

B73

The Top 10 IMS TM Performance Questions

(and Answers?)

Dave Viguers

dviguers@us.ibm.com

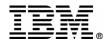
IMS

Technical Conference

Sept. 27-30, 2004

Orlando, **FL**

Session Description


This session will explore the top 10 performance issues with the IMS Transaction Manager which have been observed over the past year or so and discuss how they show up, were diagnosed, and finally resolved. If a code defect or enhancement was involved that change will be discussed otherwise ways to monitor and tune to avoid these problems will be presented.

Topics

- SVSO
- WADS
- CTL CPU
- Tran Classes
- Log Buffers

- Traces
- Fixed Storage Mgr
- SMQ
- Latching
- Checkpoint

Why do SVSO pools have low hit rates?

• Where this might be noticed

• /DIS POOL FPDB

IM2B	FPDB BUFFER POO	L:			
IM2B	AVAIL = 166	WRITING =	1 PGMUSE =	6 UNFIXED =	427
IM2B	POOLNAME CISIZE	PBUF SBUF	MAX CURRENT LK	HITS VALID	
IM2B	ITEMPOOL 04096	00200 00100	00500 00400 Y	045% 100%	
IM2B	DISTPOOL 01024	00100 00025	00300 00100 Y	049% 091%	
IM2B	WAREPOOL 00512	00020 00005	00030 00020 Y	100% 099%	

• DBFULTA0

SUMMARY OF VSO ACTIVITY

SHR(2/3)	CF	CF	READ	READ	DASD	DASD
AREA	GETS	PUTS	HIT	VALID	GETS	PUTS
AREAWH01	1711	4310	047%	064%	0	1
AREAIT01	16453	502	019%	099%	251	0
AREADI01	3359	9674	024%	068%	0	200

• IMSPA

• FP Reports

What to do?

• Determine if it is a problem for you

• Depends on amount of activity


• PBUF (and/or SBUF) just too small for number of CI's

- Check number of CI's against PBUF/SBUF
- Increase if necessary

/DIS FPV							
AREANAME	STRUCTURE	ENTRIES	CHANGED	AREA CI#	POOLNAME	OPTION	IS
AREAWH01	IMOB_AREAWH01A	0000075	0000020	00000075	WAREPOOL	PREO,	PREL
AREAWH01	IMOB_AREAWH01B	0000075	0000020	00000075	WAREPOOL	PREO,	PREL
AREAIT01	IMOB_AREAITO1A	0002474	0000000	00002520	ITEMPOOL	PREO,	PREL
AREAIT01	IMOB_AREAIT01B	0002474	0000000	00002520	ITEMPOOL	PREO,	PREL
AREADI01	IMOB_AREADI01A	0000440	0000200	00000440	DISTPOOL	PREO,	PREL
AREADI01	IMOB_AREADI01B	0000440	0000200	00000440	DISTPOOL	PREO,	PREL

PROCOPT=GOx

- Cl's are read from CF directly into private buffers
 - Does not populate the DEDB= pools
- Possible bypass is to make the PBUF large enough and read with PROCOPT=G
 to populate pool

™!IBM Corporation 2004

Why have my WADS rates increased

• Where rate is measured

• RMF DASD report

STORAGE	DEV	DEVICE	VOLUME	LCU	ACTIVITY	RESP	IOSQ	DPB	CUB	DB	PEND
GROUP	NUM	TYPE	SERIAL		RATE	TIME	TIME	DLY	DLY	DLY	TIME
	2083	3390	WAD001	0077	27.169	1	0	0.0	0.0	0.0	0.2

• IMS logger statistics

• Reported by IMSPA, Omegamon, IMF, etc.

LOGGER STATISTICS	#	#/SEC
LOG BLOCK SIZE	26,624	
NUMBER OF BUFFERS	10	
WADS TRACK GROUPS	4	
NUMBER OF RECORDS	54,447	465.35
CHECK WRITE REQUESTS	5,357	45.78
WAIT WRITE REQUESTS	497	4.24
WAIT 4 BUFF CKPT	0	.00
WAIT 4 BUFF NON-CKPT	0	.00
AWE SUBMITTED ON WRT	1,632	13.94
WADS EXCPVRS	3,034	25.93
2K SEGMENT WRITES	7,735	66.11
OLDS WRITES	400	3.41
OLDS READS	0	.00
INTERNAL CHKW REQ	13	.11
ACCUM WAIT TIME	30,782	263.09

™!IBM Corporation 2004

What to do?

• Probably Nothing

- Most common cause is new hardware
 - Normally 2K segment writes will decrease
 - WADS writes are finishing faster therefore less data per write
 - Should improve system thruput (at least internally)
- If using dual WADs
 - Make sure both are on new hardware
 - Only as fast as the slowest
- If not new hardware
 - Other config changes
 - Additional MSC or ISC?
 - SMQ
 - Input/output changes

Why is my CTL CPU usage so high?

• Where noticed

• Work just backing up

• RMF workload activity report

SUBSYS = STC USERID =		ASS = NAME =	IMS1IMSC	ACCTINFO = SRVCLASS		0									
00701 ALL ALL ALL	AVG	0.99	ACTUAL	() 5	SSCHRT	30.9	IOC	139.1K	ABSRPTN	2,152	SINGLE	0.59	AVERAGE	1,178
	MPL	0.99	EXECUT	() I	RESP	1.5	CPU	1227K	TRX SERV	2,152	BLOCK	2.54		
	ENDED	0	QUEUED	0) (CONN	1.2	MSO	32840	TCB	21.7	SHARED	0.00	TOTAL	1,177
	END/S	0.00	R/S AFF	() [DISC	0.1	SRB	538.0K	SRB	9.5	HSP	0.00	CENTRAL	1,129
	#SWAPS	0	INELIG	() (Q+PEND	0.2	TOT	1937K	RCT	0.0	HSP MISS	0.00	EXPAND	47.88
			CONV	()]	IOSQ	0.0	/SEC	2,151	IIT	0.5	EXP SNGL	0.27	SHARED	0.00
			STDDEV	()					HST	0.0	EXP BLK	0.39		
										APPL%	3.5	EXP SHR	0.00		
										EX VEL%	31.1				

• IMS Dispatcher statistics

• Reported by IMSPA, Omegamon, IMF, etc.

DISPAT	CHER S	STATISTICS					
NAME #	‡TCBS	TSK CREATE	CREATE/SEC	ITASK DISP	DISP/SEC	ITSK SUSP	SUSP/SEC
		TASK REALTIME PER TCB	REAL/#TCB/SEC	IMS BUSY TIME PER TCB	BUSY/#TCB/SEC	CPU TIME PER TCB	CPU/#TCB/SEC
LOG	1	3,662	31.29	10,181	87.01	7,098	60.66
		116,364,187	994,565.70	226,631	1,937.01	180,526	1,542.95
CTL	1	14,473	123.70	23,982	204.97	19,284	164.82
		116,384,222	994,736.94	2,427,571	20,748.47	1,674,493	14,311.90

* note that the values shown in these examples are not high

Some things to check

- Hardware config changes
 - Increase in number of engines
 - More dependents processing more work
 - More demand on CTL region
 - Software changes
 - Network into IMS
 - Exit routines
 - PARDLI option?
 - FP page fix options
 - Most common issue
 - Page fix/free can be <u>very</u> costly with large pools
 - DBFP setting
 - use 1 or 2-3600 if many start/stop regions (BMP's?)
 - DFSFIXxx
 - Blocks=FP or EPST to avoid I/O fix/free

How many tran classes should I use?

- Easier to use and manage just a few
 - Can start more regions with less consideration
 - Sysdef simplified
 - Possibly run with fewer regions
 - Performance can be more variable
- More classes make tuning easier
 - More than 255 possible in V9
 - Don't get too carried away however
 - More difficult to manage
 - Makes PWFI more effective
 - Fewer schedules
- Many other factors
 - #PST's
 - PSB, CSAPSB, PSBW, EPCB, DMBW
 - just to name a few

Class scheduling considerations

- With fewer classes
 - Make use of MAXRGN, PARLIM, PROCLIM
 - Region thrashing may occur otherwise
 - Might run fine until:
 - higher activity or system delay causes queuing
 - Scheduling might get more frequent with higher loads
 - Just the opposite of what is desired
 - Scheduling pools may be affected to a larger degree
- With more classes
 - Less prone to fluctuations in load
 - PWFI more effective
 - Fewer possible tran codes per region
 - More control over resource usage
 - But more user control required
- Bottom line minimize scheduling

Do I need more log buffers?

• Check the logger statistics

LOGGER STATISTICS	#	#/SEC
LOG BLOCK SIZE	26,624	
NUMBER OF BUFFERS	10	
WADS TRACK GROUPS	4	
NUMBER OF RECORDS	54,447	465.35
CHECK WRITE REQUESTS	5,357	45.78
WAIT WRITE REQUESTS	497	4.24
WAIT 4 BUFF CKPT	0	.00
WAIT 4 BUFF NON-CKPT	0	.00
WAIT 4 BUFF NON-CKPT AWE SUBMITTED ON WRT	0 1,632	.00 13.94
	Ũ	
AWE SUBMITTED ON WRT	1,632	13.94
AWE SUBMITTED ON WRT WADS EXCPVRS	1,632 3,034	13.94 25.93
AWE SUBMITTED ON WRT WADS EXCPVRS 2K SEGMENT WRITES	1,632 3,034 7,735	13.94 25.93 66.11
AWE SUBMITTED ON WRT WADS EXCPVRS 2K SEGMENT WRITES OLDS WRITES	1,632 3,034 7,735 400	13.94 25.93 66.11 3.41

• Check the RMF DASD report

STORAGE	DEV	DEVICE	VOLUME	LCU	ACTIVITY	RESP	IOSQ	DPB	CUB	DB	PEND
GROUP	NUM	TYPE	SERIAL		RATE	TIME	TIME	DLY	DLY	DLY	TIME
	3203	3390	IMS001	0078	65.259	5	0	0.0	0.0	0.0	0.2

Log buffer considerations

- No waits means there are enough
- A few waits are generally tolerable
 - A few during checkpoint may be almost unavoidable
 - How much checkpoint data is written
 - Large numbers during non-checkpoint mean investigate
- Are you getting good DASD response times
 - Check both primary and secondary
 - IMS writes concurrently but waits for both
- What is the log blocksize
 - 26K generally gives you the best buffer utilization
 - 24K (or some multiple of 4K) required for 64 bit support
 - Smaller blocks may require more buffers
- If you increase # of buffers
 - Check WADs track groups
 - Don't necessarily need 1 per buffer
- More virtual/real storage

Do I need to run with all traces active?

- Traces being active may significantly aid in problem resolution
 - Sometimes a little overhead is worth the cost
- Most traces are very little (relatively) overhead
 - When 'ON' in storage versus 'OUT' to data set
 - 'OUT' tends to be more of a volume issue than CPU
 - Make sure to allocate DFSTRAxx data sets
- Some traces can be noticeable overhead however
 - FAST
 - FPTT
 - LATC
 - IRLM
- Some traces only for special purposes
 - Can cause significant volume to log
 - Use only when necessary
 - Traces like
 - LINE, LINK, NODE, PSB, PROGRAM, TRANSACTION

TM!IBM Corporation 2004

What about the DFSSPM member?

• First check the statistics • Each DFSSPM pool will have statistics like this

FIXED STORAGE POOL:	EMHB							
CURRENT POOL SIZE :	429152							
MAX POOL SIZE :	462168							
# BYTE IN OVERSIZE:	0							
OVERALL POOL SIZE :	462168							
SUBPOOL NUMBER :	231							
ABOVE/BELOW 16M :	ABOVE							
BUFFERSET	01	02	03	04	05	06	07	08
OVERSIZE								
BUFFER SIZE (BYTES)	264	520	1032	2056	4104	8200	16392	32776
PRIMARY BLK BUFFERS	64	64	32	32	16	8	4	4
INITIAL (Y/N)	N	N	N	N	Ν	N	Ν	Ν
SECONDARY BLK BUFFS	32	32	16	16	8	4	2	2
MAX BLK SINCE INIT	0	0	0	0	13	0	0	0
MAX BLK SINCE CHKPT	0	0	0	0	13	0	0	0
0								
MIN BLK SINCE CHKPT	0	0	0	0	12	0	0	0
0	_	_		_			_	
AVERAGE BLKS ALLOC	0	0	0	0	12	0	0	0
MAX BUF SINCE INIT	0	0	0	0	105	0	0	0
	0	0	0	0	104	0	0	0
MAX BUF SINCE CHKPT	0	0	0	0	104	0	0	0
MIN BUF SINCE CHKPT	0	0	0	0	103	0	0	0
AVERAGE BUFFS ALLOC	0	0	0	0	103	0	0	0
TOTAL GET REQUESTS	0	0	0	0	128	0	0	0
GET REQ PER SECOND .00	.00	.00	.00	.00	1.09	.00	.00	.00
PGLOAD REQUIRED	0	0	0	0	0	0	0	0
0								
PGLOAD-IWAIT REQD	0	0	0	0	0	0	0	0
0								
BLK ALLOCATE REQD	0	0	0	0	0	0	0	0
0								
BLKS RELEASED	0	0	0	0	1	0	0	0
CURRENT BLOCK COUNT	0	0	т <mark>Ω</mark> !I	BM Corporation	2004 ¹⁶⁴⁵	0	0	0
CURRENT [®] BUFFER COUNT	0	0	0	0	12200	0	0	0
WASTED STORAGE	0	0	0	0	13200 210176	0	0	0
WADIED DIUKAGE	U	U	0	0	ZIUI/6	U	0	U

What about the DFSSPM member?

- Normally no overrides are necessary
 - Fixed storage manager is pretty efficient
 - Most buffer sizes are not gotten unless needed
 - Minimizes wasted space
- Check for 'OVERSIZE' usage
 - These requests will be separate getmain/freemain
 - If small numbers then don't worry
 - If significant then consider adding another size to the pool
 - Getmains and Freemains in large numbers are bad
- Compare 'average req size' to buffer size
 - Again, only if large numbers of requests
 - For larger buffer sizes this can reduce storage usage considerably if only 'missing' by a small number

What is the cost of using shared queues?

- Understand the benefits first
 - Not going into that part here
- If anyone quotes you a percentage it is wrong
 - One number does not fit all
 - For some the % overhead will be small
 - For others it may be huge
- Many variables
 - z/OS CPU speed compared to CF
 - Types of CF links
 - MVS logger configuration
 - Application (dependent region / DLI) cpu consumption
 - Relative to TM
 - IFP's and/or MPP's
 - Relative use of each

Shared Queues estimation

- Best case will be FP tran handled locally
 - Tran processed by IMS on which it arrived
 - Controlled by
 - Available regions
 - Local only, local first, global only options
 - Overhead only incurred when necessary
- Worst case will be Full Function processed globaly
 - Up to 12 CF accesses per tran
 - Includes queue structures plus MVS logger
- Can make rough estimate by
 - Find some other LIST structure already in use
 - Get response time from RMF
 - Multiply that number by 1.25 for system overhead
 - Multiply that result by 12
 - Mulitply that result by trans per second to get approximate additional cpu consumption

Can latch contention be a problem?

- Well of course it can
- Normally the highest latch contention if for the logger
 - Not usually an issue just a way of life
 - Check buffers, blocksize, dasd response
- Monitor others for significant changes
- Sample latch statistics

LATCH	LATCH STATISTICS: NUMBER IN INTERVAL / PER SECOND												
	EXCL GRANT	SHR GRANT	EXCL IWAIT	SHR IWAIT	EXCL OWAIT	SHR OWAIT	EXCL BUSY	SHR BUSY	EX+SH WAIT TIME				
DISP	0	0	0	0	0	0	0	0	0				
	.00	.00	.00	.00	.00	.00	.00	.00					
CTXT	0	0	0	0	0	0	0	0	0				
	.00	.00	.00	.00	.00	.00	.00	.00					

- Watch scheduling latches
 - TCTB, APSB, PDRB, PSBP, DMBP, PSBB, DMBB, PDRP
 - If conention then cure is to reduce scheduling
 - DMBB contention may compression/expansion routines
 - Not all compression is good but that's a DB issue
 - ACTL is IMS monitor
 - Check blocksize/bufno of monitor


How Can I reduce checkpoint impact?

- Tune the logger
 - All the things we already talked about like blksize, bufno, etc.
- Look for queues of messages not being processed
 - Qpurge must write 'aged' messages to DASD
- Clean up the gen's
 - Remove unused terminals, programs, trans.
- Use ETO if not all sessions are in use concurrently
- Shared queues
 - Spread the terminal blocks across multiple systems
 - Won't help if you clone the same statically genned terminals
- Stagger checkpoints with multiple shared systems
- Watch out for interaction of time driven checkpoints with CPLOG value

Summary

- Tried to hit some recurring questions
- Lots of others not addressed
- Can't possibly cover them all
- Systems getting more and more complex
- Monitor regularly
- Don't be afraid to ask questions

