
E11

An Introduction to IMS High Availability Large Databases (HALDB)

Vern L Watts vlwatts@us.ibm.com

Las Vegas, NV

September 15 - September 18, 2003

HALDB (High Availability Large Database)

Large Database

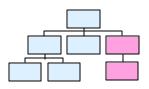
- Databases are partitioned
 - Up to 1001 partitions per database
 - Partitions have up to 10 data set groups

High Availability Database

- Partition independence
 - Allocation, authorization, reorganization, and recovery are by partition
- Self healing pointers
 - Reorganization of partition does not require changes to secondary indexes or logically related databases

HALDB (High Availability Large Database)

Benefits


- Greater database capacity
 - Without application changes
- Increased database availability
 - Partitions, not databases, are removed from system
 - Shortened reorganization process
 - Batch window is shortened with concurrent processing
- Improved manageability
 - Data sets may be smaller
- Enhanced usability
 - ISPF utility for partition definitions

Highlights

Hierarchic structure is maintained

Minimal (or no) application changes required

- Cannot initially load logical child segments
 - New status code for load programs
- Data unavailable conditions apply to partitions
 - Database may be available, but partition unavailable

New database types

- PHDAM partitioned HDAM
- PHIDAM partitioned HIDAM
 - Index is partitioned
- PSINDEX partitioned secondary index

Highlights

- OSAM and VSAM (ESDS and KSDS) are supported
- Partition selection is done by key or user exit routine
- Logical relationships and secondary indexes are supported
 - Secondary indexes may be partitioned
- DBRC is required
 - Databases must be registered
- Dynamic allocation uses DBRC information
 - DFSMDA is not used

Definition Process

DBDGEN

- Used to define database
 - Hierarchic structure, data set group boundaries, pointer options, logical relationships, secondary indexes,...

HALDB Partition Definition Utility

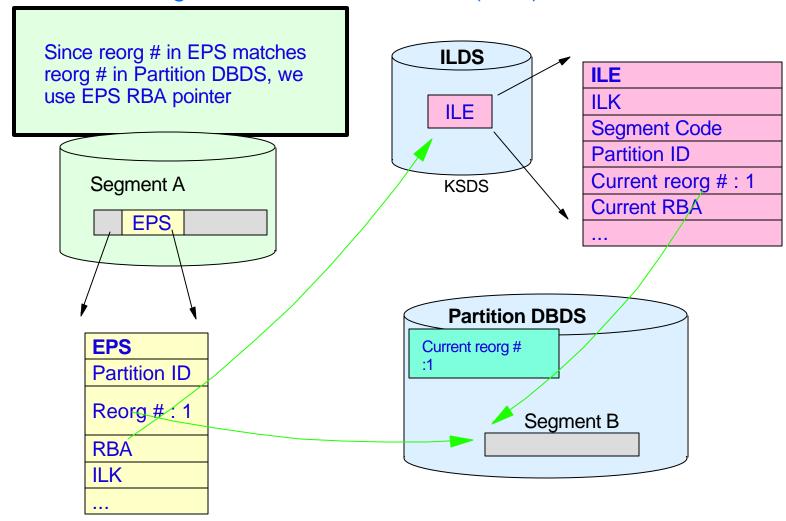
- ISPF based
- Used to define partitions in database
 - Partition selection, space characteristics, randomizers,...

Indirect Pointers

- HALDB uses both direct and indirect pointers
 - Direct pointers point to segments
 - Indirect pointers "point" to Indirect List Entries (ILEs) in Indirect List Data Set (ILDS)
 - ILEs have token for key
 - ILEs contain direct pointer to segment
 - ILDS is KSDS associated with a Partition

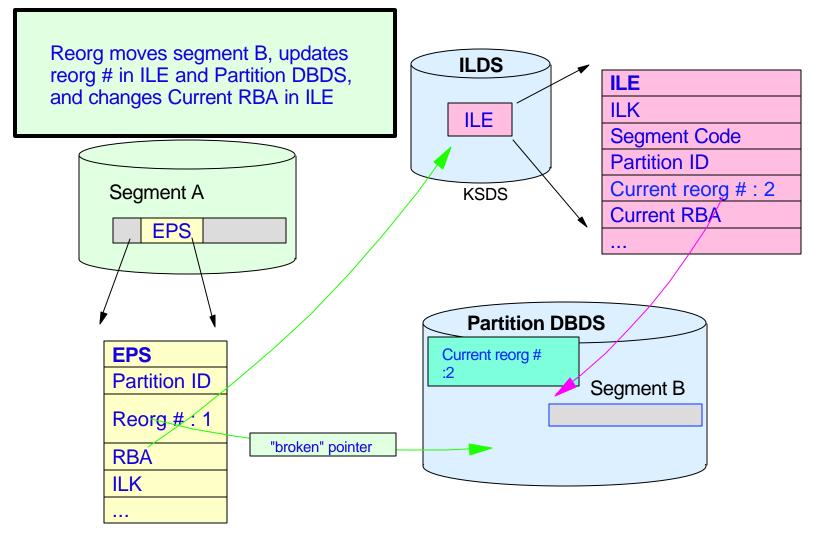
HALDB Database Structure

- Each partition in a database has a unique partition ID (PID)
- A reorganization number is maintained in each partition
 - Incremented by each reorganization reload
- Each segment in PHDAM or PHIDAM database is assigned a unique token when created
 - Indirect List Entry Key (ILK)
 - 8 bytes stored in segment prefix

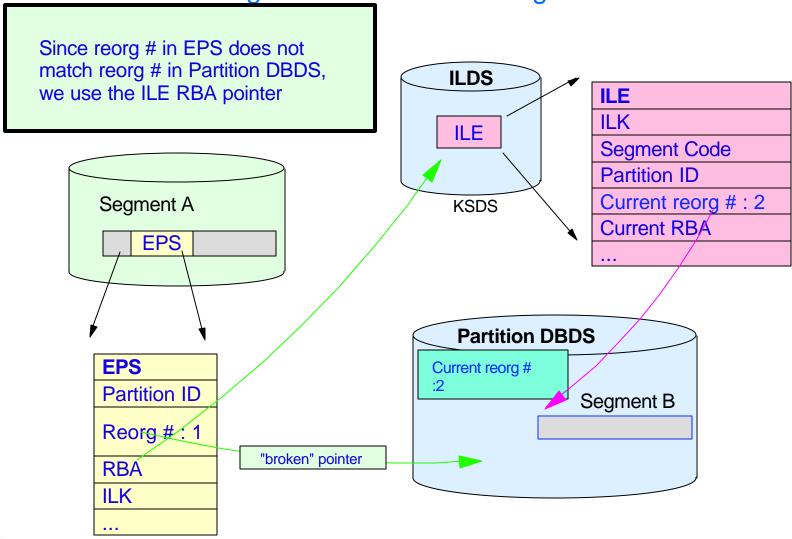


Extended Pointer Set

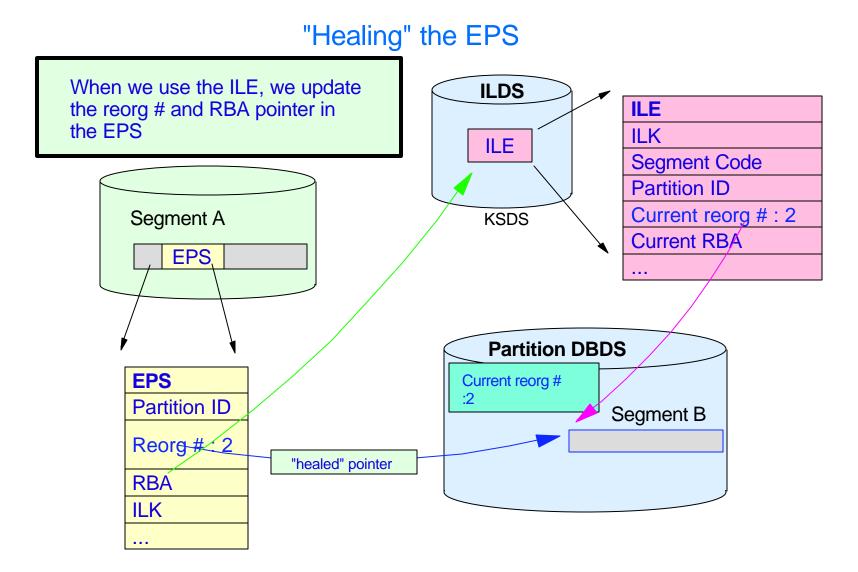
- Extended Pointer Set (EPS) is used for logical relationships and secondary indexes
 - EPS is <u>not updated</u> by reorganizations!
 - EPS contains direct pointer, reorganization number, target partition ID, and ILK
 - If reorg number is current, direct pointer is used
 - If reorg number is not current, ILK is used to find ILE in ILDS
 - ILE contains pointer to segment
 - Direct pointer and reorg number in EPS are updated when ILE is used
- Self healing pointers!



Using an Extended Pointer Set (EPS)



After reorganization of Partition



Using the EPS after the reorganization

Extended Pointer Set (EPS) Adjustments

- When out of date pointer is found it is corrected if:
 - Access intent is update or exclusive
 - PROCOPT is update
- Locking considerations
 - Read programs with update PROCOPTs may hold many locks
 - If block level data sharing is used, block locks are held until sync point

ILDS Data Sets

- Indirect List Entries (ILEs)
 - Created or updated by reorg reload
 - Reorgs do not update pointers in segments
 - Not created or updated by non-reload processing
 - This processing updates pointers in segments
 - Initial load does not create ILEs

ILDS Data Sets

- ILE keys (9 bytes)
 - ILK (8 bytes)
 - RBA of segment at its creation time (4 bytes)
 - Partition id at creation time (2 bytes)
 - Reorg number at creation time (2 bytes)
 - Segment code (1 byte)

ILDS Data Sets

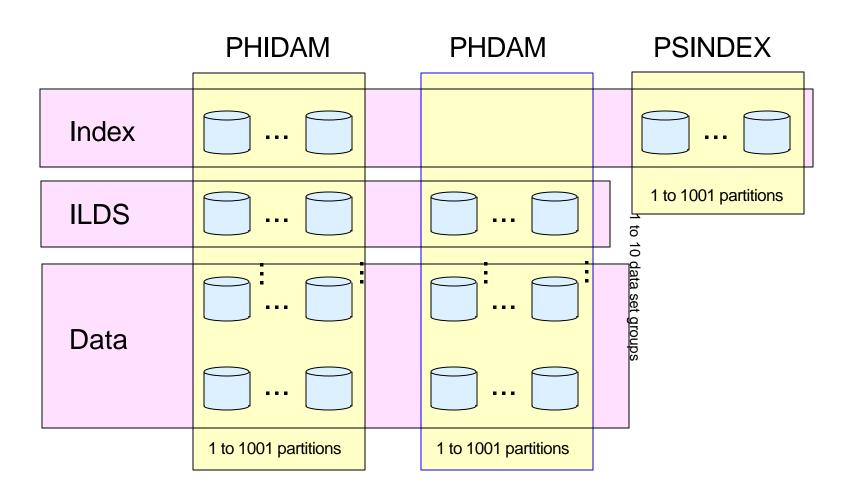
- ILE data (50 bytes)
 - Key (ILK and segment code)
 - Flags
 - Old and new copies of:
 - Partition ID
 - Reorg number
 - Pointer to logical parent or sec. index target
 - Database record lock ID for segment
 - Pointer to paired logical child for physical pairing

Database Structures

- PHIDAM prime indexes are not separately defined
 - Defined as part of the PHIDAM database
 - Applies to DBDGEN and system definition
- Parent pointers
 - All segments have physical parent pointers
- Symbolic pointers are not used
 - All pointers are direct

Database Structures

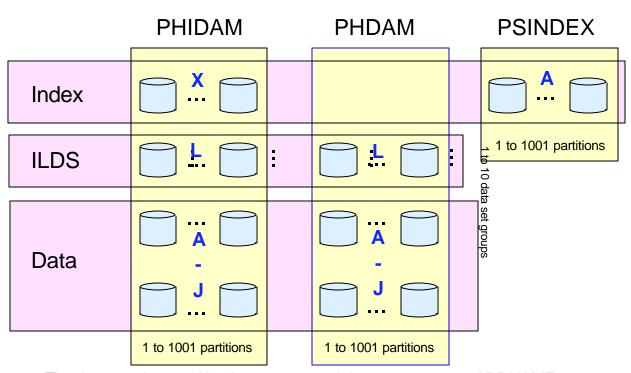
Logical relationships


- Virtual pairing is not allowed
 - Limited to unidirectional or physically paired
- Logical child segments cannot be initially loaded
 - Must be added by update

Secondary indexes must have unique keys

- /SX or /CK may be used to create uniqueness
 - /SX is increased from 4 to 8 bytes (ILK)

HALDB Database Data Sets


HALDB Database Data Sets

- Each HALDB database has up to 1001 partitions
- PHIDAM has index, ILDS, and up to 10 data set groups per partition
 - 3 to 12 data sets per partition
 - 3 to 12,012 data sets per database
- PHDAM has ILDS and up to 10 data set groups per partition
 - 2 to 11 data sets per partition
 - 2 to 11,011 data sets per database
- PSINDEX has no ILDS or data set groups
 - 1 data set per partition
 - 1 to 1001 data sets per secondary index

- Data set size limitations
 - Maximum data set size is 4GB
 - Applies to OSAM and VSAM
- OSAM block sizes must be even

The data sets in a partition have generated data set names and DDNAMEs. Letters are used to distinguish them.

X - PHIDAM index

L-ILDS

A through J - Data data sets

A - PSINDEX

Data set names

- Begin with data set name prefix for the partition
 - Up to 37 characters
 - Assigned in HALDB Partition Definition Utility
- Letter and Partition ID are used as suffix
 - X for PHIDAM index
 - L for ILDS
 - A for PSINDEX
 - A through J for data

– Example:

- Partition data set name prefix IMP0.DB.INV23.FR
- Partition ID: 00004
- Data set name PHIDAM Index: IMP0.DB.INV23.FR.X00004

DDNAMEs

- Partition name is basis for DDNAME
 - Up to 7 characters
 - Assigned in HALDB Partition Definition Utility
- Letter is used as suffix
 - X for PHIDAM index
 - L for ILDS
 - A for PSINDEX
 - A through J for data
- Example:
 - Partition name: FRANCE
 - DDNAME for PHIDAM Index: FRANCEX

Partition DDNAMEs and Data Set Names

Partition_name assigned by user in HALDB Partition Definition Utility

DSN_prefix assigned by user in HALDB Partition Definition Utility

PartitionID assigned by IMS in HALDB Partition Definition Utility

Data set	DDNAME	Data Set Name
Data set group 1	Partition_nameA	DSN_prefix.ApartitionID
Data set group 2	Partition_nameB	DSN_prefix.BpartitionID
Data set group 3	Partition_nameC	DSN_prefix.CpartitionID
Data set group 10	Partition_nameJ	DSN_prefix.JpartitionID
ILDS	Partition_nameL	DSN_prefix.LpartitionID
PHIDAM Index	Partition_nameX	DSN_prefix.XpartitionID
Secondary Index	Partition_nameA	DSN_prefix.ApartitionID

Partition Selection

Partition selection is based on either:

Key range

or

Partition Selection Exit routine

Partition selection determines:

- Where root segments are placed
- Order in which partitions are processed

Partition Selection - NEW

- Restricting a PCB to a single partition
 - Batch or BMP
- New DD name, DFSHALDB
 - Syntax =
 - HALDB PCB=(n,pppppppp)
 where: n = required, the nth DB PCB
 pppppppp = required, partition name
 - one card per PCB, multiple cards allowed
- SPE PQ57313

Partition Independence

Commands

Allowed on both databases and partitions

Availability

Partitions are allocated and authorized independently

Scheduling

- Based on database availability
 - PCBs and INQY calls report database availability
 - Partition may be unavailable with available database

Database Utilities

- Allowed on individual partitions
- Concurrent processing of multiple partitions allowed

HALDB Overview

Migration

- Uses Prereorg, HD Unload, and HD Reload utilities with new control statements
- Databases logically related to each other must be migrated together
- Secondary indexes must be migrated with the databases to which they point
- Migration Aid Utility
 - Provides statistical information about space requirements, key ranges, suggested partition boundaries,...

HALDB Overview

Fallback

- Fallback from HALDB to HIDAM, HDAM, and secondary indexes is supported
- Uses Prereorg, HD Unload, HD Reload, Prefix Resolution, and Prefix Update utilities with new control statements

HALDB Support

• HALDB is supported with:

- Data sharing
- Remote Site Recovery (RSR)
- Extended Recovery Facility (XRF)
- Online Change
- OSAM Sequential Buffering
- IMS Monitor and IMS Performance Analyzer

DL/I Calls with HALDB

- Database availability information
 - INIT DBQUERY call and priming of database PCB
 - Report database availability
 - Do not report partition availability
 - Database calls to unavailable partitions
 - 'BA' status code or U3303
 - GN after 'BA' will move to next partition

DL/I Calls with HALDB

Cannot initially load logical child segments

- LF status code returned if attempted
- Log. child segments may be inserted by update programs
- Log. child segments may be reloaded

PHIDAM with Partition Selection Exit routine

- Root segments are not necessarily in key sequence when crossing partition boundaries
 - Segments are in sequence within a partition

Logging

- No logging of "after images" for PHIDAM indexes
 - Rebuilt with DFSPREC0 utility
 - "Before images" are not archived
- EPS adjustments are not backed out
- Database change log records include partition name instead of master database name
- No logging for ILDS
 - Only updated by HD Reload utility

HALDB Database Candidates

Very large databases

- Approaching 4GB (VSAM) or 8GB (OSAM) limitations
 - To allow for growth
 - To make databases more manageable
- Previously partitioned databases
 - Using IMS/ESA Partition Support Product (PDB)
 - User partitioning

HALDB Database Candidates

- Medium and large databases
 - Parallel processing to meet time deadlines
 - Application programs
 - Utilities

HALDB Database Candidates

Any size database

- Faster reorganizations
 - May be done more frequently
- Partition independence
 - Making only parts of the data unavailable for database maintenance
- HIDAM to PHIDAM conversion
 - Log reduction for prime index
 - No image copies of prime index

HALDB Summary

Large Database

- Databases are partitioned
 - Up to 1001 partitions per database
 - Partitions have up to 10 data set groups

High Availability Database

- Partition independence
 - Allocation, authorization, reorganization, and recovery are by partition
- Self healing pointers
 - Reorganization of partition does not require changes to secondary indexes or logically related databases

HALDB Summary

Benefits

- Greater database capacity
 - Without application changes
- Increased database availability
 - Partitions, not databases, are removed from system
 - Shortened reorganization process
 - Batch window is shortened with concurrent processing
- Improved manageability
 - Data sets may be smaller
- Enhanced usability
 - ISPF utility for partition definitions

