IMS Full Function Database Design Guidelines

Rich Lewis
IMS Advanced Technical Support
IBM Americas

February 2006

A

TECHNICAL SALES SUPPORT
AMERICAS

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 1 of 54

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 2 of 54

IMS Full Function Database Design Guidelines

Table of Contents

INETOAUCTION ...ttt ettt st b et 5
What this Document INCIUdES..........coiuiiiiiiiiiiiiii e 5
What this Document Does Not Includecocoeveiiiniiiiiiiniiiieeeeceeen 5
USINg thisS DOCUMENL........cccuiiiiiiieciie et et e e eba e e eeree e 5
ACKNOWIEAZEMENLSeiiiiiiiiieiiee ettt et et 6

TOIMINOLOZYeeeevieiieeiie ettt ettt ettt et e et e et e e sateebeessbeesseessseenseessseenseessseenseas 7

DBDGEN Macro Cross REfEIeNCEeuiivviiiiiiiiiiieeceie ettt 8

HALDB ...ttt ettt ettt st et et st e bt et en e nteenteeneen 10
HALDB RecoOmMMENdation...........cccuuiiiiieeiiieeeiieeeiee ettt e eieeeeiaeeeveeesvaeeseneeeeaseeees 10

HISAM vs. HD Access Methodscocueiiiiiiiiiiiiiiiiceiciceeeeeetce e 12
HISAM ...ttt ettt e et e st et e e st et e enseeseesseenseensenseenseeneans 12

Recommendations for Using HISAM........ccccooouiiiiiiiiieniiecieeeecee e 13
SHISAM ..ottt ettt ettt et e et et e et e e st e sseensaestenseensesssenseenseeneenseenns 14
Recommendations for Using SHISAMccccooiiiiiieiiiiiieeceeeeee e 14
HD AcCCeSS MEthOASoeeiiiiieciiie ettt e s e e earee e 14
Recommendations for Using HD Access Methodsccceevieviieriiniieniiecieeienne, 16

(P)YHDAM VS. (PYHIDAM ..ottt ettt ettt enae e enaesae s 17
SPACE USC..ieiuiiieeiiieeiie ettt ettt e ettt e et e et e e st e e s b e e eanbee e tbeeenaeeeteeeenaeeenneeas 17
Sequential ProCESSINGcc.cviiriiriiriiiiiieeeit ettt 17
T/ ettt ettt b et et te et eneen 17
REOTZANIZATIONS.cutiiiiieiiie ettt ettt e et e et e s e enee e 18
CrEEPING KOV S .uiiiiiiiiiie ettt ettt e et e et e et eeetbeeesaeeenaneesnsaeesnseeennnes 18
Recommendations Summary for (P)HDAM vs. (P)HIDAMcccoiiiiiiiiiiniieene 19

OSAM VS, VSAM ..ottt sttt sttt et sae et st e et e beeneesaeenee 20
Recommendations Summary for OSAM vs. VSAMcccooiiiiiniiiiniiiiiicciceceee 21

HALDB Partition SEIECtIONc.eiiiiiiiiiiiiiiiiieetee ettt 22
Key Range Partition SeleCtionccieiiiiiiiiiiiniiienicecciceeciece et 22
Partition Selection EXit ROULINE........ccoeoiiiiiiiiiieniieiieieeeee e 22
Defining Partition SeleCtion..........coeiriiiiiiiiiiinieiieeetee ettt 23
Recommendations Summary for HALDB Partition Selectioncccceeceevievienennnene 23

Block Sizes, CI Sizes, and Record SiZEScuvviiiiiuiiiiieiiiie e 24
Index CI Sizes and Record SiZesoooveruiriiiiieniieieeieseeeeeee e 24
OSAM Block Sizes and VSAM ESDS CI SiZ€Scccvvveviiieiiieeieeeeeeeeeee e 25

OSAM Block Size SpecifiCations........cccueevuieriieriienieeieesie et esee e eaeesve e 25
VSAM ESDS CI Size SpecifiCations.......cc.cecverierieriinierieeienieeienitesieeieeeesieeeesinens 25
FREQ Parameter on the SEGM Statement...........cccoooovviiieiiiiiiiieiciecccieeee e 26
Recommendations Summary for Block Sizes, CI Sizes, and Record Sizes 26

FT@E SPACE ... ittt ettt e e e ettt eeenaee s 28
The Effects 0f FIEE SPACEccuiiiiiiiiiiiieieieetcceeee e 28
SPECIfYING FTEE SPACE......viiiiiiiiiie et e s 28
HD Space Search Alorithm.........ccccooiiiiiiiiiiiiicee e 29

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006

http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 3 of 54

Recommendations Summary for Free Space.........ccocveeieviieiiieiiiiiieieceeeeee 29

Randomization Parametersccooiiiiiiiiiiiieie e 31
RANAOMUZET ...ttt sttt st be et 31
NUMDBET OF RAPS ...ttt sttt 32
Size 0of Root Addressable Area...........cceiiiiiiriiiiiiieriieeeeteeeee e 32
The BYTES Parameter.........ccccuieeiiieeiiieeieeeee ettt eveeetae e esaeesnrae e 33
Specifying Randomization Parameters for PHDAM..........cccoooiiiiiiiiiniiiiiieieceeee, 33
Recommendations Summary for Randomization Parametersccccceeveevcieennnnnns 33

Fixed Length vs. Variable Length Segments............cccoecieiiiiiiiienieniiieiecieeeeeee e 34
Variable length SEZMENtcceeeviiiiiiiiieiiicee et see e e 34
Fixed length SEZMENtoccuiiiiiiiiiiiiiie e s e 35
Recommendations Summary for Fixed Length vs. Variable Length Segments........... 35

POINIET OPLIONS ..ttt ettt ettt ettt et e st e et e e saeeenbeessbeesbeessbeenseesnneenseesnseans 37
Hierarchic versus Child and Twin Pointersccoceiiiiiiiiiiiiiiiiieeceeseeee 37
Forward Only versus Forward and Backward Pointersccceeevvenieneniienceniennns 38
HIDAM and PHIDAM ROOt SEZMENLSeeeierieeiiieeiieeeieeeeee e e eveeeeveeeevee e 39
Unsequenced Dependent SEZMENLSc.cocveeiieriieiiieiieeiieiie ettt eveesiee e e 39
Defining Hierarchical, Physical Twin, and Physical Child Pointerscccccouu.... 40
Recommendations Summary for Pointer Optionsccceevueeriieiiienieesieenie e 40

SCAN= Parameter on the DATASET Statementccoceeiiiiiiiiiiiniienienieeeeseeee, 42
Recommendation Summary for the SCAN parameter..........ccccovveverienieneniieneenennns 42

Multiple Data SEt GTOUPSeeeevireeiieeeiieeeiieeeieeeeteeesteeesteeessaeeesaeeesaeeesseesssneesnsseesnseeas 43
Recommendations Summary for Multiple Data Set Groupscccceeceeeieenieeieennnnne. 44

COIMPIESSION ...vveienevieeiieeeeiteeestteeestteeesteeesaeessaeessseeeassaeesssaeansseeasseeasseessseesssseesssseenseeenns 45
Key Compression vs. Data COmMPIeSSION.......ccuieiierieeiiieniieeiieniieeieesieeeieenseeseveeaee e 45
COMPRTN= Parameter......ccocuuiiiiiiiiiiieeiieeeiteeeiee ettt st 46
Recommendations Summary for COmMpressioncoceeeeevvereereenienieneeneneeneeneneens 48

Secondary INAEXESoevuiiiiiiieiie et 49
Secondary INdeX KEYScouiriiiiiiiiiiiiiiecc e 49

Unique Keys vs. Non-unique KeYS........cooieriiiiiieiiiiiieiieieeeie et 49
Direct vs. Symbolic POINETS.c...coiiiiiiiiiiiiirieiicieetceeeee et 50
Shared Secondary INAEXESceccvieriiiiiiiieiii ettt see e sseeeeeas 51
DUPlicate Datacccuieiuiiiiiiie e et 51
USET DIAta ...ttt sttt st e 52
SPArsSe INAEXING. . ..eeutiiiiiiiiiiieeteet ettt ettt 52
Recommendations Summary for Secondary IndeXesccceevveeeiienieeieenienrieiene, 52

INA@X ot e e e e e aa e e e bt e e e aaeeeraeeebaeennraeas 53

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006

http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 4 of 54

Introduction

What this Document Includes

This document is intended to assist users in designing and tuning IMS full function
databases. It provides advice on choosing parameters in DBDGEN. It explains the
considerations one should understand in making these choices.

This document covers the following database types:

e PHDAM (Partitioned Hierarchical Direct Access Method)
PHIDAM (Partitioned Hierarchical Indexed Direct Access Method)
PSINDEX (Partitioned Secondary Index)

HISAM (Hierarchical Indexed Sequential Access Method)
SHISAM (Simple Hierarchical Indexed Sequential Access Method)
HDAM (Hierarchical Direct Access Method)

HIDAM (Hierarchical Indexed Direct Access Method)

INDEX

What this Document Does Not Include

This document does not provide advice on the logical structure of a database, such as the
hierarchical structure of the database, the placement of fields within segments, and the
keys that should be used. It assumes that these are determined by the application data
and the requirements of the application design.

Logical databases and logical relationships are not covered in this document.

HSAM (Hierarchical Sequential Access Method) and SHSAM (Simple Hierarchical
Sequential Access Method) are not covered. These are special purpose databases which
cannot be updated. They can only be loaded and read.

Using this Document

This document contains recommendations and "rules of thumb." Use them as guidance
for specifying parameters. You may have valid reasons for making other choices.

The DBDGEN Macro Cross Reference on page 8 includes tables for the DBDGEN
macros. Each table includes references in this document for the parameters used with the
macro. You may use it when coding DBDGEN statements to help you choose
appropriate values.

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 5 of 54

You should use this document in conjunction with the standard IMS manuals, such as
Administration Guide: Database and the Utilities Reference: System.

Acknowledgements

Bill Stillwell, Diane Goff, and Steve Nathan have provided valuable advice on the
contents of this document. Their reviews and suggestions have greatly improved its
contents and readability.

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 6 of 54

Terminology

The following terms are used in this document. No attempt has been made to include
definitions of all of the terms used. For further reference, see the IMS Glossary at
http://www.ibm.com/software/data/ims/shelf/glossary.htm.

CA: A VSAM control area. This is a set of control intervals (CI). Typically, a CA is
equivalent to cylinder.

CI: A VSAM control interval. This is the unit of information that VSAM transmits to
and from direct access storage. It is analogous to an OSAM block.

Database record: A database record is composed of a root segment and all of its
dependent segments.

IDCAMS: IDCAMS is the program name for the Access Method Services utility. This
utility is used to define VSAM data sets.

RAP: Root anchor point. Roots in PHDAM and HDAM databases are chained from
RAPs. Each block in the root addressable area contains a fixed number of RAPs.

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 7 of 54

DBDGEN Macro Cross Reference

The following tables contain references to guidance for specifying DBDGEN parameters.
Some parameters do not have references in this document. Typically, they either do not
affect the database design or they are used with logical relationships. These include the
specifications of names, logical relationships, and some exit routines. These exit routines

do not affect database design. These parameters are indicated by "Not covered" in the
Reference column.

Macro Parameter Reference
DBD ACCESS=(x,) HISAM vs. HD Access Methods, p. 12; (P)HDAM vs.
(P)HIDAM, p. 17
ACCESS=(,x) OSAM vs. VSAM, p. 20
ACCESS=(,,x) Secondary index user integrity option; Not covered
ACCESS=(,,,x) INDEX DOSCOMP option; Not covered
NAME Database name; Not covered
PASSWD VSAM password option; Not covered
EXIT Data Capture exit; Not covered
VERSION User version specification; Not covered
DATXEXIT Data Conversion User exit; Not covered
RMNAME Randomization Parameters, p. 31
PSNAME Defining Partition Selection, p. 23

Table 1. DBD Macro

Macro Parameter Reference
DATASET Multiple Data Set Groups, p. 43
BLOCK OSAM Block Size Specifications, p.25; VSAM ESDS CI Size
Specifications, p. 25
SIZE OSAM Block Size Specifications, p.25; VSAM ESDS CI Size
Specifications, p. 25
RECORD Index CI Sizes and Record Sizes, p. 24
FRSPC Free Space, p. 28
SEARCHA HD Space Search Algorithm, p. 29
SCAN SCAN= Parameter on the DATASET Statement, p. 42
DD1 DD name for primary database data set; Not covered
OVFLW INDEX and HISAM overflow data set DD name; Not covered

Table 2. DATASET Macro

© 2006, IBM Advanced Technical Support Techdocs

http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines

Page 8 of 54

Version 2/22/2006

Macro Parameter Reference
SEGM BYTES Fixed Length vs. Variable Length Segments, p. 34
POINTER or PTR Pointer Options, p. 37
RULES Pointer Options, p. 37
COMPRTN Compression, p. 45
DSGROUP Multiple Data Set Groups, p. 43
FREQ FREQ Parameter on the SEGM Statement, p. 26
NAME Segment name; Not covered
PARENT=((,x)) Defining Hierarchical, Physical Twin, and Physical Child
Pointers, p. 40
EXIT Data Capture exit specifications; Not covered

Table 3. SEGM Macro

Macro Parameter Reference
LCHILD | POINTER or PTR Direct vs. Symbolic Pointers, p. 50
INDEX Name of indexed field; Used only in INDEX and PSINDEX
DBDs; Not covered
NAME Segment and database names for the associated segment: Not
covered
PAIR Paired logical segment name; Used only for logical
relationships; Not covered
RULES Rules for sequencing of logical children with nonunique
sequence fields or with no sequence fields; Used only for
logical relationships; Not covered
RKSIZE Root key size of target segment database record; Used only with
PSINDEX DBDs; Not covered

Table 4. LCHILD Macro
Macro Parameter Reference
FIELD NAME=(x,) Name of field; Not covered
NAME=(,x) Sequence field specification; Not covered
NAME=(,,x) Unsequenced Dependent Segments, p. 39
NAME=(systrelfldname) | Unique Keys vs. Non-unique Keys, p. 49
BYTES Size of field; Not covered
START Beginning location of field in segment; Not covered
TYPE Data type of field; Not covered
Table 5. FIELD Macro
Macro Parameter Reference
XDFLD NAME Name given to search field for a secondary index; Not covered
SEGMENT Index source segment name; Not covered
CONST Shared Secondary Indexes, p. 51
DDATA Duplicate Data, p. 51
NULLVAL Sparse Indexing, p. 52
EXTRTN Sparse Indexing, p. 52
SUBSEQ Unique Keys vs. Non-unique Keys, p. 49
SRCH Secondary Index Keys, p. 49
Table 6. XDFLD Macro
© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006

http://w3.ibm.com/support/Techdocs
IMS Full Function Database Design Guidelines Page 9 of 54

HALDB

High Availability Large Database (HALDB) was introduced in IMS Version 7. It added
three additional types of full function databases. These are PHDAM, PHIDAM, and
PSINDEX. Application programs that use non-HALDB databases work without change
when the databases are migrated to HALDB. HALDB provides three major advantages
over non-HALDB full function databases:

1. Larger database capacity

HALDB databases can be spread across 1 to 1001 partitions. Each partition may
have 1 to 10 data sets. Each data set may be up to 4 gigabytes. This means that
HALDB databases have a maximum capacity of over 40 terabytes.

2. Shorter off-line reorganization times

HALDB partitions may be reorganized independently and in parallel. When you
reorganize a partition or database, you do not have to rebuild or update the
secondary indexes that point to it. Similarly, you do not have to update any
logically related databases. IMS automatically updates the secondary index
pointers and logical relationship pointers when they are first used following the
reorganization. These updates use the HALDB “self-healing pointer” process.
The combination of reorganizing partitions in parallel and the self-healing pointer
process can greatly reduce the elapsed time required for reorganizing HALDB
databases with off-line processes.

3. Online reorganization

HALDB online reorganization allows an IMS online system to reorganize
HALDB partitions while applications read and update the partitions. The
applications can run in the same IMS online system or in data sharing subsystems.
HALDB online reorganization was introduced in IMS Version 9.

The Redbook, The Complete IMS HALDB Guide, provides information on migrating
databases to HALDB, defining their partitions, and maintaining them. It is available at
http://www.redbooks.ibm.com/abstracts/sg246945 .html.

HALDB Recommendation

Installations which have database requirements answered by HALDB should convert

those databases to HALDB. You do not need to convert existing databases which do not
require greater capacities and do not need shorter reorganization outages. IMS intends to
support non-HALDB full function database types for the foreseeable future. On the other

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 10 of 54

hand, enhancements for full function databases will be concentrated in HALDB. For this
reason, you should create new IMS full function databases as HALDB types.

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 11 of 54

HISAM vs. HD Access Methods

IMS full function databases may use either the Hierarchical Indexed Sequential Access
Method (HISAM) or one of the Hierarchical Direct (HD) access methods.

The HISAM database types are:
e Hierarchical Indexed Sequential Access Method (HISAM)
e Simple Hierarchical Indexed Sequential Access Method (SHISAM)

The HD access method database types are:

Partitioned Hierarchical Direct Access Method (PHDAM)
Partitioned Hierarchical Indexed Direct Access Method (PHIDAM)
Hierarchical Direct Access Method (HDAM)

Hierarchical Indexed Direct Access Method (HIDAM)

HISAM and the HD access methods differ primarily in the way that they store segments
and use space in their data sets.

HISAM

HISAM stores segments in two data sets. These are the primary data set and overflow
data set. The primary data set is a KSDS. The overflow is an ESDS. For each database
record, HISAM places the root and some dependents in a logical record in the primary
data set. The number of dependents that HISAM stores in the primary data set depends
on the size of the logical record that you define. HISAM places dependent segments
which do not fit in the index in the overflow data set. The dependents may require
multiple logical records in overflow.

Your choices for the logical record sizes of the primary and overflow data sets can have a
significant effect on database performance. Ideally, you want IMS to store a database
record only in the primary data set. This eliminates I/Os to the overflow data set. If the
database records are uniform in size and not too large, your choice is simplified. You can
make the logical record size of the primary data set large enough to hold a database
record without wasting a lot of space. If database record sizes vary greatly, a primary
record size large enough to hold the larger database records would waste space for others.

Each logical record in the overflow data set contains segments from only one database
record. Any free space in the logical record can only be used for inserts into the same
database record. This can make the sizing of logical records difficult when database
records vary in size. Large logical record sizes tend to waste space. Small sizes tend to
spread database records over more logical records. This requires IMS to do more I/Os to
process the database.

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 12 of 54

HISAM does not use pointers to navigate between segments in a database record. It
always stores segments in hierarchical sequence. IMS accesses a segment by reading all
of the segments from the root to the required segment. This can be disadvantageous with
large database records. Large records may require IMS to read multiple logical records
in the overflow data set.

HISAM does not reuse space that is occupied by deleted dependent segments. These
segments remain in the data sets when they are deleted. IMS sets a bit in their prefix to
indicate that they have been deleted. This has two effects. First, IMS may have to read
through these segments to reach other segments. Second, later inserts cannot use space
created by these deletions. Instead, they have to expand the database. You must
reorganize the database to recover the space.

Inserts of roots into a HISAM database require a new logical record in the primary data
set. If alogical record is not available in the CI, a CI split is required.

Inserts of dependent segments may require updates to multiple CIs. Since the segments
are maintained in hierarchical sequence, the insert of a segment in the middle of a
database record requires the movement of the following segments. If there is not room at
the end of the last logical record used by the database record, new dependents require a
new logical record. This logical record is at the end of the overflow data set. If there are
high volumes of inserts, there tends to be a high volume of activity at the end of the data
set. IMS must extend the data set frequently.

Replaces of variable length segments often require the movement of other segments. If
the size of the variable length segment changes, the segments which follow it in the
database record must be moved. Similar considerations apply to fixed length segments
when they are compressed. Compressed fixed length segments are actually variable
length when they are stored. An explanation of compression appears on page 45.

HISAM does not support multiple data set groups. You may define only two data sets,
the primary (KSDS) and the overflow (ESDS), for a HISAM database. See page 43 for
an explanation of multiple data set groups.

You select HISAM by specifying ACCESS=HISAM on the DBD statement.

Recommendations for Using HISAM

HISAM is best suited for databases with the following characteristics:

1. Database records are relatively small. They typically require only one logical
record in the primary data set (KSDS). Occasionally, they might require one
logical record in the overflow data set (ESDS).

2. Database records are relatively uniform is size. There is not a large range in size
for most database records.

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 13 of 54

3. The database is stable. There are not high volumes of deletes and inserts in the

database.
4. The database will not grow past the data set size limitations of 4 gigabytes per
data set.
SHISAM

Simple HISAM (SHISAM) is a simplified version of HISAM. SHISAM databases have
the following restrictions:

e They have no dependent segments. Only root segments are allowed.
They cannot have secondary indexes.
They cannot have logical relationships.
All segments are fixed length. They do not support variable length segments.
Compression is not allowed.

A SHISAM database is stored in a KSDS. The segments do not have an IMS prefix.
Since they do not have an IMS prefix, you can process a SHISAM database as a KSDS
without using DL/I calls. Conversely, you can process a KSDS with fixed length records
as a SHISAM database using DL/I calls.

Since SHISAM segments have no prefix and SHISAM requires only one data set,
SHISAM makes efficient use of space. It requires less space than a root-only HISAM,
HIDAM, or PHIDAM database.

You select SHISAM by specitying ACCESS=SHISAM on the DBD statement.

Recommendations for Using SHISAM

If you have a database which meets the SHISAM restrictions, you should consider using
SHISAM for it. Additionally, if you need to process a KSDS with fixed length records as
an IMS database, you may define it as SHISAM.

HD Access Methods

HD access methods store segments in one or more data sets. They may use either OSAM
or VSAM ESDS for these data sets. HIDAM and PHIDAM databases also include
indexes. The indexes point to the root segments which are stored in the ESDS or OSAM
data sets.

HD access methods and HISAM have different techniques for navigating between
segments. HD uses pointers which are stored in the prefix of segments. A prefix may
contain separate pointers to different segment types. This allows IMS to more directly

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 14 of 54

navigate to dependent segments. Figure 1 illustrates this. Segment A has pointers to the
first B segment, the first C segment, and the first D segment. IMS does not have to
access any of the B or C segments to reach the D segments.

A

O ¢
O [

Figure 1. HD Pointers

The use of direct pointers usually makes HD the preferable access method for databases
with large database records. It is easier for IMS to navigate to individual segments within
the database.

HD is the preferable access method for highly volatile databases with many deletes and
inserts. HD reuses the space occupied by deleted segments. When you delete segments,
their space is freed. Inserts may place segments in this free space.

CI splits can occur when you insert roots into HISAM, HIDAM and PHIDAM databases.
But there is a significant difference in the likelihood of splits with the different database
types. The logical records for HISAM KSDSs are much larger than those for HIDAM
and PHIDAM. The logical records for HISAM contain the root segment and, typically,
several dependents. HIDAM and PHIDAM indexes contain only the key, a delete byte,
and a four-byte pointer to the root segment. Since HISAM logical records are much
larger, fewer will fit in a CI. This affects the probability of CI splits. The following
example illustrates this point. Consider a HISAM database whose primary data set has
1K logical records and an 8K CI size. Twenty-five percent free space would provide
room for only two inserts before a split would be required. Compare that with a HIDAM
or PHIDAM database. If the key were 10 bytes, each logical record would be only 15
bytes. Twenty-five percent free space in an 8K CI would provide room for 136 inserts
before a split would be required. HIDAM and PHIDAM are typically better choices for
databases with many inserts of root segments.

Replaces of variable length segments do not require the movement of other segments in
HD databases. If the segment grows so that it does not fit in its previous location, IMS
stores the data portion of the segment elsewhere. The segment's prefix does not move.
Pointers to this segment from other segments are not changed. A pointer to the data
portion is added to the prefix. This technique minimizes the effect on the rest of the
database for these types of replaces.

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 15 of 54

HD supports multiple data set groups. They give you greater flexibility in handling
varying space requirements and access patterns for different segment types. See page 43
for an explanation of multiple data set groups.

HD includes HALDB PHDAM and PHIDAM databases. These databases can contain up
to 1001 partitions and hold up to 40 terabytes of data.

You select HD by specifying HDAM, HIDAM, PHDAM, or PHIDAM on the ACCESS=
parameter of the DBD statement.

Recommendations for Using HD Access Methods

HD is well suited for databases with the following characteristics:
1. Database records have great variations in their sizes.
2. Database records are large and contain many types of segments.
3. There are high volumes of deletes and inserts in the database.
4. The database may have significant growth.

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 16 of 54

(P)HDAM vs. (P)HIDAM

PHDAM, HDAM, PHIDAM, and HIDAM databases share some of the same
characteristics. They use direct pointers to navigate between segments in a database
record. When segments are deleted, the space they occupied is available for the insertion
of other segments. The primary difference between the types is that PHIDAM and
HIDAM have indexes. This allows you to easily process the databases in root key
sequence. PHDAM and HDAM use randomizing modules to determine where root
segments are stored. IMS does not store or retrieve their roots in key sequence.

Space Use

There are some important distinctions in how space is used by PHDAM and HDAM
versus PHIDAM and HIDAM. PHIDAM and HIDAM tend to use less space. When they
are reorganized, the database records are written in sequence leaving only the specified
free space. When PHDAM and HDAM are reorganized, the database records are chained
from their root anchor points (RAPs). These are spread across the root addressable area
(RAA). If the database records vary in size, it may be difficult to create free space that is
evenly spread across the RAA. More information and advice on free space appears under
Free Space on page 28. Since PHIDAM and HIDAM tend to use less space, batch jobs
which process the entire database typically perform better with these database types.

Sequential Processing

PHIDAM and HIDAM databases allow you to access database records in key sequence.
If you require key-sequential access for a PHDAM or HDAM database, you may use a
secondary index where the secondary index key is the root key. Applications which
require sequential processing may use the secondary index when accessing the database.
This allows IMS to use space according to the rules of PHDAM and HDAM databases
while allowing applications to access the databases in key sequence. It is also possible to
create a “sequential randomizer” which places roots in the PHDAM or HDAM database
in root key sequence. You may use the IBM product, IMS Sequential Randomizer
Generator, to create sequential randomizers.

I/Os

PHIDAM and HIDAM databases have indexes. When you request a root segment by its
key, IMS reads the index to find the location of the key. This processing is not required
with PHDAM and HDAM databases. For them, IMS invokes the randomizer to find the
root anchor point (RAP) from which the root is chained. Typically, IMS does more
processing to retrieve or insert PHIDAM and HIDAM roots. This tends to give PHDAM

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 17 of 54

and HDAM a performance advantage. Of course, this assumes that the PHDAM partition
or HDAM database is reasonably well organized.

Reorganizations

Most databases have to be reorganized occasionally. The time between reorganizations
usually depends on the type of insert and delete activities, the distribution of free space,
and the database type. PHIDAM and HIDAM databases differ from PHDAM and
HDAM databases in their reorganization characteristics. If a PHIDAM or HIDAM
database has large amounts of inserts in a range of root keys without deletes in the same
range, it is likely to need reorganization. This is not necessarily true with PHDAM and
HDAM. Since randomizers spread the roots across the partitions or databases, activity
for a range of keys tends to be spread across the entire PHDAM partition or HDAM
database. PHDAM and HDAM tend to be better choices for these types of databases.

Creeping Keys

The root keys in some applications increase in value over time. An example is a key
based on the time of the insertion of the root. Such keys are called “creeping keys.”

For HDAM databases this does not have special significance. HDAM spreads the roots
randomly across the root addressable area. Deleted segments will typically make room
for new segments. Space use tends to be randomly distributed across the root addressable
area.

For PHDAM databases using key range partitioning, space use tends to be randomly
distributed across the root addressable areas of the partitions. New roots with creeping
keys are placed in the last partition. You may have to create new partitions for new time
periods.

You may want to avoid the requirement to add new partitions with PHDAM. If the total
amount of data in the database does not increase, but the key values increase, you may
want to use a partition selection exit routine instead of using key range partitioning. The
exit routine can assign keys to partitions by using only a low order subset of the key. For
example, if the key were 8 numeric digits and you wanted ten partitions, you could use
the low order digit to assign the key to a partition. Key nnnnnnnl could be assigned to
the first partition; key nnnnnnn2 could be assigned to the second partition; and so on with
key nnnnnnn0 assigned to partition 10. Assuming that the values of the low order digit
were evenly distributed from 0 to 9, the keys would be evenly distributed across the
partitions. Since the database is PHDAM, deletes would create usable space for future
mserts.

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 18 of 54

For HIDAM databases IMS places new roots with creeping keys near the last ones
inserted. This is at the end of the used space in the data set. When you delete the oldest
database records, you make space near the beginning of the data set. IMS typically
cannot use this space for new insertions. In this sense, the space used in the data set tends
to creep from the front to the end of the data set. The database will likely require
reorganizations. HIDAM with creeping keys has a second disadvantage. The inserts of
new keys are into the last CI in the primary index. This causes CI/CA splits and
disorganization of the index. This is a second reason why these databases likely require
frequent reorganizations.

PHIDAM is similar to HIDAM. With key range partitioning, all inserts for creeping keys
are made into the last partition. Space used in the partition data set tends to creep from
the front to the end. You may need to add new partitions occasionally. This starts the
process again for the new partition. With a partition selection exit routine, new roots
might be placed in any of the partitions. This does not eliminate the problem of the
creeping use of the data sets. New roots in a partition will always go into the end of the
partition. The creeping occurs in parallel across all the partitions.

PHDAM or HDAM is often a better choice than PHIDAM or HIDAM for databases
whose root key values increase over time. They eliminate the problem of creeping space
use. They may substantially reduce the frequency with which you must do
reorganizations. Of course, PHDAM or HDAM do not maintain roots in key sequence.
If you must process a database in key sequence, you may be able to use PHDAM or
HDAM with a secondary index. The secondary index can provide the sequencing you
need. The secondary index might suffer the effects of creeping keys, but the space use in
the database would not creep.

Recommendations Summary for (P)HDAM vs. (P)HIDAM

PHIDAM and HIDAM have the following advantages over PHDAM and HDAM:
1. They tend to use less space. This provides a performance advantage for batch
jobs which sequentially process the entire database.
2. They allow you easily to process a database in root key sequence.

PHDAM and HDAM have the following advantages over PHDAM and HDAM:
1. They tend to require fewer I/Os to retrieve and insert root segments.
2. They tend to require fewer organizations when update activity is concentrated in a
range of keys.
3. They tend to handle space management with creeping root keys better.

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 19 of 54

OSAM vs. VSAM

Some IMS full function database data sets may be either OSAM or VSAM ESDSs.
These are HDAM data sets, PHDAM database data sets, HIDAM database data sets, and
PHIDAM database data sets. You cannot use OSAM for HIDAM indexes, PHIDAM
indexes, secondary indexes, or HALDB ILDSs. These data sets must be VSAM KSDSs.

OSAM is the preferred access method whenever it may be used. OSAM has several
advantages.

e OSAM has a superior way of writing multiple blocks. When an application sync
point occurs, IMS sorts the altered OSAM blocks by physical location within
volumes. IMS writes blocks which are on the same volume with chained writes.
This reduces the processor time required on the z/OS system. IMS does the
chained writes for different volumes in parallel. This reduces the elapsed time for
the writes.

e OSAM has a shorter processor instruction path length for most of its processing.
This is especially significant in online systems. This means that OSAM typically
uses less processor time than VSAM.

e OSAM has OSAM Sequential Buffering (OSB). VSAM does not have a
capability similar to OSB. When OSB is invoked, IMS does anticipatory reads.
For sequential processes, OSB reads blocks into buffers before the application
requires them. This eliminates the wait time for reads and can significantly
reduce the elapsed time for sequential processing.

e For HDAM and HIDAM, OSAM data sets may be up to 8 gigabytes in size.
HDAM and HIDAM ESDSs are limited to 4 gigabytes.

¢ You may reuse OSAM data sets. When you reorganize a database, you do not
have to delete and redefine OSAM data sets. When you reorganize HDAM and
HIDAM databases, you must delete and redefine VSAM data sets. This VSAM
requirement does not apply to PHDAM and PHIDAM databases.

There is a warning about the reuse of OSAM data sets. You should not reuse
multivolume OSAM data sets. If you do not scratch and reallocate a multivolume OSAM
data set before reusing it, an invalid end-of-file mark may be left on the last volume of
the data set. This can lead to lost data. You can use HALDB to avoid database data sets
that are so large that they must span multiple volumes.

You select OSAM or VSAM by specifying OSAM or VSAM on the second
subparameter of the ACCESS= parameter on the DBD statement. VSAM is the default.

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 20 of 54

Recommendations Summary for OSAM vs. VSAM

Use OSAM data sets, not VSAM ESDSs, with PHDAM, PHIDAM, HDAM, and
HIDAM databases.

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 21 of 54

HALDB Partition Selection

HALDB databases have one to 1001 partitions. IMS assigns database records to
partitions based on the key of the root segment. This assignment is done as part of
partition selection. You specify how partition selection is done. You tell IMS to use
either key ranges or a partition selection exit routine. Partition selection also determines
the order in which partitions are processed by sequential processing.

Key Range Partition Selection

Most HALDB databases use key range partition selection. In this method, you assign a
high key to each partition. IMS assigns roots within a key range to each partition. The
partitions are ordered in the order of the high keys. With PSINDEX and PHIDAM
databases, sequential processing retrieves all the roots in key sequence. With PHDAM,
you assign a range of keys to a partition, but the randomizer determines the order of the
roots within a partition.

Partition Selection Exit Routine

You can write a partition selection exit routine for any type of HALDB database. Your
exit routine assigns root keys to partitions. It also determines the order of the partitions.
IMS passes the key of the root segment and information about all of the partitions to the
exit routine. The routine uses the key to assign the root to a partition.

These exit routines are typically used to assign database records to partitions based on a
subset of the key. For example, part of the key may be a country code, department code,
or similar bit of information. You could use this to group data from each country or
department into its own partition. Application processing requirements usually determine
if you should use this type of partitioning. For example, you might want to process only
the data for a particular country or department with certain jobs. It would be more
efficient if only the database records for that country or department resided in a partition.
Then your job would need to process only one of the partitions in the database.

Another use of these exit routines is to spread activity across multiple partitions. A
typical example is a database where each new root has a higher key than the existing
roots in the database. Key range partitioning would place these new roots in the last
partition. You could use a partition selection exit routine to spread the insert activity
across all of the partitions. This is further explained under Creeping Keys on page 18.

You should be careful about choosing a partition selection exit routine for PSINDEX and
PHIDAM databases. The exit routine typically will not assign roots to partitions in key
order. If'you have chosen PHIDAM so that you can process the database in key sequence

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 22 of 54

order, you cannot use an exit routine which assigns keys by other than key range.
Similarly, if you have created the secondary index for secondary index key sequence
processing, you cannot use an exit routine which assigns secondary index keys by other
than key range.

Defining Partition Selection

A partition selection exit routine is defined with the PSNAME parameter on the DBD
statement. The parameter specifies the name of the exit routine. If the PSNAME
parameter is not included, key range partitioning is implied. The specification on the
DBD may be changed during partition definition or with a DBRC command. The
HALDB Partition Definition utility includes a "Part. Selection Routine" field in the
"Master Database values" section. If you specify a name, it will be used as the partition
selection exit routine name. If you make the field blanks or nulls, key range partitioning
isused. The INIT.DB and CHANGE.DB DBRC commands include PARTSEL and
HIKEY parameters. PARTSEL specifies the name of a partition selection exit routine.
HIKEY specifies that key range partitioning will be used. These parameters override the
specification on the DBD.

Recommendations Summary for HALDB Partition Selection

The recommendations for partition selection are:

1. Key range partitioning is appropriate for most databases
You may use a partition selection exit routine to group data into partitions by a
subset of the root key.

3. You may use a partition selection exit routine to spread activity across all of the
partitions in the database.

4. Do not use a partition selection exit routine for a PHIDAM database which you
must process in key sequence order.

5. Do not use a partition selection exit routine for a secondary index which you will
use for processing a database in secondary key order.

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 23 of 54

Block Sizes, Cl Sizes, and Record Sizes

You specify the block sizes of OSAM data sets, CI sizes of VSAM data sets, and record
sizes of KSDSs when you create databases. This section explains the requirements and
recommendations for these sizes.

Index CI Sizes and Record Sizes

PHIDAM primary indexes, HIDAM primary indexes, secondary indexes, and HISAM
databases use VSAM KSDSs. This section discusses record sizes and CI sizes for these
KSDSs.

You do not need to specify the RECORD parameter on the DATASET statement for
HIDAM primary indexes and secondary indexes. IMS automatically calculates the
record sizes for these data sets during DBDGEN. They are reported in the output listing
of DBDGEN. You should use these sizes for the RECORDSIZE parameter on the
IDCAMS DEFINE statements when you define the data sets. If you specify a
DATASET macro RECORD parameter smaller than the calculated size, it will not hold
the index record and the index cannot be loaded. If you specify a RECORD parameter
larger than the required size, you waste space in the data set.

The appropriate record sizes for PSINDEX data sets are reported in the DBDGEN output
for these secondary indexes. You should use these sizes for the RECORDSIZE
parameter on the IDCAMS DEFINE statements when you create these data sets.

You must specify the RECORD parameter on the DATASET statement for HISAM
databases. As mentioned under HISAM on page 12, ideally a record in the primary data
set should be large enough to contain an entire database record. In some cases this could
waste a lot of space. This is true when database records vary significantly in size. Small
records will use only a small amount of the VSAM record. In this case, the primary data
set record size should be large enough to hold the majority of database records. The
overflow data set record size should be large enough to hold the remainder of most other
database records. Record sizes are specified on the RECORD parameter of the
DATASET macro.

The CI size for the data component of index data sets (KSDSs) determines how many
logical records are stored in a CI. Large CI sizes tend to be good for sequential
processing. Multiple records are read or written with one I/O. Large CI sizes may not be
a benefit for random processing. Typically, random processing accesses only one record
per CI. For HISAM databases and indexes where sequential processing is most important,
ClI sizes of at least 8K should typically be used.

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 24 of 54

The size of the KSDS index component CI can be either explicitly specified in your
IDCAMS DEFINE statement or allowed to default. The default causes VSAM to
calculate the index CI size. If you use z/OS 1.3 or a later release, you should use the
default calculation. It optimizes the index component CI size.

OSAM Block Sizes and VSAM ESDS CI Sizes

OSAM block sizes and VSAM ESDS CI sizes affect the number of I/Os required to
process a database and the sizes of buffers in IMS systems. Typically, block sizes and CI
sizes should be large enough to hold entire database records. When database record sizes
are very large or vary greatly, this may not be possible. Then you should attempt to make
the block or CI size large enough to hold the frequently accessed segments in the
database records. For sequential processing, large sizes are typically good. They reduce
the number of I/Os that are required to process the database. Block or CI sizes of at least
8K should typically be used for databases which will be used with sequential processing.
For random processing, large sizes are not as beneficial. They increase the overhead of
I/O processing and the space required for database buffers. If a complete database record
is stored in a small block or CI, there may be no benefit in using a larger size.

OSAM Block Size Specifications

For PHDAM and PHIDAM databases you specify OSAM block sizes during partition
definition. You do this either with the "Block Size" field in the HALDB Partition
Definition utility or with the BLOCKSZE parameter on the DBRC INIT.PART or
CHANGE.PART commands. For HDAM and HIDAM databases you specify block sizes
with the SIZE parameter on the DATASET statement of DBDGEN. Alternatively,
DBDGEN will calculate these block sizes from the specification of the BLOCK
parameter on the DATASET statement. The value specified on the BLOCK parameter
includes only space that is used for segments. DBDGEN adds space for a FSEAP and
HDAM RAPs to calculate the block size from the BLOCK specification. Most users
specify SIZE rather than BLOCK since SIZE is the actual block size.

VSAM ESDS CI Size Specifications

For VSAM database data sets IMS always uses the CI size specified in the
RECORDSIZE parameter of the IDCAMS DEFINE statement. It does not use the CI
size specified by the SIZE or BLOCK parameters on the DATASET statement of
DBDGEN. For documentation reasons it is recommended that you specify a SIZE
parameter which matches the CI size that you will use. This could eliminate confusion
which might occur if the size in the DBDGEN differed from that actually used.

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 25 of 54

If you want to change the CI size for a VSAM data set, it is not necessary to do a
DBDGEN. You only have to change the CI size in the IDCAMS DEFINE before
reloading the database.

HALDB partition definition does not include a capability to specify VSAM CI sizes.
They are specified only with IDCAMS DEFINE statements.

FREQ Parameter on the SEGM Statement

The SEGM statement for HISAM, SHISAM, INDEX, and PSINDEX databases includes
the FREQ parameter. This parameter is optional. You do not need to specify it. Itis
ignored for PSINDEX, INDEX, and SHISAM databases. The FREQ parameter specifies
the frequency of a segment in a HISAM database. This is the average number of these
segments per its parent. For root segments, the documentation states that FREQ is the
number of roots in the database; however, specifying FREQ for roots does not affect the
output of DBDGEN.

For HISAM, DBDGEN uses the FREQ specifications on dependent segments to calculate
suggested logical record sizes and CI sizes. These are listed in the output of DBDGEN.
DBDGEN always produces the same suggestions for the prime and overflow data sets. If
you know the distribution of your database record sizes, you can choose logical record
and CI sizes which are better for your databases. If you do not know them, you are
unlikely to know the frequency of segment occurrences. For these reasons, you do not
need to specify this parameter.

You never need to specify the FREQ parameter. IMS ignores it for PSINDEX, INDEX,
and SHISAM databases. It is not valid for PHDAM, PHIDAM, HDAM, and HIDAM
databases.

Recommendations Summary for Block Sizes, Cl Sizes, and
Record Sizes

The recommendations for block sizes, CI sizes, and record sizes are:

1. Do not specify the RECORD parameter on the DATASET statement for INDEX
databases (secondary indexes and HIDAM primary indexes).

2. Always use the output listing of DBDGEN to determine the RECORDSIZE
parameters to use for the IDCAMS DEFINE for KSDSs. These include data sets
for PSINDEX, INDEX, PHIDAM, HIDAM, and HISAM databases.

3. Ifyouuse z/OS 1.3 or a later release, you should specify the data component CI
size for KSDSs. Do this with an IDCAMS DEFINE statement. Do not specify
the index component CI size. Let the system calculate it.

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 26 of 54

4. The CI size for VSAM ESDS and KSDS data sets is not controlled by DBDGEN
parameters. It is determined by the RECORDSIZE parameter on the IDCAMS
DEFINE statement. To avoid confusion, specify the SIZE parameter on the
DATASET statement for VSAM data sets to match the CI size specified with
IDCAMS.

5. For HDAM and HIDAM OSAM data sets specify the SIZE parameter on the
DATASET statement, not the BLOCK parameter.

6. Do not specify the FREQ parameter on SEGM statements.

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 27 of 54

Free Space

The Effects of Free Space

Free space in a database affects the processing done by IMS to retrieve and insert
segments. Free space in a database increases the likelihood that an insert of a segment
will go in the same block as the segment from which it is chained. This tends to reduce
the number of I/Os required for inserting and retrieving segments. On the other hand,
adding free space increases the number of blocks that must be read for sequential
processing since it spreads data across more blocks.

Free space is created when a database is initially loaded, when it is reorganized, and
when segments are deleted.

Specifying Free Space

Free space in HIDAM databases is specified with the FRSPC parameter on the
DATASET statement. The first subparameter specifies the ‘free block frequency factor’
(fbff). A value of ‘n’ specifies that every nth block in the data set is left as free space by
a load or reorganization. The second subparameter specifies the ‘free space percentage
factor’ (fspf). A value of ‘n’ specifies that n percent of each block is left as free space by
a load or reorganization. Different data sets in the same database may have different free
space specifications.

Free space in PHIDAM databases is specified in the partition definitions. These
parameters are the ‘free block frequency factor’ and the ‘free space percentage factor’
that are described in the previous paragraph. Each data set in a partition uses the same
free space parameters. The values are specified either in the HALDB Partition Definition
Utility or with the DBRC INIT.PART command FBFF and FSPF parameters.

Free space in HDAM and PHDAM databases may be specified by using the same
parameters used with HIDAM and PHIDAM. You should not do this. Instead, you
should use other parameters to control how space is used in HDAM and PHDAM
databases. If you specify a free block frequency factor, a reorganization cannot place any
database records in the free blocks even though some records would be chained from the
RAPs in these blocks. If you specify a free space percentage factor, each block in the
RAA would have space that could not be used by a reorganization. Some root segments
as well as their dependents could be forced to the overflow area. A better way to specify
the free space characteristics for these databases is through the use of randomization
parameters. Randomization parameters are explained below.

Free space in PHIDAM primary indexes, HIDAM primary indexes, and secondary
indexes is specified with the FREESPACE parameter on the IDCAMS DEFINE

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 28 of 54

statements. It is not defined in DBDs or HALDB partition definitions. The
FREESPACE parameter has two subparameters. The first specifies the percentage of
free space in each CI. The second specifies the percentage of free space in each CA.
You should specify free space when you expect to insert new root segments in PHIDAM
and HIDAM databases or when you expect to insert new secondary index entries. The
recommended amount of free space depends on the amount of inserts. For example, if
you expect to insert 5% more root segments in a HALDB partition between
reorganizations of the index, you should specify at least 5% free space in the Cls. You
should also specify free space in the CAs. This creates empty Cls in the CA which are
available for splitting Cls without forcing the split of the CA. Free space is created
uniformly across the data set. If the inserts will be concentrated in a small part of the key
range, free space may not be beneficial. In this case, most of the free space will not be
used. Instead, VSAM will have to continually split CIs and CAs to create room for the
new entries. Unfortunately, you cannot do much to reduce these splits.

HD Space Search Algorithm

IMS has an HD space search algorithm. IMS uses this algorithm when inserting
segments in PHDAM, PHIDAM, HDAM, and HIDAM databases. The algorithm is
documented in the IMS Administration Guide: Database under "How the HD Space
Search Algorithm Works." In general, IMS attempts to place a new segment in the same
block or CI with the segment or RAP from which it is chained. If there is not space in
this block or CI, IMS may attempt to place the segment in the second most desirable
block. This is the nearest block or CI that was left free when the database or partition
was loaded or reorganized. The search does not use the second most desirable block in
two cases. First, if free block frequency is not specified in the database or partition
definition, there is no second most desirable block. Second, HDAM and HIDAM DBD
definitions can override the use of the second most desirable block in the space search.
This is done by specifying SEARCHA=1 on the DATASET macro. Since the purpose of
specifying the free block frequency factor is to create free blocks or Cls for later inserts,
SEARCHA=1 should not be specified. This parameter is included to provide
compatibility with old IMS releases which did not have the second most desirable block
step in the HD space search algorithm.

There is no option equivalent to SEARCHA=1 for PHDAM and PHIDAM databases.
They always include the search of the second most desirable block when the free space
percentage factor is specified.

Recommendations Summary for Free Space

The recommendations for free space are:
1. Use the ‘free block frequency factor and/or the ‘free space percentage factor’ to
create free space in HIDAM and PHIDAM databases.

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 29 of 54

2. Use randomization parameters to create free space in HDAM and PHDAM
databases. Do not specify fbff and fspf for them.

3. Use the IDCAMS DEFINE FREESPACE parameter to create free space in
PHIDAM primary indexes, HIDAM primary indexes, and secondary indexes.

4. Specity SEARCHA=0 on the DATASET macros for HDAM databases. This is
the default.

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 30 of 54

Randomization Parameters

Randomizers and their parameters are specified in the DBD for HDAM. The DBD for
PHDAM only specifies the default values. The definition of the PHDAM partition
specifies the values used for the partition. Different partitions in a PHDAM database
may have different randomization parameter values.

The randomization parameters on the DBD statement have the following syntax:
RMNAME=(mod, anch, rbn, bytes)

e mod is the randomizer module name. It must be specified.

e anch is the number of root anchor points per block. It defaults to 1. The
maximum value is 255.

e rbn is the number of blocks in the root addressable area. It must be specified.

e Dytes specifies the maximum number of bytes of a database record that may be
stored in the root addressable area in a series of inserts without a call to another
database record. The default is no maximum.

For PHDAM these values may be defined with the HALDB Partition Definition Utility
(PDU) or the DBRC INIT.PART or CHANGE.PART commands. The DBRC command
parameters are:

e RANDOMZR(name) is the randomizer module name.

e ANCHOR(value) corresponds to the anch parameter in the DBD.

e HIBLOCK(value) corresponds to the rbn parameter in the DBD.

e BYTES(value) corresponds to the bytes parameter in the DBD.
Randomizer

IMS supplies several randomizers. DFSHDCA40 is appropriate for most databases and
HALDB partitions. Its use is recommended unless you have specific knowledge of your
key distribution and you DO NOT want the keys randomly spread across the RAPs.
DFSHDCA40 spreads roots randomly across the RAPs in a HDAM database or a PHDAM
partition. You do not need to do any analysis of key distributions when you use
DFSHDCA40.

DFSHDCA40 converts the key into a randomly chosen four-byte binary number. This
number is chosen independently of the number of RAPs in the database or partition.
Then DFSHDC40 multiples this number by the number of RAPs in the database or
partition and divides the result by the maximum value. This assigns keys to RAPs in an
order that is unaffected by the number of RAPs. So if you unload a database or partition
and change the number of RAPs, the reload will still be a sequential process.

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 31 of 54

In some cases you may want to use a different randomizer. This should only occur when
you have knowledge of the key distribution and you do not want a random distribution of
the keys across the database or partition. For example, you might want to assign the keys
to RAPs in key sequence. The IBM product, IMS Sequential Randomizer Generator, can
create randomizers that do this.

Number or RAPs

The number of RAPs for a HDAM database or PHDAM partition is the product of the
number of RAPs per block times the number of blocks in the root addressable area.
When more RAPs are used, the probability of a long chain of roots from a RAP is
diminished. A rule of thumb is that the number of RAPs in a database or partition should
be at least twice the number of roots. When DFSHDC40 is used, the roots are distributed
across the RAPs in a Poisson distribution. When the number of RAPs is twice the
number of roots, the distribution has the following characteristics:

79% of roots will be the first root on their RAP chain.

18% of roots will be the second root on their RAP chain.

3% of roots will be the third root on their RAP chain.

0.38% of roots will be past the third root on their RAP chain.

When the number of RAPs is three times the number of roots, the distribution has the
following characteristics:

85% of roots will be the first root on their RAP chain.

13% of roots will be the second root on their RAP chain.
1.5% of roots will be the third root on their RAP chain.
0.13% of roots will be past the third root on their RAP chain.

Since a RAP is only four bytes, the space used by RAPs is rarely significant.

Size of Root Addressable Area

The root addressable area (RAA) is the set of OSAM blocks or VSAM ClIs which hold
RAPs. Other blocks in the data set contain the overflow area. When the RAA is too
small, the segments in a database record are often stored in overflow. Reading them
requires reading the RAP block and reading blocks in the overflow area. When the RAA
is too large, there is unnecessary unused space in the RAA. A sequential read of the
database or partition has to read more blocks. A rule of thumb is that the RAA should be
35% larger than the size of all of the segments in the HDAM database or PHDAM
partition. This creates approximately 25% free space. Larger sizes may be desirable
because they may help avoid the need for reorganizations. They increase the probability

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 32 of 54

that IMS will place segments in the block containing the RAP from which they are
chained.

The BYTES parameter

The bytes parameter specifies the maximum number of bytes of a database record that
may be stored in the root addressable area in a series of inserts without a call to another
database record. This includes inserts that are done by reorganizations. When you
reorganize a database or partition any segment which causes the database record to
exceed this parameter is placed in overflow. This reserves space for segments of other
database records. It helps avoid situations where exceptionally large database records
force other database records into overflow. A rule of thumb is that the bytes parameter
should be twice the average database record size. This assumes that all of the segments
in the database are in the first data set group. This rule of thumb may not apply to some
databases. If you are aware of your database record size distributions, you may want to
use other values for bytes. The bytes parameter does not affect any segments which are
in other data set groups.

Specifying Randomization Parameters for PHDAM

The randomization parameters used for PHDAM partitions are defined in the partition
definitions. The DBD for PHDAM only specifies the default values. If you change a
PHDAM DBD, the randomization values used by its partitions are not changed. To
modify the parameters for a partition, you must make changes to the partition definition
which is stored in the RECONs. You can do this with either the HALDB Partition
Definition Utility (PDU) or a DBRC CHANGE.PART command.

Recommendations Summary for Randomization Parameters

The general recommendations for randomization parameters follow. You may be aware
of reasons for using different values.

1. Use DFSHDC40 for the randomization module.
The number of RAPs in a database or partition should be at least twice the
number of roots.

3. The root addressable area (RAA) size should be 35% larger than the size of all of
the segments in the first data set of an HDAM database or PHDAM partition.

4. The bytes parameter should be twice the average database record size.

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 33 of 54

Fixed Length vs. Variable Length Segments

You may define segments as either fixed length or variable length. You define a fixed
length segment by specifying one value for the BY TES= parameter on the SEGM
statement for the segment. You define a variable length segment by specifying two
values for the BY TES= parameter. A specification of BYTES=(2000,100) defines a
variable length segment with a maximum size of 2000 bytes and a minimum size of 100
bytes. The number of bytes specifies the size of the data portion of the segment. It does
not include the size of the segment prefix.

The maximum size for a segment is limited by the record size of the data set which
contains the segment type. The minimum size of variable length segments is the
minimum size stored in the data set. If the segment is sequenced, the minimum size must
be large enough to include the key field with one exception. If the segment is
compressed and key compression is used, the minimum size may be as small as 4 bytes.

Variable length segments begin with a two-byte length field. Programs use this field to
determine the size of the segment. The size specified by an application program may be
smaller than the minimum size. For example, a program may create a segment with "20"
in the length field even when the minimum size is 30 bytes. In this case, IMS will store
an extra 10 bytes in the data set. Later retrievals of the segment will return a 20 byte
segment to application programs. The minimum size that a program specifies must be
large enough to include the key field for sequenced segments.

If you have a variable amount of data that could be placed in one segment, you have two
basic choices in your database design. You could use a variable length segment or you
could use a fixed length segment large enough to hold the maximum amount of data.
The following explains the advantages and disadvantages of these choices.

Variable length segment

A variable length segment is the natural way to store a variable amount of data. It uses
the minimal amount of space but could require extra I/Os. If a replace call increases the
size of a segment, the larger segment may not fit in the same space that the smaller
segment occupied. For HISAM, this could cause the segment to move to another logical
record in the overflow data set. It could also force IMS to move other segments in the
database record. This was discussed under HISAM on page 12. This makes variable
length segments less attractive for HISAM databases. For HD access methods IMS does
not move the prefix when you replace a segment. If the larger segment does not fit in the
previous location, it uses another technique. It splits the segment by moving the data
portion of the segment elsewhere and adding a pointer in the prefix to the data portion.
This was discussed under HD Access Methods on page 14. Splitting the segment can

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 34 of 54

cause extra I/Os because the prefix and the data portions of a segment may be in different
blocks.

If you do not change the length of the segment after you insert it in the database, you
should define a variable length segment. This results in optimal space usage. Since you
do not change the length, you avoid the overhead caused by movement in HISAM or by
split segments with HD access methods. If you change the length of the segment, your
choice is not obvious. A variable length segment causes extra overhead for moving the
segment, but it optimizes the use of space. A good practice with variable length
segments is to specify a minimum size which avoids the splitting of segments by most
replace calls. For example, you could make the minimum size large enough to hold 80 or
90 percent of the segments. Only the very large ones would be subject to being split.

Fixed length segment

A fixed length segment must be large enough to hold the maximum amount of data for a
segment. The importance of this disadvantage depends on the range for the segment. If
the maximum amount of data is much larger than the typical amount, this can have a
significant effect. It could make database records span multiple blocks unnecessarily.
Fixed length segments are easily handled by replace calls. If a replace call adds more
information to the segment, it does not grow in size. So the replaced segment can always
fit in the previously occupied space. This avoids the HISAM movement or HD split
segment considerations.

If you update the segment frequently, you may want to use a fixed length segment. This
will depend on the trade off between the extra space required for the segment versus the
potential I/O savings.

Fixed length segments which are compressed have the space usage characteristics of
variable length segments. Replacements of these segments may force movement of them
in HISAM or split segments with HD access methods. See Compression on page 45 for a
further explanation of compression.

Recommendations Summary for Fixed Length vs. Variable
Length Segments

The recommendations for choosing between fixed length and variable length segments
are:

1. If segments are rarely replaced and contain variable amounts of data, you should
define them as variable length.

2. If segments are frequently replaced and the amount of data stored in the segments
varies within a small range, you should define the segments as fixed length.

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 35 of 54

3. If segments are frequently replaced and the amount of data stored in the segment
varies over a large range, your choice between fixed length and variable length
segments is a trade off between space use and I/O requirements. You can use a
minimum size to lessen the number of split segments.

4. If a variable length segment is frequently replaced, consider specifying a
minimum size that accommodates most segment occurrences.

5. If a HISAM segment is frequently replaced with a different size segment and
other segments follow it in the hierarchy, do not define it as variable length.
Either use an HD access method or define the segment as fixed length large
enough to hold the maximum size.

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 36 of 54

Pointer Options

IMS allows you to specify the types of pointers that are used between segments in
HDAM, HIDAM, PHDAM, and PHIDAM databases. This section provides advice on
choosing the pointers for certain types of segments.

Hierarchic versus Child and Twin Pointers

IMS provides two types of pointer schemes. These are hierarchic pointers versus child
and twin pointers.

Hierarchic pointers may be specified as either forward or both forward and backward. A
hierarchic forward pointer points to the next segment in the database record hierarchy.
Hierarchic backward pointers point from a dependent segment to the previous dependent
segment in the database record. Figure 2 shows an example of hierarchic pointing with
forward pointers. Each dependent segment has only one pointer. It points to the next
segment in the hierarchy. To get from the root segment A to its first D child segment,
IMS must traverse all of the B and C segments which are children of A. Root segments
have a hierarchic pointer to their first dependent segment and another pointer to the next
root. Hierarchic backward pointers point from a dependent segment to a previous
dependent segment.

Figure 2. Hierarchic pointers

Child and twin pointers are an alternative to hierarchic pointers. Child pointers may be
either child first or child first and last. A child first pointer in a segment points to the first
child of a segment type. A child last pointer points to the last child of a segment type. If
a segment has multiple children types, it has multiple child first pointers and, possibly,
multiple child last pointers. Twin pointers may be either forward or both forward and
backward. They point to other segments of the same type which are under the same
parent. Figure 3 illustrates the use of child first and twin forward pointers. Segment A
has three child first pointers. The first points to the first B segment under A. The second
points to the first C segment. The third points to the first D segment. Twin pointers point

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 37 of 54

to the next segment of the same type. There are twin pointers between root segments and
between dependent segments.

A

ﬁ ﬁ ﬁﬁ
P> B P> C D > B

Figure 3. Child and twin pointers

v
>

For most IMS databases child and twin pointers are preferable to hierarchic pointers.
Hierarchic pointers take less space since each dependent segment has only one pointer
and each root segment has only two pointers. They have the disadvantage of usually
requiring more accesses to find the desired segment. This is especially true when there
are a large number of segments in a database record.

Hierarchic pointers are not available with PHDAM and PHIDAM databases.

Forward Only versus Forward and Backward Pointers

Hierarchic and twin pointers may be forward only (one forward pointer) or both forward
and backward (a forward pointer and a backward pointer). Backward pointers are useful
when segments are deleted from a chain and the previous segment in the chain has not
been accessed. This can occur when a segment is entered via a logical relationship. If
the backward pointer does not exist, IMS must find the previous segment in the twin
chain or hierarchic chain. It does this by following the parent pointer to the segment’s
parent and following either the hierarchic or child and twin pointers until in reaches the
previous segment in the chain. It recognizes the previous segment because its pointer
points to the segment being deleted. The inclusion of backward pointers requires more
space and more processing for inserts and deletes. Both the previous and next segments
in the chain must have their pointers adjusted when a segment is inserted or deleted.
Since the only need for backward pointers is for deletion by a logical path, backward
pointers should not be used unless the database satisfies all of the following conditions:

e The database participates in a logical relationship.
e Segments are deleted via the logical relationship path.

e There are typically many segments in the chain which contains the segment to be
deleted.

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 38 of 54

HIDAM and PHIDAM Root Segments

For HIDAM root segments you may specify no twin pointers, forward only twin pointers,
or both forward and backward twin pointers. When you specify no twin pointers, roots
are accessed via the index. When you specify both forward and backward twin pointers,
roots are accessed by the twin forward pointer when proceeding from a previous root
segment with get next (GN) processing. This eliminates the need for accessing the index.
When you specify forward only twin pointers, they are not used for accessing segments.
IMS maintains them, but does not use them. This creates overhead with no benefits;
therefore, you should never define forward only pointers for HIDAM root segments.
PHIDAM does not allow the specification of forward only twin pointers on root segments.
It only allows either no twin or both forward and backward twin pointers.

When you specify both forward and backward twin pointers for HIDAM or PHIDAM
roots, IMS must maintain the twin chain when roots are inserted and deleted. It must
adjust the pointers in the previous and following roots. This overhead may be significant
when there are frequent insertions and deletions of roots.

The overhead of using the index to access the next root in a HIDAM database or
PHIDAM partition may not be significant. An index CI typically holds many index
entries. This means that accessing the next root typically does not require reading
another index CI. For this reason, you should not specify twin forward and backward
pointers for most HIDAM or PHIDAM roots segments.

There is a reason why some installations define twin forward and backward pointers on
HIDAM and PHIDAM roots. If the index is damaged, the use of twin forward and
backward pointers allows you to unload the database or partition if the first pointer in the
index is good. Unload uses the twin forward pointers to find successive roots in the
database. You may use the unload file to reload the database. This recreates the index.
Without these pointers, roots must be found with the index. This would prevent the
successful unloading of the database with a damaged index. In this case, you would need
to recover the index from an image copy and log records or to rebuild the index by using
a tool, such as the IBM IMS Index Builder.

Unsequenced Dependent Segments

When you define a dependent segment, you have the option of specifying a sequence
field. IMS maintains segments with sequence fields in key sequence. IMS orders
segments without sequence fields by a combination of the rules defined for the segments
and the order in which application programs insert the segments.

Some applications rely on segments being returned in key sequence. Others do not
depend on this sequencing. If applications do not require that segments be in key

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 39 of 54

sequence, it is best not to specify a sequence field. Then IMS does not necessarily have
to follow the twin chain when inserting the segment.

For segments without sequence fields the location of the inserted segment depends on the
last subparameter of the RULES= parameter on the SEGM statement for the segment.
The possible values are FIRST, LAST, and HERE. LAST is the default. HERE causes
IMS to insert the segment at the current location. This is the least overhead. FIRST
causes IMS to insert the segment at the beginning of the twin chain. IMS finds this
location with minimal overhead since there is a pointer in the parent to the beginning of
the twin chain. LAST can cause significant overhead with long twin chains. You can
avoid this by specifying a Physical Child Last pointer from the parent to this segment
type. Then IMS can go directly to the last segment in the twin chain. So if you specify
LAST or use it as the default, you should define a physical child last pointer from the
parent when there may be a long twin chain. This advice only applies to segments
without sequence fields.

Defining Hierarchical, Physical Twin, and Physical Child
Pointers

You define hierarchic pointers by specifying PTR=H or PTR=HB on SEGM statements.
Use PTR=HB to specify both forward and backward pointers.

You define twin pointers by specifying PTR=T or PTR=TB on SEGM statements. Use
PTR=TB to specify both forward and backward pointers.

You define physical child pointers in the SEGM statement for the child. The second
subparameter of the PARENT parameter is either SNGL or DBLE. SNGL causes IMS to
place a physical child first pointer in the parent segment. DBLE causes IMS to place
both a physical child first and a physical child last pointer in the parent segment. SNGL
is the default. Figure 3 shows an example of a SEGM statement for a child segment
whose parent will contain both physical child first and physical child last pointers to it.

SEGM NAME=EXPR,BYTES=20, PTR=T, PARENT= ((NAME, DBLE))

Figure 3. Definition of physical child first and physical child last pointers

Recommendations Summary for Pointer Options

The recommendations for pointer options are:

1. Use child and twin pointers instead of hierarchic pointers.

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 40 of 54

2. Do not specify twin backward pointers for dependent segments unless you satisfy

the criteria for deletes with logical relationships as explained above.

Never specify twin forward only pointers for HIDAM roots.

Specify no twin pointers for HIDAM and PHIDAM roots.

5. Ifyou specify RULES=(,LAST) or use last as the default for segments without
sequence fields, you should define a physical child last pointer from the parent if
there may be a long twin chain.

naline

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 41 of 54

SCAN= Parameter on the DATASET Statement

The SCAN parameter on the DATASET statement affects searches for free space. It is
the number of cylinders that IMS scans when searching for space to insert a segment in a
HDAM or HIDAM database. When a segment is inserted, IMS tries to place it in the
“most desirable block”. Generally, this is the block which contains the segment or RAP
from which the inserted segment will be chained. Exceptions are explained in the “How
the HD Space Search Algorithm Works” section of the IMS Administration Guide:
Database Manager manual. If IMS does not find space in this block, it uses the HD
space search algorithm to find space in another block. In general, the algorithm tries to
find space in a nearby block on the same cylinder. If it does not find available space
there, the SCAN parameter limits the number of adjacent cylinders that IMS examines
when it looks for space. If IMS does not find space within this limit, it inserts the
segment at the end of the data set.

SCAN=0 causes IMS to search for blocks in the buffer pool which are on the cylinder
containing the most desirable block. SCAN=1 causes IMS to scan the pool for blocks on
the two adjacent cylinders also. SCAN=2 causes IMS to scan the pool for blocks on the
two cylinders which are on either side of the cylinder containing the most desirable block.
IMS must scan its buffer pool once for each cylinder within the scan range. So with
SCAN=3 IMS might scan the buffer pool seven times, once for each cylinder within the
limit.

You should always specify SCAN=0. The default is SCAN=3. The default was set many
years ago when cylinders were much smaller and buffers pools contained fewer buffers.
Today, a 3390 cylinder holds over 0.5 megabytes and many buffer pools have thousands
of buffers. Multiple scans of these pools can be costly. In any case, there is no particular
advantage in putting the segment two or three cylinders away. It can just as easily be
handled when placed at the end of the data set.

You cannot specify SCAN for HALDB databases. The space search algorithm for them
always operates as if SCAN=0 were specified.

Recommendation Summary for the SCAN parameter

Always specify SCAN=0 on DATASET statements for HDAM and HIDAM databases.

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 42 of 54

Multiple Data Set Groups

PHDAM, PHIDAM, HDAM, and HIDAM databases may have multiple data set groups.
You may use multiple data set groups to store different segment types in different data
sets. You may store multiple segment types in the same data set, but all instances of the
same segment type are stored in the same data set. Figure 4 is an illustration of the use of
multiple data set groups.

]

A)
"""" ' T :"""""""'n
[- I | 1 '

1 [
B | ;[C]: LD |
: " - 1
' Ec);ata Sezt X Data Set E X :
rou o ')
oGt S E | LF
' Data Set :
Group 3 X

Figure 4. Multiple data set groups

In this illustration, segment types A and C are stored in the first data set group. Segment
type B is stored in data set group 2. Segment types D, E, and F are stored in data set
group 3.

You may use data set groups for various purposes.

First, you may use them to move infrequently used segments to their own data sets. Then
the other segments in the database are stored in fewer blocks and may require fewer 1/Os
to access. This could be especially important in sequential jobs which read all of some
segment types but do not read other segment types. In Figure 4, data set group 3 might
have been created for this purpose.

Second, you may create data set groups to reduce the number of blocks which are read to
access a segment. In Figure 4, data set group 2 might have been created for this purpose.
If there are many instances of segment B, moving segment B to its own data set group
increases the probability that the C segments will be in the same block with the root
segment. This is useful if C segments are frequently accessed but B segments are rarely
accessed.

Third, you may use data set groups for space management reasons. With HD access
methods, IMS keeps a bit map indicating which blocks have room for the largest segment
allowed in the data set. The space search algorithm uses this bit map when looking for
space for inserts. Segment types with very large maximum sizes can make the bit map

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 43 of 54

misleading. The bit map may indicate that there is not space in a block for the largest
segment in the data set, but there may be plenty of free space for smaller segments.
Some installations isolate extremely large segment types in their own data set. This is
beneficial for space search in other data sets. The bit maps in the other data sets are not
skewed by the large segment types. This technique is especially beneficial when there
are lots of inserts of the smaller segment types.

Fourth, you may use data set groups to provide more capacity for HDAM or HIDAM
databases. You cannot partition these databases. If you use only one data set, the
database would be limited to 8 gigabytes with OSAM or 4 gigabytes with VSAM. Since
you may define up to 1001 partitions for PHDAM and PHIDAM databases, you do not
need multiple data set groups to provide database capacity for them. Usually, it is
preferable to convert a HDAM database to PHDAM or a HIDAM database to PHIDAM
when additional capacity is needed.

You need to know the access patterns that applications will use before you can make the
best decisions about the use of multiple data set groups. Multiple data set groups spread
database records across blocks in different data sets. If you use them unnecessarily, you
may cause IMS to do additional I/Os. You should define multiple data groups only when
you have a reason to do so.

For HDAM and HIDAM databases you use DATASET statements to specify multiple
data set groups. IMS assigns segments to the data set specified on the preceding
DATASET statement.

For PHDAM and PHIDAM databases you assign a segment to a data set by specifying
the DSGROUP= parameter on the SEGM statement.

Recommendations Summary for Multiple Data Set Groups

The recommendations for the use of multiple data set groups are:

1. Define multiple data set groups only when you have a reason to do so. You
should use them primarily to reduce I/Os for databases with certain characteristics.

2. You may use multiple data set groups to provide additional capacity for HDAM
and HIDAM databases, but conversion to PHDAM or PHIDAM is preferable.

3. Do not use multiple data set groups with PHDAM or PHIDAM databases to
provide capacity. Instead, create more partitions for these databases. Multiple
data set groups may be appropriate for PHDAM or PHIDAM databases to reduce
I/Os.

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 44 of 54

Compression

You may compress segments by using Segment Edit/Compression routines. This reduces
the amount of space that is required on DASD for the segments. It does not affect the
view of the segments by application programs. You may use compression with PHDAM,
PHIDAM, HISAM, HDAM, and HIDAM databases. You cannot use compression with
PSINDEX, SHISAM, or INDEX databases.

You specify compression with the COMPRTN= parameter on the SEGM statement. You
may use different specifications for different segment types. You may compress some
segment types in a database while not compressing others. You may use different
compression routines for different segment types.

IMS supplies a sample compression routine, DFSCMPXO0, which implements run length
encoding. This reduces all strings of four or more repeating bytes to three bytes. It can
give excellent results for segments which contain many blanks, zeroes, or other values
which appear in consecutive bytes. IMS also supplies a facility for creating compression
routines which use special system hardware for compressing data. This is the Hardware
Data Compression facility. You give sample data to the facility and it produces a
compression dictionary which is optimized for the sample data. You may also purchase
products which supply compression routines. Typically, these products do not provide
better compression than that which is done by the facilities supplied with IMS. Instead,
they provide ease of use in maintaining and administering compression. The IMS
Hardware Data Compression Extended for z/OS tool provides these capabilities.

Compression can significantly reduce the amount of space that is required for storing a
database. This can substantially reduce the number of reads and writes that are required
for processing the database. The reduction can be significant when the entire database,
area, or partition is processed. On the other hand, compression can also substantially
increase the CPU time that is required to process a database. When segments are
compressed, IMS must invoke an exit routine each time a segment is inserted, replaced,
or read.

The use of compression is a trade-off between storage, I/Os, and CPU processing.
A more complete explanation of the use and implementation of compression with IMS is

given in A Guide to IMS Hardware Data Compression. This guide is available at
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100416.

Key Compression vs. Data Compression

If you implement compression, you have the option of specifying whether you want key
compression or only data compression. With key compression the entire segment past

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 45 of 54

the prefix is compressed. With data compression only the data following the key is
compressed. Key compression cannot be used with HISAM root segments. They must
use data compression.

Obviously, key compression produces greater space savings. But there is a cost. When a
database call needs to examine the key of a segment, IMS must invoke the exit routine
when the key is compressed. The exit routine does not have to expand the entire segment,
but it must expand the data through the key. This is not required when only the data is
compressed. An example is a get call which is qualified on the key where the segment is
in a long twin chain. IMS may have to look at many segments before it finds one that
satisfies the call. With key compression this would require the expansion of many
segments. With data compression only the segment which satisfies the call would be
expanded.

The compression option you choose should depend on the amount of potential savings
from key compression versus the extra processing it requires. This depends on the size of

the key, the location of the key in the segment, and the type of processing done against
the segment.

COMPRTN= Parameter

The COMPRTN= parameter on the SEGM statement is used to specify a segment
edit/compression routine. The syntax of the COMPRTN= parameter is the following.

Full function fixed length segments

—,DATA—
»—COMPRTN=—(—routinename——,KEY —L— — —)—
Nt b size—
L, PAD-
Full function variable length segments
—,DATA—
»—COMPRTN=—(—routinename——,KEY —L— —)—
L INIT-

There are five positional subparameters.
routinename

The first subparameter, routinename, identifies the name of the routine.

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 46 of 54

DATA and KEY

The second subparameter indicates if all of the segment, including the key, will be
compressed or if only the data past the key will be compressed. DATA is the
default. It indicates that only the data past the key will be compressed. KEY
indicates that the key and all of the data will be compressed. KEY cannot be
specified for HISAM root segments.

INIT

The third subparameter, INIT, is optional. It indicates that the routine will be
driven at initialization and termination. This allows the routine to do some special
processing, such as loading a table at initialization and deleting it at termination.
Your exit routine requirements determine if this parameter must be specified.

size and PAD

The fourth and fifth subparameters are valid only for fixed length segments. The
fourth subparameter has two possible meanings. It is either an “increment” size
or a “PAD” size. The fifth subparameter determines the meaning of the fourth
subparameter. If the fifth subparameter is omitted, the fourth subparameter is an
increment size. If PAD is specified for the fifth subparameter, the fourth
subparameter is a PAD size.

An increment size should not be specified. The following is an explanation of its
meaning and why you should not specify it. An increment size is the number of
bytes that the routine may add to a fixed length segment’s size. This capability is
provided because a compression routine algorithm could increase the size of a
segment instead of decreasing it. Increment values of 1 to 32,767 may be
specified. If an increment size less than 10 is specified or if no value is specified,
an increment size of 10 is used. When PAD is specified, an increment size of 10
is used. The increment size is not required for any compression routines supplied
by IMS or IBM products, such as IMS Hardware Data Compression Extended.
They never add more than one byte to a segment. Specification of increment
sizes is rarely required for any routines since most compression routines never
increase a segment’s size by more than 10 bytes.

A PAD size is used to specify a minimum size that the segment will be when
written to DASD. When compression reduces the segment’s length to less than
the PAD size, IMS pads the segment to the PAD size before writing it to DASD.
PAD sizes are never required, but may be recommended for performance reasons.

The use of PAD is more completely explained in 4 Guide to IMS Hardware Data
Compression. It is available at
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100416.

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 47 of 54

Recommendations Summary for Compression

The recommendations for the use of compression are:

1. Evaluate the use of compression. The space saved may not be worth the extra
processing required to compress and expand segments.

2. Evaluate the use of key compression versus data compression. Key compression
may not be advisable for segments which have long twin chains and which are
frequently processed by calls qualified on key fields.

3. It may be wise to specify a PAD value for full function fixed length segments
which are compressed. This can reduce the likelihood that a segment's prefix and
its data are placed in separate blocks.

4. Never specify the fourth subparameter (size) for COMPRTN= if you do not also
specify the fifth subparameter (PAD).

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 48 of 54

Secondary Indexes

You may define secondary indexes for PHDAM, PHIDAM, HDAM, HIDAM, and
HISAM databases. They are used primarily to provide an alternate key for retrieving
records in a database. You may also use them to provide an alternate sequence for
sequential processing.

You define secondary indexes for PHDAM and PHIDAM databases with
ACCESS=PSINDEX on the DBD statement. Define secondary indexes for HDAM,
HIDAM, and HISAM databases with ACCESS=INDEX on the DBD statement.

The indexed databases must include LCHILD and XDFLD statements for their secondary
indexes.

Secondary Index Keys

The key for a secondary index is built by using one to five fields in the index source
segment. These fields may be non-contiguous. They are specified with the SRCH=
parameter on the XDFLD statement in the indexed database.

Unique Keys vs. Non-unique Keys

Secondary indexes for HALDB (PHDAM and PHIDAM) databases must have unique
keys. Unique keys are not required for non-HALDB databases, but they are highly
recommended. You define unique keys by specifying U in the third subparameter of the
NAME parameter in the FIELD statement for the index key field. You define non-
unique keys by specifying M. U is the default.

You can create unique keys by defining subsequence fields. Subsequence fields are
added to the sequence fields so that a unique key may be created. These keys are the
keys of the secondary index KSDS. Application programs do not use subsequence fields
when they define a search using a secondary index. They use only the secondary index
sequence fields. Subsequence fields are defined with the SUBSEQ= parameter on the
XDFLD statement in DBDGEN.

For example, if you have an employee database, you may want to create a secondary
index based on employee last name. Of course, there might be duplicate last names
among the employees. Adding a subsequence field, such as employee serial number,
would create unique keys. In some cases, there might not be a field in the source
segment which provides uniqueness. IMS supplies system-related fields which you may
use to create uniqueness. The system-related fields are the concatenated key field and the
"/SX" field.

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 49 of 54

A concatenated key field contains the concatenated key of the target segment. The size
of this field depends on the size of the concatenated key. A "/SX" field is a unique value
generated by IMS. For non-HALDB databases it is the 4-byte relative byte address
(RBA) of the target segment. For HALDB databases it is the 8-byte Indirect List Key
(ILK) of the target segment. In most cases, the "/SX" field will require less space than
the concatenated key field. System-related fields are defined with special names in the
NAME-= parameter of the FIELD statement. A concatenated key field is defined with a
field name beginning with /CK. A "/SX" field is defined with a field name beginning
with /SX.

Non-unique keys have two disadvantages. First, they require a second data set for the
secondary index. The second data set is an ESDS which contains the duplicate keys.
Second, each index entry requires an extra four bytes for the pointers which chain
possible duplicate entries. Since a /SX field requires only four bytes in non-HALDB
databases, it requires no more space than the duplicates pointer.

Application programs never see subsequence fields unless they process the secondary
index as a database.

Direct vs. Symbolic Pointers

Secondary indexes use three types of pointers. Non-HALDB secondary indexes use
either direct or symbolic pointers. HALDB secondary indexes use an extended pointer
set (EPS).

You may use direct pointers with HDAM and HIDAM databases. They are four byte
RBAs. They point at the target segment. You may use symbolic pointers with HDAM,
HIDAM, and HISAM databases. Symbolic pointers are the concatenated key of the
target segment. They may be up to 255 bytes, depending on the size of the concatenated
key. When using a secondary index with symbolic pointers IMS must traverse the target
database record from the root to the target segment. This might require accessing
multiple OSAM blocks or VSAM Cls. For this reason, direct pointers tend to be more
efficient when accessing target segments. This is especially true when the target is
several levels below the root in the database structure. For indexes into HDAM
databases, symbolic pointers cause IMS also to traverse from the RAP to the root. This
makes direct pointers even more attractive.

Symbolic pointers have a significant advantage over direct pointers when reorganizing
the indexed database. If you use direct pointers for a secondary index, you must rebuild
it when you reorganize the indexed database. This is required because the old direct
pointers are no longer accurate. On the other hand, if you use symbolic pointers, the
secondary index remains good when you reorganize the indexed database. You do not
have to rebuild the secondary index.

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 50 of 54

So the use of direct vs. symbolic pointers for HDAM and HIDAM databases is a trade-off.
Direct pointers have two advantages. They are smaller and they provide more efficient
access to target segments. Symbolic pointers have the advantage of not requiring

rebuilds after reorganizations of the indexed database.

HALDB secondary indexes always use an extended pointer set (EPS). They do not use
the direct or symbolic pointers which non-HALDB secondary indexes use. The EPS
contains an internal direct pointer to the target. The self-healing pointer process updates
this pointer after reorganizations of the indexed database. You do not have to rebuild a
HALDB secondary index when you reorganize the indexed database. The EPS tends to
give HALDB secondary indexes the advantages of both symbolic pointers and direct
pointers. Access is direct but you do not have to rebuild the secondary index when you
reorganize the indexed database.

You select symbolic pointers by specifying PTR=SYMB on the LCHILD statement in
the indexed database. You select direct pointers by specifying PTR=INDX on the
LCHILD statement. You must specify PTR=INDX on the LCHILD statement for
HALDB.

Shared Secondary Indexes

Multiple secondary indexes for non-HALDB databases may reside in the same data set.
This is called shared secondary indexes. You should never use shared secondary indexes.
When multiple indexes share the same data set, a rebuild of any of the indexes requires a
rebuild of all of them. Shared secondary indexes are used when a CONST= parameter is
defined on the XDFLD statement in a DBDGEN.

Duplicate Data

You may include duplicate data fields in secondary index entries. These are fields in the
secondary index which contain data from the source segment in the indexed database.
Duplicate data fields are defined with the DDATA= parameter on the XDFLD statement
in DBDGEN. Duplicate data fields are not part of the key of the secondary index.
Duplicate data is only available to application programs which process the secondary
index as a database, not as an index. That is, the DBDNAME= parameter in the PCB of
the PSB references the secondary index, not the indexed database. Duplicate data fields
make the secondary index larger. You should define them only when applications are
designed to process the secondary indexes as databases. On the other hand, applications
which take advantage of duplicate data can be more efficient. This occurs because they
do not have to access the indexed database to have access to the data in the duplicate data
fields. An application program never sees duplicate data unless it is processing the
secondary index as a database.

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 51 of 54

User Data

You may include user data fields in secondary index entries. These fields are not
explicitly defined in the DBD. They are created when the size of the secondary index
entry (BYTES= parameter on the SEGM statement) is larger than that required to hold
the explicitly defined fields. IMS does not maintain user data fields. User programs
which process the secondary index as a database maintain these fields. User data fields
are rarely used. If you rebuild the secondary index, IMS does not rebuild the user data
fields. They are lost. For this reason, non-HALDB secondary indexes which use direct
pointers should never have user data fields. HALDB secondary indexes and non-
HALDB secondary indexes which use symbolic pointers do not need to be rebuilt after
reorganizations; therefore, they might be able to use user data fields. An application
program never sees user data fields unless it is processing the secondary index as a
database.

Sparse Indexing

Sparse indexing allows you to build secondary indexes which do not have entries for
every source segment in the indexed database. This can be useful with some applications.
They may want a secondary index with entries for only certain segments. A sparse index
can simplify the application and reduce the size of the secondary index. You can create a
sparse index with either of two techniques. First, you may specify the NULLVAL=
parameter on the XDFLD statement in the DBDGEN. If the indexed field or fields
contain this value in every byte, IMS does not create an index entry for this source
segment. Second, you may specify the EXTRTN= parameter on the XDFLD statement.
IMS calls the specified exit routine for every insert, delete, or replace of the source
segment. The exit routine may inspect the source segment and decide whether or not an
index entry should be created for it. You may combine both techniques. If you specity
both the NULLVAL= parameter and the EXTRTN= parameter, IMS creates the
secondary index entry only if neither technique suppresses the entry.

Recommendations Summary for Secondary Indexes

The recommendations for secondary indexes are:

1. Use unique keys for secondary indexes. You may use /SX fields to create
uniqueness.

2. Never use shared secondary indexes.

Specify duplicate data fields only when applications are designed to use them.

4. Define space for user data fields only when applications are designed to use them
and when rebuilds of the secondary index are not required.

(98]

© 2006, IBM Advanced Technical Support Techdocs Version 2/22/2006
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines Page 52 of 54

Index

A

ACCESS, 8, 13, 14, 16, 20, 49

B

backward, 37, 38, 39, 40, 41
BLOCK, 8, 25, 27
BLOCKSZE, 25

BYTES, 4, 9, 31, 33, 34, 52

C

CA (Control Area), 7, 19, 29

CHANGE.PART, 25, 31, 33

CI (Control Interval), 3, 7, 8, 13, 15, 19, 24, 25, 26, 27,
29, 39

compression, 4, 9, 13, 14, 21, 34, 35, 45, 46, 47, 48,
52

COMPRTN, 4, 9, 45, 46, 48

CONST, 9, 51

control area, 7

control interval, 7

D

data set, 7, 8, 10, 12, 13, 14, 15, 16, 19, 20, 21, 24, 25,
26,27, 28,29, 32,33,34,42,43, 44, 50, 51

database record, 7, 9, 12, 13, 15,17, 19, 22, 24, 25, 26,
28,31, 32,33, 34, 35,37, 38, 44, 50

DATASET, 4, 8, 24, 25, 26, 27, 28, 29, 30, 42, 44

DATXEXIT, 8

DBD, 8, 13, 14, 16, 20, 23, 29, 31, 33, 49, 52

DBDGEN, 3, 5, 8, 24, 25, 26, 27, 49, 51, 52

DDI1, 8

DDATA, 9, 51

DFSCMPXO0, 45

DFSHDC40, 31, 32, 33

DSGROUP, 9, 44

E

exit, 8,9, 18, 19, 22, 23, 45, 46, 47, 52
EXIT, 8, 9
EXTRTN, 9, 52

F

fbff, 28, 30

FIELD, 9, 49, 50

fixed length segment, 13, 34, 35, 46, 47, 48

forward, 37, 38, 39, 40, 41

free block frequency factor, 28, 29

free space, 3, 4, 8, 12, 15, 17, 18, 28, 29, 30, 32, 42,
44

© 2006, IBM Advanced Technical Support Techdocs
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines

free space percentage factor, 28, 29
FREQ, 3, 9, 26, 27

FRSPC, 8, 28

FSEAP, 25

fspf, 28, 30

H

HALDB, 3, 10, 16, 20, 22, 23, 25, 26, 28, 29, 31, 33,
42,49, 50, 51, 52

HALDB Partition Definition Utility, 28, 31, 33

HDAM, 3,5,7,8, 12, 16, 17, 18, 19, 20, 21, 25, 26,
27,28, 29,30, 31, 32, 33, 37, 42, 43, 44, 45, 49, 50,
51

HIDAM, 3, 4,5, 8,12, 14, 15, 16, 17, 18, 19, 20, 21,
24,25, 26,27, 28, 29, 30, 37, 39, 41, 42, 43, 44, 45,
49, 50, 51

hierarchic pointers, 4, 37, 38, 40

High Availability Large Database (HALDB), 3, 10, 16,
20, 22, 23, 25, 26, 28, 29, 31, 33, 42, 49, 50, 51, 52

HISAM, 3, 5, 8, 12, 13, 14, 15, 24, 26, 34, 35, 36, 45,
46, 47, 49, 50

IDCAMS, 7, 24, 25, 26, 27, 28, 30
INDEX, 5, 8, 9, 26, 45, 49
INIT.PART, 25, 28, 31

K

key, 3,4,5,9, 15,17, 18, 19, 22, 23, 29, 31, 32, 34, 39,
45,46, 47, 48, 49, 50, 51, 52

L

LCHILD, 9, 49, 51
logical relationship, 5, 8, 9, 10, 14, 38, 41

multiple data set groups, 13, 16, 43, 44
multivolume, 20

N

NAME, 8, 9, 49, 50
NULLVAL, 9, 52

)

OSAM, 3, 7, 8, 14, 20, 21, 24, 25, 27, 32, 44, 50
OVFLW, 8

Version 2/22/2006

Page 53 of 54

P

pad
PAD, 46, 47, 48

PAIR, 9

PARENT, 9, 40

Partition Definition Utility, 28, 31, 33

PASSWD, 8

PHDAM, 4, 5,7, 10, 12, 16, 17, 18, 19, 20, 21, 22, 25,
26, 28,29, 30, 31, 32, 33, 37, 38,43, 44, 45, 49

PHIDAM, 4, 5, 10, 12, 14, 15, 16, 17, 18, 19, 20, 21,
22,23, 24,25, 26, 28, 29, 30, 37, 38, 39, 41, 43, 44,
45,49

pointer, 4, 9, 10, 15, 34, 37, 38, 39, 40, 41, 50, 51

POINTER, 9

primary data set, 12, 13, 15, 24

PSNAME, 8, 23

PTR, 9, 40, 51

R

RAA, 17, 28, 32, 33
randomization, 28, 30, 31, 33
randomizer, 17, 18, 22, 31, 32
root anchor point, 17, 28, 31, 32, 33, 42
RECORD, 8, 24, 26
reorganization, 10, 28
RKSIZE, 9
RMNAME, 8, 31
root, 7, 12, 13, 14, 15, 17, 18, 19, 22, 23, 26, 28, 29,
31, 32, 33,37, 38, 39, 41, 43, 46, 47, 50
root addressable area, 17, 31, 32, 33
root anchor point, 17, 31
RAP, 4,7,17,25, 28,29, 31, 32,33, 42, 50

© 2006, IBM Advanced Technical Support Techdocs
http://w3.ibm.com/support/Techdocs

IMS Full Function Database Design Guidelines

RULES, 9, 40, 41

S

SCAN, 4, 8, 42

SEARCHA, 8, 29, 30

secondary index, 9, 10, 14, 17, 19, 20, 23, 24, 26, 28,
30, 49, 50, 51, 52

SEGM, 3,9, 26, 27, 34, 40, 44, 45, 46, 52

SHISAM, 3, 5, 12, 14, 26, 45, 49, 50

SIZE, 8, 25, 27

sparse indexing, 4, 9, 52

SRCH, 9, 49

START, 9

SUBSEQ, 9, 49

T

twin, 4, 9, 37, 38, 39, 40, 41, 46, 48
twin backward, 41

twin forward, 37, 39, 41

TYPE, 9

Vv

variable length segment, 13, 14, 15, 34, 35, 36, 46

VERSION, 8

VSAM, 3,7, 8, 14, 20, 21, 24, 25, 26, 27, 29, 32, 44,
50

X

XDFLD, 9, 49, 51, 52

Version 2/22/2006

Page 54 of 54

