PCB

must

be

defined

at

PSBGEN

with

PCBNAME=name.

IOPCB

is

the

PCB

name

used

for

all

I/O

PCBs.

DFSDDLT0

recognizes

that

name

when

column

15

contains

a

1

and

columns

16

through

23

contain

IOPCB.

33

Reserved

37-72

Reserved

73-80

Sequence

indication

nnnnnnnn

For

SYSIN2

statement

override.

If

DFSDDLT0

does

not

encounter

a

STATUS

statement,

all

default

print

options

(columns

3

through

12)

are

2

and

the

default

output

device

option

(column

2)

is

1.

You

can

code

a

STATUS

statement

before

any

call

sequence

in

the

input

stream,

changing

either

the

PCB

to

be

referenced

or

the

print

options.

The

referenced

PCB

stays

in

effect

until

a

subsequent

STATUS

statement

selects

another

PCB.

However,

a

call

that

must

be

issued

against

an

I/O

PCB

(such

as

LOG)

uses

the

I/O

PCB

for

that

call.

After

the

call,

the

PCB

changes

back

to

the

original

PCB.

Examples

of

STATUS

Statement

To

Print

Each

CALL

Statement:

The

following

STATUS

statement

tells

DFSDDLT0

to

print

these

options:

COMMENTS,

CALL,

COMPARE,

PCB,

and

SEGMENT

DATA

for

all

calls.

STATUS

Statement IBM

Confidential

344

Application

Programming:

Database

Manager

To

Print

Each

CALL

Statement,

Select

a

PCB:

The

following

STATUS

statements

tell

DFSDDLT0

to

print

the

COMMENTS,

CALL,

COMPARE,

PCB,

and

SEGMENT

DATA

options

for

all

calls,

and

select

a

PCB.

The

1

in

column

15

is

required

for

PCBNAME.

If

omitted,

the

PCBNAME

is

treated

as

a

DBDNAME.

To

print

each

CALL

statement,

select

PCB

based

on

a

DBD

name:

The

following

STATUS

statements

tell

DFSDDLT0

to

print

the

COMMENTS,

CALL,

COMPARE,

PCB,

and

SEGMENT

DATA

options

for

all

calls,

and

select

a

PCB

by

a

DBD

name.

The

2

in

column

15

is

optional.

If

you

do

not

use

the

AIB

interface,

you

do

not

need

to

change

STATUS

statement

input

to

existing

streams;

existing

call

functions

will

work

just

as

they

have

in

the

past.

However,

if

you

want

to

use

the

AIB

interface,

you

must

change

the

STATUS

statement

input

to

existing

streams

to

include

AIB

in

columns

30

through

32.

The

existing

DBD

name,

Relative

DB

PCB,

and

Relative

PCB

will

work

if

columns

30

through

32

contain

AIB

and

the

PCB

has

been

defined

at

PSBGEN

with

PCBNAME=name.

WTO

Statement

The

WTO

(Write

to

Operator)

statement

sends

a

message

to

the

z/OS

console

without

waiting

for

a

reply.

Table

74

shows

the

format

for

the

WTO

statement.

Table

74.

WTO

Statement

Column

Function

Code

Description

1-3

Identifies

control

statement

WTO

WTO

statement.

4

Reserved

�

5-72

Message

to

send

Message

to

be

written

to

the

system

console.

73-80

Sequence

indication

nnnnnnnn

For

SYSIN2

statement

override.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

S

1

1

1

1

1

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

S

1

1

1

1

1

1PCBNAME

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

S

1

1

1

1

1

1PCBNAME

AIB�

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

S

1

1

1

1

1

2DBDNAME

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

S

1

1

1

1

1

2DBDNAME

AIB�

STATUS

StatementIBM

Confidential

Appendix

B.

The

DL/I

Test

Program

(DFSDDLT0)

345

Example

of

WTO

Statement

This

WTO

statement,

in

this

example,

sends

a

message

to

the

z/OS

console

and

continues

the

test

stream.

WTOR

Statement

The

WTOR

(Write

to

Operator

with

Reply)

statement

sends

a

message

to

the

z/OS

system

console

and

waits

for

a

reply.

Table

75

shows

the

format

of

the

WTOR

statement.

Table

75.

WTOR

Statement

Column

Function

Code

Description

1-4

Identifies

control

statement

WTOR

WTOR

statement.

5

Reserved

�

6-72

Message

to

send

Message

to

be

written

to

the

system

console.

73-80

Sequence

indication

nnnnnnnn

For

SYSIN2

statement

override.

Example

of

WTOR

Statement

This

WTOR

statement

causes

the

test

stream

to

hold

until

DFSDDLT0

receives

a

response

from

the

z/OS

console

operator.

Any

response

is

valid.

JCL

Requirements

This

section

defines

the

DD

statements

that

DFSDDLT0

uses.

Execution

JCL

depends

on

the

installation

data

set

naming

standards

as

well

as

the

IMS

environment

(batch

or

online).

See

Figure

73

on

page

347.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

WTO

AT

A

“WTO”

WITHIN

TEST

STREAM

--WTO

NUMBER

1--

TEST

STARTED

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

WTOR

AT

A

“WTOR”

WITHIN

TEST

STREAM

-

ANY

RESPONSE

WILL

CONTINUE

WTO

Statement IBM

Confidential

346

Application

Programming:

Database

Manager

Figure

74

is

an

example

of

coding

JCL

for

DFSDDLT0

in

a

BMP.

Use

of

a

procedure

is

optional

and

is

only

shown

here

as

an

example.

SYSIN

DD

Statement

The

data

set

specified

by

the

SYSIN

DD

statement

is

the

normal

input

data

set

for

DFSDDLT0.

When

processing

input

data

that

is

on

direct-access

or

tape,

you

may

want

to

override

certain

control

statements

in

the

SYSIN

input

stream

or

to

add

other

control

statements

to

it.

You

do

this

with

a

SYSIN2

DD

statement

and

the

control

statement

sequence

numbers.

Sequence

numbers

in

columns

73

to

80

for

SYSIN

data

are

optional

unless

a

SYSIN2

override

is

used.

If

a

SYSIN2

override

is

used,

follow

the

directions

for

using

sequence

numbers

as

described

in

“SYSIN2

DD

Statement”

on

page

348.

//SAMPLE

JOB

ACCOUNTING,NAME,MSGLEVEL=(1,1),MSGCLASS=3,PRTY=8

33001100

//GET

EXEC

PGM=DFSRRC00,PARM=’DLI,DFSDDLT0,PSBNAME’

33001200

//STEPLIB

DD

DSN=IMS.SDFSRESL,DISP=SHR

33001300

//IMS

DD

DSN=IMS2.PSBLIB,DISP=(SHR,PASS)

33001400

//

DD

DSN=IMS2.DBDLIB,DISP=(SHR,PASS)

33001500

//DDCARD

DD

DSN=DATASET,DISP=(OLD,KEEP)

33001600

//IEFRDER

DD

DUMMY

33001700

//PRINTDD

DD

SYSOUT=A

33001800

//SYSUDUMP

DD

SYSOUT=A

33001900

//SYSIN

DD

*

33002000

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

U

THIS

IS

PART

OF

AN

EXAMPLE

33002100

S

1

1

1

1

1

PCB-NAME

33002200

L

GU

33002300

/*

//SYSIN2

DD

*

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

ABEND

33002300

/*

Figure

73.

Example

JCL

Code

for

DD

Statement

Definition

//SAMPLE

JOB

ACCOUNTING,NAME,MSGLEVEL=(1,1),MSGCLASS=A

00010047

//***

//*

BATCH

DL/I

JOB

TO

RUN

FOR

RSR

TESTING

*

//***

//BMP

EXEC

IMSBATCH,MBR=DFSDDLT0,PSB=PSBNAME

//BMP.PRINTDD

DD

SYSOUT=A

//BMP.PUNCHDD

DD

SYSOUT=B

//BMP.SYSIN

DD

*

U

***THIS

IS

PART

OF

AN

EXAMPLE

OF

SYSIN

DATA

00010000

S

1

1

1

1

1

1

00030000

L

GU

00040000

L

0099

GN

00050000

/*

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

//BMP.SYSIN2

DD

*

U

***THIS

IS

PART

OF

AN

EXAMPLE

OF

SYSIN2

DATA

00020000

ABEND

00050000

/*

Figure

74.

Example

JCL

Code

for

DFSDDLT0

in

a

BMP

JCL

RequirementsIBM

Confidential

Appendix

B.

The

DL/I

Test

Program

(DFSDDLT0)

347

SYSIN2

DD

Statement

DFSDDLT0

does

not

require

the

SYSIN2

DD

statement,

but

if

it

is

present

in

the

JCL,

DFSDDLT0

will

read

and

process

the

specified

data

sets.

When

using

SYSIN2,

the

following

items

apply:

v

The

SYSIN

DD

data

set

is

the

primary

input.

DFSDDLT0

attempts

to

insert

the

SYSIN2

control

statements

into

the

SYSIN

DD

data

set.

v

You

must

code

the

control

groups

and

sequence

numbers

properly

in

columns

73

to

80

or

the

merging

process

will

not

work.

v

Columns

73

and

74

indicate

the

control

group

of

the

statement.

v

Columns

75

to

80

indicate

the

sequence

number

of

the

statement.

v

Sequence

numbers

must

be

in

numeric

order

within

their

control

group.

v

Control

groups

in

SYSIN2

must

match

the

SYSIN

control

groups,

although

SYSIN2

does

not

have

to

use

all

the

control

groups

used

in

SYSIN.

DFSDDLT0

does

not

require

that

control

groups

be

in

numerical

order,

but

the

control

groups

in

SYSIN2

must

be

in

the

same

order

as

those

in

SYSIN.

v

When

DFSDDLT0

matches

a

control

group

in

SYSIN

and

SYSIN2,

it

processes

the

statements

by

sequence

number.

SYSIN2

statements

falling

before

or

after

a

SYSIN

statement

are

merged

accordingly.

v

If

the

sequence

number

of

a

SYSIN2

statement

matches

the

sequence

number

of

a

SYSIN

statement

in

its

control

group,

the

SYSIN2

overrides

the

SYSIN.

v

If

the

program

reaches

the

end

of

SYSIN

before

it

reaches

the

end

of

SYSIN2,

it

processes

the

records

of

SYSIN2

as

if

they

were

an

extension

of

SYSIN.

v

Replacement

or

merging

occurs

only

during

the

current

run.

The

original

SYSIN

data

is

not

changed.

v

During

merge,

if

one

of

the

control

statements

contains

blanks

in

columns

73

through

80,

DFSDDLT0

discards

the

statement

containing

blanks,

sends

a

message

to

PRINTDD,

and

continues

the

merge

until

end-of-file

is

reached.

PRINTDD

DD

Statement

The

PRINTDD

DD

statement

defines

the

output

data

set

for

DFSDDLT0.

The

output

data

set

might

include

displays

of

control

blocks

written

to

the

data

set

as

the

result

of

SNAP

calls.

The

data

set

defined

by

the

PRINTDD

DD

statement

must

conform

to

the

z/OS

SNAP

data

set

requirements.

PUNCHDD

DD

Statement

The

DD

statement

for

the

output

data

set

is

labeled

PUNCHDD.

The

data

sets

are

fixed

block

with

LRECL=80.

Block

size

as

specified

on

the

DD

statement

is

used;

if

not

specified,

the

block

size

is

set

to

80.

If

the

program

is

unable

to

open

PUNCHDD,

DFSDDLT0

issues

abend

251.

Here

is

an

example

of

the

PUNCHDD

DD

statement.

Using

the

PREINIT

Parameter

for

DFSDDLT0

Input

Restart

You

use

the

DFSDDLT0

restart

function

to

restart

a

DFSDDLT0

input

stream

within

the

same

dependent

region

that

the

input

stream

was

running

prior

to

the

restart.

The

PREINIT

parameter

in

the

EXEC

statement

invokes

the

restart

function.

Code

the

PREINIT

parameter

of

DFSMPR

procedure

as

PREINIT=xx,

where

xx

is

the

two-character

suffix

of

the

DFSINTxx

PROCLIB

member.

(PREINIT=DL

refers

to

the

default

IMS.PROCLIB

member.)

//PUNCHDD

DD

SYSOUT=B

JCL

Requirements IBM

Confidential

348

Application

Programming:

Database

Manager

The

PREINIT

process

establishes

a

checkpoint

field

for

each

active

IMS

region.

This

field

is

updated

with

the

sequence

number

of

each

GU

call

to

an

I/O

PCB

as

it

is

processed.

For

this

reason,

sequence

numbers

are

required

for

all

such

GU

calls

that

are

used.

On

a

restart,

if

the

checkpoint

field

contains

a

sequence

number,

the

DFSDDLT0

stream

starts

at

the

next

GU

call

to

an

I/O

PCB

following

the

sequence

number

in

the

checkpoint

field;

otherwise

the

DFSDDLT0

stream

starts

from

the

beginning.

The

DFSDDLSI

module

and

the

default

IMS.

member,

DFSINTDL,

are

shipped

with

IMS

and

are

installed

as

part

of

normal

IMS

installation.

The

following

code

shows

examples

of

SYSIN/SYSIN2

and

PREINIT.

//TSTPGM

JOB

CARD

//DDLTTST

EXEC

DFSMPR,PREINIT=DL

//MPP.SYSIN

DD

*

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

S11

1

1

1

1

TP

1

01000000

OPTIONS

SNAP=

,ABORT=9999

01000010

U**

01000040

S11

1

1

1

1

TP

1

01000050

L

GU

01000060

E

OK

01000070

S11

1

1

1

1

DBPCBXXX

01000080

L

GU

01000090

E

DATA

A

INIT-LOAD

UOW

01000100

E

01

ROOTSEG1

0008A

0004D

01000110

S11

1

1

1

1

TP

1

01000120

L

ISRT

01000130

L

Z0080

DATA

-SYNC

INTERVAL

1

SEG

1

-MESSAGE

1

X01000140

L

P

DATA

111

01000150

L

ISRT

01000160

L

Z0080

DATA

-SYNC

INTERVAL

1

SEG

2

-END

EOM

1

X01000170

L

P

DATA

111

01000180

U**

01000190

U*

ENDING

FIRST

SYNC

INTERVAL

01000200

U**

01000210

L

GU

01000220

E

QC

01000230

L

GU

01000240

E

OK

01000250

S11

1

1

1

1

DBPCBXXX

01000260

WTO

GETTING

DATA

BASE

SEGMENT

1

FROM

DBPCBXXX

01000270

L

U

GHU

01000280

E

DATA

INIT-LOAD

UOW.

1

A.P.

1

01000290

E

OK

01000300

L

U0003

GN

01000310

E

OK

01000320

S11

1

1

1

1

TP

1

01000330

L

ISRT

01000340

L

Z0080

DATA

-SYNC

INTERVAL

2

SEG

1

-MESSAGE

1

X01000350

L

P

DATA

22211

01000360

L

ISRT

01000370

L

Z0080

DATA

-SYNC

INTERVAL

2

SEG

2

-END

EOM

1

X01000380

L

P

DATA

22211

01000390

U**

01000400

U*

ENDING

SECOND

SYNC

INTERVAL

01000410

U**

01000420

L

GU

01000430

E

QC

01000440

L

GU

01000450

E

OK

01000460

S11

1

1

1

1

DBPCBXXX

01000470

JCL

RequirementsIBM

Confidential

Appendix

B.

The

DL/I

Test

Program

(DFSDDLT0)

349

S11

1

1

1

1

TP

1

01000480

L

ISRT

01000490

L

Z0080

DATA

-SYNC

INTERVAL

3

SEG

1

-MESSAGE

1

X01000500

L

P

DATA

33311

01000510

L

ISRT

01000520

L

Z0080

DATA

-SYNC

INTERVAL

3

SEG

2

-END

EOM

1

X01000530

L

P

DATA

33311

01000580

U**

01000590

U*

ENDING

THIRD

SYNC

INTERVAL

01000600

U**

01000610

L

GU

01000620

E

QC

01000630

//MPP.SYSIN2

DD

*

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----<

ABEND

01000430

/*

Notes

for

the

SYSIN/SYSIN2

and

PREINIT

examples

shown

above:

1.

The

PREINIT=

parameter

coded

in

the

EXEC

statement

invokes

the

restart

process.

2.

When

DFSDDLT0

starts

processing,

it

substitutes

the

SYSIN2

ABEND

statement

for

the

statement

in

SYSIN

with

the

same

sequence

number.

(It

is

the

GU

call

with

sequence

number

01000430.)

3.

DFSDDLT0

begins

with

statement

01000000

and

processes

until

it

encounters

the

ABEND

statement

(statement

number

01000430).

The

GU

calls

to

the

I/O

PCB

have

already

been

tracked

in

the

checkpoint

field

(statements

01000060,

01000220,

and

01000240).

4.

When

DFSDDLT0

is

rescheduled,

it

examines

the

checkpoint

field

and

finds

01000240.

DFSDDLT0

begins

processing

at

the

next

GU

call

to

the

I/O

PCB,

statement

01000450.

If

the

statement

currently

numbered

01000240

did

not

have

a

sequence

number,

DFSDDLT0

would

restart

from

statement

01000000

when

it

was

rescheduled.

Execution

of

DFSDDLT0

in

IMS

Regions

DFSDDLT0

is

designed

to

operate

in

a

DL/I

or

BMP

region

but

can

be

executed

in

an

IFP

or

MPP

region.

In

a

BMP

or

DL/I

region,

the

EXEC

statement

allows

the

program

name

to

be

different

from

the

PSB

name.

There

is

no

problem

executing

calls

against

any

database

in

a

BMP

or

DL/I

region.

In

an

MPP

region,

the

program

name

must

be

the

same

as

the

PSB

name.

To

execute

a

DFSDDLT0

program

in

an

MPP

region,

you

must

give

DFSDDLT0

the

PSB

name

or

an

alias

of

the

PSB

named

in

the

IMS

definition.

You

can

use

a

temporary

step

library.

In

an

MPP

region

or

a

BMP

region

with

an

input

transaction

code

specified

in

the

EXEC

statement,

DFSDDLT0

normally

gets

input

by

issuing

a

GU

and

GNs

to

the

I/O

PCB.

DFSDDLT0

issues

GU

and

GN

calls

until

it

receives

the

“No

More

Messages”

status

code,

QC.

If

there

is

a

SYSIN

DD

statement

and

a

PRINTDD

DD

statement

in

the

dependent

region,

DFSDDLT0

reads

input

from

SYSIN

and

SYSIN2,

if

present,

and

sends

output

to

the

PRINTDD.

If

the

dependent

region

is

an

MPP

region

and

the

input

stream

does

not

cause

a

GU

to

be

issued

to

the

I/O

PCB

before

encountering

end-of-file

from

SYSIN,

the

program

will

implicitly

do

a

GU

to

the

I/O

PCB

to

get

the

message

that

caused

the

program

to

be

scheduled.

If

the

input

stream

causes

a

GU

to

the

I/O

PCB

and

a

“No

More

Messages”

status

JCL

Requirements IBM

Confidential

350

Application

Programming:

Database

Manager

code

is

received,

this

is

treated

as

the

end

of

file.

When

input

is

from

the

I/O

PCB,

you

can

send

output

to

PRINTDD

by

coding

a

1

or

an

A

in

column

2

of

the

STATUS

statement.

Because

the

input

is

in

fixed

form,

it

is

difficult

to

key

it

from

a

terminal.

To

use

DFSDDLT0

to

test

DL/I

in

a

message

region,

execute

another

message

program

that

reads

control

statements

stored

as

a

member

of

a

partitioned

set.

Insert

these

control

statements

to

an

input

transaction

queue.

IMS

then

schedules

the

program

to

process

the

transactions.

This

method

allows

you

to

use

the

same

control

statements

to

execute

in

any

region

type.

Explanation

of

DFSDDLT0

Return

Codes

A

non-zero

return

code

from

DFSDDLT0

indicates

the

number

of

unequal

comparisons

that

occurred

during

that

time.

A

return

code

of

0

(zero)

from

DFSDDLTO

does

not

necessarily

mean

that

DFSDDLT0

executed

without

errors.

There

are

several

messages

issued

by

DSFDDLT0

that

do

not

change

the

return

code,

but

do

indicate

some

sort

of

error

condition.

This

preserves

the

return

code

field

for

the

unequal

comparison

count.

If

an

error

message

was

issued

during

the

run,

a

message

ERRORS

WERE

DETECTED

WITHIN

THE

INPUT

STREAM.

REVIEW

OUTPUT

TO

DETERMINE

ERRORS.

appears

at

the

end

of

the

DFSDDLT0

output.

You

must

examine

the

output

to

ensure

DFSDDLT0

executed

as

expected.

Hints

on

Using

DFSDDLT0

This

section

describes

loading

a

database,

printing,

retrieving,

replacing,

and

deleting

segments,

regression

testing,

using

a

debugging

aid,

and

verifying

how

a

call

is

executed.

To

Load

a

Database

Use

DFSDDLT0

for

loading

only

very

small

databases

because

you

must

to

provide

all

the

calls

and

data

rather

than

have

them

generated.

The

following

example

shows

CALL

FUNCTION

and

CALL

DATA

statements

that

are

used

to

load

a

database.

To

Print

the

Segments

in

a

Database

Use

either

of

the

following

sequences

of

control

statements

to

print

the

segments

in

a

database.

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7---+-----<

O

SNAP=

,ABORT=0

S

1

2

2

1

1

L

ISRT

COURSE

L

DATA

FRENCH

L

ISRT

COURSE

L

DATA

COBOL

L

ISRT

CLASS

L

DATA

12

L

ISRT

CLASS

L

DATA

27

L

ISRT

STUDENT

L

DATA

SMITH

THERESE

L

ISRT

STUDENT

L

DATA

GRABOWSKY

MARION

Execution

of

DFSDDTLT0

in

IMS

RegionsIBM

Confidential

Appendix

B.

The

DL/I

Test

Program

(DFSDDLT0)

351

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7---+-----<

.*

Use

PRINTDD,

print

call,

compare,

and

PCB

if

compare

unequal

.*

Do

1

Get

Unique

call

.*

Hold

PCB

compare,

End

step

if

status

code

is

not

blank,

GA,

GC,

GK

.*

Do

9,999

Get

Next

calls

S

2

2

2

1

DBDNAME

L

GU

EH8

OK

L

9999

GN

|---+----1----+----2----+----3----+----4----+----5----+----6----+----7---+-----<

.*

Use

PRINTDD,

print

call,

compare,

and

PCB

if

compare

unequal

.*

Do

1

Get

Unique

call

.*

Hold

PCB

compare,

Halt

GN

calls

when

status

code

is

GB.

.*

Do

9,999

Get

Next

calls

S

2

2

2

1

DBDNAME

L

GU

EH

OK

L

9999

GN

Both

of

the

above

examples

request

the

GN

to

be

repeated

9999

times.

Note

that

the

first

example

uses

a

COMPARE

PCB

of

EH8

while

the

second

uses

a

COMPARE

PCB

of

EH.

The

difference

between

these

two

examples

is

that

the

first

halts

the

job

step

the

first

time

the

status

code

is

not

blank,

GA,

GC,

or

GK.

The

second

example

halts

repeating

the

GN

and

goes

on

to

process

any

remaining

DFSDDLT0

control

statements

when

a

GB

status

code

is

returned

or

the

GN

has

been

repeated

9999

times.

To

Retrieve

and

Replace

a

Segment

Use

the

following

sequence

of

control

statements

to

retrieve

and

replace

a

segment.

To

Delete

a

Segment

Use

the

following

sequence

of

control

statements

to

delete

a

segment.

To

Do

Regression

Testing

DFSDDLT0

is

ideal

for

doing

regression

testing.

By

using

a

known

database,

DFSDDLT0

can

issue

calls

and

then

compare

the

results

of

the

call

to

expected

results

using

COMPARE

statements.

The

program

then

can

determine

if

DL/I

calls

are

executed

correctly.

If

you

code

all

the

print

options

as

2’s

(print

only

if

comparisons

done

and

unequal),

only

the

calls

not

properly

satisfied

are

displayed.

|----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----

S

1

1

1

1

1

COURSEDB

L

GHU

COURSE

(TYPE

=FRENCH)

X

CLASS

(WEEK

=27)

X

STUDENT

(NAME

=SMITH)

L

REPL

L

DATA

SMITH

THERESE

|----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----

S

1

1

1

1

1

4

L

GHU

COURSE

(TYPE

=FRENCH)

X

CLASS

*L

X

INSTRUC

(NUMBER

=444)

L

DLET

Hints

on

Using

DFSDDLT0 IBM

Confidential

352

Application

Programming:

Database

Manager

To

Use

as

a

Debugging

Aid

When

debugging

a

program,

you

usually

need

a

print

of

the

DL/I

blocks.

You

can

snap

the

blocks

to

a

log

data

set

at

appropriate

times

by

using

a

COMPARE

statement

that

has

an

unequal

compare

in

it.

You

can

then

print

the

blocks

from

the

log.

If

you

need

the

blocks

even

though

the

call

executed

correctly,

such

as

for

the

call

before

the

failing

call,

insert

a

SNAP

function

in

the

CALL

statement

in

the

input

stream.

To

Verify

How

a

Call

Is

Executed

Because

it

is

very

easy

to

execute

a

particular

call,

you

can

use

DFSDDLT0

to

verify

how

a

particular

call

is

handled.

This

can

be

of

value

if

you

suspect

DL/I

is

not

operating

correctly

in

a

specific

situation.

You

can

issue

the

calls

suspected

of

not

executing

properly

and

examine

the

results.

Hints

on

Using

DFSDDLT0IBM

Confidential

Appendix

B.

The

DL/I

Test

Program

(DFSDDLT0)

353

Hints

on

Using

DFSDDLT0 IBM

Confidential

354

Application

Programming:

Database

Manager

Appendix

C.

The

Database

Resource

Adapter

(DRA)

The

DRA

is

an

interface

to

IMS

DB

full-function

databases

and

data

entry

databases

(DEDBs).

The

DRA

can

be

used

by

a

coordinator

controller

(CCTL)

or

a

z/OS

application

program

that

uses

the

Open

Database

Access

(ODBA)

interface.

This

chapter

is

intended

for

the

designer

of

a

CCTL

or

an

ODBA

application

program.

If

you

want

more

information

about

a

specific

CCTL’s

interaction

with

IMS

DB

or

DB/DC,

see

the

documentation

for

that

CCTL.

Related

Reading:

v

For

additional

information

on

defining

the

ODBA

interface,

see

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring

v

For

information

on

designing

application

programs

that

use

ODBA,

see

IMS

Version

9:

Application

Programming:

Design

Guide

In

This

Chapter:

v

“Thread

Concepts”

v

“Sync

Points”

on

page

358

v

“The

DRA

Startup

Table”

on

page

362

v

“Enabling

the

DRA

for

a

CCTL”

on

page

363

v

“Processing

CCTL

DRA

Requests”

on

page

365

v

“Processing

ODBA

Calls”

on

page

366

v

“CCTL-Initiated

DRA

Function

Requests”

on

page

366

v

“Terminating

the

DRA”

on

page

375

v

“Designing

the

CCTL

Recovery

Process”

on

page

375

v

“CCTL

Performance—Monitoring

DRA

Thread

TCBs”

on

page

376

Thread

Concepts

A

DRA

thread

is

a

DRA

structure

that

connects:

v

A

CCTL

task

(which

makes

database

calls

to

IMS

DB)

with

an

IMS

DB

task

that

can

process

those

calls.

A

CCTL

thread

is

a

CCTL

task

that

issues

IMS

DB

requests

using

the

DRA.

v

A

z/OS

application

program

task

(which

makes

database

calls

to

IMS

DB)

with

an

IMS

DB

task

that

can

process

those

calls.

An

ODBA

thread

is

a

z/OS

task

that

issues

IMS

DB

calls

using

the

DRA.

A

single

DRA

thread

is

associated

with

every

CCTL

or

ODBA

thread.

CCTL

or

ODBA

threads

cannot

establish

a

connection

with

more

than

one

DRA

thread

at

a

time.

Processing

Threads

The

way

that

the

DRA

processes

a

CCTL

thread

is

different

from

how

it

processes

an

ODBA

thread.

Processing

a

CCTL

Thread

When

a

CCTL

application

program

needs

data

from

an

IMS

DB

database,

a

CCTL

task

must

issue

a

SCHED

request

for

a

PSB.

To

process

the

SCHED

request,

the

DRA

must

create

a

DRA

thread.

To

do

this,

the

DRA

chooses

an

available

DRA

thread

TCB

and

assigns

to

it

the

CCTL

thread

token

(a

unique

token

that

CCTL

puts

in

the

SCHED

PAPL

PAPLTTOK)

and

its

own

IMS

DB

task,

which

schedules

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

355

the

PSB.

If

the

scheduling

is

successful,

the

DRA

thread

is

considered

complete

because

it

now

connects

a

CCTL

thread

to

a

IMS

DB

task

using

a

specific

DRA

thread

TCB.

Subsequent

DRA

requests

from

this

CCTL

thread

must

use

the

same

CCTL

thread

token

in

order

to

ensure

that

the

request

goes

to

the

correct

DRA

thread.

When

the

application

program

finishes

and

the

CCTL

thread

no

longer

needs

the

services

of

the

DRA

thread,

the

CCTL

issues

a

TERMTHRD

(Terminate

Thread)

request

to

remove

the

CCTL

thread

token

from

the

DRA

thread

TCB

and

terminates

the

DRA

thread.

The

thread

TCB

can

then

become

part

of

a

new

DRA

thread.

Processing

an

ODBA

Thread

When

an

ODBA

application

program

needs

data

from

an

IMS

DB

database,

an

ODBA

task

must

issue

an

APSB

call

to

initialize

the

ODBA

environment.

To

process

the

APSB

call,

the

DRA

creates

a

DRA

thread.

The

DRA

chooses

an

available

DRA

thread

TCB

and

assigns

to

it

the

ODBA

thread

and

its

own

IMS

DB

task,

which

schedules

the

PSB.

If

the

scheduling

is

successful,

the

DRA

thread

is

considered

complete

because

it

now

connects

an

ODBA

thread

to

a

IMS

DB

task

using

a

specific

DRA

thread

block.

When

the

application

program

finishes

and

the

ODBA

thread

no

longer

needs

the

services

of

the

DRA

thread,

the

ODBA

application

issues

a

DPSB

call

to

terminate

the

DRA

thread.

The

thread

block

can

then

become

part

of

a

new

DRA

thread.

Processing

Multiple

Threads

The

DRA

is

capable

of

processing

more

than

one

thread

at

the

same

time.

This

is

known

as

multithreading.

Multithreading

means

that

multiple

CCTL

or

ODBA

threads

can

be

using

the

DRA

at

the

same

time.

Multithreading

applies

to

all

DRA

requests

and

ODBA

calls.

Processing

Multiple

CCTL

Threads

To

use

the

multithreading

capability:

v

The

DRA

must

be

initialized

with

more

that

one

thread

TCB.

To

initialize

the

DRA

with

more

that

one

thread

TCB,

specify

the

MINTHRD

and

MAXTHRD

parameters

(in

the

DRA

Startup

Table)

as

greater

than

one.

v

The

CCTL

must

be

capable

of

processing

its

CCTL

threads

concurrently.

v

The

CCTL

must

have

Suspend

and

Resume

exit

routines.

The

DRA

uses

these

routines

to

notify

the

CCTL

of

the

status

of

thread

processing.

Processing

Multiple

ODBA

Threads

To

use

the

multithreading

capability,

the

DRA

must

be

initialized

with

more

than

one

DRA

thread.

To

do

this,

specify

the

MINTHRD

and

MAXTHRD

parameters

(in

the

DRA

Startup

Table)

as

greater

than

one.

CCTL

Multithread

Example

Events

in

a

multithreading

system

are

shown

in

chronological

order

from

top

to

bottom

in

Table

76

on

page

357.

To

illustrate

the

concept

of

concurrent

processing,

the

figure

is

split

into

two

columns.

There

are

two

CCTL

threads

and

two

DRA

threads

in

the

example.

xxxRTNA

is

the

module

name

(for

this

example)

of

the

CCTL

routine

that

builds

PAPLs

and

calls

DFSPRRC0

to

process

DRA

requests.

Thread

Concepts IBM

Confidential

356

Application

Programming:

Database

Manager

Table

76.

Example

of

Events

in

a

Multithreading

System

CCTL

TCB

Events

DRA

TCB

Events

Application

program1

needs

a

PSB,

so

CCTL

thread1

is

created.

CCTL

thread1

events:

v

DFSRTNA

builds

the

SCHED

PAPL

and

calls

DFSPRRC0.

v

DFSPRRC0

creates

a

DRA

thread,

and

the

thread

token

(PAPLTTOK)

is

assigned

to

DRA

thread

TCB1.

v

DFSPRRC0

activates

thread

TCB1.

v

DFSPRRC0

calls

the

Suspend

exit

routine.

DRA

thread

TCB1

events:

v

The

Suspend

exit

routine

suspends

CCTL

thread1.

v

The

DRA

processes

the

SCHED

request

and

asks

IMS

DB

to

perform

a

schedule

process.

v

Scheduling

is

in

progress.

CCTL

can

now

dispatch

other

CCTL

threads

for

the

CCTL

TCB.

Application

program2

needs

a

PSB,

so

CCTL

thread2

is

created.

CCTL

thread2

events:

v

DFSRTNA

builds

the

SCHED

PAPL

and

calls

DFSPRRC0.

v

DFSPRRC0

creates

a

DRA

thread,

and

a

new

thread

token

(PAPLTTOK)

is

assigned

to

DRA

thread

TCB2.

v

DFSPRRC0

activates

thread

TCB2.

v

DFSPRRC0

calls

the

Suspend

exit

routine.

The

Suspend

exit

routine

suspends

CCTL

thread2.

DRA

thread

TCB2

events:

v

The

DRA

processes

the

SCHED

request

and

asks

IMS

DB

to

perform

a

schedule

process.

v

Scheduling

is

in

progress.

Both

threads

are

now

suspended.

The

CCTL

TCB

is

inactive

until

one

of

the

threads

resumes

execution.

TCB2

scheduling

finishes

first.

DRA

thread

TCB2

events:

v

Scheduling

completes

in

IMS

DB,

and

the

PAPL

is

filled

in

with

the

results.

v

The

DRA

calls

the

Resume

exit

routine

and

passes

the

PAPL

back

to

the

CCTL.

Thread2

can

resume

immediately

because

the

CCTL

TCB

is

idle.

It

resumes

execution

directly

after

the

point

at

which

it

was

suspended

by

the

Suspend

exit

routine.

v

The

Resume

exit

routine

sees

the

thread

token

(PAPLTTOK)

and

flags

CCTL

thread2

as

’ready

to

resume’.

v

The

Resume

exit

routine

returns

to

the

DRA,

and

TCB2

becomes

inactive.

TCB1

scheduling

completes.

DRA

thread

TCB1

events:

Thread

ConceptsIBM

Confidential

Appendix

C.

The

Database

Resource

Adapter

(DRA)

357

Table

76.

Example

of

Events

in

a

Multithreading

System

(continued)

CCTL

TCB

Events

DRA

TCB

Events

v

Scheduling

completes

in

IMS

DB

and

the

PAPL

is

filled

in

with

the

results.

v

The

DRA

calls

the

Resume

exit

routine

and

passes

the

PAPL

back

to

the

CCTL.

Thread1

must

wait

until

the

Resume

exit

routine

is

available

because

thread2

has

just

resumed.

v

The

Resume

exit

routine

sees

the

thread

token

(PAPLTTOK)

and

flags

CCTL

thread1

as

’ready

to

resume’.

v

The

Resume

exit

routine

returns

control

to

the

DRA

and

TCB1

becomes

inactive.

CCTL

thread2

events:

v

The

Suspend

exit

routine

returns

to

its

caller,

DFSPRRC0.

v

DFSPRRC0

returns

to

DFSRTNA.

v

DFSRTNA

gets

the

results

from

the

SCHED

PAPL

and

gives

them

to

the

application

program2.

v

DFSRTNA

finishes

the

thread2

SCHED

request.

After

thread2

completes

in

CCTL

TCB,

the

CCTL

can

dispatch

thread1,

which

is

currently

waiting.

CCTL

thread1

events:

v

The

Suspend

exit

routine

returns

to

its

caller,

DFSPRRC0.

v

DFSPRRC0

returns

to

DFSRTNA.

v

DFSRTNA

gets

the

results

from

the

SCHED

PAPL

and

gives

them

to

the

application

program1.

v

DFSRTNA

finishes

the

thread1

SCHED

request.

Sync

Points

Sync

point

processing

finalizes

changes

to

resources.

Sync

point

requests

specify

actions

to

take

place

for

the

resource

changed

(for

example,

commit

or

abort).

A

sync

point

is

when

IMS

DB

actually

processes

the

request.

Each

sync

point

is

based

on

a

unit

of

recovery

(UOR).

A

UOR

covers

the

time

during

which

database

resources

are

allocated

and

can

be

updated

until

a

request

is

received

to

commit

or

abort

any

changes.

Normally,

the

UOR

starts

with

a

CCTL

SCHED

(schedule

a

PSB)

request

or

an

ODBA

APSB

call

and

ends

with

a

sync

point

request.

Other

DRA

thread

requests

can

also

define

the

start

and

end

of

a

UOR.

A

CCTL

UOR

is

identified

by

a

recovery

token

(PAPLRTOK)

that

is

received

as

part

of

a

thread

request

that

creates

a

new

UOR.

It

is

16

bytes

in

length.

The

first

8

bytes

contain

the

CCTL

identification.

This

identification

is

the

same

as

the

CCTL

ID

that

was

a

final

DRA

startup

parameter

determined

from

USERID

or

PAPLUSID

in

INIT

request.

The

second

8

bytes

must

be

a

unique

identifier

specified

by

the

CCTL

for

each

UOR.

Thread

Concepts IBM

Confidential

358

Application

Programming:

Database

Manager

Related

Reading:

See

the

request

descriptions

under

“CCTL-Initiated

DRA

Function

Requests”

on

page

366

for

more

information

on

the

DRA

thread

requests.

IMS

DB

expects

the

CCTL

or

the

ODBA

application

to

make

the

sync

point

decision

and

the

resulting

request.

In

the

case

of

a

CCTL,

the

CCTL

is

the

sync

point

manager

and

coordinates

the

sync

point

process

with

all

of

the

database

resource

managers

(including

those

other

than

IMS

DB)

that

are

associated

with

a

UOR.

In

the

case

of

an

ODBA

application,

RRS/MVS

is

the

sync

point

manager

and

coordinates

all

the

resource

managers

(including

those

other

than

IMS)

that

are

associated

with

the

UOR.

A

CCTL

working

with

a

single

resource

manager

may

request

a

sync

point

in

a

single

request

or

can

use

the

two-phase

sync

point

protocol

which

is

required

for

a

CCTL

working

with

multiple

resource

managers.

The

single-phase

sync

point

request

can

be

issued

when

the

CCTL

has

decided

to

commit

the

UOR,

and

when

IMS

DB

owns

all

of

the

resources

modified

by

the

UOR.

An

ODBA

application

must

use

the

two-phase

sync

point

protocol

for

committing

changes

to

the

IMS

database.

The

Two-Phase

Commit

Protocol

The

two-phase

sync

point

protocol

consists

of

two

requests

issued

by

the

sync

point

manager

to

each

of

the

resource

managers

involved

in

the

UOR:

Phase

1

The

sync

point

manager

asks

all

participants

if

they

are

ready

to

commit

a

UOR.

Phase

2

The

sync

point

manager

tells

each

participant

to

commit

or

abort

based

on

the

response

to

the

request

issued

in

phase

1.

A

UOR

has

two

states:

in-flight

and

in-doubt.

The

UOR

is

in

an

in-flight

state

from

its

creation

time

until

the

time

IMS

DB

logs

the

phase

1

end

(point

C

in

Table

77

on

page

360

and

Table

78

on

page

360).

The

UOR

is

in

an

in-doubt

state

from

(point

C)

until

IMS

DB

logs

phase

2

(point

D

inTable

77

on

page

360

and

point

H

in

Table

78

on

page

360).

The

in-doubt

state

for

a

single-phase

sync

point

request

is

a

momentary

state

between

points

C

and

D

in

Table

77

on

page

360.

The

in-flight

and

in-doubt

states

are

important

because

they

define

what

happens

to

the

UOR

in

the

event

of

a

thread

failure.

If

a

thread

fails

while

its

IMS

DB

UOR

is

in-flight

the

UOR

database

changes

are

backed

out.

If

a

thread

fails

when

its

IMS

DB

UOR

is

in-doubt,

during

single-phase

commit,

the

UOR

database

changes

are

kept

for

an

individual

thread

abend,

but

are

not

kept

for

a

system

abend.

If

a

thread

fails

when

its

IMS

DB

UOR

is

in-doubt

during

two-phase

commit,

the

database

changes

are

kept.

Thread

failure

refers

to

either

of

these

cases:

v

Individual

thread

abends.

v

System

abends:

IMS

DB

failure,

CCTL

failure,

ODBA

application

failure,

or

z/OS

failure

(which

abends

all

threads).

The

following

figure

shows

the

system

events

that

occur

when

CCTL

is

used

for

single-phase

sync

point

processing.

Time

→

–––A–––B––––––C–––D–––E––––

Sync

PointsIBM

Confidential

Appendix

C.

The

Database

Resource

Adapter

(DRA)

359

Table

77.

CCTL

Single-Phase

Sync

Point

Processing

Points

In

Time

System

Events

A

CCTL

phase

1

send

B

IMS

DB

phase

1

receive

C

IMS

DB

log

phase

1

end

D

IMS

DB

log

phase

2

E

CCTL

phase

2

receive

Table

78

below

shows

the

system

events

that

occur

when

CCTL

is

used

for

two-phase

sync

point

processing.

Time

→

–––A–––B–––––C–––D–––E–––––––––––F–––G––––H––––––J–––K––––––––

Table

78.

CCTL

Two-Phase

Sync

Point

Processing

Points

In

Time

System

Events

A

CCTL

phase

1

send

B

IMS

DB

phase

1

receive

C

IMS

DB

log

phase

1

end

D

IMS

DB

phase

1

respond

E

CCTL

phase

1

receive

F

CCTL

phase

2

send

G

IMS

DB

phase

2

receive

H

IMS

DB

log

phase

2

J

IMS

DB

phase

2

respond

K

CCTL

phase

2

receive

The

following

figure

shows

the

system

events

that

occur

when

two-phase

sync

point

processing

is

done

using

ODBA.

Sync

Points IBM

Confidential

360

Application

Programming:

Database

Manager

Notes:

1.

The

ODBA

application

and

IMS

DB

make

a

connection

using

the

ODBA

interface.

2.

IMS

expresses

protected

interest

in

the

work

started

by

the

ODBA

application.

This

informs

RRS/MVS

that

IMS

will

participate

in

the

two-phase

commit

process.

3.

The

ODBA

application

makes

a

read

request

to

an

IMS

resource.

4.

The

ODBA

application

updates

a

protected

resource.

5.

Control

is

returned

to

the

ODBA

application

following

its

update

request.

6.

The

ODBA

application

requests

that

the

update

be

made

permanent

by

issuing

the

SRRCMIT

call.

7.

RRS/MVS

calls

IMS

to

do

the

prepare

(phase

1)

process.

8.

IMS

returns

to

RRS/MVS

with

its

vote

to

commit.

9.

RRS/MVS

calls

IMS

to

do

the

commit

(phase

2)

process.

10.

IMS

informs

RRS/MVS

that

it

has

completed

phase

2.

11.

Control

is

returned

to

the

ODBA

application

following

its

commit

request.

In-Doubt

State

During

Two-Phase

Sync

A

IMS

DB

UOR

remains

in

the

in-doubt

state

until

a

phase

2

request

is

received.

This

process

is

called

“resolving

the

in-doubt”.

While

a

UOR

is

in-doubt,

the

database

resources

owned

by

that

UOR

are

inaccessible

to

other

requests.

It

is

vital

that

in-doubts

are

resolved

immediately.

CCTL

Example:

If

in-doubt

UORs

are

created

because

IMS

DB

failed,

the

following

sequence

must

occur

to

resolve

the

in-doubt

UORs.

1.

After

restarting

IMS

DB,

the

CCTL

should

identify

itself

to

IMS

DB

using

an

INIT

request.

Figure

75.

ODBA

Two-Phase

Sync

Point

Processing

Sync

PointsIBM

Confidential

Appendix

C.

The

Database

Resource

Adapter

(DRA)

361

2.

If

identification

is

successful,

the

DRA

notifies

the

CCTL

control

exit,

passing

to

it

a

list

of

IMS

DB

UORs

that

are

in-doubt.

3.

The

CCTL

must

resolve

each

in-doubt

by

making

a

RESYNC

call,

which

causes

a

phase

2

action,

commit

or

abort.

For

CCTL

to

resolve

a

IMS

DB

in-doubt

UOR,

the

CCTL

must

have

a

record

of

this

UOR

and

the

appropriate

phase

2

action

it

must

take.

In

this

example,

the

CCTL

record

of

a

possible

IMS

DB

in-doubt

UOR

is

called

a

transition

UOR.

4.

The

CCTL

must

define

a

transition

UOR

for

the

interval

A-K

(refer

to

Table

78

on

page

360).

Because

this

interval

encompasses

the

IMS

DB

in-doubt

period

C-H,

CCTL

can

resolve

any

in-doubts.

If

a

CCTL

defines

a

transition

UOR

as

interval

E-K,

the

following

problem

can

arise:

If

IMS

DB

fails

while

a

thread

is

between

C

and

D,

IMS

DB

has

an

in-doubt

UOR

for

which

CCTL

has

no

corresponding

transition

UOR,

even

though

the

phase

1

call

failed.

CCTL

cannot

resolve

this

UOR

during

the

identify

process.

The

only

way

to

resolve

this

in-doubt

is

by

using

the

IMS

DB

command,

CHANGE

INDOUBT.

ODBA

Example:

For

ODBA,

all

in-doubts

are

resolved

through

z/OS

using

the

Recoverable

Resource

Service

(RRS).

The

DRA

Startup

Table

The

DRA

Startup

Table

contains

values

used

to

define

the

characteristics

of

the

DRA.

The

DRA

Startup

Table

is

created

by

assembling:

v

The

DFSPZPxx

module

for

a

CCTL’s

use.

v

The

DFSxxxx0

module

for

ODBA’s

use.

The

CCTL

or

ODBA

system

programmer

must

make

the

required

changes

to

these

modules

to

correctly

specify

the

DRA

parameters

desired.

The

DRA

parameters

are

specified

as

keywords

on

the

DFSPRP

macro

invocation.

These

keywords

and

their

meanings

are

listed

following

the

sample

DFSPZP00

source

code.

Sample

DFSPZP00

Source

Code:

DFSPZP00

CSECT

DFSPRP

DSECT=NO

END

DFSPRP

Macro

Keywords

Keyword

Description

AGN=

A

one-to-eight

character

application

group

name.

This

is

used

as

part

of

the

IMS

DB

and

DB/DC

security

function

(see

IMS

Version

9:

Administration

Guide:

System

for

more

information

on

IMS

DB

and

DB/DC

security).

CNBA=

Total

Fast

Path

NBA

buffers

for

the

CCTL’s

or

ODBA’s

use.

For

a

description

of

Fast

Path

DEDB

buffer

usage,

see

IMS

Version

9:

Administration

Guide:

System.

DBCTLID=

The

four-character

name

of

the

IMS

DB

or

DB/DC

region.

This

is

the

same

as

the

IMSID

parameter

in

the

DBC

procedure.

For

more

information

on

the

DBC

procedure,

see

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

The

default

name

is

SYS1.

Sync

Points IBM

Confidential

362

Application

Programming:

Database

Manager

DDNAME=

A

one-to-eight

character

ddname

used

with

the

dynamic

allocation

of

the

IMS

DB

execution

library.

The

default

ddname

is

CCTLDD.

DSNAME=

A

1-to-44

character

data

set

name

of

the

IMS

DB

execution

library,

which

must

contain

the

DRA

modules

and

must

be

z/OS

authorized.

The

default

DSNAME

is

IMS.SDFSRESL.

This

library

must

contain

the

DRA

modules.

FPBOF=

The

number

of

Fast

Path

DEDB

overflow

buffers

allocated

per

thread.

For

a

description

of

Fast

Path

DEDB

buffer

usage,

see

IMS

Version

9:

Administration

Guide:

System.

The

default

is

00.

FPBUF=

The

number

of

Fast

Path

DEDB

buffers

allocated

and

fixed

per

thread.

For

a

description

of

Fast

Path

DEDB

buffer

usage,

see

IMS

Version

9:

Administration

Guide:

System.

The

default

is

00.

FUNCLV=

Specifies

the

DRA

level

that

the

CCTL

or

ODBA

supports.

The

default

is

1.

IDRETRY=

The

number

of

times

a

z/OS

application

region

is

to

attempt

to

IDENTIFY

(or

attach)

to

IMS

after

the

first

IDENTIFY

attempt

fails.

The

maximum

number

255.

The

default

is

0.

MAXTHRD=

The

maximum

number

of

DRA

thread

TCBs

available

at

one

time.

The

maximum

number

is

999.

The

default

is

number

1.

MINTHRD=

The

minimum

number

of

DRA

thread

TCBs

to

be

available

at

one

time.

The

maximum

number

is

999.

The

default

is

number

1.

SOD=

The

output

class

used

for

a

SNAP

DUMP

of

abnormal

thread

terminations.

The

default

is

A.

TIMEOUT=

(CCTL

only).

The

amount

of

time

(in

seconds)

a

CCTL

waits

for

the

successful

completion

of

a

DRA

TERM

request.

Specify

this

value

only

if

the

CCTL

application

is

coded

to

use

it.

This

value

is

returned

to

the

CCTL

upon

completion

of

an

INIT

request.

TIMER=

The

time

(in

seconds)

between

attempts

of

the

DRA

to

identify

itself

to

IMS

DB

or

DB/DC

during

an

INIT

request.

The

default

is

60

seconds.

USERID=

An

eight-character

name

of

the

CCTL

or

ODBA

region.

This

keyword

is

ignored

for

an

ODBA

Region.

Enabling

the

DRA

for

a

CCTL

This

section

describes

the

two

steps

required

to

enable

the

DRA.

1.

The

CCTL

system

programmer

must

copy

the

DRA

Startup/Router

routine

(DFSPRRC0)

into

a

CCTL

load

library,

because

the

CCTL

must

load

DFSPRRC0.

Although

the

DRA

is

shipped

with

the

IMS

product,

it

runs

in

the

CCTL

address

space.

The

system

programmer

can

copy

the

routine

from

the

IMS.SDFSRESL

library

(built

by

the

IMS

generation

process),

or

can

concatenate

the

IMS.SDFSRESL

library

to

the

ODBA

step

library.

2.

The

system

programmer

must

put

the

DFSPZPxx

load

module

(DRA

Startup

Table)

in

a

load

library.

The

DRA

is

now

ready

to

be

initialized.

The

DRA

Startup

TableIBM

Confidential

Appendix

C.

The

Database

Resource

Adapter

(DRA)

363

Initializing

the

DRA

The

CCTL

starts

the

initialization

process

as

a

result

of

the

CCTL

application

program

issuing

an

initialization

(INIT)

request.

At

this

point

in

time,

the

CCTL

loads

DFSPRRC0

and

then

calls

the

DRA

to

process

the

INIT

request.

As

part

of

the

initialization

request,

the

CCTL

application

program

specifies

the

startup

table

name

suffix

(xx).

The

default

load

module,

DFSPZP00,

is

in

the

IMS.SDFSRESL

library.

After

processing

the

INIT

request,

the

DRA

identifies

itself

to

IMS

DB.

The

DRA

is

then

capable

of

handling

other

requests.

Related

Reading:

For

an

example

of

DFSPZP00,

see

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

DFSPZP00

contains

default

values

for

the

DRA

initialization

parameters.

If

you

want

to

specify

values

other

than

the

defaults,

write

your

own

module

(naming

it

DFSPZPxx),

assemble

it,

and

load

it

in

the

CCTL

load

library.

Use

the

supplied

module,

DFSPZP00,

as

an

example.

The

remainder

of

the

DRA

modules

reside

in

a

load

library

that

is

dynamically

allocated

by

DFSPRRC0.

The

DDNAME

and

DSNAME

of

this

load

library

are

specified

in

the

startup

table.

The

default

DSNAME

(IMS.SDFSRESL)

contains

all

the

DRA

code

and

is

specified

in

the

default

startup

table,

DFSPZP00.

Enabling

the

DRA

for

the

ODBA

Interface

There

are

four

steps

required

to

enable

the

DRA

before

an

ODBA

interface

can

use

it:

1.

Create

the

ODBA

DRA

Startup

Table.

2.

Verify

that

the

ODBA

and

DRA

modules

reside

in

the

STEPLIB

or

JOBLIB

in

the

z/OS

application

region.

3.

Link

the

ODBA

application

programs

with

DFSCDLI0.

4.

Set

up

security.

These

steps

are

described

in

detail

in

the

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring.

Initializing

the

DRA

The

ODBA

interface

starts

the

initialization

process

as

a

result

of

the

ODBA

application

program

issuing

an

initialization

(CIMS

INIT)

request

or

an

APSB

call.

At

this

point

in

time,

the

ODBA

interface

calls

the

DRA

to

process

the

CIMS

INIT

request

or

APSB

call.

Optionally,

the

ODBA

application

program

can

specify

the

startup

table

name

(xxxx)

in

the

AIBRSNM2

field

of

the

AIB.

After

processing

the

CIMS

INIT

request,

the

DRA

identifies

itself

to

one

IMS

DB.

The

DRA

is

then

capable

of

handling

other

requests.

The

DRA’s

structure

at

this

time

is

shown

in

Figure

76

on

page

365.

The

DRA

Startup

Table IBM

Confidential

364

Application

Programming:

Database

Manager

The

remainder

of

the

DRA

modules

reside

in

a

load

library

that

is

dynamically

allocated

by

DFSAERA0.

The

DDNAME

and

DSNAME

of

this

load

library

are

specified

in

the

startup

table.

The

default

DSNAME

(IMS.SDFSRESL)

contains

all

the

DRA

code.

Processing

CCTL

DRA

Requests

The

CCTL

communicates

with

IMS

DB

through

DRA

requests.

These

requests

are

passed

from

the

CCTL

to

the

DRA

using

a

participant

adapter

parameter

list

(PAPL).

See

Appendix

B

for

a

sample

PAPL

listing.

There

are

different

types

of

DRA

requests

shown

in

the

sample

PAPL

listing.

To

make

a

DRA

request

the

CCTL

must

pass

control

to

the

DRA

Startup/Router

Routine

DFSPRRC0,

and

have

register

1

point

to

a

PAPL.

Before

passing

control

to

DFSPRRC0,

the

CCTL

must

fill

in

the

PAPL

according

to

the

desired

request.

These

requests

are

specified

by

a

function

code

in

the

PAPLFUNC

field.

To

specify

a

thread

function

request,

put

the

PAPLTFUN

value

into

the

PAPLFUNC

field.

The

function

requests

are

further

broken

down

into

many

subfunctions.

A

thread

function

request

is

referred

to

by

its

subfunction

name

(for

example,

a

thread

request

with

a

schedule

subfunction

is

referred

to

as

a

SCHED

request).

Non-thread

function

requests

are

referred

to

by

function

name

(for

example,

an

initialization

request

is

called

an

INIT

request).

The

term

“DRA

request”

applies

to

both

thread

and

non-thread

function

requests.

Once

the

PAPL

is

built

and

the

DRA

Startup/Router

routine

is

loaded,

the

CCTL

passes

control

to

DFSPRRC0.

The

contents

of

the

registers

upon

entry

to

DFSPRRC0

are:

Register

Contents

1

Address

of

the

PAPL

13

Address

of

a

standard

18-word

save

area

14

Return

address

of

the

calling

routine

Figure

76.

DRA

Component

Structure

with

the

ODBA

Interface

Enabling

the

DRA

for

the

ODBA

InterfaceIBM

Confidential

Appendix

C.

The

Database

Resource

Adapter

(DRA)

365

The

DRA

Startup/Router

routine

puts

itself

into

31-bit

addressing

mode

and

will

return

to

the

calling

routine

in

the

caller’s

original

addressing

mode

with

all

its

registers

restored.

Register

15

is

always

returned

with

a

zero

in

it.

The

return

code

for

the

request

is

in

the

PAPLRETC

field

of

the

PAPL.

Processing

ODBA

Calls

Unlike

a

CCTL’s

use

of

the

PAPL,

an

ODBA

application

program

communicates

with

IMS

DB

using

the

AERTDLI

interface.

The

AERTDLI

call

interface

processes

DL/I

calls

from

the

ODBA

application

and

also

returns

the

results

of

those

calls

back

to

the

ODBA

using

an

AIB.

Related

Reading:

For

information

on

using

the

AIB

mask

for

configuring

ODBA

calls,

see

“Specifying

the

AIB

Mask

for

ODBA

Applications”

on

page

99.

CCTL-Initiated

DRA

Function

Requests

This

section

documents

General-Use

Programming

Interface

and

Associated

Guidance

Information.

This

section

discusses

the

requests

available

to

the

CCTL

that

allow

it

to

communicate

with

DBCTL.

These

requests

are

passed

to

the

DRA

through

the

PAPL.

For

all

DRA

requests,

there

are

PAPL

fields

that

the

CCTL

must

fill

in.

When

the

DRA

completes

the

request,

there

are

some

output

PAPL

fields

that

the

DRA

fills

in.

Some

fields

in

the

returned

PAPL

might

contain

the

original

input

value.

(The

PAPLTTOK

and

PAPLUSER

fields

will

retain

the

original

input

values.)

The

PAPLUSER

field

is

a

field

to

be

used

at

the

CCTL’s

discretion.

One

possible

use

for

it

is

to

pass

data

to

exit

routines.

The

DRA

returns

a

code

(in

the

PAPLRETC

field)

to

the

CCTL

after

processing

a

DRA

request.

The

code

indicates

the

status

of

the

request

and

can

be

either

an

IMS

code,

a

DRA

code,

or

a

z/OS

code.

Failed

DRA

requests

return

a

nonzero

value

in

the

PAPLRETC

field.

Related

Reading:

v

See

“Problem

Determination”

on

page

380

for

more

information

on

the

codes

returned

when

a

DRA

request

fails.

v

For

a

complete

list

and

description

of

all

DRA

return

codes,

see

IMS

Version

9:

Messages

and

Codes,

Volume

1.

INIT

Request

The

INIT

request

initializes

the

DRA.

The

DRA

startup

parameter

table

contains

all

of

the

required

parameters

that

you

need

to

define

the

DRA.

You

can

use

the

parameters

given

in

the

default

module,

DFSPZP00,

or

you

can

write

your

own

module

and

link-edit

it

into

the

IMS.SDFSRESL.

Related

Reading:

For

more

information,

see

“Enabling

the

DRA

for

a

CCTL”

on

page

363.

Processionally

DRA

Requests IBM

Confidential

366

Application

Programming:

Database

Manager

The

INIT

PAPL

also

contains

some

parameters

needed

to

initialize

the

DRA.

If

the

same

parameter

appears

in

both

the

INIT

PAPL

and

in

the

DRA

startup

parameter

table,

the

specification

in

the

INIT

PAPL

will

override

that

in

the

startup

table.

In

addition

to

the

required

parameters,

you

can

also

include

the

following

optional

parameters

in

the

INIT

PAPL:

Field

Contents

PAPLFUNC

PAPLINIT

PAPLSUSP

The

address

of

the

Suspend

exit

routine

PAPLRESM

The

address

of

the

Resume

exit

routine

PAPLCNTL

The

address

of

the

Control

exit

routine

PAPLTSTX

The

address

of

the

Status

exit

routine

After

the

INIT

request

and

the

startup

table

have

been

processed,

the

DRA

returns

the

following

data

to

the

CCTL

in

the

INIT

PAPL:

Field

Contents

PAPLDBCT

The

IMS

DB

identifier

(this

is

the

IMSID

parameter

from

system

generation)

PAPLCTOK

The

request

token

that

identifies

the

CCTL

to

the

DRA

PAPLTIMO

DRA

TERM

request

timeout

value

(in

seconds)

PAPLRETC

A

code

returned

to

the

CCTL

specifying

the

status

of

the

request

PAPLDLEV

A

flag

indicating

to

CCTL

which

functions

the

DRA

supports.

(For

the

latest

version

of

PAPL

mapping

format

see

the

IMS.

library;

member

name

is

DFSPAPL.)

INIT

Request,

Identify

to

DBCTL

To

make

the

DRA

functional,

the

DRA

must

identify

itself

to

IMS

DB,

thus

establishing

a

link

between

IMS

DB

and

the

CCTL.

The

identify

process

occurs

in

two

cases:

v

As

a

direct

result

of

an

INIT

request.

v

As

part

of

a

terminate/reidentify

request

from

a

Control

exit

routine

invocation.

The

DRA

identifies

itself

to

the

IMS

DB

subsystem

specified

in

the

final

DRA

startup

parameters.

The

identify

process

executes

asynchronously

to

the

INIT

process.

Therefore,

it

is

possible

for

the

INIT

request

to

complete

successfully

while

the

identify

process

fails.

In

this

case,

the

Control

exit

routine

notifies

the

CCTL

that

the

connection

to

IMS

DB

failed.

If

IMS

DB

is

not

active,

the

console

operator

will

receive

a

DFS690

message

(a

code

of

0

was

returned

in

the

PAPLRETC

field).

You

must

reply

with

either

a

CANCEL

or

WAIT

response.

If

you

reply

with

WAIT,

the

DRA

waits

for

a

specified

time

interval

before

attempting

to

identify

again.

The

waiting

period

is

necessary

because

the

identify

process

won’t

succeed

until

the

DBCTL

restart

process

is

complete.

You

specify

the

length

of

the

waiting

period

on

the

TIMER

DRA

startup

parameter.

If

subsequent

attempts

to

identify

fail,

the

console

operator

will

receive

message

DFS691,

WAITING

FOR

IMS

DB.

If

the

DRA

cannot

identify

to

IMS

DB

because

the

subsystem

does

not

reach

a

restart

complete

state,

there

are

two

ways

to

terminate

the

identify

process:

CCTL-Initiated

DRA

Function

RequestsIBM

Confidential

Appendix

C.

The

Database

Resource

Adapter

(DRA)

367

v

The

Control

exit

routine

is

called

with

each

identify

failure.

This

sets

a

PAPL

return

code

of

4

or

8,

which

terminates

the

identify

process.

v

The

CCTL

can

issue

a

TERM

request.

If

you

reply

with

CANCEL

to

message

DFS690,

control

is

passed

to

the

Control

exit

routine,

and

the

DRA

acts

upon

the

routine’s

decision.

After

the

identify

process

successfully

completes,

the

DRA

makes

the

CCTL

address

space

non-swappable

and

calls

the

Control

exit

routine

with

a

list

of

in-doubt

UORs.

If

no

in-doubt

UORs

exist,

a

null

list

is

passed.

The

CCTL

can

use

the

RESYNC

request

to

resolve

any

in-doubt

UORs

that

do

exist.

The

INIT

request

will

attempt

to

create

the

MINTHRD

number

of

thread

TCBs.

The

actual

number

of

TCBs

created

might

be

less

than

this

value

due

to

storage

constraints.

INIT

Request

after

a

Previous

DRA

Session

Termination

If

a

prior

DRA

session

ended

with

a

TERM

request

that

received

a

PAPL

return

code=0,

this

INIT

request

must

specify

PAPLCTOK=0.

If

PAPLCTOK

other

than

0

is

sent,

the

INIT

request

will

fail.

The

INIT

request

must

pass

the

prior

session’s

PAPLCTOK

value

in

the

current

PAPLCTOK

field

if

a

DRA

session

ended

one

of

the

following

ways:

v

A

nonzero

return

code

from

a

TERM

request.

v

An

internal

TERM

request

from

a

Control

exit

routine

request.

v

A

DRA

failure.

RESYNC

Request

The

RESYNC

request

tells

IMS

DB

what

to

do

with

in-doubt

UORs.

The

following

4

subfunction

values

indicate

possible

actions:

PAPLRCOM

Commit

the

in-doubt

UOR.

PAPLRABT

Abort

the

in-doubt

UOR.

Changes

made

to

any

recoverable

resource

are

backed

out.

PAPLSCLD

The

UOR

was

lost

to

the

transaction

manager

due

to

a

coldstart.

PAPLSUNK

The

in-doubt

UOR

is

unknown

to

the

CCTL.

This

can

occur

when

the

CCTL’s

in-doubt

period

does

not

include

the

start

of

phase

1.

(See

Table

78

on

page

360

for

an

illustration

of

in-doubt

periods.)

You

must

fill

in

the

following

input

fields

of

the

PAPL:

Field

Contents

PAPLCTOK

Request

token

This

token

identifies

the

CCTL

to

the

DRA.

The

DRA

establishes

the

token

and

returns

it

to

the

CCTL

in

the

parameter

list

on

the

startup

INIT

request.

The

request

token

must

be

passed

on

to

the

DRA

for

all

RESYNC

requests.

PAPLRTOK

Recovery

token

This

16-byte

token

is

associated

with

a

UOR.

The

first

8

bytes

must

be

the

transaction

manager

subsystem

ID.

The

second

8

bytes

must

be

unique

for

one

CCTL

thread.

This

is

one

of

the

in-doubt

recovery

tokens

passed

to

the

Control

exit

routine.

CCTL-Initiated

DRA

Function

Requests IBM

Confidential

368

Application

Programming:

Database

Manager

PAPLFUNC

PAPLRSYN

PAPLSNC

One

of

the

four

values

listed

above

TERM

Request

The

TERM

request

results

in

a

termination

of

the

IMS

DB/CCTL

connection

and

a

removal

of

the

DRA

from

the

CCTL

environment.

The

DRA

terminates

after

all

threads

have

been

resolved.

No

new

DRA

or

thread

requests

are

allowed,

and

current

requests

in

progress

must

complete.

You

must

fill

in

the

following

input

fields

in

the

PAPL:

Field

Contents

PAPLFUNC

PAPLTERM,

DRA

terminate

function

code

PAPLCTOK

The

DRA

request

token

(output

from

an

INIT

request)

After

receiving

the

TERM

request

results,

the

CCTL

may

remove

DFSPPRC0.

The

following

output

fields

are

returned

in

the

PAPL

to

the

CCTL:

Field

Contents

PAPLRETC

The

return

code

PAPLMXNB

The

number

of

times

the

maximum

thread

count

was

encountered

during

this

DRA

session

PAPLMTNB

The

number

of

times

the

minimum

thread

count

was

encountered

during

this

DRA

session

PAPLHITH

The

largest

number

of

thread

TCBs

that

were

scheduled

during

this

DRA

session

PAPLTIMX

The

elapsed

time

at

maximum

thread

for

this

DRA

session

Thread

Function

Requests

The

Thread

Function

requests

consist

of

the

SCHED,

IMS,

SYNTERM,

PREP,

COMTERM,

ABTTERM,

and

TERMTHRD

requests

and

are

described

in

this

section.

SCHED

Request

The

SCHED

request

schedules

a

PSB

in

IMS

DB.

The

first

SCHED

request

made

by

a

CCTL

thread

requires

a

new

DRA

thread.

If

any

existing

DRA

thread

TCBs

are

not

currently

processing

a

DRA

thread,

one

of

these

is

used.

If

no

TCBs

are

available,

the

DRA

either

creates

a

new

thread

TCB

(until

the

maximum

number

of

threads

as

specified

by

the

MAXTHRD

parameter

in

the

INIT

request

is

reached),

or

makes

the

SCHED

request

wait

until

a

thread

becomes

available.

The

value

in

the

PAPLWCMD

field

indicates

whether

the

thread

to

which

the

SCHED

request

applies

is

a

short

or

long

thread.

The

type

of

thread

determines

the

action

that

IMS

takes

when

a

database

command

is

entered

for

a

database

scheduled

to

the

thread.

The

/STOP

DATABASE,

/DBDUMP

DATABASE,

or

/DBRECOVERY

DATABASE

command

issued

against

a

database

scheduled

on

a

short

thread

will

wait

for

the

database

to

be

unscheduled.

IMS

rejects

these

commands

if

they

are

entered

for

a

database

scheduled

on

a

long

thread.

You

must

fill

in

the

following

input

fields

in

the

PAPL:

Field

Contents

CCTL-Initiated

DRA

Function

RequestsIBM

Confidential

Appendix

C.

The

Database

Resource

Adapter

(DRA)

369

PAPLFUNC

PAPLTFUN,

thread

function

code

PAPLSFNC

PAPLSCHE,

schedule

request

subfunction

code

PAPLCTOK

The

DRA

request

token

(output

from

an

INIT

request)

PAPLTTOK

The

thread

token

set

up

by

the

CCTL

PAPLRTOK

The

16-byte

UOR

token

(RTOKEN).

For

more

information

about

UORs,

see

“Sync

Points”

on

page

358.

PAPLPSB

The

PSB

name

PAPLWRTH

Deadlock

Worth

Value

If

this

thread

hits

a

deadlock

condition

with

any

other

DRA

thread

or

with

any

IMS

region,

DBCTL

collapses

the

thread

with

the

lower

deadlock

worth

value.

PAPLWCMD

This

bit

defines

the

thread

as

either

a

short

or

long

thread

which

determines

what

action

IMS

takes

on

a

/STOP

DATABASE,

/DBDUMP

DATABASE,

or

/DBRECOVERY

DATABASE

command

for

a

database

scheduled

to

the

thread.

If

the

bit

is

set

on

(X'80'),

the

database

is

scheduled

on

a

short

thread;

if

the

bit

is

set

off,

the

database

is

scheduled

for

a

long

thread.

PAPLFTRD

Fast

Path

Trace

Option

If

this

bit

is

on

(X'40'),

Fast

Path

tracing

in

IMS

DB

is

activated.

(For

more

information,

see

“Tracing”

on

page

379

in

“CCTL

Performance—Monitoring

DRA

Thread

TCBs”

on

page

376.)

PAPLKEYP

Public

Key

Option

If

this

bit

is

set

(X'10'),

DBCTL

will

build

UPSTOR

area

in

a

special

subpool

so

that

applications

running

in

public

key

can

fetch

the

UPSTOR

area.

PAPLLKGV

Lockmax

Option

If

this

bit

is

set

(X'08'),

DBCTL

uses

the

value

in

PAPLLKMX

as

the

maximum

number

of

locks

that

this

UOR

can

hold.

Exceeding

the

maximum

results

in

a

U3301

abend.

PAPLLKMX

Lockmax

Value,

0

to

255

This

value

overrides

any

LOCKMAX

parameter

specified

on

the

PSBGEN

for

the

PSB

referenced

in

the

SCHED

request.

PAPLALAN

Application

language

type

Specifying

the

following

input

field

is

optional:

Field

Contents

PAPLSTAT

Address

of

an

area

where

scheduled

statistical

data

is

returned

to

the

CCTL.

PAPLPBTK

Address

of

the

token

for

the

z/OS

Workload

Manager

performance

block

obtained

by

the

CCTL.

You

must

specify

this

field

for

z/OS

Workload

Manager

support

for

DRA

threads.

The

following

output

fields

are

returned

in

the

PAPL

to

the

CCTL:

Field

Contents

Thread

Function

Requests IBM

Confidential

370

Application

Programming:

Database

Manager

PAPLRETC

The

return

code

PAPLCTK2

The

thread

request

token

number

2.

This

is

another

DRA

token

required

on

future

DRA

requests

originating

from

this

thread.

PAPLPCBL

The

address

of

the

PCB

list.

There

is

one

entry

in

the

list

for

each

PCB

in

the

PSB

that

was

scheduled,

even

if

the

PCB

cannot

be

used

with

IMS

DB.

PAPL1PCB

The

address

of

the

PCBLIST

entry

pointing

to

the

first

database

PCB

PAPLIOSZ

The

size

of

the

maximum

I/O

area

PAPLPLAN

The

language

type

of

the

PSB

PAPLMKEY

The

maximum

key

length

PAPLSTAT

The

address

of

the

schedule

statistical

data

area.

This

address

must

be

specified

on

the

input

field.

CCTLs

currently

using

the

IMS

Database

Manager

and

migrating

to

DBCTL

will

experience

a

change

in

the

PCBLIST

and

user

PCB

area

on

a

schedule

request.

The

first

PCB

pointer

in

the

PCBLIST

contains

the

address

of

an

I/O

PCB.

The

I/O

PCB

is

internally

allocated

during

the

schedule

process

in

a

DBCTL

environment.

The

I/O

PCB

is

normally

used

for

output

messages

or

to

request

control

type

functions

to

be

processed.

The

PCBLIST

and

the

PCBs

reside

in

a

contiguous

storage

area

known

as

UPSTOR.

If

the

PSB

was

generated

with

LANG=PLI,

the

PCBLIST

points

to

pointers

for

the

PCBs.

If

LANG=

was

not

PLI,

the

PCBLIST

points

to

the

PCBs

directly.

IMS

Request

This

request

makes

an

IMS

or

Fast

Path

database

request

against

the

currently

scheduled

PSB.

You

must

fill

in

the

following

input

fields

in

the

PAPL:

Field

Contents

PAPLFUNC

PAPLTFUN

PAPLSFNC

PAPLDLI,

DL1

request

subfunction

code

PAPLCTOK

DRA

request

token

(output

from

an

INIT

request)

PAPLCTK2

Thread

Token

number

2.

This

is

the

DRA

request

token

that

is

part

of

the

output

from

a

SCHED

request.

PAPLTTOK

Thread

token

set

up

by

the

CCTL

PAPLRTOK

RTOKEN

A

16-byte

UOR

token.

See

“Sync

Points”

on

page

358

for

more

information

about

UORs.

PAPLCLST

The

address

of

an

IMS

call

list.

See

“Chapter

2,

Defining

Application

Program

Elements”

for

call

list

formats.

PAPLALAN

Application

language

type.

This

must

reflect

how

the

call

list

is

set

up.

If

PAPLALAN=‘PLI’,

the

DRA

expects

the

call

list

to

contain

pointers

to

the

PCB’s

pointers.

For

any

other

programming

language,

the

DRA

expects

direct

pointers.

PAPLALAN

does

not

have

to

match

PAPLPLAN

which

schedules

request

returns.

For

example,

if

PAPLPLAN=PLI,

the

PCBLIST

in

Thread

Function

RequestsIBM

Confidential

Appendix

C.

The

Database

Resource

Adapter

(DRA)

371

UPSTOR

points

to

an

indirect

list.

If

desired,

the

CCTL

can

use

this

to

create

a

PCBLIST

that

application

programs

use.

If

the

application

programs

are

written

in

COBOL,

the

CCTL

may

create

a

new

PCBLIST

without

pointers

as

long

as

the

new

list

actually

points

to

PCBs

in

UPSTOR.

The

application

program

IMS

call

lists

can

specify

PAPLALAN=COBOL,

and

the

DRA

will

not

expect

pointers

in

the

call

list.

The

following

output

fields

are

returned

in

the

PAPL

to

the

CCTL:

Field

Contents

PAPLRETC

Code

returned

PAPLSEGL

Length

of

data

returned

SYNTERM

Request

This

is

a

single-phase

sync

point

request

to

commit

the

UOR.

It

also

releases

the

PSB.

You

must

fill

in

the

following

input

fields

in

the

PAPL:

Field

Contents

PAPLFUNC

PAPLTFUN

PAPLSFNC

PAPLSTRM,

sync

point

commit/terminate

subfunction

code

PAPLCTOK

DRA

request

token

(output

from

INIT

request)

PAPLCTK2

The

thread

request

token

number

2.

This

DRA

token

is

the

output

from

the

SCHED

request.

PAPLTTOK

The

thread

token

set

up

by

the

CCTL

PAPLRTOK

A

16-byte

UOR

token

(RTOKEN).

For

information

on

UORs

see

“Sync

Points”

on

page

358.

You

can

also

specify

the

following,

optional

input

fields:

Field

Contents

PAPLSTAT

Address

of

an

area

where

transaction

statistical

data

is

returned

to

the

CCTL.

The

following

output

fields

are

returned

in

the

PAPL

to

the

CCTL:

Field

Contents

PAPLRETC

Code

returned

PAPLSSCC

State

of

the

single-phase

sync

point

request

at

the

time

of

the

thread

failure.

This

field

is

set

if

PAPLRETC

is

not

equal

to

zero.

PAPLSTAT

The

address

of

the

transaction

statistical

data

area.

The

address

must

be

specified

on

the

input

field.

PREP

Request

This

is

a

phase

1

sync-point

request

that

asks

IMS

DB

if

it

is

ready

to

commit

this

UOR.

You

must

fill

in

the

following

input

fields

of

the

PAPL:

Field

Contents

Thread

Function

Requests IBM

Confidential

372

Application

Programming:

Database

Manager

PAPLFUNC

PAPLTFUN

PAPLSFNC

PAPLPREP,

sync-point

prepare

subfunction

code

PAPLCTOK

DRA

request

token

(output

from

an

INIT

request)

PAPLCTK2

Thread

Token

number

2.

This

is

the

DRA

request

token

which

is

output

from

a

SCHED

request.

PAPLTTOK

The

thread

token

set

up

by

the

CCTL

PAPLRTOK

A

16-byte

UOR

token

(RTOKEN).

See

“Sync

Points”

on

page

358

for

more

information

about

UORs.

The

following

output

fields

are

returned

in

the

PAPL

to

the

CCTL:

Field

Contents

PAPLRETC

Code

returned

PAPLSTCD

Fast

Path

status

code

If

the

value

in

the

PAPLRETC

field

is

decimal

35,

the

PAPLSTCD

field

contains

a

status

code

that

further

describes

the

error.

COMTERM

Request

This

is

a

phase

2

sync-point

request

to

commit

the

UOR.

It

also

releases

the

PSB.

You

must

issue

a

PREP

request

prior

to

issuing

a

COMTERM

request.

You

must

fill

in

the

following

input

fields

in

the

PAPL:

Field

Contents

PAPLFUNC

PAPLTFUN

PAPLSFNC

PAPLCTRM,

sync-point

commit/terminate

subfunction

code

PAPLCTOK

DRA

request

token

(output

from

an

INIT

request)

PAPLCTK2

Thread

Token

number

2.

This

is

the

DRA

request

token,

which

is

output

from

a

SCHED

request.

PAPLTTOK

The

thread

token

set

up

by

the

CCTL

PAPLRTOK

A

16-byte

UOR

token

(RTOKEN).

See

“Sync

Points”

on

page

358

for

more

information

about

UORs.

Specifying

the

following

input

field

is

optional:

Field

Contents

PAPLSTAT

Address

of

an

area

where

transaction

statistical

data

is

returned

to

the

CCTL

The

following

output

fields

are

returned

in

the

PAPL

to

the

CCTL:

Field

Contents

PAPLRETC

Code

returned

PAPLSTAT

The

address

of

the

transaction

statistical

data

area.

This

address

must

be

specified

on

the

input

field.

ABTTERM

Request

This

is

a

phase

2

sync-point

request

for

abort

processing.

It

also

releases

the

PSB.

It

does

not

require

a

preceding

PREP

request.

Thread

Function

RequestsIBM

Confidential

Appendix

C.

The

Database

Resource

Adapter

(DRA)

373

You

must

fill

in

the

following

input

fields

of

the

PAPL:

Field

Contents

PAPLFUNC

PAPLTFUN

PAPLSFNC

PAPLATRM,

sync-point

abort/terminate

subfunction

code

PAPLCTOK

DRA

request

token

(output

from

an

INIT

request)

PAPLCTK2

Thread

Token

number

2.

This

is

the

DRA

request

token,

which

is

output

from

a

SCHED

request.

PAPLTTOK

The

thread

token

set

up

by

the

CCTL

PAPLRTOK

A

16-byte

UOR

token

(RTOKEN).

See

“Sync

Points”

on

page

358

for

more

information

about

UORs.

Specifying

the

following

input

field

is

optional:

Field

Contents

PAPLSTAT

Address

of

an

area

where

transaction

statistical

data

is

returned

to

the

CCTL.

The

following

output

fields

are

returned

in

the

PAPL

to

the

CCTL:

Field

Contents

PAPLRETC

Code

returned

PAPLSTAT

The

address

of

the

transaction

statistical

data

area.

This

address

must

be

specified

on

the

input

field.

TERMTHRD

(PAPLSFNC

-

PAPLTTHD)

Request

This

request

terminates

the

DRA

thread.

You

must

fill

in

the

following

input

fields

of

the

PAPL:

Field

Contents

PAPLFUNC

PAPLTFUN

PAPLSFNC

PAPLTTHD,

thread

terminate

subfunction

code

PAPLCTOK

DRA

request

token

(output

from

an

INIT

request)

PAPLCTK2

Thread

Token

number

2.

This

is

the

DRA

request

token

which

is

output

from

a

SCHED

request.

PAPLTTOK

The

thread

token

set

up

by

the

CCTL

Specifying

the

following

input

field

is

optional:

Field

Contents

PAPLSTAT

Address

of

an

area

where

transaction

statistical

data

is

returned

to

the

CCTL

The

following

output

fields

are

returned

in

the

PAPL

to

the

CCTL:

Field

Contents

PAPLRETC

Code

returned

PAPLSTAT

The

address

of

the

transaction

statistical

data

area.

This

address

must

be

specified

on

the

input

field.

Thread

Function

Requests IBM

Confidential

374

Application

Programming:

Database

Manager

PAPL

Mapping

Format

The

PAPL

is

the

parameter

list

used

by

the

DRA

interface

in

a

CCTL

environment.

For

the

latest

version

of

PAPL

mapping

format,

see

the

IMS.ADFSMAC

library;

the

member

name

is

DFSPAPL.

Terminating

the

DRA

Termination

isolation

should

be

one

of

your

primary

considerations

when

you

design

a

CCTL

subsystem

or

an

ODBA

application.

Definition:Termination

isolation

means

that

a

failure

of

the

IMS

DB

subsystem

does

not

cause

a

direct

failure

of

any

attached

CCTL

subsystem

or

ODBA

application

and

vice

versa.

Although

IMS

DB

was

designed

to

prevent

failure

between

connecting

subsystems,

a

termination

of

a

CCTL

subsystem

can

cause

IMS

DB

failure.

If

a

DRA

thread

TCB

terminates

while

IMS

DB

is

processing

a

thread

DL/I

call

on

the

CCTL’s

behalf,

IMS

DB

fails

with

a

U0113

abend.

To

promote

termination

isolation,

see

the

“Summary

of

CCTL

Design

Recommendations”

on

page

376.

The

following

conditions

cause

a

thread

TCB

to

terminate

while

IMS

DB

processes

a

DL/I

call:

v

A

DRA

thread

abend

due

to

code

failure.

This

can

be

corrected

by

fixing

the

failing

code.

v

The

CCTL

TCB

collapses

while

a

thread

TCB

still

exists.

The

thread

TCB

collapses

with

an

S13E

or

S33E

abend

and

can

result

from

three

situations:

a

CCTL

abend,

a

cancel

command,

or

a

shutdown.

The

number

of

U0113

abends

caused

by

a

CCTL

cancel

command

can

be

reduced

by

following

the

design

recommendations

listed

in

the

“Summary

of

CCTL

Design

Recommendations”

on

page

376.

v

A

DRA

thread

abend

due

to

a

IMS

DB

/STOP

REGION

CANCEL

command

initiated

by

CCTL.

An

IMS

DB

U0113

abend

can

be

prevented

by

designing

the

CCTL

recovery

process

so

that

it

issues

a

TERM

request

and

waits

for

the

request

to

complete.

This

allows

the

DRA

and

thread

TCBs

to

terminate

before

the

CCTL

TCB

terminates.

Designing

the

CCTL

Recovery

Process

Under

the

conditions

of

a

nonrecoverable

z/OS

abend,

a

DRA

TERM

request

lets

all

threads

collapse

and

U0113

is

possible.

To

reduce

the

number

of

nonrecoverable

abends

of

the

CCTL,

IMS

DB

intercepts

any

operator

CANCEL

of

a

CCTL

that

is

connected

to

IMS

DB,

and

converts

it

to

a

S08E

recoverable

abend

of

the

CCTL.

You

can

also

as

a

last

resort,

force

a

CCTL

to

shut

down.

If

an

operator

enters

a

FORCE

command

after

CANCEL

has

been

entered

(and

converted

to

S08E),

IMS

DB

converts

FORCE

into

an

z/OS

cancel

command.

Subsequent

FORCE

attempts

are

not

intercepted

by

IMS

DB.

In

these

cases

of

nonrecoverable

abends,

a

U0113

is

possible.

A

CCTL

might

have

a

means

of

allowing

its

own

shutdown.

The

CCTL

shutdown

logic

should

issue

a

DRA

TERM

request

and

wait

for

the

request

completion

to

prevent

a

U0113

abend

in

IMS

DB.

The

DRA

TERM

request

waits

for

current

thread

Thread

Function

RequestsIBM

Confidential

Appendix

C.

The

Database

Resource

Adapter

(DRA)

375

requests

to

complete.

One

thing

that

can

prevent

a

current

thread

DL/I

call

from

completing

normally

is

if

the

call

has

to

wait

in

IMS

DB

for

a

database

segment

to

become

available.

The

reason

the

segment

might

not

be

available

is

that

it

is

held

by

another

UOR,

either

in

a

thread

belonging

to

another

CCTL

or

in

an

IMS

dependent

region

(for

example,

a

BMP).

The

solution

is

to

not

have

CCTL

threads

or

BMPs

that

have

long-running

UORs.

Recommendation:

BMPs

should

take

frequent

checkpoints.

No

matter

how

you

choose

to

prevent

or

discourage

long-running

CCTL

threads,

you

must

decide

how

long

to

wait

for

the

DRA

TERM

request

to

complete

(TIMEOUT).

In

most

cases,

it

is

undesirable

to

get

a

U113

abend

in

IMS

DB

during

a

CCTL

termination,

so

the

timeout

value

should

be

greater

than

the

longest

possible

UOR.

If

the

CCTL

has

a

means

of

limiting

the

UOR

time

or

allowing

the

installation

to

specify

this

time

limit,

the

DRA

TERM

timeout

value

can

be

determined.

This

timeout

value

can

be

specified

in

the

DRA

startup

table

and

is

returned

to

the

CCTL

in

the

INIT

PAPL.

Recommendation:

CCTL

should

use

this

DRA

TERM

timeout

value

when

waiting

for

the

DRA

TERM

request

to

complete.

At

the

very

least,

by

using

the

DRA

TERM

timeout

value,

you

can

control

whether

CCTL

terminations

cause

IMS

DB

failures

with

respect

to

the

UOR

time

length

of

the

applications

that

run

in

a

given

IMS

DB/CCTL

session.

Summary

of

CCTL

Design

Recommendations

CCTL

Operations

Recommendation:

v

Avoid

using

CANCEL

or

FORCE

commands

against

CCTL

regions

that

are

connected

to

IMS

DB.

CCTL

Design

Recommendations:

v

The

CCTL

should

issue

a

DRA

TERM

request

during

recoverable

abend

processing.

v

CCTL

shutdown

functions

should

issue

a

DRA

TERM

request.

v

Whenever

a

DRA

TERM

request

is

issued,

wait

for

it

to

complete.

If

this

time

must

have

an

upper

limit,

use

the

TIMEOUT

value

specified

in

the

DRA

startup

table.

v

The

CCTL

should

prevent

long-running

UORs

in

its

threads

using

IMS

DB.

User

Installation

Recommendations:

v

Have

BMPs

take

frequent

checkpoints.

v

Limit

long-running

UOR

applications.

v

Set

the

TIMEOUT

startup

parameter

as

high

as

possible,

preferably

longer

than

longest

running

UOR.

CCTL

Performance—Monitoring

DRA

Thread

TCBs

Requirement:

The

DRA

initialization

process

requires

a

minimum

and

maximum

value

(MINTHRD

and

MAXTHRD)

for

DRA

thread

TCBs.

The

value

of

MINTHRD

and

MAXTHRD

determine

the

number

of

multithreading

executions

that

can

occur

concurrently.

These

values

also

define

the

range

of

thread

TCBs

that

the

DRA

will

maintain

under

normal

conditions

with

no

thread

failures.

The

number

of

TCBs

can

go

below

the

MINTHRD

value

when

the

following

thread

failures

occur:

v

An

abend.

Designing

the

CCTL

Recovery IBM

Confidential

376

Application

Programming:

Database

Manager

v

A

nonzero

DRA

thread

request

return

code

that

causes

the

thread

TCB

to

be

collapsed.

v

Termination

using

a

IMS

DB

/STOP

REGION

command.

Failed

thread

TCBs

are

not

automatically

recreated.

The

thread

TCB

number

increases

again

if

a

new

thread

is

created

to

process

a

SCHED

request.

If

the

number

of

thread

TCBs

is

above

the

MINTHRD

value

and

all

thread

activity

ceases

normally,

the

number

of

thread

TCBs

left

in

the

DRA

will

be

the

MINTHRDD

value.

During

CCTL

processing,

the

number

of

active

DRA

threads

occupying

thread

TCBs

varies

from

0

to

the

MAXTHRD

number.

Active

DRA

threads

indicate

that

at

least

one

SCHED

request

has

been

made

but

not

any

TERMTHRD

requests.

If

the

number

of

non-active

thread

TCBs

becomes

too

large,

the

DRA

automatically

collapses

some

thread

TCBs

to

release

IMS

DB

resources.

The

status

of

DRA

thread

TCBs

can

be

evaluated

from

the

output

of

the

/DISPLAY

CCTL

ALL

command,

except

for

one

case.

Related

Reading:

See

IMS

Version

9:

Command

Reference

for

examples

of

this

command.

If

there

were

no

thread

failures,

the

output

might

show

fewer

thread

TCBs

than

the

MINTHRD

value

because

of

internal

short

lived

conditions.

In

fact,

the

actual

number

of

thread

TCBs

does

equal

the

MINTHRD.

DRA

Thread

Statistics

DRA

thread

statistics

are

returned

for

a

SCHED

request

and

for

any

DRA

requests

that

terminate

a

UOR.

The

statistics

are

in

a

CCTL

area

that

is

pointed

to

by

the

PAPLSTAT

field.

The

PAPL

listing

maps

this

area,

as

shown

in

the

following

tables.

The

statistics

also

appear

in

the

IMS

DB

log

records

X'08'

(SCHED)

and

X'07'

(UOR

terminate).

Table

79.

Information

Provided

for

the

Schedule

Process:

PAPL

Field

Field

Length

(Hexadecimal)

Contents

PAPLNPSB

8

PSB

name

PAPLPOOL

8

Elapsed

wait

time

for

pool

space

(packed:

microseconds)

PAPLINTC

8

Elapsed

wait

time

-

intent

conflict

(packed:

microseconds)

PAPLSCHT

8

Elapsed

time

for

schedule

process

(packed:

microseconds)

PAPLTIMO

8

Elapsed

time

for

DB

I/O

(packed:

microseconds)

PAPLTLOC

8

Elapsed

time

for

DI

locking

(packed:

microseconds)

PAPLDBIO

4

Number

of

DB

I/Os

Table

80.

Information

Provided

at

UOR

Termination:

PAPL

Field

Field

Length

(Hexadecimal)

Contents

PAPLGU1

4

Number

of

database

GU

calls

issued

PAPLGN

4

Number

of

database

GN

calls

issued

Monitoring

DRA

Thread

TCBsIBM

Confidential

Appendix

C.

The

Database

Resource

Adapter

(DRA)

377

Table

80.

Information

Provided

at

UOR

Termination:

(continued)

PAPL

Field

Field

Length

(Hexadecimal)

Contents

PAPLGNP

4

Number

of

database

GNP

calls

issued

PAPLGHU

4

Number

of

database

GHU

calls

issued

PAPLGHN

4

Number

of

database

GHN

calls

issued

PAPLGHNP

4

Number

of

database

GHNP

calls

issued

PAPLISRT

4

Number

of

database

ISRT

calls

issued

PAPLDLET

4

Number

of

database

DLET

calls

issued

PAPLREPL

4

Number

of

database

REPL

calls

issued

PAPLTOTC

4

Total

number

of

DL/I

database

calls

PAPLTENQ

4

Number

of

test

enqueues

PAPLWTEQ

4

Number

of

WAITS

on

test

enqueues

PAPLTSDQ

4

Number

of

test

dequeues

PAPLUENQ

4

Number

of

update

enqueues

PAPLWUEQ

4

Number

of

WAITs

on

updates

and

enqueues

PAPLUPDQ

4

Number

of

update

dequeues

PAPLEXEQ

4

Number

of

exclusive

enqueues

PAPLWEXQ

4

Number

of

WAITs

on

exclusive

enqueues

PAPLEXDQ

4

Number

of

exclusive

dequeues

PAPLDATS

8

STCK

time

schedule

started

PAPLDATN

8

STCK

time

schedule

completed

PAPLDECL

2

Number

of

DEDB

calls

PAPLDERD

2

Number

of

DEDB

read

operations

PAPLMSCL

2

Reserved

for

Fast

Path

PAPLOVFN

2

Number

of

overflow

buffers

used

PAPLUOWC

2

Number

of

UOW

contentions

PAPLBFWT

2

Number

of

WAITs

for

DEDB

buffers

PAPLUSSN

4

Unique

schedule

sequence

number

PAPLCTM1

4

Elapsed

UOR

CPU

time

(for

thread

TCB)

(For

timer

units,

see

z/OS

STIMER

macro)

DRA

Statistics

DRA

statistics

are

contained

in

the

returned

PAPL

as

a

result

of

a

DRA

TERM

request,

or

in

the

Control

exit

routine’s

PAPL

when

it

is

called

for

DRA

termination.

This

routine

is

called

when

the

DRA

fails

or

when

a

previous

Control

exit

routine

invocation

resulted

in

return

code

4.

The

statistics

in

the

returned

PAPL

are:

1.

The

number

of

times

the

MAXTHRD

value

was

reached.

2.

The

number

of

times

the

MINTHRD

value

was

reached

(only

includes

the

times

the

value

is

reached

when

the

thread

TCB

number

is

decreasing.)

3.

The

largest

number

of

thread

TCBs

ever

reached

during

this

DRA

session.

(This

is

the

number

of

TCBs,

not

the

number

of

DRA

threads,

so

it

is

at

least

the

minimum

thread

value.)

Monitoring

DRA

Thread

TCBs IBM

Confidential

378

Application

Programming:

Database

Manager

4.

The

time

(in

seconds)

during

which

the

DRA

thread

TCB

count

was

at

the

MAXTHRD

value.

You

can

find

the

field

names

for

the

previous

statistics

in

the

PAPL

extensions

for

the

TERM

PAPL

and

control

exit

routine

PAPL.

Before

attempting

to

evaluate

the

statistics

DRA

performance,

remember:

v

If

the

DRA

is

using

the

maximum

number

of

threads

(MAXTHRD),

when

the

DRA

receives

any

new

SCHED

requests

it

will

make

these

requests

wait

until

a

thread

is

available.

v

As

active

threads

become

available

(for

example,

as

a

result

of

TERMTHRD

call),

some

of

the

available

threads

might

be

collapsed.

The

above

facts

can

adversely

affect

performance,

but

both

improve

IMS

DB

resource

availability

because

fewer

DRA

threads

require

fewer

IMS

DB

resources.

The

IMS

DB

resources

(PSTs)

are

then

available

for

other

BMPs

or

other

CCTLs

to

use.

Statistics

1,

2,

and

4

can

serve

as

measures

of

the

two

facts

mentioned

above,

and

will

help

you

decide

how

to

balance

performance

and

resource

usage.

For

the

sake

of

the

discussion

here,

these

statistics

are

presented

solely

from

a

performance

point

of

view

(for

example,

assume

only

1

CCTL

connected

to

a

IMS

DB).

Evaluating

the

DRA

Statistics

If

statistics

1

and

4

are

high,

a

SCHED

request

had

to

wait

for

an

available

thread

many

times.

To

improve

performance,

raise

the

MAXTHRD

value.

The

impact

of

statistic

2

on

performance

can

only

be

estimated

if

thread

activity

history

is

known

(the

DRA

does

not

provide

this

history

but

the

CCTL

can).

If

activity

is

steady,

little

thread

collapsing

occurs

and

statistic

2

is

meaningless.

If

activity

fluctuates

a

lot,

statistic

2

can

be

useful.

v

If

statistic

2

is

0,

much

thread

collapsing

might

occurring,

but

the

MINTHRD

value

was

never

reached.

v

If

statistic

2

is

not

zero,

the

MINTHRD

value

was

reached

and

at

those

points,

thread

collapsing

was

stopped,

thus

enhancing

performance.

Therefore,

if

you

have

highly

fluctuating

thread

activity,

you

can

improve

performance

by

raising

MINTHRD

until

statistic

2

has

a

nonzero

value.

Finally,

statistic

3

can

be

useful

for

adjusting

your

MAXTHRD

value.

Note:

These

statistics

are

useful

in

determining

MINTHRD

and

MAXTHRD

definitions.

When

MINTHRD=MAXTHRD,

these

statistics

will

be

of

no

value.

Tracing

There

is

no

tracing

(logging)

of

activity

in

the

DRA,

but

there

is

tracing

in

IMS

DB

of

DL/I

and

Fast

Path

activity.

The

setup

and

invocation

of

DL/I

tracing

for

IMS

DB

is

the

same

as

for

IMS.

The

output

trace

records

for

CCTL

threads

contain

the

recovery

token.

Fast

Path

tracing

in

IMS

DB

is

different

from

IMS.

Fast

Path

tracing

in

IMS

DB

is

activated

when

a

SCHED

request

to

the

DRA

has

the

PAPLFTRD

equal

to

ON

(Fast

Path

trace

desired

for

this

UOR).

When

this

UOR

completes,

a

trace

output

file

is

closed

and

sent

to

SYSOUT

Class

A.

Monitoring

DRA

Thread

TCBsIBM

Confidential

Appendix

C.

The

Database

Resource

Adapter

(DRA)

379

If

a

thread

request

fails

during

Fast

Path

processing,

the

DRA

might

return

the

PAPL

with

the

PAPLFTRR

field

equal

to

ON.

This

recommends

to

the

CCTL

that

it

request

the

PAPLFTRD

field

be

equal

to

ON

(Fast

Path

trace

desired)

in

the

SCHED

PAPL

if

this

failing

transaction

is

run

again

by

the

CCTL.

Sending

Commands

to

IMS

DB

In

an

IMS

DB

warm

standby

or

IMS/ESA®

XRF

environment,

a

CCTL

might

desire

to

have

the

IMS

alternate

system

become

the

primary

IMS

system.

To

do

this

without

operator

intervention,

a

CCTL

can

use

a

z/OS

SVC

34

to

broadcast

an

emergency

restart

command

to

a

IMS

DB

alternate,

or

a

SWITCH

command

to

an

IMS

XRF

alternate.

These

are

the

only

IMS

commands

that

can

be

done

using

this

interface.

The

command

verb

can

be

preceded

by

either

the

command

recognition

character

or

the

4-character

IMS

identification

that

is

in

the

PAPLDBCT

field

of

the

INIT

PAPL.

Problem

Determination

Failed

DRA

requests

have

a

nonzero

value

in

the

PAPLRETC

field

of

the

PAPL

returned

to

the

CCTL.

The

format

of

PAPLRETC

is:

HHSSSUUU

Where:

HH=

X'00'-

No

output

UUU

IMS

DB

return

codes

X'88'-

No

output

SSS

All

z/OS

non-retryable

abend

codes

(for

example,

222,

13E)

or,

UUU

IMS

abend

codes

(775,

777,

844,

849,

2478,

2479,

3303)

X'84'-

SNAP

only

UUU

IMS

abend

codes

(260,

261,

263)

X'80'-

SDUMP/SNAP

provided

SSS

All

the

z/OS

retryable

abend

codes

UUU

All

IMS

abend

codes

not

listed

above

Diagnostic

information

is

provided

by

the

DRA

in

the

form

of

an

SDUMP,

or

a

SNAP

dataset

output.

For

X'80',

the

SDUMP

is

attempted

first.

If

it

fails,

SNAP

is

done.

For

X'84',

no

SDUMP

is

attempted,

but

a

SNAP

is

attempted.

A

z/OS

or

IMS

abend

code

failure

results

in

DRA

thread

termination

and

thread

TCB

collapse.

A

IMS

DB

return

code

has

no

affect

on

the

DRA

itself

or

the

thread

TCB.

DRA

thread

TCB

failures

that

occur

when

not

processing

a

thread

request

result

in

a

SDUMP/SNAP

process.

DRA

control

TCB

failures

that

occur

when

not

processing

a

DRA

request

result

in

a

SDUMP/SNAP

process

and

the

Control

exit

routine

is

called.

For

a

SCHED

type

of

thread

request,

a

failure

with

X'80'

or

X'84'

can

result

in

either

SNAP

or

SDUMP.

SDUMP

SDUMP

output

contains:

v

The

IMS

control

region.

v

DLISAS

address

space.

Monitoring

DRA

Thread

TCBs IBM

Confidential

380

Application

Programming:

Database

Manager

v

Key

0

and

key

7

CSA.

v

Selected

parts

of

DRA

private

storage,

including

the

ASCB,

TCB,

and

RBs.

You

can

format

the

IMS

control

blocks

by

using

the

Offline

Dump

Formatter

(ODF).

Related

Reading:

The

ODF

is

described

in

IMS

Version

9:

Diagnosis

Guide

and

Reference.

The

ODF

will

not

format

DRA

storage.

You

can

use

IPCS

to

format

the

z/OS

blocks

in

the

CCTL’s

private

storage.

DRA

SDUMPS

have

their

own

SDUMP

options.

As

a

result

of

this,

any

CHNGDUMP

specifications

cannot

cause

sections

of

DRA

SDUMPs

to

be

omitted.

If

these

specifications

aren’t

in

the

DRA’s

list

of

options,

they

can

have

an

additive

effect

on

DRA

SDUMPS.

SNAPs

The

SNAP

dump

datasets

are

dynamically

allocated

whenever

a

SNAP

dump

is

needed.

A

parameter

in

the

DRA

Startup

Table

defines

the

SYSOUT

class.

The

SNAP

output

contains:

v

Selected

parts

of

DRA

private

storage,

including

the

ASCB,

TCB,

and

RBs.

v

IMS

DB’s

control

blocks.

Monitoring

DRA

Thread

TCBsIBM

Confidential

Appendix

C.

The

Database

Resource

Adapter

(DRA)

381

Monitoring

DRA

Thread

TCBs IBM

Confidential

382

Application

Programming:

Database

Manager

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

383

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Corporation

J46A/G4

555

Bailey

Avenue

San

Jose,

CA

95141-1003

U.S.A.

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

information

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurement

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

This

information

is

for

planning

purposes

only.

The

information

herein

is

subject

to

change

before

the

products

described

become

available.

This

information

contains

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

contains

sample

application

programs

in

source

language,

which

illustrates

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM,

for

the

purposes

of

developing,

using,

marketing

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

IBM’s

application

programming

interfaces.

IBM

Confidential

384

Application

Programming:

Database

Manager

Each

copy

or

any

portion

of

these

sample

programs

or

any

derivative

work,

must

include

a

copyright

notice

as

follows:

©

(your

company

name)

(year).

Portions

of

this

code

are

derived

from

IBM

Corp.

Sample

Programs.

©

Copyright

IBM

Corp.

_enter

the

year

or

years_.

All

rights

reserved.

If

you

are

viewing

this

information

softcopy,

the

photographs

and

color

illustrations

may

not

appear.

Programming

Interface

Information

This

book

is

intended

to

help

the

application

programmer

write

IMS

application

programs.

This

book

primarily

documents

General-use

Programming

Interface

and

Associated

Guidance

Information

provided

by

IMS.

General-use

programming

interfaces

allow

the

customer

to

write

programs

that

obtain

the

services

of

IMS.

However,

this

book

also

documents

Product-sensitive

Programming

Interface

and

Associated

Guidance

Information

provided

by

IMS.

Product-sensitive

programming

interfaces

allow

the

customer

installation

to

perform

tasks

such

as

diagnosing,

modifying,

monitoring,

repairing,

tailoring,

or

tuning

of

IMS.

Use

of

such

interfaces

creates

dependencies

on

the

detailed

design

or

implementation

of

the

IBM

software

product.

Product-sensitive

programming

interfaces

should

be

used

only

for

these

specialized

purposes.

Because

of

their

dependencies

on

detailed

design

and

implementation,

it

is

to

be

expected

that

programs

written

to

such

interfaces

may

need

to

be

changed

to

run

with

new

product

releases

or

versions,

or

as

a

result

of

service.

Product-sensitive

Programming

Interface

and

Associated

Guidance

Information

is

identified

where

it

occurs,

either

by

an

introductory

statement

to

a

chapter

or

section

or

by

the

following

marking:

Product-sensitive

Programming

Interface

and

Associated

Guidance

Information.

Trademarks

The

following

terms

are

trademarks

of

the

IBM

Corporation

in

the

United

States

or

other

countries

or

both:

BookManager

Language

Environment

C/370

Library

Reader

C/MVS

MVS

CICS

MVS/ESA

CICS/ESA

OS/390

DB2

RACF

IBM

SAA

IMS

z/OS

IMS/ESA

Java™

and

all

Java-based

trademarks

and

logos

are

trademarks

or

registered

trademarks

of

Sun

Microsystems,

Inc.,

in

the

United

States,

other

countries

or

both.

IBM

Confidential

Notices

385

Other

company,

product,

and

service

names

may

be

trademarks

or

service

marks

of

others.

Product

Names

In

this

book,

the

following

licensed

programs

have

shortened

names:

v

“C/C++

for

MVS/ESA”

is

referred

to

as

either

“C/MVS”

or

“C++/MVS”.

v

“COBOL

for

MVS

&

VM”

is

referred

to

as

“COBOL”.

v

“DB2

for

MVS/ESA”

is

referred

to

as

“DB2”.

v

“Language

Environment

for

MVS

&

VM”

is

referred

to

as

“Language

Environment”.

v

“PL/I

for

MVS

&

VM”

is

referred

to

as

“PL/I”.

IBM

Confidential

386

Application

Programming:

Database

Manager

Bibliography

This

bibliography

includes

all

the

publications

cited

in

this

book,

including

the

publications

in

the

IMS

library.

v

CICS/ESA

Application

Programming

Guide,

SC33-1169

v

CICS/ESA

Application

Programming

Reference,

SC33-1170

v

CICS/ESA

CICS-IMS

Database

Control

Guide,

SC33-1184

v

CICS/MVS

Installation

Guide,

SC33-0506

v

CICS/ESA

System

Definition

Guide,

SC33-1164

v

IBM

Language

Environment

Installation

and

Customization

on

MVS,

SC26-4817

v

IBM

Language

Environment

for

MVS

&

VM

Programming

Guide,

SC26-4818

v

MVS/ESA:

JCL

Reference

MVS/ESA

System

Product:

JES2

Version

5

,

GC28-1479

v

MVS/ESA

System

Programming

Library:

Application

Development

Guide,

GC28-1852

v

System

Application

Architecture

Common

Programming

Interface:

Resource

Recovery

Reference,

SC31-6821

v

IBM

TSO

Extensions

for

MVS/REXX

Reference,

SC28-1883

IMS

Version

9

Library

ZES1-2330

ADB

IMS

Version

9:

Administration

Guide:

Database

Manager

ZES1-2331

AS

IMS

Version

9:

Administration

Guide:

System

ZES1-2332

ATM

IMS

Version

9:

Administration

Guide:

Transaction

Manager

ZES1-2333

APDB

IMS

Version

9:

Application

Programming:

Database

Manager

ZES1-2334

APDG

IMS

Version

9:

Application

Programming:

Design

Guide

ZES1-2335

APCICS

IMS

Version

9:

Application

Programming:

EXEC

DLI

Commands

for

CICS

and

IMS

ZES1-2336

APTM

IMS

Version

9:

Application

Programming:

Transaction

Manager

ZES1-2337

BPE

IMS

Version

9:

Base

Primitive

Environment

Guide

and

Reference

ZES1-2338

CR

IMS

Version

9:

Command

Reference

ZES1-2339

CQS

IMS

Version

9:

Common

Queue

Server

Guide

and

Reference

ZES1-2340

CSL

IMS

Version

9:

Common

Service

Layer

Guide

and

Reference

ZES1-2341

CG

IMS

Version

9:

Customization

Guide

ZES1-2342

DBRC

IMS

Version

9:

DBRC

Guide

and

Reference

ZES1-2343

DGR

IMS

Version

9:

Diagnosis

Guide

and

Reference

ZES1-2344

FAST

IMS

Version

9:

Failure

Analysis

Structure

Tables

(FAST)

for

Dump

Analysis

ZES1-2346

OLR

IMS

Version

9:

HALDB

Online

Reorganization

Guide

and

Reference

ZES1-2347

JGR

IMS

Version

9:

IMS

Java

Guide

and

Reference

ZES1-2348

IIV

IMS

Version

9:

Installation

Volume

1:

Installation

Verification

ZES1-2349

ISDT

IMS

Version

9:

Installation

Volume

2:

System

Definition

and

Tailoring

ZES1-2350

INTRO

IMS

Version

9:

An

Introduction

to

IMS

ZES1-2351

MIG

IMS

Version

9:

Master

Index

and

Glossary

ZES1-2352

MC1

IMS

Version

9:

Messages

and

Codes,

Volume

1

ZES1-2353

MC2

IMS

Version

9:

Messages

and

Codes,

Volume

2

ZES1-2354

OTMA

IMS

Version

9:

Open

Transaction

Manager

Access

Guide

and

Reference

ZES1-2355

OG

IMS

Version

9:

Operations

Guide

GC17-7831

RPG

IMS

Version

9:

Release

Planning

Guide

ZES1-2358

URDBTM

IMS

Version

9:

Utilities

Reference:

Database

and

Transaction

Manager

ZES1-2359

URS

IMS

Version

9:

Utilities

Reference:

System

Supplementary

Publications

GC17-7825

LPS

IMS

Version

9:

Licensed

Program

Specifications

ZES1-2357

SOC

IMS

Version

9:

Summary

of

Operator

Commands

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

387

Publication

Collections

LK3T-7213

CD

IMS

Version

9

Softcopy

Library

LK3T-7144

CD

IMS

Favorites

LBOF-7789

Hardcopy

and

CD

Licensed

Bill

of

Forms

(LBOF):

IMS

Version

9

Hardcopy

and

Softcopy

Library

SBOF-7790

Hardcopy

Unlicensed

Bill

of

Forms

(SBOF):

IMS

Version

9

Unlicensed

Hardcopy

Library

SK2T-6700

CD

OS/390

Collection

SK3T-4270

CD

z/OS

Software

Products

Collection

SK3T-4271

DVD

z/OS

and

Software

Products

DVD

Collection

Accessibility

Titles

Cited

in

this

Book

SA22-7787

z/OS

V1R1.0

TSO

Primer

SA22-7794

z/OS

V1R1.0

TSO/E

User’s

Guide

SC34-4822

z/OS

V1R1.0

ISPF

User’s

Guide,

Volume

1

IBM

Confidential

388

Application

Programming:

Database

Manager

Index

Special

characters
!token

IMSQUERY

function

280

STORAGE

command

278

.

(period)

usage
null

or

void

placeholder

271

parsing,

transparent

additions

271

REXX

269

*mapname

274,

275

Numerics
12-byte

time

stamp,

field

in

I/O

PCB

94

8-blanks

(null)

154

A
abend

statement

311

accessing
GSAM

databases

219

AD/Cycle

C/370

117

addressability

to

UIB,

establishing

103

addressing

environments

262,

267

addressing

mode

(AMODE)

120

AIB

(application

interface

block)
address

return

114

AIB

identifier

(AIBID)

98

in

APSB

call

150

in

CHKP

(basic)

call

151

in

CHKP

(symbolic)

call

152

in

DPSB

call

153

in

GMSG

call

154

in

GSCD

call

156

in

ICMD

call

157

in

INIT

call

159

AIB

Identifier

(AIBID)
in

INQY

call

164

AIB0LEN

(maximum

output

area

length)
in

ICMD

call

157

AIBERRXT

(reason

code)

99

AIBFUNC

(subfunction

code)
in

DPSB

call

153

in

GMSG

call

154

AIBLEN
in

GSCD

call

156

in

INIT

call

159

AIBLEN

(DFSAIB

allocated

length)
in

APSB

call

150

in

CHKP

(basic)

call

151

in

CHKP

(symbolic)

call

152

in

DPSB

call

153

in

GMSG

call

154

in

ICMD

call

157

in

INQY

164

AIBOALEN

(maximum

output

area

length)

99

in

CHKP

(symbolic)

call

152

in

GMSG

call

155

AIB

(application

interface

block)

(continued)
AIBOALEN

(maximum

output

area

length)

(continued)
in

GSCD

call

157

in

INIT

call

159

in

INQY

call

164

AIBOAUSE

(used

output

area

length)

99

in

GMSG

call

155

AIBOLEN

(maximum

output

area

length)
in

ICMD

call

157

AIBREASN

(reason

code)

99

AIBRSA1

(resource

address)

99

AIBRSNM1
in

GSCD

call

157

in

INIT

call

159

AIBRSNM1

(resource

name)

98

in

APSB

call

150

in

CHKP

(basic)

call

151

in

CHKP

(symbolic)

call

152

in

DPSB

call

153

in

GMSG

call

155

in

INQY

call

164

AIBRSNM2
in

APSB

call

150

in

CHKP

(basic)

call

151

AIBSFUNC

(subfunction

code)

98

in

INQY

call

164

and

program

entry

statement

114

description

111

DFSAIB

allocated

length

(AIBLEN)

98

fields

98

interface,

REXX

267

mask

98,

99

specifying

98

storage,

defining

112

subfunction,

setting

277

AIB

mask
specifying

98

AIBERRXT

(reason

code)

99

AIBID

(AIB

identifier)

field,

AIB

mask

98

AIBLEN

(DFSAIB

allocated

length)

field,

AIB

mask

98

AIBOALEN

(maximum

output

area

length)

field,

AIB

mask

99

AIBOAUSE

(used

output

area

length)

field,

AIB

mask

99

AIBREASN

(reason

code)
AIB

mask,

field

99

AIBREASN

(reason

code)

field,

AIB

mask

99

AIBRSA1

(resource

address)

field,

AIB

mask

99

AIBRSNM1

(resource

name)

field,

AIB

mask

98

AIBSFUNC

(subfunction

code)

field,

AIB

mask

98

AIBTDLI

interface
See

AIB

(application

interface

block)

Allocate

PSB

(APSB)

call

150

format

150

parameters

150

usage

150

AMODE

120

IBM

Confidential

©

Copyright

IBM

Corp.

1974,

2003

389

AND
dependent

212

independent

213

logical

199

AO

(automated

operator)

application
GMSG

call

154

ICMD

call

157

RCMD

call

172

AOI

token
usage

155

APPC

environment

262

application

program
DB

Batch

environment,

in

12

DBCTL

environment,

in

10

DBD,

using

18

deadlock

occurrence,

in

163

environments

9

HALDB

environment
scheduling

119

interface

9

PSB,

using

18

sample

hierarchies

20

applications,

sample

45

APSB

(Allocate

PSB)

call

150

format

150

parameters

150

usage

150

area
in

CHKP

(symbolic)

call

152

area

length
in

CHKP

(symbolic)

call

152

areas
I/O

105

assembler

language
DL/I

call

format,

example

80

DL/I

call-level

sample

53

DL/I

program

structure

50

entry

statement

112

parameters,

DL/I

call

format

79

program

entry

112

register

1,

program

entry

112

return

statement

112

SSA

definition

examples

107

syntax

diagram,

DL/I

call

format

78

UIB,

specifying

102

B
backout

point,

intermediate
backing

out

254

Basic

Checkpoint

(CHKP

Basic)

150

format

151

parameters

151

usage

151

batch

environments
DB

TM

9

batch

programs
assembler

language

50

C

language

56

COBOL

60

batch

programs

(continued)
deadlock

occurrence,

in

163

maintaining

integrity

253

overview

12

Pascal

68

PL/I

71

structure

12

batch

regions

and

GSAM

227

BILLING

segment

21

BMPs,

transaction-oriented
ROLB

252

Boolean

operators
dependent

AND

212

independent

AND

213

logical

AND

199

logical

OR

199

SSA,

coding

107

C
C

language

113

__pcblist

113

batch

program,

coding

56

DL/I

call

formats,

example

83

DL/I

program

structure

56

entry

statement

112,

113

exit

113

I/O

area

83

parameters,

DL/I

call

format

81

PCBs,

passing

113

return

statement

112

SSA

definition

examples

108

syntax

diagram,

DL/I

call

format

80

system

function

113

C/C++

for

MVS/ESA

117

call

functions,

DL/I

321

CALL

statement

312

CALL

DATA

315

CALL

DATA

statement

internal

field

315

CALL

FUNCTION

312

call-level

programs,

CICS

online

13

calls,

DB
CIMS

121

CLSE

123

DEQ

123

DLET

125

FLD

126

GHNP

132

GHU

135

GN

128

GNP

132

GU

135

ISRT

138

OPEN

141

POS

142

REPL

145

calls,

system

service
APSB

(allocate

PSB)

150

CHKP

(basic)

150

CHKP

(symbolic)

151

GMSG

(get

message)

154

IBM

Confidential

390

Application

Programming:

Database

Manager

calls,

system

service

(continued)
ICMD

(issue

command)

157

INIT

(initialize)

159

INQY

(inquiry)

163

LOG

(log)

169

PCB

(schedule

a

PSB)

171

RCMD

(retrieve

command)

172

ROLB

(roll

back)

173

SETS/SETU

(set

a

backout

point)

176

SNAP

177

STAT

(statistics)

180

SYNC

(synchronization

point)

182

TERM

(terminate)

183

XRST

(extended

restart)

184

calls,system

service
SETS/SETU

(set

a

backout

point)
backing

out

to

an

intermediate

backout

point

254

using

254

CCTL

(coordinator

controller)
design

recommendation

375

in

DBCTL

environment

11

performance

considerations
thread

monitoring

376

CEETDLI

117

address

return

114

interface

to

IMS

118

program

entry

statement

77,

114

checkpoint

(CHKP)
call,

necessary

information

49

checkpoint

call
See

CHKP

call

checkpoints

(CHKP)
issuing

249

CHKP

(basic

checkpoint)

call
description

150

format

151

parameters

151

usage

151

CHKP

(checkpoint)

call,

necessary

information

49

CHKP

(symbolic

checkpoint)

call
description

151

format

151

parameters

152

usage

153

with

GSAM

224

CHKP

call

function

318

CHNG

call

function

318

CICS

DL/I

call

program,

compiling

49

CICS

online

programs

171

assembler

language,

sample

53

COBOL,

establishing

addressability

68

COBOL,

optimization

feature

68

COBOL,

sample

63

PCB

call

171

PL/I,

sample

74

structure

13

TERM

call

183

CIMS

call
description

121

format

121

parameters

122

CIMS

call

(continued)
usage

122

class,

record

segment

35

closing

a

GSAM

database

explicitly

123,

222

CLSE

(Close)

call
description

123

format

123

parameters

123

usage

123

CMD

call

function

318

COBOL
CICS

online,

establishing

addressability

68

CICS

online,

optimization

feature

68

DL/I

call

formats,

example

85

DL/I

call-level,

sample

63

DL/I

program

structure

60

entry

statement

112

parameters,

DL/I

call

format

84

return

statement

112

SSA

definition

examples

109

syntax

diagram,

DL/I

call

format

83

UIB,

specifying

102

COBOL

for

MVS

&

VM

and

Language

Environment

117

COBOL/370

and

Language

Environment

117

codes,

status
checking

17

logical

relationships

217

coding

rules
SSA

106

command

codes

24,

30

C
description

29

SSAs

24

D
examples

27,

30

Get

calls

30

ISRT

call

31

P

processing

option

30

DEDBs

28

description

27

DL/I

calls

28

F
Get

calls

31

HERE

insert

rule

140

ISRT

call

32

restrictions

247

L
FIRST

insert

rule

33,

140

Get

calls

33

M

40

N

33

Null

39

overview

27

P

34

Q

34,

256

qualified

SSAs

27

R

41

reference

301

restrictions

106

S

42

IBM

Confidential

Index

391

command

codes

(continued)
subset

pointers

28,

240,

242

summary

27

unqualified

SSAs

27

V

38

Z

44

Command

codes
U

37

COMMENT

statement
conditional

(T)

332

unconditional

(U)

332

commit

point

processing
DEDB

245

MSDB

235

COMPARE

statement
COMPARE

AIB

335

COMPARE

DATA

333

COMPARE

PCB

335

introduction

333

concatenated

datasets
GSAM

227

concatenated

key

and

PCB

mask

97,

221

concatenated

segments,

logical

relationships

216

connector

128

CTL

(PUNCH)

statement

340

current

position
determining

189

multiple

positioning

203

qualification

37

unsuccessful

calls

194

D
data

areas,

coding

48

data

availability,

status

codes

96

data

entry

database

(DEDB)
See

DEDB

(data

entry

database)

data

locking

236

data

mapping,

define

with

MAXDEF

command

272

data

redundancy,

reducing

214

data

structures

49

database
administrator

20

calls
Fast

Path

247

summary

297

DB

PCB,

name

96,

221

deallocating

resources

153

example,

medical

hierarchy

20

position
after

XRST

186

determining

189

establishing

using

GU

137

multiple

positioning

203

unsuccessful

calls

194

recovery

with

ROLL

call

252

recovery,

back

out

changes

251

sample

hierarchy

20

database

management

calls

16

database

resource

adapter

355

DB

batch,

program

considerations

12

DB

PCB
database

name

96,

221

entry

statement,

pointer

220

fields

95,

96

in

GSCD

156

key

feedback

area

221

key

feedback

area

length

field

97,

221

mask

95,

96

fields

221

fields,

GSAM

220

name

220

relation

95

multiple

DB

PCBs

208

number

of

sensitive

segments

field

97

processing

options

field

97,

221

relation

to

DB

PCB

95

secondary

indexing,

contents

214

segment

level

number

field

96

segment

name

field

97

sensitive

segments

97

status

code

field

96,

221

status

codes
NA

160

NU

160

DB

PCB

(database

program

communication

block)
masks

DB

PCB

95

DB

PCB

mask
general

description

95

specifying

95

DB

PCB

mask,

GSAM

reference

111

DB/DC

environment
overview

10

DBA

20

DBB

batch

region

227

DBD

(database

description),

description

18

DBDCTL

environment
CCTL

11

overview

10

using

DRA

10

using

ODBA

11

DBQUERY
using

with

INIT

call

160

deadlock

occurrence
application

programs

163

batch

programs,

in

163

debugging,

IMSRXTRC

272

DEDB
multiple

qualification

statements

201

DEDB

(data

entry

database)
call

restrictions

246

command

codes

39

DL/I

calls

246

PCBs

and

DL/I

calls

91

processing
commit

point

245

data

locking

236

fast

path

229

H

option

245

overview

231

P

option

245

IBM

Confidential

392

Application

Programming:

Database

Manager

DEDB

(data

entry

database)

(continued)
processing

(continued)
POS

call

242

subset

pointers

238

root

segments,

order

132

updating

with

subset

pointers

238

DEDB(data

entry

database)
data

locking

236

updating

segments

231

define

a

data

mapping

with

MAXDEF

command

272

delete

call
See

DLET

Call

dependent

AND

212

dependents,

direct

231

DEQ

(Dequeue)

call
and

Q

command

code

35,

124

description

123

format
Fast

Path

124

full

function

123

parameters
Fast

Path

124

full

function

124

restrictions

125

summary

297

usage

124

DEQ

call

function

318

DFSDDLT0

(DL/I

Test

Program)
See

DL/I

Test

Program

(DFSDDLT0)

DFSDDLT0

internal

control

statements
AB0C1

statement

(INTERNAL

CALL

STATEMENT)

309

WTSR

statement

(INTERNAL

CALL

STATEMENT)

309

DFSIVA3

45

DFSIVA6

45

DFSPRP
macro

keywords

362

DFSPSP00

(DRA

startup

table)

362

DFSREXXU

(Example

User

Exit

Routine)
sample

307

DFSSAM01

(Loads

the

Database)

288

DL/I

call

formats,

example
assembler

language

80

C

language

83

COBOL

85

Pascal

88

PL/I

90

DL/I

call

functions

318,

321

special

DFSDDLT0
END

330

SKIP

330

STAK

330

START

330

supported
CHKP

318

CHNG

318

CMD

318

DEQ

318

DLET

318

FLD

318

DL/I

call

functions

(continued)
supported

(continued)
GCMD

318

GHN

318

GHNP

318

GHU

318

GMSG

318

GN

318

GNP

318

GU

319

ICMD

319

INIT

319

INQY

319

ISRT

319

LOG

319

POS

319

PURG

319

RCMD

319

REPL

319

ROLB

319

ROLL

319

ROLS

320

ROLX

320

SETO

320

SETS

320

SNAP

320

STAT

320

SYNC

320

XRST

320

DL/I

calls

(general

information)
qualifying

your

calls

24

command

codes

27

concatenated

key

29

field

24

segment

type

24

relationships

to

PCBs
FF

PCBs

91

REXXTDLI

266

SSAs

24

types

24

DL/I

calls,

database

management
CIMS

121

CLSE

123

DEQ

123

DLET

125,

126

FLD

126,

128

general

description

16

GHNP

call

135

GHU

call

137

GN

128,

132

GNHP

call

131

GNP

132,

135

GU

135,

138

ISRT

138,

141

OPEN

141

POS

142,

145

REPL

145,

147

summary

16,

297

DL/I

calls,

general

information
coding

48

getting

started

with

12

IBM

Confidential

Index

393

DL/I

calls,

general

information

(continued)
using

16

DL/I

calls,

system

service

149,

150

APSB

150

CHKP

150,

151,

153

DPSB

153

GMSG

154

GSCD

156,

157

INIT

159,

163

INQY

163

LOG

169,

171

PCB

171,

172

ROLB

173,

174,

252

ROLL

174,

251

ROLS

175,

176

SETS/SETU

176,

177

SNAP

177,

180

STAT

180,

182,

183,

184

summary

16,

298

SYNC

182,

183

XRST

184

DL/I

language

interfaces
overview

77

supported

interfaces

77

DL/I

options
logical

relationships

214

secondary

indexing

211

DL/I

program

structure

12

DL/I

return

codes

(REXX)

267

DL/I

Test

Program

(DFSDDLT0)
control

statements

309,

346

execution

in

IMS

regions

350,

351

explanation

of

return

codes

351

hints

on

usage

351,

353

JCL

requirements

346,

350

overview

309

restarting

input

stream

348

DL/I,

CICS

online
getting

started

with

13

DL/I,

ODBA

interface
getting

started

with

15

DLET

(Delete)

call
description

125

format

125

parameters

123,

125,

141

SSAs

126

usage

126

with

MSDB,

DEDB

or

VSO

DEDB

231

DLET

call

function

318

DLI

batch

region

and

GSAM

227

DLIINFO
.

(period)

usage

271

REXX

extended

command

270,

271

DLITCBL

113

DLITPLI

114

DOCMD

exec

289

DPSB

call
description

153

format

153

parameters

153

usage

153

DRA

(database

resource

adapter)

355

CCTL

function

requests

366

INIT

366

RESYNC

368

TERM

369

CCTL

recovery

process

375

communicating

with

DBCTL

10

DRA

statistics

378

enabling
CCTL

363

ODBA

364

initializing
CCTL

364

ODBA

364

macro

keywords

362

multithreading

356

PAPL

375

problem

determination

380

processing
CCTL

requests

365

ODBA

calls

366

startup

table

362

DFSPZPxx

362

sync-point

processing

358

in-doubt

state

361

protocol

359

termination

375

thread
ODBA

356

processing

355

structure

355

thread

function

requests

369

ABTTERM

373

COMTERM

373

IMS

371

PREP

372

SCHED

369

SYNTERM

372

TERMTHRD

374

thread

statistics

377

tracing

379

E
E

(COMPARE)

statement

333

enabling
data

availability

status

codes

96

END

call

function

330

entry

and

return

conventions

112

environment

(REXX)
address

262,

267

determining

270

extended

267

equal-to

relational

operator

25

error

routines

18

I/O

errors

18

programming

errors

18

system

errors

18

types

of

errors

18

ESAF

(External

Subsystem

Attach

Facility)

10

IBM

Confidential

394

Application

Programming:

Database

Manager

examples
Boolean

operators

200

D

command

code

27,

31

DFSDDLT0

statements
COMMENT

333

DATA/PCB

COMPARE

337

DD

348

DL/I

call

functions

321

IGNORE

339

OPTION

340

PUNCH

342

STATUS

344

SYSIN,

SYSIN2,

and

PREINIT

349

WTO

346

WTOR

346

FLD/CHANGE

235

FLD/VERIFY

235

L

command

code

33

medical

database

20

multiple

qualification

statements

200

N

command

code

33

Null

command

code

39

P

command

code

34

path

call

27

SSAs,

secondary

indexing

212

U

Command

Code

37

UIB,

defining

103

V

command

code

38

exceptional

conditions

18

EXECIO
example

288

managing

resources

262

explicitly

opening

and

closing

a

GSAM

database

222

extended

commands
See

REXXIMS

commands

extended

environment
See

environment

(REXX)

extended

functions
See

IMSQUERY

extended

function

Extended

Restart

(XRST)

153

description

184

parameters

184

position

in

database

186

restarting

your

program

185

restrictions

187

starting

your

program

normally

185

usage

185

External

Subsystem

Attach

facility

(ESAF)

10

F
F

command

code
restrictions

247

Fast

Path
database

calls

229

databases,

processing

229

DEDB

(data

entry

database)

229

FSA

127

MSDB

(main

storage

database)

229

processing

MSDBs

and

VSO

DEDBs

231

subset

pointers,

using

with

DEDBs

238

Fast

Path

(continued)
types

of

databases

229

field
changing

contents

234

checking

contents:

FLD/VERIFY

232

Field

(FLD)

call
See

FLD

(Field)

call

field

name
FSA

127,

233

SSA,

qualification

statement

24

field

search

argument
description

232

reference

127

field

value
FSA

233

SSA,

qualification

statement

24,

25

fields

in

a

DB

PCB

mask

96,

221

file

I/O
See

EXECIO

FIRST

insert

rule,

L

command

code

33

fixed-length

records

223

FLD

(Field)

call
description

126,

231

FLD/CHANGE

234

FLD/VERIFY

232

format

126

FSAs

127

parameters

126

summary

297

usage

127

FLD

call

function

318

free

space,

identifying

244

FSA

(field

search

argument)
connector

128

description

232

Field

name

127

FSA

status

code

127

Op

code

128

operand

128

reference

127

with

DL/I

calls

232

FSA

status

code

127

full-function

database
PCBs

and

DL/I

calls

91

segment

release

36

G
GB

(end

of

database)
return

status

code

30

GCMD

call

function

318

GE

(segment

not

found)
return

status

code

30

Get

calls
D

command

code

30

F

command

code

31

function

318

L

command

code

33

Null

command

code

39

P

command

code

34

Q

command

code

34

IBM

Confidential

Index

395

Get

calls

(continued)
U

Command

Code

37

V

command

code

38

get

hold

next

(GHN)
usage

131

Get

Message

(GMSG)

call
See

GMSG

call

154

GHN

(get

hold

next)
usage

131

GHNP
call

132

hold

form

135

GHU

(Get

Hold

Unique)
description

137

GMSG

call
description

154,

156

format

154

parameters

154

restrictions

156

use

155

GN

(Get

Next)

call
description

128

format

128

hold

form

(GHN)

131

parameters

129

SSAs

131

usages

130

GNP

(Get

Next

in

Parent)

call
description

132

effect

in

parentage

134

format

133

hold

form

(GHNP)

135

parameters

133

SSAs

135

usages

133

linking

with

previous

DL/I

calls

134

processing

with

parentage

134

GPSB

(generated

program

specification

block),

format

115

greater-than

relational

operator

25

greater-than-or-equal-to

relational

operator

25

group

name,

field

in

I/O

PCB

94

GSAM

(generalized

sequential

access

method)
accessing

databases

219

call

summary

224

CHKP

224

coding

considerations

224

data

areas

111

data

set
attributes,

specifying

227

characteristics,

origin

225

concatenated

227

DD

statement

DISP

parameter

226

extended

checkpoint

restart

226

database,

explicitly

opening

and

closing

222

DB

PCB

mask,

fields

220

DB

PCB

masks

111

description

219

designing

a

program

219

DLI

or

DBB

region

types

227

fixed-length

records

222

GSAM

(generalized

sequential

access

method)

(continued)
I/O

areas

223

PCBs

and

DL/I

calls

91

record

formats

222

records,

retrieving

and

inserting

221

restrictions

on

CHKP

and

XRST

224

RSA

111,

221

status

codes

223

undefined-length

records

222

variable-length

records

222

XRST

224

GSCD

(Get

System

Contents

Directory)

call
description

156

format

156

parameters

156

usage

157

GU

(Get

Unique)

call

135

description

135

format

135

hold

form

(GHU)

137

parameters

136

restrictions

138

SSAs

137

usage

136

H
H

processing

option

245

HALDB

(High

Availability

Large

Database)
HALDB

application

programs,

scheduling

against

119

HALDB

partitions
data

availability

18

error

settings

18

handling

18

initial

load

of

119

restrictions

for

loading

logical

child

segments

18

scheduling

18

status

codes

18

HDAM
multiple

qualification

statements

201

HDAM

database,

order

of

root

segments

132

HERE

insert

rule
F

command

code

32

L

command

code

33

hierarchic

sequence

130

hierarchical

database

example,

medical

20

hierarchy
data

structures

49

sample

database

20

High

Availability

Large

Database

(HALDB)

18

HOUSHOLD

segment

21

I
I/O

area
C

language

83

coding

106

for

XRST

185

in

CHKP

(symbolic)

call

152

IBM

Confidential

396

Application

Programming:

Database

Manager

I/O

area

(continued)
in

GMSG

call

155

in

GSCD

call

157

in

INIT

call

159

in

INQY

call

164

I/O

Area
specifying

105

I/O

Area

(input/output

area)

105

I/O

area

length
in

CHKP

(symbolic)

call

152

I/O

area

returned
keywords

143

map

of

143

I/O

PCB
in

GSCD

156

in

INIT

call

159

PCBs

and

DL/I

calls

91

I/O

PCB

mask
12-byte

time

stamp

94

general

description

92

group

name

field

94

input

message

sequence

number

93

logical

terminal

name

field

92

message

output

descriptor

name

93

specifying

92

status

code

field

93

userid

field

93

userid

indicator

field

95

ICMD

call
commands

that

can

be

issued

158

description

157,

159

format

157

parameters

157

restrictions

159

use

158

IGNORE

(N

or

.)

statement

339

ILLNESS

segment

20

IMSQUERY

extended

function
arguments

280

usage

280

IMSRXTRC

command

270,

272

independent

AND

213

indexed

field

in

SSAs

212

indexing,

secondary
DL/I

Returns

214

effect

on

program

211

multiple

qualification

statements

212

SSAs

211

status

codes

214

infinite

loop,

stopping

266

INIT
using

with

DBQUERY

160

INIT

(Initialize)

call
automatic

INIT

DBQERY

161

database

availability,

determining

160

description

159

enabling

data

availability,

status

codes

161

enabling

deadlock

occurrence,

status

codes

162

format

159

INIT

STATUS

GROUPA

161

INIT

STATUS

GROUPB

162

INIT

(Initialize)

call

(continued)
parameters

159

performance

161

performance

considerations

(IMS

online)

161

restrictions

163

status

codes

161

usage

159

INIT

call

function

319

input

for

a

DL/I

program

48

input

message

sequence

number,

field

in

I/O

PCB

93

INQY

(Inquiry)

call
description

163

format

164

map

of

INQY

subfunction

to

PCB

type

169

parameters

164

querying
data

availability

165

environment

166

PCB

168

program

name

169

restriction

169

return

and

reason

codes

169

usage

164

INQY

call
querying

LERUNOPT,

using

LERUNOPT

subfunction

168

INQY

call

function

319

INQY

DBQUERY

165

INQY

ENVIRON,

data

output

166

INQY

FIND

168

INQY

PROGRAM

169

inserting
first

occurrence

of

a

segment

31

last

occurrence

33

segments

139

inserting

a

segment
as

first

occurrence

32

as

last

occurrence

33

GSAM

records

221

in

sequence

31

path

of

segments

31

root

139

rules

to

obey

139

specifying

rules

140

integrity
batch

programs

253

maintaining,database

250

using

ROLB

251

MPPs

and

transaction-oriented

BMPs

252

using

ROLL

251

using

ROLS

253

interfaces,

DL/I

117

interfaces,

DL/I.
See

DL/I

interfaces

intermediate

backout

point
backing

out

254

internal

control

statements,

summary

309

ISRT

(Insert)

call
D

command

code

31

description

138

F

command

code

32

IBM

Confidential

Index

397

ISRT

(Insert)

call

(continued)
format

138

L

command

code

33

loading

a

database

33

parameters

138

RULES

parameter

32

SSAs

140

with

MSDB,

DEDB

or

VSO

DEDB

231

ISRT

call

function

319

Issue

Command

(ICMD)

call
See

ICMD

call

157

IVP

Sample

Application

45

IVPREXX

exec

293

IVPREXX

sample

application

265

J
JCL

(job

control

language),

requirements

346,

350

K
key

feedback

area
DB

PCB,

length

field

97

length

field

in

DB

PCB

221

overview

97

keys
concatenated

29

L
L

(CALL)

statement

312

LANG=

Option

on

PSBGEN

for

PL/I

Compatibility

with

Language

Environment

118

Language

Environment
LANG

=

option

for

PL/I

compatibility

118

Language

Environment

for

MVS

&

VM

117

language

interfaces,

DL/I

117

language

interfaces,

DL/I.
See

DL/I

interfaces

length

of

key

feedback

area

221

less-than

relational

operator

25

less-than-or-equal-to

relational

operator

25

level

number,

field

in

DB

PCB

96

limiting
number

of

full-function

database

calls

35

link-editing,

reference

53,

73

locating

dependents

in

DEDBs
last-inserted

sequential

dependent,

POS

call

243

POS

call

243

specific

sequential

dependent,

POS

call

242

lock

class

and

Q

command

code

35

lock

management

257

LOG

(Log)

call
description

169

format

169

parameters

169

restrictions

171

usage

170

LOG

call

function

319

logical

AND,

Boolean

operator

199

logical

child

214

logical

child

segments
restrictions

for

HALDBs

18

logical

OR,

Boolean

operator

199

logical

parent

214

logical

relationships
effect

on

programming

216

introduction

214

logical

child

214

logical

parent

214

physical

parent

214

processing

segments

214

programming,

effect

214

status

codes

217

logical

structure

214

logical

terminal

name,

field

in

I/O

PCB

92

M
M

command

code
examples

40

subset

pointers,

moving

forward

40

main

storage

database

(MSDB)
See

MSDB

(main

storage

database)

managing

subset

pointers

in

DEDBs

with

command

codes

230

MAP

definition

(MAPDEF)

270,

272

map

name
See

*mapname

MAP

reading

(MAPGET)

270,

274

MAP

writing

(MAPPUT)

270,

275

mapping
MAPDEF

272

MAPGET

274

MAPPUT

275

mask
AIB

98

DB

PCB

95

MAXQ

and

Q

command

code

35

medical

database

example

20

description

20

segments

20

message

output

descriptor

name,

field

in

I/O

PCB

93

mixed-language

programming

119

modifiable

alternate

PCBs

249

MPPs
ROLB

252

MSDB

(main

storage

database)
call

restrictions

237

commit

point

processing

235

nonrelated

230

PCBs

and

DL/I

calls

91

processing

231

data

locking

236

terminal

related

230

types
description

230

nonrelated

23

related

22

updating

segments

231

MSDB(main

storage

database)
data

locking

236

IBM

Confidential

398

Application

Programming:

Database

Manager

MSDBs

(main

storage

database)
processing

commit

points

235

multiple
DB

PCBs

208

positioning

203

processing

203

qualification

statements

199

qualification

statements,

DEDB

201

qualification

statements,

HDAM

201

qualification

statements,

PHDAM

201

multiple

positioning
advantages

of

206

effecting

your

program

206

resetting

position

208

MVS

environment

262

MYLTERM

237

N
N

command

code

33

NA

160

name

field,

segment

24

nonrelated

(non-terminal-related)

MSDB

230

not-equal-to

relational

operator

25

not-found

status

code
description

194

position

after

194

NU

160

Null

command

code

39

O
O

(OPTION)

Statement

339

op

code

128

OPEN

(Open)

call
description

141

format

141

usage

142

operand
FSA

128

operation

parameter,

SNAP

external

call

179

operator
FSA

233

SSA

24

operators
Boolean

199

relational

199

OPTION

statement

339

options,

processing;

field

in

DB

PCB

97,

221

OR,

logical

199

OS/VS

COBOL

and

Language

Environment

117

overriding
FIRST

insert

rule

33

HERE

insert

rule

32,

33

insert

rules

140

P
P

command

code

34

P

processing

option

30,

245

parameters
assembler

language,

DL/I

call

format

79

C

language,

DL/I

call

format

81

COBOL,

DL/I

call

format

84

Pascal,

DL/I

call

format

87

PL/I,

DL/I

call

format

89

parentage,

P

command

code

34

PART

exec

286

PARTNAME

exec

287

PARTNUM

exec

287

parts

of

DL/I

program

12

Pascal
batch

program,

coding

68

DL/I

call

formats,

example

88

DL/I

program

structure

68

entry

statement

112,

114

parameters,

DL/I

call

format

87

PCBs,

passing

114

SSA

definition

examples

109

syntax

diagram,

DL/I

call

format

86

path

call

30

D

command

code

30

definition

27

example

27

overview

27

PATIENT

segment

20

PAYMENT

segment

21

PCB

(program

communication

block)
address

list,

accessing

102

DL/I

calls,

relationship

91

DLIINFO

call

271

masks
description

13

GSAM

databases

219

I/O

PCB

92

modifiable

alternate

PCBs

249

types

115

PCB

(schedule

a

PSB)

call
description

171

format

171

parameters

171

usage

171

PCBINFO

exec

284

PCHSEGTS

143

PCLBTSGTS

143

PCSEGRTS

143

period

usage
See

usage

PHDAM
multiple

qualification

statements

201

PHDAM

database

132

physical

parent

214

PL/I
batch

program,

coding

71

DL/I

call

formats,

example

90

DL/I

call-level

sample

74

DL/I

program,

multitasking

restriction

71

entry

statement

112

parameters,

DL/I

call

format

89

PCBs,

passing

114

pointers

in

entry

statement

114

IBM

Confidential

Index

399

PL/I

(continued)
return

statement

112

SSA

definition

examples

110

syntax

diagram,

DL/I

call

format

88

UIB,

specifying

102

PL/I

for

MVS

&

VM

and

Language

Environment

117

PLI/370

and

Language

Environment

117

PLITDLI

255

POS

(Position)

call
description

142,

242

examples

145

format

142

I/O

area

143

parameters

142

unqualified
keywords

143

usage

145

POS

call

function

319

POS(positioning)=MULT(multiple)

203

position
establishing

in

database

137

positioning
after

DLET

191

after

ISRT

193

after

REPL

193

after

retrieval

calls

190

after

unsuccessful

calls

194

after

unsuccessful

DLET

or

REPL

call

194

after

unsuccessful

retrieval

or

ISRT

call

195

CHKP,

effect

249

current,

after

unsuccessful

calls

194

determining

189

multiple

203

understanding

current

189

PREINIT

parameter,

input

restart

346

preloaded

programs

120

processing
commit-point

in

DEDB

245

commit-point

in

MSDB

235

database,

several

views

208

DEDBs

238

Fast

Path

databases

229

GSAM

databases

219

MSDBs

and

VSO

DEBDs

231

multiple

203

options
field

in

DB

PCB

97,

221

H

(position),

for

Fast

Path

245

P

(path)

30

P

(position),

for

Fast

Path

245

segments

in

logical

relationships

214

program
batch

structure

12

design

48

restarting

249

program

communication

block
See

PCB

(program

communication

block)

program

communication

block.
See

DB

(database

program

communication

block)

program

deadlock

162

programming
guidelines

47

mixed

language

119

secondary

indexing

211

PSB

(program

specification

block)
description

18

format

115

PSSEGHWM

143

PUNCH

statement

340

PURG

call

function

319

Q
Q

command

code

256

and

the

DEQ

call

36

example

35

full

function

and

segment

release

36

lock

class

35

MAXQ

35

qualification

statement
coding

106

field

name

24

field

value

24,

25

multiple

qualification

statements

199

multiple

qualification

statements,

DEDB

201

multiple

qualification

statements,

HDAM

201

multiple

qualification

statements,

PHDAM

201

overview

24

relational

operator

24,

25

segment

name

24

structure

24

qualified

call
definition

24

overview

19,

24

qualified

SSA
qualification

statement

24

structure

24

structure

with

command

code

27

qualifying
DL/I

calls

with

command

codes

27

SSAs

24

R
R

command

code

41

RACF

signon

security

94

RACROUTE

SAF

94

randomizing

routine
exit

routine

132,

201

RCMD

call
description

172,

173

format

172

parameters

172

restrictions

173

use

173

reading

segments

in

MSDBs

232,

237

record

search

argument
See

RSA

(record

search

argument)

regions,

batch
DBB

227

DLI

227

IBM

Confidential

400

Application

Programming:

Database

Manager

related

(terminal

related)

MSDB

230

relational

operators
Boolean

operators

199

independent

AND

199

list

25

logical

AND

199

logical

OR

199

overview

25

SSA,

coding

106

SSA,

qualification

statement

24

REPL

(Replace)

call
description

145

format

145

N

command

code

33

parameters

146

SSAs

146

usage

146

with

MSDB,

DEDB

or

VSO

DEDB

231

REPL

call

function

319

requesting

a

segment
using

GU

136

reserving
place

for

command

codes

247

segment
command

code

256

lock

management

257

resetting

a

subpointer

42

residency

mode

(RMODE)

120

Restart,

Extended
parameters

184

position

in

database

186

restarting

your

program

185

restrictions

187

starting

your

program

normally

185

usage

185

Restart,

Extended

(XRST)

153

description

184

restarting

your

program
XRST

call

185

restarting

your

program,

basic

checkpoints

249

restrictions
CHKP

and

XRST

with

GSAM

224

database

calls
to

DEDBs

246

to

MSDBs

237

F

command

code

32

number

of

database

calls

and

Fast

Path

35

retrieval

calls
D

command

code

30

F

command

code

31

L

command

code

33

status

codes,

exceptional

18

Retrieve

Command

(RCMD)

call
See

RCMD

call

172

retrieving
dependents

sequentially

132

first

occurrence

of

a

segment

31

last

occurrence

33

segments
Q

command

code,

Fast

Path

35

Q

command

code,

full

function

35

retrieving

(continued)
segments

(continued)
sequentially

30

segments

with

D

30

return

codes
UIB

102,

303

REXX
.

(period)

usage

269

calls
return

codes

267

summary

267

syntax

267

commands
DL/I

calls

266

summary

266

DL/I

calls,

example

269

execs
DFSSAM01

288

DOCMD

289

IVPREXX

293

PART

286

PARTNAME

287

PARTNUM

287

PCBINFO

284

SAY

283

IMSRXTRC,

trace

output

272

REXX,

IMS

adapter
.

(period)

usage

271

address

environment

262

AIB,

specifying

268

description

261

DFSREXX0

program

261,

265

DFSREXX1

261

DFSREXXU

user

exit

261

DFSRRC00

265

diagram

264

DL/I

parameters

268

environment

270

example

execs

283

feedback

processing

268

I/O

area

268

installation

261

IVPREXX

exec

265

IVPREXX

PSB

262

IVPREXX

setup

262

LLZZ

processing

268

LNKED

requirements

261

non-TSO/E

261

PCB,

specifying

268

programs

261

PSB

requirements

261

sample

generation

262

sample

JCL

262

SPA

processing

268

SRRBACK

261

SRRCMIT

261

SSA,

specifying

268

SYSEXEC

DD

261,

262

system

environment

261,

262

SYSTSIN

DD

262

SYSTSPRT

DD

261,

262

IBM

Confidential

Index

401

REXX,

IMS

adapter

(continued)
TSO

environment

261

TSO/E

restrictions

261

ZZ

processing

268

REXXIMS

commands

272,

274

See

also

IMSQUERY

extended

function

DLIINFO

270,

271

IMSRXTRC

270,

272

MAPDEF

270

MAPGET

270

MAPPUT

270,

275

SET

270,

276

SRRBACK

270,

277

SRRCMIT

270,

277

STORAGE

270,

278

WTL

270,

279

WTO

270,

279

WTOR

270,

279

WTP

270,

279

REXXTDLI

commands

266

RMODE

120

ROLB
in

MPPs

and

transaction-oriented

BMPs

252

ROLB

(Roll

Back)

call
compared

to

ROLL

call

250

description

173,

252

format

173

maintaining

database

integrity

250

parameters

173

usage

252

ROLB

call

function

319

ROLL

(Roll)

call
compared

to

ROLB

call

250

description

174,

251

format

174

maintaining

database

integrity

250

ROLL

call

function

319

ROLS
backing

out

to

an

intermediate

backout

point

254

ROLS

(Roll

Back

to

SETS)

call
description

175

format

175

maintaining

database

integrity

250

parameters

175

TOKEN

253

ROLS

call

function

320

ROLX

call

function

320

routines,

error

18

RSA

(record

search

argument)
description

221

GSAM,

reference

111

overview

221

rules
coding

an

SSA

106

RULES

parameter
FIRST,

L

command

code

33

HERE
F

command

code

32

L

command

code

33

S
S

(STATUS)

statement

342

S

command

code
examples

42

subpointer,

resetting

42

sample

JCL

346

sample

programs
call-level

assembler

language,

CICS

online

53

call-level

COBOL,

CICS

online

63

call-level

PL/I,

CICS

online

74

SAY

exec

283

scheduling

HALDBs

18

application

programs,

against

119

secondary

indexes
multiple

qualification

statements

212

secondary

indexing
DB

PCB

contents

214

effect

on

programming

211

information

returned

by

DL/I

214

SSAs

211

status

codes

214

secondary

processing

sequence

212

segment
requesting

using

GU

136

segment

level

number

field

96

segment

name
DB

PCB,

field

97

SSA,

qualification

statement

24

segment

search

argument
See

SSA

(segment

search

argument)

segment

search

argument

(SSA)
coding

rules

106

segment,

information

needed

49

segments
in

medical

database

example

20

sensitive

segments

in

DB

PCB

97

sequence
hierarchy

130

sequence

field
virtual

logical

child,

in

25

sequence,

indication

for

statements

346

sequential

dependent

segments
how

stored

231

sequential

dependents

231

overview

231

SET

command

(REXX)

270,

276,

277

SET

SUBFUNC

command

(REXX)

277

SET

ZZ

277

SETO

call

function

320

SETO,

DFSDDLT0
description

312

SETS
backing

out

to

an

intermediate

backout

point

254

SETS

(Set

a

Backout

Point)

call
description

176,

254

format

176

parameters

176

SETS

call

function

320

setting
parentage

with

the

P

command

code

34

subset

pointer

to

zero

44

IBM

Confidential

402

Application

Programming:

Database

Manager

SETU
backing

out

to

an

intermediate

backout

point

254

SETU

(Set

a

Backout

Point

Unconditional)

call
description

176,

254

format

176

parameters

176

SETU,

call

function

254

signon

security,

RACF

94

single

positioning

203

skeleton

programs
assembler

language

50

C

language

56

COBOL

60

Pascal

68

PL/I

71

SKIP

call

function

330

SNAP

call
description

177

format

177

parameters

177

status

codes

180

SNAP

call

function

320

specifying
command

codes

for

DEDBs

240

DB

PCB

mask

95

GSAM

data

set

attributes

227

processing

options

for

DEDBs

245

Spool

API
STORAGE

command

example

279

SRRBACK

command

(REXX)
description

270

format,

usage

277

SRRCMIT

command

(REXX)
description

270

format,

usage

277

SSA

(segment

search

argument)
coding

formats

107

restrictions

107

rules

106

coding

rules

106

command

codes

27

definition

24

overview

24

qualification

statement

106

qualified

24

reference

106

relational

operators

25

restrictions

106

segment

name

field

24,

106

structure

with

command

code

27

unqualified

24

usage

126

command

codes

27

DLET

126

GN

131

GNP

135

GU

137

guidelines

26

ISRT

140

multiple

qualification

statements

199

SSA

(segment

search

argument)

(continued)
usage

(continued)
REPL

146

secondary

indexing

211

virtual

logical

child,

in

25

SSAs

(segment

search

arguments)
unqualified

24

STAK

call

function

330

START

call

function

330

STAT

(Statistics)

call
description

180

format

180

parameters

181

usage

182

STAT

call

function

320

status

code
GE

(segment

not

found)

30

status

codes
blank

17

checking

17

DB

PCB,

for

160

error

routines

18

exception

conditions

18

field

in

DB

PCB

96,

221

FSA

233

GB,

end

of

database

30

GSAM

223

H

processing

option

245

HALDB

partitions

18

logical

relationships

217

P

processing

option

245

retrieval

calls

18

subset

pointers

242

status

codes,

field

in

I/O

PCB

93

STATUS

statement

342

storage
!token

278

STORAGE

command

278

STORAGE

command

(REXX)
description

270

format,

usage

278

subset

pointer

command

codes
restrictions

28

subset

pointers
DEDB,

managed

by

command

codes

28

defining,

DBD

240

defining,

PCB

240

description

238

M

command

40

preparing

to

use

240

R

command

code

41

resetting

42

S

command

code

42

sample

application

39,

241

status

codes

242

using

238

Z

command

code

44

Summary
database

management

call

297

system

service

calls

298

IBM

Confidential

Index

403

summary

of

changes

for

DFSDDLT0

internal

control

statements

309

summary

of

command

codes

27

Symbolic

Checkpoint

(CHKP

Symbolic)

151

format

151

parameters

152

restrictions

153

usage

153

SYNC

(Synchronization

Point)

call
description

182

format

182

parameters

183

usage

183

SYNC

call

function

320

syntax

diagram
assembler

language,

DL/I

call

format

78

C

language,

DL/I

call

format

80

COBOL,

DL/I

call

format

83

Pascal,

DL/I

call

format

86

PL/I,

DL/I

call

format

88

SYSIN

input

346

SYSIN2

input

processing

346

system

service

calls
See

also

DL/I

calls,

system

service

APSB

(Allocate

PSB)

150

CHKP

(Basic)

150

CHKP

(Symbolic)

151

DPSB

(deallocate)

153

GMSG

(Get

Message)

154

ICMD

(Issue

Command)

157

INIT

(Initialize)

159

INQY

(Inquiry)

163

LOG

(Log)

169

PCB

(schedule

a

PSB)

171

RCMD

(Retrieve

Command)

172

ROLB

(Roll

Back)

173

SETS/SETU

(Set

a

Backout

Point)

176

SNAP

177

STAT

(Statistics)

180

SYNC

(Synchronization

Point)

182

TERM

(Terminate)

183

XRST

(Extended

Restart)

184

T
T

(Comment)

statement

332

TERM

(Terminate)

call
description

183

format

183

usage

183

test

program
See

DL/I

Test

Program

(DFSDDLT0)

testing

status

codes

17

transaction-oriented

BMPs
ROLB

252

TREATMNT

segment

21

TSO/E

REXX
See

REXX,

IMS

adapter

U
U

(Comment)

statement

332

U

Command

Code

37

UIB

(user

interface

block)
defining,

in

program

102

field

names

104

PCB

address

list,

accessing

102

return

codes,

accessing

102

return

codes,

list

303

UIBDLTR
introduction

103

return

codes,

checking

303

UIBFCTR
introduction

103

return

codes,

checking

303

UIBPCBAL
introduction

103

return

codes,

checking

303

undefined-length

records

221

unqualified

call
overview

19

unqualified

calls,

definition

of

24

unqualified

POS

call
I/O

returned

area
key

words

143

map

of

143

keywords

143

unqualified

SSA
segment

name

field

24

structure

with

command

code

27

usage

with

command

codes

27

UOW

boundary,

processing

DEDB

245

updating
segments

in

an

MSDB,

DEDB

or

VSO

DEDB

231

user

interface

block
See

UIB

(user

interface

block)

userid

indicator,

field

in

I/O

PCB

95

userid,

field

in

I/O

PCB

93

V
V

command

code

38

V5SEGRBA

143

variable-length

records

221

virtual

logical

child

25

virtual

storage

option

data

entry

database

(VSO

DEDB)
See

VSO

DEDB

(virtual

storage

option

data

entry

database),

processing

VS

COBOL

II

and

Language

Environment

117

VSAM,

STAT

call

182

VSO

DEDB

(virtual

storage

option

data

entry

database),

processing

231

W
WAITAOI

154

IBM

Confidential

404

Application

Programming:

Database

Manager

WTL

command

(REXX)
description

270

format,

usage

279

WTO

command

(REXX)
description

270

format,

usage

279

WTO

statement

345

WTOR

command

(REXX)
description

270

format,

usage

279

WTOR

statement

346

WTP

command

(REXX)
description

270

format,

usage

279

X
XRST

(Extended

Restart)

153

XRST

(Extended

Restart)

call
description

184

format

184

parameters

184

restrictions

187

usage

185

with

GSAM

224

XRST

call

function

320

Z
Z

command

code
examples

44

setting

a

subpointer

to

zero

44

IBM

Confidential

Index

405

IBM

Confidential

406

Application

Programming:

Database

Manager

����

Program

Number:

5655-J38

IBM

Confidential

Printed

in

USA

ZES1-2333-00

Sp
in
e

in
fo
rm
at
io
n:

 �
�

�

IM
S

Ap
pl

ic
at

io
n

Pr
og

ra
m

m
in

g:

D
at

ab
as

e

M
an

ag
er

Ve
rs

io
n

9

	Contents
	Figures
	Tables
	About This Book
	Summary of Contents
	Prerequisite Knowledge
	How to Use This Book
	Terminology
	How to Read Syntax Diagrams
	Syntax Diagram Example

	How to Send Your Comments
	Change Indicators

	Summary of Changes
	Changes to the Current Edition of This Book for IMS Version 9
	Changes to This Book for IMS Version 9
	Library Changes for IMS Version 9
	New and Revised Titles
	Terminology Changes
	Accessibility Enhancements

	Part 1. Writing Application Programs
	Chapter 1. How Application Programs Work with the IMS Database Manager
	Application Program Environments
	The Application Programming Interface
	The DB/DC Environment
	The DBCTL Environment
	The DB Batch Environment

	Getting Started with DL/I
	Getting Started with DL/I (for CICS Online Users)
	Getting Started with DL/I using the ODBA Interface
	Common Logic Flow for SRMS and MRMS
	Logic Flow for SRMS
	Logic Flow for MRMS

	DL/I Calls
	DB Call Functions
	System Service Call Functions
	Status Codes, Return Codes, and Reason Codes
	Exceptional Conditions
	High Availability Large Databases
	Error Routines
	DL/I and Your Application Program
	DBDs and PSBs
	SSAs and Command Codes

	Sample Hierarchies
	Medical Database Example
	Bank Account Example

	SSA Overview
	Unqualified SSAs
	Qualified SSAs
	Guidelines for Using SSAs
	SSAs and Command Codes

	Command Codes
	General Command Codes for DL/I Calls
	DEDB Command Codes for DL/I

	IVP Sample Application Program

	Chapter 2. Writing Your Application Programs
	Programming Guidelines
	Coding DL/I Calls and Data Areas
	Program Design Considerations
	Checkpoint Considerations
	Segment Considerations
	Data Structure Considerations

	Preparing to Run Your CICS DL/I Call Program
	Sample Programs
	Coding a Batch Program in Assembler Language
	Coding a CICS Online Program in Assembler Language
	Coding a Batch Program in C Language
	Coding a Batch Program in COBOL
	Coding a CICS Online Program in COBOL
	Coding a Batch Program in Pascal
	Coding a Batch Program in PL/I
	Coding a CICS Online Program in PL/I

	Chapter 3. Defining Application Program Elements
	Formatting DL/I Calls for Language Interfaces
	Application Programming for Assembler Language
	Format
	Parameters
	Example DL/I Call Formats

	Application Programming for C Language
	Format
	Parameters
	I/O Area
	Example DL/I Call Formats

	Application Programming for COBOL
	Format
	Parameters
	Example DL/I Call Formats

	Application Programming for Pascal
	Format
	Parameters
	Example DL/I Call Formats

	Application Programming for PL/I
	Format
	Parameters
	Example DL/I Call Formats

	Relationship of Calls to PCBs
	Specifying the I/O PCB Mask
	Specifying the DB PCB Mask
	Specifying the AIB Mask
	Specifying the AIB Mask for ODBA Applications
	AIB Examples

	Specifying the UIB (CICS Online Programs Only)
	Specifying the I/O Areas
	Segment Search Arguments
	SSA Coding Rules
	SSA Coding Restrictions
	SSA Coding Formats

	GSAM Data Areas
	GSAM DB PCB Masks
	GSAM RSAs

	The AIBTDLI Interface
	Overview
	Defining Storage for the AIB

	Specifying the Language Specific Entry Point
	Assembler Language
	C Language
	COBOL
	Pascal
	PL/I
	Interface Considerations

	PCB Lists
	Format of a PCB List
	Format of a GPSB PCB List
	PCB Summary

	The AERTLDI interface
	Overview
	Defining Storage for the AIB

	Language Environment
	The CEETDLI interface to IMS
	LANG= Option on PSBGEN for PL/I Compatibility with Language Environment

	Special DL/I Situations
	Application Program Scheduling against HALDBs
	Mixed-Language Programming
	Language Environment Routine Retention
	Extended Addressing Capabilities of MVS/ESA
	Preloaded Programs

	Chapter 4. Writing DL/I Calls for Database Management
	CIMS Call
	Format
	Parameters
	Usage

	CLSE Call
	Format
	Parameters
	Usage

	DEQ Call
	Format (Full Function)
	Format (Fast Path DEDB)
	Parameters
	Usage
	Restrictions

	DLET Call
	Format
	Parameters
	Usage

	FLD Call
	Format
	Parameters
	Usage
	FSAs

	GN/GHN Call
	Format
	Parameters
	Usage, Get Next (GN)
	Usage, Get Hold Next (GHN)
	Usage, HDAM, PHDAM, or DEDB Database with GN
	Restriction

	GNP/GHNP Call
	Format
	Parameters
	Usage, Get Next in Parent (GNP)
	Usage, Get Hold Next in Parent (GHNP)

	GU/GHU Call
	Format
	Parameters
	Usage, Get Unique (GU)
	Usage, Get Hold Unique (GHU)
	Restriction

	ISRT Call
	Format
	Parameters
	Usage

	OPEN Call
	Format
	Parameters
	Usage

	POS Call
	Format
	Parameters
	Usage
	Restrictions

	REPL Call
	Format
	Parameters
	Usage

	Chapter 5. Writing DL/I Calls for System Services
	APSB Call
	Format
	Parameters
	Usage

	CHKP (Basic) Call
	Format
	Parameters
	Usage

	CHKP (Symbolic) Call
	Format
	Parameters
	Usage
	Restrictions

	DPSB Call
	Format
	Parameters
	Usage

	GMSG Call
	Format
	Parameters
	Usage
	Restrictions

	GSCD Call
	Format
	Parameters
	Usage
	Restriction

	ICMD Call
	Format
	Parameters
	Usage
	Restrictions

	INIT Call
	Format
	Parameters
	Usage
	Restrictions

	INQY Call
	Format
	Parameters
	Usage
	Restrictions

	LOG Call
	Format
	Parameters
	Usage
	Restrictions

	PCB Call (CICS Online Programs Only)
	Format
	Parameters
	Usage
	Restrictions

	RCMD Call
	Format
	Parameters
	Usage
	Restrictions

	ROLB Call
	Format
	Parameters
	Restrictions

	ROLL Call
	Format
	Parameters
	Usage
	Restriction

	ROLS Call
	Format
	Parameters
	Usage
	Restrictions

	SETS/SETU Call
	Format
	Parameters
	Usage
	Restrictions

	SNAP Call
	Format
	Parameters
	Usage
	Restrictions

	STAT Call
	Format
	Parameters
	Usage
	Restrictions

	SYNC Call
	Format
	Parameters
	Usage
	Restrictions

	TERM Call (CICS Online Programs Only)
	Format
	Usage
	Restrictions

	XRST Call
	Format
	Parameters
	Usage
	Restrictions

	Chapter 6. Monitoring Your Position in the Database
	Understanding Current Position in the Database
	Position after Retrieval Calls
	Position after DLET
	Position after REPL
	Position after ISRT

	Current Position after Unsuccessful Calls
	Position after an Unsuccessful DLET or REPL Call
	Position after an Unsuccessful Retrieval or ISRT Call

	Chapter 7. Multiple Qualification Statements
	Overview of Multiple Qualification Statements
	Example using Multiple Qualification Statements
	Multiple Qualification Statements for HDAM, PHDAM, or DEDB

	Chapter 8. Multiple Processing
	Multiple Positioning
	Advantages of Using Multiple Positioning
	How Multiple Positioning Affects Your Program
	Resetting Position with Multiple Positioning

	Using Multiple DB PCBs

	Chapter 9. Secondary Indexing and Logical Relationships
	How Secondary Indexing Affects Your Program
	SSAs with Secondary Indexes
	Multiple Qualification Statements with Secondary Indexes
	What DL/I Returns with a Secondary Index
	Status Codes for Secondary Indexes

	Processing Segments in Logical Relationships
	How Logical Relationships Affect Your Programming
	Status Codes for Logical Relationships

	Chapter 10. Processing GSAM Databases
	Accessing GSAM Databases
	PCB Masks for GSAM Databases
	Retrieving and Inserting GSAM Records
	Explicitly Opening and Closing a GSAM Database

	GSAM Record Formats
	GSAM I/O Areas
	GSAM Status Codes
	Symbolic CHKP and XRST with GSAM
	GSAM Coding Considerations
	Origin of GSAM Data Set Characteristics
	DD Statement DISP Parameter for GSAM Data Sets
	Using Extended Checkpoint Restart for GSAM Data Sets
	Use of Concatenated Data Sets by GSAM
	Suggested Method for Specifying GSAM Data Set Attributes
	DLI or DBB Region Types and GSAM

	Chapter 11. Processing Fast Path Databases
	Fast Path Database Calls
	MSDBs and DEDBs: Overview
	MSDBs
	DEDBs

	Processing MSDBs and DEDBs
	Updating Segments in an MSDB or DEDB: REPL, DLET, ISRT, and FLD
	Commit-Point Processing in MSDBs and DEDBs
	VSO Considerations
	Data Locking for MSDBs and DEDBs

	Restrictions on Using Calls for MSDBs
	Processing DEDBs (IMS, CICS with DBCTL)
	Processing DEDBs with Subset Pointers
	Retrieving Location with the POS Call (for DEDB Only)
	Commit-Point Processing in a DEDB
	Crossing a UOW Boundary (P Processing Option)
	Crossing the UOW Boundary (H Processing Option)
	Data Locking

	Restrictions on Using Calls for DEDBs
	Direct Dependent Segments
	Sequential Dependent Segments

	Fast Path Coding Considerations

	Chapter 12. Recovering Databases and Maintaining Database Integrity
	Issuing Checkpoints
	Restarting Your Program and Checking for Position
	Maintaining Database Integrity (IMS Batch, BMP, and IMS Online Regions)
	Backing Out to a Prior Commit Point: ROLL, ROLB, and ROLS
	Backing Out to an Intermediate Backout Point: SETS, SETU, and ROLS

	Reserving Segments for the Exclusive Use of Your Program
	Resource Lock Management

	Part 2. IMS Adapter for REXX
	Chapter 13. IMS Adapter for REXX
	Addressing Other Environments
	REXX Transaction Programs
	IMS Adapter for REXX Overview Diagram
	IVPREXX Sample Application

	REXXTDLI Commands
	Addressable Environments

	REXXTDLI Calls
	Return Codes
	Parameter Handling
	Example DL/I Calls

	REXXIMS Extended Commands
	DLIINFO
	IMSRXTRC
	MAPDEF
	MAPGET
	MAPPUT
	SET
	SRRBACK and SRRCMIT
	STORAGE
	WTO, WTP, and WTL
	WTOR
	IMSQUERY Extended Functions

	Chapter 14. Sample Execs Using REXXTDLI
	SAY Exec: For Expression Evaluation
	PCBINFO Exec: Display PCBs Available in Current PSB
	PART Execs: Database Access Example
	PARTNUM Exec: Show Set of Parts Near a Specified Number
	PARTNAME Exec: Show a Set of Parts with a Similar Name
	DFSSAM01 Exec: Load the Parts Database

	DOCMD: IMS Commands Front End
	IVPREXX: MPP/IFP Front End for General Exec Execution

	Part 3. Reference
	Chapter 15. Summary of DM and System Service Calls
	Database Management Call Summary
	System Service Call Summary

	Chapter 16. Command Codes Reference
	Chapter 17. CICS-DL/I User Interface Block Return Codes
	Not-Open Conditions
	Invalid Request Conditions

	Part 4. Appendixes
	Appendix A. Sample Exit Routine (DFSREXXU)
	Appendix B. The DL/I Test Program (DFSDDLT0)
	Control Statements
	Planning the Control Statement Order
	ABEND Statement
	Examples of ABEND Statement

	CALL Statement
	CALL FUNCTION Statement
	CALL DATA Statement
	OPTION DATA Statement
	FEEDBACK DATA Statement
	Call Functions
	Examples of DL/I Call Functions
	CALL FUNCTION Statement with Column-Specific SSAs
	DFSDDLT0 Call Functions
	Examples of DFSDDLT0 Call Functions

	COMMENT Statement
	Conditional COMMENT Statement
	Unconditional COMMENT Statement
	Example of COMMENT Statement

	COMPARE Statement
	COMPARE DATA Statement
	COMPARE AIB Statement
	COMPARE PCB Statement
	Examples of COMPARE DATA and PCB Statements

	IGNORE Statement
	Example of IGNORE (N or .)

	OPTION Statement
	Example of OPTION Control Statement

	PUNCH Statement
	Example of PUNCH CTL Statement
	Example of PUNCH CTL Statement for All Parameters

	STATUS Statement
	Examples of STATUS Statement

	WTO Statement
	Example of WTO Statement

	WTOR Statement
	Example of WTOR Statement

	JCL Requirements
	SYSIN DD Statement
	SYSIN2 DD Statement
	PRINTDD DD Statement
	PUNCHDD DD Statement
	Using the PREINIT Parameter for DFSDDLT0 Input Restart

	Execution of DFSDDLT0 in IMS Regions
	Explanation of DFSDDLT0 Return Codes
	Hints on Using DFSDDLT0
	To Load a Database
	To Print the Segments in a Database
	To Retrieve and Replace a Segment
	To Delete a Segment
	To Do Regression Testing
	To Use as a Debugging Aid
	To Verify How a Call Is Executed

	Appendix C. The Database Resource Adapter (DRA)
	Thread Concepts
	Processing Threads
	Processing Multiple Threads
	CCTL Multithread Example

	Sync Points
	The Two-Phase Commit Protocol
	In-Doubt State During Two-Phase Sync

	The DRA Startup Table
	Sample DFSPZP00 Source Code:
	DFSPRP Macro Keywords

	Enabling the DRA for a CCTL
	Initializing the DRA

	Enabling the DRA for the ODBA Interface
	Initializing the DRA

	Processing CCTL DRA Requests
	Processing ODBA Calls
	CCTL-Initiated DRA Function Requests
	INIT Request
	RESYNC Request
	TERM Request
	Thread Function Requests

	PAPL Mapping Format
	Terminating the DRA
	Designing the CCTL Recovery Process
	Summary of CCTL Design Recommendations

	CCTL Performance—Monitoring DRA Thread TCBs
	DRA Thread Statistics
	DRA Statistics
	Tracing
	Sending Commands to IMS DB
	Problem Determination

	Notices
	Programming Interface Information
	Trademarks
	Product Names

	Bibliography
	IMS Version 9 Library

	Index

