IBM GLOBAL SERVICES

B81

IMS Data Sharing Implementation

Rich Lewis

IMS

Technical Conference

Sept. 27-30, 2004

Orlando, FL

© IBM Corporation 2004

Topics

DBRC

- System definition
- IMS execution parameters
- CF structures
- ILRM
- Lock contention
- Lock reporting

- Application considerations
- Availability and ease of operations
- Database recoveries
- System recoveries
- BMPs and batch jobs
- Implementation steps

Block Level Data Sharing

- Block level data sharing (BLDS)
 - N-way data sharing for databases
 - Up to 255 IMS subsystems on 32 LPARs
- Full capabilities
 - Multiple updaters
 - Data integrity

Block Level Data Sharing Configuration

IMS systems include TM/DB, DBCTL, and IMS batch jobs

DBRC Considerations

- RECON data sets
 - Placement and reserve considerations
 - Important, but no additional considerations for data sharing
- All IMSs sharing a database must use the same RECONs
 - Dynamic allocation of RECONs is recommended
- Shared databases must be registered
 - Registration of databases increases accesses to RECONs
 - Sharing databases does not increase accesses to RECONs
- Share level for databases
 - SHARELVL(3)
 - Multiple LPAR block level data sharing
 - Multiple updaters on multiple LPARs with multiple IRLMs

DBRC Considerations

- DEDB Shared VSO
 - CHANGE.DBDS
 - CFSTR1(structure-name-1)
 - Defines cache structure for area
 - CFSTR2(structure-name-2)
 - Defines duplicate cache structure for area
 - LKASID | NOLKASID
 - Specifies if look aside buffering will be used for area
- IMS V9 DEDB Shared VSO
 - Allows multiple areas to share a structure
 - Duplexing of structures is done with system-managed duplexing

IMS System Definition

- DATABASE macro
 - ACCESS=UP
 - Full sharing allowed, updates allowed
- IMSCTRL macro
 - ► IRLM=Y or N
 - Establishes default execution setting
 - May be overridden
 - ▶ IRLMNM=
 - Establishes default IRLM name
 - May be overridden
 - DBRC=YES, NO, or FORCE
 - Establishes batch default
 - May be overridden

- DFSPBxxx member
 - ► IRLM=Y
 - IRLM=irlm name
- DFSVSMxx member
 - CFNAMES statement
 - CFIRLM= lock structure name
 - CFOSAM=(OSAM structure name, dirratio, elemratio)
 - Used for OSAM database data sets
 - If you are not caching OSAM, make the elemratio value 0
 - CFVSAM=VSAM structure name
 - Used for full function VSAM database data sets
 - All keywords must be specified
 - CFOSAM= value may be omitted if you have no OSAM data sets
 - Values must be same in all IMSs in the data sharing group

Database Data Sets

VSAM

- On DEFINE CLUSTER
 - SHAREOPTION(3 3) must be specified
- DISP=SHR must be specified
- If either of these is not specified,
 - The data set will not be opened when the ILRM is used with DBRC SHARELVL(1, 2, or 3)

OSAM

DISP=SHR must be specified

- Must be defined in CFRM policy
 - Definition includes name, location, and size parameters
- Structures
 - Lock structure
 - Full function VSAM structure
 - Full function OSAM structure
 - DEDB VSO structures
 - One or two per shared area in V7 and V8
 - Shared by multiple areas in V9 (optional)

CFSIZER tool

- May be used to estimate structure size
 - http://www-1.ibm.com/servers/eserver/zseries/cfsizer/

- IRLM lock structure
 - Size lock table to avoid false contention
 - Size is power of 2
 - Recommendation: 1000 entries per lock held
 - Size of entries determined by IRLM MAXUSRS parameter
 - Size record list to hold all locks protecting updates
 - Locks acquired with PROCOPT allowing updates
 - Full function database record locks and block locks
 - Fast Path CI locks
 - 2M + 175 bytes per lock
 - Maximum requirement usually depends on batch and BMP jobs
 - They can hold many, many locks

IRLM lock structure

- Most installations can use 64M structure
 - 32M lock table + 32M record list
- What happens if the structure is too small?
 - If the lock table is too small, more false contentions occur
 - Overhead of communications with other systems
 - If the record list is too small, lock requests fail
 - Applications abend

- IRLM lock structure placement
 - Never place a lock structure on the same machine with an IRLM using it
 - Unless you are using system managed duplexing for the structure
 - Concurrent failure of IRLM and non-duplexed lock structure causes IMSplex-wide data sharing failure
 - No new locks may be granted until the failed IMS is emergency restarted

- VSAM cache structure
 - > Entry required for each VSAM CI in a buffer pool
 - Count the number of VSAM buffers in all IMSs
 - Include batch jobs
 - Include Hiperspace buffers (or delete them)
 - Size:
 - 2M + 300 bytes per entry

- OSAM cache structure
 - Entry required for each OSAM block in a buffer pool
 - Count the number of OSAM buffers in all IMSs
 - Include batch jobs
 - Include OSAM sequential buffering
 - Space required for any cached blocks
 - Size:
 - 2M + 300 bytes per entry + space for caching
 - Percent of structure used for caching is determined by CFOSAM parameters

OSAM and VSAM cache structures

- ▶ 32M is large enough for 100,000 database buffers
 - 2M + (100,000 x 300)
- What happens if the structure is too small?
 - If the structure is too small, IMS database buffers are invalidated
 - Blocks or CIs must be reread

DEDB VSO cache structures

- Entry required for each CI in direct portion of PRELOAD area
 - CI0 and REORG UOW are not stored in the structure
- User determines size for non-PRELAD areas
 - Depends on the amount of data wanted in the cache structure
- 2M + 300 bytes per entry + space to hold Cls
- Duplexing of VSO structures is recommended
 - Improves availability
 - Loss of structure without duplexing causes area outage
 - Area must be recovered
 - IMS V9 shared structures use system-managed duplexing

IRLMID=

- 1 to 256
- Each IRLM in data sharing group must have a unique value
- IRLMNM=
 - 4 byte subsystem name
 - Must be unique on an LPAR
 - Typically, there is only one IRLM on an LPAR
 - All IRLMs can (probably should) have the same name
 - Allows IMS restarts to be done on any LPAR without changing execution parameters
 - Allows IMS batch jobs to be run on any LPAR without changing execution parameters

- SCOPE= execution parameter
 - LOCAL
 - One IRLM, lock structure is not used
 - **GLOBAL**
 - Multiple IRLMs allowed, lock structure is used
 - NODISCON
 - Same as GLOBAL but IRLM does not disconnect from the lock structure when it has no IMSs connected to it
 - Recommended
 - Especially valuable with sharing of IMS batch jobs

DEADLOK='III,ggg' execution parameter

- - Number of milliseconds or seconds between deadlock detection cycles
 - Values from 1 to 5 are seconds
 - Values from 100 to 5000 are milliseconds
 - Values from 6 to 99 are converted to 5 seconds
 - 1 is a reasonable value for most installations
- ▶ ggg
 - Number of local deadlock detection cycles in a global cycle
 - Value is ignored
 - Every local cycle is also a global cycle

IRLMGRP=

- XCF group name for the IRLMs
 - All IRLMs must have the same value
 - Does not have to be defined to MVS
- LOCKTABL=
 - Ignored if CFNAMES statement is in DFSVSMxx for IMS
 - Specifies the IRLM lock structure name

MAXUSRS= number of IRLMs

- Determines size of lock table entries in lock structure
 - 1-6 have the same meaning 2 byte entries
 - 7-22 have the same meaning 4 bytes entries
 - 23-32 have the same meaning 8 bytes entries
- If 7th IRLM is started with MAXUSRS < 7, structure is rebuilt with larger entry
- If 23rd IRLM is started with MAXUSRS < 23, structure is rebuilt with larger entry
- Always specify the maximum number of IRLMs to be used
- Do not specify > 6 if no more than 6 IRLMs will be used
- Do not specify > 22 if no more than 22 IRLMs will be used

LTE=

- Number of lock table entries in units of 1 meg
 - Must be specified as a power of 2
 - Defaults to half of the space in the lock structure
 - Size of lock table entries is determined by MAXUSRS
- PGPROT=YES or NO
 - IRLM common storage load modules placed in MVS page protected storage
- TRACE=YES or NO
 - Default is NO
 - May be turned on by command
 - Only use trace when it is necessary

PC=NO or YES

- NO (ignored by IRLM 2.2)
 - Uses slightly less CPU
 - Lock information in ECSA
- > YES (always used by IRLM 2.2)
 - Uses slightly more CPU
 - Lock information in IRLM extended private
 - Less likely to fail due to out-of-space reasons
- MAXCSA= (ignored by IRLM 2.2)
 - ▶ 1M to 999M
 - Limits CSA and ECSA usage with PC=NO
 - IRLM uses approximately 250 bytes per lock

Commands to Modify IRLM Parameters

- Change deadlock detection cycle time
 - MODIFY irImproc,SET,DEADLOCK=nnnn
- Change number of lock table entries on next connect to the lock structure
 - MODIFY irImporc,SET,LTE=nnnn
- Change maximum (E)CSA usage
 - MODIFY irImproc,SET,CSA=nnnn
 - Not used with IRLM 2.2

Lock Contention

- Applications which run well without data sharing usually run well with data sharing
 - The exceptions are discussed later
- Applications which have lock contention without data sharing almost always run worse with data sharing
 - Locks are held a bit longer and there are more locks

Lock Contention

- Fast Path locks
 - Same locks with or without data sharing
 - CI
 - UOW
 - Typically, no new contention
- Full function locks
 - Database record locks
 - With and without data sharing
 - Block locks
 - Only for updates to blocks
 - Only for data sharing
 - Busy locks
 - Open, close, data set extension, KSDS updates

IMS Monitor Reporting of Lock Waits

- Reports lock waits in Program I/O report
 - "PI" and database name in "DDN/FUNC" column
 - "PI" is used even though the IRLM is the lock manager

IMS MONITOR ****PROGE	RAM I/O****	TRACE START	2003 092 14: TWATT TIME	00:18 TRAC	E STOP 2003	022 14:02:20
PSBNAME PCB NAME	IWAITS	TOTAL	MEAN	MAXIMUM	DDN/FUNC	MODULE
PROGDE1A TRMNALDA	20 1	62468 275811	3123 275811	6825 275811 Pi	TRMNALDA I TRMNALDA.	VBH
PCB TOTAL	21	338279	16108			

REGION IWAIT report also contains lock wait information

Reported as "PI" in FUNCTION column

Deadlock Report

DEADLOCK report

- When a deadlock occurs, IMS and IRLM gather information
 - Information is written on the log of the "victim"
- DFSERA10 utility with DFSERA30 exit creates reports of all deadlocks on a log

SYSIN control statements:

//SYSIN	*		
OPTION	PRINT	OFFSET=5,FLDLEN=2,FLDTYP=X,VALUE=67FF,COND=M	
OPTION	PRINT	OFFSET=33,FLDLEN=8,FLDTYP=C,VALUE=DEADLOCK,COND=E,	Х
		EXITR=DFSERA30	
END			
/*			

Deadlock Report

• Sample report:

DEADLOCK ANALYSIS REPORT - LOCK MANAGER IS IRLM
RESOURCE DMB-NAME LOCK-LEN LOCK-NAME - WAITER FOR THIS RESOURCE IS VICTIM 01 OF 02 DHVNTZ02 08 00000BC4800501D7
KEY IS ROOT KEY OF DATA BASE RECORD ASSOCIATED WITH LOCK KEY=(KK360)
IMS-NAME TRAN/JOB PSB-NAME PCBDBD PST# RGN CALL LOCK LOCKFUNC STATE WAITER IMS4 NQF1 PMVAPZ12 DLVNTZ02 0002 MPP GET GRIDX 30400358 06-P HOLDER IMS3 DDLKBMP1 PLVAPZ22 0003 BMP 06-P
RESOURCE DMB-NAME LOCK-LEN LOCK-NAME 02 OF 02 DHVNTZ02 08 00000924800501D7
KEY IS ROOT KEY OF DATA BASE RECORD ASSOCIATED WITH LOCK KEY=(KK130)
IMS-NAMETRAN/JOBPSB-NAMEPCBDBDPST#RGNCALLLOCKLOCKFUNCSTATEWAITERIMS3DDLKBMP1PLVAPZ22DLVNTZ020003BMPGETGRIDX3040035806-PHOLDERIMS4NQF1PMVAPZ120002MPP06-P
DEADLOCK ANALVELS REDORT - FND OF REDORT

RMF IRLM Long Lock Detection Report

- RMF reports lock waits greater than specified time
 - MODIFY irImproc,SET,TIMEOUT=nnnn,ssname
 - nnnn is 1 to 3600 seconds
 - ssname is IMS subsystem name
 - "Timeout" does not cause lock wait to end
 - It only reports that a long wait has occurred
 - Monitor II ILOCK report
 - ▶ Uses SMF record type 79 subtype 15),
 - Specify:
 - S RMF,,,(SMFBUF(RECTYPE(70:78,<u>79(15)</u>)))

RMF IRLM Long Lock Detection Report

• Sample report:

RMF - ILO Command = State	CK IRLM ==> Type IMS_ID	Long Loo MIG= 1 Lock_Nam Recovery	ck Dete 435 CI ne 7_Toker	ection PU= 40 1	UIC	Lir C= 11 PST#	ne 1 of 15 PR= 0 PSB_Name Trx/Job	Scroll = System= F Elap_Time Wait_Time	==> HALF MF5 Total CICS_ID DB/Area
CF Structure ACOXLOCK at 09/05/2002 13:02:10 Deadlock Cycle 00002EC7									
TOP BLOCKER	BMP ACO3	09C943CI ACO3	A78001	L01D700)030000	000000000000000000000000000000000000000	000000	DFSSAMB1 BRL3	00:06:04	
TOP BLOCKER	BMP ACO1	09C36145 ACO1	0058001	L01D700 0060000	00000000	000000	DFSSAMB1 BRL1	00:06:09	
WAITER	BMP ACO2	09C36145 ACO2	0058001	L01D700 0080000	00000000	000000	DFSSAMB2 BRL2	00:05:52	DI21PART
WAITER	BMP ACO2	09C943CI ACO2	A78001	L01D700 090000	00000000	000000	DFSSAMB7 BRL5	00:05:42	DI21PART

PSB PROCOPTs

- E (exclusive)
 - Exclusive scheduling within an IMS online subsystem
 - Locking for data sharing is done
- A (update and read with integrity)
 - > Database record lock for updates held until sync point
- G (read with integrity)
 - Use when possible
- GO (read without integrity)
 - No locking
 - Increased exposure to wrong data
 - Increased exposure to abends

Application Considerations

- Typical locking and invalidation problems
 - Application control records
 - > Next invoice number, next order number, etc.
 - > These can be a serialization problem without data sharing
 - Data sharing makes this worse
- Hot spots
 - Frequently updated blocks
 - Very small database with many updates
 - Frequent inserts to databases without free space
 - All inserts go to the end of the database
 - Keys based on current time
 - Often a problem with secondary indexes
 - Empty (P)HIDAM databases
 - New records are always added at the end of the database

OSAM Caching

- OSAM blocks may be cached in structure
 - Caching by OSAM pool
 - All data sets in the pool are cached
 - Options:
 - Cache all blocks read
 - Cache only blocks which are updated
 - Overhead
 - Writes to cache structure
 - Recommendation:
 - Use only when invalidations are a problem
 - Such as "hot spots"

Availability and Ease of Operations

- Use same IRLM name for all IRLMs
 - Allows IMS to run on any MVS system with an IRLM
 - No JCL or execution parameter changes required
- Use IMSGROUP= for control regions
 - Give all control regions the same IMSGROUP name
 - Allows any dependent region (BMP) to run on any IMS
 - No JCL or execution parameter changes required

Database Recovery

- Database recovery must merge logs
 - Change Accumulation before Database Recovery utility

or

- Database Recovery Facility (DRF) tool
 - Merges logs automatically
- Disaster recovery
 - Test your procedures
 - RSR and DRF have good capabilities with data sharing

Failure Recovery

Many new recovery scenarios

- > CF failures, CF link failures, IRLM failures, IMS subsystem failures, etc.
- Plan recovery procedures
- Test recovery procedures

Recover as quickly as possible

- Requests for locks held by a failed subsystem are rejected
 - Requester abends
- FDBR backs out in-flight updates and releases locks very quickly

BMPs and Batch Jobs

BMPs are usually preferred

- BMP abends are backed out automatically
 - Do not cause lock rejects
- Batch (DLI and DBB) abends are not backed out automatically
 - Cause lock rejects until back out completes
 - May cause multiple abends
- BMPs use online log
 - Makes log management simpler
- You may keep a batch window without data sharing
 - Batch (DLI and DBB) jobs without data sharing
 - No IRLM
 - Will get exclusive authorization from DBRC

Data Sharing Implementation Steps

- Potential Steps (steps may be combined):
 - 1. Register Databases SHARELVL(1)
 - 2. Define ACCESS=UP for databases
 - 3. VSAM SHAREOPTION(3 3) and DISP=SHR
 - 4. IRLM with SCOPE=LOCAL
 - 5. Define structures in CFRM policy
 - 6. CFNAMES statement
 - Each FF DB I/O requires CF access for OSAM/VSAM structures
 - 7. IRLM SCOPE=NODISCON
 - 8. Register Databases SHARELVL(3)
 - All locks are placed in the lock structure
 - 9. Establish second IMS subsystem
 - Buffer invalidations may occur and lock conflicts may increase

This list does not include testing and procedure changes!

These steps add overhead.

Things to Remember

Performance

- Most (99% ?) applications run very well with data sharing
 - Applications which run poorly without data sharing will usually run worse with data sharing
- Many DB performance problems may be addressed by DBAs
 - More free space, spreading of data over more blocks, ...
- Size CF structures carefully
 - Use CFSIZER tool on the Web

More Information

- Redbooks
 - IMS in the Parallel Sysplex
 - Volume I: Reviewing the IMSplex Technology
 - SG24-6908
 - Volume II: Planning the IMSplex
 - SG24-6928
 - Volume III: IMSplex Implementation and Operations
 - SG24-6929