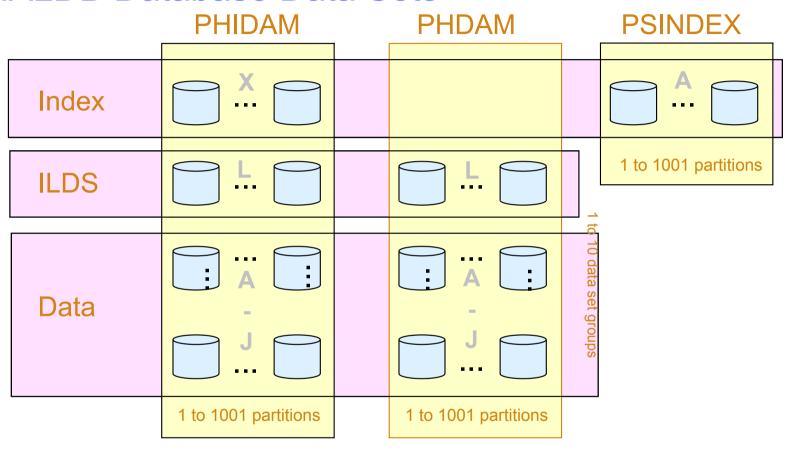


IBM Software Group

IMS13 IMS HALDB Administration

Cornelia Hallmen Rich Lewis



Agenda

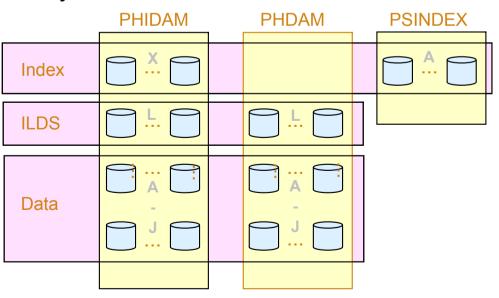
- Review of database data sets
- Partitions
 - Initialization
 - Sizing
 - Adding, deleting, and modifying partitions
- Reorganizations
- Recoveries
 - Timestamp recoveries
- Test databases
- Secondary indexes
 - Sizing, recoveries, and reorganizations
- Performance

HALDB Database Data Sets

The data sets in a partition have generated data set names and DDNAMEs. Letters are used to distinguish them.

X - PHIDAM index

L - ILDS


A through J - Data data sets

A - PSINDEX

HALDB Database Data Sets

- Each PHDAM or PHIDAM partition requires an ILDS (L)
 - ► ILDS is empty if there are no logical relationships or secondary index entries
- Each PHIDAM partition has an index data set (X)
- Each PHDAM or PHIDAM partition has an A data set
 - Root segments are in the A data sets
- Each PHDAM or PHIDAM partition may have B-J data sets
 - Used for multiple data set groups
- Each PSINDEX partition has an A data set

Partition Names and IDs

- Each partition has a name
 - Unique in the RECONs
 - Partitions in different databases cannot have the same name
 - Partitions cannot have the same name as a database
 - Choices:
 - Name signifies the data in the partition
 - Could cause problems when partitions are modified
 - Name is arbitrarily chosen
- Each partition has an ID
 - Number assigned by IMS when partition is created
 - Assigned in creation order
 - Not in key sequence
 - Not reused

HALDB Database Data Sets

- Data set names
 - Begin with data set name prefix for the partition
 - Up to 37 characters assigned by user
 - Letter and Partition ID are used as suffix
 - X for PHIDAM index
 - L for ILDS
 - A for PSINDEX
 - A through J for data
 - Example:
 - Partition data set name prefix IMP0.DB.INV23
 - Partition ID: 00004
 - Data set names:
 - PHIDAM index:
 IMP0.DB.INV23.X00004
 - PHIDAM ILDS: IMP0.DB.INV23.L00004
 - PHIDAM first data data set: IMP0.DB.INV23.A00004

- Each partition in a database may have the same data set name prefix.
 - Partition IDs make names unique.

HALDB DDNAMEs

- DDNAMEs
 - Begin with the partition name
 - Up to 7 characters assigned by user
 - I etter is used as suffix
 - X for PHIDAM index
 - I for II DS
 - A for PSINDEX
 - A through J for data
 - Example:
 - Partition name LBAD112
 - DDNAME for PHIDAM Index: LBAD112X
 - DDNAME for PHIDAM ILDS: LBAD112L
 - DDNAME for first 'data' data set: LBAD112A

Dynamic Allocation

- Dynamic allocation uses RECON information
 - All HALDB databases are registered in RECONs
 - DFSMDA members are never used for HALDB
- If you use a DD statement:
 - If DD statement conflicts with RECON information, allocation fails
 - ▶ If DD statement matches RECON information, allocation succeeds
 - It works as if you had not used a DD statement
- THEREFORE, do not include DD statements for HALDB

Agenda

- Review of database data sets
- Partitions
 - Initialization
 - Sizing
 - Adding, deleting, and modifying partitions
- Reorganizations
- Recoveries
 - ► Timestamp recoveries
- Test databases
- Secondary indexes
 - Sizing, recoveries, and reorganizations
- Performance

Partition Initialization

- Partition initialization
 - Prepares partition data sets for use
 - Ensures that partitions with no data are usable
 - Initialization is done either by
 - HALDB Partition Data Set Initialization utility (DFSUPNT0) or
 - Database Prereorganization utility (DFSURPR0)
 - Database is specified to the utility
 - Partitions with 'partition initialization required' DBRC flag (PINIT) are initialized
 - Exception: DFSUPNT0 has unconditional partition initialization function
 - Invokes initialization for all partitions in the database with or without flag set
 - Specified with INITALL control statement in DFSOVRDS DD data set
 - Introduced by PQ49638 (IMS V7) and PQ55002 (IMS V8)

Partition Initialization

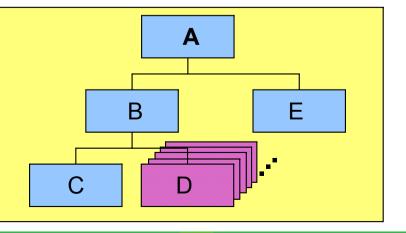
- Partition initialization process
 - Makes high-used RBA non-zero
 - Writes and erases a record in PSINDEX
 - Writes reorg number and partition ID in PHDAM and PHIDAM
 - Creates first bit map block in PHDAM and PHIDAM
 - Writes high-key (x'FF...FF') record in PHIDAM

Partition Initialization

- Partition initialization is only required in three cases:
 - 1. Before initial load (PROCOPT=L) of partition
 - 2. Before migration reload of partition
 - Input to reload was created by unload of non-HALDB database with MIGRATE=YES or MIGRATX=YES option
 - Before a partition may be used without containing any data
 - Initial load or reload does not insert any segments in the partition
- Partition initialization is not required with reorganizations
 - Not required even when data sets are deleted and redefined
 - Unless the partition is empty
- 'Partition Initialization Required' flag in RECONs
 - Turned 'on' by partition definition or DBRC command
 - Turned 'off' by partition initialization or DBRC command
 - Authorization fails if the flag is 'on'

Number of Partitions and Their Sizes

- Things to consider when choosing the number of partitions
 - Number of partitions affects the sizes of partitions
 - Time required to reorg partitions in parallel
 - Smaller partitions shorten the process
 - Time required to image copy and recover partition data sets
 - Smaller partitions shorten these processes
 - Smaller partitions may avoid multivolume data sets
 - Management of the data sets
 - More data sets require more management
- Multiple data set groups
 - May be advantageous to have only one data set per partition
 - May be advantageous to have multiple data sets



Multiple Data Set Groups

- HALDB supports multiple data set groups
 - Multiple data set groups place different segment types in different data sets
 - Should you use them?
- Multiple data set groups were used for two reasons with non-HALDB
 - 1. Avoid data set size limitations

- Not required with HALDB
- 2. Place infrequently used segments in another data set Also applies to HALDB

- Example:
 - Place D segments in a data set group
 - Increases likelihood that E will be in the same block with A

Database Compression

- HALDB supports segment edit/compression routines
 - Should you use them for compression?
- Reasons to use compression with HALDB:
 - Saves DASD space
 - May improve performance
 - Reduces I/Os required to retrieve and write data
- Reasons not to use compression with HALDB:
 - Not needed to avoid data set size limitation.
 - May hurt performance
 - CPU costs for compression and expansion of segments
 - Probably not significant

Adding, Deleting, and Changing Partitions

- Databases change over time
 - The sizes of partitions may change over time
 - Data added and deleted
 - The high keys of partitions may need to be adjusted over time
 - Different amounts of data added or deleted to different partitions
 - Example: Root keys based on date
- Databases need to be adjusted over time
 - Partitions may need to be split, consolidated, created, or deleted
 - Partition boundaries (high keys) may need to be adjusted

HALDB Migration Aid Utility

- HALDB Migration Aid utility (DFSMAID0)
 - Reads HDAM, HIDAM, Secondary Index databases
 - Provides sizing and high key information for migration planning
 - Secondary index support
 - Provides key range boundaries and numbers of records
 - Secondary index 'bytes' and 'prefix-incr' information are inaccurate in the report!
 - Number of segments and high key values are accurate in the report
 - Sizes are easily calculated from the numbers of records
 - Reads PHDAM, PHIDAM, and PSINDEX databases
 - Provides sizing and high key information for repartitioning planning

HALDB Migration Aid Utility

Sample report:

```
partition 1 :
   minimum key =
                                  |KAA11234 |
      +0000
            d2c1c1f1 f1f2f3f4
   maximum key =
      +0000
            d2f2f3f9 f9f2f3f4
                                   |K2399234 |
                                    bytes
                                           prefix-incr length-incr
                   segments
   1) 'PRODUCT '
                      31567
                                   4040576
                                                  252536
     'INVENT'
                     103781
                                  8094918
                                                  830248
   3) 'ORDOTY'
                     171182
                                 10955648
                                                 1369456
      'MFGSPECS'
                      51115
                                 10938610
                                                  408920
                     357645
                                                 2861160
 SUM)
                                 34029752
```

segments

- number of segments

bytes

- number of bytes for the segments

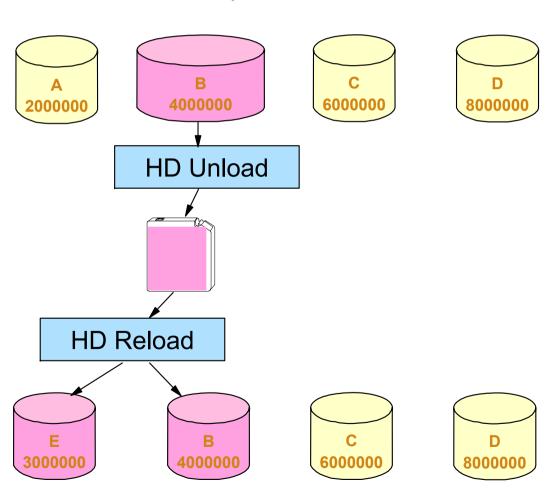
prefix-incr

- additional bytes due to increased prefix size

length-incr

- additional bytes required for paired logical relationships

HALDB Migration Aid Utility


- Using the Migration Aid utility
 - You may specify one of the following:
 - Number of equal sized partitions
 - Number of segment bytes per partition
 - High keys for partitions
 - Report for each partition and the entire database
 - Bytes in reports do not include free space, bit maps, RAPs, or FSEAPs
 - You must adjust for these!

Splitting a Partition

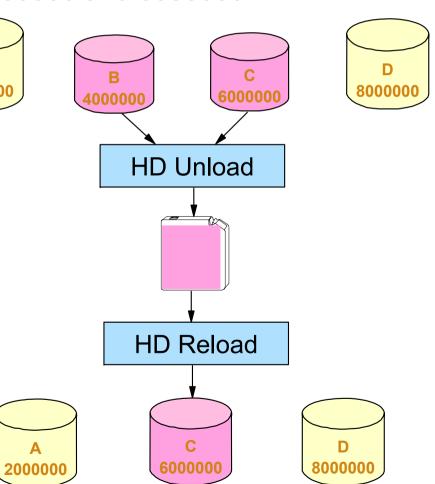
If partition B with high key 4000000 needs to be split

2000000

- Unload partition B
 - HD Unload or HP Unload
- Define new partition E
 - With high key 3000000
 - Sets PINIT flag for B and E
- Initialize partitions B and E
- Reload partitions B and E
 - HD Reload or HP Load
- Partitions A, C, and D are not affected

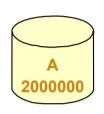
Combining Partitions

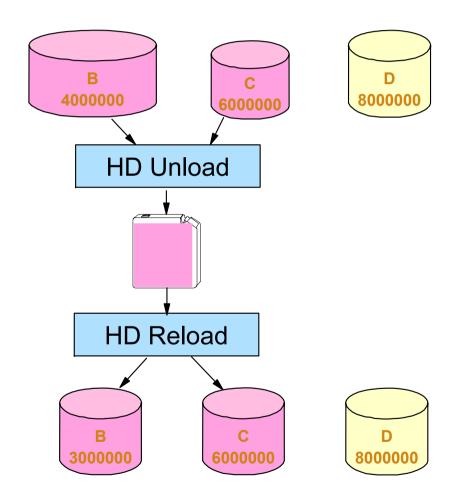
If partitions B and C with high keys 4000000 and 6000000

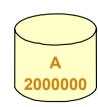

2000000

need to be combined

Unload partitions B and C


HD Unload or HP Unload


- Delete definition of partition B
 - Sets PINIT flag for C
- Initialize partition C
- Reload partition C
 - HD Reload or HP Load
- Partitions A and D are not affected

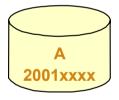


Modifying Partition Boundaries

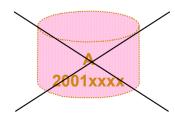
- If records need to be moved from partition B to C
 - Unload partitions B and C
 - HD Unload or HP Unload
 - Change high key for partition B
 - From 4000000 to 3000000
 - Sets PINIT flag for B and C
 - Initialize partitions B and C
 - Reload partitions B and C
 - HD Reload or HP Load
 - Partitions A and D are not affected


Databases with Dates for Keys

Some databases have dates as the high-order part of the key



- ► To add a partition for a set of dates (higher keys)
 - Define it and initialize it



- ► To delete the partition with the lowest dates (keys) and all of its data
 - Delete the partition definition

Unloads and reloads are not required for these changes

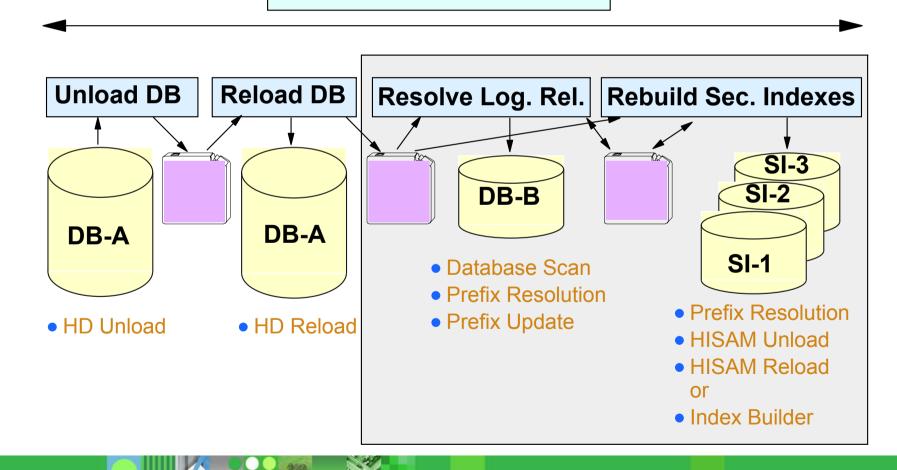
Disabling and Enabling Partitions

- Disabling and enabling of partitions was introduced by APARs
 - PQ48421 for IMS V7
 - PQ73858 for IMS V8
- Disabling partitions
 - Definitions and information remain in RECONs
 - Includes partition IDs, DSN prefixes, and recovery information
 - Partitions are not used
 - Partitions are ignored
- Disabled partitions may be enabled
 - Enabled partitions are made active
 - Enabled partitions are marked 'recovery needed'

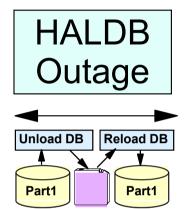
Enabling and Disabling Partitions

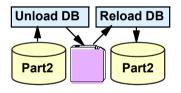
- Use of disabling and enabling of partitions
 - Disabling is normally done prior to deleting a partition
 - Keeps recovery information, partition ID, DSN prefix, etc.
 - If testing is successful, partition is deleted
 - Deletion removes all information
 - If testing is not successful, partition is enabled
 - Partition is recovered and becomes active
 - Other partitions may require timestamp recovery
- PDU support for disabling and enabling
 - New 'Partition status' field on 'Change Partition' panel
- DBRC commands for disabling and enabling

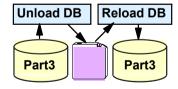
```
CHANGE.PART DBD (dname) PART (pname) DISABLE CHANGE.PART DBD (dname) PART (pname) ENABLE
```

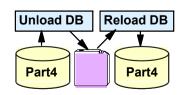


Agenda

- Review of database data sets
- Partitions
 - Initialization
 - Sizing
 - Adding, deleting, and modifying partitions
- Reorganizations
- Recoveries
 - ► Timestamp recoveries
- Test databases
- Secondary indexes
 - Sizing, recoveries, and reorganizations
- Performance


Non-HALDB Reorganizations


Non-HALDB Database Outage





HALDB Reorganizations

- Shorten the reorg time to <u>your window</u>
- Reorg partitions in parallel
 - Create enough partitions to meet your requirement
- Eliminate rebuilds of secondary indexes
 - Prefix Resolution, HISAM Unload, HISAM Reload, or Index Builder are not required
- Eliminate updates to logical relationships
 - DB Scan, Prefix Resolution, and Prefix Update are not required

Healing Pointers After Reorgs

- After a reorganization sec. index and log. rel. pointers are "broken"
 - Normal processing heals them efficiently
 - Only heals pointers that are used
 - Reads of pointers are "free"
 - They are being read for normal processing
 - ILDS reads are efficient
 - ILDS CIs hold many entries
 - ILDS CIs are maintained in the buffer pools
 - Optionally, you can heal them
 - Extends the reorganization process
 - Typically, uses more resources
 - Heals all pointers
 - More total I/Os
 - HALDB Conversion and Maintenance Aid includes pointer healing utility
- Our recommendation: Let normal processing heal the pointers

Data Set Delete and Define for Reorgs

- HALDB database data sets may be reused
 - Delete and redefine are not required for reorganization
 - VSAM REUSE attribute is honored by HD Reload
 - Non-HALDB VSAM required DELETE and DEFINE
 - OSAM allows reuse with both HALDB and non-HALDB
 - Delete and define are required to move data sets
- REUSE attribute is required for HALDB VSAM data sets
 - Except ILDS
 - Parameter is allowed but not honored for ILDS
 - ILDS will not be reused by Index/ILDS Rebuild utility (DFSPREC0)

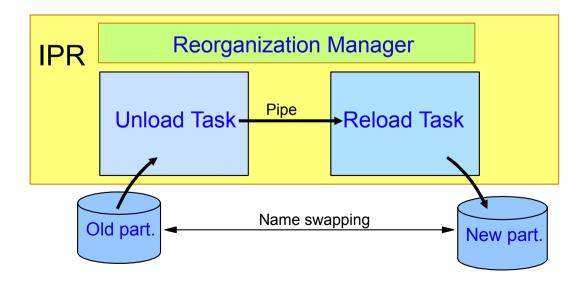
Partition Initialization During Reorgs

- Partition initialization is not required during reorganizations
 - Data sets may be deleted and redefined without partition initialization
 - Exception: A partition which contains no data must be initialized
- Reorganization steps:
 - Unload partition
 - Delete partition data sets (optional)
 - Define partition data sets (optional)
 - Reload partition

Reorganizations and Secondary Indexes

- Reorganization of a HALDB database does not require rebuild of its secondary indexes
 - Self-healing pointer scheme eliminates this requirement
- Many installations never reorganize non-HALDB secondary indexes
 - They are rebuilt (and organized) with every reorg of the indexed databases
- HALDB secondary indexes may become disorganized
 - They may require reorganization

This is a change in procedures!



Reorganization Alternatives

- HD Unload and HD Reload
 - Utilities provided with IMS
 - PHDAM, PHIDAM, and PSINDEX
 - Also non-HALDB support
 - Partitions must be off-line
- High Performance Unload and High Performance Load
 - Tools from IBM
 - ► PHDAM, PHIDAM, and PSINDEX
 - Also non-HALDB support
 - Partitions must be off-line

Reorganization Alternatives

- IMS Parallel Reorganization (IPR)
 - Single job step reorganization
 - Uses HP Unload and HP Load
 - Unload and load are done in parallel
 - Segment is read for unload and immediately passed to load
 - Reorg time is about equal to the slower process

Reorganization Alternatives

- IMS V9 Online Reorganization (OLR)
 - Utility provided with IMS V9
 - PHDAM and PHIDAM
 - Absolutely no outage
 - Data is available throughout the reorg process
 - Supports: data sharing, XRF, logical relationships, secondary indexes, ...

Eliminating the Need for Reorgs

- Free space
 - Rule of thumb of 20% free space is 25+ years old
 - Developed when DASD was very expensive
 - Developed when the nightly window was 12 hours
 - Out of date?
 - HALDB allows you to have as much free space as you need (and can afford)
 - DASD space is cheap
 - Reorganizations are expensive
 - More free space could eliminate the need for some reorganizations!

Reorganization Summary

- Size partitions to meet reorganization window needs
 - Reorganize partitions in parallel
 - Largest partition determines reorganization time
- Pointer healing
 - Typically, normal processing heals pointers most efficiently
- Database data sets may be reused
 - VSAM REUSE attribute is honored
- Partition initialization is not required for reorganizations
 - Even when data sets are redefined
- Secondary indexes are not rebuilt
 - May need to be reorganized

- Review of database data sets
- Partitions
 - Initialization
 - Sizing
 - Adding, deleting, and modifying partitions
- Reorganizations
- Recoveries
 - Timestamp recoveries
- Test databases
- Secondary indexes
 - Sizing, recoveries, and reorganizations
- Performance

Backup and Recovery

- HALDB A-J data sets (not the ILDS or PHIDAM index)
 - Backup
 - Image Copy utility (DFSUDMP0)
 - Including CIC option
 - Image Copy 2 utility (DFSUDMT0)
 - Updates are logged
 - Change Accum may be used
 - Recovery
 - Database Recovery utility (DFSURDB0)
 - Online Recovery Service (ORS) tool
 - Database Recovery Facility (DRF) tool
 - DBRC
 - GENJCL.IC
 - GENJCL.CA
 - GENJCL.RECOV

Like other IMS database data sets

Backup and Recovery

- HALDB ILDS (L) and PHIDAM Index (X) data sets
 - Backup
 - No image copies
 - Updates are not logged
 - ILDS is only updated by reorganization reload
 - PHIDAM Index is treated like a non-recoverable database
 - Recovery
 - Index/ILDS Rebuild utility (DFSPREC0)
 - Rebuilds the data set(s) from the database
 - DBRC
 - GENJCL.USER MEMBER(DSPUPJCL)
 - May be used to generate DFSPREC0 JCL to rebuild an ILDS or PHIDAM index

Timestamp Recoveries

- All data sets of a partition must be recovered to the same time
 - PHIDAM index must be rebuilt.
 - A data set must be recovered first.
 - Rebuild with Index/ILDS Rebuild utility (DFSPREC0)
 - ILDS may need to be rebuilt
 - If secondary indexes or logical relationships are used and
 - 2. If recovery is to time before last reorganization
 - ILDS is only changed by reorganizations
 - May be rebuilt with Index/ILDS Rebuild utility (DFSPREC0)
 - Alternative for ILDS
 - After reorganization
 - Copy ILDS with REPRO
 - If ILDS needs to be restored
 - Use copy produced by REPRO

Timestamp Recoveries

- Must all partitions of a database be recovered to the same time?
 - Almost always
 - User must understand when this is not required
 - For example, offending program updated only one partition
- Secondary index implications
 - Usually, database with secondary index forces recovery of all partitions to the same time
 - All partitions of the indexed database
 - All partitions of its secondary indexes
- Logical relationship implications
 - Usually, database with logical relationships forces recovery of all partitions to the same time
 - All partitions in the logically related databases

- Review of database data sets
- Partitions
 - ► Initialization
 - Sizing
 - Adding, deleting, and modifying partitions
- Reorganizations
- Recoveries
 - ► Timestamp recoveries
- Test databases
- Secondary indexes
 - Sizing, recoveries, and reorganizations
- Performance

Test Databases

- Non-HALDB test databases
 - Often, not registered in RECONs
 - Each programmer may have one or more versions of a database
- All HALDB databases are registered in RECONs
 - Multiple versions of a database must be defined in different RECONs
 - DBRC does not allow multiple databases with the same name
 - Multiple test versions of a database require multiple RECONs
 - Plan your batch test environments

Defining Test Databases

- Use the same DBD as production
 - DBD does not include partition or data set information
 - Place in test DBDLIB and ACBLIB
- Create test partition definitions
 - Define partitions for test environment or
 - Use Partition Definition Utility EXPORT and IMPORT functions
 - Moves partition definitions between RECONs
 - They may be modified after IMPORT
 - Data set name prefix, RAA, etc.
 - APARs PQ48421 (V7) and PQ73858 (V8) maintain partition IDs

Creating Test Databases

- Alternatives for creating a test database from a production database
 - Unload and Reload
 - HD Unload (HP Unload) of production
 - HD Load (HP Load) to test
 - You may create a different partition configuration
 - Partition IDs will generally be different
 - Partition names may be changed
 - Partition boundaries may be changed
 - Image Copy and restore
 - Export and import partition definitions
 - Maintains partition IDs (with APARs PQ48421 or PQ73858)
 - Image copy production database data sets and restore to test
 - Partition IDs are stored in database data sets
 - Change database data set names of test database
 - Change data set name prefixes
 - Use application programs

- Review of database data sets
- Partitions
 - Initialization
 - Sizing
 - Adding, deleting, and modifying partitions
- Reorganizations
- Recoveries
 - ► Timestamp recoveries
- Test databases
- Secondary indexes
 - Sizing, recoveries, and reorganizations
- Performance

Secondary Indexes

- Plan the partitions for the secondary indexes
 - How many partitions do you need?
 - Space requirements
 - HALDB secondary index entries are much larger than those for non-HALDB sec. ind.
 - Pointers are larger
 - Root key of target is stored in the entry
 - Reorganization requirements
 - Will they need to be adjusted during life of the database?
 - Keys based on date, etc.
- Plan to reorganize them
 - ► They are not rebuilt with each reorganization of their indexed databases
- Don't make them non-recoverable unless you have a tool to rebuild them (e.g. Index Builder)
 - They are not rebuilt by IMS utilities

- Review of database data sets
- Partitions
 - Initialization
 - Sizing
 - Adding, deleting, and modifying partitions
- Reorganizations
- Recoveries
 - ► Timestamp recoveries
- Test databases
- Secondary indexes
 - Sizing, recoveries, and reorganizations
- Performance

Performance

- HALDB processing is tuned like other full function database processing
 - Buffer pools
 - ILDSs also use buffer pools
 - Reorganizations and free space
 - OSAM sequential buffering
 - PHDAM root addressable area (RAA) and RAPs
 - Make your RAA large enough to hold all of your data with free space
 - In each partition
 - Give yourself a lot more RAPs than roots
 - In each partition
- HALDB has some new options
 - Parallel processing of partitions

Assigning Data Sets to Buffer Pools

- HALDB database data sets may be assigned to separate buffer pools
 - DFSVSMxx member or DFSVSAMP data set

```
DBD=dbdname(data set identifier,id)
```

dbdname - partition name or master database name

data set identifier - Letter A-J, L, or X

A-J for user data sets

A for secondary index

L for Indirect List Data Set (ILDS)

X for PHIDAM primary index

id - subpool id

Parallel Processing of Partitions

- Parallel processing of partitions
 - Different jobs may process different partitions
 - Could shorten elapsed times
 - Control statement may be used to limit PCB access to one partition
 - Batch (DLI or DBB), BMP, or JBP region
 - DFSHALDB DD statement:

```
HALDB PCB=(nnn|dddddddd,pppppppp)

nnn - DBPCB number
ddddddddd - DBPCB label or name
pppppppp - partition name
```


HALDB Database Administration

- Partitioning
 - Sizing, naming, and modifying
- Reorganization
 - Parallel processing and alternatives
- Backup and recovery
 - Special considerations for ILDSs and PHIDAM indexes
- Secondary indexes
 - Partition sizing and reorganization requirements
- Redbook:
 - The Complete IMS HALDB Guide: All You Need to Know to Manage HALDBs, SG24-6945

Things to Remember

- HALDB Migration Aid utility can analyze existing HALDB databases
 - Useful when planning repartitioning
- Deleting a partition definition deletes its recovery information
 - Disabling a partition keeps its recovery information
- Secondary indexes may require reorganizations
 - They are not rebuilt when the indexed database is reorganized
- Secondary index cannot be rebuilt from database with IMS utilities
 - Don't make them non-recoverable unless you have a tool like the IBM Index Builder

Things to Remember

- PHIDAM indexes and ILDSs have a different recovery process
 - They are rebuilt with Index/ILDS Rebuild Utility (DFSPREC0)
- Plan your scheme for creating HALDB test databases
 - DBRC registration is required for all databases