

B77

IMS V9 HALDB Online Reorganization

Rich Lewis

IMS

Technical Conference

Sept. 27-30, 2004

Orlando, FL

© IBM Corporation 2004

HALDB Online Reorganization

HALDB Online Reorganization (OLR) is a standard part of IMS V9 DB
 Not a feature, product, tool, etc.

Benefits

- PHDAM and PHIDAM databases are reorganized
- 100% availability of database during reorganization
 - Zero outages
 - Applications are unaffected
 - They never get data unavailable conditions
- Full integrity and recoverability are maintained
- Eliminates database outages for reorganizations

HALDB Online Reorganization Overview

Environments

- Runs in TM/DB or DBCTL system
 - Executes in DLISAS address space
- Concurrent online and data sharing updates are allowed
- > XRF and RSR are supported
- Recoverability
 - System, IMS, or media failures
 - DBRC support, standard recovery utilities, and DRF
- Performance
 - External parameter for pacing

HALDB Online Reorganization Overview

HALDB PHDAM and PHIDAM only

- Reorganize by partition
 - PHDAM data component
 - PHIDAM data component and primary index
- Secondary indexes and logical relationships
 - Database with secondary indexes can be reorganized
 - But secondary index (PSINDEX) CANNOT be reorganized
 - Database with logical relationships can be reorganized
 - ILDS (ILEs) updated with new target RBAs
- Restrictions
 - No DBD changes (DBDS space allocation changes are OK)

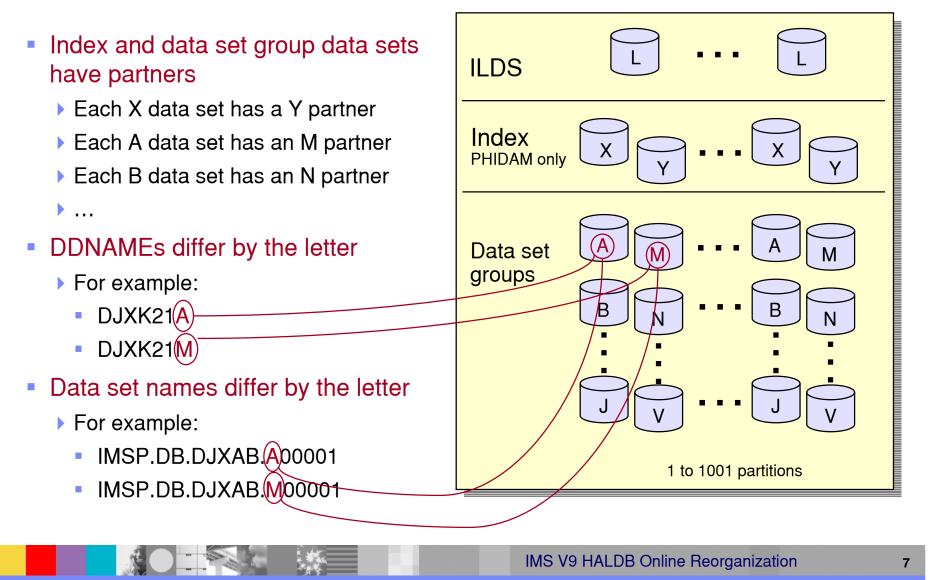
HALDB Online Reorganization Technique

- Online reorganization (OLR) is into new "partner" data sets
 - > A-J and X data sets alternate with M-V and Y data sets
 - Only one ILDS (L) per partition
- Both sets of data sets are used during OLR
- At end of OLR, old data sets may be discarded
- 100% availability of database during the reorganization
 - No outages
 - No data set renames

HALDB Naming Conventions

DDNAMEs

- Partition name and data set letter
 - Partition name: DJXK21
 - DDNAMEs:
 - DJXK21L, DJXK21X, DJXK21A, DJXK21B,...
- Data set names
 - Data set name prefix, data set letter, and partition id
 - DSN prefix: IMSP.DB.DJXAB
 - Partition id: 00001
 - Data set names:

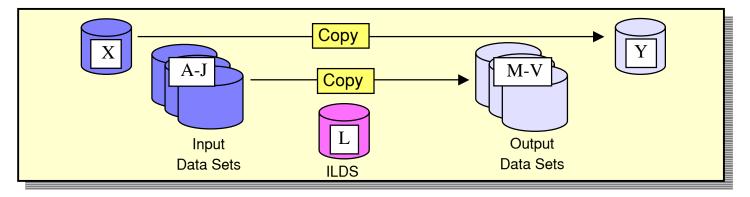

...

- IMSP.DB.DJXAB.L00001
- IMSP.DB.DJXAB.X00001
- IMSP.DB.DJXAB.A00001
- IMSP.DB.DJXAB.B00001

Partner Data Sets

Terminology

Before or after reorganization


- Active data sets (either A-J, X or M-V, Y))
 - Data sets being accessed by applications
- Inactive data sets
 - Data sets not being accessed by applications
- During reorganization
 - All data sets (A-J, X and M-V, Y) are <u>active data sets</u>
 - Input data set: Contains unreorganized data
 - Includes both active and inactive data
 - Output data set: Contains reorganized data
 - Cursor
 - Dividing line between <u>active data</u> and <u>inactive data</u>
 - Only used while reorganization in progress or suspended

Reorganization

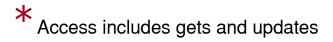
Reorganize by copying segments

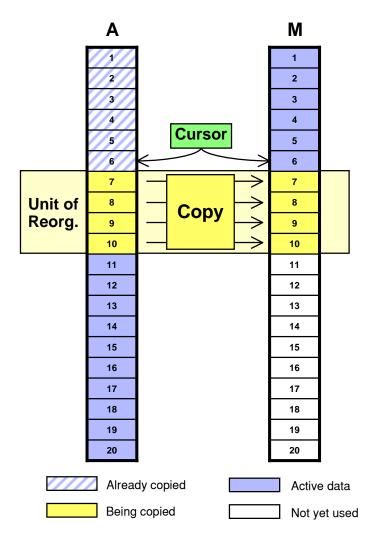
- Read segments from one set of HALDB data sets (e.g. A-J, X)
- Write (insert) segments to another set (e.g. M-V, Y)
 - Update ILDS for secondary index and logical relationship targets
- Use locking protocols to provide concurrent access integrity
- Log inserts for recoverability
- Use <u>cursor</u> to identify which "set" to use to access a database record
 - Database records before cursor, use output data sets
 - Database records after cursor, use input data sets

Copying Records During Reorganization

- Unit of Reorganization (UOR) is a set of database records
 - Records are copied from input to output data sets
 - Records in UOR are locked while being copied
 - At end of copy for UOR, the locks are released
 - Number of records in UOR is dynamically adjusted
 - Algorithm limits time taken, bytes copied, and locks held during copy

	Α					Μ	
	/////			_		1	
	2		Curso	•		2	
	3	\leftarrow			\geq	3	
Unit of	4			$\uparrow \uparrow \uparrow$	\geq	4	
Reorg.	5		Сору	F	\geq	5	
neer gi	6				\rightarrow	6	
	7					7	
	8					8	
	9					9	
	10					10	
	11					11	
	12					12	
	13					13	
	14					14	
	15					15	
	16					16	
	17					17	
	18					18	
	19					19	
	20					20	
	🛛 Alread	dy cop	bied			Active	e data
	Being	copie	ed			Not y	et used

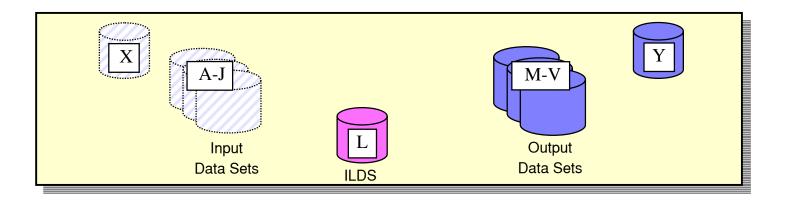



Application Access During Online Reorganization

- Cursor points to last committed reorganized record
 - PHDAM RAP RBA
 - PHIDAM root key

Data set used is based on cursor value

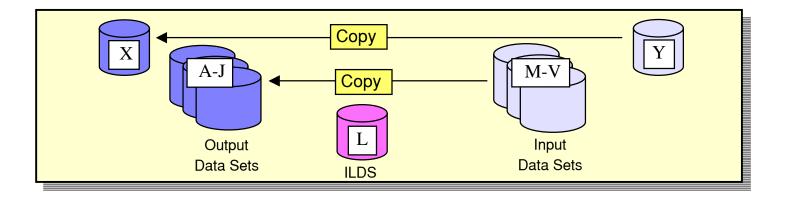
- Cursor on record 6
- Access Record 5:
 - Access from M data set
- Access Record 14:
 - Access from A data set
- Access Record 9:
 - Wait for lock,
 - then access from M data set



IMS V9 HALDB Online Reorganization

Completion of Reorganization

- When OLR completes
 - A-J,X becomes the "inactive" set may be deleted
 - M-V,Y becomes the "active" set
- Cursor reset to inactive
- ILDS (ILEs) updated during reorganization



Next Reorganization

- Next reorganization
 - Reorganize from M-V,Y to A-J,X
 - A-J, X data sets may be reused

Or

> A-J, X data sets may be reallocated

Setting Up Online Reorganization

DBRC is used to set online reorganization capability for a database

INIT.DB DBD(HALDB_master) OLRCAP|OLRNOCAP
CHANGE.DB DBD(HALDB_master) OLRCAP|OLRNOCAP

OLRCAP allows online reorganization for partitions of the database

Output Data Set Creation

- Output data set allocation options
 - Preallocation by user
 - Automatic allocation by OLR
 - Invoked for each data set which is not cataloged
 - Invoked on data set by data set basis
- Why preallocate?
 - Want to allocate on specific volume
 - Change space allocation
 - Blocks/Cls
 - Primary and secondary allocations
 - For PHIDAM Primary Index
 - Free space percentage

Output Data Set Creation

Automatic output data set creation

- Space is equivalent to existing input data set
 - Requested as a number of OSAM blocks or VSAM records
- SMS-managed
 - Same storage class as input data set
 - Same number of volumes as input data set
 - With guaranteed space attribute, primary space allocation is taken on all volumes
- Non-SMS, OSAM
 - UNIT=SYSALLDA is used (storage or public volume)
 - If input is multivolume data set, output data set is not created
- Non-SMS, VSAM
 - Data set is allocated on the same volume(s) as input data set

Starting Online Reorganization

- Command to initiate OLR
 - OM command (type-2 command):
 - INIT OLREORG NAME(partname1, partname2,...)
 - Classic command (type-1 command): /INIT OLREORG NAME(partname1)
 - Command parameters:
 - Delete input data sets at completion of reorganization
 OPTION (<u>DEL</u> | NODEL)
 - Set rate of execution
 SET (RATE (100 | nn)

Rate Parameter

RATE parameter on INIT

- RATE parameter determines how fast the reorganization runs
 - RATE(100) runs at maximum speed
 - RATE(nn) online reorganization waits after each commit so that average speed of reorganization is nn% of maximum speed
- Examples:
 - If RATE(50), after each commit reorganization waits for the time that the last interval took
 - Possibly, run 1 second, wait 1 second, run 1 second, wait 1 second,...
 - If RATE(25), after each commit reorganization waits for 3 times as long as the last interval took
 - Possibly, run 1 second, wait 3 seconds, run 1 second, wait 3 seconds,...

Modifying Reorganization in Progress

- Command to modify OLR in progress
 - OM command (type-2 command):
 - UPD OLREORG NAME(*|partname1, partname2,...)
 - > Classic command (type-1 command): /UPD OLREORG NAME(partname1)
 - Command parameters:
 - Change delete option for input data sets
 OPTION (DEL | NODEL)
 - Change rate of execution
 SET (RATE (100 | nn)

19

Commands to Show Status of Reorganization

QRY command (type-2) example:

QRY OLREORG NAME (PVHDJ5A) SHOW (ALL)

Response:

Partition	n MbrName	CC	RATE	BYTES MOVED	STATUS
PVHDJ5A	IMS2	0	100	1256356	RUNNING

/DIS command (type-1) example:

/DIS DB OLR

Response:

DATABASE	PART	RATE	BYTES	STATUS
DBHDOK01	PDHDOKA	50	2186776	RUNNING

Logging By Online Reorganization

Log records written

- Scheduling (x'08')
- Termination (x'07')
- UOR sync point (x'3730')
 - For each UOR
- UOR statistics (x'2950')
 - For each UOR
- Database change (x'50')
 - For all output data in the partition
 - This will be voluminous!

Logging By Online Reorganization

- UOR statistics log record (x'2950')
 - Written for each UOR
 - Data:
 - Total segments moved before this UOR
 - Total bytes moved before this UOR
 - Roots moved in UOR
 - Segments moved in UOR
 - Bytes moved in UOR
 - Locks held by UOR
 - Start time of UOR
 - Execution time (elapsed time) of UOR
 - Time interval waited before this UOR (due to RATE parameter)

Suspending and Restarting Online Reorganization

- Reorganization may be suspended
 - Commands:
 - TERM command (type-2) example:
 TERM OLREORG NAME (PVHDJ5A)
 - /TERM command (type-1) example:
 /TERM OLREORG NAME (PVHDJ5A)
 - Input and output data sets remain active
 - Cursor remains active
- Suspended reorganization may be restarted
 - INIT and /INIT command will restart the reorganization
 - Restarts from the point of the cursor
 - Restart may be on the same IMS system or another IMS system

IMS Normal Termination and Restart with OLR Active

- If OLR is running when IMS is shutdown
 - /CHE FREEZE or /CHE DUMPQ
 - OLR is terminated at next commit
 - Cursor remains active
 - Ownership of OLR by this IMS is not relinquished
 - /CHE PURGE
 - Waits for OLR to complete
- When IMS is restarted after termination with OLR active
 - /NRE
 - Authorizes, allocates, and opens all input and output data sets
 - Resumes OLR automatically

Image Copies

Active data set is copied

- Control statement may specify A-J or M-V DDNAME
 - Image copy utilities determine which data set to copy
 - Copies active data set even when inactive partner is specified
- Dynamic allocation allocates the active data set
- Any image copy utility may be used:
 - Image Copy
 - Image Copy 2
 - Online Image Copy
- Image Copy is not allowed while cursor is active
 - Online reorganization is active

or

Online reorganization is suspended

Change Accumulation

- DBRC places partner data sets in the same change accum group
 A and M data sets for a partition are in the same group
 B and N data sets for a partition are in the same group
 C and O data sets for a partition are in the same group
 ...
- GENJCL.CA treats start of OLR as purge time for output data sets
 Log records from times before start of OLR are not used in later recoveries
- Change Accumulation utility is unchanged for online reorganization
 - Accumulates changes for all data sets specified on its control statements
 - GENJCL.CA generates the correct control statements

Database Recovery

Database Recovery (DFSURDB0)

- Recovers A-J or M-V data set
- Full recovery
 - Allowed at any time
 - May be to time when OLR was active or suspended
- Timestamp recovery
 - Not allowed to time when OLR was active or suspended
 - DRF tool may be used for this type of timestamp recovery
- Recovery of data set reorganized by OLR (output data set)
 - Does not require image copy
 - Log only recovery is valid

Database Recovery Facility (DRF)

- Database Recovery Facility (IBM Tool)
 - Recovers active data sets
 - Understands which data sets to recover
 - Full recovery
 - Allowed at any time
 - Timestamp recovery
 - Allowed to any time
 - Includes PITR (point-in-time) capability

Performance Considerations

- OSAM sequential buffering may be used
 - Recommended
- Logging may affect performance
 - All data is logged when moved
 - A few additional log records
- Buffer pool contention
 - Partner data sets use the same buffer pool
 - Appropriate for times when reorganization is not running
 - Could cause buffer contention during reorganization

Performance Considerations

Lock contention

- Should be minimal
 - OLR has dynamic algorithm to limit the time that locks are held
- OLR rarely causes a deadlock
 - Asks for database record locks conditionally
 - If lock is not available, the UOR is shortened
 - OLR is always the victim in its deadlocks
 - Application continues
 - OLR is dynamically backed out
 - Only the current UOR is backed out
 - OLR is automatically restarted at the current cursor position

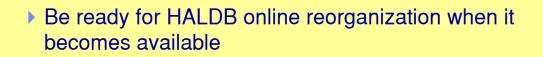
Performance Considerations

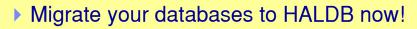
- Online reorganization runs in DL/I address space
 - Each reorganization uses one of 10 database TCBs
 - Same TCBs that are used for allocation and open/close/EOV processing

Online reorganization may run on any data sharing IMS system

- Some installations may choose to dedicate an IMS to OLR
 - Buffer pool definitions may be tuned for OLR
 - Avoids buffer contention
 - Avoids logging contention
 - Limits the number of data sets with updates on the log
 - Logs are not required for change accum or recovery of other data sets

HALDB Online Reorganization Summary


- HALDB Online Reorganization is included in IMS V9 DB
 - Not a feature, product, tool, etc.
- Benefits
 - Fast and efficient reorganizations
 - Full integrity and recoverability are maintained
 - Eliminates database outages for reorganizations



Full database availability during all of the reorganization process!

HALDB Online Reorganization

- Any full function database may be migrated
 - No application changes required *

* Very small exception:

Processing a secondary index as a database when using /SX and secondary index contains duplicate data

Easily handled