
 IBM Corporation 2001 IMS Technical Conference

IMS DB Basics

B02
Rod Murchison

IBM Silicon Valley Laboratory

1

Contents
Database Basics

What is a Database
The IMS Database
The Hierarchy
Segment Rules
Segment Relationships
Hierarchic Sequence
Access to Segments
Segments in Storage

Sequential Organization
Sequential Organization
HSAM
HSAM Storage
HSAM Processing
SHSAM
HISAM
HISAM Storage
HISAM VSAM Logical Record
HISAM Inserts
Insert Root 4
Insert Root 5
Insert Dependents G22 and D24
HISAM Delete and Replace
SHISAM
GSAM

2
3
4
5
6
7
9

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

2

Contents
Direct Organization

Director Organization
Pointer Types
Hierarchic Forward Pointers
Physical Child First Pointers
Physical Twin Last Pointers
Physical Child Last Pointers
Coding Pointers in the DBD
Pointer Uses
Pointers in the Prefix
HD Storage
Special HD Fields
HDAM Storage
HIDAM Storage
HIDAM RAP
Processing HD Databases
HD Space Search Algorithm

Logical Relations
Types
How Logical Relationships are Implemented
The Logical Child
Bidirectional Physical Pairing
Bidirectional Virtual Pairing
Logical Relation Prefix

29
30
31
32
33
34
35
36
37
38
39
41
43
45
46
48

50
51
52
53
54
55

3

Contents

Secondary Indices
Why Secondary Indices
Secondary Index (SI)
Fields in the Index Pointer
Segments
Physical Child First Pointers
Physical Twin Pointers
Physical Child Last Pointers

57
58
59
60
61
62
63

4

 IBM Corporation 2001 IMS Technical Conference

Database Basics

Database Basics

TOPIC

5

 IBM Corporation 2001 IMS Technical Conference

What is a Database

A collection of interrelated data items organized in a form for
easy retrieval

The collection of data is stored in a computer system

The retrieval is done by application programs

Each item of data only needs to be stored once

Shared among the programs and users

An IMS database is organized as a hierarchy

Levels of data

Data at lower levels depends on data at higher levels for its
context

You cannot understand the lower level without knowing
the higher levels

6

 IBM Corporation 2001 IMS Technical Conference

The IMS Database

A database is a group of related database records

A database record is a single hierarchy of related segments

A segment is a group of related fields

A field is a single piece of data

It can be used as a key for ordering the segments

It can be used as a qualifier for searching

It may only have meaning to the applications

IMS database always look like hierarchies

7

 IBM Corporation 2001 IMS Technical Conference

The Hierarchy

Level 1
ROOT

(1)

Segment A
(2)

Segment B
(7)

Segment C
(9)

Segment D
(3)

Segment E
(4)

Segment F
(8)

Segment G
(10)

Segment H
(12)

Segment I
(5)

Segment J
(6)

Segment K
(11)

Level 2

Level 3

Level 4

8

 IBM Corporation 2001 IMS Technical Conference

Segment Rules

Root

One and only one root for each database record

No higher level segments

Everything depends on the information in the root

Other Segment Types

Up to 254 different segmet types

255 including the root

Any number of occurrences of each segment type

Each segment, except the root, is related to one and only
one segment at the next higher level

9

 IBM Corporation 2001 IMS Technical Conference

Segment Relationships

Parent

All segments which have dependent segments at the next lower level are
parents of those segments

A parent may have any number of dependent segments

Child

A segment which depends on a segment at a higher level is a child of that
segment

Every child segment has one and only one present

Twins

All occurrences of a segment type under the same parent are twins

There may be any number of twins and they are still called twins

Siblings

Segments of different types with the same parent are siblings

10

 IBM Corporation 2001 IMS Technical Conference

Hierarchic Sequence

Top to Bottom

Left to Right

Front to Back (for twins)

Each segment TYPE has a code which is its number in
hierarchic sequence

Segment codes numbers do not take twins into account

Sequential processing of a database record is in hierarchic
sequence

All segments of a database record are included so twins
do have a place in hierarchic sequence

Segments may contain sequence fields which will determine
the order in which they are stored and processed

11

 IBM Corporation 2001 IMS Technical Conference

Hierarchic Sequence ...

Segment B2
(14)

Segment D3
(9)

Segment H
(13)

Segment A2
(8)

Segment A1
(2)

Segment B1
(10)

Segment D2
(4)

Segment D1
(3)

Segment E3
(7)

Segment E2
(6)

Segment E1
(5)

Segment G2
(12)

Segment G1
(11)

ROOT
(1)

12

 IBM Corporation 2001 IMS Technical Conference

Access to Segments

Retrieval

Get Unique (GU)

Read a particular segment as determined by sequence or search fields

Get Next (GN)

Read the next segment in hierarchic sequence

Get Next Within Parent (GNP)

Read the next segment in hierarchic sequence under a particular
parent segment

Update

Insert (ISRT)

Insert a new occurrence of a segment

Delete (DLET)

Delete a segment

Replace (REPL)

Update a segment with a new data, except for the sequence field

13

 IBM Corporation 2001 IMS Technical Conference

Segments in Storage

Segments are stored with a prefix and a data portion

The prefix is used only by IMS

The data is what the application program sees

The prefix contains:

SC = segment code, 1 byte

DB = delete byte, 1 byte

0 to n pointers, 4 bytes each

Prefix Data

2--(4 x n) Variable

PointerSC

1

Pointer PointerDB

1 4 4 4

14

 IBM Corporation 2001 IMS Technical Conference

Sequential Organization

Sequential Organization

TOPIC

15

 IBM Corporation 2001 IMS Technical Conference

Sequential Organization

The data is physically stored in hierarchic sequence

Database records are stored in a root key sequence

If no root key, they are stored as presented

Segments in a record are stored in hierarchic sequence

Sequential Database Types

Hierarchic Sequential Access Method (HSAM)

Simple Hierarchic Sequential Access Method (SHSAM)

Root-only HSAM

Hierarchic Indexed Sequential Access Method (SHISAM)

Root-only HISAM using VSAM

Generalized Sequential Access Method (GSAM)

No hierarchy, no database records, no segments
16

 IBM Corporation 2001 IMS Technical Conference

HSAM

Tape or DASD

BSAM or QSAM

QSAM if online or PROCOPT=GS

Fixed-Length, Unblocked format

RECFM=F, logical record length=physical block size

Cannot Delete or Replace

Update by rewriting the database

Insert allowed when loading the database

Restrictions

No pointers in prefix - SC and DB only

Delete byte is not used

No multiple data set groups (MSDG)

No logical relationships or secondary indices

No variable length segments

No edit/compression or data capture

No logging, recovery, or reorganization

17

 IBM Corporation 2001 IMS Technical Conference

HSAM Storage

Segment B2

Segment D3

Segment H1

Segment A2

Segment A1 Segment B1

Segment D2

Segment D1

Segment E3

Segment E2

Segment E1

Segment G2

Segment G1

ROOT 1

Root 1 A1 D1 D2 E1 00

Root 2 ... 00G2 G3 H1

E2 E3 A2 D3 B1 G1 0

Block 1 Block 2

Block 3

18

 IBM Corporation 2001 IMS Technical Conference

HSAM Processing

Retrieval

Update

UPDATING
PROGRAM

GU CALL IS ISSUED

IS THERE A ROOT
SEQUENCE FIELD

IS KEY WANTED GREATER
THAN CURRENT KEY

SCAN FROM START OF DB BACK 2, FORWARD 1 SCAN FROM HERE

YES

NEW (UPDATED HSAM DBEXISTING HSAM DB

YES

NO

GS

G

PROCOPT

_
OR

-

_ __

_
OR

--

-

_ __

19

 IBM Corporation 2001 IMS Technical Conference

SHSAM

HSAM with only one segment type (root-only)

No prefix is used

No SC because only one segment type

DB is not used by HSAM anyway

Same restrictions and processing as HSAM

Fully equivalent to plain QSAM or BSAM file

Communication with non-IMS systems

Passing large amounts of data

20

 IBM Corporation 2001 IMS Technical Conference

HISAM

DASD only

VSAM

KSDS for the primary data set

EDS for the overflow data set

Each root must have a unique key

A database record is stored as 1 record in the primary data set and 0 to N records in the overflow data set

All calls are allowed

Prefix consists of SC and DB

HSAM restriction do not apply

HISAM works better when

Applications randomly access the records and then read the segments sequentially

Most of the database records are the same size

Relatively few dependents per root

Very low insert/delete activity

21

 IBM Corporation 2001 IMS Technical Conference

HISAM Storage

Root 1 A1 D1 D2

Root 2 A21 D21 A22

Root 3 A31 A32 D31

Root 7 A71 D71 D72

Root 2 ROOT7

KEY SEQUENCED DATA SET

E1

B1

D22

E2

G1

D23

E3

G2

E21

A2

G3

B21

D3

G21 H21

ENTRY SEQUENCE DATA SET

PRIMARY DATA SET OVERFLOW DATA SET

INDEX

CI
WITH
2
RECS

22

 IBM Corporation 2001 IMS Technical Conference

HISAM VSAM Logical Record

RBA pointer to the next logical record for this database record

Last logical record for DB record has zeros

Segments are stored in hierarchic sequence

SC of zero indicates end of segments in this logical record

Unused space can have any data in it

Relative
Byte

Address
Segment

Segment
Code of

0

Unused
Space

Segment Segment.

4 Varies Varies1

23

 IBM Corporation 2001 IMS Technical Conference

HISAM Inserts

HISAM Roots are always inserted into the Primary Data Set (KSDS)

1. If there is an free record in the VSAM Control Interval (CI)

Inserted in root key sequence

Higher keys are 'pushed down' to make space

2. If there is no free record in the CI

CI is split - some of the records moved to a new CI

 - Split at midpoint or insert point by INSERT = in DFSVSAMP

After split, same as free record case

Dependents are inserted in their place in hierarchic sequence

1. If there is room in the logical record

Following are 'pushed down' to make space

2. If there is not enough room

All following segments are moved to a new overflow record

Overflow records chain is updated

Segment is inserted
24

Insert Root 4

Root 1 A1 D1 D2

Root 2 A21 D21 A22

Root 3 A31 A32 D31

Root 4

Root 2 ROOT4 ROOT7

KEY SEQUENCED DATA SET

E1

B1

D22

E2

G1

D23

E3

G2

E21

A2

G3

B21

D3

G21 H21

ENTRY SEQUENCE DATA SET

PRIMARY DATA SET OVERFLOW DATA SET

Root 7 A71 D71 D72

25

Insert Root 5

Root 1 A1 D1 D2

Root 2 A21 D21 A22

Root 3 A31 A32 D31

Root 4

Root 2 ROOT4 ROOT7

KEY SEQUENCED DATA SET

E1

B1

D22

E2

G1

D23

E3

G2

E21

A2

G3

B21

D3

G21 H21

ENTRY SEQUENCE DATA SET

PRIMARY DATA SET OVERFLOW DATA SET

Root 5 A51 B51

Root 7 A71 D71 D72

26

Insert Dependents G22 and D24

Root 1 A1 D1 D2

Root 2 A21 D21 A22

Root 3 A31 A32 D31

Root 4

Root 2 ROOT4 ROOT7

KEY SEQUENCED DATA SET

E1

B1

D22

E2

G1

D23

E3

G2

D24

A2

G3

D3

G21 G22

ENTRY SEQUENCE DATA SET

PRIMARY DATA SET OVERFLOW DATA SET

Root 5 A51 B51

Root 7 A71 D71 D72

H21

E21 B21

27

 IBM Corporation 2001 IMS Technical Conference

HISAM Delete and Replace

Delete

Marked as deleted in the Delete Byte in prefix

Dependents are not flagged but can't be accessed

Continue to take up space

Unload/Reload to reclaim space

If the root is deleted and no logical relationship exists

The record is deleted from the primary data set

Overflow records continue to exist in the overflow

Replace

Fixed length or same length

Overwrite previous data

Variable length

Other segments in the record move to make space

Displaced segments will go to a new overflow record

28

 IBM Corporation 2001 IMS Technical Conference

SHISAM

HISAM with only one segment type (root-only)

No prefix is used

No SC because only one segment type

No DB because logical record is deleted

Restrictions

No logical relationships or secondary indices

No multiple data set groups

No variable length segments

No edit/compression

Fully equivalent to a VSAM KSDS

No ESDS because no dependent overflow

Can be accessed by native VSAM programs
29

 IBM Corporation 2001 IMS Technical Conference

GSAM

Compatible with MVS data sets

No hierarchy

No database records

No segments and no keys

GSAM VSAM

ESDS on DASD

Fixed or variable length records

GSAM QSAM/BSAM

Physical sequential (DSORG=PS) on DASD or Tape

Fixed, variable, or undefined length records

GSAM Processing

No Delete or Replace

Insert only at the end of the data set

Gets by sequential scan

30

 IBM Corporation 2001 IMS Technical Conference

GSAM ...

Restrictions

No multiple data set groups

No logical relationships or secondary indices

No edit/compression or data capture

No field level sensitivity

No logging or reorganization

Checkpoint and Restart

IMS symbolic checkpoint supports GSAM

Can restart from checkpoint instead of reprocessing

Restart repositions in the GSAM data set

31

 IBM Corporation 2001 IMS Technical Conference

Direct Organization

Direct Organization

TOPIC

32

 IBM Corporation 2001 IMS Technical Conference

Direct Organization

Physical storage is independent of hierarchic sequence

Pointers are used to maintain segment relationships

Pointers are in the segment prefix

Segments can be stored 'anywhere'

Segments are not physically moved

Space from deleted segments can be reused

Direct Database Types

Hierarchic Direct Access Method (HDAM)

Uses a randomizing module for direct access to root

Hierarchic Indexed Direct Access Method (HIDAM)

Searches an index to find the root

33

 IBM Corporation 2001 IMS Technical Conference

Pointer Types

Hierarchic

May be present in all segment types

Forward (HF)

Points to next segment in hierarchic sequence

Backward (HB)

Points to previous segment in hierarchic sequence

Must also have HF pointers

Physical Child

Found only in the prefix of a parent segment

First (PCF)

Points to the first occurrence of a child segment type

Must also have PCF pointer

Twin

Forward (PTF)

Points to the next twin in key or entry sequence

Backward (PTB)

Points to the previous twin

Must also have PTF pointer

34

 IBM Corporation 2001 IMS Technical Conference

Hierarchic Forward Pointers

Segment A2 Segment B1

Segment A1

Segment D3 Segment B2

Segment D1 Segment E1 Segment G1 Segment H1

Segment D2 Segment E2 Segment G2

Segment E3

ROOT 1

35

Physical Child First Pointers

Segment A2 Segment B1

Segment A1

Segment D3 Segment B2

Segment D1 Segment E1 Segment G1 Segment H1

Segment D2 Segment E2 Segment G2

Segment E3

ROOT 1

36

Physical Twin Pointers

Segment A2 Segment B1

Segment A1

Segment D3 Segment B2

Segment D1 Segment E1 Segment G1 Segment H1

Segment D2 Segment E2 Segment G2

Segment E3

ROOT 1

37

Physical Child Last Pointers

Segment A2 Segment B1

Segment A1

Segment D3 Segment B2

Segment D1 Segment E1 Segment G1 Segment H1

Segment D2 Segment E2 Segment G2

Segment E3

ROOT 1

38

Coding Pointers in the DBD
Child Pointers

SEGM NAME=A,PARENT=0

No child pointers, no parent

SEGM NAME=B,PARENT=((A,SNGL))

Specifies PCF pointer in parent's prefix - default

SEGM NAME=C,PARENT=((A,DBLE))

Specifies PCF and PCL in parent's prefix

Twin Pointers

SEGM NAME=X,..,PTR=TWIN

Specifies PTF in the prefix of this segment - default

SEGM NAME=X,..,PTR=TWINBWD

Specifies PTF and PTB in the prefix of this segment

SEGM NAME=X,..,PTR=NOTWIN

No twin pointers at all. Only one occurrence under parent

Hierarchic Pointers

SEGM NAME=Y,..,PTR=HIER

Specifies HF pointer in the prefix of this segment

SEGM NAME=Y,..,PTR=HIERBWD

Specifies HF and HB pointers in the prefix of this segment

39

Pointer Uses
Hierarchic Forward

Primary processing is in hierarchic sequence

Hierarchic Backward

Delete activity via a logical relationship or secondary index

Physical Child First

Random processing

Sequence field or insert rule FIRST or HERE

Physical Child Last

No sequence field and insert rule LAST

Use of *L command code

Physical Twin Forward

Random processing

Needed for HDAM roots

Poor choice for HIDAM roots

Physical Twin Backward

Improves delete performance

Processing HIDAM roots in key sequence

40

Pointers in the Prefix

Cannot have Hierarchic and Physical in the same prefix

PTR=H will cause PCF specification to be ignored

If a parent has PTR=H, children cannot use backward pointers

If a parent has PTR=HB, children must use backward pointers

Child pointers will behave like the parent specification

Parent hierarchic, last twin pointer goes to sibling, not 0

Parent twin, last hierarchic pointer in twins is 0

HF HB PTF PTB PCF PCLor

41

HD Storage

All HD data is in a single ESDS or OSAM data set

The logical records are unblocked

Logical record length = block size for OSAM

Logical record length = block size -7 for VSAM

All segments are stored as an even number of bytes

BITMAPANCHOR POINT AREAFSAP

ANCHOR POINT AREAFSAP

ANCHOR POINT AREAFSAP

ANCHOR POINT AREAFSAP

RESERVED CI IF VSAM - NO PRESENT IF OSAM

SEGMENTS FSE FREE SPACE

SEGMENTSFREE SPACEFSE

SEGMENTS FSE FREE SPACE

FSE .

SEGMT

VSAM ESDS OR OSAM DATA SET

42

Special HD Fields
Bitmap

One bit per block or CI

First bit corresponds to the bitmap itself

1 = enough space to store the LONGEST segment in the database

0 = not enough space for the LONGEST segment

If bitmap has N bits, block or CI N + 1 is a new bitmap

Free Space Anchor Point (FSAP)

Two 2-byte fields

First the offset from in bytes to first FSE

Second is a flag indicating if this block is a bitmap
0 = this is not a bitmap

Anchor Point Area

Contains one or more 4-byte Root Anchor Points (RAP)

1 RAP in HIDAM if the root has PTF or HF pointer

RMNAME parameter specifies number of RAPs in HDAM

Each RAP contains the address of a root segment or 0

43

Special HD Fields ...

Free Space Element

First 2 bytes are offset, in bytes, to next FSE

Zero if this is the last FSE in the block or CI

Second 2 bytes are length of free space, including FSE

No FSE is created if free space is less than 8 bytes long

Last 4 bytes is the task ID of the program that freed the
space

Allows a program to free and reuse the same space
without contention

Useful in determining who free the space

FSE CHAIN AVAILABLE LENGTH TASK ID

2 2 4

44

HDAM Storage

FREE SPD2D1A1ROOT1RAPRAPFSAP E1 E2

FREE SPACEA32A31ROOT3RAPRAPFSAP D31

BITMAPANCHOR POINT AREAFSAP

FREE SPACEFSAP

R
O
O
T

A
D
D
R
E
S
S
A
B
L
E

O
V
E
R
V
F
L
O
W

FREE SPACEG1B1D3A2E3FSAP G2 G3

FREED72D71A71ROOT 7RAPFSAP ROOT 4RAP

45

HDAM Storage ...
Root Addressable Area (RAA)

Number of blocks or CIs defined in RMNAME parameter

Primary storage area for roots and dependents

Number of dependents at initial load is limited by RMNAME

Insert until specified bytes limit would be exceeded

All RAPs are in the RAA

Location is determined by Randomizer specified in RMNAME

Randomizer input is the root segment's key

Randomizer output is a block number and RAP number

Keys that randomize to same block and RAP are synonyms

Synonyms are chained using PTF pointers

Chain is ascending key sequence or by insert rules

Overflow Area

For segments that do not fit in the RAA

No RAPs are present in the overflow area

46

HIDAM Storage

FREE SPACED72D71A71ROOT 7ROOT 4D31FSAP

FREE SPROOT 3G3G2G1B1D3FSAP A31 A32

FREE SPE1D2D1A1ROOT 1FSAP E3 A2E2

BITMAPANCHOR POINT AREAFSAP

ESDS OR OSAM

> KEY 1 > KEY 3 > KEY 4 > KEY 7

KSDS

47

HIDAM Storage ...
Data Component

A VSAM ESDS or OSAM data set

No RAA or Overflow portions

Database records are stored in key sequence

Roots must have unique keys

Segments in hierarchic sequence

You can specify that free space be left after loading

A percentage in each block or CI

Every Nth block or CI

Index Component

VSAM KSDS

The index is a root-only database

One index segment for each database root

DB Pointer to Root Root Key
1

Prefix
4 Varies

Data

48

HIDAM RAP
One RAP per block or CI if PTR=T or PTR=H for the root

No RAP is generated if PTR=TB or PTR=HB

No RAP is generated if PTR=NOTWIN

Roots are chained from RAP in reverse order of insertion

RAP points to most recently inserted root

Each root points to previously inserted root

First root inserted has a zero pointer

Index must be used to process roots sequentially

Index must also be used if NOTWIN is specified

Remember that TWIN is the default

Specify something useful!

Use backward pointers if you process roots sequentially

Use NOTWIN if you only do random processing
49

Processing HD Databases
Delete

The segment and all of its dependents are removed

FSE is used indicate the space is free

Create a new FSE and update the FSAP/FSE Chain

Update length field of preceding FSE

Segment points are updated

Replace

No change in length or fixed-length

Overwrite old segment with updated segment

Shorter segment

Space previously occupied is freed

FSE created if at least 8 bytes shorters

Longer segment

If adjacent free space lets it fit, store in original location

If no space available, separated data

 Data part goes to overflow with prefix of SC and DB=x'FF'

 Bit 4 of DB in original prefix is turned on

 Pointer to data in overflow is built after prefix

 Remainder of space is freed

50

Processing HD Databases ...
Insert

Store in the Most Desirable Block (MDB)

HDAM root MDB

 The one which is selected by the randomizer

 The one containing its previous synonym

HIDAM root MDB

 If no backward pointer, same as the next higher key root

 If backward pointer, same as the next lower key root

Dependents

 If Physical, same as parent or previous twin

 If Hierarchic, same as previous segment in hierarchy

Second most desirable block

Nth Block or CI left free during loading

 If in buffer pool or bitmap shows space available

Specified by FRSPC parameter

 If not specified, then no second MDB

51

HD Space Search Algorithm
1. In the MDB (this will be in the buffer pool)

2. In the second MDB

3. Any block in the buffer pool on the same cylinder

4. Any block on the same track

If the bitmap shows space available

5. Any block on the same cylinder

If the bitmap shows space available

6. Any block in the buffer pool within +/- SCAN cylinders

7. Any block within +/- SCAN cylinders

If the bitmap shows space available

8. Any block at the end of the data set is in the pool

9. Any block at the end of the data set

If the bitmap shows space available

Extend the data set if necessary

10. Any block where the bitmap shows space
52

 IBM Corporation 2001 IMS Technical Conference

Logical Relations

Logical Relations

TOPIC

53

 IBM Corporation 2001 IMS Technical Conference

Types
Unidirectional

A one-way relationship from one database record to another

Applications always start from one place

ORDER X ITEM 1

ITEM 4

ORDER X ITEM 1

ITEM 4

ORDER Y

ITEM 9

Bidirectional

A two-way relationship between database records

Applications may need to start on either side

IMS maintains both sides of bidirectional relationships

54

 IBM Corporation 2001 IMS Technical Conference

How Logical Relationships are
Implemented

Unidirectional

Bidirectional

Logical Parent (LP) Pointer

In the Logical Child segment

points to logical parent

PHYSICAL PARENT

LOGICAL CHILD

LOGICAL PARENT

PHYSICAL PARENT

LOGICAL CHILD

LOGICAL PARENT

LOGICAL CHILD

55

 IBM Corporation 2001 IMS Technical Conference

The Logical Child

SC DB Pointer Area LPCK Fixed Intersection Data

PREFIX DATA
Logical Parent Concatenated Key

Sequence fields of all segments from root to logical parent

Always appears to the application program

May or may not be physically stored with logical child

If not stored, IMS generates it on retrieval

Logical Parent Pointer

The LPCK if it is physically stored

Must be used if logical parent database is HISAM

This is called a symbolic pointer

A 4-byte pointer in the segment prefix

May only be used if logical parent database is HD

The only kind of pointer that can exist in HISAM

Fixed Intersection Data

Data that is dependent on the logical relation

Maintained on both sides of a bidirectional relation

Variable intersection data is in dependents of the logical child

56

 IBM Corporation 2001 IMS Technical Conference

Bidirectional Physical Pairing

Physical or Hierarchic relate Physical Parent and Logical
Children

Logical Parent relates Logical Child to Logical Parent

Requires a physical segment on both sides of the relation

LOGICAL PARENT X

LOGICAL PARENT 1
PCF

LOG CHILD AA

LOGICAL CHILD A

PTF

LOGICAL PARENT Y

LOGICAL PARENT 2
PCF

LOG CHILD BB

LOGICAL CHILD B

PTF

LP LP

LP

LP

57

Bidirectional Virtual Pairing

Logical Child First (LCF) replaces PCF

Logical Twin Forward (LTF) replaces PTF

Physical Parent (PP) replaces (LP)

Physical segment only exists on one side of relation

Real Logical Child must be in HD database

LOGICAL PARENT X

LOGICAL CHILD X

LOGICAL PARENT 1
PCF

LOG CHILD AA

PP
PTF LP

LOGICAL CHILD A
LTF

LOGICAL PARENT Y

LOGICAL PARENT 2
PCF

58

Logical Relation Prefix

SC DB HF HB PP LTF LTB LP

SC DB PTF PTB PP LTF LTB LP PCF PCL

Logical Child Prefix

PP, LTF and LTB only present if virtual pairing

OR

SC DB HF HB PP LCF LCL

SC DB PTF PTB PP PCF PCL LCF LCL

Logical Parent Prefix

PP only if a lower level segment is a logical parent

59

 IBM Corporation 2001 IMS Technical Conference

Secondary Indices

Secondary Indices

TOPIC

60

Why Secondary Indices

Processing sequence other than root key

Avoid scan for non-key field

Direct access to lower level segments

Faster processing

Course Student Index

Class

Instructor Student

Target Segment

Source Segment

Index Pointer Segment

61

Secondary Index (SI)

Can be based on HISAM, HDAM, or HIDAM

Is a separate database

Can be processed on its own

Uses fields from the source segment to create a key

Access via a secondary index is to the target segment

Invisible to the application

PROCSEQ = on PCB tells IMS to use the secondary index

Application must use XDFLD name in the SSA

Limits on secondary indices

32 secondary indices onone segment type

1000 secondary indices for a database

Secondary index is a special kind of logical relation

62

Fields in the Index Pointer

DB Pointer
Constant

optional
Search

Subsequence

optional

Duplicate
Data

optional

Concat
Key

opt HD

User

opt

1 4 1 Variable
Pointer is used when target is in HD database

Constant is used for shared secondary indices

More than one SI in the same database

Search is made up of up to 5 fields form the source

This is the key of the secondary index

Subsequence is up to 5 fields from source or IMS-generated values

Used to make the secondary index key unique

Duplicate Data is up to 5 fields from the source

Only used when processing the SI as a database

Concatenated Key is the symbolic pointer to the target

Required when the target is in HISAM database

User Data is anything you want to stick in there

Only used when processing the SI as a database

63

Segments

ROOT 1

Segment A2 Segment B1

Segment A1
Segment D3 Segment B2

Segment D1 Segment E1 Segment G1 Segment H1

Segment D2 Segment E2 Segment G2

Segment E3

64

 IBM Corporation 2001 IMS Technical Conference

Physical Child First Pointers

65

 IBM Corporation 2001 IMS Technical Conference

Physical Twin Pointers

66

Physical Child Last Pointers

67

	Return to Index:

