

IBM Software Group

IMS12 An Introduction to IMS High Availability Large Databases (HALDB)

Cornelia Hallmen

©2005 IBM Corporation

HALDB (High Availability Large Database)

Large Database

- Databases are partitioned
 - Up to 1001 partitions per database
 - Partitions have up to 10 data set groups

How Big? - Doing the Math

4 Gig	(dataset size)	
x 1001	(partitions)	
x 10	(datasets per partition)	

~ 40 Tera Bytes

HALDB (High Availability Large Database)

- High Availability Database
 - Partition independence
 - Allocation, authorization, reorganization, and recovery are by partition
 - Self healing pointers

Maintains and extends the performance and availability characteristics you expect from IMS !!

Highlights

- Database records are grouped into partitions
 - Hierarchic structure is maintained within a partition
 - A database consists of 1 or more partitions
- New database types
 - PHDAM partitioned HDAM
 - PHIDAM partitioned HIDAM
 - Index is partitioned
 - **PSINDEX** partitioned secondary index
- Partition selection
 - By key range or by user exit routine

Highlights

- OSAM and VSAM (ESDS and KSDS) are supported
- Logical relationships and secondary indexes are supported
 - Secondary indexes may be partitioned

DBRC is required

- Databases must be registered
- Dynamic allocation from DBRC information, not DFSMDA
- Minimal (or no) application changes required
 - Cannot initially load logical child segments
 - New status code for load programs
 - Data unavailable' conditions apply to partitions
 - Database may be available, but partition unavailable

HALDB Benefits

- Increased database capacity and availability
 - Partitions independence
 - Allocation, authorization, reorganization, and recovery are by partition
 - Batch window is shortened with concurrent processing

- Partitions, not databases, are removed from system
 - Shortened reorganization process

- Self healing pointers
 - Reorganization of a partition <u>does not require</u> changes to secondary indexes or logically related databases

TBM

HALDB Benefits

Improved manageability

- As its size grows, a database becomes difficult to manage
- Smaller sections of the database are easier to manage

Enhanced usability

- HALDB removes the steps involved in running the prefix resolution and prefix update utilities
- ISPF utility for partition definitions

Partition Independence

- Commands
 - Allowed on both databases and partitions
- Availability
 - Partitions are allocated and authorized independently
- Scheduling
 - Based on database availability
 - PCBs and INQY calls report database availability
 - Partition may be unavailable with available database
- Database Utilities
 - Allowed on individual partitions or sets of them
 - Concurrent processing of multiple partitions allowed

Definition Process

DBDGEN

- Used to define database
 - Hierarchic structure, data set groups, pointer options, logical relationships, secondary indexes,...
- HALDB Partition Definition Utility
 - Used to define partitions in database
 - Partition selection, boundaries, space characteristics, randomizers,...
 - ISPF based
 - Stores information in the RECONs
 - Definitions may be done with DBRC commands instead of this utility

Definition Process

- System Definition
 - Specifies the database to the online system
- DFSVSMxx and DFSVSAMP DD
 - Assigns data sets to buffer pools

Definition tasks

DBD NAME= DATASET ... SEGMENT NAME= FIELD NAME=

DATASET attributes are set by PDU, stored in RECON

DBDGEN

IBM

HALDB - Example

DL/I With and Without HALDB

DB Name = MASTER TYPE=HDAM Data Set Groups: DSI DS2

Master DB Name: MASTER TYPE=PHDAM Partitions: PART1, PART2, PART3 Data Set Groups: DSI and DS2 per partition

HALDB

Database Structures

- PHIDAM prime indexes are not separately defined
 - Defined as part of the PHIDAM database
 - Applies to DBDGEN and system definition
- Parent pointers
 - All dependent PHIDAM / PHDAM segments have physical parent pointers
- Symbolic pointers are not used
 - All pointers are direct

Database Structures

- Logical relationships
 - Virtual pairing is not allowed
 - Limited to unidirectional or physically paired
 - Logical child segments cannot be initially loaded
 Must be added by update
- Secondary indexes must have unique keys
 - /SX or /CK may be used to create uniqueness
 /SX is increased from 4 to 8 bytes (ILK)

HALDB Database Structure

- HALDBs have a new structure in order to support partitioning and inter-record pointing
 - Each partition in a database has a unique partition ID (PID)
 - A reorganization number is maintained in each partition
 - Incremented by each reorganization reload
 - Each segment in PHDAM or PHIDAM database is assigned a unique token when created
 - Indirect List Entry Key (ILK)
 - 8 bytes stored in segment prefix
 - RBA + partition ID + reorg# at segment creation
 - Key is **permanent**, even if the segment has been moved at reorg!

Reorganizations

- Reorganizations are simplified for logical relationships and secondary indexes
 - Work files are not used
 - Prefix Resolution, Scan, and Prefix Update are not used to update logical relationship pointers
 - HISAM Unload, HISAM Reload, or tools are not used to update secondary index pointers
- A new pointer scheme is used!
 - Applies only to logical relationships and secondary indexes
 - HALDB use both direct and indirect pointers

INDIRECT POINTERS

IBM

Indirect Pointers

- Indirect pointers are implemented to eliminate the need to update pointers in other database records when a partition is reorganized
 - When a partition is reorganized, it's segment locations can change -- potentially invalidating all inter-record pointers to segments in that partition
 - Segments which can point from one record to another are:
 - Physically paired logical children
 - Logical parents of unidirectional logical relationships
 - Targets of secondary indexes
- An ILDS is KSDS associated with a Partition: one per partition is required!
 - Is used as a repository for the indirect pointers in a partition
 - An entry in an ILDS is called an Indirect List Entry (ILE)
 - It is created for every segment that is involved in inter-record pointing during reload

ILDS - indirect list entry data set

- ILEs do only exist for segments which are targets of secondary indexes or of logical relationships
- Each ILE consists of 50 bytes and is created or updated only by reorganization
- ILEs are composed of
 - ILE-key (ILK + Segmentcode => 9 bytes) and
 - ILE data
 - Flag, 20 bytes with Partition ID, Reorg #,accurate pointer to each logical parent or secondary index target, accurate pointer to each physically paired logical child as well as database record lock ID for segment, version#,.... (used at uneven reorg #)

20 bytes with corresponding information used at even reorg#

Extended Pointer Set

- Extended Pointer Set (EPS) is used for logical relationships and secondary indexes
 - Replaces direct or symbolic pointers used in Non-HALDB databases
 - Key of root is used to determine partition
 - EPS contains direct pointer, reorganization number, target partition ID, and ILK
 - If reorg number is current, direct pointer is used
 - If reorg number is not current, ILK is used to find ILE in ILDS
 - ILE contains pointer to segment
 - EPS is <u>not updated</u> by reorganizations!
 - Direct pointer and reorg number in EPS are updated when ILE is used

Self healing pointers!

Selfhealing Pointers

Selfhealing Pointers

Selfhealing Pointers

TBM

Extended Pointer Set (EPS) Adjustments

- When out of date pointer is found it is corrected if:
 - Access intent is update or exclusive
 - PROCOPT is update
- Locking considerations
 - Read programs with update PROCOPTs may hold many locks
 - If block level data sharing is used, block locks are held until sync point

Reorganization Frequencies

- Reorganization frequencies may be changed
- Increased free space may reduce reorganization frequencies
 - HALDB may allow users to increase free space
 - Increased free space may reduce need to reorganize
- Reorganization frequencies may be increased
 - Reorg windows are reduced due to elimination of utility steps and parallel processing
 - Selected partitions may be reorganized independently

HALDB Database Data Sets

- Each HALDB database has up to 1001 partitions
- PHIDAM has index, ILDS, and up to 10 data set groups per partition
 - 3 to 12 data sets per partition
 - ▶ 3 to 12,012 data sets per database
- PHDAM has ILDS and up to 10 data set groups per partition
 - 2 to 11 data sets per partition
 - 2 to 11,011 data sets per database
- PSINDEX has no ILDS or data set groups
 - 1 data set per partition
 - I to 1001 data sets per secondary index

Database Data Sets

- Data set names
 - Begin with data set name prefix for the partition
 - Up to 37 characters
 - Assigned by user in HALDB Partition Definition Utility
 - Letter and Partition ID are used as suffix
 - X for PHIDAM index
 - L for ILDS
 - A for PSINDEX
 - A through J for data

The data sets in a partition have generated data set names and DDNAMEs. Letters are used to distinguish them.

- X PHIDAM index
- L ILDS
- A PSINDEX

A through J - Data data sets

Partition DDNAMEs and Data Set Names

Example: PHIDAM with 10 data set groups, FRANCE partition

Partition_name of **FRANCE** (assigned by user in HALDB Partition Definition Utility)

DSN_prefix of IMP0.DB.INV23.FRANCE (assigned by user in HALDB Partition Definition Uti

PartitionID of 00004 (assigned by IMS in HALDB Partition Definition Utility)

Data set	DDNAME	Data Set Name
Data set group 1	FRANCEA	IMP0.DB.INV23.FRANCE.A00004
Data set group 2	FRANCEB	IMP0.DB.INV23.FRANCE.B00004
Data set group 3	FRANCEC	IMP0.DB.INV23.FRANCE.C00004
Data set group 10	FRANCEJ	IMP0.DB.INV23.FRANCE.J00004
ILDS	FRANCEL	IMP0.DB.INV23.FRANCE.L00004
PHIDAM Index	FRANCEX	IMP0.DB.INV23.FRANCE.X00004

Partition DDNAMEs and Data Set Names

Example: PHIDAM with 10 data set groups, CANADA partition

Partition_name of CANADA

DSN_prefix of IMP0.DB.INV23.CANADA

PartitionID of 00011

Data set	DDNAME	Data Set Name
Data set group 1	CANADAA	IMP0.DB.INV23.CANADA.A00011
Data set group 2	CANADAB	IMP0.DB.INV23.CANADA.B00011
Data set group 3	CANADAC	IMP0.DB.INV23.CANADA.C00011
Data set group 10	CANADAJ	IMP0.DB.INV23.CANADA.J00011
ILDS	CANADAL	IMP0.DB.INV23.CANADA.L00011
PHIDAM Index	CANADAX	IMP0.DB.INV23.CANADA.X00011

Partition Selection

Partition selection is based on either:

Key range

or

Partition Selection Exit routine

Partition selection determines:

- Where root segments are placed
- Order in which partitions are processed

Partition Selection

- Restricting a PCB to a single partition
 - Batch or BMP
- New DD name, DFSHALDB

// DFSHALDB DD * HALDB PCB=(nnn|dddddddd,pppppppp)

- nnn DBPCB number
- ddddddd DBPCB label or name
- pppppppp partition name

one card per PCB, multiple cards allowed

SPE - PQ57313/ PQ65496 (IMS V7), PQ58600/PQ65489 (IMS V8)

HALDB Migration

- Migration
 - Uses Prereorg, HD Unload, and HD Reload utilities with new control statements
 - Databases logically related to each other must be migrated together
 - Logical relationships between HALDB and non-HALDB databases are not allowed
 - Secondary indexes must be migrated with the databases to which they point
 - Only HALDB secondary indexes may be used with HALDB databases
 - Migration Aid Utility
 - Provides statistical information about space requirements, key ranges, suggested partition boundaries,...

Migration to HALDB

* IBM HP Unload and HP Reload may be used in place of HD Unload / HD Reload

Adding, Deleting, and Changing Partitions

- Partition changes
 - Partitions may be added and deleted
 - Partition boundaries may be changed
- Partition changes are made with HD Unload and HD Reload
 - Only changed partitions are unloaded and reloaded
 - Other partitions remain available during the process !

HALDB Support

- HALDB is supported with:
 - Data sharing
 - Remote Site Recovery (RSR)
 - Extended Recovery Facility (XRF)
 - Online Change

•

- OSAM Sequential Buffering
- IMS Monitor and IMS Performance Analyzer

DL/I Calls with HALDB

- Database availability information
 - INIT DBQUERY call and priming of database PCB
 - Report database availability
 - Do not report partition availability
 - Database calls to unavailable partitions
 - BA' status code or U3303
 - GN after 'BA' will move to next partition

Logging

- No logging of "after images" for PHIDAM indexes
 - Rebuilt with DFSPREC0 utility
 - Before images" are not archived
- EPS adjustments are not backed out
- Database change log records include partition name instead of master database name
- No logging for ILDS
 - Only updated by HD Reload utility

HALDB Database Candidates

- Very large databases
 - Approaching 4GB (VSAM) or 8GB (OSAM) limitations
 - To allow for growth
 - To make databases more manageable
 - Previously partitioned databases
 - Using IMS/ESA Partition Support Product (PDB)
 - User partitioning

HALDB Database Candidates

- Medium and large databases
 - Parallel processing to meet time deadlines
 - Application programs
 - Utilities

HALDB Database Candidates

- Any size database
 - Online Reorganization (with IMS V9)
 - Faster reorganizations
 - May be done more frequently
 - Partition independence
 - Making only parts of the data unavailable for database maintenance
 - HIDAM to PHIDAM conversion
 - Log reduction for prime index
 - No image copies of prime index

Advantages of A Single Partition HALDB

- Self-Healing Pointers make reorganized data available sooner
- Primary Index of PHIDAM is automatically defined and partitioned
- Partitioned Database Definitions stored in Recon
 - Certain database changes can be made more non-disruptively
 - Reduced need for online change
- Log Reduction
 - No redo log records for changes to PHIDAM primary index
 - Updates to the ILDS are not logged
- Data sets dynamically allocated without MDA members
- Easy to add partitions as the need arises
 - and take advantage of partition independence and capacity increases
- Online Reorganization with IMS V9

HALDB Summary

Large Database

- Databases are partitioned
 - Up to 1001 partitions per database
 - Partitions have up to 10 data set groups
- High Availability Database
 - Partition independence
 - Allocation, authorization, reorganization, and recovery are by partition
 - Self healing pointers
 - Reorganization of partition <u>does not require</u> changes to secondary indexes or logically related databases

HALDB Summary

- Benefits
 - Greater database capacity
 - Without application changes
 - Increased database availability
 - Partitions, not databases, are removed from system
 - Shortened reorganization process
 - Batch window is shortened with concurrent processing
 - Improved manageability
 - Data sets may be smaller

