

B79

HALDB Database Administration

Rich Lewis

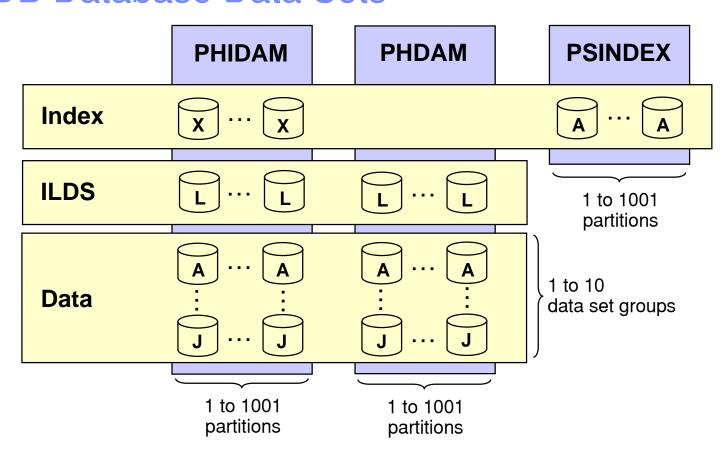
IMS Technical Conference

Sept. 27-30, 2004

Orlando, FL

Agenda

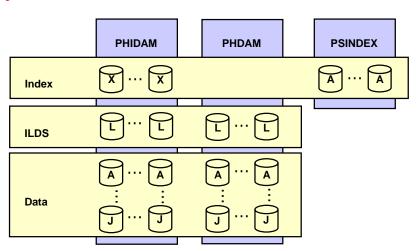
- Review of database data sets
- Partitions
 - Initialization
 - Sizing
 - Adding, deleting, and modifying partitions
- Reorganizations
- Recoveries
 - Timestamp recoveries
- Test databases
- Secondary indexes
- A more extensive version of this presentation including notes for each page is available on the web at: http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS842
- Redbook: The Complete IMS HALDB Guide, All You Need to Know to Manage HALDBs SG24-6945



HALDB Database Data Sets

The data sets in a partition have generated data set names and DDNAMEs.

Letters are used to distinguish them.


X : PHIDAM primary index L : ILDS

A – J : Data data sets A : PSINDEX

HALDB Database Data Sets

- Each PHDAM or PHIDAM partition requires an ILDS (L)
 - ▶ ILDS is empty if there are no sec. indexes or log. Relationships
- Each PHIDAM partition has an index data set (X)
- Each PHDAM or PHIDAM partition has an A data set
 - Root segments are in the A data sets
- Each PHDAM or PHIDAM partition may have B-J data sets
 - Used for multiple data set groups
- Fach PSINDFX has an A data set.

Partition Names and IDs

- Each partition has a name
 - Unique in RECONs
 - Partitions in different databases cannot have the same names
 - Partitions cannot have the same names as databases
 - Choices:
 - Name signifies the data in the partition
 - Could cause problems when partitions are modified
 - Name is arbitrarily chosen
- Each partition has an ID
 - Number assigned by IMS when partition is defined
 - Assigned in creation order within the database
 - Not in key sequence
 - Not reused

HALDB Database Data Sets

- Data set names.
 - Begin with data set name prefix for the partition
 - Up to 37 characters assigned by the user
 - Letter and Partition ID are used as suffix
 - X for PHIDAM index
 - L for ILDS
 - A for PSINDEX
 - A through J for data

- Each partition in a database may have the same data set name prefix.
 - Partition IDs make data set names unique

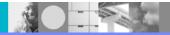
- Example:
 - Partition data set name prefix: IMSP0.DB.INV23
 - Partition ID: 00004
 - Data set names:
 - PHIDAM index: IMSP0.DB.INV23.X00004
 - PHIDAM ILDS: IMSP0.DB.INV23.L00004
 - PHIDAM first data data set: IMSP0.DB.INV23.A00004

HALDB DDNAMEs

DDNAMEs

- Begin with the partition name
 - Up to 7 characters assigned by user
- Letter is used as suffix
 - X for PHIDAM index
 - I for II DS
 - A for PSINDEX
 - A through J for data
- Example:
 - Partition name: LBAD112
 - DDNAME for PHIDAM index: LBAD112X
 - DDNAME for PHIDAM ILDS: LBAD112L
 - DDNAME for first data data set: LBAD112A

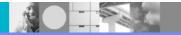
Dynamic Allocation


- Dynamic allocation uses RECON information
 - All HALDB databases are registered in RECONs
 - DFSMDA members are never used for HALDB
- If you use a DD statement:
 - ▶ If DD statement conflicts with RECON information, allocation fails
 - ▶ If DD statement matches RECON information, allocation succeeds
 - It works as if you had not used a DD statement
- THEREFORE, do not include DD statements for HALDB

Agenda

- Review of database data set
- Partitions
 - Initialization
 - Sizing
 - Adding, deleting, and modifying partitions
- Reorganizations
- Recoveries
 - ▶ Timestamp recoveries
- Test databases
- Secondary indexes

Partition Initialization


- Partition initialization
 - Prepares partition data sets for use
 - Ensures that partitions with no data are usable
 - Initialization is done by
 - HALDB Partition Data Set Initialization utility (DFSUPNT0) or
 - Database Prereorganization utility (DFSURPR0)
 - Database is specified to the utility
 - Partitions with 'partition initialization required' DBRC flag (PINIT) are initialized
 - Exception: DFSUPNT0 has unconditional partition initialization function
 - Invokes initialization for all partitions in the database with or without flag set
 - Specified with INITALL statement in DFSOVRDS DD data set
 - Introduced b PQ49638 (IMS V7) and PQ55002 (IMS V8)

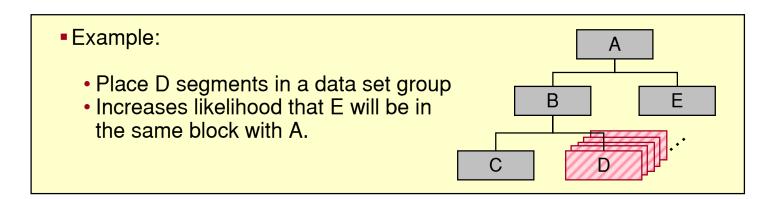
Partition Initialization

- Partition initialization process
 - Makes high-used RBA non-zero
 - Writes and erases a record in PSINDEX
 - Writes reorg number and partition ID in PHDAM and PHIDAM
 - Creates first bit map block in PHDAM and PHIDAM
 - Writes high-key (x'FF...FF') record in PHIDAM

Partition Initialization

- Partition initialization is only required in three cases:
 - 1. Before initial load (PROCOPT=L) of partition
 - 2. Before migration reload of partition
 - Input to reload was created by unload of non-HALDB database with MIGRATE=YES or MIGRATX=YES option
 - 3. Before a partition may be used without containing any data
 - Initial load or reload does not insert any segments in the partition
- Partition initialization is not required with reorganizations
 - Not required even when data sets are deleted and redefined
 - Unless the partition is empty
- 'Partition Initialization Required' flag in RECONs
 - Turned 'on' by partition definition or DBRC command
 - Turned 'off' by partition initialization or DBRC command
 - Authorization fails if flag is 'on'

Number of Partitions and Their Sizes


- Things to consider when choosing the number of partitions
 - Number of partitions affects the sizes of partitions
 - Time required to reorg partitions in parallel
 - Smaller partitions shorten the process
 - Time required to image copy and recover partition data sets
 - Smaller partitions shorten these processes
 - Smaller partitions may avoid multivolume data sets
 - Especially important with OSAM
 - Management of the data sets
 - More data sets require more management
- Multiple data set groups
 - May be advantageous to have only one data set per partition
 - May be advantageous to have multiple data sets per partition

Multiple Data Set Groups

- HALDB supports multiple data set groups
 - Multiple data set groups place different segment types in different data sets
 - Should you use them?
- Multiple data set groups were used for two reasons with non-HALDB
 - 1. Avoid data set size limitations
 - Not required with HALDB
 - 2. Place infrequently used segments in another data set
 - Also applies to HALDB

Database Compression

- HALDB supports segment edit/compression routines
 - Should you use them for compression?
- Reasons to use compression with HALDB
 - Saves DASD space
 - May improve performance
 - Reduces I/Os required to retrieve and write data
- Reasons not to use compression with HALDB
 - Not needed to avoid the data set size limitation
 - May hurt performance
 - CPU costs for compression and expansion of segments
 - ▶ DBA effort to manage compression routines

Adding, Deleting and Changing Partitions

- Databases change over time
 - ▶ The sizes of partitions may change over time
 - Data added or deleted
 - The high keys of partitions may need to be adjusted over time
 - Different amounts of data added or deleted to different partitions
 - Example: Root keys based on date
- Databases need to be adjusted over time
 - Partitions may need to be split, consolidated, created, or deleted
 - Partition boundaries (high keys) may need to be adjusted

HALDB Migration Aid Utility

- HALDB Migration Aid utility (DFSMAID0)
 - ▶ Reads HDAM, HIDAM Secondary Index databases
 - Provides sizing and high key information for migration planning
 - Secondary index support
 - Provides key range boundaries and numbers of records
 - Reports of 'bytes' and 'prefix-incr' information are inaccurate for secondary indexes
 - Number of segments and high key values are accurate in the report
 - Sizes are easily calculated from the number of records
 - Read <u>PHDAM</u>, <u>PHIDAM</u>, and <u>PSINDEX</u> databases
 - Provides sizing and high key information for repartition planning

HLADB Migration Aid Utility

Sample report:

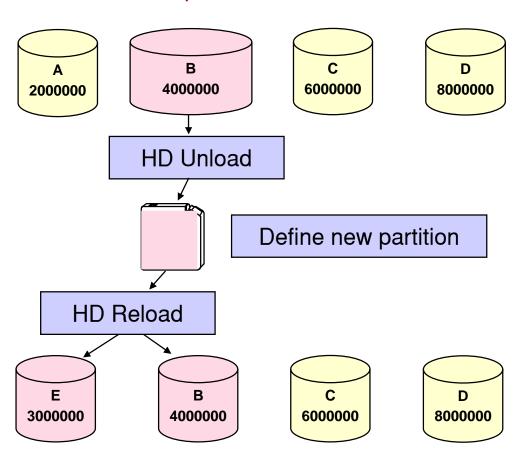
```
partition 1 :
   minimum key =
            d2c1c1f1 f1f2f3f4
                                    KAA11234
      +0000
   maximum key =
            d2f2f3f9 f9f2f3f4
                                    K2399234
      +0000
                                              prefix-incr
                                                            length-incr
                    segments
                                     bytes
      'PRODUCT '
                       31567
                                   4040576
                                                   252536
     'INVENT'
                      103781
                                   8094918
                                                   830248
      'ORDOTY'
                      171182
                                  10955648
                                                  1369456
                                                                       0
      'MFGSPECS'
                                  10938610
                                                   408920
                       51115
                                                                       0
 SUM)
                      357645
                                                  2861160
                                  34029752
                                                                       0
```

segments - number of segments

bytes - number of bytes for the segments

prefix-incr - additional bytes due to increased prefix size

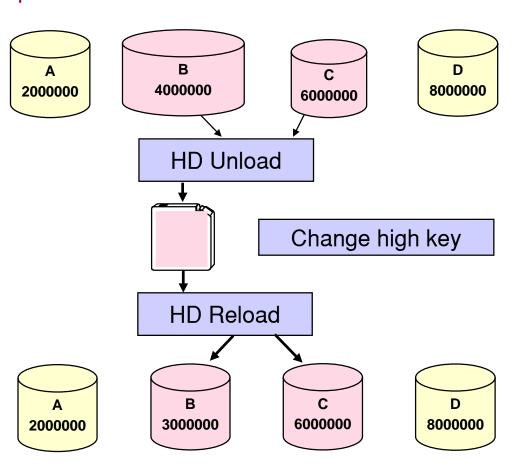
length- incr - additional bytes required for paired logical relationships


HALDB Migration Aid Utility

- Using the HALDB Migration Aid utility
 - You may specify one of the following
 - Number of equal sized partitions
 - Number of bytes per partition
 - Bytes of segment data
 - Does not include free space, bit maps, RAPs or FSEAPs
 - High keys for partitions
 - Report for each partition and the entire database
 - Bytes in the reports do not include free space, bit maps, RAPs or FSEAPs
 - You must adjust for these

Splitting a Partition

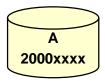
- If partition B with high key 4000000 needs to be split
 - Unload partition B
 - HD Unload or HP Unload
 - Define new partition E
 - Initialize partitions B and E
 - Reload partitions B and E
 - HD Reload or HP Load
 - Partitions A, C, and D are not affected

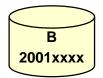


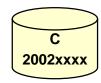
2000000

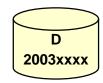
Modifying Partition Boundaries

- If records need to be moved from partition B to C
 - Unload partitions B and C
 - HD Unload or HP Unload
 - Change high key for partition B
 - From 4000000 to 3000000
 - Reload partitions B and C
 - HD Reload or HP Load
 - Partitions A and D are not affected

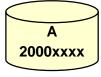


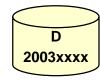




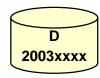

Databases with Dates for Keys

Some databases have dates as the high-order part of the key





- ▶ To add a partition for a set of dates (higher keys)
 - Define it and initialize it



- ▶ To delete the partition with the lowest dates (keys) and all of its data
 - Delete the partition definition

Unloads and reloads are not required for these changes

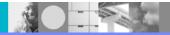
Disabling and Enabling Partitions

- Disabling and Enabling partitions was introduced by APARs
 - PQ48421 for IMS V7
 - PQ73858 for IMS V8
- Disabling partitions
 - Definitions and information remain in RECONs
 - Includes partition IDs, DSN prefixes, and recovery information
 - Partitions are not used
 - Partitions are ignored
- Disabled partitions may be enabled
 - Enabled partitions are made active
 - Enabled partitions are marked 'recovery needed'

Disabling and Enabling Partitions

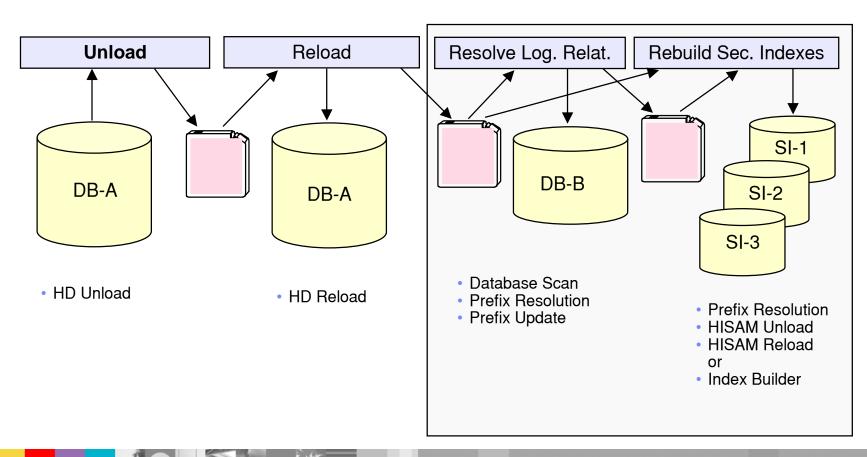
- Use of disabling and enabling partitions
 - Disabling is normally done prior to deleting a partition
 - Keeps recovery information, partition ID, DSN prefix, etc.
 - If testing is successful, partition is deleted
 - Deletion removes all information.
 - If testing is not successful, partition is enabled
 - Partition is recovered and becomes active
 - Other partitions may require timestamp recovery
- Partition Definition Utility (PDU) support
 - New 'Partition status' flag on 'Change Partition' panel
- DBRC command support:

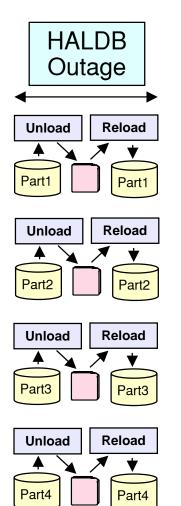
```
CHANGE.PART DBD(dname) PART(pname) DISABLE CHANGE.PART DBD(dname) PART(pname) ENABLE
```



Agenda

- Review of database data set
- Partitions
 - Initialization
 - Sizing
 - ▶ Adding, deleting, and modifying partitions
- Reorganizations
- Recoveries
 - ▶ Timestamp recoveries
- Test databases
- Secondary indexes




Non-HALDB Reorganizations

Non-HALDB Database Outage

HALDB Reorganizations

- Shorten the reorg time to <u>your window</u>
 - Create enough partitions to meet your requirements
- Reorg partitions in parallel
- Eliminate rebuilds of secondary indexes
 - Prefix Resolution, HISAM Unload, and HISAM Reload, or Index Builder are not required
- Eliminate updates to logical relationships
 - Database Scan, Prefix Resolution, and Prefix Update are not required

Healing Pointers After Reorgs

- After a reorganization sec. index and log. rel. pointers are "broken"
 - Normal processing heals them efficiently
 - Only heals pointers that are used
 - Reads of pointers are "free"
 - They are being read for normal processing
 - ILDS reads are efficient
 - ILDS CIs hold many entries
 - ILDS CIs are maintained in the buffer pools
 - Optionally, you can heal them
 - Extends the reorganization process
 - Typically, uses more resources
 - Heals all pointers
 - More total I/Os
 - HALDB Conversion and Maintenance Aid includes pointer healing utility
- My recommendation: <u>Let normal processing heal the pointers</u>

Data Set Delete and Define for Reorgs

- HALDB database data sets may be reused
 - Delete and redefine are not required for reorganization
 - VSAM REUSE attribute is honored by HD Reload
 - Non-HALDB VSAM required DELETE and DEFINE
 - OSAM allows reuse with both HALDB and non-HALDB
 - Delete and define are required to move data sets
- REUSE attribute is required for HALDB VSAM data sets
 - Except ILDS
 - Parameter is allowed but not honored for ILDS
 - ILDS will not be reused by Index/ILDS Rebuild utility (DFSPREC0)

Partition Initialization During Reorgs

- Partition initialization is not required during reorganizations
 - Data sets may be deleted and redefined without partition initialization
 - Exception: A partition which contains no data must be initialized
- Reorganization steps:
 - Unload partition
 - Delete partition data sets (optional)
 - Define partition data sets (optional)
 - Reload partition

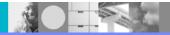
Reorganizations and Secodary Indexes

- Reorganization of a HALDB database does not require rebuild of its secondary indexes
 - Self-healing pointer scheme eliminates this requirement

- Many installations never reorganize non-HALDB secondary indexes
 - ▶ They are rebuilt (and organized) with every reorg of the indexed databases
- HALDB secondary indexes may become disorganized
 - They may require reorganization

This is a change in procedures

Reorganization Alternatives


- HD Unload and HD Reload
 - Standard IMS utilities
- High Performance Unload and High Performance Load
 - IMS tools
- IMS Parallel Reorg
 - ▶ IMS tool
 - Unload and reload are done in parallel
- IMS V9 Online Reorganization
 - Standard IMS utility
 - Absolutely no outage for reorganization

Agenda

- Review of database data set
- Partitions
 - Initialization
 - Sizing
 - ▶ Adding, deleting, and modifying partitions
- Reorganizations
- Recoveries
 - ▶ Timestamp recoveries
- Test databases
- Secondary indexes

Backup and Recovery

- HALDB A-J data sets (not the ILDS or PHIDAM index)
 - Standard IMS full function processes
 - Image Copy, Image Copy 2, Online Image Copy, tools
 - Logging
 - Change Accumulation
 - Database Recovery utility
 - Database Recovery Facility (DRF) tool
 - DBRC support
 - GENCJCL.IC
 - GENJCL.CA
 - GENJCL.RECOV

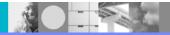
Backup and Recovery

- ILDS (L) and PHIDAM index (X) data sets
 - Backup
 - No image copies
 - Updates are not logged
 - ILDS is only updated by reorganization
 - PHIDAM Index is treated like a non-recoverable database
 - Recovery
 - Index/ILDS Rebuild Utility (DFSPREC0)
 - Rebuilds the data set(s) from the database
 - **DBRC**
 - GENJCL.USER MEMBER(DSPUPJCL)
 - May be used to generate DFSPREC0 JCL to rebuild ILDS or PHIDAM index

Timestamp Recoveries

- All data sets in a partition must be recovered to the same time
 - PHIDAM index must be rebuilt
 - Rebuilt from the "A" data set with Index/ILDS Rebuild utility
 - ILDS may need to be rebuilt
 - If secondary indexes or logical relationships are used and
 - 2. If recovery is to time before last reorganization
 - ILDS is only changed by reorganizations
 - ILDS may be rebuilt wit the Index/ILDS Rebuild utility
 - Alternative for ILDS
 - After reorganization
 - Copy ILDS with REPRO
 - If ILDS needs to be restored
 - Use copy produced by REPRO

Timestamp Recoveries


- Must all partitions of a database be recovered to the same time?
 - Almost always
 - User must understand when this is not required
 - For example, offending program updated only one partition
 - Secondary index implications
 - Usually, database with secondary index forces recovery of all partitions to the same time
 - All partitions of the indexed database
 - All partitions of the secondary indexes
 - Logical relationship implications
 - Usually, database with logical relationships forces recovery of all partitions to the same time
 - All partitions in the logically related databases

Agenda

- Review of database data set
- Partitions
 - Initialization
 - Sizing
 - ▶ Adding, deleting, and modifying partitions
- Reorganizations
- Recoveries
 - ▶ Timestamp recoveries
- Test Databases
- Secondary indexes

Test Databases

- Non-HAI DB test databases
 - Often, not registered in RECONs
 - Each programmer may have one or more versions of a database
- All HALDB databases are registered in RECONs
 - Multiple versions of a database must be defined in different RECONs
 - DBRC does not allow multiple databases with the same name
 - Multiple test versions of a database require multiple RECONs
 - Plan your batch test environments

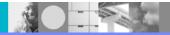
Defining Test Databases

- Use the same DBD as production
 - ▶ DBD does not include partition or data set information
 - Place in test DBDLIB and ACBLIB
- Create test partition definitions
 - Define partitions for test environments

or

- Use Partition Definition Utility EXPORT and IMPORT functions
 - Moves partition definitions between RECONs
 - They may be modified after IMPORT
 - Data set name prefix, RAA, etc.
 - APARs PQ48421 (V7) and PQ73858 (V8) maintain partition IDs

Creating Test Databases


- Alternatives for creating test database from a production database
 - Unload and reload
 - HD Unload (HP Unload) of production
 - HD Reload (HP Load) to test
 - You may create a different partition configuration
 - Partition IDs will generally be different
 - Partition names may be changed
 - Partition boundaries may be changed
 - Image Copy and restore
 - Export and import partition definitions
 - Maintains partition IDs (with APARs PQ48421 and PQ73858)
 - Image copy production databases and restore to test
 - Partition IDs are stored in database data sets
 - Change database data set names of test database
 - Change data set name prefixes
 - Use application programs

Agenda

- Review of database data set
- Partitions
 - Initialization
 - Sizing
 - ▶ Adding, deleting, and modifying partitions
- Reorganizations
- Recoveries
 - ▶ Timestamp recoveries
- Test databases
- Secondary indexes

Secondary Indexes

- Plan the partitions for the secondary indexes
 - How many partitions do you need?
 - Space requirements
 - HALDB secondary index entries are much larger than those for non-HALDB secondary indexes
 - Pointers are larger
 - Root key of target is stored in the entry
 - Will they need to be adjusted during the life of the database?
 - Keys based on date, etc.
- Plan to reorganize them
 - They are not rebuilt with each reorganization of their indexed database
- Don't make the non-recoverable
 - Unless you have a tool to rebuild them (e.g. Index Builder)
 - They are not rebuilt by IMS utilities



Some Things to Remember

- HALDB Migration Aid utility can analyze existing HALDB databases
 - Useful when planning repartitioning
- Deleting a partition definition deletes its recovery information
 - Disabling a partition keeps its recovery information
- Secondary indexes may require reorganizations
 - They are not rebuilt when the indexed database is reorganized
- Secondary index cannot be rebuilt from database with IMS utilities
 - Don't make them non-recoverable unless you have a tool like the IBM Index Builder
- PHIDAM indexes and ILDSs have a different recovery process
 - ▶ They are rebuilt with Index/ILDS Rebuild Utility (DFSPREC0)
- Plan your scheme for creating HALDB test databases
 - DBRC registration is required for all databases

A more extensive version of this presentation including notes for each page is available on the web at: http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS842

