
Charles Ryan
IBM Silicon Valley Lab

St. Louis, MO St. Louis, MO Sept. 30 - Oct. 3, 2002Sept. 30 - Oct. 3, 2002

1

 IBM Corporation 2002

!IBM Corporation 2002IMS Technical Conference

Contents
Database Basics

What is a Database
The IMS Database
The Hierarchy
Segment Rules
Segment Relationships
Hierarchic Sequence
Access to Segments
Segments in Storage

Sequential Organization
Sequential Organization
HSAM
HSAM Storage
HSAM Processing
SHSAM
HISAM
HISAM Storage
HISAM VSAM Logical Record
HISAM Inserts
Insert Root 4
Insert Root 5
Insert Dependents G22 and D24
HISAM Delete and Replace
SHISAM
GSAM

5
7
8
9

10
11
13
14

15
17
18
19
20
21
22
23
24
25
26
27
28
29
30

2

!IBM Corporation 2002IMS Technical Conference

Contents
Direct Organization

Direct Organization
Pointer Types
Hierarchic Forward Pointers
Physical Child First Pointers
Physical Twin Pointers
Physical Child Last Pointers
Pointer Uses
Pointers in the Prefix
HD Storage
Special HD Fields
HDAM Storage
HIDAM Storage
HIDAM RAP
Processing HD Databases
HD Space Search Algorithm

Logical Relations
Types
How Logical Relationships are Implemented
The Logical Child
Bi-directional Physical Pairing
Bi-directional Virtual Pairing
Logical Relation Prefix

32
34
35
36
37
38
39
40
41
42
44
46
48
49
51

52
55
56
57
58

3

!IBM Corporation 2002IMS Technical Conference

Contents

Secondary Indices
Why Secondary Indices
Secondary Index (SI)
Fields in the Index Pointer

60
61
62

4

!IBM Corporation 2002IMS Technical Conference

Database Basics

TOPICTOPICTOPIC

5

!IBM Corporation 2002IMS Technical Conference

What is a Database

A collection of interrelated data items organized in a form for easy retrieval
The collection of data is stored in a computer system
The retrieval is done by application programs
Each item of data only needs to be stored once

Shared among the programs and users

An IMS database is organized as a hierarchy
Levels of data
Data at lower levels depends on data at higher levels for its context

You cannot understand the lower level without knowing the higher levels

6

!IBM Corporation 2002IMS Technical Conference

The IMS Database

A database is a group of related database records
A database record is a single hierarchy of related segments
A segment is a group of related fields
A field is a single piece of data

It can be used as a key for ordering the segments
It can be used as a qualifier for searching
It may only have meaning to the applications

IMS database always look like hierarchies

7

!IBM Corporation 2002IMS Technical Conference

The Hierarchy

Level 1

Level 2

Level 3

Level 4

ROOT
(1)

Segment B
(7)

Segment D
(3)

Segment E
(4)

Segment I
(5)

Segment J
(6)

Segment K
(11)

Segment C
(9)

Segment A
(2)

Segment F
(8)

Segment G
(10)

Segment H
(12)

8

!IBM Corporation 2002IMS Technical Conference

Segment Rules

Root
One and only one root for each database record
No higher level segments

Everything depends on the information in the root

Other Segment Types
Up to 254 different segment types

255 including the root
Any number of occurrences of each segment type
Each segment, except the root, is related to one and only one segment at the next higher
level

9

!IBM Corporation 2002IMS Technical Conference

Segment Relationships

Parent
All segments which have dependent segments at the next lower level are parents of those
segments
A parent may have any number of dependent segments

Child
A segment which depends on a segment at a higher level is a child of that segment
Every child segment has one and only one parent

Twins
All occurrences of a segment type under the same parent are twins
There may be any number of twins and they are still called twins

Siblings
Segments of different types with the same parent are siblings

10

!IBM Corporation 2002IMS Technical Conference

Hierarchic Sequence

Top to Bottom
Left to Right
Front to Back (for twins)

Each segment TYPE has a code which is its number in hierarchic sequence
Segment codes numbers do not take twins into account

Sequential processing of a database record is in hierarchic sequence
All segments of a database record are included so twins do have a place in hierarchic
sequence

Segments may contain sequence fields which will determine the order in which they are
stored and processed

11

!IBM Corporation 2002IMS Technical Conference

Hierarchic Sequence ...

Segment E1
(5)

Segment D3
(9)

Segment A2
(8)

Segment D1
(3)

Segment E3
(7)

Segment E2
(6)

Segment B2
(14)

Segment B1
(10)

Segment G2
(12)

Segment G1
(11)

Segment D2
(4)

Segment A1
(2)

Segment H
(13)

ROOT
(1)

12

!IBM Corporation 2002IMS Technical Conference

Access to Segments

Retrieval
Get Unique (GU)

Read a particular segment as determined by sequence or search fields
Get Next (GN)

Read the next segment in hierarchic sequence
Get Next Within Parent (GNP)

Read the next segment in hierarchic sequence under a particular parent segment

Update
Insert (ISRT)

Insert a new occurrence of a segment
Delete (DLET)

Delete a segment
Replace (REPL)

Update a segment with a new data, except for the sequence field

13

!IBM Corporation 2002IMS Technical Conference

Segments in Storage

Segments are stored with a prefix and a data portion
The prefix is used only by IMS
The data is what the application program sees

Prefix Data

2--(4 x n) Variable

PointerSC

1

Pointer PointerDB

1 4 4 4

The prefix contains:
SC = segment code, 1 byte
DB = delete byte, 1 byte

0 to n pointers, 4 bytes each

14

!IBM Corporation 2002IMS Technical Conference

Sequential Organization

TOPICTOPICTOPIC

15

!IBM Corporation 2002IMS Technical Conference

Sequential Organization

The data is physically stored in hierarchic sequence
Database records are stored in a root key sequence

If no root key, they are stored as presented
Segments in a record are stored in hierarchic sequence

Sequential Database Types
Hierarchical Sequential Access Method (HSAM)
Simple Hierarchical Sequential Access Method (SHSAM)

Root-only HSAM
Hierarchical Indexed Sequential Access Method (HISAM)
Simple Hierarchic Indexed Sequential Access Method (SHISAM)

Root-only HISAM using VSAM
Generalized Sequential Access Method (GSAM)

No hierarchy, no database records, no segments

16

!IBM Corporation 2002IMS Technical Conference

HSAM

Tape or DASD
BSAM or QSAM

QSAM if online or PROCOPT=GS

Fixed-Length, Unblocked format
RECFM=F, logical record length=physical block size

Cannot Delete or Replace
Update by rewriting the database

Insert allowed when loading the database
Restrictions

No pointers in prefix - SC and DB only
Delete byte is not used

No multiple data set groups (MSDG)
No logical relationships or secondary indices
No variable length segments
No edit/compression or data capture
No logging, recovery, or reorganization

17

!IBM Corporation 2002IMS Technical Conference

HSAM Storage

Segment D3

Segment D2

Segment D1

Segment E3

Segment A1

Segment E2

Segment E1

ROOT 1

Root 1 A1 D1 D2 E1 00

Root 2 ... 00G2 H1 B2

E2 E3 A2 D3 B1 G1 0

Block 1 Block 2

Block 3

Segment A2

Segment G1 Segment H1

Segment B1

Segment G2

Segment B2

18

!IBM Corporation 2002IMS Technical Conference

HSAM Processing

Retrieval

UPDATING
PROGRAM

GU CALL IS ISSUED

IS THERE A ROOT
SEQUENCE FIELD

Scan from start of DB Back 2, Forward 1 Scan From Here

YES

NEW (UPDATED HSAM
DB

EXISTING HSAM
DB

YES

NO

GS

G

PROCOPT

Update

IS KEY WANTED GREATER
THAN CURRENT KEY

19

!IBM Corporation 2002IMS Technical Conference

SHSAM

HSAM with only one segment type (root-only)
No prefix is used

No SC because only one segment type

Same restrictions and processing as HSAM
Fully equivalent to plain QSAM or BSAM file

Communication with non-IMS systems
Passing large amounts of data

20

!IBM Corporation 2002IMS Technical Conference

HISAM

DASD only
VSAM

KSDS for the primary data set
ESDS for the overflow data set

Each root must have a unique key
A database record is stored as 1 record in the primary data set and 0 to N
records in the overflow data set
All calls are allowed
Prefix consists of Segment Code (SC) and Delete Byte (DB)
HSAM restriction do not apply
HISAM works better when

Applications randomly access the records and then read the segments sequentially
Most of the database records are the same size
Relatively few dependents per root
Very low insert/delete activity

21

!IBM Corporation 2002IMS Technical Conference

HISAM Storage

Root 1 A1 D1 D2

Root 2 A21 D21 A22

Root 3 A31 A32 D31

Root 7 A71 D71 D72

Root 2 ROOT7

KEY SEQUENCED DATA SET

E1

B1

D22

E2

G1

D23

E3

G2

E21

A2

G3

B21

D3

G21 H21

ENTRY SEQUENCE DATA SET

PRIMARY DATA SET OVERFLOW DATA SET

INDEX

CI
WITH
2
RECS

22

!IBM Corporation 2002IMS Technical Conference

HISAM VSAM Logical Record

Relative
Byte

Address
Segment

Segment
Code of

0

Unused
Space

Segment Segment.

4 Varies Varies1

RBA pointer to the next logical record for this database record
Last logical record for DB record has zeros
Segments are stored in hierarchic sequence
SC of zero indicates end of segments in this logical record
Unused space can have any data in it

23

!IBM Corporation 2002IMS Technical Conference

HISAM Inserts

HISAM Roots are always inserted into the Primary Data Set (KSDS)
If there is an free record in the VSAM Control Interval (CI)

Inserted in root key sequence
Higher keys are 'pushed down' to make space

If there is no free record in the CI
CI is split - some of the records moved to a new CI

 - Split at midpoint or insert point by INSERT = in DFSVSAMP
After split, same as free record case

Dependents are inserted in their place in hierarchic sequence
If there is room in the logical record

Following are 'pushed down' to make space
If there is not enough room

All following segments are moved to a new overflow record
Overflow records chain is updated
Segment is inserted

24

!IBM Corporation 2002IMS Technical Conference

Insert Root 4

KEY SEQUENCED DATA SET ENTRY SEQUENCE DATA SET

PRIMARY DATA SET OVERFLOW DATA SET

Root 1 A1 D1 D2

Root 2 A21 D21 A22

Root 3 A31 A32 D31

Root 4

Root 2 ROOT4 ROOT7
E1

B1

D22

E2

G1

D23

E3

G2

E21

A2

G3

B21

D3

G21 H21

Root 7 A71 D71 D72

25

!IBM Corporation 2002IMS Technical Conference

Insert Root 5

KEY SEQUENCED DATA SET ENTRY SEQUENCE DATA SET

PRIMARY DATA SET OVERFLOW DATA SET

Root 1 A1 D1 D2

Root 2 A21 D21 A22

Root 3 A31 A32 D31

Root 4

Root 2 ROOT4 ROOT7 E1

B1

D22

E2

G1

D23

E3

G2

E21

A2

G3

B21

D3

G21 H21

Root 5 A51 B51

Root 7 A71 D71
D72

26

!IBM Corporation 2002IMS Technical Conference

Insert Dependents G22 and D24

KEY SEQUENCED DATA SET ENTRY SEQUENCE DATA SET

PRIMARY DATA SET OVERFLOW DATA SET

Root 1 A1 D1 D2

Root 2 A21 D21 A22

Root 3 A31 A32 D31

Root 4

Root 2 ROOT4 ROOT7 E1

B1

D22

E2

G1

D23

E3

G2

D24

A2

G3

D3

G21 G22

Root 5 A51 B51

Root 7 A71 D71 D72

H21

E21 B21

27

!IBM Corporation 2002IMS Technical Conference

HISAM Delete and Replace

Delete
Marked as deleted in the Delete Byte in prefix

Dependents are not flagged but can't be accessed (parent segment marked)
Continue to take up space

Unload/Reload to reclaim space
If the root is deleted and no logical relationship exists

The record is deleted from the primary data set
Overflow records continue to exist in the overflow

Replace
Fixed length or same length

Overwrite previous data
Variable length

Other segments in the record move to make space
Displaced segments will go to a new overflow record

28

!IBM Corporation 2002IMS Technical Conference

SHISAM

HISAM with only one segment type (root-only)
No prefix is used

No SC because only one segment type
No DB because logical record is deleted (VSAM erase)

Restrictions
No logical relationships or secondary indices
No multiple data set groups
No variable length segments
No edit/compression

Fully equivalent to a VSAM KSDS
No ESDS because no dependent overflow
Can be accessed by native VSAM programs

29

!IBM Corporation 2002IMS Technical Conference

GSAM

Compatible with MVS data sets
No hierarchy
No database records
No segments and no keys

GSAM VSAM
ESDS on DASD
Fixed or variable length records

GSAM QSAM/BSAM
Physical sequential (DSORG=PS) on DASD or Tape
Fixed, variable, or undefined length records

GSAM Processing
No Delete or Replace
Insert only at the end of the data set
Gets by sequential scan

30

!IBM Corporation 2002IMS Technical Conference

GSAM ...

Restrictions
No multiple data set groups
No logical relationships or secondary indices
No edit/compression or data capture
No field level sensitivity
No logging or reorganization

Checkpoint and Restart
IMS symbolic checkpoint supports GSAM
Can restart from checkpoint instead of reprocessing
Restart repositions in the GSAM data set

31

!IBM Corporation 2002IMS Technical Conference

Direct Organization

TOPICTOPIC

32

!IBM Corporation 2002IMS Technical Conference

Direct Organization

Physical storage is independent of hierarchic sequence
Pointers are used to maintain segment relationships

Pointers are in the segment prefix
Segments can be stored 'anywhere'
Segments are not physically moved

Space from deleted segments can be reused

Direct Database Types
Hierarchic Direct Access Method (HDAM)

Uses a randomizing module for direct access to root
Hierarchic Indexed Direct Access Method (HIDAM)

Searches an index to find the root

High Availability Large Database (HALDB)
HDAM and HIDAM databases partitioned using the HALDB Partition Definition Utility
(DSPXPDDU) become

Partitioned Hierarchic Direct Access Method (PHDAM)
Partitioned Hierarchic Indexed Direct Access Method (PHIDAM)
See manuals for further information.

33

!IBM Corporation 2002IMS Technical Conference

Pointer Types

Hierarchic
May be present in all segment types
Forward (HF)

Points to next segment in hierarchic sequence
Backward (HB)

Points to previous segment in hierarchic sequence
Must also have HF pointers

Physical Child
Found only in the prefix of a parent segment
First (PCF)

Points to the first occurrence of a child segment type
Must also have PCF pointer

Twin
Forward (PTF)

Points to the next twin in key or entry sequence
Backward (PTB)

Points to the previous twin
Must also have PTF pointer

34

!IBM Corporation 2002IMS Technical Conference

Hierarchic Forward Pointers

Segment A2 Segment B1

Segment A1

Segment D3 Segment B2

Segment D1 Segment E1 Segment G1 Segment H1

Segment D2 Segment E2 Segment G2

Segment E3

ROOT 1

35

!IBM Corporation 2002IMS Technical Conference

Physical Child First Pointers

Segment A2 Segment B1

Segment A1

Segment D3 Segment B2

Segment D1 Segment E1 Segment G1 Segment H1

Segment D2 Segment E2 Segment G2

Segment E3

ROOT 1

36

!IBM Corporation 2002IMS Technical Conference

Physical Twin Pointers

Segment A2 Segment B1

Segment A1

Segment B2

Segment D1 Segment E1 Segment G1 Segment H1

Segment D2 Segment E2 Segment G2

Segment E3

ROOT 1

Segment D3

37

!IBM Corporation 2002IMS Technical Conference

Physical Child Last Pointers

Segment E3

Segment A2 Segment B1

Segment A1

Segment D3 Segment B2

Segment D1 Segment E1 Segment G1 Segment H1

Segment D2 Segment E2 Segment G2

ROOT 1

38

!IBM Corporation 2002IMS Technical Conference

Pointer Uses

Hierarchic Forward
Primary processing is in hierarchic sequence

Hierarchic Backward
Delete activity via a logical relationship or secondary index

Physical Child First
Random processing
Sequence field or insert rule FIRST or HERE

Physical Child Last
No sequence field and insert rule LAST
Use of *L command code

Physical Twin Forward
Random processing
Needed for HDAM roots
Poor choice for HIDAM roots

Physical Twin Backward
Improves delete performance
Processing HIDAM roots in key sequence

39

!IBM Corporation 2002IMS Technical Conference

Pointers in the Prefix

Cannot have Hierarchic and Physical in the same prefix
PTR=H will cause PCF specification to be ignored

If a parent has PTR=H, children cannot use backward pointers
If a parent has PTR=HB, children must use backward pointers
Child pointers will behave like the parent specification

Parent hierarchic, last twin pointer goes to sibling, not 0
Parent twin, last hierarchic pointer in twins is 0

HF HB PTF PTB PCF PCLor

40

!IBM Corporation 2002IMS Technical Conference

HD Storage

All HD data is in a single ESDS or OSAM data set
The logical records are unblocked

Logical record length = block size for OSAM
Logical record length = block size -7 for VSAM

All segments are stored as an even number of bytes

BITMAPANCHOR POINT AREAFSAP

ANCHOR POINT AREAFSAP

ANCHOR POINT AREAFSAP

ANCHOR POINT AREAFSAP

Reserved CI If VSAM - Not Present If OSAM

SEGMENTS FSE FREE SPACE

SEGMENTSFREE SPACEFSE

SEGMENTS FSE FREE SPACE

FSE .

SEGMT

VSAM ESDS OR OSAM DATA SET

41

!IBM Corporation 2002IMS Technical Conference

Special HD Fields

Bitmap
One bit per block or CI

First bit corresponds to the bitmap itself
1 = enough space to store the LONGEST segment in the database
0 = not enough space for the LONGEST segment
If bitmap has N bits, block or CI N + 1 is a new bitmap

Free Space Anchor Point (FSAP)
Two 2-byte fields

First the offset from in bytes to first FSE
Second is a flag indicating if this block is a bitmap

0 = this is not a bitmap

Anchor Point Area
Contains one or more 4-byte Root Anchor Points (RAP)

1 RAP in HIDAM if the root has PTF or HF pointer
RMNAME parameter specifies number of RAPs in HDAM

Each RAP contains the address of a root segment or 0

42

!IBM Corporation 2002IMS Technical Conference

Special HD Fields ...

Free Space Element

FSE CHAIN AVAILABLE LENGTH TASK ID

2 2 4

First 2 bytes are offset, in bytes, to next FSE
Zero if this is the last FSE in the block or CI

Second 2 bytes are length of free space, including FSE
No FSE is created if free space is less than 8 bytes long

Last 4 bytes is the task ID of the program that freed the space
Allows a program to free and reuse the same space without contention

Useful in determining who freed the space

43

!IBM Corporation 2002IMS Technical Conference

HDAM Storage

FREE SPD2D1A1ROOT1RAPRAPFSAP E1 E2

FREE SPACEA32A31ROOT3RAPRAPFSAP D31

BITMAPANCHOR POINT AREAFSAP

FREE SPACEFSAP

R
O
O
T

A
D
D
R
E
S
S
A
B
L
E

O
V
E
R
V
F
L
O
W

FREE SPACEG1B1D3A2E3FSAP G2 G3

FREED72D71A71ROOT 7RAPFSAP ROOT 4RAP

44

!IBM Corporation 2002IMS Technical Conference

HDAM Storage ...

Root Addressable Area (RAA)
Number of blocks or CIs defined in RMNAME parameter
Primary storage area for roots and dependents

Number of dependents at initial load is limited by RMNAME
Insert until specified bytes limit would be exceeded

All RAPs are in the RAA
Location is determined by Randomizer specified in RMNAME

Randomizer input is the root segment's key
Randomizer output is a block number and RAP number
Keys that randomize to same block and RAP are synonyms
Synonyms are chained using PTF pointers
Chain is ascending key sequence or by insert rules

Overflow Area
For segments that do not fit in the RAA
No RAPs are present in the overflow area

45

!IBM Corporation 2002IMS Technical Conference

HIDAM Storage
KSDS

FREE SPACED72D71A71ROOT 7ROOT 4D31FSAP

FREE SPROOT 3G3G2G1B1D3FSAP A31 A32

FREE SPE1D2D1A1ROOT 1FSAP E3 A2E2

BITMAPANCHOR POINT AREAFSAP

ESDS OR OSAM

> KEY 1 > KEY 3 > KEY 4 > KEY 7

46

!IBM Corporation 2002IMS Technical Conference

HIDAM Storage ...

Data Component
A VSAM ESDS or OSAM data set
No RAA or Overflow portions
Database records are stored in key sequence
Roots must have unique keys
Segments in hierarchic sequence
You can specify that free space be left after loading

A percentage in each block or CI
Every Nth block or CI

Index Component
VSAM KSDS
The index is a root-only database
One index segment for each database root

DB Pointer to Root Root Key
1

Prefix
4 Varies

Data

47

!IBM Corporation 2002IMS Technical Conference

HIDAM RAP

One RAP per block or CI if PTR=T or PTR=H for the root
No RAP is generated if PTR=TB or PTR=HB
No RAP is generated if PTR=NOTWIN

Roots are chained from RAP in reverse order of insertion
RAP points to most recently inserted root
Each root points to previously inserted root
First root inserted has a zero pointer

Index must be used to process roots sequentially
Index must also be used if NOTWIN is specified

Remember that TWIN is the default
Specify something useful!
Use backward pointers if you process roots sequentially
Use NOTWIN if you only do random processing

48

!IBM Corporation 2002IMS Technical Conference

Processing HD Databases

Delete
The segment and all of its dependents are removed
FSE is used indicate the space is free

Create a new FSE and update the FSAP/FSE Chain
Update length field of preceding FSE

Pointers are updated
Replace

No change in length or fixed-length
Overwrite old segment with updated segment

Shorter segment
Space previously occupied is freed
FSE created if at least 8 bytes shorter

Longer segment
If adjacent free space lets it fit, store in original location
If no space available, separated data

 Data part goes to overflow with prefix of SC and DB=x'FF'
 Bit 4 of DB in original prefix is turned on
 Pointer to data in overflow is built after prefix
 Remainder of space is freed

49

!IBM Corporation 2002IMS Technical Conference

Processing HD Databases ...

Insert
Store in the Most Desirable Block (MDB)

HDAM root MDB
 The one which is selected by the randomizer
 The one containing its previous synonym

HIDAM root MDB
 If no backward pointer, same as the next higher key root
 If backward pointer, same as the next lower key root

Dependents
 If Physical, same as parent or previous twin
 If Hierarchic, same as previous segment in hierarchy

Second most desirable block
Nth Block or CI left free during loading

 If in buffer pool or bitmap shows space available
Specified by FRSPC parameter

 If not specified, then no second MDB

50

!IBM Corporation 2002IMS Technical Conference

HD Space Search Algorithm

In the MDB (this will be in the buffer pool)
In the second MDB
Any block in the buffer pool on the same cylinder
Any block on the same track

If the bitmap shows space available

Any block on the same cylinder
If the bitmap shows space available

Any block in the buffer pool within +/- SCAN cylinders
Any block within +/- SCAN cylinders

If the bitmap shows space available

Any block at the end of the data set is in the pool
Any block at the end of the data set

If the bitmap shows space available
Extend the data set if necessary

Any block where the bitmap shows space

51

!IBM Corporation 2002IMS Technical Conference

Logical Relations

TOPIC

52

!IBM Corporation 2002IMS Technical Conference

Types

Unidirectional
A one-way relationship from one database record to another
Applications always start from one place

ORDER X ITEM 1

ITEM 4

ORDER X ITEM 1

ITEM 4

ORDER Y

ITEM 9

Bi-directional
A two-way relationship between database records
Applications may start on either side
IMS maintains both sides of bi-directional relationships

53

!IBM Corporation 2002IMS Technical Conference

How Logical Relationships are Implemented
Unidirectional

Logical Parent (LP) Pointer
In the Logical Child segment
points to logical parent

LOGICAL CHILD LOGICAL CHILD

Bi-directional

PHYSICAL PARENT

LOGICAL CHILD

LOGICAL PARENT

PHYSICAL PARENT LOGICAL PARENT

54

!IBM Corporation 2002IMS Technical Conference

The Logical Child

SC DB Pointer Area LPCK Fixed Intersection Data

PREFIX DATA

Logical Parent Concatenated Key
Sequence fields of all segments from root to logical parent
Always appears to the application program
May or may not be physically stored with logical child

If not stored, IMS generates it on retrieval

Logical Parent Pointer
The LPCK if it is physically stored

Must be used if logical parent database is HISAM
This is called a symbolic pointer

A 4-byte pointer in the segment prefix
May only be used if logical parent database is HD
The only kind of pointer that can exist in HISAM

Fixed Intersection Data
Data that is dependent on the logical relation
Maintained on both sides of a bi-directional relation
Variable intersection data is in dependents of the logical child

55

!IBM Corporation 2002IMS Technical Conference

Bi-directional Physical Pairing

Physical or Hierarchic relate Physical Parent and Logical Children
Logical Parent relates Logical Child to Logical Parent
Requires a physical segment on both sides of the relation

LOGICAL PARENT X

LOG CHILD AA

LOGICAL PARENT Y

LOG CHILD BB
PTF

LP LP

LP

LP
LOGICAL PARENT 1

PCF
LOGICAL PARENT 2

PCF

PTF
LOGICAL CHILD A LOGICAL CHILD B

56

!IBM Corporation 2002IMS Technical Conference

Bi-directional Virtual Pairing

Logical Child First (LCF) replaces PCF
Logical Twin Forward (LTF) replaces PTF
Physical Parent (PP) replaces (LP)
Physical segment only exists on one side of relation
Real Logical Child must be in HD database

LOGICAL PARENT X

LOGICAL CHILD X

LOGICAL PARENT 1
PCF

LOG CHILD AA

LOGICAL PARENT Y

LOGICAL PARENT 2
PCF

PP
PTF

LP
LOGICAL CHILD A
LTF

57

!IBM Corporation 2002IMS Technical Conference

Logical Relation Prefix

SC DB HF HB PP LTF LTB LP

SC DB PTF PTB PP LTF LTB LP PCF PCL

Logical Child Prefix
PP, LTF and LTB only present if virtual pairing

OR

SC DB HF HB PP LCF LCL

SC DB PTF PTB PP PCF PCL LCF LCL

Logical Parent Prefix
PP only if a lower level segment is a logical parent

58

!IBM Corporation 2002IMS Technical Conference

Secondary Indices

TopicTopic

59

!IBM Corporation 2002IMS Technical Conference

Why Secondary Indices

Processing sequence other than root key
Avoid scan for non-key field

Direct access to lower level segments
Faster processing

Course Student Index

Class

Instructor Student

Target
Segment

Source
Segment

Index Pointer
Segment

60

!IBM Corporation 2002IMS Technical Conference

Secondary Index (SI)

Can be based on HISAM, HDAM, or HIDAM
Is a separate database

Can be processed on its own

Uses fields from the source segment to create a key
Access via a secondary index is to the target segment
Invisible to the application

PROCSEQ = on PCB tells IMS to use the secondary index

Application must use XDFLD name in the SSA

Limits on secondary indices
32 secondary indices onone segment type

1000 secondary indices for a database

Secondary index is a special kind of logical relation

61

!IBM Corporation 2002IMS Technical Conference

Fields in the Index Pointer

DB Pointer
Constant
optional Search

Subsequence

optional

Duplicate
Data

optional

Concat
Key

opt HD

User
opt

1 4 1 Variable

Pointer is used when target is in HD database
Constant is used for shared secondary indices

More than one SI in the same database

Search is made up of up to 5 fields form the source
This is the key of the secondary index

Subsequence is up to 5 fields from source or IMS-generated values
Used to make the secondary index key unique

Duplicate Data is up to 5 fields from the source
Only used when processing the SI as a database

Concatenated Key is the symbolic pointer to the target
Required when the target is in HISAM database

User Data is anything you want to stick in there
Only used when processing the SI as a database

62

!IBM Corporation 2002IMS Technical Conference

Where to look for further information...

IMS Manuals
Administration Guide: Database Manager

Chapter 4 - Designing a Full-Function Database, Choosing a Database Type
Chapter 5 - Choosing Additional Database Functions

Utilities Reference: System
Chapter 1 - Database Description (DBD) Generation

IMS Redbooks
IMS Primer (SG24-5352) - Part 3 - IMS Database Manager

Four Chapters with very good information on the topics covered in this presentation

Introduction to HALDB - Session E04 (Vern Watts)

63

	Return to Index:

