IBM GLOBAL SERVICES

B80

Introduction to HALDB and Its Benefits

Rich Lewis

IMS

Technical Conference

Sept. 27-30, 2004

Orlando, FL

© IBM Corporation 2004

HALDB (High Availability Large Database)

Large Database	Capacity			
Databases are partitioned				
Up to 1001 partitions per database	Performance			
Partitions have up to 10 data set gr				
Greater than 40	terabytes!			
 High Availability Database Partition independence 	Availability			
 Allocation, authorization, and reorg Self healing pointers 	anization are by pa	artition		
 Reorganization of partition does no indexes or logically related databas 	t require changes ses which point to i	to secondary t		
Prefix Resolution Prefix Undate and secondary index rebuilds are				

- Prefix Resolution, Prefix Update, and secondary index rebuilds are eliminated
- Much shorter offline reorganization times
- Online reorganization in IMS V9

Compatibility

HALDB Highlights

- Database types
 - PHDAM partitioned HDAM
 - PHIDAM partitioned HIDAM
 - Index is also partitioned
 - PSINDEX partitioned secondary index

Hierarchic structure is maintained

A database record resides in one partition

Partition selection

By key range or by user exit routine

HALDB Highlights

- Parallel Processing
 - Reorganizations
 - Partitions may be reorganized independently
 - Partitions may be reorganized in parallel
 - Application processing
 - Partitions may be processed in parallel
 - DBRC authorization is by partition (not entire database)

HALDB Support

- HALDB is a generalized database including support for:
 - Logical relationships
 - Secondary indexes
 - OSAM and VSAM
 - Online and batch
 - Standard backup, recovery, and reorganization utilities
 - Data sharing
 - Remote Site Recovery (RSR)
 - Extended Recovery Facility (XRF)
 - Database Recovery Facility (DRF)
 - Online Recovery Service (ORS)
 - Online Change
 - OSAM Sequential Buffering
 - IMS Monitor and IMS Performance Analyzer
 - ...
- Any full function database may be migrated to HALDB

HALDB Highlights

DBD defines the database structure

- Partitions and data sets are defined in the RECONs
 - INIT.PART command

or

Partition Definition Utility (ISPF)

HIDAM versus PHIDAM Databases

HDAM versus PHDAM Databases

Secondary Index versus PSINDEX Databases

Secondary Index Data Set

PSINDEX Data Sets

Partition Names and DDNAMEs

- Each partition has a name
 - Assigned by user
 - 1-7 characters (e.g. ABC1234)
- Partition names may be used in commands
 - /DBR DB ABC1234
 - > /START DB ABC1234
- Partition names are used for DDNAMEs
 - DDNAME = partition_name concatenated with data set letter
 - DDNAMES:
 - PHIDAM index: ABC1234X
 - Primary data set group: ABC1234A
 - ILDS: ABC1234L

Partition IDs and Data Set Names

- Each partition has an ID number
 - Assigned by IMS when partition is defined
- Each partition has an 'data set name prefix'
 - Assigned by user when partition is defined
 - 1-37 character
- Data set name is formed from 'data set name prefix', data set letter, and partition ID
 - If data set name prefix: IMSP.DB.XYZ789
 - If partition ID: 00007
 - PHIDAM index: IMSP.DB.XYZ789.X00007
 - Primary data set group: IMSP.DB.XYZ789.A00007
 - ILDS: IMSP.DB.XYZ789.L00007

DSN[°]prefix

Partition ID Data set letter

Self-Healing Pointers Use of the ILDS

ILK – Indirect List Key

12

IMS HALDB

High Availability

Availability

IMS HALDB

- HALDB with IMS V7, V8, and V9
 - Parallel processing
 - Reorganization by partition
 - Application processing
 - Smaller database data sets
 - Faster recoveries
 - Faster image copies
 - Faster reorganizations

HALDB with IMS V9

- Online reorganization
 - Absolutely no outage for reorganizations
 - Applications access all of the data during reorganizations without restrictions

13

Non-HALDB Reorganizations

- Non-HALDB reorganizations
 - Entire database is reorganized
 - Even if only part of it is disorganized
 - Entire database is unloaded
 - Entire database is reloaded
 - All secondary indexes must be rebuilt
 - > All logically related databases must be updated

Non-HALDB Reorganizations

Non-HALDB Database Outage

HALDB Reorganizations

HALDB reorganizations

- Individual partitions may be reorganized
 - Reorganizations may be staggered
 - Disorganization is often different in different partitions
 - In may not be necessary to reorganize all partitions
- Partitions may be reorganized in parallel
 - Shortens the process
- Secondary indexes are not rebuilt
 - Self-healing process will be used
- Logical relationships are not resolved
 - Self-healing process will be used

HALDB Reorganizations

- Shorten the reorg time to your window
- Reorg partitions in parallel
 - Create enough partitions to meet your requirement
- Eliminate rebuilds of secondary indexes
 - Prefix Resolution, HISAM Unload, HISAM Reload, or Index Builder are not required
- Eliminate updates to logical relationships
 - DB Scan, Prefix Resolution, and Prefix Update are not required

Reorganization Comparison

Non-HALDB reorganization

Reorganization Comparison

Non-HALDB reorganization

IMS V9 HALDB Online Reorganization

IMS V9 HALDB Online reorganization

- Absolutely no outage for reorganizations
- > Applications access all of the data during reorganizations without restrictions

Online reorganization

- Writes to new data sets
 - Dynamically allocates output data sets (optional)
 - Deletes input data sets when reorganization completes (optional)
 - Duplicate data sets
 - Only for partitions being reorganized
 - Only during the reorganization of the partitions

Supports data sharing

- Other IMS subsystems may read and update the partitions while they are reorged
- Reorganization may be done in any data sharing IMS subsystem

HALDB Online Reorganization

Two active sets of data sets

- Both are used during the reorg.
- Records are copied to new data set

'Unit of Reorg'

- Set of records being copied at one time
- Records are locked during copy
 - Number of records in UOR is dynamically adjusted
 - Algorithm limits time taken, bytes copied, and locks held during copy
- Cursor determines which data set contains active record

Being copied

IMS HALDB

Not yet used

HALDB Online Reorganization

Data set used is based on cursor value

- Cursor on record 6
- Access Record 5:
 - Access from M data set
- Access Record 14:
 - Access from A data set
- Access Record 9:
 - Wait for lock,
 - then access from M data set

IMS HALDB

Partitioning Options

- Two methods of partitioning (both apply to PHDAM, PHIDAM, and PSINDEX)
 - Key range
 - Each partition is assigned a range of root segment keys

- Partition Selection Exit routine
 - The exit routine assigns a root segment to a partition based on its key

			••••	
20US12	17CA12	24UK12		65FR49
45US16	34CA32	78UK23		77FR20
77US18	85CA34	89UK00		97FR91

Modifying Partitioning of a Database

- Partitioning may be changed for a database
 - Add partitions as database grows
 - Add new partitions for new keys
 - Split partitions which grow too large
 - Combine partitions when data in them is deleted
 - Delete partitions
 - Installations can react to changing data requirements

Some examples of these follow

Splitting a Partition

If partition B with high key 4000000 needs to be split

Modifying Partition Boundaries

If records need to be moved from partition B to C

Databases with Dates for Keys

Some databases have dates as the high-order part of the key

- To add a partition for a set of dates (higher keys)
 - Define it and initialize it

- To delete the partition with the lowest dates (keys) and all of its data
 - Delete the partition definition

Unloads and reloads are not required for these changes

Application Support

Compatibility

- Applications are compatible
 - No changes to programs when databases are converted
- Two exceptions
 - Initial loads of logically related databases
 - Cannot initially load logical children into a HALDB database
 - Do you do initial loads of databases with logical relationships?
 - Processing secondary indexes with /SX field and duplicate data
 - Only applies to programs which process the secondary index as a database
 - Does not apply to normal use of secondary indexes to access indexed database
 - Simple modification to application program
 - Increase I/O area by 4 bytes
 - Adjust offset to duplicate data by 4 bytes

Application Support

Performance

- Application program may be limited to a partition (optional)
 - ▶ HALDB control statement for BMP, batch (DLI and DBB), and JBP
 - Specifies a partition
 - Unqualified GU/GN call retrieves first segment in the partition
 - End of database ('GB') status code returned when end of partition is reached
 - Application without the control statement
 - Processes the entire database
 - Application with the control statement
 - Processes only one partition
 - Application programming changes are NOT required for sequential processing
 - Concurrent applications with control statements for different partitions
 - Process partitions in parallel

30

HALDB Benefits

- Greater database capacity
 - "Unlimited" capacity
 - > Partitions may be modified as requirements change
- Increased database availability
 - Shortened reorganization process
 - Batch window may be shortened with concurrent processing
- Improved performance
 - Concurrent processing against partitions
- Application program changes are not required

Compatibility

IMS HALDB

Availability

Capacity

Performance

Migrating Databases to HALDB

- Migration Overview
 - 1. Size partitions
 - Decide how many partitions you will want and their boundaries
 - 2. Unload non-HALDB database with HD Unload or HP Unload
 - Creates unload data set
 - **3. DBDGEN for HALDB**
 - 4. Define partitions for HALDB
 - Use Partition Definition Utility or DBRC commands
 - 5. Allocate HALDB database data sets
 - 6. Initialize HALDB database partitions
 - 7. Load HALDB database with HD Reload or HP Load
 - Uses HALDB DBD and RECONs
 - Reads unload data set

Migrating Databases to HALDB

Considerations:

- > All logically related databases must be migrated concurrently
 - No logical relationships between HALDB and non-HALDB databases
- HALDB does not support virtual pairing
 - Migration is to physical pairing
- All secondary indexes to a database must be migrated with the database
 - Indexes to HALDB databases must be HALDB (ACCESS=PSINDEX)

Migrating Databases to HALDB

- The HALDB Conversion and Maintenance Aid (IMS Tool 5655-K47)
 - A tool from IBM
 - ISPF based
 - Makes DBAs more productive
 - Automates many of the tasks
 - Allows DBAs to convert more databases more rapidly
 - Requires less skilled DBAs than manual conversions
 - Provides both conversion and maintenance capabilities
 - Provides other special functions

HALDB Conversion and Maintenance Aid

Simplifies conversion

- Determines high keys, partition sizes, etc.
- Converts DBDs
- Defines partitions to DBRC
- Allocates database data sets
- Creates unloads and reloads
- Handles partitioned databases (PDB, PDF, and user)
- Handles DEDB to HALDB conversions

Simplifies maintenance

- Splits and consolidates partitions
- Clones database and partition definitions to other RECONs
- Copies partitions to other RECONs

HALDB Information

- Redbook:
 - > The Complete IMS HALDB Guide, All You Need to Know to Manage HALDBs
 - SG24-6945
 - Available from www.ibm.com/redbooks
- Presentations and articles on the Web
 - IMS High Availability Large Database (HALDB)
 - http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS185
 - Migrating to IMS HALDB
 - http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS693
 - Application Design and Programming with HALDB
 - http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS490
 - Using GENJCL.USER to Allocate IMS HALDB Data Sets
 - http://www-1.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD100491
 - From the IMS home page (www.ibm.com/ims) click on "presentations/papers"
 - More information about many IMS topics

HALDB Conversion and Maintenance Aid Information

IMS tools

- http://www.ibm.com/software/data/db2imstools/
 - Contains links to all of the IBM IMS tools

- HALDB Conversion and Maintenance Aid
 - http://www.ibm.com/software/data/db2imstools/imstools/imshaldb.html
 - Contains links to Fact Sheet and Library (User's Guide)