

B78

IMS V9 DB and DBRC Enhancements

Rich Lewis

IMS Technical Conference

Sept. 27-30, 2004

Orlando, FL

DB and DBRC Enhancements

Database Enhancements

- Image Copy Large Tape Block Sizes
- HALDB Online Reorganization
- HALDB Specific Partition Initialization
- ▶ IRI M 2.2
- Multi-Area Structures for DFDB SVSO
- Fast Path Area Open/Close Enhancements
- > XML DB
- IMSplex Database Commands
- PS EDI
- Improved Message with Database Abends

DBRC Enhancements

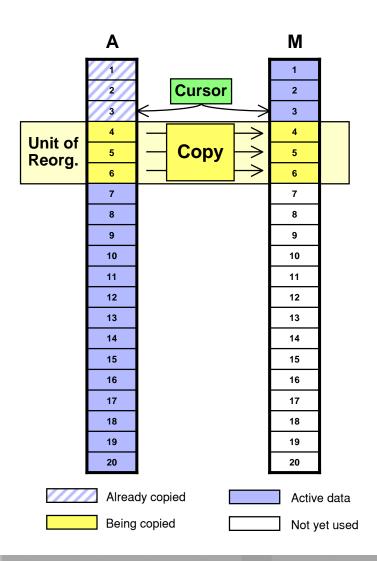
- Command Authorization for /RMxxxx commands
- More Than 32K Database Registrations
- HALDB Dynamic Allocation by GENJCL.IC
- DBRC Application Programming Interface (API)

HALDB Online Reorganization and XML DB are covered in greater detail in separate presentations.

Large Image Copy Block Size on Tape

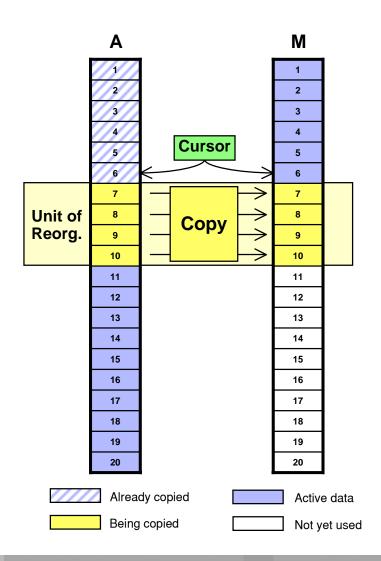
- Tape block sizes > 32K allowed for image copies
 - Requires supporting hardware
 - Invoked when BLKSIZE on Image Copy JCL DD statement
 - Not specified (system determined block size)
 - >32K
 - Supported by:
 - Image Copy utility (DFSUDMP0)
 - Database Recovery utility (DFSURDB0)
 - Database Recovery Facility tool (DRF)
 - Not supported by:
 - Image Copy 2 utility (DFSUDMT0)
 - Online Image Copy utility (DFSUICP0)
- Benefits
 - Improved performance and greater tape capacity

HALDB Online Reorganization


- Absolutely no outage for reorganizations
 - Applications access all of the data during reorganizations without restriction
- Online reorganization technique
 - Writes new data sets
 - Dynamically allocates output data sets (optional)
 - Deletes input data sets when reorganization completes (optional)
 - Duplicate data sets
 - Only for partitions being reorganized
 - Only during the reorganization of the partitions
- Supports data sharing
 - Other IMS systems may read and update the partitions while they are reorged
 - Reorganization may be done in any data sharing IMS system

HALDB Online Reorganization

- Two active sets of data sets
 - ▶ Both are used during the reorg.
 - Records are copied to new data set
- 'Unit of Reorg'
 - Set of records being copied are one time
 - Records are locked during copy
 - Number of records in UOR is dynamically adjusted
 - Algorithm limits time taken, bytes copied, and locks held at any time
 - Cursor determines which data set contains active record



HALDB Online Reorganization

- Data set used is based on cursor value
 - Cursor on Record 6
 - Access Record 5:
 - Access from M data set
 - Access Record 14:
 - Access from A data set
 - Access Record 9:
 - Wait for lock,
 - then access from M data set

HALDB Specific Partition Initialization

Background

- HALDB partitions must be initialized before they may be used
- Partition initialization makes database data sets non-empty
 - They can be opened for update
- Partition initialization is required before:
 - Initial load (PROCOPT=L)
 - Migration reload
 - HD Reload using output of unload of non-HALDB
 - Using empty partition
 - New partition with no data
- 'Partition initialization required' status is kept in RECONs
 - Cannot authorize partition with this flag on
- Initialization is done either by Partition Initialization utility or the Database Prereorganization utility

HALDB Specific Partition Initialization

Previous capabilities

- Initialize partitions for a list of databases
 - Initializes only partitions with 'partition initialization needed' flag on or
 - Initializes all partitions without regard to the 'part. init. needed' flag
 - Invoked with INITALL control statement in DFSOVRDS data set

Added capabilities

- Initializes a list of partitions
 - Specify each partition on a separate control statement
 - Partitions may be in different databases
 - Initializes partitions even when the 'part. init. needed' flag is not on

Benefits

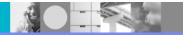
- Improved flexibility
 - Especially important for testing
 - Eliminates need to turn on the 'part. init. needed' flag

IRLM 2.2

64-bit addressing support

- Uses 64 bit addressing if z/Architecture and z/OS 1.3 or greater
 - Most lock control blocks are placed above the bar
 - Provides support for more concurrently held locks
 - Primarily required for DB2 systems with "abusive locking"
- Uses 31-bit addressing if not z/Architecture or not z/OS 1.3 or greater
- PC parameter is ignored
 - PC=YES is always used (even if PC=NO is specified)
 - Relieves potential memory constraint
 - PC=NO performance benefit was insignificant
 - MAXCSA= is ignored
 - Only applies when PC=NO is used

Benefits


Greater concurrent lock capacity

IRLM 2.2

- IMS V9 includes IRLM 2.2
 - ▶ IRLM 2.1 is not shipped with IMS V9
- Compatibility
 - ▶ IRLM 2.1 may be used with IMS V7, V8, and <u>V9</u>
 - ▶ IRLM 2.2 may be used with IMS V7, V8, and V9
 - ▶ IRLM 2.1 and 2.2 may coexist in the same IMS data sharing group

Multi-Area Structures for DEDB Shared VSO

- IMS V9 allows multiple areas to share a CF structure
 - Previous releases required a CF structure for each shared area
 - Multi-area structures defined in DBRC
 - New MAS keyword for INIT.DBDS and CHANGE.DBDS
 - System-managed duplexing may be used
 - IMS-managed duplexing (CFSTR2) is not used
 - Areas assigned to the same structure in DBRC must use the same buffer pool
 - DEDBMAS statement in DFSVSMxx creates private buffer pools
 DEDBMAS=(poolname, cisize, pri, sec, max, lkasid, StructureName)
 - Default pool built for structure's areas if appropriate DEDBMAS statement is not present

Benefits

- Simplified structure management
- Avoids potential z/OS limitation of 512 structures per sysplex

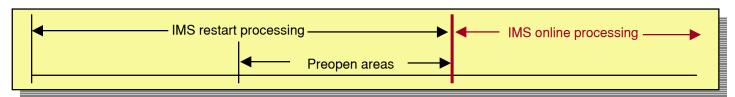
Fast Path Area Open and Close Enhancements

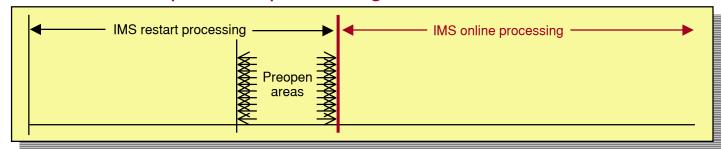
New capabilities

- Parallel open and close processing
 - Multiple TCBs are used for open and close
- Async open processing with online activity
 - Does not delay IMS restart completion
- Options to (re)open areas after /ERE completes
 - Open only those with PREOPEN specified (like previous releases)
 - Open all of those open at time of termination
 - Open both those with PREOPEN and those open at time of termination
- Restart and reopen of areas after IRLM reconnect

Benefits

- Improved performance
- Simplified operations




Fast Path Area Open and Close Enhancements

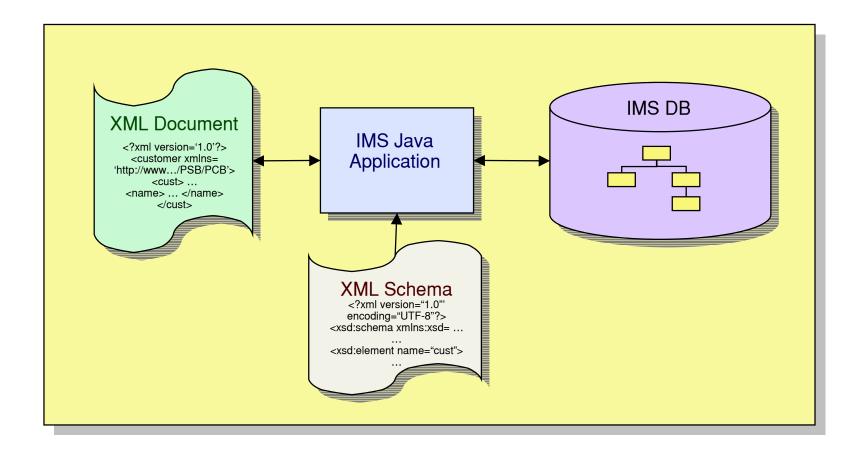
IMS Restart Processing for DEDB Areas


Pre-IMS V9

IMS V9 with option to open during restart

IMS V9 with option to (re)open after restart completes

XML Database


- Storage and retrieval of XML documents in IMS databases
 - Composition of XML documents from existing IMS databases
 - Creation of IMS segments from XML documents (decomposition)
 - Intact storage of XML documents (without decomposition)
 - Tooling assistance to define metadata for mappings
 - IMS Java application programming support

Benefits

- Easy exchange of data between IMS databases and XML documents
 - Existing IMS databases may be used to create XML documents
 - Existing applications are unaffected

XML Database

IMSplex Database Commands

- IMSplex (type-2) database commands
 - Extends IMSplex commands to IMS database resources
 - New commands
 - QUERY or QRY verb
 - DB and ARFA resources.
 - UPDATE or UPD verb
 - DB, AREA, and DATAGRP resources
- Benefits
 - Consistent format with IMSplex commands introduced in IMS V8
 - Consolidated responses from multiple IMS systems
 - Use of wildcards with resource names

IMS V9 has new terminology for commands:

- Type-1 commands:
 - /DIS, /START, etc.
- Type-2 commands:
 - QRY, UPD, INIT, etc.

IMSplex (Type-2) Database Commands

Examples of QUERY or QRY:

Type-2 Command	Equivalent Type-1 Command
QUERY DB(ABC)	/DIS DB ABC
QRY DB(*)	/DIS DB ALL
QRY DB(AB*)	No equivalent
QRY DB STATUS(ALLOCF)	/DIS DB ALLOCF
QRY AREA NAME(*) STATUS(STOPPED)	/DIS AREA STOPPED

IMSplex (Type-2) Database Commands

Examples of UPDATE or UPD:

Type-2 Command	Equivalent Type-1 Command
UPDATE DB NAME(ABC) START(ACCESS)	/START DB ABC
UPD AREA NAME(XYZ) STOP(SCHD)	/STOP AREA XYZ
UPD DB NAME(ABC) STOP(ACCESS)	/DBR DB ABC NOFEOV
UPD DB NAME(ABC) STOP(UPDATES)	/DBD DB ABC
UPD DB NAME(ABC) START(ACCESS) SET(ACCTYP(READ)) OPTION(OPEN)	/START DB ABC ACCESS=RD OPEN
UPD DB NAME(AB*) START(ACCESS)	No equivalent

Disabling of z/OS DFSMS V1R5 PS EDI

PS FDI

- Physical Sequential Enhanced Data Integrity
- PS EDI prevents concurrent opens of
 - Data sets with DSORG=PS (e.g. OSAM)
 - Allocated with DISP=SHR
 - Opened for output or update
- New optional function in z/OS DFSMS V1R5
 - Invoked by IFGPSEDI member of SYS1.PARMLIB
 - WARN mode: only send message if rule violated
 - ENFORCE mode: prevent concurrent opens for update
 - Exception data sets may be listed
 - Concurrent opens for update allowed for them
 - Authorized programs may disable function for their data sets
 - IMS uses this technique to disable PS EDI for some data sets

Disabling of z/OS DFSMS V1R5 PS EDI

- PS EDI is not required for some IMS data sets:
 - Database data sets
 - DBRC and IRLM provide data integrity
 - OLDS, WADS, RDS, and MSDB dump data sets with XRF
 - Alternate must have write capability for takeover
 - PS EDI is disabled by IMS for these data sets
 - Bit in DCBE is set by IMS
 - APARs supplying this function:
 - PQ83940 for IMS V9
 - PQ83941 for IMS V8
 - PQ83942 for IMS V7
- PS EDI is excellent function for other IMS data sets
 - OLDS and WADS when not in XRF takeover

Improved Message with DB Abends

- Message identifies database involved in abend
 - Previously only issued for HALDB
 - Now issued for non-HALDB full function databases
 - Such as U085x (DFS554A is also issued)

DBRC Command Authorization for /RMxxxx

- IMS V8 added authorization for DBRC commands
 - ▶ Support for DBRC utility (DSPURX00) and HALDB Partition Definition Utility
 - Did not include /RMxxxx commands
- IMS V9 support
 - Support for /RMxxxx commands
 - RACF (or equivalent)
 - DBRC Command Authorization Exit routine (DSPDCAX0)
 - Optional
- Benefits
 - Extends consistent security to online DBRC commands

DBRC Command Authorization for /RMxxxx


- DBRC command authorization invocation
 - Same for utilities and /RMxxxx commands
 - Activated by
 - CHANGE.RECON CMDAUTH (SAF|EXIT|BOTH|NONE,safhlq)
 - Profiles can differ for different RFCONs
 - Controlled by safhlq
 - Commands can be authorized at
 - Command verb level
 - For example, GENJCL command
 - Command verb + resource type level
 - For example, GENJCL.RECOV command
 - Command verb + resource type + resource name level
 - For example, GENJCL.RECOV DBD(ACCDB)

DBRC – More Than 32K Database Registrations

- Previous releases only allowed 32,767 registrations of databases
 - Deleting a database did not free a global DMB number in the RECONs
- IMS V9 allows more than 32,767 registrations of databases
 - Maximum databases registered at any time is still 32,767
- Benefit
 - Avoids potential problem for installations with many databases

DBRC – HALDB Dynamic Allocation by GENJCL.IC

- GENJCL.IC does not generate DD statements for HALDB data sets
 - Supplied ICJCL skeletal JCL member changed from IMS V8
 - Dynamic allocation is used
- Benefit
 - ▶ Especially useful for HALDB Online Reorganization users
 - IC utilities determine the active data set, then dynamically allocate it

DBRC API

- Allows users to write programs to read RECONs
 - Provides API to return information from all records
- Sample program is provided

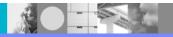
Benefits

- Supported method for retrieving RECON data
 - Easier than parsing LIST.RECON output
 - Easier than writing VSAM application to read RECONs
- ▶ Release independent
 - Future releases will not require modifications to programs

API Overview

- Assembler language
 - Assembler macros are provided
- Functions
 - Start the environment
 - Allocates and opens the RECONs
 - Query the RECONs
 - Acquires storage and places information in this storage
 - Release buffer storage
 - Releases storage acquired for queries
 - Stop the environment
 - Closes and deallocates RECONs

- Typical program structure
 - Include the API DSECTs and supply working storage
 - DSPAPQxx macros
 - Mapping macros for data returned
 - Typically, a macro for each RECON record type
 - ▶ Initialize the API (allocate and open RECONs)
 - Issue one or more query requests
 - Specifies data to be retrieved
 - Process data from queries
 - Release buffer storage
 - Terminate the DBRC API

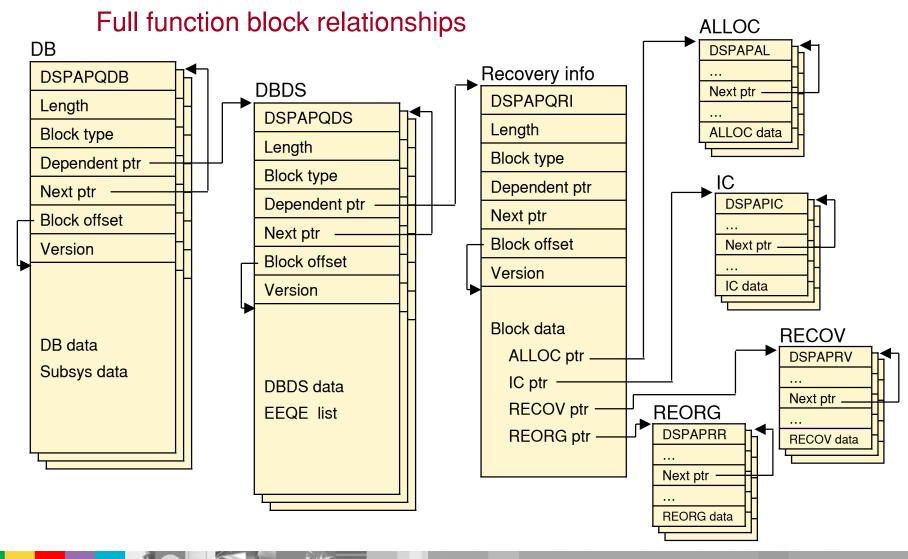

DSPAPI FUNC=DSECT DSPAPQxx DSPAPQxx

DSPAPI FUNC=STARTDBRC

DSPAPI FUNC=QUERY
Process results
DSPAPI FUNC=QUERY
Process results
DSPAPI FUNC=RELBUF

DSPAPI FUNC=QUERY Process results DSPAPI FUNC=RELBUF

DSPAPI FUNC=STOPDBRC



Using queries

- QUERY may ask for
 - Records by name (e.g. database name)
 - Records by list of names
 - First record (e.g. first database record)
 - Next record (e.g. next database record after specified database
 - Set of records (e.g. database record and its data set and image copy records)
- QUERY returns blocks of data
 - Blocks are chained in RECON hierarchy
 - Blocks are mapped by DSPAPQxx macros
- Application program follows pointers between blocks to access the data

Summary

- Assembler interface for users to access RECON data
- Sample program is provided

Benefits

- Supported method for retrieving RECON data
- Release independent
 - Future releases will not require modifications to programs

DB and DBRC Enhancements

Database Enhancements

- Image Copy Large Tape Block Sizes
- HALDB Online Reorganization
- ▶ HALDB Specific Partition Initialization
- ▶ IRI M 2.2
- Multi-Area Structures for DEDB SVSO
- Fast Path Area Open/Close Enhancements
- XML DB
- IMSplex Database Commands
- PS FDI
- Improved Message with Database Abends

DBRC Enhancements

- Command Authorization for /RMxxxx commands
- More Than 32K Database Registrations
- HALDB Dynamic Allocation by GENJCL.IC
- DBRC Application Programming Interface (API)

