

IMS24

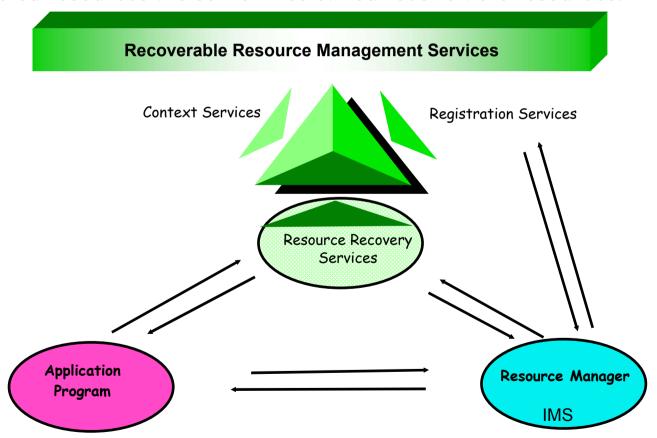
IMS and RRS working together to coordinate your updates

pete.sadler@uk.ibm.com

Agenda

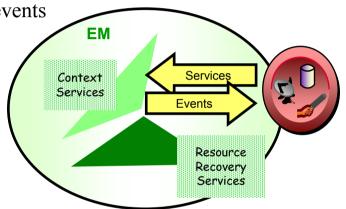
- Basic Concepts of z/OS Resource Recovery
- Application related to IMS
 - IMS Batch
 - DB2 Stored Procedure
 - IMS OTMA and APPC Protected Transaction
 - IMS V8 OTMA/APPC Shared Queue exploitation
- RRS Considerations
- Summary

The z/OS Resource Recovery Service (RRS) starts to be widely used in the zOS environment. This session summarizes the different features of IMS which use this new zOS component:


IMS Batch, DB2 Stored Procedures, IMS OTMA and APPC Protected Conversation,

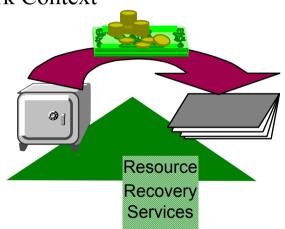
IMS V8 OTMA/APPC Shared Queue.

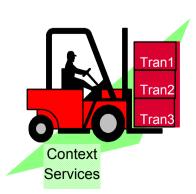
z/OS Resource Recovery consists of the protocols and program interfaces


- The z/OS Resource Recovery consists of the protocols and program interfaces that allow an application program to make consistent changes to multiple protected resources.
- Protected resources are sometimes called recoverable resources.

z/OS Resource Recovery - RRM Services

- Exit Manager
 - Authorized program that controls the flow of a predefined set of events
 - Provide Services to RMs
 - Inform RMs of events via exits
 - Two exit managers in z/OS
 - Resource recovery services (RRS)
 - Context services
- Registration Services
 - Connecting RMs and EMs
 - Always available
 - Is informed by EMs and RMs when they are available
 - Informs EMs when RMs come and go
 - Informs RMs when EMs come and go
 - Provides global anchors for each

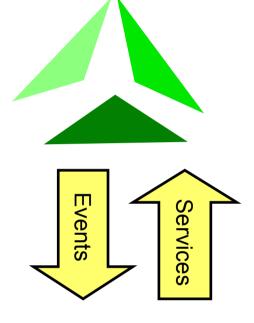


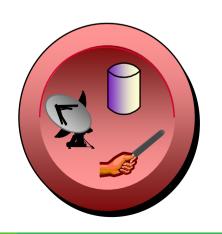


z/OS Resource Recovery - RRM Services

• • •

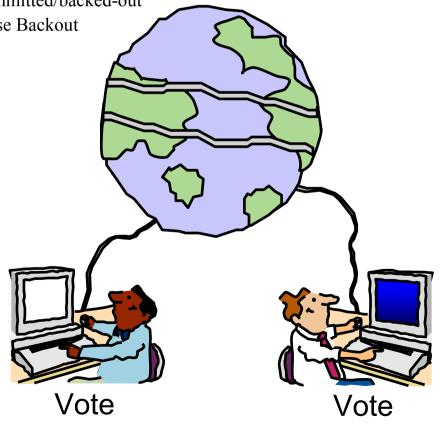
- Resource Recovery Services The Syncpoint Manager
 - Coordinates the two-phase commit process
 - Creates an association between a Unit of Recovery (UR) and a Work Context
 - Preserves UR state across all failures
 - 2 Types of Resource Recovery
 - Local on a single system
 - Distributed on multiple systems
 - Communication Resource Manager needed (APPC/MVS)
- Context Services Moving Transactions Around
 - Used by a Work Manager (WM)
 - WM tells CS where the work request is running
 - WMs tells CS when the work request moves
 - RMs are told by CS when the work request is completed


z/OS Resource Managers


- All RMs ...
 - Are authorized
 - Register with the system
 - Supply exit routines
 - Have a system unique name
- Additionally, RRS compliant RMs ...
 - Go through RRS restart processing
 - Have a Sysplex unique name
 - Respond to syncpoint events
- 3 types of Resource Managers
 - Data Resource Managers
 - DB2 DB, IMS DL1, VSAM
 - Communications Resource Managers
 - APPC/Protected Conversations, TRPC, OTMA
 - Work Managers
 - IMS TM, CICS TS, DB2 Stored Procedures, OTMA Client
- 2 types of Resources
 - Protected resources
 - Can be recovered if a failure ocurs
 - Need logging
 - Unprotected resources

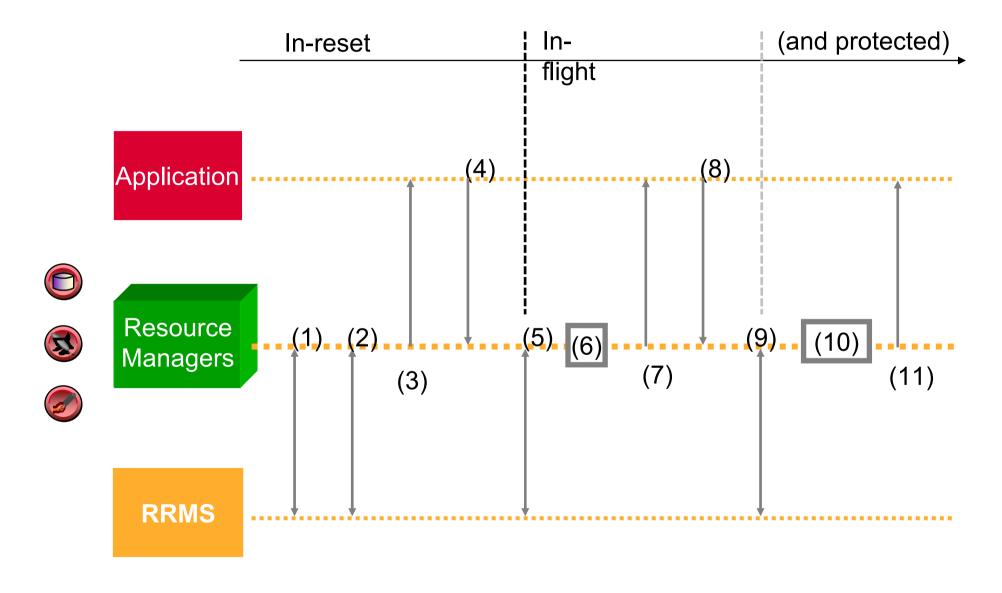
z/OS Application Programs

- IMS Batch Application
 - Since IMS V7 with IMS Batch RRS support
 - IMS calls to access IMS databases in the IMS Batch
 - No IMS call limitation
 - SQL execs to access DB2 databases
 - MQI calls to access MQSeries resources
- Any MVS Application connected to RRS
 - Using ODBA for IMS databases access
 - IMS calls to access IMS databases thru an IMS Control Region (DBCTL or DBDC)
 - Only a subset of IMS calls
 - No CHKP/XRST capability
 - SQL execs to access DB2 databases
 - MQI calls to access MQSeries resources
 - For example, DB2 Stored Procedure
 - For example, WAS EJB
- IMS Transaction
 - Involved in a Protected Conversation
 - With APPC or OTMA
 - In the Shared Q environment with synchronous APPC/OTMA



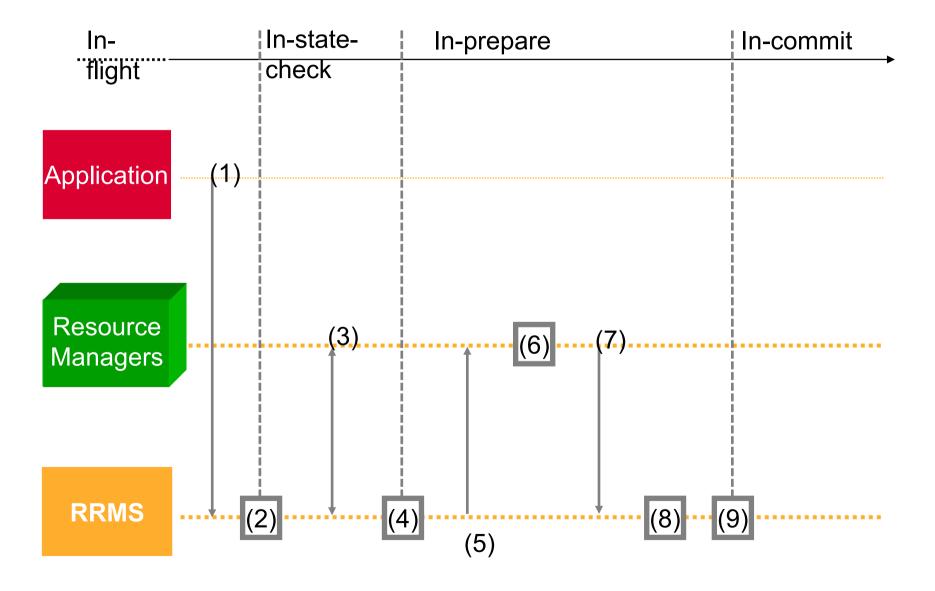
RRS - Syncpoint Processing

- Sync Point Processing
 - Sync Point Phase 1 "Prepare" : Each resource manager votes
 - Sync Point Manager polls all Resource managers
 - Each Resource Manager votes to commit or Backout
 - Sync Point Phase 2 "Commit or Backout" : Changes are committed/backed-out


• If all votes are to commit then Commit Phase begins, else Backout

- RRS Verbs
 - ATRCMIT or SRRCMIT
 - ATRBACK or SRRBACK
- RRS Unit of Work States
 - IN-FLIGHT:
 - Work changes in process
 - IN-DOUBT
 - Work changes between phase 1 and phase 2
 - IN-COMMIT
 - Work changes are committed
 - IN-BCKOUT
 - Work changes are backed out

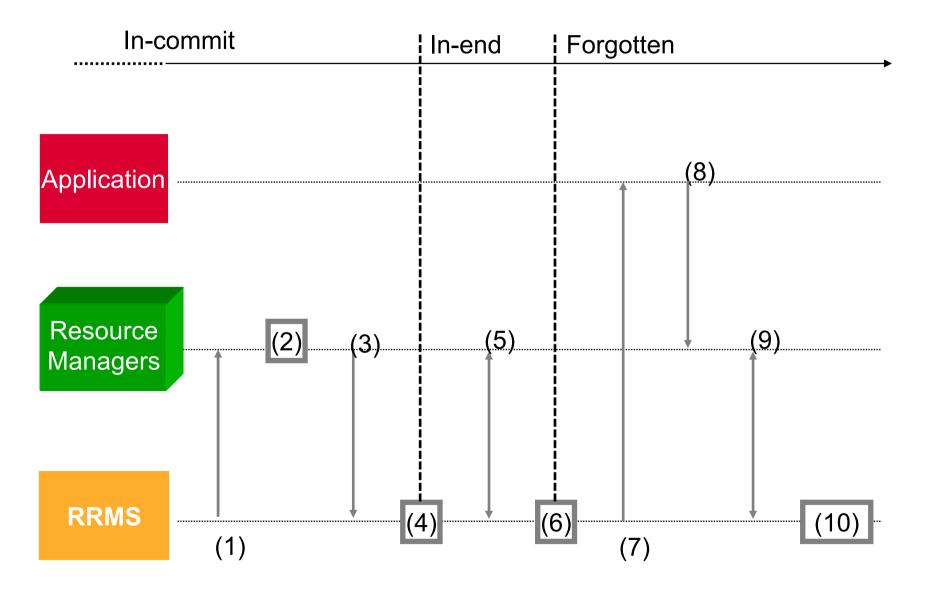
Part 1 - The Application Makes Changes


Part 1 - The Application Makes Changes

- 1. Work Manager gets a private Context from Context Services.
- 2. Work Manager associates Context with a task (via CS).
- 3. Work Manager dispatches application.
- 4. Application makes read request to Data RM1.
- 5. RM1 expresses unprotected interest in UR, UR and URI1 for RM1 are created.
- 6. RM1 locks and reads data
- 7. RM1 returns to application.
- 8. Application makes write request to Data RM2.
- 9. RM2 expresses protected interest in UR, URI2 for RM2 is created.
- 10. RM2 locks data then makes and logs changes.
- 11. RM2 returns to application

Note: Steps 4,6-7 and 8,10-11 can be repeated.

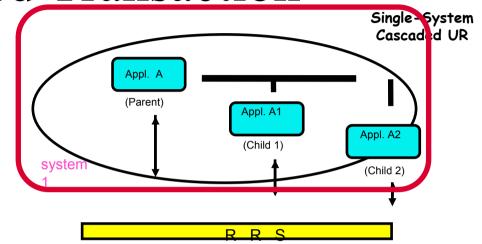
Part 2 - Syncpoint Processing Begins

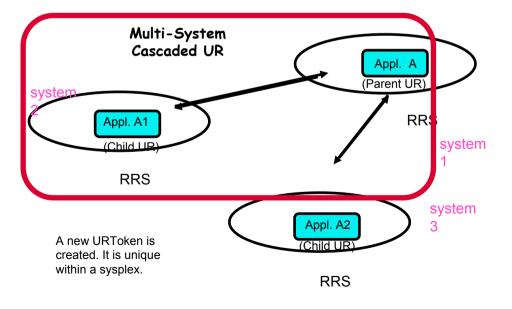


Part 2 - Syncpoint Processing Begins

- 1. Application requests all changes be committed.
- 2. RRS starts syncpoint process [In-statecheck begins].
- 3. RRS drives all RM's (optional) statecheck exits and they return.
- 4. [In-prepare begins] If any RM requested presume nothing protocols, RRS logs a PRP (prepare) record.
- 5. RRS drives All RM's (required) prepare exits.
- 6. RMs take prepare actions
 - a. RM1 (read only) releases data locks.
 - b. RM2 forces undo/redo records.
- 7. RMs return from prepare exits
 - a. RM1 (read-only) votes forget. It is no longer involved in the UR.
 - b. RM2 votes OK.
- 8. RRS determines overall result (in this case it is OK).
- 9. RRS logs a CMT (commit) record. This is the "Atomic Instant" [in-commit begins].

Part 3 - Committed and Forgotten


Part 3 - Committed and Forgotten


- 1. RRS drives RM2's (required) commit exit. (RM1 has forgotten and so its exits are no longer driven).
- 2. RM2 takes commit action by releasing data locks. The changes are now visible to other work requests.
- 3. RM2 returns to RRS.
- 4. RRS begins end processing [in-end begins].
- 5. RRS drives RM2's (optional) end-UR exit and it returns.
- 6. UR processing is completed. RRS logically deletes the CMT record from the log.
- 7. RRS returns to the application informing it that the commit request completed successfully.
- 8. Application completes and returns to its Work Manager.
- 9. Work Manager ends the private Context.
- 10. Sometime later as part of log cleanup, RRS physically deletes the CMT record from the log

RRS Cascaded Transaction

- Created by a work manager when a single work request involves multiple work managers
 - Multiple application parts in parallel
 - All of the changes made by the separate applications can then be part of a single commit scope managed localy by RRS.
- Single-system Cascaded Transaction
 - Introduced in OS/390 V2 R9.
- Multi-system Cascaded Transaction
 - An application executing on one system in a sysplex can have transactional access to data or applications available on another system in a sysplex.
 - RRS coordinates a transaction across multipe systems within a sysplex.
 - The feature was introduced in z/OS V1 R2.

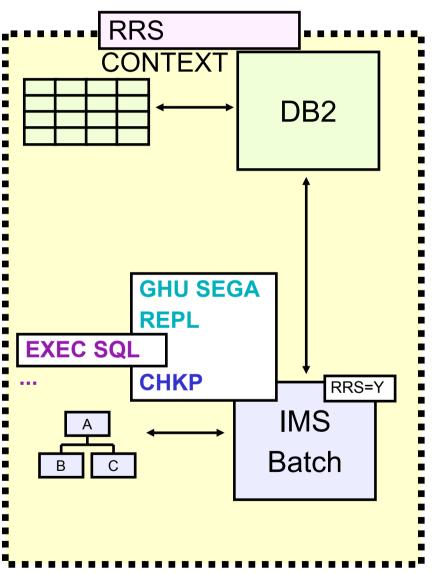
Agenda

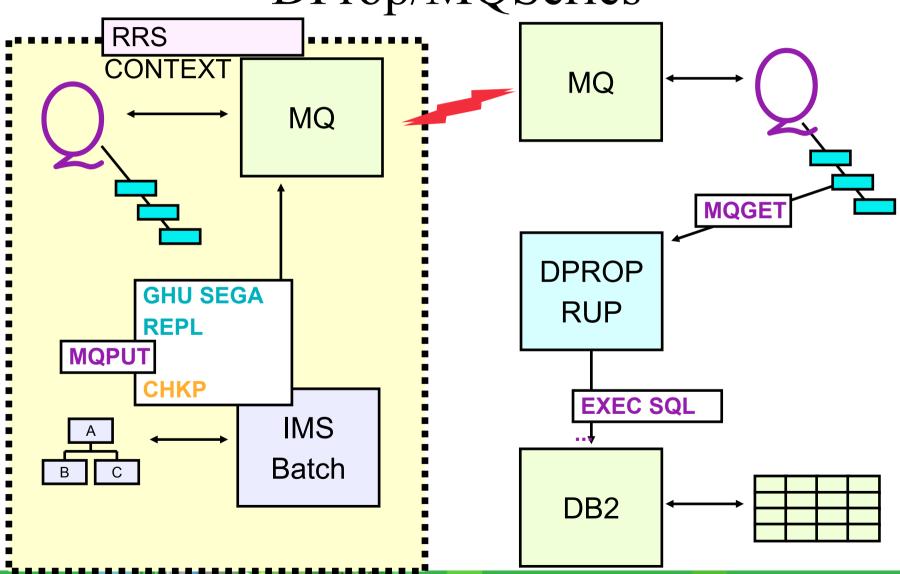
- Basic Concepts of z/OS Resource Recovery
- Application related to IMS
 - IMS Batch



- IMS V8 OTMA/APPC Shared Queue exploitation
- RRS Considerations
- Summary

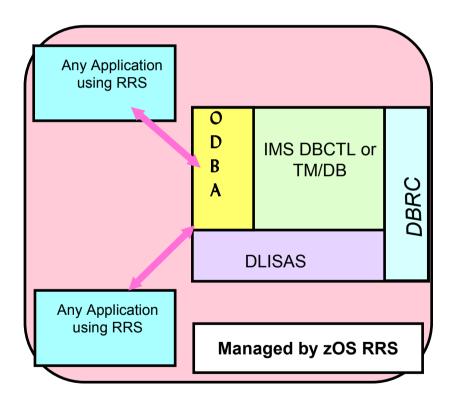
RRS Support for IMS Batch


- In a Stand-alone IMS Batch environment
 - IMS V8 now provides full coordinated two phase commit with attached subsystems
 - DB2 V6 or MQ V5.2
 - Batch program requires connection to RRS
 - New JCL PROC parameter "RRS=Y"
 - RRS uses System Logger for saving coordination data
 - Batch program requires DASD logging and BKO=Y
- Used by IMS DataPropagator V3R1
 - With MQ to give "asynchronous near real time" data propagation for Batch DL/1
- IMS V7 support with APAR PQ51895

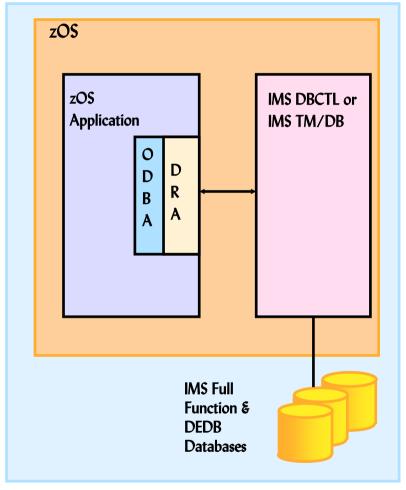

RRS Support for IMS Batch – IMS

DProp/DB2

- IMS and DB2 register with RRS
- IMS updates IMS DB
- IMS expresses interest in UR
- IMS DProp Data capture exit updates DB2
- DB2 expresses interest in UR
- CHKP initiate 2-phase commit for UR
- RRS manages 2-phase commit


RRS Support for IMS Batch - IMS DProp/MQSeries

Open Database Access (ODBA) - Company Objectives

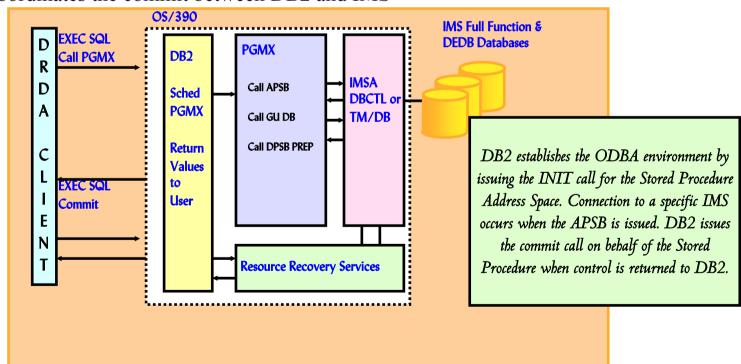

- Provides a callable interface to IMS databases from any z/OS programs that are not managed by IMS
 - DB2 Stored Procedures
 - or Any z/OS applications that use
 Resource Recovery Services (RRS) to
 manage their syncpoint processing
- Connection to IMS TM or DBCTL
 - Uses the Database Resource Adapter (DRA)
 - DL/I calls are issued using the Application Interface Block (AIB) interface

ODBA - Database Resource Adapter (DRA)

- The z/OS application gains access to IMS Full Function & DEDB databases through the Database Resource Adapter
 - Similar to CCTL's usage of the DRA
 - ODBA uses the AERTDLI interface rather than PAPL parameter list to communicate its requests to the DRA
- The DRA is initialized as a result of a CIMS INIT or APSB call
- The DRA can process multiple threads at a time
 - Through the MINTHRD &
 MAXTHRD parameters in the DRA
 Startup Table
 - Maximum number of threads & dependent regions supported by an IMS
 DB instance at one time is 999

ODBA's Use of the DRA

DB2 Stored Procedures


- DB2 Stored Procedures
 - Enables users to "bundle" multiple SQL statements into a single unit
 - A "stored procedure" resides on the mainframe
 - Clients can then execute these statements by issuing one network call
- DB2 established Stored Procedures
 - Introduced in DB2 V4R1
 - One address space, multiple tasks
 - Limited function -- will not be enhanced
 - Must use DSNALI (call attach)
- WLM established Stored Procedures
 - With DB2 V5 and OS/390 R3
 - Multiple "environments"
 - Multiple address spaces for each environment
 - Each address space can have multiple tasks
 - Must use DSNRLI (RRS attach)
 - Dynamically started by OS/390 Workload Manager if in GOAL mode

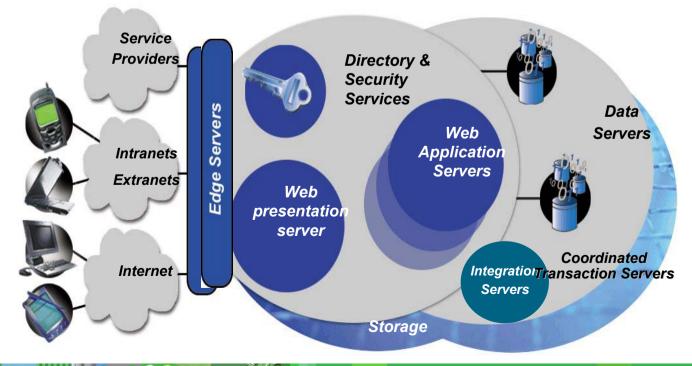
Stored Procedures
are blocks of code
that contain SQL
statements and
reside on a server
platform.

Access to IMS Databases using call DLI (ODBA)


- DB2 Stored Procedures Address Space access to an IMS DB Subsystem
- DL/I data can be presented through an SQL interface either
 - locally to this DB2 or
 - to DRDA connected DB2s
- RRS coordinates the commit between DB2 and IMS

Access to IMS Transactions using APPC

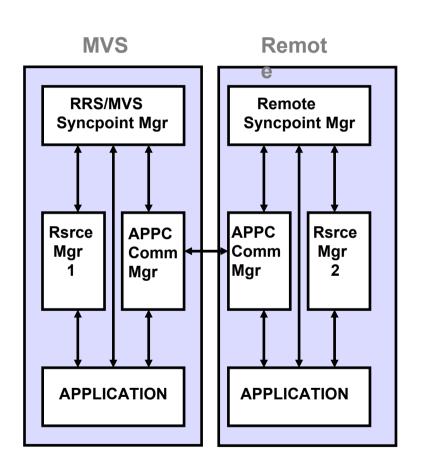
- DB2 Stored Procedures Address Space uses MVS/APPC calls to access IMS TM Subsystem
 - On same OS/390 or on different OS/390
- DB2 notifies RRS about Commit/abord decisions
- RRS passes decision to other resources manager
 - Allows 2-phase commit with MVS/APPC applications (e.g. an IMS Transaction)



Extending the Enterprise with RRS

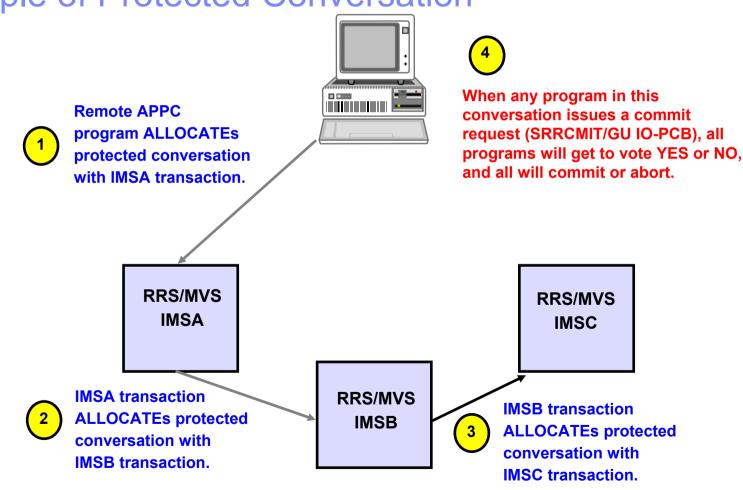
- •IMS OTMA and APPC Protected Transaction
 - -OTMA/APPC Synchronization Level (Sync_Level)
 - •None: synchronization not required
 - •Confirm: confirmation is required before the syncpoint
 - •SYNCPT: RRS coordinated two-phase commit flows

Transaction & Data Servers

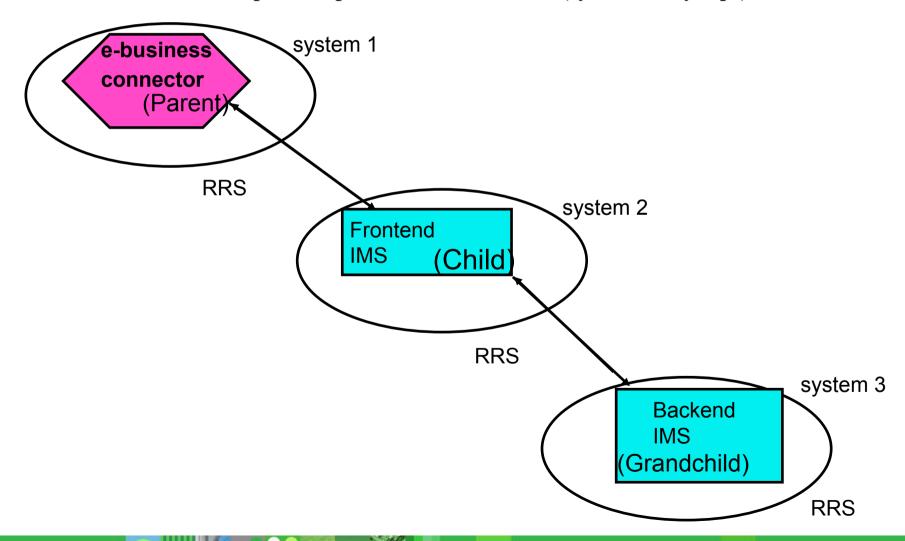

IMS APPC Sync_Level Syncpt Support with RRS

- •Distributed Sync Point Support
 - -With IMS V6
 - -Supported for Standard, Modified Standard, and CPI-C Driven programs
 - Allows IMS applications to be involved in *protected* conversations
 - •Two phase commit process support provided by RRS
 - Participating platforms/products
 - •DB2 V5 and following
 - •AIX
 - •AS/400
 - •VM
 - •Windows NT
 - •...

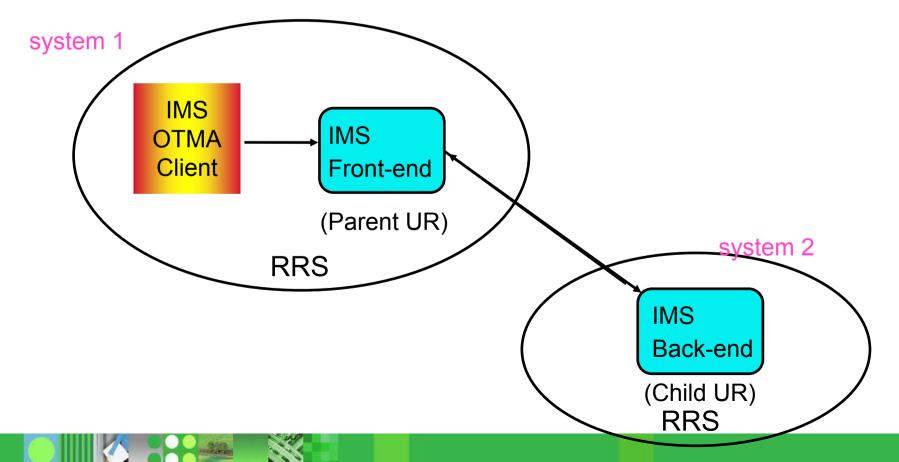
IMS APPC Sync_Level Syncpt Support with RRS ...

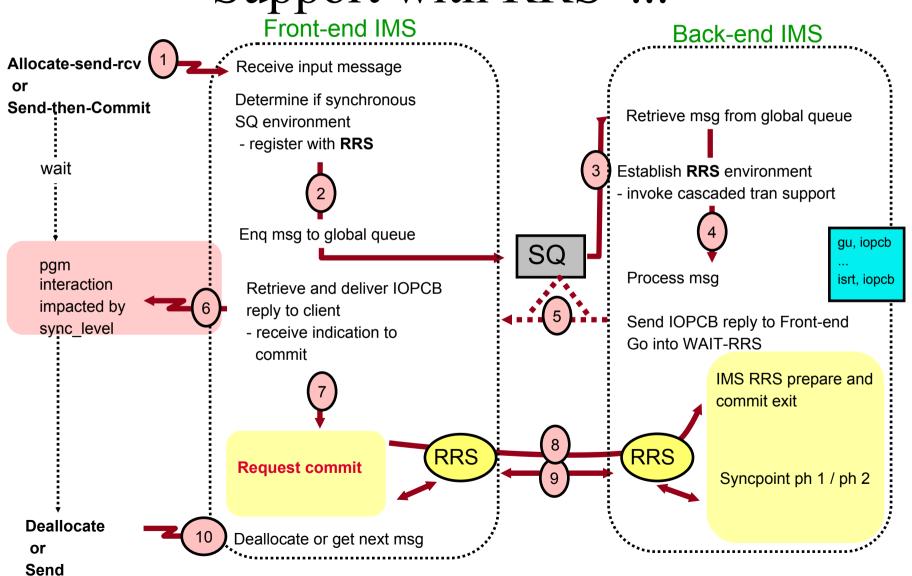

- Sync Point Manager
 - Coordinates 2-phase commit
 - e.g. RRS/MVS
- APPC Communications Manager
 - Managed communications between components
 - e.g. APPC/MVS
- Resource Manager
 - Controls protected resources
 - e.g. IMS TM/DB
- Application
 - Initiates/participates in protected
 - conversations
 - e.g. IMS MPP

IMS APPC Sync_Level Syncpt Support with RRS ...

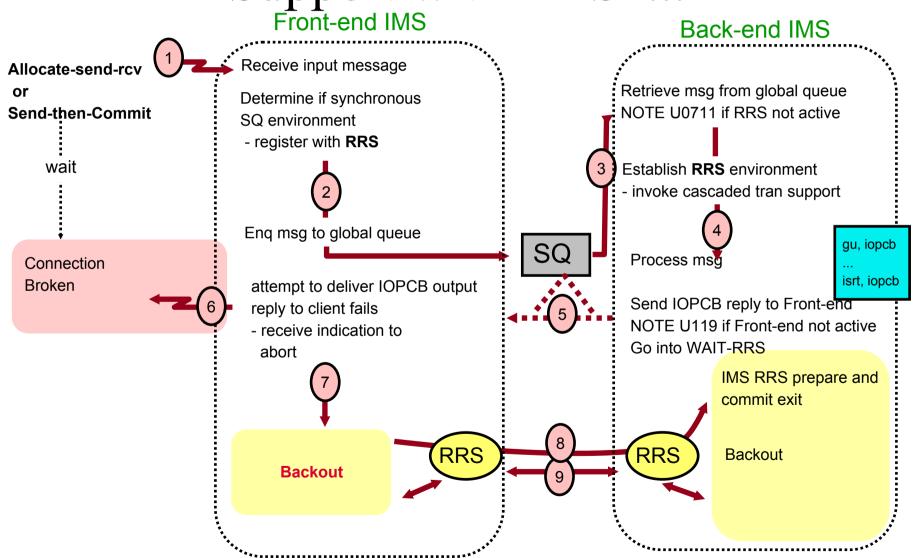

Example of Protected Conversation

IMS OTMA Sync_Level Syncpt Support with RRS


• IMS V8 OTMA can process protected transaction (synclevel=syncpt) from different systems.


IMS OTMA/APPC Shared Queue <-Support with RRS

- IMS V8 Synchronous APPC and OTMA Shared Queues
 - Using RRS multisystem cascaded transaction feature.
 - Allows Synchronous APPC/OTMA workload to be distributed and executed on any of the IMS systems in the Shared Queues group.



IMS OTMA/APPC Shared Queue Support with RRS ...

IMS OTMA/APPC Shared Queue Support with RRS ...

Agenda

- Basic Concepts of z/OS Resource Recovery
- Application related to IMS
 - IMS Batch
 - DB2 Stored Procedure
 - IMS OTMA and APPC Protected Transaction
 - IMS V8 OTMA/APPC Shared Queue exploitation
- RRS Considerations
- Summary

RRS Considerations for IMS Customers

- Performance will be impacted by using RRS
- RRS logs many activities related to the RRS events and services.
- The new "RRS=" startup parameter in IMS procedure could be considered to activate/deactivate the RRS function for IMS.

RRS - Installation

- RRS has one XCF group
 - The group has one member for each system in the sysplex
 - The group name is ATRRRS.
- RRS in an MVS system
 - Should be active all the time
 - Should be active on every MVS system image
 - Only one instance of RRS can be active on each system image
- RRS requires system logger
 - an MVS system logger application
 - waits until system logger is active
 - records events related to protected resources
 - five log streams that are shared by systems in a sysplex

RRS - Installation ...

- Dispatching priority of the RRS address space
 - WLM : put RRS in the SYSSTC service class
- Define RRS as a subsystem
 - IEFSSNxx parmlib member :
 - SUBSYS SUBNAME(RRS)
 - does not support dynamic subsystem definition
 - SETSSI ADD,SUBNAME=RRSF
- Starting RRS
 - Sample : in SYS1.SAMPLIB(ATRRRS)
 - Must set-up Proc in SYS1.PROCLIB(RRS)
 - START RRS

RRS - Installation ...

- Stop RRS
 - SETRRS CANCEL
 - if non-resource manager programs in syncpoint
 - may result in a X'058' abend
 - transactions in progress will be resolved when RRS restarts.
 - FORCE RRS,ARM
 - If SETRRS CANCEL does not stop RRS
- Automate RRS handling
 - SETRRS CANCEL command prior to a system IPL
 - result in a cleaner system recovery
 - START RRS command in the COMMNDxx parmlib
 - start RRS during system initialization
 - Restart RRS via ARM if it fails

RRS - 5 log streams

- RRS resource manager data log
 - Info about resource managers using RRS
 - Unconditional duplexing strongly recommended
 - ATR.lgname.RM.DATA
- RRS main UR state log
 - The state of active URs
 - ATR.lgname.MAIN.UR
- RRS delayed UR state log
 - The state of active URs when UR
 - completion is delayed
 - ATR.lgname.DELAYED.UR
- RRS restart log
 - Info about incomplete URs
 - Needed during restart
 - ATR.lgname.RESTART

- RRS archive log
 - Information about completed URs
 - optional (never used by RRS)
 - ATR.lgname.ARCHIVE

RRS - CF Structures

- Sizing
 - CFSizer
 - http://www.ibm.com/servers/eserver/zseries/cfsizer/rrs.html
- Recommendation : 2 structures for all Logstreams
 - Main.UR and Delayed.UR
 - RM.Data and Restart
- Start with no Archive

RRS - Restart

- RRS Warm start :
 - any attempt to start RRS when its logs are not empty
 - also when RRS is started on any system in a sysplex using the same logging group
 - complete work that was in progress when :
 - a previous RRS instance failed
 - or was intentionally stopped
- RRS Cold start
 - when the RRS resource manager data log is empty
 - a sysplex-wide operation
 - affect all RRS subsystems using the logging group
 - cannot complete any work that was in progress
- IXCMIAPU utility to delete and redefine the RRS RM data log
 - sample in ATRCOLD member of SYS1.SAMPLIB

RRS - ISPF Panels

- Enables view of:
 - RRS logs
 - UR information
 - Resource manager information
- Enables decisisions:
 - Determine where a resource manager can restart after a system failure
 - Resolve an in-doubt state for a UR to in-commit or in-backout
 - Remove a resource manager's interest in a UR
- Enables some 'follow-on' (tuning help)

Summary

- z/OS Resource Recovery allows an application program to make consistent changes to multiple protected resources.
 - IMS batch application programs support 2-phase commit syncpoint processing using RRS.
 - ODBA implementation is possible because of RRS. DB2 Stored Procedure can benefit of it.
 - OTMA/APPC Protected Conversation supported by using RRS.
 - IMS V8 OTMA/APPC synchronous messages are allowed to be processed by any backend IMS using RRS.

References

z/OS V1R4.0 MVS Programming: Resource Recovery z/OS V1R4.0 MVS Setting Up a Sysplex

