
Implementing LE in an IMS
Environment at Telcordia

Session C02

Steve Nathan
stephen.nathan@telcordia.com

An SAIC Company

2

Disclaimer
�The purpose of this presentation is to provide a

technical perspective of Telcordia’s experience using
IMS and LE.
�Although this document addresses certain IBM

products, no endorsement of IBM or its products is
expressed, and none should be inferred.
�Telcordia also makes no recommendation regarding

the use or purchase of IMS or LE products, any other
IBM products, or any similar or comparable products.
�Telcordia does not endorse any products or suppliers.

Telcordia does not recommend the purchase or use of
any products by the participants.
�Each participant should evaluate this material and the

products himself/herself.

3

Acknowledgements
�This presentation was prepared by:

– Terry Seibert

� IBM Global Services

� tgseiber@us.ibm.com

– Avri Adleman

� Telcordia Technologies

� aadleman@telcordia.com

�They have spent MANY hours studying this topic and

working with IMS and LE development to make this

environment work

4

Trademarks
� The following terms are trademarks of the IBM corporation in the

United States or other countries or both:

– C/370

– IBM

– IMS

– Language Environment

– Open Edition

– OS/390

� UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Company
Limited

� Other company, product, and service names may be trademarks or
service marks of others

5

Presentation Outline

�Overview – What is LE?

�Migrating to LE

�Runtime Options

�Debugging LE

6

Introduction
� This session will cover Language Environment (LE)

setup and options that pertain to an IMS
environment

� Topics will include runtime and initialization options
and any differences in setting up IMS online, BMP
and batch environments

� The new IMS Version 8 Dynamic Runtime Options
will also be discussed

� This presentation was prepared at the OS/390
V2R10 level and updated for z/OS

– It is now at the z/OS1.4 level

� This presentation will make no attempt to discuss
applications which may also use OS/390 UNIX
Systems Services

7

LE Overview

�What is Language Environment (LE)?
– Single runtime environment for High Level Languages
� Basic support routines

– Initialization, termination, storage, messages, conditions

� Callable Services

– Date, time, etc

� Language specific routines

– C/C++

– Cobol

– PL/I

– Fortran

8

LE Overview

�What is Language Environment (LE)?

– LE “Process”

� Address space (ASID)

– LE “Enclave”

� Main program and called subroutines

� Main to Main calls create new Enclaves

– LE “Thread”

� Task (TCB)

9

LE Overview

�Why use LE?

– Because you have to

– Base element of OS/390 & z/OS

– Prerequisite for applications built with newer compilers

– Replaces obsolete/stabilized runtime library products

10

Migration – Multiple LE Releases

�LE is upward compatible
– Applications built on one level of LE will continue to run on later

releases of LE without the need to relink or recompile

�Starting with OS/390 R10 – LE is also downward
compatible
– You may develop applications on higher releases of LE for use

on platforms running lower releases of LE
– The LE Programming Guide lists guidelines and restrictions
� This is NOT a rollback of new function to prior releases
� The system used to build the applications must be at least OS/390

V2R10
– Toleration PTFs for lower OS/390 releases are in a PSP bucket
� Upgrade OS390R10 subset LANGENV
� Not in z/OS

11

Migrating/Upgrading IMS For LE

�Make sure applications are ready
– Read the language-specific LE Migration Guides
� LE guide

� Language specific guide

– PLAN
� Know current/changed runtime options

– Perform regression tests
� Include error scenarios

�Make sure Vendor tools are LE enabled
– There is a list in the LE Migration Guide – Appendix A or call the

vendor

12

Migrating/Upgrading IMS For LE

�Read the IMS specific portions of the LE manuals
– “Running Applications Under IMS” in the LE Programming

Guide

– “Using Language Environment Under IMS” in the LE
Customization Guide

– Language Environment Run-Time Options” in the Customization
Guide

�Bookmanager search for “IMS” in the LE bookshelf
does not work well

13

Migrating/Upgrading IMS For LE

�LPA, LNKLIST or STEPLIB for LE modules?
– LNKLIST for most LE modules

� SCEERUN (PDS) and SCEERUN2 (new PDSE – V2R10)

– LPA for heavily used LE modules
� SCEELPA contains LPA eligible LE modules

� Also check language-specific recommendations in Migration Guides

– See OS/390 Program Directory

� LNKLSTxx Considerations

– APAR II10425

� How to install OS/390 without LE in the LNKLIST

14

Migrating/Upgrading IMS For LE

�STEPLIB for LE modules

– Use STEPLIB to test LE for the first time or new LE releases

� CEE.SCEERUN and CEE.SCEERUN2

– Use STEPLIB until LE migration is complete

– There are considerations for IMS preload

15

PLICALLA

� If your load module is using PLICALLA (as many IMS

programs do)

– In linked steps you must do one of the following:

� Put SIBMCALL or SIBMCALL2 ahead of SCEELKED

� Explicitly INCLUDE LE-provided PLISTART CSECT

� If your load module is not using PLICALLA

– Do not do either of the above because they will needlessly

increase your load module size

16

IMS Data Capture Exit

�The IMS Customization manual says:
– “IMS does not support exit routines running under Language

Environment for OS/390”

� IMS Data Capture Exits can be written in high-level
languages
– These run with LE

� IBM has tested this environment and will now support it
– The manuals will be updated

� Still there in V8

– Fixes will be required

17

IMS Data Capture Exit

�OS/390 R10 or above requires an IMS APAR
– DFSPCC40 must initialize the LINKX parameter list

– PQ47639 (V7)

�APARs PQ35776 and PQ31566 document
Abendu4087 with “F1SA” in Register 2 after
AbendU4000 in IGZCFCC
– These APARs were closed “CAN”

� Use the ABPERC(U4000) runtime option to percolate the U4000

� Tailor LE assembler exit CEEBXITA to set the runtime option

18

Library Retention Routine
�Library Retention Routine (LRR)

– Keeps LE resources in memory for better performance
� Uses LE PREINIT

– Can not be used for application programs
� Use IMS Preload for that

�LRR setup
– Specify CEELRRIN in the DFSINTxx member of the IMS

PROCLIB
– Specify ‘xx’ as the suffix on the PREINIT keyword in the IMS

Dependent Region JCL

�Setting the STORAGE option to
(NONE,NONE,NONE,0) is important for performance
– This is the default for a non-CICS environment

19

Library Retention Routine

�XPLINK (Extra Performance Linkage) is a performance
option for C/C++ subroutine linkage

� It is documented as working in an IMS environment
– Check PQ39145

�We are still trying to make it work

� It is documented as NOT working in an LRR
environment
– See PQ51511 – IMS incorrectly thought XPLINK was used

– See PQ75251 – Create a non-XPLINK C/C++ environment for
IMS LRR

20

LRR Load Notification User Exit
�The LRR Load Notification User Exit can be used to

improve performance by preventing the use count for
frequently used modules from dropping below one
– Invoked at region initialization

– Invoked after each successful load by LE

� Can issue a second load to increase the use count

– Invoked at region termination
� Can issue a delete to lower the use count to zero

�Exit name is CEEBLNUE and there is a sample of the
same name in SAMPLIB

�See the LE Customization manual for details

21

IMS Preload and PDSE
� If you are using the new LE C compiler for C/C++ and

you are using the new DLL support then your load
modules will be in PDSE’s

� IMS documentation has stated that IMS Preload does
not support PDSE’s

�This is not true

22

LE Runtime Options
�There are MANY LE runtime options

– They have MANY parameters

�They are documented in the LE Programming
Reference manual

�The LE Migration Guide lists current recommendations
– Language specific

– Mixed language applications

– CICS environments
� For some reason CICS always seems to be an exception

– Non-CICS environments
� This includes IMS

23

LE Runtime Options

� ABPERC (NONE)

� ABTERMENC(ABEND)

� NOAIXBLD

� ALL31(ON)

� ANYHEAP(65536,65536,ANYWHERE,KEEP)

� NOAUTOTASK

� BELOWHEAP(32768,32768,KEEP)

� CBLOPTS(ON)

� CBLPSHPOP(ON)

� CBLQDA(ON)

� CHECK(OFF)

� COUNTRY(US)

� NODEBUG

� DEPTHCONDLMT(0)

� ENVAR(“”)

� ERRCOUNT(0)

� ERRUNIT(6)

� FILEHIST
� FILETAG(NOAUTOCVT,NOAUTOTAG)
� NOFLOW
� HEAP(5242880,1048576,ANYWHERE,KEEP,

32768,32768)
� HEAPCHK(OFF,1,0,0)
� HEAPPOOLS(OFF,8,20,32,100,128,100,256,100,

1024,10,2048,10)
� INFOMSGFILTER(OFF,,,,)
� INQPCOPN
� INTERRUPT(OFF)
� LIBRARY(SYSCEE)
� LIBSTACK(8192,8192,KEEP)
� MSGFILE(SYSOUT,FBA,121,0,NOENQ)
� MSGQ(15)
� NATLANG(ENU)
� NONONIPTSTACK
� OCSTATUS
� NOPC
� PLITASKCOUNT(20)
� POSIX(OFF)

24

LE Runtime Options

� PROFILE(OFF,””)

� PRTUNIT(6)

� PUNUNIT(7)

� RDRUNIT(5)

� RECPAD(OFF)

� RPTOPTS(ON)

� RPTSTG(OFF)

� NORTEREUS

� RTLS(OFF)

� NOSIMVRD

� STACK(524288,524288,ANYWHERE,KEEP,
524288,131072)

� STORAGE(NONE,NONE,NONE,0)

� TERMTHDACT(UADUMP,,96)

� NOTEST(ALL,”*”,”PROMPT”,”INSPPREF”)

� THREADHEAP(4096,4096,ANYWHERE,KEEP)

� THREADSTACK(OFF,4096,4096,ANYWHERE,
KEEP,131072,131072)

� TRACE(OFF,4096,DUMP,LE=0)
� TRAP(ON,SPIE)
� UPSI(00000000)
� NOUSRHDLR(,)
� VCTRSAVE(OFF)
� VERSION()
� XPLINK(OFF)
� XUFLOW(AUTO)

25

LE Runtime Options
�ABTERMENC

– ABTERMENC sets the enclave termination behavior for an
enclave ending with an unhandled condition of severity 2 or
greater

– TRAP(ON) must be in effect for ABTERMENC to have an effect

– Valid values are RETCD or ABEND

– ALWAYS specify ABEND for IMS

� This is the default starting with OS/390 V2R9

� Do not override it

26

LE Runtime Options
�DEPTHCONDLMT

– DEPTHCONDLMT specifies the extent to which conditions can
be nested

– The default is 10

– The recommendation is 0

� This allows an unlimited depth of condition handling

� This also provides PL/I compatibility

27

LE Runtime Options
�ERRCOUNT

– ERRCOUNT specifies how many conditions of severity 2, 3, or
4 can occur per thread before the enclave terminates
abnormally

– After the number specified in ERRCOUNT is reached, no further
Language Environment condition management, including
CEEHDLR management, is honored.

– The default starting with OS/390 V2R6 is zero

– Zero is the recommedation

28

LE Runtime Options
�TERMTHDACT

– TERMTHDACT sets the level of information that is produced
when Language Environment percolates a condition of severity
2 or greater beyond the first routine's stack frame

– The default option is TRACE
� LE generates a message indicating the cause of the termination and

a trace of the active routines on the activation stack as well as an
options report

– The UADUMP option and a DD statement will get a U4039
dump

– See the LE Programming Reference manual for all of the
options and their meanings

29

LE Runtime Options
�TRAP

– TRAP specifies how Language Environment programs handle
abends and program interrupts

– This option is similar to the STAE | NOSTAE runtime option
offered by COBOL, C, and PL/I, and the SPIE | NOSPIE option
offered by C and PL/I in non-LE environments

� But not really

– TRAP(ON) must be in effect for the ABTERMENC runtime
option to have effect

30

LE Runtime Options for Performance

�ANYHEAP, BELOWHEAP, HEAP, THREADHEAP

– ANYHEAP, BELOWHEAP and THREADHEAP are used by LE

– HEAP is used by the application

�LIBSTACK, STACK, THREADSTACK (Save Areas)

– LIBSTACK and THREADSTACK are used by LE

– STACK is used by the application

31

LE Runtime Options for Performance

�This is part of the output from a STROBE report where

STACK was too small

#PUP ** PROGRAM USAGE BY PROCEDURE **.SYSTEM SYSTEM

SERVICES .LELIB LE/370 LIBRARY SUBROUTNE

MODULE SECTION FUNCTION % CPU TIME MARGIN OF ERROR 2.13%

NAME NAME SOLO TOTAL 00 9.00 18.00

CEEBINIT CEEVGTSI GET A STACK INCREMENT 17.45 17.49 ********************

CEEBINIT CEEVGTS1 CEEVGTSI STUB ROUTINE 2.74 2.74 ****

CEEBINIT CEEVTOVF STACK OVERFLOW ROUTINE 1.80 1.80 ***

CEEPLPKA LE/370 VECTOR CSECT .05 .05

----- -----

SECTION .LELIB TOTALS: 22.04 22.08

32

LE Runtime Options for Performance
�The STACK logic is called throughout the program
#ACE ** ATTRIBUTION OF CPU EXECUTION TIME **

.LELIB CEEBINIT CEEVGTSI GET A STACK INCREMENT

---------------INVOKED BY------------------ ------VIA------- -CPU TIME %-

XACTION MODULE SECTION RETURN LINE MODULE SECTION SOLO TOTAL

PGM001 *PGM0011 005E7A 1.70 1.70

PGM001 *PGM0011 005E84 1.99 1.99

PGM001 *PGM0011 00E67E 1.99 1.99

PGM001 *PGM0011 00E6B4 1.99 1.99

PGM001 *PGM0011 00E6BE 2.08 2.13

PGM001 *PGM0011 00E6DA .99 .99

PGM001 *PGM0011 00E78A 2.55 2.55

PGM001 *PGM0011 00EC38 1.80 1.80

PGM001 *PGM0011 00F716 2.27 2.27

PGM001 *PGM0011 01200C .05 .05

PGM001 *PGM0011 020F88 .05 .05

----- -----

17.45 17.49

33

LE Runtime Options for Performance

�RPTOPTS

– Generate report of options in effect

�RPTSTG

– Generate reports of actual storage used

– Use RPTSTG suggested values to minimize GETMAINs

– Do not generate reports during production!!!

34

LRR Storage Tuning User Exit

�The LRR Storage Tuning User Exit has two functions
– Collect LE storage tuning information without having to run with

the RPTSTG option

– Set the LE runtime options STACK, LIBSTACK, HEAP,
ANYHEAP, and BELOWHEAP for each LE enclave

�The exit name must be CEEBSTX (for non-CICS
environments with LRR)

�There is a sample in SCEESAMP named CEEWBSTX

�See the LE Customization manual for details

35

LE Runtime Options for Performance
�LE runtime options changed at z/OS 1.2

– ALL31(ON)
� Tell LE that no application routines are AMODE 24

– STACK(,,ANY,,,)
� Puts stack storage above the line

– THREADSTACK(,,,ANY,,,)

� Puts thread stacks above the line for multi-threaded applications

– STORAGE(,,,0K)

� Eliminates below the line reserved stack storage

�This is known as the Favor 31-Bit Application
Enhancement

36

LE Runtime Options for Performance
�ALL31

– ALL31 specifies whether an application can run entirely in
AMODE 31 or whether the application has one or more AMODE
24 routines

– This option does not implicitly alter storage, in particular storage
managed by the STACK and HEAP runtime options

– However, you must be aware of your application's requirements
for stack and heap storage, because such storage can
potentially be allocated above the line while running in AMODE
24

– It is recommended that ALL31 have the same setting for all
enclaves in a process
� LE does not support the invocation of a nested enclave requiring

ALL31(OFF) from an enclave running with ALL31(ON) in non-CICS
environments.

37

LE Runtime Options for Performance

�Favor 31-Bit Application Enhancement

– IMS applications compiled with C/370 and linked with the pre-LE

CTDLI stub and run with ALL31(OFF) may abend because LWS

(Library Work Space) storage is not allocated

� This is fixed with APAR PQ56143

� Or you can relink with LE version of CTDLI

– The Reserve Stack needs to be a minimum of 32K

� STORAGE(,,,nK)

� Used by LE to process out-of-storage conditions

38

Setting LE Runtime Options

�There are MANY ways to set LE runtime options

– CEEDOPT

– CEEROPT

– CEEUOPT

– Application Load Module

– IMS V8 Dynamic LE runtime options

– LRR Storage Tuning User Exit

39

Setting LE Runtime Options

�CEEDOPT

– Installation-wide LE default options

�CEEROPT

– Region-wide LE options (if IMS with LRR)

– CEEROPT can only be used in IMS (with LRR) and CICS

environments

40

Setting LE Runtime Options

�CEEUOPT

– Application specific LE options

– Must be linked with the application

41

Setting LE Runtime Options

�Load module

– PL/I main

� PLIXOPT

– C main

� #pragma runopts()

�LRR Storage Tuning User Exit

– This was previously discussed

42

Setting LE Runtime Options

� IMS V8 Dynamic LE Runtime Options

– IMS users asked for the ability to dynamically change LE

runtime options for an IMS transaction

– The solution should not require that CEEROPT or CEEUOPT or

the application to be recompiled or relinked

– This requirement was met in IMS V8

43

Setting LE Runtime Options

� IMS V8 Dynamic LE Runtime Options

– New IMSplex commands allow a user to dynamically update,

delete, and query LE runtime options

� There are no equivalent “/” commands

– Requires new IMS V8 Operations Manager (OM)

– Uses DFSBXITA, an IMS specific version of CEEBXITA

� DFSBXITA uses an enhanced DL/I INQY call to retrieve the dynamic

options

44

Setting LE Runtime Options
� IMS V8 Dynamic LE Runtime Options

– Filters are used to decide when to set the dynamic LE runtime
options

� Transaction Code

� LTERM

� Userid

� Program

45

Setting LE Runtime Options
� IMS V8 Dynamic LE Runtime Options

– Users can specify whether or not IMS should allow dynamic
runtime option overrides

� LEOPT= Y or N in the DFSCGxxx IMS Proclib member

� UPD LE SET(LEOPT(YES or NO)) IMSplex command

– QUERY MEMBER TYPE(IMS) displays “LEOPT” if overrides
are enabled

– JMP/JBP regions must also have JLEOPT=Y specified in the
Environment Proclib member

� These regions require APAR PQ54375 to use Dynamic LE Runtime
Options

46

Setting LE Runtime Options

� IMS V8 Dynamic LE Runtime Options

– The dynamic LE options are specified and displayed with

IMSplex commands

� UPDATE LE

� DELETE LE

� QUERY LE

– Standard OM (Operations Manager) security is used

47

Setting LE Runtime Options

� IMS V8 Dynamic LE Runtime Options

– The UPD LE command is used to set dynamic LE runtime

options based on a filter of transaction code and/or LTERM

and/or USERID and/or program

� At least one filter must be specified

– The UPD LE command can be issued while dynamic LE options

are disabled

� The options and filters will be saved and go into effect when dynamic

LE options are enabled

48

Setting LE Runtime Options
� IMS V8 Dynamic LE Runtime Options

– The DELETE LE command is used to delete dynamic LE

runtime options based on a filter of transaction code and/or

LTERM and/or USERID and/or program

� At least one filter must be specified

� All matches found will be deleted

�Wildcard support is available for the filters

– The DELETE LE command can be issued while dynamic LE

options are disabled

� The options table will be updated and go into effect when dynamic

LE options are enabled

49

Setting LE Runtime Options

� IMS V8 Dynamic LE Runtime Options

– The QUERY LE command is used to display dynamic LE

runtime options based on a filter of transaction code and/or

LTERM and/or USERID and/or program

� At least one filter must be specified

� The first entry in the list with the most exact filter matches is

displayed

�Wildcard support is available for the filters

50

Debugging With LE
�ABEND codes are different with LE

– Why be consistent?!?!?

– Most LE abends are U4038/U4039

� About as useful as IMS U4095

�Debug using error messages – not abend codes
– e.g. Abend0C4 becomes message CEE3204S

�The MSGFILE runtime option species the DDNAME for
all runtime diagnostics and reports generated by
RPTOPTS and RPTSTG
– The default is SYSOUT

51

Debugging With LE – Dump Files
�CEEDUMP

– Formatted dump of LE storage/data

– Content depends on TERMTHDACT() suboption

�CEESNAP
– Application generated dump information

�SYSUDUMP
– If TRMTHDACT(UADUMP) and SYSUDUMP DD card

– Formatted dump but no formatting of LE information

�SYSMDUMP
– If TRMTHDACT(UADUMP) and SYSMDUMP DD card

– Use when reporting problems to IBM

– IPCS verbexit LEDATA/CEEERRIP formats LE data

52

Debugging With LE – Control Blocks
�Common Anchor Point (CAA)

– Pointed to by Register 12

�Stack Frame/Dynamic Save Area (DSA)
– Pointed to by Register 13

– DSA’s are backchained at DSA+4

�Condition Information Block
– CEECAA+x’2D8’ points to current CIB

�Machine State Information Block (ZMCH)
– Pointed to by CIB+x’24’

53

Debugging with IMS and LE
� IMS & LE do coordinate condition handling!

– If an error occurs in an IMS environment LE will send the
condition to IMS

�There are a number of APAR’s dealing with IMS and
LE
– Some have been documented in this presentation

– Others can be found be searching IBMLINK

� This is HIGHLY recommended

54

Uninitialized Variables
�Prior to LE uninitialized variables had a “high

probability” of being binary zero
– Many programs relied on this

�With LE many uninitialized variables contain “garbage”
– LE gets the storage and uses it for initialization and then uses it

for the application

�This was the source of MANY (MANY MANY) abends
and unexpected conditions and logic errors

55

Conclusion

� Implementing and upgrading LE in an IMS

environment requires hard work

�Plan by reading the Migration manuals

�Review runtime options before migration

�Consider LRR for performance

�Check for uninitialized variables

�Do extensive testing

– Including error scenarios

56

Questions?

	Return to Index:

